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ABSTRACT

In this dissertation, advanced methods for electroencephalogram (EEG) sig­

nal analysis in the space-time-frequency (STF) domain with applications to 

eye-blink (EB) artifact removal and brain computer interfacing (BCI) are 

developed. The two methods for EB artifact removal from EEGs are pre­

sented which respectively include the estimated spatial signatures of the EB 

artifacts into the signal extraction and the robust beamforming frameworks. 

In the developed signal extraction algorithm, the EB artifacts are extracted 

as uncorrelated signals from EEGs. The algorithm utilizes the spatial signa­

tures of the EB artifacts as priori knowledge in the signal extraction stage. 

The spatial distributions are identified using the STF model of EEGs. In 

the robust beamforming approach, first a novel space-time-ffequency/time- 

segment (STF-TS) model for EEGs is introduced. The estimated spatial 

signatures of the EBs are then taken into account in order to restore the ar­

tifact contaminated EEG measurements. Both algorithms are evaluated by 

using the simulated and real EEGs and shown to produce comparable results 

to that of conventional approaches. Finally, an effective paradigm for BCI 

is introduced. In this approach prior physiological knowledge of spectrally 

band limited steady-state movement related potentials is exploited. The re­

sults consolidate the method.
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Chapter 1

INTRODUCTION

1.1 The periodic nature of th e  brain

Brain electrical activities were recorded by Hans Berger in 1926 and termed 

electroencephalogram (EEG) signals. He called the large amplitude rhythm, 

of about 10 Hz, induced by eye closure in an awake and calm subject, the 

“alpha” (or) rhythm since he observed it first. During the last century several 

other brain rhythms have been recorded during various cognitive, motor, or 

functions of the brain. Discovering the dynamic patterns of brain electrical 

activity is highly important in understanding the role of the brain in human 

behavior and cognition. Since Berger’s early achievements, there have been 

mainly three unanswered questions [1]; how are EEG patterns with respect 

to a certain motor action of behavior generated, why are they oscillatory, 

and what are their contents? Answering these questions may not be pos­

sible without investigating the brain activities by means of fully controlled 

experiments. To this end, several academic and industrial research centers 

have introduced techniques and machines to help the neuroscientists.

I, as a researcher, aim at developing effective recording frameworks and
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signal processing schemes for detecting specific electric events within the 

brain, relevant to the simple task of voluntary (possibly repetitive) move­

ment of left and right indices. For such processing technique, artifact re­

moved brain signals are necessary. Therefore, a considerable fraction of 

this dissertation is devoted to two novel artifact removal frameworks.

1.2 Classic windows of th e  brain

EEGs are commonly defined as brain electrical manifestation recorded from 

the surface of the scalp. The most common type of bio-potential electrode 

used for EEG recording is the silver/silver-chloride (Ag/AgCl) electrode. 

Several electrodes are placed on the scalp using a carefully positioned nylon 

cap. The conductive gel plays the role of an electrolyte medium between the 

scalp and the electrodes. Recently active1 and dry electrodes [2] have been 

manufactured for EEG recordings. The utilization of the active electrodes 

has been fully justified, see the first footnote. However, dry electrodes are 

still in the research and development phase [2]. The electrical activity of 

brain can also be recorded invasively by using subdural electrodes. Inva­

sive methods enable the measurement of brain potentials directly from its 

surface. Subdural electrodes are inserted into the scalp in order to record 

the electrical activity from underneath the dura.2 Generally, in intracellular 

recordings, the activations of the individual neurons’ are measured using 

an electrode inserted into a cell. In contrast, the extracellular recordings 

are made using electrodes places within the brain tissue sufficiently close to 

neurons. Extracellular recording reflects the activation of several neighbor­

ing neurons, i.e. local field potential (LFP).

*For production history and technical details of the active electrodes visit the BioSemi 
Instrumentation company website on http://www.biosemi.com/index.htm.

2Dura is a membrane which covers the brain.

http://www.biosemi.com/index.htm
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In order to explore the electro-physiological patterns of the brain var­

ious technologies have been established. Essentially, brain imaging tech­

niques are categorized into two groups; those modalities which reflect de­

tailed anatomical views of brain and those which highlight the involving 

regions during various mental tasks. Currently, existing functional imag­

ing modalities which present high spatial resolutions suffer from rather low 

temporal accuracies and vice versa. For instance, EEGs which are mainly 

used to determine functional properties of brain present a very high tempo­

ral resolution. However, they suffer from a very low spatial accuracy. Other 

imaging modalities present much better spatial resolution (in the range of 

1 mm3) but their temporal resolution is not in the acceptable range of 5- 

10 ms [3]. In the following, several classic brain imaging modalities are 

reviewed and their spatial and temporal resolutions are described.

In computed tomography (CT), a series of X-ray beams are emitted to 

the subjects at different angles. Then, cross-sectional images from the body 

are reconstructed by the computer. The brightness of the reconstructed im­

age is proportional to the density of the tissue. The CT images reflect the 

anatomical information. The major disadvantage of CT is that the subjects 

are exposed to the X-ray radiations several times. The spatial resolution of 

CT is considerably high, however, the temporal resolution is in the range of 

50-100 ms.

A common window to the brain is the magnetic resonance imaging 

(MRI). In MRI, subjects are not exposed to X-ray beams and therefore, 

this imaging procedure is safer than CT for the subjects [3]. MRI measures 

changes in the brain magnetic characteristics in response to an external large 

magnetic field. By MRI, three dimensional (3D) images of the brain can be 

constructed with high spatial resolution (approximately 1 mm3). The func­
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tional magnetic resonance imaging (fMRI) reflects the reaction of the oxy­

gen molecules against a controlled magnetic field; hence, it highlights brain 

functional properties indirectly by measuring oxygen consumption. fMRI 

enjoys a relatively high spatial resolution (between 2 mm3 to 4 mm3), how­

ever, the low temporal resolution (on average 3 s) can be considered as a 

drawback.

In Magnetoencephalography (MEG), the tiny (on the order of 100 to 

1000 fT (femto Tesla, femto = 10-15)) magnetic fields in the brain are 

recorded. Specifically, these magnetic fields are generated by the ionic cur­

rents flowing through the dendrites. High-tech equipments are required to 

detect the brain magnetic fields. MEG is acquired from up to 300 record­

ing superconducting quantum interference devices (SQUID) located on the 

scalp. It provides acceptable spatial resolutions, but lower than that of CT 

and MRI. MEG provides a fairly good temporal resolution and is less sensi­

tive than EEG to the patients’ movements. Note that, based on the inherent 

technical limitations of MEG, localization of radial sources, in contrast to 

tangential sources, is impossible.

Positron emission tomography (PET) measures the brain metabolism 

level through monitoring the blood pumped into the brain. Before record­

ing PET, a short lived radioactive substance known as radiotracer is injected 

to the subject. The radiotracer emits several positrons as it decays. When 

the positron strikes an electron of an oxygen molecule, two photons are 

emitted in opposite directions. The positron is then detected and localized 

by the scanning device. In principle, highly activated brain regions, which 

consume more energy, transmit larger responses to PET. PET reflects the 

metabolic processes and, hence, is typically combined with CT or MRI. PET 

provides relatively lower spatial resolutions than fMRI and suffers from the
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poor temporal resolutions (approximately 2 s).

The common imaging methods were briefly reviewed and Fig. 1.1 (adopted 

from [3]) summarizes the spatial and temporal resolutions of the above tech­

niques.

As pointed out earlier, EEG presents high temporal resolutions and the 

low spatial accuracy is its drawback. Note that the spatial resolution of 

EEG can be enhanced by utilizing several (up to 256) scalp electrodes. The 

physiological principles of EEG will be presented in Chapter 2.

1.3 Aims and objectives o f this research

The first aim of this research was to acquire a solid understanding of EEG 

signals. A prerequisite to achieve the defined goals was to understand the 

neurophysiological processes that occur in brain before, during, and after a 

simple finger movement.

During this research, I attended several courses, conferences, and meet­

ings and consulted with two neurologists in order to enhance my basic un­

derstanding of brain anatomy and functions.

The objectives of the research are

• understanding the electroencephalogram and being able to interpret 

EEGs recorded for BCI;

• reviewing the current researches on brain computer interfacing (BCI) 

and artifact rejection;

• developing effective algorithms for removal of artifacts from EEGs;

• establishing new BCI approaches to detect the brain responses during 

repetitive finger movements.



Characteristics Less      — -------------» More

Ability to measure both NIRS MEG SPECT PET, MRS, fMRI,
cortical and deep structures ERP, EEG phMRI, DTI
Temporal resolution MRI phMRI PET fMRI EEG, ERP

DTI SPECT NIRS MEG
MRS

Spatial resolution ERP MEG SPECT PET NIRS, fMRI, DTI
EEG MRI, phMRI

Invasiveness of method ERP fMRI phMRI PET
EEG MRI SPECT
NIRS DTI
MEG MRS

Expense of method EEG fMRI phMRI PET
ERP DTI SPECT
NIRS MRI MEG

MRS
Ease of use with PET phMRI fMRI MRI EEG, ERP
developmental populations SPECT DTI NIRS

MRS

Figure 1.1. Qualitative approximate rankings on the distinguished characteristics are provided for various imaging modalities. The 
figure has been adopted from [3].
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1.4 S tructure of this thesis

Chapter 2 details the classic EEG-based BCI framework. It comprises of a 

survey on the active BCI research centers, the BCI state of art techniques, 

and the classic and well established physiological features of the EEGs usu­

ally used for BCI.

Chapter 3 presents the first contribution of this dissertation to BCI. In 

this chapter after reviewing mathematics of the complex wavelet transform 

and the parallel factor analysis, it will shown that how arrays of the time- 

varying energy representations of the multi-channel EEGs can be decom­

posed into the spatial, temporal, and spectral signatures. A space-time- 

ffequency (STF) decomposition of EEG in the Rolandic /i band will be real­

ized to explore the STF dynamics of EEG signals during left and right index 

movements. These signatures will be classified by a support vector machine 

(SVM) classifier. Finally, the main reasons the presented approach may not 

be implemented in real-time BCI will be discussed.

EEGs can be severely contaminated by various artifacts such as eye- 

blinks (EB), eye- or body- movements, cardiomuscular activities, and power 

line noise. Essentially, artifacts interfere with the processing algorithms and 

may cause unacceptable loss of important parts of the recorded signals. Tra­

ditionally, the artifact contaminated recordings are excluded before averag­

ing the multi-trial recordings. However, in many cases such as real-time 

EEG analysis, valid and reliable methods are needed in order to remove the 

artifacts. Fundamentally, the prime target of a reliable artifact correction al­

gorithm is to remove the artifact with minimum distortion of the underlying 

EEG activity. Between various artifacts, ocular artifacts (OA), also called 

electro-oculogram (EOG), are the main source of interference for EEGs. An 

EOG refers to the potential difference generated by eye ball movement in
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its socket or when an EB occurs. EOG may be propagated from the frontal 

area of the brain toward all the recording electrodes and contaminated the 

EEG potentials.

In Chapters 4 and 5, two effective preprocessing algorithms will be de­

veloped for the removal of EB artifacts from EEGs. They will be based 

upon blind source extraction (BSE) and beamforming, respectively.

In Chapter 4, after an overview on the existing methods for EB arti­

fact detection and removal, a semi-blind signal extraction (SBSE) algorithm 

will be developed in order to extract the EB artifact as an uncorrelated signal 

from EEGs. The proposed method is semi-blind since it utilizes the spatial 

signatures of the EB artifacts which are identified by the STF model intro­

duced in Chapter 3. The results of the developed artifact removal algorithm 

are comparable with that of previous studies. In this approach, the spatial 

signature of EB is estimated in advance and then introduced to the SBSE. 

There are two important issues in this algorithm; first, the decomposition of 

the STF model into the spatial, temporal, and spectral signatures is compu­

tationally expensive. Second, the performance of this method depends on 

how unbiased the EB spatial signature is estimated. Chapter 4 will be fin­

ished by demonstrating how a slight deviation of the estimated EB signature 

from the actual signature influences the extraction process and consequently 

the whole artifact removal procedure.

A hybrid “STF modeling”-“robust minimum variance beamforming” 

framework will be presented in Chapter 5 in order to address the two afore­

mentioned shortcomings. First, a novel space-time-frequency/time-segment 

(STF-TS) model for EEGs, specifically designed for identification of the EB 

artifacts, will be introduced. Upon few necessary conditions for effective 

decomposition, the resulting spatial signatures will be utilized in a robust
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beamforming paradigm to extract and remove the EB artifact. In this re­

gard, the major contribution is in the estimation of the steering vector, that 

is, the spatial signature corresponding to the EB artifact, without solving the 

conventional EEG forward models. There are two differences between the 

approach presented in this chapter and that of the previous chapter. In Chap­

ter 4, the estimation of the steering vector corresponding to the EB artifact 

was assumed to be precise. Here, this vector is allowed to deviate by a small 

bias vector from its actual value. Second, in Chapter 5, the computational 

complexity of the STF model estimation is significantly reduced by using 

the STF-TS model.

Chapter 6 of this dissertation will introduce an approach for BCI based 

on the steady-state movement related potentials (ssMRP). In order to sur­

pass the two main problems of the slow cortical potentials (SCP)-based 

BCI, i.e. the slowness and the low signal to noise ratio (SNR), recent and 

established physiological findings on ssMRPs will be exploited. Subjects 

participating in this study are asked to tap at the constant rate of 2 Hz. This 

provides a lateralized slow potentials over contralateral motor areas in the 

frequency range of about 2 Hz. Classification of such potentials is straight­

forward since they are highly localized in space-time-frequency domain. 

Two conventional pattern classifiers, namely, the Fisher’s discriminant anal­

ysis (FDA) and the kernel FDA (KFD), will be implemented to quantify the 

performance of the introduced BCI approach. The potentials and shortcom­

ings of this approach will be investigated.

And finally, in Chapter 7, this dissertation will be concluded and several 

suggestions will be made for future research.



Chapter 2

BRAIN COMPUTER 

INTERFACING

2.1 Introduction

Brain Computer Interfacing (BCI) typically refers to typing using a com­

puter keyboard, clicking a mouse button, or moving a curser on the monitor 

by interpreting the EEGs. In other words, EEG-based BCI enables people 

suffering from severe neurological disabilities (cognitively intact) to inter­

act with their environment by intention rather than physical contact. In BCI, 

users can concentrate on various tasks1 and the computer identifies the task.

In [4], it is found that planning and execution of voluntary (self-paced) 

movements, real or mental imagination of movement, cause a pre-movement 

attenuation and a post-movement amplification in amplitude of some fre­

quency bands in EEG over the contralateral sensorimotor cortex.

Various medical imaging modalities have shown [4] that the sensori­

1 Although in theory, it is possible to design a BCI system for various mental tasks, in 
practice it has been limited to certain tasks such as left and right index, tongue, and leg 
movements [4].
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motor cortex is activated during real or imaginary movements. It has also 

been well known [4,5] that preparation and execution of movements lead to 

short-lasting and circumscribed attenuation of the Rolandic /i (8-13 Hz) and 

the central /? (14-28 Hz) rhythms known as event related desynchronization 

(ERD) following by an amplifications rebound phase called (ERS). Due to 

low spatial resolution of EEGs precise localization of ERD/ERS sources 

within the brain is rather difficult and entails complex computations. More­

over, the clearest ERD/ERS, to be utilized in BCI, may occur at different 

frequency bands and different time instances.

2.1.1 Contributing research areas

BCI is an interdisciplinary research topic to which researchers from different 

fields contribute. An ideal BCI research team would enjoy research experts 

from the following fields.

• Signal Processing: EEGs are time series. Advanced and preferably 

real-time signal processing techniques are necessary to detect the task 

related components of the recorded EEGs.

• Software Engineering: To provide the subject with a feedback of 

his/her actions, a computer interface is required to record EEG, to 

apply several (pre-)processing algorithms, and to control the visual 

feedback process.

• Information Theory: BCI presents a communication channel between 

the user and the machine. Performance evaluation of this channel in 

terms of error rate is recommended.

• Machine Learning: To produce a user tunable practical BCI system, 

machine learning and adaptive techniques would be of importance.
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• Neurophysiology: An important issue in BCI research is designing 

effective EEG recording paradigms. Moreover, solid neurophysiolog- 

ical knowledge is needed to interpret EEG measured during various 

movements.

• Psychology: The BCI user is often provided with the visual feedback 

Psychologist can contribute by designing effective feedback training 

frameworks for BCI in order to explain human motor behavior during 

BCI.

2.1.2 Organization of this chap ter

In this chapter, BCI state of the art will be presented. The existing EEG- 

based BCI systems in various pioneering research centers will be reviewed. 

The EEG basic physiology and its BCI relevant rhythms will be reviewed. 

The advantages and disadvantages of the classic (common) methods and al­

gorithms for BCI in fi and fi bands will be discussed. Finally, the application 

of the readiness potentials (RP) in BCI will be pointed out.

2.2 BCI-State of art

During the last two decades many BCI research groups have been estab­

lished. An overview of the most successful ones is presented below. In 

particular, first the results of invasive methods are briefly discussed in sec­

tion 2.2.1. As of rion-invasive methods, five prominent research groups led 

by Jonathan Wolpaw in Albany (section 2.2.2), Niels Birbaumer in Tubin­

gen (section 2.2.3), Klause-Robert Muller in Berlin (section 2.2.4), Gert 

Pfurtscheller in Graz (section 2.2.5) and Jos6 del R. Millan in Martigny 

(section 2.2.6) are exemplified.
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2.2.1 Invasive m ethods

So far, most of studies on the invasive methods have been carried out on 

monkeys.2 The monkey is well trained to actuate a prosthesis instead of 

its fixated arms. In the beginning of training procedure, the monkey strives 

on moving its arm. After a while and learning to operate the prosthesis, 

the monkey can move the prosthesis by its thoughts accurately. It has been 

reported [7] that the monkeys are able to learn to control an artificial arm if a 

feedback is provided. Recently, a monkey was also able to use the prosthesis 

for grasping in such a skilled way that it could pick up and eat fruit [8]. 

For many years, repeating such experiments with paralyzed but cognitively 

intact humans for rehabilitation purposes has been a milestone [6].

2.2.2 The Wadsworth BCI

The Wadsworth BCI research team uses the ERD of the fi rhythm for EEG 

classification during real or imaginary movements. Based on a fixed setup, 

the user is able to move a cursor toward different targets on the right side 

of the screen whereby the cursor moves with constant speed from left to 

right. The movement is controlled by suitable ERD of /i rhythm for which 

the subjects have to be trained for several weeks [9]. After multiple train­

ing sessions with visual feedback, the subjects are able to achieve over 

90% hit rates [9].3 Recently, an approach for simultaneous controlling of 

a cursor on a screen in vertical and horizontal directions has been presented 

in [10] where the user controls the device by suitable modulations of // and 

ft rhythms. The result of this study is reported as having “not reached an ac­

2There are also very recent studies on realization of invasive BCI methods for paralyzed 
subjects by positioning a matrix of recording electrodes directly over the motor cortex [6].

3A positive hit is considered in the performance if the subject instructed to imagine i.e. 
the right index movement and he/she produces EEGs which can be labeled as right index 
movement by a previously trained classifier.
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ceptable level of accuracy” when compared to the results of cursor control 

in ID [10].

2.2.3 The Thought Translation Device

The Tubingen Thought Translation Device (TTD) [11-13] enables subjects 

to self-regulate of the slow cortical potentials (SCP) after several feedback 

training sessions. In TTD, the cursor is controlled vertically through EEG 

signals and the patients are able to generate binary decisions with an accu­

racy of up to 90%.

Recently, this team have also reported in [14] that they have investigated 

the electrocorticogram (ECoG) measurements for BCI purposes. It should 

the Tubingen group has established a practical BCI system for locked-in 

patients [11].

2.2.4 The Berlin BCI (BBCI)

In 2000, Berlin BCI (BBCI) started to develop a new approach for BCI 

which was based on the idea of transferring the training effort from the hu­

man to the machine. Therefore, the level of inter-subject variability of the 

BCI should be reduced by minimizing the level of subject training. Cur­

rently, their BCI system uses high dimensional feature vectors extracted 

from a 128 channels EEG system. By adapting to the specific brain signals 

by advanced machine learning methods, it has been possible to detect the 

pre-movement potentials in the healthy subjects [15].

In [16,17], it was reported that the classification rates of approximately 

90% between left and right hand key presses can be achieved. Furthermore, 

these results were achieved after approximately one hour of data recording 

showing that long training sessions would not be essential [18].
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Based on the imagination of different motor tasks, using a priori neuro- 

physiological knowledge about the accompanying ERD effects in the j j .  and 

rhythms and negation effects in SCPs, it is possible to present promising 

results by incorporating advanced machine learning techniques [19].

The BBCI team has also been one of the pioneer groups in designing 

adaptive spatio-temporal and spatio-spectral filters to maximize the class 

separability measures utilized in the BCI classification stage [20].

2.2.5 The Graz BCI

The expert user of the Graz BCI machine is able to control a device based 

on the modulations of the /z or p  rhythms of sensorimotor cortex. Note that 

the Wadsworth BCI system presents the power modulations to the user but 

the Graz BCI for the first time used the machine adaptation protocols in 

BCI [4].

In [21], it is reported that the classification accuracies of over 96% can be 

achieved by adaptive auto-regressive (AAR) modeling of EEGs. Moreover, 

they have been able to a BCI-based functional electrical stimulation (FES) 

to restore the functionality of a paralyzed subject’s arm [22-24].

A real-time BCI system has been introduced in [25] where the parame­

ters of the classifier are updated adaptively in order to maximize the perfor­

mance of the BCI machine.

Very recently, the applicability of near infra-read spectroscopy (NIRS)- 

based techniques for BCI has been investigated [26]. Very interestingly, they 

have also shown that the transient increase in heart rate due to the subject’s 

movement intention can be used in BCI [27].
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2.2.6 The M artigny BCI

In Martigny, several researchers with academic backgrounds in machine 

learning and artificial intelligence launched an adaptive BCI scheme. In [28], 

it is suggested that in order to gain higher classification rates, a local neu­

ral classifier based on quadratic discriminant analysis would be a suitable 

choice. In this scheme, three subjects scored an average correct recognition 

rate of approximately 75% only after few training days. This was obtained 

by imagination of left or right-hand motions or by relaxation with closed 

eyes in an asynchronous environment. The mis-classification rate was be­

low 5%. The trained subjects could type with a virtual keyboard, i.e. by 

choosing a letter approximately every 22 ms. [29].

In [30], the authors showed that three further classes (cube rotation, sub­

traction and word association) can be added to BCI. They were able to con­

trol a robot which moved in an artificial maze with these new classes. The 

robot could be instructed to turn left, right, or forward [30].

Reviewing the above-mentioned EEG approaches to BCI, an important 

issue can be concluded [4] that BCI (specifically in the // or/? bands) suffers 

from the low SNR. A worse case is when the single trial EEGs are analyzed. 

Note that in single trial analysis the EEG signal itself is not convincingly 

predictable. Although, the utilization of the advanced machine learning or 

signal processing algorithms for BCI is appreciated, they would not result in 

real-time adaptive BCI systems - mainly due to the computational require­

ments. Acknowledging the fact that the investigation of the brain and its 

functional features using other imaging modalities such as fMRI or MEG 

would ultimately increase the knowledge about brain, these modalities may 

not eventually be applied in real-life BCI since the paralyzed user will not 

be able to carry the fMRI or MEG machine. Considering recent advance­
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ment in EEG recording and processing, an eligible approach for BCI still 

would be relying on new EEG recording paradigms and possibly using sim­

ple and effective EEG feature extraction and classification schemes. Even­

tually, these approaches would circumvent the limitations of BCI in /i or p  

bands.

Chapter 6 of this dissertation suggests a potential approach for EEG 

recording in which the sensorimotor cortex is physiologically constrained to 

generate (partly time-locked) motor related rhythms. Implantation of such 

approach in real life applications would be readily possible.

2.3 Principles of electroencephalography

The brain electrical activities have been investigated for about a century. 

The variation of the surface potential distribution on the scalp reflects func­

tional activities of the underlying brain [31]. These potentials can be recorded 

by placing a matrix of electrodes on the scalp and recording the differen­

tial voltages between pairs of these electrodes. Figure 2.1 shows a sample 

multi-channel EEG recording of about 3.3 seconds from nine electrodes. In 

EEG signal processing community the 10-20 recording system [31] is fre­

quently utilized for electrode placement. The 10-20 system is based on a 

relationship between the location of an electrode and the underlying area of 

cerebral cortex (the “10” and “20” refer to the 10% and 20% inter-electrode 

distances) [31]. Fig. 2.2 illustrates the standard electrode placement in the 

10-20 system. In BCI, the electrodes in the central regions such as C3 and 

C4 are usually used. It has been concluded [31] that the asymmetric distri­

bution of the scalp potentials over central area of the brain can be used to 

infer the presence of preferential (preparatory) brain activity.

The physiological background knowledge helps with understanding the
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Figure 2.2. The 10-20 electrode positioning standard.

possibilities and challenges in EEG analysis and particularly in BCI. The 

goal of this section is to introduce the main concepts and features of EEG 

which are frequently used in BCI.

There are mainly three approaches to BCI. First, BCI based on event re­

lated potentials (ERP), described in Section 2.3.1, second, BCI based on 

analysis of the oscillatory features (rhythmic waves) of EEG, explained 

in Section 2.3.2, and third, BCI based on lateralized readiness potentials 

(LRP)4, addressed in Section 2.3.3. BCI based on ERPs is beyond the scope

In the clinical literature, LRPs or simply readiness potentials are considered as ERPs,
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of this dissertation; however, BCI based on oscillatory features of EEG and 

readiness potentials will be explored in Chapters 3 and 6, respectively.

2.3.1 BCI and event related potentials

The temporally locked (linked to external stimulations variations) of the on­

going EEG are called ERPs. As opposed to evoked potentials, ERPs include 

an early response, due to the primary processing of the stimulus, as well as 

a late response which is a reflection of higher cognitive processing induced 

by the stimulus [32]. The P300 wave is a late appearing component of ERPs 

with a latency of approximately 300 ms elicited by rare or significant stim­

uli (visual, auditory, or somatosensory). P300 has been widely used for 

BCI [33].

2.3.2 BCI and oscillatory EEG

EEG contains a fairly wide frequency spectrum. The frequency range of 

EEG has fuzzy lower and upper bounds. There are as well very low and 

very high frequency components which to the author’s knowledge do not 

really have any significance in clinical studies or in BCI. Practical EEG 

spectrum is limited to 0.1 Hz to 100 Hz and in a restricted sense between

0.3 Hz to 70 Hz. This range is usually subdivided into slow, medium, fast 

and very fast ranges- 0.3-7 Hz, 8-13 Hz, 14-30 Hz and above 30 Hz. These 

bands are named as below:

t Delta (6) below 3.5 Hz (usually 0.1-3.5 Hz).

• Theta (0) 4-7 Hz.

• Alpha (a) 8-13 Hz.

however, specifically in BCI literature, they are considered to be different.
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• Rolandic Mu (p) 8-13 Hz.

• Beta (J3) above 13 Hz, usually 14-35 Hz.

• Gamma (y) above 35 Hz unlimited in the upper bound.

For BCI applications the a, the ji, and the ft are frequently utilized.

• The or rhythm

1. Definition: a  rhythms occur in the frequency range of 8-13 Hz 

during wakefulness over the posterior regions of head, generally 

with higher voltages over the occipital lobe. The amplitude of a  

rhythm is variable but mostly below 50 /iV in adults. It is readily 

recordable when the subjects close their eyes and sit still. The 

a rhythm is highly attenuated by subject’s visual attention or 

mental effort.

2. Wave Morphology: The a  rhythm is usually characterized by a 

rounded or sinusoidal waveform.

3. Spatial Distribution: The a  rhythm is a clear manifestation of 

the posterior half of the brain and is usually found over occipi­

tal, parietal, and posterior temporal regions. The a  rhythm may 

extend into central areas, the vertex, and also the mid-temporal 

regions. When the brain central region is strongly involved in 

a task, the a rhythm can be distinguished from the co-existing 

fi rhythm. In that case, keeping the eyes opened will highly at­

tenuate the a rhythm and the remaining signal would be the n  

rhythm. The a  rhythm may occasionally extend slightly to the 

frontal electrodes.
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4. Reactivity: The posterior a rhythm is attenuated by an influx of 

light (eye-opening), other afferent stimuli, or mental activities. 

