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SUMMARY

This thesis presents new developments for a particular class o f Bayesian networks 

which are limited in the number o f parent nodes that each node in the network can 

have. This restriction yields structures which have low complexity (number of edges), 

thus enabling the formulation o f optimal learning algorithms for Bayesian networks 

from data. The new developments are focused on three topics: classification, 

clustering, and high-dimensional data visualisation (topographic map formation).

For classification purposes, a new learning algorithm for Bayesian networks is 

introduced which generates simple Bayesian network classifiers. This approach 

creates a completely new class o f networks which previously was limited mostly to 

two well known models, the naive Bayesian (NB) classifier and the Tree Augmented 

Saive Bayes (TAN) classifier. The proposed learning algorithm enhances the NB 

model by adding a Bayesian monitoring system. Therefore, the complexity of the 

resulting network is determined according to the input data yielding structures which 

model the data distribution in a more realistic way which improves the classification 

performance.

Research on Bayesian networks for clustering has not been as popular as for 

classification tasks. A new unsupervised learning algorithm for three types of 

Bayesian network classifiers, which enables them to carry out clustering tasks, is 

introduced. The resulting models can perform cluster assignments in a probabilistic 

way using the posterior probability of a data point belonging to one o f the clusters. A



key characteristic o f  the proposed clustering models, which traditional clustering 

techniques do not have, is the ability to show the probabilistic dependencies amongst 

the variables for each cluster. This feature enables a better understanding of each 

cluster.

The final part o f this thesis introduces one o f the first developments for Bayesian 

networks to perform topographic mapping. A new unsupervised learning algorithm 

for the NB model is presented which enables the projection o f high-dimensional data 

into a two-dimensional space for visualisation purposes. The Bayesian network 

formalism of the model allows the learning algorithm to generate a density model of 

the input data and the presence o f a cost function to monitor the convergence during 

the training process. These important features are limitations which other mapping 

techniques have and which have been overcome in this research.
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Chapter 1

INTRODUCTION

This chapter introduces the motivation and objectives o f the research, and the 

methods adopted. The chapter also outlines the general structure o f the thesis.

1.1 Motivation

Bayesian networks or Bayesian Belief Networks (Pearl, 1988) encode the joint 

probability distribution o f a finite set o f discrete random variables as a directed 

acyclic graph. Their main application originally was for knowledge representation 

under conditions of uncertainty and they became very popular in the medical sciences 

in applications such as diagnosis o f disease, selection of optimal treatment alternatives, 

and prediction o f treatment outcome in different areas (Lucas et al.y 2004). At the 

beginning, most of the Bayesian networks were constructed by hand by a human 

expert in the domain o f the application. Then a major breakthrough occurred when 

researchers from the Machine Learning area developed algorithms for learning 

Bayesian networks from data (Heckerman, 1995; Heckerman et al., 1995). 

Nevertheless, in general, constructing Bayesian networks from data is a very difficult 

problem. In fact, it was found that inference in a Bayesian network is NP-hard
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(Cooper, 1990). For data mining applications such as classification and clustering it 

was found that complex structures for Bayesian networks are not needed and that a 

very basic model called the naive Bayes (NB) classifier (Duda and Hart, 1973) obtains 

surprisingly good results considering its simplicity. An extension of this simple model, 

called the Tree Augmented Naive Bayes (TAN) classifier (Friedman et al., 1997), was 

developed to overcome some o f the naive Bayes limitations. Many other Bayesian 

network classifiers have been proposed but none o f them are as mathematically 

elegant as the TAN model.

In the context of data mining applications, the first motivation for the research 

presented in this thesis was to develop a Bayesian network classifier capable of 

augmenting (adding edges to) the naive Bayes model in a more robust and efficient 

way than fitting the training data to a tree structure like the TAN model. Second, in 

the case of clustering tasks, Bayesian networks have not had that many developments 

as for classification, most o f  the time the naive Bayes model is used for clustering 

because of its simplicity but not much work has been done for more complex 

structures like the TAN model. Third, another important application for data mining is 

high-dimensional data visualisation. In this field, Bayesian networks have hardly been 

investigated. Therefore, it is interesting to explore if this kind of task can be 

performed by a Bayesian network and how this can be achieved. The final motivation 

for this research is to encourage the use o f Bayesian networks for data mining as an 

alternative to more popular computational intelligence techniques such as artificial 

neural networks, fuzzy logic and inductive learning algorithms.
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1.2 Aim and Objectives

The aim o f this research is to develop new learning (training) algorithms for Bayesian

networks for classification, clustering and high-dimensional data visualisation.

The specific objectives are:

1. To develop a Bayesian network classifier with a limited structure (one parent per 

node at the most) capable o f augmenting the naive Bayes model. The resulting 

classifier model will yield structures that are not necessarily tree structures like the 

TAN model, thus not forcing the data to be modelled by a predefined structure. 

The learning o f the proposed model should follow a mathematical framework 

such as cross-entropy (Kullback-Leibler divergence) minimisation or log- 

likelihood maximisation.

2. To develop an unsupervised learning algorithm to train Bayesian networks for 

clustering tasks. The algorithm should efficiently train tree structure models like 

TAN or the previously proposed model for classification under a mathematical 

framework like maximum likelihood. Cluster assignments should be obtained 

through the posterior probabilities instead of a distance metric, most common in 

traditional clustering algorithms like the k-means.

3. To develop an unsupervised learning algorithm to train Bayesian networks for 

topographic map formation. Because no major work has been done in this area, 

the feasibility of the simple Bayesian network, naive Bayes model, will be 

explored. The proposed mapping technique should overcome some o f the

3



limitations that existing mapping technique have, like the limitations of the Self 

Organising Maps.

The expected results for the proposed classifier is that it should obtain better 

classification performances than the TAN model and the naive Bayes model, or at 

least perform just as well for some cases. This is because of the robust structure 

learning employed in the training process which allows more realistic modelling of 

the training data set than the other two traditional methods. For the proposed 

unsupervised training method the expected outcome is that it should perform better 

than traditional methods such as the k-means algorithm. This is because the 

probabilistic model does not use a distance metric to compute the “similarity” or 

“closeness” of a data point to a cluster but instead it employs a posterior probability to 

compute cluster membership values, making the proposed method capable o f 

handling many types o f data distributions. The final research on topographic map 

formation using Bayesian networks should prove that topology preserving maps can 

be formed using this approach. Also, because of the probabilistic nature o f the model, 

the proposed method should overcome the limitations of traditional techniques, such 

as the self-organising maps (SOM) which have problems including the lack of a 

density model and a cost function to monitor convergence.

1.3 Methods

For the three topics analysed in this thesis, each one will follow the same problem 

solving approach to reach the desired objectives. The methods used in this research 

are summarised as follows:
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• Literature review, the most relevant papers for each research topic will be 

reviewed pointing out the key results, advantages and disadvantages. This should 

help to lay the groundwork for the research.

• Probabilistic framework: Bayesian networks provide a mathematically sound 

formalism and that property should be present in the new developments. To 

achieve this, the proposed methods will be developed under a maximum 

likelihood framework.

• Experiments'. Although the proposed algorithms will be developed under a 

probabilistic framework, practical experiments are also required to see if  the new 

developments really work. Each proposed method will be tested using machine 

learning benchmark data sets as well as industrial application data, like the “wood 

defect data set”. In each case, performance measures will be computed to assess 

the effectiveness o f the new methods and comparisons with traditional methods 

will be carried out.

1.4 Outline of the thesis

The thesis is organised in six chapters. The topics addressed in each chapter are as

follows:

C hapter 2: In this chapter the notation and brief concepts about probabilities,

graph theory, and the Markov condition are introduced. Then Bayesian networks are 

defined and also comments on learning Bayesian networks are given. The chapter 

ends with a literature review of the most recent applications o f Bayesian networks in 

different areas.
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C hapter 3: An efficient learning method for building Bayesian network classifiers

is presented. The new method augments the naive Bayesian classifier using the Chow 

and Liu tree construction method, but it introduces a Bayesian approach to control the 

accuracy and complexity o f the resulting network, yielding structures that are not 

necessarily a spanning tree. It is shown that the procedure used to construct the 

network minimises the cross-entropy, maximises the likelihood, and minimises the 

upper bound o f the Bayes probability o f error.

C hapter 4: In this chapter, a new approach to the unsupervised training of

Bayesian network classifiers is presented. Three models have been analysed: the 

Chow and Liu multinets, the Tree Augmented Naive Bayes, and the new Bayesian 

network classifier proposed in the previous chapter which is more robust in its 

structure learning. In order to perform the unsupervised training o f these models, the 

classification maximum likelihood criterion is used. The proposed method is capable 

of learning the Bayesian network classifiers, structure, and parameters, as well as 

identifying cluster labels for each example o f the data set used, which enables these 

models to carry out clustering tasks.

C hapter 5: This chapter explores the possibility o f using a simple Bayesian

network model for high-dimensional data visualisation. To achieve this, a new 

learning algorithm is proposed in order for the naive Bayes model to perform 

topographic mapping. The training is carried out under the maximum likelihood 

framework, by means o f an on-line Expectation Maximisation algorithm with a self- 

organising principle.
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Chapter 2

BACKGROUND

Tliis chapter presents the notation as well as basic concepts o f probability theory 

related to the Bayesian network formalism. The Bayesian network is defined and the 

learning process for Bayesian networks is discussed. Finally, the most recent 

applications of Bayesian networks in different areas are reviewed.

2.1 Random variables and conditional independence

Throughout this thesis the notation used in Friedman et al. (1997) will be employed. 

The notation is as follows: capital letters X , Y , Z  are used to denote random variable 

names and lower-case letters, jc, y , z , to denote the specific values that those variables 

take. Also, sets of variables will be represented by boldface capital letters, X Y ,Z  and 

assignments o f values to the variables in the sets are denoted by boldface lower-case 

letters, x ,y ,z . Any change from this standard notation will be clearly stated in the 

thesis.
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Chapter 6: Conclusions and the main contributions of this thesis are presented in

this chapter. Suggestions for future research in this field are also provided.
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A random variable X  has a state-space Q x consisting o f the possible values x. The 

statc-space o f a vector of random variables X is the Cartesian product of the 

individual state-spaces o f the variables X t in X, i.e., Qx = [ | . x Q x  .

A joint probability distribution P(X)  over X is a mapping Q x —» [0;1] with 

y  P(\ )  - 1. The marginal distribution over Y where X = Y u Z  is

m ) - £ ^ Y ) .  Also, it is said that Y is independent o f Z if

P (Y ,Z ) = P (Y )/>(Z). The conditional probability distribution P (Z |y ) is  defines as 

P ( Z , y ) l  P(y)  for P(y )> 0 .

Conditional independence between random variables is a measure of irrelevance 

between variables that comes about when the values of some other variables are given. 

Formally, it is said that X and Y are conditionally independent given Z, if 

p ( \  IZ ,Y) = p{x I z) whenever P(Y, Z) > 0.

The above equation can be expressed using the notation in Neapolitan (2004), then the 

statement X and Y are conditionally independent given Z can be written as 

/ .,(X, Y | Z).

2.2 Graph theory

A graph is a pair (X, E), where X = {XlyX 2, . . . , Xn} is a set o f n nodes (or vertices), 

and E is a set of ordered pairs X x X . Elements o f E are called edges (or arcs), 

if(A' ,A F)e E and (A ; ,X t) e E then node and X . are connected by an undirected
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edge. and it can be written as X i - X j . When (AA,AA)g E and (X j ,X i) g E then 

X t and X j  are connected by a directed edge, and it can be written as X { —> X j . If 

there is X i —> X j  or X } —» X i , or X. -  X }, it is said that Ah and AA are adjacent.

A graph where all edges are directed is called a directed graph, and a graph without 

directed edges is called an undirected graph. For a set of nodes {Xx, X 2, . . . , Xn) ,

where n > 2 , such ( X i_x, X i) e  E for 2 < i < n  . Then, the set o f edges connecting the

>; nodes is called a path from X x t o X n. The nodes X 2, . . . , X n_x are called interior

nodes on path {Xx, X 2, . . . , X n} . The subpath of path { Xl, X 2, . . . ,Xn) from X { to

A' is the path {X , X. ^{ . , X }̂  where 1 < / < j  <n . A directed cycle is a path from a

node to itself. A simple path is a path containing no subpaths which are directed 

cycles.

A directed graph G is called a directed acyclic graph (DAG ) if it contains no directed 

c\clev Gwen a DAG G = (X,E) and nodes Ahand X . in X, when X y -> X t thenX ;

is called a parent of X t , and X k is called a child o f X } . The node X / is called a

descendent o f X i and X t is called an ancestor of AA if there is a path from X { to

A',.. and X  is called a nondescendent o f AA if AA is not a descendent of X t .

2.3 The Markov Condition

L et P be a joint probability distribution of the random variables in some set X and 

G = (X ,E) a DAG. It is said that (G, P) satisfies the Markov condition if  for each

variable A; e X ,  AA is conditionally independent of the set of all its nondescendents
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given the set o f all its parents. By adopting the following notation for the set of 

parents of X j , X (I-}, and the set of nondescendents of X t , X nd(i), then the above 

definition means  that

When (G, P) satisfies the Markov condition, it is said that G and P  satisfy the Markov 

condition with each other.

If (G. P) satisfies the Markov condition, then P  is equal to the product of its 

conditional distributions of all nodes given values of their parents, whenever these 

conditional distributions exist. Formally, this is expressed as

/>(x)=n^,ixM,,). (2.D
/=i

2.4 Bayesian networks

Let P be a joint probability distribution of the random variables in some set X, and 

G = (X ,E) be a DAG. Then, (G, P) is called a Bayesian network if (G, P) satisfies the 

Markov condition. Owing to the properties o f the Markov condition, P is the product 

of its conditional distributions in G, and this is the way P is always represented in a

Bavesian network.

A more formal definition is as follows, the term Bayesian network (Pearl (1988)) is 

used to denote the pair (m,0) consisting of:

1. The DAG model m = (X ,E) encoding conditional independence statements. X t is 

a discrete random variable associated with a node of m.
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2. The parameter of m denoted by 0 = {OX, .. .,# „ ), where consists of the local 

probabilities 0x^ m = P(X,  I X ^ )  in Eq. (2.1).

Then Eq. (2.1) can be written as

P (X \m , 0 )  = f \ P ( X i | « , X M01J,) = n f i W w i . (2.2)
/ - I  1 = 1

2.5 Learning Bayesian networks

In order to construct a Bayesian network there are two specifications than need to be 

defined. One is the DAG and the other is the parameters (conditional probability table 

entries) for that particular DAG. Bayesian networks can be constructed by hand (most 

common in medical science applications), by data, or a combination o f both 

approaches.

In this thesis, most focus will be on learning Bayesian networks from data. Learning 

Bayesian networks from data is a difficult task, Cooper (1990) showed that in the 

worst case it is intractable to compute posterior probabilities in a multiply-connected 

Bayesian network, this computation being NP-hard. Also, the space complexity of the 

network increases with its degree of connectivity. Bayesian networks with more edges 

between their nodes require more storage space for the probability parameters.

In learning from data, most research is concentrated on the learning o f optimal DAGs 

since the parameters can be easily estimated by the empirical conditional frequencies 

from the data in the case o f discrete variables or the use of well-know probability 

densities in the case o f continuous variables.
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Given an i.i.d. training data set D = {X ,,...,X r, .. . ,X ^ } , where X r = {Xrl , . . . , X rn} , 

the goal o f  structure learning is to find a set of directed edges E that best models the 

joint probability distribution P ( X rl, . . . , X r n) o f the data. One common approach is to

find the network B  that maximises the log-likelihood of the data,

U ( B \ D )  = f i logPB( X r) = f Jt J\ogP(XrJ I n ^ ). (2.3)
1 r - \  /=1

Since on average adding an edge never decreases likelihood in the training data, using 

the log-likelihood as the scoring function can lead to overfitting problems. In order to 

avoid this, the Bayesian Scoring Function (Cooper and Herskovits, 1992; Heckerman 

et a/., 1995) and the MDL principle (Lam and Bacchus, 1994) are commonly used to 

evaluate structure candidates.

An exhaustive search over all structures can in principle find the best Bayesian 

network structure, but since the structure space is exponential in the number of nodes 

in the graph, exhaustive searches are not feasible in more complex networks. Solution 

methods for intractable cases are usually categorized in independence tests 

(Neapolitan, 2004) and search based methods (Cooper and Herskovits, 1992; 

Heckerman et al., 1995). Examples are the K-2 algorithm (Cooper and Herskovits, 

1992) that defines a node ordering such that a directed edge can only be added from a 

high ranking node to a low ranking node. Another is to limit the number of parents a 

variable can have. This alternative is mostly employed by Bayesian networks for 

classification tasks since the main objective is the classification performance more 

than trying to model perfectly the probabilistic dependencies amongst the variables. 

How to learn simple models efficiently, with a limited number o f parents for each
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variable, for classification, clustering and data visualisation is the main topic o f this

thesis.

2.6 Recent Bayesian network applications

This section briefly reviews recent applications of Bayesian networks in diverse areas, 

from Agriculture and Biology through to Medicine and Robotics.

Agriculture

Aitkenhead and Aalders (2007) used evolutionary computation to train a Bayesian 

network using a dataset containing land cover information and environmental data. 

Land cover models are useful to understand how the landscape may change in the 

future, in order to test any land cover change model, existing data must be used but 

often it is not known which data should be applied to the problem. The dataset used to 

develop the models included GIS-based data taken from the Land Cover for Scotland 

1988 (LCS88), Land Capability for Forestry (LCF), Land Capability for Agriculture 

(LCA), the soil map o f Scotland and additional climatic variables. The proposed 

evolutionary training approach for the Bayesian network model was capable o f 

deciding automatically what dataset to use in order to obtain optimum (near optimum) 

results. Two important aspects that the authors were able to conclude were: First is 

that while there are causal relationships between commonly available datasets and 

land cover, any approach that is successful in extracting these relationships must be 

flexible enough to handle multiple data types and sources. Second is that whereas 

commercial software packages that implement novel modelling methods are useful, 

they can lack the flexibility required to optimise those modelling methods when the
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system being modelled contains a large number of variables and uncertain 

relationships.

Via and Dai (2005) trained a Bayesian network for predicting the East Asia locust 

hazard. The training data is obtained by a remote sensing monitor mechanism and 

experimental conclusions, then by considering the causal relationship among the 

factors o f locust environmental roosts, six label factors indicating the locust disaster 

are selected to train the Bayesian network. The results show a good agreement 

between prediction factors and practical factors in the change trend along with time. 

They conclude that Bayesian networks can provide a new approach for the migratory 

Locust disaster prediction, as well as for other disaster forecasts. In Granitto et al.

(2005) the feasibility o f using machine vision algorithms for the identification of 

weed seeds from colour and black and white images was explored. Using standard 

image-processing techniques 12 features are computed: 6 morphological, 4 colour and 

2 textural, their discriminating power as classification features is assessed by a simple 

Bayesian approach (naive Bayes classifier) and (single and bagged) artificial neural 

network systems for seed identification. The results indicate that the naive Bayes 

classifier based on an adequately selected set o f classification features has an 

excellent performance, competitive with that o f the comparatively more sophisticated 

neural network approach.

Aviation

Aircraft accident cases are being modelled with Bayesian networks to identify 

accident precursors and to assess the potential risk reducing effects o f these new 

products on certain types o f accidents. Technology and system concepts to improve
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aviation safety are presented in Bareither and Luxhoj (2007) by means of introducing 

methods for Bayesian network analysis with both sensitivity and importance aspects 

to identify the most influential accident precursors. Luo et al. (2005) discussed that it 

is a key o f the formation mechanism analysis to probe into interaction of the factors 

that cause an aviation calamity in accordance with the characteristics. In order to 

support the formation mechanism analysis a Bayesian network model is used to study 

the causality o f the factors and the interaction law of human, aircraft, environment 

and management factors. The relationship between external factors and internal 

factors were found with formation mechanism analysis o f a typical aviation calamity 

case according to Gauss Bayesian network.

In Greenberg et al. (2005) a Bayesian network socio-technical model for investigating 

the accident rate for multi-crew civil airline aircraft is presented. The model 

emphasises the influence o f airline policy and societal behaviour patterns on the pilots 

within the piloting system. The main claim that the authors make is that a Bayesian 

network can be used to bring most aviation safety-critical elements into a common 

quantitative safety assessment despite the unique problems posed by the very low 

probability of accidents. They support this claim by replicating certain phenomena 

such as the low accident rate, the difference between the “more” and “less” safe 

airlines and other statistical factors o f civil aviation. It was found that the model 

succeeds in explaining the large gap o f six to seven orders o f magnitude between in­

ti ight measurements of pilots' error and accident rate.
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Biology

Accurate and large-scale prediction of protein-protein interactions directly from 

amino-acid sequences is one o f the great challenges in computational biology. In 

Burger and Nimwegen (2008) a new Bayesian network method is presented that 

predicts interaction partners using only multiple alignments of amino-acid sequences 

of interacting protein domains, without tunable parameters, and without the need for 

any training examples. They demonstrate the power o f the proposed method by first 

applying it to bacterial two-component systems (TCSs) proteins, which are 

responsible for most signal transduction in bacteria. The results o f this experiment 

provided the first genome-wide reconstruction of two-component signaling networks 

across all sequenced bacterial genomes. It was found that the proposed model 

achieved high prediction accuracy when compared with large sets o f known 

interactions. In order to demonstrate the generality of the model, it is applied to a 

recent data set of about 100 polyketide synthases (PKSs). This application also proved 

effectively in predicting interaction partners with high accuracy even for relatively 

small datasets. Also the genome-wide predictions of two-component signaling 

networks across all sequenced bacteria allowed the authors to make an initial 

investigation o f the structural properties o f these networks across bacteria.

BioBayesNet is a new web application, introduced in Nikolajewa et al. (2007), that 

allows the easy modelling and classification of biological data using Bayesian 

networks. In the learning process o f a Bayesian network the user can either upload a 

set of annotated FAST A format sequences or a set o f pre-computed feature vectors. In 

case of FASTA sequences, the server is able to generate a wide range o f sequence and 

structural features from the sequences. These features are used to learn Bayesian
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networks. An automatic feature selection procedure assists in selecting discriminative 

features, providing an (locally) optimal set o f features. The output includes several 

quality measures of the overall network and individual features as well as a graphical 

representation o f the network structure, which allows exploring dependencies between 

features. Finally, the learned Bayesian network or another uploaded network can be 

used to classify new data.

McMahon (2005) presented a study on biological invasions. He mentions that one of 

the key obstacles to better understanding, anticipating, and managing biological 

invasions is the difficulty in trying to quantify the many important aspects of the 

communities that affect and are affected by non-indigenous species (NIS). He 

proposes the use o f Bayesian networks to provide an analytical tool for the 

quantification o f communities, since they can determine which components of a 

natural system influence with others, quantify this influence, and provide inferential 

analysis o f parameter changes when changes in network variables are hypothesized or 

observed. After a brief explanation o f these three functions o f BLNs, a simulated 

network is analysed for structure, parameter estimation, and inference. The proposed 

approach is explored using a simple forest community example.

Business and Finance

Cowell et al. (2007) presented the modeling of operational risk using Bayesian 

netw orks. Using an idealised example of a fictitious on line business, they construct a 

Bayesian network that models various risk factors and their combination into an 

overall loss distribution. The authors conclude that the main advantages of using
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Bayesian networks for modeling operational risk is the facility to incorporate expert 

opinion through:

• Choice o f the variables o f interest

• Definition of the structure o f the model via the causal dependencies

• Specification o f the prior distributions and the conditional probabilities at each 

node.

