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Summary

The Frequency Assignment Problem (FAP) is an important optimization prob­

lem that arises in operational cellular wireless networks. Solution techniques based 

on meta-heuristic algorithms have been shown to be successful for some test prob­

lems but they have not been usually demonstrated on large scale problems that 

occur in practice.

This thesis applies a problem decomposition approach in order to solve FAP in­

stances with standard meta-heuristics. Three different formulations of the problem 

are considered in order of difficulty: Minimum Span (MS-FAP), Fixed Spectrum 

(MS-FAP), and Minimum Interference FAP (MI-FAP). We propose a decomposed 

assignment technique which aims to divide the initial problem into a number of 

subproblems and then solves them either independently or in sequence respecting 

the constraints between them. Finally, partial subproblem solutions are recom­

posed into a solution of the original problem.

Standard implementations of meta-heuristics may require considerable run­

times to produce good quality results whenever a problem is very large or complex. 

Our results, obtained by applying the decomposed approach to a Simulated Anneal­

ing and a Genetic Algorithm with two different assignment representations (direct 

and order-based), show that the decomposed assignment approach proposed can 

improve their outcomes, both in terms of solution quality and runtime. A number 

of partitioning methods are presented and compared for each FAP, such as clique 

detection; partitioning based on sequential orderings; and novel applications of 

existing graph partitioning and clustering methods adapted for this problem.
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Chapter 1

Introduction
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1.1 The Frequency Assignment Problem (FAP)

In a wireless network transmitters and receivers communicate via signals encoded 

on specific frequency channels. When adjacent transmitters use similar chan­

nels they may cause unacceptable interference. Thus a channel separation based 

on some interference measure is required for transmitters which are geographi­

cally close. The Frequency Assignment Problem (FAP) is an optimization problem 

which aims to assign frequencies to transmitters in as efficient way as possible, 

either in terms of interference or the amount of spectrum used.

In this thesis we will focus mainly on GSM networks which represent the sec­

ond generation of digital cellular radio systems. However, the results and tech­

niques proposed are more generally applicable. Although there are many forms of 

the FAP, roughly speaking the planning of a radio network consists of assigning 

the base stations a signal which is powerful enough to guarantee adequate com­

munication, without causing severe interference between transmitters. These two 

requirements are in strong conflict in the particular case of GSM networks. Conse­

quently, depending on the level of interference which can be considered acceptable, 

a required frequency separation can be specified for each pairs of transmitters. Al­

ternatively, pairs of transmitters can be assigned numerical values which represent 

the acceptable interference that arises between them. In this case, the sum of the 

interference produced among all pairs of transmitters in the network should be 

minimized in the final frequency assignment.

1.2 Problem formulation

The FAP in its basic formulation considers only channel separations as constraints. 

Furthermore, it uses a binary constraint model as a measure of interference in 

which constraints are expressed between pairs of transmitters and specify the min­

imum separation of frequency channels that guarantees acceptable interference.

Formally, the FAP can be modelled by a unordered weighted graph G(V,E),
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called the interference graph, which consists of a finite set of vertices V, represent­

ing transmitters, and a finite set of edges

E c  { uv | w, v e V)

joining unordered distinct pairs of vertices. Each edge uv has an associated weight 

cuv e {0 ,1 ,2 ,...}  which is an integer value giving the channel separation required 

for the transmitters represented by its end points u, v.

Definition 1.1 Given an allocation o f  allowed channels F  = {1,2, ... ,£ }  and 

a frequency assignment f  : V —> F  we define as interfering transmitters in the 

assignment F  each pair o f  vertices u ,v £ V fo r  which

I / ( V ) - / ( « ) !  <  C u v .

Definition 1.2 An assignment is defined as a zero-violation assignment f  i f  

I / ( v) — f{u)  | > Cbv V m v £ E

For some problems, for every vertex v € V we can specify a set of blocked channels

Bv c  F

that cannot be assigned to the transmitter. Hence, we can represent the entire net­

work by the 5-tuple N  = (V,E,F,  {5v}v€k, {cmv)Mv€£).
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1.3 Types and models of FAP

The FAP has been presented in the literature with many different formulations. 

However, two types of FAP are most commonly considered:

•  the Minimum Span FAP (MS-FAP), which aims to minimize the range of 

frequencies used while respecting all of the constraint violations.

• the Fixed Spectrum FAP (FS-FAP) in which the domain of frequencies is 

instead limited to a fixed range. As a consequence it may not be possible to 

find a zero-violation assignment. The problem is formulated as minimizing 

a cost function which represents a measure of the global interference among 

all the network.

FS-FAP also includes a further refinement known as the Minimum Interference 

FAP ( MI-FAP) in which the constraints are divided into the two categories of 

hard constraints, which must be respected in the final channel assignment, and soft 

constraints defined in terms of penalties. The latter group represents the amount 

of acceptable (yet still undesirable) interference between pairs of transmitters and 

their global sum across all the network constitutes the object to be minimized. In 

the following we will give the mathematical models which have been adopted in 

this thesis to solve the three categories of FAP outlined above.

1.3.1 Minimum Span-FAP

The span o f an assignment is defined as the difference between the largest and the 

smallest channel used. In the MS-FAP the domain of frequencies is not bounded, 

i.e F  = Z and Bv = 0 Vv e V and we are searching among zero-violation 

assignments. The problem is defined as following:

Problem 1.1 Given an allocation o f  frequencies F  = { 1 ,2 ,...,  K) the Mini­

mum Span Frequency Assignment Problem (MS-FAP) aims to determine a zero- 

violation assignment /  : V —* F which minimizes:
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0 Ms ( f ) =  m a x /(v )-m in /(u )  v, u e V
V Id

A variant of the MS-FAP is the Minimum Order FAP (MO-FAP) in which the 

object of minimization is the number of distinct frequencies used in the network.

1.3.2 Fixed Spectrum-FAP

In the FS-FAP the spectrum of available channels is restricted to a limited range. 

Each of the constraints is a hard constraint which defines the channel separation 

that must be respected in the optimal solution in order to avoid interference. How­

ever, it may not be possible to satisfy all the constraints and some interference 

becomes therefore unavoidable.

The problem is formalised as finding an assignment which minimizes a cost 

function representing the global interference among all the network. The cost func­

tion is defined either as the number of interfering transmitters or as a measure of the 

size of violations among all the interfering transmitters. The latter is the objective 

that we have adopted in this thesis. Formally:

Problem 1.2 Given a pair o f  transmitters u, v we define the cost o f  the associated 

constraint as:

(PFsif.uv) =

cUv ~ I /(« )  -  /(v ) | i f  | f (u)  -  /(v ) | < cuv

0 otherwise

Hence given an allocation offrequencies F  = { \ , 2 , . . .  ,K) the Fixed Spectrum 

Frequency Assignment Problem (MI-FAP) aims to produce an assignment f  : V —» 

F which respects the blocked channel constraints, that is f (v)  € F \B V Vv 6 V,
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and minimizes:

O f s H )  = ^  <PFS(fyUV)
uve E

1.3.3 Minimum Interference-FAP

In the MI-FAP, besides hard constraints ce which represent the required separation 

between channels in order to avoid the interference which must be respected by 

any feasible solution, another category of weights known as soft constraints is as­

sociated with every edge uv e E. These weights are expressed in terms of penalties 

which represent the probabilistic acceptable interference between pairs of transmit­

ter which transmit on the same channel, (ccf f h) or on adjacent channels (cadJ ) .  Note 

that these values can be zero. As a consequence, the network is now represented 

by the 6-tuple N  = (G, F, {£v}v€F, cuvi/ve£, ccu°chuveE, caudvJwve£). Formally:

Problem 1.3 Given a pair o f  transmitters u, v with the corresponding edge uv we 

define the cost o f  a violation as:

<PMl(f,UV) =

< trd ‘f  l / 0 ) - / ( v ) l  < c„,.

<V7 ' f  l / ( « ) - / ( v ) l  = 1 > cuv

<%* i f \ m - m \  = o = Cu

0 i f  I /(« )  -  /(v ) I > max{cuv, 2}

Given an allocation o f  frequencies F  = {1,2, . . . ,  AT} the Minimum Interference 

Frequency Assignment Problem (MI-FAP) aims to produce an assignment f  : V —» 

F which respects the blocked channel constraints, that is f (v)  e F \B V Vv € V, 

does not violate any hard constraints and minimizes the soft constraints. This can
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be formulated as minimizing:

Ouiif) =
M V €  E

where only solutions with Omi ( / )  < c>]frd we valid.

In Problem 1.1 is a large value chosen so that an assignment /  with Om/(/) > 

( f f rd is known to violate at least one of the hard constraints.

1.4 Other formulations and models

Although the three types of FAP described used for this thesis can be considered as 

the most important among those proposed with the binary model other formulations 

are possible. For example in their exhaustive survey recently published Aardal et 

al. also mentioned the Maximum Service FAP which can be seen as something 

intermediate between the MS-FAP and the FS-FAP. The problem is based on the 

fact that when feasible solutions are not available within the assigned spectrum we 

can seek for a partial solution that assigns as many frequencies as possible to the 

vertices. If we assume that for each node we have a fixed number of frequencies 

(services of variable bandwidth) available it will not be possible to assign all of 

them without interference and so some will remain unassigned. Hence the problem 

is formally defined as maximizing the number of frequencies that can be assigned 

(without interference) to each node in the network. A further development of this 

idea leads to the so called Minimum Blocking Frequency Assignment Problem 

which computes the actual blocking probabilities in the vertices as a function of the 

number of assigned frequencies. Here the objective function becomes a weighted 

combination of the blocking probabilities defined for each node in the network. 

More details about the formulations above can be find in [4].

The binary model described in Section 1.2 is the most concise representation 

generally adopted for the FAP, see [40,60], However, the main drawback of this
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model is that we are unable to represent more than one frequency for each trans­

mitter. In case of cellular problems, in which each cell has to satisfy a given traffic 

demand dv Vv € V, it may be useful to adopt other representations which have 

been proposed to overcome this problem. In [2] the function /(v ) is interpreted as 

a multivalued function where each element in its range is represented by a subset 

of F \B V. In [3] the FAP is described in terms of integer programming in the formu­

lation commonly adopted to solve the FAP by exact methods such as tree search, 

see Section 2.1.

Alternatively, a different approach is constituted by the multiple interference 

model described in Section 2.2.4, which considers the interference produced by all 

the transmitters in the network when they transmit simultaneously.

1.5 Solving large FAP instances

The MS-FAP and its variants have been proven to be NP-Hard [53] by reduction 

to a graph coloring problem. Other simple reduction proofs have been provided to 

show that the other formulations of the problem are also NP-hard. Consequently, 

exact methods are able to solve the FAP only for small instances composed of a 

limited number o f transmitters.

Successful solution techniques for the FAP are usually based on meta-heuristic 

algorithms, while lower bounding techniques have been developed that allow the 

quality of these solutions techniques to be assessed. This has been shown to be 

successful for some test problems. However, many of these meta-heuristics have 

not been usually demonstrated on very large scale problems that occur in practice 

or examples where tractability prospects are low. In these cases handling the whole 

assignment problem can be particularly challenging and good quality results may 

require considerable runtimes. Highly specialised algorithms are generally used, 

whose performance mainly depends on the specific problem for which they have 

been designed.



To resolve this, we propose a decomposed assignment approach to solve the 

FAP with meta-heuristics. Larger problems can then be handled and solved by 

meta-heuristic techniques within a shorter time.

Decomposed approaches have primarily been applied in combination with ex­

act methods and very seldomly with heuristic techniques. In these cases authors 

usually proposed meta-heuristic algorithms which incorporate exact procedures for 

local optimization.

This thesis is the first work which investigates constructively this problem by 

describing a number of decomposition methods and their application to each type 

of FAP. Main focus is given to the MI-FAP but all the formulations proposed will 

be considered in order of difficulty. The FAP is solved by applying the decom­

posed approach to a number of meta-heuristics. Due to time restrictions we have 

limited the choice to a simulated annealing and a genetic algorithm thus including 

the different categories of evolutionary and local searches algorithms. In addition, 

the genetic algorithm has been implemented with two different assignment repre­

sentations: the straightforward direct representation already used for the simulated 

annealing and the order-based, which has been previously used only for some of 

the formulations of the FAP (MI-FAP). Note that this representation requires the 

introduction o f a further mapping performed by a sequential assignment thus in­

cluding an example of constructive methods, which complete the classification of 

the most commonly used heuristics for the FAP. Furthermore sequential assign­

ments are strictly related with the original idea of our decomposition approach 

which divides the network into subsets and then solves them sequentially (the two 

approaches actually coincide if we imagine a decomposition into | V\ subsets each 

composed o f only one vertex)

Both heuristics have been applied following their standard procedure. Deal­

ing with standard implementations adds generality to the decomposed assignment 

procedure proposed, whose effectiveness aims to be algorithm and problem inde­

pendent. Moreover, the percentage of the improvement brought about in this case
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is expected to be more important than using non-standard high performing algo­

rithms, thus the gap between different meta-heuristics can be reduced. In fact, the 

more sophisticated an algorithm is, the less are the advantages expected from the 

decomposition approach (which introduces approximations in the number of con­

straints considered). For example exacts algorithms are always expected to perform 

better with the global approach than with the decomposed technique (or in the the 

worst case equalize the results).

The results obtained for each type of FAP will then be presented and discussed. 

A number o f partitioning methods are presented and compared for each FAP, such 

as clique detection; sequential orderings; novel applications of existing graph par­

titioning and clustering methods adapted for this problem.

Finally, all of the experiments performed for this thesis have been conducted 

on the resources provided by the Cardiff University Condor Pool [1], This has 

allowed extensive simulations to complete the high number of required test. In 

order to make uniform the runtime values returned by the different machines in 

the pool a specific procedure has been implemented, whose detailed description is 

reported in Appendix B.
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Chapter 2

Literature review
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This chapter presents an overview of the techniques used to solve the FAP by 

classifying them in two main categories of exact methods and meta-heuristic algo­

rithms. Subsequently, it reports a review of the previous works which have applied 

problem decomposition techniques to the FAP. Finally, the chapter concludes by 

describing briefly the main group of benchmarks used in the literature to solve this 

problem in its different formulations.

2.1 Exact methods and lower bounds

A number of lower bounds are available in the literature for the MS-FAP and are 

based, for the majority of cases, on its reformulation as a T-Coloring problem. 

They were firstly introduced in Gamst [44], which proposed a bound based on the 

clique of the interference graph, and successively by [112,114]. In addition, among 

the others, a second group of bounds is based on integer linear models either as a 

reformulation of the problem as a vertex packing problem [3] or on the minimum 

Hamiltonian path [8,12].

For the MI-FAP (and its generalization as FS-FAP) a more limited number of 

lower bounds have been proposed because of the difficulties introduced by consid­

ering some of the hard interference constraints as soft constraints which involves 

the use o f penalty factors. In [66] a method based on the solution of a nonlin­

ear problem, which is by construction a lower bound of the FAP, produced good 

lower bounds for some specific CELAR instances of the CALM A project which 

present an additional constraint called mobility cost. Koster et al. suggested in [74] 

a method based on the linear relaxation of a generalization of the FAP as a partial 

constraint satisfaction problem (see [72]). This produced some good results but 

only for instances with a very small frequency domain (less than three frequen­

cies available for transmitter). In [82] the same MI-FAP formulation constitutes 

the starting point for deriving lower bounds based on analogies with the quadratic 

assignment problem. In [89] an improvement of the integer programming formu­
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lation, reinforced with additional constraints derived from the cliques o f the inter­

fering graph previously used in [88], has been used to produce lower bounds for 

different FS-FAP benchmarks. It is important to mention that this work presents 

an interesting attempt at applying it to larger MI-FAP instances of the COST-259 

benchmarks. Subsequently, Smith et al. further improved these bound in a more 

recent work [108].

This work, together with [109] and [7], extends and update the result previ­

ously published in [8] and also summarizes and compare the performance in terms 

of lower bounds for the different formulation of the FAP. All of these papers im­

proved the known lower bounds using methods from mathematical programming, 

which present some advantages towards the computation of lower bounds proposed 

before. In particular the calculation proposed in [8] is based on the detection of 

cliques which may be need to be eventually modified, and this can be computa­

tionally expensive, may require manual intervention, and its effectiveness strongly 

depends on the specific problem considered. On the contrary, the other methods 

based on the minimum Hamitlonian have the advantage of providing upper bounds 

as well but they are not always entirely successful. Moreover, their effectiveness 

may not scale well with the size of the data set. However, if the lower bounds gen­

erated for the MS-FAP are overall successful for real problems (but not for random 

generated problems [7]) the same conclusion cannot be drawn for the MI-FAP. In 

fact, for this type of FAP lower bounds are successful only in limited cases [7,109] 

whereas for others (for example the COST259 benchmarks introduced later in Sec­

tion 2.4) the gap between lower and upper bounds is still very large and so ineffi­

cient in practice.

Finally, Eisenblatter [40] derived new lower bounds for the COST 259 MI-FAP 

instances by studying the semidefinite programming relaxation of the minimum k- 

partition problem. These bounds are based on the fact that the MI-FAP reduces to 

a minimum ^-partition problem, which can be modelled as a semidefinite program 

with the restriction of considering only co-channel interference.
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Exact methods have been mainly proposed for problems for which lower bounds 

are available. The most common optimization method is tree search and a com­

plete overview of this approach can be found in [4], In tree search algorithms we 

can distinguish two main parts: the construction of the tree and the processing of 

its nodes. The first part consists of the choice of the variable for branching as well 

as the selection of a subproblem from the tree, usually using methods as depth- 

first search or best-first search. The second part concerns the actual process of 

solving a subproblem by applying reduction and node pruning techniques, such as 

cutting plane algorithms, and combinatorial lower bounding techniques. Most of 

the branching rules used for the FAP are static, i.e independent from the actual tree 

search, and consist only in selecting a vertex from an initial ordering usually based 

on the degree of the interference graph, such as highest degree first or smallest de­

gree last. An outline of these ordering methods is given in Section 2.2.1. In [46] a 

dynamic selection called saturation degree, originally proposed in [17,98] for the 

graph coloring problem, has been successively used to solve the MS-FAP with a 

branch-and-cut method. Similarly, in [3] the FAP is solved using another branch- 

and-cut algorithm which is tested on the smallest data sets of the CALMA project. 

However, these category of methods, as well as the branch-and-bound, has been re­

ported to be usually successful only to determine whether or not a given assignment 

is feasible, despite requiring a large computational effort to solve the relaxation in 

each node o f the enumeration tree. Alternatively, Mannino and Sassano proposed 

in [81] an exact enumerative method provided by pre-processing and fixing tech­

niques to reduce the size of the instances while a restricted backtracking was used 

to reduce the size of the tree. The algorithm is used to solve MS-FAP instance 

only, although a cumulative interference is added to some of the instances in order 

to solve the FAP as a feasibility problem.

Very few attempts have been made to solve the more complex MI-FAP by exact 

algorithms. In [66] there are indications on the use of a branch-and-cut method 

but no computational results are provided. In [75] the formulation previously used
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in [74] to produce lower bounds has been extended to propose a tree decomposition 

algorithm (see also Section 2.3.1) but it has been proven to be successful only 

on instances presenting a particularly suitable structure. In [82] the lower bounds 

derived for the MI-FAP have been used, in addition to some of the the reduction and 

dominance rules reported in [112], to propose a branch-and-cut algorithm which 

has been tested on sub-instances of the CELAR data sets as well as some of the 

Philadelphia instances considered as fixed spectrum.

In conclusion, although partially successful for the smallest data sets, all the 

exact techniques proposed in the literature for the different models of FAP can be 

applied successfully only to relatively small data sets, usually in the range from ten 

to few hundreds transmitters, whereas the few attempts made on larger size data 

sets usually resulted in exceeding the maximum fixed CPU time constraint, as for 

example for the test reported in [82].

2.2 Meta-Heuristics for FAP

For practical instances the majority of research works have used heuristic ap­

proaches. We adopt in this thesis the classification proposed in [60] into Con­

structive, Improvement and Evolutionary methods.

Although heuristics have been demonstrated to perform reasonably well for 

small and medium size problems the assignments produced for large size ones 

can be far from the optimal, as reported in [111] for the MS-FAP. Furthermore, 

for the harder categories of FS\MI-FAP the have not generally been proven to be 

completely effective for every type of benchmarks, see for example [108] which 

provides limited evidence that meta-heuristics may not be fully effective for the 

MI-FAP by artificially constructing a number of benchmarks derived from the 

COST259 benchmarks (see [28]) for which the optimal solution is known.
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2.2.1 Constructive methods

This first category consists of the Sequential algorithms proposed by Hale [54], 

These were originally proposed for the MS-FAP and are the simplest and quickest 

methods to produce feasible solutions. They start with a sequential list of trans­

mitters, ordered by some defined criteria. Frequencies are assigned to transmitters 

in turn, with the first transmitter receiving the lowest frequency. Subsequently, 

frequencies are chosen from those which do not violate any constraint with the 

transmitters already assigned in the ordering. Thus a feasible assignment is always 

guaranteed for a given ordering of transmitters. Because of their characteristic of 

progressively reducing the search space, the quality of their results is generally 

rather poor and depends heavily on both the initial chosen ordering and the partic­

ular problem considered.

In [54] the selection of the next transmitter is made according to a given or­

dering of the whole set of transmitters V. A number of different orderings are 

proposed including Largest degree First (LF) , Smallest degree Last (SL), Gener­

alized Largest First (GLF), and Generalized Smallest Last (GSL). All of them aim 

to place the ‘hardest’ to assign transmitters at the start of the ordering. They all 

tend to produce non-ascending permutations with respect to the generalized degree 

of the vertices of the interfering graph. More sophisticated orderings are also pro­

posed, such as the Generalized Saturation Degree (GSD) based on the saturation 

ordering previously introduced in Section 2.1.

Besides these procedures used for selecting the next transmitter other tech­

niques are proposed in order to select and assign a channel to a given vertex. The 

simplest is termed the Smallest Acceptable Frequency, which selects the smallest 

available frequency among those that do not produce any violations. Other pos­

sible selections take into account the number of occupied channels, that is the set 

of frequencies already assigned to a transmitter, see Smallest Acceptable Occupied 

(SAO) and Smallest Most Heavily Occupied techniques (SAMHO).

Although in general they are not competitive with other methods in isolation,
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sequential algorithms can be used to produce effective upper bounds [17]. More­

over they can be used as preprocessing to produce starting assignments for other 

local search methods [62] or they can be incorporated in more complex algorithm 

structures. In Section 2.2.3 they constitute the evaluation procedure for an evolu­

tionary algorithm. In [25] a variant of the procedure in [54] has been proposed 

to adapt the sequential assignment for the FS-FAP. In a more recent work [105] a 

new greedy algorithm has been proposed to solve MS-FAP instances. Although 

the authors stress the fact that the main advantage of their heuristic is to produce 

good approximations in computational time which increases only linearly to the 

number of transmitters, the method is capable of yielding optimum solutions to 

the majority of the Philadelphia instances tested. Finally, in a recent publication 

Chiarandini and Stutzle [20] propose new implementations of the sequential algo­

rithm and compare them with the original formualtions in [54].

2.2.2 Improvement methods

Improvement methods are based on iterative local searches of the neighboring 

search space. Local Search (LS) is the most basic improving heuristic developed 

for combinatorial problems. An initial solution is selected and iteratively replaced 

with an improved one chosen from a restricted subset of similar solutions called a 

neighbourhood. A neighbour is obtained from the current solution by means of a 

given set of small changes called moves. For example, a 1-opt neighborhood is the 

set of solutions obtained from the current one by selecting a vertex and changing its 

frequency value (see Algorithm 7.4) whereas 2-opts are obtained by selecting two 

vertices and swapping their frequencies. A neighbour replaces the old solution if 

it produces a better value for the cost. Here the main issue is expanding the size of 

the neighbouring set without increasing too much the runtime of the algorithm. In 

fact, large neighborhoods correspond in general to exponentially increasing search 

times [4].

Because plain LS methods do not provide any mechanism for escape from local
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optima they have been very seldom used for the FAP and they must be applied 

many times with different random seeds and different initial solutions. In [62] 

Hill Climbing (see Definition 3.7) is used to solve FS-FAP instances while other 

examples of LS applied to the FAP can be found in [19,97]. In these 1-opt and 

2-opt neighborhoods are used and applied to a set of randomly generated instances 

of the MI-FAP.

Meta-heuristics which help LS to escape local optima are preferable choices 

for the FAP. In [115] a Guided Local Search applies variable penalty values to so­

lutions trapped in local minima. This technique is applied to MI-FAP, MO-FAP and 

MS-FAP instances of the CALMA project. However, the most successful improve­

ment methods for this combinatorial problem are Tabu Search (TS) and Simulated 

Annealing (SA), which are widely recognized high performing meta-heuristics for 

both the MS-FAP and FS-FAP.

SA was formally introduced by Kirkpatrick, Gelat and Vecchi for general op­

timization [70]. Subsequently, it has been adapted to solve variants of the FAP by 

different authors, with the energy function object of the optimization defined as 

a measure of the interference constraints. Notable applications of SA to the FAP 

are described in [13,38,100, 117]. Effective SA implementations can be found 

in [5] for the CALMA project instances, and in [64, 110] for other benchmarks. 

Pseudocode of a generic implementation can be found in [60] while that used in 

this thesis is outlined in Algorithm 7.1. In [57] a variant of SA, called thresh­

old accepting, is applied to the COST259 MI-FAP instances with the difference of 

limiting the acceptable moves to configurations which respect the hard constraints. 

At the end of every loop the algorithm applies a so-called one-cell optimization 

obtained by letting all of the frequencies assigned to a vertex be changed simulta­

neously. [92-94,102] propose bounds for the expected time needed by SA to find 

a optimal solution for different combinatorial problems, which include the graph 

colouring. In particular, they show a relation which is exponential with the size of 

the problem.
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TS was originally defined by Glover in [47] and follows the basic idea of ex­

ploring the neighbouring spaces by a sequence of moves, in which a move is de­

fined by the best available configuration. However, in order to escape from local 

minima, some moves based on the short-term and long-term history of the se­

quence of moves are classified as forbidden, or tabu, and stored in a tabu list. In 

more recent works TS has been extended to solve fixed spectrum FAP instances 

(see [15,19]). In [19] the variant of TS proposed is called Tabu Thresholding and 

is implemented in two different phases called ‘improving’ and ‘mixed’. In both of 

the phases the tabu list is substituted by a partition of the neighbourhing space into 

a number of subsets, which are then in turn further partitioned into blocks. Mon- 

temanni et al. improved in [87] the Tabu Search performance by proposing a new 

implementation which uses a dynamic tabu list and a cost function updating with 

a cost change table (allowing full neighbourhood) . Other TS implementations, 

solving both the MS and FS-FAP, can be found in [39,62],

A recent comparison of the most effective local search algorithm for the MS- 

FAP can be found in [20] whereas [4] provides a complete overview for all the 

different formulations of the FAP.

2.2.3 Evolutionary algorithms

Despite the range o f heuristic techniques that have been proposed for the FAP, it is 

still not easy to identify which methods can be the most effective on a wide range of 

test problems. This is particularly true for the category of evolutionary algorithms 

which includes the class of Genetic algorithms (GAs). These are search methods 

originally developed by Holland with the goal of either reproducing the natural 

process of evolution or adapting it to design software systems retaining its original 

mechanism. Pseudocode for a generic GA can be found in [58]. Pseudocode of the 

implementations used in this thesis are outlined in Algorithm 5.1 and 7.3.

On a closer investigation of the various implementations proposed, they appear 

to be problem specific and their effectiveness mainly depends on the particular
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data set considered whereas local search heuristics are more generally successful. 

In particular for the minimum interference instances of the harder FS-FAP there is 

no clear evidence of their general competitiveness. Although they adopt different 

representations to encode the population of chromosomes, they have very rarely 

been applied to more than one representation of the same instance for a given test 

problem, see [29,65,68], so comparisons are limited. Finally, some of the GAs 

proposed appear capable of producing good results but the instances used have not 

been made widely available to other researchers [31]. Three main categories can 

be identified:

Direct representation This first category encodes the chromosomes into either an 

integer vector or a set of integers [6,21,30,31,45,55,71] representing the 

frequency assigned to the corresponding transmitter. For the MS-FAP this 

representation allows solutions which are not feasible, that is solutions which 

violate some constraints.

Here the main difficulty arises in the choice of effective genetic operators 

since the standard ones produce poor performance. Some new problem spe­

cific operators have been suggested. They obtain the best performance on 

MO-FAP instance [55,68] but the results obtained with the other types of 

FAP are not uniform, as observed in [4], Penalty factors can be added to 

the fitness function in order to weight constraints in a different way, but the 

setting of the weight values, as well as the other parameters used, is rather 

a difficult task, as noticed by the same authors. In [31,65,78] some good 

results were obtained for the MI-FAP but the problems tested (although rep­

resent real-life instances) do not belong to any of the benchmarks widely 

available [2] and they either have not been compared with other methods or 

the benchmark used is not shown. It is worth noticing that with this represen­

tation it is particularly difficult to find a crossover operator able to transmit 

good properties to children solutions without being too disruptive. In some 

works the GA is implemented with no crossover applied, which essentially
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results in a local neighbourhood search [55,68,106].

In [29,30] this representation is extended to test some of the FS-FAP prob­

lems of the CALMA project and other real world instances. Here, the prob­

lem is approached in two phases: the first optimization step aims to find 

a feasible solution by minimizing the number of violated interference con­

straints whereas the second searches for a solution with minimal interference 

costs, while keeping the solution feasible. In [71] an innovative approach 

produces very good results on one of the widely available benchmark of 

the CALMA problems. However the genetic operators used are ‘optimal’ 

operators whose application is computationally very expensive as observed 

in [4,79]. In particular the crossover implements a branch and cut procedure, 

which also makes the GA a hybrid algorithm as discussed later in this thesis.

A variation of this representation was firstly proposed in [65] and found su­

perior to the above direct representation. Here chromosomes are encoded in 

subsets (genes) which include the vertices which are assigned the same fre­

quency. However, the GA proposed involves the use of parallel computing 

and it has been outperformed by other heuristics, such as SA, as reported in 

a later work [64]. Few other works adopt the same representation but the 

results obtained are essentially similar to those produced by the direct one 

(see [99]).

Bit String Representation The second category uses a similar approach but en­

codes the chromosomes into a binary string [91, 107]. Although the cost 

function is still set as a measure of the total violations, this representation 

can generate solutions which automatically satisfy some of the constraints, 

such as co-cell constraints, thus reducing the search space and improving the 

computational efficiency of the GA.

Permutation Based Representation The third type of representation, which was 

originally proposed for the MS-FAP in [118,119] and independently in [14],
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is the ‘permutation-based’ representation (also known as ‘order-based’). Genes 

are integers representing transmitters, and individuals are represented by per­

mutations of the set of integers including all the transmitters. The fitness of 

an individual is then produced by a sequential algorithm to assign frequen­

cies to transmitters thus producing at each evaluation a feasible solution for 

the MS-FAP. In the original work [118] a simple steady-state GA produced 

excellent results on widely accepted minimum span test data sets including 

the Philadelphia instances. The latter set of benchmarks has been also used 

in [14] with a generational based GA using the same representation.

In more recent work an adaptation of the sequential assignment for the FS- 

FAP has been used as evaluation procedure for the steady-state algorithm 

proposed in [25] and tested on a number of FS-FAP benchmarks. However 

the use of this representation does not guarantee the complete coverage of 

the search space. Therefore a local search procedure has been incorporated 

into the GA structure.

2.2.4 Shortcomings of other existing approaches

The technique of hybridizing GAs with another heuristic in order to improve their 

performance forms the class of memetic algorithms. This technique is often used 

for the more general category of constraint satisfaction problems, which includes 

the FAP, as described in [79]. In this broader category the algorithm often incorpo­

rates a LS in the GA structure in order to either act as a repair mechanism when the 

genetic operators are highly disruptive [31] or to diversify the search to increase so­

lution quality when the algorithm is trapped in local optima [79,91]. Often the GA 

is used only to produce good approximations which are subsequently improved 

by a local heuristic [6 , 83, 99]. In a completely opposite approach, the GA can 

act as second operator after other methods, for example stochastic ranking [123], 

simulated annealing [116], and neural networks [ 1 0 1 ].

There is a recognized need to elaborate more sophisticated interference mod­
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els, which can solve more realistic frequency assignment problems, as described 

in [36,38,110,124], It would be more accurate to take into consideration the un­

wanted signal caused by all transmitters when they transmit simultaneously. Mul­

tiple interference models can be found in the following works. Lower bounds 

using a multiple interference model are proposed in [108]. In [76] interference 

constraints are divided in hard and soft constraints, and furthermore in co-channel 

and adjacent-channel, each of them assigned to a different set of transmitters. [ 1 1 0 ] 

proposes a direct multiple interference model beside an intermediate model, which 

still uses binary constraints to represent multiple interference. These two mod­

els have been adopted to solve MS-FAP instances using simulated annealing and 

multi-agents algorithms (ANTS) [8 6 ]. Other slightly different multiple interfer­

ence models can be found in [42,81], However, there is a general lack of results 

about models which differ from the binary, and no results are actually available for 

the FS-FAP instances. In addition, multiple interference becomes a fundamental 

issue in the design of real systems like infrastructure and independent, or ad-hoc, 

wireless networks, see for example [ 1 2 1 ].

Finally, [61], [18], and [52] give further important contributions to the appli­

cation of multiple interference models. Here given a series of reception points the 

evaluation of an assignment requires that for each of these points the ratio between 

the receiver power and the sum of powers received from interfering transmissions 

(known as signal-to-interference ratio) is above an assigned threshold. Nearly opti­

mal asignments are then produced by different local search heuristics, such as tabu 

search [18] and simulated annealing [61], in which the cost function objective of 

minimization is the sum of the signal-to-interference ratios over all the transmit­

ters in the network. [52] shows that (using SA but the conclusions achieved can 

be extended to other meta-heuristics) further improvements are obtained if the cost 

function becomes a combination of that used for the multiple interference and the 

binary constraint model. This can be reaches in two ways either by the addition 

of a term which measure the constraint violations (as the interference modeled by
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the binary constraints graph) or by using the binary model to produce a starting 

solution to be used as input for the multiple interference implementation.

However, the main contribution of these paper is that they all show that the use 

of more realistic models, such as the multiple interference one, produces benefits 

in either the production or the evaluation of frequency assignments which are far 

more important than small improvements to artificial cost functions.

Finally, since the main argument against the use of these models is about their 

greater resources required, the decomposition approach object of this thesis has 

the potentiality of being profitably applied to multiple interference models which 

minimize the signal-to-interference ratios directly.

2.2.5 Summary of meta-heuristics approaches

To summarize, the FAP in its different formulations have been more commonly 

solved by a heuristic approach. However, although meta-heuristics produce good 

results on some of the benchmarks available, highly specialised algorithms tend to 

perform best. In addition, standard implementations of meta-heuristics may require 

considerable runtimes to produce good quality results whenever a problem is very 

large or complex.

This thesis investigates the application of problem decomposition techniques as 

a possible solution to this drawback. Problem decomposition can also be thought 

of as an alternative to the introduction of exact procedures to optimize the heuristic 

solutions which inevitably increases the complexity of these algorithm thus limit­

ing the range of their applicability.

2.3 Problem decomposition for FAP

Previously published works which have applied decomposition for the FAP, can 

be grouped into three main categories; used in combination with exact methods; 

with meta-heuristics as a second phase optimization (either following or incorpo­
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rated the heuristic procedure); and the approach proposed in this thesis based on 

constructively finding an efficient decomposition into subproblems that leads to 

corresponding partial solutions. These will then be recomposed into a solution of 

the initial problem.

2.3.1 Decomposition combined with exact methods

The most common application of problem decomposition techniques for the FAP 

has been with exact methods. We have described in Section 2.1 how a number of 

them are based on selecting an initial ordering aiming to consider any possible hard 

part of the data set first. In [81] this idea is further developed by identifying a hard 

subgraph, called the core, which is isolated and solved first. Then the remaining 

part of the problem can be solved without ideally influencing the global objective 

function. In Aardal et al. [3] a preprocessing phase based on the cliques of the 

interference graph is used with a branch-and-cut algorithm to reduce the size of 

minimum order problems (MO-FAP) by between ten to fifteen percent. Similarly, 

a clique bound has been extended and generalized to provide lower bounds for both 

the MO-FAP and MS-FAP.

Koster et al. [75] observed that assigning frequencies to a cut-set of the interfer­

ence graph decomposes the problem into two or more independent subproblems, 

thus they generated a sequence of such cut-sets using tree decomposition. This 

idea, in addition to the use of several further dominance and bounding techniques 

led to the solution of some small and medium size instances for the MI-FAP. How­

ever, for larger real-life instances in which the proposed dynamic programming 

algorithm is impractical because of the width of the tree, the algorithm has been 

used iteratively to improve some known lower bounds. However, the methods de­

scribed above can produce solutions in a reasonable run time only for the easiest 

instances. As a consequence they have been primarily used either to produce lower 

bounds or as a preprocessing technique.
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2.3.2 Decomposition combined with heuristic methods 

Cell re-optimization

Decomposition has rarely been used in combination with meta-heuristics. In these 

cases a decomposition of the whole set of transmitters into a number of subsets 

has been used to optimize the solution either after the heuristic method or during 

its procedure at a fixed number of iterations. Moreover, the partitioning adopted 

is similar to that used for distributed channel assignment for cellular problems in 

order to optimize solutions locally, usually by applying an exact procedure, inside 

system clusters of several cells [51,67,122].

Hellebrandt and Heller proposed a cell re-optimization method used in com­

bination with their so called Threshold Accepting method [57]. The procedure 

consisted of optimizing each cell assignment after a fixed number of iterations. 

Each cell is selected in sequential order and its assignment is (re)optimized by an 

exact method, while those in the other cells are kept fixed. These results were at 

the top of the list of the COST259 test problems at the time they were published. 

Subsequently Montemanni et al. used the same cell implementation procedure to 

improve their results obtained with Tabu Search [87] (which also improved those 

of Hellebrandt and Heller).

In a similar fashion Mannino et al. [80] proposed a new sophisticated imple­

mentation of SA combined with dynamic programming to compute local optima. 

Their method applies the original re-optimization idea to a cluster of cells. In 

their approach, they optimize assignments in cliques of vertices of multiple de­

mand by reducing this problem to finding fixed cardinality stable sets in interval 

graphs. Here a modification of SA, in which the neighborhood consists of only the 

configurations satisfying the hard constraints, is combined with a re-optimization 

performed at the end of every loop of the algorithm. The authors shown how a 

current best solution obtained by SA could be optimised by letting all of the fre­

quencies assigned to a vertex be changed simultaneously. They also shown that
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this corresponds to looking for a minimum cost ^-cardinality stable set in interval 

graphs, where Jc is the demand of the vertex.

In these examples the local optimization procedure obtains very good results 

on the COST259 MI-FAP instances (overlooking some of the best results published 

so far, see [2 ]), although the addition of elaborate exact procedures considerably 

increases the computational complexity of the algorithm thus requiring runtimes 

roughly one order of magnitude higher than those of the fast heuristic combinations 

[40].

Subgraphs

In this thesis the decomposition strategy is extended to a larger scale by adopting 

a different approach in which problem decomposition is used to divide a complex 

FAP instance into a number of subproblems, which can be then more effectively 

solved and recomposed into a solution of the original problem. It is worth not­

ing that this approach does not involve any exact local optimization algorithm and 

therefore it is suitable for the application of standard algorithms. Here the decom­

position approach aims to simplify a complicated problem by considering separate 

subproblems obtained by removing some of the constraints between pairs of ver­

tices representing transmitters, rather than increasing the algorithm complexity and 

solving the problem as a whole.

This approach has seldom been used in the literature. In [111] Hurley et al. 

extended the standard and generalized clique bounds originally proposed for the 

MS-FAP and MO-FAP (see for example [44]) to a heuristic approach. They start 

by finding a level-/? clique, which is the largest clique having minimum weight 

edges of p, then they produce a first assignment for the clique by applying a meta­

heuristic and evaluate its span. Subsequently, the clique assignment is kept fixed 

and an attempt is made to extend the assignment to the full interference graph. 

If the span of the final assignment is not close to that of the clique, a number of 

vertices are added to the clique, creating a so-called near clique, and the process is
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repeated until the difference between these two span values is below a given thresh­

old. This proce'dure produced good results on some MS-FAP instances including 

some of the Philadelphia benchmarks and other test problems provided by Cardiff 

University (see [19]). However, it presents the drawback of finding the maximum 

cliques in the graph, which is an NP-hard problem itself.

Note that an idea similar to subgraphs have been used with exact methods when 

a subset o the vertices is firstly assigned ann then this assignment being extended 

to a complete one, see the approach used in [81] described in Section 2.3.1.

A slightly different approach has been recently used in [69]. Here a cluster­

ing algorithm based on the generalized-degree of the neighbour vertices is used 

to initially partition a real-life FS-FAP instance, which is then solved by a GA. 

However, the representation used has the limitation of only considering co-channel 

interference. Moreover the elements included in different subsets exchange their 

position during the optimization process, which makes this algorithm considerably 

different from our decomposition procedure.

Finally, in [25] an order-based steady-state genetic algorithm (GA) has been 

combined with two different decompositions, based on either the generalized de­

gree of the corresponding graph or more sophisticated graph partitioning algo­

rithms, to solve both the MS-FAP and simple instances of the FS-FAP. Further­

more, [26] presents preliminary results of applying the same procedure to the MI- 

FAP using a generational GA with direct representation. In the rest of the thesis we 

will generalise the use of this approach to all the types of FAP defined in Section

1 . 2  and extend it to a wider range of decomposition methods.

2.4 Benchmarks for FAP

This section outlines briefly the benchmarks most commonly used for the FAP. We 

will limit the description to those publicly available.

Philadelphia The Philadelphia test problems were one of the first benchmarks
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proposed for the MS-FAP. Network sites were modeled on a hexagonal grid 

and each of them demands a high number of frequencies equal to the mul­

tiplicity of the sites. In the first instance transmitters belonging to the same 

site or adjacent sites cannot use the same frequencies. However, different for­

mulations are proposed which introduce the concept of re-use distance [ 1 0 ]. 

While not realistic in practical terms, these benchmarks are widely quoted.

Calma The CALMA instances represent military applications and differ from 

other frequency assignment problems by their specific distance separation 

constraints. Besides the minimum distance constraints they also present 

equality constraints, that is two frequencies at a fixed distance must be as­

signed to the corresponding vertices, and mobility constraints, which penal­

izes changes in some fixed frequency values assigned to specific transmitters 

in the network.

Cardiff University These instances are thought to simulate more realistic wireless 

network and are divided in two groups. The first group was generated by a 

specific tool which locates transmitters according to a given probabilistic 

distribution [9] and aim to produce larger benchmarks than those provided 

in the literature, whereas the second group includes real global system for  

mobile communications (GSM) scenarios. Note that for very large bench­

marks the need for problem decomposition techniques becomes compulsory 

since standard meta-heuristics are in general not able to produce competitive 

results while more sophisticated ones cannot be actually applied because of 

their computational complexity.