The degree of reactivity varies; the a rhythm can be blocked or 

attenuated. The a  attenuation due to tactile or auditory stimuli 

as well as increased mental activity is usually less pronounced 

than the attenuation caused by eye-opening.

• The/i rhythm

1. Definition: The Rolandic (central) ji rhythm is in frequency range 

of the or activity, but its spatial distribution and physiological sig­

nificance are different.

2. Wave Morphology: The n  rhythm has a sharp (spiky) negative 

peak and rounded positive phase.

3. Spatial Distribution: /i rhythm is essentially confined to central 

area of the brain. The // rhythm which is produced by movement 

is unilateral at the beginning of movement and then it becomes 

bilaterally distributed over the cortex.

4. Reactivity: // rhythm is bilaterally attenuated by real or imagery 

movements [31]. However, this attenuation is more pronounced 

on the motor region contralateral to the side of movement [4,5], 

prior to the onset of muscular contraction. It is reported [4] that 

there are delays of 50 ms to 7 seconds (on average 1.5 seconds) 

at the onset of // blocking effect after the initiation of the move­

ment of the contralateral finger with the ipsilateral lagging be­

hind the contralateral response.
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Figure 2.3. Readiness potentials recorded from C3 and C4 electrodes be­
fore left and right finger movement.

2.3.3 Readiness potentials

The readiness potentials (RP)5 are the transient postsynaptic responses of 

the main pyramidal peri-central neurons [34]. They lead to negative EEGs 

over the primary motor cortex areas during motor preparation. The RPs 

show negative peaks about 120 ms before the movement onset. They are 

often considered for self-paced (subject-paced) BCI. RPs are spatially lo­

calized in the contralateral hemisphere with respect to the moving finger. 

RPs are easily detectable.

Fig. 2.3 shows the averaged EEG recordings from C3 and C4 electrodes 

in a typical BCI scenario of self-paced tapping with left and right fingers. 

The EEGs used for this demonstration were acquired from the BBCI team 

in Berlin.6 The sampling rate was set to 1000 Hz.

For the left finger movement (the left subplots in Figure 2.3), the av-

5 Also called Bereitschaftspotentials in the clinical literature [34].
6The dataset was recorded for the BCI competition HI. It is available in Berlin BCI 

webpages http : / /id a .f irst.fhg.de/project s/bci/competitioniii.
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Right Index Tapping Left Index Tapping

Figure 2.4. Generation of the readiness potentials for left and right index 
tapping from 900 ms to 500 ms before the EMG onset; see the footnote. 
The colorbars are in pV.

- 5 0 0  ms

eraged cortical potential under C4 electrode is considerably smaller than 

that of C3 electrode. This shows higher engagement of the contralateral 

hemisphere than the ipsilateral hemisphere. In the right finger movement 

case (the right subplots in Figure 2.3), the averaged readiness potential is 

also asymmetrically distributed where C3 presents a more negative poten­

tial than C4. The higher engagement of the contralateral hemisphere rather 

than .the ipsilateral hemisphere is evident.

Interestingly, the spatial distribution of RPs changes from approximately 

900 ms to 120 ms before the movement onset. This can be characterized by 

an increasing lateralization of the RPs with larger amplitudes over the con-
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Figure 2.5. Generation of the lateralized readiness potentials for left and 
right index tapping from 300 ms to 120 ms before the movement onset; see 
the footnote in the previous page. The colorbars are in yuV.

tralateral motor area with respect to ipsilateral hemisphere [34], as shown 

in Figs. 2.4 and 2.5. The RP signals have been frequently utilized for BCI 

with various spectrum estimation for preprocessing and feature extraction 

and machine learning methods for classification [15,35]. However, to the 

author’s best knowledge, this transition has not been explored for BCI ap­

plication. For many years, there have been debates in the neuroscience com­

munity on whether the RPs in the supplementary motor area (SMA) of brain 

are generated earlier than the activities in the primary motor areas (M l) or 

vice versa, see Jahanshahi et al. [36] and the references therein for further 

details.
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Neuroscientist believe that the amplitude of such SMA activity is ex­

tremely small and might not be seen unless a grand average signal over 

many subjects is investigated. However, the single trial detection of such 

activity can be a challenge from the point of view of signal processing.

2.4 Real vs. imagery m ovem ents

Imagination of the movement compared to real movements made by healthy 

subjects results in a relatively similar EEG ERD/ERS pattern but with smaller 

amplitude [4,5,37]. Strong functional similarity between real and imagery 

movements was observed in several studies such as in [4,38].

In [37], it was shown that the paralyzed subjects have difficulties in op­

erating the BCI (due to missing the sensory feedback). However, they show 

neurophysiological features in the EEGs healthy subjects do. However, the 

below issues should be considered:

1. Facial movements, such as tongue or jaw activities, cause electromyo­

graphy (EMG) signal interference in the measured EEG. Thus, EEG- 

controlled BCI for imagination of tongue movements must be well 

restored from the EMG artifacts in a pre-processing stage. Since the 

temporal and spectral characteristics of the EMG and EEG signals are 

similar, this filtering is challenging.

2. It has been shown [1] that EEG-based BCI is highly affected by brain 

background activities, in particular, by the concentration. During 

imagination of a movement, the concentration is usually much higher 

than during a real movements [1]. As the subject believes that the 

quality of the recorded EEGs is increased with concentration, high 

amplitude background (movement irrelevant) brain activities are in-
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duced into EEGs. These activities are spread over frontal lobe and 

sensorimotor cortex.

3. Real movements can be easily controlled for their correctness and 

timing. However, BCI based on imagery movements may suffer from 

the co-generated EMG signal.

4. It is not easy for the healthy subjects to produce EEGs suitable for 

BCI during imagery movements [39]. The main problem is that “why 

should the subject be keen on controlling something by his thought 

and not with his hands if he/she is healthy?” However, some studies 

such as in [39] have reported that after multiple training sessions, the 

imagery movement becomes a skill for the subject.

2.5 Event related de-synchronization

A phenomenon in BCI that has been well investigated for the past 20 years 

is the EEG de-synchronization [4]. This phenomenon has been first reported 

by Berger in 1930 [40] and is of interest particularly in the /i and /? bands.

Brain signals change from a synchronized (high amplitude) into a de­

synchronized (low amplitude) mode and vice versa. Various frequency 

bands can show different ERD patterns. Changes of oscillatory activity 

in relation to internally or externally paced events can be either time- and 

phase-locked (evoked) or time-locked but not phase-locked (induced). The 

former is called an event related potential (ERP) and the latter is known as 

the event related (de)-synchronization [5]. The ERD/ERS can be described 

by the spatiotemporal pattern as well as by the frequency specificity [5].

An important task for developing the BCI based on ERD/ERS is to 

search for the most reactive frequency components in different electrode
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signals. Therefore, effective methods of processing and visualization of sig­

nificant ERD/ERS patterns in multi-channel EEG and ECoG data are re­

quired essentially.

In this chapter, a review on the importance of ERD/ERS in BCI is pre­

sented. A conventional method for visualization of ERD/ERS resulted by 

averaging of the recorded EEGs is then explained.

The or band rhythm demonstrates a relatively widespread attenuation 

during the perceptual, judgement, and memory tasks. Interestingly, an in­

crease in task complexity increases the magnitude of ERD. It has to be noted 

that ERD is measured in percentage of power relative to the reference inter­

val. To make sure that the power in the reference interval is in a rest level, 

the time difference between two consecutive events should be randomized 

and not be less than several seconds.

It is important to note that a  de-synchronization is not a unitary phe­

nomenon. For instance, two distinct patterns of de-synchronization in a  

band may be observed. Lower a  de-synchronization (below 10 Hz) is ob­

tained in response to almost any type of stimulus. It is topographically 

widespread and probably reflects the general task demands. Upper a de- 

synchronization (10-13 Hz) is topographically restricted to the motor cor­

tex. It develops during the processing of sensory-semantic information. The 

degree of synchronization is highly related to semantic memory processes.

In addition to sensory and cognitive processing, a voluntary movement 

also results in a circumscribed de-synchronization in the upper a  and lower 

ft rhythms, localized over the sensorimotor areas [41]. The de-synchronization 

commences over the contralateral sensorimotor cortex and becomes sym­

metric after the execution of the movement. It is interesting that the time 

onset of the contralateral n de-synchronization is almost identical for the
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brisk or slow finger movements, i.e. approximately 2 seconds prior to the 

movement onset [42].

The index movement is accompanied by a pronounced ERD in the con­

tralateral and a very low amplitude ERD in the ipsilateral hemispheres but 

the movements of other fingers are preceded by less lateralized ERDs [42]. 

The contralateral pre-movement ERD is not only similar in the brisk and 

slow movements but also with single index and hand movements. The cir­

cumscribed hand area \i ERD can be found in nearly every subject [41] 

and [43].

2.6 Post-m ovem ent synchronization

The post-movement fi synchronization (PMBS) is another example of the 

induced oscillatory brain signals. The PMBS displays several interesting 

features and has been widely utilized in BCI [4,5,41,43].

• The PMBS is a relatively robust phenomenon and found in nearly 

every subject after finger or foot movement. It is dominant over con­

tralateral primary sensorimotor and has a maximum approximately 

600 ms after the movement onset.

• Induced ft oscillations recorded from both hemispheres show a lack of 

bilateral coherence. The bursts can include frequency components 

either in a single band or in multiple bands. The reactivity of specific 

fi frequency components is subject dependent. For finger movements, 

the largest PMBS is found in the 16-21 Hz band and for foot move­

ments, in a slightly higher band of 19-26 Hz [44].

• The PMBS signals produced by the brisk or slow finger movements 

are of similar amplitudes. This is of specific interest because brisk
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and slow movements involve different neural pathways.

• The PMBS is significantly larger in amplitude with hand movement 

as compared to finger movement. This can be interpreted by noticing 

the significantly longer movement time for hand as compared to finger 

movement.

2.7 Interpretation of (de-)synchronization in the  a  and bands

Increased cellular excitability in thalamo-cortical systems results in a low 

amplitude de-synchronized EEGs. Therefore, EEGs can be interpreted as 

electrophysiological correlates of the activated cortical areas involved in 

processing of sensory information or production of motor behavior [5].

Involvement of larger neural networks or more cell assemblies results in 

an increased ERD. Factors contributing to such an enhancement of the ERD 

can be the increased task complexity and the efficient task performance [45, 

46].

Explicit learning of a movement sequence such as key-pressing with 

different fingers is accompanied by an enhancement of the ERD over the 

contralateral sensorimotor cortex [5]. These findings strongly suggest that 

the activity in the primary motor cortex increases after the task has been 

learned [5].

2.8 Visualization of significant ERD/ERS patterns

The calculation of ERD/ERS time courses can be performed in different 

ways. Each way requires a number of event related EEG or ECoG trials 

which are time-locked to a stimulus. Standard ERD/ERS calculation is car­

ried out by bandpass filtering of each trial, squaring the samples, and the
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subsequent averaging over trials and sample points. The ERD/ERS is de­

fined as the power decrease (ERD) or increase (ERS) relative to a specific 

reference interval, i.e. several seconds before the movement onset. Since 

evoked potentials can mask the induced activities, it is often useful to sub­

tract the mean of the data for each sample before squaring. This procedure 

assumes that the computed mean values are temporally and spatially un­

correlated with the ERD/ERS phenomenon; although due to non-stationary 

nature of EEGs such assumption is far from reality. However, since this 

procedure is widely accepted [4], it is followed in this dissertation. The 

ERD/ERS phenomenon can be visualized as below

where N  is the total number of trials, jc,7 is the y'-th sample of the i-th trial 

of the bandpass filtered data, and Xj is the mean of the y'-th sample averaged 

over all bandpass filtered trials. R is the average power in the reference 

interval [r0, r0 + k]; for further details see [5].

One of the most critical issues in multi-channel ERD/ERS analysis meth­

ods is the appropriate selection of the frequency bands where ERD/ERS 

happens. Such selection is difficult since it requires a thorough comparison 

of several ERD/ERS time courses. In order to overcome this problem, a de­

tailed ERD/ERS analysis of partially overlapping frequency bands covering 

the entire frequency range of interest can be made so that all the resulting 

ERD/ERS time courses of a channel are combined in one single map. Thus,

(2.8.1)

(2 .8.2)

A j - R  
ERDj = -±—  x 100%

R (2.8.3)
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an ERD/ERS map is a matrix whose rows correspond to ERD/ERS calcu­

lations for different frequency bands. This map can be easily displayed as 

an image giving detailed information about ERD/ERS activity in various 

frequency bands.

As shown in [5], a frequency range of 7 Hz to 34 Hz and a frequency res­

olution of 1 Hz should be sufficient to cover the most important ERD/ERS 

patterns in the EEG. Pfurtscheller et al. in [5] selected different frequency 

ranges for different frequency bands; for a  frequencies a bandwidth of 2 Hz, 

for lower fi frequencies a bandwidth of 4 Hz, and for higher /? frequencies a 

bandwidth of 8 Hz were assigned. These values were chosen in [5] to have 

relatively higher resolutions in the a  band than in the ft band. Note that, the 

selection of frequency ranges and bands depends on the application.

Only statistically significant patterns should be displayed to improve the 

clarity of the maps. Most statistical techniques assume that the size of the 

available set of sample values is sufficiently large. Since the probability dis­

tributions of EEG signals are not known and the number of trials may be 

rather limited, especially if only artifact-free trials are considered, the use 

of standard statistical methods to calculate the significance of the ERD es­

timates is questionable [47]. Bootstrap techniques are an alternative to the 

asymptotic methods [47,48]. The basic idea is to replace the unknown popu­

lation distribution with the known empirical distribution. Various properties 

of the estimator such as the confidence intervals are then determined based 

on this empirical distribution [47].

2.9 Common spatial patterns

A popular approach to increase a statistical distance between the classes 

(left and right movements) in the feature space is the use of the common
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spatial patterns (CSP) [49] and [50]. The EEG patterns corresponding to 

the left and right finger movements are localized within the contralateral 

motor cortex, therefore, these patterns can be used to identify the effector. 

CSPs find a common describing factor to both classes as a way to maximally 

discriminate between the left and right finger movements.

In mathematical terms, the procedure for finding suitable CSPs can be 

explained as follows [20]. Let X* = (X*,), n = 1, • • • ,N, and t = t0, - ■ ■ ,T  

denote the (potentially bandpass filtered) EEG recording of the &-th trial, 

where N  is the number of electrodes. Correspondingly, Yk e {1,2} repre­

sents the class-label of the fc-th trial. The two class-covariance matrices are 

then given as

where ['] denotes the transpose operation. The CSP analysis consists of 

calculating a matrix W and diagonal matrix D such that

WEiW' = D,

This can be accomplished by first, whitening the matrix Hi + H2, that is 

determining a matrix P such that

y    y k y k '2-1 -  A Afcj*=1

y    y k y k f^2 ~ A At yk=2 (2.9.1)

W I^W ' = I -D . (2.9.2)

F(Hi+H2)F' = h (2.9.3)

This decomposition can always be found due to the positive definiteness of 

Li + H2 and second, defining Si = PEiP' and S2 = P ^ F ,  and calculating
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an orthogonal matrix R and a diagonal matrix D such that

S' = RDR'. (2.9.4)

Si + S2 = I results in S2 = R(I -  D)R'. Note that the projection given by the 

p-th row of matrix R has a relative variance of dp (/?-th element of D) for 

trials of class 1 and a relative variance of 1 -  dp for trials of the class 2. If 

dp is close to 1 the filter given by the p-th row of R maximizes variance for 

class 1, and since 1 -  dp is close to 0, minimizes variance for class 2. The 

final decomposition that satisfies (2.9.2) can be obtained from

using the decomposition matrix W which acts as a spatial filter and projects 

the transforms the recorded EEGs X* to Z*. Then, the classic feature extrac­

tion methods are implemented on the Z*. Incorporation of common spatial 

patterns in BCI leads to an enhancement in the class separability measures 

and ultimately results in higher correct classification rates. For instance, the 

authors in [20] and [50] have achieved more than 90% classification rate 

using CSP combined with a linear discriminant (LDA) classifier.

2.10 Preliminary Investigations

Based on the algorithm in [5], the ERD is computed for a subject during left 

finger imagination. To suppress the effect of noise, 45 trials are averaged

W = R'P. (2.9.5)

EEG recordings are projected by

z* = wx* (2.9.6)
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Figure 2.6. ERD for left finger imagination-vertical line shows the onset of 
imagination.

and the results are demonstrated. The details of EEG data used here will be 

fully reported in Chapter 3.

Fig. 2.6 demonstrates 1.5 seconds ERD from 0.5 seconds before the 

imagination onset to 1 second after that. The upper figure shows the up­

per a  band between 10-13 Hz ERD and the lower figure is that of ft band. 

When the subject imagines to move his/her left index, the ERD happens 

pronouncedly in the right hemisphere at the C4 electrode. In the lower plot, 

the post-movement ft synchronization at C4 is relatively higher than that of 

C3. The ERD/ERS has been widely used in BCI; for details refers to [5] 

and [15] and the references therein.

Unfortunately, for all the subjects the clearest ERD/ERS does not al­

ways happen at the same electrode, the same time, and the same frequency 

band. Although it has been shown [4] that ERD often happens at C3 or 

C4 electrodes in the upper fj. band before the motion imagination and lasts 

for approximately 1.5 seconds after the movement onset, it may not be the 

case for every subject. The brain background activity which is attenuated



Section 2.10. Preliminary Investigations 35

by multi-trial averaging would remain as the main interference in single trial 

EEG processing. The ERD for 2 subjects for different electrodes have been 

plotted in Fig. 2.7 and Fig. 2.8. As in Fig. 2.6, the onset of imagination is at 

time 0 seconds. In Fig. 2.7(a), where the subject imagines left finger motion, 

it is evident that ERD happens at electrodes C2, C4, and C6 in the contralat­

eral hemisphere. In contrast, as in Fig. 2.7(b), ERD is not pronounced for 

the same subject during right index imagination. This would degrade the 

BCI results. Although, still ERD for C3 is greater than that for C4, how­

ever, other electrode signals on the left hemisphere do not show such pattern 

when compared to signals recorded from the right hemisphere. It should be 

mentioned that the EEG classification for BCI is mainly performed based 

on the relative amplitudes of signals recorded from C3 and C4 electrodes. 

Fig. 2.8 shows that a relatively acceptable ERD (suitable for classification) 

happens at another electrodes; for left and right finger imaginations accept­

able ERDs manifest at is best at C6 and Cl, respectively. Furthermore in 

Fig. 2.8(a) and (b), ERD has happened respectively in 10-13 Hz and 7-9 

Hz band for left (Fig. 2.8(a)) and right (Fig. 2.8(b)) finger imaginations. 

Note that, even one subject can show different ERD/ERS patterns in EEGs 

recorded in different days [4]. Therefore, it can be concluded that ERD is 

not the best solution to BCI.

Based on the above preliminary investigations, it can be concluded that 

new measures of brain activity are needed for BCI. These measures should 

ultimately resolve the inherent problems of ERD/ERS approach.
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Figure 2.7. ERD for subject three from NIPS2001 BCI dataset during (a) 
left and (b) right finger imagination.



Chapter 3

PARALLEL FACTOR 

ANALYSIS

This chapter introduces a simple parallel factor analysis- (PARAFAC) [51] 

based approach for BCI where the spatio-tempo-spectral characteristics of 

the single trial EEGs are jointly considered. First the time-varying sin­

gle trial EEG spectmms are decomposed into their space, time, and fre­

quency signatures using PARAFAC. Then, the left and right index finger 

imagery movements are differentiated by interpretation of these signatures. 

PARAFAC is capable of identifying the ERD/ERS phenomenon, moreover, 

it can extract the brain background activity. By omitting the factor which 

does not correspond to the finger movement and utilizing a support vector 

machine (SVM) classifier, the left and right index movements are distin­

guished where the feature is the spatial distribution of the movement trig­

gered n rhythm.

This chapter initially describes the motivation of the developed STF ap­

proach for BCI. The construction of the STF models for EEG measurements

38
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is then explained. The sufficient and necessary mathematics of multi-way 

analysis and PARAFAC are presented next. The results of the approach on 

real EEG measurements are reported. Finally, discussions and concluding 

remarks are presented.

3.1 Introduction

Several EEG processing approaches have been addressed to enhance the 

performance (correct classification rate) of BCI. Most of these studies rely 

on the temporal or spectral features of the preprocessed EEGs [52]. In [53], 

the spatial as well as temporal and spectral information have been con­

sidered by means of multivariate autoregressive (MVAR) modeling of the 

multi-channel EEG. An approach based on the analysis of joint space, time, 

and frequency features of EEG during finger movement is introduced in [54] 

where the EEG signals are classified with respect to the correlative time- 

frequency representations (CTFRs) of different channels. Existence of ir­

relevant potentials over the scalp in parallel with the motion related signals 

restrains the performance of BCI [55]. Background activity of the brain, 

motion and ocular artifacts are of such interferences.

PARAFAC-type algorithms have a long history in EEG decomposition. 

An early study in [56] used the PARAFAC in order to decompose the EEG 

signals. In [57], PARAFAC was reinstated and termed as “topographic 

component analysis” and employed to study the event related potentials 

(ERPs). The phrase “Topographic time-ffequency decomposition of the 

EEG” was adopted in [58] where the distinct activities in the STF domain 

(called atoms) were simultaneously characterized by their spatial, temporal, 

and spectral signatures. The authors in [58] extracted physiologically sig­

nificant activities in the EEG by imposing some mathematical constraints,
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e.g. the minimum norm and maximum smoothness conditions. In [59], it 

was shown that these conditions are not necessary.

It has been established [51] that unique multi-linear decomposition of 

multi-way arrays is possible using the PARAFAC. In this chapter, PARAFAC 

is used to decompose EEGs tensors in the space-time-frequency domain for 

BCI applications and to help with identifying the movement related activity 

as well as the background brain potentials. The inherent uniqueness of the 

PARAFAC solution leads to single trial EEG decomposition with minimum 

a priori assumptions [51]. It is worth noting that previous applications of 

PARAFAC in EEG analysis have only considered the averaged EEGs.

Various BCI studies have established that [4,5,54] cortical sensorimo­

tor systems are activated during imagery similar to real motions. It has 

also been well established that planning and execution of movement leads 

to a short-lasting amplitude attenuation following by amplification in the p 

rhythm (8-13 Hz) called ERD/ERS [4]. Since these brain activities are spa­

tially blurred during propagation from different mediums from the origin 

to the recording electrode on the scalp [31] (volume conduction), they are 

spatially smeared. Therefore, their exact localization is rather difficult and 

entails complex computations. Also, the clearest ERD/ERS, to be utilized 

in BCI, may occur at different frequency bands and different time points. 

Index finger movement produces a short-lasting amplitude attenuation fol­

lowed by amplification of the p  rhythm, mainly in the contralateral motor 

cortex [4].
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3.2 Signal acquisition and pre-processing

The EEG dataset used in this research has been made available by Dr. A. 

Osman at University of Pennsylvania for NIPS2001 BCI Workshop1. EEG 

signals were recorded by 59 channels positioned on the scalp according to 

the international 10-20 system; sampling rate was set to 100 Hz. A fifth- 

order Butterworth filter was used for temporal bandpass filtering from 5 to 

30 Hz, after baseline removal as introduced in (2.8.3). The baseline removal 

procedure is carried out in order to cancel out the drift potentials that would 

appear during the course of signal recording. This drift can be caused by the 

sub-optimal skin electrode contacts or sweating [4,31]. The subjects were 

asked to sit comfortably in front of a computer screen and asked to imagine 

either left or right finger movement for 180 trials, i.e. 90 for left and 90 

for right fingers. Each trial was started with a blank screen displayed for 2 

seconds and lasts for 6 seconds; details are shown in Fig. 3.1.

In each trial, the subjects were presented by two highly predictable tim­

ing cues for preparation and for execution of movements. During the former, 

which started at 3.75 seconds and lasted for 250 ms, a letter “L” or “R” (re­

spectively for left or right) appeared on the screen indicating the finger to 

be moved. The second cue began at 5.0 seconds and displayed an “X” for 

50 ms to instruct the user to start the imagery movement. The interested 

reader is referred to [60] for further details of the temporal structure of data 

recording. The supplied data files consist of 10 blocks of the synchronized 

movement experiment recorded from each of 8 subjects with a sampling rate 

of LOO Hz. While data is available for 8 classes (real or imagined for left, 

right, both, and none trials), only EEGs corresponding to the left and right 

index imaginations are available online. In this chapter, signals recorded 

lrrhe dataset is available in http : //liinc.bme.columbia.edu/competition.htm.



Section 3.2. Signal acquisition and pre-processing 42
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Figure 3.1. Time sequence of each EEG recording epoch.

from the first two subjects for the motor imagination case are considered for 

the classification. Hence, for each subjects 90 trials, i.e. 45 trials for each 

index, are considered.

3.2.1 Surface Laplacian filtering

Scalp recorded EEG signals are manifestation of the noisy spatio-temporal 

superposition of electrical activities originating from different brain regions. 

In order to accentuate localized activity and reduce electrical diffusion in 

multi-channel EEG the spatial filtering technique is used. This involves a 

spherical-spline interpolation procedure [61] in which the measured three 

dimension locations of the electrodes were used to fit a spline - a continu­

ous surface representing voltage across the scalp. The Laplacian derivative 

of EEGs at an electrode site is the second derivative of the spline function at 

that location. Because it is related to rate of change over space; sharp spa­

tial gradients in voltage contribute more to the filtered EEG while gradual 

changes do less. This amplifies the contribution of nearby electrical sources 

and diminishes that of distant ones.

Assuming that the distances from a given electrode to its four directional 

neighboring electrodes are approximately equal, the surface Laplacian fil­
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tered EEG signal of channel i at time t, E EG ^it),  is approximated as

EEG ^p(t) = EEG.it) ~ \ Y j EEGj (3.2.1)
m

where EEGi is the scalp EEG signal of the z'-th channel, and N-t is an index 

set of the four neighboring channels.

3.3 Continuous wavelet transform

The spectrum of a signal x{t) is given by its Fourier transform [31] 

x(t) <=> X (f)

X+ o o

x(f). exp(-j2ft)dt. (3.3.1)
cx>

However, the Fourier transform reveals temporal characteristics of frequency 

changes of the signal. This leads to the development of the short-time 

Fourier transform (STFT) [31]. In STFT, the signal is Fourier transformed 

within a finite time-window, giving a temporal resolution of the frequency 

components of the signal.

Unfortunately, the time-window is fixed so it limits the temporal resolu­

tions in the higher frequencies. The wavelet transform (WT) resolves this 

problem as

x(t) <=> X(a,T)
X +oo

x(r)¥* (a, r, t)dt (3.3.2)
00

where a and t  represent respectively the scale and shift in the time-frequency 

domain. A wavelet is a waveform of effectively limited duration and has an
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Figure 3.2. EEGs used in this BCI experiment have been recorded from the 
above 21 electrodes.

average value of zero. Scaling a wavelet simply means stretching or com­

pressing it, and shifting a wavelet means delaying or hastening its onset.

The wavelet analysis is a widely used in EEG noise reduction and feature 

extraction. Wavelets are separated into continuous and discrete wavelets. A 

wavelet is called continuous if it can be scaled and shifted to any value; 

complex Morlet wavelet is an example of continuous wavelets [62].

3.3.1 Complex wavelet transform

Each trial lasts for 6 s as in Fig. 3.1, but not all the time points during 

this period contain beneficial classification information of the different EEG 

patterns regarding left- and right index imagination.

The multi-channel wavelet transforms the EEG measurements of channel 

x time into a multi-way arrays of channel x time x frequency. To setup a 3- 

way array, in the present study, the wavelet transform is utilized to provide 

a time-varying representation of the energy of the signal in // band using 

the 21 electrodes over the sensorimotor cortex, i.e. FC5, FC3, FC1, FCz, 

FC2, FC4, FC6, C5, C3, C l, Cz, C2, C4, C6, CPS, CP3, CPI, CPz, CP2, 

CP4, CP6, see Fig 3.2.

Following the notation used in [59], the complex Morlet wavelets w(t, / 0)

Continuous wavelet transform
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can be expressed as [62],

-z2
w(t, f 0) = A exp(— ) exp(2zX/oO (3.3.3)

2of

where o’/  = 1/2ncrt, and A = (crr V^)~1/2- The trade-ofF ratio ^  = 7 was 

selected to create the suitable wavelet family for EEG processing as in [59]. 

