
A Corpus-Consulting Probabilistic
Approach to Parsing: the CCPX
Parser and its Complementary

Components

Michael David Day

Department of Computer Science
University of Wales
College of Cardiff

June 2007

A DISSERTATION
SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UMI Number: U585093

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585093
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract
Corpus linguistics is now a major field in the study of language. In recent years
corpora that are syntactically analysed have become available to researchers, and
these clearly have great potential for use in the field of parsing natural language.
This thesis describes a project that exploits this possibility. It makes four distinct
contributions to these two fields.

The first is an updated version of a corpus that is (a) analysed in terms of the
rich syntax of Systemic Functional Grammar (SFG), and (b) annotated using the
extensible Mark-up Language (XML).

The second contribution is a native XML corpus database, and the third is a
sophisticated corpus query tool for accessing it.

The fourth contribution is a new type of parser that is both corpus-consulting
and probabilistic. It draws its knowledge of syntactic probabilities from the corpus
database, and it stores its working data within the database, so that it is strongly
database-oriented.

SFG has been widely used in natural language generation for approaching two
decades, but it has been used far less frequently in parsing (the first stage in natural
language understanding). Previous SFG corpus-based parsers have utilised
traditional parsing algorithms, but they have experienced problems of efficiency and
coverage, due to (a) the richness of the syntax and (b) the challenge of parsing
unrestricted spoken and written texts.

The present research overcomes these problems by introducing a new type of
parsing algorithm that is ’semi-deterministic’ (as human readers are), and utilises its
knowledge of the rules - including probabilities - of English syntax.

A language, however, is constantly evolving. New words and uses are added,
while others become less frequent and drop out altogether. The new parsing system
seeks to replicate this. As new sentences are parsed they are added to the corpus, and
this slowly changes the frequencies of the words and the syntactic patterns. The
corpus is in this sense dynamic, and so simulates a human's changing knowledge of
words and syntax.

Acknowledgements
There have been many people who have helped make this work a success. I would especially like to
thank the following:

• Robin Fawcett, my PhJ). supervisor -
First for introducing me to computational linguistics in 1992, and for providing me with the
necessary challenge and enthusiasm that has made this work a success.
Second, for giving an excellent research environment at Windsor Crescent.
Third, for assistance in the research, particularly in the work towards the new corpus and a
new parser.
Finally, but most importantly, for being a Mend.

• Andrew Jones, my second supervisor -
For his rapid readings of the chapters and his constructive criticisms of it (often at short notice
and at times when his work loads were high).

• Margaret Fawcett -
For allowing the Fawcett home to become a research centre.

• Past and present Members of the COMMUNAL team -
I am very grateful for the help of the COMMUNAL team both past and present. Particularly
Gordon Tucker, who provided much of the inspiration along with Robin Fawcett in the creation of
ICQF. To past COMMUNAL members for the many stimulating discussions in past years, in
particular: Ruvan Weerasinghe, Yuen Lin, Amy Neale, Fiona Ball, and Victor Castel.

• Ruvan Weerasinghe and Clive Souter -
For their pioneering research in SFG parsing. Their findings strongly influenced the direction of
this work.

• My professional colleagues -
Thanks must go to Rolls-Royce for providing the support and release to be able to embark on this
research.

• Victoria Ichizli-Bartels -
For her reading of the chapters and constructive comments.

• My family -
My parents. Patricia for starting me on this path in 1991. Matthew, especially for his
understanding during the latter years.

Glossary

abstract mark up

AECMA

AMALGAM

ARK Corpus

ASD

ATN

attribute

BNC

BRILL tagger

BUS

backtracking

built structure

business rule (BR)

business rule checker

C/C++

CALS

candidate structure

CCPP

CCPXP

CELEX

CLAWS

CMS

CNF

COBUELD

COMMUNAL

computational
backtracking

concordance

concordancer

Mark up method that uses generic identifiers that have general names with
attributes to qualify the meaning (eg c u n i t c la s s= " n g p " />)•

See ASD.

Automatic Mapping Among Lexico-Grammatical Annotation Models

A corpus that was automatically generated by GENESYS, and was used as
one of the sources of probabilities for Weerasinghe's POP.

European Association of Aerospace Manufacturers (formerly AECMA)

Augmented Transition Network

A mark up attribute, further qualifies a mark up element

British National Corpus

A part of speech tagger developed by Eric Brill

Backward Unit Structure (a probabilistic table /query used by the CCPP)

In parsing terms, this occurs when the parser has to go back after a failed
analysis

A (maybe partial) parse tree that represents what the CCPP has built at a
particular point of the parse

A rule that states how an SGML/XML element or attribute should be used in
a given context

A program that checks that business rules are properly applied in an
SGML/XML document

Programming language

Continuous Acquistion and Life-cycle Support (formerly Computer Aided
Logistic Support). A United States Department of Defense initiative for
electronically capturing military documentation.

A partial parse tree that the CCPP is attempting to join or grow at a particular
point of the parse

Corpus-Consulting Probabilistic Parser

Corpus-Consulting Probabilistic XML Parser

The Centre for Lexical Information (resource used by Souter 1996)

Constituent Likelihood Automatic Wordtagging System

Content Management System - see native XML database

Chomsky Normal Form

COllins Birmingham University International Language Database (corpus)

Convivial Man-Machine Understanding through NAtural Language - a
project based at the University of Wales, College of Cardiff

Backtracking that involves going back to the next untried path in sequence

A report format derived from a corpus that shows word usage in the context
of the words around it (see KWIC)

A program that produces a concordance report

v

co-ordination SFG relationship: two or more units that fill an element are said to be co
ordinated

corpus large body of text (plural corpora)

corpus index tables The indexes to the corpus tables

corpus query tool A program that can be used to extract information from a corpus

corpus tables The native XML tables used to store the corpus in this project

corpusDB The Corpus Database (part of this project)

corpus database See corpusDB

corpusSearch A corpus query tool

CQL Corpus Query language (used in ICQF)

createDTD A program that creates a DTD given a batch of SGML/XML instances

CVS 'Correct Vertical Strip (part of the XML vertical strip parser scoring
algorithm)

DARPA The Defense Advanced Research Projects Agency. Funded work on the
SWITCHBOARD corpus.

DBMS Database Management System

DCG Definite Clause Grammar

descriptive mark up Mark-up method that uses describes itself. Generic identifiers have
meaningful names (eg <ngp>).

discontinuity A unit is discontinuous when its elements are interrupted in their position by
other units.

DITA Darwin Information Typing Architecture

DOM Document Object Model - programming methods for accessing XML objects

DTD An SGML or XML Document Type Definition which, for example,
determines what mark up elements can exist and in what order

dynamic (parsed) A corpus that grows. The probabilities of syntax relationships changes as
corpus new parsed sentences are added.

E2U Element up to Unit (a probabilistic table used by the CCPP)

element A mark up element, part of an SGML or XML document

element (of structure) - a Cardiff Grammar category

ellipsis Elements of structure may be ellipted; that is, they are present in their unit
but are not expounded by a lexical item or filled by a unit.

ENGCG English Constraint Grammar

ENGTWOL English morphological analyser

exponence SFG relationship: an item is said to expound an element

filling SFG relationship: a unit is said to fill an element

FPD Fawcett-Perkins-Day Corpus

FUF Functional Unification Formalism

FUG Functional Unification Grammar

FUS Forward Unit Structure (a probabilistic table / query used by the CCPP)

GEIG Grammar Evaluation Interest Group

GENESYS GENErates Systematically - the natural language generator component of

COMMUNAL

GI Generic Identifier (name of a mark up tag)

GPSG Generalised Phrase Structure Grammar

I2E Item up to Element (a probabilistic table / query used by the CCPP)

I2E2U2E Item up to Element up to Unit up to Element (a probabilistic table / query
used by the CCPP)

ICE International Corpus of English

ICECUP The ICE Corpus Utility Program (a corpus query tool)

ICE-GB British component of the ICE corpus

ICQF Interactive Corpus Query Facility - a corpus query tool

ICQF+ The latest version of ICQF

ID/ID REF Cross referencing method in SGML / XML

ID/LP Immediate Dominance (ID) rules and Linear Precedence (LP) rules

IDAS Intelligent Documentation Advisory System (an NLG application - see
Reiter, Mellish and Levine (1995))

ILEX Intelligent Label Explorer (an NLG application - see ODonnell (1996).

instance An SGML document or an XML document that is said to be an instance of a
document type.

ISO International Standards Organisation

item A Cardiff Grammar category. An item may be a lexical ('vocabulary') item,
such as a noun, or a grammatical item such as an article or part of the verb
be.

IVS Initial Vertical Strip

IVS-ELEM Initial Vertical Strip without item (a probabilistic table used by the CCPP)

IVS-ITEM Initial Vertical Strip with Item (a probabilistic table used by the CCPP)

Java Programming language

KWIC KeyWord In Context

linguistically Backtracking that involves going back to a point in the search-space that is
motivated determined by linguistic reasoning (e.g. knowledge of a failed attachment
backtracking option)

LMS Left-most strip (vertical strip)

LOB The Lancaster-Oslo/Bergen Corpus

MARKUPINDEX The main corpus index table (that indexes mark up data)

MDC Mark up Declaration Closed (normally '>')

MDO Mark up Declaration Open (normally '<')

metadata Data about data

MIT Massachusetts Institute of Technology

MSXML Microsoft's XML parser

native XML database Am XML 'aware' database management system which stores XML data in
terms of elements, attributes and PCDATA etc

NEGRA A corpus of German newspaper texts

NLG Natural Language Generation

NLU

NLP

parsed corpus

parser

parser

Parser WorkBench

parser workflow

parser working tables

PARSEVAL

PARSIFAL

Part of speech tagger

PCDATA

PDF

PG1.5 Corpus

POP

POS

POW

PR

PROLOG

prescriptive mark up

probabilities tables

PROLOG

PVS

RAP

PSG

PST

raw corpus

REVELATION

rewrite rule

RMS

RTN
RULEINDEX

S1000D

Natural Language Understanding

Natural Language Processing

A corpus that is fully syntactically analysed

A program that checks SGML or XML is valid

A natural language parser

The development environment of the Corpus-Consulting Probabilistic Parser

The states through which groups of built and candisate structures flow during
the parsing of a sentence in the CCPP

The part of the corpus database where the parser's working data is stored

The parser evaluation project

Marcus (1980) deterministic parser

See word tagger

Parsed Character Data - text that can appear as content of mark up tags

Portable Document Format - page-oriented format used in Adobe Acrobat

COMMUNAL Prototype Grammar version 1.5 Corpus (used in
OTDonoghue's VSP)

Probabilistic Online Parser - Weerasinghe's SFG probabilistic chart parser
(Weerasinghe 1994)

Part Of Speech

Polytechnic of Wales Corpus

Participant Role

(a) a logic programming language commonly used in artificial intelligence
applications; (b) the front part of an SGML / XML document that declares
(for example) die DTD or the schema.

Mark up method that describes, for example, a book as containing chapters
and sections, rather than describing the data contained within

The tables used by the parser in this project

Declarative programming language

Parser Vertical Strip (part of the XML vertical strip parser scoring
algorithm)

Realistic Annealing Parser (Atwell et all 1988b)

Phrase Structure Grammar

Parser State Table - one of the parser working tables

A corpus that contains only text, and no part-of-speech or other syntactic
analysis

COMMUNAL's semantic interpreter (O'Donoghue 1991b)

A grammar rule typically used in rules-based parsers. They take the symbol
on the left-hand side and rewrite it by the symbols on the right-hand side

Right-most strip (vertical strip)

Recursive Transition Network

Old name for the main corpus index table used in this project

Specification for Technical Publications Utilizing a Common Source
Database

SARA SGML Aware Retrieval Application - a corpus query tool

Schema (a) the structure of a database in terms of its tables and fields and the
relationships between them; (b) an XML schema (see XML schema).

SFG Systemic Functional Grammar

SFL Systemic Functional Linguistics

SGML Standard Generalized Mark-up Language

SHRDLU A natural language understanding system developed by Winograd (1972)

SQL Structured Query Language

SSN Simple Synchrony Networks

Star Parser A prototype parser developed in this project, so called because of its Star-
shaped data structure.

STM State Transition Machine

stylesheet The rules for how an XML document should be formatted or converted

SUSANNE Surface and Underlying Structural ANalyses of Naturalistic English (corpus)

SWITCHBOARD Spoken corpus containing telephone conversations

tag An SGML or XML tag (eg <para>)

TAG Tree Adjoining Grammar

tagged corpus A corpus that contains part-of-speech analysis - usually annotated
automatically using a word tagger

TEI Text Encoding Initiative

TGREP A corpus query tool for extracting parse trees from a corpus

TIGERSearch A corpus query tool developed with the NEGRA corpus

TigerXML An XML Schema used in the NEGRA corpus and the TigerSearch
application.

TOSCA tagger A part-of-speech tagger developed by the TOSCA Research Group at the
University of Nijmegen and used in the ICE project

treebank term given a large collection of parsed trees

U2E Unit up to Element (a probabilistic table used by the CCPP)

UCREL University Centre for Computer Corpus Research on Language (based at
Lancaster University) - responsible for the development of CLAWS

unit A Cardiff Grammar category

VB Visual BASIC (programming language)

VIQTORYA a Visual Query Tool fOR sYntactically Annotated corpora (corpus query
tool)

VSG Vertical Strip Grammar (O'Donoghue 1991a)

VSN Vertical Strip Network (O'Donoghue 1991a)

VSP Vertical Strip Parser (ODonoghue 1991a)

W3C World Wide Web Consortium

WAG Workbench for Analysis and Generation (ODonnell 1993, 1994)

word tagger A program that determines parts of speech for words in a sentence normally
through the investidation of the words that surround it (an example is
CLAWS)

ix

XARA Corpus query tool - the XML version of SARA (now called Xaira)

Xaira New name for XARA (renamed due to the fact that another unrelated
software has the name XARA)

XML extensible Mark-up Language

XML Schema An XML file that provides the same function as a DTD but with many
enhancements

Xquery XML Query Language

XSL XML Stylesheet Language

XSL-FO XSL- Formatting Objects

XSL-T XSL Transformations

XTAG A project responsible for TAG

X

List of parts and chapters
CHAPTER ONE: Introduction.. 1

PART ONE: THE CONTEXT OF THIS WORK 6
CHAPTER TWO: Computational linguistics..7
CHAPTER THREE: Corpus linguistics.. 25
CHAPTER FOUR: The syntax of the Cardiff Grammar...................................... 45

PART TWO: THE CORPUS DATABASE 60
CHAPTER FIVE: Towards a corpus annotation scheme and a method of

representing syntactic relationships... 62
CHAPTER SIX: Marking up language texts..74
CHAPTER SEVEN: Defining the corpus database schema................................. 99
CHAPTER EIGHT: Enhancing the Interactive Corpus Query Facility..............114
CHAPTER NINE: Updating the corpus.. 137

PART THREE: PARSING NATURAL LANGUAGE:
SOME RELEVANT ANTECEDENTS 151

CHAPTER TEN: Concepts used in parsing - a selective history........................152
CHAPTER ELEVEN: Earlier parsers that use Systemic

Functional Grammar...176
CHAPTER TWELVE: Early attempts at parsing in this project........................194

PART FOUR: THE NEW PARSER 214
CHAPTER THIRTEEN: Introducing the Corpus

Consulting Probabilistic Parser..215
CHAPTER FOURTEEN: The parser's probabilities tables,

working tables and data structures...226
CHAPTER FIFTEEN: The parsing algorithm.. 230
CHAPTER SIXTEEN: The parser WorkBench...262
CHAPTER SEVENTEEN: Testing and evaluation...282
CHAPTER EIGHTEEN: Further work and conclusions....................................323

BIBLIOGRAPHY...337
APPENDICIES... 346

Table of contents

Abstract.. iii
Acknowledgements..iv
Glossary...v

CHAPTER ONE: In troduction .. 1
1.1 Preamble... 1
1.2 The aims of the work..2
1.3 This work in its context..3
1.4 How this thesis is organised...4

P A R T O N E : T H E C O N T E X T O F T H I S W O R K 6

CHAPTER TWO: Com putational linguistics..7
2.1 The field of computational linguistics... 7
2.2 Linguistic theories..8

2.2.1 Some formal theories of language... 8
2.2.2 Some description based theories of language.. 9
2.2.3 Formal and descriptive theories in the context of parsing... 9

2.3 Some applications of linguistic theory in computational linguistics..10
2.3.1 Theories used in natural language understanding applications.. 10
2.3.2 Theories used in natural language generation applications..11

2.4 An overview of the Cardiff Grammar..12
2.4.1 Background..12
2.4.2 The place of syntax in a systemic functional grammar...13

2.5 An introduction to the COMMUNAL Project..15
2.5.1 The natural language generation components in COMMUNAL..15
2.5.2 The natural language understanding components in COMMUNAL... 22

2.6 Summary ..24

CHAPTER THREE: Corpus linguistics...25
3.1 Definitions and classifications... 26

3.1.1 What is a corpus?... 26
3.1.2 Classifying corpora.. 26

3.2 A survey of some of the major corpora..28
3.2.1 COBUILD..28
3.2.2 The British National Corpus (BNC).. 29
3.2.3 The Penn Treebank.. 29
3.2.4 The SUSANNE Corpus... 30
3.2.5 The Lancaster-Oslo/Bergen (LOB) Corpus... 30
3.2.6 The International Corpus of English (ICE).. 31
3.2.7 The SWITCHBOARD Corpus.. 31
3.2.8 The NEGRA Corpus.. 31
3.2.9 The Fawcett-Peridns-Day Corpus.. 32

3.3 Part-of-Speech taggers...37
3.4 Corpus query tools...37

3.4.1 Products relating primarily to items.. 38
3.4.1.1 Word lists...38
3.4.1.2 Concordances and collocations... 39

3.4.2 Products relating to syntax.. 41
3.4.2.1 Unit-up-to-element tables (U2E)... 41
3.4.2.2 Element-up-to-unit tables (E2U)... 42

3.4.3 Tools for querying part-of-speech tagged corpora... 42
3.4.4 Tools for querying parsed corpora... 42

3.5 Summary..44

CHAPTER FOUR: The syntax of the Cardiff Grammar.. 45
4.1 Definitions..45

4.1.1 Units, elements and items.. 45
4.1.2 The sentence element... 45
4.1.3 Relationships..46
4.1.4 Unfinished units... 46
4.1.5 Replacement elements... 46
4.1.6 Formalisms used in diagrams of syntax... 46

4.2 The syntactic units of the Cardiff Grammar.. 48
4.2.1 The Clause (Cl).. 49

4.2.1.1 Definition.. 49
4.2.1.2 Conflated elements in a clause.. 49
4.2.1.3 Participant Roles in the clause... 50

4.2.2 The nominal group (ngp)... 50
4.2.3 The prepositional group (pgp)... 53
4.2.4 The quality group (qlgp).. 53
4.2.5 The quantity group (qtgp).. 55
4.2.6 The genitive cluster (genclr).. 56
4.2.7 Text...57

4.3 Places, potential structures and discontinuity...57
4.4 More on ellipsis..58
4.5 Summary.. 59

P A R T T W O : T H E C O R P U S D A T A B A S E 60

CHAPTER FIVE: Towards a corpus annotation scheme and a method of
representing syntactic relationships..62
5.1 Requirements..62
5.2 Traditional methods of representing syntactic relationships... 64

5.2.1 Phrase Structure Grammar style rewrite rules... 64
5.2.1.1 Definition...64
5.2.1.2 Use in SFG and the suitability for this project.. 64

5.2.2 Transition networks... 66
5.2.2.1 Definition...66
5.2.2.2 The use in SFG and the suitability for this project.. 66

5.2.3 Tree Adjoining Grammar (TAG)... 68
5.2.3.1 Definition...68
5.2.3.2 The use in SFG and the suitability for this project.. 69

5.2.4 Vertical Strip Grammar (VSG).. 70
5.2.4.1 Definition.. 70
5.2.4.2 The use in SFG and the suitability for this project.. 71

5.2.5 Definite Clause Grammar (DCG).. 71
5.2.5.1 Definition...71
5.2.5.2 The use in SFG and the suitability for this project.. 71

5.2.6 The decisions made for this project... 72
5.3 Summary: Representing the corpus text and syntax structures..73

CHAPTER SIX: Marking up language texts.. 74
6.1 The use of mark up languages in this project.. 74

6.1.1 The requirements for a corpus annotation scheme.. 74
6.1.2 The background of mark up languages, and their use in this project... 75
6.1.3 Other benefits of using mark up languages... 76
6.1.4 Towards a mark up scheme... 77

6.1.4.1 Definitions... 77
6.1.4.1.1 Prescriptive mark up... 77
6.1.4.1.2 Descriptive mark u p ... 77
6.1.4.1.3 Abstract mark up ... 78

6.1.4.2 An abstract mark up scheme for the Cardiff Grammar... 78
6.1.4.3 Evaluating the abstract model..80

xiii

6.1.5 Using a DTD to specify a rule-based grammar... 81
6.1.5.1 Creating a DTD manually from a linguist’s model of language.. 81
6.1.5.2 The chosen mark up scheme.. 81
6.1.5.3 An SGML Parser as a natural language parser.. 83
6.1.5.4 The automatically created DTD.. 84

6.1.6 Satisfying the design criteria for Systemic Functional Grammar.. 85
6.1.6.1 Handling discontinuous units.. 87
6.1.6.2 Handling ellipted elements.. 87
6.1.6.3 Handling questionable (or unknown) units, elements and items... 88

6.1.7 Using the mark up scheme to represent syntactic relationships... 89
6.2 Other natural language projects that are use mark up languages... 89

6.2.1 The Text Encoding Initiative (TEI)... 89
6.2.2 Other non-TEI projects that use mark up languages.. 92
6.2.3 Comparing these mark up schemes... 94
6.2.4 What disadvantages are there with our chosen scheme?... 94

6.3 Summary..98

CHAPTER SEVEN: D efining the corpus database schem a... 99
7.1 Mark up and databases - surveying the fields...101

7.1.1 Applications in Industry.. 101
7.1.1.1 The data model approach.. 101
7.1.1.2 The native approach.. 101

7.1.2 Applications in research.. 104
7.1.3 Choices made for this project.. 105

7.2 The database schema: the corpus and the corpus index tables...106
7.2.1 The corpus tables..106
7.2.2 The corpus index tables... 109

7.3 Summary.. 112

CHAPTER EIGHT: Enhancing the Interactive Corpus Q uery Facility114
8.1 History.. 114
8.2 Towards ICQF+... 115
8.3 Querying in ICQF+ - the Corpus Query Language..116

8.3.1 Queries about items..116
8.3.2 Queries about syntax..119

8.3.2.1 Standard queries about syntax..119
8.3.2.2 Wildcards...119
8.3.2.3 Advanced queries about syntax..120

8.3.3 Finding Sentences by their DOCUMENT ID or POW CELL... 121
8.3.4 Restricting queries..121

8.3.4.1 Restricting queries by selecting parts of the sentence's cell identifier............................... 122
8.3.4.2 Restricting queries by initial in sentence and unit... 122
8.3.4.3 Restricting queries by ignoring ellipsis..123

8.4 Using ICQF+.. 123
8.4.1 Retrieving the results of a query...123

8.4.1.1 Displaying sentences..124
8.4.1.2 Navigation..124
8.4.1.3 Editing and deleting sentences...124

8.4.2 The concordancer...128
8.4.3 The reports..132

8.5 Corpus modification programs...135
8.6 Summary.. 135

CHAPTER NINE: U pdating the corpus...137
9.1 Why the changes are needed...138
9.2 The overall strategy.. 139
9.3 Stage one: how the changes were made...139

9.3.1 Details of the change process.. 140
9.3.1.1 Automatic changes...140
9.3.1.2 Manual changes..140

xiv

9.3.1.3 Errors discovered in the POW Corpus... 141
9.3.2 Stage One: example changes... 141

9.3.2.1 A simple change of a mark up element...142
9.3.2.2 A simple change of a mark up element and its parent..143
9.3.2.3 A complex example with mark up element insertion...144
9.3.2.4 Example showing a more complex query..147

9.4 Stage Two...149
9.5 Summary..149

P A R T T H R E E : P A R S I N G N A T U R A L L A N G U A G E :
S O M E R E L E V A N T A N T E C E D E N T S 151

CHAPTER TEN: C oncep ts u sed in parsing - a selective h is to ry 152
10.1 The goals of parsing..152
10.2 Some early classifications used in parsing.. 154

10.2.1 Mode of operation.. 154
10.2.1.1 Top-down..154
10.2.1.2 Bottom-up..155
10.2.1.3 Mixed-mode... 155

10.2.2 Search strategies... 155
10.2.2.1 Breadth-first versus depth-first.. 155
10.2.2.2 Best-first and beam search (n-best)...155

10.2.3 Deterministic and non-deterministic parsing...156
10.2.4 Backtracking..158
10.2.5 Incremental parsing (on-line parsing)..158
10.2.6 Classifying the parser described in Part Four..159

10.3 Parsing algorithms...160
10.3.1 Some common algorithms..160

10.3.1.1 Augmented Transition Networks (ATNs) and Recursive Transition Networks (RTNs). 160
10.3.1.2 Truly deterministic parsing.. 160
10.3.1.3 Shift-reduce parsing...161
10.3.1.4 Definite Clause Grammar (DCG) parsers...162
10.3.1.5 Chart parsers... 162
10.3.1.6 CYK parsers... 165

10.3.2 Other relative parsing algorithms.. 166
10.3.2.1 Vertical strips parsing.. 166

10.3.3 Concepts used in the current work... 166
10.4 Other techniques..169

10.4.1 Left-comer parsing... 169
10.4.2 Head-driven parsing... 169
10.4.3 Shallow parsing.. 169
10.4.4 Pre-tagging..170
10.4.5 Word lattice parsing and neural networks...170
10.4.6 The relevance of these techniques to the present work...171

10.5 Probabilistic and statistical approaches... 171
10.6 Coipus-based approaches... 172
10.7 Applying the algorithms to Systemic Functional Grammar... 173
10.8 Summary..174

CHAPTER ELEVEN: E arlier parsers tha t u se System ic
F unctiona l G ra m m a r...176

11.1 Winograd's SHRDLU..176
11.2 Earlier work at Leeds University..177
11.3 Kasper's NIGEL-based parser.. 178
11.4 O'Donnell's work... 178
11.5 ODonoghue's Vertical Strips Parser..179

11.5.1 The data structures.. 179
11.5.2 The algorithm..180
11.5.3 Evaluation..181

xv

11.6 Weerasinghe's Probabilistic On-line Parser (POP)...184
11.6.1 The algorithm...184
11.6.2 The probabilistic scoring of edges..185
11.6.3 Modifications to the standard chart parsing algorithm... 186
11.6.4 Evaluation...186

11.7 Soutefs Corpus-Trained Parser..187
11.7.1 The algorithm...187
11.7.2 The probabilistic scoring of edges..188
11.7.3 Modifications to the standard chart parsing algorithm.. 188
11.7.4 Evaluation...191

11.8 Summary.. 192

CHAPTER TWELVE: E arly attem pts at parsing in this project.....................................194
12.1 Experiments with a chart parser...194

12.1.1 Background..195
12.1.2 Implementing a chart parser...195

12.1.2.1 The chart data structure... 195
12.1.2.2 The chart parsing algorithm... 198
12.1.2.3 Corpus queries..199
12.1.2.4 The probabilistic scoring of edges... 201
12.1.2.5 The value of the database-oriented approach.. 201
12.1.2.6 The value of expressing the results in XML.. 201

12.1.3 A comparison with the work of Weerasinghe (1994) and Souter (1996)............................. 202
12.1.3.1 The model of syntax and the lexicon... 202
12.1.3.2 The chart data structure... 203
12.1.3.3 Methods used to improve the efficiency of the parser... 204
12.1.3.4 Probabilistic scoring.. 206
12.1.3.5 Comparing the programming methods.. 207

12.1.4 Evaluating the chart parser reported here.. 207
12.2 Beyond a chart parser.. 209

12.2.1 The Star Parser.. 209
12.2.1.1 The Star data structure... 209
12.2.1.2 The Star parsing algorithm.. 210
12.2.1.3 Evaluating the Star Parser... 211

12.3 Summary: Towards the Corpus-Consulting Probabilistic Parser.. 212

P A R T F O U R : T H E N E W P A R S E R 214

CHAPTER THIRTEEN: Introducing the Corpus
Consulting Probabilistic Parser... 215

13.1 Aims...216
13.2 The better model: a partial simulation of the human parsing process... 218

13.2.1 The deterministic approach... 218
13.2.2 The corpus-based approach... 220
13.2.3 The probabilistic approach.. 220
13.2.4 A comparison with the traditional ways of classifying a parser.. 220

13.3 The overall method of research... 221
13.4 The relationship of the implemented research reported here and the work of future phases of the

project..221
13.5 Backtracking..222
13.6 Introducing the new parsing process... 223
13.7 Summary..225

CHAPTER FOURTEEN: The parser's probabilities tables,
w orking tables and data structures... 226

14.1 The probabilities tables and their queries: Version One.. 226
14.2 The development of the Version Two tables... 228
14.3 The parser data structures...229
14.4 Summary..229

xvi

CHAPTER FIFTEEN: The parsing a lgo rithm .. 230
15.1 The basic concepts defined and illustrated.. 230

15.1.1 Candidate structure trees and built structure trees... 230
15.1.2 Tree operations and tree pairs.. 232
15.1.3 Start and end positions, active and inactive trees.. 234
15.1.4 The workflow of the parsing process... 234
15.1.5 The parser state table... 238
15.1.6 The n-best approach... 242
15.1.7 Node and level probabilities.. 243

15.2 A full specification of the algorithm..243
15.2.1 Stage 0: Initialising the parser... 243
15.2.2 Stage 1: Parsing the initial item... 244
15.2.3 Stage 2: Building a candidate structure... 246
15.2.4 Stage 3: Attempting to join a candidate structure to a built structure (joining two sibling

elements in a unit)... 247
15.2.5 Stage 4: Growing the candidate structure.. 255
15.2.6 Stage 5: Joining by the co-ordination of units... 256

15.2.6.1 An overview.. 256
15.2.6.2 Stage 5: Calculating the co-ordination joining score... 256
15.2.6.3 Stage 5a: Making the co-ordination Joins... 258
15.2.6.4 The join cycle.. 258

15.2.7 Stage 6: Backtracking.. 259
15.2.8 Stage 7: Determine if more analyses are required... 260

15.3 The Parser WorkBench... 261
15.4 Summary..261

CHAPTER SIXTEEN: The Parser WorkBench.. 262
16.1 Step-by-step incremental parsing.. 262
16.2 The value of the step-by-step incremental approach... 263

16.2.1 How it works... 263
16.2.2 Its use in the development of the new parser... 263
16.2.3 Speeding-up research... 263

16.2.3.1 Changing a sentence in mid-parse... 263
16.2.3.2 Altering probabilities and joining scores... 264
16.2.3.3 Altering the configurable parameters in mid-parse... 265

16.2.4 Answering 'what-if questions.. 265
16.3 The configurable parameters... 265

16.3.1 The number of trees to create in Stage 1 (Figure 16.1, Item 1)...................................265
16.3.2 The value of n for best-n joins (Figure 16.1, Item 2).. 266
16.3.3 The value of n for best-n to grow (Figure 16.1, Item 3)...266
16.3.4 The number of cycles of Stages 3,4, 3 and 5 to allow before backtracking................266
16.3.5 The threshold probability for accepting / rejecting join attempts (Figure 16.1, Item 6)........ 266
16.3.6 The unit-join probabilities (Figure 16.1, Item 7)... 267
16.3.7 The join score formula parameters to be used (Figure 16.1, Item 1).................................... 267

16.4 The user interface...267
16.4.1 The configurable parameters... 267
16.4.2 Starting a step-by step incremental parse.. 269

16.4.2.1 Stage 0 ... 269
16.4.2.2 Stage 1... 271
16.4.2.3 Stage 2 ... 274
16.4.2.4 Stage 3: Joining a candidate structure to a built structure... 275

16.5 The commit button... 279
16.6 Summary ..280

CHAPTER SEVENTEEN: Testing and evaluation ... 282
17.1 Testing the parser.. 282

17.1.1 Establishing the optimum configurable parameter settings...282
17.1.1.1 Establishing an optimum value of n in n-best... 284
17.1.1.2 Establishing the best configuration of the joining score formula parameters.................. 287

xvii

17.1.1.3 Establishing the best join threshold value..292
17.1.1.4 Performing the basic tests...294
17.1.1.5 Testing the parser's ability to handle co-ordination... 296

17.1.1.5.1 Calculating the co-ordination joining score... 296
17.1.1.5.2 Determining the value of n in n-best co-ordinated joins to take forward.............. 297
17.1.1.5.3 The results of the co-ordination tests... 297

17.1.2 Tests for special cases.. 299
17.1.2.1 Tests for a sentence involving attachment ambiguity.. 299
17.1.2.2 Tests using a sentence that required backtracking... 300

17.1.3 Extensive testing for measuring the accuracy, efficiency and speed of die parser................ 301
17.1.3.1 Measuring the accuracy of the parser...302

17.1.3.1.1 Current approaches to evaluating parser outputs... 302
17.1.3.1.2 Selecting a set of test sentences.. 302
17.1.3.1.3 Defining the methods used for scoring parses..303

17.1.3.1.3.1 XML Differencing.. 304
17.1.3.1.3.2 The XML vertical strip scoring algorithm.. 305

17.1.3.2 Summary of the results of the tests using the FPD test set.. 309
17.1.3.2.1 Tests for the accuracy of the output from the parser..310
17.1.3.2.2 Tests for the efficiency of the parser..310
17.1.3.2.3 Tests for the speed of the parser... 312
17.1.3.2.4 Opportunities for improvement... 314

17.2 An evaluation against die project's goals... 315
17.2.1 How far is the output from a richly annotated syntax diagram.. 315
17.2.2 How far is the parser deterministic?...318
17.2.3 Does die corpus-consulting, database-oriented approach lead to better parsing?.................. 319
17.2.4 Improvements in the speed, efficiency and accuracy of the parser.. 319

17.3 The results of the evaluation... 320
17.4 Summary..321

CHAPTER EIGHTEEN: Further work and conclusions... 323
18.1 The Corpus Database and ICQF+: improvements and further work... 323

18.1.1 The native XML tables.. 323
18.1.2 ICQF+...324

18.1.2.1 A graphical query builder for ICQF+.. 324
18.1.2.2 XML tree grapher.. 325
18.1.2.3 Controlling access to the corpus editor.. 325
18.1.2.4 Multi-user and web-enabled support... 325

18.1.3 Using the Text Encoding Initiative (TEI) standard.. 325
18.1.3.1 Export in today's TEI format... 326
18.1.3.2 Import from today's TEI format.. 326
18.1.3.3 Extending the TEI model to provide a more usable format... 326

18.1.4 Summary..327
18.2 The parser: improvements and further work..327

18.2.1 Improvements for Phase Two and Phase Three... 327
18.2.2 Testing and refining the Version Two probabilities tables.. 327
18.2.3 Improved item recognition: detecting multi-word items etc.. 328
18.2.4 Inproved punctuation treatment.. 328
18.2.5 Intelligent tree growing... 329
18.2.6 Linguistically motivated backtracking.. 330
18.2.7 Participant roles... 331
18.2.8 Making use of morphological information.. 331
18.2.9 Units that handle names, dates, times etc... 332
18.2.10 Other improvements.. 332

18.2.10.1 Web-enabled parsing... 332
18.2.10.2 The recognition of unknown items.. 332
18.2.10.3 The use of semantic features... 333
18.2.10.4 Modelling the dynamic properties of language... 334

18.3 Conclusions..334
18.4 The final word..336

xviii

B IB L IO G R A P H Y .. 337

A PP E N D IX A : The C ard iff G ram m ar.. 346
A. 1 The Cardiff Grammar Units..346
A.2 The Clause (C l) ..346
A.3 The nominal group (ngp)..347
A.4 The prepositional group (pgp)..347
A.5 The quality group (q lg p) .. 347
A.6 The quantity group (q tg p) ...348
A.7 The genitive cluster (g e n c l r) .. 348
A.8 Elements that can occur in any class of unit... 348

A PP E N D IX B: A n alphabetical list o f the C ard iff G ram m ar
units and e lem en ts.. 349

A P P E N D IX C : M arking up language texts.. 352
C.l Defining Mark up ..352

C.1.1 Definitions.. 352
C.l.2 Document Type Definitions and Schemas.. 353
C.l.3 Document Type Definitions (DTDs).. 354
C.l.4 Using mark up languages for non-hierarchical structures... 355

C.2 Artefacts from the experiments with mark up languages... 356
C.2.1 The nominal group.. 356
C.2.2 The quality group.. 357
C.2.3 The quantity group.. 357
C.2.4 The prepositional group.. 358
C.2.5 The genitive cluster... 358
C.2.6 The text unit.. 358
C.2.1 Sentence.. 359
C.2.8 The Clause.. 359

C.3 Summary..360

A PP E N D IX D : The database schem a.. 361
D.l The corpus tables...361
D.2 The corpus index tables.. 361
D.3 The probabilities tables.. 362
D.4 The parser working tables.. 362

A P P E N D IX E : Exam ple ICQF+ reports.. 370

A P P E N D IX F : M odifying the corpus: details o f the changes
m ade in Stage O n e .. 373

A PP E N D IX G : M odifying the corpus - a table o f syntax
token m appings used in Stage T w o.. 382

A PP E N D IX H : The probabilities tables, parser w orking tables
and data structures..385

H.l The probabilities tables and their queries... 385
H. 1.1 Types of table and their queries.. 385
H.l.2 Queries to the initial vertical strip tables.. 387

H.l.2.1 Rationale in creating the tables... 387
H. 1.2.2 The structure of the tables... 388
H.l.2.3 Criteria for including items in the Initial Vertical Strip Item table................................... 389

H. 1.3 Item-up-to-element (I2E) and item-up-to-element-up-to-Unit-up-to-Element
(I2E2U2E) tables.. 389

H.l.4 Queries to the element-up-to-unit (E2U) table... 391

xix

H. 1.5 Queries to the unit-up-to-element (U2E) table... 392
H. 1.6 An overview of the unit structure (US) tables and their queries... 392

H.l.6.1 Queries to the forward unit structure tables (FUS)... 392
H.l.6.2 Queries to the backward unit structure table (BUS)... 393

H.2 The parser data structures... 394
H.2.1 Trees and Nodes... 394
H.2.2 Forward and backward predictions... 395
H.2.3 The initial vertical strip table.. 396
H.2.4 The parser state table.. 396

H.3 Tree functions..397
H.4 Summary...398

A PP E N D IX I: The V ersion Tw o probabilities ta b le s ... 399
I.1 The development of the Version Two tables... 399

I.1.1 Weaknesses in the Version One tables... 399
1.1.2 How the Version Two tables were developed... 402

1.2 Summary.. 404

A P P E N D IX J : The B ritish National Corpus tag set and
its m apping to C ardiff G ram m ar elem ents... 405

A PP E N D IX K : Parser w alk through... 408
K. 1 The test sentences... 408

A PP E N D IX L : Ideas for linguistically m otivated backtracking 416
L.l Linguistically motivated backtracking.. 416
L.2 Summary..418

A PP E N D IX M : Parser - testing and evaluation using the FPD corpus test s e t 419

xx

Chapter One
Introduction
1.1 Preamble

The process of transforming sentences into rich syntactic structures is called natural

language parsing, and despite over half a century of research, this continues to present

a major challenge to the field of computational linguistics. This is especially so when

the goal of the parsing process is raised beyond that of producing a minimal, purely

formal syntactic structure, to producing one that is rich with functional information

that will facilitate the next stage of Natural Language Understanding (NLU).

In the last couple of decades, researchers have begun to exploit the statistical

information that can be determined from large bodies of texts (called corpora) as they

become increasingly available in a computerised form, and some of the most

successful of the current approaches to natural language parsing are those that arrive at

their analyses by using probabilities that are derived from such corpora.

Raw, unanalysed corpora are now widely used in the field of corpus linguistics,

i.e. as an aid in the study of languages. Some corpora contain part-of-speech

information that has been supplied by word taggers, in order to enhance the results

that are gained from tools that can exploit this data. Although the number of fully

analysed corpora is steadily increasing, their number unfortunately remains low, due

to the substantial effort involved in creating them.

Probabilistic corpus-based parsers are parsers that complement the standard

probabilistic approach by the use of information about the syntactic structures that

have been derived from corpora. Some probabilistic parsers have given promising

results. This present study is intended to constitute a contribution to this field of

research.

Language is not static. It changes with time. New words and new meanings of

existing words are continuously being created. The frequency of use of some words

also changes with time. Certain words become more frequently used while other

words may become less frequent. In this project, we introduce the concept of a living

dynamic corpus. In such an approach, the system's knowledge of the frequencies of

given syntactic phenomena changes as new sentences are parsed and added to the

1

corpus. In this way, the model changes so that it reflects the fact that language is

constantly changing.

This work describes the implementation of this idea and it is intended as a new

offering to the fields of corpus linguistics and the natural language parsing.

1.2 The aims of the work

Because of its functional nature, the parsing of Systemic Functional Grammar has

proved to be more problematical than the parsing of less richly annotated formalisms.

In a probabilistic parser the task is made even more difficult when these are extracted

from naturally occurring texts of a corpus rather than being manually created.

In the research reported here, our primary aim is to prove that it is possible to

parse texts successfully in terms of Systemic Functional Grammar, by (a) using

probabilistic data that is automatically drawn from a dynamic corpus database in

which the probabilities may be modified as new sentences are satisfactorily parsed,

and (b) introducing knowledge of functional syntax into the parsing algorithm. This

thesis will describe such an approach. I will show that a parser can be built which is

database-oriented - i.e. it uses a relational database to (a) retrieve its knowledge of

syntactic relationships to be used in a parse, and (b) store its working data. I will show

that this provides a good environment for developing a parser.

To achieve these goals, we need a suitable corpus and a research tool that can

assist in creating the linguistic knowledge that we will build into the parser’s

probabilistic model. I will show how mark-up languages can be used for the corpus

annotation of a rich functional syntax, and how such corpus data can be stored in a

relational database. I shall further show that this provides an environment that allows

the efficient modification of a corpus (in order to update it to another annotation

scheme, or to modify the analyses that it contains), and that it provides an environment

in which a parser can operate.

Figure 1.1 shows how the new parser operates within this environment.

2

Input sentence
Other software

prediction

prediction
queries

Probabilistic Parser
Unit

queries

Yes
Parse OK?

Dynamic

Corpus

Database
No

Human

intervention

XML Parse trees<

Figure 1.1: An outline of our environment

1.3 This work in its context

The context of the research reported in this thesis is the COMMUNAL Project

(which will be described in Section 2.5 of Chapter Two), a major project in the

generation and understanding of natural language based in the Computational

Linguistics Unit of Cardiff University and directed by Professor Robin Fawcett. At

the time of planning the research to be described here, I had recently completed an

MSc dissertation (Day 1993a) in this framework, and in my view, it represented an

interesting and challenging context in which to develop and evaluate the ideas behind

this new type of parser.

3

For this type of project to succeed, there needs to be close co-operation between a

computer scientist and a linguist (myself and Professor Fawcett in the present case). In

such a working relationship, each partner is continually constructively challenging and

complementing the ideas and suggestions of the other, in order to reach the optimal

solution.

The database and the parser that constitute the major products of this research are

the results of three types of input, in terms of the contributions made by Professor

Fawcett and myself. Given that the present work is a PhD thesis, it is important to

make it clear from the start which contributions came from Professor Fawcett, which

from myself, and which came from joint work. In general terms, the input that draws

on linguistics comes from Professor Fawcett and his colleagues in the COMMUNAL

Project (see Section 2.5 of Chapter Two), while I am responsible for the computational

input. It should be emphasised that the latter is not merely an implementation of the

linguistic concepts, but a major contribution from computer science that complements

the input from linguistics. Indeed, the most original parts of the work are those that

combine the two, and in these areas, the computational inputs have been at least as

original as the linguistic inputs. This thesis focuses on the computational and the joint

aspects of the research. At the relevant points of the thesis, I shall identify which

contributions came from myself and which came from our joint research.

1.4 How this thesis is organised

This work is organised in three parts. Following this introductory chapter, Part

One provides the necessary background to the field. It has three chapters. Chapter

Two provides an introduction to computational linguistics. It describes the sub-fields

of natural language understanding and natural language parsing before discussing

some of the major research projects. Chapter Three introduces the rapidly expanding

field of corpus linguistics and includes (a) descriptions of the most popular corpora

that are being used for research today, and (b) a review of some corpus query tools.

Chapter Four gives the reader the necessary background information about the Cardiff

Grammar, i.e. the particular version of Systemic Functional Grammar that is used in

this work.

Part Two describes (a) the corpus used in this work, and (b) the database which

has been created to hold the corpus in a suitable form for the parser to consult. This is

as central a component of the model as the parser itself. Part Two contains five

4

chapters. Chapter Five describes the traditional methods that have been used for

specifying a rule-based grammar, and discusses their suitability for use in this project

for both: (a) a corpus annotation scheme, and (b) a method of representing

syntactic relationships. Chapter Six describes our choice of annotation scheme and

how we translated an existing corpus into it. Chapter Seven outlines the design of the

corpus database schema, and Chapter Eight the new corpus query tool that I created

for use in our research (ICQF+). Chapter Nine details the changes we made to the

Polytechnic of Wales (POW) corpus to create the new Fawcett-Perkins-Day (FPD)

Corpus.

Part Three describes the process of parsing itself. Chapter Ten starts by looking at

the traditional approaches and surveys the current approaches to parsing, and this is

followed in Chapter Eleven, by a description of approaches to parsing Systemic

Functional Grammar. Chapter Twelve describes the early attempts at parsing in this

project.

Part Four describes the new parser. Chapter Thirteen introduces it, and Chapter

Fourteen describes the probabilities tables and the parser's working tables and its

data structures. Chapter Fifteen describes the parsing algorithm in detail and, since

our parsing algorithm is quite different from other approaches, I have provided a

walkthrough using sample sentences in Appendix K. The parser operates in a

configurable environment called the Parser WorkBench, and this is described in

Chapter Sixteen. Chapter Seventeen describes the procedures used to evaluate the

parser. My conclusions and a summary of further work to be undertaken can be found

in Chapter Eighteen.

5

PART ONE
The Context of this Work

This part of the thesis sets the scene for the description of the parser and its

complementary components by providing brief overviews of the three major fields of

study on which this project draws.

Chapter Two provides an introduction to the field of Computational Linguistics.

It discusses some of the major theories of language used in this field, focussing in

particular on the theory of language upon which the work described in this thesis is

based: Systemic Functional Grammar (SFG), and within that, on the version used in

this project, i.e. the Cardiff Grammar. This is followed by an introduction to the fields

of Natural Language Generation, and Natural Language Understanding. Chapter Two

concludes with an outline of the components of the COMMUNAL Project, to which

this work makes a major contribution.

Chapter Three gives an overview of the rapidly growing new field of Corpus

Linguistics. After introducing the main ways in which corpora have been classified, it

provides overviews of the major corpora used in the field. It then discusses the

requirements for tools that can extract information from these corpora for use in both

(a) the general study of language, and (b) the specific role of providing data that can

be used by a natural language parser of the type described in Part Four of this thesis.

Chapter Four provides the reader with the necessary background in the linguistic

theory used in this project, namely that of the Cardiff Grammar, focussing in particular

on its syntax.

6

Chapter Two
Computational linguistics
This chapter gives a necessarily selective overview of the field of computational

linguistics - the field to which the research reported here seeks to contribute. We start

with some definitions, and then look at some of the different linguistic theories that

have been used. This is followed by a brief survey of some applications of these

theories in computational linguistics systems, and finally we will look in detail at the

COMMUNAL systems for natural language generation and understanding, since this

is the overall model in which the research described here is set.

2.1 The field of computational linguistics
Computational linguistics (or Natural Language Processing) is the name given to the

field that studies the processing of natural languages such as English, French, German,

Italian etc in a computer. It can be divided into two main fields: natural language

understanding (NLU) and natural language generation (NLG), although there are

others such as machine translation, document summarising and so on.

In this work, we are mainly concerned with Natural Language Understanding.

This is the process of determining what the performer of a text has said, or written. As

a first approximation, it can be divided into sentence parsing, semantic

interpretation and the processing of information in the higher levels of beliefs and

reasoning.

The understanding process starts either with speech (in which the first stage is

speech analysis) or with the words of a written text. The classic approach to parsing in

the second half of the last century is that a natural language parser takes as its input

a string of written words and determines if it forms a sentence according to the rules of

the grammar. Normally, it will deliver one or more syntactic representations of the

sentence in the form of a tree diagram, which is annotated with quite widely varying

degrees of richness.

The semantic interpreter takes the syntax tree delivered by the sentence parser

(or trees, in the case of ambiguous sentences) and turns it into a semantic

representation that can then be processed by the higher NLU components. Normally,

the output from a semantic interpreter is a logical form, which is then added to the

belief system, and, if appropriate, responded to.

7

The field of natural language generation is concerned with the production of

natural language texts. The process typically involves three levels of planning -

overall planning, discourse planning and sentence planning. The output from the

generation system is typically a structured set of sentences with rich syntactic and

intonation labelling, and this may in turn become (a) a written output and / or (b) an

input to a speech system.

2.2 Linguistic theories
In terms of the philosophy of science, linguistics is still at the stage when there are

competing theories of language, and so competing schools of linguistics (Kuhn

1962/70). In general, most theories of language reflect the influence of either formal

language theory or the tradition of descriptive linguistics. This section provides a brief

introduction to some major theories of language that have been influential in

computational linguistics.

2.2.1 Some formal theories of language

The major influence in formal linguistics, which evolved from the fields of

mathematics and logic, has been Noam Chomsky - the creator of Transformational

Generative Grammar (Chomsky 1957). This model, which was constantly re-worked

in the later part of the century, greatly influenced a number of other models that have

been used for parsing, such as Generalised Phrase Structure Grammar (GPSG) and

Tree Adjoining Grammar (TAG).

In most approaches to parsing, Phrase Structure Grammars (PSGs) are assumed to

be 'the correct way* to represent the syntactic structure of a sentence (eg Gazdar et al

1985). PSGs use the concept of rewrite rules, such as S-> NP VP1. They take

the symbol on the left-hand side and rewrite it by the symbols on the right-hand side.

This type of formalism is commonly used in parsing systems which are based on

formal linguistics (these are discussed further in Chapter Five). PSGs predominantly

show classes of units (as we shall term them here) foregrounding as an essential

concept 'the phrase' (which we shall here term group). Thus they foreground the units

in a language rather than the functions served by those units. In the Cardiff Grammar,

both are given an equal weight, as we shall see in Chapter Four.

1 This example states that a sentence (S) is to be rewritten as a noun phrase (NP) followed by a verb
phrase (VP).

8

Chomsky’s (1965) Transformational Generative Grammar added to the concept of

a set of phrase structure rules the concept of transformational rules that 'transform' one

phrase structure into another. The concept of a PSG was extended in Generalised

Phrase Structure Grammars (GPSG) in such a way as to cut out the transformational

rules (Gazdar et al 1985). Like other grammars of the later twentieth century, GPSGs

include features such as word agreements, verb classifications and dependencies.

Rules are separated into Immediate Dominance (ID) rules and Linear Precedence (LP)

rules, and a slash category is added to allow GPSG to generate sentences with

unrealised elements termed ‘gaps’.

Another theory that is quite widely used in parsing is Tree Adjoining Grammar

(TAG) (Joshi 1985). This specifies its rules in the form of elementary trees, and uses

the tree operations of substitution and adjoining; TAG is described in Chapter Five

and a good illustration of its use is provided by the XT AG project (Xtag 1995).

2.2.2 Some description based theories of language

In contrast with formal theories of language, which focus primarily on the study of

syntactic forms and mathematical models, descriptive theories have grown from the

study of texts and so, typically, they take a functional approach to language. Major

influences have been Quirk and Halliday in Great Britain and, in the United States,

Pike. Most modem description-based approaches to language are therefore also

functional. This means there is a major distinction in current linguistics between

formal and functional approaches to language.

Firth (Firth 1957), laid the groundwork for Halliday when he developed a theory

of language as a social function. Halliday, who attended lectures by Firth, Robins and

others of the 'London School', laid the foundation for his theory with his system and

structure description of Chinese (Halliday 1956/76). Halliday developed this into

Scale and Category Grammar (Halliday 1961) and then later, Systemic Functional

Grammar (SFG) (Halliday 1985, 1994). It is Fawcett's further development of this

(Fawcett 1980, 2000a) that provides the linguistic basis for the present project.

2.2.3 Formal and descriptive theories in the context of parsing

In its syntax structures SFG, by its very nature, employs functional (or semantic)

labels to describe language. For example, nominal groups contain determiners,

modifiers and heads of various types, each being labelled according to their function

9

within the unit. The Clause, for example, has various different types of Adjunct, all

being identified in functional terms, and the Main Verb predicts the presence of

various configurations of Participant Roles, which specify the semantic roles of the

Subject and Complement.

In contrast, most implementations of PSGs are based on descriptions only in terms

of units, e.g. the noun phrase, the verb phrase and the prepositional phrase, normally

with little or no semantic labelling. When compared to a typical PSG, the

semantically-oriented representation given in an SFG presents a more demanding

challenge to the computational linguist who is constructing a parser, because the

parser has to be additionally concerned with the function that a syntax element is

fulfilling. The reward for the extra effort, however, is a semantically richer annotated

syntax tree, and this in turn is of far greater use as an input to the higher levels of

processing in a natural language understanding system than an analysis in PSG terms.

The next section provides a brief overview of some uses of these linguistic

theories in computational linguistics.

23 Some applications of linguistic theory in computational linguistics
While a wide range of linguistic models has been explored in Natural Language

Generation, most approaches used since the early 1990s have used a form of Systemic

Functional Grammar. In contrast, formal grammars, because of their emphasis on

syntax, have enjoyed greater popularity in Natural Language Understanding - with the

notable exception of Winograd (1972), as we shall see in Chapter Eleven in Part

Three.

2.3.1 Theories used in natural language understanding applications

The main focus of research for systems which process natural language has been on

building natural language parsers. These are described more fully in Chapters Ten and

Eleven in Part Three. But here we can say that their task is to take a string of words of

a written and / or spoken input and to convert this into a syntax tree. This tree will

then be used by a semantic interpreter, so that the more richly annotated with

functional information it is, the more helpful it will be.

Every natural language understanding system, however, requires some form of

semantic interpreter. In this area of research, much less work has been done, but one

notable example of a semantic interpreter is the one built for the COMMUNAL

project by ODonoghue (1991b). This is the REVELATION system. It illustrates what

10

is required for the component that takes the output from the parser (documented in this

thesis) and delivers it to the next stage in the NLU process. Specifically,

REVELATION reverses part of the process of natural language generation by turning

the syntax structures into the set of semantic features that would have been chosen in a

system network in order to generate the syntactic structures.

This, then, is the semantic interpreter to which the outputs of the parser described

in this thesis are passed.

We turn next to consider the linguistic formalisms used in NLG.

2.3.2 Theories used in natural language generation applications

As reported by O'Donnell and Bateman (2005), Henrici (1965) was the first to use

system networks in NLG. But the first complete NLG system was that of Davey

(1978). He created the PROTEUS system, which used a systemic lexicogrammar to

generate commentaries on a game of noughts and crosses.

Two major NLG projects followed, both of which used Systemic Functional

Grammar. The first was the PENMAN Project (Mann and Matthiessen 1985), and the

second was the COMMUNAL Project, to which the work described here is a major

contribution. This is described in Section 2.5.

PENMAN, which was the work of Mann, Halliday and Matthiessen, has the

NIGEL grammar at its core. O'Donnell and Bateman (2005:360) report that this

contains approximately 700 grammatical systems and 1500 grammatical features.2

PENMAN was adapted to cover other languages (e.g. German, in the KOMET project,

as described in Teich (1999)), and Mann and Thompson (1988) use Rhetorical

Structure Theory for discourse planning within PENMAN.

Other notable projects in NLG are McDonald's MUMBLE (1983) and Meteer's

(1989) SPOKESMAN generator, but while these show some influence from SFG, they

use as their model of syntax, a formal tree adjoining grammar (Joshi 1985) as a basis

for syntactic processing (Reiter 1994:2).

Reiter, Mellish and Levine (1995) demonstrate a practical application of NLG for

written texts in controlled English in the Intelligent Documentation Advisory System

(IDAS). IDAS was supported by Racal Instruments Ltd, and used SFG techniques to

generate text for use in technical manuals from a knowledge base. The production of

2 For a full description of the PENMAN project see Matthiessen and Bateman (1991).

11

technical documentation to support a maintenance system is an expensive process, and

compliance to restricted English (ASD Simplified English (ASD 1985)) is a

mandatory requirement). IDAS, although it relied to some degree on canned text,

demonstrates some success in this field. O'Donnell, in 1996, created the WAG natural

language generator. This has practical applications, including one in the ILEX project

for automatically creating web pages for museum exhibits (ODonnell 1996).

Rambow and Korelsky (1992) developed JOYCE, which was based on yet

another theory of language namely, Mel'cuk's Meaning Text Theory (1998). One

widely used system was that of Elhadad (1993). He extended Functional Unification

Grammar (Kay 1979), and drew on the SFG work of Fawcett in his Functional

Unification Formalism (FUF) for his natural language generator. A practical

application of FUF was ADVISERII, which was used to advise students on which

courses to take (Elhadad 1993).

Langkilde and Knight (1998), based at the University of Southern California,

created NITROGEN, which used probabilities extracted from a corpus to assist in the

process of text generation. The system, which maps meanings into word-lattices (a

concept also used in parsing, see Chapter Ten), uses statistical information created by

its corpus statistical extractor to rank the top-n best paths to determine the best

sentence to present to the user. This system, which is only described in very general

terms in the published work, is the only NLG system that I have come across (other

than the GENESYS system in the COMMUNAL Project) that makes use of

probabilities.

Next, in order to provide an overview of the system in which the parser described

in this thesis is embedded, we turn to consider the COMMUNAL Project, a major

component of which consists of an implementation of the Cardiff Grammar. We shall

start by introducing the Cardiff Grammar, and then we will look in more detail at its

implementation in the COMMUNAL project.

2.4 An overview of the Cardiff Grammar

2.4.1 Background

In Section 2.2, we saw that there is a wide range of different approaches to modelling

language within linguistics and the purpose of the present section is to give an outline

of the particular theory in which the present project is set.

12

This theory is systemic functional linguistics (SFL), of which the major architect

is Halliday (e.g. Halliday 1976, 1985, 1994). This is the best known of various

theories of language which are 'description-based' and 'functional', in the terms

introduced in Section 2.2. Within the overall model of language that is given in SFL,

there is the component that is concerned with generating and understanding sentences.

This is the grammar of the language, or more properly, as we shall see, the

lexicogrammar.3

However, as a result of the extensive work by Fawcett and his team at Cardiff

since the late 1980s, there are now two distinct versions of SFL. See Fawcett (2000a)

for a full account of the development of the two versions of the theory. Nonetheless,

Halliday has stated that the Cardiff Grammar is ‘based on the same systemic

functional theory’ as his own (Halliday 1994:xii) and Fawcett would agree with this

statement, at least with respect to the way in which the grammar operates. The two

versions of the theory are commonly referred to in the literature as ‘the Sydney

Grammar’ and ‘the Cardiff Grammar’. Butler (2003a and 2003b) provides good

descriptions of both versions (and also of two other ‘structural-functional’ models).

He reaches the conclusion that ‘in my view the Cardiff model represents a substantial

improvement on the Sydney account’ (2003b:471).

The research reported in this thesis uses the Cardiff Grammar, as developed in the

COMMUNAL Project and as described in Fawcett (2000a), and as used in the

Fawcett-Perkins-Day Corpus (FPD) (see Chapter Nine).

2.4.2 The place of syntax in a systemic functional grammar

I shall now provide a brief overview of how an SFG works, in order to show the place

of syntax within the overall grammar. The following description is based on that

given by Fawcett in Chapter Three of Fawcett (2000a). Here we assume a model in

which it is the system network that models the ‘meaning potential’ of a language and

constitutes its semantics.4

3 It may be helpful to remind the reader that a grammar does not necessarily have the form of a 'phrase
structure grammar' as described in Section 2.2.
4See Chapter Five of Fawcett (2000a) for a discussion of the similarities and differences between the
generative versions of the Sydney Grammar and the Cardiff Grammar.

13

potential instance

meaning

form

selection expression
of semantic features

one layer of a richly
labelled tree structure

realisation rules

system network
of semantic features

Figure 2.1: The main components
of a Systemic Functional Grammar and their outputs

Figure 2.1 shows the two main components of the grammar of a language (on the

left), and their outputs (on the right). The grammar contains two ‘potentials’: one at

each of the two levels of meaning and form. The process of generation is controlled

by the semantic system network, which models the language’s ‘meaning potential’

(see Figure 2.3 for an example).

Figure 2.1 also shows the two types of ‘instance’ - i.e. the outputs from each of

the two components. Each traversal of the network results in a selection expression

of the features chosen on that traversal. The realisation rules refer to these as they

specify the output. An output consists of a syntactic unit, its elements, and the items

that expound them - unless one of its elements is to be filled by a further unit, in

which case the rule specifies re-entry to the network to generate a further unit (note

the arrow on the left).5

Each traversal of the network chooses features relevant to one semantic unit, and

each generates one syntactic unit. The first traversal typically generates a Clause, and

later traversals generate the nominal groups (and other units) that will fill some of its

elements.

Thus a ‘grammar’ is essentially a model of the sentence-generating component of

a full model of language and its use. So the term ‘grammar’ is used here as a short

form for lexicogrammar - a term that usefully reminds us that the system network

covers meanings realised in lexis, as well as in syntax and in grammatical items (as in

a narrower sense of ‘grammar’). Given that an SFG operates in this way, it is

5 See Chapter Four for the definitions of the Cardiff Grammar's units, elements and items.

14

important to note that that the parser does not operate in this generative framework.

The part of what has been described above that is relevant to a parser is the output at

the level of form, i.e. a knowledge of the complete set of structures that might be

generated through the use of the SFG. The framework for describing these structures

for the Cardiff Grammar will be the subject of Chapter Four.

The COMMUNAL implementation of the Cardiff version of SFL is described

briefly in the next section, and this includes an illustration in an introductory manner,

of its use in natural language generation. As for the use of SFL in natural language

understanding, we had a brief introduction to the concept of a semantic interpreter in

Section 2.3.1 and the description of its use in a parsing process will be described at

main points in later chapters. The next section, however, will illustrate the place of all

these components in the overall model.

2.5 An introduction to the COMMUNAL Project
The research reported in this thesis is part of the COMMUNAL (COnvivial Man-

Machine Understanding through NAtural Language) project based at Cardiff

University under the direction of Professor Robin Fawcett.

The aims of COMMUNAL are 'to enable computationally naive people to interact

easily and naturally with intelligent knowledge base systems' (Fawcett 1988).

COMMUNAL (see Figure 2.2) integrates both NLG and NLU components. In

principle, the COMMUNAL system is able to accept input as a string of text (which

may have been pre-processed from a speech analyser), and give a response (if one is

required). Details of the processing within the understanding and generation

components are given in the sections that follow.

In the early phases of the project, Cardiff had a sister team who were based at

Leeds University; in general, Cardiff were responsible for the generation components

and Leeds the understanding components. It was at Cardiff that Weerasinghe (1994)

produced a probabilistic parser for COMMUNAL. The valuable work by Atwell,

Souter and O'Donoghue at Leeds and by Weerasinghe at Cardiff will be described in

Chapter Eleven.

2.5.1 The natural language generation components in COMMUNAL

See Figure 2.2 for an overview of the COMMUNAL model. As is generally accepted

in the field of NLG, the process of generating a sentence (or utterance) involves three

main levels of planning (as Figure 2.2 shows): overall planning, discourse planning

15

and sentence planning. Fawcett (1994) describes the application of this overall

architecture in COMMUNAL.

Overall control involves the creation of high level plans using goals, reasoning

and beliefs about objects and situations which are stored in COMMUNAL’s belief

system.

The discourse planner takes the high level plan and turns it into a discourse

structure. This consists of genre structure and either exchange structure (for texts

involving two or more persons) or rhetorical structure (for monologues, including

most written texts), or a combination of both (Fawcett and Davies 1992). Here an

instruction, such as solicit information, may be created as an input to the sentence

planner.

The system networks, together with their realisation rules, form the

lexicogrammar. This is at the heart of the COMMUNAL’s model of language and its

use, and is called GENESYS (because it GENErates Systematically). As we saw in

Section 2.4.2, there is a traversal of the system networks which results in a rich

syntactic representation of the generated sentence. This requires several steps. Firstly,

it involves selecting a pathway (or pathways) by taking branches through the system

network (e.g. as in Figure 2.3). The grammar, based on the features in each system,

makes choices based on the decisions made by the higher level planning. In addition,

the system network also contains 'and' nodes. An 'and' node is represented by a left-

hand curly bracket "{", and it means 'follow all these sub-networks in the order given'.

The result of the traversal of the system network is a selection expression of semantic

features, and these are then turned into a syntactic structure by executing the

realisation rules.

16

1
GOALS AND

PLANS

Global, strategic, mid
and tactcal

Cooperative principles

PLAN LIBRARY

c basic logical form >
GENERATION
ALGORITHMS

for predetermining
options in (1)tfie

discourse gram m ars and
(2) the lexicogram m ar
referring expressions,

time, modality etc.

BELIEFS

general < -> domain specific
widely shared <—> individual

type vs specific (as below)

ONTOLOGY OF TYPES OF
OBJECT, EVENT. ATTRIBUTES
OF OBJECT AND EVENT.
QUANTIFICATION, RELATIONS.
p tr

For each type of object attached
TYPIC EVENTS ('propositions')*

SPECIFIC O B JE C TS.incl. P E R S O N S .
incL SELF AND A D D RESSEE; for
each: a ttached SPECIFIC EVENTS*
(for persons: incl. goals, p lan s, beliefs,
affective attitudes)

RELATIONS BETWEEN EVENTS;
EQUIVALENCES; SCRIPTS

PRECEDING DISCOURSE: structure,
object list, topics, lexicogram m ar

OBSERVABLE SITUATION

1
GOAL AND

PLAN
DETEC TION

Reasoning about
incoming m essag e
(using BELIEFS about
ADDRESSEE'S goals,
plans and beliefs)

c 1
basic logical form

INTERPRETATION
ALGORITHMS

for resolving:
(1) d iscourse acts,
(2) referring

expressions,
time, modality
etc.

DISCOURSE PL A M E R
(GENERATOR) Sem antic logical

form
LOGICAL FORM
TRANSLATOR

DISCO U RSE GRAMMARS
G EN RES AND EXCHANGE

discourse
structure

reoresen tation
SYSTEMIC FLOWCHART DISCOURSE

PARSER
INTERPRETER discourse

structure
representation

REALIZATION
COMPONENT

discourse
structure

reoresentation Mood tables

SENTENCE PLANNER
(GENERATOR)

SENTENCE
INTERPRETER

LEXICOGRAMMAR
Sem antic

representation
s e m a n tc

representation
inn* hv 11nit 1 SEMANTIC SYSTEM

NETWORKS

REALIZATION
COMPONENT

nch syntactic
representation

nch syntactic
representation

SENTENCE PARSER String of item s +
punctuation /

intnnatinnstring of items +
punctuation /

intonation

HR F.2IT 1H F utr.SYNTAX STRIPPER

speech

1r
V- SPEECH SYNTHESIZERr

SPEECH ANALYZER

Key: system component, = input / output

* For each event (typic or specific): event type, participants, circumstances, time, aspectual type,

confidence level, effective attitudes.

Figure 2.2: Fawcett’s diagram of the COMMUNAL System
17

As an example, let us consider how to generate a sentence 'The girl
destroyed the book'. We will use the simplified system network shown in

Figure 2.3 (taken from Fawcett 1994). The traversal of the system networks are carried

out in cycles with each cycle building a new syntactic unit.

The first pass involves taking the 'situation' branch in the network. Figure

2.3 shows that both TRANSITIVITY and MOOD networks are to be followed, so

building a clause which will, as a result of earlier planning decisions, contain a Subject

which has: (a) an Agent as an associated Participant Role, (b) a process of

'destroying1, and (c) a Complement with an Affected Participant Role. Upon

entering the TRANSITIVITY network, GENESYS must choose whether the process

will be either (a) 'material' , (b) 'mental' , or (c) 'environmental', and the

path chosen is 'material •. Having selected 'material •, a further choice of one

of either (a) ’one-role • or (b) 'two-role1 has to be made, and in this case it is a

'two-role' process. In the 'two-role* network, two sub-networks have to be

followed. The first is for VOICE, and here the planner has selected agent-S-
theme, which will conflate the role of Agent by Subject. The second of the two

systems gives options in the specific type of process, and 'destroying' is chosen.

Having exhausted the routes through the TRANSITIVITY network, the generator

then follows the MOOD network. Here planning determines that it has to select

'information1 (rather than 'proposal for action') and then, finally, it

selects'giver' and'past' from the two parallel sub-networks.

Thus, the paths taken through the networks for the first pass generates, for

TRANSITIVITY, this selection expression:

[referent/situation/material,tworole,agentStheme,destroying]

And, for MOOD and TENSE, the selection expression is:
[information-giver,past]

It should be emphasised that this is an example from a 'toy1 grammar; the full

grammar requires many more choices (see Fawcett, Tucker and Lin 1993).

The realisation rules (see Figure 2.4) state that as 'situation' was chosen, a

clause (C l) is created in the output structure.

The feature 'giver' creates a Subject (S) and locates it in Place 3 in the clause,

and agent - S - theme creates an Ag next to the S to represent the participant role of

18

agent. The process d e s t r o y in g and the choice o f 'g iv e r ' and 'p a s t ', generates a

Main Verb (M) at place 7 and expounds it by the item d e s t r o y e d .6 On the same

cycle, the grammar creates a Complement (C) and locates it at Place 8 in the Clause,

and an affected (Af) participant role that is conflated with it. The grammar then re

enters the network to generate a unit, its elements and its items to fill both the a g e n t

and the a f f e c t e d .

The choices the planner makes for Agent are:
[thing,cultural_classification,recoverable,person,girl,singular]

The realisation rules are then applied to the selection expression as follows. The

feature ' t h i n g ' generates a nominal group (ngp); ' r e c o v e r a b l e ' generates a

deictic determiner (dd) within the nominal group and expounds it by th e , and

generates a head (h) which, because s i n g u l a r is selected, it is expounded by g i r l .

The choices that planning makes in re-entry for the affected role are very similar:

[thing, cultural_classif ication, recoverable, object-book,singular]

As before, 1 t h i n g ' generates a nominal group (ngp) and 'r e c o v e r a b l e 1

generates a deictic determiner (dd) expounded by t h e , within the nominal group a

head (h) is generated that, because s i n g u l a r is selected, it is expounded by book.

The sentence generated in this example is shown in Figure 2.5.

6 If the choice had been seeker, an operator (O) would also have been generated in Place 2, giving
'did destroy..'.

19

C I- a g e n t - S - th e m e
VOICE

“ t w o - r o l e ^

m a t e r i a l

TR A N SIT IV ITY

"af f e c t e d - S -

' h i t t i n g

d e s t r o y i n g

' o n e - r o l e

m e n t a l

r e l a t i o n a l

e n v i r o n m e n t a l

s i t u a t i o n /

MOOD

i n f o r m a t i o n

g i v e r

s e e k e r

TENSE r~ p r e s e n t

p a s t

r e f e r e n t '

c u l t u r a l

c l a s s i f i c a t i o n

p r o p o s a l f o r a c t i o n

— r e c o v e r a b l e

d e m o n s t r a t i v e

p o s s e s s i v e

—o b j e c t —
(“ b o o k

“p e r s o n

p e n

b o y

g i r l

t h i n g / n a m in g

r e c o v e r a b l e t h i n g

_ f a m i l i a r nam e

- f o r m a l nam e

s i n g u l a r

p l u r a l

Figure 2.3: A highly simplified system network (from Fawcett 1994)

th e m e

20

FEATURE CONDITIONS REALISATION

situation Cl

giver S@ 3

agent-S-theme Ag by S

For Ag, re-enter at [thing]

C @ 8, Af by C

For Af, re-enter at [thing]

destroying giver
past \

seeker

M @ 7 < ‘destroyed’

0 @ 2< ‘did’; M@7 <’destroy’

thing ngp

recoverable dd<’the’

book h<’book’

girl h < 'girl'

Figure 2.4: Realisation rules to accompany the sample network

z
Cl

[3] S/Ag
ngp

/ \
dd h

A A
the girl

Figure 2.5: The output from the process of generation

This then, is the form that an SFG takes. Such grammars have been very widely

used in NLG, as we have seen, and the problem that confronts the researcher whose

goal is to build a parser is that of drawing on it in an appropriate manner.

21

In the next sub-section, we will give a brief overview of the problems associated

with using SFG in an understanding process and how they have been resolved in

COMMUNAL.

2.5.2 The natural language understanding components in COMMUNAL

We turn now to the right-hand side of the diagram in Figure 2.2.

When processing the spoken words, the understanding process starts with sounds

or written symbols. If the text is spoken, a speech analyser is responsible for

transforming sounds into a string of written words (items) and these are normally

marked up for intonation. A written input is simpler, and is supplemented by

punctuation. These are two possible forms of input to the parser. For typed written

texts then, there is no need for a preliminary process.

The task of the parser is to turn the string of items into a richly annotated syntactic

structure, i.e. a tree diagram, complete with syntax labels for units, elements and

items, which show the syntax structure of the sentence.

The semantic interpreter (Section 2.3.1) takes the syntax structure and works

alongside the discourse interpreter to derive a semantic representation. The logical

form translator will then produce a semantic logical form. The higher level

components include the interpretation algorithms which interpret discourse acts and

referring expressions, and the goal and plan detector which is used to determine the

purpose of the incoming message, in consultation with the belief system. When

understanding is successful, new beliefs are created and, if necessary, the process of

formulating a response is initiated in COMMUNAL’s generation system.

In this thesis, however, we shall focus entirely on the parser. In Chapter Eleven,

we shall look at the various alternative parsers using SFG that have been proposed.

But we can say at this point that it is the syntax of the output from a generator of the

sort described in Section 2.5.1 that provides the data upon which the parser to be

described in Part Four draws. It is the semantic interpreter, in fact, which comes

closest to being the 'reverse' of the generator - and not the parser (as is widely

assumed). See Fawcett (1994) for the reasons why an NLU system cannot simply be

the reverse of a generation system, as some formal language theorists have claimed

(e.g. in papers in Strzalkowski 1994).

22

OVERALL .CONTROL OF SYSTEM ANP REASQMINff

GOALS AND
p l a n s

G lobal, strategic, mid
and tactical

C oopera tive principles

PLAN LIBRARY

Y b as ic logical form

V
OENBRATION
ALGORITHMS

for predetermining
options in (1) the

discourse grammars and
(2) the lexicogrammar
referring expressions,

time, modality etc

I
BELIEFS

gene ra l <—> dom ain specific
w idely s h a re d < -> individual

type vs specific (as below)

ONTOLOGY OF TYPES OF
OBJECT, EVENT. ATTRIBUTES
OF OBJECT AND EVENT,
QUANTIFICATION. RELATIONS

For each type of object attached
TYPIC EVENTS ('propositions')*

SPECIFIC OBJECTS.incl PERSO N S,
incl SELF AND ADDRESSEE; for
each attached SPECIFIC EVENTS*
(for persons; incl. goals, plans, beliefs,
affective attitudes)

RELATIONS BETWEEN EVENTS;
EQUIVALENCES; SCRIPTS

PRECEDING DISCOURSE structure,
object list, topics, lexicogrammar

OBSERVABLE SITUATION

I
GOAL AND

PLAN
DETECI1QN

Reasoning about
incoming message
(using BELIEFS about
ADDRESSEE'S goals.
Plans and beliefs)

^ b as ic logical form ^

LOGICAL FORM
TRANSLATOR

DISCOURSE
PARSER -

INTERPRETER

M ood ta b le s

DISCOURSE PLAhMER
(GENERATOR)

DISCOURSE GRAMMARS
G EN RES AND EXCHANGE

discourse
structure

reoresentation
SYSTEMIC FLOW CHART

REALIZATION
COM PONENT

discourse
structure

reoresentatio

SENTENCE PLANNER
(GENERATOR)

EXICOGRAMMAR
sem an tc

representa ton
lu n t h

SEM ANTIC SYSTEM
NETW ORKS

> REAL CATION
COM PONENT

nch syntactic
representation

string of te rn s
punctuation /

intonation

SYNTAX STRIPPER

SPEECH SYNTHESIZER

Consultation

INTERPRETATION
ALGORITHMS

fo r re so lv ing :
(1) discourse acts.
(2) referring

expressions,
time, modality
etc

Semantic logical
form

discourse
structure

representation

Semantic
representation L string of items +

punctuation / intonation

Corpus Consulting
Probabilistic Parser

query results

Probabilistic Unit

Figure 2.6: Setting the scene of this work Corpus database

23

2.6 Summary
In this Chapter, I have provided an overview of the field of computational linguistics

in general, and the COMMUNAL project in particular. We began by surveying a

number of different linguistic theories, and we have discussed the differences between

formal approaches and descriptive approaches.

After looking briefly at some applications of linguistic theory in natural language

understanding and generation, we focussed on the particular application of Systemic

Functional Linguistics (SFL) within which the research reported here is set, i.e. the

COMMUNAL Project. This system provides for both natural language understanding

and natural language generation, as it ’understands' what has been said, and ’generates'

a response. Figure 2.6 provides the framework for understanding and shows where the

components described in this thesis fit within the COMMUNAL Project, and sets the

scene for what follows. The project described in this thesis therefore provides a new

natural language parser for COMMUNAL of a new type, drawing its knowledge from

a corpus database.

In Chapter Three, we will introduce the field of corpus linguistics, and, in Chapter

Four, the model of language used by this project, the Cardiff version of SFL as

described in Fawcett (2000a).

24

Chapter Three
Corpus linguistics
Corpus linguistics is the study of language when it is based on facts (including

statistics) that are derived from naturally occurring texts that are held in a body of text

(called a corpus). Before computer corpora were available, language students had to

provide their own examples, which were based on intuition and personal observation,

and this often led to emphasis being placed on relatively rare linguistic phenomena.

Corpus linguistics gained popularity at the beginning of the 1990s, as more and more

texts became available electronically. Today, the student of linguistics is provided

with powerful software tools, which can unlock data from vast databanks, and these

are providing new insights into the nature of language.

Corpora are being used increasingly in the field of computational linguistics.

Natural language parsers, such as the one described in this thesis, use statistical data to

aid their analysis, and even data that can be regarded as syntax rules that have been

extracted from a corpus. Natural language generators may use the facts gained from

corpora to determine the best route through the networks of a sentence planner.

In the 1990s, there were only a few corpora that included the syntax annotations

(parsed corpora). This meant that most of the available software tools were only

able to provide concordances, collocations and word lists. At this time, the

Polytechnic of Wales (POW) Corpus was one of the few parsed corpora available, and

the Interactive Corpus Query Facility (ICQF) (Day 1993a) was developed as a tool for

use in the COMMUNAL project. Although parsed corpora are still small in number,

there are now more of them, and we are beginning to see more powerful corpus query

tools being developed. One such tool is the second version of ICQF, which forms part

of this present project, and it is described in Chapter Eight.

The present chapter provides an insight into the subject of corpus linguistics. It

gives details of some of the major corpora being used in the field and also those that

are applicable to this work. It outlines the type of information they contain, and it

shows how they are annotated. We will look at types of query and presentation that

are useful to linguists and researchers, and at the tools that are being used to deliver

these requirements.

25

3.1 Definitions and classifications

3.1.1 What is a corpus?

A corpus is a large body of naturally occurring text. It can either be:

(a) parsed (fully syntactically analysed),

(b) tagged (labelled with parts-of-speech), or

(c) raw (with no additional annotation).1

3.1.2 Classifying corpora

Researchers have been building corpora of language texts in electronic form for over

two decades. While in recent years more attention has been paid to controlling and

classifying them in terms of agreed linguistic variables, most are seriously deficient in

this respect.

Halliday (1976) has suggested that there are two main types of linguistic variable

in texts: (a) variation according to register and (b) variation according dialect, and by

and large his framework is the one that is most widely used in the field. He defines

register as a particular configuration of meanings that is associated with a particular

situation type (Halliday 1975). He suggests that the main variables are:

(a) field (which includes subject matter),

(b) mode (whether the performer of the text is delivering it in written or spoken

form),

(c) tenor (the social and personal relationships between the interactants).

Field defines the text's technicality and the subject matter of the discourse. An

aircraft engine maintenance manual, for example, contains texts that are written in

technical English that contain information about how to service a particular engine;

contrast this with a novel which would be written in non-technical English containing

subject matter relating to the story being told. Interestingly, the same item can have

different meanings in different fields. For example, the word bank is likely to have

different meanings in texts relating to fishing, to aircraft manoeuvrability or to finance

text. Further, the frequencies of occurrence of a word when it is functioning as a

specific syntactic category is likely to be very different (eg bank as a noun and as a

verb).

1 Today, following the advances of part-of-speech taggers, most corpora used in computational
linguistics are at least tagged.

26

Mode refers to the classification of the text as either written or spoken. Spoken

texts will typically contain somewhat different items - and even syntax structures -

from those in written texts. For example, spoken texts typically have a great deal of

unfinished structures and ellipsis, i.e. words that are recoverable, either in the course

of rapid speech, or from what has gone before. Furthermore, spoken texts tend to

contain a large number of what we shall term replacement elements. These occur

when the speaker wants to reinforce and make clear what has been said earlier in the

same sentence.2 Written text tends to be more formal, and therefore the number of

unfinished units and replacement elements tends to be greatly reduced.3

Tenor reflects the social relationship between the performer and the addressees

(ie the speaker/listener and the writer/readers). For example, an aerospace engineer

familiar with the configuration of a particular piece of equipment will speak

differently to a colleague who shares his knowledge from the way he would talk to an

apprentice who is not yet familiar with the equipment. Similarly, one would speak

differently to one's best friend from how one would speak to one's boss.

Quirk et al (1985:27) use a scale to classify the tenor of a text as follows:

very £ormal <-> formal <-> neutral <-> informal <-> very informal

While register variation is variation according to the context of situation,

variation in dialect is variation according to who the performer is. Here the main

variables are (a) geographical, (b) social class and (c) time. However, most modem

corpora record texts that are in modem Standard English, with the main variable being

the distinction between American English and British English, so that the dialectal

dimension of variation is much less important in corpus studies than register.

A further important variable between corpora is their size. This affects the

reliability of the probabilities that can be extracted from it. A small corpus may give

undue weight to rare words or structures because they have occurred a few times in a

relatively small sample; such risks tend to be evened out in a larger sample.

Ideally, because the register and dialect variables typically affect probabilities, the

ideal parser would be able to draw on statistics that are based on the type of text being

parsed (i.e. by extracting information from specialised corpora or sub-corpora). In

2 Approximately 2% of sentences in the Fawcett-Perkins-Day corpus contain replacement structures, an
example being Do some flappers, door flappers (10abpstg#208).
3 An unfinished unit is common in speech. They occur when a speaker has started an utterance and
either has replaced it with another construct or has been interrupted.

27

order to do this, corpora need to be collected, classified and annotated according to

these criteria.

The larger corpora available today contain texts from a variety of sources and they

represent a variety of linguistic variables. However while many corpora classify texts

in broad terms according to register variables (e.g. Biber et al 1999), most corpora are

strongly biased to written texts, because these are easier to obtain.

3.2 A survey of some of the major corpora
This section describes some of the main corpora that are currently available or that

have special relevance to this current project. Table 3.1 provides a summary of the

details of these corpora.

3.2.1 COBUILD

The COllins Birmingham University International Language Database (COBUILD),

was (and is) based in Birmingham University, and was led by Sinclair and funded by

Collins (Sinclair 1990). The outcome was the Bank of English corpus.

In 2006, the corpus contained over 524 million words of English texts. It was

created from British, American and Canadian sources and includes text books, novels,

newspapers, guides, magazines and web-sites. It is a 'dynamic corpus' as it is

continuing to grow as new texts are added to it.

The COBUILD linguists and lexicographers use specially developed software

tools to undertake research in the Bank of English corpus. This has resulted in the

Collins COBUILD dictionaries and a series of derived reference books. A notable

feature of these dictionaries is that their entries are always supported by the evidence

of extracts from the corpus.

Jarvinen, working under the direction of Sinclair (in Birmingham) and Karlsson

(in Helsinki), annotated the corpus with part-of-speech tags, using a combination of

the English morphological analyser (ENGTWOL) and the English Constraint

Grammar (ENGCG) parser (Jarvinen 1994). Similar approaches are commonly used

to transform raw corpora into more useful tagged corpora. Although more recent

taggers are demonstrating greater accuracy, their analyses are still not completely

accurate. Many will mark words as 'unclassified' and / or assign multiple categories to

the same item. This is true, for example, of the British National Corpus (BNC) of

which extensive use is made in the project described in this thesis. The BNC corpus is

described in the next section.

28

3.2.2 The British National Corpus (BNC)

The BNC (www.natcorp.ox.ac.uk/corpus). which was compiled between 1991 and

1994, contains ninety million words of written text and ten million words of spoken

text. It is a 'balanced' corpus, in that it is designed to represent a wide cross-section of

British English from the later part of the 20th Century.

The written part of the corpus includes extracts from local and national

newspapers, periodicals and journals, academic books and fictional works, letters and

memoranda, and school and university essays. The spoken part contains a large

amount of informal conversation from volunteer speakers of different ages, social

classes and situations. Also included is a range of formal spoken texts from, for

example, meetings, radio shows and 'phone-ins.

The BNC is encoded in the Standard Generalized Mark-up Language (SGML)

(ISO 1986), according to the guidelines of the Text-Encoding Initiative (TEI) (see

Chapter Six). A word tagger called CLAWS (see Section 3.3), has been used to

provide annotations for part-of-speech.

The BNC is monolingual in that it contains modem British English. It is

synchronic as it covers British English from the late twentieth century, and it is

general in that it contains many different styles and varieties and is not limited to

subject, genre, field or register, and contains both spoken and written texts. It is also

said to be a sample corpus as its words are taken from various parts of single-author or

speaker texts.

Two sub-corpora have been produced from the BNC since 1994: the BNC Baby

and the BNC World. Versions of these sub-corpora have been produced in the

extensible Markup Language (XML) format (W3C 2004a) and can be used with the

XARA corpus query tool (see Section 3.4.3).

3.2.3 The Penn Treebank

The Penn Treebank4 project, located at the University of Pennsylvania under the

direction of Marcus (Marcus et al 1993), provides a corpus that contains over 4.5

million words of American English. This includes the Brown Corpus and the Wall

Street Journal Corpus, among others.

The Penn Treebank has been annotated using part-of-speech information, and a

large proportion of it has been analysed and annotated with skeletal syntactic structure.

The part-of-speech tagging was performed automatically using a reduced Brown

29

http://www.natcorp.ox.ac.uk/corpus

corpus tag-set. Marcus et al (1993:2) argue that many of the Brown tags are not

necessary as their meanings can be lexically recovered or, because the treebank is

syntactically analysed, this can be recovered from the syntactic context. Early part-of-

speech tagging was performed by AT & T's PARTS algorithm (Church 1988), but

subsequently this was replaced by other tagging software that reduces the error rate to

2-6%. The automatic tagging, however, was followed by a manual correction stage.

Higher level syntactic structure labels (for example, noun phrases and verb

phrases) which were based on those of the Lancaster treebank project, were added by a

parsing process; this again was followed by a manual check. The parser, named

'Fidditch' was developed by Hindle (Marcus et al 1993).

The syntactic structures, which have been described as skeletal (Marcus et al

1993), are presented in bracketed form and provide considerably less information than

the functional syntax used in this present project, as described in Chapter Four.

3.2.4 The SUSANNE Corpus

The Surface and Underlying Structural ANalyses of Naturalistic English (SUSANNE)

parsed corpus has been created with the sponsorship of the Economic and Social

Research Council (UK) as part of the process of developing a comprehensive NLP-

oriented taxonomy and annotation scheme for the grammar of English (Sampson

1995). The corpus, which is a 128,000 word subset of the Brown Corpus of American

English, is annotated with the SUSANNE analytic scheme.

3.2.5 The Lancaster-Oslo/Bergen (LOB) Corpus

The LOB corpus contains 1 million words of British written English dating from 1960

(www.comp.lancs.ac.uk/computing/research/ucrel/corpora). It comprises 15 genre

categories, and is tagged with the CLAWS part-of-speech tagger. The Leeds-

Lancaster and the Lancaster Parsed Corpora were derived from the LOB corpus. A

sample sentence tagged using the CLAWS scheme is shown in Figure 3.1 (note that

parts of speech tokens are concatenated to the items).
h o s p i t a l i t y _ N N is _ B E Z an_A T e x c e l l e n t _ J J v i r t u e _ N N , , b u t_ C C not_X N O T
when_W EB t h e _ A T I g u e s t s _ N N S h a v e_ H V to _ T O s le e p _ V B in _ I N r o w s N N S
i n _ I N th e _ A T I c e l l a r _ N N ! _ !

Figure 3.1: Example of CLAWS tagging used in the Leeds-Lancaster Corpus5

4 A treebank is term given a large collection of parsed trees.
5 Parts of speech are shown in bold in this example to help the reader; the corpus does not contain this
formatting and is ASCII text. A key to the CLAWS tags can be found at
http://www.comp.lancs.ac.uk/computing/research/ucrel/clawsltags.html.

30

http://www.comp.lancs.ac.uk/computing/research/ucrel/corpora
http://www.comp.lancs.ac.uk/computing/research/ucrel/clawsltags.html

3.2.6 The International Corpus of English (ICE)

The key concepts behind the International Corpus of English (ICE)

(www.ucl.ac.uk/english-usagel project were created by Greenbaum in the 1980s when

he envisaged a project where corpora would be collected and analysed globally.

The ICE-GB corpus is the British component of ICE. The project, which began in

1990, contains over a million words of spoken and written English texts. The ICE-GB

corpus is fully grammatically analysed, with approximately 83,000 parse trees.

The corpus was automatically annotated in three distinct stages

(www.ucl.ac.uk/english-usage). The first stage, following text collection, involved

marking the boundaries of sentences, paragraphs and headings. For spoken texts, this

involved identifying pauses, discourse markings, false starts, hesitations and speaker

turns. The second stage involved marking parts of speech using the TOSCA tagger

developed by the TOSCA Research Group at the University of Nijmegen. The third

stage involved using a parser to mark the higher syntactic levels of the parse tree.

The annotation scheme used in the corpus was based on that of Quirk et al (1985).

The corpus is stored in such a way that it can be edited and queried using the ICECUP

corpus query tool (see Section 3.4.4).

3.2.7 The SWITCHBOARD Corpus

The SWITCHBOARD corpus (Godfrey et al 1992) contains spontaneous

conversations which were collected at Texas Instruments in a project funded by

DARPA. It has 2430 conversations and 3 million words from 500 speakers of both

sexes from every major dialect of American English.

Approximately a third of the SWITCHBOARD corpus is provided in parsed form

within the PENN Treebank (see Section 3.2.3). Calhoun et al (2005) took a proportion

of the corpus and added discourse annotations using an XML schema.

3.2.8 The NEGRA Corpus

The NEGRA corpus contains approximately one million words of German newspaper

texts. The corpus can be queried using the TigerSearch corpus query tool. It is

annotated using XML, and the approach can be compared to the method that we use

for this project in Chapter Six.

31

http://www.ucl.ac.uk/english-usagel
http://www.ucl.ac.uk/english-usage

3.2.9 The Fawcett-Perkins-Day Corpus

The Fawcett-Perkins-Day Corpus (FPD), which will be described more fully in

Chapter Nine, is a revised version of the Polytechnic of Wales (POW) Corpus. This

was first developed by Fawcett and Perkins in the 1980s (Fawcett and Perkins 1980),

and it was one of the first corpora to be fully analysed in terms of its syntax. A

powerful corpus query tool that was used with the POW Corpus was provided by Day

(1993a); this work led ultimately to the enhanced tool used in this project and

operating on the FPD Corpus as described in Chapter Eight.

The corpus consists of spoken texts taken from 120 children from South Wales

arranged in groups of three according to their age, sex and social class. Each group

was recorded in two types of situation: (a) as they worked together on a building task,

using LEGO, and (b) in conversation with an adult about the building task, a game

they liked to play, a television programme, a film, or something that they would like to

do in the future. The recordings were then (a) manually transcribed, and (b)

syntactically analysed. Each of these tasks brought its own range of problems to be

overcome and together they required several years of work by Fawcett, Perkins and a

team of sixteen transcribers. Despite a rigorous regime for checking and correcting

errors in the analysis, a surprising number of mistaken analyses were found in the

course of the present project.

Electronic copies of the analyses were made available as ASCII text files with a

header (which we shall refer to as the cell identifier). This identifies the child (in

terms of age, sex, class and type of situation). In Figure 3.2, lOdgism shows that the

child is ten years old, belongs to social group D, is female and has the initials I. S. M.
The annotation method includes provision for discontinuous units, which is rare in

such corpora.

Each sentence has a sentence number which is followed by a series of groups of

tokens, each of which is preceded by an identifier which represents the group's parent;

if no identifier appears before the token, then the token before it in the group is its

parent. In sentence 1 in Figure 3.2, the root element is a sentence (Z), which is filled

by a clause (CL).6 All 'children' nodes of the CL will have a 1 before them i.e. an

Adjunct (A), a Subject (S), a Main Verb (M) and a Complement (C). The A also has

a CL filling it and children of that CL are identified by a 2 before them, the elements

32

being a Binder (B) followed by a subject (S) a Main Verb (M), and a Complement

(C). Ellipted elements are indicated by angled brackets <,> and round brackets (,)

which are omissions due to rapid speech and recoverable from the previous text

respectively.

* * * * 4 4 1 0 3 8 1 52
lOdgism
1 [HZ:WELL] Z CL 1 A CL 2 B WHEN 2 S NGP HP YOU 2 M WENT 2 C PGP 3 P OUT-OF

3 CV NGP 4 DD THE 4 H ROOM 1 S NGP HP WE 1 M DECIDED 1 C CL 5 I TO 5 M
BUILD 5 C NGP 6 DQ AN [NA] 6 H HOUSE

3 [N V : EM] [F S:A B O U T] Z 1 CL 2 C? NGP 3 DQ A 3 MO QQGP AX B IG 3 H FAMILY 2
CREPL? NGP 4 DQ QQGP 5 T ABOUT 5 AX SEVEN 4 H CHILDREN 1 CLUN & AND

4 Z CL F YES
5 [HZ: WELL] Z CL 1 S NGP HP WE 1 OM WOULD 1 X HAVE [N V : EM] [R P : WE-WOULD-HAVE]
1 M B U IL T 1 C NGP 2 DQ A 2 MO QQGP AX L IT T L E 2 H SWIMMING-POOL

6 Z CL 1 Sc AND [N V : EM] 1 S NGP HP WE 1 OM WOULD 1 X HAVE 1 M B U IL T 1 C 2 NGP
3 DQ A 3 MO QQGP AX L IT T L E 3 H S L ID E 2 NGP 4 & AND [R P : AND] 4 <DQ> 4 H SWING
2 NGP 5 & AND 5 DQ A 5 H SEE-SAW 2 NGP 6 & AND 6 DQ A 6 H ROUNDABOUT

Figure 3.2: An excerpt from the Polytechnic of Wales Corpus

This valuable corpus can be queried with the Interactive Corpus Query Facility

(Day 1993a) (see also Chapter Eight). However, it has been modified so that it is

expressed in terms of the latest version of the Cardiff Grammar, since then it has been

renamed as the Fawcett-Perkins-Day (FPD) corpus. For a fuller description of the

creation of the new version, see Chapter Nine.

6 Note that in the original POW Corpus, there was a restriction that the whole file was in uppercase, due
to the computer environment used. However, in the FPD Corpus, we have introduced lowercase where
appropriate following the conventions summarised in Fawcett (2000a).

Name Description Type Classific
ation

Size (words
unless
otherwise
stated)

Annotation
scheme

Remarks Reference

COBUILD Bank
of English (see
Section 3.2.1)

Mainly written. English texts
from Britain, Australia, Canada
includes books, novels,
newspapers, guides and web-sites.

tagged General,
mono-lingual

524,000,000 www.collins.
co.uk

British National
Corpus (BNC)
(see Section
3.2.2)

Written (90%): Extracts from
newspapers, periodicals and
journals, school and university
essays.
Spoken (10%):
(a) informal conversations from
speakers of different ages and
social class,
(b) formal spoken texts from
meetings, radio 'phone-ins etc.

tagged General,
mono-lingual

100,000 TEI Corpus Query
Tool:
SARA/
XARA

www.natcorp
.ox.ac.uk

PENN Treebank
(see Section
3.2.3)

Mainly written. American
English. Large range of sources
including IBM manuals,
agricultural documentation,
novels from various authors etc.

