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ABSTRACT

The adsorption and reaction of various simple molecules (O2, NO, CO and NO2) 

commonly associated with gasoline engine exhaust catalysis were investigated on a 

model catalytic system under ultra-high vacuum conditions using a variety of surface 

science techniques including molecular beam scattering and temperature programmed 

desorption. The model catalytic surfaces studied were clean Pt(l 11), K/Pt(l 11) and 

BaO/Pt(l 11) surfaces. The alkaline and alkaline earth metal surfaces were prepared 

by metal vapour deposition (in an oxygen background in the case of BaO) and 

annealing. Also investigated was the ability of each of the catalytic surfaces to 

oxidise NO and CO and to store and reduce NO2 . It was found that the clean Pt( 111) 

surface was effective at oxidising CO provided the oxygen was in an adsorbed atomic 

form. P t( l l l )  was also found to be effective in the reduction of NO2 . NO and O2 

were found to react in a gas phase reaction that made mixed molecular beam studies 

problematic however it was found when beaming NO with a background pressure of 

O2 that no Pt(l 11) catalysed surface reaction was observed. It was found that dosing 

K onto the Pt ( l l l )  surface increased the sticking coefficient of oxygen greatly and 

that more than a monolayer of K on the surface catalysed the reduction of NO to N2 . 

Unlike the Pt( l l l )  surface, K/Pt(111) was capable of storing NO2 without it being 

immediately reduced. Potassium peroxide however was found to prevent NO2 

storage. In a similar fashion to K, NO2 was stored on BaO, being released as NO and 

O2 on heating. NO is partially reduced to N2O by the BaO surface at ambient 

temperature with increased temperature favouring complete reduction to N2 .
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1. AN INTRODUCTION TO SURFACE SCIENCE AND NSR 

CHEMISTRY

1.1 Surface science

A catalyst is a substance that affects the rate at which a chemical reaction 

reaches its equilibrium position. Although the catalyst participates in the reaction it is 

regenerated intact at the end of the reaction and does not undergo a permanent 

chemical change. In effect, the catalyst lowers the activation energy barrier to 

reaction, thus speeding up the reaction.

  Reaction without catalyst

-  -  Reaction with catalyst

Reaction coordinate

Figure 1.1 - Catalyst-lowered activation energy. Adapted from image created by Brian Kell,
University of Nebraska-Lincoln.1

It does this without altering the equilibrium composition of the final state, as 

the energetics of the final and initial states are unchanged. In addition to this the 

catalyst may also be able to increase the selectivity of a particular process towards a 

desired product by lowering the activation energy barrier to formation of the desired 

product whilst having a lesser effect on the activation energy of formation of the 

unwanted side product. An example of this is the catalytic formation of acrolein from 

propylene despite the combustion process being far more thermodynamically 

favourable2. Catalysis of some kind is necessary in the majority of industrial 

chemical processes and without biological catalysts, enzymes, life would not exist.
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Catalysts are particularly useful from an environmental point of view as, in 

addition to removal of unwanted polluting by-products from a process they can also 

be used to time a process so that the unwanted products are not produced in the first 

place, as well as making the process more energy efficient, making it occur at a lower 

temperature2. For instance the Haber process, which uses an iron catalyst to react 

hydrogen and nitrogen to produce ammonia has enabled the cost effective production 

of fertilizer and is of massive industrial importance.

Heterogeneous reactions are reactions that take place in systems in which 

there are at least two different phases present. The reaction occurs at the interface 

between these phases. In catalytic chemistry the role of the catalytic surface is 

crucial. Reactions take place at the surface, not in the bulk, and the properties of the 

surface have major implications for the kinetic and thermodynamic parameters of the 

reaction occurring. In addition gas-solid and liquid-solid phase catalysis gives the 

opportunity of immobilising the catalyst on the solid phase surface and hence reusing 

it.

The energetics at the surface differs greatly from that of the bulk. Surface 

atoms are not completely surrounded by their neighbours and therefore have 

unsatisfied bonding requirements. This is manifest in a ‘desire’ to react, with great 

implications for catalysis.

It follows from this that understanding the processes occurring at the surface is 

essential for improving and optimising catalysed chemical processes. This has lead to 

the development of the branch physical chemistry known as surface science. Surface 

science allows the investigation of model surfaces through single crystals and 

nanoparticulate arrays on an atomic scale. Through observing processes such as 

adsorption and desorption, surface decompositions and catalysed reactions and 

surface diffusion a picture of the overall mechanisms taking place can be proposed 

and developed. Building an understanding of the fundamental processes occurring 

on an atomic scale is necessary before scaling up and interpreting observations made 

on a macroscopic scale in catalytic reactors.
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The first surface science experimental observations date back almost two 

centuries3 with Davey’s observations of the impairment of catalytic activity of a 

platinum wire by the growth of a carbide film. However, it was Langmuir’s work on 

surface adsorbate coverage4 and dissociative chemisorption5, the development of the 

Langmuir-Hinshelwood theory6,7, the work by Eley and Rideal leading to the Rideal- 

Eley mechanism8, Lennard-Jones’ work on activated adsorption9, and the work on 

adsorption via physisorption and/or chemisorption by Taylor10, that set the 

foundations for surface science as it is today.

Later on in the twentieth century surface science changed dramatically with 

the advent of scanning tunnelling microscopy (STM). Invented by Binnig and 

Rohrer11,12 in 1983, STM allowed a three-dimensional map of a section of the surface 

under scrutiny to be produced. Shortly after this it was demonstrated that matter 

could be manipulated on the atomic scale13.

Possibly the principal utilisation of surface science is that of as an aid to 

understanding the processes in heterogeneously catalysed reactions. Perhaps one of 

the best examples of the practical use of surface science with regards to 

heterogeneous catalysis is the improvement in the industrial process for the 

production of ethylene oxide. Via optimisation of the oxidation catalyst a large 

increase in product selectivity was attained. The original process used a silver 

catalyst but it was discovered by chance that the addition of chlorine enhanced the 

yield of ethylene oxide over combustion products significantly. This led to the 

surface investigation of chlorine atoms on a silver surface, which has helped develop 

the oxidation catalyst and led to the invention of introducing microscopic amounts of 

chlorine into the gas feed14.

Analysis of catalytic reactions is generally done under vacuum pressures to 

minimise contamination of the process. Simple kinetic theory (see pages 10 and 27) 

tells us that at a pressure of 1 x lO-6 mbar a surface experiences ~ 1 0 15 collisions from 

gas molecules per square centimetre every second. If one assumes a sticking 

probability of unity the surface would develop a complete monolayer of adsorbed gas 

molecules in as little as one second. It follows from this that reducing the pressure 

will increase the time that the surface remains ‘clean’ and uncontaminated. Modem
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ultrahigh vacuum (UHV) systems are capable of maintaining a system pressure of as 

little as 10' 11 mbar. Under these conditions surfaces will remain clean for several 

hours15.

Since the 1950’s there has been a continued increase in the number of 

techniques available to chemists for the study of surfaces. These generally measure 

only a single, or at most a few properties of the surface. These may include surface 

compositions and structures, chemical properties, oxidation states or electronic 

properties. The resolution obtainable is constantly improving as surface chemistry 

strives for an understanding of the processes occurring at the molecular level. As no 

single technique provides a definitive picture of the surface it is necessary to utilise 

complementary combinations of surface science techniques19.

Due to their nature as particles, atoms, ions and electrons are of immense use 

as probes of surface structure and reactivity, as they can penetrate the surface by no 

more than a few angstroms. Depending on wavelength photons may also be used for 

the examination of surfaces and high-energy photons (X-Rays) are useful for 

examination of bulk structure and properties. Photons can also be employed at higher 

pressures due to the lower scattering cross sections exhibited.

It is worth noting that applying surface science data directly to real industrial 

catalytic processes may be problematic due the vast differences in pressures 

encountered and non-uniformity in catalysts and reagents. Surface science is thus at 

its most useful as an aid to determining the fundamental reaction steps occurring in 

model systems, the data from which can then be taken and scaled up to the 

macroscopic scale.
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1.2 Surface reactions and processes under ultra-high vacuum

1.2.1 The single crystal surface

The work presented in this thesis is concerned with the interaction of various 

gases with a clean and metal vapour-dosed single crystal surface. Many metals, semi­

conductors and insulators can be grown as single crystals, which can then be 

specifically cut to reveal faces with a specific Miller index. Metal single crystals are 

generally grown by the gradual drawing of a rod of metal from a molten mass15.

The platinum single crystal used in the experiments has been cut from a larger 

crystal that has been aligned using Laue X-Ray back scattering such that the desired 

crystallographic plane is left exposed. The cutting technique used is usually a 

grinding or spark erosion technique. The angle at which the cut is made determines 

the topography of the crystal surface15,20.

The advantage of using a single crystal as a reaction surface is one of 

simplicity. A carefully prepared single crystal surface is the closest approximation 

attainable to the ideal surface (one that consists of a perfectly periodic array of surface 

atoms). However, the three dimensional periodicity and properties associated with 

the bulk material do not abruptly terminate at the crystal surface. Instead there is a 

gradual transition region in which the chemical, geometric and electronic properties 

are different from those encountered in the bulk16. A low index single crystal surface 

plane has a limited number of adsorption sites to which molecules can bind. This 

allows the analysis of the fundamental processes occurring when a molecule collides 

with the surface.

1.2.2 The Miller index

The Miller index is a notation that is used to describe a given lattice plane. It 

is a measure of where the lattice plane intersects the x y and z crystallographic axis. 

Hence the (111) face of platinum used in the work contributing to this thesis cuts the x 

y and z-axis of the unit cell at equal distances from the point of origin.
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The Miller index is the reciprocal of these intercepts ie.

Axis Intercept Reciprocal

X 1 1/1 = 1

y 1 1/1 = 1

z 1 1/1 = 1

In cases where reciprocals result in fractional indices it is convention to 

multiply by the highest denominator to remove the fractions.

The low index Miller indices (100), (110), and (111) for a primitive cubic 

system are shown below.

(110)(100) (110) (111)

Figure 1.2 -  The (100), (110) and (111) surfaces of a fee cubic crystal. Adapted from 'Surface
Chemistry’ by Elaine McCash.15

The different Miller indices have different packing o f surface atoms. The 

(110) surface is the most open surface structure, then the (100), with the (111) surface 

being the most close packed. When performing surface studies it is important that the 

crystal plane under study be known as the packing o f the surface has a marked effect 

on the reactivity o f the surface. For instance Pt(110) readily adsorbs O2 with an 

appreciable sticking coefficient, whereas the more closely packed Pt( 111) adsorbs O2 

with a very small initial sticking coefficient (-0 .07).17

The single crystal surfaces typically used for studies in surface science are 

well defined and are generally body centred cubic (bcc) or face centred cubic (fee) in 

three-dimensional structure.
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• •
Figure 1.3 - The simple cubic (sc), body centred cubic (bcc) and face centred cubic (fee) crystal 

lattices. Adapted from ‘Surface Chemistry’ by Elaine McCash15 and ‘An Introduction to Surface
Chemistry’ by Dr Roger M. Nix18.

Sample preparation is an important aspect of surface science. Ion 

bombardment and/or heat/chemical treatment is required to remove impurities from 

the surface and the bulk o f the crystal. Thin film adlayers may then be added to the 

surface by chemical vapour deposition or by straight vapour phase deposition.

1.2.3 Surface structure and topography

Viewed macroscopically a single crystal surface will appear perfectly flat and 

uniform, however viewed at an atomic level it quickly becomes apparent that this is 

not the case. Crystals are typically cut to within 0.5% of the desired plane and since 

the atom is the smallest viewable building block o f the surface this creates a terraced 

surface. In addition to this there may be other defects such as surface vacancies, 

kinks and adatoms present. The Terrace-Step-Kink (TSK) model best explains this.
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Step
VacancyAdatom

Kink

Figure 1.4 - Some of the defects found at a surface. Adapted from ‘Surface Science’ by Kurt
Kolasinski31.

This model relies upon the assumption that atoms are perfectly rigid and do 

not move and that they behave as if  they were contained within the bulk. The 

reactivity o f each site depends upon the number o f surrounding atoms. Adatoms have 

the fewest neighbours whilst the atoms making up the terraces have the greatest. At 

equilibrium up to 20% o f surface atoms might be in step sites and 5% at kinks on a 

rough surface19,20.

A problem with this model is that real catalysts generally exhibit some 

mobility o f surface atoms. Reconstructions can be induced by atomic movement from 

bulk sites to surface sites or via contractions in the selvedge (near surface) region21,22. 

Defects are also generally produced during cutting and polishing of the crystal.

1.2.4 Adsorption processes

Adsorption is the outcome of a molecular or an atomic collision in which the 

final result is the sticking of the molecule to the surface. Adsorption is not the only 

possibility for the collision event however; the molecule may be reflected back into 

the vacuum with its energy intact (elastic scattering) or may lose or gain energy in the
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collision but still be reflected (inelastic scattering). The probability of the molecule 

adsorbing onto the surface is given by the sticking probability (or coefficient), S.

Z

Equation 1.1 - The Sticking Probability

where Ra = rate of adsorption of molecules by the surface 

Z = rate of collision of molecules with the surface

From Equation 1.1 it can be seen that the sticking probability is a fractional 

quantity. A sticking probability of one represents total adsorption whereas a sticking 

probability of zero indicates the total reflection of the gas phase species. The value of 

the sticking probability depends upon many variables such as the temperature of the 

surface, the energy of the adsorbing molecule, the surface coverage of adsorbed 

species and the nature of the system and crystal face under study.

As molecules continue to adsorb onto the surface more surface adsorption 

sites become occupied and the sticking probability decreases. The fraction of surface 

sites occupied is given by the surface coverage, 0 , which is defined as

n N ads Number of adsorbed surface speciesa = -------—
Ns Total number of available adsorption sites

Equation 1.2 -  The Surface Coverage

The rate at which collisions take place can be given by the Hertz-Knudsen 

equation

z =---- -—r
(2mnkT) 2 

Equation 1.3 -  The Hertz-Knudsen Equation20

where P = pressure

m = mass of impacting atom or molecule
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k = Boltzmann constant (1.38066 x 10‘23 J K '1)

T = temperature

For the adsorption to spontaneously occur it must be accompanied by a 

negative change in the free energy of the system ie. AG < 0

The free energy change is given by the Gibbs-Helmholtz equation

AG = AH -T A S  

Equation 1.4 -  The Gibbs-Helmholtz Equation

where AG = Gibbs free energy change 

AH = change in enthalpy 

T = temperature 

AS = entropy change

As adsorbing molecules must have a negative free energy change, and the loss 

of freedom encountered on adsorption makes the entropy change when adsorbing 

negative it is obvious that the change in enthalpy must also be negative (an 

exothermic reaction). However, certain endothermic adsorptions are known, but these 

tend to be concerned with dissociative adsorption in which the system actually gains 

in disorder despite the fragments being bound (AS = +ve). An example of an 

endothermic surface adsorption is the dissociative adsorption of hydrogen on glass. 

In this case the translational freedom of the adsorbate has actually increased upon 

adsorption with respect to the gas phase23.

1.2.5 Physisorption

Physisorption is the rather weak adsorption that occurs as a result of the 

conflict between relatively weak attractive forces between the adsorbate and the 

surface (such as Van-der-Waals forces) and the repulsive forces associated with close 

proximity between the two species.

11



As there is no change in the bonding within molecules which undergo 

physisorption, physisorption is always exothermic. Despite this the change in 

enthalpy that accompanies the reaction is low.

In the potential energy diagram shown in Figure 1.5 a physisorbed molecule 

occupies a potential well in which it oscillates, with the oscillation energy dependent 

upon the temperature of the surface. If the molecule has sufficient energy supplied to 

it to overcome the energy barrier in the well it may emerge from the well and desorb 

from the surface or go on to undergo stronger bonding with the surface.

The surface residence time (r) of the physisorbed molecule thus depends on 

the temperature of the surface and can be given by the Frenkel equation.

t  =  t 0 . exp
KR.T;

Equation 1.5 -  The Frenkel Equation31,24

where r = the surface residence time 

r0 = the time of one vibration 

Ed = desorption energy

Since energy of desorption is typically low (typically < 20 kJ mol'1) surface 

residency times are also very short, normally around 1 0 ' 8 s at room temperature31.

Physisorbed species generally exhibit a slight coverage dependence of the heat 

of desorption due to increased electric polarisation effects as the molecules become 

more densely packed on the surface15. Physisorption occurs regardless of the nature 

of the surface and adsorbate or the topography of the surface.

1.2.6 Chemisorption

Chemical adsorption (chemisorption) is the process by which adsorption 

occurs via formation of a strong bond between the surface and the adsorbate. As a
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new bond is being formed chemisorption is characterised by the transfer of electrons 

between the adsorbate and the surface.

The bonds formed by chemisorbing molecules are stronger than the forces 

causing physisorption. This is reflected in the much greater changes in enthalpy and 

heats of adsorption (AHods) that occur. Due to the large negative enthalpy change that 

occurs when a species is chemisorbed (generally > 100 kJ mol*1), chemisorption is an 

exothermic process. The bonding that occurs may be either ionic or covalent in 

character or a mixture of both31.

Unlike physisorption, chemisorbing species usually display a degree of 

specificity in the level of interaction with a particular surface. In addition to the 

chemical character of the adsorbate the surface geometry may also effect the 

adsorption process.

Chemisorbed species generally exhibit a strong heat of desorption dependency 

on surface coverage. Due to charge transfer between adsorbed species and the surface 

setting up permanent dipoles and the electrostatic repulsion that exists between 

similarly charged species, formation of subsequent dipoles at the surface becomes less 

favourable, reflected in lower heats of desorption. Electrostatic coupling between 

closely packed adsorbates may also effect the heat of desorption for a particular 

species from the surface.

Chemisorption may be subdivided into dissociative and molecular 

chemisorption, referring to whether the molecule remains intact on adsorption 

(molecular chemisorption) or dissociates on adsorption (dissociative chemisorption).

1.2.7 Kinetics of surface adsorption processes

The rate of chemisorption varies greatly from system to system; this is largely 

controlled by the magnitude of the activation energy barrier. This is reflected in the 

Lennard Jones model; a one-dimensional potential energy diagram.

13



0=0

Figure 1.5 - Precursor mediated dissociative chemisorption of a diatomic molecule. Adapted from
‘Surfaces’ by Gary Attard and Colin Barnes20.

The above Lennard-Jones diagram is a plot of the potential energy against the 

distance from the crystal surface for a chemisorbing oxygen molecule. It can clearly 

be seen that there are two distinct oxygen species present, the gas phase and 

physisorbed dioxygen species and the surface-bonded atomic oxygen. Figure 1.5 

demonstrates that there is little to no energetic barrier to physisorption (the precursor 

state), making this a non-activated process. However for chemisorption to occur there 

is an energetic barrier to dissociation, E^dts, which must be overcome. This 

requirement for an input of energy establishes the precursor state as having a finite 

existence. If Eadu is positive, the process is referred to as activated adsorption. 

Processes where the adsorbing molecule encounters no energetic barrier as it moves 

closer to the surface are termed non-activated adsorptions. From the Lennard-Jones 

diagram it can be seen that for the gas phase molecule to approach the surface closely 

enough to chemisorb, the physisorbed approach curve offers the lowest energy 

pathway.

1.2.8 Adsorption isotherms

An isotherm is a depiction of the relationship between the quantity of gas 

adsorbed as a function o f pressure at a constant temperature25. The simplest model
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for the derivation of a theoretical isotherm is that formulated by Langmuir26 This 

model makes several key assumptions:

• That molecules adsorb on the clean surface with a constant sticking 

probability -  there are no collisions of gas molecules with the surface resulting 

in reflection back into the gas phase.

• That there are no preferred adsorption sites.

• The occupancy of adjacent sites does not affect the adsorption of a molecule in 

a specific site ie. there are no lateral interactions between molecules.

• The maximum attainable coverage is a complete monolayer.

• Desorption of an adsorbed molecule occurs as soon as the energy acquired via 

lattice vibrations is equal to the heat of adsorption.

• A gas phase molecule encountering an adsorbed species will be reflected back 

into the gas phase with no loss of energy.

• At equilibrium the rate of adsorption into unoccupied sites equals the rate of 

desorption from occupied sites.

Applying the above assumptions to a system comprising of the adsorption of a 

gaseous phase onto a perfect surface at a temperature T and a pressure P with N  

adsorption sites per unit area and Ns occupied surface sites per unit area gives a 

rate of adsorption of

dO
—  = k„P (N -N s ) 
dt ° K 5

Equation 1.6 - The rate of adsorption for a Langmuirian system

where 6  = surface coverage (as defined in Equation 1.2) 

this can also be expressed as

dO
—  = kaPN( 1 -  0) 
dt

Equation 1.7 - The rate of adsorption
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where

ka = adsorption rate constant

By the same logic the rate of desorption is directly proportional to the number 

of adsorbed species on the surface ie.

- f
Equation 1.8 - The rate of desorption

where

kd = rate constant for desorption

Since, at equilibrium, the number of desorbing species equals the amount of 

adsorbing species, putting the two expressions equal to each other and rearranging 

yields

0 =  K p
1 + Kp

Equation 1.9 -  Derived Langmuir Isotherm

where
K  = ka kd

The Langmuir model does however deviate from real-world systems in several 

aspects as it fails to take into account non-uniformity of the surface, the effects caused 

by geometric factors and the changes in adsorption energy as a function of surface 

coverage due to lateral interactions between adsorbed surface species. In addition to 

this the Langmuir isotherm also ignores the possibility of surface mobility; this is 

especially important when considering desorption of products which are the result of a 

dissociative adsorption and must recombine before they desorb. A further problem 

with the Langmuir model is that it does not take into account the possibility of larger 

adsorbed molecules blocking adjacent adsorption sites; this is especially a problem 

when considering adsorption of aromatic rings and other large organic molecules.
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It is worth noting that several other isotherm models exist which partially 

compensate for shortcomings in the Langmuir model such as the adsorption of greater 

than a monolayer (Brunauer-Emmett-Teller isotherm) or for adsorption sites not being 

equivalent (Temkin and Freundlich isotherms). These isotherms also rely upon 

certain similar assumptions to the Langmuir isotherm, however they do give accurate 

results when used in the specified conditions16.

1.2.9 The surface

Possibly the most important concept behind surface science is the realisation 

that the atoms at the surface have lower coordination numbers (are surrounded by less 

neighbours) than the atoms in the bulk. This lower coordination number has a variety 

of consequences that make surfaces desirable for study.

The electronic structure of the surface is different from that of the bulk. 

Whereas bulk metals exhibit overlap of energy levels forming ‘bands’ of electron 

energy levels, surface atoms have specific discrete energy levels. In addition to this 

the atoms at the surface are often at a much higher energy than those in the bulk. This 

can lead to different crystallographic structures at the surface when compared to that 

of the bulk, due to reconstructions to minimise the surface energy. The lower 

coordination number of the atoms at the surface may also be made manifest in a 

favourable adsorption of gases, which may go on to react15.

1.3 The NSR process

Since the Industrial Revolution there has been a large amount of damage done 

to the environment by the reckless use of raw materials such as fossil fuels as well as 

a lack of regard for ‘cleaning up’ after industrial processes. There has been 

government environmental legislation in Britain in one form or another since as early 

as the 1 2 0 0 ’s when laws were first introduced to limit the burning of coal in cities. 

More recently due to heavy smogs, particularly in London, Tokyo and Los Angeles, 

countries have brought in increased legislation to tackle airborne pollutants.
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In the last decade there has been an increasing awareness of the need for a 

reduction in the levels of greenhouse gases, particularly the CO2 that is produced as a 

by-product of human industry. In the automotive industry this has been manifest in 

the desire of manufacturers to produce cleaner and more fuel-efficient cars. One 

development that has the potential to greatly cut CO2 emissions is the lean bum 

engine. Via a more complete combustion process in an environment of excess oxygen 

the lean bum engine can offer up to 30% decreased fuel consumption when compared 

to a traditional stoichiometric engine27. Decreased fuel consumption reduces the 

volume of CO2 produced per journey and the oxidising atmosphere effectively 

eliminates hydrocarbon and CO emissions.

Nitric oxides (NOx) are a major constituent of all automotive pollutants. NOx 

is believed to make soil and ground water more acidic via atmospheric transformation 

to nitric acid, HNO3, which is then precipitated as acid rain. NOx has also been linked 

to the accumulation of ozone at ground level observed in certain regions of the world, 

via reaction of photo-free radicals with oxygen. Emitted NO is also oxidised in the 

atmosphere to NO2, a gas that has been proven to have adverse effects upon the 

respiratory system and to increase the risk of development of respiratory allergies. 

Studies have shown that that NOx levels of 0.05 ppm are harmful for healthy people; 

for people with respiratory disorders these levels are still too high ’ Exhaust 

emissions of NOx and particulate matter (PM) from heavy-duty diesel vehicles from 

2007 will have to be reduced to 10% of maximum 2003 levels30.

Normal automobile engines are operated at very close to stoichiometric 

conditions of airfuel, approximately 14.5:1. Under these conditions the engine 

produces large quantities of NOx, CO and short chain hydrocarbons. In addition to 

this, in the past it has been common practice to add trace amounts of organo-lead 

compounds (usually tetra-ethyl lead) into gasoline as an anti-knock component; 

despite being present in low concentrations on average each engine releases several 

kilograms of lead into the environment each year2.

Currently the catalyst present in the majority of automotive catalytic 

converters is the three-way catalyst, so named because it facilitates the simultaneous 

oxidation of carbon monoxide and hydrocarbons (HC) and reduction of NO ie.
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NOx + CO + HC — H20  + C 0 2 + N2

Scheme 1.1 -  Three-way catalyst overall operation

The three-way catalyst is composed of a mixture of platinum, palladium and 

rhodium dispersed on a Al20 3  support31. It is important for the catalyst and the 

monolith support that it is mounted on to have both high mechanical and high thermal 

strength. The high resistance to thermal shock and expansion is necessary as car 

engines operate over a wide temperature range and can change temperature greatly in 

a very short space of time. In addition to the components mentioned above certain 

manufacturers also add oxygen storage media such as ceria to maintain oxidation 

during low air: fuel operating conditions2.

The NOx conversion shown in scheme 1.1 occurs through a number of 

fundamental steps

NO + H2 — H20  + »/2N2

NO + CO — C 0 2 + '/2N2

CO + ‘/20 2 — C 0 2

HC + 0 2 —> C 0 2 + H20

Scheme 1.2 -  NOx conversion of the three-way catalyst

The NO reduction reactions are mainly carried out over the rhodium component in the 

catalyst and the oxidation over the platinum.

Normal combustion produces an exhaust gas mixture that contains balanced 

amounts of CO, H2 and hydrocarbons to enable the reduction of NOx32. Such is the 

efficiency of the three-way catalyst that the pollutants present can be almost 

completely transformed into C 02, N2 and H20 , however a surplus of oxygen present 

in the exhaust of the engine will prevent the reduction of NOx43. One problem with 

the three-way catalyst is that at present the light-off temperature, the temperature at
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which the catalyst begins to work, is rather high. When the exhaust temperature is 

below the light off temperature pollutants pass unchecked through the exhaust.

Since 1984 it has been known that combustion of the unbumt hydrocarbons 

which are present in the exhaust of a traditional engine can increase engine efficiency 

by up to 30%. This is achieved via combustion of the fuel in an environment of 

excess oxygen (lean environmentX25:l or above air: fuel ratios), unlike the 

stoichiometric air: fuel ratios (14.5:1) used in conventional gasoline engines. From 

both an environmental and economical point of view this is advantageous; however it 

necessitates the development of a new exhaust catalytic technology to prevent the 

engine pollutants from passing into the atmosphere, as existing catalytic technologies 

are inoperable under oxidising conditions. Various alternatives to the three-way 

catalyst have been proposed, most of which operate around reducing nitric oxides 

directly33, either via injection of ammonia or urea or over a Cu/zeolite catalyst34. 

However all of these catalysts have several serious problems associated with their 

usage such as narrow temperature windows of operation, low durability and low 

catalytic activities32. The zeolite-based catalysts, at one point the most promising, in 

particular have been proven to have an unsatisfactory hydrothermal resistance35.

Direct NO reduction to N2 and O2 is a catalytic option that is attractive for its 

simplicity; however the decomposition reaction is thermodynamically unfavourable 

and the supported platinum and palladium catalysts which have been tried rapidly lose 

efficiency due to oxygen poisoning36,37,38. At elevated temperatures it has been 

suggested that the desorption of O2 from the catalyst is the rate determining step for 

the reaction39.

Perhaps the most promising technology, and one that is currently in use in 

Japan is NOx Storage and Reduction (NSR). This catalyst system was first introduced 

by Toyota in the early 1990’s40,41. The NSR catalyst is a combination of a 

modification of the lean bum catalyst and a change in the mode of engine operation. 

It comprises of a precious metal to oxidise/reduce NOx (typically a Pt/Rh mix; 

Platinum is normally chosen due to its high NO oxidation ability and rhodium for 

reduction ability), an alkali or alkaline earth metal oxide (barium oxide is generally 

chosen due to ease of nitrate formation) and a high surface area substrate upon which
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the catalyst is supported (normally y-alumina providing a surface area in excess of
2 I 27 42 t i200 m g * ) ’ . The storage component must be capable of storing NOx and releasing 

it at temperatures of 300-600 °C. Barium and strontium are good examples of such 

metals.

The engine operates under predominantly oxygen rich (lean) conditions, 

during which NOx is stored as nitrate on a NOx storage medium (barium oxide). 

Every few minutes a spike of fuel is injected into the combustion mix (rich 

conditions). This provides a reducing environment, with hydrocarbons, carbon 

monoxide and hydrogen being present without being oxidised. Under these 

conditions the stored NOx is released from the storage component and reduced over 

the precious metal component of the catalyst, to be passed out of the exhaust as N2, 

CO2 and H2O. Regeneration of the NOx trap is essential for freeing NOx storage sites 

for continued catalytic use. Although this oscillation of combustion conditions is 

employed during normal driving, during the initial period of engine operation (warm­

up) a constant air: fuel ratio is employed. This coincides with large production of 

pollutant but allows the engine to reach normal working conditions where the excess 

oxygen environment can be used as rapidly as possible. Although developed to 

remove NOx from lean bum gasoline engines it seems likely that NSR catalysts have a 

role to play in NOx emission control in diesel engines too43.

A problem with the NSR catalyst is that it is easily poisoned by sulphur 

present in fuel. This is due to the enhanced stability of sulphate species over nitrate 

species when bonding with barium oxide, with the consequence that the NOx trap 

cannot be regenerated under normal operating conditions and no further nitrate can be 

stored. This is not so much of a problem in Japan, where the fuel sulphur content is 

much lower, but it has delayed the import of the lean bum engine to the European and 

American markets. There are desulphation procedures which have been proven to be 

effective in removing stored SOx such as regeneration under high temperature; 

however this reduces the working life of the catalyst and as such is not a viable option 

for high-sulphur containing fuels42. It has been theorised that transitions from surface 

to bulk sulphates and the size of the sulphate particles also increase the difficulty of 

regenerating the NOx trap44. As well as sulphur contamination, CO2 has displayed an

21



affinity for binding to NO2 adsorption sites45 with the consequent blocking of those 

sites.

The role of each component in the NOx storage catalysis has been investigated 

separately. Takahashi et a l 46 have shown that the conversion of nitric oxides to 

nitrogen takes place over the noble metal sites in the catalyst. They have also shown 

that the quantity of NOx stored increases with increasing oxygen content and reported 

IR evidence that NOx is stored as nitrate. It is worth noting that the group used 

barium instead of barium oxide, possibly necessitating the oxidation of barium as the 

first step of NOx storage. However evidence is provided which argues against this by 

Li et a l 5 0  who note that despite the NOx storage capacity increasing with increasing 

oxygen concentration, a pre-oxidised surface has a lesser storage capacity than a pre­

reduced surface. Other groups have also confirmed the storage of the NOx as 

nitrate47.

It is generally assumed that NOx is stored via the reaction of adsorbed NO2 

(created from reaction of adsorbed NO and atomic oxygen) and NO with BaO to form 

Ba(N0 2 ) 2  (from reaction with NO) and Ba(N0 3 ) 2  (from reaction with NO2 )50 

However this is by no means certain. The above hypothesis assumes that BaO is the 

storage component, rather than possibly being a hydroxide or carbonate species, and 

rules out the possibility of storage occurring directly via NO rather than necessitating 

the preliminary oxidation step. In addition to this the form that NOx is stored on the 

storage component is by no means certain, although it has been reported as 

Ba(N0 3 )248 The initial oxidation step over the Pt metal centre has been shown to be 

the rate-determining step49. However the fact NO is released in addition to NO2 being 

stored when a stream of NO2 is passed over a NOx trap catalyst hints at a more 

complex redox process occurring49.

It is generally assumed that the stored NOx is released in the reverse process of 

that described above with the stored NOx being released as NO2 and NO and reduced 

over the noble metal component of the catalyst (Rh in the Toyota catalyst) by the 

reducing agent.
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It has been found that both BaO and BaAl2 0 4 are efficient at storing NOx. 

However stable carbonates form more readily on BaO, with the effect of poisoning 

the catalyst. Although it has been proven that both store NOx as nitrate, the nitrate 

formed on BaA^CU is bonded through the nitrogen whereas the BaO-nitrate species is 

not. This has implications with regard to SOx poisoning50,51. There has also been 

evidence reported in the literature of NOx being stored as nitrite at lower adsorption 

temperatures (below 200 °C)50. The presence of oxygen in the exhaust stream inhibits 

the release of stored NOx and the presence of CO2 promotes it34.

From the above it is apparent that detailed knowledge, with regards to the 

mechanism of NOx storage and reduction, is essential for optimising the NSR catalyst. 

This project aims to provide enhanced understanding of some of the fundamental 

steps involved.
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2. EXPERIMENTAL: SURFACE SCIENCE EQUIPMENT AND 

TECHNIQUES

2.1 Introduction

A relatively young discipline, surface science is a field that has grown 

immensely since its inception in the 1960s. There are multiple techniques available to 

the surface scientist for the investigation and characterisation of a surface and 

examining the reactions catalysed by the surface. It is worth noting that no single 

technique is capable of providing all the information needed to form a complete 

picture of what exactly is happening at the surface. For this reason multiple analysis 

techniques providing complementary information are often employed. For instance 

STM (Scanning Tunnelling Microscopy) will show a nanoscale picture of the surface 

but provides little information on the nature of the species being viewed whereas XPS 

(X-Ray Photoelectron Spectroscopy) will identify the species present at the surface 

but will give no indication on their topographical structure. For this reason XPS and 

STM are techniques which are often used in tandem to provide complementary 

information. This chapter lists and describes the experimental apparatus and surface 

analytical techniques used in the gathering of the data presented in later chapters and 

gives an overview of the theory behind the techniques.

2.1.1 The analysis chamber

If an idealised reaction on a prepared surface is to be studied accurately it is 

important that the surface be unaffected by chemical species other than those being 

studied. Using equation 1.3 (page 10) it can be calculated that a background pressure 

of 1 x 10*8 mbar CO in the chamber thus gives a molecular flux of approximately 1013 

molecules cm 'V 1 at 300 K. If one assumes that the concentration of atoms present at 

the surface is approximately 1 x 1 0 15 molecules cm'2 and that the sticking probability 

of CO on the surface is unity, an atomically clean surface (less than 1% 

contamination) can be maintained for only 1 second and a complete monolayer of 

adsorbed CO will form in under two minutes.
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It follows that in order to simplify the analysis of the reactions being studied 

one must endeavour to remove all the potential contaminants and non-participating 

species from the reaction. This allows measurements to be made on atomically clean 

surfaces. To this end studies are conducted under ultra high vacuum conditions 

(UHV). Ultra high vacuum is a designation given to a pressure in the range 1 x 10*9 -  

1 x 10' 12 torr (1.33 x 10'9 -  1.33 x 10*12 mbar). Under these sorts of pressures the 

mean free path of the gas molecules is very large, making molecule-surface collisions 

more significant than molecule-molecule conditions. A further advantage of ultra 

high vacuum is that the molecules, ions and electrons used as probes in many surface 

analytical techniques have a longer undisturbed trajectory with decreasing pressure.

The apparatus used consisted of a main chamber that was pumped using a 

liquid nitrogen trapped oil-vapour diffusion pump and a Leybold turbomolecular 

pump, both of which were backed by Leybold and Edwards rotary pumps. Oil 

diffusion pumps operate by heating an oil reservoir to produce a stream of vapour that 

carries residual gas molecules in the chamber towards an exhaust, from which it is 

pumped by a backing rotary vane pump. The oil vapour is re-condensed on the body 

of the pump, which is water-cooled. The liquid nitrogen cold trap condenses out 

contaminants from the back streaming oil, and prevents oil vapour from diffusing into 

the main analysis chamber. The choice of oil employed in the diffusion pump is 

critical as it must possess an extremely low vapour pressure (better than 1 0 '9 torr) at 

ambient temperature and be resistant to damage caused by heating as well as being 

relatively unreactive to gases encountered in the vacuum chamber. The oil chosen for 

use was Santovac 5 polyphenyl ether oil (Monsanto Corp.) possessing a vapour 

pressure of ~4 x 10 10 mbar at 298 K1.

The turbomolecular pumps operate in a similar manner to a turbine, with 

rotating assemblies of blades spinning at high speeds (50,000-100,000 rpm). 

Molecules entering the intake of the pump are impacted by the blades and have a 

velocity imparted to them, being moved to the exhaust, where they are then removed 

by the backing pumps.

Rotary pumps operate by removing gas cyclically from a system and removing 

it to an outlet. Unlike the turbomolecular and oil diffusion pumps mentioned above
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the rotary pumps are able to operate at standard pressure without damage to 

themselves. This makes them essential components for ‘roughing out’ the system 

(bringing the internal pressure to a level where the other pumps can safely operate) in 

addition to removing the pumped gas from the outlets of the other pumps.

The chamber was also equipped with a ThermoVacuum Generators titanium 

sublimation pump (TSP), which provided high speed pumping and a lower ultimate 

base pressure that the oil diffusion pump and turbomolecular pumps alone. The 

titanium sublimation pump operates by putting a high current through thick titanium- 

molybdenum filaments. As the filaments heat via resistive heating they start to 

sublime titanium, which then coats the walls of the chamber and forms stable 

compounds with contaminants, permanently trapping them. The titanium sublimation 

pump is only effective at chamber pressures of ~ 1 x 10*8 mbar or below. The 

combined pumping systems are easily capable of keeping the main chamber at a 

pressure of 1 x 1 0 ' 10 mbar or lower.

The combination of these pumping techniques was effective at removing 

almost all gaseous contaminants from the chamber. The major residual gases present 

in the system were from atmospheric hydrogen and helium, both of which have slow 

pumping speeds with the available vacuum pumps, and carbon monoxide which is 

produced from heated filaments in the chamber (e.g. ionisation gauges, mass 

spectrometer filaments, heater filaments etc.)2.

It is worth noting that all of the pumps mentioned above have an effective 

pressure range that they can safely be operated in. Operation of the pumps above this 

range at best will trip safeguards to shut the pumps down, and at worst will result in 

damage to the pumps. The oil in the oil diffusion pump in particular is susceptible to 

‘cracking’ if heated at high pressures. The oil diffusion pump should not be used at 

pressures above 1 0 ' 3 mbar, the turbomolecular pumps 1 0 ’2 mbar and the titanium 

sublimation pump 10-8 mbar. As all of these pressures are lower than atmospheric 

pressure the system must be thoroughly roughed with roughing pumps. These are 

typically one or two vane rotary vane pumps that can pump from atmospheric 

pressures to 10'3 mbar. These pumps are also used to back the oil diffusion and 

turbomolecular pumps.
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The molecular beam enclosure was kept under a reduced pressure o f 1 x 10‘7 

mbar via twin rotary-backed turbomolecular pumps and could be isolated from the 

main chamber by means o f a gate valve.

Main chamber
mass-spectrometer

LEED-AES sample

valve shutter

skimmer
'  source capillary

Molecular beam 
chamber

to turbo pump 2I MS aperhre

to turbo pump 1

to gas and pumps

Figure 2.1. Schematic of the experimental apparatus setup in the ultra high vacuum chamber 
used for the experiments contained in this thesis.

It is impossible to achieve ultra high vacuum conditions without subjecting the 

system to ‘baking out’, or heating the system to around 450 K for 12-24 hours. This 

temperature is hot enough to desorb the majority o f contaminant gases that contribute 

strongly to the residual pressure (especially water) from the chamber walls. 

Following this the equipment inside the ultra high vacuum chamber needs to be 

‘degassed’, when all the filaments are operated for at least an hour directly after 

baking when the chamber is still hot. This is necessary to remove all contaminants 

from the interior surfaces o f the chamber, which might adsorb onto the prepared 

surface o f the crystal.

The pressure in the ultra high vacuum chamber was measured by a Pirani 

gauge for pressures ranges o f -10° to 10'3 mbar and an ionisation gauge for pressures 

o f 1 O'4 to 10*11 mbar.
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The Pirani gauge operates by measuring the increase in resistance of a length 

of heated wire as heat dissipation is reduced with lowered pressure. However the 

pirani gauge is unsuitable for precise measurements as different gases exhibit different 

thermal conductivities.

Ionisation gauges consist of a resistively heated filament (in this case thoriated 

tungsten was used for the increased electron yield) coupled with a positively biased 

grid and a negatively biased collector. Electrons are produced from the filament and 

are accelerated through a potential of -150 V towards the grid. Gas molecules present 

may thus be ionised by impact with the accelerated electrons. The positive ions 

created are then attracted by the negatively charged collector and provide an electrical 

signal. As the number of ions created and detected is proportional to the pressure the 

signal created at the collector is a measure of the pressure of gas present in the 

chamber.

The Pt(l 11) crystal was mounted in the centre of the chamber on a 

manipulator capable of rotating about the azimuthal and polar axis. Rotation about 

both axes could be controlled by automated stepper motors for use in angle resolved 

experiments; however all the work presented in this thesis was performed with the 

crystal surface directly facing either the molecular beam (for sticking experiments) or 

facing the mass spectrometer (for temperature programmed desorption experiments).

The crystal was held in place by two 0.15 mm tungsten wires threaded through 

four holes bored in the crystal surface. These wires also provided resistive heating 

with the temperature ramp set to 1 K/s for most experiments. The temperature of the 

crystal could be lowered to 130 K by cooling with liquid nitrogen through a sealed 

pipe connected to the sample mount via a sapphire thermal switch and copper braid. 

