
A decomposition approach for the
Frequency Assignment Problem

Gualtiero Colombo

School of Computer Science, Cardiff University, Cardiff,

g.colombo@cs.cf.ac.uk

PhD Thesis, April 2008

mailto:g.colombo@cs.cf.ac.uk

UMI Number: U585094

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585094
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Summary

The Frequency Assignment Problem (FAP) is an important optimization prob­

lem that arises in operational cellular wireless networks. Solution techniques based

on meta-heuristic algorithms have been shown to be successful for some test prob­

lems but they have not been usually demonstrated on large scale problems that

occur in practice.

This thesis applies a problem decomposition approach in order to solve FAP in­

stances with standard meta-heuristics. Three different formulations of the problem

are considered in order of difficulty: Minimum Span (MS-FAP), Fixed Spectrum

(MS-FAP), and Minimum Interference FAP (MI-FAP). We propose a decomposed

assignment technique which aims to divide the initial problem into a number of

subproblems and then solves them either independently or in sequence respecting

the constraints between them. Finally, partial subproblem solutions are recom­

posed into a solution of the original problem.

Standard implementations of meta-heuristics may require considerable run­

times to produce good quality results whenever a problem is very large or complex.

Our results, obtained by applying the decomposed approach to a Simulated Anneal­

ing and a Genetic Algorithm with two different assignment representations (direct

and order-based), show that the decomposed assignment approach proposed can

improve their outcomes, both in terms of solution quality and runtime. A number

of partitioning methods are presented and compared for each FAP, such as clique

detection; partitioning based on sequential orderings; and novel applications of

existing graph partitioning and clustering methods adapted for this problem.

Contents

1 Introduction 1

1.1 The Frequency Assignment Problem (F A P) 2

1.2 Problem fo rm u la tio n .. 2

1.3 Types and models of F A P ... 4

1.3.1 Minimum Span-FA P... 4

1.3.2 Fixed Spectrum-FAP... 5

1.3.3 Minimum Interference-FA P.. 6

1.4 Other formulations and m o d e ls .. 7

1.5 Solving large FAP instances .. 8

2 L iterature review 11

2.1 Exact methods and lower b o unds.. 12

2.2 Meta-Heuristics for F A P .. 15

2.2.1 Constructive methods .. 16

2.2.2 Improvement m e th o d s .. 17

2.2.3 Evolutionary a lg o rith m s ... 19

2.2.4 Shortcomings of other existing approaches 22

2.2.5 Summary of meta-heuristics approaches............................... 24

2.3 Problem decomposition for F A P ... 24

2.3.1 Decomposition combined with exact m ethods....................... 25

2.3.2 Decomposition combined with heuristic m e th o d s 26

2.4 Benchmarks for F A P .. 28

3 Decomposition and assignment algorithms 31

3.1 Decomposed assignment approach .. 32

3.2 Decomposition a lg o rith m s.. 36

3.2.1 R andom ... 37

3.2.2 G eographical.. 38

3.2.3 M inimum -cut.. 39

3.2.4 C liq u e s .. 41

3.2.5 Generalized d e g re e .. 47

3.2.6 Graph c lu s te r in g ... 50

3.2.7 Graph p a rtitio n in g .. 52

4 Evaluation and benchmarks 62

4.1 Evaluation of a decom position .. 63

4.1.1 Q u a li ty .. 63

4.1.2 Computational com plexity .. 64

4.1.3 Trade-off between quality and runtim e.................................. 66

4.2 Benchmark data sets ... 71

4.2.1 Benchmarks for MS-FAP/FS-FAP... 71

4.2.2 Benchmarks for M I-FA P... 77

5 Minimum Span FAP 88

5.1 Heuristic algorithms.. 89

5.2 Decomposition a lg o rith m s... 93

5.3 Experimental results .. 95

6 Fixed Spectrum FAP 103

6.1 Heuristic algorithms.. 104

6.2 Decomposition a lg o rith m s... 107

6.3 Experimental results ... 108

I

7 Minimum Interference-FAP 118

7.1 Heuristic algorithm s.. 119

7.1.1 Simulated A nnealing... 120

7.1.2 Genetic A lg o rith m .. 121

7.1.3 Multi objective approach.. 125

7.2 Decomposition a lg o rith m s... 129

7.2.1 Graph p a rtitio n in g .. 129

7.2.2 Graph c lu s te r in g ... 131

7.2.3 Other decompositions ... 132

7.3 Experimental results .. 135

7.3.1 Comparison of decomposition algorithm s........................... 136

7.3.2 GPFAP r e s u l t s ... 140

7.4 Markov clustering.. 166

7.5 Trade-off between quality and ru n tim e .. 170

7.5.1 Distribution of interference .. 170

7.5.2 Runs with variable number of l o o p s 172

7.5.3 Cost-runtime tra d e -o ff .. 181

8 Conclusion and future work 183

8.1 Conclusion .. 184

8.2 Future w o rk .. 188

A Extended results 189

A.l Extended results for M S-FAP... 190

A.2 Extended results for F S -F A P ... 193

A.3 Extended results for M I-F A P ... 196

B C ondor Pool 204

B.l The Cardiff University Condor P o o l .. 205

II

C Tuning of the meta-heuristics 207

C.l Tuning for F S -F A P ...208

C.2 Tuning for M I-F A P .. 216

C.2.1 SA ...216

C.2.2 G A .. 219

III

Chapter 1

Introduction

1

1.1 The Frequency Assignment Problem (FAP)

In a wireless network transmitters and receivers communicate via signals encoded

on specific frequency channels. When adjacent transmitters use similar chan­

nels they may cause unacceptable interference. Thus a channel separation based

on some interference measure is required for transmitters which are geographi­

cally close. The Frequency Assignment Problem (FAP) is an optimization problem

which aims to assign frequencies to transmitters in as efficient way as possible,

either in terms of interference or the amount of spectrum used.

In this thesis we will focus mainly on GSM networks which represent the sec­

ond generation of digital cellular radio systems. However, the results and tech­

niques proposed are more generally applicable. Although there are many forms of

the FAP, roughly speaking the planning of a radio network consists of assigning

the base stations a signal which is powerful enough to guarantee adequate com­

munication, without causing severe interference between transmitters. These two

requirements are in strong conflict in the particular case of GSM networks. Conse­

quently, depending on the level of interference which can be considered acceptable,

a required frequency separation can be specified for each pairs of transmitters. Al­

ternatively, pairs of transmitters can be assigned numerical values which represent

the acceptable interference that arises between them. In this case, the sum of the

interference produced among all pairs of transmitters in the network should be

minimized in the final frequency assignment.

1.2 Problem formulation

The FAP in its basic formulation considers only channel separations as constraints.

Furthermore, it uses a binary constraint model as a measure of interference in

which constraints are expressed between pairs of transmitters and specify the min­

imum separation of frequency channels that guarantees acceptable interference.

Formally, the FAP can be modelled by a unordered weighted graph G(V,E),

2

called the interference graph, which consists of a finite set of vertices V, represent­

ing transmitters, and a finite set of edges

E c { uv | w, v e V)

joining unordered distinct pairs of vertices. Each edge uv has an associated weight

cuv e {0 ,1 ,2 ,...} which is an integer value giving the channel separation required

for the transmitters represented by its end points u, v.

Definition 1.1 Given an allocation o f allowed channels F = {1,2, ... ,£ } and

a frequency assignment f : V —> F we define as interfering transmitters in the

assignment F each pair o f vertices u ,v £ V fo r which

I / (V) - / («) ! < C u v .

Definition 1.2 An assignment is defined as a zero-violation assignment f i f

I / (v) — f{u) | > Cbv V m v £ E

For some problems, for every vertex v € V we can specify a set of blocked channels

Bv c F

that cannot be assigned to the transmitter. Hence, we can represent the entire net­

work by the 5-tuple N = (V,E,F, {5v}v€k, {cmv)Mv€£).

3

1.3 Types and models of FAP

The FAP has been presented in the literature with many different formulations.

However, two types of FAP are most commonly considered:

• the Minimum Span FAP (MS-FAP), which aims to minimize the range of

frequencies used while respecting all of the constraint violations.

• the Fixed Spectrum FAP (FS-FAP) in which the domain of frequencies is

instead limited to a fixed range. As a consequence it may not be possible to

find a zero-violation assignment. The problem is formulated as minimizing

a cost function which represents a measure of the global interference among

all the network.

FS-FAP also includes a further refinement known as the Minimum Interference

FAP (MI-FAP) in which the constraints are divided into the two categories of

hard constraints, which must be respected in the final channel assignment, and soft

constraints defined in terms of penalties. The latter group represents the amount

of acceptable (yet still undesirable) interference between pairs of transmitters and

their global sum across all the network constitutes the object to be minimized. In

the following we will give the mathematical models which have been adopted in

this thesis to solve the three categories of FAP outlined above.

1.3.1 Minimum Span-FAP

The span o f an assignment is defined as the difference between the largest and the

smallest channel used. In the MS-FAP the domain of frequencies is not bounded,

i.e F = Z and Bv = 0 Vv e V and we are searching among zero-violation

assignments. The problem is defined as following:

Problem 1.1 Given an allocation o f frequencies F = { 1 ,2 ,..., K) the Mini­

mum Span Frequency Assignment Problem (MS-FAP) aims to determine a zero-

violation assignment / : V —* F which minimizes:

4

0 Ms (f) = m a x /(v)-m in /(u) v, u e V
V Id

A variant of the MS-FAP is the Minimum Order FAP (MO-FAP) in which the

object of minimization is the number of distinct frequencies used in the network.

1.3.2 Fixed Spectrum-FAP

In the FS-FAP the spectrum of available channels is restricted to a limited range.

Each of the constraints is a hard constraint which defines the channel separation

that must be respected in the optimal solution in order to avoid interference. How­

ever, it may not be possible to satisfy all the constraints and some interference

becomes therefore unavoidable.

The problem is formalised as finding an assignment which minimizes a cost

function representing the global interference among all the network. The cost func­

tion is defined either as the number of interfering transmitters or as a measure of the

size of violations among all the interfering transmitters. The latter is the objective

that we have adopted in this thesis. Formally:

Problem 1.2 Given a pair o f transmitters u, v we define the cost o f the associated

constraint as:

(PFsif.uv) =

cUv ~ I /(«) - /(v) | i f | f (u) - /(v) | < cuv

0 otherwise

Hence given an allocation offrequencies F = { \ , 2 , . . . ,K) the Fixed Spectrum

Frequency Assignment Problem (MI-FAP) aims to produce an assignment f : V —»

F which respects the blocked channel constraints, that is f (v) € F \B V Vv 6 V,

5

and minimizes:

O f s H) = ^ <PFS(fyUV)
uve E

1.3.3 Minimum Interference-FAP

In the MI-FAP, besides hard constraints ce which represent the required separation

between channels in order to avoid the interference which must be respected by

any feasible solution, another category of weights known as soft constraints is as­

sociated with every edge uv e E. These weights are expressed in terms of penalties

which represent the probabilistic acceptable interference between pairs of transmit­

ter which transmit on the same channel, (ccf f h) or on adjacent channels (cadJ) . Note

that these values can be zero. As a consequence, the network is now represented

by the 6-tuple N = (G, F, {£v}v€F, cuvi/ve£, ccu°chuveE, caudvJwve£). Formally:

Problem 1.3 Given a pair o f transmitters u, v with the corresponding edge uv we

define the cost o f a violation as:

<PMl(f,UV) =

< trd ‘f l / 0) - / (v) l < c„,.

<V7 ' f l / («) - / (v) l = 1 > cuv

<%* i f \ m - m \ = o = Cu

0 i f I /(«) - /(v) I > max{cuv, 2}

Given an allocation o f frequencies F = {1,2, . . . , AT} the Minimum Interference

Frequency Assignment Problem (MI-FAP) aims to produce an assignment f : V —»

F which respects the blocked channel constraints, that is f (v) e F \B V Vv € V,

does not violate any hard constraints and minimizes the soft constraints. This can

6

be formulated as minimizing:

Ouiif) =
M V € E

where only solutions with Omi (/) < c>]frd we valid.

In Problem 1.1 is a large value chosen so that an assignment / with Om/(/) >

(f f rd is known to violate at least one of the hard constraints.

1.4 Other formulations and models

Although the three types of FAP described used for this thesis can be considered as

the most important among those proposed with the binary model other formulations

are possible. For example in their exhaustive survey recently published Aardal et

al. also mentioned the Maximum Service FAP which can be seen as something

intermediate between the MS-FAP and the FS-FAP. The problem is based on the

fact that when feasible solutions are not available within the assigned spectrum we

can seek for a partial solution that assigns as many frequencies as possible to the

vertices. If we assume that for each node we have a fixed number of frequencies

(services of variable bandwidth) available it will not be possible to assign all of

them without interference and so some will remain unassigned. Hence the problem

is formally defined as maximizing the number of frequencies that can be assigned

(without interference) to each node in the network. A further development of this

idea leads to the so called Minimum Blocking Frequency Assignment Problem

which computes the actual blocking probabilities in the vertices as a function of the

number of assigned frequencies. Here the objective function becomes a weighted

combination of the blocking probabilities defined for each node in the network.

More details about the formulations above can be find in [4].

The binary model described in Section 1.2 is the most concise representation

generally adopted for the FAP, see [40,60], However, the main drawback of this

7

model is that we are unable to represent more than one frequency for each trans­

mitter. In case of cellular problems, in which each cell has to satisfy a given traffic

demand dv Vv € V, it may be useful to adopt other representations which have

been proposed to overcome this problem. In [2] the function /(v) is interpreted as

a multivalued function where each element in its range is represented by a subset

of F \B V. In [3] the FAP is described in terms of integer programming in the formu­

lation commonly adopted to solve the FAP by exact methods such as tree search,

see Section 2.1.

Alternatively, a different approach is constituted by the multiple interference

model described in Section 2.2.4, which considers the interference produced by all

the transmitters in the network when they transmit simultaneously.

1.5 Solving large FAP instances

The MS-FAP and its variants have been proven to be NP-Hard [53] by reduction

to a graph coloring problem. Other simple reduction proofs have been provided to

show that the other formulations of the problem are also NP-hard. Consequently,

exact methods are able to solve the FAP only for small instances composed of a

limited number o f transmitters.

Successful solution techniques for the FAP are usually based on meta-heuristic

algorithms, while lower bounding techniques have been developed that allow the

quality of these solutions techniques to be assessed. This has been shown to be

successful for some test problems. However, many of these meta-heuristics have

not been usually demonstrated on very large scale problems that occur in practice

or examples where tractability prospects are low. In these cases handling the whole

assignment problem can be particularly challenging and good quality results may

require considerable runtimes. Highly specialised algorithms are generally used,

whose performance mainly depends on the specific problem for which they have

been designed.

To resolve this, we propose a decomposed assignment approach to solve the

FAP with meta-heuristics. Larger problems can then be handled and solved by

meta-heuristic techniques within a shorter time.

Decomposed approaches have primarily been applied in combination with ex­

act methods and very seldomly with heuristic techniques. In these cases authors

usually proposed meta-heuristic algorithms which incorporate exact procedures for

local optimization.

This thesis is the first work which investigates constructively this problem by

describing a number of decomposition methods and their application to each type

of FAP. Main focus is given to the MI-FAP but all the formulations proposed will

be considered in order of difficulty. The FAP is solved by applying the decom­

posed approach to a number of meta-heuristics. Due to time restrictions we have

limited the choice to a simulated annealing and a genetic algorithm thus including

the different categories of evolutionary and local searches algorithms. In addition,

the genetic algorithm has been implemented with two different assignment repre­

sentations: the straightforward direct representation already used for the simulated

annealing and the order-based, which has been previously used only for some of

the formulations of the FAP (MI-FAP). Note that this representation requires the

introduction o f a further mapping performed by a sequential assignment thus in­

cluding an example of constructive methods, which complete the classification of

the most commonly used heuristics for the FAP. Furthermore sequential assign­

ments are strictly related with the original idea of our decomposition approach

which divides the network into subsets and then solves them sequentially (the two

approaches actually coincide if we imagine a decomposition into | V\ subsets each

composed o f only one vertex)

Both heuristics have been applied following their standard procedure. Deal­

ing with standard implementations adds generality to the decomposed assignment

procedure proposed, whose effectiveness aims to be algorithm and problem inde­

pendent. Moreover, the percentage of the improvement brought about in this case

9

is expected to be more important than using non-standard high performing algo­

rithms, thus the gap between different meta-heuristics can be reduced. In fact, the

more sophisticated an algorithm is, the less are the advantages expected from the

decomposition approach (which introduces approximations in the number of con­

straints considered). For example exacts algorithms are always expected to perform

better with the global approach than with the decomposed technique (or in the the

worst case equalize the results).

The results obtained for each type of FAP will then be presented and discussed.

A number o f partitioning methods are presented and compared for each FAP, such

as clique detection; sequential orderings; novel applications of existing graph par­

titioning and clustering methods adapted for this problem.

Finally, all of the experiments performed for this thesis have been conducted

on the resources provided by the Cardiff University Condor Pool [1], This has

allowed extensive simulations to complete the high number of required test. In

order to make uniform the runtime values returned by the different machines in

the pool a specific procedure has been implemented, whose detailed description is

reported in Appendix B.

10

Chapter 2

Literature review

11

This chapter presents an overview of the techniques used to solve the FAP by

classifying them in two main categories of exact methods and meta-heuristic algo­

rithms. Subsequently, it reports a review of the previous works which have applied

problem decomposition techniques to the FAP. Finally, the chapter concludes by

describing briefly the main group of benchmarks used in the literature to solve this

problem in its different formulations.

2.1 Exact methods and lower bounds

A number of lower bounds are available in the literature for the MS-FAP and are

based, for the majority of cases, on its reformulation as a T-Coloring problem.

They were firstly introduced in Gamst [44], which proposed a bound based on the

clique of the interference graph, and successively by [112,114]. In addition, among

the others, a second group of bounds is based on integer linear models either as a

reformulation of the problem as a vertex packing problem [3] or on the minimum

Hamiltonian path [8,12].

For the MI-FAP (and its generalization as FS-FAP) a more limited number of

lower bounds have been proposed because of the difficulties introduced by consid­

ering some of the hard interference constraints as soft constraints which involves

the use o f penalty factors. In [66] a method based on the solution of a nonlin­

ear problem, which is by construction a lower bound of the FAP, produced good

lower bounds for some specific CELAR instances of the CALM A project which

present an additional constraint called mobility cost. Koster et al. suggested in [74]

a method based on the linear relaxation of a generalization of the FAP as a partial

constraint satisfaction problem (see [72]). This produced some good results but

only for instances with a very small frequency domain (less than three frequen­

cies available for transmitter). In [82] the same MI-FAP formulation constitutes

the starting point for deriving lower bounds based on analogies with the quadratic

assignment problem. In [89] an improvement of the integer programming formu­

12

lation, reinforced with additional constraints derived from the cliques o f the inter­

fering graph previously used in [88], has been used to produce lower bounds for

different FS-FAP benchmarks. It is important to mention that this work presents

an interesting attempt at applying it to larger MI-FAP instances of the COST-259

benchmarks. Subsequently, Smith et al. further improved these bound in a more

recent work [108].

This work, together with [109] and [7], extends and update the result previ­

ously published in [8] and also summarizes and compare the performance in terms

of lower bounds for the different formulation of the FAP. All of these papers im­

proved the known lower bounds using methods from mathematical programming,

which present some advantages towards the computation of lower bounds proposed

before. In particular the calculation proposed in [8] is based on the detection of

cliques which may be need to be eventually modified, and this can be computa­

tionally expensive, may require manual intervention, and its effectiveness strongly

depends on the specific problem considered. On the contrary, the other methods

based on the minimum Hamitlonian have the advantage of providing upper bounds

as well but they are not always entirely successful. Moreover, their effectiveness

may not scale well with the size of the data set. However, if the lower bounds gen­

erated for the MS-FAP are overall successful for real problems (but not for random

generated problems [7]) the same conclusion cannot be drawn for the MI-FAP. In

fact, for this type of FAP lower bounds are successful only in limited cases [7,109]

whereas for others (for example the COST259 benchmarks introduced later in Sec­

tion 2.4) the gap between lower and upper bounds is still very large and so ineffi­

cient in practice.

Finally, Eisenblatter [40] derived new lower bounds for the COST 259 MI-FAP

instances by studying the semidefinite programming relaxation of the minimum k-

partition problem. These bounds are based on the fact that the MI-FAP reduces to

a minimum ^-partition problem, which can be modelled as a semidefinite program

with the restriction of considering only co-channel interference.

13

Exact methods have been mainly proposed for problems for which lower bounds

are available. The most common optimization method is tree search and a com­

plete overview of this approach can be found in [4], In tree search algorithms we

can distinguish two main parts: the construction of the tree and the processing of

its nodes. The first part consists of the choice of the variable for branching as well

as the selection of a subproblem from the tree, usually using methods as depth-

first search or best-first search. The second part concerns the actual process of

solving a subproblem by applying reduction and node pruning techniques, such as

cutting plane algorithms, and combinatorial lower bounding techniques. Most of

the branching rules used for the FAP are static, i.e independent from the actual tree

search, and consist only in selecting a vertex from an initial ordering usually based

on the degree of the interference graph, such as highest degree first or smallest de­

gree last. An outline of these ordering methods is given in Section 2.2.1. In [46] a

dynamic selection called saturation degree, originally proposed in [17,98] for the

graph coloring problem, has been successively used to solve the MS-FAP with a

branch-and-cut method. Similarly, in [3] the FAP is solved using another branch-

and-cut algorithm which is tested on the smallest data sets of the CALMA project.

However, these category of methods, as well as the branch-and-bound, has been re­

ported to be usually successful only to determine whether or not a given assignment

is feasible, despite requiring a large computational effort to solve the relaxation in

each node o f the enumeration tree. Alternatively, Mannino and Sassano proposed

in [81] an exact enumerative method provided by pre-processing and fixing tech­

niques to reduce the size of the instances while a restricted backtracking was used

to reduce the size of the tree. The algorithm is used to solve MS-FAP instance

only, although a cumulative interference is added to some of the instances in order

to solve the FAP as a feasibility problem.

Very few attempts have been made to solve the more complex MI-FAP by exact

algorithms. In [66] there are indications on the use of a branch-and-cut method

but no computational results are provided. In [75] the formulation previously used

14

in [74] to produce lower bounds has been extended to propose a tree decomposition

algorithm (see also Section 2.3.1) but it has been proven to be successful only

on instances presenting a particularly suitable structure. In [82] the lower bounds

derived for the MI-FAP have been used, in addition to some of the the reduction and

dominance rules reported in [112], to propose a branch-and-cut algorithm which

has been tested on sub-instances of the CELAR data sets as well as some of the

Philadelphia instances considered as fixed spectrum.

In conclusion, although partially successful for the smallest data sets, all the

exact techniques proposed in the literature for the different models of FAP can be

applied successfully only to relatively small data sets, usually in the range from ten

to few hundreds transmitters, whereas the few attempts made on larger size data

sets usually resulted in exceeding the maximum fixed CPU time constraint, as for

example for the test reported in [82].

2.2 Meta-Heuristics for FAP

For practical instances the majority of research works have used heuristic ap­

proaches. We adopt in this thesis the classification proposed in [60] into Con­

structive, Improvement and Evolutionary methods.

Although heuristics have been demonstrated to perform reasonably well for

small and medium size problems the assignments produced for large size ones

can be far from the optimal, as reported in [111] for the MS-FAP. Furthermore,

for the harder categories of FS\MI-FAP the have not generally been proven to be

completely effective for every type of benchmarks, see for example [108] which

provides limited evidence that meta-heuristics may not be fully effective for the

MI-FAP by artificially constructing a number of benchmarks derived from the

COST259 benchmarks (see [28]) for which the optimal solution is known.

15

2.2.1 Constructive methods

This first category consists of the Sequential algorithms proposed by Hale [54],

These were originally proposed for the MS-FAP and are the simplest and quickest

methods to produce feasible solutions. They start with a sequential list of trans­

mitters, ordered by some defined criteria. Frequencies are assigned to transmitters

in turn, with the first transmitter receiving the lowest frequency. Subsequently,

frequencies are chosen from those which do not violate any constraint with the

transmitters already assigned in the ordering. Thus a feasible assignment is always

guaranteed for a given ordering of transmitters. Because of their characteristic of

progressively reducing the search space, the quality of their results is generally

rather poor and depends heavily on both the initial chosen ordering and the partic­

ular problem considered.

In [54] the selection of the next transmitter is made according to a given or­

dering of the whole set of transmitters V. A number of different orderings are

proposed including Largest degree First (LF) , Smallest degree Last (SL), Gener­

alized Largest First (GLF), and Generalized Smallest Last (GSL). All of them aim

to place the ‘hardest’ to assign transmitters at the start of the ordering. They all

tend to produce non-ascending permutations with respect to the generalized degree

of the vertices of the interfering graph. More sophisticated orderings are also pro­

posed, such as the Generalized Saturation Degree (GSD) based on the saturation

ordering previously introduced in Section 2.1.

Besides these procedures used for selecting the next transmitter other tech­

niques are proposed in order to select and assign a channel to a given vertex. The

simplest is termed the Smallest Acceptable Frequency, which selects the smallest

available frequency among those that do not produce any violations. Other pos­

sible selections take into account the number of occupied channels, that is the set

of frequencies already assigned to a transmitter, see Smallest Acceptable Occupied

(SAO) and Smallest Most Heavily Occupied techniques (SAMHO).

Although in general they are not competitive with other methods in isolation,

16

sequential algorithms can be used to produce effective upper bounds [17]. More­

over they can be used as preprocessing to produce starting assignments for other

local search methods [62] or they can be incorporated in more complex algorithm

structures. In Section 2.2.3 they constitute the evaluation procedure for an evolu­

tionary algorithm. In [25] a variant of the procedure in [54] has been proposed

to adapt the sequential assignment for the FS-FAP. In a more recent work [105] a

new greedy algorithm has been proposed to solve MS-FAP instances. Although

the authors stress the fact that the main advantage of their heuristic is to produce

good approximations in computational time which increases only linearly to the

number of transmitters, the method is capable of yielding optimum solutions to

the majority of the Philadelphia instances tested. Finally, in a recent publication

Chiarandini and Stutzle [20] propose new implementations of the sequential algo­

rithm and compare them with the original formualtions in [54].

2.2.2 Improvement methods

Improvement methods are based on iterative local searches of the neighboring

search space. Local Search (LS) is the most basic improving heuristic developed

for combinatorial problems. An initial solution is selected and iteratively replaced

with an improved one chosen from a restricted subset of similar solutions called a

neighbourhood. A neighbour is obtained from the current solution by means of a

given set of small changes called moves. For example, a 1-opt neighborhood is the

set of solutions obtained from the current one by selecting a vertex and changing its

frequency value (see Algorithm 7.4) whereas 2-opts are obtained by selecting two

vertices and swapping their frequencies. A neighbour replaces the old solution if

it produces a better value for the cost. Here the main issue is expanding the size of

the neighbouring set without increasing too much the runtime of the algorithm. In

fact, large neighborhoods correspond in general to exponentially increasing search

times [4].

Because plain LS methods do not provide any mechanism for escape from local

17

optima they have been very seldom used for the FAP and they must be applied

many times with different random seeds and different initial solutions. In [62]

Hill Climbing (see Definition 3.7) is used to solve FS-FAP instances while other

examples of LS applied to the FAP can be found in [19,97]. In these 1-opt and

2-opt neighborhoods are used and applied to a set of randomly generated instances

of the MI-FAP.

Meta-heuristics which help LS to escape local optima are preferable choices

for the FAP. In [115] a Guided Local Search applies variable penalty values to so­

lutions trapped in local minima. This technique is applied to MI-FAP, MO-FAP and

MS-FAP instances of the CALMA project. However, the most successful improve­

ment methods for this combinatorial problem are Tabu Search (TS) and Simulated

Annealing (SA), which are widely recognized high performing meta-heuristics for

both the MS-FAP and FS-FAP.

SA was formally introduced by Kirkpatrick, Gelat and Vecchi for general op­

timization [70]. Subsequently, it has been adapted to solve variants of the FAP by

different authors, with the energy function object of the optimization defined as

a measure of the interference constraints. Notable applications of SA to the FAP

are described in [13,38,100, 117]. Effective SA implementations can be found

in [5] for the CALMA project instances, and in [64, 110] for other benchmarks.

Pseudocode of a generic implementation can be found in [60] while that used in

this thesis is outlined in Algorithm 7.1. In [57] a variant of SA, called thresh­

old accepting, is applied to the COST259 MI-FAP instances with the difference of

limiting the acceptable moves to configurations which respect the hard constraints.

At the end of every loop the algorithm applies a so-called one-cell optimization

obtained by letting all of the frequencies assigned to a vertex be changed simulta­

neously. [92-94,102] propose bounds for the expected time needed by SA to find

a optimal solution for different combinatorial problems, which include the graph

colouring. In particular, they show a relation which is exponential with the size of

the problem.

18

TS was originally defined by Glover in [47] and follows the basic idea of ex­

ploring the neighbouring spaces by a sequence of moves, in which a move is de­

fined by the best available configuration. However, in order to escape from local

minima, some moves based on the short-term and long-term history of the se­

quence of moves are classified as forbidden, or tabu, and stored in a tabu list. In

more recent works TS has been extended to solve fixed spectrum FAP instances

(see [15,19]). In [19] the variant of TS proposed is called Tabu Thresholding and

is implemented in two different phases called ‘improving’ and ‘mixed’. In both of

the phases the tabu list is substituted by a partition of the neighbourhing space into

a number of subsets, which are then in turn further partitioned into blocks. Mon-

temanni et al. improved in [87] the Tabu Search performance by proposing a new

implementation which uses a dynamic tabu list and a cost function updating with

a cost change table (allowing full neighbourhood) . Other TS implementations,

solving both the MS and FS-FAP, can be found in [39,62],

A recent comparison of the most effective local search algorithm for the MS-

FAP can be found in [20] whereas [4] provides a complete overview for all the

different formulations of the FAP.

2.2.3 Evolutionary algorithms

Despite the range o f heuristic techniques that have been proposed for the FAP, it is

still not easy to identify which methods can be the most effective on a wide range of

test problems. This is particularly true for the category of evolutionary algorithms

which includes the class of Genetic algorithms (GAs). These are search methods

originally developed by Holland with the goal of either reproducing the natural

process of evolution or adapting it to design software systems retaining its original

mechanism. Pseudocode for a generic GA can be found in [58]. Pseudocode of the

implementations used in this thesis are outlined in Algorithm 5.1 and 7.3.

On a closer investigation of the various implementations proposed, they appear

to be problem specific and their effectiveness mainly depends on the particular

19

data set considered whereas local search heuristics are more generally successful.

In particular for the minimum interference instances of the harder FS-FAP there is

no clear evidence of their general competitiveness. Although they adopt different

representations to encode the population of chromosomes, they have very rarely

been applied to more than one representation of the same instance for a given test

problem, see [29,65,68], so comparisons are limited. Finally, some of the GAs

proposed appear capable of producing good results but the instances used have not

been made widely available to other researchers [31]. Three main categories can

be identified:

Direct representation This first category encodes the chromosomes into either an

integer vector or a set of integers [6,21,30,31,45,55,71] representing the

frequency assigned to the corresponding transmitter. For the MS-FAP this

representation allows solutions which are not feasible, that is solutions which

violate some constraints.

Here the main difficulty arises in the choice of effective genetic operators

since the standard ones produce poor performance. Some new problem spe­

cific operators have been suggested. They obtain the best performance on

MO-FAP instance [55,68] but the results obtained with the other types of

FAP are not uniform, as observed in [4], Penalty factors can be added to

the fitness function in order to weight constraints in a different way, but the

setting of the weight values, as well as the other parameters used, is rather

a difficult task, as noticed by the same authors. In [31,65,78] some good

results were obtained for the MI-FAP but the problems tested (although rep­

resent real-life instances) do not belong to any of the benchmarks widely

available [2] and they either have not been compared with other methods or

the benchmark used is not shown. It is worth noticing that with this represen­

tation it is particularly difficult to find a crossover operator able to transmit

good properties to children solutions without being too disruptive. In some

works the GA is implemented with no crossover applied, which essentially

20

results in a local neighbourhood search [55,68,106].

In [29,30] this representation is extended to test some of the FS-FAP prob­

lems of the CALMA project and other real world instances. Here, the prob­

lem is approached in two phases: the first optimization step aims to find

a feasible solution by minimizing the number of violated interference con­

straints whereas the second searches for a solution with minimal interference

costs, while keeping the solution feasible. In [71] an innovative approach

produces very good results on one of the widely available benchmark of

the CALMA problems. However the genetic operators used are ‘optimal’

operators whose application is computationally very expensive as observed

in [4,79]. In particular the crossover implements a branch and cut procedure,

which also makes the GA a hybrid algorithm as discussed later in this thesis.

A variation of this representation was firstly proposed in [65] and found su­

perior to the above direct representation. Here chromosomes are encoded in

subsets (genes) which include the vertices which are assigned the same fre­

quency. However, the GA proposed involves the use of parallel computing

and it has been outperformed by other heuristics, such as SA, as reported in

a later work [64]. Few other works adopt the same representation but the

results obtained are essentially similar to those produced by the direct one

(see [99]).

Bit String Representation The second category uses a similar approach but en­

codes the chromosomes into a binary string [91, 107]. Although the cost

function is still set as a measure of the total violations, this representation

can generate solutions which automatically satisfy some of the constraints,

such as co-cell constraints, thus reducing the search space and improving the

computational efficiency of the GA.

Permutation Based Representation The third type of representation, which was

originally proposed for the MS-FAP in [118,119] and independently in [14],

21

is the ‘permutation-based’ representation (also known as ‘order-based’). Genes

are integers representing transmitters, and individuals are represented by per­

mutations of the set of integers including all the transmitters. The fitness of

an individual is then produced by a sequential algorithm to assign frequen­

cies to transmitters thus producing at each evaluation a feasible solution for

the MS-FAP. In the original work [118] a simple steady-state GA produced

excellent results on widely accepted minimum span test data sets including

the Philadelphia instances. The latter set of benchmarks has been also used

in [14] with a generational based GA using the same representation.

In more recent work an adaptation of the sequential assignment for the FS-

FAP has been used as evaluation procedure for the steady-state algorithm

proposed in [25] and tested on a number of FS-FAP benchmarks. However

the use of this representation does not guarantee the complete coverage of

the search space. Therefore a local search procedure has been incorporated

into the GA structure.

2.2.4 Shortcomings of other existing approaches

The technique of hybridizing GAs with another heuristic in order to improve their

performance forms the class of memetic algorithms. This technique is often used

for the more general category of constraint satisfaction problems, which includes

the FAP, as described in [79]. In this broader category the algorithm often incorpo­

rates a LS in the GA structure in order to either act as a repair mechanism when the

genetic operators are highly disruptive [31] or to diversify the search to increase so­

lution quality when the algorithm is trapped in local optima [79,91]. Often the GA

is used only to produce good approximations which are subsequently improved

by a local heuristic [6 , 83, 99]. In a completely opposite approach, the GA can

act as second operator after other methods, for example stochastic ranking [123],

simulated annealing [116], and neural networks [1 0 1].

There is a recognized need to elaborate more sophisticated interference mod­

22

els, which can solve more realistic frequency assignment problems, as described

in [36,38,110,124], It would be more accurate to take into consideration the un­

wanted signal caused by all transmitters when they transmit simultaneously. Mul­

tiple interference models can be found in the following works. Lower bounds

using a multiple interference model are proposed in [108]. In [76] interference

constraints are divided in hard and soft constraints, and furthermore in co-channel

and adjacent-channel, each of them assigned to a different set of transmitters. [1 1 0]

proposes a direct multiple interference model beside an intermediate model, which

still uses binary constraints to represent multiple interference. These two mod­

els have been adopted to solve MS-FAP instances using simulated annealing and

multi-agents algorithms (ANTS) [8 6]. Other slightly different multiple interfer­

ence models can be found in [42,81], However, there is a general lack of results

about models which differ from the binary, and no results are actually available for

the FS-FAP instances. In addition, multiple interference becomes a fundamental

issue in the design of real systems like infrastructure and independent, or ad-hoc,

wireless networks, see for example [1 2 1].

Finally, [61], [18], and [52] give further important contributions to the appli­

cation of multiple interference models. Here given a series of reception points the

evaluation of an assignment requires that for each of these points the ratio between

the receiver power and the sum of powers received from interfering transmissions

(known as signal-to-interference ratio) is above an assigned threshold. Nearly opti­

mal asignments are then produced by different local search heuristics, such as tabu

search [18] and simulated annealing [61], in which the cost function objective of

minimization is the sum of the signal-to-interference ratios over all the transmit­

ters in the network. [52] shows that (using SA but the conclusions achieved can

be extended to other meta-heuristics) further improvements are obtained if the cost

function becomes a combination of that used for the multiple interference and the

binary constraint model. This can be reaches in two ways either by the addition

of a term which measure the constraint violations (as the interference modeled by

23

the binary constraints graph) or by using the binary model to produce a starting

solution to be used as input for the multiple interference implementation.

However, the main contribution of these paper is that they all show that the use

of more realistic models, such as the multiple interference one, produces benefits

in either the production or the evaluation of frequency assignments which are far

more important than small improvements to artificial cost functions.

Finally, since the main argument against the use of these models is about their

greater resources required, the decomposition approach object of this thesis has

the potentiality of being profitably applied to multiple interference models which

minimize the signal-to-interference ratios directly.

2.2.5 Summary of meta-heuristics approaches

To summarize, the FAP in its different formulations have been more commonly

solved by a heuristic approach. However, although meta-heuristics produce good

results on some of the benchmarks available, highly specialised algorithms tend to

perform best. In addition, standard implementations of meta-heuristics may require

considerable runtimes to produce good quality results whenever a problem is very

large or complex.

This thesis investigates the application of problem decomposition techniques as

a possible solution to this drawback. Problem decomposition can also be thought

of as an alternative to the introduction of exact procedures to optimize the heuristic

solutions which inevitably increases the complexity of these algorithm thus limit­

ing the range of their applicability.

2.3 Problem decomposition for FAP

Previously published works which have applied decomposition for the FAP, can

be grouped into three main categories; used in combination with exact methods;

with meta-heuristics as a second phase optimization (either following or incorpo­

24

rated the heuristic procedure); and the approach proposed in this thesis based on

constructively finding an efficient decomposition into subproblems that leads to

corresponding partial solutions. These will then be recomposed into a solution of

the initial problem.

2.3.1 Decomposition combined with exact methods

The most common application of problem decomposition techniques for the FAP

has been with exact methods. We have described in Section 2.1 how a number of

them are based on selecting an initial ordering aiming to consider any possible hard

part of the data set first. In [81] this idea is further developed by identifying a hard

subgraph, called the core, which is isolated and solved first. Then the remaining

part of the problem can be solved without ideally influencing the global objective

function. In Aardal et al. [3] a preprocessing phase based on the cliques of the

interference graph is used with a branch-and-cut algorithm to reduce the size of

minimum order problems (MO-FAP) by between ten to fifteen percent. Similarly,

a clique bound has been extended and generalized to provide lower bounds for both

the MO-FAP and MS-FAP.

Koster et al. [75] observed that assigning frequencies to a cut-set of the interfer­

ence graph decomposes the problem into two or more independent subproblems,

thus they generated a sequence of such cut-sets using tree decomposition. This

idea, in addition to the use of several further dominance and bounding techniques

led to the solution of some small and medium size instances for the MI-FAP. How­

ever, for larger real-life instances in which the proposed dynamic programming

algorithm is impractical because of the width of the tree, the algorithm has been

used iteratively to improve some known lower bounds. However, the methods de­

scribed above can produce solutions in a reasonable run time only for the easiest

instances. As a consequence they have been primarily used either to produce lower

bounds or as a preprocessing technique.

25

2.3.2 Decomposition combined with heuristic methods

Cell re-optimization

Decomposition has rarely been used in combination with meta-heuristics. In these

cases a decomposition of the whole set of transmitters into a number of subsets

has been used to optimize the solution either after the heuristic method or during

its procedure at a fixed number of iterations. Moreover, the partitioning adopted

is similar to that used for distributed channel assignment for cellular problems in

order to optimize solutions locally, usually by applying an exact procedure, inside

system clusters of several cells [51,67,122].

Hellebrandt and Heller proposed a cell re-optimization method used in com­

bination with their so called Threshold Accepting method [57]. The procedure

consisted of optimizing each cell assignment after a fixed number of iterations.

Each cell is selected in sequential order and its assignment is (re)optimized by an

exact method, while those in the other cells are kept fixed. These results were at

the top of the list of the COST259 test problems at the time they were published.

Subsequently Montemanni et al. used the same cell implementation procedure to

improve their results obtained with Tabu Search [87] (which also improved those

of Hellebrandt and Heller).

In a similar fashion Mannino et al. [80] proposed a new sophisticated imple­

mentation of SA combined with dynamic programming to compute local optima.

Their method applies the original re-optimization idea to a cluster of cells. In

their approach, they optimize assignments in cliques of vertices of multiple de­

mand by reducing this problem to finding fixed cardinality stable sets in interval

graphs. Here a modification of SA, in which the neighborhood consists of only the

configurations satisfying the hard constraints, is combined with a re-optimization

performed at the end of every loop of the algorithm. The authors shown how a

current best solution obtained by SA could be optimised by letting all of the fre­

quencies assigned to a vertex be changed simultaneously. They also shown that

26

this corresponds to looking for a minimum cost ^-cardinality stable set in interval

graphs, where Jc is the demand of the vertex.

In these examples the local optimization procedure obtains very good results

on the COST259 MI-FAP instances (overlooking some of the best results published

so far, see [2]), although the addition of elaborate exact procedures considerably

increases the computational complexity of the algorithm thus requiring runtimes

roughly one order of magnitude higher than those of the fast heuristic combinations

[40].

Subgraphs

In this thesis the decomposition strategy is extended to a larger scale by adopting

a different approach in which problem decomposition is used to divide a complex

FAP instance into a number of subproblems, which can be then more effectively

solved and recomposed into a solution of the original problem. It is worth not­

ing that this approach does not involve any exact local optimization algorithm and

therefore it is suitable for the application of standard algorithms. Here the decom­

position approach aims to simplify a complicated problem by considering separate

subproblems obtained by removing some of the constraints between pairs of ver­

tices representing transmitters, rather than increasing the algorithm complexity and

solving the problem as a whole.

This approach has seldom been used in the literature. In [111] Hurley et al.

extended the standard and generalized clique bounds originally proposed for the

MS-FAP and MO-FAP (see for example [44]) to a heuristic approach. They start

by finding a level-/? clique, which is the largest clique having minimum weight

edges of p, then they produce a first assignment for the clique by applying a meta­

heuristic and evaluate its span. Subsequently, the clique assignment is kept fixed

and an attempt is made to extend the assignment to the full interference graph.

If the span of the final assignment is not close to that of the clique, a number of

vertices are added to the clique, creating a so-called near clique, and the process is

27

repeated until the difference between these two span values is below a given thresh­

old. This proce'dure produced good results on some MS-FAP instances including

some of the Philadelphia benchmarks and other test problems provided by Cardiff

University (see [19]). However, it presents the drawback of finding the maximum

cliques in the graph, which is an NP-hard problem itself.

Note that an idea similar to subgraphs have been used with exact methods when

a subset o the vertices is firstly assigned ann then this assignment being extended

to a complete one, see the approach used in [81] described in Section 2.3.1.

A slightly different approach has been recently used in [69]. Here a cluster­

ing algorithm based on the generalized-degree of the neighbour vertices is used

to initially partition a real-life FS-FAP instance, which is then solved by a GA.

However, the representation used has the limitation of only considering co-channel

interference. Moreover the elements included in different subsets exchange their

position during the optimization process, which makes this algorithm considerably

different from our decomposition procedure.

Finally, in [25] an order-based steady-state genetic algorithm (GA) has been

combined with two different decompositions, based on either the generalized de­

gree of the corresponding graph or more sophisticated graph partitioning algo­

rithms, to solve both the MS-FAP and simple instances of the FS-FAP. Further­

more, [26] presents preliminary results of applying the same procedure to the MI-

FAP using a generational GA with direct representation. In the rest of the thesis we

will generalise the use of this approach to all the types of FAP defined in Section

1 . 2 and extend it to a wider range of decomposition methods.

2.4 Benchmarks for FAP

This section outlines briefly the benchmarks most commonly used for the FAP. We

will limit the description to those publicly available.

Philadelphia The Philadelphia test problems were one of the first benchmarks

28

proposed for the MS-FAP. Network sites were modeled on a hexagonal grid

and each of them demands a high number of frequencies equal to the mul­

tiplicity of the sites. In the first instance transmitters belonging to the same

site or adjacent sites cannot use the same frequencies. However, different for­

mulations are proposed which introduce the concept of re-use distance [1 0].

While not realistic in practical terms, these benchmarks are widely quoted.

Calma The CALMA instances represent military applications and differ from

other frequency assignment problems by their specific distance separation

constraints. Besides the minimum distance constraints they also present

equality constraints, that is two frequencies at a fixed distance must be as­

signed to the corresponding vertices, and mobility constraints, which penal­

izes changes in some fixed frequency values assigned to specific transmitters

in the network.

Cardiff University These instances are thought to simulate more realistic wireless

network and are divided in two groups. The first group was generated by a

specific tool which locates transmitters according to a given probabilistic

distribution [9] and aim to produce larger benchmarks than those provided

in the literature, whereas the second group includes real global system for

mobile communications (GSM) scenarios. Note that for very large bench­

marks the need for problem decomposition techniques becomes compulsory

since standard meta-heuristics are in general not able to produce competitive

results while more sophisticated ones cannot be actually applied because of

their computational complexity.

COST-259 The COST 259 project on Wireless Flexible Personalized Communi­

cations ran in the second half of the nineties and consisted of many research

group each of them working on different aspects of radio mobile communi­

cation, such as systems, antennas and propagation, and networking (see [2]).

The outcome of this work was the constitution of a library of GSM fre­

29

quency planning scenarios with the aim of producing new benchmarks for

an updated comparisons of available frequency planning methods as well as

the development of new ones. As a consequence, the scenarios proposed

were rather different, although they all present the common characteristic of

implementing the minimum interference model for the FAP. The final report

o f the COST 259 project has been finally published in [28]. These data sets

have been explicitly designed and used to solve MI-FAP instances.

Random Graphs A GnyP random graph is defined as a graph of n vertices, such

that the probability that any two given nodes are connected by an edge is

p, independently for each pair of nodes. These are known to be very hard

problems, although they do not represent any real network, since they use

only one parameter to model the entire network and this is independent of

the geometry of the configuration and correlations among links [41]. More­

over, they generally present a very high graph density which is not generally

suitable for the application of decomposition techniques. However, a few of

these instances will be included as a comparison between different decom­

position methods for the two main types of FAP considered, that is MS-FAP

and FS-FAP.

30

Chapter 3

Decomposition and assignment

algorithms

31

This chapter will introduce our proposed decomposed assignment procedure

for the FAP and, subsequently, will outline the different algorithms used to ob­

tain such decomposition and the meta-heuristics used to produce the assignment

solution of the problem.

3.1 Decomposed assignment approach

The procedure starts by partitioning the interference graph into one or more sub­

sets. Then a meta-heuristic is applied to each of the subsets in turn to produce a

sequence of partial solutions. When the current subset is considered, the algorithm

keeps the assignment of transmitters in the previously assigned subsets fixed, and

minimizes the constraint violations with them. Finally, the algorithm returns a final

assignment, a solution of the whole problem.

Pseudocode of the decomposed assignment procedure is outlined in Algorithm

3.1. Note that it is stated to be applied to any MS/FS/MI-FAP. We need to dis­

tinguish between the first assignment loop over the subsets in the partition and

the further ones. The first loop builds a sequence of partial assignments in which

some vertices are unassigned and not considered in the cost function. At the end of

this first loop, a complete assignment is obtained and subsequently the algorithm

changes the assignment of a single subset during each iteration.