50%
7skeletal-
parsed
50%
tagged

General,
mono-lingual

4,500,000 bracketed
tree / PSG

Corpus Query
Tool:
TGrep

www.cis.upe
nn.edu
/~treebank/ho
me.html

7 The proportion of tagged and parsed data for the PENN treebank were reported by Marcus et al (1993).

http://www.collins
http://www.natcorp
http://www.cis.upe

Name Description Type Classific
ation

Size (words
unless
otherwise
stated)

Annotation
scheme

Remarks Reference

SUSANNE (see
Section 3.2.4)

Written. Subset of the Brown
Corpus which has been parsed to
the SUSANNE scheme.

parsed General,
mono-lingual

128,000 SUSANNE
scheme

eg
www.gr samp
son.net/RSue.
html

SWITCHBOARD
(see Section
3.2.7)

Spoken, contains 2,400 telephone
conversations.

Specialised,
mono-lingual

3,000,000
(2,400

telephone
convers

ations)
NEGRA (see
Section 3.2.8)

Written. German newspaper
texts.

General.
mono-lingual
(German)

20,602
sentences

XML/PSG Corpus query
tool:
TigerSearch

http://www.c
oli.uni-
saarland.de/p
rojects/sfb37
8/negra-
corpus/

Fawcett and
Perkins
(Polytechnic of
Wales) (see
Section 3.2.9)

Spoken. Children's spoken text.
Ages 6, 8,10 and 12 of three
social classes in play and
interview situations.

parsed Specialised,
mono-lingual

67,000 Numerical
tree / SFG

Corpus query
tool: ICQF
(see Chapter
Eight)

http://www.gr
http://www.c

Name Description Type Classific
ation

Size (words
unless
otherwise
stated)

Annotation
scheme

Remarks Reference

Fawcett, Perkins
and Day (see
Section 3.2.9 and
Chapter Nine)

Spoken. Updated version of the
POW corpus. Annotated in XML
and to the latest Cardiff Grammar.
See Chapter Nine.

parsed Specialised,
mono-lingual

67,000 XML/SFG Corpus query
tool:
ICQF+ (see
Chapter Eight)

International
Corpus of English
(ICE) (see
Section 3.2.6)

Spoken: direct conversations,
telephone calls, classroom
lessons, broadcasts etc.
Written: Essays, business letters,
academic writing, fiction.

parsed General,
mono-lingual

1,000,000 Corpus query
tool: ICECUP

http://www.u
cl.ac.uk/engli
sh-
usage/project
s/ice.htm

Lancaster
Oslo/Bergen
(LOB) (see
Section 3.2.5)

Written: dating from 1960s of
various genres.

tagged General,
mono-lingual

1,000,000 ASCII
(word tags
appear after
words)

Lampeter Corpus
of Early Modem
English Tracts

Written: words of English
pamphlet literature covering the
years 1640-1740.

partly
tagged

Historical,
mono-lingual

1,000,000

Lancaster / Leeds
Treebank

Written: parsed subset of LOB
corpus.

parsed General,
mono-lingual

45,000

Table 3.1: A summary of some of the major corpora

http://www.u

3.3 Part-of-speech taggers
Many part-of-speech taggers have been produced for use in corpus linguistics. They

typically use Markov models to calculate the most likely part of speech for a particular

word in a given input sentence. Perhaps the most well known of these are: (a)

CLAWS and (b) the BRILL tagger.

The Constituent Likelihood Automatic Word-tagging System (CLAWS) (Garside

et al 1987) (Leech et al 1994) was developed by the University Centre for Computer

Corpus Research on Language (UCREL) at Lancaster University. A 96-97% accuracy

has been claimed for it, when used to annotate the BNC corpus

(www.comp.lancs.ac.uk/claws), and it has been fairly widely used to convert raw

corpora into tagged corpora.

Eric Brill (1992) developed a tagger that works by automatically recognising its

weaknesses and thereby incrementally improving its performance, through a

consultation of a large corpus. Brill also introduced the process of what he terms

'transformation-based, error-driven learning' and, apart from applying the techniques

to his tagger, he also experimented with the method in a parsing process (Brill 1995).

The technique involves tagging a text into an initial state and then comparing it with

another text that is known to be accurate (called 'the truth'). The results of the initial

attempt can then be compared to 'the truth' and a set of transformation rules can be

established to help the tagger achieve results that are closer to 'the truth'. Using these

techniques, Brill claimed success rates of 97%.

3.4 Corpus query tools
In this section, we will contrast and compare the corpus query tools that are available

today. We start by looking at the typical query and presentation requirements that

some of these tools produce.

The types of query that are useful to researchers in language depend on the nature

of the work. Lists of words together with examples of use and frequencies are very

useful when investigating word uses. The COBUILD team use outputs from the Bank

of English to compile the Collins COBUILD suite of books. These range from

dictionaries, and thesauruses through to books on usage intended for students of

English as a second language. Section 3.4.1 provides a list of typical reports that are

of use in such work. Concordances are another important tool for the researcher as

they provide examples of word usage together with contexts.

37

http://www.comp.lancs.ac.uk/claws

Tools that operate on parsed corpora can provide some valuable additional

information to help a linguist in determining the nature of the text and in a study of

syntax. Queries that involve the higher levels of syntax can tell the linguist more

about the nature of texts and the functions particular structures perform. This is

denominated by the work presented here and by others in developing either the ’rules'

for a rule-based parser, or for producing a probabilistic model for use in the parsing

process.8

Example lists are provided in Section 3.4.1.

3.4.1 Products relating primarily to items

We will start by looking at the report presentation formats.

3.4.1.1 Word lists
Sinclair (1991) suggests that frequency lists act as a quick guide to the way words are

distributed in a text. By examining such lists, one can often typically gain an

indication of what further questions are worth asking. An alphabetically sorted list of

words and their frequencies not only provides useful information about any particular

word, it also is useful, for example, when comparing one text with another. In general,

Sinclair notes that the most frequent items tend to have a stable distribution across

different text types and any change between texts is likely to be significant and

suggests the need for further study.

When extracting such lists from a parsed or tagged corpus, there is also the

opportunity to make separate entries for each part-of-speech (i.e. element of structure)

that the item expounds. A similar list, called the item-up-to-element table, is used

extensively by the parser, which is the subject of this thesis (see Part Four, Chapter

Fourteen).

As an example, consider the list shown in Figure 3.3. This shows the

frequencies of the functions of the item t h e distinguished in the Cardiff Grammar, as

they are found in the FPD corpus. It also shows the two functions served by the item

them . Such report formats are provided in ICQF; see Day (1993a) and Chapter

Eight.

8 For example, Weerasinghe used ICQF (Day 1993a) in the development of his parser.

38

Item Total Freq. Element FreqJElem. Probability
the 2228 dd (deictic determiner) 2165 97.17%

qld (quality group determiner) 50 2.24%

qtd (quantity group determiner) 13 0.59%

them 331 dd (deictic determiner) 35 10.57%

h_P (pronoun head) 296 89.42%

Figure 3.3: Extract from the item-up-to-element table (from the FPD Corpus)

3.4.1.2 Concordances and collocations
We turn now to the type of output from a corpus query tool known as a concordance.

A concordance is a set of occurrences of a word or item that is shown within its textual

context. Concordances have been very widely used in the study of language. Long

before computer corpora were available, concordances had been compiled and used

for many purposes. These include the identification and confirmation of authorship of

a work and the compilation of dictionaries as well as other types of research.

A concordancer is a software tool that searches a corpus and returns a

concordance for a given target item (or key-word). Some packages, for example, the

COBUILD concordancer, offer sophisticated search tools. In its simplest form, the

target item is a single word, while in more advanced concordances, it could be a set of

words. For example, the user could be interested in all forms of a verb (sing,
sings, sang, sung and singing), or occurrences of similar verbs (run, ran,
runs, r u n n i n g , walk, walked, walks, walking) or semantic classes of words

(end, stop, terminate, halt, finish,...).
The concept o f a ’wildcard' is used widely in concordance searches. For example,

such a concordancer would be able to find all occurrences of a word that contains

certain letters: make* could return make, m akes, maker. When wildcards are used

to represent whole words, the search tool can provide the words that typically precede

or follow the key-word. Such searches are called collocations.

Typically, the output from a concordance search comes in a format called Key

Word In Context (KWIC). Here the target item(s) are clearly displayed in the centre

of the concordance as in Figure 3.4.

Some concordance queries allow the user to adjust the number of words or

characters that are displayed to the left and right of the target item, while others simply

39

will print out all that will fit onto a screen or an A4 sheet either in 'portrait' or

'landscape' format.

d i d n ' t p l a y i t a t - a l l I o n l y h a d o n e run a n d i t f o u n d i t b o r i n g I
I ' d l i k e t o run a s t a b l e

W hen a l l t h e m o n ie s h a v e run o u t y o u j u s t a d d y o u r u p
I ' v e run o u t o f m o n e y

Run b y a b a t t e r y u n d e r n e a t h
d t h e f i r s t p i c k t h e o t h e r t e a m g e t s run o u t

s o m e t i m e s w e run a b o u t
n t h e m i d d l e o f t h e y a r d a n d y o u g o t run a c r o s s w i t h o u t h im c a t c h

(S) (OM) w h e n so m e p e o p l e run a w a y a n d t h e y l o o k f o r y
1 1 a r o u n d a n d i f y o u d r o p i t y o u g o t run a r o u n d a l l t h e p e o p l e a

(S) j u s t run a r o u n d
(M) (MEx) (C) t i l w e run o u t o f r e d

l a c e a n d (B) (S) s a y r e l e a s e y o u c a n run o u t a g a i n
c h - - o t h e r a n d i f y o u d r o p o n e y o u g o t run r i g h t r o u n d a l l t h e p l a y

We run r o u n d 'n w e p i c k d a i s i e s
a n d t h e b i r d run d ow n t h e r u n w a y a n d f l e w

d y o u h o l d o n t o i t a n d - t h e n y o u m u s t run
i f t h e y t r i e d t o run o n e s i d e t h e y c o u l d n ' t g

a n d i f s o m e b o d y ' s o n i t a n d y o u run a l l a r o u n d i f t h e y k i t
a n d - t h e n h e c o u l d run a w a y s e e

Figure 3.4: KWIC style concordance
(ordered by occurrence) from the FPD corpus

The ability to sort the sequence of entries in a concordance according to the words

to the left or to the right of the target item is useful when investigating the colloquial

relationships between the key-word and the text surrounding it (see Figure 3.5).

When performing a concordance on a parsed or tagged corpus, it is possible to

confine the search to target words that expound a particular syntactic element and to

indicate the syntax token next to the words in the concordance. It is further possible to

restrict the concordance to a key-word (or key-words) that expound a particular syntax

token. The next section shows how this concept can be taken even further.

Concordances, then, have a considerable value as an aid to those studying the

grammar of English, and increasingly, other languages and they have contributed

notably to the current version of the Cardiff Grammar (e.g. as described in Fawcett

2000a).

40

e n u t ? a n d t h e y ? o n t o th e m ? a n d t h e y run
I 'd l i k e t o run a s t a b l e
S o m e t im e s w e run a b o u t

n t h e m i d d l e o f t h e y a r d a n d y o u g o t run a c r o s s w i t h o u t h im c a t c h
a n d i f s o m e b o d y ' s o n i t a n d y o u run a l l a r o u n d i f t h e y k i t y

d i d n ' t p l a y i t a t - a l l I o n l y h a d o n e run a n d i t f o u n d i t b o r i n g a
(S) j u s t run a r o u n d

1 1 a r o u n d a n d i f y o u d r o p i t y o u g o t run a r o u n d a l l t h e p e o p l e a
(S) (OM) w h e n so m e p e o p l e run a w a y a n d t h e y l o o k f o r y

a n d - t h e n h e c o u l d run a w a y s e e
Run b y b a t t e r y u n d e r n e a t h

a n d t h e b i r d run d ow n ' e r u n w a y a n d f l e w
i f t h e y t r i e d t o run o n e s i d e t h e y c o u l d n ' t g

d t h e f i r s t p i c k t h e o t h e r t e a m g e t s run o u t
l a c e a n d (B) (S) s a y r e l e a s e y o u c a n run o u t a g a i n

I ' v e run o u t o f m o n e y
(M) (MEx) (C) t i l w e run o u t o f r e d

Figure 3.5: KWIC style concordance ordered by word to the right

3.4.2 Products relating to syntax

This section describes a number of useful types of table that can be extracted from a

parsed corpus, where it is possible to extract probabilities for the relationships

between syntactic categories. These tables are equally as valuable to the researcher as

those lists based on items presented in Section 3.4.1. They play a central role in the

operation of the parser developed for this work (see Part Four, Chapter Fourteen).

3.4.2.1 Unit-up-to-element tables (U2E)
A table can be provided from a parsed corpus that shows which elements are most

likely to be filled by a given class of unit.9 An example of this type of list is shown in

Figure 3.6 which shows that, for example, in the FPD Corpus 40.64% of all nominal

groups fill a Subject (S) and 32.08% fill a Complement (C).

Unit: ngp - nominal group (occurs 22248)

Fills Frequency Probability

S Subject 8882 40.64%
C Complement 7012 32.08%
cv completive 2737 12.52%
A Adjunct 681 3.11%

Voc Vocative 375 1.66%

Figure 3.6: Unit-up-to-element table for the nominal group

9 It is also possible to create a list that shows the units that can fill a particular element; this type of list
is not shown in this chapter as it is not relevant to this work.

41

3.4.2.2 Element-up-to-unit tables (E2U)
The second type of table is simply a list of units in which a particular element of

structure appears. In the Cardiff Grammar, almost all of the elements of structure

occur in only one unit so the information provided is limited.10 Figure 3.7 shows an

example of this type of table for one element that can occur in more than one class of

unit, the linker (Lnk), and shows that in the FPD Corpus 84.48% of them occur as

elements in a Clause (Cl).

Element: Lnk - Linker (occurs 2351)

In unit Frequency Probability
a Clause 1829 84.48%

ngP nominal group 301 13.74%

qigp quality group 33 1.40%

pgp prepositional group 9 0.38%

Figure 3.7: Element-up-to-unit table for linker

3.43 Tools for querying part-of-speech tagged corpora

The British National Corpus provides a corpus query tool that allows the search and

retrieval of concordances and collocations. The SGML Aware Search Application

(SARA) can be used on the BNC World corpus. A new XML version (XARA) is now

available.

COBUILD comes with a corpus query tool that allows the researcher to generate

concordances and collocations. These can be based on words, or combinations of

words (e.g. the query, dog+4bark returns all instances of dog plus bark with up to

four words between them). Inflected forms of words can be retrieved (e.g.

blew@+away will return blew away, blown away, blows away and

blowing away). Sets of words can be strung together (e.g. cut | cuts |
cutting). It can also include part-of-speech tags such as 'noun'.

3.4.4 Tools for querying parsed corpora

ICQF (Day 1993a) was one of the first parsed corpus query tools that provided both a

graphical interface and a powerful query language. It has been developed for research

on the Polytechnic of Wales corpus in the Universities of Cardiff, Leeds and Sheffield.

10 Nonetheless, when used in the parser described in Part Four, this table is vital to its efficient
operation.

42

However, since 1993, a number of other parsed corpora have been developed and with

them a number of other corpus query tools have emerged.

One corpus query tool is TGREP2 (Rohde 2005). This is a set of UNIX based

tools that were developed at Stanford University, and it allows the user to extract parse

trees from syntactically parsed or part-of-speech tagged corpora that match a given

tree pattern. TGREP, which takes its name from the well-known UNIX pattern

matching utility, has its own corpus query language, but does not provide a graphical

user interface. One limitation of TGREP is that a corpus needs to be annotated in the

Penn Treebank notation (see Section 3.2.3 for an account of the Penn Treebank).

Like TGREP, CorpusSearch (Randall, 2000 and Taylor 2003) is a command line

tool that does not provide a graphical interface, and that works with the Penn Treebank

notation. It also contains a powerful query language.

VIQTORYA (a Visual Query Tool fOR sYntactically Annotated corpora)

(Steinar and Kallmeyer 2002) is a corpus query tool for parsed corpora. It shares its

design goals with ICQF in that it is designed to use any corpora (although it is

acknowledged that some adaptation work is required).11 VIQTORYA, which was

developed to work with the Tubingen Treebank Corpus (Stegmann et al 2000), uses

topological fields. VIQTORYA is able to handle grammars that may define some

structures as not being trees, and like ICQF, it can handle tree structures with branches

that cross and therefore may be able to record discontinuous units (see Section 4.3 of

Chapter Four).

Like ICQF+, VIQTORYA stores its corpus data in a relational database and has a

supporting query language which is translated into SQL statements; the main

difference between the database structures is that ICQF stores data as XML and

VIQTORYA has a proprietary schema.

TIGERSearch (Konig, Lezius and Voormann 2003) is interesting in that, like the

work described here, it incorporates an XML format for its corpus annotation (TIGER-

XML). It has a very powerful graphical query builder and a corpus query language.

TIGERSearch was developed to work with the NEGRA corpus (see Section 3.2.8).

The ICE Corpus Utility Program (ICECUP) is a corpus query tool for the

International Corpus of English (ICE) (see Section 3.2.6). It allows the user to

perform searches on simple words, or to perform KWIC style concordances. Query

11 It is acknowledged that similar adaptation work would be required for ICQF+ to be able to use a
corpus other than the FPD Corpus.

43

restrictions are provided through ICE's corpus headers. The user can also search for

tree structures.

This concludes our survey of corpus query tools. ICQF, as we shall see in

Chapter Eight, is at least as sophisticated as any of these.

3.5 Summary
In this chapter, we have defined the field of Corpus Linguistics, and we have looked at

the different corpora that are available, and how they are annotated, and the tools that

are available to query them.

We have seen why, for our work in creating an SFG parser, the most suitable

corpus is the revised version of the Polytechnic of Wales (POW) Corpus - known as

the Fawcett-Perkins-Day (FPD) Corpus. This was created for use in this project and it

is annotated in SFG terms using the latest version of the Cardiff Grammar. The

conversion work was performed because the version of SFG in the POW Corpus is an

earlier version of the Cardiff Grammar, and we wanted to benefit from the

improvements to Fawcett's model that have been implemented since the 1980s (which

are useful for the parsing process). We also needed to make our parser compatible

with the other COMMUNAL components. These are the primary reasons why

Fawcett and I have modified the POW Corpus so that it is now modified and annotated

to conform to the current version of the Cardiff Grammar (as defined in the next

chapter). The major task of converting the POW Corpus to the latest version of the

Cardiff Grammar in the FPD Corpus is described in Chapter Nine, and as we shall see,

this was a complex task which involved both structural and annotation changes

The next chapter, Chapter Four, concludes Part One by introducing you to the

categories and relationships of the syntax of the Cardiff Grammar (as used in the FPD

Corpus).

44

Chapter Four
The syntax of the Cardiff Grammar
As we saw in Chapter Two, the research reported in this thesis is set within the

framework of the Cardiff Grammar. This is a Systemic Functional Grammar (SFG) as

defined in Fawcett (2000a).1

The purpose of this chapter is to provide the information about the syntax of the

Cardiff Grammar that is needed to enable the reader to understand the chapters that

follow.

In terms of Figure 2.3 of Chapter Two, the descriptions that follow apply to the

outputs of the lexicogrammar. The reason for focussing on this part of the grammar,

as we saw in Section 2.4 of Chapter Two, is that it is the equivalent of the syntax and

items of a generative grammar that provide the output from a parser.

4.1 Definitions
Fawcett's theoretical model of syntax consists of two basic types of entity: categories

and relationships. We will discuss the definitions of categories such as unit, element

and item and describe the relationships between them.

4.1.1 Units, elements and items

The class of unit, usually referred to simply as a unit, is a key category in the Cardiff

Grammar. There are seven different classes of unit, each of which has a potential

internal structure made up of elements of structure (or simply elements). Each

element may in turn either be filled by another unit (or by more than one co-ordinated

unit), or be expounded directly by an item. An item may be a lexical ('vocabulary')

item, such as a noun, or a grammatical item such as an article or part of the verb be.

4.1.2 The sentence element
The sentence is represented by an element of structure, but it is unique in that the unit

in which it functions is not a syntactic unit, but a unit of discourse grammar. Fawcett

(2000a) uses the symbol for Sigma, i.e. 2, but in this project it is represented by Z (due

to XML naming restrictions).

1 The reader should note that the names of some of Fawcett's categories have been changed from those
given in Fawcett (2000a). This is simply to avoid clashing with the naming conventions used in the
extensible Mark-up Language (XML) (see Chapter Six).

45

4.1.3 Relationships

As introduced in Section 4.1.1, filling is the relationship between a unit and an

element, such that a unit is said to fill an element of structure. Componence is the

relationship between the parent unit and its constituent elements of structure.

Exponence is the relationship between an item ('lexical' or 'grammatical') and the

element of structure above it. When more than one unit fills an element, the units are

in a relationship of co-ordination.

4.1.4 Unfinished units

Unfinished units are very common in spoken texts. They are not complete in that they

lack their head elements (and possibly other elements too). They occur because of

interrupted utterances. In the FPD Corpus they are represented by the unit name

followed by _un (e.g. Cl_un represents an unfinished clause).

4.1.5 Replacement elements

Replacement elements occur when the speaker wants to replace an element that has

been uttered by a different set of words. In the Cardiff Grammar, these are

represented by the element name followed by Repl. For example, C_Repl for the

replacement complement in this example:

Trying to find a big one, a big long one2

4.1.6 Formalisms used in diagrams of syntax

The Cardiff Grammar uses the following conventions in its syntax diagrams. Filling

between a unit and the element of structure above is shown by a line below the
s

element and above the unit. Thus rzL represents a nominal group (ngp) that fillsc
a Subject (S), and ngp ngp represents two co-ordinated nominal groups that fill a

complement (C). Componence is represented by lines from the parent unit to the child
c i

elements of structure (e.g. /K. is a Clause (Cl) with, as its component elements

of structure, a Subject (S), Main Verb (M) and Complement (C)). Elements that are

expounded by an item are shown with the element of structure at the apex of an

S M C

'exponence' triangle

expounded by table^. t a b l e

This example is taken from the FPD Corpus (10abpstg#32).

46

Figure 4.1 provides a generalised tree diagram that shows (a) units, elements, and

items and (b) their relationships. Figure 4.2 shows a sample sentence represented in

these terms.

Two or more
elements may be ccT
ordinated

ELEMENT

A unit has one or
more component
elements of
structure

ELEMENT}

U N IT } U N ITr

ELEMENTj

U N IT! . . .U N IT a

ELlSW HH'l’ 3

ITEMi

Z (or S) is the
sentence element

ELEHENT«

An element of
structure is filled by
a unit

An element of structure is
expounded by an item

Figure 4.1: An abstract view of the structure of a Cardiff Grammar sentence

47

I caught some mackerel with Matt and James
Figure 4.2: A simple sentence represented by a syntax diagram

4.2 The syntactic units of the Cardiff Grammar
This section will look at each unit in turn, and specify the elements that it can contain

and their probabilities. The probabilities were derived from the FPD Corpus, using

Day’s Interactive Corpus Query Facility (ICQF), and also from other corpora, e.g. via

the corpus-based grammars of Quirk et al (1985) and Biber et al (1999). These

probabilities are summarised in Appendix A of Fawcett (2000a).

The main classes of unit in the Cardiff Grammar are as follows:

(a) Clause (Cl),
(b) nominal group (ngp),
(c) prepositional group (pgp),

(d) quality group (qlgp),
(e) quantity group (qtgp),
(f) genitive cluster (genclr), and

(g) text (TEXT).3

3 There are other units i.e. the human proper name cluster and the address, date and clock time clusters
(Fawcett 2000a:253), but these are not used in this present project.

4.2.1 The Clause (Cl)

4.2.1.1 Definition

Virtually all linguists agree that the clause is the central unit of English syntax. It

corresponds (although not always in a one-to-one relationship) to Fawcett's term

situation, as this is used in the semantic system network (see Figure 2.3 of Chapter

Two), and to an event in the COMMUNAL belief system (Fawcett, Tucker and Lin

1993). The elements that occur most frequently in the main Clause are the Subject

(S), the Main Verb (M) and one or more Complements (C). The clause can contain

Adjuncts of different types, some of which are differentiated in the version of the

Cardiff Grammar used in this project, such as Affective Adjunct (A_Aff) for

unfortunately, luckily etc. Fawcett (2000a) suggests that there are over sixty

different types o f Adjunct. Auxiliary Verbs (X) and Main Verb Extensions (MEx) are

also common in a Clause. Linkers (Lnk)4 and Binders (B) associate one clause with

another in a relationship of co-ordination or sub-ordination respectively. Operators

(O), if they are present, normally occur before the Subject in an information-seeking

clause and after it in an information-giving clause.

The Clause most commonly fills a sentence (Z); this occurs in about 85% of cases

for all types of text. The probability that a Clause fills a Complement (C) is 7% and an

Adjunct of any type (A*), 4%. It can fill a qualifier (q) with a 2% probability, and a

finisher (f i) 0.5% probability. It can also fill, with less than 0.5% probability, a

scope (sc), a quantity group finisher (q t f) , a Subject (S), a Main Verb Extension

(MEx), a completive (cv) or a possessor (po).5 These are generalised probabilities

across all text types, and in many cases there is considerable variation between text

types.

4.2.1.2 Conflated elements in a clause

Elements of structure may be conflated with other elements, including Participant

Roles (PRs) (see Section 4.2.1.3). An example of two conflated elements occurs when

the Main Verb (M) is 'fused' with an Operator (O), as seen in the following example

(Figure 4.3), where is expounds the conflated element O/M.

4 In Fawcett (2000a), linkers are named &.
5 The source of these figures is Fawcett (2000a); Fawcett used ICQF to help derive these values.

49

s
ngp

h_nA
Fred

Figure 4.3: An example of a conflated element O/M

4.2.13 Participant Roles in the clause

Each process (expressed by the Main Verb (M)) has an associated configuration of

Participant Roles (PR)s. These are conflated with the Subject (S) and Complement

(C) of the clause. PR values include Agent (Ag), Affected (Af), Carrier (Ca) or

Attribute (At). Thus S/Ag represents a Subject which is also the Agent of the

process, and C/Af represents the conflation of an Affected with a Complement. As a

further example, consider Figure 4.2 of Section 4.1.6, which shows an Agent (Ag) that

is conflated with a Subject (S) and an Affected (Af) that is conflated with a

Complement (C).
4.2.2 The nominal group (ngp)

An example of the more complex type of nominal group is shown in Figure 4.4. This

unit typically - but not invariably - has a head. The head is the 'pivotal element' in the

unit, and in this project, we distinguish three types of head: these are expounded by (a)

a noun (h), (b) a pronoun (h_p), and (c) a proper name (h_n).6 This, as we shall see

in Chapter Fourteen, helps greatly in predicting what elements, if any, are likely to

precede or follow the head of a nominal group, and so increases the efficiency of the

parser.

the aardvark (aardvark is a (noun) head)
I ate mackerel (X is a pronoun head)

6 Note that an h _ n may consist of more than one word, e.g. M r . J o n e s , since the parser does not
analyse the internal structure of a human proper name cluster.

50

Cardiff is the capital of Wales (C a r d i f f is a name head)

Often, the nominal group has one (or occasionally more) determiners. These are,

in the order that they typically occur: typic determiner (td), representative determiner

(rd), partitive determiner (pd), quantifying determiner (qd), fractionative determiner

(fd), superlative determiner (sd), ordinative determiner (od), and deictic determiner

(dd). These normally appear before any modifiers. Here are a few examples of

nominal groups which contain determiners:

The strong bags (the is a deictic determiner)
The photo of a mackerel (the photo is a representative determiner)
The rim of the glass (the rim is a partitive determiner)
The best of the players (the best is a superlative determiner, and the
second the is a deictic determiner)

Several modifiers (mo) can occur in the same nominal group, each being of a

different type. They are typically filled by a quality group, but may also be filled by a

nominal group, and even by 'truncated' clauses. The function of a modifier is to

describe the referent of the nominal group, as in the following examples where

amazing, strong and red are modifiers:

An amazing beer
The strong bags
The red shirts

Now we turn to the qualifiers. These serve the same describing function as the

modifiers, but these usually contain more words and are typically filled by a

prepositional group (pgp) or an embedded clause (Cl). But can also be filled

occasionally by a quality group (qlgp), or a nominal group (ngp). Here are some

examples:

An amazing beer that I had in Hartlepool (an embedded clause)
The bags on the table (a prepositional group)
The red shirts worn by Bristol City (a truncated clause)

The last element of the nominal group to be introduced is the linker (Lnk). Its

function is to attach a nominal group to a preceding nominal group in a co-ordination

relationship, as in the following examples:

51

Matt and his friend (Matt and his friend are in different nominal

groups, the linker and is the first element in the second nominal group)

A penny or a pound (or is a linker that co-ordinates two different nominal

groups, and or is analysed as an element of the second one).

The main elements filled by a nominal group are the following, in order of

probability: Subject (S) (45%), Complement (C) (32%), completive (cv) (15%),

Adjunct (A) (3%) and modifier (mo) (2%).

However, nominal groups can also fill Main Verb Extensions (MEx), Vocatives

(Voc), determiners of various types (especially td, rd, pd and qd), qualifiers (q) and

possessives (po).

Figure 4.4: A nominal group with a modifier and a qualifier

For a fuller picture of the determiners in a nominal group, and the reasons for

using this approach, see Fawcett (2007b) and a fuller of the nominal group as a whole

see Fawcett (forthcoming 2007).

ngp

dd mo h q

the red shirts worn by Bristol City

52

4.2.3 The prepositional group (pgp)

Figure 4.5 shows an example o f a prepositional group (pgp). The pivotal element in

the prepositional group is the preposition (p). This realises the meaning of 'minor

relationship to a thing1 (Fawcett 2000a). Most prepositional groups have only two

elements: a preposition (p) (which is expounded, for example, by from, to, in and

with) and a completive (cv), which is most likely to be filled by a nominal group.

Examples of this common type o f prepositional group are:

(I am going) to Cardiff
(Charles fished) with feathers
(The midfield play) behind the forward line

Sometimes the prepositional group takes a prepositional temperer (pt) before the

preposition as in:

(the men were) u£ on the roof (up is a prepositional temperer)

In one fairly common case, the preposition follows the completive, and is, strictly

speaking, a ’postposition' e.g.

(I saw her) two weeks ago (ago is a preposition)
The elements most commonly filled by a prepositional group are: Complement

(C) (55%), Adjunct (A) (30%), qualifier (q) (12%) scope (sc) (2%). It can also fill a

Main Verb Extension (MEx), a Subject (S), a Completive (cv), or a finisher (f i).
pgp

p cv

ngp

h_n

(I am walking) to Bedminster-Down

Figure 4.5: An example of a prepositional group

4.2.4 The quality group (qlgp)
Figure 4.6 shows an example of a quality group. The quality group (qlgp), which

corresponds to the semantic unit of a 'quality*, has an apex (ax) as the pivotal element

53

of the unit. Fawcett (2000a) points out that the quality expressed may be an adjective

when it expresses the 'quality1 of a 'thing', as in:

a very clever man (clever is an apex).

or it may be a manner adverb when it expresses the quality of a situation, as in:

he carefully retrieved the line (carefully is an apex).

Most quality groups contain just an apex, as in (the clever man), or an apex

with a temperer, as in:

the very clever man (very is a temperer and clever is an apex).

In the superlative version of the group, it typically starts with a quality group deictic

determiner (q ld) , as in:

the most important (of his reasons).
But occasionally, such structures also contain a quality group quantifier (q lq) ,as in:

the five most important (of his reasons).
Quality groups can contain a scope (sc) and / or a finisher (f i), e.g.:

more skillful at casting
more skillful at casting than J am

Quality groups typically fill these elements: Complement (C) (38%), a modifier

(mo) (36%), an Adjunct (A) (24%), and a superlative determiner (sd) (0.5%). They

can also fill Main Verb Extensions (MEx), Auxiliary Verb Extensions (XEx),
ordinative determiners (od), qualifiers (q), temperers (t) , prepositions (p) and, very

rarely, Subjects (S).
In earlier versions of the Cardiff grammar, i.e. the version which the syntax of the

Polytechnic of Wales (POW) Corpus used, the quality group and the quantity group

were treated as variants of a single unit called the quantity-quality group (QQGP). The

task of upgrading the corpus to reflect the recognition of the quality group as a unit in

its own right was a major challenge, and is reported in Chapter Nine. See Fawcett

(2000a) for a fuller description of the quality group.

54

pgp c i

p cv B S OM

A

C l A zxgp

M / \ h _ p

A
more skillful at casting than I am

Figure 4.6: A quality group with a temperer, scope and finisher

4.2.5 The quantity group (qtgp)

The quantity group represents the semantic unit of 'quantity*. Fawcett (2000a) states

that the quantity group is used to express the quantity of a thing, a situation, a quality

The head of the quantity group is the amount (am); it typically also has an adjustor

(ad) as in about sixty. However, if sixty occurs on its own, it is shown

directly expounding the element above, e.g. a quantifying determiner (qd).
Sometimes, the quantity group has a finisher (qtf), as in very much indeed.

The quantity group most commonly fills these elements: a quantifying determiner

(qd) (85%), an Adjunct (A) (8%), and a degree temperer (dt) (6%). It may

occasionally also fill a binder (B), a preposition (p), an adjustor (ad), a ffactionative

determiner (f d), or a superlative determiner (sd).

or another quantity. Figure 4.7 shows an example of a quantity group.7

55

qtgp

ad q t £

A A
v e r y
to o

much
f a r

in d e e d
f o r me t o c a s t

Figure 4.7: A quantity group with an adjuster and a finisher

4.2.6 The genitive cluster (genclr)

The genitive cluster realises the semantic relationship of 'possession', and it is most

typically used in a deictic determiner (dd) (99%). But can also be found filling a head

(h), a modifier (mo) or a determiner in a quality group (q ld). Its elements are: a

possessor (po), the genitive element (g), which represents the apostrophe, plus the

letter s (' s). Occasionally, it also contains an owner element (own).

An example genitive cluster is shown in Figure 4.8. See Fawcett (2000a) for a

fuller description o f the genitive cluster.

ngp

dd h

h i s o w n f i s h

Figure 4.8: A genitive cluster

As we have already noted, the quantity group was merged with the quality group in the quality-
quantity group (QQGP) in earlier versions of the Cardiff grammar.

56

4.2.7 Text

The text unit (TEXT) is used typically for passages of quoted text, as in:

"Feathers are the best way to catch mackerel” said the
experienced fisherman.

A text, in this sense of the term, is an unusual type of unit, because it can only

contain one type of element, i.e. the sentence element (Z). Occasionally, it may

contain more than one sentence, as in:

The sign reads "No fishing with feathers is allowed on the
pier. Offenders will have their tackle confiscated and
will receive a €15 fine."

4.3 Places, potential structures and discontinuity

When COMMUNAL generates a unit, elements of structure are positioned at

numbered locations within it, termed places. This, as Fawcett points out (2000a:224),

enables it to handle certain types of what transformational grammarians call 'raising

phenomena1.

A unit is discontinuous when its elements are interrupted in their position by other

units. One of the most frequent types is illustrated in Figure 4.9, where the completive
o # #

of the prepositional group comes first in the clause. Places are used to indicate when

discontinuity occurs. The numbers represent positions in the Clause.

z
Cl

2501 0 0 12031
o/x

33
cv

ngp pgpngp

h_Ph_p

attacked byWho were you

Figure 4.9: Showing discontinuity in the syntax diagram

8 Figure 4.9 shows a question mark which, like the full-stop and comma, when they end a unit, are
defined as an ender element (E).

57

4.4 More on ellipsis
Elements of structure are said to be ellipted if they are expounded by an item that is

missing from a previous part of the input sentence. This may be (a) because it is

recoverable from a previous part of the text or (b) because it is missing due to rapid

speech. In the syntax diagrams used in this project, ellipted elements are represented

by round brackets () for rapid speech, and angle brackets < > for previous text.

Figure 4.10 shows a sentence with ellipted elements; this sentence, which was a

response to the question Which country was that in?, is taken from the

FPD Corpus.9 The ellipted elements (S) and (O/M), if they were not ellipted, would

have probably been expounded by the words that was or it was, and the

ellipted preposition (p) by in.

z

(S) (0 /M) C A

P 9 P Cl

(P) cv S M

America I think
Figure 4.10: A sentence with ellipted elements (shown in brackets)

9 This sentence reference in the corpus is 9 ah i aw# 2 5.

58

4.5 Summary
This chapter has introduced the main categories of the Cardiff Grammar (units,

elements and items) and shown the relationships between them. We have also looked

at the related linguistic phenomena of discontinuity and ellipsis.

A full list of units and their elements of structure is given in Appendix A.

This concludes Part One. We have surveyed three major fields of study, and

brought out the essential information about each that is necessary for the reader to

understand the more detailed descriptions that follow in Parts Two, Three and Four.

In Part Two, we shall describe in some detail, the first of the two major

components in the present project: the corpus database. In Part Three, we will

discuss the field o f natural language parsing in more detail and, in Part Four, the

second major component in the present project: the parser itself.

Much of what is described in Part Two relates directly back to the present chapter.

In Chapters Six and Seven, for example, we discuss the problems of representing and

storing a parsed corpus in a database. As you will see, I have been careful to ensure

that (a) the design of the method of representation, and (b) the method of storing the

data both faithfully represent the categories and relationships of the Cardiff Grammar

and also have the ability to annotate ellipsis and discontinuity.

59

PART TWO
The Corpus Database

This part of the thesis describes the first of two major components that contribute to

the success of the parsing procedure to be discussed in Part Four. This is the corpus

database. It also describes the corpus query tool that we used to create an updated

version of the parsed corpus, and how we accomplished this difficult task.

Database Management Systems (DBMSs) are ideal for both storing, and

providing rapid access to enormous volumes of data, as applications in industry and

research demonstrate, and the present project therefore uses a DBMS.

Before we can store a corpus in a database, however, a suitable annotation scheme

is needed. Chapter Five therefore surveys the various formalisms that have been used

in the past to represent syntax, in the light of their suitability for parsing and for corpus

annotation. The chapter concludes by introducing the concept of mark up languages

as beneficial way to annotate a corpus, and the syntactic relationships within it.

Chapter Six discusses the use of mark up languages (SGML and XML) for

annotating corpora, and it explains the method selected for this project and why it was

chosen.

Chapter Seven shows how a marked up corpus can be stored in a native XML

database. The tables that contain the marked up data are called the corpus tables.

The parser can access the information quickly by using the mark up index tables

(called the corpus index tables), these embody information about a syntax node's

ancestors, descendants and siblings, together with their relationship to any other

syntax elements in the same parse tree.

The next requirement is a tool that can query the data and review the results, in

order to investigate alternative approaches that the parser might use. This tool, which

is a much-improved version of the Interactive Corpus Query Facility (Day 1993a), and

is now called 'ICQF+', is described in Chapter Eight.

After our earlier attempts at parsing (see Chapter Twelve), we decided that the

early version of SFG syntax used in the original POW Corpus should be replaced by

the latest version of the Cardiff Grammar (as described in Fawcett (2000a) and

Chapter Four), in order to obtain a superior functional analysis of its syntax. Chapter

60

Nine describes how this difficult goal was achieved and the types of changes that were

made.

Apart from serving as a suitable base for the parser, the new corpus, renamed the

Fawcett-Perkins-Day (FPD) Corpus, offers a new version of an invaluable resource to

the field of Corpus Linguistics.

61

Chapter Five
Towards a corpus annotation scheme
and a method of representing syntactic
relationships
This chapter discusses the methods that have been traditionally used for:

(a) a corpus annotation, and

(b) representing syntactic relationships.

Section 5.1 discusses the needs of this project in broad terms for both of these

requirements.

Section 5.2 describes some of the traditional methods that have been used to

represent syntactic relationships and discusses their use for representing the syntax of

a Systemic Functional Grammar.

Section 5.3 introduces a new method of representing both the corpus itself, and

the syntactic relationships within it.

5.1 Requirements
Two basic types o f information are needed for use by the parser and by the corpus

query tool, these are:

(a) sentences - represented as analysed parse trees, and

(b) syntactic relationships between the items, elements and units that make up

the parse trees and their associated probabilities.

As we will see in Chapter Eight, the user of the corpus query tool needs to be

able to ask questions about items and about syntactic relationships. The results

need to be in the form of lists of items and syntactic relationships or as a set of parse

trees that can then be displayed in a sentence viewer. Furthermore, as we will see in

Chapter Nine, in order to update the corpus, there is a requirement to be able to extract

and modify sentences and then return them to the database for our work in creating the

new version of the corpus.

The parser needs access to similar information, and once the parse is successful,

it needs to be able to add the new parse trees to the corpus, in order to satisfy the

62

requirements of implementing a dynamic corpus (as discussed in Section 1.2 of

Chapter One).

The speed of access to the information in the corpus is of crucial importance to

the parser. As we shall see in Chapter Eleven the number of syntactic 'rules' has an

impact on the performance of the parser. Previous research by Atwell et al (1988b),

Souter (1996) and Day (1993a) (among others) found that there were many thousands

of syntactic 'rules' within the naturally occurring texts of a corpus. Furthermore, we

can expect the number of 'rules' to significantly increase as the size of the dynamic

corpus increases. This is because a relatively small number of 'rules' (with a given

structure) occur many times, while a greater number occur relatively few times.

The number of 'rules' is an important reason for adopting a database-oriented

approach to parsing; database management systems are designed to store and provide

rapid access to large numbers of records. As the parser will need to potentially ask

hundreds of questions about syntactic relationships as it parses sentences, the speed of

access to the information it needs is crucial. To improve performance further, it is

sensible to provide indexes to the information in the corpus.

In conclusion, this project needs access to both the data of the corpus and the

syntactic relationships within it. Therefore, the corpus needs to be annotated and

stored in such a way that easily allows sentences to be:

(a) located, extracted and displayed,

(b) added, and

(c) modified and / or replaced.

Further, indexes are required to be able to provide statistical information about the

syntactic relationships within the sentences of the corpus data.

The numerical tree method used to annotate the original POW Corpus (see Section

3.2.9 of Chapter Three) is not a format that can easily be adapted to these needs and

therefore, a new annotation method is sought. Details of our chosen methods are

introduced in Section 5.3 before they are defined in Chapter Six.

Before the corpus annotation method is discussed, we start with an investigation

into the traditional methods that have been used for the representation of syntactic

relationships in Section 5.2. The description of these methods serves a secondary

purpose by providing the necessary background material for the discussion on parsing

which is given in Chapter Ten in Part Three.

63

5.2 IVaditional methods of representing syntactic relationships
This section describes the various methods that have been used to represent syntax in

the field, and is particularly concerned with the methods used in natural language

parsing.

Here, the most common methods are listed, and it is shown where appropriate,

how these formalisms can be (or have been) adapted to Systemic Functional Grammar

(SFG).

5.2.1 Phrase Structure Grammar style rewrite rules

5.2.1.1 Definition

Phrase Structure Grammars (PSGs) provide computational linguistics with the concept

of a set of rewrite rules (of the form t1->t2,~.tn) that are used to indicate that one

token (on the left-hand side of the rule) can be 'rewritten' by one or more tokens (on

the right-hand side of the rule). Tokens that have items on their right-hand side (e.g.

N -> "m ackerel") are called terminal tokens and tokens that may be rewritten by

one or more other tokens are called non-terminal tokens (for example, NP->ART,

N). Terminal tokens are normally parts-of-speech (such as verb, noun and article) and

non-terminal tokens represent higher syntactic structures such as nominal groups and

clauses.

Chomsky (1957) introduced what is called 'Chomsky Normal Form' (CNF).

Here, the grammar is 'normalised' such that the right-hand side has just two tokens

(one representing a token and the other a sequence of one or more tokens). This form

of notation is a requirement for the CYK parser (for a description, see Grune and

Jacobs (1990) and Part Three, Chapter Ten.

Generalized Phrase Structure Grammar (GPSG) (Gazdar et al 1985) is a context-

free grammar which extend PSG by introducing features and slash categories.

Features include, for example, verb-agreement and transitivity. Lexicalised phrase

structure grammars extend the use of PSGs by being able to identify a lexical head in a

unit; these are often used in head-driven approaches to parsing (see Chapter Ten).

5.2.1.2 Use in SFG and the suitability for this project

Table 5.1 shows a limited set of rewrite rules that can be used to represent the sentence

shown in Figure 5.1.

64

Z - > C 1
C1->S M C

S - > n g p
n g p - > d d h

d d - > " t h e "
h - > " s e a g u l l s "
M - > " a t e "
C - > n g p

h - > " m a c k e r e l "

A Sentence (Z) can be rewritten (filled) by a Clause (Cl)
A Clause (C l) can be rewritten by a Subject (S) followed by a Main
Verb (M) and a Complement (C) (in a componence relationship)
A Subject (S) can be rewritten (filled) by a nominal group (n g p)
A nominal group (n g p) can be rewritten by a deictic determiner (d d)
followed by a head (h) (in a componence relationship)
A deictic determiner (d d) can be rewritten (expounded) by " t h e "
A head (h) can be rewritten (expounded) by " s e a g u l l s "
A Main Verb (M) can be rewritten (expounded) by " a t e "
A complement (C) may be rewritten (filled) by a nominal group (n g p)
A head (h) can be rewritten (expounded) by " m a c k e r e l "

Table 5.1: A set of rewrite rules for the sample sentence given in Figure 5.1

z
c i

n g p n g p

hd d

T h e s e a g u l l s a t e t h e M a c k e r e l

Figure 5.1: A Cardiff Grammar tree representation of a sample sentence

Atwell et al (1988b), Day (1993a), Weerasinghe (1994) and Souter (1996) all

showed how the basic concepts of rewrite rules can be used to describe the syntax of a

Systemic Functional Grammar with varying degrees of success.

A set of rewrite rules used as described above in Table 5.1 does not adequately

maintain the relationships required for the Cardiff Grammar unless they are

supplemented by some additional information. In the approach shown, these

relationships are all described in the same notation:

65

h- > "mackerel ■ exponence - mackerel expounds a head (h)

ngp - >dd h componence - the deictic determiner (dd) and a head (h) are

components of the nominal group (ngp)

s->ngp filling - the Subject (s) is filled by a nominal group (ngp)

s-> n gp ngp co-ordination - two nominal groups (ngp) are co-ordinated and

fill the Subject (S)

There are a number of ways of overcoming this limitation, for example:

(a) by keeping a record of which syntax tokens represent elements and which

tokens represent units,

(b) by using the level of the 'rule' in the parse tree (i.e. level one represents an

item, level two an element, level three a unit and so on),

(c) by changing the rewrite symbol to characters that have a meaning (e.g.

exponence: h < "mackerel" , componence: dd->h, filling: S | ngp and

co-ordination S | ngp ngp).

In conclusion, the PSG style rewrite rule notation can be used to represent the

syntax of a SFG provided that it is supplemented with some modifications that ensure

that the SFG relationships are maintained.

5.2.2 Transition networks

5.2.2.1 Definition

Transition networks have been used to model the parsing process since the 1970s, see,

for example Woods (1970) and Woods (1973).

Here, a 'grammar' is stated within a set of transition networks which consist of

nodes and arcs (or states and actions). Each network has a start node, an end node

and a set of intermediate nodes, and a state which represents a position in the network

after a choice has been made. Normally, a network represents a syntactic unit, such as

a noun phrase, and the states and actions represent the events of having seen an article,

noun etc. in the input string. Exiting the network via the exit node means that a valid

syntactic unit has been encountered.

5.2.2.2 The use in SFG and the suitability for this project
Figure 5.2 shows how a network could be applied to a SFG, and represents a

simplified nominal group (ngp). As we traverse the network, we move from state to

66

state by carrying out an action. The action of finding a deictic determiner (dd) in the

input string means that we move to state 1, where we are 'looking for' either a thing

modifier (m oth) or a head (h) to move to state 2. In the model, modifiers contain

ngps, and when in state 2, the network calls itself recursively to find an embedded

n g p before it moves to State 2 after finding an h. Note that the JUMP action

consumes no input.

START

dd
END

JXJMP

moth

C a l l C a l l

Figure 5.2: A recursive transition network for a simplified nominal group

As shown in Figure 5.2, transition networks can indeed be used to represent the

syntax of a SFG. However, as Johnson (1983) points out, although transition networks

provide a neat and compact way to represent grammars, they become difficult to

manage when the grammar becomes complex. The number of syntactic relationships

found in a naturally occurring text is large and the inter-relationships between them

are complex. While rewrite rules are relatively straightforward to modify, the same

cannot be said for a complex network as one has to consider not only the states, but the

paths between the nodes. The networks automatically extracted from a corpus will be

large and complex, and, as we need to update the corpus regularly, this makes network

annotations not suitable for use in this project.

67

5.2.3 Tree Adjoining Grammar (TAG)

5.2.3.1 Definition

Tree Adjoining Grammar (TAG) as first defined by Joshi et al (1975), is best

described from the computational viewpoint, in the XTAG report (XTAG 1995).1

TAG concepts are of particular interest to this project as we use similar tree operations

in our parser (see Chapter Fourteen and Appendix H).

TAG provides tree-building rules, which are used to build syntax trees. A TAG is

defined as quintuple (Joshi and Schabes 1997):

(2 , NT, I , A, S),where:

- 2 is a finite set of terminal symbols,

- NT is a finite set of non-terminal symbols,

- S is a distinguished non-terminal symbol,

- I is a finite set of finite trees called initial trees,

- A is a finite set of finite trees called auxiliary trees.

Initial trees (I) are used to describe minimal linguistic structures that contain no

recursion, for example noun phrases and prepositional phrases. These have internal

nodes that are labelled by non-terminal tokens and leaf nodes labelled with terminal

tokens (or by non-terminal tokens that have an indication that they may be

substituted).

Auxiliary trees represent constructs that are adjuncts to the basic structures (for

example, an adverbial); these trees have internal nodes that are labelled with non

terminal tokens and leaf nodes that are labelled with terminal tokens or tokens marked

for substitution. Auxiliary trees have a root node (in TAG, called the foot node)

which allows the tree to be adjoined to another.

There are two basic operations (shown in Figure 5.3) that operate on two sub-trees

to give a third; these are substitution and adjunction. Trees that are the result of a

tree operation are called derived trees.

Substitution allows the root node of an initial tree to be merged into a non

terminal node leaf node that is marked for substitution (and has the same token) in

another initial tree.

1 See also Joshi and Schabes (1997) and Joshi (1985) for a good introduction to tree adjoining
grammars.

68

Adjunction allows an auxiliary tree to be grafted onto a non-terminal node of an

initial tree; the root node of the auxiliary tree must match the node to which it is

grafted in the initial tree.

5.2.3.2 The use in SFG and the suitability for this project

Next we turn to the suitability of applying TAG representation methods to a SFG. As

far as my research has shown, no model of SFG syntax has been implemented in a

TAG format. Like other representations, it is, in principle, possible to do this provided

that the SFG relationships are not lost in the model. Figure 5.4 includes an attempt at

describing a TAG substitution operation on two SFG trees.

NPnI VPi VP

NPi V VP*

eaten

(a) Example of adjoining
S

has

NPn I VP
° l

NP

NPi

ate

(b) Example of Substitution

mackerel

NP, VP

V VP

has
NP I

eaten

NPn I VPi
NPi

ate

mackerel
Figure 5.3: TAG - combining operations (adjoining and substitution)

2 Note that I have chosen to change the representation of the syntax trees to cover filling and that this is
not a standard feature of a TAG.

69

z
Cl

s M ngp

ate dd̂

mackerel
(c) SFG example of substitution

Z
Cl

S M

ngp

ate
dd

mackerel

Figure 5.4: TAG - an SFG example of combining operations (adjoining and
substitution)

5.2.4 Vertical Strip Grammar (VSG)

5.2.4.1 Definition

As shown by OT)onoghue (1991a), syntax can be represented as a set of vertical strips

where a vertical strip is defined as a set of tokens extracted vertically from a parse

tree; this is best shown by an example (see Figure 5.5).

z
Cl

s
ngp ngp

dd h
hdd

ate
Vertical strips extracted from the sentence:
dd ngp S Cl Z 9
h ngp S Cl Z ®
M Cl Z 9
dd ngp C Cl Z @
h ngp C Cl Z ® # = leaf and ® = root

Figure 5.5: A sample sentence and a set of vertical strips extracted from it

70

O'Donoghue used a form of network to represent his vertical strip grammar in

order to tell his parser which strips are allowed to follow others. Although being able

to state the inter-relationships between strips in this way is considered to be an

advantage of network approaches, the disadvantage of networks (as we saw in Section

5.2.2) is that they are difficult to update, as they are complex when they are used to

model the syntactic relationships found in naturally occurring texts of a corpus.3

5.2.4.2 The use in SFG and the suitability for this project

O'Donoghue (1991a) first did this in the COMMUNAL project when he extracted the

vertical strips automatically from a generated corpus (see Chapter Eleven), and it is

therefore suitable to describe the syntax of an SFG.4 It is possible to use

O'Donoghue's concept o f vertical strips without using his network, as we will see in

Part Four, Chapter Fourteen. Furthermore, it is also possible to use partial vertical

strips that cover a number of vertical elements and units but do not necessarily extend

up to the root or down to the leaf o f the parse tree.

5.2.5 Definite Clause Grammar (DCG)

5.2.5.1 Definition
Before we leave this survey of 'grammars' that have been widely used to model the

parsing process, for completeness, I should mention Definite Clause Grammar (DCG).

These are closely associated with the declarative programming language of PROLOG,

and they have been quite widely used (Clocksin and Mellish 1994). PROLOG

provides the ability to define a program as a set of facts (termed Horn clauses') and

provides an automatic backtracking mechanism; this made it attractive in the early

days o f parsing.

5.2.5.2 The use in SFG and the suitability for this project

An example DCG representation of a set of grammar rules defined as facts is shown in

the example below:

3 The same advantage of being able to record the inter-relationships between syntactic structures is also
given by transition networks.

71

The fact:
Z(the seagulls ate the mackerel)
Is true (i.e. parses) provided that some sub-facts are also true:

In the example, a fact and a rewrite rule are synonymous, therefore DCGs can be

applied to represent a Systemic Functional Grammar but have the same limitations as

rewrite rules. Because a DCG extracted from the naturally occurring texts of a corpus

will have many thousands of facts, there must be some doubt whether PROLOG has

the ability to cope with a DCG of this size within the limitations of the computer being

used.

5.2.6 The decisions made for this project

We now turn to the question about which of these representations may be o f use to this

project. As we saw, rewrite rule notations have been used before to represent the

syntax 'rules' of a SFG. However, they operate on only two levels of a syntax tree.

Because a rewrite rule can only represent a single syntax relationship, it is not

possible to express vertical information that spans more than one level of the syntax

tree (e.g. that a head (h) is in a nominal group (ngp) that fills a subject (S)), and this is

something that is needed for the new parser that will be described in Part Four.

The concept of transition networks can be extended, as was shown by

O'Donoghue (1991a), so that they can be used to model the inter-relationships between

different syntactic structures. Their use, however, is not considered for this project due

to the fact that they are too complex when they are used to model the syntactic

relationships found in unrestricted naturally occurring texts, and they are difficult to

update.

In O’Donoghue's network (1991a), as we shall see in Chapter Eleven, the basic

unit was a vertical strip, which offers the ability to look upwards for more than one

level in the parse tree. Although this project will not use O'Donoghue's networks, it

will use (and extend) O'Donoghue's idea of a vertical strip.

Definite Clause Grammars are very similar to rewrite rules in the way that they

work and have the same limitations described above.

4 As far as my research has shown, this has not been attempted elsewhere.

Z: -Cl
Cl:-S, M, C
S:-ngp

ngp: - del h
dd:-the
h:-"seagulls”

H:-"ate" h :-"mackerel■
C:-ngp
ngp:-h

72

The Tree Adjoining Grammar's tree operations are of interest, not as a method of

representing syntax, but due to the fact that they use tree joining operations which are

similar to the operations that we use in the parser described in Part Four.

In the next section, I introduce the corpus annotation method that has been

selected for this project. The method is one that can also be used to represent

syntactic relationships and is therefore an alternative to the methods I have described

in this section.

5.3 Summary: Representing the Corpus text and syntax structures
As we saw in Chapter Three, a number of different methods have been used to

represent the texts and syntax of a parsed corpus. For example, the Penn Treebank

(see Section 3.2.3) uses bracketed trees to represent a parse tree, and the Polytechnic

of Wales (POW) Corpus uses a numerical tree notation. Typically, these early methods

were specific to the corpus for which they are used.

We also saw in Chapter Three that mark up languages such as SGML and, more

recently, XML are beginning to be used as an annotation method for some corpora

mainly through the work of the Text Encoding Initiative (TEI).

As we shall see in the next two chapters, this project has been using mark up

languages since its early days, and I shall introduce an extension of the use of mark up

languages such that they can not only be used for a corpus annotation scheme, but also

as a method for representing the syntactic relationships in the sentences of the corpus.

The main advantages of doing this are that the representation is not restricted to a

single level of the parse tree, and that it is able to provide information about the inter

relationships between different syntactic structures.

Before we can discuss the method in detail, it is necessary to provide some

background information about mark up languages and Chapter Six will therefore start

by providing this.

Having chosen the annotation method for the corpus, the next question requiring a

decision is how the system can easily find, retrieve and update the sentences and

syntactic relationships in the corpus in a fast and efficient manner. The answer

proposed here is to store the corpus and its ancillary data in the tables of a Database

Management System (DBMS), and the design of this is discussed in Chapter Seven.

73

Chapter Six
Marking up language texts
The use of mark up languages is the subject of this chapter, which is divided into two

parts.

The first part, in Section 6.1, is concerned with how this project uses mark up

languages for corpus annotation, and it introduces how the mark up scheme can be

used to represent syntactic relationships as proposed in Chapter Five.

In Chapter Three, we saw that other corpus linguistics projects are beginning to

use XML and, in the second part (Section 6.2), our selected methods are compared

with the methods of these other projects.

6.1 The use of mark up languages in this project
In what follows, a minimal knowledge of mark up languages is assumed. For readers

who need it, Appendix C provides the necessary background information together with

the terms used and their definitions. Unfortunately, mark up languages use the terms

element, attribute, tag and parsing in a different sense from the sense in which they

are used in linguistics. I shall therefore use the phrase mark up before these terms in

what follows.

This section starts by describing the requirements of a corpus annotation scheme

for this project. Next it discusses the different approaches to mark up that were

considered before the method selected was chosen. Then the way in which the chosen

scheme meets the requirements that will be given in Section 6.1.1 is discussed.

The section finishes with an introduction to the way in which the mark up scheme

can not only provide a corpus annotation, but also provide an index to the syntactic

relationships that are within the corpus, and will be needed by the corpus query tool

and by the parser.

6.1.1 The requirements for a corpus annotation scheme

The corpus annotation scheme for this project needs to be able to meet the following

design criteria:

(a) It can accommodate the concepts o f Systemic Functional Grammar and be

able to maintain (i) the distinction between items, elements and units, and (ii)

the relationships of componence, filling, co-ordination and exponence,

74

(b) It can be extended to include the representation of (i) intonation, (ii)

punctuation and (iii) Participant Roles,

(c) It is easy for a human to understand it and easy to render,1

(d) It can be edited quickly, using a standard editor,

(e) Standard techniques for testing the validity of sentences can be used with it,

(f) It can represent discontinuous structures,

(g) It can mark ellipsis, questionable items and elements, and unfinished units.

Furthermore, as stated in Section 5.1 of Chapter Five, the method of storage of the

corpus must be such that:

(h) queries must be performed rapidly, because the performance will affect the

speed of the parser, and

(i) it must allow individual sentences to be extracted, modified and returned to

the corpus, and also new sentences to be added as they are parsed.

6.1.2 The background of mark up languages, and their use in this project

At the start of this project in 1997, no other analysed corpus was available in a marked

up form. The Standard Generalized Markup Language (SGML) (ISO 1986) became

popular in certain niche markets for documentation (such as the aerospace industry

(S1000D 2006), in the drug industry and in the automotive field).2 The Text Encoding

Initiative (TEI) began to use SGML as a neutral format to mark up the texts of corpora

(see Chapter Three and Section 6.2.1).

Today, the situation is very different. The concepts of SGML were adopted by

the World Wide Web Consortium (W3C) in the late 1990s, when the extensible Mark
'i

up Language (XML) was created as a simplified subset of SGML (W3C 2004a).

XML is now enjoying high popularity in the fields of documentation, database, and

web-based business applications. The use of XML is also beginning to impact the

field of computational and corpus linguistics (see Section 6.2 and Chapter Three).

Before XML, software tools that operated on SGML data were not freely

available and were fairly expensive. In this project, therefore I had to implement some

1 This requirement and the next is to satisfy the nature of our research, which was one in which a
linguist had to be able to quickly understand and change sentences directly in the mark up format.
2 The Standard Generalized Mark up Language (SGML) was invented by Charles Goldfarb of IBM and
became an international standard in 1986 (ISO 1986).
3 XML is a cut-down version of SGML with some of SGML's more complex structures removed and
some additional constraints added.

75

quite complex programs that manipulated marked up data. Now, there are many

XML-aware software tools and, in particular, W3C has defined a Document Object

Model (DOM) as a programming library that allows an application to navigate and

change the mark up found in a marked-up document. Halfway through the project, I

decided to switch from SGML to XML to take advantage of some of these tools and

applications.

6.1.3 Other benefits of using mark up languages

A secondary reason for the decision to use XML is that there are a large number of

supporting standards and software that XML brings with it which become available to

our project, notably:

(a) SGML or XML parsers (such as SGMLS, SGMLNORM by James Clark

(www.jclark.com) or XERCES (http://xerces.apache.org) can be used to

check that the input sentence is grammatical (see Section 6.1.5.3).

(b) SGML/XML editors such as ArborText Epic, Adobe FrameMaker or oXygen

can be used to produce sentences that conform to the rules of the grammar.4

(c) One has access to an ever-increasing set of software tools (apart from those

that are listed here) that are designed to work with XML.

(d) As detailed above, the Document Object Model (DOM) is immediately

available to programmers.

(e) Corpora expressed in XML can easily be transformed using a stylesheet

written using the XML Stylesheet Language (XSL) (W3C 2006).5 This could

be used, for example to convert a corpus annotated to one model of syntax to

another.

(f) Parse trees can be rendered using XSL (or XSL formatting objects (XSL-FO)

(W3C 2006))

(g) Statistical information can be extracted using Xquery (W3C 2007).

This project was now at a point where it had an analysed corpus, and the benefits

of converting it into SGML were realised. Before this could be done, however,

4 There are now a vast number of XML editors available; Epic and FrameMaker, having their roots in
SGML, were among the first.
5 This could assist in, for example, translating a corpus annotated using the labels of one formalism into
another. Note that although conversions using XSL are unlikely to be 100%, they could be used in
conjunction with the DOM to produce more reliable results.

76

http://www.jclark.com
http://xerces.apache.org

decisions had to be made about the mark up method that will be used, and this is

discussed in the next section.

6.1.4 Towards a mark up scheme

6.1.4.1 Definitions

In the field of data (or document) analysis, there are different views of the same data

that can be drawn. There is often a distinction made between prescriptive mark up

and descriptive mark up (see, for example Day (1995)).6

6.1.4.1.1 Prescriptive mark up

A workshop manual, for example, gives instructions which tell the reader how to

assemble, disassemble, clean, repair or inspect certain components. One view of this

data could be that it is a book, which contains chapters, and the chapters contain

sections, which contain paragraphs. At the start of each section, there is a table, which

lists tools. A marked up document could, in this view, contain mark up elements

< ch ap ter> , < s e c t io n > , < ta b le > and so on. This is called prescriptive mark

up.7

6.1.4.1.2 Descriptive mark up

A more semantic view of this information shows that the book contains procedures,

and the procedures contain a list of tools required, the number of people required to

perform the procedure, any safety related information. The body of the task is a

number of steps of procedure; in a document marked-up in this way, we would expect

to see meaningful generic identifiers for elements such as < p ro c e d u re > ,

< t o o l i s t > , < to o l> , < p a r tn o > , < p e rso n > , < s a f e ty > and < s te p > . This

is called descriptive mark up as it describes the data that the document contains.8

In a descriptive view of a parsed sentence, there are mark up elements such as

sentence <Z>, which contains Clauses <C1>. The Clause contains Subjects <S>,

6 Some authors use the term content-specific and data-driven mark-up as alternative to descriptive
mark-up. The terms specific mark up and generic mark up are used by van Herwijnen (1994)
respectively to mean the same thing as prescriptive and descriptive mark up.
7 Prescriptive mark-up methods often contain information about how the document should look when
formatted (e.g. in terms of leading, fonts and emphasis).
8 Descriptive mark-up marked a revolution for the technical author as he was now able to concentrate on
technical content and not page layout.

77

Operators < 0 > and Main Verbs <M> and so on. The disadvantage of descriptive

methods is that they are typically only applicable to a single domain.9

6.1.4.1.3 Abstract mark up

I define the term Abstract mark up (Day 1993c) and it lies somewhere between

prescriptive and descriptive mark up. It uses generic identifiers that have general

names, and uses them with attributes to qualify the meaning. In theory, an abstract

model can be applied to corpora for the representation of many different syntax

formalisms. In this approach, one can expect to see generic identifiers such as

< se n te n c e > , < c la u s e > , < phrase> and <word>, with, for example,

attribute names such as p o s (for part-of-speech) or c a t (for category).10 The

disadvantage of this approach is that an SGML or XML parser cannot be used on its

own to ensure that the sentences comply with the rules of the grammar. For example,

the ability to check that Subjects can only appear in a Clause, and the fact that a

Subject can only occur once in a Clause by using standard SGML/XML parsing is

lost. This means that the benefits that a descriptive DTD/Schema will bring are lost.

It is not impossible to enforce these rules by using other software. Typically when

abstract methods are used, a project defines the list of allowed values for the attributes

and rules for co-occurrence of mark up elements with given attributes in a set of

business rules. Proprietary software, called a business rules checker, is used to check

that attribute values and elements have been correctly used.11

6.1.4.2 An abstract mark up scheme for the Cardiff Grammar

A simplified version of an abstract Document Type Definition (DTD) that we created

in the early days of the project is shown in Figure 6.1 together with an example

sentence in Figure 6.2. For details of the syntax of a DTD, please refer to Appendix

C.

9 In the example given here, mark up element names such as <S>, <C1> and <ngp> are applicable
only to the Cardiff Grammar.
10 More general attributes such as f e a t u r e can be used to store things that are unique to the grammar
(for example, in SFG, this could be used for Participant Roles).
11 Business rules checkers (Day 2006) check that elements and attributes contain correct data; for
example, if an element contains a part number, that part number conforms to the structure of a part
number and that it exists in some external database. When applied to SFG in an abstract approach, it
could check, for example that the syntax tokens belong to the grammar and are valid in their context.
Note that the point I make here is business rules checkers are useful for all types of mark-up but become
essential for the abstract approach.

78

The DTD states that a mark up element called <sentence> must contain at

least one <unit>, and that a <unit> must contain at least one <elementS>.12
The <elementS> can contain either (a) one or more <unit>, (b) a single <item>
or (c) nothing (to represent ellipsis). The mark up elements <unit> and

<elementS> are abstract because the class of unit, or the name of the element of

structure are stored in the mark up attributes named syntaxtoken.
The advantage of using the abstract mark up scheme given above is that it can be

used to mark up a wide range of different models of grammar. Further, if the grammar

is modified, then the DTD (or Schema) is much less likely to have to be changed.13

<DOCTYPE sentence PUBLIC '-//DTD/SENTENCE COMMUNAL VERSION 1/EN" [
<{ELEMENT sentence - - (unit+) >
<!ATTLIST sentence sentid CDATA #IMPLIED>
< 1ELEMENT unit - - (elements*) >
<!ATTLIST unit unitid ID #IMPLIED

syntaxtoken CDATA #REQUIRED>
< 1ELEMENT elements - - (unit* | item) ?>
<!ATTLIST elements elemid CDATA #IMPLIED

syntaxtoken #REQUIRED
ellipted(RapidSpeech|Recoverable)
"RapidSpeech”>

< 1ELEMENT item - - (#PCDATA)>
<! ATTLIST item itemid ID # IMP LI ED

intonationstart CDATA #IMPLIED
intonationend CDATA #IMPLIED>

]>

Figure 6.1: A simplified abstract DTD for the Cardiff Grammar (version 1)

12 The generic identifier e l e m e n t s (element of structure) is used because element has a different
meaning in DTD syntax.
13 An XML Schema is an alternative to a DTD (see Appendix C).

79

< IDOCTYPE sentence PUBLIC »-//DTD/SENTENCE COMMUNAL VERSION 1/EN" []>
<sentence sentid='r10A " >

<unit syntaxtoken=*,Cl" >
<elementS syntaxtoken="S* >

cunit syntaxtoken^ngp">
<elementS syntaxtokens^dd">

<item>The</it em>
</elements>
<elementS syntaxtoken=*,h,r>

<item>seagulls</item>
</elements>

</unit>
</elementS>
<elementS syntaxtoken=*M">

<it em>ate</it em>
</elements>
<elementS syntaxtoken="Cl,,>

<unit syntaxtoken=jrngpir >
<elementS syntaxtoken=iVdd<r>

<item>The</it em>
</elementS>
<elementS syntaxtoken=<rhlv>

< i tem>mackerel</i tem>
</elements>

</unit>
</elements>

</unit>
</sentence>

Figure 6.2: A sample sentence marked up according to the DTD in Figure 6.1

6.1.4.3 Evaluating the abstract model

The disadvantage with this model, as stated above, is that SGML/XML parsing is not

enough to determine that the sentence conforms to the rules. The SGML/XML parser

only complains if, say, a unit had no elements, but does not care if nominal group

elements are used in a Clause.

A descriptive mark up model, where mark up elements have generic identifiers

which reflect their meaning, overcomes these issues. It also comes with the advantage

that the native mark up is easier to read and edit by a human. The disadvantages are

(a) that even minor changes in the grammar model are highly likely to mean that

the DTD/Schema has to be modified, and

(b) that the model is specific to one grammar model.

Having considered the disadvantages, the ability to be able to check that sentences are

grammatical is an extremely attractive one. This, coupled with the fact that a

descriptive approach satisfies the requirement for a representation that is easy to

understand and edit (see Section 6.1.1), is the reason why a descriptive approach was

80

selected for this project. The next section describes some of the experiments

performed before I arrived at the chosen solution, which is described in Section

6.1.5.2.

6.1.5 Using a DTD to specify a rule-based grammar

The goal of the work presented in this section was to create a DTD, and use it to make

sure that the sentences that we were taking from the POW Corpus (following their

conversion into SGML) complied to the rules of syntax for the Cardiff Grammar. In

the early days of the project, because we were using SGML, not having a DTD was

not an option (because they are mandatory). When we switched to XML the need for

a DTD was relaxed, as XML simply demands that documents are well-formed. Our

decision, once XML was available, was not to use a DTD at all. The work that went

towards creating a DTD (particularly from a parsed corpus) was fairly significant and

was promising enough to be documented here, particularly as it is hoped to reinstate it

for Phase Two of the project (see Chapter Nineteen).

Section 6.1.5.1 describes my work in creating a DTD manually, Section 6.1.5.3

describes how we converted the POW corpus in SGML and Section 6.1.6.4 my limited

success in generating a DTD automatically from the parsed corpus.

6.1.5.1 Creating a DTD manually from a linguist’s model of language

With my next experiments with SGML, I looked at actually specifying the syntactic

relationships of the Cardiff Grammar using a DTD. Here my first experiments were

with the syntax diagrams that appear in Appendix A of Fawcett (2000a). Although

this was not a straightforward task (because of optionality and mutual exclusivity), it

was accomplished with some success.

6.1.5.2 The chosen mark up scheme

Instead of using abstract generic identifiers (like sentence, unit, element and item),

I decided to use a descriptive mark up and apply meaningful names to generic

identifiers (like Z, Cl, S, dd, ngp, pgp and TEXT). In addition to satisfying the

requirements given in Section 6.1.1, there were other advantages in using a descriptive

approach:

81

(a) It made searching faster (instead of ‘find me all unit mark up elements that

have a s y n ta x l a b e l attribute value "n g p " , it was easier and faster to find

all mark up elements with a generic identifier of ngp),14

(b) When the SGML is stored in the database as described in Chapter Seven, it

made SQL statements simpler to express and the execution time of the query

faster,

(c) The Cardiff Grammar uses Participant Roles (PRs) and conflations, and these

apply only to certain elements and not others (e.g. PRs apply typically to

subjects and complements and certainly not, for example, to an Operator). By

treating a subject as its own mark up element, we were able to specify that it

had different mark up attributes from say, an operator.

The nominal group was modelled using the SGML DTD content model in

Figure 6.3. This states that it can optionally start with a linker (Lnk), followed by

various types of determiner, with optional selectors (v), zero or more modifiers (mo)

and then either a mandatory head (h), a proper name head (h_n) or a pronoun head

(h_p),15 followed by zero or more qualifiers (q). As an example for one of the

elements of structure of the nominal group, modifier can be filled by a ngp, or a C l,

or a q lg p or a g e n c l r or be expounded by an i te m .16

Full details of this and the other Cardiff Grammar units expressed in the

descriptive DTD, that was the result of this work, are given in Appendix C. In Figure

6.2 we saw the sample sentence marked up using an abstract mark up scheme. Figure

6.4 shows the same sentence marked up to our chosen descriptive mark up scheme.

14 This was using my own SGML search software, it is expected that similar figures will be found with
XML’s DOM.
15 the fact that a head is of a certain type could have been (but wasn’t) modelled as attributes as in <h
types'pronoun*>.
16 At the time I created the DTD, I didn’t realise that elements of structure may be filled by co-ordinated
units of different classes, however, this is extremely rare.

82

<!ELEMENT ngp - - (Lnk?, (rd,v?)?,(pd,v?)?,sdj od)
(td,v?)?, dd?, mo*,(h|h_n|h_p)

<!ELEMENT Lnk - - (item)>
<|ELEMENT rd - - (ngp+ | item) >
< IELEMENT Pd - - (ngp+ | item) >
<!ELEMENT sd - - (ngp+ | qlgp+ | item)>
<!ELEMENT od - - (ngp+ | item) >
< !ELEMENT v - - (item) >
< ! ELEMENT sd - - (qtgp+ | item) >
< ! ELEMENT od - - (qlgp+ | item) >
<!ELEMENT td - - (ngp+ | item) >
< 1ELEMENT dd - - (genclr | item) >
< 1ELEMENT mo - - (ngp+ | C1+ | qlgp+ | genclr |
<!ELEMENT h|h_p| h_n - - (genclr | item) >
<!ELEMENT q - - (ngp+|C1+|qlgp+|pgp+)

Figure 6.3: An SGML DTD content model for the nominal group

< 1 D OCTYPE Z P U B L IC m- / /D T D /S E N T E N C E COMMUNAL V E R S IO N 2 / E N " [] >
< Z >

< C 1 >
< S P R = " A g e n t " >

< n g p >
< d d >

< i t em > t h e < / i t e m >
< / d d >
< h >

< i t e m > s e a g u l l s < / i t e m >
< / h >

< / n g p >
< / S >
<M>

< i t e m > a t e < / i t e m >
< /M >
<C P R = " a f f e c t e d <r>

< n g p >
< d d >

< i t e m > t h e < / i t em >
< / d d >
< h >

< i t e m > m a c k e r e l < / i t e m >
< / h >

< / n g p >
< / C >

< / C l >
< / Z >

Figure 6.4: An SGML instance of a sentence using the DTD in Figure 6.3

6.1.5.3 An SGML Parser as a natural language parser

Once the DTD was created, I automatically had a form of natural language parser. By

creating sentences (similar to the one shown in Figure 6.4) I was able to check that the

sentences conformed to the rules of the DTD. We could not, of course, take an input

string of words and tag them automatically without being able to reference the DTD

itself.

83

Now that we had a DTD, I could start the process of converting the POW Corpus

into SGML. Programs were developed that took the POW numerical tree formats (see

Figure 3.2 of Chapter Three) and converted them to create an SGML instance for

every sentence. This proved to be a relatively straightforward programming task.17

We now had a DTD and a set of SGML instances for the sentences of the POW

Corpus. Next, we attempted to parse the sentences against the DTD and found that a

larger than expected number failed.18

Investigations showed that the failures were due to (a) ellipsis, specifically,

missing heads of units (our DTD assumed that heads are mandatory),19 (b)

transcription errors in the POW Corpus, and (c) sentences that described some rare

linguistic constructs that we had not catered for in the DTD.

6.1.5.4 The automatically created DTD

To overcome these problems, I next attempted to create a DTD automatically from the

mark up elements of our SGML sentences extracted from POW using a tool that I

developed for industry called createDTD. This extracts SGML DTD content models

from an SGML instance by investigating the mark up within it. The program,

however, is not robust. It is limited to creating complete alternate DTD content

models even where only one element differs in a different context.20

The structure of a DTD that models a Systemic Functional Grammar that has been

extracted from a spoken corpus is far more complex than a DTD that is used for the

marking up of technical documentation and, therefore, createDTD failed to return a

usable DTD. The main problem was the structure of the Clause. Because of

optionality, the number of alternative content models returned by createDTD was large

and these caused the SGML parser to exceed the maximum capacity limits that could

be expressed in its SGML declaration.21 The method is worthy of further investigation

17 During the exercise, certain POW syntax tokens had to be renam ed (e.g. & to Lnk) in order to comply
with the rules o f SGM L and this was done before the work to convert the corpus into the later version o f
the C ardiff Gram m ar (see Chapter Nine).
18 Note that our original DTD differed from the one presented here and in Appendix C as it had symbols
from POW and not the ones o f the m odem C ardiff Grammar.
19 This was bad judgem ent on my part because a great num ber o f units in the corpus are missing their
head elements, and as we shall see in Chapter Ten, is a reason why head-driven parsing approaches are
also not suited to this project.
20 C reateD T D was originally designed to do this, and allow a user to manually edit the DTD to improve
the content models.
21 The SGML declaration is a file that defines various conventions (e.g. characters to use for mark up
declaration open (M DO) and mark up declaration close (M DC) and limits such as maximum length o f a
generic identifier, the m aximum depth o f tags allowed etc.

84

after enhancing createDTD to produce more efficient models, and this will be done in

Phase Two of this project (see Chapter Nineteen).

At this time in the project, XML became available and our restrictions on having

to use a DTD were lifted. After converting the SGML into XML, we were able to use

the Microsoft MSXML parser that is integrated with Internet Explorer (and available

as a plug-in) to check that the sentences were well-formed; this did not, however,

guarantee that the sentences were free from errors.

6.1.6 Satisfying the design criteria for Systemic Functional Grammar

Table 6.1 and the sections that follow show how the selected mark up scheme meets

the requirements given in Section 6.1.

85

Criteria Remarks

(a)

(b)

(c)

(d)
(e)

(f)

(g)

(h)

(0

It can be used to represent a corpus analysed
according to the syntax of a Systemic Functional
Grammar and be able to maintain both (i) the
distinction between items, elements and units, and
(ii) the relationships of componence, filling, co
ordination and exponence.
it can be extended to include the representation of
intonation, punctuation and Participant Roles.

It is easy to understand by a human and easy to
render
It must be editable (quickly) in a standard editor.
It must be able to use standard techniques to test
the validity of sentences.

It must be able to handle non-hierarchical
(discontinuous structures).
It must be able to mark ellipsis, questionable items
and elements and unfinished units.
Queries must be performed rapidly, because the
performance will affect the speed of the parser
It must allow individual sentences to be extracted,
modified and returned to the corpus, and also new
sentences to be added.

With the descriptive scheme meaningful mark up elements are used and hence the
distinction between items, elements and units is maintained, as are the relationships.

Participant Roles are handled using an attribute called PR on the Subject <S PR= "Ag" >
and Complement <C PR= "Af " > elements as shown. Punctuation is handled by treating
it as, for example, the ender <e> element. It is expected that intonation will be covered
by using attributes.
Any descriptive scheme is easy for a human to understand (and edit). Rendering is also
straightforward.
Sentences can be quickly edited using, for example notepad or an XML editor.
Possible to check that sentences comply with the SFG rules for units and elements
provided a DTD/Schema is created. A simple business rules checker has been adopted
ahead of the DTD/Schema becoming available in Phase Two.
See Section 6.1.6.1

See Section 6.1.6.2 and 6.1.6.3.

See Chapter Seven.

See Chapter Seven.

Table 6.1: How the selected mark up scheme meets the project requirements given in Section 6.1

6.1.6.1 Handling discontinuous units

An important consideration in our decision to use mark up languages was the ability to

handle non-hierarchical structures, which occur rarely in Systemic Functional

Grammar when discontinuous units are encountered (see Section 4.3 of Chapter Four).

We handled this phenomenon by using sequential identifiers (IDs) on the items. The

technique, which is shown in Figure 6.5, allows the order of the items to be rebuilt in a

formatted view of the parse tree through the repositioning of the sequential identifiers.

z
Cl

o/x M CS
ngp pgp

h_p cvhj?
ngp

attacked by •>Who were you
[1] [2] [3] [4] [5]

Figure 6.5: An example sentence showing a discontinuous unit

6.1.6.2 Handling ellipted elements

The meaning of ellipted elements is that they are either (a) recoverable from previous

texts or (b) omitted by rapid speech (see Section 4.4 of Chapter Four). In the mark up

scheme, I have introduced an attribute called ellipted, which can be applied to

mark up elements that represent elements of structure, and can take the values

"Recoverable" or "Rapid Speech" (e.g. <S ellipted = "Rapid
Speech"/> represents a Subject (S) that is ellipted by rapid speech).

87

<z>
<C1>

<ox>
<ITEM id="2■>were</DATA>

</0X>
<S>

<ngp>
<h_p>

<DATA id=■3■>you</DATA>
</k_P></ngp>

</S>
<M>

<DATA id="4*>attacked</DATA>
</M>
<C>

<pgp>
<P>

<DATA id= ■ 5 ■ >by</DATA>
</p>
<cv>

<ngp>
<h_p>

<DATA id="1■>Who</DATA>
</h_p>

</ngp>
</cv>

</pgp>
</C>

</Cl>
</Z>

Figure 6.6: A marked up version of the example sentence in Figure 6.5

6.1.6.3 Handling questionable (or unknown) units, elements and items

In the POW Corpus, there were occasions where the analyst is not certain about the

decisions made during transcription; the most common causes were (a) unclear sounds

on the recordings and (b) when the analyst was unsure of the analysis and wanted to

indicate this. When either occurred, the analyst would use a question mark either

against a syntax token or an item (e.g. S?, "RAN? ") or by a question mark on its own.

To capture this, I used the following methods. When the syntax token was

followed by a question mark, we used an attribute named Questionable with a

value of "Yes". Therefore <S Questionable="Yes"> represents a

questionable Subject.

Where the element o f structure was represented by a question mark on its own, we

introduced a special element called <ELEMQUERY/>. When an item was only a

question mark, we used <ITEMQUERY/>.

88

Furthermore, in some cases, the analyst could not decide which word had been

uttered, the item would be followed by a question mark. When the linguist could not

decide if one or another word was uttered, a slash would be used to separate the words

that were thought to have been used. For example, "BALL/BONE? " shows that the

analyst was not sure if the word was ball or bone and "BRICK? " shows that the

analyst could not decide if the word was brick. In these cases, these words were left

as they are, complete with the slashes and question marks.

6.1.7 Using the mark up scheme to represent syntactic relationships

In Chapter Five, I stated that there is a requirement for both: (a) a corpus annotation

scheme and (b) a method of representing syntactic relationships. Furthermore, at the

end of Chapter Five, I proposed that a mark up scheme will also be able to satisfy both

requirements. The second requirement is met by storing the marked up corpus in the

corpus tables of a native XML database, and through the provision of a mark up

index (the corpus index). The exact methods of doing this will be described in

Chapter Seven, when we describe the corpus database.

This concludes the description of our work with defining a mark up scheme for

annotating the corpus, and more details of this work are provided in Appendix C. We

next turn to the investigation of how other linguistics projects have used mark up

languages in their work.

6.2 Other natural language projects that are use mark up languages
Since this project started in 1997, other projects have also realised the benefits of a

mark up language annotation scheme. In this Section, I describe these projects and,

where possible, compare their annotation schemes to our own.

6.2.1 The Text Encoding Initiative (TEI)

The information that I present in this Section is derived from the TEI website

(www.tei-c.org).

The Text Encoding Initiative (TEI) started in 1987. Its aim was to develop

guidelines for the encoding of machine-readable texts of interest to the humanities and

social sciences. It created an SGML DTD and supporting documentation. There are

now many projects that are conformant to the TEI specifications including the British

National Corpus project (see Section 3.2.2 of Chapter Three).

Documents marked-up using the TEI standard consist of a header and a body.

The header provides metadata about the text or corpus, which includes a description,

89

http://www.tei-c.org

bibliographic information, details about the creator, encoding types used, details about

the language and situation and the revision history. The concept of a header is not

unlike the idea of an identification and status section in SlOOOD’s data modules

(S1000D 2006) or the idea behind the Dublin Core (W3C 1998).

The type of mark up used in the body of a TEI document depends on the project

and its intended use. The TEI provides SGML abstract 'segment' elements for the

marking up of parsed corpora (as shown in Table 6.2).

Element Description Remarks

<s> Sentence-like division o f a
text

< c l> Clause
< ph r> Phrase
<w> Word has an attribute 'lemma' which is optional

and identifies the spelling of the word's
dictionary form.

<m> Moxpheme
<c> Character

Table 6.2: The TEI mark up elements that are beneath a paragraph

All segment entries have the optional attributes type and function. The use of

these attributes is a project decision. The ty p e attribute value of phrase <phr>

could be say 'noun' or 'verb' and function could be 'predicate' or 'subject' etc. In this

way, the TEI has attempted to accommodate different grammatical models using an

abstract mark up scheme. While it is easy to see that this model is designed to

accommodate a Phrase Structure Grammar, the question must be asked if it could be

used to encode any grammar? The answer to this question can only be 'yes' provided

that the mark up model is used in a way in which it was not designed. For a systemic

functional grammar, the <phr> element must be used to represent any syntax token

(there is no concept of a phrase in SFG). An example sentence is shown in Figure 6.7.

The reader should note that the use of elements in this way may be misinterpreted

unless the business rules that governed their creation are understood.

90

<s>
< cl>

<phr type="S" functions"element">
<phr types"ngp" functions"unit">

<phr types"dd" functi o n s "element">
<w>the</w>

</phr>
<phr types"h" f u nctions"e le m e n t">

<w >seagulls< /w >
</phr>

</phr>
</phr>
<phr types"M" fu n c tion s " e lem en t">

<w lemmas■eata >ate</w>
</phr>
<phr t y p e s "C" fu n c t io n s ■e lem en t">

<phr types"ngp" functions"unit">
<phr types"dd" functions"element">

<w>the</w>
</phr>
<phr types"h" functions"element">

<w>mackerel</w>
</phr>

</phr>
</phr>

< /c l>
< /s>

Figure 6.7: Using the TEI DTD to annotate the example sentence

Next, we turn to TEI's ability to mark discontinuous units. The TEI DTD provides

an attribute part that can be used on any <segment> element to indicate whether or

not the segment is fragmented by some other structural element. The values that

part can take are Y (incomplete in some respect), N (complete), I (initial part of

segment), M (medial part) and F (the final part). There is no standard way to indicate

the parent or exact position of the discontinuous syntactic structure.

For marking up ellipted elements, one can assume that a <phr> element could be

used with no child <w> element; however, there is no documented way of recording

the type of an ellipsis.

The TEI goal is to provide a standard way of annotating corpora. This means that

any text marked-up according to the TEI DTD/Schema is in a neutral format and will

be able to be processed by any TEI compliant software application. It is therefore a

good idea for any new project to encode its corpora using the TEI standard. Any

scheme that is designed to be usable for any grammar has to be general and this

91

implies an abstract mark up scheme.22 To be able to satisfy the requirements of any

grammar formalism, a more flexible approach is required. One way of achieving this

in the TEI would be to introduce the concept of specialisation. Here, the mark up

content models of elements can be modified by 'specialising' the base mark up

elements in such a way that a project can define its own sub-structure beneath a

container element. In doing this, a project can then benefit from using the TEI

headers and be able to include parsed data according to their own annotation scheme.

Specialisation can be achieved in a number of ways. In SGML, marked sections

allow content to be different depending on context. In XML, namespaces can be used

to identify elements that belong to different schemas. Another approach has been

adopted by IBM in the Darwin Information Architecture (DITA) (Priestley 2001).

DITA allows core elements to be reused across documentation types and specialisation

is achieved by supplying DTD modules that modify a mark up element's content for

use in other contexts.23

6.2.2 Other non-TEI projects that use mark up languages

McKelvie and Mikheev (1997) proposed the use o f SGML indexing in their LT NSL

project to provide fast access to SGML elements in a large corpus that is organised as

one large SGML file.

Dejean (2000) used XML in his machine-learning system. Dejean produced a very

simple DTD that was very similar to the TEI segment elements presented in Table 6.2

and hence his DTD is not suitable for SFG for the same reasons. Dejean's DTD

cannot be used as it is for sentences that contain discontinuous units and ellipted

elements.

In 2002, McKelvie, together with Carietta and Isard (Carletta, McKelvie and Isard

2002), recognised that linguistic annotations do not always fall into the hierarchical

structures that can easily be described in an XML instance. They stated the need for

overlapping hierarchies. Here, they use what they term stand-off annotation, where

they apply an identifier to mark up elements and 'point' to them when they are being

22 While we see descriptive mark up elements in TEI's headers and body elements, the segment
elements are abstract.
23 There are also vast amounts of data already marked-up in SGML and XML. In the aerospace
industry, for example, vast amounts of technical data are available encoded using the descriptive
S1000D mark up scheme. To use this data as a TEI compliant corpus would mean that the descriptive
elements already within the data would need to be removed. Specialisation techniques could be used to
allow this data to be both encoded in TEI's scheme whilst retaining the semantics of its original mark up
structure.

92

used either using an ID/IDREF mechanism or an XPOINTER. This method is similar

to our own for indicating discontinuous units.

The MATE workbench was developed by Isard, McKelvie, Mengel and Moller

(Isard et al 2003) to provide support for annotating corpora using XML and to provide

a method of complex querying through linked files. While MATE does not specify a

particular DTD /Schema structure, the examples in their work are of descriptive mark

up. MATE also implements an XML database with a structure similar to ours.

TigerSearch (Konig, Lezius and Voormann 2003) (see also Section 3.4.4 of

Chapter Three) uses an XML format (TigerXML) that maps to a directed acyclic

graph for its corpus annotation scheme.24 TigerXML has a corpus header encoded in

XML, which contains the name of the corpus, the author, the date created, a

description, details about the format and history. This is followed by a mandatory

syntax definition data that contains information about the syntax labels used in the

corpus and their meanings. This part of the TigerXML schema defines terminal and

non-terminal nodes. Using this metadata, the Tiger project can be used for different

grammar models.

Is TigerXML suitable for a Systemic Functional Grammar? The TigerXML

schema is fairly flexible and is an abstract model as it stores syntax tokens within

attributes. Like TEI, the TigerXML approach will not allow the distinction between

elements of structure and units, however, in TigerXML this may be able to be

recovered by using TigerXML's feature attributes. The application of this model to

SFG becomes difficult when we consider the concept of terminal tokens versus non

terminal tokens. Unlike its PSG counterparts, in SFG, it is possible for the same

element of structure to be either expounded by a lexical item or filled by another unit;

as a consequence, the same syntax token may either be a 'terminal token' or a 'non

terminal' token. It appears that in TigerXML, a syntax token must either be one or the

other but not both.

Because TigerXML works with ID/IDREF to point to edges and tokens, it is able

to handle discontinuity in a similar way as our model (see Section 6.1.6.1). Provided

the ED attribute contains a sequenced number, it can be used to restore the original

structure of the parse tree. Ellipted elements would need to be handled as non

terminal elements and a feature instated to state the type of ellipsis; this method, while

24 See also Mengel and Lezius (2000).

93

being feasible, is not ideal for SFG. A sample SFG sentence marked-up using the

TigerXML annotation scheme is shown in Figure 6.8.

6.2.3 Comparing these mark up schemes

In this section we compare the TEI and TigerXML mark up schemes with our design

criteria we listed in Section 6.1 and discuss their suitability for this project. Table 6.3

gives a list of advantages and disadvantages o f each scheme.

6.2.4 What disadvantages are there with our chosen scheme?

Our chosen scheme is descriptive. This means that it can only be used for the Cardiff

Grammar. This is a large disadvantage particularly in that we are not able to claim

compatibility with the TEI standard and we will not be able to use our corpus in any

TEI tools. Similarly, other corpora will not be expressible in our scheme.

For portability between corpus query tools, it is appealing to be able to express a

corpus in TEI format. Because our corpus is in XML, transition into TEI is a

reasonably trivial task provided work around methods are provided to encode the SFG

concepts of elements, units and their relationships (as discussed above). However, a

better method would be to allow TEI to include specialisation methods (as detailed in

Section 6.2.1).

94

<corpus id="SPGl">
<head>

<meta>
<name>Sample sentence</name>
<format>Cardiff Grammar</format>

</xneta>
</head>
<annotation>

<feature name="posn domain=nNTn>
<value name="dd"/>
<value name=“h"/>
<value naone="M“/>

</feature>
<feature names"cat" domains"T">

<value names "dd"/>
<value names"h"/>
<value names"H"/>
<value names"ngp"/>
<value names"Cl"/>
<value names"S"/>
<value names"C"/>

</feature>
</annotation>
<s ids"sl">

<graph roots"sl_504">
<terminals>

<t ids"sl_l" words"the" poss"dd"/>
<t ids"sl_2" words"seagulls" poss"h"/>
<t ids"sl_3" words"ate" poss"M"/>
<t ids"sl_4" words"the" poss"dd"/>
<t ids"sl_5" words"mackerel" poss"h"/>

</terminals>
<nonterminals>

<nt ids"sl_504" cats"Z">
<edge labels"Cl" idrefs"Sl_505"/>

</nt>
<nt ids"sl_505" cats"Cl">

<edge labels"S" idrefs"Sl_506"/>
<edge labels"M" idrefs"Sl_3 ■/>
<edge labels"C" idrefs"sl_507"/>

</nt>
<nt id="Sl_506" cat="S">

<edge label="ngp" idrefs"Sl_508"/>
</nt>
<nt ids"Sl_508" cats"ngp">

<edge label=“dd" idrefs"Sl_l"/>
<edge labels"h" idrefs«sl_2"/>

</nt>
<nt id="Sl_507" cat="C">

<edge labels"ngp" idrefs"Sl_509*/>
</nt>
<nt ids"sl_509" cats"ngp">

<edge labels"dd" idrefs"sl_4"/>
<edge labels"h" idrefs"Sl_5"/>

</nt>
</nonterminals >

</graph>
</s>
</corpus>

Figure 6.8: The TigerXML representation of the example sente

Criteria Remarks

(a) It can be used to represent a corpus analysed
according to the syntax of a Systemic Functional
Grammar and be able to maintain both (i) the
distinction between items, elements and units, and

' (ii) the relationships of componence, filling, co
ordination and exponence.

(b) It can be extended to include the representation of
intonation, punctuation and Participant Roles.

(c) It is easy to understand by a human and easy to
render

(d) It must be editable (quickly) in a standard editor.

(e) It must be able to use standard techniques to test
the validity of sentences.

(f) It must be able to handle non-hierarchical
(discontinuous structures).

The TEI and the TigerXML are abstract mark up schemes and so, in theory could be used
for marking up a corpus with Cardiff Grammar syntax tokens. However, in both schemes
there is no distinction between SFGs elements and units and therefore, unless some
detailed business rules and / or SFG token renaming is performed, these relationships
would be lost.25 Any workaround method employed to maintain the SFG criteria is very
likely to affect the speed of queries.
Both the TEI and TigerXML schemes provide no mechanism to record Participant Roles
directly (as they were never designed for this purpose). To achieve it, there would need to
be some renaming of SFG elements (e.g. Subject with an Agent participant role would
have either a TEI ty p e attribute or a TigerXML l a b e l attribute value of S_Ag. The
methods in which the TEI and TigerXML records intonation requires further research.
Abstract mark up schemes (such as TEI and TigerXML) are more difficult to understand
by a human who is not used to the conventions.
SGML/XML editor is required in particular for TigerXML because of its heavy use of
ID/IDREF attributes.
With an abstract approach it is necessary to use a business rules checker program to check
that the sentences comply with the grammar. Standard tools such as DTDs and schemas
will only check that a <phr> element is within a < c l> (in TEI) or that the < n t> element
contains at least one <edge> (in TigerXML).
This is possible in TEI, TigerXML (although the precise method of doing this in TEI
needs further investigation).