COST-259 The COST 259 project on Wireless Flexible Personalized Communi­

cations ran in the second half of the nineties and consisted of many research 

group each of them working on different aspects of radio mobile communi­

cation, such as systems, antennas and propagation, and networking (see [2 ]). 

The outcome of this work was the constitution of a library of GSM fre­
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quency planning scenarios with the aim of producing new benchmarks for 

an updated comparisons of available frequency planning methods as well as 

the development of new ones. As a consequence, the scenarios proposed 

were rather different, although they all present the common characteristic of 

implementing the minimum interference model for the FAP. The final report 

o f the COST 259 project has been finally published in [28]. These data sets 

have been explicitly designed and used to solve MI-FAP instances.

Random Graphs A GnyP random graph is defined as a graph of n vertices, such 

that the probability that any two given nodes are connected by an edge is 

p, independently for each pair of nodes. These are known to be very hard 

problems, although they do not represent any real network, since they use 

only one parameter to model the entire network and this is independent of 

the geometry of the configuration and correlations among links [41]. More­

over, they generally present a very high graph density which is not generally 

suitable for the application of decomposition techniques. However, a few of 

these instances will be included as a comparison between different decom­

position methods for the two main types of FAP considered, that is MS-FAP 

and FS-FAP.
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Chapter 3

Decomposition and assignment 

algorithms
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This chapter will introduce our proposed decomposed assignment procedure 

for the FAP and, subsequently, will outline the different algorithms used to ob­

tain such decomposition and the meta-heuristics used to produce the assignment 

solution of the problem.

3.1 Decomposed assignment approach

The procedure starts by partitioning the interference graph into one or more sub­

sets. Then a meta-heuristic is applied to each of the subsets in turn to produce a 

sequence of partial solutions. When the current subset is considered, the algorithm 

keeps the assignment of transmitters in the previously assigned subsets fixed, and 

minimizes the constraint violations with them. Finally, the algorithm returns a final 

assignment, a solution of the whole problem.

Pseudocode of the decomposed assignment procedure is outlined in Algorithm 

3.1. Note that it is stated to be applied to any MS/FS/MI-FAP. We need to dis­

tinguish between the first assignment loop over the subsets in the partition and 

the further ones. The first loop builds a sequence of partial assignments in which 

some vertices are unassigned and not considered in the cost function. At the end of 

this first loop, a complete assignment is obtained and subsequently the algorithm 

changes the assignment of a single subset during each iteration.

Definition 3.1 Given a partition o f V into nS ubs subsets { V\, V2 , . . . ,  V„Subs} we 

define the set o f  the intra and inter-edges for a given subset Vj as

E f ra = E{G[Vj\) E f er = {uv : u e Vj, v $ Vj, uv e E }

In Definition 3.1 G[Vj] Vj c  V indicates the subgraph induced by a subset Vj 

of V. For some purposes the subsets are solved independently, and this is shown 

in Algorithm 3.2. This algorithm builds distinct partial assignments for each of the
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Algorithm 3.1 Decomposed assignment
Input: G( V, £ ) , number o f  loops nLoops, size o f  partition nS ubs
Output Frequency Assignment / o f V

1: Produce a partition { V\, V2 VnSubs} o f V using decomposition algorithms
2: for j  = 1 to nS ubs do // First loop
3: Apply a meta-heuristic to determine /(v )  V v e Vj to minimize the cost

O m / F S I M l i f )  = ^  <PMS/FS/Mf(J. «v)
uveE'j

4: where = (E f er u  E f ra) n  E(G [VX U f 2 U ... U Vj])
5: end for
6: for / = 2 to nLoops do 
7: for j  = 1 to nSubs do
8: Apply a meta-heuristic to determine /(v )  V v e Vj to minimize the cost

O M S I F S I M l i f )  = ^  <PMS/FS/Ml( f , Uv)
i/ve Ej

9: where E j = (E‘J ,er U Eij"ra)
10: end for
11: end for

subsets. Further loops other than the first lose significance since during a partial 

assignment the procedure only considers the internal edges E ‘J"ra of the current 

subset j .  Note that only the vertices included in the current subset are consid­

ered during its channel assignment. Finally, all the partial assignments produced 

are recombined to generate a final assignment of the original problem. Since the 

subsets are solved independently they can be solved in parallel, thus reducing the 

computational time required proportionally to the number of subsets.

As an example, we apply the decomposition procedures described above to 

the simple graph of ten vertices in Figure 3.1. Let V\ = {vq, V2 , V3 , V4 }, V2 = 

{V5 , v ,̂ V7 }, V3 = {vg, V9 , vio} be a partitioning of the graph into three subsets. We 

define the following intra-edges El"tra c  E as El”tra = {V1 V2 , , vi V3 , , vi V4 , , V2 V3 }, 

E j tra = {V5 V6, , V5 V7 , , V5 V7 }, and E l"tra = {v8 V9 , , v8 v9, , v9 V]0}. Let then E j ‘nter c  E 

be the inter-egdes of subset V\ with the other subsets; we can then define them as 

E\n,er = E l̂ er U E l™er where E™er = {v]V5, V3 V5 , V3 V7 , v4 v5, v4 v6  } and E l™er =
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Algorithm 3.2 Decomposed assignment - subsets solved independently
Input: G( V, E), number o f  loops nLoops, size o f partition nS ubs
Output FrequencyAssignment / o f  V

1: Produce a partition { V\, V2 , . . . ,  V„subs 1 o f V using decomposition algorithms 
2: for j  = 1 to nS ubs do
3: Apply a meta-heuristic to determine /(v )  V v e  Vj to minimize the cost

O M S / F S / M l i f )  =  ^  <fMS/FS/Ml(f~ UV)
«v€ E‘"'ra

end for

Figure 3.1: Example o f  binary constraints graph with ten vertices

{viv8, V2 V1 0 , V4 V8  } are the inter-edges that V\ has with V2 and V3 respectively. 

Similarly E f er = E™{er U El£ er where E £ er = E \ f  and El£ er = {v6 v9, v7 vi0}. 

Finally, E f er = E l”[er U E‘£ er where E™[er = E \ f r and El£ er = E ‘£ er.

We describe the sequential procedure in Algorithm 3.1 first. The first loop 

starts by considering the first subset V\ and producing a partial assignment of its 

vertices vi,V2 ,V3 ,v4  by applying a generic meta-heuristic. Note that its type and 

representation, as well as the procedure used to produce the assignment, do not 

need to be specified in this context. Only the intra-edges E‘"tra of V\ are here 

considered. Note that the vertices belonging to the other subsets V2 and V3 remain 

unassigned in this phase. Then we consider the second subset V2 ad we produce an 

assignment of its vertices. In this phase the assignments of the vertices of subset V\ 

remain fixed whereas those of subset V3 are still unassigned. We now consider the

34



constraints represented by the intra-edges E™tra but only inter-egdes between the 

subsets already assigned, i.e. the set between subsets V\ and Vj. To complete 

the second loop we now consider the last subset and we assign its vertices vg, V9 , 

and vio keeping fixed the assignments of all the other vertices. We here consider 

the whole set of inter-edges El"ler = E‘"‘er U E ‘̂ er since ail the other subsets have 

been assigned. Note that at the end of this loop we have produced a complete 

assignment of all the vertices of the graph, simply obtained by concatenating the 

assignments produced for each subset.

If we conduct an further loop through the subsets we are now changing the 

assignments of the vertices included in the current subset only, whereas those of all 

the other vertices are kept fixed. This phase will always consider the intra-edges 

and the whole set inter-edges for each of the subsets considered. Namely, for V\ we 

will consider E™tra U E™ter = El"tra U E l̂ er u  E l̂ er. Then for Vj we will consider 

E j tra U El"ter and for F3 El"tra U E‘",er. At the end of each re-assignment of the 

vertices of the subsets currently examined we always have a complete assignment 

simply obtained by concatenating the assignments so far produced for each of the 

subsets.

When we apply the procedure in Algorithm 3.2 the subsets are solved indepen­

dently and only one loop is considered. Moreover, for each subset we only consider 

the constraints represented by its intra-edges. For example, when we are solving 

subset V\ we produce an assignment of its vertices vj,V2 ,v3 , V4  considering only 

E‘"tra in the same way we have proceeded with the sequential Algorithm 3.1. Alter­

natively, instead of the direct assignment of the vertices the solution returned may 

be encoded into a specific representation required by the meta-heuristic. Subse­

quently, the same procedure is used for the next subset Vj. Note that since we only 

consider its intra-edges E™tra it does not matter whether or not we are keeping fixed 

the vertices already assigned, i.e. those of subset V\ (actually the subsets could be 

solved in parallel with further gain in runtime terms). At the end of the application 

of the meta-heuristics to V2 a partial assignment of its vertices V5 , v$, V7 (or an en­
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coded solution) is returned. In a similar way we operate with V3 . At the end of the 

last subset a complete assignment of all the vertices of the graph is obtained either 

by simply concatenating the assignments produced for each subset or by applying 

a decoding procedure to the final solution returned (still obtained by concatenating 

the single solutions produced for each subset) if a specific representation of the 

solution is required by the meta-heuristic used.

3.2 Decomposition algorithms

This section describes the different decomposition methods that have been tested 

in order to compare their performance when the corresponding partitions are used 

to solve the FAP. In the algorithms outlined in the following we will refer to the 

weighted unordered graph G(V,E) as the interference graph representing the net­

work. However, in the case of the MI-FAP the contemporary presence of different 

types of constraints requires the introduction of an equivalent set of edges to re­

duce the network to a weighted simple graph G ° that combines the hard and soft 

constraints. For these instances G ° will actually replace G(V, E) in all the decom­

position algorithms here proposed.

Definition 3.2 Given the interference graph G( V, E) and the 3-tuple represent­

ing the constraints (c%?dweE, ccu°chuveE, cadvJ uv€E) we define the graph GD( V, E) as 

the unordered binary graph having the vertex set V and edge set E with the edge 

weights given by the linear combination:

cuv = m a x {A \C cu°ch + A2 cudvJ ,Aichuavrd)

in which T, are assigned weights to reflect the relative importance o f the con­

straints.

36



Figure 3.2: Example o f random decomposition into two subsets for a graph with ten ver­
tices

3.2.1 R andom

Random decomposition is the simplest decomposition method. The partitioning 

produced can have subsets of either equal size or, in its general definition, random 

size. Note that this method uses no information about the distribution of transmit­

ters or constraints within the network. Pseudocode is outlined in Algorithm 3.3.

Algorithm 3.3 Random decomposition
Input: G(V,E), number of subsets nS ubs, sizes of partitions sizej
Output: Partition { V\, V2, . . . ,  V„sub s) ofV

1 Let P = { 1, 2, . . . , n S  ubs }
2 for j  = 1 to nS ubs do
3 for / = 1 to sizej do
4 Select at random an integer k € P
5 Assign the vertex v* e V(G) to the subset Vj
6 Remove k from the set P
7 end for
8 end for

Figure 3.2 shows an example of random decomposition applied to the graph in 

Figure 3.1. To simplify we only consider a decomposition into two subsets whose 

vertices are represented by white and shaded nodes respectively.
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3.2.2 Geographical

A second simple decomposition method, which can be adopted only when geo­

graphical information about the location of the transmitters in the network is pro­

vided, consists of grouping together transmitters according to a geographical cri­

terion. For instance, we can include into the same subset all transmitters within a 

fixed distance. Note that in this case the size of each subset will be determined.

A similar criterion has been used in the literature with the distributed channel 

assignment. In particular, these techniques are primarily used with cellular net­

works and, as a consequence, very often the decomposition adopted to produce 

assignments which consist of clusters of one or more geographically close cells, 

see [51,67,122]

This decomposition methods still ignores any information about the number/size 

of constraints between pairs of subsets. However, it may be able to produce satis­

factory results when clusters of transmitters are concentrated around specific areas 

of the network, to whom we can refer as ‘towns’. Note that, this is (to the author’s 

knowledge) the procedure used in real applications by the network operators when 

they divided it into smaller areas. The algorithm used in this paper for geographical 

decomposition is outlined in Algorithm 3.4. An example of its application to the 

graph in Figure 3.1 is given in Figure 3.3.

Algorithm 3.4 Geographical decomposition
Input: G( V, E), number o f subsets nS ubs, distance D
Output: Partition { V\, V2 , . . . ,  V„subs 1 o fV  

1: while V(G) 4- 0 do
2: Select a vertex v* e V(G) at random and include it in subset Vj
3: Add to Vj all the vertices u for which d  = \ u - V k \ < D  u e V(G)
4: Remove all the vertices included in Vj from the set V(G)
5: end while
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Figure 3.3: Example o f geographical decomposition into two subsets for a graph with ten 
vertices

3.2.3 M inim um -cut

This simple decomposition criterion takes into consideration the structure of the 

interference graph representing the network, based on the minimum-cut algorithm. 

The idea, also used with exact approaches (see [75]), is that assigning frequencies 

to a vertex cut of the interference graph decomposes the problem into two indepen­

dent subproblems. Hence, if the cut found is an empty set the two subproblems can 

be solved separately by the procedure in Algorithm 3.2 without any loss of quality 

when compared to the original problem. Consequently, because the heuristic is 

now solving smaller and easier subproblems than the problem as a whole based on 

the entire graph G, its performance is expected to improve considerably.

If we formulate the problem in terms of edges instead of vertices we are then 

looking for the smallest subset of edges whose deletion will disconnect the in­

terference graph. Similarly, if we find an empty set the problem can be exactly 

reformulated as two independent subproblems. Alternatively, the quality of the so­

lution produced by the decomposed approach can depend on the cost of the cut-set. 

The higher this cost, the less optimal the solution produced.
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Problem 3.1 Given a cut c(G) = (V], V2 = V \V \ )o f  the unordered weighted graph 

G we will define the cost C(c) as

C(c) = Y j Cuv
uv6 E'"'er

The minimum-cut problem consist in finding the cut o f the graph with minimum 

cost C fo r  all cuts c o f  G.

There are many algorithms proposed in the literature which solve the minimum- 

cut problem. Although traditional approaches use flow techniques and formulate 

the problem as a minimum-cut maximum-flow [59], in this thesis we have applied a 

simple fast deterministic non-flow algorithm proposed by Stoer and Wagner [113], 

which is based on maximum adjacency search methods.

Although this decomposition method is expected to produce better results than 

those presented so far since it considers the actual cost of the cut between the two 

subsets, it has the drawback of usually funding cuts with very unbalanced sizes, 

that is one of the sides of the cut composed by only few transmitters. Moreover, 

the size of smallest subset produced it is usually very small for the most of the FAP 

benchmark tested. A possible remedy is to apply the minimum-cut procedure iter­

atively by removing from the graph G the vertices included in the smallest subset 

of the cut, and then continuing until we obtain the minimum required cardinality 

for each part of the cut. Finally, the procedure needs to be adapted in order to ob­

tain a number of subsets greater than two. This can be obtained by applying the 

procedure recursively to each part of the cut produced.

As example Figure 3.4 shows a minimum cut decomposition into two subsets 

for a graph with ten vertices reproduced from in [59]. To simplify we consider only 

unit weights of the constraints.
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Figure 3.4: Example o f minimum cut partitioning into two subsets for a graph with ten 
vertices

3.2.4 C liques

The most important method which applies the subgraph approach (see Section 

2.3.2) previously used in combination with meta-heuristics is clique decomposi­

tion. In [111] some MS-FAP instances were solved by a standard simulated an­

nealing algorithm in two or more steps which involved partial assignments gener­

ated by solving the frequency assignment problem on the subgraph induced by the 

largest level zero clique and then extending it by adding some more vertices until a 

complete assignment for all the transmitters in the network is eventually reached. 

The addition of the remaining vertices was either made in a single step or through 

intermediate steps depending on the cost difference between the partial and final 

solutions obtained. If this gap is too big more vertices are added to the subset and 

the procedure starts again producing a new ‘extended’ partial assignment. Pseu­

docode of this procedure is outlined in Algorithm 3.5.

The maximum clique algorithm implemented in [62] was that proposed in [27], 

which provides an exact recursive method for finding the maximum clique of 

an unweighted graph. However, since for the MS-FAP the interference graph is 

weighted, with the weights representing the required channel separation which 

guarantees interference free assignments, the algorithm was modified in order to 

be able to find cliques at different levels. In the procedure proposed, level values
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Algorithm 3.5 Subclique assignment [62]
Input: G(V,E), clique C(G) c  V

Tolerance t between the span s of G and the span of the subgraph Gs c G 
Output: Partition { Gs , G \G S }, Span s(G )

1 Assign C meta-heuristically, resulting in a span s(C)
2 Extend the assignment to G , resulting in a span 5 (G)
3 <T <— 5(G) -  5(C)
4 o ’old * 0 *
5 while a  > t and <x < cr0id do
6 Select a set W of vertices to add to C
7 C «- G [V(C) U W\
8 Assign C meta-heuristically, resulting in a span s(C)
9 Extend the assignment to G, resulting in a span 5 (G)

10 O’ old * O’
11 (T <— 5(G) -  5(C)
12 end while
13 Gs *- C

represented the minimum weight of the edges in the clique, so level zero actually 

corresponded to the unweighted solution, level one to the clique composed by ver­

tices requiring at least one channel separation and so on.

In order to deal with the different kind of weights that occur in the MI-FAP we 

have also implemented the weighted version of the algorithm proposed in [96], in 

which the pruning condition has been modified to be suitable for generic weighted 

graphs. The algorithm starts by ordering the weights in a given order, usually 

decreasing by general degree. In our implementation we adopted the GSL ordering 

proposed in [54] which gave the best results in [62]. Since the maximum clique 

problem is NP-hard, finding a good ordering plays a crucial role in order to reduce 

the runtime of the algorithm or the best result if the algorithm is terminated before 

completion (in our case, good approximations of the actual maximum clique may 

also be acceptable). However, for sparse problems the algorithm is faster without 

the use of any ordering [96].

An important concept in the algorithm is the depth of the search. At depth zero 

all the vertices are considered. Subsequently, the algorithm expands one vertex at a 

time (according to the given initial ordering), with the expansion operator consist­
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ing of listing all the adjacent vertices already included in the previous depth. The 

resulting list constitutes the next depth, then selection and expansion are repeated 

until no adjacent vertices are found. Finally the algorithm returns iteratively all the 

selected vertices which, because of being adjacent to each other, form a clique. If 

we repeat the process for every vertex, and we store and update the largest clique 

found so far, then the maximum clique will be found. To speed up the process a 

pruning condition is introduced. If at the current depth no cliques larger than the 

current best can be found the procedure returns. However, if we consider weighted 

graphs this condition needs to be modified.

Firstly, each vertex F, is given an associated weight w, equal to the sum of the 

weights cuv of all its incident edges. The initial vertex ordering will be descending 

by vertex weights. Let d be the current depth, i the index of the currently selected 

vertex at depth d , and the vertex weights which still need to be expanded. If 

the weight of the current clique plus the weight of the remaining vertices at the 

current depth is less or equal to the weight of the current largest clique found, the 

algorithm will prune.

Although faster modifications of the algorithm have been recently introduced 

(see [95]), because of the particular selection ordering used the method considered 

here, can be still effectively used to find good approximations of the maximum 

clique in a reasonable time, even for the largest instances tested . Pseudocode of 

the recursive maximum clique subroutine procedure, for both the weighted and 

unweighted versions, is outlined in Algorithms 3.6 and 3.7, where jV ( v , )  represent 

the set of vertices neighbours of vertex v, (see also [95]). At the first call of the 

procedure the set of vertices U will coincide with the entire set F(G) of the vertices 

of the graph. Note that in the algorithm proposed for the unweighted version [96] 

the graph considered is weighted on its vertices instead of the edges. To overcome 

this we introduce an artificial modification to the interference graph G in order to 

include all information about weights within the vertices.
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Definition 3.3 In order to apply the maximum clique algorithms [27,96], given the 

unordered weighted graph GD representing the network we consider the following 

auxiliary graph Gc such that:

• for the unweighted version: Gc = G

• for the weighted version Gc  has a weight associated to each vertices v e V 

of value equal to its generalized degree gendegfv) (see Definition 3.2.5)

Clique decomposition follows the idea of identifying and assigning the core 

part of the graph at first (also called sometimes the backbone which roughly repre­

sents the hardest part of the problem) and then extending it to the remaining part of 

the graph. Intuitively, this strategy is expected to be effective in order to solve FAP 

problems whenever the most connected part of the graph includes a considerable 

number of vertices. This will allow the partial assignments produced to be sig­

nificantly reproduced, in terms of building blocks, in the optimal final assignment 

including all nodes in the network. However, clique decomposition is designed 

for a partitioning into only two components and different techniques need to be 

adopted to extend the method for more subsets. For example, in this thesis we 

adopt the criterion of iteratively finding the next largest clique after removing the 

vertices included in all of the cliques already found.

The algorithm find the next clique is simply that which removes from the graph 

the vertices of the cliques already found, and then applies the maximum clique 

procedure to this updated graph. This is formally stated in Algorithm 3.8.
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Algorithm 3.6 Maximum clique unweighted recursive procedure (main)

Input: GC(V,E), current size s, maximum size max, current depth d

1 : max = 0 , d  = 0 , s = 0

2 : call MaximumCliqueUnweighted (V, s, d, max)

MaximumCliqueUnweighted ([27])
Input: U C V, Integer s, d, max
Output: clique C Q Gc 

1: if | C/| = Othen
2: if s > wax then
3: max <— 5
4: Update current best clique (C) and store it
5: found  := true
6: end if
7: d - d  -  1
8: return C
9: end if

10: while U *  0 do
11: if s + | U | < max then
12: return C
13. end if
14: / := min[j \ vj e U}
15: U:=U\{V i)
16: d = d -  1
17: call MaximumCliqueUnweighted (U n  jV (v () , s  + 1)
18: end while 
19: return C
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Algorithm 3.7 Maximum clique weighted recursive procedure (main)
Input: GC{V, E), current size s, maximum size max, current depth d

1 : max = 0 , d  = 0 , s = 0

2: call MaximumCliqueWeighted ( V, s, d, max)

MaximumCliqueWeighted ([96])
Input: U c  V(GC), Integer s, d, max
Output: clique C Q Gc

l: i f \U \ = Othen 
2: if s > max then
3: max <— s
4: Update current best clique (C) and store it
5: fo und  := true
6: end if
7: d = d - \
8: return C
9: end if

10: while U ± 0 do
11: if Z *= 1 wki + I™ 1 Wdi < Zy6c vvy then
12: return C
13: end if
14: i := min{j \ vj e U)
15: U  := U \  {v/}
16: d = d -  1
17 : call MaximumCliqueWeighted (U n  N(vj), 5 + 1 )
18: end while 
19: return C
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Figure 3.5: Example o f clique decomposition into two subsets for a graph with sixteen 
vertices

Algorithm 3.8 Next clique procedure
Input: Graph GC(V,E), Integer index, number of subsets n
Output: C C Gc

1: if index > n then
2 : C <—  Gc
3 : return C
4 : end if
5 : i n d e x = 0

6 : C <—  call M a x i m u m  c l i q u e  (Gc , index)
7 : Gc  *— Gc \  G[C]
8 : call N e x t  c l i q u e  (Gc , index + 1 , n)
9 : C «— Gc

1 0 : return C

Figure 3.5 shows an example of a partition into two subsets produced by the 

(unweighted) clique decomposition for a graph with sixteen vertices.

3.2.5 G eneralized  degree

The generalized degree decomposition is based on the same criterion of solving 

the subgraph which roughly represents the hardest part of the problem first. The 

difference is that we here identify the core of the problem as the first N  transmit­
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ters in a decreasing ordering by generalized degree of all the transmitters in the 

network, where N  is an integer chosen depending on the desired size of the subset 

(alternatively we can use any of the orderings proposed in [54]). Note that, since 

Algorithm 3.1 acts sequentially on the subsets of the decomposition, this method 

can then be seen as a natural extension of the sequential assignment algorithms. 

The generalized-degree of a vertex is defined according to the definition proposed 

in [54] as ‘the sum of all weights on all edges incident with a transmitter’.

Definition 3.4 Given an unordered weighted graph G and a vertex v € V we defined 

the generalized degree o f  v as:

gendeg(v) = ^  cuv 
uveE

The procedure can be extended easily to an arbitrarily given number and size 

of subsets and it has been successfully used in [25] to solve some MS-FAP and 

simple FS-FAP instances by applying an order-based genetic algorithm.

To summarise, the generalized degree procedure starts by ordering the whole 

set of transmitters before the division according the ordering which, among those 

proposed in [54], produces the best cost after a greedy sequential assignment. Sub­

sequently, the chosen ordering is divided in a number of suborderings, which are 

obtained according to the following criteria:

• Divide the initial set of n  transmitters (vertices) proportionally to the number 

j f  of transmitters contained into each subset, where m is the number of 

subsets considered.

• Include in each subset the transmitters (vertices) which produce almost equal 

values of the corresponding sums under the graph generalized-degree versus 

transmitters

The latter algorithm, whose detailed procedure is given in Algorithm 3.9, pro-
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duced the best results on the benchmark tested in [25]. An example of the ap­

plication of the latter partitioning on a FAP benchmark is shown in Figure 3.6. 

Firstly, the diagram generalized-degree against transmitters is plotted (on the x 

axes transmitted are ordered by decreasing generalized degree). Than a partition­

ing is produced such that the values of the shaded areas differ only by a small given 

tolerance. Each of the areas represents the value of the sums S j  in Algorithm 3.9.

Algorithm 3.9 Generalized-degree Decomposition 
Input: G(V,E), Tolerance t between the sums Sj
Output: Partition { V\, Vi , . . . ,  V„subs 1 of V into nSubs sets Vj of size sizej

1 : Partition V into nSubs sets such as S h- S k < f V h,k with the generic sum value for 
the f h subset given by:

j+sizej

S j -  gendegiyi) j e  {I,nSubs]
i=j

decomposition By generalized Degree 
1 0 0 0 1 1 ■ 1 1 1 1----------- 1—

0 SO 100 150 200 250 300 350 400 450 500
transmitters ordered by generalized Degree

Figure 3.6: Partitioning in three subsets by generalized degree decomposition 

This decomposition algorithm has the considerable advantage of its ease of 

implementation and a runtime which is comparable with the straightforward geo­

graphical and random decompositions mentioned above. However, as well as the 

other basic decomposition criteria, it does not include any information about the 

cost of the cut of the final partitioning produced and, as a consequence, the amount
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Figure 3.7: Example of generalized-degree decomposition into two subsets for a graph 
with sixteen vertices

of the inter-edges constraints that will be ignored by the returned solution. This 

may affect the quality of the final assignment produced by the meta-heuristic and 

could limit the use of this partitioning method for the simplest formulations of the 

FAP, such as the MS-FAP.

Figure 3.7 shows an example of a partition into two subsets produced by Al­

gorithm 3.9 for a graph with sixteen vertices. We can observe how in comparison 

with the decomposition produced by the clique method for the same graph more 

vertices are added to the first subset (represented as shaded in the figure).

3.2.6 G raph clustering

Cluster analysis is closely related to graph partitioning with the main difference 

being that in the latter the required partition sizes can be specified in advance, 

whereas in the former the partition sizes freely varies. However, the effectiveness 

of a cluster strictly depends on some parameters, which are usually closely related 

to the number of clusters produced. As a consequence, clustering is quite often 

used only as a preprocessing step for the more clearly defined graph partitioning 

problem.
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The natural definition of graph clustering is the separation of sparsely con­

nected dense subgraphs from each other. Given a cut c(G) = { V\ , V\ V\} two 

indexes are usually defined to evaluate the quality: the expansion e and the con­

ductance <p of the cut as defined in (3.1) and (3.2). If a cut has a small conductance 

it means that its size is small relative to the size of the smaller component it creates, 

so such a cut can be seen as a bottleneck of the graph.

T jUveE\'"er c uv
e(c) = ---------- !---------- (3.1)

min(\Vx\,\V\Vx |)

£ i/v €  Ein,er Cuv
m  = — - --------------------------    (3 .2 )

m in V.2-iuv€(E\n,erUEin,ra) Cuv, Luve (E\E\n,ra) c uv)

We then extend the definition of the conductance to the whole graph G and a given 

partition of it.

Definition 3.5 Given a partition into n subsets C(G) = { V\, Vj , . . . ,V n}we identify 

the cluster represented by the subset Vj with the induced subgraph o f G:G[Vj\ := 

(Vj, E lJl,ra). The conductance 0(G) o f a graph G is the minimum conductance value 

over all the possible cuts c(G) o f G. The intra-cluster conductance a(C) o f C{G) 

is the minimum conductance value over all induced subgraphs G[Vf\. The inter­

cluster conductance 6 (C) is one minus the maximum conductance value over all 

induced cuts Cj = (Vj, V\Vj):

a(C) = min(<p(G[Vj))) and 6 (C) = 1 -  max(<p(cj))

The larger the intra-cluster conductance of a clustering, the higher the quality, 

since small intra-cluster conductance means that there is at least one of the clusters 

Vj containing a bottleneck which can be further decomposed into two subsets. A 

clustering with small inter-cluster conductance is also a low-quality one since there 

is at least a cluster with strong external connections. Optimising the indexes above
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is generally NP-hard as well as calculating the conductance of a graph, see [16].

In this thesis we have used the well known Markov clustering algorithm which 

is based on the intuition that dense regions in sparse graphs should correspond with 

regions in which the number of k-length paths is relatively large for small values 

of k e \V\. As a consequence ‘a random walk that visits a dense cluster will be 

unlikely to leave the cluster until many of its vertices have been visited’ [ 1 2 0 ]. 

Pseudocode of the Markov clustering algorithm and a more detailed description of 

it can be found in [ 1 2 0 ],

It is important to mention that, although this is one of the most commonly 

used algorithms for graph clustering, the quality and number of clusters produced 

depends strictly on the expansion and inflation parameters. Furthermore, the con­

vergence of the method is not always guaranteed. Finally, the algorithm is not able 

to produce a specified number of subsets. As a consequence, given the partition 

in a general number of k subsets produced by the Markov algorithm we obtain the 

desired decomposition into n subsets by further applying to the clustering avan- 

dongen (which will be described in the next subsection). Note that the size of the 

resulting subsets represented by the clusters is then generally unbalanced.

Figure 3.8 shows an example of a partition produced by the Markov cluster­

ing algorithm for a graph with twenty vertices reproduced from [120]. Here the 

ideal decomposition is that into four subsets indicated in the figure. To produce a 

partition into two subsets only a further graph partitioning procedure needs to be 

applied. This leads to the final decomposition into two subsets represented in the 

figure by shaded and non shaded vertices respectively.

3.2.7 Graph partitioning

The Graph Partitioning Problem is close to the ideal graph clustering described 

above but easily formulated and more often used in the literature. In a simple un­

ordered graph this problem is defined as dividing the vertices into disjoint subsets 

such that the number of edges whose endpoints are in different subsets is mini-
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Figure 3.8: Example o f Markov clustering decomposition into two subsets for a graph with 
twenty vertices

mized.

Definition 3.6 We define a partition C(G) o f  an unorderered graph G(V, E) as a 

collection o f  n disjoint subsets:

n n

{ Vu V2 K . ) : f |  0 A U  =
7= 1 7=1

We then represent the set o f  the external connections between distinct subsets as:
n

Ein,er = ( J  E f er.
7=1

Problem 3.2 The Graph Partitioning Problem consists o f  minimizing the cardinality 

| Ein,er | .

If the graph is weighted, as is the interference graph, we reformulate the cost 

object of minimization as the sum of the weights of the external connections be­

tween different subsets.
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Problem 3.3 Given an unordered weighted graph G representing a network, we 

define the weighted graph partitioning problem as selecting a partition C(G) to 

minimize:

C g p f a p  = X j  c " v
m v €  Em,er

The balanced graph partitioning problem adds the additional constraint that the 

difference between the cardinality of different subsets must be as small as possible, 

i.e. either one or zero. Note that if we consider only two subsets this is known as the 

bi-partitioning problem which, when defined as unbalanced gives the minimum-cut 

formulated in Problem 3.1.

It is worth noting that the sum of inter-connections between different subsets in 

a given partition is not the only important measure of its effectiveness when subse­

quently used to solve FAP instances. Other factors can be equally important, such 

as the density of the intra-edges in the first (or first group) of the subsets. In fact, 

since during the first loop our procedure ignores all the constraints with the sub­

sets yet to be assigned, whenever the first subset includes only a small number of 

vertices the meta-heuristic will rapidly find the optimal partial solution represented 

by an interference free assignment, thus limiting the effectiveness of the heuristic 

search itself. For this reason we have considered further formulations of the cost 

in order to lead to partitions for which the first subset aims to contain the most 

‘difficult’ to assign transmitters .

This is also the idea used by the clique and generalized degree decompositions 

already introduced. As a consequence, we reformulate the graph partitioning prob­

lem in order to be more suitable for the FAP. We defined a new objective to be used 

in addition to the balanced constraint as follows (a similar cost function has been 

used in [26,104]).

Problem 3.4 Given an unordered weighted graph G representing a network, we
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define the balanced Graph Partitioning Problem for FAP (GPFAP) as selecting a 

partition C(G) to minimize:

GPFAP ^  Cu v -  Y  c u v +  Y  c >

uv€ E uve E\n,ra uve Ein,er

such that the difference between the cardinality o f different subsets is as small as 

possible, i-e \\V h \-\V k\ \ < 1 Vh,k.

The cost function balances the sum of the weights of the external connections El"ter 

in each of the subsets with a term which maximizes the internal connections in the 

first subset only.

The objective in Problem 3.4 can be normalized to the total sum of the edge 

weights for computational convenience:

We have also formulated an unbalanced GPFAP which removes the balanced 

constraint. For this problem better performance is obtained if we aim to minimize 

the external connections between pairs of different subsets while maximizing the 

internal connections in each of the subsets. In fact, this encourages the size of each 

subset to be relatively balanced in order to prevent the tendency of including a very 

high percentage of transmitters in one subset only. For this purpose, we define 

a different objective based on the conductance indexes introduced for the graph 

clustering. In fact, given a partition C(G) we can easily compute the conductance 

4 >(Ci), see Definition 3.5, over all its induced cuts. Since we aim to minimize this 

value for all the cuts in a cluster we define the following objective:

Problem 3.5 Given an unordered weighted graph G representing a network, we 

define the unbalanced Graph Partitioning Problem for FAP (GPFAP) as selecting a

GPFAP
C 2GPFAP

Xwv€ E(G) Cuv
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partition C(G) to minimize:

n

c 3^GPFAP
i=l

where:
'inter Ci

0(Q) =
w iw ( Z MVe (E‘/ uer\JEi/ ura) c u v ,'L Uv€(E\Eiin,ra) c uv)

To avoid trivial solutions for the first partial assignment the subsets are reordered 

in a decreasing order of size.

Finally, although both objectives in Problems 3.4 and 3.5 can be used for both 

the balanced and unbalanced types of GPFAP, in the rest of this thesis we will only 

present the results produced by those best performing on some preliminary runs

Figure 3.9 shows an example of a partition produced by the graph partitioning 

algorithm for a decomposition into two subsets for graph with twentysix vertices 

using each of the costs proposed. The first cost 3.3 only founds the partition into the 

two disconnected component. Note that the same decomposition would be found 

by the minimum-cut algorithm described in Section 3.2.3. Cost 3.4 produces the 

balanced partition into the two subsets of size of thirteen vertices each. Finally the 

cost 3.5 returns, after discarding the trivial solution constituted by the disconnected 

components, an unbalanced decomposition with only seven vertices in the subset 

of minimum size. Note that in this case the disconnected components are included 

in the biggest subset instead.

A memetic GA for GPFAP

To solve the GPFAP in all the formulations introduced in the previous subsection 

we have implemented a memetic GA. The aim is to obtain near optimal solutions 

in a reasonably short time rather than pursue the absolute optimal, since the par­

titioning only constitutes the preprocessing step of the the subsequent procedure

(see [26]).
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cost 1 - graph partitioning cost2 - balanced GPFAP

cost3 - unbalanced GPFAP

Figure 3.9: Example of graph partitioning into two subsets for a graph with twenty six 
vertices

which solves the FAP. We have implemented a standard version o f SEAMO, the 

steady-state GA originally proposed in [119], which has been shown to be very 

effective with the order-based representation also used in this context [23].

With this representation individuals are represented by a permutation of the 

transmitter set and the fitness evaluation procedure consists of decomposing a given 

ordering into M  subsets, whose size is also chosen at random, and then computing 

the desired objectives defined above. The genetic operators used were those sug­

gested in [23] to obtain the best performance, that is cycle crossover and order- 

based mutation. The cycle crossover operator is used with chromosome represen-



tations which consist of permutation of integers. It identifies a number of so-called 

cycles between two parent chromosomes.

For a more detailed description of the method and examples see [118] and 

Appendix C.2.2. Order-based mutation simply consist in swapping two elements 

of the permutation representing a single chromosome.

The choice of parents for mating is conducted by the so called roulette wheel 

selection. Here the probability of selection for the chromosomes in the population 

is computed proportionally to their fitness values. In other words, if F, represents 

the fitness of each individual in the population, its probability of being selected is

where popSize  is the number of individuals in the population.

To prevent the problem of premature convergence, which means that the pop­

ulation converges too early resulting in being suboptimal, we have implemented a 

fitness sharing procedure. In a multimodal domain in which more then one peaks 

(local optima) are present standard GAs will eventually converge only to one of 

those peaks This phenomenon is also known as genetic drift [37],

A multimodal domain can be thought as as formed by niches as an analogy 

fro nature in which the number of organism contained in a niche is determined by 

both the fertility of the niche itself and the efficiency of each organism to exploit 

such fertility. If tee are too many organisms within a single niche there will be no 

provisions for everybody and the least efficient organisms will die. Conversely, it 

there are only few organisms in a fertile niche these will quickly reproduce to fully 

exploit the niche’s resources [85]

Fitness sharing is one of the techniques proposed to force a genetic algorithm 

to preserve diversity in a population throughout its search in order to avoid con­

vergence to a single peak. This method was originally proposed by Goldberg and

popS ize
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Richardson [48] and it consists of a segmentation of individuals of similar fitness 

in specific groups, {niches) Here the main idea is that of penalizing the fitness of 

solutions which are too similar to each other.

In the following equations Fj represents the real fitness of an individual (here 

represented by the costs O g p f a p ) and m,- is the so-called niche count calculated by 

summing a sharing function sh(dij) over all individuals j  in the population. This is 

a function of the distance dtj  between two individuals i and j  computed according 

to some metrics to represent distances between permutations. In our implementa­

tion this distance is calculated in the objective space (also called ‘phenotype level’) 

and it is simply equal to the euclidean distance between the fitness values Ft and 

Fj. In more expensive implementations the distance dy can be defined directly 

between the chromosomes, here represented by permutation of integers. This is 

also known as ‘genotype level’. More details about metrics for distances between 

permutations can be found in [103]. If the distance djj is within a fixed radius crsh 

the sharing function sh(djj) returns a value between 0  and 1 which decreases with 

djj (i.e. with increasing similarity). Otherwise it returns 0.

Fshi = — i f  maximization problem 
mt

Fsh,i -  Fi ■ mj i f  minimization problem (3.3)

n

(3.4)

dij = \ Fj -  Fj \ (3.5)

i f d i j< c r sh

sh(dij) = (3.6)

0 otherwise
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The parameter a  is conventionally set to 1 while the suitable value for crsh 

can be calculated given the expected number of peaks in the domain and the hyper­

volume of the entire domain space as proposed by Deb and Goldberg in [35]. Given 

a set of points in the domain a definition of hyper-volume is given as ‘the Lebesque 

measure of the set of all points that are Pareto dominated by at least one of the 

given points’, see [73] for details.

However, a sh is usually conservatively estimated, depending on the particular 

test problem considered, as the minimum niche radius of any optimum within the
p

domain (see [48]). In this thesis we assumed a value of a sh -  , as suggested

in [25].

Although it is not necessary to solve the GPFAP exactly, test runs have shown 

that better approximations in the decomposition lead to better FAP solutions. Con­

sequently, to speed up the process for MI-FAP instances and to improve solution 

quality also, the GA has been hybridised with a local search procedure after each 

individual evaluation, in order to search for local optimality. We have implemented 

a standard SA (as described in [60]), in which each move consists, as well as for the 

mutation operator for the GA, in a single transmitter swap between two different 

subsets. Pseudocode for the memetic GA is given in Algorithm 3.10.

Finally, it is important to specify that for cellular problems (as the COST259 

benchmarks of the MI-FAP) the GPFAP procedure has been implemented in terms 

of single cells rather than single transmitters, that is the vertices of the equivalent 

graph Gd are the network cells instead of the transmitters vertices. This automati­

cally preserves the co-cell constraints for each of the subsets.
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Algorithm 3.10 Memetic GA for the Graph Partitioning problem.
Input: population size popSize, number o f subsets nSubs,

number o f generations G, number o f iterations I, cost Cg p f a p  

Output: Partition { V\, V2, . . . ,  Vm } o f  V

1: Generate a population o f p o p S ize  individuals as random permutations o f the whole set 
o f transmitters\cells representing a chromosome 

2: Decompose each ordering into nS ubs subsets with either fixed or randomly variable size 
3: Evaluate the fitness Cg p f a p  for each individual 
4: Store the bestSoFar fitness value 
5: while stopping condition not satisfied do 
6: while next individual in the population do
7: This individual becomes the first parent
8: Select a second parent by applying roulette wheel selection
9: Apply cycle crossover to produce offspring

10: Apply order-based mutation to offspring
11: Evaluate fitness o f offspring
12: Apply SA for /  iterations to improve local optimality
13: Add fitness sharing to each o f  the offspring
14: if offspring better than either parent then
15: Replace the weakest parent
16: else
17: Randomly select another individual in the population and replace it if  it is weaker
18: end if
19: Update bestSoFar
2 0 : end while
2 1 : end while
22: Return the decomposition representing the bestSoFar individual
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Chapter 4

Evaluation and benchmarks
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In the first section this chapter discusses how a FAP solution produced by the 

decomposed assignment approach will be evaluated. This technique will be com­

pared to other solutions obtained by a heuristic applied in the traditional way, in 

which the problem is solved as a whole data set. The aim is to determine which 

technique is more effective in practical application. As such, both the runtime and 

the optimality of assignments produced must be considered simultaneously.

Subsequently, the chapter outlines the benchmarks to which the decomposed 

assigned technique will be applied. These are divided into two groups for the 

MS/FS-FAP and for the MI-FAP respectively.

4.1 Evaluation of a decomposition

4.1.1 Quality

A first basic evaluation strategy is that which compares different decomposition 

techniques exclusively in terms of optimality of the results produced. This criterion 

compares the final costs produced by the decomposed with the whole approach. To 

avoid significant variations in runtime each of the FAP instances is solved over the 

same number of evaluations, that is the number of different configurations explored 

by the heuristic. Intuitively, this represent a fair criterion for comparison between 

the two approaches.