Definition 3.1 Given a partition o f V into nS ubs subsets { V\, V2 , . . . , V„Subs} we

define the set o f the intra and inter-edges for a given subset Vj as

E f ra = E{G[Vj\) E f er = {uv : u e Vj, v $ Vj, uv e E }

In Definition 3.1 G[Vj] Vj c V indicates the subgraph induced by a subset Vj

of V. For some purposes the subsets are solved independently, and this is shown

in Algorithm 3.2. This algorithm builds distinct partial assignments for each of the

32

Algorithm 3.1 Decomposed assignment
Input: G(V, £) , number o f loops nLoops, size o f partition nS ubs
Output Frequency Assignment / o f V

1: Produce a partition { V\, V2 VnSubs} o f V using decomposition algorithms
2: for j = 1 to nS ubs do // First loop
3: Apply a meta-heuristic to determine /(v) V v e Vj to minimize the cost

O m / F S I M l i f) = ^ <PMS/FS/Mf(J. «v)
uveE'j

4: where = (E f er u E f ra) n E(G [VX U f 2 U ... U Vj])
5: end for
6: for / = 2 to nLoops do
7: for j = 1 to nSubs do
8: Apply a meta-heuristic to determine /(v) V v e Vj to minimize the cost

O M S I F S I M l i f) = ^ <PMS/FS/Ml(f , Uv)
i/ve Ej

9: where E j = (E‘J ,er U Eij"ra)
10: end for
11: end for

subsets. Further loops other than the first lose significance since during a partial

assignment the procedure only considers the internal edges E ‘J"ra of the current

subset j . Note that only the vertices included in the current subset are consid­

ered during its channel assignment. Finally, all the partial assignments produced

are recombined to generate a final assignment of the original problem. Since the

subsets are solved independently they can be solved in parallel, thus reducing the

computational time required proportionally to the number of subsets.

As an example, we apply the decomposition procedures described above to

the simple graph of ten vertices in Figure 3.1. Let V\ = {vq, V2 , V3 , V4 }, V2 =

{V5 , v ,̂ V7 }, V3 = {vg, V9 , vio} be a partitioning of the graph into three subsets. We

define the following intra-edges El"tra c E as El”tra = {V1 V2 , , vi V3 , , vi V4 , , V2 V3 },

E j tra = {V5 V6, , V5 V7 , , V5 V7 }, and E l"tra = {v8 V9 , , v8 v9, , v9 V]0}. Let then E j ‘nter c E

be the inter-egdes of subset V\ with the other subsets; we can then define them as

E\n,er = E l̂ er U E l™er where E™er = {v]V5, V3 V5 , V3 V7 , v4 v5, v4 v6 } and E l™er =

33

Algorithm 3.2 Decomposed assignment - subsets solved independently
Input: G(V, E), number o f loops nLoops, size o f partition nS ubs
Output FrequencyAssignment / o f V

1: Produce a partition { V\, V2 , . . . , V„subs 1 o f V using decomposition algorithms
2: for j = 1 to nS ubs do
3: Apply a meta-heuristic to determine /(v) V v e Vj to minimize the cost

O M S / F S / M l i f) = ^ <fMS/FS/Ml(f~ UV)
«v€ E‘"'ra

end for

Figure 3.1: Example o f binary constraints graph with ten vertices

{viv8, V2 V1 0 , V4 V8 } are the inter-edges that V\ has with V2 and V3 respectively.

Similarly E f er = E™{er U El£ er where E £ er = E \ f and El£ er = {v6 v9, v7 vi0}.

Finally, E f er = E l”[er U E‘£ er where E™[er = E \ f r and El£ er = E ‘£ er.

We describe the sequential procedure in Algorithm 3.1 first. The first loop

starts by considering the first subset V\ and producing a partial assignment of its

vertices vi,V2 ,V3 ,v4 by applying a generic meta-heuristic. Note that its type and

representation, as well as the procedure used to produce the assignment, do not

need to be specified in this context. Only the intra-edges E‘"tra of V\ are here

considered. Note that the vertices belonging to the other subsets V2 and V3 remain

unassigned in this phase. Then we consider the second subset V2 ad we produce an

assignment of its vertices. In this phase the assignments of the vertices of subset V\

remain fixed whereas those of subset V3 are still unassigned. We now consider the

34

constraints represented by the intra-edges E™tra but only inter-egdes between the

subsets already assigned, i.e. the set between subsets V\ and Vj. To complete

the second loop we now consider the last subset and we assign its vertices vg, V9 ,

and vio keeping fixed the assignments of all the other vertices. We here consider

the whole set of inter-edges El"ler = E‘"‘er U E ‘̂ er since ail the other subsets have

been assigned. Note that at the end of this loop we have produced a complete

assignment of all the vertices of the graph, simply obtained by concatenating the

assignments produced for each subset.

If we conduct an further loop through the subsets we are now changing the

assignments of the vertices included in the current subset only, whereas those of all

the other vertices are kept fixed. This phase will always consider the intra-edges

and the whole set inter-edges for each of the subsets considered. Namely, for V\ we

will consider E™tra U E™ter = El"tra U E l̂ er u E l̂ er. Then for Vj we will consider

E j tra U El"ter and for F3 El"tra U E‘",er. At the end of each re-assignment of the

vertices of the subsets currently examined we always have a complete assignment

simply obtained by concatenating the assignments so far produced for each of the

subsets.

When we apply the procedure in Algorithm 3.2 the subsets are solved indepen­

dently and only one loop is considered. Moreover, for each subset we only consider

the constraints represented by its intra-edges. For example, when we are solving

subset V\ we produce an assignment of its vertices vj,V2 ,v3 , V4 considering only

E‘"tra in the same way we have proceeded with the sequential Algorithm 3.1. Alter­

natively, instead of the direct assignment of the vertices the solution returned may

be encoded into a specific representation required by the meta-heuristic. Subse­

quently, the same procedure is used for the next subset Vj. Note that since we only

consider its intra-edges E™tra it does not matter whether or not we are keeping fixed

the vertices already assigned, i.e. those of subset V\ (actually the subsets could be

solved in parallel with further gain in runtime terms). At the end of the application

of the meta-heuristics to V2 a partial assignment of its vertices V5 , v$, V7 (or an en­

35

coded solution) is returned. In a similar way we operate with V3 . At the end of the

last subset a complete assignment of all the vertices of the graph is obtained either

by simply concatenating the assignments produced for each subset or by applying

a decoding procedure to the final solution returned (still obtained by concatenating

the single solutions produced for each subset) if a specific representation of the

solution is required by the meta-heuristic used.

3.2 Decomposition algorithms

This section describes the different decomposition methods that have been tested

in order to compare their performance when the corresponding partitions are used

to solve the FAP. In the algorithms outlined in the following we will refer to the

weighted unordered graph G(V,E) as the interference graph representing the net­

work. However, in the case of the MI-FAP the contemporary presence of different

types of constraints requires the introduction of an equivalent set of edges to re­

duce the network to a weighted simple graph G ° that combines the hard and soft

constraints. For these instances G ° will actually replace G(V, E) in all the decom­

position algorithms here proposed.

Definition 3.2 Given the interference graph G(V, E) and the 3-tuple represent­

ing the constraints (c%?dweE, ccu°chuveE, cadvJ uv€E) we define the graph GD(V, E) as

the unordered binary graph having the vertex set V and edge set E with the edge

weights given by the linear combination:

cuv = m a x {A \C cu°ch + A2 cudvJ ,Aichuavrd)

in which T, are assigned weights to reflect the relative importance o f the con­

straints.

36

Figure 3.2: Example o f random decomposition into two subsets for a graph with ten ver­
tices

3.2.1 R andom

Random decomposition is the simplest decomposition method. The partitioning

produced can have subsets of either equal size or, in its general definition, random

size. Note that this method uses no information about the distribution of transmit­

ters or constraints within the network. Pseudocode is outlined in Algorithm 3.3.

Algorithm 3.3 Random decomposition
Input: G(V,E), number of subsets nS ubs, sizes of partitions sizej
Output: Partition { V\, V2, . . . , V„sub s) ofV

1 Let P = { 1, 2, . . . , n S ubs }
2 for j = 1 to nS ubs do
3 for / = 1 to sizej do
4 Select at random an integer k € P
5 Assign the vertex v* e V(G) to the subset Vj
6 Remove k from the set P
7 end for
8 end for

Figure 3.2 shows an example of random decomposition applied to the graph in

Figure 3.1. To simplify we only consider a decomposition into two subsets whose

vertices are represented by white and shaded nodes respectively.

37

3.2.2 Geographical

A second simple decomposition method, which can be adopted only when geo­

graphical information about the location of the transmitters in the network is pro­

vided, consists of grouping together transmitters according to a geographical cri­

terion. For instance, we can include into the same subset all transmitters within a

fixed distance. Note that in this case the size of each subset will be determined.

A similar criterion has been used in the literature with the distributed channel

assignment. In particular, these techniques are primarily used with cellular net­

works and, as a consequence, very often the decomposition adopted to produce

assignments which consist of clusters of one or more geographically close cells,

see [51,67,122]

This decomposition methods still ignores any information about the number/size

of constraints between pairs of subsets. However, it may be able to produce satis­

factory results when clusters of transmitters are concentrated around specific areas

of the network, to whom we can refer as ‘towns’. Note that, this is (to the author’s

knowledge) the procedure used in real applications by the network operators when

they divided it into smaller areas. The algorithm used in this paper for geographical

decomposition is outlined in Algorithm 3.4. An example of its application to the

graph in Figure 3.1 is given in Figure 3.3.

Algorithm 3.4 Geographical decomposition
Input: G(V, E), number o f subsets nS ubs, distance D
Output: Partition { V\, V2 , . . . , V„subs 1 o fV

1: while V(G) 4- 0 do
2: Select a vertex v* e V(G) at random and include it in subset Vj
3: Add to Vj all the vertices u for which d = \ u - V k \ < D u e V(G)
4: Remove all the vertices included in Vj from the set V(G)
5: end while

38

Figure 3.3: Example o f geographical decomposition into two subsets for a graph with ten
vertices

3.2.3 M inim um -cut

This simple decomposition criterion takes into consideration the structure of the

interference graph representing the network, based on the minimum-cut algorithm.

The idea, also used with exact approaches (see [75]), is that assigning frequencies

to a vertex cut of the interference graph decomposes the problem into two indepen­

dent subproblems. Hence, if the cut found is an empty set the two subproblems can

be solved separately by the procedure in Algorithm 3.2 without any loss of quality

when compared to the original problem. Consequently, because the heuristic is

now solving smaller and easier subproblems than the problem as a whole based on

the entire graph G, its performance is expected to improve considerably.

If we formulate the problem in terms of edges instead of vertices we are then

looking for the smallest subset of edges whose deletion will disconnect the in­

terference graph. Similarly, if we find an empty set the problem can be exactly

reformulated as two independent subproblems. Alternatively, the quality of the so­

lution produced by the decomposed approach can depend on the cost of the cut-set.

The higher this cost, the less optimal the solution produced.

39

Problem 3.1 Given a cut c(G) = (V], V2 = V \V \)o f the unordered weighted graph

G we will define the cost C(c) as

C(c) = Y j Cuv
uv6 E'"'er

The minimum-cut problem consist in finding the cut o f the graph with minimum

cost C fo r all cuts c o f G.

There are many algorithms proposed in the literature which solve the minimum-

cut problem. Although traditional approaches use flow techniques and formulate

the problem as a minimum-cut maximum-flow [59], in this thesis we have applied a

simple fast deterministic non-flow algorithm proposed by Stoer and Wagner [113],

which is based on maximum adjacency search methods.

Although this decomposition method is expected to produce better results than

those presented so far since it considers the actual cost of the cut between the two

subsets, it has the drawback of usually funding cuts with very unbalanced sizes,

that is one of the sides of the cut composed by only few transmitters. Moreover,

the size of smallest subset produced it is usually very small for the most of the FAP

benchmark tested. A possible remedy is to apply the minimum-cut procedure iter­

atively by removing from the graph G the vertices included in the smallest subset

of the cut, and then continuing until we obtain the minimum required cardinality

for each part of the cut. Finally, the procedure needs to be adapted in order to ob­

tain a number of subsets greater than two. This can be obtained by applying the

procedure recursively to each part of the cut produced.

As example Figure 3.4 shows a minimum cut decomposition into two subsets

for a graph with ten vertices reproduced from in [59]. To simplify we consider only

unit weights of the constraints.

40

Figure 3.4: Example o f minimum cut partitioning into two subsets for a graph with ten
vertices

3.2.4 C liques

The most important method which applies the subgraph approach (see Section

2.3.2) previously used in combination with meta-heuristics is clique decomposi­

tion. In [111] some MS-FAP instances were solved by a standard simulated an­

nealing algorithm in two or more steps which involved partial assignments gener­

ated by solving the frequency assignment problem on the subgraph induced by the

largest level zero clique and then extending it by adding some more vertices until a

complete assignment for all the transmitters in the network is eventually reached.

The addition of the remaining vertices was either made in a single step or through

intermediate steps depending on the cost difference between the partial and final

solutions obtained. If this gap is too big more vertices are added to the subset and

the procedure starts again producing a new ‘extended’ partial assignment. Pseu­

docode of this procedure is outlined in Algorithm 3.5.

The maximum clique algorithm implemented in [62] was that proposed in [27],

which provides an exact recursive method for finding the maximum clique of

an unweighted graph. However, since for the MS-FAP the interference graph is

weighted, with the weights representing the required channel separation which

guarantees interference free assignments, the algorithm was modified in order to

be able to find cliques at different levels. In the procedure proposed, level values

41

Algorithm 3.5 Subclique assignment [62]
Input: G(V,E), clique C(G) c V

Tolerance t between the span s of G and the span of the subgraph Gs c G
Output: Partition { Gs , G \G S }, Span s(G)

1 Assign C meta-heuristically, resulting in a span s(C)
2 Extend the assignment to G , resulting in a span 5 (G)
3 <T <— 5(G) - 5(C)
4 o ’old * 0 *
5 while a > t and <x < cr0id do
6 Select a set W of vertices to add to C
7 C «- G [V(C) U W\
8 Assign C meta-heuristically, resulting in a span s(C)
9 Extend the assignment to G, resulting in a span 5 (G)

10 O’ old * O’
11 (T <— 5(G) - 5(C)
12 end while
13 Gs *- C

represented the minimum weight of the edges in the clique, so level zero actually

corresponded to the unweighted solution, level one to the clique composed by ver­

tices requiring at least one channel separation and so on.

In order to deal with the different kind of weights that occur in the MI-FAP we

have also implemented the weighted version of the algorithm proposed in [96], in

which the pruning condition has been modified to be suitable for generic weighted

graphs. The algorithm starts by ordering the weights in a given order, usually

decreasing by general degree. In our implementation we adopted the GSL ordering

proposed in [54] which gave the best results in [62]. Since the maximum clique

problem is NP-hard, finding a good ordering plays a crucial role in order to reduce

the runtime of the algorithm or the best result if the algorithm is terminated before

completion (in our case, good approximations of the actual maximum clique may

also be acceptable). However, for sparse problems the algorithm is faster without

the use of any ordering [96].

An important concept in the algorithm is the depth of the search. At depth zero

all the vertices are considered. Subsequently, the algorithm expands one vertex at a

time (according to the given initial ordering), with the expansion operator consist­

42

ing of listing all the adjacent vertices already included in the previous depth. The

resulting list constitutes the next depth, then selection and expansion are repeated

until no adjacent vertices are found. Finally the algorithm returns iteratively all the

selected vertices which, because of being adjacent to each other, form a clique. If

we repeat the process for every vertex, and we store and update the largest clique

found so far, then the maximum clique will be found. To speed up the process a

pruning condition is introduced. If at the current depth no cliques larger than the

current best can be found the procedure returns. However, if we consider weighted

graphs this condition needs to be modified.

Firstly, each vertex F, is given an associated weight w, equal to the sum of the

weights cuv of all its incident edges. The initial vertex ordering will be descending

by vertex weights. Let d be the current depth, i the index of the currently selected

vertex at depth d , and the vertex weights which still need to be expanded. If

the weight of the current clique plus the weight of the remaining vertices at the

current depth is less or equal to the weight of the current largest clique found, the

algorithm will prune.

Although faster modifications of the algorithm have been recently introduced

(see [95]), because of the particular selection ordering used the method considered

here, can be still effectively used to find good approximations of the maximum

clique in a reasonable time, even for the largest instances tested . Pseudocode of

the recursive maximum clique subroutine procedure, for both the weighted and

unweighted versions, is outlined in Algorithms 3.6 and 3.7, where jV (v ,) represent

the set of vertices neighbours of vertex v, (see also [95]). At the first call of the

procedure the set of vertices U will coincide with the entire set F(G) of the vertices

of the graph. Note that in the algorithm proposed for the unweighted version [96]

the graph considered is weighted on its vertices instead of the edges. To overcome

this we introduce an artificial modification to the interference graph G in order to

include all information about weights within the vertices.

43

Definition 3.3 In order to apply the maximum clique algorithms [27,96], given the

unordered weighted graph GD representing the network we consider the following

auxiliary graph Gc such that:

• for the unweighted version: Gc = G

• for the weighted version Gc has a weight associated to each vertices v e V

of value equal to its generalized degree gendegfv) (see Definition 3.2.5)

Clique decomposition follows the idea of identifying and assigning the core

part of the graph at first (also called sometimes the backbone which roughly repre­

sents the hardest part of the problem) and then extending it to the remaining part of

the graph. Intuitively, this strategy is expected to be effective in order to solve FAP

problems whenever the most connected part of the graph includes a considerable

number of vertices. This will allow the partial assignments produced to be sig­

nificantly reproduced, in terms of building blocks, in the optimal final assignment

including all nodes in the network. However, clique decomposition is designed

for a partitioning into only two components and different techniques need to be

adopted to extend the method for more subsets. For example, in this thesis we

adopt the criterion of iteratively finding the next largest clique after removing the

vertices included in all of the cliques already found.

The algorithm find the next clique is simply that which removes from the graph

the vertices of the cliques already found, and then applies the maximum clique

procedure to this updated graph. This is formally stated in Algorithm 3.8.

44

Algorithm 3.6 Maximum clique unweighted recursive procedure (main)

Input: GC(V,E), current size s, maximum size max, current depth d

1 : max = 0 , d = 0 , s = 0

2 : call MaximumCliqueUnweighted (V, s, d, max)

MaximumCliqueUnweighted ([27])
Input: U C V, Integer s, d, max
Output: clique C Q Gc

1: if | C/| = Othen
2: if s > wax then
3: max <— 5
4: Update current best clique (C) and store it
5: found := true
6: end if
7: d - d - 1
8: return C
9: end if

10: while U * 0 do
11: if s + | U | < max then
12: return C
13. end if
14: / := min[j \ vj e U}
15: U:=U\{V i)
16: d = d - 1
17: call MaximumCliqueUnweighted (U n jV (v () , s + 1)
18: end while
19: return C

45

Algorithm 3.7 Maximum clique weighted recursive procedure (main)
Input: GC{V, E), current size s, maximum size max, current depth d

1 : max = 0 , d = 0 , s = 0

2: call MaximumCliqueWeighted (V, s, d, max)

MaximumCliqueWeighted ([96])
Input: U c V(GC), Integer s, d, max
Output: clique C Q Gc

l: i f \U \ = Othen
2: if s > max then
3: max <— s
4: Update current best clique (C) and store it
5: fo und := true
6: end if
7: d = d - \
8: return C
9: end if

10: while U ± 0 do
11: if Z *= 1 wki + I™ 1 Wdi < Zy6c vvy then
12: return C
13: end if
14: i := min{j \ vj e U)
15: U := U \ {v/}
16: d = d - 1
17 : call MaximumCliqueWeighted (U n N(vj), 5 + 1)
18: end while
19: return C

46

Figure 3.5: Example o f clique decomposition into two subsets for a graph with sixteen
vertices

Algorithm 3.8 Next clique procedure
Input: Graph GC(V,E), Integer index, number of subsets n
Output: C C Gc

1: if index > n then
2 : C <— Gc
3 : return C
4 : end if
5 : i n d e x = 0

6 : C <— call M a x i m u m c l i q u e (Gc , index)
7 : Gc *— Gc \ G[C]
8 : call N e x t c l i q u e (Gc , index + 1 , n)
9 : C «— Gc

1 0 : return C

Figure 3.5 shows an example of a partition into two subsets produced by the

(unweighted) clique decomposition for a graph with sixteen vertices.

3.2.5 G eneralized degree

The generalized degree decomposition is based on the same criterion of solving

the subgraph which roughly represents the hardest part of the problem first. The

difference is that we here identify the core of the problem as the first N transmit­

47

ters in a decreasing ordering by generalized degree of all the transmitters in the

network, where N is an integer chosen depending on the desired size of the subset

(alternatively we can use any of the orderings proposed in [54]). Note that, since

Algorithm 3.1 acts sequentially on the subsets of the decomposition, this method

can then be seen as a natural extension of the sequential assignment algorithms.

The generalized-degree of a vertex is defined according to the definition proposed

in [54] as ‘the sum of all weights on all edges incident with a transmitter’.

Definition 3.4 Given an unordered weighted graph G and a vertex v € V we defined

the generalized degree o f v as:

gendeg(v) = ^ cuv
uveE

The procedure can be extended easily to an arbitrarily given number and size

of subsets and it has been successfully used in [25] to solve some MS-FAP and

simple FS-FAP instances by applying an order-based genetic algorithm.

To summarise, the generalized degree procedure starts by ordering the whole

set of transmitters before the division according the ordering which, among those

proposed in [54], produces the best cost after a greedy sequential assignment. Sub­

sequently, the chosen ordering is divided in a number of suborderings, which are

obtained according to the following criteria:

• Divide the initial set of n transmitters (vertices) proportionally to the number

j f of transmitters contained into each subset, where m is the number of

subsets considered.

• Include in each subset the transmitters (vertices) which produce almost equal

values of the corresponding sums under the graph generalized-degree versus

transmitters

The latter algorithm, whose detailed procedure is given in Algorithm 3.9, pro-

48

duced the best results on the benchmark tested in [25]. An example of the ap­

plication of the latter partitioning on a FAP benchmark is shown in Figure 3.6.

Firstly, the diagram generalized-degree against transmitters is plotted (on the x

axes transmitted are ordered by decreasing generalized degree). Than a partition­

ing is produced such that the values of the shaded areas differ only by a small given

tolerance. Each of the areas represents the value of the sums S j in Algorithm 3.9.

Algorithm 3.9 Generalized-degree Decomposition
Input: G(V,E), Tolerance t between the sums Sj
Output: Partition { V\, Vi , . . . , V„subs 1 of V into nSubs sets Vj of size sizej

1 : Partition V into nSubs sets such as S h- S k < f V h,k with the generic sum value for
the f h subset given by:

j+sizej

S j - gendegiyi) j e {I,nSubs]
i=j

decomposition By generalized Degree
1 0 0 0 1 1 ■ 1 1 1 1----------- 1—

0 SO 100 150 200 250 300 350 400 450 500
transmitters ordered by generalized Degree

Figure 3.6: Partitioning in three subsets by generalized degree decomposition

This decomposition algorithm has the considerable advantage of its ease of

implementation and a runtime which is comparable with the straightforward geo­

graphical and random decompositions mentioned above. However, as well as the

other basic decomposition criteria, it does not include any information about the

cost of the cut of the final partitioning produced and, as a consequence, the amount

49

Figure 3.7: Example of generalized-degree decomposition into two subsets for a graph
with sixteen vertices

of the inter-edges constraints that will be ignored by the returned solution. This

may affect the quality of the final assignment produced by the meta-heuristic and

could limit the use of this partitioning method for the simplest formulations of the

FAP, such as the MS-FAP.

Figure 3.7 shows an example of a partition into two subsets produced by Al­

gorithm 3.9 for a graph with sixteen vertices. We can observe how in comparison

with the decomposition produced by the clique method for the same graph more

vertices are added to the first subset (represented as shaded in the figure).

3.2.6 G raph clustering

Cluster analysis is closely related to graph partitioning with the main difference

being that in the latter the required partition sizes can be specified in advance,

whereas in the former the partition sizes freely varies. However, the effectiveness

of a cluster strictly depends on some parameters, which are usually closely related

to the number of clusters produced. As a consequence, clustering is quite often

used only as a preprocessing step for the more clearly defined graph partitioning

problem.

50

The natural definition of graph clustering is the separation of sparsely con­

nected dense subgraphs from each other. Given a cut c(G) = { V\ , V\ V\} two

indexes are usually defined to evaluate the quality: the expansion e and the con­

ductance <p of the cut as defined in (3.1) and (3.2). If a cut has a small conductance

it means that its size is small relative to the size of the smaller component it creates,

so such a cut can be seen as a bottleneck of the graph.

T jUveE\'"er c uv
e(c) = ---------- !---------- (3.1)

min(\Vx\,\V\Vx |)

£ i/v € Ein,er Cuv
m = — - -------------------------- (3 .2)

m in V.2-iuv€(E\n,erUEin,ra) Cuv, Luve (E\E\n,ra) c uv)

We then extend the definition of the conductance to the whole graph G and a given

partition of it.

Definition 3.5 Given a partition into n subsets C(G) = { V\, Vj , . . . ,V n}we identify

the cluster represented by the subset Vj with the induced subgraph o f G:G[Vj\ :=

(Vj, E lJl,ra). The conductance 0(G) o f a graph G is the minimum conductance value

over all the possible cuts c(G) o f G. The intra-cluster conductance a(C) o f C{G)

is the minimum conductance value over all induced subgraphs G[Vf\. The inter­

cluster conductance 6 (C) is one minus the maximum conductance value over all

induced cuts Cj = (Vj, V\Vj):

a(C) = min(<p(G[Vj))) and 6 (C) = 1 - max(<p(cj))

The larger the intra-cluster conductance of a clustering, the higher the quality,

since small intra-cluster conductance means that there is at least one of the clusters

Vj containing a bottleneck which can be further decomposed into two subsets. A

clustering with small inter-cluster conductance is also a low-quality one since there

is at least a cluster with strong external connections. Optimising the indexes above

51

is generally NP-hard as well as calculating the conductance of a graph, see [16].

In this thesis we have used the well known Markov clustering algorithm which

is based on the intuition that dense regions in sparse graphs should correspond with

regions in which the number of k-length paths is relatively large for small values

of k e \V\. As a consequence ‘a random walk that visits a dense cluster will be

unlikely to leave the cluster until many of its vertices have been visited’ [1 2 0].

Pseudocode of the Markov clustering algorithm and a more detailed description of

it can be found in [1 2 0],

It is important to mention that, although this is one of the most commonly

used algorithms for graph clustering, the quality and number of clusters produced

depends strictly on the expansion and inflation parameters. Furthermore, the con­

vergence of the method is not always guaranteed. Finally, the algorithm is not able

to produce a specified number of subsets. As a consequence, given the partition

in a general number of k subsets produced by the Markov algorithm we obtain the

desired decomposition into n subsets by further applying to the clustering avan-

dongen (which will be described in the next subsection). Note that the size of the

resulting subsets represented by the clusters is then generally unbalanced.

Figure 3.8 shows an example of a partition produced by the Markov cluster­

ing algorithm for a graph with twenty vertices reproduced from [120]. Here the

ideal decomposition is that into four subsets indicated in the figure. To produce a

partition into two subsets only a further graph partitioning procedure needs to be

applied. This leads to the final decomposition into two subsets represented in the

figure by shaded and non shaded vertices respectively.

3.2.7 Graph partitioning

The Graph Partitioning Problem is close to the ideal graph clustering described

above but easily formulated and more often used in the literature. In a simple un­

ordered graph this problem is defined as dividing the vertices into disjoint subsets

such that the number of edges whose endpoints are in different subsets is mini-

52

Figure 3.8: Example o f Markov clustering decomposition into two subsets for a graph with
twenty vertices

mized.

Definition 3.6 We define a partition C(G) o f an unorderered graph G(V, E) as a

collection o f n disjoint subsets:

n n

{ Vu V2 K .) : f | 0 A U =
7= 1 7=1

We then represent the set o f the external connections between distinct subsets as:
n

Ein,er = (J E f er.
7=1

Problem 3.2 The Graph Partitioning Problem consists o f minimizing the cardinality

| Ein,er | .

If the graph is weighted, as is the interference graph, we reformulate the cost

object of minimization as the sum of the weights of the external connections be­

tween different subsets.

53

Problem 3.3 Given an unordered weighted graph G representing a network, we

define the weighted graph partitioning problem as selecting a partition C(G) to

minimize:

C g p f a p = X j c " v
m v € Em,er

The balanced graph partitioning problem adds the additional constraint that the

difference between the cardinality of different subsets must be as small as possible,

i.e. either one or zero. Note that if we consider only two subsets this is known as the

bi-partitioning problem which, when defined as unbalanced gives the minimum-cut

formulated in Problem 3.1.

It is worth noting that the sum of inter-connections between different subsets in

a given partition is not the only important measure of its effectiveness when subse­

quently used to solve FAP instances. Other factors can be equally important, such

as the density of the intra-edges in the first (or first group) of the subsets. In fact,

since during the first loop our procedure ignores all the constraints with the sub­

sets yet to be assigned, whenever the first subset includes only a small number of

vertices the meta-heuristic will rapidly find the optimal partial solution represented

by an interference free assignment, thus limiting the effectiveness of the heuristic

search itself. For this reason we have considered further formulations of the cost

in order to lead to partitions for which the first subset aims to contain the most

‘difficult’ to assign transmitters .

This is also the idea used by the clique and generalized degree decompositions

already introduced. As a consequence, we reformulate the graph partitioning prob­

lem in order to be more suitable for the FAP. We defined a new objective to be used

in addition to the balanced constraint as follows (a similar cost function has been

used in [26,104]).

Problem 3.4 Given an unordered weighted graph G representing a network, we

54

define the balanced Graph Partitioning Problem for FAP (GPFAP) as selecting a

partition C(G) to minimize:

GPFAP ^ Cu v - Y c u v + Y c >

uv€ E uve E\n,ra uve Ein,er

such that the difference between the cardinality o f different subsets is as small as

possible, i-e \\V h \-\V k\ \ < 1 Vh,k.

The cost function balances the sum of the weights of the external connections El"ter

in each of the subsets with a term which maximizes the internal connections in the

first subset only.

The objective in Problem 3.4 can be normalized to the total sum of the edge

weights for computational convenience:

We have also formulated an unbalanced GPFAP which removes the balanced

constraint. For this problem better performance is obtained if we aim to minimize

the external connections between pairs of different subsets while maximizing the

internal connections in each of the subsets. In fact, this encourages the size of each

subset to be relatively balanced in order to prevent the tendency of including a very

high percentage of transmitters in one subset only. For this purpose, we define

a different objective based on the conductance indexes introduced for the graph

clustering. In fact, given a partition C(G) we can easily compute the conductance

4 >(Ci), see Definition 3.5, over all its induced cuts. Since we aim to minimize this

value for all the cuts in a cluster we define the following objective:

Problem 3.5 Given an unordered weighted graph G representing a network, we

define the unbalanced Graph Partitioning Problem for FAP (GPFAP) as selecting a

GPFAP
C 2GPFAP

Xwv€ E(G) Cuv

55

partition C(G) to minimize:

n

c 3^GPFAP
i=l

where:
'inter Ci

0(Q) =
w iw (Z MVe (E‘/ uer\JEi/ ura) c u v ,'L Uv€(E\Eiin,ra) c uv)

To avoid trivial solutions for the first partial assignment the subsets are reordered

in a decreasing order of size.

Finally, although both objectives in Problems 3.4 and 3.5 can be used for both

the balanced and unbalanced types of GPFAP, in the rest of this thesis we will only

present the results produced by those best performing on some preliminary runs

Figure 3.9 shows an example of a partition produced by the graph partitioning

algorithm for a decomposition into two subsets for graph with twentysix vertices

using each of the costs proposed. The first cost 3.3 only founds the partition into the

two disconnected component. Note that the same decomposition would be found

by the minimum-cut algorithm described in Section 3.2.3. Cost 3.4 produces the

balanced partition into the two subsets of size of thirteen vertices each. Finally the

cost 3.5 returns, after discarding the trivial solution constituted by the disconnected

components, an unbalanced decomposition with only seven vertices in the subset

of minimum size. Note that in this case the disconnected components are included

in the biggest subset instead.

A memetic GA for GPFAP

To solve the GPFAP in all the formulations introduced in the previous subsection

we have implemented a memetic GA. The aim is to obtain near optimal solutions

in a reasonably short time rather than pursue the absolute optimal, since the par­

titioning only constitutes the preprocessing step of the the subsequent procedure

(see [26]).

56

cost 1 - graph partitioning cost2 - balanced GPFAP

cost3 - unbalanced GPFAP

Figure 3.9: Example of graph partitioning into two subsets for a graph with twenty six
vertices

which solves the FAP. We have implemented a standard version o f SEAMO, the

steady-state GA originally proposed in [119], which has been shown to be very

effective with the order-based representation also used in this context [23].

With this representation individuals are represented by a permutation of the

transmitter set and the fitness evaluation procedure consists of decomposing a given

ordering into M subsets, whose size is also chosen at random, and then computing

the desired objectives defined above. The genetic operators used were those sug­

gested in [23] to obtain the best performance, that is cycle crossover and order-

based mutation. The cycle crossover operator is used with chromosome represen-

tations which consist of permutation of integers. It identifies a number of so-called

cycles between two parent chromosomes.

For a more detailed description of the method and examples see [118] and

Appendix C.2.2. Order-based mutation simply consist in swapping two elements

of the permutation representing a single chromosome.

The choice of parents for mating is conducted by the so called roulette wheel

selection. Here the probability of selection for the chromosomes in the population

is computed proportionally to their fitness values. In other words, if F, represents

the fitness of each individual in the population, its probability of being selected is

where popSize is the number of individuals in the population.

To prevent the problem of premature convergence, which means that the pop­

ulation converges too early resulting in being suboptimal, we have implemented a

fitness sharing procedure. In a multimodal domain in which more then one peaks

(local optima) are present standard GAs will eventually converge only to one of

those peaks This phenomenon is also known as genetic drift [37],

A multimodal domain can be thought as as formed by niches as an analogy

fro nature in which the number of organism contained in a niche is determined by

both the fertility of the niche itself and the efficiency of each organism to exploit

such fertility. If tee are too many organisms within a single niche there will be no

provisions for everybody and the least efficient organisms will die. Conversely, it

there are only few organisms in a fertile niche these will quickly reproduce to fully

exploit the niche’s resources [85]

Fitness sharing is one of the techniques proposed to force a genetic algorithm

to preserve diversity in a population throughout its search in order to avoid con­

vergence to a single peak. This method was originally proposed by Goldberg and

popS ize

58

Richardson [48] and it consists of a segmentation of individuals of similar fitness

in specific groups, {niches) Here the main idea is that of penalizing the fitness of

solutions which are too similar to each other.

In the following equations Fj represents the real fitness of an individual (here

represented by the costs O g p f a p) and m,- is the so-called niche count calculated by

summing a sharing function sh(dij) over all individuals j in the population. This is

a function of the distance dtj between two individuals i and j computed according

to some metrics to represent distances between permutations. In our implementa­

tion this distance is calculated in the objective space (also called ‘phenotype level’)

and it is simply equal to the euclidean distance between the fitness values Ft and

Fj. In more expensive implementations the distance dy can be defined directly

between the chromosomes, here represented by permutation of integers. This is

also known as ‘genotype level’. More details about metrics for distances between

permutations can be found in [103]. If the distance djj is within a fixed radius crsh

the sharing function sh(djj) returns a value between 0 and 1 which decreases with

djj (i.e. with increasing similarity). Otherwise it returns 0.

Fshi = — i f maximization problem
mt

Fsh,i - Fi ■ mj i f minimization problem (3.3)

n

(3.4)

dij = \ Fj - Fj \ (3.5)

i f d i j< c r sh

sh(dij) = (3.6)

0 otherwise

59

The parameter a is conventionally set to 1 while the suitable value for crsh

can be calculated given the expected number of peaks in the domain and the hyper­

volume of the entire domain space as proposed by Deb and Goldberg in [35]. Given

a set of points in the domain a definition of hyper-volume is given as ‘the Lebesque

measure of the set of all points that are Pareto dominated by at least one of the

given points’, see [73] for details.

However, a sh is usually conservatively estimated, depending on the particular

test problem considered, as the minimum niche radius of any optimum within the
p

domain (see [48]). In this thesis we assumed a value of a sh - , as suggested

in [25].

Although it is not necessary to solve the GPFAP exactly, test runs have shown

that better approximations in the decomposition lead to better FAP solutions. Con­

sequently, to speed up the process for MI-FAP instances and to improve solution

quality also, the GA has been hybridised with a local search procedure after each

individual evaluation, in order to search for local optimality. We have implemented

a standard SA (as described in [60]), in which each move consists, as well as for the

mutation operator for the GA, in a single transmitter swap between two different

subsets. Pseudocode for the memetic GA is given in Algorithm 3.10.

Finally, it is important to specify that for cellular problems (as the COST259

benchmarks of the MI-FAP) the GPFAP procedure has been implemented in terms

of single cells rather than single transmitters, that is the vertices of the equivalent

graph Gd are the network cells instead of the transmitters vertices. This automati­

cally preserves the co-cell constraints for each of the subsets.

60

Algorithm 3.10 Memetic GA for the Graph Partitioning problem.
Input: population size popSize, number o f subsets nSubs,

number o f generations G, number o f iterations I, cost Cg p f a p

Output: Partition { V\, V2, . . . , Vm } o f V

1: Generate a population o f p o p S ize individuals as random permutations o f the whole set
o f transmitters\cells representing a chromosome

2: Decompose each ordering into nS ubs subsets with either fixed or randomly variable size
3: Evaluate the fitness Cg p f a p for each individual
4: Store the bestSoFar fitness value
5: while stopping condition not satisfied do
6: while next individual in the population do
7: This individual becomes the first parent
8: Select a second parent by applying roulette wheel selection
9: Apply cycle crossover to produce offspring

10: Apply order-based mutation to offspring
11: Evaluate fitness o f offspring
12: Apply SA for / iterations to improve local optimality
13: Add fitness sharing to each o f the offspring
14: if offspring better than either parent then
15: Replace the weakest parent
16: else
17: Randomly select another individual in the population and replace it if it is weaker
18: end if
19: Update bestSoFar
2 0 : end while
2 1 : end while
22: Return the decomposition representing the bestSoFar individual

61

Chapter 4

Evaluation and benchmarks

62

In the first section this chapter discusses how a FAP solution produced by the

decomposed assignment approach will be evaluated. This technique will be com­

pared to other solutions obtained by a heuristic applied in the traditional way, in

which the problem is solved as a whole data set. The aim is to determine which

technique is more effective in practical application. As such, both the runtime and

the optimality of assignments produced must be considered simultaneously.

Subsequently, the chapter outlines the benchmarks to which the decomposed

assigned technique will be applied. These are divided into two groups for the

MS/FS-FAP and for the MI-FAP respectively.

4.1 Evaluation of a decomposition

4.1.1 Quality

A first basic evaluation strategy is that which compares different decomposition

techniques exclusively in terms of optimality of the results produced. This criterion

compares the final costs produced by the decomposed with the whole approach. To

avoid significant variations in runtime each of the FAP instances is solved over the

same number of evaluations, that is the number of different configurations explored

by the heuristic. Intuitively, this represent a fair criterion for comparison between

the two approaches.

According to Algorithm 3.1 and 3.2, the decomposed procedure can loop through

the subsets a number of times, and for each of them evaluates a defined number of

assignments.

Definition 4.1 Let evaljj the number o f evaluations corresponding to the i,h subset

and the j th loop. Let evaltot the number o f evaluations corresponding to the solution

obtained with the non-decomposed approach. In order to have the same number o f

63

evaluations we have to respect the following condition:

nLoops n

^ Y j e v a k j = eva lto t

7=1 i '= l

Note that whenever the subsets are solved independently using Algorithm 3.2

a single evaluation of the whole set of transmitters (calculated with respect to the

specific representation used for the frequency assignments) needs to be added at

the end of the decomposition procedure, i.e. the condition to respect becomes:

nLoops n

'Yj X I €Vali’J + 1 = eValt0t
7=1 '= 1

Hence, given the number of subsets n is fixed in a given experiments, we can

then reach a desired number of evaluations by changing either of the two inversely

proportional variable numL and evalj. For instance, if we want to loop through the

subsets only once we can either reduce the number of evaluations proportionally to

the number of subsets (evaliyo = gva/'°') or to the number of vertices contained in

each subset (evali,o = eva/f̂ *—■).

A different approach consists of aiming to improve the results by looping

through the subsets more than once, thus reducing the number of evaluations com­

puted for each subset proportionally to the number of loops. Finally, the equality

in Definition 4.1.1 refers to a single run of the heuristics. Therefore on a given data

set and for a given decomposition method multiple runs of the same heuristics need

to be conducted and averaged.

4.1.2 Computational complexity

A second straightforward evaluation criterion consists in analysing only the com­

putational complexity of the decomposition procedure, and, as a consequence, es­

timating its runtime. Of course a faster runtime does not necessary mean anything

64

about the validity of the approach if not accompanied by an evaluation of its qual­

ity. However, in some situations we aim to find only approximated solutions rather

than the optimal. This is the case of very large and complex problems in which

good approximations of the solutions are more than acceptable, since it is impossi­

ble to solve the problem as a whole in a reasonable runtime.

Although we are expecting some advantages with the decomposed approach,

a correct detailed analysis which considers all the factors involved in this meta­

heuristic technique is far too complex. To conduct a complete evaluation of a

given assignment with the global approach we need to compute all the edges of the

interference graph G(E, V). However, with the decomposition approach when we

are computing an assignment of the ith subset we deduce from Algorithms 3.1 and

3.2 that we have to compute only its intra-edges E‘"tra and the inter-edges E‘j lter for

that subset, thus ignoring all the remaining edges of G.

Note that the computations required are smaller for the ‘independent’ approach

in 3.2 and the first loop of the ‘sequential’ procedure in 3.1, since we need to eval­

uate only partial assignments in which either the whole set of the inter-connections

Elj ter or a part of it is ignored.

However, in some circumstances we do not need complete evaluations (that is

to compute the edges of the neighbours of all the vertices included into the cur­

rent subset) but only an update of the current assignment. This is, for instance,

the case improvement methods in general and in particular our implementation of

SA in which a single move consists of one change in the frequency of a selected

vertex, thus only requiring the computation of the edges in its neighbourhood. In

this cases, benefits in computational time will be given only within the first loop

through the subsets in which a part of the inter-edges between pairs of distinct

subsets is ignored.

Furthermore, although the evaluation of an assignment is the most computa­

tionally expensive part of the heuristic procedure, this is not the only aspect which

can be affected by the decomposed assignment approach. For example, for the

65

GA we will have the application of the genetic operators (crossover and mutation)

as well as other procedures, as for example sorting algorithms. These generally

needs a lower number of basic operations since they are applied to chromosomes

of shorter lengths than the entire set of vertices of the graph.

On the contrary with local search heuristics such as SA the benefits provided

by these additional features are more limited. For example, with SA they only

come from copying vectors of smaller sizes (see Appendix C.2.1) in order to record

the best assignment currently produced. As a consequence for this category of

heuristics becomes crucial to analyse the trade-off between quality of a solution

and run time of execution.

4.1.3 Trade-off between quality and runtime

Neither of the two methods introduced above seems able to define an absolute cri­

terion for evaluating the effectiveness of a given decomposition strategy. In fact,

quality evaluation is unlikely to be successful with enough generality over the set of

benchmarks whereas a possible evaluation based only on the computational com­

plexity does not consider any issues about the optimality of the solution produced.

In order to fulfill both these requirements this section will analyze other possible

criteria which take into account the trade-off between quality and mntime of an

approximated solution produced by the decomposed assignment approach applied

to the FAP.

A first immediate way of considering this is by plotting in the same diagram the

curves of quality (in terms of cost produced) versus mntime for different runs of

the same heuristic using either the decomposed or the non-decomposed approach.

For instance, we can plot on the same graph a single run of a given meta-heuristic

applied to the problem solved as a whole, and compare it with another run of the

same algorithm obtained with Algorithm 3.1. We can then evaluate at a fixed time

which of the solutions produces the better cost.

An example of this is shown in Figure 4.1 which shows two runs of SA for

66

the MI-FAP Siemens2 benchmark obtained by the non-decomposed approach and

with a decomposition into two subsets. Although at the end of their runs the two

approaches produce a similar cost, we can appreciate that the cost-time curve pro­

duced by the decomposed technique is always below the other for any fixed time,

thus making this approach preferable for this particular test run. However, only

the assignments in the last of the subsets are valid solutions representing complete

assignment of the whole set of transmitters in the network, whereas the other sub­

sets only produces partial assignments in which some vertices of the graph are still

unassigned.

Figure 4.1: Cost-Time plot for Siemens2 solved by SA with balanced graph partitioning
decomposition into two subsets after 2 , 0 0 0 , 0 0 0 * |V| evaluations

50

40

30

20

10

0
120000 2000 4000 0000 0000 10000

It is important to note that, according to Definition 4.1 each of the runs of

the given test problem corresponds to a same given total number of configurations

explored (2 ,000,000 * |V| evaluations in the example), thus they are expected to

produce a similar run time.

Section 4.1.2 has shown that, whereas evolutionary algorithms take more ad­

vantages from a reduced computational complexity, for local search techniques this

mainly derives from ignoring the inter edges between subsets. Thus if the number

of these tends to zero the two approaches (global and decomposition) are expected

to produce very close run times whereas many inter-edges give more advantages

67

to the decomposition approach. On the contrary, ignoring a high number of inter­

edges may degrade the performance of the decomposition approach. In fact, the

quality of its solutions can only be greater or equal to that of the whole approach,

i.e. it is equal when there are no inter-edges. However, the latter statement is valid

only if we assume infinite run times for both approaches.

When we limit the number the number of total evaluations to a fixed value

instead, the decomposition approach is expected to produce some advantages in

quality terms too. In fact, we have seen in Section 2.2.2 that the relation between

the ’expected’ time to produce an optimal solution and the size of the problem fol­

lows a non linear (exponential) behaviour. This implies a better performance of the

decomposition approach the more the fixed time is shorter than the ’expected’ one

provided the finding of a ’good’ decomposition, i.e. one not ignoring a high num­

ber of inter-edges which represent the loss of information consequent to the use of

the decomposition technique. This is related to the assumption that a specific num­

ber of evaluation is needed to produce an optimal assignment. Thus decomposing

the whole problem in a number of sub-problems allows the algorithm to conduct

a certain fixed number of evaluations for each of the subsets, whereas the whole

approach can only selects vertices form the whole set with random probability.

Note that, because of the reduced size of the subproblems the ’expected’ num­

ber of evaluations required by each of them is lower. This can add further benefits

in computational terms, for instance by reducing the number of time we have to

record the best current solution, see Section 4.1.2. Moreover, we could even stop

the algorithm after a fixed number of iterations without any improvement in the

best current solution. Therefore the decomposition approach may require less than

the fixed number of evaluation used for the global approach in order to produce

a nearly optimal solution, i.e the equation in Definition 4.1 would become the in­

equality 4.1, with consequent advantages in runtimes.

nLoops n

(4.1)
7 = 1 i = l

68

Note that the advantages outlined above are lost if we assume that a specific

benchmark could be solved by an exact procedure. In fact, with exact algorithms

the solution produced by the decomposition approach cannot be better than that of

the global approach, i.e. it is equal when all subsets are disconnected components

with no inter-edges. Note that this is also a case in which the two approaches

are expected to produce exactly the same run time since the number of constraints

explored by the two procedures in identical.

Advantages in run time can be obtained from the decomposition when some

inter-edges representing constraints between distinct subsets are present, although

this is expected to produce only approximations of the exact solution, whose qual­

ity depends on the amount of constraints ignored. Note that, this is the procedure

used in real applications by the operators when they split the network into smaller

areas (see for example the case of London), which assumes a relatively low number

of inter-edge constraints. However, to the author’s knowledge the decomposition

procedure used is only based on geographical information (see also Section 3.2.2).

