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Summary

dsPIC Technology employs a powerful 16-bit architecture into single-chip devices that 

seamlessly integrate the diverse attributes o f a microcontroller with the computation 

and throughput capabilities o f a digital signal processor in a single core. The key 

element of this dissertation is to explore how dsPIC has influenced the applicability o f 

research in e-Monitoring systems. At the same time dsPIC has offered the opportunity 

to develop methodologies which were previously not even considered. The dsPIC 

devices are used, in this research, for front end data acquisition, signal processing and 

communication tools within a proposed monitoring architecture.

In this work, novel digital signal processing (DSP) techniques are developed for the 

monitoring o f an example application, namely the challenging one o f tool breakage in 

milling operations. The monitoring regime is implemented on the dsPIC and its 

capabilities for real-time frequency analysis; using overlap FFT and Multiband IIR 

Filters with dynamic coefficient selection techniques is explored. The developed 

systems are tested for various cutting conditions using existing machine tool signals 

and tool breakage is detected reliably in real-time.

In attempting to enhance the accuracy o f tool monitoring it is evident that the depth o f 

cut (DOC) is an important parameter and achieving its on-line monitoring provides 

valuable information for condition monitoring. A systematic approach is adopted for 

the analysis and selection o f ultrasonic sensors for distance measurement. A DOC 

monitoring system is developed using the dsPIC as the data acquisition and processing 

core. To achieve reliable results, various DSP algorithms are developed, implemented 

and verified for their effectiveness.

The system integration stage combines the above elements for robust and reliable 

decision making and provides communication o f the generated information to support 

management function using the internet and GSM connectivity. This integration 

enables an enhanced process management system which is capable o f identifying all 

significant events, for offline analysis and subsequent diagnosis in addition to the real 

time diagnostic mode.
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Chapter 1 

Introduction

The manufacturing industry has become highly competitive due to technological 

growth and companies strive for speed, precision, low cost, and quality. To achieve 

these goals, components must be produced reliably, precisely, and quickly, with little or 

no waste and downtime. Manufacturers have to improve the plant machinery or process 

to stay competitive in the global market. They need to identify and remove defective 

parts as early in the process as possible and have to avoid introducing new errors in 

order to improve their process/plant productivity and performance. A machine tool 

monitoring and management systems can perform a vital diagnostic role in these tasks 

and help companies remain competitive in the market.

An embedded m onitoring system is a monitoring system based on an embedded system 

which is essentially a special-purpose computer system designed to perform one or a 

few dedicated functions, often with real-time constraints. Embedded systems can make 

automated processes more efficient reliable and cost effective by providing close 

integration, fast response and compact size.

Process and condition monitoring is one o f the key elements for improved productivity. 

In this context e-Monitoring concentrates on the real-time monitoring o f industrial 

machines and processes using automated methods. The principle approach is to detect 

problems in the early stages when remedial measures are easy to undertake and are cost 

effective. A tool condition monitoring system (TCMS) monitors the operation o f a 

machine tool so that any deviation from nominal operating conditions can be identified 

and appropriate correction procedures can be instituted. This capability enables the 

production o f precision, quality, and consistent parts.

The technological breakthrough in embedded technology made in recent years has 

marked the development o f solutions which have seamlessly combined the features o f
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two contrasting devices such as a microcontroller and a digital signal processor into a 

single core. Traditionally a microcontroller based system lacked the sophisticated signal 

processing features and a DSP based system did not have integrated peripherals and 

communication interfaces.

Digital signal processing (DSP) is one o f  the most powerful technologies that have 

shaped science and engineering fields. The application o f DSP involves developing and 

implementing specialized techniques for a particular area o f interest. DSP algorithms 

can be powerful tools that provide algorithmic solutions to different monitoring 

problems such as the signal analysis o f  machine tool signals for tool health monitoring. 

For example, digital filters provide several benefits over their analog counterparts. 

These algorithms were traditionally implemented using PCs, dedicated digital signal 

processing (DSP) chips or field programmable grid arrays (PGAs). While these 

solutions are very efficient for their purpose, they only perform one function in the 

system and can be both expensive and large. An alternative solution is to utilize dsPIC 

microcontrollers to implement DSP algorithms in less space and at lower cost.

The research presented in this thesis aims at exploring the feasibility o f using dsPIC 

devices in monitoring systems, by researching and implementing techniques (especially 

signal processing algorithms) which can be effectively deployed and used for real-time 

monitoring tasks. It goes on to explore the use o f dsPIC devices for improved data 

analysis with the effective transfer o f data using CAN bus communication and Ethernet, 

and Internet and mobile communication to present the information to concerned users 

in real-time. The dsPIC devices have been used in this work to their best potential in 

order to achieve all o f these features in the developed monitoring system. The thesis is 

organized into the following chapters.

Chapter 2 discusses the major motivations behind this research. The importance o f 

digital signal processing for e-Monitoring is identified along with the needs and 

demands o f modem manufacturing industry and a holistic view about the requirements 

and role o f e-Monitoring systems for such applications is presented. The present 

implementation o f the tool condition monitoring techniques is described with a focus 

on the scarcity o f embedded system and limited capabilities o f microcontroller based 

implementations. This narrows down to the requirement o f signal processing method
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implementations at the microcontroller level for achieving an effective Tool Condition 

Monitoring System (TCMS) to provide a tocus on the main objectives o f this research.

A literature review is provided in Chapter 3, encompassing tool condition monitoring 

techniques, methods and systems researched in the past and the capabilities o f some 

commercial tool condition monitoring systems. The review addresses different aspects 

of the researched system in terms o f  sensing methods, data acquisition, signal 

processing and data analysis including decision making. The influence and significance 

of depth o f cut (DOC) information in m illing operations is analysed. It further explores 

the hardware platforms used for implementation o f the techniques focusing on 

embedded and Information Technology (IT) enabled systems. It explores the merits and 

demerits o f different systems with a view to finding their best possible utilization.

Chapter 4 describes the capabilities and features o f the dsPIC technology proposed for 

the e-Monitoring system while describing the tiered system architecture and its 

operation. It starts with a discussion on the requirements o f monitoring systems and the 

basis o f the technology selection. The dsPIC30F6014 microcontroller is explained in 

detail by describing its enabling features utilized for the realization o f required 

functions at different tiers such as data acquisition, signal processing and CAN and 

Ethernet communication along with the development tools and libraries utilized in the 

research. It also explains the operation o f various modules designed to achieve such 

functions and addresses data compression techniques used to handle raw data transfer 

between different tiers and GSM connectivity for SMS communication to mobile 

devices.

Next two chapters describe novel signal processing techniques developed for on-line 

cutting tool breakage detection in real-time. These demonstrate the signal processing 

capabilities o f dsPIC microcontrollers. The two alternative ways o f achieving the 

monitoring system are investigated. These arc Multiband Infinite Impulse Response 

(HR) Filtering and the Overlap Fast Fourier Transform (Overlap FFT). The HR Filter 

technique was developed and tested first because it was a progression on PIC based 

work which utilized a hardware based analogue filter for the filtering of each frequency 

component. The Overlap FFT technique utilizes more of the signal processing 

capabilities o f dsPIC and provides real-time frequency analysis. For convenience,
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because the frequency spectrum has to be considered first for better understating o f  

milling cutting forces, the Overlap FFT is presented before the HR Filter technique. It is 

worth noting that for both techniques the spindle load has been used as source o f 

information thus eliminating the need for any additional sensors.

Accordingly, Chapter 5 explains the novel Overlap FFT technique for real-time 

frequency analysis o f machine tool signals. The basis o f tool breakage detection 

utilizing frequency analysis is discussed with a developed cutting force model. 

Essential background and theory is provided for the understanding o f the technique. 

The chapter includes the description o f designed hardware as well as software used in 

the implementation o f the technique. The selection o f different parameters is presented 

logically along with experimental results. Tool monitoring simulation results confirm 

the effectiveness o f the technique with intelligently chosen parameters. The real-time 

results o f different tests are presented and analysed to extract distinguishing features for 

the decision making process. The effectiveness o f the supporting hardware technology 

in terms o f system requirements is analysed and discussed along with the achieved tool 

breakage detection speed and the computational capabilities o f system for additional 

signal processing algorithms.

Chapter 6 describes the novel Multiband HR filtering and dynamic coefficient selection 

technique for monitoring applications that require simultaneous multiple frequency 

estimation, such as tool health monitoring. It describes the design, practical 

implementation and real-time results o f a dsPIC based system utilizing this technique. 

The supporting hardware and software are discussed in detail. It also discusses a time 

domain analysis technique called Tool Rotation Energy Variation (TREV). Both 

techniques (HR Filtering and TREV) are combined to detect and confirm tool breakage 

and are compared in terms o f their efficiency and robustness.

Depth o f Cut (DOC) information is very critical in the milling process monitoring. It 

affects the signals related to tool health. Chapter 7 presents a monitoring system to 

measure the DOC using ultrasonic sensors and considers the possible advantages of on­

line DOC measurement. It discusses the supporting hardware and software for the 

system design and implementation. The analysis and selection of ultrasonic sensors is 

presented with comprehensive test results. The developed and deployed signal
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processing algorithms (Moving Average, Block Average, Sensor Data Synchronization 

and Spike Detection & Removal) are also presented. The on-line DOC measurement 

tests are presented along with the effects o f  sw arf and system’s ability to measure the 

DOC reliably under these conditions.

Chapter 8 presents a structure o f the integrated system as an effective and complete 

e-Monitoring solution enabling a process monitoring system. It also presents the design 

and implementation o f additional features in the system including Ethernet and Internet 

Connectivity. It also discusses the system ’s ability to reliably detect tool health using 

commonly occurring events during the milling process and discusses a process 

management strategy enabled by the research provided in the thesis.

Chapter 9 presents the important conclusions drawn from this research. These 

conclusions are based on the results obtained from the implementation o f the digital 

signal processing techniques on the designed hardware with supporting software. It also 

presents the main contributions o f  this research work and identifies the needs for the 

future work emerging from the findings o f this research.

The suitability and capability o f  the dsPIC technology for the e-Monitoring Systems 

has been investigated thoroughly and been shown to be appropriate for such 

applications. The research has been focused on the areas where the potential o f dsPIC 

technology can be exploited to achieve a cost effective, robust, efficient and reliable 

TCMS. However the complexity o f the problem does not allow the resolution o f all the 

relevant issues. Therefore this research is presented as a contribution to the overall area 

of e-Monitoring and embedded signal processing systems. The keywords “author” and 

“researcher” have been used to refer to the writer o f this thesis.
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Chapter 2 

Research Motivation

The importance o f monitoring systems for industrial machines and processes cannot be 

over emphasized. The efficient and cost effective implementation o f such systems not 

only helps in achieving process reliability but also improves the product quality and 

system productivity and availability which are directly linked to failure rate, failure 

detection time and associated repair times. Minimizing these factors through an 

effective monitoring and maintenance strategy can reduce machine down times and 

production losses and thus improve the overall equipment effectiveness (OEE). OEE is 

the product o f system availability (dependent on down time losses), performance 

(dependent on process health) and quality rate (dependent on tool health). These factors 

are interlinked and if  a tooling failure goes undetected due to the absence o f an 

effective monitoring system, it will not only decrease the product quality but also 

require additional set up costs once detected and rectified.

An effective on-line monitoring system can also support un-manned operations that can 

enable the machines to be operated round the clock. This may be used to improve the 

total effective equipment productivity (TEEP), which is the product o f machine loading 

and OEE. Where OEE measures effectiveness based on the scheduled hours, TEEP 

measures effectiveness against calendar hours. A monitoring system can increase the 

effective productivity o f the system through increased operating times and reduce the 

cost by providing un-manned maching capabilities.

The tool condition monitoring system designed for the monitoring o f tool breakage and 

associated faults requires sophisticated digital signal processing techniques. The 

complex nature o f the milling operation and involved dynamics require that the 

identified signal be processed with advanced algorithms such as frequency domain 

analysis. Researchers have proposed complex signal processing algorithms and have 

deployed them on PCs. Very few implementations have utilized embedded technology.
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Microcontrollers provide flexible solutions combining analog and digital components 

into one chip. Interrupt driven architectures make them more suitable for monitoring 

applications where sensing modules can work independently and generate an interrupt 

when they need the CPU’s attention. In this way software is simplified and the system 

becomes efficient. The Intelligent Process M onitoring and Management (IPMM) group 

at Cardiff University has used 8-bit PIC microcontroller for monitoring applications 

and have identified their limitation in terms o f  processing speed, limited memory, 

insufficient hardware support to run signal processing algorithms and limited ADC 

resolution.

The dsPIC microcontrollers can provide enhanced processing power and greater 

integration as compared to their predecessors. They not only provide higher throughput 

(while operating at lower clock speeds) but also provide the DSP capabilities in 

microcontroller architecture. In undertaking this research it was determined that these 

devices had the potential to not only replace the 8-bit PIC microcontroller but also 

provide the DSP functionality which was previously achievable with PCs only. This 

was one o f the major motivations behind this research activity. This will harness the 

microcontroller based embedded monitoring system with the computing power o f  an 

advanced DSP processor or a PC. Another motivational factor was that although 

previous IPMM work has been undertaken on microcontrollers but none had been 

undertaken using dsPIC.

Previous experience indicates that manufacturing industry is only willing to invest in 

monitoring systems when they provide low cost to benefit ratios. There has been a vast 

amount o f research in TCMS area but very little practical, reliable and low cost 

monitoring systems have been realized. Most TCMS utilize expensive sensors such as 

dynamometers which not only increase the cost but also restrict the working area and 

hinder machine capabilities. Al-Habaibeh and Gindy [2.1] has suggested that to get 

sufficiently reliable results, the cost factor may be as high as £19,900, which is almost 

half of the price o f a normal machine tool used in SMEs. This factor has limited the 

utilization of TCMS in industry. Therefore for a cost effective system the design and 

management costs need to be minimized. The improvement o f cost effectiveness thus 

provided another motivation behind this research. The dsPIC technology provides 

features which provide low-cost system development with free software development
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tools, integrated features such as high speed, high resolution, and multi channel Analog 

to Digital Converter (ADC) and CAN and other communication interfaces.

Real-time and reliable tool breakage detection with a minimum number o f  false alarms 

is an important factor in automated machining. The generation o f false alarm will 

reduce the machine tool’s availability whereas an undetected fault or delayed detection 

will reduce the product quality and affect the performance rate. Therefore a highly 

reliable and real-time monitoring system is essential for improving the OEE and TEEP 

of manufacturing systems. Similarly flexibility o f the monitoring system is another 

important design criterion if  the system is to succeed in the competitive industrial 

world. It is vital that the system can respond to potential internal or external changes 

affecting its value delivery, in a timely and cost-effective manner. This normally refers 

to the ability o f the system to be used for different conditions especially different 

applications with changed parameters. To meet these needs any system should have the 

capability to deal with different signals in different scenarios thus providing more 

flexibility. To achieve this flexibility, the research is focused on engineering a reliable 

monitoring system that does not require any hardware infrastructure changes for this 

purpose.

There has been a vast amount o f research activity in estimating tool life and tool wear. 

Cutting speed and feedrate can be estimated by monitoring the signals related to spindle 

and axis drive systems respectively. At the moment no viable system has been reported 

where automated depth o f cut (DOC) monitoring or measurement is supported. 

Researchers monitoring, predicting or modeling tool conditions are assuming that the 

DOC will be constant through out the tool life cycle. The DOC measurement has been 

attempted as a challenge and has been another motivation for this research activity.

To exploit the integration capabilities provided by the embedded devices distributed 

system architecture is considered in this research. Utilizing distributed concepts the 

monitoring tasks are assigned to different nodes in an intelligent way so that each node 

is responsible for monitoring a certain aspect o f the system. The information between 

the nodes is shared through message passing and decisions from the nodes are 

integrated to produce a final decision. Thus a distributed, integrated embedded system 

design using dsPIC microcontroller has remained an important motivational factor



behind this research. This not only combines the processing power o f embedded 

devices but also enables the system as a whole to accomplish tasks beyond the 

individual cumulative processing capabilities o f these devices.

Embedded devices are getting increasingly connected and are more and more involved 

in network communications. These devices are now able to communicate using the 

network/internet protocols that were previously used by PCs. Internet connectivity is 

widely available and its use is popular with technical as well as non-technical people. It 

provides an easy method o f communication resulting in remote data access. Mobiles 

have become a basic necessity o f  modem life and are considered as the most effective 

way o f voice and data communication. The timely communication o f the data to the 

users is a primary requirement o f an effective TCMS. The data communication and its 

presentation in an accurate and desired format were addressed and the dsPIC 

technology was utilized for this purpose. The designed monitoring system is capable o f  

analyzing the data locally or transferring it to higher tier for further analysis. The final 

results are presented to the user via the WebPages and urgent information is sent as 

Text Message via GSM connectivity.
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Chapter 3 

Literature Review

3.1. Introduction

The main objective o f this research was to explore the feasibility o f using dsPIC 

devices in monitoring systems, by researching and implementing those techniques 

(especially signal processing algorithms) which can be effectively deployed and used 

for real-time monitoring tasks. The selected test-bed application was the condition 

monitoring o f a Kondia B500 milling machine. This chapter is therefore not intended to 

provide an exhaustive review o f cutting tool breakage detection and Tool Condition 

Monitoring Systems (TCMS). There has been a vast amount research published on tool 

breakage detection. This review does however present the most relevant and recent 

work in the field in order to highlight the complexity and challenges o f the application 

area. The review covers the broader aspects o f the researched techniques, since they can 

be used for monitoring o f  machines/processes other than machine tools. With the pace 

and extent o f technological advancements, the computing platfonns, used in the past, 

rapidly become obsolete as much faster equivalents become available. Therefore this 

review is concentrated on techniques which are deployed on modem platfonns such as 

the dsPIC microcontrollers.

Section 3.2 details general monitoring techniques, with emphasis on the approaches 

adopted by the IPMM group. An overview o f cutting tool condition monitoring system 

is provided in Section 3.3. A discussion o f sensing methods and sensor-less or m ulti­

sensor options is also provided along with a review o f the capabilities o f some 

commercial tool condition monitoring systems. Section 3.4 reviews signal processing 

and analysis techniques commonly used by researches for tool breakage detection along 

with final decision making techniques. Section 3.5 highlights the significance o f depth 

of cut (DOC) information in milling operations. Tool condition monitoring systems
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specifically utilising embedded technology are discussed in Section 3.6 and IT-enabled 

systems are reviewed in Section 3.7.

3.2 M onitoring Systems

Process and condition monitoring are useful tools for cost reduction and efficiency 

improvement in a competitive industrial world. One o f the major elements affecting the 

efficiency o f equipment is unnecessary downtime which can potentially be avoided if  

the process is monitored in real-time. The primary purpose o f such monitoring is to 

detect the potential problems in the system, by monitoring the process information 

generated by different components o f the system, at an early stage when remedial 

measures are more easily and effectively made. In its most complete form, continuous 

condition monitoring can provide process health information on-line and in real-time.

The term “ e-M onitoring”  was used by the Intelligent Process Monitoring and 

Management (IPMM) centre at C ardiff university, to identify an integrated approach to 

data capture and analysis, decision making and management reporting based upon a 

distributed set o f embedded devices. The approach locates decision making capabilities 

close to the source o f  the data being considered whilst providing enhanced, real-time 

access to the information generated. The evolution o f such systems within the IPMM 

centre was reported by Frankowiak et al. [3.1]. The current research reported in this 

thesis is aimed at meeting the specification for cost-effective yet powerful monitoring 

systems. The approaches to securing and managing the data and information generated 

by such systems within IPMM research has been previously reported by Prickett et al.

[3.2].

The IPMM group has been carrying out condition monitoring research for over 20 

years. Originally the research concentrated on machine tool applications, used heavily 

sensor-based techniques, using PC platforms and interfaces, and with large companies 

such as BAE and Holroyd. For example, Data for use by the modeling, expert system 

and maintenance partners in a European project was collected for a prolonged period 

from three industrial installations, all in Germany or Switzerland. The technology, at 

the time, required a once per week backup o f files onto a tape drive, and for the remote 

hosts to post (snail mail) the tapes back to the centre in Cardiff. In order to make use of
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low-cost microcontrollers, IPMM researchers undertook a project aimed at Small to 

Medium Enterprises (SMEs) in south Wales. In this project distributed, 

microcontroller-based systems became the main area o f research. There has been an 

accompanying diversification o f application areas. The machine tool work continues, 

but with PLC controlled systems, process and environmental/ energy systems added to 

the range o f monitoring applications.

With the associated logistics and maintenance issues with sensor-based systems, there 

was a gradual shift towards sensor-less monitoring approach within the IPMM centre. 

A lot o f research was concentrated in using the exiting controller signals for monitoring 

purposes. Prickett and Grosvenor [3.3] have reported the non-sensor based approach to 

machine tool and cutting process monitoring. They suggested that a monitoring system 

should be developed using the existing information, currently generated and used by the 

machine controller to monitor the cutting process.

Additional knowledge about process parameters may be invaluable for monitoring but 

extra sensors would be required for that. Companies generally tend to avoid this 

because o f the additional cost and installation issues. Grosvenor and Prickett [3.4] 

evaluated this situation on the basis o f experiences learnt from various machine tool 

monitoring projects and established that it may now be timely to incorporate more 

sensor inputs into the distributed monitoring systems. Several possible monitoring 

applications were identified where this approach would be beneficial.

Whilst meeting the expectations o f using industrial network standards to support the 

successful operation and deployment o f DSP based fault detection as identified by 

Dassanayake et al. [3.5], the IPMM approach is aimed at perfonning particularly 

challenging monitoring tasks that need to be supported by diagnostic capabilities that 

can deliver instantaneous results. In such situations microcontrollers can act as smart 

sensor systems to play a vital role in real time data acquisition and analysis. The results 

can be used to report failures, generate alarms when required and provide summative 

management information with regard to the action o f the process or machine being 

monitored. Such systems must be able to communicate to the outside world, using all 

available mechanisms, including sending messages on mobiles telephones if required.
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The concept o f using a “ smart sensor”  within a distributed data acquisition 

architecture was proposed by Ehrlich [3.6]. The generic model produced was based 

upon a “ smart sensor”  which was defined as a micro-system associated with an 

individual or group o f transducers and capable o f signal conditioning, sampling, 

calculation and communication. An early example o f the efficacy o f this type o f 

approach can be found in the work o f Baccigalupi et al. [3.7]. In this smart sensor area 

a number o f research activities are being reported, including the milling process related 

work o f Back et al. [3.8]. Building effective monitoring systems based upon these 

devices also needs the careful consideration o f the supporting communication 

infrastructure.

3.3 Tool Condition M onitoring

Milling is one o f the most common and important metal cutting processes. A typical 

milling machine consists o f a motor driven spindle, which holds and revolves the 

milling cutter, and a reciprocating adjustable worktable, which mounts and feeds the 

workpiece. These are almost always subject to computer control, with perhaps a 

supervisory role being played by a human operative. This leads to several operational 

problems, one o f which is the potential for a cutting tool breakage to go undetected. 

The dangers o f continuing to utilize a broken cutter range from damage to the 

workpiece through to potential damage o f the machine tool. For this reason there has 

been a great deal o f effort deployed aimed at detecting tool breakage. This is not 

however a simple problem, there are many modes o f possible tool failure, from minor 

to catastrophic, and the response o f the system to each mode may be further 

conditioned by the nature o f  the task being undertaken.

Tool breakage can be classified as shank breakage and tooth breakage. Shank breakage 

is failure o f the cutter across its entire cross-section. It is readily evident and detectable 

from spindle load measurements, since the load suddenly rises and then drops to an idle 

load level following the shank breakage. However, tooth breakage, which is failure o f a 

portion o f the cutting edge, may go undetected for a certain period. In this case the load 

will increase, which may lead to additional tooth fractures and potentially and 

ultimately to shank breakage. It also degrades the surface finish o f the workpiece [3.9].
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In this research tool breakage will refer to tooth breakage and shank breakage is not 

considered.

San [3.10] has defined a tool condition monitoring system (TCMS) as “essentially an 

information flow and processing system in which the information source selection and 

acquisition (sensors and data collection), information processing and refinement (signal 

processing and feature extraction), and decision-making based on the refined 

information (condition identification) are integrated.” Any comprehensive TCMS can 

be sub-divided into three major activities as shown in Figure 3.1. These cover: signal 

retrieval and data acquisition, signal processing and analysis (feature extraction) and 

final decision making and classification.

..... 3
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Data
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Process
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M achine Tool

Figure 3.1: Generic representation o f a TCMS

TCMS deployed to support these activities are generally based on one o f two main 

techniques: direct monitoring or indirect monitoring [3.11]. The direct monitoring 

techniques deal with the actual direct sensing o f the health o f the tool. Examples o f 

these include the use o f optical sensors, proximity sensors and touch trigger probes etc. 

The major practical problem with direct sensing is that since the cutting area is 

normally inaccessible during cutting, the development o f on-line TCMS is not practical. 

These techniques (as will be discussed in section 3.3.1) normally require the tool to be 

brought to reference position away from the cutting area. These systems provide in- 

process measurements when the tool is not cutting by waiting for the current cutting 

cycle to be completed and for the tool to be positioned at predefined location which 

means that tool breakage detection is deferred until cycle completion.

Indirect monitoring techniques rely on data retrieved from other sources. These 

methods make it possible to monitor the cutting tool condition on-line [3.12]. They can
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be sub-divided into two further categories: sensor-based and sensor-less techniques. For 

the former, many monitoring techniques have been developed to detect tool breakage 

and to estimate tool wear by evaluating the most important characteristics o f signals 

coming from sensors such as dynamometers, accelerometers, acoustic emission sensors, 

thermocouples, and microphones, and relating them to the predetermined tool 

conditions. The main disadvantage is that each machine tool needs to be fitted with a 

sensor system, which often makes this method very expensive and logistically difficult 

to install [3.12]. Multi-sensor TCMS usually employ sensor-fusion techniques to 

combine the features from different sensors [3.13].

Sensor-less techniques make use o f  existing machine controller signals [3.14] along 

with any sensor signals already available on the machine or process. A review o f the 

approaches for end milling tool monitoring was presented by Prickett and Johns [3.15]. 

It described the investigation o f different sensing techniques, feature extraction 

methods and decision-making approaches. Indirect measurement methods were 

considered the most appropriate for tool monitoring, since they allow dynamic 

assessment, without requiring the stopping o f  the cutting process. An up-to-date review 

was provided by and Amer et al. [3.16] which considered the indirect sensing method 

better than other methods. It reviewed frequency based techniques for tool breakage 

detection A critical review o f  the sensors and signal processing methodologies is 

provided by Rehom et al. [3.17]. They suggested that end milling tool condition 

monitoring is the least researched area as compared to turning, drilling or face milling.

The practical ability and success rate o f any TCMS relies on two basic elements: first, 

the number and type o f the sensors used and second, the associated signal processing 

and analysis methods utilised to extract the necessary important information from 

acquired signals. The first element typically involves expensive hardware which 

influences the cost o f the system, whereas the second element affects the efficiency and 

the speed o f the system. It is worth noting that there exists a balance between two 

elements; as the number o f sensors increases and provides better information retrieval 

and higher diagnostic reliability so docs the overall cost o f the system. While extensive 

research has already been done in this area, no definitive system has been developed for 

monitoring machines and tools under all cutting conditions.
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The required process information for milling operations can be extracted via a variety 

o f methods. These include the measurement o f  cutting forces, acoustic emission (AE) 

and/or machine vibrations and the utilization o f control signals from spindle and axis 

drive systems. Spindle system signals typically include load/power, speed and current 

while axis drive systems usually provide current, position and velocity signals. As a 

starting point for the review o f such approaches, a non exhaustive list o f reported 

research is summarized in Table 3.1. The summary shows that the cutting force signal 

is the most popular choice. Normally the cutting forces are obtained using a 3-axis 

dynamometer, fixed between the workpiece and the bed o f the milling machine. A 

small number o f researchers have adopted the approach to calculate the cutting force 

from other signals like axis drive motor current signals, thus eliminating the need for 

the dynamometer.

Table 3.1: Indirect Sensing Methods

Cutting Force: [3.8,3.9,3.1 1,3.18-3.29,3.13,3.30]
Indirect Force: [3.20,3.23-3.25,3.29]
Acoustic Emission: [3.26,3.31,3.32]
Vibrations: [3.1 1,3.23,3.26,3.33-3.35]
Spindle System Signals: [3.9,3.14,3.16,3.26,3.34,3.36-3.38]
Axis Dive System Signals: [3.13,3.20,3.24,3.25,3.27,3.29,3.39-3.42]
Multi-sensor Systems: [3.9,3.1 1,3.13,3.26,3.34]
Sensor-less Systems: [3.24,3.25,3.36,3.37,3.14,3.16]
Vision Sensors: [3.43]

Lee and Tang [3.18] describe cutting force analysis using the discrete wavelet 

transform (DWT). The DWT performs a multi-level signal decomposition o f the cutting 

force allowing cutter breakage features to be extracted. It was reported that the use o f a 

second order Daubechies wavelet was sufficient to detect the occurrence o f cutter 

breakage. The DWT was primarily used to de-noise the signal with its output being 

similar to the signal variations obtained via DC component removal and low pass 

filtering. No further processing or automatic decision making is described. The 

workpiece material consisted o f gray cast iron blocks mounted on a table type 

dynamometer (Kistlcr 8144B). The dynamometer signal was transmitted through a 

charge amplifier (Kistler 4996) from which the cutting force signal was obtained and
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recorded at a PC workstation. The level to which the signal should be decomposed was 

stated to depend on the number o f teeth for a given cutting tool. The sampling rate used 

was selected to be proportional to spindle speed and gave 72 samples per revolution in 

each case.

Tang et al. [3.19] describe tool failure diagnosis using a neural network (NN). Cutting 

force signals were obtained from a dynamometer and acquired by a data acquisition 

card installed in a PC. A cutting force model was derived to establish the relationship 

between spindle speed and various frequency components present in the frequency 

spectrum for both healthy and broken cutters. The details o f the signal analysis are 

reported in section 3.4. The system was tested under varying cutting conditions 

including tool entry and exit but with constant spindle speed. In the opinion o f the 

author, the system would require training if  the spindle speed is to be changed.

Baek et al. [3.8] report a tool breakage detection system for face milling that used 

cutting forces acquired through a dynamometer. The system was developed on a DSP 

board. An 8th order Auto Regressive (AR) model and a method using calculated band 

energy were used to extract the features o f cutting forces that changed with tool 

condition. A comparison in terms o f accuracy and computation times was presented. 

Neural networks (NN) were used to classify the tool state as either normal or broken. In 

each case, the NN was trained with data sets from 240 cutting tests that covered 

different cutting and tool conditions. Its input included spindle speed, feedrate and 

DOC in addition to cutting force features. This shows the dependence on these 

parameters. Baek et al. stated that Fast Fourier Transform (FFT) methods were not used 

since the signal processing time was not fast enough to allow an FFT to be performed. 

The AR model was found to be more accurate although it was slower than the band 

energy method. The system required data equating to 1 tool rotation and 0.17 sec for 

computation. This represents more than one tool rotation for breakage detection when 

the spindle speed is 370 RPM or higher. Thus the author anticipates that it can 

potentially produce an alarm output typically after 2 or more tool rotations post a tool 

breakage event.

Lee et al. [3.20] measured the cutting force indirectly by monitoring the feed drive AC 

motor current. The feed drive system was modeled and calibrated, with a tool force 

dynamometer in place, showing sufficient sensitivity (of the feed drive motor current)
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to characterize tool breakage. The work claimed to be an improvement on the work o f 

Altintas [3.21] since it eliminated the need for a dynamometer. A cutter insert self 

index (CISI) parameter was proposed and used. The index value decreases at tool 

breakage and then returns to previous normal value even when cutting with broken 

tooth.

Bhattacharyya et al.[3.22] reported on using combinations o f signal processing 

techniques for the real-time estimation o f tool wear in face milling, using cutting force 

signals. Three different strategies, based on linear filtering, time-domain averaging and 

wavelet transformation techniques were adopted for extracting relevant features from 

the measured signals. A sensor fusion technique at a feature level was used in search o f 

an improved and robust tool wear model. It is important to note that one insert tool was 

used which simplified the algorithms and the tool wear relationships established may 

not be applicable to multi toothed cutters.

Cao et al. [3.31] proposed a method based on a lifting scheme and Mahalanobis 

Distance (MD) calculation for detection o f tool breakage. The AE signals, generated in 

end milling process, were acquired from an AE sensor connected to a PC. A bi- 

orthogonal wavelet with impact property was constructed using a lifting scheme, and 

the wavelet transform separated AE components from the original signals. Then a 

Hilbert transform was adopted to demodulate the signal envelope for selected wavelet 

coefficients allowing salient features, indicating the tool state, to be extracted. Finally, 

tool conditions were identified directly through the recognition o f these features by 

means o f MD. The major advantage o f using AE to monitor tool conditions was 

described as the frequency range o f  the AE signals. This range is much higher than that 

of the machine vibrations and environmental noises, and thus, AE can provide a good 

representation o f the material removal process o f cutting. The algorithm ultimately 

extracted tool rotation, its second harmonic and tooth passing frequency components 

for tool breakage detection purposes. The method relied on finding the MD vectors for 

all faults to be detected, by performing test cuts. Its accuracy depended on the 

correctness o f the MD vectors. It also required thresholds to be set based on the 

prevailing cutting parameters, to be adjusted whenever parameters changed. This 

demonstrated the dependency o f the method on cutting parameters such as DOC and 

feedrate.
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Zhang and Chen [3.23] collected vibration signals from a milling machine using a 

microcontroller-based data acquisition system and development board-based 

accelerometers. The acquired data was analysed on a PC Laptop using software 

developed in Visual Basic. FFT and time domain analyses have been used and the 

results were interpreted visually. Any tool entry and exit events were avoided by 

programming a delay into the system. The frequency analysis o f the vibration signals 

was reported to show that there was a large rise in the amplitude o f the tool rotation 

frequency component for a damaged tool. The sampling rate was 100 to 300 Hz and 

was made dependent on spindle rotational speed. Zhang and Chen did not report about 

data acquisition or processing time

Jun and Suh [3.33] have discussed the analysis o f vibration signals in NC milling. The 

system fed the time-domain vibration signal from a sensor attached to a spindle bracket 

on the CNC machine, into a PC at a sampling rate o f lKHz. Statistical process control 

methods were used for monitoring tool breakage where control limits or thresholds 

were automatically calculated independently o f  cutting conditions. The performance o f 

a number o f proposed statistical process monitoring methods, including the X-bar 

control scheme, the exponentially weighted moving average (EWMA) scheme, and the 

adaptive EWMA scheme was compared. The proposed monitoring system was stated to 

have an expected reliability/success rate o f 94% with a 3% false alarm generation rate 

which is very high in the opinion o f the author. Moreover the results presented indicate 

that tool breakage detection regime is shank breakage detection one.

Yesilyurt [3.34] described the acquisition o f vibration signals from spindle mounted 

accelerometers. The signals were analysed using a scalogram method and the obtained 

mean frequency was proposed as a distinguishing feature for defect detection at 

different feedrates. Data for 40 cutter rotations was acquired at 12.5 KHz and stored in 

a PC. A shaft encoder was used to produce a pulse-per-revolution reference to facilitate 

analysis. Fecdrate was measured by rotary encoders mounted on the feed drive motors. 

It was observed that the fecdrate was significantly influential on the mean frequency. 

Its variations are relatively responsive to the presence o f fault even when the severity o f 

fault is low. A trend indicator was defined to reflect the progression of fault severity
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and was reported be very sensitive to any change in the feedrate particularly when the 

severity o f fault is small. This showed a high dependence on the cutting conditions.

Franco-Gasca et al. [3.36] used a spindle motor current-based system deployed on a 

hardware signal processing unit. The latter was implemented via a field-programmable 

gate array (FPGA) that was used for acquisition, conditioning, and basic signal 

monitoring. The system was used to monitor several types o f machining process such 

as drilling, milling, hobbing and turning. The system model was described as being 

reconfigurable and scalable so that it may be adapted to diverse conditions. It was said 

to be an economical standalone unit since it did not require either computers or 

microprocessors. The sampling rate was user-defined (and depended predominantly on 

the spindle speed) to give the optimum feature set o f change in the output o f the 

wavelet transform based data compression stage. The mean value o f the feature signal 

was compared with three fixed thresholds which were selected during training cuts. For 

the milling process the speed o f the system operation was such that it required 3-4 tool 

rotations to detect tool breakage.

Li and Guan [3.39] describe a minor cutting edge fracture detection algorithm using the 

feed-motor current signals. The algorithm (reported in Section 3.4) consisted o f 

wavelet-based de-noising, discrete time-frequency analysis, FFT and second 

differencing. Some typical experiments, the cutter run-out, entry/exit cuts and cutting 

parameters-variation, have been performed to confirm the robustness o f algorithm 

which was implemented on a PII PC. It required 4 tool rotations (twice the target set in 

this research) post tool breakage to generate and alarm output at typical settings.

Li et al. published a number o f papers on tool breakage detection using feed motor 

current signals [3.40,3.41,3.44,3.45]. These use different signal processing techniques 

(including time domain averaging (TDA), permutation entropy and fuzzy logic) and 

will be more fully discussed in Section 3.4

Bassiuny and Li [3.42] proposed a flute breakage detection method for end milling 

using feed-motor current signals which were acquired into PC by attaching additional 

current sensors on the motors. They used a Hilbert-Huang transform (HHT) analysis 

and a smoothed non-linear energy operator (SNEO) to extract crucial characteristics
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from the measured signals to indicate tool breakage. The SNEO output was compared 

to a threshold which was selected experientially during cutting operation with a healthy 

cutter. A segment o f 64 samples o f feed motor current acquired at 1 KHz was captured 

for processing. Bassiuny and Li recommended that the sample selection should 

consider a number o f cutter teeth and prevailing spindle speed. Wavelets were used for 

de-noising purposes. The algorithm repeatedly calculated intrinsic mode frequency 

(IMF) components until a near DC component is obtained. However the most 

informative IMF depends on the cutting conditions. There was a delay o f 0.35 seconds 

(equivalent to 3.5 tool rotations at 600prm and more on higher speeds) between fracture 

and the output indicating a broken tool.

Although vision sensor based systems for tool monitoring have been investigated by a 

large number o f researchers, their industrial applications are still in their infancy, 

because o f their high complexity. Lanzetta [3.43] has described a vision system (as part 

o f a tool monitoring system). He identified the advantages o f vision sensing as: natural 

human-like operation, ability to recognize different morphologies, high information 

content in images, high availability o f algorithms, independence from the cutting 

conditions and sufficient accuracy. An exhaustive classification o f the defects in cutting 

inserts was researched and reported along with the design o f automated system to 

recognize the defects and to measure tool wear. The quantitative parameters required to 

be used as threshold values were selected from internationally established standards. A 

defect detection and wear measurement flow chart was then proposed which dealt with 

a variety o f cutter conditions and scenarios. An auto-focus zoom lens was used to 

maintain uniformity when dealing with different tool sizes and varying distances.

Although the application o f vision system has great potential, no results in this 

particular area have performed to sufficient levels. In the opinion o f the author, the 

reasons behind this may include: sensitivity to normal industrial disturbances, influence 

of chips, fluids and dirt, the high maintenance requirement for such systems leads to 

unnecessary downtime, and high investment costs.

Jesus et al. [3.24,3.25,3.46] have published papers relating to different aspects o f a 

sensor-less monitoring system using axis motor driver current signals. Three hardware
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signal processors (HSP), based on FPGA were used and the algorithm used was 

simplified to three equations (Sum o f  Squares, Wavelet in the form of a multirate FIR 

filter and Asymmetry) to enable it to be implemented on a one time programmable 

(OTP) FPGA. They report that time domain signal variations are extremely small for 

different tool conditions, making it hard to draw solid conclusions. Thus autocorrelation 

was performed, in the form o f asymmetry between two insert forces, to detect different 

cutter conditions. The asymmetry weighing function was then indicative o f the damage 

to the tool. This assumes that both/all insets cannot have same level o f wear or 

breakage. In [3.25], they discussed the axis motor current and its basic components. In 

particular the frequency range for the band pass filter was suggested such that it could 

be successfully used for tool breakage detection.