Although the estimation of the frequency at a given time is not exact and 

the whole analysis is slightly influenced by the chosen wavelet, the wavelet 

analysis is considered a very powerful tool in the analysis of the temporal 

evolution of the EEG spectrum.

The time-varying energy E(t,fo) value of EEGLap{t) at a specific fre­

quency band is computed as the squared norm of the convolution of a com­

plex wavelet of the signal E E G ^ i t )

X ix jxx  = £(fi /o) = /o) * BEGUp0) I2 (3.3.4)

where E E G ^it)  are the Laplacian-filtered multi-channel EEG signals. It is 

important to notice the classic uncertainties in EEG measurement itself and 

also in the CWT. The CWT has edge artifacts because the wavelet might 

not completely be localized in time. It is useful to introduce the cone of 

influence (COI) [62] to rectify the edge effect problem. The COI can be 

defined as the area in which the wavelet power caused by a discontinuity at 

the edge has dropped to exp(-2) of the value at the edge [62]. Convention­

ally, the EEG measurement error is neglected [5]. In order to surpass the 

second problem, the time window of interest in BCI is located in the centre 

of the COI. x I xJ>cK is a 3-way matrix indexed by I  channels and x 7C-th 

component of the estimated energy in the time-frequency domain. The time 

window from 2.75 seconds to 5.75 seconds for a sampling rate of 100 Hz
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and the frequency band from 8 to 13 Hz are chosen. PARAFAC extracts the 

underlying factors.

The key idea behind this research is in considering the EEGs as the 

superposition of electro-potentials of the neurons measured by scalp elec­

trodes. EEGs may be represented by using the linear models which are 

defined in space, time, and frequency, in order to investigate their spatial, 

temporal, and spectral dynamics. Similar to [59], it is here assumed that dis­

tinct local EEG activities (on the scalp) are uncorrelated with the activities 

of the neighboring areas. EEGs can be modeled as the sum of the distinct 

components where each distinct component is formulated by the product of 

its basis in space, time, and frequency domains.

In order to decompose the EEGs into their spatial, temporal, and spectral 

signatures, the three-way PARAFAC is applied to the three-way EEG data 

= X(1 : J , 1 : ST, 1 : 7C)2 where J ,  and 9C are respectively 

the number of EEG channels, time instants, and frequency bins. Therefore, 

U/xF, D/xF, and SKxF are respectively the spatial, temporal, and spectral 

signatures of x IxJy<K.

While retaining the consistency of formulation, the superscripts may oc­

casionally be dropped to simplify the presentation. The main intention is to 

keep the notation as simple as possible while clear and helpful. This nota­

tion is also kept Chapter 4. However, since Chapter 5 is devoted to a novel 

STF model of EEGs, a more detailed notation will exploited.

2Note that the M a ila b  matrix notation has been utilized.
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3.4 Multi-way arrays

Multi-way arrays are higher-order tensors or multi-dimensional matrices [51]. 

They are simply sets of data and their elements can be arranged as

X i i i i h —in ’ 1?***5 - f  h  ^2  1 »  * '  * 2 »  3̂ 1 ? * ' *  » - ^ 3 ,  ‘ > 4  f  ^ n

X €  ^ ^ ix^2 X-r3 X-xJ„ ^  ^

Notice that the vectors and the matrices are two special cases of multi-way 

arrays.

3.4.1 Unfolding

The unfolding operation unfolds one of the ways of the multi-way data 

onto another. For instance, consider the three-way array XJx^ x<7C defined 

by x^;  i -  1, • • • , J ,  j  = 1, • • • , Sf, k = 1, • • • , 7C. Unfolding the third way 

of XJx^  onto the second way gives

X I xJ x<k -> X TxJ(Jc. (3.4.2)

Unfolding the second way of X lxjx^  onto the third way gives

X IXJyfK -> XIxfKJ. (3.4.3)

For a three-way array there are six different options of unfolding XJxjrx7C 

into a matrix as shown in Fig 3.4.1.

The unfolding can be performed sequentially. For instance, a four-way 

array can be unfolded into a vector by three consecutive unfolding opera­

tions:
XIxJxXx£ TglXxJyX £ IJXJK „  4 4)
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I x J x K

*1XJK f

Figure 3.3. The six ways of unfolding the three-way array into a matrix.

Figure 3.4. The graphical representation of the PARAFAC model. The 
model decomposes the multi-way array into a sum over factor effects per­
taining to each dimension. This figure is adopted from [51].

Unfolding multi-way data enables manipulation of the data using normal 

vector and matrix calculation.

3.5 Parallel factor analysis

The two most used forms of decomposition of multi-way arrays are the 

PARAFAC and the TUCKER model [63]. Where the PARAFAC decompo­

sition results in interpretable components, the TUCKER model is a convinc­

ing multi-linear generalization of the singular value decomposition [63]. 

Furthermore, the TUCKER model enables evaluation of the PARAFAC by 

using the so-called core consistency diagnostic (CORCONDIA) measure.

D

s
1 + • •  - +
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The PARAFAC model is intrinsically related to the principle of parallel 

proportional profiles [63]. The graphical representation of the PARAFAC 

model is shown in Fig. 3.4 - adopted from [51].

Suppose that the matrix X(1) can be adequately modeled by US' where 

U and S have same number of columns. Thus,

x (1) = USr = Uis[ + U 2s '2 +  • • • + UpSp = UiS'^! + U2S2^2 + • • • +

(3.5.1)

X = UD(1)S where D(1) = I. (3.5.2)

If another matrix X(2) can be described by the same matrices U and S but 

only scaled

X(2) = US' = UD(2)S (3.5.3)

where D(2) is a diagonal matrix. Suppose that the above procedure can be 

repeated for F times, i.e, X(F) = US' = UD(F)S. Then the PARAFAC model 

which was independently proposed by Harshman [56], is expressed by

F
Xijk ^  j uixdjXskX (3.5.4)

,1=1

where F is the number of components and «, d, and s are elements of U, D, 

and S. Due to the symmetry of the components in (3.5.4) the index order 

of the components does not matter. A general formulation of the model is 

given as

X® = UD(/)S (3.5.5)

where

X = [Xx X2 . . .  XPY (3.5.6)

and D* is diagonal.
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Finally, the common model is expressed in a more compact form by 

using Kronecker product and its columnwise version, i.e. the Khatri-Rao 

product. The Kronecker product is computed as

anB

a m i B  • • • a ^ B

(3.5.7)

and the Khatri-Rao product is given as [63]

A©B = [ai®bi a2®b2 a/<8>b/] (3.5.8)

whereA = [ai a2 ••• a/], B = [bi b2 ••• b/].

Therefore, PARAFAC model is represented as

XIkTK = UJx r(S7Cxr O Djrxr)' + Ejxjnc (3.5.9)

where EI xJ<k represents the modeling error.

The PARAFAC model can be generalized to higher orders. The higher 

order PARAFAC is given by

F

= X  “w “S  • • • + (3.5.10)
A=1

where F is the number of factors. The fourth order PARAFAC model will 

be investigated in Chapter 5.

3.6 Core consistency diagnostic

The CORCONDLA can be applied to any model that is considered to be 

a restricted 3-way TUCKER model [51,63,64]. According to [64], the
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PARAFAC model given in (3.5.9) is a restricted 3-way TUCKER model 

since

Xixy*- = UG(S ® D)' (3.6.1)

where the elements of G are zero expect those lie on the super-diagonal. 

The super-diagonal elements are all one. The matrix G is the matricized 

version of tensor G on its first dimension, same as for Thus,

the model can be fitted using alternating least squares (ALS) optimization 

method as in [64] as

[U, G,S,D] = min ||X7xJ,r -  UG(S ® D)'||; (3.6.2)
U,G,S,D —

where ||.||| denotes the squared Euclidian norm.

PARAFAC model is valid if G with elements gdef  resembles the super- 

diagonal identity matrix T with elements tdef. A resemblance is the COR- 

CONDLA [51] computed as

CORCONDIA = 100 x ( l  -  ^ <=1 I  (3.6.3)

From (3.6.3), the PARAFAC model is perfect if the numerator simply be­

comes zero giving 100% consistency. A core consistency well below 70%- 

90% indicates that either too many components are used or the model is 

misspecified [64]. The threshold is set objectively [64]; that is, depending 

on the application a certain value above 70% is selected by which inter­

prefable factors can be extracted. In [64], the value 85% is suggested as 

a proper value for diverse applications. Although the CORCONDIA is an 

effective measure of the number of factors to be included, Bro in [64] em­

phasizes that other measures such as sum of the squared residuals versus
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Algorithm 1 PARAFAC by ALS 
Require: Initial values for maxlter, D & S 
Ensure: iter = 0, ASSE > e & SSEo = 0 

while iter < maxlter & ASSE > e do 
Z =  (S O D)
U = X(JXĴ Z (Z 'Z )t 
Z = (S©U)
D = XC7xrx)Z(Z,Z)t 
Z = (D ©U)
s  = xifJCxIJ)z(Z'zy
SSE/r,r = ||X<J^ - U ( S o D ) ' | |2  
ASSE = ISSEiter -  SSEiter_i| 

end while

the number of factors, inspection of the parameters and cross validation can 

be taken into account. In this chapter, the conventional value for threshold, 

85%, is selected.

3.7 PARAFAC by alternating  least squares

The implementation of PARAFAC is based on the alternating least squares 

(ALS) optimization. It follows quite simple steps; randomly initialize all 

model parameters, update each parameter by minimizing a cost function 

with respect to that parameter while keeping all other parameters fixed, con­

tinue the above procedure until a minimization criterion is met.

Consider the PARAFAC model defined in (3.5.9); given the cost func­

tion as [U, S, D] = minu,s,D \\XTxJ7C -  U(S 0  D)'|g, the ALS algorithm for 

PARAFAC is implemented as in Algorithm (1) where t  denotes the Moore- 

Penrose inverse operator and the absolute value operation is shown by |.|.

3.8 BCI and parallel factor analysis

Traditionally, decomposition of EEG into its constituent components has 

been carried out using the independent component analysis (ICA). How­
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ever, the assumption that the brain sources are mutually independent is ques­

tionable [31]. Suppose that the motion related potentials are synchronous, 

highly localized, and uncorrelated from the background neuronal activi­

ties. This assumption leads to exploit the PARAFAC. The noteworthy dis­

tinction of PARAFAC is that the decomposition of multi-way data using 

PARAFAC is unique without further orthogonality or independence con­

straints [63]. Multi-channel EEG data are transformed into time-frequency 

domain by CWT. The increase of dimensionality gives the 2-way array, the 

matrix of space-time, an extra modality of frequency yields a 3-way array of 

space-time-frequency. ICA can merely analyze such data by unfolding some 

modalities into others, reducing the multi-way array again into matrices. 

The unfolding process makes the interpretation of the results quite doubtful 

since it removes some specific information endorsed by those modalities. 

Consequently, rather than unfolding these multi-way arrays into matrices, 

the data is analyzed using the multi-way PARAFAC model. The main ad­

vantage of PARAFAC over ICA is that uniqueness is ensured making it 

unnecessary to impose constraints such as statistical independence. Using 

ALS, as the most common method, PARAFAC model parameters are esti­

mated. In ALS, in order to decompose a tensor to parallel factors, a cost 

function (normally the squared error) is minimized as

[ t ,  §, D] = arg min \\X1kTK -  VTxT(S'KxT © \>T/rf )’\\l (3.8.1)
U,S4>

which corresponds to optimizing the maximum likelihood of a Gaussian 

noise model. The algorithm can be initialized in several ways, e.g. by 

randomly defining all parameters and stopping when all parameters have 

converged [63].
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3.9 Classification results

Based on the above formulations, the EEG recordings for the first two sub­

jects of the NIPS2001 competition, see Section 3.2, were classified in a 

two-class (left and right index imaginations) BCI framework. EEG record­

ings were firstly bandpass filtered between 5 Hz and 30 Hz, after baseline 

removal. Then, following [65], the surface Laplacian filtering algorithm 

was implemented in order enhance the SNR, Section 3.2.1. It is physiolog­

ically established [31] that during finger movement, either real or imagery, 

the motor cortex area is highly involved. Therefore, in order to reduce the 

computational complexity, the electrodes shown in Fig. 3.2 were selected. 

Then, the EEG recordings were wavelet-transformed in order to construct 

the three-way tensors as explained in Section 3.3.1.

The three-way tensors were introduced to PARAFAC and the STF fac­

tors for all of the trials were extracted. Examples of such extracted compo­

nents for left and right finger imagination have been demonstrated in Fig. 3.5 

to Fig. 3.8. Note that, in some cases such as Fig. 3.6 and Fig. 3.8, two com­

ponents were identified based on the CORCONDIA value. Here, the num­

ber of components was obtained when the CORCONDIA value was more 

than 85% [63]. As discussed previously, the factors demonstrating clear 

ERDs in the contralateral hemisphere were selected. The other factor, if 

extracted, represented

• the background brain activity; if it was spatially spread all over the 

scalp or had flat temporal or spectral signatures;

• the eye-blink or other types of ocular artifacts if it was confined to the 

frontal area;

• the background a  rhythm if it was in the occipital area,
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Figure 3.5. Left finger imagination; one component. The upper figure rep­
resents the spectral signature of the extracted component. The middle figure 
shows the temporal signature and the lower figure demonstrates the spatial 
distribution. The time onset of execution cue is at 0 seconds and shown by 
the vertical line.

and was eliminated from analysis. Note that, in Figs. 3.5 to 3.8, for the 

purpose of presentation, all the electrodes were included. However, as men­

tioned for the classification purposes only the electrodes over the sensory- 

motor cortex were considered.

3.9.1 Support vector machine classifier

The SVM classifier was utilized to classify the spatial signatures of the se­

lected factors. The goal of an SVM is to find an optimal separating hy­

perplane (OSH) for a given feature set. The OSH is found by solving the
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Left Finger Imagination-Two Components
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Figure 3.6. Left finger imagination; two component. The upper figures 
represent the spectral signatures of the extracted components. The middle 
figures show the temporal signatures and the lower figures demonstrate the 
spatial distributions. The time onset of execution cue is at 0 seconds and 
shown by the vertical lines.

following constrained optimization problem,

minzAri ( |||z |g  + C ZLi yd  

s.t. qt(z • gf -  b) + y, > 0 i = 1, 2, • • • , /. (3.9.1)

where / is the number of training vectors, € {1, -1} is a class label, and 

(•) is the dot product. The parameter z determines the orientation of the 

separating hyperplane, y, is the z-th positive slack parameter, and g, is a 

vector containing the features g, = [ / i (0 ^ (0  * * ‘fnii)]'-

The 21-elements feature vector g contained the spatial signature of the 

selected factor. The non-negative parameter C is a penalty term and can be
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Right Finger Imagination-One Component
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Figure 3.7. Right finger imagination; one component. The upper figure 
represents the spectral signature of the extracted component. The middle 
figure shows the temporal signature and the lower figure demonstrates the 
spatial distribution. The time onset of execution cue is at 0 seconds and 
shown by the vertical line.

considered as the regularization parameter. It is set by the user. A larger C is 

equivalent to assigning a higher penalty to the training errors. The optimum 

value for C is found such that it minimizes the cross validation error. The 

support vectors (SVs) are the samples from the training data set that fall on 

the separating hyperplane. It is desirable to have small number of SVs and 

a more compact classifier. The OSH (generally nonlinear) is then computed 

as a decision surface of the form

u
/(g )  = s g n ( ^  q,afK(g], g) + (3.9.2)

/ = ]

where sgn(-) e {+1}, g- are SVs, TCXg*, g) is the nonlinear kernel function (if
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Figure 3.8. Right finger imagination; two component. The upper figures 
represent the spectral signatures of the extracted components. The middle 
figures show the temporal signatures and the lower figures demonstrate the 
spatial distributions. The time onset of execution cue is at 0 seconds and 
shown by the vertical lines.

'7C‘(g ,̂ g) = g- • g the SVM is linear), and Ls is the number of support vectors. 

The kernel for a nonlinear SVM projects the samples to a feature space of 

higher dimension.

Among nonlinear kernels, the Gaussian radial basis function (RBF) de­

fined as ‘KXg?, g) = exp(-|g  -  gi\2/2p) is widely used due to quasi-Gaussian 

distribution of the data sets with large number of samples. In the RBF ker­

nel, p is an adjustable parameter governing the width (variance) of the ker­

nel. In the following, the results of the new hybrid PARAFAC-SVM scheme 

are described. The PARAFAC decomposes the EEGs and SVM classifies 

the extracted features.

For training the SVM classifier, 90 trials were randomly chosen; 45 from
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left and 45 from right index movement trials. The SVM was tested using 

the other 90 trials for each subject. This procedure was repeated for 100 

times in order to identify the performance in a cross-validation framework. 

The performance using two different kernels namely, Linear and RBF, was 

computed. In the case of linear kernel, the parameter C value was empir­

ically found to be 79. The average number of SVs was found on average 

(with corresponding standard deviation) to be 63 ± 3% of the training sam­

ples. The high values of C and the high number of SVs in the training stage 

show that high levels of overlap exist between the two classes in the feature 

space. The averaged achieved correct classification rate was approximately 

68 ± 5% for the first subject and 75 ± 4% for the second one. These per­

formances are relatively comparable to the results obtained in [65] for the 

same dataset where an average classification results of approximately 85% 

has been reported. It is worth noting that the performance of the classifier is 

highly dependent on the C. For instance, reducing C to 10 can degrade the 

performance by 20% to 30%, makes it below the chance level.

In order to increase the performance, the RBF kernel was utilized in the 

SVM classifier. Optimal values for C and p which maximize the correct 

classification rate were found by carrying out a grid search. The search 

suggested that p = 1 and C -  10 yield the maximum correct classification 

results. The average number of support vectors was reduced to 57 ± 2% of 

the training trials when using the RBF kernel. The best achieved averaged 

classification rate was 76 ± 6% for the first and 79 ± 4% for the second 

subject.

Based on the above results, it can be concluded that the STF modeling 

approach is not fully capable of extracting classifiable features. In next the 

section, the main reasons why the PARAFAC-based BCI can not produce



Section 3.10. Discussions 60

outstanding results are discussed.

3.10 Discussions

Despite the novelty of the presented method for BCI and its theoretical sim­

plicity, there are few issues that will be raised here. As mentioned earlier, 

careful analysis of the brain signals is of great importance for BCI. Although 

the STF decomposition of EEG spectrums may be called an effective ap­

proach for BCI, its application in real-world systems is questionable due to 

the following problems.

• The main issue in the application of PARAFAC for BCI is the com­

putational requirements for the continuous wavelet transform. More­

over, decomposition of multi-way array to their space, time, and fre­

quency signatures by using the ALS is a time consuming procedure.

• The second concern is the utilization of the STF signatures of EEGs 

for classification purposes. Unfortunately, they suffer from high intra- 

and inter-subject variability which can be observed in the temporal 

signatures.

• Moreover, when the movement related potentials are highly obscured 

in the background brain activity, e.g. the dominant 10 Hz potentials 

generated in the occipital lobe, the PARAFAC method cannot be ef­

fectively used. In these cases, application of Laplacian transform 

is strongly recommended [61]. However, the Laplacian filtering in­

creases the computations, which might not be of interest in real-time 

BCI applications.

• High dimensional feature space can lead to a complicated pattern 

recognition problem. Using unsupervised (non-)linear transforms such
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as (kernel) principal component analysis (PCA) or supervised ones,

i.e. sequential forward selection (SFS) [49], a sufficient number of 

features which provide acceptable classification results may be se­

lected. Evidently, the selected features should present effective class 

discriminatory information.

One might argue that, if the application of the STF modeling in single 

trial EEG processing is such troublesome, there is no use in implementing 

it. In next two chapters, it will be shown that how it is possible to make 

better use of PARAFAC and the STF modeling in extraction and removal of 

the commonly dominant artifact such as eye-blinks. It will be shown that 

the eye-blink artifacts may be readily identified by using the STF model of 

the contaminated EEG measurements.

3.11 Conclusions

In this chapter, an approach based on a hybrid PARAFAC-SVM method 

for a simple BCI paradigm was presented. Within this scheme, an EEG 

space-time-ffequency decomposition in fj. band (8-13 Hz) at the preprocess­

ing stage was developed. Using PARAFAC, two (or one) distinct factors in /i 

band for each EEG trial are extracted. The SVM classifier is utilized to clas­

sify the spatial distribution of the movement related factor. The movement 

related factor is identified by analyzing the spatial, temporal, and spectral 

signatures of the resulting factors extracted by PARAFAC.

The presented approach provides comparable results to previous studies 

on the same dataset.3 However, comparing to [65], the results of PARAFAC- 

based BCI are lower by approximately 10%. It is worth noting that the

3Visit http://liinc.bme.columbia.edu/competitionresults.htm for the results of the 
NIPS2001 BCI competition.

http://liinc.bme.columbia.edu/competitionresults.htm
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powerful SVM classifier was effectively utilized here, however, the weak 

classification performance is attributed to the overlap between the left and 

right classes in the feature space identified by PARAFAC.



Chapter 4

BLIND SIGNAL 

EXTRACTION AND 

PARAFAC

In this chapter, a blind signal extraction (BSE) scheme for removal of the 

eye-blink (EB) artifacts from EEG signals is developed. In this method, 

the conventional source extraction algorithm is provided with an estima­

tion of the column of the mixing matrix corresponding to the point source 

EB artifact. Hence, the BSE approach is called semi-blind signal extrac­

tion (SBSE). After the extraction of the EB source, the artifact-removed 

EEGs are reconstructed by deflation [66]. The vector corresponding to the 

spatial distribution of the EB factor, the a priori knowledge, is identified 

by fitting a space-time-frequency (STF) model to the EEG measurements 

using PARAFAC. This approach introduces the possibility of incorporating 

PARAFAC within the blind signal extraction framework for single trial EEG 

processing applications. Aiming at extracting the EB artifact, the SBSE ex­

ploits the spatial as well as temporal prior information during the extraction 

procedure. Experiments on synthetic and real EEG measurements confirm 

that the proposed algorithm identifies and removes the EB artifact from the 

raw EEG measurements.



Section 4.1. Introduction 64

This chapter begins with a detailed review of the classic methods for EB 

artifact removal. SBSE algorithm is then developed and its performance is 

evaluated. The results of the implementation of the proposed method on the 

synthetic data are compared to that of a recently published approach on ar­

tifact removal from EEGs in a spatially constrained blind source separation 

(SCBSS) framework [67]. The chapter is closed by the implementation of 

the proposed algorithm on EB contaminated real EEG recordings.

4.1 Introduction

Artifacts are due to (non-)cerebral potentials and contaminate the EEGs. For 

instance, for a BCI system based on the steady-state movement related po­

tentials (ssMRPs), the steady-state visual evoked potentials (ssVEPs) which 

are basically cerebral potentials are not desirable. The main problem with 

such physiologically generated artifacts is that they can be included in the 

analysis mistakenly. Therefore, there is a critical need to avoid, reject, or 

remove them. Non-physiological artifacts are mainly produced by the out­

side world, for instance the 50 Hz power-line noise or changes in electrode 

impedances which may be avoided by careful filtering.

Physiological artifacts arise from a variety of electro-mechanical sources 

within the body, e.g. brain itself or heart. Electrocardiography (ECG) ar­

tifacts may introduce a rhythmic activity into the EEG signal or the respi­

ration which causes very low frequency artifacts. Moreover, the skin con­

ditions alter during the course of recording and may degrade the quality of 

recording. For instance, sweating increases the impedance of electrode-skin 

contact and causes the drift artifacts in EEGs [68, Section 1].

Particularly for BCI, two physiological artifacts, ocular and muscular, 

are widely investigated [31]. EOG signals are generated by eye-movements
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or blinks [31]. Suppressing EBs over a sustained recording course is par­

ticularly difficult, mainly due to their amplitude which is on average ten 

times larger than the average amplitude of the cortical potentials. EBs may 

contaminate the majority of the electrode signals even those recorded from 

the occipital lobe. It has become very desirable to remove the EB artifacts 

without distorting the underlying EEG [31]. In this regard, a reliable and 

fast, either iterative or batch, algorithm for EB artifact removal is of great 

interest. The EMG signals generated by head, body, or jaw movements may 

also cause considerable disturbances in the measurements. Physiological ar­

tifacts such as EOGs and EMGs are much more challenging to handle than 

non-physiological artifacts. Generally, there are different ways of handling 

the artifacts in BCI systems:

• Artifact avoidance: The first is to instruct the subjects to avoid blink­

ing or moving their body during the EEG recording sessions. Al­

though, it might be very advantageous to have the data without any 

EB or motion artifacts, instructing the subject to avoid blinking or 

moving may introduce additional mental tasks.

• Artifact rejection: Artifact rejection refers to the process of elimi­

nating the artifact contaminated trials after the recording session. It 

presents important advantages over the artifact avoidance approach. 

It is easier for the subjects to participate in the experiments and per­

form the required tasks without concerning about the occurrence of 

the artifacts. Second, almost all the EEG processing software pack­

ages have the “automatic EB rejection” feature. Further monitoring 

of body movements is usually carried out by manual inspection of 

EEGs. Artifact rejection is the first choice in clinic. However, it is not 

applicable in real-time BCI.
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• Artifact removal: The procedure of identifying and removing artifacts 

from the recorded brain signals is generally called artifact removal. 

An artifact removal method should be able to detect and remove the 

artifacts. Common methods for removing artifacts in EEG signals are 

summarized here.

Linear filtering: It is easy to remove the artifacts localized in certain 

frequency bands or certain time periods which do not overlap with 

that of the neurological phenomenon of interest. For example, a sim­

ple lowpass filtering may remove the high frequency EMG artifacts. 

Also, the highpass filtering can remove the EOG artifacts if one is in­

terested in high frequency components of EEGs. However, the filter­

ing approach may not always remove EOG artifacts without distorting 

the desired information. Such methods are partly successful in BCI 

systems that classify features extracted from higher frequency com­

ponents of the EEG (e.g., // or fi rhythms). However, for BCI systems 

that depend on low frequency rhythms, this procedure is not appli­

cable since the spectrum of slow cortical potentials and EB artifacts 

overlap.

Linear combination and regression: The ocular artifacts can be re­

moved from EEGs by using a linear combination of the EB-contaminated 

EEG signals and an EOG channel as the reference channel. Briefly, 

this procedure estimates and removes the EOGs in a “least squares” 

sense. Mathematically, the coefficient B is calculated using (4.1.1), 

where Xt and Yt are the measured EOG and EEG potentials, respec­

tively, at time point i.

B = l ii(Xi -X )(Y i - Y )
( x . - x f (4.1.1)
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The resultant B is then used to correct the EEG according to (4.1.2). 

EEGfutj and EEGt are respectively the restored and measured EEG 

voltages at time point /, and C is the constant from the least squares 

equation, i.e., C -  Y -  [B x X \

EEGfiltj  = EEGi - B x  EOGt -  C (4.1.2)

Since, this technique falls out of this dissertation scope, the interested 

reader is referred to [69,70], and [71]. Besides, some general recom­

mendations on the effective use of regressors for EOG removals have 

been made in [72],

Blind source Separation (BSS): BSS-based methods are used in order 

to separate EEG recordings into uncorrelated or independent compo­

nents (sources). Among them, a few components are labeled as arti­

fact in accordance with some criteria. EEGs are then reconstructed 

after discarding those components [55]. BSS-based methods have 

been widely used to remove the EOG artifacts in clinical studies. The 

main advantage of using such methods is that they do not rely on the 

availability of the reference electrode signals. However, the draw­

back is that proper criteria should be defined to distinguish between 

the artifact and non-artifact components. Selection of the artifacts 

may be carried out by visual inspection or in an automatic frame­

work [55,73,74,74-79].

Principal component analysis: PC A by singular value decomposition 

(SVD) is used to reversibly decompose epochs of EEGs into multi­

ple linearly independent (temporally and spatially uncorrelated) com­

ponents. The result of SVD includes the components, expressible
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as time series waveforms, and the factors that determine how much 

each component waveform contributes to each EEG channel. By dis­

carding some of component waveforms from the linear combination, 

new EEGs may be reconstructed, differing from the original in de­

sired ways, for instance, EOG artifacts may be removed. In [80], an 

approach has been developed in which the factors that reconstruct the 

modified EEG from the original are stored as a matrix. This matrix 

acts as a spatial filter in order to remove EOG and ECG artifacts. 