According to Algorithm 3.1 and 3.2, the decomposed procedure can loop through 

the subsets a number of times, and for each of them evaluates a defined number of 

assignments.

Definition 4.1 Let evaljj the number o f evaluations corresponding to the i,h subset 

and the j th loop. Let evaltot the number o f evaluations corresponding to the solution 

obtained with the non-decomposed approach. In order to have the same number o f
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evaluations we have to respect the following condition:

nLoops n

^  Y j  e v a k j  = eva lto t 

7=1 i '= l

Note that whenever the subsets are solved independently using Algorithm 3.2 

a single evaluation of the whole set of transmitters (calculated with respect to the 

specific representation used for the frequency assignments) needs to be added at 

the end of the decomposition procedure, i.e. the condition to respect becomes:

nLoops n

'Yj X I €Vali’J + 1 = eValt0t
7=1 '= 1

Hence, given the number of subsets n is fixed in a given experiments, we can 

then reach a desired number of evaluations by changing either of the two inversely 

proportional variable numL and evalj. For instance, if we want to loop through the 

subsets only once we can either reduce the number of evaluations proportionally to 

the number of subsets ( evaliyo = gva/'°') or to the number of vertices contained in 

each subset (evali,o = eva/f̂ *—■).

A different approach consists of aiming to improve the results by looping 

through the subsets more than once, thus reducing the number of evaluations com­

puted for each subset proportionally to the number of loops. Finally, the equality 

in Definition 4.1.1 refers to a single run of the heuristics. Therefore on a given data 

set and for a given decomposition method multiple runs of the same heuristics need 

to be conducted and averaged.

4.1.2 Computational complexity

A second straightforward evaluation criterion consists in analysing only the com­

putational complexity of the decomposition procedure, and, as a consequence, es­

timating its runtime. Of course a faster runtime does not necessary mean anything
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about the validity of the approach if not accompanied by an evaluation of its qual­

ity. However, in some situations we aim to find only approximated solutions rather 

than the optimal. This is the case of very large and complex problems in which 

good approximations of the solutions are more than acceptable, since it is impossi­

ble to solve the problem as a whole in a reasonable runtime.

Although we are expecting some advantages with the decomposed approach, 

a correct detailed analysis which considers all the factors involved in this meta­

heuristic technique is far too complex. To conduct a complete evaluation of a 

given assignment with the global approach we need to compute all the edges of the 

interference graph G(E, V). However, with the decomposition approach when we 

are computing an assignment of the ith subset we deduce from Algorithms 3.1 and 

3.2 that we have to compute only its intra-edges E‘"tra and the inter-edges E‘j lter for 

that subset, thus ignoring all the remaining edges of G.

Note that the computations required are smaller for the ‘independent’ approach 

in 3.2 and the first loop of the ‘sequential’ procedure in 3.1, since we need to eval­

uate only partial assignments in which either the whole set of the inter-connections 

Elj ter or a part of it is ignored.

However, in some circumstances we do not need complete evaluations (that is 

to compute the edges of the neighbours of all the vertices included into the cur­

rent subset) but only an update of the current assignment. This is, for instance, 

the case improvement methods in general and in particular our implementation of 

SA in which a single move consists of one change in the frequency of a selected 

vertex, thus only requiring the computation of the edges in its neighbourhood. In 

this cases, benefits in computational time will be given only within the first loop 

through the subsets in which a part of the inter-edges between pairs of distinct 

subsets is ignored.

Furthermore, although the evaluation of an assignment is the most computa­

tionally expensive part of the heuristic procedure, this is not the only aspect which 

can be affected by the decomposed assignment approach. For example, for the
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GA we will have the application of the genetic operators (crossover and mutation) 

as well as other procedures, as for example sorting algorithms. These generally 

needs a lower number of basic operations since they are applied to chromosomes 

of shorter lengths than the entire set of vertices of the graph.

On the contrary with local search heuristics such as SA the benefits provided 

by these additional features are more limited. For example, with SA they only 

come from copying vectors of smaller sizes (see Appendix C.2.1) in order to record 

the best assignment currently produced. As a consequence for this category of 

heuristics becomes crucial to analyse the trade-off between quality of a solution 

and run time of execution.

4.1.3 Trade-off between quality and runtime

Neither of the two methods introduced above seems able to define an absolute cri­

terion for evaluating the effectiveness of a given decomposition strategy. In fact, 

quality evaluation is unlikely to be successful with enough generality over the set of 

benchmarks whereas a possible evaluation based only on the computational com­

plexity does not consider any issues about the optimality of the solution produced. 

In order to fulfill both these requirements this section will analyze other possible 

criteria which take into account the trade-off between quality and mntime of an 

approximated solution produced by the decomposed assignment approach applied 

to the FAP.

A first immediate way of considering this is by plotting in the same diagram the 

curves of quality (in terms of cost produced) versus mntime for different runs of 

the same heuristic using either the decomposed or the non-decomposed approach. 

For instance, we can plot on the same graph a single run of a given meta-heuristic 

applied to the problem solved as a whole, and compare it with another run of the 

same algorithm obtained with Algorithm 3.1. We can then evaluate at a fixed time 

which of the solutions produces the better cost.

An example of this is shown in Figure 4.1 which shows two runs of SA for
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the MI-FAP Siemens2 benchmark obtained by the non-decomposed approach and 

with a decomposition into two subsets. Although at the end of their runs the two 

approaches produce a similar cost, we can appreciate that the cost-time curve pro­

duced by the decomposed technique is always below the other for any fixed time, 

thus making this approach preferable for this particular test run. However, only 

the assignments in the last of the subsets are valid solutions representing complete 

assignment of the whole set of transmitters in the network, whereas the other sub­

sets only produces partial assignments in which some vertices of the graph are still 

unassigned.

Figure 4.1: Cost-Time plot for Siemens2 solved by SA with balanced graph partitioning 
decomposition into two subsets after 2 , 0 0 0 , 0 0 0  * |V| evaluations
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It is important to note that, according to Definition 4.1 each of the runs of 

the given test problem corresponds to a same given total number of configurations 

explored (2 ,000,000 * |V| evaluations in the example), thus they are expected to 

produce a similar run time.

Section 4.1.2 has shown that, whereas evolutionary algorithms take more ad­

vantages from a reduced computational complexity, for local search techniques this 

mainly derives from ignoring the inter edges between subsets. Thus if the number 

of these tends to zero the two approaches (global and decomposition) are expected 

to produce very close run times whereas many inter-edges give more advantages
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to the decomposition approach. On the contrary, ignoring a high number of inter­

edges may degrade the performance of the decomposition approach. In fact, the 

quality of its solutions can only be greater or equal to that of the whole approach, 

i.e. it is equal when there are no inter-edges. However, the latter statement is valid 

only if we assume infinite run times for both approaches.

When we limit the number the number of total evaluations to a fixed value 

instead, the decomposition approach is expected to produce some advantages in 

quality terms too. In fact, we have seen in Section 2.2.2 that the relation between 

the ’expected’ time to produce an optimal solution and the size of the problem fol­

lows a non linear (exponential) behaviour. This implies a better performance of the 

decomposition approach the more the fixed time is shorter than the ’expected’ one 

provided the finding of a ’good’ decomposition, i.e. one not ignoring a high num­

ber of inter-edges which represent the loss of information consequent to the use of 

the decomposition technique. This is related to the assumption that a specific num­

ber of evaluation is needed to produce an optimal assignment. Thus decomposing 

the whole problem in a number of sub-problems allows the algorithm to conduct 

a certain fixed number of evaluations for each of the subsets, whereas the whole 

approach can only selects vertices form the whole set with random probability.

Note that, because of the reduced size of the subproblems the ’expected’ num­

ber of evaluations required by each of them is lower. This can add further benefits 

in computational terms, for instance by reducing the number of time we have to 

record the best current solution, see Section 4.1.2. Moreover, we could even stop 

the algorithm after a fixed number of iterations without any improvement in the 

best current solution. Therefore the decomposition approach may require less than 

the fixed number of evaluation used for the global approach in order to produce 

a nearly optimal solution, i.e the equation in Definition 4.1 would become the in­

equality 4.1, with consequent advantages in runtimes.

nLoops n

(4.1)
7 = 1  i = l
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Note that the advantages outlined above are lost if we assume that a specific 

benchmark could be solved by an exact procedure. In fact, with exact algorithms 

the solution produced by the decomposition approach cannot be better than that of 

the global approach, i.e. it is equal when all subsets are disconnected components 

with no inter-edges. Note that this is also a case in which the two approaches 

are expected to produce exactly the same run time since the number of constraints 

explored by the two procedures in identical.

Advantages in run time can be obtained from the decomposition when some 

inter-edges representing constraints between distinct subsets are present, although 

this is expected to produce only approximations of the exact solution, whose qual­

ity depends on the amount of constraints ignored. Note that, this is the procedure 

used in real applications by the operators when they split the network into smaller 

areas (see for example the case of London), which assumes a relatively low number 

of inter-edge constraints. However, to the author’s knowledge the decomposition 

procedure used is only based on geographical information (see also Section 3.2.2).

Nevertheless, despite the disadvantages described above, decomposition tech­

niques have been succesfully used in combination with exact methods too to re­

duce the size of MS-FAP and FS\MI-FAP instances [3,81], and to produce lower 

bounds [82].

To summarize we can then record the pair values (cost, runtime) in a diagram 

for both the solution obtained by the whole approach and that produced by the 

decomposition into two subsets. We can then repeat the same procedure, for both 

the decomposed and the whole approach, for other runs corresponding to different 

numbers of total evaluations, thus obtaining other pair values. Furthermore, we can 

repeat the decomposed assignment procedure for an increasing number of subsets 

obtaining different points in the diagram.

Intuitively, we are expecting the best quality being still produced either by the 

non-decomposed approach, or by the solutions obtained by a decomposition into 

a small number of subsets. As the number of subsets increase the approximation
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produced are likely to worsen rapidly (that is more than proportionally) since it 

becomes increasingly harder to limit the number of the inter-connections Eljnter be­

tween different subsets. Note that if n subsets are used the decomposed assignment 

approach coincides with a sequential algorithm described in Section 2.2.1.

Hypothetically, we will aim to obtain in the diagram the non linear curve pre­

sented in Figure 4.2. Note that the point of minimum value will represent the ideal 

number of subsets for that particular benchmark problem. However, the cost pro­

duced by the heuristic procedure increases considerably when a high number of 

subsets is used (in some cases even for a limited number of subsets, e.g. > 3). As 

a consequence the resulting diagram will consist of a series of curves, each of them 

corresponding to a fixed number of evaluations, as represented in Figure 4.3 with 

the lines in blue. This behaviour would make more difficult the prediction of the 

most suitable number of subsets for a given data set. An example of this will be 

discussed in Section 7.5.

Figure 4.2: Trade-off o f  quality against runtime for a generic test problem decomposed 
into two and three subsets. Hypothetical curve, n number o f  subsets, ne number o f total 
evaluations
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Figure 4.3: Trade-off of quality against runtime for a generic test problem decomposed into 
two and three subsets. Practical curve, n number of subsets, ne number of total evaluations
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42  Benchmark data sets

4.2.1 Benchmarks for MS-FAP/FS-FAP

The most commonly published benchmarks for MS-FAP are the cellular Philadel­

phia instances [10], which, although obsolete, are still currently used as a testbed 

for the MS-FAP. Other notable published data sets are a part of the military appli­

cations of the CALMA project [5] (also used for the FS-FAP). However, these will 

not be included in this thesis.

Philadelphia and cellular problems

For both the MS-FAP and the FS-FAP described later in this chapter, we refer to 

the same set of test problems, which primarily coincide with those used in [25]. 

All of the data sets outlined in the following adopt the simple binary constraint 

model formulated in Section 1.2. Firstly, two simple test problems (called P i, Pi 

in conformity with [119]) in the order of hundreds of transmitters have been taken 

for comparison from the data sets used in [118]. Transmitters are located in cells 

forming an hexagonal grid and those belonging to the same or adjacent cell are not 

allowed to use the same frequency. However, variants of this structure use different
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re-use distances (with distances expressed in ‘units’) (do,d\, ...,dn). This means 

that transmitters in cells of distance do (measured from cell centres), can use the 

same frequency, those within distance d\ require a separation of one channel, etc. 

Due to the very high demand assigned to each cell, the resulting interference in the 

whole network will be primarily governed by the co-cell interference, that is, by 

the constraints between pairs of transmitters within the same cell. Figure 4.4 shows 

the grid model and the required cell demands for Philadelphia Pi, which has the 

following demand vector cv and reuse distance dv.

cv = {8,25,8,8,8,15,18,52,77,28,13,15,31,15,36,57,28,8,10,13,8} 

dv = { VI2, V 3,1,1,1,0}

Figure 4.4: Hexagonal grid model (a) and cell demand (b) for Philadelphia Pi-

The first cell requires a demand of 8  transmitters, the second one of 25 and so on. 

Two transmitters assigned to the same frequency must be distant at least Vl2 units 

apart to avoid interference (where one unit is equal to one cell). If the transmitters 

are assigned to adjacent frequencies they must be distant at least V3 units, trans­
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mitters with three channels separation must have a distance of at least one unit and 

so on. Figure 4.5 shows the reuse distances for Pi with the number inside the cells 

representing the minimum channel separation required from the central cell.

Figure 4.5: Reuse distance for Philadelphia Pi.

The smaller benchmark P\ is a computer generated problem based on the same 

cellular principle. For more details see [118].

Cardiff University data sets

More realistic problems were created using a benchmark generator tool described 

in [9]. This software uses a probabilistic modelling to produce realistic transmitter 

locations over geographical areas and generates appropriate constraints. It places 

transmitters according to a probability distribution function obtained by building 

up single gaussian distributions centered in particular locations representing towns 

over a fixed region. Test problems C\ and Ci were generated by using a ‘single­

town’ probability distribution whereas C3 and C4  by a distribution over ‘two- 

towns’, with the distance between the towns center greater in the last problem. 

Transmitter locations for data sets C\ -  C4  are shown in Figure 4.6. Constraints 

are generated by defining a reuse distance vector requiring separations up to two 

frequencies (dv = (do,d\,dij).
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Figure 4.6: Transmitter locations for data sets C\ -  C2 generated with a ‘single-town’ 
probability distribution

Other GSM

Besides these data sets, another group of benchmarks G\, Gi, and G3 , which rep­

resent real anonymous GSM scenarios, were also provided by Cardiff University. 

However, no geographic information about transmitter locations is available. Test 

problems G\ and Gj refer to the same data set with identical number of transmitters 

but different constraint graph connectivity.

Random Graphs

We include a final group of data sets belonging to the category of random graphs. 

Due to their peculiar structure which often implies very high graph density, random 

graph do not represent the type of problem likely to occur in practice. In order to 

construct a random graph we need to define some auxiliary variables.
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Definition 4.2 We define p { e [0,1) 0 < i < nSubs (po = 0) to be the probability 

that the minimum required frequency separation between a pair o f vertices u, v is 

i + 1. Clearly we require that:

nSu b s

Z pi -  *•
7=0

Let q = 1 — Z ”-o Pi denote the probability that there is no constraint between a 

pair o f  vertices. We then define a second set o f variables pk € [0,1) such that:

k

Pk = Y,p>
7=0

Algorithm  4.1 g ives the pseudocode o f  the procedure used for the generation

o f  random graph data sets. N ote that for consistency w ith the other benchmarks the

adjacent matrix o f  the graph remains sym metric.

Algorithm 4.1 Random graph

Input: Int size, Vector {po.P 1.P 2 }
Output: Graph G(V,E)

1 for / = 1 to size do
2 for j  = i + 1 to size do
3 Select a random value rn e [0 ,1)
4 if 0  < rn< p'nSubs then
5 Choose k e { 0 ,1 ,..., nSubs -  1} such that pk < rn < pk+x
6 Add edge / j  with weight k
7 else
8 Add no edge
9 end if

10 end for
11 end for

Algorithm 4.1 has been used to generate two random instances with the same 

size of 500 transmitters. The first data set R\ considers only co-channel interference 

distributed with a probability po = 0, p\ = 0.75, q = 0.25, whereas a second
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test problem Rj takes into account one, two, and three channel separations with 

respective probability values expressed by the parameters po = 0 , p\ = p 2 = pi -  

0.25, q = 0.25.

Benchmark comparison

All of the test problems considered are detailed in Table 4.1. According to the con­

vention used in [64], for each of them the size of the search space S z  is calculated 

with a hypothetical fixed spectrum of 1000 frequencies. A measure C„ of con­

nectivity is expressed by the edge density of the corresponding constraint graph 

(a value of one represents full connectivity). Finally, the last column shows the 

spectrum available chosen for the FS-FAP experiments conducted for this thesis.

No trans. No const. Sz Cn Spectrum

P\ 97 1214 10285 0.26 30

Pi 481 97835 101443 0.847 30
c , 1054 40200 103162 0.072 65
C2 1068 39122 io 3204 0.068 65
C3 1089 38869 103267 0.065 50
c 4 1112 34704 103336 0.056 50
Gi 1667 28455 io 5001 0.020 30
g 2 1667 338611 io 5001 0.250 30
Gi 1668 103268 io 5004 0.074 30

500 99831 lO'soo 0.8002 150
*2 500 99852

oo©

0.8004 150

Table 4.1: Benchmark test instances for MS-FAP and FS-FAP

Note that two groups of benchmarks presents a particularly high density, i.e. 

the Philadelphia instances (due to their very high cell demand) and the random 

graphs.
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Table 4.2: Number of transmitters per cell in the Tiny instance

cell Ax a 2 Ai Bx b 2 C, c 2
transNo 1 3 2 2 1 1 2

4.2.2 Benchmarks for MI-FAP 

COST-259

The main group of test problems selected for this type of FAP consists of the 

COST259 instances introduced in Section 2.4. This project, widely available from 

[2 ], probably constitutes the most important set of benchmarks used in the last 

decade to study the FAP. These data sets are still currently used in practice and/or 

papers and were explicitly designed with the purpose of comparing, improving and 

developing new assignment methods.

Partners within COST259 have proposed their own benchmarks. Each of the 

resulting data sets presents the same structure briefly described in the following 

by considering the small test example called Tiny (see [2, 28,40]). This small 

benchmark comprises three sites: site A has three sectors 1,2, and 3, whereas sites 

B and C have only two sectors, 1 and 2. A cell is served by one sector of one 

site. The numbers of elementary transceivers (TRXs) installed per cell are given in 

Table 4.2.

We can interpret Tiny as a GSM900 network with radio frequency band 891.0— 

893.4MHz available for the downlink and band 936.0-938.4M7/z available for the 

uplink. These result in thirteen different channels which have the Absolute Radio 

Frequency Channel Numbers (ARFCNs) of 711 -  723. We refer to these channels 

as the frequency spectrum.

Due to technical and regulatory restrictions, some channels in the spectrum 

may not be available for some of the cells, thus are called locally blocked. Lo­

cal blockings can be specified for every cell. For each of the cells we number the 

carriers starting at zero, with the first carrier operating the broadcast control chan­
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nel (BCCH) and the other possible carriers operating the traffic channels (TCHs). 

BCCH is the control channel which contains specific parameters needed by a mo­

bile in order to identify and access the network. Since no radio frequency hopping 

is considered here, carriers and transmitters follow a one to one relation.

The difference of the ARFCNs of two channels is a measure for their proximity 

and for each pair of transmitters there may be the constraint of a separation require­

ment in order to avoid strong interference. Separation requirements are not allowed 

to be violated in a channel allocation and constitute hard constraints. These can be 

further classified into co-site constraints (two channels separation), for transmitters 

belonging to the same site but different cells, and co-cell constraints (three channels 

separation), for transmitters belonging to the same cell, and further constraints due 

to hand-over. During hand-over an ongoing call is passed through adjacent cells 

and the communication switches from the channel used in between the current cell 

to one of the available channels used by the transmitters belonging to the receiving 

cell. Hand-over relations are represented as in Table 4.3, which indicates the cells 

that can be subjected to it. As a consequence some separation between channels in 

the two cells allowing hand-over is required. Typical values are expressed in terms 

of separations between BCCH and TCHs as shown in the example in Table 4.4. 

The BCCH and all TCHs in the passing-on cell have to be separated by at least 2 

channels from the BCCH in the receiving cell. Whereas, the BCCH and all TCHs 

in the passing-on call have to be separated by only 1 channel from the TCHs in the 

receiving cell.

Between transmitters installed at different sites, only co-channel and adjacent- 

channel interference is relevant. This “acceptable” interference constitutes the soft 

constraints. As specified in [40], for computational convenience this interference is 

specified only for the down-link band, which usually occurs between transmitters 

in different sites.

Interference relations are usually not symmetric and expressed in terms of af­

fected cell areas, which are further normalised between 0 and 1. There are sev-
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Table 4.3: Hand-over relations for the Tiny instance

A\ a 2 A 3 Bi b 2 C, C2
• •

A i • • •
a 3 • • • •
5 , • • •

b 2 • •
C i • •
c 2 • •

Table 4.4: Hand-over separation for the Tiny instance

BCCH TCH
BCCH 2 1

TCH 2 1

eral ways to rate interference including area-based and traffic-based ratings. The 

COST259 scenario refers to area-based as a measure of the acceptable interference. 

Table 4.5 specifies the interference values for the Tiny example which are specified 

in terms of pairs of cell rather than pairs of transmitters.

Soft and hard constraints are combined in order to produce the final interfer­

ence model for the MI-FAP described in Problem 1.3. If a minimum separation of 

one is required by a hard constraint this actually excludes co-channel interference 

since the specific pair of transmitters cannot use the same channel. In the same way 

a separation of two or more channels excludes both co-channel and adjacent chan­

nel. As a consequence, the co-channel and adjacent channel values in Table 4.5

Table 4.5: Co-channel (left) and adjacent-channel (left) interference between cells in the 
Tiny instance

A i A 2 A 3 B i b 2 Ci c 2
A\
a 2 (0.30,0.10) (0.10,0.02)
A 3 (0.05,0.00) (0.20.0.06)
Bx (0.01,0.00) (0.25,0.09) (0.25,0.08)
B i (0.15,0.04)
c , (0.01,0.00)
c 2 (0.06,0.01) (0.12,0.03) (0.25,0.08)
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will be substituted by a suitable large value cheard where there is a hard constraint.

The COST259 instances use the sum of interference measures over all pairs 

of transmitters in the network as the global objective of minimization. Although 

this criterion can be considered inadequate, since it does not take into account in 

any form the local distribution of interference, it has nevertheless been proven as 

effective in practical terms. The calculation of the cell capacities, and thus the 

number of transmitters contained in each cell, depends on the expected traffic load.

Among the 32 planning scenarios available provided by different sources we 

have selected the following group of data sets available from [2 ]:

Bradford nt-f-eplus {provided by E-Plus Mobilfunk GmbH) A GSM 1800 net­

work with 649 active sites and 1886 cells. The parameter t stands for five dif­

ferent traffic loads. The basic traffic load was drawn at random according to 

an empirically observed distribution [50], then scaled with the factors t equal 

to 0 ,1 ,2 ,4 , and 10 before obtaining the required number of transmitters per 

cell. The resulting average numbers of transmitters per cell are respectively 

1.00,1.05,1.17,1.47, and 2.20, respectively. The available spectrum consists 

of 75 contiguous frequencies.

Siemens Siemens AG provided four different benchmarks:

Siemensl A GSM 900 network with 179 active sites, 506 cells, and an av­

erage of 1.84 transmitters per cell. The available spectrum consists of 

two blocks containing respectively 20 and 23 frequencies.

Siemens2 A GSM 900 network with 8 6  active sites, 254 cells, and an av­

erage of 3.85 transmitters per cell. The available spectrum consists of 

two blocks containing respectively 4 and 72 frequencies.

Siemens3 A GSM 900 network with 366 active sites, 894 cells, and an av­

erage of 1.82 transmitters per cell. The available spectrum comprises 

55 contiguous frequencies.
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Siemens4 A GSM 900 network with 276 active sites, 760 cells, and an av­

erage of 3.66 transmitters per cell. The available spectrum comprises 

39 contiguous frequencies.

Swisscom Modified {provided by Swisscom Ltd.) A GSM 900 network in a city 

with many locally blocked channels which simulates a partial assignment 

that has to be completed. The average number of transmitters per cell is 2.09. 

There are 148 cells with 1 to 4 transmitters and 707 neighbour relations. 3,49 

frequencies are available, but 136 cells have restrictions, with the worst case 

of only 10 frequencies available. The median of available frequencies per 

cell is 19.

K (provided by E-Plus Mobilfunk GmbH) Data for dense urban environment in a 

GSM 1800 network with only 264 cells and 267 transmitters, with an average 

number of 151 interference relations per transmitters.

In the following we will present other characteristics of the COST259 bench­

marks considered. Firstly, Table 4.6 gives for each of them the number of sites, the 

number of cells, the average and maximum number of transmitters per cell, and the 

size of the frequency spectrum (or the sizes of the contiguous portions if there are 

globally blocked channels). Note that in the latter case the gap in the spectrum is 

always greater than the maximum required separation thus no interference will ever 

occur between separated blocks of the spectrum. In addition, two instances, that is 

Siemens3 and Swisscom, present locally blocked channels. Moreover, Siemens3, 

Swisscom Modified, and Bradford 1 present disconnected components. The rea­

sons of this are not entirely clarified, as reported in [40]. However, the only numer­

ically relevant component belongs to Siemens3 (36 vertices) whereas for the other 

two data sets they are actually constituted by a few isolated vertices.

Table 4.7 shows the characteristics of the corresponding interference graphs 

G(V, E). Namely, we are showing the number of vertices \ V\, the density of the 

graph, the average and maximum degree, the size of the maximum level zero
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clique, and information concerning the number, the average, and the max values 

of the soft and hard constraints. The density of the graph is expressed by the ratio 

between the total number of edges, either representing hard or soft constraints, and 

the number of edges corresponding to a complete graph.

Table 4.6: COST259 scenario characteristics [40]

s ite s  no. c e lls  no. M ean  tra n s \c e li m ax . tra n s \c e l l s p e c tru m  size

bradO 6 4 9 1866 1.00 1 75

b r a d l 64 9 1866 1.05 3 75

b ra d 2 6 4 9 1866 1.17 5 75

b ra d 4 6 4 9 1866 1.47 9 75

b ra d  10 6 4 9 1866 2 .2 0 12 75

s ie m l 179 5 06 1.84 4 20, 23

s ie m 2 86 2 5 4 3 .8 5 6 4 , 72

sie m 3 3 6 6 89 4 1.82 3 55

s ie m 4 2 7 6 7 6 0 3 .6 6 5 39

S w is s c o m  M o d if ie d 87 148 2 .0 9 4 3 ,4 9

k 92 2 6 4 1.01 2 50

Table 4.7: Graph characteristics o f the COST259 benchmarks [40]

\v\ d e n s ity  % M e a n  d eg ree m ax  d e g re e m a x  c lique

bradO 1886 13 .59 2 5 6 .4 7 79 81

b r a d l 1971 13.46 2 6 5 .3 805 84

b rad 2 2 2 1 4 13.5 2 9 9 .0 9 1 6 93
b ra d 4 2 775 13.44 3 7 3 .0 1133 120

b ra d  10 4 1 4 5 13.41 5 5 5 .9 1704 174

s ie m l 9 3 0 9.03 8 4 .0 2 0 9 52

s ie m 2 977 4 9 .1 7 4 8 0 .4 8 77 182

s iem 3 1623 9 .1 8 149.1 5 19 78
s ie m 4 278 5 10.5 2 9 2 .3 752 100

S w is s c o m  M o d if ied 31 0 8 .2 9 2 5 .7 94 21

k 26 7 5 6 .5 7 151 .0 2 38 69

Several considerations about the graph characteristics are worth noting:

• Two problems (Siemens2 and K ), present a graph density widely above the 

average (close to 50% in both cases). In particular, test problem K aims 

to simulate a network situated in a very dense urban area. Intuitively, high 

values of potential interference make the decomposition approach less likely 

to be effective when used to solve FAP instances.
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h a rd  co n s t, n o co -c h . n o M e an  co -ch m ax  c o -c h a d j-c h . no M e an  a d j-c h m ax  ad j-ch

bradO 7 2 8 8 2 3 4 4 7 9 0.09 1.8 4 2 6 3 0 .0 2 0.8

b ra d l 7 9 9 6 2 5 3441 0.09 1.8 4 8 2 5 0 .0 2 0.8

b rad 2 10 284 3 2 0 6 8 4 0.09 1.8 6871 0 .0 3 0.8
b rad 4 16663 5 0 0 8 0 5 0 .0 9 1.8 12524 0 .0 4 0 .8

b ra d  10 3 8 2 3 4 1 1 1 3 8 5 0 0.09 1.8 3 3 5 4 8 0 .0 5 0.8
s ie m l 6 0 3 9 3 3 0 0 2 0.07 1.7 9911 0 .0 2 0 .6
s iem 2 17761 2 1 6 9 1 2 0.02 0.5 2 5 6 1 5 0 .0 0 0 .0

siem 3 2 3 0 9 3 97861 0.03 1.1 15069 0.01 0.3
sie m 4 2 7 9 6 4 3 7 9 0 5 2 0.03 0 .7 2 6 4 4 5 0.01 0 .0

S w issc o m 3 9 8 4 0 0 .0 0 0 .0 2 0 7 5 0 .2 9 1.0
k 1053 19111 0.15 1.9 9 9 6 0 .0 3 0.8

• All the data sets present both co-channel and adjacent-channel interference 

as soft constraints, with the exception of Swisscom Modified in which only 

the latter is existing and also shows interference values much greater on aver­

age than in the other benchmarks. All co-channel constraints are considered 

as hard constraints.

• The average degree is significantly higher than the number of channel avail­

able in the spectrum, with Swisscom Modified being again the only excep­

tion. This implies that the frequency assignment between adjacent cells has 

to be suitably tuned in order to avoid high values of the interference [40].

• Finally, the maximal clique size is also greater than the spectrum size for all 

data sets, although it is a low percentage of the cardinality of the correspond­

ing graph. This means that no feasible assignments, that is those respecting 

the hard constraints, can be interference free [40],

Cardiff University data sets

Although the COST259 are the most realistic class of publically available bench­

marks for the MI-FAP problem, their sizes, from one to few thousand of transmit­

ters, is still much lower than those we can find in real life instances. It is important 

to test the effectiveness of the decomposition approach on larger data sets, since we 

know that the performance of the standard meta-heuristics degrades rapidly with 

the increasing problem size. For this reason, in order to complete the set of MI-FAP
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data sets, two larger problems C5 and C& in the order of 1 0 , 0 0 0  transmitters have 

been artificially generated. The idea behind their generation was to extend one of 

the COST259 test problems to a much larger size, with the aim of conserving its 

local graph structure characteristics but ‘spreading’ it at the same time over a much 

larger area.

We focus our attention on the first of the Siemens benchmarks, which consists 

of c = 506 cells distributed over an area of xy = 240 * 125 in cartesian coordinates, 

with a total of 930 transmitters. Hence the cell density d is equal to

d _ c_ _  506
xy 240 * 125

We assume a number of 2500 cells in the new problem (equal to five times that of 

Siemens 1) and distributed over a square region of side x . The cell density d  of 

the new problem is then expressed by:

y 2500

"  002'

To retain the same cell density (i.e. d = d )  we require:

jx  * y  * 2500
x = y — --------=430. (4.2)

To generate the new data sets we applied the benchmark generator tool de­

scribed in [9] for the MS-FAP benchmarks to produce cell locations. We have con­

sidered two different gaussian probabilistic distributions centered respectively on 

one and two towns over the square region in order to produce approximatively the 

same number of cells. In detail, we have considered an area o f430*430 in cartesian 

coordinates and centered the ‘single town’ distribution on the location (250,250) 

for a spread length of 200. The other parameters which define the gaussian dis­

tribution were a height of 0.02 and a cut-off of 0.001, as recommended in [9] as 

the most typical values. Similarly for the for the ‘two towns’ distribution we had
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two distinct centers at the locations (100,300) and (300,100) with an equal spread 

length of 150. The values for the distribution height and cut-off were respectively

0.04 and 0.007. Note that these parameters are higher than those adopted for the 

one town example in order to produce approximatively the same number of 2500 

cells. We obtained 2730 and 2871 cells for the single and two towns problems 

respectively. Transmitters locations are shown in Figure 4.7.

- . . • - ,  . • - v  - .. *  •••*•.* • , • • •
40000

*000

i;
. . • • • . . .  •. •

10000 • . * S' .4 . V‘  •;

C5 C6

Figure 4.7: Cells locations for data sets C5 (top) and C6(bottom) generated respectively 
with a ‘single-town’ and a ‘two-towns’ probability distribution

Subsequently, we generate the traffic demands of each of the cells by assigning 

a number of transmitters drawn following a uniform distribution between one and 

seven to obtain a total number of transmitters in the order of 10,000. This corre­

sponds to an average of four transmitters per cell approximatively. Note that this 

average value is approximatively equal to those in the harder Siemens benchmarks,

i.e. Siemens2 and Siemens4.

We consider one cell per site and ignore the interference due to the hand-over. 

Consequently, the hard constraints consists only of three channel separations be­

tween transmitters within the same cell. To determine the interference values for 

the definition of the soft constraints we have again referred directly to the Siemens 1 

problem by applying the following procedure. Firstly, we plot in two separate 

graphs all the co-channel and adjacent-cannel interference values as a function of 

the Euclidean distance between pairs of transmitters (Figure 4.8). Note that we
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consider all the occurrences in Siem ensl, thus including the pairs which do not 

produce any interference, which are assigned an artificial value of zero. Subse­

quently, for each pair of transmitters in C5  and C(> we compute their Euclidean 

distance and then assign to the corresponding edge a value of the co-channel inter­

ference drawn at random among all the occurrences displayed in Figure 4.8 at the 

same distance within a small range. In a similar way we determine the adjacent- 

interference values. Finally, for both problems we have used the same frequency 

spectrum provided for the Siemensl instance. Table 4.8 shows the characteris­

tics for the two additional large MI-FAP benchmarks C5  and C6  generated by the 

procedure described above.

co-channel adjacent-channel

Figure 4.8: Interference-distance plot for co-channel and adjacent channel interference in 
Siemensl

We can observe from these tables that the graph density is considerably lower 

than in the Siemens instances (and that in Siemensl in particular). However, this 

density refers to the whole extended area of the newly generated benchmarks, 

whereas we will be more interested in having the ‘local’ edge densities close to 

each other. In fact, we can expect the new extended problem as having approxima­

tively the same density of the Siemensl problem when this is calculated over areas 

having equal or smaller size of the original problem itself. Moreover, the compari­

son should be conducted at different locations, in order to distinguish between high

86



density areas, such as the centers of the ‘towns’, and regions with less connected 

transmitters.

Table 4.8: Characteristics o f benchmarks C5 and Ce

s ite s  no . ce lls  no. M e an  tra n s \c e ll m ax . t ra n s \c e ll sp e c tru m  size

C 5 2 7 3 0 2 7 3 0 4.01 7 2 0 ,2 3

C 6 2871 2871 4 .1 4 7 2 0 ,2 3

W\ density % Mean degree Max degree Max clique

c5 10935 0 .0 1 7 6 100.47 2 30 28

c„ 11519 0 .0 1 7 7 106.32 264 34

hard const, no co-ch. no Mean co-ch max co-ch adj-ch. no Mean adj-ch max adj-ch

Cs 2 1 811 1 0 1 0 4 0 6 0 .0 3 1.6 3 1 9 0 4 2 0.01 0.3
c 6 2 2 8 9 1 1 1 3 2 5 7 0 0 .0 3 1.3 3 5 3 8 9 0 0.01 0.3
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Chapter 5

Minimum Span FAP



This section evaluates the decomposed solution approach on a number of MS- 

FAP test problems. This is the only FAP problem in which a decomposed approach 

has been previously used with meta-heuristics, by applying simulated annealing to 

cliques [62]. However, the proposed approach used differs substantially from the 

procedure in Algorithm 3.1 since it only assigns the clique of the graph at first 

(identified as the hardest part of the problem) and then tries to extend the resulting 

assignment to the whole graph (see Algorithm 3.5).

5.1 Heuristic algorithms

To test the validity of the decomposed assignment approach we apply to the MS- 

FAP the ‘permutation-based’ steady state genetic algorithm originally proposed by 

Valenzuela et al. in [119]. This algorithm obtained very good results on widely 

accepted test data sets for the MS-FAP.

Genetic Algorithms (GAs) are search methods originally developed by Holland 

[58] with the goal to either reproduce the natural process of evolution or to adapt it 

to design software systems retaining its original mechanism. Although GAs have 

been very scarcely used to solve the FAP, they are able to process a number of 

different solutions in parallel. Thus they can potentially explore a wider range of 

the search space than local search meta-heuristics, and potentially produce better 

or comparable results in a shorter time.

The ‘permutation-based’ GA incorporates a sequential procedure for individ­

ual fitness evaluation. The representation used (also called order-based) represents 

transmitters by finite sets of integers. Individuals in the population consist of order­

ings (permutations) of all the transmitters. Fitness is evaluated for each individual 

by applying a sequential constructive method. The implementation used for this 

thesis is the original SEAMO proposed in [118] with small modifications in the 

generation of the initial population and in the replacement mechanism. For a de­

scription of the SEAMO framework see Section 3.10 and Appendix C.2.2. The
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genetic operators used to generate offspring are order based mutation and cycle 

crossover. These were selected as the most effective recombination operators after 

some test runs [23]. The sequential procedure introduced by Hale in [53] is then 

used as fitness evaluation. Firstly, an ordering representing a single individual in 

the population is chosen among those introduced in Section 2, with the General­

ized Smallest Degree Last (GSL) producing the best results in some test runs per­

formed. This ordering has been used to create the initial population of individuals 

by applying the crossover operator to this ordering and other randomly generated 

permutations. The GLS algorithm is briefly described in the following:

• Given an initial random order of transmitters the transmitter having smallest 

degree is selected and added to a list, breaking ties by selecting transmitters 

which appear firstly in the initial given ordering. Then the selected transmit­

ters is removed from the initial set. Subsequently, the selection procedure 

repeated for the updated set of transmitters, and the new transmitter added to 

the list. When all of the transmitters are selected the list is reversed returning 

the final ordering.

The following procedures are applied in sequence for the channel assignment: 

the selection of the next transmitters is implemented as sequential (that is by simply 

selecting the next transmitter in the ordering), then a frequency is assigned to it with 

the simplest Smallest Acceptable Frequency algorithm (SAF) [54] (the smallest 

frequency which can be assigned without violating any of the constraints involving 

the selected transmitter). Algorithms 5.1 and 5.2, give respectively the pseudocode 

of the order-based GA and the sequential assignment used as fitness evaluation.

It can be observed that the sequential procedure always produces assignments 

which are zero-violation assignments, which makes the algorithm particularly suit­

able for the MS-FAP. Furthermore, it has been proved that the permutation-based 

representation is able to represent any possible solution in the objective space (that 

is a given frequency assignment to a set of transmitters), thus permitting full ex­

ploration of the whole solution space [118]. This is the reason why the mutation
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Algorithm 5.1 Pseudocode of the ‘permutation-based’ GA (SEAMO)
1: Generate a population o f  popS  ize individuals as permutations o f the whole set o f trans­

mitters representing a chromosome.
2: Evaluate the fitness for each individual by using a Sequential algorithm to generate an 

assignment 
3: Store the bestSoFar fitness value 
4: while Stopping condition not satisfied do 
5: while next individual in the population do
6 : { This individual becomes the first parent }
7: { Select a second parent either at random or by applying roulette wheel selection

{ Apply crossover to produce offspring }
{ Apply mutation to offspring }
{ Evaluate fitness produced by offspring }
{ Compute and add fitness sharing terms. } 
if offspring better than either parent then 

{ Replace the weaker parent } 
else

if offspring fitter than w eakest individual in the population then 
{ Replace another weaker individual in the population selected at random 

end if 
else

Discard offspring 
end if
{ Update bestSoFar } 

end while 
end while
Select the ordering representing the bestSoFar individual 
Assign channels to it using a Sequential algorithm

operator adopted in this implementation is very basic (it only consists of swapping 

two transmitters at random in an ordering) whereas in most of the GAs proposed 

in the literature it has the function of a proper local search, which generally aims 

to prevent the algorithm from converging to local minima.

Moreover, the order based GA can be also potentially effective in the other 

FAP problems proposed which are seeking to produce assignments (even if partial 

ones with some of the transmitters left unassigned). In particular, although not 

considered for this thesis, it would be interesting to apply our algorithm to the
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Algorithm 5.2 Fitness evaluation for the MS-FAP

Input: Chromosome ord
Output Frequency Assignment f  Int span-0 ms

1 : first transmitter in ord <— fi  
2 : while next transmitter in ord do
3: { Select next unassigned transmitter x in the initial ordering ord }
4: { Select the lowest available frequency f x which can be assigned to x without violating

any constraints with the transmitters already assigned in ord }
5: { * « - fx }
6: end while
7: Evaluate the span-0 ms o f/
8 : return / ,  span -  Oms

Maximum Service FAP described in Section 1.4. Here, because of the sequential 

procedure incorporated the order based GA should solve the problem of maximize 

the number services naturally.

The parameter setting used is that originally proposed in [118] and successively 

used in [25]. Each of the experiments has been run for 500 generations with an 

initial population size of 1000 chromosomes. The roulette wheel scheme has been 

adopted in the selection process, cycle crossover has been applied at a rate of 1 0 0 % 

and one order based mutation for each individual have been used. For more details 

about the genetic operators used see Section 3.10 and Appendix C .l. Only one 

loop has been conducted over each of the given partitions. Since the representation 

used allows full coverage of the search space no further local search needs to be 

added after the evaluation of each offspring. Consequently, only one evaluation is 

needed for each new individual in the population and for each generation. Hence, 

with the parameter values above, this corresponds to approximatively 500 x 1000 = 

500,000 evaluations. The number of evaluations computed for each o f the subsets 

is split proportionally to the number of vertices contained in each subset according 

to Definition 4 .1 .
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5.2 Decomposition algorithms

In order to simplify we have restricted the type of decompositions tested to those 

previously used in the literature, see [62], and in preliminary experiments published 

in [24,25]. In particular we have tested geographical, clique, generalized-degree, 

and the simplest implementation of the GPFAP decomposition described in Prob­

lem 3.3.

Generalized degree decomposition has been implemented according to Algo­

rithm 3.9. GSL has been selected as the algorithm used to produce the initial order­

ing as it produced the best overall performance on a number of random sequential 

assignments for the majority of the data sets tested. Furthermore, the decomposi­

tion method in Algorithm 3.9, based on the area under the plot generalized degree 

versus transmitters, has been preferred to the other option of decomposing propor­

tionally to the number of transmitters contained into each subset, since it appeared 

superior in all the preliminary experiments performed in [25],

Clique decomposition has been used in the basic unweighted version proposed 

in Algorithm 3.6 and previously used as the ‘level zero’ clique in [111]. How­

ever, our implementation presents marked differences in the construction of the 

next subsets once the maximum clique of the interference graph has been found 

(see Algorithm 3.8). In fact, in the approach used in [111] the first cliques were 

only further extended whenever the difference between the span produced by them 

and that of the completed graph was above an arbitrarily fixed threshold and this 

procedure is not able to set a priori a desired number of subsets. On the contrary, 

we aim to find a procedure which is capable of investigating constructively the po­

tential of each decomposition method, without any consideration of the cost and 

number of subsets.