Tseng and Chou [3.14] interfaced a PC based system to a machine tool and extracted 

the workload o f the spindle motor (from the machine controller) and transmitted the 

data using an I/O card for further processing. The spindle load fluctuations were used as 

an indicator for the determination o f the machine tool health. They introduced a 

monitoring index, based on the workload variations and the diameter o f the cutter. The 

variations in spindle load monitored were up to 1.5% of maximum load in case o f  a 

worn cutter and 2-4% when the cutter was chipped or broken. Observation o f the data 

indicated that when the tool was about to break, these variations rose to 15-29%  o f the 

work load during normal cutting. Depending upon the variations of motor load signal, 

Tseng and Chou derived three rules to categorize the operation as normal, semi-normal 

or abnormal states. However it is felt that the designed system may encounter practical 

problems o f generating false alarms, because o f the absence o f any counter verification 

strategy before generating any alarm or stopping the process.

In parallel to sensor-less or single sensor based TCMS there has been ongoing research 

into multi-sensor TCMS. The tool breakage signal from a single measurement may 

make a misjudgement due to the complicated dynamic characteristics o f the cutting 

process and instability o f machine tool itself [3.43]. To counter this issue, integrated 

approaches based on measurements from several sensors have been proposed by 

various researchers.

23



Fu and Hope [3.26] have used force, AE, vibration and current sensors to measure 

machine parameters and have designed an intelligent monitoring system for the online 

classification o f tool wear. The sensors signals were pre-amplified and filtered. The 

filtered signals were acquired, and input into a PC, at different sampling rates. The PC 

was used to extract the statistical and frequency spectrum features from the signals 

representing different wear values. They suggested mean value calculations for power 

consumption, standard deviation for vibration and power spectra for the AE and X 

cutting force component signals respectively. Tool wear was estimated by application 

o f a neural-fuzzy pattern recognition technique and classified into three (new, normal 

and worn) states o f the tool condition.

Cho et al. [3.9] used a support vector machine (SVM) learning algorithm to recognize 

process abnormalities. Their system utilized multiple sensors to record cutting forces 

and power consumption. The main element reported was the training o f the proposed 

system for performance improvement and detecting tool breakage. The performance o f 

the developed system was compared to the results from an alternative detection system 

that was based on a multiple linear regression model. They claim to have achieved a 

success rate o f 75% when using only force signals and 99% when it was used in 

combination with the power signal.

Although the multi-sensor machine tool monitoring system may be very effective; the 

additional cost involved in installation o f these sensors adds to the overall system cost. 

As is clearly evident from the research reported by Al-Habaibeh and Gindy [3.11] to 

get sufficiently reliable results, the cost factor may be as high as £19,900, which is 

almost half way to the price o f a normal machine tool used in SMEs.

3.3.1 Commercial Systems

In today’s manufacturing environment there is an increasing demand for tool condition 

monitoring systems. Many different sensor types, coupled with signal processing 

technologies are now available, and many sophisticated signal and information 

processing techniques have been invented and presented in research papers. There has 

been a considerable research activity and academic work in this area but very few have 

found their way to commercial applications [3.47]. The reasons are believed to be
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either the high cost associated with implementation o f suggested techniques or the time 

required by certain systems to achieve the diagnostics rendering then unsuitable for 

real-time analysis. Often the inflexibility o f the models and algorithms used means that 

a system will work with a particular tool under certain cutting conditions but will fail to 

achieve correct diagnostics if  the cutting conditions change.

Most commercial systems employ direct sensing methods for tool breakage detection, 

for example in systems provided by Renishaw Pic (UK), TPS International (USA), and 

Techna-Tools (USA). They either use touch probes or laser based non-contact methods 

to verify the tool size and integrity and hence to detect breakage. In either case the tool 

has to be moved to a reference position where the sensor is installed. These methods as 

stated provide the in-cycle tool breakage detection but can not detect tool breakage 

whilst the tool is actually cutting. As a consequence o f this, many commercial systems 

typically work in-cycle rather than providing full in-process, on-line diagnostics.

Renishaw has two different products for detecting tool breakage [3.48]: NC4 (non- 

contact tool setting and tool breakage system) and TRS2 (tool recognition system). 

Both systems are laser based but differ in the mode of operation. NC4 (and previous 

versions NC2 and NC3) projects a laser beam (as shown in Figure 3.2(a)) to the sensor 

element and the tool has to break the beam. The TRS2 (as shown in Figure 3.2(b)) 

shines a laser beam onto the tool which reflects the light back to the built-in sensor. The 

tool must be rotating at 200, 1000 or 2000 rpm to generate a pattern that TRS2 can 

detect within 2 seconds. It sends a positive integrity signal to controller. It requires 30 

seconds to confirm a broken tool.

Beam

Spindle axis

Radial axis Beam axis

(a) NC4 (b) TRS2

Figure 3.2: Non contact tool breakage systems [adopted from [3.48])
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TPS International [3.49] provides “positive contact sensors” PCS 100 and PCs 250 

which use a rotating needle to sweep around the machine until needle touches the tool. 

Similarly Ciro Products [3.50] and Techna-Tool [3.51] provide tool breakage detection 

products that use wands to check tool position to detect the tool breakage as shown in 

Figure 3.3. Techna-Tool’s BK Mikro 8 is mainly designed for broken tool detection 

inside the tool changers o f machining centers.

Figure 3.3: Contact-type tool breakage detection systems (adopted from [3.51)

The other category o f commercial tool monitoring systems utilizes indirect sensing 

methods to determine the health o f the process. The most common sensing method for 

tool breakage in commercial systems is spindle power. A power sensor measures the 

spindle or axis drive power by measuring current and voltage. Power is linearly related 

to the cutting force load and is preferred to current sensing since current is less sensitive 

at small loads.

Most o f the commercial monitoring systems focus on turning operations and claim to 

treat the milling operation in a similar way. Jemielniak [3.52] has compared 

monitoring systems developed by various suppliers including Artis, Brankamp, Kitstler, 

Nordmann and Prometec. He found that most systems perform basic monitoring based 

on static limits or thresholds which are learnt during the teach-in tests or manually set 

by the operator. Few utilize dynamic limits however. This is the approach used in 

Prometec’s PROMOS [3.53].

The monitoring system offered by Techna-Tools ‘Techna-Check 3200’, measures true 

power on a machine spindle or axis motor to determine if there is a broken, dull or 

missing tool [3.54]. Figure 3.4 shows a typical measured power profile during a 

machining cycle.
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Figure 3.4: Spindle Power profile and limits for tool monitoring (taken from [3.55])

The monitoring starts after the initial peak power has passed and load drops below the 

missing limit. A start delay is introduced to let the system settle to the idle power 

consumption level. The idle consumption is the power used just to turn the spindle. 

High and low limits on idle power determine if a belt has broken or bearings are going 

bad in the spindle. The measured true power shows the tool condition. For example 

more power is required as the tool becomes blunt (dull). When the tool breaks a short 

energy peak or spike is created and if no tool is present or the part has already been cut, 

the power consumption drops back to idle level. If any of these situations occur the 

Techna-Check will output a fault alarm and will immediately stop the machine. Other 

limits such as missing-limit, blunt-limit and broken-limit shown on Figure 3.4 are used 

for the tool condition monitoring. If the power exceeds the blunt-limit the tool is 

declared blunt and if exceeds broken-limit it means the tool is broken. A similar 

approach has been used in ‘Power Monitor’ system offered by Marposs Ltd [3.56].

The Tool Monitor Adaptive Control System (TMAC) offered by Caron Engineering 

[3.57] operates on the principle that the horsepower required to cut a part increases as 

the tool’s cutting edges deteriorate. It measures true motor horsepower for spindle 

and/or feed axes and regulates the feedrate in order to maintain a constant spindle 

motor horsepower during cutting. It is believed that tool life is extended when a tool 

cuts continually at its optimum horsepower. This feature is stated to optimize cycle 

times whilst still providing limits to protect the machine and tool. BranKamp and Artis 

also offer multi-sensor based monitoring systems with similar adaptive control options.
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The review o f commercial TCMS revealed the scarcity o f the on-line monitoring 

systems for milling operations. Most systems treat the milling operation like turning or 

drilling operation and mostly focus on the shank breakage instead o f tooth breakage. 

The next section reports on the signal processing techniques considered by researchers 

for tool condition monitoring mainly focusing on tooth breakage detection.

3.4 Digital Signal Processing and Analysis

The most recent methods o f tool breakage detection have focused on the development 

of signal processing techniques that can enhance the sensitivity to tool breakage o f 

measurements such as cutting force, acoustic emission and spindle motor current. The 

effect o f tool breakage is usually revealed by an abrupt change in these enhanced 

measurements, which then for example, exceed a decision threshold. Signal processing 

thus plays a key role in feature extraction, from the acquired and filtered data, before 

final decision making. Signal processing methods can be divided into two main 

categories: Model based and feature based approaches. Table 3.2 presents an overview 

based on relevant published research, with the research activities grouped according to 

signal processing methods they used. The Feature based approaches can further be 

divided into three main categories:

a. Real time series signal analysis

b. Frequency domain analysis including filters/band energy methods

c. Combined time-frequency analysis including wavelets

Mathematical models are used to describe the behaviour o f a physical system based on 

physical laws. Their use enables the calculation o f some time dependent quantity, 

nearly exactly, at any instant o f time. The reliability o f a model based system is 

dependent on the capability o f  the model to accurately and fully represent the dynamic 

behaviour o f the system under all conditions. The model based TCMS approaches then 

use the difference between calculated and measured cutting forces to detect tool 

breakage. The modelling o f cutting forces in milling has been attempted by various 

researchers [3.58 - 3.62] and is the subject o f on-going research. An alternate approach 

is to use an auto regressive model, which estimates the output based on the past values 

of the monitored parameter [3.63].
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Table 3.2: Signal Processing Techniques

Model based analysis [3.8,3.20,3.29,3.21,3.64,3.27,3.58-3.62]

Time Series Analysis [3.9,3.14,3.20,3.21-3.24,3.27,3.29,3.32,3.33,3.36-

3.38,3.13,3.41,3.65,3.30]

Frequency Domain (FFT) [3.1 1,3.13,3.23,3.19,3.35],[3.30,3.31,3.34,3.39]*

Time-Frequency [3.26,3.34,3.39,3.42]

Wavelets [3.1 1,3.24,3.18,3.22,3.28,3.31,3.34,3.36,3.39,3.40]

Filters/Band Energy [3.8,3.16,3.22,3.32,3.34,3.65]

* used as secondary processing method

Since every TCMS employs some form o f signal processing techniques, different 

example applications o f these techniques are presented and discussed in this review. In 

terms o f structure, there is an overlap with previous section 3.2 which focused on 

sensing methods.

Zheng el al. [3.58] have proposed a generalized analytical model for cutting force 

calculation based on the relationship between the local cutting forces and the 

instantaneous chip load and integration o f  the local cutting forces. The model was 

adopted for face and end milling. The model estimated the frequency spectrum and 

calculated the cutting forces in angle domain through inverse FFT operation. The model 

used force constants which were calculated for a particular type o f cutter and work 

piece material using 27 cutting tests in each case. Experimental testing was performed 

to verify the cutting-force models in the context o f angle domain waveform and 

frequency domain components using cutting force measured form another 6 tests. A 

Kistler platform dynamometer was used to measure cutting forces at a sampling rate o f 

2 Ksps. The reported average and maximum absolute percentage errors were 4.4 and 

18.2, respectively.

Ritou et al. [3.27] analysed three process-based indicators; tool fracture index (TFI), 

peak rate (Bm) and relative eccentricity rate (Km); for tool breakage detection by using a 

cutting force model. TFI (proposed by Kim and Chu [3.66]) is the ratio o f peak-to- 

valley cutting forces between adjacent teeth, divided by its own past average. The 

average ratio is intended to prevent the TFI from cutting conditions changes. As 

proposed by Deyuan ct al. [3.67], Km is the ratio of the difference to the sum between 

peak forces o f adjacent teeth and Bm is similar to the ratio of tooth eccentricity to
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maximum chip thickness. The indicators were claimed to be independent o f cutting 

conditions. Experiments were carried out in industrial conditions to check the 

dependability o f the indicators on instantaneous feedrate and DOC. Specific transient 

cutting conditions encountered during the machining o f test parts revealed the 

indicators to be unreliable in this respect. Consequently a versatile in-process 

monitoring method was suggested. Based on experiments carried out under a range o f 

different cutting conditions; a new indicator, termed relative radial eccentricity o f the 

cutters, was proposed. This was estimated at each instant and characterized the tool 

state. It was then compared with the previous tool state in order to detect cutter 

breakage or chipping. The new approach was reported to be reliable when implemented 

during machining tests. Cutting forces from a dynamometer were measured at 64 Ksps 

and a PC was the monitoring platform used. Signals from x and y position encoders 

were sampled at 500sps. The approach determined the relationship between resultant 

peak force (for each tooth) and chip thickness by performing trail cuts. The relationship 

was used to calculate parameters which allowed to the system to avoid false alarms by 

pausing the monitoring during changes in the tool path. In the opinion o f the author this 

approach may be beneficial in achieving automated machining o f one-off components.

The model developed by Long et al. [3.61] described the dynamics o f milling processes 

with variable time delays associated with each cutting tooth. The source o f these 

variable time delays was reported to be the feedrate. The system dynamics were 

described by a set o f delay differential equations with periodic coefficients and variable 

time delays. Good agreement was claimed to be found between the numerical results 

obtained from the model and cutting experiments. In the opinion o f author this model 

may be useful when measuring the surface finish o f the workpiece.

Tansel et al. [3.64] have proposed a Genetic Tool Monitor (GTM) to identify problems 

in milling operations by using an analytical model for micro-end-milling operations and 

an associated Genetic Algorithm (GA). They used the components o f cutting force in a 

horizontal plane to support process related decision-making. Their program requires 

that all the known parameters including operating conditions and tool geometry are 

provided as inputs. Depending on operating conditions, one or more unknown 

parameters can then be estimated. In the opinion of the author this system might only 

be useful if on-line monitoring o f machining was considered and became available.
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The second main category represented in Table 3.2 is time series signal analysis and 

this has been widely used in tool condition monitoring. These techniques rely on 

calculating the properties o f  time domain signals such as average, maximum, minimum 

and peak-to-peak values. Statistical methods (mean, variance etc) used with time 

varying signals are also usually considered as time domain techniques. These also 

include time domain averaging, trend analysis, control limits, and energy variations. 

Time domain methods are being used in commercially available TCMS. Some CNC 

controllers (including the Kondia B500) provide the facility to set a maximum limit for 

the spindle load to facilitate tool monitoring. These systems monitor the spindle power 

and if  it exceeds a preset threshold an alarm is generated. Although these methods may 

be effective in detecting the shank breakage, they may not detect tooth breakage.

Li [3.41] used an improved time domain averaging (ITDA) technique with a floating 

threshold, for detecting tool breakage using feed drive motor current signals. It was 

stated that cutting force based methods normally require complex signal processing 

methods, (higher order time series models, FFT, time-frequency analysis etc) which 

became a hindrance to real-time application because o f the required computation times. 

ITDA was reported to reduce the errors due to the difference in the period o f the signal 

and the period o f the averaging kernel. It used a floating threshold, which was 

calculated using the average current over last three tool rotations and incorporated a 

risk factor (which defined the sensitivity o f the detection). A large risk factor value 

would make the detection o f breakage less sensitive. The system was shown to detect 

tool breakage under various cutting conditions. In considering this method the author 

deems that the threshold is only crossed once on the occurrence o f tool breakage. The 

floating threshold then adjusts to a new value which is larger than the feature value. 

Thus cross verification o f tool breakage is not likely to be possible.

Altintas [3.29] has used an AR model (AR time series filter) to detect tool breakage for 

milling process monitoring. Cutting forces were predicated from the feed drive motor 

current. A model o f the feed drive control system was used to analyze cutting force 

measurements from the armature current suggesting its use as a cutting force 

measurement sensor. The importance o f periodicity o f milling forces at tooth passing 

frequencies was highlighted. Average current was sampled by an analog circuit which 

was triggered and synchronized to the tooth passing interval, by an encoder mounted on
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the spindle shaft, using a PC. It was highlighted that tool failure in milling can be 

detected by adaptively filtering the average current signals at tooth passing periods. It 

was suggested that whenever a tooth breaks, it doesn’t remove any metal and the drive 

motor current will drop. The next tooth will remove more metal than usual and the 

current will increase. This pattern o f  variations will indicate tool breakage. The 

algorithm compares the residual terms o f  a first order AR model against a dynamically 

set threshold. The breakage algorithm was claimed to be independent o f cutting 

conditions and the friction in the drive system. In the opinion o f the author the sampling 

rate for the system was set to match the tooth passing frequency, which seems to be 

very low for such a critical monitoring task.

The application o f AR modeling has been reported by Lee et al. [3.20] in order to 

determine tool breakage. An indirect cutting force calculated from the feed drive motor 

current was used. The relationship between the cutting forces and the average motor 

current was established using linear regression. Lee et al. report the implementation o f 

an algorithm on a DSP board. There are no reported details o f the type o f DSP used or 

its computation performance. The main claimed contribution from Lee et al. in terms o f 

signal processing is introduction o f a new cutter health index CISI. This index monitors 

the health o f  each insert individually. In this way effects o f cutter-runout are 

minimized.

The third category o f Table 3.2 namely frequency domain analysis has gained research 

attention in recent years. The milling operation is well suited application for frequency 

analysis because o f the particular cutting dynamics. Normally machine load is periodic 

and directly related the tooth passing frequency. When a tooth is broken, the load 

pattern changes as broken tooth exerts less force and tooth after it has to exert extra 

force to cut material left by broken tooth. This decrease and increase in load will occur 

once per tool rotation. The time domain analysis o f the load signal can be deceived by 

cutting operations such as tool entry, exit or change in DOC. However, frequency 

analysis will be more robust in such circumstances. In the research reported in this 

thesis the frequency spectrum o f the signal is calculated via Fast Fourier Transforms 

(FFT) and overlap FFT (discussed in Chapter 5) and digital filters (discussed in Chapter 

6).
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Normally FFT or Time-Frequency analysis has been used in conjunction with wavelets. 

The wavelets have been used by the researchers mainly for de-noising purposes and the 

resultant signal is similar to the signal which is obtained after removing the DC and 

passing the signal through a low pass filter. Normally some additional signal processing 

methods are required to exploit wavelets for tool breakage detection.

Kasashima et al. [3.62] discussed a m illing force model based on the individual radii o f 

the teeth. The model was shown to be in good agreement with experimental results. 

They used this model to verify a tool breakage algorithm based on discrete wavelets 

transforms. Data equating to one tool rotation was analysed and it was concluded that 

for a broken cutter the wavelet coefficients (which were equal to number o f teeth) 

exhibited a “zigzag pattern”, the amplitude o f which depends on the amount o f 

chipping. The cutting force model was deemed to be directly relevant to the current 

research and the author carried out further investigations based on it. The model was 

adapted in Matlab code and was used to verify and justify time-frequency results 

obtained in this research. The details are reported with in Chapter 5.

Li and Guan [3.39] reported a signal processing method which consisted o f wavelet- 

based de-noising, discrete time-frequency analysis, FFT and second differencing 

algorithms for the detection o f minor cutting edge fracture during end milling. 

Algorithms when applied sequentially, extracted marked features from the (AC 3- 

phase) feed-motor current signals which were acquired and stored into a PC. In the 

process o f extracting a marked feature, 64 samples, from current sensors on each phase, 

were sampled at 1 Ksps. Time-frequency plane calculations, after de-noising o f the 

segment using wavelets, were used to extract the signal features (primary frequency 

components). The main frequency o f interest was calculated based on spindle speed and 

the number o f cutter flute/teeth. A feature point, which was the maximum amplitude 

value from the frequency domain was then calculated via FFT, with second 

differencing used to provide a marked feature. Tool breakage was determined to have 

occurred when the marked feature crossed the threshold value. The computation time o f 

the system was 0.315scc (using a PII PC). It was stated to require 0.379 see to generate 

an output (excluding the time required to compute previous two feature points). This 

equates to 4 tool rotations at typical cutting parameters. Since processing time is much 

larger than the acquisition time, the author believes that some data is not being analysed
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or its computations must be lagging behind. Li and Guan [3.39] have mentioned some 

limitations including the limited bandwidth o f the current sensing system and poor 

sensitivity o f the current system at light loads.

Tang et al. [3.19] used FFT to compute the spectrum o f the cutting force signal for tool 

failure diagnosis. They suggested that, after establishing the relationship between 

spindle speed and frequency spectrum for a healthy and broken cutter, the frequency 

components in the spectrum can indicate the tool failure. A NN was used to analyze the 

outputs from the FFT. The NN was trained using the simulated FFT spectrum under 

varying cutting conditions. The FFT Spectrum o f the acquired force signal is fed into a 

NN with 25 inputs. The system was reported to be reliable under varying cutting 

conditions.

The use o f scalogram and its mean frequency analysis was proposed by Yesilyurt 

[3.34] for analyzing the vibration signals o f  the cutting process. The method also 

utilized wavelets, Digital filters, FFT and time-Frequency Analysis. The mean 

frequency was in the range o f 800-1800Hz. An energy distribution around 200Hz 

becomes apparent when defective tooth was cutting. The variations in mean frequency 

were periodic with tool rotation frequency requiring further analysis if  the tool 

breakage is to be automatically detected.

Chen and Chen [3.35] report the frequency analysis o f vibration signals measured 

using an accelerometer. A vibration sensor model was developed and the effect o f a 

broken cutter was highlighted. Based on the model results, they decided to use FFT. 

One FFT spectrum was calculated for each test and in particular the tool rotation 

frequency and its second harmonic were used as key features. The ratio o f amplitudes 

between the features increased at tool breakage. Chen and Chen suggested using both 

current and past FFT calculations in order to avoid false alanns.

Li et al. [3.40] proposed a method to analyze feed motor current, which composed o f 

the estimation o f permutation entropy and wavelet-based de-noising. A 128 point 

segment o f the signal from current sensors was acquired by an ADC operating at lKHz. 

A PC, with P4 1.66GHz CPU, was used for analysis. The permutation entropy o f a time 

series is a simple, robust and extremely fast complexity measurement method for
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distinguishing the different conditions o f  a physical system. The normalized entropy 

Hp=Hp(n)/\n(n\) with /z=5 was selected as the feature used to determine tool condition. 

Two thresholds were calculated from analysis o f a series o f tests with either no cutting, 

normal cutter or broken cutter status under various machining conditions. If the Hp 

value was between the two thresholds then the tool was taken as broken. As this 

method relied upon two level thresholds, the sensible time to confirm tool breakage was 

in the order o f 0.395 seconds. This equates to 6 tool rotations at the selected spindle 

speed. The author thinks that it may be prone to DOC variations as a linear trend o f Hp 

is observed with DOC variations.

Al-Habaibeh and Gindy [3.11] proposed an automated sensory and signal processing 

selection system (ASPS) approach where appropriate sensors and signal processing 

techniques are selected using Taguchi’s method and an orthogonal array (OA). The 

approach was shown to reduce the cost and complexity o f the resultant monitoring 

system without compromising its ability to detect cutter faults. The technique uses n 

number o f sensory signals and m number o f  signal processing methods. This gives rise 

to mxn possible solutions. In their experiments, they used 15 different sensory signals 

and 23 different signal processing and feature extraction systems. The signal processing 

methods were in the categories of: wavelets, average value, standard deviation, power 

value, kurtosis value, FFT and skew value. The process variables investigated were: 

normal cutter, broken cutter, 3 levels o f DOC, table feedrate and spindle speed. The 

analysis showed that the system with lowest error, o f 8.89%, had a cost o f around 

£19900. The cost could be brought down to under £3000, at an expense o f a 3.11% 

increase in error (12% total error).

The features obtained from the signal processing techniques need to be classified in an 

automated way for an on-line tool breakage detection. The techniques used for this 

purpose are termed as decision making techniques which include neural networks, 

fuzzy logic, control limits and static and dynamic thresholds.

Tansel et al. [3.68] investigated the use o f a back propagation (BP) type neural network 

in monitoring tool wear in a micro-end-milling operation. They investigated the 

relationship between tool usage and the cutting force by presenting data to a NN in two
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different encodings. One of the encodings was based on simple force-variation and the 

second encoding was based on a more complicated segmental-average. Experiments 

were performed on aluminum and steel to include the effects o f the material being cut 

on the process. They observed that the optimization o f the NN parameters was 

extremely difficult but extensive training would create a compact and representative 

model. They claimed to get excellent wear estimations using this approach.

A support vector machine (SVM) learning algorithm has been reported by Hsueh and 

Yang [3.37]. Spindle displacement was measured by two displacement sensors and the 

average defection per tooth and per rotation was calculated. These features were input 

to the SVM for analysis. Like NN, SVM algorithms also require training before they 

can begin working. The system was shown to be reliable under various cutting 

conditions.

3.5 Depth of Cut M onitoring

A reliable TCMS should allow the optimum utilization o f a tool life cycle. Normally 

tools are replaced based on a conservative valuation o f tool life [3.69]. Timely and 

accurate estimation o f the tool life is critical. Over-estimation o f tool life can result in 

degraded product quality and damaged parts (in case o f early tool breakage), while 

under-estimation leads to frequent stoppages (of the machining process) and increased 

cost o f production [3.22]. Thus real-time tool life estimation is deemed to be the key to 

automated machining.

There has been a vast amount o f research activity in estimating tool life and tool wear. 

Some researchers have modeled the tool life and tool wear taking into account various 

cutting conditions namely cutting speed, feedrate and depth o f cut. [3.70,3.71]. Cutting 

speed and feedrate can be estimated by monitoring the signals related to spindle and 

axis drive system respectively. At the moment no viable systems were reported where 

automated DOC monitoring or measurement is supported. Researchers monitoring, 

predicting or modeling tool conditions are either accessing DOC information (by other 

measurement means) or assuming that the DOC will be constant through out the tool 

lifecycle [3.72].
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Tasi et al. [3.71] presented a method based on an abductive network for predicting tool 

life in high-speed milling operation. They have shown that once cutting speed, feedrate 

and axial depth o f cut is provided, tool life can be predicted reliably. Results from a 

large number o f tool life experiments, performed for the training o f the network, were 

reported in a tabular form, which listed the tool life for different cutting speeds, 

feedrate and depth o f cuts. Since it was not explicitly contained in the cited reference, 

the author has analysed the data for dependence o f tool life on depth o f cut. The 

relationship between DOC and tool life (for two cutting speeds o f 471 and 628 m/min) 

is shown in Figure 3.5. It is evident from the Figure 3.5 that tool life decreases as depth 

of cut increases. Therefore if  the DOC changes during the life cycle o f a tool its 

effective life will be affected and assuming a constant DOC is not always a viable 

option.
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Figure 3.5: Relationship between tool life and depth o f cut (derived from [3.71])

Gogfrey et al. [3.70] report an approach to predictive modelling for tool wear 

estimation which requires depth o f cut and other cutting conditions to be provided. 

They have reported tool wear values obtained from tests carried out for different cutting 

conditions (including DOC). The reported results suggest that tool wear increases with 

any increase in DOC. Similarly, Shao et al. [3.12] describe a cutting power model for 

tool wear monitoring. The model requires the cutting conditions (including DOC) and 

average flank tool wear to be input to the model for effective monitoring.

Prickett and Grosvenor [3.73] suggest measuring and accumulating the work during 

different cuts performed by the tool, in order to update and track the total work 

performed. This information would be useful if the system can predict the residual life,
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which depends on the DOC and other cutting conditions that the tool will be subjected 

to in the future.

Szwajka [3.72] reports that one o f the drawbacks o f most research work is that constant 

cutting parameters have been used for entire tool life. In industrial practice, this not the 

case, where typically the same tool is used at different feeds and depth o f cuts in 

sequential passes. Szwajka has demonstrated through various cutting experiments, that 

there is a weak dependence o f main cutting force on tool wear. On the other hand feed 

force is only effected by depth o f  cut and tool wear. Therefore to use feed force for tool 

wear estimation, the depth o f cut must be identified directly or implied by the using the 

weak dependence o f cutting force on tool wear. Based on his test results obtained from 

a deployed industrial force sensor, he suggests that depth o f cut must be measured 

directly.

Alauddin et al. [3.64] proposed a model for estimating cutting force in end milling and 

discussed the influence o f different cutting conditions on the cutting force. It was 

concluded that cutting forces increase with feedrate and depth o f cut. Similarly Li and 

Li [3.60] proposed a model using a dynamic sheer length and reported the experimental 

verification o f results. They observed that the maximum cutting forces are proportional 

to depth o f cut. This effectively means that to predict any cutting forces, the depth o f 

cut information will be required and any unexpected change in depth o f cut will affect 

the estimation process.

In considering the non-measurement sources, it would be possible to pre-calculate the 

depth o f cut at any particular in time, for the present job at hand from the CNC 

programme, provided that the workpiece initial dimensions are exactly known. This 

holds true for cases where machining cycles are repeated and exactly the same 

workpiece is being fed for machining. However when machining one-off components 

or where the workpiece is coming from a casting process or being otherwise selected 

from available stock on the shop floor, it will not hold true. Then the DOC will not be 

predetermined and it will be impossible to calculate the DOC using CNC programme 

information.
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In the opinion o f the author, therefore, the only viable option appears to be a system 

which can provide real-time DOC information for both tool wear and tool life 

estimation. Although previous work in the IPMM group has indicated that the tool 

breakage system will not be fooled by moderate changes in depth o f cut, any attempt to 

monitor the tool force will inevitably be improved when depth o f cut monitoring is 

included. As far as is known there are no commercially available systems to measure 

depth o f cut.

3.6 Embedded Tool Condition M onitoring Systems

The majority o f tool condition monitoring systems is based on a PC while very few 

have been implemented on an embedded platform. The main reason for this seems to be 

that flexibility and computational power provided by PC is far better than embedded 

counterparts. Another reason seems to be the availability o f large number o f advanced 

signal processing software packages for PC platforms.

There is some diversity in the use o f  the term embedded. For the current research 

embedded is ultimately taken to refer to the use o f distributed single-chip solutions such 

as microcontroller devices. This section o f the review will however also refer to 

embedded, small footprint and limited peripherals, PC platforms.

Li et al. [3.74] developed an embedded tool condition monitoring system (eTCM) 

based on an embedded PC platform with 300MHz processor running Windows CE. 

They suggest that eTCM can be used as the required third level feedback loop, 

additional to the normal feedback loops o f velocity and position, to provide the 

machining process data for process control. Their system utilizes a multi-sensor 

approach for data acquisition using a data acquisition card installed in the embedded 

PC. The sensors used included an accelerometer, a dynamometer, a microphone, and an 

AE sensor. A recursive crest factor monitoring algorithm (RCFMA) was reported for 

tool breakage detection. The crest faetor is the ratio o f the peak value to RMS value o f 

a wavefonn. Although the system is aetually based on a PC platform, it was claimed to 

be an embedded TCM on the basis o f the chosen hardware.
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Baek et al. [3.8] used a DSP (TM S320C40) development board for implementation of a 

TCMS with an 8th order AR model and a band energy method coupled with a neural 

network. The neural network used the following inputs: spindle speed, feedrate and 

DOC in addition to cutting force features. The detail o f the signal processing algorithm 

used has already been reported in section 3.3. The AR model was found to be more 

accurate but slower than the band energy method.

The only FPGA implementation which could be found in the literature was reported by 

Rene de Jesus et al. [3.24,3.46]. Three hardware signal processors (HSP) based on 

FPGA were used and simplified algorithms were implemented on a one time 

programmable (OTP) FPGA. The detail on signal processing and sensing methods has 

already been reported in section 3.3. A suggested cost for the processing system was 

$300.

More recently (in 2008) Rene de Jesus has co-authored with Franco-Gasca et al. [3.36] 

to describe an FPGA based tool condition monitoring system using similar algorithms 

to detect tool breakage using spindle motor current. Their system was shown to be 

adaptable for different machining processes. It compared the mean value o f the feature 

signal (output from wavelet) with three fixed thresholds (hi, lo, and max) which were 

calculated during “teach-in” cutting cycles. The user could also manually enter the max 

thresholds. The system displayed the condition o f the tool on a 7-segment LED (light 

emitting diode) display as GOOD when the mean value was between the hi and lo 

threshold, and FAIL when the mean value exceeded the max threshold. It also 

displayed LO and HI status depending upon the crossing o f hi or lo thresholds. The 

system functionality looks very similar to the commercial system Techna-check as 

discussed in Section 3.3.1.

3.6.1 Microcontroller-based Monitoring Systems

Microcontroller based monitoring systems can be much cheaper than PC based systems

[3.75]. However the implementation o f digital signal processing techniques using 

microcontrollers is neither simple nor straight forward. This has been largely due to 

limitations in the device’s ability to provide the mathematical capabilities required. 

This situation is however changing, with the evolution o f products such as dsPIC 

microcontrollers which are able to acquire and process the signals needed in monitoring
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applications. Due to the cost effectiveness o f  the devices it is economically feasible to 

embed any required number o f them within a machine or process. They can then be 

linked together to form a distributed sensor network.

The characteristics o f such systems have been identified by authors such as Bolic et al.

[3.75]. They correctly propose that, when designing installations where considerations 

such as cost, size and power consumption are especially critical, microcontrollers 

would increasingly represent a viable solution. The potential o f approaches based upon 

embedded microcontrollers can be demonstrated by a large body o f work including the 

case study describing the distribution o f sensors and their associated data processing 

and analysis tools within mail sorting machinery presented by Al-Habibeh et al. [3.76]. 

The approach used was based upon low-cost infrared sensors which reported the status 

o f equipment. (Further details on the system are reported in Section 3.7)

The benefits o f deploying decision making modules close to the source o f the 

information were identified by Kandasamy et al. [3.77]. They considered that the use o f 

multiple nodes provided enhanced monitoring functions and proposed that each node 

could be equipped with a specific behavioral model. The fault detection process then 

becomes a collective operation; the use o f  multiple independent detection points 

provides a degree o f redundancy that can support fault detection even with the loss o f 

elements o f the system.

Although in a wider sense, there is vast amount o f research reported on 

microcontrollers, their application in tool condition monitoring has been much more 

limited. The IPMM group has reported their use for monitoring o f milling machine 

operations such as tool changer and cutting process. The review o f following 2 papers 

in intended to summarize the research o f the IPMM group that is specific to machine 

tool applications.

Frankowiak et al. [3.78] describe a tool condition monitoring system which is based on 

the Petri-net concept, and used PIC microcontrollers for its implementation. It was 

designed to monitor a tool changer operation and was further developed and extended 

to provide information pertaining to individual tool utilisation, thus offering additional 

functionality relating to tool-life. A Petri-net model was developed and deployed in the
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microcontroller node which them monitored the tool changer operations. The Petri-net 

developed for this application required 170 transitions and 104 places. A total o f 17 

digital and 2 analogue signals were interfaced. It was reported that the majority o f the 

data is dealt with locally and only small amounts o f data would need to be sent for more 

advanced analysis on a server-side PC.

Amer et al. [3.16] have reported a tool breakage monitoring system based on 

distributed set o f PIC microcontrollers and based on frequency analysis o f the spindle 

load signal using hardware-based reconfigurable filters. These microcontrollers were 

connected to each other via controller area network (CAN) communications. Each 

microcontroller controlled a filter which filtered a particular frequency component. 

Thus by separately monitoring the frequencies related to tool and tooth rotation 

frequencies respectively, tool breakage was monitored. The results from all the nodes 

were combined to provide a decision on the overall tool condition.

Zhang and Chen [3.23] reported the use microcontroller for data acquisition o f 

vibration signals from accelerometers for tool condition monitoring. They have 

acquired the signal into a PC laptop and performed the analysis using computer based 

software.

3.6.2 dsPIC-based M onitoring Systems

The dsPIC technology is quite new and there are very limited research activities 

reported using it. The reported research that exists mainly deals with control system 

applications.

Capua et al. [3.79] describe the implementation o f a smart-sensor based on a dsPIC 

microcontroller. This was a measurement system used to monitor voltage RMS values 

and to extract the index values which were transmitted to software located on an 

external peripheral via serial communication for subsequent data processing. They 

described the conditioning o f the signal to make it suitable for the ADC of a dsPIC 

device. An external zero-crossing detector was used as the trigger for sampling of 

signal. The sampling rate was lOKsps. The RMS algorithm was optimized to use less 

data memory.
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Jayabarathi and Devarajan [3.80] report a reactive power compensation technique 

using NN based on a dsPIC microcontroller. The system consisted of three parts: A/D 

converter, NN controller and Threshold comparator. The input signals to the dsPIC 

were DC voltages proportional to the sending end real power, reactive power, sending 

end voltage and far end bus voltage. The voltages measured were input to the NN 

which produced 4 outputs corresponding to 4 different conditions. It was proposed that 

these outputs will be used for compensation o f the reactive power.

Caner et al. [3.81] report the development o f a dsPIC-based electrocardiograph (ECG) 

simulator intended to be used in the testing, calibration and maintenance o f ECG 

equipment, and for educational purposes. The developed system has a parameterized 

signal generator, a low pass filter, a summation block and interference introduction 

block. A D/A converter was used to generate an analog version o f an ECG signal. The 

simulated ECG signals were perfectly produced and controlled for a very wide range o f 

conditions. It was reported that since standard commercially available electronic 

components were used to construct the prototype simulator, the proposed design was 

also relatively inexpensive to produce.

Zhang et al. [3.82] reported a dsPIC-based excitation control system for a synchronous 

generator. They stated that the functionality provided by dsPIC is ideal for the design o f 

next generation o f Automatic Voltage Regulators (AVRs). The CAN bus was used to 

communicate with other modules in the system and TCP/IP Ethernet communication 

was used to communicate with a Distributed Control System (DCS) within a modem 

power plant. For this purpose a stand-alone Ethernet controller ENC28J60 with an SPI 

interface was used. It was concluded that dsPIC based excitation control systems are 

suitable for modem power plants.

3.7 IT-enabled Monitoring Systems

With the advancement o f information technology new means o f communications such 

as mobile, email and internet communication arc taken for granted these days. Internet 

connectivity is widely available and its use is popular with technical as well as non­

technical people. It provides an easy method o f  communication resulting in remote data 

access. Mobiles have become a basic necessity o f modem life and are considered as the
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most effective way o f voice and data communication. This section o f the review looks 

at research related to IT-enabled monitoring systems.

Bartolomeu et al. [3.83] present a distributed monitoring system based upon Bluetooth 

technology. This technique is useful for particular applications where wired access is 

not possible or not feasible such as coastal sea water quality monitoring. The system is 

designed on the principal o f dividing the complexity in multiple subsystems which 

simplifies the addition o f extra monitoring capability to the system. Each o f  the 

subsystems was called a local monitoring system (LMS) and acquired local information 

and sent it to subscribed system users (SUs) through a Bluetooth network. SUs were 

connected to internet in order to publish the information, allowing any user with 

internet connection to access them. They recommended the implementation o f an 

authentication mechanism to deny access to non-registered users.

Frankowiak et al. [3.78] reported a PIC microcontroller based distributed monitoring 

system for monitoring the tool changer in a milling machine. The system has data 

communication features such as CAN bus and Internet connectivity. Petri-nets have 

been used to monitor the discrete events in tool changer activity. The Microcontrollers 

were connected to each other and higher layer via a CAN bus. The UDP protocol was 

used to communicate with a server over Ethernet. The events were recorded in a server- 

side database for analysis and process information was displayed through a dynamic 

webpage.

The use o f web-based technology to help manufacturers with organisational challenges, 

such as geographically spread out manufacturing plants, was reported by Ong et al.