The temperature of the crystal could be measured by a K-type thermocouple placed in 

another hole bored in the edge of the crystal.

Gases could be dosed onto the crystal surface either via leak valves 

(background dosing) or by using the thermal molecular beam. The molecular beam 

was sharply collimated to give a final circular spot of 3 mm in diameter. The beam 

was normally operated at 50 mbar source pressure, which translated to a gas pressure
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of approximately 2 x 10'8 mbar at the crystal surface. The gases used in the 

experiments contained in this thesis were O2 (99.999%, Argo International Ltd.), CO 

(99.5%, Argo International Ltd.), Ar (99.999%, Argo International Ltd.), NO (99.0%, 

Argo International Ltd.) and N 0 2 (99.5%, BDH Chemicals Ltd.).

The vacuum chamber was also equipped with a PSP ISIS 3000 argon ion 

sputter gun for crystal cleaning and a ThermoVacuum Generators rear view retarding 

field analyser for low energy electron diffraction and auger electron spectroscopy 

experiments.

2.1.2 Quadrupole mass spectrometry (QMS)

Mass spectrometry is perhaps the most widely used scientific analytical 

technique. The sample under examination is ionised (and thus has a charge imparted 

to it) and the resultant ions are separated according to their different mass: charge 

ratios. This separation is generally done via the manipulation o f the ionised gas 

through differing spatial trajectories.

Detector

resonant ion (detected)

non-resonant ion (not detected),

Source

Figure 2.2. A quadrupole mass spectrometer.

As Figure 2.2 shows the quadrupole mass spectrometer separates ions by two 

perpendicular fluctuating electrical fields o f variable strength between two pairs of
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opposing poles. One pair of rods has an applied potential of +(U+ V cos (cot)) and the 

other -{U + V cos where U is the DC voltage, V cos (cot) is the AC voltage of 

frequency co and amplitude V and t is the time. The potential difference applied to 

each pair of rods is varied sinusoidally as cos(cyf) cycles with time. Ions are created 

by the source and accelerated down the spectrometer towards the detector. The 

fluctuating electric fields ensure that the ion travels in a spiral path with trajectories 

dependent upon the mass: charge ratio of the ions. As the field strength is varied ions 

with too small a mass: charge ratio develop a greater path radius and so do not reach 

the detector, making it possible to ‘scan’ through the available mass: charge ratios by 

varying the strength of the electric fields created. Only ions of a specific mass: charge 

ratio will pass through the quadrupole filter and reach the detector. There are two 

scanning modes commonly used; holding co constant and varying U and F, or holding 

U and F constant and varying co.

The quadrupole mass spectrometer is commonly used for UHV applications 

due to its relatively low cost and power demands and ease of use. It typically 

provides a lesser resolution than the larger magnetic sector analysers but is more 

suitable for residual gas analysis in ultra high vacuum conditions.

2.1.3 K and Ba sources

The barium and potassium evaporators were both constructed in similar ways. 

Due to the high reactivity of these elements custom-built sources had to be designed 

and built which were capable of depositing clean supplies of the element on the 

crystal surface with high purity.

The barium source was manufactured by SAES Getters (SAES Getters GB 

Ltd.) and was composed of a trapezoidal cross-sectioned iron casing surrounding a 

BaAL alloy wire with a nickel reactant. The filament was resistively heated by 

putting 10 Amps of current through it, causing the casing to increase to over 1073 K 

in temperature. At this temperature the nickel reacts with the aluminium alloy in an 

exothermic reaction that raises the temperature of the wire to approximately 1523 K. 

The chemical reaction produces barium vapour, which is emitted through an aperture 

machined along the axis of the casing.
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The potassium source was manufactured by SAES Getters (SAES Getters GB 

Ltd.) and was composed of a trapezoidal cross-sectioned metal container provided 

with a slit to allow evaporation of the alkali metal vapour. Contained within the 

casing was a potassium chromate of formula K2Cr0 4 and a reducing agent. The 

filament was resistively heated by putting 7 A of current through it, heating it to over 

500 °C and causing the reducing agent to break down the chromate and irreversibly 

sorb all chemically reactive gases produced during the reduction reaction and 

evaporating the metal from the doser in a similar manner to that of the barium doser.

Both sources were mounted on a normal high current four terminal ultra high 

vacuum feedthrough and were enclosed in a custom built stainless-steel cylindrical 

metal shield with an aperture cut into the far end to allow directional dosing of the 

crystal. The shield was necessary to prevent unwanted metal deposition onto the 

internal surfaces in the vacuum chamber. The crystal was held at a distance of 80 mm 

from the deposition source whilst dosing. During the deposition of both of these 

metals the pressure in the system increased to not more than 5 x 10'9 mbar.

2.1.4 Crystal cleaning

The Pt(l 11) single crystal (5N purity, Metal Crystals & Oxides Ltd.) was 

cleaned by cycles of argon ion sputtering (1.0 x 10*5 mbar, 500-1000 eV, 6  pA/cm2, 

30 min) to remove unwanted impurities and adsorbates as well as some of the Pt( 111) 

surface atoms. This left a very rough surface rather than the smooth (111) plane 

required so the crystal was then annealed in 0 2 (2.5 x 1 0 ' 8 mbar, 500 °C, 20 min) 

followed by annealing in oxygen at lower temperature (2.5 x KT8 mbar, 300 °C, 20 

min) to remove residual carbon. The oxygen was then removed and the crystal 

flashed (700°C, 2 min) to remove platinum oxide. Cleanliness of the surface was 

ascertained by achieving a smooth Auger spectrum where the only major feature was 

a Pt (MNN) peak at 69 eV and an absence of a C (KLL) peak at 275 eV. In addition 

to this the periodicity of the surface was ascertained by achieving a (1 x 1) LEED 

pattern. An alternative method of checking for carbon contamination was to dose 

oxygen onto the surface followed by a linear temperature ramp. CO and C 0 2 being 

evolved in the desorption trace is indicative of the presence of carbon at the surface.
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Figure 2.3. A (1 x 1) LEED pattern of the clean P t( ll l)  crystal surface.

2.2 Experimental techniques 

2.2.1 Molecular beam experiments

The molecular beam is a tool of surface science that has been in use since 

before 1920 and remains useful to the current date. However it is only in the last 

twenty-five years that they have commonly been applied to surface studies having 

been used previously in He atom scattering structural determining experiments15.

The first effusive molecular beam was developed using sodium atoms by 

Dunnoyer in 19113. The technology was developed by Knudsen4 and Wood5 and was 

first used to investigate gas-solid systems in 1915. The molecular beam was first used 

to accurately examine gas adsorption by Bell and Gomer in 19666. In 1972 a 

molecular beam system which collimated the beam through a series of five 

differentially pumped chambers utilising liquid nitrogen cooling was developed by
*7 RKing and Wells . This design was later refined by King and Bowker into a molecular 

beam system with only three differentially pumped stages similar to that used in the 

course of the experiments here.

The molecular beam used in the experiments described in this thesis was a 

thermal nozzle source designed and built by Dr R. Bennett at the University of
7 8 11Reading, based on earlier King and Bowker designs (see Figure 2.1) ’ ’ . The 

beamline was composed of two stainless steel six way cross-junctions and a stainless
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steel four-way junction connected linearly. The four-way junction was at the end of 

the beamline and was backed by a Leybold rotary pump and acted as the source 

chamber. Both six way junctions were pumped by Leybold turbomolecular pumps, 

which were backed by Leybold rotary vane pumps. One junction acted as the beam 

production chamber and one defined and resolves the beam. The combined pumping 

speed of the two turbomolecular pumps has been calculated to be approximately 18 L 

s' 1. 9 The entire beamline could be isolated from the main chamber by means of a fast 

acting gate valve.

The molecular beam is exactly as described; a straight, narrow, well-defined 

beam of atoms or molecules propagating into the vacuum chamber and colliding with 

a prepared sample. When combined with ultra high vacuum conditions the individual 

molecules in the molecular beam do not interact with each other or with any other 

residual molecules in the chamber.

The molecules comprising thermal molecular beams (so called because the 

beam molecules collide many times with the source capillary and so are at thermal 

equilibrium with the source) have a Boltzmann-like internal energy distribution. 

However, by increasing the pressure in the source by many orders of magnitude to 

create a supersonic beam (so called as the molecular velocity is greater than the speed 

of sound) and combining with laser photo-excitation of the beam molecules, it is 

possible to specifically access any of the quantum energy states of the beam 

molecules. Supersonic molecular beams typically use pressures of several 

atmospheres in the source and nozzles of ~ 0 . 1  mm in diameter to produce a 

molecular velocity greater than the speed of sound. Despite the much higher kinetic 

energies that supersonic beams can develop they are designated ‘cold’ beams due to 

the small range of velocities of the individual molecules in the beam and the 

associated non-Maxwellian distributions of energies as well as the cooling due to gas 

expansion. Supersonic beams are more difficult to operate and require much more 

pumping and hence energy than thermal beams, however they do allow the study of 

adsorption processes that require a high activation energy input and are simply not 

accessible to thermal beams. In addition to this supersonic molecular beams put all 

beam molecules in their quantum ground states (unless it is specifically being varied), 

and so allow the contribution of each quantum state to adsorption and reaction to be
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determined11. This is can be desirable as the quantum energy state of the beam 

molecule can greatly effect the nature of the adsorption and surface reaction 

occurring. This makes molecular beams an invaluable tool for investigating the 

kinetics of surface reactions such as activation energies of adsorption and sticking 

probabilities. It is worth noting that unlike beams of electrons or ions, changing the 

direction of propagation of the molecular beam may be problematic10. Due to the 

non-penetrative nature of the molecules used molecular beams are extremely surface 

sensitive, more so than the Auger electron spectroscopy or low energy electron 

diffraction techniques also used in performing experiments contained in this thesis, in 

which the electrons are able to penetrate the surface to some extent.

The molecular beam reactor allows the study of controlled reactions between 

gas molecules impinging on prepared single crystal surfaces. The beam of molecules 

is produced by the thermal expansion of a gas through a small aperture and successive 

evacuated regions until a single beam of molecules travelling with idealised velocity 

in a specific direction is achieved. Molecular beams make dosing of gases on crystals 

and prepared crystal surfaces simple and straightforward, allowing the easy 

investigation of reactions between adsorbed molecules. The low flux of molecules 

impacting on the surface allows the assumption that all molecules in the beam arrive 

intact on the surface and that the molecules will only interact with the surface and 

each other on the crystal and not in the beam itself, or on any other part of the 

apparatus. This allows the assumption that the beamed molecules will either adsorb 

(via physisorption or chemisorption) or be reflected back into the vacuum. In addition 

to this the molecular beam may be used to perform sequential dosing experiments that 

allow a surface to be analysed further after a reaction with another molecule. As a 

method of dosing gas onto a surface, when compared with direct dosing via a leak 

valve for temperature programmed desorption experiments, the molecular beam 

allows more control over the collision rate and spatial distribution and is thus more 

accurate. It also allows the collection of reaction data at temperatures above the 

normal molecular desorption temperature. It is worth noting however that, neglecting 

surface diffusion, the area of the crystal dosed by the molecular beam is much smaller 

than the entire crystal surface (effected via background dosing). This can lead to 

contaminants adsorbed from the background giving false signals of the same order of
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magnitude as the results from the molecular beam experiment, leading to confusing 

experimental results.

This assumption that beam molecules are either adsorbed or reflected allows 

simple measurement of sticking probabilities as well as the variation of sticking 

probability with adsorbate surface coverages to be determined. In addition it is often 

possible to observe evolution of products desorbing from a molecular beam reaction.

Molecular beams may be classified according to the source used to introduce 

gas into the beamline. In an effusive source molecular beam the beam gas effuses 

from an aperture and the pressure of the gas source is varied to give a Knudsen 

number of K > 1 (the mean free path of the individual molecules in the beam is 

greater than the diameter of the aperture used to create the beam). The distribution of 

energies of the molecules in the beam is Boltzmann-like11. In the effusive source 

beam the molecular flow is described as ‘free’ and the properties of the beam are 

directly controlled by the temperature of the walls of the beam apparatus and the 

pressure of the source. This enables the intensity of the beam and energy of the 

molecules in beam to be varied easily. A nozzle source molecular beam utilises a 

skimmer to eliminate molecules moving in directions other than the direction of beam 

propagation from becoming part of the beam.

The thermal molecular beam has the same temperature as the nozzle or orifice 

used to create the beam and typically creates beam fluxes 1 0 17 - 1 0 18 molecules m'2 s' 1 

(0.01 - 0.1 ML s' 1 relative to the surface density of P t( l l l )  assuming unit sticking 

probability, calculated via integration of oxygen sticking curves on Pd(110)). 

Thermal molecular beams produce a beam flux that is several orders of magnitude 

lower than the flux produced by a supersonic molecular beam. Note that the amount 

of pumping required is directly proportional to the pressure of gas in the source with 

greater source pressures giving a greater beam intensity at the cost of due a larger 

volume of non-beam molecules that need to be removed. As a result of this 

supersonic molecular beams, in addition to being more problematic to create, require 

greater pumping speeds and more pumped regions than the simpler thermal molecular 

beams11.
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The molecular beams used in the experiments were created by the thermal 

expansion of the gases in the source through a nozzle and a skimmer and a series of 

apertures and gate valves. The source was equipped with two 5 L gas reservoirs that 

could be connected together or used independently; these allowed simultaneous 

dosing of a mixture of gases onto the sample. If a mixture of gases was used for the 

experiments the operator must ensure that sufficient time has passed to ensure a 

through mixing of the gases prior to the experiment. Another effect of the reservoirs 

was to stabilise the source pressure and hence beam signal during the course of the 

experiments. In general, 50 mbar of gas was used in the experiments in this work. 

This pressure was found to give the greatest signal to noise ratio without anomalous 

gas flow occurring in the beam. The gas from the source effuses through a quartz 

capillary, which was equipped with a platinum wire for heating the beam by resistive 

heating (increasing the energy of the beam molecules) and a chromel-alumel 

thermocouple for measuring the temperature of the quartz. The source capillary is 

mounted on a manipulator that is capable of moving in three dimensions to align the 

capillary with the skimmer for maximum beam signal. The beam of molecules is 

thermalised by collision with the walls of the capillary. A conical skimmer and series 

of apertures cut down the number of ‘out of beam’ molecules before the gas passes to 

the next chamber. Molecules that are not part of the beam do not pass through 

successive apertures and are pumped away by attached rotary pump backed 

turbomolecular pumps. The beam enters the UHV chamber via a final aperture, 

which gives the shape of the final beam spot on the sample surface. The nozzle on the 

molecular beam used in the gathering of the data in this thesis produced a circular 

beam spot of diameter 3 mm (confirmed by monitoring the change in LEED pattern 

with variation of vertical and horizontal displacement for molecular beam dosed O2 

on Pd(l 10)). There is a distance of 50 mm between the final capillary and the crystal 

in the chamber. The molecular beam was equipped with Pirani and ionisation gauges 

in the final chamber to measure the in-beam pressure. All beam pressures used 

generated pressures of between 10~8 mbar and 1 0 ‘7 mbar on the ionisation gauge 

mounted in the second six way cross junction in the beamline.

When designing the beam it is important that the sizes of the transmission 

holes in the skimmer, nozzle and source capillary have been chosen so that the beam 

spot on the sample is sufficiently large that accurate sticking measurements may be
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obtained whilst ensuring that the pressure rise due to beaming (out of beam molecules 

arriving in the analysis chamber) is as small as possible.
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Figure 2.4 - The gas flux across the crystal surface with respect to the distance across the surface.

To maximise accuracy for molecular beam sticking experiments the penumbra 

(see Figure 2.4) must be as small as possible and the constant flux region across the 

sample as flat as possible, so that an accurate coverage dependence of sticking 

probability can be obtained. The penumbra can be minimised either by using a very 

small diameter source and a low source pressure or by ensuring that the collimator is 

positioned as close to the sample as possible or by a combination of the above. A 

skimmer-nozzle distance of 15 mm was used in all of the molecular beam experiments 

contained in this thesis.

The molecular beam was also equipped with a shutter, which acts as an on/off 

switch for the beam of molecules, and a flag made of gold foil between the nozzle and 

the crystal in the main chamber itself, which provided a measure of the total reflection 

of the beam. Reflected beam or product molecules were measured by quadrupole 

mass spectrometry.

The typical molecular beam experiment produces a mass spectrometer trace 

similar to that shown in Figure 2.5 below. This is a similar approach to that described 

by King and Wells)12,13.
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Figure 2.5 -  A molecular beam of 0 2 adsorbing on K /P t( lll)  surface.

At time a the beam flag is closed and the mass spectrometer detects only the 

residual gases in the chamber. At time b however the beam flag is opened and the 

beam enters the chamber where it impacts with the gold flag. Being inert the 

adsorption o f the molecular beam by the flag is negligibly small and this allows a 

measurement o f the total reflection pressure, Pi. At time c  the chamber flag is 

opened, allowing the beam to travel to the crystal surface where it is adsorbed 

according to the sticking probability o f the system. After a set amount of time the 

pressure either reaches the total reflection pressure and the surface is saturated, or a 

lesser pressure, indicative o f some more complicated steady-state process occurring.

The most common measurement with the molecular beam is the sticking 

coefficient. The sticking probability/coefficient (S) is a measure of the probability o f 

a given molecule adsorbing following a single collision with a surface. It depends 

upon a variety o f parameters such as nature o f the system under study, the excitation 

(vibrational, rotational, translational) o f the beam molecules quantum modes, the 

surface coverage and the temperature that the surface is held at. The sticking 

probability is a function o f the two partial pressures given in Figure 2.5 ie
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S = number of molecules that adsorb onto the surface = (P? - Pi) 
number of molecules that impact on the surface P 2

Equation 2.1 -  Calculation of the sticking probability in a molecular beam experiment.

From equation 2.1 it is obvious that if S = 0 reflection of the molecular beam 

is total and if S = 1 every incoming molecule sticks to the crystal surface.

Plotting the sticking probability against time gives a graph similar to the one 

below (Figure 2.6).
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Figure 2.6 - A transformation of Figure 2.5 into a sticking probability vs time curve. 

For a simple surface adsorption of the type —> X (a) applying

Surface coverage, = z js ( t )d t

Equation 2.2 -  Calculation of the total number of adsorbed molecules from the beam flux and
sticking probability

Where M** = number of adsorbed molecules 

Z = beam flux of molecular beam
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allows the integration of Figure 2.6 to give the coverage of beam molecules adsorbed 

(Figure 2.7)
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Figure 2.7 - The sticking probability vs adsorbate coverage.

This data can then be correlated with previously obtained molecular beam 

curves or LEED images to provide the absolute coverage in monolayers.

Precise measurements can be made in this fashion and the kinetics deduced. 

In addition to this the shape of the sticking curve gives information on the type of 

adsorption mechanism occurring. In cases where there is an immediate reaction on 

beam incidence with the surface the reduction in beam sticking probability is often 

accompanied by the release of products. Sticking probability measurements also 

allow adsorption trends with regards to temperature and system to be determined. 

Should there be an activation energy barrier to adsorption it can be overcome by 

raising the temperature of the beam.

The shape of the curve relating the sticking probability with adsorbate 

coverage can also give an indication into the nature of the fundamental steps 

occurring in the adsorption process. For instance, precursor-mediated chemisorption 

generally exhibits a large initial sticking probability with a sizeable initial plateau 

region due to the stability and mobility of the precursor state. However for activated 

adsorption the sticking curve generally exhibits a more linear decrease in sticking
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probability with increasing surface coverage (the square root of the coverage if the 

adsorption is dissociative).

Molecular beams are also commonly used as a tool to probe surface reactions 

between molecules adsorbing onto the surface. This can either be achieved by pre- 

covering the crystal surface with a known coverage of one reactant via background 

dosing through a fine leak valve or by using both reactants in the molecular beam 

simultaneously. Thus, for a reaction;

Abeam +  B a —► C + D

Where Abeam = reactant present in beam

Ba = reactant adsorbed on the surface 

C and D  = products

There are three possible outcomes;

(i) A may adsorb onto the surface and react with B

(ii) A may directly react with adsorbed B without adsorbing

(iii) Both (i) and (ii) may occur

If during the course of the molecular beam experiment A adsorbs to high 

surface coverage (case (i) or (iii) occurs) equation 2.2 becomes

0AJ= Z \ ^ A, - R ,  }dt

Equation 2.3

where S = Sticking probability of A

R = Reaction probability of A and B

Note that the coverage of adsorbed A is dependent upon both the reaction with 

B and the sticking probability of A. However in practice it is often difficult to 

differentiate between the two processes and applying the equation becomes 

problematic.
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A common addition to molecular beam systems is a rotating chopper. The 

‘chopper’ periodically blocks the beam and this has the effect of pulsing it. Such 

beams are commonly used to maximise the data gained from systems exhibiting fast 

transient adsorption behaviour11,14. Isothermal transient measurements normally 

involve gas pre-dosed onto the surface before being exposed to a molecular beam of 

another species. If the two species react on the crystal surface the order in which the 

products are desorbed from the surface as the temperature is ramped gives an 

indication of the relative strengths of the different product-surface bonds and the ratio 

of the integrals of the desorption peaks gives information on the stoichiometric ratios 

of the products (assuming equal sensitivities to mass spectrometry). A mixed beam of 

reactants can be used to give isothermal steady state measurements in which, after an 

initial transient region, the evolution of products and consumption of reactants (and 

hence the coverages of each) has reached a steady state. Repetition of these 

experiments at several different temperatures allows a rate-temperature graph to be 

calculated, which can then be used to determine the energetics of the reaction. An 

alternative to this is the pseudo-steady state reaction in which a linear increase of 

temperature is applied during the experiment to continually disturb the steady state. 

The pseudo-steady state experiment may be complicated by transient adsorption and 

desorption processes which can be problematic to identify due to the temperature 

ramp and thus make it hard to analyse; however it typically produces rate-temperature 

relationship information at a much faster rate than steady state reaction experiments.

2.2.2 Temperature programmed desorption experiments

In addition to the molecular beam technique mentioned above it is also 

possible to use the UHV chamber for Temperature Programmed Desorption (TPD) 

studies. This involves measuring the products coming off the surface via mass 

spectrometry as the temperature of the surface is increased steadily (ramped). It is 

possible to repeat this at a variety of adsorbate surface coverages to build up a more 

detailed understanding of a particular system. Temperature programmed desorption is 

extremely useful in the determination of various kinetic and thermodynamic 

parameters of a reaction system. Analysis of desorption data can provide information 

on both the coverage of an adsorbate and the strength of the adsorbate-surface bond.

45



This information can then be used to deduce rate mechanisms and activation energies 

for reaction.

The crystal surface is background-dosed with the desired gas through the fine 

leak valve for a given pressure and time, which produces the required coverage of the 

reaction surface (generally given in Langmuirs, where 1 L = 1.33 x 10-6 mbar s). For 

TPR (temperature programmed reaction) experiments the reactant must be stable at 

the adsorbing temperature, often necessitating cooling. A linear temperature ramp (1 

K s*1 was used in all the temperature programmed desorption experiments contained

in this thesis) is applied to the crystal and the amount and identity of desorbing

species analysed via quadrupole mass spectrometry. The temperature at which the 

created species are desorbed can be related directly to the adsorbate/product-surface 

bond strength in an Arrhenius-type rate equation for the desorption process. It is 

worth nothing that this rate equation contains a contribution from the initial surface 

coverage as well as an exponential factor and Arrhenius constant ie. in the case of a 

surface desorption N(a) —► S + N(g)15

Equation 2.4

Where S = surface adsorption site

n = order of desorption process 

A = Pre-exponential factor 

kd= rate constant of desorption

Aads = concentration of adsorbate molecules present on surface 

Ed = activation energy for desorption

The rate of desorption is also related to the heating rate, dT/dt, ie.

_dN^__dN_  1

dT ~ dt dT ~ dt P

Equation 2.5

where p  = heating rate
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Putting this into equation 2.4 gives

dN AN' - E  '
 = -----  e x p ---- 1

dT p  \ R T  ,

Equation 2.6

d 2N d 2N
As the maximum desorption rate occurs where = 0 a n d  ^  -  0

dt2 dT2

differentiating equation 2.6 and putting it equal to zero allows the temperature at 

which the maximum desorption rate occurs (the maximum point of the curve), 7 ^ ,  

to be determined ie.

nN%  dNads= - N nadsEd

dT RTmax

Equation 2.7

Putting equation 2.6 into equation 2.7 gives

AnN^l exp
f -  e  ^±Ld

RT.max

Equation 2.8

or in first order form

^ e RT~* -
P RT, 2 

max

Equation 2.9

As equation 2.8 shows the dependence of T^x with adsorbate coverage 

depends upon on the order of the desorption (see Figure 2.8).

The desorption spectra obtained are typically plotted as mass spectrometer 

intensity against sample temperature. The measured signal from the mass 

spectrometer undergoes a marked increase at the temperature that is sufficient to 

overcome the activation energy for the desorption process. As with all peaks, a
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maximum is observed, after which the signal decreases. Initially the shape of the 

desorption curve is governed by the exponential Q{'Ed/RT) term of equation 2.4 due to 

the low desorption rate and hence small change in surface coverage of adsorbate that 

occurs in this region. As the desorption rate increases however, the surface coverage 

of adsorbate decreases, leading A/ads to dominate the equation.

Analysis of temperature programmed desorption experiments for different 

initial coverages of a particular species allows the order of reaction and the pre­

exponential factor to be deduced. Substitution of these values into the above equation 

allows the energy of desorption to be calculated.
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Figure 2.8 - The theoretical shapes of zero order (A), first order (B) and second order (C) 
desorption peaks. Figure adapted from diagrams present in tutorials on Michigan State 

University website by Simon J. Garrett.16

As Figure 2.8 shows the order of desorption has a definite effect on the shape 

of the desorption peaks. A zero order desorption exhibits a gradual increase in 

desorption rate up until the curve reaches a temperature where all the adsorbate has 

desorbed and there is a sudden drop in the desorption rate. The temperature at which 

the maximum desorption occurs increases with increasing initial surface coverage for 

a zero order desorption. A first order desorption process displays a profile that is 

asymmetrical but lacks the sudden drop off of the zero order desorption process. The 

temperature of the maximum desorption for a first order desorption process is 

independent of surface coverage. A second order desorption process gives a peak that 

is symmetrical and has a maximum desorption temperature that shifts to lower 

temperature with increasing surface coverage. Second order desorption peaks are 

commonly observed due to recombination of atoms following dissociative adsorption.
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It is worth noting that there may be additional features such as species in different 

adsorption states, molecules adsorbed in precursor states and lateral interactions 

between adsorbed species which may add to the complexity of the recorded 

spectra15,20,23.

The area underneath a desorption peak is directly proportional to the amount 

of gas desorbing from the surface, and hence the surface coverage of the adsorbed 

species. Provided the pumping speed of the analysis chamber has been maintained at 

a constant rate it is possible to obtain absolute coverages from known coverages 

(commonly determined using LEED) ie.

9  = Integral of unknown temperature programmed desorption curve x 0 

Integral of known temperature programmed desorption curve

Equation 2.10

where 0 = absolute coverage for known system

9  = absolute coverage for unknown system

In systems where temperature programming leads to a surface reaction or 

when adsorption is not completely reversible the technique is termed temperature 

programmed reaction spectroscopy (TPRS or TPR). Temperature programmed 

reaction spectroscopy is especially useful for separating and examining the different 

components of complex systems and determining the individual surface reactions 

occurring as part of the system.

2.2.3 Auger electron spectroscopy (AES)

One of the more widely used surface science techniques is that of Auger 

electron spectroscopy (AES). In addition to the qualitative analysis of the sample the 

apparatus used for the generation of Auger spectra can be easily modified and used to 

give LEED patterns, saving space and money. Before the widespread used of x-ray 

photoelectron spectroscopic (XPS) techniques Auger electron spectroscopy was the 

principle tool for the examination of the elemental composition of a surface.
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The original observation o f the Auger effect was made by Pierre Auger in 

192517. Development o f Auger electron spectroscopy as an experimental technique 

was limited by difficulties involved with producing and maintaining a suitable 

vacuum due to the limited vacuum technology available at the time. It wasn’t until 

1953 that the Auger transitions were first identified by Lander18. The next important 

advance came in 1968 when it was demonstrated that the resolution o f the received 

spectrum could be enhanced greatly by differentiation o f the energy distribution o f the 

detected electrons19.

Auger electron spectroscopy is a method that is able to provide an elemental 

analysis o f a sample. It relies on the Auger process (Figure 2.9, below), which is 

described below.
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Figure 2.9 - The competing relaxation processes o f x-ray fluorescence (path A) and Auger
electron emission (path B).

In this process an initial ionisation o f a low-lying orbital occurs by an incident 

beam of high-energy electrons, photons or ions. This creates an excited species in an 

unstable state. Relaxation from this excited state occurs via a less-bound electron 

from a higher energy level dropping down to fill the hole created in the lower energy 

level. This creates an excess o f energy in the atom, which is removed via expulsion
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of another (less strongly bound) electron from a higher-lying orbital, leaving a 

doubly-ionised final state. Although Auger spectroscopy may be used to detect any 

element heavier than hydrogen and helium the excited atom may also relax through a 

competing process called X-ray fluorescence with the loss of Auger signal. In this 

process instead of the Auger electron being emitted the excess energy is lost as a 

photon. This allows X-ray fluorescence spectroscopy to give complementary data to 

that of Auger electron spectroscopy. Since the Auger process depends upon the three 

separate energy levels of the emitting atom it is highly element specific as no two 

elements have identical energetics of electron energy levels.

Due to the nature of the physical apparatus used in the Auger experiment, 

beam energies of about 3 keV are normally used (2.7 keV was the primary beam 

energy used for all the Auger electron spectroscopy experiments contained within this 

thesis). This leads to the Auger transitions of interest occurring at energies of around 

2 keV or below. This leads to the primary excitation shifting upwards in energy level 

as the atomic number increases (for example whereas the primary excitation shell is K 

for Li, it shifts to L for Na and M for K)23. The mean free path of electrons emitted 

from transitions with these energies is in the range of 5-50 Angstroms. This accounts 

for the surface sensitivity of Auger electron spectroscopy, as all detected Auger 

electrons have been emitted in the near-surface region.

The energy of the Auger electron is given by the differences in energy of the 

three orbitals involved in the process, or the difference in energies between the initial 

and final states ie.

£ a u g e r  = Ex -  Ey - Ez = £ ^ ( in ita l)  -  £ 2+( f in a l)

Equation 2.11

where Zsauger = kinetic energy of emitted Auger electron 

Ex = energy level of primary hole 

Ey = energy level of electron filling primary hole 

Ez = energy level of Auger electron origin
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As the orbitals differ in energy between elements the emitted electrons occur 

at kinetic energies characteristic of the elements emitting for an excitation beam of 

known energy.

The Auger electron spectrum plot is a function of signal intensity against 

electron energy with characteristic energy peaks identifying individual elements. 

Unfortunately when the surface is bombarded with the exciting electrons from the 

primary beam electrons arising from the Auger process are not the only electrons 

encountered. The majority of the electrons detected are secondary electrons that have 

lost energy via such processes as plasmon excitations and interband transitions. In 

order to increase the resolution of the Auger peak against this large background the 

Auger spectrum is differentiated.

The exact energy change accompanying a specific Auger transition can be 

very difficult to calculate due to the multitude of electronic effects and final state 

energies that have to be taken into account. It falls outside the scope of this thesis to 

provide a detailed accounting of the energetics of the various Auger processes 

encountered due to the limited resolution obtainable with the Auger optics used. In 

this thesis Auger electron spectroscopy was used only for elemental detection and 

analysis of the surface composition.

As shown in Figure 2.9 the excited atom may also relax via loss of the excess 

energy as an x-ray photon. This relaxation process is in competition with the Auger 

process as a means of returning to a more stable conformation and the extent to which 

a given atom will fluoresce or emit Auger electrons varies according to the atomic 

number of the element in question (Figure 2.10).
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Figure 2.10 - Probability of Auger emission vs x-ray fluorescence with atomic number. Adapted 
from ‘Surfaces’ by Gary Attard and Colin Barnes.20

Due to its nature there were problems using Auger emission with barium. Due 

to its high atomic weight, barium produces a very weak peak in the Auger spectrum, 

almost to the extent that it may also be considered ‘Auger invisible.’ This was not a 

problem however with the potassium system that was also studied in this thesis.

2.2.4 Low energy electron diffraction (LEED)

Low energy electron diffraction (LEED) is a fundamental ciystallographic 

technique that can be utilised to provide accurate structural analysis. It is the most 

commonly used analytical technique when providing information about the structure 

of the near-surface region of a single crystal. However with reference to this project 

LEED is only applicable to check the periodicity of the surface being studied and of 

adsorbates deposited on the surface.

The first LEED experiment was in 1927 in the USA, when Germer and 

Davisson recording patterns from electron beams between 15-200 eV diffracted by a 

nickel foil. They observed an angular variation of the reflected electron flux and
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explained their data in as being due to diffraction of the electron beam by crystallites 

in the nickel21. A short time after this Thomson observed diffraction patterns from a 

platinum film using a more energetic electron beam between 30000-60000 eV22. 

These experiments were the first experimental proofs of the validity of the de Broglie 

equation (equation 2.12)23. Due to the advances in UHV equipment and technology 

that occurred at this time, the next major development in the LEED experiment 

occurred in the 1960’s, enabling the production of a powerful and surface sensitive 

technique for examining adsorbate structure and ordering24.

The LEED experiment operates by firing a beam of electrons of between 20 

and 500 eV in kinetic energy perpendicularly towards the target. These electrons 

have a mean free path of between 5 and 10 A and so will interact with the first 1-2 

layers of the surface but lack the energy to penetrate deeper to any significant degree. 

Diffraction from x-rays has been used for many years as an experimental analytical 

technique but due to their nature x-rays are scattered poorly by matter and therefore 

penetrate deeply into the bulk of the solid and are not surface sensitive. Electrons 

reaching the detector from atoms further from the surface have generally lost energy 

via inelastic collisions and so are not detected. The inelastic mean free path of the 

electrons in a solid does not depend greatly on the identity of the solid under study, 

the major factor being the energy of the incident beam of electrons23.

100

2 100010 100
Election energy / eV

Figure 2.11 - The variation of the inelastic mean free path with electron energy. Adapted from 
‘An Introduction to Surface Chemistry* by Dr Roger M. Nix25, ‘Surfaces* by Gary Attard and 

Colin Barnes20, and ‘Auger Electron Spectroscopy (AES)* by Simon J. Garrett16.
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The wavelength of the diffracted electrons obey the de Broglie relationship ie.

P
Equation 2.12 -  The de Broglie equation

where : /  = electron wavelength 

h = Planck’s constant 

p  = momentum of electron

Since the momentum of the electron is equal to the product of the mass of the 

electron and the velocity that it is moving with, and the kinetic energy of the electron 

can be given by classical kinetic energy methods and is also the product of the charge 

on the body and the accelerating voltage equation 2.12 can be rewritten as

A _ Jj_ _ h _ h 
~ m v~  (2mEk)Yl ~ (2meV)y>

Equation 2.13

Where : v = velocity of electron 

m = mass of electron 

Ek = kinetic energy of the electron 

e = charge on electron 

V = accelerating voltage

Substituting values for the above constants (h = 6.62 x 10'34 J s, 

m = 9.11 x 10'31 kg, e = 1.60 x 10'19 C) and cancelling allows the following 

relationship to be obtained:

, f  150 .6V2
A —

E J
Equation 2.14

55



where k is the wavelength of the electron in angstroms and E in the energy of 

the electron in electronvolts.

As the lattice spacings between the layers of atoms in most crystals (0.4- 2.7 

A) are of the same order of magnitude of the de Broglie wavelengths of the incident 

electrons, electrons of energy 30 -  500 eV are elastically back-scattered by the crystal 

surface. In crystals with a regularly repeating surface unit the converging diffracted 

electron beams superimpose to give a large signal in areas of constructive interference 

and thus a bright LEED spot is observed. Secondary electrons are removed by energy 

filtering grids in front of the fluorescent screen. The diffracted electrons produce a 

diffraction pattern of a two-dimensional surface as the reciprocal lattice of the actual 

crystal surface.

The constructive interference that arises from diffraction of a beam of 

electrons from a one-dimensional lattice is governed to the Bragg relationship for 

normal incidence.

Path difference = nk = a sin 0

Equation 2.15 -  The Bragg relationship for normal incidence.

Where n = order of diffraction

k = de Broglie wavelength of electron beam (constant for elastically 

scattered electrons) 

a = lattice constant 

6 = scattering angle from surface

As a result of this there are specific areas of constructive interference where 

diffracted beams from specific scattering angles converge (see Figure 2.13). The 

diffraction pattern obtained is sharp where the surface is well ordered over regions 

much larger than the wavelength of the incident electrons. Poorly ordered surfaces 

however tend to give a diffraction pattern with diffuse spots. As the energy of the 

electron beam is increased the wavelength and diffraction angle of the beam
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decreases. This is reflected in the compression o f the LEED pattern and the 

modulation o f the intensity o f the discrete beams.

An alternative way of explaining LEED theory for regularly arranged one- and 

two-dimensional lattices is with reciprocal lattice (vector) analysis15. This mode of 

analysis is often more useful than Bragg-like equations when analysing two- 

dimensional lattices. As a LEED pattern is a reciprocal image of the two dimensional 

surface arrangement o f atoms or molecules, Laue theory, which is based upon 

complex exponential phase factors, states that the difference in the two wavevectors is 

equal to a reciprocal lattice vector26.

Surface plane normal axis

a
Figure 2.12 -  Diffraction of an incident beam of electrons from a one dimensional array of metal 

ion cores. Figure adapted from ‘Surface Chemistry’ by Elaine M. McCash14.

The Laue condition states that

nX = a(smQn -  sin#0) = a.ASn 

Equation 2.16

and that the 2-D reciprocal lattice vector relating points in the reciprocal lattice can be 

expressed as

G = /7a, * + qa2 *

Equation 2.17
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Where p  and q are integers and G is the two-dimensional reciprocal lattice 

vector. The reciprocal lattice is defined by the reciprocal vectors bi* and b2 * for the 

adsorbate and ai* and a2* for the substrate. The reciprocal vectors (ai*, a2 *, bi* and 

b2 *) are related to the real space vectors (ai, a2 , bi and b2) by a scalar product 

relationship:

a, a2 * = a, *.a2 = 0 , b, b2 * = b, * . b2 = 0
a, .a, * = a2 .a2 * = 1 , b, b, * = b2. b2 * =1

Equation 2.18

There is an inverse relationship between |ai| and |a2 | and the reciprocal space 

vectors |aj*| and |a2 *| in which |ai| = l/( |ai*| cos/l ) and |a2 | = l/( |a2 *| cos B)  where A

is the angle between the vectors ai and aj* and B  is the angle between the vectors a2

and a2*. The same relationship exists for the real space and reciprocal vectors for the 

adsorbed overlayer unit cell bi, bi*, b2 and b2 *.

Putting ai and a2 into equation 2.16 and solving gives 

*Sn = -±- = A.(Pt,\* + qa2*) = XG
\ a \

Equation 2.19

thus creating a relationship between the reciprocal lattice of the surface and 

the observed diffraction pattern. When the adsorbate reciprocal lattice is 

superimposed on the surface reciprocal lattice this allows a theoretical LEED pattern 

to be obtained15.
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d = a sin 0
Figure 2.13 - Diffraction of a beam of electrons perpendicular to the plane of the surface. Figure 

adapted from ‘An Introduction to Surface Chemistry’ by Dr Roger M. Nix.27

Analysis o f the positions o f the spots in the diffraction pattern created gives 

information on the size and geometry of the substrate and adsorbate unit cells and any 

surface reconstructions induced by adsorption. In addition to this comparison o f the 

experimental LEED pattern and theoretically calculated LEED pattern can give 

information on defects at the surface.

It is also possible to use LEED in a quantitative manner by recording the 

intensities o f the diffracted beams as a function o f the electron energy of the incoming 

beam o f electrons. This produces I-V curves that can give a more accurate view of 

the atomic positions and bond lengths when compared with theoretically generated I- 

V curves.
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Figure 2.14 - A schematic of the LEED apparatus used in the experiments.

The LEED apparatus shown above uses an electron gun to produce a beam of 

electrons, which are directed at the sample. To prevent the build-up of charge at the 

sample surface the sample is earthed. As the beam of electrons hits the sample a 

portion o f the beam is scattered. Electrons scattered in the backwards direction 

toward the LEED apparatus are collected by a series o f concentric grids. The 

scattered electrons may either be elastic in nature (kinetic energy has been conserved) 

or inelastic (some kinetic energy has been imparted to the sample). Despite making 

up less than 1% o f the received back-scattered electrons, it is the elastically scattered 

electrons that create the diffraction pattern. Inelastically scattered electrons have to be 

filtered out by the central grids, which are held at a variable negative potential. The 

elastically scattered electrons impact on a phosphor screen, inducing a fluorescent 

pattern o f bright spots. The pattern is generally photographed to give recordable 

quantitative results. In the LEED experiments contained in this thesis a digital camera 

was used which was directly interfaced to a computer allowing for simple image 

capture and manipulation.