Table 6.2: Comparing the TEI and TigerXML mark up schemes with the design criteria in Section 6.1.1

Criteria Remarks

(g)

(h)

(i)

It must be able to mark ellipsis, questionable items
and elements and unfinished units.
Queries must be performed rapidly, because the
performance will affect the speed of the parser

It must allow individual sentences to be extracted,
modified and returned to the corpus, and also new
sentences to be added.

Using the abstract T£I and TigerXML schemes, it is necessary to use methods for which
the scheme is not designed to encode ellipsis, questionable items and unfinished units
Abstract mark up methods are always slower to query than descriptive methods. A query
"get me all mark up elements that have a generic identifier 'ngp' is quicker than one that
asks "get me all mark up elements that have a label attribute value of'ngp' This
becomes an even bigger issue when we have to traverse the levels of a parse tree in the
query (for example "get me all ngps that have a dd expounded by 'the'"). Queries are
more difficult to express with an abstract mark up scheme.
This is easily achieved with TEI and TigerXML (and the scheme used in this project) as
each sentence has a mark up element that represents it.

Table 6.2: Comparing the TEI and TigerXML mark up schemes with the design criteria in Section 6.1.1 (continued)

25 Note that in TEI, the function attribute could be used for a purpose for which it was not intended to record that the TEI "phrase" contains an SFG element or an SFG unit.

6.3 Summary
Because mark up languages are well suited to annotating parsed corpora, we decided

to use XML to represent sentences, query results and for the output of our parser.

One of the discoveries that we made was that it is possible to express a 'rule-

based' grammar in a DTD or Schema and that it should be possible to reference these

structures in a natural language parser. Such a method is ideal in this project because

it would provide the ability to check sentences conform before they are added to the

corpus. Unfortunately we were not able to use this directly in this project because of

the complexity of the DTD produced from the naturally occurring texts in the corpus.

A feature of this work was deciding how to deal with cases in which the naturally

occurring texts seem to break the 'rules' o f what the linguist has modelled as 'the

grammar'. One valuable side-effect of this research, therefore, has been that it has led

Fawcett to improve and enrich the Cardiff Grammar by adding new elements of

structure to it. In practice, it was difficult to distinguish between mistakes and rarely

occurring linguistic phenomena that need to be accommodated in the model of syntax.

As described in Section 6.1.5.2, our mark up element generic identifiers are

described using Cardiff Grammar tokens in a similar way to that shown in Figure 6.4

and Figure 6.6. The reasons behind this decision are:

(a) we need to be able to edit the sentences quickly and using a representation

understandable by a linguist in order to be able to create the new corpus as

described in Chapter Nine, and

(b) we need to be able to have corpus queries operate at an optimum speed and it

is faster to find mark up elements that search attributes.

At this point, we will not use a DTD or Schema to check sentences as we shall

rely on the XML being well-formed. The main reasons behind this choice are:

(a) the difficulty in creating a DTD due to the nature of the naturally occurring

texts in the corpus, and

(b) avoiding having to maintain the DTD when a new structure is identified.

As detailed in Chapter Eighteen, we plan to produce a DTD in Phase Two by

using a new version of createD T D .

The next chapter will include a discussion about storing our marked up data in an

XML conforming relational database schema.

98

Chapter Seven
Defining the corpus database schema
As we saw in Chapter Six, mark up languages are ideally suited to annotating a

corpus. In this chapter we investigate the methods that can be used to store this

marked up data in such a way that the following three requirements are met:

(a) both sentences and syntactic structures are quickly and easily accessible in

a corpus query tool and to a parser,

(b) it is possible to add new sentences, or to extract, modify and replace existing

sentences in the corpus,

(c) when sentences are modified or added, the information about the syntactic

relationships is also updated.

Due to their ability to manage large numbers of records in commercial

applications, our hypothesis is that these requirements can be easily met by using a

relational Database Management System (DBMS) which has been equipped with

suitable indexes.

This chapter therefore starts in Section 7.1 with a survey of the field, in order to

discover the methods that have been used by other projects to store marked up data in

a database. It then goes on to describe how we solved the problem by using a native

XML relational database.

Figure 7.1 shows a diagram of the database schema. This stores:

(a) the corpus data - in the corpus tables,

(a) indexes to the corpus tables - provided by the corpus index tables,

(b) probabilities tables - used by the parser and updated from the corpus tables,

(c) tables used to store the data structures created by the parser - the parser

working tables.

Section 7.2 introduces the corpus tables and the corpus index tables. Chapter

Fourteen will introduce the probabilities tables and the parser working tables. Full

details of all tables and fields in the database schema are given in Appendix D and

Appendix H.

99

The Corpus Database
— -------1 (corpusDB)

DOCUMENT

ELEMENT tVS-ITEM

PCDATA
FUSATTRIBUTE

IVS-ELEM
U2E

E2UBUS

12E2U2E

The corpus tables (native X1ML
(see Section 7.2.1)

DB PARSE IR E E I2Eoo

DB PARSE NODE
Other index tables

PST

MARKIJPINDEX
ITEM

The probabilities tables
(see Chapter Fourteen)

The corpus index tables
(see Section 7.2.2) The parser working tables

(see Chapter Fourteen)
Figure 7.1: The Corpus Database schema

7.1 Mark up and databases - surveying the fields
In this section we discuss the ways in which marked up data can be stored in a

database management system, first in its applications in industry and then in its later

applications in academia.

7.1.1 Applications in industry

There have been two main methods for storing marked up data in databases:

(a) the data model approach, and

(b) the native approach.

These are described in this section.

7.1.1.1 The data model approach

One approach to storing SGML in a database is to make the database closely model

the data being stored. This is termed the data model approach and it was fairly

common in the early days of SGML. With this approach, systems would extract the

information from the SGML document and store it in tables that reflected the mark up

structure of the Document Type Definition (DTD). For example, for a document

marked up using a descriptive mark up scheme (see Section 6.1.4.2 of Chapter Six),

and containing the procedural tasks of a maintenance manual, one would expect to

have tables with similar names to the following: TOOL, REQUIRED_PERSON,

WARNING, CAUTION and STEP. Things changed as implementers realised the

limitations of this approach, which were: (a) changes in the DTD affected the database

structure, and (b) the database was only able to hold data for one DTD. In order to

overcome this, and allow multiple document types to be stored in the same database,

DTD independence was a primary design goal.

7.1.1.2 The native approach
Native SGML databases began to appear.1 These systems were designed to store

SGML instances rather than the data-oriented tables, and were said to be SGML

aware; their storage unit was an SGML document. There were three major approaches

all claiming:

(a) some degree of DTD independence, and

(b) the ability to store native SGML data.

101

The first approach simply extracted important metadata from the SGML

documents and placed it into dedicated database tables, and then stored either parts or

the whole SGML file as text in a database binary object. Typically, an SGML search

engine was able to retrieve data from the SGML data held in the database. The

searches were slow and soon the implementers began extracting data that was often

required for a search into dedicated database tables.

The second approach required processing o f the DTD to define a database

structure into which documents could be loaded. This resulted in database tables that

would have one table for each SGML mark up element type. For example, in a DTD

that had a mark-up element < p a ra> , the system would create a PARA table after

reading and processing the DTD. This approach worked well for simple data-oriented

SGML applications but suffered when documents marked up to different DTD

structures had to be stored in the same database or where the DTD was constantly

being modified. A further disadvantage was that the approach resulted in a large

number of database tables for SGML documents of fairly simple construction (a point

also noted by Jagadish et al (2002), in their later work with a native XML database).

The third, and most successful approach, is the one used here. This demonstrates

complete DTD independence and is today, perhaps the most common approach

adopted by commercial off-the-shelf systems. They used database tables that

described the parts of an SGML document (DOCUMENT, ELEMENT, ATTRIBUTE and

PCDATA). 2 Here, a database table would store elements and be able to maintain

parent, child and sibling relationships by assigning unique database object identifiers

to them. This approach needed a method of handling inline m ark up elements.

These occur when a parent element can contain a mixture of data and sub-mark up-

elements. In the example that follows, < x r e f > is an empty inline mark-up element:
<para>Use the Extractor <xre£ xrefid="SE0001"> to remove the
clamp.</para>

With this approach, the database management system also needed to know which

mark up elements were empty, or had optional end tags. This was either achieved by

using knowledge extracted from the DTD, or by pre-processing the SGML and using a

stack to determine any absent end-tags.3

1 The origin of the term native is not known but first started to appear in the mid-1990s, and is thought
to have derived from the term native SGML files.
2 Other tables existed that are not used in this work for metadata and SGML entity handling etc.
3 We used this latter method in this project. The issue disappeared when we migrated to XML.

102

Native SGML database systems use two typical approaches to solve this problem.

The first is to identify the inline mark up elements store them within the parent's

PCDATA record, and the second is to introduce a special pseudo mark up element

which is wrapped around the PCDATA spans. The main disadvantage of the former

method is that inline mark up elements can not be queried like any non-inline mark up

element and that some mark up elements can appear both inline and also non-inline.

While the disadvantage of the latter method is that a special mark up wrapper element

has to be defined (that is added to a document when it is loaded and stripped when a

document is extracted from the database), the advantage is that inline mark up

elements are treated like any other element.

<paraxdata>Use the Extractor </dataxxref xrefid="SE0001"xdata> to
remove the clamp.</datax/para>

Perhaps one of the first native SGML systems of this type was designed and

implemented by myself in 1993 in the Rolls-Royce Common Source Database

document management system (Day 1993c).

At the time, there was a disadvantage to the approach which was due to the

processing time needed to break a large SGML document up into its constituent pieces

when a document was loaded and to reconstruct it again when it is extracted.4

However, the benefits of the approach often outweighed the performance issues, and

were (a) once in the database, data queries were very quick (although users needed

knowledge of the DTD structure), and (b) the sharing of SGML fragments between

different SGML documents became possible and these systems became known as

Content Management Systems (CMS).5

A similar method to my own was employed by a Scandinavian company called

Corena in their Life*CDM system, which was designed and marketed from the mid

1990s (details can be found on www.corena.dk). The software allowed parts of

documents to be shared in other documents and mark up elements in a document

extracted from the database were given object IDs that reflected a unique key applied

to it in the database. This enabled the detection of changes when the document was

returned to the database and these could then be acted upon. Should a shared mark up

4 This performance issue has almost disappeared in modem systems due to quicker computers.
5 The first use of the term Content Management System is unknown but probably stemmed from
standards organisations such as AECMA and CALS.

103

http://www.corena.dk

element be changed, the affects on its shared locations could be assessed. This

approach worked well unless the object IDs were altered outside of the database.6

As SGML became more popular, a greater number of document management

systems started to appear, and systems that stored mark up data in a similar way to the

one presented here became common. With the introduction of XML, the number of

commercially available CMS systems further increased and some systems based their

technology on top of object oriented database management systems (some of these

claimed better performance). However, many of these systems were not commercially

successful because of the fact that large organisations demanded a relational approach

in order to conform to their corporate data management strategies.7

7.1.2 Applications in research

Research applications that store mark-up documents in a database started to become

more popular with the advent of XML. Many of these systems where, perhaps

unsurprisingly, similar to the designs created for industry as described above. Some of

these applications were in the field of computational linguistics.

TIMBER (Jagadish et al 2002) designed a native XML database that was based on

a hulk algebra for manipulating trees'. Their main reason for adopting an XML

database in the TIMBER project being that of performing rapid queries. Their

approach mapped their documents as nodes, and they used nodes for mark up elements

and data, but their attributes were grouped together into one node. The affect of doing

this is that any attribute processing becomes a matter of string manipulation and is

therefore slower than the normalised approach that we take in this project.

The MATE system (Isard et al 2003) implemented a similar method to ours

except that they had the additional tables to store the DTD definitions. The MATE

system was used for corpus annotation (see also Section 6.2.2 of Chapter Six).

The Tiger Project (Lezius and Konig 2000) used XML as a corpus annotation

scheme and provided a corpus query Tool called TIGERSearch (see also Sections

3.2.8 and 3.4.4 of Chapter Three). However their methods for storing the corpus

within the corpus database needs further investigation.

As the popularity of XML and the adoption of the Text Encoding Initiative (TEI)

(see Section 6.2.1 o f Chapter Six) increases, it is highly likely that the use of XML in

6 It further required a modification of an industry standard DTD for internal use; this was not popular
with the system administrator who had to manage an Internal and External DTD.
7 Many of the non-relational systems developed in the 1990s are no longer commercially available.

104

corpus linguistics will become more popular. While projects like the BNC are already

storing data in SGML and XML, others are beginning to look at it as an import and

export mechanism to their systems. The ICE project (see Section 3.2.6 of Chapter

Three) is looking at import and export to the TEI DTD / Schema (Sean Wallis, UCL,

personal communication, February 2007). One can assume that many of these projects

will have desires now or in the near future to store their data in a native XML

database.

7.1.3 Choices made for this project

This section concludes with the decisions that I made for the storage of mark up data

for this project. The survey of the field included applications in industry (where such

databases have been used since the early 1990s) and the more recent academic

applications (where attention was given to those applications connected with

linguistics).

The conclusion of the investigation was that a native database of the type

described in Section 7.1.1.2 is best suited to the requirements defined at start of this

chapter. The native XML tables are therefore implemented in a relational database

management system, and it offers the following advantages:8

(a) Rapid access speeds. The speed of access to the data is of prime importance,

particularly when used in the parsing process.9

(b) Data handling. We need to be able to retrieve and process potentially,

thousands of records at a time.10

(c) Querying. A relational database system provides the Structured Query

Language (SQL) and we saw this as a good way of expressing queries and

retrieving data.

(d) Use of DBMS in parsing. We wanted to store the parser's working data in

the database and use it to investigate the structures that are created using a

step-by-step incremental parse (see Chapter Sixteen).

Next, the implementation details of these native XML tables is introduced. The

full details are given in Appendix D.

8 An alternative approach is offered by an object oriented database management system. However, the
relational database management system gives a solution that has been proven by the author in industry
applications.
9 The speed of access to the database was found to be quicker than our earlier attempts at indexing an
SGML file and our later experiments with an XML Document Object Model (DOM).

105

7.2 The database schema: the corpus and the corpus index tables
In this section we introduce database schema design. Section 7.2.1 introduces the

corpus tables which are implemented as native XML tables, and Section 7.2.2

introduces the corpus index tables.

7.2.1 The corpus tables

The native XML tables are at the core of the corpus database, they are called the

corpus tables and are used to store the text and associated syntax of the corpus itself.

They are also used to generate each of the other tables.

Chapter Six showed that marked up documents contain four central objects:

(a) the marked up document itself,

(b) the mark up elements,

(c) the mark up attributes, and

(d) data that belong to the mark up elements.

The chosen native XML approach described in Section 7.1.1.2 introduced four

database tables that are used to store the mark up objects, these are called the corpus

tables and they essentially form a native XML database.11

(a) the DOCUMENT table.12

(b) the ELEMENT table

(c) the ATTRIBUTE table

(d) the PCDATA table.13

The use of these tables is best described by the use of an example, which is given in

the next section. The full details of the tables are given in Appendix D.

10 The parser needs to retrieve potentially hundreds of records, while the corpus query tool may require
fast access to potentially thousands of records.
11 The native XML tables are able to store native SGML data. Further, with the addition of entity,
comment, and processing instruction tables (which are not needed for this project), these native tables
are able to store ANY mark up data.
121 decided to remain true to the SGML/XML environments by naming this table DOCUMENT; it could
have been more aptly named SENTENCE for this work.
13 To be able to handle inline mark up elements whose parents can contain a mix of other mark up
elements and text (see Section 7.1.1.1), we use a pseudo mark up element called < da ta> and these
elements are also stored in the ELEMENT table.

106

Figure 7.2 shows a syntax tree of an example sentence with the following XML

representation:

<Z docid="l" docname="6ABIHS#23" id="l">
<C1 ids"2">

<S PR*"Agent" id="3">
<ngp id*"4">

<dd id="5">
<data id="6">the</data>

</dd>
<h id="7">

<data id="8">seagulls</data>
</h>

</ngp>
</S>
<M id="9">

<data id="10">ate</data>
</H >
<C PR="Affected" id="ll">
<ngp id="12">

<dd ids"13">
<data id="14">the</data>

</dd>
<h id="15">

<data id="16">mackerel</data>
< /h >

</ngp>
</C>

</Cl>
</Z>

Z(l)
Cl (2)

C(ll)/AffH(9)S (3) /Ag
ngp(4) ngp(12)

h (15)dd(13)
dd (5) h(7)

ate(10)

Figure 7.2: A sample sentence showing id attributes

Tables 7.1, 7.2, 7.3 and 7.4 show how this XML is stored in the corpus tables.

The DOCUMENT table (Table 7.1) stores details of the sentence in terms of its cell

107

identifier (see Section 3.2.9 of Chapter Three) and gives it a unique identifier. The

ELEMENT table (Table 7.2) contains details of the mark up elements that belong to the

sentence, the field named ELEMID uniquely identifies the element within the sentence,

and these are shown in brackets in Figure 7.2. The field named GI contains the

generic identifier (which is the mark up element's name).

The hierarchy of the mark up data is maintained using the PARENT ID field. A

mark up element's child mark up elements are given a PARENTID value that is equal

to the parent's ELEMID value. For example, the Clause (C l) in the example sentence

has an ELEMID value 2; its children: the Sentence (S), the Main Verb (M) and the

Complement (C), all have their PARENTID fields set to 2 (i.e. the ELEMID of the

Clause). The order o f the mark up elements within the parent is maintained by the

ascending order of the ELEMID fields within the parent mark up element.

The ATTRIBUTE table is used to store a mark up element's attributes and the

example shown in Table 7.3 shows two attributes which represent the Participant

Roles on the Subject (ELEMID = 3) and the Complement (ELEMID = 11).

The PCDATA table (Table 7.4) stores the text of the items in the sentence and has

an ELEMID which identifies the mark up element to which the item belongs.

In this project, each mark up element in the ELEMENT table corresponds to (a)

an element of structure, (b) a unit, or (c) a item. If the ELEMENT is an element of

structure, the PARENTID will indicate the unit that contains the element of structure.

If the ELEMENT is a unit, PARENTID will indicate the element of structure filled by

the unit. If the ELEMENT is an item, PARENTID will indicate the element of structure

that the item expounds.

The database schema for these tables, and a full description of the fields can be

found in Appendix D.

D O C ID DOCNAME TA61 TAG2 TAG 3 TAG4 TAG 5 TAG 6 TAG7..10
1 6ABIHS#23 6 A B I HS 23 NULL

Table 7.1: Contents of the DOCUMENT table for the sample sentence

108

D O C ID E L E M ID 6 1 P A R E N T ID
1 1 Z - 1
1 2 C l 1
1 3 s 2
1 4 n g p 3
1 5 d d 4
1 6 D A T A 6
1 7 h 4
1 8 D A T A 7
1 9 M 2
1 1 0 D A T A 8
1 1 1 C 2
1 1 2 n g p 1 1
1 1 3 d d 1 2
1 1 4 D A T A 13
1 1 5 h 1 4
1 1 6 D A T A 1 5

Table 7.2: Contents of the ELEMENT table for the sample sentence

DOCID ELEMID ATTID ATTNAME ATTVAL
1 3 1 PR Agent
1 11 1 PR Affected

Table 7.3: Contents of the ATTRIBUTE table for the sample sentence14

DOCID ELEMID PCDATA
1 6 The
1 8 seagulls
1 10 ate
1 14 the
1 16 mackerel

Table 7.4: Contents of the PCDATA table for the sample sentence

This section described the corpus tables. These are used by the corpus query tool

and for the automatic creation of the probabilities tables. The provision of the

corpus index tables will speed up the process o f finding and displaying sentences and

syntactic relationships, and it is to these tables that we turn next.

7.2.2 The corpus index tables
The corpus index tables provide the rapid access to the mark up data in the corpus

tables. Their main use is for finding the results of queries that are made from the

corpus query tool (see Chapter Eight), and for the purpose of modifying the corpus

(see Chapter Nine). The main index table (called MARKUP INDEX) has been designed

for speed of access and therefore replicates some of the information in the

14 Note that the i d and the docname attributes in the mark example of Figure 7.2 are not stored in the
attribute table because these are the e le m id and the docname fields of the element and document
tables respectively.

109

ELEMENT table.15 It provides multi-directional access into the ELEMENT table

using ELEMID as pointers. Each row of the main index table represents a mark up

element (which I call the ’given mark up element’ below) and includes the following

information:

(a) the given mark up element's generic identifier (GI),

(b) the given mark up element's ELEMID value,

(c) a string of ELEMIDs and a string of GIs that represent the given mark up

element's children,

(d) a string of ELEMIDs and a string of GIs that represent the mark up elements

that exist above the given mark up element,

(e) a string of ELEMIDs and a string of GIs that represent the mark up elements

that exist to the left of the given mark up element as its left siblings,

(f) a string of ELEMIDs and a string of GIs that represent the mark up elements

that exist to the right of the given mark up element as its right siblings.

Table 7.5 shows a portion of the main index table that shows the example sentence in

Figure 7.2.

15 In database modelling terms, the index table contains redundant information. For example, the
Generic Identifier (GI) can be gained by using the ELEMID field as a foreign key into the ELEMENT
table. Although it can be argued that this approach represents a 'purer' data model, the speed of access
would be slower as it would involve a query that needs a table join. There is a further argument that the
string fields should be 'normalised' so that access to them does not involve string processing, however,
an advantage of the chosen method is that it is also human readable' when the table is viewed as single
table. Further, the speed of access of the string processing functions were more than adequate for the
corpus query tool, and for the process of corpus modification work.

110

r

DOC ELEM
ID ID

CHILD
IDS

61 RIGHTGIS ABOVEGIS ABOVE
IDS

LSIB
GIS

RSIB
GIS

LSIB
IDS

RSIB
IDS

1 1 2 Z Cl
1 2 3,9, Cl S M C Z 1

11
1 3 4 s ngp Cl Z 2,1 M C 9,11
1 4 5,7 ngp dd h S Cl Z 3,2,1
1 5 6 dd DATA ngp S Cl Z 4,3,2,1 h 7
1 6 DATA ■the" dd ngp S 5,4,3,2

Cl Z ,1
1 7 8 h DATA ngp Z Cl Z 4 , 3,2,1 dd 5
1 8 DATA ■seagulls" h ngp S Cl 6,4,3,2

Z ,1
1 9 10 M DATA Cl Z 2,1 S C 4 11
1 10 DATA ■ate" M Cl Z 10,2,1
1 11 12 C ngp Cl Z 2,1 S M 4,9
1 12 13,1

e
ngp dd h C C l z 11,2,1

1 13
w
14 dd DATA ngp C Cl Z 12,11,2 h 15

,1
1 14 DATA ■the* dd ngp C 13,12,1

Cl Z 1,2,1
1 15 16 h DATA ngp C Cl Z 12,11,2 dd 13

,1
1 16 DATA "mackerel" h ngp C Cl 15,12,1

Z 1,2,1
Table 7.5: Contents of the MARKUPINDEX table for the sample sentence (note

some fields omitted for clarity)

In addition to the mark up fields, the table also contains linguistic fields for

identifying:

(a) if the element that is represented by the given element is ellipted,

(b) if the item, element or unit represented by the given mark up element is initial

in the sentence and initial in its parent (both taking into account ellipsis and

ignoring it).

The corpus index tables include other tables that are used by the corpus query

tool. The purpose of these are:

(a) to hold information from the generation of the published reports,

(b) for the recording of syntax tokens, their descriptions and their types,

(c) for holding information that is of a temporary nature, for example, the results

for a concordance, or a query about syntax.

In the summary of Chapter Five, it was stated that mark up languages can be used

not only for corpus annotation, but for representing syntactic relationships. This is

achieved using the MARKUPINDEX table. As Table 7.5 shows, this table contains

111

F

multi-level information. For example the nominal group (element 12), and the deictic

determiner (element 13) show:

(a) that the nominal group (ngp) contains a deictic determiner (dd) and a head

(h) (by using the GI and CHILDGI fields) and this can be considered

equivalent to the 'rewrite rule' notation given in Chapter Five.

(b) above the deictic determiner (dd), the ABOVEGIS field shows that there are

the following elements and units dd ngp C C l Z and this can be

considered equivalent to O'Donoghue's (1991a) vertical strips.16

In addition to these relationships that were described in Chapter Five, the

MARKUP INDEX table also provides information about element co-occurrences in the

LEFTSIB and RIGHTSIB fields.17 Furthermore, by connecting the identifiers of

each mark up element in terms of their parents, children and siblings it is possible to

answer complex queries that involve multiple levels of the syntax tree, and this will be

discussed in the next chapter.

This now concludes our discussion on the corpus tables and the corpus index

tables. The other sets of tables that complete the database schema, namely the

probabilities tables and the parser working tables are introduced in Chapter

Fourteen.18

73 Summary
This chapter has outlined the design of the corpus database. We saw, in Figure 7.1

and Section 7.2, that the corpus database is broken down into the following groups of

tables:

(a) the corpus tables, which store the text and syntax of the corpus itself,

(b) the corpus index tables, which provide rapid access to the corpus data,

(c) the probabilistic tables, which are queried by the parser,

(d) the parser working tables, which store the parser's working data.

Chapter Six concluded that mark up languages are an ideal method for annotating

a corpus. This chapter has shown that the combination of using mark up and a

16 The vertical strip can be extended to include the item by using the information in the entry that
represents the item.
17 This is useful for answering questions about, for example, the elements that can come before a given
element irrespective of what follows it.
18 The probabilities tables provide a further level of indexing above the MARKUPINDEX table that allow
the parser to run at optimum speed.

112

r

database provides a rich method of representing the syntax relationships in a corpus.

It has further shown that a marked up corpus can be stored in a relational database, and

that index tables can be used to rapidly find and retrieve the information from the

corpus that is stored in the corpus tables. By storing the mark up in the database, the

final two requirements that were given in Section 6.1.1 are met. The first of these is

the ability to quickly find and retrieve information in the corpus, and this is achieved

through the use queries to the tables and indexes described in this chapter. The second

requirement is the ability to add and extract sentences, to modify them and return

them, or to be able to add new sentences.

The corpus database allows the sentences to be copied from the database into

XML files and these can be edited in the corpus editor. The corpus query tool allows

the user to return modified sentences back into the database after they are modified,

and this action automatically updates the indexes. The parser that will be described in

Part Four, can add new sentences to the database and this action also updates the tables

and indexes automatically.

In the next chapter we will see one of the purposes of these tables when we

describe the corpus query tool, which proved to be an invaluable aid for the

development of the parser and for creating a new version of the corpus.

The remainder of the corpus database tables will be introduced in Chapter

Fourteen. Full details of all tables can be found in Appendix D.

113

r

Chapter Eight
Enhancing the Interactive Corpus
Query Facility
This chapter describes the corpus query tool - the enhanced version of the Interactive

Corpus Query Facility (ICQF+). The original version was first developed in 1993 to

provide COMMUNAL with a research tool which could be used to interrogate a

parsed natural language corpus (Day 1993a).

The present project required an improved version of ICQF for the following

purposes:

(a) to provide us with a research tool to help us in the development of the parser

itself (which is described in Part Four of this work), and

(b) to enable us to create a corpus that is analysed according to the latest version

of the Cardiff Grammar (see Chapter Nine).

The new version, which provides the ability to perform much more powerful

queries, is described in this chapter. Section 8.1 provides a brief history of the original

version of ICQF and Section 8.2 explains (a) why the new version was developed, and

(b) how it is integrated with the corpus database described in Chapter Seven. Section

8.3 introduces the new version of the Corpus Query Language (CQL), and provides

examples of the types of query that can be performed. Finally, Section 8.4 provides a

very brief walkthrough of ICQF, using screenshots where appropriate, and describes

how certain functions proved useful for particular aspects of this project.

8.1 History
The original version of ICQF, which was developed in 1993 as part of my MSc

dissertation, enabled the user to perform queries about items, queries about syntax

and limited concordances. Additionally, it was used to create several lists that

provided COMMUNAL with valuable reference material about the syntax structures

that appeared in the POW Corpus.

ICQF also played a vital role in two other projects:

(a) it was one of the sources of probabilities for Weerasinghe's (1994) parser,

and

114

(b) it helped improve the description of English syntax in the Cardiff Grammar

(Fawcett 2000a).

It was also provided to two other universities (Leeds and Sheffield) who wanted to

interrogate the POW Corpus.

8.2 Towards ICQF+
As stated in the introduction to this chapter, a new version of the corpus query tool

was required for this project in order to develop the algorithms and the probabilistic

data that is used by the parser, and to enable us to create a new corpus that is annotated

to the latest version of the Cardiff Grammar.

In developing the parser which is described in Part Four, we needed more

powerful queries than those that could be provided by the original version. In

particular, these involved

(a) the ability to ask questions about syntax structures that occurred at any level

in the syntax tree and,

(b) the ability to extract information about vertical strips, i.e. queries about the

elements and units above an element of structure or an item.

The original version did not allow sentences to be modified. This was essential

for the task of updating the corpus to the latest version of the Cardiff Grammar. There

were two types of change needed. The first type were global changes in which the

linguist specified a syntax pattern that involved a mix of items, elements and units and

their siblings; for these, the ability to express them in SQL and execute them as

programs was required. The second type of change were those that were manual and

could not be changed automatically. For these, the corpus query tool helped locate the

sentences by using queries, and extracting them as XML so that they can be edited in a

sentence editor and, afterwards, returned to the corpus.

In the new version, the basic functions of the original version were retained and

substantially improved. In particular, the Corpus Query Language (CQL) is enhanced

to support the new types of query required for this project (see Section 8.3).

Reports extracted from the corpus were described in Sections 3.4.1 and 3.4.2 of

Chapter Three. These reports were available in the original version of ICQF, but were

not part of the main program. In the new version the reports are improved and fully

integrated. The report functions are described in Section 8.4.3.

115

Section 8.4 provides a walkthrough of some of the ICQF functions in order to

demonstrate ICQF+fs new interface. Section 8.5 briefly describes the corpus

modification programs that were used to modify the corpus.

8 3 Querying in ICQF+ - the Corpus Query Language
The Corpus Query language (CQL) as described in Day (1993a), has been

considerably extended in ICQF+. The new features are defined to support the more

complex queries that were required by this project.

CQL is a query language which allows the user to express corpus queries in a

simple and compact format. It is sub-divided into two broad categories queries about

items (see Section 8.3.1) and queries about syntax (see Section 8.3.2).

All queries are entered by typing them into the Enter query text box (item 9,

Figure 8.1) on ICQF+'s query and results form. This is accessible from the query

menu.

83.1 Queries about items
Queries about items allow the user to find occurrences of an item either together with

the element it expounds, or irrespective of the element.

To find all uses of the lexical item irrespective of the element of structure that it

expounds, the user simply enters the item. For example, to find all instances of the

item make:
QUERY1: make
And to find all instances of an item when it expounds a particular element of structure,

the rewrite operator is used:

QUERY2: M->"maken
The asterisk wildcard can also be used to specify parts of words. In the following

example, any item that starts with the letters rat are returned (e.g. rat, rats,
rate, rates, ration,..)
QUERY3: rat*

A new facility was added to ICQF+ to allow it to include different items in the

same query; this was useful, as it allowed the linguist to retrieve sentences for similar

words (for example, to see if they operate in the same way). The following queries

demonstrate how this is done by using the semicolon operator.

QUERY4 :make; makes

116

QUERY5 :M->nmaken ;M->"makes" ;M->"made" ;M->"making"
QUERY6:one;two;three;four;five;six;seven;eight;nine

Another useful function added to ICQF+ is the ability to automatically generate

all the forms of a word. This capability uses algorithms that were originally developed

for COMMUNAL’s generator (Fawcett, Tucker and Young 1988). To use this

function, the user presses the option button (Figure 8.1, Item 8) and enters, say, a verb

stem. ICQF+ then searches for all forms of that verb. The method does rely, however,

on the user entering a word stem and not a form (e.g. run and not running).

117

1
r " Q uery R esults *J

Enttlr Query and Review Results

Syntax structure I Number of occurren. I Probabilitv % 1 ^ 1
24 0.4331% □

0 -> S (* Jn f]M C M E x A Log 1 0.018%
o-> s (1)P) 1 0.0182
Q->S (1) (M) 5 0.0902%
D->S (M) 2 0.0361%
0->S (M)(Q 9 0.1624%
CJ->S (M) (C) (MEx) 1 0.018%
D -> S (M)(qA 1 0.018%
D->S (M) A Val 1 0.018%
D->S (M)C 1 0.018%
0 > S P) (C) 1 0.018%
O ->S(0)(M)(q(M E x) 1 0.018%
O -> S (0)M (M)P) 1 0.018%
O ->S (0)C 1 0018%
& >S P M] (C) 35 06315%
(» S (0M) (C) A_Log A.Log 1 0.018%
C1->S P M)(C)V oc 1 0018%
a -> s P M)(M)(q 4 0.0722%
a-> S P M) (M) c 1 0.018%
a -> S (O M)M M C C 1 0.018%
Q->S (OM) C 0.0902%
a-> S |O M)C A 1 0.018%
(» S (OM) M C C 1 0.018%
a - > s p x) (M) 1 0018%
a - > s p x) (M) p) n f r a % I g f "
a - > s p x) (M) p] p 1 —
D ->S(OX)P<)(M)(q - ^ f f o i 8 %
0->S (OX) A M MEx — / z]

Sort on Syntax Structure i Sort on Syntax Structure , Sort Descending on i S a t Ascending on
P e scen d n g) (Ascendng) O ccurrence Occurrence

Change query festrictioi1 ■ \ “ 3
Sentence detafc:
Sentence id

Word form*

C G enerate w a d foms (eg f a ru

C Do not generate word forms

R r/rc b o ro Included are 6 8 1 0 1 2 y e a r

Position

I~ Item /elem /unit is irabal inZ
r Item /d em /unit is nkial in oarent
J~ Ignore eSpted elements

Execute Query

boys and girls who are involved in interview and play. Hits: 755

1. Results display: double click to see example sentences
2. Sort options
3. Change query restrictions (see Figure 8.2)
4. Restrict query to sentence initial, initial in parent and include / exclude ellipsis
5. Run the query
6. Status bar showing hits and restrictions
7. Find by docname (POW cell identifier) or by unique identifier
8. For item queries, generate all word forms
9. The Enter Query text box

Figure 8.1: ICQF+’s query and results form

11 8

i

f

8.3.2 Queries about syntax

83.2.1 Standard queries about syntax
Standard syntax queries are performed, as they were in the original version, by using

the rewrite operator. These can be queries about units filling elements as in

QUERY7, which will return all Subjects (S) that are filled by a nominal group (ngp):

QUERY7: S - >ngp

Questions can be asked about elements that are components in a unit. The

example in QUERY 8 will return all nominal groups (ngp) that have a deictic

determiner (dd) followed by a head (h).

QUERY8: ngp-> dd h

83.2.2 Wildcards
As in the original version of ICQF, wildcards can be used to accurately specify the

query. The wildcards, which are shown in Table 8.1, have been slightly modified

from the original version.

W ildcard
character

Meaning

* Any characters in a token or any sub-string can occur here.
+ One or more tokens can occur here.
? Only one token can occur here.
@ Zero or more tokens can occur here
i The end of the unit must occur here, OR there must be no more co

ordinated units after this operator.

Table 8.1: The wildcards that can be used in CQL

Example queries using wildcards are shown in QUERY9, QUERY10 and

QUERY11. QUERY9 asks for all modifiers and re l_ m o , s it_ m o , a f f _mo and mo.

QUERY9: *mo*->

QUERY 10 asks for all single elements that can occur between a deictic determiner

(dd) and a head (h) in a nominal group (ngp):

QUERY10: ngp-> dd @ h

The end of unit operator (!) is important in the CQL. It indicates that the end of

the unit must occur in this place. In QUERY10, for example, the results will include

structures where there are other elements after the head (h). In QUERY11, the head

(h) must be the last element in the nominal group (ngp).

119

f

QUERY 1 1 : n g p -> d d h ! [find all ngps that only have a dd and a h (i.e. no
qualifiers)]

8.3.2.3 Advanced queries about syntax
The original version of ICQF had an above operator which was able to look for syntax

structures which looked upwards in a parse tree. In ICQF+, this has significantly

extended this to allow the user to query any level of the parse tree.

In CQL, if necessary, brackets are used to delimit levels, and the above operator A

is used to indicate that the structure given in the brackets is above the structure to the

left of the brackets. QUERY 12 will return all nominal groups (ngp) which have a

deictic determiner (dd) and a head (h) as their component elements, and, above the

nominal group, is a Subject (S) in a Clause (Cl) that fills sentence (Z):

QUERY12: ngp -> dd h (A S C l Z)

Queries about syntax that involve only vertical strips can be expressed without

using the rewrite operator. QUERY 13 asks for all vertical strips that have an apex

(ax) in a quality group (q lgp) that fills a modifier (mo) in a nominal group which

fills a Subject (S):

QUERY 13: A ax q lg p mo ngp S

Only the asterisk wildcard can be used in above queries. QUERY14 asks for all

Clauses (Cl) that are embedded within another Clause (Cl) at any level:

QUERY14: A Cl * Cl

It is possible to include an item or an element to the left of the above operator

when the rewrite operator is not used. QUERY 15 asks for all occurrences of th e that

expound a deictic determiner (dd) in a nominal group (ngp) that fills a Subject (S) in

a Clause (Cl) that fills the sentence element (Z).

This type of query was extremely useful when the IVS - ITEM table was created

(see Chapter Fourteen). The DATA operator is used to signify that the query is for an

item.

QUERY15:DATA(t h e) Add ngp S C l Z

The sibling operators < and > are used to find information about the elements that

can occur before and after the given operator. QUERY 16 asks for the elements that

can come after a Main Verb (M):

120

r

QUERY 16: M>*

QUERY17 asks for all structures that can come before a Main Verb (M) and

QUERY18 asks for all occurrences of a Main Verb (M) that is followed by two

complements (C):

QUERY17: *<M
QUERY18: M>C C

The percent operator allows the user to get probabilities about elements that can

occur. QUERY 19 asks for the probabilities of all elements that can follow a Main

Verb (M) in a Clause (Cl) that has a Subject (S), and an Operator (O) before it. Only a

single element will be returned together with a probability score. To base the query on

a different number of elements, the 1 is replaced with the number required.

QUERY19: C1->S O M %1

The user is able to ask for the probability that a certain element follows the

structure on the left by using the percent operator as shown in QUERY20.

QUERY20: C1->S %M

83.3 Finding Sentences by their DOCUMENT ID or POW CELL
By using the drop down list and text box shown in Figure 8.1, Item 7, the user can

directly locate a sentence by its unique document identifier (DOCID) (as applied to it

when it was loaded to the database) or by its FPD Cell identifier (see Chapter Three,

Section 3.2.9 and Section 8.3.4.1). By selecting these, the matching sentence will be

directly displayed in ICQFs sentence viewer (see Figure 8.3)

83.4 Restricting queries
Queries can be restricted such that the results returned will be from a subset of the

entire corpus. There are three ways in which this can be done:

(a) by restricting the query using parts of the FPD Corpus cell identifier,

(b) by restricting the query using the fact that the results are initial within the sentence

or unit,

(c) by ignoring or including ellipsis.

These three types are described in the sections that follow.

121

f

8.3.4.1 Restricting queries by selecting parts of the sentence's cell identifier
This is a function that existed in the original version of ICQF and was found to be of

great use to language students. The FPD cell identifier is an intelligent identifier and

the parts of it are as follows:

(a) age - the child's age: 6, 8 , 10 or 12 years,

(b) social class - the social class of the child: A,B, C or D,

(c) situation - the type of the situation: I for Interview and P for Play,

(d) initials - the initials of the child.

(e) sentence number - the ordinal position of this sentence in this child's

utterances

Hence, the cell identifier 10dg ism #4 shows that the child is ten years old,

belongs to social class D, is a girl with initials are I.S.M and this is the fourth utterance

she has made.

During the conversion of the corpus into SGML and subsequent loading into the

corpus tables, the cell identifier was extracted and its parts recorded in the TAG fields

of the corpus tables and the corpus index tables. This provided the mechanisms

which allowed ICQF+ to restrict the results of the query to only those sentences that

matched the selected criteria. Figure 8.2 shows ICQF+'s query restriction form,

which is selected by pressing the command button (Figure 8.1, Item 3), and the current

restrictions are listed in the status bar of the query and results form (see Figure 8.1,

Item 6).1

83.4.2 Restricting queries by initial in sentence and unit
There are options that restrict the query only to results that are initial in their parent or

initial in the sentence (Figure 8.1, Item 4). By selecting initial-in-sentence, the query

is restricted to only those structures that occur in the initial position in the sentence

(i.e. in the left-most vertical strip in a parse tree), initial-in-parent selects only those

structures that are in the left-most vertical strip in their parent.2

The INITIAL_* fields in the corpus index tables allow this type of query to

be performed (see Chapter Seven, Section 7.2.2 and Appendix D).

1 It should be noted that the query restriction form shown in Figure 8.2 is specific to the FPD corpus,
and if another corpus was used in ICQF+, a different form would be required.
2 These types of query were developed especially for the research for the parser where we needed to
know, for example, the vertical strips to include in our Initial Vertical Strip Item (IV S -IT E M) and
Initial Vertical Strip Element Tables (IVS_ELEM) (see Chapter Fourteen).

122

8.3.4.3 Restricting queries by ignoring ellipsis
If ignore ellipted elements is selected (Figure 8.1, Item 4), then the results will not

contain ellipted elements. That is, a search for all clauses that start with a Subject will

not consider those clauses that have ellipted elements before the Subject.

The ELLIPTED_* fields in the corpus index tables allow this type of query to

be performed (see Section 7.2.2 of Chapter Seven and Appendix D).

Q uery R e s tr ic to r

Select q iery restrictions

restrict queries

A ge \ S e x S o c ia l O a s x S itua tion

F ? G y ea rs F7 M ale 17 C la ss A 17 P t a *

W 8 years 1 7 Fem ale W C la ss B 1 7 In terv iew

f s 10 y ea rs J7 C la ss C

W 12 y e a rs 17 C lass D

ALL AGES | BOTH | ALL CLASSES | BOTH

1 ■ " --------- 1 i !

Included are 6 8 1 0 1 2 year old class A B C D boys and girts wine are rrvoived in ntetvtew
and play.

Apply Select Al Done

1. Select the age(s) (6, 8,10 and 12 years) of the children to be included in the query.
2. Select the sex of the child (male or female).
3. Select social class (A,B,C and D).
4. Select the situation (play and interview).
5. Apply options and close query restriction form.
6. Select all options for Age, Sex, Class and Situation.
7. Apply options and keep the query restriction form open.

Figure 8.2: ICQF+'s query restriction form

8.4 Using IC Q F +

8.4.1 Retrieving the results of a query
The user enters a query by selecting Queries from ICQF+'s main menu. The Query

and Results form is displayed (see Figure 8.1). After setting any necessary Query

123

Restrictions (see Section 8.3.4), the user enters the query in CQL format in the Enter

Query text box (Figure 8.1, Item 9) and presses the Execute Query button (Figure

8.1, Item 5). ICQF+ processes the query and builds the results which are displayed in

the Results Display (Figure 8.1, Item 1).

8.4.1.1 Displaying sentences
Once the results (if any) of the query are displayed in the list, the user is able to sort

them using the buttons (Figure 8.1, Item 2). By double clicking the left-mouse button

on an entry in the list, all occurrences of sentences that match the value shown on that

line of the list can be displayed in ICQF+'s Sentence Viewer (Figure 8.3).

8.4.1.2 Navigation
A query line, as displayed in ICQF+'s Query and Results form (Figure 8.1), can have

one or more matching sentences. The user is able to move between these sentences

one by one in the sentence viewer by using the navigation buttons (Figure 8.3, Item 9).

Next- and Previous-match will move through each matching sentence and Next- and

Previous-Sentence will display the previous and next sentences next to the matching

sentence in the corpus. The syntax structure of interest to the user is the structure

which matches the query (in the Sentence Viewer, this is shown highlighted using

black squares). Figure 8.3 Item 15 shows a match to the query for all nominal groups

(ngp) that fill a Subject (S).

The user can view the sentence that is displayed in its context in the corpus, as

shown in Figure 8.4, by selecting the Sentence Context tab (Figure 8.3, Item 8).

Here, the current sentence is displayed together with the sentences before and after.

By clicking on the sentence identifiers in this view, the selected sentence will become

the current sentence and be displayed as a parse tree when the user moves back to the

sentence view.

8.4.1.3 Editing and deleting sentences
Figure 8.3, Item 14 shows the XML, Save and Delete buttons, these are used to edit,

save and delete the sentences in the corpus database respectively.

When the XML button is pressed, a copy of the sentence is extracted from the

native XML corpus tables as an XML file, and loaded into an editor. The user is able

3 The edit function copies the XML from the database and loads it into the sentence editor. The save
function replaces the XML in the database with the edited XML. The delete function removes the XML
from the database. All functions update the corpus tables and the corpus index tables.

124

to change the sentence as required, check that the XML is well formed, and then save

the sentence back into the corpus tables by pressing the Save Button.

When the user presses the delete button, a confirmation message is displayed

before the sentence is deleted.4 When a sentence is deleted, all records that relate to it

are removed from the corpus tables and the corpus index tables. A similar process

occurs when the sentences are edited and saved except that new entries are created in

the tables that represent the saved XML file, and a date and time is recorded in the

DOCUMENT table indicating when the sentence was last saved.5

The sentence editor was used extensively in this project for the work connected

with the modification of the corpus, which is reported in Chapter Nine.

4 On one or two occasions, during this modification work, it was identified that the sentence needed to
be deleted.
5 Note that ICQF+ checks that the XML document is well-formed before it is allowed to be loaded back
into the corpus tables.

125

S en!once eddcx lunclio;

XML S av e I Dole!*

|110|10abfW49
ft » a 10 yaat old boy w ho b '/ n a * to iocmI d a n b

Show R o d e * R ed fort g e s t a e
M atch Enlarge Enl fort d e fau li

Next
M ah .l,

Next Previous Qngnaf
c h S o rt o n ce S en tence M atch

'H E ZULUS C \T ANGRY AND (S) STARTED ATTACKING THEM AGAIN AND THE COMMANDER WAS SHOUTING SOUTH WALL FIFTY MEN OR SOMETHING LIKE THAT

S y A * tree S en tence context |

-!□!

r Display Id* in XML

OX

M I SHOUT MO)

TEXT

■ I
■ ngp

th jn o

< ISOUTHI

C.Repl
ngp

 ________ u*_
Sent 10ab«l»49 Number matches: 19 Mr Context P ot.: (orig • 0)

14 23

Figure 8.3: ICQF+’s sentence viewer

I. Context indicator (shows
how many sentences you
are from the original query)
Query (in Query and Results
form)
The number of this sentence
is in the query (0 is the first)
The number of matches for
the query
The Sentence (docname) of
the sentence being viewed
The collapsible sentence
view
Display the syntax tree
view the sentence in its
context in the corpus (see
Figure 8.4)
Navigation buttons

10. Show the match (as black
squares) in the syntax tree

II. Enlarge/reduce sentence
view

12. Unique id, sentence id and
explanation

13. The words of the sentence
14. Sentence editor functions

(XML - edit sentence as
XML, Save Sentence in
database or Delete it).

15. The syntax structure we are
interested in is shown
highlighted with black
squares

9.

fly, sen tence Viewer

Next Piavwu* QngxW I Show
Sen tence S entence M atch syntax

R educe R ed font Q ettore
Enlarge Enl font d e fau lt

C lose
(110nO«bfM49
rl is a 10 year old boy who belongs to social class b

S entence editor functions

XML S av e Delete
SO THE ZULUS GOT ANGRY AND |S) STARTED ATTACKING THEM AGAIN AND THE COMMANDER WAS SHOUTING SOUTH WALL FIFTY MEN OR SOMETHING LIKE THAT

Syntax tree [S en ten c e co n te * ^

C D tsp loy ldsnX M l

X
Id I Contents

YOU KNOW NAMES TH EY V E GOT ONE W A S CALLED THE ZULU
AND THEY FOUND
TW O OF THEIR S PIE S FOUND W ELSH SO LD IERS D O W N AT RO RK ES-D R IFT
AND THEY W E R E AT TACKING ALL THE W ELSH M EN AND THEN ALL THE ZU LU S W E R E BANGING THEIR THINGS AND |S) (OX) SINGING SO THE W ELSH M EN STA R TED SINGING
AND SOON THE W ELSH M EN STA R TED D ROW NING OUT THE SO U N D S OF THE ZU LU S < -Current sentence- >
S O THE ZU LU S GOT ANG RY AND (S) STA RTED ATTACKING THEM AGAIN AND THE COMMANDER W A S SHO U TIN G SO U TH W ALL FIFTY MEN OR SOM ETHING LIKE THAT < Current sen tence >
TH ERE W A S ONLY ABOUT A H U N D RED OF THE W ELSH
AND THEY HAD H O U SE S MADE OF BRICKS THESE BRICKS THEY FOUND AROUND
(S) (M) SAND BAGS FOR THE BA RRIERS AND (S) |M) ALL HAY FO R TH EIR R O O FS AND THE Z U LU S T H R E W A FIR ESPEA R OVER THE THING AND IT LIT TO THE T O P OF THE BARN
AND ALL THE ZU LU S W E R E U P ON THE TO P OF THE BARN W ITH TH EIR S PE A R S STICKING THROUGH
AND THERE W A S THIS ONE CALLED HOOK RIGHT AND HE W A S IN HOSPITAL/

10atxrltM4
1 0ab« l#45
10atxtM 46
10absW 47
10abn l#48

10ab*W 49

10ab«WSO
10ab*ltt51
10abirW 52
10abn ld53
10abifl#54

2J
Sent: 10ab»IH49 Number matches 19 M atchng Sent 0 S->ngp ngp Context P o t (orig • 0) A

1. Sentences after
the current
sentence

2. The current
sentence

3. Sentences
before the
current
sentence

Figure 8.4: ICQF+’s sentence viewer’s view context form

8.4.2 The concordancer
ICQF's limited concordance tool has been significantly improved in ICQF+. The new

concordancer was used extensively in the work to modify the corpus (see Chapter

Nine), where it was used help identify criteria for changes based on items.

The Concordancer has two interfaces; the first is obtained by allowing the user to

enter a query about an item using the CQL as described in Section 8.3.1, and the

second interface guides the user through the choices that can be made. The

Concordancer is started by selecting Concordancer from the main menu or by

highlighting an item in the sentence viewer (Figure 8.3) and selecting the

concordance function from the menu that appears.6

Figure 8.5 shows a sample concordance for all forms of ru n and w alk . The

output format here is typical of concordances that are expected from corpus

concordancers (called the Keyword-in-Context KWIC - see Section 3.4.1.2 of Chapter

Three). The user has the option of adjusting the number of items displayed to the left

and the right of the key-word(s) by using the slider controls (Figure 8.5, Item 5).

As the FPD Corpus is a parsed corpus, syntax tokens can also be displayed in the

results form if required by selecting Show Element of Structure in the concordancer

sort and display options (Figure 8.5, Item 4). A concordance with this option selected

is shown in Figure 8.6.

In a concordance, the sort order is important as the researcher may be interested

in the items that come before an item, or the items that follow it; the sort order can be

changed by selecting the sort order options in Figure 8.5, Item 4. When the

concordance query was for more than one item (e.g. the user entered a query such as

see; sees; seeing; seen; saw), the concordance can be sorted by each

target item. A further benefit that can be gained from a parsed corpus, is the ability to

adjust the sort order based on the element of structure that the item expounds. For

example, if the user is interested in an item that can expound a head (h) or a Main

Verb (M), the results can be displayed with those instances that are heads separated

from the ones that are Main Verbs.

A useful feature is the ability to see the sentences in the concordance as parse

trees in ICQF+'s Sentence Viewer; this can be done by double clicking the mouse

button when the cursor is above the sentence that is of interest.

6 When the Concordance function is selected from the Sentence Viewer, ICQF+ automatically builds
die concordance and loads it into the concordancer's results form

128

Statistics for the lexical items selected for a concordance can be extracted from

the corpus by selecting the Statistics button (Figure 8.5, Item 7); here, all occurrences

of the target items are listed together with their frequency of occurrence for each

element that it can expound. Sample statistics for the item saw are shown in Figure

8.7.

129

■ ■ ■ ■ K *J

Concordancer 1 2 3 4
j

4 5 7 8

Enlw lexical lierr<i) [r u n . r n n . r u n B . r u n m n q . w n l k . w n l k e d . w n l k s . w n l k i n q

Optiont
r Selec! all wotd forms
(• Oo not t e le d e l word lormt

U)O

gu ided help

JCGlfQf C oncnrdAnrf* Duptay

•••■>•. i-Settings you can change
-Order of presentation of examples
<*■ by order in the corpus
r by alphabetical order of word to the left
r by alphabetical order of word to the right

f ' grouped by element

f grouped by variant of word (eg see, sees)
r Show element of structure

Number characters to the right 46

— P I
Number characters to the left: 46

(lOabihsf25] SO I DIDITT PLAY II XT-ALL I ONLY HAP OKI
IlOabihsf59] THIR DOES HI VORXS IN THI POLYTECHNIC AND HI
(lOaglkpf48) I 'D LIKI TO
(lOagirvf4] WE STARTED BUILDINO UP AMD-THEN WHIN US
(lOaglrvf37) RAILWAY-CHILDREN WHICH THIY WIRE CALLED THEY

VI 'RE
WHIN ALL THI MONIES HAVE

THERE VI? VON'T? BIT ABLE? TO? DO? A? I VI
I AM (M) (C> PUT HIM IN THE BUS

(10agpsrv#201)
llObbigjf 16)
[lObbpsujf230]
I lObgpsclf223)
IlOcblljflO]
[lOcblahf44I OXVIR HAD THE FIRST PICK THI OTHER TEAM CITS
IlOcglsdf13) SOMETIMES HI
(lOdgidhflZ) HIBODY IN THE MIDDLE OF THI YARD AND YOU COT
[10dgpsdh|210) OU USINC ALL THOSE BRICKS UP THERI HE ' LL BE
(12abl*uf14] (S) (OM) WHEN SOME PEOPLE
[12abipgf39] AND (S)
2aglndf42l OR HE HINT FOR

12bbpsabfZ39) PUT HER
I12bbpsanf240) ALRIGHT (S) (OX)
(12bglahf 191 C THI BALL AROUND AND IF YOU DROP IT YOU COT
[12bglahl431 YEAH
I12cbi»l#26]
(lZcbimlf45) UST MEMORISE THEM AND (S) (OH) MAKE THE FEET
(lZcblwlf45] UST HXMORISI THEM AND (S) (OH) MAKE THE FEET
[lZcbiurf28) (S) JUST
(12cgp*sj«46| (M) (CM) (C) TIL HE
(lZdbll)f36) I LIKE FOOTBALL AND
(12dbllj«37) (H) (M) HUNDRED MITRES AND (S) (M) THE LONC

There were 61 occurences in the corpus

RUN
RUNS
RUN
RAN
RAN
RUNNING
RUN
RUN
WALKS
RUN
RUN
RUN
RUN
RUNNING
RUN
RAN
WALKS
WALKINC
WALKINC
RUN
RUNNINC
RUNNING
WALK
WALK
RUN
RUN
RUNNING
RUNNINC

AND IT FOUND IT BORINC AND IT WAS TOO SWEATY
A BUSINESS DOWN IN THERE
A STABLE
OUT-OF THESE THE RED BRICKS WE 'D START ON TH
OUTSIDE THE TUNNEL
OUT-OF REDS
OUT YOU JUST ADD YOUR UP AND SEE WHO ' S COT T
OUT OF
OUT-OF THE THINC
BY BATTERY UNDERNEATH
OUT
ABOUT
ACROSS WITHOUT HIM CATCHING YOU AND (B) (S) 0
OUT
AWAY AND THEY LOOK FOR YO AND YOU COT GET TO
OUT-OF THE PLACE
UP TO THI VILLAGE AND (S) WENT OVER TO LLANEL
ALONG THI PAVEMENT THEN
ALONG THI PAVEMINT
AROUND ALL THE PEOPLE AND? YOU? COT GO AROUND
ROUND THE AEROPLANE? I LIVE NEAR ONI SO I COM
(OM) (C>
AND WONDIR-VOHAN HAD TO WALK ACROSS A MINK-FI
AND WONDER-WOMAN HAD-TO WALK ACROSS A MINE-FI
AROUND
OUT OF RED

1.Enter query here
2.0ption to have ICQF+
generate all forms of the
words
3.Build the concordance
4. Concordance sort and
display options
5. Adjust the width of
characters to the left and
right of the target word
6. Save concordance as an
XML report
7. Provide statistics (Fig. 8.7)
8. Show I adjust the SQL that
was used in the query
9. Concordance display -
double click the left mouse
button to display the
sentence in the sentence
viewer (Fig. 8.3)
10. Launch guided help

zl

Figure 8.5: ICQF+’s concordancer

ICQF Concordance Display

Settings you can change
-Order of presentation of examples-----------

by order in the corpus

r by alphabetical order of word to the left
r by alphabetical order of word to the right

Save Statistics | SQL

JSJ

r grouped by element

grouped by variant of word (eg see, sees)
I? Show element of structure

..................................... t
Number characters to the right: 43

Number characters to the left: 42

[10abih*|25] -ALL (A)I <h_p)ONLY (A_Inf)HAD (M)ONE <qd) [RUN
[lOagikpf48] I (h_p)'D (OH)LIKE (H)TO (I) [RUN
[lOkbigj #16] HEN (B)ALL (qd)THE (dd)HONIBS (h)HAVE (OX) [RUN
[lObbpsmj#230] (XBx)TO? (I)DO? (H)A? (qd)I (h_p)'VE (OX)
[lOcbilj#10] [RUN
(lOcbinhf44] B (DATA)OTHER (DATA)TEAM (DATA)GETS (DATA) [RUN
[10cgiedfl3] SOMETIMES (DATA)ME (DATA) [RUN
[10dgidh*12] HB (dd)YARD (h)AND (Lnk)YOU <h_p)GOT (XEx) [RUN
[12abiaw*14] (S)(OM) (OK)WHHN <h_wh)SOMB (qd)PEOPLE (h) [RUN
[12bgiah#19] OU (h_p)DROP (H)IT (h_p)YOU (h_p)GOT (XEx) [RUN
[12cbi*rf28] (S) (S)JUST (AJnf) [RUN
[12cgpssj»46) (M) (M)(CM) (MEx)(C) (C)TIL <B)WE <h_p>
[12dbiljfS3])(S) (S> SAY (M)RELEASE (M)YOU (h_p)CAN (0) [RUN
[12dbilj*60] (h_p)DR0P (M)ONE <h_rcc)Y0U (h_p)G0T (XEx) [RUN
[6agika#9] ~ WE <h_p) [RUN
[6bbi*p#S9] AND (Lnk)THE (dd)BIRD (h) [RUN
[6bbipc*24] hjp)0NT0 (p)THEM? (h_jj)AND (Lnk)THEY (h_p) [RUN
[6cqirs*7] (p)IT (h_p)AND-THEN (Lnk)YOU <h_p)MUST (0) [RUN
[6cgirsf29] IF (B)THEY (h_p>TRIED (M)T0 (I) [RUN
[8bqibc|20] _jp)’S (OM)ON (p)IT (hjp)AND (Lnk)YOU <h_p> [RUN
[8dbitth#S9] AND-THEN (DATA)HE (DATA)COULD (DATA) [RUN

<)] <h> AND (Lnk) IT <h_p) FOUND (M) IT <h_p)
(DATA)] (M) A (qd) STABLE (h)
(DATA)] (M) OUT (MBx) YOU (h_j>) JUST <A_Int) ADD <

[RUN (DATA)] (M) OUT (MEx) OF (p)
(DATA)] (M) BY (p) BATTERY <h) UNDERNBATH (am)
()] (DATA) OUT (DATA)
<)] (DATA) ABOUT (DATA)
(DATA)] (M) ACROSS (MEx) WITHOUT (B) HIM (h_p) CAT
(DATA)] (M) AWAY (MEx) AND (Lnk) THEY (h_p) LOOK <
(DATA)] (M) AROUND (p) ALL (qd) THE (dd) PEOPLE <h
(DATA)] (M) AROUND (MEx)

[RUN (DATA)] <M) OUT (MEx) OF (p) RED (ax)
(DATA)] (M) OUT (MEx) AGAIN (ax)
(DATA)] (M) RIGHT (pt> ROUND (p) ALL (qd) THE (dd)
(DATA)] (M) ROUND (MEx) 'N (Lnk) WE (h_p) PICK (M)
(DATA)] (M) DOWN (p) 'E (dd) RUNWAY (h) AND (Lnk)
(DATA)] <M)
(DATA)) (M)
(DATA)] (M) ONE (qd) SIDE <h) THEY (h_p) COULDN'T
(DATA)] (H) ALL (pt) AROUND <p) IF (B) THEY <h_p)
<)] (DATA) AWAY (DATA) SEE (DATA)

There were 21 occurrences in the corpus
d

Figure 8.6: Concordance showing elements of structure

Settings you can change
-Order ot presentation of examples--

* order r me corpus r grocped by eiement
t * alphabetical order of wora to the toft r groopeCbyvar^itot word (eg see. sees)

r (^alphabetical order of >»ort to the nght r Show etement of structure

M u iM i ; n u i qciti u ;
M t u t n u

i i » i r « t r » t a TMZS t a a i u » kz>
;&cr t i r «i
i f t l p M — 1M 1 S TOO X 11 >MV>F 1 U 1 .1

i* i* n n m atcm m m m 4
[M t r l l l O ;
u f c u j i x : t c e m rc a t a r c
ItaktiM X: t u t t m
;teki(*fK; TUT •* tm

(« a JD <Ci 0R.T
(SO iK> .0 asr.T

SA W

Figure 8.7: Statistics for the key-word in ICQF+'s concordancer

8.4.3 The reports
The original ICQF included utilities to extract lists o f syntax structures and lists o f

items from the corpus. These were printed and used as valuable reference documents

in the COMMUNAL Project. Their functions and formats are shown in Sections 3.4.1

and 3.4.2 o f Chapter Three. In this present work, the reports are automatically updated

as new sentences are parsed, changed in the Sentence Editor, or through one o f the

modification programs that are described in Chapter Nine; in this way, the reports, like

the corpus database tables, dynamically change as the corpus changes.

In their electronic form, they were o f particular use in this project to assist in the

requirements for building the parser's probabilities tables (see Part Four, Chapter

Fourteen).

The reports are accessed from ICQF+'s reports menu. There are the following

report types.7

7 Reports (b), (c) and (d) are essentially formatted versions of the probabilistic tables I2E , E2U and
U2E respectively (see Part Four, Chapter Fourteen).

132

(a) top n syntax structures - A list o f syntax structures ordered according to

their frequency of occurrence (see Figure 8.8),

(b) item up to element - Alphabetical list of items and the elements they

expound (see Figure 8.9),

(c) element up to unit - A list o f the elements and the units in which they occur,

(d) unit up to element - A list o f the units and the elements that they fill.

Each o f the reports can be viewed in two ways. The first, and perhaps, the most

useful, is within ICQF+ as an interactive list. Here, the report is displayed in a form

and ICQF+ provides the ability to select sentences that contain the structure of a given

line o f the report and display them in ICQF+'s Sentence Viewer, or for the item up to

element report, as a concordance in ICQF+'s Concordancer.

The second method as a formatted document in Portable Document Format

(PDF). Here, ICQF+ exports the report as an XML document and XSL-FO stylesheets

are used to convert these into PDF8. This is achieved by pressing the XML button at

the top o f the Interactive Report Form. For each o f the reports, an XML Schema was

created using descriptive mark up methods (see Section 6.1.4.3 of Chapter Six).

Figure 8.8 shows an interactive report for the top n syntax structures. It shows the

sequence o f forms that are used to build all reports. Figure 8.8, Item 1 demonstrates

the select report type form and Item 2, the form where the value o f n is entered. Item

3 shows the main report viewer. This is a generic form that is used for all types of

report; the column titles and other labels are populated according to the report type

selected. One very useful feature is the ability to display examples of a structure or

item in the Sentence Viewer; this is done by selecting a row in the grid by double

mouse click. It is possible to reorder the results in the list by using the sort options

(Figure 8.8, Item 5). To find a particular value in any column, the find options are

used (Figure 8.8, Item 6); this is very useful when the list is not sorted alphabetically.

To export the list as an XML document from where it is also converted into PDF, the

XML button is used (Figure 8.8, Item 7).

8 The XSL-FO stylesheets exist outside of ICQF-f and can therefore be changed to alter the format of
the report For the conversion from XML into PDF, I used the Apache FOP processor.

133

ft* Qu*n*. P«p»t« Conrarteim iM m fcrtte

'

' (0 8 ^ R eport builder

U w n j^ ^ ij Mt*d »• lyp* ol npat you mfc to butd

Srt*d "port M>*

r H m t4>ln*tam*rt

C I b*tt»rt ip In i#rt

r miviom
I* TopnwnUnrtnirtii*.

iu«p

R eport builder Top 2000 syntax

Ctnod

f ttm (w vrtu* rt n la lop n «***» ikuobMi

VA« I™0
r

O crt 1 N*»'

U)

1. The select report type form
Enter the value of n for top n

2. The report view
3. Values column, double click to

display example sentences in the 4.
sentence viewer

5. Sort options
6. Find values in the list
7. Export XML and hence convert into

PDF

rt builder

tructure report

Position [Syntax s tr u c tU V [fre q u e n c y | Probability
0 nqp >h p ” 1 0 9 b / 6 .0718%
1 S ->ngp 8882 4.1109%
2 z-> a 8009 3 /068%
3 C->ngp 7012 3 2 4 6 4 %
4 cv->ngp 2737 1 2688%
b pgp >p cv 2679 1 2399%
6 h_p-> 'l‘ 2646 1 2242%
/ ngp >dd h 2308 1 0682%
8 a->F 2287 1 0492%
fl dd >rrHE* 2166 1 002%

10 qlgp >ax 1969 0 9067%
11 S-> 1898 0 8786%
12 qd > A' 1881 0 8706%
13 ngp >qd h 1776 0 8216%
14 7 > a Cl 1763 0 816%
16 Lnk >,ANO‘ 1668 0 7674%
16 C->pgp 1612 0 6998%
17 h_ p >’ir 1609 0 6984%

1

Sol upbornK Soil by portion Imcondnglr Sot by «̂ tMli*ia.«r oid*i ol iynl*» Piudui* (Mcondngl r Soil by tiwyooncy (Mooning) r Soil by probably (Meaning!

r Sort by portion Idoicendingl r Soil by tifchabaticrt o«d*i ol tirttn rtiuciue (daKandngl
r Sort by lioquanoy (doicendngl
r Sort by piob«Wily Idoitondng)

Oort

I 1 CDC Find portion C Ind lioquonoy ,
C Find tjntan ttiudue C Fnd piobabrty |<4l

Figure 8.8: ICQF+’s Report Builder showing the top n syntax structures

Item up to e lem en t report

E h m n t Total E>»g Total Haw ProbatMW yl^
h_p 2646 2646 100X J
dd 2166 2228 97 1724%
qd 1881 1882 99 9469%
U tk 1668 1668 1 00%

1509 1682 96 3866%
h_p 1291 1291 100%
OM 1163 1407 81 9474%

I t S I 1131 100%
I 1098 1289 86 1823%
F 987 987 100%
h_P 830 842 98 6748%
M 694 902 76 9401%
h_p 609 609 100%
F 678 690 83 7681%
p 669 669 100%
M 470 472 99 6763%
O 414 419 98 8067%
H_p 412 412 100%
« tor tor i n m c k i

0 1
1 THE
2 A
3 AND
4 it

6 YOU 8 -S
7 WE
8 TO
9 YEAH

10 THAT
11 GOT
12 THEY
13 HO
14 IH
16 PUT
16 OOHT
17 HE
I* (V

Figure 8.9: An item-up-to-element report

8.5 C o rp u s m odifica tion p rog ram s

ICQF+ includes the ability for the programmer to use ICQF+’s functions and routines

to perform global changes to the corpus. Typically, these are created as program

functions and are included on the ICQF+ modify corpus menu. The changes

involved using either SQL or the query routines to extract a set of matching records

from the corpus tables. These records could then be traversed and changed as

appropriate and the corpus index tables updated. This work is described in Chapter

Nine.

8.6 S u m m ary
This chapter has described the corpus query tool: the Interactive Corpus Query Facility

(ICQF).
After a brief history of ICQF in Section 8.1, Section 8.2 explained the rationale

behind creating a new version, i.e. ICQF+, and explained its importance to this project.

In particular it assisted in building the probabilities tables used by the parser and

*translating' the corpus analysis into the latest version of the Cardiff Grammar. The

Corpus Query Language in its revised form was described with examples in Section

8.3.

135

To show how ICQF+ was used in this project, Section 8.4 provided a walkthrough

of its key functions.

As we saw in Chapter Four, the syntax of the Cardiff Grammar has changed since

the original POW Corpus was analysed, and ICQF+ has played a vital role in updating

the corpus through

(a) corpus modification programs described in Section 8.5, and

(b) the corpus editor described in Section 8.4.

The next chapter describes examples of these changes in order to illustrate the difficult

challenges we faced in this task.

136

Chapter Nine
Updating the corpus
When Fawcett and Perkins developed the Polytechnic o f Wales (POW) Corpus in the

1980s, the Cardiff Grammar was still under development. Indeed, it was to a large

extent the requirements to have a syntax that would be capable o f describing

adequately the data in the corpus that led to the changes to Halliday*s original model,

and so to the existence of the Cardiff Grammar as a distinct 'dialect' o f Systemic

Functional Grammar (SFG). The syntax used in the POW Corpus therefore contains a

number o f significant differences from the version described in Fawcett (2000a), and

in other recent works by Fawcett (2000b, 2000c, 2007a, 2007b), Tucker (2006a,

2006b), Neale (2002a, 2002b), and others.

As the project to build a corpus-based parser got underway, we realised that, in

order to implement the best possible parser, we needed to create a new version of the

original corpus that would be analysed in terms o f the latest version of the Cardiff

Grammar. As no alternative parsed corpus was available, we decided to take the

Fawcett and Perkin’s POW Corpus and convert the syntax of that corpus into the

syntax o f the latest version of the Cardiff Grammar.

The changes were defined and made with the linguist and the computer scientist

working closely together, but essentially with the linguist defining the types of change

that had to be made and the computer scientist working out how this could be done

and implementing the changes. At times, there was no firm distinction between the

two fields o f expertise, with each member suggesting changes and checking solutions

in the other’s field.

The result of this major piece of work is a corpus called the Fawcett-Perkins-Day

(FPD) Corpus, which is annotated in terms of the latest version of the Cardiff

Grammar. This chapter describes how we created the FPD Corpus. Section 9.1

describes why the changes were needed; Section 9.2 outlines the overall strategy for

change, and Section 9.3 describes how the major changes were performed.

137

9.1 Why the changes are needed
The corpus was modified so that its syntax is represented in terms of the latest version

of the Cardiff Grammar for the following reasons:

(a) to provide the best possible model for parsing, and

(b) to make the corpus and the tools that use it compatible with the other

components o f COMMUNAL (see Section 2.5 of Chapter Two).

The advantages of updating the corpus so that it is compatible with the other

COMMUNAL components are that the parser (described in Part Four) is able to

communicate with the other components o f the overall model, since they are using the

same version o f the grammar. Further, the corpus query tool ICQF+ (see Chapter

Eight) is o f greater use to the COMMUNAL Project.

In what way then, is the latest version of the Cardiff Grammar better suited to

parsing than the earlier version used in the POW Corpus? This is best explained by

outlining the major differences, and highlighting the cases where the change helps the

parsing process.

The major difference between the POW version of the grammar and the current

grammar is the recognition that the data that were originally analysed as cases o f the

quantity-quality group (qqgp) should instead be treated as two distinct units - the

quantity group (q tg p) and the quality group (q lg p). This approach was used in the

current computer implementation of the Cardiff Grammar in the COMMUNAL

Project in the 1990s, and the elements of the two units of the groups are described in

Fawcett (2000a: 164), and in Part One, Chapter Four. Tucker (1989) gives the fullest

description yet published of the quality group. The change of the q q g p into two

separate units was particularly hard to implement, since it required us to discover ways

of identifying which o f the two units the old groups should be assigned to. However,

this work was rewarded as the decomposition of the quantity-quality group into the

two separate units, helps the parsing process because the two units typically serve

different functions, and this fact can be used to predict the element of structure that the

unit fills.

The second type of change was in the element which certain items expound. For

example, the items t h i s , t h a t , t h e s e and t h o s e were originally analysed as a

deictic determiner (dd), even when they appear on their own in a nominal group, but

now, they are treated as pronoun heads (h_p). Similarly, w h ic h and w h a t, when not

138

followed by a noun, were originally analysed as a wh-deictic determiner (DDWH), and

now they are wh-heads (h_wh). And some units, which were formerly analysed as

quantity-quality groups, are now treated as a nominal groups (ngp).

Thirdly, as the result o f the analysis o f more and more data by Fawcett and

Tucker, the introduction of a small number of new syntactic elements has occurred.

For example, the temperer (t) , in the 1980 model is now sub-divided into the degree

temperer (d t) , the emphasising temperer (e t) and the adjunctival temperer (a t) . As

these temperers serve different functions in their units, this assists the parsing process

in helping determine the function o f the item.

Another change is that the different types o f determiners are now identified by

their functional type first (e.g. a quantifying determiner is now represented by a qd in

preference to its earlier form o f dq).

Finally, Fawcett’s notation uses lowercase letters to identify the elements of

structure in the nominal, prepositional, quality, and quantity groups, and in the units

themselves, whereas initial capitals are used for the elements of the Clause. Due to

restrictions in the computer system that Fawcett and Perkins were using for creating

the POW Corpus in the 1980s, all syntax tokens are expressed in uppercase letters.

Therefore the final change was a mapping between the original syntax tokens and the

latest syntax tokens.

9.2 The overall strategy
All changes were made in two distinct stages. Stage One involved changing syntax

structures within sentences but, where possible, keeping the old Cardiff Grammar

syntax tokens.1 This stage is described below in Section 9.3.

Stage Two was global and changed all POW syntax tokens into the current

Cardiff Grammar syntax tokens and is described in Section 9.4.

93 Stage one: how the changes were made
I will now explain the methods used to solve the problem of how to make such

changes in a corpus of approximately 70,000 words.

1 Some changes needed the introduction of syntax tokens that were not in the original version (e.g.
qtgp), these were added but with uppercase letters (QTGP).

139

93.1 Details of the change process

The challenge was to construct versatile and powerful queries that would be able to

return a relevant set o f sentences, for either:

(a) manual review and editing, or

(b) to be the subject o f a global automatic transformation.

Using the characteristics o f the words of the text and associated syntax structures,

we were able to extract XML sentences from the corpus tables (see Chapter Seven)

based on the nodes within their parse trees (in the format described in Chapter Six).

We found sentences that contained specific combinations o f items, elements and units,

based on any combination of:

(a) any sibling nodes that appear to the left or right,

(b) any elements and units that appear above or below the node, or

(c) any structures elsewhere in the same parse tree.

These variables were combined to form very complex retrieval criteria.

93.1.1 Automatic changes

Automatic changes were used where this was possible without introducing errors.

Some changes were relatively simple and involved a change of syntax token, while

other changes demanded the extraction and rebuilding of sub-trees in terms of parents

and siblings (as described above). Following any large set o f changes or periodically,

the corpus database was checked for XML errors.

The order o f the changes performed in Stage One was important because changes

made in an earlier change were assumed to be in place when later changes were made.

93.1.2 Manual changes
Manual changes were generally assisted by ICQF+’s corpus editor, which was

specially designed for this purpose. Here, following a query, we were able to view

any sentences that matched our requirements in ICQF+’s sentence viewer (see Figure

8.3 of Chapter Eight). We viewed them either one by one, or in groups, and selected

them, if required, for editing in the corpus editor. After we had changed the sentence,

an XML parse was performed on it, before it was returned back into the corpus

140

2
database. As sentences were returned to the database, ICQF+ rebuilt the corpus

index tables.

93.1.3 Errors discovered in the POW Corpus

In the course of this work, we fairly frequently found errors in the syntactic analyses

made by the original team of analysts. The corpus editor also proved useful for

correcting these mistakes, which included spelling mistakes, incorrect syntax labels,

and incorrect analyses.3

In rare cases, the transcription o f the spoken text was unclear, so that, in rare

cases, sentences had to be deleted. ICQF+ was provided with a 'delete function', which

removed any such sentence from the corpus.4

In the remainder o f this section we show examples of these automatic changes

that are in the form o f transformation diagrams. Space does not permit me creating

diagrams for all changes made in this way, therefore Appendix F gives a complete list

of the automatic changes and serves as a record of the work performed. It does not,

however, contain details o f changes that were made manually as described in Section

9.3.1.2.

93.2 Stage One: example changes

In the transformation diagrams that follow, the exclamation mark (!) represents the

end of a unit or the start of a unit. The vertical bar (|) is the Boolean OR operator. The

asterisk wildcard operator means zero or more elements in a unit or any one or more

unit in a co-ordinated relationship.

This section serves a secondary purpose: to demonstrate how the corpus index

table can be used to rapidly find records in the corpus tables based on ancestors and

siblings at any level in the syntax tree, and also to show how the XML parse trees can

be modified. To serve this purpose, example queries and pseudo code is given, and

the reader may want to refer back to Chapter Seven for a description of the database

tables and their fields.

2 The XML parse ensured that the XML document was structurally well-formed.
3 As will be seen in Chapter Seventeen of Part Four, errors in the corpus cause problems in the parsing
process.
4 Only two sentences were deleted in this exercise.

141

Rather than give an exhaustive list here, I have given selected examples of each

type o f change. The change numbers represent the number given to the change during

the modification task, and correspond to the change numbers in Appendix F.

93.2.1 A simple change of a mark up element

Change 0: t h i s , t h a t , t h e s e and th o s e

This change involved finding every nominal group (NGP), or unfinished nominal

group (NGPUN), that has a deictic determiner (DD) as its last element in the unit, where

the DD is expounded by the items this, that, these or those, and change them

to a pronoun head (HP). The reason for this change is that these are now analysed as

pronoun heads in the new Cardiff grammar, for linguistic reasons that we will not go

into here. Figure 9.1 shows a transformation diagram that represents this change.

NGP NGPUN NGP: NGPUN

DD

THIS THAT THESE THOSE THIS THAT THESE | THOSE

Figure 9.1: The transformation diagram for Change 0

The query used to find the matching structures involved finding all instances of

this, that, these and those in the main corpus index table where the parent

mark up element has a generic identifier DD, and there are no right siblings. This

query can be expressed in SQL as follows. The SQL is similar to the queries used for

all the examples shown here, unless otherwise stated:

S E L E C T * FROM M A R K U PIN D E X

WHERE 6 1 = ' D D ' AND

(C H I L D G I S = " T H I S " OR C H I L D G I S = ■T H A T ■ OR C H I L D G I S = " T H E S E “ OR

C H I L D G I S = " T H O S E ") AND

R S I B G I S = ' * ■ ;

142

Once found, the records could then be traversed and modified. The modification

algorithm used is given below:

1. Get the ELEMENT record from the corpus tables that corresponds to the ELEMID

and DOCID of the corpus index entry (this represents the DD element).

2. Modify the ELEMENT record so that its generic identifier field (GI) is set to HP

(thus changing it from DD to HP).

3. Update the corpus index records for this sentence (so that the change is

recognised in subsequent queries).

93.2.2 A simple change of a mark up element and its parent

Change 3: h e r e , now, th e n and when

This change involved finding all instances o f the above words where it expounds an

apex (AX), which is the only element in its unit. The quantity-quality group (QQGP)

was replaced by a nominal group (NGP) and the apex (AX) by a pronoun head (HP).

Figure 9.2 shows a transformation diagram that represents this change.

QQGP QQGPUN NGPNGPUN

AX

HERE NOW THEN WHEN HERE ! NOW j THEN | WHEN

Figure 9.2: The transformation diagram for Change 3

This query involved finding all instances of h e r e , now, th e n or w hen in the

corpus index where the parent mark up element has a generic identifier AX, and there

are no right siblings or left siblings (i.e. the RSIBIDS and LSIBIDS fields are

empty), and then modifying these elements.5

5 Note that the element AX is always in a QQGP and there is no need to specify the unit in the query.

143

Again, once found, the records could then be traversed and modified. The

modification algorithm was:

1. Get the ELEMENT record from the corpus tables that corresponds to the ELEMID

and DOCID of the corpus index entry (this represents the apex (AX)).

2. Modify the ELEMENT record so that its generic identifier field (GI) is set to HP

(thus changing the syntax token from AX to HP).

3. Get the ELEMENT record from the corpus tables that corresponds to the parent

element o f the ELEMENT just modified (this will be the unit QQGP or QQGPUN and

it will be identified by the PARID of the corpus index record, or the PARENTID of

the ELEMENT record).

4. If the GI field of the ELEMENT record is QQGP, change it to NGP (thus changing

the parent to a nominal group).

5. If the field GI field of the ELEMENT record is QQGPUN, change it to NGPUN.

6. Update the corpus index records for this sentence, so that the changes will be

reflected in subsequent queries.

9 3 .2 3 A complex example with mark up element insertion

Change 31: Item L e t 1 s to expound two elements

This change was more complex than the last two examples, and was designed to cover

the new Cardiff Grammar element called L et. It involved finding all instances of the

item l e t ' s that expound a Subject (S) , adding a new element to the left of the

Subject (S) for the Let element (L), and directly expounding it by the item l e t .

Finally changing the Subject (S) so that it fills a nominal group (NGP) which has a

pronoun head expounded by ' s. Figure 9.3 shows a transformation diagram that

represents this change.

144

♦
* CL|CLUN

C L !CLUN

* L S
NGP

*

A
LETS

S

A
 NGP

A
LET 'S

Figure 93 : The transformation diagram for Change 31

The corpus index records that result from a query for all Subject elements that are

expounded by let's were traversed, and the following modification algorithm was

used. To help the reader, Figure 9.4 shows the parse tree following each step of the

algorithm:

1. Create a new record in the ELEMENT table for the Let element (L), and:

set its GI field to the value L (for the Let element).

set the DOCID field to the value of the DOCID field in the corpus index record (so

that it appears in the same sentence).

- set the PARENTID field of the new ELEMENT to the value given in the PARID
field of the corpus index record (so that it has the same parent as the Subject

record).

- give the ELEMID field of the new record, a value of 0.5 below that of the LHSID
of the corpus index record (so that it appears before the Subject record in the

Clause).6

2. Create a new record in the PCDATA table for the item LET, and:

- set its DOCID to the DOCID value of the corpus index record,

set its ELEMID to the value given to the ELEMENT record in Step 1 (so that its

parent is the new LET element).

6 The BLEMID field value represents a unique value for the ELEMENT within the DOCUMENT, and
provide the order in which the ELEMENT resides within its parent. Therefore a value of 0.5 places the
new element in the correct position.

145

set the PCDATA field to the value LET.

3. Delete the ELEMENT record that represents the old item L e t 1 s (as given in the

CHILDIDS field of the corpus index record), and its associated PCDATA record as

we are going to create a new record in the next step.

4. Create a new ELEMENT record for a nominal group that will fill the Subject, and

- set its GI field to the value NGP,

- set the DOCID field to the value of the DOCID field in the corpus index record,

and its ELEMID to the next available ELEMID in the DOCUMENT,

- set the PARENTID field o f the new ELEMENT to the value given in the ELEMENT

record that represents the Subject (given by the ELEMID field of the corpus index

record).

5. Create a new ELEMENT record for the pronoun head, and

set the GI field to the value HP

- set the DOCID field to the value of the DOCID field in the corpus index record,

- set the PARENTID to the ELEMID of the record created in Step 4.
6. Create a new PCDATA record for the item ' S, and

- set the DOCID field to the value of the DOCID field in the corpus index record,

and the ELEMID to the value of the ELEMID created in Step 5 so that it belongs to

the HP element.

7. Update the corpus index tables for this sentence.

146

* * *

CL ! CLU N CL | CLU N CL I CLUN

L E T S LET L E T S LET

CL CLU N CL CLUN
CL ICLU N

L S L S*

NGPNGP
NGP

HP

LET
HP

LET

LET

Figure 9.4: Steps involved in changing the syntax structure (the numbers
represent steps in the algorithm)

93.2.4 Example showing a more complex query

This final example, for which the actual modification algorithm is similar to the ones

shown in the earlier examples, includes finding all cases o f an item that is followed by

another item, and then modifying matching sentences.

Change 8: h ave , had, h a s , 1 a v e and 1 ad, followed by to

The query involves finding all instances o f the items have, had, has, ' ave, and

'ad, where it expounds the modal operator (OMO, OM) in a Clause (CL) or an

unfinished Clause (CLUN) and the modal operator (OMO) is followed by the infinitive

element (I) expounded by to. The modal operator (OMO, OM) is changed into an

147

operator (O).7 In the latest version of the Cardiff Grammar, Modal Operators are

simply recorded as an instance of an Operator (O). Figure 9.5 shows a transformation

diagram that represents this change.

CL CLUN

OMO OM

HAVE HAD

HAS ’AVE

'AD

TO

CL|CLUN

HAVE | HAD

! HAS i ’AVE

I 'AD

TO

Figure 9.5: Transformation diagram for Change 8

The query to find these records could have been expressed in a number of ways.

For example, the DOCUMENT table contains a concatenation of the data in the

PCDATA fields in the order they appear, and the query could be expressed in SQL as

SELECT * FROM DOCUMENT
WHERE PCDATA LIKE * * HAVE TO *';

In practice, it was simpler to use two nested queries, the first getting elements that

have records that match one of the items expounding the elements required, and the

second retrieving any records that have a right sibling containing the item t o and

expounding an Infinitive Element (I). The remainder of the processing then became

similar to the examples given above.

This section gave a description of the global changes that were made to the POW

Corpus in order to create the FPD Corpus. Having finished these automatic changes,

which are fully detailed in Appendix F, we now had a new corpus which was in an

intermediate state in which most o f the syntax tokens were those used in the version of

the Cardiff Grammar used in the POW Corpus. The next stage was to covert the

syntax tokens into those given in the latest version of the grammar, and it is to this that

we turn next.

7 There was an error identified in the POW Corpus. The syntax token OM was being used for Operator
conflated with the Main Verb and for a Modal Operator.

148

9.4 Stage Two
Stage Two involved changing the syntax tokens from the tokens given in the POW

version of the Cardiff Grammar to the tokens given in the latest version of the

grammar (as given in Fawcett 2000a). In most cases, this was a fairly simple mapping

of the old token into its new mixed case version. In a few cases, it was necessary to

use the context o f the syntax token, where the old syntax token was mapped to a new

one depending upon its parent syntax token.

The processing required for Stage Two was straightforward. A database table

(see Appendix G), called TOKENCHANGE was established with three fields:

(a) OLDTOKEN - the token as it is found in the POW Corpus version of the

Cardiff Grammar.

(b) CONTEXT - a token that is the parent o f this token, which must match the

parent o f any token that is a candidate for the change specified by this record.

This field is empty if the change applies to all instances of OLDTOKEN.
(c) NEWTOKEN - the token as it is given in the latest version of the Cardiff

Grammar.

The OLDTOKEN fields were automatically populated with the unique tokens

found in the GI field o f the mark up ELEMENT table. The mappings to the new tokens

were then manually populated, in some cases after querying ICQF+ to see the uses of

the particular token. Once complete, the ELEMENT table was traversed, and the

changes were made by referring to the TOKENCHANGE table for the old to new token

mappings. Following this change, the corpus index tables, and the probabilities

tables (used by the parser) were regenerated.

9.5 Summary
This chapter has shown how the POW Corpus, which is analysed and annotated in an

older version of the Cardiff Grammar, was modified to create the Fawcett-Perkins-Day

Corpus, which is analysed and annotated to the current version o f the Cardiff

Grammar.

The reasons for the change were to give the parser the best possible model for

parsing, and to make the corpus compatible with the other COMMUNAL components.

The modification process was divided into two Stages. Section 9.3 showed that

modifying the corpus was not a simple matter of changing the syntax tokens. It

149

involved querying the corpus and identifying examples in terms of their ancestors and

siblings in matching partial syntax trees, and then modifying their syntax structures.

This demonstrated one practical use of the corpus index tables (see Chapter Seven).

Full details o f the changes made in Stage One are given in Appendix F.

As we saw in Section 9.4, the Second Stage involved mapping syntax tokens from

the old version o f the grammar to those equivalents in the current version of the

Cardiff Grammar, the changes sometimes being conditional on the context of the

token. A complete list o f these mappings is given in Appendix G.

The result o f this work is a new corpus and supporting tables, which is better

suited to parsing. The new corpus contains fewer errors and mis-analyses, and is

compatible with the other COMMUNAL components. It is a corpus which now

presents a better platform for other researchers in language.

This work concludes Part Two of this thesis. We move next to Part Three, which

describes the most recent precursors o f the present parser, including the prototype

parsers created for this project.

150

PART THREE
Parsing Natural Language: Some

Relevant Antecedents

This part of the thesis takes us on from the corpus database to the process of parsing.

More specifically, it provides surveys of earlier work that is relevant to the present

project, so giving the necessary background for Part Four, in which the Corpus-

Consulting Probabilistic XML Parser itself is discussed.1

Chapter Ten provides a selective history of parsing, describing (a) the parsing

concepts that have emerged in this field, and (b) the types of parser that have been

developed through half a century of work. Our purpose is to evaluate the main

concepts in terms of their ability to be useful in the construction of a parser that is

capable of handling:

(a) the full range of syntactic phenomena found in naturally occurring texts, and

(b) the representation of these phenomena in systemic functional syntax (as

described in Fawcett (2000a) and in Chapter Four).

Chapter Eleven describes earlier attempts at building parsers that use Systemic

Functional Grammars. It begins with Winograd's ground-breaking SHRDLU

(Winograd 1972), then it provides overviews of the work of Kasper (1988), O'Donnell

(1993, 1994), and the early work of the Leeds COMMUNAL Team. It then concludes

with more detailed accounts of the parsers of O'Donoghue (1991a), Weerasinghe

(1994) and Souter (1996), all of which were earlier attempts to build a parser within

the framework of the COMMUNAL project.

Finally, Chapter Twelve prepares the way for Part Four (which describes the new

parser) by (a) outlining the main features of two previous prototype parsers that were

developed as part of the current project, and (b) comparing one of these parsers (a

chart parser) with the approaches of Weerasinghe (1994) and Souter (1996).

1 In the remainder of this thesis, the term XML is not included in the name of the parser. It is referred
to simply as the Corpus-Consulting Probabilistic Parser (CCPP).

151

Chapter Ten
Concepts used in parsing: a selective
history
This chapter provides some necessary background information from the field of

natural language parsing. Section 10.1 describes the goals of parsing, then Section

10.2 introduces some of the concepts used when classifying parsing techniques, and

shows how these are relevant to the Corpus-Consulting Probabilistic Parser (CCPP)

that will be described in Part Four. Section 10.3 then describes some of the more

common parsing algorithms together with other relevant works, and identifies those

from which ideas are drawn for the CCPP.

Researchers have used various techniques in an attempt to improve both the

efficiency and accuracy of their algorithms, and the most common of these are

described in Section 10.4. Section 10.5 introduces the parsing technique that is most

relevant to this parser: probabilistic parsing. These approaches use statistics to

decide the most likely paths and to order the final analyses when more than one has

been produced. Probabilistic methods are typically used in conjunction with corpus-

based approaches and these are described in Section 10.6.

Because of the functional richness of its syntax, Systemic Functional Grammar

(SFG) presents a particular set of challenges to researchers when they attempt to use

the algorithms given in Section 10.3 for parsing. These are outlined in the final

section of this chapter, Section 10.7, in preparation for the next chapter.

10.1 The goals of parsing
The goal of a natural language parser is to take as its input a string of words that

together constitute one sentence, and to produce a syntactic representation of it. This

is typically in the form of a tree diagram, with varying levels of richness in the

annotations on the nodes of the tree. If the sentence is ambiguous, the parser should

provide two or more such representations. In a natural language understanding

system, the semantic interpreter and the other higher level components then use these

representations as their inputs, as discussed in Section 2.3.1 of Chapter Two.

Figure 10.1 shows a parsed output in an XML format that was given in Chapter

Six. This has been produced from the input string shown, and Figure 10.2 shows a

152

rendered parse tree derived from that parse output, which reflects the conventions used

in linguistics (e.g. as in Chapter Four and in Fawcett (2000a)).

Input string: The seagulls ate the mackerel
Output data:
<1DOCTYPE Z publics"-//DTD//Cardiff Grammar 20060801//EN” []>
<Z>

<C1>
<S>

<ngp>
<dd>The</dd>
<h>seagulls</h>

</ngp>
</S>
<M>ate</M>
<C>

<dd>the</dd>
<h>mackerel</h>

</C>
</Cl>

</Z>

Figure 10.1: XML parse tree for a sample sentence

Formatted output:
Z
Cl

the seagulls ate the mackerel

Figure 10.2: Formatted parse tree for a sample sentence

These two representations express primarily the same information, and are

therefore representational variants of each other.

153

10.2 Some early classifications used in parsing
This section provides some common terms used to classify parsing algorithms.

Section 10.2.1, 10.2.2, 10.2.3, 10.2.4 and 10.2.5 provide details of these terms and

Section 10.2.6 shows, where appropriate, how they can be used to classify the parser

described in Part Four of this work.

10.2.1 Mode of operation

There are three basic terms given to the way a parser works vertically with a syntax

tree, these are

(a) top-down,

(b) bottom-up and

(c) mixed-mode.

These are described in the sections that follow.1

10.2.1.1 Top-down

A parser is said to operate in a top-down manner if it starts with the hypothesis that

the input string forms a sentence and where the root (which is always shown

paradoxically at the top of the diagram) is the symbol E (in Fawcett 2000a) and Z in

the present work. It then works 'downwards' towards its items at the bottom of the

diagram, identifying its syntactic constituents.

As it works down from the sentence, it may decide next that the input has one

Clause (Cl) which starts with a Subject (S) (as in Figure 10.2). Then, it may

hypothesise that the Subject is filled by a nominal group (ngp) and that the nominal

group starts with a deictic determiner (dd) (which it is able to test by looking at the

input string). If this proves to be true, the parser can create structures for the sentence,

the clause, the Subject, the nominal group and the deictic determiner. It may then

hypothesise that the Subject comprises one nominal group and that it must have a head

(h), and, if it then finds one in the input string, it can build the structure and complete

the Subject. Notice that, so far, I have said nothing about what it does if its hypothesis

is not satisfied; this is covered during our discussion on parsing algorithms (see

Section 10.3).

1 There is also another classification: left-to-right or right-to-left which describes the direction a parser
operates on the items in the input string. Right-to-left approaches are extremely rare.

154

10.2.1.2 Bottom-up

A parser is said to be a bottom-up parser if it starts with the items themselves, and

then works upwards towards the root. For example, it may examine the input string

and find a deictic determiner. It will then seek rules, which tell it that the deictic

determiner can be the first element in a nominal group. Then, perhaps after further

breadth-wise analysis (see Section 10.2.2.1), determine that the nominal group is a

Subject in a Clause and that the Clause is filling a Sentence (Z).

10.2.1.3 Mixed-mode

Mixed-mode parsing employs both top-down and bottom-up approaches. For

example, a bottom-up chart parser (see Section 10.3.1.5) may use top-down filtering

to avoid creating analyses (specifically, edges) that are not permitted by the rules of

the model of syntax being used. One well-known early parser of this type (no pun

intended) was the Earley parser (Earley 1970), and Weerasinghe (1994) provides a

good example o f a Systemic Functional Grammar (SFG) parser that used this

approach. Earley used top-down, breadth-first methods with bottom-up recognition,

while Weerasinghe used a bottom-up breadth first approach with top-down filtering.