We are expecting a decomposition to be successful when the span produced 

by solving the subsets independently is close to that of the final assignment. If 

this happens for any of the subsets, the corresponding partial assignment has good 

chances to be extended to a nearly optimal assignment of the whole set of trans­
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mitters.

Graph partitioning decomposition has been applied using the basic cost in 

Problem 3.3 which minimizes all of the inter-edges between pairs of different sub­

sets. In addition, only the balanced GPFAP has been considered for this problem. 

For both clique and graph partitioning preliminary tests have shown that better re­

sults are obtained whenever the transmitters contained in each of the subsets are 

re-ordered according to GLS. This is the ordering (chosen among those proposed 

in [54]) which performs better in a number tests conducted by performing simple 

sequential algorithms on the same MS-FAP benchmarks. As a consequence the 

performance of the GA (which involves a sequential assignment as fitness evalua­

tion) depends strongly on the specific ordering by which transmitters are selected 

within each of the subset, as random orderings produce generally very poor perfor­

mance

For data sets C\, ..., C4  information specifying the location of the transmitters 

is provided. Therefore, it is possible to apply the geographical decomposition in 

Algorithm 3.4. For these experiments the parameter D is assigned the value of half 

the range of the x  coordinate to determine transmitters to be included respectively 

in the first and second subset. Any transmitters which have not been assigned to 

either of the two subsets are included in the first subset. The procedure is applied 

recursively to produce decompositions into more than two subsets.

This simple geographical procedure is probably the most intuitive decomposi­

tion algorithm we can imagine, if we think in terms of clusters of transmitters in 

the network. Moreover, for the problems generated by a ‘two towns’ distribution 

the partitioning produced by the GPFAP and geographical decomposition appear 

very close. This is for example shown by Figure 5.1, which visualizes the results 

of the decomposition for test problem C4 . The plot clearly shows that with graph 

partitioning transmitters belonging to each of the two different towns are largely 

included into distinct subsets. On the contrary, a different partition is produced by 

generalized-degree, in which is instead emphasized the idea of including the most

94



highly connected vertices in one of the subsets only. Finally, a single random de­

composition has been tested for comparison, using the implementation described 

in Algorithm 3.3.

balanced GPFAP

generalized degree 

Figure 5.1: Decomposition into two subsets for data set C4

5.3 Experimental results

Table 5.1 gives the outcomes for all the benchmarks described in 4.2.1 in terms of 

best and mean span (shown in brackets) over three runs of the assignment with the 

heuristic with different random seeds. The values in bold indicate the best span 

produced by either approaches.

All the results produced by the decomposition approach were obtained by solv­

ing the subsets sequentially, respecting the constraints with those already assigned,



since solving in parallel will inevitably produce constraint violations. A compara­

tive percentage analysis of the different decomposition methods used can be found 

in Appendix A.

By analyzing the results in Table 5.1 we can make the following observations. 

For test problems (P\ ,^ 2 ) the GA with decomposition finds the optimal solution 

with either the decomposed assignment (GPFAP and generalized degree) or the 

whole approach.

For the other test problems the generalized degree algorithm appears supe­

rior to the others and the decomposition approach is always successful in all the 

instances tested. That is it produces a lower span than the non-decomposed ap­

proach. The GA can be compared to other local search heuristics when used in the 

traditional whole approach, such as tabu search and simulated annealing in their 

standard implementations proposed in [62] for the software tool FASoft. This is 

one of the most fully documented systems for the FAP problem which implements 

a number of different meta-heuristics available to solve FAP instances. A compar­

ison between the GA and other algorithms results can be found in [24,25].

GPFAP and clique, although producing competitive results in terms of good 

approximation of the optimal solution, do not generally find a better span than the 

non-decomposed approach. Clique decomposition seems to be slightly superior to 

the balanced partitioning GPFAP. This can be explained by the the specific cost 

used for this problem, that is the span of an assignment. In fact, the first cliques in 

the sequence of subsets are generally able to produce costs which are reasonably 

close to the span of the final (nearly) optimal assignment of all the transmitters 

in the network. This happens in particular for the first subset which is always 

composed by the maximum level zero clique. Note that for these benchmarks, 

because of either the relatively small size and low graph density, the maximum 

clique can be found with a reasonable computational effort.

GPFAP appears less effective on average than the generalized degree and clique 

decomposition. However there are few exceptions. In the case of the Philadelphia
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Table 5.1: Best and mean span for the MS-FAP test problems solved by order-based GA 
with decomposition (500,000 evaluations)

n s  | R a n d o m  | G eo g . | G P F A P  | G en . D eg ree  | C liq u e s

P\
1 47 (47.3)
2 51 (5 1 .3 ) - 47 (47.3) 47 (47.3) 47 (4 7 .7 )
4 51 (5 1 .7 ) - 4 8  (4 8 .3 ) 47 (4 7 .7 ) 48  (4 8 .0 )

P i
1 426 (4 2 6 .7 )
2 4 7 9  (4 8 0 .3 ) - 426 (426.3) 426 (4 2 6 .7 ) 4 3 0  (4 3 2 .0 )
4 54 3  (5 4 5 .3 ) - 4 2 7  (4 2 8 .0 ) 4 2 8  (4 2 8 .3 ) 431 (4 3 3 .3 )

Ci
1 81 (8 1 .7 )
2 1 0 0 (1 0 2 .3 ) 9 4  (9 4 .3 ) 83  (8 3 .7 ) 80  (8 0 .7 ) 82  (8 2 .3 )
4 1 0 6 (1 0 4 .0 ) 92  (9 3 .3 ) 86  (8 7 .0 ) 79 (80.3) 84 (8 4 .7 )

c 2
1 74 (7 4 .7 )
2 85 (8 6 .7 ) 84  (8 4 .7 ) 81 (8 2 .7 ) 74  (7 4 .7 ) 77 (7 7 .7 )
4 88 (9 0 .0 ) 85  (8 6 .7 ) 7 9  (8 0 .3 ) 73 (73.3) 78 (7 9 .0 )

c 3
1 74  (7 5 .0 )
2 89 (9 0 .7 ) 82  (8 2 .0 ) 7 8  (7 8 .3 ) 74  (7 5 .0 ) 7 9  (7 9 .7 )
4 9 0  (9 1 .0 ) 84  (8 4 .3 ) 7 9  (7 9 .0 ) 73 (74.6) 77 (7 7 .3 )

c 4
1 75 (7 5 .3 )
2 9 8  (9 9 .3 ) 71 (7 1 .7 ) 69 (70.3) 73 (7 4 .0 ) 73 (7 4 .0 )
4 1 0 6 (1 0 6 .7 ) 73 (7 4 .3 ) 74  (7 4 .3 ) 71 (7 1 .3 ) 72 (7 3 .3 )

Ci
1 54  (5 6 .0 )
2 5 6  (5 8 .0 ) - 53  (5 3 .3 ) 53 (5 4 .7 ) 53 (5 3 .3 )
4 57  (5 7 .7 ) - 56  (5 7 .0 ) 51 (52.6) 55 (5 5 .0 )

g 2
1 55 (5 7 .3 )
2 6 6  (6 7 .3 ) - 5 8  (5 8 .0 ) 55  (5 6 .3 ) 55  (5 6 .0 )
4 6 7  (6 8 .0 ) - 54 (54.3) 5 4 ( 5 5 .7 ) 55 (5 5 .7 )

c 3
i 1 0 6 ( 1 0 6 .3 )
2 1 1 5 (1 1 6 .0 ) - 107 (1 0 7 .3 ) 1 06  (1 0 6 .0 ) 1 06  (1 0 6 .3 )
4 1 1 9 (1 2 0 .3 ) - 1 1 0 (1 1 0 .7 ) 1 0 7 (1 0 7 .6 ) 1 0 6 (1 0 6 .7 )

1 121 (1 2 2 .3 )
2 1 4 4 (1 4 5 .3 ) - 125 (1 2 5 .3 ) 120(121.7) 123 (1 2 3 .7 )
4 141 (1 4 1 .7 ) - 1 2 7 (1 2 8 .7 ) 121 (1 2 2 .3 ) 1 2 4 (1 2 5 .3 )

R i
1 2 1 6 ( 2 1 7 .0 )
2 2 9 4  (2 9 5 .0 ) - 2 2 5  (2 2 5 .7 ) 2 1 6 (2 1 6 .7 ) 2 1 9 (2 1 9 .3 )
4 30 8  (3 0 8 .7 ) - 2 2 7  (2 2 7 .3 ) 2 1 6 ( 2 1 6 .3 ) 2 1 8 (2 1 8 .7 )
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instance Pi the GPFAP appears to be the best performing decomposition method 

whereas clique decomposition is particularly penalised. This can be in part ex­

plained by the nature of these benchmarks, which presents a very high and un­

realistic cell demand. More importantly, the GPFAP appears superior to the other 

methods and the non-decomposed approach for data set problem C4 , since this rep­

resents an intuitive and natural form of partitioning for these benchmarks in which 

transmitters are located in ‘different towns’. Note that for this benchmark the tradi­

tional approach of solving the problem as a whole appears particularly penalised.

As expected random decomposition does not produce good results, while the 

geographical decomposition results are not satisfactory in the case of the ‘one- 

town’ benchmarks C\ and Ci. Furthermore, for the problems generated with a 

distribution in ‘two-towns’ this method still offers no advantages over GPFAP.

Despite the peculiarity of their structure (which presents a very high and un­

realistic graph density), the outcomes for the random graphs confirm the results 

obtained for the other MS-FAP benchmarks. In particular, generalized degree ap­

pears slightly superior to clique decomposition and GPFAP, although they equalize 

its results in some problems. Note that, although the decomposed assignment ap­

proach matches the results obtained with the undecomposed solution, because of 

the very high edge density of the graph, the gain in runtime for these problems can 

be large.

Figure 5.2 shows span-time plots for a number of specific runs of the bench­

marks in Table 4.1 solved by the different decomposition algorithms after 500,000 

total evaluations. The diagrams show the respective behaviours when these prob­

lems are solved as a whole, and with the decomposition technique. To simplify 

we only show the results produced by a partition into two and four subsets. As 

expected the span produced by a particular subset can be lower than the final span, 

and some peaks appear in the diagram.
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Figure 5.2: Span-Time plot for the MS-FAP benchmarks solved by the order-based GA with decomposition into two and four subsets



Table 5.2: Ci and C4 with decomposition - subsets solved independently (500,000 evalua­
tions)

ns l 5'  su b 2nd su b 3rd su b 4 '*  su b c o s t T ab le  5.1 g lo b al
G P F A P

2 39 63 - - 118 83
4 62 61 42 31 102 86

G e n era lized -d eg ree
81

2 63 4 9 - - 110 80

C l
4 62 50 43 35 100 79

C liq u e
2 62 63 - - 94 82
4 62 23 14 63 95 84

G P F A P
2 61 52 - - 98 69
4 44 4 0 16 29 90 74

G  en e ra l ized -d eg ree
75

2 65 53 - - 89 73

c 4
4 46 37 24 24 82 71

C liq u e
2 65 71 - - 90 73
4 65 23 15 68 93 72

These are due to the recombination of partial solution when the next subset is 

considered. Hence, the dashed lines represent, for a decomposition into a given 

number of subsets, only the partial solutions produced by the first group of subsets 

whereas the solid lines give valid spans of the whole problem (produced during 

the last subset considered). Note that the cost produced by the first subset is often 

close to the final (near) optimal span. This is particularly true in the case of the 

generalized degree algorithms.

Table 5.2 shows the results obtained for two of the Cardiff University bench­

marks (Ci and C4 ) when the subsets are solved independently according to Algo­

rithm 3.2. Results refer to the order based GA with the same parameter setting 

described in Section 5.1. Besides, we show the best results obtained by either the 

global approach and the ‘sequential’ procedure in Algorithm 3.1 (whose complete 

results are shown in Table 5.1 )

For each of the subsets the GA finds a near optimal ordering which produces the 

lowest span of the partial assignment when the sequential algorithm 5 . 2  is applied. 

During the assignment of a specific subset only vertices and intra-edges belonging
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to it are considered. Then the best ordering is returned by the heuristic for each 

subset.

When all the subsets have been solved the corresponding partial orderings are 

concatenated together sequentially (according to the original subsets ordering). 

Then a final complete assignment of the whole set of transmitters is generated 

by simply applying once Algorithm 5.2 to the merged ordering (reconstruction). 

This will only add one further evaluation to the decomposed procedure (produced 

by the application of the sequential assignment 5.2), thus not being significant with 

concern to the count of total evaluations, see also Section 4.1.1. Note that apart 

from the first subset in the list of subsets which keep the same assignment, all the 

assignments for the other subsets will change during the reconstruction procedure. 

Note that this further reconstructions of partial solutions in order to produce the 

final assignment is not needed when the subsets are processed sequentially since 

the procedure directly returns a final valid assignment.

We present the best span over three runs, together with the partial spans pro­

duced by each single subset. We have used GPFAP, generalized-degree and clique 

decomposition since they are the best performing methods for the results in Table 

5.1 obtained with the ‘sequential’ decomposed assignment technique.

None of the decomposition methods produces satisfactory results when the 

solutions are recomposed together for both test problems considered. This is a 

consequence of the fact that the ‘partial’ orderings obtained when the subsets are 

solved independently ignore the inter-connection between subsets thus, when they 

are merged together, do not produce an optimal ordering for the complete graph. 

Clique and generalized-degree show a significant value of the span during the first 

subset. This result confirms the expectation since all the decomposition used aim 

to present the ‘hardest’ part of the problem first. The span generated for the re­

maining subsets is in general lower. However, for the clique decomposition the last 

subsets (which includes a significant number of vertices due to the small size of the 

cliques) still produces a high span. GPFAP with the cost defined as in Problem 3.3
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aims to balance the subsets which then tend to produce a similar span. However, 

this tendency is more important for C4  with two subsets, for which the GPFAP 

generates a decomposition into two distinct towns of almost same size.

In conclusion the MS-FAP results show that the decomposed assignment ap­

proach with the subsets solved sequentially improves or equalizes those obtained 

by the whole approach for all of the benchmarks tested. Decomposition meth­

ods that aim to isolate and solve at first the possibly hardest part of the data set 

(i.e. clique and generalized degree) produce the best performance, thus confirm­

ing some results previously obtained for this problem. To summarise Table 5.3 

shows the best and average results obtained by the permutation based GA using 

both the global and the decomposition approach in comparison with the best results 

produced by simulated annealing (with global approach) as previously published 

in [25].

Table 5.3: Comparison between the best and average (in brackets) spans produced by the 
order-based GA and SA [25] (500,000* evaluations)

benchmark GA with decomposition GA global SA from [25]

P \ 4 7  (4 7 .3 ) 4 7  (4 7 .3 ) 47  (4 7 .3 )

p 2 4 2 6  (4 2 6 .3 ) 4 2 6  (4 2 6 .7 ) 4 2 6  (4 2 6 .7 )
c , 7 9  (8 0 .3 ) 81 (8 1 .7 ) 81 (8 2 .4 )

c 2 73 (7 3 .3 ) 7 4  (7 4 .7 ) 74  (7 4 .8 )
C i 73  (7 4 .6 ) 7 4  (7 5 .0 ) 76  (7 7 .4 )

c 4 71 (7 1 .3 ) 75  (7 5 .3 ) 77  (7 8 .0 )
G \ 51 (5 2 .6 ) 5 4  (5 6 .0 ) 54  (5 5 .2 )

g 2 5 4  (5 4 .3 ) 55  (5 7 .3 ) 55  (5 8 .0 )
G i 1 0 6  (1 0 6 .0 ) 1 06  (1 0 6 .3 ) 1 0 6 (1 0 6 .5 )

Ri 120 (1 2 1 .7 ) 121 (1 2 2 .3 ) 121 (1 2 2 .0 )

R2 2 1 6  (2 1 6 .3 ) 2 1 6 ( 2 1 7 .0 ) 2 1 6  (2 1 6 .3 )

In the remaining part of this thesis we will apply the decomposed approach 

to the more complex FS/MI-FAP, for which it has never been used in previously 

published works.
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Chapter 6

Fixed Spectrum FAP
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This section applies the decomposition technique to a selection of FS-FAP test 

problems. In order to compare the results with those produced for the MS-FAP 

we apply the same heuristic used for that problem, that is the order-based GA. 

However, this needs to be adapted for the FS-FAP as described in the next section.

6.1 Heuristic algorithms

One advantage of the permutation based GA in Algorithm 5.1 applied to the MS- 

FAP was the property of generating only zero-violations assignments, thus reduc­

ing significantly the search space and speeding up its convergence without pre­

venting the full exploration of the solution space. For the FS-FAP the domain 

of available frequencies is limited thus it is usually not possible to find a zero- 

violation assignment for a given set of transmitters. Therefore some interference 

becomes unavoidable. Furthermore, the algorithm which produces the assignment 

itself needs to be modified. We keep the same general structure of a sequential al­

gorithm but the selection of frequency assigned to the next transmitter in the order­

ing is now modified according to Algorithm 6 .1. The modified procedure assigns 

to the next transmitter the smallest frequency available in the domain which mini­

mizes the costs Ofs defined in Problem 1.2 calculated on the transmitters already 

assigned in the ordering. It is important to mention that we can no longer give 

an equivalent of the proof in [118] and, as a consequence, guarantee the complete 

exploration of the search space.

To allow full exploration, Local Search (LS) can be incorporated into the GA 

after the application of the genetic operators, to explore those assignments which 

may not be found by the sequential algorithm. The LS implemented is simple, 

in order to preserve the structure and the effectiveness of the GA itself, with a 

single move defined as a single frequency change (± one channel) for a number of 

transmitters selected at random in a given assignment to the whole network. The 

LS also stores and updates the best configuration obtained, thus the new assignment
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Algorithm 6.1 Fitness evaluation for the FS-FAP
Input: Chromosome ord
Output Frequency A ssignm ent/ Int cost

1: first transmitter in ord  <— /o 
2 : while next transmitter in ord  do
3: { Select next unassigned transmitter x in the initial ordering ord }
4: { Select the lowest available frequency f x which minimize the sum o f  violations

<Pf s  i f ,  e ) with the transmitters already assigned in ord, }
5: { x +- f x )
6 : end while
7: Evaluate the cost as the sum o f violations in/
8 : return / ,  cost

can only have a cost which is better than or equal to the initial one produced by the 

sequential algorithm. Pseudocode of the fitness evaluation is shown in Algorithm 

6.2. Two acceptance criteria have been used:

Definition 6.3 Given the LS procedure in Algorithm 6.2 we define the two following 

acceptance criteria:

• Hill Climbing (see [63]): a move is accepted only i f  the cost o f the new 

configuration is better than the old one

• Metropolis (see [84]): a move can be accepted even i f  it produces a greater 

cost O fs, according to a probability distribution (6.1). The parameter k has 

been set to 1 while the temperature T depends on the particular instance 

considered and it is usually set in the range 0  to 1 0 .

(
_ ° F S ne » - ° F S o ld

e 17 lf  ° r s  new > O f s  Old

(6 . 1)
1 otherwise

Preliminary tests were needed in order to set the parameters for this modified 

version of the order-based GA (see Appendix C.l). However, no significant im­

provements were observed by changing the settings chosen for the MS-FAP and
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Algorithm 6.2 Local search implementation for FS-FAP
Procedure Local Search fo r  FAP

Input: Chromosome ord
FrequencyAssignment /

Output FrequencyAssignment bestf
1: Apply Sequential assignment to ord and set it as the initial value for/  
2 : while numberOfMoves < 10*numberOfTransmitters do 
3: { Select a transmitter jc in ord at random }
4: { Store the frequency f x assigned to x i n /  }
5: { Select a new frequency at random as either f x + 1 or f x -  1 }
6 : {x  *- f xNew to obtain a new configuration f x̂ ew )
7: { Evaluate the cost Ofs o f f XNew }
8 : if Move accepted then { /  <— f XNew }
9 :  if 0 / r 5  <  best Cost then

10: { bestf *— f XNew 1 bestCost <— Ofs 1
11: end if
12: end while 
13: return bestf

reported in Section 5.1, which, therefore, has been maintained for the FS-FAP ex­

periments too. In addition, LS was added with a Metropolis acceptance criterion 

with a variable value of T decreasing from a high value to a low value, set respec­

tively to 10 and 0 in our tests ( T 10 —» 0). It is important to note that, although 

decomposition is effective and produces better results than the whole approach (at 

least with the GPFAP), the benchmarks used have on average a low connectivity 

(with the exceptions of the random graphs and the Philadelphia benchmarks), thus 

they do not represent particularly hard FS-FAP instances.

For harder fixed spectrum instances the order-based GA is not able to produce 

satisfactory results. For example with the last group of benchmarks G\, Gi and 

G3 , although the decomposition improves markedly its results, the order based GA 

is outperformed by other standard meta-heuristics using the whole approach. For 

a comparison with a standard SA see [25], This is essentially due to the intrinsic 

limitations of the order-based representation and the impossibility of increasing the 

amount of the local search procedure without having the natural structure of the G A 

completely distorted. For this reasons we have conducted a number of experiments
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changing the type of the representation used and adopting the direct representation 

(see [23] for a comparison between different representations for GAs). Different 

genetic operators are needed for this representation, which will be also used for the 

MI-FAP described later (see also Appendix C.2.2). The crossover is applied with 

a rate of 100% and one swap mutation was executed per offspring. In addition, 

we applied the same local search Metropolis algorithm defined in 6.3 and already 

used for the order-based representation. In order to reduce the negative effect of 

the premature convergence fitness sharing has been added to the SEAMO structure 

of the GA with the implementation described in Section (3.6).

6.2 Decomposition algorithms

The FS-FAP instances have been tested with the decomposition methods already 

compared for the MS-FAP, namely GPFAP, generalized degree and clique. The 

cost for GPFAP is that used in Problem 3.3 which minimizes the inter-edges be­

tween subsets while maximizing the intra-edges in the first subset only.

Data sets Gi and G3 , both present the characteristic of having disconnected 

components in the interference graph. For this reason, although the size of these 

components is very small, we have also considered the simple minimum-cut de­

composition proposed in Problem 3.1.

Definition 6.4 For the minimum-cut two different decompositions are proposed:

• minCutl (component). This partitioning (which is automatically found by 

the min-cut procedure in Problem 3.1) is simply obtained by including in 

the first subset only the transmitters belonging to the minor disconnected 

components o f the interference graph.

• minCut2. This partitioning is obtained iteratively by adding to the first com­

ponent the transmitters included in the next minimum cut o f the induced 

graph obtained by removing the vertices so far in the subset. The itera-
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tive procedure stops when a minimum number vertices has been reached, 

(5% in our experiments) has been reached. Note that this strategy becomes 

necessary because o f the very small number o f vertices included in each o f 

the smallest sides o f the next minimum cuts found (usually less than ten).

For min-cut2 in order to obtain a partitioning into more than two subsets the 

procedure is applied recursively to each of the sides of the cut produced whereas 

for the ‘component’ approach outlined in min-cutl only a decomposition into two 

subsets has been considered.

6.3 Experimental results

Table 6.1 summarises the outcomes for the benchmarks in Table 4.1 using the 

order-based GA in Algorithm 5.1 with the modifications described in Section 6.1. 

We use the same decomposition criterion in Definition 4.1 in order to split the to­

tal number of evaluations (500,000 as well as for the MS-FAP) among different 

subsets. The cost used in Table 6.1 is that defined in Problem 1.2 for FS-FAP.

With exception of the first two Cardiff University instances (both generated 

with a ‘one-town’ distribution) the GPFAP is the most successful technique. In 

particular it appears very effective for data sets C3 and C4 , which were gener­

ated with the benchmark generator tool using a ‘ two-town ‘ distribution, and for 

the GSM scenarios G\ and Gj. For this type of FAP the use of a decomposition 

method which aims to reduce the amount of inter-connections between different 

subsets is crucial, and the GPFAP directly targets this parameter as the objective of 

minimization. In particular, for the two-towns problem C4  we can see from the plot 

in Figure 6.1 that in a decomposition into two subsets the cost produced by each of 

subsets are very close (and lower than that produced by the whole approach). This
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good performance could have been predicted since the decomposition pro­

duced by GPFAP into two distinct and nearly disconnected towns is naturally ef­

fective. Note that, this does not happen for the decomposition into four subsets, 

in which the cost in the diagrams presents a marked discontinuity between subsets 

whereas the first subset still produces only interference free assignments.

Clique decomposition appears far less effective than in the MS-FAP, and in 

only few of the instances it is actually able to improve the results produced by 

the non-decomposed approach. This can be explained by the fact that, for these 

data sets, the size of the cliques is very small compared to the whole graph. As 

a consequence, this decomposition method does not produce any effective partial 

costs for the first subset, or the first group of subsets. Hence the corresponding 

assignments are very often interference free.

Generalized degree decomposition is not as effective as it was for the MS-FAP. 

This can be explained by the fact that this method no longer takes advantage of 

the sequential assignment, which, although modified for this different problem, is 

not able to explore completely the search space. As a consequence a local search 

procedure needs to be added (see Figure 6.2) and this also limits the advantage of 

starting from a good ordering. In particular this method appears able to obtain some 

good results for the ‘one-town’ benchmark generated test problems, in which the 

approach of solving the mostly connected part of the graph at first is still effective. 

For the other test problems the requirement of minimizing the inter connections 

between subsets becomes predominant (especially in the ‘two-towns’ data sets), 

thus other decomposition methods outperform the generalized degree. Random 

and geographical decomposition produce results which are in percentage terms 

worse than those of the MS-FAP, when compared to the best costs found for each 

of the test problems.

Figures 6.1 shows the cost-time plots for a number of specific runs of the 

benchmarks in in Table 4.1 solved by the different decomposition algorithms af­

ter 500,000 total evaluations. The diagrams show the respective behaviours when
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these problems are solved as a whole, and decomposed into two and four subsets. 

Note that for the solutions obtained by the decomposed assignment approach only 

the solid line (which shows the last subset in a specific decomposition) represents 

a valid cost of a complete assignment of all transmitters in the network. It clearly 

appears that even a small number of subsets improves considerably the overall run 

time of the algorithm for the same effectiveness.

Table 6.2 shows the results obtained for benchmarks Ci and C4  when the sub­

sets are solved independently according to Algorithm 3.2. For each of the subsets 

the GA finds the near optimal ordering which produces the lowest cost when the 

sequential algorithm 6 .1 is applied. During the assignment of a specific subset only 

vertices and intra-edges belonging to it are considered. When all the subsets have 

been solved the partial orderings are concatenated together sequentially (according 

to the original subsets ordering), then a final complete assignment of the whole set 

of transmitters is generated by applying Algorithm 5.2 to the merged ordering. We 

present the best cost over three runs, together with the partial costs produced by 

each single subset, obtained with GPFAP, generalized-degree and clique decompo­

sition, i.e. the best performing methods for the results in Table 6.1.

As for the MS-FAP (see Section 5.3) none of the decomposition methods pro­

duces satisfactory results when the solutions are recomposed for either of the test 

problems considered. From the partial costs results that clique decomposition is 

no longer capable of generating any significant values for the cost in the first, or 

first group of subsets. This is due to the smaller size of the cliques which tends to 

produce partial assignments which are interference free assignments, whereas the 

last subset (which usually includes the majority of vertices of the graph) is the only 

one producing significant interference. However, this is still not effective when the 

partial orderings are finally merged together. On the contrary, generalized degree 

produces interference only within the first subset.
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Figure 6.1: Cost-Time plot for the MS/FS-FAP benchmarks with a fixed spectrum of frequencies solved by the order-based GA with decomposition 
into two and four subsets



Similar behavior is shown by GPFAP (used with the cost in Problem 3.3), 

which also solves the ‘hardest’ part of the problem first. However, for the ‘two- 

towns’ problem C4  decomposed into two subsets, GPFAP is still capable of pro­

ducing a balanced distribution for the interference of the two partial assignments 

within the two subsets (note that this does not happen for a decomposition in four 

subsets).

Table 6.1: Best and mean cost for the FS-FAP test problems solved by order-based GA 
with decomposition (500,000 evaluations)

n s  | R a n d o m  | G e o g . | G P F A P  | G en . D e g re e  | C liq u e s
C i 65  freq .

1 94  (9 5 .7 )
2 1 4 4 (1 4 4 .7 ) 1 0 0 (1 0 3 .3 ) 92 (94.0) 95 (9 5 .7 ) 98  (9 8 .7 )
4 1 4 4 (1 4 7 .3 ) 1 1 0 (1 1 2 .7 ) 94  (9 5 .3 ) 92 (9 4 .3 ) 96  ( 9 7 .3 )

C 2 65  freq .
1 4 9  (5 0 .3 )
2 78  (8 0 .0 ) 68 (6 0 .7 ) 4 0  (4 2 .0 ) 42  (4 4 .0 ) 52 (5 2 .3 )
4 86 (8 7 .3 ) 80  (8 2 .0 ) 48  (4 8 .3 ) 39 (41.3) 50  (5 1 .7 )

C 3 5 0  freq .
1 2 8 2  (2 8 3 .0 )
2 3 5 8  (3 5 9 .0 ) 2 7 4  (2 7 4 .3 ) 262 (263.3) 2 7 4  (2 7 4 .0 ) 298 (2 9 9 .0 )
4 3 5 4  (3 5 5 .3 ) 3 2 0  (3 2 0 .7 ) 27 8  (2 7 9 .0 ) 2 7 6  (2 7 6 .3 ) 326 (3 2 6 .7 )

C 4 50  freq .
1 23 8  (2 4 0 .3 )
2 2 7 2  (2 7 3 .0 ) 227  (2 2 8 .3 ) 2 25  (2 2 6 .3 ) 2 3 0  (2 3 0 .7 ) 24 0  (2 4 1 .3 )
4 2 8 4  (2 8 4 .7 ) 22 9  (2 2 9 .7 ) 224 (225.7) 2 4 4  (2 4 5 .7 ) 238 (2 3 9 .3 )

G i  30  freq .
1 3 1 6 ( 3 1 6 .3 )
2 4 0 8  (4 0 9 .0 ) - 305 (306.3) 3 1 8 ( 3 1 8 .7 ) 3 2 0  (3 2 0 .3 )
4 4 1 0 ( 4 1 1 .3 ) - 2 9 8  (3 0 0 .7 ) 3 2 8  (  3 2 8 .3 ) 3 1 2 (3 1 3 .0 )

Gz  30  freq .
1 4 3 9  (4 4 1 .3 )
2 5 2 6  (5 2 7 .0 ) - 416 (416.0) 4 2 5  (4 2 5 .3 ) 4 1 6 (4 1 6 .7 )
4 5 5 2  (5 5 3 .3 ) - 4 3 6  (4 3 6 .7 ) 431 (4 3 1 .7 ) 4 3 6  (4 3 7 .0 )

As anticipated in Section 6 . 1 , for the hardest FS-FAP instances the order-based 

representation applied to the GA in 5.1 is not able to produce satisfactory results 

and, consequently, we need to swap to the direct representation. In the following 

we will present results of the direct GA with the decomposed assignment approach 

for the hardest of the FS-FAP benchmarks among those considered here, namely Gj 

and G3 , the Philadelphia instance P2 , and the random graphs R\ and R2 . Table 6.3 

compares the results of G2 and G3 obtained with the minimum-cut decompositions 

in Definition 6.4 with those obtained with GPFAP and generalized degree.
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Table 6.2: C\ and C4 with decomposition - subsets solved independently (500,000 evalua­
tions)

n s I 5' su b 2nd su b 3rd sub 4,h sub co st T ab le  6.1 g lo b al
G P F A P

2 72 0 - - 2 36 92
4 3 0 0 4 0 186 94

G en era lized -d eg ree
94

2 56 0 - - 172 95

C ,
4 24 0 0 0 180 92

C lique
2 0 48 - - 158 98
4 0 0 0 16 160 96

G P F A P
2 156 134 - - 36 0 225
4 34 0 0 0 355 2 24

G e n e ra lize d -d e g re e
2 38

2 166 4 - - 306 2 30

c 4
4 28 0 0 0 3 6 6 , 244

C liq u e
2 8 128 - - 382 240
4 8 0 0 138 428 238

Table 6.3: Best and average cost for test problems G\ and Gi solved by the direct GA with 
decomposition (500,000 evaluations)

su b N o
m in -c u tl

m in -c u t2 G P F A P G en . d eg ree
S e q u e n tia l | In d e p e n d e n t

G i 

30  freq .

1 35 8  (3 5 8 .3 )
2 3 5 8  (3 5 8 .0 ) 3 58  (3 5 8 .0 ) 3 4 9 (3 5 0 .7 ) 292 (297.0) 311 (3 1 1 .7 )
4 - - 35 9  (3 5 9 .3 ) 2 8 2  (2 8 4 .7 ) 311 (3 1 4 .7 )

C?3 

3 0  freq .

I 1 2 8 0 (1 2 8 0 .7 )
2 1 2 8 0 (1 2 8 0 .3 ) 1 2 8 0 (1 2 8 0 .3 ) 1275 (1 2 7 6 .7 ) 1220 (1223.3) 1271 (1 2 7 2 .7 )
4 - - 1266 (1 2 7 2 .7 ) 1255 (1 2 6 1 .0 ) 1280 (1 2 8 2 .3 )

Although the decomposed approach appears to be successful overall, minimum- 

cut appears to be the weakest of the methods considered. Note that if we consider 

only the decomposition into graph components, the decomposed technique pro­

duces the same cost as the whole approach. Moreover, the ‘component’ decompo­

sition in Definition 6.4 can be solved either sequentially or independently produc­

ing exactly the same costs since no edges are existing between the two components 

and, as a consequence, none of the constraints is ignored by the decomposed pro­

cedure at any stage. However, this decomposition strategy is outperformed by the 

other decompositions tested, with the GPFAP producing the best outcomes, thus
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Table 6.4: Best and mean cost for test problems Pi solved by the direct GA with decom­
position (500,000 evaluations)

subNo
cell demand GPFAP

50% -50%  | 80% -20%

Pi

30 freq.

1 203 (206.3)
2 226 (230.0) 210(211.3) 238 (240.3)
4 232 (236.7)1 224 (224.3) 255 (257.3)

confirming the results obtained in Figure 6.1 for the order based GA.

For the Philadelphia problem P2  the decomposed assignment approach has dif­

ficulty in solving FS-FAP instances. This is caused by the very high cell demand 

of this particular group of benchmarks, in which the final interference produced by 

the optimal assignment is almost completely dominated by the co-site constraints 

between transmitters belonging to the same cell. As a consequence, the interfer­

ence produced by the first (or the first group) of subsets is almost always zero, thus 

compromising the effectiveness of any decomposition method here used.

Table 6.4 shows the results obtained by the GPFAP decomposition. However, 

because of the high graph density the decomposed assignment approach appears 

unsuccessful overall for this specific class of cellular problems when used to solve 

the FS-FAP.

The random graphs benchmarks already tested for the MS-FAP have been here 

applied to a limited number of frequencies (150 channels in our experiments). As 

already mentioned the high graph density of these data sets together with their 

peculiar structure (which does not present any ‘attractor’ nodes according to the 

terminology used for the graph clustering in [41]) does not intuitively make them 

good candidates for the decomposed assignment approach. This is actually con­

firmed by the results shown in Table 6.5.

In fact, while for the MS-FAP the decomposed assignment technique was still 

able to equalise the results produced by the whole approach, the same does not 

happen for the harder FS-FAP. GPFAP appears overall to be the most competitive
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Table 6.5: Best and mean cost for test problems R i and R2 solved by the direct GA with
decomposition after 500,000 evaluations

subNo GPFAP Gen. Degree Cliques

R\

150 freq.

1 299 (302.0)
2 304 (304.3) 313(314.0) 311 (313.0)
4 322 (324.7) 331 (331.7) 327 (327.3)

Ri 

150 freq.

1 203 (204.3)
2 215(217.6) 225 (226.3) 203 (204.0)
4 230(232.0) 255 (255.3) 206 (207.7)

method (at least with a basic decomposition into two subsets). Nevertheless, due 

to extremely high edge density, the number and the cost of the inter-edges of the 

partition produced is still very high, thus limiting the effectiveness of the graph par­

titioning procedure itself. As a results, the first subset (or group of subsets) always 

produces an interference free assignment whereas a marked discontinuity, which 

considerably raises the final cost, appears with the introduction of the remaining 

constraints in the last subset in the sequence (see for example the cost-time plots 

in Figure 6.2). This tendency is even more important for the other decompositions 

used.

Note that an exception exists for clique decomposition for the benchmark R2 , 

in which the decomposed assignment technique matches the best cost found by the 

whole approach. However, this only appears to be a successful result. In fact, the 

maximum level zero clique for this specific data sets only includes less than the 2 % 

of the total number of vertices, thus making this approach almost identical to the 

non-decomposed one. On the contrary, for the second data set considered, in which 

the size of the maximum level zero clique is slightly more important (about the 5 % 

of the size of the vertices set), the decomposed approach appears unsuccessful 

when compared with the whole (for clique as well as for the other decompositions 

tested).

In conclusion, for the FS-FAP the decomposed assignment approach is capable 

of producing better results than the whole approach for the most of the test prob­
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Figure 6.2: Cost-Time plot for the random graph benchmarks with a fixed spectrum of 150 
frequencies solved by the direct GA with GPFAP decomposition into two and four subsets

lems considered (with the exception of Philadelphia and random graphs). However, 

decomposition methods based on minimizing the interconnections between subsets 

in the partition (i.e. GPFAP) are more effective than those based on isolating and 

solving first the hardest part of an instance (i.e. clique and generalized degree). 

This can be partially explained by the fact that for the MS-FAP removing some 

of the vertices still allows the core part of an instance to produce a span which 

is close to that of the whole data sets. On the contrary, when the cost is defined 

in terms of total sum of the constraints violations, as with the FS-FAP, removing 

edges unavoidably implies a considerable decrease in the partial costs produced by 

a subproblem.

To summarise Table 6.6 shows a comparison with the best results produced by 

simulated annealing (with global approach) as previously published in [25] for a

1 1 6

2 subsets 
4 subsets



selection of the FS-FAP test problems. For simplicity we show only the best and 

average results obtained by the permutation based GA using both the global and 

the decomposition approach. From these outcomes SA appears still superior to the 

order-based GA for the hardest problems G\ and Gj even when the decomposed 

approach is used (although this is successful in comparison with the global). In the 

next part of this thesis we will apply the decomposed approach to the subcategory 

of the MI-FAP, which adds the further difficulty of introducing a separation of the 

constraints into hard and soft, with the latter group expressed in terms of penalty 

factors.

Table 6 .6 : Comparison between the best and average (in brackets) costs produced by either 
the order-based GA and SA [25] (500,000* evaluations)

benchmark number of freq. GA with decomposition GA global SA from [25]

c , 65 92 (94.0) 94 (95.7) 127 (127.8)
C2 65 39 (41.3) 49 (50.3) 95 (95.7)
c 3 50 262 (263.3) 282 (283.0) 299 (300.4)
c 4 50 224 (225.7) 238 (240.3) 252(256.4)
G i 30 305 (306.3) 316(316.3) 291 (293.2)
g 2 30 416(416.0) 439 (441.3) 383 (383.8)
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Chapter 7

Minimum Interference-FAP

118



Whereas the FS-FAP approach minimizes the maximum interference level ex­

pressed in terms of constraint violations, the MI-FAP problem aims to minimize the 

total sum of weighted interference. As described in Section 1.3.3, hard constraints 

represent the channel separation required between pairs of transmitters and must be 

respected in the optimal assignment while soft constraints represent a probabilistic 

measure of acceptable interference. They are expressed in terms of co-channel and 

adjacent channel interference.

The hard constraints relate directly to the binary model of the interference 

(in which one weighted edge connects each transmitters pair) while the soft con­

straint values reflect a more realistic measure of the interference inside the network. 

Hence they can be interpreted as an intermediate state between the binary model 

and more complex ones, such as multiple interference [8 6 ],

7.1 Heuristic algorithms

The order-based GA used for the MS-FAP and FS-FAP is not competitive with 

other meta-heuristics when used to solve the harder MI-FAP instances. This is 

is true even if cycle crossover is replaced by merge crossover (see [11] and Ap­

pendix C.l). Updated results for the COST-259 benchmarks are widely available 

from the web at [2], We can note that the latest outcomes are almost all produced 

by algorithms which include some kind of local optimization procedures (see Sec­

tion 2.3.2 for more details). However, a standard implementation of simulated 

annealing obtains results almost as good as those produced by the best performing 

algorithms [13,117].

For this reason, SA will become the standard heuristic on which we will focus 

in order to investigate the effectiveness of the decomposed approach for this more 

complex model of FAP. When effective the decomposed approach can be seen as 

a valid alternative to more elaborate algorithms which are more equipped to solve 

hard instances, for example by adopting complex local optimization techniques.
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The idea of decomposing the hardest FAP benchmarks into a partition of subprob­

lems is particularly important for standard meta-heuristics, which are not otherwise 

capable of producing satisfactory performance within reasonably short periods of 

times for the more complex types of FAP such as the MI-FAP. On the contrary, the 

use more complex algorithms on very hard problems may become problematic in 

terms of computational complexity.

Although its results are worse than those produced by SA, an standard imple­

mentation of the GA has still been used for comparison in some of the instances. 

Here, one of the issues was to explore the potentiality of problem decomposition 

when used with different types of algorithms. Since the performance of GAs is 

poor in general on these benchmarks (they do not appear in any implementation in 

the range of the currently best performing algorithm [2 ]), it is interesting to investi­

gate if and to what extent their performance can be improved by the decomposition 

technique.

7.1.1 Simulated Annealing

Simulated annealing has been successfully applied to the different types of FAP 

considered in this thesis. We have here considered the standard implementation 

proposed in [60], which is outlined in Algorithm 7.1. From a tuning of the pa­

rameters (see Appendix C.2.1) we chose an initial temperature of 0.5 and the basic 

‘single move’, which consists of changing a single frequency value assigned to a 

selected transmitter.

A second aspect is the choice of the cooling scheme. In our approach we use a 

number of iterations I  equals to the number of transmitters in the current subset and 

we calculate the reduction index a  in order to satisfy the desired total number of 

evaluations (expressed by a multiple of the total number of transmitters | V\). This 

guarantees that the solutions obtained with both the whole and the decomposed 

assignment approach consider the same total number of evaluations. It also ensures 

that the number of evaluations at each temperature is proportional to the current
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Algorithm 7.1 SA implementation for the FAP
Input: initialTemperature to, finalTemperature tmin, number o f iterations I,

reductionlndex a, interference Graph G[ Vj\
Output Frequency Assignment /

1: Initialize the temperature t <— to
2 : Generate a random assignment f 0u  o f the set o f transmitters 
3: Evaluate the cost C0id o f f 0id- 
4: while t > tmin do
5: for i = 1 to /  do
6 : Generate a new configuration f„ew by changing the frequency of a

randomly chosen transmitter. Frequencies are chosen at random within
the transmitter domains.