Lu et al. (2007) presented a study that applies Bayesian network technique to analyse 

and verify the relationships among cost factors and benefit factors in the development 

o f e-services. Using this technique, the costs involved in moving services online 

against the benefits received by adopting e-service applications are found. These 

findings have potential to improve the strategic planning o f businesses by determining 

more effective investment items and adopting more suitable development activities in 

e-services development. Sun and Shenoy (2007) provided an operational guidance for 

building naive Bayes Bayesian network models for bankruptcy prediction. First, they 

suggest a heuristic method that guides the selection o f bankruptcy predictors. Based 

on the correlations and partial correlations among variables, the method aims at 

eliminating redundant and less relevant variables. Then they develop a naive Bayes 

model using the proposed heuristic method which is found to perform well based on a 

10-fold validation analysis. The developed naive Bayes model consists of eight first- 

order variables, six of which are continuous. The authors conclude that the results of 

this study could also be applicable to business decision-making contexts other than 

bankruptcy prediction.
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Mukhopadhyay et al. (2006) developed a framework, based on a Bayesian network 

model, to quantify the risk associated with online business transactions, arising out of 

a security breach, and thereby help in designing e-insurance products. The output of 

the Bayesian network is the frequency o f occurrence o f an e-risk event. Then they 

come up with a model o f the expected loss amount by multiplying the expected loss 

amount with the probability o f occurrence of an event. This model is useful for 

quantifying e-risk in monetary terms in case of failure o f online systems. The authors 

conclude that insurance companies can use this model to set premium for e-insurance 

products. Neil et al. (2005) described the use o f Bayesian networks to model 

statistical loss distributions in financial operational risk scenarios. Its focus is on 

modeling "long" tail, or unexpected, loss events using mixtures o f appropriate loss 

frequency and severity distributions where these mixtures are conditioned on causal 

variables that model the capability or effectiveness of the underlying controls process. 

They conclude that Bayesian networks can help combine qualitative data from experts 

and quantitative data from historical loss databases in a principled way. Adopting a 

Bayesian network-based approach should, therefore, lead to better operational risk 

governance and a reduced regulatory capital charge. Relying purely on historical loss 

data and traditional statistical analysis techniques will neither provide good 

predictions of future operational risk losses, nor a mechanism for controlling and 

monitoring such losses.

Genetics

Yuan et al. (2007) trained naive Bayes classifiers using only the sequence-motif 

matching scores provided by Beer and Tavazoie's (BT) approach to predict mRNA 

expression patterns. The simple naive Bayes models were capable of correctly
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predicting expression patterns for 79% o f the genes, based on the same criterion and 

the same cross-validation procedure as BT, outperforming the 73% accuracy of BT. 

C hen et al. (2007) investigated the combined effects of genetic polymorphisms and 

non-genetic factors on predicting the risk of Coronary artery disease (CAD) by 

applying well known classification methods, such as Bayesian networks, naive Bayes, 

support vector machine, k-nearest neighbours, neural networks and decision trees. 

The experimental results showed that all these classifiers are comparable in terms of 

accuracy, while Bayesian networks have the additional advantage of being able to 

provide insights into the relationships among the variables. The authors observed that 

the learned Bayesian networks identified many important dependency relationships 

among genetic variables, which can be verified with domain knowledge. They 

conclude that conforming to current domain understanding, the results indicate that 

related diseases (e.g., diabetes and hypertension), age and smoking status are the most 

important factors for CAD prediction, while the genetic polymorphisms entail more 

complicated influences.

Needham et al. (2006) used Bayesian networks to predict whether or not a missense 

mutation will affect the function o f the protein. The authors support the use of 

Bayesian networks for this task because they provide a concise representation for 

inferring models from data, and are known to generalise well to new data. More 

importantly, they can handle the noisy, incomplete and uncertain nature of biological 

data. The results showed that the Bayesian network achieved comparable performance 

with previous machine learning methods. The predictive performance of learned 

model structures was no better than a naive Bayes classifier. However, analysis of the
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posterior distribution o f model structures allowed biologically meaningful 

interpretation of relationships between the input variables.

Deng et al. (2006) developed a machine learning system for determining gene 

functions from heterogeneous data sources using a Weighted Naive Bayesian network 

(WNB). The knowledge o f gene functions is crucial for understanding many 

fundamental biological mechanisms such as regulatory pathways, cell cycles and 

diseases. The authors comment that a major goal for them is to accurately infer 

functions o f putative genes or Open Reading Frames (ORFs) from existing databases 

using computational methods. However, this task is difficult since the underlying 

biological processes represent complex interactions o f multiple entities. Therefore, 

many functional links would be missing when only one or two sources o f data are 

used in the prediction. Their hypothesis is that integrating evidence from multiple and 

complementary sources could significantly improve the prediction accuracy. The 

experimental results suggest that the above hypothesis is valid, as well as guidelines 

for using the WNB system for data collection, training and predictions. The combined 

training data sets contain information from gene annotations, gene expressions, 

clustering outputs, keyword annotations, and sequence homology from public 

databases. The current system was trained and tested on the genes o f budding yeast 

Saccharomyces cerevisiae. The WNB model can also be used to analyse the 

contribution of each source of information toward the prediction performance through 

the weight training process. The authors conclude that contribution analysis using the 

WNB could potentially lead to significant scientific discovery by facilitating the 

interpretation and understanding o f the complex relationships between biological 

entities.
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Rodin and Boerwinkle (2005) introduced the method of Bayesian networks to the 

domain o f genotype-to-phenotype analyses and provide an example application. The 

proposed Bayesian network method was applied to 20 single nucleotide 

polymorphisms (SNPs) in the apolipoprotein (apo) E gene and plasma apoE levels in 

a sample of 702 individuals from Jackson, MS. The plasma apoE level was the 

primary target variable. After some analysis it was found that the edge between SNP 

4075, coding for the well-known e2 allele, and plasma apoE level was strong.

Pudimat et al. (2005) developed a probabilistic modeling approach, which allows 

considering diverse characteristic binding site properties to obtain more accurate 

representations of binding sites. Commonly used stochastic models for binding sites 

are position-specific score matrices (PSSM), which show weak predictive power. In 

the proposed work the binding site properties are modelled as random variables in 

Bayesian networks, which are capable o f dealing with dependencies among the 

variables. In order to compare the predictive power of the proposed method to that of 

PSSM models, cross-validation tests on two datasets was performed namely MEF-2 

binding sites, AP-1 boxes and Spl binding sites. In all cases, considerable 

improvements were found in the classification error rates using the Bayesian network 

models.

M anufacturing

Cheah et al. (2007) proposed a Bayesian network for the representation and reasoning 

of the manufacturing-environmental knowledge for assembly design decision support. 

They also propose a methodology for the indirect knowledge acquisition, in order to
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build the network, using fuzzy cognitive maps and for the conversion of the 

representation into a Bayesian network. In Chen and Chang (2007) a Bayesian 

network is used to implement a data mining task for computer integrated 

manufacturing (CIM). The Bayesian network was capable of finding the cause factors 

in various parameters that affect in the semiconductor cleaning process. In Li and Shi 

(2007) a causal modelling approach using Bayesian networks is proposed to improve 

an existing causal discovery algorithm by integrating manufacturing domain 

knowledge with the algorithm. The proposed model is demonstrated by discovering 

the causal relationships among the product quality and process variables in a rolling 

process. The authors conclude that the results of the casual model, when allied with 

engineering interpretations, can be used to facilitate rolling process control.

Weber and Jouffe (2006) presented a methodology for developing Dynamic Object 

Oriented Bayesian Networks (DOOBNs) to formalise complex manufacturing 

processes in order to optimise the diagnosis and the maintenance policies. The added 

value of the proposed formalisation methodology consists in using the a priori 

knowledge o f both the system's functioning and malfunctioning. The Bayesian 

networks are built on principles o f adaptability and integrate uncertainties on the 

relationships between causes and effects. The methodology is tested, in an industrial 

context, to model the reliability of a water (immersion) heater system. They find that 

the obtained model is more compact and readable than the Markov Chain model. 

Furthermore, the dependency between several failure modes o f a component and 

common modes is easily modelled by the Bayesian network. The authors conclude 

that DOOBNs represent a very powerful tool for decision-making in maintenance.
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Perzyk et al. (2005) studied the modeling capabilities o f two types of learning systems: 

the naive Bayesian classifier (NBC) and artificial neural networks (ANNs). 

Comparisons are done, using simulated and real industrial data, based on their 

prediction errors and relative importance factors of input signals. It was found that 

NBC can be an effective and, in some applications, a better tool than ANNs.

Medicine

Yerduijn et al. (2007) introduced a prognostic model that builds on the Bayesian 

network methodology. Prognostic models, given a set of patient specific parameters, 

predict the future occurrence o f a medical event or outcome. Example events are the 

occurrence o f specific diseases (e.g., cardiovascular diseases and cancer) and death. 

The authors identified three main limitations with previous prognostic models which 

use supervised data analysis methods, these are: First, attribute selection before 

inducing a model, often removing many attributes that are deemed relevant for 

prognosis. Second, the resulting models regard prognosis to be a one-time activity at a 

predefined time. And third, the models impose fixed roles o f predictor (independent 

variable, input) and outcome variable (dependent variable, output) to the attributes 

involved. To overcome these limitations, they propose a prognosis model based on 

Bayesian network methodology (PBN), which provides a structured representation of 

a health care process by modelling the mutual relationships among variables that 

come into play in the subsequent stages of the care process and the outcome. As a 

result, the PBN allows for making predictions at various times during a health care 

process. Also, prognostic statements are not limited to outcome variables, but can be 

obtained for all variables that occur beyond the time of prediction.
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Suebnukam and Haddawy (2006) developed representational techniques and 

algorithms for generating tutoring hints in problem-based learning (PBL) using 

Bayesian networks, implemented in a collaborative intelligent tutoring system called 

C'OMET. The system uses Bayesian networks to model individual student clinical 

reasoning, as well as that o f the group. In order to evaluate the performance of the 

system, the tutoring hints generated by COMET with those o f experienced human 

tutors were compared. The results showed that on average, 74.17% o f the human 

tutors used the same hint as COMET. The authors conclude that Bayesian network 

clinical reasoning models can be combined with generic tutoring strategies to 

successfully emulate human tutor hints in group medical PBL.

Alvarez et al. (2006) performed a study to evaluate the feasibility o f using a Bayesian 

network to improve the accuracy o f diagnosing pyloric stenosis. Records o f 118 

infants undergoing an ultrasound to rule out pyloric stenosis were reviewed. Data 

from 88 (75%) infants were used to train a Bayesian decision network that predicted 

the probability of pyloric stenosis. The emergency department records of the 

remaining 28 (25%) infants were used to test the network. The results showed that 

physicians using the Bayesian decision network predicted better the probability o f 

pyloric stenosis among infants in the testing set than those not using the network. 

Physicians using the network would have ordered 22% fewer ultrasounds and missed 

no cases of pyloric stenosis. The authors concluded after their study that the use of a 

Bayesian decision network may improve the accuracy o f physicians diagnosing 

infants with possible pyloric stenosis. The use of this decision tool may safely reduce 

the need for imaging among infants with suspected pyloric stenosis.
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Visscher et al. (2005) used a Bayesian network as a primary tool for building a 

decision-support system, diagnosis and treatment, for the clinical management of 

ventilator-associated pneumonia. While in Mani et al. (2005) the practical aspects of 

building a Bayesian Network from a large medical dataset for Mental Retardation is 

discussed.

In traditional Chinese medicine (TCM), Bayesian networks have had several 

applications recently as well. Zou et al. (2007) combined Principal Component 

Analysis with a Bayesian network classifier in order to perform syndrome 

classification o f chronic gastritis. Wang and Wang (2006) proposed a quantitative 

method based on Bayesian networks to predict syndrome automatically. The method 

uses Bayesian networks instead of using rules, which differentiates from other 

existing quantitative methods in TCM. The results show that the diagnostic model 

obtains relative reliable predictions of syndrome, and its average predictive accuracy 

rate reaches 91.68%, which makes the proposed method feasible, effective and useful 

in the modernization o f TCM. In Zhu et al. (2006) a Bayesian network was used to 

study the relationship between the key elements of syndrome and the symptoms, and 

the relationship among different key elements, in which the computing diagnosis 

result were identical to the result from an experienced TCM doctor. The study showed 

that the Bayesian network is capable o f dealing effectively with the information of 

symptoms and signs for syndrome differentiation, although it did not reflect 

comprehensively the thinking ability of TCM doctors in doing syndrome 

differentiation. In Wang and Zong (2006) to classify tongue types automatically 

(tongue recognition is one o f the most important components in TCM), they proposed 

a quantitative method based on Bayesian networks to build the mapping relationships
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between tongue images and tongue types. This system includes novel features that 

help to overcome main disadvantages o f routine TCM expert system obtaining 

encouraging results that can yield this system to be used as an assistant diagnostic tool.

Robotics

Lazkano et al. (2007) presented the use o f Bayesian networks as a learning technique 

to manage task execution in mobile robotics. To leam the Bayesian Network structure 

from data, the K2 structural learning algorithm is used, combined with three different 

net evaluation metrics. The experiment led to a new hybrid multi-classifying system 

resulting from the combination o f 1-NN with the Bayesian Network. As an 

application example o f the proposed method, a door-crossing behaviour in a mobile 

robot using only sonar readings, in an environment with smooth walls and doors is 

presented. Both the performance o f the learning mechanism and the experiments run 

in the real robot-environment system show that Bayesian Networks are valuable 

learning mechanisms, able to deal with the uncertainty and variability inherent to such 

systems.

Infantes et al. (2006) proposed the use o f dynamic Bayesian networks as models of 

robotic tasks behaviours. In many situations, these tasks involve complex behaviours 

combining different functionalities (e.g. perception, localisation, motion planning, and 

motion execution). The dynamic Bayesian network formalism allows learning and 

controlling behaviours with controllable parameters. The proposed approach is 

experimented on a real robot, where the model o f a complex navigation task is learned 

over a large number o f runs using a modified version of Expectation Maximisation for 

dynamic Bayesian network. The resulting dynamic Bayesian network is then used to
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control the robot navigation behaviour. It is shown that for some given objectives (e.g. 

avoid failure), the learned dynamic Bayesian network driven controller performs 

much better (one order o f magnitude less failure) than the programmed controller. 

The authors conclude that the proposed approach remains generic and can be used to 

learn complex behaviours other than navigation and for other autonomous systems.

Scene understanding is an important problem in intelligent robotics. In Im and Cho

(2006) a context-based Bayesian network method with Scale-Invariant Feature 

Transform (SIFT) for scene understanding is proposed. The use of a Bayesian 

network for this problem is chosen because of its robustness to manage the 

uncertainty, and powerfulness to model high-level contexts like the relationship 

between places and objects. The proposed approach consists first in an image pre­

processing step which extracts features from vision information and the objects 

existence information is extracted by SIFT that is rotation and scale invariant. This 

information is provided to Bayesian networks for robust inference in scene 

understanding. Experiments carried out in real university environment showed that 

the Bayesian network approach using visual context-based low level feature and high 

level object context, which is extracted by SIFT, is effective.

Wang and Ramos (2005) used the Bayesian Structural EM algorithm as a 

classification method to leam and interpret hyperspectral sensor data in robotic 

planetary missions. Many spacecraft carry spectroscopic equipment as wavelengths 

outside the visible light in the electromagnetic spectrum give much greater 

information about an object. The algorithm presented combines the standard 

Expectation Maximisation (EM), which optimises parameters, with structure search
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for model selection. The Bayesian Information Criterion (BIC) score is used to leam 

the network structure. The EM procedure only assures convergence to a local maxima, 

thus, it is required a good initial graph structure. Two initial structures are used: the 

naive Bayes, and the tree-augmented-naive Bayes (TAN) structures. Preliminary 

experiments showed that the former results in a structure that can only determine the 

presence and types o f minerals with merely 13% accuracy while the latter results in a 

structure that has approximately 94% accuracy.

2.7 Summary

This chapter has reviewed the theory and practical applications o f Bayesian networks 

to provide general background information for the research reported in subsequent 

chapters of the thesis.
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Chapter 3

SIMPLE BAYESIAN NETWORK CLASSIFIERS

3.1 Preliminaries

Classification is the task of identifying the class label of instances which are described 

by a set of attributes (features). The construction of classifiers from data is an active 

research topic in the machine learning and data mining community. Popular 

techniques for learning classifiers from data include: decision-trees, artificial neural 

networks, support vector machines, rule induction and fuzzy systems. Although 

Bayesian networks are probabilistic graphical models useful for performing inference 

under conditions o f uncertainty and knowledge representation (Pearl, 1988), they 

were not considered as classifiers until a very simple Bayesian network called the 

naive Bayesian classifier (Duda and Hart, 1973) proved to be effective (Langley et al.y 

1992). The naive Bayesian classifier makes a strong independence assumption 

amongst its attributes, assuming that all attributes are conditionally independent given 

the classification node. In order to overcome this independence assumption, the 

augmenting o f the naive Bayesian model with edges between attributes has yielded 

many types o f Bayesian network classifiers which will be presented later on. The 

most cited and studied augmenting technique for the naive Bayesian classifier so far is
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Friedman et al. ’s Tree Augmented Naive Bayes (TAN) classifier (Friedman et al., 

1997). The TAN algorithm uses a variant o f the Chow and Liu (Chow and Liu, 1968) 

method for learning tree-like structures in which the class variable has no parents and 

each attribute has one other parent in addition to the class variable. This restriction is 

very convenient since it makes it an algorithm which is computationally efficient 

while still optimising likelihood. Apart from the computational advantages, networks 

with low connectivity also possess conceptual advantages in the sense that by having 

simpler topologies, the underlying causal and probabilistic relationships in the domain 

are easier to understand.

On the other hand, the use of multiply-connected networks allows a much better 

approximation o f the underlying distribution, but with several disadvantages. Cooper 

(1990) showed that in the worst case it is intractable to compute posterior 

probabilities in a multiply-connected Bayesian network, this computation being NP- 

hard. Also, the space complexity o f the network increases with its degree of 

connectivity. Bayesian networks with more connections (edges) between their nodes 

require more storage space for the probability parameters. The number of probability 

parameters needed for each node increases exponentially with the number o f its 

parents (incoming edges). The trade-off between accuracy (more complex models) 

and usefulness (simpler models) was explored by Lam and Bacchus (1994). They 

presented an approach for learning unrestricted multiply-connected Bayesian 

networks based on Rissanen’s Minimum Description Length (MDL) principle 

(Rissanen, 1978), which says that the best model o f a collection of data is the one that 

minimises the sum of the encoding lengths of the data and the model itself. However, 

finding the network that minimises the sum of these two components is
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computationally intractable (Chickering, 1995), so they use a heuristic search 

algorithm that tries to find a network that has low, but not necessarily minimum, 

description length. The experiments showed good results, but the MDL approach was 

studied in Friedman et al. (1997) for learning Bayesian network classifiers yielding 

poor results, especially for data sets that had more than fifteen attributes. Their 

analysis suggested that a network with a high MDL score is not necessarily a better 

classifier.

This chapter presents a new learning method for constructing Bayesian network 

classifiers with a Bayesian approach to handle the trade-off between accuracy and 

complexity that can be implemented incrementally. This type o f network has the same 

restrictions as the TAN model, in that the class variable has no parents and each 

attribute has, at the most, one other parent in addition to the class variable. However, 

it differs from the TAN model since the resulting network does not have to be a 

spanning tree. In the proposed approach, the number of edges is automatically 

regulated depending on the number o f training patterns, yielding much more reliable 

networks according to the training data. The resulting structures can vary from the 

simple naive Bayesian classifiers, with zero augmenting edges between attributes, to 

the most complex one, with the restriction mentioned above, which is the TAN 

classifier with n -  1 augmenting edges, where n is the number o f attributes. Although 

the resulting network can have e < n -1  edges, the network is still optimum in the 

sense of divergence (cross-entropy), likelihood, and the Bayesian probability of error 

for the e augmenting edges class network. Experiments on benchmark data sets to 

show how the size o f  the training set influences the resulting structures as well as the 

classification performance compared to the naive Bayesian and TAN models, have
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been carried out. Also the proposed method was compared to state o f the art 

classifiers such as the C4.5 and a MLP neural network in a real-world industrial 

application.

This chapter is organised as follows: Section 3.2 presents a description of Bayesian 

network classifiers. In Section 3.3, the proposed learning method is presented, starting 

from the Bayesian approach to handle the trade-off between accuracy and complexity 

up to presenting the construction method of the networks. Section 3.4, describes the 

methods used for carrying out the experiments to test the new simple Bayesian 

netw ork classifiers. Results are shown in Section 3.5 and the summary of this work in 

Section 3.6.

3.2 Bayesian network classifiers

The goal of a Bayesian network classifier is to correctly predict the class label C 

given a vector of attributes {X x,..., X n}. If the performance is measured on the correct

classification percentage on a test set, then the optimal prediction for {Xlt. . . fX J  is

the class that maximises P ( C \ X lt. . . , X n) (Duda and Hart, 1973). A Bayesian

network classifier models the joint probability distribution P ( Xx,..., X n, C) and

converts it to conditional distribution using the Bayes’ theorem. The simplest of the 

Bayesian network classifiers is the naive Bayesian classifier where the class variable 

has no parents and each attribute has only the class as its parent (see Fig. 3.1). This 

strong independence assumption is overcome by incorporating edges between 

attribute nodes. Firedman et al. (1997) TAN algorithm is one o f the most popular
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techniques for augmenting the naive Bayes model. The TAN algorithm uses a variant 

of Chow and Lui’s seminal work for finding optimal tree-like structures where each 

variable has one other parent in addition to the class (see Fig. 3.2). In what follows, 

other research on Bayesian network classification is presented.

Cerquides and Lopez de Mantaras (2005) presented several Bayesian algorithms for 

learning TAN models. They introduced decomposable distributions over TANs, 

extending the work o f Meila and Jaakkola (2000) to TANs, allowing the computation 

of the exact Bayesian model averaging over TAN structures and parameters in 

polynomial time. These classifiers provide significant improvements, especially when 

data is scarce. Acid et al. (2005) developed a new “score+search”-based algorithm for 

learning Bayesian network classifiers from a database, showing that score-based 

learning specialised for classification can compete favourably with state-of-the-art 

Bayesian network classifiers. An empirical comparison of four Bayesian networks 

classifiers was carried out in Cheng and Greiner (1999). The results showed that 

conditional independence-based learning algorithms were competitive with the best 

known classifiers based on both Bayesian networks and other formalisms. Shi and 

Huang (2002) proposed a new algorithm for constructing TAN models which is linear 

in the number of attributes. This is favourable when working with high dimensional 

data since the original TAN algorithm is quadratic in the number o f attributes. In 

Monti and Cooper (1999) a new Bayesian network model for classification that 

combines the naive Bayes classifier and the finite mixture classifier is presented. The 

classifier is obtained by superimposing a finite mixture model on the set of attributes 

of a naive Bayes model. Experimental results showed that the new classifier can often 

outperform the naive Bayes model in terms of classification accuracy, while
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significantly improving the calibration o f the probability estimates. Grossman and 

Domingos (2004) showed that choosing structures by maximising conditional 

likelihood, while setting parameters by maximum likelihood, yields good results, with 

better probability estimates than the naive Bayes, TAN, and generatively-trained 

Bayesian networks. Keogh and Pazzani (2002) developed an algorithm for 

constructing TAN-type classifiers using classification accuracy rather than maximum 

likelihood scores. In Hwang and Zhang (2005) a Bayesian model averaging network 

classifiers over several distinct node orders, obtained using the Markov Chain Monte 

Carlo sampling technique, was proposed, proving to be especially effective when the 

given dataset was very sparse. Jing et al. (2005) showed that an effective Bayesian 

network classifier can be constructed by parameter boosting coupled with 

discriminative structuring learning, outperforming the naive Bayes, TAN, and other 

Bayesian network classifiers on benchmark data sets. In Kleiner and Sharp (2000) a 

new architecture for the induction of classifiers based on Bayesian networks is 

presented. Experiments showed that the new algorithm outperformed the TAN model 

in the case o f data with weak or multiple correlations.