10.2.2 Search strategies

10.2.2.1 Breadth-first versus depth-first

A breadth-first parser is one that works through the input string of words typically

from left to right, assigning syntax tokens to each word before building the higher

components. A depth-first approach will build the structure vertically (i.e. up to the

sentence node or down to the word node) before it moves to the next word in the input

string. The direction is from left to right in a language such as English which is

written in this way, but the breadth-first approach could be used from right to left if

that was appropriate.

10.2.2.2 Best-first and beam search (n-best)

The best-first search is a more efficient form of search, because it starts by exploring

the most likely analyses first. These are selected by using the knowledge that, for

example, following one particular path is likely to be more fruitful that another. When

more than one analyses is followed in order of likelihood, this is called the n-best

search. The value of n, which represents the number of analyses taken forward, is

often called the beam width, and hence some implementers refer to the method as

beam-search. Researchers have investigated the effects of changing the beam width

155

upon parsing accuracy and efficiency (see, for example, Collins (1999) and Henderson

(2003a)).

Chamiak and Johnson (2005) and Collins (1999), developed best-first, coarse-to-

fine approach. Coarse-to-fme approaches, which used discriminative ranking for

identifying the most likely parses trees, generate a large set of parse trees and revisit

them afterwards, pruning them and discarding those of low probability.

10.2.3 Deterministic and non-deterministic parsing

Until the publication of Marcus' account of his parser PARSIFAL (Marcus 1980),

virtually all parsers were non-deterministic. A deterministic parser is a parsing

algorithm that is committed to the decisions that it has made, and only under very

special circumstances, changes its mind. As Sampson (1983) points out, deterministic

parsers are designed to avoid making false hypotheses, and therefore, they do not

constantly backtrack from false hypotheses as non-deterministic parsers do, nor do

they clone themselves into parallel processing systems when the grammar offers more

than one choice (Sampson 1983).

Sampson (1983) favours deterministic parsing, arguing that determinism is a

feature of the human parsing system, and that a human, when reading a text does not

constantly have to re-read parts until he or she is sure of the meaning. However, there

are certain 'garden-path' sentences that 'lead the reader up the garden path', and that

catch out humans. Examples are:

The horse raced past the b a m fell.
The cast iron their own clothes.
John gave the new cat food to Mary in a sandwich.

A fully non-deterministic parser, is one that takes ALL possible choices when

they are presented and takes each of them to their final conclusion, and most early

non-deterministic approaches are prepared to discard the work that it has done and

backtrack and start again.2 In contrast, a deterministic parser only backtracks when a

human would (i.e. on encountering a 'garden path sentence').3

In order to enable a deterministic parser to function with accuracy, and to prevent

backtracking, Marcus (1980) argues that it needs help through some sort of look

ahead ability. With this, the parser is allowed to look ahead for a small number of

2 Some non-deterministic approaches keep previous analyses and reuse them when they are forced to
backtrack Other non-deterministic approaches, such as chart parsers (see Section 10.3.1.5), do not
backtrack and generate all possible analyses, even those that are impossible.
3 Some argue that any parser that backtracks is non-deterministic (e.g. Sampson 1983).

156

words in the input string to help it make a deterministic decision about which route is

the correct one.

This raises the question "what should a truly deterministic parser do when it

encounters structural ambiguity, such as in the classic example sentence John saw
the man with the telescope ?" Here, John can be interpreted as using the

telescope as a visual aid to see the man (in which case, with the telescope
is an Adjunct in the Clause), or the man could have a telescope in his possession (in

which case it is a qualifier in a nominal group). Here, no amount of look ahead will

tell the parser which is the correct attachment, and it can only get this information

from the text or from its knowledge of the world' (if it has the ability to consult these,

which it normally does not have). Sampson (1983:96) argues that if a deterministic

parser produced more than one output, it is no longer completely deterministic. He

quotes Marcus as he states that the deterministic parser should create only one output,

and then supplement it with a flag which states that it is potentially ambiguous, so

leaving the decision up to the semantic interpreter or higher component in the

understanding system.

It can be argued, therefore, that one disadvantage of a deterministic parser is that

it will normally return only one parse tree, and cannot cope well with structural

ambiguity.

Next, I turn to the question about how deterministic parsers handle what appears

to be an ungrammatical sentence. Some non-deterministic approaches keep partial

parse trees and use them again when they are needed; for example, a chart parser (see

Section 10.3.1.5) does not normally destroy partial analyses that it has built, and some

backtracking parsers keep partial structures in case they are needed in a future

analysis. Therefore, I argue that after the non-deterministic parser has done its best

but failed, it could present some partial structures to the higher components. In

contrast, deterministic parsers cannot handle ungrammatical sentences as well, as it

does not build any partial structures except those to the left of the point at which it

failed. Being able to handle ungrammatical sentences is a questionable advantage

with a non-deterministic parser; but one could argue that many ungrammatical

structures that have been created as text could still be interpreted by a higher-level

understanding component. We should also note that humans frequently utter

sentences that most parsers would treat as ungrammatical, because they only operate

with the standard dialect of the language. Examples are he never saw I

157

(English West Country local dialect), and me a n d h im w i l l b e t h e r e , which

is common in the younger generation, and represents a change in the language that

may become standard English at some time in the future.

10.2.4 Backtracking

All the early parsers were constructed on the assumption that backtracking was of

interest as part of parsing. Some non-deterministic parsers use this mechanism when

they find that they have made a mistaken analysis, and they wind back to the point in

the parse that is known to be correct. As stated above, deterministic parsers never

backtrack, and they make sure that they have made the correct decision before

proceeding.

Some non-deterministic parsers (for example, those based on ATNs) employ

backtracking techniques, whereas others (such as chart parsers) avoid backtracking

as they follow all possible routes to their conclusion. Both techniques are extremely

wasteful, and it was this that led Marcus to introduce the concept of a non-

deterministic parser.

There is a difference between computational backtracking and linguistically

motivated backtracking used in a parser. Typically, the former moves back a stage

and takes the next path that has not been followed. The latter moves back to a point in

processing that is recognised (using linguistic knowledge) as being an alternative to

the failed attachment.

In its implementation in Phase One (see Chapter Thirteen), the CCPP uses

computational backtracking. For example, when all of the n-best joins fail to succeed,

the parser moves back and takes the next n most likely joins. In Phase Two, the parser

will use linguistically motivated backtracking (see Chapter Eighteen and Appendix L).

10.2.5 Incremental parsing (on-line parsing)
It is accepted by some psycholinguists that the human parser operates from left-to-

right in a piece-meal fashion and builds up structures as it goes and modifies its

analysis as more lexical items are recognised, as they become available. An

incremental parsing process acts in the same way (see for example, Costa et. al (2003)

who refer to the work of Marslen-Wilson (1973)). An incremental parser is able to

present partial structures as it goes to the higher levels (for example a semantic

interpreter) as it reaches a new lexical item in a left-to-right sequence. Incremental

158

approaches have been taken for chart parsing - for example Wiren (1989) and

Weerasinghe (1994).

The term incremental parsing is also used by others to describe a slightly different

approach which is more akin to shallow parsing and chunking. For example, Yang

(1994) describes an incremental parser that is able to reuse parts of previously parsed

trees. Wiren (1994) describes an incremental chart parser that reuses what it has done

before given a small (incremental) change in the input sentence.

10.2.6 Classifying the parser described in Part Four

In this section, I detail how these terms can be used to classify the parser that is

described in Part Four of the present work - the Corpus-Consulting Probabilistic

Parser (CCPP). As will be seen in Part Four, the CCPP algorithm constructs trees

called built structures (which represent the parse so far) and attaches new partial

trees, called candidate structures, to the built structures as the parse progresses.

As the CCPP starts with the items and works upward towards the sentence node, it

is essentially a bottom-up parser. It also uses a depth-first approach, as it works

vertically building elements up to units and units up to elements before attaching the

structure to a built structure, which includes the sentence node before it moves to the

next item in the input string.

The CCPP can be classified as semi-deterministic. Although it has been

designed to take the most likely path first, and it is highly likely that this is the correct

choice, it is not committed to that path in the same way as a deterministic parser is.

There are two parts of the design which are not deterministic, these are (a) the use of

n-best techniques and (b) the use of backtracking.

The CCPP allows n most likely trees to be taken forward to the next stage of the

parse. Although the CCPP is not deterministic when values of n that are greater than 1

are used, this feature does not mean that it generates every possible analysis in the

same way that a non-deterministic chart parser does (see Section 10.3.1.5). The

CCPP also has backtracking, and according to the definitions, a deterministic parser is

not allowed to backtrack. The provision of these two non-deterministic features

provide the CCPP with the tools that it needs to be able to work with the complex

model of syntax that is derived from the naturally occurring texts of a parsed corpus.

The CCPP is an incremental parser since it moves from left to right making

analyses about the items that it finds, and builds candidate structures for attachment to

the built structures. As will be seen in Chapter Sixteen, the incremental nature of the

159

CCPP has been exploited to assist in the development of the algorithm through the

adoption of the step-by-step parse.

103 Parsing algorithms
This section will look at the algorithms used for parsing. Introductions to some of the

most common algorithms and their significance to the field are given in Section

10.3.1. Some less common, but relevant approaches are given in Section 10.3.2.

Section 10.3.3 provides details of how some of these concepts have been used in the

present work.

10.3.1 Some common algorithms

10.3.1.1 Augmented Transition Networks (ATNs) and Recursive Transition
Networks (RTNs)

Before the appearance of Marcus's parser in 1980, natural language parsing was

dominated by parsers that used transition networks (see Section 5.2.2 of Chapter Five).

The most influential was the Recursive Transition Network (RTN) developed by

Woods (1970), named LUNAR (because it was used with a semantic interpreter to

describe rocks brought back from the moon).

RTN parsers typically operate in a top-down, depth first manner, following the

order of the arcs in the transition network. But a breadth-first approach is also

common (see Johnson (1983) for a useful summary of the concept of ATNs).

10.3.1.2 Truly deterministic parsing

Marcus (1980) claims that PARSIFAL is a truly deterministic parser. It operates with

three main data structures: the active node stack, the buffer, and the unconsumed

text.

The active node stack contains those nodes that have been parsed so far, for which

'child nodes' are now sought (i.e. constituents). The sentence node is looking for a

full-stop at the end of the input string).

The buffer contains nodes that are semi-analysed and are seeking parent nodes,

and this buffer provides Marcus's parser with its look-ahead mechanism.

Elements in the buffer may be other individual words, or more complete

structures which are looking for a place to which they may be attached. As

attachments are decided, the appropriate buffer structures are transferred into the

active node stack, and new words are consumed from the text into the buffer. Marcus

limits the buffer to no more than three word look-ahead.

160

As Sampson (1983) points out that Swartout (1978) casts doubt on Marcus's claim

that PARSIFAL is truly deterministic on the grounds that the buffer gives the parser

some degree of non-determinism.

Another noteworthy deterministic parser was PARAGRAM (Chamiak 1983). It

was adapted from PARSIFAL and was able to handle ungrammatical input.

10.3.1.3 Shift-reduce parsing

Typically, shift-reduce parsers operate with a stack which maintains the current state

of the parse. Normally, they operate left to right and bottom-up; Allen (1987; 172)

describes them as being bottom-up with top-down prediction, and therefore they can

be considered to be mixed-mode. They can be implemented so that they are

deterministic (Allen 1987:166-176). Shift-reduce parsers continue to enjoy popularity

in the field.

As a word in the sentence is encountered, it is shifted onto the stack. When the

top of the stack contains a set of tokens that can be rewritten by a rule, the top tokens

are 'popped' from the stack, so that the stack is reduced, and the new left-hand side

token is shifted onto the stack. Figure 10.3 describes this process in terms of a

sentence analysed in terms of the Cardiff Grammar.

Examples of shift reduce parsers can be found that operate with rewrite rules,

while others operate with state transition networks. Allen (1987:186) cites the

pioneering work of Shieber (1984). A good introduction to the concept can be found

in Winograd (1983).

Parse Stack Input String Remarks
0 The seagulls ate the mackerel Stack initialised
(dd) seagulls ate the mackerel "the" as dd shifted to stack
(dd, h) ate die mackerel "seagulls" as h shifted to stack

(ngP) ate the mackerel dd and h reduced as ngp
(S) ate the mackerel ngp reduced as S
(S,M) the mackerel "ate" shifted as M
(S,M,dd) mackerel "the" shifted as dd
(S, M, dd, h) "mackerel" shifted as h
(S, M, ngp) dd h reduced by ngp
(S, M, C) ngp reduced by C
(Cl) S M C reduced by Cl
(Z) Cl reduced as Z

Figure 10.3: Parsing a sentence with a shift-reduce parsing algorithm

Ratnaparkhi (1999) worked on Collins ideas, he developed a shift-reduce parser

that used a maximum entropy model; his parser, like Collins, used the head-driven

161

parsing approach (see Section 10.4.2). Henderson (2003a), also building on the

work of Collins (1996, 1999), created a shift-reduce probabilistic parser that used a

left-corner algorithm (the parameters of which were calculated using neural

networks). He implemented two versions; one with a discriminative model and the

other a generative model. He reported significant efficiency gains when he used look

ahead in his discriminative model, but higher accuracy when he used a generative

model that made predictions as it reached words and built up sub-structures.

10.3.1.4 Definite Clause Grammar (DCG) parsers

Definite clause grammars provide parsers that are dependant on the use of PROLOG.

Examples include those described by Colmerauer (1978), Warren and Pereira, (1982),

and Pereira and Shieber (1987). A more recent example is described in Sprecht et al

(1995), who implemented a DCG parser for Hebrew texts.

The disadvantages of DCGs arise from the fact that they are programmed in a

declarative language (i.e. PROLOG). Much of the way the parser works is under the

control of the programming language, and it may be difficult to implement new

features, such as specialised searches. They are also limited to a top-down, breadth-

first type of search, unless the programming language's search strategy is changed.

10.3.1.5 Chart parsers

There are many parsing systems that have a chart as their core data structure. Early

examples include Kay (1989), Magerman and Marcus (1991b), Stolcke (1993), and

Weerasinghe (1994), and a more recent example is described by Hall (2005). Chart

parsing continues to be a popular approach.

A chart parser is non-deterministic, since it follows all possible hypotheses to

their conclusion, so that they never need to backtrack. They can be either top-down or

bottom-up, breadth-first or depth-first, with bottom-up breadth-first being the most

popular.

Chart parsers have been developed to operate with a 'rewrite rules' version of

Systemic Functional Grammar (SFG), e.g. Souter (1996), and Weerasinghe (1994), as

we shall see in the next chapter. Other examples use a transition network, e.g. Hall

(2005), and, in the present work, a database formalism (see Chapter Twelve).

Collins (1996, 1999) used a simple bottom-up chart parser that extended the

standard bigram algorithms to calculate probabilities that were based on the

dependencies between the Tiead 'words in the parse tree. In his work, he claims a

162

parsing speed of 200 sentences per minute when a beam search strategy is introduced.

He also found that although increasing the beam size improved the accuracy of the

parser, its speed reduced.

Let us look briefly at how this popular type of parser works. As Figure 10.4

shows, the basic chart has nodes and edges (sometimes called arcs). The input string

is divided into its items, and a node is placed at the start and end of the input string and

at the gap between each of these items (represented by the numbers in Figure 10.4).

An edge, which starts at one node and finishes at a later node (shown by arrows in

Figure 10.4), represents an analysis of the syntax structure for the span of the edge.

An edge that starts at the first node and ends at the last node, and that has the sentence

token dominating the edge, represents an analysis of the complete input sentence.

An edge can be active, which means that it is not yet complete and is seeking

further elements of structure, or inactive which means that it is complete, and it has

been incorporated into the higher analysis. A dot notation is typically used in the

literature to separate the part of the rule that has been found from the part that is still

being sought. Thus, the rule n g p -> d d . h represents a ngp that has found a

deictic determiner (dd), and is looking for a head (h). In a typical implementation, an

edge is a five tuple { s t a r t , e n d , to k e n , fo u n d , to F in d } , where:

(a) s t a r t represents the start position of the edge,

(b) en d represents the end position of the edge,

(c) to k e n is the syntax token that represents the syntactic category of the edge,

(d) fo u n d is a list of tokens that have been found so far (i.e. tokens to the left of

the dot),

(e) to F in d represents the tokens that the edge is still looking for to complete

the edge (i.e. tokens to the right of the dot).

The chart parsing algorithm has the great advantage that it never throws away a

partial analysis. This means that both successful and non-successful analyses are

recorded in the chart, and that the parser never has to backtrack and re-analyse what it

has analysed before.

Typical implementations have the notion of a completed edge, this is an edge that

has become inactive, since it is not looking for any further elements (i.e. its to F in d

list is empty).

163

h

d d h

---------------------------------►

M dd h
k.W W W W W

0 The 1 seagulls 2 saw 3 the 4 mackerel 5

Figure 10.4: The chart after the initialisation stage

The process starts with chart initialisation. This adds an edge for each element of

structure that an item can expound, as in Figure 10.4. Typically, the parser does this

first for all items (i.e. operating breadth-first). Weerasinghe’s parser (1994),

implemented an incremental approach where items are added to the chart as they are

accepted. In Figure 10.4, which shows the state of the chart after initialisation, the

item saw is ambiguous, and therefore has two edges in the chart.

Following initialisation, the algorithm applies the fundamental rule. This states

that an active edge that is seeking an element is to be combined with other edges that

have that element on their left-hand side. The bottom-up rule then ensures that each

edge that is inactive (i.e. complete, and seeking no further elements) will create a new

edge for each rule in the syntax list that has the token represented by the edge, as the

first token in the elements on the right-hand side of the rule.

Typically, when applied to a Systemic Functional Grammar, the fundamental rule

is typically used to add elements to the elements that have been found for a unit.

Further, the application of the bottom-up rule is problematical in any full model of

syntax, such as the Cardiff Grammar, since it is not easy in such a grammar to decide

that a unit is closed. This is either because there are optional elements that may not

occur after the head of the unit (e.g. a qualifier in a nominal group, or an Adjunct in a

clause), or because the head itself is missing from the unit (as in the samples cited in

Section 10.4.2). In the experimental work carried out before deciding on the form of

the final parser, I implemented a chart parser that introduced the concept of'potentially

closed edges'. These were allowed to act as inactive edges, and so trigger the bottom-

up rule, while the lower edge still remains active, and can therefore accept further

elements if they are found (see Chapter Twelve).

Typically, chart parsers employ an agenda which may take the form of a queue or

a stack; the former provides a breadth first search and the latter a depth first search.

Figure 10.5 shows a complete parse and typical edges for the example sentence.

164

Z -> C 1

C 1 -> S M C

W

C 1 -> S M . C

C->n<

w

JP

C l - > i 3 . M C

w

1 ^
C -> n g p

1 ^
1 *

S -> n g p
i

h

---------------------------------fe.

1 ^
S -> n g p

n q p -> d d h n g p - >dd h

n g p - >dd . h

W

h

n g p - >dd .

w

h

------------------- ►

d d M

W

d d

W W W W W

0 The 1 seagulls 2 saw 3 the 4 mackerel 5

Figure 10.5: A simplified view of the chart after parsing the example sentence

103.1.6 CYK parsers

The CYK algorithm (so called because this type of parser was developed

independently by these different researchers: Cocke, Younger and Kasami), is very

similar to the chart parsing algorithm. The main difference is that it requires the

grammar to be in what is termed Chomksy Normal Form (CNF), whereas a chart

parser can be used with different formalisms. For a description of this algorithm, see

Grune and Jacobs (1990). Klein and Manning (2003) produced a CYK parser that

showed better than expected results when using unlexicalised grammars (where no

head word annotates the phrasal nodes).

This now concludes our survey of the common algorithms that have been used in

parsing. In the present work, in the development of the CCPP, a chart parser was

developed, and this work is described in Chapter Twelve. One of our main goals in

the development of the parser, as will be described in Part Four, was to closely model

the way the human parser is thought to work. That is, working from left-to right in the

sentence, and making decisions about the syntax structures as it goes, by drawing on

linguistic knowledge.

165

The number of syntax 'rules' extracted from the naturally occurring texts of a

parsed corpus is very large. As will be seen in the next chapter, and in Chapter

Twelve, the rbrute-force' approach that is used by the chart parsing algorithm, and the

related CYK algorithm, is only suitable for a corpus based approach provided some

additional techniques are applied in order to reduce the number of analyses. It can be

argued that these approaches, although they have had their successes, do not model the

human parsing process, and represent a more mathematical approach to the problem.

As has been suggested by Marcus, Sampson and others (see Section 10.2.3 and

10.3.1.2), deterministic parsing does follow the human parsing process, and the human

only backtracks when a garden path sentence has been encountered. Therefore, the

CCPP will be designed to display a degree of determinism, while drawing upon some

of the features that have seen success in other approaches (such as the beam search).

In the next section, I describe some of the methods that others have used, normally in

combination with the algorithms described in Section 10.3.

10.3.2 Other relative parsing algorithms

10.3.2.1 Vertical strips parsing

The Vertical Strip Parser developed by ODonoghue (1991a), was implemented within

the COMMUNAL Project. He extracted a set 'vertical strips' from the POW Corpus,

and created a network of strips. The network indicated which strips can follow others

and essentially formed the rules of his 'grammar'. His parser operated by joining one

vertical strip to another where they had matching units and elements, using the

network to find strips, and then join them together.

A vertical strip being defined as a set of nodes from the sentence node downwards

to an item (but not including the item). Below is a set of vertical strips extracted from

the sample sentence in Figure 10.1 and Figure 10.2. O'Donoghue's parser, which was

designed for SFG, is discussed fully in Section 11.5 of Chapter Eleven.

the dd ngp S Cl Z
seagulls h ngp S Cl Z
ate M Cl Z
the dd ngp C Cl Z
mackerel h ngp C Cl Z

10.3.3 Concepts used in the current work
As described in Section 10.2.6, like Marcus, one of the primary goals of this project

was to design a parser that has deterministic qualities. Although we do not use look

166

ahead, we have recognised the need for it for multiple word items, however, we will

not then be using it for the same purpose as Marcus did.

In the development of the CCPP, the use of chart parsers was investigated and a

prototype was developed. The purpose of this work, which is reported in Chapter

Twelve, was to determine if the chart-based algorithm is suitable for a corpus-based

approach building on the work of Weerasinghe (1994) and Souter (1996).

The CCPP in its final form, is quite unlike any other parsing algorithm described

here. However, it uses a state transition to move between the stages of the parse

based on success or failure. This is used in the same way as a workflow system and

the states have nothing in common with an ATN.

As will be described in the next chapter, Weerasinghe found that the number of

edges generated even for a simple sentence caused a problem to the efficiency and

accuracy of the parse. Souter found that these problems were exacerbated when the

model of syntax was extracted from a corpus. Weerasinghe, Souter and many others

have employed techniques in order to overcome these limitations. The next section

describes these techniques and their limitations and successes in order to assess their

suitability for this present work.

Although the CCPP uses the concept of O'Donoghue's vertical strips extensively,

it does not use his parsing algorithm.

167

Algorithm Applications Advantages Disadvantages
Augmented Transition non-SFG: Grammars are modelled as networks and these can be difficult
Networks / Recursive
Transition Networks
(ATN/RTN)

- Woods (1970,1980)
Bobrow(1978)

to express for complex naturally occurring grammars.

Charts non-SFG: Finds all possible parses without Brute-force approach which generates every possible edge
many examples eg the need to backtrack (gives a great many inpossible edges).
- Kay (1989) Edges can apply to more than one Slow for complex grammars.

Magerman and Marcus (1991 b)
- Hall (2005)
SFG:

W eerasinghe (1994)
Souter (1996)

analysis - no need to regenerate Researchers forced to implement methods of reducing the
number of impossible edges generated.

Shift-reduce non-SFG:
Shieber (1984)
Abney (1991)
Ratnaparkhi (1999)

- Collins (1999)
Henderson (2003a)

SFG:
- Winograd (1983)

Good at handling ambiguity
because decisions of which rule to
apply can be delayed until further
on in the parse (Allen 1987)

Definite Clause Grammar non-SFG: Easy to implement in PROLOG Difficult to extend method.
(DCG) Colmerauer (1978)

Warren and Pereira (1982)
Pereira and Shieber (1987)
Sprecht et al (1995)

facts Search order defined by the programming language (although
can be modified with effort).
Grammar generated from a corpus will result in thousands of
Horn Clauses.

Deterministic approach non-SFG: Gets it right first time Has to backtrack to get alternative parses.
Marcus (1980)

- Chamiak (1983)
Does not over generate depending on method, the same partial analysis may have to be

generated for alternative parses.
Vertical Strips SFG: High success rate using a corpus Success rate can never be 100% (O'Donoghue 1991a).

O'Donoghue (1991 a) generated grammar (approx. 79%) Needs methods to generalise for rare structures that have not
occurred in the corpus.

Table 10.1: A Comparison of parsing algorithms

10.4 Other techniques
Two critical success factors with which to measure parsing algorithms are efficiency

and accuracy. Efficiency is measured in terms of (a) the length of time taken to find

a solution, and (b) how many incorrect structures have been created before the correct

solution is found. Accuracy is the ability of the parser to find the correct parse.

This section provides details of some of the techniques that have been used in

conjunction with the algorithms described in Section 10.3 in order to improve the

efficiency or accuracy of the parsing process. I describe the advantages and

disadvantages of these approaches in the context of the present work.

10.4.1 Left-corner parsing

Left-comer parsing, as used for example by Rozenkrantz and Lewis (1970), is an

attempt to improve the efficiency of the parser by introducing a new node into the

parse tree only when it has fully analysed the left-most node. The remaining nodes for

the same sub-tree then being parsed in left-to-right order. See Henderson (2003a) for

a recent attempt at left-comer parsing.

10.4.2 Head-driven parsing

Head-driven parsing provides an alternative to the simple left-to-right type of

breadth-first parsing. In this approach, the parser looks first for the words that are

likely to be functioning as head of a syntax unit first. Kay (1989) states that the parser

should start with the main verb, since this gives information about the types of

subjects and objects that are likely to be found. After finding the subjects and objects,

Kay suggests that the parser should go looking for the head words in them.

Weerasinghe's parser (described in Section 11.6 of Chapter Eleven) is of this type.

Problems arise, however, when the head is not present, as in examples such as:

SI: Give me five
where, in the Cardiff Grammar, five is a quantifying determiner, because it can be

followed by of them. Another example is given below where the word people is
ellipted:
S2: The very rich (people)
10.4.3 Shallow parsing
Shallow parsing is the name given to the technique of finding the main constituents of

a sentence before processing the complete parse. For example, when applied to a

169

Systemic Functional Grammar, we would find units first, and then attempt to detect

the relationships between them using local evidence in the vicinity of the construct.

Abney (1991) called his shallow parsing method parsing by chunks and argued

that the model is similar to the way a human will break down a sentence in order to

understand it. Abney's method has two distinct stages. The first stage is performed by

the chunker which, in SFG terms, is responsible for identifying the main units. The

second stage is responsible for joining the chunks, and is performed by the attacher.

In Abney's modular approach, the job of the chunker, he argues, is simplified as it does

not have to worry about complex joins, which are the responsibility of the attacher.

Abney's chunks always must contain a head word and function words that he

argues always match a fixed template, and it is therefore a variation of a head-driven

parsing. We have seen in our arguments above on head-driven approaches that the

method suffers as heads are not always present in units.

10.4.4 Pre-tagging
In a similar approach to shallow parsing, the use of part-of-speech tagging as a pre

stage to parsing is becoming more popular. This method was used by the International

Corpus of English Project (see Section 3.2.6 of Chapter Three), and by Souter (1996),

in his Systemic Functional Grammar chart parser (See Section 11.7 of Chapter

Eleven). Pre-tagging uses a part of speech tagger (see Section 3.3 of Chapter Three)

to identify the elements that items expound before starting the parsing process.

10.4.5 Word lattice parsing and neural networks
Hall (2005) argues that word-lattices provide a compact representation for a set of

word strings and their scores. Hall, transformed word-lattices into finite state machines

for use in his best-first, bottom-up chart parser.

Neural networks have been used in conjunction with probabilistic methods within

parsing algorithms. These comprise Simple Synchrony Networks (SSNs) which return

a score that can be used to determine the most promising path.

Henderson (2000), working at the University of Exeter, used Neural Networks to

return a probabilistic score that represented the most likely path. He used the parsed

SUSANNE Corpus (see Sampson (1995) and Section 3.2.4 of Chapter Three) and the

Lancaster-Leeds Treebank (see Garside et al (1987)) for the part-of-speech tags. He

found that the SSN parser outperformed other parsers that used a probabilistic context-

free grammar.

170

10.4.6 The relevance of these techniques to the present work

This section has looked at the techniques that have been used to improve the efficiency

or accuracy of the parsing process. Next, I turn to the suitability of these methods in

the present work.

Weerasinghe successfully used a head driven approach in an attempt to reduce the

number of edges in his chart. However, as discussed in Section 10.4.2, often the head

is not present, particularly in spoken texts. Shallow parsing works in a similar way to

the head driven approach, and both methods are not suitable for parsing naturally

occurring texts and hence are not used in the CCPP.

The CCPP arguably, operates in a similar way to the left-comer approach as it

builds up from an item to an element, and then to a unit before attaching it to the built

structure. Pre-tagging is not needed in the CCPP as the information about the

elements that particular items expound is extracted from a parsed corpus.

The CCPP does extensively use probabilities in order to decide which analysis is

the correct one and to only follow those that are less likely when the chosen analysis

fails to reach a conclusion. The next section looks at probabilistic approaches and

how they have been used in parsing.

10.5 Probabilistic and statistical approaches
In the early 1990s, the combination of statistical grammars, and the availability of

large corpora, opened up a new and exciting branch of computational linguistics called

probabilistic parsing.

Probabilistic methods can be used in conjunction with any of the common parsing

techniques described in Section 10.3 by augmentation. For example:

(a) in a DCG parser, a Horn clause can be expressed with an associated

probability that is used when the fact is used,

(b) The rules used by a chart parser can have a probability that can be used to

calculate the probability of the edges in the chart,

(c) The paths through a transition network can have a probability associated to

the arc that represents a transition from one state into another.

One technique for modelling probabilities is the use of the Markov model.

Researchers in parsing borrowed techniques from the field of speech recognition.

They began by using the simple conditional models provided by bigrams (the co

occurrence of two items), and some moved on to trigrams (the co-occurrence of three

171

items) with greater success. Weerasinghe (1994;71) reports that further transitions

(over three) have proven less successful.

Stolcke and Omohundro (1994) used a best-first Hidden-Markov model approach

and Guyon and Pereira (1995) researched the effect of variable length Markov models

to predict the next character in sequence in a sentence. They reported trade-offs in

accuracy and speed depending on the length of the n-gram being used.

As reported in the next chapter, Weerasinghe's parser (1994) was a probabilistic

chart parser for Systemic Functional Grammar, and other researchers such as Collins

(1996) implemented probabilistic parsers that used Phrase Structure Grammars. The

techniques used in many implementations were similar, and they have been also

applied to Shift-Reduce parsers, by for example, Ratnaparkhi (1999) and Henderson

(2003a). The Leeds COMMUNAL team applied probabilistic methods to various

parsing techniques. Probabilistic parsing continues to enjoy popularity and success

today.

There has to be a source from which the probabilities are derived. Some early

parsers used statistics that are created manually based on intuition. Most of the more

promising approaches, however, use probabilities that have been extracted from a

parsed corpus. As the number of parsed corpora increases, it is expected that the

number of parsers using this approach will also increase. It is to corpus based parsing

that we turn next.

10.6 Corpus-based approaches
In contrast with parsers that use formal syntax rules which have been developed by a

linguist, corpus-based parsing methods rely on past linguistic events (i.e. texts) that are

stored in a corpus. Different names have been used for the approach. The term data-

oriented parsing is frequently used to describe corpus-based approaches. Corpus-

based approaches typically use probabilities.

History-based parsing is a probabilistic corpus-based approach that uses

mechanisms for taking advantage of contextual information from anywhere in the

discourse history. The method, which was first used in the IBM Research Center by

Black et al (1993), uses decision trees to enable it to look at the other sentences that

occur in the context of the sentence being parsed. This allows the parser to make a

decision about which analysis is the correct one when there is more than one.

172

Souter (1996) extracted his probabilistic data from a parsed corpus and his work

was probably one of the first examples of a parser that worked with the syntax

information extracted from a parsed corpus (see Section 11.7 of Chapter Eleven for an

analysis of Souter's parser).

The disadvantage of approaches in which syntax 'rules' are automatically extracted

from a corpus, is that the model of syntax is only as good as the corpus that created it.

In a small corpus, some rarely occurring constructs may not be present because they

have not occurred yet. Further, rare constructs that have occurred may be given undue

weighting, as the sample size is small. Therefore, I argue that the larger the corpus is,

the more reliable the 'grammar' that is extracted will be.

The work to be presented in Part Four is a corpus-based approach. However, it is

different to Souter's in a number of ways. The most important, from a innovation

perspective, is that its probabilistic data comes from a dynamic corpus, i.e. a corpus

that is expanded as sentences are parsed and added to the corpus, and so changing the

probabilities (see Section 1.1 of Chapter One).

10.7 Applying the algorithms to Systemic Functional Grammar
Note that all algorithms when applied to a Systemic Functional Grammar (SFG) will

need to be modified to handle the relationships between items, elements and units (see

Chapter Four). For example, when a chart parsing algorithm is used for SFG, either of

the following methods can be used:

(a) edges always represent units (ngp-> dd mo hbut notmo->ngp),

(b) edges represent either a unit or an element (ngp->dd mo h and

mo- >ngp),
(c) syntactic rules are rewritten such that elements and units are merged

(S_ngp- >dd mo h).
In the first method, the units are handled directly by the fundamental rule. When

a unit is complete, the rule will create a new unit edge for the parent unit of each

element of structure that the unit can fill. This approach was used by Weerasinghe

(Weerasinghe, 1994).4 In order to use the method, changes to the standard algorithm

have to be made to handle co-ordination. The second method requires no change to

the standard chart parsing algorithm but will mean that the syntactic 'rules' will be

larger and the number of edges in the chart will be significantly greater when

173

compared to the first method. The third method, which was one of the methods

explored by Souter (1996), also demonstrates the advantages of the first but can use

the standard algorithm without modification. However, there will be more syntactic

’rules' for the third method.

Similar approaches will be needed for other parsing approaches. For example, the

Horn Clauses in a DCG parser can follow methods 1, 2 or 3, although it may be a

slightly more complex algorithm for method 1. In a shift-reduce parser, all three

methods can be implemented; for method 1, the unit can be popped automatically from

the stack when it is complete however, like the chart parser, non- standard methods

would be needed for co-ordination.

10.8 Summary
This chapter started in Section 10.1 by identifying the goal of any parser - to turn a

sentence from a string of words into a tree diagram annotated with syntax labels.

Section 10.2 looked at the ways parsing algorithms have been classified, in terms

of the way they operate, and the search strategies they use. These terms were then

used to classify the parser that is described in Part Four of this work.

Next, in Section 10.3, the more common parsing algorithms were introduced, and

any concepts from these that the parser described in Part Four draws on were

identified.

Some researchers have produced parsers that use additional features in order to

increase the efficiency and accuracy of their parsing algorithms, and these have

improved their results. The most common of these approaches were identified in

Section 10.4. They include those that use head-driven methods, but these, which

despite their success, cannot be used for parsing naturally occurring texts as the heads

are not always present.

As discussed in Section 10.5, probabilistic approaches have been used with

promising results; however, as Souter (1996) discovered, problems arise when a parser

uses (a) probabilistic 'rules' that have been extracted from a parsed corpus, and (b)

traditional algorithms such as chart parsing. The root of the problem is the large

number of 'rules' extracted. These corpus-based approaches were discussed in Section

10.6 .

4 He could do this because o f his head-driven approach (see Section 11.4 o f Chapter Eleven).

174

Systemic Functional Grammar (SFG) presents a significantly different set of

challenges to those presented by Phrase Structure Grammars, and these differences

mean that the algorithms given in Section 10.3 work less efficiently for SFG. Section

10.7 outlined these differences in preparation for Chapter Eleven (where attempts at

parsing SFG) are described), and for Chapter Twelve (which describes early prototype

parsers developed in the present project).

175

Chapter Eleven
Earlier parsers that use Systemic
Functional Grammar
This chapter examines previous attempts to build parsers that use Systemic Functional

Grammar (SFG). The early parsers that used the Cardiff version of SFG were

developed at Leeds University by Atwell, Souter and O’Donoghue (see Sections 11.2

and 11.5 below), and two later parsers were constructed by Weerasinghe, at Cardiff

University in 1994 (Section 11.6), and by Souter, at Leeds University in 1996 (Section

11.7). These will be discussed in the later sections of this chapter, but we shall begin

with a brief survey of earlier parsers that used SFG. The first of these was developed

at the end of the 1960s by Winograd at the Massachusetts Institute of Technology

(MIT), after studying SFG under Halliday in London (Winograd 1972), and later

attempts include those of Kasper (1988) and O'Donnell (1994).

11.1 Winograd’s SHRDLU
Winograd's (1972) system was not merely a parser, but a complete (if limited)

language understanding system, and his work was widely recognised as a landmark

achievement in parsing.1 His system allowed a human to communicate, using a

restricted form of English, with a virtual robot. The human could ask it to manipulate

building blocks of different shapes and colours within its virtual world, and then to

answer questions about what it had been doing. Winograd’s system was the first to

demonstrate that the type of 'flat tree' structure that is in the output from an SFG

natural language generator can also be used as an output from a natural language

parser. However, the impact of his system on the field of natural language

understanding was due less to his use of SFG syntax and more to the fact that that it

contained small versions of all the main components of a complete natural language

processing system. Not only did it parse the input, but it also developed a semantic

interpretation of it, then reasoned about it, and, if appropriate, it responded by

generating natural sounding dialogue.

1 An even earlier attempt at parsing SFG was that of Parker-Rhodes in 1962-63. He worked with
Halliday on the NUDE project (see O'Donnell and Bateman 2005:346), and he developed a parser for a
grammar based on Halliday's Scale and Category Grammar.

176

Winograd (1972:22) classifies his parser as a top-down, left-to-right parser. His

approach was different from that of others, as its knowledge of syntax was encoded

within the procedures of an interpreted program. A special programming language,

called PROGRAMMAR, was specifically designed for writing his 'grammars'.

Another interesting part of his design (1972:23) was the fact that it was an interleaved

approach with the parsing process being 'unified' with the semantic interpreter, as the

semantic interpreter was used to 'guide the parsing'. He also implemented a

backtracking mechanism within PROGRAMMAR that did not, like other parsers of

the time, blindly go back and try alternative paths, but he allowed his program to

decide specifically what should be tried next.

Weerasinghe (1994:44) rightly points out that Winograd's model of syntax is

difficult to modify, because it is encoded within the lines of a programming language

and one has to take care not to interrupt the complex interrelationships between the

procedures of the program. The problem, which is similar to the problems associated

with transition networks (see Section 5.2.2.2 of Chapter Five), increases when the

syntax model is extracted from the naturally occurring texts of a corpus, because the

interrelationships then become even more complex.

11.2 Earlier work at Leeds University
The earliest attempts at parsing what was later to be called the Cardiff Grammar, were

carried out by the Leeds Team of the COMMUNAL project in the late 1980s. Atwell

et al (1988a and 1988b) attempted to create a Definite Clause Grammar parser (see

Section 5.2.5 of Chapter Five, and Section 10.3.1.4 of Chapter Ten), which was based

on patterns of elements in units ('rules') that were extracted from the POW Corpus.

There were many such patterns, each of which were functionally equivalent to a

rewrite rule in a Phrase Structure Grammar (e . g . C1->S O M C). However,

success was limited due to memory limitations of the machines of the time.

Atwell et al (1988b) experimented with a number of parsers, the most promising

of which was called the Realistic Annealing Parser (RAP). It used simulated

annealing, which is a general-purpose stochastic optimisation technique for finding a

solution in a very large search space (Atwell et al 1988b:75). The following

explanation of the process is taken from Souter (1996:67). Simulated annealing works

by starting with a parse tree that contains the sentence node, and nodes for each item.

It then proposes changes, in the form of partial trees, and evaluates it using

177

probabilistic methods. Changes that represent an improvement are accepted as local

changes, and changes that do not represent an improvement are accepted (initially) as

global changes. As the parse progresses, fewer and fewer worsening changes are

accepted.

Souter (1996:68) reported that the parser was very slow and unreliable,

particularly on longer sentences. O'Donoghue later did a number of further

experiments with the parser, but abandoned it in favour of his Vertical Strips Parser

(VSP). The VSP, which has had a direct influence on the data structures that are used

in the parser to be presented in Part Four, is described in Section 11.5.

113 Kasper's NIGEL-based parser
Kasper experimented with the NIGEL grammar (see Section 2.3.2 of Chapter Two) to

see if it could be applied to parsing. As ODonnell and Bateman point out (2005:351),

Kasper (1988) used a bottom-up chart parser to produce a representation of syntax

in terms of a simple PSG like formalism, which then became the input to the

application of the realisation statements (operating in reverse), the product of this

being a representation in terms of the features in the system network. This second

stage of the process was therefore the equivalent of O'Donghue's (1991b) semantic

interpreter (as described in Section 2.3.1 of Chapter Two). It is therefore only the

preparatory parser that is in any way comparable to the function of a parser, as the

term is understood here.2

Although Kasper's system is noteworthy as a first attempt at parsing that used a

full-Hallidayan grammar, O'Donnell and Bateman (2005:352) rightly argue that the

importance of the work is lessened by its dependence upon Phrase Structure Grammar.

11.4 O'Donnell's work
O'Donnell and Bateman (2005) also report that O'Donnell and Whitney repeated

Kasper's work, using a knowledge representation system called LOOM.

O'Donnell (1993, 1994, 1996) then produced a chart parser that did not need a

PSG backbone that operated within the Workbench for Analysis and Generation

(WAG) system (see also Section 2.3.2 of Chapter Two). He argues that the system

networks are top-down, and a bottom-up approach is needed for parsing. Therefore he

automatically extracted a parsing grammar from the system networks and realisation

178

rules of the NIGEL grammar (O'Donnell 1994:124). However, he found that parsing

with the full NIGEL grammar was very slow and he extracted a smaller parsing

grammar that was suited to the types of texts he was parsing.

O'Donnell (O'Donnell 2005:1), working in a Belgian informatics company

(Language and Computing) with van Der Vloet, Coppens and Van Mol, developed a

Systemic Dependency Grammar (e.g. as in Hudson 1976). This was used in a

commercially available probabilistic parser that predicted the most likely parse when

more than one was produced. O'Donnell (2005) builds on his earlier work in the

development of the UAM parser.3

11.5 O’Donoghue’s Vertical Strips Parser
O'Donoghue has made two major contributions to the COMMUNAL Project. First, as

we have already noted in Section 2.3.1 of Chapter Two, he developed COMMUNAL's

semantic interpreter (O'Donoghue 1991b). His second contribution was the concept of

using vertical strips in a parser (O'Donoghue, 1991a). This was a parser that operated

in an innovative way. He extracted a set of vertical strips from a corpus called the

Prototype Grammar 1.5 Corpus (PG1.5), together with their frequencies and

associated probabilities of occurrence.4 A vertical strip is defined as a complete set of

nodes from the sentence node downwards to an item (but not including the item).

The crucial difference between this approach, and traditional approaches, is that in

a vertical strips parser, the key generalisations relate to vertical slices through a parse

tree rather than horizontal ones (as in a PSG). These simply specify when strips can

follow any given strip, but, of course, there are a great many of them.

11.5.1 The data structures
As reported by O'Donoghue (1991a:l), the algorithm works in a similar way to the

CLAWS word tagger (Leech et al 1994), but with the important difference that,

instead of assigning one or more parts-of-speech, it assigns one or more vertical strips.

The vertical strips are stored in a network, together with the strip co-occurrence

rules. These give the details of the strips that can follow a given strip with its

associated probability. In addition to the strips, he also extracted a lexicon from the

2 Each Phrase Structure rule also contained information for a mapping into a systemic structure tree.
This approach is referred to as parsing with a 'context-free backbone' (O'Donnell and Bateman
(2005:352)).
3 So-called because it is developed at the Universidad Autonoma de Madrid.
4 The PG1.5 Corpus is an automatically generated (and so artificial) corpus, and contains 100,000
sentences from an early version of the COMMUNAL GENES YS generator.

179

corpus, which maps items to the elements of structure that each can expound, so

making it possible to complete each vertical strip down to the items themselves.

The network provides for each possible strip, together with pointers to other strips

that can co-occur with it, and with the probability that each may follow the given strip.

A vertical strip network (taken from O'Donoghue (1991a)) is shown in Figure 11.1.

11.5.2 The algorithm
The parsing process starts at the leftmost item in the input string. The first step is to

retrieve all possible elements that the item can expound from the lexicon. Then, for

each of these, it matches the element with the leaf node of a vertical strip that is

available in the vertical strip network, and follows the start strip which is indicated by

#. The parser moves to the next item in the input string, and identifies any strips

which: (a) are 'pointed to' from the last matched strip(s), and (b) which match the

element(s) of structure that the new item can expound. The process continues until

there are no more items in the input string. A successful parse is one in which the last

matched strip is a 'legal' end strip (i.e. one that points to the strip indicated by a $).

However, this description presents an over complicated picture, because there

may be more than one path through the strips in the network. In the second stage of

the parsing process, O'Donoghue determines the most likely parse using the

probabilities assigned to the pointers between the matched strips in the network, as

shown in Figure 11.1. Table 11.1 demonstrates O'Donoghue's approach, as applied to

the sample sentence shown in Figure 10.1 of Chapter Ten.

180

0 . 0 0 0 9 1

0 . 0 8 5 7 1 40 . 1 0 9 1 3

0 . 3 2 1 4 2 9

0 . 6 4 6 9 6 3

0 . 0 3 3 2 1 2
0 . 0 0 3 0 8 (0)

0 . 0 5 6 4 2 7

0 . 9 6 9 9 0 2

0 . 1 0 4 6 9 5
0 . 0 0 6 4 5 (0)

0 . 6 8 0 6 7 6
0 . 2 7 7 3 4 5

" m a c k e r e l ” > h

Z C l M

Z C l C / A f n g p s d q l g p q l d

Z C l C / A f n g p s d q l g p a x

Z C l S / A g n g p h

Z C l O / X

Z C l C / A f n g p h

Figure 11.1: A vertical strip network (from O'Donoghue 1991a)

11.5.3 Evaluation
O'Donoghue's results were encouraging. He tested it on 1000 further sentences

generated by the PG1.5 Generator, and found that, for 98.8% of these, the parser

identified a set of potential syntax trees. He reports that the number of trees found

varied from 0 to 58, with an average of 6.6 trees per parse. For the 1000 sentences,

98.4% returned a set of parse trees which included the correct parse, and 0.4% of cases

the 'correct' parse was returned as the most probable. O'Donoghue recognised that the

performance of the Vertical Strips Parser would need to be improved if it was operate

with a network that had been extracted from a non-artificial corpus (because the

network would be larger and more complex). In this situation, he states that the

average number of parse trees generated per sentence would rise (O'Donoghue

181

199la: 16), and the effect of this would be that his parser would be less efficient (in

terms of speed and the number of structures generated). It would also be less accurate,

because a greater number of parse trees would be generated. However, one would

expect that the percentage of sentences that contained the correct parse tree would

remain constant.

O'Donoghue's network representation is similar in many ways to the augmented

transition networks that were used, for example, by Woods (1970), as we saw in

Section 5.2.2 of Chapter Five. The first major difference is that, a node in the

network does not simply represent a syntax node. Instead, it represents a vertical strip.

Secondly, O'Donoghue attaches probabilities to the arcs (pointers) that show a

transition from one partial parse tree to another.

Predictably, O'Donoghue's vertical strip network is very complex, given that it

was constructed automatically from a corpus. He reports that it contained 1624 strips,

and 6358 transitions (O'Donoghue 1991a). Like other ATN-type parsers, a network

aiming at covering anything approaching the full range of strips that would be

represented in naturally-occurring texts, becomes increasingly difficult to manage.

Manual changes to the automatically extracted grammar may be tried, in an attempt to

improve the parser so that it can still arrive at a successful parse for sentences that

contain strips that have not (yet) occurred in the corpus. For a small corpus, we can

expect this to happen quite regularly. It may be difficult to implement augmentations

to overcome these coverage problems within O'Donoghue's networks.

As we will see in Section 14.1 of Chapter Fourteen, the concept of a vertical strip

(which we owe to O'Donoghue), plays a critical role in the parser presented in Part

Four.

182

Step Strips found Input
sentence

Path followed Remarks

1 The
seagulls
ate the
mackerel

2 dd ngp S/Ag seagulls (d d n g p S / A g C l Z) the is retreived from the lexicon as a dd. The parser gets all strips
Cl Z ate the matching [dd *] that follow the start strip [#].

mackerel
3 h ngp S Cl Z ate the (d d n g p S / A g C l seagulls is recognised as a h, and all strips matching

mackerel Z) + (h n g p S C l Z) [h *] are found that follow any strip identified in Step 2.
4 M Cl Z the (d d n g p S / A g C l ate is retrieved from the lexicon as an M. All strips are found that

mackerel Z) + (h n g p S C l Z) +
(M C l Z)

match [M *] which follow any strip identified in Step 3.

5 dd ngp C/Aff mackerel (d d n g p S / A g C l the is recognised as a dd, and all strips are found that have a dd at
Cl Z Z) + (h n g p S C l Z) +

(M C l Z) + (d d n g p
C / A f f C l Z)

the leaf, and follow any strips identified in Step 4.

6 h ngp C/Aff (d d n g p S / A g C l mackerel is recognised as a h, and strips are found that match
Cl Z Z) + (h n g p S C l Z) +

(M C l Z) + (d d n g p C
C l Z) + (h n g p C / A f f
C l Z)

[dd *] and that follow any strips identified in Step 5.

7 The strips are merged to give the final parse tree. The probabilities
associated with the path through the network are used to calculate a
tree probability that indicates the most likely parse.

Table 11.1: Simplified vertical strip parse of the sample sentence

11.6 Weerasinghe's Probabilistic On-line Parser (POP)

11.6.1 The algorithm
In the early 1990s Weerasinghe developed a probabilistic chart parser for Systemic

Functional Grammar, which is described in Weerasinghe (1994). His parser was

developed in PROLOG, and used a model of syntax which had been extracted from

GENESYS (e.g. Fawcett 1990) and enhanced by a linguist. The probabilities, which

he attached to his ’rules', were extracted from the POW Corpus, using the first version

of the Interactive Corpus Query Facility (ICQF) (see Chapter Eight).

A unique method adopted by Weerasinghe was the on-line approach that parses

each word as it is typed on the keyboard. In this way, he is able to set the parser

working as soon as the user presses the space key (or a punctuation character which

signifies the end of the word) in the input string.

In order to be able to use it for a Systemic Functional Grammar, Weerasinghe

adapts the three ways in which the standard chart-parsing algorithm adds edges to the

chart (see Section 10.3.1.5 of Chapter Ten).

First, he uses Chart initialisation to create the initial edges in the chart for each

item in the input string by determining the elements of structure that a given item can

expound, and then creates an edge that represents the unit to which the element

belongs. Using this approach, Weerasinghe avoids the need for having edges that

represent elements and items (e.g. h , "man"), and therefore reduces the number of

edges in the chart.

Second, using the fundamental rule, he joins two edges together based on the

fact that the unit represented by the first edge is seeking the element that is represented

by the second edge (which has been completed).

Third, he uses the bottom-up rule to determine the elements which completed

units can fill.

For details of the elements that can expound items and the associated

probabilities, Weerasinghe (1994:79) uses what he terms the multi-source lexicon.

For information about syntactic 'rules', the elements that belong to units, and elements

that can follow other elements in a unit, Weerasinghe (1994:79) uses his multi-source

syntax list. Further information about both of these lists is given in Section 12.1.3.1

of Chapter Twelve).

184

11.6.2 The probabilistic scoring of edges
As each edge is added to the chart, it is given an associated probability, and the

probability assigned depends on how the edge was created. For edges that are created

during chart initialisation, the probability represents the probability that an item

expounds the given element, and this is derived directly from the multiple sources

Weerasinghe uses for the creation of his multi-source lexicon (see Section 12.1.3.1 of

Chapter Twelve). Weerasinghe (1994:105) then scores each such edge by combining

three probabilities:

(a) the item expounding probability of immediately preceding element,

(b) the element co-occurrence probability for the element, and the element that

precedes it,

(c) the element filling probability for the current edge.

Weerasinghe (1994:105) uses the product of these probabilities. If, for example,

he is parsing the nominal group t h e m a c k e re l , his score for the edge that

represents the unit will be the product of the probabilities o f :

(a) the element d d expounding item th e ,

(b) that h directly follows a dd in its unit, and

(c) the element h is expounded by m a c k e re l .

An interesting feature of this approach is that he applies a greater weighting to the

element co-occurrence rules than he does to the exponence rules - a matter that we

have considered carefully when developing our own model.

The simplest and most common approach to the scoring of edges which have been

co-joined as the result of the fundamental rule, is to take the product of the scores of

the two edges. Based on the work of Magerman and Marcus (1991b), Weerasinghe

(1994:106), takes the 'weighted geometric mean' of the probabilities of the two edges

being co-joined, and the element co-occurrence probability - using Magerman and

Marcus argument that this is a better heuristic for estimating the probabilities

involved. Weerasinghe gives twice the weight to the element co-occurrence

probability, than he does to the probability scores of the two edges - on the basis that

he argues that this is the single most important reason why the edges are being joined.

When scoring new edges that have been produced using the bottom-up rule,

Weerasinghe (1994:106) takes the product of:

185

(a) the probability that the preceding element fills the unit below it,

(b) the probability of the current unit filling the element being considered, and

(c) the co-occurrence probability of the two elements occurring sequentially in

the unit.

11.6.3 Modifications to the standard chart parsing algorithm
In Systemic Functional Grammar syntax, because of the relationships between items,

elements, and units, and because of the fact that the parse tree is richly annotated with

semantically labelled syntax tokens, it produces many more potential analyses when

compared to a Phrase Structure Grammar. Weerasinghe found that the standard chart

parsing algorithm had to be modified to improve the accuracy of his results and the

efficiency of his parser. These methods either (a) reduced the size of his syntax fist, or

(b) reduced the number of edges in the chart. To achieve this he used the following

methods, which are further explained in Section 12.1.3.3 of Chapter Twelve.

First, he implemented a top-down filtering process in which edges are only

added to the chart provided that they 'match' the edges that are already in the chart.

Using this method, Weerasinghe avoided having to add edges for elements that were

not being sought by edges that are already to the left of them and that could not start a

new unit.

Second, he implemented a head-driven approach based on the work of Kay

(1989). This only adds an edge to the chart once its main element has been found.

The method is unsuitable for parsing naturally occurring texts for the reasons given in

Section 10.4.2 of Chapter Ten.

Third, he marked optionality and mutual exclusivity into the 'rules' of his syntax

list. These specified (a) the optional places in which an element can occur, and (b) if

an element has appeared in one place, then it cannot also appear in another. Using

this, he managed to considerably reduce the size of the list, and thus he reduced the

number of 'rules' that the parser searches through to find acceptable matches, and this

in turn reduced the number of edges in the chart.

11.6.4 Evaluation
In his conclusions Weerasinghe (1994:127) reported that he found a significant

improvement over the standard chart parsing algorithm by applying the techniques

described above. Using his parser for a typical sentence length of 4-9 words, he

reported:

186

(a) a reduction of approximately 80% in the number of edges in the chart, and

(b) significantly quicker parse times (with some timings presented in seconds

rather than tens of seconds).

Thus Weerasinghe proved that a chart parsing approach could be adapted for a

Systemic Functional Grammar that uses probabilities about syntax.

While there is much to learn from Weerasinghe's parser, there is one serious

problem with his head-driven approach. This is particularly noticeable when parsing

spoken texts. The problem is, as shown by an examination of the FPD Corpus, that a

unit does not always contain a head. There is nothing unusual about this phenomenon,

which is nevertheless one that is simply not provided for by definition in head-driven

parsers. As an example, ICQF+ reports that 665 (or about 3%) nominal groups are

without a head and, which is of even greater concern, 3479 (20%) Clauses are without

a Main Verb. Specifically, 197 of these contain Operators (O) and Subjects (S), and

are filling a 'confirmation-seeker' such as w i l l th e y ? , c o u ld I ? , and

w o u l d n 't y o u ? ; 193 are Clauses that are in single- or double-word sentences

where ellipsis has occurred; 158 are exclamations like g o d !, h e y !, d r a t !, and o h -

d e a r ; 84 are Frames (Fr) like r i g h t ! and n o w -th e n . Such sentences are not

amenable to the head-driven approach, and it follows, therefore that the head-driven

approach is not suitable for parsing unrestricted English, and should be abandoned.

1 1 . 7 S o u t e r ’s c o r p u s - t r a i n e d p a r s e r

11.7.1 The algorithm
Souter (1996) created a somewhat different type of probabilistic chart parser for

Systemic Functional Grammar from Weerasinghe's POP (see Section 11.6). It was

based on Pocock and Atwell's (1993)5 parser, and it used a set of syntactic

probabilities that he extracted from the POW Corpus and a lexicon supplemented by

words derived from the CELEX database (although, in a later version, he replaced the

CELEX look-up with pre-parse tagging).6

Souter's chart data structure was the one used in the standard chart parsing

algorithm (as described in Section 10.3.1.5 of Chapter Ten), as it contained edges with

the following fields:

5 Pocock and Atwell's parser was derived from that of Gazdar and Mellish (1989).
6 The Centre for Lexical Information (CELEX) is based at the University of Nijmegen and have
produced a large lexical database for English, German and Dutch.

187

(a) a start position,

(b) an end position,

(c) a syntax token that the edge represents,

(d) a list of syntax tokens found,

(e) a list of syntax tokens that are to be found before the edge can be considered

complete.

Additionally his edge data structure contained probabilistic scores.

One of the principal findings of this project was that he discovered severe

limitations in this approach, which was due to the sheer quantity of syntactic 'rules'

that can occur in a naturally occurring text. This is shown in the FPD Corpus, which

contains 8617 distinct 'rules'. Souter then made a number of attempts at improving

the efficiency and accuracy of his parser as described in Section 11.7.3, each of which

usefully increases our understanding of how a probability-based parser should operate.

11.7.2 The probabilistic scoring of edges
For chart initialisation, Souter followed Pocock and Atwell (1993) by using the

lexical probability of an item. This is the product of the probability based on the

frequency of the item in a corpus, and the probability that it expounds a particular

element of structure.

When combining edges using the fundamental rule, he applied a probabilistic

function, which took the product of two combined edges together. In his final parser,

(as will be reported next), he modified the algorithm to include vertical relationships

given by trigrams, and he included the probabilistic score of the trigram by

multiplying it with the score for the two edges.

11.7.3 Modifications to the standard chart parsing algorithm
Souter's early experimental parsers were unacceptably slow. In order to make it

quicker, he had to find ways: (a) to reduce the search space. Like Weerasinghe, he did

this in two ways: by reducing the number of 'rules' in his syntax list, and (b) by

reducing the number of edges in the chart.

7 These included rules for exponence, componence and filling.

188

To amend his syntax list, first he combined similar 'rules' by marking certain

elements as optional (for example, the 'rules' in Figure 11.2 were combined (Souter

1996:77)).8

QQGP- > AX
QQGP- >T AX
QQGP- >T AX P I
QQGP - >AX P I

Q QG P-> (T) AX (F I)

Figure 11.2: Souter's merging of rules by marking optionality

His second amendment (Souter 1996; 81) was to incorporate rules with 'co

ordinating children'. When he extracted his syntactic representation from the POW

Corpus, he used a method of representing the 'rules' similar to the one shown in Table

5.1 of Chapter Five. This meant that for the co-ordinated Clauses (C l) shown in

Figure 11.3, he had a 'rule' that represented the co-ordination as Z - >C1 C l C l.

c i c i c i

L nk

n g p

h _ P

n g p

Y e s h e l o v e s £ o o t b a l l b u t

n g p

h_JP

d o n 11I

Figure 11.3: An example sentence from the FPD Corpus showing
a co-ordinated clause

In the FPD Corpus the largest number of co-ordinated Clauses is ten, and this

would be represented by the'rule': Z -> C 1 C l C l C l C l C l C l C l C l C l.

Souter (1996:81) substantially reduced the number of rules in his syntax list by

8 As we shall see in Chapter Twelve, Weerasinghe (1994) also had this approach and also marked
mutual exclusivity which indicated that, for example, that an operator could appear in more than one
position in a clause.

189

representing all co-ordinated units by one rule Z->C1, and the probability of the

number of co-ordinated units at the start of the rule in the form:

p l / p 2 , p 3 #p 4 , p 5 #p 6 #p 7 , p 8 / p 9 #p l 0 / Z->C1, where p l - p l O represents the

probability of a single unit filling the element through to ten units filling the element.

The problem associated with this approach is that, in rare cases, it is not always the

same class of unit that fills an element in a co-ordinated relationship, although there

are no cases of these in the FPD Corpus.9

In attempts to further speed up his parser, Souter implemented further measures

which reduce the number of edges in the chart. These include: (a) introducing a

maximum tree depth, (b) using a vertical trigram model, (c) having a stopping

function which terminated the parse after a 'stopping condition' was met, and (d) by

implementing pre-parse tagging.

By implementing the maximum tree depth function, Souter (1996:111) was able

to prevent the addition of edges that represented partial parse trees that were

unreasonably deep. To determine depths that were unreasonable, Souter compared the

depth of the partial parse tree that is represented by the proposed edge, with partial

parse trees in the corpus, which spanned the same number of items.

Souter (1996:111) used a vertical trigram approach which introduces a vertical

dependency into his algorithm. Although the approach increased the size of his syntax

list, he reported considerable improvements using the method. It is applied to his

equivalent of the standard chart parser's bottom-up rule. When a new edge is

proposed, the element that is represented by the proposed edge together with the unit

that is represented by the inactive edge (that 'proposes' the new edge) and each of the

unit's child elements are collected into trigrams. For example, if the proposed edge

represented a Subject (S), and the proposing edge a nominal group (ngp) that

contained a deictic determiner (dd) and a head (h), this will result in two trigrams (S

ngp dd and S ngp h). If any of the vertical trigrams do not appear in the list of

trigrams that were extracted from the corpus, Souter rejects the proposed edge,

otherwise the edge is accepted and will be assigned a probability which includes the

trigram's probability in its creation.

9 While it is not stated in Souter (1996), I presume that he counted the maximum number of co
ordinated units for any unit, and if (for a given unit), there were no cases of co-ordination at a particular
number, the value of p would be zero.

190

The third method that was used by Souter (1996:112) to modify the standard

algorithm was the implementation of his stopping conditions. These were:

(a) limits set on the number of complete parse trees that could be generated

before the parser stops. Souter used a limit of 6.

(b) the score of the first found solution is recorded and no new edges are allowed

with a weight of 1.5 times that of the first solution,

(c) when no solutions are found, Souter stops the parser when the chart reaches a

certain size.

Finally, Souter (1994:125) used the Brill tagger for pre-parse tagging (see

Section 10.4.4 of Chapter Ten). By training the Brill tagger using the POW Corpus,

and modifying the chart initialisation by incorporating the tagger, he ensured that

only one element was assigned to each item. Although this approach relied on the

accuracy of the Brill tagger, it effectively reduced the number of edges in the chart.

11.7.4 Evaluation
Souter discovered that these modifications (particularly the trigram approach)

significantly improved his parser. Before these modifications his parse times were

recorded in days, and he found himself having to stop the parser manually before it

had finished. Following the implementation of these methods, most of his results were

measured in hours, and this represented a significant improvement.

Souter found that when 'rules' are extracted from an analysed corpus, many occur

just once, and a relatively smaller number of 'rules' occur many times. This

characteristic of language was identified by Zipf. Zipf s law states that the frequency

of any word is inversely proportional to its rank in the frequency chart (Zipf 1935).

This claim has been supported in my work (Day 1993a) and Souter's, and was found to

apply to the syntactic 'rules' as well as to words.

One of the most significant of the findings of Souter's work is that he

demonstrated that when a syntactic representation is extracted from a corpus of

naturally occurring texts, the size of the representation severely hampers the

performance of the chart parsing algorithm. Like others before him therefore, he had

to find ways of reducing the size of his syntactic representation, and the number of

edges that are produced in the chart. However, despite the various modifications that

he introduced, his parser remained unacceptably slow. It is clear therefore, that

'tweaking' the chart parser approach is not sufficient to solve the problems that face the

191

researcher who is seeking to build a parser that (a) handles unrestricted natural text,

and (b) analyses it in terms of a Systemic Functional Grammar syntax.

1 1 . 8 S u m m a r y
This Chapter has looked critically at the attempts at parsing Systemic Functional

Grammar by Winograd (1972), O'Donoghue (1991a), Weerasinghe (1994), and Souter

(1996) and has also reviewed the work of Kasper (1988) and O'Donnell (1994, 2005).

Winograd (1972) was the first to develop a parser for Systemic Functional

Grammar. This was one of the components in his ground-breaking work of building a

complete natural language understanding and generation system, which involved the

movement of blocks in a small virtual world. Winograd's 'rules' however, are

embedded into an interpreted program. Although it probably would not be

impossible to achieve, a 'program' that represents syntax automatically extracted from

the texts of a naturally occurring corpus would be extremely complex and difficult to

update, as care would be needed to ensure that the complex interrelationships are not

broken.

O'Donoghue's Vertical Strip Parser (1991a), which came before Weerasinghe's

and Souter's work, used a network of vertical strips extracted from a pseudo-corpus.

Like Winograd's programs, O'Donoghue's vertical strip networks would also be

difficult to update, but it was nevertheless the most innovative method described here.

He showed that an alternative approach to chart parsing may lead to greater success.

Weerasinghe's work (1994) demonstrated that the standard chart parsing

algorithm needs to be augmented in order to work successfully with a Systemic

Functional Grammar; but his head-driven approach is not in fact suitable for parsing

the full range of natural language texts. This is because not all units have a Tread' -

especially in a spoken corpus.

Souter (1996) shows that the standard chart parsing algorithm is given a much

greater challenge when faced with the abundance of 'rules' that are generated from a

real corpus. He too had to develop special enhancements in order to make his parser a

viable research tool.

Both Souter and O'Donoghue's work was based on real-life corpora, from which

their syntactic representations and associated probabilities were extracted

automatically. The implications of this are that both the coverage and the size of the

corpus are very significant factors in the degree of success that a parser may attain. In

192

a small corpus, one will find that some words and rules that one would expect to occur

are not there - because they have not been encountered in the small sample. Other

words and syntactic co-occurrences may be given undue weighting because they have

occurred, whereas they would have had a much lower frequency in a larger corpus (we

encountered this phenomenon with the FPD Corpus of children's spoken language).

Even with large corpora it remains true that one cannot argue that if a word or a syntax

pattern does not appear in the corpus, that word or syntax pattern is ungrammatical.

Indeed, this is a shortcoming of many corpus-based approaches to parsing, which fail

because they cannot analyse particular structures that do not appear in their corpus. I

would nevertheless argue that the corpus approach is far better than an approach based

on an 'armchair' grammar (as is often the case with the parsers described in Chapter

Ten). The aims of the parser to be introduced in Part Four are to be able (a) to operate

with very large corpora, and (b) to provide for known syntax structures that have not

appeared (so far) in the corpus. These are the primary reasons for adopting the

dynamic corpus approach used in this work.

The next chapter looks at the prototype parsers that were developed as part of the

process of developing the Corpus-Consulting Probabilistic Parser that will be

described in Part Four.

193

Chapter Twelve
Early attempts at parsing in this project
The purpose of this final chapter of Part Three is to set the scene for Part Four, in

which I describe the parser that is the main product of this project: the Corpus-

Consulting Probabilistic Parser (CCPP). This chapter describes two early parsers

that were developed in the early stages of this project, and compares the first of them

with two of the earlier Systemic Functional Grammar approaches that were introduced

in Chapter Eleven.

The main concept to be introduced in this chapter is that of a database-oriented

parser. This is a new type of parser, which uses a corpus database to store:

(a) its working data, and

(b) to gain information to be used in the parse (i.e. a model of the probabilities of

the relationships between syntactic categories).

This data is stored in the parser working tables and in the probabilities tables

respectively.1

Section 12.1 describes and discusses the design of the first of the two parsers (a

chart parser), and it then compares it with the two earlier SFG chart parsers that were

described in Chapter Eleven: Weerasinghe's (1994) Probabilistic Online Parser

(POP), and Souter's (1996) corpus-trained parser. The aims of this work were (a) to

test the new database-oriented approach, and (b) to re-evaluate the suitability of a

corpus-based chart parsing algorithm in the parsing of natural language.

The second parser is described and evaluated in Section 12.2. It is named the

Star Parser, because of the 'shape' of its main data structure. It was a first attempt to

address the problems experienced with the chart parser, and it strongly influenced the

final parser that will be described in Part Four.

12.1 Experiments with a chart parser
The main aims of this initial work in developing a chart parser were to answer these

two questions:

1 The full description of the tables is given in Chapter Seven, Chapter Fourteen, Appendix D and
Appendix H.
2 We shall refer to die first parser as 'the chart parser'.

194

(a) Given the advances in computer technology since the work of Souter (1996),

is the chart parsing approach now more efficient (in terms of speed), than it

was in the early 1990s?

(b) Is the database-driven, corpus database approach suitable for operation in a

parsing environment?

12.1.1 Background

The parser described here, like Weerasinghe (1994) and Souter (1996), uses a

modified chart parsing algorithm of the type described in Section 10.3.1.5 of

Chapter Ten. Both Weerasinghe and Souter discovered that the efficiency of their

chart parsing approaches suffered from the over-generation of edges in the chart, and

both implemented various methods to attempt to reduce the number of edges. I was

faced with this same problem, and I was greatly helped by being able to draw on the

work of these two earlier researchers.

Although the intention in this present project was always to implement a parser

that follows the human parsing process more closely than that of a chart parser, it was

nonetheless thought useful to establish whether a chart parsing approach was now

viable, using current computers. It also served as a test bed for developing and

testing the viability o f the database-oriented approach (i.e. the use of the probabilities

tables and the parser working tables).

12.1.2 Implementing a chart parser

This section describes the prototype chart parser, its data structures, and how it uses

the probabilities tables. I describe it in some detail, because many of its characteristics

are incorporated in the parser to be described in Part Four.

12.1.2.1 The chart data structure

The chart is implemented in a database table where an edge is represented by a record

that has the following structure:

CHART(startPos, endPos, token, rhsTokens, edgeType,
potentiallyClosed, probability, history)

3 The chart parsing work described in this chapter was concluded in 2003, and since Souter's work
finished in 1996, the speed of computers has significantly increased.

195

Example edge (record in the database table):
startPos = 2
endPos = 4
token » "ngp"
rhsTokens = "dd h"
edgeType*■UNIT■
potentiallyClosed = true
probability = 0.58
history = "<ngp><dd>the</dd><h>point</hx/ngp>"

Each edge has a start position (startPos), and an end position (endPos),
which respectively represent the start and end of the edge in terms of its ordinal

position in the sentence. In the following example, an edge that represents a nominal

group that contains the point has a startPos 2 and an endPos 4. An edge

that represents the whole sentence has startPos 0 and endPos 4.
0 What 1 1s 2 the 3 point? 4

The field named token gives the syntax token that represents the unit or element

on the left-hand side of the 'rule' that produced the edge.

For an edge that represents an element or unit, the field named rhsTokens gives

the syntax tokens that have been found by the parser so far for this edge. For a unit

edge, this will be the element(s) of structure that are components of the unit given in

the token field. For an edge that represents an element, i.e. an element edge, this is

one or more units that are co-ordinated. An item edge will have an item in the

rhsTokens field.

The field named edgeType contains a label that identifies the type of the syntax

token that is identified in token field, and is simply one of the values ITEM,
ELEMENT or UNIT.4 An element edge and unit edges have an element o f structure,

or a unit expressed in the token field respectively. Item edges also have an element

of structure expressed in the token field.

The field named potentiallyClosed was a concept introduced in an attempt

to reduce the number of edges. It is set to the value of either true or false. This

represents a major difference between the algorithm presented here, and the standard

chart parser described in Section 10.3.1.5 of Chapter Ten, and is a concept that is

4 It appears that the edges of Weerasinghe's parser always represented units and not elements
(Weerasinghe 1994:98). This had the temporary beneficial effect of reducing the number of edges that
were generated in the chart, but such an approach could not handle co-ordination as easily as the
method used here (as described in Chapter Fifteen).

196

retained in the final parser. Consider, for example, a unit edge such as a nominal

group (ngp). If the last element in a unit can finish its unit (e.g. a head (h) in a ngp),

this field is set to the value tr u e , even though further elements (i.e. one or more

qualifiers (q)) may follow it. Unit edges that have the p o t e n t ia l ly C lo s e d field

set to the value t r u e remain active and may therefore either be extended by further

elements (using the fundamental rule), or be used to create a new element edge

(using the bottom-up rule).

This proved to be an effective way of reducing the number of edges in the chart.

Using the dot notation (see Section 10.3.1.5), the standard chart parsing algorithm

adds the edges shown below to the chart. The first edge is inactive (since it is

complete), and the parser will create a number of edges that represent the elements

that a nominal group can fill. The other rules remain active (as they are still seeking

elements).
ngp->dd h . (a nominal group that is complete)
ngp - >dd h . q (a nominal group that is seeking a qualifier)
ngp- >dd h . q q (a nominal group that is seeking two qualifiers)

Typically, the standard chart parsing algorithm would have a to F in d field for

each edge. For example, the value of the field for the second edge in the sequence

above would contain the value q. In the approach used by the chart parser reported

here, however, this field is not needed. Instead, the fact that the first edge is labelled

as being 'potentially closed', means that the unit, and so the edge, can be extended - but

only of course, if a qualifier is found. The information about which elements can

follow the last element is given by the Forward Unit Structure (FUS) query (which

will be described in Section 12.1.2.3). In the example above, this method reduces the

number of edges in the chart that represent the nominal group from three to one.

When this technique was applied to the 'rules' extracted from the POW Corpus, the

reduction in the number of edges is very substantial. The reason being, that many

units are lacking their head elements (as described in Section 11.6.4 of Chapter

Eleven, and Section 10.4.2 of Chapter Ten). For a nominal group that has only found

a deictic determiner, the number of edges is reduced by 3097. This is because there

are 3097 nominal groups in the corpus that start with a deictic determiner. There may,

however, be other elements (i.e. other determiners, modifiers, a head, and qualifiers),

but these are considered 'optional', because a deictic determiner may be the only

element in the unit, and hence 'potentially closes' it.

197

We turn now to the field named P r o b a b i l i t y . This contains the probabilistic

score associated with the edge, as returned by the edge scoring function. The method

used to calculate the score depends on the type of edge, and is shown through the use

of examples in Table 12.1.

Edge type Description
Item e.g. h->saw. The probability that saw expounds a head (h).
Element e.g. C->ngp. The probability that a Complement (C) is filled by a nominal group

(a gp)
Unit e.g. C1->S 0 M C. The probability that a Complement (C) follows a Subject (S),

Operator (0) and Main Verb (M) in a Clause.

Table 12.1: Calculation of an edge's probability

The final field is named h is t o r y . This contains XML data that represents the

history of the parse in terms of the items, elements and units from the edges that were

involved in the edge's construction. The format of the XML is identical to that used to

annotate the corpus itself, and is of the form given in Section 6.1.5.2 of Chapter Six.

An edge representing a complete parse will contain an XML structure that represents

the syntax analysis o f the whole sentence.

12.1.2.2 The chart parsing algorithm

The algorithm used by the chart parser described here did not vary greatly from the

standard chart parsing algorithm which is presented in Section 10.3.1.5 of Chapter

Ten. The main differences were changes introduced to handle:

(a) potentially closed edges,

(b) interfaces with the corpus database for the syntactic relationships.

The first difference involved the way completed edges are handled. As described

above, A potentially closed edge is one for which an element that has the potential for

being the final element of the unit has been found. On encountering such an edge, the

parser considers it to be a completed edge, and generates additional higher edges using

the bottom-up rule. The edge, however, remains active and can have extra elements

that may be found later extending its rh sT ok en s field using the fundamental rule.

When a potentially closed edge is extended in this way, the parse histories and end

positions o f all edges that are descendants of the potentially closed edge have to be

updated. The second difference involves the interface with the corpus database, and

will be discussed in the next section.

198

12.1.2.3 Corpus queries

A significant difference between, on the one hand, the approach of the chart parser

developed for this project, and on the other: (a) the standard chart parsing algorithm,

and (b) those of Weerasinghe, Souter and others, was the implementation of different

types of corpus query used in construction of edges. These methods of building

structures were to develop later with some improvements, into the probabilities tables

that are used in the Corpus-Consulting Probabilistic Parser (these being described in

Chapter Fourteen). The probabilities tables used in the chart parser are:

(a) Item up to element (I2E),

(b) Forward Unit Structure (FUS),

(c) Unit up to Element (U2E).

12 E queries are designed to use the 12 E probabilities table, and are used in the

chart initialisation to create item edges that represent items and the elements that

they expound. For example, an 12 E query for the item saw will return two records,

one giving the probability that the item expounds the head (h), as in he u se d th e

saw, and the other the probability that it expounds the Main Verb (M) of a Clause, as

in he saw him.

FUS queries are designed to use the FUS table, and are used to extend unit edges

(those that have the ty p e value of UNIT), when a new element edge is the subject of

the fundamental rule. It identifies the fact that the element that is the subject of a

given edge is a legal 'next element' in a unit (such that it has the elements expressed in

the edge's rh sT o k en s field), and in so doing, the FUS query identifies that the two

edges can be combined. The FUS query also provides the probability that the element

is the next element in the unit that is represented by the edge. The structure of a row

in the FUS table is given in Table 12.2, Table 12.3 shows example FUS entries.

Field Description
UNIT the unit that contains die elements.
ELEMENTS the elements that have been found so far.
NEXTELEMENT the element that can occur after the elements in the ELEMENTS field.
PROBABILITY the probability that the element given in the NEXTLEMENT field follows the

elements given in the ELEMENTS field, considering all elements that can
follow them.

Table 12.2: The structure of the FUS probabilities table

199

UNIT ELEMENTS NEXT
ELEMENT

PR O BA B-
ILITY

Description

n g p I d d h 0 . 7 8 8 2 Approx. 78% chance that a head (h) follows
the deictic determiner (dd).

n g p I dd mo 0 . 0 5 8 6 Approx. 6% chance that a modifier (mo)
follows the deictic determiner (dd).

n g p I dd h _ r c c 0 . 0 2 9 9 Approx. 3% chance that a head that is
recoverable from cultural classification
(h _ r c c) follows the deictic determiner (dd).

n g p ! dd r e l mo 0 . 0 2 8 9 Approx. 3% chance that a relative modifier
(r e l_ m o) follows the deictic determiner (dd).

n g p 1 dd i 0 . 0 2 8 9 Approx 3% chance that the deictic determiner
finishes the nominal group.

n g p 1 dd t h mo 0 . 0 2 4 4 Approx 2.5% chance that a thing modifier
(t h mo) follows the deictic determiner (dd).

Table 12.3: An excerpt from the FUS table showing the elements that may follow
in a nominal group that starts w ith a deictic determiner (note that the end of the

unit, and the start of a unit are indicated by !)

The U2E queries operate on the U2E probabilities table. They are used as soon as

a unit edge becomes potentially closed. The parser asks for a list o f elements that the

unit represented by the potentially closed edge can fill, and for each, creates a new

complete element edge that represents the element filled. This in turn causes the

parser to 'look for1 all edges that are 'looking for' the new element as being next within

their unit. Figure 12.1 shows a chart for a partial parse, and indicates how the

different types o f query were used to create its edges.

1mam

Z->C1 E2U

ClJ>s FUS

s->ngp E2U

ngp-:>dd h FUS
w

dd->the h->seagulls
I2E

0 T h e 1 s e a g u l l s 2

Figure 12.1: The chart after a partial parse (showing queries
used to establish edges)

2 0 0

12.1.2.4 The probabilistic scoring of edges

When edges are added to the chart, they are assigned a probability. In the parser

described here, the item edges that are assigned in the chart initialisation are given a

probability value that is equal to the value returned from the 12 E query that created

the edge. Element edges are the result of identifying a potentially closed edge, and

are assigned the probability that is the product of the probability that is returned from

the U2E query and the probability assigned to the potentially closed edge.5 Edges that

are extended by joining them with other edges, are assigned the probability that is the

product of three factors:

(a) the probability that the given element follows the structure (given in the

rhsTokens field, and as specified by the FUS query),

(b) the probability o f the edge that caused the creation of the new edge, and

(c) the probability that is already assigned to the edge that is being extended.

Notice then, the strong role played by various types of probabilities in this parser -

concepts that will be found in the final parser, though in a different form, since it is not

a chart parser.

12.1.2.5 The value of the database-oriented approach

In the development of methods to reduce the number of edges produced by the parser,

and also as an aid to debugging the algorithm, it proved to be an advantage to be able

to examine the contents of the chart at any stage of the parsing process. Because the

chart was a table in the database, it was very easy to open the table and see what the

parser had created. It was during the development of the chart parser that the ideas

behind the Step-by-Step incremental parse that is provided by the Parser

WorkBench were developed (see Chapter Sixteen).

12.1.2.6 The value of expressing the results in XML

It was also a great advantage to have the parse expressed in XML (in the parse

history). This meant that the output could be viewed in a web browser, so that no

special tree graphing program needed to be developed. An even more crucial

advantage was that, since the output from the parser was expressed in the same form

as the sentences stored in the corpus tables, it would be a simple matter to update the

201

corpus tables with the sentences that are parsed, thus contributing to the achievement

of the goal of implementing a dynamic corpus (see Section 1.1 of Chapter One).

12.1.3 A comparison with the work of Weerasinghe (1994) and Souter (1996)

In this section, the chart parser implemented here is compared to the approaches used

by Weerasinghe (1994) and Souter (1996), which were described in Chapter Eleven.

12.1.3.1 The model of syntax and the lexicon

One of the main differences between the work described here and that of Weerasinghe

(1994), is in the way that the model of syntax and its associated probabilistic data are

stored and used. The chart parser described here used the probabilities tables and

queries described in Section 12.1.2.3. In contrast, Weerasinghe used what he termed

the multi-source lexicon, and multi-source syntax lists for his lexicon and syntax

lists (Weerasinghe 1994:81). His lexicon was extracted from the POW Corpus

(following some mappings in the syntax labels to a newer version of the Cardiff

Grammar). The syntax lists were derived from four sources:

(a) the POW Corpus using an early version of the Interactive Corpus Query

Facility (ICQF) (as described in Chapter Eight),

(b) the ARK Corpus, which was automatically generated by COMMUNAL's

sentence generator GENESYS (see Section 2.5 of Chapter Two),

(c) a crucial book by West (1965), which was an invaluable source of

probabilistic data that was available before computer corpora existed, and

(d) the suggestions of experienced linguists associated with the project (namely,

Fawcett and Tucker).

Using this approach, Weerasinghe had the luxury of being able to relegate (or

even ignore) any rarely occurring syntax rules. He did this by adjusting the

probabilities, or by simply not including them in his syntax lists. Therefore, statistics

that were due to any peculiarities attributed to the nature of the corpus, or to mistakes

in the original analysis, could also be adjusted or discarded.

5 Note that the probability of the new edge has to be recalculated if the edge(s) that created it are
extended.

202

Although in Souter's earlier parser, his lexicon was supplemented by using the

CELEX database (Souter 1996:88), his approach used a syntax model that was

extracted only from the POW Corpus.6

12.1.3.2 The chart data structure

I now turn to the question: how does the chart structure used here compare with those

of Weerasinghe (1994) and Souter (1996)? The three approaches are all different to

the standard 5-tuple method used in the standard chart parser algorithm (described in

Section 10.1.3.5 of Chapter Ten). This is essentially due to two reasons: (a) the ability

to include a probabilistic weight to the edge, and (b) to implement methods of

reducing the number of edges in the chart.

The data structure presented in Section 12.1.2.1 is very similar to the one used by

Weerasinghe (1994:98), the biggest difference being that (a) Weerasinghe's edges

represent only units, and (b) that he does not construct edges that represent elements or

items.7 His approach reduces both the number of edges in the chart, and also the

number of 'rules' in the syntax list. For a high proportion of most texts, this method is

well-founded, in that element edges (as described above), represent filling and except

when co-ordination occurs, these edges can be considered redundant. This means,

however, that Weerasinghe would need to implement non-standard approaches for

handling co-ordination. In addition, Weerasinghe has additional fields for semantic

and syntactic features, which are not used in the chart parser described here, or in the

final parser described in Part Four. Finally, he also has applied a similar construct to

identify edges that are potentially closed, and hence also did not require a toFind field

in his edge data structure.

Souter's chart data structure was closer to the standard chart parser structure. He,

however, adds two extra fields, the first, w e ig h t contains his probabilistic score for

the edge, and the second, d e p th which provides an additional weighting factor for his

vertical trigrams method (see Section 12.1.3.3 and Section 11.7.3 of Chapter Eleven).

6 Souter’s final parser used pre-parse tagging using the Brill Tagger which had been trained on the POW
Corpus (see Section 11.7.3 o f Chapter Eleven).
7 W eerasinghe uses the nam es B e g i n , E n d , E l e m s e q , U n i t , P arse , and P r o b as his equivalents to
s t a r t P o s , e n d P o s , r h s T o k e n s , t o k e n , h i s t o r y and p r o b a b i l i t y respectively.

203

12.1.3.3 Methods used to improve the efficiency of the parser

The three parsers compared here all suffered from problems of efficiency. These were

due to the following reasons: (a) the large number of spurious edges generated in the

chart, and (b) the large number of syntax rules in the syntax list (or database table).

Each of the three researchers adopted methods to attempt to reduce the number of

edges and 'rules'.

Although Weerasinghe's parse times were measured in seconds, he also felt the

need to implement measures to improve the speed of his parser. The most prominent

of these methods was his adoption of the head-driven approach - an approach

associated with quasi-Chomskyan models of syntax (as discussed in Section 2.2.1 of

Chapter Two). Here, however, we take the view that this approach is not adequate to

handle the full complexity of natural language texts, especially when we take account

of the need to be able to parse spoken texts (for the reasons given in Section 10.4.2 of

Chapter Ten). He also used top-down filtering in which the parser only applies edges

if they are syntactically acceptable, depending on the edges already in the chart, and

thus introduces 'context-sensitivity* to the process of adding of edges.

His third method of improving the speed of his parser was to reduce the number

of entries in his multi-source syntax list. He did this through the description of

optionality and mutual exclusivity in his 'rules'. An example of this is given in the

'rule' below. Round brackets indicate optionality, and state that the element may or

may not occur. Angle brackets indicate that, if the element occurred in a previous

angle-bracketed position, it cannot also occur in the second. In this way, Weerasinghe

was able to reduce the number of rules in his list.8 Souter (1996:77) adopted a similar

approach to the 'optionality1 of elements, and so also, he too reduced the number of

entries in his syntax list by this means.
ci->& B (A) <o> s <o> m c (A)

The methods for avoiding the over generating of edges used here was

fundamentally different from those used by Souter and Weerasinghe, in the following

two ways.

First, the records stored in the Forward Unit Structure (FUS) table have a

different form to the equivalent 'rules' used in Weerasinghe's and Souter's parsers.

g
W eerasinghe's notation is equivalent to the following mark up element declaration in the following

syntax from a m ark up DTD extract: < ! ELEMENT Cl - - ((L nk , B, A? O, S | Lnk, B,
A?, S, O) , M , C, A?) > (see Chapter Six and Appendix C)

204

Weerasinghe and Souter essentially used the same type of rules as those described in

Section 5.2.1 of Chapter Five. Each of their ’rules' has a defined left-hand side

(consisting of a unit or an element) and a collection of tokens on the right-hand side

(as in Weerasinghe's rule for the clause above). The format of the FUS table (see

Table 12.2), as we have seen, is rather different. It consists of a unit and a string of

syntax tokens (given in the field ELEMENTS) that matched with the tokens that have

been found so far for a given edge. The field NEXTTOKEN then gives a single syntax

token that may occur next (i.e. after the syntax tokens in the field ELEMENTS),

irrespective o f the elements that follow it. Coupled with the potentially closed edge

method, this provides quite an effective way of reducing the number of edges in the

chart. However, it increases the number of entries in the database equivalent of the

syntax list which represent units by 45% compared with the number o f syntax rules in

the FPD Corpus.9

This increase does not affect the performance of the parser because of the

database indexes, and the more efficient storage and retrieval presented by the

database approach. The database-oriented approach, then, is the second difference

between the approaches of Weerasinghe and Souter and my own. The number of

entries in the syntax list, although still an issue, it is considerably reduced. The reason

is that they are stored more efficiently, so that access times are more acceptable than

they would be if they were stored using the methods of Weerasinghe and Souter. The

number of such 'rules' was indeed recognised as an issue by Souter (1996:120).

Because his list was derived from a corpus, it was significantly larger than

Weerasinghe's, and he reduced his access times to them by applying an 'indexing

program' (we shall not discuss this here; see Souter 1996:95).

Souter (1996:111) also created a list of partial vertical strips in the form of

vertical trigrams. This list contained all three-level partial vertical strips that had

occurred in the corpus, and when a new edge was proposed, he checked its

conformance against the list before he added it.

Souter (1996:72) also experimented with reducing the number of syntax 'rules' by

merging the rules for filling with those of componence, such that a Subject (S) filled

by a nominal group (ngp) that has a deictic determiner and a head (h) becomes

9 The num ber o f rules o f the type used by W eerasinghe and Souter in the FPD Corpus is 3498, this is
compared w ith 6273 entries in the PUS table.

205

S_ngp->dd h (as reported in Section 5.2.1.2 of Chapter Five). By doing this he

reduced the number of rules by nearly a half. However, he lost the difference between

primary and relative clauses - as he recognised. He also adopted a way of collapsing

co-ordination by implementing a method of expressing the probability of the number

of co-ordinated units for a given rule (see Section 11.7.3 of Chapter Eleven).

12.1.3.4 Probabilistic scoring

Weerasinghe's syntax 'rules' were stored separately from their probabilistic scores.

This is in contrast with the method used in the FUS, which gives the probability that

the next element E will occur, given that elements Ei,... , En have already occurred in

a given unit U, such that the probability of E is given by the frequency of E divided by

the total frequency of units that have the same structure. On the other hand,

Weerasinghe (1994:80) used element co-occurrence rules. These give the probability

of element E2 following element E l in unit U, irrespective of the elements that have

already occurred. The fact that the new chart parser described here does take account

of all the preceding elements in the unit, gives the present parser a major advantage

over that of Weerasinghe.

For similar reasons, the new chart parser is an advance on Souter's method

(1996:78) which simply uses the frequency of a given 'rule' divided by the total

frequency of 'rules' that have the same left-hand side syntax token.

Weerasinghe's approach (1996:105) for the scoring of edges is fully described in

Section 11.6.2 of Chapter Eleven. He uses different methods depending on how the

edge was created. He makes use of element co-occurrence (as described above) when

calculating the score to assign to the new edge. In particular, he doubles the weight of

the element co-occurrence score when he uses the fundamental rule, and like

Magerman and Marcus (1991b), he uses a geometric mean, instead of the more

commonly used product to score the new edges. Element co-occurrence also features

in scoring new edges in Weerasinghe's bottom-up rule, and in his chart

initialisation. His application of element co-occurrence in chart initialisation is

unique to his parser.

In contrast with Weerasinghe's in some respects unique approach, Souter

(1996:101), in his final parser, and the chart parser described here, both use the

product of the edges that combined to form a new edge, which is commonly employed

by probabilistic chart parsers. Souter’s final parser also applied the product of the

206

edge's score with a weight for his vertical trigrams. Souter's approach is fully

described in Section 11.7.2 of Chapter Eleven.

12.1.3.5 Comparing the programming methods

The programming method used here differs from Weerasinghe's and Souter's

approaches. The major differences being:

(a) the use of a procedural language (first C++ and Java, and then Visual

BASIC), instead of a declarative one (Weerasinghe and Souter both used

PROLOG),

(b) the use of a database to store the parser's working data (the chart).

In early versions of the chart parser described here, I first used the C

programming language, and this was followed by a Java version, but both of these

were abandoned in favour of a Visual BASIC (VB) version. This was due to the

availability of a more straightforward interface to a relational database (for integration

with the Corpus Database) which VB provided. Additionally, VB was used for

ICQF+ (see Chapter Eight), and it offered a rapid prototyping environment, which

included the user interface development.

The advantages of using a procedural language were both (a) it was easier to

integrate with the database for the queries and the storing of the parser's working data,

and (b) I was able to have full control over the search strategies and computational

methods employed.

12.1.4 Evaluating the chart parser reported here

Any chart parsing approach that uses rules extracted from the naturally occurring texts

of a corpus is bound to face the major problems that Souter and Weerasinghe

experienced before me (i.e. that of the over-generation of edges in the chart). The

prototype parser described here, although it uses a different approach, it suffers in the

same way. The FUS table contained over 6,200 syntax 'rules' (in normalised form).10

Like Souter and Weerasinghe, therefore, I found myself continuously inventing and

implementing new methods in order to try to reduce the number of edges. The most

successful of these were (a) the implementation of the potentially closed edges (as

10 For example, a rule o f the form Cl - >S O M followed by C is counted once irrespective o f what can
follow the C.

207

described in Section 12.1.2.1) and the implementation of an n-best approach (see

Section 10.2.2.2 of Chapter Ten).

The n-best approach involves only constructing n edges for the most likely

analyses, where n is a specific value (e.g. 5 or 10) that is set before the parse. I found

that this cuts out some unlikely edges, and so, made the parse quicker. However, as

there was no mechanism for backtracking, and the correct parse was often missed

when it was less frequent and therefore not within the n - b e s t , and the parser was

therefore only able to handle simple sentences.

In its pre-n-best form, I found that a great number of edges existed that could not

form part of the final analysis, and that in many parses, thousands of spurious edges

were therefore produced. I also discovered that the number of edges significantly

increased when the lengths of sentences parsed increased. On a 2.4GHz Pentium 4

machine with 512Mb memory, short sentences (of three or four words) were taking

minutes to parse, and sentences of five to eight words took considerably longer.

Performance was approximately proportional to the square of the sentence length.

This was clearly far from satisfactory.

My non n-best approach produced a parser that was not as quick as

Weerasinghe's, but and this can be attributed to the greater number of 'rules' in the

FUS table (see Section 12.1.2.3) when compared to Weerasinghe's multi-source

syntax list (see Section 12.1.3.1). The parse times were, however, quicker than those

recorded by Souter, but this was probably mainly due to changes in speed of computer

hardware since Souter's conclusion in 1996.

The main conclusions from the work of building a chart parser were

(a) that an alternative approach was needed, and

(b) that a non-deterministic chart based method was far from ideal for parsing

SFG syntax when dealing with sentences such as those found in large

corpora of naturally occurring texts, and

(c) that no methods of reducing the number of spurious edges proposed so far are

sufficient to increase the efficiency of the parser significantly.

Work on the prototype chart parser described here was very useful, in that it

satisfied its aims (as stated at the start of the chapter). First, I have shown that a

database-oriented approach as proposed in Chapter Seven, can indeed operate

successfully in a parsing environment. Second, although technology has advanced

208

since the work of Souter, and the speed of the chart parsing algorithm is now more or

less acceptable for short sentences, it is clearly worth exploring an alternative

approach, which may yield more efficient results.

It is to the exploration of this alternative approach that we now turn. The next

section describes the start of this work, i.e. the development of a second prototype

parser which significantly extended the use of the probabilities tables. This is the Star

Parser.

12.2 Beyond a chart parser
After implementing and evaluating the chart parser described above - and so

concluding that a better method is required. I started experimenting with a number of

different ideas, some of which would ultimately lead to an implementation in the

Corpus-Consulting Probabilistic Parser (CCPP). The main new idea was that of the

data structures that gives the Star Parser its name, and it is this which is described in

this section.

12.2.1 The Star Parser

The Star Parser is so called because of the shape of its data structure. While it did not

lead to the implementation of a fully functional system, some of the ideas behind it

developed into the concepts used in the CCPP and it therefore deserves a brief

description here.

12.2.1.1 The Star data structure

The Star data structure has the form of a four-pointed star, as shown in Figure 12.2 and

Figure 12.3. At the core of the star is a unit. Each Star has a parse history, left

predictions, right predictions, and above predictions.

The parse history, which like the rest of the model, is expressed in XML,

contains the syntactic structures that were used to form the star, including the analysis

of the item directly below it up to that point. The left predictions are an ordered

string of elements of structure that can appear before the left-most element (e.g. a

Lnk) that is a child of the unit at the core of the star (e.g. a Cl). The right

predictions are the elements that may follow the right-most element that is a child of

the unit at the core o f the star (e.g. a C in a Cl). The above predictions are the

elements of structure that the unit can fill.