[3.84]. Information was identified in this work as a strategic resource that becomes 

essential in such a situation. The employment o f monitoring tools based on Internet 

technologies is a way in which manufacturing activities in many regions and even in 

different countries can be integrated and monitored. Among the many benefits cited, 

perhaps the most relevant here is that the performance of a machine or process can be 

monitored and accessed from anywhere in the organisation. It was also proposed that 

productivity information, diagnosis and staff training on the effective operation o f 

manufacturing systems could be shared among partners at different locations. Internet 

technology was praised by Ong et al. due to its rapid development, and its capacity of
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providing access to the most remote locations all over the world. A prototype system 

was developed and used for remote fault diagnostics o f tool wear in CNC machining.

Bucci and Landi [3.85] proposed a distributed measurement system using three 

hierarchical communication levels (fieldbus, intranet and Internet). Remote 

measurement units (RMUs) acquired the signal, performed necessary processing and 

provided it to a fieldbus server (FS). Each RMU had three modules each responsible for 

one task: signal acquisition, processing, and the fieldbus interface. The FS acted as 

master for communication with RMUs and obtained data from each o f them 

sequentially. A 32-bit m icrocontroller from Hitachi with external memory was used for 

the RMU implementation. It was attached to a 20 x 4 lines display and a 16-key 

keyboard that formed a local user interface. Several RMUs connected with a fieldbus 

server formed a measurement site. An FS handled the tasks o f data storage and 

analysis, display and report generation, and data sharing. Several measurement sites 

were interlinked using a LAN where PCs were used for the required processing power 

and management applications. A measurement server at LAN level performed 

advanced data analysis and logging. A PC-based Gateway connected the LAN to the 

Internet and provided the security layer. The system was designed with the aim o f 

supporting dynamic web pages managed by an Apache server, so that remote users 

could access the latest information. The fieldbus interface was based on the RS-485 

protocol with a data transfer rate o f up to 38.4 Kbps. The system performance was 

evaluated, for power quality in an electrical distribution network and was found to be 

well suited for such applications in terms o f cost and performance.

Al-Habaibeh et al [3.75] reported on a remote monitoring and diagnostic system for 

royal mail automatic sorting machines designated as Integrated Mail Processors (IMP). 

IMPs are complex systems which include large number o f rollers, bearings, belts, gears, 

motors, electronic systems, etc. The Royal mail delivers about 82 million items of mail 

and parcel post every day. Accordingly, IMPs do an enormous amount o f work and 

generate a lot o f heat. A microcontroller based monitoring system was developed to 

check the generated heat and any abnormal patterns were detected. Infrared imagers 

were interfaced with microcontrollers connected to the Internet. PIC16F877 

microcontrollers were used in this application along with a PICDEM.NET development 

board from Microchip Ltd used to provide Internet connectivity. UDP/IP protocol was
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used to relay acquired data on Ethernet for processing by remote computers. The use o f 

microcontrollers provided a low-cost acquisition system in this application.

The implementation issues o f the TCP/IP stack protocols on microcontroller-based 

systems were discussed by Eady [3.86]. It was highlighted that resources, within a 

microcontroller are normally very limited, are heavily burdened by the TCP/IP stack 

required for communicating on the internet. Various options were described for the 

microcontrollers in this regard and Eady emphasized that a simplistic TCP/IP stack 

might suffice for small systems. He proposed that the stack should be a modular one 

and only the modules required for a specific application should be included. He used 

CMX-MicroNet, which is a TCP/IP stack designed for use with microcontrollers. It 

supports up to 127 UDP or TCP sockets. However, its high cost (starting from $5500) 

may be an issue for small system developers. Microchip has come up with their own 

TCP/IP stack which freely available from their website. It however works only with 

Microchip microcontrollers.

Although the internet provides a very effective and fast way o f communication, it also 

renders the connected devices vulnerable to hackers. Proper security is required against 

unauthorized users to minimize malicious attacks. Hackers may intrude into an 

Internet-based monitoring system and change the settings for causing undesirable 

effects. Embedded systems normally don’t have enough processing power to employ 

full-blown encryption techniques for security over internet. [3.87]. As first line o f 

defense, an embedded system may be placed behind a firewall provided by the 

company LAN. Besides security reasons, this is often the case o f network 

implementation in a company. The firewall provides security by hiding the local 

processors’ IP addresses from the Internet and by allowing only the required services. It 

was also argued on restricted access, based on username and password authentication to 

provide further security, or in case a firewall was not available. This kind o f 

authentication can be implemented using simple HTML code with a HTTP POST 

request.

Ciancetta et al. [3.88] described architecture for a web-enabled distributed monitoring 

system based on a smart sensor and a web service. The developed smart sensor 

consisted o f three dsPIC microcontrollers and a networking embedded system based on
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Fox-board hosting ETRAX LX100 32bit CPU with on-chip Ethernet interface. The 

dsPIC microcontroller in this application has been utilized only for data acquisition and 

pre-processing o f the voltage signal from a three phase power network. The Fox-board 

controls (through a single control line) and communicates with dsPIC microcontrollers 

on a shared data bus. It also connects to internet on Ethernet. Ciancetta et al. also 

discussed the need for a synchronization clock on the network and decided the use o f 

Network Time Protocol (NTP) which provided synchronization accuracy o f 10 msec. 

Measurement results were made available as web service so that all users could built 

their own applications to use the data.

3.8 Summary

This review has shown that majority o f research on tool condition monitoring is still 

based on a PC platform and very few have utilized the embedded platforms for such 

systems. Although the PCs allow very sophisticated analysis o f the signal, they are not 

designed for real-time mission-critical operations. Embedded systems provide 

integration o f the monitoring system within the process and can monitor the process in 

real-time. Normally embedded system have limited computational power requiring the 

algorithms to be simplified and fine-tuned to work on embedded devices such as dsPIC 

microcontrollers. This seems to be the main reason for researchers to use PC based 

platforms.

The IPMM group has researched the use o f PIC microcontrollers for tool condition 

monitoring and reported the limitations o f such devices in-terms o f memory and 

computational power. The introduction o f devices such as the dsPIC has opened the 

possibilities o f deploying advanced signal processing algorithms (which were 

previously deployable on PCs only), on an embedded level. The distributed monitoring 

system combines the processing power o f small embedded devices in a coherent way 

providing scalability and enhanced processing capabilities close to the machine. The 

industrial networks such as CAN bus form the backbone of the distributed system 

where different nodes exchange process information to make better and robust 

decisions about the process health. Internet communications and GSM connectivity 

provide the facility to transfer the process information across the borders in real-time.
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This review has highlighted the need for deploying the advanced signal processing 

algorithms on embedded devices such as dsPIC microcontrollers in order to realize a 

low cost embedded distributed monitoring system which will monitor the tool condition 

in real-time and provide the diagnostic information for process management system.
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Chapter 4

e-Monitoring and dsPIC Technology

4.1. Introduction

4.1.1. Definition of e-M onitoring

The field o f e-monitoring concentrates on real-time monitoring o f industrial machines 

and processes using automated methods. The backbone o f e-monitoring, in the 

development process for different applications, is the data acquisition o f the process 

signals from various machine systems. Different sensing systems may require 

development in order to achieve the appropriate data acquisition. Sensors provide 

continuous data about a particular aspect o f  a process such as pressure, voltage, current, 

temperature etc. which needs to be collected and compiled in a desirable format so that 

it can be used in a fruitful way. The data is then processed and analysed using different 

techniques to extract features, which represent the process/machine condition. Based on 

the output o f the analysis, recommended action is then taken to keep the 

process/machine running at maximum efficiency or to alarm and trigger timely process 

stops. The obtained data should be communicated to an expert for further analysis when 

the monitoring system is unable to make a robust decision to required confidence 

levels.

4.1.2. Monitoring System Requirements

A monitoring system is conventionally based on an industrial or a commercial PC 

which is equipped with a data acquisition system. With associated proprietary software 

and data acquisition cards, it becomes an expensive solution. Although such a system is 

superior to its embedded counterpart in terms o f computational power, it is sometimes 

not deployable in industrial environments because o f space constraints. It also requires 

a complex wiring network, from the sensors to the central data collection point, which 

is often difficult to install and may be cumbersome to maintain. The cost associated 

with such complex wiring is also very high. Different noise factors may also affect the
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measured signal before it reaches the collection point. Since monitoring depends upon 

the quality o f the obtained signal, its effectiveness is directly related to the signal 

accuracy. The deployment o f  a centralized system is therefore often impracticable and 

not an ideal solution.

A more ideal solution would be to collect and (if  possible) analyze the process signals 

close to the sensors. In this way accuracy will be very high and the resulting monitoring 

will be effective. The obtained (analysed/processed) data may then be transmitted on a 

digital bus to the central processing unit for further analysis. Digital transmission is 

more immune to noise than analog data from the sensors. The problem o f wiring is also 

tackled effectively, with the added advantage o f  reduced cost. The overall size o f the 

monitoring system will be more compact making it more suitable for industrial 

process/machines. The latest embedded devices incorporate impressive processing 

power, computational speed, integrated peripherals and communication modules on a 

single chip such as the dsPIC Digital signal controller. This makes the development o f a 

distributed, process monitoring system a desirable solution to a wide variety o f 

applications.

Tanenbaum has defined the distributed system as “A collection o f independent 

computers (microcontrollers/microprocessors in the case o f embedded systems) that 

appear to its users as a single coherent system” [4.1]. Various devices in a distributed 

system can operate concurrently and tasks are undertaken independently. Actions 

however are coordinated at well-defined stages by exchanging messages [4.2] through a 

digital communication medium such as Controller Area Network (CAN) bus, which is 

widely used in many industries, as is available on the dsPIC chip.

Due to the advancements in information technology it is now expected that a 

monitoring system should provide the ability to monitor the process conditions 

remotely. The acquired/processed data may be transferred to each recipient. The 

infonnation requirement may be different for different parties depending upon the 

interaction with the process. The accumulated data may be sent to remote users 

electronically through WebPages, pagers, email, fax, SMS etc. The system must 

intelligently decide the status o f the process and send appropriate alarm messages to
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concerned parties. Considerable work has been done on this approach in the IPMM 

group at Cardiff [4.3, 4.4]

A monitoring system should be reliable, able to meet the application requirements and 

provide a low cost to benefit ratio to be accepted by the manufacturing industry [4.5]. It 

should also fit in the limited space. It should be able to withstand the harshness o f 

industrial environments. It should provide a suitable user interface to interact with.

4.1.3. Introduction to Technology Selection

The remaining o f this chapter describes the various aspects o f a distributed tool 

condition monitoring system based solely upon Microchip’s dsPIC Digital Signal 

Controllers. These are 16-bit microcontrollers with on-chip digital signal processing 

(DSP) engine. The dsPIC has a built-in digital signal processor along with typical 

microcontroller features. Computational speed makes it superior to previous generation 

of microcontrollers. The latter provides additional benefits to the front-end processing 

capabilities. In addition these devices are equipped with various peripherals and 

communication interfaces making them suitable for distributed applications. The 

following sections describe the architecture o f the researched system, the technology 

selection for the different tiers and major system operations (data acquisition, signal 

processing and communication) with a focus on enabling features o f the dsPIC 

Technology.

4.2 Monitoring System Architecture

The main objective o f this research was to develop and implement data processing 

techniques capable o f monitoring various systems, including the particular applications 

pertaining to condition o f machine tools, whilst deploying minimal electronic 

components and sensors. To achieve this it was decided to use a 16-bit dsPIC 

microcontroller platform. The hardware architecture o f the proposed distributed 

monitoring system is shown in Figure 4.1.

The monitoring system is based on a three-tier architecture that enables flexibility & 

data integration and provides resource sharing capabilities. This architecture uses 

different dsPIC microcontroller based (embedded) ‘Front End Node’ (FENs) for data 

acquisition and signal processing at the first tier. The desired variable (parameter) can
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be analysed in a FEN for any fault symptoms. Signal acquisition and processing are 

performed in this tier o f the monitoring system to take advantage of the processing 

capabilities o f dsPIC and to explore its potential in tool condition and other monitoring 

tasks. The need for a reliable and effective system demands that information be shared, 

through CAN bus communications (for the proposed system) between different dsPIC 

microcontrollers at this tier so that a more informed decision can be made about the 

health o f the process in hand. This can minimize the number o f false alarms being 

made. The performance o f CAN bus in noisy environments is known to be robust and 

superior to other methods, therefore it is being used to provide the communications 

between devices. Based on the results obtained within the IPMM group using 8-bit PIC 

devices (where an 80% expectation at the FEN level was in operation) and noting the 

increased processing capability o f the dsPIC, it was expected that more than 90% of 

faults may be identified at this tier.
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Figure 4.1: Hardware architecture o f proposed monitoring system.

The second tier in the proposed hierarchy consists o f a synchronisation-connectivity 

node also based on the dsPIC platform. This acts as the interface for FENs and provides 

Ethernet connectivity and Global System for Mobile communications (GSM)
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connectivity. The GSM connectivity to users can be achieved via internet protocols, in 

particular using the SMS messaging API [4.6]. Thus this node acts as a bridge between 

different communication interfaces. The second tier is also an additional source o f data 

processing (when conditions require it) and adds to the system capabilities. At this 

stage, when required, data from various FENs are combined and analysed. It is 

proposed that 8% o f faults can be detected (with 90% already handled by the FENs 

directly). This tier also links the FENs to a server-side PC via the internet, where 

further analysis tools can be used on a personal or industrial computer to identify the 

remaining 2%  o f faults.

The 90/8/2% split was set as an operating principle, with the hope that even more 

significant proportion o f faults can be detected within the distributed nodes. The 

selected application for system development and testing was the monitoring o f a cutting 

tool condition monitoring on milling machines.

The top tier ‘management application’ is a software implementation based on a PC that 

provides a common interface to databases. The accumulated data is sent to remote users 

electronically. Web sites, pagers, email, fax, SMS etc. may be used for this purpose

[4.3]. This architecture also supports the acquisition o f data from selected modules as 

designated by condition monitoring systems that function at the management level. In 

this way, should a monitoring module find that it cannot identify potential faults with 

its embedded processing capabilities it is able to initiate actions that capture and 

package data and deliver it to more powerful analysis tools [4.7, 4.8]. The server-side 

analysis (tier 3) is not explicitly considered in this research. It is part o f the proposed 

architecture and both possible enhancements and future work are detailed later in the 

thesis, drawing upon the results o f the implemented and tested application.

4.3 Technology Selection

Research has been reported in recent years supporting the development o f an alternative 

cost-effeetive way o f using microcontrollers [4.9]. An embedded monitoring system is 

usually small in s i/e  and can be located close to signal source, thus improving the 

signal-to-noise ratio (SNR). In a distributed system there is a need to process the signal, 

in real time, so that only useful information is sent to any higher layers in the deployed
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architecture rather than sending the raw data. This will not only make the data 

acquisition more meaningful but will also reduce the network traffic allowing more 

devices to be incorporated without exceeding the network capacity / bandwidth.

For example, the IPMM research group has exploited the capabilities o f Microchip’s 8- 

bit PIC microcontrollers, whilst evaluating and reporting their limitations particularly in 

processing power, on-chip memory and computational speed [4.7-4.9]. PIC 

microcontrollers were used mainly for data acquisition and provided limited local 

processing such as calculation and the comparison o f thresholds, average signal values, 

finding maximum and minimum values and determination o f time delays. Sophisticated 

signal processing methods such as FFT could not be fully or successfully implemented 

because o f limited memory, processing and computational power constraints. The PIC 

microcontrollers used have 10-bit Analog to Digital (A/D) Conversion; however the 

analog data acquisition had in effect been limited to 8-bit resolution because o f 8-bit 

architecture and limited on-chip memory [4.10]. The author carried out the current 

research within the IPMM group and the expertise already established in the IPMM 

centre with M icrochip’s products and the available resources deemed the now available 

and superior M icrochip’s 16-bit dsPIC devices as the best choice for the 

implementation o f this research. Figure 4.1 shows various enabling features o f dsPIC 

devices for proposed system architecture. The following sections will summarize and 

justify the selection o f dsPIC devices.

4.3.1 The dsPIC Microcontroller

The new generation (available since about 2004) o f Microchip’s dsPIC digital signal 

controllers claim to close the performance gap by providing easy migration from 

microcontroller (MCU) to Digital Signal Processor (DSP) performance. In simple terms 

they integrate the MCU functionality with DSP capabilities. This provides a complete 

system-on-chip (SoC) fully equipped with the necessary modules to enable an effective 

monitoring solution. Their reported performance in comparison with other 16-bit 

embedded systems is summarised in Table 4.1.
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Table 4.1: The dsPIC30F family as compared to other 16-bit devices (adopted from 

[4.11])

Company MCU
Family

Instruction 
C ycle Rate 

(M H z)

Number o f  
C ycles per 
Instruction

Average
Throughput

(M IPS)1
Microchip dsPIC30F 30 1-2 28

Infineon X C 161/166 40 1-6 28
TI 320LF240x 40 1-4 21

Motorola 56F80x 40 1-8 19
Hitachi H 8S/26xx 33 1-7 15
Infineon C16xx 25 2-4 12

ST Micro ST10F269 20 2-4 9
Mitsubishi M 16C 20 1-8 9
Motorola M C 9S12D 25 2-6 6

1. dsPIC30F actual, other estimated based on instruction frequency analysis
2. Preliminary results for calendar year 2004

Devices such as the dsPIC30F contain a rich set o f peripherals, have reasonably sized 

on-chip data memory, a significant program memory space (which can also be used for 

data storage), CAN bus communication capabilities and I/O ports. They also contain an 

oscillator, which can be configured, using a Phase-Locked-Loop (PLL) technique, to 

achieve 30 MIPS (Million-Instructions-Per-Second), making them suitable for many 

industrial applications.

In particular the evaluation o f capabilities and suitability o f dsPIC for monitoring 

systems lead to various options for deployment o f the dsPIC in the tool condition 

monitoring system. The dsPIC could not only effectively replace the PIC based 

monitoring modules but was also expected to provide a significant step forward by 

opening the possibility o f employing sophisticated DSP algorithms such as FFT and 

Multiband Filters for real-time signal analysis. This could be done at FEN level, where 

more than one signal can be acquired and processed simultaneously. Its selection would 

help to reduce the overall system size and cost. It can also be used at the second, 

connectivity module, tier where it can interface the CAN bus communications to 

internet/Ethernet connections. In particular a dsPIC can be used as an internet server, 

which can take some functionality o f the management tier and send top priority 

messages (in cases o f extreme emergency) to the user without waiting for the 

management application’s response.

The dsPIC has facilities well-suited for signal acquisition, processing, and 

communication with the outer world. It has a fast 12-bit ADC, large memory, 16- and
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32-bit timers, and large number o f external interrupts, input capture module, digital I/O 

ports, and multiple communication modules including CAN, SPI (Serial Peripheral 

Interface), and UART (Universal Asynchronous Receiver Transmitter). The latter can 

be used to implement the RS-232 standard for communication with a PC COM port. 

The UART and SPI modules helped in the initial development o f the proposed system. 

This evaluation o f these devices, led the author the choice o f dsPIC digital signal 

controllers (DSC) for implementation o f  the monitoring system in this research. In the 

next section, a general overview o f  dsPIC30F families is provided along with a more 

insight into the capabilities o f the particular dsPIC30F6014 digital signal controller.

4.3.2 The dsPIC30F6014 Digital Signal Controller

The dsPIC architecture has a full-featured DSP engine, C compiler friendly design, and 

familiar microcontroller-like platform and allows easy migration o f existing code for 

PIC 18 devices [4.12]. The dsPIC30F have three device families namely: (1) General 

Purpose Family, (2) Motor Control and Power Conversion Family and (3) Sensor 

Family. O f these, the author has investigated General Purpose Family platform and 

subsequently many features were utilized in the development o f the proposed 

monitoring system. Different variants o f the General Purpose Family are listed in Table

4.2.

Table 4.2: dsPIC30F General Purpose Family variants (adopted from [4.13])
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dsPIC30F3014 40/44 24K 8K 2048 1024 3 2 2 - 13 ch 2 1 1 - 30

dsPIC30F4013 40/44 48K 16K 2048 1024 5 4 4 A C 9 7 .I2 S 13 ch 2 1 1 1 30

dsPIC 30F5011 64 66 K 22K 4096 1024 5 8 8 A C 9 7 .I2 S 16 ch 2 2 1 2 52

dsPIC 30F6011 
dsP!C 30F6011 A2

64 132K 44 K 6144 2048 5 8 8 - 16 ch 2 2 1 2 52

dsPIC30F6012
dsPIC30F6012A:

64 144K 48K 8192 4096 5 8 8 A C 9 7 .I2 S 16 ch 2 2 1 2 52

dsPIC3()F5()l 3 80 66 K 22K 4096 1024 5 8 8 A C 9 7 .I2 S 16 eh 2 2 1 2 68

dsPIC30F6013 
dsPIC30F6013A:

80 132K 44 K 6144 2048 5 8 8 - 16 ch 2 2 1 2 68

dsPIC30F6014
dsPIC30F6014A2

80 144K 48K 8192 4096 5 8 8 A C ’97,12S 16 ch 2 2 1 2 68

1. Maximum I/O pin count includes pins shared by the peripheral functions.
2. ADC sampling rate up to 2()0Ksps.
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The dsPIC30F6014 DSC was selected for both the front-end and connectivity nodes of 

the distributed monitoring system. The basis for selecting the dsPIC30F6014 MCU was 

that it had the largest number o f features with maximum amount o f data and program 

memory, allowing flexibility and many opportunities to explore the potential o f such a 

new device throughout the process to develop the system proposed in this research.

An important fact to be considered is that Table 4.2 presents a brief summary o f 

Microchip dsPIC30F General purpose Family variants which were available at the start 

of this research in 2004. Concurrently with the research, Microchip expanded its 

portfolio to include compatible families o f 16-bit PIC24 microcontrollers, high speed 

dsPIC33F DSC and 32-bit PIC32 microcontrollers. These offer a new level o f 

performance and even higher integration. Recognizing that this was bound to occur, the 

author designed the monitoring system operation and supporting architecture in such a 

way so as to allow these new devices to be integrated into the system, if  required in 

future developments.

4.3.3 The CPU Architecture [4.13, 4.14]

The CPU o f dsPIC30F is based on a 16-bit (data) modified Harvard architecture with 

an enhanced instruction set, including significant support for DSP. Its instruction word 

is 24-bits wide, whilst its program counter (PC) is 23-bits wide and can address up to 

4M x 24 bits o f user program memory space. It is possible to execute all instructions in 

a single cycle, thus providing very fast predictable execution o f the developed 

programs. The only exceptions are the instructions that change the program flow, such 

as the double-word move and table instructions. Overhead free program loop constructs 

are supported using DO and REPEAT instructions, both o f which are interruptible at 

any point. Major elements forming the dsPIC core and its peripherals are shown Figure

4.2 (adapted from [4.15]) where as detailed diagram is provided in “Appendix A” . The 

grayed blocks in Figure 4.2 show the peripherals, present in the motor control and 

power conversion family, which replace the 12 bit ADC and standard PWM module.

There are sixteen 16-bit working registers (W0-W15) available as compared to one 8- 

bit working register in PIC microcontrollers. Each o f these registers can act as a data, 

address or address offset register. The 16th working register (W15) in particular 

operates as a software stack pointer for interrupts and subroutine/function calls. The
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instruction set for these devices has two classes o f instructions: the MCU and DSP class 

of instructions. Both classes are seamlessly integrated into the architecture and execute 

from a single unit. The instruction set includes many addressing modes and is designed 

for optimum C compiler efficiency.

X-Data bus <16-bit>
I/O ports A-G 

Input capture (8 ch)Y-Oata bus <16-bit>

5 timers, 16 bit 
SPI1 
SPI 2 

UART 1 
UART 2

CAN 1
CAN 2

Motor control PWM
Quad enc interface

12-bit A/D
Data bus <16-bit> 10-bit A/D

YAGU

Status Register

Compare / Std PYJM

XAGU

16 bit ALU

Prog Flash and data 
EE Data Access 

PSV and Table RW

17x17
multiplier

Rash 
program 
memory - 
up to 144k 

bytes

ACCA<40> 
ACCB<40> 
DSP Engine

W register 
array 

16x16 
Mapped 
Memory

Data 
EEPROM 
up to 4k 
bytes

Data 
SRAM 

up to 8k 
bytes

Figure 4.2: The dsPIC core (enclosed by dashed line) and peripherals o f dsPIC family

The dsPIC30F6014 has 8Kbyte o f data memory which is 16-bit wide and directly 

linearly addressed as a contiguous data space. The entire data space can be addressed as 

32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data 

memory. Each memory block has its own independent Address Generation Unit 

(AGU). The MCU class o f instructions operates solely through the X memory AGU, 

which accesses the entire memory map as one linear data space. Certain DSP 

instructions operate through the X and Y AGUs to support dual operand reads. The 

upper 32 Kbytes o f the data space memory map can optionally be mapped into program 

space at any 16K program word boundary defined by the 8-bit Program Space 

Visibility Page (PSVPAG) register. This feature allows any instruction access program 

space as if  it were data space.

Overhead free circular buffers (modulo addressing) are supported in both X and Y 

address spaces. This removes the software boundary checking overhead for DSP 

algorithms. The X AGU circular (modulo) addressing can be used with any o f the MCU 

class o f instructions. The X AGU also supports bit-reverse addressing to greatly 

simplify input or output data reordering for radix-2 FFT algorithms. The CPU supports
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various flexible addressing modes to meet the compiler needs. For most instructions, 

the dsPIC30F is capable o f executing a data (or program data) memory read, a working 

register (data) read, a data memory write and a program (instruction) memory read per 

instruction cycle. As a result, three operand instructions can be supported, allowing 

A+B=C operations to be executed in a single cycle.

The DSP engine o f the dsPIC devices features a high speed, 17-bit by 17-bit multiplier, 

a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bi-directional barrel 

shifter capable o f shifting a 40-bit value up to 16 bits left or right in a single cycle. The 

DSP instructions operate seamlessly with all other instructions and have been designed 

for optimal real-time performance. The basic instruction for most DSP operation is the 

multiply and accumulate (MAC) instruction, which multiply the two operands and adds 

it to the accumulator. The MAC instruction and other associated instructions can 

concurrently fetch two data operands from memory while multiplying two W registers. 

This requires that the data space be split for these instructions and linear for all others. 

This is achieved in a transparent and flexible manner through dedicating certain 

working registers to each address space.

The dsPIC30F supports 16/16 and 32/16 divide operations, in both fractional and 

integer formats. All divide instructions are iterative operations which can be interrupted 

during any o f those 19 cycles without loss o f data. Furthermore, the dsPIC30F6014, 

used in the proposed monitoring system, features 5 external interrupts, and an interrupt 

vector table (IVT) that supports up to 54 interrupt sources. Any source o f interrupt can 

be programmed for one o f 7 priority levels, thus providing flexibility and control o f 

target applications. In addition it is possible to interrupt the CPU through an 

implementation scheme on the rise or fall o f a signal level o f up to 24 digital I/O pins, 

adding more potential to deploy this device in all kind o f applications. The above 

features o f the CPU architecture o f such devices enhance the efficiency (in terms o f 

code size and speed o f execution) o f the C compiler.

The system requirement analysis for first tier revealed that data acquisition tasks will 

require ADC and an Input Capture (IC) module in addition to standard timers, 

interrupts and digital I/O. The CAN controller module will be utilized for CAN bus 

communications. The SPI module will be used to communicate to the LCD controller
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for information display and user interface implementation. The DSP class of 

instructions will be utilised to access the DSP Engine o f dsPIC for different DSP 

algorithms implementation

4.3.4 Development Tools and Libraries

The easy-to-leam development tools for the dsPIC30F families provided by Microchip 

are well-suited for embedded monitoring solutions. These tools and software libraries 

were very influential in the decision o f selecting this device. The following tools and 

libraries were utilized in this research.

Hardw are Tools

The main hardware tools o f dsPIC30F devices utilized include:

• Demonstration boards, allowing the designer the opportunity to have hands-on 

examples o f emerging technologies with which they intend to work.

•  In-Circuit Debugger 2 (ICD2); this device can be enabled for emulation to test 

the developed software on the target hardware circuits and to download it onto 

the dsPIC DSC.

Software Tools

The software tools available for the dsPIC30F families can be summarized as follows:

• MPLAB IDE (Integrated Development Environment) includes a text editor, 

software simulator, assembler and Visual Device Initializer (VDI) which can be 

utilized for peripherals configuration. MPLAB IDE is powerful software, yet it 

has a simple and user-friendly interface. It is available free o f charge.

• MPLAB C30 C Compiler provides code efficiency and a cost-effective, ANSI- 

compliant option for writing C or mixed C and Assembly code modules.

• Digital Filter Design and dsPICworks for data analysis o f DSP algorithms.

Softw are and Device Libraries

Microchip offers the libraries designed especially for the dsPIC30F families including:

• Math library providing functions to perform various math operations like 

trigonometric, hyperbolic, logarithmic, root and power etc.

• Peripherals library providing functions to access the on board-peripherals

• DSP library: all DSP routines are developed and optimized in dsPIC30F 

assembly language and are callable from both Assembly and C language.

• Microchip TCP/IP Stack Protocol support library for Ethernet Connectivity.
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4.3.5 dsPIC D E M l.l Development Board

The dsPICDEM l.l development board (as shown in Figure 4.3) supports a 

dsPIC30F6014 device. It provides a CAN bus communication interface (with on-board 

CAN transceiver) to allow communication between devices on the Controller Area 

Network. It also has RS-232 (used in this research to provide a data link to PC) and RS- 

485 communication channels. There is a 122x32 dot addressable Liquid Crystal 

Display (LCD) which is controlled by a on-board PIC microcontroller, which is 

connected to dsPIC30F6014 via SPI [4.16]. The LCD along with switches and 

potentiometers provides a significant tool for user interface and information display. It 

can be used to display the process signal or messages to inform the operator about the 

health o f the system.

Figure 4.3: dsPICDEM 1.1™ General Purpose Development Board [4.17]

4.4 Data Acquisition

An effective monitoring system relies heavily on the efficient data collection system. 

The dsPIC30F has powerful modules: External Interrupts (INT), Change Notification 

(CN) on I/O pins, timers/counters, Input Capture (IC), and a 12-bit Analog to Digital 

Converter (ADC). These enabled data acquisition (both digital and analog) in an 

efficient manner.

4.4.1 Digital Data Acquisition

Digital signals are discrete in nature and possess one of a pre-determined range of 

values at a given time. Normally digital computers/ microcontrollers deal with the 

binary signals, which have only two states i.e. high or low. Voltage levels used to
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represent high or low state vary amongst different representation schemes and 

platforms and appropriate signal conditioning is required to make them TTL compatible 

(0-5V) before their interfacing with the MCU. Using digital signals, information can be 

represented in different formats such as state (high or low), timing information (rising 

or falling edge or both), event (pulse), quantity (number o f pulses), frequency/rate 

(number o f pulses in a unit time) and pulse width modulation (duty cycle).

The dsPIC30F features (IC, timers/counters; External INT and CN on I/O pins) make 

digital signal acquisition an efficient task. The change in a signal can be detected by 

using CN or External INT functionality which generate an interrupt when the signal 

changes. Distinct from PIC 18 microcontrollers, the dsPIC provides the facility to 

define an Interrupt Service Routine (ISR) for each interrupt. Each interrupt can be 

given priority level from 1 to 7 (with 7 being the highest priority). This feature 

decreases software overheads making the system much faster and more efficient.

Input Capture Module

The Input Capture module (IC) is used to capture a timer value upon an event on an 

input pin. The IC features are useful in applications requiring frequency (time period) 

and pulse measurements [4.18]. Figure 4.4 shows a simplified block diagram o f the IC 

module.
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Figure 4.4: Block diagram of the Input Capture Module o f dsPIC30F [4.18]

It has multiple operating modes (for example it can be used for the selection o f a 

capture event on rising, falling or each edge) selectable via ICxCON register. The IC 

works with timer 2 or 3 which is selectable for each IC module. It reads the associated
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timer value at the selected event and stores in a four-level First In First Out (FIFO) 

buffer (ICxBUF). The IC module has the ability to generate an interrupt based upon a 

selected number (1 to 4) o f captured events. In particular, this module was used for 

measuring the width o f the output pulse from an ultrasonic distance sensor (PING)))™) 

(Chapter 7). The module was set to capture at appropriate stages both the rising and 

falling edges o f the input signal pulse and store the timer 3 in ICxBUF. A CPU 

Interrupt was generated after 2 capture events. The pulse width o f the echo pulse from 

the sensor was determined by the difference in successive reading from the IC buffer 

register.

The resolution o f the digital signal acquisition is dependent upon the system clock 

frequency ( F c y ) and setting o f the Timer module which can be configured to run at 

fractions o f the overall processor rate by configuring the prescaler register. With a 

prescaler value o f 1, the best time resolution which can be achieved is equal to 1 / F c y - 

i.e. 33.9 nsec at 29.49MIPS (the maximum throughput with installed oscillator)

4.4.2 Analog Signal Acquisition

Most machine tool signals, typically those representing load, current, voltage, speed, or 

temperature are analog in nature . These signals have to be converted into digital format 

before processing by a computer or microcontroller. The dsPIC devices are equipped 

with a fast 12-bit Analog to Digital Converter (ADC) which provides this 

transformation. Analog to digital conversion is a very important step towards the digital 

signal processing and analysis. If correct signal is not acquired, correct analysis are not 

possible. It is effectively a three step process: sampling, quantization and conversion as 

shown in Figure 4.5. Sampling is the conversion o f a continuous-time signal xa(t) into a 

discrete-time signal x(/?)= xa(nT) obtained by taking samples o f the continuous time 

signal at discrete-time instants [4.19]. If sampling is done at a Nyquist rate i.e. twice the 

highest signal frequency or higher, the full signal information can be retrieved from 

sampled signal [4.20]. The difference between discrete time signal x(n) and quantized 

signal jcq(n) is called quantization error and is irreversible. The precision and resolution 

of the ADC depends on the number o f quantization levels. In the coding process, each 

discrete valued xq(n) is represented by a b-bit binary sequence which is the ADC 

output. A 12-bit coder is required for a 4096 quantization level ADC. The dsPIC has

72



12-bit ADC which provides 4 times more resolution as compared to 10-bit ADC of 

previous PIC microcontrollers.

f
QuantizerSampler Coder

Analog D iscrete- Quantized Digital
Signal tim e signal Signal Signal

Figure 4.5: Basic parts o f an ADC (Adopted from [4.19])

12-bit ADC Module

The 12-bit Analog-to-Digital Converter (ADC) allows conversion o f an analog input 

signal to a 12-bit digital number. This module provides a maximum sampling rate o f 

200Ksps. The block diagram o f the 12-bit ADC is shown in Figure 4.6.
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Figure 4.6: Block Diagram of 12 bit ADC module (taken from [4.21])

The ADC module has up to 16 analog inputs which are multiplexed into a sample and 

hold (S/M) amplifier. The output o f S/H is the input into the converter which generates 

the result. The analog reference voltage is software selectable to either the device
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supply voltage (AVDD/AVSS) or the voltage level on the (VREF+/VREF-) pin. For a 

typical 0-5volt range, one quantization step (resolution) is equal to 5/212=1.22mV. The 

resolution can be improved by selecting the reference voltages such as to provide a 

smaller input voltage range. The ADC has a unique feature o f being able to operate 

while the device is in Sleep mode with RC oscillator selection. It can convert an input 

signal manually (under software control) or automatically (the conversion trigger is 

under ADC clock control. The conversion trigger can also come from an external 

Interrupt (INTO) or Timer 3 (TMR3) modules, providing flexible sampling rates.

The operation o f the ADC module is controlled by three control resisters ADCON1-3 

and configuration registers (ADCHS, ADPCFG and ADCSSL). ADCHS selects the 

input channels to be converted; ADPCFG configures the port pins as analog inputs or 

as digital I/O and ADCSSL selects inputs for scanning. The module contains 16-word 

dual-port read only buffer called ADCBUFO.. .ADCBUFF. Sampling per Interrupt can 

be set between 1 and 16. In this way the frequency at which ADC interrupt occurs can 

be decreased. This allows more time for the processing o f a signal using sophisticated 

algorithms like FFT which require longer computation time. This feature was used 

while implementing the overlap FFT algorithm for real-time frequency analysis 

outlined in Chapter 5.

Variable Sampling Rate

A variable sampling rate was required to be used for the real-time frequency analysis 

(Chapter 5) and Multiband HR filter analysis (Chapter 6) for the tool condition 

monitoring. Therefore it was necessary to setup the ADC in a fashion that allowed the 

sampling rate to be easily changed. The on-chip Timer 3 module (as shown in Figure 

4.7) was used for this purpose. The system clock pulse ( T c y ) was divided with a 

Prescaler to generate the timer trigger pulse and the timer incremented with each pulse. 

Timer 3 was set to generate an ADC Event Trigger, whenever the timer value (TMR3) 

matched timer period (PR3), which can be calculated as follows [4.22]:

PR3 = l '\y  /  (/s x Prescaler) (4.1)

Where Fey is the system clock frequency and /s is the required sampling rate in Hz.

The prescaler was set to minimum to obtain maximum frequency resolution as PR3 was 

rounded to an integer during calculations.
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Figure 4.7: Timer 3 operation to generate ADC event trigger (adopted from [4.22])

Now simply updating the timer period value changed the sampling rate o f the timer. 

The ADC was set to acquire a sample on the ADC event trigger from timer 3 becoming 

true. In this way variable sampling rates were realized without requiring any 

modification to the ADC registers, which would have required stopping the ADC 

before modifying any control registers. The timer period register can be update without 

stopping the timer; this method thus provided very fast updating o f the sampling rate. 

This novel technique, which utilizes the ADC feature to vary sampling rate on the go, 

will enable the monitoring o f tool breakage with varying spindle speed.

4.5 Second Tier Technology

The second tier o f the system provides an additional source o f data and signal 

processing to the system capabilities. It deals with cases where processing and analysis 

is found to be challenging and require that information from various FENs be shared, to 

reach a conclusive decision about the health o f  the system being monitored. This layer 

acts as a bridge between different communications interfaces to connect the first tier to 

Ethernet and GSM connectivity solutions. It needs extra resources for example 

communication interfaces and memory to perform the intended tasks o f CAN bus, 

Ethernet and GSM connectivity.

The design analysis for the proposed monitoring system under research revealed that 

the hardware o f the second tier should be based on 16-bit or higher architecture. Extra 

data memory was required to store data communicated by FENs for further analysis and
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decision making. After a survey o f commercially available technologies to support the 

aims o f second tier, the author selected the dsPICDEM.net platfonn. This platform, 

provided by Microchip Technology Inc., can deliver the processing power and multiple 

communication interfaces as required by the application. Moreover, the well- 

established experience and knowledge amongst the IPMM research group with 

Microchip’s hardware and software as well as the immense resources available deemed 

this platform a sensible option. A brief summary o f supporting factors and more 

detailed insight into CAN controller, Ethernet connectivity and internet Protocols are 

presented in the following sections.

4.5.1 The dsPICDEM .net Connectivity Board

The dsPICDEM.net 1 connectivity development board (as shown in Figure 4.8) 

provides a basic platfonn for developing and evaluating both connectivity and non­

connectivity based requirements. The dsPICDEM .net board provides the hardware 

circuitry for supporting the Public Switched Telephone Network (PSTN) and 10-Base T 

MAC/PHY interfaces. Its hardware schematic diagrams are provided in “Appendix A” . 

The selection o f dsPICDEM .net platform as the second tier is supported by many 

factors. The key features and attributes are listed below [4.23]:

• It hosts a dsPIC30F6014 high performance digital signal controller (DSC). The 

processing capabilities o f installed dsPIC30F6014 DSC at this level when 

combined with functionality and power provided by FENs may eliminate the 

need for third level in many applications (i.e. processing and analysis at server 

level may not be required)

• An Ethernet interface is provided using the Realtek RTL8019 Ethernet 

controller. This is accessed via the bidirectional bus on PORTD. The 

availability o f a 10-Base T Ethernet Network Interface Card (NIC) provides a 

link between second tier and internet making the monitoring system accessible 

from anywhere.