The following section presents a new approach to augment the naive Bayes classifier 

using a Bayesian approach to handle the trade-off between accuracy and complexity.
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Figure 3.1 N aive Bayes classifier

•  •  •

Figure 3.2 TAN classifier
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3.3 Training simple Bayesian network classifiers

The original TAN classifier is constructed by the maximum weighted spanning tree 

MWST using Kruskal's algorithm (Kruskal, 1956), for example, with the conditional 

mutual information as weights. This approach is optimum since it maximises 

likelihood. Nevertheless, for n attributes nodes, the TAN will augment the naive 

Bayes classifier with n -1  edges regardless if  the amount o f training data available is 

enough to support that number of edges, thereby ignoring the balance between 

complexity and accuracy. This section presents a simple Bayesian network classifier 

which can be implemented incrementally, introducing a Bayesian complexity measure 

that regulates automatically the amount o f augmented edges permitted to augment the 

naive Bayes classifier depending on the amount of data available. The resulting 

classifier will end up with a structure that lies in between the naive Bayes and the 

TAN, including both o f these models as well.

First a simple encoding method for the network is presented, then a complexity 

measure is introduced using Bayes1 Theorem. Finally, the incremental learning of the 

simple Bayesian network classifier is described.

3.3.1 Network encoding

For a Bayesian network with n attribute nodes, let the representation of the network 

be constructed using n +1 symbols (one for each attribute node plus an additional 

symbol to represent the stop command) of length m = log2(« + 1) bits.

Let a Bayesian network B  encoding be represented by a sequence of ordered pairs:

{nx, n2 )(«3, n4 )(n5, n6 ) ... (ns_t , ns )Stop,
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where an ordered pair (w,,/zy) is a code C{j = C(«/ )C(/zy.) formed by the concatenation 

of the code representing the node ni and the code representing . Each ordered pair

in the sequence represents the nodes that have an edge between them. For example, 

the Bayesian network of Fig. 3.3 that has 3 nodes. Each node can be represented by 

codes of length m = log2(3 + l) = 2 bits. Then, let C(Ar1) = 00, C (^ 2) = 01, 

C (A \) = 10, and Stop = 11 be the codes of each node and the stop command 

respectively.
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Figure 3.3 An example of a Bayesian network with 3 nodes and 2 edges.
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The encoding o f the Bayesian network o f Fig. 3.3 is 

therefore ( X ], X 2 ) (X , , X,)Stop  = 0 0 0 1 0 0 1 0 1 1 , with codelength 1(B) = 10 bits.

It is important to notice that this is not the only possible encoding scheme. It is, 

nevertheless, simple and it performs well in the experimental tests.

3.3.2 Complexity measure

In order for a simple model to be replaced by a more complex one, the amount of 

training data is fundamental. This is because a more complex model requires a greater 

am ount of data for its validation. All of this is taken into account correctly in the 

Bayes' formula:

( 3 .0

where the likelihood PCD | B) will usually increase with more complex models. On 

the other hand, the prior P(B) will decrease with the complexity since complex 

models are less probable. Nevertheless, no matter how complex the model is, if  there 

is enough training data to support it, the sum of the likelihood for each instance of the 

tra in ing set will be high enough to compensate for the very low prior probability.

So. for a simple model Bs to be replaced by a more complex onePc, the following 

criteria must hold:

P(D\BS)P(BS) ,_ —̂1 — —-—— < 1. (3 2)
P(D\BC)P(BC) K '

The ratio P(D | Bs) /P (D  \ Bc)is known as the Bayes Factor (Kass and Raftery, 1995).

Applying the base 2 logarithm,

k = log2 P (D | B , ) -  log 2  P(D | Bc) + log2 P ( B J -  log 2  P(BC) (3.3)
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with the condition being k < 0 to replace Bs by Bc.

The prior of the Bayesian network can be expressed using the network’s encoding 

system. It is known from coding theory (Mackay, 2003) that probabilities can be 

m apped to optim al codelenghts, a uniquely decodeable code that minimises the 

expected codelength. The expected length is minimised only if the codelengths /(M ( )

for a given model M  { are equal to the Shannon information

contents: = log2( l / P (M i)). So, for a Bayesian networkB  with description length

1(B), the prior can be estimated by

P(B) = 2~l{B\  (3.4)

and if the data D = {Xl5. .. ,X A,} is i.i.d., then equation (3.3) can be written as

* = /(£ f W ( S 5) + Z Z l0& P (X r,i I P ( X r41 Bc). (3.5)
r = 1 i=l

Then, let the structure o f Bc be the same as Bs but with one additional edge. This 

m eans that the description length o f Bc uses two more symbols than Bs , i.e., 

l(Bc)~ l(Bs) = 2m . Thus, if the extra edge in Bc is due to attribute X m being parent 

of attribute X v and if the decomposability o f a Bayesian network given by (2.2) is 

considered, equation (3.5) can be expressed as

k = 2m + j r \ o g 2P (X rJ C r) - \ o g 2P ( X ^ \ X rM,Cr). (3.6)
r —\

Equation (3.6) presents a way to measure the effect o f adding an extra edge to a naive 

Bayesian network classifier. Negative values o f k  indicate that there is enough data to
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support that extra edge. The next step is to find a stopping condition for the 

augmenting of the naive Bayes classifier. For this, comparing the effect of having no 

edges between attributes (naive Bayes) against having e augmenting edges is 

required. Because o f the logarithmic property (multiplicative terms become additive 

ones) the equation to compute, Ke, that indicates if there is enough data to support e 

edges compared to 0 edges (naive Bayes), is

^ = 1 > „  (3 .7)
/=1

where ki represents the k value for the i th edge being considered. Then, the adding

of edges will continue while K e < 0. When K e becomes positive, the network does

not have sufficient data to support the adding o f any more edges. The fact that K e can

be computed by the sum of single added edges makes this method computationally 

fast. It also allows the computation to be incremental, as for each iteration the value of 

K e can be tested.

3.3.3 Simple learning algorithm

Since the learning of the Chow-Liu trees present an efficient way o f maximising the 

likelihood with simple tree structures (each attribute has one more parent in addition 

to the class), an adaptation o f this method can be used to augment incrementally the 

naive Bayesian classifiers. This yields networks where the number of augmenting 

edges will depend on the amount o f training data, not restricted to n -1  edges as is 

the TAN model.

In order to assess the accuracy of the approximation of the joint probability 

distribution made by the Bayesian network, the Kullback-Leibler divergence or cross-
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entropy is used. Let P(X)  and /^(X ) be two probability distributions of n discrete 

variables X = {X ],... X„}. The cross-entropy is defined by

KL (P(X) || PS(X)) = 2 > ( X ) l o g ^ L  (3.8)

and has the property that KL(P(X)  || PB(X)) is non-negative, and equal to 0 if and 

only if P(X) = PB (X) for all X .

For the learning procedure, let X n be a set of attributes variables and C be the

class variable. Also, let B be an augmented naive Bayes model with e < n - 1 edges, 

so U c = 0  and there is a function n  that defines a network over X l , . . . , X /l such that

II v -  {C,X z{i)} i f ; r ( /)> 0 , and Ylx = {C} if^r(i) = 0 . This learning procedure can

bc formulated as an optimisation problem consisting in finding a network defining 

function n  over X {, . . . , X n such that the cross-entropy between the original joint

probability distribution o f the data and the approximation made by the Bayesian 

network is minimised.

It is shown later that the procedure Build Network solves this optimisation problem, 

finding the optimal network with e < n - 1 augmenting edges amongst all the possible 

networks with that number of edges. This procedure follows the general outline of the 

TAN procedure called Construct-TAN, except that now the number of augmenting 

edges is automatically regulated by (3.7).

The conditional mutual information between attributes given the class variable is 

employed by the Build Network procedure. This function is defined as
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/(X ;Y  | Z) = XP ( x , y , z ) k g — ■ (3.9)
x ,y ,z  P(x I z)P(y I z)

I his function measures the information that Y provides about X when the value of 

Z is known, and /(X ; Y | Z) is non-negative.

fhe Build Network procedure consists o f the following steps:

1. Compute I ^ X ^ X j  | C) between each pair o f attribute variables, z * j .

2. Construct a complete undirected graph in which the nodes are the attribute 

variables X x,. . . , X n . Assign the weight of an edge connecting to X } by

i ( x , - , x , \ c ) .

3. Apply the MWST algorithm, for each iteration (adding o f an edge) K e < 0 must 

hold. If K e becomes positive, the MWST algorithm is stopped.

4. Transform the resulting undirected network to a directed one by choosing a root 

variable and then setting the direction o f all edges to be outward from it.

5. Construct an augmented naive Bayes model by adding a vertex labeled C and 

adding an edge from C to each X i .

Notice that in step 3, if K e is positive for the first edge selected by the MWST 

algorithm, then the resulting structure will be that of the naive Bayes classifier. On the 

other hand, if K e < 0 throughout the entire algorithm, then the resulting network will 

be the TAN model, having n -1  edges.

Theorem /: Let D be a collection of N  instances of X l9. . . ,X n,C  which are i.i.d. 

Amongst all the network structures with e < n -1  edges, the procedure Build Network
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generates an augmented naive Bayes classifier that minimises the cross-entropy 

(Kullback-Leibler divergence) between the real joint probability distribution P , from 

where D was acquired, and the approximation of the joint probability distribution PB 

made by the Bayesian network.

Proof: Let X = {Xx,... X n, C}, then using the definition of the cross-entropy (3.8), 

A 2(P(X )|| />S(X)) = £ > ( X) lQg p (x ) -  Z  P(X)  log P„ (X),
X X

since the joint probability distribution of the Bayesian network can be computed using 

(2.2). then

= - 5 > ( X )  X io g ^ c y : | n , ; ) - / / ( X ) ,  (3.10)
X i

with H (X )  = - ]T  P(X)  log P (X ) .

Equation (3.10) can be adapted for the augmented naive Bayes with e < n -1  edges 

model as follows. Let B be a model where the parents of X i are defined by ;r, so

P{X: \U x ) = P{Xi \ X x(i),C)  if 7c(i) > 0 and P{X i \ Ux ) = P{Xi \C) if n(i) = 0 .

Therefore, (3.10) can be expressed as

= - X > ( X )  X l o g / ^  I ^ . O - Z ' W  X l o g />(.*■,. I C ) - t f ( X )
X i,x(i)>  0 X i , x ( i )=0

= T  P( X)  X  log P ( X *'X ^ \ C) ------ £ / > (X ) X  log P ( X " C)  ( 311)
* . i y  p ( x t \ c)P(x„U)\ o  y  ,,.Ty .„  p (x ,)P(o

-  X ^ ( X )  X l08 K X ,  IC ) - X P ( X )  X ' ° g P ( X , ) - H ( X ) .
X 0 X i,x(i)=0
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P{X:), P (X i, C \  and P ( X i, X jr(i),C) can be computed as marginal probabilities 

from /^(X), so then

-  X  / W l o g />(*,) = -  X  P(.Xl) logP(Xl) = H ( X , \
X .V

- X n x ) l o g P(X,  IC) = -  X P ( X „ C ) logP(X,  IC) = H(X,  IC),
x, ,c

and

P ( x i, x , m \c )  
P(X, | C)P(X.<n IC)

^  P k X ^ X '  „ , |C )
= X P (Jr„^ „ ,,C )log  ■ ■ = /(* ,;* „ „  |C),

-V ,.v„ , .c r KA  i I J t(i) I c  /

XP(X)log--P — = X n x„C)log = I(X,\0-
X P(X,)P(C) fac ‘ *P(X,)P(C)

Thus, (3.11) becomes

KL = -  X  W ; ^ , I O -  ' £ l ( X - C ) +  X " ( x . l c )
; .x ( /)> 0  i,,T(/)=0 /,/T(;)>0

i,x(i)= 0

(3.12)

and by using the following property (Cover and Thomas, 1991): 

/(X ; Y) = //(X ) -  //(X  | Y ) , the KL is

i a  = - X  / ( ^ : ^ (0 | C ) - X / ( ^ , ; C ) + S w ( ^ ) - / / ( X ) .  ( 3 1 3 )

Now, because/(A f; C) , / / ( 2 Q , and //(X ) for all / are independent of the resulting 

structure and H X ^ X ^ - ^ C )  is non-negative, minimising the cross-entropy is 

equivalent to maximising the term
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IC).
i , x ( i ) >  0

Since the branch weights are additive, the maximum-weight dependence network with 

e  <  n - 1 edges can then be constructed branch by branch. This can be achieved 

directly by using Kruskal’s MWST algorithm which is greedy and that the Build 

Network procedure employs.

□

The Build Network procedure also maximises the log likelihood between the Bayesian 

network and the data.

Theorem IT. Let D be a collection of N  instances of X X9. . .9X  n9C which are i.i.d.

Amongst all the network structures with e < n -1  edges, the procedure Build Network 

generates an augmented naive Bayes classifier that maximises the log 

likelihood LL(B\D).

Proof: In Friedman et al. (1997) they derive that:

LL(B | D) = /(A ;; n  v ) + constant term. ^

So, maximising the log likelihood is equivalent to maximising the term

' Z W r . t i x , ) -
x,

This term can be adapted for the augmented naive Bayes with e < n -1  edges model 

as follows. Let B be a model defined by 7t{-). Since the class node C is the vertex of 

the structure (no parents), then / ( C ;n c ) = 0 . As stated previously, the parents of X {
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are defined by n  , so I { X i, I \ x ) = I ( X i\ X x{i)iC) if ;r(z)>0 and

I (X ,\Y \x ) = /(A".;C) if n{i) = 0 .Therefore, the term to be maximised is,

X  / ( * , ; * „ ,„C )+ X /(X ,;C ). (3 ]5)

Then, by using the chain law o f mutual information (Cover and Thomas, 1991): 

/ (X; Y, Z) = /(X; Z) + /(X; Y | Z ) , (3.15) can be rewritten as

£ /(J r ,;C )+

Notice that the first term is not affected by the structure of the network. Thus, only the 

second term needs to be maximised. The Build Network procedure guarantees to find 

the augmented naive Bayes model with e < n -1  edges that maximises this term, and 

so maximises the log likelihood.

□

Finally, the Build Network procedure minimises the upper bound of the Bayes 

probability of error P(error) (Heilman and Raviv, 1970).

Theorem III: Let D be a collection of N  instances o f X x, . . . , X n,C which are i.i.d.

Amongst all the network structures with e < n -  1 edges, the procedure Build Network 

generates an augmented naive Bayes classifier that minimises the upper bound of the 

Bayes probability o f error.

Proof: Heilman and Raviv (1970) proved that the Bayes probability of error has the 

following upper bound,
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P(error) <-^H(C  | Z), (3.16)

where C is the class variable and Z = {Xl, . . . ,X n} is a set o f n discrete-valued 

features. Using the following property: H ( Y  |X ) = - H ( X )  + H(X;Y),  and let 

X = {A",,...,X n,C} and by using (2.2) to approximate the joint probability 

distribution, then

H(C  | Z) = - / / ( Z) -  X  />(X) log P(X)

(3.17)
= - 7 / ( Z ) - 2 ^ ( X ) £ i o g P ( j r f |n ^ ) .

X /=1

Now, by adapting (3.17) to the augmented naive Bayes with e < n -1  edges model, as 

done in the previous demonstrations, and following similar procedures carried out in 

the proof of Theorem I, this results in

H ( C \ Z )  = - H ( Z ) -  £/(*,.;*,(,, 1c1)- ;C)+ ^ h {x , \q

+ 2 X * , ) ,
/,*(/)=o

and using the following property: /(X ; Y) = H( X) ~  H( X  | Y ) , (3.18) becomes

H( C\ Z )  = - H ( Z ) ~  '£j I ( X i-,X„ii)\ C ) - ' £ l ( X l- ,C )+ '£ H (X l). (3.19)
i,x(i)> 0 i i

Since /(A f;C ) , H { X i) , and H(  Z) for all i are independent o f the resulting network 

structure and /(A",; X r(i) | C) is non-negative, minimising H(C  | Z) is equivalent to 

maximising the term

|C ) .
i,x(i)>0
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The Build Network procedure guarantees to find the augmented naive Bayes model 

with e < n -1  edges that maximises this term, thereby minimising the upper bound o f 

the Bayes probability o f error.

□

These three theorems show that the resulting network structure is optimum in the joint 

probability approximation, the log-likelihood, and the Bayes probability of error for 

the e < n -  1 edges class network. The following section describes the methods used to 

test the new Bayesian network classifier.

3.4 Methods

To explore the potential o f the proposed simple Bayesian network classifier as well as 

how the amount of training data influences the complexity (number of edges) of the 

network, tests were performed on 10 data sets listed in Table 3.1. These benchmark 

data sets come from the UCI machine learning repository (Murphy and Aha), with the 

exception of “corral” which was designed by John and Kohavi (1997) for feature 

selection experiments. For the moment, missing values are not addressed in this work, 

so all the instances that have one or more attribute value missing were removed. Also, 

a pre-discretisation step was applied to continuous attributes using Fayyad and Irani 

(1993) discretisation method, since the handling o f continuous attributes was not 

addressed at the time. The accuracy o f each classifier was measured by the percentage 

of correct predictions on the test sets of each data set.

For the first experiment, a comparison o f the proposed method with the naive 

Bayesian classifier (NB) and the tree augmented naive Bayes (TAN) was carried out. 

Each data set was split randomly in to two subsets, one for training and the other for



testing. Although the actual values of the percentage of correct classification will be 

biased depending on what data examples ended in the training set and the testing set, 

the main purpose of this experiment was to show how the amount o f training data 

influences the number o f augmenting edges when using the proposed incremental 

learning method and how its classification performance compared to that o f the other 

two classifiers using the same training set.

The second experiment was a real industrial application. It entailed the recognition of 

control chart patterns. Control charts are used for displaying and monitoring 

variations in a process (Grant and Leavenworth, 1988). In addition to using control 

rules on the charts to find abnormal conditions after they have occurred, the quality 

control specialist also monitors control charts for long term patterns in order to predict 

potential problems. In this experiment, six classes of patterns were predicted: normal 

patterns, cyclic patterns, patterns exhibiting increasing trends, patterns showing 

decreasing tends, patterns with an upward shift and patterns with a downward shift. 

Using the expression presented in Pham and Oztemel (1992), 1500 patterns (250 for 

each class) were generated. The discrete time at which each pattern was sampled was 

taken as being within the range 0 to 59. This means there were 60 attributes. Since the 

main purpose of this experiment was to evaluate the classification performance o f the 

proposed method, accuracy was measured using five-fold cross validation as in 

Kohavi (1995), thereby reducing the bias o f having only one set for training and one 

set for testing. In addition, the C4.5 decision-tree induction method developed by 

Quinlan (1993) and a multi-layer perceptron (MLP) were employed for comparison 

purposes. The MLP was trained using standard back-propagation, with 20 neurons in
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the hidden layer. The learning rate and the momentum coefficient were equal to 0.3 

and 0.9 respectively. The same cross-validation folds were used in the three classifiers.
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Table 3.1 Description of the data sets used in the first experiment

Dataset # Attributes # Classes
in s ta n c e s  

Train Test

Cleve 13 2 148 148
Corral 6 2 64 64
Flare 10 2 700 366
Heart 13 2 135 135
Hepatitis 19 2 40 40
Ionosphere 34 2 176 175
Iris 4 3 75 75
Liver-Disorders 6 2 100 245
Pima 8 2 384 384
Zoo 16 7 51 50
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3.5 Experimental results

The results o f the first experiment are shown in Table 3.2. In order to see how the 

amount o f data used for training influences the complexity of the network when an 

incremental learning approach described in this work is used, the “Cleve” data set is 

analysed in detail. First, 10% of the entire data set (296 instances) was used for 

training. This resulted in the NB model shown in Fig. 3.4. Then if 80% of the data set 

is employed for training, the resulting structure is that of the TAN model with twelve 

augmenting edges, illustrated in Fig. 3.5. The edges from the class node C to each 

attribute are not considered in the edge count since it is the same for all the models. 

Finally if 50 % of the data is used (as described in Table I), the number o f augmenting 

edges is 6, as shown in Fig. 3.6. This number of edges is due to thq K € values

illustrated in Fig. 3.7, the sixth edge being the last, with a negative value of K e . If an

NB and a TAN model are trained using half of the data set, the network with six edges 

constructed using the incremental learning outperforms the other two. The proposed 

simple Bayesian network (SBN) classifier outperforms the other two classifiers in 

three more data sets. Also it is worth noticing that the proposed method can result in 

an NB or TAN model depending on the data used for training, but in those cases, 

either the NB or TAN model are the ones that have the best performances. In some 

cases, the accuracy is equal to that o f the NB model but employing some edges and 

equal to that of the TAN model using fewer edges.