209

Above predictions

L e f t

p r e d i c t i o n s
U n i t

H i s t o r y -

r i g h t

p r e d i c t i o n s

Figure 12.2: The Star data structure

Z,
0.82

C, ALog,
0.12 0.03

!, 0.59
Lnk, 0.13

B, 0.07
0,0.05

c i
A, 0.11
C, 0.05
A Log, 0.02

<s>
< n g p >

< d d > th e < /d d >
< h > m a n < /h >

< n g p >
< /S >
<M >saw < /M >
<C>

< n g p >
< h _ p > m e < /h p >

< /n g p >
< /C >

Figure 12.3: A Star data structure representing a Clause (Cl)

12.2.1.2 The Star parsing algorithm

The Star Parser starts by taking the first item from the input string and requesting an

item-up-to-element query (I2E). A Star is created and initialised for each element

that the item can expound. An element-up-to-unit query (E2U) provides the unit that

will be stored at the core of the star.11 A query about the forward unit structure

(FUS) provides the appropriate right predictions. A novel feature was the introduction

11 Norm ally this returns one unit. Few elements (for example, linker (L nk)) can be in more than one
unit. In which case, a separate star is created for each.

210

of a second type of unit structure query, in order to give the backward predictions as to

the elements that might precede the element under focus. This was the backward

unit structure (BUS) query, which operated on the BUS probabilities table, and has

the structure given in Table 12.4. A 'unit-up-to-elementf (U2E) query provides the

above element predictions.

Field D escrip tion
UNIT The unit in w hich the elem ent exists.
THISELEM The element that is the subject of the query.
PREVELEM The elem ent that can precede the elem ent that is the subject o f the query.
PROBABILITY The probability that the element in PREVELEM can precede the element given

in THISELEM.

Table 12.4: The structure of the BUS probabilities table

The next stage of the Star parse process involves growing the Star up to the

sentence node Z, so creating a set of new stars as it grows. References to the Stars that

were involved in creating the new Star are maintained. The process of growing

involves performing a series of element-up-to-unit (E2U) and unit-up-to-element

(U2E) queries until the above predictions contain a sentence element. As the parse

progresses, the parse history changes, and this is recorded in the parse history field.

Next, the parser moves to the next item in the input sentence and creates a new

Star for it. It then performs a join operation for all stars that are to the left of the new

Star, that predict that the left-most element in the new star follows the right-most

element of the left Star. After the join, the Star's probability is calculated as the

product of the predictions.

When a Star cannot be joined it is grown so that it contains a new element and

unit before a join attempt is made on the new Stars.

12.2.1.3 Evaluating the Star Parser

The Star parser was a prototype. While working on it, we realised its limitations. It

was then abandoned to allow work on the CCPP to start. The problems with the Star

approach were similar to those experienced by the chart parser - it was slow and

inefficient with a great number of stars being created for analyses that could not exist.

However, work on the Star Parser provided useful material to take forward into

the Corpus-Consulting Probabilistic Parser. It gave the basic methods for joining data

structures (based on forward and backward predictions) and above all, it provided the

211

early versions of the probabilities tables that we use for parsing, as described in

Chapter Fourteen.

123 Summary: Towards the Corpus-Consulting Probabilistic Parser
Section 12.1 discussed the development o f a chart parser. It is different from that of

other chart parser algorithms in that it is database-oriented, i.e. it (a) stores its

working data in the tables of the database, and (b) receives its information about the

model of syntax and associated probabilities from other tables in the database (the

probabilities tables). The database-oriented approach worked very well, particularly

in the development o f the parser algorithm, and the work also showed that XML is a

good means of annotation, not only for the annotation of the Corpus (see Chapters Six

and Seven) but also for representing the output o f the parser.

Due to the fact that the syntactic relationships used were derived from the

naturally occurring texts o f a corpus, the parse times were slower than those reported

by Weerasinghe (1994). Although improvements on Souter's (1996) parse times were

made, they were considered to be mainly due to improvements in computer

technology. I concluded that the chart parsing algorithm, even with modifications to

reduce spurious edges, does not provide the best model for the requirements of this

project. This conclusion was only reached after making many different attempts to

reduce the number o f edges in the chart, and so overcome the problem. The most

promising of these new concepts were (a) the adoption of the concept of a potentially

closed edge, and (b) the use o f the n-best approach. However, the n-best approach

inherently demands the support of backtracking to pick the next n-best edges to take

forward - a solution that goes somewhat against the nature of a chart parser. Unlike

Souter and Weerasinghe before me, I did not attempt to reduce the number of entries

in the syntax list, and if we had not by that point started working on the CCPP parser

(to be described in Part Four), this might have been the next logical step to take, in

attempting to turn the prototype into a working model that would return acceptable

results.

Section 12.2 has documented the first steps towards a new parsing algorithm by

describing the Star Parser. This algorithm, which demanded the implementation of

further probabilities tables, was really the birth of the Corpus-Consulting Probabilistic

Parser (CCPP), which is the main output from this research.

212

This now concludes Part Three. The scene is now set for the chapters of Part

Four, in which the new parser is introduced, discussed in detail, tested and evaluated.

213

PART FOUR
The New Parser

This part of the thesis describes the new parser - the Corpus Consulting Probabilistic

Parser (CCPP).

Chapter Thirteen introduces the parser, and gives the background to its

development.

Chapter Fourteen describes:

(a) the model of syntax and the probabilistic data that the parser uses, and how it

is organised in the probabilities tables,

(b) the parser data structures and how they are organised in the parser working

tables, and

(c) the functions (and hence, the operations) that are used with the data

structures.

Chapter Fifteen gives full details of the parsing algorithm, and shows how it uses

the probabilities tables and the parser working tables.

Chapter Sixteen describes the parser's operating environment: the parser

workbench, and describes how it was used in the development of the parser and in so

doing it illustrates the parser at work on a simple sentence.

Chapter Seventeen describes the ways in which the parser was tested, and

evaluates it against the other models presented in Chapter Twelve.

214

Chapter Thirteen
Introducing the Corpus-Consulting
Probabilistic Parser
This chapter provides an introductory overview of the Corpus-Consulting

Probabilistic Parser, and of the way it interacts with its complementary components

within the overall system.

As I pointed out in Section 1.3 of Chapter One, some of the development of the

parser has been the subject of joint research that reflects equally both: (a) the essential

linguistic concepts that are needed, for which Professor Robin Fawcett has primary

responsibility, and the computational concepts that complement these, for which I

have primary responsibility. While the work on the corpus database (presented in Part

Two) was overwhelmingly my own, many of the concepts introduced here are a

genuine blend of the two sources of insight, and in many cases it would be invidious to

identify one or the other of the two members of the team as the person responsible,

since the solution finally adopted was the result of extended discussion and

experimentation.

As we saw in Section 10.1 of Chapter Ten, the goal of this parser is to transform a

string of items (roughly 'words') into a richly annotated tree diagram, and Section

13.1 expands on the implications of this aim in the context of this project.

In Chapter Twelve, we noted the lessons learned from the earlier SFG parsers

developed both by Weerasinghe (1994) and Souter (1996), and within the present

project. It described these early attempts, and the problems associated with them

when they were used in a corpus-based chart parsing approach with SFG syntax. The

conclusion of that work was that an alternative approach to parsing complex texts in

SFG terms should be sought. The approach proposed here is introduced in Section

13.2 and outlined in Section 13.6.

The work reported in Chapter Twelve also confirmed that it is possible to

integrate a corpus-consulting database-oriented approach with the parsing process.

Here, the parser consults a database that contains knowledge of relationships between

syntactic categories, together with their probabilities. The probabilities tables are

also used to store the working data of the parser, and this has been particularly useful

in the development of the parsing algorithm. It gives us the ability to stop the parse at

215

any point and so examine the structures that it has created. It is this work that led to

the development o f the environment in which the parser described in this part of the

thesis operates: the Parser WorkBench (see Chapter Sixteen).

1 3 .1 A i m s
As stated in Section 10.1 of Chapter Ten, the major aim of any natural language parser

is to receive an input string containing items (words), and to convert this string into a

syntax tree diagram. The aim of this parser is no different, except that since the output

is expressed in SFG syntax, the tree diagrams are more richly annotated than those in a

typical PSG-based parser (such as those in the Penn Treebank).

Figure 13.1 shows the Corpus-Consulting Probabilistic Parser in the context of

this project. It shows the input to the parser, and how the parser interacts with the

corpus database for two purposes:

(a) to retrieve information from its knowledge of syntactic probabilities through

the use of corpus queries, and

(b) to store its working data.

The richly annotated syntax tree, which is in XML format, uses the same method

of annotation as that used for the corpus itself in the corpus database. The output is

one or more syntactic analyses of the structure of the sentence. This may be in the

XML format shown on the left of Figure 13.1 (see also Section 6.1.5.2 of Chapter

Six), or (after the application of formatting) in the standard representation used in

linguistics, as in the analysis shown on the right in Figure 13.1.

The primary aim of creating a parse tree in XML format is to be able to add any

new successfully parsed sentences to the corpus database, and so to update the

probabilities tables. In doing this, the probabilities associated with the units,

elements and items are changed, and this has the effect o f changing the parser's

knowledge of syntax. It is in this way that the corpus is said to be dynamic, i.e. it is

changing in principle, with each new sentence that is parsed. The provision for this in

the present model makes it possible to satisfy the goal stated in Section 1.1 of Chapter

One, i.e. that the parser will model the fact that language changes with time, and so it

is, in this sense, dynamic.

216

The seagulls ate the
mackerel

P r o b a b i l i s t i c Uni t

WorKingVlata

Parser Corpus
Database

X M L

representation

Probal^Hsti^ data

<z>
<ci>

<s>
<ngp>

< d d > t h e < / d d >
< h > s e a g u l l s < / h >

< /n g p >
< / S >
<M>ate</M >
<C>

<ngp>
< d d > t h e < / d d >
< h > m a c k e r e l< / h >

< /n g p >
< / C >

< C 1 >
< / Z >

update
corpus

X S L
Formatter

s e a g u l l s

Figure 13.1: The corpus-consulting probabilistic parser: inputs and outputs

1 3 .2 T h e b e t t e r m o d e l : a p a r t i a l s i m u l a t i o n o f t h e h u m a n p a r s i n g
p r o c e s s
A major conclusion of Chapter Twelve was that a chart parser is far from ideal for a

corpus-based approach to parsing unrestricted text using SFG syntax. This is due, as

we saw, to the over-generation of edges in the chart, and the clear implication was that

a better approach is needed. But where should we look for the new ideas?

13.2.1 The deterministic approach
The fact is that, so far, no more efficient parser has yet been built than the parsing

system used by the human mind. We therefore started from the assumption that the

best approach to developing a computer parsing program would be one that simulates

the human parser as much as possible within the limitations of operating at the level of

syntax.

Marcus (1980), and Sampson (1983), both agree that a deterministic approach,

such as that used in the Marcus's PARSIFAL parser, does this more closely than its

non-deter minis tic counterparts. Sampson (1983:92) points out that the deterministic

approach used in PARSIFAL is similar to the way that a human reads a text from left

to right. He also makes the point that the mind does not have to continuously re-read

texts in order to understand their meaning (unlike the parsers prior to Marcus's work,

which constantly backtracked when they failed to find an analysis). Marcus's parser

only struggles when it encounters a 'garden path' sentence (see Section 10.2.3 of

Chapter Ten). This lack of backtracking is in contrast to the 'brute-force' approach of

the chart parser, and it therefore seemed sensible to develop a parsing algorithm

which, like that of Marcus, was as deterministic as possible.

As we saw in Section 10.2.3 of Chapter Ten, a deterministic parser cannot be

expected to disambiguate the type of structural ambiguity, in which there is more

that one syntactically correct analysis, each of which represents a different meaning of

the same sentence. Sampson (1983:96) suggests that this decision is left up to the

higher levels of the understanding system, and we take the same view in the present

project. In other words, it seems more useful, for reasons of efficiency, to provide the

parser with mechanisms that enable it to produce all acceptable analyses, and present

those to the higher processing components (as represented in Figure 2.2 of Chapter

Two), rather than to present just one, which may turn out to be incorrect.

m

In this work, the parser and the semantic interpreter are not 'interleaved' (for

example in a manner as described by Ritchie (1983)). In such cases, the semantic

interpreter can, in principle, assist the parser in determining the correct analysis. But

we have not followed this route to building a superior parser because: (a) the

resolution of the problem frequently only occurs at the stage when the incoming

message is added to the addressee's belief system, and (b) the goal that we have set

ourselves is to build a parser that handles as much of the problem as it can at the level

of form. The second reason, of course, follows from the first. This is not to deny that

there is some advantage to be gained by the judicious use of semantic features (as was

used by Weerasinghe (1994:57)). But this can never be a complete solution to the

problem. So it seems sensible to perform as much of the work of analysis as possible

at one level, before passing on more than one possible analysis.

In Chapter Twelve, we saw that the n-best approach can bring some success.

However, if this method is coupled with a backtracking algorithm, the resulting

parser can only be considered deterministic, in Sampson's terms, if n is set to the

value 1, and it will only succeed if the correct solution is found at the first attempt (i.e.

without the need to backtrack) (Sampson 1983). Although the goal for the new parser

is that it should be able to find the correct parse at the first attempt whenever possible,

there is an argument for allowing it to go back and discover more analyses. This can

be for the following reasons. The first reason is that the parser is working at the level

of syntax and does not have the knowledge to disambiguate when more than one

analysis of a given sentence is legal (i.e. when structural ambiguity occurs). The

second reason is to allow the parser to be able to analyse garden-path sentences (see

Section 10.2.3 of Chapter Ten), i.e. to be able to go back to the point at which the

wrong path was taken, and to take an alternative route. Computational backtracking

is an expensive process. By implementing the n-best approach, and by allowing n to

be a value greater than 1, allows the parser to take n analyses forward to the next stage

of the parsing process without the need to backtrack. The value of n represents the

size of the parser’s search space at any point in the parsing algorithm.1. During the

testing of the parser, we will experiment with different values of n to determine an

optimal value.

1 The value of n has been termed the 'beam-width' in the work of others (see Section 10.2.2.2 of
Chapter Ten).

219

13.2.2 The corpus-based approach
One problem in developing a parser that models the human parsing process is that we

cannot be absolutely certain how the human parser works. It seems likely, however,

that both the performer and the understander of a text operate, unconsciously, with a

knowledge of the possible syntactic relations between items, elements and units within

sentences (interpreted as 'rules'), and of the probabilities of such relationships (as

summarised in Appendix B of Fawcett, 2000a). We can assume that the humans gain

this knowledge through their experience of what they have heard or read (and hence

parsed) before, and that this knowledge changes dynamically as new texts are

encountered. Similar knowledge can be represented in a syntactically analysed

computer corpus from which a parsing system can extract its predictions. Such an

approach is used here, hence the term Corpus-Consulting in the name of the parser.

And since the corpus that is consulted resides in a database along with the parser's

working data, the approach used here can be further characterised as database-

oriented.

13.2.3 The probabilistic approach
Knowledge of the relationship and its probability between an item and an element, and

between an element and a unit, is an important tool in the process of deciding that a

given sentence is grammatical. Our knowledge of probabilities is an integral part of

what we know about these relationships; hence the term probabilistic in the name of

the parser.

The probabilities tables reside in the corpus database (see Chapter Seven).

These are updated as new sentences are parsed, and they provide the parser with the

data that in other approaches is typically presented as the separate component: the

lexicon, as well as its knowledge of syntactic relations and their associated

probabilities.

13.2.4 A comparison with the traditional ways of classifying a parser
In Sections 10.2.1 and 10.2.2 of Chapter Ten, we noted ways in which parsers have

typically been classified, and in Section 10.2.6, we noted those classifications that best

described the parser that is the subject of this work. In these terms then, the parser is

probabilistic, corpus-based, bottom-up, left-to-right, depth-first, incremental,

and, in principle, deterministic. It also uses a form of best-first, beam search in its

n-best approach.

220

In terms of the concepts foregrounded in the last few sections, however, the most

important characteristics of the new parser are that it is deterministic (in principle), n-

best, database-oriented and corpus-based and probabilistic. The difference between

these two lists of features is one indication of the degree of innovation reached at the

present stage of the evolution, pioneered by Marcus, O'Donoghue, Weerasinghe,

Souter and others, of probabilistic corpus-based parsers.

1 3 3 T h e o v e r a l l m e t h o d o f r e s e a r c h
As we saw in Chapter One, the method of research employed in the development of

the parser demonstrated teamwork between a linguist and computer scientist who are

working closely together. This proved to be an excellent research environment, and

the project could not have been succeeded without it. The parser has access to

linguistic knowledge of the way in which certain items affect the syntax that occurs

around them, and it is precisely this that differentiates this work from the more

mathematical, and formal approaches used by other parsers, where the concepts are

strongly influenced by formal language theory. We have built the linguistic

knowledge into the parser in two ways: most obviously, it is embedded into the

probabilities tables (which will be described in Chapter Fourteen), but it is also

present within the parsing algorithms, e.g. in the criteria for joining', and 'co

ordination' (as we shall see in Chapter Fifteen).

Linguistic knowledge is also required for Phase Two of the project, where it

features in the new mechanisms that are currently under development for

linguistically motivated backtracking (see Chapter Eighteen and Appendix L), and

for Version Two of the probabilities tables, which provide a wider coverage of

language for the parser to use (see Chapter Fourteen and Appendix I). I describe the

project's implementation phases in the next section.

1 3 .4 T h e r e l a t i o n s h i p o f t h e i m p l e m e n t e d r e s e a r c h r e p o r t e d h e r e a n d
t h e w o r k o f f u t u r e p h a s e s o f t h e p r o j e c t
The parser is being implemented in a number of distinct phases. Phase One

implements the algorithm and methods, which are described in Chapters Fourteen and

Fifteen and demonstrated in Chapter Sixteen.

Phase Two covers improvements based on our findings after testing and

evaluation. It includes the following:

(a) the implementation of the Version Two probabilities tables,

(b) the detection o f multi-word items,

(c) the treatment of punctuation, and

(d) the implementation of linguistically motivated backtracking.

Much of the preparatory work for each of these has been completed; what is

needed now is more time for the cycle of implementing, testing, improving and re

testing.

Phase Three will provide a parser that can handle

(a) discontinuous units,

(b) the recognition of participant roles, and so complements from the Main

Verb (see Section 4.2.1.3 of Chapter Four),

(c) additional sub-types o f modifiers and Adjuncts - and most importantly,

(d) the functions that have been added to provide the dynamic expansion of the

database of knowledge of syntactic probabilities by constant updating, will be

fully tested.

At the time of writing, the project is at the start of Phase Two. Further details of

the improvements for Phase Two (and beyond) are given in Chapter Eighteen. As

backtracking is an important concept in the implementation of the parsing algorithm,

we start the discussion in the next section.

1 3 .5 B a c k t r a c k i n g
When we consider backtracking, we need to distinguish clearly between what we will

term computational backtracking and linguistically motivated backtracking. We

will take computational backtracking first. When a parse fails, a computational

approach simply takes the parser back to the last path that has not been tried, and if

that fails, back again to the path before that has not been tried, and so it is therefore

computationally inefficient. In a deterministic approach, backtracking should occur

relatively rarely, and ideally only when the parser is being led up the garden path, or

when alternative analyses are sought. When the need to backtrack occurs, it is

sensible to implement a linguistically motivated approach in which the parser knows

the best point at which to go back based on linguistic reasoning.

The algorithm implemented in Phase One adopts a computational backtracking

approach of the type described above. We now come to the parsing process itself.

1 3 .6 I n t r o d u c i n g t h e n e w p a r s i n g p r o c e s s
The Corpus-Consulting Probabilistic Parser operates in the Parser WorkBench, it

is this that enables the researcher to run and test the parser. When being operated in

the Parser WorkBench, the user can request that the parser simply performs the parse

and present the results, or request an incremental step-by-step parse. Here the

results can be reviewed and changed, or the parameters can be modified at the end of

each stage o f the process in order to test and evaluate changes. The Parser

WorkBench is fully described in Chapter Sixteen.

The basic data structure of the parser is a tree, and there are two types. The built

structure represents the items and syntactic structures that have been parsed so far, as

the parser moves from left-to-right, and the candidate structure represents the item

and syntactic structures that the parser is attempting to join to the built structure.

The parser operates through a cycle o f seven stages, each responsible for a part of

the algorithm, and is implemented as a State Transition Machine (STM). This

provides a workflow, which is a collection of states, actions and paths, through which

a work-unit passes. The basic work-units are single trees or tree pairs that consist of

a built structure and a candidate structure. The Parser State Table (PST), which

is one of the parser working tables, records the path of these work units through the

states, and is used for backtracking. These data structures are described in Chapter

Fourteen, and the parser workflow is described in Chapter Fifteen.

The unit nodes of the parse trees contain forward and backward predictions,

which are used to identify potential joins between a built structure and a candidate

structure. The predictions are obtained by requesting forward unit structure and

backward unit structure corpus queries. Other queries to the corpus are used to

'grow' trees vertically, and these include queries about the various elements an item

may expound, the units in which an element can be a component, and the elements

that a unit can fill. These corpus queries are addressed to the probabilities tables, and

they are described in Chapter Fourteen.

Each state that the parser enters implements a Stage (or a part of a Stage) of the

algorithm. The algorithm is described in Chapter Fifteen, and a demonstration of how

a sample sentence produces trees (which move through these states) is given by a

walkthrough of the algorithm in Chapter Sixteen and in Appendix K. Briefly, the

stages are as follows:

223

(a) Stage 1 is responsible for the initial item in the input string, and builds the

initial built structure trees. It builds these trees all the way up to the Sentence

Node (Z), and, in doing this, it operates differently for the first item than it does

for all the other items in the sentence (see Section 15.2.2 of Chapter Fifteen).

(b) Stage 2 is used for the second and all subsequent items, and it builds up from

the item to either the first or the second unit vertically.

(c) Stage 3 attempts to join the candidate structures built in Stage Two to the

existing built structures, and consists of two sub-stages. The first nominates

pairs of trees for a join, and the second performs the n-best of them (where n is

one of the configurable parameters). If there are no 'good' joins, the parser

moves to Stage 4.

(d) Stage 4 is therefore invoked if the attempted joins in Stage 3, or Stage 5 have

not succeeded. It grows the candidate structures by a further element and unit,

and then presents them to Stage 3 again.

(e) Stage 5 is reached after a certain number of attempts at growing and joining

(Stages 3 and 4) have failed, or the candidate item is a linker. It is concerned

with co-ordination of units. Like Stage 3, it has two sub-stages that are

responsible for the nomination, and the joining of these co-ordinated trees.

(f) Stage 6 provides for backtracking. It is only reached if the previous stages fail.

It is responsible for directing the parser back to the appropriate point, in order

to attempt a new parse. However, the use of the n-best approach reduces the

number of occasions in which this is required to a minimum.

(g) Stage 7 is reached when the parse succeeds. If the parser is operating in step-

by-step mode (see Chapter Sixteen), it asks the user if further parses are

required. Otherwise: (a) it returns the parser to the appropriate state in which it

can parse another sentence (if the required number of analyses has been

reached), or (b) it backtracks to the previous move that has not been followed,

and looks for the next analysis for the given sentence.

Finally, when a successful parse is identified, the user can check it in the Parser

WorkBench's Sentence Viewer, and then add it to the corpus tables in the corpus

database. The effect of this is to automatically update the corpus (so that the new

sentences are available when responding to corpus queries from the corpus query

tool), and also the probabilities tables (so that the changed probabilities will affect

future parses). It is in this way then, that the corpus is dynamic.

1 3 .7 S u m m a r y
This chapter has introduced the Corpus-Consulting Probabilistic Parser. It began

by restating and clarifying the aims of the parser, before discussing better methods of

parsing that overcome the problems experienced by the earlier researchers that were

described in Chapter Twelve. The new approach will more closely model the human

parsing process by using determinism and incremental parsing.

The way in which this project is implemented in phases was discussed, and the

deliverables from each stage were outlined.

This chapter provided an overview of the new parsing algorithm, and the next

few chapters will provide the necessary detail.

225

Chapter Fourteen
The parser's probabilities tables,
working tables and data structures
This chapter provides a brief overview of: (a) the probabilities tables and the queries

by which the parser accesses them, (b) the parser working tables, and (c) the parser's

data structures. Full information about these tables can be found in Appendix H.

Section 14.1 describes some of the different types of probabilities tables and

their queries. Section 14.2 introduces Version Two of the probabilities tables, and

Section 14.3 introduces the data structures used by the parser and the parser working

tables. Information about the Version Two tables can be found in Appendix I.

The way in which the parser uses the probabilities tables and the data structures

will be explained in the next chapter.

Both the probabilities tables and the parser working tables are stored in the

corpus database, and it is this that gives the parser its unique database-oriented

approach. In effect then, the chapter completes the work of describing the corpus

database schema that was begun in Chapter Seven.

1 4 .1 T h e p r o b a b i l i t i e s t a b l e s a n d t h e i r q u e r i e s : V e r s i o n O n e
This section describes Version One of the probabilities tables and the queries

performed on them. There are two groups of queries, vertical queries and horizontal

queries.

Vertical queries have this name because they ask about the relationship upward

between an item, element or unit and the syntactic category (or categories) above it in

the tree. This relationship may reach up to the 'root' of the tree (i.e. the Sentence

node(Z)).

The vertical queries return vertical strips, or parts of vertical strips. As an

example of a vertical strip, consider Figure 14.1, in which the first vertical strip

consists of "The" dd ngp S Cl Z.

226

Figure 14.1: A sample sentence and a set of initial
vertical strips extracted from it

The types of vertical queries used by the parser are:

(a) Initial vertical strip based on Item (IVS - ITEM),
(b) Initial vertical strip based on element o f structure (IVS - ELEM),
(c) Item-up-to-Element (I2E),

(d) Item-up-to-Element-up-to-Unit (I2E2U2E),
(e) Element-up-to-Unit (U2E),
(f) Unit-up-to-Element (E2U).

As an example of the results of an IVS-ITEM query, see Table 14.1.
IT E M V E R T S T R IP P R O B A B IL IT Y

t h a t h _ p n g p S C l Z 0 . 3 2 2 8

t h a t d d n g p S C l Z 0 . 3 1 9 9

t h a t h _ p n g p C C l Z 0 . 2 7 9 6

t h a t d d n g p C C l Z 0 . 2 7 7 1

t h a t h _ p n g p c v p g p C C l Z 0 . 0 5 4 7

Table 14.1: An excerpt from the IVS-ITEM query for the item " th a t”

The table shows that there is a 32.28% probability of that being a pronoun

head (h_p) in a nominal group (ngp) that fills the Subject (S) in the primary clause

(Cl) and a similar probability that it may be a deictic determiner (dd) in a Subject -

and lower probabilities that it may occur in a Complement (C).

227

See Appendix H for a full account o f all types of vertical tables and their

associated queries.

Horizontal queries return elements (or groups of elements) together with an

associated probability. They operate using horizontal slices (or partial horizontal

slices) at any level of the tree which represents the elements in the structure of a unit.

There are two horizontal queries called Unit Structure Queries:

(a) Forward Unit Structure (FUS),
(b) Backward Unit Structure (BUS).
In contrast with the tables and their queries that have been described so far, unit

structure queries ask about the horizontal relationships in the parse tree. A Forward

Unit Structure (FUS) query elicits a set of elements that may follow a given string of

elements that has already been established, and their probabilities. A Backward Unit

Structure (BUS) query elicits the set of elements that can precede a given element in

the same unit and the probabilities of each. See Table 14.2 for an example of the

results returned for a FUS query.1

U N IT E LEM EN TS N EX TELEM P R O B A B IL IT Y

C l ! S 0 M 0 . 7 6 4 3
C l ! S 0 i 0 . 1 1 3 4

C l ! S 0 X 0 . 0 5 3 9

C l ! S 0 A _ L o g 0 . 0 1 2 1

C l ! S o A _ I n f 0 . 0 0 8 7

C l ! S 0 A 0 . 0 0 6 6

C l ! S 0 I 0 . 0 0 5 5

Table 14.2: Unit structure query for the next element in a Clause (Cl) that has
found a Subject (S) and an Operator (O)

This concludes our brief description of the probabilities tables and the types of

query that are used to extract data from them. See Appendix H for a more detailed

account of all the types o f vertical and horizontal tables and their queries. In Chapter

Fifteen we will see how the parser uses these tables in the parsing algorithm.

1 4 . 2 T h e d e v e l o p m e n t o f t h e V e r s i o n T w o t a b l e s
In constructing the tables introduced in this chapter, we noted several places in which

the probabilities were skewed by the fact that the corpus was one that contained only

children's spoken texts. This led us to develop a second version of the tables so that

1 Note that in the unit structure queries, the start and the end of the unit are treated (for computational
purposes) as if they were elements in the unit - each being represented by an exclamation mark (I).

228

f

there are now two versions of the probabilities tables, called Version One and

Version Two. The two versions are stored in database tables that have the same

structures, the difference being the different data in each version. Appendix I provides

a full account of the reasons why we decided to develop Version Two and how we

accomplished this demanding task.

The result of this work is that the parser now has access to a database of

approximately a 16,000 Main Verb forms, 200,000 nouns, 16,000 adjective forms, and

13,000 manner adverb forms, and a score o f other elements such as prepositions, Main

Verb extensions and so on.

Next, we turn to a very different set o f tables, and the algorithms that are used to

populate them. These are the tables that store the parser's working data including the

data structures.

1 4 3 T h e p a r s e r d a t a s t r u c t u r e s
The way in which the parser is database-oriented is that its working data are stored in

database tables. This section describes these tables and the functions that operate on

them.

The basic data structure in the parser is a database tree. There are two types of

tree. Trees that represent what the parser has built so far are called built-structures.

As the parser moves from left to right through the words o f a sentence, the parsing of

each new item results in the building of one or more candidate structures.

Each tree is represented as a record in the database table called

DB_PARSE_TREE, and full details of this and other parser working tables can be

found in Appendix H. For a full description of how the parser uses these trees, see

Chapter Fifteen.

1 4 . 4 S u m m a r y
This chapter has outlined, very briefly, the nature of the probabilities tables and the

parser working tables, Appendix H provides a much fuller specification of these.

Appendix D provides details of all tables and their fields. Appendix I provides details

how the Version Two tables were constructed, and the reasons why they were created.

We are now in a position to examine the parsing algorithm itself, which is the

subject o f the next chapter.

229

Chapter Fifteen
The parsing algorithm
Chapter Fourteen (supported by Appendix H) has described the database used in this

approach to parsing, so showing why it should be characterised as database-oriented.

We have seen that the probabilistic data is held in the probabilities tables, and how

queries can be performed to extract the data to be used by the parser. Chapter

Fourteen also defined the parser’s data structures, since these are also stored in the

database, using the parser's working tables. The purpose of this present chapter

then, is to describe the parsing algorithm itself, and in doing so it will show how the

concepts described in Chapter Fourteen are used in parsing a sentence.

Section 15.1 provides definitions of the basic concepts introduced in Chapter

Thirteen and now to be presented as part of the working model.

One important concept that is introduced here for the first time (in Section 15.1.4)

is the idea that a parser can be implemented as a state transition machine. This is a

virtual device that provides the parser with its workflow model through which trees,

and pairs of trees pass during the parser's analysis of a sentence.

As we saw in Chapter Thirteen, the parsing algorithm is implemented in modules

called 'Stages'. Section 15.2 describes these stages in greater detail.

Finally, Section 15.3 introduces briefly the parser's operating environment - the

Parser WorkBench, which is described in detail in Chapter Sixteen.

1 5 .1 T h e b a s i c c o n c e p t s d e f i n e d a n d i l l u s t r a t e d

15.1.1 Candidate structure trees and built structure trees
Recall from Chapter Thirteen that a built structure is a parse tree that contains

information about what has been parsed so far. Hence it comprises of one item node

(for each item that has been parsed) and a number of element and unit nodes. Please

now inspect Figure 15.1, which provides a visual representation of this concept. It

shows a built structure tree that represents how far the parser has got after it has

processed two items (the and seagulls). Note that it identifies the rightmost strip

by stars.

230

'root' node

forward
predictions

M,033

O, 031

> A, 0.05

Key:

unit node

! 0.80 element node

q, 0.09 item node ('leaf 'nodes)o
T h . ☆ node in rightmost stripseagulls

BUILT STRUCTURE
Figure 15.1: A built structure

The topmost node (the Toot' node) is the sentence (Z) node. It is the unit nodes

(i.e. the Clause (C l) and the nominal group (ngp)), that function as the reference

point for the forw ard predictions about the element that may follow the last element

parsed so far in each unit. These predictions are the product o f a forward unit

structure query (FUS) (as we saw in Section 14.1 o f Chapter Fourteen and H. 1.6.1 o f

Appendix H), and are based on all the elements in the unit that have been parsed so far

(i.e. the Subject (S) in the Clause (C l) in Figure 15.1, and the deictic determiner (dd)

and the head (h) for the nominal group (ngp)). However it is only the elements in the

rightmost strip (RMS) o f the built structure that are involved in an attempt to join a

candidate structure to the built structure.

A candidate structure is a partial vertical strip that the parser is about to

attempt to join to the built structure (or to more than one, if alternative built structures

have been generated). Technically it is a tree, but it is one with unary branching. At

the stage o f the parsing process when a new candidate structure is being created, it will

typically consist o f an item node, and an element node and a unit node. However,

for items that are the subject o f an item-up-to-element-up-to-unit-up-to-element

231

query (I2E2U 2E), the tree will contain an additional element and unit node (see

Section 14.1 o f Chapter Fourteen and Section H.1.2 o f Appendix H). The root node o f

a candidate structure tree will not normally be a sentence node, and Figure 15.2

illustrates this. Each candidate structure unit node has a set o f backward predictions,

which together state the elements o f structure that may precede the element in the unit

described by the node and their probabilities. Figure 15.2 shows a candidate structure

that (a) has just one element node, and (b) one unit node (i.e. a Main Verb (M) that is

an element o f the Clause (C l)). The backward predictions are the result o f a

backward unit structure query (BUS) (see Section 14.1 o f Chapter Fourteen and

Section H. 1.5.2 o f Appendix H), and in this case are: a Subject (S), 43%, an Operator

(O), 27%, and a Complement (C), 21%.

backward
predictions

Key:

unit node

element nodeo item node

Figure 15.2: A candidate structure

15.1.2 Tree operations and tree pairs

The goal o f the parser is to join the candidate structure(s) appropriately to the built

structure(s), hence tree joining operations are performed on tree pairs. The parser

will first attempt to merge a unit node (or element node) from one with the same class

o f unit (or element) in the other. As the preceding words imply, there are two types o f

join operation.

S ^ 4 3 _ C1

O, 0.27

C, 0.21

ate

CANDIDATE STRUCTURE

232

■ M Ex, 0.05

C, 0.69

!. 0.20

(3

forward
,___ _ predictions

Key:o unit nodeO element nodeO item node☆ node in rightmost strip

T h e seagulls ate

BUILT STRUCTURE

Figure 15.3: The new built structure

The first is the element-join operation, which seeks to attach a candidate

structure to a built structure by adding the element and its descendants in the

candidate structure to the built structure. Here the units must match, and there must be

a match in the backward and forward predictions. The result o f the join is that the unit

in the built structure is extended by the additional element (and it is copied into a new

active built structure). Figure 15.3 shows the element-join between the built structure

shown in Figure 15.1, and the candidate structure in Figure 15.2. Following the join,

the forward predictions are recalculated so that they include the new element. The

new forward predictions for the elements o f the Clause (C l) are created on the basis

that the new Clause structure now contains a Subject (S) and a Main Verb (M), and the

Clause is now predicting that the Main Verb is most likely to be followed by a

Complement (C) (69%), although it also can be the last element in the Clause (!)

(20%).'

1 Recall from Chapter Fourteen that the ! means start or end of the unit.

233

The second and far less frequent type o f join is designed to handle co-ordination.

This type of join is termed a unit-join, because in this case it is a unit that is being

attached and not an element. It attaches a unit node (and its descendants) in the

candidate structure to the built structure so that it becomes a new right sibling of an

existing unit node in the built structure, so creating a co-ordination relationship.2

When the parser fails to make a join, it employs the tree grow operation. This

operation is performed on a candidate structure tree and grows it upwards by adding a

further element and unit, before making a further attempt to join.

15.1.3 Start and end positions, active and inactive trees
We come now to a set o f concepts that are required to explain the workflow of the

parsing process. All items, and so trees, have a start position and an end position.

These represent the position in the sentence, in terms of items at which a given tree

starts and ends, as in Figure 15.4. This information is used when determining which

trees are active. A tree is said to be active if it is to be involved in the next move, a

concept to be introduced in Section 15.2, and inactive if it is not.3

The seagulls ate the mackerel

w w w w w
0 1 2 3 4 5

Positions

Figure 15.4: Positions

15.1.4 The workflow of the parsing process
The overall 'flow' o f the work performed by the parser is implemented as a state

transition machine (STM).4 STMs are very common in the field of computer science

and have many different uses. They are used, for example, for modelling real-time

systems which have to respond to different events which cause the system to move to

a different state (Sommerville 1992:244). Although applications of similar principles

can be found in computational linguistics (e.g. in the form of recursive and augmented

2 Note that when there are elements and units above the matched unit in the candidate structure that they
must match the elements and units above in the built structure.
3 Thus a tree may be active or inactive in a sense similar to that in which these terms are used to the
edges in a chart parser.
4 The terms finite state automa, finite state machines, and transition networks (among others) are
often used to describe similar methods. The term state transition diagram (STD) is often used to
describe die type of diagram shown in Figure 15.5.

234

transition (RTN/ATN) networks as described in Section 5.2.2 of Chapter Five), the

purpose of these is significantly different since an ATN or RTN is often said to model

a ’grammar’. Here, the STM is used to model a workflow, and the 'grammar' is a

completely different concept.

Workflow management systems are growing in popularity in commerce and

industry where they are frequently used to represent business processes. Workflow

diagrams are similar to state transition diagrams in that they define states (represented

as ellipses on a workflow diagram) and actions (represented by arcs on the diagram).

Work-units move around the workflow and may be grouped into work packages.

The movement o f a work-unit from one state into another is called a transition, and it

is triggered by an action. An action, which is performed by an actor, may be the

subject of conditions and normally changes the work-unit in some way.

In a document management system, for example, a work-unit would be a

document, and one o f the actors would be an author.5 The parser uses a workflow of

essentially the same type. The states represent the condition that a tree, or a tree pair,

is in, after the application of one of the procedures within in a stage of the parsing

algorithm. A work-unit is either (a) a parse tree (i.e. a built structure, or candidate

structure), or (b) a tree-pair (as defined in Section 15.1.2). A parser move from one

state to another is the equivalent of an action, and the actor is the parser itself. Figure

15.5 shows the workflow model for the parser. The filled circles show the start of the

flow and the end of the flow. Ellipses show states, and the arrows show the paths that

the work-units follow as they transition from one state into another. In reading the

rest of this chapter, it will be useful to refer frequently to Figure 15.5 in order to

understand the relations between the various stages, and what each stage seeks to

accomplish.

In a workflow management system, a history is normally maintained which

records dates, times, and the actions that have moved a work-unit from one state to

another. In the document management system, for example, the workflow history

provides details o f when the document was approved or rejected. In the parser

workflow the equivalent is the parser state table (PST) (for which see Section

5 The other actors would be for example, editor, reviewer, illustrator etc., and the states of the workflow
may be new, work-in-progress, ready-for-approval, approved, and rejected. The document moves
between the states new (a requirement for a document is recognised), work-in-progress (the document is
being authored), ready for approval (authoring has finished and the document is sent for approval),
approved (the document has been approved) and rejected (the document has been rejected, and has to be
moved back to work-in-progress).

235

15.1.5). This records trees, or tree-pairs, the states they were in, and the states to

which they moved following the execution of a stage of the parsing algorithm.

Only one move can happen at any one time, but multiple work-units can be

handled as a work package which represents the n-best set of tree pairs that is being

processed during the transition from one state to another. The size of the package is

determined by the value of n in the appropriate n-best parser parameter (see Section

13.2.1 of Chapter Thirteen, and Section 16.3 o f Chapter Sixteen).

The other innovation introduced in the parser's workflow is the concept of

backtracking. This occurs when the parser 'jumps' back to a previous state in the

workflow. This concept simply would not be there in a business process workflow.

Backtracking is covered in Section 15.2.7.

A parser move, then, is defined as the movement of the parser from one state in

the workflow to another. The work-unit is a tree or a tree pair, and the workflow

history is stored in the parser state table. The actor in the workflow, as we have

seen, is the parsing algorithm itself.

The workflow, then, is a core concept in modelling the parsing process. Table

15.1 summarises stages and states of the process.

236

237

STAGE 1

item is
a linker

Initialise no strips to
process / strips to

process

finish -
parse
complete

STAGE 7

STAGE 2no more
items

more
parses
required item not

a linker
no
successful
parses

fail (no
Stage 4 tried)

pass

STAGE 3aSTAGE 3STAGE 4backtrack
to relevant
state

fail to
grow

pass
fail (after
a Stage 4)

fail (<3 tries
of Stages
3,4,3,5)

finish -
backtrack
failed STAGE 6 STAGE 5a

STAGE 5fail (> 3 tries of
Stages 3,4,3,5) pass

Figure 15.5: The workflow of the parsing process

Stage Purpose

Create an ordered list o f die initial vertical strips that can occur for the first lexical item.
Take the n most likely initial vertical strips from Stage 1 and express each as a built
structure.
Take the next item from the input and create candidate structures for i t
Calculate a joining score for each possible join that can be made between any active built
structures and candidate structures.
Take the n most likely possible joins (i.e. those over a certain joining score) from Stage
3 and create new built structures for them.
Grow the active candidate structures by one element and one unit.
Calculate a co-ordination joining score for any active built structure and candidate
structure.
Take the n most likely possible joins (i.e. those over a certain joining score) from Stage
5 and create new built structures for them.
Backtrack (see Section 15.2.7).
Determine if the parse has succeeded, and whether more parses are required.___________

Table 15.1: The stages of the parser

15.1.5 The parser state table
The parser state table (PST) is used to record the current state of the parse, and the

trees, or tree pairs involved in it. It is used (a) to record and order the most likely

analyses that will be considered next, (b) to identify the next state for any given tree or

tree pair, and (c) as a tool to enable backtracking to be performed. It includes the

following fields:

(a) BSTREEID and CSTREEID are the identifiers (IDs) of the built and

candidate structures,

(b) BSNODEID and CSNODEID are the IDs of the nodes that can be joined (for

example),

(c) NEXTSTATE tells the parser where it goes next with the given tree or tree-

pair,

(d) SCORE which, depending on the state of the parser, contains the score of a

join, grow, or the score of a given tree.

The contents o f the fields of a PST record depend on the state of the parser when

it was created. Taking Stage 3 as an example, the parser creates:

(a) a set o f PST records which represent each possible join together with its score,

(b) a set of PST records which represent a join that has a score which is beneath

the join threshold value (see Section 15.2.4),

(c) a set of PST records which represent the tree pairs that cannot be joined.

Stage 1
Stage la

Stage 2
Stage 3

Stage 3a

Stage 4
Stage 5

Stage 5a

Stage 6
Stage 7

For (a), the NEXTSTATE field is set to STAGE 3 a. For (b) and (c) it is set to

STAGE 4. If there are records of type (a), the parser will move to Stage 3a and make

n joins (or all joins, if less than n score above or equal to the join threshold value), if

there are none, the parser moves to Stage 4 and grows the candidate structures. Any

structures joined or grown will have the FOLLOWED field set to true in the original

PST record.

Table 15.2 shows the contents of the PST record for each state of the parsing

algorithm.6

6 Two fields are omitted from Table 15.2. These are (a) CYCLES which records how many times the
tree-pair has traversed the 3-4-3-5 cycle (if it is above the threshold, the NEXTSTATE is set to STAGE
6 for backtracking), and (b) STAGE4TRIED which indicates if the given candidate structure has
already been grown. If it has, then the parser will move to a Stage 5 rather than a further Stage 4.

239

240

Stage BSTREE
ID

CSTREE
ID

BSNODE
ID

CSNODE
ID

NEXTSTATE SCORE Remarks

Stage 1 not used not used not used not used Stage la not used Creation of initial vertical
strips in the DB_IVS table.

Stage
la

Id of the
created BS
tree

not used not used not used Stage 2 Probability of the
BS tree

Stage 1 a creates the next n
built structures from the
DB IVS table.

Stage 2 not used Id of the new
CS tree, if
there was an
item to
process,
otherwise not
used

not used not used Stage 3 if there was
an item to process,
otherwise Stage 7

Probability of the
CS tree

Stage 2 creates a candidate
structure for the next item.

Stage 3 Id of BS
tree

Id of CS tree Id of the BS
node which
can be joined
to the CS node

Id of the CS
node that
can be
joined to the
BS node

Stage 3 a Joining score
associated with the
join of the trees at
the nodes indicated

Stage 3 identifies the trees
that can be joined at the
given nodes.

Stage
3a

Id of the
new BS tree
when join
succeeds.
Not used if
join fails.

Not used if
join succeeds.
Id of the CS
Tree if fails

not used not used Stage 2 (if the join
succeeds),
Stage 4 (if failed
and
STAQE4TRIED is
false)
Stage 5 (if failed
and
STAGE4TRIED is
true)

Probability of the
new BS tree

Stage 3 a performs the n best
joins and creates new BS
trees.

Table 15.2: The use of the parser state table for each part of the parsing algorithm (Sheet 1 of 2)

Stage BSTRSB
ID

CSTREB
ID

BSNODB
ID

CSNODE
ID

NEXTSTATE SCORE Remarks

Stage 4 Not used Id of CS tree not used not used Stage 3 if grow
succeeds otherwise
Stage 6 (backtrack)

Probability of CS
tree after grow
operation

Stage 4 grows the CS tree
by an element and unit

Stage 5 Id of BS
tree

Id of CS tree Id of BS node
that may be
joined

Id ofCS
node that
may be
joined

Stage 5a if there
are any joins.
Stage 4 if it fails
and CYCLES of
3,4,3,5 is less than
the limit, otherwise
Stage 6 (backtrack)

Co-ordination
joining score

Stage 5 identifies potential
co-ordination joins between
trees

Stage
5a

Id of BS
tree

not used not used not used Stage 2 Probability of BS
tree

Stage 5a joins the trees by
co-ordinating units and the
PST records the new trees

Stage 6 No PST record because Stage 6 is backtracking and it includes a decision on the state into which the parser will move.
Stage 7 No PST record because Stage 7 identifies that the parse is complete, and responds to \i request to find more parses.

Table 15.2: The use of the parser state table for each part of the parsing algorithm (Sheet 2 of 2)

As the parser moves from state to state, built structures and candidate structures

are made active and inactive (see Section 15.1.3). When the parser backtracks, it will

re-activate any inactive trees that were active in the move to which the parser

backtracks (it gets the information about which trees to re-activate from the parser

state table).

15.1.6 The n-best approach

As the parser moves between states, it takes with it, as its work-package, the n most

likely trees (or tree-pairs). For developing and fine-tuning the parser, these values can

be set by the user in the Parser WorkBench (see Chapter Sixteen).

As we saw in Section 10.2.2.2 of Chapter Ten and Section 12.1.4 of Chapter

Twelve, the n-best approach is similar to the beam search or best-first algorithms

that have been successfully used in other parsers (e.g. Collins 1996, 1999). However,

there is a difference between these other approaches and the one used here in that the

algorithm applies a threshold to the n value. This specifies that only the best n values

over x% should be followed, and this means that in some cases, there will be fewer

than n routes taken into the next stage. The value of x% is termed the join threshold

value.

Initially, we took the position that a join should always be preferred to growing a

candidate structure upwards, even when the value of joining score was low. But

testing showed that this should not always be the case, since some very unlikely joins

were being made when, in reality, the candidate structure should have been grown.

We introduced the refinement of first taking the n-best joins over x%, and then

performing the tree growing operations, and following them through, before going

back to consider the joins under x%.

We also implemented the concept that a threshold value of x% can be varied

during the parse. The tests showed that, with some configurations of the joining score

formula's parameters, the score decreases as more items are parsed, and hence the

value of x depends on the position in the sentence of the parse. Furthermore, the value

of x may be decreased when the parser backtracks, as explained above, so that joins

with a lower score are accepted after backtracking - provided that they are above (or

equal to) the new lower value of x. These values (and the other configurable

parameters) are set in the Parser WorkBench (see Chapter Sixteen).

242

15.1.7 Node and level probabilities

When the candidate structure or built structure consists of a single vertical strip, the

node probability is the probability that has been established through the query that

generated the node. For example:

(a) if the node is an element node, the node probability will be determined by the

probability derived from either (i) the item-up-to-element query (I2E), (ii)

the item-up-to-element-up-to-unit-up-to-element query (I2E2U2E) or (ii) the

unit-up-to-element query (U2E) that generated it.

(b) If the node is a unit node, the node probability will be the result of the

element-up-to-unit (E2U) query that created it.

The level probability of a node is defined as the product of the node probability

and the child node's level probability. The level probability o f the root node,

therefore, is the probability associated with the tree.7

When the built structure contains more than a single strip, the node probability of

nodes that have more than one child is even more complex. Since the new built

structure is the result o f a join operation, the node probability becomes the product of:

(a) the node probability of previous element in the unit,

(b) the joining score, and

(c) the node probability of the node that has been gained from the candidate

structure tree.

As you can see, the new parser introduces quite a number of concepts that are new

to the field of parsing. We turn now to consider the complete picture of the parsing

process in terms of its stages - and, as we do this, we will see the concepts in use.

1 5 . 2 A f u l l s p e c i f i c a t i o n o f t h e a l g o r i t h m

15.2.1 Stage 0: Initialising the parser

Summary: This stage simply initialises the parser.

Stage 0 is not shown in the workflow given in Figure 15.5. It is merely a

'housekeeping' stage in that its only responsibility is to prepare the parser for use. It

sets variables, reads parameters and clears the parser working tables ready for the

parse. It is performed once for every new sentence.

7 The level probability of the root node is the probability of the tree to which the node belongs and is
stored as the tree probability in the DBPARSETREE table (see Chapter Fourteen and Appendix H).

243

15.2.2 Stage 1: Parsing the initial item

Summary: Stage 1 is broken down into two stages, Stage 1 and Stage la. Stage 1 gets

the initial item from the input string and performs an initial vertical strip (IVS) query,

and creates a list o f all possible IVSs fo r the given item. Stage la takes the n most

likely o f these and creates built structure trees fo r them.

Stage 1 only applies to the first item in the input sentence. This item has to be treated

differently from all the other items because there are no preceding items, so that there

are no built structures that could provide forward predictions to assist the parser in

determining the correct analysis. Nor, of course, are there any backward predictions.

In addition, some items have different probabilities when they occur in the sentence

initial position. It was for these reasons that we introduced the initial vertical strip

(IVS) tables and their queries (as described in Section 14.1 of Chapter Fourteen and

Section H.1.1 of Appendix H).

Using the IVS tables greatly enhances the efficiency of the parser. In the early

versions of the parser we employed techniques similar to those that will be described

below for use with the second and subsequent items, in order to build the structures

above the initial item up to a sentence node. But we found that this approach

generated an enormous number of unwanted built structures that were either

syntactically impossible or highly unlikely, and these slowed down the parser.8

Please consult Figure 15.5. Stage 1, which is reached directly from the

initialisation (Stage 0), and is only performed once in the entire parse, even if

backtracking occurs. It reads the first item from the input string and performs an item-

up-to-element (12 E) query for it. The 12 E query will return one 12 E record for each

element that the item can expound, together with its associated probability, and it

indicates whether:

(a) an initial-vertical-strip-item (IVS-ITEM) query is needed for this item,

and

(b) if an item-up-to-element-up-to-unit-up-to-element (I2E2U2E) query is

required for this item-element pair, in which case one is performed.

If an IVS - ITEM query is required, the parser requests one for either:

8 For example the parser would generate a built structure for the qualifier of a nominal group, which is
virtually impossible in the sentence initial position.

244

(a) all o f the item-element pairs from the 12 E query, or

(b) all of those I2E entries that lead onto an I2E2U2E query, in order to obtain

an item-element-unit-element quadruple (e.g. I - h_p - ngp - S).

It then builds a working initial vertical strip table (the DB-IVS table - described

in Section 14.1 of Chapter Fourteen and Section H.1.2 of Appendix H), which

contains all possible initial vertical strips, together with an associated score.9

Next the parser requests an IVS-ELEM query both for the item-element pairs that

are not identified as IVS -ITEMS, and for those that are.10 The parser adds any new

vertical strips that to the parser's DB-IVS table. It may, of course, find vertical strips

with the same structure as that in the table generated by the IVS - ITEM query, and if

so, the duplicate IVS-ELEM strips are ignored.11 At the end of Stage 1, the parser

will have a complete ordered set of vertical strips, including both common and

uncommon ones, and then it moves to Stage la.

In Stage la, the parser takes the n best initial vertical strips from the DB-IVS

table and generates built structure trees for them. At this point, therefore, the parser

will have the n best built structures ready to take forward to the next stage. In Chapter

Seventeen we will see how we came to determine the optimal value of this and the

other configurable parameters. As it builds these trees, node and level probabilities

(see Section 15.1.7) are calculated using the results of I2E, I2E2U2E, E2U and U2E

queries, together with the probability that the element can be first within its unit, by

using unit structure (US) queries (see Section 14.1 of Chapter Fourteen and Section

H.l.5.1 of Appendix H).

Any added built structure trees are set to active (see Section 15.1.3), and the

parser uses a forward unit structure (FUS) query to populate the forward

predictions with the elements of structure that can follow the last element in each unit

in the built structure's rightmost strip.

Stage la is a backtrackable state, i.e. it is a state to which the parser may

backtrack. If it does, it will take the next n-best initial vertical strips from DB-IVS

table, and process them. Should there be no more strips to process, the parser moves

to Stage 7 and registers a success or failure.

9 It does not generate built structures at this point as this is computationally expensive and would cause
a significant delay in the parse time.
10 The IVS-ITEM items also have to have an IVS-ELEM query to cover the less frequent uses of the
item.

245

15.2.3 Stage 2: Building a candidate structure

Summary: Stage 2 grows any item (other than the initial item) in the sentence

upwards by one element and one unit - and in some cases by an additional element

and unit - to create a candidate structure.

Stage 2 involves creating a set o f candidate structures for the next item in the input

string. It starts by retrieving the item and requesting an 12 E query for it (see Section

14.1 of Chapter Fourteen and Section H.1.2 o f Appendix H).

The I2 E records indicate which item-element pairs need an I2E2U2E query.

For non-I2E2U2E item-elements, candidate structures that contain the item and

element are created and probabilities are assigned. I2E2U2E queries are requested

for item-elements that need it, and candidate structures are created for each item-

element-unit-element quadruple.

To complete Stage 2, a unit-up-to-element (U2E) query is requested and each

candidate structure is grown to add the appropriate its unit (see Section 14.1 of

Chapter Fourteen and Section H.1.4 o f Appendix H). Where an element (such as a

linker) can belong to more than one unit, the candidate structure tree is copied before

growing it, so that there will be one candidate structure tree for each unit of which the

top element can be a component of.

At this point, the parser requests a backward unit structure (BUS) query, in

order to find the elements that can occur before each element in the candidate structure

(see Section 14.1 of Chapter Fourteen and Section H. 1.5.2 of Appendix H). These

probabilities are stored in the BACKWARDPREDICTIONS table (see Section H.2.2 of

Appendix H).

11 Any IVS-ITEM generated vertical strips will therefore override any IVS-ELEM generated ones.

246

15.2.4 Stage 3: Attempting to join a candidate structure to a built structure
(joining two sibling elements in a unit)

Summary: Stage 3 is broken down into two sub-stages, Stage 3 and Stage 3a. Stage 3

creates a list o f potential joins between the active candidate structures (created in

Stage 2) and the active built structures, and assigns a joining score to them. Stage 3a

takes the n most likely o f these joins that are equal to, or greater than, the join

threshold value, and makes them.

Stage 3 is the key stage. It is at this point that the parser attempts to join candidate

structures to built structures. It is divided into two sub-stages. The first (Stage 3) is

responsible for calculating joining scores, and the second (Stage 3a) uses the scores to
1 9create new built structures that represent the joins.

To calculate the joining score, the parser starts by using a SQL query to select all

unit nodes in all active candidate structures. It then traverses the nodes, and for each it

requests a further query for all matching unit nodes in the right-most strips of the

active built structures.

In the rest of this description of Stage 3, the diagrams in Figures 15.6 and 15.7

will be at least as important in explaining the concepts as the verbal description in the

text.

Please see Figure 15.6. A match is found if:

(a) the forward predictions from the unit in the built structure indicate that the

element in the candidate structure can follow the last element found in the

built structure unit, and

(b) the backward predictions from the candidate structure unit indicate that

the last element in the built structure unit can precede the first element in the

candidate structure's unit.

12 It is at the start of Stage 3 that the CYCLE field of all tree-pairs that may be involved in a join is
incremented. This means that if the tree-pair now has a CYCLE field value above the threshold (3), and
if after a failure of a subsequent co-ordination join, the parser will backtrack rather than try another
Stage 3 (see Figure 15.5).

247

forward
predictions predicts S

precedes M

backward
predictions

BUILT
STRUCTURE

S. 0.43\1 , 0 33

O, 031 O. 0.27

A. 0.05 C , 0.21

matching
unit

seagulls

predicts M
follows a S

CANDIDATE
STRUCTURE

Figure 15.6: Identifying potential joins with forw ard and backward predictions
(the dotted lines indicate the successful match criteria)

There are five cases in which a match is successful, and these are shown in Figure

15.7. The simplest case (Case 1 in Figure 15.7) is when there are no lower units in the

built structure or in the candidate structure, and the match succeeds if the forward and

backward predictions match with respect to their elements as described above.

The second case is when there are lower units in the candidate structure, and

therefore the match can only succeed if the left-most element in all lower candidate

structure units can 'potentially start' the unit (signified by the ! in Case 2, Figure 15.7).

The third case is when there are lower units in the built structure. Here, the match

can only succeed if the right-most element in all lower built structure units can

potentially close the unit (signified by ! in Case 3, Figure 15.7).

The fourth case is when there are lower units in both the built structure and in the

candidate structure, in which case both the right-most elements in all lower built

structure units must potentially close their units, and left-most elements in all lower

candidate structure units must potentially open their units (see Case 4, Figure 15.7).

248

249

The five cases for matching element joins

Case 1 - No lower units
Match succeeds if the element in the
candidate structure is in the built structure's
forward predictions and the rightmost
element in the built structure is in the
candidate structure's backward predictions.

KEY:

Case 2 - Lower units in the Candidate
Structure
Match succeeds if (a) the forward and backward
predictions match and (b) the element in the
lower unit(s) of the candidate structure can
'potentially start their unit'. This is indicated by
"!" in the lower unit's backward predictions.

Case 3 - Lower units in the Built Structure
Match succeeds if (a) the forward and backward
predictions match and (b) the right most elements
in the lower unit(s) in the built structure can
'potentially end their unit'. This is indicated by
"I" in the lower unit's forward predictions.

Unit node

Element node

Item node

Figure 15.7: Element join cases and actions (Sheet 1 of 2)

250

The five cases for matching element joins (continued)

Forward predictions are concerned with the
elements that can follow the rightmost
element in the unit. Backward predictions
are concerned with the elements that can
occur before the element in the candidate
structure unit. T is used to indicate that the
element can be the first or the last element
in its unit.

KEY:

Unit node

?

Element node

Item node

Case 4 - Lower units in the Built Structure and
Candidate Structure
Match succeeds if the forward and backward predictions
match, and the lower units are closed (in the built
structure) and started (in the candidate structure).

Figure 15.7: Element join cases and actions (Sheet 2 of 2)

Case 5 - There are higher units in the
Candidate and Built Structures
Match succeeds if the forward and backward
predictions match, and the higher units and
elements are the same.

The final case is when the candidate structure has higher units above the matching

unit. In this case the higher units and elements must also match the higher units and

elements in the built structure (see Case 5, Figure 15.7).

You can see, from an examination of these cases, that it is important to include the

following in the joining score formula:

(a) the probability that the right-most elements in any lower built structure unit

can close its unit, and

(b) the probability that any left-most elements in any lower candidate structure

units can open its unit.

The joining score is calculated by using a joining strength formula, which

accepts the following parameters:

(a) the probability (from the forward predictions) that the given element in the

candidate structure follows the last element in found in the built structure unit

(PFwd),

(b) the probability (from the backward predictions) that the last (i.e. the right

most) element in the built structure unit precedes the element in the candidate

structure unit (PBwd),

(c) the probability that any lower units in the built structure are closed (each of

the lower unit's forward predictions) (P L ow erB SC losed)13,

(d) the probability that any lower unit in the candidate structure can start its unit

(this is calculated from each of the lower unit's backward predictions)

(PLowerCSOpen),

(e) the level and node probabilities in the matching nodes of the built and

candidate structures (PB SL evel, PBSNode, PC SLevel and PCSNode)

(f) the tree probabilities of both the built and candidate structures (PBSTree and

PCSTree).

This set o f parameters is the complete set o f those that are available in the Parser

WorkBench, where it is possible for the user to select which will be involved (see

Section 15.3). The various configurations of these parameters with which we

13 The probability that lower units are closed was a concept that was discovered during the development
of the chart parser (see Chapter Twelve). It is calculated by taking the product of the probabilities of
each of the lower units forward (or backward) predictions containing the end or start of unit (!). If there
are no lower units, a value of 1 is returned.

251

r

experimented during the development o f the parser are compared and evaluated in

Chapter Seventeen. One of the formulae using some of the parameters is as follows:14

JS = ((Ppwd + ^Bwd) / 2) * ((PLowerBSClosed + PLowerCSClosed) / 2)
The parser then uses the score to identify those joins that have a value that is equal

to the join threshold value or is above it, their details are added to the parser state

table (see Section 15.1.5) so that the tree-pairs are available in the next part of the

parsing algorithm - Stage 3a.

Some candidate structures may be unable to be joined to any built structures. The

reason will either be because no join was possible, or because a join was possible but

its score was below the threshold value. In such cases they are marked in the parser

state table with a NEXTSTATE value of 'S t a g e 4 ' , and the effect is that the

candidate trees will be grown before they are considered for a further join at a later

stage of the parsing algorithm.

Stage 3a provides for those cases in which there are trees that can be joined and

that have a join score of over x%. In Stage 3a, the parser takes the n-best of them (or

all of them, if there are less than n equal to, or above the join threshold value) from

the parser state table and joins them, so creating up to a maximum of n new built

structures.15

When the trees are joined, the new built structures are made active, and the node

and level probabilities for the nodes in the new structure are calculated (see Section

15.1.7). To provide a further aid to understanding this complex procedure, Figure 15.8

gives a 'walkthrough' o f stages 1 to 3 and shows how the probabilities are calculated.

14 We also used the built structure score and candidate structure score to rank the new built structures
(see Chapter Seventeen).
15 If there are more than n possible joins, the remainder will be taken if the parser backtracks to the
current move.

252

25
3

I.T h e parser has created 2. It calculates the node 3. ...and the level probabilities 4. Stage 2 creates a number
this BS from an IVS probabilities... CS trees, this is one of them:

Cl

ngp

dd

'the' O

U2E

E2U

U2E

E2U

Cl

ngp

dd

"the"

0.6
0 216 0-6 x 0 .36

1
0.36

0.4
0.36

1

0.9

1
1

1 x 0 .36

0.4 x 0.9

0.9 1 x 0,9

0.9
1 x 0.9

1 x 1

ngp

man
Z

1
0.98

0.98
0.98

1
1

1 x 0 .98

1 x 0.98

1 x 1

Figure 15.8: A walkthrough of Stages 1 to 3 (showing how the probabilities are calculated) (Sheet 1 o f 2)

2
5

4

5.Stage 3 determines that a join is possible and
assigns it a score (this determines the order in
which the joins will be made)

6.Stage 3a makes the
join, and.....

7. ...recalculates the node and level
probability by taking the mean of (a) the
BS level probability (for the ngp node) and
(b) the level probability of the CS root
node. After assigning the new level
probability for the joined node, the level
probabilities are recalculated for the nodes.

0.6
0.216

0.36

0.4
0.36

ngp,
0.9

dd 0.9
0.9

0.98
0.98

man

1 x 0 .98

1 x 1

0.6
0.226

0.37

0.4
0.376

(0.9 x 0 . 9 8) / 2 = 0 .94
ngp,

0.94

dd 0.9
0.9

0.98
0.98

,,the" 0 \ " m a n 'O

Figure 15.8: A walkthrough of Stages 1 to 3 (showing how the probabilities are calculated) (Sheet 2 of 2)

15.2.5 Stage 4: Growing the candidate structure

Summary: Stage 4 grows a candidate structure upwards by an element and a unit,

and is used when the parser has fa iled to join a candidate structure to a built

structure. After growing the candidate structure upwards, the parser then attempts to

join the new element to one or more built structures.

The purpose of Stage 4 is to grow candidate structures by an element and a unit. To

do this, the parser first gets all active candidate structures that have their NEXTSTATE

field set to 'STAGE 4', and then requests a unit-up-to-element (U2 E) query based on

the unit that is currently at the root o f the candidate structure (see Section H.1.4 of

Appendix H). A new candidate structure is then created for each element that the

results o f the query say that the unit can fill.

Next, the parser will request an element-up-to-unit (E2U) query, and a node is

added to the candidate structure that represents the unit to which the element belongs

(see Section H.1.3 o f Appendix H). In cases where an element can belong to more

than one unit, such as a linker (Lnk), a new candidate structure is created for each unit

that the element can be a component of.

The node probability of the new element node is set to the probability that the unit

can fill the element (as provided by the U2E query), and the node probability of the

unit node is set to the probability that the element is a component of that unit. This is

100%, except in the case o f linkers (Lnk) such as and, and inferers (in f) such as

on ly .

In the parser state table, the field STAGE4TRIED is set to the value t r u e to

indicate that a Stage 4 has been tried, and, if a subsequent join attempt also fails, this

forces the parser to move on to Stage 5.

After trees are grown, the backward predictions are calculated for the new nodes

using the BUS query (see Section H. 1.5.2 of Appendix H).

255

15.2.6 Stage 5: Joining by the co-ordination of units

Summary: Stage 5 comprises two sub-stages, Stage 5 and Stage 5a. Stage 5 identifies

potential joins between units in a co-ordination relationship, and assigns them a

joining score. Stage 5a makes the n most likely o f these joins.

15.2.6.1 An overview
Stage 5 is concerned with a second and less frequent type of joining. This is the

joining o f two co-ordinated units that fill the same element, as in Iv y and h er

f r ie n d . Any successful joins will be unit-joins since they attach a unit from one of

the candidate structures to a unit in one of the built structures. Stage 5 is divided into

two sub-stages, as in earlier stages. Stage 5 calculates the co-ordination joining score,

and Stage 5a takes the top n of these potential joins and makes them.

Because only a small proportion of joins are the result of co-ordinated units

(below 0.5% in the FPD Corpus), the parser works more efficiently if, after growing

the candidate structure in Stage 4, it first attempts an element-join as in Stage 3,

before moving to Stage 5 to attempt a join based on co-ordination. The algorithm,

therefore, includes a check after performing Stage 3 to see if a Stage 4 'grow' operation

has been performed before for this particular tree-pair (i.e. the built structure and the

candidate structure).

Please now consult Figure 15.5. It shows that the parser moves to Stage 5 only

after a failure o f a Stage 3 'join' that was attempted after a previous Stage 4 ’grow'. If a

sequence of element-join (Stage 3), grow (Stage 4), a further element-join and then a

co-ordinated unit-join (Stage 5) has failed three times, that the parser will move to

Stage 6 for backtracking.16

15.2.6.2 Stage 5: Calculating the co-ordination joining score
The Stage 5 algorithm includes tests for success or failure. The algorithm is as

follows:

(a) For each unit in the candidate structure that is both active and has a first

element that potentially starts the unit (starting with the most likely one):

retrieve all active built structure unit nodes that are (i) in the rightmost strip

and (ii) whose forward predictions indicate that the unit is potentially closed.

16 The number of cycles before a backtrack can be set in the Parser WorkBench.

256

(b) For each unit returned, the parser applies the following tests, and sets the

b L in k er , bU nitSam e and b P u n ct variables accordingly (note that these

Boolean variables are set to f a l s e before the tests are performed).

The linker test: Set b L in k er to t r u e if the element in the candidate structure

below the unit being considered for a unit-join is a linker (Lnk).

The same unit test: Set bU nitSam e to t r u e if the unit being considered in the

built structure is the same as the unit being considered in the candidate structure (e.g.

both are nominal groups).

The comma or semi-colon test: Set b P u n ct to t r u e if the last element in the

built structure unit that is being considered is either a comma or a semi-colon.

After the tests:

(a) if b L in k e r is t r u e and bU nitSam e is t r u e (irrespective of the value of
1 7bP u nct), set the join probability to 90%. An example of a join o f this

category is two clauses, the second of which starts with a linker (e.g. my

b r o th e r and h i s f r i e n d or R obin and M argaret).

(b) if b L in k e r is t r u e and bU nitSam e and bP u n ct are both f a l s e , set

the join probability to 0.1%. This covers, for example, a quality group and a

prepositional group in a co-ordinated relationship (which occurs rarely e.g.

v e r y s lo w ly and w ith g r e a t c a r e where the two units fill a

manner Adjunct).

(c) if b L in k e r and bP u n ct are t r u e and bU nitSam e is f a l s e , set the

joining probability to 0 .1%. An example would be a quality group (q lgp)

which has a comma as the last element followed by a prepositional group

which starts with a linker (e.g. v e r y s lo w ly , and w ith g r e a t

ca re).

(d) if bU nitSam e and b P u n ct are tr u e , but b L in k er is f a l s e , set the

joining probability to 50%. This covers, for example, two nominal groups

separated by a comma.

(e) if bU nitSam e is t r u e and b L in k er and b P u nct are both f a l s e , set

the joining probability to 0.1%. This covers, for example, two nominal

17 The threshold percentages can be set in the parser workbench.

257

groups that are not separated by a comma, where there is no linker (e.g. the

first two nominal groups in my b r o th e r h i s f r ie n d and I).

(f) if b P u n ct is t r u e and bU nitSam e and b L in k er are both f a l s e , set

the joining probability to 0.1%. This covers, for example, a quality group

that ends with a comma co-ordinated with a prepositional group (e.g. v e r y

s lo w ly , w it h g r e a t c a r e) .18

The assigned joining probabilities are stored in the PST, and are marked as

needing to go to STAGE 5a (i.e. the NEXTSTATE value). Any impossible tree-pair

joins are also marked as such in the PST, and for these tree-pairs the value of the

NEXTSTATE field will be set to 'STAGE 4', if the value of the CYCLES field in the

PST record for the Candidate Structure is less than 3 or 'STAGE 6' if the CYCLES

field is 3 or more.

15.2.63 Stage 5a: Making the co-ordination Joins
For any tree-pairs that can be joined in a co-ordination relationship, the parser will

create new built structures for the top n potential joins. New PST records will show

that the joins have been made and that their NEXTSTATE is 'S ta g e 2'. The PST

records that represent the joins that have been made will have their FOLLOWED field

set to t r u e , and any remaining potential joins are still available in case a

backtracking operation should be needed from a later move.

15.2.6.4 The join cycle
The movement o f the parser through all five of Stages 3, 4, 3, 4 and 5 is defined as a

join cycle. The number of iterations for a tree-pair through the join cycle is recorded

in the Parser State Table (PST). This is used to determine whether, after a Stage 5 has

failed, the parser moves to Stage 6 or back to Stage 4. A further field in the PST states

for each tree pair whether a Stage 4 has been attempted, and this will guide the parser

to Stage 5 or Stage 4 depending on the field's value.19

If Stage 5 succeeds, the parser moves on to a further application of Stage 2 and so

takes the next item from the input sentence.

18 More testing is needed to check that these initial 'linguist’s estimates' of what the joining score should
be are reliable over the full range of types of co-ordination.
19 Note that a move from Stage 3 to Stage 5 will reset the STAGE4TRIED variable for the pair in the
PST.

258

15.2.7 Stage 6: Backtracking

Summary: Stage 6 is concerned with going back to an earlier point in the parsing

process after the parser finds that it has made a mistake, or when the parser has

finished, and either (a) the user has asked fo r more analyses, or (b) less than the

required number o f analyses have been found (as indicated by Stage 7).

Stage 6 provides currently, only for what we will call computationally motivated

backtracking. It enables the parser to go back and follow any routes through the

parser's workflow that have not yet been followed. It is forced to backtrack under the

following conditions:

(a) a Stage 4 has failed to grow by an element and unit,

(b) Stage 5b has failed to join after three iterations of the join-grow-join-co-

ordination cycle, or

(c) in Stage 7, either the parse has processed the last item and failed to find a

successful parse OR the user has asked for more than one analysis to be

created.

Backtracking is performed by moving the parser back to the state it was in for an

earlier move, and by then taking the next n-best routes to a conclusion (or possibly

failure). To do this, it copies the next n-best records from the PST that are marked as

not having been followed into a new move in the PST. After de-activating all trees,

the parser reinstates any trees that were active for that move. The records in the earlier

move are then marked as being followed.

Backtracking can lead back to the following states:

(a) Stage 3a: to take the next n-best element-joins that have not yet been made,

(b) Stage 5a: to take the next n-best unit-joins that have not yet been made,

(c) Stage 1 a: to take the next n-best initial vertical strips into built structures.

The parser backtracks to the most recent move first, irrespective of the state in the

workflow that it represents.

The method of backtracking used here is an application of a solution to the

Hamilton Path Problem in graph theory (Ore 1960). This is used in classic computer

science backtracking problems such as the 'Knight's Tour o f the Chessboard' and the

Travelling Salesman Problem'. These algorithms and others are widely described in

the literature (e.g. Wirth 1976).

259

As such, the algorithm as described here for Stage 6 is therefore not

linguistically-motivated. In other words, it backtracks blindly to each of the previous

moves, one at a time, until it finds a parser state record that contains possibilities for

taking one or more alternative paths (i.e. one that has its FOLLOWED field set to

f a l s e) .

A more intelligent approach to the problem of a failed parse is to use linguistic

knowledge of known 'attachment problems’ of the type found in garden-path

sentences. Such linguistically-motivated backtracking enables the parser to go

directly to the most likely backtrack point which is determined using linguistic

knowledge, rather than just taking a previously 'not followed' route. For a description

of how this type of backtracking will work see Chapter Eighteen and Appendix I.

Finally, however, we should note that a mistaken parse that is NOT syntactically

unacceptable will be occasionally produced, e.g. when sh e c u t th e b read

w it h a c a r v in g k n i f e is analysed with w ith a c a r v in g k n i f e as a

qualifier to th e b rea d . Ultimately, it is only our beliefs about the World that can

tell us that 'a food' such as bread' is extremely unlikely to posses a knife (though many

linguists (e.g. Chomsky 1965) have explained the possibility of modelling such

knowledge as part o f semantics). In such cases, both the two possible parses should be

passed to the semantic interpreter, and so in turn to the belief system.

15.2.8 Stage 7: Determine if more analyses are required

Summary: Stage 7 is used when the parser reaches the end o f the sentence and there

are no more items to parse. It performs any final processing that is required to

determine the most likely scores fo r complete trees before it seeks further analyses if

they are required (by invoking backtracking).

Stage 7 may be reached at any point after the parser has reached Stage 2 and it finds

that there are no more items in the input string. There is a parser parameter that can be

set in the Parser WorkBench that indicates the maximum number of analyses required

before the parser stops. If the number of 'complete' trees is equal to this value when

Stage 7 is reached, then the parser stops. If the parameter is not set in the Parser

WorkBench, the parser will stop at Stage 7 and display the complete trees in the Parser

260

WorkBench's Overview facility, and then asks the user if more are required. If the

parser continues at Stage 7, it moves to Stage 6 to perform backtracking.

1 5 3 T h e P a r s e r W o r k B e n c h
The Parser WorkBench, as will be clear from the occasional references to it in the

above descriptions, is the development environment in which the parser runs. The

user can change certain parameters in the algorithm, and then study the intermediate

results that the parser produces at each step of an incremental parse. Certain data can

also be changed mid-parse to allow the user, for example, to force the parser down a

different route. The parser workbench is fully described in Chapter Sixteen.

1 5 . 4 S u m m a r y
This chapter has described the parsing algorithm in detail, and we have seen how the

parser uses the probabilities tables and the parser working tables that are described

in Chapter Fourteen and Appendix H. I have described the way in which the

algorithm operates in the parser’s State Transition Machine, and how the trees (or

tree-pairs) flow around the states of the STM, in the parser’s workflow model.

We have also looked in much more detail at the different stages through which the

parser goes in the context of the parser’s workflow. Chapter Sixteen describes the

Parser WorkBench, and it will further illustrate the operation of the parser by

providing a walkthrough. More detailed examples of walkthroughs are given in

Appendix K.

261

Chapter Sixteen
The Parser WorkBench
This chapter describes the Parser WorkBench. This is the environment in which the

Corpus Consulting Probabilistic Parser is implemented, and it forms the interface with

the user - i.e. a researcher developing the parser, or an observer who wishes to study it.

I include a 'walkthrough' of the parsing of a simple sentence, so complementing

Chapter Fifteen. The more detailed walkthroughs in Appendix K provide further

examples o f how the parser works.

In Chapter Fifteen we saw that the parser is implemented as a state transition

model which comprises seven distinct states. The Parser WorkBench allows the user

to either (a) work through those states and examine the results at each point (using a

'step-by-step incremental parse') or (b) run the parse in full.

The Parser WorkBench also allows the user to adjust the configurable

parameters before entering a sentence and initiating the parse and it allows the user to

review the results and, provided that it is done in a controlled way, to modify them at

the end of each stage.

The chapter starts by discussing the incremental properties of the parser, and then

it discusses the advantages of the Parser WorkBench as a research tool. Next it gives a

detailed account of the parameters that can be configured for each parse. In order to

give the reader an idea of the look and feel of the environment, I provide a simple

walkthrough with screenshots.

1 6 .1 S t e p - b y - s t e p i n c r e m e n t a l p a r s i n g
Recall from Section 10.2.5 of Chapter Ten that there are two different definitions of

the term incremental parsing. The first (as found in Wiren 1989 and Weerasinghe

1994) defines a piece-meal approach, in which the parser builds up structures based on

what it has seen from the input so far, operating in a left-to-right fashion. The second

definition (e.g. Yang 1994) relates to the reuse of structures that have already been

built.

The parser described here certainly satisfies the criteria for the first definition,

since it takes a strictly incremental step-by-step approach. It accepts input from the

user and analyses it, item by item, building each item upwards and joining parse trees

as it proceeds. In some ways, it also satisfies the criteria for the second definition,

262

although somewhat more loosely. It does this in two ways: (a) when the parser

backtracks, it reuses structures that have already been built, and (b) the Parser

WorkBench allows the user to save a parse (or a part of a parse) and to reload it,

modify it, and reuse it in a later operation.1

1 6 . 2 T h e v a l u e o f t h e s t e p - b y - s t e p i n c r e m e n t a l a p p r o a c h
In this section I discuss the way in which the incremental facility in the Parser

WorkBench provides a valuable research tool for developing both the parsing

algorithm and the probabilities tables that support it.

16.2.1 How it works

The Parser WorkBench allows the user to stop at the end of each stage of the parsing

algorithm, and examine (and change) the database tables that form the working data

structures of the parser and change the user configurable parameters.

16.2.2 Its use in the development of the new parser

Whenever the parser makes an unexpected decision, the user is able to step back and

determine why it had made the choice it did. Normally, this is done to: (a) identify

possible bugs in the program, or (b) identify the cause of an unexpected analysis

which is due to the data. The latter caused us to review the contents of the indexes and

the corpus itself. Where the problems were due to the coverage o f the corpus, we were

able to identify the ways in which we would need to improve the probabilities tables

(i.e. for the Version Two tables described in Section 14.2 of Chapter Fourteen and

Appendix I). Some of the results o f the testing resulted in changes in the algorithm

itself, and any changes we made could themselves be also tested in this way be using

the incremental facility. Therefore, the Parser WorkBench was central in the scientific

development o f the parser.

16.2.3 Speeding-up research

This section covers the ways in which the Parser WorkBench allowed faster research.

16.2.3.1 Changing a sentence in mid-parse
During our research we often needed to parse similar sentences to test alternative

attachments, e.g. to the different probable attachments of a prepositional group. Using

1 However, the parser does not fully fit the 'data reuse' concept of the second definition of incremental
parsing (e.g. Yang 1994), because it only reuses what has already been constructed in a truly lefit-to-
right fashion, with no gaps. That is, it can reuse information as it steps backwards through the state

263

the save parse options, we were able to save what the parser had already done and

modify the parts of the input sentence that had not yet been processed.2 This had the

beneficial effect of speeding up our work, as we did not have to wait for the parser to

perform again tasks that it had already carried out for the similar sentences. Consider

the following sentences:
SI: I saw the old man with the telescope
S2: I saw the old man yesterday
S3: I saw the old man and his wife at the football match
In each case, we were able to save the parse as soon as it had finished processing

man, and we were able to change the input sentence for each different sentence after

the item man.

16.2.3.2 Altering probabilities and joining scores

One of the most useful facilities provided in the Parser WorkBench is that it enables us

to change probabilities and joining scores at the end of each step. This was

particularly useful on those occasions when we realised that the results returned for a

query were not as expected, due to a misanalysis in the corpus or the occurrence of

rare structures, so giving undue weight to a particular result. In these cases, we were

able to alter the path that the parser took by adjusting the scores, without the

immediate need to make a change to the probabilities tables. Furthermore, we can add

or delete records in the parser's working tables and, provided that we do this in a

controlled manner such that it does not upset the normal parsing process, this becomes

a very useful tool for speeding-up research.

We might want, for example, to have a rare construct considered before its

probability suggests that it should in a normal parse run and thereby avoid having to

wait for the parser to reach the required construct in the normal order of processing.

Sometimes these rare constructs may be only reached after lengthy backtracking

operations. By deleting PST entries or by modifying probabilistic scores, we can see

the results o f our tests much sooner.

transition model, but it does not reuse information to the right of the current position of the parser when
it has backtracked.
2 Note that the save function described in this section does not save the sentence to the corpus database.
This is handled by the Commit function (see Section 16.5).

264

16.2.3.3 Altering the configurable parameters in mid-parse
By changing the configurable parameters in mid-parse, we are able to see the effects

on particular constructs. For example, by changing the value of n for the n-best trees

to take forward to the next stage, we have enabled the parser to consider a construct

without the need for backtracking. However, there are some parameters which we

would not wish to change in mid-parse, one example being the configuration of the

parameters for the algorithm used for calculating a joining score.

16.2.4 Answering 'w hat-if questions

By changing the scores or adding new records to the PST, or by changing the

probabilities assigned to built and candidate structure trees, we are able to obtain

answers to what-if? questions before deciding to make a proposed change in the

probabilities tables permanent. This could be the result of, say, an unexpected

analysis, or a join to an incorrect unit, and we might want to see the effects of

preferring the alternative.

1 6 3 T h e c o n f i g u r a b l e p a r a m e t e r s
In this section, we define the parameters that can be changed at the start of the parse or

during it. Note that the user is able to save the values of the parameters so that they

can be used for subsequent parses, or to restore them from defaults or from a

previously saved set (see Figure 16.1, Item 5). The parameters that can be changed are

defined below. The use of these parameters and their optimum configurations and

values are described in Chapter Seventeen. Figure 16.1 shows the user interface that is

used to change these.

163.1 The number of trees to create in Stage 1 (Figure 16.1, Item 1)
This value controls the maximum number of trees that the parser creates in Stage 1.

Note that more will be created, should a backtrack event to Stage 1 be needed.

265

Set parser parameters

8

C alcu la tion of joining stren g th
p Include buft structure forward prediction X
p Include candidate structure backward precfciion X
p Indude CS Tree X
p Include BS Tree X

Include CS Node Level Probabtty
I- Include BS Node Level Probabity
Y~ Include CS Node Probabity
r Include BS Node Probabity
p Include Lower BS Un* Closed X
P Include Lower CS Unit Cbsed X

G enera l se ttings:

Number trees to take forward r Stage O n*........................

The value of Win n-best fora jo rt.. P""~

The value of W in n-best for a grow:

Number of 3.4.5 cycles to alow before backtracking 1^

Unit join probabilities:

Restore defadts Restore last saved Save

Linkei unit sam e punctuation X
Yes Yes Any |o.91
Yes No No |o.ooi
Yes No Yes |0 001
No Yes Yes |io ^

No Yes No P o
No No Yes lio ”

Threshold decrement value:......

Threshold division value:............

7

Threshold X in accepting / reiecting loins (nibal value*. I0 00006

[0
fioo"

Figure 16.1: The user interface for changing the parser's configurable
parameters

16.3.2 The value of n for best-n joins (Figure 16.1, Item 2)

The value o f n can be changed here. This controls the number o f the 'most likely tree-

pairs to take forward to the next stage after Stage 3a.

16.3.3 The value of n for best-n to grow (Figure 16.1, Item 3)
The value o f n for the number o f candidate structures to grow in Stage 4 following a

failed join attempt can be set here.

16.3.4 The number of cycles of Stages 3, 4, 3 and 5 to allow before backtracking
The number o f iterations o f Stages 3, 4, 3 and 5 that are allowed before the parser is

forced to backtrack can be set here.

16.3.5 The threshold probability for accepting / rejecting join attempts (Figure
16.1, Item 6)
This is the lowest probability (x%) for which the parser will stop considering potential

joins to take forward to the next stage from Stage 3. If less than the n value joins over

x% are found, then only those joins over x% will be taken forward. The initial value

sets the value before backtracking occurs. The decrement value is used to reduce the

2 6 6

threshold depending on the number o f items parsed. The division value is used to

reduce the threshold when the parser backtracks. The use of these parameters are fully

described in Chapter Seventeen.

16.3.6 The unit-join probabilities (Figure 16.1, Item 7)

Here, the user is able to change the values assigned to the three tests defined for co

ordination.

16.3.7 The join score formula parameters to be used (Figure 16.1, Item 8)

The user is able to select from a range o f possible parameters that can be involved in

the join score formula used during the parse. The values are

(a) the forward and backward predictions from the built and candidate structures,

(b) the built structure and candidate structure tree probabilities,

(c) the built structure and candidate structure node and level probabilities, and

(d) the probabilities that the lower units (if any) in the built structure are

complete, and the probability that the lower elements (if any) in the candidate

structure can open the units.

These values are discussed in Chapter Seventeen and Section 15.2.4 of Chapter

Fifteen.

1 6 . 4 T h e u s e r i n t e r f a c e

16.4.1 The configurable parameters
The main user interface for the Parser WorkBench is shown in Figure 16.2, in which

the tab showing the configurable parameters is displayed. Descriptions of the functions

indicated in Figure 16.2 are shown in Table 16.1.

267

[idElorpuft lon»u lliny ProbatnliitK P o rte r

The Corpus Consulting Probabilistic Parser

Start a n ew p a r te
S ta g e zero

S ta g e o n e grow s a s e n te n c e initial
item u p to th e te n te n c e n o d e

S ta g e tw o grow s th e next item in the
se n te n c e

Jo in a non-initial elem ent to th e built
structures

G row ng a non initial unit

Joining a non-initial unit to the built
structures (coordination)

B acktrack!! ___

. oiiurm p arse (torn current point to
e n d of se n te n c e in non-S tep m ode

Go b a c k o n e s tag e
<-Go bock

n i doing now ?

sting to start a n ew parse
enter a se n te n c e an d press th e P a rse button, or do a
ough p arse by pressing th e S ta g e Z ero bu tton ^

S a v e th e p a rse at th e current s ta te

Com m it

Figure 16.2: The main Parser W orkBench form with parser param eters shown

Item Description

1 The 'Step' buttons (red / green show the current state). The user presses these at the end of each
step after examining results and making changes if they are required.

2 Parse the complete sentence from the current state to the end of the sentence.

3 Go back a step button. This moves die parser back a step in the workflow.

4 The user feedback panel.

5 The Commit button, which is used to save the most likely or chosen parses to the database.
6 Save a parse at current state or load a parse at previous state.

7 Co-ordination score parameters.

8 The Save and Restore parameters button, which is used to save the parameter settings so that they
can be used in subsequent parses.

9 General user configuration parameters.

10 The user configuration parameters for the join score formula.

11 The tabs that can be selected, each has a different purpose.

12 The sentence that the user has entered.

Table 16.1: Legend to Figure 16.2

16.4.2 Starting a step-by step incremental parse
In the Parser WorkBench, buttons are provided to start each stage of the parse. They

are made available according to the current state o f the parser. At any one time only

one button is available, and this is shown by the presence of a small green icon to its

left. The unavailable buttons are shown with red icons to their left. Note that, at any

stage, the button labelled Parse rest (which equals 'the rest of the parse') (Figure 16.2,

Item 2) can be pressed to complete the parse from that point, if it is pressed when

Stage 0 is highlighted, the parser will perform the complete parse in non-step-by-step

mode.

16.4.2.1 Stage 0
To start a parse, the Stage 0 button must be green (Figure 16.2, Item 1). When the

button is pressed, the parser initialises itself and user is asked for a sentence to parse.

In this example, we use the simple sentence t h e man saw me.

Next the user is given the choice o f selecting an incremental parse, if it is not

selected, the parser will perform the parse in non-step-by-step mode. Here, we will

assume that a step-by-step parse is required. After the user enters the sentence, the

parser populates the ITEM table and moves to Stage 1, and the Stage One button is

available. Figure 16.3 shows the ITEM table displayed in the Parser WorkBench.

269

i p m I o r m i l t i n g P r o b a b i l i s t i c P a r s e r

The Corpus Consulting Probabilistic Parser

Input

|T h e man saw me

to'OO

(reT 1 v v v v ______
lw-1 I IVS_______ J I2E le s iJ s J J o n ca rx td a tes j XML P arra b e e t] Parser param eters J_____ TreeVww

Show n below are the te rm n the n pu t sen ten c e together with the* start an d end positions

Items table

ITEM ID | ITEM | START P O | END POS

0 T he 0 1

1 man 1 2
2 saw 2 3

3 me 3 4

Functions

o
9

9

9

9
9

9

Stag# zero

S tage one

Stage two

Stage ithree

Stagp tour

Stage live

Sl«ge six

P arse rest

<-Go back

W hat am i doing now ?

Start a new parse

S tage one grows a sen ten ce nitial
item up to the sen ten c e node

S ta g e two grows the next item in the
sen ten ce

Join a non-initial element to the bu*
structures

Growing a non initial unit

Joining a non-initial unit to the built
structures (coordination)

Backtrack!!

Perform parse liom current point to
end of sen ten c e in non-Step mode

Go b ack one stage

S tage Z ero is now com plete and you may brow se the items
table Press S tage O ne w hen you are ready

Save

Load

S a v e the parse at the current state

Reload a sav e d parse

S tage zero is now com plete an d the parser is initialised You ca n move to S ta g e One

Figure 16.3: The user is displaying the item table

16.4.2.2 Stage 1
The purpose of Stage 1 is to create a list of initial vertical strips and their associated

probabilities, and to store them in the DB-IVS table (using the process detailed in

Section 15.2.2 of Chapter Fifteen).

The process starts when the user presses the Stage One button. This action causes

the parser to ask for an I2 E query about the first item. The results of the I2E query

state (a) if the item is an item in the IVS-ITEM table, and (b) if the item-element pair

represented by the I2 E record needs an I2E2U2E query. First, a query string is

constructed that will be used to query the IVS-ITEM and IVS-ELEM tables. If the

item-element pair requires an I2E2U2E query, one is requested and the query string is

constructed which comprises of the element, the unit and the higher element as

returned by the I2E2U2E query. For non-I2E2U2E item-element pairs, the string

will simply contain the element that the item can expound.

Next, if the item is an IVS-ITEM (as indicated by the I2E record), the item is

added to the front o f the query string and all records that match the item-element-unit-

element are returned from the IVS-ITEM table and added to the DB-IVS table.

Whether or not the item is an IVS-ITEM, a query is performed on the IVS-ELEM

table for all strips that have the element at the leaf node. These are also added to the

DB-IVS table, unless they are already there as a result of the IVS - ITEM query.3

At the end of Stage 1, the Stage Two button will be highlighted and the DB-IVS

table is populated and can be reviewed by the user by clicking the IVS tab (see Figure

16.4).

Figure 16.4, shows the top ten most likely structures for the item th e , and their

FOLLOWED fields are set to t r u e . These are built structures that are now available

for the next stage. The results of the I2 E can be reviewed by pressing the I2E

results tab (see Figure 16.2, Item 11).

3 The idea o f perform ing the I V S - I T E M query first and then following it w ith an IV S -E L E M query is
that the strips represented b y the I V S - I T E M query take preference over those o f the IV S -E L E M and
represent cases that are not general.

271

272

,x£rorpu« Consulting Probablkstlr Parser

The Corpus Consulting Probabilistic Parser

Input s e n te n c e

iT h e m a n s a w m e

Parsed The

-iDlxl

PST

Items IV S y I2E results Jo in ca n d id a te s]^~X M L P e rse t ie e s J P arse r p a r a m e te r s ^ TreeView

S how n below a te th e results oI th e IVS E lem ent a n d IVS item q u eu e s perform ed by th e parser

DB-IVS tab le

ITEM IV E R T ST R IP I FOLLOWED PROBABILITY

T h e..........._ J d d n g p S C IZ True 0 1 2 5 1 1 6 021617302 J
T h e d d n g p C Q Z True 2 63637535954602E -02

T h e d d n g p V o c C I Z True 4 69 7 4 9 7 8 7 7 4 5 1 29E -03

T h e d d n g p A O Z True 1 87598688528969E -03

T h e d d n g p S CIC C IZ True 1 .15 2 6 5 7 8 6 5 3 9 1 12E -03

T he d d n g p A _ R e s Q Z True 1 .1389118973499E -03

T h e d d n g p S Cl A Cl Z True 3 .1 5 1 30367976524E -04

T h e d d n g p C O C a Z True 2 .4288166735345E -04

T h e d d n g p c v p g p C C I Z True 9 .5 2 2 6 8 3 0 7 1 8 7 8 1 6E 05

T h e d d n g p C C I A C I Z True 6 .640 2 5 2 1 9 5 0 3 2 1 5 E -05

T h e d d n g p c v p g p A C I Z False 6 .1 0 4 6 5 2 2 1 425598E -05

T h e d d n g p q d n g p S C IZ False 5 .575 4 0 6 1 8 0 7 5 9 1 4 E -05

T h e d d n g p S a S D Z F a k e 3 .68240256459078E -05

T he d d n g p E x c I O Z F a k e 3 .5 06851616 5 8 7 5 E -05

T h e d d n g p t d n g p S D Z False 2 1 7658913637 2 3 9 E -05

T h e d d n g p A D C Q Z F alse 1 .72829267646785E -05

T h e d d n g p q d n g p C O Z F alse 1 1 7481864308107E -05

T h e d d n g p p d n g p S C IZ F a k e 1 .1 0 9 7 2 6 9 4 4 1 2562E -05

T h e dd ngp A _ R es Cl C P Z False 1.04924672276053E -05

T h e d d n g p C D S a Z False 7 .75935428550559E -06

T h e d d n g p r d n g p S Q Z False 5 .6 7 805861662363E -06 d

S ta g e o n e is now com plete Y ou may brow se IVS a n d I2E d a ta Y ou c a n m ove to S T rees:10

Functions

9 Start a n ew p arse

9 S tage one
S ta g e o n e grow s a s e n te n c e initial
item u p to th e s e n te n c e n o d e

9 S ta g e two
S ta g e tw o grow s th e next item in th e
se n te n c e

9 S tage three
Jo in a non-initial elem ent to th e built
structures

9 S tage four |
Growing a no n initial unit

9 S tage five
Jo in ing a non-initial unit to th e built
s tructures (coordination)

a Stage six
Backtrack!!