7: Calculate the new cost Cnew
8 : Calculate A C  = Cnew -  C0id

Cnem—Cold
9: if A C < 0 or random < prob = e *•< then

10- fo ld  < fnew

11 . C 0ld  < C new

12: end if
13: end for
14: reduce t (e.g. t = at)
15: end while
16: Return the final assignment F <— f 0id

subset size. This constitutes a fair basis for comparison.

7.1.2 Genetic Algorithm 

Direct Representation

For the MI-FAP instances the order based representation appears incapable of pro­

ducing satisfactory results. Results can be improved by swapping to the direct rep­

resentation. With this representation individuals are constituted by a vector whose 

elements are the frequency values assigned to the corresponding transmitters. This 

permits complete exploration of the search space.

The framework used is the generational GA NGSAII, which was preferred to 

SEAMO described in Section 5.1, since it performs better with this type of repre­

sentation and appears able to produce a better spread of the Pareto non-dominated 

set [34]. We have used a population size of 20 individuals, as described in Ap­
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pendix C.2.2. The number of generations is calculated in order to satisfy the de­

sired number of evaluations for a specific run.

The generic procedure for the Nondominated Sorting Genetic Algorithm II 

(NGSA-II) creates at the end of each generation a mating pool by combining the 

parent and offspring populations. Then each individual is ranked based on its non­

dominance (in terms of Pareto dominance) towards the other members of the popu­

lation. (i.e. the non-dominated set will constitute rank 0  and then it will be removed 

from the population. Then the next set of non-dominated individuals will form rank 

1 and so on). Individuals in the mating pool are then ordered according to their rank 

values using a fast nondominated sorting approach with computational complexity 

0(popS ize, M) (where popS ize is the size of the population and M  the number of 

objectives). Subsequently the selection operator selects the best solutions from the 

mating pool. This is is based on both the fitness of the individuals (i.e. their non- 

dominated rank value) and their spread in the objective space, which is obtained 

by a so called ‘crowding distance procedure’ (i.e. we will not include in the new 

generation individuals which are too ‘close’ in the M  dimensional objective space). 

When a new population of popS ize individuals is formed then the genetic opera­

tors are applied to it to form a new mating pool (i.e composed by the parents of this 

generation plus their offspring). Then the whole procedure is repeated by ranking 

the new mating pool and so on. More explanations and details about the NGSA-II 

algorithm are given in [34].

Unfortunately, it is not easy to identify in the literature a standard version for 

this type of GA, with the main difficulty arising from the choice of effective genetic 

operators. For crossover in particular, the standard versions commonly used for 

other combinatorial problems appear to be too disruptive for the FAP, thus leading 

to unsatisfactory results when applied to the MI-FAP. Consequently, authors have 

proposed specialized operators which are specifically developed for the particular 

data sets considered. However, none of them has been effectively applied to the 

COST259 instances tested in this chapter. After some tests (see Appendix C.2) we
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have adopted the following operators. The crossover used is a variation of those 

proposed in [31,68] (whose procedure is outlined in Algorithm 7.2). It has been 

applied with a probability of 80%.

Algorithm 7.2 Crossover operator for the direct GA 
1 : Find a pair of transmitters u and v for which the constraint between them is 

satisfied, i.e <PFS,Mi(f>uv) = 0 f°r anY °f t w 0  currently selected parents 
2 : If no pair can be found in a fixed number of selections select only one transmitter 

which has no constraint violation in any of the currently selected parents.
3: Interchange the frequencies assigned to u and v and all the vertices belonging to 

their common neighborhood in the first parent with those assigned in the second 
parent.

The mutation used, called swap mutation (see [6 8 ]), consists of a number of 

simple frequency swaps between pairs of transmitters selected at random, accord­

ing to a given mutation rate. Mutation is applied at a rate of 0.05% per individual. 

This means hat fore each individual are performed 0.05 * | V\ single mutations. To 

improve the GA performance an iterative 1-opt LS procedure (see [40]) has been 

added after offspring generations to search for local optimality.

Binary tournament selection has been used in the selection process. Tourna­

ment selection can be seen as a variation of rank selection [49] and generally in­

volves two stages. In the first phase a group of individual is selected from the 

population given a certain probability. Then the individual with the highest fitness 

within the group (also called pool) is selected whereas all others are discarded. In 

the binary tournament selection only two individuals are selected to form the pool.

Finally, the deletion of the duplicates, which is also effectively used in other 

combinatorial problems [23], contributes in adding variety in the population, thus 

limiting the genetic drift effect (see [37] and Section 3.10). The deletion is here 

conducted at a ‘phenotype’ level, which means that individuals will be removed 

from the population if they are identical in the objective space, as already described 

in Section 3.10.

Pseudocode for the different phases of this implementation are outlined in Al-
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gorithms 7.3 and 7.4.

Algorithm 7.3 direct GA implementation for FAP (NGSAII)
Input: population size popSize, number o f generations G, number o f objectives M

interference Graph G[ Vj\
Output Non-dominated set F \ , FrequencyAssignment/

1: Create a random population P0 o f integer vectors representing frequency assignments.
2: Apply binary tournament selection, crossover and mutation to 

create a child population Qq 
3: while t > 1 a  t < G do
4: Combine parent and children population R, = P ,U  Q,
5: F  = f  astNonDominatedSort(R,) where F  = (F \ , F 2 , ..)

is the set o f all non-dominated fronts o f R,
6: while iPt+il < N  do
7: Calculate crowding distance in F,
8: F /+i =  F/+i U F ,
9: end while

10: Sort Pt+1 in descending order using the crowded comparison operator > n
11: Select the first N  elements o f  Pt+1 = P ,+ 1 [0 : N]
12: while |£?r+il < N  do
13: Use selection, crossover and mutation to generate a new individual q =

makeNewPop(P,+1)
14: if q is not a phenotype duplicate in the population then
15: Add q to the new population Qt+\ = Qt+\ U q
16: else
17: It dies.
18: end if
19: end while
2 0 : Apply LS lopt to Qt+\ to search for local optimality
2 1 : t=t+l
22 : end while
23: Return the final non-dominated set F\
24: Return the individual /  with the best global cost Xm=i ob jm

Order-based representation

For the reasons mentioned in the previous section the order-based GA will not be 

actually used for the MI-FAP. However, a small number of experiments will be 

still presented for comparison between the two representations used in this thesis 

for the GA.

The order-based representation will be now used within a NGSA-II framework

124



Algorithm 7.4 Iterative 1-OPT implementation for the FAP

Input: Frequency Assignment / m

Output Frequency Assignment /
1: Select a random permutation ord  o f the transmitters 
2: while no more cost improvements do 
3: while next transmitter in ord  do
4: Reassign transmitters sequentially to the best frequency

in the domain according to the ordering ord.
5: Update assignment f 0u
6 : end while
7: Select a new random permutation ord of the transmitters
8 : end while
9: Return the final assignment /  <— f Qid

adopting the same parameters for the population size and number of generations 

used for the direct GA described above. A newly proposed crossover called merge 

crossover (see Appendix C.2.2), which has been effectively used in the other simi­

lar problems such as graph coloring, has been applied with a probability of 1 0 0 % 

[11]. For a description of the method see Appendix C.2.2. One order based muta­

tion per offspring will be applied (as in the experiments conducted for the MS/FS- 

FAP with this representation). In addition, the same 1-opt LS already introduced 

for the direct GA will be also used for this representation, see also Section 5.1. 

Details about the tuning tests performed with this GA are given in Appendix C.2.2.

7.1.3 Multi objective approach

The NGSA-II framework implemented for the MI-FAP presents another important 

difference from the other versions of the GA previously introduced. We have in­

troduced a novel multi-objective approach which can be seen as alternative to the 

introduction of penalty factors mentioned in Section 2 (a technique which presents 

difficulty in finding a suitable setting for the weights).

If we solve the GA as one objective optimization, as it is normally suggested in 

order to solve the FAP, we minimize the total interference which, in the case of the 

MI-FAP, is only composed by the sum of the two types of soft constraints (assum­

ing that we reach a nearly optimal solution which satisfy all the hard constraints).
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The idea is now to solve the same problem as a two objective optimization problem 

in which the two different objectives are constituted by the two different types of 

soft constraint, respectively co-channel and adjacent-channel interference.

Definition 7.1 Give an assignment let be Ecoch the edges corresponding to a vio­

lation o f the co-channel constraint (i.e. their end points are assigned the same fre­

quency) and Eadi the edges corresponding to a violation o f the adjacent-channel 

constraint (i.e. their end points are assigned with one channel separation). The 

solving a MI-FAP problem as a one objective optimization problem (with the nota­

tion used in Problem 1.3) consist o f minimizing:

O m i ( J )  = ^  <Pau ( f ,uv)+  ^  <PMi(f> wv) = + Ow a dj(f)
uve Ecoch uv€ Ecoch

I f  we solve the problem as a two objective optimization the two objective con­

sidered are then CFfffif) and

The two objective implementation maintains a population of individuals which 

do not dominate each other as the two objective were competitive and cannot be­

ing optimized as they would be independent, i.e. the optimization of one objective 

cannot be done without penalizing the other objective. This in our case is intro­

duced as an artificial expedient to preserve diversity while at the end of the run the 

algorithm returns the solution with the best (minimum) total cost Omi(J) within 

all of the individuals in the final e population (as in the usual one objective opti­

mization problem). Note that the NGSAII framework described in 7.3 has been 

expressively designed for multi-objective optimization and it is based on the con­

cept of Pareto dominance and the maintenance of the non-dominated fronts, which 

are approximations of the Pareto optimal front, see [33].

The multi-objective choice presents the advantage of reducing considerably
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the problem of premature convergence (see Section 3.10) which is one of the main 

problems of the single objective approach. Therefore, this can be seen as an alter­

native to the choice of introducing other artificial expedients, such fitness sharing 

used in Section 6 .1. Moreover, it can provide information about which type of 

interference may be predominant (i.e. it can identify the nature of the trade off 

between co and adjacent channel interference).

Tables 7.1 and 7.2 show a comparison between the one and the two-objective 

approaches for the Siemens 1 and the Siemens2 benchmarks respectively. In both 

cases the direct GA has been run for 2,000 generations with a population of 20 

individuals (1,000,000 * \ V\ total evaluations approximatively).

Table 7.1: Best and average cost O m i  (over three runs) for the COST259 Siemens 1 bench­
mark solved by the one and two-objective direct GA

subsetsNo one obj. two obj.
1 4.14(4.36) 4.02 (4.13)
2 3.79 (3.84) 3.53 (3.57)
4 4.05 (4.07) 3.46 (3.59)

Table 7.2: Best and average cost O m i  (over three runs) for the COST259 Siemens2 bench­
mark solved by the one and two-objective direct GA

subsetsNo one obj. two obj.
1 18.45 (18.72) 18.00(18.14)
2 19.27(19.38) 18.88(19.03)
4 21.62 (21.02) 21.50(21.79)

We can firstly observe that the figures in the table show only a little improve­

ment in the results produced by the two-objective choice. This is can be partially 

caused by the fact that the 1 -opt local optimization procedure is applied to the 

global objective O m i (/ ) ,  composed of the sum of the co-channel and adjacent- 

channel, see Definition 7.1. This tends intuitively to uniform the one objective 

with the two objective minimization approach. Alternatively, the two objectives 

can be weighted at random, in order to induce a further spread of the Pareto set
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of the non-dominated solutions, with the distribution of weights changing, for in­

stance, at each generation. The total composed weight will now depend on the pair 

of weights (Wi, W2) used as:

o«/(/, wuW2) = w, • (/) w2 •

Few more experiments were conducted with this further expedient without, 

however, producing significant improvements, thus their results will be omitted 

from the rest of the thesis.

Nevertheless, in our experiments, the two objective approach is more success­

ful in delaying the convergence of the algorithm and in reducing the negative phe­

nomenon of genetic drift. In some of the tests the one objective approach outper­

forms the two objectives one during the first part of the run but its result do not 

further improve after a small number of generations (see for example Figure 7.1 

which shows a single run of Siemens 1). On the contrary, the approximations of the 

non-dominated set of the partial solutions in the two objectives space continues, 

even if rather slowly, to advance towards the final approximate Pareto set. Figure 

7.2 shows an example of the behaviour of the approximated non-dominated set 

through the generations.

7
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5 5
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3 5
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run time (MOondB)

Figure 7.1: Cost-time plot for Siemensl solved by direct GA with one and two objectives 
after 1 , 0 0 0 , 0 0 0  * | V] evaluations
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Figure 7.2: Approximated non-dominated set through the generations during a run of the 
COST259 Siemens l benchmark

1 2  Decomposition algorithms

This section describes the decomposition algorithms tested for the MI-FAP. Al­

though they will mainly be those already described in the previous section, some 

modifications are needed to adapt them to the specific formulation of this type of 

FAP.

Before presenting the modified versions of the decomposition methods it is im­

portant to clarify how the interference graph itself needs to be modified too. In fact, 

the contemporary presence of soft and hard constraints requires the introduction of 

a single set of edges, since the most of the decomposition procedures rely on a 

weighted graph as the input.

7.2.1 Graph partitioning

To adapt the graph partitioning to the MI-FAP data sets we will refer to the graph 

theoretical model introduced in Section 1.3.3. To state the decomposition algo­

rithms used at step 1 of Algorithm 3.1, we first define a weighted simple graph G °  

that combines the hard and soft constraints.

Although most of the results shown in this section are obtained by setting these
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parameters to the values A\ = A2 = 0.5, and A3 = 1. Note that given cru“ as a high 

value arbitrarily chosen this choice always emphasize the hard constraints, which 

become dominant in Definition 3.2 whenever are present. In the absence of hard 

constraints this setting gives equal weight to both co-channel and adjacent channel 

interference), other combinations can be used. In particular, it is interesting to test 

the eventual difference in the final FAP solution obtained when the partitioning is 

produced by considering either only the hard (/li = A2 = 0 ) or the soft constraints 

(A3 = 0).

For all the experiments presented in this chapter the cost used in Problem 3.4 

has been used for the balanced GPFAP whereas for the unbalanced GPFAP the cost 

formulated in Problem 3.5 has been preferred. Both of these costs have been cho­

sen because they produced better results in a number of test problems performed 

(see also [26]). In particular the latter cost takes advantage of the graph cluster­

ing parameters used, that is the inter and intra clustering conductance, in order to 

maintain a more balanced partitioning, thus avoiding trivial decompositions that 

includes all transmitters in one subset only.

To solve both types of GPFAP we used the memetic GA proposed in Algorithm 

3.10. The number of subsets and the remaining parameters have been set accord­

ing to the values used in [26] in some preliminary test problems. The population 

consists of 100 individuals and the algorithm is run for 500 generations. Cycle 

crossover is applied with a rate of 1 0 0 % whereas one single order-based mutation 

is performed for each of the offspring generated. Finally fitness sharing is used as 

a niching method with the same implementation used in [23] and outlined in equa­

tion (3.6). The LS added in order to speed up the process was a SA run for 1000 

iterations for each of the offspring produced. Figures 7.3 visualizes the results of 

the graph partitioning decomposition into two subsets for Siemens2 (balanced and 

unbalanced GPFAP) while Figure 7.5 shows the two towns test problem C(, (bal­

anced GPFAP). Note that for the latter instance the plot shows how the transmitters 

belonging to different towns are largely separated into different subsets.
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7.2.2 Graph clustering

The Markov graph clustering with the standard setting of the parameters (see [120]) 

tends to create a large number of clusters which are then ineffective in solving FAP 

instances. In fact, any decomposition method produces in general poor results 

when the number of subsets in the partition becomes too high (usually greater than 

four or five). However, the setting of the parameters cannot be easily changed with­

out affecting the computational complexity of the algorithm. As a consequence, 

the Markov algorithm produces a number of clusters (usually in the order of tens) 

which can still be higher than needed for our experiments.

33915 33920 33925 33930 33935 33940 33945 33950 33955 33960

balanced

33915 33920 33925 33930 33935 33940 33945 33950 33955 33960

unbalanced

Figure 7.3: GPFAP decomposition into two subsets o f the Siemens2 COST-259 data set
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Figure 7.4: Balanced GPFAP decomposition into two subsets of data set C6

We will refer to the resulting partitioning as a Markov clustering. To reduce the 

clusters to the desired number, usually two to four, we have adopted the procedure 

in Algorithm 7.5 in order to merge selected clusters. Note that the resulting par­

titions will not be necessarily balanced since the subsets constituting the Markov 

clustering C(G) usually contain a variable number of vertices of the original graph 

G. For this reason, its performance is expected to be similar to the other methods 

which produce an unbalanced partitioning, such as unbalanced GPFAP and clique.

7.2.3 Other decompositions

Generalized degree decomposition is simply obtained by applying Algorithm 3.6 

to the graph G ° . Further modifications of the graph need to be introduced to deter-
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Algorithm 7.5 Merge selected clusters

Input: Partition M(G°)  = { M \ , M2 , ,  Mm }, noSubs

Output: Partition V(G°) = { V\, V2......... VnoSubs)

l: Given a Markov clustering M(GD) in m subsets [M\ ,  M2 , . . . ,  Mm } of the graph 
Gd(V,E) we consider an artificial graph GC{V,E) in which:

• vertices v, 6  V(GC) represent the individual clusters M, of the partition 
M(Gd ).

• edges i j  e E(GC) between pairs of different subsets are assigned weight 
values equal to the sum of the inter-edges of G° which belong to subsets 
M, and My

2 : Execute a (balanced) graph partitioning algorithm of the graph Gc (see Problem 
3.4) in order to obtain a partition C(GC) = {C \ , C2 , . . . ,  Cnos ubs} into the desired 
number of noS ubs subsets.

3: Expand each of the vertices v, e V(GC) by including all the transmitters contained 
in the clusters M, of M(G°) to obtain a partition V(G°) of G° into noSubs 
subsets.

mine the clique decomposition. Because of the different weights used for the hard 

and soft constraints (which reflect the different importance of these two different 

categories), the adoption of the weighted procedure in Algorithm 3.7 to detect the 

maximum clique of GD appears more suitable. Note that to apply this procedure 

we need to modify the graph G°  as described in Definition 3.3 to obtain a suitable 

graph Gc . Finally, in order to determine partitions with more than two subsets the 

same procedure has been applied recursively, as previously proposed in Algorithm 

3.8 for the MS\FS-FAP.

Geographical decomposition will be applied for comparison in the few bench­

marks provided with location information (that is the Siemens and Cardiff in­

stances). Figure 7.5 shows the results of the geographical decomposition into two 

subsets for Siemens2 obtained by applying Algorithm 3.4. Random decomposition 

will be not considered for this harder type of FAP. Because of the presence of the 

hard constraints a decomposition drawn at random is very likely to produce final

uv 6 E‘jn'er(GD)r\EJ'er(GD )
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Figure 7.5: Geographical decomposition into two subsets of the Siemens2 COST-259 data 
set

assignments which are not feasible for this problem (i.e. which are violating some 

of the hard constraints).

The different importance between hard and soft constraints in the interference 

graph plays a primary role in the effectiveness of a decomposition. As described 

in Section 1.3.1 the former category of constraints must be satisfied in a feasible 

assignment and, for this reason, is associated with very high artificial weight values 

whereas the latter is normally weighted in the range of few units and constitutes 

the actual objective of optimization, see Table 4.7. Hence, a decomposition cannot 

disregard the distribution of the hard constraints. Whenever many of their corre­

sponding edges are included in one of the inter-edge sets between distinct pairs 

of subsets, is more likely that the resulting solutions of the FAP will not be fea­

sible. Figures 7.6 shows the distributions of the hard constraints for the Siemens 

instances. Note that since transmitters within a cell have all the same geographi­

cal coordinates it is not possible to represent intra-site constraints and so the con­

straints shown are only handover constraints. We can observe how some of them, 

e.g. Siemens2, are more difficult to be partitioned into subsets whereas others 

show a more natural separation into clusters, see for instance Siemens3 which also
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presents a small disconnected component.

33600 33650 33700 33750 33800 33860 33800 33850 34000 34060 34100 34150

Siemens 1 Siemens2

33300 33400 33500 33600 33700 33800 33800 34000 34100 34200 33890 33900 33810 33820 33830 33940 33950 33960 33970 33880

Siemens3 Siemens4

Figure 7.6: Hard constraints distributions for the COST259 Siemens instances

7 3  Experimental results

In this section we will present the results obtained by applying the decomposed 

assignment approach proposed in Algorithm 3 .1 to the MI-FAP benchmarks de­

scribed in 4.2.2. We will firstly consider a number of runs of the COST259 in­

stances in order to compare the performance of different decomposition techniques. 

Subsequently, we will presents the outcomes of longer runs on the same bench­

marks together with the Cardiff University ones for the most effective decomposi­

tion algorithms. Finally, we will have a closer look at the trade-off between quality 

and runtime and at the distribution of the local interference when the decomposed 

approach is applied.
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7.3.1 C om parison o f decomposition algorithms

Information about the location of the transmitters is available for the Siemens data 

sets, hence we tested the geographical decomposition along with the balanced and 

unbalanced GPFAP, the Markov clustering algorithm, the generalized degree and 

clique decomposition. The aim of the experiments is to exclude from further ex­

perimentation any decomposition method which appears to be clearly ineffective 

for this problem. Therefore, we conducted this first set of experiments for a limited 

number of total evaluations (100,000 * |F|). Furthermore, we will focus only on 

standard SA since it outperformed the GA in the tests conducted without decom­

position (see 7.1). The heuristic loops through the partition twice. Results for the 

decomposed approach are summarized in Table 7.4, which shows in each of the 

column the average cost obtained over three runs with different random seeds ob­

tained for a specific decomposition method. For each of the benchmarks we show 

the outcomes of different runs with a number of subsets ns variable between one 

and four. In addition, for each of the runs the results are organized in two rows 

corresponding to the first and second loop through the subsets. Finally, Table 7.3 

shows for the same benchmarks the costs obtained with the global approach with­

out any decomposition applied. Results are presented in columns corresponding 

to a different test problems and are still organized in two rows corresponding to 

two different loops to maintain consistency for a comparison with those of the de­

composed approach. However, in the case of only one subset the results for the 

second loop actually refer to a second run with double number of evaluations with 

respect to those obtained with a single loop. The best outcomes are highlighted 

in bold whereas if the algorithm is unable to produce feasible solutions (i.e. solu­

tions satisfying the hard constrains) the corresponding costs are displayed in blue. 

However, these do not have any numerical significance since the value produced 

by the algorithm is in these cases that of the weights c^°rd, which is artificially set 

to 1 , 0 0 0  in order to represent the hard constraints.

The GPFAP and the Markov clustering appear superior to clique and generalized-
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Table 7.3: Siemens 1-4 for SA without decomposition (100,000 * \ V\ evaluations per loop)

first loop
second loop

SIEMENS 1 SIEMENS2 SIEMENS3 S1EMENS4
3.38 (3.44) 17 .12 (17 .67 ) 8.24 (8.52) 92.43 (92.71)
3.30 (3.37) 16.75 (16.89) 8.14 (8.31) 92.12 (92.23)

degree decompositions, which for the hardest instances have difficulty in produc­

ing valid solutions (that is they may contain violated constraints). However, neither 

GPFAP nor Markov appears to clearly outperform the other in all of the instances 

tested. Furthermore, there is not a clear difference between the performance of the 

balanced and unbalanced version. Note that in some instances of the unbalanced 

version one of the subsets includes the majority of the transmitters, making its so­

lution very close to that of the problem as a whole. This can bring about some 

advantages in the optimality but can also affect the runtime of the decomposed 

approach.

Geographical decomposition takes advantage because some of the Siemens in­

stances are decomposed into natural clusters, see for example Siemens3 which also 

presents a distinct component. However, this method is penalised by the fact that 

it does not take account of the number and weights of the inter-edges between 

different subsets.

Clique based decomposition only partially produces a competitive performance. 

This may be caused by the fact that, because of the small clique sizes, this method 

often finds a trivial interference free solution for the first subset. As a consequence 

fixing their assignment has the effect of restricting the assignments of subsequent 

subsets.

Finally, generalized degree decomposition neither takes into account the inter­

edges between subsets or resembles any sort of clustering or unbalanced partition­

ing. As a consequence it produces the worst performance among all the decompo­

sition methods tested.

Note the effect of the second loop and how this is beneficial both in terms of

137



mean and variance. In physical terms this is related to a locally different interfer­

ence distribution in the subsets as it will be discussed in more detail at the end of 

this chapter.

For Siemens 1, 3, and 4 the GPFAP technique and the Markov clustering both 

perform better than solving the original problem as a whole. However, for Siemen2 

the decomposition in subsets does not improve the results obtained with only one 

subset. This will be confirmed by the longer runs presented in the next section. 

Note that, the results for this benchmarks are better for the unbalanced GPFAP 

rather than the balanced version. This performance improvement can be explained 

by the fact that the unbalanced decomposition naturally reduces the number of the 

inter-edges, making the number of transmitters in at least one of the subsets equal 

to a very low percentage of the total.

Table 7.4: Siemens 1-4 for SA with decomposition (100,000 * \ V\ evaluations per loop)

M .G W A *  || Unbai. GPFAP || Gen. Degree | Cliques 1 Ueog Markov
ns first loop Global

second loop
SIEMENS 1

2 5.16(5 2S'i 5 66,5 441 5.46 (5.72) : - 1 3.32 (3.33)
3.14 (j.18) 1 5.5B75.57) 4.24 (4.31) v - . '  - 3.45 (3.54) 3.26(3.29

3 3.56 (3.45) 5.55 (5.45) 5.89 (6.23) ; •- . . 3.ST (4.01) 3.40 (3.61) 3.30 (337)3.32 (3 3 6 ) 5.29 (334) 4.99 (5.05) 3.42 (332) 3.48 (3.61) 3.29(3.41)
4 5.15(5.19) 5.99(420) 6.85 (6.99) 5.59(5.67) 3.65 (3.72) 3254 (3.42)

3.52 (5.s5) 5.50(3.44) 5.55 (5.56) 5.58 (3.68) 3.45"(3.56) 3.23 (327)
SIEMENS 2

2 17.91(17.98) 17.93(18.10) 23.30 (24.37) 18.38(20.02) 1933(19.54) 21.49(21.81)
17.83(17.91) 17.59(17.86) 18.64(l9.04) 18.22(18.42) 17.96(18.14) 19.22(19.34)

3 ■ 19.91 (20.55) 19.79(19.94) 26. l4 (26.26) 19.59(2,018) 20.47 (20.38) 241^(24.82)
f8!36(i&.57) 17.99(18.09) 21.36(21.56) 19.35 (19.44) 18.20(18.71) 20.18(20.68) iv . / j  tio.o>7

4 —20.99 (21.10) 17.72(17.93) 27.47 (27.52) 19.82 (2.686) 20.79(2,687) 22.91 (23.36)
18.60(18.87) 1731 (17.42) 22.61 (22.76) 19.18(1933) 18.95(19.09) 20.45 (20.80)

SIEMENS 3

2 7.66 (7.84) 7.59 (7.69) 2.009 (3350) 9.14(674.8) 9 .06(934) 8.04(8.17)
7.58(7.81) 7.31 (7.49) 9.15(1.542) 8.76 (8.82) 8.83 (8.95) 7.77 (7.89)

3 73 0  (7.45) 8.48 (6753) 8.49(8.81) 9.17(9.22) 8 14(8 31)7.24 (7.40) 7.79(7.98) 11.50 (678.0) 8.03 (8.27) 8.42 (8.44) 7.54 (7.65)
4 8.09 (8.28) 8.43 (8.57) J .o i7 (3.684) 8.61 (675.6) *,,4 4 ) 4 , 7.5577.64)

7.98(8.14) ' 7.92 T5.15) 12.40(1345) 8.43 (8.48) 8.40 (8.68) - 4 .
SIEMENS 4

2 90.65(91.50) 90.62 (90.88) 2.147(3.145) 93.04 (723.3) 96.33 (2.761) 92.22(92.51)
90.65 (91.48) 89.54 (90.09) 2.120(5,082) ; 92.59 (92.75) 9(1.10(90.19)

3 94.13(94.85) 88.63 (89.12) 5.553 (5.823) 2.254 (2.371) 96.201 (2.096) 94.04 (94.17) 9? 1? (Q74S o - 56 RR.’ .l ,88.-131 3.1J 1 (J .5 l4 | . . . .
93.5T(427.57

.

4 94.22 (95.68) 92.40 (93.63) 3.749(3.983) 2.651 (3.001) 3.39974,099r 1,217(2,112)
95.19(95.58) 92.07 (95.42) 3.5j3  (J.8UI) 96.39 (97.46) 95.24(96.25) -4  ..4 ■-

Table 7.5 shows the outcomes of the same decomposition methods when a re­

verse ordering is applied, that is the subsets are exactly the same of those used in 

Table 7.4 but the order of the assignment is reversed. The performances of the GP-
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FAP and the Markov clustering are in general worse than in Table 7.4 for all the four 

Siemens instances. This can be explained by the fact that these procedures lose the 

advantage of having the first subset which approximatively represents the hardest 

part of the problem. An opposite tendency is shown by the clique decomposition, 

which generally improves the results obtained in Table 7.4 instead. However, with 

the reverse order this decomposition method is actually an unbalanced partitioning 

with the larger subsets considered at first, which may explain the improvements in 

its performance. Generalized degree decomposition and geographical decomposi­

tion do not seem to be competitive with any of the other methods tested.

Table 75: Siemensl-4 for SA with decomposition - reverse ordering (100,000 * |V| evalu­
ations per loop)

ns
Bal. GPFAP | Unbal. GPFAP | Gen. Degree | Cliques | Geog | Markov

Globalfirst foop
second loop

SIEMENS 1
*> 4.07(4.13) 3.78 (3.95) 22.93 (22.94) 4.57 (4.76) 3.75(3.85) 3.41 (3.45)

3 3 0 (3 3 7 )

4.04 (4.10) 3.78 (334) 19.42(19.75) 3.49 (3.73) 3.55(3.59) 3 3 9  (3.44)

3 4.43 (4.48) 3.42 (4.43) 6,025 (8,026) 4.12(4.43) 3.87(4.02) 3.45(333)
4.06(4.31) 3.25 (4.06) 21.81 (22.03) 4.01 (4.06) 3.65 (3.66) 3.29 (3.32)

4 4.^8 (5.02) 4 3 5  (6.37) 14,025(14,026) 4 3 5  (4.71) 3.72 (3.80) 3.75(3.88)
4 3 0  (4.48) 4.26 (6.93) 22.4<!) (2,022) 4.19(4.48) 3.60(3.73) 3.47 (3.53)

SI EMENS 2

2 19.45(21.68) 18.24(18.62) 22.93 (2,022) 4,023 (4,024) 18.88(19.08) 2,022 (4.021)

16.75(16.89)

18.58(19.88) 18.95(19.58) 19.42(19.54) 1 7.86 (1 7.961 17.97(18.24) 18.95(19.46)

3 21.69(23.63) 24.66(1358) 4,026 (6,025) 2,026 (4,692) 20.25(20.58) 0,612 (6,023)
18.54 (20.97) 2132  (21.89) 21.70(22.03) 18.56(18.74) 18.57(18.66) 20.23 (20.61)

4 51.29(22.83) 25.93 (5359) 0,026 (6, 22.38 (089,1) 2.625 (4,025)
19.92(21.02) 11.72 (22.27) 22.09 (688.9) 19.20(19.52) 20.70(20.91)

SIEMENS 3

2 835(11.09) 8 3 5 (8 6 3 ) 3.800 (4.534) 4.010(9.342) 8.76 (8.94) 9.68(9.85)

8 1 4 (8 3 1 )

7.98(10.116) 7.98 (815) 8.52 (1341) 7.98(8.12) 8.59 (8.64) 8 3 6  (8.59)

3 10.91 (10.93) 2.010(2.677) 3,501 (3,730) 4,013 (6,013) 8 .26(831) 9.92(10.25)
8.70 (9.10) 8.52 (9.44) 2,010(2,924) 8 3 8  (848) 8.00(8.23) 8.27(8.52)

4 12.71 (12.86) i0.93 (1,015) -  0,401 (7.001) 8,013 (10,680) 8.20 (675.0) 9.42 (9.46)
: ■ >* 9.70(10.51) 11.53(4,010) 8.74 (8.92) 8.20 (8.35) 7.82 (8.21)

SIEMENS 4
2 99.14(877.5) 9730(1,431) 4,093 (6,095) 3 3 9 4  (4,091) 98.63 (2,095) 2,092(4,012)

92.12 (92.23)

9433(95.14) 2.101 (3.769) 94.06(94.76) 94.75(95.91) 94.24(94.50)

3
io2 i- <6.88 2.097(3.084) 7,611 (8,677) 6.098 (8,095) 6,058(8,112)
94.43 (3332) 90.76(90.91) 1,210(1,610) 93.20(94.17) 93.74 (94.45) 4,110(6,015)

4 101.88 <769.2) 97.48(97.69) 10.515 l l  1,287) 14,006 ( 18,000) 2,098 (6,098) 4,025(6,115)
94.97 (<*.80) 94.19(95.46) 5.511 13,078) 05.30 (94.88) 95.49196.6 li 2.084(4,115)

To summarise, GPFAP and Markov clustering appear to be the most effective 

decomposition algorithms for this type of FAP. Furthermore, the use of a reverse 

ordering does not improve the results produced with the original one used in Table 

7.4.

Table 7.6 shows the results obtained for Siemens 1 and Siemens2 for a number 

of runs in which the subsets have been run independently according to Algorithm
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3.2. We present the best final cost over three runs together with the correspond­

ing partial costs produced by each single subset and obtained by recomposing the 

partial assignments to produce a final complete assignment for the whole transmit­

ters in the network. Results are shown for balanced and unbalanced GPFAP for 

100,000 * |V| evaluations. The costs in Problems 3.4 and 3.4 have been used for 

the balanced and unbalanced partitioning respectively. From the partial figures in 

the different subsets it is confirmed that the first subset always produces the high­

est interference values. Note that for the unbalanced GPFAP the partitioning is 

re-ordered with the larger subset in the first position. As a consequence, it tends 

to produce interference free assignment within the last subsets, often composed of 

only few vertices.

However, the final costs always present infeasible solutions and similar results 

were obtained for the other decompositions tested. Consequently, this approach 

can only be used if followed by further local optimization procedures. For example, 

it can be used as a pre-processing before the application of a generic meta-heuristic 

procedure, which could include the ‘sequential’ decomposition technique proposed 

in Algorithm 3.1 (as will shown as example at the end of the chapter).

Table 7.6: Siemens 1 and 2 for SA with decomposition - subsets solved independently 
( 1 0 0 ,0 0 0 *—V — evaluations per loop)

* no valid solutions

rts Bal. GPFAP Unbal. GPFAP from 
Alg. 3.1

Global1" sub | 2“  sub | y a sub [ 4,h sub | cost 1”  sub || 2'“’ sub | y a sub | 4"1 sub | cost
SIEME.KIS 1

1.953 i I"! - - 26.004 2 253 1.067 - 2,003.72
3.14 3 3 03 1.008 0.049 0.867 - 504,017 1.128 0.001 0.001 - 446,038

4 1.205 0.5408 0.069 0.219 460.01C| 1.227 0.001 0.000 0.000 452,(Mi
SIEMENS 2

2 5.050 1.494 - 7.212 0.927 - -
1731 16.753 1.187 1.142 0.013 - 198,037 1.240 0.1?6 0.017 - 758,042

4 0.650 0.292 0.252 0.006 176,041 1.017 0.018 0.000 ■ 0 .W 900,944

7 3 .2 GPFAP results

A number of longer runs were performed with the GPFAP partitioning for both 

the balanced and unbalanced versions (see the formulations in Problems 3.4 and
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3.5 respectively). This decomposition algorithm produced the best outcomes in 

the tests discussed in Section 7.3.1, as well as the Markov clustering, but it has a 

much easier and inexpensive implementation. Moreover, to quickly produce good 

approximated decompositions for the FAP we have adopted the heuristic procedure 

in Algorithm 3.10.

Siemens

Firstly, we present the results for the Siemens benchmarks for a higher number of 

subsets and total final evaluations. Each of the benchmarks was tested for runs of 

different lengths, from 10,000 * \ V\ to 2,000,000 * \ V\ total evaluations, in order 

to analyze differences in the behavior between the solutions obtained with and 

without decomposition.

We will present in this Section only the results for the longest run while we 

refer to Appendix A.3 for the complete results. Tables 7.7, 7.8, and 7.9 show the 

the best and average cost over three runs obtained by SA and the GA with and 

without the decomposed assignment approach.

Table 7.7: Siem ensl-4 for SA without decomposition (2 ,000 ,000  * \V\ evaluations per 
loop)

first loop
second loop

SIEMENS 1 SIEMENS2 S1EMENS3 SIEMENS4

SA 2.75 (2.83) 15.72 (15.79) 6.61 (6.72) 87.25 (87.98)
2.68 (2.76) 15.59 (15.64) 6.59 (6.62) 86.59 (87.12)

GA 3.96  (4.01) 18 .00(18 .14) 9 .77 (1 0 .2 0 ) 105 .69(106 .42)
3.61 (3.72) 17 .64 (17 .91 ) 9.54 (9.77) 101 .05(102 .14)

For both the GA and the standard SA, the decomposed assignment approach 

produces better results than the problem solved as a whole in three out of four 

of the benchmarks tested, as in Table 7.4. Histograms in Figure 7.7 show the 

behaviour of cost against number of evaluations for average runs of the Siemens 

benchmarks with and without the decomposed assignment approach. Note that the 

longer the runs, the less is the percentage improvement produced by the decom-
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Table 7.8: SA - Siemensl-4 with GPFAP decomposition (2,000,000 * \ V\ evaluations per
loop)

t  a t le a s t  1 in v a lid  so lu tio n  * n o  v a lid  so lu tio n s

S IE M E N S  I S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noSub. first loop

second loop

2.68 (2.75) 16.97(17.04) 6.39 (6.46) 84.35 (84.80)
2.61 (2.66) 16.34 (16.73) 6.37 (6.44) 84.08 (84.39)

2.95 (3.01) 19 .54(19.77) 6.53 (6.81) 89.50 (90.59)

B al. G P FA P
2.93 (2.95) 17.41 (17.60) 6.46 (6.58) 87.16 (88.51)
2 .94 (3.01) 20.56 (20.87) 6.95 (7.02) 89.96 (90.43)
2 .90(2.98) 18 .02(18 .27) 6.79 (6.89) 89.53 (90.17)
3.34 (3 .43) 20.31 (20.46) 7.65 (7.79) 92.94 (93.5)
3 .04(3.13) 17 .90(18 .53) 7.26 7.(41) 91.83 (92.77)
2.69 (2 .74) 16.94(17 .13) 6.22 (6.23) 85.72 (85.90)
2.60 (2 .69) 16 .2 (16 .37) 5.98 (6.13) 84.58 (85.13)
2.73 (2 .75) 19 .06(19 .17) 6.68 (6.77) 91.47 (91.94)

U nbal. G P FA P
2.63 (2 .67) 16.83 (16.97) 6.42 (6.56) 89.51 (90.35)
3.73 (3 .85) 16 .56(16 .72) 6.84 (6.88) 90.71 (91.52)
2.85 (2.86) 16.07 (16.27) 6.75 (6.80) 90.02 (90.68)
4.31 (4 .38) 18 .44(18 .57) 7.23 (7.24) 93.72 (94.04)
3.28 (3 .43) 16 .30(16 .37) 6.83 (6.94) 9 1 .18 (92 .13 )

Global 2.68 (2 .76) 15 .59(15 .64) 6.56 (6.62) 86.59 (87.12)

position. This result could be, however, predicted by considering that longer runs 

give the heuristic more opportunity to explore the search space, thus improving the 

actual performance of the whole approach. As a consequence, in some of the ex­

periments with the highest number of subsets the decomposed approach appears to 

be effective only for the shortest runs (see Siemens 1 with three and four subsets).

On the contrary, the GA seems still to show some significant improvements 

during the longest runs, see Figure 7.8. However, a further increment in the total 

number of evaluations will have a considerable effect on computational efficiency, 

since the GA tends to be slower than SA for the same number of configurations 

explored.

The decomposition usually produces better outcomes for a number of subsets 

usually between two and four, whereas further increments in their number degrade 

considerably the heuristic performance. This can be seen by the poor performance 

produced by a decompositions into five subsets. Although in some of the instances 

the unbalanced GPFAP produces better results than the balanced version, neither of
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Table 7.9: GA - Siemensl-4 GA Balanced GPFAP decomposition (2,000,000 * \V\ evalu­
ations per loop)

t  a t le a s t  1 in v a lid  so lu tio n  * n o  v a lid  s o lu tio n s

S IE M E N S  1 S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noSub. first loop

second loop

3 .7 3  (3 .8 0 ) 18 .88  (1 9 .0 3 ) 6.11 (7 .6 5 ) 98 .3 1  (9 9 .9 3 )
3 .4 0  (3 .4 5 ) 17.83 (17.86) 6.08 (7.21) 96.84 (97.22)
3 .7 (3 .7 5 ) 2 0 .7 0  (2 0 .9 5 ) 6.33  (7 .0 9 ) 103.61  (1 0 4 .4 0 )

Bal. G P FA P
3.30 (3.44) 18 .70  (1 8 .8 9 ) 6.21 (7 .0 5 ) 1 0 1 .0 9 (1 0 1 .9 3 )
4 .6 3  (4 .8 1 ) 2 1 .5 0  (2 1 .7 9 ) 6 .7 4  (7 .3 4 ) 102 .5 5  (1 0 3 .6 0 )
3 .3 7 (3 .4 9 ) 1 9 .1 0 (1 9 .2 1 ) 6 .2 8  (7 .1 9 ) 1 0 1 .8 4 (1 0 2 .1 9 )
5 .7 0  (6 .2 8 ) 2 1 .0 7  (2 1 .2 3 ) 7 .3 2  (8 .0 6 ) 110.71  (7 6 8 .1 )  t
4 .4 5  (4 .6 1 ) 18.95 (1 8 .9 7 ) 6 .6 6  (7 .1 4 ) 106.81  (7 1 0 .8 )  t
3 .5 3  (3 .5 7 ) 18 .96  (1 9 .3 8 ) 6 .3 4  (6 .6 2 ) 1 0 4 .4 9 (1 0 4 .8 8 )
3 .1 8 (3 .2 8 ) 17.46 (18.21) 6.17 (6.41) 1 0 3 .6 4 (1 0 3 .6 8 )
3 .3 1  (4 .5 2 ) 2 0 .5 7  (2 0 .8 5 ) 7 .0 2  (7 .4 9 ) 103.11  (1 0 3 .5 3 )

2 , 0 0 0 , 0 0 0 . \V \
3 .0 7  (3 .1 4 ) 18 .07  (1 8 .4 4 ) 6 .6 9  (6 .7 7 ) 102.89 (103.02)
3 .4 6  (3 .4 9 ) 1 8 .8 7 (1 9 .1 1 ) 7 .3 7  (7 .8 3 ) 1 0 3 .5 2 (1 0 4 .1 5 )
2.86 (3.04) 17.85  (1 8 .2 3 ) 6 .7 6  (6 .8 8 ) 1 0 2 .9 0 (1 0 3 .2 4 )

5
3 .7 5  (3 .8 3 ) 2 0 .0 3  (2 1 .5 5 ) 7 .43  (7 .5 2 ) 104.71  (1 0 5 .2 8 )
3 .2 4  (3 .2 7 ) 18 .42  (1 8 .7 9 ) 7 .1 0 (7 .0 6 ) 104 .53  (1 0 4 .8 4 )

Global 3 .61  (3 .7 2 ) 1 7 .6 4 (1 7 .9 1 ) 9 .5 4  (9 .7 7 ) 1 0 1 .0 5 (1 0 2 .1 4 )

the two algorithms appears able to clearly outperform the other. This is visualized 

in Figure 7.9 showing the histograms that compare, for different number of total 

evaluations, the best cost obtained by SA with decomposition with the balanced 

and unbalanced GPFAP with the one of the whole approach. Note that for the 

decomposed assignment approach the cost shown in the diagrams represents that 

obtained with the decomposition into the best performing number of subsets for 

each particular number of total evaluations considered. Similar behaviour is shown 

by the experiments conducted by the GA (see Appendix A).