The control charts pattern recognition results are illustrated in Table 3.3. Each 

validation performed in the five-fold cross validation is shown. The simple Bayesian 

network classifier outperforms C4.5 and is competitive with the MLP. Notice that the
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resulting structure in each one of the validations is a network with less edges than the 

TAN model, two cases been the NB model. The resulting network for the second fold 

is shown in Fig. 3.8.
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Figure 3.4 Naive Bayes model for the “Cleve” data set obtained by the SBN classifier when
10% of the instances are used for training.
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Figure 3.5 TAN model for the “Cleve” data set obtained by SBN classifier when 80%

of the instances are used for training.
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Figure 3.6 Network structure for the “Cleve” data set obtained by the SBN classifier 

when 50% of the instances are used for training.
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Figure 3.7 Plot illustrating the Ke values for each edge added during the Build

Network procedure for the “Cleve” data set, when 50% of the instances for training

are used.
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Figure 3.8 The simple Bayesian network classifier for the control chart data



Table 3.2 Comparison of the NB, TAN, and the SBN on the test sets

Dataset NB TAN SBN (e / n-1 edges)

Cleve 79.73 81.76 83.12 ( 6 /1 2 )
Corral 82.81 93.75 100.00 ( 3 / 5 )
Flare 80:60 84.15 84.15 ( 9 / 9 )
Heart 84.44 84.44 85.19 ( 9 /1 2 )
Hepatitis 95.00 72.50 95.00 ( 4 /  18)
Ionosphere 93.14 93.71 93.71 (1 2 /3 3 )
Iris 97.33 97.33 97.33 ( 0 /3 )
Liver-Disorders 71.43 69.80 71.84 ( 3 /5 )
Pima 77.08 77.60 77.60 ( 7 /7 )
Zoo 88.00 78.00 88.00 ( 2 /  15)

Table 3.3 Classification accuracy on the control chart pattern recognition

problem

CV-folds C4.5 MLP SBN (e / n-1) edges

1SI 90.33 98.33 99.33 ( 0 /5 9 )
-jnd 89.00 97.66 99.33 (21 /5 9 )
^ rd 92.00 99.00 99.33 (0 /5 9 )
4th 90.66 97.33 98.00 (2 3 /5 9 )
5th 93.33 98.66 98.66 (13 /5 9 )
Mean 91.06 98.19 98.93
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3.6 Summary

In this chapter, a new method for augmenting the naive Bayesian classifier in an 

incremental way is presented. The complexity of a Bayesian network (the number of 

augmenting edges) is incorporated in the learning process by the use of the Bayes 

factor. Although there are no universally accepted ways of assigning the prior 

probabilities that the Bayes’ theorem requires, in this work coding theory was used to 

assign these probabilities following an Occam’s razor approach, that is, networks with 

less edges have higher prior probabilities than more complex ones. Using Chow and 

Liu’s dependence tree algorithm, as done by the Tree Augmenting Naive Bayes (TAN) 

classifier, an incremental learning method is developed which incorporates the 

complexity of the network yielding structures that vary from no edges (naive 

Bayesian classifier) to n -1  edges (TAN model) where n is the number of attribute 

nodes. The resulting Bayesian network structure learned by the incremental approach 

augments the naive Bayesian classifier with e < n -1  edges that are optimum in the 

sense that they minimise the cross-entropy between the real joint probability 

distribution and the approximation done by the Bayesian network, as well as the 

Bayes probability o f error and maximise the log-likelihood between the Bayesian 

network and the data. From the experimental results, the following conclusions can be 

drawn.

f irst, the complexity of the Bayesian network classifiers depends directly on the 

amount of data used for training. A spanning tree structure like the TAN model is 

therefore only justified when there is sufficient data. This is not a problem for the 

incremental learning method since it automatically regulates the number of edges 

permitted depending on the amount of training data.
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Second, the classification performance of the proposed incremental learning approach 

when compared to that of the TAN and the naive Bayesian models is usually better or 

at least equal to them. When the TAN model obtains the best accuracy, the proposed 

method can either end up with a TAN model structure as well or sometimes can reach 

the same classification performance with fewer edges. On the other hand, when the 

naive Bayes model is the one with the best results, the proposed method can 

sometimes reach the same accuracy with a few augmenting edges. This is favourable 

when some type of probabilistic dependence knowledge amongst the attributes is 

required, as well as having the best classification performance. In these cases, if a 

TAN model is used, although more complete dependence knowledge can be obtained, 

the classification performance is lower.

Third, the classification performance o f the Bayesian network classifier, compared to 

non-Bayesian classifiers using real-world problem data, outperformed the C4.5 and 

demonstrated to be competitive to a neural network, obtaining near to 99% in correct 

classification. Also, it can be pointed out that for each one o f the folds in the five-fold 

cross validation experiment, the Bayesian network classifier presents less variability 

than the neural network. This can be explained, in part, due to the limited amount of 

edges in the network structure.

In general, the SBN classifier with its incremental learning method tries to overcome 

the bias/variance dilemma also known as overfitting, thereby improving the 

generalisation power. Future work will be concentrated on allowing the use of
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continuous value attributes. An extension to this work for unsupervised learning to 

deal with clustering tasks will be described in the next chapter.
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Chapter 4

UNSUPERVISED TRAINING OF BAYESIAN 

NETWORKS

4.1 Preliminaries

The learning of Bayesian network classifiers from data is commonly performed in a 

supervised manner, meaning that a training set containing examples which have been 

previously classified by an expert are used to generate the DAG and its CPT. In 

practice, this can be viewed as having a class label assigned to each example (row) of 

the data set. Unfortunately, in many real-world applications of machine learning in 

industrial problems, it is difficult to obtain a large data set with classified examples. 

This is generally due to the fact that a human expert is needed to manually classify 

each example, of which in many cases there can be thousands, making it an 

exhausting and time consuming task. With this in mind, it is desirable to have an 

alternative way of training a classifier with data that has no class label assigned to 

each example. This approach is known as unsupervised training, also referred to as 

clustering. The main goal of clustering is to find the natural groupings of the data. 

Well known clustering algorithms are: the k-means (MacQueen, 1967), the Fuzzy C- 

Mcans (a fuzzy version of k-means) (Bezdek, 1981), information theory based
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clustering (Roberts et al., 2000), and the Expectation-Maximization (EM) algorithm 

(Dempster et al., 1977). It is important to mention at this point that unsupervised 

training will usually obtain lower performances when compared to models trained in a 

superv ised way, primarily due to the lack o f the class information during the learning 

process. However, it is still a very valuable tool for data exploration and preliminary 

classification, which can be improved later on once a training set with class labels for 

each example is built. This task can be carried out by a human expert with assistance 

of the clustering results, making it a less difficult task.

Although Bayesian network classifiers have received a lot o f attention recently, most 

of the efforts have been concentrated in developing supervised learning algorithms. 

Less work has been reported on the unsupervised training o f Bayesian network 

classifiers. In the following section, previous work done on the unsupervised training 

of Bayesian network classifiers is discussed.

In Barash and Friedman (2002) a clustering technique called context-specific 

independences (CSI) is used for clustering genes based on a combination of genomic 

and genetic data. The CSI is a refinement o f the selective Bayesian models, which are 

essentially a special subclass of Bayesian networks, specifically, a naive Bayes 

classifier with the difference that not all the attributes are class-dependant. Learning 

for these models is performed by the Bayesian structural EM algorithm (Friedman, 

1998), which is capable of learning parameters and structures in an unsupervised way 

using a scoring function such as the Bayesian Information Criterion (BIC) or the 

Cheeseman-Stutz (CS) (Neapolitan, 2004).
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An extension of model averaging (MA) with naive Bayesian classifiers (Dash and 

Cooper, 2002) for clustering problems is presented in Santafe et al. (2006a). To 

accomplish this, the expectation MA (EMA) algorithm is introduced, which 

incorporates the MA calculations in the maximisation step of the EM algorithm. Tests 

carried out on synthetic data and DNA microarray data show that the EMA algorithm 

is a powerful learning algorithm that can be useful for clustering problems where 

there are many attributes and only a few examples. An extension made to the EMA 

algorithm to learn TAN models is presented in Santafe et al. (2006b).

A heuristic algorithm for learning Bayesian networks for clustering is shown in Pena 

et al. (1999). The approach is based upon improving the naive Bayes model by means 

of constructive induction, which is the process of changing the representation of the 

examples in the database by creating new attributes from existing attributes. With this, 

some violation of conditional independence assumptions made by the NB model are 

detected and dependencies among attributes are included in the model. The parameter 

search is performed either by the standard EM algorithm, or a hybridisation of the 

Bound and Collapse method and the EM algorithm (BC+EM), which results in a 

technique that exhibits a faster convergence rate and a more effective behaviour than 

the EM algorithm. In Pena et al. (2000), the BC+EM method is also used to improve 

the Bayesian structural EM algorithm (BSEM) for learning Bayesian networks for 

clustering.

estimation of distribution algorithms for the unsupervised training of Bayesian 

networks, both directly and within the framework of the BSEM algorithm, is proposed 

and empirically evaluated in Pena et al. (2004). An application of the proposed
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method to gene expression data clustering showed that the identified clusters, after 

being validated, may be biologically meaningful.

In this chapter, an unsupervised training approach following the classification EM 

algorithm (CEM) (Celeux and Govaert, 1992) framework is developed for three types 

of Bayesian network classifiers: Chow & Lui multinets, the TAN model, and the 

simple Bayesian network classifier which is more robust in its structure, capable of 

handling the trade-off between complexity (number of edges in the network) and 

accuracy using a Bayesian approach. The unsupervised training technique maximises 

the classification maximum likelihood (CML) of the Bayesian network classifiers, 

instead of using the traditional EM approach which maximises the maximum 

likelihood (ML). Results on a benchmark data set and on a real-world industrial 

problem, the clustering of wood defects, are presented together with a comparison 

with traditional clustering algorithms.

The chapter is organised as follows: section 4.2 presents a description of probabilistic 

classifiers. The description of the CEM algorithm is briefly presented in section 4.3. 

The proposed unsupervised training via the CEM framework is developed in section

4.4. A description of the experiments carried out to test the proposed method as well 

as the description of the application to an industrial problem is presented in section

4.5. The results are illustrated in section 4.6 as well as the discussions. The general 

summary of the proposed method and future works are analysed in section 4.7.
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4.2 Probabilistic classifiers

In classification tasks, the idea in probabilistic classification is to find the class value 

which maximises the posterior probability of the class for a given set of assignments

thto the attributes. In other words, the class value for the r example of the data 

set, X x = x [ , X 2 -  x r2, . . . ,X n = x rn , can be obtained as:

class _ value{X] = x[ ,..., X n -  * ')

= argmax* P{C = k \ X x =x[ , . . . , Xn = x rn\   ̂ ^

and by using Bayes’ theorem, the posterior probability can be computed as

........

On the r.h.s. o f Eq. (4.2) the denominator is constant with respect to the class, and can 

be expressed a s l!(5. So, the main challenge is how to compute the numerator. The 

simplest approach is to assume that each attribute is conditionally independent of 

every other attribute. This rather “naive” assumption yields the well known naive 

Bayesian classifier,

P(C \ X n . . . , X J  = p P ( C ) f \ P ( X t | C). (4.3)
/=1

Equation (4.3) has a Bayesian network representation since it is a special case of 

Eq.(2.2), where the class node C is the vertex and there is an edge (arc) from C to 

each attribute X t , as can be seen in Fig. 4.1.
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Figure 4.1 Bayesian network representation o f the naive Bayes classifier
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Another approach is to use Chow & Liu’s tree algorithm. In this case, the training set 

needs to be partitioned into groups that have examples belonging to the same class. 

Then, for each one of these groups a Bayesian network is learned, with the restriction 

that each attribute has only, at most, one other attribute as a parent yielding tree 

structures that have n- 1 edges. The learning algorithm for this type o f Bayesian 

network is shown in Fig. 4.2. The initial step is to compute the mutual information 

between each pair of attributes, defined as

-> <4 -4 >

Basically, this function measures the amount of information that Y provides about X. 

It is important to point out that in this work the marginal and conditional probabilities 

arc estimated by the empirical frequencies from the data.

The following step is to build a complete undirected graph. This is carried out by 

connecting an edge from each node (attribute) to every other node and assigning the 

weight of the edge that connects X,- with Xj by /(Ab; X f ) . Next, in order to obtain a

tree structure, the maximum weighted spanning tree (MWST) is built using any well 

known MWST procedures, such as Kruskal’s algorithm (Kruskal, 1956). Finally, 

directions to the edges of the resulting tree can be added by choosing any attribute as 

the root and then setting the directions of all edges to be pointing outwards from it.

If there arc K classes then K CL trees are learned, one for each group of data (with the 

same class value). Each tree distributionPk, with^ = l...A r , will be approximating 

the joint probability distribution of the attributes, given a specific class,
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P ( X x,..., X  J  C = k) = Pk (X x,..., X n) . Since CL trees are Bayesian networks, the

jo in t  probability distribution can be computed by Eq. (2.2), where = { XM } will

only have one attribute, except for the root attribute node which will have no 

parents n  v = { 0 }  . Then the CL multinet classifier can be expressed as

P(C = k \ X l, . . . , X J  = pP(C  = * ) f l  Pt (X, I n v ), (4.5)
/=1

and a representation can be seen in Fig. 4.3.

The following classifier to be analysed is the TAN classifier. This model aims to 

overcome the strong independence assumption that the naive Bayesian classifier 

imposes amongst the attributes in order to obtain Eq. (4.3). The improvement is 

accomplished by augmenting the naive Bayes model with edges via a modification of 

the CL tree algorithm. A general outline of the TAN learning process is shown in Fig.

4.4. The main difference with the CL tree procedure is that the TAN model uses the 

conditional mutual information, defined as

<4'6>

The conditional mutual information measures the information that Y provides about X  

when the value of Z is known. By using this function, a unique tree structure is 

obtained instead of the CL multinet which builds a tree for each class.

In this model, each attribute will havell v = { X j ^ , C } , except for the root attribute 

node which w ill have n  v = (C ). Then, the TAN classifier can be expressed as
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P{C I Jf, = PP(C )Y\ P ( X : I n  f ), (4.7)
M

and its Bayesian network representation appears in Fig. 4.5.

The last model described in this section is a new Bayesian network classifier 

introduced in the previous chapter which follows the TAN model procedure but it is 

not restricted to tree structures (n- 1 edges). In fact, the complexity of the network 

(number of edges) is automatically regulated during the training process, obtaining 

structures that can have a number of edges e that range from 0 (naive Bayes model) 

up to n-1 (TAN model). The key difference with the standard TAN procedure is that 

in step three (see Fig. 4.4), in each iteration of the MWST, a Bayesian measure with 

the selected edge to be added must be computed and checked if the stopping criterion 

for the MWST algorithm is met. If the stopping criterion is met before the MWST 

algorithm adds the final edge, then the resulting structure will have e < n -1  edges. 

The Bayesian measure that is computed takes in to account the number of training 

examples. By doing this, it automatically regulates the complexity of the structure, 

allowing a resulting structure like the TAN model to exist only when there is 

sufficient information (data) to support n -1  edges. The Bayesian measure A that 

needs to be computed every time an edge is selected, for example an edge from 

attribute X 0I to attribute X u , for building the maximum weighted spanning tree, is

.V

A = 2m + ^ l o g 2 P(xru \cr) - \ o g 2P(xru \ xr0),cr\  (4.8)
r —\

where N  is the number of training examples or instances in the training data set and 

m = log2(« +1). The derivation of Eq.(4.8) appears in chapter 3.
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The stopping criterion for the MWST algorithm is to check that the accumulated 

value of a  in each iteration is negative, in other words, for the e‘h edge to be added it

must satisfy

At = I > , < 0 ,  (4.9)

where T. represents the X value for the ith edge being considered (please see chapter 

3 for a more detailed explanation of this criterion).

The general learning procedure of this model called the simple Bayesian network 

( SBN) classifier appears in Fig. 4.6. Although this model uses Eq. (4.7) to carry out 

the classification, it is worthwhile pointing out that the structure of the network may 

not be a tree. Thus, if the resulting structure has e < n - 1 edges, then there are only e 

attributes with U x = {JTy>J.,C} and all the rest of the attributes will haveTI^ = {C},

including the root attribute. An illustration of this type of Bayesian network classifier 

is shown in Fig. 4.7.

For the three Bayesian network classifiers described in this section, the learning 

procedure for each one has time complexity0 ( n 2A ), associated with the first step 

(computation of the mutual information/conditional mutual information between each 

pair of attributes) of the learning procedure. For more details see Friedman et al.

(1997).
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CL tree procedure
1. Compute t h e  m utual  i n f o r m a t i o n  I ( X i / X j )  b e t w e e n  

e a c h  p a i r  o f  a t t r i b u t e s  i f ^ j .
2. B u i l d  a c o m p le t e  u n d i r e c t e d  graph  u s i n g  th e  

a t t r i b u t e s  as  nodes  and a s s i g n  t h e  w e i g h t  o f  t h e  
ed g e  t h a t  c o n n e c t s  X± t o  Xj  by I ( X i / X j ) .

3. Apply  t h e  MWST a l g o r i t h m .
4. Choose an a t t r i b u t e  t o  be r o o t  and s e t  th e  

d i r e c t i o n s  o f  a l l  t h e  e d g e s  t o  be  outw ard  from
i t .

Figure 4.2 Chow & Liu’s tree algorithm

k= i

)

Figure 4.3 CL multinet classifier representation
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TAN procedure
1. Compute t h e  c o n d i t i o n a l  m utual  i n f o r m a t i o n  

I  (Xi / Xj  \ C) b e t w e e n  e a c h  p a i r  o f  a t t r i b u t e s  i ^ j .
2. B u i l d  a c o m p le te  u n d i r e c t e d  graph  u s i n g  t h e

a t t r i b u t e s  a s  nodes  and a s s i g n  t h e  w e i g h t  o f  t h e  
ed g e  t h a t  c o n n e c t s  X± t o  Xj  by I ( X i / X j \ C ) .

3. Apply t h e  MWST a l g o r i t h m .
4. Choose an a t t r i b u t e  t o  be r o o t  and s e t  t h e

d i r e c t i o n s  o f  a l l  t h e  e d g e s  t o  be outward from
i t .

5. Add a v e r t e x  node C and add an ed ge  from C t o
e v e r y  o t h e r  a t t r i b u t e  Xx .

Figure 4.4 TAN learning process

c )

Figure 4.5 TAN classifier representation
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SBN classifier procedure
1. Compute t h e  c o n d i t i o n a l  m utua l  i n f o r m a t i o n  

I ( X i , mXj \ C)  b e t w e e n  e a ch  p a i r  o f  a t t r i b u t e s  i ^ j .
2. B u i l d  a c o m p le t e  u n d i r e c t e d  graph  u s i n g  th e  

a t t r i b u t e s  a s  nodes  and a s s i g n  t h e  w e i g h t  o f  th e  
e d g e  t h a t  c o n n e c t s  X± t o  Xj  by I  (Xi ;Xj  \ C) .

3. Apply  t h e  MWST a l g o r i t h m .  For e a c h  i t e r a t i o n  o f  
t h e  MWST a l g o r i t h m :
3 . 1  Compute t h e  B a y e s i a n  measure  A from E q . ( 4 . 8 ) .
3 . 2  Check t h a t  A s a t i s f i e s  c o n d i t i o n  i n  E q . ( 4 . 9 ) .  

1 . C h o o s e  an a t t r i b u t e  t o  be r o o t  and s e t  t h e
a i r e c t i o n s  o f  a l l  t h e  e d g e s  t o  be outward from
i t .

5 .  Add a v e r t e x  node C and add an ed g e  from C t o  
e v e r y  o t h e r  a t t r i b u t e  X i .

Figure 4.6 SBN classifier learning procedure

Figure 4.7 SBN classifier representation
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4.3 Classification EM algorithm

In unsupervised training the class attribute is latent or in Bayesian network 

terminology hidden. The aim of the proposed unsupervised training method is to be 

able to build a Bayesian network classifier and assign “ideally” the correct cluster 

(class) value to the latent class variable of the data. In order to develop the learning 

process, the Classification EM algorithm (Celeux and Govaert, 1992) framework will 

be used. To follow this approach, the data will be assumed to have been sampled from 

a mixture model, where the number of the mixing component distributions will be the 

same as the number of clusters trying to be discovered. Then, a mixture model for a 

set of n discrete random attributes {X l, . . .X n} with K  mixing components, can be 

expressed as

/>(X) = f > t/ t (X) (4.10)
k-l

X " *  = i. « ^ o

where the a k are the mixing coefficients (weights) and the f k are the mixing 

component distributions.

The mixture parameters # (mixing coefficients as well as the parameters of the mixing 

distributions) can be obtained by two frequently used maximum likelihood 

approaches: the mixture approach and the classification approach (Celeux and 

Govaert, 1995). Roughly speaking, the mixture approach aims to maximise the 

likelihood over the mixture parameters. On the other hand, the classification approach 

aims to maximise the likelihood over the mixture parameters, but also, over the 

identifying labels of the mixture component origin for each data example, i.e., to what
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cluster does each data example belong. In the mixture approach, the parameter <9 is 

chosen to maximise the log-likelihood using the EM algorithm. Since the aim of this 

work is to build Bayesian network classifiers (to find the structure and network 

parameters) as well as to cluster the data examples, the classification approach is more 

appropriate. In this approach, the indicator vectors, identifying the mixture component 

origin, z = (zk,k = with z rk = 1 or 0 if  xr (1 < r < N)  has been drawn from

the k ,h component or not, are treated as unknown parameters. Then the parameter 

$and the indicator vectors z are chosen to maximise the Classification Maximum 

I ikelihood (CML) criteria, which under the mixture sampling scheme is defined as 

(Celeux and Govaert, 1995)

K K

CL(0,z \ . . . , zn | x 1, . . . , x " )  = £ ]  £ l o g / t (xr) + X «*l°g«*> (4.11)
k=1 xrePt £=1

where P = {P,,...,P*} is a partition (cluster) of the N  data examples

x  x v associated to the indicator vectors z ', . . . ,z ‘v :P* = (x r | zk =1) and

n. -  z Pk (\ < k < K ) . Equation (4.11) can be optimised by a classification version of

the EM algorithm called the Classification EM (CEM) algorithm (Celeux and Govaert, 

1992). The CEM algorithm incorporates a classification step between the E-step and 

the M-step of the EM algorithm using a maximum a posteriori (MAP) principle. A 

description of the algorithm follows.

Starting from an initial partition P°, the m,h (m > 0) iteration of the CEM algorithm

consists in:

E-step: compute for r = l , . . . ,N  and k = 1, . . . ,K the current posterior probabilities that 

x; belongs to P*.
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C-step: update the partition by assigning each xr to the cluster which provides the 

maximum posterior probability. Let Pm denote the new partition.

M-step: for k -  compute the maximum likelihood estimates o f # m using the

cluster P* as sub-samples.

The theoretical properties of the CEM algorithm, such as the convergence o f the 

algorithm, are described in (Celeux and Govaert, 1992).

The next section will show how to learn Bayesian network classifiers under the CML 

criteria via the CEM algorithm.

4.4 Proposed unsupervised training approach

Unsupervised training o f the CL multinets, TAN, and the SBN classifier described in 

section 4.2 will be carried out assuming that the data examples have been generated 

from a mixture of Bayesian networks. This mixture can be described by Eq. (4.10), 

resulting in a mixtures of trees in the case of CL multinets, a mixtures of trees with 

shared structures in the case of the TAN model, and a mixture of networks with 

shared structures that can vary from the naive Bayes model to the TAN model in the 

case of the simple Bayesian network classifier. Although CL trees are Bayesian 

networks, a mixture model of them is not a Bayesian network, whereas by learning 

networks with the same structure, the resulting mixture model is a unique Bayesian 

network, which is the case of the TAN model and the SBN classifier. Learning with 

mixtures of trees for density estimation and classification tasks using the EM 

algorithm has been developed in Meila and Jordan (2000), but not for clustering tasks 

as in this work. As mentioned before, this work’s interest is to leam the Bayesian
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network classifiers, as well as to cluster the data examples. For this, the mixture 

parameters will be obtained following the classification approach which maximises 

Eq.(4.11) using the CEM algorithm. This will be developed in what follows.

4.4.1 Unsupervised training for CL multinets classifier

Starting from an initial partition P°, the E-step in the mth iteration for r = \ , . . . ,N  

and A -  1 , consists in estimating the probability o f each tree generating data

point x', i.e., the posterior probability that xr belongs to P*. This posterior probability 

is computed by

< 1 1  W i n , . )
'.■(*'>=-1— ------------------   (4-12)

X « ; n p* "c< in , )
* ’=1 1=1

thw here n  is the value of U x in the r example. \ f X j{i), with j  * / ,  is the parent of 

X t then n  = x rJU) in Eq. (4.12). Also note that the or* are in fact the probability 

distribution of the variable class C , i.e., P{C = k ) . It is important not to confuse the 

notation Pk , the probability distribution of the k th tree, with P* which is the k th 

partition (cluster). In the C-step each xr is assigned to the cluster k that provides the 

maximum posteriori probability Eq. (4.12), \ < k < K  . If the maximum posteriori 

probability is not unique, assign xr to the cluster with the smallest index. Let the 

resulting partition be denoted by Pw. The initial iterations o f the CEM algorithm may 

not be so reliable due to the dependence on the initial partition, causing a convergence 

to local optima of the CML function. In Celeux and Govaert (1992) a way of reducing 

this problem was shown by replacing the C-step by a stochastic step called the S-step. 