P a rse rest
Perform p arse from curren t point to
e n d of s e n te n c e in non-S tep m ode

< - G o b a c k
G o b a c k o n e s tag e

w n » am i uuiny riuw f

S ta g e O n e is now com plete. Y ou may brow se th e Items tab le,
th e IVS results, th e I2E results, s e e th e built structu res or p ress
th e S ta g e T wo button

S ave

Load

S a v e th e p arse at th e current s ta te

R elo ad a s a v e d p arse

Figure 16.4: Stage 1 is complete and the DB IVS table is displayed

X C l o r p u v (n r m i l t i n g P r o b a b i l i s t i c P a r s e r

The Corpus Consulting Probabilistic Parser

Input s e n te n c e :

Parsed the

JB|x]

th e m an saw m e

PST O verview

to<1U>

Item s 1 IVS I2E resu lts j Jo in c a n d id a te s | XML P a rse tree s] P a rse r p aram eters j I r e n V ie w

BU ILTSTRU CTU RE(1D -1)H

ngp

dd

th e

+ h (78 8 2 7 3 6 1 5 6 3 5 1 7 9 *)

+ mo (5 06319218241042%)

h j c c (2 9 9 6 7 4 2 6 7 1 0 0 9 7 7 *)

-> rei_mo (2 8 9 9 0 2 2 8 0 1 30293X)

+ I (2 8 9 9 0 2 2 8 0 1 30293X)

th_m o (2 4 4 2 9 9 6 7 4 2 6 7 1 0 1 *)

-> M (1 4 0 0 6 5 1 4 6 5 7 9 8 0 5 ^)

q d (0 7 4 9 1 8 5 6 6 7 7 5 2 4 m)

-► q_m o (0 884039087947883%)

•* h _ p (0 .2 6 0 5 8 6 3 1 9 2 1 8 2 4 1 SJ)

+ p d (0 2 6 0 5 8 6 3 1 9 2 1 8 2 4 1 X)

sit_mo (0 1 9 5 4 3 9 7 3 9 4 1 3 6 8 1 X)

-» q (0 .1 6 2 8 8 8 4 4 9 5 1 1 4 0 1 X)

-► o d (0 .1 3 0 2 9 3 1 5 9 6 0 9 1 2 1 X)

-» af(_m o (0 1 3 0 2 9 3 1 5 9 6 0 9 1 2 1 X)

■ ¥ d d (3 .2573 2 8 9 9 0 2 2 8 0 1 E-02X)

-> v (3 .2 5 7 3 2 8 9 9 0 2 2 8 0 1 E-02X)

* sd (3 2 5 7 3 2 8 9 9 0 2 2 8 0 1 E-02X)

-♦ M (33.6493808049536X)

-♦ OM (24.2066563467492X 1

— <•
. y | T re e 1

TREI C0M| PROBABILITY I TREELl ACTI|XMlT7*1
1 False 0 1 6 9 4 3 6 2 6 9 6 4 8 4 9 7 BUILTS T rue <TRI I

- i T

NOII P A f| TOKEN I PROBABILITY | LEVELPROB

1 2 the 1

2 3 dd 0 9 7 1 7 2 3 5 1 8 8 5 0 9 8 7 0 9 7 1 7 2 3 5 1 8 8 5 0 9 1

3 4 ngp 0 9 0 0 5 5 4 6 4 5 3 8 5 2 0 875 0 9 0 1 2 8 9 3 1 :

4 5 S 0 4 0 1 5 8 8 3 8 2 1 1 9 3 5 6 0 3514260290861*

5 6 Cl 0 5 8 1 4 6 0 2 4 5 6 1 7 9 4 3 0 2 0 4 3 4 0 2 6 5 1 8 8 9 1

6 •1 2 0 829 1 8 6 8 9 3 2 0 3 8 8 4 0 1 6 9 4 362696484!

L oad

S ta g e o n e is now com plete. Y ou m ay b row se IVS a n d I2E d a ta Y ou i T re es:1 0 Inactive trees: 0 Position: 0 p.P arsed:

Functions

9 Stage ? m
S tart a n ew p a rse

© Stage one
S ta g e o n e grow s a s e n te n c e initial
item u p to th e se n te n c e n o d e

© S ta g e tw o
S ta g e tw o grow s th e next item in th e
se n te n c e

© Stage three
Jo in a non-initial elem en t to th e built
struc tu res

© Stage four
G row ing a n o n initial unit

© Stage fiv
Jo in ing a non-initial unit to th e built
structu res (coordination]

CM Stage six
B ack track ll

P a rs e rest
Perform p a rse from curren t point to
e n d of s e n te n c e in n o n -S tep m ode

<-Go b a ck
G o b a c k o n e s ta g e

wnat am i a u i r i g riuw r
S ta g e O n e is now com plete. Y ou may b row se th e Item s tab le,
th e IVS resu lts, th e I2E resu lts, s e e this built struc tu res or p re ss
th e S ta g e T w o button

S a v e

Load

S a v e th e p a rse a t th e curren t s ta te

R e lo a d a s a v e d p a rse C o m m i t

I To | //,

Figure 16.5: The most likely built structure is shown

Figure 16.5 (on the previous page) shows the most likely built structure in the

Parser WorkBench tree view. The forward predictions from the deictic determiner

(dd) are shown in the left pane by right arrows with the next predicted element and its

probability.4 The right-hand pane shows details o f the tree and its nodes.

The parser is now at the end o f Stage la and is waiting for the user to start Stage 2

by pressing the Stage Two button.

16.4.2.3 Stage 2
The user now presses the Stage Two button. In this stage the parser gets the next item

and requests an 12 E query for it and then builds candidate structures based on the

results. The candidate structure may contain an item, an element and a unit or, if the

item was an I2 E 2 U 2 E item, then it will contain an extra element and unit (in both

cases with the uppermost unit being the result o f a U2E query). Figure 16.6 shows the

Parser State Table (PST) after Stage 2 is complete.

■ ■
The Corpus Consulting Probabilistic Parser

Parsed :The man

ion carodotss

- IQIxl

a o w te BSTR££lD C S 'R E E © aSMODCIO CSJWJOEO i PROBABU CYCLES | NEXTSTAT: STAGE 4TR1FOLLOWEC REMARKS EN
2 -1 12 -1 1 Z20462847S 0 3 False False C S m a n h n
2 -1 11 -1 -1 31 £2631626 0 3 False False CS: naan h_t
2 -1 13 -1 -1 8S7831E-04 0 3 False False CS. man h n

Start a n«» p ans

Slags two grows the nest tern r the

onesSS?
<-Go b

S a v e
1 Save the parse at the cvsrent state

L o a d
1 Reload a saved parte

21 Sa&x 3

Figure 16.6: The parser state table showing the entries for the move that involved
Stage 2.

4 Details of the forward predictions from the Subject of the Clause can be seen if the user scrolls
downwards.

274

The PST can be viewed either as a set o f trees or as a grid, through the selection

of the relevant button (Figure 16.6, Item 1). The left and right buttons at the bottom on

the form (Figure 16.6, Item 2) allow the user to step through both the moves that the

parser has made. Figure 16.7 shows the view o f the PST in the form o f a set o f trees.5

In Figure 16.5, the built structure trees show the forward predictions that are being

made for the unit(s) in the built structure, these being indicated by a right arrow and a

percentage score. When a candidate structure is displayed (as in the PST view in

Figure 16.7), a left pointing arrow and probability show the unit's backward

predictions. As these were selected configurable parameters (see Figure 16.1), they

will both be used to calculate a joining score in Stage 3, to which now turn.

The Corpus Consulting Probabilistic Parser
Parsed the man

i

Jon candoats* >04.- Parse trees I Pamer parameters

CAND©AT£STRUCTURE(E>.11) Q
ngp

S h
man

*- dd [34 3062827225131X]

■ ! t2a7196352879681XI
■ mo [8133n727748691X]
■ dxjno [391361256544503X1
• v(1 3481675392670233
• reLmo (1 321989528795B1X)
■ Lrk(1 03403141361257X1

a*_tno (079842331937172833 u_m> (0497362198952863)
• od (04188481675392S7X)
' ►LPfO366492146596863X]
• dd_wh [Q24869109947644XJ

<• I f1!
Mere record dares
Movdc 2
BS Tre* Id -1
CS Tree Id 11

BS Had* Id -1
CS Node id -1
EfldPetdort 1

Siege 4 Teed? Fete
F plowed Fake
CydeeO

Remark*: CS: man h ngp

Prooaawt, 983102204628476

r Snow PST as Guo
ff (Sh^PST at Tread

9-
9 .
9-
O .
9 .
9-
9

What am i dong now?

Stan a new pane

Stage one grow* a sentence n w
4em i<> to Ihe sentence node

Stage two grow* the ne>4 tern r. the
sentence

Jon a noftflta dement to the txdt
druchaes

Glowing a non nod vnt

Jomg a nonnOal in* to the but
rirjctsies [cootdnatoonj

Perform parse from ctarent port to
end at sentence n non-Step mode

Go back one stage

Stage Two a compote You can review trees fot the PST

Save the parse at the merer* state

Rdoad a saved parse Commit

&ag*2eomofct* Acave bee* 10 Inactive tree* 0 To parse

Figure 16.7: The parser state table displayed as a set of trees

16.4.2.4 Stage 3: Joining a candidate structure to a built structure
Next, the user presses the Stage Three button and the parser moves to Stage 3.6 After

checking that the units above the elements to be joined match, it calculates the joining

scores. It makes entries in the PST for all potential joins that have a score above (or

5 Note that the move shown only involved candidate structures and there are therefore no built structures
in the left pane.
6 If the item was a linker, Stage Five would be an available button and not Stage Three.

- I P l x l

275

equal to) the threshold value, and indicates that the tree-pair represented by the join

will next move to Stage 3a. Any joins beneath the threshold value will be marked as

needing to move to Stage 4, as will any tree-pairs that cannot be matched at all.

The parser now decides i f it needs to move to Stage 3a or to Stage 4. If there are

tree-pair records in the PST that have a joining score above (or equal) to the threshold

value, it moves to Stage 3a and makes the joins for those tree-pairs. If there are no

tree-pairs with a join score above the threshold, then the parser moves to Stage 4.

Figure 16.8 shows the most likely built structure following a successful join. This

view allows the user to navigate through the built structures and candidate structures

by using the forward and backward navigation buttons, or by going to a specific tree

(Figure 16.8, Item 1). The tree requested is displayed in the tree view pane (Figure

16.8, Item 2), while the details o f the tree and its nodes are displayed in the right-hand

pane (Figure 16.8, Item 3).

The Corpus Consulting 2 •abilistic Parse
P a rs e d th e m an

Start a new parte

Bl*LTSTRUCTURt[tU*l41Uan ot BS 1 andCS V] TRECJmIRFCBABIJTY 1-R£EL|ACt,:XML!. . |

. iD lx l

L . *

-* I t * 413223140495SX]

♦ 13223140495868E-02X)

-* 3*4 (242066563467*32*!
3 fl 7 569659*4272*34;,

-9 0< [1&8408B6873065X]
-9 p 89629482372136X1
■9 D 56733746130031X)
-9 48993808049536X,
-9X(09674S226006132X]
■9 C 3 557994736842135X1
•9 AJQ61919504643962SX,
-9 1(0 4063467*9226006X1
■9 N |01354489164006693;
•9 A^Vd (7 73993908O49536E 02X1
-9 A_Log (5 80495356037152E-02X)
-9 ME. n 93498452012384E-02X1 z i

14 Fata 3.171531516032968 BUU.T9 Two <T« 1

iu ± r
NMlPAf! TOKEN ! PR08A8IUTY LEVELPR08

1 2 the 1
2 3 dd 3971723510850987 097172351885091
3 4 ngp 09005546453852 08859114804195!
4 5 S 3401508382113356 0 3557717581226!
5 6 Q 0581460245617943 0206867133861X
6 -1 Z 0829186833203884 01715315160329!
7 8 mar 1
8 3 h 0983739837398374 098373983739831

>10

Stage one grow* a sentence rural
ten 141 to the sentence node

Stage two gtowt the not tent in the

Jon a norenbal oremerl tc the bee

Giowng a non nhai snt

Joneig a non-ntwi mt to the bid
tOuctsaet (coortnabon)

Perform parte trom ctatert port to
and of sentence n non-Stap mode

Go tracts one ttage

What am i dong now’
Stage Three a complete You may browse the new canddate
stisjetues that I have bedt and dten move on to Stage Three

Save the parse at the utters state

Retoad a saved parse Commit

Stage 3a - trnahad Active trees 13 inactive treer 0 Toparse

Figure 16.8: The most likely built structure in the tree view after a successful join

The tree being displayed in Figure 16.8 shows that the parser has identified, so

far, a sentence (Z) that is filled by a Clause (C l), and that has a Subject (S) that is

filled by a nominal group (ngp). This consists o f a deictic determiner (dd) that is

expounded by the item t h e , and a head (h) that is expounded by man.

276

Because there were successful joins, the parser returns to Stage 2 and the Stage

Two button becomes available to the user. After this next Stage 2, the parser moves to

Stage 3 again. The parser proceeds through the workflow and in arriving at its final

analysis and it has followed the workflow path shown in Table 16.2.

Stage Remarks________ ______ __
1 The parser gets the first item th e , and creates a list o f initial vertical strips

in th e DB-IVS table.
la It takes the n most likely vertical strips from the DB-IVS table and creates

built structures for them.
2 It gets the next item man and creates candidate structures for it.
3 The parser calculates the joining scores between the active candidate

structures and the active built structures.
3a It makes the n most likely joins. At this point the parser has created the most

likely built structure which has a Sentence (Z), filled by a Clause (C l) that
contains a Subject (S) that is filled by a nominal group (ngp) that has a
deictic determiner (dd) expounded by the and a head (h) expounded by man
(see Figure 16.8).

2 The parser gets the next item saw and creates candidate structures for it.
3 It calculates the joining scores between the new candidate structures and the

active built structures.
3a It makes the n most likely joins. At this point the parser has added a main

verb expounded by saw to the Clause (C l).
2 The parser gets the next item me, and as me is an I2E2U2E item, the built

candidate structure has an additional element and unit above it. One of the
candidate structures has me expounding a pronoun head (h_p) which is in a
nominal group (ngp) that fills a Complement (C) in a Clause (Cl).

3 It calculates the joining scores.
3a It joins the candidate structures to the built structures, and the most likely of

these is shown in Figure 16.9.
2 The parser moves back to Stage 2 and discovers that there are no more items

to process, therefore it moves to Stage 7.
7 The user is asked if more parses are required. The response is no, therefore

the parser ends the process and indicates the most likely analysis (see Figure
16.11. ________________________

Table 16.2: The parser’s route through the parser workflow

Figure 16.9 shows the parser after it has completed the parse, and it displays the

most likely analysis. The score for the tree is 20.8%. There are five complete trees at

the end o f the parse, and the others have low scores.

277

^ I or put lonsultm g ProbabrkstK Parter

The Corpus Consulting Probabilistic Parser

Input se n te n c e

|th e m an saw me

Parsed.the man saw me

-Ini xi

to-j
00

PST Overview

Item s IVS li'fc l e M t f Jo in can d id a tes XML P a rse trees P arse r param eters Y T ie e V m w

B U ILTSTRUCTURE(lD-42) |Jo in of BS; 25 an d CS 30]

b Z

ngp

dd

the

h

ngp

h_p

-> l (3 8 7385114435033X)

-» q (0 .495584790052262X)

q d (0 .468552892413047X)

-> h _ rc c (9 9 1 1 6 9 5 8 0 1 04523E-02X)

-> rel_mo (9 .91169580104523E -02X)

-> mo (4 50531627320238E -02X)

-> h _n (1.80212650928095E -02X)

-> h (9 01063254640476F -03X)
-» inf (9 0 1 0 63254640476E -03X)

th_m o (9.01063254640476E-03X)
-> q_m o (9 0 1 0 63254640476E-03X)

-> 1(7 1 .8 6 7 9 6 6 9 9 1 7 4 7 9 X 1

JfT l •> lT,ee4B T | GO

TR EI COM) PROBABILITY 1t R E E L |A C T I|X M lT

42 False 0 2 08046373417035 BUILTS True <TRI I

J
NOlI PAF| TOKEN | PROBABILITY LEVELPROB

1 2 the 1

2 3 dd 0 971723518850987 0 9 7 1 7 2 3 5 1 88509f

3 4 ngp 0 9 0 0 5 5 4 6 4 5 3 8 5 2 0 8 8 5 9 1 1 4 8 0 4 1 95f

4 5 S 0 401588382119356 0.35577175812261

5 6 Cl 0 5 8 1 4 6 0 2 4 5 6 1 7 9 4 3

0 8 2 9 1 8 6 8 9 3 2 0 3 8 8 4

0 25090407858851

6 •1 Z 0 2 0 8 0 4 6 3 7 3 4 1 7 0 :

7 8 m an 1

8 3 h 0 9 8 3 7 3 9 8 3 7 3 9 8 3 7 4 0 9 8 3 7 3 9 8 3 7 3 9 8 3 !

9 10 saw 1

10 5 M 0 9 4 7 3 6 8 4 2 1 0 5 2 6 3 2 0 9 4 7 3 6 8 4 2 1 0 5 2 6 :

11 12 m e 1

12 13 Il p 1

13 14 ngp 1

14 5 C 04 3 1 5 0 6 8 4 9 3 1 5 0 6 9 0.43150684931501

Load

S ta g e 2 com plete A ctive trees; 17 Inactive trees: 29 Position.' 3

I l|r„ Ih ill

^ S ta g e two

^ ''j

Stage six

P a rse rest

<-Go bock

W h a t am i doing now ?

Start a n ew p arse

S ta g e o n e grow s a s e n te n c e initial
item up to th e se n te n c e n o d e

S ta g e two grow s th e next item in the
s e n te n c e

Jo in a non-inrtial elem ent to th e built
structures

Growing a n on initial unit

Joining a n on initial unit to th e built
structures (coordination)

Backtrack!!

Perform p arse from current point to
e n d of se n te n c e in non-S tep m ode

G o b a c k o n e s tag e

S ta g e T wo is com plete Y ou c a n review trees for the PST

Save

L o o d

S a v e the p a rse at th e current s ta te

R elo ad a sa v e d p a rse C o m m it

P a rse d T o parse: A

Figure 16.9: The parse is complete and the most likely built structure is displayed

There are two important facilities in the Parser WorkBench that we have not

covered during this short walkthrough. These are the XML Parse Tree View (see

Figure 16.10), and the Overview (see Figure 16.11). The XML Parse Tree View

simply gives an alternative representation o f the built and candidate structures; the

XML is in the same form that is used in the corpus database.

“he Corpus C onsu lting Probabilistic P arser
Parsed T h e man saw me

tow 1 IVS T 12 roods J goncanddates] XML Parse hoe* T p* se< pasametefs T TreeVew

***** «"*-dd *. -ro.

A A
- <TREE ID= ‘10* - <TREE n>="ll''

PROB= 5 .66832830863658E PROB= '1 .6 2 6 0 1 6 2 6 0 1626">
-03 > - <ngp NOOEID='3,‘>

- <Z NODEID= *8**> <h_n RMS='True
- <CJ RMS=True‘ REMARK= P ro cess

REMARK="“ J other items"
t-EVELPROB = '6 .83600808827 LEVELPROB='*0.01626016260
-05 NODEPROB =*0.01626016260
NOOEPR06= *0.13205368421 NODETD='2">man</h_n>
NOOEID=“7"> </ngp>

- <A RMS= ‘True </TREE>
REMARK="“
LEVELPROB=“5 .1 76688654-
-04
NODEPROB= 1.468446601?
-02“
NO0EID="6">_ <c\ „ *1 1 »I «l i *rJ

J D <- ->

Fimcdon*

9 —

9 —

9 ______
^ Stages*

Start a new parse

Stage one grows a sentence ntiai
item to the sentence node

Stage two grows the next tern n the
sentence

Jon a noontal element to the bid
stnjctues

Growng a non mbs m t

Joewtg a naswnrtiel i« l to the txd
structues [cootdrsesonj

Perfonr pane bom cuient port to
end of sentence rt non-Step mode

<-Gobecii
Go bads one stage

What am i dong now?
Stage SHcannowbeperfotmedandjroucangobacktolook
tar other parses

Save
Save the parse at the cuient state

Reioad a saved parte

efc« baa beat Me mput aareance

Figure 16.10: XML parse trees - built structures on the left and candidate
structures on the right

The Overview (see Figure 16.11) provides a list o f the active built structures at

any point in the parse, and this allows the user to select one for display in an XML

view. Figure 16.11 shows the Overview at the end o f the parse, when the user has

selected the most likely analysis for viewing in an XML format.

16.5 The com m it button
When the parse is complete, the user can press the commit button to commit the built

structure XML parse tree to the corpus database, so in turn updating the corpus index

tables and the probabilities tables. The commit button is only available after a

successful parse. At this phase o f the project, only the user can decide whether or not

279

the parse will be evaluated as 'successful' and the user is able to modify the

representation of the parse tree (in XML format) before it is committed to the

database.

16.6 Summary
In this chapter, we have seen the user interface in which the Corpus Consulting

Probabilistic Parser operates, and we have observed it at work in the analysis of a

simple example. We have noted the ways in which the user is able to change both the

parameters and the values returned in mid-parse, and hence affect the parse from that

point forward. It has been a key success factor in this project.

In the next chapter I will report on the ways in which we have tested and

evaluated the parser so far. I will discuss the performance issues and provide details

of the parse results for the test sentences.

280

K>
00

T h e C orpus Consulting Probabilistic P arser - <TREE ID- ‘4 ? ‘ PROB ‘2 0 .8 0 4 0 8 7 8 4 1703K”

.IQ J-g J |

Parsodth© man saw r
Input ta n tc n c e

I ' t ' " V, ' 1W inn

X JPST J
\ urn ln»ntm mam MM M l T ree V iew

Stagr fptfl

Stagr* orrtParses at last stage

MOVE IP I TREEIO10
10 46
10 43
10 44
10 4b

Slag© two
0 208046373417035 <TflEE 10-46* PR00*'20 0046373417035'><2x C txS xngp
0100046373417035 <TREE ID-*4Z PROB-70 0046373417035‘x Z x D x S x ngp
0 139293193420697 <TREE ID-43 P R O B 3 9293193420697 ><2><Cb<Vocxn

4 724B7949399941E-02 <TREE ID-*44* PROB-'4 7240704939994 'x Z x O x A x n g p
1 78106307170634E *03 <TREE ID-*4S* PROB-tl 178106307170634><ZxCI><CxCt

Stoat' tbr rr

StAa
BMff Ww structures (coof donation)

Backtrackl I
S t o y r «h<

Perform parte from currant point to
end of sentence in non-Step modeParse rest

Go back one stage
< f ,M l u l l \-

W hat am i doing now?
Stage T wo is complete You can review trees for the PST

Save the parse at the current state

Reload a saved parse C o m m it
I f i n d

Stage 2 complete Active trees 17 Inactive trees 29 Position 3 Par .veil To parse

V S t a r t | I T M icrosoft W ord____________ | ^ 1CQF - Microsoft Visual B . . . | The In te rac tiv e C orpus . .. | C orpus C onsulting P ro b a .. . | | Ca XMI V iew

Figure 16.11: The overview, which displays active built s truc tu res

Chapter Seventeen
Parser - testing and evaluation
This chapter describes how the parser was tested and evaluated against the aims and

goals o f this work.

Section 17.1 describes the methods that were used to test the parser, and reports

the results. It starts with tests to determine the best values for the parser's

configurable parameters, and concludes with an evaluation of the parser in terms of its

accuracy, its efficiency, and its speed. It compares the results with those of the other

parsers described in Chapters Eleven and Twelve.

Sections 17.2 and 17.3 provide an evaluation against the aims of this project that

were specified in Chapter One.

17.1 Testing the parser
Testing was divided into three stages. The first stage is reported in Section 17.1.1,

and involved determining the optimal values for the configurable parameters (see

Section 16.4.1 of Chapter Sixteen). The second stage is reported in Section 17.1.2,

and included testing the parser's backtracking mechanisms, and testing for sentences

with attachment ambiguity. The third stage involved extensive testing of the parser

with a large set of randomly selected, naturally occurring sentences. This latter set of

tests used the optimal values found for the configurable parameters, and are described

in Section 17.1.3.

17.1.1 Establishing the optimum configurable parameter settings
Before testing in the conventional sense could begin, it was necessary to determine

what the optimum values for the configurable parameters should be, and this

required a comprehensive set of tests in its own right. This section describes the tests

that were designed to establish:

the optimum values of n for n-best (see Section 15.1.6 of Chapter Fifteen and

Section 17.1.1.1),

the version of the joining score formula (see Section 15.2.4 of Chapter Fifteen

and Section 17.1.1.2),

- the join threshold value (see Section 15.2.4 of Chapter Fifteen and Section

17.1.1.3).

282

A

- the co-ordination joining score parameter values (see Section 15.2.6.2 and

Section 17.1.1.5)

During these preliminary tests, the sentences shown in Table 17.1 were used.

They were chosen because they display a range of linguistic characteristics that

present different challenges to the parser, and testing with these will indicate values

for the configurable parameters that will suit a wide variety of situations.

These tests required the use of the Parser Workbench in the step-by-step mode

(see Section 16.1 of Chapter Sixteen) which allowed us to follow the built structures

and candidate structures around the parser’s workflow (see Figure 15.5 of Chapter

Fifteen). It was easy to see when it took the wrong path by examining the structures

built, and the scores assigned to them. When the correct structures had not been

considered in a particular parser move, adjustments were made to the relevant

parameters.1

Sentence Sentence Reason for selection
No.

SI The man saw me Simple nominal group (ngp) as the
Subject (S).

S2 The man saw me with the Prepositional group (pgp) as an
telescope A djunct (A).

S3 I saw the man A pronoun (h_p) as a Subject (S).
S4 You saw him A pronoun (h_jp) as a Complement

(C).
S5 Robin saw him A proper name (h_n) as a Subject

(s).
S6 Who saw her? Interrogative Subject (S).
S7 Yesterday I saw him Thematised Adjunct (A).
S8 Where did you see him? Interrogative Adjunct (A).
S9 When did you see him? Interrogative Adjunct (A).

S10 We might not do any sums Sentence in FPD Corpus
Sll When you saw him, was he Thematised Adjunct (A) with

happy? embbedded clause (Cl) + polarity
seeker.

S12 And Robin Ellipsis + binder (B).
S13 Then he went home Thematised Adjunct (A) first

Table 17.1: Some initial test sentences

The tests and the conclusions are described in the Sections 17.1.1.1, 17.1.1.2, and

17.1.1.3. After the best values and options were identified, the parser was allowed to

run in the non-step-by-step mode while parsing the test sentences shown in Table

17.1, and parse details were recorded. These tests and the results are described in

1 1n this respect, the Parser W orkBench provided an excellent testing environm ent

1

283

II

Section 17.1.1.4.

17.1.1.1 Establishing an optimum value of n in n-best
In the first version of the parser, the same value o f n was applied at every point in the

parser's workflow. These values specify for each parser move, the maximum number

of trees (or tree-pairs) that can be created for these purposes:

(a) to take forward from Stage la,

(b) to allow to be joined in Stage 3a,

(c) to allow to be grown in Stage 4,

(d) to allow to be joined in a co-ordination relationship in Stage 5a (which will

be described in Section 17.1.1.5).

Following the initial tests, it soon became obvious that it would be sensible to

allow different values of n to be specified for each of the above parameters. In the

original model, when n was set to a low value (e.g. 1), the joining worked well,

provided that the correct built structure was represented by the most likely initial

vertical strip in the IVS-ITEM and IVS-ELEM tables. As described in Chapter

Fifteen, when it is performing Stage 1, the parser is at its most vulnerable, because it

has no parse history to help it make its decisions.2 If the correct built structure is not

within the n-best vertical strips in the IVS tables for the given item, then later, the

parser has to backtrack, and it is in this sense that it is 'vulnerable1.3 To reduce the

need to backtrack to Stage la, therefore, the value of n needs to be set to a higher

value than the value of n used to control the number of joins made in Stage 3a.4

A similar argument also applies to the number of candidate structures that the

parser allows to be grown in Stage 4.5 When a candidate structure that has a Clause

(Cl) as its root element is grown, it will produce a new set o f candidate structures -

one for each element that a Clause can fill. Since a Clause can fill 25 different

elements altogether, such a grow operation will create 25 new candidate structures.

2 The parse history is defined as the structures that have been parsed so far.
3 Backtracking to Stage la proved to be com putationally expensive, and a process that should be
avoided if possible.
4 In Stage 3a, the jo in decisions are based on a parse history (and this increases in confidence w ith the
num ber o f items parsed). Stage la has no parse history, and therefore it makes sense to allow more
structures to be b u ilt
5 It should be m ade clear at this point that the value o f n in this case is the num ber o f candidate
structures that are grown, and not the num ber o f trees that are produced as the result o f the operation.

284

▼

If the value of n for the number of candidate structures to grow is too small, it

will mean that the correct candidate structure may not exist until the parser

backtracks. A candidate structure that has been grown may favour an element that is

able to initiate a new unit over one that could be attached further up in an existing

built structure. There is also less confidence in a candidate structure than there is in a

built structure, since typically (i.e. from the third item onwards) it has a smaller parse

history upon which to make its decisions. Therefore, it was also sensible to introduce

a separate value of n to represent the number of candidate structures that can be

grown.

The price to be paid in allowing n to be larger for grow operations is that the

parser slows down when a grow operation is needed. There is an argument for the

introduction of a more intelligent growing process, and we shall discuss this in

Chapter Eighteen.

The parser's workflow path for the first o f the sample sentences th e man saw

me can be seen in Table 17.2. This contains a mix of Stages 1, la, 2, 3, 3a, and 7.

The first test can only therefore determine the optimum values for the number o f trees

to take forward from Stage la (Column A in Table 17.3) and the number of trees to

take forward from Stage 3a (Column B in Table 17.3).

Pos Item Parser workflow (state paths)
1 th e 1-la
2 man 2 - 3 -3a
3 saw 2 - 3 - 3 a
4 me 2 - 3 - 3 a - 2 -7

Table 17.2: The parser workflow path for the first sample sentence

A B Parse
time
(sec.)

No. trees No complete
trees

Score of correct tree Rank of correct
tree

5 5 25 46 5 20.8% 1
10 10 32 59 10 20.8% 1
20 20 38 63 14 20.8% 1
50 50 38 63 14 20.8% 1
5 1 18 34 1 20.8% 1
A = the number of trees to take forward from Stage la
B = the number of tree-pairs to take forward from Stage 3a

Table 17.3: The effect of changing the value of n in n-best

The second sentence t h e man saw me w ith th e t e l e s c o p e requires

the use of Stage 4 in order to grow the prepositional group (pgp) introduced by the

i
285

preposition w it h (p), to show it as filling an Adjunct (A). It also requires a Stage 4

to grow the nominal group th e t e l e s c o p e into a completive (cv) to attach to the

prepositional group (pgp). The parser’s workflow path involved in this second

sentence is given in Table 17.4, and the effect of changing the parameters is shown in

Table 17.5. Here Column C represents the number of candidate structures to grow in

Stage 4.

Pos Item Parser workflow (state paths)
1 th e 1 - l a
2 man 2 - 3 -3a
3 saw 2 - 3 -3a
4 me 2 - 3 - 3 a - 2 - 7
5 w ith 2 - 3 - 3 a - 4 - 3 - 3 a
6 th e 2 - 3 - 3 a - 4 - 3 -3a
7 t e le s c o p e 2 - 3 - 3 a - 2 - 7

Table 17.4: The parser workflow path for the first second sample sentence

A B C P a rse
tim e
(sec.)

N o. tree s No com plete
trees

S core o f
c o rre c t tre e

B ack
tra c k ?

R a n k of
co rrec t tree

5 5 5 124 37 1 1.96% N o 1
10 10 10 180 350 4 1.96%

(second
0.2%)

N o 1

20 20 20 220 407 9 1.96% N o 1
50 50 50 988 630 25 1.96% N o 1
5 1 1 140 242 2 1.96% Yes 1
5 1 2 54 155 1 1.96% No 1
5 1 8 120 448 1 1.96% No 1
A = the num ber o f trees to take forward from S tage l a
B = the num ber o f tree-pairs to take forward from S tage 3a
C = the num ber o f candidate structures to grow in S tage 4

Table 17.5: The effect of changing the value of n in n-best

It can be seen that the parser is forced to backtrack when the number of candidate

structures to grow or join is too low. This suggests that the value o f n should be such

that the correct join or grow is included within the number of trees that are selected

for value that has been set for n. However, even though it is the case that if the value

of n is greater, the parse is slower, the correct parse is nonetheless detected with a

relatively low value of n.

The conclusions from these initial tests are that the following parameters are the

optimum ones to use for the rest o f the test sentences:

(a) the number of trees to join in Stage 3a is 5,

1

286

(b) the number of trees to grow in Stage 4 is 5.6

The tests also show that, if we have a high value of n for the number of trees to

take forward from Stage la, it improves the speed and accuracy of the parse. Indeed,

all of the initial test sentences in Table 17.1 included the correct analysis within the

three most likely initial vertical strips. It would be preferable, o f course, if the first

one was always the correct one. But the reasons for the selection of the ’wrong’ ones

are such that we are confident that this deficiency will be overcome when we

introduce the revised and extended probabilities tables of Version Two (as described

in Section 14.2 o f Chapter Fourteen, Appendix H and Appendix I).

We turn next to consider the second of the parser's configurable parameters - the

joining score formula's parameter configuration.

17.1.1.2 Establishing the best configuration of the joining score formula
parameters
The Parser WorkBench allows the user to specify the parameters that will be used in

the calculation of the joining score, and these are perhaps the most crucial o f all the

variable parameters (see Section 15.2.4 of Chapter Fifteen). They are implemented as

check boxes in which the user can place a tick to indicate that the variable is wanted

in the joining score formula (see Figure 16.1 of Chapter Sixteen). The purpose was to

enable the user to perform experiments to determine the best algorithm to use, so that

once the best combination has been found, then the other options could be removed

from the Parser WorkBench. The options that can be combined are grouped into five

pairs:

(a) The forward prediction score (Ppwd) and the backward prediction score

(PBwd),

(b) The probability that the lower units in the right-most strip of the built

structure have been completed (PLowerBsciosed) and the probability that the

lower units in the candidate structure have no elements to the left of any

element in the left-most strip (PLowercsopen),

(c) The built structure tree score (PBstree) and the candidate structure tree score

(Pcstree)>

6 Despite finding that the optim um value o f n is the same for the num ber o f structures to grow and for
the num ber o f structures to jo in , it is still sensible to have two separate param eters as it is expected that
more challenging sentences m ay need different values for each.

287

(d) The built structure node probability (P BsNode) and the candidate structure

node probability (PcsNode),

(e) The built structure node's level probability (p BsLevei) and the candidate

structure node's level probability (pcsLevei).7

A formula was developed which accepts all of the selected parameters and when

it is applied it returns a joining score:

JS = ((Ppwd + Pbw<i) / n P l) *
((P L o w e r B S C lo s e d + ^ L o w e rC S O p e n) / D . P 2) *

((^ B S t r e e + ^ C S t r e e) / n P 3) *

((PBSLevel + PcSLevel) / I lP 4) *
((PBSNode + PcSNode / I lP 5))

If none o f the parameters in a given pair are required, both values of the pair are

set to the value 1 (which means that they are both ignored). If only one of a set of two

parameters in a pair is not required, the value o f the other is set to 0 (which means that

die parameter that is not required will be ignored). The variables n P l through nP5

represent the number o f parameters in the given pair that are required (i.e. 1 or 2). In

this way, the values that are not selected will not involved in the calculation, and this

allowed us to test how far they affect the outcome.

As expected, initial testing revealed that the following joining score parameters

are always required:

(a) the forward and backward predictions (Ppwd, and Pnwd),

(b) the probabilities that the lower units in the built structure have been

completed, and the probabilities that the lower level elements in the

candidate structures can start their units (PLowerBsciosed and PLowercsopen).

The crucial finding of this batch of tests was that the level probability and node

probability (see Section 15.1.7 of Chapter Fifteen) did not increase the ability of the

joining score to reflect the judgement of a human analyst. Indeed they had the

adverse effect o f making the scores much smaller. It was therefore, concluded that

these two parameters should be excluded from the function. I next continued

investigations with combinations of the other joining score parameters.

To see the effect of the discoveries o f the best configuration of the joining score

parameters, please refer to Figure 17.1. This shows an example of an incorrect

analysis in the original POW Corpus, where the item saw is incorrectly analysed once

k

288

f

as an Operator conflated with a Main Verb (OM), when it should have simply been a

Main Verb (M).

In the course o f our work, we have normally corrected these errors as found them

by using ICQF+'s corpus editor (see Chapter Eight). However, in this case I decided

to proceed with testing before changing the sentence that contained the misanalysis.

The reason for doing this was that I would then be able to ensure that, by selecting the

correct joining score parameters, the most likely joins would be still preferred above

the less likely incorrect ones. Further, there will inevitably be other such misanalyses

in the corpus.

Ppwd PBwd PLower
BSClosed

P Lower
CSOpen

PBStree P CStree JS Rank

A1 0 . 3 3 0 . 3 5 0 . 8 0 1 . 0 0 - - 0 . 2 7 2 2
A2 0 . 2 4 0 . 7 1 0 . 8 0 1 . 0 0 - - 0 . 3 8 0 1
B l 0 . 3 3 0 . 3 5 0 . 8 0 1 . 0 0 0 . 1 7 - 0 . 0 5 2 2
B2 0 . 2 4 0 . 7 1 0 . 8 0 1 . 0 0 0 . 1 7 - 0 . 0 7 2 1
C l 0 . 3 3 0 . 3 5 0 . 8 0 1 . 0 0 0 . 1 7 0 . 9 3 0 . 1 7 1 1
C2 0 . 2 4 0 . 7 1 0 . 8 0 1 . 0 0 0 . 1 7 0 . 2 5 0 . 0 7 9 2

Table 17.6: A comparison of different join score formula parameter
configurations

In Table 17.6, the letters A, B and C represent different combinations of the

joining score parameters, and the columns represent the values of the parameters. A

dash in a column means that the parameter was not used in the test represented by the

table row. A1 represents the join o f the built structure and the first candidate structure

in Figure 17.1, and A2 represents the join o f the built structure and the second

candidate structure using a particular set of parameters (i.e. Ppvd, PBwd, PLowerBsciosed

and PLowercsop«n) • The pair B l, B2, and C l, C2 have similar meanings for other sets

of parameters.

The tests show that when the probability o f the built structure and the candidate

structure were not included in the formula, the incorrect join was favoured. This was

because the choice was dominated by the backward prediction of an Operator

conflated with a Main Verb (OM) being preceded by a Subject (S) (71%). However,

by including the probability of the candidate structure (PcsTree) in the formula, the

rarity o f the word saw expounding an OM is taken into account by the formula, and

the inclusion of both this, and the built structure score (PBsTree), ensures that the

7 Section 15.1.9 o f C hapter F ifteen explains the term s node p ro b ab ility and level p robab ility .

289

structures are correctly ranked. The final improvement was to add a weighting to

represent the fact that we are more confident that the built structure is correct than we

are in the correctness o f the candidate structure (because it has a larger parse history).

We have therefore doubled the score o f the built structure tree in the join strength

algorithm.8

The conclusion to be drawn from these tests is therefore that the following

parameters are needed in the formula:

(a) the forward prediction score (Ppwd),

(b) the backward prediction score (PBwd),

(c) the probability that the lower units in right-most strip of the built structure

have been completed (PLowerBsciosed),

(d) the probability that the lower units in the candidate structure have no

elements to the left o f any element in the left-most strip (Pnowercsopen),

(e) the built structure tree score (PBstree) multiplied by a weighting factor of

two,

(f) the candidate structure tree score (Pcstree).

The following are therefore not required:

(a) the built structure node probability (PBSNode),

(b) the candidate structure node probability (PcsNode),

(c) the built structure node's level probability (p BsLevei),

(d) the candidate structure node's level probability (pcsLevei)-

After determining the best parameters to use in calculating the joining score, the

next task was to determine the best value for the join threshold value, and it is to this

we turn now.

8 A further possible refinem ent w ould be to m ake the weighting value a variable configurable
parameter, such that the w eighting w ould increase w ith the num ber o f words parsed. But the current
weighting used in the tests conducted so far w ork well.

290

tree probability = 0.17

M, 0.33

OM , 0.24

!. 0.80

q, 0.09

O < 3
THp man

BUILT STRUCTURE

forward
predictions

o
o
o
☆

key:

unit node

element node

item node

node in rightmost strip

backward
predictions

tree probability = 0.93

S, 0 3 5

!, 0.177

saw
CANDIDATE STRUCTURES

tree probability = 0.25

S, 0.71

Sth,0.13

saw

Figure 17.1: A sample join to demonstrate the choice of joining score formula
parameter configurations9

9 The occurrence o f the element S t h may seem odd - and it is. It arises from the misanalysis o f sa w as
OM. An examples o f an S t h coming before an OM would be t h e r e (S th) a r e (OM) tw o r e d
b r i c k s i n t h e b o x .

291

f
i

17.1.1.3 Establishing the best join threshold value
The n-best built structure and candidate structure trees can only be joined at given

nodes if their joining score is above the join threshold value. If there are less than n

trees with a joining score above the threshold value, the parser will then nominate the

remainder for a Stage 4 grow operation. Establishing the optimal value of the

threshold is therefore a matter o f considerable importance.

The purpose of the testing was to discover the effect o f the join threshold value

when accepting or rejecting joins as the parse progresses. With some configurations

of the joining score parameters, the joining score decreases with the number of items

parsed, and for these configurations, it is necessary to decrease the threshold value as

each item was reached. In the final configuration o f the join score parameters, I found

that the join score did not vary greatly as the parse progressed, so that there was no

need to have a decreasing threshold value.

However, when the parser backtracks, the reason may be because the acceptable

join was rejected. There are two reasons why this may occur:

(a) the join was rejected because, although its score was above the threshold

value, there were more than n joins above the threshold, and the correct join

was not in the best n,

(b) the join score o f the correct join was below the threshold value.

After some experimentation, I decided that the join threshold should be given a

lower value when the parser backtracks. In this way, the joins that were above the

previous value will still be made (because they will be also above the new threshold

value), and the parser will also consider new joins that now have joining scores that

fell within the value o f n.

In order to complete the tests that determine both the best configuration of the

joining score parameters, and the best threshold value, I added the following

additional parser configurable parameters:

(a) the threshold initial value,

(b) a threshold decrement value,

(c) a threshold division value.

The initial value is used as the original value that will be applied for the first

item. The decrement value is the value deducted from the initial value for each item

292

parsed, and this is set to 0 if no decrement is needed. The threshold division value is

a percentage that is used to reduce the initial value after each backtracking event.10

At this stage, I had now determined:

(a) that separate values are required for the value of n in the n-best algorithm at

each different part of the parser's workflow,

(b) the best values of n for each of these,

(c) the best configuration of the join score parameters for the join score formula.

I was now in a position to determine the best starting value for the join threshold

parameter. Initial tests using the sample sentences set this at a value of 0 .0 06 , and

this allowed most reasonable joins to go through to the next stage of the parsing

process.

The decisions about the values for the configurable parameters (described so far)

are summarised in Table 17.7. The remaining parameters are (a) those that affect co

ordinated joins, and (b) the number of cycles of Stages 3, 4, 3 and 5 to attempt before

backtracking. The first o f these is discussed in Section 17.1.1.5. The value for the

number o f cycles parameter was set at 3 although the parser did not need more than a

single cycle in any o f the tests. Therefore, we can consider this value adequate for the

initial test suite.

Number of trees to take forward from Stage la 10

Number of trees to join in Stage 3a 5

Number of trees to grow in Stage 4 5

Join score parameter configuration Pr*d. Pm ,

Table 17.7: The final choice of parsing parameters for the initial test sentences

This now concludes the first stage of the testing with the goal of determining the

best values for the configurable parameters. The tests to determine the configurable

parameters for co-ordination joins are given in Section 7.1.1.5. We next turn to the

results of the tests for the sentences shown in Table 17.1 when using these parameters.

10 A value o f 1 can be used i f no reduction is needed for each backtracking event.

Initial join score threshold value

Join score decrement value

Join score division value11 100
Number of cycles of Stages 3 ,4 ,3 and 5 3

293

17.1.1.4 Performing the basic tests
For all of the tests that follow in this and subsequent sections, we used the values

of the parameters specified in Table 17.7 (unless otherwise stated) together with the

Version One probabilities tables, and as reported in Section 14.2 of Chapter

Fourteen, Appendix H and Appendix I, there were limitations in using these. The

problems will be rectified when the Version Two tables are used (which are being

created at the time o f writing). One of the main problems with the Version One tables

was the inadequate coverage o f the items in the I2 E and I2E2U2E tables. This

meant that the test sentences had to be chosen carefully in order to ensure that the

items used had occurred in the corpus, and that there were no instances o f the item

that represented a rare occurrence. These cases were typically detected during the

testing, as they often caused the parser to follow an unexpected path, which was

sometimes in preference to the correct one. It was the number of unexpected results

and the lack of coverage o f items that led to our development o f the Version Two

probabilities tables.12

The test sentences shown in Table 17.1 were created to test the parser using

examples that contain different structures. For each sentence parsed, we recorded:

(a) the parse times,

(b) the final parse scores for the correct structures,

(c) the total number o f trees created (including those not in the final analyses),

(d) the total number o f complete trees (that are involved in the final analyses),

(e) the route through the parser workflow,

(f) if backtracking occurred.

The initial test results are shown in Table 17.8. The parser in all cases found the

correct parse at the first attempt, and in no case did it need to backtrack. In all except

one, the correct parse was reached first, and in that exceptional case, the reason can be

attributed to the problems in the Version One tables. The parse times reported by the

parser were encouraging. Parses that needed a Stage 4 grow operation, created a

greater number o f trees and this was due to the number of elements that a given class

of unit can fill.

11 See Section 17.1.1.3 for the reason for selection o f this value.
12 The V ersion One tables w ere also deficient in the num ber o f items that were identified as requiring
I2B2U2E processing.

294

295

Sentence Back Parse time Number Number Correct Correct Correct Workflow route
tracking (seconds) trees complete

trees
parse
found?

parse
rank

parse
score

■It the man saw me N 25 46 5 Y 1 0.2085 1 -1 a-2-3-3a-2-3-3a-2-3-3a-2-7
s2t the man saw me with the N 100 270 3 Y 1 0.0196 1-1a-2-3-3a-2-3-3a-2-3-3a-2-3-
telescope 4-3-3a-2-3-4-3-3a-2-3-3a-2-7
■3t Z saw the man N 60 193 2 Y 1 0.1595 1 -1 a-2-3-3a-2-3-4-3-3a-2-3-3a-

2-7
s4t You saw him N 12 32 5 Y 1 0.3643 1-1a-2-3-3a-2-3-3a-2-7
s5t Robin saw him N 13 32 5 Y 1 0.3604 1-1a-2-3-3a-2-3-3a-2-7
s6 t Who saw her? N 12 34 4 Y 1 0.3502 1-1a-2-3-3a-2-3-3a-2-7
■71 Where did you see him? N 25 60 5 Y 1 0.5738 1 -1 a-2-3-3a-2-3-3a-2-3-3a-2-3-

3a-2-7
s8t When did you see him? N 21 55 2 Y 2 0.5738 1-1a-2-3-3a-2-3-3a-2-3-3a-2-3-

3a-2-7
s9t When you saw him, was he N 54 180 2 Y 1 0.6323 1 -1 a-2-3-3a-2-3-3a-2-3-3a-2-3-
happy? 3a-2-3-3a-2-7
slO t We might not be doing N 48 219 2 Y 1 0.1607 1 -1 a-2-3-3a-2-3-3a-2-3-3a-2-3-
any sums 3a-2-3-4-3-3a-2-3-3a-2-7
slit And Robin N 3 16 5 Y 1 0.0200 l-la-2-3-3a-2-7
sl2t Then he went home N 24 110 5 Y 1/3 0.2181 1-1a-2-3-3a-2-3-3a-2-3-4-3-3a-

2-7

Table 17.8: The parser results using the initial set of test sentences

17.1.1.5 Testing the parser's ability to handle co-ordination
The three simple sentences shown in Table 17.9 were used test the co-ordination

stages of the parser. As with the earlier tests, I needed to establish (a) the optimum

co-ordination joining score parameters and (b) the number o f trees to take forward

from Stage 5 to Stage 5a. The decisions made for these are detailed in Sections

17.1.1.5.1 and 17.1.1.5.2 respectively.

Sentence S en tence R easo n fo r selection
N o .

S 1 4 T h e m a n s a w C a r d i f f a n d Subject first, and co-ordinated nom inal
T r e f o r e s t group in a C om plem ent

S 1 5 T i m o t h y a n d R o b i n b u i l t a C o-ordinated Subject f irs t
f a r m h o u s e

S 1 6 T i m o t h y , R o b i n a n d C h r i s t i n e Three co-ordinated nom inal groups in a
b u i l t a c a r Subject f ir s t

Table 17.9: Some sentences to test co-ordination

17.1.1.5.1 Calculating the co-ordination joining score
The parameters to the co-ordination joining score formula are based on a decision

table as described in Section 15.2.6.2 of Chapter Fifteen, which are probability scores

based on the values returned from three tests (see Table 17.10).

T e s t 1 (b L i n k e r) T est 2 (b U n i t S a m e) T est 3 (b R u n e t) Score
t r u e t r u e t r u e o r f a l s e 0 . 9 1 0
t r u e f a l s e f a l s e 0 . 0 0 1
t r u e f a l s e t r u e 0 . 0 0 1
f a l s e t r u e t r u e 0 . 6 0 0
f a l s e t r u e f a l s e 0 . 0 0 1
f a l s e f a l s e t r u e 0 . 0 0 1

Table 17.10: The decision table for assigning a co-ordination joining score

After these tests have been applied, a decision table determines the score for the join.

The optimum values that were defined are shown in Table 17.10. These tests

overwhelmingly favour a join that has a linker as the first item in the candidate

structure, and have both units the same. The test for having punctuation after the last

item in the built structure had to be increased from the original value assigned in

Section 15.2.6.2 of Chapter Fifteen to allow co-ordinated groups such as T im o th y ,

296

R o b in a n d C h r i s t i n e to have a score that meant that they were considered for

a join without the need to backtrack.13

During testing, I found that the built structure trees needed to be ranked in order

to determine the order that the joins are made in the n-best joins o f Stage 5a. The

final score was then determined by the following formula:

J S = Pco-ord * ((PBStree * 2) / (P cstree))

Here Pco-ord is the value from the decision table given in Table 17.10, and PBstree

and Pcstree are the scores for the built structure and candidate structure trees

respectively.14

17.1.1.5.2 Determining the value of n in n-best co-ordinated joins to take
forward

As in the case o f the element-join, the optimum number of trees to take forward to

make a unit-join had to be decided. I found that a value of between 3 and 5 captured

all legal joins. The results o f the co-ordination tests are described in the next section.

17.1.1.53 The results of the co-ordination tests
Table 17.11 shows the results o f the co-ordination tests for the sample sentences given

in Table 17.9.

For these relatively simple sentences, the parser worked very well and did not

need to backtrack. In all cases the most likely analysis returned by the parser was the

correct one.

13 This is an area o f syntax in w hich it m ight be advantageous i f the parser possessed some form o f
look-ahead ' to detect die p resence o f a linker in a co-ordinated set o f groups.
14 N ote that, like in the elem ent-jo in form ula, the score for the built structure tree is weighted by a
factor o f two, because we have m ore confidence in the score for the built structure.

298

Sentence Back Parae Number Number Correct Correct Correct Workflow route
tracking time trees complete parse parse parse

(sec) trees found? rank score
■14i th e man saw C a rd iff and N 49 115 5 Y 1 0.0211 1 -1 a-2-3-3a-2-3-3a-2-3-4-3-3a-2-5-
T r e fo r e s t 5a-2-3-2-7
■15t Timothy and Robin b u i l t N 47 156 3 Y 1 0.1607 1-1a-2-5-5a-2-3-3a-2-3-3a-2-3-4-3-
a farmhouse 3a-2-3-3a-2-7
■16t Timothy, Robin and N 60 241 2 Y 1 0.1595 1 -1 a-2-3-3a-2-3-4-3-3a-2-3-3a-2-7
C h r is t in a b u i l t a car

Table 17.11: Results using the set of test sentences for co-ordination (see Section 17.1.1.5)

Sentence Back
tracking

Parse
time
(sec)

Number
trees

Number
complete
trees

Correct
parse
found?

Correct
parse
rank

Correct
parse
score

Workflow route

■17 * I saw tha man w ith tha
te le s c o p e

N 62 510 2 Y 1 and 2 0.0199
and
0,01967

1 -1 a-2-3-3a-2-3-4-3-3a-2-3-3a-2-3-4-
3-3a-2-3-4-3-3a-2-3-3a-2-7

Table 17.12: Results using a test sentence that has attachment ambiguity (see Section 17.1.2.1)

Sentence Back
tracking

Parse
time
(sec)

Number
trees

Number
complete
trees

Correct
parse
found?

Correct
parse
rank

Correct
parse
score

Workflow route

■18i Tha p la y a rs p layed l a s t
Saturday ware dropped

Y 240 900 16 Y 8 0.0003 l-la-2-3-3a-2-3-4-3-3a-2-3-3a-2-3-4-
3-3a-2-3-4-3-3a-2-3-3a-2-7-6-3a-2-7-
6.....etc

Table 17.13: Results using the set of test sentences for backtracking (see Section 17.1.2.2)

(b) the telescope is in the possession o f the man.

These interpretations are shown in Figure 17.2:

(a) c l

cs M A

pgp

c v

I saw t h e man w i t h t h e t e l e s c o p e sa w t h e man w i t h th €

Figure 17.2: The two interpretations of test sentence S17

Table 17.12 shows that the parser found both analyses o f the sentence sho^

Figure 17.2. Figure 17.3 provides XML representations of the sentences tha

provided by the Parser WorkBench.

299

^□JxJ - Ini xi

CTREE ID=‘507“
PROB=*l.96705501443035,>

- <Z>
- < a >

- <s>
- <ngp>

<h_p>I</h_p>
</ngp>

</S>
<M>s«w</M>

- <C>
- <ngp>

<dd>the</dd>
<h>m anc/h>

< / n g p >

</C>
- <A>

- <pgp>
<p>with</p>

- <cv>
- <ngp>

<dd>the</dd>

<h>telescope< /h>
</ngp>

</cv>
</pgp>

</ci>

< /2>
</TREE>

CTREE ID="508"
PROB="0.19921220072356">

- <Z>
- <CI>

- <s>
- <ngp>

< h _ p > I < /h _ p >
</ngp>

</S>
< M > sa«< /M >

- <C>
- <ngp>

<dd>tho</dd>
< h > m a n c /h >

- <q>
- <pgp>

<p>with</p>
- <cv>

- <ngp>

<dd>tho</dd>

<h>telescope< /h>
</ngp>

</cv>
</pgp>

c/q>
</ngp>

</C>
</CI>

</Z>
</TREE>

Figure 17.3: The two analyses of Sentence SI7 in XML View

17.1.2.2 Tests using a sentence that required backtracking
To test backtracking, the sentence S18 was used.

S 1 8 : T h e p l a y e r s p l a y e d S a t u r d a y w e r e d r o p p e d .

This sentence caused the parser to backtrack because p la y e d is a Main Verb (M),

and the candidate structure containing it can be joined to the primary Clause with a

fairly high degree of confidence.15
The parser arrived at the correct interpretation after much backtracking. Each

time backtracking occurred, the join threshold value was reduced by the threshold

division value (see Section 17.1.1.3), and some unlikely joins were considered before

the tree grow operation was performed to allow the Clause to fill a qualifier.

Furthermore, as the qualifier was not the most likely element that a Clause can fill,

other candidate structures were considered ahead of it.

15 This is in preference to the correct interpretation as a Main Verb in a Clause that fills the qualifier o f
the nominal group containing t h e p l a y e r s . This is a reasonable assumption. It is likely that the
h u m a n parser acts in the same way, and it cannot tell that it should be attached as Clause that fills a
qualifier until it reaches the item w e r e .

300

The conclusions o f this test were that, while the backtracking procedure described

here is useful for most cases, it will be beneficial to the operation of the parser, as we

had expected, to give it the specific ability to go straight to the point at which the mis-

analysis occurred in the case of a small number o f 'garden path sentences' (i.e.

structural configurations such as the one illustrated here which have long been

recognised by psycholinguists as a source of difficulty for humans when parsing a

sentence). This type o f linguistically motivated backtracking is discussed in the

next chapter.

17.13 Extensive testing for measuring the accuracy, efficiency and speed of the
parser

This section describes how the parser was evaluated by using a larger set of naturally

occurring test sentences that were derived from a corpus in terms of its accuracy, and

efficiency (see Section 10.4 o f Chapter Ten), and its speed (in terms of processing

time).

The accuracy of a parser is a measure o f how close it comes to the correct

analysis. Typically, the methods used in the field to determine the accuracy of parsers

are ones which compare its output with what is considered to be a 'correct' analysis

for the same sentence. A score can be assigned which represents how close the two

representations are, and when these tests are performed on a suitably sized set of

sentences, an average score can be calculated that represents a more accurate

indication of the overall accuracy o f the parser. Details o f the methods we used to

determine the accuracy o f the parser are given in Section 17.1.3.1 and the results are

given in Section 17.1.3.2.1.

The efficiency of a parser can be defined as the amount o f effort that the parser

expends in reaching its conclusion. In terms o f the parser described here, this can be

measured with a count of the number o f built structures and candidate structures it has

created (including the ones which do not feature in the final analysis). A comparison

of this count with similar measures for other parsers when parsing the same, or similar

length sentences, can be used as a rough indication of the parser's efficiency.16

Details o f how we tested the parser's efficiency, and the results o f the tests are given

in Section 17.1.3.2.2.

16 For exam ple, a com parable m easure could be the num ber o f edges produced by a chart parser.

301

A general measure o f the speed of the parser can be obtained by recording the

length o f time it takes to produce a complete analysis o f each test sentence. Section

17.1.3.2.3 provides details of the results for the test sentences.

Opportunities for improving the algorithm that have been identified following the

extensive testing are given in Section 17.1.3.2.4.

17.13.1 Measuring the accuracy of the parser
This section describes how the accuracy of a parser can be measured and it gives

details of the results o f the tests that were performed using the CCPP.

17.13.1.1 Current approaches to evaluating parser outputs
Since the mid-1990’s there has been a growing interest in standardisation of the

techniques used to evaluate the output o f one parser against others, and Carroll,

Briscoe and Sanfilippo (1999) give a comparative list of the methods that have been

commonly used. Probably the most well known of these was developed by the

Grammar Evaluation Interest Group (GEIG) (see Grishman, Macleod and Sterling

1992), and this was used in the PARSEVAL project. It provides a metric that is based

on a comparison o f the depth of two syntax diagrams - one of which is produced by

the parser, and the other is what is considered to be the ‘correct’ analysis of a test

sentence. A score is applied that indicates the number of matches found in both

structures.17 A broad indication of the accuracy of the parser can be achieved by

getting the average score for the parser when it is used on a suitably sized set of test

sentences, and the scores for different parsers can be compared by having them all

analyse the same test set. The PARSEVAL project has also shown that a comparison

of the accuracy o f parsers that use different linguistic theories can be achieved by

ignoring the syntax labels and simply comparing the count the number of levels in

each tree.18 The simulated annealing approach to parsing (see Section 11.2 of Chapter

Eleven) is an example o f a parser that requires an evaluation metric (Haigh et al

1988).

17.13.1.2 Selecting a set of test sentences
To evaluate the accuracy o f our parser, we need a set of test sentences which will

provide the 'correct analyses'. Because the FPD corpus contains analysed sentences

17 Typically, a bracketed notation has been used, and the m easure is a count o f m atching brackets.
18 However, these m ethods have received criticism w hen they are used in this w ay due to the
differences in the linguistic fram ew orks being used (see for exam ple Sam pson 2000).

302

that are annotated using the Cardiff Grammar, it gives an ideal source. We can

assume that the parser will perform well with such a test sample (because it draws its

probabilities from the same corpus). Therefore, we also plan to test the parser using

other test sets that have been extracted from other corpora (such as the computer

manuals corpus that is provided on the AMALGAM website (www.comp.leeds.ac.uk

/amalgam/amalgam)). We cannot do this, however, until the coverage of the 12 E and

I2E2U2E probability tables has been increased in the Version Two tables during

Phase Two o f this project, see Section 14.2 o f Chapter Fourteen, Appendix H and

Appendix I).

To create the test set for Phase One, 100 sentences were selected at random from

the FPD Corpus and modified using the following criteria:

- ellipsis markings were removed from the test set,

sentences with the questionable analysis annotations were not included,

annotations indicating that a unit is unfinished were removed,

sentences o f two words or less were not accepted.

The sentences were extracted from the corpus and saved in two formats:

- without annotations (these were used as an input to the parser),

- fully analysed version in XML format (which were used to provide the 'correct

analyses' for comparison with the parser output).

Before testing commenced, some simple checks were performed on the test set to

make sure that the set was representative o f the corpus. Although we found some

differences, we decided that the set was roughly representative because the

differences were probably due to the fact that we did not include single word

sentences or those that contained questionable analysis19

17.13.13 Defining the methods used for scoring parses
This section discusses the methods that can be used to score analyses by comparing

the output of the parser with the 'correct' analysis in the test set.

As we have used the same XML annotations in the corpus and the output of the

parser, I considered adapting the methods that are commonly used for detecting

differences between two XML documents.

19 The test set was considered roughly representative although there were small differences. First, the
average sentence was longer in the test set (7 compared to 11). Second, the longest sentence in the
coipus contains 74 words, compared to 42 words in the test set. Finally, the spread of child ages in the
test set was slightly different to that found in the corpus.

303

http://www.comp.leeds.ac.uk

17.13.1.3.1 XML Differencing
Chawathe et al (1996) created an algorithm that is widely adopted by the creators of

XML differencing tools.20 They define the difference between two hierarchical

structures as a minimum set of edit operations that can be applied to the first

structure to transform it into the second. These operations, which are expressed in an

edit script, are:

deletion (of a sub-tree from the first structure, so it does not exist in the second)

- insertion (of a new sub-tree in the second structure that existed in the first)

- update (of node labels or values in the first structure, to give the same values in

the second)

- move (of a sub-tree to a new location in the second structure, so it matches its

location in the first)

When the two structures are identical, the edit script is empty. When they are

different, the number o f operations represented in the edit script can be used as a

measure of their difference. The minimum set o f operations is needed to transform

the two analyses given in Figure 17.4 and Figure 17.5 are:
INSERT (P22, "q" / P 1 0 , 3) = insert a new node with id P22 with label q to parent P10 at
sibling position 3 (i.e. add a q to the ngp that contains the fish and place it after the h).
MOVE (C16, P 2 2 ,1) = move tree with parent C16 so that its new parent is P22 and place it in the
first position (ie move the pgp so that it now fills the q).
DELETE (C15) = delete node C15 (i.e. delete the old C).

The move operation is important when the technique is used for comparing

structures that represent syntax diagrams. This is because it will be is used in cases

where a sub-tree has an incorrect attachment. Experiments with commercially, and

freely available tools that I performed, revealed this operation was poorly supported,

and many recognised a sub-tree was that was moved to a different location as a
21combination of an insertion and a deletion operation. The tools tested were:

- DeltaXML (www.deltaXML.com)

- XML Diff and Merge (by IBM) (http://alphaworks.ibm.com/tech/xmltreediff)

ArborText Epic Editor (http://www.ptc.com/products/arbortext).

Because of the poor support for the move operation, the results of an XML

difference returned by these tools, were not considered adequate for our purposes.

20 An exam ple o f an X M L difference tool based on C haw athe et al 1996 can be found in M ouat 2002.
Such tools are in w ide use in docum entation system s w here it is im portant to identify the changes
between revisions o f a docum ent
21 In fact, they recognised a m oved structure as being a new ly inserted structure.

304

http://www.deltaXML.com
http://alphaworks.ibm.com/tech/xmltreediff
http://www.ptc.com/products/arbortext

Therefore I decided to implement my own scoring algorithm, and this is described

next.

17.1.3.1.3.2 The XML vertical strip scoring algorithm
The task of detecting the difference between two hierarchical structures that represent

different syntax analyses of the same sentence is more straightforward than comparing

two general XML structures. This is because they have the following qualities:

- both have identical numbers of leaf nodes (and therefore identical numbers of

vertical strips),

- leaf nodes are the only nodes that contain data.

A comparison of the pair o f vertical strips that occur at the same location in both

structures can be used to assign a score that represents the difference between these

strips. The difference between the two structures can then be represented by

considering the scores for all pairs o f strips from both structures (for example, by

taking the mean of the scores for each pair o f strips).

Z(C1)
Cl(C2)

C(C15)C(C9)
ngp(CIO) pgp(C16)

cv(C19)
ngp(C20)p(C17)

dd(Cll) h(C13)
h (C21)

S(C3) M(C7) C(C15)

I(C6)
[1]

caught(C8)the(C12)fish(C14)with(C18)feathers (C22)
[2] [3] [4] [5] [6][6]

Figure 17.4: The ’correct' analysis of an example sentence

305

Z(P1)
Cl(P2)

C(P9)M (P7)S(P3)
ngp(P4)

q(P22)
pgp(P16)

dd(Pll) h(P13)h_p(P5)

cv(P19)
ngp(P18)p(P17)

h(P20)

I (P6) caught(P8)the(P12)fish(P14)with(P18)feathers(P21)
[13 [2] [3] [4] [5] [6]

Figure 17.5: A possibly incorrect analysis from the parser22

Strip Structure One The ’correct* Structure Two The Difference
number vertical strip (CVS) parser vertical strip score

(PVS)
HI I h_p ngp S Cl Z I h_p ngp S Cl Z 5/5 = 1
[2] caught M Cl Z caught M Cl Z 3/3 = 1
(31 the dd ngp C Cl Z the dd ngp C Cl Z 5/5 = 1
[4] mackerel h ngp C Cl Z mackerel h ngp C Cl Z 5/5 = 1
(51 with p pgp C Cl Z with p pgp q ngp C Cl 5/7 = 0.71

W feathers h ngp cv pgp C feathers h ngp cv pgp 7/9 =0.77
Cl Z q ngp C Cl Z

T o ta l 5.48 / 6 =
0.91

Table 17.14: Calculating the score of an analysis

Figures 17.4 and 17.5 show two possible analyses o f the same sentence. In these

figures, the identifiers in round brackets represent the unique XML element

identifiers, and the numbers in square brackets are the vertical strip numbers. Table

17.14 shows a simple technique for calculating a score that represents the difference

22 N ote that the num bers in brackets represent the X M L elem ent Identifiers. I have added a prefix "C"
in the 'correct analysis' and a prefix "P" in the parser analysis. This is to indicate in the examples that
follow that the sam e identification num ber in bo th trees does no t indicate that the elem ent or unit is
necessarily the same elem ent or u n it

A
306

between the analyses in Figures 17.4 and 17.5. It can be seen that the same fault

affects Strips 5 and 6 (i.e. the prepositional group (pgp) fills a qualifier (q) rather

than a Complement (C)). Therefore, two modifications were made so that such

differences affected the score once.

First, a score o f 1 is given to each instance of an element or a unit in a vertical

strip that has already been recognised as being incorrect in a previous vertical strip.

Second, because two strings that represent a vertical strip in both structures at the

same position can be the same even though they contain different instances of

particular elements and units. To apply a score correctly, we need to make sure that

they represent the same element or unit. In Figure 17.4 and 17.5, for example, it can

be seen that the two vertical strips that look upwards from the item w ith can be

expressed as:

CVS s p [C17,5,5] pgp[C16 #5,6] C[C15,5,6] C1[C2,1,6] Z[C1,1,6]
PVS: p[P17,5,5] pgp[P16,5,6] q[P22,5,6] ngp[P10,3,6] C[P9,3,6]
Cl [P2,1,6] Z [PI,1# 6]

where CVS represents the ’correct vertical strip1 (from Figure 17.4) and PVS

represents the parser vertical strip (from Figure 17.5). The numbers in brackets that

follow the syntax token represent the XML identifiers and the start position and the

end position of the XML element.

There are two complements in the analysis in Figure 17.4; one (th e f i s h)

starts at Position [3] and ends at Position [4], and the other (w ith f e a t h e r s)

starts at Position [5] and ends at Position [6]. We can say that the scope of the XML

elements that represent the first complement is (3 , 4) and the second is (5 , 6) . The

scope of an XML element in each vertical strip can be used to determine that it

represents the same instance of the element or unit in both structures. Figure 17.6 is

used to further explain the concept, it shows a parser's misanalysis o f th e farm

boy as a pair o f complements, and its correct analysis as a single complement.

307

Z(P1)
Cl(P2)

C(P10)
ngp(Pll)

C(P16)
ngp(P17)

dd(P12)) h(P14) h(P18)

the(P13) farm (P15) boy (P19)
[6] C7] [8]

Z(C1)
Cl(C2)

C(C10)
ngp(Cll)

dd(C12)) mo(C14);
ngp(C15)

h(C18)

h(C16)

the(C13) farm (C17) boy (C18)
[6] [7] [8]

Figure 17.6: Two analyses of t h e farm b oy

The parser’s vertical strips (PVS) and the ’correct' vertical strips (CVS) in Figure 17.6

are given below:
PVS [6]=dd[P12,6,6] ngp[Pll,6,7] C[P10,6,7] C1[P2,1,8] Z[P1,1,8]
CVS [6]=dd[C12/6/6] ngp[Cll,6,8] C[CIO,6,8] C1[C2,1,8] Z[Cl,1,8]
PVS [7]»h[P14,7,7] ngp[Pll,6,7] C[P10,6,7] C1[P2,1,8] Z[P1,1,8]
CVS [7]=h[C16,7,7] ngp[C15,7,7] mo[C14,7,7] ngp[Cll,6,8] C[C10,6,8]

Cl[C2,1,8] Z[Cl,1,8]
PVS [8] =h[P18, 8,8] ngp [P17,8,8] C[P16,8,8] C1[P2,1,8] Z[P1,1,8]
CVS [8]«h[C18,8,8] ngp[Cll,6,8] C[CIO,6,8] C1[C2,1,8] Z[Cl,1,8]

It can be seen for example that although the syntax tokens for strip 8 (h ngp C Cl

Z) are the same for the PVS and the CVS, the scope of the second complement in the

PVS (with identifier P I 6) is (8 , 8) , and the scope of the single complement in the

CVS (with identifier CIO) is (6 , 8) . The difference in the scope can be used to

indicate that the complements in both strips are different instances of complement.

The score (Sv8[i]) for each vertical strip at each position [i] is therefore defined

as the number of correct XML elements (C) (after accounting for those that have been

scored as being incorrect before, and the scope of the XML elements) divided by the

maximum of the number of XML elements in the parser vertical strip and the number

of XML elements in the correct vertical strip (N).

Sv»[i] = C / N

308

The score for the complete analysis (Sa) is the sum of the scores for each strip

divided by the number o f vertical strips in the analysis (Nvs):

i*l

S. = (E(Svs[i]))/Nvs
I -N v s

Using the two modifications to the simple scoring algorithm (which was shown

by example in Table 17.14), the modified scores are shown in Table 17.15. In this

example the score o f 0 .4 for Strip 5 was calculated as follows: 1 each for the

preposition (p), the prepositional group (pgp), the Clause (Cl) and the Sentence (Z).

All other elements and units score 0 - including the Complement (C) (because its start

position in the PVS indicates that it is a different Complement than the one in Strip 4).

Further, Strip 6 scores 1 because it was penalised for the attachment of the

prepositional group (pgp) and the extra Complement (C) in Strip 5.

Strip
number

Structure One The 'correct'
vertical strip (CVS)

Structure Two The
parser vertical strip
(PVS)

Score

i l l] I h_p ngp S Cl Z I h p ngp S Cl Z 5/5 = 1
[2] caught M Cl Z caught M Cl Z 3/3 = 1
P) the dd ngp C Cl Z the dd ngp C Cl Z 5/5 = 1
[4] mackerel h ngp C Cl Z mackerel h ngp C Cl Z 5/5 = 1
15} with p pgp C Cl Z with p pgp q ngp C Cl

7
5/7 = 0.71

[61 feathers h ngp cv pgp C
Cl Z

feathers h ngp cv pgp
q ngp C Cl Z

9/9 1

T o ta l 5.71/ 6 0.95
Table 17.15: Calculating the score of an analysis

17.13.2 Summary of the results of the tests using the FPD test set
This section provides a summary o f the results of the extensive testing using 100

sentences in the test set that was extracted from the FPD corpus. Full details of the

test set and the results of the tests can be found in Table M.l of Appendix M.

Unless otherwise stated in the remarks column of Table M .l o f Appendix M, the

tests were conducted using the parameters given in Table 17.7, and the parser was not

allowed to backtrack. The results were noted in terms of the parse time, the number

of structures created, and the score assigned by the XML vertical strip scoring

algorithm. When more than one analysis was returned, only the highest XML vertical

309

strip score was recorded, and normally (unless otherwise stated in the remarks column

of Table M .l) this was the most likely analysis returned by the parser.

The following sections provide a summary o f these results in terms o f the

accuracy, the efficiency, and the parsing speed.

17.1.3.2.1 Tests for the accuracy of the output from the parser
The results from the tests were encouraging. The parser produced at least one

analysis for all o f the test sentences, and it can be seen in Table 17.16 that it arrived at

the correct parse for approximately 50% o f the test sentences, and a further 15%

contained very minor errors. 78% o f the sentences produced an analysis that scored

above 90%. The remaining 22% o f analyses contained either a greater number o f

minor errors, or the analysis was structurally incorrect.

Difference
score range

Number sentences R em ark

1 49 (49%) The parser analysis matched the corpus analysis
0.95 - 0.99 15(15%) Typically these analyses contained one or two

incorrect element or attachments
0.90 - 0.94 14(14%) More than two problems occurred in this range

0.85 - 0.89 6 (6%)

0.80-0 .84 5 (5%)
0.75 - 0.80 5(5%)

0.70-0 .75 1 (1%)

0.65 - 0.69 5(5%) Multiple types o f problems of all sorts occurred in
these sentences

Table 17.16: Summary of parser accuracy tests

17.1.3.2.2 Tests for the efficiency of the parser
The efficiency o f the parser can be measured as the number o f structures it creates in

arriving at a solution - including those that do not form part o f the final analysis. It

can be seen in Table 17.17 that there is an increase in the number o f structures created

when longer sentences are parsed (although there is not a direct relationship between

sentence length and the number o f structures created). For example, a sentence o f 17

words caused the parser to create more structures than sentences containing 18, 19, 22

or 23 words. This is due to the fact that different operations were involved in creating

the analysis, and generally, a greater number o f grow operations (see Section 15.2.5 o f

Chapter Fifteen) w ill provide a greater number o f structures.

310

Although a built structure and a candidate structure are not equivalent to an

edge in a chart parser, the number of structures produced by the CCPP and the

number o f edges produced by a chart parser can be used as a comparison of the

efficiency of the two algorithms. The prototype chart parser that was created for this

project (see Chapter Twelve) uses similar corpus queries to the CCPP. The chart

parser uses the results o f each query to produce a number o f edges in the chart. The

same query is used by the CCPP and this results in a tree operation which produces a

new active tree (see Chapter Fifteen). If the CCPP had large enough values of n (for

the n-best parameters), there could be the same number o f trees produced as edges

that would be in the chart. It is by using the n-best approach that the CCPP displays

deterministic properties. Therefore, a comparison of the number of edges produced

by the chart parser and the number o f trees created by the CCPP for the same

sentence, can be used to indicate the efficiency savings that can be attributed to the

deterministic approach of the CCPP.

Souter (1996) lists the number of chart edges that his parser produced for a set of

23 sentences. Table 17.18 shows the average number of edges reported by Souter

(1996:127), and the number o f structures built by the CCPP for the sentences of the

same length. There are approximately 98% fewer structures built by the CCPP, and

we can therefore claim that the approach is more efficient than that of the standard

chart parsing algorithm when it is used in the same linguistic framework.

Sentence
length
(words)

Number
sentences

Average
number of
structures

Sentence
length
(words)

Number.
sentences

Average
number of
structures

3 2 134.0 17 1 1072.0
4 11 121.4 18 3 886.3
5 6 174.1 19 1 569.0
6 11 229.3 21 2 1303.5
7 12 251.5 22 1 773.0
8 7 402.4 23 2 814.0
9 6 376.0 24 1 1259.0
10 1 265.0 25 2 1018.5
11 8 482.7 26 1 527.0
12 2 387.0 27 1 1264.0
13 2 598.0 28 2 1094.0
14 3 473.0 37 1 2201.0
15 2 914.0 42 1 2564.0
16 4 692.7 43 1 2193.0

Table 17.17: Measuring the efficiency of the parser

311

Sentence
length

CCPP (No.
structures)

Souter's chart
parser (No. edges)

Difference

3 134.0 1696.8 92%
4 121.4 5851.0 97%
5 174.1 10548.0 98%
6 229.3 15073.0 98%
8 402.4 19518.0 98%

Table 17.18: Efficiency comparison - CCPP and chart parser

17.13.2.3 Tests for the speed of the parser
This section provides a summary of the results that show the speed of the parser in

terms of the time it takes to produce an analysis for a sentence. The measure of the

speed of the CCPP is defined as the time it takes from the end of the parser

initialisation stage (Stage 0, which clears information from previous parses) to the

time it reaches Stage 7, where it reports its success or failure.

Table 17.19 shows the average parse times (in seconds) for different sentence

lengths, and has been provided for comparison between the performance of the CCPP

and other parsers. Like the measure for efficiency, the time taken for a parse is

determined by the number of structures produced rather than sentence length, and

sentences that require a greater number of grow operations will take longer to process

(this relationship can be seen in Table 17.20).

Sentence
length
(words)

Number
sentences

Average parse
time (seconds)

Sentence
length
(words)

Number.
sentences

Average parse
time (seconds)

3 2 13.66 17 1 231.00
4 11 22.27 18 3 152.50
5 6 37.00 19 1 141.00
6 11 40.72 21 2 239.00
7 12 55.18 22 1 193.00
8 7 73.85 23 2 190.50
9 6 69.66 24 1 299.00
10 1 46.00 25 2 280.00
11 8 85.12 26 1 158.00
12 2 74.00 27 1 297.00
13 2 125.00 28 2 389.00
14 3 98.00 37 1 662.00
15 2 151.50 42 1 860.00
16 4 132.8 43 1 731.00

Table 17.19: Measuring the speed of the parser (sentence length / parse time)

312

Number
trees

Number
sentences

Average parse
time (seconds)

Number
trees

Number.
sentences

Average parse
time (seconds)

0 -9 9 13 16.00 700-799 2 185.50
100-199 14 26.50 800-899 4 180.50
200-299 15 40.20 900-999 3 282.33
300-399 11 63.63 1000-1099 2 266.50
400-499 12 83.83 1100-1199 1 272.00
500-599 9 116.55 1200-1299 3 324.33
600-699 5 121.20 over 1300 6 536.80

Table 17.20: Measuring the speed of the parser (structures created / parse time)

The chart parser that was developed for this project (reported in Chapter Twelve)

gave parse times for sentences o f a similar length in tens o f minutes, with Sentence

S2 (see Table 17.8) requiring 1500 seconds (25 minutes). The time taken to parse

this sentence in the CCPP was 100 seconds (1 minute 40 seconds). This represents an

improvement o f 1400 seconds (or 23 minutes 20 seconds); this was typical of the

savings for all the test sentences.

The parse times were also a significant improvement over those reported by

Souter (1996) for similar length sentences. Although the computer hardware

technology has significantly improved since the times when these two parsers were

developed, much o f the improvement is due to the deterministic approach used by the

CCPP.

While the parse times reported here are similar to those in Weerasinghe (1994),

one has to take into consideration the very much larger number of syntactic

relationships that are used by the CCPP. Weerasinghe's parser operated using

comparatively small syntax lists and lexicons, while the present parser has been

constructed from the start, in such as way as to enable it to operate on unrestricted

natural texts.23

Let us now consider the question 'what is a reasonable time for a parser to take to

arrive at a correct analysis?' The answer depends, of course, on the length and

complexity o f the sentence being parsed. It also depends upon the use to which the

parser is being put, and upon the richness of the analysis that is required from it.

Parse times measured in tens of seconds are reasonable for, say, a batch processing

algorithm which adds further sentences to a parsed corpus working on unanalysed

files o f natural data. It is also reasonably close to being acceptable in a system where

a rapid response is needed. A slow parser, however, is very unsatisfactory in

23 The Version Two probabilities tables contain over a million items (see Appendix I).

i
313

research. For example, when testing the chart parser reported in Chapter Twelve, it

was annoying to have to wait for tens of minutes for the parser to finish only to find at

the end that it has made a mistake. In contrast, it is acceptable to wait for tens of

seconds for a result.

The point must be made, however, that the difference in parse times between

Souter’s (1996) parser and those of the chart parser described in Chapter Twelve, is

likely to be due to the fact that the speed of computers have increased substantially in

this period, and even without improvements to the parsing algorithm presented here,

we can expect that parse times will improve even further in a relatively short space of

time.

17.13.2.4 Opportunities for improvement
The most common type of problem experienced by the parser was the misanalysis of

an element in the Clause and the most common was a particular unit filling a

Complement rather than an Adjunct, and the correct selection of different types of

adjunct, or replacements. The parser often did not recognise adequately that a unit is

unfinished.

Further, the detection of embedded nominal groups as modifiers also caused a

problem. Examples can be seen in the sentences below:

It's about the farm boy... (12dgism#15) (farm is analysed as being the

head of the nominal group that contains the deictic determiner the instead of being in

its own nominal group that fills a modifier, see Figure 17.6).

A lego boat sailing...(Sabpscj#34) (lego is analysed in the same

nominal group as the quantifying determiner a).
The nominal groups in the test set were of fairly simple construction, and

improvements will be needed to handle more complex examples. The parser did,

however, very reliably recognise handle quality and quantity groups as embedded

modifiers and qualifiers.

The item t o as the infinitive element in a few cases caused problems because

the parser preferred its analysis as a preposition in a prepositional group.

314

17.2 An evaluation against the project's goals
As stated in Section 13.1 of Chapter Thirteen, the primary goal of this project is to

build a parser that can take any string of items (words) that might occur in a natural

text, and to turn this string into a syntax tree diagram, using the rich annotations of

the Cardiff Grammar version of Systemic Functional Grammar (SFG).24

In Chapters Eleven and Twelve, I discussed a number of other approaches to

parsing that use SFG, including two early parsers that were built as part of this

project. The conclusions of that work were that a more deterministic approach to

parsing (i.e. one which simulates more closely that of a human when analysing a text

sentence) gives the greatest promise o f success, especially for parsing unrestricted

natural texts. The second aim of the parser described here is therefore to 'get it right

first time', whenever possible, and to use linguistic knowledge to help ensure that it

backtracks only when it has to.

Our third aim was to demonstrate that a parser whose method of parsing is

integrated with a corpus database gives an approach to parsing that provides both

efficiency and a broad coverage of texts. Such a parser uses corpus-consulting,

database-oriented methods to extract probabilities, and so determine the best paths to

take.

The fourth aim was to prove that corpus-based parsing can benefit from an

approach that closely follows the changing properties of real language by using a

dynamic corpus. This will be discussed in Chapter Eighteen.

Did the parser meet the first three of these aims? The answers are discussed in

Sections 17.2.1, 17.2.2, and 17.2.3 respectively.

17.2.1 How far is the output from a richly annotated syntax diagram
Figure 17.7 shows the most likely parse for the example sentence S10 (see Table

17.1). It provides a horizontal representation o f the tree diagram, in which the

branches can easily be expanded and collapsed.25 An XML representation of the

sentence can be seen in Figure 17.8, and this is the same form in which it is loaded

into the corpus database.

24 However, we do not attempt the difficult task of parsing an analysis of the Participant Roles in
Phase One; this important refinement will be added, with others, in Phase Two.
25 Because the sentence is displayed in the Parser WorkBench, the forward predictions from the head
(h) of the nominal group (ngp), and from the Complement (C) of the Clause (Cl) can be clearly seen.

315

Figure 17.9 shows the structure o f the sentence in a representation that conforms

to the way in which linguists typically analyse sentences. This type o f representation

can be created by processing the XML representation (given in Figure 17.8) through

an XML formatting program that uses an XSL-FO stylesheet.

Figure 17.10 shows the sentence as loaded in the corpus database and viewed in

ICQF+'s Sentence Viewer. These five illustrations display the output formats

available from the parser and hence achieve the goal o f creating a richly annotated

syntax diagram.

The Corpus Consulting Probabilistic Parser
Parsed-we might not be doing any sums

;— ...

PJT

* u

it t7a<
1? U x s

» » «iT ■»

f m A j u

O
Ck ttag e an* irc w « M m nc*

M . v* la * . m M m n o *w
9 j V I l t l M a M N r M M i r M

>*•*•««

9 M i « m M A n m Is * . feu*
I M U t.

9 SfeEQf V ir 1
G ianr* « non rw d W

9 .CMC a K in r t* t x

9 BMUbMn

Pianem i
0*3* * M C-MT< t o n «o

« j O M n n a i > n $ i i | M

<-G o b e c k
M Me*, c a t «aa*

r
nrt

f t* o *4*»»«4p«r* ConHnd

■ » | MH 4 X dw N w M

Figure 17.7: Formatted parse tree in the Parser WorkBench

316

.=!□] x|

- CTREE ID=*218" PR O B =*16.0729538074079“> -

- <Z>
- <CI>

- <s>
- <ngp>

<h_p>w e</h_p>
</ngp>

</S>
<0>might</0>
<N>not</N>
<X>boc/X>
<M>doing</M>

- <C>
' - <ngp>

<qd>any</qd>
<h>sums</h>

</ngp>
</C>

</CI>
</z>

</TREE>

Figure 17.8: An XML view of the sentence

n g p

h_p

We

z
Cl

s cNo MX

might not be doing any sums

Figure 17.9: Formatted view of the parse tree

317

Figure 17.10: The sentence in ICQF+’s Sentence Viewer

As you can see, this parser produced not one but five versions o f the richly

annotated syntax diagram that shows the structure o f the sentence. Despite the

differences between them, which result from the different purposes that each serves,

they all contain the same information about the functions performed by the words and

units o f the sentence - and each is more richly annotated than the diagrams o f a typical

phrase structure representation (as we saw in Chapter Two).

17.2.2 How far is the parser deterministic?
The fact is that during entire suite o f tests used on the parser, apart from the test

designed to involve backtracking, it only had to backtrack once. In most cases

(ignoring the backtracking test), the most likely parse tree was ranked first, and in the

case where it was not, the correct tree occurred in second position, close behind the

incorrect tree. In the extensive tests, the analysis with the highest XML vertical strip

score (i.e. the one that is 'most' correct) was very often ranked first. Moreover, in

those cases where there were more than one parse tree produced and where only one

318

parse tree was legal, the most likely tree had a score that was substantially larger than

the others. In all cases when the parser was asked to go back to find further analyses,

the scores in the cases of others that were found, were low - making them almost

impossible. In other words, the fact that the most likely tree is the correct tree in all

but one case suggests that this parser is demonstrating a high degree of determinism.

17.2.3 Does the corpus-consulting, database-oriented approach lead to better
parsing?

The answer to this third question is straightforward. The database-oriented approach

provides a very successful approach to parsing, especially to the parsing of

unrestricted natural language. This is because its syntactic relationships are extracted

from a corpus and stored within probabilities tables. The process of consulting the

database was very rapid with the average the time taken for a database query being

measured in a few microseconds. The time taken to find and retrieve records using

the database approach proved to be significantly quicker than, for example reading the

values from a syntax list of the form implemented by Weerasinghe (1994) and Souter

(1996) especially when one considers that there are many thousands of syntactic

relationships to be manipulated.

We saw in Chapter Sixteen (and also in Section 17.1 above), the fact that the

parser's working data is stored in database tables gave the parser a significant

advantage. In the development stage, it helped in finding errors and bugs in the

algorithm, and when the results were not those expected, it helped in answering

questions on why the parser took the route it did. The ability to review the working

data in this way resulted in many enhancements to the algorithm and in many changes

to the probabilities tables.26

17.2.4 Improvements in the speed, efficiency and accuracy of the parser
We saw in Section 17.1 that the approach to parsing used here provides an

improvement over the prototype chart parser developed for this project, and Souter's

and Weerasinghe's chart parsers that were reported in Chapter Twelve. The

performance and accuracy will be further increased through the implementation of the

Version Two probabilities tables and a number o f enhancements to the algorithm (that

26 Sometimes when problems were identified, they were attributed to errors in the FPD Corpus, and
they were corrected in ICQF+.

319

will be identified in Section 18.2 of Chapter Eighteen) and include improvements for

the types of problem identified in Section 17.1.3.2.4.

173 The results of the evaluation
While it is clear that the parser incorporates significant advances, the tests show that

further improvements can be made, and I now turn to consider the ways in which we

can enhance its speed and efficiency.

There are two parts of the algorithm that are computationally expensive that

therefore affect the parse time. The first is Stage 6, which is backtracking, and it is

clear that this procedure should clearly be avoided whenever possible. The way in

which the parser seeks to achieve this, as we have seen, is to attempt to get the parse

right on the first pass in a deterministic manner. But to do this, it crucial to the

operation of the parser to get the optimum values and configurations o f the parsing

parameters (as reported in Section 17.1). For example, if the join threshold is too

low, then the parser will let joins take place in preference to a preferable grow

operation, and if the joining score formula’s parameters are not correct, then the

resulting parse trees will not have the correct ranking. However, as we saw in Section

13.5 of Chapter Thirteen, the method employed for backtracking in the Phase One

model o f the parser is one that uses computational backtracking. It is expected that

Phase Two's linguisticaUy motivated backtracking will significantly improve the

efficiency of the parser in these situations when it has to backtrack.

The second part o f the algorithm that is computationally expensive (though not as

expensive as backtracking), is that o f growing the candidate structures in Stage 4,

after a join attempt fails in Stage 3. This is because of the number of elements that a

class of unit can fill. For example, in the FPD Corpus upon which the initial unit-up-

to-element tables are based:

(a) the Clause (C l) can fill 24 elements,

(b) the nominal group (ngp) can fill 35 elements,

(c) the prepositional group (pgp) can fill 19 elements,

(d) the quality group (q lg p) can fill 23 elements,

(e) the quantity group (q tg p) can fill 16 elements.

The implications of this are that Stage 4 is the second most expensive part of the

algorithm due solely to the number o f candidate structures that are produced as a

320

result o f the grow operation. As can be seen in Table 17.8, the sample parses that

include one or more Stage 4 operations have significantly longer parse times, and

result in a greater number of built and candidate structures in the parser's working

tables. This is an area for improvement that will be discussed in Chapter Eighteen.

17.4 Summary
This chapter has described the ways in which we tested the parser. An important

prerequisite of this work was the establishment of the parser's configurable

parameters, these include for example, the value o f n in the places of the algorithm

where the n-best trees or vertical strips are taken forward, and the optimum

configuration of the parser's joining score parameters. This work was presented in

Section 17.1.

Also in Section 17.1 we looked at the results o f the tests, and these were overall

very encouraging. Using the simple set o f sentences (in Table 17.1), the parser found

the correct parse at the first attempt in all but one case. It only had to backtrack in one

case, and this was avoided in a later run by changing the parser parameters. We

identified the fact that that the establishment o f the optimum set of parameters is a

central aspect in the operation of the parser, because this enables it to avoid it having

to perform the most expensive part o f the algorithm (i.e. backtracking in Stage 6).

The success o f our choice of these parameters was confirmed during the extensive

testing using a set of sentences derived from the corpus.

In order to provide a metric that allowed us to determine the accuracy of the

parser, a new XML vertical strip scoring algorithm was devised and used during the

extensive testing. The results o f the extensive test showed that the parser returned the

correct analysis for approximately 50% of the test sentences and a further 15%

contained just one error. Only a few analyses contained more serious errors, and

improvements have been identified to circumvent these problems in Phase Two (see

also Chapter Eighteen). Also in this chapter, the results were compared with the

parsers reported in Chapter Twelve - the chart parsers o f Weerasinghe (1994) and

Souter (1996), and our own prototype chart parser, and it was concluded that this new

approach offers improvements over these earlier attempts.

In this chapter, we discussed the suitability of the corpus-consulting database-

oriented deterministic approach. The results were evaluated and the strengths and

weaknesses of the algorithm were identified.

321

In Section 17.3 we introduced two areas o f potential improvement - linguistically

motivated backtracking and intelligent tree growing. These and other

improvements will be described in the final chapter o f this thesis - Chapter Eighteen,

which also discusses potential improvements to the corpus database, and to ICQF+.

322

Chapter Eighteen
Further work and conclusions
This chapter describes (a) the improvements that the work in Phase One of the project

suggests may be desirable (or at least worth considering), in either the parser or the

corpus database, and (b) the major improvements that have been planned for the start

of Phases Two and Three.

18.1 The Corpus Database and ICQF+: improvements and further
work

18.1.1 The native XML tables

At the moment, the only constraint on whether the database allows sentences to be

loaded or not is that the XML document that represents the sentence is valid.1 This

means that parse trees that contain errors may be loaded, and these errors could be

stopped by checking that the XML complies with the rules of a DTD / Schema. For

example, at present, it is possible to have:

(a) a sentence with XML mark up elements with generic identifiers that do not

match a syntax token in the Cardiff Grammar (some of these could be

difficult to spot manually, e.g. CL instead of Cl or ADO instead of A_DO)
(b) incomplete mark up elements that should contain further 'child' mark up

elements or data. For example, a pronoun head (h_p) that is supposed to be

expounded by an item but is not (i.e. <h_px/h_p>), a Subject (S) that is

supposed to be filled by a unit but is not: (i.e. <Sx/S>), and a Clause (Cl)
that is supposed to have component elements but does not (i.e.

<Clx/Cl>).2
(c) A mark up element that contains the mark up attribute e l l i p t e d and also

other 'child' mark up elements. Mark up elements that represent ellipted

Cardiff Grammar elements should contain no child mark up elements.3 Thus

the following mark up example is not grammatically valid but is well-formed

1 A valid XML document is one that ia 'well-formed' as it has an end tag for every start tag, and it does
not have to conform to any given DTD or Schema.
2 These are real examples that were found in the FPD Corpus. They were either questionable items and
units or ellipted elements that were missing the necessary annotations. In each case, they were
corrected.

323

in XML terms:

<S ellipted="RapidSpeech"xngp>. .</ngpx/S>
(d) an ellipted mark-up attribute that contains something other than the

values RapidSpeech or PreviousText.
These problems can be easily overcome by implementing of an XML DTD or

Schema. This would mean continuing the work reported in Chapter Six and Appendix

C. In Phase 2, therefore, I will improve the CreateDTD program so that a complete

analysis o f the XML data in the corpus can be performed. This will mean that a usable

XML Schema is produced. This will also be supported through the implementation of

(a) a small number of business rules, and (b) a business rules checking program

(see Section 6.1.4.3 of Chapter Six).4 Such programs are proving extremely valuable

in industry (see Day (2006), and Day and Ichizli-Bartels (2007)).

18.1.2 ICQF+

This section describes some of the modifications that could be made to improve ICQF

so that can be used more widely. ICQF+ was, as we saw in Chapter Eight, a complete

redevelopment o f the original version (presented in Day (1993a)), and it incorporated

many substantial improvements. However, most o f the changes made were designed

to meet the specific needs of this project, as we needed a research tool to answer the

questions we needed to ask in order to develop transformation scripts to create the

FPD Corpus, or to edit sentences (which we did using ICQF+'s sentence editor).

Many of the changes made were made with the needs of other users in mind, and

in some cases, we drew on the experiences of the various users of the original system

and / or consulting linguists on their requirements. However, there is still scope for

further improvements that could significantly enhance ICQF, and these are listed here.

18.1.2.1 A graphical query builder for ICQF+

Students working in the study of language who use ICQF may not be familiar with the

use of computers and writing queries in the Corpus Query Language (CQL) (see

Chapter Eight) may be a challenge. For these users, a graphical query builder will

allow them to express queries as diagrams and not by words (i.e. as trees). The trees

can then be translated into CQL automatically when the query is executed.

3 Recall from Chapter Six that the term element has a meaning in mark up languages, and another
meaning in Systemic Functional Grammar. I will use the term mark up element to disambiguate the
terms, as before.

324

I

This facility could display partial parse trees and allow parts of other parse trees

to be 'dragged and dropped' or 'cut and pasted' to form a new query. It would also be

useful if queries could be saved and restored.5

18.1.2.2 XML tree grapher

Although ICQF+ provides a fully functional sentence viewer, the syntax diagrams

produced are not o f the format used in the field of linguistics (e.g. see Figure 2.5 of

Chapter Two, or the many other examples throughout this thesis). This format could

be achieved through the use of a tree grapher. The ability to use these diagrams in a

word processor would be a great advantage when writing papers or books. It is

possible to achieve this using our XML by using an XSL-T or XSL-FO stylesheet.