However, it has been reported [80] that PCA cannot completely sep­

arate the EOGs from EEG signals when they have comparable am­

plitudes. The implementation of PCA is indeed easy and does not 

entail considerable computations. This has been the main reason for 

the popularity of PCA among the engineers and clinical researchers.

In summary, various methods for EB artifact removal from EEGs have 

been documented that are mainly based on blind source separation [31, Ch. 

2] and linear regression [81]. Approaches, such as trial rejection, eye- 

fixation, EOG subtraction, principal component analysis [71] and robust 

beamforming [77] have been also documented as having varying success. 

A hybrid BSS-SVM method for removing the EB artifacts along with a 

temporally constrained BSS algorithm have been recently developed in [55] 

and [74]. Moreover, several other methods based on H°° [82] adaptive- and 

spatial filters [80] have been presented in the literature for EB removal. It 

has been shown [31,55,74,76-79,81,83] that the regression- and BSS-based 

methods are most reliable approaches despite no quantitative comparison for 

any reference dataset being available.

Nonstationary EEG signals yield temporal and spatial information about 

active areas of the brain and have been efficiently exploited for localizing the
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EEG sources and the removal of various artifacts from EEG measurements 

using PCA. In [84], the PCA is utilized to decompose the signals into un­

correlated components where the first component, the component with the 

highest variance, represents the EB artifact. However, the use of PCA in­

troduces a nonuniqueness due to an arbitrary choice of rotation axes; this 

nonuniqueness may be resolved by introducing a reasonable constraint. Re­

cently, the ICA has been applied to solve this problem by imposing the 

statistical independence constraint which is stronger than the orthogonal­

ity condition exploited by PCA [85]. Moreover, by using ICA the energy 

(variance) information is lost and the EB component should be identified 

manually or in an automatic correction framework [55].

In these conventional methods prior assumptions such as independence, 

entropy, orthogonality, ortho-normality, non-negativity, and sparsity have 

been frequently considered in the separation process. However, such math­

ematical constraints do not usually reflect specific physiological phenom­

ena. In essence, there are two different approaches for incorporating prior 

information within the semi-blind EEG source separation (extraction); first, 

the Bayesian method [86] which introduces a probabilistic modeling frame­

work by specifying distributions of the model parameters with respect to 

prior information. Often the probabilistic approach is too complicated to 

be implemented, specifically in high density EEG processing; the slow con­

vergence drawback should also be highlighted. The second more feasible 

approach proposes the expansion of the conventional gradient-based min­

imization of particular cost functions by including rational physiological 

constraints. Established temporally or spatially constrained BSS algorithms 

such as [55,75,83,87] are the outcome of the above approach. However, 

constrained BSS based methods suffer from the extensive computational
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requirements (unlike blind source extraction methods [88]) of source sepa­

ration. Moreover, in CBSS approach, the accuracy of the prior is of great 

importance. An error in computation (estimation) of the prior might lead to 

significant degradation of the BSS algorithm. For instance, in an CBSS the 

prior can be considered to be a column of the mixing matrix corresponding 

to the source of interest. Then, if this prior is not faithfully estimated, the 

optimization procedure is initialized with an erroneous column. In [83], it is 

well investigated that since that column may be kept constant during to the 

optimization procedure, the error can potentially influence the rows of the 

demixing matrix. In such cases, robust BSS approaches are needed which 

can compensate the error induced by the erroneous prior [83].

Simple and straightforward priors, such as the spectral knowledge of the 

ongoing EEGs or spatial topographies of some source sensor projections, 

can be exploited in semi-blind EEG processing. In this regard, an interest­

ing work on topographic-time-ffequency decomposition is proposed in [58] 

in which, however, two mathematical conditions on the time-frequency sig­

natures, namely, minimum norm and maximal smoothness are imposed. It 

has been shown that these conditions may provide a unique model for EEG 

measurements. Consolidating [58], recently in [59] the STF model of a 

multi-channel EEG has been introduced by using PARAFAC [51]. Chap­

ter 3, presented the utilization of the STF model in single trial EEG process­

ing for brain computer interfacing [31,89].

In this chapter, a physiologically inspired semi-blind signal extraction 

technique for removing the EOG artifacts from single trial multi-channel 

EEGs is presented. The SBSE method is based on that introduced in [88]. 

Incorporating the spatio-tempo-spectral signatures of the extracted factor(s), 

the EB factor is selected and its spatial distribution is exploited in the SBSE
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as priori knowledge. The main advantages of the proposed method are as 

follows:

1. In the BSS- and CBSS-based methods [67,73-75,83,90,91] iden­

tification of the correct number of sources is an important issue. In 

addition, they require high computational costs. However, the sim­

plicity of the method is due to use of the spatial a priori information 

in order to guarantee that the first extracted source is the EB source. 

Therefore, there is no need to extract other sources. This reduces 

the computational requirements significantly. EEGs are then recon­

structed in a very fast batch deflation procedure.

2. Unlike the methods presented in [73] and [55], there is no need to 

compute any objective criteria for distinguishing between EB and spu­

rious peaks in the ongoing EEGs.

3. Unlike the regression-based methods [69], the proposed method does 

not need any reference EOG channel recordings (typically three chan­

nels).

4. It is important to notice that in presented approach there is no need 

to separate the dataset into training and testing subsets as in [74]. As 

lpng as, by using any primitive method an EB artifact is identified, the 

presented method can be utilized to remove it from EEGs.

This chapter is organized as follows. In Section 4.2, the SBSE method 

is presented and its performance is compared to that of an existing spatially 

constrained BSS algorithm presented in [83]. Afterwards, the fundamentals 

of the PARAFAC are briefly discussed. An effective procedure to identify 

the spatial signature of the EB relevant factor is introduced. The results
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are subsequently reported in Section 4.3, followed by a brief study on the 

robustness of the SBSE in extracting the EB artifacts in Section 4.4 and 

concluding remarks in Section 4.5.

4.2 Algorithm D evelopm ent

The EB contaminated EEG measurements are modeled as linear, instanta­

neous mixtures. For simplicity, it is frequently assumed that [55,67,69, 

73-75,83,90,91] the traveling medium between the origin of the electri­

cal activity and the recording electrode, comprising of the brain matter, the 

cerebrospinal fluid (CSF), the scull, and the skin can be represented by a 

linear transfer function - although the linearity assumption can be unreal­

istic [31]. On the other hand, the assumption of instantaneous mixing of 

EEG sources is widely accepted [31]. The main point is that due to the very 

high propagation velocity of EEGs, in the range of electromagnetic waves, 

it is essentially reasonable to assume that EEG sources are mixed instanta­

neously. Recently, there have been some studies that explore the EEGs by 

convolutive models [92].

In this thesis, the contaminated EEG measurements are assumed to be 

generated from N - I  zero-mean real mutually uncorrelated sources and one 

EB source S j ( t )  as

s(0 = [si(0, s2(t), • • • , Sj(t% • • • , sN(t)]' (4.2.1)

at time instant t  where [•]' denotes the transpose operator mixed by an N x N  

real full column rank matrix

A = [ai, a2, • • • , a#] (4.2.2)
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where generally a, is the i-th column of A and specifically a; is the column 

of A corresponding to the EB source s7. The vector of mixtures at time 

instant t is given as

x(0 = [xiO), x2(t), • • • , xN(t)]' (4.2.3)

and therefore the mixing system is modeled as

x(r) = As(r) + n(r) (4.2.4)

where

n(0 = [wi(0, n2( t \  • • • , nN(t)]f (4.2.5)

is the additive white Gaussian zero-mean noise. It is often assumed [55, 

69,83,87] that the noise is spatially uncorrelated with the sensor data and 

temporally uncorrelated. Therefore, the time lagged autocorrelation matrix 

R* can be calculated as

N

R* = E[x(t)x'(t -  rk)] = ri(rk)a,-a; (4.2.6)
;=i

for k = 1,2, •• • ,K  where K  is the index of the maximum time lag tk

and E[ ] denotes the statistical expectation operator. In (4.2.6), r,-(T*) =

E[si(t)Si(t -  Tjt)] is the time lagged autocorrelation value of Si(t).

4.2.1 Semi-Blind EB Signal Extraction

Blind signal extraction has received much attention in biomedical signal 

processing due to its potential applicability to a wide range of problems. 

The second order statistics based BSE methods are widely preferred [74,88] 

to higher order statistics based methods since they need shorter data record­
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ings. Moreover, multi-channel EEGs are not conventionally sampled at very 

high frequency rates suitable for higher order statistics based algorithms.

The vector x(t) in (4.2.4), the EEG recording at time t, is a linear com­

bination of the columns of the mixing matrix, the a/S, weighted by the as­

sociated sources and contaminated by the sensor noise n(r). Therefore, the 

most straightforward way to extract the y'-th source, the EB artifact s7, is 

to project x(t) onto the space in R^ orthogonal to, denoted by x, all of the 

columns of A except a7, that is, {ai, * • • , a;_i, a7+i, • • • , a#}. Two vectors are 

defined first: p which is orthogonal to the subspace spanned by columns of 

A expect ay and q which is equivalent to ay. By adopting the notation used 

in [88] and [93], it may be written that

y(r)q = Eq|pxx(r) (4.2.7)

where y(t) is an estimate of one source, say s(t), and px denotes the space

in R^ orthogonal to p. In (4.2.7), Eq|P± = represents the projection of q 

onto the space px, that is the space spanned by the columns of A except a7. 

Then, y(t) can be extracted using the spatial filter p as

y(r) = p'x(r) (4.2.8)

in which the scalar ~  has been omitted and q has been dropped from both 

sides of (4.2.7). In the second-order statistics based BSE [88], both p and q 

are unknown. In order to extract one source the following cost function is 

proposed

[d, p, q] = arg min JM( d, p, q) (4.2.9)d,p,q
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where
K

(4.2.10)

and d is a column vector

d -  [di,d2, • * • ydicY (4.2.11)

and || • ||| denotes the squared Euclidean norm.

Multiple time lags instead of only a single time lag are employed. This 

approach minimizes the chance of the time-lagged considered autocorrela­

tion matrices having duplicate eigenvalues and, hence, leading to failure in 

the extraction process [55]. The cost function JM utilized in (4.2.9) exploits 

the fact that for BSE, R*p should be collinear [94] with q incorporating the 

coefficients dk which provides q with the proper scaling. The trivial answer 

for (4.2.9) is d = p = q = 0. This solution has been avoided by imposing 

the condition ||q||2 = ||d||2 = 1. Successful minimization of (4.2.9) leads to 

the identification of p, which extracts the source of interest (Sol) in (4.2.8).

The main advantage of using (4.2.9) for BSE rather than other conven­

tional BSE methods which incorporate higher order statistics [85] is that it is 

indeed computationally simpler and more effective in extracting the nonsta- 

tionary sources. However in BSE, it is not possible to tune the algorithm to 

extract the Sol as first. Therefore, for such an objective, some prior knowl­

edge should be incorporated into the separation process. An auxiliary cost 

function is defined as below

where b is a column vector b = \bi, b2, - "  , bxY and qest is the prior spatial

K

(4.2.12)
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information of the EB source, the estimation of q, provided by PARAFAC 

(Section 4.2.2).

By minimizing JAux coupled with (4.2.9) in a Lagrangian framework, 

Jtot = Jm + JJqJAux, the Sol is effectively extracted as the first estimated 

source. Moreover, as it will be shown in Section 4.3, incorporation of JAux 

in the Jwl results in faster minimization. The new cost function is therefore

K

[b, d, p, q] = arg min (||R*p -  dkq\\\ + T}q\\bkq -  q* J * )  (4.2.13)

where rjq is the Lagrange multiplier. In (4.2.13), the bk,k  = 1,2,••• ,K  

values are free parameters to scale q and ||b||2 = 1.

Essentially, there are two approaches in using the spatial priors which 

vary the degree of freedom of the optimizing process (4.2.13). One can 

strictly minimize the difference between q and qesJ regardless of the proba­

ble errors in estimation of qest. On the other hand, it is possible to consider 

that q can deviate from the prior estimated vector q^, by an l2 norm-bounded 

threshold. In in soft constraining, the estimation bias is often considered as

£ = (4.2.14)

where

m \2 < € (4.2.15)

and e is a known positive constant. For the majority of spatially constrained 

BSS applications [67, 83] and references therein, the latter conservative 

approach is preferable even when qesx is accurately estimated. However,

for EB artifact removal from EEGs strictly constrained the extracting algo­

rithms are sufficient since sparsely occurring EBs are the dominant sources
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superimposed on the ongoing EEGs. In this chapter, the former approach 

has been explored and it has been assumed that the estimation of qest by the 

PARAFAC-based STF model is accurate enough.1 It has been also experi­

mentally found that although the introduction of b in (4.2.13) does not have 

any rotational effect in estimation of q, it results in further minimization of 

Jtot. The interested reader is referred to Chapter 5 and [77,79] in which a 

conservative method for EB artifact removal from the EEGs is realized.

The solution to (4.2.13) is found by alternatively adjusting its param­

eters. The four unknown vectors are iteratively updated by an alternating 

least squares (ALS) method until the convergence. Firstly, q, d, and b are 

fixed and p is updated. Taking the gradient of Jlot with respect to p leads to 

an optimal analytical solution for p as

dJr,
= 2 £  Rt(R*p -  dkq) = 0 (4.2.16)

dP *=,

and
K „ K n _ j

\2 (4.2.17)
k=i ' " fc=i

where a <= b denotes replacing a by b. Thereafter, p, b, and q are fixed and 

d is updated. As in [88], noticing ||q||2 = 1, the gradient of Jl0t with respect 

to dk becomes

8J, K
= -2  £ ((R * p ) ' -  dtq')q = 0, k = 1,2, • • • , K. (4.2.18)

dd* *-i

!The estimated spatial signatures of EB artifacts using the STF model of EEGs are 
convincingly similar to results of a previously published PhD thesis [95] on estimation of 
spatial signatures of EBs using BSS.
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The update rule for d is as

(4.2.19)

where i** = R*p.

Then, fixing p, d, and b, the vector q is adjusted. Considering

^  = - 2 ^  dtr, -  27,  £  btq„, + 2(1 + m  = 0, (4.2.20)
i t = l  k=l

the vector q is adjustable by

+ ~jZ*1qbk(\esi)'
k= 1

For updating b, the rest of the variables are fixed first, i.e., q, p, and d 

and procedure is carried on by minimizing (4.2.13) with respect to bk as

where b is retained as a vector instead of a scalar to present a consistent 

formulation.

Finally, in order to solve (4.2.13) for the Lagrange multiplier rjq, the 

vector e, is defined as a vector whose elements are all zero except for the 

z-th component which is one, as

(4.2.22)

Thus, b is updated as

<= n r ; w  =
||W ||2

(4.2.23)

(4 .2 .24)
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Considering that
k t

v = ^ (d* r*  + —J]qbkqest) (4.2.25)
k= 1

in (4.2.21), T]q can be easily solved updated with respect to the newly es­

timated v after each iteration. Therefore, a new value for rjq is assigned 

as

T J q  —  . (4.2.26)

There are several issues about (4.2.13) worth attention; first is the con­

vergence. In this work, through extensive number of independent runs, it has 

been observed that (4.2.13) almost always converges. Nevertheless, proving 

the convexity of (4.2.13) is an interesting study. The second issue regard­

ing (4.2.13) is that minimization of (4.2.13) is computationally simple and 

effective for extraction of nonstationary sources. Third, during the course 

of extraction, it is possible to extract the EB source as the first extracted 

source. The proposed SBSE algorithm decreases the processing time in 

the real-time applications comparing to the BSS methods where all sources 

should be extracted first and then the source of interest is identified. And 

finally, similar to many other CBSS algorithms [67,67], when a low resolu­

tion estimate of the spatial signature of the Sol is introduced to (4.2.13), the 

optimization procedure would not result in the Sol. Note that Section 4.4 

explores the robustness of the SBSE method when the prior knowledge is 

biased.

The performance of the proposed SBSE procedure has been evaluated 

through a comparison with the SCBSS algorithm proposed in [67,83] for 

1000 sets of synthetically mixed analytic sources. Four signal sources, in­

cluding two sinusoids of 10 Hz (si) and 12 Hz (s2) representing the brain 

rhythmic waves, a white Gaussian distributed signal as the background brain
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Source Signals 
1 0 1 1---------------------------------------------

Time (s)

Figure 4.1. Simplified scalp EEG measurements; four synthetic sources, 
namely, s\ and s2 represent brain rhythmic activities, s3 for background 
white noise and s4 the EB artifact source.

activity (s3), and a spiky source standing for the EB artifact (s4) have been 

mixed. The source signals have been selected as such in order to cover the 

range of sub-Gaussianity to super-Gaussianity. The source waveforms are 

depicted in Fig. 4.1.

One thousand 4 x 4  mixing matrices, i.e. A, have been drawn from a 

zero mean and unit variance normal distribution and used for synthesizing 

artifact s4 contaminated mixtures. For visualization purposes, only one ex­

ample is presented where the mixing matrix is as below

0.6046 0.5352 0.2296 0.1808

-0.5278 0.4285 -0.1983 -0.6817

-0.2069 -0.2991 0.2856 -0.3171

-0.5596 -0.6637 -0.9091 0.6340

The original artifact contaminated mixtures are plotted in Fig. 4.2 and 

Fig. 4.3 in solid black. Mixtures jc3 and x4 are highly affected by the spiky
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Mixtures; before and after artifact removal using SBSE

Time (s)

Figure 4.2. Four mixtures of four synthetic sources; the mixed signals in 
solid black; x3 and x4 are highly contaminated by the EB source s4. The 
artifact removed mixtures have been also plotted in solid red by using the 
SBSE.

Mixtures; before and after artifact removal using SCBSS

Time (s)

Figure 4.3. Four mixtures of four synthetic sources; the mixed signals in 
solid black; x3 and x4 are highly contaminated by the EB source s4. The 
artifact removed mixtures have been also plotted in solid red by using the 
SCBSS.

source s4. Here, the objective is to illustrate the results of the proposed 

method (Fig. 4.2) with that of [83] (Fig. 4.3) in which SCBSS method based

on FastICA [85] is suggested for EB artifact removal.
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In Fig. 4.2, the outcome of the SBSE method is plotted in solid red where 

54 signal is removed from the mixtures. It is worth considering that the 

artifact restored X\ mixtures is reconstructed almost perfectly. Moreover, the 

outputs of the established EEG artifact removal method of [83] are shown 

in Fig. 4.3. Evidently, the outcome of SBSE approach is comparable to that 

of [83].

The performance of these two methods are compared by a waveform 

similarity measure proposed in [55]:

where M -  4 is the number if mixtures and xsbse(0 is the i-th channel of 

the reconstructed mixtures by using SBSE x s b s e - Similarly, x s c b s s ( i )  is the 

i-th reconstructed mixture using SCBSS. When the value of ijdB is zero, the 

two waveforms are considered identical.

As mentioned earlier, the mixing matrices have been drawn from a zero 

mean and unit variance random distribution in order to synthesize 1000 mix­

tures. After implementing both SBSE and SCBSS methods on these mix­

tures, the average waveform similarity between the results of SBSE and 

SCBSS was as low as rjdB = 0.001 dB (standard deviation 10~5 dB) which 

suggests that with SBSE and SCBSS methods can achieve similar results.

As a second measure, the averaged correlation coefficients (CC) [31] 

between the reconstructed signal signal using both methods for different 

mixtures were computed. The CC between two discrete random variables x 

and y over a fixed interval is defined as [31]

t o  -  10 log 2  (l “  E{xsbse(i) ~ xscbss(0}jj- (4.2.27)
i= 1

CC = (4.2.28)
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(a) «

Figure 4.4. The averaged CC values between the segments of cleaned mix­
tures (after removing s4) and the original mixtures by using SBSE in (a) and 
SCBSS in (b); the CC values of about unity justify that the SBSE method 
provides similar results as to SCBSS.

where w is the number of time samples. Fig. 4.4 demonstrates the averaged 

CC values between segments of the cleaned mixtures (after removing s4) 

and the original mixtures by using the proposed method and that of [67,83]. 

CC values of about unity show that the SBSE method provides similar re­

sults as to SCBSS. In the above simulations, it has been assumed that the 

spatial distribution (signature) of the EB-type source s4 is estimated in ad­

vance. This estimation can be obtained by using PARAFAC as in this disser­

tation or implementing the BSS method for short segments of mixtures as 

in [67,83]. This assumption helps to validate the results of the SBSE method 

comparing to [67,83] regardless of how accurate various existing methods 

perform in estimating the spatial vector corresponding to EB artifact.

Moreover, through simulation studies it has been found that the Sol may 

be identified much faster by using SBSE method rather than the BSE method 

proposed in [88]. Faster performance elaborates that the incorporation of 

the auxiliary cost function JAux into the extraction process significantly up­
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grades the performance, see Section 4.3 for details.

Next, it is shown how PARAFAC can be utilized to provide the required 

a priori information for SBSE.

4.2.2 PARAFAC

PARAFAC is a widely accepted tool in extracting disjoint multi-dimensional 

phenomena with growing applications in food sciences, communications, 

and biomedicine [51,59,76,77,89,96-99]. By exploiting PARAFAC, the 

EB contaminated EEG measurements are decomposed in order to extract the 

factor relevant to the EB artifact to be used in SBSE. The resulting spatial 

signature of the EB-related factor, qeA7, is exploited in (4.2.13). The spatial 

signature of this factor corresponds to the level of EB contamination in each 

electrode and is thereby comparable to the column of the mixing matrix that 

propagates the point source EB artifact onto the EEG channels. Physiolog­

ically, this assumption is rational since EB is attenuated while propagating 

from the frontal area to the central and occipital areas of the brain.

In this approach, the multi-channel EEG recordings are transformed into 

the time-frequency domain. This transformation gives the two-way EEG 

recordings, the matrix of space(channel)-time, an extra dimension, i.e. fre­

quency. and yields a three-way array. In other words, for I  EEG chan­

nels, the energies of the time-frequency transform for Sf time instants and 

7C frequency bins are computed. By stacking these I  matrices (of size 

JT x %) and adopting the MATLAB matrix notation, the three-way array 

XJxJ x<k = X(1 : T, 1 : J ', 1 : 7C) is set up and introduced to PARAFAC.

The PARAFAC is exploited here to decompose the EEG recordings and 

provide an STF model. As stated in Chapter 3, the key idea is in considering 

the EEGs as superposition of the electro-potentials of the neurons measured
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by positioning the electrodes on the scalp. EEGs can be represented by 

the linear models which are defined in three domains of space, time, and 

frequency in order to investigate their spatial, temporal, and spectral dy­

namics [31,59,76-79,89,98].2

Complex Wavelet Transform: To setup a three-way array, the continuous 

wavelet transform is utilized to provide a time-varying representation of 

the energy of the signal over all channels, as in Chapter 3. The complex 

Morlet’s wavelets w(t, f o ) ,  with 07  = 1/(27t<t>), and A = (07 Jn)~l/2, is used 

here in which the trade-off ratio ( f o / e r f )  is 7, to create a wavelet family. The 

time-varying energy E(t, f o )  of a signal at a specific frequency band is the 

squared norm of the convolution of a complex wavelet of the signal x(r),

i.e., E(t,f0) = \w(t,f0) * x(012.

Here, the mathematical formulas of Chapter 3 which have been used in 

this chapter are briefly reviewed. The ordinary factor analysis is expressed 

as

Xl x j  = V IxF(SSxF)' + EIXJ (4.2.29)

where U is the factor loading, S is the factor score, E is the error, and F 

is the number of factors. Similarly, PARAFAC for the three-way arrays, 

is presented as

XJx jx  _ 0  D ^ 'y  + e IxJ,jc (4.2.30)

where D is the factor score corresponding to the second modality. ALS is 

the most common way to estimate the PARAFAC model [51]. In order to 

decompose the multi-way array to parallel factors the below cost function is

2The interested reader is referred to [96,97,100] for further mathematical details of the 
PARAFAC model, the uniqueness conditions, and its robust iterative fitting which are out 
of the scope of this thesis.
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usually minimized [51]

[U, S, D] = arg nun ||XJxJW -  O D^)'111- (4.2.31)

Here, x lxjy^  is the three-way array of wavelet energy of multi-channel 

EEG recordings and XJIxF, D^xF, and S‘7CxF denote respectively the spatial, 

temporal, and spectral signatures of x TxJy<K. The trilinear alternating least 

squares (TALS) method [101] is used to compute the parameters of the STF 

model.

4.2.3 The Deflation M ethod

In order to achieve EB-free EEG recordings, x/,/r(0> after the extraction of 

the EB source y ( t )  using (4.2.8), the deflation procedure is applied which 

eliminates the previously extracted signal, y ( t\  from the recording mixtures 

x(t) as

x///r(0 = X ( t )  -  py(0 (4.2.32)

where, as in [66, Section 5.2.5], p can be estimated either adaptively or 

simply after minimization of the mean square cost function J  with respect 

to p

J(v) =  E \ X f U , ( t ) ' X f U l ( l ) \

= E\x(t)'x(t)\ -  2p'E{x(f)y(f)) + p"p£{y2(()}. (4.2.33)

Eq. (4.2.33) results in an efficient batch one-step formula to estimate p as 

_  E{x(t)y'(f)} £{x(r)x'(0}p
P =  - W T =  E {y m  ( 4 2 M )
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where p is computed by (4.2.17). In fact, p is an estimation of a;, the jf-th 

column of A, neglecting the arbitrary scaling and the column permutations 

ambiguities.

In summary, the proposed method consists of the following stages. Given 

an artifact contaminated EEG data,

1. bandpass filter the EEGs between 1 Hz and 40 Hz,

2. set up the three-way array, i.e. as stated in Section 4.2.2,

3. execute PARAFAC and select the EB artifact relevant factors as will 

be described in Section 4.3,

4. exploit the spatial signature of the EB artifact factor in the SBSE cost 

function (4.2.13),

5. reconstruct the artifact removed EEGs by deflation.

4.3 Results

The SBSE algorithm is applied to real EEG measurements. The database 

was provided by the School of Psychology, Cardiff University, UK, and 

contained a wide range of EB. The scalp EEGs were recorded using 25 

Ag/AgCl electrodes positioned on the scalp. EEGs were recorded to provide 

a reference dataset specifically for the purpose of evaluating different artifact 

removal methods from one healthy subject and contained numerous EBs, 

eye-movements, and motion artifacts. The sampling rate was set to 200. 

In order to reduce the computational costs of the PARAFAC modeling, 16 

chamiels were selected out of the above mentioned 25 channels as illustrated 

in Fig. 4.5.
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Figure 4.5. The result of the proposed EB artifact removal method for a 
sample of real EEG signals recorded from the selected 16 electrodes. In the 
left subplot, the EBs are prominent in the frontal electrodes. In the right 
subplot, artifact restored EEGs are illustrated. Note the small spike-type 
signals, indicated by arrows, are precisely retained after the artifact removal.

Each EEG segment was transformed into the time-frequency domain by 

means of the complex wavelet transform. A frequency band from 2 Hz to 

25 Hz with resolution of 0.1 Hz was considered. This three-way array was 

then introduced to PARAFAC where the number of factors was selected as 

one or two, as will be highlighted in the following experiments, using the 

CORCONDLA [64]. PARAFAC was used to identify the most significant 

factors with CORCONDLA values greater than 85% [64]. Two sample re­

sults are demonstrated here in order to show the potential of the presented 

method.

4.3.1 Experim ent 1

The left subplot of Fig. 4.5 shows the EEG measurements contaminated 

with two EBs at approximate times of two and half and five seconds. The 

effects of the EBs are evident in the frontal and central electrodes. Imple-
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Figure 4.6. The extracted factor by using PARAFAC; (a) and (b) illustrate 
respectively the spectral and temporal signatures of the extracted factors 
and (c) represents the spatial distribution of the extracted factor which has 
been considered as the a priori knowledge during extraction procedure, (d) 
shows that the number of factors F  suggested by CORCONDIA to be one 
since the bars corresponding to F -  2 and F = 3 are less than the threshold,
i.e., 85%.

mentation of PARAFAC on this measurement results in the STF signatures 

depicted in Fig. 4.6-(a) to (c). Although, there are two EBs, the CORCON­

DIA suggests the number of factors F to be one as in Fig. 4.6-(d). This 

value is rational since both of the EBs are originated from certain vicinity 

(frontal lobe of the brain) and occupy the same frequency band and there 

is no significant brain background activity. By using the spatial distribution 

of the extracted factor as the a priori information, the EB artifacts are ef­

fectively removed. Notice the resolution of the proposed algorithm; it does 

not affect the very low amplitude spike-type signals after the first EB, see 

Fig. 4.5, during the extraction process.