60



REFERENCES

1. http://www.telpella.com/vacuum_html/Vacpmps.html
2. Chambers, A., Fitch, R.K., Halliday, B.S., Basic Vacuum Technology, 2nd edition, 

IOP Publishing Ltd, 1998.
3. Dunnor, L., Le Radium, 8, 1911,142.
4. Knudsen, M., Ann. Phys., 4 8 ,1915,1113.
5. Wood, R.W., Philos. M ag, 3 0 ,1915, 300.
6 . Bell, A.A., Gomer, R., J. Chem. Phys., 44, 1966,1065.
7. King, D.A., Wells, M.G., Surf. Set, 2 9 ,1972,454.
4. Bowker, M., King, D.A., Surf Sci., 9 4 ,1980, 564.
9. Bowker, M., Pudney, P.D.A., Barnes, C.J., J. Vac. Sci. Tchnol. A, 8,1990, 816.
10. Comsa, G., Surf. Sci., 2 9 9 ,1994,77.
11. Bowker, M., Appl. Catal. A : General, 160,1997, 89.
12. King, D.A., Wells, M.G., Surf. Sci., 2 9 ,1972,454.
13. Alnot, P., Cassuto, A., King, D.A, Farad. Disc. Chem. Soc., 87, 1989, 219.
14. McCash, E., M., Surface Chemistry, OUP, 2001,146
15. WoodruffD.P. and Delchar, T.A., Modem Techniques of Surface Science, 

Cambridge University Press, 2nd Edition, 1994.
16. http://www.cem.msu.edu/%7Ecem924sg/LectureNotes.html
17. Auger, P., J. .Phys. Radium, 6 , 1925,205.
18. Lander, J.J., Phys. Rev., 91,1953, 1382.
19. Harris, L.A., J. Vac. Sci. and Tech., 39, 1974, 11, 23.
20. Attard, G., Barnes, C., Surfaces, OUP, 17, 1998.
21. Davisson, C.J., Germer, L.H., Phys. Rev., 30, 1927, 705.
22. Thompson, G.P., Nature, Lond., 120, 1972, 802.
23. Kolasinski, K. W., Surface Science, Wiley, 2002.
24. Germer, L.H., Hartman, C.D., Scheiber, E.J., Rev. Sci. Inst., 3 1 ,1960,112.
25. http://www.chem.qmul.ac.uk/surfaces/scc/
26. Clarke, L.J., ‘Surface Crystallography: An Introduction to Low Energy Electron 

Diffraction\ Wiley, 1985.
27. http://www.chem.qmul.ac.uk/surfaces/scc/

61

http://www.telpella.com/vacuum_html/Vacpmps.html
http://www.cem.msu.edu/%7Ecem924sg/LectureNotes.html
http://www.chem.qmul.ac.uk/surfaces/scc/
http://www.chem.qmul.ac.uk/surfaces/scc/


3. THE BEHAVIOUR OF Pt(l 11) IN THE 

Pt(lll)/BaO NSR CATALYST

3.1 Introduction 63

3.2 Literature Review 63

3.3 Results and Discussion 77

3.3.1 Auger spectrum and LEED of clean Pt(l 11) 77

3.3.2 CO adsorption on P t( lll)  78

3.3.3 NO adsorption on P t( lll)  82

3.3.4 Molecular beams o f NO2 on P t( ll l)  held at 85 

increasing surface temperature

3.3.5 Mixed molecular beams o f NO2 and O2 on P t( l l l)  92

3.3.6 CO oxidation on P t( l l l)  101

3.3.7 NO reduction on P t( l l l)  106

3.4 Summary of Conclusions 110

REFERENCES 112

62



3.1 Introduction

This chapter is primarily concerned with the interactions and reactions 

between CO, NO and O2 and the platinum (111) crystal surface. The systems 

described in this chapter are relatively simple when compared with the K/Pt(l 11) and 

BaO /Pt(lll) systems examined in chapters 4 and 5, but a detailed understanding of 

the reaction processes that the basic surface undergoes is essential when examining 

the more complex systems.

3.2 Literature Review

NO adsorption on platinum group metal surfaces has attracted much research 

interest due to its importance in environmental catalysis. Platinum group metals 

commonly form the active centres in the automotive catalytic converters found in 

lean-bum and non lean-bum gasoline engines. One of the major pollutants present in 

the exhaust fumes of such engines is NO. Platinum, palladium and rhodium are used 

in catalytic converters for the conversion of NOx CO and unbumt hydrocarbons to N2, 

CO2 and H2O. Under exhaust gas temperatures of 300 -  600 °C (measured at the 

oxygen sensor) these catalysts have proven themselves to be both efficient and 

reliable. 1

Early studies of NO adsorption on Pt(l 11) reported that the crystal surface was 

able to decompose NO . Since then however, multiple studies have shown this 

conclusion to be false, with the general consensus being that NO decomposition only 

occurs in small amounts (<1-2% of NO), if at all, and is therefore likely to be due to 

defects in the crystal surface5,6,20,23,26. In particular high-resolution x-ray 

photoelectron and temperature programmed desorption studies performed by Zhu et al 

have shown that NO dissociation does not occur on the (111) surface of platinum3. 

Out of the basic planes it has been shown that the (100) face of platinum binds NO the 

most strongly and that the Pt(100) face also causes the greatest amount of NO 

dissociation. During temperature programmed desorption the desorbing atomic 

nitrogen and oxygen desorb associatively to form N2 and O220. Using high-resolution 

electron energy loss spectroscopy (HREELS) and infrared adsorption spectroscopy 

(IRAS) on NO adsorption at -100 K Ibach and Lehwald observed two molecular N-O
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stretching frequencies. Based on this work they proposed an adsorption model for 

NO on P t( l l l)  in which NO molecules adsorb as single molecules at low coverages 

but as dimers at higher coverages4. However, this model has been questioned by 

Hayden5 and Gland and Sexton6 who by comparing the observed vibrational 

frequencies with those of co-ordinated nitrosyl complexes found that although there 

were two different NO-Pt species present (with preferred states at different 

coverages), the N-O IR stretching frequencies were more characteristic of species 

bound in on-top sites and bridge sites. Using this evidence, a model was proposed in 

which NO adsorbs in the bridge site at low coverages but shifts to on-top sites at 

higher coverages6,7,8. This model has been partially supported by x-ray photoelectron 

spectroscopy measurements9,10 in which O ls peaks were identified at different 

binding energies at low to intermediate coverages and assigned to on-top (higher 

coverages) and bridge sites (lower coverages), and a single broad peak identified at 

saturation coverage. However there were still inconsistencies between the infrared 

adsorption spectroscopy and high-resolution electron energy loss spectroscopy spectra 

at close to saturation coverages, particularly as the x-ray photoelectron data did not 

support the conversion of bridge-bonded to on-top NO theory.

More recently LEED11 evidence supported by ab initio total energy 

calculations using spin-density functional theory with generalised gradient 

approximations12 has suggested that the preferred binding site of NO at low coverages 

is in fact the fee hollow site, with a c(2 x 2) structure being formed at 0.25 ML 

coverage (where 1 ML is defined as 1 adsorbate atom per surface atom). This model 

was supported by scanning tunnelling microscopy, dynamic LEED-/L, infrared 

adsorption and high-resolution electron energy loss spectroscopy evidence from 

Matsumoto et al. 13,14 who showed that at low coverage NO adsorbs on the threefold 

fcc-hollow sites. However from 0.25 ML to 0.5 ML on-top adsorption sites begin to 

be populated in addition to the fcc-hollow sites. At the saturation coverage of 0.75 

ML NO populates the hep and fee hollow sites as well as well as on-top sites. This 

study also showed that NO adsorbs upright on both of the hollow adsorption sites but 

is tilted at the on-top site16. It is worth noting that NO adsorbed at the hep hollow site 

desorbs at 190 K and NO in the on-top site at 275 K. The only desorption site which
i f

is occupied at room temperature is the fee hollow site, which desorbs at 320 K ’ . 

This model is supported by x-ray photoelectron spectroscopy data15 and density
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functional theory calculations16 which explains the observations that led to the 

proposal of the dimer4 and bridge-bonded models6 as being due to the change in 

electronic states induced by the on-top bonded NO causing a shrinking of the fee 

hollow species vibrational peak. This model has also been supported by near edge x- 

ray absorption fine structure (NEXAFS) data provided by Zhu et al11.

An alternative model for NO saturation coverage at 0.75 ML has been 

constructed by Metka et a / . 18 based on LEED measurements and in situ SFG (Sum 

Frequency Generation). The model is based on the (2 x 2) unit cell and contains two 

tilted on-top and one bridge-bonded adsorbed NO surface species. This model 

appears similar to that used by Kasai et a l}9 to explain the saturation NO coverage 

(0.75 ML) (2 x 2) structure on P d (lll). However the high resolution x-ray 

photoelectron spectroscopy data gathered by Zhu and co-workers has disproved this 

model15.

Despite the differences between these models it is generally agreed that below 

300 K NO adsorbs molecularly on the Pt(l 11) surface through the nitrogen of the NO. 

The small amounts of O2 and N2 from dissociated NO that are sometimes observed 

are generally attributed to being due to breakdown over defect sites6,20.

It has been shown that NO adsorbs in a (2 x 2) structure when saturated on 

Pt(l 11 ) 5-6’11-21 however the coverage at which total surface saturation occurs is still a 

matter of much debate. Whereas Hayden reports a saturation coverage of 0.25 ML5 at 

95 K, Campbell reports 0.3 ML22, Ranke reports 0.65 ML at 90 K9, and Matsumoto 

0.74 at 90 K14. Raising the temperature to 120 K enabled Kiskinova to attain a 

saturation coverage of 0.54 ML10. This difference in saturation values can be 

explained by reference to the above difference in site occupancy; it seems likely that 

the lower coverages are due to the amount of NO required to fill all adsorption sites at 

that temperature. A true saturation coverage in which all hep-hollow sites, on-top 

sites and fcc-hollow sites are occupied would seem to be at 0.75 ML. This coverage 

of NO gives a (2 x 2)-3NO structure15.

It has been found that pre-covering the P t( l ll)  with a p(2 x 2) coverage 

(saturation coverage) of atomic oxygen before adsorbing NO on the surface has a
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marked effect on the adsorption of NO when compared to that observed when 

adsorbing on the clean surface. The energetically preferred adsorption site of the 

atomic oxygen is the fee hollow site, the preferred low coverage adsorption site for 

NO. This has the effect of blocking these sites resulting in NO populating on-top sites 

at low coverages, which was not previously possible. In a similar manner to that seen 

on the clean surface, at higher NO coverages NO occupies hep hollow sites although 

the strength of the Pt-NO bond at the hollow site is weakened by the presence of the 

atomic oxygen23. The authors explain this bond weakening as the result of the oxygen 

reducing electron back-bonding into the 2tc* antibonding orbitals of the adsorbing 

NO. It was also found that the total saturation coverage of NO decreased with 

increasing oxygen coverage and that the presence of oxygen on the surface decreased 

the measured NO sticking coefficient from 0.96 to 0.8823.

It is well known that platinum is an efficient catalyst for NO oxidation. 

However it has been shown by kinetic Monte Carlo simulations and flow reactor 

experiments24 that, due to the formation of strong oxygen-platinum bonds, at low 

temperatures the oxidation of NO is actually inhibited. Once the surface coverage of 

adsorbed oxygen is increased (with a consequent bond weakening effect), platinum 

lowers the activation energy barrier to the reaction and hence catalyses it. As a result 

turnover frequencies have a strong temperature dependence24.

Under ultrahigh vacuum conditions NO oxidation after coadsorption with 

oxygen is not observed due to the fact that the energy of desorption of NO is lower 

than the activation energy barrier to oxidation25,26. It has been claimed that there may 

be significant oxygen exchange between adsorbed oxygen and the oxygen in NO, 

depending upon adsorption conditions25,27,28. However this is at odds with the 

findings of Schneider at al. who found that NO oxidation is actually inhibited by the 

presence of a platinum catalyst due to the strong Pt-0 bonds formed24. The group 

found that the oxygen has to be adsorbed to a significant coverage before the chemical 

potential is sufficient for the formation of NO2 to be favourable. As a result the rate 

of NO2 formation was found to depend strongly on O2 partial pressure, with a 25% O 

surface coverage being required to make the reaction exothermic. The reason given 

for the dependence of reaction rate on oxygen coverage was that of 0 -0  and NO-O
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repulsive interactions becoming more significant at higher surface coverages and 

partially compensating for the stability of the Pt-O bond24.

It has been found that the presence of NO2 inhibits the oxidation of NO over 

platinum29,30. This effect has been attributed to the powerfully oxidising character of 

NO2, which is well known to dissociatively adsorb on platinum, leaving reactive 

atomic oxygen adsorbed on the surface. This effects the position of the equilibrium 

constants for the non-dissociative adsorption of O2 and NO, the first steps of the NO 

oxidation surface catalysed reaction29.

NO + *++NO*
N02 + 2  * + + N 0 *  + 0 *
o2+*->o2*
02 *  +  *  —> 20*

Scheme 3.1 - Proposed NO oxidation29.

It was found that the rate of NO2 production was approximately first order 

with respect to NO and O2 concentration but almost -1 with respect to NO2 

concentration.

It has been shown that it is possible to adsorb NO2 molecularly on clean 

Pt(l 11) at 100 K with dissociation only occurring as the surface temperature is raised 

to 170 K30. This molecular adsorption state is bridge-bonded between two platinum 

atoms via one of the oxygen atoms and the nitrogen atom. It is thought that this 

species is a precursor in the dissociative adsorption of NO2 . This is evidenced by the 

fact that at high surface coverages of oxygen atoms (0.75 ML), NO2 adsorption is 

only able to occur via the nitrogen atom and dissociation stops30. There was no 

evidence of a stable NO3 species produced from the coadsorption of NO2 and O, 

despite a precursor NO3 state being proposed as an intermediate in the desorption of 

N2O4 .30

The adsorption and desorption of CO on P t( lll)  is one of the classical 

adsorbate systems dealt with in many textbooks. It is well known that CO adsorbs on 

bridge sites as well as on top sites of P t( l l l )  and forms several different coverage
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dependent ordered structures31. Steininger et al. have observed superstructures with a 

(V3x V3)R30° LEED pattern at coverages of 0.17, 0.22 and 0.33 ML at ~ 100 K32. At 

around 150 K these superstructures merge into a single diffuse (V3x V3)R30° LEED 

pattern. Other groups have also observed these features33,34,35. Increasing the 

temperature and the coverage of CO to about 0.35 ML leads to a c(2 x 2) pattern 

forming which increases in clarity to become sharpest at a coverage of 0.5 ML and a 

temperature of 260-270 K. Greater exposures produce a maximum coverage of 

around 0.67 ML and exhibit compressed surface structures32,36,37.

There is not complete agreement however as to the binding site occupancy that 

these structures represent. The generally agreed view is that the LEED patterns 

observed at lower temperatures and coverages are due to CO binding to on-top 

adsorption sites. As the temperature and coverage are increased CO starts to be 

adsorbed in bridge-bonded sites until at around 0.5 ML, after annealing, the number 

of CO molecules adsorbed in bridge bonded and on top sites is equal32,38. This was 

confirmed by Meisher at al. who, via time resolved electron energy loss spectroscopy 

(EELS), was able to quantify site partial coverages as a function of enthalpy37.

Work by Ertl et al.39, using LEED patterns as calibration for pressure-coverage 

data which in turn was then used to calculate heats of adsorption, found that CO 

initially adsorbs with a heat of adsorption of 138 kJ mol*1 for zero coverage. This 

energy decreased monotonically with increasing CO coverage. Calculations 

performed by Poelsema et al. give a similar zero coverage heat of adsorption31,40. 

However, using direct microcalorimetric measurements Yeo et al. found the heat of 

adsorption to be around 180 kJ mol'1 for zero coverage decreasing to about 80 kJ mol'

1 at full saturation41. This agrees with the work of Ray and Anderson who, using 

molecular orbital theory, derived binding energies of 180 kJ mol'1 for on-top sites and 

112 kJ mol*1 for high coordination sites42.

A problem with many of the earlier temperature programmed desorption 

studies of CO on Pt(l 11) is that they have been adversely affected by the influence of
IQ

anomalous adsorption/desorption behaviour at defect sites ’ . The energy of CO 

adsorption was found to be of the order of 67.5 kJ mol'1 larger at a step edge than on a 

flat terrace43. When performed on a surface relatively free of defects, a single
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desorption peak is observed in temperature programmed desorption experiments. The 

temperature of the maximum of this desorption peak shifts to lower temperatures with 

increasing CO surface coverage. The desorption spectra obtained do not normally 

show any features giving an insight into the relative site occupancy at a particular 

coverage44,45,46. This would seem to imply that CO is fairly surface mobile at 

temperatures above 100 K29. This conclusion is supported by a recent research paper 

by Kinne et al. which observes the CO surface site occupancy be independent of the 

total coverage (for coverages below ~ 0.35 ML) for surface temperatures above 100 

K47.

Early studies determined the sticking coefficient of CO on Pt( 111) to be a 

function of CO coverage and temperature in a number of experiments and values for 

the initial sticking coefficient of between 0.5-0.9 were obtained up to coverages of 

0.15-0.4 ML, after which there is a decrease which is roughly linear with increasing
 ̂ "JQ JO

CO surface coverage to less than 5 = 1 x 1 0 ' at 0.5 ML surface coverage ’ ’ . At 

room temperature several groups have shown a linear decrease in CO sticking 

coefficient (after an initial plateau region) for coverages up to 0.5 ML41,48. It seems 

likely that this ambiguity over sticking probability and saturation coverage is due to 

the presence of surface defects at the crystal surface. However, these studies do all 

agree on the presence of a noticeable precursor effect, which is responsible for an 

initial maintenance of sticking probability despite increasing surface coverage.

The first bonding model for the adsorption of CO on P t( lll)  was developed 

by Blyholder in 196449. His model for CO adsorption invoked electron charge 

transfer from 5a CO orbitals to the crystal surface and simultaneous electron back 

donation of electron density into an antibonding 2n* resonance of the CO molecule. 

Although useful, this model assumes that adsorption takes place solely in on-top 

adsorption sites. This is not a great problem however, due to the high mobility of 

adsorbed CO species and the established experimental fact that CO tends to 

preferentially adsorb in on-top sites at low coverages. A problem with this however 

was that theoretical calculations produced using density functional theory consistently 

predicted the adsorption of CO in the three-fold hollow site50.
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Despite numerous density functional theory calculations predicting a bonding 

preference for the threefold hollow site experimental evidence has consistently 

pointed towards on-top adsorption at low coverages. This could be explained by the 

inclusion of relativistic effects51 but further work needs to be done on this topic as 

calculated binding energies display marked differences from experimental evidence31.

An important part of forming a model for CO and NO oxidation on Pt(l 11) is 

the understanding of the adsorption of O2 on the Pt (111) crystal surface and the 

growth and behaviour of the oxygen phases formed. This is made more complex by 

the fact that, at the pressures and temperatures employed in industrial applications, 

oxygen can exist in a variety of states between chemisorption and bulk oxide64. 

Differences in the state of the oxygen at the surface can have a large effect on the 

kinetics of the reaction under investigation. For example, the transition of oxygen 

between differently adsorbed surface states has been shown to induce oscillations in 

the rate of CO2 production in CO oxidation on platinum52,53.

The mechanism of O2 adsorption on Pt( 111) has undergone extensive 

investigation. At low temperatures (< 100 K) O2 adsorbs into a molecular adsorption 

state via superoxy or peroxy states32,54. The adsorbed O2 begins to desorb and 

dissociate at slightly high temperature (~ 150 K) to generate a coverage of adsorbed 

atomic oxygen (a single chemisorbed state) of 0.25 ML (where 1 ML is equal to the 

platinum atom surface density, 1.51 x 1015 atoms cm'2) ordered into p(2 x 2) domains. 

The atomic oxygen is adsorbed at the fee hollow sites of the platinum81 at coverages 

of up to 0.25 ML. Oxygen of coverages of greater than this have been hypothesised 

to be due to adsorption in the hep hollow adsorption sites55. Temperature programmed 

desorption48 and theoretical simulation56 experiments indicate that repulsive 

interactions exist between the adsorbed oxygen adatoms and that hep hollow site 

adsorbed oxygen atoms desorb at lower temperatures than those adsorbed in fee 

hollow sites due to the differences in relative bond strengths55.

There is however little agreement on the total saturation coverage and the 

magnitude of the heat of adsorption for O2 on P t( lll)41. The majority of research 

groups agree that oxygen (from O2) saturates to a maximum coverage of 0.25 ML on 

Pt(l 1 1)57,58; however other groups have reported larger saturation coverages (obtained

70



by using aggressive molecular oxidants)59,79. This discrepancy has been explained as 

being due to the low initial sticking coefficient of O2 for Pt(l 11) (which decreases 

further with increasing oxygen surface coverage) leading to surface loading 

procedures with molecular oxygen being curtailed before saturation is achieved41. 

Oxygen has been shown to adsorb much more readily on more open platinum 

surfaces60, however it was found that the oxygen saturation coverage could be 

doubled using a beam of electrons on an O2 covered surface61 and coverages of 

atomic oxygen as high as 2.4 ML could be produced on P t( l l l )  when using 

aggressive molecular oxidants such as NO262 or ozone,63 and 2.9 ML using a beam of 

atomic oxygen64. Work performed by Segner et al.65 has shown that a coverage of 

atomic oxygen of 0.75 ML can be obtained by the dissociative adsorption of NO2 

followed by heating the surface to 450 K to desorb adsorbed NO. In addition to this, 

Derry and Ross utilised a combination of relatively high partial pressures of O2 (~1 x 

10‘3 Pa) and elevated surface temperatures to produce 0.125-0.75 ML surface oxygen 

coverage66. Temperature programmed desorption spectra of the adsorbed oxygen 

layer indicates that the strength of the Pt-0 bond decreases substantially with 

increasing oxygen surface coverage65. However it was shown by Parker at al.61 that 

the oxygen atoms remain chemically similar and therefore that the decrease in 

activation energy for the desorption with increasing oxygen surface coverage was 

likely to be due to repulsive interactions between the adsorbed atoms, which become 

more significant with closer packing. In addition, there appears to be no significant 

penetration of oxygen atoms into the bulk of the crystal. Using temperature 

programmed desorption, Auger electron spectroscopy65 and x-ray photoelectron 

spectroscopy68 it has been shown that, for 0(a> coverages greater than 1 ML, platinum 

oxide particles begin to form. The formation of platinum oxide particles is 

accompanied by a disruption in the order of the surface64. However, formation of 

platinum-oxide is contentious as the oxide tends to be associated with silicon or 

calcium impurities in the crystal surfaces68,69,70. More recently it has been proposed 

that there is a thermodynamically (not kinetically)-determined transition between a 

chemisorbed phase and an oxide film that occurs at a critical oxygen surface 

coverage, Gc^.71 The heat of formation of platinum oxide is less than the heat of 

formation of the chemisorbed surface phase. However, as the oxygen surface 

concentration increases the repulsive interactions between the adsorbed oxygen atoms 

also increase, which has the effect of reducing the differential heat of adsorption until
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it becomes more favourable to form an oxide film71. This has been supported by 

density functional theory calculations that have shown that adsorption of oxygen via 

chemisorption onto the surface is initially more favourable than incorporation into the 

surface region. This is attributed to the energetic cost of distorting the surface lattice 

and breaking strong metal-metal bonds. Again it was found that there was a critical O 

surface coverage at which, due to repulsion between the highly electronegative O 

adatoms, the occupation of sub-surface sites by adsorbing oxygen became more 

favourable than adsorption into the chemisorbed layer72,73.

The mechanism of oxygen adsorption is probably one of the most studied 

systems in surface science74. It has been found that at low temperatures (< 30 K) a 

single physisorbed molecular adsorption state exists75. At slightly higher temperature 

(~ 100 K) two separate chemisorbed species can be identified, peroxo-like and 

superoxo-like (O2 ’ and O2’ respectively) . Molecular beam experiments have 

confirmed the existence of a precursor adsorption state at low beam energies. The 

disappearance of this state with increasing beam energy is attributed to the ability of 

the beam to directly populate the chemisorbed adsorption states77. However it is 

worth noting that the sticking probability of O2 on Pt( 111) is significantly higher in 

this work than in others, possibly indicating inaccuracy in experimental procedures. 

Theoretical studies performed by Grop et al.74 suggest that adsorption into a 

molecular precursor state is an essential step for the dissociative chemisorption of O2 

on P t(lll) . The group also suggest that a cold P t( l l l )  surface is incapable of 

dissociating incoming O2 molecules (even if the incoming molecules have kinetic 

energies greater than the barrier to dissociation) due to the dissociative adsorption 

being a two-step process with the precursor state requiring thermal accommodation 

from the surface to dissociate.

Molecular oxygen adsorbs dissociatively to the P t( lll)  surface with a low 

initial sticking probability (0.06) at 300 K. The initial sticking probably decreases
40 »yo

with increasing temperature to as low as 0.025 at 600 K * . A similar value of 

sticking coefficient of 0.08-0.1 has been obtained by Bonzel and Ku, who also noted 

an exponential decrease in sticking probability with increasing oxygen coverage79. 

Sticking probabilities greater than this are likely due to the presence of defects or 

increased numbers of steps on the crystal surface80. Atomic oxygen has been shown

72



to desorb at around 700 K giving a value for the energy of desorption of 

approximately 460 kJ mol'1 48. For coverages below 0.5 ML oxygen is adsorbed 

predominantly into one adsorption state, which desorbs with second order kinetics. 

Increased oxygen coverage leads to a smooth lowering of the desorption peak. 

Theoretical molecular orbital studies have given the on-top, bridge and threefold sites 

binding energies of 400 kJ mol'1, 297 kJ mol'1 and 290 kJ mol'1 respectively42. From 

this it can clearly be seen that the on-top site is theoretically the most stable. However 

LEED structural analysis of the p(2 x 2)-0 system carried out by Materer et al. found 

that the fee hollow sites were the preferred binding site for atomic oxygen. The group 

also noted some oxygen-induced deformations in the first two surface layers of metal 

atoms81. Weaver found that oxygen initially adsorbs in a p(2 x 2) layer up to a 

coverage of 0.25 ML. Increasing the coverage of oxygen on the platinum surface 

beyond this coverage results in a loss in the long-range order of the surface and a 

higher-density phase is formed. For oxygen coverages of greater than 0.5 ML 

(created using aggressive molecular oxidants), two separate oxygen states are visible 

in temperature programmed desorption experiments. These have been assigned to 

oxygen present in disordered domains and a high-density ordered phase. Increasing 

the oxygen coverage further to 0.75 ML has been shown to favour the creation of Pt- 

O particles. These particles undergo decomposition at high temperatures, explosively 

releasing the stored oxygen as molecular species. The strength of the Pt-0 bond has 

also been shown to decrease with increasing O coverage64. Unlike Materer and 

group81, the data gathered by Weaver et al. indicated that oxygen preferentially 

adsorbed in the hep sites rather than fee adsorption sites64. Using XPS, CAICISS (co­

axial impact collision ion scattering spectroscopy) and LEED to examine the 

adsorption of atomic oxygen, Parkinson and co-workers confirmed the existence of 

two separate adsorbed oxygen species, a chemisorbed species and an oxidic oxygen 

state. They also found that the penetration of the oxidic species into the first two 

layers of the platinum surface is most likely occurs via an oxygen-platinum exchange 

mechanism68. It was found that, when heating to 500 °C, the oxidic layer decomposed 

and a p(2x2)-0 reconstruction was observed again, corroborating the work of Weaver 

et a/.64,68.

The oxidation of carbon monoxide by various transition metal surfaces has 

been studied extensively and are, without doubt, some of the better understood
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heterogeneous catalytic reactions. The mechanism of this reaction has attracted much 

attention due to the oxidation of carbon monoxide in catalytic converters41. In 

addition, CO oxidation has attracted much interest due to its similarity to CO 

oxidation at the electrodes during methanol oxidation in fuel cells82. It appears that 

the same general mechanism is responsible for the oxidation of CO on platinum as on 

other transition metals48,83.

It has been shown that whereas the initial sticking probability of CO on clean 

P t( l l l )  is 0.76 (at ~ 0 K) and displays the Kisliuk-typical shape, the initial sticking 

probability of CO on a Pt(l 11) surface pre-saturated with oxygen is 0.70 and declines 

monotonically with increasing CO coverage41. The mechanism for the reaction has 

been the focus of much study and has been established to be of Langmuir- 

Hinshelwood type, in which the reactants adsorb prior to reaction at the surface . 

Some of the earlier papers favoured an Eley-Rideal -type mechanism as opposed to, 

and as well as88, the Langmuir-Hinshelwood that has since be proven. In the Eley- 

Rideal mechanism the CO either reacts directly with chemisorbed oxygen or is 

weakly held in a transient precursor state prior to reaction. It follows that the deciding 

factor between which of these reaction schemes occurs is the strength of the CO-metal 

bond. Measurement of the surface residence time before reaction by molecular 

beam85 and isotopic tracer86 studies supported a Langmuir-Hinshelwood mechanism 

regardless of temperature. The basic steps for the reaction are hence

C 0 (g) + a <-> CO(ads)

(g ) + 2 a  + *  2 0 (a d s )

C O  (ads) + O (ads) —> C02(g) + 2a

Scheme 3.2 - The Langmuir-Hinshelwood mechanism for CO oxidation.

where a = free surface adsorption site

From the above it can clearly be seen that CO chemisorbs intact at the surface 

but the chemisorption of O2 is preceded by its dissociation into atoms. When atomic 

oxygen and CO are adsorbed in neighbouring surface sites there is only a small 

activation energy barrier to reaction and hence high reaction probability (almost 1 for
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temperatures below 540 K48). As CO2 has a low surface binding energy, once it is 

formed desorption is instantaneous. However, this is an over-simplification as various 

surface processes such as diffusion, adsorbate-adsorbate interactions, adsorption and 

desorption may participate in and hence affect the reaction87.

It can be inferred from Scheme 3.2, that the rate of reaction is governed, to an 

extent, by the surface concentrations of the adsorbed reactants. Simulations and 

catalytic studies have shown that there are in fact three distinct regions with different 

rates of reaction, which can be induced by changing the surface concentrations of CO 

and O. At a slight increase in CO concentration past optimum conditions an 

instability in the reaction rate is introduced. Further increase in the CO concentration 

leads to complete or partial surface poisoning by adsorbed CO. Increasing the CO 

concentration past this region leads to the formation and stabilisation of densely 

packed CO islands with the catalysed oxidation reaction only able to take place along 

the boundaries of these islands. The reaction can however tolerate very much higher 

gas phase concentrations of oxygen than CO. Under these conditions the surface 

coverage of O becomes greater than the coverage of CO but the surface remains 

highly reactive and a high reaction rate is observed. Unlike the CO islands that form 

with an excess of CO, the oxygen islands formed are more open in structure and CO 

adsorption and the reaction can proceed unchecked87. It follows that the overall rate 

of reaction under steady-state conditions is determined by the adsorption of CO or O2, 

depending upon experimental conditions. The actual reaction step occurring at the 

crystal surface has been found to occur too rapidly to have an effect on the rate of 

product formation88. Due to the low sticking coefficient of O2 on Pt( 111) under 

ultrahigh vacuum conditions a surface pre-covering of atomic oxygen is optimal for 

ensuring an appreciable reaction rate. A coverage of O of 0.25 ML (where 1 ML = 

the platinum atom surface density, 1.51 x 1015 atom cm'2) has been shown to facilitate 

the oxidation of coadsorbed CO at 295 K, producing CO2, which immediately 

desorbs. Oxygen coverages of greater than this have been shown to reduce the rate of 

reaction by preventing the adsorption of CO89, with oxygen coverages of 1.5 ML 

(cooled to 100 K) producing no appreciable reaction rate. It is worth noting that the 

efficiency of the poisoning by oxygen species is much less than poisoning by CO 

however, as a platinum surface with a large coverage of Oa (0.5 ML at 300 K) exhibits 

only a mild drop in the adsorption coefficient of CO when compared to a clean
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surface41. Theoretical studies have shown that the rate of CO oxidation is mainly 

determined by the relative rates of oxygen migration and CO adsorption, with high 

rates of oxygen migration serving to reduce the rate of reaction89.

In addition to the rate of reaction, the coverage of CO and O has been shown 

to effect the energetics with the oxidation of CO requiring an activation energy of 96 

kJ mol'1 when both of the reactants are in low concentrations, but at higher 

concentrations of oxygen on the surface the activation energy is only 47 kJ m ol1. 

This has been attributed to repulsive interactions between adsorbates. Under these 

reaction conditions there is a weakly held CO precursor state above the oxygen 

adlayer. This state facilitates CO chemisorption and so is important in the reaction 

kinetics. The reduction in the lifetime of the precursor state with increasing 

temperature is the reason for the reduction in the reaction rate with increasing
83temperature .

It has been claimed that the reaction mechanism is basically independent of 

the surface geometry and that all platinum surfaces exhibit similar reactive regions90. 

However, more recent studies have shown that the kinetics of the reaction are such 

that rearrangements in the positions of both adsorbed CO and O are possible. Zaera 

and co-workers found that a higher reaction rate for the oxidation was attainable when 

the adsorbed oxygen atoms were present as islands rather than distributed evenly 

across the surface. They attribute this to a lowered CO-binding strength in the 

vicinity of the islands contributing to lowered reaction activation energy91,92. A 

problem with this explanation is that it is incompatible with more recent DFT 

calculations that predict a similar binding energy for CO bound to clean Pt( 111) and 

in the middle of an O island93,94. An alternative explanation may be that CO 

molecules will oxidise more readily at the periphery of O islands. It has been shown 

that when adsorbing CO onto an oxygen-covered platinum (111) surface at low 

temperature two distinct phases form and CO oxidation takes place only at the 

boundary of these phases95,96. This is likely due to the two phases being mutually 

incompatible at the phase divide, resulting in a high initial energy which facilitates 

crossing the activation energy barrier95. At higher temperature (close to CO 

desorption temperature) however the reaction kinetics follow a different pathway. 

The CO phase becomes less stable as a separate entity and the oxidation therefore
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occurs across the surface in a more uniform fashion. Despite this the activation 

energy is still heavily influenced by the coverage of adsorbed atomic oxygen91 92,97. 

Using scanning tunnelling microscopy Rhee et al. have shown that prior to oxidation, 

an adsorbed (2 x 2)-3CO surface structure changes into a (V19 x Vl9)-13CO surface 

structure and that there is a migration from three-fold adsorption sites to bridge sites. 

During this process the absolute coverage of CO also decreases from 0.75 to 0.68 ML. 

However, the authors note that the reason for this change is not fully understood82.

In addition, it has been shown that the physical states of the adsorbates, the 

coverage to which they saturate and the sticking probabilities of the individual species 

as well as interactions between the adsorbate and the surface and the adsorbates 

themselves may have a large effect on the reactivity of the transition metal catalysed 

CO oxidation reaction.

3.3 Results and Discussion

3.3.1 Auger spectrum and LEED of clean P t( l ll)
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Figure 3.1 -  LEED (67 eV, room temperature) and AES of clean P t( ll l) .

Figure 3.1 shows the Auger spectrum obtained from the Pt ( l l l )  crystal after 

repeated cycles of sputtering and annealing. The MNN transition at 70 eV is clearly 

seen with no visible peaks due to carbonaceous contamination. The LEED pattern 

shows a ( l x l )  pattern with the unit cell marked. There are no additional spots visible. 

Taken together, these spectra indicate that a clean P t ( l l l )  surface has been prepared
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and is free o f any contaminants that might complicate the analysis of surface 

reactions.

3.3.2 CO adsorption on P t( l l l)

Sticking probability measurements o f CO at the P t ( l l l )  surface are given in 

Figure 3.2. A variation is observed in sticking probability as a function of coverage 

for CO beamed on to the Pt( 111) surface at different surface temperatures. The initial 

sticking probability is 0.49 (+/- 0.02) at 50 °C that (using LEED data from the 

literature) equates to a 0.5 ML surface CO saturation.
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Figure 3.2 - The variation of sticking probability with coverage of molecular beams of CO (50 

mbar molecular beam source pressure) on the P t ( l l l )  crystal surface held at different surface

temperatures.

Between 0-150 °C, So varies only slightly with an average value of 0.48 + 

0.01. Beyond 150 °C however So falls off rapidly with increasing surface temperature
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and no sticking is observed above 200 °C. Between 0 - 5 0  °C, CO saturates the 

surface to the highest coverage, 0.5 ML. This maximum saturation coverage 

decreases with increasing surface temperature after 50 °C, implying that adsorption 

processes are in competition with desorption processes at 100 °C and above, with 

there being no observable CO adsorbed at 225 °C. However, the initial sticking 

probability only starts to decrease after 150 °C, indicating that surface diffusion is 

likely to be occurring. The shape of the sticking curves are similar to those reported 

in the literature, which in general are reported to have an initial level region up until 

0.15-0.4 ML followed by a sharp decrease to saturation at 0.5 ML. There is however, 

a discrepancy between the reported sticking probabilities in the literature and those in 

Figure 3.2 (So = 0.5-0.9 literature values compared to 0.45-0.49 above). The large 

variance in the So in the literature is probably due to defects in the crystal surface 

used. The shape of the sticking curves (the presence of an initial plateau which 

decreases eventually with increasing coverage) indicates that a (highly mobile) CO 

precursor state is an important part of the CO adsorption process. Kisluik98 has 

proposed a kinetic model for such precursor states:

5 = --------- ------------

Equation 3.1

where S = Sticking probability

So = Initial sticking probability 

Kp = Precursor state parameter

0 = Fractional coverage normalised with respect to saturation 

coverage

A key feature of this model is the precursor state parameter, Kp. If this 

quantity is much less than 1 it implies that precursor kinetics are an important part of 

the adsorption process in the system under study. A sticking profile with Kp = 1 is 

displaying simple straightforward Langmurian kinetics. For the sticking curve 

measured at 0 °C a Kp value of 0.1 best fits the recorded data (below), indicating that
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precursor kinetics and surface mobility make a large contribution to the adsorption of 

CO on the Pt(l 11) surface.
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Figure 3.3 -  The CO sticking curve modelled with different Kisluik constants to determine which 
constant fits the data displayed in Figure 3.2 the most closely.
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Figure 3.4 -  Temperature programmed desorption experiments of CO adsorbed on P t ( l l l ) .  A 
temperature ramp of 1 K/s was used in each case.
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The temperature programmed desorption shown in Figure 3.4 shows that CO 

adsorbs reversibly and desorbs with a single low temperature desorption peak. The 

size and area of the desorption peak grows with increasing coverage and the maxima 

of successive peaks shifts to slightly lower temperatures with increasing CO surface 

exposures. This shift of desorption peak agrees with the work of Ertl39, Yeo41 and 

Ray42 who all show that the heat of adsorption decreases with increasing surface 

coverage. A good confirmation of this shift is given in Figure 3.5. In this figure 13CO 

is beamed onto the crystal surface to saturation. Before and during the course of the 

experiment, 12CO is allowed to adsorb on the rest of the crystal from background 

gases in the chamber (note that the background peak is greater than twice the height of 

the 13CO peak due to the much greater area of the rest of the crystal surface when 

compared to the beam spot). Background CO has not had sufficient time to saturate 

the crystal surface and so the desorption peak due to background adsorption appears at 

a higher temperature than the 13CO desorption peak. There is however a significant 

coverage of 12CO adsorbed onto the crystal surface from the background, 

approximately 0.09 ML (where 1 ML equals 1 adsorbate atom per surface atom), or 

1/5* saturation coverage (calculated using the relative areas of the desorption peaks in 

Figure 3.5 and the areas over which 12CO and 13CO adsorption were occurring and 

assuming a saturation coverage of 0.5 ML). In addition, the shape of the desorption 

peak appears to be less symmetric and more ‘first-order’-like in nature. Ray and 

Anderson interpret this to be due to a shift from on-top to high-coordinate adsorption 

sites. There is no evidence in Figure 3.4 of multiple adsorption sites indicating that 

either all adsorption sites are not saturated or that sites are readily interchangeable. A 

third alternative might be that the temperatures of desorption of the different 

adsorption sites are similar and that pumping speed of the ultrahigh vacuum system 

was insufficient to enable different states to be resolved. This lack of distinction in 

the temperature programmed desorption between adsorption sites is echoed in the 

literature, where the general consensus is that adsorbed CO is fairly surface 

mobile29,44,45,46,47.
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Figure 3.5 -  A molecular beam of 13CO (50 mbar molecular beam source pressure) beamed onto 
the P t ( l l l )  surface to saturation compared to 12CO adsorbing from the background during the 
course of the experiment and the temperature programmed desorption following the molecular 

beam experiment (left). The Figure on the right is an expansion of the m/z = 12 and m/z = 13 
desorption peaks showing the shift in peak maximum.

3.3.3 NO adsorption on P t( l l l)

Figure 3.6 contains molecular beam sticking measurements for the NO/Pt(l 11) 

system in which the sticking probability is shown as a function of coverage at 

different surface temperatures. The initial sticking coefficient is 0.73 at 50 °C (+/- 

0.2), which gives a 0.75 ML surface saturation coverage (using data from the 

literature).
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Figure 3.6 -  Sticking probability measurements for molecular beams of NO (50 mbar molecular 

beam source pressure) on P t ( l l l )  with increasing surface temperature.

As with CO cooling the crystal has little effect on So, with NO adsorbing with 

a large initial sticking probability (5o = 0.71 + 0.02) up to 50 °C. At 100 °C, So starts 

to fall and NO has stopped adsorbing by 200 °C Pt( 111) surface temperature. The 

maximum saturation coverage attained is 0.75 ML at -5 0  °C and 0 °C . That 

maximum saturation o f the surface occurs at these temperatures and not lower is 

likely due to the extra time it takes to reach temperatures below this, as there is 

increased adsorption of background gases from the chamber that compete with the 

beam of NO for surface adsorption sites. The presence o f the initial plateau indicates 

that significant precursor kinetics are occurring in the adsorption process. As the 

temperature is increased it appears to be the lifetime of the precursor state that is 

decreasing not the adsorption probability into the precursor state, with the plateau 

region that has constant sticking probability (characteristic of precursor mediated 

adsorption) reducing in size, not the initial sticking probability. Using the Kisluik 

equation described in Equation 3.1 a Kp value of 0.175 can be obtained for the 

sticking profile at 0 °C, indicating a substantial precursor effect in operation.
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Figure 3.7 - The NO sticking curve modelled with different Kisluik constants to determine which 
constant fits the data displayed in Figure 3.6 the most closely.
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Figure 3.8 -  Temperature programmed desorption of NO from P t( l l l ) .  A temperature ramp of 1 
K/s was used. Differing NO surface exposures produced little effect on the size and maximum of 

the desorption peak and have been omitted for clarity.
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Figure 3.8 shows the temperature of desorption of an exposure of 0.5 L of NO 

from Pt(l 11). The size and position of the desorption peak did not change with 

increased NO dose. There is no evidence of any products from NO decomposition in 

direct contradiction to certain early studies2. This discrepancy is likely due to the 

presence of large numbers of defects in the crystal used in the previous study. There 

is a single desorption peak with a maximum at 82 °C. As there is only a single 

desorption peak there is no evidence of any differences in binding site occupancy. 