In the S-step each \  is assigned at random to one of the clusters Pp...,?* with
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probability/Am(xr ) ,k = . The resulting partition is denoted by Pm. The idea in

general is to start of by using the S-step up to a certain number of iterations, defined 

by the user, and then to swap the S-step for the C-step for the final iterations. The M- 

step for k = \ , . . . ,K consist in maximising the CML criteria using the sub-samplesP". 

Equation (4.11) under the mixtures of CL trees can be expressed as

By inspecting Eq. (4.13) it can be seen that the mixture parameters are disjoined, so 

each sum on the right-hand side of Eq. (4.13) can be maximised independently with 

respect to the part of the model on which it depends. The maximisation of the second 

term of Eq. (4.13), taking into account the constraint

K n K

X  ln , ; ) + Z " * lo8 a < (4 .13)
* = 1 x  ePt 2 = 1 *=1

K

yields in

(4 .14)

The maximisation of the first term of Eq. (4.13) will result in a new tree distribution

Pkm (conditional probabilities and tree structure). To achieve this, for each k the

following expression needs to be maximised

n

(4.15)
xrePt /=!

It is recalled that there are nk data points (examples) in partition P*, so Eq. (4.15) is 

written as
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nk n

r - \  i = l

with \  for r = 1 , . . . ,nk belonging to partition P* . Equation (4.16) is the log-likelihood

{LL) of the model (k,h tree) given the data and it is maximised by selecting a tree and 

its associated conditional probabilities. For any given tree k, Eq. (4.16) is maximised

if an empirical distribution P  defined by the frequencies of events in the data is used

as the estimate o f the conditional probabilities. This is because P  is a maximum-

likelihood estimator for P. By using P  in Eq. (4.16), and interchanging the orders of 

summation, a decomposition of the log-likelihood (Friedman et al., 1997) according to

ththe A' tree can be expressed as

^ = « * Z  (4 17)1=1 xe.V, V ■ ’
n^en*.

Then, with some manipulation, Eq. (4.17) becomes

A t e . n j

i'=l x: e X,
n x,e n A-,

p ^ w n , )

+"*Z ZA(^.n,()iogPt(*i)
i = l  x ,e  X ,

= Z h (xi H >) - "* Z At )> (4-18>/-I 1= 1

where the second expression on the right-hand side of Eq. (4.18) is independent of the 

tree structure and I k is the mutual information computed by the empirical 

distributions defined by the frequencies o f events in the data of P*. By defining X j{i), 

with j  ^  i , as the parent of X t , the tree that must be chosen in order to maximise Eq.

(4.15), is the one that maximises the right-hand side of Eq. (4.18). This can be
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accomplished by using the MWST algorithm with as branch (edge)

weights.

A summary of the unsupervised training o f CL trees via the CEM algorithm is shown 

in Fig. 4.8.

4.4.2 Unsupervised training for the TAN classifier

In this case the tree distributions Pk for& = 1,...,AT have the same structure. The E-

step is the same as before. The posterior probabilities can be computed using Eq. 

(4.12). Also, the S-step and the C-step remain the same. The M-step consists in 

maximising the CML criteria, which has the same expression as before,

C i = £  X  l o g f l ^ W i n , . )  + Z « 4 iog («J. (4.19)
*=1 /=1 *=1

By inspecting Eq. (4.19) it can be seen that the mixture parameters are disjoined. The 

maximisation of the second term of Eq. (4.19) gives the same results as Eq. (4.14),

n # P m«+i _ [h_ _ Z±k_ for £ = \ K. (4.20)
* N  N

The maximisation of the first term is different from before since now all the trees in 

the mixture model have the same structure. This constraint implies that the 

maximisation procedure cannot now be performed separately for each one of the K  

trees. The maximisation needs to be done simultaneously for all the K  trees.

Using the result obtained before in Eq. (4.18), the first term of Eq. (4.19) can be

expressed as
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K  n nn

K n

= X A,ar* Z / * ^ ’n *, ) + constant term independent of the structure. (4.21)

Now, let C be defined as a variable whose values, forr = 1 ,...,A , are obtained from 

the indicator vector ascf = {k \ z[ = 1). In other words, C contains the cluster label for 

each data point. Also, it is recalled that the or* are the probability distribution of the 

cluster/class variable C , i.e., P{C = k) and that/^(X ) = P (X  | C = k ) , then Eq. (4.21) 

can be written as

w here the second expression on the right-hand side of Eq. (4.22) is independent of the

tree structure and /  is the conditional mutual information computed by the empirical 

distributions defined by the frequencies of events in the entire data set. By 

defining X  V), with j  * i , as the parent of X i , the tree that must be chosen is the one

that maximises the right-hand side of Eq. (4.22). This can be accomplished by using 

the MWST algorithm with the conditional mutual information I(xi\xj(i) |c) as branch 

(edge) weights. The learning procedure for the TAN model is summarised in Fig. 4.9.

4.4.3 Unsupervised training for the SBN classifier

This model follows the same procedure as the TAN classifier. The only difference is 

when maximising Eq. (4.22), since the MWST is constructed branch by branch, for

M  x ,  e  V 

c e  C

+ constant

n

= n Y j I ( x,-Y\^ | c) + constant, (4.22)
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every branch added it needs to check if the condition in Eq. (4.9) holds. The learning 

procedure for the SNB classifier is shown in Fig. 4.10.

87



CEM-CL trees
S t a r t i n g f  rom an i n i t i a l  p a r t i t i o n  P°, t h e  mth
i t e r a t i o n o f  t h e  CEM-CL t r e e s :

E-step: compute tmk {xr) f o r  r = \ ,... ,N  and k = \ , ... ,K
S/C-step: i f  m < u s e r  d e f i n e d  t h r e s h o l d

f o r  r = \ , . . . ,N  a s s i g n  a t  random each  xr
t o  one o f  t h e  c l u s t e r s  Pi , . . . ,Pjc w i th
p r o b a b i l i t y  tk (xr) , k =

e l s e
f o r  r = \ , . . . ,N a s s i g n  e a c h  xr t o  t h e
c l u s t e r  which  p r o v i d e s  t h e  maximum
p o s t e r i o r  p r o b a b i l i t y  tk {xr) , k = 1,.. .,K

M-step: f o r  k -
M l.
M2 . Compute t h e  m utua l  i n f o r m a t i o n

I k(xi;xj ) b e tw e en  e a c h  p a i r  o f
a t t r i b u t e s  / *  j  .

M3 . Apply MWST u s i n g  /* (;g; ) a s  b ra n ch
w e i g h t s  b e tw een  a t t r i b u t e s .

M4 . Transform  t h e  u n d i r e c t e d  t r e e  t o  a
d i r e c t e d  one t o  o b t a i n  P ”+{ .

Figure 4.8 Unsupervised training of CL trees
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CEM-TAN
S t a r t i n g  from an i n i t i a l  p a r t i t i o n  P°, t h e  mth
i t e r a t i o n  o f  t h e  CEM-TAN:

E-step: compute t™{xr) f o r  r  = l,...,Ar and k = \,...,K
S/C-step: i f  m < u s e r  d e f i n e d  t h r e s h o l d

f o r  r = l ,. .. ,N  a s s i g n  a t  random each  xr 
t o  one o f  t h e  c l u s t e r s  Pi , . . . ,Pk w i t h  
p r o b a b i l i t y  t™{xr) , k = 1,...,K

e l s e
f o r  r = l ,. . . ,N  a s s i g n  e a c h  xr t o  t h e
c l u s t e r  w hich  p r o v i d e s  t h e  maximum 
p o s t e r i o r  p r o b a b i l i t y  t ”(xr) , k =

M-step:
M l. Compute t h e  c o n d i t i o n a l  m utual

i n f o r m a t i o n  I (x i\xj \c) b e tw ee n  ea c h  
p a i r  o f  a t t r i b u t e s  / * j  .

M2. Apply  MWST u s i n g  I (x i ;xj \c) as  bran ch
w e i g h t s  b e tw een  a t t r i b u t e s .

M 3 .  f o r  k =  1 K
M4. Transform  t h e  u n d i r e c t e d  t r e e  t o  a

d i r e c t e d  on e ,  th en  f o r  k = \,...,K
o b t a i n  .

Figure 4.9 Unsupervised training of TAN
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CEM-SBN
S t a r t i n g  from an i n i t i a l  p a r t i t i o n  P°, th e  mth
i t e r a t i o n  o f  th e  CEM-SBN:

E-step: compute t™{xr) f o r  r = \ ,. . . ,N  and k = \,...,K
S/C-step: i f  m < u s e r  d e f i n e d  t h r e s h o l d

f o r  r = \ ,. .. ,N  a s s i g n  a t  random each  xr 
to  one o f  t h e  c l u s t e r s  Pi,.. .,Pk w i t h  
p r o b a b i l i t y  t ”(xr) , k =

e l s e
f o r  r = \ ,. .. ,N  a s s i g n  e a c h  xr t o  t h e  
c l u s t e r  which  p r o v i d e s  t h e  maximum 
p o s t e r i o r  p r o b a b i l i t y  t™(xr) , k =

M-step:
M l. Compute t h e  c o n d i t i o n a l  mutual

i n f o r m a t i o n  / (x ;;jcy | c) b e t w e e n  each  
p a i r  o f  a t t r i b u t e s  / * j  .

M2. Apply  MWST u s i n g  I (xi;xj \c) a s  branch
w e i g h t s  b e tw e en  a t t r i b u t e s .  In each  
i t e r a t i o n :
M2.1 compute t h e  B a y e s i a n  m easure  A 
M2.2 ch e ck  t h e  A c o n d i t i o n  

M3. I N  f o r  k = \,... ,K
M4. Transform t h e  u n d i r e c t e d  n e tw o rk  t o

a d i r e c t e d  on e ,  t h e n  f o r  k = \ ,. . . ,K
o b t a i n  .

Figure 4.10 Unsupervised training of SBN
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4.5 Methods

To test the three Bayesian network classifiers using the unsupervised training 

approach, described in the previous section, 10 benchmark datasets from the UCI 

machine learning repository (Murphy and Aha) were used as well as a data set from a 

real industrial application: wood defect classification (Estevez et al., 2003).

4.5.1 Benchmark data sets

A brief description of the 10 datasets used in this study appears in Table 4.1. Because 

Bayesian networks are learned using discrete random variables, continuous attributes 

were discretized, using a simple unsupervised technique called Equal Width Interval 

Binning (Dougherty et al., 1995), into 5 equally sized bins. As mentioned before, the 

('EM algorithm can converge to a local optimum which sometimes is far from the 

optimum solution. In order to reduce this problem, the algorithm starts of by using the 

S-step for 200 iterations. Then, the best solution (maximum value) according to the 

CML function is selected as the starting point for the CEM algorithm using the C-step, 

and this second stage usually converges in no more than 10 iterations. In addition to 

what was described before, a multistart strategy was also used to reduce convergence 

to local optima solutions. This strategy consists in starting from p  different initial 

points (partition P°) and then selecting the model that finally scores the highest CML 

v alue. In the experiments conducted in this work p  = 10 was used. The performance 

of the models is evaluated by computing the correct clustering percentage, and this is 

carried out by voting using the original class label information. For each data set, the 

performance is obtained as the mean value of 5 repetitions. These results will be 

compared to the standard clustering techniques k-means and EM algorithm (both with 

10 repetitions). Also the results obtained by the three Bayesian network classifiers
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with supervised learning will be included. The CL Trees and TAN results are the ones 

reported in Friedman et al. (1997) with no smoothing parameters, and the results for 

the data sets wine and zoo, were the ones reported in Gurwicz and Lemer (2006). The 

three Bayesian networks models, trained in a supervised way, use 5-fold cross 

validation.
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Table 4.1 Description of the benchmark data sets

Dataset #Attributes ^Clusters #Examples

Corral 6 2 128
Crx 15 2 653
Diabetes 8 2 768
Flare 10 2 1066
Glass 9 6 214
Iris 4 3 150
Lymphography 18 4 148
Vote 16 2 435
Wine 13 3 178
Zoo 16 7 101
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4.5.2 Wood defect classification

This data was generated from a low-cost Automatic Visual Inspection (AVI) system 

for wood defect detection (Estevez et al., 2003). The AVI systems usually include the 

following stages (Pham and Alcock, 2003): 1) Image acquisition’, to obtain an image 

of the object to be inspected; 2) Image enhancement: to improve the quality of the 

acquired image, which facilitates later processing; 3) Image segmentation: to divide 

the image into areas of interest and background. The result o f this stage is called the 

segmented image, where objects represent the areas of interest; 4) Feature extraction: 

to calculate the values of parameters that describes each object; 5) Classification’, to 

determine what is represented by each object.

The feature extraction module from the AVI system in Estevez et al. (2003) extracted 

features from objects and windows of 64 by 64 pixels centred in the object 

geometrical centre. The features used in this work include: 7 object geometrical 

features measured on the binarised grey image (e.g.: area, perimeter, average radius, 

aspect ratio, etc.); 96 object colour features (24 features measured in each of the four 

channels, R, G, B, and grey); 46 window colour features (e.g., mean and variance of 

window histograms, mean and variance at the edge of windows); and 16 co­

occurrence features (which contain texture information) which were added recently in 

Ruz et al. (2007). In total there are 165 features computed from the segmented defects. 

The data set used in this work consists in 2247 examples (wood board images of 320 

x 240 pixels) w'hich have been manually labelled/classified into one of the following 

10 defect categories (see Ruz et al. (2007) and Ruz et al. (2005) for details): birdseye, 

pockets, wane, split, stain, blue stain, pith, dead knot, live knot, and hole. Also, the
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clear wood category was added, which corresponds to non-defective wood board 

images. In total there are 11 classes, with approximately 200 examples per class.

For this data set, the CL multinet clustering performance was analysed and compared 

to the k-means and the EM algorithm. Since this data set contains a significantly 

larger amount of attributes compared to the standard benchmark dataset described 

before, to speed up the learning process for the CL multinet, the results presented are 

the average value of five repetitions with p  -  5 and 50 iterations for the S-step and 5 

iterations for the C-step.

4.5.3 Initialisation

In order to obtain the initial partition P°, K  points are selected randomly from the data 

set. where K is the number of clusters that will be formed. Then, by computing the 

Euclidean distance between each data point from the data set with each one of the 

K points, assign the data point to the partition (one of the K  points) that has the 

smallest distance.

Another common practice when using the EM framework is to initialise using the k- 

means (Roberts et al., 2000; Ueda and Nakano, 1998) , but since in this work the 

performance of the Bayesian network classifiers will be compared to the k-means, 

only the random start was considered.

4.6 Experimental results and discussions

The results using the benchmark datasets are shown in Table 4.2. In general the three 

Bayesian network classifiers models out-perform the traditional clustering algorithms,



except for the wine data set where the EM algorithm performs better than the three 

models and k-means is better than the CEM-CL trees and similar to CEM-TAN. This 

particular case could be due to the simple discretization method used for the 

continuous attributes in the benchmark data sets, and it is possible that more bins are 

needed for the wine data set, whereas the k-means and EM use the original continuous 

attributes. Finding the optimum number o f bins to use in the unsupervised 

discretization method for each data set was not considered, since in general for the 

ten data sets tested, a discretization into 5 bins obtained good results.

For the Flare, Iris, and Vote data sets, the unsupervised training of the three Bayesian 

networks classifiers obtained similar results to the three models trained in a 

supervised way (last three columns of Table 4.2). Data sets Crx, Diabetes, 

Lymphography, Wine, and Zoo have less than 10% difference with the supervised 

results, whereas Corral and Glass perform significantly worse than the supervised 

results but much better than the traditional clustering algorithms, specially k-means. 

The EM algorithm for data sets Diabetes, Flare, Iris, Vote, and Wine converged 

always to the same sub-optimal solution in the 10 repetitions, and although the results 

obtained by the Bayesian network models are sub-optimal as well, convergence to the 

same local optima is avoided thanks to the S-step. Another way to avoid this problem 

is to incorporate a simulated annealing approach described in Celeux and Govaert 

(1992) and Ueda and Nakano (1998). The effects of the simple Bayesian network 

classifier SBN, which automatically regulates the number on edges (complexity of the 

network), can be appreciated by analysing the first data set in Table 4.2. The Corral 

data set contains 6 attributes and the class variable is a Boolean function of only four 

o f  the attributes: (1 a  2) v (3 a  4). The fifth attribute is entirely irrelevant and the sixth
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attribute is “correlated" with the class variable in that it matches the class label 75% 

of the time. The structures for the best results obtained out of the 5 repetitions for the 

unsupervised training of the CL trees, TAN, and SBN are shown in Fig. 4.11, Fig. 

4.12, and Fig. 4.13. Note that the edges from C to the attributes are dotted because in 

clustering the C variable is latent. From Fig. 4.13 it is clear that attribute 5 does not 

depend probabilistically on the other attributes, given C, and the joint probability 

distribution (jpd) using Eq. (2.2) is

P(C)P( 11 C)P(5 | C)P(211, C)P{3 11, C)P(4 13, C)P(6 13, C)

(once the model is trained and the C variable contains cluster labels). Because 

attribute 5 is irrelevant, in fact, P(51C = 0) = 0.5 and P (5 1 C = 1) = 0.5 for any value 

that attribute 5 takes, P(5 1C) has no effect in the jpd computation which is what it is 

expected. On the other hand, the TAN model is restricted to building tree structures, 

and in this case, attribute 5 participates in the jpd b y P (5 |l ,C ) .  This conditional 

probability also remains constant and equal to 0.5 regardless of the values that 5, 1, 

and C take, but requires unnecessary extra computation compared to P (5 1C). Also 

from Fig. 4.12 it is not clear that attribute 5 is “different” from the rest of the 

attributes. It has the same conditioning (parents) as attributes 3, 2, and 6 whereas in 

Fig. 4.13, it is clear that attribute 5 is different from the other attributes. Also from 

Table 4.2, the performance of the SBN, both in unsupervised and supervised learning, 

in most of the cases is superior to the TAN model, thanks to its more realistic 

representation of the data, which is not restricted to a tree structure all the time.

The performance of the CL multinets on the wood data set appears in Table 4.3, and 

although the computational cost is high for the 165-dimensional input space 

considering that each tree learning procedure in the multinet has time
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complexity 0 (n 2nk) , the results obtained are considerably better than the traditional

algorithms, especially when compared to the k-means. In these cases where there are 

a large number of attributes, the CL multinets as well as the other two Bayesian 

network models can be initialised using k-means in order to reduce the learning time. 

To prove this, a simple experiment was carried out using the best solution of the k- 

means (55.09%) as the starting partition P°, the CL multinet reached a performance of 

65.42 % in only 15 iterations (10 in the S-step and 5 in the C-step).

One of the limitations of the proposed unsupervised training method for the three 

Bayesian network models is that the number of clusters must be known a priori. This 

drawback is common for several clustering algorithms (k-means, EM, etc.) but can 

usually be overcome by learning models with different numbers of clusters and then 

selecting the best model according to some cluster validity index (Bezdek and Pal, 

1998).
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Table 4.2 Experimental results using the benchmark data sets

D ataset CEM-CL Trees CEM-TAN CEM-SBN K-Means EM CL Tress TAN SBN

C orral 83.12x2.79 77.50x3.42 80.00x2.79 67.81 ±9.43 74.21±1.98 99.23x0.77 95.32x2.26 96.80x3.35

( :\ 79.57 - 2.32 78.19±3.53 80.82x2.13 77.04x3.78 74.42x11.09 83.92xl.05 83.77X1.34 87.54xl.74

i haivjics 79.44:3.38 70.80x2.97 .71.38x2.13 66.79±0.00 6 6 .0 1 x 0 .0 0 74.35x1.43 75.13x0.98 78.30x3.18

1 laic 81 .57rl.56 80.35±0.75 81.03±1.04 64.42±8.98 79.08x0.00 81.90xl.51 82.74xl.60 83.38xl.27

Cl lass 48.50±2.17 52.33x3.32 51.68x3.23 43.73x3.52 44.71xl.37 69.17xl.29 69.18x2.64 70.00X2.71

Iris 90.66±3.68 92.00x2.30 92.40x2.43 88.26±0.34 90.66x0.00 93.33xl.05 93.33xl.05 96.00x3.65

1 ymphography 62.97x4.83 62.83x5.12 62.16x5.50 44.32±8.19 48.98x5.71 64.11X4.77 66.87X3.37 68.2844.50

Vote 89.28±1.56 88.18±1.57 88.00x0.86 86.71±0.14 87.81X0.00 89.42X1.72 89.20xl.61 90.34x2.09

W ine 93.37x3.58 94.83x2.07 95.05x1.08 94.66±0.29 97.19X0.00 98.27xl.65 98.03X1.55 97.14x2.02

X .v 86.93il.90 87.72x2.58 88.71x2.27 83.16±2.64 83.26x3.66 93.09X5.03 95.08X4.25 94.00x4.18

Table 4.3 Experimental results using the wood data set

Dataset CEM-CL Trees K-Means EM

Wood data 65.60±1.30 52.78±3.57 57.74±1.81
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Figure 4.11 CL trees of the “Corral” data set

, Q

Figure 4.12 TAN of the “Corral” data set

Figure 4.13 SBN of the “Corral” data set



4.7 Summary

Clustering using Bayesian network classifiers has been addressed in the present 

chapter. To accomplish the unsupervised training of the Bayesian network classifiers, 

which includes structure and parameter learning, as well as the clustering of the data, 

the maximisation of the classification maximum likelihood was used. This 

maximisation was carried out by formulating the three Bayesian network classifiers: 

CL multinets, TAN, and the SBN classifier (introduced in chapter 3) into the 

Classification EM algorithm framework. Results using benchmark data sets as well as 

real-world applications show that Bayesian network classifiers are promising models 

for clustering tasks. The SBN classifier generally out performs the TAN model when 

trained in a supervised or unsupervised way. This is due to its more robust structure 

learning process, which does not limit its structure to a tree and regulates the number 

of edges according to the amount of training data available which determines the level 

of complexity in the network structure.

For future work, two of the main limitations of the proposed method should be 

researched. These are: the difficulty of determining the correct number of clusters 

during the learning process, and the need for a more advanced unsupervised technique 

for transforming continuous attributes into discrete ones.
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Chapter 5

TRAINING NAIVE BAYES MODELS FOR DATA 

VISUALISATION

5.1 Pre l im inar ies

The naive Bayes model is considered one of the top 10 data mining algorithms due to 

its simplicity, robustness, elegance, and effectiveness (Wu et al., 2008). The models’ 

main characteristic is its feature independence assumption. The surprisingly good 

performance of the of the naive Bayes model for classification has been studied in 

Domingos and Pazzani (1997) and Friedman (1997). In Domingos and Pazzani (1997) 

they found that the naive Bayes classifier performs quite well in practice even when 

strong feature dependences are present, they show that this follows partly because, 

contrary to previous assumptions, the naive Bayes classifier does not require feature 

independence to be optimal under zero-one loss (misclassification rate). On the other 

hand, Friedman (1997) analysed how the bias and variance components of the 

estimation error combine to influence the classification performance. They show, 

under certain conditions, that the low variance associated with the naive Bayes model 

can significantly reduce the effect of the high bias due to the strong feature 

independence assumptions.
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In cases where the model obtains poor results, a straightforward solution is to perform 

a feature selection stage before using the naive Bayes classifier. An example of this 

procedure can be found in the Selective Bayesian Classifier (Langley and Sage, 1994). 