In general a simple decomposition into two subsets appears to be the most 

effective, although in some of the runs, and in particular for the unbalanced version, 

further decompositions can still improve the performance. Furthermore, our results 

improve for the standard SA those previously published for the same algorithm (see 

[2 ]), whereas no competitive results are known with GAs for the same benchmarks) 

However, this is not sufficient for improving the results of the solution produced 

by the whole approach in the case of Siemens!, which is the only benchmark for 

which the decomposition approach is ineffective on a pure quality basis. Another
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important aspect is that, although the GA produces overall a poorer performance 

than SA, its results become considerably better when the decomposed approach is 

applied. This actually reduces considerably the gap between the two algorithms 

(for example Siemens3). Histograms in Figures 7.9 and 7.10 compare the best 

cost produced by SA using the whole and by SA and GA using the decomposed 

approach. As above, for the decomposed approach the cost in the diagrams is that 

obtained with the best performing version of the GPFAP and number of subsets.

Finally, for both algorithms we can note the positive effect of the second loop, 

which becomes particularly important when the decomposition is initially not ef­

fective, for instance in the case of five subsets. This tendency will be confirmed by 

the other test problems considered for MI-FAP, in particular the Bradford bench­

marks shown in the next subsection.

Figures 7.11 and 7.12 compares the cost-time curves produced for the Siemens 1 

and Siemens2 data sets by single runs of the meta-heuristics for a single loop with 

and without the decomposition technique. The solution of the decomposed assign­

ment approach can be considered valid, that is consisting of a complete frequency 

assignment, only in the last of the subsets considered in the sequence (the second 

and the third represented with a dotted line in these examples). In these intervals, 

if we consider a fixed value of time the cost obtained by the decomposed assign­

ment approach is generally lower than that produced by the whole approach. Note 

that this also happens in the cases in which the decomposed assignment approach 

appears ineffective (Siemens2), and also shows that a pure quality criterion may 

not be the most appropriate for evaluating the effectiveness of the decomposed 

approach.
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Both curves obtained with the whole and the decomposed approach correspond 

to the same final number of total evaluations conducted by the meta-heuristic. With 

this constraint we can observe that the decomposition approach, independently 

of being more or less optimal, is able to produce very good approximations in a 

shorter time. The runtime gain can be empirically quantified in a 10 -  15% gain on 

the experiments performed for this thesis, but this amount does depend to a large 

extent on the complexity of the graph and the algorithm used (for instance, we 

expect more advantages by the GA rather than SA, see Section 4.1.2).

It is important to consider the trade-off between quality and runtime of the final 

solutions. In addition, this is not only influenced by the total number of evaluations 

performed but by other factors. For example, we can distinguish between balanced 

decompositions (balanced GPFAP), in which the subsets are of approximatively 

equal sizes, and decompositions in which the number of transmitters included in 

each subset can vary arbitrarily (unbalanced GPFAP and the Markov clustering 

presented later). It is important to note that very often these unbalanced partitions 

are characterized by having one of the subsets which includes nearly all of the 

transmitters in the network, making the behaviour of the two approaches more 

similar. This fact may sometimes produce some improvements in the optimality 

of the final solution obtained with the decomposed assignment approach despite 

losing some of the gain in runtime terms, since the interval of valid solutions starts 

considerably later. Figure 7.11 also shows the same Siemens benchmarks solved 

by SA with an unbalanced GPFAP into two subsets.
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As anticipated in Section 6.3, because of the inherent limitations of its repre­

sentation, the order-based GA produces a poor performance when it is applied in 

the traditional way of solving the problem as a whole. Figure 7.13 shows a com­

parison between the average cost over three runs produced by the direct and the 

order-based GA for both the whole (left) and the decomposed assignment (right) 

approaches. For the decomposed approach the cost in the diagrams is that obtained 

with the best performing number of subsets. The order-based GA performs better 

only for the shortest runs but is outperformed by the direct GA otherwise. However, 

its results improve considerably with the decomposed approach, thus reducing the 

gap between the two different representation used. For example, if we consider the 

best performance in the runs corresponding to 2,000,000 * | V\ evaluations, the cost 

produced by the order-based GA is about 29.8% worse than the one of the direct 

GA for the whole approach whereas this difference is reduced to 10.7% for the best 

results produced by the decomposed assignment technique.

The decomposed assignment approach appears successful for the order-based 

as well as for the direct GA, as it produces a better performance than the problem 

solved as a whole. Figure 7.14 shows the comparison of the results obtained for 

Siemens 1 by the order-based GA with and without decomposition (extended results 

can be found in Appendix A).

Finally, from these figures we can appreciate how the decomposition into sub­

sets can produce a better cost than the whole approach, even when the latter is run 

for a much higher number of evaluations. For instance the cost produced by the 

decompositions for 100,000 * | V\ and 1,000,000 * | V\ evaluations is lower than that 

obtained with one subsets for a much higher number of evaluations ( 1,000,000* | V\ 

and 2,000,000 * \ V\ respectively).

Bradford

This subsection presents the results obtained for the COST259 Bradford instances 

solved by the balanced GPFAP for short and long runs, that is 100,000 * \ V\ and
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within the network caused by the second loop, whose effect actually balances the 

constraint violations, and so the local interference, between different subsets. In 

addition we note that the decomposition technique is mostly effective with a min­

imum number of two subsets (with again the exception of BradfordO), thus con­

firming that these instances appear harder than the Siemens benchmarks in order 

to be solved with the decomposed approach.

Figures 7.15 shows the cost-time plot produced by the decomposed assignment 

approach for the BradfordO benchmark for balanced and unbalanced GPFAP. Note 

that for this benchmark this approach is successful for both the first and second 

loop through the subsets. Finally, Figure 7.16 shows the behaviour of BradfordO, 

Bradford4, and Bradford 10, for which the decomposition is only effective at the 

end of the second loop, that is at the end of the first loop it still produces worse 

results than the whole approach for the same number of evaluations.

Partitioning on soft constraints only

For a representative pair of COST259 benchmarks (Siemens 1 and BradfordO), we 

conducted further experiments in which the partitioning was obtained using dif­

ferent values of the weights used in the Definition 7.2 in order to define the 

weighted simple graph G°. In particular we set to null values the weights concern­

ing the hard constraints, which will therefore be ignored in the process defining the 

partitioning of the interference graph.

Note that, for these instances, there are always corresponding soft constraints 

for co-channel and adj-channel interference wherever there is a hard co-site or 

handover constraint. However, this is not true for the hard co-cell constraints. As 

a consequence, although useful in showing the eventual dependance between the 

decomposed assignment approach and the specific type of constraints, these ex­

periments can be considered slightly unrealistic. However, this will not affect the 

results for the GPFAP since applying the cellular form of decomposition automat­

ically preserves the hard co-cell constraints as observed in 7.2.1.
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We performed experiments using S A with balanced GPFAP for a variable num­

ber of evaluations between 10,000 * \ V\ and 2,000,000 * \ V\ total evaluations (see 

Appendix A for a summary of the results). The decomposition still improves the 

results produced by the whole approach, although they do not show any significant 

difference from those previously reported in Tables A.7 and A . 8  (for Siemens 1), 

and A. 15 and A. 14 (for BradfordO) with a different combination of the hard and 

soft constraints. For example, if we consider the longest runs with 2,000,000 * \ V\ 

evaluations the costs here produced are only a slight improvement over those cal­

culated by a partitioning which considers both hard and soft constraints. In detail, 

we obtained a best cost of 2.598 for Siemensl against one of 2.601 ( -  0.001%) in 

Table A.8 , and a cost of 1.044 for BradfordO against the 1.067 ( -  0.022%) in Table 

A .14.

A possible explanation of this may lay in the fact that for these two data sets, 

and for the COST259 benchmarks in general, the number of edges representing 

hard constraints is very low compared to that of the soft constraints (see Table 

4.7). Furthermore, the final solution is actually governed by the co-channel and 

adjacent channel interference, since all of the hard constraints must be respected in 

the optimal assignment.

K and Swisscom

This section presents the results of other two COST259 benchmarks, namely K 

and Swisscom Modified. Although different in their structure these data sets have a 

comparable small size of about three hundred vertices. However, they can be both 

considered hard instances since K  presents a very high connectivity (simulating 

a dense urban environment), and Swisscom Modified a high number of blocked 

channel, thus limiting considerably the spectrum of frequencies available. Table 

7.10 shows the results obtained with GPFAP for 3,000,000 *| V\ and 5,000,000* | V\ 

total evaluations. Although the results presented in [2] for Swisscom Modified 

refer to a partial assignment that need to be completed (so some of the transmitters
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are assigned a fixed frequency), we have removed in our experiments this further 

constraint, in order to keep consistency with the other experiments presented in this 

chapter.

Table 7.10: SA - K and Swisscom Modified with GPFAP decomposition
t  a t  lea s t 1 in v a lid  s o lu t io n  * n o  v a lid  s o lu tio n s

K SWISSCOM MODIFIED2

noEvals.
Bal. GPFAP || Unbal. GPFAP Bal. GPFAP Unbal. GPFAPnoouo.

first loop
second loop

1 0 .9 8 (1 .0 9 ) 34.06 (34.43)
i

0.84  (0.89) 32.24 (32.34)

■y
1 .18 (1 .24 ) 0.82 (0.85) 3 0 .5 8  (2 ,0 3 1 ) 29.37 (30.57)

1 AAA AAA * 11/1 0.77  (0.86) 0.72 (0.75) 29.31 (30.51) 2 8 .7 8  (2 8 .9 9 )
J ,  UW, WU * |r  |

3
1.41 (1.44) 0 .80  (0.84) 2 ,0 2 9  (4 ,0 3 0 ) 30.62 (30.85)
1 .03(1 .17) 0 .7 1  (0 .7 2 ) 2 ,031  (3 ,0 3 1 ) 29.01 (29.25)

4 1 .80(1 .88) 0.85 (0.87) 2 ,0 3 2  (5 ,0 3 3 ) 33 .30 (33 .84 )
1 .15 (1 .19 ) 0.75 (0.78) 2 ,0 2 9  (5 ,0 2 5 ) S2.73 (33.14)

i 0.851 ° CO J 33.31 ( 33.49)
»

0.81 I[0.84) 30 .73 (31 .25 )

7 1 .12 (1 .19 ) 0.64 (0.66) 29.39 (30.30) 29.27 (30.14)

< AAA AAA _ lt/1
Z

0.63 (0.65) 0 .6 1  (0 .5 7 ) 27.09 (27.80) 2 6 .0 4  (2 6 .7 8 )
J , WU.UUU • \r  \

-l 1 .27 (1 .40 ) 0 .66 (0.70) 3 0 .9 8  (2 ,0 3 2 ) 29.54 (i9 .8 6 )
J 0.81 (0.88) 0 .64  (0.69) 2 9 .1 2 (1 ,0 2 6 ) 27 .10(27 .51)

A 1 .65 (1 .70 ) 0 .72  (0.74) 6 ,0 3 0  (4 ,0 3 0 ) 32.46 (32.57)
9

0 .9 7 (1 .0 1 ) 0.69 (0.71) 5,031 (3 ,0 3 5 ) 32 .12(32 .20)

For K  the decomposed assignment approach with the unbalanced version of 

the GPFAP is effective both at the end of the first and second loop (for a maximum 

improvement compared to the whole approach of 35% and 33% respectively for 

the longest run). On the contrary, the balanced GPFAP improves on the whole 

approach only after the second loop. This is caused by the very high density of the 

graph (see Table 4.7), which makes necessary a redistribution of the interference 

during the second loop in order to produce effective results. Note that, at least for 

decomposition into two subsets, the balanced and unbalanced GPFAP eventually 

produce comparable results after the two loops (for a maximum improvement for 

the balanced version of 28% for the longest run).

For Swisscom Modified, because of the limited spectrum availability, the short­

est runs have difficulty in producing feasible assignment during the runs with the 

decomposed assignment approach, thus it became necessary to increase the number
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of total evaluations. However, the balanced decomposition still produces infeasi­

ble solutions when decomposed in more than two subsets, whereas the unbalanced 

GPFAP appears always able to produce assignments belonging to the feasibility 

domain. When the solutions produced are feasible, the decomposed assignment 

outperforms the whole approach (for a best improvement of 18% produced by the 

unbalanced version for the longest run).

Cardiff University benchmarks

This section presents the results obtained by the GPFAP on the large benchmarks 

generated by Cardiff University. Note that for very large benchmarks the decom­

position approach is expected to be effective, since this represents a case in which 

the performance of the meta-heuristics starts degrading, at least in their standard 

versions. Table 7.11 reports the costs produced by SA with the balanced GPFAP 

for 100,000 * \ V\ and 2,000,000 * \ V\ total evaluatons. We have also considered 

the geographical decomposition since it represents an intuitive and natural form of 

partitioning for these benchmarks in which transmitters are located in ‘towns’.

Table 7.11: SA - Cardiff University benchmarks with balanced GPFAP and geographical 
decomposition

noEvals. noSub.

cs Q
Geog | G P FA P Geog | G PFA P

first loop

second loop

1 0 0 ,0 0 0  * |K |

1
2 .1 6 (2 .3 1 ) 1 .18 (1 .30 )
1.22 (1.32) 0.73 (0.89)

2
1.68 (1.82) 1.30 (1.75) 0 .62 (0.75) 0.51 (0.63)
0 .9 8 (1 .1 4 ) 0.79 (0.93) 0 .28 (0.42) 0.23 (0.31)

3
3.03 (3.46) 2.72 (3.01) 1.25 (1.52) 0.94 (0.99)
1 .4 3 (1 .7 6 ) 1 .29 (1 .38 ) 0.43 (0.65) 0.32 (0.36)

4
3.37 (3.57) 3 .1 8 (3 .2 5 ) 1.39 (1.85) 1 .09 (1 .13 )
1.76 (2.11) 1.55 (1.68) 0.55 (0.67) 0.42 (0.56)

2 ,0 0 0 ,0 0 0  *  |E|

1
0.95 (1.04) 0.37 (0.42)
0.71 (0.74) 0.31 (0.36)

2
1.01 (1 .25) 0.91 (1.16) 0.30 (0.34) 0.23 (0.29)
0 .59  (0 .68) 0.39 (0.42) 0.09 (0.12) 0.06 (0.10)

3
2.47 (2 .71) 2 .1 4 (2 .2 5 ) 0.51 (0.57) 0.50 (0.53)
1 .1 0 (1 .6 0 ) 0 .9 6 (1 .0 9 ) 0 .1 6 (0 .2 1 ) 0 .1 4 (0 .1 9 )

4
2.65 (2 .84) 2.27 (2.34) 0.57 (0.77) 0 .56 (0.63)
1.52 (1 .66) 1 .26(1 .41) 0.28 (0.46) 0.25 (0.35)
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Figure 7.17 shows the histogram of best cost (after two loops) against number 

of total evaluations for different number of subsets. There is a marked difference 

between the values produced by the shortest and longest runs, thus confirming that 

large benchmarks need to be run for a longer time. Furthermore, this tendency 

is more important for the whole approach whereas the decomposed assignment 

approach is able (when effective) to produce good results also for the shortest runs. 

For the decomposed approach the results still improve if we increase the number 

of evaluations, although the percentage improvement in comparison to the whole 

approach is lower than for the shortest runs. This is particularly true for C& with 

a decomposition into two subsets, for which the shortest run with 100,000 * \ V\ 

evaluations outperforms that obtained with the whole approach for 2,000,000 * | V\ 

evaluations. However, in any case the shortest runs give an indication of whether 

or not the decomposed approach will be effective.

Histograms in Figure 7.19 compare, for the different number of evaluations, 

the best costs produced at the end of each loop for different number of subsets. A 

decomposition into two subsets always improves the results of the whole approach, 

although it produces better performance during the second loop. Figure 7.18 shows 

the cost-time behaviour for a single run with two loops of the ‘two-towns’ bench­

mark C(, (2 ,000,000*| V\ evaluations per loop). At the end of each loop the diagram 

compares the solution produced by the decomposed assignment approach with that 

of the whole approach for the same number of total evaluations.

For a decomposition into a larger number of subsets (three and four in our ex­

amples), the decomposed technique is generally not effective after the first loop 

through the subsets. However, the second loop brings about a remarkable improve­

ment leading in some cases to better results than the whole approach (see C(,)- 

Note that this happens either for the shortest or the longest runs, thus confirming 

the validity of the former ones as a test for the effectiveness of a given decomposi­

tion. For the whole approach the gap between the first and the second loop is more 

marked in the shorter runs whereas for the longer runs it is less significant. The
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Figure 7.17: Cost-number of evaluations histograms for C5  and C6  solved by SA with 
balanced GPFAP

decomposed approach still shows a marked improvement between the two runs in­

dependently from their duration. Moreover, this improvement is more significant 

when the effectiveness of the decomposition is worse (that is for three and four 

subsets).

Figures 7.20 shows a comparison between GPFAP and geographical decom­

position for different number of subsets and total evaluations. The decomposition 

based on geographical information is inferior for both of the benchmarks. This can 

be also interpreted as the confirmation of the effectiveness of the GPFAP decom­

position procedure, which is able to find an effective partition without any extra
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Figure 7.18: Cost-Time plot for C6  solved by SA with balanced GPFAP into two subsets 
(first and second loop - 2,000,000 * \ V\ evaluations per loop)

knowledge (as the one given by the geographical information).

We could have expected this difference to be more important for the ‘one town’ 

problem C5 , since for C& the two decomposition methods produce rather similar 

partitions into the two distinct towns (see Figure 7.5). However, this actually hap­

pens only for the longest runs, whereas the two decompositions show similar be­

haviour with both of the data sets for the runs with 100,000 * \ V\ evaluations.

Figure 7.21 shows the cost- number of evaluations plots for two single runs of 

the benchmarks C5  and Ce, in which it can be appreciated how the shortest runs 

produce results which are very similar to those obtained for a much higher number 

of evaluations. Moreover, we can note that for the ‘two-towns’ problem Ce the 

first subset still produces significant interference whereas for the ‘one-town’ C5  

the assignments in the first subset are almost interference free during the whole 

length of its run.
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Figure 7.19: Cost-number of subsets histograms for C 5 and C f ,  solved by SA with balanced GPFAP with two loops
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7.4 Markov clustering

To complete the set of the experiments for the MI-FAP instances, we have con­

ducted a number of runs which use the partitions generated by the Markov cluster­

ing procedure (see Section 3.2.6).

As already mentioned, graph clustering algorithms present many similarities 

with the graph partitioning, and consequently they share the main advantages. In 

addition, they may be expected to be effective for the decomposed assignment ap­

proach since they search for a partition into natural clusters of the graphs instead of 

only considering the inter-edges between different subsets. However, as described 

in Section 3.2.6, they present the drawback of being more complex and elaborate 

than, for instance, the GPFAP. Moreover, the quality of the partition produced, in 

terms of size and number of clusters, depends strictly on the parameter settings 

used. For example, the standard value of two proposed for the expansion parame­

ter in [1 2 0 ] usually results in a partition which is too fine to be directly used for the 

decomposed approach whereas further increments of its value affect considerably 

the computational complexity of the algorithm. For this reason we have applied 

this decomposition method only to a small number of the COST259 benchmarks 

while we will not consider the larger generated data sets presented in Section 4.2.2.

Results are given in Table 7.13 , which shows the outcomes produced by SA 

with the Markov clustering decomposition for 2,000,000 * \ V\ total evaluations 

and compares them with those obtained with the GPFAP in Section 7.3.2. The 

parameter settings used for the clustering algorithm have been described in Section

7.2.2, as well as the ‘merging’ procedure in Algorithm 7.5 in order to further reduce 

the number of clusters produced.

For some of the benchmarks Markov clustering obtains better results than GP­

FAP. However, neither of the two methods appears to clearly outperform the other 

in all of the instances tested. As mentioned in Section 7.2.2 the resulting clustering 

is normally unbalanced in size and so it is expected to produce outcomes which 

are close to those of the unbalanced GPFAP (see also Tables 7.8, A. 14, and A. 16).
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This is confirmed by the results shown in Table 7.13. Note that Markov cluster­

ing is not able to obtain positive results for the data sets with the highest graph 

density (i.e. K  and Siem ens2), for which it performs worse than GPFAP. On the 

contrary, its performance improves for the other Siemens benchmarks which show 

a more ‘natural’ partition into clustering, as shown by the distribution of the hard 

constrains in Figure 7.6.
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Figure 7.21: Cost-Number of evaluations plot for C5  and C(, solved by SA with balanced 
graph partitioning decomposition into two subsets

To sum m arise, before having a  look to some issues about the distribution of the 

resulting interference in the network, Table 7.12 shows the best results obtained 

by the decomposition approach with 9SA over all the different decompositions
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tried, as well as those of the global approach and ( for comparison). We also show 

the state-of-the-art best costs produced for the COST259 benchmarks by ether SA 

or other meta-heuristicsas reported in [2]. Results for our implementations are 

those obtained with 2,000,000* evaluations. For Swisscom the best results from 

[2 ] refers to the original version and not o the modified one used for this thesis 

(although the interference constraints for the two versions are identical).

Table 7.12: Comparison between the best costs produced by the SA with and without 
decomposition and other meta-heuristics [2 ]

benchmark SA with decomposition SA global SA from [2] Best from [2]

S iem en s  1 2 .6 0 2 .6 8 2 .7 8 2 .2 0
S  iem en sl 16 .0 7 15 .59 15 .46 14 .2 7
S  iemensh 5 .9 8 6 .5 9 6 .7 5 4 .7 3
S  iem ens4 8 4 .0 8 8 6 .5 9 8 9 .1 5 7 7 .2 5

B ra d fo rd O 1.04 1.31 0 .8 0 0 .6 0
B ra d  f o r d  I 1.32 1.64 1.04 0 .8 6
B r a d fo rd 2 3 .8 3 4 .4 6 3 .7 9 3 .2 0
B r a d fo rd 4 18.51 2 0 .6 2 19 .00 17 .7 2

B r a d fo r d \0 1 8 5 .0 5 1 87 .13 1 4 8 .1 2 1 4 4 .9 4
S  w isscom  M o d if ie d 2 6 .0 4 3 0 .7 3 2 7 .3 6 17.71

K 0 .61 0.81 - 0 .4 5
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Table 7.13: COST259 for SA with GPFAP and Markov clustering decomposition -
best(average) cost using 2,000,000 * \ V\ evaluations per loop and 5,000,000 * \ V\ eval­
uations per loop.

ns

GPFAP^, | GPFAPun/, | Markov | GPFAP*,,/ | GPFAPun)l | Markov
first loop

second loop
SIEMENS 1 SIEMENS2

i
2.75(2 .83) 15.72(15.79)
2.68(2 .76) 15.59(15.54)

2
2.68(2 .75) 2 .69(2 .74) 2 .76(2 .92) 16.97(17.04) 16.94(17.13) 19.71(19.89)
2 .60(2 .69) 2.61(2 .66) 2 .53(2 .64) 16.34(16.73) 16.20(16.37) 17.32(17.58)

3
2.95(3 .01) 2 .67(2 .75) 2 .99(3 .14) 19.54(19.77) 19.06(19.17) 20.22(20.45)
2.93(2 .95) 2 .63(2 .72) 2 .74(2 .83) 17.41(17.60) 16.83(16.97) 17.90(18.47)

4
2.94(3 .01) 3 .73(3 .85) 3 .08(3 .16) 20.56(20.87) 16.56(16.72) 21.97(21.99)
2.90(2 .98) 2.85(2 .87) 2 .77(2 .79) 18.02(18.27) 16.07(16.27) 19.59(19.90]

5
3.34(3 .43) 4 .31(4 .48) 3 .76(3 .99) 20.31(20.46) 18.46(18.57] 22.36(22.97)
3.05(3 .13) 3 .29(3 .44) 2 .77(2 .94) 17.91(18.53) 16.30(16.37) 19.59(20.04)

SIEMENS3 S1EMENS4

1
6 .61(6 .72) 87.25(87.98)
6 .59(6 .62) 86.59(87.12)

2
6 .39(6 .46) 6 .22(6 .24) 6 .528(6 .88) 84.35(84.80) 85.72(85.90] 83.67(83.91)
6 .37(6 .44) 5 .98(6 .13) 6 .24(6 .35) 84.08(84.39) 84.58(85.13] 82.37(82.54]

3
6 .53(6 .81) 6 .68(6 .77) 6 .44(6 .63) 89.50(90.59) 91.47(91.94] 85.12(86.40)
6 .46(6 .58) 6 .42(6 .56) 6 .18(6 .39) 87.16(88.51) 89.51(90.35] 84.70(85.27)

4
6 .95(7 .02) 6 .84(6 .88) 7 .12(7 .37) 89.96(90.43) 90.71(91.52] 93.20(94.05)
6 .79(6 .89) 6 .76(6 .80) 7 .01(7 .49) 89.53(90.17) 90.02(90.68] 91.32(92.88)

5
7.65(7 .79) 7 .23(7 .25) 8 .71(9 .15) 92.94(93.55) 93.72(94.04] 94.08(95.12]
7.26(7 .41) 6 .83(6 .94) 7 .51(8 .24) 91.83(92.77] 91.18(92.13) 92.61(93.45]

b r a d f o r d O BRADFORD4

1
1.42(1.66) 20.84(21 .07)
1.31(1.43 20.62(20 .79)

2
1.31(1.41) 1.37(1.72) 1 .04(1.10) 21.40(21.83] 22.17(22.77) 22.90(23.16)
1.16(1.23) 1.08(1.14) 0 .94(1 .11) 18.51(18.78) 19.95(20.44] 19.55(20.22)

3
1.18(1.20) 1.11(1.19) 1 .03(1.08) 25.83(26.27) 26.64(27.81] 27.29(27.54)
1.07(1.13) 1.09(1.13) 0 .80(1 .06) 20.54(21.01) 21.66(22.21] 22.71(23.16)

4 1.48(1.63) 2 .17(2 .31) 2 .03(2 .17) 33.93(34.29) 34.82(35.29) 34.98(35.43)
1.26(1.36) 1 .24(1.26) 1.39(1.52) 23.09(24.65) 24.63(25.50) 25.23(25.58)

5
2.07(2.15) 2 .61(2 .72) 2 .17(2 .55) 37.85(38.14) 38.71(39.31) 37.31(37.98)
1.47(1.54) 1.26(1.29) 1 .31(1.52) 28.52(29.83) 29.68(30.56] 28.83(29.59)

BRADFORD2 K *

1
4 .56(4 .71) 0 .85(0.87)
4 .46(5 .53) 0 .81(0.84)

2
5 .1 7 (5 .3 6 ) 4 .79  (4.99; 5 .3 2 (5 .5 1 ) 1 .12 (1 .19 ) 0 .64 (0.66) 1 .47 (1 .98 )
4 .27  (4 .24) 3 .83  (3.92] 4 .09  (4 .23) 0.63 (0.65) 0.61 (0.57) 0.95 (1.02)

3
6.45 (6 .92) 6.15 (6 .2 i; 5.98 (6 .30) 1 .27 (1 .40 ) 0 .66 (0.70) 2.51 (3.02)
5.34 (5 .49) 5.05 (5.24; 4 .22  (4 .85) 0.81 (0.88) 0.64 (0.69) 1 .08 (1 .15 )

4
6.97 (7 .17) 6.25 (6 .34) 5 .69  (6.01) 1.65 (1.70) 0.72 (0.74) 2.76 (3.27)
5.75 (5 .93) 5 .1 4 (5 .3 3 ) 4 .46  (4.89) 0 .9 7 (1 .0 1 ) 0.69 (0.71) 1 .12 (1 .53 )

5
7.25 (7 .64) 6 .79  (7.24) 5 .9 4 (6 .1 5 ) 2 .04  (2.32) 1.05 (1.33) 2.74 (2.95)
6 .1 3 (6 .5 8 ) 5 .96  (6.57) 5.03 (5.65) 1 .79 (1 .96 ) 0 .9 4 (1 .1 2 ) 1 .12(1 .50)
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7.5 Trade-off between quality and runtime

As described in Section 4.1.3, given a specific benchmark and decomposition method 

we evaluate the trade-off between quality and runtime by plotting the interpolation 

curves between the pairs {cost (best or mean), runtime} for a number of different 

runs of the decomposed assignment approach.

We fix a number of total evaluations and then we run the decomposed approach 

with a different number of subsets, together with the whole one for the same num­

ber of evaluations. By considering only one loop and according to the parameters 

setting in Section 7.1 we then explore evaljto = — per subset, so that the

number of evaluations, in each of the subsets is reduced proportionally to its cardi­

nality.

This is expected to produce roughly the same runtime. With the decomposed 

approach the runtime is expected to be slightly lower than with the whole, with 

this depending essentially on the connectivity of the graph as described in section

4.1.2. However, this choice has not always been successful for all of the MI-FAP 

experiments performed (see Appendix A) whereas the results generally improve 

with the introduction of a further loop through the subsets.

7.5.1 Distribution of interference

The beneficial effect of a second loop is present within all the experiments pre­

sented in this chapter. Moreover, in some of the instances (for example the Brad­

ford data sets in Tables A. 14 and A. 16 ), the decomposed approach is only effective 

at the end of this further loop, i.e. at the end of the first loop it still produces worse 

results than solving the problem as a whole when compared for the same number 

of evaluations (see Figure 7.16). This is essentially caused by a different distri­

bution of the local interference inside each single subset at the end of each loop. 

An example of this is shown by the plots in Figure 7.22 for the Siemens 1 bench­

mark with a geographical decomposition into two subsets. After the first loop the
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heuristic produces good solutions in the first subset, which, however, constraints 

the second subset leading to many violations. Finally, the second loop balances the 

interference between the subsets.

Figure 7.22: Local interference within each of the subsets after the first (top) and second 
(bottom) loop for COST259 Siemens 1 with geographical decomposition into two subsets

Investigating the local distribution of the interference is an alternative way of 

evaluating a given frequency assignment. Figures 7.23 shows, for the Cardiff Uni­

versity benchmark Cf, with a balanced GPFAP decomposition into two subsets, the 

interference produced in terms of violations of the constraints represented by the 

intra and inter-edges between subsets. We have here applied the decomposed as­

signment approach with the subsets considered in sequence for three loops through 

them (see Algorithm 3.1). During the first loop the first subset only produces viola­

tions of the constraints represented by its intra-edges, thus ignoring the inter-edges 

with the other subset. Then the partial assignment of the second subset completes 

the assignment but generally produces high interference values for both the inter 

and intra-edges violations. Subsequently, the second loop balances the interfer­

ence between the subsets. Note that this reduces the violations of the inter-edges

4-
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constraints between the two subsets, since eliminating this interference would ex­

tend the search space to the whole solution space, with ideally no loss of optimality 

between the solutions produced by the decomposed and the whole approach. How­

ever, this is only partially achieved by the redistribution loop and depends essen­

tially on the connectivity of the graph and the ‘quality’ of the decomposition used. 

Moreover, further loops do not generally change significantly the balance reached 

between the inter and intra-edges violations for any of the subsets.

This idea of area based interference, in which the evaluation of an assignment 

is done by locally considering the interference distribution, assume more impor­

tance when more complex models of interference are considered. This is the case 

of the multiple interference model described in Section 2.2.4 (see also [40] which 

proposes a model that aims to minimize the maximum local interference).

7.5.2 Runs with variable num ber of loops

If we consider the condition in Definition 4.1, given a number of total evaluations of 

a run with the decomposed assignment approach the introduction of a second loop 

through the subsets leads to a reduction of the number of evaluations computed for 

each subset. This can be done proportionally to the number of loops. For example, 

in our experiments, which consider only two loops (see Section 7.3), we have for 

each subset a number of evaluations explored equal to evalj$ = evfl2/'^ jK/l.

Note that, this will produce a different pair value, for the same fixed number 

of total evaluations, in the plots (cost, runtime) introduced in Section 4.1.3. For 

example in Figure 7.16 we have already shown two examples in which the desired 

number of evaluations (2,000,000 * | V\) has been reached with either the whole 

approach, or a decomposition into two two subsets with one and two loops respec­

tively.
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Figure 7.23: Intra and Inter-interference between subsets during the three loops of C6  with GPFAP into two subsets.



For the same number of total evaluations we could add other loops and conse­

quently reduce the number of evaluations per subsets, thus producing further {cost, 

runtime} pairs. However, this has not shown any significant improvement in the 

quality of the solutions for a number of preliminary experiments in which more 

than two loops were applied.

Figures 7.24 shows different runs of Siemens 1 with a balanced GPFAP decom­

position into two subsets in which the same number of total evaluations (4,000,000* 

\V\) is reached by the whole and the decomposed assignment approach with one, 

two and three loops respectively

Alternatively the number of evaluations computed for each subset can also vary 

during distinct loops (still maintaining fixed the desired number of total evalua­

tions and satisfying Definition 4.1). In particular a number of tests have shown 

better performance when we considerably reduce the number of evaluations in the 

first subset (and correspondingly increase that of the others). Note that, since per­

formed for a very short number of evaluations (for instance the 1 0 % of the total 

in our experiments), the first loop assumes the significance of a preprocessing pro­

ducing partial assignments which can be obtained either with the ‘sequential’ or 

‘independent’ procedure in Algorithms 3.1 and 3.2 respectively.

We performed a GPFAP decompositions for a total of 4,000,000 * | V\ eval­

uations. However, instead of this being computed by two loops of the same du­

ration, the first loop has been further split into two parts. Firstly, we perform a 

preprocessing loop of 200,000 * | V\ evaluations (solved either sequentially or in­

dependently), then a second loop of 1,800,000 * | V\ completes the first half of the 

evaluations. Results Siemens2 and BradfordlO are shown in Table 7.14 and the de­

composition approach results overall successful even towards the version without 

preprocessing (i.e. only one loop through the subsets of 2,000,000 * \ V\ evalua­

tions).
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Subsequently a further loop of the remaining 2,000,000 * |V| is computed 

through the subsets (see Table 7.15) after this further redistribution loop the normal 

decomposition approach with no preprocessing results more effective, although the 

decomposition approach with preprocessing is still superior tho the whole approach 

with no decomposition.

Table 7.14: SA - Sieml-4 with GPFAP decomposition with preprocessing ( 4,000,000 * 
|V| evaluations in total (first loop 200,000 * |V|, second loop 1,800,000 * |V|, third loop 
2,000,000* |V|»

Sequential prep. Independent prep No preprocessing
noSub. first loop

second loop

third loop

2 1 7 . 6 0 ( 1 7 . 9 3 ) 5 , 0 5 0 ( 5 , 1 5 0 )
1 6 .9 7  ( 1 7 . 0 4 )1638 (16.41) 1 6 .4 9  ( 1 6 . 9 2 )

o 1 9 . 8 5  ( 2 0 . 5 1 ) 5 3 0 2  ( 5 , 2 3 4 )
1 9 . 5 4 ( 1 9 . 7 7 )O IC lIlv IlS — 3

18.08 (18.55) 1 8 . 8 9 ( 1 9 . 0 2 )

A
2 0 . 9 5 ( 2 1 . 1 2 ) 5 . 4 7 2  ( 5 . 7 6 0 )

2 0 . 5 6  ( 2 0 . 8 7 )*r
1 9 3 5 ( 1 9 . 8 3 ) 18.56 (18.60)

*> 1 9 7 . 6 2 ( 1 9 7 . 9 8 ) 2 , 0 1 5 ( 2 , 0 2 2 )
1 9 2 3 7  ( 1 9 2 . 9 8 )

187.74 (188.22) 1 9 1 . 2 6 ( 1 9 1 . 5 4 )

Bradford 10 -3
2 2 5 . 9 0  ( 2 2 6 3 0 ) 2 . 0 2 3  ( 2 . 0 2 7 )

203.69 (204.60)3
2 0 6 . 7 0  ( 2 0 7 . 1 7 ) 2 0 5 . 0 1  ( 2 0 5 . 8 6 )

A
2 3 3 . 0 1  ( 2 3 6 . 5 6 ) 2 3 4 8  ( 2  3 5 4 )

211.81 (212.94)**
2 2 8 . 2 8  ( 2 2 8 . 8 4 ) 2 1 6 . 5 2  ( 2 1 7 . 0 9 )

Table 7.15: SA - Sieml-4 with GPFAP decomposition with preprocessing ( 4,000,000 * 
|V| evaluations in total (first loop 200,000 * \V\, second loop 1,800,000 * |V|, third loop 
2,000,000* |V|»

Sequential prep. Independent prep No preprocessing

noSub. first loop

second loop

third loop

2 16.11 (16.13) 1 6 . 2 4 ( 1 6 3 5 ) 1 6 3 4 ( 1 6 . 7 3 )

Siemens2 3 1737 (17.52) 1 7 .5 1  ( 1 7 . 9 1 ) 1 7 .4 1  ( 1 7 . 6 0 )

4 1 8 3 8 ( 1 8 . 4 7 ) 17.88 (18.19) 1 8 .0 2  ( 1 8 . 2 7 )

2 1 8 6 3 1  ( 1 8 6 . 4 2 ) 1 9 0 . 1 9 ( 1 8 9 . 6 9 ) 185.05 (18539)
Bradford 10 3 2 0 3 . 5 3  ( 2 0 3 . 6 4 ) 2 0 1 . 9 5  ( 2 0 2 . 0 1 ) 18838 (18931)

4 2 1 2 . 8 1  ( 2 1 5 . 2 7 ) 2 1 3 3 4 ( 2 1 4 . 5 7 ) 19331 (194.43)

At the end of the first loop both ‘sequential’ and ‘independent’ preprocess­

ing approaches improve the results obtained in Table 7.8 (2,000,000 * |V| evalua­

tions per loop). Hence the separation of the first loop into a preprocessing phase,
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which produces a quick approximation of an optimal assignment, and a further 

loop (which actually redistributes the interference among the subsets), performs 

better than a single loop performed sequentially through the subsets. However, this 

mainly happens for a decomposition into two subsets only, with ‘sequential’ pre­

processing superior to ‘independent’. Nevertheless, the subsequent final loop (the 

third loop in our experiments) does not further improve the results which are in 

general only comparable with those in Table 7.8 at the end of the 4,000,000 * \ V\ 

evaluations. Figure 7.25 shows an example of two single runs of BradfordlO with a 

decomposition into two subsets for a total of 4,000,000 * | V\ evaluations, in which 

the preprocessing approach is compared with the same decomposition run for two 

loops of equal duration (see also Table 7.8). When the preprocessing approach is 

applied a total of thee lopps are performed of 100,000 * \ V\, 1,900,000 *\V \ , and

3,000,000 * \ V\ evaluations respectively whereas with the normal decomposition 

method used throughout this thesis only two loops of 4,000,000 * | V\ evaluations 

each are computed.

Figures 7.26 and 7.27 show the distribution of the interference within the three 

loops for Siemens2 solved by the decomposed assignment approach adopting the 

‘independent’ preprocessing. We have considered GPFAP and geographical de­

composition into two subsets. The plots shows that the first loop involves only 

the intra-edge interference within each of subsets, whereas the second loop has the 

effect of redistributing the interference balancing the inter and intra-edges viola­

tions. This effect is more important for ‘good’ decompositions like GPFAP rather 

than the worse performing geographical partitioning. Finally, the subsequent third 

loop does not change significantly the relative distribution of the local interference 

for both of the decomposition methods used. Nevertheless, since the connectivity 

of this specific data set is very high the interference in terms of number of inter and 

intra-edges violations appears high for both of the examples tested.
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subsets for 4,000,000 * \ V\ evaluations with preprocessing approach.



JL ■ .1  I I ■ ■ J.
33910 33920 33930 33940 33950

first loop - first subset
33910 33920 33930 33940 33950 33900 33970

first loop - second subset

33910 33920 33930 33940 33950

second loop - first subset second loop - second subset

third loop - first subset third loop - second subset

Figure 7.26: Intra and Inter-interference between subsets during the three loops of Siemens2 with geographical decomposition into two subsets.



33000 33010 33920 33930 33040 33950 33900 33970

first loop - first subset first loop - second subset

00
o

33900 33910 33920 33930 33940 33950 33900 33970

second loop - first subset second loop - second subset

2nd subset 
intra-interference 
inter-interference

third loop - first subset third loop - second subset

Figure 7.27: Intra and Inter-interference between subsets during the three loops of Siemens2 with GPFAP into two subsets.



7.5.3 C ost-runtim e trade-off

Figure 7.28 shows the cost-runtime curve for Siemensl and BradfordlO respec­

tively for a number of runs with and without the decomposed assignment approach 

(with the points corresponding to the whole approach joined with a red line). We 

have considered balanced and unbalanced GPFAP with a different number of sub­

sets, runs with one single loop, two loops, and runs with a different number of 

evaluations per loop.

Three groups of runs have been conducted for a different number of total evalu­

ations (1,000,000*|F|, 2 ,000 ,000*|F|, and 4 ,000,000*|F| respectively). Note that 

the three plots produced recall the expected curves described in Figure 4.3. If we 

focus only on the central curve (corresponding to a total of 2,000,000 * \V\ evalua­

tions) we can observe that for both of the benchmarks the balanced decomposition 

into two subsets produces the best results when two loops are performed.