Matsumoto has observed three distinct NO adsorption environments13,14 but the hep 

hollow site (a) desorbs at 190 K and the on-top adsorption sites at 275 K (Pi), leaving 

the fee hollow site (P2) the only adsorption site that desorbs at above room 

temperature (desorbing at 320 K)15,23 (the a  states shown occurs at temperatures 

below the scope of the temperature programmed desorption experiment shown in 

Figure 3.8). The quoted temperature is slightly lower than the maximum of the 

desorption peak in Figure 3.8. Three separate binding site environments have also 

been observed at different coverages and temperatures by Gorte at al.20 at 200, 340 

and 400 K, although the higher temperature peaks observed do not appear in the same 

spectra and appear to be the result of a coverage-dependent peak shift.

3.3.4 Molecular beams of NO2 on P t( ll l)  held at increasing surface temperature

Figure 3.9 shows a series of molecular beam experiments in which NO2 (50 

mbar molecular beam source pressure) was beamed onto clean Pt( 111) at different 

surface temperatures. The major mass: charge signal visible when beaming NO2 and 

the HIDEN quadrupole with MASSOFT used in the experiments was m/z = 30, not 

m/z = 46. As m/z = 30 is a cracking fragment of NO2 and not the molecular ion the 

sensitivity when viewing it is less. The experiments below show that NO2 arrives 

intact on the surface of the crystal but is broken down by the Pt(l 11) surface to NO 

and O, with the NO desorbing from the surface (or transiently adsorbing before being 

displaced by adsorbing atomic oxygen) and the 0(a> adsorbing on the Pt( 111).

When NO2 was beamed onto the P t ( l l l )  crystal surface at 50 °C an initial 

sticking was observed. However the m/z = 30 signal quickly rose to a value greater 

than the total reflection observed when the chamber flag was closed. This increased 

m/z = 30 signal was not maintained and fell back to the background level with
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continued beaming. A possible explanation for the observed behaviour might be that 

the NO2 is broken down to NO and O by the platinum surface. The NO thus produced 

desorbed immediately (possibly displaced by adsorbing atomic oxygen). As 

molecular NO also has a mass: charge ratio of 30, NO desorbing from the surface in 

addition to the reflected NO2 from the beam gives a greater m/z = 30 response to the 

mass spectrometer than the initial full reflection signal (before the beam flag is 

opened). The increased m/z = 30 signal has the effect of masking observable NO2 

sticking. As NO2 reduction continues the surface becomes saturated with adsorbed 

atomic oxygen from the decomposition, tying up further NO2 adsorption sites and in 

effect poisoning the surface with regards to NO2 decomposition. At 50 °C there is 

also a substantial m/z = 44 desorption peak that occurs on adsorption of NO2. Given 

the decomposition of NO2 by the surface it seems likely that this desorption peak is 

due to the formation and desorption of CO2, created by the reaction of 0(a) from the 

reduction of NO2, and CO adsorbed from the background gases within the 

chamber. The fact that this peak is greatly reduced in size when beaming at 100 °C 

and 150 °C and absent for surface temperatures higher than 150 °C would seem to 

agree with this hypothesis as Figure 3.4 shows that CO desorbs from Pt(l 11) at these 

temperatures.

This behaviour continues up until 300 °C where after a m/z = 32 desorption 

signal appears with a slight time delay after the beam of NO2 first impacts the crystal. 

The magnitude of the m/z = 32 desorption signal relative to the m/z = 30 sticking 

trace grows with increasing temperature. At temperatures of 350 °C or greater the 

‘bump’ of m/z = 30 that follows the immediate adsorption of NO2 onto the crystal 

surface is absent; instead a continuous raised plateau is observed, consistent with 

steady-state NO2 breakdown and desorption of decomposition products.
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Figure 3.9 -  Molecular beams of N 0 2 (50 mbar molecular beam source pressure) beamed onto 

the P t ( l l l )  surface held at increasing surface temperatures.
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Figure 3.9 - Molecular beam experiments of beams of N 0 2 (50 mbar molecular beam source 

pressure) beamed onto the P t ( l l l )  surface held at increasing surface temperatures.

Figure 3.10 shows the temperature programmed desorption o f the P t ( l l l )  

crystal surface following each o f the molecular beam experiments displayed in Figure 

3.9. The molecular beam experiments were followed by a temperature ramp o f the 

crystal surface to enable desorption and identification of any residual surface 

products. When NO2 was beamed at 50, 100 and 150 °C a m/z = 28 desorption peak 

can be observed between 150-170 °C. The size o f this desorption peak decreases with 

increasing surface temperature. The origin o f this peak is likely from the adsorption 

o f background CO onto the crystal surface. At 50 °C there is also a large m/z = 44 

peak, again also likely due to background CO adsorbing but this time reacting with 

adsorbed atomic oxygen from NO2 breakdown and forming CO2 .
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Figure 3 .1 0 -  Temperature programmed desorption of the P t ( l l l )  surface immediately following 

the molecular beam experiments displayed in Figure 3.9. A temperature ramp of 1 K/s was used 

during each experiment.

The temperature programmed desorptions from the experiments in which NO 2 

was beamed onto the P t ( l l l )  surface held at 50, 100, 150 and 200 °C all display a 

double m/z = 32 oxygen desorption feature, with a main high temperature desorption
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peak at 340-350 °C that has a lower temperature shoulder at 250-260 °C. This lower 

temperature desorption state is likely responsible for the constant oxygen evolution 

observed when beaming NO2 at temperatures of 250 °C and above. The higher 

temperature O2 desorption peak remains as the crystal temperature during the 

molecular beam experiment is increased further, up to 350 °C.
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Figure 3.11 -  A molecular beam of N 0 2 on P t ( l l l )  followed by a molecular beam of CO (as a 
probe of reaction products adsorbed on the surface) at room temperature. Following this a 
temperature programmed desorption was performed on the surface to aid identification of 
residual surface species (time > 950 s). Note that CO trace is reduced by a factor of four for 

display purposes. All gas pressures used in the molecular beam source were 50 mbar. A 
temperature ramp of 1 K/s was used during the temperature programmed desorption portion of

the experiment.

Figure 3.11 shows a molecular beam experiment in which a molecular beam 

of NO 2 (beam flag opened at 100 s) is beamed onto the P t ( l l l )  surface at room 

temperature, followed by a molecular beam o f CO (beam flag opened at 450 s) in an 

attempt to ascertain the surface processes occurring. As before there is a peak in the 

m/z = 30 trace encountered on opening the chamber flag before the m/z = 30 returns 

to its original value (allowing for an increase in the baseline).

Beaming CO onto the surface results in an immediate m/z = 44 desorption 

peak in addition to the extensive CO sticking observed. This is good evidence that
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NOi has been broken down by the P t ( l l l )  surface, leaving adsorbed atomic oxygen. 

There appear to be two overlapping m/z = 44 desorption peaks, possibly due to 

oxygen being adsorbed in two separate non-equivalent environments. The 

temperature programmed desorption part o f the experiment (above 950 s) shows only 

a single m/z = 28 desorption peak at 160 °C and the oxygen desorption peaks present 

in Figure 3.10 are absent.
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Figure 3.12 -  A molecular beam of N 0 2 beamed onto the P t ( l l l )  surface held at 375 °C, followed 
by a molecular beam of CO. Following this a temperature programmed desorption was 

performed on the surface to aid identification o f residual surface species (time > 1310 s)Note that 
the CO trace is reduced by a factor of four for display purposes. All molecular beams used a 
pressure of 50 mbar in the molecular beam source. A temperature ramp of 1 K/s was used 

during the temperature programmed desorption portion of the experiment.

The data shown in Figure 3.12 is from a similar experiment to the one 

presented in Figure 3.11 with the exception that the reactants were beamed onto a 

P t ( l l l )  surface that was held at 375 °C. As with Figure 3.11 the N 0 2 beaming is 

comparable to that seen in Figure 3.9, with continuous m/z = 32 and 30 desorption 

signals occurring. When beaming CO however, the size of the m/z = 44 desorption 

peak is much less than that seen in Figure 3.11 and the reduction in reflected CO 

reaching the mass spectrometer that occurs when the beam of CO hits the crystal 

surface is much less. Unlike in the temperature programmed desorption part o f Figure
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3.11 there appear to be no significant desorption peaks present in the temperature 

programmed desorption in Figure 3.12 (time > 1310 s).

Taken together these experiments provide conclusive evidence that NO2 is 

readily broken down by the Pt( 111) surface with the desorption of NO and the 

adsorption of atomic oxygen onto the crystal face. There are no significant NO 

desorption peaks present in the temperature programmed desorption part of the 

experiment so it seems likely that adsorbed NO is displaced by atomic oxygen 

species. Adsorption of the atomic oxygen appears to block adsorption sites for NO2, 

preventing further adsorption and reaction, as when NO2 is beamed at elevated 

temperatures (250 °C and above) continuous sticking of NO2 (and desorption of 

oxygen) is observed.

These results agree with those in the literature, in which the breakdown of 

NO2 by the Pt(l 11) surface has been well documented. Dosing NO2 is a commonly 

used technique to prepare layers of chemisorbed atomic oxygen on Pt(l 11) for use in 

later experiments. NO2 has been shown to adsorb molecularly at low temperature (~ 

100 K) but is decomposed at higher (but still sub-ambient) temperatures30.

3.3.5 Mixed molecular beams of NO2 and O2 on P t( ll l)

Figure 3.13 shows the effect of beaming a molecular beam of NO2 and O2 

(created by mixing a 1:1 ratio of NO and O2, 50 mbar total molecular beam source 

pressure) onto the Pt(l 11) crystal held at increasing surface temperatures. At 50 °C, 

when the chamber flag is opened and the beam hits the crystal, there is a rise in the 

amount of m/z = 30 reaching the detector. After a few seconds this increased m/z = 

30 signal has returned to the initial total reflection level. This also occurs for mixed 

beams at 100 and 200 °C. There is no visible change in the O2 mass spectrometer 

signal when beaming at these temperatures, implying that the surface reaction is not 

between O2 and NO.

However for temperatures of 300 °C and above constant m/z = 32 and 30 

desorption features are observed when the beam hits the crystal surface. At 300 °C 

there is an initial high point that gradually returns to an increased constant sticking
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level; at 400 °C and above this is absent and the magnitude of the constant desorption 

feature is greater.
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Figure 3.14 shows temperature programmed desorption experiments following 

the molecular beam experiments shown in Figure 3.13, as an aid to identifying 

residual surface species. In the spectra taken at 50 °C the only significant desorption 

is a m/z = 28 desorption peak at 120 °C, likely due to the adsorption of CO from the 

background gases present in the chamber. However, for temperatures of 100-300 °C a 

m/z = 32 desorption peak at 345 °C is evident, with no other significant desorption 

features occurring. This would seem to indicate either that O2 has been adsorbed from 

the mixed molecular beam (there is no obvious sticking), or that NO2 (created from a 

gas phase reaction between NO and O2 in the beamline) has been broken down by the 

P t ( l l l )  surface leaving 0(a> behind. The magnitude of the m/z = 32 desorption is 

much reduced at 300 °C; this temperature is the temperature at which m/z = 32 

desorption appears whilst beaming in Figure 3.13. After the molecular beam 

experiment at 400 °C there is no obvious m/z = 32 desorption feature, implying a 

single adsorbed state.

The increased m/z = 30 and m/z = 32 signals observed upon beaming would 

seem to indicate that the reactants (nitric oxide and oxygen) are being created not used 

up. This seems to be counter-intuitive unless the reaction being observed is actually 

the reverse of the expected reaction (NO2 decomposition as opposed to NO 

oxidation). Comparison with molecular beams of NO2 onto P t ( l l l )  (Figure 3.9) 

yields a striking similarity in observed data. It therefore seems likely that what is 

being observed is in fact a mixed beam of NO2 and O2 created by an un-catalysed gas 

phase reaction in the gasline. This hypothesis is further strengthened by observation 

of a yellow-brown gas in the gasline; both NO and O2 are colourless whereas NO2 is 

brown in colour.

To confirm this observation the crystal surface was tested for atomic oxygen 

remaining after beaming in a similar manner to Figure 3.11 and Figure 3.12.



-

1 00E-009 

9 .00 E-010 

8 DDE-010 

£  7.00 E-010

m 8.00E-010Q
<X>
OT 5.00 E-010 
0)
£  4.00 E-010
2

3.00 E-010

2.00 E-010

1.00 E-010

000 1400

O.0OE+OOO

Tim e  /  s

Figure 3.15 -  A mixed molecular beam of N 0 2 and 0 2 (created using a 1:1 NO: 0 2 gas mixture 
ratio, 50 mbar total beam source pressure) beamed on to P t ( l l l )  surface held between 90-100 °C 

followed by a beam of CO (50 mbar molecular beam source pressure) as an aid to identify any 
created surface species. The molecular beam experiment was then followed by a temperature 

ramp of 1 K/s to identify residual surface species (time > 1040 s). Note that m/z = 28 signal has 
been reduced by a factor of three for display purposes.
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Figure 3.16 - A mixed molecular beam of N 0 2 and 0 2 (created using a 1:1 NO: 0 2 gas mixture 
ratio, 50 mbar total molecular beam source pressure) beamed on to a P t ( l l l )  surface held at 325 
°C followed by a molecular beam o f CO (50 mbar molecular beam source pressure) in a similar 

manner to Figure 3.15, followed by a temperature programmed desorption (time > 850 s) to
identify any residual surface species.
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In a similar manner to the examples shown previously in Figure 3.11 and 

Figure 3.12, it can clearly be seen that the mixed beam of NO and O2 has left reactive 

oxygen on the surface as is shown by the m/z = 44 desorption peak when beaming 

CO. The only appreciable difference between beaming at 100 °C and 325 °C is the 

absence of a CO desorption peak in the temperature programmed desorption part of 

the experiment performed at 325 °C (after 850 s). This is to be expected as the 

temperature is substantially above the temperature of desorption o f CO from Pt(l 11).

To verify that the above series o f reactions was the result o f the separate 

constituents of the mixed molecular beam reacting in the gas line and not at the crystal 

surface, NO was beamed onto the crystal surface in a constant background pressure of 

O2 . The result is shown in Figure 3.17 below.
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Figure 3.17 -  A molecular beam of NO (50 mbar molecular beam source pressure) beamed on to 
P t ( l l l )  with a background pressure of 0 2 (2.5 x 10 8 mbar chamber pressure, measured on the 

ionisation gauge in the chamber). Note that a source pressure of 50 mbar gives an effective 
pressure of 2.5 x 10* mbar at the beam spot on the crystal surface. The large rise in m/z = 28 

when background dosing 0 2 is a result of the desorption of CO from heated filaments within the 
chamber. Note that the pressure of CO present is unlikely to cause significant experimental 

contamination due to the low pressure of CO when compared to the O2 pressure and the effective 
pressure from the molecular beam at the crystal surface.

As can be seen there is no ‘bump’ in the m/z = 30 signal upon beaming NO 

and the little C 0 2 that is produced on beaming CO is likely due to adsorption o f O2
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from the background rather than adsorbed atomic oxygen from the breakdown of 

N 02.

The above experiments show conclusively that NO and 0 2 are reacting in the 

beamline not on the crystal surface to produce N 02 and that the N 02 was broken 

down by the P t ( l l l )  surface to produce NO, which desorbed (possibly following 

displacement of adsorbed NO by atomic oxygen created by decomposition of N 02) 

and atomic oxygen, which was left behind on the surface and only desorbed at 

elevated temperatures during the temperature programmed desorption following the 

molecular beam experiment. The fact that NO was not oxidised under ultrahigh 

vacuum conditions by the Pt(l 11) surface seems to contradict the generally accepted 

model for the NOx storage and reduction catalyst in which NO is oxidised over the 

platinum centre before being stored as nitrate by the barium oxide. The possibility 

that the low sticking coefficient of 0 2 on P t ( l l l )  prevented sufficient oxygen from 

being present on the surface for visible oxidation products has been discounted due to 

there being no visible reaction on a surface pre-covered with atomic oxygen (from 

decomposition of N 02). This non-NO oxidation is consistent with a theoretical study 

by Schneider and co workers who noted that NO oxidation is endothermic with low 

coverages of oxygen adsorbed on Pt(l 11) and thus is unlikely to be catalysed by the 

surface. They note however, that due to highly repulsive 0 -0  and O-NO interactions, 

that pre-covering the surface with adsorbed atomic oxygen can influence the oxidation 

reaction in the forward reaction24.

To test this hypothesis, N 0 2 was dosed onto the crystal surface via the 

molecular beam in order to pre-cover the crystal surface with adsorbed atomic oxygen 

as demonstrated in Figure 3.11, before the surface was heated to 160 °C (above the 

desorption temperature of NO) to remove adsorbed NO. The surface was then 

allowed to cool before NO (50 mbar molecular beam source pressure) was beamed 

onto the prepared surface.
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Figure 3.18 -  A molecular beam o f NO (50 mbar molecular beam source pressure) on the P t ( l l l )  
surface pre-covered with 0 (a) from the dissociative adsorption of N 0 2. Note that the flash in 

temperature at 600 s is to remove any NO that has been adsorbed from N 0 2 breakdown.

From Figure 3.18 it can be seen that there is little or no NO removed from the 

crystal surface when the crystal is heated to 150 °C, making it likely that adsorbed NO 

from the breakdown o f NO2 has already been displaced by atomic oxygen. 

Unsurprisingly the beam of NO displays little adsorption and no reaction products are 

obvious. The temperature o f the sample was then ramped at a rate o f 1 K/s to 

examine the nature o f any adsorbed surface species.
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Figure 3.19 -  Temperature programmed desorption of P t ( l l l )  surface immediately following the 
molecular beam experiment shown in Figure 3.18, as an aid in identifying any residual surface 

species. A temperature ramp o f 1 K/s was used in the experiment.

Figure 3.19 is identical to the temperature programmed desorption shown in 

Figure 3.10. There is a small NO desorption peak at 95 °C, characteristic of 

molecularly adsorbed NO desorbing from P t ( l l l ) ,  a CO desorption peak at 155-160 

°C characteristic o f molecularly adsorbed CO desorbing from Pt(l 11) and an oxygen 

desorption peak at 338 °C, which is due to the associative desorption of atomic 

oxygen from the Pt(l 11) surface. There is no evidence o f the NO oxidation predicted 

by Schneider and group to occur on P t ( l l l )  surfaces with a high 0 (a) pre-coverage 

(0.25 ML)24. This lack o f reaction o f NO and pre-adsorbed O has also been shown by 

Zhu and co-workers. The only effect on the adsorption o f NO that they found was the 

replacement of fee adsorbed NO by 0(a> due to electronic back-donation into the 27t* 

antibonding orbital o f hep NO, and a consequent large reduction in sticking 

coefficient".

The above experiments have established that NO2 is broken down to nitric 

oxide and oxygen by the platinum surface. This behaviour is expected during the
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fuel-rich cycle of the lean bum engine, after the stored NOx has been released. This 

aspect of the proposed NSR mechanism has been proved; however it remains to be 

seen whether the released NOx can be reduced. It is also possible that the NO 

oxidation is actually catalysed by BaO and not by platinum in the NSR catalyst. This 

possibility will be examined in later chapters.

3.3.6 CO Oxidation on P t ( l l l)

As mentioned earlier in this chapter, an essential aspect of any exhaust catalyst 

is the ability to remove the highly toxic carbon monoxide that gasoline engines 

commonly produce. To this end the CO oxidation characteristics of the Pt( l l l )  

surface were examined.

Figure 3.20 shows a mixed molecular beam experiment in which equal 

pressures of CO and O2 (50 mbar total molecular beam source pressure) were dosed 

onto the Pt(l 11) crystal surface held at increasing temperatures. From figure 3.20 it 

can be seen that both constituents adsorb in a similar manner as they do singly, with 

CO adsorbing fairly well (S0 = 0.36 at 50 °C) but oxygen not adsorbing to any 

measurable extent. There is no evidence of any CO oxidation occurring. This is 

surprising as the NSR catalyst is also required to oxidise CO from the exhaust gases. 

When one takes into account the CO oxidation that readily occurs in Figure 3.15 it is 

apparent that CO is readily oxidised by atomic oxygen. It therefore seems likely that 

the reason that no CO oxidation has occured in Figure 3.20 is that the low sticking 

coefficient of oxygen on P t ( l l l )  ensures that only a small amount of oxygen is 

adsorbed. Any adsorbed 0 (a) would also swiftly be eliminated by incoming CO in a 

clean-off reaction.

The only major features in Figure 3.21 are large CO desorption peaks at 140- 

155 °C, characteristic of CO reversibly adsorbing on Pt(lll).  As expected from the 

lack of adsorption, no other desorption products are visible. The lack of any visible 

reaction products is not surprising given the lack of O2 adsorption in Figure 3.20. The 

CO oxidative ability of the Pt(l 11) surface has been well documented in the literature; 

however, from the above it appears that the reaction must follow a Langmuir-like 

mechanism between molecularly adsorbed CO and adsorbed atomic oxygen rather

101



than an Eley-Rideal type mechanism between adsorbed CO and molecular oxygen in 

the gas phase. To investigate this the surface was pre-covered with atomic oxygen 

(via dissociative adsorption o f NO2 followed by thermal removal of adsorbed NO as 

demonstrated earlier) and CO (50 mbar molecular beam source pressure) beamed onto 

the crystal surface (figure 3.22).
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Figure 3.20 - Mixed molecular beams of CO and O2 (1:1 ratio mixture, 50 mbar total molecular 
beam source pressure) beamed on to Pt(l 11) surface held at increasing temperatures.
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Figure 3.22 -  A molecular beam of CO (50 mbar molecular beam source pressure) beamed on to 
O(a) pre-covered P t ( l l l ) .  The oxygen pre-coverage was attained via a molecular beam of N 0 2 (50 
mbar molecular beam source pressure) and the crystal heated to increasing surface temperatures 
before being beamed with a molecular beam of CO (50 mbar molecular beam source pressure) to

examine the stability of the adsorbed oxygen
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Figure 3.22 -  A molecular beam of CO (SO mbar molecular beam source pressure) beamed on to 
0 (a) pre-covered P t ( l l l ) .  The oxygen pre-coverage was attained via a molecular beam of N 0 2 (50 
mbar molecular beam source pressure) and the crystal heated to increasing surface temperatures 
before being beamed with a molecular beam of CO (50 mbar molecular beam source pressure) to

examine the stability of the adsorbed oxygen.

Figure 3.22 is a series o f molecular beam experiments that show that CO 

oxidation occurs readily on Pt(l 11). Taken with Figure 3.20 it is apparent that CO is 

oxidised by atomic oxygen and that the dissociative adsorption o f O2 is the limiting 

step for the reaction kinetics. In the experiment performed at room temperature it can 

be seen that there are two separate CO2 desorption peaks. This would seem to 

indicate that the adsorbed atomic oxygen is present as two separate species. This is 

confirmed in the experiments in which the CO is beamed onto the crystal surface held 

at temperatures o f 270 °C and above. There is also an O2 desorption peak visible in 

the temperature ramp to these temperatures (270 °C and above) before onset of 

beaming CO as well as a single CO2 desorption peak. There are also two m/z = 32 

desorption peaks visible for temperatures o f 400 °C and above. There is no oxygen 

left on the surface when CO is beamed at 475 °C as no reaction products are visible in 

the CO molecular beam experiment following the temperature ramp.
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The two separate oxygen species are likely to be the high-density ordered state 

and the disordered domains observed for oxygen coverages of 0.5-0.75 ML by 

Weaver and group64. The group was only able to achieve these coverages by using 

molecular oxidants, in a similar fashion to that described above to create the layer of 

adsorbed oxygen. The above experiments show that CO oxidation, an important part 

of any engine exhaust catalyst, can occur over the Pt( 111) precious metal catalytic 

component.

The above data clearly shows that the Pt(l 11) surface is capable of oxidising 

CO, which, provided the oxygen is adsorbed as atomic oxygen, occurs with high 

efficiency. The previously demonstrated surface mobility of CO likely contributes to 

the efficiency of this reaction, being able to move relatively large distances (on the 

nanoscale) across the surface to react with adsorbed oxygen. On Pt( 111), when the 

oxygen is present in molecular form oxidation is much slower due to the relatively 

low oxygen sticking coefficient. On these surfaces the adsorption of O2 could hence 

be considered to be the rate-limiting step.

3.3.7 NO reduction on P t ( l l l )

An important aspect of the NSR catalyst is the ability to reduce the NOx (that 

has been stored under oxygen-rich conditions) that is released during the fuel-rich 

phase of engine operation. To this end mixed beams of NO and CO were adsorbed 

onto the crystal surface and any possible reaction monitored. It is possible that the 

platinum surface would behave in a similar manner to palladium and rhodium, which 

both catalyse the reduction of NO to produce a mixture of N2O and N2, and N2 

respectively.

From Figure 3.23 it appears that both CO and NO are adsorbing to the crystal 

surface with initial sticking coefficients characteristic of both species adsorbing on the 

P t ( l l l )  surface alone. The sticking probabilities of both species diminish with 

increasing temperature, NO more so than CO. This is to be expected if no reaction is 

occurring due to the relatively low desorption temperatures of both species (see 

Figure 3.4 and Figure 3.8). In addition to this it is probable that CO blocks NO
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adsorption sites. There is no immediate desorption of any reaction products when 

beaming.

Figure 3.24 supports the conclusion that there is no surface reaction between 

adsorbed NO and CO occurring. The only features in the temperature programmed 

desorption experiments that followed the mixed molecular beam reaction are 

desorption features due to CO and NO, which both occur at typical temperatures for 

each of the species desorbing from P t( lll) . It is not surprising that the platinum 

surface does not catalyse the reaction as both rhodium and palladium have been 

shown to catalyse the breakdown of NO, which is the proposed first step of the 

reaction whereas on P t( l l l )  NO is reversibly adsorbed (see Figure 3.6 and Figure 

3.8). The atomic oxygen produced by the breakdown of NO by rhodium and 

palladium reacts with the adsorbed CO and desorbs as CO2. The lack of reaction 

between co-adsorbed NO and CO on Pt( 111) has also been documented in the 

literature20. The fact that there is no obvious NO reduction catalysed by the Pt(l 11) 

surface has implications for the proposed model for the NSR catalyst as in the 

Matsumoto model for the NSR catalyst (see page 234) NO2 released from the BaO 

NOx storage component is reduced to N2 over the platinum metal centre13,14. Previous 

sections have shown that NO2 is broken down to NO and O2 by the Pt(l 11) surface 

with great efficiency (see section 3.3.4); it may be that it is the BaO NOx storage 

component binds the NO liberated from the breakdown of NO2 over platinum and 

catalyses its breakdown. This possibility will be examined in later sections.
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3.4 Summary of Conclusions

• CO reversibly adsorbs to Pt(l 11) with an initial sticking coefficient of 0.49 + 0.02 

into a single weakly held state that desorbs at 105-155 °C. The temperature of the 

desorption peak is heavily influenced by the coverage of CO adsorbed onto the 

crystal surface.

• NO also reversibly adsorbs to Pt(l 11) with an initial sticking coefficient of 0.71+

0.02 into a single weakly held state that desorbs at ~ 90 °C. Unlike CO, there 

appears to be little shift in the temperature of the desorption peak with increasing 

NO coverage of the Pt(l 11) surface.

• NO2 adsorbs dissociatively to the Pt(l 11) surface to form NO and atomic oxygen. 

Adsorbed NO is displaced by the atomic oxygen, desorbing from the crystal 

surface. The atomic oxygen readily oxidises CO to CO2 but no reaction is 

observable when NO is beamed on to an 0(a>-precovered Pt( 111) surface (created 

via decomposition of NO2).

• NO reacts readily with excess oxygen in a gas phase reaction to produce a mixture 

of NO2 and O2. This reaction made analysis of the NO oxidative properties of the 

P t( l ll )  surface complicated, with sequential dosing experiments producing no 

observable reaction.

• There is no reaction between NO and CO co-adsorbed on the Pt(l 11) surface

The above conclusions have provided some insight into the fundamental operation 

of the NSR catalyst. In particular the lack of visible NO oxidation by the P t(lll) , 

even when using pre-adsorbed oxygen would seem to be at odds with the proposed 

Matsumoto model (see chapter 6), in which NO is oxidised to NO2 over the platinum 

in the Pt/Ba0 /Al20 3  exhaust catalyst. However, while this does not happen over the 

platinum (111) under ultrahigh vacuum conditions the gas phase reaction of NO and 

O2 observed in the gasline indicates that oxidation is favourable and spontaneous 

given sufficiently high partial pressures of the reactants. The ability of the catalyst to 

catalyse the back reaction of NO2 to NO and oxygen has been shown; however an 

elevated operating temperature (or as shown above, the presence of a reductant such 

as CO) is necessary to remove the adsorbed oxygen. Both of these criteria would be 

fulfilled in the fuel-rich operating phase of the lean-bum gasoline engine. The main
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contradiction of the Matsumoto model however is the lack NO breakdown in a 

reducing environment. In the proposed model this occurs over the platinum metal 

centre; however the results given above have shown that no NO reduction is observed 

over the (111) face of platinum. It may well be that the presence of barium oxide is 

necessary for this to occur. This will be investigated in subsequent chapters.

I l l



REFERENCES

1. Open University Lab Space
http://labspace. open. ac. uk/mod/resource/view. php?id=207208

2. Comrie, C.M., Lambert, R.M., Surf. Sci., 4 6 ,1974, 61.
3. Zhu, J.F., Kinne, M., Fuhrmann, T., Denecke, R., Steinruck, H.P., Surf Sci., 529, 

2003, 384.
4. Ibach, H., Lehwald, S., Surf. Sci., 7 8 ,1978,1.
5. Hayden, B.E., Surf Sci., 131, 1983,419.
6. Gland, J.L., Sexton, B.A., Surf Sci., 94, 1980, 355.
7. Bartam, M.E., Koel, B.E., Surf Sci, 219 ,1989,467.
8. Trenary, M., Agrawal, V.K., Surf. Sci, 259, 1991,116.
9. Ranke, W., Surf Sci., 209, 1989, 57.
10. Kiskinova, M., Pirug, G., Bonzel, H.P., Surf. Sci., 136,1984,285.
11. Materer, N., Barbieri, A., Gardin, D., Starke, U., Batteas, J.D., Van Hove, M.A., 

Somoijai, G.A., Surf. Sci., 303,1994, 319.
12. Ge, Q., King, D.A., Chem. Phys. Lett., 285, 1998, 15.
13. Matsumoto, M., Tatsumi, N., Fukutani, K., Okano, T., Yamada, T., Miyake, K., 

Hate, K., Shigekawa, H., J. Vac. Sci. Technol. A., 17, 1999, 1577.
14. Matsumoto, M., Fukutani, K., Okano, T., Miyake, K., Shigekawa, H., Kato, H., 

Okuyama, H., Kawai, M., Surf Sci., 454,2000,101.
15. Zhu, J.K., Kinne, M., Fuhrmann, T., Denecke, R., Steinruck, H.P., Surf. Sci., 529, 

2003, 384.
16. Aizawa, H., Morikawa, Y., Tsuneyuki, S., Kukutani, K., Ohno, T., Surf. Sci., 514, 

2002, 394.
17. Zhu, P., Shimada, T., Kondoh, H., Nakai, I., Nagasaka, M., Ohta, T., Surf. Sci., 

565, 2004, 232.
18. Metka, U., Schweitzer, M.G., Volpp, H.R., Wolfrum, J., Wamatz, J., Phys.

Chem., 214, 2000, 865.
19. Kasai, H., Enomoto, Okiji, A., J. Phys. Soc. Jpn., 57, 1988,2249.
20. Gorte, R.J., Schmidt, L.D., Gland, J.L., Surf. Sci., 109, 1981, 367.
21. Materer, N., Barbieri, A., Gardin, U., Starke, U., Batteas, J.D., Van Hove, M.A., 

Somoijai, G.A., Phys. Rev. B., 48, 1993, 2859.
22. Campbell, C.T., Ertl, G., Segner, J., Surf. Sci., 115,1982, 309.
23. Zhu, J.F., Kinne, M., Fuhrmann, T., Trankenschuh, B., Denecke, R., Steinruck, 

H.-P., Surf. Sci., 547, 2003, 410.
24. Ovesson, S., Lundqvist, B.I., Schneider, W.F., Bogicevic, A., Phys. Rev. B., 71, 

2005, 115406-1.
25. Sawabe, K , Matsumoto, Y., Yoshinobu, J., Kawai, M., J. Chem. Phys., 103,

1995, 4757.
26. Bartram, M.E., Koel, B.E., Carter, E.A., Surf. Sci., 219 ,1989,467.
27. Meiher, W.D., Pelak, R.A., Ho, W., Surf. Sci., 359, 1996,23.
28. Sawabe, K , K , Matsumoto, Y., Surf. Sci., 3 0 3 ,1994, L385.
29. Mulla, S.S., Chen, N., Delgass, W.N., Epling, W.S., Ribeiro, F.H., Catt. Lett.,

100, 2005, 267.
30. Bartram, M.E., Windham, R.G., Koel, B.E., Langmuir, 4, 1988,240.
31. Mc.Ewen, J.-S., Payne, S.H., Kreuzer, H.J., Kinne, M., Denecke, R., Steinruck, 

H.-P., Surf Sci., B545, 2003,47.
32. Steininger H., Lehwald, S., Ibach, H., Surf. Sci., 123, 1982,264.
33. Poelsema, B., Palmer, R.L., Comsa, G., Surf. Sci., 123, 1982, 152.

112

http://labspace


34. Tiishaus, M., Schweizer, E., Hollins, P., Bradshaw, A.M., J. Elec. Spec., 44,
1987, 305.

35. Hopster, H., Ibach, H., Surf. Sci., 77, 1978, 109.
36. Avery, N., J. Chem. Phys., 74, 1981, 4202.
37. Mieher, W.D., Whitman, L.J., Ho, W., J. Chem. Phys., 91,1989, 3228.
38. Froitzheim, H., Hopster, H., Ibach, H., Lehwald, S.,Appl. Phys., 13,1977,147.
39. Ertl, G., Neumann, M , Streit, K.M., Surf. Sci., 64,1977, 393.
40. Poelsema, B., Palmer, R.L., Comsa, G., Surf. Sci., 136,1984,1.
41. Yeo, Y.Y., Vattuone, L., King, D.A., J. Chem. Phys., 106,1997, 392.
42. Ray, N.K., Anderson, A.B., Surf. Sci., 119, 1982, 35.
43. Hammer, B., Nielsen, O.H., Norskov, Catt. Lett., 46,1997, 31.
44. Seebaur, E.G., Kong, A.C.F., Schmidt, L.D., Surf Sci., 176,1986, 134.
45. Allers, K.-H., Pfnur, H., Menzel, D., Surf Sci., 291,1993,167.
46. Gorte, R.J., Schmidt, L.D., Surf. Sci., 11,1981, 260.
47. Kinne, M., Fuhrmann, T., Whelan, C.M., Zhu, J.F., PantfOrder, J., Probst, M., 

Held, G., Denecke, R., Steinruck, H.-P., J. Chem. Phys., 117,2002,10852.
48. Campbell, C.T., Ertl, G., Kuipers, H., Segner, J., Surf. Sci., 107,1981,207.
49. Blyholder, G.,J. Chem. Phys., 68, 1964, 2772.
50. Feibelmann, P.J., Hammer, B., Norskov, J.K., Wagner, F., Scheffler, M., Stumpf, 

R., Watwe, R., Dumesic, J., J. Phys. Chem. B, 105, 2001,4018.
51. Geschke, D., Ba§tug, Jacob, T., Fritzsche, S., Sepp, W.-D., Fricke, B., Varga, S., 

Anton, J., Phys. Rev. B, 64, 2001, 235411.
52. Colen, R.E.R, Christoph, J., Pena, F., Rotermund, H.H., Surf. Sci., 408, 1998, 

310.
53. Dicke, J., Rotermund, H.H., Lauterbach, J., Surf. Sci., 454,2000,352.
54. Nolan, P.D., Lutz, B.R., Tanaka, P.L., Davis, J.E., Mullins, C.B., J. Chem. Phys., 

I l l ,  1999, 3696.
55. Jerdev, D.I., Kim, J., Batzill, M., Koel, B.E., Surf. Sci., 498,2002, L91.
56. Zhdanov, V.P., Kasemo, B., Surf. Sci., 415, 1998,403.
57. Monroe, D.R., Merril, R.P., J. Cat., 65, 1980,461.
58. Collins, D.M., Lee, J.B., Spicer, W.E., Surf. Sci., 55, 1976, 389.
59. Schwaha, K , Bechtold, E., Surf Sci., 65,1977, 277.
60. Yotsushashi, S., Yamada, Y., Phys. Rev. B, 72, 2005, 033415.
61. Gland, J.L., Surf. Sci., 93, 1980, 487.
62. Dahlgren, D., Hemminger, J .C.Surf. Sci., 123, 1982, L739.
63. Saliba, N.A., Tsai, Y.-L., Panja, C., Koel, B.E., Surf. Sci., 419,1999, 79.
64. Weaver, J.F., Chen, J-J., Gerrard, A.L., Surf. Sci., 592, 2005, 83.
65. Segner, J., Vielhaber, W., Ertl, G., Israel J. Chem., 22, 1982, 375.
66. Derry, G.N., Ross, P.N., Surf. Sci., 140, 1984, 165.
67. Parker, D.H., Bartram, M.E., Koel, B.E., Surf. Sci., 217,1989,489.
68. Parkinson, C.R., Walker, M., McConville, C.F., Surf. Sci., 545,2003, 19.
69. Niehus, H., Comsa, G., Surf. Sci., 93, 1980, L147.
70. Bonzel, H.P., Franken, A.M., Pirug, G., Surf. Sci., 104, 1981, 625.
71. Carlisle, C.I., Fujimoto, T., Sim, W.S., King, D.A., Surf. Sci., 470, 2000, 15.
72. Ganduglia-Pirovano, M.V., S c h e f f l e r , Rev. B, 59, 1999,15533.
73. Todorova, M., Li, W.X., Ganduglia-Pirovano, M.V., Stampfl, C., Reuter, K , 

Scheffler, M., Phys. Rev. Lett., 89, 2002, 96103.
74. GroP, A., Eichler, A., Hafner, J., Mehl, M.J., Papaconstantopoulos, D.A., Surf. 

Sci., 539, 2003, L542.

113



75. Luntz, A.C., Grimblot, J., Fowler, D.E., Phys. Rev. B., 3 9 ,1989, 12903.
76. Eichler, A., Mittendorfer, F., Hafiier, J., Phys. Rev. B, 62,2000,4744.
77. Luntz, A.C., Williams, M.D., Bethune, D.S., J. Chem. Phys., 89, 1988,4381.
78. Gland, J.L., Surf. Sci., 75, 1978, 733.
79. Bonzel, H P., Ku, R., Surf. Sci., 40, 1973, 85.
80. Hopster, H., Ibach, H., Comsa, G., J. Cat., 4 6 ,1977, 37.
81. Materer, S., Stakre, U., Barbieri, A.., D611, R., Heinz, K., Van Hove, M.A., 

Somoijai, G.A., Surf. Sci., 325, 1995, 207.
82. Jung, C., Ku, B., Kim, J., Rhee, C.K., Chem. Commun., 2006,2191.
83. Campbell, C.T., Ertl, G., Kiippers, H., Segner, J., J. Chem. Phys., 7 3 ,1980, 5862.
84. Engel, T., Ertl, G., J. Chem. Phys., 69, 1978, 1267.
85. Palmer, L., Smith, J.N., J. Chem. Phys., 60, 1974, 1453.
86. Matsushima, T., Surf. Sci., 79, 1979, 63.
87. Ehasai, M., Matloch, M., Frank, O., Block, J.H., J. Chem. Phys., 91(8), 1989, 

4949.
88. Matsushima, T., Surf. Sci., I l l ,  1983,403.
89. Gerrad, A.L., Weaver, J.F., J. Chem. Phys., 123, 2005, 224703.
90. Engel, T., Ertl, G.,Adv. Cat., 28, 1979, 1.
91. Zaera, F., Liu, J., Xu, M., J. Chem. Phys., 106, 1997, 4204.
92. Xu, M., Liu, J., Zaera, F., J. Chem. Phys., 104, 1996, 8825.
93. Eichler, A., Hafher, J., Phys. Rev. B, 59, 1999, 5960.
94. Bleajeley, K., Hu, P., J. Am. Chem. Soc., 121, 1999, 7644.
95. Volkening, S., Wintterlin, J., J. Chem. Phys., 114, 2001, 6382.
96. Wintterlin, J., Volkening, S., Janssens, T.V.W., Zembelli, T., Ertl, G., Science, 

273, 1997, 1931.
97. Campbell, C.T., Ertl, G., Kuipers, H., Segner, J., J. Chem. Phys., 73, 1980, 5862.
98. Kisliuk, P., J. Phys. Chem. Solids., 3, 1957, 95.
99. Zhu, J.F., Kinne, M., Fuhrmann, T., Trankenschuh, B., Denecke, R., Steinruck, 

H.-P., Surf. Sci., 547, 2003, 410.

114



4. THE EFFECT OF POTASSIUM ON THE 

SURFACE CHEMISTRY OF NO, CO AND 0 2 ON 
P t(lll) AND ITS SUITABILITY AS A POTENTIAL 

NO* STORAGE COMPONENT

4.1 Literature Review

4.2 Results and Discussion
4.2.1 Dosing K  on P t(l 11)
4.2.2 Adsorption o f CO on the K/Pt 

surface
4.2.3 Sticking o f  O2 on K  dosed P t( ll l)
4.2.4 Adsorption o f NO on K  dosed P t( ll l)  surface
4.2.5 Molecular beams o f  NO on K /P t(lll) surface 

held at increasing surface temperature
4.2.6  Mixed molecular beams o f NO2 and O2 on 

different K  coverages o f  the P t( l l l)  surface
4.2.7 Co-dosing O2 and K  at room temperature
4.2.8 Mixed molecular beams o f NO2 and O2 on 

K2O2/K2CO3 layer formed at room temperature
4.2.9 Mixed molecular beam o f CO and O2 167 

On K2O27K2CO3 layer formed at room 
temperature

4.2.10 Co-dosing K  and 0 2 at 200 °C 168
4.2.11 Molecular beams o f  CO on K2O2 surface created 171 

at 200 °C
4.2.12 Molecular beams o f  NO on K2O 2 surface created 174 

a t2 0 0 mC
4.2.13 Mixed molecular beams o f NO2 and O2 on 179 

K20 2 surface created at 200 °C

4.3 Summary and Conclusions 180
4.3.1 Platinum (11 l)/Potassium ISO
4.3.2 Platinum(l 1 l)/Potassium peroxide 181

REFERENCES

116

126
126
129

136
141
147

151

157
165

115



4.1 Literature Review

Transition metal catalysts often have sub-monolayer amounts of alkali metals 

incorporated due to the ability of the alkali metal to alter and effect the adsorption 

characteristics of the catalyst. This is believed to occur via the low ionisation 

potential of the alkali metal leading to the transference of a valence electron from the 

alkali metal to the transition metal, which sets up a localised dipole. This transfer of 

electronic charge is normally evidenced by a marked decrease in the workfunction of 

the transition metal surface. The first demonstration of this effect was the observation 

of a significant enhancement in electron emission from the transition metal surface 

upon alkali adsorption1. The adsorption of the alkali metal onto a metal crystal 

surface hence normally results in a range of altered properties such as differing 

adsorption sites and adsorption kinetics, differing vibrational frequencies of adsorbed 

species and different adsorption sites becoming available. This effect is most 

pronounced in heterogeneous catalysis where alkali metal promotion is used to 

increase the selectivity of the catalyst towards certain products.