In order to minimize (4.2.13) the initial values of the vectors b, d, p. 

and q were independently drawn from standardized normal distributions 

N(0,1), rjq was initialized to 5, and qest was set to the spatial signature of
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the extracted factor. Fig. 4.7 compares the average value of 101og10 

over 50 independent runs. Aiming at the comparison of the performance 

of proposed method with that of [88], two scenarios have been devised by 

varying the number of time lags, i.e., AT = 10 and 25; note that in [88] 

Jxot = Jm- Evidently, in both scenarios the the proposed SBSE method 

minimizes 101og10 in less iterations than the method in [88] does; after 

approximately 10 iterations the extracting vector p is identified. Note that 

although eventually in about iteration 150, both methods converge to similar 

values for 101og10 the main advantage of SBSE is in incorporating the 

prior knowledge. Therefore, it is guaranteed that p extracts the EB source as 

the first extracted source. The EB is then removed from the multi-channel 

EEG using the batch deflation algorithm in [66]. Note that since SCBSS 

uses the FastICA it is not possible to compare its performance with that 

of SBSE (or BSE) in terms of “cost function minimization” as in Fig. 4.7. 

However in Section 4.3.3, SCBSS and SBSE methods will be compared in 

how effectively they can remove the EB artifact. It will be carried out by 

comparing the resultant averaged CC values between extracted EB artifact 

and the EEGs traces before and after the removal procedure obtained from 

each.

4.3.2 Experiment 2

Performance of the SBSE method with similar initial values for another set 

of EEGs from the database is demonstrated in Fig. 4.8. In the left subplot, 

the truncated 4 seconds of EEG recordings before and after the application 

of the EB removal process are plotted. Fig. 4.8-(b) illustrates the averaged 

correlation coefficients between the artifact removed channel signals and 

the original contaminated ones with their corresponding standard deviations
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Figure 4.7. The averaged (over 50 independent runs) convergence charac­
teristics, 101og]0 of the SBSE and conventional BSE are depicted for 
two values of K  = 10 in (a) and K  = 25 in (b). In both subplots the solid 
and dashed curves correspond respectively to the proposed SBSE and BSE.

over 25 independent runs. As expected, the CC values corresponding to 

the signals recorded from the frontal electrodes are relatively low showing 

these signals are significantly restored. However, the values corresponding 

to other channel signals, i.e. parietal, central, temporal, and occipital, are 

almost unity demonstrating that the algorithm does not affect clean EEG 

measurements.

The STF model of this recording is identified using PARAFAC. In con­

trast to the previous experiments, the CORCONDIA suggests F = 2 since 

PARAFAC identified a significant brain background activity during occur­

rence of the EB. In this experiment, the CORCONDIA value for F -  1 

was 100%, for F = 2 was 94.6%, and for F  = 3 was 38%, thus F -  2 

was selected. Fig. 4.9-(a) to (d) illustrate the estimated signatures of the 

16-channel contaminated EEGs. Note that the first component (Factor 1) of 

the STF model demonstrates the EB-relevant factor since
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Figure 4.8. The results of the proposed EB artifact removal method for 
a set of real EEG signals recorded from 16 electrodes; (a) shows the EB 
contaminated EEGs in red and the artifact corrected EEGs in blue. In the 
right subplot, the averaged CC values between the artifact corrected chan­
nel signals and the original contaminated EEGs with their corresponding 
standard deviations over 25 independent runs are plotted. CC values corre­
sponding to the frontal channel signals are relatively lower than the values 
corresponding to other channel signals which are almost unity.

1. It mainly occurs in the frequency band of around 5 Hz while the 

other factor exists in the entire band and represents the ongoing activ­

ity of the brain or perhaps a broadband white noise-like component, 

Fig. 4.9-(a).

2. The temporal signature of the first factor clearly shows a transient 

event such as EB while that of Factor 2 consistently exists throughout 

the course of recording, Fig. 4.9-(b).

3. Unlike Fig. 4.9-(d), in Fig. 4.9-(c), the spatial distribution of the ex­

tracted factor is confined to the frontal area which demonstrates the 

frontal origin of EBs. The other factor shows the background activity

of the brain as it spreads all over the topographic map.
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Figure 4.9. The extracted factors by using PARAFAC; (a) and (b) illustrate 
respectively the spectral and temporal signatures of the extracted factors; (c) 
and (d) present the spatial distribution of the factors, respectively. Evidently, 
Factor 1 demonstrates the EB phenomenon as it occurs in frequency band 
of around 5 Hz (a), it is indeed transient in the time domain (b) and it is 
confined to the frontal area.

4.3.3 Performance Evaluations

In order to provide a quantitative measure of performance for the proposed 

SBSE-based artifact removal method, the CC values between the extracted 

EB artifact source and the original and the artifact removed EEGs were 

computed and plotted in Fig. 4.10. For each of the 20 different artifact con­

taminated EEGs, the proposed SBSE algorithm was executed. The afore­

mentioned CCs for each run were then computed between the extracted EB 

and the EEGs before and after the artifact removal. These values were sub­

sequently averaged, Fig. 4.10. Furthermore, their corresponding standard 

deviations have also been reported. For comparison purposes, the same ex­

periment was carried out and the SCBSS [67] was executed instead of the 

SBSE. The results are depicted in Fig. 4.11. As expected, the CC values 

are significantly decreased by using the proposed method. Note that the re-
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Figure 4.10. The averaged CC values (and their corresponding standard de­
viations) between the extracted EB and the restored EEGs before and after 
artifact removal using SBSE for different channels in (a) and (b), respec­
tively. The experiments have been performed for 20 different EB contami­
nated EEG recordings. Note that the scales are different by a factor of 103.

suits of the SBSE and SCBSS methods are quite similar; the differences are 

not significant. Simulations for 20 EEG measurements demonstrate that the 

proposed method can efficiently identify and remove the EB artifact from 

the raw EEG measurements.

As a second criterion for measuring the performance of the overall sys­

tem, a segment of EEG xseg and a reconstructed EEG xseg were selected. 

Notice that xseg does not contain any artifact. The waveform similarity was 

computed as in (4.2.27) by

TjdB = 10 log [-^  -  EixsegiO ~ £«*(i)})j. (4.3.1)
i=i

Again, when the value of rjdB is zero, the original and reconstructed wave­

forms are identical. From the 20 sets of EEGs, the average waveform sim­

ilarity was as low as rjdB = 0.01 dB (standard deviation 10-3 dB). These

After Artifact Removal

Before Artifact Removal
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Figure 4.11. The averaged CC values (and their corresponding standard de­
viations) between the extracted EB and the restored EEGs before and after 
artifact removal using SCBSS for different channels in (a) and (b), respec­
tively. The experiments have been performed for 20 different EB contami­
nated EEG recordings. Note that the scales are different by a factor of 103.

results suggest that the EEGs can be faithfully restored from EBs.

4.4 The influence of estim ation bias on the SBSE performance

As indicated in (4.2.14) and (4.2.15), in soft constrained BSE (or BSS as 

in [83]) schemes, even if in the estimation of qeS! is slightly biased, the 

optimization algorithm would take that into account and accommodate it 

during the extraction of the Sol. However, as indicated in Section 4.2.1, in 

this chapter a hard (in contrast to soft) approach has been followed where 

the algorithm strictly minimizes the cost function (4.2.13) regardless of the 

probable errors or biases in qes[.

Interestingly, the scenario is not actually as restricted as it seems. That 

is, if there was a small deviation in the qesl from the actual q, the SBSE ac­

commodates it similar to [83]. The truth lies in the alternating least squares

Before Artifact Removal
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After Artifact Removal

— i----------1----------1---------- 1---------- 1-----------1______ i______ i______ i______ i_______i______ i______ i______ i----------1----------1 _
FP1 FP2 F3 F4 C3 C4 P3 P4 Ol 0 2  FT F8 T3 T4 T5 T6



Section 4.4. The influence of estimation bias on the SBSE performance 96

approach for estimating q in (4.2.21) where SBSE estimates the best set of 

q and p which are both orthogonal to {ai, • • • , a7-_i, a;-+i, • • • , a^}. There­

fore, if qea + 6 is utilized instead of q ^  in the cost function (4.2.13), the 

optimization process would result in the originally estimated vector q, i.e. 

q^r. In the sequel the results of a series of experiments with different 6s are 

presented in order to consolidate the proposed SBSE method for EB artifact 

removal.

Let’s start with an experiment in which instead of qm, the qesI + 6 1 is 

introduced to SBSE. Here, £i is computed as

6 1= 0.1 x r .  (4.4.1)

In (4.4.1), r  is a vector of 16 elements drawn form a zero-mean and unit- 

variance normal distribution. Using (4.4.1), ||^i||2 is likely to be less than 

0.6. Therefore, the SBSE can compensate for the deviation of qesJ from q 

and extracts the EB artifact if ||<?i|| < 0.6 potentially. An example has been 

provided in Figs. 4.12 and 4.13 where ||£i|| = 0.503. In Fig. 4.12-(a), q^, ob­

tained by PARAFAC is depicted which should be used in (4.2.13). Fig. 4.12- 

(b) shows the perturbed qesl by 6 \ which has been replaced in (4.2.13) in­

stead of q^r and introduced to SBSE. Finally, in Fig. 4.12-(c), the resulting q 

after the alternative least squares optimization has been illustrated. Indeed, 

Fig. 4.12-(c) is quite similar to Fig. 4.12-(a).

The result of the artifact removal is depicted in Fig. 4.13. EEG traces 

in red are the original artifact contaminated recordings. Traces in blue are 

the resulting restored EEGs using the original estimate on q, i.e. qest. EEG 

plots in black are the resulting artifact restored EEGs by using the artificially 

perturbed qest, i.e. qesl + 6 i.
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Figure 4.12. In (a), q^, is depicted, (b) shows the deviated qes[ by £1 which 
has been put in (4.2.13) instead of q ^ . (c) illustrates the resulting q after 
ALS optimization procedure.

Then, instead of qm, qes,+tf2 was introduced to SBSE. The vector S2 was 

computed in the same way as £1 by keeping the coefficient as 0.1 in (4.4.1), 

norm ||£i|| = 0.430. Since qesr + 62, depicted in Fig. 4.14-(b), is significantly 

different in steering direction from Fig. 4.14-(a), SBSE may not compen­

sate the deviation S2. In Fig. 4.14-(a), resulted by PARAFAC is de­

picted. Fig. 4.14-(b) shows the perturbed qesl by 62 which has been replaced 

in (4.2.13) instead of qew and introduced to SBSE. Finally, in Fig. 4.14-(c), 

the resulting q after the ALS optimization has been illustrated. The vector 

plotted in Fig. 4.14-(c) did not converge to the vector plotted in Fig. 4.14-(a).

The result of the artifact removal is depicted in Fig. 4.15. Again as 

Fig. 4.13, the EEG traces in red are the original artifact contaminated record­

ings. Traces in blue are the restored EEGs using the original estimation of 

q, i.e qMf. However, EEG plots in black do not acceptable performance in 

artifact removal procedure when qm + S2 is used.

It can be concluded that the SBSE presents a robust performance when 

qwr is perturbed by a norm bounded small deviation. That is, the direction 

of the vector q^, should not be changed significantly. Therefore, the bias 

should be fairly distributed over the elements of q î7. Since a normalized 

version qest is used in the formulations, it is unlikely that SBSE does not 

compensate it.
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Figure 4.13. The result of the artifact removal from EEGs depicted in 
Fig. 4.8(a). EEG traces plotted in red color are the original artifact con­
taminated signals. EEGs in blue color are the resulting artifact removed 
signals using q^,. Traces in black are the resulting artifact restored EEGs 
by using q^7 + instead of qfSf.

i
(a) (b) (c)

Figure 4.14. In (a), q^f is depicted, (b) shows the deviated q^, by S2 which 
has been put in (4.2.13) instead of qesl. (c) illustrates the resulting q after 
ALS optimization procedure.

4.5 Concluding Remarks

It is generally accepted that the EB artifact can be removed from EEGs 

by using the BSS- and regression based methods for respectively multi­

channel EEGs data with (or without) the reference EOG electrodes. How­

ever, nowadays this challenging topic is often solved by a semi-blind method 

rather than in a totally blind signal processing framework [55,67,75-79,83].
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Figure 4.15. The result of the artifact removal from EEGs depicted in 
Fig. 4.8(a). EEG traces plotted in red color are the original artifact con­
taminated signals. EEGs in blue color are the resulting artifact removed 
signals using q^ . Traces in black are the resulting of the unsuccessful arti­
fact removal procedure by using + S2 instead of q^,.

Notwithstanding these recently published semi-blind approaches, an ana­

lytic method to acquire the prior information, the spatial signature of the 

EB signal, from the EEG measurements is proposed. Therefore, the con­

ventional heuristic approaches such as in [75] where an approximation of 

the temporal structure of the EB source signal is included in ICA is not 

followed here. The presented method is computationally simpler than the 

SCBSS method in [67,83] since there is no need to estimate all the columns 

of the mixing matrix A in (4.2.4).

The vector of spatial distribution of the EB factor has been identified 

using PARAFAC. The vector of spatial signature of the EB factor resulted 

by the STF modeling of EEGs is utilized as an estimation of the column 

vector of the mixing matrix A that projects the EB source onto the EEGs. 

This assumption is rational since the EB can be considered as a strong point 

source which is merely attenuated while propagating from frontal area to

Before and After Artifact Correction
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the central and occipital parts of the brain. This spatial distribution of the 

EB factor then has been incorporated to the SBSE algorithm. The results 

show that the proposed algorithm identifies and removes the effect of blink 

artifacts. The EEGs are processed using the time-lagged second-order SBSE 

algorithm and the artifact is autonomously extracted; then, the EEGs are 

reconstructed in a deflation framework. Based on the results of this method, 

the proposed SBSE algorithm consistently removes the EB artifacts from 

the EEG signals.

As mentioned in Chapter 3, the main drawback of the STF-based meth­

ods is their computational complexity. However, due to the dominance of 

the EB artifact over the background EEG activities the selection of the EB 

relevant factor could be quite easy. Therefore, the next chapter is devoted 

to a robust while computationally simple EB artifact removal from EEGs 

where an approximation to the original STF model is first computed and 

then the estimated spatial signature of the EB relevant factor is introduced 

to the signal extraction stage.



Chapter 5

ROBUST MINIMUM 

VARIANCE BEAMFORMING 

AND PARAFAC

In this chapter, an approach for the removal of EB artifacts from EEGs 

based on a novel STF model and the robust minimum variance beamform- 

ing (RMVB) [100] is proposed. In this method, the beamformer is pro­

vided with an estimation of the steering vector corresponding to the point 

source EB artifact. The artifact-removed EEGs are subsequently recon­

structed by deflation. The vector corresponding to the spatial distribution 

of the EB factor is identified using the STF decomposition of EEGs. In 

order to reduce the computational complexity present in the estimation of 

the STF model using the three-way PARAFAC, the time domain is sub­

divided into a number of segments; a four-way array is then set to estimate 

the space-time-frequency-time/segment (STF-TS) model using a four-way 

PARAFAC. The correct number of the factors is estimated by using a novel 

CORCONDLA-based measure. Subsequently, the STF-TS model is shown 

tQ approximate closely the classic STF model with significantly lower com­

putational requirements. The results confirm that the proposed algorithm 

effectively identifies and removes the EB artifacts from EEGs.

101
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5.1 Introduction

Spatial filtering or simply “beamforming” have been widely used in com­

munications and radar signal processing applications [102]. Besides, in re­

cent years, beamforming methods have also been widely utilized in and 

customized for brain signal processing, e.g. MUSIC, RAP-MUSIC, and 

FINE methods [103]. Genuinely, the source (dipole) localization has been 

the main application of beamforming in EEG analysis [103-106] where one 

takes the advantage of high-dimensional EEG recordings and designs the 

beamformers so that they pass brain electrical activities originating from 

a specific location while attenuating other activities emanating from other 

locations. Note that preferably these interfering sources should not be spa­

tially or temporally correlated with the Sol.

Theoretically, the variance (energy) of the filter output is equivalent 

to the strength of the electrical signal coming from the location of inter­

est. Beamforming has also been very recently utilized in extraction and 

localization of the spatially confined sources of interest [107,108]; for in­

stance in localization of the ERPs.1 However, to the best of my knowl­

edge, beamforming-based methods have not been specifically considered 

in extraction and removal of the EB artifacts from the EEG recordings.2 

This is understandable since these schemes suffer a significant performance 

degradation when the array response vector for the Sol (EB in this case) is 

not exactly known [110-113]. The problem arises when the methods used 

in [110-114] deal with the electromagnetic waves of known propagation 

pattern arriving at mostly spatially linear uniform (rarely non-uniform or 

sparse [113]) arrays of receivers. However, in EEG analysis, although the

]The so-called transformation can be either a linear [102] or non-linear [109] combina­
tion EEGs recorded from multiple spatially distributed electrode signals.

2Although in some cases such as [107], the ocular artifact removal is a by-product.
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10/20 electrode positioning standard is usually followed, the electrodes are 

positioned on the subject’s scalp manually. This causes major uncertainties 

about the accuracy of the electrode locations. Therefore, one is always con­

fronted with an ad-hoc configuration of electrodes which affects the steering 

vectors of propagating brain sources. In order to overcome these uncertain­

ties, a method for solving the forward problem has been introduced in [115] 

by which in [104], the localization of the brain electrical sources has been 

solved. In [104], the steering vector corresponding to each grid point within 

the brain toward the scalp electrodes is found and then linearly constrained 

minimum variance beamformers (LCMVBs) are solved for these grid points 

to localize the electrical sources. This approach is promising, however it 

suffers from the complex computations occurred while solving the forward 

problem [115] for a fine grid.

In this regard, the contribution of this chapter is in the estimation of the 

steering vector corresponding to the EB artifact regardless of the conven­

tional forward solutions to EEGs. Since, the temporally sparse occurring 

EB is the dominant source in the ongoing EEGs, this estimation is trustwor­

thy and could be utilized in the beamforming procedure to remove the EB 

effect from the EEGs. The beamforming approach can identify and extract 

the EB artifact due to its independence from the EEGs [78]. The presented 

method is based on the RMVB [114], where the spatial a priori knowledge 

of the mixing process obtained by PARAFAC3 is exploited as an estimation 

of the steering vector corresponding to the EB source.

The major advantage of the proposed method is that unlike the respective 

regression- and BSS-based methods presented in [81] and [55], it needs 

neither the reference EOG channel recordings nor any objective criterion

3The interested reader is referred to [96,97,100] for further mathematical details of the 
PARAFAC model, the uniqueness conditions, and its robust iterative fitting.
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for distinguishing between EB and spurious peaks in the ongoing EEGs. 

The computational complexity in the estimation of the STF model using 

PARAFAC is reduced by sub-dividing the time domain into a number of 

segments. A four-way array is then set up to estimate the STF-TS model of 

the data. Subsequently, the STF-TS model results in the classic STF model.

It is also interesting to notice that in this approach there is no need to 

separate the dataset into training and testing subsets to tune the parameters. 

As long as, by using any primitive method, it is ensured that an EB artifact 

has happened, the presented method can be utilized to remove it.

There are two major differences between the approach followed in this 

chapter and what has been proposed in the previous chapter. Firstly, assum­

ing the estimation of the steering vector corresponding to the EB artifact 

is precise, in Chapter 4, this vector has been used in a SBSE. Moreover, 

here, the steering vector corresponding to the EB source is not estimated 

by using the ordinary STF model. In contrast, as the second contribution 

of this chapter, by introducing the STF-TS model, the computational com­

plexity occurred while estimating the STF model is significantly reduced. 

Note that during the estimation of the STF-TS model, there is trade off be­

tween the computational requirements and the proper unbiased estimation 

of the aforementioned steering vector. The bias is compensated by using the 

RMVB.

This chapter is organized as follows. In Section 5.2, the minimum vari­

ance beamforming used for EEG/MEG source localization and the robust 

version of that method are briefly reviewed. Then, the spatial signature 

of the STF-TS model is introduced as an estimation of the array response 

vector corresponding to the EB artifact. Afterward, the proposed STF-TS 

based STF model estimation methodology is described. The results are sub­
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sequently reported in Section 5.3, followed by concluding remarks and dis­

cussions in Section 5.4.

5.2 Algorithm Developm ent

Suppose N  zero-mean real and mutually uncorrelated geometrically station­

ary sources s(t) = [si(r) , s2(t), ■ ■ ■ ,s N(t)]\ where [•]' denotes the vector 

transpose and t the discrete time index, are mixed by an N  x N  full column 

rank matrix A = [ai, a2, • • • , a^] where a, is the i-th column of A. The

vector of time mixture samples x(t) = [xj(r), x2(t), • • • , x^(t)]' is given as

x(t) = As(r) + v(r) (5.2.1)

where v(r) = [vi(0, v2(t), • • • , vw(r)]' is the additive white Gaussian zero- 

mean noise which is assumed to be spatially uncorrelated with the sensor 

data and temporally uncorrelated. The sources are presumed to be uncorre­

lated. Therefore, the time lagged symmetrized autocorrelation matrix Rxx 

can be calculated as

N

= £[x(f)x'(f -  r*)] = £  r,(r*)a,a; (5.2.2)
i= 1

for k = 1,2, • • , K, where K  is the maximum number of time lags, rK, 

and £[•] denotes the statistical expectation operator. In (5.2.2), r,(r*) = 

E[Si(t)Si(t -  t*)] is the time lagged autocorrelation value of s,(r). The vector 

x(t) in (5.2.1) is a linear combination of the columns of the mixing matrix 

and weighted by the associated source and contaminated by the noise v(r).
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5.2.1 Linearly Constrained Minimum Variance Beamformer

The LCMVB procedure has been effectively exploited for EEG/MEG source 

localization within the brain [104]. Fundamentally, the LCMVB method is 

based on electrical brain source and head electromagnetic and also geomet­

ric modeling in which the underlying neural activity and the distribution of 

potentials (electric, magnetic, or both) measured at the surface are related 

to each other. Here, the basic aspects of the minimum variance based EEG 

processing and source localization methods [104] are briefly reviewed.

The assumption that the brain sources can be modeled by current dipoles 

is the key concept for relating the surface measurements to the underlying 

brain activities. Although there are some recent techniques that deal with 

distributed (linear [116] or planar [117]) source modeling, it is widely ac­

cepted that the dipole source modeling reasonably satisfies the necessities 

in EEG/MEG processing. The relationship between dipole models and the 

surface recordings is obtained as follows.

Suppose x is an N x  1 vector of the recorded potentials over N  electrodes 

at a given time instant, presumingly, associated with a single dipole source. 

If the location of this source is represented by a 3 x 1 vector such as q, then 

x = H(q)m(q) where the elements of m(q) of 3 x  1 dimensions, are the 

x, y, and z components of the dipole moment at the time instant when x is 

recorded and the columns, of the N x  3 transfer matrix H(q) are the solutions 

to the forward problem.

Therefore, the first column of H(q) is the signal recorded at the elec­

trodes due to a dipole source at location q having the unity moment in the 

x direction and zero moment in y and z directions. Respectively, the second 

and third columns represent the potential due to sources with unity moment 

in y and z directions. This kind of modeling the data may be applied to elec-
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trie, magnetic, or combined electro-magnetic measurements. The elements 

of H(q) depend on the recording modality, i.e. EEG or MEG. What it phys­

ically means is that the material and geometrical properties of the medium 

in which the sources are recorded solve the forward problem.

Assuming the potential propagation medium is linear, the potential at 

each sensor over the scalp is superposition of the potentials from many ac­

tive neurons underneath that sensor. Suppose that x is generated when L 

dipole sources are active at different locations, i.e. q„ i -  1,2, • • • , L super­

imposed by measurement noise n. Then

L

x = ^  + n (5.2.3)
/= i

The LCMVB is an example for the spatial filtering concept which refers 

to the identification of sources based on their spatial locations. A “nar­

rowband” spatial filter passes signals originating from a small “passband” 

volume while attenuating those originating from other locations which ex­

actly follow the terminology used in the temporal or spectral domain. In the 

present application, the spatial samples are elements of the data vector and 

the spatial filter is implemented as a weighted combination of these sam­

ples. The ultimate goal is to design a set of spatial filters where each filter 

allows signals originating from a specified location within the brain passing 

while attenuating signals from other locations. Therefore, monitoring the 

variance at the output of each spatial filter may provide an estimate of the 

distribution of brain neural activity. This concept has been well established 

in [102,104] as below.

The signal emitting from each grid location in the brain consists of a 

three component dipole moment. Hence, three spatial filters for each lo­
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cation are needed; one for each component of the dipole moment. Let the 

spatial filter for the narrowband volume element Qo centered at location q0 

be an TV x 3 matrix W(q0) and the three component filter output y be the 

inner product of W(q0) and x.

y = W'(q0)x (5.2.4)

An ideal narrowband spatial filter satisfies

W'(qo)H(q)
I, if q = q0 

0, i f q ^ q 0, q e Q
(5.2.5)

and Q represents the volume of the brain. If (5.2.5) is satisfied, then in the 

absence of noise (n = 0) the filter output is y = m(q0) which is the dipole 

moment at the considered grid point. Minimizing the variance of the filter 

output y constrained to (5.2.5) would solve the source localization problem. 

This can be put into mathematical formulations as

minTrIL s.t. W'(qo)H(q0) = I (5.2.6)
W (qo) *

where Tr is the trace operator and £ y is the covariance of the output signals. 

Considering (5.2.4), (5.2.6) can be re-written as

min Tr (W/(q0)SJSW(q0)) s.t. W'(q0)H(q0) = I. (5.2.7)
W(qo)

This classic minimization problem may be easily solved by using the La­

grange multipliers method as in [104]

/(W (q0), L) = Tr {W(q0)2£1 W(q,>) + 2(W(q0)/H(q0) -  I)L} (5.2.8)
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where L is a 3 x3 matrix of the Lagrange multipliers. The solution to (5.2.8) 

is computed as

W(q„) = [(H 'taoff-'lK qo)]'1 H '(q o )^ 1. (5.2.9)

Using (5.2.9) in (5.2.4) gives an estimate of the moment at location q0. Con­

sidering that the variance of y coming from location qo is an indication for 

the existence of a source at qo, after some straightforward algebraic manip­

ulations, it can be shown that

\feS(qo) = Tr {[(H 'foo^'H foo)]"1} . (5.2.10)

In order to localize the brain sources, the variance as a function of grid 

location within the volume of the brain is estimated. This is accomplished 

by evaluating (5.2.10) as a function of q0. Regions demonstrating large 

variances show substantial neural activities, while on the other hand re­

gions with small variance can be considered inactive. In [118], an enhanced 

LCMV beamforming technique is also developed where a statistical maxi­

mum contrast criterion is exploited for MEG source localization.

The above formulations can effectively localize the brain sources. How­

ever, they have not been utilized for EB artifact removal applications. The 

main reasons in my opinion are that, first, if one wants to use LCMV based 

methods he/she has to solve the forward problem and compute H which 

does not seem to be rational where the EB artifact can be easily removed by 

other techniques, see Chapter 4. Second, even if H is estimated, it presents 

acceptable accuracies mainly for grid points within the brain matter and not 

over the outer marginal grid points. Therefore, researchers have neglected 

LCMV based methods after the work of Die et al. in [91,119] where a
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spatially constrained ICA has been developed for EEG restoration from ar­

tifacts.

Therefore, there has been a need for easier methods than the classic 

LCMV of [104] based on the forward model estimation of [115] for EB 

artifact removal. Chapter 4 provided a theoretically and conceptually simple 

and straightforward solution to that problem by estimation of one column 

of H which corresponds to the EB source. However, the main problem is 

the computational requirements occurred in the estimation of the steering 

vector. In this chapter, first, a robust version of the LCMV based on [113] 

is presented. Then, a fast algorithm for the estimation of the STF model of 

EEGs contaminated with the EB artifacts is developed.