By repeating the analysis for different number of total evaluations and decom­

position methods, these diagrams represent the basis for defining the optimal de­

composition criterion given a specific benchmark. This involves the investigation 

of the best performing:

• number of subsets

• size of subsets (i.e. balanced unbalanced decompositions)

• number of evaluations per loop and subset

This further analysis will constitute one of the suggestions for future work 

enhancements together with the investigation of multiple interference models de­

scribed in Section 2.2.4.
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Chapter 8

Conclusion and future work
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8.1 Conclusion

This thesis proposes a decomposed meta-heuristic approach to solve the FAP in its 

different formulations (minimum span (MS-FAP), fixed spectrum (FS-FAP) and 

minimum interference frequency assignment (MI-FAP)). The FAP can be solved 

with exact methods only for small networks with an order of few hundreds trans­

mitters whereas for larger problems is usually solved by heuristic algorithms. How­

ever, although meta-heuristics produce good results on some of the benchmarks 

available, they often perform on specific data sets for the particular type of FAP 

considered and highly specialised algorithms tend to perform best. In addition, 

standard implementations of meta-heuristics may require considerable runtimes to 

produce good quality results whenever a problem is very large or complex.

This thesis investigates the application of problem decomposition techniques as 

an effective approach in order to deal with large networks. Although a few previous 

works have applied problem decomposition in combination with exact methods 

these techniques have very rarely been used in combination with meta-heuristics. 

Furthermore, in these cases the decomposition technique has been mainly applied 

either after or incorporated into a heuristic procedure in order to optimizing locally 

the solution produced (often using again exact procedures).

In this thesis the decomposition strategy has been extended to a larger scale 

which aims to simplify a complicated problem by decomposing it into separate 

subproblems (obtained by removing some of the constraints between them) rather 

than increasing the complexity of the meta-heuristic which solves the problem as 

a whole. A similar approach has only been proposed in the literature for the eas­

iest formulations of the FAP (MS-FAP) and for a specific set of benchmarks and 

decomposition methods.

Our proposed decomposed assignment approach is based on an initial partition 

of the interference graph representing the network into two or more subgraphs. A 

meta-heuristic procedure is then applied to each of the subsets in turn to produce 

a sequence of partial solutions. Subsets can be solved either sequentially or in­
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dependency, that is when the current subset is considered the algorithm keeps the 

assignment of the transmitters in the previously assigned subsets fixed respecting 

the constraint violations between them. Finally, the partial solutions are recom­

posed to give a complete assignment of the original problem.

This thesis constitutes the first attempt to constructively investigate the effec­

tiveness of decomposition approaches for the FAPs solved in combination with 

meta-heuristics. We propose a range of decomposition methods to produce a par­

titioning of the interference graph representing the network. These include the 

generalization o f methods previously used for the FAP, such as clique detection 

and partitions based on generalized degree, together with novel applications and 

modifications of existing graph partitioning and clustering methods.

The idea of decomposing the hardest FAP benchmarks into a partition of sub­

problems is particularly important for standard meta-heuristics, which are not oth­

erwise capable of producing satisfactory performance for the more complex types 

of FAP such as the MI-FAP. A number of decomposition algorithms have been ap­

plied to a standard simulated annealing and a genetic algorithm with two different 

representations (direct and order-based). Both algorithms have been applied to the 

FAP in its different models. However, more attention has been given to the more 

complex and useful formulation of the problem, the MI-FAP. From an analysis of 

the results we can draw the following conclusions.

The order-based GA obtained good results with the MS-FAP and simple in­

stances of the FS-FAP, while for harder FS-FAP benchmarks and the MI-FAP the 

use of a direct representation produces better results. Furthermore, for the MI-FAP 

the use of a multi-objective approach outperforms the single-objective, especially 

in terms of diversification of the partial solutions in the population. However, sim­

ulated annealing performs better than the GA in all of the MI-FAP experiments 

conducted.

For the majority of the instances the decomposed assignment with a decom­

position into two to four subsets performs better than the whole approach with an
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evaluation on a pure quality basis. Results show that different partitioning meth­

ods are preferable to solve the different types of FAR For the MS-FAP the more 

effective methods are those based on solving the ‘hardest’ part of the problem first 

(clique and generalized-degree), thus confirming the results already obtained in 

previously published works, whereas for the harder MI-FAP (and its generaliza­

tion as FS-FAP) the methods based on minimizing the interconnections between 

different subsets give the best performance (i.e. graph partitioning and clustering).

Furthermore, when the problem is solved by the GA the order-based represen­

tation is more effective in solving the MS-FAP while for the FS/MI-FAP the direct 

representation appears superior. This may be partially explained by the fact that for 

the MS-FAP removing some of the vertices still allows the core part of an instance 

to produce a span which is close to that of the whole data sets. On the contrary, 

when the cost is defined in terms of the total sum of the constraint violations (as 

for the FS-FAP), removing edges unavoidably implies a considerable decrease in 

the partial costs produced by a subproblem.

With the order-based representation, the sequential assignment used considers 

only the vertices already assigned in a given ordering in the current subset, thus 

ignoring a fraction of transmitters in each subset (those next to come in the given 

ordering of the subsets vertices). We can then see these vertices as they were 

removed from the subset. For the reason above, this may penalize this type of 

representation when used to solve the FS-FAP whereas for the MS-FAP the cost 

(span) produced for each o f the subsets during an assignment is less affected from 

this removal of vertices with a beneficial effect on the final span returned by the 

decomposition technique.

Some groups of benchmarks perform better with specific decomposition meth­

ods. This is, for example, the case of the Cardiff University data sets which, since 

they present a location of the transmitters distributed into ‘towns’, clearly produce 

better results with the graph partitioning method. For other group of benchmarks, 

such as the Bradford data sets for the MI-FAP, the decomposition approach is not
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immediately successful on a pure quality basis and requires the introduction of a 

further reassignment loop over the subsets. This has the consequence of improving 

considerably the quality of the results as well as balancing the distribution of the 

interference in the network.

For some benchmarks, which present either a very high graph density or a 

peculiar structure (as predicted for random graphs), the performance of the de­

composed assigned approach is not satisfactory with an evaluation purely based 

on quality. However, if we look at the the trade-off between quality and runtime 

during a single run of the meta-heuristic the decomposition approach appears able 

to produce acceptable approximations of the optimal solution in a shorter time than 

the whole approach (when both the approaches are run and compared for a same 

number of solutions explored) as described in more detail in Section 4.1.3.

In particular, very good results in this sense are obtained with the largest set of 

benchmarks used, which represent more realistic instances of wireless networks. 

Here, the GPFAP is able to effectively solve MI-FAP instances without the need 

of any further knowledge about the network (e.g. geographical information about 

transmitter locations). This result constitutes the main contribution of this thesis 

which then proposes the decomposed assignment approach as an effective tech­

nique (and in some cases the only one possible), to solve larger practical data sets 

using meta-heuristics.

Beside this main result, our work has shown that the decomposed approach 

constitutes a valid technique to improve the performance of standard meta-heuristics 

in a way which is actually algorithm independent. This is evident for the COST- 

259 MI-FAP results for which not only has this approach improved the previously 

published results produced by the standard implementation of SA but it has also 

allowed the GA to be more competitive for this problem, whereas no published 

results are yet known for these benchmarks for this category of evolutionary meta­

heuristics. Finally, the decomposed assignment approach (when effective) allows 

the use of standard meta-heuristics independently on the data set used, thus avoid-
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ing the use of algorithms specifically designed for a particular class of benchmarks.

8.2 Future work

This final section suggests two main future directions toward which the research 

proposed in this thesis can be extended.

Firstly, the proposed procedure which, given a test problem and a decomposi­

tion method, deduces the optimal number of subsets in the decomposition could be 

improved and better specified. We have here suggested the use of cost-time curves 

which plot different pairs of cost time values corresponding to an assigned total 

number of solutions explored by the meta-heuristic, for both the whole and the de­

composed approach, thus expected to produce roughly the same runtime. Different 

pair values can be produced varying the number of the subsets (and when appli­

cable their size) as well as the number of loops performed over them. However, 

this technique presents the drawback of depending strictly on the specific instance 

considered and alternative procedure may be therefore considered. In addition, ei­

ther further decomposition methods or variations of those already proposed in this 

thesis may be worthy o f being investigated.

A second, more important suggestion for future enhancements consists of ex­

tending the application of the problem decomposition approach for the FAP to more 

complex interference models than the binary considered here. This will involve the 

adoption of a multiple interference model, which abandons the idea of considering 

separately pairs of transmitters and takes instead into account the cumulative effect 

of the interfering signals received by a transmitter when all of the other geograph­

ically close base stations transmit simultaneously. This approach may also require 

further formulations of the FAP beside the minimization of the global interference 

in the network, such as minimizing the maximal interference experienced locally 

in the network by a transmitter (see also the concept of area based interference 

introduced in the final part of this thesis).
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Extended results
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A.l Extended results for MS-FAP

We present in this section of the appendix the extended results obtained for the MS- 

FAP by the order-based GA with the decomposed assignment approach. Tables 

A.2, A.3, and A.l show the comparative results expressed in percentage obtained 

for the MS-FAP benchmarks with the decomposition methods outlined in Table

5.1.

Table A . l : Comparative results in % for MS-FAP. Best span for for Ri,  and R2 solved by 
the order-based GA with decomposition (500 ,000  * | V\ evaluations)

GPFAP Gen. Degree Cliques Whole
R1

GPFAP
2
4 _ _

+4
+6

+3
+5

+2
+3

+  1 
+2

+3
+4

? -4 -6 _ _ -3 -3 -1
Gen Degree 4 -3 -5 - - -2 -2 0

? -? -3 +3 +2 _ _ +2
Cliques 4 -1 -2 +3 +2 - - +2
Whole 1 -3 -4 +  1 0 -2 -2 -

r 2
? _ _ + 4 +4 +3 +3 +4

GPFAP 4 - - + i +5 +4 +4 +5
?. -4 -3 _ -1 -1 0

Gen Degree 4 -4 -5 - -1 -1 0
? -3 -4 + 1 •  1 _ + 1

Cliques 4 -3 -4 + 1 + 1 - + 1
Whole 1 -4 -5 0 0 -1 -1 -
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Table A.2: Comparative results in % for MS-FAP. Best span for for P i , Pi, C\, Ci, and C3

solved by the order-based GA with decomposition (500,000 * \ V\ evaluations)

Random Geog. GPFAP Gen. Degree Cliques Whole
2 4 2 4 2 4 2 4 2 4 1

p  1
2 - - - - +8 +6 +8 +8 +8 +6 +8
4 - - - - +8 +6 +8 +8 +8 +6 +8

Geog
2
4 _ :

— —
_ _ : : :

— -

2 -8 -8 - - - - 0 0 0 -2 0
4 -6 -6 - - - - +2 +2 +2 0 +2
2 -8 -8 _ _ 0 -2 _ _ 0 -2 0Gen Degree
4 -8 -8 - - 0 -2 - - 0 -2 0
2 -8 -8 _ _ 0 -2 0 0 _ _ 0Cliques 4 -6 -6 - - +2 0 +2 +2 - - +2

Whole 1 -8 -8 - - 0 -2 0 0 0 -2 -

P i
2 - - - - + 12 + 12 +  12 +  12 +11 + 11 + 12
4 - - - - +27 +27 +27 +27 +26 +26 +27

Geog
2
4 : _ : _

—
_

— —
_ _

_

2 -12 -27 - - - - 0 0 -1 -1 0GPFAP
4 -12 -27 - - - - 0 0 -1 -1 0
2 -12 -27 _ _ 0 0 _ _ -1 -1 0

Gen Degree 4 -12 -27 - - 0 0 - - -1 -1 0
2 -11 -26 _ _ + 1 + 1 +1 + 1 _ _ +1

Cliques 4 -11 -26 - - + 1 + 1 +1 +  1 - - +1
Whole 1 -12 -27 - - 0 0 0 0 -1 -1 -

C i
2 - - + 6 +9 + 20 + 16 +25 +27 +22 + 19 +23

Random
4 - - + 13 +  15 + 28 +23 +33 +34 +29 +26 +31
2 -6 -13 - - + 13 + 9 + 18 +  19 + 15 -12 + 16

Geog
4 -9 -15 - - + 11 + 7 + 15 + 16 + 12 +  10 + 14
2 -20 -28 -13 -11 - - +4 +5 + 1 -1 +2
4 -16 -23 -9 -7 - - +8 +9 +0.5 +0.2 +0.6
7 -25 -3 3 -18 -15 -4 -8 _ _ -3 -5 -1

Gen Degree
4 -27 -34 -19 -16 -0.5 -0.9 - - -4 -6 -3
2 -22 -29 -15 -12 -0.1 -0.5 +3 +4 - — +  1

Cliques
4 -19 -26 -12 -10 +0.1 -0.2 +5 +6 - - +4

Whole 1 -23 -31 -16 -14 -0 .2 -0.6 +  1 +3 -1 -4 -
c 2

2 - - + 1 0 +5 +8 + 15 + 16 + 10 +9 + 15
Random

4 - - +5 + 4 + 9 + 11 + 19 +21 + 14 + 13 + 19
2 -1 -5 - - +4 + 6 +  14 + 15 +9 +8 + 14

Geog
4 0 -4 - - +5 +8 + 15 + 16 + 10 +9 + 15
2 -5 -9 -4 -5 - - +9 + 10 +5 +4 +9

GPFAP
4 -8 -11 -6 -8 - - + 0.7 +8 +2 + 1 +7
7 -15 -19 -14 -15 -9 -7 — - -4 -5 0

Gen Degree
4 -16 -21 -15 -16 -10 -8 - - -5 -7 -1
7 -10 -14 -9 -10 -5 -2 +4 +5 - - +4

Cliques
4 -9 -13 -8 -9 -4 -1 +5 +7 - - +5

Whole 1 -15 -19 -14 -15 -9 -7 0 + 1 -4 -5 -
c 3

2 - - +8 +6 + 12 + 13 +20 +22 +  13 + 16 + 12
Random

4 - - + 10 +7 + 15 + 14 +22 +23 + 14 + 12 +22
2 -8 -10 - - +5 +4 + 11 + 12 +4 +6 + 11

Geog
4 -6 -7 - - +8 +6 + 14 + 15 +6 +9 + 14

2 -12 -15 -5 -5 - - +5 +7 -1 + 1 +5
GPFAP

4 -13 -14 -4 -6 - - +9 +8 0 +3 +9
7 -20 -22 -11 -14 -5 -9 - - -6 -4 0

Gen Degree
4 -22 -23 -12 -15 -7 -8 - - -8 -5 -1
7 -13 -14 -4 -6 +  1 0 +6 +8 - - +6

Cliques
4 -16 -12 -6 -9 I f M -3 +4 +5 - - +4

Whole 1 -12 -22 -11 -14 -5 -9 0 + 1 -6 -4 -



Table A.3: Comparative results in % for MS-FAP. Best span for for C 4 ,  G1 , G2 , and G3

solved by the order-based GA with decomposition (500,000 * \V\ evaluations)

Random Geog. GPFAP Gen. Degree Cliques Whole

c 4
2 - - + 3 8 + 3 4 + 4 2 + 3 2 +34 + 3 8 + 3 4 + 3 6 + 3 1

Random 4 - - + 4 9 + 4 5 + 5 4 + 4 3 +45 + 4 9 + 4 5 + 4 3 + 4 1
2 .38 .4 9 - - + 3 .4 .3 0 .3 .1 .6

Geog 4 .3 4 .45 - - + 6 .1 0 + 3 0 +  1 .3
2 .42 .5 4 .3 .6 - - .6 .3 .6 .4 .7
4 .32 .43 + 4 +  1 - - +  1 + 4 +  1 + 3 .1
2 .34 .45 + 3 0 + 6 .1 _ _ 0 +  1 .3

Gen Degree 4 .38 .4 9 0 .3 + 3 .4 - - .3 .1 .6
2 .3 4 .45 + 3 0 + 6 .1 0 + 3 _ _ .3

Cliques
4 .3 6 .43 +  1 .1 + 4 .3 .1 +  1 - - .4

Whole 2 .31 .41 + 6 + 3 + 7 +  1 + 3 + 6 + 3 + 4 -
G 1

2 _ _ _ _ + 3 0 + 3 +  10 + 3 + 2 + 4
Random

4 - - - - + 8 + 2 + 8 +  12 + 8 + 4 + 6
2 -3 -8 _ _ _ _ 0 + 4 0 -4 -2

GPFAP
4 0 -2 - - - - + 6 +  10 + 6 + 2 + 4
2 -3 -8 _ _ 0 -6 _ _ 0 -4 -2

Gen Degree
4 -1 0 -12 - - -4 -1 0 - - -4 -8 -6
2 -3 -8 _ _ 0 -6 0 + 4 _ - -2

Cliques
4 -2 -4 - - + 4 -2 + 4 + 8 - - + 2

Whole 1 -4 -6 - - + 2 -4 + 2 + 6 + 2 -2 -

G2
2 - - - - +  14 + 2 2 + 2 0 + 2 2 + 2 0 + 2 0 + 2 0

Random
4 - - - - +  15 + 2 4 + 2 2 + 2 4 + 2 2 + 2 2 + 2 2

2 -1 4 -15 _ _ _ +5 +7 + 5 + 5 + 5
GPFAP

4 -22 -2 4 - - - - -2 0 -2 -2 -2

2 -2 0 -2 2 _ _ -5 + 2 - _ 0 0 0
Gen Degree

4 -2 2 -2 4 - - -7 0 - - -2 -2 -2

2 -2 0 -2 2 _ _ -5 + 2 0 + 2 — - 0
Cliques

4 -2 0 -22 - - -5 + 2 0 + 2 - - 0

Whole 1 -2 0 -2 2 - - -5 + 2 0 + 2 0 0 -
g3

2 _ - - - +7 + 5 + 8 + 5 + 8 + 8 + 8
Random

4 - - - - +  11 + 8 +  12 + 8 +  12 +  12 +  12

2 -7 -11 _ _ _ - +  1 0 +  1 +  1 +  1
GPFAP

4 -5 -8 - - - - + 4 + 3 + 4 + 4 + 4

2 -8 -1 2 _ _ -1 -4 - - 0 0 0
Gen Degree

4 -5 -8 - - 0 -3 - - +  1 +  1 +  1

2 -8 -1 2 - _ -1 -4 0 -1 - — 0
Cliques

4 -8 -1 2 - - -1 -4 0 -1 - - 0

Whole 1 -8 -1 2 - - -1 -4 0 -1 0 0 -
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A.2 Extended results for FS-FAP

We present in this section of the appendix the extended results obtained for the FS- 

FAP by the order-based and direct GA with the decomposed assignment approach. 

Tables A.5, A . 6  and A.4 show the comparative results expressed in percentage for 

the FS-FAP benchmarks with the decomposition methods outlined in Table 6.1 and 

6.5. The cost reported in the table is the one defined in Problem 1.2 for this type of 

FAP.

Table A.4: Comparative results in % for FS-FAP. Best span for for R\ and R2 solved by the 
direct GA with decomposition (500 ,000  * \ V\ evaluations)

GPFAP Gen. Degree Cliques Whole
2 4 2 4 2 4 1

R1
2 - - -3 -9 -2 -8 +2
4 - - +3 -2 +4 -2 +8
2 +3 -3 _ +1 -4 +5

Gen Degree 4 + 9 +2 - +6 + 1 + 11
? +2 -4 -i -6 _ +4

Cliques 4 +8 + 2 +4 -1 - + 9
Whole 2 -2 -8 -5 -11 -4 -9 -

Ri
? — _ -s -18 + 6 +4 +6

GPFAP 4 - - +2 -10 +  13 + 11 +  13
? +5 -2 _ _ + 11 + 9 + 11

Gen Degree 4 + 18 +  10 - - + 26 +24 + 26
? -6 -13 -11 -26 _ _ 0

Cliques 4 -4 -11 -9 -24 - - + 1
Whole 2 -6 -13 -11 -26 0 -1 -
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Table A.5: Comparative results in % for FS-FAP. Best cost for for Cj, C2, C3 , and C4

solved by the order-based GA with decomposition (500,000 * \ V\ evaluations)

Random Geog. GPFAP Gen. Degree Cliques Whole
2 4 2 4 2 4 2 4 2 4 1

Cl
2 - - +44 +31 +57 +53 +52 +57 +47 +50 +53
4 - - +44 +31 +57 +53 +52 +57 +47 +50 +53
2 -44 -44 - - +9 +6 +5 +8 +2 +4 +6
4 -31 -31 - - +20 + 17 + 16 +20 +12 + 15 + 17
2 -57 -57 -9 -20 - - -3 0 -6 -4 -2
4 -53 -53 -6 -17 - - -1 +2 -4 -2 0
2 -52 -52 -5 -16 +3 + 1 _ _ -3 -1 + 1

Gen Degree 4 -57 -57 -8 -20 0 -2 - - -7 -4 -2
? -47 -47 -2 -12 +6 +4 +3 +7 _ _ +4

Cliques 4 -50 -50 -4 -15 +4 +2 +  1 +4 - - +2
Whole 1 -53 -53 -6 -17 +2 0 -1 +2 -4 -2 -

c 2
2 - - + 15 -3 +95 +63 +85 +  1.00 +50 +56 +59
4 - - + 26 +8 +  1.15 +79 + 1.04 +  1.20 +63 +72 +76
2 -15 -26 - - + 70 +42 +62 +37 +31 +36 +39
4 +3 -8 - - + 1.00 +66 +90 +  1.05 +54 + 60 +63
2 -95 -1.15 -70 -1 .00 - - -5 +2 -30 -25 -23
4 -63 -79 -42 -66 - - +  14 +23 -8 -4 -2
? -85 -1 .04 -62 -90 +5 -14 _ -24 -19 -16

Gen Degree 4 -1 .00 -1 .20 -37 -1.05 -2 -23 - -33 -28 -26
2 -50 -63 -31 -54 + 30 +8 • 24 +33 - - +6

Cliques 4 -56 -72 -36 -60 +25 +4 +  19 +28 - - +2
Whole 2 -59 -76 -39 -63 +23 +2 +  16 + 26 -6 -2 -

c 3
2 - - +31 +  12 +37 +29 +31 + 30 +20 + 10 +27

Random 4 - - + 29 +  11 +35 +27 +29 +28 + 19 +9 +26
2 -31 -29 - - +5 -1 0 -1 -9 -19 -3

Geog 4 -12 -11 - - + 22 +  15 +  17 +  16 +  10 -2 + 13
? -37 -35 -5 -22 _ - -5 -5 -14 -24 -8

GPFAP 4 -29 -27 +  1 -15 - - +  1 + 1 -7 -17 -3
? -31 -29 0 -17 +5 -1 - - -9 -19 -3

Gen Degree 4 -30 -28 +  1 -16 +5 -1 - - -8 -18 -2
2 -20 -19 +9 -10 +  14 +7 +9 +8 - - + 10

Cliques 4 -10 -9 + 19 +2 + 24 +  17 +  19 + 18 - - + 16
Whole 2 -27 -26 +3 -13 +8 +3 +3 +2 -10 -16 -

c 4
2 - - +20 + 19 +21 +21 + 18 + 11 + 13 + 14 + 14

Random 4 - - +25 + 24 + 26 +27 +23 + 16 + 18 + 19 + 19
2 -20 -25 - - + 1 + 1 -1 -7 -6 -5 -5

Geog 4 -19 -24 - - +2 +2 0 -6 -5 -3 -3
2 -21 -26 -1 -2 - - -2 -8 -7 -6 -6

GPFAP 4 -21 -27 -1 -2 - - -3 -9 -7 -6 -6
2 -18 -23 + 1 0 +2 +3 - - -4 -3 -03

Gen Degree 4 -11 -16 +7 +6 +8 +9 - - +2 +3 -6
2 -13 -18 +6 +5 +7 +7 +4 -2 - - + 1

Cliques 4 -14 -19 +5 +3 +6 +6 +3 -3 - - 0

Whole 1 -14 -19 +5 +3 +6 +6 +3 +6 -1 0 -
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Table A.6: Comparative results in % for FS-FAP. Best span for for G! and G2 solved by
the order-based GA with decomposition (500 ,000  * \V\ evaluations)

R andom Geog. G P FA P Gen. Degree Cliques W hole

2 4 2 4 2 4 2 4 2 4 1
Gi

2 - - - - +34 + 37 + 24 + 28 +27 + 30 +29
4 - - - - +34 +38 +29 + 25 +28 +31 +30
2 -34 -34 - - - - -4 -8 -5 -2 -4
4 -37 -38 - - - - -7 -10 -7 -4 -6
? -24 -29 _ _ +4 +7 _ _ -1 +2 + 1

Gen Degree 4 -28 -25 - - + 8 +  10 - - +3 +5 +4
?. -27 -28 - _ +5 +7 +  1 +3 _ _ + 1

Cliques 4 -30 -31 - - +2 +4 +2 +5 - - -1
W hole 2 -29 -30 - - +4 + 6 -1 -4 -1 + 1 -

G  2
2 - - - - +27 +21 +24 +22 + 26 +21 +20

Random 4 - - - - +33 +26 +30 +28 +33 +27 +26
7 -27 -33 _ _ _ -2 -4 0 -5 -5

G P FA P
4 -21 -26 - - - - +3 +  1 +5 0 -1
7 -24 -30 _ _ +2 -3 — — +2 -3 -3

Gen Degree
4 -22 -28 - - +4 -1 - - +4 -1 -2
7 -26 -33 _ _ 0 -5 -2 -4 - -6

Cliques
4 -21 -27 - - +5 0 +3 +  1 - -1

W hole 2 -20 -26 - - +5 +  1 +3 + 2 + 6 ■ 1 -
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A.3 Extended results for MI-FAP

We present in this section of the appendix the extended results obtained for the MI- 

FAP by SA and the GA for a variable number of evaluations. Table A.7, A.8 , and 

A.3 show the the best and average over three runs (in brackets) cost obtained by 

SA with and without the decomposed assignment approach. All experiments pre­

sented in this section refer to two loops performed by the decomposed assignment 

approach (the number of evaluations shown referring to each single loop).

Table A.7: SA - Siemens 1-4 for SA without decomposition

first loop
second loop

noEvaluations SIEMENS 1 SIEMENS2 S1EMENS3 SIEMENS4

10 ,000  *\V\ 4 .26  (4 .29) 1 9 .3 6 (1 9 .9 9 ) 10.64 (10.85) 102 .00 (103 .01 )
4.24 (4.27) 18.94 (19.03) 10.22 (10.58) 100.49 (101.58)

1 00 ,000  *\V\ 3.38  (3 .44) 1 7 .1 2 (1 7 .6 7 ) 8.24 (8.52) 92.43 (92.71)
3.30 (3.37) 16.75 (16.89) 8.14 (8.31) 92.12 (92.23)

1,000,000 * |K|
2 .84  (2 .91) 15.72 (15.79) 6 .80  (6 .94) 90.33 (91.04)
2.75 (2.83) 15.72 (15.79) 6.61 (6.72) 89.25 (89.98)

2 ,0 0 0 ,0 0 0  * | V\ 2.75  (2 .83) 15.72 (15.79) 6.61 (6.72) 87.25 (87.98)
2.68 (2.76) 15.59 (15.64) 6.59 (6.62) 86.59 (87.12)

Table A. 11, A.3, and A.3 show the the best and average over three runs (in 

brackets) cost obtained by SA with and without the decomposed assignment ap­

proach. For the hardest of the Siemens instances (Siemens 4) the GA results will 

be omitted for the shortest runs, since the algorithm does not produced any feasible 

solutions.

Table A.3 show the the best and average over three runs (in brackets) cost 

obtained by the order-based GA for Siemens 1 with a decomposition into one to 

five subsets.
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Table A.8 : SA - Siemens 1-4 Balanced GPFAP decomposition
S IE M E N S  1 S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noEvals. noSub. first loop

second loop

2 3.91 (3 .94) 19.38 (19.66) 9 .1 8 (9 .3 2 ) 99 .03 (101 .21 )
*•

3.81 (3.90) 19.23 (19.42) 9 .0 2 (9 .1 7 ) 98.92 (100.68)

i 4 . i8  (4 .31) 2 1 .2 9 (2 1 .6 8 ) 8.92 (9 .15) 102 .28(103.15)

1 0 ,0 0 0 *1 ^ 1
3 .69  (4.16) 19.77 (20.04) 8.64 (8.89) 99.19 (106.83)
4 .0 2 (4 .1 2 ) 21 .9 4 (2 2 .0 4 ) 9.52 (9 .70) 104.95(1 ,439)
3 .82  (4.01) 20 .1 5 (2 0 .4 3 ) 9.41 (9 .49) 102.41 (770.1)

< 4 .58  (4.60) 22.38  (22.54) 10.38 (10.60) 107.97 (2,773)
j

4 .44  (4.49) 20 .6 7 (2 1 .3 0 ) 10.05 (10.45) 105.58(106.15)
3 .1 6 (3 .2 8 ) 17.91 (17.98) 7.66 (7 .84) 90.65 (91.50)
3 .14  (3.18) 17 .83 (17 .91 ) 7.58 (7 .81) 90.44 (91.48)

■j 3 .36  (3 .45) 19 .79 (19 .94 ) 7.30 (7 .45) 9 5 .13 (95 .85 )

inn  non « i n

j
3.32 (3.36) 17 .99 (18 .09 ) 7.24 (7.40) 92.88 (93.56)

1W , W v  •  | r  |

4 3.53 (3.58) 17.72 ( l l .9 3 ) 8.09 (8 .28) 94.72 (95.68)
*T

3 .1 5 (3 .1 9 ) 1 7 3 1  (17.42) 7 . 9 8 ( 8 . 1 4 ) 95 .1 9 (9 5 .3 8 )

< 3 .90  (4.03) 17 .88(18 .25) 8.75 (8 .88) 96.32 (96.87)
J 3.50  (3.57) 17.65 (17.79) 8.41 (8 .52) 94.30 (95.19)

2
2 .78  (2 .80) 17 .04 (17 .15 ) 6.59 (6 .77) 85 .24 (85 .71 )

£ 2 .73  (2.77) 16.49 (16.87) 6.52 (6 .61) 85.18 (85.42)
2.97  (3.00) 19.65 ( l6 .7 9 ) 6.49  (6 .61) 89.06 (96.70)

1 AAA AAA > ll/I

J 2.88  (2.94) 17 .66 (17 .91 ) 6.42 (6 .59) 89.55 (90.27)
l.UUU, U W  » | r  |

4 2.99  (3.04) 20.87 (21.02) 7 .0 3 (7 .1 0 ) 90.57 (91.66)
2.96 (2 .99) 18.56 (1 3 3 8 ) 7.02 (7 .04) 90.02 ( 9 0 . l l )

< 3.48 (3.54) 20.35 (26.55) 7.68 (7 .89) 95.12 (95.09)
J

3.22 (3.357 18.17 (lS .3 4 ) 7.46 (7 .58) >C 1 J '-u \o Q 00

*> 2.68  (2.75) 16 .97 (17 .04 ) 6.39 (6 .46) 84.35 (84.80)
2

2.60  (2.69) 16.34 (16.73) 6.37 (6 .44) 84.08 (8 4 3 9 )
2.95 (3.01) 19 .54 (19 .77 ) 6.53 (6 .81) 89.50 (90.59)

AAA AAA _ 11/l
3

2 . 9 3  ( 2 . 9 5 ) 17.41 (17 .60) 6.46 (6 .58) 8 7 .16 (88 .51 )
2 ,0 0 0 .0 0 0  « |k |

4 : - 4 , 3 . 1 1 1 1 20.56 (26.87) 6.95 (7 .02) 89.%  (90.43)
2.90(2 .98) 18 .02 (18 .27 ) 6.79 (6 .89) 89.53 (90.17)

■ 3.34  (3.42) 16.51 (16.46) 7.65 (7 .79) 92.94 (93.5)
3

3 .04 ( 3 . 13 ) 11 .96 (18 .55 ) 1 7.26 7.(41) 91.83 (92 .17)
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Table A.9: SA - Siemensl-4 Unbalanced GPFAP decomposition
S IE M E N S  1 S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noEvals. noSub. first loop

second loop

3 .90  (4.01) 19 .93 (20 .17 ) 9 .1 0 (9 .3 6 ) 100.09 (100.66)
3 .8 8 (4 .0 1 ) 18 .90 (19 .13 ) 8.84 (9.08) 99.75 (100.34)
4 .0 8 (4 .1 6 ) 2 1 .2 4 (2 1 .5 0 ) 9 .6 0 (9 .8 1 ) 103.12(104 .03)
3.%  (4 .02) 19 .77(19 .89) 9.24  (9.51) 101.47(101 .85)

A 4 .68  (4 .79) 19.43 (19.48) 9,46  (9.84) 105.48(1 ,050)
*4

4 .1 4 (4 .2 3 ) 18.91 (19.17) 9.54  (9.92) 103.12(773 .9 )
6 .27  (6 .38) 20 .60  (20.73) 10.07 (10.28) 109.87 (2,098)
4 .29  (4 .63) 19 .09(19 .30) 9.65 (9.89) 106.79(107.74)

2 3 .3 8 (3 .4 4 ) 18.24 (18.62) 7 .59  (7.69) 91.91 (92.25)
3 .30  (1 3 7 ) 1T59 117.S6) 7.31 (7.49) 91.14 (91.63)
3 .35  (3 .43) 1 9 .79(19 .94) 7 .82  (7.99) 93.3$ (94.16)

io o .o o o  *  | v \

j
3 .29  (3.34) 1 7 .99(18 .10) } .} 9  (7.98) 92.99 (93.61)

A 3 .99  (4 .20) 17.72 (17.93) 8.43 (8.57) 94.84 (95.22)
*T

3.30(3 .44) 17.31 (17.42) 7.92 (8.13) 93.78 (94.15)

< 5 .6 6 (5 .8 5 ) 18 .80 (19 .14 ) 8.61 (8.86) 97.09 (97.74)
9

3.91 (4 .07) 17 .69 (17 .75 ) 7 .6 9 (8 .1 1 ) 95.41 (96.33)
2 .74  (2 .79) 17.32 (17.53) 6.31 (6.39) 86 .14 (86 .52 )

z
2.83 (2 .90) 16.81 (16.90) 6.22  (6.30) 85.67 (86.33)

•1 2.74  (2 .82) 19.35 (19.38) 6.93 (7.08) 91.28 (91.77)

1 (W) ■ ll'l
J

2.73  (2.76) 17 .00 (17 .16 ) 6.88 (6.91) 9 0 .5 8 (91 .01 )1, UUu, UW * |
4 4.02  (4.04) 10.00 (U .6 1 ) 7.28 (7.79) 9 1 .1 7 (91 .86 )

2.90 <3.01 , 16.15 (16.23) - r r . : i 9 0 .1 9 (90 .91 )

c 5.39  (5.59) 18 .69 (18 .78 ) 7.28 (7.57) 93.25 (93.71)
3.47  (3 .53) 16 .44 (16 .60 ) 6.84  (7.02) 92.62 (92.23)

■> 2 .69  (2 .74) 16 .94 (17 .13 ) 6.22 (6.23) 85.72 (85.90)
z

2.61 (2.66) 16 .20 (16 .37 ) 5.98  (6.13) 84.58 (85.13)
2.63  (2 .75) 19 .06 (19 .17 ) 6.68  (6.77) 91.47 (91.94)

i  nnn iw i  ,  tv'i 2.63  (2 .72) 16.83 (16.97) 6.42  (6.56) 89.51 (90.35)
Z.UW.UUU * \r i

j 3.73 (3 .85) 16.56 (16.72) 6.84 (6.88) 90.71 (91.52)
4

2.85  (2 .86) 16.07 (16.27) 6.75 (6.80) 90.02 (90.68)

c 4.31 (4.48) 18 .44 (18 .57 ) 7.23 (7.24) 93.72 (94.04)
3 .28  (3.43) 16.30 (16.37) 6.83 (6.94) 9 1 .1 8 (92 .13 )

Table A. 10: order based GA - Siemens 1 - Balanced GPFAP decomposition
1 0 ,0 0 0 -  \V \ evals. || 1 0 0 ,0 0 0 - i n  evals | 1 .0 0 0 ,0 0 0  -  |K | evals. || 2 ,0 0 0 .0 0 0  -  |K1 evals.

noSub. first loop

second loop

5.98 (6 .02) 5.24  (5 .32) 5 .1 0 (5 .1 2 ) 5 .1 6 (5 .0 3 )
1 5.88 (5.95) 5.03 (5 .19) 5.01 (5.03) 4 .97  (4.83)

5 .57 (5.78) 5.04 (5 .13) 4.62 (4.73) 4 .60  (4.66)
2

5.65 (5.71) 4 .97  (5 .03) 4.34  (4.40) 4 .2 7 (4 .3 1 )
5.73 (5.82) 4 .59  (4.84) 4.35 (4.39) 4 .22  (4.32)

3
5.46  (5.51) 4 .20  (4.52) 4 .0 5 (4 .1 2 ) 3.93 (4.01)
5.52  (5.68) 4.53  (4 .70) 4 .2 9 (4 .3 1 ) 4 .30  (4.37)

4
5.28 (5.41) 4.28 (4.551 — 1 3.92 (4.05) 3.73 (3.81)
5.88 (6 .00) 4 " < 4  < 5 . 4 .2 7 (4 .4 1 ) 4 .20  (4.28)

5
5 . 5 6 ( 5 . 57 ) " 4.51 (4 .53) 3.99 (4.10) 3.99  (4.02)
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Table A. 11: GA - Siemens 1-4 for SA without decomposition

t  a t  le a s t  1 in v a lid  so lu tio n  * n o  v a lid  s o lu t io n s

first loop
second loop

n o E v a lu a tio n s SIEMENS 1 SIEMENS2 siemens3 SIEMENS4

10, 000* m
6 .1 8 (6 .4 0 ) 21 .93  (22.30) 12.56 (679.40) t -
6.09 (6.29) 21.81 (22.15) 12.45 (12.65) -

100 ,000  * |K|
5.35 (5 .47) 19.73 (19.98) 12 .07 (12 .29 ) -
4.88 (5.00) 19.10 (19.41) 11.99(12.23) -

1 ,0 0 0 ,0 0 0  *|F1
4 .1 9 (4 .3 6 ) 18 .2 0 (1 8 .4 9 ) 10 .77 (11 .48 ) 106.95 (2,106)
3.96 (4.01) 18.00 (18.14) 9.77 (10.20) 103.26 (103.51)

2, 000, ooo * \v\ 3.%  (4 .01) 18.00 (18 .14) 9 .77  (10.20) 105 .69(106 .42)
3.61 (3.72) 17.64 (17.91) 9.54 (9.77) 101.05 (102.14)

Table A. 12: GA - Siemens 1-4 GA Balanced GPFAP decomposition
t  a t  le a s t  1 in v a lid  s o lu t io n  * n o  v a lid  so lu t io n s

S IE M E N S  1 | S IE M E N S 2 S IE M E N S 3  ] S IE M E N S 4

noEvals noSub. first loop

second loop

5.97  (6 .05) 23 .20  (23.34) 8.80 (8 .84) -& 5.91 (5.99) 22.49 (23.12) 8.76 (8 .82)

\ 6 .1 8 (6 .2 4 ) 24.86  (24.95) 8.46 (8 .63) -

10. o o o - i n

J
5.99  (6 .00) 22.97  (23.52) 8.41 (8.53) -

A 6.78  (6 .84) 24.50  (24.96) 8 . 8 8  (9 .07)
4

6.05  (6 .18) 23 .75 (24.44) 8.76  (8 .79)

c 7 .0 2 (7 .1 7 ) 24.66  (24.90) 9.54 (9 .79)
6.63 (6 .58) 22.60 (23.59) 9.11 99 .31)

-> 4.85  (5 .01) 2 0 .8 2 (2 1 .0 5 ) 7.21 (7 .38)
2

4.61 (4 .72) 19.69 (19.74) 7 .1 4 (7 .2 6 ) -
5.03 (5 .05) 22 .22 (22.28) 7.28 (7 .31) -

10 0 . o o o *  m

3 4.42 (4.46) 20 .1 6 (2 0 .2 4 ) 7.11 (7 .20)

A 5 .1 8 (5 .2 6 ) 22.15 (22.44) 7.40 (7 .56) -
4

19 .99 (20 .18 ) 6.96 (7.20) -
6.96  (7.04) 2 1 .9 2 (2 2 .2 4 ) 8.41 (8 .45)

5 5.06 i 5.3:') 19.73 (19.97) 7.61 (7 .75) -
4 .1 4  (4 .19) 19 .04 (19 .16 ) 6.39  (6 .64) 106.67 (773.3)

2 5 ■ : > -4 17.94 (18.01) 6.20 (6.34) 102.09 (104.28)
3.93 (4.43) 2 0 .8 8 (2 1 .1 4 ) 6.46 (7 .30) 108.02 (776.5)

1 .0 0 0 ,0 0 0 .  m

3 3.54 (3.63) 18 .98(19 .13) 6.38 (7 .63) 104.35 (704.51)
4 .7 0  (5 .89) 21.39 (21.64) 6.87 (7 .95) 111.63 (741.8)

4
3.62  (3 .78) 19.01 (19.23) 6 .49  (7 .55) 106.51 (738.1)
8 .0 2 (8 .1 7 ) 21.35 (21.49) 7.57 (8 .61) 2 ,075 (2,114)

5 6.63 (6 .58) 19 .26 (19 .43 ) 6.69 (8 .00) 110.61 (687.2)
3.73  (3 .80) 18 .88 (19 .03 ) 6.11 (6 .65) 98.31 (99.93)

2
3 .40  (3 .45) 17.83 (17.86) 6.08 (6.21) 96.84 (97.22)

20.70  (20.$5) 6.33 (7 .09) 103.61 (104.46)
3 3.30  ( 3 . 4 4 ) ■N- n. l SAOi 6.21 (7 .05) 101 .09(101 .93)

2,000.000 * m 4.63  (4 .81) 2 1 .5 0 (2 1 .7 9 ) 6.74  (7 .34) 102 .55 (103 .60 )
4 3.37(3 .49) 19 .10(19 .21) 6.28 (7 .19) 101 .84 (102 .19 )

5.70  (6 .28) 21 .0 7 (2 1 .2 3 ) 7.32 (8 .06) 110.71 (768.1) t
5 4.45  (4 .61) 18 .95 (18 .97 ) 6 .6 6 (7 .1 4 ) 106.81 (710.8) t
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Table A. 13: GA - Siemens 1-4 GA Unbalanced GPFAP decomposition
t  at least 1 invalid solution * no valid solutions

SIEMENS 1 SIEMENS2 SIEMENS3 SIEMENS4
noEvals. noSub. first loop

second loop
6.07 (6.12) 23.02 (23.28) 8.60 (8.75) -
5.86 (5.97) 22.55 (23.07) 8.42 (8.53) -
6.20(6 .31) 24.42 (24.84) 8.88(9.14) -
6.15(6 .23) 23.46 (24.07) 8.75 (8.93) -
5.97 (6.07) 22.87 (23.27) 9.21 (9.52) -
5.82 (5.93) 22.52 (23.08) 8.89 (8 .% ) -
6.42 (6.58) 54.57 (54.59) 9.68 (9.75) -
(>.08 (6.57) 22.51 (23.56) 97<T5(9.l7) -
4.69 (4.88) 21.15(21.72) 6.97 (7.06) -
4.34(4 .41) 19.79 (20JO) 6.94 (7.04) -
4.73 (4.87) 22.29 (22.41) 7.27 (7.56) -
3 .93(4 .14) 19.95(20.11) 7.20(7.37) -
4.45 (4.50) 20.50(20.91) 7.65 (7.83) -
3.98 (3.92) 19.48(19.81) 7.40 (7.55) -
4.84 (4.92) 21.82 (22.23) 8.10(8 .26) -
4.00 (4.08) 19.98(20.11) 7.44 (7.59) -
3.72 (3.79) 18.69(19.27) 6.82(6 .91) 105.54 (106.03)
3.39 (3.46) 17.61 (18.05) 6.63 (6.75) 104.13(104.68)
3.59 (3.70) 20.56 (20.98) 7.13(7.67) 104.05(104.18)

1.000,000. |V|
2.98 (3.20) 18.19(18.68) 6.78 (6.92) 103.69 (103.95)
3.57 (3.65) 18.96(19.09) 7.50(7 .99) 104.41 (105.09)
3.15(3.21) 17.95 (18.28) 6.81 (7.06) 103.83 (103.99)
3.90 (3.98) 20.44 (20.49) 5.01 (8 .6 2 ) 104.70(105.12)
3 .14(3 .50) 18.91 (18.95) 7.41 (7.74) 104.17(104.66)
3.53 (3.57) 18.%  (19.38) 6.34 (6.62) 104.49(104.88)
3 .18(3 .28) 17.46 (18.21) 6.17 (6.41) 103.64 (103.68)
3.31 (4.52) 20.57 (20.85) 7.02 (7.49) 103.11 (103.53)

2,000,000 * \V] 3 .07(3 .14) 18.07(18.44) 6.69 (6.77) 102.89 (103.02)
3.46 (3.49) 18.87(19.11) 7.37(7.83) 103.52(104.15)
2.86 (3.04) 17.85(18.23) 6.76 (6.85) 102.96(105.54)
3.75 (3.65) 56.03 (51.55) 7.43 (7.55) 104.71 (105.28)
3.24 (3.27) 18.42(18.79) 7.10(7 .06) 104.53 (104.84)
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Table A. 15, A. 14, and A. 16 show the best and average over three runs cost 

for the Bradford benchmarks obtained by SA with and without the decomposed 

assignment approach. For all of the instances we present the results produced by 

the balanced GPFAP after 100,000 * \ V\ and 2,000,000 * \ V\ total evaluations. For 

BradfordO, Bradford2, and Bradford4 we also present for comparison the results 

produced by the unbalanced version.