• Different libraries for TCP/IP stack, FTP and HTTP web server implementation 

are available from Microchip Inc. This would allow remote users to interact 

with the monitoring application.
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• Serial Communication Channels Interface (UART and CAN) provide with other 

devices. CAN bus is used for communication with FENs as shown in Figure

4.1.

• 64 Kbytes external I C EEPROM memory is provided for storing constants such 

as Web pages, linearization tables for sensors and custom data tables.

• External 64K words (128Kbytes) SRAM memory is provided and can be used 

to store temporary data from FENs for advanced analysis and diagnostic 

purposes. This memory is accessible via PORTD on dsPIC30F6014.

• General Purpose Prototyping Area with Expansion Header enabling the 

enhancement o f the development board such as increasing the external memory 

or connecting the header for different peripherals.

• A 2-line LCD Display along with provided LEDs, switches and potentiometers, 

is useful for status display and user interface implementation.

• Supports MPLAB ICD 2 and ICE 4000 emulator for device programming and 

emulation respectively.

Figure 4.8: The dsPICDEM.net Development Board [4.23].

4.5.2 A Stand-alone M onitoring System

With the above mentioned features, the dsPICDEM.net development board, shown in 

Figure 4.8, can in fact act as a stand-alone monitoring system, by which a small 

application can be monitored and controlled via the internet. The dsPIC30F6014 device 

has all the capabilities to acquire signals and process them, and make decisions about 

the process. Ethernet connectivity can then be implemented in conjunction with the 

TCP/IP stack software (provided from Microchip at no cost) to send data to interested 

remote users (clients). As mentioned earlier, GSM connectivity can also be provided

77



via sending an HTTP message using SMS messaging APIs eliminating the need of 

having a separate dedicated SMS connectivity module.

4.5.3 Communication using CAN Bus

The CAN is the leading serial bus system for embedded control which was 

internationally standardized (ISO 11898-1) in 1993 [4.24]. The protocol was originally 

developed for automotive applications. Today CAN bus has gained widespread use and 

is used in industrial automation as well as in automotive and mobile machines. It is 

based on a message broadcast mechanism where every node gets the message 

transmitted by any node on the bus. It uses message-content-based addressing scheme 

unlike other protocols which rely on source and destination address. This feature makes 

it suitable for open ended system in which different modules can be plugged in and out 

as required without affecting the overall operation o f the system.

Every message has a unique message identifier, which defines the content and the 

priority o f the message. The message identifer with smallest value has the highest 

priority. Unlike Ethernet, which uses collision detection at the end o f the transmission, 

CAN uses collision detection with resolution at the beginning o f the transmission. 

When a collision occurs during arbitration between two or more CAN nodes that 

transmit at the same time, the node(s) with the lower priority message(s) will detect the 

collision. The lower priority node(s) will then switch to receiver mode and wait for the 

next “bus idle” condition to attempt transmission again.

The CAN protocol supports two message frame formats, with different identifier (ID) 

length. In standard format the ID is 11 bit long providing 2048 different message 

identifiers, and in the extended format it has 29 bits providing 537 million identifiers

[4.25]. The two CAN message formats are shown in Figure 4.9. The standard message 

always has higher priority over the extended message.

There are some trade-off considerations when using message in extended format: 

higher bandwidth requirements, longer bus latency times, and less powerful error 

detection capability.
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Figure 4.9: CAN data frame formats according to ISO 11898-1 (Adopted from [4.25])

A CAN frame message starts with the Start o f Frame (SOF) bit, which is followed by 

the arbitration field including the 11-bit Identifier (ID) and the Remote Transmission 

Request (RTR) bit. The RTR bit differentiates between “data frame” and “remote 

frame” (a request frame without any data bytes) [4.26]. The Identifier Extension (IDE) 

bit indicates if  it is standard format or extended format. For extended frames it is 

followed by the remaining 18 bits o f the 29 bit ID. The control field also contains one 

reserved bit (two in case o f the extended frame), and at least 4 bits count o f data bytes 

in the data field. In the remote frame Data Length Code (DLC) corresponds to the 

length o f the requested data. Data field ranges from 0 to 8 bytes in length depending 

upon the DLC and is followed by Cyclic Redundancy Checksum (CRC) field, which is 

used as frame security check for detecting bit errors [4.27]. The ACK slot bit is sent as 

a recessive bit and is overwritten as a dominant bit by those receivers that have not 

detected any CRC failure at this time. Correct messages are acknowledged positively 

regardless o f the result o f the acceptance filtering. The end o f the message is indicated 

by EOF field (7 recessive bits). “Intermission” is the minimum number o f bit periods 

separating consecutive messages. If there is no following bus access by any station, the 

bus remains in an idle (recessive) state. [4.28].

The dsPIC30F has two on-chip CAN modules [4.28] and the dsPICDEM l.l and 

dsPICDEM.net development boards each have one Microchip CAN Transceiver with 

CAN connector ready to form a CAN communication network. Figure 4.10 shows the 

interconnection o f different nodes o f  the monitoring system connected to CAN bus. 

Each dsPIC’s CAN controller is connected to CAN bus through a transceiver which 

converts the TTL signal in to CAN bus compatible signal.
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4.5.4 dsPIC30F CAN Controller

The CAN module is a communication controller implementing the CAN 2.0 A/B 

protocol, as defined in the BOSCH specification. The module implementation is a full 

CAN system [4.14]. A block diagram o f  CAN controller is posted in “Appendix A ”. 

The on-chip CAN controller consists o f a protocol engine, set o f buffers and filters. The 

CAN protocol engine handles all functions for receiving and transmitting messages on 

the CAN bus. It supports data transfer with built-in hardware error detection, a 

sophisticated message prioritisation scheme, and has the ability to set filters that allow 

only messages o f interest to be received. Each CAN module has two receive buffers 

and three transmit buffers.

CAN Message Reception

The CAN protocol engine receives all bits o f transmitted messages and places them into 

the Message Assembly Buffer (MAB). Once a message is completely placed into the 

MAB, its identifier field (specified by the user) is matched against a filter value, in 

conjunction with a mask value, and if  there is a match it’s then moved into the 

corresponding receive buffer. The module will subsequently generate an interrupt and 

set the receive buffer full (RXFUL) bit, located in a particular receive buffer control 

register (C1RXOCON). The application software can then clear this bit, indicating that 

the module has read the buffer and it is ready to receive the next message. There are 

two receive (or acceptance) filters associated with receive buffer 0 (RXBO), and four 

associated with receive buffer 1 (RXB1). One mask is also designated for each receive 

buffer.
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If buffer 0 happens to be full when a message is accepted, it has the capability to store 

that message in buffer 1, assuming that buffer 1 is available. This feature is enabled by 

setting the DBEN bit in its control register (C1RXOCON). Additionally, if  every bit of 

received identifier field either matched the corresponding filter bit or was ignored, the 

message is automatically sent to the appropriate receive buffer, otherwise it is rejected 

as indicated by the truth Table 4.3 below.

Table 4.3: Filter/Mask Truth Table [4.28]

.Filter Bit
0 X X Accept
1 0 0 Accept
1 0 1 Reject
1 1 0 Reject
1 1 1 Accept

CAN Message Transmission

There are three transmit buffers in the module, only one o f which is allowed to send 

data at any given time. A message to be transmitted is written onto one o f the buffers 

and CAN controller is instructed when the message is to be transmitted. For example 

for tool breakage alarm, a message can be assembled/ prepared in advance and put in 

transmit buffer and when tool breakage CAN controller can be instructed to transmit 

the required message by setting the transmit request bit (TXREQ) in the associated 

control register (C1TXOCON). On receiving this command it initiates a transmission 

procedure.

Whenever the module initiates a transmission from a specific buffer, the bits o f that 

buffer are sent to CAN protocol engine to begin transmission on the bus and perform 

error checking. If the bus is busy, the module will wait until the bus is idle before 

attempting transmission. When the module completes transmission, it automatically 

clears the TXREQ bit and generates an interrupt. Only then, the application software 

can request another transmission. It is possible for all transmit buffers to request 

transmission, at any time. When the bus is free, the module will then decide the order in 

which messages are sent based on a user-specified priority level for each buffer. One of 

four transmit priority levels (0 to 3) can be assigned for each buffer, with 3 being the 

highest and 0 the lowest, thus providing an additional degree o f flexibility to the user
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application. Meanwhile, if two buffers have the same priority level, their indices will 

then resolve the issue. In simple terms, buffer 2 (TXB2) is given the highest priority 

over buffer 0 (TXBO). This mechanism enhances the module capability to ensure that 

messages are delivered to intended nodes and no message is lost, and hence proving 

CAN protocol a more reliable serial network well-suited for monitoring and control 

applications.

4.5.5 Data Compression Techniques

This section describes the proposed data compression techniques which increase the 

effective bandwidth o f the CAN bus by compressing the data into fewer bytes. These 

techniques especially focus on 12-bit ADC data which will be required to be 

transmitted in case o f an abnormal condition as discussed in Chapter 8.

The data acquired by 12bit ADC requires 2 bytes to store each sample. The fact, that it 

could be represented by 12 bits only, is the basis o f the first compression algorithm. In 

this case only 12 bits per sample are utilized to send the data using CAN message. As 

each CAN message can carry 8 bytes (64 bits), it would be possible to fit 5 data 

samples (60 bits) in a message as shown in Figure 4.11(b) as compared to 4 messages 

when no compression is used (Figure 4 .11(a)). For example 20 samples require 4 CAN 

message instead o f 5; thus providing a compression ratio o f 20%.

(a) Without Data Compression
Bytel

r *---
Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

Sam ple 1 S an ip ie2 Sam p!e3 Sam ple4

(b )  With Data Compression Technique 1 (20%)

Bytel
Bvte2 Bvte2  

2 2
Byte3 Byte4

Bvtc5 Bvte5  
2 2

Byte6 Byte7
Bvtc8 Bvte8  

2 2

S am p lc l 1 Sam pU‘2 Sanipk-3 1 Santple4 Sam ple5 | X

(c) With Data Compression Technique 2 (50%) ~ ~
' ' '

Bytel Byte2 Byte3 Byte4 ByteS Byte6 Byte7 Byte8

| Sample 1 j Sam ple2 | Sam ple3  | S am p le4  j Sam ple5 ' Sam ple6 j Sample7 Sample8

X =not used

Figure 4.11: CAN message data field for different compression techniques

The second compression algorithm relies on the fact that the first difference (difference 

between consecutive samples acquired) is normally small as compared to the whole
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ADC range as shown in Figure 4.12. It is evident from Figure 4.12 that the first 

difference exceeded the limits o f  ±119, only 0.25% of the time (i.e. 5 out o f 2000 

samples). This strongly suggests that same information can be transmitted with fewer 

amounts o f data at the expense o f some processing power.
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Figure 4.12: First difference o f spindle load signal

In this algorithm only the difference from the last sample is transmitted using only 1 

byte. Thus one CAN message can accommodate 8 bytes of data (as shown in Figure 

4.11(c)) which provides a compression ratio o f 50%. If the first difference is with in 

±119, then 1 byte is used to store it by adding 120 to the first difference. It requires 2 

bytes when the first difference is greater than ±119. In this situation the first byte will 

contains a value greater than 239, acting as flag and carrying higher 4-bits o f the 

sample. The lower 8-bits o f the sample are sent in the second byte. Thus an extra byte 

will be required whenever the first difference is larger than ±119. For a particular 

example as shown in Figure 4.12, only 5 extra bytes or one extra CAN message will be 

required to be sent for transmitting o f 2000 samples. In total 251 CAN messages will be 

required instead o f 500, providing a compression ratio o f 49.8% and hence helping in 

reducing the network traffic. This means that the CAN bus will be available for 

additional time for other nodes to communicate while data is being sent to second tier.
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4.5.6 Ethernet Connectivity

Ethernet is described by [4.29] as “the dominant cabling and low level data delivery 

technology” used in local area networks (LANs), and is commonly known as IEEE 

802.3 standard. It forms the lower two layers o f the Open System Interconnection (OSI) 

model [4.30] adopted by the International Standards Organisation (ISO). OSI model is 

a 7 layer protocol architecture representing information in a network. Using Ethernet, 

the data can be transmitted at different rates, which depend on the cabling of the 

communication network. For instance, a network built with a twisted-pair cable is 

supported by 10BASE-T Ethernet, where data is transmitted or received at up to 10 

Mbps. It is most widely deployed network and some o f its embedded applications 

include industrial monitoring, security systems and automation. [4.31]. It supports a 

wide array o f data types such as TCP/IP, UDP and Apple Talk. It provides scalable 

networks, thus providing flexibility to system installation. IEEE 802.3 standards ensure 

reliability mainly in terms o f  network connection and data transmission. It detects data 

collisions, when more than one devices attempt to send data at the same time, so as 

preventing loss o f information [4.32]. A device can be monitored or controlled through 

the internet once it is connected to an Ethernet network. Moreover, data collection and 

data sharing are also benefits from deploying Ethernet in embedded applications.

Internet Protocols

There are various internet protocols, but the most commonly employed protocol today 

is the Transmission Control Protocol/Internet Protocol (TCP/IP protocol). During the 

1970s, the need to share computer resources in a cooperative way led to the 

development o f this software-based protocol [4.33]. This protocol is reliable, thus data 

delivery is guaranteed [4.34]. M any implementations follow a software structure known 

as “TCP/IP reference model” in which software is divided into multiple layers stacked 

on top o f each other and each layer accesses services from one or more layers directly 

bellow it.

The Microchip TCP/IP Stack

Microchip developed its own “TCP/IP stack”, that provide services to TCP/IP-based 

applications such as HTTP and FTP servers, suitable for the deployment o f its devices 

in embedded solutions. It is implemented in a modular fashion. Unlike the reference
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model, one layer can access services from one or more layers not directly below it as 

illustrated in Figure 4.13.

TCP/IP Reference Model Microchip Stack Implementation

ICMP

UDP/TCP

HTTP/FTP/
DHCP

ARPTask

ARP

StackTask

MAC (or SLIP)

Application

Transport

Internet

Figure 4.13: Illustration o f Microchip TCP/IP stack software [4.33].

The Microchip TCP/IP protocol is designed to be independent of operating systems and 

is capable o f cooperative multitasking [4.33]. It is written in C programming language 

and is designed to run on the dsPICDEM.net internet/Ethernet development board that 

is equipped with dsPIC30F6014 DSC and Realtek Ethernet controller. An in-depth 

discussion about this software is available in application notes AN833 and AN870 on 

the company’s web site. It is portable across different Microchip microcontroller 

families including dsPIC30 and it provides support for Microchip C l8, C30 compilers. 

It is based on modular design allowing new components to be added easily. It 

Implements complete TCP state machine and provides multiple TCP and UDP sockets 

with simultaneous connection / management. It can be used as a part of HTTP Server 

which is included with TCP/IP stack. It also includes Microchip File System (MPFS) 

and PC based program to convert PC files into MPFS image. Above all it is freely 

available and there are not royalty or license fees which may be a major consideration 

while implementing low cost system.

The total amount o f memory used for the Microchip TCP/IP Stack depends on the 

compiler and modules being used. Typical sizes for the various stack modules are 

shown in Table 4.4. The Microchip TCP/IP Stack provides a space efficient and 

modular version of TCP/IP in a small footprint. Without getting into further details 

about the Microchip TCP/IP stack, its implementation with HTTP server was 

considered in this research.
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Table 4.4: Memory Usage for various TCP/IP Stack Modules [4.33]

M odule Program M em ory  
(words)

Data M em ory  
(bytes)

MAC (Ethernet) 906 5(1)
SLIP 780 12,2)

ARP 392 0
ARPTask 181 11

IP 396 2

ICMP 318 0

TCP 3323 42

HTTP 1441 10

FTP Server 1063 35

DHCP Client 1228 26

IP Gleaning 20 1

M PFS'31 304 0

Stack Manager 334(4) 12+ICMP Buffer

1. As implemented with the R TL8019AS NIC

2. D oes not include the size o f  transmit and receive buffers which are user defined.

3. Internal program m em ory storage.

4. M aximum size. Actual size m ay vary.

4.5.7 GSM Connectivity

There is an increasing demand for real-time message communication on personal 

mobile devices. In recent times different products and services have become available 

which can be integrated into a monitoring system and SMS messages can be sent 

directly to the concerned person by the monitoring system. A SMS messaging hardware 

is basically a scaled and stripped down version o f a mobile phone which provides only 

the SMS features. This can be interfaced with a microcontroller based system through a 

UART port and messages can be sent by following the specialized AT commands. This 

method has been tested in previous research [4.35] within the IPMM group. The main 

requirement for this system is the availability o f GSM signals where the system is to be 

deployed. This method is however not suitable for places which are sensitive to GSM 

transmission and block are restrict these signals.

The other option is a subscription based service which hosts above mentioned hardware 

on a larger scale and provide internet interface to their system. Users can install SMS 

software on PC which sends HTTP request to the service provider specifying all the
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information required for sending a text message. The automated system on the service 

provider side parses the HTTP message and prepares and sends the message 

immediately. One such service provide, ClickSMS also provides SMS messaging API 

which can be used to implement personalized application for sending SMS on an 

embedded platform which are connected and can run TCP/IP protocol. This 

functionality is implemented on the dsPIC based connectivity node in the integrated 

system.

4.6 Signal Processing and Analysis

There is great need to be able to process the signal in real time so that only useful 

information is sent to the higher layer instead o f sending the raw data. This will not 

only make the data acquisition more meaningful but reduce the network traffic allowing 

more devices to be incorporated in a network without exceeding the network capacity 

/bandwidth. Appropriate signal processing can provide an effective base for fault 

prediction. The first stage is to differentiate between normal and abnormal conditions. 

When an abnormal condition is detected then deeper analysis and monitoring can be 

triggered. DSP algorithms have been used for such purpose [4.36]. Even when the 

process is with in control limits different analysis o f the various parameters can predict 

a potential developing (soft) fault at an early stage before it actually occurs. This will 

help to avoid catastrophes and fatal accidents as well as financial losses.

Math and DSP algorithm libraries provided by Microchip enable the mathematical 

computations to be performed with great speed and accuracy. The dsPIC30F Math 

Library is the compiled version o f  the math library that is distributed with MPLAB C30 

compiler. It contains advanced single and double-precision floating-point arithmetic 

and trigonometric functions from the standard C header file <math.h>. The library 

delivers small program code size and data size, reduced cycles and high accuracy. The 

Math functions are callable from either MPLAB C30 or dsPIC30F assembly language. 

These functions are IEEE-754 compliant, with signed zero, signed infinity, NaN (Not a 

Number) and denormal support and operated in the “round to nearest” mode. The DSP 

library supports multiple filtering, convolution, vector and matrix functions. There are 

total o f 49 functions. Some DSP functions use double precision and floating point 

arithmetic. All DSP routines are developed and optimized in the dsPIC30F assembly
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language and are callable from both assembly and C language. Among the supported 

functions which are utilized in this research are:

•  Infinite Impulse Response (HR) Filters

•  Finite Impulse Response (FIR) Filters

•  Complex Fast Fourier Transform (FFT)

•  Vector Operations: Addition, Subtraction, Dot Product and Power

•  Support for Program Space Visibility

4.7 Summary

The dsPIC technology has introduced a new level o f integration at the embedded level 

by combining the power o f DSP with the rich set o f peripherals and communication 

facilities o f an MCU. These features can greatly contribute to the development o f a 

reliable distributed monitoring system. A distributed system based on the 16-bit dsPIC 

digital signal controllers is proposed. A general overview o f the proposed system was 

provided along with various aspects in signal acquisition, processing and 

communication. Efficient and reliable communication protocols such as CAN have 

become a necessity to enable the integration o f distributed devices. Microchip has 

developed a TCP/IP protocol designed to ensure optimal performance requirements o f 

the dsPIC devices, and this was implemented in this research, in conjunction writh 

Ethernet Protocol, to enable access via the Internet. In this way a common interface was 

established for process management and communication o f the real-time process status 

to the users remotely.

The technology requirement to enable the deployment o f a three tiered distributed 

monitoring system based entirely on dsPIC modules and aiming at the monitoring of 

the machine tool was established in this chapter. To test the applicability and 

effectiveness o f the system, the Kondia B500 milling machine will be monitored for 

tool breakage and several algorithms will be developed and implemented (chapter 5 and 

6). In Another application, the depth o f cut (DOC) is to be measured on-line using 

ultrasonic sensors and various techniques and algorithms (chapter 7). Finally these 

systems will be integrated to form a coherent TCMS (chapter 8) using technologies and 

techniques discussed in this chapter. These will be presented in the following chapters.
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Chapter 5

Real-Time Frequency Analysis for Tool Monitoring

5.1. Introduction

This chapter describes the development and testing o f dsPIC digital signal controller 

algorithms both in a general sense and for a specific application. The latter used real­

time frequency analysis o f machine tool signals as a basis for a tool health monitoring 

system. Frequency analysis reveals information about the overall signal content which 

can be otherwise hidden in time domain signals. Time domain signals containing 

complex patterns are broken apart into their various frequency components, which act 

as a feature set for tool condition monitoring. Normally, for frequency analysis, a signal 

is sampled in the time domain and its frequency response is calculated using different 

mathematical techniques such as the Discrete Fourier Transform (DFT). The Fast 

Fourier Transform (FFT) is a well known algorithm used to compute the DFT o f a 

signal a much faster speed [5.1]. However FFT is normally only suitable for stationary 

signals (signals whose properties are unaffected by change in the time domain) and is 

not very effective for non-stationary signals; it cannot reveal information about 

transients occurring in non-stationary signals [5.2]. FFT can be used for machine tool 

monitoring through a modified algorithm known as Short Time Fourier Transform 

(STFT) which computes FFT for a small portion o f signal at a time as will be discussed 

in Section 5.2.

The primary aim was to investigate the suitability and capability o f dsPIC devices for 

monitoring the health o f cutting tools using digital signal processing algorithms. This 

was intended to provide a practical low cost system as an alternative to the majority o f 

the reported research, where a PC based analysis under laboratory conditions were 

carried out (as reported in Chapter 3). The author has, in published work, successfully 

demonstrated the capability and accuracy o f  such devices in perfonning different signal 

processing algorithms such as digital filters and FFT [5.3].
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The new research here used an overlap FFT algorithm which was initially tested using a 

simulation model developed in Matlab/Simulink software. After verifying the 

effectiveness o f the algorithm with systematically selected parameters, this was 

programmed into the dsPIC microcontroller.

The IPMM group has created a large database o f recorded signals from a variety o f 

cutting tests on a known milling machine. For testing purposes the recorded spindle 

load signals were selected and in each test the analog signal was recreated from the pre­

recorded files, containing data acquired, using Matlab software and National 

Instruments Data Acquisition (DAQ) card with analog output capabilities. In order to 

simplify the test and to concentrate on the overlap FFT algorithm, the required signal 

conditioning stages were implemented in the Matlab code whilst re-generating the 

signal. The generated signal was then input to the dsPIC based system, which processed 

the acquired data and stored the results in its memory. The stored results were 

communicated to a PC after completion o f the test, for display and reporting purposes. 

Various aspects, related to the design and implementation o f the system, are discussed 

in the following sections.

5.2 Frequency Analysis

There are various techniques available for the frequency analysis o f a signal such as 

filter banks, wavelets, power spectral density and Fourier based transforms including 

Fourier Transform (FT), FFT and STFT.

5.2.1 Fourier Transform

The Fourier transform (FT) needs no introduction as a tool for analysis, and full 

discussion o f it is beyond the scope o f this thesis. However it is still the most important 

signal processing tool, and as such warrants a brief overview. It is also necessary 

background for understanding o f  the Short Time Fourier Transform (STFT). Using 

Fourier theory, one can mathematically relate the time domain with the frequency 

domain. The Fourier transform is given by [5.4]:

where x(t) is a signal represented in the time domain and X(J)  is its Fourier transform in 

the frequency domain. Normally the Fourier transform is defined for continuous

(5.1)
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signals whereas digital systems are discrete in nature and the signal acquired is also 

discrete. The Discrete Fourier Transform (DFT) is thus one of the specific forms, which 

requires an input that is discrete and whose non-zero values have a limited (finite) 

duration. Such inputs are often created by sampling a continuous signal, such as the 

spindle speed and load signals for machine tool application. An input sequence o f N 

complex numbers x„, n=0,..N-l is transformed into a sequence Xk o f N complex 

numbers via the DFT according to Equation 5.2.

D F T N{xn} =  X k = £ x ne 1n 0 < k < N - \  (5.2)
n = 0

The DFT provides enough frequency components to only reconstruct the finite segment 

that was analyzed. Its inverse transform cannot reproduce the entire time domain signal, 

except when the input is periodic. Thus the DFT is often described as the a transform 

for the Fourier analysis o f finite-domain discrete-time functions. Since the input 

function is a finite sequence o f real or complex numbers, the DFT is ideal for 

processing information stored in computers. In particular, the DFT is widely employed 

in signal processing and can be computed efficiently in practice using a Fast Fourier 

Transform (FFT) algorithm. FFTs are o f great importance to a wide variety o f 

applications, from digital signal processing and solving partial differential equations to 

algorithms for quick multiplication o f large integers. Calculating the DFT directly is 

known to take take O(N 2) arithmetical operations, where as the FFT algorithm will 

compute the same result in only 0(NAog/V) operations. Since the inverse DFT is the 

same as the DFT, but with the opposite sign in the exponent and a 1 IN  factor, any FFT 

algorithm can easily be adapted for inverse transforms.

To summarize, the main parameters of an FFT are as follows:

The FFT operates on a block o f data to produce a corresponding frequency spectrum as 

a set o f data . I f  f i  is the sampling frequency of the input signal xn and an N-point FFT 

is perfonned, then the resulting spectrum will have N values from 0 to f i  equally spaced 

on the frequency scale at A / Frequency components from f s /2 to f s are in fact mirror 

images o f the 0 to f i /2  components and the useful frequency output range is normally 

considered as 0 — fi/2 . The Frequency resolution A /o f the DFT is defined as follows :-

f  / 2A/ = Hz (5.3)
(TV/2) -1
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Further if  Y -  DFTn{x„} is the N point Discrete Fourier Transform (DFT) o f input a 

signal xn then [5.5]

Amplitude o f the DFT = \ Y  | (5.5)

Power o f the DFT = Y
N

(5.6)

As a comparasion, two other specific transforms are reported here, since these were 

considered in terms o f compactness and effectiveness o f the code required for the 

eventual dsPIC implementation. Zoom-FFT and Chirp-Z transform (CZT) can be used 

for calculating the spectrum of a signal over a small range o f frequencies. Details o f the 

zoom FFT and the chirp-Z transform can be found in [5.6] and [5.7] respectively. 

Figure 5.1 shows a typical spectrrum for the spindle load signal (of a milling machine) 

obtained, whilst cutting with a broken tool. Figure 5.1(a) shows the version o f the 

spectrum obtained using CZT and Figure 5.1(b) shows results o f an FFT performed on 

the same data. The CZT provides much better, and arbitrary, frequency resolution. 

However CZT algorithm requires two FFT operations, one Inverse FFT (IFFT) 

operation and two array multiplication operations. As a direct consequence, the FFT 

calculated the required feature set with much less computation time. This was deemed 

to be a significant requirement for the dsPIC microcontroller-based system that was to 

form the heart o f a real-time tool conditioin monitoring system.
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Figure 5.1: Comparison o f Chirp Z transform and FFT
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5.2.2 Short Time Fourier Transform

Although the Fourier transform is the standard spectral analysis technique, it performs 

poorly at analyzing non-stationary signals, since the frequency content is considered for 

the complete block o f input data. To see how the frequency contents o f a signal change 

over time, the signal can be ‘cu t’ into blocks or frames o f contiguous data and the 

spectrum o f each frame computed. This provides a time resolution equal to the selected 

length o f frame. This technique is called Short Time Fourier Transform (STFT). 

Usually, in STFT analysis, the signal x(/) is windowed using some window function 

h</), which is nonzero for only a short period o f time, before the Fourier transform is 

applied. The complete time-frequency transform is then acquired by translating this 

window along the signal and repeatedly applying the Fourier transform at each location. 

In this way a 2D transform is created, with values defined at translation points x and 

spectral points f  mathematically, this is written as [5.8]:

The simplest type o f window function is the rectangular window, which in effect 

simply selects the signal frame whose length is equal to window size. Other window 

functions include the Hanning window, the Hamming window and the Gaussian ("hill" 

centered around zero) window. X ( r , f ) is essentially the Fourier Transform o f 

x(/)vv(/ -  r ) . In order to demonstrate the benefits o f STFT for a non-stationarry signals, 

a simple example is provided in the following paragraph.

Figure 5.2 shows the analysis o f two different combinations (x\(/), *2(0) o f two specific 

sine waves (with frequencies/1=5 andy2=20 Hz), such that:-

In the left hand column the additive combination, * 1(0 (Equation 5.8), o f the two sine 

terms applies for whole o f the example 2 second timeframe. However, the right hand 

column results o f Figure 5.2 use X2{t) (Equation 5.9) where f  sine wave exists initially 

and is then replaced with the fa frequency. The plots thus show up the limitation o f the 

FT, since the power spectrum for both cases are essentially the same. The reason for

STFT {x( t ) }  = X ( r , f )  = f  x ( t ) w ( t - r ) e ~ j2?rfldt (5.7)

x \(/) = sin {2nf\t)+sin(2nf jt)

x i(t) = [\-u(t-\)]sin(2nf \t)+u(t-\)sin(2 n f 2t)

(5.8)

(5.9)
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this can be seen in Equation 5.1 - the terms o f the integral are in this case, for the full 2 

second duration. On the other hand, the STFT correctly identifies the switch over 

between the two sections o f the signal X2(t).
X\ ( /)  =  sin (In f t) +sin(2nf2t) x2(t) = [1 -u(M )]sin(2nf it)+u{t^ )sin(2nf2t)
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Figure 5.2: Signals presented in different domains: the time domain (top), the power 

spectrum from the FFT (middle), and the spectrogram from the STFT (bottom)
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In the most direct application of the discrete Time STFT, as defined below, is in its use 

to calculate sampled STFT for discrete time signals sampled at fixed intervals.

M - \ ■2 n  t --2-TT*"
S T F T { x J  = X km = ,m

n=0

STFT{xn) S X k,m = DFTN{xn_Lm(wa

(5.10)

(5.11)

Where

zeros(N-M) is the zero padding to make the length o f the signal equal to FFT length N,
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M  is window length or block/frame size and

Lapse time L is number o f samples the signal is shifted between consecutive FFT 

calculations.

There is no overlap between consecutive data frames, when the signal is broken into 

blocks o f length M then shifted M  samples at a time along the window i.e. L=M  as 

shown in Figure 5.3(a). In this case one FFT result is obtained for each frame. The 

following section and Figure 5.3(b) introduce the use o f overlapping data sections.

Signal .v(/)

No Overlap (L=M)

FFT1
Block Length^ M

FFT2

FFT3

Figure 5.3 (a): STFT with no overlap

Overlap = M-L
.......................J .........../"••••.

FFT1

J  \ . JL

i - j —>FFT3

I. L l. L M

FFT41 

 * FFT5

Figure: 5.3 (b) Overlap FFT

5.2.3 Overlap FFT

The window function has a dual purpose in the STFT: to isolate a block o f data from 

the signal and to minimize the spectral frequency leakage resulting from sharp signal 

cutoffs (discontinuities) at the data block ends/edges. If there is a transient signal at the 

edge o f the block, this will not be visible in the FFT spectrum because signal will be 

attenuated to zero due to windowing. To overcome this problem and to reduce time 

between successive FFTs, the overlap parameter (lapse time) L should be shorter than 

the window length M , thus providing an ovcrlap=M-L between two connective frames, 

as shown in Figure 5.3(b).
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In defining the details o f the STFT/overlap FFT to be used for a given application, there 

are several parameters which must be considered. Briefly these parameters are as 

follows:

• Type o f window.

• Block/window length, M.

• FFT size

• Frequency Resolution

• Amount o f zero padding, if  any.

• Lapse time L or Amount o f overlap between blocks (M-L)

The specifics o f parameter selection for the cutting tool application will be discussed in 

Section 5.5.

There are other transforms which can also be used for time-frequency analysis such as 

the Gabor transform, wavelet transform, chirplet transform and transforms based on 

Wigner, Wigner-Ville and Choi-Williams distribution functions. These are not 

considered in this thesis.

53 Cutting Forces / Spindle Load Signal Analysis

A typical milling machine consists o f a motor driven spindle, which holds and revolves 

the milling cutter and a movable worktable, which mounts and feeds the workpiece. 

These are almost always controlled by a computerized controller, with perhaps a 

supervisory role being played by a human operator [5.9]. This leads to several 

operational problems, one o f which is the potential for a cutting tool breakage to go 

undetected. The dangers o f continuing to utilise a broken cutter range from damage to 

the workpiece through to potential damage o f the machine tool. For this reason there 

has been a great deal of effort deployed aimed at detecting tool breakage.

The end milling process exhibits a period generation mechanism, perturbed by spindle 

speed variations, tool conditions and effects o f chip [5.10]. The cutting force/spindle 

load signal varies periodically with tooth passing frequency /p which is the product o f 

the spindle rotational frequency and the number o f cutting teeth (n,).

—- [Hz] where N s is spindle speed in revolutions/min (5.12)
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The basic assumption made considers that, under normal cutting conditions, the cutting 

force is periodic, with / p being the dominant frequency. The characteristics of the 

cutting force signal and its frequency components may then be assumed to change with 

(usually deteriorating) tool condition. Thus it is proposed that the tooth passing 

frequency and its harmonics are dominant for a healthy tool/cutter. The definition used 

for ‘healthy’ is that each tooth removes approximately the same amount o f material per 

cut. In the event o f a tooth breakage, since one o f the teeth is missing and next one has 

to do extra cutting, a clear indication o f the rise in the cutting force for that particular 

tooth is seen. This in turn is responsible for a change in overall frequency spectra. In 

simple terms, the cutting force signal decreases and then increases once every 

revolution compared to healthy levels and a tool rotation frequency/iw ill appear in the 

spectrum.

This introduces frequency components which are the same as those arising due to tool 

rotation and its higher harmonics. These frequency components get stronger when the 

tool breaks and can be used to give clear indication o f  the breakage.

In a separate, more theoretical analysis a cutting force model was developed in Matlab. 

This model was based on equations provided in [5.11] and modeled forces for both a 4- 

tooth healthy tool and for a tool with a broken tooth. In each case the cutting tool 

rotational speed was 500 rpm. The modeled cutting forces are shown in Figure 5.4.

Figure 5.4: Modeled cutting forces

The FFT spectrums (of the modeled cutting forces) obtained are shown in Figure 5.5. 

This specific case illustrates the previously assumed behavior. The tool rotation 

frequency / r was 8.33 Hz and the tooth passing frequency/p was 33.3 Hz. From Figure

f r = N s / 60 [Hz] (5.13)

time (sec)

(a) H ealthy  too l

time (sec)

(b) Tool with 1 tooth broken
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5.5 it can be seen that components o f the tooth passing frequency^ (and to a lesser 

extents its harmonics) are prominent in the frequency spectrum for healthy tool. For 

the broken cutter case, the tool rotation frequency f T and its harmonics now dominate 

the spectrum, noting that f p is itself a multiple o f f T. This analysis confirms that 

frequency domain analysis can be used to indicate tool breakage.
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(a) Healthy tool (b) Tool with 1 tooth broken

Figure 5.5: FFT spectrums o f the modeled cutting forces

By analyzing the magnitude and pattern o f these key frequencies present in the 

spectrum and having selected the algorithm (to resolve the harmonics o f tool rotation) 

for real-time analysis on a dsPIC, and using limited amount o f data, it is possible to 

monitor the health of the cutting tool in real time.

Figure 5.6 shows the spindle load signal re-constructed from cutting cycles undertaken 

in the IPMM laboratory, for a simulated tool breakage. Signals for healthy and broken 

tool were ‘stitched’ together to simulate tool breakage profile. The corresponding 

spectrogram from a STFT, performed in Matlab using built spectrogram function is also 

shown. For this offline test, the tool breakage occurs around 1 second into the time 

profile. Prior to this the tool is in healthy condition and the spectrogram is relatively 

flat. Tool breakage can easily and almost immediately be identified from the increasing 

amplitude of the tool rotation frequency f r and its harmonics (again 8.33Hz and 

multiples for results shown).

The spindle speed signal was processed in the same way and the results are shown in 

Figure 5.7. This confirms that these assumptions can equally be applied to spindle 

speed signal as well. This shows the suitability o f the STFT for real-time tool breakage 

detection using associated signals.
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5.4 Selection of Param eters

This section describes the selection o f different parameters for the overlap FFT 

algorithm. These needed to be set to make the method computationally efficient and 

hence fast enough for tool health monitoring whilst providing sufficient robustness and 

resolution. In comparison to other appropriate published research, the ambitious target 

of achieving tool breakage detection in under 2 tool revolutions post breakage was set 

an objective. For the numerical example provided this equals to detection of tool 

breakage with in 0.24 seconds.

5.4.1 Window Type and Block Length

The first parameters considered were the window type and block length M. This was 

approached via consideration of the ability to resolve 2 close frequencies. For effective 

tool condition monitoring, the harmonics o f the tool rotation frequency f r present in the 

spindle load signal are those that must be resolved. The time resolution of STFT is 

inversely proportional to window length i.e. the window with minimum length M  will 

provide best time resolution while separating the harmonics. The Fourier transform of 

two windowed sinusoids with frequency / /  andy} summed together is the sum of two 

overlapping window transforms, as shown in Figure 5.8 for a rectangular window.

<L>—

O.

■n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Frequency (x  A  Hz)

2 f s
Figure 5.8: Two rectangular window transforms displaced by V /=  -jf- Hz

A simple sufficient requirement for resolving two sinusoidal peaks spaced V /H z apart

is to choose a window length long enough so that the main lobes are clearly separated

[5.12]. To obtain this separation, it is required that

Ba < V / Hz (5.14)
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where V / = | / 2_/j| is the minimum sinusoidal frequency separation in Hz and B^is the

main lobe width o f the window’s transform in Hz given by B ^ W  (fs /  M). Here W is 

the main-lobe width in terms o f frequency bins (when critically sampled i.e. FFT size N  

is equal to the window length M).

Requiring Ba < V /H z  thus implies that:

< M 5 )

More specifically, the harmonic components o f tool rotation frequency f r (Hz) occur at 

integer multiples of f r, and have spacing V / — f r . Thus to resolve these particular 

harmonics requires that:

f
M  > W  —  or M  > k -W  (5.16)

J r

where k = fs / f  is the number o f samples in the fundamental period o f the signal with 

fundamental frequency f T, which is sampled at a sampling rate o f f s. The sufficient 

resolution requirement on window length M , for periodic signals with period o f k 

samples, is M ' t  Wk. This is shown diagrammatically in Figure 5.9, for 2 o f the 

considered window types. Resolving the harmonics o f a periodic signal with period k  

samples is assured if  there are at least [5.12]

• 2 periods under the rectangular window (M = 2k), [shown in Figure 5.9(a)]

• 4 periods under the Hamming window (M = 4k), [shown in Figure 5.9(b)]

• 6 periods under the Blackman window (M  = 6k),

• 2L periods under the Blackman-Harris L-term window (M  = 2L.k).

^ k  ■■ ‘T k —i
(a) Rectangular W indow: Length M = 2k

(b) Ham m ing W indow: Length M = 4k

Figure 5.9: (a) Rectangular and (b) hamming windows applied to a sinusoidal signal

105



These analysis show that using a rectangular window can provide harmonic separation 

with the least amount (2 tool rotations) o f  data being required. For example, if  the 

spindle load signal is sampled at 1066Hz for a tool revolving at 8.33 Hz (spindle speed 

o f 500 rpm), the minimum number o f  samples (equal to window length) required for 

Fourier analysis will be 256.