Nevertheless, despite the disadvantages described above, decomposition tech­

niques have been succesfully used in combination with exact methods too to re­

duce the size of MS-FAP and FS\MI-FAP instances [3,81], and to produce lower

bounds [82].

To summarize we can then record the pair values (cost, runtime) in a diagram

for both the solution obtained by the whole approach and that produced by the

decomposition into two subsets. We can then repeat the same procedure, for both

the decomposed and the whole approach, for other runs corresponding to different

numbers of total evaluations, thus obtaining other pair values. Furthermore, we can

repeat the decomposed assignment procedure for an increasing number of subsets

obtaining different points in the diagram.

Intuitively, we are expecting the best quality being still produced either by the

non-decomposed approach, or by the solutions obtained by a decomposition into

a small number of subsets. As the number of subsets increase the approximation

69

produced are likely to worsen rapidly (that is more than proportionally) since it

becomes increasingly harder to limit the number of the inter-connections Eljnter be­

tween different subsets. Note that if n subsets are used the decomposed assignment

approach coincides with a sequential algorithm described in Section 2.2.1.

Hypothetically, we will aim to obtain in the diagram the non linear curve pre­

sented in Figure 4.2. Note that the point of minimum value will represent the ideal

number of subsets for that particular benchmark problem. However, the cost pro­

duced by the heuristic procedure increases considerably when a high number of

subsets is used (in some cases even for a limited number of subsets, e.g. > 3). As

a consequence the resulting diagram will consist of a series of curves, each of them

corresponding to a fixed number of evaluations, as represented in Figure 4.3 with

the lines in blue. This behaviour would make more difficult the prediction of the

most suitable number of subsets for a given data set. An example of this will be

discussed in Section 7.5.

Figure 4.2: Trade-off o f quality against runtime for a generic test problem decomposed
into two and three subsets. Hypothetical curve, n number o f subsets, ne number o f total
evaluations

2 sub balanced
Ne/2+Ne/21 subs

2Ne/3 1 sub
Ne eval.

3 subs
3Ne/3

2 sub
unbalanced
Ne/2+Ne/2

2 subs
Ne/2

2 sub
2Ne/3

ru n tim e

70

Figure 4.3: Trade-off of quality against runtime for a generic test problem decomposed into
two and three subsets. Practical curve, n number of subsets, ne number of total evaluations

sub balanced
Ne/2+Ne/2 1 sub

Ne eval.
1 subs 3 subs

Ne/2 3Ne/4 2 sub
unbalanced
Ne/2+Ne/2

subs
Ne/2

2 sub
2Ne/3

runtim e

42 Benchmark data sets

4.2.1 Benchmarks for MS-FAP/FS-FAP

The most commonly published benchmarks for MS-FAP are the cellular Philadel­

phia instances [10], which, although obsolete, are still currently used as a testbed

for the MS-FAP. Other notable published data sets are a part of the military appli­

cations of the CALMA project [5] (also used for the FS-FAP). However, these will

not be included in this thesis.

Philadelphia and cellular problems

For both the MS-FAP and the FS-FAP described later in this chapter, we refer to

the same set of test problems, which primarily coincide with those used in [25].

All of the data sets outlined in the following adopt the simple binary constraint

model formulated in Section 1.2. Firstly, two simple test problems (called P i, Pi

in conformity with [119]) in the order of hundreds of transmitters have been taken

for comparison from the data sets used in [118]. Transmitters are located in cells

forming an hexagonal grid and those belonging to the same or adjacent cell are not

allowed to use the same frequency. However, variants of this structure use different

71

re-use distances (with distances expressed in ‘units’) (do,d\, ...,dn). This means

that transmitters in cells of distance do (measured from cell centres), can use the

same frequency, those within distance d\ require a separation of one channel, etc.

Due to the very high demand assigned to each cell, the resulting interference in the

whole network will be primarily governed by the co-cell interference, that is, by

the constraints between pairs of transmitters within the same cell. Figure 4.4 shows

the grid model and the required cell demands for Philadelphia Pi, which has the

following demand vector cv and reuse distance dv.

cv = {8,25,8,8,8,15,18,52,77,28,13,15,31,15,36,57,28,8,10,13,8}

dv = { VI2, V 3,1,1,1,0}

Figure 4.4: Hexagonal grid model (a) and cell demand (b) for Philadelphia Pi-

The first cell requires a demand of 8 transmitters, the second one of 25 and so on.

Two transmitters assigned to the same frequency must be distant at least Vl2 units

apart to avoid interference (where one unit is equal to one cell). If the transmitters

are assigned to adjacent frequencies they must be distant at least V3 units, trans­

72

mitters with three channels separation must have a distance of at least one unit and

so on. Figure 4.5 shows the reuse distances for Pi with the number inside the cells

representing the minimum channel separation required from the central cell.

Figure 4.5: Reuse distance for Philadelphia Pi.

The smaller benchmark P\ is a computer generated problem based on the same

cellular principle. For more details see [118].

Cardiff University data sets

More realistic problems were created using a benchmark generator tool described

in [9]. This software uses a probabilistic modelling to produce realistic transmitter

locations over geographical areas and generates appropriate constraints. It places

transmitters according to a probability distribution function obtained by building

up single gaussian distributions centered in particular locations representing towns

over a fixed region. Test problems C\ and Ci were generated by using a ‘single­

town’ probability distribution whereas C3 and C4 by a distribution over ‘two-

towns’, with the distance between the towns center greater in the last problem.

Transmitter locations for data sets C\ - C4 are shown in Figure 4.6. Constraints

are generated by defining a reuse distance vector requiring separations up to two

frequencies (dv = (do,d\,dij).

73

C, c 2

1

iL

Figure 4.6: Transmitter locations for data sets C\ - C2 generated with a ‘single-town’
probability distribution

Other GSM

Besides these data sets, another group of benchmarks G\, Gi, and G3 , which rep­

resent real anonymous GSM scenarios, were also provided by Cardiff University.

However, no geographic information about transmitter locations is available. Test

problems G\ and Gj refer to the same data set with identical number of transmitters

but different constraint graph connectivity.

Random Graphs

We include a final group of data sets belonging to the category of random graphs.

Due to their peculiar structure which often implies very high graph density, random

graph do not represent the type of problem likely to occur in practice. In order to

construct a random graph we need to define some auxiliary variables.

74

Definition 4.2 We define p { e [0,1) 0 < i < nSubs (po = 0) to be the probability

that the minimum required frequency separation between a pair o f vertices u, v is

i + 1. Clearly we require that:

nSu b s

Z pi - *•
7=0

Let q = 1 — Z ”-o Pi denote the probability that there is no constraint between a

pair o f vertices. We then define a second set o f variables pk € [0,1) such that:

k

Pk = Y,p>
7=0

Algorithm 4.1 g ives the pseudocode o f the procedure used for the generation

o f random graph data sets. N ote that for consistency w ith the other benchmarks the

adjacent matrix o f the graph remains sym metric.

Algorithm 4.1 Random graph

Input: Int size, Vector {po.P 1.P 2 }
Output: Graph G(V,E)

1 for / = 1 to size do
2 for j = i + 1 to size do
3 Select a random value rn e [0 ,1)
4 if 0 < rn< p'nSubs then
5 Choose k e { 0 ,1 ,..., nSubs - 1} such that pk < rn < pk+x
6 Add edge / j with weight k
7 else
8 Add no edge
9 end if

10 end for
11 end for

Algorithm 4.1 has been used to generate two random instances with the same

size of 500 transmitters. The first data set R\ considers only co-channel interference

distributed with a probability po = 0, p\ = 0.75, q = 0.25, whereas a second

75

test problem Rj takes into account one, two, and three channel separations with

respective probability values expressed by the parameters po = 0 , p\ = p 2 = pi -

0.25, q = 0.25.

Benchmark comparison

All of the test problems considered are detailed in Table 4.1. According to the con­

vention used in [64], for each of them the size of the search space S z is calculated

with a hypothetical fixed spectrum of 1000 frequencies. A measure C„ of con­

nectivity is expressed by the edge density of the corresponding constraint graph

(a value of one represents full connectivity). Finally, the last column shows the

spectrum available chosen for the FS-FAP experiments conducted for this thesis.

No trans. No const. Sz Cn Spectrum

P\ 97 1214 10285 0.26 30

Pi 481 97835 101443 0.847 30
c , 1054 40200 103162 0.072 65
C2 1068 39122 io 3204 0.068 65
C3 1089 38869 103267 0.065 50
c 4 1112 34704 103336 0.056 50
Gi 1667 28455 io 5001 0.020 30
g 2 1667 338611 io 5001 0.250 30
Gi 1668 103268 io 5004 0.074 30

500 99831 lO'soo 0.8002 150
*2 500 99852

oo©

0.8004 150

Table 4.1: Benchmark test instances for MS-FAP and FS-FAP

Note that two groups of benchmarks presents a particularly high density, i.e.

the Philadelphia instances (due to their very high cell demand) and the random

graphs.

76

Table 4.2: Number of transmitters per cell in the Tiny instance

cell Ax a 2 Ai Bx b 2 C, c 2
transNo 1 3 2 2 1 1 2

4.2.2 Benchmarks for MI-FAP

COST-259

The main group of test problems selected for this type of FAP consists of the

COST259 instances introduced in Section 2.4. This project, widely available from

[2], probably constitutes the most important set of benchmarks used in the last

decade to study the FAP. These data sets are still currently used in practice and/or

papers and were explicitly designed with the purpose of comparing, improving and

developing new assignment methods.

Partners within COST259 have proposed their own benchmarks. Each of the

resulting data sets presents the same structure briefly described in the following

by considering the small test example called Tiny (see [2, 28,40]). This small

benchmark comprises three sites: site A has three sectors 1,2, and 3, whereas sites

B and C have only two sectors, 1 and 2. A cell is served by one sector of one

site. The numbers of elementary transceivers (TRXs) installed per cell are given in

Table 4.2.

We can interpret Tiny as a GSM900 network with radio frequency band 891.0—

893.4MHz available for the downlink and band 936.0-938.4M7/z available for the

uplink. These result in thirteen different channels which have the Absolute Radio

Frequency Channel Numbers (ARFCNs) of 711 - 723. We refer to these channels

as the frequency spectrum.

Due to technical and regulatory restrictions, some channels in the spectrum

may not be available for some of the cells, thus are called locally blocked. Lo­

cal blockings can be specified for every cell. For each of the cells we number the

carriers starting at zero, with the first carrier operating the broadcast control chan­

11

nel (BCCH) and the other possible carriers operating the traffic channels (TCHs).

BCCH is the control channel which contains specific parameters needed by a mo­

bile in order to identify and access the network. Since no radio frequency hopping

is considered here, carriers and transmitters follow a one to one relation.

The difference of the ARFCNs of two channels is a measure for their proximity

and for each pair of transmitters there may be the constraint of a separation require­

ment in order to avoid strong interference. Separation requirements are not allowed

to be violated in a channel allocation and constitute hard constraints. These can be

further classified into co-site constraints (two channels separation), for transmitters

belonging to the same site but different cells, and co-cell constraints (three channels

separation), for transmitters belonging to the same cell, and further constraints due

to hand-over. During hand-over an ongoing call is passed through adjacent cells

and the communication switches from the channel used in between the current cell

to one of the available channels used by the transmitters belonging to the receiving

cell. Hand-over relations are represented as in Table 4.3, which indicates the cells

that can be subjected to it. As a consequence some separation between channels in

the two cells allowing hand-over is required. Typical values are expressed in terms

of separations between BCCH and TCHs as shown in the example in Table 4.4.

The BCCH and all TCHs in the passing-on cell have to be separated by at least 2

channels from the BCCH in the receiving cell. Whereas, the BCCH and all TCHs

in the passing-on call have to be separated by only 1 channel from the TCHs in the

receiving cell.

Between transmitters installed at different sites, only co-channel and adjacent-

channel interference is relevant. This “acceptable” interference constitutes the soft

constraints. As specified in [40], for computational convenience this interference is

specified only for the down-link band, which usually occurs between transmitters

in different sites.

Interference relations are usually not symmetric and expressed in terms of af­

fected cell areas, which are further normalised between 0 and 1. There are sev-

78

Table 4.3: Hand-over relations for the Tiny instance

A\ a 2 A 3 Bi b 2 C, C2
• •

A i • • •
a 3 • • • •
5 , • • •

b 2 • •
C i • •
c 2 • •

Table 4.4: Hand-over separation for the Tiny instance

BCCH TCH
BCCH 2 1

TCH 2 1

eral ways to rate interference including area-based and traffic-based ratings. The

COST259 scenario refers to area-based as a measure of the acceptable interference.

Table 4.5 specifies the interference values for the Tiny example which are specified

in terms of pairs of cell rather than pairs of transmitters.

Soft and hard constraints are combined in order to produce the final interfer­

ence model for the MI-FAP described in Problem 1.3. If a minimum separation of

one is required by a hard constraint this actually excludes co-channel interference

since the specific pair of transmitters cannot use the same channel. In the same way

a separation of two or more channels excludes both co-channel and adjacent chan­

nel. As a consequence, the co-channel and adjacent channel values in Table 4.5

Table 4.5: Co-channel (left) and adjacent-channel (left) interference between cells in the
Tiny instance

A i A 2 A 3 B i b 2 Ci c 2
A\
a 2 (0.30,0.10) (0.10,0.02)
A 3 (0.05,0.00) (0.20.0.06)
Bx (0.01,0.00) (0.25,0.09) (0.25,0.08)
B i (0.15,0.04)
c , (0.01,0.00)
c 2 (0.06,0.01) (0.12,0.03) (0.25,0.08)

79

will be substituted by a suitable large value cheard where there is a hard constraint.

The COST259 instances use the sum of interference measures over all pairs

of transmitters in the network as the global objective of minimization. Although

this criterion can be considered inadequate, since it does not take into account in

any form the local distribution of interference, it has nevertheless been proven as

effective in practical terms. The calculation of the cell capacities, and thus the

number of transmitters contained in each cell, depends on the expected traffic load.

Among the 32 planning scenarios available provided by different sources we

have selected the following group of data sets available from [2]:

Bradford nt-f-eplus {provided by E-Plus Mobilfunk GmbH) A GSM 1800 net­

work with 649 active sites and 1886 cells. The parameter t stands for five dif­

ferent traffic loads. The basic traffic load was drawn at random according to

an empirically observed distribution [50], then scaled with the factors t equal

to 0 ,1 ,2 ,4 , and 10 before obtaining the required number of transmitters per

cell. The resulting average numbers of transmitters per cell are respectively

1.00,1.05,1.17,1.47, and 2.20, respectively. The available spectrum consists

of 75 contiguous frequencies.

Siemens Siemens AG provided four different benchmarks:

Siemensl A GSM 900 network with 179 active sites, 506 cells, and an av­

erage of 1.84 transmitters per cell. The available spectrum consists of

two blocks containing respectively 20 and 23 frequencies.

Siemens2 A GSM 900 network with 8 6 active sites, 254 cells, and an av­

erage of 3.85 transmitters per cell. The available spectrum consists of

two blocks containing respectively 4 and 72 frequencies.

Siemens3 A GSM 900 network with 366 active sites, 894 cells, and an av­

erage of 1.82 transmitters per cell. The available spectrum comprises

55 contiguous frequencies.

80

Siemens4 A GSM 900 network with 276 active sites, 760 cells, and an av­

erage of 3.66 transmitters per cell. The available spectrum comprises

39 contiguous frequencies.

Swisscom Modified {provided by Swisscom Ltd.) A GSM 900 network in a city

with many locally blocked channels which simulates a partial assignment

that has to be completed. The average number of transmitters per cell is 2.09.

There are 148 cells with 1 to 4 transmitters and 707 neighbour relations. 3,49

frequencies are available, but 136 cells have restrictions, with the worst case

of only 10 frequencies available. The median of available frequencies per

cell is 19.

K (provided by E-Plus Mobilfunk GmbH) Data for dense urban environment in a

GSM 1800 network with only 264 cells and 267 transmitters, with an average

number of 151 interference relations per transmitters.

In the following we will present other characteristics of the COST259 bench­

marks considered. Firstly, Table 4.6 gives for each of them the number of sites, the

number of cells, the average and maximum number of transmitters per cell, and the

size of the frequency spectrum (or the sizes of the contiguous portions if there are

globally blocked channels). Note that in the latter case the gap in the spectrum is

always greater than the maximum required separation thus no interference will ever

occur between separated blocks of the spectrum. In addition, two instances, that is

Siemens3 and Swisscom, present locally blocked channels. Moreover, Siemens3,

Swisscom Modified, and Bradford 1 present disconnected components. The rea­

sons of this are not entirely clarified, as reported in [40]. However, the only numer­

ically relevant component belongs to Siemens3 (36 vertices) whereas for the other

two data sets they are actually constituted by a few isolated vertices.

Table 4.7 shows the characteristics of the corresponding interference graphs

G(V, E). Namely, we are showing the number of vertices \ V\, the density of the

graph, the average and maximum degree, the size of the maximum level zero

81

clique, and information concerning the number, the average, and the max values

of the soft and hard constraints. The density of the graph is expressed by the ratio

between the total number of edges, either representing hard or soft constraints, and

the number of edges corresponding to a complete graph.

Table 4.6: COST259 scenario characteristics [40]

s ite s no. c e lls no. M ean tra n s \c e li m ax . tra n s \c e l l s p e c tru m size

bradO 6 4 9 1866 1.00 1 75

b r a d l 64 9 1866 1.05 3 75

b ra d 2 6 4 9 1866 1.17 5 75

b ra d 4 6 4 9 1866 1.47 9 75

b ra d 10 6 4 9 1866 2 .2 0 12 75

s ie m l 179 5 06 1.84 4 20, 23

s ie m 2 86 2 5 4 3 .8 5 6 4 , 72

sie m 3 3 6 6 89 4 1.82 3 55

s ie m 4 2 7 6 7 6 0 3 .6 6 5 39

S w is s c o m M o d if ie d 87 148 2 .0 9 4 3 ,4 9

k 92 2 6 4 1.01 2 50

Table 4.7: Graph characteristics o f the COST259 benchmarks [40]

\v\ d e n s ity % M e a n d eg ree m ax d e g re e m a x c lique

bradO 1886 13 .59 2 5 6 .4 7 79 81

b r a d l 1971 13.46 2 6 5 .3 805 84

b rad 2 2 2 1 4 13.5 2 9 9 .0 9 1 6 93
b ra d 4 2 775 13.44 3 7 3 .0 1133 120

b ra d 10 4 1 4 5 13.41 5 5 5 .9 1704 174

s ie m l 9 3 0 9.03 8 4 .0 2 0 9 52

s ie m 2 977 4 9 .1 7 4 8 0 .4 8 77 182

s iem 3 1623 9 .1 8 149.1 5 19 78
s ie m 4 278 5 10.5 2 9 2 .3 752 100

S w is s c o m M o d if ied 31 0 8 .2 9 2 5 .7 94 21

k 26 7 5 6 .5 7 151 .0 2 38 69

Several considerations about the graph characteristics are worth noting:

• Two problems (Siemens2 and K), present a graph density widely above the

average (close to 50% in both cases). In particular, test problem K aims

to simulate a network situated in a very dense urban area. Intuitively, high

values of potential interference make the decomposition approach less likely

to be effective when used to solve FAP instances.

82

h a rd co n s t, n o co -c h . n o M e an co -ch m ax c o -c h a d j-c h . no M e an a d j-c h m ax ad j-ch

bradO 7 2 8 8 2 3 4 4 7 9 0.09 1.8 4 2 6 3 0 .0 2 0.8

b ra d l 7 9 9 6 2 5 3441 0.09 1.8 4 8 2 5 0 .0 2 0.8

b rad 2 10 284 3 2 0 6 8 4 0.09 1.8 6871 0 .0 3 0.8
b rad 4 16663 5 0 0 8 0 5 0 .0 9 1.8 12524 0 .0 4 0 .8

b ra d 10 3 8 2 3 4 1 1 1 3 8 5 0 0.09 1.8 3 3 5 4 8 0 .0 5 0.8
s ie m l 6 0 3 9 3 3 0 0 2 0.07 1.7 9911 0 .0 2 0 .6
s iem 2 17761 2 1 6 9 1 2 0.02 0.5 2 5 6 1 5 0 .0 0 0 .0

siem 3 2 3 0 9 3 97861 0.03 1.1 15069 0.01 0.3
sie m 4 2 7 9 6 4 3 7 9 0 5 2 0.03 0 .7 2 6 4 4 5 0.01 0 .0

S w issc o m 3 9 8 4 0 0 .0 0 0 .0 2 0 7 5 0 .2 9 1.0
k 1053 19111 0.15 1.9 9 9 6 0 .0 3 0.8

• All the data sets present both co-channel and adjacent-channel interference

as soft constraints, with the exception of Swisscom Modified in which only

the latter is existing and also shows interference values much greater on aver­

age than in the other benchmarks. All co-channel constraints are considered

as hard constraints.

• The average degree is significantly higher than the number of channel avail­

able in the spectrum, with Swisscom Modified being again the only excep­

tion. This implies that the frequency assignment between adjacent cells has

to be suitably tuned in order to avoid high values of the interference [40].

• Finally, the maximal clique size is also greater than the spectrum size for all

data sets, although it is a low percentage of the cardinality of the correspond­

ing graph. This means that no feasible assignments, that is those respecting

the hard constraints, can be interference free [40],

Cardiff University data sets

Although the COST259 are the most realistic class of publically available bench­

marks for the MI-FAP problem, their sizes, from one to few thousand of transmit­

ters, is still much lower than those we can find in real life instances. It is important

to test the effectiveness of the decomposition approach on larger data sets, since we

know that the performance of the standard meta-heuristics degrades rapidly with

the increasing problem size. For this reason, in order to complete the set of MI-FAP

83

data sets, two larger problems C5 and C& in the order of 1 0 , 0 0 0 transmitters have

been artificially generated. The idea behind their generation was to extend one of

the COST259 test problems to a much larger size, with the aim of conserving its

local graph structure characteristics but ‘spreading’ it at the same time over a much

larger area.

We focus our attention on the first of the Siemens benchmarks, which consists

of c = 506 cells distributed over an area of xy = 240 * 125 in cartesian coordinates,

with a total of 930 transmitters. Hence the cell density d is equal to

d _ c_ _ 506
xy 240 * 125

We assume a number of 2500 cells in the new problem (equal to five times that of

Siemens 1) and distributed over a square region of side x . The cell density d of

the new problem is then expressed by:

y 2500

" 002'

To retain the same cell density (i.e. d = d) we require:

jx * y * 2500
x = y — --------=430. (4.2)

To generate the new data sets we applied the benchmark generator tool de­

scribed in [9] for the MS-FAP benchmarks to produce cell locations. We have con­

sidered two different gaussian probabilistic distributions centered respectively on

one and two towns over the square region in order to produce approximatively the

same number of cells. In detail, we have considered an area o f430*430 in cartesian

coordinates and centered the ‘single town’ distribution on the location (250,250)

for a spread length of 200. The other parameters which define the gaussian dis­

tribution were a height of 0.02 and a cut-off of 0.001, as recommended in [9] as

the most typical values. Similarly for the for the ‘two towns’ distribution we had

84

two distinct centers at the locations (100,300) and (300,100) with an equal spread

length of 150. The values for the distribution height and cut-off were respectively

0.04 and 0.007. Note that these parameters are higher than those adopted for the

one town example in order to produce approximatively the same number of 2500

cells. We obtained 2730 and 2871 cells for the single and two towns problems

respectively. Transmitters locations are shown in Figure 4.7.

- . . • - , . • - v - .. * •••*•.* • , • • •
40000

*000

i;
. . • • • . . . •. •

10000 • . * S' .4 . V‘ •;

C5 C6

Figure 4.7: Cells locations for data sets C5 (top) and C6(bottom) generated respectively
with a ‘single-town’ and a ‘two-towns’ probability distribution

Subsequently, we generate the traffic demands of each of the cells by assigning

a number of transmitters drawn following a uniform distribution between one and

seven to obtain a total number of transmitters in the order of 10,000. This corre­

sponds to an average of four transmitters per cell approximatively. Note that this

average value is approximatively equal to those in the harder Siemens benchmarks,

i.e. Siemens2 and Siemens4.

We consider one cell per site and ignore the interference due to the hand-over.

Consequently, the hard constraints consists only of three channel separations be­

tween transmitters within the same cell. To determine the interference values for

the definition of the soft constraints we have again referred directly to the Siemens 1

problem by applying the following procedure. Firstly, we plot in two separate

graphs all the co-channel and adjacent-cannel interference values as a function of

the Euclidean distance between pairs of transmitters (Figure 4.8). Note that we

85

consider all the occurrences in Siem ensl, thus including the pairs which do not

produce any interference, which are assigned an artificial value of zero. Subse­

quently, for each pair of transmitters in C5 and C(> we compute their Euclidean

distance and then assign to the corresponding edge a value of the co-channel inter­

ference drawn at random among all the occurrences displayed in Figure 4.8 at the

same distance within a small range. In a similar way we determine the adjacent-

interference values. Finally, for both problems we have used the same frequency

spectrum provided for the Siemensl instance. Table 4.8 shows the characteris­

tics for the two additional large MI-FAP benchmarks C5 and C6 generated by the

procedure described above.

co-channel adjacent-channel

Figure 4.8: Interference-distance plot for co-channel and adjacent channel interference in
Siemensl

We can observe from these tables that the graph density is considerably lower

than in the Siemens instances (and that in Siemensl in particular). However, this

density refers to the whole extended area of the newly generated benchmarks,

whereas we will be more interested in having the ‘local’ edge densities close to

each other. In fact, we can expect the new extended problem as having approxima­

tively the same density of the Siemensl problem when this is calculated over areas

having equal or smaller size of the original problem itself. Moreover, the compari­

son should be conducted at different locations, in order to distinguish between high

86

density areas, such as the centers of the ‘towns’, and regions with less connected

transmitters.

Table 4.8: Characteristics o f benchmarks C5 and Ce

s ite s no . ce lls no. M e an tra n s \c e ll m ax . t ra n s \c e ll sp e c tru m size

C 5 2 7 3 0 2 7 3 0 4.01 7 2 0 ,2 3

C 6 2871 2871 4 .1 4 7 2 0 ,2 3

W\ density % Mean degree Max degree Max clique

c5 10935 0 .0 1 7 6 100.47 2 30 28

c„ 11519 0 .0 1 7 7 106.32 264 34

hard const, no co-ch. no Mean co-ch max co-ch adj-ch. no Mean adj-ch max adj-ch

Cs 2 1 811 1 0 1 0 4 0 6 0 .0 3 1.6 3 1 9 0 4 2 0.01 0.3
c 6 2 2 8 9 1 1 1 3 2 5 7 0 0 .0 3 1.3 3 5 3 8 9 0 0.01 0.3

87

Chapter 5

Minimum Span FAP

This section evaluates the decomposed solution approach on a number of MS-

FAP test problems. This is the only FAP problem in which a decomposed approach

has been previously used with meta-heuristics, by applying simulated annealing to

cliques [62]. However, the proposed approach used differs substantially from the

procedure in Algorithm 3.1 since it only assigns the clique of the graph at first

(identified as the hardest part of the problem) and then tries to extend the resulting

assignment to the whole graph (see Algorithm 3.5).

5.1 Heuristic algorithms

To test the validity of the decomposed assignment approach we apply to the MS-

FAP the ‘permutation-based’ steady state genetic algorithm originally proposed by

Valenzuela et al. in [119]. This algorithm obtained very good results on widely

accepted test data sets for the MS-FAP.

Genetic Algorithms (GAs) are search methods originally developed by Holland

[58] with the goal to either reproduce the natural process of evolution or to adapt it

to design software systems retaining its original mechanism. Although GAs have

been very scarcely used to solve the FAP, they are able to process a number of

different solutions in parallel. Thus they can potentially explore a wider range of

the search space than local search meta-heuristics, and potentially produce better

or comparable results in a shorter time.

The ‘permutation-based’ GA incorporates a sequential procedure for individ­

ual fitness evaluation. The representation used (also called order-based) represents

transmitters by finite sets of integers. Individuals in the population consist of order­

ings (permutations) of all the transmitters. Fitness is evaluated for each individual

by applying a sequential constructive method. The implementation used for this

thesis is the original SEAMO proposed in [118] with small modifications in the

generation of the initial population and in the replacement mechanism. For a de­

scription of the SEAMO framework see Section 3.10 and Appendix C.2.2. The

89

genetic operators used to generate offspring are order based mutation and cycle

crossover. These were selected as the most effective recombination operators after

some test runs [23]. The sequential procedure introduced by Hale in [53] is then

used as fitness evaluation. Firstly, an ordering representing a single individual in

the population is chosen among those introduced in Section 2, with the General­

ized Smallest Degree Last (GSL) producing the best results in some test runs per­

formed. This ordering has been used to create the initial population of individuals

by applying the crossover operator to this ordering and other randomly generated

permutations. The GLS algorithm is briefly described in the following:

• Given an initial random order of transmitters the transmitter having smallest

degree is selected and added to a list, breaking ties by selecting transmitters

which appear firstly in the initial given ordering. Then the selected transmit­

ters is removed from the initial set. Subsequently, the selection procedure

repeated for the updated set of transmitters, and the new transmitter added to

the list. When all of the transmitters are selected the list is reversed returning

the final ordering.

The following procedures are applied in sequence for the channel assignment:

the selection of the next transmitters is implemented as sequential (that is by simply

selecting the next transmitter in the ordering), then a frequency is assigned to it with

the simplest Smallest Acceptable Frequency algorithm (SAF) [54] (the smallest

frequency which can be assigned without violating any of the constraints involving

the selected transmitter). Algorithms 5.1 and 5.2, give respectively the pseudocode

of the order-based GA and the sequential assignment used as fitness evaluation.

It can be observed that the sequential procedure always produces assignments

which are zero-violation assignments, which makes the algorithm particularly suit­

able for the MS-FAP. Furthermore, it has been proved that the permutation-based

representation is able to represent any possible solution in the objective space (that

is a given frequency assignment to a set of transmitters), thus permitting full ex­

ploration of the whole solution space [118]. This is the reason why the mutation

90

Algorithm 5.1 Pseudocode of the ‘permutation-based’ GA (SEAMO)
1: Generate a population o f popS ize individuals as permutations o f the whole set o f trans­

mitters representing a chromosome.
2: Evaluate the fitness for each individual by using a Sequential algorithm to generate an

assignment
3: Store the bestSoFar fitness value
4: while Stopping condition not satisfied do
5: while next individual in the population do
6 : { This individual becomes the first parent }
7: { Select a second parent either at random or by applying roulette wheel selection

{ Apply crossover to produce offspring }
{ Apply mutation to offspring }
{ Evaluate fitness produced by offspring }
{ Compute and add fitness sharing terms. }
if offspring better than either parent then

{ Replace the weaker parent }
else

if offspring fitter than w eakest individual in the population then
{ Replace another weaker individual in the population selected at random

end if
else

Discard offspring
end if
{ Update bestSoFar }

end while
end while
Select the ordering representing the bestSoFar individual
Assign channels to it using a Sequential algorithm

operator adopted in this implementation is very basic (it only consists of swapping

two transmitters at random in an ordering) whereas in most of the GAs proposed

in the literature it has the function of a proper local search, which generally aims

to prevent the algorithm from converging to local minima.

Moreover, the order based GA can be also potentially effective in the other

FAP problems proposed which are seeking to produce assignments (even if partial

ones with some of the transmitters left unassigned). In particular, although not

considered for this thesis, it would be interesting to apply our algorithm to the

91

Algorithm 5.2 Fitness evaluation for the MS-FAP

Input: Chromosome ord
Output Frequency Assignment f Int span-0 ms

1 : first transmitter in ord <— fi
2 : while next transmitter in ord do
3: { Select next unassigned transmitter x in the initial ordering ord }
4: { Select the lowest available frequency f x which can be assigned to x without violating

any constraints with the transmitters already assigned in ord }
5: { * « - fx }
6: end while
7: Evaluate the span-0 ms o f/
8 : return / , span - Oms

Maximum Service FAP described in Section 1.4. Here, because of the sequential

procedure incorporated the order based GA should solve the problem of maximize

the number services naturally.

The parameter setting used is that originally proposed in [118] and successively

used in [25]. Each of the experiments has been run for 500 generations with an

initial population size of 1000 chromosomes. The roulette wheel scheme has been

adopted in the selection process, cycle crossover has been applied at a rate of 1 0 0 %

and one order based mutation for each individual have been used. For more details

about the genetic operators used see Section 3.10 and Appendix C .l. Only one

loop has been conducted over each of the given partitions. Since the representation

used allows full coverage of the search space no further local search needs to be

added after the evaluation of each offspring. Consequently, only one evaluation is

needed for each new individual in the population and for each generation. Hence,

with the parameter values above, this corresponds to approximatively 500 x 1000 =

500,000 evaluations. The number of evaluations computed for each o f the subsets

is split proportionally to the number of vertices contained in each subset according

to Definition 4 .1 .

92

5.2 Decomposition algorithms

In order to simplify we have restricted the type of decompositions tested to those

previously used in the literature, see [62], and in preliminary experiments published

in [24,25]. In particular we have tested geographical, clique, generalized-degree,

and the simplest implementation of the GPFAP decomposition described in Prob­

lem 3.3.

Generalized degree decomposition has been implemented according to Algo­

rithm 3.9. GSL has been selected as the algorithm used to produce the initial order­

ing as it produced the best overall performance on a number of random sequential

assignments for the majority of the data sets tested. Furthermore, the decomposi­

tion method in Algorithm 3.9, based on the area under the plot generalized degree

versus transmitters, has been preferred to the other option of decomposing propor­

tionally to the number of transmitters contained into each subset, since it appeared

superior in all the preliminary experiments performed in [25],

Clique decomposition has been used in the basic unweighted version proposed

in Algorithm 3.6 and previously used as the ‘level zero’ clique in [111]. How­

ever, our implementation presents marked differences in the construction of the

next subsets once the maximum clique of the interference graph has been found

(see Algorithm 3.8). In fact, in the approach used in [111] the first cliques were

only further extended whenever the difference between the span produced by them

and that of the completed graph was above an arbitrarily fixed threshold and this

procedure is not able to set a priori a desired number of subsets. On the contrary,

we aim to find a procedure which is capable of investigating constructively the po­

tential of each decomposition method, without any consideration of the cost and

number of subsets.

We are expecting a decomposition to be successful when the span produced

by solving the subsets independently is close to that of the final assignment. If

this happens for any of the subsets, the corresponding partial assignment has good

chances to be extended to a nearly optimal assignment of the whole set of trans­

93

mitters.

Graph partitioning decomposition has been applied using the basic cost in

Problem 3.3 which minimizes all of the inter-edges between pairs of different sub­

sets. In addition, only the balanced GPFAP has been considered for this problem.

For both clique and graph partitioning preliminary tests have shown that better re­

sults are obtained whenever the transmitters contained in each of the subsets are

re-ordered according to GLS. This is the ordering (chosen among those proposed

in [54]) which performs better in a number tests conducted by performing simple

sequential algorithms on the same MS-FAP benchmarks. As a consequence the

performance of the GA (which involves a sequential assignment as fitness evalua­

tion) depends strongly on the specific ordering by which transmitters are selected

within each of the subset, as random orderings produce generally very poor perfor­

mance

For data sets C\, ..., C4 information specifying the location of the transmitters

is provided. Therefore, it is possible to apply the geographical decomposition in

Algorithm 3.4. For these experiments the parameter D is assigned the value of half

the range of the x coordinate to determine transmitters to be included respectively

in the first and second subset. Any transmitters which have not been assigned to

either of the two subsets are included in the first subset. The procedure is applied

recursively to produce decompositions into more than two subsets.

This simple geographical procedure is probably the most intuitive decomposi­

tion algorithm we can imagine, if we think in terms of clusters of transmitters in

the network. Moreover, for the problems generated by a ‘two towns’ distribution

the partitioning produced by the GPFAP and geographical decomposition appear

very close. This is for example shown by Figure 5.1, which visualizes the results

of the decomposition for test problem C4 . The plot clearly shows that with graph

partitioning transmitters belonging to each of the two different towns are largely

included into distinct subsets. On the contrary, a different partition is produced by

generalized-degree, in which is instead emphasized the idea of including the most

94

highly connected vertices in one of the subsets only. Finally, a single random de­

composition has been tested for comparison, using the implementation described

in Algorithm 3.3.

balanced GPFAP

generalized degree

Figure 5.1: Decomposition into two subsets for data set C4

5.3 Experimental results

Table 5.1 gives the outcomes for all the benchmarks described in 4.2.1 in terms of

best and mean span (shown in brackets) over three runs of the assignment with the

heuristic with different random seeds. The values in bold indicate the best span

produced by either approaches.

All the results produced by the decomposition approach were obtained by solv­

ing the subsets sequentially, respecting the constraints with those already assigned,

since solving in parallel will inevitably produce constraint violations. A compara­

tive percentage analysis of the different decomposition methods used can be found

in Appendix A.

By analyzing the results in Table 5.1 we can make the following observations.

For test problems (P\ ,^ 2) the GA with decomposition finds the optimal solution

with either the decomposed assignment (GPFAP and generalized degree) or the

whole approach.

For the other test problems the generalized degree algorithm appears supe­

rior to the others and the decomposition approach is always successful in all the

instances tested. That is it produces a lower span than the non-decomposed ap­

proach. The GA can be compared to other local search heuristics when used in the

traditional whole approach, such as tabu search and simulated annealing in their

standard implementations proposed in [62] for the software tool FASoft. This is

one of the most fully documented systems for the FAP problem which implements

a number of different meta-heuristics available to solve FAP instances. A compar­

ison between the GA and other algorithms results can be found in [24,25].

GPFAP and clique, although producing competitive results in terms of good

approximation of the optimal solution, do not generally find a better span than the

non-decomposed approach. Clique decomposition seems to be slightly superior to

the balanced partitioning GPFAP. This can be explained by the the specific cost

used for this problem, that is the span of an assignment. In fact, the first cliques in

the sequence of subsets are generally able to produce costs which are reasonably

close to the span of the final (nearly) optimal assignment of all the transmitters

in the network. This happens in particular for the first subset which is always

composed by the maximum level zero clique. Note that for these benchmarks,

because of either the relatively small size and low graph density, the maximum

clique can be found with a reasonable computational effort.

GPFAP appears less effective on average than the generalized degree and clique

decomposition. However there are few exceptions. In the case of the Philadelphia

96

Table 5.1: Best and mean span for the MS-FAP test problems solved by order-based GA
with decomposition (500,000 evaluations)

n s | R a n d o m | G eo g . | G P F A P | G en . D eg ree | C liq u e s

P\
1 47 (47.3)
2 51 (5 1 .3) - 47 (47.3) 47 (47.3) 47 (4 7 .7)
4 51 (5 1 .7) - 4 8 (4 8 .3) 47 (4 7 .7) 48 (4 8 .0)

P i
1 426 (4 2 6 .7)
2 4 7 9 (4 8 0 .3) - 426 (426.3) 426 (4 2 6 .7) 4 3 0 (4 3 2 .0)
4 54 3 (5 4 5 .3) - 4 2 7 (4 2 8 .0) 4 2 8 (4 2 8 .3) 431 (4 3 3 .3)

Ci
1 81 (8 1 .7)
2 1 0 0 (1 0 2 .3) 9 4 (9 4 .3) 83 (8 3 .7) 80 (8 0 .7) 82 (8 2 .3)
4 1 0 6 (1 0 4 .0) 92 (9 3 .3) 86 (8 7 .0) 79 (80.3) 84 (8 4 .7)

c 2
1 74 (7 4 .7)
2 85 (8 6 .7) 84 (8 4 .7) 81 (8 2 .7) 74 (7 4 .7) 77 (7 7 .7)
4 88 (9 0 .0) 85 (8 6 .7) 7 9 (8 0 .3) 73 (73.3) 78 (7 9 .0)

c 3
1 74 (7 5 .0)
2 89 (9 0 .7) 82 (8 2 .0) 7 8 (7 8 .3) 74 (7 5 .0) 7 9 (7 9 .7)
4 9 0 (9 1 .0) 84 (8 4 .3) 7 9 (7 9 .0) 73 (74.6) 77 (7 7 .3)

c 4
1 75 (7 5 .3)
2 9 8 (9 9 .3) 71 (7 1 .7) 69 (70.3) 73 (7 4 .0) 73 (7 4 .0)
4 1 0 6 (1 0 6 .7) 73 (7 4 .3) 74 (7 4 .3) 71 (7 1 .3) 72 (7 3 .3)

Ci
1 54 (5 6 .0)
2 5 6 (5 8 .0) - 53 (5 3 .3) 53 (5 4 .7) 53 (5 3 .3)
4 57 (5 7 .7) - 56 (5 7 .0) 51 (52.6) 55 (5 5 .0)

g 2
1 55 (5 7 .3)
2 6 6 (6 7 .3) - 5 8 (5 8 .0) 55 (5 6 .3) 55 (5 6 .0)
4 6 7 (6 8 .0) - 54 (54.3) 5 4 (5 5 .7) 55 (5 5 .7)

c 3
i 1 0 6 (1 0 6 .3)
2 1 1 5 (1 1 6 .0) - 107 (1 0 7 .3) 1 06 (1 0 6 .0) 1 06 (1 0 6 .3)
4 1 1 9 (1 2 0 .3) - 1 1 0 (1 1 0 .7) 1 0 7 (1 0 7 .6) 1 0 6 (1 0 6 .7)

1 121 (1 2 2 .3)
2 1 4 4 (1 4 5 .3) - 125 (1 2 5 .3) 120(121.7) 123 (1 2 3 .7)
4 141 (1 4 1 .7) - 1 2 7 (1 2 8 .7) 121 (1 2 2 .3) 1 2 4 (1 2 5 .3)

R i
1 2 1 6 (2 1 7 .0)
2 2 9 4 (2 9 5 .0) - 2 2 5 (2 2 5 .7) 2 1 6 (2 1 6 .7) 2 1 9 (2 1 9 .3)
4 30 8 (3 0 8 .7) - 2 2 7 (2 2 7 .3) 2 1 6 (2 1 6 .3) 2 1 8 (2 1 8 .7)

97

instance Pi the GPFAP appears to be the best performing decomposition method

whereas clique decomposition is particularly penalised. This can be in part ex­

plained by the nature of these benchmarks, which presents a very high and un­

realistic cell demand. More importantly, the GPFAP appears superior to the other

methods and the non-decomposed approach for data set problem C4 , since this rep­

resents an intuitive and natural form of partitioning for these benchmarks in which

transmitters are located in ‘different towns’. Note that for this benchmark the tradi­

tional approach of solving the problem as a whole appears particularly penalised.

As expected random decomposition does not produce good results, while the

geographical decomposition results are not satisfactory in the case of the ‘one-

town’ benchmarks C\ and Ci. Furthermore, for the problems generated with a

distribution in ‘two-towns’ this method still offers no advantages over GPFAP.

Despite the peculiarity of their structure (which presents a very high and un­

realistic graph density), the outcomes for the random graphs confirm the results

obtained for the other MS-FAP benchmarks. In particular, generalized degree ap­

pears slightly superior to clique decomposition and GPFAP, although they equalize

its results in some problems. Note that, although the decomposed assignment ap­

proach matches the results obtained with the undecomposed solution, because of

the very high edge density of the graph, the gain in runtime for these problems can

be large.

Figure 5.2 shows span-time plots for a number of specific runs of the bench­

marks in Table 4.1 solved by the different decomposition algorithms after 500,000

total evaluations. The diagrams show the respective behaviours when these prob­

lems are solved as a whole, and with the decomposition technique. To simplify

we only show the results produced by a partition into two and four subsets. As

expected the span produced by a particular subset can be lower than the final span,

and some peaks appear in the diagram.

98

1 subset
2 subsets
4 subsets

80

0 5000 10000 15000 20000 25000 30000 35000
run time (seconds)

Ci - generalized degree

' ! i

h !

\-

(i—

1 subset
2 subsets
4 subsets

5000 10000 15000 20000 25000 30000 35000
run time (seconds)

85
1 subset

2 subsets
4 subsets

c

I

....j
5000 10000 15000 20000 25000 30000 350000

C2 - GPFAP
run time (seconds)

C2 - clique

2 subsets
4 subsets

65

0 5000 10000 15000 20000 25000 30000 35000
run time (seconds)

C3 - generalized degree

120

100

80

60

40

1 subset
2 subsets
4 subsets

5000 10000 15000 20000 25000 30000 35000
run time (seconds)

250

200

150

100

0 5000 10000 15000 20000 25000 30000 35000

R 1 - generalized degree
run time (seconds)

/?2 - generalized degree

Figure 5.2: Span-Time plot for the MS-FAP benchmarks solved by the order-based GA with decomposition into two and four subsets

Table 5.2: Ci and C4 with decomposition - subsets solved independently (500,000 evalua­
tions)

ns l 5' su b 2nd su b 3rd su b 4 '* su b c o s t T ab le 5.1 g lo b al
G P F A P

2 39 63 - - 118 83
4 62 61 42 31 102 86

G e n era lized -d eg ree
81

2 63 4 9 - - 110 80

C l
4 62 50 43 35 100 79

C liq u e
2 62 63 - - 94 82
4 62 23 14 63 95 84

G P F A P
2 61 52 - - 98 69
4 44 4 0 16 29 90 74

G en e ra l ized -d eg ree
75

2 65 53 - - 89 73

c 4
4 46 37 24 24 82 71

C liq u e
2 65 71 - - 90 73
4 65 23 15 68 93 72

These are due to the recombination of partial solution when the next subset is

considered. Hence, the dashed lines represent, for a decomposition into a given

number of subsets, only the partial solutions produced by the first group of subsets

whereas the solid lines give valid spans of the whole problem (produced during

the last subset considered). Note that the cost produced by the first subset is often

close to the final (near) optimal span. This is particularly true in the case of the

generalized degree algorithms.

Table 5.2 shows the results obtained for two of the Cardiff University bench­

marks (Ci and C4) when the subsets are solved independently according to Algo­

rithm 3.2. Results refer to the order based GA with the same parameter setting

described in Section 5.1. Besides, we show the best results obtained by either the

global approach and the ‘sequential’ procedure in Algorithm 3.1 (whose complete

results are shown in Table 5.1)

For each of the subsets the GA finds a near optimal ordering which produces the

lowest span of the partial assignment when the sequential algorithm 5 . 2 is applied.

During the assignment of a specific subset only vertices and intra-edges belonging

100

to it are considered. Then the best ordering is returned by the heuristic for each

subset.

When all the subsets have been solved the corresponding partial orderings are

concatenated together sequentially (according to the original subsets ordering).

Then a final complete assignment of the whole set of transmitters is generated

by simply applying once Algorithm 5.2 to the merged ordering (reconstruction).

This will only add one further evaluation to the decomposed procedure (produced

by the application of the sequential assignment 5.2), thus not being significant with

concern to the count of total evaluations, see also Section 4.1.1. Note that apart

from the first subset in the list of subsets which keep the same assignment, all the

assignments for the other subsets will change during the reconstruction procedure.

Note that this further reconstructions of partial solutions in order to produce the

final assignment is not needed when the subsets are processed sequentially since

the procedure directly returns a final valid assignment.

We present the best span over three runs, together with the partial spans pro­

duced by each single subset. We have used GPFAP, generalized-degree and clique

decomposition since they are the best performing methods for the results in Table

5.1 obtained with the ‘sequential’ decomposed assignment technique.

None of the decomposition methods produces satisfactory results when the

solutions are recomposed together for both test problems considered. This is a

consequence of the fact that the ‘partial’ orderings obtained when the subsets are

solved independently ignore the inter-connection between subsets thus, when they

are merged together, do not produce an optimal ordering for the complete graph.