The K /P t(lll) system is probably the most frequently used system for 

modelling coadsorption effects especially with regards to O2 and CO and the alkali 

induced weakening of the carbon-oxygen bond. In CO hydrogenation reactions the 

addition of potassium to the active catalyst has been shown to slow down the reaction 

and shift the equilibrium in favour of the more desirable high molecular weight 

species2.

Alkaline earth metals, most commonly BaO, are frequently used as NOx 

storage components in the NSR catalyst. The ability of the storage component of the 

lean bum catalyst to store NOx has been the object of several studies. The 

conclusions that these studies have drawn is that the more basic the storage 

component the greater the amount of NOx that can be stored. In particular the work 

done by Kobayashi et al has shown that in terms of NOx storage ability K > Ba > Sr~ 

Na > Ca > Li ~ Mg3.

Contaminant-free potassium adlayers have been found to be hexagonally 

ordered on Pt(l 11) for potassium coverages of 0 = 0.9-1. A complete monolayer of
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potassium, 0 = 1, is equal to 36% of the surface density of platinum atoms or 5.4 x 

1014 atoms cm'2. The ordering of the surface was only visible at low temperature and 

at room temperature more than one complete monolayer of potassium was not 

attainable. The potassium layer could, however, be thermally stabilised by exposure 

to oxygen12.

Early models of potassium adsorption onto the Pt( 111) surface assumed the 

charge transfer model as proposed by Gumey4, in which the adsorbing potassium 

donates electron density to the surface from an s-orbital. Repulsion between the 

resulting dipole species formed leads to the adsorbate being spread evenly over the 

surface rather than clumping into islands. In this model potassium atoms adsorb with 

a sticking probability that is independent of coverage and at a constant rate5.

However work carried out by Lehmann et a fand Muller7 in the later 

half of the 1990’s has shown that for low coverages of potassium (less than 0.2 ML) 

potassium is absorbed into sub-surface sites and migrates to the surface upon 

adsorbing above a critical amount. However, while Lehmann states that all potassium 

is absorbed below 0.22 ML coverage with no measurable activation energy barrier, 

Muller has observed an initial adsorption of potassium up to 0.1 ML (where 0.33 ML 

is equal to a complete adlayer being deposited) on the surface, after which there is a 

migration to subsurface sites in the second layer on the Pt crystal, due to an activation 

energy barrier. The fact that there have been LEED observations of a (3x3) pattern at 

low coverages and that there is no evidence of potassium incorporation below the 

surface at 100 K would seem to argue against the blanket statement made by 

Lehmann and co-workers8,9.

The behaviour of K /P t(lll)  appears to be characteristic for alkali metal 

adsorption, with adsorbed species exhibiting strong repulsive forces between 

themselves and large dipole moments at low coverages. As the coverage of alkali 

metal increases metallization and the formation of ordered overlayers are 

observed10,11. With the increasing coverage the (initially ionic) potassium becomes 

more neutral due to depolarisation effects12,13. Many early studies have claimed that 

potassium adsorbs regularly to the surface with a sticking coefficient that is 

independent of coverage14'15 however more recent work has suggested that the rate of
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1 ̂  1A 17potassium adsorption is much more rapid at lower coverages. ’ * . This may be due 

to an enhanced sticking coefficient at these coverages or to incorporation of potassium 

into the surface.

The adsorption o f potassium onto Pt( 111) has been shown to reduce the work 

function o f the surface greatly, due to the partly ionic nature o f potassium atoms at
1 1 c

lower coverages ’ . Early work by Kiskinova and colleagues showed that the 

decrease in work function reaches a minimum at 0.5 ML, where after it increases to 

that o f almost bulk potassium at 1 ML (as defined by the authors, where 1 ML = 1 

complete adlayer).18
6
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Figure 4.1 - Work function of P t ( l l l )  surface as a function o f potassium coverage prior to CO 

exposure and after saturation with CO at 300 K. Figure taken from paper by M. Kiskinova, G.

Pirug and H.P. Bonzel.18

This is due to a large charge transfer from the adsorbed potassium to the 

platinum surface at low coverages with the consequent formation o f highly ionised 

adatoms. Due to repulsion between similarly charged species it would be expected 

for an uniform distribution o f potassium at this coverage. The increase in 

workfunction is due to the adlayer becoming depolarised. In this phase of adsorption 

the repulsive interactions become less significant so a non-uniform distribution of
1 C 1 o

adsorbed species would be expected ’ . The workfunction o f the saturated surface is 

less than the workfunction o f the clean Pt( 111) surface. Whilst broadly agreeing with 

this model, the point at which the minimum occurs in the workfunction curve has
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been disputed in a more recent paper by Lehmann and colleagues, who place the 

minimum workfunction much closer to the point of monolayer formation.6
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Figure 4.2 -  K induced work function changes on P t(lll) . Figure taken from paper by J.

Lehmann, P. Roos, and E. Bertel.6

Many authors have reported a marked decrease in the sticking coefficient of 

CO as potassium coverage increases past a certain limit18,20. Whether this is due to an 

increase in potassium radius with an associated increase in site blocking of platinum 

CO adsorption sites, or a change in the lifetime of a precursor state18 remains to be 

seen. Below this limit (#k = 0.19) the initial sticking coefficient is independent of K 

coverage. It is worth noting that although the initial sticking coefficient changes from 

almost 1 to less than 0.25 as this threshold is passed the saturation coverage of CO

still remains high and in fact appears to increase with increasing potassium
18coverage .

It has been shown that the coadsorption of potassium and carbon monoxide 

increases the heat of adsorption of CO and causes a decrease in the strength of the C- 

O double bond19. This is in agreement with observations that the increased 

temperature of desorption observed in temperature programmed desorption 

experiments with potassium was due to an increased C-Pt bond strength20. This C-0 

bond weakening has been shown to be caused by the potassium causing an 

enhancement in electron back-donation from the platinum surface into 2n antibonding 

orbitals on the CO and simultaneous strengthening of the C-Pt bond18,21. The
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decrease in the strength of the C=0 bond results in an increased dissociation 

probability22. Despite this, dissociative adsorption of CO on K covered Pt( 111) does 

not occur at 300 K18

Two different binding sites are observed for the adsorption of CO on Pt(l 11); 

a linear and a bridged site with the on-top sites filling before adsorption in the bridged 

sites. However only one adsorption site is observed for a monolayer of potassium and 

the binding energy observed is close to that seen for CO bidentate (bridge-bonded) 

adsorption on P t(lll) . This has been interpreted as a shift in favoured binding site 

from linear to bridged with increasing potassium coverage1,18,22,23. It has been 

observed that potassium promoted binding sites fill before other binding sites for low 

K coverages18. It has also been shown that CO adsorption on the potassium adatoms 

does not occur24. Theoretical studies have shown that the CO binds in a vertical 

rather than horizontal fashion through the carbon23.

CO adsorption on moderate potassium coverages induces an increase in the 

workfunction of the surface, unlike that of CO on Pt(l 11), when adsorption decreases
a

the work function . The magnitude of the workfunction increase is directly 

proportional to the K coverage for < 0.17. These workfunction changes are 

connected with K-promotion of CO species. At higher potassium coverages there is a 

further workfunction increase that has been attributed to adsorption of CO between 

almost metallic-like K atoms causing electronic charge to be passed from the K to the 

Pt and into the 2it* CO orbitals. This movement of charge means that the K atoms in 

the local vicinity of the adsorbed CO become more ionic and hence have a lower 

workfunction. The smaller size of the ionised potassium frees more space for 

adsorption of further CO with further workfunction effects18.

Adsorption of CO onto a K covered surface has been shown to re-order the 

surface into CO + K islands with a fixed stochiometry (dependent on initial K 

coverage), leaving free platinum surface. This is likely due to strong attractive 

interactions between the coadsorbed species. However, at low coverages CO and K 

do not simultaneously desorb. This would seem to indicate that the adsorbed species 

interact via coulombic interactions rather than via the formation of an oxocarbon (salt­

like) compound. Further exposure to CO leads to an increase in island size with a
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consequent increase in CO: K ratio. At < 0.11 the coverage of potassium is 

insufficient to cover the whole surface with CO + K islands regardless of ratio, with 

the result that CO adsorbs on exposed P t( l l l )19. As the K coverage increases the 

maximum of the CO desorption peak shifts to higher temperature, with larger CO 

exposures broadening the desorption peak. The magnitude of the temperature shift 

corresponds to a binding energy of approximately 104.6 kJ mol'1 from CO on clean 

P t( l l l )  to 150.6 kJ mol'1 for CO on a monolayer of K (assuming a pre-exponential 

factor of 1 x 1013 s'1). The total amount of CO adsorbed also decreases with 

increasing K coverage. No ordered LEED patterns are observed when co-dosing CO 

and K1. Despite CO and K not appearing together in temperature programmed 

desorption experiments the temperatures of the desorption peaks are strongly 

dependent on both CO and K coverage. This is consistent with the proposed model of 

CO-K and CO-Pt interactions. The presence of potassium on the surface of Pt(l 11) 

increases the temperature of desorption of CO. Windham and co-workers have 

proposed that this is due to a reduction in the pre-exponential factor, in addition to an 

increase in the activation energy for desorption19.

Dosing potassium on to the surface has a marked effect on the vibrational 

stretching frequency of adsorbed CO species. Bridge-bonded CO decreases from 

1870 cm'1 on clean Pt to 1560 cm'1 on 0.6 ML of K. At constant potassium coverages 

the vibrational stretching frequency of adsorbed CO increases substantially with 

increasing CO coverage1.

For coverages of potassium greater than 0.15 ML there is a small amount of 

atomic exchange in the desorbing CO. However the magnitude of the atomic 

exchange is much less than that seen for similar experiments on potassium on Ru25, 

Rh26, or Ni26. As these four systems are very similar in essence it seems likely that 

the same exchange pathways are occurring on the surface but the concerted exchange 

mechanism proposed by Lee et a l26, with weakening of C-0 and C-substrate bonds, is 

simply less favoured on Pt(l 11).

The general conclusion for the model of CO bonding to K /P t(lll) is that it 

occurs via electron donation from the highest occupied molecular orbital of CO (5o) 

to the transition metal surface. This has the follow on effect of electron back-donation

121



into the LUMO of CO (2n*) leading to a strengthening of the M-C bond and 

weakening of the C-O bond. The potassium added to the surface acts an electron 

donator, affecting the back-donation to CO. Electron density is passed from the 

potassium to the metal surface with electrons from the metal electrostatically 

shielding the positive charge created. The dipole thus created lowers the work 

function of the surface. The surfeit of electron density at the surface results in an 

enhanced back-donation upon adsorption of CO. An important implication of this 

model is the molecular orbital consideration, which involves a shift of preferred 

binding site from on-top to three-fold hollow for potassium-influenced platinum23. 

This has been confirmed experimentally by Somoijai and co-workers1,12,22.

Potassium has been found to form various ordered overlayers with different 

coverages on Pt(l 11). At 9m = 0.33 a V3 x V3R300 LEED pattern is observed 

indicating a close packed surface arrangement with a coverage of 0.33 when 

compared to the platinum surface. No LEED patterns are commonly observed at 

lesser coverages, although (3 x 3), (2 x 2), (V7 x V7)R19 and (3/2 x 3/2) patterns have 

been claimed for coverages of less than a monolayer27. Some groups have also 

observed more complicated structures evolving with higher coverages14,12,15. In 

addition it has been noted that at temperatures above 420 K (when the potassium 

starts to desorb) the V3 x V3R300 spots become gradually weaker and no further 

LEED patterns are observed16. As the coverage of the potassium overlayer increases 

the heat of desorption for potassium from the Pt(l 11) surface decreases. Temperature 

programmed desorption studies have shown a remarkable variance in the temperature 

of desorption from 1000 K for coverages of less than 0.1 ML to 400 K for monolayer 

coverages (251 kJ m ol1 for 9m < 0.1 to 83.7 kJ mol*1 for 9m = 2). This has been 

attributed to partial ionisation of the adatoms and repulsive lateral interactions 

becoming more important with increased occupancy of adsorption sites12. It is worth 

noting that layers of potassium greater than a monolayer are only readily formed at 

lower temperatures and layers formed at room temperature are rarely very pure18.

The ordering of the alkali metal layer on the transition metal is strongly 

temperature dependent. At 100 K several different LEED patterns have been 

observed including a (2 x 2), (3 x 3), and (V7 x V7)R19.10.14 Potassium adsorbs in the 

hep hollow site on Pt(l 11) in both the (2 x 2) and (V3 x V3)R30 ° phases28. There is
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an energy difference of 1.4 kJ mol’1 between the hep site and the fee adsorption site 

due to the antibonding character of the HOMO Pt d  orbital.

When taken with the work of Broden et alu and Lehmann et alu, this suggests 

that potassium is absorbed into the platinum surface at low coverages of potassium 

(#k < 0.22). They suggest that the incorporation requires little activation and may 

occur at temperatures as low as 100 K.14,12,15. This incorporation of potassium has 

been confirmed by scanning tunnelling microscopy experiments that show a 

potassium-induced reconstruction of surface steps with some buckling outwards of 

localised surface regions28. The fact that at room temperature adsorption of potassium 

onto Pt(l 11) causes a compressive surface stress, whereby at lower temperatures the 

tensile stress of the surface was found to increase, would seem to support this model, 

the compressive and tensile stresses created being due to incorporated K atoms and 

surface-bonded atoms respectively29.

However Hannon et al28 have found that the adsorption of potassium is an 

activated process and can only take place at coverages of Ok = 0.1 or higher (where 9k 

= 0.33 is equal to a complete adlayer). They have suggested that substitutional 

adsorption takes place below this coverage with the K adsorbing at surface hollow 

sites and forming an ionic bond with the platinum surface. Above this coverage the 

group noticed a slow migration of potassium to sub-surface sites in the second 

platinum layer. This is in direct contradiction to the charge-transfer model proposed 

by Gurney et al30 in which the alkali metal partially donates an s electron to the 

surface, giving rise to a permanent dipole. Island formation is restricted in this model 

due to strong repulsive interactions between partially ionised adsorbed alkali metals.

It has frequently been found that the presence of oxygen, either bonded as an 

oxide or coadsorbed with the alkali metal, is able to accentuate the catalytic effect of 

the catalyst10. Oxygen adsorbs very readily on this potassium monolayer and induces 

a contraction, making the potassium coverage higher in the local vicinity when co- 

dosing. Exposure to oxygen makes a layer of adsorbed potassium (provided coverage 

> 0.2 ML) more thermally stable, reflected in an increase in the heat of desorption12 

(105 kJ m ol1 for a monolayer of pure potassium to 209 kJ mol'1 for the same 

coverage after exposure to oxygen).
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Two adsorbed oxygen states are commonly observed, a potassium-oxygen 

bonded state and a more loosely held platinum-oxygen state. Temperature 

programmed desorption studies have shown a simultaneous desorption of molecular 

oxygen and potassium with low potassium coverages also producing some weakly 

bound oxygen12. The Pt-O state is similar to that obtained for chemisorbed O2 on 

P t( l ll )  and it has been claimed that that the K-O state is not K2O10. However 

adsorption stoichiometries of 2:1 are observed and other groups suggest the existence 

of K2O species for potassium coverages of less than a monolayer12. The work of 

Broden et alu shows that potassium oxide does not exist at monolayer coverages. 

They theorize that oxygen is chemisorbed to the substrate and incorporated into the 

substrate lattice or present as a substrate-metal oxide.

In addition to this, the work of More et al shows that substitutional or 

subsurface incorporations do not occur at reduced temperatures.27 Pirug et al10 also 

noted that exposure to oxygen caused the (V3 x V3)R30° LEED pattern to disappear, 

with greater exposures also causing a weakening of the Pt(l 11) substrate spots and an 

increase in background, indicating a loss o f surface order. However annealing this 

layer brought an ordering of the surface with a (4 x 4) LEED pattern being observed. 

It has been suggested that in addition to potassium-bonded species being formed the 

potassium is able to reduce the dissociation barrier of O2 resulting in atomic oxygen 

being created and spilling over to free platinum binding sites10.

Oxygen monolayers form much more readily on potassium-dosed platinum 

than on platinum alone. In addition to the lower sticking coefficient exhibited by 

oxygen for platinum (So = 0.02-0.06) this also may be due to the clean-off reactions 

with CO and H2 which readily occur on the platinum surface not occurring with 

potassium10. The authors also report an increase in initial sticking probability to close 

to 1 for oxygen adsorbing onto a monolayer of potassium on platinum.

Temperature programmed desorption experiments involving co-adsorbed 

potassium and oxygen on Pt( 111) show a shift to lower desorption temperatures for 

O2 with increasing potassium coverage, however the magnitude of the shift is much 

less than that exhibited for pure potassium (251 kJ mol'1 at 0.1 ML to 209.2 kJ mol’1 

at 3 ML)12.
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In catalytic reactor studies platinum has been shown to be very active in the 

reduction of NO, but tends to exhibit poor selectivity for N2, with N2O being the 

major product31. The (111) face of platinum however is much more reluctant to 

dissociate NO as back donation into the 2n* orbital of the molecularly bonded NO is 

symmetry forbidden, thus disfavouring dissociation (dissociation is possible at 

elevated temperature ~ 1200 K). Although energetically the dissociation of NO on 

P t( l ll)  is exothermic, it has been shown that NO adsorbs reversibly at room 

temperature. However, addition of Ok. = 0.18 potassium surface coverage induces 

dissociation of NO with the products, N and O, being adsorbed.6,7 This is attributed to 

a potassium-induced lowering of the activation energy for dissociation20. A 

strengthening of the M-N bond has also been reported32. This is reflected in an 

increase in the desorption temperature of NO from the surface33. N2O desorption has 

also been observed at the same temperature as NO desorption in the K /P t(lll) 

system; this has been attributed to a nitrite species (NO2 )34.

It has been found that potassium, when dosed on platinum, greatly effects the 

selectivity of the reduction of NO to N2, with the selectivity being proportional to the 

total potassium surface coverage. On coverages of a monolayer or greater reduction 

to N2 greatly dominates.21 It would appear that this is due to a synergistic mechanism 

in which each of the metallic centres is responsible for a different component of the 

reduction; Pt for reducing NO to N2O and K for reducing N2O to N2 . However, it was 

noted that the two metals have to be in intimate contact for efficient reduction to 

occur, implying simultaneous participation of both metals in the reaction 

mechanism.35 In addition to this the NO dissociation has been shown to occur at 

temperatures below 300 K36. Films of other alkali metals, in particular sodium, 

exhibit similar behaviour with regard to NO reduction when dosed on Pt(l 11)32.

NO adsorbing on P t( l l l )  induces a small initial increase in workfunction 

followed by a slightly larger decrease after 0^o = 0.2. However when 0.36 ML of 

potassium is dosed onto the surface, adsorbing NO induces a large increase in the 

workfunction of the surface with increasing NO coverage. This increase in the 

magnitude of the workfunction change with the addition of alkali metals to the 

transition metal surfaces appears to be quite common.37
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Atomic oxygen adsorbed on the surface from the dissociative adsorption of 

NO has been shown to be able to react with another adsorbed NO molecule to produce 

a potassium-stabilised NCV species. The formation of this species is facilitated by 

high temperatures.20 Note that due to the demonstrated ability of P t( l ll)  to break 

down NO2 (see chapter 3), the existence of this species on a potassium free surface is 

highly unlikely. NO2’ can also be produced on the K/Pt(l 11) system by the sequential 

dosing of O2 and NO.20

With regards to its proposed use in this project as a potential candidate for an 

alternative NOx trap, potassium has been shown to offer several advantages over BaO 

in regards to NOx storage ability. In particular many studies have shown that 

potassium nitrates are more stable at higher temperatures than barium nitrates and that 

the NOx storage ability of a potassium storage component is greater than for a BaO 

one38,39,40,41. In addition to this the stability of the barium containing storage 

component in the catalytic converter wash-coat limits the NOx trap to operating 

temperatures between 200-450 °C42. Wash-coats containing alkali metal components 

have been shown to be stable up to 575 °c38,39

4.2 Results and Discussion

4.2.1 Dosing K on Pt(l 11)

Potassium was dosed onto the surface at 300 K for increasing lengths of time 

using a custom built SAES getter source heated to over 1200 K and positioned in front 

of the crystal. After outgassing the differential pressure rise was 2 x 10‘9 mbar during 

the course of the depositions, the majority of which was due to hydrogen desorption 

from the doser. The growth of the potassium adlayer was charted using the PtMNN 69 

eV and Klmm 272 eV Auger signals. The surface was heated to 550 °C and sputtered 

and annealed in between each dosing to make certain of the removal of all the 

potassium used in previous experiments from the surface.
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Figure 4.3 -  the change in the relative Auger signals of K and Pt with increasing K surface 

coverage. The point o f monolayer completion is also shown.

Figure 4.3 shows two intersecting curves. The growth curve is due to the 

increasing amount o f potassium that is deposited on the crystal surface with 

increasing time o f potassium dose, and the decaying curve is due to the increasing 

amounts o f potassium obstructing the passage o f the Auger electrons from the 

platinum to the electron detecting grids o f the retarding field analyser. The curves 

show that there is a relatively slow initial increase in Auger signal until two minutes 

potassium surface dose. Between two and three minutes there is a large increase in 

the K signal and consequent reduction in the Pt signal. After this jump there is a slow 

increase in K signal that appears to tail o ff towards a maximum with increasing time. 

This sudden ‘jum p’ in signal is likely due to the adsorbed potassium changing state 

from ionic to metallic as described in the literature13. Due to the chemisorption 

experiments contained later in this section (Figure 4.6 and Figure 4.9) three minutes 

was determined as the dosing time required for completion of one full potassium 

layer. The gradual curve that appears to level off after the completion o f the layer is
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characteristic of islands of potassium being formed, which grow in size as further 

potassium is deposited (Stranski-Krastinov growth mode), rather than the formation of 

a second complete monolayer. The initial platinum part of the curve (0-2 min) 

appears to exhibit a linear decrease; however the initial potassium region appears to 

be curved. It is possible that this is due to the sub-surface incorporation of potassium 

into the near-surface region as noted by Lehmann’s group13. This theorised 

incorporation of potassium into the near-surface region might also be responsible for 

the sudden gradient change between two and three minutes potassium dose as despite 

the rate of potassium deposition being constant, the surrounding platinum atoms 

would damp the potassium Auger signal, causing a sudden large potassium signal as 

subsurface species migrate to surface sites when the critical coverage is reached; 

however this is unlikely given the shape of the rest of the plot. A further explanation 

for the gradual tail-off of the Auger spectrum with increasing surface coverage might 

be that potassium desorbs from the surface at coverages of greater than a monolayer at 

ambient temperatures as suggested by Somorjai and Garfunkel, who have presented 

data that appears to show that no further potassium adsorption occurs after a 

monolayer deposition12. While this does not agree with the data shown in Figure 4.3 

(and the textual descriptions in later works) as there is no abrupt limit to the growth of 

the K signal, a plot of the relative peak ratios of the two major peaks in the Auger 

spectrum (Figure 4.4) produces a much more similar trend to another plot published in 

the paper in which a constant increase in K:Pt signal is observed that can be grouped 

into several discrete regions12.
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Figure 4.4 - K 252 eV to Pt 64 eV peak: peak ratios.

4.2.2 Adsorption of CO on the K/Pt surface

As shown in chapter 3, CO adsorbs with relatively high initial sticking 

probability (So = 0.45 + 0.02) on Pt(111) at 300 K. It was found that the initial 

sticking probability of CO on high doses of potassium was negligibly small. This 

allowed the growth of the surface to be charted to complement the Auger data shown 

in Figure 4.3.
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Figure 4.5 -  The variation in the sticking probability of molecular beams of CO (50 mbar 

molecular beam source pressure) with CO coverage for increasing K coverages of the P t ( l l l )

crystal surface.

Figure 4.5 indicates that surface doses o f potassium up to 120 s appear to 

adsorb roughly the same amount o f CO as the clean surface, have similarly shaped 

uptake curves and saturate to roughly the same amount CO coverage (the total 

coverage achieved at 120 s potassium dosing time is actually larger than that achieved 

at 60 s dosing time). As the potassium surface dose is increased further there is a 

large decrease in the saturation coverage and sticking coefficient until no CO 

adsorption is visible at 360 s o f potassium surface dose. This decrease in CO sticking 

with increased potassium surface coverage has been reported in the literature, with a 

reduction in measured sticking coefficient but a relatively stable total saturation

coverage. However, the authors note that much greater CO exposures are required to
18 , *, . . 

reach these coverage than at lower 6^ . All the sticking profiles have an initial

plateau followed by a steep decrease indicating that precursor kinetics are an

important part o f this system (Kp is small). CO adsorbs less as the potassium layer
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becomes less polar. To aid analysis of the growth of the potassium on the surface the 

initial sticking coefficient, So, was plotted against time of dose (Figure 4.6).
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Figure 4.6 - The initial sticking probability of molecular beams of CO plotted against time of

potassium dose of P t(I ll)  crystal surface.

Figure 4.6 shows that the initial sticking probability remains fairly constant 

between 0.5 and 0.55 for doses of K up to 120 s. After this time there is a sharp 

decrease in the initial sticking probability. It is possible that this is due to a complete 

layer of potassium having been deposited at this point, however taking Figure 4.3 into 

account it seems as if the abrupt gradient change at 180 s potassium dose is due to the 

first layer nearing completion (adsorbed ionic potassium atoms becoming more 

metallic-like as they are packed more tightly onto the crystal surface), with the 

platinum (111) being completely covered by 240 s potassium dose. This behaviour 

has been noticed by other groups, with White and co workers observing that the CO 

adsorption at K coverages in excess of a full layer (#k =• 0.49, where = 0.33 equals 

a complete K coverage of the Pt(l 11) surface) is extremely slow. This is rationalised 

as the reluctance of CO to adsorb on potassium that is metallic in character43.
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The plateau of constant sticking probability with initial potassium surface 

coverage has been noted by Kiskinova and co-workers who have postulated that it is 

due to a potassium-induced increase in the lifetime of a CO precursor species. The 

authors also ascribe the sudden drop in the sticking coefficient to be due to a change 

from ionic potassium to metallic potassium, which induces a drop in the precursor 

state lifetime. In addition to these observations, due to the repulsive forces between 

adsorbed potassium ions, spacing between the adatoms would be maximised, 

potentially leaving CO adsorption sites on platinum unobstructed. That CO still 

adsorbs (albeit in relatively small quantities) after a complete monolayer of adsorbed 

potassium indicates that some sort of K-CO species is being formed, or possibly K- 

induced CO decomposition (however this is unlikely as there is no evidence of 

decomposition products whilst beaming or in the temperature programmed desorption 

following the beam experiment, and it has been observed in the literature that no CO 

dissociation occurs on K-promoted Pt(l 11)18). As further potassium is added to the 

surface the sticking probability of CO decreases further, indicating that this adsorption 

takes place on thin films of potassium polarised by the platinum surface rather than on 

the more bulk metallic-like potassium, which occurs in the growth of islands. The 

decrease in initial sticking coefficient can therefore be directly related to the polarity 

of the adlayer. As the islands grow in size the total CO adsorbed at saturation 

decreases due to the increasing metallic character of the potassium. The shape of 

Figure 4.6 is related to the changes in work function observed when dosing potassium 

onto the Pt(l 11) surface. Both Windham15 and Pirug16 have observed a decrease in 

workfunction with increasing potassium up to half a complete monolayer of 

potassium, after which the workfunction increases to resemble bulk potassium. The 

rise from the minimum in the workfunction curve reported by Kiskinova and 

colleagues, at which point metallic potassium begins to form, appears at a point co­

incident with the fall in sticking probability in Figure 4.6. It therefore appears that the 

decrease in sticking probability of CO is caused by the metallic potassium, possibly 

due to blocking of CO adsorption sites on the Pt(l 11).

All of the curves for different K coverages in Figure 4.5 have an initial plateau 

region and in some cases appear to transiently increase in sticking probability as the 

beam is impacting with the surface. This is indicative of precursor state adsorption 

kinetics playing a part in the adsorption, with CO having an appreciable physisorbed
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lifespan before adsorbing in a more permanent chemisorbed fashion. The fact that all 

of the adsorption profiles look similar and merely decrease in magnitude with 

increasing potassium surface coverage lends itself to the explanation that the reduced 

CO adsorption coefficient, which occurs at potassium dosings of 120 s and greater, is 

merely due to surface potassium blocking adsorption sites on the platinum. The 

minor change in adsorption profiles and sticking probabilities of CO for dosings of 

less than this can be explained by invoking the sub-surface adsorption of K as 

described by Hannon28 and Lehmann13 in which the initial adsorbed potassium 

migrates to sub-surface sites, leaving CO adsorption sites un-obstructed for 

adsorption.

The temperature programmed desorption spectra recorded after the molecular 

beam experiments shown in figure 4.5 (Figure 4.7) show several interesting features 

that help to clarify the adsorption processes that are occurring in this system. With no 

potassium surface coverage there is just a single CO desorption environment at 

relatively low temperature (-120 °C, characteristic of CO desorbing from P t( lll)  -  

see section 3.3.2). As 60 s potassium is dosed onto the surface another separate CO 

desorption peak occurs at higher temperature (180 °C) with a shoulder at 220 °C. The 

magnitude of the desorption peak associated with CO on Pt(l 11) has decreased 

compared to the clean platinum, which is to be expected considering the reduced 

platinum surface area available for adsorption. When potassium is dosed onto the 

surface for 120 s the peak resulting from CO desorption from platinum is greatly 

reduced in size and the CO desorption peak has shifted to higher temperature (290 

°C). This would seem to indicate that the observed reduction in initial sticking 

coefficient and absolute adsorption observed in Figure 4.5 and Figure 4.6 is simply 

due to potassium on the surface blocking adsorption sites for CO on un-promoted 

platinum. The desorption peak at 290 °C is present for all potassium coverages of 

greater than a monolayer, indicating that CO does adsorb on potassium, but not as 

well as on P t(lll) . This feature has been observed by Somoijai and co-workers, 

however they have interpreted it as being a gradual shift of the potassium-influenced 

CO-Pt rather than as a K-CO species22. Crowell et al) observed that no CO 

adsorption took place on multilayer potassium. This, combined with the presence of 

K-CO desorption peaks in the temperature programmed desorption experiments 

following beaming (Figure 4.7), reinforces the earlier assertion that potassium surface
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growth occurs via a Stranski-Krastanov growth mode. Interestingly this conclusion 

also contradicts the conclusions of Somoijai and Garfunkel who stated that 

multiplayer potassium formation was not possible at room temperature12.

Kiskinova and co-workers have observed, using ultraviolet photoelectron 

spectroscopy and x-ray photoelectron spectroscopy, two separate CO environments 

when adsorbing CO on potassium pre-covered Pt(l 11). They state that the initial CO 

adsorption takes place into a potassium-influenced site on the platinum, followed by 

adsorption on the clean platinum. Adsorption in the potassium-influenced adsorption 

sites has a greater adsorption energy than adsorption in the platinum sites alone (< 200 

kJ m ol1 compared to 138 kJ mol*1 for CO on clean P t(lll)). They also observe 

exchange in the relative populations of clean and potassium-influenced sites as the 

surface potassium coverage increases18. These conclusions aid rationalisation of 

Figure 4.7. At 60 s dose two separate CO environments are visible, a lower 

temperature desorption peak at 125 °C resulting from CO adsorption on Pt(l 11), and a 

higher temperature CO desorption peak at 183 °C that is therefore due to the 

adsorption of CO on the electronically perturbed platinum immediately adjacent to 

potassium. As the surface dose is increased to 120 s both of these environments are 

drastically reduced in size and a new desorption peak at 277 °C, that is obviously due 

to CO adsorption on K, has appeared. All potassium doses greater than this lack the 

lower temperature desorption peaks associated with CO on Pt(l 11) and only show the 

single higher temperature desorption peak associated with potassium. This supports 

the earlier conclusions about the time of dose at which completion of a full monolayer 

occurs. That there is still CO desorption from all potassium surface dosings despite 

the limited CO sticking observed at higher K coverages suggests that CO has been 

adsorbed from the background gases in the chamber during deposition of the 

potassium layer.
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4.2.3 Sticking of 0 2 on K dosed P t( l l l)

O2 adsorbs with a low initial sticking probability on pure P t ( l l l )  (So = 0.06, 

see chapter 3). However it was found that the addition of potassium to the surface 

could vastly improve the affinity o f oxygen for the surface. This allowed the growth 

of the potassium adlayer to be examined and provides complementary data to Figure

4.3.
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Figure 4.8 - The sticking probability of a molecular beam of O2 (50 mbar molecular beam source 

pressure) with regards to 0 2 coverage for increasing time of K surface dose.

As Figure 4.8 (and Figure 4.9) show, the initial sticking probability o f oxygen 

rises in a faintly sigmoidal manner with increasing potassium dose up to a maximum 

o f So = 0.67 at 3 minutes o f dosing time. Above three minutes of potassium dosing 

time there is no further increase in the initial sticking probability o f oxygen but 

oxygen does saturate to a slightly higher coverage up to a maximum at 6  minutes.
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Plotting the initial sticking probability and saturation of O2 against the time of 

potassium dose gives Figure 4.9 (below).
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Figure 4.9 -  A plot of initial sticking probability of molecular beams of 0 2 against the time of 

potassium dose of the P t ( l l l)  crystal surface.

The above figure is clearly indicative of a monolayer being formed by 180 s 

dose. However, if the growth mode is Stranski-Krastanov as Figure 4.3 suggests, one 

would expect a more gradual levelling off o f both the initial sticking probability and 

saturation coverage towards a plateau rather than the abrupt gradient change 

(observed for O2 initial sticking probability at 180 s K dose and O2 saturation 

coverage at 240 s K dose) observed in Figure 4.9. However this may not be the case 

as, unlike the Auger data shown in Figure 4.3, deposition of potassium onto the 

surface would have the effect (neglecting oxygen penetration of the surface) of 

obstructing the potassium below it, muting the predicted gradual gradient change. 

The sigmoidal shape of the initial curve (sub-monolayer coverages) is a possible
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indication of potassium being adsorbed into subsurface sites or of adsorbed CO from 

the background being removed in a clean-off reaction.

The constant plateau that is observed in Figure 4.9 for both the O2 initial 

sticking probability and the coverage to which it saturates would appear to indicate 

that O2 adsorption is occurring via formation of an oxide of potassium for surface 

coverages in excess of a monolayer. However, adsorption may still be occurring via 

K-induced charge transfer or K-mediated adsorption followed by spillover at lower 

coverages. These two mechanisms are unlikely at monolayer coverages or above as 

potassium has been shown to completely cover the platinum surface (Figure 4.3), 

making potassium-induced dissociation followed by spillover unlikely. Potassium 

also becomes more metallic in character at higher coverages, thus reducing charge 

transfer to the platinum surface, although it is worth noting that it may be possible 

were the potassium adlayer to undergo any sort of contraction. Unlike the case for 

CO, there is no sudden change in the sticking profile of Figure 4.9 as the adsorbed 

potassium adatoms change from ionic to metallic in character.

The work of Pirug10 has shown that potassium adatoms induce O2 dissociation 

with the result of atomic oxygen binding on the Pt(l 11) surface rather than with the 

potassium. However Broden has provided evidence that dosing oxygen onto the 

surface of a complete layer of potassium disrupts the monolayer (and induces a 

contraction) and that although oxygen is stored, it is not stored as platinum oxide10. 

Together, this indicates that the adsorption of O2 on K /P t(lll) is not as simple as 

Figure 4.9 implies, with multiple adsorption mechanisms being responsible for the 

oxygen adsorption.

Examining the temperature programmed desorption experiments that were 

carried out following the molecular beam experiments in Figure 4.8 (Figure 4.10) 

provides information on the mechanism of oxygen adsorption on K/Pt(l 11). With no 

potassium present on the surface, due to the very low initial sticking coefficient of 0 2 

on Pt(l 11), no O2 desorption is evident. As O2 has a finite adsorption coefficient on 

P t( lll)  (So = 0.06) it seems likely that the lack of a desorption peak is due to a CO 

clean-off reaction. With 60 s potassium dosed onto the surface there is a desorption 

peak at 325 °C with a higher temperature shoulder. Increasing the potassium surface
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coverage resolves this shoulder and shifts it to higher temperatures. With three 

minutes of potassium dose another oxygen desorption peak at 480 °C becomes visible. 

Taken together it seems as if the initial m/z = 32 desorption peak at 325 °C is a result 

of the desorption of atomic oxygen created by a potassium-induced reduction in the 

barrier to O2 dissociative adsorption (this peak is noted in temperature programmed 

desorption spectra of potassium oxide by Somoijai et al.12, who also note that it 

disappears for potassium coverages of greater than a monolayer). The fact that this 

peak does not disappear in the temperature programmed desorption experiments 

shown in Figure 4.10 is due to a difference in experimental procedure -  in our 

experiments the potassium layer was deposited before oxidation by the molecular 

beam. This peak is therefore evidence of the contraction that occurs when oxidising a 

layer of potassium (a contraction in a complete monolayer of potassium of the 

magnitude described by Broden and co-workers would leave 25% of the underlying 

platinum surface exposed)10. This chemisorbed oxygen-platinum species has also 

been noted by Bonzel et al.n when examining oxygen adsorption on potassium- 

covered P t(lll) . The smaller size of the oxide allows atomic oxygen adsorption on 

the exposed Pt( 111). Garfimkel and Somoijai also note that potassium desorption 

occurs at the same temperature as the highest temperature oxygen desorption peak, 

making it likely that the peak at ~ 480 °C is due to a potassium oxide species 

decomposition. If so, it is worth noting that this species only occurs after a complete 

monolayer of potassium has been deposited, indicating that the potassium oxidation 

does not occur if the potassium is ionic in character. However, Brod&i and co­

workers have provided evidence that potassium oxide does not form on Pt(l 11). They 

theorise that this state is due to oxygen incorporation into the platinum surface11. It 

seems likely that, as they deposited the potassium at 600 K, only sub-monolayer 

coverages of potassium were formed; these were shown to be reluctant to oxidise 

(making the sticking observed in the early parts of Figure 4.8 and Figure 4.9 to be 

likely to K-induced 0 2 dissociation and spillover of atomic oxygen to platinum 

adsorption sites). The mid-temperature peak is likely to be due to a substrate-metal- 

oxide species as theorised by Broden et alu . The formation of potassium oxide at 

half-monolayer coverages has been proven by Cassuto and co workers. Using UPS 

they proved that molecular oxygen adsorbs via dissociative adsorption on a 

potassium-promoted P t( l l l )  surface and that the atomic oxygen produced either 

chemisorbs on the potassium/platinum or forms potassium oxide44. They also



formed potassium peroxide and superoxide species at 95 K. It is an established fact 

that O2 molecularly adsorbs in the form of O2' on P t( l ll )  as a precursor to 

dissociative adsorption45. The adsorption is facilitated by partial transfer of electronic 

charge into a n* antibonding orbital on the oxygen molecule. It is therefore to be 

expected that the enhanced back-donation from the platinum as a result of increased 

local electron density provided by adsorbed potassium would reduce the barrier to 

sticking by stabilising the precursor state as a species and reducing the barrier to 

dissociation. This is evidenced by the increased sticking of O2 that is visible with low 

coverages of surface potassium and the temperature programmed desorption 

experiment evidence that the oxygen is present as a Pt-O species.

Due to the agreement between Figure 4.3, Figure 4.9 and Figure 4.10 it was

concluded that a full monolayer o f potassium (6\c = 0.33) has been deposited at three

minutes of dosing time. This will be used as a reference point for monolayer 

completion in future experiments.

4.2.4 Adsorption of NO on K dosed P t ( l l l )  surface

Potassium was dosed onto the P t ( l l l )  surface (held at 300 K) for differing 

lengths of time using a custom built SAES getter source. NO (50 mbar molecular 

beam source pressure) was beamed onto the surface at room temperature and the 

sticking probability was measured as described earlier.

Figure 4.11 shows that the initial sticking coefficient of NO on the surface 

varies only slightly as the potassium surface coverage is increased, remaining constant 

(within experimental error) at S0 ~ 0.5. There is relatively little change in saturation 

coverage compared with CO and O2 adsorption.

It is a well-documented ability of the K /P t(lll)  system to reduce NO. This, 

combined with the adsorption on potassium-free and potassium-locally influenced 

platinum as well as adsorption effects due to the changing ionic character of the 

potassium adatoms adds complexity to the adsorption process.
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Figure 4.11 -  The variation of sticking probability with coverage for molecular beams of NO (50 

mbar molecular beam source pressure) on increasing potassium surface coverages of P t ( l l l ) .

It was found that m/z = 2 8  was desorbed after a short time lag when beaming 

NO for certain K coverages. This did not occur on clean Pt(111), making it unlikely 

that the identity o f the desorbing species was CO from the surface in a displacement 

reaction. It was therefore concluded that the identity o f the desorbing species was N2 

from NO dissociative adsorption.
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As Figure 4.12 shows only potassium coverages o f  a monolayer or greater 

produce N 2 upon beaming NO. This implies that only metallic potassium is capable 

o f reducing adsorbed NO, not potassium that is ionic in character or the platinum with 

increased electron density in the immediate vicinity o f adsorbed potassium. However, 

the CO sticking data in Figure 4.6 implies that the transition from ionic to metallic 

potassium has occurred at approximately 2 minutes potassium surface dose. It 

therefore appears that the coverage o f  potassium that is required to reduce NO is less 

than a full P t ( l l l )  crystal surface covering, possibly due to a mixture o f both ionic 

and metallic potassium being present on the surface at this coverage. Kiskinova, 

Pirug and Bonzel have reported similar findings to these in that they found that for 0K 

>0.18  NO starts to be decomposed by the surface with the formation o f N2 as well as 

an adsorbed N 0 2 species with x-ray photoelectron binding energies in agreement with 

KNO2 18. This is examined in the temperature programmed desorption experiments 

following the molecular beam experiments shown in Figure 4.11 (Figure 4.13).
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Figure 4.13 clearly shows NO desorbing with a single desorption peak at low 

temperature (98-108 °C) on clean P t( l l l )  alone, resulting from reversible molecular 

adsorption. This also occurs for 60 s potassium surface dose, indicating that the 

evenly spaced ionic potassium adatoms have only a minor effect on NO adsorption. 