As well as providing the minimum window/block length, the rectangular window has 

added advantage of having a constant amplitude (in its active region) which can be 

safely assumed unity. The implications for the dsPIC implementation are that there is 

no need for array multiplication o f the window and the shifted signal. Although 

rectangular window provides spectral leakage but this can be minimized by making the 

sampling rate proportional to the spindle speed, whereby f r and its harmonics are 

located in the centre o f the main lobe o f the window transform.

5.4.2 FFT Length and Resolution

The next parameter considered was the FFT length (N) and in particular the effect on 

the achievable resolution in the resulting spectrums. To facilitate this spindle load 

signals (for healthy and broken cutters) were analysed using N values o f 128, 256, 512, 

1024, 2048 and 4096. Fourier transforms were compared in terms o f the clarity o f the 

required and prominent frequencies. Figure 5.10 shows a typical set o f results.

It can be seen in the Figure 5.10 that the tool rotation frequency f r (8.33 Hz) and its 

harmonics are prominent in the broken cutter transform for each N value case. The 

components between each harmonic have almost zero amplitude. For the 128 point FFT 

the prominent frequencies exist but the resolution is limited and no information is 

present for between harmonic frequencies. The 256 point FFT (broken cutter) shows 

prominent frequencies and at least one frequency component between them which are 

all very small in magnitude. The information provided by FFTs with larger N values 

confirms the choice of the 256 point FFT for the tool condition monitoring application. 

With N=256 and signal sampling 1066 Hz (for spindle speed = 500 RPM) the tool 

rotation frequency was 8.333 Hz. The frequency resolution thus would be:-

A f  = —  = —  = 4.165/Zz (5.17)
N  2
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f= 1065Hz, ASS= 500rpm, DOC=2mm, feedrate= lOOmm/min, 4 teeth cutter, tool dia=15mm  

(Left: Healthy Cutter, Right: Broken Cutter, Row 1: Spindle Load, Row 2 to7: FFT) 

Figure 5.10: Comparison of Spindle Load Signal for different FFT Lengths (N)

Frequency resolution can be increased by increasing the FFT length and zero padding 

the signal with N-M  zeros. However it will not provide better frequency separation as 

this is limited by the window length. Tests and analysis were calculated using a fixed
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block length o f 256 and filling the remaining FFT buffer with zeros. The sampling rate 

in this case was HCHz, providing frequency resolution of A/=3.91, 1.95 and 0.98 Hz 

for the FFTs shown in Figure 5.11 (a, b and c). Figure 5.11(a) has no zero padding, 

Figure 5.11(b) has 256 zeroes added and Figure 5 .11(c) has 768 zeroes.

0 4

£  0 3|
<P
fi 0 23
C c n|  o 1

0 1 —
0 2 0  4 0  60  80 100 0  2 0  4 0  60  80  100 o  2 0 4 0  60 80 100
F ra m e  18  F re q u e n c y  (H z) F ra m e  1 8  F r e q u e n c y  (H z) F ra m e  18  F re q u e n c y  (Hz)

(a) 256 point FFT (b) 512 point FFT (c) 1024 point FFT

Figure 5.11: FFT o f zero padded spindle load signal frame (frame length=256)

As the overall FFT length is increased, increased frequency resolution provides more 

spatial detail and correct harmonics can be detected. Thus the highest possible FFT size 

should be used if  the resources allow the computation and processing sufficiently 

quickly i.e. before the next frame appears and requires processing. This increased 

frequency resolution provides better estimate o f the frequency spectrum especially 

when the desired frequencies do not fall exactly in the centre o f the main-lobe of 

window transforms because o f the frame/window length not exactly matching with any 

multiple o f fundamental period of the signal (i.e. M^W.k). However if sampling rate is 

in proportion to the spindle speed then the condition, M=W.k, will always be satisfied 

and the 256 point FFT will be able to detect the tool breakage for all spindle speeds.

5.4.3 Lapse Time and Overlap Size

The remaining parameter that was considered was the overlap size M-L. The Overlap 

size determines the time lapse L between successive FFT computations. Overlap 

processing can only be achieved if the time required, to calculate the FFT, is shorter 

than the frame length [5.13]. The overlap between frames has the effect o f magnifying 

the time resolution o f the STFT. Overlap is normally defined as a percentage or fraction 

of the frame/block length. In the tool monitoring application the frame length is fixed to 

correspond to 2 tool rotation periods. The lapse time L is thus referred to as a fraction 

of tool rotation. For example, when L=Vi (of a tool rotation), the overlap is 75% or if  

L='/4, the overlap is 87.5% of frame length. Ideally one FFT computation should be
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performed for each tooth period, in order to achieve the optimum fault detection time. 

This means that for a cutter with n{ teeth, L  should be 1 /n{ and the overlap should be 

2 - \ / n t revolutions or (l - l /2 « ,)x  100%.

As sampling rate is linked to spindle speed (justified in Section 5.5.3) for this 

application, any increase in spindle speed will decrease the frame acquisition time and 

there will be less time available to compute the FFT. Considering the processing power 

o f dsPIC microcontroller, it will not always be possible to compute and process an FFT 

in l//i, tool revolutions. Taking into consideration the computing power o f the dsPIC 

and the targeted breakage detection time o f less than 2 revolutions, it was decided to 

compute the FFT every half tool rotation thus providing a 75% overlap with lapse time 

o f 64 samples for selected buffer size o f 256 samples.

5.5 Tool Monitoring Simulation

The Time-Frequency analysis technique for monitoring the spindle load signal was 

simulated in Matlab/ Simulink software. This process was performed to assess the 

suitability o f the STFT/overlap FFT (with the selected parameters) for tool condition 

monitoring before implementation on a dsPIC microcontroller and to address any issues 

arising during this simulation. The developed simulation model is shown in Figure 5.12 

in the form o f a screen shot. The spindle load signal was acquired (at a sampling rate o f 

8Ksps) from actual cutting tests and was stored in an excel file. Data was then imported 

into the Matalb workspace using built-in functions and converted into a voltage signal 

representing spindle load and stored as a 2-dimentional variable (with the first column 

containing simulation time and the second column containing the signal). The 

simulation model then read the modified spindle load signal from the workspace and 

ran the simulation. The simulated signal (shown in top left plot o f Figure 5.12) was 

passed through an anti-aliasing filter before being fed to the ADC block (consisting o f 

S/H with sampling ate of 1066sps and ADC quantizer to simulate 12bit ADC o f the 

dsPIC microcontroller). The output from the quantizer is shown in top right plot o f 

Figure 5.12. This simulates the A/D conversion using a 12 bit ADC with a justified 16 

bit result (equivalent to the behaviour o f the ADC module on the dsPIC 

microcontroller) with sampling rate o f 1066Hz. This sampling rate was selected so that

109



the tool rotation frequency and tooth passing frequency are in the centre of the main 

lobe of the rectangular window transform.

b & < % • «  • *, c— r U

f ^ r -

Simulated spindle load signal
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n—1 id ******Om|b«
Simulated spindle load signal (top-left) Signal acquired by ADC (top right) FFT frame (bottom right) 

Figure 5.12: Screenshot of the simulation model with generated plots

The spectrum scope block was used to simulate the STFT as it provided all the options 

required to set and adjust the selected parameters discussed in the previous section. 

Parameters for this block were thus set as follows:-

• Buffer (frame) size M = 256

• Buffer overlap M-L= 265-64 =192 samples = 75%

Boxcar (rectangular window) 

N=256 

f s= 1066 Hz

Magnitude-squared (linear)

• Window type

• FFT length

• Sampling rate

• Amplitude scaling

The FFT frame calculated by the model is shown in the bottom right plot o f Figure 

5.12. This is updated every 64 samples (or 60msec at the given settings), which is equal 

to I/2 tool rotation for a spindle speed of 500 rpm.
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5.5.1 Simulated tool breakage M onitoring

This section describes the build up o f spectrum as the system computes successive FFT 

frames for a simulated tool breakage scenario. Figure 5.13 shows the spindle load 

signal in the left hand column and the FFT frames in the right hand column while the 

middle column shows the data acquired by the ADC block o f the system after anti­

aliasing filter stage. Figure 5.13(a) shows the FFT o f  the signal just after the required 

settling down time. When the system starts, the FFT buffer is initialized with zeros. A 

stable FFT result is obtained when this buffer is full and the system subsequently 

provides an FFT frame after each Vi tool revolution. The settling time required is at 

least 2 tool rotations and to be sure it was set to 2.5. The FFT frame (Figure 5.13(a)) for 

a healthy cutter shows that tool the rotation frequency f r has almost zero magnitude 

whilst the tooth passing frequency f p and its harmonics have a relatively small 

magnitude. Figure 5.13(b) shows the FFT frame when the tool has just broken (evident 

in the right hand section o f the acquired time domain data). The FFT spectrum begins 

to change and it continues to change in Figure 5.13(c and d), which shows the FFT 

frames after Vi and 1 revolution respectively. Although there is a change observed in 

these frames, the FFT spectrum does not show the regular and final signature for a 

broken tooth. The time domain signals o f corresponding frames show that the FFT 

buffer still has data from healthy operation. This causes partial frequency spectra o f  

healthy and broken tooth to appear in the FFT frames.

As the cutting continues, another FFT frame is computed at Wi revolution after 

breakage, as shown in Figure 5.13(e), f xand its harmonics have become more prominent 

and a clear signature o f tool breakage is given by the FFT. At this point tool breakage is 

detected from the unique spectrum related to broken tooth. Figure 5.13(f) shows that 

magnitude o f the prominent frequencies continues to increase and than stays there 

while the broken cutter is cutting. The FFT for the broken tooth long after breakage is 

shown in Figure 5.13(g) and, importantly, is identical to the FFT at 2 revolutions after 

breakage. From the spindle load data directly it is very difficult to identify the broken 

tooth as signal is corrupted by noise. The STFT has not only calculated the FFT 

spectrum o f the signal but had also provided the information about the breakage within 

the targeted aim of 2 tool revolutions. In this case the FFT has been analysed visually 

where as in an automated monitoring system, it will be processed further with different
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Figure 5.13: System results for a healthy and broken cutter at different tool revolutions
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algorithms e.g. threshold detection, pattern matching and mean frequency to classify 

the tool condition and generate alarm in case o f tool failure/breakage. An animation of 

the monitoring simulation is provided in an electronic “Appendix B”.

5.5.2 Monitoring for different Depth o f Cuts

Machine tool cutting forces are affected by changes in depth o f cut (DOC). DOC itself 

can change according to the workpiece geom etry and required tool path during the 

milling process. Therefore it was necessary to test the monitoring system with DOC 

changes present. Cutting tests were carried out with different DOCs (0.5, 1.0, 1.5, 2.0 

mm) and the resulting spindle load was then simulated and analysed as discussed in 

Section 5.5.1. The results from these tests are shown in Figure 5.14(a— d). Plots in the 

left hand column show the FFT for a healthy cutter and plots in the right hand column 

show the obtained FFT for a broken cutter two revolution after breakage. The centre 

column plots again show the time domain signal for reference.

DOC
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Healthy Cutter 
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Spindle Load Signal 
with simulated breakage
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I
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Figure 5.14: 256 pt FFT Analysis for cutting tests at different DOC
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The broken cutter FFT in all cases shows f x and its harmonics. Also the magnitude o f f x 

and its harmonics increase as the DOC increases. For healthy cutter spectrums, the 

magnitude o f / r is almost zero for all cases. Therefore it is suggested that a threshold 

should be set in relation to DOC.

5.5.3 Monitoring for variable Spindle Speeds

Another machining parameter that typically changes from one operation to another is 

the spindle speed. The spindle speed is set by the operator according to material and 

cutting parameters. For example different values will be selected for roughing and 

finishing operations. To evaluate the effective estimation o f spindle speed tests were 

carried out at different spindle speeds (300 -2500 RPM) without any cutting and the 

spindle speed voltage signal was captured. The average ADC value for each test was 

calculated and plotted against spindle speed as shown in Figure 5.15. It is clear that 

there is a linear relationship between spindle speed and the captured ADC values.

Spindle Speed Calibration
1000 i-------------------------

j °  Spindle Speed

! — Linear R egression
/ v oOO *"i

O  6 0 0  ;

to 4 0 0 J

20 0 -

0
0  5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  3 0 0 0

Spindle Speed (RPM )

Figure 5.15: Relationship between ADC values and spindle speed.

As explained in Section 5.3, when using a healthy cutter, the spindle load signal varies 

periodically with tooth passing frequency /p, which is product o f spindle rotational 

frequency and number o f cutting teeth as given in Equation 5.12. When the tooth is 

broken there is a change in the spindle load variation pattern. Now Spindle load 

decreases and increases (as explained in Section 5.3) once every revolution generating a 

tool rotation frequency f r -  Ns / 60. Tool frequencies (fr, fp) and their harmonics are
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proportional to the average spindle speed and are bound to change with spindle speed 

variation. The relationship between these frequencies and spindle speed is shown in 

Figure 5.16. H e re /p and f x can be calculated according to Equations 5.12 and 5.13, if  

average spindle speed is known (or measured) during the milling operation.

T o o l F r e q u e n c ie s

o'O
U.

1 4 0  •

0
5 0 0  1 0 0 0  1 5 0 0  2 0 0 0  2 5 0 0  3 0 0 00

S p in d le  S p e e d  (R P M )

Figure 5.16: Relationship between Tool frequencies and Spindle speed

If the signal is sampled at a constant sampling rate, the values o f the monitored 

frequencies (fT and / p) need to be selected according to the spindle speed and the FFT 

has to cover the entire range o f f T and f p (0-400Hz for spindle speed range o f  0-6000 

RPM for a 4 teeth cutter). For an 8 teeth cutter this range would be 0-800 Hz and so on. 

The minimum frequency f min to be monitored depends on minimum value o f  spindle 

speed while maximum frequency f mjLX would be dependent on number o f  teeth n{ and 

maximum value o f spindle speed which can be calculated according to following 

equations.

N
fmin f -|mln

f  = fJ max J d

60

60
x n.

(5.18)

(5.19)

The required frequency resolution is also dependent on spindle speed necessitating 

opting for a 1Hz or better resolution. With the processing power o f the current dsPIC 

microcontroller this is not a viable solution. To handle this situation a new technique is 

proposed to make the sampling rate in proportion to the spindle speed such that:

f s -  k x  N s / 60 (5.20)

115



where k is number of samples to be acquired in one tool rotation.

For suggested value o f *=128, the sampling ra te /s is 1066.6Hz (for 7VS=500 RPM). If 

sampling rate is made proportional to spindle speed then f x and f p can be expressed in 

terms o f/s and k according to following equations:-

/ , = / , ( 5 . 2 1 )

f p = ntfs / k  (5.22)

The frequencies f r and f p can be normalized in terms o f sampling rate f s or spindle

speed. Normalized frequencies have constant values over entire range o f spindle speed 

as shown in Figure 5.17.
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Figure 5.17: Normalized Tool frequencies vs. Spindle Speed

The proposed technique ensures that frequencies of interest always lie in the same 

frequency bin and provide constant computation time irrespective o f  the spindle speed. 

The time period o f the timer (controlling the ADC sampling rate as discussed in Section

4.4.3 (Variable Sampling Rate)  is adjusted according to the spindle speed and all the 

calculation are automatically normalized to the operational spindle speed.

5.6 Implementation on d sP IC

The capabilities of a dsPIC in performing FFT computations were tested and compared 

with Matlab computations as reported by the author in the Comadem 2005 conference 

[5.3]. Based on these successful analyses, the algorithms were enhanced to compute the 

suggested overlap FFT which is suitable for real-time monitoring applications requiring 

frequency domain analysis o f  non-stationary signals.
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5.6.1 System Description

The researched machine tool condition monitoring system is based on the three tier 

architecture as described in previous chapter and the system described in this chapter 

forms a FEN at first tier. Figure 5.18 shows the block diagram o f the developed 

monitoring node. The spindle speed and spindle load signals are obtained from the 

machine controller via an isolation card. This card provides high voltage protection 

between the machine tool signals and analogue inputs to the system. A signal 

conditioning stage is implemented prior to the signal being fed to the dsPIC 

microcontroller for analysis. Spindle speed and load signal are also acquired by the 

parameter monitoring node (discussed in Chapter 8) for calculating operational 

parameters for the whole monitoring system and this information is communicated to 

FENs.
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Figure 5.18: Block Diagram of the monitoring node

The spindle load signal conditioning for this FEN consists of; a pre-amplification stage 

which removes the DC offset (and frequencies below 2Hz) from the machine tool 

signals to increase the overall resolution in the implementation o f digital filtering stage, 

the addition of a DC offset to make the signals compatible with microcontroller’s inputs
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and an anti-aliasing filtering stage. The output from this block is fed to the dsPIC 

microcontroller’s analogue input via anti-aliasing filter whose pass band frequency is 

set in accordance with the current sampling rate being used by the system. The acquired 

data stored in a circular buffer which is translated into an input Frame buffer and 

processed according the processing block (as shown in Figure 5.18) which will be 

discussed in the following sections.

The dsPIC30F6014 microcontroller used for this activity can be linked to other 

microcontrollers undertaking related monitoring functions using a Controller Area 

Network (CAN) bus communications. Other functions which can be integrated in this 

may include the monitoring o f the tool changer, the coolant system, the DOC 

measurement system etc.

5.6.2 System Initialization

The dsPIC microcontroller has a 24-bit wide instruction set. A number o f  instructions 

are available for data manipulation in this device, which are ideal for this application. 

The A/D module allows the conversion o f an analogue input signal to a corresponding 

12-bit digital number. Data acquisition is enabled using initialization software that sets 

the microcontroller into operating mode and selects and configures the digital and 

analogue I/O pins. Next it initialises the CAN activity and does essential handshaking 

to verify the health o f the system at initialization. This action is repeated at regular 

operating intervals (to announce the existence o f the node over the network). The 

initiation o f data acquisition and processing is controlled by a message received from 

the parameter monitoring node based upon the receipt o f predefined existing signals 

from the machine controller. These are the Zero Speed Signal (SSTA) and Speed 

Arrival Signal (SARA) as shown in Figure 5.19. These signals along with a CNC 

demand signal allow the microcontroller to determine the machining process 

parameters. The parameter monitoring node sends messages to start and suspend 

monitoring based on spindle load monitoring as will be discussed in Chapter 8.
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Figure 5.19: Relationship between CNC demand and spindle signals.

5.6.3 S y s te m  O p e ra t io n

The spectrum analysis using STFT provides several advantages over other frequency 

analysis techniques developed earlier by the group [5.14] which utilized hardware 

based switched capacitor filter for calculating the frequency spectrum o f the signal. To 

achieve a spectrum, the entire frequency range was swept one by one by tuning the 

filter at each frequency and calculating the peak-to-peak value o f filtered signal. This 

scanning technique required a much longer time and assumed the signal to be 

stationary. FFT was used in the second layer o f the system as an advanced diagnosis 

tool in earlier applications. This section describes the implementation o f suggested 

overlap FFT algorithm and related spectrum analysis and decision making on dsPIC 

microcontroller for real-time monitoring o f tool breakage. The implementation o f the 

said algorithm was divided into three sub systems: (a) data acquisition and windowing 

(b) FFT computation and (c) spectrum analysis and decision making.

5.6.4 D a ta  a c q u is itio n  a n d  w in d o w in g

The dsPICDEMl.l general purpose development board with a dsPIC30F6014 

microcontroller has been used for this application. The development board has a 

7.3728 MHz crystal oscillator, which is sufficient to achieve 29.49 MIPS performance 

by using the built-in clock multiplier in the microcontroller [5.15]. This microcontroller 

has a 12bit ADC module which can acquire data at sampling rates up to lOOKsps. As 

discussed and suggested in earlier sections o f this chapter, variable sampling rates were 

to be used for this application. It was thus necessary to setup the ADC in a fashion that 

allowed the sampling rate to be easily and quickly changed. The onboard Timer 3
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module as described in Section 4.4.3 was used for this purpose. Timer 3 was set to 

generate an ADC Event Trigger, whenever the timer value (TMR3) matched timer 

period (PR3), which can be calculated as follows:

where F cy is the system clock frequency in Hz

dd-5 Fcy x 60PR3 = —^ --------------------------- (5 23)
k x N s 1 ' }

When a change in spindle speed (Ns) was communicated by the parameter monitoring 

node, a new value o f the timer period was calculated according to Equation 5.23 (which 

incorporated the sampling rate f )  and PR3 was updated accordingly. This would 

change the sampling rate o f the ADC. Since the timer period register can be update 

without stopping the timer; this method thus provided the very fast updating o f the 

sampling rate.

There are 16 ADC buffer registers ADCBUFO-ADCBUFF to hold the data after 

conversion. The ADC can generate to an interrupt so that the acquired data can be 

processed. To reduce the ADC interrupt rate, it was set to generate an interrupt after 16 

samples are acquired. This was necessary to gain time for the FFT algorithm and thus 

the key timing requirement to be met when programming the dsPIC.

Since spindle load data for the previous two tool rotation periods is required for FFT 

analysis, a circular data buffer was created, to store 256 samples acquired by the ADC. 

Figure 5.20 shows the operations involved in manipulating this circular buffer to store 

ADC values. At each interrupt the data from ADC buffer was copied into the data 

buffer and when the ADC buffer index reached the set upper limit (256) it was reset to 

0 and hence the ADC started overwriting the oldest block o f data. In this way last 256 

samples were always available. After every 64 samples (Vi tool rotations), a fram e J l a g  

was set to indicate that data required for computing the FFT was available. This flag 

was monitored in the main programme and data was transferred to the FFT Frame 

buffer according to the sequence shown in Figure 5.21. This ensured that the values in 

the FFT frame buffer were correctly ordered and was equivalent to applying rectangular 

window to the data. The spectral leakage was minimized since each frame/window was 

arranged to contain data for complete two rotations. Typically the edge points had
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almost identical values and the waveform progressed seamlessly from one frame to the 

next.
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Figure 5.20: ADC interrupt and frame J la g  timings

2 5 6

>x[/7?ov]: x [0 ]—> x [ i n d e . x - 1 ]

f r a m e / l a g

Circular data buffer 
(ADC data)

Frame# 1 tndex-64
.real = x [64] -► x[255]: x[0]~-> x[63] 

1 1 , 1 [Frame# 2 i n d e x = 1 2 8
.real = x [12S ]-> x[255]: x [0 ]-> x [ 127]
.imas ■ i Frame# 3 i n d e x - ! 1) !

.real = x[ 192]—> x[255]: x [0 ]—>x[ 191]
muii (Frame# 4 i n d e x = 0

.real = x[0] ->  x [255]

.linag -n

Linear FFT frame buffer 
(FFT input)

Figure 5.21: Translation o f circular data buffer into FFT input frame buffer

The methodology resulted in an overlap between successive frames o f data, with each 

frame containing 192 samples from the previous frame and 64 new samples. The 

copying o f data from the ADC data buffer to the FFT frame buffer was required to 

avoid overwriting o f the current input frame to the FFT function’s storage space. This 

was required since the ADC was acquiring data in a background process whilst the FFT 

was being computed.
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5.6.5 FFT Computation

The ‘in-place’ complex FFT algorithm o f the dsPIC was used to compute the DFT o f 

the signal frame. In each case the imaginary part o f input complex frame was set to 

zero. In-place algorithms are memory efficient and replace the input vector with the 

output results once computation is completed. Equation 5.2, to compute FFT, can be 

rewritten as follows:-

where \vk (primitive roots o f unity) are known as the “twiddle factors” used in the FFT 

algorithm. Since these factors are not dependent on the input signal, they can be pre­

calculated to speed up the FFT algorithm. Only % factors are required, to be calculated 

and stored, as second the half o f the factors are complex conjugate o f the first half. 

These factors (which are required by the FFT algorithm) were programmed into the 

program memory providing manifold benefits:-

• Extra data memory was made available which would have been used up by 

these factors.

• The coefficients/twiddle factors were preserved when system was powered off.

• Faster system availability was achieved by saving computation time for 

calculating them, every time system was powered on or reset.

The Program Space Visibility (PSV) functionality was used to access the twiddle 

factors. This PSV functionality mapped program space/memory into data 

space/memory when required and the DSP algorithms could treat it as data available in 

data memory. The output o f the FFT was arranged in the correct order using Bit- 

reversed addressing. The power (squared-magnitude) o f the output was calculated using 

the function provided in the library provided by Microchip and it was transferred into 

another array which was accessible to spectrum analysis and decision making 

subsystems. This array could store results o f the past 32 FFT computations (equivalent 

to holding the history for last 16 tool rotations).

0 < k < N  -  1 (5.24)

with 0 < k < 4  
4 + 1  < k ’< N  -1
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5.6.6 Spectrum Analysis and Decision Making

The power spectrum of the relevant frame shows the contribution o f each frequency in 

the signal. The FFT algorithm computes the frequency components (termed as 

frequency bins) separated by A / As was discussed in Section 5.5.2, the tool rotation 

frequency f  is dependent on spindle speed and sampling rate f s was arranged to be 

proportional to the spindle speed. The frequencies o f interest were thus directly 

proportional to the sampling rate and could be directly mapped to specific frequency 

bins for the entire range of spindle speed. For example, a spindle speed jVs=500 rpm and 

sampling rate = 1066.6 Hz thus gave A f  =4.166 Hz, for a selected 256 point FFT, 

which is half o f the tool rotation frequency f r. Hence, for a cutting tool with nt cutting 

teeth, the tool related frequencies are given by

f r = f j k - 1066/128=8.33Hz and harmonics ( n / r ) at 16.67, 25,33.3 .... 

f P = « t / r=8.33v7t

Since nt is an integer, the value o ff p will also be one o f the harmonics of/ .  For example 

for a 4 tooth cutter («t=4) it is 33.3 Hz, which is the 4 harmonic o f / .  Frequency bin 0 

represents the DC gain o f the signal and is not used in the analysis. As shown in Table 

5.1, f  and its harmonics occupy even frequency bins while f p and its harmonics 

occupy frequency bin 2n{ and its multiples, (i.e. 8, 16, 24 etc for 4 a teeth cutter). Thus 

the tool frequencies can be directly mapped to specific frequency bins which remain 

constant for all cutters with the same number o f teeth.

Table 5.1: Mapping o f frequency bins to tool frequencies for a 4 tooth cutter

Frequency
Bin

(Number)

Frequency (Hz) T ool rotation  
frequency

f  & harmonics

T ooth passing  
frequency

f p & harmonics
Ns-  100 

Af  =0.83 3
Ns= 500 

A f=4.165
7Vs=1000 
Af= 8 .3 3

0 0 0 0 0 0
1 0.83 4.16 8.33
2 1.67 8.33 16.67 fr
3 2.50 12.50 25.00
4 3.33 16.67 33.33 2/r
5 4.16 20.83 41.66
6 5.00 25.00 50.00 3/r
7 5.83 29.17 58.33
8 6.67 33.33 66.67 4/r f
16 13.33 66.67 133.33 8/r 2 / P
2 4 ... 20.00 100.00 200.00 12fr 3 / p
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The following features may then be considered:

Thresholds

Thus the even frequency bins (2, 4, 6 etc) correspond to tool rotation frequency 

components which are prominent for a broken tool. Thus any decision about the health 

of the cutter can be made by observing the magnitude o f these frequency bins 

(especially f t and 3 /). These values can be compared against a set o f thresholds to 

generate a tool breakage alarm.

Mean Frequency

Mean frequency (MF) (adopted from [5.16]) provides a single measure about the 

distribution o f frequencies in the spectrum. It provides the frequency trend in the whole 

spectrum. Mean frequency is calculated as follows:
S / 2  / S / 2

M F = £  A  x * * / ! * *  (5.25)
*=1 / *=1

where^k and Xv. are the frequency and magnitude o f klh bin o f the spectrum respectively. 

This algorithm was implemented on dsPIC microcontroller and it was found that MF o f 

a broken cutter less than that o f a healthy cutter. Thus MF can be compared against a 

threshold to detect a tool breakage.

Pattern Matching

A consistent pattern in the frequency spectrum o f the broken cutter was observed 

during the machining tests (both during Matlab simulation and dsPIC implementation). 

For each FFT frame the pattern is calculated by assigning a ‘1* to the bin if  its 

magnitude is above the threshold or ‘0 ’ otherwise. The pattern in Figure 5.22 shows the 

relative amplitude o f the frequency bins 1-7, which alternates between high and low 

magnitude and crosses the threshold shown by dotted line providing a “0101010” 

pattern. This pattern coupled with MF and threshold is used to confirm the tool 

breakage.

Frequency Bin #  

Pattern

Figure 5.22: Pattern relating to broken tool
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The above mentioned features o f the signal were combined for decision making about 

the condition of the tool, which will be described in the following section along with 

actual machining tests and their results.

5.7 M achining Tests and Results

The system and algorithm initially simulated via Matlab was deployed on the dsPIC 

microcontroller and fully tested. For convenience the pre-recorded signals from the 

database o f actual tests, with known/pre-determined parameters, were used. As 

discussed previously, the appropriate signals were re-created using Matlab and a 

National Instruments Data acquisition card, installed in a PC. The Matlab program read 

the recorded signal from an excel file and processed the signal to perform the signal 

conditioning steps including removing DC components by using a RC high pass filter, 

amplifying the signal and applying DC offset o f 2.5V. After processing the signal, the 

sampling rate was increased by using an interpolation filter and the final data was fed to 

the DAQ card which generated an analogue spindle load signal. This was fed to the 

dsPIC based frequency analysis system.

Since it was impossible to achieve on an actual machine tool in a controlled way, tool 

breakage was simulated by combining the data for healthy and broken cutters and tests 

were performed to detect tool breakage at different depth o f cuts. An example spectrum 

of successive overlapped frames (obtained by FFT computations), pre and post tool 

breakage, are shown in Figure 5.23 as a waterfall diagram.

• ' -z'rU/'Healthy

- 0 Tool breaks Here

/ S '  FFT Frame
 Breakage detected (Tool Rotation)

Broken

Frequency (Hz) Time

Figure 5.23: Tool breakage detection using overlap FFT analysis
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In the case o f Figure 5.23, the most recent frame is shown at front and oldest frame at 

the back o f the waterfall plot. The time axis is labelled with both FFT frames and tool 

rotations (in brackets) with zero denoting the frame where tool breakage occurred. 

Frames, before and after this point, represent healthy and broken tool frames

respectively. For a healthy cutter all frames are similar with almost zero power
")

(magnitude ) at /  and its harmonics. W hen tool breakage occurred the power o f these 

components began to increase, as clearly seen in frames 0, 1 and 2. As shown in Figure 

5.24, at this stage the calculated mean frequency (MF) decreases rapidly and crosses the 

threshold at frame 1 or 2, hence providing an early warning o f a possible tool breakage.

M ean Frequency (M F)
30

_  25"sX
7. 20 o
5
^  15

Threshold

u.
10

Healthy Cutter Broken Cutter

0
14 -12 -10 -8 •4 •2 0 2•6 4 6 8 10 12 14

FFT Fram e #

Figure 5.24: Mean Frequency for tool breakage detection

A distinct pattern (as described previous section and shown in Figure 5.22) in the 

spectrum for /  and its harmonics (relating to the broken tool) is confirmed in Frame 3. 

Since frames are computed after every V2 tool rotation, frame 3 represents IV2 tool 

rotations since the broken tool engaged. After this point the overlap FFT consistently 

provides a stable broken tool power spectrum. In this way tool breakage can potentially 

be detected and confirmed in 11/2 tool rotations, so tool breakage is detected within the 

aimed for 2 tool rotations period.

Figure 5.25 shows the 3D view o f  the FFT o f  spindle load signal computed by the 

dsPIC system for a simulated tool breakage. The DOC was 1.5mm for Figure 5.25a and 

2.0mm for Figure 5.25b. The Power (m agnitude2) o f /a n d  its hannonics for broken tool 

are clearly identifiable in the 3D view. The FFT frames for the healthy, broken cutter 

after 1.5 revolutions into breakage and a broken cutter are shown separately for clarity 

and analysis in each DOC case. Data shown in the 3D plot is that, which was held in
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dsPIC memory and was thus accessible to analysis and decision making algorithms. 

The last 32 frames of computed FFT spectrum are always available for analysis and 

diagnosis purposes.

F F T  o f  S p i n d l e  L o a d

H ea lthy  C u t te r

150 r "

0 I  17 25 33 42 50 5S 67 75 S3 92 100 " '  8 8 9 S s 6 W TT 0
Frequency (Hr)

150 150

M0

50

.. . , . .. .. ,,— ,— ,— ,— ,— ,_
0 8 17 25 33 42 50 58 87 75 83 92 100 

Frequency (Hr)
0 8 17 25 33 42 50 58 67 75 83 92 100

Frequency (Hz)

(a) 1.5mmDOC
F F T  o f  S p i n d l e  L o a d

Healthy Cutter

8 17 25 33 42 50 58 67 75 83 92 100
Frequency (Hz)

8  S * 8 8  S S  
F requency  (Hr)

1.5 rev Into Breakage
250 •

II Broken Cutter

200

"Vi 50

f  100

50

0 , / V s - .............................- .......... .......-

8 17 25 33 42 50 58 67 75 83 92 100
Frequency (Hz)

0 8 17 25 33 42 50 58 67 75 83
Frequency (Hz)

(b) 2mm DOC

Figure 5.25: Over lap FFT analysis o f simulated tool breakage

Similar tests were carried out on other combinations of machining parameters and 

results are posted in “Appendix C”.
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5.8 D ecision  M a k in g

The overlap FFT algorithm implemented on dsPIC microcontroller provided the 

frequency domain data enabling the extraction o f key features; Mean Frequency (MF), 

Pattern and Thresholds on magnitude o f key frequencies (fr, S.fr and fp )\ which were 

found sensitive to tool breakage and tool condition. MF monitoring indicated tool 

failure earlier than other features. This was combined with other features for counter 

verification to avoid any false alarms. The simplest way o f combining them was 

sequential cascaded decision making as shown in Figure 5.26. In this case tool failure 

was considered only when MF dropped below threshold and pattern was matched with 

the broken tooth pattern. If any the frequency components magnitude crossed threshold 

the tool was declared broken otherwise it was considered a chipped tool.

M F <  
Threshold

Pattern
M atched?

W r f >
Threshold

X (3 f , ? >  
Threshold

X (/p)2 >
Threshold

Normal Tool

Broken Tool

Norm al Tool

Broken Tool

Broken Tool

Chipped T ool

Figure 5.26: Decision making Flow Chart.

This method worked for all the tests reported in this research. A more elaborate 

decision making process is given in Table 5.2, these features can indicate more than 

tool breakage for example a blunt tool when magnitude off v exceeds the threshold but 

MF and pattern would treat it as normal tool. In this table ‘1’ indicates that the 

threshold has been crossed and ‘X ’ denotes “don’t care” condition. An advanced
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diagnosis can also be requested for unrecognised cases. In this case the parameter 

monitoring node will initiate an advance diagnosis sequence and send the acquired data 

to the second tier for analysis. When a broken tooth is detected a message is sent to 

parameter monitoring node which then combines this decision with decisions from 

other FENs and make a final decision about the health o f the tool. Upon a possible 

blunt tool detection a blunt flag message is sent which is used for process management 

function and the tool can be checked after the machining cycle finishes.

Table 5.2: Decision making Table

Mean
Frequency

M agnitude2
Pattern Decision

f r 3  f r /p
0 0 0 0 0 Healthy
0 0 0 1 0 Blunt Tool
0 1 X X 0 7

0 X 1 X 0 ?

1 0 0 0 0 Wait for next Frame
1 0 0 0 1 Chipped Tool
1 1 X X 1 Broken Tooth
1 X 1 x 1 Broken Tooth
1 X X 1 1 Broken Tooth

? = Unexpected : request for advanced diagnosis

5.9 D iscussion

This chapter has outlined the design and implementation o f a real-time frequency 

domain signal analysis technique for monitoring the milling machining process. The 

dsPIC microcontroller took about 5.6 msec to perform all the FFT computations with 

the deployed algorithm (including windowing) when operating at 7.37MIP. Some time 

was required for decision making, house keeping, and communication o f results. The 

system was tested with spindle speeds upto 3000 rpm and it provided correct and timely 

results. At 3000 rpm the time interval between successive FFT frames was 10 msec. 

The performance rate can be increased 29.49MIPS at which it would take 1.4msec to 

perform entire computation and the cycle time can be reduced to 2.5msec. This would 

enable the module to monitor cutting processes with spindle speeds up to 12000 rpm, 

which exceeds the maximum requirement o f 6000 rpm considered in this research. At a 

maximum spindle speed o f 6000 rpm the FFT cycle time would be 5 msec which is 

twice the required cycle time with the deployed algorithms. This effectively means that
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the dsPIC can handle some additional processing algorithms if required in future. These 

can be downloaded from higher tier using the CAN communication and programmed 

into the dsPIC microcontroller using the run time self programming (RTSP) capability.

The variable sampling rate and intelligent manipulation of the overlap FFT has enabled 

tool breakage detection and confirmation in less than 2 revolutions under all operating 

spindle speeds. In effect, the detection time decreases (as shown in Figure 5.27(a)) as 

the spindle speed increases providing a constant detection time in terms of number of 

revolutions (as shown as Figure 2.57(b)). Similarly the settling time, at the start up, is 

also fixed in terms of tool rotations for all spindle speeds.

0.5

Settling Time

Detection Time

1000 1500 2000 2500 30000 500
Spindle Speed (RPM)

(a) Detection and Settling Time

3.5

Settling Tim e

£
1oi
8

D etection Time

0.5
1000 1500 2000 2500 30005000

Spindle Speed (RPM)

(b) In terms o f  Tool rotations 

Figure 5.27: Detection and Settling Time vs. Spindle Speed
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Chapter 6

Multiband Infinite Impulse Response Filters 

for Tool Monitoring

6.1. Introduction

The aim o f this part o f the research was to investigate the DSP capabilities o f dsPIC 

microcontroller for another important DSP algorithm. This chapter describes the 

design, practical implementation and results o f  a dsPIC based dynamic digital filtering 

technique. This technique can be used for monitoring applications requiring 

simultaneous multiple frequency estim ation such as tool health monitoring where 

amplitude o f certain frequencies increase for broken cutter (as discussed in Section 

5.3). Signal conditioning and anti-aliasing filtering are used to condition the signal, 

making it suitable for interfacing with the microcontroller. The technique 

simultaneously uses variable data sam pling rates and a table o f  predefined filter 

coefficients to dynamically adjust its pass band characteristics to match the range o f 

interest. In the system developm ent process, a time domain feature was observed to be 

responsive to tool breakage and it is named as Tool Rotation Energy Variation (TREV). 

The signal analysis required for the m onitoring o f  a machine tool in a manufacturing 

environment is again catered for by the enhanced power o f the dsPIC microcontroller.

6.2 Digital Filters

Digital filters are a very im portant part o f  DSP. In fact, their ‘extraordinary 

performance’ is one o f the key reasons that DSP has become so popular [6.1]. They not 

only provide a cheap alternative to analog filtering, but they can perform functions 

which are almost impossible to im plem ent with analog filters such as pure linear phase 

response and the reuse o f the filter for different applications (by merely changing the 

coefficients or sampling rate). There have been many reported comparative analyses o f 

analogue and digital filters. In general these have indicated that analogue filters aie
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normally cheap, fast and have a large dynamic range in both amplitude and frequency

[6.2]. When using analogue filters, the emphasis is often on addressing any limitations 

in performance arising from the lack o f stability o f active and passive components. In 

comparison, the performance o f digital filters is generally superior and the emphasis 

normally shifts to theoretical issues regarding their efficient implementation in terms of 

achieving the required processing capabilities.

6.2.1. Frequency Response of a Digital F ilter

Filters are usually defined by their responses to the frequency components that 

constitute the input signal. A filter's response to different frequencies is characterized 

into the following three bands [6.3]:-

• Pass band. The pass band response is the filter's effect on frequency components 

that are passed through (largely) unchanged.

• Stop band. Frequencies within a filter's stop band are highly attenuated.

• Transition band. The transition band represents frequencies in the middle, which 

may receive some attenuation but are not completely removed from the output 

signal.