Clique and generalized-degree show a significant value of the span during the first

subset. This result confirms the expectation since all the decomposition used aim

to present the ‘hardest’ part of the problem first. The span generated for the re­

maining subsets is in general lower. However, for the clique decomposition the last

subsets (which includes a significant number of vertices due to the small size of the

cliques) still produces a high span. GPFAP with the cost defined as in Problem 3.3

101

aims to balance the subsets which then tend to produce a similar span. However,

this tendency is more important for C4 with two subsets, for which the GPFAP

generates a decomposition into two distinct towns of almost same size.

In conclusion the MS-FAP results show that the decomposed assignment ap­

proach with the subsets solved sequentially improves or equalizes those obtained

by the whole approach for all of the benchmarks tested. Decomposition meth­

ods that aim to isolate and solve at first the possibly hardest part of the data set

(i.e. clique and generalized degree) produce the best performance, thus confirm­

ing some results previously obtained for this problem. To summarise Table 5.3

shows the best and average results obtained by the permutation based GA using

both the global and the decomposition approach in comparison with the best results

produced by simulated annealing (with global approach) as previously published

in [25].

Table 5.3: Comparison between the best and average (in brackets) spans produced by the
order-based GA and SA [25] (500,000* evaluations)

benchmark GA with decomposition GA global SA from [25]

P \ 4 7 (4 7 .3) 4 7 (4 7 .3) 47 (4 7 .3)

p 2 4 2 6 (4 2 6 .3) 4 2 6 (4 2 6 .7) 4 2 6 (4 2 6 .7)
c , 7 9 (8 0 .3) 81 (8 1 .7) 81 (8 2 .4)

c 2 73 (7 3 .3) 7 4 (7 4 .7) 74 (7 4 .8)
C i 73 (7 4 .6) 7 4 (7 5 .0) 76 (7 7 .4)

c 4 71 (7 1 .3) 75 (7 5 .3) 77 (7 8 .0)
G \ 51 (5 2 .6) 5 4 (5 6 .0) 54 (5 5 .2)

g 2 5 4 (5 4 .3) 55 (5 7 .3) 55 (5 8 .0)
G i 1 0 6 (1 0 6 .0) 1 06 (1 0 6 .3) 1 0 6 (1 0 6 .5)

Ri 120 (1 2 1 .7) 121 (1 2 2 .3) 121 (1 2 2 .0)

R2 2 1 6 (2 1 6 .3) 2 1 6 (2 1 7 .0) 2 1 6 (2 1 6 .3)

In the remaining part of this thesis we will apply the decomposed approach

to the more complex FS/MI-FAP, for which it has never been used in previously

published works.

102

Chapter 6

Fixed Spectrum FAP

103

This section applies the decomposition technique to a selection of FS-FAP test

problems. In order to compare the results with those produced for the MS-FAP

we apply the same heuristic used for that problem, that is the order-based GA.

However, this needs to be adapted for the FS-FAP as described in the next section.

6.1 Heuristic algorithms

One advantage of the permutation based GA in Algorithm 5.1 applied to the MS-

FAP was the property of generating only zero-violations assignments, thus reduc­

ing significantly the search space and speeding up its convergence without pre­

venting the full exploration of the solution space. For the FS-FAP the domain

of available frequencies is limited thus it is usually not possible to find a zero-

violation assignment for a given set of transmitters. Therefore some interference

becomes unavoidable. Furthermore, the algorithm which produces the assignment

itself needs to be modified. We keep the same general structure of a sequential al­

gorithm but the selection of frequency assigned to the next transmitter in the order­

ing is now modified according to Algorithm 6 .1. The modified procedure assigns

to the next transmitter the smallest frequency available in the domain which mini­

mizes the costs Ofs defined in Problem 1.2 calculated on the transmitters already

assigned in the ordering. It is important to mention that we can no longer give

an equivalent of the proof in [118] and, as a consequence, guarantee the complete

exploration of the search space.

To allow full exploration, Local Search (LS) can be incorporated into the GA

after the application of the genetic operators, to explore those assignments which

may not be found by the sequential algorithm. The LS implemented is simple,

in order to preserve the structure and the effectiveness of the GA itself, with a

single move defined as a single frequency change (± one channel) for a number of

transmitters selected at random in a given assignment to the whole network. The

LS also stores and updates the best configuration obtained, thus the new assignment

104

Algorithm 6.1 Fitness evaluation for the FS-FAP
Input: Chromosome ord
Output Frequency A ssignm ent/ Int cost

1: first transmitter in ord <— /o
2 : while next transmitter in ord do
3: { Select next unassigned transmitter x in the initial ordering ord }
4: { Select the lowest available frequency f x which minimize the sum o f violations

<Pf s i f , e) with the transmitters already assigned in ord, }
5: { x +- f x)
6 : end while
7: Evaluate the cost as the sum o f violations in/
8 : return / , cost

can only have a cost which is better than or equal to the initial one produced by the

sequential algorithm. Pseudocode of the fitness evaluation is shown in Algorithm

6.2. Two acceptance criteria have been used:

Definition 6.3 Given the LS procedure in Algorithm 6.2 we define the two following

acceptance criteria:

• Hill Climbing (see [63]): a move is accepted only i f the cost o f the new

configuration is better than the old one

• Metropolis (see [84]): a move can be accepted even i f it produces a greater

cost O fs, according to a probability distribution (6.1). The parameter k has

been set to 1 while the temperature T depends on the particular instance

considered and it is usually set in the range 0 to 1 0 .

(
_ ° F S ne » - ° F S o ld

e 17 lf ° r s new > O f s Old

(6 . 1)
1 otherwise

Preliminary tests were needed in order to set the parameters for this modified

version of the order-based GA (see Appendix C.l). However, no significant im­

provements were observed by changing the settings chosen for the MS-FAP and

105

Algorithm 6.2 Local search implementation for FS-FAP
Procedure Local Search fo r FAP

Input: Chromosome ord
FrequencyAssignment /

Output FrequencyAssignment bestf
1: Apply Sequential assignment to ord and set it as the initial value for/
2 : while numberOfMoves < 10*numberOfTransmitters do
3: { Select a transmitter jc in ord at random }
4: { Store the frequency f x assigned to x i n / }
5: { Select a new frequency at random as either f x + 1 or f x - 1 }
6 : {x *- f xNew to obtain a new configuration f x̂ ew)
7: { Evaluate the cost Ofs o f f XNew }
8 : if Move accepted then { / <— f XNew }
9 : if 0 / r 5 < best Cost then

10: { bestf *— f XNew 1 bestCost <— Ofs 1
11: end if
12: end while
13: return bestf

reported in Section 5.1, which, therefore, has been maintained for the FS-FAP ex­

periments too. In addition, LS was added with a Metropolis acceptance criterion

with a variable value of T decreasing from a high value to a low value, set respec­

tively to 10 and 0 in our tests (T 10 —» 0). It is important to note that, although

decomposition is effective and produces better results than the whole approach (at

least with the GPFAP), the benchmarks used have on average a low connectivity

(with the exceptions of the random graphs and the Philadelphia benchmarks), thus

they do not represent particularly hard FS-FAP instances.

For harder fixed spectrum instances the order-based GA is not able to produce

satisfactory results. For example with the last group of benchmarks G\, Gi and

G3 , although the decomposition improves markedly its results, the order based GA

is outperformed by other standard meta-heuristics using the whole approach. For

a comparison with a standard SA see [25], This is essentially due to the intrinsic

limitations of the order-based representation and the impossibility of increasing the

amount of the local search procedure without having the natural structure of the G A

completely distorted. For this reasons we have conducted a number of experiments

106

changing the type of the representation used and adopting the direct representation

(see [23] for a comparison between different representations for GAs). Different

genetic operators are needed for this representation, which will be also used for the

MI-FAP described later (see also Appendix C.2.2). The crossover is applied with

a rate of 100% and one swap mutation was executed per offspring. In addition,

we applied the same local search Metropolis algorithm defined in 6.3 and already

used for the order-based representation. In order to reduce the negative effect of

the premature convergence fitness sharing has been added to the SEAMO structure

of the GA with the implementation described in Section (3.6).

6.2 Decomposition algorithms

The FS-FAP instances have been tested with the decomposition methods already

compared for the MS-FAP, namely GPFAP, generalized degree and clique. The

cost for GPFAP is that used in Problem 3.3 which minimizes the inter-edges be­

tween subsets while maximizing the intra-edges in the first subset only.

Data sets Gi and G3 , both present the characteristic of having disconnected

components in the interference graph. For this reason, although the size of these

components is very small, we have also considered the simple minimum-cut de­

composition proposed in Problem 3.1.

Definition 6.4 For the minimum-cut two different decompositions are proposed:

• minCutl (component). This partitioning (which is automatically found by

the min-cut procedure in Problem 3.1) is simply obtained by including in

the first subset only the transmitters belonging to the minor disconnected

components o f the interference graph.

• minCut2. This partitioning is obtained iteratively by adding to the first com­

ponent the transmitters included in the next minimum cut o f the induced

graph obtained by removing the vertices so far in the subset. The itera-

107

tive procedure stops when a minimum number vertices has been reached,

(5% in our experiments) has been reached. Note that this strategy becomes

necessary because o f the very small number o f vertices included in each o f

the smallest sides o f the next minimum cuts found (usually less than ten).

For min-cut2 in order to obtain a partitioning into more than two subsets the

procedure is applied recursively to each of the sides of the cut produced whereas

for the ‘component’ approach outlined in min-cutl only a decomposition into two

subsets has been considered.

6.3 Experimental results

Table 6.1 summarises the outcomes for the benchmarks in Table 4.1 using the

order-based GA in Algorithm 5.1 with the modifications described in Section 6.1.

We use the same decomposition criterion in Definition 4.1 in order to split the to­

tal number of evaluations (500,000 as well as for the MS-FAP) among different

subsets. The cost used in Table 6.1 is that defined in Problem 1.2 for FS-FAP.

With exception of the first two Cardiff University instances (both generated

with a ‘one-town’ distribution) the GPFAP is the most successful technique. In

particular it appears very effective for data sets C3 and C4 , which were gener­

ated with the benchmark generator tool using a ‘ two-town ‘ distribution, and for

the GSM scenarios G\ and Gj. For this type of FAP the use of a decomposition

method which aims to reduce the amount of inter-connections between different

subsets is crucial, and the GPFAP directly targets this parameter as the objective of

minimization. In particular, for the two-towns problem C4 we can see from the plot

in Figure 6.1 that in a decomposition into two subsets the cost produced by each of

subsets are very close (and lower than that produced by the whole approach). This

108

good performance could have been predicted since the decomposition pro­

duced by GPFAP into two distinct and nearly disconnected towns is naturally ef­

fective. Note that, this does not happen for the decomposition into four subsets,

in which the cost in the diagrams presents a marked discontinuity between subsets

whereas the first subset still produces only interference free assignments.

Clique decomposition appears far less effective than in the MS-FAP, and in

only few of the instances it is actually able to improve the results produced by

the non-decomposed approach. This can be explained by the fact that, for these

data sets, the size of the cliques is very small compared to the whole graph. As

a consequence, this decomposition method does not produce any effective partial

costs for the first subset, or the first group of subsets. Hence the corresponding

assignments are very often interference free.

Generalized degree decomposition is not as effective as it was for the MS-FAP.

This can be explained by the fact that this method no longer takes advantage of

the sequential assignment, which, although modified for this different problem, is

not able to explore completely the search space. As a consequence a local search

procedure needs to be added (see Figure 6.2) and this also limits the advantage of

starting from a good ordering. In particular this method appears able to obtain some

good results for the ‘one-town’ benchmark generated test problems, in which the

approach of solving the mostly connected part of the graph at first is still effective.

For the other test problems the requirement of minimizing the inter connections

between subsets becomes predominant (especially in the ‘two-towns’ data sets),

thus other decomposition methods outperform the generalized degree. Random

and geographical decomposition produce results which are in percentage terms

worse than those of the MS-FAP, when compared to the best costs found for each

of the test problems.

Figures 6.1 shows the cost-time plots for a number of specific runs of the

benchmarks in in Table 4.1 solved by the different decomposition algorithms af­

ter 500,000 total evaluations. The diagrams show the respective behaviours when

109

these problems are solved as a whole, and decomposed into two and four subsets.

Note that for the solutions obtained by the decomposed assignment approach only

the solid line (which shows the last subset in a specific decomposition) represents

a valid cost of a complete assignment of all transmitters in the network. It clearly

appears that even a small number of subsets improves considerably the overall run

time of the algorithm for the same effectiveness.

Table 6.2 shows the results obtained for benchmarks Ci and C4 when the sub­

sets are solved independently according to Algorithm 3.2. For each of the subsets

the GA finds the near optimal ordering which produces the lowest cost when the

sequential algorithm 6 .1 is applied. During the assignment of a specific subset only

vertices and intra-edges belonging to it are considered. When all the subsets have

been solved the partial orderings are concatenated together sequentially (according

to the original subsets ordering), then a final complete assignment of the whole set

of transmitters is generated by applying Algorithm 5.2 to the merged ordering. We

present the best cost over three runs, together with the partial costs produced by

each single subset, obtained with GPFAP, generalized-degree and clique decompo­

sition, i.e. the best performing methods for the results in Table 6.1.

As for the MS-FAP (see Section 5.3) none of the decomposition methods pro­

duces satisfactory results when the solutions are recomposed for either of the test

problems considered. From the partial costs results that clique decomposition is

no longer capable of generating any significant values for the cost in the first, or

first group of subsets. This is due to the smaller size of the cliques which tends to

produce partial assignments which are interference free assignments, whereas the

last subset (which usually includes the majority of vertices of the graph) is the only

one producing significant interference. However, this is still not effective when the

partial orderings are finally merged together. On the contrary, generalized degree

produces interference only within the first subset.

110

80

2 subsets
4 subsets70

60

50

40

30

20

10

0
10000 15000 20000 25000 30000 350000 5000

120
1 subset

2 subsets
4 subsets

100

L...J

5000 10000 15000 20000 25000 30000 350000

1 subset
2 subsets
4 subsets

60

I
p .20

o 5000 10000 15000 20000 25000 30000 35000
run time (seconds) run time (seconds) run time (seconds)

Ci - generalized degree - 65 freq. C2 - GPFAP - 65 freq. C2 - clique - 65 freq.

1 subset
2 subsets
4 subsets

r \ ...J

'

r------------- ^ j

5000 10000 15000 20000 25000 30000 35000
run time (seconds)

350
1 subset

2 subsets
4 subsets300

250

200

150

100

20000 30000 40000 5000010000

C3 - GPFAP - 50 freq.

run time (seconds)

C4 -G PFA P-5 0 freq.

Figure 6.1: Cost-Time plot for the MS/FS-FAP benchmarks with a fixed spectrum of frequencies solved by the order-based GA with decomposition
into two and four subsets

Similar behavior is shown by GPFAP (used with the cost in Problem 3.3),

which also solves the ‘hardest’ part of the problem first. However, for the ‘two-

towns’ problem C4 decomposed into two subsets, GPFAP is still capable of pro­

ducing a balanced distribution for the interference of the two partial assignments

within the two subsets (note that this does not happen for a decomposition in four

subsets).

Table 6.1: Best and mean cost for the FS-FAP test problems solved by order-based GA
with decomposition (500,000 evaluations)

n s | R a n d o m | G e o g . | G P F A P | G en . D e g re e | C liq u e s
C i 65 freq .

1 94 (9 5 .7)
2 1 4 4 (1 4 4 .7) 1 0 0 (1 0 3 .3) 92 (94.0) 95 (9 5 .7) 98 (9 8 .7)
4 1 4 4 (1 4 7 .3) 1 1 0 (1 1 2 .7) 94 (9 5 .3) 92 (9 4 .3) 96 (9 7 .3)

C 2 65 freq .
1 4 9 (5 0 .3)
2 78 (8 0 .0) 68 (6 0 .7) 4 0 (4 2 .0) 42 (4 4 .0) 52 (5 2 .3)
4 86 (8 7 .3) 80 (8 2 .0) 48 (4 8 .3) 39 (41.3) 50 (5 1 .7)

C 3 5 0 freq .
1 2 8 2 (2 8 3 .0)
2 3 5 8 (3 5 9 .0) 2 7 4 (2 7 4 .3) 262 (263.3) 2 7 4 (2 7 4 .0) 298 (2 9 9 .0)
4 3 5 4 (3 5 5 .3) 3 2 0 (3 2 0 .7) 27 8 (2 7 9 .0) 2 7 6 (2 7 6 .3) 326 (3 2 6 .7)

C 4 50 freq .
1 23 8 (2 4 0 .3)
2 2 7 2 (2 7 3 .0) 227 (2 2 8 .3) 2 25 (2 2 6 .3) 2 3 0 (2 3 0 .7) 24 0 (2 4 1 .3)
4 2 8 4 (2 8 4 .7) 22 9 (2 2 9 .7) 224 (225.7) 2 4 4 (2 4 5 .7) 238 (2 3 9 .3)

G i 30 freq .
1 3 1 6 (3 1 6 .3)
2 4 0 8 (4 0 9 .0) - 305 (306.3) 3 1 8 (3 1 8 .7) 3 2 0 (3 2 0 .3)
4 4 1 0 (4 1 1 .3) - 2 9 8 (3 0 0 .7) 3 2 8 (3 2 8 .3) 3 1 2 (3 1 3 .0)

Gz 30 freq .
1 4 3 9 (4 4 1 .3)
2 5 2 6 (5 2 7 .0) - 416 (416.0) 4 2 5 (4 2 5 .3) 4 1 6 (4 1 6 .7)
4 5 5 2 (5 5 3 .3) - 4 3 6 (4 3 6 .7) 431 (4 3 1 .7) 4 3 6 (4 3 7 .0)

As anticipated in Section 6 . 1 , for the hardest FS-FAP instances the order-based

representation applied to the GA in 5.1 is not able to produce satisfactory results

and, consequently, we need to swap to the direct representation. In the following

we will present results of the direct GA with the decomposed assignment approach

for the hardest of the FS-FAP benchmarks among those considered here, namely Gj

and G3 , the Philadelphia instance P2 , and the random graphs R\ and R2 . Table 6.3

compares the results of G2 and G3 obtained with the minimum-cut decompositions

in Definition 6.4 with those obtained with GPFAP and generalized degree.

112

Table 6.2: C\ and C4 with decomposition - subsets solved independently (500,000 evalua­
tions)

n s I 5' su b 2nd su b 3rd sub 4,h sub co st T ab le 6.1 g lo b al
G P F A P

2 72 0 - - 2 36 92
4 3 0 0 4 0 186 94

G en era lized -d eg ree
94

2 56 0 - - 172 95

C ,
4 24 0 0 0 180 92

C lique
2 0 48 - - 158 98
4 0 0 0 16 160 96

G P F A P
2 156 134 - - 36 0 225
4 34 0 0 0 355 2 24

G e n e ra lize d -d e g re e
2 38

2 166 4 - - 306 2 30

c 4
4 28 0 0 0 3 6 6 , 244

C liq u e
2 8 128 - - 382 240
4 8 0 0 138 428 238

Table 6.3: Best and average cost for test problems G\ and Gi solved by the direct GA with
decomposition (500,000 evaluations)

su b N o
m in -c u tl

m in -c u t2 G P F A P G en . d eg ree
S e q u e n tia l | In d e p e n d e n t

G i

30 freq .

1 35 8 (3 5 8 .3)
2 3 5 8 (3 5 8 .0) 3 58 (3 5 8 .0) 3 4 9 (3 5 0 .7) 292 (297.0) 311 (3 1 1 .7)
4 - - 35 9 (3 5 9 .3) 2 8 2 (2 8 4 .7) 311 (3 1 4 .7)

C?3

3 0 freq .

I 1 2 8 0 (1 2 8 0 .7)
2 1 2 8 0 (1 2 8 0 .3) 1 2 8 0 (1 2 8 0 .3) 1275 (1 2 7 6 .7) 1220 (1223.3) 1271 (1 2 7 2 .7)
4 - - 1266 (1 2 7 2 .7) 1255 (1 2 6 1 .0) 1280 (1 2 8 2 .3)

Although the decomposed approach appears to be successful overall, minimum-

cut appears to be the weakest of the methods considered. Note that if we consider

only the decomposition into graph components, the decomposed technique pro­

duces the same cost as the whole approach. Moreover, the ‘component’ decompo­

sition in Definition 6.4 can be solved either sequentially or independently produc­

ing exactly the same costs since no edges are existing between the two components

and, as a consequence, none of the constraints is ignored by the decomposed pro­

cedure at any stage. However, this decomposition strategy is outperformed by the

other decompositions tested, with the GPFAP producing the best outcomes, thus

113

Table 6.4: Best and mean cost for test problems Pi solved by the direct GA with decom­
position (500,000 evaluations)

subNo
cell demand GPFAP

50% -50% | 80% -20%

Pi

30 freq.

1 203 (206.3)
2 226 (230.0) 210(211.3) 238 (240.3)
4 232 (236.7)1 224 (224.3) 255 (257.3)

confirming the results obtained in Figure 6.1 for the order based GA.

For the Philadelphia problem P2 the decomposed assignment approach has dif­

ficulty in solving FS-FAP instances. This is caused by the very high cell demand

of this particular group of benchmarks, in which the final interference produced by

the optimal assignment is almost completely dominated by the co-site constraints

between transmitters belonging to the same cell. As a consequence, the interfer­

ence produced by the first (or the first group) of subsets is almost always zero, thus

compromising the effectiveness of any decomposition method here used.

Table 6.4 shows the results obtained by the GPFAP decomposition. However,

because of the high graph density the decomposed assignment approach appears

unsuccessful overall for this specific class of cellular problems when used to solve

the FS-FAP.

The random graphs benchmarks already tested for the MS-FAP have been here

applied to a limited number of frequencies (150 channels in our experiments). As

already mentioned the high graph density of these data sets together with their

peculiar structure (which does not present any ‘attractor’ nodes according to the

terminology used for the graph clustering in [41]) does not intuitively make them

good candidates for the decomposed assignment approach. This is actually con­

firmed by the results shown in Table 6.5.

In fact, while for the MS-FAP the decomposed assignment technique was still

able to equalise the results produced by the whole approach, the same does not

happen for the harder FS-FAP. GPFAP appears overall to be the most competitive

114

Table 6.5: Best and mean cost for test problems R i and R2 solved by the direct GA with
decomposition after 500,000 evaluations

subNo GPFAP Gen. Degree Cliques

R\

150 freq.

1 299 (302.0)
2 304 (304.3) 313(314.0) 311 (313.0)
4 322 (324.7) 331 (331.7) 327 (327.3)

Ri

150 freq.

1 203 (204.3)
2 215(217.6) 225 (226.3) 203 (204.0)
4 230(232.0) 255 (255.3) 206 (207.7)

method (at least with a basic decomposition into two subsets). Nevertheless, due

to extremely high edge density, the number and the cost of the inter-edges of the

partition produced is still very high, thus limiting the effectiveness of the graph par­

titioning procedure itself. As a results, the first subset (or group of subsets) always

produces an interference free assignment whereas a marked discontinuity, which

considerably raises the final cost, appears with the introduction of the remaining

constraints in the last subset in the sequence (see for example the cost-time plots

in Figure 6.2). This tendency is even more important for the other decompositions

used.

Note that an exception exists for clique decomposition for the benchmark R2 ,

in which the decomposed assignment technique matches the best cost found by the

whole approach. However, this only appears to be a successful result. In fact, the

maximum level zero clique for this specific data sets only includes less than the 2 %

of the total number of vertices, thus making this approach almost identical to the

non-decomposed one. On the contrary, for the second data set considered, in which

the size of the maximum level zero clique is slightly more important (about the 5 %

of the size of the vertices set), the decomposed approach appears unsuccessful

when compared with the whole (for clique as well as for the other decompositions

tested).

In conclusion, for the FS-FAP the decomposed assignment approach is capable

of producing better results than the whole approach for the most of the test prob­

115

400

350

300

250

| 200

150

100

50

0
0 10000 20000 30000 40000 50000

run time (seconds)

300

250

200

1 150

100

50

0
0 10000 20000 30000 40000 50000

run time (seconds)

Figure 6.2: Cost-Time plot for the random graph benchmarks with a fixed spectrum of 150
frequencies solved by the direct GA with GPFAP decomposition into two and four subsets

lems considered (with the exception of Philadelphia and random graphs). However,

decomposition methods based on minimizing the interconnections between subsets

in the partition (i.e. GPFAP) are more effective than those based on isolating and

solving first the hardest part of an instance (i.e. clique and generalized degree).

This can be partially explained by the fact that for the MS-FAP removing some

of the vertices still allows the core part of an instance to produce a span which

is close to that of the whole data sets. On the contrary, when the cost is defined

in terms of total sum of the constraints violations, as with the FS-FAP, removing

edges unavoidably implies a considerable decrease in the partial costs produced by

a subproblem.

To summarise Table 6.6 shows a comparison with the best results produced by

simulated annealing (with global approach) as previously published in [25] for a

1 1 6

2 subsets
4 subsets

selection of the FS-FAP test problems. For simplicity we show only the best and

average results obtained by the permutation based GA using both the global and

the decomposition approach. From these outcomes SA appears still superior to the

order-based GA for the hardest problems G\ and Gj even when the decomposed

approach is used (although this is successful in comparison with the global). In the

next part of this thesis we will apply the decomposed approach to the subcategory

of the MI-FAP, which adds the further difficulty of introducing a separation of the

constraints into hard and soft, with the latter group expressed in terms of penalty

factors.

Table 6 .6 : Comparison between the best and average (in brackets) costs produced by either
the order-based GA and SA [25] (500,000* evaluations)

benchmark number of freq. GA with decomposition GA global SA from [25]

c , 65 92 (94.0) 94 (95.7) 127 (127.8)
C2 65 39 (41.3) 49 (50.3) 95 (95.7)
c 3 50 262 (263.3) 282 (283.0) 299 (300.4)
c 4 50 224 (225.7) 238 (240.3) 252(256.4)
G i 30 305 (306.3) 316(316.3) 291 (293.2)
g 2 30 416(416.0) 439 (441.3) 383 (383.8)

117

Chapter 7

Minimum Interference-FAP

118

Whereas the FS-FAP approach minimizes the maximum interference level ex­

pressed in terms of constraint violations, the MI-FAP problem aims to minimize the

total sum of weighted interference. As described in Section 1.3.3, hard constraints

represent the channel separation required between pairs of transmitters and must be

respected in the optimal assignment while soft constraints represent a probabilistic

measure of acceptable interference. They are expressed in terms of co-channel and

adjacent channel interference.

The hard constraints relate directly to the binary model of the interference

(in which one weighted edge connects each transmitters pair) while the soft con­

straint values reflect a more realistic measure of the interference inside the network.

Hence they can be interpreted as an intermediate state between the binary model

and more complex ones, such as multiple interference [8 6],

7.1 Heuristic algorithms

The order-based GA used for the MS-FAP and FS-FAP is not competitive with

other meta-heuristics when used to solve the harder MI-FAP instances. This is

is true even if cycle crossover is replaced by merge crossover (see [11] and Ap­

pendix C.l). Updated results for the COST-259 benchmarks are widely available

from the web at [2], We can note that the latest outcomes are almost all produced

by algorithms which include some kind of local optimization procedures (see Sec­

tion 2.3.2 for more details). However, a standard implementation of simulated

annealing obtains results almost as good as those produced by the best performing

algorithms [13,117].

For this reason, SA will become the standard heuristic on which we will focus

in order to investigate the effectiveness of the decomposed approach for this more

complex model of FAP. When effective the decomposed approach can be seen as

a valid alternative to more elaborate algorithms which are more equipped to solve

hard instances, for example by adopting complex local optimization techniques.

119

The idea of decomposing the hardest FAP benchmarks into a partition of subprob­

lems is particularly important for standard meta-heuristics, which are not otherwise

capable of producing satisfactory performance within reasonably short periods of

times for the more complex types of FAP such as the MI-FAP. On the contrary, the

use more complex algorithms on very hard problems may become problematic in

terms of computational complexity.

Although its results are worse than those produced by SA, an standard imple­

mentation of the GA has still been used for comparison in some of the instances.

Here, one of the issues was to explore the potentiality of problem decomposition

when used with different types of algorithms. Since the performance of GAs is

poor in general on these benchmarks (they do not appear in any implementation in

the range of the currently best performing algorithm [2]), it is interesting to investi­

gate if and to what extent their performance can be improved by the decomposition

technique.

7.1.1 Simulated Annealing

Simulated annealing has been successfully applied to the different types of FAP

considered in this thesis. We have here considered the standard implementation

proposed in [60], which is outlined in Algorithm 7.1. From a tuning of the pa­

rameters (see Appendix C.2.1) we chose an initial temperature of 0.5 and the basic

‘single move’, which consists of changing a single frequency value assigned to a

selected transmitter.

A second aspect is the choice of the cooling scheme. In our approach we use a

number of iterations I equals to the number of transmitters in the current subset and

we calculate the reduction index a in order to satisfy the desired total number of

evaluations (expressed by a multiple of the total number of transmitters | V\). This

guarantees that the solutions obtained with both the whole and the decomposed

assignment approach consider the same total number of evaluations. It also ensures

that the number of evaluations at each temperature is proportional to the current

120

Algorithm 7.1 SA implementation for the FAP
Input: initialTemperature to, finalTemperature tmin, number o f iterations I,

reductionlndex a, interference Graph G[Vj\
Output Frequency Assignment /

1: Initialize the temperature t <— to
2 : Generate a random assignment f 0u o f the set o f transmitters
3: Evaluate the cost C0id o f f 0id-
4: while t > tmin do
5: for i = 1 to / do
6 : Generate a new configuration f„ew by changing the frequency of a

randomly chosen transmitter. Frequencies are chosen at random within
the transmitter domains.

7: Calculate the new cost Cnew
8 : Calculate A C = Cnew - C0id

Cnem—Cold
9: if A C < 0 or random < prob = e *•< then

10- fo ld < fnew

11 . C 0ld < C new

12: end if
13: end for
14: reduce t (e.g. t = at)
15: end while
16: Return the final assignment F <— f 0id

subset size. This constitutes a fair basis for comparison.

7.1.2 Genetic Algorithm

Direct Representation

For the MI-FAP instances the order based representation appears incapable of pro­

ducing satisfactory results. Results can be improved by swapping to the direct rep­

resentation. With this representation individuals are constituted by a vector whose

elements are the frequency values assigned to the corresponding transmitters. This

permits complete exploration of the search space.

The framework used is the generational GA NGSAII, which was preferred to

SEAMO described in Section 5.1, since it performs better with this type of repre­

sentation and appears able to produce a better spread of the Pareto non-dominated

set [34]. We have used a population size of 20 individuals, as described in Ap­

121

pendix C.2.2. The number of generations is calculated in order to satisfy the de­

sired number of evaluations for a specific run.

The generic procedure for the Nondominated Sorting Genetic Algorithm II

(NGSA-II) creates at the end of each generation a mating pool by combining the

parent and offspring populations. Then each individual is ranked based on its non­

dominance (in terms of Pareto dominance) towards the other members of the popu­

lation. (i.e. the non-dominated set will constitute rank 0 and then it will be removed

from the population. Then the next set of non-dominated individuals will form rank

1 and so on). Individuals in the mating pool are then ordered according to their rank

values using a fast nondominated sorting approach with computational complexity

0(popS ize, M) (where popS ize is the size of the population and M the number of

objectives). Subsequently the selection operator selects the best solutions from the

mating pool. This is is based on both the fitness of the individuals (i.e. their non-

dominated rank value) and their spread in the objective space, which is obtained

by a so called ‘crowding distance procedure’ (i.e. we will not include in the new

generation individuals which are too ‘close’ in the M dimensional objective space).

When a new population of popS ize individuals is formed then the genetic opera­

tors are applied to it to form a new mating pool (i.e composed by the parents of this

generation plus their offspring). Then the whole procedure is repeated by ranking

the new mating pool and so on. More explanations and details about the NGSA-II

algorithm are given in [34].

Unfortunately, it is not easy to identify in the literature a standard version for

this type of GA, with the main difficulty arising from the choice of effective genetic

operators. For crossover in particular, the standard versions commonly used for

other combinatorial problems appear to be too disruptive for the FAP, thus leading

to unsatisfactory results when applied to the MI-FAP. Consequently, authors have

proposed specialized operators which are specifically developed for the particular

data sets considered. However, none of them has been effectively applied to the

COST259 instances tested in this chapter. After some tests (see Appendix C.2) we

122

have adopted the following operators. The crossover used is a variation of those

proposed in [31,68] (whose procedure is outlined in Algorithm 7.2). It has been

applied with a probability of 80%.

Algorithm 7.2 Crossover operator for the direct GA
1 : Find a pair of transmitters u and v for which the constraint between them is

satisfied, i.e <PFS,Mi(f>uv) = 0 f°r anY °f t w 0 currently selected parents
2 : If no pair can be found in a fixed number of selections select only one transmitter

which has no constraint violation in any of the currently selected parents.
3: Interchange the frequencies assigned to u and v and all the vertices belonging to

their common neighborhood in the first parent with those assigned in the second
parent.

The mutation used, called swap mutation (see [6 8]), consists of a number of

simple frequency swaps between pairs of transmitters selected at random, accord­

ing to a given mutation rate. Mutation is applied at a rate of 0.05% per individual.

This means hat fore each individual are performed 0.05 * | V\ single mutations. To

improve the GA performance an iterative 1-opt LS procedure (see [40]) has been

added after offspring generations to search for local optimality.

Binary tournament selection has been used in the selection process. Tourna­

ment selection can be seen as a variation of rank selection [49] and generally in­

volves two stages. In the first phase a group of individual is selected from the

population given a certain probability. Then the individual with the highest fitness

within the group (also called pool) is selected whereas all others are discarded. In

the binary tournament selection only two individuals are selected to form the pool.

Finally, the deletion of the duplicates, which is also effectively used in other

combinatorial problems [23], contributes in adding variety in the population, thus

limiting the genetic drift effect (see [37] and Section 3.10). The deletion is here

conducted at a ‘phenotype’ level, which means that individuals will be removed

from the population if they are identical in the objective space, as already described

in Section 3.10.

Pseudocode for the different phases of this implementation are outlined in Al-

123

gorithms 7.3 and 7.4.

Algorithm 7.3 direct GA implementation for FAP (NGSAII)
Input: population size popSize, number o f generations G, number o f objectives M

interference Graph G[Vj\
Output Non-dominated set F \ , FrequencyAssignment/

1: Create a random population P0 o f integer vectors representing frequency assignments.
2: Apply binary tournament selection, crossover and mutation to

create a child population Qq
3: while t > 1 a t < G do
4: Combine parent and children population R, = P ,U Q,
5: F = f astNonDominatedSort(R,) where F = (F \ , F 2 , ..)

is the set o f all non-dominated fronts o f R,
6: while iPt+il < N do
7: Calculate crowding distance in F,
8: F /+i = F/+i U F ,
9: end while

10: Sort Pt+1 in descending order using the crowded comparison operator > n
11: Select the first N elements o f Pt+1 = P ,+ 1 [0 : N]
12: while |£?r+il < N do
13: Use selection, crossover and mutation to generate a new individual q =

makeNewPop(P,+1)
14: if q is not a phenotype duplicate in the population then
15: Add q to the new population Qt+\ = Qt+\ U q
16: else
17: It dies.
18: end if
19: end while
2 0 : Apply LS lopt to Qt+\ to search for local optimality
2 1 : t=t+l
22 : end while
23: Return the final non-dominated set F\
24: Return the individual / with the best global cost Xm=i ob jm

Order-based representation

For the reasons mentioned in the previous section the order-based GA will not be

actually used for the MI-FAP. However, a small number of experiments will be

still presented for comparison between the two representations used in this thesis

for the GA.

The order-based representation will be now used within a NGSA-II framework

124

Algorithm 7.4 Iterative 1-OPT implementation for the FAP

Input: Frequency Assignment / m

Output Frequency Assignment /
1: Select a random permutation ord o f the transmitters
2: while no more cost improvements do
3: while next transmitter in ord do
4: Reassign transmitters sequentially to the best frequency

in the domain according to the ordering ord.
5: Update assignment f 0u
6 : end while
7: Select a new random permutation ord of the transmitters
8 : end while
9: Return the final assignment / <— f Qid

adopting the same parameters for the population size and number of generations

used for the direct GA described above. A newly proposed crossover called merge

crossover (see Appendix C.2.2), which has been effectively used in the other simi­

lar problems such as graph coloring, has been applied with a probability of 1 0 0 %

[11]. For a description of the method see Appendix C.2.2. One order based muta­

tion per offspring will be applied (as in the experiments conducted for the MS/FS-

FAP with this representation). In addition, the same 1-opt LS already introduced

for the direct GA will be also used for this representation, see also Section 5.1.

Details about the tuning tests performed with this GA are given in Appendix C.2.2.

7.1.3 Multi objective approach

The NGSA-II framework implemented for the MI-FAP presents another important

difference from the other versions of the GA previously introduced. We have in­

troduced a novel multi-objective approach which can be seen as alternative to the

introduction of penalty factors mentioned in Section 2 (a technique which presents

difficulty in finding a suitable setting for the weights).

If we solve the GA as one objective optimization, as it is normally suggested in

order to solve the FAP, we minimize the total interference which, in the case of the

MI-FAP, is only composed by the sum of the two types of soft constraints (assum­

ing that we reach a nearly optimal solution which satisfy all the hard constraints).

125

The idea is now to solve the same problem as a two objective optimization problem

in which the two different objectives are constituted by the two different types of

soft constraint, respectively co-channel and adjacent-channel interference.

Definition 7.1 Give an assignment let be Ecoch the edges corresponding to a vio­

lation o f the co-channel constraint (i.e. their end points are assigned the same fre­

quency) and Eadi the edges corresponding to a violation o f the adjacent-channel

constraint (i.e. their end points are assigned with one channel separation). The

solving a MI-FAP problem as a one objective optimization problem (with the nota­

tion used in Problem 1.3) consist o f minimizing:

O m i (J) = ^ <Pau (f ,uv)+ ^ <PMi(f> wv) = + Ow a dj(f)
uve Ecoch uv€ Ecoch

I f we solve the problem as a two objective optimization the two objective con­

sidered are then CFfffif) and

The two objective implementation maintains a population of individuals which

do not dominate each other as the two objective were competitive and cannot be­

ing optimized as they would be independent, i.e. the optimization of one objective

cannot be done without penalizing the other objective. This in our case is intro­

duced as an artificial expedient to preserve diversity while at the end of the run the

algorithm returns the solution with the best (minimum) total cost Omi(J) within

all of the individuals in the final e population (as in the usual one objective opti­

mization problem). Note that the NGSAII framework described in 7.3 has been

expressively designed for multi-objective optimization and it is based on the con­

cept of Pareto dominance and the maintenance of the non-dominated fronts, which

are approximations of the Pareto optimal front, see [33].

The multi-objective choice presents the advantage of reducing considerably

126

the problem of premature convergence (see Section 3.10) which is one of the main

problems of the single objective approach. Therefore, this can be seen as an alter­

native to the choice of introducing other artificial expedients, such fitness sharing

used in Section 6 .1. Moreover, it can provide information about which type of

interference may be predominant (i.e. it can identify the nature of the trade off

between co and adjacent channel interference).

Tables 7.1 and 7.2 show a comparison between the one and the two-objective

approaches for the Siemens 1 and the Siemens2 benchmarks respectively. In both

cases the direct GA has been run for 2,000 generations with a population of 20

individuals (1,000,000 * \ V\ total evaluations approximatively).

Table 7.1: Best and average cost O m i (over three runs) for the COST259 Siemens 1 bench­
mark solved by the one and two-objective direct GA

subsetsNo one obj. two obj.
1 4.14(4.36) 4.02 (4.13)
2 3.79 (3.84) 3.53 (3.57)
4 4.05 (4.07) 3.46 (3.59)

Table 7.2: Best and average cost O m i (over three runs) for the COST259 Siemens2 bench­
mark solved by the one and two-objective direct GA

subsetsNo one obj. two obj.
1 18.45 (18.72) 18.00(18.14)
2 19.27(19.38) 18.88(19.03)
4 21.62 (21.02) 21.50(21.79)

We can firstly observe that the figures in the table show only a little improve­

ment in the results produced by the two-objective choice. This is can be partially

caused by the fact that the 1 -opt local optimization procedure is applied to the

global objective O m i (/) , composed of the sum of the co-channel and adjacent-

channel, see Definition 7.1. This tends intuitively to uniform the one objective

with the two objective minimization approach. Alternatively, the two objectives

can be weighted at random, in order to induce a further spread of the Pareto set

127

of the non-dominated solutions, with the distribution of weights changing, for in­

stance, at each generation. The total composed weight will now depend on the pair

of weights (Wi, W2) used as:

o«/(/, wuW2) = w, • (/) w2 •

Few more experiments were conducted with this further expedient without,

however, producing significant improvements, thus their results will be omitted

from the rest of the thesis.

Nevertheless, in our experiments, the two objective approach is more success­

ful in delaying the convergence of the algorithm and in reducing the negative phe­

nomenon of genetic drift. In some of the tests the one objective approach outper­

forms the two objectives one during the first part of the run but its result do not

further improve after a small number of generations (see for example Figure 7.1

which shows a single run of Siemens 1). On the contrary, the approximations of the

non-dominated set of the partial solutions in the two objectives space continues,

even if rather slowly, to advance towards the final approximate Pareto set. Figure

7.2 shows an example of the behaviour of the approximated non-dominated set

through the generations.

7

6 5

6

5 5

5

4 .5

4

3 5
0 500 1000 2000

run time (MOondB)

Figure 7.1: Cost-time plot for Siemensl solved by direct GA with one and two objectives
after 1 , 0 0 0 , 0 0 0 * | V] evaluations

128

23

2J6

2.4

600 gen.
° O Q

. BOO gen
oc*6 1000 gen

22 3
co-cft

32 3.4 4

Figure 7.2: Approximated non-dominated set through the generations during a run of the
COST259 Siemens l benchmark

1 2 Decomposition algorithms

This section describes the decomposition algorithms tested for the MI-FAP. Al­

though they will mainly be those already described in the previous section, some

modifications are needed to adapt them to the specific formulation of this type of

FAP.

Before presenting the modified versions of the decomposition methods it is im­

portant to clarify how the interference graph itself needs to be modified too. In fact,

the contemporary presence of soft and hard constraints requires the introduction of

a single set of edges, since the most of the decomposition procedures rely on a

weighted graph as the input.

7.2.1 Graph partitioning

To adapt the graph partitioning to the MI-FAP data sets we will refer to the graph

theoretical model introduced in Section 1.3.3. To state the decomposition algo­

rithms used at step 1 of Algorithm 3.1, we first define a weighted simple graph G °

that combines the hard and soft constraints.

Although most of the results shown in this section are obtained by setting these

129

parameters to the values A\ = A2 = 0.5, and A3 = 1. Note that given cru“ as a high

value arbitrarily chosen this choice always emphasize the hard constraints, which

become dominant in Definition 3.2 whenever are present. In the absence of hard

constraints this setting gives equal weight to both co-channel and adjacent channel

interference), other combinations can be used. In particular, it is interesting to test

the eventual difference in the final FAP solution obtained when the partitioning is

produced by considering either only the hard (/li = A2 = 0) or the soft constraints

(A3 = 0).

For all the experiments presented in this chapter the cost used in Problem 3.4

has been used for the balanced GPFAP whereas for the unbalanced GPFAP the cost

formulated in Problem 3.5 has been preferred. Both of these costs have been cho­

sen because they produced better results in a number of test problems performed

(see also [26]). In particular the latter cost takes advantage of the graph cluster­

ing parameters used, that is the inter and intra clustering conductance, in order to

maintain a more balanced partitioning, thus avoiding trivial decompositions that

includes all transmitters in one subset only.

To solve both types of GPFAP we used the memetic GA proposed in Algorithm

3.10. The number of subsets and the remaining parameters have been set accord­

ing to the values used in [26] in some preliminary test problems. The population

consists of 100 individuals and the algorithm is run for 500 generations. Cycle

crossover is applied with a rate of 1 0 0 % whereas one single order-based mutation

is performed for each of the offspring generated. Finally fitness sharing is used as

a niching method with the same implementation used in [23] and outlined in equa­

tion (3.6). The LS added in order to speed up the process was a SA run for 1000

iterations for each of the offspring produced. Figures 7.3 visualizes the results of

the graph partitioning decomposition into two subsets for Siemens2 (balanced and

unbalanced GPFAP) while Figure 7.5 shows the two towns test problem C(, (bal­

anced GPFAP). Note that for the latter instance the plot shows how the transmitters

belonging to different towns are largely separated into different subsets.

130

7.2.2 Graph clustering

The Markov graph clustering with the standard setting of the parameters (see [120])

tends to create a large number of clusters which are then ineffective in solving FAP

instances. In fact, any decomposition method produces in general poor results

when the number of subsets in the partition becomes too high (usually greater than

four or five). However, the setting of the parameters cannot be easily changed with­

out affecting the computational complexity of the algorithm. As a consequence,

the Markov algorithm produces a number of clusters (usually in the order of tens)

which can still be higher than needed for our experiments.

33915 33920 33925 33930 33935 33940 33945 33950 33955 33960

balanced

33915 33920 33925 33930 33935 33940 33945 33950 33955 33960

unbalanced

Figure 7.3: GPFAP decomposition into two subsets o f the Siemens2 COST-259 data set

131

45000

40000

35000

30000

25000

20000

15000

5000

0
450005000 20000 25000 3000010000 150000

balanced

unbalanced

Figure 7.4: Balanced GPFAP decomposition into two subsets of data set C6

We will refer to the resulting partitioning as a Markov clustering. To reduce the

clusters to the desired number, usually two to four, we have adopted the procedure

in Algorithm 7.5 in order to merge selected clusters. Note that the resulting par­

titions will not be necessarily balanced since the subsets constituting the Markov

clustering C(G) usually contain a variable number of vertices of the original graph

G. For this reason, its performance is expected to be similar to the other methods

which produce an unbalanced partitioning, such as unbalanced GPFAP and clique.

7.2.3 Other decompositions

Generalized degree decomposition is simply obtained by applying Algorithm 3.6

to the graph G ° . Further modifications of the graph need to be introduced to deter-

132

Algorithm 7.5 Merge selected clusters

Input: Partition M(G°) = { M \ , M2 , , Mm }, noSubs

Output: Partition V(G°) = { V\, V2......... VnoSubs)

l: Given a Markov clustering M(GD) in m subsets [M\ , M2 , . . . , Mm } of the graph
Gd(V,E) we consider an artificial graph GC{V,E) in which:

• vertices v, 6 V(GC) represent the individual clusters M, of the partition
M(Gd).

• edges i j e E(GC) between pairs of different subsets are assigned weight
values equal to the sum of the inter-edges of G° which belong to subsets
M, and My

2 : Execute a (balanced) graph partitioning algorithm of the graph Gc (see Problem
3.4) in order to obtain a partition C(GC) = {C \ , C2 , . . . , Cnos ubs} into the desired
number of noS ubs subsets.

3: Expand each of the vertices v, e V(GC) by including all the transmitters contained
in the clusters M, of M(G°) to obtain a partition V(G°) of G° into noSubs
subsets.

mine the clique decomposition. Because of the different weights used for the hard

and soft constraints (which reflect the different importance of these two different

categories), the adoption of the weighted procedure in Algorithm 3.7 to detect the

maximum clique of GD appears more suitable. Note that to apply this procedure

we need to modify the graph G° as described in Definition 3.3 to obtain a suitable

graph Gc . Finally, in order to determine partitions with more than two subsets the

same procedure has been applied recursively, as previously proposed in Algorithm

3.8 for the MS\FS-FAP.