High dimensional data projected on to a lower dimension (usually 2D) enables human 

beings to explore the natural structure of the data and commonly used in data mining 

to visually identify clusters in the data set.

Amongst the many projections/visualisation techniques, principal component analysis 

(PCA), the Self Organising Maps (SOM) (Kohonen, 1982; Kohonen, 1995), and the 

Generative Topographic Mapping (GTM) (Bishop et a l., 1998) are of great interest, 

since most of the ongoing research and new developments are based on one of these 

techniques.

The PCA performs linear projections by using the first and second principal 

eigenvectors, computed from the data covariance matrix. Kohonen’s SOM performs a 

nonlinear projection from a high dimensional data space onto a 2D neuron grid. Each 

neuron in the output space has associated a weight vector in the input space. The 

training consists in moving the weight vectors, given a new stimulus, in order to 

model the input distribution. The updates of the weights are carried out by the SOM 

rule, then once the training process has finished, each data point is assigned to the 

closest weight vector yielding topology preserving maps.

The GTM is a probabilistic reformulation of the SOM. The output is characterised by 

a 2D latent variable space. The idea behind the GTM is to project the latent variables 

onto the input space through a radial basis function (RBF) network. The projected
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latent variables in the input space define the centres of radially symmetric gaussians. 

The input distribution is then modelled by a mixture of these gaussians and the 

training process is carried out by the EM algorithm. Once the models’ parameters 

have been learned (RBF network parameters and the radially symmetric gaussians 

variance) the inverse projection from the input space to the latent space is done by the 

Bayes' rule.

Apart from these well know projection methods, the work of Van Hulle (2002), and 

Yin and Allinson (2001) are also important for this chapter. In Van Hulle (2002) a 

new learning algorithm for kernel-based topographic map formation is presented. The 

learning algorithm procedure aims at maximising the joint entropy of the map’s 

output while in Yin and Allinson (2001) a self-organising mixture network is derived 

for learning arbitrary density functions. The learning procedure is based on 

minimising the Kullback-Leibler divergence using stochastic approximation and a self 

organising principle.

Because of the great popularity that the naive Bayes models have in classification and 

clustering tasks, it is natural to think of exploring some other fields where this simple 

model can perform just as well.

This chapter presents a new unsupervised training method for the naive Bayes models 

in order to generate topology preserving maps. The paper is organized as follows: 

section 5.2 presents a brief description of naive Bayes models for clustering. The 

proposed naive Bayes mapping technique is developed in section 5.3. Simulations on 

several examples and comparisons with well known mapping techniques are carried
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out in section 5.4. Section 5.5 comments on the relation o f the proposed algorithm 

with other existing methods. The final conclusions are presented in section 5.6.

5.2 Naive Bayes models

Naive Bayes models have been widely used for classification and clustering tasks, for 

this present work, the latter will be o f interest. Given an observation o f an n- 

dimensional vector variable x = (*,,...,*„) (each variable x,- can be continuous or

discrete), the joint probability distribution over x can be computed using a naive 

Bayes model for clustering, defined as

p(x) = ^ ^ f l / X x ,  \c = k) (5.1)
* = 1  1=1

1 ^ = ! ,  7Z-t > 0
*=1

where c is a discrete hidden variable “cluster” which causes the variables to be 

(conditionally) mutually independent. The values of c, k = 1, . ..,K  , indicates the 

different clusters in the data and n k the probability distribution o f the variable 

'cluster”. This model (5.1) can also be interpreted as a mixture model of K 

components with mixing weights n k and mixing component

n

distributions p{x\k) =
i=i

The naive Bayes model has a Bayesian network representation which is shown in Fig. 

5.1. Training of this clustering model can be carried out by adopting the maximum 

likelihood approach via the EM algorithm (Dempster et al., 1977). After initialising 

the model’s parameters (mixing weights and the parameters of each component
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distribution) , the training consists in alternating between the E-step in which the 

posterior probability of each data point belonging to one of the K  clusters is computed, 

and the M-step in which the parameters of the model are updated in order to maximise 

the log likelihood. For more details o f the naive Bayes model for clustering purposes 

refer to (Chickering and Heckerman, 1997; Meila and Heckerman, 1998).
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Figure 5.1 Naive Bayes model
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5.3 Training of naive Bayes models for topographic map formation

The previous section presented a brief description of a naive Bayes model for 

clustering, in order for this model to generate topographic maps (e.g. SOM) additional 

definitions and modifications are introduced. First, a discrete neuron grid with K 

neurons is defined as the out-put space Y . Second, each cluster label c = k with

k = 1 K has associated a coordinate position in the out-put space y k = ( y ]k, y 2k)-

T hird, each neuron (grid position y k) has equal prior probability, i.e. n k - \ l  K  for all 

k. Fourth, each variable of the input data x{ follows a normal density distribution for a 

given neuron k

where o ik and cr~k are the mean and variance respectively, for the ith variable and the 

kth neuron.

Using the previous formulation, the distribution of x, for a given c=k and 

0* = {coA.,a k} with co; = {coxk,...,a>nk}, and a* -  {cr,2*, . . . ,cr2nk}, is defined by

(5.2)

(5.3)

and the distribution of x in the input data space is given by

l 4- (5.4)
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The aim of the training process is to determine the model’s parameters 0  given a

maximum likelihood. For practical reasons, instead of maximising the likelihood, it is 

convenient to use the log-likelihood, defined by

For the specific joint probability distribution in (5.4), the log-likelihood function can

be expresses as

To maximise this function several optimisations techniques could be used but because 

the distribution (5.4) follows a mixture model, it is preferable to use the EM algorithm. 

In order to handle large data sets, Titterington’s online version o f the EM algorithm 

(Titterington, 1984) will be used. Titterington showed that for a mixture of univariate 

Normals, with mean cok and variance cr2k and mixing weight n k, the updating rules for 

the (j  + 1 )th input (iteration) data are:

data set D = ( x x ;V) with N  vector points which can be carried out by using

N

LL(&) = log P [  p(x'' 10 ) . (5.5)

(5.6)

F-stcp

M-Step

(5.8)

,(./+!) _ MU)= ®l'l+ / " V >1|-®ly,)> (5.9)

109



(5.10)

where

VU)
n j) - . (ft (•)> • (5.H)

+ / i

The idea behind these updating rules is to distribute the effect of the new observation 

to all the terms in proportion to their respective likelihoods. The mixing weight, mean, 

and variance are then updated by this proportion. Convergence results for this online 

EM algorithm have been given by Titterington (1984).

Note that the naive Bayes model, for any k , consists of the product of n univariate 

Normals. So, because of the models’ attribute independence assumption, the same 

updating rules can be used for each dimension.

So far, no topology preserving restrictions have been made and the above set of 

updating learning rules will not yield topographic maps because each mixing 

distribution centre can move in a free manner in the input space. To achieve topology 

preserving lattices in the learning process, a posterior probability-based competition 

between the neurons is introduced. The “winning” neuron is defined as 

k* = argmaxVAe{1 K] yk , in other words, for a given input data the winning neuron is

the one with the highest posterior probability for that data. Then, topological 

information is incorporated by means of a neighbourhood function A which is a 

monotonically decreasing function of the distances (in the out-put space) of a neuron 

k and the winner k *. The most common function is the Gaussian function, which 

will be used in this work, defined by
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A(k,/c ,<j(t)) = exp 

where cr(t) is the neighbourhood function range.

f 2 ^

V
2 c r 2( 0

)

(5.12)

Now, returning to the updating rules, by incorporating the W-step (winning neuron) 

after the E-step and before the M-step, and in the M-step taking yk = S , and

introducing the neighbourhood function, the updating rules that yield topology- 

preserving maps for naive Bayes models are:

E-step

,0+D I 1r M U ) «.2(y)-

W-step

M-step

where

n ( x u +l} I k
ri'> = p(k  I = - ^ — 1 ’ * ’ * ’

*•=1

(5.13)

k" = argmaxvte(1 K)/ tn . (5.14)

(o^+1) = co*y) + f £ J)(xi J + l ) (5.15)

^ (y*1,= ^ 0 ,+ / /J>((*U*1,- O 2- ( l - / tU)K2(y)). (5-16)

(y) = ------A(k,k MO)  (5 j 7)
j ( \ / K )  + A(k , k  MO)

By introducing the neighbourhood function, maximisation of the log-likelihood 

function is still performed but in a constrained manner that helps the developments of 

topology preserving maps.
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Once the training has finished, visualisation can be performed by computing, for each 

data point, its posterior probability (5.13). Then, a hard projection or a soft projection 

can be made. The hard projection consists in assigning a data point to the coordinate 

y . with k* found using (5.14). The soft projection consists in computing the 

posterior mean projection of a data point j ,  defined by

5.4 Simulations

Several simulations with artificial data and real industrial data are reported in this 

section, as well as comparisons with well known data visualisation techniques.

5.4.1 Map formation example

The map formation process, in the input space, by iterating equations (5.13) to (5.16) 

is shown in Fig. 5.2. The map is of size 16x16  and the mean vectors and the variance 

vectors are 2-dimensionl. At the beginning t = 0 , the mean vectors and the variance 

vectors are randomly distributed in the unit square. Then for each iteration (updating 

the rules (5.13) to (5.16)) an input data x is selected randomly from the unit square. 

1 or this simulation, the neighbourhood function range was computed as

for 0 < t < t JIUlx =100000 and <r0 equal to half o f the lineal dimension of the grid.

Although any other monotonically decreasing function for the range would be useful 

as well. Fig. 5.2(a) -  Fig. 5.2(f) show results for t=0, 500, 1000, 5000, 10000, and 

100000 respectively. You can see how the lattice has already been formed by /=500

K

y = Zn'y*- (5.18)

V max Jmax J
(5.19)
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and as cr(t) decreases the map stretches out. In the final stages when <r(t) is very 

small no ordering is performed and the algorithm only updates for the winner 

(competitive learning).
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Figure 5.2(a) Naive Bayes map formation at t = 0.
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Figure 5.2(b) Naive Bayes map formation at t = 500.
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Figure 5.2(c) Naive Bayes map formation at t = 1000.
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Figure 5.2(d) Naive Bayes map formation at t = 5000.
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Figure 5.2(e) Naive Bayes map formation at t = 10000.
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Figure 5.2(f) Naive Bayes map formation at t =  100000.
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5.4.2 M onitoring convergence

Because the training of the naive Bayes model for visualisations starts of with the 

parameters selected randomly several runs can be made starting form different 

random values and selecting the final model which scores the highest in (5.6) .To 

showr the usefulness of having (5.6) to monitor the convergence in the training phase 

as well as to see how good the model has fitted the data, an example using the Iris 

data set (see Table 5.1 for description) from Murphy and Aha is presented. For this 

simulation, an epochs loop has been introduced, outside the data loop like the SOM 

algorithm, now the range (5.19) will be reduced for every epoch and the j  (iteration 

number) in (5.17) becomes j  + epoch*N with 0 < epoch < epoch^  = 100. The results

from three examples (outputs) are shown in Fig. 5.3(a), Fig. 5.3(b), and Fig. 5.3(c) 

respectively and the resulting log-likelihood for each one appears in Fig. 5.3(d). 

Notice how for the three examples during the first 10 epochs is when most significant 

improvements in the LL are made, after that, convergence turns slow and only minor 

improvements are achieved. From Fig. 5.3(d), the example that obtained the best 

result was number three, and by analysing the output mappings Fig. 5.3(c) appears to 

be the mapping which best separates de 3 classes, specially between class “+” and 

"O”. In Fig. 5.4(a) -  Fig.5.4(c) the evolution of (5.13) for data point number 30 in the 

Iris data set is presented. Fig. 5.4(a) show the initial posterior probability for that data 

point which can be interpreted as the membership value o f belonging to one of the 

output neurons. The posterior probability at epoch=10 appears in Fig. 5.4(b) and, in 

accordance to what Fig. 5.3(d) showed, now membership values are reduced to only a 

specific region of the map. Finally, at epoch=100, Fig. 5.4(c) shows minor 

modification to the previous figure and membership values are slightly increased due
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to a small reduction in the region the was covering before. The final output after 

applying (5.18) is shown in Fig. 5.4(d) and data point 30 which belongs to the 

class is represented by a
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Table 5.1 Description of the benchmark data sets

Dataset #Attributes #Classes #Examples

Australian 14 2 690
Breast 10 2 683
Cleve 13 2 296
Crx 15 2 653
Diabetes 8 2 768
Heart 13 2 270
Ionosphere 34 2 351
Iris 4 3 150
Pima 8 2 768
Wine 13 3 178
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Figure 5.4(a) Initial posterior probability for data point number 30 in the Iris data set
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Figure 5.4(b) Posterior probability at epoch=10 for data point number 30 in the Iris
data set

122



Figure 5.4(c) Posterior probability at epoch=100 for data point number 30 in the Iris
data set
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Figure 5.4(d) Output map at epoch=100 with data point 30 represented by a
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5.4.3 C om paring m ap quality  w ith  o th er techniques

To measure the mapping quality o f the proposed method, which from now on will be 

referred as the naive Bayes mapping (NBM), and compare it to other mapping 

techniques such as the SOM, GTM, and PCA, the trustworthiness and the continuity

measures will be used. These measures were introduced by Venna and Kaski (2001),

and have being used elsewhere (Kaski et al., 2003; Venna and Kaski, 2005; Venna 

and Kaski, 2006). A projection onto an output space is considered trustworthy if the k 

closest neighbours of a point on the map are also neighbours in the original space. Let 

r(x‘,xJ) be the rank of the data sample x7 in the ordering according to the distance 

from x in the original data space. Denote by Uk(i) the set o f those data samples that

are in the neighbourhood of size k o f the sample x* in the map but not in the original 

data space. The measure of trustworthiness o f the visualisation is defined by

= J j ( r ( x \ x ' ) - k ) ,  (5.20)
z=l j e U k ( i )

where A(k) = 2 / ( N k ( 2 N - 3 k - 1 )).

A projection onto an output space is considered continuous if  the k closest neighbours 

of a point in the original space are also neighbours in the output space. Let Vk(i) be 

the set of those data samples that are in the neighbourhood o f the data sample x' in the 

original space but not in the map, and let r (x‘, x J) be the rank of the data sample x7 in 

the ordering according to the distance from x' in the output space. The measure of 

continuity of the visualisation is defined by

M 2(/c) = 1 -  A ( k ) £  £ ( r ( x ‘,xJ) - k ) .  (5.21)
/=1 j e V k ( i )
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In the case of ties in rank ordering, all compatible rank orders are assumed equally 

likely, and averages of the error measures are computed.

The four projection methods will be tested on 10 benchmark data sets which are 

described in Table 5.1. For the SOM, GTM, and NBM the output will be a 10x10 grid 

for all the simulations. For GTM, the number o f cycles (epochs) was set to 50, and 10 

repetitions where made choosing as the final projection the one that scored the highest 

log-likelihood, also for each data set, a different number o f basis function was tested 

in order to find the best projection. For these data set, the best projections where 

found usually for a number of basis functions equal to 16 o 25. For the SOM, the 

number of epochs used was 1000, and 10 repetitions were made choosing as final 

projection the one that visually achieved better separation amongst the different 

classes. The SOM used the neighbourhood function defined in (5.12) and the range 

defined in (5.19). The learning rate a(e)  for epoch e used in these simulations was

with a 0 = 0.5 and a, -  0.02 .

The number of epochs for the NBM was set to 50 and 10 repetitions where made 

choosing as the final projection the one that scored the highest log-likelihood just like 

the GTM. For better convergence, the learning rate (5.22) was introduced in the

updating of a 2k in (5.16), becoming

(5.23)

with a {) -0 .1  and a x =0.05.
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The three mapping techniques used a random initialisation for their parameters and 

each data set was normalised so that each feature had mean = 0 and variance = 1.

The output mapping as well as the trustworthiness and continuity values for each data 

set are shown in Fig 5 to Fig 14. In what follows, an analysis and discussion for each 

data set is presented.

The Australian data set (Fig. 5.5(a) -  Fig. 5.5(f)). The PCA projection (Fig. 5.5(a)) 

show s a dense cloud of points where in the centre both classes overlap. The SOM 

projection (Fig. 5.5(b)), although you can identify regions which contain points from 

a single class, in general the output presents significant overlapping amongst classes. 

The GTM projection (Fig. 5.5(c)), due to its continuous (soft) output, presents a less 

dense projection, where larger regions for each class can be identified. The NBM 

projection (Fig. 5.5(d)), also has a soft output which makes the identification of 

regions for each class easier. Notice how the “+” class is mostly projected in the lower 

left part of the projection while the “O” class is mostly in the upper right side of the 

map. Analysing the Trustworthiness measure Mi (Fig. 5.5(e)), the PCA projection 

neighbourhood preservation is very weak. The SOM achieves the best trustworthiness, 

the NBM Outperforms the GTM for the first 15 neighbours. These last three 

projection methods have Mi > 0 .9  for up to 15 neighbouring points in the output 

space. For the Continuity measure M 2  (Fig. 5.5(f)), the PCA projection obtains the 

worst result, and then it follows slightly better the SOM, GTM, and the NBM. These 

last three are similar for k =5, and the GTM and NBM are similar for k =15 and k =25.
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The Breast data set (Fig. 5.6(a) -  Fig. 5.6(f)). The PCA projection (Fig. 5.6(a)) shows 

two dense clouds of points distributed along a line with two outliers from class 

also between these two clouds o f points there is a slight overlapping between points 

from different classes. The SOM projection (Fig. 5.6(b)), clearly separates the two 

classes in two different regions of the map, “+” on the left side and “O” on the right, 

with a few neurons in the middle containing points from both classes. The GTM 

projection (Fig. 5.6(c)), presents a dense projection for the “+” class on the left side 

and a sparse projection o f the “O” class on the right side. The NBM projection (Fig. 

5.6(d)). also has a dense projection for the “+” class located in the lower part of the 

projection and a sparse projection for the “O” class located in the upper part of the 

mapping. In both cases, GTM and NBM, the dense and sparse projection makes it 

simple to identify each class. Analysing the Trustworthiness measure Mi (Fig. 5.6(e)), 

the PCA projection obtains the lowest values although Mi>0.85 for A: up to 10 which 

is not bad. The SOM achieves the best trustworthiness, and then follows the GTM and 

finally the NBM. The NBM achieves similar trustworthiness with GTM, for k up to 5, 

and the three projection methods have Mi > 0.9 for up to 10 neighbouring points in 

the output space. For the Continuity measure M 2  (Fig. 5.6(f)), the PCA projection 

obtains the best result, and then it follows the NBM, the SOM, and finally the GTM. 

The PCA and NBM are similar for k up to 10.
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Figure 5.6(a) Breast data set projection using PCA
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Figure 5.6(b) Breast data set projection using SOM
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Figure 5.6(c) Breast data set projection using GTM

oo©
o 8°

cB o

0 o
o

o
<s>

o o

o o o
0$ $ CL O

O <S>0 
s>

o

o oo o

O O o ° %
o 

o  o

O—  £  - o  <
°°0 ^ ° o  o °

o o o °  °oJ® o  %
O o  <9
°  O O o

+ ©°

<p

o„ o < 5 ? «

o  o

cP
00

Cb o

0 0

+ o o
o

+
+ 8

+
o+ + t+ o

o 0*0

%

+

-H-

+ o

+o

+

Gq#>qcp O o
O <30 5  o

O <X>CO

2  °  
■ + + 

o
+°
+  +
+

+
+

Figure 5.6(d) Breast data set projection using NBM
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Figure 5.6(e) Trustworthiness measure for the Breast data set projection
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Figure 5.6(f) Continuity measure for the Breast data set projection
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The Cleve data set (Fig. 5.7(a) -  Fig. 5.7(f)). The PCA projection (Fig. 5.7(a)) shows 

a less dense cloud of points, where the “+” is located on the right side of the cloud of 

points and the “O” class is on the left side, with some overlapping in the middle. The 

SOM projection (Fig. 5.7(b)), separates the two classes in two different regions of the 

map, “+” on the top right side and “O” on the bottom left, with several neurons, in 

different regions of the map, containing points from both classes. The GTM 

projection (Fig. 5.7(c)), presents a sparse projection, where the “+” class is mostly 

concentrated on the bottom side of the map and the “O” class on the top side. The 

NBM projection (Fig. 5.7(d)), also has a sparse projection concentrating the majority 

of the “+” class on the upper right triangle and the “O” class in the lower left triangle. 

Analysing the Trustworthiness measure Mi (Fig. 5.7(e)), the PCA projection obtains 

the lowest values with Mi<0.8 for k up to 25. The SOM achieves the best 

trustworthiness for k up to 20, then, it drops significantly. The GTM and the NBM are 

similar for k up to 15, then, GTM obtains slightly better values than the NBM. For the 

Continuity measure M 2  (Fig. 5.7(f)), the NBM projection obtains the best result, and 

then it follows the GTM, the PCA, and finally the SOM. The NBM and SOM are 

similar for k =5.
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Figure 5.7(b) Cleve data set projection using SOM
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Figure 5.7(e) Trustworthiness measure for the Cleve data set projection
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Figure 5.7(f) Continuity measure for the Cleve data set projection
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The Crx data set (Fig. 5.8(a) -  Fig. 5.8(f)). The PCA projection (Fig. 5.8(a)) shows 

two clouds of points, one bigger than the other. Each could of points contain dense 

and sparse regions as well as points from both classes. In each cloud, the “O” class is 

mostly concentrated on the left side, and the “+” class on the right side. The SOM 

projection (Fig. 5.8(b)), although regions which contain points from a single class can 

be identified, in general, the output presents significant overlapping amongst classes. 

The GTM projection (Fig. 5.8(c)), presents a sparse projection of the two clouds 

found in the PCA projection, where the “+” class is mostly concentrated on the left 

side of and the “O” class on the right side, o f  each cloud. The NBM projection (Fig. 

5.8(d)), also has a sparse projection of the two clouds which appeared in the PCA 

mapping. The big cloud is on the left side, where the “+” class is mostly on the upper 

left region and the “O” class in the lower part of the mapping. The small cloud is 

located in the top right comer, following a similar class distribution as the description 

of the big cloud of points. Analysing the Trustworthiness measure Mi (Fig. 5.8(e)), 

the PCA projection obtains the lowest values with 0.84<Mi<0.86 for all k  computed, 

which is not bad. The SOM achieves the best trustworthiness for k up to 15, then, it 

drops. At k =10, the NBM equals the SOM and then outperforms the SOM for the rest 

of the k values. The NBM obtains better values of Mi than the GTM for up to k =20, 

and then onwards they perform similar. For the Continuity measure M 2  (Fig. 5.8(1)), 

the PCA projection obtains the best result for up to k =10, and then it follows the 

NBM, the GTM, and finally the SOM. Although for the four projection methods the 

overall values of M 2  were quite low.
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Figure 5.8(b) Crx data set projection using SOM
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Figure 5.8(d) Crx data set projection using NBM
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Figure 5.8(e) Trustworthiness measure for the Crx data set projection
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Figure 5.8(f) Continuity measure for the Crx data set projection
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The Diabetes data set (Fig. 5.9(a) -  Fig. 5.9(f)). The PCA projection (Fig. 5.9(a)) 

shows a semi-dense cloud of points, the “O” class is mostly concentrated on lower 

and left side of the mapping, and the “+” class on the top right side, significant 

overlapping can be appreciated as well. The SOM projection (Fig. 5.9(b)), shows 

most of its neurons containing points from both classes, only the “+” class has a small 

distinguishable region in the map while the “O” class has only six isolated neurons. 