An Ideal filter will have zero width transition bands, no attenuation in the pass band 

frequencies and infinite attenuation o f the stop band frequencies. These parameters for 

a good but not ideal filter implementation are shown in Figure 6.1.

T r a n s it io n  B a n d

Stop Band

P a s s b a n d  r ip p le1.0

0.8 I d e a l l o w p a s s  f i l te r

0.6

0.4

0.2

S t o p b a n d  r ip p le

- 0.2

N o r m a li z e d  f r e q u e n c y  ( x i r  r a d / s a m p le )

Figure 6.1: Frequency Response o f a low pass filter
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There are four types o f filters based on the relative locations o f pass band (PB) and stop 

band (sb) namely: low Pass (PB— sb), high pass (sb— PB), band pass (sb l—PB— sb2) 

and band stop (PB1— sb— PB2) filters. Band pass filters are discussed in this chapter.

6.2.2 Infinite Impulse Response Filter

Infinite impulse response (HR) filters have an impulse response function which has 

non-zero (but decreasing values) over an infinite length o f time. This contrasts to finite 

impulse response (FIR) filters which have fixed-duration impulse responses. HR filters 

may be implemented as either analog or digital filters. In digital IIR filters, the output 

feedback is immediately apparent in the difference equations defining the output. IIR 

filter structures must be recursive (use feedback); an infinite number o f coefficients 

could not otherwise be realized with a finite number o f  computations per sample. The 

general time-domain difference equation for an IIR filter is

y(n) = - a ly(n - 1) -  ci2y{ti -1 ) +... -  aNy(n -  N)  + b0x (N ) + /?, x(n -  \)... + bMx ( n - M )  (6.1) 

or more consisely
V M

y(n) = aty(n -  i) + Y dbiy(n -  j )  (6.2)
/-I j= o

where:

M  and N  are the feedforward and feedback filter order respectively,

By and at are the feedforward and feedback filter coefficients respectively, 

x(n), y(n) are the input and output signal respectively.

The difference equation 6.1 is usually implemented directly as written by the Direct- 

Form-I IIR Filter Structure as shown in the Figure 6.2(a). There are other filter 

structures which minimize the m em ory (Direct form II and Transpose form as shown in 

Figure 6.2 (b and c) respectively) and computation requirements (Transpose fonn 

structure). The IIR filter function in dsPIC DSP library implements the Transpose form 

structure.
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(a) Direct Form I (b) D irect Form II (c) Transpose Form

Figure 6.2: IIR Filter Structures (adopted from [6.4])

6.2.3 IIR Filter on dsPIC

The Digital IIR filters used in this research are C-callable functions provided in the 

dsPIC30F DSP library software. Such digital filters are typically implemented in 

software using the M ultiply-Accumulate (M AC) class o f  DSP instructions. The MAC- 

class o f instructions requires input data to be presented in 1.15 signed-fractional 

number fonnat. This poses some lim itations on the input signal which needs to be 

conditioned accordingly. Figure 6.3 shows a general architecture o f a dsPIC 

microcontroller based signal processing system utilizing multiple digital filters.

+2.5V

-2.5V

2.5 VDC 
Level 

Shifter

Filter 3

Filter 1

1 A
Filter 2

Anti-aliasing
Filter

A/D
Converter

dsPIC

, Further , 
i Processing i

Figure 6.3: Signal processing system using multiple filters

The input signal needs to be conditioned to lie with in ±2.5V. After that the signal is 

passed through the anti-aliasing filter to fulfill the Nyquist criteria. The DC level shifter 

adds 2.5VDC to the signal thus making it compatible with the ADC which can measure
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between 0 to 5 volts. The ADC is configured to provide a signed fractional digital result 

to the IIR filter. Depending upon the application, more than one filter can be 

implemented which can filter different signal components which are processed further 

to extract related features. The following sections describe the design and 

implementation o f such signal processing system for tool condition monitoring utilizing 

Multiband IIR filters.

6.3 Monitoring Task

There has been extensive research on applying time domain and frequency domain 

analysis techniques in the context o f  m achining process monitoring. Some o f the 

frequency domain signal analysis techniques adopted by different researchers for 

designing TCMS have been reported in Chapter 3 providing an insight into the nature 

of the problem being considered and to the effectiveness o f  the e-Monitoring approach 

developed in this research. The basic assum ption made by IPMM researchers, others 

and in this research consider that (under normal cutting conditions) the cutting force is 

periodic with tooth passing frequency f p (as explained in Chapter 5). The characteristics 

of the cutting force signal and hence its frequency components may then be assumed to 

change with deteriorating tool condition.

Drawing in work in the IPMM group and to further developing the frequency analysis 

techniques mentioned above, filtering methods (both analogue and digital) have been 

considered. A sweeping filter technique for machine tool signal analysis was developed 

by Amer et al. [6.5] using program m able analogue filters. A  precision programmable 

bandpass filter was used with a m icrocontroller based embedded system to analyse 

existing machine tool signals (spindle speed and load). The programmable gain and 

control settings o f the filter IC were m anaged using a PIC microcontroller in order to 

optimise the frequency analysis for an anticipated range o f frequencies o f interest. The 

entire frequency range o f interest was scanned to generate a total profile o f the signal. 

The main drawback to the approach was the need to introduce and manage the required 

programmable analog filters. The features such as DSP engine and 12-bit ADC 

provided on dsPIC and the increased processing speed allow the development o f digital 

filters which can be managed with the software. The dsPIC-based developed system
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eliminated the analog filters which reduced the hardware component count resulting in 

a more compact and reliable monitoring system.

6.4 System Description

The proposed machine tool condition monitoring system is based on the three tier 

architecture shown in Figure 6.4. The spindle speed and spindle load signals were 

obtained from the machine controller via an isolation card. Spindle speed signal was 

monitored by a parameter monitoring node for the calculation o f operational parameters 

which were communicated to other FENs when a signal change was detected. A signal 

conditioning stage was implemented prior to the signal being fed to the dsPIC 

microcontroller for analysis. This consisted o f a pre-amplification stage which removed 

the DC offset (and frequencies below 2Hz) from the machine tool signals to increase 

the overall resolution in the implementation o f digital filtering stage, the addition o f a 

2.5VDC offset to make the signals compatible with microcontroller’s input range, and 

an anti-aliasing filtering stage. The output was fed to the dsPIC microcontroller’s 

analogue input.
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Fig. 6.4: Monitoring system architecture
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In the initial set up there were three different Infinite Impulse Response (IIR) bandpass 

filters simultaneously implemented in the microcontroller. Each filter’s pass band was 

dynamically determined and the filter coefficients adjusted in real time by the 

microcontroller depending upon the cutting parameters. In the “tool breakage detection 

mode” the centre frequencies for these bandpass filters were the machine tool rotation 

frequency (fT), its third harmonic (3/r ) and tooth passing frequency^). For a example 

spindle speed o f 500 rpm, these frequency were 8.33,25 and 33.3 Hz respectively. The 

logic behind choosing these frequencies relates to the assumptions made regarding the 

effect that a broken tooth has on the overall frequency spectra.

The spindle speed information provided by the parameter monitoring node was used by 

the microcontroller in detennining the working coefficients for the bandpass filters and 

the sampling rate for the ADC module. The microcontroller used 7.3728 MHz crystal 

oscillator which was sufficient to achieve a rate o f 29.49 MIPS performance by using 

the built-in clock multiplier in the microcontroller.

6.5 Digital Filter Design

The process o f selecting a filter's length and coefficients is called filter design. The goal 

is to set those parameters such that certain desired stop band and pass band 

characteristics will result. The main aims o f  the design effort should be as follows:

• To achieve and verify a frequency response plot, such as the example shown in 

Figure 6.5(b). This verifies that the filter meets the desired specifications, 

including ripple levels and transition width.

• To establish and consider the filter's length and coefficient values, noting that 

the longer the filter (more taps) the more finely the response can be tuned.

In this research, the dsPIC FD Lite, Digital Filter Design software (provided by 

Microchip), was used to design the desired filters. The Digital Filter Design tool for the 

dsPIC devices makes designing, analyzing and implementing FIR and IIR digital filters 

relatively easy through a menu-driven and intuitive user interface. The filter design tool 

perfonns the complex mathematical computations, provides graphical displays and
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generates various design reports. Desired filter frequency specifications are entered 

while designing the filters and the tool automatically generates the code and coefficient 

files ready to use in the MPLAB Integrated Development Environment (IDE). System 

analysis of the filter transfer function is supported via multiple plots including 

magnitude, phase, group delay, log magnitude, impulse response and pole/zero location 

plots [6.6]. Figure 6.5(a) shows the dialog boxes for entering the required filter 

parameters and Figure 6.5(b) shows a screenshot o f the multiple graphs. The example 

plots are for a 4th order inverse Tschebycheff bandpass IIR filter for 8.33Hz centre 

frequency and a sampling rate o f 500sps.

M agnitude ve  F req u en cy G roup Delay vs Frequency

Im pulse  R e sp o n se  v s  Time Step R e sp o n se  ve Tkne
0 2274710]--------------------------

■02274710

(a) Filter Design Sequence (b) Main Screen with generated graphs

Figure6.5: dsPIC Digital Filter Design Software with the designed 8.33 Hz IIR Filter

6.5.1 System Response

To detect the tool breakage using the spindle load signal, the frequency components of 

the signal relating to tool rotation frequency, its 3rd harmonic and the tooth passing 

frequency need to be monitored. For a typical spindle speed of 500 RPM, these 

components are at 8.33Hz, 25Hz and 33.3Hz respectively. IIR Filters for these 

frequencies were designed as described using the dsPIC FD Lite software and the 

coefficients were exported to MPLAB IDE where these were programmed into the 

dsPIC microcontroller. The parameters used for these 4th order Inverse Tchebbysheff 

bandpass filters are summarised in Table 6.1.
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Table 6.1: Parameters used for filter d esign

Design F requ en cies P assb an d  param eters Stopband param eters
Sam pling Rate

fs(H z)
Tool F requency  

(Hz)
Frequencies

(Hz)
Ripple

m
Frequencies

(Hz)
Ripple
(-dB)

500 fr 8.33 7 10 i 6 11 60

500 u 25 .00 23 27 i 12 26 60

500 fr 33.33 32 35 i 30 36 60

Figure 6.6 shows the system responses for the filters. Frequency, Phase and Impulse 

responses are compared for the 3 key frequency components o f 8.33Hz, 25 Hz and 

33.3Hz. The impulse responses show that the filter output settles down within 280msec 

(less than 3 tool rotations). This is im portant since this is the initial settling time 

required by the filter before it can provide a useful output, for example at the very 

beginning of a cutting operation.
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Figure 6.6: IIR Filter/System Response at 500sps (for Spindle Speed = 500rpm)
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6.5.2 Relative Energy Index (REI)

The output o f the IIR filter is a time domain sinusoidal signal o f the centre frequency o f 

the filter whose amplitude varies in accordance with the energy contained by that 

frequency component. Since direct amplitude varies periodically between maximum 

and minimum, it cannot be used directly. To effectively utilize the filter output, 

Relative Energy Index (REI) is calculated by taking the difference between maximum 

and minimum output value for 60 consecutive samples which equates to one tool 

rotation. REI is calculated after each tool rotation i.e. every 60 samples. A separate REI 

value is calculated for each filter output. Therefore three different REI values 

corresponding to f T, 3fr and f p, are available for every tool rotation.

6.5.3 Tool Rotation Energy Variation (TREV)

Tool Rotation Energy Variations (TREV) is calculated along the same lines as the 

calculation o f Relative Energy Index (REI), using the acquired spindle load signal 

which is processed directly, instead o f  using the filtered signal(s). TREV shows the 

effect o f the all frequency components present in the signal. A detail discussion on 

TREV is provided in section 6.8.4 along with cutting tests.

6.6 Dynamic Coefficient Selection Technique

The key element in flexibly configuring the filtering function to suit specific machining 

process parameters is referred to, in this research, as the Dynamic Coefficient Selection 

Technique which is diagrammatically illustrated in Figure 6.7. This uses the spindle 

speed signal as reference to determine the sampling rate for the spindle load signal and 

allows the set-up to be automatically tuned to the parameters being monitored. A fixed 

sampling rate is used for the spindle speed signal to determine the actual spindle speed 

by the parameter monitoring node. The required sampling rate o f spindle load signal is 

then set, since it is directly proportional to the spindle speed. For example; for a spindle 

speed o f 500 rpm a sampling rate o f  500 samples per second is selected and for a speed 

of 1200 rpm the sampling rate is 1200 samples/s. At any spindle speed, there are 60 

samples o f spindle load for each tool rotation available for analysis and decision 

making after the filtering stage.
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Figure 6.7: System Response for spindle speed range o f 250-6000RPM

The proposed monitoring system has been designed to make the necessary adjustments 

to the filter coefficients as spindle speed varies from 250 to 6000 rpm. The monitoring 

technique uses two different parameters as a basis to achieve the dynamic set-up o f the 

filters. A fixed set o f banded coefficients has been defined for a number o f predefined 

frequency ranges. For example for spindle speeds between 250 and 750 rpm, the filter 

coefficients for all o f the IIR bandpass filters remain unchanged. Sampling rate then 

acts as a variable, and depending upon the actual spindle speed, can be used to establish 

the centre frequency o f the pass band to the frequency o f interest. This technique 

ensures that, whenever the spindle speed shifts from one range to another, the filter 

coefficients change to that particular band’s settings dynamically. Within every band of 

spindle speeds the sampling rate stays variable to ensure that the pass band stays where 

required. The filter coefficients for different speed bands are pre-calculated and pre­

programmed in a look up table within the microcontroller memory for ease o f use

Filter coefficients for different ranges o f  sampling rate/spindle speed were calculated 

using the parameters given in Table 6.2. Each filter’s coefficients required 10 words (20 

bytes) storage space. The complete set o f  coefficients required 270 words (540 bytes) 

o f storage space.
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Table 6.2: IIR filter design parameters for sam pling rates o f  250-6000 sps

Spindle Speed
(RPM)

D esign
Frequencies Passband Stopband

Sampling Rate
f, (Hz)

f s
(Hz)

f r
(Hz)

Frequencies
(Hz)

Ripple
m

Frequencies
(Hz)

Ripple
m

250-750 500 8.33 7 10 i 6 11 60

750-1250 1000 16.67 14 18 i 13 19 60

1250-1750 1500 25.00 23 27 i 21 29 60

1750-2250 2000 33.33 30 36 i 27 39 60

2250-2800 2500 41.67 38 44 i 35 47 60

2800-3500 3150 52.50 49 55 i 46 58 60

3500-4200 3850 64.17 60 68 i 56 72 60

4200-5000 4600 76.67 72 80 i 68 84 60

5000-6000 5500 91.67 87 95 i 83 99 60

It is possible to use larger ranges to reduce the number o f coefficients to be stored in the 

microcontroller memory with compromise being made on the larger bandwidth for 

higher side o f the range. Figure 6.8(a) shows the spread o f the frequencies for tool 

rotation frequency component for entire range o f spindle speed. The frequency spread 

is much smaller than that o f a single normalized filter designed for entire range as 

shown in Figure 6.8(b).

120120 — Tool Rotation Frequency 

-  -  Passband Frequencies 

• * • Stopband Frequencies 100100

o
a>

20

0
61 2 3 4 5

Sampling Rate (KHz)/Spindle Speed (RPMx1000)
061 2 3 4 5

Sampling Rate (KHz)/Spindle S peed (RPMx1000)
0

(a) Dynamic Coefficient Selection Technique (b) One set o f  coefficients normalized
for all frequency range

Figure 6.8: Filter Frequencies (Bandwidth) o f the IIR Filter
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6.7 Preliminary Filter Testing

Preliminary tests were perform ed to confirm the performance levels of the designed 

filters, and the associated signal conditioning stage. The tests were designed to enable 

the analysis o f the system response time, the effect o f amplification on system output, 

the response to a chirp signal test and the response to a single individual frequency 

component test.

6.7.1 System Response Test

According to the impulse response o f  the designed filter, the settling time was 

estimated to be 280msec for the tool rotation frequency case (8.33Hz at 500sps). To 

confirm this, an 8.5Hz (being the centre frequency o f designed filter) sinusoidal signal 

was fed to the system and output shown in Figure 6.9 was obtained.

20 
1̂QQ%

1 5  90% ' 

10 50% ,

I®  f \
E 0 < \

-5 \

-10

-15
;1 85  (95%)166

-20
6004002000 1000800

tim e (m sec)

Figure 6.9: System Response for 8.5Hz Sine wave

It took 185msec to reach 95% o f  final value and 60msec (Vi tool rotation) to reach 50% 

level. After one tool rotation a 72% level had been reached. These suggest that any 

threshold level subsequently used to detect tool breakage could be sensibly applied 

within 1 -2 tool rotations time frame.

6.7.2 Chirp Signal Test

The frequency o f a chirp signal increases or decreases lineally with time and this signal 

can be used to calculate the frequency response o f  a system. A chirp sinusoidal signal 

was generated in Matlab and fed to the system. The chirp signal frequency varied from
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0 to 50Hz in 5 seconds and acquisition started slightly before the signal was generated 

by the DAQ. The system output is shown in Figure 6.10(a) which shows that settling 

time for all three frequency components is 3 tool rotations. The system output was 

adjusted to represent the REI for the frequency range 0-45Hz and is shown in Figure 

6.10(b). This is effectively the measured frequency response of the system.
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Figure 6.10(a): System output in response to the chirp signal input
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Figure 6.10(b): System frequency response obtained using chirp signal as input 

6.7.3 Effect of amplification at signal conditioning stage

For this test a recorded spindle load signal from a cutting test performed at 2.0mm 

DOC with a spindle speed o f 500RPM was input via the signal conditioning circuit 

board to the 25Hz filter with and without the amplification applied to signal. REI for 3rd 

harmonic of the tool passing frequency was monitored. The results are shown in Figure 

6.11 from which it can be seen that amplification at the signal conditioning stage 

improved the system response. The separation between REI (for 25 Hz) for healthy and 

broken tooth cases became more distinct when amplification was used and it was 

possible to apply a threshold after the settling time (3 tool rotations) to distinguish 

between healthy and broken cutters.

146



2.0 mm DOC 25Hz with no gain 2.0 mm DOC 25Hz with gain4
—  Healthy
—  Broken tooth 
• - • Threshold

3.5 3.5

3

2.5 2.5

1.5

1
0.5 0.5

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Tool rotations Tool rotations

(a) Output without any gain (b) Output with gain

Figure 6.11: Effect o f amplification o f the signal at signal conditioning stage

6.7.4 Individual Frequency C om ponent Response

For this test individual frequency sinusoidal signals were applied to the system and the 

time domain responses are shown in Figure 6.12(a). In each case the appropriate centre 

frequency has large amplitude compared to the other two frequencies. Figure 6.12(b) 

shows the system output in frequency domain plots.

000 800 
time (msec)

/=8.33H z
.ft

400 800 800 1000 1200
«me (mtee)

(a) Time Domain Output (Relative Amplitude)

fr
3ft

(a) Frequency Domain Output (REI)

Figure 6.12: System output for Individual Frequency sinusoidal input signals
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6.8 System  Im p lem en ta tion  an d  R esu lts

Figure 6.13 shows the schematic diagram o f  the developed system based on three IIR 

Filters implemented on dsPIC30F6014 microcontroller. As discussed earlier the filter 

coefficients were calculated using dsPIC FD Lite software and programmed into the 

dsPIC using MPLAB IDE. The spindle load signal is conditioned and DC offset is 

applied before being input to the ADC. The sampling rate o f the ADC is controller by 

timer 3 which provides variable sampling rate proportional to spindle speed. Spindle 

speed information is obtained via CAN message transmitted by parameter monitoring 

node which monitors the operational parameters and controls the monitoring process 

based on the spindle load. The filter coefficients o f filters for f T, 3fr and f p are 

dynamically selected based on the sampling rate as discussed in section 6.6. Filters are 

executed at each sample to produce the output which is used to calculate the REI after 

each tool rotation. Unfiltered spindle load data is used to calculate tool rotation energy 

variation (TREV). The calculated parameters (TREV and REI for each filtered 

frequency component) are input to local decision making module which determines the 

health o f the tool and communicates the results on CAN bus. The detail operation o f the 

system will be discussed in the following section.
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Figure 6.13: Schematic diagram o f developed system
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6.8.1 System  O p eration

The main frequencies o f interest in the frequency spectrum of a spindle load signal are 

the tool rotation frequency and the tooth passing frequency. The observation o f these 

frequency components in terms o f their relative strength can be used to dynamically 

monitor cutting tool health. This technique observes thee frequencies (fT, 3fr and f p) in 

parallel using 3 IIR filters implemented on a single dsPIC microcontroller. The data 

memory allocation space for each tooth rotation has been kept constant by directly 

linking the sampling rate to the spindle speed. During any cutting process the spindle 

load data is acquired and buffered in segments o f one tool rotation. During the data 

acquisition stage o f the next sample, the processing o f previously acquired sample is 

completed. The processing includes digital filtering and updating the minimum and 

maximum values. After a segment o f  data is acquired and processed; the peak to peak 

difference (REI indicator for that revolution) is calculated by taking the difference of 

maximum and minimum values and local decision making is performed using 

indicators to confirm the health o f the tool. This technique ensures that data processing 

is completed in shortest possible time and results are available immediately after the 

revolution is completed.

To illustrate the basis o f this method consider the action o f a four toothed end mill. A 

healthy cutter will register four even cuts per revolution, with relatively little variation 

between cutting force. The REI values for tool rotation frequency will have small 

values, as can be seen in Figure 6.14, which presents the results for tests carried out at a 

spindle speed o f 500 rpm, feed rate o f 100 mm/min and 1mm depth o f cut using a four 

teeth cutter on a vertical axis m illing machine.
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Figure 6.14: (a) The filter output for a healthy and broken cutter at 1 mm depth o f cut.

(b) REI at 1 mm depth o f cut.
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Figure 6.14(a) shows the 8.33 Hz filter’s output for a healthy and broken cutter at 1 mm 

depth o f cut. It is obvious that, for a broken cutter, the frequency strength increases. 

This is due to the fact that previously tool rotation alone was responsible for generating 

this frequency whereas now the once per revolution action occurring when using the 

broken cutter is also adding to the strength o f  this frequency. By monitoring the 

amplitude or REI o f this filtered frequency component, the tool breakage can easily be 

detected. This ensures that the monitoring technique focuses on the filter’s optimum 

performance to ensure the best possible results with the minimum number o f possible 

false alarms.

To further support the same concept, Figure 6.14(b) presents a much clearer picture. 

The value o f REI o f 8.33 Hz filter for a broken cutter is significantly higher (around 9 -  

10 times) than the normal value o f  REI for a healthy cutter. It must be noted that, due to 

the impulse response o f the filter, there is some settling time before reliable results may 

be obtained. This settling time occurs once, at the start o f monitoring system and in this 

particular design the settling tim e is less than 3 tool rotation (280 ms for 500rpm). The 

increase in REI, when confirmed by changes to the frequency components, has been 

used as a signal for an alarm signal to warn o f tool breakage. This is an important 

feature of the deployed system.

There are many one-off events, such as machining an inclusion, breaking-in or 

breaking-out o f a workpiece and step changes in the depth o f cut that could cause a 

significant variation in tool force, but they will not cause similar changes to frequency 

based analysis o f the load, since they are not cyclic. This can be confirmed from Figure. 

6.15 (a, b) which show the filter’s output and REI for a healthy and broken cutter at 

2 mm depth o f cut. The change in depth o f cut causes an overall change in REI 

magnitude, but the changes associated with the operation o f the broken cutter are still 

apparent.

The above process operates continuously; while the data for a tooth rotation is being 

acquired, the calculations on the previous acquisition are carried out in parallel and the 

results are compared against parameter dependent thresholds for decision making. 

Given the memory considerations appropriate to even the dsPIC microcontrollers, this 

process requires the application o f careful data management. Using the architecture
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shown in Figure 6.4, the data acquired by first tier nodes will either have to be 

communicated to the second level or discarded. In order to prevent data overload and 

the data becoming obsolete, it will usually be classified, summarized and discarded if  it 

is commensurate with normal machine behavior. Only selected abnormal data is 

forwarded for future referencing etc. In the event o f any abnormal indications, the 

observant node communicates to other first tier nodes over the CAN bus for 

verification.
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Figure 6.15: (a) The filter output for a healthy and broken cutter at 2 mm depth o f cut. 

(b) Relative energy index at 2 mm depth o f cut.

6.8.2 Cutting Tests

To perform the analysis for various conditions the pre-recorded signals from actual 

tests with known/pre-detennined parameters were again used. The Matlab program read 

the recorded signal from an excel file and processed the signal to perform the signal 

conditioning steps including rem oving DC components by using a high pass filter, 

amplifying the signal and applying a DC offset o f  2.5 volts. After processing the signal, 

the sampling rate o f the signal was increased (using an interpolation filter) and final 

data was fed to DAQ card which generated the analogue spindle load signal which was 

fed to dsPIC-based IIR filtering system. Test for healthy (new), healthy (worn) and 

broken cutters were performed for different depth o f cuts. Figure 6.16 shows a typical 

output obtained during cutting tests. The filters’ output in time-domain is shown in left 

column and REI for three frequencies is shown in middle column while frequency 

domain view is given in right column. As explained earlier, REI for tool rotation 

frequency and tooth passing frequency gives clear picture o f the health o f the cutter.
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Since the filter output in time domain is not directly used for decision making, this will 

not be included in further discussions.
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Figure 6.16: Typical output o f the system for healthy, broken and tool breakage cases.

6.8.3 Depth of Cut Variations

Cutting forces in milling are dependent on the amount o f metal being removed and 

metal removal rate is directly proportional to the depth o f cut. Therefore it was 

necessary to test the system for the effect o f depth o f cut variations. Cutting tests were 

performed for different depth o f cuts (0.5mm, 1.0mm, 1.5mm, 2.0mm) for new, worn 

and broken cutter (with one tooth broken) cases. The REI profiles for three frequency 

components are shown in Figure 6.17. The left hand column shows the REI for a new 

cutter, the centre column shows the REI for a worn cutter and right hand column shows 

the REI for broken cutter. The REI profiles for new and worn cutters are almost same 

except for the 0.5mm DOC case. The broken cutter can be easily identified by large 

REI values for the tool rotation frequency and its 3rd harmonic as compared to new and 

worn cutter REI values.

The REI for the broken cutter increases for all frequency components with increase 

with depth of cut. It was deemed important to have an adaptive threshold strategy to
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allow maximum tool usage during varying DOC and still be able to detect the tool 

breakage without generating false alarms. This is due to following observations: Since 

larger cuts are normally used for rough machining operation, a fully worn cutter may be 

allowed to keep cutting until a convenient pause in the machining cycle. It is more 

likely for the tool to break during larger DOC. Tool breakage with small DOC 

(normally during finishing operation) will have a larger adverse effect on the 

workpiece. The following section describes time domain analysis of the spindle load 

signal which was made possible because o f the effective signal conditioning strategy.

DOC
*

(a) 0.5 mm

(b) 1.0 mm

(c) 1.5 mm

(d) 2.0 mm

Figure 6.17: Relative Energy
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6.8.4 Tool Rotation Energy Variations (TREV) Tests

The pre-amplification circuit at the signal conditioning stage included DC blocking 

high pass RC filter with cutoff frequency o f  2.6 Hz. This filtering removed the cutting 

force variations arising due to tool entry, tool exit and changes in other milling 

parameters. This variations removal made the signal more stable and reliable for time 

domain processing. It also made the signal more suitable for interfacing with the dsPIC 

microcontroller. It was observed that overall signal variations for each tool rotations 

were very small for new and worn cutter whereas these variations were relatively large 

for broken tooth cases. Tool Rotation Energy Variations (TREV) was calculated along 

the same lines as the calculation o f  REI for frequency components, except that the 

acquired signal was processed directly instead o f  using the filtered signal(s). The TREV 

and REI for the monitored frequencies, for a simulated tool breakage test, are shown in 

Figure 6.18. In this test tool breakage occurred at tool rotation number 16. The REI for 

tool rotation frequency (fx) crossed the threshold at tool rotation number 18 whist TREV 

crossed the threshold at tool rotation number 17. Thus overall response o f TREV 

method was faster than REI method, for a tool breakage case.
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Figure 6.18: Comparisons o f  Tool Rotation Energy Variations (TREV) and REI

A virtual node was implemented in the system for find this parameter which provided 

the broken tool indication about one revolution earlier than the filter based REI method 

which detected tool breakage in two revolutions. This could trigger the sequence to 

verify tool breakage via the frequency component calculations. The output o f the virtual 

node (implemented within the HR filter node) to calculate the TREV for cutting tests
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performed at different DOC is shown in Figure 6.19. The variations for worn cutter 

increase as the depth o f  cut increases but these are still below the threshold level for 

tool breakage detection. The threshold is set adaptively and increases as the DOC 

increases.

DOC New Cutter W orn Cutter Broken Tooth
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0 Threshold
0

2
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0
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Tool Rotations
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Tool Rotations
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Tool Rotations

Tool Rotations

Figure 6.19: TREV for cutting tests at 500rpm spindle speed 

6.8.5 Simulated Tool Breakage Tests

After implementing the TREV virtual node, simulated tool breakage tests were carried 

out for different DOCs. For this purpose the recorded signals for healthy and broken 

files were joined and played back through the DAQ card. Tool breakage was detected 

for all cases and results from the filter system are shown in Figure 6.20. The tool 

rotation frequency /■ and its 3rd harm onic o f the increased in case o f the tool breakage 

and the amplitude o f the tooth passing frequency f p behaved randomly. In some cases its
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amplitude increases while in other cases remains same or increases in very small 

percentage. As discussed earlier, TREV (shown in left column of Figure 6.20) indicated 

tool breakage 1 tool rotation earlier than RET (shown in middle column). Thus TREV 

can be successfully used as an early alarm o f tool-breakage and confirmation achieved 

by REI method. This technique based on combination of TREV and REI will ensure 

that tool breakage is detected and confirmed in the targeted 2 revolutions.

TREV Frequency Domain 
View

Tool BreakajTool Breakage

ThresholdThreshold

Threshold
Threshold

2 4 « 8 10 12 14 18 18 20 22 24 28 28 30
Tool R otation*

T ool Breakage

Threshold
Threshold

4 6 8 10 12 14 18 18 20 22 24 26 28 30
Tool Rotations

Tool Breakage

Threshold

8 8 10 12 14 18 18 20 22 24 28 28 30
Tool R otations4 8 8 10 12 14 16 18 20 22 24 26 28 30

T o d  R otations

Figure 6.20: Simulated tool breakage tests at different depth o f cuts

6.8.6 Cutting Tests at d ifferent Spindle Speed

Cutting tests at different spindle speeds were simulated by changing the signal 

frequency in Matlab before being fed to system and system output for various spindle
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Tool Rotation Energy V ariations Healthy/New Cutter_______ Broken Tooth Cutter

Relative Energy Index

Figure 6.21: Cutting Tests at different spindle speeds (DOC=2.0 mm)
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speeds is given in Figure 6.21, which shows that system settling time is less than three 

tool rotations and overall output is same in terms o f tool rotations which becomes faster 

as spindle speed increases.
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6.9. D ecision M aking

The extracted features TREV and REI for three frequency components (fT, 3fr and f p) 

has been analysed and shown effective for detecting tool breakage. Although TREV 

can indicate tool breakage earlier than REI method, counter verification, which can be 

provided by REI, is required to avoid false alarms. When combined according to Table

6.3, these features can indicate more than tool breakage. For example a blunt tool for 

which TREV is large but REI o f^ a n d  3fr would not cross the threshold. In this table ‘1* 

indicates that threshold has been crossed and ‘X ’ denotes “don’t care” condition. An 

advanced diagnosis can also be requested for unexpected cases. In these cases the 

parameter monitoring node will initiate an advance diagnosis sequence and send the 

acquired data to the second tier for analysis. When a broken tooth is detected a broken 

tooth message is sent to parameter monitoring node which then combines this decision 

with decisions from other FENs and make a final decision about the health o f the tool. 

Upon a possible blunt tool detection a blunt flag message is sent which is used for 

process management function and the tool can be checked after the machining cycle 

finishes.

Table 6.3: Decision Making Table

T R E V
REI

Decision
f r 3/r /p

0 0 0 X Healthy

0 1 X X ?

0 X 1 X ?

1 1 X X Broken tooth

1 X 1 X Broken tooth

I 0 0 1 Blunt tooth

1 0 0 0 Wait for next Frame

? = Unexpected : request for advanced diagnosis

6.10. C o n c lu s io n s

This chapter has outlined the design and implementation of a digital filter based 

frequency domain signal analysis technique. This research was undertaken to support 

the monitoring o f the milling machining process. The implementation of this 

application on a dsPIC microcontroller has been successfully achieved and the resulting 

module was deployed as the first level node in a distributed process monitoring system. 

The nature o f the dsPIC module is such that it can be re-configured using software to
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suit a wide range o f m onitoring tasks and its use in this context is part o f an on-going 

research program.

In the IPMM research particular emphasis is placed upon the ability o f the monitoring 

module to make an instant but accurate diagnosis o f a fault condition. This is facilitated 

by the integration o f modules which m ay all be monitoring the same process, and can 

support the fault diagnosis procedure. This is very much seen as being a synergistic 

approach; the overall capabilities o f  such a system are more than the sum o f the 

individual elements. The nature o f  the deployed frequency domain analysis techniques 

and the dynamic digital filtering m ethodology allow the microcontroller devices to 

perform a number o f sensing functions simultaneously using multiple frequency 

estimation applications which would norm ally be judged to be beyond their 

capabilities. This can provide a very powerful and flexible sensor system, which can be 

economically deployed to monitor a wide range o f  machines and processes.

The main benefit comes from the smart operation o f this system, in that data is analysed 

and packaged within the sensor system. Data considered to be o f interest can be 

automatically referred to more powerful analysis systems, but data indicating a normal 

operation is summarized and then discarded. This reduces traffic on the integrating 

network, and removes the data saturation effect which has hampered the take up o f such 

monitoring systems in many industrial situations. The same technology and approach is 

applicable to a wide range o f process and machine based applications.
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Chapter 7

Depth of Cut Monitoring System

7.1. Introduction

Milling operations are almost always controlled by a computerized controller, with 

perhaps a supervisory role being played by a human operator. This leads to several 

operational problems, one o f  which is the potential for an unexpected cutting tool 

breakage, which may be due, among other reasons, to incorrect estimation o f tool life. 

There are many modes o f possible tool failure, from minor to catastrophic, and the 

response o f the system to each mode m ay be further conditioned by the nature o f the 

task being undertaken [7.1]. The situation is further clouded by the occurrence o f 

numerous events within a normal machining cycle which can lead to symptoms, such as 

sudden increases in tool force, which m ay “ fool”  inadequate tool monitoring systems 

into incorrectly diagnosing a tool problem.

Tool wear monitoring and detection plays a critical role in guaranteeing an automatic 

cutting process [7.2]. Tool wear is found to have direct impact on the quality o f the 

surface finish, dimensional precision and ultim ately cost o f the finished product [7.3]. 

Timely and accurate estimation o f  the tool life is critical. Over-estimation of tool life, 

results in degraded product quality and damaged parts (in the case o f early tool 

breakage), while under-estimation leads to frequent stoppages (of the machining 

process) and increased cost o f  production [7.4]. Thus real-time tool life estimation is 

deemed to be the key to automated machining. It has been shown in section 3.5 that 

tool life and tool wear estimation required depth o f cut (DOC) information to be 

known. This chapter describes developm ent o f a dsPIC microcontroller-based depth o f 

cut monitoring system utilizing ultrasonic sensors. The sensors had been analysed for 

accuracy and resolution before being incorporated into the system. The developed 

system has been installed on milling machine and used for monitoring o f DOC during 

machining tests.
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7.2. Depth of Cut M easurement

Depth of cut is the perpendicular distance between the original (uncut) surface and final 

(cut) surface o f the workpiece being milled. A depth o f cut from 3 to 8 mm is common 

for roughing cuts and is less than 1.5 mm for finishing cuts [7.5]. Previously deployed 

monitoring systems to measure tool wear and tool life, have relied on an assuming a 

constant value o f depth o f  cut (or have totally ignored it) [7.6]. True tool wear/life can 

only be sensibly estimated when the volume o f metal removed is known; hence 

providing a measure o f how much work has been done by the cutting tool during its 

lifetime. The volume V o f metal removed can be calculated via equation 7.1, if  the 

instantaneous depth o f cut hi is known.
N

V = Y / t V x A L x h l [mm3] (7.1)
1 =  1

with AL = S C-ê - x T l)OC [mm] (7.2)
oU

where

W is the width o f the cut in mm (and is equal to tool diameter in slot

milling operation) 

feedrate is amount o f metal fed into the cutter in m m .m in'1

AL is metal fed into the cutter in mm for ith increment (and is constant for 

constant feederate)

hi is the measured DOC in mm for ilh instant in time and Tqoc is update

interval in seconds.

Instantaneous DOC information can potentially be used as an extra input to a TCMS 

(for tool breakage detection). Otherwise, a change o f DOC during machining results in 

changes in the cutting forces and the associated signal values may be mistaken as tool 

breakage cases, with false alarms being generated. If the object profile is known in 

advance it can be used to calculate the upcoming change in depth of cut and warn the 

TCMS so that it can compensate for the changes and adapt accordingly.

Collision detection can also potentially be performed if  the object (workpiece) profile is 

measured. Then by detecting any approaching unusual change in object shape, the 

TCMS and machine tool controller can be warned and corrective action can be taken.
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7.3. System  D escription

The system architecture as discussed in Chapter 4 is shown in Figure 7.1 with the 

integrated DOC monitoring system highlighted. A Signal Conditioning Board is used to 

isolate and condition the signal so that it can be fed to the PIC/dsPIC microcontroller 

based data acquisition and processing node, which forms the Front End Node (FEN) of 

the system. These nodes are connected to each other and to the Connectivity Node via 

CAN Bus Communications. In this architecture the DOC monitoring systems works in 

collaboration with other monitoring nodes, which exchange information to achieve 

increased reliability. It gets the required information such as feedrate and tool offset, 

from parameter monitoring node and provides predicted and calculated DOC 

information to other nodes.

Central Server
Data Management 

Fault Diagnosis 
Tool Management

Ethernet

dsPIC Microcontroller
Internet Interface / 
Connectivity Node

CAN Bus

dsPIC Microcontroller 
Parameter Monitoring Node j

Data acquisition/Decision Making!

User Interface and 
Information Display Node
Updated information/alarms

dsPIC30F6014 Microcontroller 
DOC Measurement Node

D ata  A c q u is it io n /P r o c e ss in g

Spindle Speed

Spindle Housing

Ultrasonic Sensor (lof 2)*

Sensor Attachment

Milling Cutter

Workpiece

W ork tab le

Signal Conditioning Board
(& anti-aliasing stage)l  '

Spindle L<

Signal Conditioning Board
(& anti-aliasing stage)

ic Sensor Signal

* Other sensor is behind spindle housing in this view  

Figure 7.1: System Architecture - DOC Measurement System integrated into TCMS
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The Internet Interface/Connectivity Node is connected to a central server via Ethernet. 

The central server hosts data management and tool management software. Earlier 

TCMS developed in IPMM centre utilized PIC microcontrollers to implement the 

Monitoring nodes [7.7]. In this research these have been replaced with dsPIC 

microcontroller, which offer more processing power. The feasibility of the dsPIC 

devices for e-Monitoring applications has previously been reported by Siddiqui et al. 

[7.8].

The developed DOC Measurement System utilized two ultrasonic analog distance 

sensors mounted on either side o f  the cutter as shown in Figure 7.2. Both sensors were 

attached to the spindle housing with a specially designed attachment (“Appendix D”) 

which allowed the sensors to be mounted in different positions and configurations. One 

sensor (sensorl in Figure 7.2) measured the object profile in front o f the cutter path 

during machining whilst the second sensor measured the profile behind the cut.