Geographical decomposition will be applied for comparison in the few bench­

marks provided with location information (that is the Siemens and Cardiff in­

stances). Figure 7.5 shows the results of the geographical decomposition into two

subsets for Siemens2 obtained by applying Algorithm 3.4. Random decomposition

will be not considered for this harder type of FAP. Because of the presence of the

hard constraints a decomposition drawn at random is very likely to produce final

uv 6 E‘jn'er(GD)r\EJ'er(GD)

133

1715

1710

1705

1700
33915 33920 33925 33930 33935 33940 33945 33950 33955 33960

balanced

Figure 7.5: Geographical decomposition into two subsets of the Siemens2 COST-259 data
set

assignments which are not feasible for this problem (i.e. which are violating some

of the hard constraints).

The different importance between hard and soft constraints in the interference

graph plays a primary role in the effectiveness of a decomposition. As described

in Section 1.3.1 the former category of constraints must be satisfied in a feasible

assignment and, for this reason, is associated with very high artificial weight values

whereas the latter is normally weighted in the range of few units and constitutes

the actual objective of optimization, see Table 4.7. Hence, a decomposition cannot

disregard the distribution of the hard constraints. Whenever many of their corre­

sponding edges are included in one of the inter-edge sets between distinct pairs

of subsets, is more likely that the resulting solutions of the FAP will not be fea­

sible. Figures 7.6 shows the distributions of the hard constraints for the Siemens

instances. Note that since transmitters within a cell have all the same geographi­

cal coordinates it is not possible to represent intra-site constraints and so the con­

straints shown are only handover constraints. We can observe how some of them,

e.g. Siemens2, are more difficult to be partitioned into subsets whereas others

show a more natural separation into clusters, see for instance Siemens3 which also

134

presents a small disconnected component.

33600 33650 33700 33750 33800 33860 33800 33850 34000 34060 34100 34150

Siemens 1 Siemens2

33300 33400 33500 33600 33700 33800 33800 34000 34100 34200 33890 33900 33810 33820 33830 33940 33950 33960 33970 33880

Siemens3 Siemens4

Figure 7.6: Hard constraints distributions for the COST259 Siemens instances

7 3 Experimental results

In this section we will present the results obtained by applying the decomposed

assignment approach proposed in Algorithm 3 .1 to the MI-FAP benchmarks de­

scribed in 4.2.2. We will firstly consider a number of runs of the COST259 in­

stances in order to compare the performance of different decomposition techniques.

Subsequently, we will presents the outcomes of longer runs on the same bench­

marks together with the Cardiff University ones for the most effective decomposi­

tion algorithms. Finally, we will have a closer look at the trade-off between quality

and runtime and at the distribution of the local interference when the decomposed

approach is applied.

135

7.3.1 C om parison o f decomposition algorithms

Information about the location of the transmitters is available for the Siemens data

sets, hence we tested the geographical decomposition along with the balanced and

unbalanced GPFAP, the Markov clustering algorithm, the generalized degree and

clique decomposition. The aim of the experiments is to exclude from further ex­

perimentation any decomposition method which appears to be clearly ineffective

for this problem. Therefore, we conducted this first set of experiments for a limited

number of total evaluations (100,000 * |F|). Furthermore, we will focus only on

standard SA since it outperformed the GA in the tests conducted without decom­

position (see 7.1). The heuristic loops through the partition twice. Results for the

decomposed approach are summarized in Table 7.4, which shows in each of the

column the average cost obtained over three runs with different random seeds ob­

tained for a specific decomposition method. For each of the benchmarks we show

the outcomes of different runs with a number of subsets ns variable between one

and four. In addition, for each of the runs the results are organized in two rows

corresponding to the first and second loop through the subsets. Finally, Table 7.3

shows for the same benchmarks the costs obtained with the global approach with­

out any decomposition applied. Results are presented in columns corresponding

to a different test problems and are still organized in two rows corresponding to

two different loops to maintain consistency for a comparison with those of the de­

composed approach. However, in the case of only one subset the results for the

second loop actually refer to a second run with double number of evaluations with

respect to those obtained with a single loop. The best outcomes are highlighted

in bold whereas if the algorithm is unable to produce feasible solutions (i.e. solu­

tions satisfying the hard constrains) the corresponding costs are displayed in blue.

However, these do not have any numerical significance since the value produced

by the algorithm is in these cases that of the weights c^°rd, which is artificially set

to 1 , 0 0 0 in order to represent the hard constraints.

The GPFAP and the Markov clustering appear superior to clique and generalized-

136

Table 7.3: Siemens 1-4 for SA without decomposition (100,000 * \ V\ evaluations per loop)

first loop
second loop

SIEMENS 1 SIEMENS2 SIEMENS3 S1EMENS4
3.38 (3.44) 17 .12 (17 .67) 8.24 (8.52) 92.43 (92.71)
3.30 (3.37) 16.75 (16.89) 8.14 (8.31) 92.12 (92.23)

degree decompositions, which for the hardest instances have difficulty in produc­

ing valid solutions (that is they may contain violated constraints). However, neither

GPFAP nor Markov appears to clearly outperform the other in all of the instances

tested. Furthermore, there is not a clear difference between the performance of the

balanced and unbalanced version. Note that in some instances of the unbalanced

version one of the subsets includes the majority of the transmitters, making its so­

lution very close to that of the problem as a whole. This can bring about some

advantages in the optimality but can also affect the runtime of the decomposed

approach.

Geographical decomposition takes advantage because some of the Siemens in­

stances are decomposed into natural clusters, see for example Siemens3 which also

presents a distinct component. However, this method is penalised by the fact that

it does not take account of the number and weights of the inter-edges between

different subsets.

Clique based decomposition only partially produces a competitive performance.

This may be caused by the fact that, because of the small clique sizes, this method

often finds a trivial interference free solution for the first subset. As a consequence

fixing their assignment has the effect of restricting the assignments of subsequent

subsets.

Finally, generalized degree decomposition neither takes into account the inter­

edges between subsets or resembles any sort of clustering or unbalanced partition­

ing. As a consequence it produces the worst performance among all the decompo­

sition methods tested.

Note the effect of the second loop and how this is beneficial both in terms of

137

mean and variance. In physical terms this is related to a locally different interfer­

ence distribution in the subsets as it will be discussed in more detail at the end of

this chapter.

For Siemens 1, 3, and 4 the GPFAP technique and the Markov clustering both

perform better than solving the original problem as a whole. However, for Siemen2

the decomposition in subsets does not improve the results obtained with only one

subset. This will be confirmed by the longer runs presented in the next section.

Note that, the results for this benchmarks are better for the unbalanced GPFAP

rather than the balanced version. This performance improvement can be explained

by the fact that the unbalanced decomposition naturally reduces the number of the

inter-edges, making the number of transmitters in at least one of the subsets equal

to a very low percentage of the total.

Table 7.4: Siemens 1-4 for SA with decomposition (100,000 * \ V\ evaluations per loop)

M .G W A * || Unbai. GPFAP || Gen. Degree | Cliques 1 Ueog Markov
ns first loop Global

second loop
SIEMENS 1

2 5.16(5 2S'i 5 66,5 441 5.46 (5.72) : - 1 3.32 (3.33)
3.14 (j.18) 1 5.5B75.57) 4.24 (4.31) v - . ' - 3.45 (3.54) 3.26(3.29

3 3.56 (3.45) 5.55 (5.45) 5.89 (6.23) ; •- . . 3.ST (4.01) 3.40 (3.61) 3.30 (337)3.32 (3 3 6) 5.29 (334) 4.99 (5.05) 3.42 (332) 3.48 (3.61) 3.29(3.41)
4 5.15(5.19) 5.99(420) 6.85 (6.99) 5.59(5.67) 3.65 (3.72) 3254 (3.42)

3.52 (5.s5) 5.50(3.44) 5.55 (5.56) 5.58 (3.68) 3.45"(3.56) 3.23 (327)
SIEMENS 2

2 17.91(17.98) 17.93(18.10) 23.30 (24.37) 18.38(20.02) 1933(19.54) 21.49(21.81)
17.83(17.91) 17.59(17.86) 18.64(l9.04) 18.22(18.42) 17.96(18.14) 19.22(19.34)

3 ■ 19.91 (20.55) 19.79(19.94) 26. l4 (26.26) 19.59(2,018) 20.47 (20.38) 241^(24.82)
f8!36(i&.57) 17.99(18.09) 21.36(21.56) 19.35 (19.44) 18.20(18.71) 20.18(20.68) iv . / j tio.o>7

4 —20.99 (21.10) 17.72(17.93) 27.47 (27.52) 19.82 (2.686) 20.79(2,687) 22.91 (23.36)
18.60(18.87) 1731 (17.42) 22.61 (22.76) 19.18(1933) 18.95(19.09) 20.45 (20.80)

SIEMENS 3

2 7.66 (7.84) 7.59 (7.69) 2.009 (3350) 9.14(674.8) 9 .06(934) 8.04(8.17)
7.58(7.81) 7.31 (7.49) 9.15(1.542) 8.76 (8.82) 8.83 (8.95) 7.77 (7.89)

3 73 0 (7.45) 8.48 (6753) 8.49(8.81) 9.17(9.22) 8 14(8 31)7.24 (7.40) 7.79(7.98) 11.50 (678.0) 8.03 (8.27) 8.42 (8.44) 7.54 (7.65)
4 8.09 (8.28) 8.43 (8.57) J .o i7 (3.684) 8.61 (675.6) *,,4 4) 4 , 7.5577.64)

7.98(8.14) ' 7.92 T5.15) 12.40(1345) 8.43 (8.48) 8.40 (8.68) - 4 .
SIEMENS 4

2 90.65(91.50) 90.62 (90.88) 2.147(3.145) 93.04 (723.3) 96.33 (2.761) 92.22(92.51)
90.65 (91.48) 89.54 (90.09) 2.120(5,082) ; 92.59 (92.75) 9(1.10(90.19)

3 94.13(94.85) 88.63 (89.12) 5.553 (5.823) 2.254 (2.371) 96.201 (2.096) 94.04 (94.17) 9? 1? (Q74S o - 56 RR.’ .l ,88.-131 3.1J 1 (J .5 l4 |
93.5T(427.57

.

4 94.22 (95.68) 92.40 (93.63) 3.749(3.983) 2.651 (3.001) 3.39974,099r 1,217(2,112)
95.19(95.58) 92.07 (95.42) 3.5j3 (J.8UI) 96.39 (97.46) 95.24(96.25) -4 ..4 ■-

Table 7.5 shows the outcomes of the same decomposition methods when a re­

verse ordering is applied, that is the subsets are exactly the same of those used in

Table 7.4 but the order of the assignment is reversed. The performances of the GP-

138

FAP and the Markov clustering are in general worse than in Table 7.4 for all the four

Siemens instances. This can be explained by the fact that these procedures lose the

advantage of having the first subset which approximatively represents the hardest

part of the problem. An opposite tendency is shown by the clique decomposition,

which generally improves the results obtained in Table 7.4 instead. However, with

the reverse order this decomposition method is actually an unbalanced partitioning

with the larger subsets considered at first, which may explain the improvements in

its performance. Generalized degree decomposition and geographical decomposi­

tion do not seem to be competitive with any of the other methods tested.

Table 75: Siemensl-4 for SA with decomposition - reverse ordering (100,000 * |V| evalu­
ations per loop)

ns
Bal. GPFAP | Unbal. GPFAP | Gen. Degree | Cliques | Geog | Markov

Globalfirst foop
second loop

SIEMENS 1
*> 4.07(4.13) 3.78 (3.95) 22.93 (22.94) 4.57 (4.76) 3.75(3.85) 3.41 (3.45)

3 3 0 (3 3 7)

4.04 (4.10) 3.78 (334) 19.42(19.75) 3.49 (3.73) 3.55(3.59) 3 3 9 (3.44)

3 4.43 (4.48) 3.42 (4.43) 6,025 (8,026) 4.12(4.43) 3.87(4.02) 3.45(333)
4.06(4.31) 3.25 (4.06) 21.81 (22.03) 4.01 (4.06) 3.65 (3.66) 3.29 (3.32)

4 4.^8 (5.02) 4 3 5 (6.37) 14,025(14,026) 4 3 5 (4.71) 3.72 (3.80) 3.75(3.88)
4 3 0 (4.48) 4.26 (6.93) 22.4<!) (2,022) 4.19(4.48) 3.60(3.73) 3.47 (3.53)

SI EMENS 2

2 19.45(21.68) 18.24(18.62) 22.93 (2,022) 4,023 (4,024) 18.88(19.08) 2,022 (4.021)

16.75(16.89)

18.58(19.88) 18.95(19.58) 19.42(19.54) 1 7.86 (1 7.961 17.97(18.24) 18.95(19.46)

3 21.69(23.63) 24.66(1358) 4,026 (6,025) 2,026 (4,692) 20.25(20.58) 0,612 (6,023)
18.54 (20.97) 2132 (21.89) 21.70(22.03) 18.56(18.74) 18.57(18.66) 20.23 (20.61)

4 51.29(22.83) 25.93 (5359) 0,026 (6, 22.38 (089,1) 2.625 (4,025)
19.92(21.02) 11.72 (22.27) 22.09 (688.9) 19.20(19.52) 20.70(20.91)

SIEMENS 3

2 835(11.09) 8 3 5 (8 6 3) 3.800 (4.534) 4.010(9.342) 8.76 (8.94) 9.68(9.85)

8 1 4 (8 3 1)

7.98(10.116) 7.98 (815) 8.52 (1341) 7.98(8.12) 8.59 (8.64) 8 3 6 (8.59)

3 10.91 (10.93) 2.010(2.677) 3,501 (3,730) 4,013 (6,013) 8 .26(831) 9.92(10.25)
8.70 (9.10) 8.52 (9.44) 2,010(2,924) 8 3 8 (848) 8.00(8.23) 8.27(8.52)

4 12.71 (12.86) i0.93 (1,015) - 0,401 (7.001) 8,013 (10,680) 8.20 (675.0) 9.42 (9.46)
: ■ >* 9.70(10.51) 11.53(4,010) 8.74 (8.92) 8.20 (8.35) 7.82 (8.21)

SIEMENS 4
2 99.14(877.5) 9730(1,431) 4,093 (6,095) 3 3 9 4 (4,091) 98.63 (2,095) 2,092(4,012)

92.12 (92.23)

9433(95.14) 2.101 (3.769) 94.06(94.76) 94.75(95.91) 94.24(94.50)

3
io2 i- <6.88 2.097(3.084) 7,611 (8,677) 6.098 (8,095) 6,058(8,112)
94.43 (3332) 90.76(90.91) 1,210(1,610) 93.20(94.17) 93.74 (94.45) 4,110(6,015)

4 101.88 <769.2) 97.48(97.69) 10.515 l l 1,287) 14,006 (18,000) 2,098 (6,098) 4,025(6,115)
94.97 (<*.80) 94.19(95.46) 5.511 13,078) 05.30 (94.88) 95.49196.6 li 2.084(4,115)

To summarise, GPFAP and Markov clustering appear to be the most effective

decomposition algorithms for this type of FAP. Furthermore, the use of a reverse

ordering does not improve the results produced with the original one used in Table

7.4.

Table 7.6 shows the results obtained for Siemens 1 and Siemens2 for a number

of runs in which the subsets have been run independently according to Algorithm

139

3.2. We present the best final cost over three runs together with the correspond­

ing partial costs produced by each single subset and obtained by recomposing the

partial assignments to produce a final complete assignment for the whole transmit­

ters in the network. Results are shown for balanced and unbalanced GPFAP for

100,000 * |V| evaluations. The costs in Problems 3.4 and 3.4 have been used for

the balanced and unbalanced partitioning respectively. From the partial figures in

the different subsets it is confirmed that the first subset always produces the high­

est interference values. Note that for the unbalanced GPFAP the partitioning is

re-ordered with the larger subset in the first position. As a consequence, it tends

to produce interference free assignment within the last subsets, often composed of

only few vertices.

However, the final costs always present infeasible solutions and similar results

were obtained for the other decompositions tested. Consequently, this approach

can only be used if followed by further local optimization procedures. For example,

it can be used as a pre-processing before the application of a generic meta-heuristic

procedure, which could include the ‘sequential’ decomposition technique proposed

in Algorithm 3.1 (as will shown as example at the end of the chapter).

Table 7.6: Siemens 1 and 2 for SA with decomposition - subsets solved independently
(1 0 0 ,0 0 0 *—V — evaluations per loop)

* no valid solutions

rts Bal. GPFAP Unbal. GPFAP from
Alg. 3.1

Global1" sub | 2“ sub | y a sub [4,h sub | cost 1” sub || 2'“’ sub | y a sub | 4"1 sub | cost
SIEME.KIS 1

1.953 i I"! - - 26.004 2 253 1.067 - 2,003.72
3.14 3 3 03 1.008 0.049 0.867 - 504,017 1.128 0.001 0.001 - 446,038

4 1.205 0.5408 0.069 0.219 460.01C| 1.227 0.001 0.000 0.000 452,(Mi
SIEMENS 2

2 5.050 1.494 - 7.212 0.927 - -
1731 16.753 1.187 1.142 0.013 - 198,037 1.240 0.1?6 0.017 - 758,042

4 0.650 0.292 0.252 0.006 176,041 1.017 0.018 0.000 ■ 0 .W 900,944

7 3 .2 GPFAP results

A number of longer runs were performed with the GPFAP partitioning for both

the balanced and unbalanced versions (see the formulations in Problems 3.4 and

140

3.5 respectively). This decomposition algorithm produced the best outcomes in

the tests discussed in Section 7.3.1, as well as the Markov clustering, but it has a

much easier and inexpensive implementation. Moreover, to quickly produce good

approximated decompositions for the FAP we have adopted the heuristic procedure

in Algorithm 3.10.

Siemens

Firstly, we present the results for the Siemens benchmarks for a higher number of

subsets and total final evaluations. Each of the benchmarks was tested for runs of

different lengths, from 10,000 * \ V\ to 2,000,000 * \ V\ total evaluations, in order

to analyze differences in the behavior between the solutions obtained with and

without decomposition.

We will present in this Section only the results for the longest run while we

refer to Appendix A.3 for the complete results. Tables 7.7, 7.8, and 7.9 show the

the best and average cost over three runs obtained by SA and the GA with and

without the decomposed assignment approach.

Table 7.7: Siem ensl-4 for SA without decomposition (2 ,000 ,000 * \V\ evaluations per
loop)

first loop
second loop

SIEMENS 1 SIEMENS2 S1EMENS3 SIEMENS4

SA 2.75 (2.83) 15.72 (15.79) 6.61 (6.72) 87.25 (87.98)
2.68 (2.76) 15.59 (15.64) 6.59 (6.62) 86.59 (87.12)

GA 3.96 (4.01) 18 .00(18 .14) 9 .77 (1 0 .2 0) 105 .69(106 .42)
3.61 (3.72) 17 .64 (17 .91) 9.54 (9.77) 101 .05(102 .14)

For both the GA and the standard SA, the decomposed assignment approach

produces better results than the problem solved as a whole in three out of four

of the benchmarks tested, as in Table 7.4. Histograms in Figure 7.7 show the

behaviour of cost against number of evaluations for average runs of the Siemens

benchmarks with and without the decomposed assignment approach. Note that the

longer the runs, the less is the percentage improvement produced by the decom-

141

Table 7.8: SA - Siemensl-4 with GPFAP decomposition (2,000,000 * \ V\ evaluations per
loop)

t a t le a s t 1 in v a lid so lu tio n * n o v a lid so lu tio n s

S IE M E N S I S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noSub. first loop

second loop

2.68 (2.75) 16.97(17.04) 6.39 (6.46) 84.35 (84.80)
2.61 (2.66) 16.34 (16.73) 6.37 (6.44) 84.08 (84.39)

2.95 (3.01) 19 .54(19.77) 6.53 (6.81) 89.50 (90.59)

B al. G P FA P
2.93 (2.95) 17.41 (17.60) 6.46 (6.58) 87.16 (88.51)
2 .94 (3.01) 20.56 (20.87) 6.95 (7.02) 89.96 (90.43)
2 .90(2.98) 18 .02(18 .27) 6.79 (6.89) 89.53 (90.17)
3.34 (3 .43) 20.31 (20.46) 7.65 (7.79) 92.94 (93.5)
3 .04(3.13) 17 .90(18 .53) 7.26 7.(41) 91.83 (92.77)
2.69 (2 .74) 16.94(17 .13) 6.22 (6.23) 85.72 (85.90)
2.60 (2 .69) 16 .2 (16 .37) 5.98 (6.13) 84.58 (85.13)
2.73 (2 .75) 19 .06(19 .17) 6.68 (6.77) 91.47 (91.94)

U nbal. G P FA P
2.63 (2 .67) 16.83 (16.97) 6.42 (6.56) 89.51 (90.35)
3.73 (3 .85) 16 .56(16 .72) 6.84 (6.88) 90.71 (91.52)
2.85 (2.86) 16.07 (16.27) 6.75 (6.80) 90.02 (90.68)
4.31 (4 .38) 18 .44(18 .57) 7.23 (7.24) 93.72 (94.04)
3.28 (3 .43) 16 .30(16 .37) 6.83 (6.94) 9 1 .18 (92 .13)

Global 2.68 (2 .76) 15 .59(15 .64) 6.56 (6.62) 86.59 (87.12)

position. This result could be, however, predicted by considering that longer runs

give the heuristic more opportunity to explore the search space, thus improving the

actual performance of the whole approach. As a consequence, in some of the ex­

periments with the highest number of subsets the decomposed approach appears to

be effective only for the shortest runs (see Siemens 1 with three and four subsets).

On the contrary, the GA seems still to show some significant improvements

during the longest runs, see Figure 7.8. However, a further increment in the total

number of evaluations will have a considerable effect on computational efficiency,

since the GA tends to be slower than SA for the same number of configurations

explored.

The decomposition usually produces better outcomes for a number of subsets

usually between two and four, whereas further increments in their number degrade

considerably the heuristic performance. This can be seen by the poor performance

produced by a decompositions into five subsets. Although in some of the instances

the unbalanced GPFAP produces better results than the balanced version, neither of

142

Table 7.9: GA - Siemensl-4 GA Balanced GPFAP decomposition (2,000,000 * \V\ evalu­
ations per loop)

t a t le a s t 1 in v a lid so lu tio n * n o v a lid s o lu tio n s

S IE M E N S 1 S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noSub. first loop

second loop

3 .7 3 (3 .8 0) 18 .88 (1 9 .0 3) 6.11 (7 .6 5) 98 .3 1 (9 9 .9 3)
3 .4 0 (3 .4 5) 17.83 (17.86) 6.08 (7.21) 96.84 (97.22)
3 .7 (3 .7 5) 2 0 .7 0 (2 0 .9 5) 6.33 (7 .0 9) 103.61 (1 0 4 .4 0)

Bal. G P FA P
3.30 (3.44) 18 .70 (1 8 .8 9) 6.21 (7 .0 5) 1 0 1 .0 9 (1 0 1 .9 3)
4 .6 3 (4 .8 1) 2 1 .5 0 (2 1 .7 9) 6 .7 4 (7 .3 4) 102 .5 5 (1 0 3 .6 0)
3 .3 7 (3 .4 9) 1 9 .1 0 (1 9 .2 1) 6 .2 8 (7 .1 9) 1 0 1 .8 4 (1 0 2 .1 9)
5 .7 0 (6 .2 8) 2 1 .0 7 (2 1 .2 3) 7 .3 2 (8 .0 6) 110.71 (7 6 8 .1) t
4 .4 5 (4 .6 1) 18.95 (1 8 .9 7) 6 .6 6 (7 .1 4) 106.81 (7 1 0 .8) t
3 .5 3 (3 .5 7) 18 .96 (1 9 .3 8) 6 .3 4 (6 .6 2) 1 0 4 .4 9 (1 0 4 .8 8)
3 .1 8 (3 .2 8) 17.46 (18.21) 6.17 (6.41) 1 0 3 .6 4 (1 0 3 .6 8)
3 .3 1 (4 .5 2) 2 0 .5 7 (2 0 .8 5) 7 .0 2 (7 .4 9) 103.11 (1 0 3 .5 3)

2 , 0 0 0 , 0 0 0 . \V \
3 .0 7 (3 .1 4) 18 .07 (1 8 .4 4) 6 .6 9 (6 .7 7) 102.89 (103.02)
3 .4 6 (3 .4 9) 1 8 .8 7 (1 9 .1 1) 7 .3 7 (7 .8 3) 1 0 3 .5 2 (1 0 4 .1 5)
2.86 (3.04) 17.85 (1 8 .2 3) 6 .7 6 (6 .8 8) 1 0 2 .9 0 (1 0 3 .2 4)

5
3 .7 5 (3 .8 3) 2 0 .0 3 (2 1 .5 5) 7 .43 (7 .5 2) 104.71 (1 0 5 .2 8)
3 .2 4 (3 .2 7) 18 .42 (1 8 .7 9) 7 .1 0 (7 .0 6) 104 .53 (1 0 4 .8 4)

Global 3 .61 (3 .7 2) 1 7 .6 4 (1 7 .9 1) 9 .5 4 (9 .7 7) 1 0 1 .0 5 (1 0 2 .1 4)

the two algorithms appears able to clearly outperform the other. This is visualized

in Figure 7.9 showing the histograms that compare, for different number of total

evaluations, the best cost obtained by SA with decomposition with the balanced

and unbalanced GPFAP with the one of the whole approach. Note that for the

decomposed assignment approach the cost shown in the diagrams represents that

obtained with the decomposition into the best performing number of subsets for

each particular number of total evaluations considered. Similar behaviour is shown

by the experiments conducted by the GA (see Appendix A).

In general a simple decomposition into two subsets appears to be the most

effective, although in some of the runs, and in particular for the unbalanced version,

further decompositions can still improve the performance. Furthermore, our results

improve for the standard SA those previously published for the same algorithm (see

[2]), whereas no competitive results are known with GAs for the same benchmarks)

However, this is not sufficient for improving the results of the solution produced

by the whole approach in the case of Siemens!, which is the only benchmark for

which the decomposition approach is ineffective on a pure quality basis. Another

143

important aspect is that, although the GA produces overall a poorer performance

than SA, its results become considerably better when the decomposed approach is

applied. This actually reduces considerably the gap between the two algorithms

(for example Siemens3). Histograms in Figures 7.9 and 7.10 compare the best

cost produced by SA using the whole and by SA and GA using the decomposed

approach. As above, for the decomposed approach the cost in the diagrams is that

obtained with the best performing version of the GPFAP and number of subsets.

Finally, for both algorithms we can note the positive effect of the second loop,

which becomes particularly important when the decomposition is initially not ef­

fective, for instance in the case of five subsets. This tendency will be confirmed by

the other test problems considered for MI-FAP, in particular the Bradford bench­

marks shown in the next subsection.

Figures 7.11 and 7.12 compares the cost-time curves produced for the Siemens 1

and Siemens2 data sets by single runs of the meta-heuristics for a single loop with

and without the decomposition technique. The solution of the decomposed assign­

ment approach can be considered valid, that is consisting of a complete frequency

assignment, only in the last of the subsets considered in the sequence (the second

and the third represented with a dotted line in these examples). In these intervals,

if we consider a fixed value of time the cost obtained by the decomposed assign­

ment approach is generally lower than that produced by the whole approach. Note

that this also happens in the cases in which the decomposed assignment approach

appears ineffective (Siemens2), and also shows that a pure quality criterion may

not be the most appropriate for evaluating the effectiveness of the decomposed

approach.

144

10,000‘M
decon

i . . I t

SIEMENS1 whole
iposed assignment 2subs mtmm

100,000*IVl

1,000,000*IVI
2,000,000‘M

■
'

evaluations

Siemens 1 - 2 subsets

10,000*1VI
decorr

t: . i j

SIEMENS1 whole
iposed assignment 3sube mmtm

100,0OO-IVI 2,000,000*
1,000,000*IVI

VI

___ L
evaluations

Siemens 1 - 3 subsets

SIEMENS3 ____
decomposed assignment 2subs

whole
14

12

10
100,000'IVI

8

6

4

2

0
evaluations

10,000*IV1

. .

decon
SIEMENS1 whole mmmm

iposed assignment 4subs «■■■

...........I

100,000*IVI 2,000,000*IVI
1,000,000*IVI

.

evaluations

Siemens 1 - 4 subsets

SIEMENS3 whole
decomposed assignment 3subs

10,000*1VI

100,000*IVI

000,000*M 2.000.000*IVI

evaluations

Siemens3 - 3 subsets

120
10,000*IVI

decomf

100,000'IVI

SIEMi
xised i

If
1

whole ■■■■ -
iment2subs

t;000

------ -j

VI 2,000,000*IVI

..........

"j

Siemens3 - 2 subsets Siemens4 - 2 subsets

Figure 7.7: Cost-evaluations histograms for the COST259 Siemens benchmarks solved by SA with balanced GPFAP decomposition

SIEMENS1 whole
decomposed assignment 2subs

10,000*1VI

• C T _____

100,000*IVI

1,000,000*IVI

T T * 2,000,000*IVl

evaluations

Siemens 1 - 2 subsets

10,00

SIEMENS3 whole
decomposed assignment 2subs

0*M 100,000‘IVI
I

1.000.000*1VI onnn nnn*i VI -iWU 1

—

evaluations

SIEMENS1 whole
decomposed assignment 4subs

10,000*IVI

100

100,000*IVI

1,000,000*IVI
2,000,000‘IVI

evaluations

Siemens 1 - 4 subsets

decom
SIEMENS4 whole m—

posed assignment 2subs — mm
1,000,000‘IVI 2,000,000‘IVI

Siemens3 - 2 subsets Siemens4 - 2 subsets

Figure 7.8: Cost-evaluations histograms for the COST259 Siemens benchmarks solved by direct GA with balanced GPFAP decomposition

is

10,000*IVI

h f l ——

SIEMENS1 whole
decomposed assignment Bal. GPFAP

decomposed assignment Unbal. GPFAP

100,000*IV

1,000,000*IV1
2,000,000‘IVI

evaluations

Siemens 1

10

10,000*1VI
SIEMENS3 whole

decomposed assignment Bal. GPFAP
decomposed assignment Unbal. GPFAP

100,000'IV

T " 1,000,000‘IVI 2,000,000‘IVI

—r—

evaluations

Siemens3

15

o l-

10,000*IVI

SIEMENS2 whole
decomposed assignment Bal. GPFAP

decomposed assignment Unbal. GPFAP

120

100

40

20

100,000‘IVI

 I—I
1,000,000‘IVI 2,000,000‘IVI

evaluations

Siemens2

decomp
10,000*IVI decompos

SIEMENS4 whole mmmm
osed assignment Bal. GPFAP ■■■■
ed assignment Unbal. GPFAP

r * 100,000*IV I 1,000,0<
•

X)*IVI 2,000,0(x)*r/i

. ..

_

• "

evaluations

Siemens4

Figure 7.9: Cost-evaluations histograms for the COST259 Siemens benchmarks solved by the whole approach (SA) and balanced\unbalanced GPFAP
(SA and GA)

10,000*IVI
Sll

decomp
dftmmn

EMENS1
losed as
osed as!

IllIff_H

I___,
100,000*1V

1,000,000*IVI 2 000,000'IVI

M
;____

evaluations

Siemens 1

10,000‘IVI

SIEMENS3 whole
decomposed assignment SA
decomposed assignment GA

100,00 0*1V)

1,000,OOO'IVI 2,000,000'IVI

L—

evaluations

Siemens3

25

15

10,000*IVI

100,000*IV

SIEMENS2 whole
decomposed assignment SA
decomposed assignment GA

1,000,OOO'IVI 2,000,000‘IVI

evaluations

Siemens2

120

80

10,000*IVI

SIEMENS4 whole
decomposed assignment SA
decomposed assignment GA

106,000‘lVi
1,000,000*M

2,000,000*1VI

evaluations

Siemens4

Figure 7.10: Cost-evaluations histograms for the COST259 Siemens benchmarks solved by the whole approach (SA) and balanced\unbalanced
GPFAP (SA and GA)

Both curves obtained with the whole and the decomposed approach correspond

to the same final number of total evaluations conducted by the meta-heuristic. With

this constraint we can observe that the decomposition approach, independently

of being more or less optimal, is able to produce very good approximations in a

shorter time. The runtime gain can be empirically quantified in a 10 - 15% gain on

the experiments performed for this thesis, but this amount does depend to a large

extent on the complexity of the graph and the algorithm used (for instance, we

expect more advantages by the GA rather than SA, see Section 4.1.2).

It is important to consider the trade-off between quality and runtime of the final

solutions. In addition, this is not only influenced by the total number of evaluations

performed but by other factors. For example, we can distinguish between balanced

decompositions (balanced GPFAP), in which the subsets are of approximatively

equal sizes, and decompositions in which the number of transmitters included in

each subset can vary arbitrarily (unbalanced GPFAP and the Markov clustering

presented later). It is important to note that very often these unbalanced partitions

are characterized by having one of the subsets which includes nearly all of the

transmitters in the network, making the behaviour of the two approaches more

similar. This fact may sometimes produce some improvements in the optimality

of the final solution obtained with the decomposed assignment approach despite

losing some of the gain in runtime terms, since the interval of valid solutions starts

considerably later. Figure 7.11 also shows the same Siemens benchmarks solved

by SA with an unbalanced GPFAP into two subsets.

149

u»o

40

2 subsets
35

30

25

20

15

10

5

0
0 1000 3000 4000 5000 6000 70002000

run time (seconds)

Siemens l - balanced - 2 subsets

50
1 subset

2 subsets

40

30

C \20

10

0
0 2000 4000 6000 8000 10000 12000

run time (seconds)

Siemens2 - balanced - 2 subsets

40

subs
35

30

25

2 0

15

10

5

0
6000 70000 1000 2000 3000 4000 5000

40
1 subset

3 subsets

I 20

0 70001000 4000 5000 60002000 3000
run time (seconds)

Siemens 1 - balanced - 3 subsets

50
1 sub

3 subs

40

30

20

10

0
10000 120000 2000 4000 6000 8000

run time (seconds)

Siemens2 - balanced - 3 subsets

1 subset
2 subsets

^ ______

/
j

/
/

----------------------1-----------------------1-----------------------1----------------

run time (seconds)

Siemens 1 - unbalanced - 2 subsets
run time (seconds)

Siemens2 - unbalanced - 2 subsets

Figure 7.1 1 : Cost-time plot for the COST259 Siemens benchmarks solved by SA with GPFAP decomposition after 2,000,000 * | V| evaluations

14

12

10

a

6

4

2

0
0 1000 50002000 3000 4000

1 subset
2 subsets14

12

10

8

6

4

2

0
0 50001000 2000 3000 4000

run time (seconds) run ton (n c o n d t)

Siemens 1 - 2 subsets Siemens 1 - 3 subsets

30
1 subet

3 subets

25

20

15

10

5

0
1000 2000 3000 4000 5000 6000 7000 0000 90000

30
1 subet

2 subsets

25

20

15

10

5

0
0 1000 2000 3000 4000 5000 6000 7000 0000 9000

run time (seconds) run time (seconds)

Siemens2 - 2 subsets Siemens2 - 3 subsets

Figure 7.12: Cost-time plot for the COST259 Siemens benchmarks solved by the direct GA with balanced GPFAP decomposition after 2,000,000* | V|
evaluations

As anticipated in Section 6.3, because of the inherent limitations of its repre­

sentation, the order-based GA produces a poor performance when it is applied in

the traditional way of solving the problem as a whole. Figure 7.13 shows a com­

parison between the average cost over three runs produced by the direct and the

order-based GA for both the whole (left) and the decomposed assignment (right)

approaches. For the decomposed approach the cost in the diagrams is that obtained

with the best performing number of subsets. The order-based GA performs better

only for the shortest runs but is outperformed by the direct GA otherwise. However,

its results improve considerably with the decomposed approach, thus reducing the

gap between the two different representation used. For example, if we consider the

best performance in the runs corresponding to 2,000,000 * | V\ evaluations, the cost

produced by the order-based GA is about 29.8% worse than the one of the direct

GA for the whole approach whereas this difference is reduced to 10.7% for the best

results produced by the decomposed assignment technique.

The decomposed assignment approach appears successful for the order-based

as well as for the direct GA, as it produces a better performance than the problem

solved as a whole. Figure 7.14 shows the comparison of the results obtained for

Siemens 1 by the order-based GA with and without decomposition (extended results

can be found in Appendix A).

Finally, from these figures we can appreciate how the decomposition into sub­

sets can produce a better cost than the whole approach, even when the latter is run

for a much higher number of evaluations. For instance the cost produced by the

decompositions for 100,000 * | V\ and 1,000,000 * | V\ evaluations is lower than that

obtained with one subsets for a much higher number of evaluations (1,000,000* | V\

and 2,000,000 * \ V\ respectively).

Bradford

This subsection presents the results obtained for the COST259 Bradford instances

solved by the balanced GPFAP for short and long runs, that is 100,000 * \ V\ and

152

within the network caused by the second loop, whose effect actually balances the

constraint violations, and so the local interference, between different subsets. In

addition we note that the decomposition technique is mostly effective with a min­

imum number of two subsets (with again the exception of BradfordO), thus con­

firming that these instances appear harder than the Siemens benchmarks in order

to be solved with the decomposed approach.

Figures 7.15 shows the cost-time plot produced by the decomposed assignment

approach for the BradfordO benchmark for balanced and unbalanced GPFAP. Note

that for this benchmark this approach is successful for both the first and second

loop through the subsets. Finally, Figure 7.16 shows the behaviour of BradfordO,

Bradford4, and Bradford 10, for which the decomposition is only effective at the

end of the second loop, that is at the end of the first loop it still produces worse

results than the whole approach for the same number of evaluations.

Partitioning on soft constraints only

For a representative pair of COST259 benchmarks (Siemens 1 and BradfordO), we

conducted further experiments in which the partitioning was obtained using dif­

ferent values of the weights used in the Definition 7.2 in order to define the

weighted simple graph G°. In particular we set to null values the weights concern­

ing the hard constraints, which will therefore be ignored in the process defining the

partitioning of the interference graph.

Note that, for these instances, there are always corresponding soft constraints

for co-channel and adj-channel interference wherever there is a hard co-site or

handover constraint. However, this is not true for the hard co-cell constraints. As

a consequence, although useful in showing the eventual dependance between the

decomposed assignment approach and the specific type of constraints, these ex­

periments can be considered slightly unrealistic. However, this will not affect the

results for the GPFAP since applying the cellular form of decomposition automat­

ically preserves the hard co-cell constraints as observed in 7.2.1.

155

On

90

80

70

60

50

40

30

20

10

0

50000 1000 2000 3000 4000
run time (seconds)

balanced - 2 subsets

90

80

70

60

50

40

30

20

10

0

0 1000 50002000 3000 4000

1 subset
3 subsets

30

0 50001000 2000 3000 4000
run time (seconds)

balanced - 3 subsets

40

50003000 40000 1000 2000
run time (seconds)

unbalanced - 2 subsets

run time (seconds)

unbalanced - 3 subsets

Figure 7.15: Cost-time plot for BradfordO solved by SA with GPFAP decomposition after 1,000,000 * |V| evaluations

90

12nd loop80

70

60

50

40

30

20

10

0
0000 90000 1000 2000 5000 0000 70003000 4000

200
1 subset 1000000* IVI 1st loop
1 subset 2000000* IVI 1st loop

2 subsets 1000000*1VI 1st loop
2 subse ts 1000000* IVI 2nd loop

150

100

50

0

0 2000 120004000 0000 0000 10000
run time (seconds) run time (seconds)

BradfordO - balanced - 2 subsets Bradford4 - balanced - 3 subsets
1000

1 subset 1000000-1VI 1st loop
1 subset 2000000*IVI 1st loop

2 subsets 1000000* M 1st loop
2 subsets 1000000* IVI 2nd loop

000

000

400

200

0
15000 20000 250000 5000 10000

run time (seconds)

Bradford 10 - unbalanced - 2 subsets

Figure 7.16: Cost-time plot for the COST259 Bradford instances solved by SA with balanced GPFAP decomposition with two loops (1,000,000* \ V
evaluations per loop)

We performed experiments using S A with balanced GPFAP for a variable num­

ber of evaluations between 10,000 * \ V\ and 2,000,000 * \ V\ total evaluations (see

Appendix A for a summary of the results). The decomposition still improves the

results produced by the whole approach, although they do not show any significant

difference from those previously reported in Tables A.7 and A . 8 (for Siemens 1),

and A. 15 and A. 14 (for BradfordO) with a different combination of the hard and

soft constraints. For example, if we consider the longest runs with 2,000,000 * \ V\

evaluations the costs here produced are only a slight improvement over those cal­

culated by a partitioning which considers both hard and soft constraints. In detail,

we obtained a best cost of 2.598 for Siemensl against one of 2.601 (- 0.001%) in

Table A.8 , and a cost of 1.044 for BradfordO against the 1.067 (- 0.022%) in Table

A .14.

A possible explanation of this may lay in the fact that for these two data sets,

and for the COST259 benchmarks in general, the number of edges representing

hard constraints is very low compared to that of the soft constraints (see Table

4.7). Furthermore, the final solution is actually governed by the co-channel and

adjacent channel interference, since all of the hard constraints must be respected in

the optimal assignment.

K and Swisscom

This section presents the results of other two COST259 benchmarks, namely K

and Swisscom Modified. Although different in their structure these data sets have a

comparable small size of about three hundred vertices. However, they can be both

considered hard instances since K presents a very high connectivity (simulating

a dense urban environment), and Swisscom Modified a high number of blocked

channel, thus limiting considerably the spectrum of frequencies available. Table

7.10 shows the results obtained with GPFAP for 3,000,000 *| V\ and 5,000,000* | V\

total evaluations. Although the results presented in [2] for Swisscom Modified

refer to a partial assignment that need to be completed (so some of the transmitters

158

are assigned a fixed frequency), we have removed in our experiments this further

constraint, in order to keep consistency with the other experiments presented in this

chapter.

Table 7.10: SA - K and Swisscom Modified with GPFAP decomposition
t a t lea s t 1 in v a lid s o lu t io n * n o v a lid s o lu tio n s

K SWISSCOM MODIFIED2

noEvals.
Bal. GPFAP || Unbal. GPFAP Bal. GPFAP Unbal. GPFAPnoouo.

first loop
second loop

1 0 .9 8 (1 .0 9) 34.06 (34.43)
i

0.84 (0.89) 32.24 (32.34)

■y
1 .18 (1 .24) 0.82 (0.85) 3 0 .5 8 (2 ,0 3 1) 29.37 (30.57)

1 AAA AAA * 11/1 0.77 (0.86) 0.72 (0.75) 29.31 (30.51) 2 8 .7 8 (2 8 .9 9)
J , UW, WU * |r |

3
1.41 (1.44) 0 .80 (0.84) 2 ,0 2 9 (4 ,0 3 0) 30.62 (30.85)
1 .03(1 .17) 0 .7 1 (0 .7 2) 2 ,031 (3 ,0 3 1) 29.01 (29.25)

4 1 .80(1 .88) 0.85 (0.87) 2 ,0 3 2 (5 ,0 3 3) 33 .30 (33 .84)
1 .15 (1 .19) 0.75 (0.78) 2 ,0 2 9 (5 ,0 2 5) S2.73 (33.14)

i 0.851 ° CO J 33.31 (33.49)
»

0.81 I[0.84) 30 .73 (31 .25)

7 1 .12 (1 .19) 0.64 (0.66) 29.39 (30.30) 29.27 (30.14)

< AAA AAA _ lt/1
Z

0.63 (0.65) 0 .6 1 (0 .5 7) 27.09 (27.80) 2 6 .0 4 (2 6 .7 8)
J , WU.UUU • \r \

-l 1 .27 (1 .40) 0 .66 (0.70) 3 0 .9 8 (2 ,0 3 2) 29.54 (i9 .8 6)
J 0.81 (0.88) 0 .64 (0.69) 2 9 .1 2 (1 ,0 2 6) 27 .10(27 .51)

A 1 .65 (1 .70) 0 .72 (0.74) 6 ,0 3 0 (4 ,0 3 0) 32.46 (32.57)
9

0 .9 7 (1 .0 1) 0.69 (0.71) 5,031 (3 ,0 3 5) 32 .12(32 .20)

For K the decomposed assignment approach with the unbalanced version of

the GPFAP is effective both at the end of the first and second loop (for a maximum

improvement compared to the whole approach of 35% and 33% respectively for

the longest run). On the contrary, the balanced GPFAP improves on the whole

approach only after the second loop. This is caused by the very high density of the

graph (see Table 4.7), which makes necessary a redistribution of the interference

during the second loop in order to produce effective results. Note that, at least for

decomposition into two subsets, the balanced and unbalanced GPFAP eventually

produce comparable results after the two loops (for a maximum improvement for

the balanced version of 28% for the longest run).

For Swisscom Modified, because of the limited spectrum availability, the short­

est runs have difficulty in producing feasible assignment during the runs with the

decomposed assignment approach, thus it became necessary to increase the number

159

of total evaluations. However, the balanced decomposition still produces infeasi­

ble solutions when decomposed in more than two subsets, whereas the unbalanced

GPFAP appears always able to produce assignments belonging to the feasibility

domain. When the solutions produced are feasible, the decomposed assignment

outperforms the whole approach (for a best improvement of 18% produced by the

unbalanced version for the longest run).

Cardiff University benchmarks

This section presents the results obtained by the GPFAP on the large benchmarks

generated by Cardiff University. Note that for very large benchmarks the decom­

position approach is expected to be effective, since this represents a case in which

the performance of the meta-heuristics starts degrading, at least in their standard

versions. Table 7.11 reports the costs produced by SA with the balanced GPFAP

for 100,000 * \ V\ and 2,000,000 * \ V\ total evaluatons. We have also considered

the geographical decomposition since it represents an intuitive and natural form of

partitioning for these benchmarks in which transmitters are located in ‘towns’.

Table 7.11: SA - Cardiff University benchmarks with balanced GPFAP and geographical
decomposition

noEvals. noSub.

cs Q
Geog | G P FA P Geog | G PFA P

first loop

second loop

1 0 0 ,0 0 0 * |K |

1
2 .1 6 (2 .3 1) 1 .18 (1 .30)
1.22 (1.32) 0.73 (0.89)

2
1.68 (1.82) 1.30 (1.75) 0 .62 (0.75) 0.51 (0.63)
0 .9 8 (1 .1 4) 0.79 (0.93) 0 .28 (0.42) 0.23 (0.31)

3
3.03 (3.46) 2.72 (3.01) 1.25 (1.52) 0.94 (0.99)
1 .4 3 (1 .7 6) 1 .29 (1 .38) 0.43 (0.65) 0.32 (0.36)

4
3.37 (3.57) 3 .1 8 (3 .2 5) 1.39 (1.85) 1 .09 (1 .13)
1.76 (2.11) 1.55 (1.68) 0.55 (0.67) 0.42 (0.56)

2 ,0 0 0 ,0 0 0 * |E|

1
0.95 (1.04) 0.37 (0.42)
0.71 (0.74) 0.31 (0.36)

2
1.01 (1 .25) 0.91 (1.16) 0.30 (0.34) 0.23 (0.29)
0 .59 (0 .68) 0.39 (0.42) 0.09 (0.12) 0.06 (0.10)

3
2.47 (2 .71) 2 .1 4 (2 .2 5) 0.51 (0.57) 0.50 (0.53)
1 .1 0 (1 .6 0) 0 .9 6 (1 .0 9) 0 .1 6 (0 .2 1) 0 .1 4 (0 .1 9)

4
2.65 (2 .84) 2.27 (2.34) 0.57 (0.77) 0 .56 (0.63)
1.52 (1 .66) 1 .26(1 .41) 0.28 (0.46) 0.25 (0.35)

160

Figure 7.17 shows the histogram of best cost (after two loops) against number

of total evaluations for different number of subsets. There is a marked difference

between the values produced by the shortest and longest runs, thus confirming that

large benchmarks need to be run for a longer time. Furthermore, this tendency

is more important for the whole approach whereas the decomposed assignment

approach is able (when effective) to produce good results also for the shortest runs.

For the decomposed approach the results still improve if we increase the number

of evaluations, although the percentage improvement in comparison to the whole

approach is lower than for the shortest runs. This is particularly true for C& with

a decomposition into two subsets, for which the shortest run with 100,000 * \ V\

evaluations outperforms that obtained with the whole approach for 2,000,000 * | V\

evaluations. However, in any case the shortest runs give an indication of whether

or not the decomposed approach will be effective.