Table A. 17 summarizes the results for the Siemens 1 and BradfordO experi­

ments performed by SA with a balanced GPFAP decomposition in which the par­

titioning considers only the soft constraints, see Section 7.3.2. We present the best 

and average (in brackets) cost over three runs obtained after 100,000 * | V\ and 

2,000,000 * \ V\ total evaluations for a decomposition into two to five subsets. For 

the results with the whole approach we refer for comparison to Tables A.7 and 

A.15.

Table A. 14: SA - Bradford - GPFAP decomposition

noEvals. noSub.

Br a d f o r d O BRADFORD2
Bal. GPFAP I Unbal. GPFAP Bal. GPFAP | Unbal. GPFAP

first loop
second loop

100.000

2
2.04 (2 .25) 2 .40  (2 .44) 7.15 (7 .73) 6.72 (6 .93)
1 .9 2 (1 .9 9 ) 1.97 (2.08) 6.27 (6 .40) 5.41 (5.58)

3
1.83 (1 .87) 1.99 (2 .01) 7.63 (8 .24) 7 .4 9 (8 .1 7 )
1.67(1.80) 1 .9 2 (1 .9 4 ) 7 .32 (7 .41) 6 .89  (7 .26)

4
2.23 (2 .28) 2 .48  (2 .83) 8 .26  (8 .82) 8.21 (8 .79)
2.13 (2 .17) 2 .00  (2 .09) 7.65 (7 .84) 7.62 (7 .77)

5
2 .90  (2 .94) 3 .3 8 (3 .3 9 ) 8 .1 7 (8 .9 1 ) 8.07 (8.64)
2.41 (2 .43) 1.91 (2 .04) 8.27 (8 .35) 7.37 (7.52)

2.000.000 < \y]

2
1.31 (1 .41) 1 .3 7 (1 .7 2 ) 5 .1 7 (5 .3 6 ) 4 .79  (4.99)
1 .1 6 (1 .2 3 ) 1 .0 9 (1 .1 4 ) 4 .27  (4 .24) 3.83 (3.92)

3
1 .1 8 (1 .2 0 ) 1.11 (1 .18) 6.45 (6 .92) 6.15 (6.21)
1.07(1.13) 1 .0 9 (1 .1 4 ) 5 .34  (5 .49) 5.05 (5.24)

4
1 .4 9 (1 .6 3 ) 2 .1 7 (2 .3 1 ) 6 .97 (7 .17) 6.25 (6 .34)
1 .2 6 (1 .3 7 ) 1 .2 4 (1 .2 6 ) 5.75 (5 .93) 5 .1 4 (5 .3 3 )

5
2.07 (2 .15) 2 .62  (2.72) 7.25 (7 .64) 6 .79  (7 .24)
1 .4 7 (1 .5 4 ) 1 .2 6 (1 .2 9 ) 6.13 (6 .58) 5 .96  (6 .57)
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Table A. 15: SA -BradfordO-10 for SA without decomposition

first loop
second loop

noEvaluations bradfordO BRADFORD1 bradford2 BRADFORD4 BRADFORD10

100 ,000  * IH
2.40 (2.46) 2.83 (2 .87) 6 .69  (6 .85) 27 .39  (27.72) 196.53 (197.05)
2.16 (2.37) 2.32 (2.41) 6.57 (6.71) 27.19 (27.24) 195.48 (196.36)

2 ,0 0 0 ,0 0 0  * | V\ 1 .42 (1 .66 ) 1.96 (2 .03) 4 .5 6  (4.71) 20 .84  (21.07) 188.64 (190.08)
1.31 (1.43) 1.64 (1.75) 4.46 (4.53) 20.62 (20.79) 187.13 (188.34)

Table A. 16: SA - Bradford - GPFAP decomposition
BRADFORD4 BRADFORD1 BRADFORD10

noEvals. noSub.
Bal. GPFAP Unbal. GPFAP Bal. GPFAP Bal. GPFAP

first loop
second loop

27.53 (27 .68) 27 .72  (27 .93) 3.21 (3 .24) 201.26  (202.56)
25.19 (25.39) 26.45 (26 .48) 1.88 (1.91) 192.21 (193.56)
31.09  (31 .62) 31.37 (31 .79) 4 .1 0 (4 .4 2 ) 223 .90  (225.92)

100,000 *\V\ 3 29.43  (29 .86) 30.00  (30 .21) 2.55 (2 .59) 206 .50  (208.38)
32 .89  (33 .68) 33.95 (34 .12) 5.82 (5 .92) 234.41 (235.16)
31 .37  (32 .08) 32.38 (32 .89) 3 .1 6 (3 .2 0 ) 214.90  (216.53)
35.19  (36 .45) 35.83 (36 .18) 6.06 (6 .57) 235.81 (236.09)
26.01 (26 .52) 2 7 .3 6 (2 8 .1 9 ) 4.25 (4 .62) 228.26  (230.04)

21.40  (21 .83) 22.17  (22 .77) 2 .1 6 (2 .3 9 ) 192.37 (192.98)
18.51 (18.78) 19.95 (20.44) 1.32 (1.21) 185.05 (185.39)
25.83 (26 .27) 26.64  (27 .81) 2.46 (2 .80) 203 .69  (204.60)

2,000,000 *\V\ 20.54  (21 .01) 21 .66  (22 .21) 1.88 (2 .11) 188.38 (189.51)
33.93 (34 .29) 34 .82  (35.29) 3.38 (3 .65) 211.81 (212.94)
23 .09  (24 .65) 24.63 (25.50) 2.36 (2 .56) 193.51 (194.43)
37.85 (38 .14) 38.71 (39.31) 4.34  (4 .97) 213.90  (215.56)
28 .52  (29 .83) 29.68 (30 .56) 3.68 (3 .81) 196.02 (197.23)

2 0 2



Table A. 17: Siemens 1 and BradfordO - Balanced GPFAP decomposition with only soft
constraints

noSub.

10,000 * |K | evals. | 100,000 * | V\ evals. | 1,000,000 * | V\ evals. | 2 ,000,000 * \V \ evals.

first loop

second loop

SIEMENS 1

1 4 .26  (4 .29) 3 .38  (3 .44) 2 .84  (2 .91) 2.75 (2.83)
4 .24  (4 .27) 3 .30  (3 .37) 2.75 (2 .83) 2.68 (2.76)

2 3.92 (4 .11) 3.21 (3 .34) 2.83 (2.88) 2.72 (2.91)
3.75 (3.89) 3 .1 4 (3 .2 9 ) 2 .76  (2.81) 2.60 (2.69)

3
3.94  (4.17) 3.15 (3 .21) 2 .82  (2.89) 2.77 (2.88)
3.77 (3.90) 3.12 (3.20) 2.70 (2.77) 2.69 (2.75)

4
4.03 (4 .15) 3.25 (3 .32) 2.92 (3 .00) 2.76 (2.88)
4.01 (4 .07) 3 .20  (3 .28) 2 .67  (2 .87) 2.68 (2 .79)

5
4.04  (4 .24) 3.35 (3 .39) 2 .88  (2 .94) 2.87 (2 .94)
3.93 (4 .02) 3 .24  (3 .31) 2 .78  (2.86) 2.73 (2 .85)

b r a d f o r d O

i
3.69 (3.82) 2 .40  (2 .46) 1.53 (1 .88) 1 .4 2 (1 .6 6 )
3 .60  (3.75) 2 .1 6 (2 .3 7 ) 1 .4 2 (1 .6 6 ) 1.31 (1 .43)

2 3 .1 9 (3 .2 9 ) 1 .9 2 (1 .9 5 ) 1.28 (1 .32) 1 .0 9 (1 .1 4 )
3.02 (3 .17) 1 .8 9 (1 .9 1 ) 1 .2 0 (1 .2 3 ) 1.04 (1.10)

3
3 .1 5 (3 .3 8 ) 1.81 (1 .91) 1.11 (1 .22) 1 .1 7 (1 .2 1 )
3.01 (3.16) 1.79(1.90) 1.10(1.16) 1 .0 8 (1 .1 0 )

4
4.20  (4 .37) 2 .98 (3 .06) 2 .36  (2 .52) 2.22 (2 .30)
3.21 (3.30) 2 .08  (2 .15) 1 .5 4 (1 .6 2 ) 1 .4 4 (1 .4 7 )

5
3.78 (4.00) 2 .86  (2 .95) 2 .1 8 (2 .2 4 ) 1.77 (1.93)
3.35 (3.52) 2 .36  (2 .43) 1.71 (1 .73) 1.59 (1.68)
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B.l The Cardiff University Condor Pool

The Condor Pool is the product of the Condor Research Project at the University 

of Wisconsin-Madison, and it was first installed as a production system in the UW- 

Madison Department of Computer Sciences in the early nineties. This project aims 

to develop, implement, deploy, and evaluate mechanisms and policies that support 

High Throughput Computing (HTC) on large collections of distributively owned 

computing resources. Software tools have been developed to enable scientists and 

engineers to increase their computing throughput. Users submit their serial or par­

allel jobs to Condor, which places them into a queue, chooses when and where to 

run the jobs based upon a policy, carefully monitors their progress, and ultimately 

informs the user upon completion.

Cardiff University has a large scalable Windows Condor pool, which distributes 

Condor to ‘Open Access’ workstations to provide a centrally managed High Throu­

ghput Computing service to all researchers of the University. There are currently 

800 workstations owned by Information Services throughout the whole Univer­

sity campus. They are all Windows XP SP1 and access the main Novell NetWare 

network.

We have implemented a procedure, which runs for all of the experiments con­

ducted on a specific benchmark, in order to compare the cost-run time output pro­

duced by different machines in the pool. The procedure performs 100 fitness evalu­

ations of a sample assignment generated at random and records the computational 

time in millisecond. The same run-time recording is also executed (for a fixed 

values of the random seeds) for both the whole and the decomposed assignment 

approach on a specific test machine (a 3.000 GHz Intel Pentium 4). Subsequently, 

all run times produced by the different machines in the Condor pool are scaled with 

the reference value obtained in that test. Figure B.l shows the cost-runtime plot 

for a run of Siemens 2 (with the whole and the decomposed assignment approach 

into two subsets) produced respectively by the Condor pool, the test machine, and 

the final scaled output obtained by the procedure described above.
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Figure B.l: Cost-time plot for Siemens2 solved by SA with the whole approach and GP­
FAP decomposition into two subsets (1,000,000 * | V| evaluations)
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C.l Tuning for FS-FAP

The advantage of the permutation based GA in Algorithm 5.1 applied to the MS- 

FAP was the property of generating only zero-violations assignments, thus reduc­

ing significantly the search space and speeding up its convergence without pre­

venting the full exploration of the solution space. For the FS-FAP, the domain of 

available frequencies is limited and it is usually not possible to find a zero-violation 

assignment for a given set of transmitters. As a consequence, the evaluation of an 

individual is computed according to the modified sequential algorithm proposed 

in Algorithm 6 .1. However, some other preliminary tests were needed in order to 

determine an appropriate setting of the parameters.

It is known that one of the most difficult parameter to set in a GA is the size 

of the population and the consequent number of generations required to converge 

to a near optimal solution. This choice depends on the individual problem con­

sidered and affects the results either in terms of solution quality or runtime. We 

can sensibly expect a relationship between the optimal population size and the size 

of the problem considered, namely the number of transmitters. A number of ex­

periments were conducted using the test problems P\, Pi and C4 . The number of 

frequencies available for each of the instances was chosen relative to the minimum 

span values presented in Table 5.1. Initial experiments varied the population size, 

using the number of transmitters \ V\, together with 2 x \V\ and For the smaller 

problems greater population sizes have been tested too. The GA was stopped when 

there were no further improvements for 100 generations. Results are summarized 

in Table C .l, which gives the mean and the best costs after three runs for each of 

the test problems considered. Note that, because of the tendency of the GA to get 

trapped in local minima (see the phenomenon of the genetic drift [48]), increasing 

the number of generations for a fixed population size does not often produce any 

improvement in the quality of solutions. Although the tests performed indicate that 

best performance are produced by the biggest population, considerations about the 

percentage improvement and the run times required has led to the choice of keep-
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Pi 2 0  freq. P2 300 freq. C4 50 freq.
Pop. Size Gen. Mean Best Mean Best Mean Best

500 500 132.7 132 223.7 217 303.3 292
1 0 0 0 500 132 130 208.3 205 299.3 297
1 0 0 0 1 0 0 0 131.3 130 206.7 205 298.3 296
2 0 0 0 2 0 0 0 130 130 205.7 203 295.7 293

Table C. 1: Mean and best cost for data sets P \, P2 and C4 with different population sizes

^\Mut.
C ros^\ one per offspring 0 . 0 1 0.005

1 0 0 % 132 132 131
130 130 131

80% 134 134.7 134.7
132 134 134

50% 134.3 132.3 135
133 131 135

Table C.2: Best cost for problem Pi with a fixed spectrum of 20 and different Crossover 
and Mutation rates.

ing the same settings already used for the MS-FAP in Section 5.1 (500 generations 

and a size of 1 0 0 0  chromosomes).

In [118] the genetic operators are applied with rates that produce the best 

performance for the MS-FAP. Cycle crossover was applied with a rate of 100% 

whereas one single order-based mutation was performed for each of the offspring 

generated. Different rates have been tried on data set P\ for the FS-FAP, increasing 

respectively the amount of mutation and decreasing the crossover. In particular, 

crossover was applied with rates of 50%, 80%, and 100% while mutation has been 

tested with rates of 0.01 and 0.005. These values were chosen according to previ­

ous works on GAs with order-based representation (see [23]). Results are presented 

in Table C.2. No significant improvements were observed and so the original rates 

were kept for all of the rest of the experiments performed.

To evaluate the effectiveness of the GA we compared its results with a series 

of runs of random assignments and sequential assignments applied to random per­

mutations. As an example, Table C.3 compares for test problem Pj the mean cost
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GA Random Random + Sequential

Pi 2 0  freq. 132.0 395.0 175.7

P, 40 freq. 14 202.7 28.7

P i 300 freq. 2083 1378.7 263.3

Pi 400 freq. 27.0 1034.0 57.3

Ci 50 freq. 349.7 2317.0 594.0
Ci 65 freq. 963 1786.3 280.3
C3 50 freq. 2993 2313.3 528.3

C3 65 freq. 473 1784.3 221.7

Table C.3: Comparison with Random and Random Sequential assignments

over five runs produced by the GA with the mean values produced by a thousand 

random assignments, and by the same number of random orderings followed by 

the sequential algorithm 6.1. For the same problem, Figure C.l plots the graph 

cost versus number of occurrences obtained by the random assignments above and 

compares them with the mean costs produced by the GA.

Figure C .l: Cost versus number of occurrences for data set P2  with a fixed spectrum of 
300 channels

■  RANDOM
■  RANDOM SEQUENTIAL 

-  -  Avg GA

40

ZOO 400 600 600 1000 1200 1400 1600
CO $1

Further experiments have been conducted to determine which of the initial or­

derings originally proposed in [54] produces the lower cost using the sequential 

assignment. The same ordering will be used in order to generate the initial popu­
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lation of the order-based GA and as the basic ordering to be further decomposed 

by the generalized degree decomposition using the classification in [110]. We con­

sider Largest Degree First (LF), Largest Degree First (Exclusive) (LFE), Smallest 

Degree Last (SL) together with their generalized versions (GLF, GLFE, GSL). Dur­

ing the frequency allocation transmitters will be selected only sequentially from the 

given initial ordering.

In addition, the effectiveness of the algorithm which selects the next frequency 

to be assigned can also be investigated. Note that, the sequential algorithm 6.1 

only modifies the Smallest Acceptable Frequency (SAF) procedure, by restricting 

it to the the choice of the channel which produces the lowest constraint violations. 

Alternatively, other algorithms can be used, such as Smallest Acceptable Occupied 

(SAO, which further restricts the choice to the already occupied frequencies), and 

Smallest Most Heavily Occupied (SAMHO, which assigns the smallest among the 

most heavily occupied channels). Table C.4 shows the results for three bench­

marks, in which it is shown the number of violations violNo together with the cost 

already defined in Problem 1.2 (that is the sum of total violations of the interfering 

transmitters). From the figures it appears that (as for the MS-FAP) GSL is the best 

performing algorithm for the selection of the next transmitter selection. SAMHO 

is superior for frequency selection instead some of the tests conducted. However, 

this superiority is much less emphatic when the same procedure is used to actually 

run the GA for a sample number of generations (as shown in Table C.5). As a 

consequence, and because of the ease of the implementation, SAF was used for all 

the rest of the experiments (see Algorithm 6.1).

The introduction of a LS allows a more complete exploration of the solution 

space and it is thought to improve the performance of the GA. However, too in­

tensive a LS may lead to an incorrect evaluation of the effectiveness of the GA 

itself, and degrade the runtime of the algorithm. Hence the basic LS procedure in 

Algorithm 6.2 has been implemented with the simple acceptance criteria proposed 

in Definition 6.3 (hill climbing and Metropolis ).
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O rd e r in g A s s ig n m e n t £<•€ £ (G ) fFS ( / . « )  |  vioINo X«£(G) <fFS(f-e) I vioINo Xee£(C) 'PFsU•«) I VioINo
P i 35  fre q . P i  4 0 0  freq . C\ 65  freq .

L F S A F 4 4 24 58 58 158 153
L F S A O 4 9 29 139 84 176 167

L F S A M H O 4 9 26 134 134 168 160

L F E S A F 45 29 63 63 173 159

L F E S A O 4 6 18 141 85 165 154

L F E S A M H O 4 6 22 135 74 2 78 239

S L S A F 4 2 19 58 58 289 236

S L S A O 4 6 19 141 85 277 226

SL S A M H O 4 2 19 134 134 155 153

G L F S A F 4 8 22 63 63 155 150

G L F S A O 50 19 68 34 157 151

G L F S A M H O 4 9 21 68 34 169 159

G L F E S A F 4 6 25 68 34 2 5 4 192

G L F E S A O 4 6 25 63 63 2 4 9 179

G L F E S A M H O 4 6 27 63 63 2 6 4 205

G S L S A F 3 8 17 44 34 156 154

G S L S A O 4 0 20 4 7 32 157 151

G S L S A M H O 39 19 44 32 133 133

Table C.4: Comparison of sequential assignments algorithms for benchmarks P\, Pi, and 
Ci

O rd e r in g A s s ig n m e n t X r t  £(G) <PFS<J»

P i 35  freq . P i  4 0 0  f req . C i 65  freq .

G S L S A F 29 27 100
G S L S A O 3 0 27 131

G S L S A M H O 29 27 98

Table C.5: Comparison of different sequential assignment algorithms for the order-based 
GA run for 500 generations. Results for data sets P\, Pi, and Ci
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Firstly, the LS has been tested for a number of times on some good assign­

ments, such as those produced by the original GA after few generations, without 

being able to produce any cost improvement. This confirms the actual effectiveness 

of the GA procedure itself. Then the LS has been included into the GA after the 

individuals fitness evaluation, thus applied to each of the chromosome in the initial 

population and to each of the offspring newly generated by the genetic operators 

during the run of the algorithm. HC and MET have been initially tested on the data 

sets Pi with fixed spectrums of 20 and 40 channels, and P 2  with a fixed spectrum 

of 300 and 400 frequencies. A value of k equal to 1 and different values of T in 

the range 1-10 have been used for the Metropolis algorithm. To better analyze 

the effectiveness of the LS we let the algorithm run for longer (i.e 1000 genera­

tions). Table C . 6  summarizes the results and compares them with those given by 

the original GA procedure without any LS applied.

Pi 20 freq. Pi 40 freq. P 2 300 freq. P 2 400 freq.
LS Mean Best Mean Best Mean Best Mean Best

MET T= 10 130 129 13.7 13 207.0 204 27 27
MET T=1 136 135 14 14 210.7 210 27 27
MET T=0.5 135.7 135 14 13 207.3 204 27 27
MET T=0.3 132 129 15 15 207 203 27 27
MET T = 0 .1 131 131 14.3 14 209 203 27 27
HC 131 129 14 14 206.3 201 27 27
No LS 132 130 14.7 14 208.3 205 27 27

Table C.6: Mean and best cost for data sets P i , and P 2 with different LS

A first important consideration is that the LS is not always effective and some­

times produces a worse performance than the original GA. It is important to stress 

that this happens even if the LS itself cannot actually introduce worse individu­

als than those in the assignments produced by the plain sequential algorithm 6 . 1  

without any further local search procedures added. This can be explained by the 

following considerations. We already mentioned that the aim of the LS was to:

• Allow a wider exploration of the search space. Thus good assignments, al­

ready produced by the sequential algorithm, can be further improved by ex­
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ploring neighbours in the solution space.

• Add more variety in the population. Thus some orderings which would have 

been excluded with an evaluation on a sequential basis, can be introduced 

into the population. This increases its variety and makes the LS actually 

active in the GA procedure.

If only the former statement is true, the LS does not play an active role and 

may result in a worse performance than the original GA procedure.

Figure C.2 shows the best and the mean cost over the population for each gen­

eration of a single run of data set P\ with a fixed spectrum of 20 channels. LS 

Metropolis is applied with a value of T equal to 0.5. The figure compares these 

costs with those obtained by the GA without any LS added. It also shows the aver­

age cost improvement due to the LS over the generations. We can see how the LS 

gives a relevant contribution during the first generations only. In fact, the final cost 

produced is worse than the one obtained by the original GA with no search applied 

(see Table C.6 ).

Figure C.3 shows a situation when the LS is successful instead. We can see that 

(between 500 and 900 generations approximatively), the mean sequential cost be­

comes slightly worse. This means that the LS introduces new different orderings, 

which would have been excluded with an evaluation only based on the sequential 

assignment. We can also see how the mean cost improvement presents, at the same 

time, a discontinuity in the corresponding graph during the same range of genera­

tions. We can interpret this as a sign of the effectiveness of the LS, which results in 

an actual improvement in the final cost. However, Table C . 6  shows how it is rather 

difficult to set the value of T which gives the best performance for the Metropolis 

algorithm. As a consequence, for the remaining experiments we chose to use a 

variable value of T decreasing from a high value to a low value, set respectively 

to 10 and 0 in our tests. Finally, Table C .l compares the performance of the GA 

respectively with the final LS chosen and without it, showing the significant benefit 

brought about by the local improvement procedure.
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Figure C.2: Costs produced by a single run o f data set P\ with a fixed spectrum of 20 
channels and Local Search Metropolis with T=0.5

G A -M E T T  10 -* 0 GA - No Search
Mean Best Mean Best

Pi 2 0  freq. 130 129 132.7 130
P\ 40 freq. 13.6 13 14 14
P 2 300 freq. 207.0 204 208.3 205
P 2 400 freq. 27 27 27 27
Ci 50 freq. 346.0 338 349.7 344
Ci 65 freq. 95.7 94 96.0 96
C3 50 freq. 298.7 296 299.3 297
C3 65 freq. 46.4 44 47.7 45

Table C.7: GA comparison with and without LS

For some of the fixed spectrum instances (e.g. G\, Gi and G3 ), the order based 

GA is outperformed by other standard meta-heuristics using the whole approach. 

This is essentially due to the intrinsic limitations of the order-based representation 

and the impossibility of increasing the amount of the local search procedure with­

out having the natural structure of the completely distorted. Table C.7 shows a 

comparison of the non-decomposed approaches for SA and the GA. Consequently, 

since the considerable gap between the two algorithms, it becomes necessary to 

change the representation of the GA to the direct representation described in Sec­

tion 7.1.2.
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Figure C.3: Costs produced by a single run of data set Pi with a fixed spectrum of 20 
channels and Local Search Metropolis with T=0.3

C.2 Tuning for MI-FAP 

C.2.1 SA

As reported in [60,100] one of the problems with S A is that its performance can be 

heavily affected by the choice of initial temperature and other parameters regulating 

the cooling phase. A possible approach to this choice is to adopt either rather high 

values or set the initial values according to some acceptance criteria, for example 

setting the temperature for which a minimum number of moves is accepted [62], 

However, this value is still strictly related to the order of magnitude of the cost 

produced for a specific problem.

According to the terminology introduced in [62], the different elements of the 

SA structure used in our implementation are:

System configuration The configurations representing a solution F =

to the minimization problem representing the FAP are integer vectors in 

which ft  represents the frequency assigned to transmitter i, with n the to­

tal number of transmitters in the network.

Neighbour moves We considered all the moves proposed in [60] and then chose 

that producing the best performance for each type of FAP. In all the defini-
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tions below the new channel values are assigned to randomly chosen trans­

mitters. Frequencies are also chosen at random within the corresponding 

transmitter domains.

single move Neighbours are the assignments that differ only for a single 

frequency value assigned to a specific component in the vector:

F ’ F  »  3j, 1 < j  < n : f } + f j  and f k = f k V 1 < k < n, k ± j

double move Neighbours are the assignments that differ for exactly two fre­

quency values assigned to two distinct components in the vector:

F  -» F  <=> 3 j u j 2 1 < 7i,72, < n \ f jx * f h , f h  ± f h

and fie = fk V 1 < k < n, k ± j u j 2

restricted move Neighbours are the assignments produced by the single 

and double moves above in which valid moves are those producing 

at least one violation in the definition in eq.(1 .2 ).

F  -> F  «  3 i , j  : \ f - f j  \ < Cij

Note that for the MI-FAP the condition is equivalent to assignments 

that violate the hard constraints only.

Transition probability Changes from an old to a new configuration are accepted 

with probability prob = e old . This criterion was applied for the first 

time to numerical optimization in [84], It is known as the Boltzman dis­

tribution and simulates a thermodynamical system, in which configurations 

represent energy states. The constant B is also called the Boltzman constant.

Cost values The cost fitness functions C(F) for a given configuration (assignment 

F) are set as the objectives Oms,fs,mi defined in Section 1.3.
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Table C.8 : Parameter setting for the COST259 Siemens2 benchmark

to cost OmI
1 2 0 . 6 6

0.5 2 0 . 2 2

0.05 17.89
0.005 16.52
0.005 18.19

0 22.5

o II O o

single move 16.52
double move 20.38

restricted move 16.73

Annealing schedule We limited the choices to the simple cooling scheme de­

scribed below, in which the initial temperature to, the final temperature tmi„, 

and the parameter a  are set after a number of test runs whereas the number 

of iterations per loop numL is usually set as the number of transmitters in­

cluded in the subset currently considered. If we then call numT the resulting 

number of iterations for the temperature cooling we have for each run of SA 

a total number of moves numT * numL.

For our implementation, see Algorithm 7.1, we ran a number of tests on the 

Siemens problems in order to set the initial temperature. Furthermore, these pre­

liminary experiments also investigated, for the best performing temperature, the 

effectiveness of adopting the different types of moves described in Section 7.1.1. 

From these tests an initial temperature of 0.5 and the basic ‘single move’ produced 

the best outcomes, thus this setting was chosen for the rest of the experiments. As 

an example, Table C . 8  shows the average values over three mns obtained for the 

Siemens2 benchmarks.

Another influential aspect of SA is the choice of the parameter regulating the 

cooling scheme. Note that, when decomposition is applied, in order to respect 

the condition in (4.1.1) we have to perform the algorithm for the same number of 

evaluations (that is the total number of configurations explored during the search) 

when we compare the solution produced by solving the original problem as a whole 

and by decomposition. This can be carried out in different ways.

218



In our approach we use a number of iterations numLoop equals to the number 

of transmitters in the current subset. Then we calculate the reduction index a, ob­

tained using both the values of the initial (7o) and final temperature of the anneal­

ing (defined as tmi„), in order to satisfy the total number of evaluations required 

expressed by a multiple of the total number of transmitters \ V\. This guarantees 

that the solutions obtained with both the whole and the decomposed assignment 

approach consider the same number of total evaluations, which constitutes a fair 

basis for comparison.

C.2.2 GA

The GA used for the MI-FAP adopts the simpler straightforward direct representa­

tion (see section 7.1.2). This representation provides ease of implementation and 

permits complete exploration of the search space for all of the types of FAP studied 

here. However, when used to solve the MS-FAP it can generate solutions which 

have violations and, as a consequence, the order-based representation presented in 

Section 5.1 is preferable for this particular problem.

With the direct representation the main difficulty arises in the choice of effec­

tive genetic operators. In fact, none of the standard operators proposed in the liter­

ature for this representation, such as one-two points crossover, uniform crossover 

and uniform mutation [23,32], produces a good performance. Results can be im­

proved by using some of the problem specific operators referenced in Section 2.2.3. 

In particular, best outcomes are obtained with a slightly modified version of those 

proposed in [68]. However, some problems still remain in the application of the 

crossover, since it can produce very disruptive effects and appears in general unable 

to preserve and transmit good characteristics to new generations. On the contrary, 

less disruptive operators have little effect on solutions after a few generations, when 

individuals start becoming very similar. As a consequence the other genetic opera­

tor, i.e. mutation, needs to assume the role of a proper local search which acts as a 

repair mechanism and leads the solutions towards local optima. In our implemen­
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tation we have used some of the operators proposed in the literature as moves of 

a hill climbing procedure. However, this can increase the tendency for the whole 

population of getting trapped in local optima, since it becomes more difficult for 

the GA to move from a local minimum region to another. Finally, the suggestion of 

running only mutation-based GAs, see [55,68], can prevent the genetic operators 

from being too disruptive, but does not seem able introduce enough variety in the 

population in order to avoid premature convergence.

As explained in Section 7.1.2 we apply the NGSA-II framework described in 

Figure 7.3. Some preliminary tests have been performed in order to find the most 

suitable among the limited range of crossovers and mutations available. Tables 

C.10 and C.9 show an example of these tests for the Siemens2 benchmark. Ex­

periments used a sample population of 20 individuals run for a high number of 

generations (5000), which is one of the most commonly used sizes, since the pres­

ence of a sorting procedure can become too expensive for large populations [34].

We compared the standard uniform crossover [32], and the original version 

of the crossover proposed by Kapsalis et al. in [68], in which a number of non 

interfering edges are selected swapping the frequencies between the correspond­

ing endpoints (our modified version is described in Algorithm 7.2). All of the 

crossovers were applied at a rate of 80%. Similarly, for the mutation operator we 

tested two different operators also proposed in [68]: swap mutation, see Section 

7.1.2, and a more specialized one (to whom we will refer again as kapsalis), which 

consists of choosing an edge whose assignment violates a hard constraint and then 

changing at random the frequencies of its endpoints with a non-violating pair. It is 

important to note that, since the crossover still produces rather disruptive results, 

the mutation has also been tested as a hill climbing procedure (HC) [62], which 

actually assumes the characteristic of a repair mechanism and leads the solutions 

towards local optima (we will refer to this as mutation swap HC). In addition a 

few runs were conducted with only the mutation operator applied, as suggested in 

a number of works (see Section 7.1.2). From the results obtained we can draw the
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Table C.9: Influence o f  the crossover (top) and mutation operator (bottom) for the
COST259 Siemens2 benchmark

Crossover Mutation (mut. rate) Mean cost O^i
uniform swap (1 per individual) 12,020
uniform swap (0.005) 950,000
uniform swap HC (0.1) 2,030
uniform swap HC (1.0) 24.01

Crossover Mutation (mut. rate) cost OmI
uniform swap HC (1.0) 24.01
kapsalis swap HC (1.0) 23.77

kapsalis modified swap HC (1.0) 21.74

following considerations:

• The conventional use of the mutation operators is not able to correct the dis­

ruptive effect of the crossover whereas the results improve when it is incor­

porated in a HC procedure. However the mutation rate, expressed as a ratio 

between the number of mutations and the number of transmitters, needs to 

be considerably high before starting to produce feasible solutions.

• Among the crossovers our modified version performs slightly better than the 

others tested.

• We apply swap mutation since the variations in the results are not significant 

while it has a simpler implementation.

• The results obtained without crossover are generally poor and only improve 

if a proper local search procedure is used as mutation operator (such as the 

1-opt described in Algorithm 7.4) or a heavy amount of HC, for example 

applied at a rate of 1.0).

Since the results produced are still not fully satisfactory, we chose to restore 

the normal mutation operator to preserve diversity in the population (thus without 

the function of a local search), and add instead a proper LS procedure incorporated
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Table C.10: Influence o f  the mutation operator for the COST259 Siemens2 benchmark

Crossover Mutation (mut. rate) cost Om
kapsalis modified swap HC (1.0) 21.74
kapsalis modified kapsalis HC (1.0) 21.56

into the GA structure, as for the order based GA. Note that the purpose behind the 

addition of a LS is completely different in the two cases. For the order-based repre­

sentation this was necessary in order to permit full exploration of the search space, 

whereas for the discrete representation the complete exploration is guaranteed, and 

the LS has only the function of improving the GA performance. We then used the 

genetic operators summarized in Section 7.1.2 (the modified kapsalis crossover and 

the original swap mutation) applied at the corresponding rates of 80% and 0.05% 

per individual. We also compared the 1-opt procedure proposed in Algorithm 7.4 

with a proper simulated annealing algorithm run for a variable number of itera­

tions. A similar idea was initially introduced in [55] in which a transmitter and its 

assigned frequency were selected among those violating at least one of the hard 

constraints and then being re-assigned a new frequency with the best alternative. 

Subsequently, this mutation was extended in [71] to all the transmitters and all the 

frequencies, thus generating a complete 1-opt. For these experiments we used a 

population of 20 individuals run for 2,000 generations (which with the use of the 

1-opt procedure corresponds to 1,000,000*|F| evaluations approximatively). Note 

that these values of the parameters will be kept for the rest of the experiments per­

formed by this type of GA. In order to produce a given number of evaluations the 

number of generations performed will be suitably modified. Furthermore, when the 

decomposed approach is applied, the number of generations for each subset have 

been reduced proportionally to the number of subsets as required by Definition 4.1.

For the application of SA as a LS procedure, the mutation used ( called swap 

mutation, see [68]), consists of a number of simple frequency swaps between pairs 

of transmitters selected at random, according to a given mutation rate. Finally, to
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improve the GA performance an iterative 1-opt LS procedure (see [40]) has been 

added after offspring generations to search for local optimality, the number of gen­

erations was set in order to roughly produce the same number of total evaluations. 

Results for Siemens2 are given in Table C. l l .  The outcomes produced by the 1- 

opt procedure appear competitive with SA and, consequently, this type of LS has 

been adopted in the rest of the experiments conducted for this thesis. 1 -opt will 

be applied with a full rate of 100%, that is for each of the new individuals gener­

ated by the genetic operators. Finally, Tables C.12 and C.13 show, for Siemens 1 

and Siemens2 respectively, a comparison between the results produced with and 

without the addition of the LS to the direct GA applied with the same parameters 

described above. As will be described in more detail in the next section, these rep­

resent an example in which the decomposition approach is effective (Siemens 1), 

and a second one in which it appears unsuccessful instead (Siemens2). Conse­

quently, these outcomes should fairly reflect the contribution brought about by the 

LS during a run of the algorithm.

Note that, although the figures in Table C. l l  generally improve with the amount 

of SA added, this cannot be further increased without distorting the natural struc­

ture of the GA. Moreover, since a heavy amount of SA also increases the com­

putational complexity of the algorithm (thus limiting the runs to few generations) 

the GA assumes finally the structure of a genetic framework for the local search 

method rather than that of a proper evolutionary algorithm. Table C. 14 shows some 

examples for Siemens 1 and Siemens2 in which the GA incorporates the SA proce­

dure, which is run each time for a very high number of iterations corresponding to 

100,000*|F| and 1,000,000*|F| configurations explored. This ‘memetic’ GAused 

a population of only 10 individuals run for 10 generations. The results obtained are 

slightly better but essentially in line with those produced by different single runs of 

SA for the same number iterations (see A). This confirms that the ‘memetic’ GA 

is actually very similar to the local search method itself, thus losing the most of 

its evolutionary characteristics. For these reasons, this approach will not be further
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Table C. l l :  Comparison o f LSs for the COST259 Siemens2 benchmark

LS iterationNo (SA) Mean cost O m i

- - 21.53
1-opt - 18.28
SA 100 19.98

1 -opt + S A 100 17.94
SA 1,000 18.47
SA 10,000 17.40

Table C.12: Best and average cost Omi (over three runs) for the COST259 Siemensl bench­
mark solved with decomposition with and without the 1-opt LS

subsetsNo LS 1 opt no LS
1 4 .14(4 .36) 4.99 (5.18)
2 3.79 (3.84) 4.61 (4.87)
4 4.05 (4.07) 4.85 (4.96)

used for the remaining experiments performed.

For the MI-FAP the order based representation has been used with the GA 

only for a number of comparison tests using the same NGSA-II framework already 

used for the direct representation. Here the tuning tests focussed on the choice 

of the crossover operator. The cycle crossover previously used in this thesis (see 

Section 5.1) has been compared in some preliminary experiments with a recently 

proposed operator specifically developed for the order based representation. This 

new operator, called merge crossover [11], has proven to be very successful in 

some tests performed on the similar graph coloring problem. It acts directly on

Table C. 13: Best and average cost O m i  (over three runs) for the COST259 Siemens2 bench­
mark solved with decomposition with and without the 1-opt LS

subsetsNo LS 1 opt no LS
1 18.45 (18.72) 21.44 (21.53)
2 19.27(19.38) 20.47 (21.04)
4 21.62 (21.02) 22.52 (23.81)
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Table C. 14: Memetic algorithm results for increasing percentages o f SA used as LS for the 
COST259 Siemens 1 and Siemens2 benchmarks

iterationNo (SA) Siemensl Siemens2
Mean cost O m i

10,000 17.40 3.49
100,000 16.29 2.98

1,000,000 15.44 2.67

Table C.15: Performance o f  different crossovers for the COST259 Siemensl benchmark 
solved by the order-based GA

Crossover Mean cost O mi

cycle cross. 5.27
merge cross. 5.03

permutations and begins merging two parents, as in a shuffle. Subsequently, it 

extracts two children from the merged list consisting of the lists of first or second 

instances of each values (see [11] for a detailed description of the procedure).

As an example, we show in Table C.15 the results obtained for Siemensl by 

running the GA with the same parameters values adopted as a final choice for 

the direct representation, which correspond to 1,000,000 * \ V\ total evaluations 

approximatively as mentioned above.

The merge crossover produces slightly better results and, since the computa­

tional effort is actually the same as that required by the direct crossover, it has 

been chosen for the experiments conducted for the MI-FAP with the order-based 

representation. Note that, the cost produced by the order based GA is still about 

20% worse than that produced by the direct representation. This tendency will be 

confirmed by other comparison results presented in Section 7.3.

Finally we report in the following two examples of cycle and merge crossover:
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C ycle crossover

The cycle crossover operator identifies a number of cycles between two parent 

chromosomes (strings) represented by permutations of a given number of integers. 

Parent 1: 8 4 7 3 6 2 5 1 9 0  

Parent2: 0 1 2 3 4 5 6 7 8 9  

Cycles are built as follows:

For the first cycle we select a gene (i.e a value) at random in Parent 1. For sim­

plicity in this example we start with the first value in Parent 1 (8) and select the 

corresponding position in Parent 2 which is 0.

Parent 1: 8 4 7 3 6 2 5 1 9 0  

Parent2: 0 1 2 3 4 5 6 7 8 9  

We then have the first value for Offspring 1 which is 8 in the first position:

Offspring 1: 8 ........ ............

Then, we repeat the procedure starting from 0 in Parent 1, which is found at the 

10th position where we select 9.

Parent 1: 8 4 7 3 6 2 5  1 9 0  

Parent 2: 0 1 2 3 4 5 6 7 8 9  

We then add the second value to Offspring 1, which is 0 in position 10th

Offspring 1: 8 ....................9

Again, we look for 9 in Parent 1 and find it in the 9th position then we select 8 in

Parent 2. Because 8 was the value from which we started the cycle the procedure 

ends.

Parent 1: 8 4 7 3 6 2 5  1 9 0  

Parent 2: 0 1 2 3 4 5 6 7 8 9  

Similarly we add the last value 9 in position 9th to the offspring.

Offspring 1: 8 ................. 9 0

We now complete the values from offspring 1 by filling the remaining positions
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from string Parent 2 thus:

Offspring 1 : 8 1 2 3 4 5 6 7 9 0  

We can produce a second offspring as the ‘complementary’ of Offspring 1 defined 

as:

Offspring 2: 0 4 7 3 6 2 5 1 8 9  

Mergecrossover

The merge crossover operator is presented in Figure C.4. Initially the two 

parents of size n are randomly merged into a single 2n element list (like in a card 

shuffle) Then each value in the merged list gives the ordering of the elements in the 

first offspring. The remaining value compose the second offspring with the same 

ordering they have in the merged list.

PARENT 1 PARENT 2

© OO© 0©  ©©©O©©

©©©O©© 0©O©O©
OFFSPRING 1 OFFSPRING 2

Figure C.4: Merge crossover example

More details about cycle and merge crossover can be found respectively in [118] 

and [90].
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