S p in d le

Sensor!
Cutter

Tool offset
Measuring spot

W ork p iece

F e e d  ------ ► S w a r f/C h ip s

Figure 7.2: Measurement o f DOC using two ultrasonic sensors

The sensors were connected to a signal conditioning board and hence to the ADC 

module of the dsPIC30F6014 microcontroller. The ADC was set to sample the voltage 

signals from the ultrasonic sensors at a rate o f 50sps/channel (a throughput o f lOOsps). 

The ADC values were stored in memory from where they were accessed by the 

different data processing algorithms (discussed in section 7.8) to calculate the 

instantaneous DOC information. This information was communicated to the other 

nodes via the CAN bus. The different nodes o f  the TCMS then used this information in 

a variety of ways:-
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• The tool breakage detection node adapts the various thresholds used in the 

wider system according to the DOC information, resulting in better detection 

performance and the avoidance o f  false alarms.

• The tool life/wear estimation system uses this information to calculate, in an on­

going manner, the material volume removed. The cumulative work performed 

by the tool is then calculated and the residual tool life can be more accurately 

estimated.

• The object/workpiece profile information can be used for collision detection and 

avoidance o f any accidental damage to the cutter and the machine tool it self.

The system is required to be aligned in the cutting direction. There are two options 

available to deal with this requirement; multiple sensors and an alignment device. The 

attachment assembly has been developed such that multiple sensors can be incorporated 

using the same microcontroller and intelligently processing the data and deciding which 

sensors are providing meaningful data at the moment. The dsPIC microcontroller can 

measure data from upto 16 sensors using the ADC. The other alternative, given the fact 

that the sensors are relatively expensive, is to develop the alignment device. This 

alignment device could be based upon intelligent interrogation o f cutting axis data such 

that the sensor could align itself along the axis o f  cutting. Some research work has been 

carried out by the author in last stages o f  the research on utilization o f feed motor 

currents for this purpose; detail o f this prelim inary assessment is given in “Appendix 

E”.

7.4. Ultrasonic Sensors

Ultrasonic sensors are known for their robust performance in harsh and problematic 

environments where precise detection is essential. They are commonly used for a wide 

variety o f non-contact presence, proximity, or distance measuring applications. The 

devices typically transmit a short burst o f ultrasonic sound toward a target, which 

reflects back to the sensor. The system then measures the time for the echo to return to 

the sensor and computes the distance to the target using the speed o f sound in the 

medium [7.9]. This sensing method ensures reliable operation regardless o f the object s
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color or opacity [7.10]. The sensors that were selected and evaluated for this research 

were as follows:

• PING)))™ Ultrasonic Sensor

• UN AM 1219914/S 14 Ultrasonic Analog sensor.

7.4.1 P in g  U ltra s o n ic  S e n s o r

Parallax's Ping ultrasonic sensor provides a low-cost and easy method of distance 

measurement and is often used in robotic applications. The ping sensor measures 

distance using an ultrasonic (40 KHz) pulse, transmitted from the unit and then 

distance-to-target time is determined. The processed output from the ping sensor is a 

variable-width pulse that corresponds to the distance to the target. A single (shared) I/O 

pin is used to trigger the Ping sensor and for the echo return pulse. The simple 

construction o f the device is shown in Figure 7.3(a) and the required interface 

connections are shown in Figure 7.3(b). Other parameters from the technical 

specifications [7.11] for ping sensor are as follows:

Measurement range : 2cm to 3m 

Supply voltage: 5V +/-10%

Supply current: 30mA typical, 35mA maximum

Power consumption: 20mA

Input trigger: positive TTL pulse; 2 psec minimum, 5 psec typical.

Echo pulse: positive TTL pulse; 115 ps to 18.5 ms

Echo hold-off: 750 ps from fall o f Trigger pulse

Size: 22 mm Hx46 mmW><16 mm D (0.85” x l.8 ”x 0.6”)

I/O pin <I>

© 2006 P

Vss
G N D 1 Ground (Vss)
5 V 5 V D C  (Vdd)
S IG 1 Signal (I/O pin)

(a) Ping Sensor [7.12] (b) Connection diagram [7.13]

Figure 7.3: Ping)))™ Ultrasonic Sensor
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I

7.4.2 U N A M  1 2 I9 9 1 4 /S 1 4  U l t r a s o n ic  A n a lo g  s e n s o r

This sensor has a sensing range o f 20-200mm with a stated resolution o f <0.3mm 

which can be improved by selecting a smaller measuring range with the external (Ext) 

Teach-in facility provided in the sensor (as explained later in section 7.4.3). It has a 

sonic frequency o f 380 KHz and response time o f less than 30msec. It requires a supply 

voltage o f 15-30V DC and its output is a 0-10mA signal, which was converted into a 0- 

5V signal (by adding a load resistor o f  500Q) in this research in order to interface with 

the dsPIC microcontroller. This sensor and its connection diagram are shown in Figure

7.4.

B N  (1)

--------------- L : BK (4)
<32>

A n a l o g

--------— -------- -^ Z r .------- c
BU (3) E ? _ l

-

o + V s  

o  ou tp ut

W H  (2)
o O V

-o  Ext.Teach-ln

(a) (b)

Figure 7.4: (a) Ultrasonic Analog Sensor, (b) Connection diagram [7.14]

It has narrow beam angle (6°) which provides a relatively small foot print (area covered 

by the beam on striking the object). For typical distance (as used in this research) of 

110mm the foot print is only 11.5mm in diameter. It has a narrow sonic cone profile, as 

shown in Figure 7.5, which makes the sensors capable o f reliably measuring the 

distance in restricted spaces. Thus the sensor can be mounted very close to the cutting 

tool to measure the DOC. According to the manufacturer this sensor can be used as an 

alternative to optical distance sensors [7.15].

20

15
10

5
0
5

10

15 sensing limit
■20 220200180160120 14010060 800 20 40

object distance (So) from sensor front (mm)
standard square target, size 15x15 mm, positioned perpendicularly to sensor s reference axis

Figure 7.5: Sonic cone profile o f  the ultrasonic analog sensor [7.16]
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7.4.3 UNAM Sensor Resolution Improvem ent

As mentioned earlier sensor’s resolution can be improved with the help o f External 

Teach-in facility provided in the sensor. W ith this facility, end limit (Sde) and close 

limit (Sdc) o f sensor’s measuring range, Sd  = S d e - S d c , can be selected between 20- 

200mm. To do this, the teach-in input o f the sensor is set to high for a specified interval 

and sensor enters in the teach-in mode. A fter placing an object at Sdc, teach-in input is 

set to high again and sensor registers the m easured distance as Sdc value. Then value 

Sde is set in the same way. Default values for Sdc and Sde are 20 and 200 respectively. 

Different values of Sdc and Sde are mapped to minimum and maximum level o f  the 

output as shown in the Figure 7.6 and output range (hence measuring range Sd) is 

divided into a constant number o f  intervals.

S d e

S d = S d e - S d c
m in

S d c

0  2 0  4 0  6 0  8 0  1 0 0  1 2 0  1 4 0  1 6 0  1 8 0  2 0 0  2 2 0

Case Sd
(mm)

Resolution
(mm)

a 18 0.03

b 36 0.06

c 54 0.09

d 72 0.12

e 90 0.15

f 108 0.18

g 180 0.30

h 18 0.03

M e a s u r in g  r a n g e  S d c  I  S d e  (m m )

(a) (b)

Figure 7.6: (a) Sensor response and (b) resolution for different values Sd

For example, in case g o f Figure 7.6(a), Sde and Sdc have default values. The sensor’s 

output is at minimum level for measured distances smaller than Sdc and is at m aximum 

level when measured distance is greater than Sde. For distances between Sdc and Sde 

the sensor’s output varies linearly between minimum and maximum level w ith a 

resolution, which is less/better than 0 .3x S d /1 8 0 raw. Similarly cases a-h o f Figure 

7.6(a), show several scenarios with selected values o f Sde and Sdc to provide different 

values o f Sd and resolution (as tabulated in the Figure 7.6(b)), which is proportional to 

the measuring range. Thus resolution can be improved by carefully selecting the Sde 

and Sdc which in turn determine the m easuring range.
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Both sensors were accessed for accuracy, resolution and linearity. During this testing 

sensors were connected via a conditioning board to the dsPIC microcontroller (hosted 

on a dsPICDEM l.l General purpose development board). Appropriate software was 

written and deployed on the dsPIC, such that the distance measurements were 

communicated back to a PC. Data was stored in CSV file format suitable for import to 

Excel and/or Matlab for off-line data analysis.

7.5. PING)))™ Ultrasonic Sensor

7.5.1 System O peration

As stated, the ping sensor detects objects by emitting a short ultrasonic burst and then 

’'listening" for the echo. Figure 7.7(a) shows the sensor operation and associated signals 

during communication with sensor while Figure 7.7(b) shows operational and 

communication parameters which were considered during software design. A trigger 

pulse (duration touT = 5psec) was sent from the dsPIC via a digital I/O line configured 

as an output. After sending the trigger, the dsPIC reconfigured the same I/O pin an 

input. The input capture module (as discussed in Chapter 4) then obtained the 

characteristics of the sensor’s output pulse, with the width (tiN) o f this pulse 

corresponding to the distance to the target.

dsPIC /  Sensor Object

SIG pin
Input Pulse 

JT-
Output Pulse

*  to U T  - >  

^  ....... ♦ .......^

■ W m in

40 ....................... t  - ...................^  ‘H O tD O P F  ► ^  MN-MAX ►
_ r r  _

5  » 5v

Input (Trigger) Output (Echo Time Pulse)
Ov

■*- 'b

(a) Sensor connections, operation and associated signals
r m m m m Host Device Input T rig ger P u lse tou T 2  ps (m in), 5 ps typical

mmmmm P IN G )))
Sensor

Echo Holdoff tHOLDOFF 750  ps

Burst Freq uen cy Ib URST 200  ps @  40  kHz

Echo R eturn P u lse  M in im um tlN-MIN 115 ps

Echo Return P ulse  M axim um tlN-MAX 18.5 m s

D elay  before next m easu re m e n t 200  ps

(b) Communication and operation parameters 

Figure 7.7: Ping sensor operation for distance measurement [7.13]
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In particular input capture reads Timer values (TM Rrise  a n d  TMRFALL) on the rising and 

falling edge o f the output pulse from sensor and calculates the time lapse tm according 

to equation 7.3.

. _ ™ R f au -T M R r,sf
'/.v --------------J ----------------  [sec] (7.3)

O'

where Fcv is the dsPIC system clock frequency.

Object distance from the sensor is calculated according to equation 7.4 and 7.5.

t I K'

Distance = y Q r [m] (7>4)

where Cair is speed o f  sound in air which can be calculated according to equation 7.3 

[7.13]. Speed o f sound at am bient/ room temperature Tc (which is assumed to 2 ( fQ  is 

343.5 m/s.

Cair = 331.5 + (0.6 x Tc) [m s'1] (7.5)

7.5.2 Analysis

A test setup as shown in Figure 7.8 was used for testing the sensor’s resolution and 

linearity. Different metric slip gauges, in combination with a calibrated dial gauge 

setting, were used to provide a range o f  known distances between the sensor and a flat 

(and sufficiently sized) metal target. For these tests the range o f sensor-to-target 

distances was 45-155mm with results being obtained at 1mm increments

Dial gauge

Ping sensor nr

D istance
(m m ) Metric slip gauge

Metal target

Figure 7.8: Test setup

At each distance setting, 100 m easurem ents were obtained and recorded on the PC. The 

results o f subsequent analysis arc shown in Figure 7.9. The resolution o f  the sensor was 

found to be less than 6 mm.
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Figure 7.9: Resolution test for PING Sensor

The test described above was performed twice for each o f the two Ping sensors and the 

responses were compared as shown in Figure 7.10. The result showed that the 

individual sensor responses were different from each other, but both sensors showed a 

similar degree of repeatability. This means that each sensor has different characteristics 

which need to be determined before incorporating them into the monitoring system.

155
 linear line

Sensor 2 Set 1 
Sensor 2 Set 2

 Sensor 1 Set 1
 Sensor 1 Set 2

145

135 -

125 -

I  105 - 

S  95 -

65 -

45 55 65 75 85 95 105 115 125 135 145 155
distance (mm)

Figure 7.10: Comparison o f two sensors
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In next test two sensors were used to measure the simulated DOC varying from 9- 

19mm. The sensors were calibrated to allow for their individual characteristics. Two 

flat surfaces offset by predefined height (simulating a change in DOC) were used side 

by side. Each sensor measured the resulting change in height and the difference was 

calculated. The results in Figure 7.11 show the measured difference. On investigations 

it was determined that the identified DOCs were grouped on one of the three linear 

lines which are separated by 7J2 where X is the wavelength o f the 40 KHz ultrasonic is 

burst transmitted.

This sensor was considered for this application because o f its low cost and easy 

controllability from microcontroller. Because o f low cost sensor it was decided that 

eight sensors will be used with the aim to enable the DOC monitoring in any direction, 

without the need for aligning the sensors, by intelligently processing the data from all 

eight sensors. Eight sensors were mounted on a specially designed attachment assembly 

(“Appendix D”) which was then attached to spindle housing o f the milling machine and 

the sensor response was measured by moving the spindle (hence sensors) in 1mm 

increments. The response o f the best three sensors is shown in Figure 7.12. The 

remaining five sensors have response similar to the responses shown in Figure 7.10.

The selected sensors’ responses, shown in Figure 7.12(a), have large measuring errors 

in the shaded (red) area. There were two ranges, 100-130mm and 155-200mm, where 

error was relatively small. One of these measuring zones (155-200mm) was further 

analyzed, by calibrating the sensor response through linear regression and deploying a 

correction factor. This is shown in Figure 7.12(b) with the calculated errors shown in

8.58 mm

25

♦ measured object height 

Linear 

Linear + ^ /2  

Linear + 2 X./2

5 10 15 20 25

DOC (mm)

Figure 7.11: Simulated DOC (object height) measurement
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more detail in Figure 7.12(c). It was apparent that even within the selected range there 

were error zones (shaded areas in Figure 7.12(c)) of 3 to 4mm. Any measuring error 

greater than 0.5 mm was deemed to be unacceptable for the DOC monitoring System. 

There were some segments typical of 7 to 9mm range, which could potentially be used 

as safe ranges. Based on the test results it was concluded that this sensor could not meet 

the system requirements and was thus deemed to be unsuitable for the DOC monitoring 

application.

Seasors response when mounted on milling machine
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Figure: 7.12 (a) Sensor Response on milling machine (b) Calibrated Response for 155- 

200mm range (c) Measuring Error after calibrating sensors’ response

7.6 UNAM 12I9914/S14 Ultrasonic Analog sensor

7.6.1 System Operation

The sensor’s output was converted into 0-5 volts at the conditioning stage and ADC 

was used to measure the analog voltage. Test software was deployed on the dsPIC 

microcontroller. ADC measured the voltage which was communicated back to PC. Data 

was analyzed for various stated parameters.
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7.6.2 Sensor R esolution

Resolution is the most basic requirement for this application. It is impossible to 

measure to an accuracy smaller than the resolution [7.17]. The resolution corresponds 

to the smallest possible distance change which causes a detectable change to the output 

signal [7.18]. For the resolution test, the sensor was connected to a test rig where a 

25mm x 20mm metal object was moved at constant speed towards the sensor and then 

moved away. Data was collected at 200sps. Figure 7.13(a) shows the data acquired 

during this test. The bar chart in Figure 7.13(b) shows the difference between 

consecutive measurements. The maximum difference (resolution) was found to be 7 

ADC units which is equivalent to 0.307mm (according to equation 7.4). The difference 

data was further analyzed and results showed that resolution was <0.27 mm for 99.85% 

of the cases and it was <0.21 mm for 99% of the cases. This resolution can be improved 

by narrowing the measurement range by choosing Sde and Sdc with Ext Teach-in 

functionality of the sensor as discussed in section 7.4.3

d  = ADCVa,ue x (sde -  Sdc)
*12

(7.6)

where Sde is end limit o f  measuring range (maximum distance) = 200m m  

Sdc is close limit o f  measuring range (minimum distance) = 20mm

xl0?

y
c3>
oQ<

0.5

10001800160012001 4001

(a) Acquired data for resolution analysis

6001 
s a m p le  #

(b) Difference between consecutive samples 

Figure 7.13: Sensor resolution analysis
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7.6.3 L inearity

The output from a displacement sensor is proportional to the measuring distance and is 

shown as an almost perfect straight line. Linearity means the range o f deviation from 

the ideal line [7.17]. It is given as a percentage o f the upper-limit o f  the m easuring 

range i.e. Full Scale (FS.) [7.18]. For this test a 25mmX 25mm metal object was placed 

at measured distances with 1mm increments. A dial gauge, in conjunction with metric 

slips (Figure 7.8), was used to measure the actual distance. Output voltage was 

measured with a voltmeter and converted into the measured distance. The measured 

distance plotted against actual distance is shown in Figure 7.14(a). Measuring Error is 

plotted against the actual distance in Figure 7.14(b). The measuring error (which is 

measure o f linearity) was less than ±0.2% o f FS.
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20 4
200140 17080 1105020
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"  0ooe
3-°-4c3

S - 0 . 8

Distance (mm) 

(a) Measured Distance

20 50 80 110 
Distance(mm)

140 170 200

(b) Measuring Error

Figure 7.14: Linearity Analysis 

The resolution and linearity tests were performed twice for two sensors and matching 

results were obtained. Both sensors showed identical response with high degree o f 

repeatability.
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Following the promising results o f these initial tests the sensors were subjected to 

further machining process based experiments.

7.6.4 Gap and Hole Measurement

The purpose o f this test was to investigate the minimum amount o f gap/inclusion which 

can be detected by the sensor. An object with various gaps was created by placing the 

metal pieces such that seven gaps with gap widths o f  between 1 and 7mm were created. 

This object was put on a moving platform and passed underneath the ultrasonic sensor 

at a constant speed. The object profile was measured by the sensor and data was 

communicated back to PC. The acquired profile is shown in Figure 7.15. The location 

and their relative widths are overlayed to identify the sensors’ response to various gap 

sizes. Analysis show that 1 and 2mm gaps were not detected by the sensor, where as 3 

and 4mm gaps were detected but the difference in measured height was very small and 

o f the order o f sensor resolution. Gap sizes o f 5mm and greater widths were detected 

with confidence.

2mm 4 mm 5 mm1mm 3 mm 6 mm 7 mm
9.5

j z00
'5

7.5

250:20011 1  Sample # 1501501

Figure7.15: Gap Measurement

Another test was carried out to measure a hole o f 10mm diameter and the sensor was 

able to detect the location o f the hole. This test shows the capability o f  the sensor to 

detect hole like features and slots in the workpiece during milling operations. The 

sensors were thus deemed to have features that could be integrated into the milling 

cutting monitoring system being developed. Some additional sensor analysis tests are 

given in “Appendix F”.
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7.7. System  O peration

The ultrasonic sensors provide 0-1 OmA current signal proportional to the measured 

distance. This signal was converted to 0-5V and interfaced with ADC o f  the dsPIC 

microcontroller using two analog pins. The ADC module was configured to capture the 

data from both pins at a fixed sampling rate. Figure 7.16 shows the software model o f  

the developed system. Although there is only one ADC module in the dsPIC, it can 

capture signals from up to 16 inputs. Therefore it could be configured to provide an 

ADC block for each input. Data for both sensors is processed according to the block 

diagram shown in Figure 7.16. The algorithms developed will be discussed in next 

section. Spike removal and block average is applied to both sensors’ data. In the 

subsequent discussion, the sensor in front o f the cutter will be referred as sensor 1 and 

sensor behind the cutter as sensor 2. Since sensor 1 measures the object profile before 

the cutting, the predicted DOC is calculated utilizing the sensor 1 data and tool offset 

information and communicated over CAN bus.

CAN Bus

dsPIC

Sync
(Delay)

ADC

ADC

Sensor2

Sensor 1

Data
Buffer

Data
Buffer

Predicted
DOC

Block
Average

Spike
Removal

Spike
Removal

Block
Average

Measured
DOC

Further
Conditioning

Software
sw itch

Sensor
data

swapped
for

reverse
direction

Tool offset
CA N  Communications 

Feedrate Tool Status

Figure 7.16: Software model o f the DOC monitoring System

Data is buffered for subsequent analysis and DOC calculations as the w orkpiece is 

being machined. For this purpose Sensor 1 data is delayed by using a synchronization 

algorithm taking into account the feedrate information provided by param eter 

monitoring node. Sensor 2 data is further conditioned using the fact that cutting has
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actually been carried out, and is combined with synchronized sensor 1 data to calculate 

the measured DOC. The result is also communicated over the CAN bus. Information 

relating to the actual cutting operation such as feedrate, tool offset and cutting direction 

are communicated to the FEN and it transmits the DOC information which is used by 

other nodes for tool condition monitoring. The next section provides the details o f  the 

signal processing algorithms developed for the DOC monitoring system.

7.8. Signal Processing Algorithms

The algorithms were tested for effectiveness on a PC before deployment on the dsPIC 

microcontroller. The realization o f these algorithms for real-time performance was 

made possible by the DSP features o f dsPIC as discussed in Chapter 4.

7.8.1. Moving Average Filter

Let x(m) be the input signal, h(k), 0 < k < K  be the coefficients o f FIR low pass filter 

and y(m) be the output filtered signal then

y{m) = ^  h(k) • x{m -  k) (7.7)
k = 0

For the moving average filter (the simplest form o f FIR Filter) all filter coefficients are 

set equal to 1/K  i.e.

h(k) = 1/ K ,0 < k < K  (7.8)

By substituting equation 7.8 in 7.7:

y(m) = x { m - k ) (7.9)
&  k= 0

Figure 7.16 shows the results o f a 20 point moving average filter applied to the raw 

sensor data. Two sensors were attached to spindle housing as shown in Figure 7.2 and 

the profile o f a flat workpiece was measured by feeding the workpiece without any 

cutting. The unfiltered signal (Figure 7.17(a)) shows some noise in measurement which 

may be due the machine vibrations. This assumption is based on the static laboratory 

tests where sensors showed no such variations. The output filtered signal (Figure 

7.17(b) shows that the noise has been removed by the application o f m oving average 

filter.
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Figure 7.17: Moving Average Filter {K= 20)

7.8.2. Block Average

In this algorithm the decimation and moving average algorithms are combined. 

Decimation is a process o f reducing the sampling rate o f  a signal [7.19]. A moving 

average filter replaces the low pass filter according to equation 7.8. Let x(m ) be the 

input signal sampled at f s , the output signal after the decimation be y(r) where the

sampling rate f m is reduced by a factor M i.e. f m = f  S/M  then

y  W  = “F  S  x (rM  ~ k>> (7-1 °)A k=o

Thus the operations o f decimation/down-sampling and the moving average filter have 

been embedded in such a way that the moving average filter is operating at the reduced 

data rate and the average number o f computations to generate one output sample is 

reduced by factor M. The division operation is optimized and replaced by a n-bit shift 

operation by making K= 2n. If K= 32 we can shift 5 bits right to divide the sum by K.

This algorithm is used to reduce the data and to remove the effect o f noise in the sensor 

data. The sampling rate o f 2sps is deemed sufficient for DOC information where as the 

sensor itself is capable o f updating information at a rate greater than 33sps. Thus if  we 

sample the sensor output at 64sps and do the block average with M= 32 and K  > M  

sampling rate o f 2sps can be achieved while reducing the noise by square root of M  

[7.20] or about 5.7 (-15dB) in this case.

179



7.8.3. Sensor Data Synchronization

The two sensors were mounted on the machine as shown in Figure 7.2. They were 

separated by a distance D. This effectively meant that there was a lag o f distance D 

from sensor 1 in sensor 2 data. To calculate the DOC, sensor 1 data needs to be 

synchronized with sensor 2 data. For this purpose a time shifting technique was 

utilized.

Let */(r), x2(r) be the distance signals from sensor 1 and sensor 2 respectively sampled 

at a sampling rate off m after block average, the separation between sensors D  and y i( r), 

y 2(r) be the output signals after synchronization then:

where N  is number o f samples representing the separation between sensors and is 

dependent on feedrate.

7.8.4. Spike Detection & Removal

A noise spike is a single point that deviates from the preceding and following values by 

a large amount. Noise spikes can seriously bias the calculations o f any o f  the basic 

statistical properties o f a time series i f  they are not identified and removed.

The simplest method to remove spikes is to clip the trace to fall within an interval 

defined by upper and lower bounds. An adaptive upper bound method is used to 

remove the spikes from the sensor 2 data according to the following condition.

Fundamental premise for this condition is the fact that if  the cutter is cutting, the 

distance can not be greater than the tool offset. Tool offset information is only valid 

once the cutting has been performed. Therefore this algorithm can only be applied to 

sensor 2 data because o f its dependence on tool offset information.

y f r )  = x f r - N )  

y 2(r) = x2(r)
(7.11)

(7.12)
feedrate

y i ~

tool_offset i f  x2 > too l_o ffse t &
x2 > (x, + calibration _  factor) (7.13)

otherwise
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A more sophisticated algorithm was utilized to remove the spikes from for sensor 1 

data. This algorithm works as following [derived from [7.21]:-

• Let x(i) be the current point o f input signal and let first difference o f x at point i 

be

d if f  (/) = x(i) -  x(i -1 )  (7.14)

• Calculate the first difference o f the points in window length o f n to both left and 

right of the current point i.e. for range [i-n,i-l] and [i+l,i+n]

• Determine the absolute median first difference in each window

mal = |M edian(diff (i -  n ): d if f  (/ - 1))| (7.15)

mar = \M edian(diff (i + 1) : d iff  (i + n))| (7.16)

• Calculate difference between current point and points immediate left and right 

o f current point [d iff i), diffi+X)]

• Calculate the output according to equation below

>’(0 =

y(i - 1) i f  \d iff (*)| > q x mal & 

\diff(i + l ) \ > q x m a r  & 

d iff  (0  x d ijf  (i +1) < 0 

x(0  otherwise

where q is multiplier fo r  maximum expected change and its typical value is 3-5

The latter algorithm was applied to the sensor data which measured the object profile at 

the edge o f the workpiece. The raw data (top-left plot o f Figure 7.18) shows the spikes 

present in the data. The centre-left plot shows the output after spikes have been 

removed and bottom-left plot shows output o f the moving average filter applied to the 

raw data and the spikes removed data. All four signals are shown together on right hand 

plot. The spike removal algorithm has removed the localized variations in the data 

which would have been created by the moving average filter if  the spikes were not 

removed.
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Figure 7.18: Spike removal and moving average algorithm 

7.9. M achining Tests

As described earlier, the two sensors were attached to milling machine spindle using a 

specially designed attachment assembly as shown in Figure 7.2. This arrangement 

allowed one sensor to measure the object profile in front o f the cutter and other sensor 

to measure behind the cutter. Before any sensible measurements could be taken, it was 

necessary to ascertain that both sensors were calibrated to provide the same 

measurement for a particular distance. Analysis o f the sensors showed that sensor 

response remained same for different sensor units. The main area o f concern was the 

difference in the sensors’ height during installation to the spindle housing via the 

attachment assembly. To make the installation process easy and error free, this 

difference was compensated for in the software by performing a calibration test after 

each installation. The calibration process did not require any cutting to be perfonned 

and any available workpiece could be used for calibration.
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7.9.1. C a lib ration  T est

This test was designed to calculate the calibration factor which is used to compensate 

for the difference in sensor position in z-plane. After installation o f the sensors, the 

work piece was moved under the sensors at a constant feed rate. The object profile was 

measured with both sensors and processed for calibration factor calculation. For this 

purpose sensor 1 data was synchronized with sensor 2 data using the algorithm 

described in section 7.8.3. After this the m oving average algorithm was used to remove 

noise from the signal and the difference between profiles measured by sensors was 

calculated. The calibration factor is the statistical mean o f the difference signal where 

difference is less than certain threshold (2.0mm in this application). This factor is used 

for calibrating the sensor output for future tests. Figure 7.19 shows the signals acquired 

and processed for calibration factor calculation which is -0.41 in this case. Figure 7.19b 

shows that the object was not perfectly leveled. Since the calibration process relies on 

the difference signal, the workpiece shape will not have any effect on the calibration.

S e n s o r  C a lib ra tion  (R aw  D ata )

- Sensor 1
- Sensor 2

114

T 113 

112 

"5 111 

n n

Sensor Calibration
- Sensor 1  Sensor 2  Difference ( Average = -0.41 mm)

-04 |

-t o 
-0.2  £

40 60 80
distance along cutting path (mm)

100 120

(a) Raw data (b) Processed data & calibration factor

Figure 7.19: Sensor Calibration (Test 1)

Figure 7.20 shows the results o f  a calibration test carried out with a workpiece having 

two slots o f 20mm X  2.2mm size each, which were orthogonal to the cutting path. 

These slots were cut to simulate the change in depth o f cut while cutting tests described 

in section 7.10. The object profiles calculated by sensors (Figure 7.20(a)) show the slots 

detected at different times because o f the physical separation between the sensors. This 

separation was catered for by synchronization algorithm and Figure 7.20 shows the 

synchronized profiles where the slots detected by both sensors coincided. This again

183



shows the f l e x i b i l i t y  o f  the system  calibration process which does not require any 

special experiment. The calibration factor calculated in this test was -0.15mm.

xlO3 Sensor Calibration (Raw Data)
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Figure 7.20: Sensor Calibration (Test 2)

7.9.2 Height M easu rem en t T est

This test was performed to ascertain the linearity o f  the sensors while m ounted on the 

machine. A number o f  distance m easurem ent sets were recorded at different values o f  z 

(spindle height) by feeding the flat w orkpiece. First measurement was taken at an 

arbitrary value o f z. Subsequent m easurem ent sets were recorded for z+ lm m , z+2mm, 

z+5mm, z+lOmm and z+15m m . Sensor data was calibrated using the calibrating factor 

calculated earlier. The m easurem ent sets are plotted in Figure 7.21 show that the 

sensors have measured the distance w ith an accuracy indicated by the measurement 

error which was less than <0.1 mm. These results show the linear behavior o f  the 

sensors, which was required for DOC m onitoring System.

Heiĉ it measurement (Sensor 2)Heicfit measurement (Sensor 1)
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(which was 110.8mm) information is used for the calculation o f the DOC. The 

processed data is shown in Figure 7.23.

The results show the DOC measured by system to be decreasing along the cutting axis. 

This was subsequently found to be due to the workpiece surface not being perfectly 

level. There was small slope along the cutting path, which was be confirmed by the 

object profile measured by sensor 1 before cutting and the DOC measured offline (with 

a micrometer) shown in Figure 7.23. The developed system was thus able to accurately 

measure the DOC online within an acceptable tolerance. The resolution was greatly 

improved (<lmm) with the deployment o f  different signal processing algorithms.

Depth of cut measurement (Processed Data)

- Sensor 1 

■ Sensor 2 

DOC - Ideal result 

DOC - Measured off-line

• DOC - Predicted

• DOC - Measured on-line

Ideal result for flat «
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DOC measured off-line 
with micrometer

Predicted DOC using 
Sensor 1 data

DOC measured on-line

1 41 , * 61 sample #

^Measured signals

/
0.5

0.4

0.3

0.2

0.1

0

Figure 7.23: Processed data and calculated depth o f cut

It not only measured the DOC with sufficient accuracy but also, for the particular test 

reported, revealed the slope in the workpiece and the slots present in the cutting path. 

This revealed that the work piece was not set perfectly flat. If this happened during the 

machining of an actual component it would decrease the dimensional accuracy and in 

some cases rendered the part useless. In this way the system has shown the potential o f 

monitoring the correct setting o f the workpiece. Similarly by monitoring the slots it had 

enabled the avoidance o f false alarms which could have been generated because o f
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DOC change. This clearly shows the ability o f  the system to monitor any changes in the 

DOC in real-time.

7.10.1 Effect of Sw arf

Further tests were carried at 0.5mm, 1.0mm, 1.5mm and 2.0mm DOC. Tests revealed 

that with the presence o f cooling fluid and increasing volumes o f swarf as shown in 

Figure 7.24, the sensor data behind the cutter became very noisy. Further, at times the 

sensors could not make any sensible measurements as the sonic burst was lost due to 

reflection from the swarf at wide angles. For example, Figure 7.25(a) shows a noisy 

signal acquired by sensor 2 at 1.5 mm DOC.

(b) 0.5 mm DOC (no coolant) (b) 1.0 mm DOC

(c) 1.5 mm DOC (no coolant) (d) 2.0 mm DOC

Figure 7.24: Swarf generated during cutting tests

To handle this situation the signal processing regime was modified and tool offset 

information was used in the spike removal algorithm as previously described in section
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7.8.4. The resultant signal is shown in Figure 7.25(b). The sensor 2 data was 

conditioned via the calculation o f  the running maximum o f the signal to remove the 

effect o f swarf in the measured signal. The results o f this are shown in Figure 7.25(c). 

The other algorithms were as before and with the full set o f signal processing 

algorithms used the DOC was calculated with sufficient accuracy even for 2.0mm DOC 

Test, which obviously produced greatest amount o f swarf.
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Figure 7.25: Depth o f Cut Measurement for Cutting Test with 1.5 mm DOC

7.10.2 Results and Discussion

Tests carried out at different DOCs show that swarf and coolant fluid have adverse 

effect on the senor data as shown in Figure 7.26(a—d). In their presence it is not 

possible to measure the object profile correctly. During the tests the workpiece was
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cleared from any sw arf before each test. This helped the system to accurately measure 

the object profile in front o f  the cutter which results in better prediction o f the DOC for 

tool breakage system. However the measured DOC using sensor 2 data is dependent 

upon how efficiently the data is processed to calculate the profile.
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Figure 7.26: Comparison o f  DOC Measurements Tests 

Figure 7.26(e— h) shows the processed sensor data measured DOC using the modified 

algorithms as discussed in the previous section. The measured DOC is shown according 

to the scale on right hand side o f  each plot.

Integration o f the system with tool breakage system will enable to monitor the DOC in 

a more sophisticated way. DOC monitoring system will predict DOC using sensor 1 

data and the known tool offset and communicate the information for tool monitoring 

(breakage detection). The tool breakage detection system will adapt itself to the 

changing DOC and correctly monitors the tool breakage. This, in return, provides 

feedback about the health o f  the process. W hen it is conformed that cutting has been 

performed for particular portion o f the workpiece the system can calculate the DOC 

more accurately by using the fact that object distance behind the cutter should be equal 

to the tool offset. If no cutting has been performed i.e. the tool is missing or broken, this 

system, will adjust its calculations to incorporate the fact resulting in reliable 

calculation o f DOC.

7.11 Conclusion

The developed measurement system has been able to measure the DOC with <0.1mm 

accuracy. The deployed signal processing algorithms and their effectiveness have 

confirmed the capabilities o f  the dsPIC devices for eM onitoring tasks. With this 

research the focus has been shifted from solutions minimizing the signal processing 

towards more sophisticated DSP algorithms which promise better m onitoring solutions.
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The system has measured DOC with the assistance o f the removal o f swarf from the 

workpiece before cutting. It is recommended that further work should be focused on 

methods o f removing the sw arf in an effective way which will not only improve the 

effectiveness o f DOC measurement system but also enhance the tool life in terms o f 

avoiding chip adhesion and better heat dissipation.
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Chapter 8 

System Integration: 

A Process Management System

8.1 . In t ro d u c t io n

If a cutting tool on a machine is used, there are many events that can occur at any time. 

While tool wear is an ongoing phenomenon, things like tool breakage often occur 

without any warning. The developed system can be used for the monitoring o f events 

other than tool breakage when integrated in the architecture as described in Chapter 4. 

The research described in this dissertation will enable the construction o f the 

architecture as shown in Figure 8.1. Each element has been described in previous 

chapters. This chapter brings together these components and describes how the system 

will work and identifies contributions made by the individual elements.

System integration refers to combining together two or more subsystems or elements 

into one system. Systems integration combines the capabilities o f the subsystems into 

one system in a way which is much more superior to the sum o f the individual 

elements. It is thus concerned with value-adding to the system, with capabilities that are 

possible because o f interactions between subsystems. The integrated system for this 

research has the capabilites o f monitoring system performance and combining the 

monitoring results to reach a definitive conclusion about process health and also 

provides information for process management.

8.2 . S y s te m  O v e rv ie w

The integrated tool condition monitoring system consists o f three FENs in the first tier, 

as shown in Figure 8.1, to monitor the cutting process and tool health. Two FENs 

monitor tool breakage by analysing the spindle load signal in time and frequency 

domains using different signal processing methods as described in Chapter 5 and 6. The
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depth o f cut (DOC) m onitoring FEN provides on-line information ahead o f the cutting 

process as discussed in Chapter 7. In addition there is a parameter monitoring node 

which plays a central role in system level decision making about tool health. A user 

interface and information display node communicates with the local operator and 

provides real-time cutter/process health information (typically on a display). This node 

can be part of the process monitoring node. In future applications the system could be 

integrated into the CNC consol to provide seamless operation and real-time 

communication.
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Figure 8.1: Architecture o f Integrated Process Monitoring and Management System
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These nodes are connected to a CAN bus and communicate to each other by message 

passing. Messages are identified by message identifiers. Each node sends messages at 

regular intervals when the process is under normal conditions to announce its presence 

and provide the status o f  process. W hen an abnormality is detected by a node, it 

communicates the information immediately. In this way a tool breakage and critical 

DOC information is communicated to the parameter monitoring node for immediate 

combined diagnostics to verify the decisions. At the second tier, the dsPIC-based 

connectivity node provides an advanced diagnosis platform for analysing the signals 

when referred by first tier. It also hosts a web server which provides web pages related 

to the process. Finally it transfers the process management related information to the 

server. Each o f these elements shown in Figure 8.1 is considered in the following 

sections.

8.3 . P a r a m e te r  M o n i to r in g  n o d e

The parameter monitoring node monitors the signals and calculates the system 

parameters at the initialization stage and communicates this information to all FENs. 

Before starting the actual process, operational parameters and threshold values for local 

decision making are set. The start o f cutting operation is detected when the average 

spindle load exceeds the cutting threshold as shown in Figure 8.2. Similarly this 

threshold indicates when there is no cutting being carried out. This node sends this 

information over the network using a “start monitoring” message when the loads 

exceeds threshold and a “suspend monitoring” when the load drops below the 

threshold. In this way tool breakage is monitored when the cutting is being carried out. 

This information will also be augmented by the DOC monitoring node which will 

indicate a coming change in DOC.

The monitoring of spindle load also confirms cutting tool and workpiece interaction i.e. 

that neither o f them is missing. The parameter monitoring node also monitors these 

signals in real-time to detect any changes. If  any change (for example any change in 

spindle speed, feed rate etc) is detected by this node, it communicates these changes to 

the FENs. The concerned FEN receives the information and adjusts its parameters 

dynamically. It is worth noting that there is potential for developing a method allowing 

the parameters at this node to be acquired form the CNC controller (such as current
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cutting direction through G codes). At the same time tool information such as tool 

offset could be obtained from the database at the management application, which can 

be downloaded and stored locally.

Spindle Load
Cutting C ycle 1 Cutting Cycle 2

0.8

0.6
T 3

ju 0.4-oc
'S.CO

0.2
Cutting Threshold

nTTTjfm____
Suspend Start

M onitoring A ctive

Start
0

10 15 20 25 30 35 40 45 50 55 600 5
tim ec(sec)

Figure 8.2: Spindle load based cutting cycle determination for tool monitoring.

8 .3 .1 . D ec is io n  M a k in g  a t  th e  F i r s t  T i e r

Decisions about the health o f the cutter are made in two phases at the first tier. Firstly 

the monitoring nodes have local decision making logic programmed into them based on 

the signal processing methods they are using and the characteristic o f the process being 

monitored. This technique has been discussed in Chapters 5 and 6. This allows the 

nodes to reduce the network communication by sending a message only when it is 

absolutely necessary. In the second phase, the parameter monitoring node is responsible 

for decision making regarding tool health by integrating the information provided by 

other monitoring nodes. It receives messages from three FENs and may be programmed 

to combine the health status according to the example rule-base as shown in Table 8.1. 