Histograms in Figure 7.19 compare, for the different number of evaluations,

the best costs produced at the end of each loop for different number of subsets. A

decomposition into two subsets always improves the results of the whole approach,

although it produces better performance during the second loop. Figure 7.18 shows

the cost-time behaviour for a single run with two loops of the ‘two-towns’ bench­

mark C(, (2 ,000,000*| V\ evaluations per loop). At the end of each loop the diagram

compares the solution produced by the decomposed assignment approach with that

of the whole approach for the same number of total evaluations.

For a decomposition into a larger number of subsets (three and four in our ex­

amples), the decomposed technique is generally not effective after the first loop

through the subsets. However, the second loop brings about a remarkable improve­

ment leading in some cases to better results than the whole approach (see C(,)-

Note that this happens either for the shortest or the longest runs, thus confirming

the validity of the former ones as a test for the effectiveness of a given decomposi­

tion. For the whole approach the gap between the first and the second loop is more

marked in the shorter runs whereas for the longer runs it is less significant. The

161

C5 100,
2,000.

OOOIVI — —
OOOIVI

4 subsets

1 subset
3 subsets

L
. - ;........

2 subsets

number of subsets

C5

1 subset

C6 100,OOOIVI ■—
2,000,OOOIVI

4 subsets

3 subsets

I_____ . 2 subsets |-------j

number of subsets

c 6

Figure 7.17: Cost-number of evaluations histograms for C5 and C6 solved by SA with
balanced GPFAP

decomposed approach still shows a marked improvement between the two runs in­

dependently from their duration. Moreover, this improvement is more significant

when the effectiveness of the decomposition is worse (that is for three and four

subsets).

Figures 7.20 shows a comparison between GPFAP and geographical decom­

position for different number of subsets and total evaluations. The decomposition

based on geographical information is inferior for both of the benchmarks. This can

be also interpreted as the confirmation of the effectiveness of the GPFAP decom­

position procedure, which is able to find an effective partition without any extra

162

200
1 subset 26ooooom\/i 1st loop
1 subset 1000000‘IVI 1st loop

2 subsets 1000000*IVI 1st loop
2 subsets 1000000*IVI 2nd loop

150

100

50

0

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
run time (seconds)

Figure 7.18: Cost-Time plot for C6 solved by SA with balanced GPFAP into two subsets
(first and second loop - 2,000,000 * \ V\ evaluations per loop)

knowledge (as the one given by the geographical information).

We could have expected this difference to be more important for the ‘one town’

problem C5 , since for C& the two decomposition methods produce rather similar

partitions into the two distinct towns (see Figure 7.5). However, this actually hap­

pens only for the longest runs, whereas the two decompositions show similar be­

haviour with both of the data sets for the runs with 100,000 * \ V\ evaluations.

Figure 7.21 shows the cost- number of evaluations plots for two single runs of

the benchmarks C5 and Ce, in which it can be appreciated how the shortest runs

produce results which are very similar to those obtained for a much higher number

of evaluations. Moreover, we can note that for the ‘two-towns’ problem Ce the

first subset still produces significant interference whereas for the ‘one-town’ C5

the assignments in the first subset are almost interference free during the whole

length of its run.

163

first loop
second loop

3.5

3 subsets

2.5

0.5

number of subsets

C$ - 100,000 * |V| evaluations

C6 first loop
second loop1.4

1.2
4 subsets

0.8

0.6 2 subsets

0.4

0.2

number of subsets

Cf, - 100,000 * | V| evaluations

C5 first loop
second loop

2.5 +—
4 subsets

3 subsets

0.5

number of subsets

0.8
first loop

second loop
0.7

0.6
3 subsets

0.5

1 subset0.4

0.3 2 subsets

0.2

0.1

number of subsets

C5 - 2 , 0 0 0 ,0 0 0 * |V\ evaluations Cf, - 2 ,000,000 * | V\ evaluations

Figure 7.19: Cost-number of subsets histograms for C 5 and C f , solved by SA with balanced GPFAP with two loops

0.7
geographical

GPFAP

0.5 subsets

0.4

2 subsets
0.3

0.2

0.1

number of subsets

2
4 subsets

3 subsets

 1.....
1.5

2 subsets
1

0.5

0
number of subsets

Cs - 100,000 * |V| evaluations Cf, - 100,000 * \V\ evaluations

0.4
C6 geogr.

0.35
4 subsets

0.3

0.25

3 subsets0.2

-P0.15 2 subsets

0.1

0.05

number of subsets

2
geogrs

4 subsets
1.5

3 subsets

1

2 subsets

0.5

0
number of subsets

C$ - 2 ,000,000 * |V| evaluations - 2,000,000 * \V\ evaluations

Figure 7.20: Comparison between GPFAP and geographical decomposition for C5 and Cf,

7.4 Markov clustering

To complete the set of the experiments for the MI-FAP instances, we have con­

ducted a number of runs which use the partitions generated by the Markov cluster­

ing procedure (see Section 3.2.6).

As already mentioned, graph clustering algorithms present many similarities

with the graph partitioning, and consequently they share the main advantages. In

addition, they may be expected to be effective for the decomposed assignment ap­

proach since they search for a partition into natural clusters of the graphs instead of

only considering the inter-edges between different subsets. However, as described

in Section 3.2.6, they present the drawback of being more complex and elaborate

than, for instance, the GPFAP. Moreover, the quality of the partition produced, in

terms of size and number of clusters, depends strictly on the parameter settings

used. For example, the standard value of two proposed for the expansion parame­

ter in [1 2 0] usually results in a partition which is too fine to be directly used for the

decomposed approach whereas further increments of its value affect considerably

the computational complexity of the algorithm. For this reason we have applied

this decomposition method only to a small number of the COST259 benchmarks

while we will not consider the larger generated data sets presented in Section 4.2.2.

Results are given in Table 7.13 , which shows the outcomes produced by SA

with the Markov clustering decomposition for 2,000,000 * \ V\ total evaluations

and compares them with those obtained with the GPFAP in Section 7.3.2. The

parameter settings used for the clustering algorithm have been described in Section

7.2.2, as well as the ‘merging’ procedure in Algorithm 7.5 in order to further reduce

the number of clusters produced.

For some of the benchmarks Markov clustering obtains better results than GP­

FAP. However, neither of the two methods appears to clearly outperform the other

in all of the instances tested. As mentioned in Section 7.2.2 the resulting clustering

is normally unbalanced in size and so it is expected to produce outcomes which

are close to those of the unbalanced GPFAP (see also Tables 7.8, A. 14, and A. 16).

166

This is confirmed by the results shown in Table 7.13. Note that Markov cluster­

ing is not able to obtain positive results for the data sets with the highest graph

density (i.e. K and Siem ens2), for which it performs worse than GPFAP. On the

contrary, its performance improves for the other Siemens benchmarks which show

a more ‘natural’ partition into clustering, as shown by the distribution of the hard

constrains in Figure 7.6.

600

500

400

300

200

100

0
0 500 1000 1500 2000

C5

1 subset 2.000.000* IVI evaluations'V, jTji_.tr <1 A/V># 1V/I___■- ----

l ^ 1—
2suoeets 2.000.000 ivi evaluations

2 subsets 100,000’IVI evaluations

/
/

//

\ '

0 500 1000 1500 2000
number of evaluations / 1000’N

C6

Figure 7.21: Cost-Number of evaluations plot for C5 and C(, solved by SA with balanced
graph partitioning decomposition into two subsets

To sum m arise, before having a look to some issues about the distribution of the

resulting interference in the network, Table 7.12 shows the best results obtained

by the decomposition approach with 9SA over all the different decompositions

167

tried, as well as those of the global approach and (for comparison). We also show

the state-of-the-art best costs produced for the COST259 benchmarks by ether SA

or other meta-heuristicsas reported in [2]. Results for our implementations are

those obtained with 2,000,000* evaluations. For Swisscom the best results from

[2] refers to the original version and not o the modified one used for this thesis

(although the interference constraints for the two versions are identical).

Table 7.12: Comparison between the best costs produced by the SA with and without
decomposition and other meta-heuristics [2]

benchmark SA with decomposition SA global SA from [2] Best from [2]

S iem en s 1 2 .6 0 2 .6 8 2 .7 8 2 .2 0
S iem en sl 16 .0 7 15 .59 15 .46 14 .2 7
S iemensh 5 .9 8 6 .5 9 6 .7 5 4 .7 3
S iem ens4 8 4 .0 8 8 6 .5 9 8 9 .1 5 7 7 .2 5

B ra d fo rd O 1.04 1.31 0 .8 0 0 .6 0
B ra d f o r d I 1.32 1.64 1.04 0 .8 6
B r a d fo rd 2 3 .8 3 4 .4 6 3 .7 9 3 .2 0
B r a d fo rd 4 18.51 2 0 .6 2 19 .00 17 .7 2

B r a d fo r d \0 1 8 5 .0 5 1 87 .13 1 4 8 .1 2 1 4 4 .9 4
S w isscom M o d if ie d 2 6 .0 4 3 0 .7 3 2 7 .3 6 17.71

K 0 .61 0.81 - 0 .4 5

168

Table 7.13: COST259 for SA with GPFAP and Markov clustering decomposition -
best(average) cost using 2,000,000 * \ V\ evaluations per loop and 5,000,000 * \ V\ eval­
uations per loop.

ns

GPFAP^, | GPFAPun/, | Markov | GPFAP*,,/ | GPFAPun)l | Markov
first loop

second loop
SIEMENS 1 SIEMENS2

i
2.75(2 .83) 15.72(15.79)
2.68(2 .76) 15.59(15.54)

2
2.68(2 .75) 2 .69(2 .74) 2 .76(2 .92) 16.97(17.04) 16.94(17.13) 19.71(19.89)
2 .60(2 .69) 2.61(2 .66) 2 .53(2 .64) 16.34(16.73) 16.20(16.37) 17.32(17.58)

3
2.95(3 .01) 2 .67(2 .75) 2 .99(3 .14) 19.54(19.77) 19.06(19.17) 20.22(20.45)
2.93(2 .95) 2 .63(2 .72) 2 .74(2 .83) 17.41(17.60) 16.83(16.97) 17.90(18.47)

4
2.94(3 .01) 3 .73(3 .85) 3 .08(3 .16) 20.56(20.87) 16.56(16.72) 21.97(21.99)
2.90(2 .98) 2.85(2 .87) 2 .77(2 .79) 18.02(18.27) 16.07(16.27) 19.59(19.90]

5
3.34(3 .43) 4 .31(4 .48) 3 .76(3 .99) 20.31(20.46) 18.46(18.57] 22.36(22.97)
3.05(3 .13) 3 .29(3 .44) 2 .77(2 .94) 17.91(18.53) 16.30(16.37) 19.59(20.04)

SIEMENS3 S1EMENS4

1
6 .61(6 .72) 87.25(87.98)
6 .59(6 .62) 86.59(87.12)

2
6 .39(6 .46) 6 .22(6 .24) 6 .528(6 .88) 84.35(84.80) 85.72(85.90] 83.67(83.91)
6 .37(6 .44) 5 .98(6 .13) 6 .24(6 .35) 84.08(84.39) 84.58(85.13] 82.37(82.54]

3
6 .53(6 .81) 6 .68(6 .77) 6 .44(6 .63) 89.50(90.59) 91.47(91.94] 85.12(86.40)
6 .46(6 .58) 6 .42(6 .56) 6 .18(6 .39) 87.16(88.51) 89.51(90.35] 84.70(85.27)

4
6 .95(7 .02) 6 .84(6 .88) 7 .12(7 .37) 89.96(90.43) 90.71(91.52] 93.20(94.05)
6 .79(6 .89) 6 .76(6 .80) 7 .01(7 .49) 89.53(90.17) 90.02(90.68] 91.32(92.88)

5
7.65(7 .79) 7 .23(7 .25) 8 .71(9 .15) 92.94(93.55) 93.72(94.04] 94.08(95.12]
7.26(7 .41) 6 .83(6 .94) 7 .51(8 .24) 91.83(92.77] 91.18(92.13) 92.61(93.45]

b r a d f o r d O BRADFORD4

1
1.42(1.66) 20.84(21 .07)
1.31(1.43 20.62(20 .79)

2
1.31(1.41) 1.37(1.72) 1 .04(1.10) 21.40(21.83] 22.17(22.77) 22.90(23.16)
1.16(1.23) 1.08(1.14) 0 .94(1 .11) 18.51(18.78) 19.95(20.44] 19.55(20.22)

3
1.18(1.20) 1.11(1.19) 1 .03(1.08) 25.83(26.27) 26.64(27.81] 27.29(27.54)
1.07(1.13) 1.09(1.13) 0 .80(1 .06) 20.54(21.01) 21.66(22.21] 22.71(23.16)

4 1.48(1.63) 2 .17(2 .31) 2 .03(2 .17) 33.93(34.29) 34.82(35.29) 34.98(35.43)
1.26(1.36) 1 .24(1.26) 1.39(1.52) 23.09(24.65) 24.63(25.50) 25.23(25.58)

5
2.07(2.15) 2 .61(2 .72) 2 .17(2 .55) 37.85(38.14) 38.71(39.31) 37.31(37.98)
1.47(1.54) 1.26(1.29) 1 .31(1.52) 28.52(29.83) 29.68(30.56] 28.83(29.59)

BRADFORD2 K *

1
4 .56(4 .71) 0 .85(0.87)
4 .46(5 .53) 0 .81(0.84)

2
5 .1 7 (5 .3 6) 4 .79 (4.99; 5 .3 2 (5 .5 1) 1 .12 (1 .19) 0 .64 (0.66) 1 .47 (1 .98)
4 .27 (4 .24) 3 .83 (3.92] 4 .09 (4 .23) 0.63 (0.65) 0.61 (0.57) 0.95 (1.02)

3
6.45 (6 .92) 6.15 (6 .2 i; 5.98 (6 .30) 1 .27 (1 .40) 0 .66 (0.70) 2.51 (3.02)
5.34 (5 .49) 5.05 (5.24; 4 .22 (4 .85) 0.81 (0.88) 0.64 (0.69) 1 .08 (1 .15)

4
6.97 (7 .17) 6.25 (6 .34) 5 .69 (6.01) 1.65 (1.70) 0.72 (0.74) 2.76 (3.27)
5.75 (5 .93) 5 .1 4 (5 .3 3) 4 .46 (4.89) 0 .9 7 (1 .0 1) 0.69 (0.71) 1 .12 (1 .53)

5
7.25 (7 .64) 6 .79 (7.24) 5 .9 4 (6 .1 5) 2 .04 (2.32) 1.05 (1.33) 2.74 (2.95)
6 .1 3 (6 .5 8) 5 .96 (6.57) 5.03 (5.65) 1 .79 (1 .96) 0 .9 4 (1 .1 2) 1 .12(1 .50)

169

7.5 Trade-off between quality and runtime

As described in Section 4.1.3, given a specific benchmark and decomposition method

we evaluate the trade-off between quality and runtime by plotting the interpolation

curves between the pairs {cost (best or mean), runtime} for a number of different

runs of the decomposed assignment approach.

We fix a number of total evaluations and then we run the decomposed approach

with a different number of subsets, together with the whole one for the same num­

ber of evaluations. By considering only one loop and according to the parameters

setting in Section 7.1 we then explore evaljto = — per subset, so that the

number of evaluations, in each of the subsets is reduced proportionally to its cardi­

nality.

This is expected to produce roughly the same runtime. With the decomposed

approach the runtime is expected to be slightly lower than with the whole, with

this depending essentially on the connectivity of the graph as described in section

4.1.2. However, this choice has not always been successful for all of the MI-FAP

experiments performed (see Appendix A) whereas the results generally improve

with the introduction of a further loop through the subsets.

7.5.1 Distribution of interference

The beneficial effect of a second loop is present within all the experiments pre­

sented in this chapter. Moreover, in some of the instances (for example the Brad­

ford data sets in Tables A. 14 and A. 16), the decomposed approach is only effective

at the end of this further loop, i.e. at the end of the first loop it still produces worse

results than solving the problem as a whole when compared for the same number

of evaluations (see Figure 7.16). This is essentially caused by a different distri­

bution of the local interference inside each single subset at the end of each loop.

An example of this is shown by the plots in Figure 7.22 for the Siemens 1 bench­

mark with a geographical decomposition into two subsets. After the first loop the

170

heuristic produces good solutions in the first subset, which, however, constraints

the second subset leading to many violations. Finally, the second loop balances the

interference between the subsets.

Figure 7.22: Local interference within each of the subsets after the first (top) and second
(bottom) loop for COST259 Siemens 1 with geographical decomposition into two subsets

Investigating the local distribution of the interference is an alternative way of

evaluating a given frequency assignment. Figures 7.23 shows, for the Cardiff Uni­

versity benchmark Cf, with a balanced GPFAP decomposition into two subsets, the

interference produced in terms of violations of the constraints represented by the

intra and inter-edges between subsets. We have here applied the decomposed as­

signment approach with the subsets considered in sequence for three loops through

them (see Algorithm 3.1). During the first loop the first subset only produces viola­

tions of the constraints represented by its intra-edges, thus ignoring the inter-edges

with the other subset. Then the partial assignment of the second subset completes

the assignment but generally produces high interference values for both the inter

and intra-edges violations. Subsequently, the second loop balances the interfer­

ence between the subsets. Note that this reduces the violations of the inter-edges

4-

171

constraints between the two subsets, since eliminating this interference would ex­

tend the search space to the whole solution space, with ideally no loss of optimality

between the solutions produced by the decomposed and the whole approach. How­

ever, this is only partially achieved by the redistribution loop and depends essen­

tially on the connectivity of the graph and the ‘quality’ of the decomposition used.

Moreover, further loops do not generally change significantly the balance reached

between the inter and intra-edges violations for any of the subsets.

This idea of area based interference, in which the evaluation of an assignment

is done by locally considering the interference distribution, assume more impor­

tance when more complex models of interference are considered. This is the case

of the multiple interference model described in Section 2.2.4 (see also [40] which

proposes a model that aims to minimize the maximum local interference).

7.5.2 Runs with variable num ber of loops

If we consider the condition in Definition 4.1, given a number of total evaluations of

a run with the decomposed assignment approach the introduction of a second loop

through the subsets leads to a reduction of the number of evaluations computed for

each subset. This can be done proportionally to the number of loops. For example,

in our experiments, which consider only two loops (see Section 7.3), we have for

each subset a number of evaluations explored equal to evalj$ = evfl2/'^ jK/l.

Note that, this will produce a different pair value, for the same fixed number

of total evaluations, in the plots (cost, runtime) introduced in Section 4.1.3. For

example in Figure 7.16 we have already shown two examples in which the desired

number of evaluations (2,000,000 * | V\) has been reached with either the whole

approach, or a decomposition into two two subsets with one and two loops respec­

tively.

172

^ssr

-0u>

»***!•
^ v f I ̂tt. S y M — t . t $ f c . . t L J L . ,1 •*■*-. >

' : . ' ■ ■> •

5000 10000 15000 20000 25000 30000 35000 40000 45000

first loop - first subset

♦* * ♦#*v 1 ♦/*** *»"*** * ** +

i f .?» •. ■«

r V 4 ♦ a.

■;«£*? < . r ♦ ♦

. ♦ <*TF**a3H03£*rs3r*vv> #•■•!•,

.
5000 10000 15000 20000 2S000 30000 35000 40000 45000

second loop - first subset

► .»+* \ * + * *

* z « a H S B f e a £ 7 • : • • ; • • '■

2nd subset
intra-interference
inter-interference

* ' ’ '■/*•• Y 3 s? a a N a B s p * u
~ v ; . ‘ :» .̂ i- <+f . v.%»..v V v * T- - *► ■ ■ •■ '_.■ - ■_. ..I ' 1 , . r V i *. 1 1-------

5000 10000 15000 20000 25000 30000 35000 40000 45000

let aubeett •• / 2nd eubeet
♦*»* ✓ *-. intra-interference

•••' ■ " — "

5000 10000 15000 20000 25000 30000 35000 40000 45000

first loop - second subset

15000

a 1 — U
5000 10000 15000 20000 25000 30000 35000 40000 45000

second loop - second subset

third loop - first subset third loop - second subset

t ,*>3 *:***;■

•4 ’• ‘r l . v w ? .>
' k - H Z f Z & v v V i M

- *• W 4 g g g |
: ♦ . , ;

• • - «

.*■. ■ .AAt«v//i ah?^fe^l
♦ f *♦

♦.J*

Figure 7.23: Intra and Inter-interference between subsets during the three loops of C6 with GPFAP into two subsets.

For the same number of total evaluations we could add other loops and conse­

quently reduce the number of evaluations per subsets, thus producing further {cost,

runtime} pairs. However, this has not shown any significant improvement in the

quality of the solutions for a number of preliminary experiments in which more

than two loops were applied.

Figures 7.24 shows different runs of Siemens 1 with a balanced GPFAP decom­

position into two subsets in which the same number of total evaluations (4,000,000*

\V\) is reached by the whole and the decomposed assignment approach with one,

two and three loops respectively

Alternatively the number of evaluations computed for each subset can also vary

during distinct loops (still maintaining fixed the desired number of total evalua­

tions and satisfying Definition 4.1). In particular a number of tests have shown

better performance when we considerably reduce the number of evaluations in the

first subset (and correspondingly increase that of the others). Note that, since per­

formed for a very short number of evaluations (for instance the 1 0 % of the total

in our experiments), the first loop assumes the significance of a preprocessing pro­

ducing partial assignments which can be obtained either with the ‘sequential’ or

‘independent’ procedure in Algorithms 3.1 and 3.2 respectively.

We performed a GPFAP decompositions for a total of 4,000,000 * | V\ eval­

uations. However, instead of this being computed by two loops of the same du­

ration, the first loop has been further split into two parts. Firstly, we perform a

preprocessing loop of 200,000 * | V\ evaluations (solved either sequentially or in­

dependently), then a second loop of 1,800,000 * | V\ completes the first half of the

evaluations. Results Siemens2 and BradfordlO are shown in Table 7.14 and the de­

composition approach results overall successful even towards the version without

preprocessing (i.e. only one loop through the subsets of 2,000,000 * \ V\ evalua­

tions).

174

Lfx

20
1 subset 4 ,000,000IVI
1 subset 2,000,000IVI

2 subsets 4 .000,OOOIVI

15

10

5 V ,

0
10000 15000 20000 250000 5000

20

15

10

run time (seconds)

one loop

V
1 subset 4 ,000,OOOIVI
1 subset 2 ,000,OOOIVI

L_ 2 subsets 1,000,OOOIVI 1st loop
2 subsets 1,000,OOOIVI 2ndloop
2 subsets 1,000,OOOIVI 3rd loop

s

2 subsets 1,000,OOOIVI 4th loop --------- *

V V ' v
\ \

\ \ St\ \
■ \ \ \V \

\

5000 10000 15000
run time (seconds)

20000 25000

20
1 subset 4,000,OOOIVI
1 subset 2 ,000,OOOIVI

2 subsets 2 ,000,OOOIVI 1st loop
2 subsets 2 ,000,OOOIVI 2nd loop

15

10

5

0
0 5000 10000 15000 20000 25000

run time (seconds)

two loops

20

15

10

.... c

1 subset 4 ,000,OOOIVI
1 subset 2 ,000,OOOIVI

2 subsets 4 ,000,OOOIVI
2 subsets 2 ,000,OOOIVI 1st loop

2 subsets 2 ,000,OOOIVI 2nd loop
2 subsets 1,000,OOOIVI 1st loop
2 subsets 1,000,OOOIVI 2ndloop
2 subsets 1,000,OOOIVI 3rd loop
2 subsets 1,000,OOOIVI 4th loop

5000 10000 15000
run time (seconds)

20000 25000

three loops comparison of all loops

Figure 7.24: Cost-time plot for Siemensl with balanced GPFAP decomposition into two subsets for 4,000,000 * |V| evaluations and different number
of loops

Subsequently a further loop of the remaining 2,000,000 * |V| is computed

through the subsets (see Table 7.15) after this further redistribution loop the normal

decomposition approach with no preprocessing results more effective, although the

decomposition approach with preprocessing is still superior tho the whole approach

with no decomposition.

Table 7.14: SA - Sieml-4 with GPFAP decomposition with preprocessing (4,000,000 *
|V| evaluations in total (first loop 200,000 * |V|, second loop 1,800,000 * |V|, third loop
2,000,000* |V|»

Sequential prep. Independent prep No preprocessing
noSub. first loop

second loop

third loop

2 1 7 . 6 0 (1 7 . 9 3) 5 , 0 5 0 (5 , 1 5 0)
1 6 .9 7 (1 7 . 0 4)1638 (16.41) 1 6 .4 9 (1 6 . 9 2)

o 1 9 . 8 5 (2 0 . 5 1) 5 3 0 2 (5 , 2 3 4)
1 9 . 5 4 (1 9 . 7 7)O IC lIlv IlS — 3

18.08 (18.55) 1 8 . 8 9 (1 9 . 0 2)

A
2 0 . 9 5 (2 1 . 1 2) 5 . 4 7 2 (5 . 7 6 0)

2 0 . 5 6 (2 0 . 8 7)*r
1 9 3 5 (1 9 . 8 3) 18.56 (18.60)

*> 1 9 7 . 6 2 (1 9 7 . 9 8) 2 , 0 1 5 (2 , 0 2 2)
1 9 2 3 7 (1 9 2 . 9 8)

187.74 (188.22) 1 9 1 . 2 6 (1 9 1 . 5 4)

Bradford 10 -3
2 2 5 . 9 0 (2 2 6 3 0) 2 . 0 2 3 (2 . 0 2 7)

203.69 (204.60)3
2 0 6 . 7 0 (2 0 7 . 1 7) 2 0 5 . 0 1 (2 0 5 . 8 6)

A
2 3 3 . 0 1 (2 3 6 . 5 6) 2 3 4 8 (2 3 5 4)

211.81 (212.94)**
2 2 8 . 2 8 (2 2 8 . 8 4) 2 1 6 . 5 2 (2 1 7 . 0 9)

Table 7.15: SA - Sieml-4 with GPFAP decomposition with preprocessing (4,000,000 *
|V| evaluations in total (first loop 200,000 * \V\, second loop 1,800,000 * |V|, third loop
2,000,000* |V|»

Sequential prep. Independent prep No preprocessing

noSub. first loop

second loop

third loop

2 16.11 (16.13) 1 6 . 2 4 (1 6 3 5) 1 6 3 4 (1 6 . 7 3)

Siemens2 3 1737 (17.52) 1 7 .5 1 (1 7 . 9 1) 1 7 .4 1 (1 7 . 6 0)

4 1 8 3 8 (1 8 . 4 7) 17.88 (18.19) 1 8 .0 2 (1 8 . 2 7)

2 1 8 6 3 1 (1 8 6 . 4 2) 1 9 0 . 1 9 (1 8 9 . 6 9) 185.05 (18539)
Bradford 10 3 2 0 3 . 5 3 (2 0 3 . 6 4) 2 0 1 . 9 5 (2 0 2 . 0 1) 18838 (18931)

4 2 1 2 . 8 1 (2 1 5 . 2 7) 2 1 3 3 4 (2 1 4 . 5 7) 19331 (194.43)

At the end of the first loop both ‘sequential’ and ‘independent’ preprocess­

ing approaches improve the results obtained in Table 7.8 (2,000,000 * |V| evalua­

tions per loop). Hence the separation of the first loop into a preprocessing phase,

176

which produces a quick approximation of an optimal assignment, and a further

loop (which actually redistributes the interference among the subsets), performs

better than a single loop performed sequentially through the subsets. However, this

mainly happens for a decomposition into two subsets only, with ‘sequential’ pre­

processing superior to ‘independent’. Nevertheless, the subsequent final loop (the

third loop in our experiments) does not further improve the results which are in

general only comparable with those in Table 7.8 at the end of the 4,000,000 * \ V\

evaluations. Figure 7.25 shows an example of two single runs of BradfordlO with a

decomposition into two subsets for a total of 4,000,000 * | V\ evaluations, in which

the preprocessing approach is compared with the same decomposition run for two

loops of equal duration (see also Table 7.8). When the preprocessing approach is

applied a total of thee lopps are performed of 100,000 * \ V\, 1,900,000 *\V \ , and

3,000,000 * \ V\ evaluations respectively whereas with the normal decomposition

method used throughout this thesis only two loops of 4,000,000 * | V\ evaluations

each are computed.

Figures 7.26 and 7.27 show the distribution of the interference within the three

loops for Siemens2 solved by the decomposed assignment approach adopting the

‘independent’ preprocessing. We have considered GPFAP and geographical de­

composition into two subsets. The plots shows that the first loop involves only

the intra-edge interference within each of subsets, whereas the second loop has the

effect of redistributing the interference balancing the inter and intra-edges viola­

tions. This effect is more important for ‘good’ decompositions like GPFAP rather

than the worse performing geographical partitioning. Finally, the subsequent third

loop does not change significantly the relative distribution of the local interference

for both of the decomposition methods used. Nevertheless, since the connectivity

of this specific data set is very high the interference in terms of number of inter and

intra-edges violations appears high for both of the examples tested.

177

1 su b se t 2000000 ' M 1st loop
2 su b se ts 10000CTM 1st loop

2 su b se ts 1900000’ IVI 2nd loop
2 s u b se ts 2000000 ’M 3rd loop
2 s u b se ts 2000000* IVI 1st loop
2 s u b se ts 2000000* IVI 2nd loop

I

0 5 0 0 0 10000 15000 20000 25000

run tim e (seconds)

sequential preprocessing

1 su b se t 2000000“ I vi 1st loop
2 s u b se ts 100000* IVI 1st loop -

2 su b se ts 1900000* IVI 2nd loop
2 su b se ts 2000000*IVI 3rd loop
2 s u b se ts 2000000'IV I 1st loop
2 s u b se ts 2000000* IVI 2nd loop

i

run tim e (seconds)

independent preprocessing

Figure 7.25: Cost-time plot for Bradford 10 with balanced GPFAP decomposition into two
subsets for 4,000,000 * \ V\ evaluations with preprocessing approach.

JL ■ .1 I I ■ ■ J.
33910 33920 33930 33940 33950

first loop - first subset
33910 33920 33930 33940 33950 33900 33970

first loop - second subset

33910 33920 33930 33940 33950

second loop - first subset second loop - second subset

third loop - first subset third loop - second subset

Figure 7.26: Intra and Inter-interference between subsets during the three loops of Siemens2 with geographical decomposition into two subsets.

33000 33010 33920 33930 33040 33950 33900 33970

first loop - first subset first loop - second subset

00
o

33900 33910 33920 33930 33940 33950 33900 33970

second loop - first subset second loop - second subset

2nd subset
intra-interference
inter-interference

third loop - first subset third loop - second subset

Figure 7.27: Intra and Inter-interference between subsets during the three loops of Siemens2 with GPFAP into two subsets.

7.5.3 C ost-runtim e trade-off

Figure 7.28 shows the cost-runtime curve for Siemensl and BradfordlO respec­

tively for a number of runs with and without the decomposed assignment approach

(with the points corresponding to the whole approach joined with a red line). We

have considered balanced and unbalanced GPFAP with a different number of sub­

sets, runs with one single loop, two loops, and runs with a different number of

evaluations per loop.

Three groups of runs have been conducted for a different number of total evalu­

ations (1,000,000*|F|, 2 ,000 ,000*|F|, and 4 ,000,000*|F| respectively). Note that

the three plots produced recall the expected curves described in Figure 4.3. If we

focus only on the central curve (corresponding to a total of 2,000,000 * \V\ evalua­

tions) we can observe that for both of the benchmarks the balanced decomposition

into two subsets produces the best results when two loops are performed.

By repeating the analysis for different number of total evaluations and decom­

position methods, these diagrams represent the basis for defining the optimal de­

composition criterion given a specific benchmark. This involves the investigation

of the best performing:

• number of subsets

• size of subsets (i.e. balanced unbalanced decompositions)

• number of evaluations per loop and subset

This further analysis will constitute one of the suggestions for future work

enhancements together with the investigation of multiple interference models de­

scribed in Section 2.2.4.

181

3.1

3

2 9

2.8

27

26

5000 10000 15000 20000
run time (seconds)

Siemens 1
220

2 subse ts 2nd loop
2 su b se ts preprocessing

3 subse ts
3 su b se ts 2nd loop
4 subse ts 2nd loop

215

210

205

200

195

190

185

160
80000 100000 120000 140000 180000 180000 200000 22000040000 60000

Bradford 10

Figure 7.28: Trade-off between cost and runtime for Siemens 1 and Bradford 10

182

Chapter 8

Conclusion and future work

183

8.1 Conclusion

This thesis proposes a decomposed meta-heuristic approach to solve the FAP in its

different formulations (minimum span (MS-FAP), fixed spectrum (FS-FAP) and

minimum interference frequency assignment (MI-FAP)). The FAP can be solved

with exact methods only for small networks with an order of few hundreds trans­

mitters whereas for larger problems is usually solved by heuristic algorithms. How­

ever, although meta-heuristics produce good results on some of the benchmarks

available, they often perform on specific data sets for the particular type of FAP

considered and highly specialised algorithms tend to perform best. In addition,

standard implementations of meta-heuristics may require considerable runtimes to

produce good quality results whenever a problem is very large or complex.

This thesis investigates the application of problem decomposition techniques as

an effective approach in order to deal with large networks. Although a few previous

works have applied problem decomposition in combination with exact methods

these techniques have very rarely been used in combination with meta-heuristics.

Furthermore, in these cases the decomposition technique has been mainly applied

either after or incorporated into a heuristic procedure in order to optimizing locally

the solution produced (often using again exact procedures).

In this thesis the decomposition strategy has been extended to a larger scale

which aims to simplify a complicated problem by decomposing it into separate

subproblems (obtained by removing some of the constraints between them) rather

than increasing the complexity of the meta-heuristic which solves the problem as

a whole. A similar approach has only been proposed in the literature for the eas­

iest formulations of the FAP (MS-FAP) and for a specific set of benchmarks and

decomposition methods.

Our proposed decomposed assignment approach is based on an initial partition

of the interference graph representing the network into two or more subgraphs. A

meta-heuristic procedure is then applied to each of the subsets in turn to produce

a sequence of partial solutions. Subsets can be solved either sequentially or in­

184

dependency, that is when the current subset is considered the algorithm keeps the

assignment of the transmitters in the previously assigned subsets fixed respecting

the constraint violations between them. Finally, the partial solutions are recom­

posed to give a complete assignment of the original problem.

This thesis constitutes the first attempt to constructively investigate the effec­

tiveness of decomposition approaches for the FAPs solved in combination with

meta-heuristics. We propose a range of decomposition methods to produce a par­

titioning of the interference graph representing the network. These include the

generalization o f methods previously used for the FAP, such as clique detection

and partitions based on generalized degree, together with novel applications and

modifications of existing graph partitioning and clustering methods.

The idea of decomposing the hardest FAP benchmarks into a partition of sub­

problems is particularly important for standard meta-heuristics, which are not oth­

erwise capable of producing satisfactory performance for the more complex types

of FAP such as the MI-FAP. A number of decomposition algorithms have been ap­

plied to a standard simulated annealing and a genetic algorithm with two different

representations (direct and order-based). Both algorithms have been applied to the

FAP in its different models. However, more attention has been given to the more

complex and useful formulation of the problem, the MI-FAP. From an analysis of

the results we can draw the following conclusions.

The order-based GA obtained good results with the MS-FAP and simple in­

stances of the FS-FAP, while for harder FS-FAP benchmarks and the MI-FAP the

use of a direct representation produces better results. Furthermore, for the MI-FAP

the use of a multi-objective approach outperforms the single-objective, especially

in terms of diversification of the partial solutions in the population. However, sim­

ulated annealing performs better than the GA in all of the MI-FAP experiments

conducted.

For the majority of the instances the decomposed assignment with a decom­

position into two to four subsets performs better than the whole approach with an

185

evaluation on a pure quality basis. Results show that different partitioning meth­

ods are preferable to solve the different types of FAR For the MS-FAP the more

effective methods are those based on solving the ‘hardest’ part of the problem first

(clique and generalized-degree), thus confirming the results already obtained in

previously published works, whereas for the harder MI-FAP (and its generaliza­

tion as FS-FAP) the methods based on minimizing the interconnections between

different subsets give the best performance (i.e. graph partitioning and clustering).

Furthermore, when the problem is solved by the GA the order-based represen­

tation is more effective in solving the MS-FAP while for the FS/MI-FAP the direct

representation appears superior. This may be partially explained by the fact that for

the MS-FAP removing some of the vertices still allows the core part of an instance

to produce a span which is close to that of the whole data sets. On the contrary,

when the cost is defined in terms of the total sum of the constraint violations (as

for the FS-FAP), removing edges unavoidably implies a considerable decrease in

the partial costs produced by a subproblem.

With the order-based representation, the sequential assignment used considers

only the vertices already assigned in a given ordering in the current subset, thus

ignoring a fraction of transmitters in each subset (those next to come in the given

ordering of the subsets vertices). We can then see these vertices as they were

removed from the subset. For the reason above, this may penalize this type of

representation when used to solve the FS-FAP whereas for the MS-FAP the cost

(span) produced for each o f the subsets during an assignment is less affected from

this removal of vertices with a beneficial effect on the final span returned by the

decomposition technique.

Some groups of benchmarks perform better with specific decomposition meth­

ods. This is, for example, the case of the Cardiff University data sets which, since

they present a location of the transmitters distributed into ‘towns’, clearly produce

better results with the graph partitioning method. For other group of benchmarks,

such as the Bradford data sets for the MI-FAP, the decomposition approach is not

186

immediately successful on a pure quality basis and requires the introduction of a

further reassignment loop over the subsets. This has the consequence of improving

considerably the quality of the results as well as balancing the distribution of the

interference in the network.

For some benchmarks, which present either a very high graph density or a

peculiar structure (as predicted for random graphs), the performance of the de­

composed assigned approach is not satisfactory with an evaluation purely based

on quality. However, if we look at the the trade-off between quality and runtime

during a single run of the meta-heuristic the decomposition approach appears able

to produce acceptable approximations of the optimal solution in a shorter time than

the whole approach (when both the approaches are run and compared for a same

number of solutions explored) as described in more detail in Section 4.1.3.

In particular, very good results in this sense are obtained with the largest set of

benchmarks used, which represent more realistic instances of wireless networks.

Here, the GPFAP is able to effectively solve MI-FAP instances without the need

of any further knowledge about the network (e.g. geographical information about

transmitter locations). This result constitutes the main contribution of this thesis

which then proposes the decomposed assignment approach as an effective tech­

nique (and in some cases the only one possible), to solve larger practical data sets

using meta-heuristics.

Beside this main result, our work has shown that the decomposed approach

constitutes a valid technique to improve the performance of standard meta-heuristics

in a way which is actually algorithm independent. This is evident for the COST-

259 MI-FAP results for which not only has this approach improved the previously

published results produced by the standard implementation of SA but it has also

allowed the GA to be more competitive for this problem, whereas no published

results are yet known for these benchmarks for this category of evolutionary meta­

heuristics. Finally, the decomposed assignment approach (when effective) allows

the use of standard meta-heuristics independently on the data set used, thus avoid-

187

ing the use of algorithms specifically designed for a particular class of benchmarks.

8.2 Future work

This final section suggests two main future directions toward which the research

proposed in this thesis can be extended.

Firstly, the proposed procedure which, given a test problem and a decomposi­

tion method, deduces the optimal number of subsets in the decomposition could be

improved and better specified. We have here suggested the use of cost-time curves

which plot different pairs of cost time values corresponding to an assigned total

number of solutions explored by the meta-heuristic, for both the whole and the de­

composed approach, thus expected to produce roughly the same runtime. Different

pair values can be produced varying the number of the subsets (and when appli­

cable their size) as well as the number of loops performed over them. However,

this technique presents the drawback of depending strictly on the specific instance

considered and alternative procedure may be therefore considered. In addition, ei­

ther further decomposition methods or variations of those already proposed in this

thesis may be worthy o f being investigated.

A second, more important suggestion for future enhancements consists of ex­

tending the application of the problem decomposition approach for the FAP to more

complex interference models than the binary considered here. This will involve the

adoption of a multiple interference model, which abandons the idea of considering

separately pairs of transmitters and takes instead into account the cumulative effect

of the interfering signals received by a transmitter when all of the other geograph­

ically close base stations transmit simultaneously. This approach may also require

further formulations of the FAP beside the minimization of the global interference

in the network, such as minimizing the maximal interference experienced locally

in the network by a transmitter (see also the concept of area based interference

introduced in the final part of this thesis).

188

Appendix A

Extended results

189

A.l Extended results for MS-FAP

We present in this section of the appendix the extended results obtained for the MS-

FAP by the order-based GA with the decomposed assignment approach. Tables

A.2, A.3, and A.l show the comparative results expressed in percentage obtained

for the MS-FAP benchmarks with the decomposition methods outlined in Table

5.1.

Table A . l : Comparative results in % for MS-FAP. Best span for for Ri, and R2 solved by
the order-based GA with decomposition (500 ,000 * | V\ evaluations)

GPFAP Gen. Degree Cliques Whole
R1

GPFAP
2
4 _ _

+4
+6

+3
+5

+2
+3

+ 1
+2

+3
+4

? -4 -6 _ _ -3 -3 -1
Gen Degree 4 -3 -5 - - -2 -2 0

? -? -3 +3 +2 _ _ +2
Cliques 4 -1 -2 +3 +2 - - +2
Whole 1 -3 -4 + 1 0 -2 -2 -

r 2
? _ _ + 4 +4 +3 +3 +4

GPFAP 4 - - + i +5 +4 +4 +5
?. -4 -3 _ -1 -1 0

Gen Degree 4 -4 -5 - -1 -1 0
? -3 -4 + 1 • 1 _ + 1

Cliques 4 -3 -4 + 1 + 1 - + 1
Whole 1 -4 -5 0 0 -1 -1 -

190

Table A.2: Comparative results in % for MS-FAP. Best span for for P i , Pi, C\, Ci, and C3

solved by the order-based GA with decomposition (500,000 * \ V\ evaluations)

Random Geog. GPFAP Gen. Degree Cliques Whole
2 4 2 4 2 4 2 4 2 4 1

p 1
2 - - - - +8 +6 +8 +8 +8 +6 +8
4 - - - - +8 +6 +8 +8 +8 +6 +8

Geog
2
4 _ :

— —
_ _ : : :

— -

2 -8 -8 - - - - 0 0 0 -2 0
4 -6 -6 - - - - +2 +2 +2 0 +2
2 -8 -8 _ _ 0 -2 _ _ 0 -2 0Gen Degree
4 -8 -8 - - 0 -2 - - 0 -2 0
2 -8 -8 _ _ 0 -2 0 0 _ _ 0Cliques 4 -6 -6 - - +2 0 +2 +2 - - +2

Whole 1 -8 -8 - - 0 -2 0 0 0 -2 -

P i
2 - - - - + 12 + 12 + 12 + 12 +11 + 11 + 12
4 - - - - +27 +27 +27 +27 +26 +26 +27

Geog
2
4 : _ : _

—
_

— —
_ _

_

2 -12 -27 - - - - 0 0 -1 -1 0GPFAP
4 -12 -27 - - - - 0 0 -1 -1 0
2 -12 -27 _ _ 0 0 _ _ -1 -1 0

Gen Degree 4 -12 -27 - - 0 0 - - -1 -1 0
2 -11 -26 _ _ + 1 + 1 +1 + 1 _ _ +1

Cliques 4 -11 -26 - - + 1 + 1 +1 + 1 - - +1
Whole 1 -12 -27 - - 0 0 0 0 -1 -1 -

C i
2 - - + 6 +9 + 20 + 16 +25 +27 +22 + 19 +23

Random
4 - - + 13 + 15 + 28 +23 +33 +34 +29 +26 +31
2 -6 -13 - - + 13 + 9 + 18 + 19 + 15 -12 + 16

Geog
4 -9 -15 - - + 11 + 7 + 15 + 16 + 12 + 10 + 14
2 -20 -28 -13 -11 - - +4 +5 + 1 -1 +2
4 -16 -23 -9 -7 - - +8 +9 +0.5 +0.2 +0.6
7 -25 -3 3 -18 -15 -4 -8 _ _ -3 -5 -1

Gen Degree
4 -27 -34 -19 -16 -0.5 -0.9 - - -4 -6 -3
2 -22 -29 -15 -12 -0.1 -0.5 +3 +4 - — + 1

Cliques
4 -19 -26 -12 -10 +0.1 -0.2 +5 +6 - - +4

Whole 1 -23 -31 -16 -14 -0 .2 -0.6 + 1 +3 -1 -4 -
c 2

2 - - + 1 0 +5 +8 + 15 + 16 + 10 +9 + 15
Random

4 - - +5 + 4 + 9 + 11 + 19 +21 + 14 + 13 + 19
2 -1 -5 - - +4 + 6 + 14 + 15 +9 +8 + 14

Geog
4 0 -4 - - +5 +8 + 15 + 16 + 10 +9 + 15
2 -5 -9 -4 -5 - - +9 + 10 +5 +4 +9

GPFAP
4 -8 -11 -6 -8 - - + 0.7 +8 +2 + 1 +7
7 -15 -19 -14 -15 -9 -7 — - -4 -5 0

Gen Degree
4 -16 -21 -15 -16 -10 -8 - - -5 -7 -1
7 -10 -14 -9 -10 -5 -2 +4 +5 - - +4

Cliques
4 -9 -13 -8 -9 -4 -1 +5 +7 - - +5

Whole 1 -15 -19 -14 -15 -9 -7 0 + 1 -4 -5 -
c 3

2 - - +8 +6 + 12 + 13 +20 +22 + 13 + 16 + 12
Random

4 - - + 10 +7 + 15 + 14 +22 +23 + 14 + 12 +22
2 -8 -10 - - +5 +4 + 11 + 12 +4 +6 + 11

Geog
4 -6 -7 - - +8 +6 + 14 + 15 +6 +9 + 14

2 -12 -15 -5 -5 - - +5 +7 -1 + 1 +5
GPFAP

4 -13 -14 -4 -6 - - +9 +8 0 +3 +9
7 -20 -22 -11 -14 -5 -9 - - -6 -4 0

Gen Degree
4 -22 -23 -12 -15 -7 -8 - - -8 -5 -1
7 -13 -14 -4 -6 + 1 0 +6 +8 - - +6

Cliques
4 -16 -12 -6 -9 I f M -3 +4 +5 - - +4

Whole 1 -12 -22 -11 -14 -5 -9 0 + 1 -6 -4 -

Table A.3: Comparative results in % for MS-FAP. Best span for for C 4 , G1 , G2 , and G3

solved by the order-based GA with decomposition (500,000 * \V\ evaluations)

Random Geog. GPFAP Gen. Degree Cliques Whole

c 4
2 - - + 3 8 + 3 4 + 4 2 + 3 2 +34 + 3 8 + 3 4 + 3 6 + 3 1

Random 4 - - + 4 9 + 4 5 + 5 4 + 4 3 +45 + 4 9 + 4 5 + 4 3 + 4 1
2 .38 .4 9 - - + 3 .4 .3 0 .3 .1 .6

Geog 4 .3 4 .45 - - + 6 .1 0 + 3 0 + 1 .3
2 .42 .5 4 .3 .6 - - .6 .3 .6 .4 .7
4 .32 .43 + 4 + 1 - - + 1 + 4 + 1 + 3 .1
2 .34 .45 + 3 0 + 6 .1 _ _ 0 + 1 .3

Gen Degree 4 .38 .4 9 0 .3 + 3 .4 - - .3 .1 .6
2 .3 4 .45 + 3 0 + 6 .1 0 + 3 _ _ .3

Cliques
4 .3 6 .43 + 1 .1 + 4 .3 .1 + 1 - - .4

Whole 2 .31 .41 + 6 + 3 + 7 + 1 + 3 + 6 + 3 + 4 -
G 1

2 _ _ _ _ + 3 0 + 3 + 10 + 3 + 2 + 4
Random

4 - - - - + 8 + 2 + 8 + 12 + 8 + 4 + 6
2 -3 -8 _ _ _ _ 0 + 4 0 -4 -2

GPFAP
4 0 -2 - - - - + 6 + 10 + 6 + 2 + 4
2 -3 -8 _ _ 0 -6 _ _ 0 -4 -2

Gen Degree
4 -1 0 -12 - - -4 -1 0 - - -4 -8 -6
2 -3 -8 _ _ 0 -6 0 + 4 _ - -2

Cliques
4 -2 -4 - - + 4 -2 + 4 + 8 - - + 2

Whole 1 -4 -6 - - + 2 -4 + 2 + 6 + 2 -2 -

G2
2 - - - - + 14 + 2 2 + 2 0 + 2 2 + 2 0 + 2 0 + 2 0

Random
4 - - - - + 15 + 2 4 + 2 2 + 2 4 + 2 2 + 2 2 + 2 2

2 -1 4 -15 _ _ _ +5 +7 + 5 + 5 + 5
GPFAP

4 -22 -2 4 - - - - -2 0 -2 -2 -2

2 -2 0 -2 2 _ _ -5 + 2 - _ 0 0 0
Gen Degree

4 -2 2 -2 4 - - -7 0 - - -2 -2 -2

2 -2 0 -2 2 _ _ -5 + 2 0 + 2 — - 0
Cliques

4 -2 0 -22 - - -5 + 2 0 + 2 - - 0

Whole 1 -2 0 -2 2 - - -5 + 2 0 + 2 0 0 -
g3

2 _ - - - +7 + 5 + 8 + 5 + 8 + 8 + 8
Random

4 - - - - + 11 + 8 + 12 + 8 + 12 + 12 + 12

2 -7 -11 _ _ _ - + 1 0 + 1 + 1 + 1
GPFAP

4 -5 -8 - - - - + 4 + 3 + 4 + 4 + 4

2 -8 -1 2 _ _ -1 -4 - - 0 0 0
Gen Degree

4 -5 -8 - - 0 -3 - - + 1 + 1 + 1

2 -8 -1 2 - _ -1 -4 0 -1 - — 0
Cliques

4 -8 -1 2 - - -1 -4 0 -1 - - 0

Whole 1 -8 -1 2 - - -1 -4 0 -1 0 0 -

192

A.2 Extended results for FS-FAP

We present in this section of the appendix the extended results obtained for the FS-

FAP by the order-based and direct GA with the decomposed assignment approach.