The GTM projection (Fig. 5.9(c)), presents a sparse mapping concentrating the “+” 

class mostly in the centre and the “O” class in the surroundings of the map. 

Significant overlapping can be viewed as well. The NBM projection (Fig. 5.9(d)), also 

has a sparse projection concentrating the “O” class in the lower right triangle of the 

map, and the “+” class on the upper left triangle. High overlapping regions are also 

present. Analysing the Trustworthiness measure Mi (Fig. 5.9(e)), the PCA projection 

obtains the lowest values with 0.8<Mi<0.84 for all k computed, which is not bad. The 

SOM achieves the best trustworthiness for k up to 40, then, it drops slightly. The 

NBM outperforms the GTM up to k=  35, then GTM is slightly better. In general, the 

three nonlinear projections achieve Mi>0.9 for all k. For the Continuity measure M2  

(Fig. 5.9(f)), the PCA projection obtains the best result for all k, and then it follows 

the NBM, the GTM, and finally the SOM. The NBM and GTM share similar values 

up to k = 15, then the NBM obtains slightly better results.
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Figure 5.9(b) Diabetes data set projection using SOM
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Figure 5.9(d) Diabetes data set projection using NBM
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Figure 5.9(e) Trustworthiness measure for the Diabetes data set projection
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Figure 5.9(f) Continuity measure for the Diabetes data set projection
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The Heart data set (Fig. 5.10(a) -  Fig. 5.10(f)). The PCA projection (Fig. 5.10(a)) 

shows a semi-dense cloud of points, the “O” class is mostly concentrated on the left 

side of the mapping, and the “+” class on the right side. Some overlapping between 

the two classes can be appreciated, mostly on the right side. The SOM projection (Fig. 

5.10(b)), shows the distribution of the two classes relatively clear, the “+” class is 

located in the lower right triangle in the map, and the “O” class is on the top left 

triangle. Several neurons containing points from both classes can be seen, especially 

on the upper left side of the map corresponding to the “O” class. The GTM projection 

(Fig. 5.10(c)), presents a sparse mapping concentrating the “+” class mostly in the 

lower left triangle of the mapping and the “O” class in upper right triangle. Some 

overlapping can be seen in the middle and lower regions of the map. The NBM 

projection (Fig. 5.10(d)), also has a sparse projection concentrating the “O” class in 

the upper left region of the map, and the “+” class on the lower right region. Some 

overlapping where both classes intersect can be seen. Analysing the Trustworthiness 

measure Mi (Fig. 5.10(e)), the PCA projection obtains the lowest values with 

0.75<M]<0.82 for all k computed. The SOM achieves the best trustworthiness for k 

up to 25, then, it drops considerably. The NBM has a similar value to the GTM for k 

=5, then GTM is slightly better. In general, the three nonlinear projections achieve 

Mi>0.85 for k up to 30. For the Continuity measure M 2  (Fig. 5.10(f)), the PCA, GTM, 

and the NBM projections obtained similar values and the three are better than the 

SOM.
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Figure 5.10(b) Heart data set projection using SOM
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Figure 5.10(d) Heart data set projection using NBM
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Figure 5.10(e) Trustworthiness measure for the Heart data set projection
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Figure 5.10(f) Continuity measure for the Heart data set projection
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The Ionosphere data set (Fig. 5.11(a) -  Fig. 5.11(f)). The PCA projection (Fig. 5.11(a)) 

shows a semi-dense cloud of points, the “O” class is mostly concentrated in the 

middle of the map, and the “+” class on the right and left side. Significant overlapping 

between the two classes can be appreciated. The SOM projection (Fig. 5.11(b)), 

shows the distribution of the two classes relatively clear, the “+” class is located on 

the left and right side of the map, while the “O” class is on the top and bottom part of 

the map. A few neurons containing points from both classes can be seen. The GTM 

projection (Fig. 5.11(c)), presents a sparse mapping concentrating the “+” class 

mostly in the upper right side of the map while the “O” class is surrounding the 

outside of “+” class. Some overlapping can be seen in the “+” class region with some 

‘O” class points. The NBM projection (Fig. 5.11(d)), also has a sparse projection 

concentrating the “O” class in the centre and lower parts o f the map, and the “+” class 

on the left side, upper part, and right side o f the map. Some overlapping on the upper 

part and right side of the map can be seen. Analysing the Trustworthiness measure Mi 

(Fig. 5.11(e)), the PCA projection obtains the lowest values with 0.81<Mi<0.84 for 

all k computed. The SOM achieves the best trustworthiness for A: up to 5, then, it 

drops significantly. The NBM starts at a similar value as GTM but then drops 

following the same behaviour as the SOM. The GTM for A: =10 and onwards achieves 

the best results. For the Continuity measure M 2  (Fig. 5.11(f)), the NBM performs 

significantly better than PCA, GTM, and the SOM projections. These last three 

methods show similar values for all k.
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Figure 5.11(b) Ionosphere data set projection using SOM
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Figure 5.11(d) Ionosphere data set projection using NBM
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Figure 5.11(e) Trustworthiness measure for the Ionosphere data set projection
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Figure 5.11(f) Continuity measure for the Ionosphere data set projection
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The Iris data set (Fig. 5.12(a) -  Fig. 5.12(f)). The PCA projection (Fig. 5.12(a)) shows 

two clouds of points, one which only contains points from the class, and then the 

other cloud which has the “O” class on the lower left side and the “+” class on the 

upper right side. Points from the class are clearly linearly separable from the class 

“O” and ‘ ‘+”. The class “+” and “O” are non-linearly separable which is shown by the 

slight overlapping of these two classes where they intersect. The SOM projection (Fig. 

5.12(b)), shows the distribution o f the three classes very clear. The class is located 

in the top right region of the map, the “+” class is located in the middle region of the 

map (in a diagonal distribution) and the “O” class is in the bottom left part of the map. 

Only three neurons contain points from the “+” and “O” class. The GTM projection 

(Fig. 5.12(c)), presents a sparse mapping concentrating the class on the top left

and left side of the map, while the other two classes are located on the lower right side 

of the map, very little overlapping can be seen. The NBM projection (Fig. 5.12(d)), is 

quite similar to the PCA mapping in this case, although the class, located on the

left side of the map, is more dense in the NBM. Points from the “+” and “O” class are 

on the right side of the map, where little overlapping can be seen in the regions where 

they intersect. Analysing the Trustworthiness measure Mi (Fig. 5.12(e)), the PCA 

projection obtains the best values with Mi>0.97 for all k  computed. Then it is 

followed closely by the NBM. The GTM is similar to NBM at k =5, then, it drops 

ending at a value close to 0.92 for k =50. The SOM, performing slightly worst than 

GTM, follows the same drop as GTM and ends at 0.91. In general the 4 projections 

obtain values Mi>0.91 for all k, which reveals the good quality of the projections for 

this data set. For the Continuity measure M 2  (Fig. 5.12(f)), the NBM performs the best 

and similar to the PCA. The GTM and the SOM projections present similar values for 

all k.
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Figure 5.12(a) Iris data set projection using PCA
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Figure 5.12(b) Iris data set projection using SOM
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Figure 5.12(d) Iris data set projection using NBM
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Figure 5.12(e) Trustworthiness measure for the Iris data set projection
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Figure 5 .12(f) Continuity measure for the Iris data set projection
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The Pima data set (Fig. 5.13(a) -  Fig. 5.13(f)). The PCA projection (Fig. 5.13(a)) 

shows a semi-dense cloud of points, the “O” class is mostly concentrated on lower 

and left side of the mapping, and the “+” class on the top right side, significant 

overlapping can be appreciated as well. The SOM projection (Fig. 5.13(b)), shows 

most of its neurons containing points from both classes, only the “+” class has a 

distinguishable region in the map while the “O” class has only four isolated neurons. 

The GTM projection (Fig. 5.13(c)), presents a sparse mapping concentrating the “+” 

class mostly in the centre, left and top left o f the map and the “O” class in the bottom 

and right side of the map. Significant overlapping can be viewed as well. The NBM 

projection (Fig. 5.13(d)), also has a sparse projection concentrating the “O” class in 

the lower right region of the map, and the “+” class on the upper left region. High 

overlapping regions are also present. Analysing the Trustworthiness measure Mi (Fig. 

5.13(e)), the PCA projection obtains the lowest values with 0.8<Mi<0.84 for all k 

computed, which is not bad. The SOM achieves the best trustworthiness for all k. The 

NBM outperforms the GTM for all k. For the Continuity measure M2  (Fig. 5.13(f)), 

the NBM projection obtains the best result for all k, and then it follows the PCA, the 

GTM, and finally the SOM.
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Figure 5.13(a) Pima data set projection using PCA
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Figure 5.13(b) Pima data set projection using SOM
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Figure 5.13(c) Pima data set projection using GTM
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Figure 5.13(d) Pima data set projection using NBM
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Figure 5.13(e) Trustworthiness measure for the Pima data set projection
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Figure 5.13(f) Continuity measure for the Pima data set projection
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The Wine data set (Fig. 5.14(a) -  Fig. 5.14(f)). The PCA projection (Fig. 5.14(a)) 

shows three clouds of points, one which only contains points from the class, 

located in the lower left side of the projection, another cloud which has the “+” class 

on the upper centre and the “O” class on the lower right side of the map. The SOM 

projection (Fig. 5.14(b)), shows the distribution of the three classes very clear. The 

“*” class is located in the right region o f the map, the “+” class is located in the top, 

middle, and lower regions of the map and the “O” class is in the bottom left part of 

the map. Only two neurons contain points from the “+” and “O” class and one neuron 

contains points from the “+” and class. The GTM projection (Fig. 5.14(c)), 

presents a sparse mapping concentrating the class on the top right, top centre of 

the map, while the “O” class is located in the bottom right and bottom centre of the 

map, the “+” class is mostly concentrated on the left side of the mapping, although a 

few points from this class can be found in other parts of the map. The NBM 

projection (Fig. 5.14(d)), shows a sparse projection as well (when compared to the 

PCA) where the class is located on the bottom right side of the map, while the 

“O” is on the opposite upper left side. The “+” class is on the top right side, and top 

middle of the map. Like the GTM, a few points from this class can be found in other 

parts of the map. Analysing the Trustworthiness measure Mi (Fig. 5.14(e)), the SOM 

projection obtains the best values for k up to 10, then, it is outperformed by the GTM 

and NBM. The GTM and NBM show similar results for k =5, after that, the GTM 

shows slightly better values up to k =35 then it is passed by the NBM. The PCA 

obtains the lowest initial values but then outperforms the SOM from k =25 onwards. 

In general GTM and NBM have Mi>0.92 values for all k. For the Continuity measure 

M2  (Fig. 5.14(f)), the PCA obtains the highest value for k =5, then the PCA, GTM,
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and the NBM show similar values for the rest of the k values. The SOM projection 

has the lowest values for all k, with the minimum value at =5.
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164



+ £ + + + + +  **# #

o o

Figure 5.14(c) Wine data set projection using GTM

o +

oo

oo
+ +

Figure 5.14(d) Wine data set projection using NBM

165



Trustworthiness
0 98

0 96

0.94

0.92[f

PCA
-SOM
-GTM
-NBM

0.88

0.86
205 10 15 25 30 35 40 45 50

k

Figure 5.14(e) Trustworthiness measure for the Wine data set projection

Continuity
0.76

0.75

0.74

0.73

0.72

r  0 71
0 /

0.69

 PCA
—  SOM 

e — GTM 
-e— NBM

0.68

0.67

0.66
45 5035 405 3010 20 2515

k

Figure 5.14(0 Continuity measure for the Wine data set projection

166



In general, the results using the ten benchmark data set, shows that the SOM obtains 

the best trustworthiness for small values of k (£<15), it is followed closely by the 

GTM and NBM which present a similar behaviour, noticing that for small values of k 

the NBM would obtain slight better results than GTM. For larger values of k, in 

several cases the GTM and NBM obtained better results than the SOM. The PCA had 

the lowest values, except when the data set was clearly linearly separable like the iris 

and wine data set. For the Continuity measure the NBM and the PCA performed the 

best whilst the SOM obtain the worst over all performance. This can give an insight of 

the trade off between trustworthiness and continuity, since although the SOM 

performed very well in Mi for small values o f k, it does this by compromising its 

performance in M2 , on the other hand the NBM and GTM obtained results which are 

much more balanced for both measures. Analysing the mappings visually, the 

nonlinear projection methods clearly outperforms the PCA, which only has nice 

visualizations (non dense) for simple data sets with little overlapping. The GTM and 

NBM obtained the best results due to its more sparse projection which enables better 

separation amongst classes. The SOM, due to its discrete output, although it also 

achieves good separation in some data sets it is very difficult to appreciate how the 

data is distributed if no label where used. Also it is important to point out that out of 

the ten simulations for each data set, in the case of the SOM, the map selection 

process was done visually thanks to the class labels, where the map with best class 

separation was selected. While the GTM and NBM were selected automatically using 

the log-likelihood measure only.

5.4.4 Industrial application

This subsection describes the application of the proposed algorithm to the 

visualisation of the wood data. This data was generated from a low-cost Automatic
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Visual Inspection (AVI) system for wood defect detection (Estevez et al.,2003). The 

feature extraction module from the AVI system extracted features from objects and 

windows of 64 by 64 pixels centred in the object geometrical centre. The features 

used in this work include: 7 object geometrical features measured on the binarised 

grey image (e.g.: area, perimeter, average radius, aspect ratio, etc.); 96 object colour 

features (24 features measured in each o f the four channels, R, G, B, and grey); 46 

window colour features (e.g., mean and variance of window histograms, mean and 

variance at the edge of windows); and 16 co-occurrence features (which contain 

texture information) which were added recently in Ruz et al. (2008). In total there are 

165 features computed from the segmented defects. The data set used in this work 

consists in 2247 examples (wood board images of 320 x 240 pixels) which have been 

manually labelled/classified into one o f the following 10 defect categories (see Ruz et 

al. (2005) for details): birdseye, pockets, wane, split, stain, blue stain, pith, dead knot, 

live knot, and hole. Also, the clear wood category was added, which corresponds to 

non-dcfective wood board images. In total there are 11 classes (labelled from 0 to 10 

respectively), with approximately 200 examples per class.

For this simulation, the SOM, GTM, and the NBM used a 20 x 20 grid output. The 

GTM used 81 basis functions, the maximum number o f epochs was set to 30 for the 

GTM and NBM, 500 for the SOM. For each technique, five repetitions were made, 

choosing the best map following the criteria explained in the previous experiments. 

The other parameters remained the same as before.

Results of these simulations are shown in Fig. 5.15(a) -  Fig. 5.15(f). The PCA 

projection (Fig. 5.15(a)) shows a dense cloud of points where the eleven different 

classes highly overlap. Only class 3 and class 0, in the bottom part of the cloud of
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points, a more distinguishable. The other regions are much denser. The SOM 

projection (Fig. 5.15(b)) presents a much clearer separation amongst the classes, The 

GTM (Fig. 5.15(c)) presents a slightly more sparse projection but the separation of the 

classes is not as clear as the SOM. The NBM (Fig. 5.15(d)) achieves good separation 

amongst the different classes similar to SOM. Analysing the Trustworthiness measure 

Mi (Fig. 5.15(e)), the SOM projection obtains the best values for k up to 5, then, it is 

outperformed by the GTM and NBM only slightly. The GTM and NBM show similar 

results from k = 10 onwards. The three methods presented values Mi>0.97 for k up to 

30, which is very good. As expected the PCA projection obtained the lowest 

performance for this measure. For the Continuity measure M 2  (Fig. 5.15(f)), the PCA 

obtained the highest values for all k. At k =5 the NBM has it highest value and 

outperforms the SOM and GTM, then for values of k up to 25, the NBM and GTM 

obtain similar values, outperforming both the SOM.

An interesting conclusion was found when the projections were analysed in detail. 

Ruz et al. (2005) conducted a histogram-based study of the colour intensities from 

defective regions and grain line (clear wood) regions o f the radiata pine board images. 

This is one of the main difficulties found in the image segmentation step of the AVI 

system because the clear wood (free from defects) boards contain dark grain lines. 

The study showed that two of the defect categories which overlapped the most with 

the clear wood (label 10) were the stain (label 4) and the blue stain (label 5) categories. 

Now, this conclusion can also be obtained by observing the maps projected by the 

SOM, GTM, and the NBM, where most o f the overlapping is due to 10 overlapping 

with 5 or 10 overlapping with 4. This result shows, in part, the effectiveness of these 

projection techniques.
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Figure 5.15(a) Wood data set projection using PCA
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Figure 5.15(b) W ood data set projection using SOM
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Figure 5.15(d) Wood data set projection using NBM
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5.5 Relations with other algorithms

The NBM shares several characteristics with other mapping techniques. A brief 

comment expressing their relations is presented here.

In the SOM, each neuron in the output space has associated a weight vector in the 

input space, the NBM uses the same output neuron grid but each neuron has 

associated a naive Bayes model which is characterised by a mean vector, which acts 

as the SOM’s weight vector, and also a variance vector. The NBM uses the posterior 

probability to identify the winning neuron while the SOM uses a distance metric 

(usually Euclidean). Like the SOM, the NBM updates the parameters for the winning 

neuron and its neighbours. This is achieved by replacing the posterior probability, 

which is computed using input space coordinates, in the updating rules with a 

neighbourhood function which considers the output space coordinates of the neurons.

The NBM is closely related to the GTM, because o f its probabilistic nature. Both 

models define a probability density, uses the maximum likelihood to train the 

parameters, can perform posterior-mean projections, and have the log-likelihood 

function to monitor the convergence. The GTM projects the latent space variables into 

the input space and then performs the inverse process to obtain the data projection, 

while the NBM uses a discrete variable (hidden variable) in the input space to identify 

each naive Bayes model. Although the NBM must choose the neighbourhood function 

parameters for the topographic ordering, the GTM must choose an appropriate 

number of basis functions which has a direct influence in the final mapping results. In 

fact during the simulation section, it was found that for some data set the GTM was
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quite sensitive to the number of basis function, obtaining poor results in cases where 

the number of basis function selected for the training was not appropriate.

Van Hulle (2002) derived a learning algorithm for a mixture of kernels (Gaussian) by 

Kullback-Leibler divergence minimisation. The minimisation is achieved by invoking 

the Robbins-Monro stochastic approximation method (Robbins and Monro, 1951) 

which lead to similar updating rules as the ones used by NBM. The posterior 

probability in the updating rules is then changed by a neighbourhood function like the 

NBM, although Van Hulle uses an activity-based definition for the winner instead of 

the posterior probability-based definition used by the NBM.

Yin and Allison (2001) also derived a learning algorithm for a mixture of Gaussian 

and a mixture of Cauchy distributions by minimising the Kullback-Leibler divergence 

by means of the Robbins-Monro method. The density models are assumed to be 

heteroskedastic, like the NBM. The updating rules are limited to a small 

neighbourhood of the winning neuron, which has the largest posterior probability. So 

the neighbourhood function is in fact the posterior probability which is computed 

using input space coordinates, instead of the output space coordinates of the neurons 

used by the NBM, yielding different results in general.

5.6 Summary

A new learning algorithm for the naive Bayes model in order to obtain topographic 

maps has been presented. The learning algorithm is formulated under a probabilistic 

framework which enables the training of its parameters using maximum likelihood. 

Several examples were presented in order to assess the algorithms performance as
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well as comparison with well known mapping techniques. The results showed that the 

proposed method obtains good quality mapping visually and under the trustworthiness 

and continuity measures, capable of handling a good trade-off between these two 

measures. A key feature of the NBM is its natural inheritance of the naive Bayes 

characteristics (elegance, simplicity, and effectiveness) which enables a quick and 

simple implementation of this mapping technique.
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Chapter 6

CONCLUSION

In this chapter the contributions and conclusions of this thesis are listed and

suggestions for future work provided.

6.1 Contributions

The main contributions of this thesis are:

1. A new learning algorithm for the Bayesian network classifiers which incorporates 

the complexity of the network yielding structures that vary from no edges (naive 

Bayesian classifier) to n - \  edges (TAN model) where n is the number of 

features.

2. Proofs that the proposed learning algorithm minimises the cross-entropy between 

the real joint probability distribution and the approximation done by the Bayesian 

network, minimises the Bayes probability of error, and maximises the log- 

likelihood between the Bayesian network and the data.
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3. A simple network encoding system which allows the definition of the a priori 

probability of a Bayesian network.

4. A new unsupervised learning algorithm for Bayesian network classifiers, which 

includes structure and parameter learning as well as the clustering of the input 

data.

5. The formulation of CL multinets, TAN, and the proposed Bayesian network 

classifier in chapter 3 into the Classification EM algorithm framework.

6. A new learning algorithm for the naive Bayes model in order to obtain 

topographic maps.

6.2 Conclusions

In this thesis the feasibility of Bayesian networks to carry out data mining tasks such

as classification, clustering and high-dimensional data visualisation has been shown.

New learning algorithms have been presented which improve the current state of the

art of Bayesian networks in this field. The key conclusions for each topic analysed are:

• The complexity of the Bayesian network classifiers depends directly on the 

amount of data used for training. A spanning tree structure like the TAN model is 

therefore only justified when there is sufficient data. This is not a problem for the 

proposed method since it automatically regulates the number of edges depending 

on the amount of training data by means of a Bayesian monitoring system. The 

classification performance of the proposed Bayesian network classifier, compared
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to non-Bayesian classifiers using real-world problem data, was higher than that of 

the C4.5 and similar to that of a neural network.

• Testing the proposed unsupervised training method for three types of Bayesian 

network classifiers, using benchmark data sets as well as real-world data, showed 

that Bayesian network classifiers are promising models for clustering tasks, 

outperforming traditional clustering methods such as k-means and the standard 

EM algorithm. An important advantage o f Bayesian network classifiers trained in 

an unsupervised way is that the resulting structure can give additional information 

on how the features are related (probabilistic dependencies) in each cluster, 

information which the traditional methods mentioned previously do not have. The 

proposed clustering technique can help a human expert identify and explain what 

each cluster means (represents) given the network representation for each cluster.

• It was found that naive Bayes model, the simplest Bayesian network, can be 

trained to generate topographic maps. Tests carried out on several data sets 

showed that the proposed method obtains good quality mapping visually and 

under topology preserving measures when compared to traditional linear and non­

linear mapping techniques. An important advantage o f the proposed mapping 

technique is its natural inheritance of the naive Bayes characteristics: elegance, 

simplicity, and effectiveness.

Although learning Bayesian networks from data is a difficult problem, this thesis has 

focused on developing simple models, by restricting the number of parents each node 

can have, while creating algorithms which are effective and practical. The competitive
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results obtained in all the experiments carried out as well as comparisons with popular 

data mining techniques should, hopefully, encourage more people to use Bayesian 

networks for data analysis and modelling applications.

6.3 Suggestions for future research

Possible extensions that can be made to the work presented in this thesis include:

• Developing algorithms that can handle continuous features. The algorithms

described in chapters 3 and 4 consider only discrete variables. A known

continuous probability distribution could be used to compute the marginal and 

conditional probabilities when computing the joint probability distribution 

encoded by the Bayesian network.