This is not a trivial task and work is underway to achieve it.6 This tree grapher could

also be used by the Corpus-Consulting Probabilistic Parser to display the final

complete parse trees.

18.1.23 Controlling access to the corpus editor

The ability to modify the corpus should be restricted to certain users and should only

be done in a controlled manner by individuals who realise the implications of the

change. ICQF+ should therefore include a user access system.7

18.1.2.4 Multi-user and web-enabled support

ICQF+ is a single-user system and further work would be necessary to provide

database record locking and feedback that is necessary to allow it to be used by

multiple users at the same time. The work to achieve this would be fairly trivial.

A more significant improvement would be to allow ICQF+ to run on the internet,

allowing users request queries and see the results online. ICQF+ was not developed in

a web environment, and the work to achieve this would not be as trivial but it would

make it significantly more attractive to other researchers.

18.1.3 Using the Text Encoding Initiative (TEI) standard

One of the major advantages of using XML in this project, is that it, like its

4 Business rules checkers are able to check, for example, that a pronoun head (h_j>) does not occur in
any unit other than a nominal group (n g p) , and that die root element of the parse tree is a sentence (Z)
5 It would be important to retain the CQL interface for more experienced users as it remains the quickest
way of retrieving information.
6 XSL-FO is able to create files in Scalable Vector Graphics (SVG) or Portable Document Format
(PDF) among other formats.
7 Perhaps the easiest method of implementing this is to provide a password that must be entered
correctly before such changes can be made. Alternatively, we could release a version of ICQF without
its embedded corpus editor.

325

predecessor SGML, is a so-called 'neutral standard'. This means that it is possible to

process the data in different systems. To do this with a corpus requires a DTD or

Schema and a set o f business rules. We saw in Section 6.2.1 o f Chapter Six that the

Text Encoding Initiative has made considerable progress in this direction.

There are significant benefits to be gained from being able to provide material

form the corpus database that conforms to the TEI standard. This would mean that the

FPD Corpus could, in theory, be used in other TEI compliant systems. This includes

the corpus query tools developed by others, so raising interesting possibilities for

collaboration with other research projects.

Equally, the import o f TEI-compliant corpora into our corpus database would

mean that corpora developed by others could be used, after the necessary minimum

modifications within ICQF+. It could be used to prepare alternative probabilistic

models o f syntax (after making the appropriate adjustments), and this could provide

alternative models for the parser to use.

18.1.3.1 Export in today's TEI format

For export to today’s TEI format, support for the TEI headers is needed. While these

can be provided in the native XML tables some effort would be required to populate

these values in the format that is required for the TEI. Much of this work could be

done automatically, through the intelligence provided in the corpus cell identifiers (i.e.

age, sex, class, initials, situation and sentence number).

At the sentence level, export of the data could be in XML, so that it conforms to

the abstract mark up model demanded by the TEI DTD (see Figure 6.7 and Section

6.2.1 o f Chapter Six). In doing this, however, one would have to have knowledge of

the Cardiff Grammar's relationships and what constitutes Cardiff elements, units and

items, for the reasons explained in Section 6.2.1 of Chapter Six.

18.1.3.2 Import from today's TEI format
It is accepted that some mapping work may be necessary in order to be able to use the

TEI data generated by others within our corpus database, but this work is made

considerably easier because the data is in the TEI standard. It would be a valuable

exercise to have another parsed corpus and work with it within ICQF+.

18.1.3.3 Extending the TEI model to provide a more usable format

It would certainly be worth exploring the concept o f extensibility in XML, such that

the mark up method below the sentence level could be the same descriptive scheme

326

used in this project (see Section 6.2.1 of Chapter Six). The benefits of doing this

would be that the Cardiff Grammar could be properly handled in the TEI model

(provided that the knowledge o f how to process the information is also exchanged).8

18.1.4 Summary

I have identified here a surprisingly large number of potential improvements - some

with an interesting major potential. Some are quite minor but nevertheless desirable. I

turn next to the improvements that can be made to the parser.

18.2 The parser: improvements and further work
We are developing the parser in three distinct phases (see Section 13.4 of Chapter

Thirteen), and we are currently at the end of Phase One. This phase includes building

the fully functional parser and its complementary database etc, as described here.

Further improvements are discussed in this section.

18.2.1 Improvements for Phase Two and Phase Three

Phase Two will include a number of additions to the model, each of which is

confidently expected to constitute a significant advance on the current version. The

following are discussed in this section:

(a) testing and refining of the Version Two of the probabilities tables,

(b) the detection of multi-word items,

(c) the treatment of punctuation,

(d) intelligent tree growing,

(e) linguistically motivated backtracking,

(f) making use o f morphological information,

(g) the introduction of units to handle names of people, dates and times etc.

The additional problems caused by discontinuous units (see Section 4.3 of Chapter

Four) will be handled in Phase Three, as also will the identification of further

functionally different types of Adjunct and modifier.

18.2.2 Testing and refining the Version Two probabilities tables

Work on the Version Two probabilities tables is, at the time of writing, in the final

stages o f completion (see Section 14.2 of Chapter Fourteen). These will be tested and

developed further in Phase Two, and we anticipate that these new tables will

significantly increase (a) the coverage of the parser, (b) its usability to fields other than

8 This extensibility would benefit other projects who wish to use the TEI format and keep the model of

327

f

children's speech, and (c) its speed and accuracy. See Appendix I for full details of the

work involved in creating these new tables, and the advantages of establishing them.

18.2.3 Improved item recognition: detecting multi-word items etc.

Phase One was restricted to recognising single word items. Although these are by far

the most common type, it is sometimes the case that an item can also contain more

than one word (e.g. in spite of, according to, out of) in fact items such

as these have an internal structure, and will be provided for in Phase Two. Further, a

word can constitute more than one item, as in John* s book where John and the

1 s are treated as two elements in a genitive cluster; other examples are cannot,
isn' t etc. One relatively simple extension to the parser in Phase Two will be to

employ a more intelligent item recognition algorithm. This would rely on a

knowledge o f problem words and patterns that typically form multi-item words, and it

will be permitted a small amount o f 'look-ahead' in order to ascertain whether an item

such as in is complete or is part of in spite of etc.

A modified algorithm will be introduced, with steps such as the following:

(a) Check to see if the word ends in 'apostrophe-s' (' s) or simply 'apostrophe'

(') . If it does, then identify both items.

(b) If the word is a multi-item word (e.g. cannot or another), create two

items (can and not, and an and other).
(c) Many one-word items (e.g. out) are also potentially words in a multi-word

item. When one of these words is encountered, the parser reads the next three

words from the input string and consults the item-up-to-element table to see if

two or more of these words form a multi-word item (e.g. out followed by

of).
It will also be necessary to provide for such items within the new backtracking

model (see Section 18.2.6). This is because when a parse fails, or when alternative

analyses are required, the parser needs the ability to consider multi-word items as well

as individual items.

18.2.4 Improved punctuation treatment
The version of the parser implemented here has support for only one type of

punctuation. This occurs in Stage 5, when the comma is used to detect co-ordination

syntax that they use in a descriptive mark up annotation method.

328

▼

(as in Robin^ Mike and Andrew). Phase Two will implement procedures for

the handling o f the full range of punctuation as defined in Fawcett (2000a).

Punctuation marks can be handled in the parser by treating them as items, so

assigning them a position, as in the following example:

0 R o b i n 1 , 2 T i m o t h y 3 a n d 4 C h r i s t i n e 5 b u i l t 6 a 7 f a r m h o u s e 8 . 9

The punctuation characters can then be identified by the parser and shown to

expound the starter (st) and ender (e) elements within the units. This information

will also be used in the joining score formula, since an ender will always end the unit

and the starter will always start its unit. The treatment o f punctuation will include

special functions to detect cases where the punctuation is within an item: for example,

a decimal point in a number can be a represented by 2 5 .4 or 2 5 ,4 etc.

18.2.5 Intelligent tree growing

We saw in Section 17.1 of Chapter Seventeen that the existing Stage 4 algorithm,

which is responsible for the growing of candidate structures after a failed join attempt,

could benefit from a more 'intelligent' approach.9 This part of the algorithm must be

improved, and there are a number of ways in which this can be done.

First, a limit could be set on the number of trees that are the result of a grow

operation. Currently, the parser grows the n most likely candidate structures. The

problem is that, if the value of n is set to 5, and the number of elements that each class

of unit for each of those best five candidate structures can fill is (say) 25, the number

of resulting new candidate structures will be 125. An arbitrary limit of say, 20 new

candidate structures could therefore be set, and any others could be captured if the

parser backtracks.

The first method is not sufficient, however because new candidate structures that

are less likely may be built before ones that are more likely. This drawback could be

overcome by using the following method instead: allow the parser to generate more

than n trees, but have it stop when it has generated n trees that have a score of over a

threshold value of x%. Here n and x% will be, of course, new parser parameters.

A third method would be to favour the growth of a candidate structure that we

know can be joined to existing built structures. This would be intelligent tree

growing, and it can be achieved by a query that determines whether the elements in

329

the forward predictions from the active built structures can be filled by the units that

are at the root node of the candidate structure.

A further enhancement to this improved algorithm would be for the parser only to

allow candidate structures to be grown which cannot be joined to an existing built

structure only if it is likely that the element (i.e. the element that the unit o f the

candidate structure will fill) is able to begin a new unit. If it can, further combinations

of the results of element-up-to-unit (E2U) and unit-up-to-element (U2E) queries could

be used to determine the likelihood o f the new candidate structure before growing it.

These modifications, I believe, would substantially improve the speed and

efficiency of the parser.

I next turn to improvements that can be made to the second computationally

expensive part o f the algorithm - Stage 6 (backtracking)

18.2.6 Linguistically motivated backtracking

The current model o f backtracking (as we saw in Section 13.5 of Chapter Thirteen and

Section 15.2.7 o f Chapter Fifteen) is based on the Hamilton Path Problem (Ore 1960),

and is thus computationally motivated. As we saw in Chapter Seventeen, this means

that it blindly follows the next most likely paths that have not been followed when it

goes back, and it does so in the order that they occur.

In Phase Two we intend to implement a backtracking algorithm that is

linguistically motivated and initial ideas are presented in Appendix L.

In an example such as the people moved from their villages
were returned by the NATO forces, the discovery of were, which is an

Operator conflated with an Auxiliary (OX) or an Operator conflated with a Main Verb

(OM) that expects a preceding Subject (S) and fails to find one. This alerts the parser

to check whether the words moved from their villages can be interpreted as

a Clause (Cl) that fills the qualifier of the nominal group whose head is people.
With linguistically motivated backtracking, the parser would backtrack to the join

between people and moved and attempt to follow the unlikely but correct path in

which moved from their villages is a qualifier to people.

9 Testing revealed that, because some classes of unit can fill up to twenty or thirty different elements,
the process of growing trees is computationally expensive and has the effect of slowing the parser
down, both when it grows the trees and later when it uses the trees in subsequent join attempts.

330

18.2.7 Participant roles

The concept o f Participant Roles (PRs) was introduced in Section 4.2.1.3 of Chapter

Four. PRs are functions that are inherently associated with the process in a Clause

(C l) - and typically with the Main Verb (M), and their value in parsing is that they can

be used to predict the number of Complements (C). For example, the Main Verb e a t

has two Participant Roles: an Agent (Ag) which represents the person, animal or thing

doing the eating, and the Affected (A f) which represents the person, animal or thing

being eaten. The Agent (Ag) is typically, but not inevitably, conflated with the

Subject (S) and the Affected (A f) is typically, but not inevitably, conflated with the

Complement (C). So, when the parser encounters the Main Verb e a t , it knows that it

should expect a single Complement (C), and the parser can use this information to

influence its decisions. It can, for example, favour a Complement (C) attachment over

an Adjunct (A) attachment for i n t h e h o u s e in J o h n i s i n t h e h o u s e .

Identifying PRs correctly provides certain problems, but we will tackle this major

challenge in Phase Two. We will be greatly helped in this by being able to incorporate

information from Amy Neale's Process Type Database (PTDB) (2002a, 2002b) into

the probabilities tables. This crucial table contains a list of over 5,000 verbs together

with their expected participant roles (see Table 18.1 which shows an excerpt).

Main Verb Meaning Cardiff Grammar Participant role
Form Feature configuration
earn of wages (Tm not earning any possessive, agent carrier Ag-Ca + Pos

money)
earn merit (he has earned his place in possessive, agent carrier Ag-Ca + Pos

history)
ease alleviate (community groups were

making efforts to ease tension)
two role, plus affected Ag + Af

ease loosen (ease the door open) attributive, plus 3 p Ag Ag + Af-Ca + At
ease decrease (the snow had eased) one role, affected only Af
eat food (she had never eaten Chinese

food before)(was eaten by a lion)
two role, plus affected Ag + Af

eat away idea of corrosion (acid eats away
metal)

two role, plus affected Ag + Af

Table 18.1: An excerpt from Neale's Process Task Database

18.2.8 Making use of morphological information
The current parser makes less use o f morphological information that many other

current parsers, relying instead on the use of its knowledge of co-occurrences of

elements. Some use o f morphological information, however, would increase the

331

parser's efficiency. For example, it would be useful for the parser to know that a verb

form ending in - s makes the backward prediction that it will not be preceded by an

Operator (O) or an Auxiliary (X).
18.2.9 Units that handle names, dates, times etc.

Fawcett (2000a:213) describes the need for several new classes o f unit that have not

been included in the FPD Corpus (and hence the probabilities tables). The most

important o f these is the human proper name cluster (h p n c lr) . Currently, the

version o f the Cardiff Grammar used in this project treats proper names as multi-word

items and expound a proper name head (h_n). Within the h p n c lr unit, the main

elements are title, forenames, and family name. Further new classes of unit are

available that can handle the address, the date and the clock time clusters. During

Phase Two o f the project, ICQF+ will be used (as described in Chapter Nine) to find

all proper name heads (h_n) and modify them to include the structure of the new

units, and similar operations will be performed for the other new units.

18.2.10 Other improvements

Further improvements that could be implemented after Phase Two (i.e. in Phase

Three) are discussed in this section.

18.2.10.1 Web-enabled parsing

A trend in the design of computer systems that has increased with the popularity o f the

internet has been web-enabled technologies. Here, the application is hosted within a

web browser (such as Internet Explorer) and accessed via an intranet or the internet

itself.

As we have seen, the design o f the parser is such that it strongly relies on the

extensible Markup Language (XML). This is a major step towards making the parser

web enabled because XML is 'the language of the internet'. However, the core

applications are executables and dynamic linked libraries and these have to be run

on a local computer. The next natural step would be to change the programs so that

they can run within a web browser.

The advantages o f doing this would be that users would be able to run the parser

through the internet, and allow them to submit texts for parsing by visiting a web site.

18.2.10.2 The recognition of unknown items
Although the probability that the parser will encounter items that it does not recognise

is significantly reduced through the implementation o f vast Version Two probabilities

332

tables (See Section 14.2 of Chapter Fourteen and Appendix I), there will still be cases

when items are found that are not included in the item tables. This could be because

the item does not occur in the BNC (or the other sources), or because it has never been

used before, and in either case it would be missing from the Version Two tables.10

However, there are likely to be items such as names, technical terms and

manufacturing processes that are not included in the tables, because the texts of the

source corpora did not incorporate texts of the type that would include all of them.

Furthermore, since language is dynamic (see Section 1.1 of Chapter One), new words

and uses are being created all the time, e.g. through the process o f ’verbification' that is

so widespread in the USA and in computer science (e.g. the use of w e b -e n a b le) as

a verb, and these will not be included in the item tables.

It is sensible, therefore, to create routines that will be able to handle these

unknown items. This can be achieved by creating candidate structure trees that are

marked as unknown and have the elements and probabilities that are defined in the

forward predictions from the active open units in the built structures. These can be

joined in the normal manner to the built structures and when the parser moves to the

item after the unknown item, the backward predictions can be used to detect the

most probable element that the unknown item expounds.

This method, however, will not cater for unknown items that open a new unit (i.e.

one that needs to be grown because there is no incomplete unit that could include the

item within it), this problem requires its own solution. The most obvious strategy is to

implement a limited look-ahead facility at such points.

18.2.10.3 The use of semantic features
Weerasinghe (1994:57) followed the example of many of his predecessors in

supplementing the syntactic representation in his parser with the use of semantic

features. But this can never be the complete answer, and in this project we are

following the principle o f doing as much as possible at the level of language (syntax)

before passing the outputs to the semantic interpreter.

However, as Weerasinghe and others have demonstrated some success with this

approach, we will, possibly in Phase Three, investigate their use in this project. To do

this would require a trivial modification to the item tables. The semantic features

could be derived from the GENESYS system networks relatively easily, but to use this

10 There are nearly a million items in the Version Two items tables, and the coverage should therefore
include most items that occur in natural text.

333

technique widely would breach the principle that I have just identified. It would be

possible, however, to apply these labels selectively at known points where syntactic

ambiguity can be reduced by introducing semantic information associated with

specific items.

18.2.10.4 Modelling the dynamic properties of language

One of the original aims o f this project was allow the parser to learn about syntax and

the probabilities o f given syntactic relationships as it parses new sentences. This is

achieved by adding the newly parsed sentences to the corpus database, and

automatically updating the corpus index and the probabilities tables automatically.

The Commit button on the Parser Workbench allows the user to save selected

parse trees in the corpus tables (see Section 16.5 of Chapter Sixteen). When this is

done, the corpus index tables and the probabilities tables are also automatically

updated.11 It will, of course, take a great number o f new sentences to make a

significant impact on the probabilities tables and thus affect the parser. The results of

using this feature will therefore not be observable - and so testable -for some time.

This concludes the discussion o f the improvements that will be made to the parser

in Phase Two and Three. As you can see, this is a considerable amount of work to be

done, mostly in refining the linguistic analysis even further - so making the syntactic

representation even better equipped to do its work.

183 Conclusions
The Corpus-Consulting Probabilistic Parser, together with its associated corpus

database, has proved to be a very practical parser for parsing unrestricted texts using

Systemic Functional Grammar. It has provided encouraging results, and it has

demonstrated that this new type of parsing algorithm (with its deterministic properties,

its knowledge of probabilities and its strong corpus base) is well on the way to

becoming a parser that fits the requirements of parsing in the twenty-first century. The

aims of the work, as set out in Section 1.1 of Chapter One, have been met.

The parser incorporates a number of new concepts, each of which has performed

well and has proved its value in the parsing process. The parsing algorithm itself

introduces a combination of new concepts and approaches that make it unlike any

other parser built so far:

11 Ideally, the parser ideally would be able to decide which analyses are added to the corpus without the
need for human intervention.

334

(a) The techniques of (i) building an initial strip that becomes the built

structure, and then (ii) creating candidate structures to be joined to it,

coupled with (iii) a new approach to handling co-ordination proved very

practicable, and it is interesting that these are derived directly from the nature

o f language itself, as represented in the Cardiff Grammar version of SFG and

in the corpora used to create the probabilities tables.12

(b) The overall algorithm was well served by modelling it as a workflow, and

this proved to be an apt method to mould the way the parser operates as it

draws upon its working data.

(c) The database-oriented approach was ideal for storing the data needed for the

probabilities tables. Although the amount of data was enormous, the parser's

performance was excellent, and fully acceptable for use in a research

environment.

(d) The inclusion o f linguistic knowledge at various points was vital to the

efficient operation of the parser. Examples are (i) its use in the item-up-to-

element-up-to-unit-up-to-element tables (I2E2U2E) and (ii) the forward and

backward predictions in the joining procedures.

(e) The storage o f the parser's working data in the tables of the database was an

important feature, and it proved to be an excellent research tool in the

development o f the parser.

(f) The ability o f the Parser WorkBench to operate in a step-by-step mode

when determining the optimum values and combinations of the parser's

configurable parameters was a key element in the success of this project,

because it was this that allowed us to stop the parser and see why it has

followed certain paths.

(g) Finally, the value of the use of mark up languages for annotating corpus data

was demonstrated at many points. The storage of marked up corpus data in

native XML tables in a relational corpus database is particularly useful when

coupled with corpus index tables both in the parsing process and in the

corpus query tool.

(h) Outside of the parser itself, I should mention the value to the project of the

corpus query tool, ICQF+. It was an important aid for: (i) the creation of the

12 Co-ordinated units, for example, could not be parsed in the way used here in terms of a typical Phrase
Structure Grammar, since they require the concept that a unit fills an element of a higher unit.

335

T'I
new version of the corpus (the FPD Corpus), and (ii) the development of the

Version Two probabilities tables that will be used by the parser in Phase Two.

18.4 The final word
The work of Weerasinghe (1994) and o f Souter (1996) demonstrated that a chart

parsing approach is a possible solution to the problem of parsing natural language in

terms of Systemic Functional Grammar, but each ran into major problems (as

described in Chapter Eleven). The author's own attempt at using chart parsing

techniques had similar problems, as reported in Chapter Twelve. The conclusions of

Chapter Twelve were that chart parsers are inherently unsuited to parsing unrestricted

texts in terms o f the rich functional syntax of a Systemic Functional Grammar, and it

was this that led to the adoption of the new set o f ideas that have been explored here.

The Coipus-Consulting Probabilistic Parser therefore offers an alternative approach

which addresses these problems and solves them in a manner that, at the end of Phase

One of the project, can be described as successful. We are confident, moreover, that

there will be further significant improvements in Phases Two and Three.

We have met the primary aim set in Chapter One, which was to demonstrate that

it is possible to parse texts successfully in terms of systemic functional grammar, by

using: (a) probabilistic data that are automatically drawn from a dynamic corpus

database in which the probabilities may be modified as new sentences are

satisfactorily parsed, and (b) introducing knowledge of functional syntax into the

parsing algorithm. I have shown that a parser can be built that is database-oriented in

that it (a) retrieves its knowledge of syntactic relationships to be used in a parse, and

(b) stores its working data in the database. As we have seen, this provides an ideal

environment for developing a parser.

336

Bibliography
Abney (1991): Abney, S. Parsing by Chunks. In Berwick et al, 1991.

Allen (1987): Allen, J. Natural Language Understanding. Benjamin C u m m ing s

ASD (1985): ASD (formerly, AECMA) Specification ASD-STE100 Simplified Technical English.
Aerospace and Defence Industries of Europe (ASD).

Atwell (1988): Atwell, E.S. Transforming a Parsed Corpus into a Corpus Parser. In Kyto et. al, 1988.

Atwell et al (1988a): Atwell, E.S., Souter. C. Experiments with a Very Large Corpus-based Grammar.
In Proceedings of the 15th ALLC Conference, June 5-13 1988, Jerusalem.

Atwell et al (1988b): Atwell, E.S., Souter,C., O’Donoghue, T. Prototype Parser 1 - COMMUNAL
Research Report No. 17. University of Wales College of Cardiff.

Benson and Greaves (1985): Benson, J. and Greaves, W. (eds) Systemic Functional Approaches to
Discourse: Selected Papers from the 12th International Systemic Workshop. Norwood, N.J.:
Ablex.

Berwick et al (1991): Bewick, R., Abney, S., Tenny, C. (eds) Principle-based Parsing Kluwer
Academic Publishers.

Biber et al (1999): Biber, D., Johansson, S., Leech, G., Conrad, S., and Finegan, E. Longman Grammar
o f Spoken and Written English. Harlow: Pearson

Black et al (1993): Black,E., Jelinek F, Lafferty, J.D.,Magerman, D.M, Mercer, RL.,Roukos,S.
Towards History-Based Grammars: Using Richer Models for Probabilistic Parsing. In
Meeting of the Association for Computational Linguistics 1993.

Bobrow (1978): Bobrow, R.J. The RUS System. Quarterly Technical Report, Bolt, Baranek and
Newman, Cambridge, MA.

Brady and Berwick (1983): Brady, M., and Berwick, R.C. (eds) Computational Models o f Discourse.
Cambridge, Mass: MIT Press.

Brill (1992): Brill, E. A Simple Rule Based Part-of-speech Tagger. In Proceedings of the (ANLP)-92,
3rd Conference on Applied Natural Language Processing.

Brill (1995): Brill, E. Transformation-Based Error-Driven Learning and Natural Language
Processing: A Case Study in Part o f Speech Tagging. In Computational Linguistics,
December, 1995 - John Hopkins University.

Bryan (1988): Bryan, M. SGML - an Author's Guide. Addison Wesley Longman.

Butler (2003a): Butler, C.S. Structure and Function: An introduction to three major structural-
functional theories. Part 1: Approaches to the simplex clause. Amsterdam: John Benjamins.

Butler (2003b): Butler,C.S. Structure and Function: An introduction to three major structural-
functional theories. Part 2: From clause to discourse and beyond. Amsterdam: John
Benjamins.

Butler et al (2007): Butler, C.S., Hidalgo Downing, R., and Lavid, J. Functional Perspectives on
Grammar and Discourse: Papers In Honour o f Angela Downing. Amsterdam: John
Benjamins, pp. 165-204.

Calhoun et al (2005): Calhoun, S., Nissim, M., Steedman, M., Brenier, J. A Framework for Annotating
Information Structure in Discourse. In Proceedings of the Workshop on Frontiers in Corpus
Annotation: Pie in the Sky pp 45-52.

Carietta, McKelvie and Isard (2002): Carletta, J., McKelvie, D., Isard, A Supporting Linguistic
Annotation using XML and Stylesheets. In Corpus Linguistics: readings in a widening
discipline, eds G.Sampson and D.McCarthy (London and New York: Continuum
Interpretations).

337

Carroll, Briscoe and Sanfilippo (1999): Carroll, J., Briscoe, T., Sanfilippo, A., Parser Evaluation:
Current Practice In Evaluation of Natural Language Processing Systems: Final Report, EC
DG-Xffl LRE EAGLES Document EAG-II-EWG-PR. 1. 140-150.

Chawathe et al (1996): Chawathe, S., Rajaraman, A., Garcia-Molina, H., Widom, J. Change
Detection in Hierarchically Structured Information. Stanford University, California.

Charniak (1983): Chamiak, E. A Parser with Something for Everyone. In King (1983).

Charniak and Johnson (2005): Chamiak, E. and Johnson, M. Coarse-to-find n-best Parsing and
MaxEnt Discriminative Ranking. In 43rd Annual Meeting of the ACL, pp 170-180, Brown
University.

Chomsky (1957): Chomsky, N. Syntactic Structures. The Hague, Mouton.

Chomsky (1965): Chomsky, N. Aspects o f the Theory o f Syntax. Cambridge, Mass: MIT Press.

Church (1988): Church, K. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted
Text. In Proceedings of the Second Conference on Applied Natural Language Processing, 26th
Annual Meeting of the Association for Computational Linguistics pp 136-143).

Clocksin and Mellish (1994): Clocks in, W., Mellish, C. Programming in Prolog (4th Edition)
Springer-Verlag.

Collins (1996): Collins, M. J. A New Statistical Parser Based on Bi-gram Lexical Dependancies. In
Proceedings of the Thirty-Fourth Annual Meeting of the Association for Computational
Linguistics, Morgan Kaufmann Publishers - University of Pennsylvania.

Collins (1999): Collins, M. Head Driven Statistical Models for Natural Language Parsing Ph.D.
Thesis, University of Pennsylvania.

Colmerauer (1978): Colmerauer, A. Metamorphosis grammars. In Bloc, L. (Ed.) Natural Language
Communication with Computers, Springer-Verlag.

Costa et al (2003): Costa, F., Frasconi, P., Lombardo, V., Soda, G. Towards Incremental Parsing of
Natural Language using Recursive Neural Networks. Applied Intelligence (available at
http://cogprints.org/2089).

Dale et al (1992): Dale, R., Hovy, E.H., Roesner, D., and Stock, O., (eds.) Aspects o f Automated
Natural Language Generation. Berlin: Springer.

Davey (1978): Davey, A. Discourse Production: a Computer Model o f some Aspects o f a Speaker
Edinburgh University Press

Day (1993a): Day, M.D. The Interactive Corpus Query Facility and Other Tools for Exploiting Parsed
Natural Language Corpora. MSc. Thesis, Cardiff University

Day (1993b): Day, M.D. Content Specific Mark-up. Rolls-Royce internal report (available from
author).

Day (1993c): Day, M.D. Customer Logistic Support Prototype IntegratedLSA/CSDB/ATA 100
Publishing System. Rolls-Royce internal report (available from author).

Day (1995): Day, M.D. SGML Parsing is not Enough! Rolls-Royce internal report (available from
author).

Day (2006): Day, M.D. Business Rules - a Tutorial. A presentation given given at the
ASD/AIA/ATA/ADL S1000D Users' Forum, Clearwater, Florida, May 2006 and available
from www.sl000d.org.

Day and Ichizli-Bartels (2007): Day, M.D., Ichlizi-Bartels, V. Business Rules, Business Rules
Builders, and Business Rules Checkers. White paper S1000D Technical Publications
Specification Maintenance Group.

Dejean (2000): Dejean, H. Learning Syntactic Structures with XML . Presented at the Seminar fur
Sprachissenshaft, University of Tubingen.

Dowty et al (1985): Dowty, D.R, Karttunen, L. and Zwicky, A. (eds). Natural language parsing. New
York, Cambridge U. Press

338

http://cogprints.org/2089
http://www.sl000d.org

Earley (1970): Earley, J. An Efficient Context Free Parsing Algorithm. Communication of the ACM
Vol 13).

Elhadad (1993): Elhadad, M. Using Argumentation to Control Lexical Choice: A Functional
Unification Implementation. Ph.D thesis, Columbia University.

Fawcett (1980): Fawcett, R. P. Cognitive Linguistics and Social Interaction: Towards an Integrated
Model o f a Systemic Functional Grammar and the Other Components o f an Interacting Mind.
Heidelberg: Julius Groos and Exeter University.

Fawcett (1988): Fawcett, R.P. Language generation as choice in social interaction. In Zock and Sabah
(1988).

Fawcett (1990): The computer generation o f speech with semantically and discoursally motivated
intonation. In Proceedings o f the 5th International Workshop on Natural Language
Generation, Pittsburgh: University of Pittsburg. 164-73.

Fawcett (1994): Fawcett, R.P. A generationist approach to grammar reversibility in natural language
processing. In Strzalkowski (ed.) 1994, 365-413.

Fawcett (2000a): Fawcett, R.P. A Theory o f Syntax for Systemic Functional Linguistics. Current Issues
in Linguistic Theory 206. Amsterdam: John Benjamins

Fawcett(2000b): Fawcett, R.P. In place o f Halliday’s “verbal group ”, Part 1: Evidence from the
problems o f Halliday’s representations and the relative simplicity o f the proposed alternative.
Word 51.2. 157-203

Fawcett (2000c): Fawcett, R.P. In place o f Halliday’s “verbal group ”, Part 2: Evidence from
generation, semantics and interruptability. Word 51.3. 327-75

Fawcett (2007a): Fawcett, R.P. Auxiliary Extensions: six new elements for describing English. In
Hasan et al (2007).

Fawcett (2007b): Fawcett, R.P. Modelling “selection ” between referents in the English nominal group:
an essay in scientific inquiry in linguistics. In Butler et al (2007).

Fawcett (forthcoming, 2007): Fawcett, R.P. Functional Syntax Handbook: Analyzing English at the
Level of Form. London: Equinox

Fawcett and Davies (1992): Fawcett,R.P., Davies,B.D. Monologue as a turn in dialogue: towards an
integration o f exchange structure and rhetorical structure theory. In Dale et al. (1992), 151-
66.

Fawcett and Perkins (1980): Fawcett, R.P., and Perkins, M.R Child Language Transcripts 6-12,
Pontypridd, Wales: Polytechnic of Wales (now University of Glamorgan).

Fawcett et al (1984): Fawcett, R.P., Halliday, M.A.K., Lamb, S.M., and Makkai, A., (eds.) The
Semiotics o f Culture and Language, Vol I Language as Social Semiotic London: Pinter

Fawcett, Tucker and Lin (1993): Fawcett, R.P., Tucker, G.H., and Lin, Y.Q., How a systemic
functional grammar works: the role o f realization in realization. In Horacek and Zock (1993),
114-86.

Fawcett, Tucker and Young (1988): Fawcett, R.P., Tucker,G.H., Young, D.J. Issues Concerning
Levels and Channels in a Generator with both Graphological and Phonological Outputs
Report 8 of COMMUNAL, University of Wales College of Cardiff.

Firth (1957): Firth, J.R. Papers in linguistics 1934-1951. Oxford University Press.

Garside et al (1987): Garside, R., Leech, G. The Computational Analysis o f English - A Corpus Based
Approach Longman.

Gazdar and Mellish(1989): Gazdar, G., Mellish, C. Natural Language Parsing in Prolog.
Wokingham, England: Addison-Wesley Addison-Wesley

Gazdar et al (1985): Gazdar, G., Klein, E., Pullum, G., and Sag, I. Generalized Phrase Structure
Grammar. Oxford: Blackwell. Oxford. Blackwell.

Godfrey et al (1992): Godfrey, J., Holliman, E., McDaniel, J. SWITCHBOARD: The Telephone Speech
Corpus for Research and Development. In Procedings ICASSP-92 pp 517-520).

339

G oldfarb (1991): Goldfarb, C. The SGML Handbook. Oxford University Press.

G rishm an , M ac leo d a n d S te rlin g (1992): Grishman, R., Macleod, C., Sterling, J. Evaluating parsing
strategies using standardized parse files. In Proceedings o f the 3rd ACL Conference on
Applied Natural Language Processing, 156-161. Trento, Italy.

G roz et al (1970): Groz, B.J., Sparck Jones, K., Webber,B.L. (Eds). Readings in Natural Language
Processing, Morgan Kaufmann.

G ru n e an d Ja c o b s (1 9 9 0): Grune, D., Jacobs, C.J.H. Parsing Techniques a Practical Guide. Ellis
Horwood, Chichester, England.

G uyon an d P e re ira (1 9 9 5): Guyon, I., Pereira, F. Design of a Linguistic Postprocessor Using Variable
Memory Length Markov Models. In the proceedings of the International Conference on
Document Analysis and Recognition.

H aigh e t a l (1988): Haigh, R . Sampson, G., Atwell, E. S.: Project APRIL - a progress report in
Proceedings o f ACL, the 26th Conference of the Association for Computational Linguistics
ppl04-l 12, New Jersey, ACL 1988.

H all (2005): Hall, K.B. Best-first Word Lattice Parsing - Techniques for Integrated Syntactic
Modelling. PhD. Thesis, Brown University.

H alliday (1956/76): Halliday M.A.K. Grammatical categories in Modem Chinese. In Transactions of
the Philological Society 1956, 177-224. Reprinted in part in Halliday, M.A.K., 1976, System
and Function in Language: Selected Papers by M.A.K. Halliday (ed. G.R. Kress), London:
Oxford University Press, 36-51.

H alliday (1961): Halliday, M.A.K. Categories o f the theory o f Grammar. Word (17) pp 241-292.

H alliday (1975): Halliday, M.A.K. Learning How to Mean. London: Arnold

H alliday (1976): Halliday, M.A.K. System and Function in Language: Selected Papers by M.A.K.
Halliday (ed. G.R. Kress). London: Oxford University Press

H alliday (1984): Halliday, M.A.K. Language as code and language as behaviour: a systemic-
functional interpretation o f the nature and ontogenesis o f dialogue. In Fawcett et al. 1984. 3-
35.

H alliday (1981): Halliday, M.A.K., 1981. ’Introduction'. In Halliday, M.A.K., and Martin, J.R., 1981
(eds.), Readings in Systemic Linguistics, London: Batsford, 13-16.

H alliday (1985): Halliday, M.A.K. An Introduction to Functional Grammar. London: Arnold.

H alliday (1994): Halliday, M.A.K. An Introduction to Functional Grammar (Second Edition). London:
Arnold.

H aro ld (1999): Harold, R. E. XML Bible. IDG Books World-wide.

H asan e t al (2005): Hasan, R., Matthiessen, C. & Webster, J. Continuing Discourse on Language: a
Functional Perspective: Voll. London: Equinox.

H asan e t al (2006): Hasan, R., Matthiessen, C. & Webster, J. Continuing Discourse on Language: a
Functional Perspective: Vol 2. London: Equinox.

H enderson (2000): Henderson, J. Estimating a probabilistic grammar using a Neural Network. In
Workshop ROMAD 2000 Lausanne, Exeter University.

H enderson (2003a): Henderson, J. Generative Versus Discriminative Models for Statistical Lefi-
Comer Parsing. In IWPT2003 - 8th International Workshop of Parsing Technologies, 23-25
April 2003 - Nancy, France.

H enderson (2 003b): Henderson, J. Inducing history representations for broad coverage statistical
parsing, In Proceedings of HLT-NAACL 2003.

H enrici (1965): Henrici, A. Some notes on the systemic generation o f a paradigm o f the English
Clause. Working paper for the OSTI programme in the linguistic properties of scientific
English. Reprinted in Halliday (1981).

H oracek and Z o c k (1993): Horacek, H., and Zock, M., (eds.). New Concepts in Natural Language
Generation. London: Pinter.

340

H udson (1976): Hudson, R.A. Arguments for a Non-transformational Grammar. Chicago: Chicago
University Press.

Isa rd et al (2003): Isard, A., McKelvie, D., Mengel, A, Moller, M. The MATE Workbench - A tool for
annotating XML corpora. In Speech Communication Vol. 33 pp 97-112.

ISO (1986): The International Standards Organization. ISO 8879: Information processing - Text and
office systems - Standard Generalized Markup Language (SGML)

Jagad ish et al (2002): Jagadish, H.V., Al-Khalifa, S., Chapman, A., Lakshmanan, Laks V.S., Nierman,
A., Paparizos, S, Patel, J.M., Srivastava, D., Wiwatwattana, N. Wu, Y., Yu,C. Timber: A native
XML database. Technical report, University of Michigan, April 2002.

Ja rv m en (1994): Jarvinen, T. Annotating 200 Million Words: the Bank of English Project. In
Proceedings of COLING-94.

Johnson (1983): Johnson, R. Parsing with Transition Networks. In King (1983).

Josh i (1985): Joshi, A.K. Tree adjoining grammars: How much context sensitivity is required to
provide structural descriptions? (In Dowty et al 1985).

Josh i and Schabes (1997): Joshi,A., Schabes,Y. Tree-Adjoining Grammars. In Rozenberg et al (1997).

Josh i et al (1975): Joshi, A.K., Levy, L. and Takahashi, M. Tree Adjunct Grammars. In Journal of
Computer and System Sciences.

K asper (1988): Kasper,R. An experimental parser for systemic grammars. In Proceedings of the 12th
International Conference on Computational Linguistics 309-12. Association for
Computational Linguistics: Budapest.

K ay (1979): Kay, M. Functional Grammar. In proceedings of the 5th meeting of the Berkeley
Lingusitics Society.

K ay (1989): Kay, M. Head Driven Parsing. In the proceedings of the first international workshop on
parsing technologies, Pittsburgh, USA. Camigie-Mellon University.

K ing (1983): King, M ed. Parsing Natural Language. Academic Press.

K lein and M an n in g (2003): KleinJD., Manning,C. Accurate Unlexicalised Parsing. Stanford
University, Stanford CA.

Kdnig, Lezius an d V o o rm an n (2003): Konig,E., Lezius, W., Voormann, H. TIGERSearch 2.1 User's
Manual. IMS University of Stuttgart.

K uhn (1962/70): Kuhn, T. The Structure o f Scientific Revolutions. Chicago: Chicago University Press.

K yto et al (1988): Kyto, M., Ihalainen, O., Rissanen, M. (Eds). Corpus Linguistics Hard and Soft.
Amsterdam, Rodopi.

L angkilde an d K n ig h t (1998): Langkilde, I. Knight, K. Generation that Exploits Corpus-Based
Statistical Knowledge. In COLING, 1998.

Leech et al (1994): Leech, G., Garside, R., Bryant, M. CLA WS4: The Tagging of the British National
Corpus. In the Proceedings of the 15th International Conference on Computational Linguistics
(COLING '94) Kyoto, Japan.

Lezius and K dnig (2000): Lezius,W.,Konig, E. Towards a search engine for syntactically annotated
corpora in: Ernst G. Schukat-Talamazzini Werner Zuhlke (editor): KONVENS-2000
Sprachkommunikation, pp. 113-116, VDE-Verlag, Ilmenau, Germany

M agerm an an d M arcu s (1991a): Magerman, D.M.,Marcus, M.P. Parsing a natural language using
mutual information statistics. Tech Rep, CIS Dept. University of Pennsylvania.

M agerm an an d M arcus(1991b): Magerman, D.M., Marcus, M.P. Pearl: A probabilistic chart parser.
In Proceedings of the 2nd International Workshop on Parsing Technologies, Cancun, Mexico.

M an n and M atth iessen (1985): Mann, W.C. and Matthiessen, C.M.I.M. Demonstration of the Nigel
text generation computer program. In Benson and Greaves (1985).

M ann and T hom pson (1988): Mann. W.C., Thompson, S.A. Rhetorical Structure Theory: toward a
structural theory o f text organisation, (in Text 8(3)) quoted by O’Donnell and Bateman (2005).

341

f

M arcus (1980): Marcus, M.P. A Theory o f Syntactic Recognition for Natural Language. MIT Press.

M arcus et al(1993): Marcus, M.P., Santorini, B., Marcinkiewicz, M.A. Building a Large Annotated
Corpus o f English: the Penn Treebank. In Computational Linguistics, 19.

M arslen-W ilson (1973): Marslen-Wilson, W. Linguistic structure and speech shadowing at very short
latencies (Nature Vol 244).

M atthiessen an d B atem an (1991): Matthiessen, C., Bateman, J. Text Generation and Systemic
Functional Linguistics: experiences from English and Japanese. London and New York:
Frances Pinter and St. Martin's Press.

M cD onald (1983): McDonald, D. Natural language generation as a computational problem. In Brady
and Berwick 1983, 209-65.

M cKelvie and M ikheev (1997): McKelvie,D., Mikheev,A. Indexing SGML files using LT NSL.
Technical Report, Language Technology Group, University of Edinburgh.

M el'cuk (1998): Mel'cuk, I. The Meaning-Text Approach to the Study o f Natural Language and
Linguistic Functional Models. In Embleton, S. (ed.), LACUS Forum 24, Chapel Hill: LACUS,
3-20.

M engel and Lezius (2000): Megel, A., Lezius, W. An XML-based encoding format for syntactically
annotated corpora. In: Proceedings of the Second International Conference on Language
Resources and Engineering (LREC), volume 1 pp 121-126 Athens, Greece.

M eteer (1989): Meteer, M. The Spokesman Natural Language Generation System. Report 7090, BBN
Systems and Technologies, Cambridge, Mass, 1989.

M ouat (2002): Mouat, A. XML Diff and Patch Utilities. Master's thesis, Heriot Watt University,School
of Mathematical and Computer Sciences

N eale (2002a): Neale, A. More Delicate TRANSITIVITY: Extending the PROCESS TYPE system
networks for English to include full semantic classifications. PhD Thesis. Cardiff: School of
English, Communication and Philosophy, Cardiff University. Available on request via
neale@qmul.ac.uk.

N eale (2002b): Neale, A. The Process Type Data Base. Available on request via neale@qmul.ac.uk.

N eale (2006): Neale, A. Matching corpus data and system networks. In Thompson and Hunston
(2006).

O 'D onnell (1993): O'Donnell, M. Reducing complexity in a systemic parser. In Proceedings of the
Third International Workshop on Parsing Technologies 203-17. Tilburg, the Netherlands.

O 'D onnell (1994): O'Donnell, M. Sentence Analysis and Generation: a systemic perspective. PhD
thesis. Department of Linguistics, University of Sydney, Australia.

O 'D onnell (1996): O'Donnell, M. Input Specification to the WAG Sentence Generation System. In
Proceedings of the 8th International Workshop on Natural Language Generation.

O 'D onnell (2005): O'Donnell, M. The UAM Systemic Parser. In Proceedings of the 1st Computational
Systemic Functional Grammar Conference, University of Sydney, Sydney, Australia. 16 July
2005.

O 'D onnell and B atem an (2005): O'Donnell,M., Bateman, J. SFL in computational contexts: a
contemporary history. In Hasan, Matthiessen and Webster (2005).

O 'D onoghue (1991a): O'Donoghue, T.F.. ‘The vertical strip parser: a lazy approach to parsing’. Report
91.15. Leeds: School of Computer Studies, University of Leeds.

O 'D onoghue (1991b): ODonoghue, T.F. A Semantic Interpreter for Systemic Grammars.
COMMUNAL Report AL Report 91:15

O 'D onoghue (1991c): O'Donoghue, T.F. A semantic interpreter for systemic grammars. In
Proceedings o f the ACL Workshop on Reversible Grammars. Berkely, California. 1991. 129-38.

O re (1960): Ore,Q. A Note on Hamilton Circuits (in American Math Monthly 67).

342

mailto:neale@qmul.ac.uk
mailto:neale@qmul.ac.uk

P ere ira and S h ieber (1987): Pereira, F.C.N.,Sheiber, S. Prolog and Natural Language Analysis (CSLI
Lecture Notes - quoted in Weerasinghe, (1994)).

Pocock and A tw ell (1993): Pocock, R., Atwell, E. Probabilistic Grammatical Models for Treebank-
Trained Lattice Disambiguation. Research Report 93.30, School of Computer Studies, Leeds
University.

Priestley (2001): Preistley, M. Specializing Topic Types in DITA www-
128 .ibm.com/developerworks/xml/library/x-dita2.

Q u irk et al (1985): Quirk, R., Greenbaum S., Leech G., and Svartvik J. A Comprehensive Grammar of
the English Language. London, Longman.

R ainbow and K orelsky (1992): Rambow, O., Korelsky, T. Applied Text Generation. In proceedings of
the third conference on applied natural language generation.

R andall (2000): Randall, B. CorpusSearch User's Manual. Technical Report, University of
Pennsylvannia (www.ling.upenn.edu/mideng/ppcme2dir)

R atn ap a rk h i (1999): Ratnaparkhi, A. Learning to Parse Natural Language using Maximum Entropy
Models. University of Philadelphia.

R eiter (1994): Reiter, E. Has a Consensus NL Generation Architecture Appeared, and is it
Psycholinguistically Plausible? In Proceedings of the 7th. International Workshop on Natural
Language generation. CoGenTex, Inc.

R eiter, M ellish an d L evine (1995): Reiter, E., Mellish, C., Levine, J. Automatic Generation of
Technical Documentation. Applied Artificial Intelligence (Vol. 9) University of Edinburgh.

R hode (2005): Rhode,D.L.T. TGrep2 User Manual. Available from www.tedlab.mit.edu.

R itchie (1983): Ritchie, G. Semantics in Parsing. In King (1983).

R ozenberg e t al (1997): Rozenberg, G. Salomaa A. (eds.), Handbook o f Formal Languages Vol. 3.
Springer, Berlin, New York, 1997, pp 69 - 124.

R ozenkran tz and Lew is (1970): Rozenkrantz, D.J., Lewis, P.M. Deterministic left comer parsing. In
Proceedings of the 11th Symposium on Switching and Automata Theory.

R ustin (1973): Rustin, R. (Ed.). Natural Language Processing. New York, Algorithmics Press.

S1000D (2006): Aerospace Industries Association (ALA), Aerospace and Defence Industries of Europe
(ASD) Specification for Technical Publications Utilizing a Common Source Database (Issue
2.3) (available from www.sl000d.org).

Sam pson (1983): Sampson, G.R, Deterministic Parsing. In King (1983).

Sam pson (1995): Sampson, G.R. English for the Computer Oxford University Press.

Sam pson (2000): Sampson, G.R. A proposal for improving the measurement ofparse accuracy in
International Journal of Corpus Linguistics vol. 5, pp. 53-68, 2000

Shieber (1984): Sheiber, S.M. The design o f a computer language for linguistic information (PATR).
In Proceedings of the 10th International Conference on Computational Linguistics (COLING
1984), California, USA.

Sinclair (1990): Sinclair, J. (editor-in-chief) Collins COBUILD English Grammar. London:
HarperCollins.

Sinclair (1991): Sinclair, J. Corpus, concordance, collocation. Oxford: Oxford University Press.

SommerviUe (1992): Sommerville, I. Software Engineering Fourth Edition. Addison-Wesley.

S outer (1996): Souter, D.C. A Corpus Trained Parser for Systemic Functional Syntax. PhD Thesis,
Leeds University.

S prech t et al (1995): Sprecht, G., Freitag, B. AMOS: A Natural Language Parser Implemented as a
Deductive Database in LOLA. In Workshop on Programming with Logic Databases.

Stegm ann e t al (2000): Stegmann, R., Telljohann, H.,Hinrichs,E.W. Stylebookfor the German
Treebank in VERBMOBIL. Technical Report 239, Verbmobil.

343

http://www.ling.upenn.edu/mideng/ppcme2dir
http://www.tedlab.mit.edu
http://www.sl000d.org

Steinar and K allm eyer (2002): Steinar, I., Kallmeyer, L. VIQTORYA - A Visual Query Tool for
Syntactically Annotated Corpora. In Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC 2002) pp 1704-1711.

Stolcke (1993): Stolcke,A. An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Technical Report TR-93-065. International Computer Science Institute,
University of California at Berkeley, CA.

Stolcke and O m o h u n d ro (1994): Stolcke, A., Omohundro, S.M. Best-First Model Merging for Hidden
Markov Model Induction. TR-94-003 University of California at Berkeley, CA International
Computer Science Institute.

Strzalkow ski (1994): Strzalkowski, T. (ed.). Reversible Grammar in Natural Language Generation.
Dordrecht: Kluwer.

S w artou t (1978): Swartout, W .R. A Comparison of PARSIFAL with ATNs (quoted by Sampson, 1983).

T aylor (2003): Taylor, A. CorpusSearch Reference Manual (www-users.york.ac.uk).

Teich (1999): Teich, E. Systemic Function Grammar in Natural Language Generation: Linguistic
Description and Computational Representation Cassell, London.

Thom pson and H u n sto n (2006): Thompson,G., Hunston, S. (eds) System and Corpus: Exploring
Connections London: Equinox

T ucker (1988): Tucker, G. The Lexicogrammar o f Adjectives: a Systemic Functional Approach to
Lexis. London: Cassell Academic.

T ucker (1989): Tucker, G. Natural language generation with a systemic functional grammar. In
Laboratorio degli studi linguistici 1989/1. Camerino, Italy: Universita degli Studi di Camerino
pp.7-27.

T ucker (2006a): Tucker, G. Systemic incorporation: on the relationship between corpus and Systemic
Functional Grammar. In Thompson and Hunston (2006).

T ucker (2006b): Tucker, G. Between lexis and grammar: towards a systemic functional approach to
phraseology. In Hasan, Matthiessen, and Webster (2006).

van H erw ijnen (1994): van Herwijnen, E. Practical SGML. Kluwer Academic Publishers.

W3C (1998): W3C RFC-2413-September 1998 - IETF recommendation: Dublin Core - Metadata for
Resource Discovery.

W 3C (2004a): W3C REC-xml-20040204 - Extensible Markup Language (XML) 1.0 (Third Edition).

W 3C (2004b): W3C XML Schema Part 0: Primer Second Edition.

W 3C (2006): W3C REC-xsll 1-20061205 - W3C Recommendation Extensible Stylesheet Language
(XSL) Version 1.1.

W 3C (2007): W3C REC-xquery-20070123 - W3C Recommendation XQuery 1.0: An XML Query
Language.

W arren and P e re ira (1982): Warren, D. H. D, Pereira, F.C.N. An Efficient and Easily Adaptable
System for Interpreting Natural Language. American Journal of Computational Linguistics 8.

W ebster (2005): Webster, J. M.A.K Halliday: the early years, 1925 - 1970 (in Hasan, Matthiessen and
Webster (2005).

W eerasinghe (1994): Weerasinghe, A. R. Probabilistic Parsing in Systemic Functional Grammar. PhD
Thesis, Cardiff University.

W est (1965): West, M. A general service list o f English words. Longmans.

W inograd (1972): Winograd, T. Understanding Natural Language. Edinburgh University Press.

W inograd (1983): Winograd, T. Language as a Cognitive Process.. Reading Mass Addison Wesley.

W iren (1989): Wiren, M. Interactive Incremental Chart Parsing. In Proceedings of the Fourth
Conference of the European Chapter of the Association for Computational Linguistics,

pp 241-248, Manchester, England, 1989.

344

w

Wirth (1976): Wirth, N. Algorithms + Data Structures = Programs. Prentice-Hall.

Woods (1970): Woods, W.A. Transition network grammars for natural language analysis. In Groz et
al (1970) pp 71-88.

Woods (1973): Woods, W.A. An experimental parsing system for transition network grammars. In
Rustin (1973).

Woods (1980): Woods, W.A. CascadedATNgrammars. AJCL 6, 1, 1-12.

Xtag (1995): XTag Research Group A lexicalized Tree Adjoining Grammar for English. Technical
Report IRCS Report 95-03, The Institute for Research in Cognitive Science, Univ. of
Pennsylvania.

Yang (1994): Yang, W. Incremental LR Parsing. In 1994 International Computer Symposium
Conference Proceedings vol. 1. National Chiao Tung University, Hsinchu, Taiwan, 577-583.

Zipf (1935): Zipf, G.K. The Physcobiology o f Language. Cambridge, Mass.

Zock and Sabah (1988): Zock, M., and Sabah, G., (eds) Advances in Natural Language Generation
Vol 1 and 2. London: Pinter.

345

Appendix A
The Cardiff Grammar
This appendix lists the units and elements that form the Cardiff Grammar as defined

by Fawcett (2000a). For a definition of terms, and a description of the Cardiff

Grammar please see Chapter Four. A complete alphabetical list of elements and units

that occur in the Fawcett-Perkins-Day Corpus (FPD) is provided in Appendix B1.

A.l The Cardiff Grammar Units
A syntax unit contains elements of structure. The units in the Cardiff Grammar are

shown below. A list of elements that occur in any unit is given in Section A.8.

(a) Clause (Cl) (see Section A.2),

(b) nominal group (ngp) (see Section A.3),

(c) prepositional group (pgp) (see Section A.4),

(d) quality group (qlgp) (see Section A.4),

(e) quantity group (qtgp) (see Section A.5),

(f) genitive cluster (genclr) (see Section A.6), and

(g) text (TEXT) (see Section A.7).

A.2 The Clause (Cl)
The elements of the Clause are given in Table A .l.

E lem ent M eaning
A* Adjunct (m any types)
B Binder (e.g. t h a t)
C Com plem ent
P Formula
I Infinitive elem ent (i.e. t o)
L Let element (i.e. L e t 1 s)
M M ain Verb
M ex Main Verb Extension (e.g. o f f in s w i tc h o f f th e l i g h t)
N Negator (e.g. n o t)
0 Operator (0, O/X or O/M where / is conflation)s Subject
V Vocative
X A uxiliary Verb
X ex Auxiliary Verb Extension
P r Frame
L nk Linker (& in Fawcett 2000a)

Table A.1: Elements of the Clause

1 Appendix B contains a complete list including the different types of Adjunct, modifier and head that
are not given here.

346

A.3 The nominal group (ngp)
The elements of the nominal group are shown in Table A.2.

Element Meaning
r d representational determiner
v selector
p d partitive determiner
fd fractionative determiner
q d quantifying determiner
sd superlative determiner
o d ordinative determiner
q id qualifier introducing determiner
t d typic determiner
dd deictic determiner
m modifier (different types eg re l_m o (relative) a f f_mo (affective))

head - h_j? (pronoun head), h_n (proper name head) or h (ordinary head h)
q_______ qualifier__

Table A.2: Elements of the nominal group

A.4 The prepositional group (pgp)
The elements of the prepositional group are shown in Table A.3

Element Meaning__
p preposition
p t prepositional temperer
c v ______ completive___

Table A.3: Elements of the prepositional group

A.5 The quality group (q lgp)
The elements of the quality group are given in Table A.4.

Element Meaning
q l d quality group deictic determiner
q lq quality group quantifier
e t emphasising temperer
d t degree temperer
a t adjectival temperer
ax apex
s c scope
f i finisher

Table A.4: Elements of the quality group

347

A.6 The quantity group (qtgp)
The elements of the quantity group are given in Table A. 5.

Element Meaning
q t d quantity group determiner
ad adjustor
a w amount
q t f quantity group finisher

Table A .S : Elements of the Quantity Group

A.7 The genitive cluster (g e n c lr)
The elements of the quantity group are given in Table A.6.

Element Meaning
PO possessor
g genitive element
own owner element

Table A 6: Elements of the genitive cluster

A.8 Elements that can occur in any class of unit
The elements of that can occur in any class of unit are given in Table A.7.

Element Meaning
Lnk Linker ("&" in Fawcett 2000a)
I n f Inferer

Table A.7: Elements that can occur in any Group

348

Appendix B
An alphabetical list of the Cardiff
Grammar units and elements
This appendix provides a reference list of the units and elements that are found in the

Fawcett-Perkins-Day (FPD) Corpus.

In the table that follows, the FREQ column represents the number of occurrences

of the syntax token in the FPD Corpus. The TYPE column states if the syntax token

represents an element (ELEM) or a unit (UNIT).1

TOKEN MEANING FREQ TYPE
A Adjunct expressing Experiential meaning 2487 ELEM
A A f f Adjunct expressing only Affective meaning (e.g. "luckily") 2 ELEM
A _A nc Ancilliary Grammar Adjunct (e.g. "flipping") 2 ELEM
A_AS Acknowledgement-Seeking Adjunct 269 ELEM
A _C STag Confirmation-Seeking Tag Adjunct 401 ELEM
A D O Adjunct expressing Discourse Organisational meaning 11 ELEM
A _ l n f Adjunct expressing Inferential meaning 318 ELEM
A _Log Adjunct expressing Logical relationship meaning 821 ELEM
A _ L o g _ R e p l Replacement for an Adjunct expressing Logical relationship 9 ELEM
A L o g W h Wh-Adjunct expressing Logicial relationship meaning 1 ELEM
A M I Metalingual Adjunct ELEM
A P o l Politeness Adjunct 13 ELEM
A _ R e p l Replacement for Adjunct expressing Experiential meaning 11 ELEM
A _R es Respect Adjunct ('with respect to X') 62 ELEM
A _ V al Adjunct expressing Validity meaning 60 ELEM
A_Wh Wh-Adjunct expressing Experiential meaning sought 164 ELEM
a d adjustor 167 ELEM
a f f _ m o modifier expressing affective meaning 71 ELEM
A L R e p l Replacement for Adjunct expressing Logical relationship ELEM
«T n amount 279 ELEM
a x apex 2386 ELEM
a x wh Wh-apex 4 ELEM
B Binder, i.e. a 'subordinating conjunction' 809 ELEM
C Complement 11891 ELEM
C _ R e p l Replacement for a Complement 121 ELEM
CJWb Wh-Complement 392 ELEM
C l Clause 16603 UNIT
C l U n Unfinished Clause 558 UNIT
c v completive 2902 ELEM
c v _ r e p l replacement for a completive 12 ELEM
c v w h wh-completive 4 ELEM

1 This table is one of the corpus index tables (see Chapter Seven) and its main use is to provide the user
of ICQF+ with help on the meaning of the syntax tokens.

349

f -

TOKEN M EANING FR E Q TYPE
DATA DATA - i.e. lexical items 61377 ITEM
d d deictic determiner 3436 ELEM
d d wh wh-deictic determiner 32 ELEM
d o Ordinal determiner 0 ELEM
d t degree temperer 274 ELEM
d t w h wh degree temperer 13 ELEM
ELEMQUERY Element that was questionable in the analysis 170 ELEM
e t emphasizing temperer 10 ELEM
E x c l Exclamation Formula 160 ELEM
F Formula 2367 ELEM
f i finisher 52 ELEM
F r Frame 99 ELEM
9 genitive element 68 ELEM
g e n c l r genitive cluster 74 UNIT
h head expounded by a 'common noun' 7789 ELEM
h _ n head expounded by a name (ie a 'proper noun') 1418 ELEM
h _ p head expounded by a 'pronoun' 11372 ELEM
h ._ rc c Head, recoverable from cultural classification 520 ELEM
h _ s i t situation head (I.e. a head filled by a clause) 19 ELEM
h_w h wh-head 623 ELEM
I Infinitive Element 1248 ELEM
i n f inferer 27 ELEM
ITEMQUERY The analyst could not identify the item (word) 4 ITEM
L Let element 22 ELEM
L nk Linker (i.e. 'co-ordinating conjunction; ampersand in

GENESYS)
2366 ELEM

M Main Verb 10873 ELEM
MEx Main Verb Extension 1357 ELEM
mo modifier expressing experiential meaning 1090 ELEM
N Negator 324 ELEM
n g p nominal group 22248 UNIT
n g p u n Uninished nominal group 131 UNIT
O Operator (form of "do" or a 'modal verb') 2288 ELEM
o d ordinative determiner 47 ELEM
OK Operator conflated with Main Verb 3104 ELEM
own owner 7 ELEM
OX Operator conflated with Auxiliary 1904 ELEM
P preposition 2986 ELEM
p d partative determiner 179 ELEM
p e x preposition extension (e.g. 'with his hat on') 2 ELEM
P 9 P prepositional group 2938 UNIT
p g p _ u n Unfinished prepositional group 52 UNIT
p o possessor 73 ELEM
P t prepositional temperer 63 ELEM
q qualifier 659 ELEM
q__mo quantifying modifier 42 ELEM
g _ r e p l Replacement qualifier 2 ELEM
q d quantifying determiner 3753 ELEM
q d w h wh-quantifying determiner 6 ELEM
q l d quality group deictic 60 ELEM
qigp quality group 2392 UNIT

350

TOKEN MEANING FREQ TYPE
q l g p u n unfinished quality group 9 UNIT
g t d quantity group deictic 13 ELEM
q t f quantity group finisher 8 ELEM
q t g p quantity group 290 UNIT
q tg p _ u n Unfinished quantity group 1 UNIT
r d representative determiner 5 ELEM
r e l j n o relational modifier 161 ELEM
S Subject 10832 ELEM
S i t Experientially empty 'it' Subject 85 ELEM
S R e p l Replacement Subject 28 ELEM
S _ th Experientially empty ’there' Subject 420 ELEM
S_Wh Wh-Subject 113 ELEM
s c scope 47 ELEM
s d superlative determiner 25 ELEM
s i t _ m o 'situation' modifier 43 ELEM
t_ w h wh-temperer ELEM
t d typic determiner 24 ELEM
t e x t text 133 ELEM
th jm o 'thing' modifier 342 ELEM
V selector (always "or, hence V) 421 ELEM
V oc Vocative 375 ELEM
X Auxiliary Verb 463 ELEM
XRx Auxiliary Extension 470 ELEM
Z Sentence (Z representing Greek 'S', i.e. sigma) 10791 ELEM

Table B.l: Alphabetical list of syntax tokens in the FPD Corpus

351

Appendix C
Marking up language texts
This appendix serves two purposes:

(a) it gives the necessary background to mark up languages for the readers that

need it in preparation for Chapter Six (see Section C.l),

(b) it provides details of the artefacts from the experiments with mark up

languages in this project (see Section C.2).

C.l Defining Mark up
In this section, we provide the reader with the necessary information about mark up

languages in order to present the models we use in this project. For more information

about SGML, refer to, for example ISO specification (ISO 1986), Bryan (1988),

Goldfarb (1991) and van Herwijnen (1994). For a reliable reference to XML, see

Harold (1999) and the W3C specification (W3C 2004a).

C.1.1 Definitions

A marked-up document or file (called an instance) is a hierarchical collection of mark

up tags and data. A mark up element, which can contain data or other mark up

elements, is delimited by a start tag and an end tag. A start tag starts with a mark up

declaration open (MDO) character c ,1 followed by a generic identifier (the tag

name), a set of attributes (if any) and a mark up declaration close (MDC) character

>. An end tag starts with an MDO and is followed by a slash / , the generic identifier

and then an MDC. For example, the start tag for a paragraph may be <para> and the

end tag will be < /p a ra > ; the start tag for a nominal group could be <ngp> and its

end tag </ngp> .

There are rules that govern the creation of generic identifiers that have had an

impact on our work here. In both SGML and XML, it is mandatory that generic

identifiers start with a letter; in SGML generic identifiers are not case sensitive and in

XML they are. There are also rules about which characters can be used in a generic

identifier.2

1 In XML, < is the only character that can be used for MDO; in SGML, any character can be defined in
the SGML declaration (see ISO 1986), however, I am yet to find an application that uses anything
other than <. The same note applies to MDC.
2 This is the reason why certain elements in Fawcett (2000a) have been renamed (such as & being Lnk).

352

Start tags can contain attributes which further qualifies the element. For example,

in a document, it may state that a table’s border colour is red or, for a Subject in a

Clause, that it is ellipted. The format of an attribute is attribute name, followed by the

equals sign and a quote delimited attribute value. Examples of mark up elements with

attributes follow.

c t a b l e b o r d e r c o l o u r = " r e d " w id th = " 1 0 0 % " >
< p a r a s e c u r i t y c l a s s = " r e s t r i c t e d " >
<S e l l i p t e d = " R a p i d S p e e c h " >

A mark up element may be defined as empty; this means that it is not allowed to

contain any data or other mark up elements. Empty elements are signified by only a

start tag in SGML. XML has alternative representations for empty tags. They can be

shown with no content or with a / before the MDC. The following shows some

example XML elements that are equivalent. Hence:

< q a t y p e s " f i r s t _ v e r i f i e d " / >
< q a t y p e = " f i r s t _ v e r i f i e d " x / q a >

and

<S e l l i p t e d = " R a p i d S p e e c h " / >
<S e l l i p t e d s " R a p i d S p e e c h " > < /S >

are both allowed in XML to represent the same thing.

A Document Type Definition (DTD) or XML Schema (see Section C.l.2)

supplies the rules which govern the mark up elements and their attributes that may

occur in a given document type. They state the order in which mark up elements may

or must occur, the attributes (and types of attributes) they may or must have and the

content that they may or must have. An SGML or XML parser is a computer

program that checks that an SGML or XML instance conforms to the DTD or Schema.

C.l.2 Document Type Definitions and Schemas
There are rules that govern which mark up elements may occur in an instance and

what they are to contain in terms of other mark up elements, attributes and data.

Further rules are applied to the types of values that a mark up attribute can take. In

SGML, it is the Document Type Definition (DTD) that does this; XML adopted

SGML’s DTD (with some changes) and the World Wide Web Consortium (W3C)

decided that it needed strengthening (in terms of data typing, for example) and

introduced a specification for an XML Schema (W3C 2004b). In this project, because

we started with SGML, we have been using DTDs rather than Schemas. SGML

353

demands that an instance conforms to a DTD; XML, when there is no reference to a

DTD or Schema, only demands that the instance is canonical (or well-formed, having

a end tag for every start tag and it does not break the basic rules of XML). An

explanation of a DTD and its structures is given by example in the next section.

C.l.3 Document Type Definitions (DTDs)

An example DTD for an abstract mark up scheme (see Section 6.1.4.2 of Chapter Six)

is shown in Figure C.l. Each SGML or XML document represents an individual

sentence in the corpus. The ! DOCTYPE statement identifies the DTD with a public

identifier (see ISO 1986) and this must be specified in every sentence instance that

conforms to the DTD. The !ELEMENT statements define a mark up element: the

generic identifier appears first (e.g. sentence), this is followed by two dashes which

indicate that both the mark up element’s start tag and its end tag must be present.3

Next is the element’s content model which contains a list of the elements that may

occur within this element's content. The symbol + means '1 or more' (the element

sentence comprises one or more units), ? means '0 or none', and | means 'or' (hence,

elements can contain one or more co-ordinated units or an item, or it can contain

nothing when it is ellipted)4.

! ATTLIST defines the mark up attributes that can be applied to the mark up

element’s start tag. Here the attribute name comes first and is followed by the type of

data that the attribute value can be. CDATA means that the attribute can contain any

characters, ID means that it is to contain a unique identifier, and values in brackets

(e.g. (RapidSpeech | Recoverable)) provide a list of choices. If there is a

default value, it is indicated in brackets after the list.5 Non-list attributes are followed

by an optionality indicator #REQUIRED means that the attribute must be present and

#IMPLIED means it is optional. Figure C.2 shows a sample sentence marked up

according to the rules of this DTD:

<DOCTYPE s e n t e n c e PU BLIC " -//D T D /S E N T E N C E COMMUNAL VERSION 1 /E N " [

< ! ELEMENT s e n t e n c e - - (u n i t +) >
<1ATTLIST s e n t e n c e s e n t i d CDATA #IM PLIED >
< ! ELEMENT u n i t - - (e l e m e n t S +) >

3 This feature does not exist in XML because it does not allow optional end tags.
4 The symbol which is not in this DTD means sequence and also not in the DTD, means “0 or
more”.
5 See the SGML specification (ISO 1986) for complete details of SGML data types.

354

u n i t i d ID #IM PL IE D
s y n t a x t o k e n CDATA #REQUIRED>

- - (u n i t + | i t e m) ? >
e l e m i d CDATA #IM PL IE D
s y n t a x t o k e n #REQUIRED
e l l i p t e d (R a p i d S p e e c h |R e c o v e r a b l e)
" R a p i d S p e e c h ” >

- - (#PCDATA)>
i t e m i d ID #IM PL IE D
i n t o n a t i o n s t a r t CDATA #IM PLIED
i n t o n a t i o n e n d CDATA #IM PLIED >

J >

Figure C.l: a simplified DTD for the Cardiff Grammar (version 1)

< IDOCTYPE s e n t e n c e PU BLIC "-//D T D /S E N T E N C E COMMUNAL VERSION 1 /E N " [] >
< s e n t e n c e s e n t i d = " 1 0 A ~..">

< u n i t s y n t a x t o k e n = " C l " >
< e le m e n tS s y n t a x t o k e n = " S " >

< u n i t s y n t a x t o k e n = " n g p " >
<e l e m e n t s s y n t a x t o k e n = " d d " >

< i te m > T h e < / i t em>
< / e l e m e n t S >
< e l e m e n t S s y n t a x t o k e n = " h " >

< i t e m > s e a g u l l s < / i t e m >
< / e l e m e n t S >

< / u n i t >
< / e l e m e n t S >
< e le m e n tS s y n t a x t o k e n = " M " >

< i t e m > a t e < / i t e m >
< / e l e m e n t S >
< e le m e n tS s y n t a x t o k e n = " C " >

c u n i t s y n t a x t o k e n = " n g p " >
< e l e m e n t S s y n t a x t o k e n = " d d " >

< i t e m > T h e < / i t e m >
< / e l e m e n t S >
< e l e m e n t S s y n t a x t o k e n = " h " >

< i t e m > m a c k e r e 1 < / i t em>
< / e l e m e n t S >

< / u n i t >
</ e l e m e n t s >

< / u n i t >
< / s e n t e n c e >

Figure C.2: A sample sentence marked up according to the DTD in Figure C.l

C.1.4 Using mark up languages for non-hierarchical structures
In order for mark up languages to be useful for annotating parse structures, we had to

prove that they could be used for non-hierarchical and therefore discontinuous

structures. SGML and XML provide a mechanism called ID/IDREF that was

designed for document cross-referencing (see i t e m id attribute of the ite m element

in the DTD of Figure C.l).

< ! ATTLIST u n i t

< ! ELEMENT e l e m e n t s
<1ATTLIST e l e m e n t s

< IELEMENT i t e m
< ! A TTLIST i t e m

355

The following example demonstrates the use of ID/IDREF within documentation;

Section 6.1.6.1 of Chapter Six discusses how we used these constructs in

discontinuous parse trees.

< f i g u r e id = " P 0 9 2 1 " >
< t i t l e > A v ie w o f C h e s i l B e a c h f r o m t h e B r i d g i n g C a m p < / t i t l e >
< g r a p h i c b o a rd n o = " IC N -E 2 A 0 0 0 0 0 0 R K 0 3 7 8 A 0 1 1 ,,/ >
< / f i g u r e >

The author of the document is then able to cross-refer to the figure by specifying

the ID in a cross-reference element as below:

< p a ra > A v ie w o f t h e b e a c h f r o m t h e B r i d g i n g Camp i s sh o w n i n F i g u r e
< x r e f x r e f i d = " F 0 9 2 1 " / > . < / p a r a >

TigerXML relies heavily on XML's ID/IDREF mechanism as can be seen in Figure

6.8 of Chapter Six.

C.2 Artefacts from the experiments with mark up languages
Chapter Six described the experiments with mark up languages in this project. Section

6.1.5.1 of Chapter Six described my efforts in creating an SGML DTD both manually

and automatically from the POW Corpus (using the createDTD program). This

section gives the DTD that was created manually for the Cardiff Grammar.

It contains an SGML content model for each class of unit presented in Appendix

A of Fawcett (2000a)..

C.2.1 The nominal group
The nominal group was modelled using the SGML DTD content model diagram in

Figure C.3. This states that it can optionally start with a linker, followed by various

types of determiner with optional selectors, zero or more modifiers and then a

mandatory head, proper name head or pronoun head, followed by zero or more

qualifiers.6 In this DTD note that a modifier can be filled by a ngp, or a C l, or a

q lg p or a g e n c l r or be expounded by an ite m .

6 A head is of a certain type and could have been (but wasn’t) modelled as attributes as in <h
ty p e ="Pr onoun">.
7 At the tim e I created the DTD, I didn’t realise that elements of structure may be filled by coordinated
units of different types (Fawcett, personal communication, 2005), however, this is extremely rare.

356

< ! ELEMENT n g p - - (L n k ? , (r d , v ?) ? , (p d , v ?) ? , s d | o d) , v ?) ? ,
(t d , v ?) ? , d d ? , m o * , (h |h _ n |h _ p) , q *) >

< ! ELEMENT L n k - - (i t e m) >
< ! ELEMENT r d - - (n g p + | i t e m) >
< {ELEMENT p d - - (n g p + | i t e m) >
< 1ELEMENT s d - - (n g p + | q lg p + | i t e m) >
< 1ELEMENT o d - - (n g p + | i t e m) >
< 1ELEMENT v - - (i t e m) >
< ! ELEMENT s d - - (q tg p + | i t e m) >
< {ELEMENT o d - - (q lg p + | i t e m) >
< {ELEMENT t d - - (n g p + | i t e m) >
< {ELEMENT d d - - (g e n c l r | i t e m) >
< {ELEMENT mo - - (n g p + | C1+ | q l g p + | g e n c l r | i t e m) >
< {ELEMENT h | h _ p | h n - - (g e n c l r | i t e m) >
< {ELEMENT q - - (n g p + |C 1 + |q l g p + 1P 9 P +)

Figure C.3: SGML DTD content model for the nominal group

C.2.2 The quality group

The structure of the quality group is represented by the SGML DTD content model

shown in Figure C.4. Note that only one type of temperer can occur before an apex

and a degree temperer can occur after it; the content model forbids any temperers

before the apex, if a degree temperer occurs after the apex. I have assumed that two

scopes can occur before a finisher and one afterwards, and my model assumes that

they are not mutually exclusive.

< i ELEMENT q l g p - - (L n k ? , q l d ? , q l q ? , ((e t | d t | a t) ? , a x) | ,
(a x , d t ?)) , s c ? , s c ? , f i ? , s c ? >

< ! ELEMENT q l d - - (g e n c l r | i t e m) >
<1 ELEMENT q l q - - (i t e m) >
< 1 ELEMENT e t - - (i t e m) >
< i ELEMENT a t - - (q lg p + | i t e m) >
< 1ELEMENT d t - - (n g p + | i t e m) >
< 1 ELEMENT a x - - (i t e m) >
< i ELEMENT s c - - (p g p + | i t e m) >
< 1 ELEMENT f i - - (C 1 + | p g p + | i t e m) >

Figure C.4: SGML DTD content model for the quality group

C.2.3 The quantity group
The SGML DTD content model for quantity group is shown in Figure C.5.

<1 ELEMENT q t g p - - (a d ? , a m , q t f) >
< ! ELEMENT a d - - (q t g p + | i t e m) >
< I ELEMENT am - - (i t e m) >
< 1 ELEMENT q t f - - (C 1 + |p g p + | i t e m) >

Figure C.5: SGML DTD Content model for quantity group

357

C.2.4 The prepositional group

The SGML DTD content model for quantity group is shown in Figure C.6. Note that

there are two alternate models, the first and most common is with the preposition first,

which is represented by the content model (pt ?, p , cv), as in:

up on the mountain

The second is when the preposition follows the completive (pt? # cv,p), as in:

Up to two weeks ago

These structures are mutually exclusive and modelled in the SGML content model as

alternative options. Note that preposition and completive are both mandatory in these

models.

< iELEMENT p g p - - ((p t ? , p , c v) | (p t ? , c v #p)) >
< 1 ELEMENT p t - - (i t e m) >
< !ELEMENT p - - (q lg p + | q tg p + | i t e m) >
< iELEMENT c v - - (n g p + |p g p +) >

Figure C.6: SGML DTD content model for the prepositional group

C.2.5 The genitive cluster

The SGML DTD content model given in Figure C.7 represents the genitive cluster.

< ! ELEMENT g e n c l r - - (L n k ? / p o / g ? , o w n ?) >
< ! ELEMENT p o - - (n g p +) >
< ! ELEMENT g - - (i t e m) >
< ! ELEMENT ow n - - (q l g p + | i t e m) >

Figure C.7: SGML DTD content model for the genitive cluster

C.2.6 The text unit
Text caused me a problem in creating the DTD. This was because text contains one or

more sentences and sentence is the root node of the parse tree; in SGML and XML,

you can only have one element at the root and it cannot appear as a child of any other

elements. Therefore, I created the element <Ztext> to represent a sentence that is

within the TEXT unit. The content model for TEXT then became very simple and is

shown in Figure C.8.

< ! ELEMENT TEXT - - (Z t e x t +) >
< ! ELEMENT Z t e x t - - (C 1 +) >

Figure C.8: SGML DTD content model for the TEXT unit

358

f

C.2.7 Sentence

The sentence node is the root node in the DTD and has the content model shown in

Figure C.9; note that certain attributes were added to identify the sentence in a corpus

database.
< 1 ELEMENT Z - - (C1 +) >
< ! ATTLIST Z - - ID ID # REQUIRED

POWCELL CDATA #REQUIRED>

Figure C.9: SGML DTD content model for Sentence

C.2.8 The Clause

I introduce the Clause, which was modelled using the SGML content model shown in

Figure C.10 last, as it is by far the most complex structure to model in an SGML DTD

because of optionality and mutual exclusivity. The alternate structures shown in the

content model are for operator before subject and complement before main verb,

operator after subject and complement before main verb, operator before subject and

complement after main verb, and operator after subject and complement after main

verb.

< ! ELEMENT C l - - (L n k ? , B ? , A* ,
(C * / O ? , S ? , N ? , A* # I ? , (X * |X e x *) ,M ,M e x ?) |
(C * / S ? , O ? , N ? , A * / 1 ? # (X * |X e x *) ,M ,M e x ?) |
(S ? , 0 ? , N ? , A * , I ? , (X * |X e x *) , M , C * , M e x ?) |
(S ? / 0 ? , N ? , A * / I ? , (X * | X e x *) ,M ,C * ,M e x ?) j
(0 ? , S ? , N ? , A * , I ? , (X * |X e x *) , M , M e x ? , C *) |
(C ? , S ? , 0 ? , N ? , A * , I ? , (X * |X e x *) ,M ,M e x ? ,C *) |
(S ? / 0 ? , N ? , A * , I ? , (X * |X e x *) , M , M e x ? , C *) |
(S ? , O? # N ? , A * , I ? / (X * |X e x *) ,M ,M e x ? , C *))
,A * ,V o c) >

< ! ELEMENT L n k - - (i t e m) >
< ! ELEMENT B - - (i t e m) >
< ! ELEMENT A - - (C1+ | n g p + | p g p + | q l g p + | q tg p + | i t e m) >
< ! ELEMENT C - - (T E X T |C 1 + |n g p + j p g p + | q l g p + | i t e m) >
< ! ATTLIST C PR (A g e n t | A f f e c t e d | A t t r i b u t e)

#IM PL IE D >
< ! ELEMENT s - - (T E X T |C 1 + |n g p +) >
< ! ATTLIST s PR (A g e n t | A f f e c t e d | A t t r i b u t e)

#IM PL IE D >
< ! ELEMENT 0 - - (i t e m) >
< jELEMENT N - - (i t e m) >
< ! ELEMENT I - - (i t e m) >
< IELEMENT X - - (q l g p + | i t e m) >
<iELEMENT X ex - - (q lg p + j i t e m) >
< iELEMENT M - - (i t e m) >
< 1ELEMENT M ex - - (n g p + | q l g p + | p g p + | C1+ | i t e m) >
< ! ELEMENT V oc - - (n g p + | i t e m) >
< 1ELEMENT i t e m - - (#PC D A TA)>

Figure C.10: SGML DTD content model for the clause

359

C.3 Summary
The use of a DTD or Schema in conjunction with a business rules checker is seen as a

valuable component of this project. Its use would allow error checking to be

performed on the sentences in the corpus database and to check sentences before they

are added to the corpus.

As reported in Chapter Six, the DTDs created as part of this project were not used

in the final system due to:

(a) the manually created DTD (reported here) was not suitable for naturally

occurring texts because many of the syntactic representations were not

covered in the DTD structure.

(b) the work on the automatically created DTD was more promising but the

createDTD program would need to be substantially updated in order to

simplify the SGML content models it produces.

The createDTD program will be modified in or after Phase Two of this project

and an XML Schema will be produced for the Cardiff Grammar.8

Although createDTD may have to be renamed createSchema.

360

Appendix D
The database schema
This appendix provides details of the complete database schema. It includes:

(a) The corpus tables (see Section D .l),

(b) The corpus index tables (see Section D.2),

(c) The probabilities tables (see Section D.3), and

(d) The parser working tables (see Section D.4).

D.l The corpus tables
The corpus tables are used to store the native XML data that forms the corpus.1 They

comprise of the following tables:

(a) the DOCUMENT table, which stores high level metadata about the XML

documents in the database,

(b) The ELEMENT table, which stores XML mark up element details,

(c) The ATTRIBUTE table, which stores XML attribute information,

(d) The PCDATA table, which stores parsed character data.

The structure of the corpus tables is described in Table D.l.

D.2 The corpus index tables
The corpus index tables provide a quick indexed reference to the data held within the

corpus tables. They are used with ICQF+ and its data transformation programs to

create the FPD Corpus (see Chapters Eight and Nine). There is one main corpus index

table and other less significant ones (see Section 7.2.2 of Chapter Seven).

When new sentences are added to the corpus, or existing ones are modified, the

corpus index tables are automatically updated.

The main corpus index table is called MARKUP INDEX and provides information

about mark up elements, their parents, ancestors, children and siblings. This index

allows ICQF+ to rapidly locate sentences in the corpus that match given search

criteria.

The other index tables include:

1 The corpus tables are essentially native X M L tables that are able to store any XM L (or SGML)
document, but are used only to store corpus inform ation in this project.

361

(a) Indexes of units, elements, and items that are used for ICQF+'s reporting

functions

(b) An index of syntactic tokens and their associated meanings. This is used for

ICQF+’s user help and can be seen in Appendix B.

Only the MARKUP INDEX table is described here in Table D.2.

D.3 The probabilities tables
These tables store the data that is used for the queries needed by the parser. They are

automatically updated as new sentences are added to the corpus provided that this

feature is enabled. The tables are:

(a) the IVS_ITEM table - used for initial vertical strip item queries,

(b) the IVS_ELEM table - used for initial vertical strip element queries,

(c) the 12 E table - used for item-up-to element queries,

(d) the I2E2U2E table - used for item-up-to-element-up-to-unit-up-to-

element queries,

(e) the E2U table - used for element-up-to-unit queries,

(f) the U2E table - used for unit-up-to-element queries,

(g) the FUS table - used for forward unit structure queries,

(h) the BUS table - used for backward unit structure queries.

These tables are described in Table D.3. See also Chapter Fourteen and Appendix H.

See Appendix I for details of the improved Version Two probabilities tables.

D.4 The parser working tables
These tables store the parser's working data:

(a) the DB_PARSE_ITEM table - stores the items in the sentence being parsed,

(b) the DB_PARSE_TREE table - stores details about the built and candidate

structures,

(c) the DB_PARSE_NODE table - stores details about the nodes in the built and

candidate structures,

(d) the D B_IV S table - stores the initial vertical strips created in Stage 1,

(e) the DB_PARSE_NEXT_NODE table - stores details of the syntax token that

can follow a given node in a forward prediction,

(f) the DB PARSE_PREV_NODE table - stores details of the syntax token that

can precede a given node in a backward prediction,

362

(g) the DB_PST table - the parser state table.

These tables are given in Table D.4 and have a set of shadow tables (eg

DB_PARSE_NODE_SAVE which are used in the Parser WorkBench to save and

restore partial parses.

Note that there are also other parser working tables that are not covered here.

These include tables that are used to save and restore the parser's configurable

parameters, and tables that are used to store the contents of a parse when the parse is

saved (see Chapter Sixteen for the reasons why these tables are needed).

363

364

Table D.l: The structure of the native XML corpus tables

Table name Field Description
the mark up document table (DOCUMENT)

DOCID
DOCNAME
REMARKS
TAG1...TAG10
DATETIME
REMARKS

This table stores the details about die mark up document
A unique identifier given to the document (sentence)
The name o f the document (e.g. POW Cell Id)
A field for general remarks
General fields for storing metadata (used for POW Cell fields)
The date and time that the document was added or modified
Any remarks that may be applied (for example by the batch modification programs)

the mark up element table (ELEMENT)
DOCID
ELEMID
GI
PARENTID
DATETIME
REMARKS

This table stores mark up elements
Foreign key to the DOCUMENT table
A unique identifier within the document that identifies the element
The generic identifier of the mark up element
The unique identifier o f the element’s parent
The date and time that the element was added or modified
Any remarks that may be applied (for example by the batch modification programs)

the mark up attribute table (ATTRIBUTE)
DOCID
ELEMID
ATTNAME
ATTVAL
ATTID

This table stores the details o f the mark up attribute
Foreign key to the DOCUMENT table (composite key with ELEMID)
Foreign key to the ELEMENT table (composite key with DOCID)
Name of the attribute
The value o f the attribute
A unique identifier for the attribute used to maintain sequence of attributes in the element (although SGML
and XML do not state that attributes are to be in any order)

365

Table D.2: The MARKUPINDEX table

Table name Field Description
The mark up index table
(MARKUPINDEX)

This table is the main index to the corpus tables

mark up field DOCID A unique identifier given to the document (sentence) (composite key with ELEMID to the ELEMENT table)
mark up field ELEMID The unique identifier of the element in the document (composite key with DOCID to the ELEMENT table)
mark up field 61 The generic identifier o f the element in ELEMID
mark up field CHILDIDS A string of the unique identifiers of the element's children
mark up field CHILDGIS A string containing a list o f the child generic identifiers separated by spaces
mark up field LEFTSIB ID S A string of IDs of the elements to the left of this element within its parent
mark up field LEFTSIB G IS A string o f generic identifiers o f the elements to the left o f this element within its parent
mark up field RIG H TSIBID S A string of unique identifiers of the elements to the right of this elements within its parent
mark up field RIGHTSIBGIS A string o f generic identifiers o f the elements to the right o f this element within its parent
mark up field ABOVEIDS A unique identifier within the document that identifies the element
mark up field ABOVEGIS A string o f generic identifiers o f the elements that occur above this element up to the root element
mark up field ABOVEIDS A string of unique identifiers of the elements that occur above this element up to the root element
mark up field PARID The unique identifier o f the element's parent (see Note 1)
mark up field PARPARID The unique identifier of the element's grandparent (see Note 1)
mark up field P ARP ARP ARID The unique identifier o f the element's great grandparent (see Note 1)
mark up field PARGI The generic identifier of the element's parent (see Note 1)
mark up field PARPARGI The generic identifier o f the element's grandparent (see Note 1)
mark up field PARPARPARGI The generic identifier of the element's great grandparent (see Note 1)
mark up field TAG1...TAG10 Ten fields that can store any metadata (as in DOCUMENT table) - store the POW Cell Identifiers (see Note

4)
One of ELEMent, UNIT, or ITEMlinguistic field TYPE

linguistic field IN IT IA L _ IN _ T r u e if this mark up element is initial in the sentence (i.e. on the left most strip o f the parse tree) (see Note
SENTENCE 2)

linguistic field IN IT IA L _ IN _
PARENT

T r u e if the mark up element is initial within its parent (see Note 2)

linguistic field IN IT IA L _ IN _ T r u e if this mark up element is initial in the sentence after any ellipted elements have been ignored (see
SENTENCENO

E L L IP S IS
Note 2)

linguistic field IN IT IA L _ IN _
P A R E N T N O E
L L IP S IS

T r u e if this mark up element is initial in its parent after any ellipted elements are ignored (see Note 2)

366

Table name Field Description
linguistic field
linguistic field
linguistic field

ELLIPTED
E L L IP T E D R S
E L L IP T E D P T

T r u e if this mark up element has an ELLIPTED attribute (see Note 3)
T r u e if this element has an ELLIPTED attribute set to R a p id S p e e c h (see Note 3)
T r u e if this element has an ELLIPTED attribute set to P r e v i o u s T e x t (see Note 3)

Note 1: These fields are replicated fields as the information is also in ABOVEIDS and ABOVEGIS. They are replicated to speed up queries.
Note 2: These fields are used for ICQF+ queries for initial in sentence and initial in parent.
Note 3: These fields are used in ICQF+ for ignoring ellipsis.
Note 4: These fields are used in ICQF+ for query restrictions.

Table D.3: The probabilities tables

Table name Field Description
initial vertical strip item (IV S - ITEM)

ITEM
VERTSTRIP
PROBABILITY

This table gives a set o f vertical strips that can occur above a given item
the item
a string representing the elements and units that occur above the item
the probability o f the given vertical strip among all possible strips

initial vertical strip elem (IV S -ELEM)
ELEM
VERTSTRIP
PROBABILITY

This table gives a set o f vertical strips that occur above a given element
the element
a string representing the units and elements that can occur above the element
the probability o f the given vertical strip among all possible strips

item-up-to-element (I2 E)

ITEM
ELEM1
PROBI2E
I2E2U2ENEEDED
IVSITEM

the 12 E probabilistic table gives a list o f elements that a given item can expound together with their
associated probabilities,
the item itself
the element that the item expounds
the probability that the item expounds the given element
a Boolean field that is set to true if an I2E 2U 2E is needed for this item-element pair
a Boolean field that is set to true if this item is an IVS - ITEM

item-up-to-element-up-to-unit-up-
to-element (I2E 2U 2E)

ITEM
ELEM1
UNIT

Certain items behave quite differently from others when we take into account the element o f structure that
occurs above the unit above the expounded element. These are stored in the I2E 2U 2E table,
the item itself
the element that the item expounds
the unit that ELEM1 is a component of

367

Table nam e Field Description
ELEM2
PROBI2E2U2E

the element that is filled by UNIT
the probability o f the item-element-unit-element quadruple

element-up-to-unit (E2U)
ELEM
UNIT
UNITPROB

the B2U table stores a list o f units that a given element can be a component o f (usually only one)
the element
the unit that ELEM is a component o f
the probability that the ELEM is a component o f the UNIT (normally 100%)

unit-up-to-element (U2E)
UNIT
ELEM
ELEMPROB

the U2E table gives a list o f elements that a given unit can fill
the unit
the element that UNIT can fill
the probability that the given UNIT fills the given ELEM

forward structure query (PUS)
UNIT
ELEMENTS
NEXTELEM
PROBABILITY

The forward unit structure table gives a list o f elements that can follow a given set o f elements in a unit
the unit
the set o f elements that have already been found in the unit
the element that can follow the set o f elements in ELEMENTS
the probability that the given NEXTELEM can follow ELEMENTS

backward structure query (BUS)
UNIT
ELEMENT
PREVELEM
PROBABILITY

This table stores the element that can precede a given element in a given unit
the unit
the element that is the subject o f the query
the element that can precede ELEMENT
the probability that PREVELEM precedes ELEMENT

368

Table D.4: The parser working tables

Table nam e Field Description
the parse items (D B P A R S E IT E M) This table stores the items in the sentence being parsed

ITEM the item
STARTPOS the position that the item starts
ENDPOS the position that the item ends (see Note 5)

the parse trees (D B P A R S E T R E E) This table stores the built and candidate structure trees
TREEID a unique identifier given to the tree
TREELABEL a label that says if this is a candidate structure or a built structure
PROBABILITY the tree's score
COMPLETE a Boolean that is true if the tree is one that represents the complete sentence
ACTIVE a Boolean that is true if the tree is active
STARTPOS an integer that represents the start position o f the tree
ENDPOS an integer that represents the end position o f the tree

the parse tree nodes
(D BPA RSEN O D E)

this table stores the nodes that belong to the parse trees

TREEID the identifier o f the tree
NODEID the identifier o f the node in the tree
PARENTID the identifier o f the parent node o f this node
LEFTSIB ID die identifier o f the immediate left sibling o f the node
RIGHTSIBID the identifier o f the immediate right sibling o f the node
TOKEN the syntax token stored in the node (e.g. S, C, Cl, ngp, Z ,...)
TYPE a label that states if this is an ITEM node, an ELEMent node or a UNIT node
LEVELPROB the level probability o f the node
NODEPROB the node probability
RMS a Boolean set to true if the node is in the right-most strip
LMS a Boolean set to true if the node is in the left-most strip
STRUCTURE a string containing a list o f the node's child elements (redundant but incorporated for efficiency o f the

parser)

the initial vertical strip table (DB IVS) the initial vertical strip table created in Stage 1
ITEM the initial item o f the parse
VERTSTRIP the vertical strip from the element that the item expounds up to a sentence node

369

Table name Field Description
FOLLOWED
PROBABILITY

true if this strip has been taken forward
the score of this strip among the other strips

the next node table
(DB_PARSB_NEXT_NODE)

TREEID
NODEID
NEXTTOKEN

this table holds the forward predictions from a DB_PARSB_NODE that is a built structure are the result of
a FUS query
the unique identifier of the tree to which this prediction belongs
the unique identifier of the node
the syntax token of the next element

the previous node table
(D B P A R S E P R E V N O D E)

TREEID
NODEID
PREVTOKEN
PROBABILITY

this table holds the backward predictions from the a DB_PARSE_NODE that is in a candidate structure
and is the result of a BUS query
the unique identifier of the tree to which this prediction belongs
the unique identifier of the node to which this prediction belongs
the predicted previous syntax token
the score associated with the prediction

the parser state table (DB_PST)
BSTREEID
CSTREEID
BSNODEID
CSNODEID
NEXTSTATE
SCORE
CYCLES
STA6E4TRIED
FOLLOWED
BACKTRACKPOINT
ENDPOS

the parser state table
the identifier of the BS tree involved in the parser move
the identifier of the CS tree involved in the parser move
the identifier of the BS node that is involved in for e.g. a join
the identifier of the CS node that is involved in for e.g. a join
the next state in which the tree or tree-pair that is represented by this PST record will move to if selected
the score assigned to the join, grow etc that is represented by the record
the number of stage 3,4,3,5 cycles undertaken by the tree-pair
true if a Stage 4 has been tried on this candidate structure
true if this PST record has been followed
true if this represents a linguistically motivated backtrack point (see Note 6)
the end position of the BSTREE or the CSTREE

Note 5: An item may cover more than one position (e.g. in spite o f - covers three).
Note 6: This will be used in Phase 2 for linguistically motivated backtracking along with another table DB_PARSE_BACKTRACK_STACK.

Appendix E
Example ICQF+ reports
This appendix provides examples of the reports extracted from the FPD Corpus. The

reports are exported from ICQF+'s Report functions into XML and formatted using

XSL-FO (see Section 8.4.3 of Chapter Eight).1 The following reports are provided:

(a) the item-up-to-element report (see Figure E. 1),

(b) the unit-up-to-element report (see Figure E.2),

(c) the element-up-to-unit report (see Figure E.3),

(d) the complete item report (see Figure E4).

Item Total
Freq.

Element Freq./Elem. Probability

the 2228 dd (deictic determiner) 2165 97.17%
qld (quality group determiner) 50 2.24%
qtd (quantity group determiner) 13 0.59%

them 331 dd (deictic determiner) 35 10.57%
h_p (pronoun head) 296 89.42%

Figure E.l: Excerpt from the item up to element report (from the FPD Corpus)

Unit: ngp - nominal group

Occurs: 22248
Fills Frequency Probability
S Subject 8882 40.64%
c Complement 7012 32.08%
cv completive 2737 12.52%
A Adjunct 681 3.11%
Voc Vocative 375 1.66%

Figure E.2: Excerpt from the unit-up-to-element report for the nominal group
(from the FPD Corpus)

1 The first three figures show the data replicated in the word processor and the fourth is an image o f a
page of the large item report which exists as a PDF file.