Tables A.5, A . 6 and A.4 show the comparative results expressed in percentage for

the FS-FAP benchmarks with the decomposition methods outlined in Table 6.1 and

6.5. The cost reported in the table is the one defined in Problem 1.2 for this type of

FAP.

Table A.4: Comparative results in % for FS-FAP. Best span for for R\ and R2 solved by the
direct GA with decomposition (500 ,000 * \ V\ evaluations)

GPFAP Gen. Degree Cliques Whole
2 4 2 4 2 4 1

R1
2 - - -3 -9 -2 -8 +2
4 - - +3 -2 +4 -2 +8
2 +3 -3 _ +1 -4 +5

Gen Degree 4 + 9 +2 - +6 + 1 + 11
? +2 -4 -i -6 _ +4

Cliques 4 +8 + 2 +4 -1 - + 9
Whole 2 -2 -8 -5 -11 -4 -9 -

Ri
? — _ -s -18 + 6 +4 +6

GPFAP 4 - - +2 -10 + 13 + 11 + 13
? +5 -2 _ _ + 11 + 9 + 11

Gen Degree 4 + 18 + 10 - - + 26 +24 + 26
? -6 -13 -11 -26 _ _ 0

Cliques 4 -4 -11 -9 -24 - - + 1
Whole 2 -6 -13 -11 -26 0 -1 -

193

Table A.5: Comparative results in % for FS-FAP. Best cost for for Cj, C2, C3 , and C4

solved by the order-based GA with decomposition (500,000 * \ V\ evaluations)

Random Geog. GPFAP Gen. Degree Cliques Whole
2 4 2 4 2 4 2 4 2 4 1

Cl
2 - - +44 +31 +57 +53 +52 +57 +47 +50 +53
4 - - +44 +31 +57 +53 +52 +57 +47 +50 +53
2 -44 -44 - - +9 +6 +5 +8 +2 +4 +6
4 -31 -31 - - +20 + 17 + 16 +20 +12 + 15 + 17
2 -57 -57 -9 -20 - - -3 0 -6 -4 -2
4 -53 -53 -6 -17 - - -1 +2 -4 -2 0
2 -52 -52 -5 -16 +3 + 1 _ _ -3 -1 + 1

Gen Degree 4 -57 -57 -8 -20 0 -2 - - -7 -4 -2
? -47 -47 -2 -12 +6 +4 +3 +7 _ _ +4

Cliques 4 -50 -50 -4 -15 +4 +2 + 1 +4 - - +2
Whole 1 -53 -53 -6 -17 +2 0 -1 +2 -4 -2 -

c 2
2 - - + 15 -3 +95 +63 +85 + 1.00 +50 +56 +59
4 - - + 26 +8 + 1.15 +79 + 1.04 + 1.20 +63 +72 +76
2 -15 -26 - - + 70 +42 +62 +37 +31 +36 +39
4 +3 -8 - - + 1.00 +66 +90 + 1.05 +54 + 60 +63
2 -95 -1.15 -70 -1 .00 - - -5 +2 -30 -25 -23
4 -63 -79 -42 -66 - - + 14 +23 -8 -4 -2
? -85 -1 .04 -62 -90 +5 -14 _ -24 -19 -16

Gen Degree 4 -1 .00 -1 .20 -37 -1.05 -2 -23 - -33 -28 -26
2 -50 -63 -31 -54 + 30 +8 • 24 +33 - - +6

Cliques 4 -56 -72 -36 -60 +25 +4 + 19 +28 - - +2
Whole 2 -59 -76 -39 -63 +23 +2 + 16 + 26 -6 -2 -

c 3
2 - - +31 + 12 +37 +29 +31 + 30 +20 + 10 +27

Random 4 - - + 29 + 11 +35 +27 +29 +28 + 19 +9 +26
2 -31 -29 - - +5 -1 0 -1 -9 -19 -3

Geog 4 -12 -11 - - + 22 + 15 + 17 + 16 + 10 -2 + 13
? -37 -35 -5 -22 _ - -5 -5 -14 -24 -8

GPFAP 4 -29 -27 + 1 -15 - - + 1 + 1 -7 -17 -3
? -31 -29 0 -17 +5 -1 - - -9 -19 -3

Gen Degree 4 -30 -28 + 1 -16 +5 -1 - - -8 -18 -2
2 -20 -19 +9 -10 + 14 +7 +9 +8 - - + 10

Cliques 4 -10 -9 + 19 +2 + 24 + 17 + 19 + 18 - - + 16
Whole 2 -27 -26 +3 -13 +8 +3 +3 +2 -10 -16 -

c 4
2 - - +20 + 19 +21 +21 + 18 + 11 + 13 + 14 + 14

Random 4 - - +25 + 24 + 26 +27 +23 + 16 + 18 + 19 + 19
2 -20 -25 - - + 1 + 1 -1 -7 -6 -5 -5

Geog 4 -19 -24 - - +2 +2 0 -6 -5 -3 -3
2 -21 -26 -1 -2 - - -2 -8 -7 -6 -6

GPFAP 4 -21 -27 -1 -2 - - -3 -9 -7 -6 -6
2 -18 -23 + 1 0 +2 +3 - - -4 -3 -03

Gen Degree 4 -11 -16 +7 +6 +8 +9 - - +2 +3 -6
2 -13 -18 +6 +5 +7 +7 +4 -2 - - + 1

Cliques 4 -14 -19 +5 +3 +6 +6 +3 -3 - - 0

Whole 1 -14 -19 +5 +3 +6 +6 +3 +6 -1 0 -

194

Table A.6: Comparative results in % for FS-FAP. Best span for for G! and G2 solved by
the order-based GA with decomposition (500 ,000 * \V\ evaluations)

R andom Geog. G P FA P Gen. Degree Cliques W hole

2 4 2 4 2 4 2 4 2 4 1
Gi

2 - - - - +34 + 37 + 24 + 28 +27 + 30 +29
4 - - - - +34 +38 +29 + 25 +28 +31 +30
2 -34 -34 - - - - -4 -8 -5 -2 -4
4 -37 -38 - - - - -7 -10 -7 -4 -6
? -24 -29 _ _ +4 +7 _ _ -1 +2 + 1

Gen Degree 4 -28 -25 - - + 8 + 10 - - +3 +5 +4
?. -27 -28 - _ +5 +7 + 1 +3 _ _ + 1

Cliques 4 -30 -31 - - +2 +4 +2 +5 - - -1
W hole 2 -29 -30 - - +4 + 6 -1 -4 -1 + 1 -

G 2
2 - - - - +27 +21 +24 +22 + 26 +21 +20

Random 4 - - - - +33 +26 +30 +28 +33 +27 +26
7 -27 -33 _ _ _ -2 -4 0 -5 -5

G P FA P
4 -21 -26 - - - - +3 + 1 +5 0 -1
7 -24 -30 _ _ +2 -3 — — +2 -3 -3

Gen Degree
4 -22 -28 - - +4 -1 - - +4 -1 -2
7 -26 -33 _ _ 0 -5 -2 -4 - -6

Cliques
4 -21 -27 - - +5 0 +3 + 1 - -1

W hole 2 -20 -26 - - +5 + 1 +3 + 2 + 6 ■ 1 -

195

A.3 Extended results for MI-FAP

We present in this section of the appendix the extended results obtained for the MI-

FAP by SA and the GA for a variable number of evaluations. Table A.7, A.8 , and

A.3 show the the best and average over three runs (in brackets) cost obtained by

SA with and without the decomposed assignment approach. All experiments pre­

sented in this section refer to two loops performed by the decomposed assignment

approach (the number of evaluations shown referring to each single loop).

Table A.7: SA - Siemens 1-4 for SA without decomposition

first loop
second loop

noEvaluations SIEMENS 1 SIEMENS2 S1EMENS3 SIEMENS4

10 ,000 *\V\ 4 .26 (4 .29) 1 9 .3 6 (1 9 .9 9) 10.64 (10.85) 102 .00 (103 .01)
4.24 (4.27) 18.94 (19.03) 10.22 (10.58) 100.49 (101.58)

1 00 ,000 *\V\ 3.38 (3 .44) 1 7 .1 2 (1 7 .6 7) 8.24 (8.52) 92.43 (92.71)
3.30 (3.37) 16.75 (16.89) 8.14 (8.31) 92.12 (92.23)

1,000,000 * |K|
2 .84 (2 .91) 15.72 (15.79) 6 .80 (6 .94) 90.33 (91.04)
2.75 (2.83) 15.72 (15.79) 6.61 (6.72) 89.25 (89.98)

2 ,0 0 0 ,0 0 0 * | V\ 2.75 (2 .83) 15.72 (15.79) 6.61 (6.72) 87.25 (87.98)
2.68 (2.76) 15.59 (15.64) 6.59 (6.62) 86.59 (87.12)

Table A. 11, A.3, and A.3 show the the best and average over three runs (in

brackets) cost obtained by SA with and without the decomposed assignment ap­

proach. For the hardest of the Siemens instances (Siemens 4) the GA results will

be omitted for the shortest runs, since the algorithm does not produced any feasible

solutions.

Table A.3 show the the best and average over three runs (in brackets) cost

obtained by the order-based GA for Siemens 1 with a decomposition into one to

five subsets.

196

Table A.8 : SA - Siemens 1-4 Balanced GPFAP decomposition
S IE M E N S 1 S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noEvals. noSub. first loop

second loop

2 3.91 (3 .94) 19.38 (19.66) 9 .1 8 (9 .3 2) 99 .03 (101 .21)
*•

3.81 (3.90) 19.23 (19.42) 9 .0 2 (9 .1 7) 98.92 (100.68)

i 4 . i8 (4 .31) 2 1 .2 9 (2 1 .6 8) 8.92 (9 .15) 102 .28(103.15)

1 0 ,0 0 0 *1 ^ 1
3 .69 (4.16) 19.77 (20.04) 8.64 (8.89) 99.19 (106.83)
4 .0 2 (4 .1 2) 21 .9 4 (2 2 .0 4) 9.52 (9 .70) 104.95(1 ,439)
3 .82 (4.01) 20 .1 5 (2 0 .4 3) 9.41 (9 .49) 102.41 (770.1)

< 4 .58 (4.60) 22.38 (22.54) 10.38 (10.60) 107.97 (2,773)
j

4 .44 (4.49) 20 .6 7 (2 1 .3 0) 10.05 (10.45) 105.58(106.15)
3 .1 6 (3 .2 8) 17.91 (17.98) 7.66 (7 .84) 90.65 (91.50)
3 .14 (3.18) 17 .83 (17 .91) 7.58 (7 .81) 90.44 (91.48)

■j 3 .36 (3 .45) 19 .79 (19 .94) 7.30 (7 .45) 9 5 .13 (95 .85)

inn non « i n

j
3.32 (3.36) 17 .99 (18 .09) 7.24 (7.40) 92.88 (93.56)

1W , W v • | r |

4 3.53 (3.58) 17.72 (l l .9 3) 8.09 (8 .28) 94.72 (95.68)
*T

3 .1 5 (3 .1 9) 1 7 3 1 (17.42) 7 . 9 8 (8 . 1 4) 95 .1 9 (9 5 .3 8)

< 3 .90 (4.03) 17 .88(18 .25) 8.75 (8 .88) 96.32 (96.87)
J 3.50 (3.57) 17.65 (17.79) 8.41 (8 .52) 94.30 (95.19)

2
2 .78 (2 .80) 17 .04 (17 .15) 6.59 (6 .77) 85 .24 (85 .71)

£ 2 .73 (2.77) 16.49 (16.87) 6.52 (6 .61) 85.18 (85.42)
2.97 (3.00) 19.65 (l6 .7 9) 6.49 (6 .61) 89.06 (96.70)

1 AAA AAA > ll/I

J 2.88 (2.94) 17 .66 (17 .91) 6.42 (6 .59) 89.55 (90.27)
l.UUU, U W » | r |

4 2.99 (3.04) 20.87 (21.02) 7 .0 3 (7 .1 0) 90.57 (91.66)
2.96 (2 .99) 18.56 (1 3 3 8) 7.02 (7 .04) 90.02 (9 0 . l l)

< 3.48 (3.54) 20.35 (26.55) 7.68 (7 .89) 95.12 (95.09)
J

3.22 (3.357 18.17 (lS .3 4) 7.46 (7 .58) >C 1 J '-u \o Q 00

*> 2.68 (2.75) 16 .97 (17 .04) 6.39 (6 .46) 84.35 (84.80)
2

2.60 (2.69) 16.34 (16.73) 6.37 (6 .44) 84.08 (8 4 3 9)
2.95 (3.01) 19 .54 (19 .77) 6.53 (6 .81) 89.50 (90.59)

AAA AAA _ 11/l
3

2 . 9 3 (2 . 9 5) 17.41 (17 .60) 6.46 (6 .58) 8 7 .16 (88 .51)
2 ,0 0 0 .0 0 0 « |k |

4 : - 4 , 3 . 1 1 1 1 20.56 (26.87) 6.95 (7 .02) 89.% (90.43)
2.90(2 .98) 18 .02 (18 .27) 6.79 (6 .89) 89.53 (90.17)

■ 3.34 (3.42) 16.51 (16.46) 7.65 (7 .79) 92.94 (93.5)
3

3 .04 (3 . 13) 11 .96 (18 .55) 1 7.26 7.(41) 91.83 (92 .17)

197

Table A.9: SA - Siemensl-4 Unbalanced GPFAP decomposition
S IE M E N S 1 S IE M E N S 2 S IE M E N S 3 S IE M E N S 4

noEvals. noSub. first loop

second loop

3 .90 (4.01) 19 .93 (20 .17) 9 .1 0 (9 .3 6) 100.09 (100.66)
3 .8 8 (4 .0 1) 18 .90 (19 .13) 8.84 (9.08) 99.75 (100.34)
4 .0 8 (4 .1 6) 2 1 .2 4 (2 1 .5 0) 9 .6 0 (9 .8 1) 103.12(104 .03)
3.% (4 .02) 19 .77(19 .89) 9.24 (9.51) 101.47(101 .85)

A 4 .68 (4 .79) 19.43 (19.48) 9,46 (9.84) 105.48(1 ,050)
*4

4 .1 4 (4 .2 3) 18.91 (19.17) 9.54 (9.92) 103.12(773 .9)
6 .27 (6 .38) 20 .60 (20.73) 10.07 (10.28) 109.87 (2,098)
4 .29 (4 .63) 19 .09(19 .30) 9.65 (9.89) 106.79(107.74)

2 3 .3 8 (3 .4 4) 18.24 (18.62) 7 .59 (7.69) 91.91 (92.25)
3 .30 (1 3 7) 1T59 117.S6) 7.31 (7.49) 91.14 (91.63)
3 .35 (3 .43) 1 9 .79(19 .94) 7 .82 (7.99) 93.3$ (94.16)

io o .o o o * | v \

j
3 .29 (3.34) 1 7 .99(18 .10) } .} 9 (7.98) 92.99 (93.61)

A 3 .99 (4 .20) 17.72 (17.93) 8.43 (8.57) 94.84 (95.22)
*T

3.30(3 .44) 17.31 (17.42) 7.92 (8.13) 93.78 (94.15)

< 5 .6 6 (5 .8 5) 18 .80 (19 .14) 8.61 (8.86) 97.09 (97.74)
9

3.91 (4 .07) 17 .69 (17 .75) 7 .6 9 (8 .1 1) 95.41 (96.33)
2 .74 (2 .79) 17.32 (17.53) 6.31 (6.39) 86 .14 (86 .52)

z
2.83 (2 .90) 16.81 (16.90) 6.22 (6.30) 85.67 (86.33)

•1 2.74 (2 .82) 19.35 (19.38) 6.93 (7.08) 91.28 (91.77)

1 (W) ■ ll'l
J

2.73 (2.76) 17 .00 (17 .16) 6.88 (6.91) 9 0 .5 8 (91 .01)1, UUu, UW * |
4 4.02 (4.04) 10.00 (U .6 1) 7.28 (7.79) 9 1 .1 7 (91 .86)

2.90 <3.01 , 16.15 (16.23) - r r . : i 9 0 .1 9 (90 .91)

c 5.39 (5.59) 18 .69 (18 .78) 7.28 (7.57) 93.25 (93.71)
3.47 (3 .53) 16 .44 (16 .60) 6.84 (7.02) 92.62 (92.23)

■> 2 .69 (2 .74) 16 .94 (17 .13) 6.22 (6.23) 85.72 (85.90)
z

2.61 (2.66) 16 .20 (16 .37) 5.98 (6.13) 84.58 (85.13)
2.63 (2 .75) 19 .06 (19 .17) 6.68 (6.77) 91.47 (91.94)

i nnn iw i , tv'i 2.63 (2 .72) 16.83 (16.97) 6.42 (6.56) 89.51 (90.35)
Z.UW.UUU * \r i

j 3.73 (3 .85) 16.56 (16.72) 6.84 (6.88) 90.71 (91.52)
4

2.85 (2 .86) 16.07 (16.27) 6.75 (6.80) 90.02 (90.68)

c 4.31 (4.48) 18 .44 (18 .57) 7.23 (7.24) 93.72 (94.04)
3 .28 (3.43) 16.30 (16.37) 6.83 (6.94) 9 1 .1 8 (92 .13)

Table A. 10: order based GA - Siemens 1 - Balanced GPFAP decomposition
1 0 ,0 0 0 - \V \ evals. || 1 0 0 ,0 0 0 - i n evals | 1 .0 0 0 ,0 0 0 - |K | evals. || 2 ,0 0 0 .0 0 0 - |K1 evals.

noSub. first loop

second loop

5.98 (6 .02) 5.24 (5 .32) 5 .1 0 (5 .1 2) 5 .1 6 (5 .0 3)
1 5.88 (5.95) 5.03 (5 .19) 5.01 (5.03) 4 .97 (4.83)

5 .57 (5.78) 5.04 (5 .13) 4.62 (4.73) 4 .60 (4.66)
2

5.65 (5.71) 4 .97 (5 .03) 4.34 (4.40) 4 .2 7 (4 .3 1)
5.73 (5.82) 4 .59 (4.84) 4.35 (4.39) 4 .22 (4.32)

3
5.46 (5.51) 4 .20 (4.52) 4 .0 5 (4 .1 2) 3.93 (4.01)
5.52 (5.68) 4.53 (4 .70) 4 .2 9 (4 .3 1) 4 .30 (4.37)

4
5.28 (5.41) 4.28 (4.551 — 1 3.92 (4.05) 3.73 (3.81)
5.88 (6 .00) 4 " < 4 < 5 . 4 .2 7 (4 .4 1) 4 .20 (4.28)

5
5 . 5 6 (5 . 57) " 4.51 (4 .53) 3.99 (4.10) 3.99 (4.02)

198

Table A. 11: GA - Siemens 1-4 for SA without decomposition

t a t le a s t 1 in v a lid so lu tio n * n o v a lid s o lu t io n s

first loop
second loop

n o E v a lu a tio n s SIEMENS 1 SIEMENS2 siemens3 SIEMENS4

10, 000* m
6 .1 8 (6 .4 0) 21 .93 (22.30) 12.56 (679.40) t -
6.09 (6.29) 21.81 (22.15) 12.45 (12.65) -

100 ,000 * |K|
5.35 (5 .47) 19.73 (19.98) 12 .07 (12 .29) -
4.88 (5.00) 19.10 (19.41) 11.99(12.23) -

1 ,0 0 0 ,0 0 0 *|F1
4 .1 9 (4 .3 6) 18 .2 0 (1 8 .4 9) 10 .77 (11 .48) 106.95 (2,106)
3.96 (4.01) 18.00 (18.14) 9.77 (10.20) 103.26 (103.51)

2, 000, ooo * \v\ 3.% (4 .01) 18.00 (18 .14) 9 .77 (10.20) 105 .69(106 .42)
3.61 (3.72) 17.64 (17.91) 9.54 (9.77) 101.05 (102.14)

Table A. 12: GA - Siemens 1-4 GA Balanced GPFAP decomposition
t a t le a s t 1 in v a lid s o lu t io n * n o v a lid so lu t io n s

S IE M E N S 1 | S IE M E N S 2 S IE M E N S 3] S IE M E N S 4

noEvals noSub. first loop

second loop

5.97 (6 .05) 23 .20 (23.34) 8.80 (8 .84) -& 5.91 (5.99) 22.49 (23.12) 8.76 (8 .82)

\ 6 .1 8 (6 .2 4) 24.86 (24.95) 8.46 (8 .63) -

10. o o o - i n

J
5.99 (6 .00) 22.97 (23.52) 8.41 (8.53) -

A 6.78 (6 .84) 24.50 (24.96) 8 . 8 8 (9 .07)
4

6.05 (6 .18) 23 .75 (24.44) 8.76 (8 .79)

c 7 .0 2 (7 .1 7) 24.66 (24.90) 9.54 (9 .79)
6.63 (6 .58) 22.60 (23.59) 9.11 99 .31)

-> 4.85 (5 .01) 2 0 .8 2 (2 1 .0 5) 7.21 (7 .38)
2

4.61 (4 .72) 19.69 (19.74) 7 .1 4 (7 .2 6) -
5.03 (5 .05) 22 .22 (22.28) 7.28 (7 .31) -

10 0 . o o o * m

3 4.42 (4.46) 20 .1 6 (2 0 .2 4) 7.11 (7 .20)

A 5 .1 8 (5 .2 6) 22.15 (22.44) 7.40 (7 .56) -
4

19 .99 (20 .18) 6.96 (7.20) -
6.96 (7.04) 2 1 .9 2 (2 2 .2 4) 8.41 (8 .45)

5 5.06 i 5.3:') 19.73 (19.97) 7.61 (7 .75) -
4 .1 4 (4 .19) 19 .04 (19 .16) 6.39 (6 .64) 106.67 (773.3)

2 5 ■ : > -4 17.94 (18.01) 6.20 (6.34) 102.09 (104.28)
3.93 (4.43) 2 0 .8 8 (2 1 .1 4) 6.46 (7 .30) 108.02 (776.5)

1 .0 0 0 ,0 0 0 . m

3 3.54 (3.63) 18 .98(19 .13) 6.38 (7 .63) 104.35 (704.51)
4 .7 0 (5 .89) 21.39 (21.64) 6.87 (7 .95) 111.63 (741.8)

4
3.62 (3 .78) 19.01 (19.23) 6 .49 (7 .55) 106.51 (738.1)
8 .0 2 (8 .1 7) 21.35 (21.49) 7.57 (8 .61) 2 ,075 (2,114)

5 6.63 (6 .58) 19 .26 (19 .43) 6.69 (8 .00) 110.61 (687.2)
3.73 (3 .80) 18 .88 (19 .03) 6.11 (6 .65) 98.31 (99.93)

2
3 .40 (3 .45) 17.83 (17.86) 6.08 (6.21) 96.84 (97.22)

20.70 (20.$5) 6.33 (7 .09) 103.61 (104.46)
3 3.30 (3 . 4 4) ■N- n. l SAOi 6.21 (7 .05) 101 .09(101 .93)

2,000.000 * m 4.63 (4 .81) 2 1 .5 0 (2 1 .7 9) 6.74 (7 .34) 102 .55 (103 .60)
4 3.37(3 .49) 19 .10(19 .21) 6.28 (7 .19) 101 .84 (102 .19)

5.70 (6 .28) 21 .0 7 (2 1 .2 3) 7.32 (8 .06) 110.71 (768.1) t
5 4.45 (4 .61) 18 .95 (18 .97) 6 .6 6 (7 .1 4) 106.81 (710.8) t

199

Table A. 13: GA - Siemens 1-4 GA Unbalanced GPFAP decomposition
t at least 1 invalid solution * no valid solutions

SIEMENS 1 SIEMENS2 SIEMENS3 SIEMENS4
noEvals. noSub. first loop

second loop
6.07 (6.12) 23.02 (23.28) 8.60 (8.75) -
5.86 (5.97) 22.55 (23.07) 8.42 (8.53) -
6.20(6 .31) 24.42 (24.84) 8.88(9.14) -
6.15(6 .23) 23.46 (24.07) 8.75 (8.93) -
5.97 (6.07) 22.87 (23.27) 9.21 (9.52) -
5.82 (5.93) 22.52 (23.08) 8.89 (8 .%) -
6.42 (6.58) 54.57 (54.59) 9.68 (9.75) -
(>.08 (6.57) 22.51 (23.56) 97<T5(9.l7) -
4.69 (4.88) 21.15(21.72) 6.97 (7.06) -
4.34(4 .41) 19.79 (20JO) 6.94 (7.04) -
4.73 (4.87) 22.29 (22.41) 7.27 (7.56) -
3 .93(4 .14) 19.95(20.11) 7.20(7.37) -
4.45 (4.50) 20.50(20.91) 7.65 (7.83) -
3.98 (3.92) 19.48(19.81) 7.40 (7.55) -
4.84 (4.92) 21.82 (22.23) 8.10(8 .26) -
4.00 (4.08) 19.98(20.11) 7.44 (7.59) -
3.72 (3.79) 18.69(19.27) 6.82(6 .91) 105.54 (106.03)
3.39 (3.46) 17.61 (18.05) 6.63 (6.75) 104.13(104.68)
3.59 (3.70) 20.56 (20.98) 7.13(7.67) 104.05(104.18)

1.000,000. |V|
2.98 (3.20) 18.19(18.68) 6.78 (6.92) 103.69 (103.95)
3.57 (3.65) 18.96(19.09) 7.50(7 .99) 104.41 (105.09)
3.15(3.21) 17.95 (18.28) 6.81 (7.06) 103.83 (103.99)
3.90 (3.98) 20.44 (20.49) 5.01 (8 .6 2) 104.70(105.12)
3 .14(3 .50) 18.91 (18.95) 7.41 (7.74) 104.17(104.66)
3.53 (3.57) 18.% (19.38) 6.34 (6.62) 104.49(104.88)
3 .18(3 .28) 17.46 (18.21) 6.17 (6.41) 103.64 (103.68)
3.31 (4.52) 20.57 (20.85) 7.02 (7.49) 103.11 (103.53)

2,000,000 * \V] 3 .07(3 .14) 18.07(18.44) 6.69 (6.77) 102.89 (103.02)
3.46 (3.49) 18.87(19.11) 7.37(7.83) 103.52(104.15)
2.86 (3.04) 17.85(18.23) 6.76 (6.85) 102.96(105.54)
3.75 (3.65) 56.03 (51.55) 7.43 (7.55) 104.71 (105.28)
3.24 (3.27) 18.42(18.79) 7.10(7 .06) 104.53 (104.84)

200

Table A. 15, A. 14, and A. 16 show the best and average over three runs cost

for the Bradford benchmarks obtained by SA with and without the decomposed

assignment approach. For all of the instances we present the results produced by

the balanced GPFAP after 100,000 * \ V\ and 2,000,000 * \ V\ total evaluations. For

BradfordO, Bradford2, and Bradford4 we also present for comparison the results

produced by the unbalanced version.

Table A. 17 summarizes the results for the Siemens 1 and BradfordO experi­

ments performed by SA with a balanced GPFAP decomposition in which the par­

titioning considers only the soft constraints, see Section 7.3.2. We present the best

and average (in brackets) cost over three runs obtained after 100,000 * | V\ and

2,000,000 * \ V\ total evaluations for a decomposition into two to five subsets. For

the results with the whole approach we refer for comparison to Tables A.7 and

A.15.

Table A. 14: SA - Bradford - GPFAP decomposition

noEvals. noSub.

Br a d f o r d O BRADFORD2
Bal. GPFAP I Unbal. GPFAP Bal. GPFAP | Unbal. GPFAP

first loop
second loop

100.000

2
2.04 (2 .25) 2 .40 (2 .44) 7.15 (7 .73) 6.72 (6 .93)
1 .9 2 (1 .9 9) 1.97 (2.08) 6.27 (6 .40) 5.41 (5.58)

3
1.83 (1 .87) 1.99 (2 .01) 7.63 (8 .24) 7 .4 9 (8 .1 7)
1.67(1.80) 1 .9 2 (1 .9 4) 7 .32 (7 .41) 6 .89 (7 .26)

4
2.23 (2 .28) 2 .48 (2 .83) 8 .26 (8 .82) 8.21 (8 .79)
2.13 (2 .17) 2 .00 (2 .09) 7.65 (7 .84) 7.62 (7 .77)

5
2 .90 (2 .94) 3 .3 8 (3 .3 9) 8 .1 7 (8 .9 1) 8.07 (8.64)
2.41 (2 .43) 1.91 (2 .04) 8.27 (8 .35) 7.37 (7.52)

2.000.000 < \y]

2
1.31 (1 .41) 1 .3 7 (1 .7 2) 5 .1 7 (5 .3 6) 4 .79 (4.99)
1 .1 6 (1 .2 3) 1 .0 9 (1 .1 4) 4 .27 (4 .24) 3.83 (3.92)

3
1 .1 8 (1 .2 0) 1.11 (1 .18) 6.45 (6 .92) 6.15 (6.21)
1.07(1.13) 1 .0 9 (1 .1 4) 5 .34 (5 .49) 5.05 (5.24)

4
1 .4 9 (1 .6 3) 2 .1 7 (2 .3 1) 6 .97 (7 .17) 6.25 (6 .34)
1 .2 6 (1 .3 7) 1 .2 4 (1 .2 6) 5.75 (5 .93) 5 .1 4 (5 .3 3)

5
2.07 (2 .15) 2 .62 (2.72) 7.25 (7 .64) 6 .79 (7 .24)
1 .4 7 (1 .5 4) 1 .2 6 (1 .2 9) 6.13 (6 .58) 5 .96 (6 .57)

2 0 1

Table A. 15: SA -BradfordO-10 for SA without decomposition

first loop
second loop

noEvaluations bradfordO BRADFORD1 bradford2 BRADFORD4 BRADFORD10

100 ,000 * IH
2.40 (2.46) 2.83 (2 .87) 6 .69 (6 .85) 27 .39 (27.72) 196.53 (197.05)
2.16 (2.37) 2.32 (2.41) 6.57 (6.71) 27.19 (27.24) 195.48 (196.36)

2 ,0 0 0 ,0 0 0 * | V\ 1 .42 (1 .66) 1.96 (2 .03) 4 .5 6 (4.71) 20 .84 (21.07) 188.64 (190.08)
1.31 (1.43) 1.64 (1.75) 4.46 (4.53) 20.62 (20.79) 187.13 (188.34)

Table A. 16: SA - Bradford - GPFAP decomposition
BRADFORD4 BRADFORD1 BRADFORD10

noEvals. noSub.
Bal. GPFAP Unbal. GPFAP Bal. GPFAP Bal. GPFAP

first loop
second loop

27.53 (27 .68) 27 .72 (27 .93) 3.21 (3 .24) 201.26 (202.56)
25.19 (25.39) 26.45 (26 .48) 1.88 (1.91) 192.21 (193.56)
31.09 (31 .62) 31.37 (31 .79) 4 .1 0 (4 .4 2) 223 .90 (225.92)

100,000 *\V\ 3 29.43 (29 .86) 30.00 (30 .21) 2.55 (2 .59) 206 .50 (208.38)
32 .89 (33 .68) 33.95 (34 .12) 5.82 (5 .92) 234.41 (235.16)
31 .37 (32 .08) 32.38 (32 .89) 3 .1 6 (3 .2 0) 214.90 (216.53)
35.19 (36 .45) 35.83 (36 .18) 6.06 (6 .57) 235.81 (236.09)
26.01 (26 .52) 2 7 .3 6 (2 8 .1 9) 4.25 (4 .62) 228.26 (230.04)

21.40 (21 .83) 22.17 (22 .77) 2 .1 6 (2 .3 9) 192.37 (192.98)
18.51 (18.78) 19.95 (20.44) 1.32 (1.21) 185.05 (185.39)
25.83 (26 .27) 26.64 (27 .81) 2.46 (2 .80) 203 .69 (204.60)

2,000,000 *\V\ 20.54 (21 .01) 21 .66 (22 .21) 1.88 (2 .11) 188.38 (189.51)
33.93 (34 .29) 34 .82 (35.29) 3.38 (3 .65) 211.81 (212.94)
23 .09 (24 .65) 24.63 (25.50) 2.36 (2 .56) 193.51 (194.43)
37.85 (38 .14) 38.71 (39.31) 4.34 (4 .97) 213.90 (215.56)
28 .52 (29 .83) 29.68 (30 .56) 3.68 (3 .81) 196.02 (197.23)

2 0 2

Table A. 17: Siemens 1 and BradfordO - Balanced GPFAP decomposition with only soft
constraints

noSub.

10,000 * |K | evals. | 100,000 * | V\ evals. | 1,000,000 * | V\ evals. | 2 ,000,000 * \V \ evals.

first loop

second loop

SIEMENS 1

1 4 .26 (4 .29) 3 .38 (3 .44) 2 .84 (2 .91) 2.75 (2.83)
4 .24 (4 .27) 3 .30 (3 .37) 2.75 (2 .83) 2.68 (2.76)

2 3.92 (4 .11) 3.21 (3 .34) 2.83 (2.88) 2.72 (2.91)
3.75 (3.89) 3 .1 4 (3 .2 9) 2 .76 (2.81) 2.60 (2.69)

3
3.94 (4.17) 3.15 (3 .21) 2 .82 (2.89) 2.77 (2.88)
3.77 (3.90) 3.12 (3.20) 2.70 (2.77) 2.69 (2.75)

4
4.03 (4 .15) 3.25 (3 .32) 2.92 (3 .00) 2.76 (2.88)
4.01 (4 .07) 3 .20 (3 .28) 2 .67 (2 .87) 2.68 (2 .79)

5
4.04 (4 .24) 3.35 (3 .39) 2 .88 (2 .94) 2.87 (2 .94)
3.93 (4 .02) 3 .24 (3 .31) 2 .78 (2.86) 2.73 (2 .85)

b r a d f o r d O

i
3.69 (3.82) 2 .40 (2 .46) 1.53 (1 .88) 1 .4 2 (1 .6 6)
3 .60 (3.75) 2 .1 6 (2 .3 7) 1 .4 2 (1 .6 6) 1.31 (1 .43)

2 3 .1 9 (3 .2 9) 1 .9 2 (1 .9 5) 1.28 (1 .32) 1 .0 9 (1 .1 4)
3.02 (3 .17) 1 .8 9 (1 .9 1) 1 .2 0 (1 .2 3) 1.04 (1.10)

3
3 .1 5 (3 .3 8) 1.81 (1 .91) 1.11 (1 .22) 1 .1 7 (1 .2 1)
3.01 (3.16) 1.79(1.90) 1.10(1.16) 1 .0 8 (1 .1 0)

4
4.20 (4 .37) 2 .98 (3 .06) 2 .36 (2 .52) 2.22 (2 .30)
3.21 (3.30) 2 .08 (2 .15) 1 .5 4 (1 .6 2) 1 .4 4 (1 .4 7)

5
3.78 (4.00) 2 .86 (2 .95) 2 .1 8 (2 .2 4) 1.77 (1.93)
3.35 (3.52) 2 .36 (2 .43) 1.71 (1 .73) 1.59 (1.68)

203

Appendix B

Condor Pool

204

B.l The Cardiff University Condor Pool

The Condor Pool is the product of the Condor Research Project at the University

of Wisconsin-Madison, and it was first installed as a production system in the UW-

Madison Department of Computer Sciences in the early nineties. This project aims

to develop, implement, deploy, and evaluate mechanisms and policies that support

High Throughput Computing (HTC) on large collections of distributively owned

computing resources. Software tools have been developed to enable scientists and

engineers to increase their computing throughput. Users submit their serial or par­

allel jobs to Condor, which places them into a queue, chooses when and where to

run the jobs based upon a policy, carefully monitors their progress, and ultimately

informs the user upon completion.

Cardiff University has a large scalable Windows Condor pool, which distributes

Condor to ‘Open Access’ workstations to provide a centrally managed High Throu­

ghput Computing service to all researchers of the University. There are currently

800 workstations owned by Information Services throughout the whole Univer­

sity campus. They are all Windows XP SP1 and access the main Novell NetWare

network.

We have implemented a procedure, which runs for all of the experiments con­

ducted on a specific benchmark, in order to compare the cost-run time output pro­

duced by different machines in the pool. The procedure performs 100 fitness evalu­

ations of a sample assignment generated at random and records the computational

time in millisecond. The same run-time recording is also executed (for a fixed

values of the random seeds) for both the whole and the decomposed assignment

approach on a specific test machine (a 3.000 GHz Intel Pentium 4). Subsequently,

all run times produced by the different machines in the Condor pool are scaled with

the reference value obtained in that test. Figure B.l shows the cost-runtime plot

for a run of Siemens 2 (with the whole and the decomposed assignment approach

into two subsets) produced respectively by the Condor pool, the test machine, and

the final scaled output obtained by the procedure described above.

205

50

40

30

20

10

0
0 1000 2000 3000 4000 5000 6000

run lime (seconds)

Condor pool

50

40

30

20

10

0
3000 4000 5000 60000 1000 2000

run fm e (seconds)

test machine
50

40

30

20

10

0
4000 5000 60002000 30000 1000

run lime (seconds)

scaled output

Figure B.l: Cost-time plot for Siemens2 solved by SA with the whole approach and GP­
FAP decomposition into two subsets (1,000,000 * | V| evaluations)

206

Appendix C

Tuning of the meta-heuristics

207

C.l Tuning for FS-FAP

The advantage of the permutation based GA in Algorithm 5.1 applied to the MS-

FAP was the property of generating only zero-violations assignments, thus reduc­

ing significantly the search space and speeding up its convergence without pre­

venting the full exploration of the solution space. For the FS-FAP, the domain of

available frequencies is limited and it is usually not possible to find a zero-violation

assignment for a given set of transmitters. As a consequence, the evaluation of an

individual is computed according to the modified sequential algorithm proposed

in Algorithm 6 .1. However, some other preliminary tests were needed in order to

determine an appropriate setting of the parameters.

It is known that one of the most difficult parameter to set in a GA is the size

of the population and the consequent number of generations required to converge

to a near optimal solution. This choice depends on the individual problem con­

sidered and affects the results either in terms of solution quality or runtime. We

can sensibly expect a relationship between the optimal population size and the size

of the problem considered, namely the number of transmitters. A number of ex­

periments were conducted using the test problems P\, Pi and C4 . The number of

frequencies available for each of the instances was chosen relative to the minimum

span values presented in Table 5.1. Initial experiments varied the population size,

using the number of transmitters \ V\, together with 2 x \V\ and For the smaller

problems greater population sizes have been tested too. The GA was stopped when

there were no further improvements for 100 generations. Results are summarized

in Table C .l, which gives the mean and the best costs after three runs for each of

the test problems considered. Note that, because of the tendency of the GA to get

trapped in local minima (see the phenomenon of the genetic drift [48]), increasing

the number of generations for a fixed population size does not often produce any

improvement in the quality of solutions. Although the tests performed indicate that

best performance are produced by the biggest population, considerations about the

percentage improvement and the run times required has led to the choice of keep-

208

Pi 2 0 freq. P2 300 freq. C4 50 freq.
Pop. Size Gen. Mean Best Mean Best Mean Best

500 500 132.7 132 223.7 217 303.3 292
1 0 0 0 500 132 130 208.3 205 299.3 297
1 0 0 0 1 0 0 0 131.3 130 206.7 205 298.3 296
2 0 0 0 2 0 0 0 130 130 205.7 203 295.7 293

Table C. 1: Mean and best cost for data sets P \, P2 and C4 with different population sizes

^\Mut.
C ros^\ one per offspring 0 . 0 1 0.005

1 0 0 % 132 132 131
130 130 131

80% 134 134.7 134.7
132 134 134

50% 134.3 132.3 135
133 131 135

Table C.2: Best cost for problem Pi with a fixed spectrum of 20 and different Crossover
and Mutation rates.

ing the same settings already used for the MS-FAP in Section 5.1 (500 generations

and a size of 1 0 0 0 chromosomes).

In [118] the genetic operators are applied with rates that produce the best

performance for the MS-FAP. Cycle crossover was applied with a rate of 100%

whereas one single order-based mutation was performed for each of the offspring

generated. Different rates have been tried on data set P\ for the FS-FAP, increasing

respectively the amount of mutation and decreasing the crossover. In particular,

crossover was applied with rates of 50%, 80%, and 100% while mutation has been

tested with rates of 0.01 and 0.005. These values were chosen according to previ­

ous works on GAs with order-based representation (see [23]). Results are presented

in Table C.2. No significant improvements were observed and so the original rates

were kept for all of the rest of the experiments performed.

To evaluate the effectiveness of the GA we compared its results with a series

of runs of random assignments and sequential assignments applied to random per­

mutations. As an example, Table C.3 compares for test problem Pj the mean cost

209

GA Random Random + Sequential

Pi 2 0 freq. 132.0 395.0 175.7

P, 40 freq. 14 202.7 28.7

P i 300 freq. 2083 1378.7 263.3

Pi 400 freq. 27.0 1034.0 57.3

Ci 50 freq. 349.7 2317.0 594.0
Ci 65 freq. 963 1786.3 280.3
C3 50 freq. 2993 2313.3 528.3

C3 65 freq. 473 1784.3 221.7

Table C.3: Comparison with Random and Random Sequential assignments

over five runs produced by the GA with the mean values produced by a thousand

random assignments, and by the same number of random orderings followed by

the sequential algorithm 6.1. For the same problem, Figure C.l plots the graph

cost versus number of occurrences obtained by the random assignments above and

compares them with the mean costs produced by the GA.

Figure C .l: Cost versus number of occurrences for data set P2 with a fixed spectrum of
300 channels

■ RANDOM
■ RANDOM SEQUENTIAL

- - Avg GA

40

ZOO 400 600 600 1000 1200 1400 1600
CO $1

Further experiments have been conducted to determine which of the initial or­

derings originally proposed in [54] produces the lower cost using the sequential

assignment. The same ordering will be used in order to generate the initial popu­

210

lation of the order-based GA and as the basic ordering to be further decomposed

by the generalized degree decomposition using the classification in [110]. We con­

sider Largest Degree First (LF), Largest Degree First (Exclusive) (LFE), Smallest

Degree Last (SL) together with their generalized versions (GLF, GLFE, GSL). Dur­

ing the frequency allocation transmitters will be selected only sequentially from the

given initial ordering.

In addition, the effectiveness of the algorithm which selects the next frequency

to be assigned can also be investigated. Note that, the sequential algorithm 6.1

only modifies the Smallest Acceptable Frequency (SAF) procedure, by restricting

it to the the choice of the channel which produces the lowest constraint violations.

Alternatively, other algorithms can be used, such as Smallest Acceptable Occupied

(SAO, which further restricts the choice to the already occupied frequencies), and

Smallest Most Heavily Occupied (SAMHO, which assigns the smallest among the

most heavily occupied channels). Table C.4 shows the results for three bench­

marks, in which it is shown the number of violations violNo together with the cost

already defined in Problem 1.2 (that is the sum of total violations of the interfering

transmitters). From the figures it appears that (as for the MS-FAP) GSL is the best

performing algorithm for the selection of the next transmitter selection. SAMHO

is superior for frequency selection instead some of the tests conducted. However,

this superiority is much less emphatic when the same procedure is used to actually

run the GA for a sample number of generations (as shown in Table C.5). As a

consequence, and because of the ease of the implementation, SAF was used for all

the rest of the experiments (see Algorithm 6.1).

The introduction of a LS allows a more complete exploration of the solution

space and it is thought to improve the performance of the GA. However, too in­

tensive a LS may lead to an incorrect evaluation of the effectiveness of the GA

itself, and degrade the runtime of the algorithm. Hence the basic LS procedure in

Algorithm 6.2 has been implemented with the simple acceptance criteria proposed

in Definition 6.3 (hill climbing and Metropolis).

2 1 1

O rd e r in g A s s ig n m e n t £<•€ £ (G) fFS (/ . «) | vioINo X«£(G) <fFS(f-e) I vioINo Xee£(C) 'PFsU•«) I VioINo
P i 35 fre q . P i 4 0 0 freq . C\ 65 freq .

L F S A F 4 4 24 58 58 158 153
L F S A O 4 9 29 139 84 176 167

L F S A M H O 4 9 26 134 134 168 160

L F E S A F 45 29 63 63 173 159

L F E S A O 4 6 18 141 85 165 154

L F E S A M H O 4 6 22 135 74 2 78 239

S L S A F 4 2 19 58 58 289 236

S L S A O 4 6 19 141 85 277 226

SL S A M H O 4 2 19 134 134 155 153

G L F S A F 4 8 22 63 63 155 150

G L F S A O 50 19 68 34 157 151

G L F S A M H O 4 9 21 68 34 169 159

G L F E S A F 4 6 25 68 34 2 5 4 192

G L F E S A O 4 6 25 63 63 2 4 9 179

G L F E S A M H O 4 6 27 63 63 2 6 4 205

G S L S A F 3 8 17 44 34 156 154

G S L S A O 4 0 20 4 7 32 157 151

G S L S A M H O 39 19 44 32 133 133

Table C.4: Comparison of sequential assignments algorithms for benchmarks P\, Pi, and
Ci

O rd e r in g A s s ig n m e n t X r t £(G) <PFS<J»

P i 35 freq . P i 4 0 0 f req . C i 65 freq .