• Developing a method of determining the correct numbers of clusters for a given

data set. The clustering algorithm using Bayesian networks presented in chapter 4

has the limitation that the user must specify beforehand the number of clusters. In 

order to obtain automatically the correct number o f clusters during the training 

process, a Bayesian approach similar to the one presented in chapter 3 (used to 

determine the number of edges) could be adapted for the purpose of determining 

the correct number of clusters.

• Using more complex models to improve the quality of the output mapping. 

Chapter 5 presents the training of the naive Bayes model for topographic map 

formation. The use of more complex models like the TAN could be explored to 

see how this affects the quality of the output mapping. Nevertheless, the results

179



should be significantly better than the naive Bayes model in order to accept a 

more complex learning algorithm than the one used for the NBM.

180



REFERENCES

Acid, S., de Campos, L. M., and Castellano, J. G. (2005). Learning Bayesian network 

classifiers: search in a space of partially directed acyclic graphs. Machine Learning, 

vol. 59, pp. 213-235.

Aitkenhead, M.J., and Aalders, I.H. (2007). Predicting land cover using GIS, 

Bayesian and evolutionary algorithm methods. Journal o f  Environmental 

Management, (Article in Press).

Alvarez, S.M., Poelstra, B.A., and Burd, R.S. (2006). Evaluation of a Bayesian 

decision network for diagnosing pyloric stenosis. Journal o f  Pediatric Surgery, vol. 

41, no. 1, pp. 155-161.

Barash, Y., and Friedman, N. (2002). Context-specific Bayesian clustering for gene 

expression data. Journal o f Computational Biology, vol. 9, pp. 169-191.

Bareither, C., and Luxhoj, J. T. (2007). Uncertainty and sensitivity analysis in 

bayesian belief networks: Applications to aviation safety risk assessment. 

International Journal o f  Industrial and Systems Engineering, vol. 2, no. 2, pp. 137- 

158.

Bezdek, J. C., and Pal, N. R. (1998). Some new indexes of cluster validity. IEEE 

Trans. System Man Cybernetics Part B, vol. 28, no. 3, pp. 301-315.

181



Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms, 

Plenum Press, New York.

Bishop, C. M., Svensen, M., and Williams, C. K. I. (1998). GTM: The generative 

topographic mapping. Neural Comput., vol. 10, pp. 215-234.

Burger, L., and Van Nimwegen, E. (2008). Accurate prediction of protein-protein 

interactions from sequence alignments using a bayesian method. Molecular Systems 

Biology, 4:165.

Celeux, G., and Govaert, G. (1995). Gaussian parsimonious clustering models. 

Pattern Recognition, vol. 28, no. 5, pp. 781-793.

Celeux G., and Govaert, G. (1992). A classification EM algorithm for clustering and 

two stochastic versions. Computational Statistics & Data Analysis, vol. 14, no. 3, pp. 

315-332.

Cerquides, J., and Lopez de Mantaras, R. (2005). TAN classifiers based on 

decomposable distributions. Machine Learning, vol. 59, pp. 323-354.

Cheah, W.P., Kim, K.-Y., Yang, H.-J., Choi, S.-Y., and Lee, H.-J. (2007). A 

manufacturing-environmental model using Bayesian belief networks for assembly 

design decision support. Lecture Notes in Computer Science, 4570 LNAI, pp. 374-383.

182



Chen, Q., Li, G., Leong, T. Y., and Heng, C. K. (2007). Predicting coronary artery 

disease with medical profile and gene polymorphisms data. Studies in Health 

Technology and Informatics, vol. 129, no. 2, pp. 1219-1224.

Chen, R.-S., and Chang, C.-C. (2007). Using Bayesian networks to build data mining 

applications for a semiconductor cleaning process. International Journal o f  Materials 

and Product Technology, vol. 30, no. 4, pp. 386-407.

Cheng, J., and Greiner, R. (1999). Comparing Bayesian network classifiers. In 

Proceedings of the 15th Conf on Uncertainty in Artificial Intelligence (UAT99), CA: 

Morgan Kaufmann, San Francisco, pp. 101-107.

Chickering, D. M., and Heckerman, D. (1997). Efficient approximations for the 

marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 

vol. 29, n. 2-3, pp. 181-212.

Chickering, D.M. (1996). Learning Bayesian networks is NP-complete. In D. Fisher 

& A. Lenz, Learning from data, Springer-Verlag.

Chow, C. K., and Liu, C. N. (1968). Approximating discrete probability distributions 

with dependence trees. IEEE Trans. Inform. Theory, vol. IT-14, pp. 462-467.

Cooper, G. F., and Herskovits, E. (1992). A Bayesian method for the induction of 

probabilistic networks from data. Machine Learning, vol. 9, pp. 309-347.

183



Cooper, G. F. (1990). The computational complexity of probabilistic inference using 

Bayesian belief networks. Artificial Intelligence, vol. 42, pp. 393-405.

Cover, T. M., and Thomas, J. A. (1991). Elements o f  Information Theory, New York: 

John Wiley & Sons.

Cowell, R. G., Verrall, R. J., and Yoon, Y. K. (2007). Modeling operational risk with 

bayesian networks. Journal o f  Risk and Insurance, vol. 74, no. 4, pp. 795-827.

Dash, D., and Cooper, G. F. (2002). Exact model averaging with naive Bayesian 

classifiers. Proc. 19th Int. Conf Machine Learning (ICML ’02), Sydney, Australia, pp.

91-98.

Dempster, A. N., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from 

incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. B , vol. 39, no. 1, pp. 1-

38.

Deng, X., Geng, H„ and Ali, H. H. (2006). Joint learning of gene functions - A 

bayesian network model approach. Journal o f Bioinformatics and Computational 

Biology, vol. 4, no. 2, pp. 217-239.

Domingos, P., and Pazzani, M. (1997). On the optimality of the simple Bayesian 

classifier under zero-one loss. Machine Learning, vol. 29, n. 2-3, pp. 103-130.

184



Dougherty, J., Kohavi, R., and Sahami, M. (1995). Supervised and unsupervised 

discretization of continuous features. Machine learning Proc. 12th Int. C o n f.Morgan 

Kaufmann Publishers, San Francisco, CA, pp. 194-200.

Duda, R. O., and Hart, P. E. (1973). Pattern Classification and Scene Analysis. NY: 

John Wiley & Sons, New York.

Estevez, P. A., Perez, C. A., and Goles, E. (2003). Genetic input selection to a neural 

classifier for defect classification of radiata pine boards. Forest Prod. J., vol. 53, pp.

87-94.

Fayyad, U. M., and Irani, K. B. (1993). Multi-interval discretization of continuous­

valued attributes for classification learning. In Proceedings of the 13th Int. Joint Conf. 

on Artificial Intelligence, CA: Morgan Kaufmann, San Francisco, pp. 1022-1027.

Friedman, J. (1997). On bias, variance, 0/1 - loss, and the curse-of dimensionality. 

Data Mining and Knowledge Discovery, vol. 1, pp. 55-77.

Friedman, N. (1998). The Bayesian structural EM algorithm. Cooper G. F., and 

Moral S., eds., Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence 

(UAI ’98), Morgan Kaufmann, San Francisco, CA, pp. 129-138.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers. 

Machine Learning, vol. 29, no. 2/3, pp. 131-163.

185



Granitto, P.M., Verdes, P.F., and Ceccatto, H.A. (2005). Large-scale investigation of 

weed seed identification by machine vision. Computers and Electronics in 

Agriculture, vol. 47, no. 1, pp. 15-24.

Grant, E. E., and Leavenworth, R. S. (1988). Statistical quality control, 6th edn., New 

York: McGraw Hill.

Greenberg, R., Cook, S. C., and Harris, D. (2005). A civil aviation safety assessment 

model using a bayesian belief network (BBN). Aeronautical Journal, vol. 109(1101), 

p p .557-568.

Grossman, D., and Domingos, P. (2004). Learning Bayesian network classifiers by 

maximizing conditional likelihood. In Proceedings of the 21st Int. Conf. on Machine 

Learning, ACM press, Banff, Canada, pp. 361-368.

Gurwicz, Y., and Lemer, B. (2006). Bayesian class-matched multinet classifier. 

SSPR/SPR, ser. Lecture Notes in Computer Science, 4109, pp. 145-153.

Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Technical 

Report MSR-TR-95-06, Microsoft Research.

Heckerman, D., Geiger, D., and Chickering, D.M. (1995). Learning Bayesian 

networks: The combination of knowledge and statistical data. Machine Learning, vol. 

20, no. 3, pp. 197-243.

186



Heilman, M. E., and Raviv, J. (1970). Probability of error, equivocation, and the 

Chemoff bound. IEEE Trans. Inform. Theory, vol. IT-16, pp. 368-372.

Hwang, K., and Zhang, B. (2005). Bayesian model averaging of Bayesian network 

classifiers over multiple node-orders: application to sparse datasets. IEEE Trans. Syst., 

Man, and Cyber. B, Cyber., vol. 35, no. 6, pp. 1302-1310.

Im, S. -B., and Cho, S. -B. (2006). Context-based scene recognition using bayesian 

networks with scale-invariant feature transform. Lecture Notes in Computer Science, 

4179 LNCS, pp. 1080-1087.

Infantes, G., Ingrand, F., and Ghallab, M. (2006). Learning behaviors models for 

robot execution control. In Proceedings o f the Sixteenth International Conference on 

Automated Planning and Scheduling (ICAPS 2006), Cumbria, UK, pp. 394-397.

Jing, Y., Pavlovic, V., and Rehg, J. M. 2005. Efficient discriminative learning of 

Bayesian network classifier via Boosted Augmented Naive Bayes. In Proceedings of 

the 22nd Int. Conf. on Machine Learning, Bonn, Germany, pp. 369-376.

John, G., and Kohavi, R. (1997). Wrappers for feature subset selection. Artificial 

Intelligence, vol. 97, pp. 273-324.

Kaski, S., Nikkila, J., Oja, M., Venna, J., Toronen, P., and Castren E. (2003). 

Trustworthiness and metrics in visualizing similarity of gene expression,” BMC

Bioinformatics, 4:48.

187



Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal o f American Statistical 

Association, vol. 90, no. 430, pp. 773-795.

Keogh, E., and Pazzani, M. J. (2002). Learning the structure of augmented Bayesian 

classifiers. International Journal on Artificial Intelligence Tools, vol. 11, no. 4, pp.

587-601.

Kleiner, A., and Sharp, B. (2000). A new algorithm for learning Bayesian classifiers 

from data. In Proceedings of the 3rd IASTED International Conference on Artificial 

Intelligence and Soft Computing (ASC'2000), Banff, Canada, pp. 191-197.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation 

and model selection. In Proceedings o f the 14th Int. Joint Conf on Artificial 

Intelligence, CA: Morgan Kaufmann, San Francisco, pp. 1137-1143.

Kohonen, T. (1995). Self-Organizing Maps, Springer- Verlag, Berlin, Germany.

Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. 

Biol. Cybern., vol. 43, pp. 59-69, 1982.

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling 

salesman problem. Proc. Am. Math. Soc., vol. 7, pp. 48-50.

188



Lam, W., and Bacchus, F. (1994). Learning Bayesian belief networks. An approach 

based on the MDL principle. Computational Intelligence, vol. 10, pp. 269-293.

Langley, P., and Sage, S. (1994). Induction of selective Bayesian classifiers. In 

Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, R. 

Lopez de Mantaras and D. Poole Eds., CA: Morgan Kaufmann, San Francisco, , pp. 

399-406.

Langley, P., Iba, W., and Thompson, K. (1992). An analysis of Bayesian classifiers. 

In Proceedings of the Tenth National C onf on Artificial Intelligence (AAAV92), 

Menlo Park, CA, pp. 223-228.

Lazkano, E., Sierra, B., Astigarraga, A., and Martinez-Otzeta, J. M. (2007). On the 

use of bayesian networks to develop behaviours for mobile robots. Robotics and 

Autonomous Systems, vol. 55, no. 3, pp. 253-265.

Li, J., and Shi, J. (2007). Knowledge discovery from observational data for process 

control using causal Bayesian networks. HE Transactions, vol. 39, no. 6, pp. 681-690.

Lu, J., Bai, C., and Zhang, G. (2007). E-service cost benefit evaluation and analysis. 

Studies in Computational Intelligence, vol. 37, pp. 389-409.

Lucas, P. J. F., van der Gaag, L. C., and Abu-Hanna, A. (2004). Bayesian networks in 

biomedicine and health-care. Artif IntellM ed, vol. 30, no. 3, pp. 201-214.

189



Luo, F., Chen, X., and Gu, B. (2005). Formation mechanism analysis of aviation 

calamity based on bayesian network. Beijing Hangkong Hangtian Daxue 

Xuebao/Journal o f  Beijing University o f  Aeronautics and Astronautics, vol. 31, no. 8, 

pp. 934-938.

Ma, J., and Dai, Q. (2005). Migratory Locust Hazard monitoring and prediction using 

the Bayesian network inference. In Proceedings of the International Geoscience and 

Remote Sensing Symposium (IGARSS’05), vol. 5, pp. 3623-3626.

Mac Kay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms, 

Cambridge University Press, UK.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate 

observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical 

Statistics and Probability, University o f California Press, Berkeley, 1, pp. 281-297.

Mani, S., Valtorta, M., and McDermott, S. (2005). Building Bayesian network models 

in medicine: The MENTOR experience. Applied Intelligence, vol. 22, no. 2, pp. 93- 

108.

Meila, M., and Jaakkola, T. (2000). Tractable Bayesian learning of tree belief 

networks. In Proceedings of the 16th C onf on Uncertainty in Artificial Intelligence, 

CA: Morgan Kaufmann, San Francisco, pp. 380-388.

190



Meila, M., and Jordan, M. I. (2000). Learning with mixtures of trees. Journal o f  

Machine Learning Research, vol. 1, pp. 1-48.

Meila, M., and Heckerman, D. (1998). An Experimental Comparison of Several 

Clustering and Initialization Methods. Microsoft Research Tech. Rep. MSR-TR-98-06.

McMahon, S. M. (2005). Quantifying the community: Using bayesian learning 

networks to find structure and conduct inference in invasions biology. Biological 

Invasions, vol. 7, no. 5, pp. 833-844.

Monti, S., and Cooper, G. (1999). A Bayesian network classifier that combines a 

finite mixture model and a naive-Bayes model. In Proceedings of the 15th Conf on 

Uncertainty in Artificial Intelligence (UAI'99), CA: Morgan Kaufmann, San 

Francisco, pp. 447-456.

Mukhopadhyay, A., Chatteijee, S., Saha, D., Mahanti, A., and Sadhukhan, S. K. 

(2006). E-risk management with insurance: A framework using copula aided bayesian 

belief networks. HICSS '06. Proceedings o f the 39th Annual Hawaii International 

Conference on System Sciences, Hawaii, USA, pp. 126a.

Murphy, P. M., and Aha, D. W. UCI repository of machine learning databases.

191



Needham, C. J., Bradford, J. R., Bulpitt, A. J., Care, M. A., and Westhead, D. R. 

(2006). Predicting the effect of missense mutations on protein function: Analysis with 

bayesian networks. BMC Bioinformatics, 7:405.

Neil, M., Fenton, N., and Tailor, M. (2005). Using bayesian networks to model 

expected and unexpected operational losses. Risk Analysis, vol. 25, no. 4, pp. 963-972.

Neapolitan, R. E. (2004). Learning Bayesian Networks. NJ: Pearson Prentice Hall, 

Upper Saddle River.

Nikolajewa, S., Pudimat, R., Hiller, M., Platzer, M., and Backofen, R. (2007). 

BioBayesNet: A web server for feature extraction and bayesian network modeling of 

biological sequence data. Nucleic Acids Research, vol. 35, no. suppl_2, pp. W688- 

W693.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks o f  Plausible 

Inference, CA: Morgan Kaufmann, San Francisco.

Pena, J. M., Lozano J. M., and Larranaga P. (2004). Unsupervised learning of 

Bayesian networks via estimation of distribution algorithms: an application to gene 

expression data clustering. International Journal o f  Uncertainty, Fuzziness and 

Knowledge-Based Systems, vol. 12(Supplement-l), pp. 63-82.

192



Pena, J. M., Lozano J. M., and Larranaga P. (2000). An improved Bayesian structural 

EM algorithm for learning Bayesian networks for clustering. Pattern Recognition 

Letters, vol. 21, no. 8, pp. 779-786.

Pena, J. M., Lozano J. M., and Larranaga P. (1999). Learning Bayesian networks for 

clustering by means of constructive induction. Pattern Recognition Letters, vol. 20, 

n o .11-13, pp.1219-1230.

Perzyk, M., Biemacki, R., and Kochanski, A. (2005). Modeling of manufacturing 

processes by learning systems: The naive Bayesian classifier versus artificial neural 

networks. Journal o f Materials Processing Technology, vol. 164-165, pp. 1430-1435.

Pham, D. T., and Alcock R. J. (2003). Smart Inspection Systems, Academic Press, 

London.

Pham, D. T., and Oztemel, E. (1992). Control chart pattern recognition using neural 

networks. J. Sys. Eng., vol. 2, pp. 256-262.

Pudimat, R., Schukat-Talamazzini, E. -G., and Backofen, R. (2005). A multiple- 

feature framework for modelling and predicting transcription factor binding sites. 

Bioinformatics, vol. 21, no. 14, pp. 3082-3088.

Quinlan, J. R. (1993). C4.5: Programs fo r  Machine Learning, CA: Morgan

Kaufmann, San Francisco.

193



Rissanen, J. (1978). Modeling by shortest data description. Automatica, vol. 14, pp. 

465-471.

Roberts, S. J., Everson, R., and Rezek I. (2000). Maximum Certainty Data 

Partitioning. Pattern Recognition, vol. 33, no. 5, pp. 833-839.

Robbins, H., and Monro, S. (1951). A stochastic approximation method. Ann. Math. 

Statist., vol. 22, pp. 400-407.

Rodin, A. S., and Boerwinkle, E. (2005). Mining genetic epidemiology data with 

bayesian networks I: Bayesian networks and example application (plasma apoE 

levels). Bioinformatics, vol. 21, no. 15, pp. 3273-3278.

Ruz, G. A., Estevez, P. A., and Ramirez, P. A. (2007). Automated visual inspection 

system for wood defect classification using computational intelligence techniques. 

International Journal o f Systems Science (accepted for publication).

Ruz, G. A., Estevez, P. A., and Perez, C. A. (2005). A neurofuzzy color image 

segmentation method for wood surface defect detection. Forest Prod. J., vol. 55, pp.

52-58.

Santafe G., Lozano, J. A., and Larranaga, P. (2006a). Bayesian model averaging of 

naive Bayes for clustering. IEEE Transactions on Systems, Man, and Cybernetics- 

Part B, vol. 36, no. 5, pp. 1149-1161.

194



Santafe G., Lozano, J. A., and Larranaga, P. (2006b). Bayesian model averaging of 

TAN models for clustering. European Workshop on Probabilistic Graphical Models 

(PGM 2006), Prague, Czech Republic, pp. 271-278.

Shi, H., and Huang, H. (2002). Learning tree-augmented naive Bayesian networks by 

reduced space requirements, in Proceedings of the First Int. Conf. on Machine 

Learning and Cybernetics, Beijing, pp. 1232-1236.

Suebnukam, S., and Haddawy, P. (2006). A Bayesian approach to generating tutorial 

hints in a collaborative medical problem-based learning system. Artificial Intelligence 

in Medicine, vol. 38, no. 1, pp. 5-24.

Sun, L., and Shenoy, P. P. (2007). Using bayesian networks for bankruptcy prediction: 

Some methodological issues. European Journal o f  Operational Research, vol. 180, no. 

2, pp. 738-753.

Tittcrington, D.M. (1984). Recursive parameter estimation using incomplete data. J. 

Royal Statistical Soc., Series B (Methodological), vol. 2, no. 46, pp. 257-267.

Ueda, N., and Nakano, R. (1998). Deterministic annealing EM algorithm. Neural 

Networks, vol. 11, pp.271-282.

Van Hulle, M. M. (2002). Joint entropy maximization in kernel-based topographic 

maps. Neural Computat., vol. 14, no. 8, pp. 1887-1906.

195



Vcnna, J., and Kaski, S. (2006). Local multidimensional scaling. Neural Networks, 

vol. 19, pp. 889-899.

Venna, J., and Kaski, S. (2005). Local multidimensional scaling with controlled 

tradeoff between trustworthiness and continuity. In Proceedings of WSOM’05, 5th 

Workshop On Self-Organizing Maps, Paris, France, pp. 695-702.

Venna, J., and Kaski, S. (2001). Neighborhood preservation in nonlinear projection 

methods: An experimental study, in Proceedings of ICANN 2001, G. Dorffher, H. 

Bischof, and K. Homik, Eds., Berlin, Germany, pp. 485-491.

Verduijn, M., Peek, N., Rosseel, P.M.J., de Jonge, E., and de Mol, B.A.J.M. (2007). 

Prognostic Bayesian networks. I: Rationale, learning procedure, and clinical use. 

Journal o f Biomedical Informatics, vol. 40, no. 6, pp. 609-618.

Visscher, S., Lucas, P., Bonten, M., and Schurink, K. Improving the therapeutic 

performance of a medical Bayesian network using noisy threshold models. (2005). 

Lecture Notes in Computer Science, 3745 LNBI, pp. 161-172.

Wang, H., and Wang, J. (2006). A quantitative diagnostic method based on Bayesian 

networks in traditional Chinese medicine. Lecture Notes in Computer Science, 4234 

LNCS-III, pp. 176-183.

196



Wang, H., and Zong, X. (2006). A new computerized method for tongue classification. 

In Proceedings - ISDA 2006: Sixth International Conference on Intelligent Systems 

Design and Applications, Jinan, Shandong, China, vol. 2, pp. 508-511.

Wang, X. R., and Ramos, F. T. (2005). Applying structural em in autonomous 

planetary exploration missions using hyperspectral image spectroscopy. In 

Proceedings of the 2005 IEEE International Conference on Robotics and Automation 

(ICRA 2005), Barcelona, Spain, pp. 4284-4289.

Weber, P., and Jouffe, L. (2006). Complex system reliability modelling with Dynamic 

Object Oriented Bayesian Networks (DOOBN). Reliability Engineering and System 

Safety, vol. 91, no. 2, pp. 149-162.

Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J., 

Ng, A., Liu, B., Yu, P. S., Zhou, Z., Steinbach, M., Hand, D. J., and Steinberg D. 

(2008). Top 10 algorithms in data mining. KnowlInfSyst, vol. 14, pp. 1-37.

Yin, H., and Allinson, N. M. (2001). Self-organizing mixture networks for probability 

density estimation. IEEE Trans. Neural Networks, vol. 12, pp. 405—411.

Yuan, Y„ Guo, L., Shen, L., and Liu, J. S. (2007). Predicting gene expression from 

sequence: A reexamination. PLoS computational biology, e243, vol. 3, no. 11, pp. 

2391-2397.

197



Zhu, W.-F., Yan, J.-F., and Huang, B.-Q. (2006). Application of Bayesian network in 

syndrome differentiation system of traditional Chinese medicine. Journal o f  Chinese 

Integrative Medicine, vol. 4, no. 6, pp. 567-571.

Zou, F., Li, C., Hu, X., and Zhou, C. (2007). Combination of principal component 

analysis and Bayesian network and its application on syndrome classification for 

chronic gastritis in traditional Chinese medicine. Proceedings of the Third 

International Conference on Natural Computation, ICNC 2007, Haikou, China, pp.

588-592.

198