370

Element: Lnk - Linker

Occurs: 2351
In unit Frequency Probability
Cl Clause 1829 84.48%
ngp nominal group 301 13.74%
qigp quality group 33 1.40%
PSP prepositional group 9 0.38%

Figure E.3: Excerpt from the element-up-to-unit table for linker (from the FPD
Corpus)

371

i c q f * Item report

Po* hem Element Total +t*
element

Total iterr P rob ab ly

0 1 h_p 2B45 2645 *00%

1 THE an 2920 7165 97 1724%

2 A qc 1882 •881 999469%

3 AMD Lnk 1658 '658 100%

4 IT h_p 1582 •509 95 3856%

5 you *-P 1291 •291 100%

6 *8 OV 1407 1153 81 94 74%

7 WE h_p H31 1131 i00%

8 TO 1 1289 098 85 823%

9 YEAH F 987 987 *00%

10 THAT bj> 842 830 98 5748%

11 GOT V 902 694 76 9401%

12 IHFY h_p 009 609 100%

13 NO F (90 578 83 7681%

14 *1 P 569 559 100%

IS PUT V 472 470 99 6/63%

16 DOST o 419 414 98 8067%

17 EE h_p 412 412 00%

10 OF V 398 398 '00%

i* ON P 393 391 994911%

20 T ic n r h_p 766 387 50 5222%

21 ONE h_roe 561 386 688057%

22 THERE S_th 379 379 '00%

23 CAN O 387 367 •00%

24 YFS f 350 350 •00%

25 VY aa 362 346 98 2955%

20 LOOK V 345 3»5 100%

2 / HAVE V 620 339 5 46 /74%

20 KNOW V r e 314 99 3671%

Item report

Figure E.4: The item report (sorted by item frequency)

372

Appendix F
Modifying the corpus: details of the
changes made in Stage One
In Chapter Nine, I described how we updated the Polytechnic of Wales (POW) Corpus

to create the Fawcett-Perkins-Day (FPD) Corpus, which is analysed according to the

latest version of the Cardiff Grammar. I also explained how many of the changes were

performed automatically in Stage One of the conversion. This Appendix is a record

of those changes.

During Stage One, we kept the uppercase syntax tokens used in the POW Corpus,

and when we inserted a new syntax token that was not in the earlier version of the

Cardiff Grammar, we inserted it in uppercase. Stage Two of the conversion converted

all the syntax tokens into their modem mixed case versions and details of these tokens

are given in Appendix G.

The automatic changes are detailed in the table that follows. It is important to

note that the changes were executed in the order implied by the identifier. This was

because some earlier changes affect the requirements for those that were applied later.

In addition to the changes that are described here, there were other non-automated

changes, which were performed using ICQF+'s corpus editor, and these are not

described here.

373

374

Id Description of change Remarks
0 Find all instances of the items t h i s , th a t , th e s e and th o se which expound a deictic determiner (DD) in a

nominal group (NOP) or an unfinished nominal group (NOPUN) where the element is the final element in its unit,
and change the deictic determiner (DD) into a pronoun head (HP).

1 Find all instances of the item w hich, that expounds a wh-deictic determiner (DDWH) in a nominal group (NGP) or
an unfinished nominal group (NGPUN) where the element is the final element in its unit, and change the wh-
deictic determiner (DDWH) into a wh-head (HWH).

2 Find all instances of the items w h ich and w hat where it expounds a wh-deictic determiner (DDWH) in a
nominal group (NGP) or an unfinished nominal group (NGPUN), and it is the final element in its group. Change
the wh-deictic determiner (DDWH) into a wh-head (HWH).

3 Find all instances of the items h e re , now, th e n and when where it expounds an apex (AX) in a quantity-quality
group (QQGP) or an unfinished quantity-quality group (QQGPUN), and it is the only element in its group. Change
the apex (AX) into a pronoun head (HP) and the quantity-quality group (QQGP) into a nominal group (NGP), or the
unfinished quantity-quality group (QQGPUN) into an unfinished nominal group (NGPUN).

4 Find all instances of the items w here, and when where it expounds a wh-apex (AXWH) in a quantity-quality
group (QQGP) or an unfinished quantity-quality group (QQGPUN), and it is the only element in its group. Change
the wh-apex (AXWH) into a wh-head (HWH) and the quantity-quality group (QQGP) into a nominal group (NGP), or
the unfinished quantity-quality group (QQGPUN) into an unfinished nominal group (NGPUN).

5 Find all instances of the items can, c o u ld , w i l l , would, s h a l l , sh o u ld , m ig h t, m ust, and o u g h t
where it expounds a modal operator (OM) in a Clause (CL) or an unfinished Clause (CLUN) and change the modal
operator (OM) into an ordinary operator (O).

Note that an error was
discovered in the POW
Corpus where the syntax
token (OM) was being used
to represent both (a) a
modal operator, and (b) an
operator conflated with a
main verb. This error was
corrected by this, and
subsequent changes.

375

Id Description of change Remarks
6 Find all instances of the items can t, co u ld n t, wont, w ouldnt, sh o u ld n t, sh an t, maynt, m igh tn t,

ou gh tn t, c a n 11, c o u ld n 11, won11, w ou ld n11, sh o u ld n 11, sh a n 1t , mayn11, m ig h tn 11, and
o u g h tn ' t where it expounds a modal operator (OM) in a Clause (CL) or an unfinished Clause (CLUN) and
change the modal operator (OM) into an ordinary operator (O).

7 Find all instances of the items am, i s , was, are, 1 s, and were, and were where it expounds the modal operator
(OMO, OM) in a Clause (CL) or an unfinished Clause (CLUN) and the modal operator (OMO) is followed by the
infinitive element (I). Change the modal operator (OMO, OM) into an operator (O).

8 Find all instances of the items have, had, has, ' ave, and ' ad, and were where it expounds the modal operator
(OMO, OM) in a Clause (CL) or an unfinished Clause (CLUN) and the modal operator (OMO) is followed by the
infinitive element (I). Change the modal operator (OMO, OM) into an operator (0).

9 Find all instances of the items a-few , any, a - b i t , b i t , a - l i t t l e , a - l o t , about, anoth er , as,
enough, h ard ly , how, n e a r ly , p le n ty , q u ite , so, so m e th in g - lik e , and th a t , where it expounds a
temporer (T) in a quantity-quality group (QQGP), or an unfinished quantity-quality group (QQGPUN) which fill
with a quantifying determiner (DQ) or a negative quantifying determiner (DQN). Change the temporer (T) into an
adjuster (AD) and the quantity-quality group into a quantity group (QTGP), or the unfinished quantity-quality
group (QQGPUN) into an unfinished quantity group (QTGPUN). If there is a apex (AX) as a sibling, change it to an
amount (AM). If there is a finisher (FI) present as a sibling, change it to a quantity group finisher (QTF).

Similar to change 5, but
with the ’nt forms of the
words.

Note that modal operators
where labelled OM and
OMO in the POW corpus.
See also Change 5 and
Change 8.

Although the quantity
group (QTGP) is not a
syntax token in the earlier
version of the Cardiff
Grammar used in the POW
Corpus, I decided to keep
the syntax tokens in
uppercase letters until the
global change into mixed
case tokens was made
later.

376

Id Description of change Remarks
10 Find all instances of the item j u s t , where it expounds a temporer (T) in a quantity-quality group (QQGP), or an

unfinished quantity-quality group (QQGPUN) which fill with a quantifying determiner (DQ) or a negative
quantifying determiner (DQN). Change the temporer (T) into an inferer (INF) and the quantity-quality group into
a quantity group (QTGP), or the unfinished quantity-quality group (QQGPUN) into an unfinished quantity group
(QTGPUN). If there is a apex (AX) as a sibling, change it to an amount (AM). If there is a finisher (FI) present as
a sibling, change it to a quantity group finisher (QTF).

11 Find all instances of the item more, where it expounds a scope (SC) in a quantity-quality group (QQGP), or an
unfinished quantity-quality group (QQGPUN) which fill with a quantifying determiner (DQ) or a negative
quantifying determiner (DQN). Change the scope (SC) into an amount (AM) and the quantity-quality group into a
quantity group (QTGP), or the unfinished quantity-quality group (QQGPUN) into an unfinished quantity group
(QTGPUN). If there is an apex (AX) present as a sibling to the left or right, change it to an adjuster (AD). If there
is a temporer (T) present change it also to an adjuster (AD). If there is a finisher present (FI), change it to a
quantity group finisher (QTF). Warn the user if more than one adjuster in the resulting quantity group.

12 Find all instances of the item o u ts id e , where it expounds an apex (AX) in a quantity-quality group (QQGP), or
an unfinished quantity-quality group (QQGPUN) which fill with a preposition (P) in a prepositional group (PGP),
or an unfinished prepositional group (PGPUN). Change the quantity-quality group (QQGP) into a quantity group
(QTGP), or the unfinished quantity-quality group (QQGPUN) into an unfinished quantity group (QTGPUN). If
there is a temporer (T) present as a sibling, change it also to an adjuster (AD). If there is a finisher (FI) present as
a sibling, change it to a quantity group finisher (QTF).

13 Find all instances of the items a - b i t , a lm ost, more, too , th a t , down, fu r th e r , a s and about where it
expounds a temporer (T) in a quantity-quality group (QQGP), or an unfinished quantity-quality group (QQGPUN)
which fill with a temporer (T) in a higher quantity-quality group (QQGP), or an unfinished quantity-quality group
(QQGPUN). Change the temporer (T) into an adjuster (AD). Change the quantity-quality group (QQGP) into a
quantity group (QTGP), or the unfinished quantity-quality group (QQGPUN) into an unfinished quantity group
(QTGPUN). If there is a sibling apex (AX), change it to an amount (AM). If there is a sibling finisher (FI), change
it to a quantity group finisher (QTF). Do not change the higher quantity-quality group (QQGP) as this will be the

 subject of a later change.___________

J u s t was forgotten in
Change 9.

Change 13 was
implemented as two sub
changes for groups of the
words given.

377

Id Description of change Remarks
14 Find all instances of the items much, more, a - l o t , a - l i t t l e , m ost, a - b l t , and how-much,

where it expounds an apex (AX) or a temporing apex (AXT) in a quantity-quality group (QQGP), or an unfinished
quantity-quality group (QQGPUN) and where the unit fills either of these elements in the Clause: Adjunct (A),
Replacement Adjunct (AREPL), Metalingual Adjunct (AM), and wh-Adjunct (AWH). Change the apex (AX) into an
amount (AM). Change the quantity-quality group (QQGP) into a quantity group (QTGP), or the unfinished quantity-
quality group (QQGPUN) into an unfinished quantity group (QTGPUN). If there is a sibling temporer (T), change it
to an adjuster (AD). If there is a sibling scope (SC) element, change it to a quantity group finisher (QTF).

15 Find all instances of the elements modifier (MO), affective modifier (MOA), relative modifier (MOC), thing modifier
(MOTH), ordinative determiner (DO), or superlative determiner (DS) that are filled by one or more quantity-quality
groups (QQGP) or an unfinished quantity-quality group (QQGPUN). Change any child deictic determiner (DD) into
a quality group determiner (QLD). Change the quantity-quality group to a quality group (QLD).

16 Find all instances of the elements Complement (C), anticipated Complement (CANTIC), wh-Complement (CWH),
or replacement Complement (CREPL) that are filled by one or more quantity-quality groups (QQGP) or an
unfinished quantity-quality group (QQGPUN). Change the quantity-quality group into a quality group (QLGP), or
the unfinished quantity-quality group into an unfinished quality group (QLGPUN). Change any child deictic
determiner (DD) into a quality group determiner (QLD). Change the quantity-quality group to a quality group
(QLD).

17 Find all instances of the items again , never, norm ally , anyway, b e t t e r , d i f f e r e n t , easy , f a s t ,
f i r s t , second, hard, la t e r , n ea t, p r e fe r a b ly , r ig h t , s lo w ly , soon, to g e th e r , wrong,
y e llo w , f u l l , any, and good, which expound an apex in a quantity-quality group (QQGP), or an unfinished
quantity-quality group (QQGPUN). Change the quantity-quality group into a quality group (QLGP), or the
unfinished quantity-quality group into an unfinished quality group (QLGPUN).

Change 14 was
implemented as two
changes: one for the AX
and the other for the AXT.

The list of words was
compiled after querying in
ICQF+. The list shown
here was extended to cover
more words, and the
change was run several
times.

378

Id Description of change Remarks
18 Find all quantity-quality groups (QQGP), or unfinished quantity-quality groups (QQGPUN) that have a single child

element and fill a Main Verb Extension (CM). Make the item that expounds the single child element of the unit
directly expound the Main Verb Extension (CM) and discard the quantity-quality group (QQGP), or unfinished
quantity-quality group (QQGPUN).

19 Find all quantity-quality groups (QQGP), or unfinished quantity-quality groups (QQGPUN) that have more than
one child element and fill a Main Verb Extension (CM) and the quantity-quality group does not contain a scope
(SC) element. Change the quantity-quality group (QQGP) into a quantity group (QTGP), or the unfinished
quantity-quality group (QQGPUN) into an unfinished quantity group (QTGPUN). Change any apex (AX) in the
group into an amount (AM). Change any temporer (T), into an adjuster (AD).

20 Find all temporers (T) that are in prepositional groups (PGP), or unfinished prepositional groups (PGPUN) and
change them to prepositional temporers (PT).

21 Find all instances of the items b y -h ere , b y -e r e , b - th e r e , b y -th e r e , somewhere, everyw here,
nowhere, th ere , and where, where it expounds an apex (AX). Change the apex (AX) into a pronoun head
(HP). Change the parent unit (QQGP or QQGPUN) into a nominal group (NGP or NGPUN). Change any sibling
temperers (T) into modifiers (MO). Change any sibling scope elements (SC) into qualifiers (Q).

22 Find all instances of temporer (T) in a nominal group (NGP) and change them to modifiers (MO).

23 Find all instances of the items more and m ost where it expounds a tempering apex (AXT) in a quantity-quality
group (QQGP), or an unfinished quantity-quality group (QQGPUN). Change the quantity-quality group (QQGP)
into a quantity-group (QTGP), or the unfinished quantity-quality group (QQGPUN) into an unfinished quantity
group (QTGPUN). Change the tempering apex (AXT) into an amount (AM). Change any sibling apex (AX) into an
adjuster (AD) and change any sibling scope (SC) into a quantity group finisher (QTF).

Note that b y -h ere , and
by - th e r e are common
in the Welsh dialect.

At this point, some QQGP
that had been changed to
NGP where discovered to
contain temporers which
hadn't been changed.

379

Id Description of change Remarks
24 Find all instances of the items s t i l l , y e t and anymore where it expounds an apex (AX) in a quantity-quality

group (QQGP), or an unfinished quantity-quality group (QQGPUN). Change the quantity-quality group (QQGP)
into a quantity-group (QTGP), or the unfinished quantity-quality group (QQGPUN) into an unfinished quantity
group (QTGPUN). Change the (AX) into an amount (AM). Change any sibling temperer (T) into an adjuster (AD)
and change any sibling scope (SC) into a quantity group finisher (QTP).

25 Find all instances of the item gonna where it expounds an auxiliary (X). Change the item gonna into g o in g
and the auxiliary (X) into and auxiliary extension (XEX). Add a new item to as the immediate right sibling of the
target item, which expounds an infinitive element (I) . .

26 Find all instances of the item g o t t a where it expounds an auxiliary (X). Change the item g o t t a into g o t and
the auxiliary (X) into and auxiliary extension (XEX). Add a new item to as the immediate right sibling of the
target item, which expounds an infinitive element (I).

27 Find all instances of the item g o in g - to and go in - to where it expounds an auxiliary (X). Change the item
g o in g - to or g o in - to into g o t and the auxiliary (X) into and auxiliary extension (XEX). Add a new item to
as the immediate right sibling of the target item, which expounds an infinitive element (I).

29 Find all instances of a Subject (S) followed by an auxiliary extension (XEX) where there is not also an operator
conflated with an auxiliary (OX) in the same clause. Find also examples where the subject and or the auxiliary
extension are ellipted. Add an ellipted operator conflated with an auxiliary (OX) between the Subject (S) and the
auxiliary extension (XEX).

30 Find all instances of the item had that is followed by the item b e t te r . Change the item had so that it
expounds an operator conflated with and auxiliary (OX) and the item b e t t e r so that it expounds an auxiliary
extension (XEX)

31 Find all instances of the item l e t ' s that expound a Subject (S). Add a new element to the left of the Subject
(S) for the let element (L), directly expound it by the item let. Change the Subject (S) so that it fills a nominal
group (NGP) which has a pronoun head expounded by ' s.

Change 28 was
abandoned.

The element L is not
discussed in Chapter Four.

380

Id Description of change___Remarks
32 Find all occurrences of the items a- few, a l l , any, enough, more, m ost, much, l e s s , one, two, th ree ,

four, f iv e , s ix , seven , e ig h t , n in e , ten , and e le v e n which expound an apex (AX) as the only element
in a quantity-quality group (QQGP), or an unfinished quantity-quality group (QQGPUN) which fills a quantifying
determiner (DQ) or a negative quantifying determiner (DQN). Remove the quantity-quality group (QQGP), or the
unfinished quantity-quality group (QQGPUN) and let the item directly expound the quantifying determiner (DQ),
or the negative quantifying determiner (DQN).

33 Find all occurrences of the items a - few, a l l , any, enough, more, m ost, much, l e s s , one, two, th r ee ,
four, f iv e , s ix , seven , e ig h t , n in e , ten , and e le v e n which expound an apex (AX) which is not the
only element in a quantity-quality group (QQGP), or an unfinished quantity-quality group (QQGPUN) which fills a
quantifying determiner (DQ) or a negative quantifying determiner (DQN). Change the apex (AX) to an amount
(AM). Change any sibling temperer (T) to an adjuster (AD). Change any sibling scope (SC) to a quantity group
finisher (QTF). Change the quantity-quality group (QQGP) to a quantity group (QTGP), or the unfinished
quantity-quality group (QQGPUN) to an unfinished quantity group (QTGPUN).

34 Find all instances of the items ' er, ' ere , here, th ere , now, then, how, why, anyhow, somehow,
anywhere, somewhere, everyw here, and nowhere where it expounds an apex (AX) in a quantity-quality
group (QQGP), or an unfinished quantity-quality group (QQGPUN). Change the quantity-quality group (QQGP) to
a nominal group (NGP), or the unfinished quantity-quality group (QQGPUN) to an unfinished nominal group
(NGPUN). Change the apex (AX) to a pronoun head (HP). Change any sibling temperer (T) to a modifier (MO),
and change any sibling scope (SC) to a qualifier (Q).

35 Find all instances of the items I f , once, tw ice , a fterw a rd s, a f t e r , b eforehan d , b e fo r e ,
forw ards, backwards, upwards, downwards, Indoors, ou td oors, In s id e , and o u ts id e where it
expounds an apex (AX) in a quantity-quality group (QQGP), or an unfinished quantity-quality group (QQGPUN).
Change the quantity-quality group (QQGP) to a nominal group (NGP), or the unfinished quantity-quality group
(QQGPUN) to an unfinished nominal group (NGPUN). Change the apex (AX) to a pronoun head (HP). Change any
sibling temperer (T) to a modifier (MO), and change any sibling scope (SC) to a qualifier (Q).

Id Description of change Remarks
36 Find all instances of the item g orra where it expounds an auxiliary (X). Change the item gorra into g o t and

the auxiliary (X) into and auxiliary extension (XEX). Add a new item to as the immediate right sibling of the
target item, which expounds an infinitive element (I).

37 Find all instances of the item some where it expounds an apex (AX) in a quantity-quality group (QQGP), or an
unfinished quantity-quality group (QQGPUN) that fills a quantifying determiner (DQ), or a negative quantifying
determiner (DQN). Change the quantity-quality group (QQGP) to a nominal group (NGP), or the unfinished
quantity-quality group (QQGPUN) to an unfinished nominal group (NGPUN). Change the apex (AX) to a pronoun
head (HP). Change any sibling temperer (T) to a modifier (MO), and change any sibling scope (SC) to a qualifier
(Q).

38 Find all instances of the items a f t e r , a fterw a rd s, in s id e , in d oors , in , ou t, down, b e fo r e , on-
top, in - f r o n t , beneath , below , o u ts id e , ou td oors, underneath , upwards, downwards, up,
and upwards, where it expounds a head (H) in a nominal group (NGP), or an unfinished nominal group
(NGPUN). Change the head (H) into an amount (AM). Change the nominal group (NGP) to a quantity group
(QTGP), or the unfinished nominal group (NGPUN) to an unfinished quantity group (QTGPUN). Change any
sibling modifiers (MO*) into an adjuster (AD). Change any qualifiers (Q) to a quantity group finisher (QTF).

39 Find all instances of the items how and why where they expound a wh-apex (AXWH) in a quantity-quality group
(QQGP), or an unfinished quantity-quality group (QQGPUN), or a quantity group (QTGP), or an unfinished
quantity group (QTGPUN). Change the unit (QQGP, QQGPUN, QTGP,QTGPUN) to a nominal group (NGP), or an
unfinished nominal group (NGPUN). Change the wh-apex (AXWH) to a wh-head (HWH). Change any sibling
temperer (T) to a modifier (MO). Change any scope (SC) to a qualifier (Q).

44 Find any item a n ' and a linker (Lnk) and change to and Following a query in ICQF
to confirm they were all
and. Changes 40 thru 43
abandoned.

Table F.l: Changes made during Stage One of the corpus modification

Appendix G
Modifying the corpus - a table of syntax
token mappings used in Stage Two
The process that was used to create the Fawcett-Perkins-Day (FPD) Corpus from the

Polytechnic o f Wales (POW) Corpus is given in Chapter Nine. While reading this

appendix, it is important to realise that the modification was not simply a matter of

changing syntax tokens and it represented many man-months of work. It involved two

stages, and it is the data for the latter stage that is given here; details of the changes

made for Stage One are given in Appendix F.

O L D L A B E L N EW LA B EL CO NTEXT
&N Lnk
AA A_Aff
AD A D O
AF A_AS
Al A J n f
AL A L o g
ALREPL A_Log_Repl
ALWH A_L_W h
AM A_Val CL
AM A_Val CLUN
AN A
AP A_Pol
AREPL A_Repl
ATG A _C STag
AW H A_W h
AX ax
AXT ax
AXW H ax_wh
BM B
BN B
CANTIC A R e s
CL Cl
CM M Ex
CP Xex
CREPL C_Repl
CV cv
CVREPL cv_repl
CVW H cv_wh
CW H C_W h
DD dd

D DW H dd_wh

382

OLDLABEL NEWLABEL CONTEXT
DO od
DP pd
DQ qd
DQN qd
DQ W H qd_wh
DR rd
DS sd
DT td
ET et
EX Excl
FI fi
G g
GC genclr
H h
HN h_n
HP h_P
HPN h_p
HSIT h_sit
HWH h_wh
INF inf
LNK Lnk
MO mo
MOA aff_mo
MOC rel_mo
MOQ q_m o
M OSIT sit_mo
M OTH th_mo
NGP ngp
OMN o
ON o
OW N own
P P
PGP pgp
PM p
PS po
PT pt
Q q
QLGP qigp
QREPL q_repl
QTF qtf
Q TG P qtgp
SANTIC A R e s

SC sc
SIT S J t

SREPL S_Repl
STH S_th

SW H S__Wh

T dt

TD td
TW H dt_wh

TW H dt wh

383

OLDLABEL NEWLABEL CONTEXT
V Voc
VO V NGP
XEX Xex
XM X
XM N X
XM O X
XM ON X

Table G.l - The data used in Stage Two for creating the FPD Corpus

384

Appendix H
The probabilities tables, parser working
tables and data structures
This appendix describes:

(a) the queries and the probabilities tables (see Section H.l),

(b) the data structures used by the parser that are stored in the parser working

tables (see Section H.2), and

(c) the functions that operate on those data structures (see Section H.3).

H . l T h e p r o b a b i l i t i e s t a b l e s a n d t h e i r q u e r i e s
This section describes Version One the probabilities tables. It provides details of the

different types of table and the queries that are performed upon them.

H.1.1 Types of table and their queries
As we saw in Chapter Fourteen that there are two groups of probability queries:

vertical queries and horizontal queries. Vertical queries have this name because

they ask about the relationship upward between an item, element or unit and the

syntactic category (or categories) above it in the tree. This relationship may reach up

to the 'root' of the tree (i.e. the Sentence node(Z)). The vertical queries return vertical

strips, or parts o f vertical strips, as we saw in Section 5.2.4 of Chapter Five and

Section 11.5 of Chapter Eleven, this concept first used by O'Donoghue (1991b)1. The

vertical strips used by the parser can be sub-classified as:

(a) complete-with-item,

(b) complete-without-item,

(c) partial-with-item,

(d) partial-without-item.

Figure H. 1 shows a diagram of the syntactic analysis of a sentence that illustrates

the complete-with-item type of vertical strip. Such vertical strips include the item,

the elements and units in the order in which they occur, starting from the item and

going up to the sentence node. Thus, the first vertical strip in Figure H.l, consists of

"The" dd ngp S C l Z. Complete-without-item vertical strips are the same but

exclude the item (eg dd ngp S Cl Z). Partial vertical strips are simply parts of a

1 O'Donoghue's vertical strips are of the type complete-without-item.

385

vertical strip that occur anywhere in a complete-with-item vertical strip, e.g. "The"

dd n gp , "The" dd , ngp S, S C l etc.

ngp ngp

dd
dd

The seagulls the mackerelate

Initial Vertical strip Item: "The" dd ngp S Cl Z
Initial Vertical strip Element: dd ngp S Cl Z

Figure H.l - A sample sentence and a set of initial
vertical strips extracted from it

The types of vertical queries used by the parser are:

(a) Initial vertical strip based on Item (IVS - ITEM), see Section H. 1.2,

(b) Initial vertical strip based on element of structure (IVS-ELEM), see Section

H .l.2,

(c) Item-up-to-Element (12 E), see Section H. 1.3,

(d) Item-up-to-Element-up-to-Unit (I2E2U2E), see Section H.1.3,

(e) Unit-up-to-Element (E2U), see Section H .l.4,

(f) Element-up-to-Unit (U2E), see Section H .l.5.

Horizontal queries return elements, or groups of elements together with as

associated probability. They operate using horizontal slices, or partial horizontal

slices at any level of the tree which represents a unit. There are two horizontal queries

called Unit Structure queries:

(a) Forward Unit Structure (FUS), see Section H .l.6.1,

(b) Backward Unit Structure (BUS), see Section H .l.6.2.

386

H .l.2 Queries to the initial vertical strip tables

H .l.2.1 Rationale in creating the tables

The first item in the input string requires a different sort of query from all the other

items, because there is no preceding analyses that make forward predictions that could

assist the parser in its decisions. In the early implementations of the parser, the

algorithm analysed the first item in the same way as all the others, i.e. by performing

an I2E query followed by a sequence of E2U, and U2E queries until it reached the

sentence node. We discovered, however that this method led to the creation of too

many vertical strips, many of which could not occur in this position in the sentence.

I therefore developed new Query Restriction features in ICQF+ (see Section

8.3.4 of Chapter Eight), which enabled information to be extracted about items,

elements and units when they occur in the sentence initial position. These queries

confirmed that the items, elements and units in the sentence initial vertical strip have

significantly different statistical properties from the others.

In fact, I automatically created two sets of initial vertical strips: one that was

complete-with-item, and another that was complete-without-item for use in the

Initial Vertical Strip (IVS) probabilities tables. The problem that led to this was that

the FPD Corpus contains approximately 11,000 sentences, and so yielding 11,000

initial vertical strips, and this is too small a database from which to create probabilities

tables that would be representative of, and so applicable to, unrestricted language.

Substantial time and effort was expended by both researchers in an attempt to ensure

that the IVS probabilities tables have a far wider coverage than that which could be

derived from the FPD corpus. And the main means by which this was accomplished

was to amend the IVS tables based on the data extracted from the vast tables of lexical

probabilities that were derived from the British National Corpus (BNC).

Two types of IVS probabilities tables are used. These are the initial vertical

strip element (IVS-ELEM) and the initial vertical strip item (IVS-ITEM) tables,

and it is to the distinction between these that we next turn.

We have therefore also introduced the initial vertical strip item (IVS-ITEM)

probabilities table, which contains a set of complete-with-item vertical strips that

occur in the sentence initial position.

387

The initial vertical strip element (IVS-ELEM) probabilities table contains a set

of complete-without-item vertical strips that occur in the sentence initial position, and

this is the table that is used for most items.

However, there is a small set of about twenty items, each of which can expound

two or more elements, and each of which has significantly different probabilities of

expounding one or other of those elements when the item occurs initially. The item

th a t , for example, is far more likely to be a pronoun head (h_p) or a deictic

determiner (dd) in a nominal group (ngp) than a Binder (B) in a Clause (Cl) when

it is sentence initial. The probabilities for these items (which include many of the

personal pronouns and the more frequent co-ordinating conjunctions), are contained in

the IVS-ITEM table.

H .l.2.2 The structure of the tables

The structure o f the IVS - ITEM table is given in Appendix D.

Table H.l shows an excerpt from the results of an IVS-ITEM query for the item

th a t . It shows a 32.28% chance of being a pronoun head (h) in a nominal group

(ngp) that fills the Subject (S) in the primary clause (Cl).

ITEM VERTSTRIP PROBABILITY
that h_p ngp S Cl Z 0.3228
that dd ngp S Cl Z 0.3199
that h_p ngp C Cl Z 0.2796
that dd ngp C Cl Z 0.2771
that h_J? n9P cv P9P C Cl Z 0.0547

Table H .l - An excerpt from the IVS-ITEM query for the item " th a t”

Table H.2 shows an IVS-ELEM query for a head (h). It indicates that there is a

32.28% chance of the pronoun head being in a nominal group (ngp) that fills the

Subject (S) in the primary clause (Cl) and 27.96% chance of being in a nominal group

that fills a Complement (C) in the primary clause.

388

B L iSMisIi "X" VERTSTRIP PROBABILITY
h h ngp S C l Z 0.1400
h h ngp C C l z 0.0300
h h ngp A Cl z 0.0247
h h ngp S Cl C C l z 0.0059
h h ngp c Cl C C l z 0.0040

Table H.2 - An excerpt from the IVS-ELEM
query for the element-of-structure ”h"2

H.l.2.3 Criteria for including items in the Initial Vertical Strip Item table
Many items in English may expound two or more different elements of structure.

Many of these are already given special treatment by the parser, by including them in

the Item-up-to-element-up-to-unit (I2E2U2E) table (see Section H .l.3). However,

some of these items can be seen to be operating differently when they occur in the

sentence initial position, in that their potential structures and their associated

probabilities are different.

While most personal pronouns (such as I and me) are included in the I2E2U2E

table, there are other frequent items whose probabilities are significantly different

when they are sentence initial, namely: you, m ine, you rs, h is , h e r s , ours,

t h e ir s , t h a t , t h e s e , th o s e , i t , th e r e , then , and, or, nor, n e i t h e r and

so.

The reason why the Linkers (Lnk), or, nor, and, n e i t h e r are included is that,

while they can occur in any class of unit when not sentence-initial, they are extremely

likely to be a linker in a Clause when they are sentence-initial.

That concludes the description of the tables used for the initial item in a sentence.

The rest of the tables to be described here are the tables that are used when the parser

is working out the structure above for all the subsequent items in a sentence.

H.l.3 Item-up-to-element (I2E) and item-up-to-element-up-to-Unit-up-to-
Element (I2E2U2E) tables
An I2E query operates on the I2E probabilities table, and it obtains a list of elements

that a given item can expound together with their associated probabilities. However,

certain items behave quite differently from others when we take into account the

element of structure that occurs above the unit above the expounded element. For

these items, there is a Boolean value to indicate that the parser must ask for a further

item-up-to-element-up-to-unit-up-to-element query (I2E2U2E).

2 The query returns 147 rows.

389

Let us look first at the I2E probabilities table, since it is the simpler of the two.

The structure o f the table is given in Appendix D. There are two important fields in

this table that need to be discussed in more detail here. These are the fields named

I2E2U2ENEEDED and IVSITEMNEEDED which are Boolean fields that are used by

the parser. The first indicates that the parser should ask for a query to the I2E2U2E

table for this item when it expounds the given element. The second indicates that the

parser should ask for an IVS_ITEM query for the given item when it is parsing the

first item of a sentence.

Table H.3 shows an I2E query for the item th e . Note that, when th e expounds

a quality group determiner (q ld) , a quantity group determiner (qtd) or a linker

(Lnk), they are worthy of further analysis which will be provided by an I2E2U2E

query. There is a 97.14% chance that th e expounds a deictic determiner (dd) , a

2.24% chance that it is a quality group determiner (qld), a 0.59% chance that it is a

quantity group determiner (qtd), and a 0.01% chance that it is a linker (Lnk)3.

ITEM ELEM1 PROBI2E1 I2E2U2ENEEDED
the dd 0.9714 False
the qld 0.0224 True
the qtd 0.0059 True
the Lnk 0.0001 True

Table H.3 - Entries in the I2E table for the item th e

There are certain items which predict not only the element and unit above them,

but also the element above that. For example, an item such as happy that expounds

the apex (ax) of a quality group (q lgp), strongly predicts the range of elements that

the quality group may be fulfilling (e.g. a modifier (mo) or a Complement (C), but not

an Adjunct (A)). This knowledge is provided by the I2E2U2E table. This is one of

the particular areas in which the CCPP has additional linguistic knowledge, so giving

it an advantage over other approaches.

The fields of the I2E2U2E table are: ITEM, and ELEM1 (which are the same

fields found in the 12 E table and are used as a matching set of fields in the I2E2U2E

table), and then UNIT (the unit that ELEM1 is a component of), ELEM2 (which is

3 Some readers may be surprised to find that, in this grammar, the in the biggest is not a simple
deictic determiner (dd), for reasons explained in Fawcett (2007a). The use of the as a linker that
occurs in sentences such as the faster we work/ the sooner we'll finish.

390

the element that the UNIT fills), and the probability of this I2E2U2E record when

compared against other matching I2E2U2E records is given in PROBI2E2U2E.

Table H.4 shows the I2E2U2E values for th e as a quality group determiner

(qld); it shows that it can act as a superlative determiner (sd) (85% chance), a

Complement (C) (14.5% chance), and an ordinative determiner (od) (0.5% chance).

ITEM ELEM1 XJNIT ELEM2 PROB
I2E2U2E

the qld qigp sd 0.8500
the qld qlgp c 0.1450
the qld qlgp od 0 .0050

Table H.4 - Entries in the I2E2U2E table for the item th e as a q ld

We come now to the last two tables, each of which is small in comparison, with

most o f those considered so far, since they do not involve items.

H.l.4 Queries to the element-up-to-unit (E2U) table

This table provides the probability that an element of structure is a component of a

given unit. Apart from the two elements of the Linker (Lnk) and the Inferer (in f) , no

elements can only belong to more than one unit4. The fields of the E2U table are

given in Appendix D.

In most cases the element can only belong to one class of unit and its

PROBABILITY score will be 1 (100%). However, the element linker (Lnk), which

may belong to a number of classes of unit, and is therefore more interesting, is shown

in Table H.5. Here we can see that a linker is most likely to occur in a Clause (Cl)

(80.00%) and that the second most likely unit that it occurs in is a nominal group

(ngp) (18.00%).

ELEM UNIT UNITPROB
Lnk Cl 0.8000
Lnk ngp 0.1800
Lnk qlgp 0.0019
Lnk qtgp 0.0001

Table H.5 - Entries in the E2U table for the element Lnk

Finally, we turn to the rather more complex Unit-up-to-Element (U2E) table.

4 In the FPD Corpus, however, we distinguish unfinished units from units that have been completed by
using the token for the unit followed by an underscore and a "un" (eg Cl_un).

391

H .l.5 Queries to the unit-up-to-element (U2E) table
This table gives the probability that a given unit fills one of one or more elements of

structure. So, like the I2E table, this table extends the vertical strip upwards by one

layer of structure represented by an element.

The structure of the U2E table is given in Appendix D. Table H.6 shows gives a

portion of the results of a U2E query for a nominal group (ngp). It shows that the

elements that a nominal group is most likely to fill a Subject (S) (40%) and a

Complement (C) (33%).

UNIT ELEM ELEMPROB
ngp S 0.40188
ngp C 0 .33950
ngp C V 0.12716
ngp A 0 . 03067
ngp voc 0.01697
ngp C_Wh 0.01633
ngp th_mo 0.01488

Table H.6 - A portion of the results of a
Unit-up-to-Element query for a nominal group

H .l.6 An overview of the unit structure (US) tables and their queries

They are of two types: forw ard and backward.

In contrast with the tables and their queries that have been described so far, unit

structure queries ask about the horizontal relationships in the parse tree. Forward Unit

Structure (FUS) queries elicit the probability of the next element in a unit that has a

given string of elements before it. Backward Unit Structure (BUS) queries elicit the

probability of the previous element in a unit for any given element.

Note that, in unit structure queries, the start and the end of the unit are treated, for

computational purposes, as if they were elements in the unit, each being represented

by an exclamation mark (!).

H .l.6.1 Queries to the forward unit structure tables (FUS)
The structure of the FUS table is given in Appendix D.

Table H.7 shows a portion of the FUS table for a Clause (Cl) for which the parser

has already found a Subject (S) and an Operator (O). The table shows that there is a

76% probability that the next element will be a Main verb (M) (as in I c a n ' t

see...), a 5% probability that it will be an auxiliary (X) (as in He may have...), and

392

several other lower probability elements. There is also an 11% probability that the

Operator (O) will be the last element in the unit5.

UNIT ELEMENTS NEXTELEM PROBABILITY
Cl s O M 0.7643
Cl s 0 i 0.1134
Cl s 0 X 0.0539
Cl s 0 A_Log 0.0121
Cl s o A Inf 0.0087
Cl s 0 A 0.0066
Cl s 0 I 0.0055

Table H.7 - Forward unit structure query for the next element in a Clause (Cl)
that has found a Subject (S) and an Operator (O)

H .l.6.2 Queries to the backward unit structure table (BUS)
The structure of the BUS table is given in Appendix D.

Table H.8 shows a Backward Unit Structure Query for a Clause (Cl). It tells us

which elements of structure may appear before a Main Verb (M), and their

probabilities. It shows that there is a 35% chance of the preceding element being a

Subject (S) (as in I a t e i t) , a 13% chance of it being an Operator (O) (as in I

m ight e a t) , an 11% chance of it being an Infinitive element (I) (as in I am

g o in g t o e a t s a u s a g e s)6. There is also a 17% chance of the Main Verb being

the first element in the clause (as in e a t i t) .
UNIT ELEM PREVELEM PROBABILITY

Cl M S 0.3597
Cl M i 0.1774
Cl M 0 0.1373
Cl M I 0.1122
Cl M OX 0.0861
Cl M OM 0.0336
Cl M Lnk 0.0251
Cl M A_Inf 0.0204
Cl M X 0.0146
Cl M A 0.0100
Cl M N 0.0067
Cl M S_Wh 0 . 0055

Table H.8 - Entries in the backward unit structure table for elements that can
precede a Main Verb (M) in a Clause (Cl)

5 This figure is untypically high because the FPD Corpus, which was used as a source of the
probabilities table, contains spoken texts which has unfinished units and ellipted elements. There are
m any unfinished Clauses, and many Clauses with ellipted elements.
6 Here, the item going is an auxiliary extension (XEx).

393

This now concludes the description of the probabilities tables and the types of

query that are used to extract data from them. Next, we turn to a very different set of

tables, and algorithms that are used to populate them. These are the tables that store

the parser's working data including the data structures.

H . 2 T h e p a r s e r d a t a s t r u c t u r e s
The way in which the parser is database-oriented is that its working data are stored in

database tables. This section describes (a) those tables, and (b) the functions that

operate on them.

H.2.1 Trees and Nodes

We saw in Chapter Fifteen that the basic data structure in the parser is a database tree

and that there are two types of tree:

(a) ones that represent what the parser has built so far (called built-structures),

(b) ones that represent what the parser is attempting to attach to the built

structures (called the candidate structures)7.

Both types of tree are stored in the DB_PARSE_TREE table which has a

structure as defined in Appendix D.

The field named TREE ID contains a unique identifier of the tree and is its primary

key. The field named TREELABEL contains either the value BUILTSTRUCTURE or

the value CANDIDATE STRUCTURE and indicates the type of the tree. The field

named PROBABILITY contains the associated score for the tree and is used to rank it.

Chapter Fifteen describes how this value is calculated. The field named COMPLETE

contains a Boolean value, and if set to tr u e , this indicates that this tree represents the

parse of the complete sentence. The field named ACTIVE contains a Boolean value,

and if it is set to tr u e , it means that this tree will be involved in the next 'move' that

the parser makes. The STARTPOS and ENDPOS fields indicate the 'staring position'

and 'end position', and so the span of the tree.

A tree may have a collection of nodes. The nodes of a tree are stored in the

DB_PARSE_NODE table, which has the structure defined in Appendix D.

The field named TREEID identifies (hence 'ID') the tree of which the node is a

part. The field named NODE ID is a unique identifier of the node within the tree. The

7 Technically, the candidate structure is a vertical strip as it does not contain any branching. It is
convenient to store both forms in the same data structure.

394

parent of the node is indicated in the field named PARENTID, where a value of -1

indicates that the node is the root node. The node to the left of the given node is

indicated in the field named LEFTSIBID, where a value of -1 indicates that the node

is the first node within its parent. The node to the right of the node is indicated in a

field named RIGHTSIBID, where a value of -1 means that the node is (currently)

the right-most node within its parent. The field named TOKEN stores the syntax token,

which can be a item, an element or a unit, where the field named TYPE indicates

which. The field named LEVEL_PROBABILITY gives the probability of this node,

and this is based on its parse history (see Section 15.1.7 of Chapter Fifteen). The field

named NODE_PROBABILITY stores the probability of this node, and this is the result

of a calculation that has involved an I2E, I2E2U2E, E2U, U2E or unit structure

query. The Boolean field RMS (right-most strip), if true, indicates that this node is in

the tree's right-most strip. Similarly, the Boolean field LMS (left-most strip), if true

indicates that this node is in the tree's left-most strip.

H.2.2 Forward and backward predictions
Each unit node in the built structure tree has predictions about the element of structure

that may follow the last element in the unit. This information, which will be used in

an attempt to join a candidate structure to the built structure, is stored in the

FORWARDPREDICTIONS table. The structure of this table is given in Appendix D.

The fields named BSTREEID (identifying the built structure tree) and

BSNODEID (identifying a node in the built structure tree) together identify the tree

and the node for which the prediction applies. This node always represents a unit.

The field named ELEM contains the syntax token of the next element predicted (or !

for the end of the unit). The field named PROBABILITY contains the probability that

the element follows the structure of the unit for which the node.

A similar table exists for the backward predictions from each unit node in the

candidate structures. The BACKWARDPREDICTIONS table contains the following

fields as defined in Appendix D.

The fields named CSTREEID (identifying a candidate structure tree) and

CSNODEID (identifying a node in the candidate structure tree), together represent the

unit node for which the backward prediction applies. The field called ELEM gives

the element that can occur before the first element in the given unit. The field called

395

PROBABILITY contains the probability that the given element comes before the first

element in the given unit.

H.2.3 The initial vertical strip table

The Initial Vertical Strip (IVS) table is used to store initial vertical strips which

may be used in the creation of built structures that represent the first item in the

sentence. It acts in the same way as the Parser State Table (PST), which will be

described in the next section. It contains the fields defined in Appendix D.

The field named ITEM contains the first item found in the sentence, and the field

named VERTSTRIP contains a string of element+unit pairs up to the sentence

element, and together form a legal vertical strip that can occur above the item. The

field named PROBABILITY contains the probabilities score for this strip when it

occurs in the sentence initial position. The field named FOLLOWED contains a

Boolean value that is set to true when the parser has used this vertical strip. The table

is used in Stage One of the parsing algorithm, and the strips are taken in order of

probability in groups of n, where n is the value in n-best (see Chapter Fifteen). Stage

One is a backtrackable state, and when the parser backtracks, the next n vertical strips

are converted into built structures, and will then have their FOLLOWED fields set to the

value True.

H.2.4 The parser state table
The parser state table is used to record the moves that the parser has made and the

trees that were involved in the move. This table is closely associated with the parsing

algorithm and was therefore described in Section 15.1.5 of Chapter Fifteen.

396

H . 3 T r e e f u n c t i o n s
The following operations are available to the parser to manipulate tree data structures.

Operation Arguments Value
returned

Description

newTree sTreeType Id of die
new tree

Creates a new active database tree where tree
type is "built structure" or "candidate
structure".

copyTree iTreeld Id of the
new tree

Creates a new tree containing copies of the
nodes in the source tree; makes the new tree
active.

createTreeFromXML sXML Id of the
new tree

Creates a tree from the XML in the input
string. If XML is invalid, returns -1.

createT reeFromStrip sStrip Creates a new tree from a string containing
syntax tokens (probabilities set to 1).

getTreeXML iTreeld,
iNodeld

sXML Creates an XML string containing the
structure below and including the nodeld.

getLeftToks iTreeld, string Gets a list of all tokens in the nodes to the
iNodeld containing a

list of syntax
tokens

left of the given node (if any).

getRightToks iTreeld, string Gets a list of all tokens in the nodes to the
iNodeld containing a

list of syntax
tokens

right of the given node (if any).

getNodeTok iTreeld,
iNodeld

string Gets the token in the given node.

getLvlProb, iTreeld, rProb Gets the value of the level or node
getNodeProb iNodeld probability in the given node.
addNode iTreeld,

iParentld,
sToken,
sType,
rNodeProb,
rLvlProb
bRMS

True or false Creates a new tree node and adds it as a child
of the node indicated in iParentld.

deactivateTree iTreeld Makes the tree indicated by iTreeld inactive.
treeExists iTreeld True or

False
Returns true if a tree exists with the given Id.

emptyParseT ree iTreeld True or
False

Returns true if iTreeld contains no nodes or
false if it contains nodes.

deleteBranch iTreeld,
iBranchPare
ntld

True or false Deletes the node indicated by
iBranchParentld and any children and
descendants.

joinTree iTreelld,
iTree2Id,
iTreel Parent
Id
bDestroy

True or false Joins tree 2 to tree 1 at node treel parentld.
If bDestroy is true, treel is set to inactive.

getTreeRoot iTreeld Id of the
node that is
the root node
of the tree

Returns the Id of the root node.

activateTree, iTreeld True or false Makes given tree active or inactive.
deactivateTree

397

Operation Arguments Value
returned

Description

setRMS iTreeld True or false Adjusts the RMS of the given tree after a join
operation.

editNode sToken,
sType,
rNodeProb
rLvlProb

True or false Changes the values held in the tree node to
the new values supplied.

Figure H.9: Table of the tree functions

H . 4 S u m m a r y
This appendix has provided in Section H.l full details of the probabilities tables.

Therefore, we have seen the types of query that is used by the parser, and the types of

data that is returned. This then, forms necessary extra detail for Chapter Fourteen and

for Chapter Fifteen, which fully describes the parsing algorithm.

Two versions of the probabilities tables were created. The first, which was in the

main automatically generated from the FPD Corpus, was adequate for the

development and testing of the parser, but was found to be lacking for parsing

unrestricted English.

Therefore, a Version Two of the probabilities tables was created, which drew its

information from a number of sources, but mainly the British National Corpus.

Appendix I describes these new tables and the procedures used to create them.

This appendix also covered the parser working tables, its data structures, and the

operations used for manipulating them.

398

Appendix I
The Version Two probabilities tables
This appendix describes how the Version Two probabilities tables were constructed

(see Chapter Fourteen and Appendix H). These tables are due to be implemented at

the start of Phase Two of this project and, at the time of writing, their construction is

nearing completion.

L I T h e d e v e l o p m e n t o f t h e V e r s i o n T w o t a b l e s
In constructing the original probabilities tables introduced in Chapter Fourteen and

Appendix H, we have noted several places in which the probabilities were skewed by

the fact that the corpus was one that contained children’s spoken texts. This led us to

develop a second version of the tables so that there are now two versions of the

probabilities tables, called Version One and Version Two. The two versions are

stored in database tables that have the same structures, the difference being the

different data in each version. The version used by the parser will be available for

selection from the Parser WorkBench (see Chapter Sixteen).

1.1.1 Weaknesses in the Version One tables
The Version One tables were created automatically from the corpus tables (and the

corpus index tables) that store the FPD Corpus (as described in Chapter Seven).

After their creation they were modified in relatively small ways to create a set of

tables that would be considered adequate for the development and testing of the parser.

However, as the work on developing the parser got underway, we realised both (a) that

we needed to develop a set of tables that would be capable of handling all types of

text, and (b) that we might be able to devise ways of incorporating data from large

tagged corpora into what came to be known as the Version Two of the probabilities

tables.

However, some major changes were made to Version One after their automatic

creation, ie (a) the identification of those items which needed item-up-to-element-up

to-unit-up-to-element (I2E2U2E) treatment, and (b) the identification of the items

for the initial vertical strip item table (IVS - ITEM).

The Version One tables ignored any of the following:

399

(a) items that were marked in the FPD Corpus as questionable analyses (by

containing a question mark),

(b) items where the analyst was not sure which word was uttered (ie where two

items were separated by a slash eg SAY/SAW?),

(c) items that were missing, and so were identified by the mark up element

< ITEMQUERY >,

(d) elements that were missing, and so were identified by the mark up element

< ELEMQUERY >,

(e) ellipted elements that were identified by the presence of the ellipted mark

up attribute.

The initial vertical strip item (IVS-ITEM) and initial vertical strip element

(IVS - ELEM) tables were derived from the left-most strip of the parse trees. Even for

Version One, however, these had to be substantially extended to increase the coverage

so that the parser would not be limited to the texts in the FPD Corpus.

Despite their shortcomings, this initial set of probabilities tables enabled us to

complete the development of the Phase One version of the parsing algorithm and to

demonstrate that it is indeed a suitable method of parsing. However, one of our

primary goals is to develop a parser that is capable of parsing general English that is

not restricted in any way to the text type of the source corpus that was used to generate

the probabilities tables. The Version One tables had three main issues, which we

needed to address in the improved Version Two tables.

The first and perhaps, the most obvious one was connected to the coverage of

items in the item tables (I2E and I2E2U2E). Since item tables in the Version One

set were extracted directly from the corpus, and since relatively few items were added

during our initial modifications to it, we were only able to parse sentences which

contained items that occur in the FPD Corpus. In order to have a parser that is able to

cover texts of any type, the item tables would need to contain vastly greater numbers

of items.

The second drawback was the problem of misanalysis found in the corpus. The

most common problem was that an item was assigned to the wrong element. These

analysis errors, which had somehow eluded the rigorous checking procedures used in

the original analysis, caused an unexpected number of problems during the testing of

400

the parser. A considerable amount of research time was devoted to identifying and

them correcting them using ICQF+ and its sentence editor (see Chapter Eight).

The third drawback was undue weight being given to possible analyses that were

relatively rare occurrences within the corpus. In these cases, the syntactic structures

were perfectly legal according to the rules of the grammar, but because other

structures would occur more frequently in adult, written texts had not occurred.

Therefore, the probabilities in the Version One tables gave certain structures higher

than expected weighting.

A small corpus of the size of the FPD Corpus cannot be expected to include all of

the items nor even all of the syntactic structures that one would expect to occur in a

large corpus with general coverage of English. Most of the core structures of English

do actually occur in the corpus, but the type of text skews their probabilities. Ideally,

when parsing, we would like to be able to draw on probabilities that were extracted

from a parsed corpus that contains texts of the type that we are attempting to parse. In

the absence of such corpora, the next best type of corpus would be one that is sub

divided into representative range of types of texts. Unfortunately no such corpus

exists, and in order to build the Version Two tables, we draw mainly on a corpus that

is large and general, but undivided - this was the British National Corpus (BNC).

The full range of sources on which we drew, were the following:

(a) a word list with parts-of-speech and frequencies extracted from the BNC (see

Section 3.2.2 of Chapter Three),

(b) the Moby Project's Part-of-Speech word list

(www.dcs.shef.ac.uk/research/ilash/Moby),

(c) data from Biber et al (1999),

(d) the system networks of COMMUNAL's GENESYS (see Section 2.5.1 of

Chapter Two),

(e) syntax data in Fawcett (2000a). See Chapter Four and Appendix A and B.

(f) the Collins COBUILD word usage dictionaries (see Section 3.2.1 of Chapter

Three),
(g) ICQF+, to extract examples from the FPD Corpus (see Chapter Eight), and

finally, but most importantly,

(h) the wide knowledge of an experienced linguist.

As the Version One tables were directly extracted from the corpus tables, it is

401

http://www.dcs.shef.ac.uk/research/ilash/Moby

clear that the parser is 'corpus-consulting'. With the use of the Version Two tables, it

can be argued that the parser is corpus-consulting in two ways. First the main source

of the additional data comes predominantly from another corpus - the larger British

National Corpus. Second, the Version Two tables can be considered to be part of a

'bootstrap' set of tables, in that their role is simply to give the parser a good start.

Then, as new sentences are successfully parsed, they will be added to the corpus

tables, and the probabilities tables will then be updated with the information from the

new parses. Although it will take a long time for the additional data to have

significant effect, the new data will gradually modify the original probability data, as

the corpus grows.

I next turn to the methods that were used to create Version Two of the

probabilities tables.

1.1.2 How the Version Two tables were developed

It was the 12 E and I2E 2U 2E tables that were affected by the introduction of the data

from the BNC. This is because the BNC is a tagged corpus and therefore does not

contain full parse tree analyses. Consideration was given to drawing on another

parsed corpus (such as the Penn Treebank), so that the syntax-oriented tables (E2U,

U2E, FUS and BUS) could also be updated. This was considered to be too complex a

task to attempt, as the only parsed corpora available contain analyses in terms of a

Chomskyan Phrase Structure Grammar approach. The task might be impossible since

so many assumptions about the nature of syntax are different. Specifically, other

parsed corpora are not labeled in a sufficiently rich manner to allow such a conversion

to be performed. Therefore, the main source for updating these tables was the FPD

Corpus (the revised version of the original POW Corpus), and Fawcett (2000a) was

used to cover any structures or partial vertical strips that did not appear in the FPD,

and for adjusting the probabilities of those that did.

Before we could start, we obtained a list of items from the BNC corpus1. I

loaded the list into a corpus database table in order to allow the extraction of records

based on SQL queries. The temporary table contained the following information:

(a) ITEM (word),

(b) TOKEN (BNC category),

11 am extrem ely grateful for the efforts o f A dam K ilgarriff at Brighton University for creating and
supplying the BNC frequency lists that we used in this project.

402

(c) FREQUENCY.
The field named ITEM contains the word, as extracted from the BNC word list.

The field TOKEN is the BNC syntax token (see Appendix J for a list of these). The

field named FREQUENCY is the count of the item when it expounds the given syntax

token in the BNC.

I also loaded the Moby Part-of-Speech Word List into a database table with a

similar structure.

Once we had these resources in the database, we could begin the task of creating

the Version Two tables. This took a considerable amount of time and effort, and the

work had to be performed with great care to avoid making mistakes and corrupting the

tables.

Our procedure normally required us to obtain from the BNC a list of words that

were identified as corresponding to each major word class, i.e. Main Verbs (M), heads

(h) and apexes (ax), in Cardiff Grammar terms.2 We then copied them in the I2E
sub-table for the element or group of elements being worked on.

The method of extraction varied considerably. In its simplest form, it involved

collecting items from the BNC which had a syntax token which could be mapped

directly to an equivalent Cardiff Grammar element. In a more complex form, it

involved, for example, taking all items that ended in certain groups of letters such as
-er and -est, and that has a syntax token that could be matched. However, nearly

all the lists had to be checked by hand, and some were complemented or replaced by

data from other sources listed above. We found occasional problems with the word

tagging in the BNC word list (e.g. it identified as adjectives a number of words ending

in -er, and -est that were not; in this case, we used the Moby Word List as a

source).

For certain elements this process of extraction was either supplemented or

replaced by using data from the FPD Corpus (accessed via ICQF+), Biber et al (1999),

the COMMUNAL's system networks, or by using the Collins-COBUILD reference

books.
The I2E tables, at this point, did not contain probabilities that indicate the

elements of structure that the item expounds. This information was created later in the

process. Once we had enlarged the 12 E table (and had checked it by hand), the next

2 Although for some elements, we found the M oby W ord List a better source than the BNC word lists.

403

task was to create the equivalent I2E2U2E table, if it was needed. This involved

identifying item-element pairs that needed an I2E2U2E treatment.

After having gathered a complete set of I2E and I2E2U2E tables, we began the

task of merging the sub-tables. To do this, we used a program to query the BNC table

and extract the frequencies with which an item expounds each particular BNC

category. These were then mapped to the corresponding Cardiff Grammar elements

(which were often not in a one to one relationship to the BNC categories, so requiring

other conversion logic), and so populating the Version Two I2E table with the BNC

items. At the time of writing, we are currently performing and checking this merge

stage.

1 .2 S u m m a r y
The Version Two probabilities tables are almost ready to use in the parser. The

result of this work will be that the parser now will have access to a database of

approximately a 16,000 Main Verb forms, 200,000 nouns, 16,000 adjective forms, and

13,000 manner adverb forms, and a multitude of other elements such as prepositions,

Main Verb extensions and so on.

404

Appendix J
The British National Corpus tag set and
its mapping to Cardiff Grammar
elements
The British National Corpus (BNC) uses a set of 'tags' called the C5 tagset, which

represents the parts of speech that the BNC items expound. This appendix gives the

BNC tag set and shows the mappings to the equivalent Cardiff Grammar elements that

were used in the creation of the Version Two probabilities tables as reported in

Chapter Fourteen and Appendix I. The source of this information, which includes the

examples, was the BNC website at www.natcorp.ox.ac.uk/corpus.

Note that where the CLAWS automatic tagger returned a probability for the most

likely part-of-speech, and the second most likely that was considered too low to

disambiguate, the BNC uses 'ambiguity tags' to indicate the two likely parts-of-speech.

The ambiguity tags were not used in the creation of the probabilities tables, and hence

are not shown here.

BNC tag Description Equivalent
Cardiff
Grammar
element

A JO Adjective (general or positive) (eg good, o ld , b e a u t i f u l) ax
A JC Comparative adjective (eg b e t t e r , o ld e r) ax
A J S Superlative adjective (eg b e s t , o ld e s t) ax
ATO Article (eg a, an) dd or dq
AVO General adverb: an adverb not sub-classified as AVP or AVQ (eg

o f te n , w e ll , lo n g e r (adv.), f u r t h e s t)
ax

AVP Adverb particle (eg up, o f f , p u t) M Ex
AVQ Wh-adverb (eg when, w here, how, why, w herever) h_wh
C JC Co-ordinating conjunction (eg and, o r, b u t) L n k
C J S Subordinating conjunction (eg a lth o u g h , when) B
C JT The subordinating conjunction t h a t B
CRD Cardinal number (eg one, 3 , f i f t y - f i v e , 3 6 0 9) q ld , am or h

(hundred == h)
D PS Possessive determiner-pronoun (eg y ou r, t h e i r , h is) dd

DTO General determiner-pronoun: ie a determiner-pronoun which is not
a DTQ or an ATO.

dd

DTQ Wh-determiner-pronoun (eg w hich, w hat, whose,
w h ich ev e r)

dd_wh

EXO Existential there: ie t h e r e occurring in the th e r e i s . . . or
t h e r e a r e ... construction.

S i t

I T J Inteijection or other isolate (eg oh, y es , hum, wow). F

405

http://www.natcorp.ox.ac.uk/corpus

BNC tag Description Equivalent
Cardiff
Grammar
element

NNO Common noun, neutral for number (eg a i r c r a f t , d a t a ,
c o m m i t t e e)

h

NN1 Singular noun (eg p e n c i l , g o o s e , t i m e , r e v e l a t i o n) h
NN2 Plural common noun (eg p e n c i l s , g e e s e , t i m e s ,

r e v e l a t i o n s)
h

NPO Proper noun (eg L o n d o n , M i c h a e l , M a r s , IBM) h _ n
ORD Ordinal number (eg f i r s t , s i x t h , 7 7 th , l a s t) a x
P N I Infinite pronoun (eg n o n e , e v e r y t h i n g , o n e (as pronoun),

n o b o d y)
h _ P

PN P Personal pronoun (eg I , y o u , t h e m , o u r s) h _ P
PNQ Wh-pronoun (eg w h o , w h o e v e r , w hom) h _ w h
PNX Reflexive pronoun (eg m y s e l f , y o u r s e l f , i t s e l f ,

o u r s e l v e s)
h _ P

PO S The possessive, or genitive marker ' s or 1 g
P R F The preposition o f p
PUL Punctuation: lefit-bracket ie (or [-
PUN Punctuation: general separating mark: ie . , I : ; or ? ender 'e '
PUQ Punctuation: quotation mark: ie 1 or " -
PUR Punctuation: right bracket: ie) or] -
TOQ Infinitive marker t o I
UNC Unclassified items which are not appropriately considered as items

of the English lexicon.
ITEM QUERY

VBB The present tense forms of the verb B E, except for i s , 1 s , : ie am ,
a r e , 'm , * r e and b e (subjective or imperative)

OM or OX

VBD The past tense forms of the verb B E: w a s and w e r e . OM or OX
VBG The -mg form of the verb BE: b e i n g . Mor X
V B I The infinitive form of the verb B E: b e . M or X
VBN The past participle form of the verb BE: b e e n . Mor X
VBZ The -s form of the verb B E: i s , ' s . OM or OX
VDB The finite base form of the verb DO: d o . OM or OX
VDD The past tense form of the verb DO: d i d . M o rO
VDG The -ing form of the verb DO: d o i n g . Mor 0
V D I The infinite form of the verb DO: d o . M

VDN The past participle of the verb DO: d o n e . M
VDZ The -s form of the verb DO: d o e s , * s . M o rO
VHB The finite base form of the verb HAVE: h a v e , ' v e . OX or ON
VBD The past tense form of the verb HAVE: h a d , ' d . OX or OM
VHG The -ing form of the verb HAVE: h a v i n g . X or M
V H I The infinitive form of the verb HAVE: h a v e . X orM
VHN The past participle form of the verb HAVE: h a d . X or M
VHZ The -s form of the verb HAVE: h a s , ' s . OX or OM
VMO Modal auxiliary verb (eg w i l l , w o u l d , c a n , c o u l d , 11 1 , ' d) 0
W B The finite base form of lexical verbs (eg f o r g o t , s e n d , l i v e ,

r e t u r n (including the imperative and present subjunctive)
M

W D The past tense form of lexical verbs (eg f o r g o t , s e n t , l i v e d ,
r e t u r n e d)

M

W G The -ing form of lexical verbs (eg f o r g e t t i n g , s e n d i n g ,
l i v i n g , r e t u r n i n g)

M

W I The infinitive form of lexical verbs (eg f o r g e t , s e n d , l i v e ,
r e t u r n)

M

W N The past participle form of lexical verbs (eg f o r g o t t e n , s e n t ,

l i v e d , r e t u r n e d)

M

406

BNC tag Description Equivalent
Cardiff
Grammar
element

w z The -s form of lexical verbs (eg f o r g e t s , sends, l i v e s , M
r e tu r n s)

xxo The negative particle n o t or n ' t . N, 0, OXorOM
zzo Alphabetical symbols eg A, a, B, b, C, c, d. various

Table J.l The BNC C5 tag set and its mapping to Cardiff Grammar elements

407

Appendix K
Parser walkthrough

The algorithm that we use in our parser is very different to the traditional

algorithms used in other approaches. In order to assist the reader in understanding our

processes, I provide a walkthrough using two of the sentences that were used to test

the parser in Chapter Seventeen.

Please see Figure 15.5 of Chapter Fifteen (which shows the parser's workflow

diagram). Figure 15.8 of Chapter Fifteen shows how the node and level probabilities

are calculated.

K . 1 T h e t e s t s e n t e n c e s
To demonstrate the parser, I have chosen the following two sentences:

(a) the man saw me, and

(b) the man saw Cardiff and Treforest
These sentences together demonstrate each of the stages of the parsing algorithm

(apart from Stage 6 - backtracking, which is discussed in Appendix L). The first

sentence includes the item me (which is an I2E2U2E item), and the second includes a

co-ordinated unit.

408

409

A. Stage 1 and Stage la: B. Stage 2 : C. Stage 3 and Stage 3a

1. Stage 1: the parser requests an I2 E query
for t h e and as t h e is not an IVS-ITEM
item, it requests an IVS-ELEM query. It
adds all strips returned to the DB IVS
table.

2. Stage 1 a: The follow ed field for the top
n of these is set to t r u e and built
structures are created for them. The most
likely of which is shown below. At this
stage, the node and level probabilities are
calculated by using I2E, E2U and U2E
queries (see Figure 15.8 of Chapter
Fifteen).

3. Stage 2: The parser moves to the next item
and requests an I2 E query for it. The item
man can expound a head (h) and a Main
Verb (M), therefore two candidate
structures are created. The node and level
probabilities are calculated using the I2E,
and E2U queries (see Figure 15.8 of
Chapter Fifteen). As man is more likely to
expound a head (h), this is the more likely
candidate structure.

4. Stage 3: The parser moves to Stage 3 and determines any possible joins
assigning a joining score by using the joining score formula (see Section
15.2.4 of Chapter Fifteen).

It orders any possible joins by their scores (in the PST) and determines that
candidate structure 1 cannot be joined to the most likely built structure
because the lower unit (ngp) cannot be closed. The most likely join is
between candidate structure 2 and the most likely built structure. This is
because the forw ard and backward predictions match.

5. Stage 3a: The parser makes the n most likely joins and creates new built
structures and calculates the new node and level probabilities (see Figure
15.8 of Chapter Fifteeen). The level probability for the joined node is
calculated as the product of the level probabilities of the built and candidate
structure nodes involved in the join.

Cl

J
ngp

The

M, 0.33

^ O M , 0.24

h, 0.78

d d [-► m°. 0 05

Move 1 and 2 -
Stage 1 and la

S, 0.35

!, 0.17

score: 0.001

man

dd, 0.35

qd, 0.26

Move 3 - Stage 2

score: 0.999

M, 0.33

OM, 0.24

!, 0.95

The man

man t

q,0.04

Move 5 - Stage 3a

Move 4 - Stage 3

410

E. Stage 2, Stage 3 and Stage 3a

6. Stage 2: the parser requests an I2 E query for saw . It finds that it can expound a head (h) or a Main Verb (M) and it therefore creates two candidate structures. It uses the I2E
and E2U to create the level and node probabilities and the level probability of the unit in this case is the score for the candidate structure. Because saw is more likely to be a Main
Verb, the candidate structure that represents this is the most likely.

7. Stage 3: determines the positions in the built structures where the candidate structures can attach. Candidate structure 1 (sa w as an M) can attach to the Clause (C l).

8. Stage 3a: the parser makes the most likely of these, and sets their FOLLOWED field to true in the PST. As before, it calculates the new level probability of the joined node by taking
the product of the built and candidate structures involved in the join.

score: 0.940

The manThe man
score: 0.026

Move 6 - Stage 2
Move 8 - Stage 3a

Move 7 - Stage 3

411

F. Stage 2, Stage 3 and Stage 3a

9. Stage 2: the parser requests an I2 E query for me. Me is an I2E2U2E item, therefore the parser requests one and creates a number of candidate structures, the most likely are shown.

10. Stage 3: determines the positions in the built structures where the candidate structures can attach. Candidate structure 2 (the Complement (c)) can attach to the Clause as shown.

11. Stage 3a: the parser makes the most likely of these, and sets their FOLLOWED field to true in the PST. As before, the level and node probabilities are recalculated.

12. Stage 2, Stage 7: The parser moves to Stage 2 and finds that there are no more items to process. Therefore, it moves to Stage 7 and as the user does not want any more analyses,
this completes the parse for the first sentence. The parse is only successful if all elements in the right-most strip of the final parse predict that they can finish their units. The parse
score is the recalculated level probability of the parse tree. When there is more than one analysis, the most likely is the one with the highest score.

Cl
!. 0.97

, 0 .0 0 6 *]— c

C, 0.76

!, 0.15

M.0.61

OM.O.12

!, 0.97

i ngp
!, 0.97

me
The man saw Move 9 - Stage 2

V

The man saw me

Move 11 - Stage 3a
Move 10 - Stage 3

412

E. Stage 2, Stage 3, Stage 4

The start of the parse for the second sentence is the same as the one we have already seen. Therefore, we start with the parse after it has processed the item saw
and created the built structure shown below.

9. Stage 2: the parser requests an I2 E query for C a r d i f f and this states that it can only be a proper name head (h_n). It therefore builds a candidate structure
for it after performing a E2U query that indicates the h _ n is a component of a ngp. It compiles the backward predictions after requesting a BUS query. The
score of the candidate structure is the product of the I2 E and the E2U that created it (these are the node probabilities of the candidate structure nodes).

10. Stage 3: the parser moves to Stage 3 and finds that the candidate structure cannot join at any position in the most likely built structure and therefore moves to

11. Stage 4: the parser requests an U2E query to find the elements that a ngp can fill. It creates a new candidate structure for each after requesting an E2U query to
determine the units that these new elements can be a component of.

Stage 4.

Z
ClCl M, 0.61

C, 0.76
— ►

!, 0.15
OM,0.13 ^

S M -----1-> ngp ngp
dd,0.04<«-|

!, 0.87 h _ n

Cardiff
The man saw Move 9 - Stage 2

\ y Move 11 - Stage 4

Move 10 - Stage 2

413

F. Stage 3, Stage 3a, Stage 2, Stage 5

9. Stage 3: after growing the candidate structures in Stage 4, the parser performs a Stage 3 and finds that the most likely candidate structure can now join to the
built structure and this is done in Stage 3a. The forward predictions are created for the new built structure.

10. Stage 2: the parser moves to Stage 2 and requests an I2 E for the item an d and finds that it is a linker (Lnk). It therefore builds a candidate structure that
represents each unit that a linker can occur in.

11. Stage 5: the parser now moves directly to Stage 5 (because the item is a linker)....

Cl

Cl
!, 0.71

A,0.12
S

ngpngp !, 0.980

!, 0.010dd

saw

!, 1.0 Lnk

!,1.0

ngp

Lnk

and

Move 10 - Stage 2
and

Move 9 - Stage 3a

414

G. Stage 5, Stage 5a, Stage 2

12. Stage 5: as and is a linker, the parser moves to Stage 5 and determines if a co-ordinated join is possible. It finds that a join to the nominal group (ngp) is
possible and, in Stage 5a, makes the join. After the join, it creates the forward predictions from the right most elements in the new built structure.

13. Stage 2: the parser moves to Stage 2 and requests an I2E for the item T re fo re s t and finds that it is a proper name head (h_n) and therefore it creates a
candidate structure after performing a E2U. It creates the backward predictions for the candidate structure.

14. Stage 3: the parser moves to Stage 3 and determines that the most likely candidate structure is able to join to the most likely built structure....

!, 0.71

The man saw Cardiff and

Move 6 - Stage 5

ZIII
 L>

- > h, 0.23

-> h n, 0.19

A, 0.12

!, 0.87

Lnk,0.04

ngp

h n

Treforest

Move 7 - Stage 2

\ j

Move 8 - Stage 3

415

H. Stage 3a, Stage 2, Stage 7

15. Stage 3a: makes the join between the most likely built and candidate structures and creates the new forward preditions from the right most elements in the new
built structure.

16. Stage 2: the parser moves to Stage 2 and finds that there are no more items in the input string, therefore it moves to Stage 7.

17. Stage 7: if it is operating in the Parser WorkBench in step-by-step mode, Stage 7 causes a question to be asked to the user if more analyses are required. If
they are, or if the parser is not operating in step-by-step mode and the required number of analyses has not been reached, then the parser backtracks (via Stage
6). The correct parse has been found, and the user does not want more, therefore the parser stops.

Z
Cl

The man saw Cardiff and Treforest

Move 9 - Stage 3a

Appendix L
Ideas for linguistically motivated
backtracking
This appendix details some initial ideas for the implementation of linguistically
motivated backtracking.

L .l Linguistically m otivated backtracking
The current model of backtracking (as we saw in Section 15.2.7 of Chapter Fifteen) is

based on the Hamilton Path Problem (Ore 1960), and is thus computationally

motivated. This means that it blindly follows the next most likely paths that have not
been followed when it goes back, and it does so in the order that they occur (see

Figure L.l).

In Figure L.l, the solid lines represent a path that has been tested. The

symbol o at the end of the path means that it has failed. The dashed lines represent

paths that the parser has not yet tested. The numbers in the boxes represent the order

in which the paths are tested, and a tick represents the end of a

successful path.

M o v e 1M o v e kM o v e j

®tB*o
6 ^ ®

9 — ►

10
®

--------- ®
17

''A

M o v e m

Figure L .l: How the computational backtracking works

416

Compare this with Figure L.2. This uses the same notations as Figure L.l but has

a circle^) to represent a point at which the parser has identified as a backtrack point.

The decision that the parser had to make at this point was one in which the

parser has identified as being syntactically significant, and could, for example,

represent an ambiguous attachment of a prepositional group, as say, a qualifier to a

nominal group or an Adjunct to a Clause. To make sure that the most recent point is

considered first, these linguistically motivated backtrack points can be stored in a last-

in-first-out stack.1 When the parser reaches a fail', it pops the top point from the stack

and moves back to it. Thus it ignores any 'not followed' paths between the point of

failure and the popped backtrack point.

This approach can work in tandem with computational backtracking, as shown

in Figure L.2, path number 6. Here the parser has backtracked to the linguistically

motivated backtrack point and then tried path 6, which failed. It then finds there are

no other backtrack points and therefore moves to the next not followed path and tries

that.

If you compare Figures L. 1 and L.2, you will see that linguistically motivated

backtracking controls the order in which paths are followed, and so reduces the time it

takes to find the correct path. Furthermore, it will produce fewer trees in its analysis.

1 Another method of handling the order of the backtrack points that will be tested, is to consider them in
order of their probabilistic score.

417

M o v e j M o v e k M o v e 1 M o v e m

Figure L.2: How the linguistically motivated backtracking works

These likely backtrack points can be identified in syntactic terms, so allowing

the parser to return to constructions that also cause humans to backtrack when

processing sentences. These happen in so-called 'garden path' sentences, such as in the

much used The horse raced past the barn fell. It is only when the

reader sees (or the listener hears) the Main Verb f e l l , that the need to backtrack is

realised, and raced past the barn is recognised as a truncated relative clause.

L.2 Sum m ary
The method for marking these favoured backtrack points has, in fact, been

implemented in the Parser State Table together with the 'stack' to store the preferred

backtrack points. In Phase Two we will complete the specifications for the set of

backtrack points and will be able to test the theory. The implementation of

linguistically motivated backtracking will provide a better parser.

Appendix M
Parser - testing and evaluation using the
FPD corpus test set
This appendix contains details of the 100 test sentences that were randomly extracted

from the FPD corpus and the results of the extensive testing of the parser when using

them. The details of how the sentences were selected, how the parse results were

scored, and the observations and conclusions of these tests is given in Section 17.1.3

of Chapter Seventeen.

Table M.l shows the 100 shows the results of the parse in terms of:

- the parse time,

the number of structures created (including those not involved in the final

analyses),

- the number of moves involved in the parse (see Chapter Fifteen),

- the score assigned to the parser's analysis (when it is compared to the 'correct'

analysis in the corpus) by the XML vertical strip scoring algorithm (see Section

17.1.3.1.2 of Chapter Seventeen).

Note that a score of 1 indicates an exact match between the 'correct' analysis from

the corpus, and an analysis returned by the parser for the same sentence.

419

No. FPD Cell Sentence No. Parse No. No. Score Remarks
words time trees moves against

(sec) correct
analysis

1 10abigt#36
2 10abihs#1

I k now how t o d o t h i n g s .
We w e r e t a l k i n g a b o u t w h a t we w e r e
g o i n g t o b u i l d a n d - t h e n we a l l
d e c i d e d o n b u i l d i n g a f a r m h o u s e .

6 43 203 13
18 124 488 52

3 10abihs#19

4 10abihs#2

Y ou b u y l o t s o f p r o p e r t y a n d h o u s e s
a n d - t h e n w h en s o m e o n e c o m e s a l o n g
t h e y la n d o n y o u .
A n d - t h e n R ic h a r d s t a r t e d b u i l d i n g t h e
w h i t e a n d T im o th y d i d t h e l i t t l e c a r s
a n d I d i d t h e f i e l d a n d I w as
b u i l d i n g a l o r r y b u t w hen we cam e i n
we t o o k t h e b o t t o m o f f a n d u s e d i t a s
t h e r o o f o f a h o u s e i n s t e a d .

5 10abihs#21 We a lw a y s p l a y f o o t b a l l .

16 80 336 46

43 731 2193 127

26 135 10

6 10abirl#42 I t w as q u i t e r e c e n t l y I sa w t h e - z u l u
a g a i n .

8 39 192 22

1
0.68 A complement and an adjunct analysed instead

of one complement in the first primary clause
("about" in a complement of its own and "what we
were going to build" as an adjunct, "on" (in
"decided on") analysed as an MEx and therefore
"building a farmhouse" was not within a
prepositional group.

0.65

0.93 did analysed as Operator (corpus as Main Verb),
"was" analysed as OM (corpus as OX). Partitive
determiners not analysed. Linker in "but when..."
analysed in a Complement (corpus direct in
Clause), "when we cam in" analysed in
Complement (Adjunct in corpus), "in" in "came
in" analysed as a preposition, "a house"
analysed as a cv replacement.

0.85 always analysed as a modifier to previous ngp.
Investigation showed that the corpus has
examples of mo following h_p in ngp (as in "these
little"). Although low probability, these made the
top n joins.

0.98 It analysed as Subject instead of S J t (not
penalised). "I saw zulu again" analysed as an
Adjunct instead of a Complement (in corpus
analysis).

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations

No. FPD Cell Sentence No.
words

Parse
time
(sec)

No.
trees

No.
moves

Score Remarks
against
correct
analysis

7 10abirl#49 So the Zulus got angry and started
attacking them again and the
commander was shouting south wall
fifty men or something like that.

23 203 858 67 0.74 Text ("fifty men south wall") not supported in
Phase One. C_Repl ("Or something like that")
analysed as a co-ordinated clause. "Was"
analysed as O/M by the parser (corpus O/X).
The clause starting with "attacking" was no
embedded correctly.

8 10abirl#55 And the hospital was where the zulus 9 72 402 25 0.65 Embedded clause not analysed correctly
were invading.

9 10abitg#37 have to know people and what they do. 8 42 219 22 0.79 and what they do analysed as a co-ordinated
clause instead of a clause in a qualifier.

10 10abitg#63 So the board goes down on the stone 21 272 1121 61 1
and he lights the fires underneath
and the tosses the shark at them.

11 10abitg#64 And he puts all the potatoes on there 13 128 653 37 0.95 on analysed as an MEx.
and the fries the chips.

12 10abprsl#220 I '11 have to add a-few more windows. 9 25 148 22 0.9 qtgp for "a few more" analysed as directly filling a
C, Cl had two C

13 10abprsl#52 Then I '11 have the windows after. 7 38 255 16 1
14 10abprsl#61 Now I '11 have the windows. 6 36 258 17 1
15 10abpshs#15 Look at this door.

3
16 10abpshs#24 We can make a little.

8
17 10abpshs#24 We can make the telephone-box like

9 this.

4

5

20

67

98 10 1

1

8 67 403 19 1 Preferred analysis had 'like this' as a complement
(C)

18 10abpshs#27 That isn't a very good car is it. 8 103 528 22 1 A_Log analysed correctly
kJ

19 10abpsrl#105 Tim here 's a good door. 6 81 456 16 0.94 Tim analysed as a Complement instead of a
Vocative.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

422

No. FPD Cell Sentence No.
words

Parse
time
(sec)

No.
trees

No.
moves

Score Remarks
against
correct
analysis

20 10abpstg#19 I '11 just do the roof. 6 44 239 16 1
21 10abpstg#22 Shall we put the trees in there look. 8 86 492 29 1
22 10abpstg#24 You do the cars and I '11 do the bus-

5 stop now.
11 104 569 31 1

23 10abpstg#30 We have to take one of these.
0

24 10agikp#48 I 'd like to run a stable.

7 45 258 25 1

7 60 344 19 1
25 10agilb#1 We decided on a bungalow because we

thought it would save time because if
you are doing a house you wouldn't do
enough of it.

25 302 1062 73 0.93 "on" analysed as MEx instead of a preposition, "it
would save...” analysed as a Complement
instead of an A_Log and "if you are doing" was
also a Complement instead of A_Log. "You
wouldn't do enough of it" analysed as a qualifier
instead of an A_Log

26 10agpskp#11 We forgot to put the windows in.
o

7 62 331 20 0.92 C analysed as an "A"
Z

27 10agpskp#17 Put some more windows in.
9

5 29 153 13 0.64 qtgp "some more" analysed directly as C, "in"
analysed as a preposition and not an MEx

28 10agpskp#66 We should have a back door really. 7 48 281 19 0.97 a back and "door” analysed as two nominal
groups and not a modifier.

29 10agpslb#16 Look what are we going to do with
that little gap.

11 69 296 28 0.95 look was analysed as a main verb but an A_AS in
the corpus and hence "we going..." was analysed
as a clause in a Complement of the main clause
and not elements of the main clause.

3 0 10agpslb#33 Look we '1 1 leave a space for the
door and-then we '11 put it on after.

16 139 829 46 0.91 Look analysed as a Complement of the primary
clause (in own clause in Corpus), "for the door"
analysed as a qualifier after "space" and not an
Adjunct.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

423

No. FPD Cell Sentence No. Parse No. No. Score Remarks
words time trees moves against

(sec) correct
analysis

31 10bbigj#16 When a l l t h e m o n ie s h a v e r u n o u t y o u
j u s t a d d y o u r m on ey up a n d s e e who ' s
g o t t h e m o s t a n d t h e y ' v e w on .

32 10bbihw#43 A man g o t s e n t t o p r i s o n .

23 178 770

19 126

70 0.95 When all the monies have run out not analysed
as an Adjunct but in the main Clause. "You just
add.." and "who’s got the most.." not embedded
correctly. All clauses analysed correctly but not
embedded correctly.

16 0.91 In some of the 'successful parses', "got" analysed
as a main verb in a clause with two main verbs,
"to prison" analysed as Adjunct instead of
Complement. Note that this was allowed
because of an error in the corpus where one
clause was analysed as S M M A (two main verbs
followed by Adjunct) Score of parse was low. In
other parses, "got" was an XEx (X in corpus
analysis).

33 10bbihw#57 B e c a u s e y o u c a n g e t i n t o f o o t b a l l -
m a t c h e s f r e e .

7 30 157 19 0.97 Whole sentence analysed as an A_Log in the
corpus. Parser analysed the clause that is
supposed to fill the A_Log as the primary clause

34 10bbpsgi#16 L ook a t t h i s l a d d e r . 4 19 98 10 1
U

35 10bbpshw#1
48

36 10bbpshw#1
89

We d o n ' t r e a l l y n e e d w in d o w s . 5 16 82 13 1

I w o n d e r i f t h e r e ' s a d o g i n t h e r e . 9 110 624 25 0.92 The pgp "in there" analysed as a qualifier of the
nominal group "a dog".

37 10bbpshw#2
28

We w o n ' t b e a b l e t o d o a n o t h e r l a y e r
t h o u g h w i l l w e .

11 35 155 31 1

38 10bbpshw#3 We c a n m ake a c a t f o r th e m . 7 91 497 19 1

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

424

No. FPD Cell Sentence No.
words

Parse
time
(sec)

No.
trees

No.
moves

Score Remarks
against
correct
analysis

39 10bgicl#38 I usually have a fruit when I go home
and-then I have my tea and I have my
supper a-few hours after and-then I
go to bed then.

28 401 917 82 0.96 Usually analysed as directly filling an Adjunct
whereas it is an apex in the corpus, ''home" is
analysed as a nominal group filling an MEx. "a-
few hours" analysed as a Complement instead of
an Adjunct, "after" analysed as a separate
Adjunct.

40 10bgiee#31 I mean a man that changed into a dog. 9 101 513 25 1 S Wh analysed as S (not penalised)
41 10bgire#49 No but my auntie 's Spanish so she

teaches me mostly Spanish.
12 71 327 34 1

42 10bgpscl#21
2

I '11 have to take the roof off to
stick him in.

11 62 337 34 1

43 12dgism#17 His father was a doctor and his
father got the police and the men
were arrested and they found they
were after money trying to rob
something

27 297 1264 79 0.94 Final clause ("trying to rob something") analysed
as a qualifier and not an Adjunct.

44 10cbpsat#12
3

Cor wish they didn't have this
carpet.

7 31 166 19 0.95 Cor analysed as a Formula instead of an
Exclamation.

45 10cbpslj#178 I 'm having this ladder. 5 19 88 13 1
46 10cbpsmh#8

c
Do you like your teacher. 5 21 106 13 1

o
47 10cgied#13 Sometimes we run about. 4 14 72 10 1
48 10cgisp#42 She sells houses to people and gets

all the deeds done.
11 89 470 31 0.78 1. Error in corpus analysis ("all the deeds done"

analysed as "S")
49 10cgisp#52 She would get the people who are most

noisy out the front and-then tell
them to shut up.

18 223 2119 52 0.86 Qualifier ("who are most noisy") analysed as
Complement. Tempering preposition "the front"
not recognised.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

425

No. FPD Cell Sentence No. Parse No. No. Score Remarks
words time trees moves against

(sec) correct
analysis

50 10dbipl#43 A t t h e e n d h e c l im b e d up a b u i l d i n g
a n d h e h a d a woman i n h i s h a n d .

51 10dgidh#25 S o m e tim e s h e d o p u l l th e m dow n b y t h e
h a i r a n d g i v e th e m a sm a ck o r j u s t
s e n d th e m t o m r -R h y s w h e r e t h e y h a v e
a c a n e .

16 208 1992

25 258 975

52 10dgism#13 I ride my bike.
53 10dgism#52 B u t a s - s o o n - a s I com e o f f I s a t dow n

a n d I h a d s o m e t h in g t o e a t a n d - t h e n I
w as a l r i g h t a g a i n t h e n .

54 10dgiss#11 And we p u t a n a e r i a l o n t h e r o o f an d
t h e c h im n e y .

55 10dgpsdh#18 T a l k s l i k e a q u e e n .
1

56 10gbsre#156 You s h o u ld h a v e s e e n t h i s f i l m i t w as
r e v o l t i n g i t w a s .

4 17 96
21 206 805

11 128 696

4 54 277

11 116 614

46 0.86 The Adjunct ("in the end") was analysed as a
Complement and "up the building" was analysed
as an Adjunct instead of a Complement.

73 0.87 Sometimes analysed directly as filling Adjunct
(Corpus had apex of qlgp filling an Adjunct),
"smack" analysed as a main verb instead of a
head and "them" and "a" as h qd in the same
nominal group, "to" analysed as an I in a clause
(instead of a preposition and hence a clause
instead of a prepositional group, "where they
have a cane" analysed as a qualifier of "Mr
Rhys".

10 1 Correct parse ranked in second position.
58 0.93 Sat down analysed as an Adjunct rather than

directly in the clause, "to eat" analysed as a
clause filling an Adjunct rather than a qualifier of
the nominal group. The first clause analysed as
filling a Sentence which is TEXT in a
Complement (structure inside was correct).

31 1

10 1

34 0.9 It was revolting... was analysed as A_CSTag
(corpus "it was" was A CSTag). "Oh God it" was
analysed as a separate Complement and not a
co-ordinated clause, "it" was analysed in the
same clause as "Oh God". "It was" was analysed
as a qualifier not A_CSTag.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

426

No. FPD Cell Sentence No. Parse No. No. Score Remarks
words time trees moves against

(sec) correct
analysis

57 12abiaw#14 When some people run away and they
look for you and you got to get to
the stone first.

19 141 569 55 0.87 When analysed as a Binder an not an A_Wh. "to"
analysed as I in an embedded cause instead of a
preposition.

58 12abpsaw#2
26

She 's alright for a free lesson but
i 'm not sure she 's particularly
good.

15 188 914 46 0.82 In most likely "for a free lesson" analysed as an
Adjunct instead of a Complement (complement
version lower in rank), "not" analysed as part of
an embedded clause instead of in the main
clause. "fs particularly good" analysed as a
clause filling a qualifier instead of a scope. Note
that modifiers analysed correctly..

59 12abpspg#8a What 's the point. 4 35 247 1 0 1

60 12abpssm#7
A

There 's ten. 3 23 166 7 1
O

61 12agibr#37 No we 'ad scampi and chips. 6 31 1 2 2 16 1 Note that most likely analysis had co-ordinated
clauses instead of co-ordinated nominal groups

62 12agind#50 I 'd like to go over and see
Disneyland and see my auntie over
there.

15 115 534 43 0.65 Two embedded complements analysed ("to go"
and "over") instead of one. Embedded clause
not analysed at right level.

63 12bbimb#29 I 've seen star-wars. 4 14 71 1 0 1

64 12bbimn#34 And she went back to the pet shop and
she said my hamster died.

13 1 2 2 543 40 0.81 Text not supported in Phase One. "to" analysed
as an I in the Clause instead of a preposition,
"pet" analysed as the head of the nominal group
and not a modifier, "shop" was therefore
analysed as a separate Complement in the
clause.

65 12bgiah#35 He was on the back of a cart. 8 88 525 2 2 0.87 Partitive determiner ("the back o f) not analysed -
was separate nominal group in a clause with two
complements instead of one.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

No. FPD Cell Sentence No.
words

Parse
time
(sec)

No.
trees

No. Score Remarks
moves against

correct
analysis

66 12bgihl#16 And p l a y b a l l . 3 13 102 7 1
67 12dbiaf#21 T h e i r l e g s g o f o r w a r d a n d t h e y k i c k

t h e b a l l .
9 48 253 25 1

68 12dbipl#52 P u t h im i n a b a r r i e r o r a p o l e . 8 92 448 22 0.79 The linker "or" co-ordinates the clauses instead of
the nominal groups. The nominal group "a
barrier" is not analysed as a completive of the
prepositional group. Analysis showed that correct
joins were not in top n in latter moves. Corpus
analysis questioned because "in" may be an MEx
- "put in".

69 6abicj#30 I Saw t h e TV y e s t e r d a y . 5 46 262 13 1
70 6abpscj#34 A l e g o b o a t s a i l i n g a n d p e o p l e

i t .
w a s i n 9 62 316 25 0.92 Lego analysed as filling the head of the nominal

group and not a modifier, "boat" was in a different
.nominal group. The clause "people was in it"
filled a qualifier instead of a Complement in the
clause.

71 6agika#10 T h ey p l a y s t a r - w a r s s o m e t im e s . 4 12 67 10 1
72 6agika#13 I l i k e p r i n c e s s - l e e l a t h e b e s t

s t a r - w a r s .
i n 7 86 438 19 0.7 the best in Star-Wars analysed as dd mo h_n with

"in" starting a finisher. Corpus analysis is qld ax
("the best") with "in Star-Wars" being an Adjunct.

73 6agika#20 B e c a u s e t h e y h a d g u n s a n d t h e y
s h o o t e d a n d t h e y h a d s t a r - w a r s
a s w e l l .

s w o r d s
14 53 214 37 1

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

428

No. FPD Cell Sentence No.
words

Parse
time
(sec)

No.
trees

No.
moves

Score Remarks
against
correct
analysis

74 6agika#6 You all make a ring and somebody 's
the farmer and-then you all say the-
farmer-wants-the-wife and-then you
make somebody as the wife and-then
the nurse then the child then the dog
and then the bone and we all pat the
bone.

42 860 2564 121 0.81 TEXT element "the farmer.." was not analysed
because TEXT is not supported in Phase 1.
Ellipted prepositions (e.g. "as the wife") not
recognised (applies to 5 primary clauses). 4 of 9
clauses correctly analysed.

75 6agpspn#261 I can make a big huge aeroplane. 5 61 354 19 1
76 6bgicl#28 But I didn't want to go. 6 18 91 16 1
77 6bgicl#31 They were trying to bash and trying

to play a game and-then they came to
a water and-then they saw some meat.

22 193 773 64 0.98 a game was analysed as a separate Complement
in the higher clause rather than the one
containing "to play..".

78 6bgihj#42 The tin man wanted a brain. 6 58 343 16 0.94 tin not analysed as a modifier.
79 6bgpscl#195 Stop screaming or laughing tell me

tidy.
7 19 97 19 0.68 Stop analysed as a head instead of a main verb.

"Tidy" analysed as a Complement and not an
Adjunct. "Or laughing" analysed as a co
ordinated primary clause.

80 6cgirs#24 Sabrina was up in an aeroplane. 6 36 239 16 1
81 6dbimj#7 Got my Star-Wars gun. 4 26 134 10 1 Preferred analysis had two complements ("Star

Wars" and "Gun").
82 6dgikj#15 A little mouse fell in the water. 7 66 323 19 1
83 6dgikj#17 Eat him all up. 4 8 40 10 1
84 12dgism#15 Its about a farm boy and he lived on

a farm and he had a horse black
beauty

18 745 52 10 0.98 "boy" analysed as a qualifier of "farm" instead of
a modifier. "Black Beauty" analysed as a
Complement and not a Replacement
Complement (not penalised)

85 6dgisd#19 There 's a boat in the water and they
sink and there 's cars.

14 124 630 140 0.98 in the water was analysed as an Adjunct whereas
it was a Complement in the corpus.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

429

No. FPD Cell Sentence No.
words

Parse
time
(sec)

No.
trees

No.
moves

Score Remarks
against
correct
analysis

86 6dgisd#25 A wolf from the forest and a girl was
there and the farmer came right and
he found them and he shot the wolf.

24 299 1259 70 0.98 The qualifier ("from the forest") was analysed as
a Complement.

87 6dpsmj#197 Is that going to be a boat 'cause
boats don't have wheels.

12 77 447 34 1

88 8abiji#16 And it cost me about ten pound to buy
it.
Sometimes I play on my bike.

10 46 265 81 1

89 8abiji#35 6 26 131 16 0.98 On my bike analysed as a Complement by the
parser and an Adjunct in the corpus.

90 8abijs#21 We play football in the street and 7 62 368 19 1
91 8abijs#34 And-then scooby was acting and-then

they just take him and he keeped on
switching it until they all came
around and all clothes fell off him.

26 158 527 76 0.98 Subject instead of Complement in ("switching it").
Last clause ("and all clothes fell off him") was
analysed as a primary clause instead of an
embedded one.

92 8abijs#35 And-then he started running into the
bush and the gun fell in a bush and
the bush started leaping and the
witch-doctor started running away
from them then.

28 377 1271 82 0.9 The final "then" was analysed as a linker and not
an Adjunct

93 8agijo#4 So we made a little street. 6 56 305 16 1
94 8agijr#48 And-then after they 've learnt that

i' 11 let them try and swim on their
own.

16 63 414 46 0.84 "after" analysed as a preposition rather than a
Binder. The elements of the clause "they've
learnt that" analysed in the main clause whereas
the corpus analysis has the clause filling an
Adjunct. "Try and swim on their own" analysed
as a clause filling a qualifier and not a
complement. "Their" not analysed in the genitive
cluster, but "own" was.

95 8agish#28 I don't make friends in my street
because it 's on the main road.

14 117 575 40 1

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and observations (cont’d)

430

No. FPD Cell Sentence No. Parse No. No. Score
words time trees moves against

(sec) correct
analysis

Remarks

96 8bbipj#3 And they put an aerial on top to
pretend there was a tv set in it.

16 174 861 46 1

97 8bgibc#28 I can't swim. 3 5 1
98 8dbimh#71 And the cat picked it up and sucked

it in the
11 78 452 31 0.95 The linker "and" was analysed in the nominal

group "the cat". "Sucked it in the.." was analysed
as an Adjunct rather than a Complement.

99 8dgpssr#148 I think i '11 put a man standing up
there and-then a girl on the blue
one.

17 231 1072 49 0.82 First clause incorrectly embedded within a
complement. "Standing up there" analysed as an
Adjunct and not a qualifier (as it is in the corpus),
"on" analysed as an MEx and not a preposition,
"the blue one" analysed as a complement and not
an adjunct.

100 You put straws into a glass tube with
holes in and-then you put the straws
in the holes and-then you put marbles
down and-then pull a straw out to see
if a marble goes into a point.

37 662 2201 112 0.94 Embedded modifier ("glass") (two ngp). "In the
holes" analysed as a Complement instead of an
Adjunct. "To see if a ..." analysed as an Adjunct
instead of a Complement.

Table M.l: The test set of 100 sentences from the FPD Corpus, results of the test using the CCPP, and obsevations