G S L S A F 29 27 100
G S L S A O 3 0 27 131

G S L S A M H O 29 27 98

Table C.5: Comparison of different sequential assignment algorithms for the order-based
GA run for 500 generations. Results for data sets P\, Pi, and Ci

2 1 2

Firstly, the LS has been tested for a number of times on some good assign­

ments, such as those produced by the original GA after few generations, without

being able to produce any cost improvement. This confirms the actual effectiveness

of the GA procedure itself. Then the LS has been included into the GA after the

individuals fitness evaluation, thus applied to each of the chromosome in the initial

population and to each of the offspring newly generated by the genetic operators

during the run of the algorithm. HC and MET have been initially tested on the data

sets Pi with fixed spectrums of 20 and 40 channels, and P 2 with a fixed spectrum

of 300 and 400 frequencies. A value of k equal to 1 and different values of T in

the range 1-10 have been used for the Metropolis algorithm. To better analyze

the effectiveness of the LS we let the algorithm run for longer (i.e 1000 genera­

tions). Table C . 6 summarizes the results and compares them with those given by

the original GA procedure without any LS applied.

Pi 20 freq. Pi 40 freq. P 2 300 freq. P 2 400 freq.
LS Mean Best Mean Best Mean Best Mean Best

MET T= 10 130 129 13.7 13 207.0 204 27 27
MET T=1 136 135 14 14 210.7 210 27 27
MET T=0.5 135.7 135 14 13 207.3 204 27 27
MET T=0.3 132 129 15 15 207 203 27 27
MET T = 0 .1 131 131 14.3 14 209 203 27 27
HC 131 129 14 14 206.3 201 27 27
No LS 132 130 14.7 14 208.3 205 27 27

Table C.6: Mean and best cost for data sets P i , and P 2 with different LS

A first important consideration is that the LS is not always effective and some­

times produces a worse performance than the original GA. It is important to stress

that this happens even if the LS itself cannot actually introduce worse individu­

als than those in the assignments produced by the plain sequential algorithm 6 . 1

without any further local search procedures added. This can be explained by the

following considerations. We already mentioned that the aim of the LS was to:

• Allow a wider exploration of the search space. Thus good assignments, al­

ready produced by the sequential algorithm, can be further improved by ex­

213

ploring neighbours in the solution space.

• Add more variety in the population. Thus some orderings which would have

been excluded with an evaluation on a sequential basis, can be introduced

into the population. This increases its variety and makes the LS actually

active in the GA procedure.

If only the former statement is true, the LS does not play an active role and

may result in a worse performance than the original GA procedure.

Figure C.2 shows the best and the mean cost over the population for each gen­

eration of a single run of data set P\ with a fixed spectrum of 20 channels. LS

Metropolis is applied with a value of T equal to 0.5. The figure compares these

costs with those obtained by the GA without any LS added. It also shows the aver­

age cost improvement due to the LS over the generations. We can see how the LS

gives a relevant contribution during the first generations only. In fact, the final cost

produced is worse than the one obtained by the original GA with no search applied

(see Table C.6).

Figure C.3 shows a situation when the LS is successful instead. We can see that

(between 500 and 900 generations approximatively), the mean sequential cost be­

comes slightly worse. This means that the LS introduces new different orderings,

which would have been excluded with an evaluation only based on the sequential

assignment. We can also see how the mean cost improvement presents, at the same

time, a discontinuity in the corresponding graph during the same range of genera­

tions. We can interpret this as a sign of the effectiveness of the LS, which results in

an actual improvement in the final cost. However, Table C . 6 shows how it is rather

difficult to set the value of T which gives the best performance for the Metropolis

algorithm. As a consequence, for the remaining experiments we chose to use a

variable value of T decreasing from a high value to a low value, set respectively

to 10 and 0 in our tests. Finally, Table C .l compares the performance of the GA

respectively with the final LS chosen and without it, showing the significant benefit

brought about by the local improvement procedure.

214

I

S 12
$

09

" 04

0.2

00 ?00 300 400 500 600 700 600 300 1000
g*n«ranonj

100

m e an co s t m ean cost im provem ent

Figure C.2: Costs produced by a single run o f data set P\ with a fixed spectrum of 20
channels and Local Search Metropolis with T=0.5

G A -M E T T 10 -* 0 GA - No Search
Mean Best Mean Best

Pi 2 0 freq. 130 129 132.7 130
P\ 40 freq. 13.6 13 14 14
P 2 300 freq. 207.0 204 208.3 205
P 2 400 freq. 27 27 27 27
Ci 50 freq. 346.0 338 349.7 344
Ci 65 freq. 95.7 94 96.0 96
C3 50 freq. 298.7 296 299.3 297
C3 65 freq. 46.4 44 47.7 45

Table C.7: GA comparison with and without LS

For some of the fixed spectrum instances (e.g. G\, Gi and G3), the order based

GA is outperformed by other standard meta-heuristics using the whole approach.

This is essentially due to the intrinsic limitations of the order-based representation

and the impossibility of increasing the amount of the local search procedure with­

out having the natural structure of the completely distorted. Table C.7 shows a

comparison of the non-decomposed approaches for SA and the GA. Consequently,

since the considerable gap between the two algorithms, it becomes necessary to

change the representation of the GA to the direct representation described in Sec­

tion 7.1.2.

215

1

0 100 200 300 400 S00 6C0 700 800 900 1000

I
I

m ean co s t m ean cost im provem ent

Figure C.3: Costs produced by a single run of data set Pi with a fixed spectrum of 20
channels and Local Search Metropolis with T=0.3

C.2 Tuning for MI-FAP

C.2.1 SA

As reported in [60,100] one of the problems with S A is that its performance can be

heavily affected by the choice of initial temperature and other parameters regulating

the cooling phase. A possible approach to this choice is to adopt either rather high

values or set the initial values according to some acceptance criteria, for example

setting the temperature for which a minimum number of moves is accepted [62],

However, this value is still strictly related to the order of magnitude of the cost

produced for a specific problem.

According to the terminology introduced in [62], the different elements of the

SA structure used in our implementation are:

System configuration The configurations representing a solution F =

to the minimization problem representing the FAP are integer vectors in

which ft represents the frequency assigned to transmitter i, with n the to­

tal number of transmitters in the network.

Neighbour moves We considered all the moves proposed in [60] and then chose

that producing the best performance for each type of FAP. In all the defini-

216

tions below the new channel values are assigned to randomly chosen trans­

mitters. Frequencies are also chosen at random within the corresponding

transmitter domains.

single move Neighbours are the assignments that differ only for a single

frequency value assigned to a specific component in the vector:

F ’ F » 3j, 1 < j < n : f } + f j and f k = f k V 1 < k < n, k ± j

double move Neighbours are the assignments that differ for exactly two fre­

quency values assigned to two distinct components in the vector:

F -» F <=> 3 j u j 2 1 < 7i,72, < n \ f jx * f h , f h ± f h

and fie = fk V 1 < k < n, k ± j u j 2

restricted move Neighbours are the assignments produced by the single

and double moves above in which valid moves are those producing

at least one violation in the definition in eq.(1 .2).

F -> F « 3 i , j : \ f - f j \ < Cij

Note that for the MI-FAP the condition is equivalent to assignments

that violate the hard constraints only.

Transition probability Changes from an old to a new configuration are accepted

with probability prob = e old . This criterion was applied for the first

time to numerical optimization in [84], It is known as the Boltzman dis­

tribution and simulates a thermodynamical system, in which configurations

represent energy states. The constant B is also called the Boltzman constant.

Cost values The cost fitness functions C(F) for a given configuration (assignment

F) are set as the objectives Oms,fs,mi defined in Section 1.3.

217

Table C.8 : Parameter setting for the COST259 Siemens2 benchmark

to cost OmI
1 2 0 . 6 6

0.5 2 0 . 2 2

0.05 17.89
0.005 16.52
0.005 18.19

0 22.5

o II O o

single move 16.52
double move 20.38

restricted move 16.73

Annealing schedule We limited the choices to the simple cooling scheme de­

scribed below, in which the initial temperature to, the final temperature tmi„,

and the parameter a are set after a number of test runs whereas the number

of iterations per loop numL is usually set as the number of transmitters in­

cluded in the subset currently considered. If we then call numT the resulting

number of iterations for the temperature cooling we have for each run of SA

a total number of moves numT * numL.

For our implementation, see Algorithm 7.1, we ran a number of tests on the

Siemens problems in order to set the initial temperature. Furthermore, these pre­

liminary experiments also investigated, for the best performing temperature, the

effectiveness of adopting the different types of moves described in Section 7.1.1.

From these tests an initial temperature of 0.5 and the basic ‘single move’ produced

the best outcomes, thus this setting was chosen for the rest of the experiments. As

an example, Table C . 8 shows the average values over three mns obtained for the

Siemens2 benchmarks.

Another influential aspect of SA is the choice of the parameter regulating the

cooling scheme. Note that, when decomposition is applied, in order to respect

the condition in (4.1.1) we have to perform the algorithm for the same number of

evaluations (that is the total number of configurations explored during the search)

when we compare the solution produced by solving the original problem as a whole

and by decomposition. This can be carried out in different ways.

218

In our approach we use a number of iterations numLoop equals to the number

of transmitters in the current subset. Then we calculate the reduction index a, ob­

tained using both the values of the initial (7o) and final temperature of the anneal­

ing (defined as tmi„), in order to satisfy the total number of evaluations required

expressed by a multiple of the total number of transmitters \ V\. This guarantees

that the solutions obtained with both the whole and the decomposed assignment

approach consider the same number of total evaluations, which constitutes a fair

basis for comparison.

C.2.2 GA

The GA used for the MI-FAP adopts the simpler straightforward direct representa­

tion (see section 7.1.2). This representation provides ease of implementation and

permits complete exploration of the search space for all of the types of FAP studied

here. However, when used to solve the MS-FAP it can generate solutions which

have violations and, as a consequence, the order-based representation presented in

Section 5.1 is preferable for this particular problem.

With the direct representation the main difficulty arises in the choice of effec­

tive genetic operators. In fact, none of the standard operators proposed in the liter­

ature for this representation, such as one-two points crossover, uniform crossover

and uniform mutation [23,32], produces a good performance. Results can be im­

proved by using some of the problem specific operators referenced in Section 2.2.3.

In particular, best outcomes are obtained with a slightly modified version of those

proposed in [68]. However, some problems still remain in the application of the

crossover, since it can produce very disruptive effects and appears in general unable

to preserve and transmit good characteristics to new generations. On the contrary,

less disruptive operators have little effect on solutions after a few generations, when

individuals start becoming very similar. As a consequence the other genetic opera­

tor, i.e. mutation, needs to assume the role of a proper local search which acts as a

repair mechanism and leads the solutions towards local optima. In our implemen­

219

tation we have used some of the operators proposed in the literature as moves of

a hill climbing procedure. However, this can increase the tendency for the whole

population of getting trapped in local optima, since it becomes more difficult for

the GA to move from a local minimum region to another. Finally, the suggestion of

running only mutation-based GAs, see [55,68], can prevent the genetic operators

from being too disruptive, but does not seem able introduce enough variety in the

population in order to avoid premature convergence.

As explained in Section 7.1.2 we apply the NGSA-II framework described in

Figure 7.3. Some preliminary tests have been performed in order to find the most

suitable among the limited range of crossovers and mutations available. Tables

C.10 and C.9 show an example of these tests for the Siemens2 benchmark. Ex­

periments used a sample population of 20 individuals run for a high number of

generations (5000), which is one of the most commonly used sizes, since the pres­

ence of a sorting procedure can become too expensive for large populations [34].

We compared the standard uniform crossover [32], and the original version

of the crossover proposed by Kapsalis et al. in [68], in which a number of non

interfering edges are selected swapping the frequencies between the correspond­

ing endpoints (our modified version is described in Algorithm 7.2). All of the

crossovers were applied at a rate of 80%. Similarly, for the mutation operator we

tested two different operators also proposed in [68]: swap mutation, see Section

7.1.2, and a more specialized one (to whom we will refer again as kapsalis), which

consists of choosing an edge whose assignment violates a hard constraint and then

changing at random the frequencies of its endpoints with a non-violating pair. It is

important to note that, since the crossover still produces rather disruptive results,

the mutation has also been tested as a hill climbing procedure (HC) [62], which

actually assumes the characteristic of a repair mechanism and leads the solutions

towards local optima (we will refer to this as mutation swap HC). In addition a

few runs were conducted with only the mutation operator applied, as suggested in

a number of works (see Section 7.1.2). From the results obtained we can draw the

220

Table C.9: Influence o f the crossover (top) and mutation operator (bottom) for the
COST259 Siemens2 benchmark

Crossover Mutation (mut. rate) Mean cost O^i
uniform swap (1 per individual) 12,020
uniform swap (0.005) 950,000
uniform swap HC (0.1) 2,030
uniform swap HC (1.0) 24.01

Crossover Mutation (mut. rate) cost OmI
uniform swap HC (1.0) 24.01
kapsalis swap HC (1.0) 23.77

kapsalis modified swap HC (1.0) 21.74

following considerations:

• The conventional use of the mutation operators is not able to correct the dis­

ruptive effect of the crossover whereas the results improve when it is incor­

porated in a HC procedure. However the mutation rate, expressed as a ratio

between the number of mutations and the number of transmitters, needs to

be considerably high before starting to produce feasible solutions.

• Among the crossovers our modified version performs slightly better than the

others tested.

• We apply swap mutation since the variations in the results are not significant

while it has a simpler implementation.

• The results obtained without crossover are generally poor and only improve

if a proper local search procedure is used as mutation operator (such as the

1-opt described in Algorithm 7.4) or a heavy amount of HC, for example

applied at a rate of 1.0).

Since the results produced are still not fully satisfactory, we chose to restore

the normal mutation operator to preserve diversity in the population (thus without

the function of a local search), and add instead a proper LS procedure incorporated

221

Table C.10: Influence o f the mutation operator for the COST259 Siemens2 benchmark

Crossover Mutation (mut. rate) cost Om
kapsalis modified swap HC (1.0) 21.74
kapsalis modified kapsalis HC (1.0) 21.56

into the GA structure, as for the order based GA. Note that the purpose behind the

addition of a LS is completely different in the two cases. For the order-based repre­

sentation this was necessary in order to permit full exploration of the search space,

whereas for the discrete representation the complete exploration is guaranteed, and

the LS has only the function of improving the GA performance. We then used the

genetic operators summarized in Section 7.1.2 (the modified kapsalis crossover and

the original swap mutation) applied at the corresponding rates of 80% and 0.05%

per individual. We also compared the 1-opt procedure proposed in Algorithm 7.4

with a proper simulated annealing algorithm run for a variable number of itera­

tions. A similar idea was initially introduced in [55] in which a transmitter and its

assigned frequency were selected among those violating at least one of the hard

constraints and then being re-assigned a new frequency with the best alternative.

Subsequently, this mutation was extended in [71] to all the transmitters and all the

frequencies, thus generating a complete 1-opt. For these experiments we used a

population of 20 individuals run for 2,000 generations (which with the use of the

1-opt procedure corresponds to 1,000,000*|F| evaluations approximatively). Note

that these values of the parameters will be kept for the rest of the experiments per­

formed by this type of GA. In order to produce a given number of evaluations the

number of generations performed will be suitably modified. Furthermore, when the

decomposed approach is applied, the number of generations for each subset have

been reduced proportionally to the number of subsets as required by Definition 4.1.

For the application of SA as a LS procedure, the mutation used (called swap

mutation, see [68]), consists of a number of simple frequency swaps between pairs

of transmitters selected at random, according to a given mutation rate. Finally, to

222

improve the GA performance an iterative 1-opt LS procedure (see [40]) has been

added after offspring generations to search for local optimality, the number of gen­

erations was set in order to roughly produce the same number of total evaluations.

Results for Siemens2 are given in Table C. l l . The outcomes produced by the 1-

opt procedure appear competitive with SA and, consequently, this type of LS has

been adopted in the rest of the experiments conducted for this thesis. 1 -opt will

be applied with a full rate of 100%, that is for each of the new individuals gener­

ated by the genetic operators. Finally, Tables C.12 and C.13 show, for Siemens 1

and Siemens2 respectively, a comparison between the results produced with and

without the addition of the LS to the direct GA applied with the same parameters

described above. As will be described in more detail in the next section, these rep­

resent an example in which the decomposition approach is effective (Siemens 1),

and a second one in which it appears unsuccessful instead (Siemens2). Conse­

quently, these outcomes should fairly reflect the contribution brought about by the

LS during a run of the algorithm.

Note that, although the figures in Table C. l l generally improve with the amount

of SA added, this cannot be further increased without distorting the natural struc­

ture of the GA. Moreover, since a heavy amount of SA also increases the com­

putational complexity of the algorithm (thus limiting the runs to few generations)

the GA assumes finally the structure of a genetic framework for the local search

method rather than that of a proper evolutionary algorithm. Table C. 14 shows some

examples for Siemens 1 and Siemens2 in which the GA incorporates the SA proce­

dure, which is run each time for a very high number of iterations corresponding to

100,000*|F| and 1,000,000*|F| configurations explored. This ‘memetic’ GAused

a population of only 10 individuals run for 10 generations. The results obtained are

slightly better but essentially in line with those produced by different single runs of

SA for the same number iterations (see A). This confirms that the ‘memetic’ GA

is actually very similar to the local search method itself, thus losing the most of

its evolutionary characteristics. For these reasons, this approach will not be further

223

Table C. l l : Comparison o f LSs for the COST259 Siemens2 benchmark

LS iterationNo (SA) Mean cost O m i

- - 21.53
1-opt - 18.28
SA 100 19.98

1 -opt + S A 100 17.94
SA 1,000 18.47
SA 10,000 17.40

Table C.12: Best and average cost Omi (over three runs) for the COST259 Siemensl bench­
mark solved with decomposition with and without the 1-opt LS

subsetsNo LS 1 opt no LS
1 4 .14(4 .36) 4.99 (5.18)
2 3.79 (3.84) 4.61 (4.87)
4 4.05 (4.07) 4.85 (4.96)

used for the remaining experiments performed.

For the MI-FAP the order based representation has been used with the GA

only for a number of comparison tests using the same NGSA-II framework already

used for the direct representation. Here the tuning tests focussed on the choice

of the crossover operator. The cycle crossover previously used in this thesis (see

Section 5.1) has been compared in some preliminary experiments with a recently

proposed operator specifically developed for the order based representation. This

new operator, called merge crossover [11], has proven to be very successful in

some tests performed on the similar graph coloring problem. It acts directly on

Table C. 13: Best and average cost O m i (over three runs) for the COST259 Siemens2 bench­
mark solved with decomposition with and without the 1-opt LS

subsetsNo LS 1 opt no LS
1 18.45 (18.72) 21.44 (21.53)
2 19.27(19.38) 20.47 (21.04)
4 21.62 (21.02) 22.52 (23.81)

224

Table C. 14: Memetic algorithm results for increasing percentages o f SA used as LS for the
COST259 Siemens 1 and Siemens2 benchmarks

iterationNo (SA) Siemensl Siemens2
Mean cost O m i

10,000 17.40 3.49
100,000 16.29 2.98

1,000,000 15.44 2.67

Table C.15: Performance o f different crossovers for the COST259 Siemensl benchmark
solved by the order-based GA

Crossover Mean cost O mi

cycle cross. 5.27
merge cross. 5.03

permutations and begins merging two parents, as in a shuffle. Subsequently, it

extracts two children from the merged list consisting of the lists of first or second

instances of each values (see [11] for a detailed description of the procedure).

As an example, we show in Table C.15 the results obtained for Siemensl by

running the GA with the same parameters values adopted as a final choice for

the direct representation, which correspond to 1,000,000 * \ V\ total evaluations

approximatively as mentioned above.

The merge crossover produces slightly better results and, since the computa­

tional effort is actually the same as that required by the direct crossover, it has

been chosen for the experiments conducted for the MI-FAP with the order-based

representation. Note that, the cost produced by the order based GA is still about

20% worse than that produced by the direct representation. This tendency will be

confirmed by other comparison results presented in Section 7.3.

Finally we report in the following two examples of cycle and merge crossover:

225

C ycle crossover

The cycle crossover operator identifies a number of cycles between two parent

chromosomes (strings) represented by permutations of a given number of integers.

Parent 1: 8 4 7 3 6 2 5 1 9 0

Parent2: 0 1 2 3 4 5 6 7 8 9

Cycles are built as follows:

For the first cycle we select a gene (i.e a value) at random in Parent 1. For sim­

plicity in this example we start with the first value in Parent 1 (8) and select the

corresponding position in Parent 2 which is 0.

Parent 1: 8 4 7 3 6 2 5 1 9 0

Parent2: 0 1 2 3 4 5 6 7 8 9

We then have the first value for Offspring 1 which is 8 in the first position:

Offspring 1: 8

Then, we repeat the procedure starting from 0 in Parent 1, which is found at the

10th position where we select 9.

Parent 1: 8 4 7 3 6 2 5 1 9 0

Parent 2: 0 1 2 3 4 5 6 7 8 9

We then add the second value to Offspring 1, which is 0 in position 10th

Offspring 1: 89

Again, we look for 9 in Parent 1 and find it in the 9th position then we select 8 in

Parent 2. Because 8 was the value from which we started the cycle the procedure

ends.

Parent 1: 8 4 7 3 6 2 5 1 9 0

Parent 2: 0 1 2 3 4 5 6 7 8 9

Similarly we add the last value 9 in position 9th to the offspring.

Offspring 1: 8 9 0

We now complete the values from offspring 1 by filling the remaining positions

226

from string Parent 2 thus:

Offspring 1 : 8 1 2 3 4 5 6 7 9 0

We can produce a second offspring as the ‘complementary’ of Offspring 1 defined

as:

Offspring 2: 0 4 7 3 6 2 5 1 8 9

Mergecrossover

The merge crossover operator is presented in Figure C.4. Initially the two

parents of size n are randomly merged into a single 2n element list (like in a card

shuffle) Then each value in the merged list gives the ordering of the elements in the

first offspring. The remaining value compose the second offspring with the same

ordering they have in the merged list.

PARENT 1 PARENT 2

© OO© 0© ©©©O©©

©©©O©© 0©O©O©
OFFSPRING 1 OFFSPRING 2

Figure C.4: Merge crossover example

More details about cycle and merge crossover can be found respectively in [118]

and [90].

227

Bibliography

[1] Cardiff University Condor Pool, url=“http://www.Cardiff.ac.uk/insrv/it/condor/

index.html”, accessed on 1st July 2008,

[2] FAP web - A website about Frequency Assignment Problems, url =

“http://fap.zib.de/”, accessed on 1st July 2008.

[3] K.I. Aardal, S.P.M. van Hoesel, and B. Jansen, A branch-and-cut algorithm

for the frequency assignment problem, R.M. 96\ 11, Maastricht University,

1996.

[4] K.I. Aardal, S.P.M. van Hoesel, A.M.C.A. Koster, C. Mannino, and A. Sas-

sano, “Models and solution techniques for Frequency Assignment Problems”,

Annals o f Operations Research, vol. 153—1, pp. 79-129, 2007.

[5] K. I. Aardal and C. A. J. Hurkens and J. K. Lenstra and S. R. Tiourine, “Algo­

rithms for Radio Link Frequency Assignment: The CALMA Project”, Annals

o f Operations Research, vol. 50—6, pp. 968-980, 2002.

[6] M. Alabau, L. Idoumghrar, and R. Schott, “New hybrid genetic algorithm for

the frequency assignment problem”, IEEE Transactions on Broadcasting, vol.

48-1, pp. 27—43, 2002.

[7] S.M. Allen, D.H. Smith, and S. Hurley, “Generation of lower bounds for mini­

mum span frequency assignment” Discrete Applied Mathematics, vol. 119-1-2,

pp. 59-78, 2002.

228

http://www.Cardiff.ac.uk/insrv/it/condor/
http://fap.zib.de/%e2%80%9d

[8] S. M. Allen, D. H. Smith, and S. Hurley, “Lower bounding techniques for

frequency assignment”, Discrete Mathematics, vol 197-198, pp. 41-52, 1999.

[9] S.M. Allen, N. Dunkin, S. Hurley, and D.H. Smith, Frequency assignment

problems: benchmarks and lower bounds, University of Glamorgan, 1998.

[10] L. G. Anderson, “A Simulation Study of some Dynamic Channel Assignment

Algorithms in a High Capacity Mobile Telecommunications System”, IEEE

Transactions on Communications, vol. 21, pp. 1294—1301, 1973.

[11] P. G. Anderson, and D. Ashlock, “Advances in Ordered Greed”, In Pro­

ceedings o f the Artificial Neural Networks In Engineering Conference (ANNIE

2004), Saint Louis, MO, USA, 2004.

[12] A. Avenali, C. Mannino, and A. Sassano, “Minimizing the span of d-walks to

compute optimum frequency assignments”, Mathematical Programming, vol.

91, pp. 357-374, 2002.

[13] D. Beckmann, and U. Killat, Frequency Planning with respect to Interference

Minimization in Cellular Radio Networks COST 259 TD (99) 032, Vienna,

Austria 1999.

[14] D. Beckmann, and U. Killat, “A new strategy for the application of genetic

algorithms to the channel-assignment problem”, in IEEE Transactions on Ve­

hicular Technology, vol. 48, pp. 12611269, 1999.

[15] A. Bouju, J. F. Boyce, C. H. D. Dimitropoulos, G. vom Scheidt, and J. G.

Taylor, “Tabu search for the radio links frequency assignment problem”, Pro­

ceedings o f the UNICOM Conference on Applied Decision Technologies, 1995.

[16] U. Brandes, M. Gaertler, and D. Wagner, “Experiments on Graph Clustering

Algorithms”, Proceedings o f the 11th Annual European Symposium on Algo­

rithms (ESA ’03), Budapest, 2003, pp. 568-579.

229

[17] D. Brelaz, “New methods to color the vertices of a graph”, Communications

o f the ACM, vol. 22-4, pp. 251-256, 1979

[18] A. Capone, and M. Trubian, “Channel assignment problem in cellular net­

works: a new model and a tabu search algorithm”,IEEE Transactions on Ve­

hicular Technology, vol. 48-4, pp. 1252-1260, 1999.

[19] D. J. Castelino, S. Hurley, and N. M. Stephens, “A tabu search algorithm for

frequency assignment”, Annals o f Operations Research, vol. 63, pp. 301-319,

1996.

[20] M. Chiarandini, and T. Stutzle, “Stochastic local search algorithms for Graph

Set T-Coloring and Frequency Assignment”, Constraints, vol. 12-3, pp. 371—

403, 2007.

[21] R.H. Cheng, C.Y. Yu, and T.K. Wu, “A novel approach to the fixed channel

assignment problem”, Journal o f Information Science and Engineering, vol.

21, pp. 39-58, 2005.

[22] C.A. Coello, “A Comprehensive Survey of Evolutionary-Based Multiobjec­

tive Optimization Techniques”, In Knowledge and Information Systems. An

International Journal, vol. 1-3, pp. 269-308, 1999.

[23] G. Colombo, and C.L. Mumford, “Comparing Algorithms, Representations

and Operators for the Multi-objective Knapsack Problem”, Proceedings o f the

2005 IEEE Congress on Evolutionary Computation (CEC20052), Edinburgh,

Scotland, 2005, pp. 1268-1275.

[24] G. Colombo, S. M. Allen, and R. M. Whitaker, “Genetic algorithms for large

frequency assignment problems”, Proceedings o f the 6th Annual PostGradu-

ate Symposium on the Convergence o f Telecommunications, Networking and

Broadcasting, Liverpool, UK, 2005.

230

[25] G. Colombo, “A Genetic Algorithm for frequency assignment with problem

decomposition”, International Journal o f Mobile Network Design and Innova­

tion, vol. 1-2, pp. 102-112, 2006.

[26] G. Colombo, and S.M. Allen, “Problem Decomposition for Minimum Inter­

ference Frequency Assignment”, Proc. o f the 2005 IEEE Congress on Evolu­

tionary Computation (CEC2007), Singapore, 2007.

[27] R. Carraghan, and P. M. Pardalos, “An exact algorithm for the maximum

clique problem”, Operations Research Letters, vol. 9, pp. 375-382, 1990.

[28] L.M. Correia, Editor, Wireless Flexible Personalised Communications,

Chichester, UK: Wiley Europe, 2001.

[29] C. Cotta, and J. M. Troya, “A comparison of several evolutionary heuristics

for the frequency assignment problem”, In Lecture Notes in Computer Science,

vol. 2084, pp. 709-716, Berlin Heidelberg, 2001.

[30] C. Crisan, and H. Muhlenbein, “The frequency assignment problem: a look

at the performance of evolutionary search”, In Selected Papers from the Third

European Conference on Artificial Evolution, pp. 363-274, 1997.

[31] C. Crisan, and H. Muhlenbein, “The breeder genetic algorithm for frequency

assignment”, Lecture Notes on Computer Science, vol. 1498, pp. 897-906,

1998.

[32] L. D. Davis, “Handbook of Genetic Algorithms”, Van Nostrand Reinhold,

New York, 1991.

[33] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms,

Chichester, UK: Wiley Europe, 2002.

[34] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul­

tiobjective genetic algorithm: NSGA-II”, IEE Transactions on Evolutionary

Computation, vol. 6, pp. 182-197, 2002.

231

[35] K. Deb and D. A. Goldberg , “an investigation of niche and spieces formation

in genetic function optimization”, Proceedings o f the Third International Con­

ference on Genetic Algorithms , San Mateo, United States pp. 42-50, 1989.

[36] P.P Demestichas, E. C. Tzifa, M. E. Theologou, and M. E. Anagnostou.

“Interference-oriented carrier assignment in wireless communications”, Com­

munications Letters, IEEE vol. 7, pp. 7-9, 2003.

[37] K.A. Dejong, an analysis i f the behaviour o f a class o f genetic adaptive sys­

tems, University of Michigan Ann Arbor, MI, USA, 1975.

[38] N. W. Dunkin, and S. M. Allen, “Frequency assignment problems: represen­

tations and solutions”, Technical Report CSDTR9714, June 1997.

[39] Eindhoven RLFAP Group, “Radio link frequency assignment project”, Tech­

nical report, Eindhoven University of Technology, 1995.

[40] A. Eisenblifr/er, Frequency Assignment in GSM Networks: Models, Heuris­

tics, and Lower Bounds PhD thesis, Technische Universitat Berlin, Germany,

2001 .

[41] A. Farago, “Scalable analysis and design of ad hoc networks via random

graph theory”, In DIALM 02: Proceedings o f the 6th international workshop

on Discrete algorithms and methods fo r mobile computing and communica­

tions, New York, NY, USA, pp. 43-50, 2002.

[42] M. Fischetti, C. Lepschy, G. Minerva, G. Romanin-Jacur, and E. Toto, “Fre­

quency assignment in mobile radio systems using branch-and-cut techniques”,

in European Journal o f Operational Research, vol. 123, pp. 241-255, 2000.

[43] C.M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms

in multiobjective optimization”, In Evolutionary Computation, vol. 3-1, pp.

1-16, 1995.

232

[44] A. Gamst, “Some lower bounds for a class of frequency assignment prob­

lems”, IEEE Transactions on Vehicular Technology, vol. 35, pp. 8-14, 1986.

[45] S.C. Ghosh, B.P. Sinha, and N. Das, “Channel assignment using genetic algo­

rithm based on geometric symmetry”, IEEE Transactions on Vehicular Tech­

nology, vol. 52, pp. 860-875, 2003.

[46] A. I. Giortzis and L. F. Turner, “A mathematical programming approach to

the channel assignment problem in radio networks”, Proceedings o f the IEEE

46th Vehicular Technology Conference 1996.

[47] F. Glover, “Tabu search - part 1”, ORSA Journal on Computing, vol. 1, pp.

190-206, 1989.

[48] D. A. Goldberg, and J. Richardson, “Genetic algorithms with sharing for

multimodal function optimization”, Proceedings o f the Second International

Conference on Genetic Algorithms and their application, Cambridge, Mas­

sachusetts, United States, pp. 41—49, 1987.

[49] D. A. Goldberg, and D. E. Chang, “Tournament selection, niching, and the

preservation of diversity”, Technical report 91011, University of Illinois , USA,

1991.

[50] U. Gotzner, A. Gamst, and R. Rathgeber, “Statial Traffic Distribution in Cel­

lular Networks”, In: Proc. IEEE VTC’97 Ottawa Canada, pp. 1994-1998,

1997.

[51] D. Grace, A. G. Burr, and T. C. Tozer, “Comparison of Different Distributed

Channel Assignment Algorithms for UFDMA”, In 2nd IEEE International

Conference on Personal, Mobile and Spread Spectrum Communications, pp.

38-41, 1996.

[52] J.S. Graham, R. Montemanni, J.N.J. Moon, and D.H. Smith “ frequeny

assingment multple interference and binary constraints”, Wireless Networks,

233

to appear, url=“http://www.springerlink.com/content/ng41225q0855g2j2/”, ac­

cessed on 1st July 2008.

[53] W. K. Hale, “Frequency assignment: Theory and applications”, Proc. IEEE,

vol. 38, pp. 1497-1514, 1980.

[54] W. K. Hale, “New spectrum management tools”, Proc. IEEE International

Symposium on Electromagnetic Compatibility, pp. 47-53, 1981.

[55] J. K. Hao, and R. Dome, Study o f genetic search for the frequency assignment

problem, In Selected Papers from the Third European Conference on Artificial

Evolution, pp. 333-334, 1997.

[56] M. Hata, “Empirical formula for propagation loss in land mobile radio ser­

vices”, IEEE Transactions on Vehicular Technology, vol. 29, 1980.

[57] M. Hellebrandt, and H. Heller, “A new heuristic method for frequency assign­

ment”, Tech. Report TD(00) 003, COST259, Valencia, Spain, Jan. 2000.

[58] M. J. H. Holland, Adaptation in natural and artificial systems, UMP, 1975.

[59] D. S. Hochbaum, “A new - old algorithm for minimum-cut and maximum-

flow in closure graphs”, Networks, vol. 37-4, pp. 171-193, 2001.

[60] S. Hurley, and D.H. Smith, “Meta-Heuristics and channel assignment”, in

Methods and algorithms fo r radio channel assignment, edited by S. Hurley

and R. Leese, Oxford, UK: Oxford University Press, 2002.

[61] S. Hurley, R.M. Whitaker, and D. H. Smith, “Channel assignment in cellular

networks without channel separation constraints”, Proceedings o f HIE vehicu­

lar technology conference fall, 2000.

[62] S. Hurley, D. H. Smith, and S.U. Thiel, “Fasofit: a system for discrete channel

frequency assignment”, Radio Science, vol. 32-5 pp. 1921-1939, 1997.

234

http://www.springerlink.com/content/ng41225q0855g2j2/%e2%80%9d

[63] S. Hurley, D. H. Smith, and S.U. Thiel, “A comparison of local search al­

gorithms for radio link frequency assignment problems”, Proceedings o f the

1996 ACM symposium on Applied Computing, pp. 251-257, 1996.

[64] S. Hurley, and D. H. Smith, “Fixed spectrum frequency assignment using

natural algorithms”, Proceedings IEEE international conference on Genetic

Algorithms in Engineering Systems, pp. 373-378, 1995.

[65] S. Hurley, W. Crompton, and N. M. Stephens, “A parallel genetic algorithm

for frequency assignment problems”, In Proceedings IMACS/IEEEInt. Symp.

on Signal Processing, Robotics and Neural Networks, pp. 81-84, Lille, France,

1994.

[66] C. Hurkens, and S. Tiourine, Upper and lower bounding techniques for fre­

quency assignment problems, Technical report, Eindhoven University of Tech­

nology, 1995.

[67] J. Janssena, D. Krizancb, L. Narayananc, and S. Shended, “Distributed Online

Frequency Assignment in Cellular Networks”, Journal o f algorithms, vol. 36-

2 pp. 119-151, 2000.

[68] A. Kapsalis, P. Chardaire, V. J. Smith, and G. D. Smith, “The radio link fre­

quency assignment problem: A case study using genetic algorithms”, Lecture

Notes on Computer Science, vol. 993, pp. 117-131, 1995.

[69] N. Karaoglu, and B. Manderick, “FAPSTER - a genetic algorithm for fre­

quency assignment problem”, Proceedings o f the 2005 Genetic and Evolution­

ary Computation Conference, Washington, D.C., USA, 2005.

[70] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization by simulated

annealing”, Science, vol. 220, pp. 671-680, 1983.

[71] A.W.J. Kolen, “A genetic algorithm for frequency assignment”, Statistica

Neerlandica, vol. 61-1, pp. 4-15, 2007.

235

[72] A. W. J. Kolen, C. P. M. van Hoesel, and R. van der Wal, A constraint sat­

isfaction approach to the radio link frequency assignment problem, Technical

Report 2.2.2, EUCLID CALMA project, 1994.

[73] M. Koppen and K. Franke, “Pareto-dominated hypervolume measure: an al­

ternative approach to color morphology”, Proceedings o f the Seventh Interna­

tional Conference on Hybrid Intelligent Systems, pp. 234-239, 2007.

[74] A. M. C. A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen, “The partial

constraint satisfaction problem: Facets and lifting theorems”, Operations Re­

search Letters, vol. 23-35, pp. 89-97, 1998.

[75] A.M.C.A. Koster, C.P.M. van Hoesel, and A. W.J. Kolen, “Solving partial con­

straint satisfaction problems with tree decomposition”, Networks, vol. 40-3,

pp. 170-180, 2002.

[76] S.A. Kotrotsos, P.P Demestichas., E. C. Tzifa, M. E. Theologou, and M. E.

Anagnostou, “A realistic interference-oriented version of the frequency plan­

ning problem for future wireless telecommunication systems”, in Proceedings

o f the Electrotechnical Conference MELECON 2000 10th Mediterranean, pp.

311-314, 2000.

[77] T. Kumer, D.J. Chicon, and W. Wiesbeck, “Concepts and Results for 3D Dig­

ital Terrain-Based Wave Propagation Models: An Overview”, IEEE Journal

on Selected Areas in Communications, vol. 11-7, pp. 1002—1012, 1993.

[78] W. K. Lai, and G. Coghill, “Channel assignment through evolutionary opti­

mization”, IEEE Transactions on Vehicular Technology, vol. 45, pp. 91—96,

1996.

[79] T. L. Lau, Guided Genetic Algorithm, PhD thesis, University of Essex, 1999.

[80] C. Mannino, G. Oriolo, and F. Ricci, “The stable set problem and the thinness

of a graph”, Operations Research Letters, vol. 35, pp. 1-9, 2007

236

[81] C. Mannino, and A. Sassano, “An enumerative algorithm for the frequency

assignment problem”, Discrete Applied Mathematics, vol. 129-1, pp. 155—

169, 2003.

[82] V. Maniezzo and R. Montemanni. An exact algorithm fo r the min-

interference frequency assignment problem. Technical report, University of

Bologna, 2000.

[83] S.Matsui, I. Watanabe, and K. Tokoro, “An efficient genetic algorithm for a

fixed frequency assignment problem with limited bandwidth constraint”, Sys­

tems and Computers in Japan, vol. 4, pp. 32-39, 2004.

[84] N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller,

“Equations of state calculations by fast computing machines”, Journal o f

Chemical Physics, vol. 21, pp. 1087-1092, 1953.

[85] B. L. Miller and M. J. Shaw, “Genetic algorithms with dynamic niche shar­

ing for multimodalfunction optimization”, Proceedings o f IEEE International

Conference on Evolutionary Computation , Nagoya, Japan, pp. 786-791. 1996.

[86] R. Montemanni, D.H. Smith, and S.M Allen, “An ANTS algorithm for the

minimum-span frequency-assignment problem with multiple interference”,

IEE Trans, on Vehicular Technology, vol. 51—5, pp. 949-953, 2002.

[87] R. Montemanni, J.N. Moon, and D.H. Smith, “An improved Tabu Search al­

gorithm for the Fixed-Spectrum Frequency-Assignment problem”, IEE Trans,

on Vehicular Technology, vol. 52-3, pp. 891-901, 2003.

[88] R. Montemanni, D.H. Smith, and S.M. Allen, “Lower Bounds for Fixed Spec­

trum Frequency Assignment”, in Annals o f Operations Research, vol. 107-1,

pp. 237-250, 2001.

237

[89] R. Montemanni, D.H. Smith, and S.M. Allen, “An improved algorithm to de­

termine lower bounds for the fixed spectrum frequency assignment problem”,

in European Journal o f Operational Research., vol. 156, pp. 736-751, 2004.

[90] C.L. Mumford, “New Order-Based Crossovers for the Graph Coloring Prob­

lem ”, Parallel Problem Solving from Nature IX, Reykjavik, Iceland, 2006.

[91] C. Y. Ngo, and V. O. K. Li, “Fixed channel assignment in cellular radio net­

works using a modified genetic algorithm”, In IEEE Transactions on Vehicular

Technology, vol. 47, pp. 163-171, 1998.

[92] A. Nolte, and R. Schrader, “Simulated Annealing and its Problems to Color

Graphs”, Proceedings o f the ESA 1996, Springer Lecture Notes in Computer

Science, pp. 137-151, 1996

[93] A. Nolte, and R. Schrader, “A note on the finite time behaviour of simulated

annealing”, Operations Research Proceedings, 1999.

[94] A. Nolte, and R. Schrader, “Simulated annealing and graph colouring”, Com­

binatorics, Probability and Computing, vol. 10, pp. 29-40, 2001.

[95] P.R.J. Ostergard, “A fast algorithm for the maximum clique problem”, Dis­

crete Applied Mathematics, vol. 120-1, 2002.

[96] P. Pardalos, J. Rappe, and M. Resende, “An exact parallel algorithm for the

maximum clique problem”, in High Performance Algorithms and Software in

Nonlinear Optimization, edited by P.P.R. De Leone, A. Murl’i, G. Toraldo,

Kluwer, Dordrecht, 1998.

[97] T. Park and C. Y. Lee, “Application of the graph coloring algorithm to the

frequency assignment problem”, Journal o f the Operations Research Society

o f Japan, vol. 39, pp. 258-265, 1996.

[98] J. Peemoller, “A correction to Brelaz’s modification of Brown’s coloring al­

gorithm”, Commun. ACM, vol. 26-8, pp. 595-597, 1983.

238

[99] F. J. Romero, and D. M. Rodriguez, “Channel assignment in cellular systems

using genetic algorithms”, In Proceedings o f the 46th IEEE Vehicular Technol­

ogy Conference, pp. 741-745, Atlanta, USA, 1996.

[100] S. Ruiz, X. Colet, J.J. Estevez, “Frequency planning optimisation in real mo­

bile networks”, In Proceedings o f the 50th IEEE Vehicular Technology Con­

ference, vol. 4, pp 2082-2086, Amsterdam, Netherlands, 1999

[101] S. Salcedo-Sanz, and C. Bousoo-Calzn, “A hybrid neural-genetic algorithm

for the frequency assignment problem in satellite communications”, Applied

Intelligence, vol. 22-3, pp. 207-217, 2005.

[102] G. H. Sasaki, and B. Hajek, “The time complexity of maximum matching

by simulated annealing”, Journal o f the Association o f Computing Machinery,

vol. 35-2, pp. 387-403, 1998.

[103] M. Sevaux, and K. Saorenseny, “Permutation distance measures for memetic

algorithms with population management”, InProceedings o f the Sixth Meta­

heuristics International Conference, Vienna, Austria, 2005;

[104] S. Shazely, H. Baraka, and A. Abdel-Wahab. “Solving graph partitioning

problem using genetic algorithms”, In Proceedings o f the 1998 Midwest Sym­

posium on Circuits and Systems, pp. 302-305, 1998.

[105] Shin W.Y, S. Y. Chang, J. Lee, and C.H. Jun, “Frequency insertion strategy

for channel assignment problem”, Wireless Networks, vol. 12, pp. 45-52, 2006.

[106] S. A. G. Shirazi, and M.B. Menhaj. “A new genetic based algorithm for

channel assignment problems”, In 9th Fuzzy Days International Conference on

Computational Intelligence, Dortmunt, 2006.

[107] K.A. Smith, “A genetic algorithm for the channel assignment problem”,

Proceedings Global Telecommunications Conference, vol. 4, pp. 2013-2018,

1998.

239

[108] D.H. Smith, L.A. Hughes, J.N.J Moon, and R. Montemanni, “Measuring

the effectiveness of frequency assignment algorithms” IEEE Transactions on

Vehicular Technology, vol. 56-1, pp. 331-341, 2007.

[109] D.H. Smith, S. Hurley, and S.M. Allen, “A new lower bound for the channel

assignment problem” IEEE Transactions on Vehicular Technology, vol. 49-4,

pp. 1265-1272, 2000.

[110] D.H. Smith, S.M. Allen, S. Hurley, and W.J. Watkins, “Frequency Assign­

ment: Methods and Algorithms”, in NATO RTA SET/ISETSymposium on Fre­

quency Assignment, Sharing and Conservation in Systems (Aerospace), Aal­

borg, Denmark, NATO RTO-MP-13, pp. K1-K18, 1998.

[111] D.H. Smith, S. Hurley, and S.U. Thiel, “Improving heuristics for the fre­

quency assignment problem” European Journal o f Operational Reaearch, vol.

107-1, pp. 76-86, 1998.

[112] D.H. Smith, and S. Hurley, “Bounds for the frequency assignment problem”,

Discrete Mathematics, vol. 167-168, pp. 571-582, 1997.

[113] M. Stoer, and F.Wagner. “A simple min-cut algorithm”, In Proceedings o f

the 2nd annual European symposium on algorithms, pp. 141-147, 1994.

[114] DW. Tcha, Y. J. Chung, T. J. Choi, “A new lower bound for the frequency

assignment problem”, IEEE/ACM Transactions on Networking, vol. 5, pp. 34-

39, 1997.

[115] E. Tsang, and C. Voudouris, “Solving the radio link frequency assignment

problem using guided local search”, in NATO RTA SET/ISET Symposium on

Frequency Assignment, Sharing and Conservation in Systems (Aerospace),

Aalborg, Denmark, Paper 14b, 1998.

240

[116] A. Tsenov, “Simulated annealing and genetic algorithms in telecommunica­

tions network planning”, International Journal o f Computational Intelligence,

vol. 2, pp. 240-245, 2005.

[117] L. J. de Urries, M. A. Diaz Guerra, and I. Berberana, “Frequency Planning

using Simulated Annealing”, Technical Report TD(00)-054, COST 259, 2000.

[118] C.L. Valenzuela, “A study of permutation operators for minimum span fre­

quency assignment using an order based representation”, Journal o f Heuristics,

vol. 7, pp. 5-21, 2000.

[119] C.L. Valenzuela, S. Hurley, and D. H. Smith, “A Permutation Based Ge­

netic Algorithm for Minimum Span Frequency Assignment”, Lecture Notes In

Computer Science, vol. 1498, pp. 907-916, 1998.

[120] S. van Dongen, A cluster algorithm for graphs, Technical Report INS-

R0010, National Research Institute for Mathematics and Computer Science

in the Netherlands, Amsterdam, 2000.

[121] P. von Rickenbach, S. Schmid, R. Wattenhofer, and A. Zollinger, “A ro­

bust interference model for wireless ad-hoc networks”, in Proceedings o f the

19th IEEE International Symposium on Parallel and Distributed Processing,

pp 239-249, 2005.

[122] S. Waharte, and R. Boutaba, Comparison o f Distributed Frequency Assign­

ment Algorithms fo r Wireless Sensor Network, Technical Report, University of

Waterloo, ON, Canada.

[123] L. Wang, and W. Gu, “Genetic algorithms with stochastic ranking for opti­

mal channel assignment in mobile communications”, Lecture Notes in Com­

puter Science, vol. 3314, pp. 154—159, 2004.

[124] C.L. Weston, S. Hurley, and R.M. Whitaker, “The effects of downlink trans­

mission activity on service coverage in FDMA cellular networks”, in Proceed-

241

ings o f the 4th IASTED International multi—conference on wireless and optical

communications conference, Banff, Canada, pp. 69-74, 2004.

[125] E. Zitzler, and L. Thiele, “Multiobjective Evolutionary Algorithms: A Com­

parative Case Study and the Strength Pareto Approach”, In IEEE Transactions

on Evolutionary Computation, vol. 3-4, pp. 257-271, 1999.

242