The only visible effect of increasing potassium surface coverage is a lowering of the 

maximum of the desorption peak (108-98 °C). At 120 s dose another m/z = 30 

desorption peak has appeared at 180 °C. As NO has been shown to desorb from 

P t( lll)  at -100 °C (see chapter 3) this desorption peak must be due to either NO 

adsorption on K, a K-NO-Pt species or desorption of nitrate as described by Bonzel 

and colleagues.20,34 Kiskinova and co-workers have also observed the desorption of 

NO2 from potassium promoted Pt(l 11) at this temperature18. The fact that this peak 

was absent for lower coverages of potassium indicates that potassium that is metallic 

in character is necessary for the formation of this species. As further potassium is 

dosed onto the surface the area of the higher temperature desorption peak grows 

relative to that of the lower temperature peak and an oxygen desorption peak 420 - 

470 °C becomes visible, demonstrating that NO has been broken down by the surface. 

The lower temperature NO desorption peak (from Pt(l 11)) is visible up to -  240 s K 

dosing time, possibly indicating a contraction of the overlayer in a similar manner to 

that seen for O2 on K/Pt(l 11). If atomic oxygen is being produced from dissociative 

adsorption of NO it is reasonable to suppose that the reactive atomic species produced 

might react with surface potassium to form an oxide of potassium. The Pt( 111) 

surface exposed by the oxide formation would then be able to adsorb incoming NO 

molecularly.
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Figure 4.14 shows a m olecular beam  experim ent in which a beam o f NO (50 

mbar molecular beam source pressure) is beam ed on to a complete surface coverage 

o f potassium. As the beam o f  NO hits the surface o f the crystal there is a N 2 

desorption after a short lag in time. The sticking probability o f  NO falls from its 

initial value o f So — 0.58 indicating that NO adsorption sites are being occupied. In a 

similar fashion to the high potassium  surface doses in Figure 4.13, there is some 

desorption o f m/z = 30 at a tem perature characteristic o f  NO from P t ( l l l )  in the 

temperature programmed desorption part o f  the experim ent (time > 920 s), but there is 

also a m/z = 30 desorption peak at 220 °C. This occurs at approximately the same 

temperature as a m/z = 44 desorption feature. This has been identified as being due to 

the formation o f a potassium -stabilised nitrate species in the literature18. There is also 

an oxygen desorption peak at 420 °C, the region associated with 0 2 desorbing from 

potassium carbonate (see figures 4.23, 4.25 and 4.27). The size o f the m/z = 28 

desorption peak at 195 °C m akes it probable that this peak is due to the adsorption o f 

CO from the background gases in the cham ber over the whole crystal surface.
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From the above experiments it seems likely that the adsorption of NO on 

K /P t(lll) occurs via several mechanisms. At low potassium surface coverages NO 

adsorbs weakly on platinum, with the only effect of the K adatoms being a lowering 

of the temperature of desorption. At coverages of a physical monolayer or greater, 

when the potassium is more metallic in character, the potassium lowers the barrier to 

NO dissociation and NO is reduced, with N2 desorbing and 0 (a) being retained on the 

surface. The adsorbed oxygen reacts with the potassium causing a contraction in the 

surface and potassium oxide to be formed. Further NO would then be adsorbed on the 

potassium oxide as nitrite, or possibly as nitrate.

Figure 4.12 first exhibits NO decomposition at 2 minutes potassium surface 

dose. Kiskinova and colleagues have identified the coverage at which this first occurs 

as On = 0.18 however, taking figures 4.3 and 4.9 into account it appears that NO 

decomposition occurs at nearer = 0.22, assuming = 0.33 at 3 minutes potassium 

surface dose (see sections 4.2.1-3)36.

4.2.5 Molecular beams of NO on K /P t(lll)  surface held at increasing surface 

temperature

Potassium was dosed onto surface for 2.5 minutes (roughly 5/6 of platinum 

surface covered by potassium assuming that 1 full layer of potassium (0k = 0.33) has 

been deposited at 3 minutes surface dose) at 200 °C before the crystal was brought to 

the required temperature and NO (50 mbar molecular beam source pressure) beamed 

onto the surface.

As Figure 4.15 shows, the ability of the K/Pt(l 11) surface to dissociate NO is 

strongly temperature dependent. At 50 °C and 100 °C, NO binds to the surface with 

relatively high sticking probability {So = 0.5 for 50 °C and 0.45 for 100 °C) and there 

is no sign of any immediate desorption features whilst beaming. When the 

temperature of the surface is raised to 150 °C however there are immediate m/z = 44 

and 28 desorption peaks visible upon adsorption of NO onto the surface, likely due to 

the desorption of N20  from the reduction of NO. At 200 °C the m/z = 44 desorption 

peak has disappeared and the m/z = 28 desorption peak has increased in size. The 

magnitude of the NO sticking has also decreased; this is likely to be due to the
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temperature of the surface being above the desorption temperature of NO from K-Pt. 

As the temperature is increased further the m/z = 28 desorption peak decreases as a 

consequence of the reduction in NO sticking with increasing temperature.

The temperature programmed desorption data displayed in Figure 4.16 

contains several features that aid clarification of the processes occurring in Figure 

4.15. The temperature programmed desorption experiments with starting 

temperatures of 50 °C and 100 °C both show a m/z = 30 desorption peak at 85 °C 

resulting from the molecular desorption of NO from P t( lll) , as well as a m/z = 30 

desorption peak at approximately 200 °C, which must result from NO adsorbed on 

potassium. Both of these experiments also contain a m/z = 44 desorption peak at 95- 

120 °C, indicating that the m/z = 44 desorption peak present in the 150 °C molecular 

beam experiment in Figure 4.15 is from products that are present as adsorbed surface 

species in the lower temperature molecular beam experiments. The temperature 

programmed desorption experiments with initial starting temperatures of 50 °C and 

100 °C also both show m/z = 28 desorption peaks below 150 °C, indicating that the 

products visible when beaming at 150 °C are present in an adsorbed surface state 

below this temperature. The experiments in Figure 4.16 that have starting 

temperatures below 200 °C also have a m/z = 28 desorption that occurs with a m/z = 

30 desorption at 185-230 °C. This occurs with a m/z = 14 desorption (not shown) 

proving that the identity of the m/z = 28 species is nitrogen from the breakdown of 

surface species. The m/z = 44 desorption peak observed is probably due to the 

desorption of N20. All of the temperature programmed desorption experiments 

following the molecular beam experiments in which there is adsorption of NO show 

an 0 2 desorption peak indicating that NO has been reduced by the surface; however 

the maximum of this desorption peak shifts to lower temperature with increasing 

surface dose. As the plot of the initial sticking probability against increasing surface 

temperature in Figure 4.15 shows, the sticking decreases slowly with increasing 

surface temperature up to 250 °C, where after it falls off rapidly until no sticking is 

observed for the surface held at 350 °C.
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4.2.6 Mixed molecular beams of NO2 and O2 on different K coverages on the 
P t(lll)  surface

Clean P t ( l l l )

To try and build an understanding o f  the fundamental processes occurring on 

the separate components o f  the catalyst in oxidising conditions NO 2 and O2 (created 

using a 1:1 gas mixture ratio o f  NO and O 2 , 50 mbar total molecular beam source 

pressure) were beamed simultaneously at room temperature onto the P t ( l l l )  crystal 

pre-dosed with different coverages o f  potassium.
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Figure 4 . 1 7 - A mixed m olecular beam o f N 0 2 and 0 2 (created using a 1:1 mixture ratio of NO 

and O2, 50 mbar total m olecular beam source pressure) beamed on to clean P t ( l l l )  at room

tem perature.

Figure 4.17 shows that NO 2 initially sticks to the surface with 0.65 sticking 

probability. However, after an initial period, the m/z = 30 peak rises to three times its 

initial value. In concert with this rise there is an increase in the m/z = 14 peak. There 

is no apparent 0 2 sticking and no changes in m/z = 46, 44 or 28 are obvious. This is



identical to the experiments shown in chapter 3 that prove that NO has reacted with 

O2 in the gasline to form N O 2 . Therefore it is a mixture o f NO2 and O2 that is being 

beamed on to the crystal surface (as equal pressures o f NO and O 2 were used the 

mixture dosing the crystal was therefore 2 N 0 2 : 1 0 2). The large rise in the m/z = 30 

signal is a result o f NO 2 being broken down and liberating NO and atomic oxygen, 

which adsorbs on to the crystal surface displacing adsorbed NO (although mass 30 is 

a cracking fragment o f NO 2 , m/z =  30 is the molecular ion o f NO, hence why the rise 

is m/z = 30 signal at 200 s is so large).
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Figure 4.18 -  Temperature program m ed desorption following the molecular beam experiment 

shown in Figure 4.17. A tem perature ramp of 1 K/s was used in the above figure.

Figure 4.18 shows a small m/z = 30 desorption peak at 125 °C, characteristic 

of NO desorbing from P t(l 1 l)(see chapter 3), a large m/z = 28 desorption peak at 190 

°C, characteristic o f  CO desorbing from  Pt( 111 )(likely due to adsorption o f 

background CO from background gases in the chamber), a sharp m/z = 32 desorption 

peak at 240 °C and another m/z = 32 desorption peak at 280 °C present as a shoulder 

on the larger desorption peak, due to O 2 desorbing from the Pt( 111) surface. No other 

desorption peaks are evident.
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Intermediate K surface dose

K was dosed onto surface for two minutes (roughly 2 / 3  o f the platinum 

surface covered by potassium) and 0 2 and N 0 2 (created by using a N 0 /0 2 mixture, as 

described in chapter 3) beam ed simultaneously (1:1 pressure ratio mixture, 50 mbar 

total molecular beam source pressure used).
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Figure 4 . 1 9 - A mixed m olecular beam N 0 2 and 0 2 (created using a 1:1 ratio mixture o f NO and 

0 2, 50 mbar total m olecular beam source pressure) on 2/3 K coverage o f the P t ( l l l )  crystal

surface.
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The results o f the mixed beam experim ent displayed in Figure 4.19 appear 

similar to that shown in Figure 4.17, with initial sticking o f m/z = 30 followed by a 

large m/z = 30 desorption peak. The magnitude o f the m/z = 30 desorption peak is 

much less than seen in Figure 4.17. There is also adsorption o f 0 2 from the beam; 

however the 0 2 adsorbs for a much shorter time period than the N 0 2 (note that the 

pressure o f  0 2 is half that o f  the N 0 2 in the beam). There is no desorption o f 

nitrogen, which is to be expected as Figure 4.12 demonstrates that only potassium 

coverages o f a monolayer or greater are capable o f  reducing NO. It is possible that 

what is occurring above is oxygen adsorbing on the potassium and N 0 2 dissociatively 

adsorbing on the platinum in two separate reactions, or that N 0 2 is reacting with
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oxygen from the potassium-promoted dissociative adsorption o f oxygen and 

dissociative adsorption o f  NO 2 , to form nitrate. The temperature programmed 

desorption after the experiment shown in Figure 4.19 is given below.
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Figure 4.20 -  A temperature program m ed desorption experim ent o f the crystal surface following 

the molecular beam experim ent shown in Figure 4.19. A tem perature ramp of 1 K/s was used in

the above figure.

Figure 4.20 is very sim ilar to the temperature programmed desorption 

experiment shown in Figure 4.18. There is an initial sharp peak o f m/z = 30 at the 

onset o f heating, likely due to NO from Pt( 111) sites, as well as a sharp m/z = 28 peak 

from flash desorption from the heater filaments. There is a small broad m/z = 28 peak 

occurring 120-155 °C, however this is sm aller in magnitude than the corresponding 

CO-Pt(l 11) desorption feature in Figure 4.18 due to the correspondingly smaller area 

of free Pt(l 11) available for adsorption o f  background gases from the chamber. There 

is a m/z = 32 desorption peak at 170 °C with a shoulder at 210 °C in a similar manner 

to the oxygen desorption peaks seen in Figure 4.18; however the oxygen desorption 

peaks occur at a lower tem perature for this potassium coverage. There is no high- 

temperature oxygen desorption peak (associated with potassium oxide species) 

visible. There is however a small, broad m/z =  44 desorption peak at 100 °C, possibly
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as a result o f NO 2 breakdown to N 2O as shown earlier. A more likely explanation is 

that the adsorbed NO might react with oxygen that has adsorbed from the beam on to 

the potassium and forms N O 2 , which then breaks down on the platinum with the 

atomic oxygen created being adsorbed and the NO desorbed. This would explain why 

oxygen adsorption in Figure 4.19 occurs for a much shorter time period than NO 2 

adsorption and breakdown.

Saturation K coverage

To try and elucidate the role o f  potassium in the K /P t( l l l )  NOx storage 

system potassium was dosed for 6  m inutes (> 1 complete surface layer so that there is 

no exposed platinum at the surface) before being beamed with N 0 2 and 0 2 

simultaneously (created using a 1:1 ratio mixture o f  NO and O 2, 50 mbar total 

molecular beam source pressure).
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Figure 4.21 - Mixed m olecular beam o f N 0 2 and 0 2 (created using a 1:1 mixture ratio of NO and 

0 2, 50 mbar total m olecular beam source pressure) beamed on to 6  min K surface dose.

In the above m olecular beam  experiment both NO 2 and O2 stick well with 

initial sticking coefficients o f  0.65 and 0.64 respectively. However, unlike the 

previous two molecular beam  experim ents (Figure 4.17 and Figure 4.19) there is no
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large m/z = 30 desorption peak as beam ing continues, indicating that NO2 is being 

adsorbed and not broken down by the surface. There are no desorption products 

visible whilst beaming which, when com pared with Figure 4.14 indicates that N 0 2 

has not been broken down, since more than a monolayer o f potassium reduces NO 

with the instantaneous desorption o f  N 2 (see Figure 4.12). The enhanced stability of 

adsorbed N 0 2 species gained when dosing onto a potassium covered surface, as 

opposed to clean P t ( l l l )  alone has been noted in the literature. This enhanced 

stability has been explained as being due to the increased back-donation o f electrons 

from the potassium into a 6 ai m olecular orbital on the N 0 2. Evidence is provided that 

the species formed is potassium nitrate, KN O 3 . 18
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Figure 4.22 -  The tem perature program m ed desorption experim ent following the molecular 

beam experiment shown in Figure 4.21. A tem perature ramp o f 1 K/s was used in the above

experim ent.

Figure 4.22 shows the products o f  the molecular beam experiment shown in 

Figure 4.21. This figure contains several desorption features that are absent in 

previous temperature program m ed desorption experiments (Figure 4.18 and Figure 

4.20) indicating that metallic potassium  is essential for this reactive behaviour. There 

is a sharp desorption peak o f  m/z — 30 at 130 °C and as well as a small broad
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desorption peak at 250-320 °C. At 290 °C a m/z = 28 desorption peak is evident. 

There is also a m/z = 32 desorption peak at 450 °C. The m/z = 32 desorption peak is 

at a temperature characteristic o f the desorption of oxygen from potassium oxide (see 

Figure 4.10 and Figure 4.33). Taking into account the contraction of the overlayer 

associated with potassium oxide formation, it is possible that the identity of the low 

temperature m/z = 30 desorption peak is NO (adsorbed on P t( l l l )  exposed from 

formation of potassium oxide) from the breakdown of N 0 2 or adsorbed N 02 itself. 

However N 02 desorbing would be expected to give a m/z = 46 signal, which does not 

occur in the above temperature programmed desorption experiment. A more likely 

explanation however, as indicated by the similar desorption peak integrals, is that N 02 

has adsorbed on the potassium and reacted with oxygen (supplied via the molecular 

beam) to form nitrate, which is then stored on the potassium. The identical adsorption 

profile shapes for both beam species indicate this. Heating the surface causes the 

release of N 02 with the remaining (atomic) oxygen reacting with the potassium 

adlayer to form potassium oxide which then decomposes at a higher temperature ie.

2 KN03 — K20  + 2N 02 + 0 (a)

The m/z = 30 desorption peak at 250 °C also has a m/z = 44 desorption peak occurring 

with it, likely indicating the breakdown of nitrate as noted by Kiskinova in the 

literature34.

4.2.7 Co-dosing 0 2 and K at room temperature

Potassium was dosed onto the Pt(l 11) crystal surface at room temperature for 

five minutes (greater than a complete surface coverage of potassium or the contracted 

potassium oxide layer described in the literature10 assuming dk. = 0.33 at three minutes 

potassium dose as shown in figures 4.3, 4.6, 4.7 and 4.9) with differing background 

pressures of 0 2.
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Figure 4.23a shows the relationship between the background pressure o f O2 

used in co-dosing and the tem perature o f  desorption o f  the oxygen states created. 

Low doses o f O2 ( < l x l 0 ‘8 mbar) produce a single desorption peak at 430 °C. Larger 

pressures o f O2 give another two oxygen states, at 250 °C and 360 °C. As the pressure 

of O2 is increased the size o f  both o f  these peaks increases; however it appears that the 

desorption peak at 250 °C increases later than the peak at 360 °C. Examining the 

integrals o f the principal peaks (Figure 4.24) shows that despite there being no 

obvious trend between the relative populations o f  the three O2 desorption states, the 

total amount o f O2 present on the crystal surface increases with increasing O2 pressure 

in a fairly linear fashion. This suggests that at least two o f the oxygen states in the 

above temperature program m ed desorption experiments are concerned with oxygen 

storage on the potassium, possibly peroxide and superoxide species (there is no 

evidence o f K20  in the x-ray photoelectron spectroscopy data shown later in this 

section and this has been confirm ed in the literature10), with the superoxide being 

favoured at higher oxygen pressures. The fact that there is no clear trendline
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however, suggests a random factor in the creation o f the layer such as adsorption of 

CO from the background in the cham ber creating potassium carbonate species.
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Figure 4.25 -  The relative populations o f  each K desorption state.

Figure 4.23b shows the relationship between the background pressure o f O2 

used in co-dosing and the temperature o f  desorption o f the potassium states created. 

The main desorption peak appears at 450 °C and this peak grows in size with 

increasing O2 pressure. This desorption peak is present for all oxygen pressures. At 

higher pressures o f  O2 (< lx lO ' 8 mbar) another desorption peak becomes evident at 

lower temperature (-370-380 °C). The size o f  this peak also grows with increasing 

potassium dose. It is apparent from the integrals o f  the potassium desorption peaks 

(Figure 4.25) that the total amount o f  potassium that is detected increases with 

increasing O2 pressure used in co-dosing. Possible loss o f  potassium into the bulk 

during the initial stages o f  the deposition is not a factor for these experiments as the 

coverage used is greater than the coverage at which migration from sub-surface to 

surface sites occurs . 8,9 It is possible that co-dosing oxygen with potassium enables the 

formation o f an oxide o f  potassium that can saturate to a greater coverage than 

potassium alone or that co dosing with oxygen allows the formation o f a more 

compressed surface state that enables more potassium to be ‘packed into’ the surface
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in a potassium-oxygen bilayer. An alternative explanation is that the species being 

detected are K2O2 and K2CO3 that are desorbing from the surface. Increasing the 

background pressure of gas used in the creation of the layer would naturally promote 

the formation of these species. In addition to this there is no visible m/z = 39 

desorption peak for the potassium layer that is created with no background pressure of 

oxygen in the chamber, yet as figure 4.3 shows there is definitely potassium present 

on the crystal surface making it likely that the m/z = 39 desorption peaks in Figure 

4.23b are due to the desorption of KOx species from the crystal surface.

Figure 4.23c shows the relationship between the background pressure of O2 

used in the creation of the layer and the partial pressure of CO2 evolved in the 

temperature programmed desorption o f the layer. There is only one significant 

desorption peak, which occurs at 420 °C. The volume of CO2 produced increases 

with increasing O2 background pressure up to a maximum at 5 x 10*8 mbar O2, where 

a maximum is reached, with further increases in O2 background pressure producing 

no further CO2. This is strongly suggestive of carbonate formation during dosing, via 

reaction of potassium with O2 and CO adsorbed from the background gases in the 

chamber. The limit on the volume of CO2 that is desorbed from the surface with 

increasing surface potassium coverage in Figure 4.23c is hence due to the low 

background pressure o f CO in the chamber limiting the amount of carbonate that can 

be formed. When Figure 4.23a, b and c are examined together it is apparent that 

many of the desorption peaks for different species occur at the same temperature, 

suggesting decomposition of surface species with desorption of the products. There is 

a high temperature desorption peak 420-450 °C that is present for all pressures in the 

temperature programmed desorption experiments suggesting that the species which 

decomposes and desorbs is potassium carbonate, K2CO3. That this species forms in 

these series of experiments (Figure 4.23) and not in the earlier temperature 

programmed desorption experiment (Figure 4.7) suggests that CO is adsorbed on 

platinum or potassium oxide and reacts with potassium oxide to form carbonate. 

There is also a desorption peak in both the K and O2 set of temperature programmed 

desorption experiments at 360-370 °C, suggesting the decomposition of potassium 

peroxide, K2O2 (see section 4.2.10). That this desorption of O2 from K2O2 occurs at a 

higher temperature than seen previously (Figure 4.10) is likely due to enhanced 

stability associated with oxidising the complete surface coverage as opposed to just



the top surface layer. The lower temperature O2 desorption in the temperature 

programmed desorption experiment is likely due to 0 2 desorbing from P t(lll) . The 

existence of oxygen in two separate environments, one associated with platinum and 

one with potassium, when adsorbing oxygen on a monolayer of potassium (where 1 

ML equates to d = 0.33) has been noted by Pirug and colleagues, who ascribe the 

availability of the platinum environment to a contraction of the potassium layer in 

which the local potassium density rises from 6 = 0.33 to 0 = 0.44.10

An interesting feature in Figure 4.23b is that increasing the background 

pressure of oxygen appears to increase the amount of potassium adsorbed onto the 

surface. It is possible that this is due to the formation of a potassium oxide with a 

smaller unit cell, enabling more potassium to be ‘packed into’ the surface or that, as 

claimed by Somoijai and Garfunkel12, multilayer formation of potassium is not 

possible on Pt(l 11) at room temperature, but it is possible to form more than a 

monolayer of potassium peroxide (or carbonate), trapping the extra potassium into 

multilayers. An alternative explanation could be that it is the desorption of potassium 

peroxide/carbonate that gives rise to the m/z = 39 desorption peaks in figure 4.23b. 

The fact that there are no desorption peaks visible when K dosing in the absence of 

oxygen in figure 4.23b adds weight to this alternative explanation. It is important to 

note that the impurity o f the adlayer will have to be addressed in future experiments 

as it could potentially introduce complications into results.

The form of the potassium oxide species was examined using x-ray 

photoelectron spectroscopy on a separate ultrahigh vacuum system in collaboration 

with F. Grillo at Cardiff University.

0.4 ML (30 s doseXwhere 1 ML = 1 K atom : 1 Pt atom) (calculated using 

atomic sensitivity factors and the relative ratios of potassium and oxygen integrals) 

was deposited onto the Pt( 111) surface at room temperature both in vacuum and in the 

presence of 0 2 (5 x 10'8 mbar). In both cases it was found that the potassium was 

present on the surface in oxidised form (a binding energy of 293.4 eV was recorded 

for the K 2p3/2 peak, compared to the 294.4 eV expected for pure potassium). It was 

found that when dosing potassium up to 120 s dose that the potassium was still 

present as K+ when being dosed in the vacuum, as well as in a background pressure of
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g
O2 (5 x 10 mbar). It is therefore evident that potassium deposited in vacuum is 

reacting with residual gases in the background o f the chamber, possibly forming 

carbonate as evidenced in Figure 4.23 and the XPS below.

K (2p)

3/2

Figure 4.26 - K(2p) XPS spectra with peak fitting o f  clean P t ( l l l ) ,  and crystal surface after 30 s 
and 120 s of dosing K in 5 x 10*8 m bar 0 2. Spectra are offset for clarity.

unclosed surface

fX'

/V

.w1

0 (18)
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'Vv

30sSWVl
undosed surface

Figure 4.27 - C (ls) and 0 ( l s  ) XPS spectra o f  clean P t ( l l l ) ,  and crystal surface after 30 s and 120 

s of dosing K in 5 x 10* mbar 0 2. Spectra are offset for clarity.

To examine the effect o f  annealing potassium surfaces were created by dosing 

for 15 minutes onto the crystal surface held at 50 °C with 2 x 10 mbar O2 

background pressure and then annealing at both 150 °C and 250 °C.
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Figure 4.28 - K(2p), O (ls) and C (ls )  XPS spectra before and after 15 minutes o f K dosing and 

after annealing at 150 °C and 250 °C.

From Figure 4.28 it can be seen that there was a low level o f carbonaceous 

contamination on the surface prior to dosing. Dosing 15 minutes o f potassium in an 

oxygen atmosphere gave a large C ls  peak in the recorded spectrum. However 

annealing the surface at 150 °C after dosing reduced the level o f carbonaceous 

contamination, and annealing the surface at 250 °C greatly reduced the amount o f 

carbon incorporated into the layer. As can be seen there is a K2p3/2 peak at -  294.0 

eV and an O ls  peak at -5 3 1 .6  eV. From the table given in Figure 4.29 this binding 

energy is likely to indicate the presence o f  K2O 2 at the surface. The attribution to 

potassium peroxide is validated by a K/O ratio o f  -0 .9 8  (calculated from the atomic 

sensitivity factors and the relative ratios o f  the potassium and oxygen integrals). 

Dosing the crystal surface at elevated temperature was sufficient to remove most o f 

the carbonaceous contamination that is present when dosing at room temperature.

Substrate BE in K20 BE in K 2O 2 BE in K 0 2 BE in K2O3 Ref

Si(lll) 528.3 cm the surface 

(02 exp < 4L) 

527.2 under the surface 

(02 exp > 4L)

531.0 534.3 532.0 46

Diamond (100) 531.1 534.3 534.2 47

531.4 

low coverage

534.2 

high coverage

48

Ni(100) 529.5 49

NiO + K on 

Ag(100)

529.6 532.2 534.0 50

Figure 4 .2 9 -  The Binding Energy o f  O (ls )  peak in different K compounds prepared on different 

substrates
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4.2.8 Mixed m olecular beam s of N 0 2 and  0 2 on K 20 2/K 2C 0 3 layer formed at 

room tem peratu re

A layer o f potassium peroxide/carbonate was created by dosing potassium in 2
•8

x 10 mbar o f O 2 at room tem perature for 5 minutes, creating a mixed layer o f 

potassium peroxide and potassium carbonate as seen in section 4.2.7. A mixed 

molecular beam o f N 0 2 and 0 2 (created using a 1 : 1  ratio mixture o f NO and 0 2 as 

described in chapter 3, 50 m bar total m olecular beam source pressure) was then 

beamed onto the surface at room temperature.
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Figure 4.30 - A mixed m olecular beam o f N 0 2 and 0 2 (created using a 1:1 gas mixture ratio of 

NO and 0 2, 50 mbar total m olecular beam source pressure) on potassium peroxide/carbonate

surface form ed at room tem perature.

The above molecular beam experim ent shows that N 0 2 and 0 2 both stick 

moderately well with initial sticking probabilities o f  approximately 0.2 and 0.3 

respectively. This represents an enhancem ent in the sticking o f 0 2 and a decrease in 

the sticking probability o f  N 0 2 with regards to the clean Pt(111) surface or a decrease 

in initial sticking coefficient for both species with regards to the equivalent surface 

dose on clean potassium. That the beam o f  0 2 adsorbs is not surprising as the lower 

temperature desorption peak in Figure 4.23a appears for oxygen coverages greater
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than were used in the creation o f  the layer used in the above experiment, making it 

likely that the oxygen from the beam has adsorbed on the platinum. No desorption 

products are obvious in the reaction indicating that NO 2 breakdown in a similar 

manner to the earlier Figure 4.17 and Figure 4.19 has not occurred. If  one examines 

the mixed molecular beam scattering experim ent shown in Figure 4.32 it is apparent 

that the O2 from the mixed m olecular beam  has not adsorbed on the (identically 

created) layer. This strongly suggests that a surface reaction between N 0 2 and 0 2 has 

occurred in Figure 4.30.
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Figure 4.31 -  Tem perature program m ed desorption o f the crystal surface following the 

m olecular beam experim ent shown in Figure 4.30.

Figure 4.31 shows the tem perature programmed desorption experiment after 

the molecular beam experiment displayed in Figure 4.30. There is a single broad m/z 

= 32 desorption peak present at 410 °C and a single, small m/z = 44 peak at 435 °C. 

There are no other desorption peaks in evidence. Correlating the oxygen and CO2 

desorptions with the earlier tem perature programmed desorption experiments (Figure 

4.23a and Figure 4.23c) it appears that these species are from the desorption o f the 

surface K2O2/K2CO3 layer. It therefore appears as if  the N 0 2 (and possibly the 0 2 

from the beam experiment) have adsorbed transiently with a short surface lifespan. 

This is possibly evidenced by the adsorption o f further O2 after the layer has been
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deposited in oxygen. The m agnitude o f  the m/z = 44 desorption peak is much less 

when compared with the m/z = 32 desorption peaks that are seen in Figure 4.23a and 

Figure 4.23c, indicating that this layer is com posed o f more potassium peroxide than 

carbonate.

4.2.9 Mixed molecular beam of CO and 0 2 on K2O 2/K 2CO3 layer formed at 
room temperature

A layer o f  potassium peroxide and carbonate was created by dosing potassium 

in 2 x 10' mbar o f  O 2 for 10 min at room temperature. A mixed beam o f CO and O2 

(created using a 1:1 ratio m ixture o f  CO and O 2 , 50 mbar total molecular beam source 

pressure) was then beamed on to the surface at room temperature.
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Figure 4.32 -  A mixed m olecular beam o f CO  and 0 2 (1:1 ratio mixture, 50 mbar total molecular 

beam source pressure) beamed onto potassium  peroxide/carbonate species at room temperature.

As is evidenced by Figure 4.32, neither CO nor 0 2 stick to the mixed layer 

created to any appreciable degree. In addition to this there are no visible desorption 

products whilst beaming or during the temperature programmed desorption reaction
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following the experiment (other than the desorption peaks associated with a mixed 

potassium peroxide/carbonate layer as seen in Figure 4.23), which is consistent with 

no adsorption o f either o f  the reactants from the beam.

4.2.10 Co-dosing K and 0 2 at 200 °C

To try and achieve a purer layer o f  potassium peroxide, potassium was dosed 

onto the crystal surface at 200 °C (above the desorption temperature o f CO from the 

Pt(l 1 1 ) surface) for five minutes with differing background pressures o f 0 2.

COc
0 5

to
CO

Temp /°C

Figure 4.33 -  Temperature program m ed desorption experim ent o f 0 2 from K20 2 layer created at

200 °C.

The above figure shows the variation o f  the temperature o f desorption o f 0 2 

with respect to the partial pressure o f  0 2 used in the creation o f the layer. There is 

one major desorption peak for all pressures at between 360 and 380 °C, which appears 

to move to lower temperature with increasing 0 2 pressure used in creation o f the 

layer. For 0 2 pressures above 5 x 10‘8 m bar there is a second desorption peak at 240- 

250 °C, indicating the presence o f  another oxygen species on the surface. This peak 

also appears to shift to lower tem perature with increasing 0 2 background partial 

pressure. These two separate oxygen species have been noted by Broden and
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colleagues who assigned the lower tem perature desorption state to oxygen desorbing 

from a platinum environment and the higher temperature desorption peak to oxygen 

desorbing from a potassium environment. They claim that the potassium is not in a 

K2O form despite adsorption stoichiom etries o f  1 :2 10.

The temperature program m ed desorption o f the layer formed using 5 x 10' 7 

mbar o f oxygen during its creation has a higher temperature shoulder on the 

desorption peak at 370 °C, a feature that is also present in the 2 . 5  x 1 0 '7 and 7 . 5  x 1 0 '8 

mbar temperature programmed desorption experiments. Taking the data o f the earlier 

Figure 4.23a into account it seems likely that this shoulder is due to the presence of 

potassium carbonate in the potassium peroxide layer. This is confirmed in Figure 

4.34 and Figure 4.35.
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Figure 4.34 -  Tem perature program m ed desorption experim ent o f K desorbing from K20 2

surface created at 200 °C.

Figure 4.34 shows the relationship between the background pressure o f O2 

whilst dosing potassium and the am ount o f  potassium incorporated into the surface 

layer. There is a single m ain desorption peak that is present for all O2 pressures,
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which occurs at 350-375 °C. As the background pressure o f O2 increases the size o f 

this peak increases up to m axim um  at 1 x 10*7 m bar 0 2. Above 7.5 x 10‘8 mbar there 

appears to be a second site o f  K occupancy at 420-430 °C, indicating the presence o f 

another potassium species on the surface. However this peak is much smaller than the 

lower temperature peak and does not appear for all traces, indicating that its origin is 

likely from background gases w ithin the chamber. As the background pressure o f O2 

whilst dosing is increased the area o f  the potassium desorption peak at 350-370 °C 

also increases, up to a lim it at 1 x 1 0 ' 7 m bar O 2 , indicating that the presence o f oxygen 

aids the uptake o f potassium w hilst dosing. However this seems counterintuitive as it 

is generally assumed that metal atom s from a doser adsorb at a constant rate with a 

sticking probability o f  close to unity. A m ore probable explanation for the increased 

uptake is that potassium peroxide is m ore stable on the P t ( l l l )  surface than 

potassium, and is able to form multiple layers, unlike potassium alone.

Pressure 0 2 used in K dosing 
I mbar
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5x1 O'4 
7.5x10'' 
1x10'7 
2.5x10'! 
5x1 O'7

1.00E-010

5.00E-011

0.00E+000
200 250 300 350 400 450 500

T em p  / °C

Figure 4.35 -  A tem perature program m ed desorption experim ent showing the amount of C 0 2 

desorbed from the K2O2 layer created at 200 °C.

Figure 4.35 shows the relationship between the temperature o f desorption o f 

C 0 2 from the surface and the background pressure o f  0 2 used in the creation o f the
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layer. In a similar fashion to Figure 4.23c there is a single m/z = 44 desorption peak 

between 400 and 430 °C. However the scale of the desorption peak is approximately 

1/25 of the desorption peak seen in the previous temperature programmed desorption 

experiment (Figure 4.23c), indicating that dosing at 200 °C is effective in reducing the 

carbonate contamination when creating a layer of potassium peroxide. It can 

therefore be concluded that the temperature programmed desorption peaks associated 

with potassium peroxide occur in the potassium temperature programmed desorption 

at 350-375 °C and the oxygen temperature programmed desorption at 360-380 °C. 

These conclusions are supported by similar experiments in the literature12. The lower 

temperature O2 desorption peak (230-250 °C) is most likely due to K/K2O2 -induced 

oxygen dissociation followed by spillover onto P t ( l l l )  surface sites or by K/K2O2 -  

facilitated O2 molecular dissociation and adsorption of atomic oxygen on P t( l l l )  

surface sites. In addition to this the high-temperature K, O2 and CO2 desorption peaks 

seen in Figure 4.23a, b and c are due to dissociation of potassium carbonate surface 

species and desorption of the products. Despite the presence of carbonate in the 

above experiments, when compared with the temperature programmed desorption 

experiments from the layer formed at room temperature it is apparent that the 

potassium peroxide layer formed at 200 °C is much less contaminated with potassium 

carbonate than the layer formed at room temperature.

4.2.11 Molecular beams of CO on K2O2 surface created at 200 °C

Adlayers of potassium peroxide were created by dosing potassium for varying 

lengths of time in 2 x 10'8 mbar o f 0 2 at 200 °C (to ensure that carbonate 

contamination was kept to a minimum). It was found that CO exhibited a negligibly 

low sticking probability for large K2O2 surface dosings. CO (50 mbar molecular 

beam source pressure) was beamed onto the surface created and the sticking 

probability determined as a function of K/O2 dosing time.
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Figure 4.36 - The variation o f sticking probability o f  m olecular beam s o f CO (50 mbar molecular 

beam source pressure) w ith increasing tim e o f  K /0 2 dose o f the P t ( l l l )  surface.

As Figure 4.36 shows, dosing up to 2 m inutes potassium peroxide onto the 

surface o f the P t ( l l l )  crystal has little effect on the saturation coverage and only a 

small reduction in the initial sticking coefficient. A fter that point both the initial 

sticking coefficient and the saturation coverage drop sharply, until there is no obvious 

CO adsorption by the surface after 5 m inutes potassium peroxide surface dose.
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Figure 4.37 - A plot of the initial sticking coefficient of molecular beams of CO against time of

K /0 2 dose of the P t ( l l l )  surface.

Figure 4.37 clearly shows that although CO sticks with good initial sticking 

probability (So = 0.53) on clean P t( l l l ) ,  as the coverage of potassium peroxide is 

increased the initial sticking probability decreases. After 5 minutes no adsorption of 

the beam of CO is observed. There is a large difference in the initial sticking 

coefficients between three and four minutes dosing time, which is likely to be due to 

completion of the first layer. This occurs at a later time than seen previously for 

potassium adsorption (Figure 4.3, Figure 4.6 and Figure 4.9) which, assuming a 

constant flux from the potassium source and a constant sticking probability of 

potassium atoms on the surface, is likely due to the smaller size of potassium peroxide 

(made up of layering of K+ and 0 22') allowing a greater surface packing into the layer. 

This agrees well with the smaller size o f oxidised potassium recorded by Bonzel and 

colleagues10. CO sticks to K20 2 with a lesser sticking probability than on clean 

potassium alone, indicating competition between CO and 0 2 adsorption.
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4.2.12 Molecular beams of NO on K20 2 surface created at 200 °C

Different coverages o f  K 20 2 were created by dosing potassium in 2x1 O’8 mbar 

of 0 2 at 200 C for varying am ounts o f  time. The surface thus created was then 

cooled to room temperature and beam ed w ith NO (50 mbar molecular beam source 

pressure).

Tim e o f  K / O j  dose 
/  rtiin0.7 -

0.6  -

0.6  -

0 .2  -

0.0
00 0.1 0.2 0.3 0 .4 0 .5 0 6 0 7 0.8 0.9 1.0

NO Coverage / ML

Figure 4.38 - The variation o f sticking probability o f m olecular beam s o f NO (50 mbar molecular 

beam source pressure) with NO coverage for increasing tim e o f  K /0 2 dose o f the P t ( l l l )  surface.

In the above figure it can be seen that the presence o f potassium oxide slightly 

increases the initial sticking probability o f  NO (and also seems to decrease the 

magnitude o f the precursor effect in operation) up to 4 minutes o f dose, where after no 

further increase in sticking probability is observed. There is an initial decrease in the 

coverage to which the beam  saturates below  a full surface layer o f potassium 

peroxide; however as the Pt( 111) surface coverage is increased further the maximum 

saturation coverage increases up to a maximum o f  0.93 ML NO at 5 minutes K20 2 

surface dose. Surface coverages o f  K 20 2 greater than this decrease the saturation 

coverage close to that o f  the clean surface. Evolution o f  m/z =  28 was observed 

whilst beaming when beam ing onto K /0 2 surface dosings o f three minutes and
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greater, which was assigned to N 2 desorbing from the surface. No m/z = 44 

desorption peaks were observed, leading to the conjecture that the K20 2 surface was 

completely dissociating the NO with the nitrogen desorbing and the oxygen adsorbing 

onto the surface as seen earlier in Figure 4.36 and Figure 4 .3 7 .
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Figure 4.39 - Tem perature program m ed desorption o f NO following the molecular beam

experim ents shown in Figure 4.38.

Figure 4.39 shows the tem perature programmed desorption o f the crystal 

surface following the molecular beam experim ents shown in Figure 4.38. For doses 

of K20 2 o f one minute and less there is a single desorption peak o f NO at 90 °C, 

implying that the peroxide is present as a different surface state at smaller surface 

coverages. However, as Figure 4.38 showed, the sticking coefficient o f NO for the 

surface actually increased, disproving the conjecture that the only adsorbed NO is that 

which is associated with platinum. As the surface coverage o f K20 2 is increased a 

separate desorption peak at 200 °C becom es visible. This peak grows in area with 

increasing surface coverage at the expense o f  the lower temperature peak, which 

becomes smaller. Above five m inutes o f  dosing the lower temperature desorption
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peak disappears, suggesting that it is associated with NO adsorbed on P t(l 11) and that 

completion o f the monolayer has occurred by this point. However the surface 

reaction is more complicated than is im plied by the above temperature programmed 

desorption experiments, with NO being broken down by the surface in a similar 

fashion to that seen on K /P t( l l l ) .  This is examined in the molecular beam 

experiments below.

The three molecular beam experim ents below show the differing behaviour o f 

a molecular beam o f NO (50 m bar m olecular beam source pressure) on three different 

coverages o f K2O2 . The surfaces were created at 200 °C to minimise contamination 

from background gases within the cham ber before being allowed to cool to the 

required temperature.
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Figure 4.40 -  A molecular beam o f NO (50 m bar m olecular beam source pressure) beamed onto 

the clean P t ( l l l )  crystal surface followed by tem perature programmed desorption of the surface

(tim e > 700 s).

The above m olecular beam experim ent shows a molecular beam o f NO on a 

clean Pt(111) surface at 60 °C. As seen in chapter 3, NO sticks moderately well to 

P t ( l l l )  with So = 0.55. There are no products immediately visible upon adsorption 

and ramping the temperature on the surface at a rate o f  1 K/s (time > 685 s) produces 

two NO desorption peaks; a sm aller peak immediately at the onset o f heating (due to
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flash desorption of NO from the heating filaments) and a larger peak at 95 °C due to 

NO desorbing intact from the crystal surface as a result o f  molecular adsorption. The 

integral of these two peaks is approxim ately equal to the coverage given by the area 

of the NO sticking peak. There is also a large m/z = 28 desorption peak at 210 °C that 

is due to CO adsorbing onto the rest o f  the crystal from the background gases within 

the chamber.
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Figure 4.41 -  A m olecular beam o f NO (50 m bar m olecular beam  source pressure) beamed onto 

more than a com plete layer o f potassium  peroxide followed by tem perature programmed  

desorption o f the crystal surface (tim e > 400 s).