5.2.2 Robust M inimum V ariance Beamformer

The most straightforward way to extract the y'-th source is to project x(t) 

onto the space orthogonal to, denoted by _L, all of the columns of A except 

ay, i.e., [ax, • • - , a;_i, a7+1, • • • , a^}. Since aj performs as the steering vector 

of the y'-th source, by defining a vector as a spatial filter, w;, it may be 

written [78] as

y(t) = vr'jx(t) (5.2.11)

where y(r) is an estimation of the source sfit) corresponding to a; . The spa­

tial filter can be determined by applying the unit-gain constraint, w 'a ; = 1 

and by minimizing the variance of the filter output y(t) [104]. However, in 

practice, the steering vector a7 is not always known [110-113]. Hence, the 

approach based on the theoretically rigorous worst-case performance opti­

mization, recently developed in [113], is used here in order to compensate
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for the deviation vector, £, of a7 from the actual steering vector a7, i.e.,

6 = 2L j - 2Lj (5.2.12)

Note that 6 is /2 norm-bounded by some known positive constant e. De­

noting
1 K

r  = i f Z r «  (5-213)

as outlined in [114, Chapter 2], the beamformer is obtained by minimizing 

m in(/c = w'Rw.) s.t. minflw'a, + w'^l -  1) (5.2.14)
w ,  V 1  \ \S \ \2 < €  J  J

where |.| denotes the absolute value operator. Equivalently [120], the above 

optimization process may be rewritten as

m in(/c = w'jRwj) s.t. |w 'ay- -£ ||w 7||2| = 1. (5.2.15)

Following the Lagrange multiplier method, Jc is differentiated with re­

spect to wj and set it to zero. Afterward,

Rw + Ae-— J— = 2a,. (5.2.16)
l|w;l|2

After dropping the scalar A (it can be merged in e) the spatial filter can 

be computed as [120]

Wj = [R + ^ l]  a, (5.2.17)

wherep  = ||w7|| and I denotes the identity matrix. In (5.2.17), the main con­

cern in estimating wy is to have an estimation of p  which may be determined



Section 5.2. Algorithm Development 112

by using the following procedure. Eigenvalue decomposition of R, i.e.,

results in the N x N  unitary matrix U whose columns are the unit norm eigen­

vectors of R, and E is the diagonal matrix of the real positive eigenvalues of 

R, with elements £  where

and following the procedure suggested in [120], it may be written as

it is shown that the necessary and sufficient condition for (5.2.22) to have a 

unique real positive solution for p  is that the norm of the mismatch vector 

is upper bounded by the norm of the estimated signal steering vector, i.e., 

||tf||2 = e < ||a7||2. Considering ||g||2 = ||a; ||2 and (5.2.22), the upper bound 

of f (p ) is achieved as

R = UEU' (5.2.18)

(5.2.19)

By defining

¥(p) = E + - I  
P

(5.2.20)

iiu'F-1(P)u 'ayi|2 - p 2 = i n r w i h  - p 2 = 0 (5.2.21)

where g = [gi, g2, • • • , gv]' = U 'a j .  Introducing [114, Chapter 2]

m  = ll^_1<p)g'lb- p 2 = y  - 1 = 0 ,  (5.2.22)■£r'Le + p£J

1 = fmax(p)-
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Algorithm 2 Estimating wy 
Require: /(p).
Ensure: i = 0, using the binary search method, find p, € ( 0 ^ ^ )  if f{pd > 

0 & /( j |p ,)< 0 .
Ensure: the stopping value k , Maximum iterations /  and i <— i + 1. 

while \f(pi)\ < k & i < I  do
n -  n  -  / f o - d  
Pl Pl~l Vpf(pi-l)

end while
Ensure: Using (5.2.17) compute w7 where p = po = p,.

Note that f(p )  and fm a x ip )  are both decreasing functions of p and the 

root of /(p), say po, is positive. Hence [114, Chapter 2]

o < Po < Pmax =  • (5.2.24)

Therefore, the problem of estimating p and consequently the spatial filter, 

Wj, can be solved within an iterative scheme as in Algorithm 2 in which 

Vpf  (pi_i) is the derivative of f(p )  with respect top atp  = p^j.

5.2.3 PARAFAC and STF Modeling

By exploiting PARAFAC, the factor relevant to the EB artifact to be used 

within the beamforming procedure is extracted. The resulting spatial signa­

ture of the EB-related factor is exploited to formulate (5.2.17). Importantly, 

it has been considered that the spatial signatures of this factor are directly 

related to the level of EB contamination for each electrode. This assump­

tion is rational since EB may be considered as a strong point source which 

is only attenuated while propagating from the frontal area to the central and 

occipital parts of the brain. Hence, the column of the mixing matrix A, i.e. 

a;, corresponding to the EB source, is estimated by PARAFAC and used 

in (5.2.17). Hereafter, the novel approach for estimating the STF model of 

EEGs using the proposed STF-TS model is introduced.
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In order to decompose the EEGs into spatial, temporal, and spectral sig­

natures, the three-way PARAFAC is applied to the three-way EEG data

r " "  = £(1 : N, 1 : F, 1 : T) (5.2.25)

where N , F, and T are respectively the number of EEG channels, frequency 

bins and time instants. Note that in this chapter in contrast to the previous
„  NxFxT ^  NxTxF

chapters, the EEGs are modeled as Y rather than Y . However, 

since the three-way tensor of EEGs is constructed in the STF domain, the 

term “STF’ is kept rather that using “SFT”.

Therefore, \ NxM, CFxMJ and f)TxM are respectively the spatial, spec-
v NxFxT

tral and temporal signatures of Y where their elements are denoted as 

a(n, m), c(f, m), d(t, m). While retaining the consistency of formulation, the 

superscripts may occasionally be dropped in order to simplify the presenta­

tion.

The STF model is presented as:

r xFxT= i +r xTxF (5.2.26)

where
M

Y = ^  a(n, m)c{f, m)d(t, m) (5.2.27)
m= 1

v NxTxF
is an estimation, denoted by (?), of Y , M  stands for the maximum

v NxTxF
possible number of factors, and E is the three-way array of the residue 

of the model which is mostly omitted for brevity.

In order to find M, the known CORCONDIA measure [64] is customized. 

The signatures A, C, and D can be estimated by using the alternating least
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squares algorithm where the cost function is

[A, t, 6] = arg min ||Y -  f  | | .  (5.2.28)
a,c,i

Intuitively, the spatial signature A obtained from the STF model repre­

sents the weighting parameters of the inter-channel correlation among the 

time-frequency representations of each channel. However, in order to mit­

igate the high computational cost occurring in using STF with three-way 

PARAFAC [51], in the sequel, a novel method for estimating the STF model 

is introduced. The strategy is based on the divide and conquer philosophy 

where, as will be detailed later on, instead of calculating the model signa­

tures from the original data, these signatures are estimated by joining the 

weighted versions of their local temporal signatures.

5.2.4 STF-TS M odeling

For a long-term EEG measurement, the calculations of both the time-frequency 

transform and STF-based PARAFAC are computationally intensive. There­

fore, aiming at reducing this computational complexity, the time domain is 

divided into a number of segments. After that, the time-frequency transform 

is applied [78] individually to each segment forming a four-way array. The 

four-way array

YNxSxFsxTs ± Y(1 : AT, 1 : S, 1 : Fs, 1 : Ts) (5.2.29)

is set up where N  is the channel index and S is the maximum time/segment 

index. The energies of the time-frequency transform for Ts time instants and 

Fs frequency bins are then computed. PARAFAC is then applied to the four­

way array. This may be formulated in the same way as in [51] where j{ NxM



Section 5.2. Algorithm Development 116

is the spatial signature, &SxM is the temporal/segment signature, CF*xM is the 

spectral signature, and £)TsXM is the temporal signature with matrix elements 

denoted respectively as a(n, m), b(s, m), c(js, m), and d(ts, m). Hence,

^NxSxFsxTs   y  _|_ gNxSxFsxTs ^ 2 3Q)

where
M

Y = a{n, m)b(s, m)c(fs, m)d(ts, m) (5.2.31)
m= 1

and £,NxSxf*xTs is the negligible four-way residual of the model array. In 

order to find the model, the following cost function is used

[ A  &  C, £>] = arg min ||Y -  Y\\22. (5.2.32)
ajb,cj

By decomposing the multi-channel EEGs using the STF-TS model, the 

number of free parameters P4, i.e., the number of elements that has to be 

estimated by PARAFAC, is

P4 = M (N  + S + FS + Ts\  (5.2.33)

while the number of free parameters of the STF model P3 is as high as

P3 = M (N + F + T). (5.2.34)

Evidently, when T is large, P4 «  P3. This means that less parameters 

need to be estimated and therefore the computational complexity of the 

PARAFAC algorithm is reduced. Here, it is shown how to estimate the 

signatures of the STF model using the signatures of the STF-TS model. In 

this chapter, the TALS method [101] is used to compute the parameters of
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the STF model-trilinear model. Similarly a customized quadlinear version 

of the trilinear ALS (TALS) is used to compute the parameters of the STF- 

TS model, i.e. (5.2.32). By using the STF-TS model, the poor convergence 

of TALS can be avoided by selecting the appropriate size (number) of seg­

ments S .

According to (5.2.30), the temporal signatures of the long-term EEGs 

are estimated by cascading all S segments of the temporal signatures V  

which are weighted by their corresponding time/segment signatures S . In 

order to effectively estimate the STF model from the STF-TS model, the 

suggested number of segments S and the number of components M  should 

maximize the CORCONDIA value as

[S , M] = arg max jarg max [CORCONDLA(Y, S, C, £>)] j . (5.2.35)

The main concept behind (5.2.35) is that by decomposing Y to as many 

as M  possible factors for the STF model, it is firstly guaranteed that the cor­

rect number of factors for STF is achieved and then, the process of temporal 

segmentation is carried out. In other words, since the ultimate goal of the 

STF-TS model is to approximate the STF model, M  should be identified for 

the STF model using the conventional approach of [51] before adjusting S 

to maximize the CORCONDIA criterion for the STF-TS model.

When the residual is considered negligible, the STF model (5.2.26) can 

be written in a matrix form as

Y nxFxt = DX£bC', (5.2.36)

V

where E* is the diagonal matrix with the n-th row of A as its diagonal 

elements, n = 1,2, • • • , N. Similarly, the STF-TS model (5.2.30) is written
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in matrix form as

X NxSxFsxTs ~ (5.2.37)

where is a diagonal matrix with the n-th row of tR as its diagonal ele­

ments, n = 1,2. • • - , N. Similarly, 2 ^  is a diagonal matrix with the 5-th row 

of & as its diagonal elements for s = 1,2, •• • , S . According to (5.2.36) and

In addition, in order to simultaneously achieve acceptable estimates of 

the temporal and spectral signatures, the following condition should be ad­

dressed:

where L is the length of the EEG in seconds and S is the number of seg­

ments. is the time interval that allows the temporal signatures to have 

smooth envelopes. The fundamental frequency, f 0, is defined as the fre­

quency of the first peak in the frequency spectrum of filtered EEGs. Bearing 

in mind that as long as

— < -  (5.2.40)
f o ~  S

the spectral signatures are reconstructed faithfully, it has been empirically 

found that for various EEG recordings, in order to achieve smooth recon­

structions for the temporal signatures, should take values between 0.7-

0.9 seconds. After few simple mathematical manipulations (5.2.39) can be

(5.2.37), D for the STF model can be estimated by the scaled version of D

from the STF-TS model as

D »  'V L ssY - (5.2.38)

(5.2.39)
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Figure 5.1. A set of real EB contaminated EEG recordings, 

easily written as

< S < f 0L & 5, ^  6 Z + (5.2.41)
* ini ^

where f s is the sampling rate, and Z + represents the set of positive integers. 

Here, as explained in Section 5.3, /o is set to two Hz since the EEG mea­

surements have been bandpass filtered between 2 to 30 Hertz. If the above 

conditions are taken into account, the spectral signature C is also well ap­

proximated by C, while the spatial signature A is approximately equal to JK. 

Here, it is indicated that the acceptable values for S mainly depend on the 

different terms in (5.2.41), namely, the sampling rate, the length of the data 

under study, and also the selection of which are totally subjective.

From the original available data set, an EB contaminated segment of the 

EEG of 9.2 seconds length, i.e. 1820 sample points (see Fig. 5.1) is selected. 

The STF model of EEG recordings of Fig. 5.1 has been shown in Fig. 5.2 

where according to the second row of Table 5.1, two factors can be extracted 

if S = 1, i.e. M  -  2. Evidently, the first components (Factor 1) of the STF 

model demonstrate the EB-relevant factor since
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Table 5.1. The computed CORCONDIA percentage values for different 
S and M  corresponding to the EEG segment in Fig. 5.5. denotes that 
CORCONDIA does not converge for that specific S and M.

Model M = 1 M = 2 M =3

STF 100.0 98.4

STF-TS (S=10) 100.0 54 A
STF-TS (S=13) 100.0 33.5

STF-TS (S=14) 100.0 -11.9

Table 5.2. The computed CORCONDIA percentage values for different 
S and M  corresponding to the EEG segment in Fig. 5.5. denotes that 
CORCONDIA does not converge for that specific S and M.

Model M = 1 S ii to 2 ii u>
STF 100.0 98.9 46.2

STF-TS (S=10) 100.0 -13.4
STF-TS (S=12) 100.0 -5.0
STF-TS (S=15) 100.0 -8.6

STF-TS (S=18) 100.0 17.1

1. It mainly occurs in the frequency band of around 5 Hz while the 

other factor exists in the entire band and represents the ongoing activ­

ity of the brain or perhaps a broadband white noise-like component, 

Fig. 5.2-(a).

2. The temporal signature of the first factor definitely shows a transient 

phenomenon such as EB while that of Factor 2 consistently exists 

during the course of the EEG segment, Fig. 5.2-(b).

3. Unlike Fig. 5.2-(d), in Fig. 5.2-(c), the spatial distribution of the ex­

tracted factor is confined to the frontal area, which clearly demon­

strates the effect of EB. The other factor shows the background activ­

ity of the brain as it spreads all over the scalp.

For STF-TS modeling, it is considered L -  9.2 and Tim -  0.9 seconds
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and f s = 200 in (5.2.41). Therefore, the initial candidates for S are 13 and 

14. Although in (5.2.41) the lower bound for 5 is = 10.22, S = 10 is in-* ini

tentionally included in the analysis in order to demonstrate the accuracy of 

(5.2.41). The CORCONDLA values for M  = 2 and S = 10,13, and 14 have 

been calculated and shown in Table 5.1. Here, as in (5.2.35), the maximum 

CORCONDLA value for maximum M  and S should be selected. Apparently, 

disregarding (5.2.41), the best CORCONDLA candidate in Table 5.1 is 54.1 

for M  = 2 and S = 10. As plotted in Fig. 5.3, an acceptable decomposition 

was not achieved for 5 = 10, although it presents the maximum CORCON­

DLA. Evidently, none of the six signatures, i.e. two spectral, two temporal, 

and two spatial signatures, have been estimated correctly. Note that due to 

the leakage from the dominant EB factor to the brain activity factor during 

decomposition, there is a considerable similarity in their spectral and spa­

tial signatures. The temporal signatures are also misidentified. Therefore, 

it is concluded that not only the CORCONDLA value is important but also 

5 should fulfil the inequalities and conditions of (5.2.41). In practice, such 

mis-modelings can be avoided by carefully testing the marginal value of 5,

i.e. 10 in this experiment, or a proper selection of the T ^.

Therefore, the next candidate is selected, i.e. S = 13 for which the 

CORCONDLA value is 33.5. The results of the EEG STF-TS modeling for 

M = 2 and 5 = 13 have been plotted in Fig. 5.4 where it is illustrated how 

well the STF model is approximated by the STF-TS model. Factor 1 stands 

for the EB factor while again Factor 2 shows the brain background activity. 

In the sequel, the spatial signature of Factor 1 is used in the beamforming 

stage.

Note that, the acceptable values for 5 mainly depend on various terms of 

(5.2.41). For instance, depending on an specific application, if one selects
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Figure 5.2. The extracted factors by using STF decomposition of the EEG 
recording in Fig. 5.1; (a) and (b) illustrate respectively the spectral and tem­
poral signatures of the extracted factors, (c) and (d) represent the spatial 
distribution of the factors, respectively. Evidently, Factor 1 demonstrates 
the EB phenomenon since it occurs in a frequency band of around 5 Hz (a), 
it is indeed transient in the time domain (b) and it is confined to the frontal 
area.

the length of the data to be 4.2 seconds and the sample rate to be 1000 Hz, 

with /o = 2 and Tinl = 0.9s, then (5.2.35) should be solved for S = 5,6,7, 

and 8. However, again it is suggested that it is not likely to have an accept­

able decomposition for the smallest value of S , i.e. 5. Therefore, in order 

to avoid such cases, the solution is achieved setting Tinl = 0.8s and comput­

ing (5.2.41) for S = 6 , 7 ,  and 8. The computed CORCONDIA percentage 

values for different S and M  corresponding to the EEG segment plotted in 

Fig. 5.5 are reported in Table. 5.2. The bold value 98.9 demonstrates that 

M  = 2 is the correct number of factors for the STF model. Estimating the 

CORCONDIA for M -  2 and S = 10,12,15, and 18 and selecting the 

maximum fitness, the bold underlined value 17.1, shows the right selection 

of the S and M  for the STF-TS model. In summary, the presented method 

consists of the following steps. Given an artifact contaminated EEG data:
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Figure 5.3. The extracted factors by using STF-TS decomposition of the 
EEG recording in Fig. 5.1 when M — 2 and S = 10. Regarding Fig. 5.2, 
none of the six signatures, i.e. two spectral, two temporal, and two spatial, 
have been estimated correctly. Note that due to the leakage from the dom­
inant EB factor to the brain activity factor while decomposition, there is a 
considerable similarity in their spectral and spatial signatures. The temporal 
signatures are also misidentified.

1. bandpass filter the EEGs between 2 Hz and 30 Hz,

2. set up the four-way array, i.e., Y nxs*fsxts, as stated in section 5.2.4,

3. execute the four-way PARAFAC and select the EB artifact relevant 

factor as described in section 5.3,

4. exploit the spatial signature of the EB artifact factor as aj  and execute 

the beamforming procedure,

5. reconstruct the artifact removed EEGs by deflation.

5.3 Simulation Results

The procedure is applied to real EEG measurements. The dataset was pro­

vided by the School of Psychology, Cardiff University, UK. It represents a
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Figure 5.4. The extracted factors by using STF-TS modeling by M -  2 and 
5 = 13. Interestingly, as expected, the spectral and spatial signatures of the 
extracted components are very similar to those of Fig. 5.2 and the temporal 
signatures effectively identify the transient EBs.

wide range of EBs and, therefore, gives a proper evaluation of the method. 

The scalp EEG was obtained using 25 Silver/Silver-Chloride electrodes 

placed at locations defined by the conventional 10-20 system [31]. The 

data were sampled at 200 Hz, and bandpass filtered with cut-off frequencies 

of 2 Hz and 30 Hz. Twenty real highly EB contaminated EEG recordings, 

each 9 seconds long have been artifact removed by using this method. The 

performance of the algorithm can be observed by comparing the EEGs ob­

tained at the electrodes in Fig. 5.5-(a) and the same segment of data after 

being processed by the proposed algorithm in Fig. 5.5-(b).

In what follows, a detailed comparison between the results of STF mod­

eling using the two mentioned approaches in Section 5.2, i.e., direct three- 

way PARAFAC (Section 5.2.3), see Fig. 5.6 and the STF modeling by using 

the STF-TS model of EEGs (Section 5.2.4), see Fig. 5.7, is provided.

Averaged CORCONDIA values for three independent runs with differ-
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Figure 5.5. The results of the proposed EB artifact removal method for a 
set of real EEGs. The left subplot depicts highly EB contaminated EEGs 
before artifact removal while in the right subplot the segment of EEGs after 
being corrected for EB artifact is illustrated.

ent initialization as detailed in [51] have been computed for methods of 

STF and STF-TS modeling. In Fig. 5.6, the number of components M  is se­

lected as M = 2 according to the computed CORCONDIA value, i.e, 98.4% 

whereas the CORCONDIA for the proposed STF-TS model was 17.1% 

when the number of segments was S = 18 [see (5.2.35) and Table 5.2].

Figs. 5.7-(a) to -(d) illustrate respectively the estimated spectral, tempo­

ral, and spatial signatures of the under study EEGs. The results of the STF- 

TS model in comparison to that of the STF model, i.e. Fig. 5.6, demonstrate 

the reliability of the STF-TS modeling, since both methods result in approx­

imately the same signatures and, as expected, the STF-TS method is a faster
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Figure 5.6. The extracted factors by using STF modeling; (a) and (b) il­
lustrate respectively the spectral and temporal signatures of the extracted 
factors, (c) and (d) represent the spatial distribution of the factors, respec­
tively. Factor 1 demonstrates the EB phenomenon.

algorithm. Small deviations in spectral and temporal signatures of the STF 

model using STF-TS are negligible, since they are merely utilized to iden­

tify the EB relevant factor. Moreover, experimentally it has been found that 

due to the fact that the EB factor is the dominant factor, it is always effec­

tively identified, if the conditions in (5.2.41) are met; any probable deviation 

only perturbs the signatures of the background EEG activities.

By using the STF model, the parallel factors of the three-way array of 

size N x  F x T  have to be calculated. This process takes a longer period 

of time due to the calculations of more free parameters P3 as compared to 

the P4 values with the STF-TS model. The first row of Table 5.3 shows 

that the number of free parameters is greatly reduced by using the STF- 

TS model, where the size of the three-way Y VxFxr for the STF model is 

25 x 1800 x 180 = 4010 parameters to be estimated, and the size of the 

four-way ¥.n*sxf xt ôr STF-TS model is 25 x 18 x 180 x 100, i.e.
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Figure 5.7. The extracted factors by using STF-TS modeling; (a) and (b) 
illustrate respectively the spectral and temporal signatures of the extracted 
factors and (c) and (d) represent the spatial distributions of those extracted 
factors. Interestingly, as expected, the spectral and spatial signatures of the 
extracted components are very similar to those of Fig. 5.6 and the temporal 
signatures effectively track the transient EBs of the ongoing EEGs.

646 parameters to be estimated. Consequently, the second row of Table 5.3 

illustrates the relative calculation time of the STF and STF-TS models. For 

the EEGs used in this experiment, the relative calculation time of the STF- 

TS model, presuming that the calculation time of the STF model compared 

to the method proposed in [77] is 1, is 0.16.

At this stage, the spatial signature of the EB artifact relevant factor is of 

interest - to be used in the RMVB algorithm as an approximation to a7, i.e. 

a7-. The first components (Factor 1) of both STF models resulted from the 

two approaches demonstrate the EB-relevant factor since it mainly occurs 

in the frequency band of around 5 Hz and its temporal signature shows a 

transient phenomenon. Moreover, unlike in Fig. 5.6- and Fig. 5.7-(d), in 

Fig. 5.6- and Fig. 5.7-(c), the spatial distribution of the extracted factor, to 

be used as a i s  confined to the frontal area, which clearly demonstrates the
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Table 5.3. The number of estimated free parameters for the STF and STS- 
TS models and their respective complexity.

Models STF M = 2 STF-TS M = 2, S = 18

Free parameters 4010 646
Complexity 1 0.16

effect of EB. The other factor shows the background activity of the brain as 

it spreads all over the scalp.

Using §ij in (5.2.17), the beamformer w7 is computed and the EB source 

is extracted. The artifact removed EEGs are then reconstructed by using the 

batch deflation method [66, pp. 192]. You are referred to Section 4.2.3 for 

further details.

In order to provide a quantitative measure of performance for the pro­

posed artifact removal method, the correlation coefficient (CC) between the 

extracted EB artifact source and the original EEGs and the artifact removed 

EEGs are computed in a similar way to the previous chapter, see Fig. 5.8.

The values reported in Fig. 5.8 have been computed as follows. For each 

of the 20 different EB artifact contaminated EEGs, the proposed method is 

executed. The aforementioned CCs for each run were then computed be­

tween the extracted EB and the EEGs before and after the artifact removal. 

These values have subsequently been averaged and shown in Fig. 5.8. Fur­

thermore, their corresponding standard deviations have also been reported. 

As expected, the CC values have been significantly decreased by using the 

proposed method. Simulations for 20 EEG measurements demonstrate that 

the proposed method can efficiently identify and remove the EB artifact 

from the raw EEG measurements.

As a second criterion for measuring the performance of the overall sys-



Section 5.4. Concluding Remarks 129

Before Art if ad Removal

Cz Pz FP1FP2 F7 F8 F5 F6 F3 F4 T7 T8 CS C6 C3 C4 P7 P8 PS P6 P3 P4 01 02  FPz

x jo-3 After Art if a d  Removal
4 1 i i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— r

3 - T  T

Cz PzFP1FP2 F7 F8 F5 F6 F3 F4 T7 T8 C5 C6 C3 C4 P7 P8 P5 P6 P3 P4 01 02  FPz

Figure 5.8. The averaged CC values (and their corresponding standard de­
viations) between the extracted EB and the restored EEGs before and af­
ter artifact removal of different channels in (a) and (b), respectively. The 
experiments have been performed for 20 different EB contaminated EEG 
recordings. Note that the scales are different by 103.

tern, a segment of EEG was selected, called xseg and the reconstructed EEG 

xseg which does not contain any artifact, and measured the waveform simi­

larity by

jjdB = 10 log [-^  j r  (l -  E{xseg{i) -  ***(/)})]• (5.3.1)
i=i

When the value of rjdB is zero, the original and reconstructed waveforms are 

identical. From the 20 sets of EEGs, the average waveform similarity was as 

low as jjdB = 0.008 dB (standard deviation 10-3 dB). These results suggest 

that the observations have been faithfully reconstructed.

5.4 Concluding Remarks

A robust method for removing EOG from EEG recordings by employing 

the robust minimum variance beamforming method was presented to allow 

for the deviation of the estimate of the steering vector corresponding to the
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EB source from the actual steering vector. The vector of spatial distribution 

of the EB factor has been identified using the proposed four-way PARAFAC 

which enjoys much less computational complexity in comparison with the 

conventional STF modeling using the three-way PARAFAC [76]. The spa­

tial signature of the EB factor as an estimation of the steering vector that in­

troduces the EB source to the EEGs is exploited. This assumption is rational 

since the EB can be considered as a strong point source which is attenuated 

while propagating from the frontal area to the central and occipital parts of 

the brain.

The approach can be also implemented in the conventional paradigms 

of adaptive training of a global steering vector from the training data set and 

use it in removing the artifacts from the test data. However, there are three 

important issues in implementing the adaptive machine learning schemes 

for artifact removal as detailed below.

1. EB artifacts can be very different in terms of the amplitude and how 

they contaminate other channel signals; they may contaminate the 

EEG recordings from the frontal electrodes or nearly all the record­

ings even those recorded from the electrodes in the occipital area. 

Due to these diverse artifact strengths, one faces with different steer­

ing vectors. This diversity makes the learning of the optimum steering 

vector from the training set rather difficult and the training procedure 

may suffer from a poor generalization while implementing on the test 

data.

2. Although this method has been tested only for EB artifact removal, 

its potential for removal of the eye-movements (vertical/lateral move­

ments) and saccade artifacts may be investigated. Even if, it is pos­

sible to identify a general steering vector for EB artifacts, for the
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eye-movement artifacts, especially the lateral ones, the correspond­

ing steering vectors show very different patterns of inter-session and 

intra-subject variability. Therefore, one may not find a single steering 

vector for removal of the eye lateral movement artifacts. In removing 

saccade artifacts, the situation can be worse depending on the angular 

speed of the eye which may reach up to 1000 degree per second and 

also the temporal pattern of saccade which lasts to approximately 200 

milliseconds. Thus, the method has been developed for EB artifact 

removal on a trial by trial basis. Note that the problem of the EB and 

eye-movement artifact removal has been well solved in [69]. How­

ever, this approach would not be effectively applicable without using 

the extra EOG electrodes.

3. The online implementation of the presented method is very easy. As 

shown in Table 5.3, the estimation of the STF-TS model is fairly 

straightforward. If the algorithm is expected to work in the recording 

session, i.e. in the clinical examinations and mainly for fast review­

ing purposes, the STF-TS modeling can be only estimated for the first 

few segments and then it introduces, for instance, the averaged vec­

tor of the estimated steering vectors to the robust beamformer. The 

beamformer will relatively compensate for the deviations of averaged 

steering vector of the recent EBs from that of the new EBs and ex­

tracts the artifact. This approach can also be regarded as a learning 

paradigm where the learning process is simply an averaging opera­

tion. However, in the offline analysis, a steering vector for EB artifact 

is identified for each set of contaminated EEG recordings.

The results show that the proposed method extracts and removes the ef­

fect of blinking artifacts from EEGs. The EEGs are processed using the
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RMVB algorithm and the artifact is extracted; then, the EEGs are recon­

structed in a deflation stage. The proposed framework consistently removes 

the EB artifacts from the EEG signals.