Figure 4.41 is a m olecular beam  experim ent o f  NO (50 mbar molecular beam 

source pressure) beam ed onto more than a com plete surface covering o f K2O2 ( 1 0  min 

dosing time). As can be seen, NO sticks well to the surface with So -  0 .6 6 . The fact 

that there is a m/z =  28 desorption peak w hilst beam ing suggests that NO is adsorbing 

dissociatively, at least in part. The only m /z = 30 desorption peak in the temperature 

programmed desorption part o f  the experim ent (time > 400 s) is at 240 °C, above the 

temperature associated with the m olecular desorption o f NO from P t( l l l ) .  There is 

also a m/z = 44 desorption peak at 200 °C, likely indicating the desorption o f N20  

from the surface. The m/z = 28 desorption peak that occurs at 210 °C is likely due to 

the desorption o f CO adsorbed from background gases during surface preparation and
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during the course ot the experiment. There is also a m/z =  32 desorption peak at 410 

C, either as a result of the decom position and desorption o f potassium carbonate from 

the surface or as a result o f  the desorption o f  adsorbed oxygen, possibly from the 

decomposition of nitrate at lower tem perature in a similar manner to that seen on 

potassium alone.
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Figure 4.42 -  A m olecular beam o f NO (50 m bar m olecular beam source pressure) on 

intermediate K20 2 surface coverage followed by tem perature program m ed desorption of the

crystal surface (tim e > 325 s).

The above figure shows a m olecular beam  experim ent o f a beam of NO (50 

mbar molecular beam source pressure) beam ed onto an intermediate surface covering 

of K2O2 (2 minutes surface dose). This surface dose was chosen so that there would 

be areas o f potassium peroxide on the surface as well as areas o f Pt( 111), hopefully 

allowing any concerted reactions between the two components to be analysed. As can 

be seen, the beam o f NO adsorbs to the surface with So = 0.6 (higher than seen for 

clean Pt(l 1 1 )-  see Figure 4.38). U nlike in Figure 4.41, in Figure 4.42 there is no m/z 

= 28 desorption peak observed on beam ing NO. In the temperature programmed 

desorption part o f the experim ent (time > 350 s) there appear to be two main m/z = 30 

desorption peaks; one at 95 °C, characteristic o f  NO desorbing from the platinum and 

one at 180 °C. There is also a m/z = 32 desorption peak at 490 °C which is likely due 

to the desorption o f oxygen from the potassium. The m/z = 28 desorption peak that is
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visible at 195 °C is likely due to the desorption of CO which has adsorbed from the 

background gases within the chamber.

Taking the above three figures into account it is apparent that potassium 

peroxide has the effect of facilitating the dissociative adsorption of NO to atomic 

nitrogen and oxygen ie.

NO —* N(a) + 0(a)

The atomic nitrogen may recombine and desorb and, from the work carried 

out by Kiskinova and colleagues in the literature36, it appears that the atomic oxygen 

may react with another NO molecule to form a nitrite.

N(a) + N(a) —► N2

K20 2 + 2 0 (a) + 2NO -► 2KN 02 + 0 2

Alternatively a potassium peroxide-facilitated disproportionation reaction 

between two NO molecules may occur.

2NO — N 02' + N(a)

4.2.13 Mixed molecular beams of NO2 and O 2 on K2O 2 surface created at 200 °C

A layer of potassium peroxide was created by dosing potassium for 5 minutes 

in 2x10*® mbar of 0 2 at 200 °C. The layer was created at this temperature (above the 

desorption temperature of CO from Pt( 111)) to reduce the presence of carbonate in 

the layer. The layer was then allowed to cool to room temperature and a mixed beam 

of N 02 and 0 2 (created using a 1:1 mixture ratio o f NO and 0 2 as described in chapter 

3,50 mbar total molecular beam source pressure) was beamed onto the surface.
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Figure 4.43 -  A mixed m olecular beam o f N 0 2 and 0 2 (created using a 1:1 ratio of NO and 0 2, 50 

mbar total molecular beam source pressure) beam ed onto K20 2/ P t ( l l l )  surface (created at 200 

°C then allowed to cool to room tem perature). N ote that m/z = 14, 28, 44, and 46 have been

elim inated for clarity.

The above molecular beam experim ent shows that there is no visible sticking 

of either NO 2 or O 2 on the potassium peroxide surface. In addition to this there are no 

obvious products created whilst beam ing and there were no features in the 

temperature programmed desorption experim ent which followed the molecular beam 

experiment to suggest that a surface reaction had occurred.

4.3 Summary and conclusions

4.3.1 Platinum (111)/Potassium

• On Pt( 111), the growth o f the potassium  layer occurs via the initial completion 

o f a full m onolayer followed by island formation in Stranski-Krastanov 

fashion.

•  The ionic character o f  the potassium  on the surface has a large effect on the 

CO adsorption, with potassium  that is largely ionic in character providing little 

obstacle to CO adsorption and potassium that is more metallic reducing the 

sticking coefficient o f  CO for the surface. CO that is adsorbed by the surface
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adsorbs in a K-influenced state that is more strongly bound than CO on 
P t( l l l)  alone.

• Despite a very low sticking coefficient on P t( l ll) ,  O2 adsorbs readily on K- 

dosed Pt( 111) to form K2O2 . Three distinct oxygen environments are visible, 

one associated with the platinum, one with the potassium alone and a high 

temperature oxygen desorption state that is associated with C 02 as well as 
potassium.

• The oxidised potassium is likely to be of the form K2O2 and comprises a more 

compressed surface species (likely involving layering of K+ and O22") than 

potassium alone.

• The adsorption of NO on potassium promoted platinum gives an adsorbed 

species that is different from NO on Pt(l 11) and, at a critical surface coverage 

of potassium, potassium-promoted NO begins to dissociate with the release of 

nitrogen. This is the same potassium surface coverage at which there is a drop 

in the initial sticking coefficient o f CO on K/Pt. The dissociation leaves 

behind a surface species (identified in the literature as nitrite18) that breaks 

down ~ 200 °C and desorbs, leaving adsorbed oxygen.

• Dosing a complete monolayer o f potassium onto the Pt(l 11) surface changes 

the adsorption characteristics o f NO2 . Instead of being reduced to NO the NO2 

is stored by the surface, possibly as nitrate.

4.3.2 Platinum (lll)/Potassium  peroxide

• Co-dosing potassium and oxygen at room temperature produces an adlayer of 

potassium peroxide that is contaminated with carbonate from adsorption of 

CO from background gases in the chamber. The amount of carbonate in the 

peroxide layer can however be greatly reduced by dosing onto a surface held 

above the temperature of desorption of CO from Pt( 111).

• Multiple oxygen species are visible in the temperature programmed desorption 

of the peroxide layer; one associated with potassium carbonate, one with 

peroxide and one with platinum. Increasing the pressure of oxygen appears to 

aid adsorption of potassium by the surface; this is assumed to be the result of 

multilayer formation.
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• As with potassium, dosing potassium peroxide onto the surface reduces the 

adsorption of CO. Unlike with potassium however there is no separate CO 

adsorption site, adsorption is prevented via blocking of platinum CO 

adsorption sites.

• The peroxide surface is capable o f breaking down NO in a similar manner to 

that seen for the potassium layer. Unlike potassium however the NO2 is not 

adsorbed or broken down by the peroxide layer.
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5.1 Literature Review

There is relatively little information in the literature focusing on the 

characterisation of barium and barium oxide under ultrahigh vacuum conditions, 

research efforts having being more concentrated on NOx storage and reaction in 

catalytic reactor studies. There is considerably more information on MgO, a similar 

material, however one should be wary of drawing too close a  parallel between the two 

species as BaO is considerably more ionic in nature than MgO and also much larger, 

with a lattice constant approximately 30% greater than MgO1.

Under standard conditions barium oxide is an oxide with a cubic sodium 

chloride-like bulk structure with a lattice constant of 5.59 A and it possesses a high 

degree of ionicity10. The large lattice parameter leads to a lower restoring Madelung 

potential when compared to similar alkaline earth metal compounds. This is 

important with regards to NOx storage as it implies that O anions in a BaO lattice 

would be more easily oxidised by the presence of an oxidant (NO2 is particularly 

relevant in this system) than comparable compounds10. Barium oxide is known to 

have a very low work function, implying that it forms with negative ions inward and 

the positive barium centres towards the vacuum7,2.

The growth of the barium layer on Pt(l 11) has been found to proceed in a 

Stranski-Krastanov manner, in which a single monolayer of Ba is deposited and 

completed before nanoparticles and islands of Ba begin to form on top of the layer.3 

Stranski-Krastanov growth is characterised by the simultaneous presence of two 

different adatom environments; both as particles and as a complete physical 

monolayer. It is interesting to note that in the Pt( 111 )/Ba system these different 

barium environments exhibit different behaviour when oxidised. Oxidation of the 

barium particles on top of the layer irreversibly produces BaO whilst oxidation of the 

barium in the layer reversibly produces Ba0 2 6.

Calculations involving the relative atomic radii of platinum and barium atoms 

indicate that the most densely-packed barium surface adlayer would be (2 x 2) in 

structure, corresponding to a monolayer coverage of 0.25 ML (where a 1 ML 

coverage would correspond to 1 adsorbate atom per 1 substrate atom)6. STM
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measurements of a barium oxide surface have verified that the barium-oxygen spacing 

is twice the spacing of 0.39 nm that would be expected for a (1 x 1) BaO structure, 

forming a (2 x 2)-BaO layer7, implying a reconstructed B aO (lll) surface layer as 

predicted by theory3,4 and seen for other fee metal surfaces5. However, due to strain 

between the platinum surface and the barium/barium oxide adlayers and the disorder 

within the adlayers no LEED patterns were observable6,7. The (2 x 2) reconstruction 

leads to a BaO surface layer that is terminated by three-sided pyramids composed of a 

barium ion at the apex bonded to three oxygen atoms at the base of the pyramid, 

which in turn are bonded to the four nearest Ba ions in the manner predicted for 

rocksalt-structure materials7,8. The sides of these pyramids are BaO(lOO) surfaces7. 

Larger (4 x 4) surface reconstructions have been shown to form larger pyramids; 

however these are much less common than the (2 x 2) reconstructions mentioned 

earlier, either due to this being the favoured phase or for the greater amount of BaO 

needed for the larger pyramids not being present in thinner films7.

It has been shown that NO storage on BaO/Pt(l 11) is only able to occur when 

both NO and O2 are present6. However, according to the model postulated by the 

authors, NO oxidation does not occur over the platinum, and exposed platinum is not 

necessary for NOx storage. This is in direct disagreement with the generally accepted 

model in which oxidation of NO occurs over the platinum metal centre before storage 

as nitrate on the BaO9,10. However, both NO and NO2 have been shown to adsorb on 

barium oxide in the absence of the noble metal present in the NSR catalyst. The 

amount of NO2 adsorbed is much greater than the amount of NO in the absence of 

platinum however, implying that the oxidation of NO is an important first step in the 

NSR process11,15. It may be that the first step of the NOx storage mechanism is the 

production of barium peroxide, which may then go on to react with NO and hence 

store NOx.

Theoretical and experimental studies have shown that the identity of the stored 

NOx is likely to be Ba(N03)29,12’13. The mechanism of the formation of the barium 

nitrate is still a matter of controversy however. On bulk barium oxide theoretical 

studies have shown that N 0 2 has little energetic preference with regards to adsorbing 

on the Ba or O centres. The site o f adsorption has however been shown to influence 

the species formed, with adsorption of N 0 2 on oxygen being shown to favour nitrate
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species (N 03 ) whereas adsorption of N 0 2 on Ba forms adsorbed nitrites (N02 ). The 

authors show that there is an ionic interaction between the adsorbed nitrites and the 

banum centre, making it an important step in the storing of NOx. This step indicates a 

difference in the mechanism behind the storing of NOx and the unwanted poisoning of 

the catalytic surface by SOx10. Surface nitrite species have been shown to be more 

thermally stable than surface nitrates9.

One possible adsorption sequence is the formation of nitrites followed by the 

formation of pairs of nitrite-nitrates and nitrate-nitrites along with pairs of nitrates. 

This is supported by evidence from flow-reactor studies in which the adsorption of 

N 02 is shown to given NO as a product on BaO/Al20 310. The formation of NO may 

also be indicative of the formation of peroxide species at the surface.

Sedlmair et al. 9 have produced IR information that shows that two distinct 

types of nitrites are formed; linear and bridged. They account for this as being due to 

8+ N atoms in the NO interacting with 8- O atoms in the BaO and creating a linear 

nitrite species. However if this occurs on a BaO oxygen that is less well coordinated 

(for instance one perpendicular from the plane of the surface) the free oxygen of the 

NO could interact with another Ba atom, creating a bridged species9.

Taking these results together it seems as if the initial adsorption of N 02 on 

BaO produces an adsorbed nitrite species. This requires transfer of an electron from 

the oxygen present in the surface. The transfer of the electron leaves a vacant hole in 

the 0(2p) electron energy level, facilitating adsorption of another N 02 molecule. This 

second N 02 molecule adsorbs as nitrate at the thus activated surface oxygen, forming 

a nitrite-nitrate linked pair. A further N 0 2 molecule oxidises the nitrite of the pair, 

producing Ba(N03)2 and a gas phase NO molecule10,14.

It has been hypothesised that the formation of B a02 is essential in the 

oxidation of NO to nitrate, as a source of highly reactive oxygen is required9. 

However it has also been predicted that B a02 and a nitrite is formed by the 

dissociative adsorption of N 0 2 and that bridging nitrites are capable of being oxidised 

to N 02 by gas phase NO 15. A species that is thought to be Ba02 can be seen via 

scanning tunnelling microscopy to form readily at 573 K whilst dosing 0 2 onto a
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barium adlayer. Such species are unstable with a transient lifetime however; when the 

background pressure of O2 is removed the islands formed can be seen to shrink before 

disappearing6. It is possible to form stable islands of BaC>2 at lower temperature by 

exposure to high pressures of oxygen, allowing distinct images of the BaC>2 structure 

to be produced6.

Schmitz et a /.15 have provided x-ray photoelectron spectroscopic experimental 

data that suggests that NO2 dissociatively adsorbs onto BaO. They account for this as 

possibly being due to the NO2 dissociating to form Ba0 2  and linearly bonded nitrites. 

These nitrite intermediates may then go on to form predominantly nitrates for higher 

coverages of NO2 . They hypothesise that nitrate formation might occur via a trimer 

of two adsorbed nitrites and a molecularly adsorbed nitrate. NO, on the other had, 

adsorbs molecularly to form a nitrite15.

It has been found that the breakdown of Ba(N0 3 ) 2  which is desirable under 

anaerobic conditions is inhibited by the presence of O2, which stabilises the 

compound and raises the temperature at which it desorbs. The presence of CO2 

however facilitates the release of the stored NOx by promoting formation of 

BaC0316,17. BaC03 has been shown to exist in chelating, bridged and monodentate 

forms9.

Stored C 02 in the form BaC03 has been shown to be released in the presence 

of NO or NO + 0 2 but not in the presence of N 0 2. From this it can be inferred that it 

is the NO which has a vital role in the decomposition of BaC039.
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5.2 Results and Discussion

Only a very small signal was detected due to barium with Auger electron 

spectroscopy due to the low sensitivity o f barium for this surface analysis technique. 

This effect has been noted in the literature6. This made it impossible to use Auger 

electron spectroscopy to chart the growth o f the barium surface in a similar manner to 

that seen for potassium in chapter 4.

5.2.1 Sticking of O2 on Ba dosed P t ( l l l )

Barium was dosed onto the surface at 200 °C for increasing lengths of time 

using a custom built SAES getter source heated to over 900 °C and positioned in front 

of the crystal. After outgassing the differential pressure rise was 1 x 10'9 mbar during 

the course of the depositions, the majority o f which was due to hydrogen and CO 

desorption from the doser. The crystal surface was held at elevated temperature to 

reduce the adsorption of background gases during the dosing. The surface was 

sputtered and annealed for multiple cycles in between each dosing to make certain of 

the removal of all the barium used in previous experiments from the surface.

O2 sticks with a low initial sticking probability on pure Pt(l 11) (So = 0.06, see 

chapter 3). However it was found that the addition of barium to the surface increased 

the initial sticking coefficient of the beam of oxygen. This allowed the growth of the 

barium adlayer to be examined.
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Figure 5.1 - The initial sticking probability of a beam of O2 (50 mbar molecular beam source 
pressure) with increasing barium coverage of the P t ( l l l)  surface.

Figure 5.1 is a plot of the initial sticking probability o f the beam of oxygen 

against the time of barium surface dose. As can be seen there is an initial steep rise in 

sticking probability up to 3 minutes dosing time, after which the curve levels off to 

form a plateau (within experimental error). Unlike for potassium it is difficult to use 

oxygen sticking to determine the point at which a complete monolayer of barium is 

deposited due to the error inherent in the above figure. Alternatively the shape of the 

above graph may indicate a degree of contamination of the surface. If however the 

barium film was contaminated is unlikely that the level of contamination was high as 

the crystal was held at elevated temperature during dosing to reduce the adsorption of 

background gases onto the crystal surface during dosing and the background pressure 

of the system was low (base pressure < 2 x 10‘10 mbar). In addition to this it would be 

expected that oxygen would not readily adsorb onto a contaminated surface.

Taking Figure 5.7 into account it is apparent that a complete physical 

monolayer has occurred by four minutes barium dosing time. Figure 5.1 would seem 

to argue that a monolayer has been deposited by three minutes barium dosing time; 

however, as mentioned earlier, due to the error in Figure 5.1 an accurate 

determination of the point o f monolayer formation is problematic. The initial steep
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portion of Figure 5.1 is likely to be due to the adsorption of barium that is ionic in 

character and the levelling off due to barium becoming more metallic in character as it 

is packed more tightly into the surface. There were no desorption products visible in 

the temperature programmed desorption o f the crystal surface following the molecular 

beam experiment indicating that stable surface species have been formed.

5.2.2 LEED of the Ba layer

%  *iN r •

0

Figure 5.2 - LEED pictures taken at 76 eV o f 5 min Ba dose (left) and clean P t ( l l l )  surface as a 
reference (right).

Figure 5.2 comprises two LEED photos, one o f the clean Pt(l 11) surface and 

one of the Pt(l 11) surface after a 5 min dose of barium. As would be expected after 

the addition of an adsorbate, the LEED photo o f the barium adlayer has additional 

spots, arranged in a (2x2) pattern. This is shown in the schematic below.

O

Pt ( lx l )  
0

Figure 5.3 -  The P t ( l l l )  ( l x l )  and Ba(2x2) unit cells from the LEED pattern shown in Figure 5.2
and the corresponding real-space structures.
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Some of the additional spots that are due to the adsorption of barium in Figure 

5.2 appear to be split into pairs (most clear is the (2x2) spot due to barium that 

appears directly below the zero order spot). With larger doses of barium to the 

surface these were resolved into ring structures as seen in Figure 5.4 below.

Figure 5.4 -  LEED picture of 10 min Ba dose, taken at 123 eV.

The above LEED structure appears to be a (2x2) pattern with additional rings 

and diffraction spots arranged radially around the central beam spot. The streaking of 

LEED spots is generally due to the one-dimensional disorder in the overlayer lattice 

in the real space direction that corresponds to the direction of the streaking, for 

instance as is seen by adsorption of low coverages of O2 on Cu(l 10)18,19. However, if 

the base planes of the crystallites are randomly rotated around the axis normal to the 

surface, the disorder will exist in the dimensions of the mutual azimuthal orientation 

of the substrate and overlayer lattices. Such ring systems are commonly seen for the 

decomposition of hydrocarbons to graphite and adsorption of alkali metals on certain 

faces of nickel20,21. The LEED pattern seen in Figure 5.4 appears to be due to a 

p(2x2) pattern with additional (2x2) structure rotated 30° with respect to the main 

crystallographic axis. There also appears to be an additional ( lx l )  lattice that is 

rotated 30° with respect to the main crystallographic axis. As with the rotated (2x2)
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structure there is radial streaking o f these additional spots indicating that the features 

that give rise to these additional spots are not perfectly ordered and that there is a 

degree o f rotational disorder.

P t ( l x l )
» ------------ © -------------- - »  o  O

\  \

( lx l)R30°

o  o  v o " o  o

Figure 5.5 -  Schematic o f the individual features making up the LEED pattern seen in Figure 5.4.

5.2.3 Sticking of CO on increasing Ba surface dosings of P t( l l l )

As shown in chapter 3, CO adsorbs with relatively high initial sticking 

probability (So = 0.45 + 0.02) on P t(l 11) at room temperature. It was found that the 

initial sticking probability o f  CO on high doses o f  barium was negligibly small.
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Figure 5.6 - The sticking o f  m olecular beam s o f CO (50 mbar molecular beam source pressure) 
on increasing barium  coverage o f the P t ( l l l )  surface.

From the above figure it is apparent that both the initial sticking probability 

and the saturation coverage o f  CO decrease rapidly with increasing surface barium 

coverage. There is a very large decrease in both the initial sticking probability and 

saturation coverage between 0 and 1 minutes barium dose, reflecting a difference in 

the sticking coefficient o f  CO on platinum and barium. There is no visible CO 

adsorption in the beam experim ent itse lf for barium coverages o f greater than four 

minutes; however CO adsorption has still taken place (from background gases within 

the chamber during deposition) as is reflected in the temperature programmed 

desorption experiments displayed in Figure 5.7 below (note that CO adsorption from 

the background occurs over the entirety o f  the crystal surface as well as the molecular 

beam spot). The lack o f  sticking in the molecular beam experiments indicates that the 

surface has been saturated by the background gases during Ba dosing.
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Figure 5.7 -  Tem perature program m ed desorptions from the crystal surface following the 
m olecular beam experim ents shown in Figure 5.6.

Figure 5.7 shows that, contrary to as is implied by Figure 5.6, CO has been 

adsorbed by barium surface doses up to 6 minutes. Two separate adsorption states are 

visible; a low temperature desorption state that occurs on clean platinum and is hence 

due to CO on Pt( 111). This desorption state increases to higher temperature with 

increasing barium surface coverage indicating increasing strength o f the Pt-CO bond 

due to increased electron density at the platinum (from the barium). There is also a 

higher temperature CO desorption peak at ~ 430 °C that is first visible at 120 s barium 

surface dose. This desorption peak has disappeared by 240 s barium surface dose, 

indicating completion o f  a Ba surface layer by this point. As there is no visible 

sticking in Figure 5.6 for barium surface coverages that are greater than this, yet as 

CO desorption from these larger coverages has occurred in Figure 5.7 it is obvious 

that CO has been adsorbed from the background and has saturated the barium layer in 

the time taken to cool to 50 °C. There was no sign o f any C 0 2 evolution either whilst 

beaming or during the tem perature programmed desorption experiments that followed 

the molecular beam experiment.



5.2.4 Adsorption of molecular beams of NO on increasing Ba surface coverage 
o fP t( l l l)

Barium was dosed onto the P t(l 11) surface held at 200 °C for differing lengths 

of time using a custom built SAES getter source. NO was beamed (50 mbar 

molecular beam source pressure) onto the surface at room temperature and the 

sticking probability m easured as described earlier.
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Figure 5.8 - The sticking o f m olecular beam s o f NO (50 mbar molecular beam source pressure) 
on increasing barium coverage o f the P t ( l l l )  surface.

Figure 5.8 shows that there is a reduction in both the initial sticking 

probability and saturation coverage o f  N O  on all barium coverages when compared to 

the clean Pt( 111) surface. It is surprising that there is no clear trend in the reduction 

in sticking probability and saturation coverage; with 1 min barium dose So decreases 

from 0.57 to 0.40 (+ 0.03) and there after S0 remains constant within experimental 

error. This likely reflects a reduction in NO adsorption due to ionised barium at the 

surface and a coincidentally sim ilar sticking probability o f NO on larger barium doses 

also. As with the earlier experim ents o f  0 2 on barium, there was no NO desorption 

visible in the tem perature programmed desorption experiment following the 

molecular beam experim ent and, as with CO on barium, there was no sign o f any 

decomposition products either whilst beaming or in the temperature programmed
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desorption experim ent follow ing the m olecular beam experiment. In addition to this 

there was no sign o f  N O  displacing CO from  the surface. If the barium surface was 

left to allow adsorption o f  CO from the background gases within the chamber on to 

the barium layer, the adsorbed CO was displaced by the beam o f NO whilst beaming, 

reflecting the enhanced stability o f  adsorbed NO over adsorbed CO. It was possible 

to distinguish this desorbing CO  from N 2 (from  NO reduction) by the lack o f a m/z = 

14 desorption peak in m olecular beam  experim ent.

5.2.5 Mixed molecular beams of NO 2 and O 2 on increasing Ba coverages of 

P t ( l l l )

To try and build an understanding o f  the fundamental processes occurring on 

the separate com ponents o f  the catalyst in oxidising conditions NO 2 and O 2 were 

beamed sim ultaneously onto the Pt( 111) crystal pre-dosed with different coverages o f 

barium (note that the P t ( l l l )  data has been included in previous chapters; it is 

included here for the convenience o f  the reader and to provide a comparison).

Clean Pt( 111)

5.00E-0 ID

4.00E-0 10

m
cz

(ft 3.00E-0 10
O0)
C*
</> 2.00E-010
CT5

5
i .o o e -o  10

0 0 0 E+000

------------------- 1-----------------1------------------1----------------- 1----------------- 1-----------------1----------------- '---------------- 1----------------- '---------------- 1—

0 200 400 600 800 1000

Time / s

Figure 5 . 9 -  A m ixed m olecu lar beam  o f  N 0 2 and 0 2 (created by a using 1:1 gas mixture ratio of 

NO and 0 2 as described in chapter 3, 50 m bar total m olecular beam source pressure) on clean 

P t ( l l l )  followed by tem perature program m ed desorption o f the crystal surface (time > 580 s).
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Figure 5.9 shows that NO2 initially sticks to the surface with So = 0.65. 

However, after an initial period in which an attenuation of the m/z = 30 signal is 

observed, the m/z = 30 signal rises to two and a half times its initial value. There is 

no apparent O2 sticking and no changes in m/z = 46, 44 or 28 are obvious. This is 

identical to the experiments shown in chapter 3 that prove that NO has reacted with 

O2 in the gasline to form NO2 . Therefore it is a mixture of NO2 and O2 that is being 

beamed on to the crystal surface (as equal pressures of NO and O2 were used the 

mixture dosing the crystal was therefore 2 N 0 2:1 0 2). The large rise in the m/z = 30 

signal is a result o f NO2 being broken down and liberating NO and atomic oxygen 

which adsorbs on to the crystal surface, displacing adsorbed NO (although m/z = 30 is 

a cracking fragment o f NO2 , m/z = 30 is the molecular ion of NO, explaining why the 

rise is m/z = 30 signal is so large). The temperature programmed desorption portion 

of the spectra (> 580 s) shows a large m/z = 28 desorption peak due to the adsorption 

of CO from the background gases on the rest of the crystal outside the beam spot as 

well as a m/z = 44 desorption peak from the oxidation of background CO by atomic 

oxygen from the breakdown o f NO2 . There is also a m/z = 32 desorption peak at 360 

°C due to the desorption of O2 from Pt( 111) as a result of NO2 decomposition and 

adsorption of atomic oxygen.

Intermediate Barium Surface Coverage

Ba was dosed onto the surface (held at 200 °C to reduce contamination of the 

barium layer) for two minutes (half a complete layer assuming a complete layer of 

barium (0.25 ML)6,7 deposited at 4 minutes dose, see Figure 5.7) and the surface 

allowed to cool before being beamed with a mixed molecular beam of O2 and NO2 

(created using a 1:1 mixture ratio of NO and O2 , 50 mbar total molecular beam source 

pressure). The mixed molecular beam was then followed by a beam of CO (50 mbar 

molecular beam source pressure) to examine the nature of any residual surface 

species.

199



3.00E-010-J ■/; atto

2 5 0 E-0 10 -
mco>
c75 2 00 E-010
o
a*

y> 1 50E-0101 50E-010 -

1 00E-010

5 0 0 E-011 -

VWhUmw |Im4 Wk**•++!*** «WW»
—T—----
2000

ODOE+OOO 0
0 500 1000 1500

Time / s

Figure 5.10 -  A mixed m olecular beam o f N 0 2 and 0 2 (created using a 1:1 ratio mixture of NO 
and 0 2, 50 mbar total source pressure) followed by a beam of CO (50 mbar molecular beam 

source pressure) on 0.13 M L Ba surface coverage. Following the molecular beam experiment the 
temperature of the surface was ramped (tim e > 1750 s) as an aid to identify any remaining

surface species.

The above molecular beam experiment appears very similar to the experiment 

shown in Figure 5.9. N O 2 initially adsorbs onto the surface but is broken down with 

the release o f NO and the storage o f  0 (a> on the surface, as is evidenced by the CO2 

desorption when beaming CO. Other than the oxygen from the NO2 there is no 

evidence o f 0 2 adsorption from the beam. The only features in the temperature 

programmed desorption part o f  the experiment (time > 1750 s) is a m/z = 28 

desorption peak at around 235 °C (sim ilar in temperature to the CO desorption peak 

seen for two minutes barium dose in Figure 5.7 and is therefore likely to be due to the 

adsorption o f CO on to barium-effected platinum sites from background gases in the 

chamber as well as from the m olecular beam) as well as a m/z = 44 desorption peak at 

approximately 100 °C (likely to be N 20  from the release o f stored N 0 2). That no 0 2 

adsorption from the beam occurs is surprising as, according to Figure 5.1, there 

should be measurable 0 2 adsorption on the barium. It is likely that oxygen is 

adsorbed on the barium from the breakdown o f N 0 2 as this is more energetically 

favourable due to there being less o f an energy barrier to dissociation to overcome.
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As stated earlier the lack o f  O 2 in the temperature programmed desorption experiment 

following beaming is likely to be due to the formation of stable BaO surface species.

Complete Barium Surface Coverage

Ba was dosed onto the surface for ten minutes (approximately 0.63 ML Ba, 

see above) held at 200 °C and the surface allowed to cool before a mixed beam o f O2 

and NO2 (created using a 1:1 gas ratio mixture o f  NO and 0 2, 50 mbar total molecular 

beam source pressure) was beam ed onto the surface. The mixed beam was followed 

by a molecular beam o f  CO (50 m bar m olecular beam source pressure) to examine the 

nature o f any residual surface species.
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Figure 5.11 -  A mixed m olecular beam o f N 0 2 and 0 2 (created using a 1:1 mixture ratio of NO 
and 0 2, 50 mbar total m olecular beam source pressure) followed by a molecular beam of CO on 

0.63 ML Ba surface coverage. Following the m olecular beam experiments the temperature of the 
crystal surface was steadily ramped as an aid to identifying any residual surface species (time >

800 s).

As with Figure 5.10, Figure 5.11 appears to behave in a very similar manner to 

the P t ( l l l )  clean surface, in that N 0 2 is broken down by the surface with the 

desorption o f NO and the storage o f  atomic oxygen. Unlike Figure 5.10 there is a 

slight adsorption o f  the 0 2 in the beam, likely to be due to the time delay between the
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adsorption o f N O 2 and desorption o f  NO  providing a time window in which oxygen 

from the beam may adsorb. The m /z = 28 desorption peak due to CO from platinum 

that is visible in Figure 5.10 is not present in the above figure, indicating that the 

platinum surface is com pletely covered w ith barium.

5.2.6 Mixed molecular beams of NO and CO on Ba dosed P t ( l l l )

Barium was dosed onto the surface for ten minutes (approximately 0.63 ML 

Ba assuming a constant dosing rate and a com plete layer o f  barium deposited at 4 

minutes dose, see section 5.2.5 and Figure 5.7) and CO and NO (1:1 ratio mixture, 50 

mbar total m olecular beam  source pressure) beam ed onto the crystal surface at room 

temperature to determ ine i f  there was any reaction o f NO in the presence o f a 

reductant as would be the case during the oxygen-poor phase o f  the NSR catalyst 

cycle.
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Figure 5.12 -  A m ixed m olecu lar beam  experim ent o f  NO and CO (created using a 1:1 gas ratio 
mixture o f  NO and C O , 50 m bar total m olecular beam source pressure) on 0.63 M L barium  

followed by tem perature program m ed desorption o f  the crystal surface (tim e > 255 s) as an aid to
identify ing any residual surface species.

From the above experim ent it can be seen that the NO adsorbs with a sticking 

coefficient characteristic o f  that seen for NO adsorbing on a complete layer o f barium
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and that the CO adsorbs with a higher sticking coefficient than would be expected 

from Figure 5.6 (So = 0.2, in figure 5.6 no CO adsorption is observed for coverages of 

Ba of larger then 4 minutes dose). However this is not necessarily due to a surface 

reaction between adsorbed NO and CO species, as Figure 5.7 indicates that CO is 

adsorbed by the surface, making it likely that the non-adsorption of CO seen for high 

coverages of barium in Figure 5.6 is due to the surface becoming saturated with CO 

whilst dosing barium. There is no desorption of either reactant species or products of 

a reaction between the two whilst beaming or in the temperature programmed 

desorption part o f the experiment (time > 255 s), indicating that both NO and CO 

have reacted (either singly or together) with the barium on the surface and formed 

stable surface species that desorb outside of the temperature range used in the 

temperature programmed desorption experiments.

5.2.7 X-ray photoelectron spectroscopic analysis of barium oxide

As the NSR system currently used in Japanese catalytic converters is based 

upon Pt/BaO/AhCb it was necessary to examine the NOx storage properties of BaO. 

Barium oxide layers were created by dosing barium with a background pressure of 2 x 

10"8 mbar of O2 for various lengths o f time at 200 °C (to minimise CO adsorption 

from the background) followed by flashing to 500 °C for two minutes, also with a 

background of 2 x lO*8 mbar O2 .

The form of the barium oxide was examined using x-ray photoelectron 

spectroscopy in collaboration with F. Grillo at Cardiff University on a separate 

ultrahigh vacuum system22.
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Figure 5.13 -  O (ls) and C (ls )  XPS spectra o f crystal prior to dosing (red), immediately post 
dosing (light brown) and after annealing at 500 °C (pink).
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Figure 5.14 - Ba(3d5/2) and O (ls )  XPS spectra o f P t ( l l l )  surface before dosing Ba and 0 2 (red), 
im m ediately after dosing (light brown) and post anneal (pink).
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Compound Ba(3d5/2) O (ls) C (ls)
Ba 779.3-780.5

779.3-780.6  
780.1-780.6

[23]
[24]
[25]

Ba(OH>2 779.5 [23]
531.2 [24]

B a 0 2 780.3-781.2 [25] 532.0-532.7 [25]
BaO 779.1-779.9

779.2-779.8
[24]
[25]

528.3-530.2 [24]

BaCOs 779.7
779.8-779.9
779.7-780.2

[23]
[24]
[25]

531.1-532.2 [24] 289.4-290.8
289.0-291.5

[24]
[25]

BaH C 03u 285.5-286.1 [26]

Table 4.1 -  Literature binding energy values for barium and some barium compounds.

From the above figure it can clearly be seen that there is a single XPS signal in 

the area associated with barium and an asymmetric peak in the oxygen region of the 

spectrum that is likely to be due to a combination of two closely spaced peaks. This 

indicates that there are two separate oxygen environments and single barium 

environment. There is insufficient resolution in Figure 5.14 to determine the barium 

species that gives rise to the peak due to the close proximity and overlap of the barium 

values in the above table. The oxygen values given in table 4.1 that correspond most 

closely to the values in the spectra are from BaC>2 and BaO. From this it seems likely 

that the majority o f the surface composition is mainly barium oxide with a degree of 

barium peroxide also being present. It is worth noting that Ba(OH)2  is unlikely to be 

present in the barium oxide/ peroxide adlayer due to Ba(OH)2  decomposing at surface 

temperatures below that reached when annealing the crystal during the preparation of 

the film27. Given the demonstrated instability of barium peroxide when compared to 

barium oxide6 it can be assumed that the peroxide present in the layer was due to the 

layer being heated to 500 °C in an oxygen environment. As the barium dosing 

experiments present in the rest of the chapter did not use an oxygen background 

during the two minute flash to 500 °C it is reasonable to assume that the layers 

produced were predominantly composed of BaO.

5.2.8 Adsorption of molecular beams of CO on increasing BaO coverages of the 

Pt(l 11) crystal surface

Layers of barium oxide were created by dosing the Pt(l 11) crystal surface held 

at 200 °C (to minimise CO adsorption from the background) with barium in a
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background pressure o f  2 x 10'8 m bar o f  0 2 for differing lengths o f time, followed by 

removing the oxygen and flashing the crystal 500 °C for two minutes. The crystal 

was then allowed to cool and CO (50 m bar m olecular beam source pressure) beamed 

onto the surface held at 50 °C.

Time o f  Ba /Ojdose 
/ min

0.6

0 .5

-QTO
_QOL_

0 .4

Q_
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c
u

0 .3

0.2

0.1

0.0
00 0.1 0.2 0.3 0.4 0 5

Coverage / ML

Figure 5.15 -T h e  sticking probability against tim e and coverage for a m olecular beam o f CO (50 
mbar m olecular beam  source pressure) on increasing BaO coverage o f P t ( l l l ) .

The above figure shows the effect o f  increasing surface coverages o f barium 

oxide on the sticking probability o f  a beam  o f  CO (50 mbar molecular beam source 

pressure) and the m axim um  coverage to w hich it saturates. From the above figure it 

can clearly be seen that dosing BaO onto the surface greatly reduces both the initial 

sticking o f  CO and the m axim um  coverage to which it saturates. There is a decrease 

in sticking probability from 0-3 m inutes barium  oxide surface dose. As the surface 

dose is increased to four m inutes BaO the initial sticking probability and saturation 

coverage rem ain constant (w ithin experim ental error). After six minutes o f dosing the 

surface no appreciable sticking o f  the beam o f  CO is observed.
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Figure 5.16 -  T em perature program m ed desorption o f the crystal surface following the 

m olecu lar beam  experim ents show n in Figure 5.15.

Figure 5.16 shows the relationship betw een the amount o f BaO present at the 

crystal surface and the tem perature o f  desorption o f  the adsorbed CO. CO adsorbing 

on just the P t(l 11) surface gives a single CO desorption peak at 139 °C. However, the 

addition o f  BaO to the surface shifts the m axim um  o f  this desorption peak to higher 

temperatures and reduces it in height. The shift in temperature is likely due to 

attractive interactions betw een adsorbed BaO and CO on platinum stabilising the 

adsorbed species and increasing the energy required for desorption. The reduction in 

peak area is not consistent w ith the reduction in sticking probability seen in Figure 

5.15, indicating that adsorption o f  CO from background gases has occurred. 

However, w hen one takes into account the differences in area between the CO 

desorption peaks for the clean surface and 6 minutes barium dose (bearing in mind the 

difference in area betw een the area o f  the beam  spot and the area o f the whole crystal 

surface) it is apparent that dosing B a/02 at 200 °C has limited the CO contamination 

o f  the layer. The fact that there is little difference between the sticking coefficients
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and coverages to which CO saturates at 1 and 2 minutes of BaO dosing suggests that 

BaO adsorbs initially as finely spaced discrete species rather than clumping together 

into islands. The size of the BaO-stabilised CO desorption peak decreases with 

increasing BaO surface coverage until it is absent at 4 minutes dose. It therefore 

seems likely that a complete monolayer of BaO has been deposited at this point, 

implying that the dosing rate of barium and size of the surface structure formed is the 

same as for barium. There is a suggestion of the lower temperature CO species in the 

5 minute BaO surface coverage but this is likely due to limited sintering of the oxide 

surface during the flashing (as part o f the creation of the layer) allowing CO to adsorb 

on the platinum below the barium oxide. There is a higher temperature CO 

desorption peak at 290 °C, which is likely to be due to limited CO adsorption from the 

background gases within the chamber over the entire crystal surface during the course 

of the experiment. That adsorption of background gases has occurred is likely as it 

occurs at coverages where there is little to no visible CO sticking in Figure 5.15 and 

so is unlikely to be due to CO adsorption from the beam. The size of this peak grows 

slightly with increasing time of BaO dose, indicating that it is BaO that the CO is 

adsorbing on. This CO adsorption environment gives a desorption peak that is 

comparable in magnitude to the desorption peaks from the CO that has been beamed 

onto the crystal due to the fact that the beam spot only comprises a fraction of the 

total crystal surface area whereas BaO was deposited over the entirety of the surface.
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Figure 5.17 -  The variation o f sticking probability with CO coverage for molecular beams of CO 
(50 mbar molecular beam source pressure) on a complete BaO coverage o f the P t ( l l l )  surface (4 

min dose, see Figure 5.16) held at increasing surface temperatures.

As Figure 5.17 shows, the initial sticking probability o f CO remains fairly 

constant (~ 0.14 -  0.15, within experimental error) from 50 °C to 150 °C. CO appears 

to saturate to the highest coverage when beamed at 100 °C. This is likely due to the 

increased time o f cooling to 50 °C after flashing to 500 °C allowing more time for 

adsorption o f background gases, w ith a consequent occupancy o f surface adsorption 

sites. However, as the surface temperature is increased above 100 °C the maximum 

saturation coverage exhibits a definite reduction. This trend continues as the 

temperature is raised to 200 °C, along with a decrease in the sticking probability. No 

CO adsorption was observed for surface temperatures o f 200 °C and above.
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Figure 5.18 -  Tem perature program m ed desorption o f CO from the crystal surface following the 
m olecular beam experim ents shown in Figure 5.17

The above figure shows the tem perature programmed desorption experiments 

following the m olecular beam experiments shown in Figure 5.17. As can be seen the 

largest desorption peak occurs when beaming at 100 °C. This is consistent with 

Figure 5.17, in which the beam ing at 100 °C saturates to the highest coverage. The 

desorption peak at 100 °C dosing tem perature also desorbs at a slightly lower 

temperature than the one at 150 °C, again consistent with a higher saturation 

coverage. At 150 °C and above the quantity o f  desorbing molecules is much less; this 

is reflected in the decreased sticking probabilities and saturation coverages seen in 

Figure 5.17. At 250 °C no CO desorption peak is evident, corresponding with the lack 

o f sticking seen in Figure 5.17.

The position o f  the maximum o f  the CO desorption peaks from the Pt/BaO 

surface would seem to imply that the desorption features are a result o f the adsorption 

o f CO on the Pt( 111) surface. There is no indication o f any BaO-CO species and the 

reduced sticking probability would seem to indicate that the observed CO sticking 

occurs on P t(l 11) w ith BaO serving to block adsorption sites. However there is no
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CO desorption at ~ 300 °C, which would be expected from Figure 5.16, likely 

indicating limited contamination of the BaO layer by background CO during the 

experiments shown in Figure 5.15 and Figure 5.16.

The fact that CO appears to adsorb reluctantly to the BaO surface and to 

desorb at relatively low temperature (below the temperature of the exhaust gas in the 

catalyst) would seem to indicate that the presence of CO in the exhaust gas would not 

poison the NSR catalyst. It also argues against postulations in the literature that 

BaC0 3  is an essential precursor to NOx storage; however it may form as a transient 

species in the fuel rich environment and aid the release of stored NOx.

5.2.9 Temperature programmed desorption of O2 from different BaO surface 

coverages

Barium oxide layers were created by dosing the Pt(l 11) crystal surface held at 

200 °C (to minimise CO adsorption from the background) with barium in a 

background pressure o f 2 x 10‘8 mbar of O2 for differing lengths of time, followed by 

flashing to 500 °C for two minutes. The surface was then allowed to cool and O2 (50 

mbar molecular beam source pressure) beamed onto the surface held at 50 °C.

As stated in chapter 3, O2 adsorbs on clean Pt( 111) with an almost negligibly 

small initial sticking probability (So = 0.06). It was found that dosing barium oxide 

onto the platinum surface had the effect of decreasing this further, such that there was 

no appreciable adsorption of 0 2 molecular beams (within experimental error) for all 

surface coverages of BaO. From this it can be inferred that there is no BaO-promoted 

0 2 dissociation followed by the spillover of atomic oxygen to surface platinum 

adsorption sites in the manner postulated for K+ on P t( l l l)  (see section 4.2.3), and 

that the deposited barium has been saturated with oxygen during the creation of the 

layer. There were also no obvious 0 2 or CO desorption peaks in the temperature 

programmed desorption experiments following the molecular beam experiments, 

indicating that the BaO surface created broke down outside the temperature range of 

the experiment (it was found that it could only be removed via sputtering) and was 

relatively uncontaminated by background CO. It was found however that 

background-dosing O2 onto a BaO layer (6 minutes Ba dose, 2 x 10 mbar O2
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background pressure, 200 °C) gave rise to oxygen desorption peaks when heated (see 

Figure 5.19, below).
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Figure 5.19 -  Tem perature programmed desorption of O2 from BaO layer.
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Figure 5.20 -  Tem perature programmed desorption of 5L 0 2 exposure from BaO layer showing
m/z = 14, 18, 2 8 ,32  and 44.
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From figure 5.19 it is evident that at low exposures there is a single O2 

desorption environment at 560-570 °C. As Figure 5.20 shows, no other desorbing 

species were evident during the experiment. Increasing the dose of oxygen onto the 

surface results in an increase in both the size of the desorption peak and also induces a 

shift to a lower desorption peak maximum temperature. Taking into account details 

of peroxide formation in the literature6 it is possible that the oxygen desorption peaks 

seen Figure 5.19 are due to the desorption of O2 from the decomposition of BaC>2. 

However in the literature it is noted that the BaC>2 formed by O2 dosing of BaO is a 

transient species that decomposes at 723 K, making it unlikely that the oxygen 

desorbing in the above experiments originates from Ba02 6’28. An alternative 

explanation for the observed oxygen desorption peaks might be that the barium oxide 

layer has sintered during annealing and the O2 desorption features seen in Figure 5.19 

is due to the desorption o f O2 from Pt(l 11).

5.2.10 Adsorption of NO onto different BaO coverages of P t( l l l )

Barium oxide layers were created by dosing the Pt(l 11) crystal surface held at 

200 °C (to minimise CO adsorption from the background gases within the chamber) 

with barium in a background pressure of 2 x 10'8 mbar of O2 for differing lengths of 

time, followed by flashing to 500 °C for two minutes. The surface created was then 

allowed to cool to 50 °C and NO (50 mbar molecular beam source pressure) beamed 

onto the surface.
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Figure 5.21 -  The variation o f the sticking probability of molecular beams of NO (50 mbar 

molecular beam source pressure) w ith NO coverage for increasing BaO surface coverages o f the

P t ( l l l )  crystal.

Figure 5.21 shows that NO sticks well on P t ( l l l )  alone with high initial 

sticking probability (So =  0.71). From the above figure it is apparent that increasing 

the surface coverage o f  barium  oxide decreases both the initial sticking coefficient 

and the maximum saturation coverage, to a minimum o f S0 = 0.21 at 3 minutes B a/02 

dosing time. Further increases in the barium oxide surface coverage have no effect on 

the sticking probability (within experimental error). However when one examines the 

actual individual m olecular beam experiments it is apparent that the situation is more 

complicated than simple reversible adsorption occurring (see figures 5.24 and 5.24). 

The reduction in sticking o f  NO with increasing amounts o f barium oxide on the 

surface agrees with STM and pulse-flow reactor studies in which it has been found 

that NOx is only stored in the presence o f both NO and 0 2 6,29.
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Figure 5.22 -  A m olecular beam o f NO  (50 m bar m olecular beam source pressure) beamed onto 
clean P t ( l l l )  surface followed by tem perature programmed desorption of the surface (time >

450 s).

In Figure 5.22 NO (50 m bar molecular beam source pressure) has been 

beamed onto the P t(l 11) crystal with no BaO surface coverage (note that this data has 

been displayed in chapter 3, it is included here as an aid for comparison). There is no 

obvious NO decomposition (no m/z = 2 8  or 44 desorption peaks are evident whilst 

beaming) and NO desorbs from the crystal surface almost as soon as the crystal is 

heated (~ 80 °C). It is therefore evident that NO adsorbs weakly and reversibly with a 

large sticking coefficient (S0 = 0.71) in a m olecular state at room temperature. As NO 

adsorbs so weakly yet with a large sticking coefficient at room temperature is likely 

that the adsorbed NO is surface mobile.
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Figure 5.23 -  A m olecular beam o f NO (50 m bar molecular beam source pressure) beamed onto 6  
min B a /0 2 surface dose o f  the P t ( l l l )  crystal surface followed by temperature programmed

desorption o f the surface (time > 300 s).

In Figure 5.23 the P t ( l l l )  crystal surface has been completely covered with 

more than a complete layer o f  BaO (6 min surface dose). It is immediately apparent 

that the sticking coefficient o f  NO is greatly reduced (So = 0.18 as opposed to 0.71 for 

clean Pt(l 11)). In addition to this there is also no m/z = 30 desorption peak visible in 

the temperature programmed desorption part o f the experiment (time > 300 s), 

suggesting irreversible NO adsorption or decomposition. There is a m/z = 44 

desorption peak that appears immediately upon beaming, lending itself to the 

explanation that two NO m olecules have been broken down to N20 , which then 

desorbs from the surface at room temperature. Alternatively the m/z = 44 peak could 

be due to the desorption o f  C 0 2 formed by reaction between CO adsorbed from 

background gases during the creation o f  the layer and oxygen from the reduction of 

NO. If NO has been reduced this would leave oxygen present on the crystal, possibly 

occupying adsorption sites and bringing the reaction to a halt as seen for NO 

dissociation on P t(l 1 0 )30. There is no sign o f  this oxygen present in the temperature 

programmed desorption, however there is a large m/z = 44 desorption peak at 220 °C. 

It therefore seems likely that the adsorbed oxygen has reacted with CO adsorbed as 

barium carbonate and desorbed as C 0 2. There is also a m/z = 28 desorption peak at
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260 °C, also likely due to the desorption o f CO gases from the BaO layer. That the 

m/z = 28 and 44 desorption peaks occur together would seem to indicate the 

breakdown o f barium carbonate species and the subsequent desorption o f COx or the 

reaction o f adsorbed CO with adsorbed atomic oxygen (from the partial reduction of 

NO) to form CO 2 .
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Figure 5.24 -  A m olecular beam o f NO (50 mbar molecular beam source pressure) beamed onto 
Pt/BaO (2 min B a /0 2 dose) followed by temperature programmed desorption of the crystal

surface (tim e > 350 s).

Figure 5.24 is a molecular beam o f  NO onto an intermediate BaO coverage, 

with areas o f BaO and P t ( l l l )  both present at the surface. NO sticks to the mixed 

surface with a sticking coefficient (So =  0.49) in between the two extremes o f no 

surface BaO and complete BaO surface coverage. In a similar manner to Figure 5.23 

there is a m/z = 44 desorption peak immediately on NO adsorption indicating partial 

NO reduction and the oxidation o f  CO adsorbed from background gases in the 

chamber. There is also a m/z = 30 desorption peak at approximately 80 °C in the 

temperature programmed desorption part o f the experiment indicating that NO has 

also adsorbed reversibly on the P t(l 11). There is also a m/z = 28 desorption peak at 

210 °C present in the temperature programmed desorption, likely due to incorporation 

o f background CO into the BaO during the creation o f the layer. This desorption peak
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is a single peak, unlike that seen in Figure 5.23, possibly due to the lesser thickness of 

the barium oxide layer.

In order to investigate the nature o f the residual surface species the NO 

molecular beam decomposition reactions were followed with beams of O2 and CO (50 

mbar molecular beam source pressures were used for all species).
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Figure 5.25 -  A m olecular beam of NO (50 mbar molecular beam source pressure) beamed onto 
more than a com plete surface covering o f BaO (10 min B a /0 2 surface dose), followed by a 

molecular beam o f CO (50 mbar m olecular beam source pressure) (CO trace reduced by a factor 
of four as a visual aid) and a tem perature programmed desorption o f the crystal surface (time >

490 s).

Figure 5.25 is a molecular beam experiment to attempt to probe the nature o f 

the residual species on the surface after beaming NO onto more than a complete 

surface covering o f  BaO, by using a molecular beam o f CO. NO is broken down by 

the surface in a similar manner to that seen in Figure 5.23 as is evidenced by the m/z 

= 44 desorption peak immediately upon adsorption. There is a second immediate m/z 

= 44 desorption peak when CO is beamed onto the surface. It is possible that this is 

due to a reactive oxygen species being left at the surface. However, there is also a 

minor m/z = 30 desorption peak that occurs as well as the m/z = 44 desorption peak 

on beaming the CO, possibly due to N 0 2 or N20  being adsorbed on the BaO and a 

disproportionation reaction occurring ie.
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N 02 + CO —► NO + CO2

An alternative scenario might be that the surface has sintered and that NO has 

adsorbed on the Pt( 111) beneath the BaO, from which it is then displaced by the beam 

of CO. However the low temperature desorption peak characteristic o f CO on Pt( 111) 

which would prove this is absent in Figure 5.25.
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Figure 5.26 -  A m olecular beam o f NO (50 mbar molecular beam source pressure) beamed onto 
more than a complete surface layer o f BaO (10 min B a /0 2 surface dose), followed by a molecular 

beam of 0 2 (50 mbar m olecular beam source pressure) and a temperature programmed 
desorption o f  the crystal surface (time > 1350 s).

Figure 5.26 shows a molecular beam o f NO (50 mbar molecular beam source 

pressure) beamed on to more than a complete layer o f BaO (10 min B a/02 surface 

dose), followed by a m olecular beam o f  0 2 (50 mbar molecular beam source pressure) 

to attempt to induce a surface reaction as an aid to identifying adsorbed surface 

species.

NO is partially decomposed by the surface with the release o f N20  as seen in 

Figure 5.26. There is no obvious 0 2 adsorption from the beam and no desorption
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products are released on beaming. The temperature programmed desorption 

following the experiment reveals a broad m/z = 44 desorption peak (or possibly 

several overlapping features) between 80 °C and 260 °C. There is also a m/z = 28 

desorption peak at 160 °C. There are no additional features in the temperature 

programmed desorption part of the experiment other than those than seen in Figure 

5.25, enabling the conclusion that the remnants of the decomposed NO on the surface 

are inert to oxidation and are hence likely to be atomic oxygen. This would make the 

identity of the m/z = 44 desorption peak that is observed on adsorption of NO more 

likely to be N20  rather than C 0 2.

In conclusion it appears that, unlike Pt(l 11), BaO is capable of partially 

reducing pairs of adsorbed NO molecules to form N20 , which immediately desorbs 

and leaves adsorbed oxygen on the surface. The fact that the oxygen is not visible in 

the temperature programmed desorption following the molecular beam experiment 

suggests that the oxygen is not adsorbed on the platinum or as barium peroxide, but as 

the more stable barium oxide, indicating that the barium layer was not originally 

saturated with oxygen in the creation of the layer.

5.2.11 NO decomposition by BaO with increasing surface temperature

Barium oxide layers were created by dosing the Pt( 111) crystal surface held at 

200 °C (to minimise CO adsorption from the background) with barium in a 

background pressure of 2 x 10‘8 mbar of 0 2 for five minutes (0.31 ML), followed by 

flashing to 500 °C for two minutes. The surface was then allowed to cool to the 

temperature required for each molecular beam experiment.

Figure 5.27 shows that at 50 °C NO sticks with to the BaO surface with a 

lesser initial sticking probability than seen for a molecular beam of NO beamed on to 

clean Pt(l 11) (S0 = 0.27 compared to 0.71). However it appears that whereas on clean 

P t( l l l )  NO adsorbs reversibly, a m/z = 44 desorption peak is observed immediately 

on adsorption of NO on BaO. As with the earlier NO decompositions it is likely that 

the identity of this species is N20 . If NO is being reduced by the surface it is 

reasonable to assume that oxygen is left behind and ties up adsorption sites, hence
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poisoning the reaction in a similar manner to that seen for NO breakdown on Pd(l 10) 

and P d ( ll l)  at elevated temperature30. This continues up to 300 °C with the only 

noticeable difference being a reduction in the NO sticking coefficient. However at 

300 °C there is a m/z = 28 desorption peak observed. The m/z = 28 desorption peak is 

accompanied by a m/z = 14 desorption peak, making it likely that the identity of the 

desorbing species is nitrogen. Above this temperature there is a large reduction in the 

NO sticking coefficient, reducing the quantity of products produced. As the 

temperature is raised to 400 °C the magnitude of both desorption peaks is reduced, 

and at 500 °C there is no obvious m/z = 44 desorption peak, only a m/z = 28 

desorption peak.

The above observations would seem to suggest that the extent to which the 

NO decomposition occurs is heavily influenced by the temperature at which the 

adsorption of NO occurs, with a more complete NO reduction process occurring at 

higher temperatures. If NO is dissociated upon adsorption, adsorbed atomic oxygen 

and atomic nitrogen is created. The atomic nitrogen is free to react with incoming NO 

molecules whereas the adsorbed oxygen builds up on the catalytic surface, thus 

poisoning it. The observed variation in product selectivity could therefore be due to a 

decreased NO surface lifetime at higher temperatures, making it less likely that 

weakly held NO species encounter surface-adsorbed nitrogen to form N20 , as 

reported for Pd(l 10)30. It is worth noting that if adsorbed oxygen does occupy NO 

adsorption sites and poisons the reaction a more compete reduction to N2 rather than 

N20  would result in twice as much oxygen adsorbed, reducing the NO adsorption by 

half.
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Figure 5.27 -  M olecular beams o f NO (50 mbar molecular beam source pressure) on 0.31 ML  
BaO held at increasing surface temperatures.
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The only significant desorption peak present in the temperature programmed 

desorption experiments following the molecular beam experiments shown in Figure 

5.27 is a m/z = 28 desorption peak at 280 °C in the temperature programmed 

desorption experiment from the crystal initially held at 50 °C. There are no visible 

desorption peaks in any of the other temperature programmed desorption experiments 

implying that there are no reaction by-products still present on the surface. However, 

this is problematic as decomposition of NO and desorption of N2O or N2 would leave 

oxygen on the surface. The m/z = 28 desorption peak is likely due to adsorption of 

background CO onto the surface, and hence does not appear in the other experiments 

as less cooling time was required to reach the elevated temperatures that the other 

molecular beam experiments were performed at following the flashing to 500 °C as 

part of the creation of the layer.

5.2.12 Mixed molecular beams of NO and CO on BaO layers held at increasing 

surface tem peratures

Barium oxide layers were created by dosing the Pt(l 11) crystal surface held at 

200 °C (to minimise CO adsorption from the background) with barium in a 

background pressure of 2 x 10’8 mbar of O2 for five minutes (0.31 ML), followed by 

flashing to 500 °C for two minutes. The layers created were then allowed to cool to 

the required temperature and mixed molecular beams of NO and CO (1:1 gas mixture 

ratio, 50 mbar total molecular beam source pressure) beamed onto the surface.

Figure 5.28 shows that at both 50 °C and 100 °C both CO and NO stick with 

similar sticking probabilities to that expected for either species alone on more than a 

complete BaO surface covering, indicating that the two species are not in competition 

for the same adsorption sites. However there is an immediate m/z = 44 desorption 

peak from the experiment performed at 100 °C, possibly due to N20  or CO2 from NO 

and CO reaction upon coadsorption. The CO and NO adsorption, with the associated 

m/z = 44 desorption peak, is not continuous below 200 °C, indicating build up of 

surface species occupying surface adsorption sites. Between 300-400 °C however 

there is constant evolution of m/z = 44, due to a mixture of C 02 and N20  being 

produced. As both products desorb there is no tying up of surface sites and so the 

reaction is continuous. It is worth noting that the rate of reaction is much reduced at
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400 °C due to the lowered sticking probabilities o f both species in the mixed beam. 

At 500 °C there is no obvious sticking o f either species in the beam and so the 

reaction has essentially ceased.
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Figure 5.28 - M ixed m olecular beams o f NO and CO (1:1 gas mixture ratio, 50 mbar total 
m olecular beam source pressure) on 0.31 ML BaO coverage o f P t ( l l l ) .
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Figure 5.29 shows the temperature programmed desorption data recorded 

after the mixed molecular beam experiments featured in Figure 5.28. As can be seen 

the dosings perform ed at 50 and 100 °C both exhibit a m/z = 44 desorption peak at 

150 °C. There are no features o f interest in any o f the other temperature programmed 

desorption experiments following the higher temperature molecular beam 

experiments. As mixed beams o f NO and CO stick continuously and constantly 

evolve a species o f  m/z = 44 at temperatures o f 200 °C or greater (Figure 5.28), it 

seems probable that the m/z = 44 species that desorbs at 150 °C is created by reaction 

o f CO and NO and is likely to be either CO 2 or N20  adsorbed on BaO, poisoning the 

surface and stopping continuous sticking for these temperatures. As Figure 5.27 has 

shown that a m/z = 44 desorption peak occurs when the surface is beamed with NO, it 

can be concluded that the species that desorbs in the temperature programmed 

desorption experim ent is C 0 2 and that the species that desorbs directly on beaming is 

N 20 . It therefore appears that the reaction that occurs is as a result o f 2 NO molecules 

being partially reduced to N 20 , which desorbs leaving atomic oxygen behind on the 

surface. This oxygen reacts with the CO from the beam to form C 0 2, which desorbs 

at temperatures o f  150 °C or above.
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Figure 5.29 - Tem perature programmed desorption experiments following the mixed NO and CO 
m olecular beam experiments shown in Figure 5.28.
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5.2.13 M olecular beams of NO 2 on increasing BaO coverages of the P t ( l l l )

surface

To try and build an understanding o f the fundamental processes occurring on 

the separate components o f  the catalyst during the NOx storage phase of operation 

molecular beams of NO 2 (50 m bar molecular beam source pressure) were beamed 

onto the Pt( 111) crystal pre-dosed with three different coverages of barium oxide. 

The BaO layers were created by dosing barium onto the crystal surface held at 200 °C 

in a background pressure o f  2 x 10'8 mbar o f O2 . The layers created were then flashed 

to 500 °C for two minutes before being allowed to cool to 75 °C.
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Figure 5.30 -  A molecular beam o f N 0 2 (50 mbar molecular beam source pressure) on clean 
P t ( l l l )  followed by tem perature programmed desorption of the crystal surface (time > 355 s).

The above figure has been shown in chapter 3; it is included here as an aid to 

comparison. Figure 5.30 shows that the beam o f N 0 2 initially sticks to the surface 

with 0.65 sticking probability. However, after an initial period, the m/z = 30 signal 

rises to three times its initial value. There are no apparent changes in m/z = 46, 32 or 

28, however there is a large m/z = 44 desorption peak that is likely due to the
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oxidation ot adsorbed CO from the background gases in the chamber by atomic 

oxygen from the breakdown o f NO 2 . The large rise in the m/z = 30 signal is a result 

o f NO2 being broken down and liberating NO and atomic oxygen, which adsorbs on 

to the crystal surface, displacing adsorbed NO (although m/z = 30 is a cracking 

fragment o f NO 2 , m /z =  30 is the molecular ion o f NO, hence why the rise in m/z = 30 

signal at 200 s is so large). The temperature programmed desorption portion o f the 

experiment (time > 355 s) shows a large m/z = 28 desorption peak due to the 

adsorption o f CO from the background to the rest o f the crystal as well as a m/z = 44 

desorption peak from the oxidation o f background CO by atomic oxygen from the 

breakdown o f NO 2 .
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Figure 5.31 -  A m olecular beam N 0 2 (50 mbar molecular beam source pressure) on 0.63 ML 
BaO (10 m inutes B a /0 2 dose) followed by tem perature programmed desorption of the crystal

surface (time > 395 s).

In Figure 5.31 the P t ( l l l )  crystal surface has been covered with 0.63 ML 

BaO (10 minutes Ba dose, 2 x 10‘8 mbar 0 2) before being beamed with a molecular 

beam o f N 0 2. From the above it appears that N 0 2 adsorbs intact to the BaO surface 

without the characteristic m/z = 30 peak given by N 0 2 breakdown on Pt(l 11). That 

N 0 2 has adsorbed to the surface is confirmed by the m/z = 30 desorption peak at 220

227



°C. There is a m/z = 32 desorption peak at -370  °C indicating that the m/z = 30 

desorption peak at 220 °C is the result o f NO desorbing not as a result o f the 

desorption o f N O 2 . That the O2 is desorbed at a higher temperature than the NO 

indicates that adsorption o f the oxygen from the decomposition of the stored NO 2 has 

occurred, possibly via Ba0 2  formation, which has been shown to be metastable at this 

temperature with STM6.
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Figure 5.32- A m olecular beam o f N 0 2 (50 mbar m olecular beam source pressure) on 0.13 ML 
BaO (2 minutes B a /0 2 surface dose) followed by temperature programmed desorption o f the

crystal surface (tim e > 300 s).

Figure 5.32 shows a molecular beam experiment in which a molecular beam 

o f N 0 2 is beam ed onto a 0.13 ML BaO layer (2 minutes Ba dose, 2 x 10'8 mbar 0 2). 

This coverage was chosen so that there was both exposed Pt(l 11) and BaO present at 

the surface. From the above figure it is apparent that N 0 2 is broken down, with the 

immediate release o f  NO, by the mixed layer in a similar manner to that seen in 

Figure 5.30. There are no other features o f interest in the molecular beam part o f the 

experiment, however during the temperature programmed desorption following the 

molecular beam experiment (time > 300 s) several desorption peaks are evident.
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There is a m/z = 32 desorption peak at 310 °C that is due to the desorption of oxygen 

from Pt(l 11) as seen in Figure 5.30 and m/z = 32 and m/z = 44 desorption peaks that 

both occur at 440-455 °C. These desorption peaks are possibly due to the desorption 

of N2O and O2 from the release of stored NO2 from the BaO storage component 

followed by its breakdown on Pt(l 11) ie. (assuming that the NO2 is stored as nitrate)

Ba(NO,)2 -► BaO + 2N 02{a) + Oa

N 0 2(a)  N O {a)  +  0 {a)

2NOia) -> N20  + M 2 0 2

5.3 Summary and Conclusions

• Barium adsorbs in a (2x2) lattice up to a monolayer coverage. Further barium 

adsorption results in (2x2) islands forming that are rotated by 30° (with a 

degree of rotational disorder). In addition there also appears to be a (lx l)  

structure that is also rotated 30° with rotational disorder. It is unknown what 

surface structure gives rise to these LEED patterns.

• Addition of barium to the Pt(l 11) surface increases the sticking coefficient of 

O2 for the surface. A stable compound is formed that does not break down up 

to 550 °C (the limit of the crystal temperature reachable on the experimental 

apparatus). It is assumed that the identity of this species is barium oxide as 

barium peroxide has been shown to only exist as a transient species under 

UHV conditions6 and barium hydroxide would be expected to decompose at 

the elevated temperature used in the flashing of the crystal during the creation 

of the layer27. XPS analysis confirms that the likely identity of this species is 

barium oxide, with barium peroxide also being present when layer is flashed 

to 500 °C in oxygen.

• CO will only adsorb on barium that is metallic in character, not the ionic 

barium that forms during the initial stages of Ba deposition. The addition of 

ionic barium to the Pt(l 11) surface increases the temperature of desorption of 

CO from the P t( lll) . CO adsorbed on metallic barium is stable to higher 

temperatures than CO on Pt(l 11).

• Dosing barium onto the Pt(l 11) surface decreases the sticking probability and 

saturation coverage of NO for the surface when compared to clean P t(lll).
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Despite this there is little change in the adsorptive behaviour of NO2 for a 

barium-modified Pt( 111) surface, with dissociation to NO and O2 occurring on 

adsorption.

• Dosing BaO onto the crystal surface decreases the affinity of CO for the 

surface. Despite this some CO adsorption still occurs, forming a compound 

with a lower desorption temperature than CO on Ba but higher than CO on 

Pt(l 11). It is likely that the identity of this species is barium carbonate.

• Increasing the amount of BaO on the Pt(l 11) surface decreases the sticking 

probability of O2 for the surface. Despite this O2 adsorption can occur when 

using high background pressures of oxygen. It is likely that this oxygen 

adsorbs via barium peroxide formation, or possibly as a result of barium that 

has not been oxidised in the creation of the layer.

• In a similar manner to potassium, dosing BaO onto the Pt(l 11) crystal surface 

facilitates the reduction of NO, with N2O being desorbed. The extent of the 

reduction process can be increased by increasing the temperature of the 

reactive surface, with elevated temperatures favouring a more complete 

reduction process to N2 at the expense of N2O production. The presence of a 

reductant such as CO has no effect on the selectivity of the reduction however.

• BaO is capable of storing NO2, likely as a nitrate species31. Stored NO2 is 

released when heated as nitric oxide and oxygen. In a mixed system where 

both Pt and BaO are present at the surface there is an additional oxygen 

desorption environment, likely as the result of the desorption of stored atomic 

oxygen from Pt( 111).

From the above list of conclusions it is obvious that the proposed reaction scheme 

for the NSR catalyst (see chapter 1) is valid in that barium oxide is capable of 

storing nitrogen dioxide and releasing the stored nitrogen dioxide as nitric oxide 

and oxygen (see Figure 5.31 and Figure 5.32). In addition to this the barium oxide 

component of the catalyst would appear to also be able to assist in the reduction of 

NO to N2 at catalyst operating temperatures (Figure 5.27).
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6.1 O verall Conclusions

By a com bination o f molecular beam, TPD, LEED and AES methods a 

detailed exam ination o f the interactions and reactions o f certain automobile exhaust 

pollutants has been carried out on a model P t(l 11)/Ba0 exhaust catalyst as well as the 

separate Pt( 111) (NOx oxidation/reduction) and BaO (NOx storage) components o f the 

catalyst. Also exam ined was an alternative Pt( 111 )/K and Pt( 111 )/K202 system to 

examine the effect o f  a more basic NOx storage component on the NOx storage ability 

o f the catalyst.

Adsorption and desorption characteristics o f NO, CO, N 0 2 and 0 2 have been 

studied on P t ( l l l )  and the N 0 - 0 2, C 0 - 0 2 and NO-CO reaction systems have been 

investigated. The focus o f  this work has been to examine the data received in relation 

to the proposed M atsumoto model for NOx storage and reduction under oxidising and 

reducing environments.

Stoichiometric A/F

Alumina Support Alumina Support

M: Precious metal 
S: Storage component

Figure 6.1 - The M atsum oto model for the NSR process1,2

From the above it can be seen that the Matsumoto model for NOx storage and 

reduction can be broken up into a number o f  separate reactions ie.

NO  +* ->  N O *
0 2 +  2 * —> 2 0 *

NO  * + O * —» N 0 2 * + *

BaO  + 2N 0 * + 0 *  ->  B a (N 0 2)2 + 3 *

BaO  + 2N 0 2 *+ O *  -»  B a (N 0 3)2 + 3 *

Equation 1- Oxygen-rich condition reactions.
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Ba{N02)2 + 3* -»  BaO + 2NO* + O*
Ba(N03)2 + 3* -> 5aO + 2N 02 * + O* 
w o2 * + * -> m 9 *  + o *
CO +O *  -> c o 2 +*
2NO*-+ N 2 + 0 2 +2*

Equation 2 - Fuel-rich condition reactions

The main conclusions from each chapter and group of experiments will be 

summarised below and analysed with respect to the reactions given above to assess 

the suitability of P t( l l l ) ,  K /P t(lll), K20 /P t( lll) , B a/P t(lll) and BaO /Pt(lll) as 

NOx storage and reduction catalysts.

NO adsorbs on P t( l l l )  with an initial sticking coefficient of 0.73 at room 

temperature. Temperature programmed desorption experiments provide no evidence 

of multiple adsorption sites and adsorption is reversible with no NO decomposition. 

Adsorbed NO is weakly held and desorbs at relatively low temperature. A Kisluik 

parameter of 0.18 can be derived from the data indicating that a substantial precursor 

effect is operating in the NO adsorption mechanism. The reported NO breakdown to 

N2 and 0 2 that occurs in some reports in the literature3 is thus likely to be due to the 

presence of defects in the crystal surface. This view has been published in the 

literature also.4,5

CO adsorbs on Pt( 111) with an initial sticking coefficient of 0.49 at room 

temperature. As with NO, there is no evidence of multiple adsorption sites and 

adsorption occurs reversibly with the adsorbate being fairly weakly held, although not 

as weakly as NO. The Kisluik parameter of 0.1 that was obtained indicates that 

precursor kinetics play a large part in the adsorption of CO on Pt(l 11).

Due to the behaviour of N 02 adsorbing on P t( lll) , obtaining Kisluik 

parameters and a value for the sticking coefficient for the adsorption is problematic. 

What is certain is that N 02 is decomposed by the surface with the desorption of NO 

and 0 (a) being retained on the surface. As there is no evidence that any of the NO 

from the breakdown of N 02 is retained on the surface it is logical to assume that NO
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is displaced from the surface by the atomic oxygen. In the Matsumoto model the 

stored nitrate is released as N 02 under fuel-rich conditions before being reduced to 

NO and O over the platinum metal centre; our results have confirmed the validity of 

this latter step. The inclusion of rhodium in the NSR catalyst is likely responsible for 

the reduction of NO that occurs.

The atomic oxygen left on the surface by the breakdown of N 0 2 is highly 

active in the oxidation of CO, unlike the case for mixed beams of CO and 0 2, from 

which it can be inferred that the limiting step is the dissociative adsorption of 0 2 

rather than the adsorption of CO or the oxidation reaction itself. This is borne out in 

the extremely low initial sticking coefficient of 0 2 on P t( l l l )  (So ~ 0.06) which is 

probably due to adsorption on defect sites.6,7 The low sticking coefficient of 0 2 on 

the platinum would not be a problem in the NSR catalyst due to the relatively high 

partial pressures of 0 2 in the exhaust feed under lean operating conditions, and as 

shown CO oxidation occurs readily on P t( l ll ) ,  making the catalyst efficient at 

removing CO from the exhaust gases.

Unlike the oxidation of CO by pre-adsorbed atomic oxygen, NO oxidation via 

pre-adsorbed oxygen does not occur under these conditions. This is surprising due to 

the fact that NO and 0 2 react spontaneously together at room temperature in a gas- 

phase reaction (as shown in chapter 3), proving that the reaction is thermodynamically 

favourable. It is likely that oxidation of NO does occur by the adsorbed atomic 

oxygen but the back reaction is so favourable due to the strength of the Pt-O bond that 

the N 02 formed immediately dissociates back to NO and atomic oxygen, with the NO 

desorbing into the gas phase and hence demonstrating little sticking of the beam. It is 

likely that this is not a problem in the actual NSR catalyst due to the relatively high 

partial pressures of NOx and 0 2 in the exhaust under lean bum conditions and the 

elevated temperature at which the catalyst operates.

There is no evidence of NO reduction by CO in a mixed beam reaction. This 

is not surprising as the first step of the proposed NSR reaction is the breakdown of 

NO by the surface with the desorption of N2, followed by the removal of the oxygen 

left on the surface by the CO in an oxidation reaction, and NO is not easily 

decomposed by the Pt( 111) surface as was demonstrated earlier. This however has
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implications for the M atsum oto NSR catalyst model, in which, under fuel-rich 

operating conditions released NO x is reduced to N 2 (or more likely to N20 , the species 

normally observed during model catalytic reactor studies and during our own studies. 

The rhodium included in the catalyst is then likely to be responsible for the reduction 

o f N20  to N2, as well as producing N 2 directly). As it has been shown, under UHV 

conditions at least, that this is not catalysed by P t ( l l l ) ,  the breakdown o f NO that 

occurs must be catalysed by the BaO NOx storage component (or possibly by the 

alumina support in the real-world catalyst). This was confirmed during our studies.

In contrast to the adsorptive behaviour o f  0 2 on P t(l 11), 0 2 readily adsorbs on 

K /P t( lll) , with a m axim um  initial sticking probability o f 0.65 on a monolayer of 

potassium. Adsorption o f  0 2 on the surface was conjectured to occur via potassium- 

induced 0 2 dissociation at low potassium surface coverages followed by spillover 

onto platinum surface sites and via formation o f  a potassium oxide at higher 

potassium surface coverages (XPS showed the probable identity o f this species to be 

potassium peroxide). Formation o f  the oxide species caused a contraction in the 

potassium layer allowing potassium induced dissociation o f 0 2 and adsorption on the 

platinum as described earlier.

K 2 O 2

K 0 2 0 2
?  9

Pt(111) Pt(111) pt(i 11)

Figure 6.2 -  The form ation o f potassium  peroxide and adsorption of further oxygen

The promotional effect o f  potassium on the adsorption o f 0 2 on P t ( l l l )  is 

inversely m irrored by the behaviour o f  CO adsorbing on a potassium-promoted 

P t ( l l l )  surface. Potassium blocks Pt-CO adsorption sites and although some 

adsorption o f  CO on potassium does occur, sticking is much less than seen on the 

Pt( 111) surface.

Dosing different potassium surface coverages onto the P t ( l l l )  surface has 

little effect on the sticking coefficient o f  NO on the R ( 111) surface. The state o f the 

potassium does however affect the mode o f adsorption, with a monolayer o f 

potassium causing the NO to adsorb dissociatively with the immediate evolution o f N2
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and the adsorption of 0(a> on the potassium. NO also adsorbs in a non-dissociative 

fashion onto K coverages of the Pt(l 11) surface of up to five minutes K dosing time, 

with a temperature of desorption that is higher than observed on clean Pt( 111); this is 

likely due to an oxygen-induced potassium surface contraction exposing the platinum 

beneath the potassium, followed by NO adsorption on Pt(111). The Pt(lll)-N O  

however is affected by the presence of the potassium in the immediate vicinity, 

accounting for the increased temperature of desorption. This ability of the potassium 

to catalyse the reduction of NO complements the Pt( 111) in the NSR catalyst which, 

as shown earlier, is not effective in the reduction of NO. Coverages of potassium of a 

monolayer or greater also show evidence of another species in the TPD; this has been 

identified in the literature as a nitrite, formed by the reaction of oxygen from the 

breakdown of NO with another NO molecule.8

Unlike when NO2 is adsorbed on clean Pt(l 11), when NO2 is adsorbed on a 

potassium-promoted P t ( l l l )  surface there is no evidence of reduction of NO2 to NO 

upon adsorption. Evidence is provided in the literature that nitrite species are stable 

on K/Pt(l 11) making potassium nitrite the possible identity of the stored NO2 .9’8 This 

however disagrees with the Matsumoto model in which the NO2 is adsorbed as nitrate 

on the storage component. Coupled with the ability of the potassium to reduce NO, 

the ability to store NO2 means that a Pt(l 11)/K system could potentially be useful as a 

NSR catalyst.

In a similar manner to that seen on potassium only, dosing potassium peroxide 

onto the Pt(l 11) surface has the effect of decreasing the sticking coefficient of CO for 

the surface. Unlike pure potassium however, on which CO adsorption occurs on 

surface coverages of greater than a monolayer (albeit with a significantly reduced 

sticking probability when compared to the clean surface), no CO adsorption occurs on 

K2O2 surface coverages of a monolayer or greater.

As with pure potassium on Pt( 111), potassium peroxide (or possibly 

carbonate) was shown to be able to catalyse the reduction of NO with the immediate 

release of nitrogen when beaming at room temperature (section 4.2.12). As with 

coverages of potassium of greater than a monolayer the oxygen is adsorbed by the 

surface and there is evidence of an additional species that has been identified in the
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literature as a nitrite.10 With consideration it is to be expected that potassium and 

potassium peroxide would behave in a similar fashion as the first step in potassium 

nitrate storage is the reduction of NO with the oxygen liberated reacting with the 

potassium layer to form peroxide. Unlike pure potassium however there is no NO2 

adsorption on a potassium peroxide surface. From this it may be concluded that 

whilst potassium has potential as a replacement for the barium oxide NOx storage 

component in the NSR catalyst, potassium oxide is unable to store NOx during the 

excess oxygen phase of engine operation and would therefore be ineffective as a 

component in the catalyst.

Dosing barium on to the Pt(l 11) surface increased the sticking coefficient of 

O2 for the surface in a similar manner to that seen when dosing potassium onto the 

surface. However the magnitude of the increased oxygen sticking was less for barium 

than was seen for potassium. The adsorbed oxygen forms a stable compound that 

XPS has shown is likely to be barium oxide with higher pressures of oxygen creating 

an additional unstable barium peroxide species.

As with potassium and potassium peroxide, dosing barium onto the P t ( l l l )  

crystal decreases the sticking coefficient of CO for the surface, although, in a similar 

manner to potassium, a barium-CO compound is formed with a higher temperature of 

desorption than CO desorbing from Pt( 111) alone. Unlike potassium and potassium 

oxide however, NO adsorbed irreversibly on barium (rather than being dissociated 

with the immediate desorption of N2), forming a stable compound that desorbed 

outside the temperature range employed during the experiments contained in this 

thesis. In addition to this, as shown earlier, Pt( 111) does not catalyse the breakdown 

of NO to its constituent elements, making the ability to reduce NO an essential part of 

the NOx storage component in the NSR catalyst. As metallic barium does not 

facilitate the decomposition of NO (as shown in chapter 5), its inclusion in the exhaust 

catalyst would be suspect (also metallic barium is. very reactive and would not remain 

as a metal under catalyst operating conditions)

Platinum surface coverages of half a complete layer as well as a full complete 

layer of barium have been shown to break down N 02 with NO desorbing and leaving 

reactive oxygen on the surface in a manner similar to that seen for clean Pt(l 11). This
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inability of barium to store NO2 in an oxidising environment (as well as its high 

reactivity) would make barium metal unsuitable as a replacement for barium oxide in 

the NSR catalyst. However as NO2 breakdown results in the adsorption of atomic 

oxygen, presumably via reaction with the barium to form barium oxide, which was 

shown to store NO2, it is possible that the barium surface was contaminated with 

carbonaceous compounds to a certain extent.

As with metallic barium, barium oxide was found to decrease the sticking of 

CO to the P t ( l l l )  crystal surface. In a similar manner to the metal, limited CO 

adsorption did occur, forming a CO species that desorbed at a lower temperature than 

the CO species on Ba. The magnitude of the CO adsorption that occurred on BaO 

was much less than the CO adsorption that occurs on Ba.

Unlike metallic barium, the presence of barium oxide on the crystal surface 

reduced the (already minimal) sticking of O2 substantially. With large background 

doses of O2 it was possible to form an adsorbed O2 species that was stable to -500- 

550 °C; it was surmised that this was the oxygen from barium peroxide. An 

alternative explanation however might be that sintering of the barium oxide had 

occurred during annealing and that the O2 desorbed was from O2 adsorbed on Pt(l 11) 

as a result of barium-oxide facilitated O2 dissociation (0(a> on Pt(l 11) has been shown 

to desorb from P t ( l l l )  in the temperature range employed in the temperature 

programmed desorption experiments contained in this thesis, see chapter 3).

As commented upon earlier in this section, given the fact that Pt( 111) does not 

reduce NO to N2 and O2, an essential aspect of any NSR catalyst would be the ability 

of the NOx storage component of the catalyst to reduce NO. BaO is capable of 

reducing NO, however the reduction is not complete; N20  is formed instead of N2, 

even with the presence of a reductant such as CO. N 02 however is stored and not 

broken down on the BaO, an important aspect of the exhaust catalyst.

Perhaps the most interesting result in this thesis is the non-reduction of NO by 

Pt( 111). This would appear to be in direct contradiction to the Matsumoto model for 

a Pt/Ba0 /Al2 0 3  catalyst; however as mentioned earlier rhodium is a common additive 

in the NSR catalyst. It is therefore likely that rhodium is the active species in the
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reduction of N2O to N2, as well as being responsible for the reduction of NO to N2. If 

rhodium does not play an active role in the reduction of N20  this has profound 

implications for the choice of NOx storage material as it must be capable of reducing 

NO under anerobic conditions. Also of interest was the apparent potential of 

potassium as an alternative NOx storage medium to barium oxide, as it demonstrates a 

greater NO2 storage ability and reduces NO more completely.

6.2 Future Work

From the above it is apparent that a more detailed examination would be 

useful to aid characterisation of the K/Pt(l 11) and BaO/Pt(l 11) systems described. In 

particular additional XPS and IR data would be useful in examining the nature of the 

stored NO2 on K and BaO and partially reduced NO species on BaO as an aid in 

mechanistic determination.
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