Chapter 6

STEADY-STATE MOVEMENT 

RELATED POTENTIALS AND 

BCI

Considering the limitations of the presented BCI approach in Chapter 3 and 

the experiences achieved in Chapters 4 and 5, a new paradigm for BCI in 

STF domain is introduced in this chapter. Here, in contrast to other conven­

tional approaches such as ERD/ERS analysis in the/i and/? frequency bands, 

the brain capabilities in controlling repetitive finger movements are inves­

tigated for BCI. The neurological aspects of such repetitive movements are 

reviewed and explored for real EEG recordings both in averaged and single 

trial modes. Finally, the applicability of two classic classifiers, i.e. Fisher’s 

discriminant analysis (FDA) and kernel FDA (KFD) for BCI purposes are 

investigated.

6.1 Introduction

Movement-related brain electrical activities have been studied for many 

years by means of the readiness potentials (RP) [36]. The RP is typically 

recorded during the performance of the voluntary movements. The con­

133
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struction of the lateralized readiness potentials (LRP) exploits the contralat- 

erally dominant distribution of movement-related brain activity preceding 

the movements [34]. It consists of a subtraction of potentials recorded ip- 

silateral to the side of movement from potentials recorded contralaterally, 

followed by averaging of these difference potentials associated with left and 

right hand movements [121]. The LRP has proven to be a useful tool in cog­

nitive and clinical neuroscience [122,123]. Most of the clinical researches 

on LRP, see [36], have investigated the temporal and spatial characteristics 

of this spectrally band limited potential in the healthy subjects and patients.

In the worldwide BCI community, there are several research groups that 

investigate RPs for BCI [15, 18]. As briefed in Chapter 3, the detection 

of asymmetric EEG potentials during temporally discrete finger tapping is 

straightforward. In [15,18], various methodological and mathematical pro­

cedures have been tested and correct classification results of up to 95% have 

been achieved.

6.2 Lateralized Readiness P o ten tia ls  (LRP)

Pioneering studies on Bereitschaftspotentials (RPs) such as in [124] showed 

that the brain activity can be detected prior to an overt movement and that 

the nature of this activity depends on the nature of the impending move­

ment [36, Ch. 14]. The Bereitschaftspotentials begin several hundred mil­

liseconds before the movement onset and as the time for the movement ap­

proaches, the scalp asymmetric distribution depends on the effector. This 

observation gave rise to the LRP measure. In [125], it has been shown that 

the time at which the brain activity becomes asymmetric is closely related 

to the time at which the subjects knew whether a right or left finger response 

would be required. Kutas et al. in [125] have concluded that the asymmetric
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distribution of the scalp potentials reflects the mental preparation to execute 

a specific motor act.

Based on these findings, researches in [126] and [127] independently [36] 

reasoned that under certain circumstances, the presence of asymmetries 

could be used to infer the presence of preferential preparatory brain activity. 

The procedures to derive a measure of asymmetric movement-related brain 

activity were derived which yielded a measure now referred to as the LRP.1

6.2.1 Deriving th e  LRP

Both [126] and [127] recognized that the asymmetries in electrical brain 

activity can be observed for a variety of reasons, only some of which in­

volve preparation for movement. The problem of isolating the movement- 

related contribution to the asymmetries was solved almost similarly in [126] 

and [127], see the two-stage subtraction and subtraction-averaging sequence 

methods in [128] and in [129], respectively. For instance, in the subtraction- 

averaging method, first, the trials are sorted into two groups, namely, left and 

right finger movement classes. Then, the EEGs from two lateral electrodes 

placed over left and right motor cortices (C3 and C4) are averaged sepa­

rately for the two groups of trials. Refer to Fig. 6 .1 for their current source 

density transformed traces. As shown in each plot, there is an asymmetry 

between the averages for C3 and C4 for both finger movements. That is, for 

the left finger movements, the averaged activity at C4 is more negative than 

that at C3 and the converse is the case for the right finger movement. This 

procedure may be continued by doing the further second subtraction, i.e. 

the subtraction of the asymmetry waveform for right finger movement from 

that of the left finger movement. The outcome of the second subtraction is 

]It was originally called “Corrected Motor Asymmetry” in [127].
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Figure 6.1. The averaged CSD transformed RPs from C3 and C4 during 
left and right finger movement. In left finger movement the signal at C4 is 
more negative than that at C3 and the converse is the case for right finger 
movement. The unit jjV/m2 denotes the second order spatial derivative of 
the RPs computed by CSD transform.

of great importance in psychophysiologic studies, see [130] and references 

therein. However, in BCI investigations the second stage is often relaxed.2

Figs. 6.2 and 6.3 respectively show the LRPs computed for the left and 

right finger movements by using the subtraction-averaging method. Note 

that, in these two figures, the deference between the average of RPs recorded 

from an electrode, C3, and the averaged RPs recorded from the correspond­

ing electrode on the other hemisphere, C4, is denoted by C3 -  C4. For 

instance in Fig. 6.2, a positive trend can be seen in the central subplot which 

demonstrates that the averaged RPs recorded from C4 is more negative than 

that from C3. LRPs in other subplots also demonstrate similar patterns. 

Fig. 6.3 reports the asymmetric distribution of RPs during right finger move­

ment.
2Refer to [36, Ch. 14] for further details.
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Figure 6.2. In left finger movement; the deference between the average of 
RPs recorded from electrodes on the left and right hemispheres is denoted 
for instance by C3 -  C4. Note that in the central subplot, i.e. C3 -  C4, a 
positive trend is seen which demonstrates that the RP recorded from C4 has 
been more negative than that of C3. LRPs in other subplots also demonstrate 
the same pattern although in CP5-CP6  the LRP violates the general pattern.

6.2.2 BCI using LRP

Among various BCI approaches, it is fair to state that the BCI based on LRP 

has been shown to be the most effective one - merely in terms of classifica­

tion results [15]. Notice that, it has been documented that RPs are readily 

recordable from almost all the subjects [36]. Therefore, LRP-based BCI 

seems to be a suitable option both in terms of detection and processing. 

However, in this research, it has been concluded that although similar to 

many published works, acceptable BCI performances can be achieved using 

LRPs, the applicability of such method in real life rehabilitation problems 

is questionable.

The EEGs shown in previous figures were recorded from one subject in
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Figure 6.3. In right finger movement; the deference between the average of 
RPs recorded from electrodes on the left and right hemispheres is denoted 
for instance by C3 -  C4. Note that in the central subplot, i.e. C3 -  C4 a 
negative trend is seen which states that the RP recorded from C3 has been 
more negative than that of C4. LRPs in other subplots consolidates almost 
similar decreasing pattern.

the Behavioral Brain Sciences Centre, School of Psychology, The Univer­

sity of Birmingham where 240 trials of self-paced finger movement were 

collected, sampling rate was set to 512 Hz. The subject was asked to sit in 

front of a screen. Each trial started with a 2 second blank gray screen when 

the subject was allowed to blink. Then, a fixation cross “+” appeared in the 

center of the screen. After one and half seconds, “+” was replaced with the 

go signal “X” which informed the subject that he was allowed to move his 

finger after some seconds.

Neurological studies have shown [122,123] that in order to have clear 

readiness potentials the interval between two subsequent motor actions should 

not be less that 5 seconds. Therefore, in contrast to [15], the subject was 

not asked to respond immediately after “X” appeared. He was instructed 

to carry out the the motor task after some seconds, for instance 5 seconds.
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Figure 6.4. Topographic maps of the LRPs prior to the left finger movement. The averaged movement time instant (-78 ms to -31 ms) 
is shown by green bar.
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Figure 6.5. Topographic maps of the LRPs prior to the right finger movement. The averaged movement time instant (-78 ms to -31 ms) 
is shown by green bar.
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The recorded EEGs, after discarding the EB or motion artifact contaminated 

trials, were bandpass filtered between 1 Hz and 4 Hz. Then, following a 

similar approach presented in [15], but with a simple linear discriminant 

classifier (see Section 6.6), the trials were classified.

In the feature extraction stage, first as in Chapter 3, the signals recorded 

from the sensorimotor cortex electrodes, i.e. FC5, FC3, FC1, FC2, FC4, 

FC6, C5, C3, C l, C2, C4, C6, CP5, CP3, CPI, CP2, CP4, and CP6 were 

considered. After down-sampling to 32 Hz, the data points in the last 250 ms 

before the movement onset, i.e. 8 data points, were selected as features from 

each channel. The feature space was reduced in dimension using PC A. The 

results of classification of the first two principal components were 82.5 ± 

1.5% for left finger and 88.2 ± 0.8% for right finger movement.

The averaged classification rate of approximately 85% shows that even 

with such primitive features from raw EEGs and the utilized linear classifier, 

comparing to what has been used in [15,131,131], LRPs may provide an 

acceptable solution for BCI. However, there are few issues which restrain 

the wide use of LRPs and are summarized as below:

• The major problem with LRP based BCI system is that the RPs are 

very slow. Therefore, their fine recording is not easy. Therefore, in 

many cases distinguishing between DC drifts and very slow 1 or 2 

Hz signals in short windows of 0.5 s length may not be straightfor­

ward. DC drifts are an inevitable specially if the experiments become 

lengthy. Furthermore, there is another technical issue in processing of 

RPs; after segmenting the recorded EEGs a baseline removal stage is 

needed in the preprocessing stage. Although in offline BCIs, finding 

a short DC free reference interval is fairly easy, identification of such 

reference interval within the EEG streams is troublesome in real life
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applications.

• The second problem arises from the nature of the RPs. In order to 

record clear RPs, the interval between each two finger movements 

should be several seconds. Although in few literature such as [15], in 

order to realize a fast LRP-based BCI machine this interval has been 

reduced to 0.5 s, the classification performance has been significantly 

degraded. In order to have an output for each single subject’s decision, 

the subject has to fixate for at least a couple of seconds which can be 

stressful.

• Another problem with LRP-based BCI is that, EEGs are markedly 

affected by the low frequency motion and EOG artifacts, within the 

range of 2 to 6 Hz. Therefore, in contrast to the n  rhythm-based BCI 

systems3 in which even EB contaminated EEGs trials can be included 

in the classification stage, all the noisy segments should be discarded.

Noticing the aforementioned reasons, a BCI based on the brain steady- 

state movement related potentials (ssMRP) is proposed here. This approach 

would solve almost all the above problems and provide high classification 

rates. It does not burden much computational load and therefore the real­

time implementation is plausible. By considering the steady-state move­

ment related rhythms there is almost no need to remove the baseline and the

EB artifacts do not interfere much.
3As defined in Chapter 2, rhythms are movement related brain potentials which lie in 

the spectral range of 8-13 Hz.
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6.3 Brain S tea d y -S ta te  P o ten tia ls  for BCI

The main issue in all previous BCI systems is to detect and classify the 

single trial EEG recordings. That is, the subject is asked to move (imag­

ine the movement of) a finger and the recorded EEGs corresponding to that 

movement is classified by the BCI machine. However, the number of deci­

sions per second is not high enough in such BCI structure as compared to 

normal brain performance. For instance, as reported in [15], in the classic 

ERD/ERS based machines, the best achieved performance is approximately 

85% when taps are carried out every 2 s. In order to extract clear and inter­

pretable ERD/ERS the inter tap interval should be several seconds. There­

fore, the error in single trial ERD/ERS classification increases if taps are 

carried out at faster paces. Results in [15] quantified that the error would 

increase up to 27% when the subject taps every 0.5 s. Further results in [15] 

demonstrated that if the LRP features are used instead of the ERD/ERS fea­

tures, a similar pattern could be seen; the classification error increased from 

5% to 19% when inter tap interval decreased from 2 s to 0.5 s.

In this section, the conventional BCI systems based on steady-state brain 

potentials are reviewed. In such systems, the subject is exposed to a repet­

itive cue, i.e. a rhythmic flashing LED or audio beeps, instead of a single 

cue in each recording trial.

BCI systems based on steady-state visual evoked potentials (ssVEP) 

have become increasingly important in the past few years [132,133]. In 

ssVEP-based BCI, the signal processing unit estimates the spectrum of the 

recorded EEGs, usually from two or three electrodes in the occipital area. 

The pattern classification unit labels the recordings to various classes. The 

classification is based on finding the strongest peak in the spectrum and as­

signing that trial to the class of the flashing cue with the same frequency.
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Middendorf et al. in [134] and [135] used such BCI method for control­

ling a flight simulator. In that study, the average accuracies up to 92% were 

achieved with a decision time of 2.1 s. In another recent work, Cheng et 

al [136] demonstrated a 12-class ssVEP-based BCI system. By ssVEP- 

based system, multiple classes BCI systems may be realized without exten­

sive subject training. This is mainly because that the users do not have to 

concentrate on simulation of different motor actions and only have to shift 

the gaze toward the cue in the movement direction of interest which less 

demanding, though it needs intact eye muscle control. Moreover, real-time 

implementation of such BCI system with visual feedback is readily possi­

ble [137].

However, since ssVEPs are directly coupled to eye gaze position, the 

BCI would be limited only to recovering eye position on direction of at­

tention. The objective here is therefore, to introduce a high performance 

BCI machine based on brain steady-state finger movement related potentials 

(ssMRP), independent of eye-movement.

6.4 Brain’s M RPs are elic ited  during repetitive finger m ovem ents?

Timing of one’s voluntary movements with respect to an external event has 

been investigated in sensorimotor timing studies [138-140]. In several stud­

ies the subjects synchronize their finger taps with the regular auditory pac­

ing signals [138-140], Interestingly, the subjects usually feel the exact syn­

chrony between the taps and the pacer. In contrary, the taps lead over the 

pacer by approximately 20-60 ms which is called the negative asynchrony 

and is a stable behavioral phenomenon [141].

Neuroelectric and neuromagnetic investigations have demonstrated that 

the execution of simple unimanual repetitive finger movements is associ-
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ated with brain activities within the Rolandic fissure of the contralateral 

hemisphere corresponding to the primary sensorimotor cortex called ssM- 

RPs [142,143]. This activity is temporally locked to the movement on­

set [142,143]. It has been shown that [142,143] the activity within the 

primary sensorimotor cortex may be decomposed into three marginally dif­

ferent components. First, approximately 100 ms before movement onset, a 

localized activity in the primary motor cortex (Ml) occurs. Further activity 

arises around the tap onset [144]. The corresponding source is localized 

within the primary somatosensory cortex (SI) and may represent the neu- 

romagnetic correlate of feedback due to finger movements. However, this 

source could not be detected by other studies which might be simply due 

to slightly different analysis procedures from that described in [144]. Fi­

nally, the post-movement activity is detected approximately 100 ms after 

the movement onset. MEG studies reveal that the corresponding dipole is 

localized within the primary somatosensory cortex but inferior to the first 

SI source [143].

6.4.1 How ssM RP may be  used for BCI?

Unfortunately, the above mentioned recorded ssMRPs does not provide much 

higher performance comparing to the classic EEG features for BCI. Again, 

the low SNR is a major problem and there exists spatial and spectral uncer­

tainties similar to what mentioned in the previous chapters. Therefore, in 

this section an approach is proposed in order to effectively record ssMRPs 

and utilize them in a BCI machine. Note that ssMRP-based BCI generally 

follow the standards of ssVEP-based BCI. However, the main difference is 

that the ssMRPs are movement related potentials.

The main idea here is that if the subject moves (or imagines the move-
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ment of) his/her fingers in synchrony to a flashing rhythm, EEGs are modu­

lated with the similar frequency as of the flashing cue. The synchronization 

is stronger on the contralateral hemisphere to the moving finger. That is, 

if the frequency of the flashing cue is set to 2 Hz and the subject repet­

itively moves his right index with a 2 Hz pace, EEGs with considerable 

2 Hz frequency components may be recorded on the contralateral hemi­

sphere, for instance from C3 electrode. Similar procedure may be followed 

for the left index movement. First, the averaged EEGs over approximately 

100 trials are investigated in order to observe if a relatively strong 2 Hz 

frequency component exist. Then, the single trial EEGs are classified. In­

terestingly, almost all the methods and applications developed for BCI us­

ing ssVEP, see [137] and the references therein, may be considered for this 

novel scheme.

The introduced approach is novel mainly due to the following issues:

• Recording and interpretation of ssMRPs is much easier than process­

ing the RPs. In [15, 131, 145], several ad hoc and probably non- 

generalizable approaches methods for RP analysis have been intro­

duced. Moreover, although in [15], Blankertz et al. investigated the 

effect of fast tapping, they have considered each tap individually in 

contrast to the proposed continuous framework.

• In contrast to the ssVEPs-based BCI, the proposed approach is much 

easier to implement since instead of having two or four almost close 

frequencies in the a  band, i.e. 10, 11, 12, or 13 Hz, for different 

motions, only one frequency is utilized. In other words, instead of ex­

ploiting the spectral disparity in the signal processing unit of the BCI 

machine, one frequency has been considered but the spatial signature 

of the recorded signal refer to the subject’s desired output. The sim-
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pier coordinates of the proposed system make the training procedure 

much faster.

• In terms of computational complexity, also the proposed BCI ap­

proach is pretty straightforward. All one has to do is to estimate the 

variances of the bandpass filtered EEGs and classify them into two 

classes.

In the next section, the recording procedure and the preprocessing stage 

for investigating the averaged EEGs recorded during repetitive right and left 

finger movements will be described. Afterwards, the utilized classification 

techniques for single trial EEG analysis for BCI purposes will be covered.

6.5 EEG Recording and P re-P rocessing

two right-handed healthy individuals participated in the experiment; both 

gave informed consent. No one had any previous BCI experience.

EEG recording and pre-processing: The experiment was run in a quiet, 

normally illuminated room. The participants were seated comfortably in an 

armchair with the forearms placed on the armrests of the chair. Two force 

transducers were attached to the armrests, on top of which the participants 

hold their index fingers of each hand. The stimuli were presented in white 

against a grey background on a 17 inch monitor at a resolution of 800 x 600. 

The viewing distance was 100 cm.

Each subject first underwent a practice block of 20 trials. The main 

recording session was comprised of eight blocks, each contained 40 trials, 

resulting in 320 trials for further analysis. The block and trial structures are 

illustrated in Fig. 6.7 and Fig. 6.8. Each trial lasted 7 seconds which includes 

one second for initial fixation and another 6 seconds for EEG recording
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during the motor task. In the first second of each trial a fixation cross was 

shown in the center of the screen. Afterward, while the cross was kept 

constant in the center, two flashing “X”s appeared at left and right sides of 

the cross for 6 seconds; each was 10 cm away from the center. Hashing 

frequency was set to 2 Hz. The participants were instructed to tap on force 

sensor under left or right index finger at a constant rate of 2 Hz synchronous 

to the flashing cues. The rest interval between trials was approximately one 

and half seconds, randomly changing so that the subjects would not guess 

the start of next trial. The choice between right or left finger tapping was 

made freely by the participants in each trial. However, they were asked to 

be fair between right and left responses.

The main reason for showing the flashing cues was to give the subjects 

a 2 Hz pace. Equidistant visual cues on either side from the center should 

not cause development of any asymmetric potentials over the motor cortex. 

The subjects were asked to maintain fixation on the central cross during 

the course of tapping. This approach was adopted in order to attenuate un­

desired ssVEPs. Force transducers were utilized instead of conventional 

response switches in order to provide a setup in which the subjects did not 

actually press any switch, only performed repetitive tapping, which main­

tained the continuity of the repetitive finger movement.

EEG potentials were recorded continuously with 128 active Ag/AgCl 

scalp electrodes, see Fig. 6 .6 , relative to an (off-line) averaged left and right 

mastoid reference. The electrodes were placed according to the 10 — 5 

system [146], see Fig. 6.9 which has been taken from [147], using a care­

fully positioned nylon cap. The eye-movements and eye-blinks were mon­

itored by bipolar horizontal and vertical electro-oculogram (EOG) deriva­

tions. EEG and EOG signals were amplified with a bandpass of 0-128



Section 6.5. EEG Recording and Pre-Processing 149

Figure 6.6. Active electrodes used for EEG measurement.

Hz using BioSemi Active-Two amplifier, and sampled at 512 Hz. EEG 

preprocessing was performed off-line using Brain Vision Analyzer software 

(Brain Products GmbH). Continuous EEG recordings were off-line seg­

mented in epochs from 0-6 s after trial onset. Individual trials containing 

eye-movement and eye-blink artifacts were rejected before analysis (on av­

erage 1% from each subject). Preprocessed EEG segments were later ex­

ported to Matlab for further analysis, i.e. single trial feature extraction and 

classification.

Fig. 6.7 shows the structure of the recording protocol where the exper­

iment consists of 8 sessions. In each session, 40 trials are recorded; 320 

trials in total. Each trial, see Fig. 6.8 starts with 7 seconds for recording 

the EEG and approximately one and half seconds between trial rest period. 

The length of rest block has considered randomly changing so that the sub­

jects may not guess the start o f the next trial. The subjects are allowed to 

blink during the rest period. This approach has been tested and shown very 

effective in cognitive neuroscience studies, see [122].

The flat type active electrodes produced by BioSemi used in this project 

are easily attachable to the skin with paste. As mentioned earlier in sec­

tion 6.2, this feature is important for recording the slow cortical poten­

tials when EEGs can be very easily contaminated by very low frequency 

drifts [148]. And secondly, the exploitation of the force transducers with a
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Figure 6 .8. Temporal structure of each trial.

miniature precision strain gage amplifier, see Fig. 6.10, instead of the con­

ventionally used response switches, Fig. 6.11. The signals produced by 

the force transducers which make the strain gage active is processed by the 

BioSemi ActiveTwo AD-box similar to other active sensors. The advantages 

are that all influences of the connection cable including cable interference 

and temperature drifts are entirely eliminated. The Active strain gage con­

tains a low-noise, low-power, zero-drift, differential amplifier.

The main motivation behind using this type of force transducers for 

ssMRP-based BCI was that since the subject does not actually press the 

button the continuity of the repetitive finger movement is maintained. No­

tice that force transducers have been widely used in neuroscience stud­

ies [138,149] but not in BCI.
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Figure 6.9. The 1 0 - 5  system. Total number of points is 329 including 12 
points, likely lying on the eyes (shown in gray italics). Black open circles 
indicate the 1 0 -20  positions, gray open circles indicate additional positions 
introduced in the 10 -  10 system. This figure has been adopted from [147].

Figure 6.10. The force transducers utilized in recording the ssMRP.

6.5.1 Topographic Analysis o f the Averaged EEG Recordings

Conventionally, in EEG signal analysis community before single trial anal­

ysis, averaged EEGs over multiple trials are investigated. This will help 

better visualization of the phenomenon of interest in the time domain due to 

the fact that by averaging, irrelevant brain potentials will be automatically
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Figure 6.11. Conventional response switches used in BCI literature.

canceled out and the common type activities are extracted. Conventionally, 

it is assumed that the noise is real zero-mean stationary temporally and spa­

tially uncorrelated Gaussian process. Although many other advanced signal 

processing methods have been proposed to enhance this type of signal ex­

traction [150], the averaging method is still popular between the clinical and 

cognitive neuroscience researchers due to its simplicity.

The averaged EEGs recorded from the first subject during repetitive left 

and right finger movement have been shown respectively in Fig. 6.12 and 

Fig. 6.13. The subject performed left finger movements in 148 trials and 

in another 172 trials right finger has been moved. Notice that due to the 

common artifacts, i.e. EBs and motion artifacts, approximately 7% of the 

trials have been discarded from the averaging procedure.

Of primary interest was the steady-state movement-related potential de­

veloping by rhythmic tapping. Therefore, averaged bandpass filtered (1.5-

2.5 Hz) EEGs recorded during repetitive left and right finger movement 

trials were used to visualize ssMRPs in the time domain. The respective 

topographic maps, Fig. 6.12 and Fig. 6.13, show rapid development of a 

lateralized signal over contralateral sensorimotor cortex whose polarity al­

ternates every 250 ms, i.e. at 2 Hz during left and right index rhythmic 

movements. In the left index movement case, see Fig. 6.12, a strong 2 Hz 

rhythm is observed on the contralateral hemisphere. In Fig. 6.13, the aver­



Section 6.6. Classifier Design 153

aged ssMRPs for right finger movements are depicted where a rapid devel­

opment of a lateralized rhythmic signal over the left hemisphere is evident.

The results of the averaged EEG analysis have been very encouraging. 

However, for BCI purposes, single trial EEGs should be classified. For 

stepping into the ultimate stage of a simple BCI machine, i.e. classifier 

design, first the theoretical bases of two conventional classifiers have been 

presented. The results of the single trial EEG classification for each classi­

fier will be presented.

6.6 Classifier Design

For BCI purposes, designing reliable while fast and simple classifiers is of 

great importance. Conventionally, the linear discriminant analysis (LDA) 

based on the Fisher ratio [49], is utilized for BCI, see [18]. First in this 

section, the basic mathematics of the Fisher’s LDA (FDA) is reviewed. Ker­

nel Fisher discriminant (KFD) [151] is also another successful approach to 

classification where a kernel transformed version of the LDA is taken into 

account.

The comparison of different classifiers is not of the main interest of the 

next sections. Therefore, any classifier may be replaced with the utilized 

ones. Here, the researcher aims at showing that the performance of the 

proposed BCI scheme is mainly due to its classifiable feature vectors and 

not the classifiers. Evidently, higher classification rates may be achieved by 

using advanced classifiers.
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Figure 6.12. Averaged pre-processed EEGs during repetitive left finger movement for a single representative participant. Topographical 
maps have been depicted in consecutive 0.25 s time windows. The top-left map illustrates the averaged EEGs over 0 and 0.25 seconds 
time window and the bottom right ones present those of the last 0.25 seconds window, i.e 5.75 to 6 seconds. Notice the rapid development 
of the lateralized 2 Hz signal on the contralateral left hemisphere.
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Figure 6.13. Averaged pre-processed EEGs during repetitive right finger movement for a single representative participant. Topographical 
maps have been depicted in consecutive 0.25 s time windows. The top-left map illustrates the averaged EEGs over 0 and 0.25 seconds 
time window and the bottom right ones present those of the last 0.25 seconds window, i.e 5.75 to 6 seconds. Notice the rapid development 
of the lateralized 2 Hz signal on the contralateral right hemisphere.
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6.6.1 Fisher Linear D iscrim inant Analysis

Fisher linear discriminant [49] is a conventional classifier in which the main 

motive is to maximize the between-class distance while minimizing the 

within-class distance of the samples simultaneously. In many classification 

applications including BCI, FDA has proved to provide fairly acceptable re­

sults [18,49]. In mathematical notations the FDA may be drawn as follows: 

Assume the training data is given as X  -  {xl5x2, • • • ,x/} = {Ai,A2} c  

where Ai = [x|, x^, • • • , x^} is a set of patterns belonging to class X 1 

and similarly A2 = {Xj, x^, • • • , xj } is a set of patterns belonging to class 

X2- FDA attempts to compute a linear combination of input variables as 

w.x which maximizes the average separation of the projections of the points 

belonging to X1 and X2 whilst minimizing the within class variance of the 

projections to those points. Therefore, FDA uses the cost function below

where Sb is the between class scatter matrix

Sw = Si + S2, Sw = ^  ~ “  m^ - (6.6.3)

(6.6 .2)

and Sw is the within class scatter matrix defined as

u

The parameter vector w of the linear discriminant function /(x ) — (w.x)+ 

b, where (.) denotes the inner product operator, is determined in order to
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maximize the class separability criterion (6.6.1).

w = arg max 7(w') = arg max (wr . SBw') 
( w '. Sww')

(6.6.4)

The bias b of the linear rule is determined as

(w.mi) + b -  -« w .m 2) + b). (6.6.5)

The classical solution of the problem in (6.6.4) is

w = Sw !(mi -  m2). (6.6.6)

Also, (6.6.4) can be reformulated in the quadratic programming (QP) ffame-

This approach may be found useful specially when the matrix inversion in 

(6.6.6) is hard to compute.

6.6.2 Kernel Fisher D iscrim inant Analysis

In real-life classification problems, only linear discriminant analysis would 

not be enough. In [152], an advanced class of nonlinear FDAs using ker­

nel tricks, called KFD, has been introduced. Extensive empirical compar­

isons [153] have shown that KFD is comparable to other kernel-based clas­

sifiers, such as support vector machines. The kernel Fisher discriminant 

which is the nonlinear extension of the linear FDA is summarized as fol-

workas

w = arg min (wr . Sww'),

subject to

<w'.(mi -  m 2)> = 2. (6.6.7)
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lows:

Fisher’s linear discriminant is a fixed feature space <F{<p : X  —> <7r ), 

induced by a positive definite Mercer kernel <K : X  x X  -> R  where

7C(x, x') = <p(x).<p(x') [154]. The kernel matrices for the entire data set,

K, and for each class, i.e. Ki and K2 are defined as

K = [ku = 9C(xh X j ) ] li j = l  (6.6.8)

and

K, = [kfjk = <K(xj, (6.6.9)

The reproducing kernel theory [155] indicates that w may be written in an

expanded form as
/

w = ^ai<p(Xi). (6.6.10)
1=1

In this research, Gaussian kernel with a width of 1 is considered. The objec­

tive function in (6.6.1) may also be written such that the data x e X  appear 

only within products, giving

or'Ma  „  _ , ,  N
/(<*) = — — , (6.6.11)or'Nor

where a  -  {ur,}{=1 and M = (mi -  m2)(mi -  m2y. In (6.6.11), m* = K,ut in 

which u/ is a column vector containing /, elements with a common value of 

I '1 and

N = ^  K .a -U .tK ;. (6.6.12)
*€{1,2}

I is the identity matrix and U, is a matrix with all elements equal to It1. The 

coefficients a  of expansion (6.6.11) are computed by the leading eigenvector 

(the eigenvector corresponding to the largest eigenvalue) of N-1M. Note
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that since N is likely to be singular, or at best ill-conditioned, a regularized 

solution, i.e. N^, is usually considered as NM -  N + pi. Here, p  is the 

regularization constant. Finally, in the KFD method, i.e. /(x ) = w.^(x) + b, 

the bias b may be computed as [152,153]

/im i + /2m 2
b -  - a  -------- (6.6.13)

In the next section, the two aforementioned classifiers are implemented 

in the BCI problem and their efficiencies are investigated.

6.7 Results

In this section, the classification results of the FDA and KFD classifiers 

for the BCI experiment are presented. These classifiers are exploited for 

classification of different spatial and temporal feature vectors. Five differ­

ent combinations of electrodes have been considered. Moreover, the EEGs 

are divided temporally into ten segments in order to investigate the effect 

of elapsing time on the synchronization. Results are presented and using 

ssMRPs for BCI is evaluated.

For this analysis, although two advanced artifact removal methods have 

been developed in the previous chapters, the highly EB contaminated trials 

(about 7% of the trials) were discarded from the analysis and the remain­

ing trials have been considered for the feature extraction and classification 

stages. EEGs recorded from the scalp electrodes have been finely bandpass 

filtered between 1.5-2.5 Hz and their energies are calculated and introduced 

to the classifiers.

For each classifier, various feature sets have been computed in order to 

effectively investigate the potentials of ssMRP-based BCI scheme. First,
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(a) Selected 45 out of the (b) Electrode subset I (c) Electrode subset II 
128 channels.

(d) Electrode subset in  (e) Electrode subset IV (f) Electrode subset V

Figure 6.14. Electrode subset selection; (a) shows the primarily selected 
electrodes for the EEG recording and (b)-(f) demonstrate the five different 
considered electrode subsets.

EEGs are segmented into ten overlapping windows; comprising of three 

early windows, i.e. 0-0.5 s, 0-1.5 s, and 0-2.5 s and seven windows of 3 

seconds. The latter seven windows have 83% temporal overlap, i.e. 0-3 s,

0.5-2.5 s, 1-4 s, 1.5-4.5 s, 2-5 s, 2.5-5.5 s, and finally 3-6 s. Then, the energy 

features are computed from multi-channel EEGs.

Note that the first three windows, namely 0-0.5 s, 0-1.5 s, and 0-2.5 s, 

were considered to investigate the approximate the time needed for the sub­

jects to select and initiate tapping synchronous to the 2 Hz flashing stimu­

lus. It is expected that a relatively poor classification performance would be 

achieved during the selection and initiation phases in each trial. This might 

be attributed to the arbitrary difference between the taping and visual cue 

appearance onsets. The performance would eventually increase after first 

few seconds. Note that first two time windows, i.e. 0-0.5 s and 0-1.5 s, are
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also too short to provide a reliable estimate of the 2 Hz rhythm. However, 

they provide an indication of the lower bound of data segments that could 

be used in the proposed scheme.

Moreover, the conventional analysis of the selection of the sub-optimum 

but acceptable electrode combination [156] was carried out. To this end, as 

shown in Fig. 6.14(b) to 6 .14(f), five different electrode sets were considered 

and the classifications were executed on them. Finally, in order to reduce 

the feature space dimensionality, the first two principal components of the 

feature space were introduced to the classifier.

The full 6 seconds time window of EEGs was first considered for clas­

sification as a general measure of performance. Evidently, that would not 

be applicable in real-life BCI application. The classification results of vari­

ous shorter time windows and electrode combinations using FDA and KFD 

classifiers for subject one are summarized respectively in Table 6.1 and Ta­

ble 6.2. Table 6.3 and Table 6.4 also report the classification results for 

subject two.4 In addition, the performance of the KFD classifier was similar 

to that of FDA which implies linear separability of the feature vectors and 

suggests the computationally simpler linear classifier is adequate.

Robust classification results of above 88% and 96%, respectively, for the 

first and seconds subjects show the potentials of the method. Although here, 

ssMRP-based BCI has been reported only for two subjects, the outcome is 

consistent with the expectations. A closer look at Table 6.1 to Table 6.4 

reveals that, first, the maximum classification rates for almost all the elec­

trode selections are observed in the middle intervals, i.e. 1.5-4.5 seconds. 

The steady incremental trends of classification rates in the early segments 

of the trials and the decreasing trend in the late ones are also considerable

4In Tables 6.1 to 6.4, TW and EC denote stand for time window and electrode combi­
nation, respectively.
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which might be interpreted as: in the very first seconds of each trial the sub­

jects try to learn the 2 Hz pace rather than focusing on the movement. It 

would cause a slight degradation in their performances.5 Therefore, the first 

one or two taps could be out of phase with the cue in some trials. It would 

consequently influence the separability of the extracted features.

Interestingly, in both subjects, the steady incremental trends of classifi­

cation rates in early segments, 0-0.5 s, 0-1.5 s, and 0-2.5 s, are evident. In 

the very first seconds of each trial, the subjects attempt to adopt the correct 

2 Hz pace which causes activities from areas of the brain other than the con­

tralateral motor cortex resulting in slight degradation in BCI classification 

performance. Although the subjects had a short 5 minutes training block 

before actual recording, they still reported afterwards they had to attend to 

the pace or the onset of each trial.

When they gained the pace, taps were carried out at (almost) the right 

frequency which leads to classification performances of up to 94% for the 

first and 98% for the second subject. As the trial lasts its final seconds,

i.e. after 5 seconds, the correct classification rates slightly decreased. This 

might be due to the subjects’ anticipation of the end of trials: the duration of 

each trial was fixed. The averaged EEGs recorded from two representative 

electrodes over the motor cortex, C3 and C4 show that potential difference 

between the contralateral and ipsilateral hemispheres follow similar trend, 

see figure Fig. 6.15. Fig. 6.16 illustrates the classification results corre­

sponding to the electrode subset I for the two subjects.

5The subjects have had a training session before the actual data recording, when they 
are asked to tap at 2 Hz pace. However, presumably, initiation of the movement with a 
certain pace takes a short while.



Table 6.1. Averaged classification results (and their corresponding standard deviations) for subject one in a two class BCI problem using
FDA. The results are in [%] and bold values show the maximum performance achieved.

TW vs. EC I II III IV V

6 s 97.9 ± 1.4 98.1 ± 1.5 96.9 ± 2.2 93.1 ±5.6 97.6 ± 1.6

0 - 0.5 s 84.7 ± 15.0 85.9 ± 11.6 87.5 ± 15.4 85.4 ± 13.7 84.2 ± 12.4

0 - 1.5 s 74.2 ±16.3 82.3 ± 10.2 82.3 ± 12.4 82.0 ± 11.1 89.3 ± 8.8

0 - 2.5 s 88.0 ±8.0 91.0 ±7.1 80.2 ± 14.5 87.2 ± 10.2 93.1 ±4.5

0 - 3 s 89.9 ± 6.8 91.8 ±6.5 85.9 ± 9.9 90.6 ±7.1 94.8 ± 4.0

0.5 - 3.5 s 87.2 ± 8.7 87.9 ± 10.4 76.3 ± 11.6 82.8 ± 8.3 91.1 ±6.4

1 - 4 s 91.3 ±6.6 91.6 ±5.6 89.6 ± 7.5 89.2 ± 6.2 94.0 ± 5.9

1.5-4.5 s 93.1 ± 5.0 95.7 ± 3.0 92.0 ± 6.2 55.0 ± 17.3 94.5 ± 3.9

2 - 5 s 89.9 ± 7.2 91.6 ±6.0 77.6 ± 12.2 72.0 ± 16.5 88.1 ±9.3

2.5 - 5.5 s 88.2 ±9.0 93.5 ± 4.9 83.0 ± 11.7 71.6 ± 17.8 85.2 ±9.5
3 - 6 s 89.6 ±6.1 95.1 ± 1.5 85.7 ±9.5 63.1 ± 18.3 90.8 ±7.1
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Table 6.2. Averaged classification results (and their corresponding standard deviations) for subject one in a two class BCI problem using
KFD. The results are in [ % ]  and bold values show the maximum performance achieved.

TW vs. EC I II III IV V

6s 97.3 ± 3.2 98.4 ± 1.6 96.0 ±3.1 93.1 ±5.7 98.2 ± 2.2

0 - 0.5 s 89.9 ± 8.3 90.9 ± 7.5 91.1 ±7.2 89.0 ± 8.2 90.6 ± 7.4

0 - 1.5 s 74.1 ± 18.0 83.3 ± 11.9 84.8 ± 11.0 86.5 ± 10.5 89.6 ± 10.5

0 - 2.5 s 86.5 ± 12.1 90.7 ± 90.7 82.2 ± 12.3 87.5 ± 7.5 92.4 ± 7.7

0 - 3 s 89.6 ± 8.6 92.8 ± 11.8 85.2 ± 10.7 89.4 ±11.8 94.8 ± 5.6

0.5 - 3.5 s 88.8 ±9.3 88.1 ± 10.1 79.8 ± 16.6 83.2 ± 14.3 92.1 ±8.1

1 -4 s 89.8 ±8.1 91.4 ±7.6 87.7 ± 8.9 87.5 ± 9.7 93.0 ± 4.0

1.5-4.5 s 93.4 ± 6.8 95.6 ± 3.8 90.6 ± 8.9 57.6 ± 15.5 94,8 ± 5.7

2 - 5 s 89.4 ± 7.5 92.8 ± 8.3 79.2 ± 12.9 72.8 ± 20.2 88.2 ± 11.9

2.5 - 5.5 s 89.5 ± 10.9 92.1 ±8.9 89.3 ± 11.3 71.0 ± 16.2 84.7 ± 13.0
3 - 6 s 89.3 ± 9.4 91.8 ±5.8 88.5 ±9.4 64.0 ±21.4 90.5 ± 9.3



Table 6.3. Averaged classification results (and their corresponding standard deviations) for subject two in a two class BCI problem using
FDA. The results are in [ % ]  and bold values show the maximum performance achieved.

TW vs. EC I II III IV V

6 s 99.2 ± 0.2 98.3 ± 0.6 98.3 ± 0.6 98.2 ± 0.8 98.2 ± 0.7

0 - 0.5 s 64.1 ± 10.6 55.8 ± 10.6 57.8 ± 10.4 59.0 ± 10.9 52.7 ± 13.1

0 - 1.5 s 95.0 ± 2.5 92.4 ± 3.7 89.5 ± 5.2 86.0 ± 4.8 90.9 ± 4.4

0 - 2.5 s 97.0 ± 1.4 94.1 ±2.5 93.2 ±3.3 92.1 ±4.0 92.1 ±3.5

0 - 3 s 97.1 ± 1.4 94.8 ± 2.8 96.2 ± 2.3 94.6 ± 2.8 93.0 ± 2.6

0.5 - 3.5 s 95.9 ±1.5 96.4 ± 1.5 95.1 ±2.8 94.0 ± 2.8 96.6 ± 1.8

1 - 4 s 97.1 ± 1.3 96.6 ± 1.1 95.5 ± 1.5 93.9 ± 2.6 96.1 ± 1.9

1.5-4.5 s 98.5 ± 0.5 98.2 ± 0.7 97.7 ± 1.1 98.0 ± 1.1 97.9 ± 0.8

2 - 5 s 98.6 ± 0.5 98.68 ± 0.5 98.6 ± 0.5 98.6 ± 0.5 98.6 ± 0.5

2.5 - 5.5 s 98.2 ±0.6 97.0 ± 1.0 97.2 ± 1.0 97.3 ± 0.8 96.8 ± 1.1

3 - 6 s 97.3 ± 1.1 98.8 ± 1.2 96.7 ± 1.3 97.7 ± 0.9 98.2 ± 0.7



Table 6.4. Averaged classification results (and their corresponding standard deviations) for subject two in a two class BCI problem using
KFD. The results are in [%] and bold values show the maximum performance achieved.

TW vs. EC I II III IV V

6 s 99.3 ± 0.2 98.9 ± 0.5 98.3 ± 0.7 98.4 ± 0.8 98.5 ±0.6

0 - 0.5 s 62.1 ±9.5 55.6 ± 10.6 56.2 ± 10.4 53.8 ± 10.9 52.2 ± 10.4

0 - 1.5 s 96.1 ± 1.1 94.9 ± 2.6 92.5 ± 3.0 86.7 ± 5.2 90.1 ±3.5

0 - 2.5 s 97.2 ±0.6 94.5 ±2.1 94.4 ± 2.6 98.3 ± 0.5 98.4 ±0.5

0 - 3 s 97.5 ± 0.8 96.9 ± 1.9 97.1 ± 1.6 94.7 ± 2.8 93.4 ± 2.9

0.5 - 3.5 s 97.1 ± 1.3 97.1 ± 1.2 95.9 ± 1.5 95.1 ±2.6 97.0 ± 1.4

1 - 4 s 97.8 ± 1.2 96.1 ± 1.4 95.1 ±2.2 93.5 ± 2.7 96.3 ±2.1

1.5-4.5 s 98.5 ± 0.6 98.0 ± 1.0 97.4 ± 1.2 97.6 ± 0.9 97.9 ± 1.0

2 - 5 s 98.3 ± 0.5 98.3 ± 0.5 98.4 ± 0.5 98.3 ± 0.5 98.4 ± 0.5

2.5 - 5.5 s 98.0 ± 0.7 96.5 ± 1.3 96.7 ± 1.2 98.0 ±1.5 97.1 ± 1.5
3 - 6 s 97.4 ± 0.9 95.9 ± 2.0 96.4 ± 1.8 98.1 ± 1.2 97.3 ± 1.3
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Figure 6.15. Averaged EEGs recorded from C3, and C4 (subject one) 
demonstrate that the difference potential between the contralateral and ip- 
silateral hemispheres follow similar trend to that of classification results in 
Table 6.1 and Table 6.2.

In the top subplot of 6.15, at the beginning of the trial the difference 

between C3 and C4 are not considerable. After approximately one second, 

that difference increases which leads to higher classification rates. Lastly, at 

the end of the trial around time 5 seconds, again this difference decreases. 

In the bottom subplot of 6.15 similar patterns can be observed.

6.8 On th e  suitability for R eal-tim e im plem entation

The ssMRP-based BCI system described here would inherently satisfy clas­

sic crucial conditions for real-time rehabilitation [157]: accuracy is neces­

sary to fulfill the user’s intent; minimal and simple training allows users to 

readily acquire the skills needed to operate a BCI machine; and finally a low 

response time places a time constraint on the recording and processing EEG
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Figure 6.16. The correct classification rates of the temporally segmented 
EEGs recorded from two subjects. FDA and KFD classifiers are imple­
mented to classify EEG measurements using electrode subsets I.

data. Delays in the control system should appear insignificant to the users, 

ideally less than 300-500 ms depending on application.

In order to test ssMRPs in an artificial real-time BCI paradigm, the first 

200 trials (100 segment from each class) recorded from subject two where 

were selected. The preprocessing EEGs were concatenated assuming that 

left and right finger movements had been carried out either alternatingly or 

pairwise alternatingly. Following similar feature extraction protocol in Sec­

tion 6.7, each EEG segment was temporally sub-segmented into 24 overlap­

ping windows resulting in overall 4405 sub-segments. The length of each 

window was 3 s with 2.75 s overlap with the previous sub-segment. The fea­

ture vectors were extracted as the energy of 2 Hz rhythm from 45 electrode 

recordings in each sub-segment.

For classification purposes, if the sub-segments lay fully in one segment, 

it’s label was considered similar to that of the segment. For sub-segments 

spanning over two segments, the label was considered similar to the segment 

with which it overlapped most. In case of equal overlap level, a class label
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Figure 6.17. Simulated “Real-time” classification results for a set of cas­
caded EEG segments.

of the former sub-segment was assigned.

First five principal components of each extracted features from sub- 

segment were classified by a FDA classifier trained using all of the sub- 

segments. Bearing in mind that a full BCI application would additionally 

use adaptive feature extraction and pattern classification algorithms, we are 

confident that further development and refinement of the simple and static 

classifier we have used will be able to work with shorter data segments in 

real time. Fig. 6.17 illustrates the results of classification of 384 consecutive 

sub-segments where the actual and predicted class labels are respectively 

depicted in black and red. As expected, apart from errors that occurred 

in classification of the sub-segments crossing segment transitions, the BCI 

output in red effectively follows the trace in black. However, occasionally, 

some within segment sub-segments are also mis-classified. For instance, 

the failures in correct classification of sub-segments 173 to 185, or 240 to 

253 may be attributed to either classifier sub-optimality or inevitable error 

in classification of EEGs recorded in those specific time windows.
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6.9 Discussions and  Conclusions

This chapter investigated the applicability of the ssMRPs as a continuous 

measure of sensorimotor cortex activation during rhythmic tapping and sug­

gested a potential base for a real-time high accuracy BCI. In this approach 

the subjects were asked to cyclically move their fingers at a pre-determined 

frequency. Therefore, band limited ssMRPs from the sensorimotor cortex 

are detected. The main advantage of the ssMRP-based BCI over other ap­

proaches is its simple recording setup and straightforward computations. 

Comparing to BCI machines based on RPs, using ssMRP for BCI would 

not be difficult for the subjects since in each trial they are actively involved 

in the experiment, rather than waiting for several seconds before the exertion 

of a single discrete movement.

ssMRP-based BCI is simpler than ssVEP-based BCI systems in terms of 

subject training time and signal analysis. In the proposed method, advanced 

spectrum estimation algorithms are not necessary since instead of frequency 

separation of ssVEP, merely one frequency is dealt with. In other words, 

instead of exploiting the spectral disparity in the signal processing unit of 

BCI machine, the topographical distribution of scalp EEG signals in the 

frequency band of interest is used to identify the effector.

The large number of equally important electrodes utilized in this re­

search should not be regarded as a hindrance towards end-product BCI. Ev­

idently, data driven common spatial patterns (CSP) [49] and their variations 

e.g. [20] which could increase the performance can also be used here.

There are certain differences between our recording setup and a previous 

studies such as [15] where the participants could alternate between right and 

left fingers in consecutive short intervals. That is, the subject could decide 

whether to move the left or right index on each tap. In [15], the partici­
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pants were not provided with rhythmic visual cues and therefore a series 

of discrete movements were carried out rather than rhythmic continuous 

movements. Actual number of taps per hand and the inter-hand transition 

matrix had to be computed objectively and shown on the screen of the exper­

imenter; the taps on the keyboard were extracted as markers into the stream 

of EEG measurements. Therefore, for instance if the tap rate or the number 

of alteration deviated from pre-instructed rate, the subject was informed so 

those could be compensated accordingly. Notice that in some specific ap­

plications, such as typing on the keyboard, BCI system should ideally be 

able to distinguish between left and right finger movement in each individ­

ual discrete tap. However, for many other applications such as navigating 

a wheelchair, a smooth and continuous BCI output is demanded. We be­

lieve our protocol will lead to more reliable and less variable BCI output 

classification.

The only problem seen in ssMRP-based BCI is the performance degra­

dation when the subject reaches the end of the trials. This problem should 

be considered in real-time as well as offline applications. In a real life ap­

plication, there is no need to have such long trials. They can easily be as 

short as few seconds in order have maximum performance. In offline ap­

plications, the easiest solution should be to allow the trials to have random 

lengthes instead of a fixed six second. For instance, the length of trials may 

be considered four or five seconds and a small standard deviation.



Chapter 7

CONCLUSIONS AND 

FURTHER RESEARCH

In this dissertation, a number of new methods for brain signal analysis in 

the STF domain with application to EB artifact removal from EEGs were 

developed. These methods were evaluated using simulated and real EEGs 

and shown to produce comparable results to that of previous studies. Fur­

thermore, a simple and novel paradigm for BCI application was developed 

which exploits the prior physiological knowledge of spectrally band limited 

ssMRPs.

Chapter 2 comprehensively reviewed the EEG-based BCI state of art, 

the conventional and established thoughts and methods for BCI realization. 

Chapter 3, presented the details of the first contribution of this research to 

BCI where after briefing some mathematical definitions, it was shown that 

how the tensor of the time-varying energy of the multi-channel EEGs in 

the wavelet domain can be decomposed into spatial, temporal, and spectral 

signatures of EEGs. By STF decomposition of EEGs in the /i band, EEG 

dynamics during left and right index imagery movements were investigated. 

The spatial signature of the movement related factor for each trial was in­

troduced to the SVM classifier. The discussion in the last part of Chapter 3 

demonstrated that the computational complexity of the STF modeling limits

172



173

the use of such BCI in real-time applications.

EEGs can be severely contaminated by various artifacts. Two novel pre­

processing algorithms were developed in Chapters 4 and 5 for the removal 

of EB artifacts from the EEGs. In Chapter 4, after an extensive overview on 

the currently available methods for EB artifact removal, an effective semi­

blind signal extraction algorithm was developed to identify and remove the 

EB artifacts. In that proposed approach, for the spatial signatures of the 

EB artifacts were identified by using the STF model and utilized in the ex­

traction stage. Fundamentally, there are two important points that should 

be considered in using such method. First, the decomposition of the EEGs 

to their STF signatures is computationally intensive and second, the per­

formance of the SBSE method depends on the proper estimation of the EB 

spatial signature.

In order to relax the above mentioned two conditions, a hybrid “STF 

modeling”-“robust minimum variance beamforming” framework was pre­

sented in Chapter 5. A novel STF-TS model for EEGs, specifically designed 

for decomposition of the EB contaminated EEGs, was proposed. The spatial 

signatures were then exploited in a robust beamforming paradigm to extract 

and remove the EB artifact. Therefore, the major contribution of this chapter 

can be summarized in the estimation of the steering vector corresponding to 

the EB artifact without computing the conventional forward solutions.

Chapter 6 of this dissertation introduced a novel BCI framework based 

on the ssMRPs. In order to surpass the low SNR slow cortical potentials, 

recent physiological findings on ssMRPs were adopted. Unlike the conven­

tional methods in the BCI field, brain capabilities in controlling voluntary 

repetitive finger movements were taken into account. The neurological as­

pects of the phenomenon of interest was reviewed and investigated for real
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EEG recordings in averaged and single trial modes. Finally, the applicabil­

ity of the two classic classifiers for such BCI scheme were investigated.

7.1 Future W orks

This research has developed several high performance algorithms for brain 

signal processing and may be further expanded. In particular, answering the 

below questions can be an initiation for future investigations.

• Do STF signal processing approaches consistently outperform the 

conventional time-space or time-frequency methods in brain signal 

analysis?

• The SBSE method can exploit spatial signatures of EB artifacts and 

use them as prior knowledge. How can other prior information such 

as temporal or spectral signatures of EB artifacts be incorporated in 

SBSE? What are other applications for such SBSE algorithm?

• How the STF-TS model can be extended to other STF models?

• How the ssMRP based BCI may be extended? Is it possible to realize 

a motor imagery BCI machine based on ssMRPs?

In reply to the first question, one might argue that although the STF 

models seem to be very effective, their implementation on the brain signals 

is merely recommended when a phenomenon of interested sparsely occurs 

at least in one of those domains. Therefore, as observed in Chapter 3, the 

PARAFAC based BCI does not noticeably outperform other conventional 

BCI approaches. However, for instance in Chapters 4 and 5, the STF mod­

eling of EB artifact has resulted in acceptable performances since temporal 

signatures of EBs are sparse.
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An interesting avenue for future research is to examine further applica­

tions of the SBSE method in other non-stationary biomedical signals. For 

instance, a sequential algorithm has been recently developed for a class of 

periodic signals, namely ECGs, in [158]. In this work, the ECGs are pre­

sumed to have fixed period and the major issue of heart rate variability has 

not been taken into account. Therefore, the semi-blind extraction of quasi- 

periodic signals can be realized if the period of the signal of interest could 

be instantaneously estimated and incorporated in the extraction procedure. 

Aiming at that, the most straightforward approach is to minimize the extrac­

tion cost function (4.2.9), instead of in some early time lags, at certain lags 

where abrupt non-stationarities are observed in the autocorrelation values in 

a similar way as in [159-161].

As a potential application, recently, simultaneous recording of the EEGs 

and fMRI has attracted many signal processing and computational neuro­

science researchers. There are several types of artifact in EEGs recorded 

within the MRI machine. For instance, slight movement of subjects’ scalps 

and electrode leads in the high static magnetic field causes ballistocardiac 

pulse artifact or ballistocardiogram (BCG) artifact. The pioneering algo­

rithms in BCG removal have been generally based on the subtraction of the 

average heartbeat waveform within a predetermined interval from EEGs. 

However, the inaccuracy in heartbeat detection and the variability of heart­

beat waveform induce serious errors. Extended versions of the procedure 

presented in Chapter 4 may be applied to remove these artifacts. For in­

stance, the heart beat variability uncertainties may be rectified by combin­

ing several autocorrelation matrices at approximate time instants when the 

heart beats.
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Furthermore, following the approach presented in Chapters 5, as for the 

time domain, the frequency or space domain may also be segmented and 

the STF model with the additional extensions such as frequency/segment 

(STF-FS) or space/segment (STF-SS). For instance, for STF-SS model, all 

channels of EEGs are first equally divided into groups in the space domain to 

form a three dimensional array of space, time, and space/segment domains. 

Then, the time-frequency transform is applied to each channel to form the 

fourth dimension. Thus, the four-way PARAFAC may be applied to extract 

the signatures of this four dimensional array. The STF-SS model can be 

mathematically formulated the same way as the STF-TS model except that 

the selected domain to be segmented is space. However, the main problem 

using various sub-models of STF model is in model fitting stage. Regarding 

the basic ALS method as a stepping stone, there have been few approaches 

designed for tensor signal processing, e.g. [96,97], which can be adopted 

for STF fitting. More importantly, future works may include finding the 

performance bounds for the STF modeling.

Another perspective of this research lies in the extension of Chapter 6 by 

investigating the potential of ssMRPs for motor imagery BCI. For instance, 

imagination of the repetitive tapping might enable a user to control some 

distinct features for BCI pattern classification unit as well as the case of real 

movement. To this end, standard protocols for ssMRP recordings should 

be devised. In each trial, a primary short period would be needed to train 

the subject using the correct pace. That is, the subjects would be exposed 

to rhythmically flashing cues and asked to tap the tapping synchronous to 

them. After a few seconds, the flashing cues would disappear and subjects 

would be asked to imagine the taps with the learnt frequency. The recorded 

EEGs should then be sent to the feature extraction and classification units.
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Similar to other motor imagery BCI systems, the major issue with imagined 

ssMRP is the low SNR. However, since the subjects imagine the tapping 

with a pre-determined frequency, the SNR of ssMRPs should still be much 

higher than in conventional ERD/ERS paradigms.

Another interesting research may be the study of brain functional con­

nectivity versus brain default networks during rhythmics motor output for 

BCI purposes. For instance, the band limited signals of frequencies ap­

proximately similar to that of the rhythmic cue signal over various cortical 

regions define a spatiotemporal signature which can be used to detect motor 

activity. Therefore, a two-stage STF approach may be carried out in order 

to first distinguish between the resting brain and active brain by analyzing 

the spectral signatures of the recorded potentials. Then, a classifier decides 

between right or left finger movements by investigating the spatio-temporal 

signatures.
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