In this Table ‘1’ means that a threshold is crossed or a possible tool breakage detected 

by a node and X denotes a “Don’t care” condition. Other warnings generated by the 

monitoring nodes, such as chipped or blunt tool are not shown in this Table. These will 

be flagged and appropriate advanced analysis will be initiated to verify the tool health.

198



Table 8.1: Com bined D ec isio n  M aking at First Tier

Frequency Tim e Average Load
StatusFFT HR ADOC T R E V 4 s Load

1 0 X X X AD
0 1 X X X AD
1 1 0 1 X Broken Tooth
0 0 0 1 1 Flag this event *
0 0 1 1 1 Query Entry/Exit/Inclusion
1 1 1 1 X Broken Tooth *

- - - - 1 Request data from Nodes
* Mark tool for later inspection.

AD=start advanced diagnosis sequence.

8 .3 .2 . D a ta  C o m m u n ic a t io n  f o r  A d v a n c e  D ia g n o s is

As mentioned in Chapter 4 more than 90% o f  the faults regarding tool breakage will be 

dealt with at the first tier. However there are cases when the acquired signal (like 

spindle load and speed) are communicated to the second tier for advanced analysis. For 

most effective analysis, the m aximum possible amount o f data should be used. To 

achieve a 1 Hz FFT resolution with advanced analysis, it was decided to always buffer

1 second o f data so that the data relating to an abnormal condition is available. It was 

also decided to acquire another second o f data after the abnormal condition is detected. 

To effectively monitor the tool breakage for entire range o f spindle speed (up to 

6000rpm) for a 4 tooth cutter, the sampling rate was set to IKsps. Therefore, 2000 data 

samples (12-bit) required to be transmitted to second tier for each signal. Each CAN 

message can carry 8 bytes o f data or in this case 4 data samples as each sample requires

2 bytes. Thus there would be 500 CAN messages to be transmitted for one signal. If we 

send the spindle speed signal as well then a total o f 1000 messages need to be 

transmitted. This would require about 1.07 seconds with a CAN speed o f 125Kbps. The 

time can be reduced by increasing the CAN bus speed up to 1Mbps but this will reduce 

the effective length o f the network and all nodes on the network may not work 

properly. The other solution is to reduce the amount data by using data compression 

techniques discussed in Chapter 4. These techniques provide up to 50% compressing 

ratio and help reducing the total data transmission time. This not only improves the 

network efficiency but also enables the system scalability allowing more devices to be 

added if required.
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8.3.3. A d van ced  D ia g n o sis  S eq u en ce

As soon as an abnormality is detected by one o f  the monitoring nodes or when the 

parameter monitoring node finds that advanced diagnostics are required for decision 

making, it starts the diagnostics sequence. It acquires and monitors spindle speed and 

spindle load signals and always buffers the signals for the last 1 second. The stored 

information includes data prior to abnormality. If  required, the node sends the buffered 

spindle load and speed data to the second tier, via CAN communications for advanced 

analysis. It also acquires another second o f  data and sends it along with other 

parameters such as DOC and feed rate information. Upon receiving the decision from 

the second tier, it raises the alarm in case o f confirmation tool breakage. Based on the 

advanced diagnostics o f  the signals over time, the rule base (shown in Table 8.1) will 

be updated through the built in run-time self programming (RTSP) facilities provided in 

dsPIC devices, to incorporate the lessons leam t from the analysis o f process 

abnormalities. The same is true for other monitoring nodes. This node also compiles the 

process management information and sends it to higher tier.

8.4 . I n t e r n e t  C o n n e c t iv i ty

Internet connectivity was realized by deploying the M icrochip’s TCP/IP stack on the 

connectivity node. The dsPICDEM .net 1 connectivity board, used for this purpose, has 

a Realtek Ethernet controller which has a unique Media Access Control (MAC) 

address. It was given an IP address from C ardiff School o f  Engineering Information 

Technology (IT) department. File Transfer Protocol (FTP) and HTTP servers were 

programmed to run simultaneously for data communication. Both o f the FTP and HTTP 

servers were programmed to listen to the connection on different ports. Each 

connection started a new session to handle a particular request. The W ebPages were 

created using Hyper Text Mark-up Language (HTML). These pages were converted to 

a Microchip File System (MPFS) image file and uploaded to the EEPROM on the 

board by communication to FTP server on a command prompt. The access to the FTP 

server was authenticated by username and password. HTTP server was used to present 

the information to ordinary users through hosted WebPages. It generated the part of 

webpage dynamically to display the current process information form stored variables. 

Since an automated pushing o f information is not possible through Internet Explorer 

(IE), this page was programmed to refresh its contents after a pre-programmed interval.
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(2 seconds in this application). Figure 8.3(a) shows the webpage that displays the 

process status relayed to the internet by connectivity node. In this case it is showing the 

tool status and system operational status using simulated data. The healthy status is 

shown as ‘h' and white background. Figure 8.3(b) shows the information for a broken 

tool as ‘B* with red background applied to status area. The change in background 

colour is utilized for easy identification of the tool status. The architecture of the 

webpage allows the user to see the process information while visiting other pages such 

as help page as displayed in Figure 8.3(b).

a  IPMM : dsPIC TCM M icrosoft In te rn e t Explorer

Fie Edit v̂ r. F»vont«  Tools Hefc>

O'** * O 9  l~l '■& > .

Q go

GvRP'FF
UNIVfcKSITY

PR IFY 5G O I
dsPIC  Based Tool Monitoring and 
M anagem ent System

Bottom half of tins page provides a real-time information about milling 
machine Kondia B500 "Machine Status" section refreshes the process 
information every few seconds and "Control Command " section sends the 
requests to the monitoring systems to start stop the inomtonng or machme.
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Tool H eath h
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Figure 8.3(a): Webpage information for a healthy cutter
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UNIVfcRSITY dsPIC Based Tool Monitoring and 
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Mean Frequency : Mean frequency is measured by the real-time FFT node 
by calculating the spectrum of the signal. For a broken cutter mean 
frequency will drop below threshold.

Depth of Cut:This information is provided by the DOC monitoring node in 
real time.

Tool Health: h' measn the tool is herahhy and 3 ’ means the tool is broken.
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Figure 8.3(b): Webpage information for a healthy cutter
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Provided control command buttons on the page as shown in Figure 8.3 send the request 

to the connectivity node, which can be programmed to act accordingly. In this 

application these are provided to demonstrate the web-based control capability of the 

system. The HTTP authentication is also implemented so that only registered users, 

with valid username and password, can interact with the process or monitoring system. 

In this case, when the webpage is opened in the web browser, the user is prompted to 

provide a valid username and password for authentication as shown in Figure 8.4. After 

successful authentication, a session is opened and the required webpage is displayed 

(Figure 8.3). This session remains valid until the browser is closed. In this way the user 

is required to authenticate only once at the start of session.

Connect to 10.74.0.21

IPM4: dsPIC b ased  Tool M ontorng  an d  M anagem ent System

U sernam e: £  Ipmmuser

Password: • • • • • !

□  gem em ber my passw ord

Authentication Required

© A u se r nam e and  passw ord  a re  b e n g  re q u e s te d  by  h t tp : / /1 0 .7 4 .0 .2 1 . The s ite 
sa y s : IPMM: dsPIC b a se d  Tool Monitoring a n d  M anagem ent S ystem ’

U ser Name: ipmmuser 

P assw ord: • • • • •

Z D

(a) Internet Explorer (b) Mozilla Firefox

Figure 8.4: Authentication request prompt

Mobile devices have small display screens and can display limited amount of 

information. In such cases, the status page can be opened directly by appending 

7status.htm ’ to the main URL (e.g. http://l0.74.0.2J/status.htm). The status page has 

the same behaviour (Figure 8.3) as described previously and is shown in Figure 8.5 for 

a healthy and broken cutter cases.
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l
Tool Status
Mean Frequency 30 3 Hz
Depth of Cut 2 06 mm

Tool Health h

Operational Status

Operating=Y

Monitoring^Y

16 Internet

(a)

3  h ttp://10.74.0-21/status... Q © ®
File Edit View Favorites Tools "  2f

A d d iti; |T j  h ttp : / /1 0 .7 4 .0 .21 /s ta tu s  v Q  Go

Tool Status
Mean Frequency: 10.3 Hz 
Depth of Cut: 2 03 mm

Tool Heafeh: B

Operational Status 

Operatmg=Y 

Modtoring=Y

( b )

In te rn e t

Figure 8.5: Status page showing information for (a) healthy cutter (b) broken cutter
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8.5. R esponse to N o rm a lly  O cc u r r in g  M ach in in g  Events

Another common problem with tool force monitoring is the entry/exit o f work piece 

and milling into a shoulder. These events are clearly capable o f confusing most existing 

monitoring systems. The researched system for tool breakage monitoring successfully 

identified the new and broken cutter for different depth o f cuts and spindle speeds and it 

also identified the simulated breakage in all the cases. Based on these results the system 

is expected to correctly identify tool condition under different commonly occurring 

events such as tool entry, tool exit, change in DOC and contact between the tool and an 

inclusion. Figure 8.6 shows a spindle load signal for a complete cutting cycle. At start, 

the load is at the “idle level” . As the tool starts to enter the workpiece the load starts to 

increase and crosses the cutting threshold. At this point the parameter monitoring node 

sends a message alerting the “start o f  cutting”. The load keeps increasing until the tool 

is fully engaged with workpiece. Halfway through cutting the tool encountered a 

slot/hole in the workpiece and load decreased considerably and went back to previous 

level after duration proportional to the width o f slot. This is analogous to milling out of 

a shoulder and then milling into the shoulder. At the end the tool exits from the 

workpiece and load drops below the cutting threshold. At this point the parameter 

monitoring node alerts the other nodes to suspend monitoring.

In c lu s io n /h o le  

D O C  C h a n g e T o o l E x itS h o u ld erT o o l Entry

T 3

0.2 C utting T h resh o ld

4035302520151050
t im e c (se c )

Figure 8.6: Different Events in a Machining cycle.

As it can be seen that load varies according to the cutting conditions, it is not possible 

to find tool condition directly from this signal. However after intelligently filtering the 

load signal as shown in Figure 8.7, it was possible to almost eliminate the effects of
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these events from the signal and the filtered signal relating to the tool condition was 

obtained. This signal was further processed by HR filtering node and FFT node to 

establish the tool condition. Figure 8.7 shows the filtered signal obtained for a healthy 

tool. It is clear that the signal carries the information which is almost independent o f 

those events described above. Coupled with the information, when the load is greater 

than the cutting threshold, the tool condition can be correctly identified. Moreover the 

system was unaffected by these events and did not generate any false alarm.

Load > Cutting Threshold 
✓

Filtered Load Signal

0 10 25 30 3515 20
tim ec(sec)

Figure 8.7: Filtered Spindle Load Signal for a Healthy Cutter
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Similarly Figure 8.8 shows a signature for a broken tool which looks similar to the 

healthy cutter profile but is differentiable from the healthy cutter signal using signal 

processing techniques described in Chapter 5 and 6. It was observed that the variations 

of the filtered signal increase with increase in depth o f cut. So the thresholds for 

detecting the tool breakage required the depth o f cut information, which is being 

provided by the DOC monitoring node. Thus incorporating the DOC information can 

aid the system when trying to reliably detect the tool breakage.
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Figure 8.8: Filtered Spindle Load Signal for a Broken Cutter
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It is quite common to actually encounter hard piece o f material in a workpiece. There 

will be sudden increase in tool force and many existing tool breakage systems will 

possibly identify this event as being due to tool breakage. Because o f the frequency 

based nature o f the process, the developed system will not generate the false alarm. 

Further diagnostics is enabled by the fact that the integrated system will actually 

monitor/read out what the DOC was and establish if  it had changed recently. Knowing 

that DOC has not changed, it can actually be assumed that it must be due to “something 

else”. That “something else” could be related to tool wear. If  the situation resolves itself 

and conditions come back to normal then the chances are there was an inclusion in the 

workpiece or some other cause o f  the disruption. That’s the diagnostics the researched 

system has made possible. It w ouldn’t signal tool breakage because at the integration 

level all monitoring decisions are combined together, all the information is analysed 

and determined whether it’s either the tool wear or it’s a hard piece o f material. 

Because conditions revert back to nonnal again, i t’s not tool wear, it’s possibly a hard 

piece o f material.

The system may be configured to flag up the fact that the tool has machined hard piece 

o f material because it may have damaged the tool. There may be a crack or some other 

fault with tooth which has yet to indicate itself as broken tooth, but will do so if  it 

continues to cut. In this way if  a particularly high force is recorded, the operator can be 

asked to inspect the tool, because the tool might break a lot sooner than it should. It is 

almost impossible even using the most advanced tool condition monitoring methods to 

actually detect cracks in teeth. But it is not impossible to look carefully when it is sent 

for calibration to detennine whether that’s the case.

The developed system is not affected by the entry and exit events, but it records an 

increase in machine load. This is also confirmed by the fact that DOC system will 

report that there is an entry or exit event. Entry events will be distinguished from 

shoulder/increase in DOC by the fact that at an entry event the load is at its idle level 

before entering into workpiece and for the shoulder it will be greater than cutting 

threshold before entering into the shoulder.
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8.6. Process M a n a g em en t S tra teg y

Having discussed the tool breakage monitoring system, it is finally worth considering 

how the other currently available IPMM modules and elements such as the DOC 

monitoring system developed in this thesis, can be integrated in order to provide a 

better overall process managem ent tool. W ithin this scenario, tooth breakage will be 

covered by individual modules. There will be times when the module thinks that 

perhaps the tool is broken. W hen it can make access to the information such as DOC, it 

can improve its decision accuracy. But integrating it into a higher level will also 

provide more information.

Under normal conditions, when a tool is cutting workpiece, tool load will be equally 

spread during each rotation o f the tool. There will be some variations due to tool wear. 

Although this system only alarms when sensing a broken tooth, tool wear may also be 

monitored using the same information. The system uses the average load and its 

variation components for tool health monitoring. This component is potentially useable 

to measure and monitor tool wear and tool life. There is parallel research work going on 

in IPMM centre on tool wear and tool life [8.1] and there is a clear link between this 

work and the research reported in this thesis. The previous work is still based on 

previous generation o f PIC microcontrollers and would benefit from this research. It 

would be worth developing a tool wear monitoring system on the same hardware as the 

current system for possible easy integration, exchangeability and interchange-ability 

with enhanced signal processing.

It is perfectly possible for symptoms similar to broken tooth being generated by events 

in milling process such as shoulder milling, milling an inclusion and change in DOC. 

These can be eliminated by the researched system because they are not frequency based 

and are one off events (and frequency components will come to nonnal conditions). 

That diagnostics could be confinned from DOC monitoring system. DOC and Tool 

Breakage systems will work together. The parameter monitoring node might think that 

DOC might have changed when tool force suddenly increases. So it will query: has the 

DOC changed? DOC monitoring is working ahead o f cutting. It should have already 

sent the infonnation if  it detected a change in DOC. It will track the latest position of 

cutter based on feed rate infonnation. However, information about change in DOC can
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be requested and the system will re-access the information and send the latest 

diagnostics o f data taken from near the cutter location. If the module replies that there 

is no DOC change then it means something else might have happened. If something 

happens, the system does not stop the machine, until final decision about the tool 

breakage is confirmed.

Of more interest is the detection o f  sudden increase in force due to machining an 

inclusion. When the tool encounters a hard piece o f material the parameter monitoring 

node will record a sudden increase in load. The tool failure/breakage monitoring node 

reports that tool is not broken, but that a higher than normal cutting force occurred. This 

can then initiate the tool inspection process identified in Section 8.5 and also from the 

basis of subsequent tool management strategies.

8.7. Sum m ary

By monitoring all the events during the milling operation, the monitoring system 

provides the benefit o f actually having always the record o f the entire tool life. If a 

record of these events is kept it can be used for tool management and OEE strategies 

based around the following data:

• How many entrances and how many exits the tool made

• How many shoulders milled by the tool

• What was the cutting speed

• For how long the tool was actually cutting

• What DOC was it working on etc

• How many times tool a hard piece o f material or an inclusion has been

machined

This analysis helps build up a picture o f the cutting performed by a tool over entire tool 

life and provide a more accurate description o f what tool life really means. The tool 

management system accordingly will utilize the new learnt tool life meaning to develop 

an even more robust tool condition monitoring strategy.
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Chapter 9

Conclusion and Future Work

9.1 M a in  C o n t r ib u t io n s  o f  th e  R e s e a r c h

This research was aimed at developing advanced signal processing techniques and 

algorithms for implementation on dsPIC microcontrollers for a machine tool condition 

monitoring system and thus exploring the potential o f the dsPIC technology for the 

realization of an e-Monitoring system. The research has produced the following 

important contributions: -

•  S ig n a l P ro c e s s in g  T e c h n iq u e s .  The development o f novel signal processing 

and analysis techniques which are optimized for deployment on microcontroller 

devices. These are capable o f real-time feature extraction to detect tool breakage 

for entire range o f spindle speed. These techniques include:-

o  A novel implementation o f  the overlap FFT technique on 

microcontrollers for real-time frequency analysis for tool health 

monitoring.

o  A novel variable sampling rate implementation exploiting the on-chip 

features o f  the dsPIC technology in an intelligent way. 

o  The development o f a Multiband HR filtering technique to eliminate the 

requirement for analogue hardware filters. This enhances reliability and 

makes the system compact and thus suitable for embedded applications, 

o  The development o f a novel Dynamic Coefficient Selection technique 

for enhancing the effectiveness o f the monitoring system, 

o  A virtual node implementation o f the TREV technique in time domain 

for tool breakage detection.

• Tool breakage detection within IV2 revolutions and verification within 2 

revolutions by using the developed techniques and existing machine tool signals 

thus eliminating the requirement o f additional sensors for real-time tool 

breakage detection.
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• A novel depth o f cut monitoring system development and implementation for

on-line measurement o f  DOC information, which enhances the system 

robustness and reliability. The DOC information enables the approach to 

identify events which were not possible in the absence o f it.

• The development o f  a future proof monitoring system architecture which 

welcomes the advancements in technology and provides an infrastructure for 

easy integration o f new devices.

• The development o f  embedded distributed monitoring system solely based on 

dsPIC technology.

• The use o f dsPIC microcontrollers to implement the techniques in addition to 

providing CAN bus and internet connectivity to the proposed system.

• The use of integrated system strategy for decision making which enhances the

system reliability and enabled a process management strategy using the

information provided by the researched system especially the DOC monitoring 

system.

• Capture of all significant events for off-line analysis and subsequent diagnosis. 

Exception reporting allows diagnostic system development.

9.2 Conclusions

The most important conclusions drawn from the research can be summarized as 

follows:-

• The dsPIC microcontroller has the capability o f  running overlap FFT, analysis 

and decision making for maximum operational spindle speed and still utilizes 

only 50% of the processing time when operating at 29.49MIPS.

• The main frequencies o f interest in a machine tool condition monitoring system 

are tool rotation frequency, its third harmonic and tooth passing frequency. 

These frequencies are dependent on number o f teeth and spindle rotation speed.

• The strength o f these frequencies for healthy and broken tools is significantly 

different and these variations can reliably be used to detect a broken tool.
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• The mean frequency and unique pattern are significantly different for healthy 

and broken cutter. These features can improve the reliability o f the broken tool 

detection system.

• The tool rotation energy variations for a healthy and broken cutter are 

significantly different and can used to detect a broken tool.

• The depth o f cut measurement and its integration enhanced the system 

robustness and reliability.

• The DOC information enabled the approach to identify events which were not 

possible in the absence o f  it.

• The system integration increases the overall system efficiency and reliability.

• A process management strategy is made possible using the information 

provided by the researched system especially the DOC monitoring system.

• The dsPIC microcontrollers are reliable and flexible devices for implementation 

o f reliable and cost effective e-Monitoring system.

• The dsPIC technology is capable o f  providing internet connectivity and can host 

multiple services simultaneously. It can be used to realize a web-based 

monitoring and control system.

Considering these conclusions it is evident that cutting process information can be 

extracted from machine tool signals. By analysing them using the developed signal 

processing techniques, it is possible to detect tool breakage. The incorporation o f the 

depth of cut information and the combination o f the process status generated by the 

FENs can be used in an integrated way to cross verify the results. This provides high 

reliability and reduces the false alarms. It also enables the system to monitor and 

record the events a cutting tool has experienced during its life cycle which will enhance 

the understanding o f tool life phenomenon from a new perspective.

The dsPIC microcontroller not only fulfils the requirements o f the embedded machine 

tool monitoring system but also has the capability to incorporate more signal processing 

algorithms in future if  required. These may be added as a result o f advanced analysis o f 

unexpected conditions. The dsPIC microcontroller has multiplexed input and output
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functions and is capable o f  implementing the proposed monitoring system. Based on 

the testing and verification o f  the proposed signal processing, data analysis techniques 

and DOC measurement techniques it is possible to conclude that the dsPIC technology 

is capable o f providing an effective low-cost tool condition monitoring system. The 

proposed monitoring system fulfils the main requirements by providing information for 

monitoring and maintenance activities.

9.3  R e c o m m e n d a tio n s  f o r  F u t u r e  W o r k

Based on the analysis o f the research presented in this thesis and an investigation o f the 

various options for enhancing the effectiveness o f the system, the following areas are 

identified as possible further research work.

The DOC monitoring system is affected by sw arf generated during cutting operation. It 

is therefore recommended that further work should be focused on methods o f removing 

the swarf in an effective way which will not only improve the effectiveness o f  DOC 

monitoring system but also enhance the tool life in terms o f avoiding chip adhesion and 

better heat dissipation.

The DOC monitoring system was developed to explore the possibility o f measuring this 

important parameter in real-time and has been shown to produce a viable solution. The 

developed system was tested for fixed axis cutting where as in actual machining the 

cutting direction can change based on the machining requirements and shape o f  the 

product. Therefore to realize a fully automated system, the development o f an 

alignment device for aligning the sensors in the cutting direction is recommended.

A preliminary study and analysis o f  feed motor current signals has shown the potential 

of developing the tool condition monitoring system based on feed motor current 

analysis. These signals contain information about feedrate, cutting force and cutting 

direction. The signal processing and analysis techniques presented in this thesis can be 

applied to the indirect cutting forces, extracted from the motor current signals, to detect 

the tool breakage. The cutting direction can be estimated by measuring the feedrate in 

horizontal axis utilizing the feed motor current signals as discussed in Chapter 7.
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The developed system has enabled a process monitoring strategy which requires the 

storage o f the events detected by the system for long term analysis such as tool life 

estimation and trend analysis. The implementation o f the process management system 

elements is recommended to utilize the full potential o f the developed techniques and 

monitoring strategies presented in this research. This will need investigation into the 

hardware, software and communication requirement. By utilizing the system 

architecture and communication capabilities provided by the developed system, any 

computer connected via Ethernet or the internet can be utilized for this purpose.

Two tool breakage monitoring nodes utilizing different signal processing and analysis 

techniques have been developed and implanted in this research to show the potential of 

dsPIC in handling variety o f DSP algorithms. Both nodes can detect tool breakage in 

real-time. It is possible to detect tool breakage using either o f them independently. 

Therefore, it is recommended the further research be conducted to define criteria for 

selection o f an algorithm for tool breakage detection node based on further testing o f 

these algorithms.

The dsPIC Technology has all the ingredients such as microcontroller and DSP core, 

memory, peripherals, timers, interrupts and communications modules suitable for a 

System-on-a-Chip (SoC) design. The recent dsPIC33F microcontrollers provide added 

features such as increased processing power (40 MIPS), Direct Memory Access (DMA) 

module, increased program and data memory and 2 ADC units each with up to 

l.IM Sps speed and 4 S/H buffers. This can provide facilities to acquire 8 analogue 

signals simultaneously and up to 32 analogue signals using one chip. Similarly 

Microchip’s latest 32-bit microcontroller PIC32 provides 80MHz clock speed and up to 

1.5 MIPS/MHz (i.e. 120 MIPS) throughput. It hosts a DMA, a 32-bit single cycle 

multiply and divide module, MAC unit, a bus matrix operating at processor clock speed 

and Joint Test Action Group (JTAG) interface. The DMA capability will enable the 

capture o f a large amount o f data before the MCU is interrupted for data analysis. This 

will reduce the software overhead and save the MIPS for additional monitoring tasks. 

The increased processing capabilities o f these devices and communication capabilities 

make them ideal for implementing a SoC for a tool condition monitoring system. Thus 

further research in this area, utilizing the developed algorithms, SoC concepts and 

recent 16 and 32-bit embedded devices, is recommended.
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Appendix A

dsPIC Related Details

Selected Manuals are provided in attached CD in folder “Appendix A 
Schematic Block Diagram for dsPIC30F6014
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dsPIC30F6014 Features

High Performance Modified RISC CPU:
• Modified Harvard architecture

• C com piler optim ized instruction s e t  architecture
• F lexible a d d ressin g  m o d e s
• 84  b a se  instructions

• 24-bit w ide instructions, 16-bit w id e data  path

• Up to 144 K bytes on-chip  F lash  program  s p a c e
• Up to 48K  instruction w ord s

• Up to 8 K bytes of on-chip  data RAM

• Up to 4  K bytes of non-volatile data EEPRO M
• 1 6 x 1 6-bit working reg ister array

• Up to 30  MIPs operation:

- DC to 4 0  MHz external c lock  input
- 4 M H z-10 MHz oscillator input with PLL 

active (4x, 8x, 16x)
• Up to 41 interrupt so u rces:

- 8 u ser se lec ta b le  priority le v e ls

- 5 external interrupt so u r c e s
- 4  p ro cesso r  traps

DSP Features:
• Dual data fetch
• M odulo and B it-reversed m o d e s

• Two 40-bit w ide accum ulators with optional 
saturation logic

• 17-bit x 17-bit single cy c le  hardware fractional/ 
integer multiplier

• All D SP  instructions are sin g le  cyc le

- M ultiply-Accumulate (MAC) operation

• S ingle cyc le  ±16 shift

Peripheral Features:
• High current sink/source I/O pins: 25  m A /25 mA

• Five 16-bit tim ers/counters; optionally pair up 
16-bit tim ers into 32-bit timer m od u les

• 16-bit Capture input functions
• 16-bit Com pare/PW M  output functions:

• Data Converter Interface (DCI) supports com m on  
audio C od ec  protocols, including l2S  and A C ’97

• 3-wire SPI™ m odu les (supports 4  Fram e m o d e s)

• l2C™ m odule supports M ulti-M aster/Slave m ode  
and 7-bit/10-bit addressing

• Two a d d ressa b le  UART m od u les with FIFO 
buffers

• Two CAN bus m odu les com pliant with CAN 2 .OB 
standard



Analog Features:
• 12-bit A nalog-to-D igital C on verter (A /D) with:

- 100 K sps con version  rate
- Up to 16 input ch a n n e ls

- C onversion  availab le during S le e p  an d  Idle

• Program m able Low V oltage D etection  (PLVD)

• Program m able Brow n-out D etection  an d  R e s e t  
generation

Special Microcontroller Features:
• Enhanced Flash program  m em ory:

- 10 ,000  erase/w rite c y c le  (m in.) for 
industrial tem perature ran ge, 100K  (typical)

• Data EEPROM m em ory:
- 100 ,0 0 0  erase/w rite cy c le  (m in.) for 

industrial tem perature ran ge, 1M (typical)

• Self-reprogram m able under so ftw are control

• Pow er-on R e se t  (PO R), P ow er-u p  Tim er (PW R T) 
and Oscillator Start-up Tim er (O ST )

• Flexible W atchdog Timer (W DT) with on -ch ip  low  
pow er RC oscillator for reliable operation

Pin Diagram of dsPIC30F6014
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Programmer’s Model for dsPIC30F
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Program Space Memory Map for dsPIC30F6014

Reset -  g o t o  Instruction
Reset - Target Address

Interrupt Vector Table

000000 
000002 
000004 A

Vector

o
E 03 

* 5  CO

Reserved
Alternate Vector Table

User Flash 
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(48K instructions)

Reserved 
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Data space Memory Map for dsPIC30F6014
M S  Byte 
Address

2 K byte___
S FR  Space

8 Kbyte 

SR AM  Space

Optionally
Mapped __
into Program  
Memory

0x0001

L_ 0x 07F F  
0x0801

0x17F F
0x1801

0 x 1 FFF

0 x 2 7 FF  

0x2801

0x8001

OxFFFF

16  bits

M S B LSB

S F R  S pace

X  D ata  R A M  (X )

 4--------
Y  D ata  R A M  (Y )

X  D ata  

Unim plem ented (X )

LS Byte 

Address

0x0000

0x07 FE  
0x0800

0x17F E
0x1800

0x1 FFE

0x 27F E

0 x 2800

0x8000

OxFFFE

8 Kbyte  
N ear 
Data 
Space

Data space for MCU and DSP (MAC class) Instructions
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(Y SPA C E )
UJO<
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X
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U N U S E D
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Schematic diagrams dsPICDEM 1.1 Development Board
CAN and Serial Communication Interfaces
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Schematic diagrams dsPICDEM.net Board

10 base-T MAC/PHY interface

\ /

/ \

222



to
u>

■bU

tNSTfil l_ JUflPER FOR 485 
REnOOE FOR 422R39

US
DR_TR.

W
DE

TX-
8X-

U7

J 5ci?

232
PORT

[ R9 
!— >V v V v —  tax

J 3

us
UREF — 
CRNL h-g- 
CflNH p—-j-

CflN PORT
H C P 2 5 5 1 -I/S H

PRRTS L IS T

DIUERSIFIED ENGINEERING
& WNUFfiCTURlNG, INC.HTCHSChIP-------- —--- ------------

d s P IC D E M .n e t  1 DEMO BOARD 
d s P IC D E M .n e t  2 DEMO BOARD

1552

■ out. NO. 0 3 - 0 1 B 7 3

1 1 4 1 0 2

O  

>2  
P  
3
a
in n
S’ &
Oo
3
3
c
0MB*
o
p
*■4-
o ’
0

l/l
ocrfD
3
p

p(10
■ t
p

3tZ!
a

HH
o
e
w

so
a>

Wo
p
• t
a



Block Diagram of CAN module of dsPIC30F 

CAN Buffers and Protocol Engine

BUFFERS
A ccep tance M ask 

RXM1

TXBO

n “■
K ca 2? a . 3
$  <r _J UJ ><
«  x  x  x  »r
S h i - t - 2

Q ueue
Control

TXB1

\ z

TXB2

r ,  u.

%  CO <  OC m

z z

A ccep tance  M ask 
RXMO

I5 Z Z 2 2

A ccep tance  Filter 
RXF2

O 2 2

A ccep tance Filter 
RXFO22

A ccep tance  Filter 
RXF3

_i> —  . .

A ccep tance  Filter 
RXF1

z z
Transm it Byte S eq u en c e r

It

A ccep tance  Filter 
RXF4 

<2 45=
A ccep tance  Filter 

RXF5

Identifier

D ata Field

It
Identifier

D ata Field £
Z Z

PROTOCOL
ENGINE

z z

Transm it Shift R eceive Shift

CRC G enerato r CRC C heck

R eceive
Error

Counter

Transm it
Error

Counter

RERRCNT

TERRCNT

Err P a s  
Bus Off

P rotocol
Finite
S tate

M achine

Bit
Timing
Logic

Transmit
Logic

Bit Timing 
G enera to r

CiTX(1) CiRX(1)

Note 1: i = 1 or 2 refers to a  particular CAN module (CAN1 or CAN2).
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Appendix B 

Tool breakage Simulation 

(Electronic Appendix)

Please refer to the attached CD (folder

Some Screen shots are given below:-

o OCutter Cutter

W oi

Feed Feed

Signal Frame FFT Signal Frame FFT

Time (rotations) Time (rotations) Frequency (Hz)Frequency (Hz)

(a) Healthy Tool (b) At tool breakage

Cutter

Feed

Signal Frame
•  O •  0 0  <

FFT

-2 - 1 0 f r 3/r
Time (rotations) Frequency (Hz)

Cutter

Feed

Signal Frame 

,0 0  ft ft ft
FFT

-2 -1 0 < Z _ J HTime (rotations) Frequency (Hz)

(c) First FFT after tool breakage (d) Tool breakage detection in 1.5 rotations
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Appendix C

Additional Tool breakage Test Results

Modelled Cutting Forces and FFT for 4 and 8 teeth Cutters

4 Teeth cutter 8 Teeth cutter

N ew  Cutter N ew  Cutter

500 2  60 0

100 g  4 0 0  
u-bo
.c  200zoo

0.2 0.4 0.6 0.2 0.4 0.6
time (s e c )  

FFT
tim e (s e c )  

FFT

6 6 . 6  83 .3 100100 25 33 .325 33.3
F requency (H z)Frequency (Hz)

Broken CutterBroken Cutter

|  6 0 0600

4 0 0400
Ll,

e? 200200

0.60 .4  
tim e (s e c )  

FFT

0.20.60.2 0 .4  

tim e ( s e c )  
FFT

100100

1006 6 . 6  83 .325 33 .31006 6 . 6  83 .325 33 .3
F requency (H z)F requency (H z)
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Overlap FFT analysis of simulated tool breakage

(a) 0.5 mm DOC

Healthy Cutter

0 8 17 25 33 42 50 58 67 75 83 92 100
Frequency (Hz)

150
1.5 rev into B reakage

100

0 8 17 25 33 42 50 58 67 75 83 92 100
Frequency (Hz)

(b) 1.0 mm DOC
FFT of Spindle Load

Healthy Cutter

17 25 33 42 50 58 67 75 83 92 100 
Frequency (Hz)

150
1.5 rev into B reakage

100

17 25 33 42 50 58 67 75 83 92 100 
Frequency (Hz)

0 8

100

50

— w S 
Frequency (Hz)

° 00 io

Broken Cutter

100

0 8 17 25 33 42 50 58 67 75 83 92 100
Frequency (Hz)

FFT of Spindle Load

0 8 17 25 33 42 50 58 67 75 83 92 100
Frequency (Hz)

Broken Cutter

Frequency (H z )
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Mean Frequency for simulated tool breakage Tests

(a) 0.5 mm DOC

M e a n  F r e q u e n c y  (M F )
3 0  -

NX
* 20 - o a o
a -  15 ~o
£
§ 10 -<u

T h r e s h o ld

H e a lth y  C u tter B ro k en  C u tter

18 -1 6  - 1 4  -1 2  - 1 0  - 8 ■6 - 4 - 2  0  2 64 8 10
F F T  F ra m e #

(b) 1.0 mm DOC

M e a n  F r e q u e n c y  (M F )

2 5  -

20 -
T h r esh o ld

cr

tu
10 -

B ro k en  C utterH e a lth y  C u tter

8  10  12 14 16  18■2  0  2  4 6-1 0  - 8  - 6  -4
F F T  F ram e #

(b) 1.5 mm DOC

35

M ea n  F r e q u e n c y  (M F )3 0

2 5

20
T h r esh o ld

15

10

5
B ro k en  C utterH e a lth y  C u tter

0
8 10 12 14 16 18642■ 6  -4  -2  0-10 -8

F F T  F ra m e #
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Large 
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to 
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for 
broken 

cutter

Spindle Load (Watts)Spindle Load (Watts)

Sm
all peak 

to 
peak 

for 
new 

cutter

Spindle Load (Watts)Spindle Load (Watts)



Tool Entry & Exit (DOC=2mm, DOC, feed rate =150mm/min, Ns=450rpm)

New Cutter
700
600 -
500

I  400 -
300 -

J  200 - JZ
I  100 1
5,«« n

-100 4 
0 105 15 20 25 30

700

600 

3  500 

I  400
T3 cd O
« 200

1  100m

.Spindle Load

300

Small peak to peak for new cutter

-100
4 4.5 5 63.5 5.52 2.5 3

Broken Cutter
700
600
500
400
300
200
100

-100
3525 302015

700
Spindle Load

^  600 
I  500% 400

jj 300
~ 200
£  100

Large peak to peak for broken cutter

-100
54.543.532.5

Time (sec)
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Tool Entry & Exit (DOC=lmm, DOC, feed rate =150mm/min, Ns=500rpm)

New Cutter
500

400
C/5

5  300 -
£
*g 200 ^
oJ
2  100 - T3 
C

£  0 - 4 > u t

-100
0 5 10 15 20 25 30 35

500

_  400
Cfl

I  300

1  200 
_i
4>
-3 100
_c
‘E

n

Spindle Load

Small peak to peak for new  cutter

-100
6 74 4 .5 5 5.5 6 .53 3 .5

Broken Cutter
500

-100 -I---------------1----------- -i---------------1-------------- 1 1 1
o 5 10 15 20 25 30 35

500

Spindle Loadg  400
03

~  300T3ctJ
3  200<L> Large peak to peak for broken cutter

100

-100
43 3.52 .521.510 0 .5

Time (sec)
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Appendix D 
Sensor Attachment Assembly

Sensor’s Data Sheets are provided in attached CD in folder “Appendix D” 

Spindle Housing Dimensions

23mm

66mm

20mm
17mm

i—

78mm
124mm

154mm

200mm

245mm

Location of Sensor Attachment Assembly

Spindle housing

Ping Sensor -----
Attachment Assem bly
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f

Ping Sensor Attachment Assembly

17mm
12.7mm

:200mm

192mm

73mm

132mm  
>= 124mm  

94m m

6mm
15mm

4mm

Cross section A A

Connection Diagram

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8
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UNAM Sensor Attachment Assembly

:200mm
i=l 2mm

>= 192mm

>=94mm

4mm

Cross section BB

Location of Sensor and Attachment Assembly

Spindle housing

UNAM  Sensor 

Attachment Assem bly— ►{-
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Appendix E

Direction of Cut and Feedrate Estimation

Cutting Tests

Following tests were performed to establish relationship between X and Y feed dive 

motor current for feedrate and Cutting direction

TEST Feed Rate Cutting

1 100 0

2 150 0

3 200 0

4 250 0

5 300 0

6 100 90

7 150 90

8 200 90

9 250 90

10 300 90

11 100 15

12 100 30

13 100 45

14 100 60

15 100 75

16 200 15

17 200 30

18 200 45

19 200 60

20 200 75

Y  axis

-X axis

Y  axist -X  axis

75

Y
60

45  

30 

15
-X

For these tests appropriate G Codes were written to specify the start and stop position to 

make the work piece move in desired direction.

For example for Test 11:

Start position = (0, 0) mm

Stop position = (50, 13.4) mm and so on.

This provided bout 30 seconds o f data for analysis



The feed motors are 3 phase motors. Therefore only two current components (R and S 

phase) were acquired and third component was calculated via following equation.

I tx -  ~Isx ~ I qx since I R + I  s + I T = 0  for 3 phase motor.

Processing o f the acquired current signals (at 8Ksps) is shown in following figures.

The X axis feed motor currents:

100 -

5 0  -

-5 0  -

SXlr x TX

-100
8 0 0 11 4 0 0 1 12001Sample #

Filtered and Absolute Valued Signals:

45 -

■5. 30 -

TXSXRX'

4001 8001 12003
Sample #

Further processing and Generated pulses on min and max values for exact time period 

measurement which are used to calculate feedrate

P u lses
30

0
4001 Sample #

8001 12001
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T h e  p u lse  ra te  f  is  n u m b e r  o f  p u ls e s  in  o n e  second .

A ls o , / i= l /A T

W here, A T  is tim e  b e tw e e n  c o n se c u tiv e  p u lses . T h e se  tw o  m e th o d s  a re  

u sed  to  c a lc u la te  th e  f r e q u e n c y  o f  th e  s ig n a l (/)

^ / i / 1 2

- . 120 x pitch  x f  r . . _
feedrate = -----------  — [m m /m in ]

P  is n u m b er o f  p o le s  in  th e  m o to r  (in  th is  c a se  P= S).

P itch  is th e  d is ta n c e  b e tw e e n  c o n se c u tiv e  th re a d s  o n  th e  d riv e  sh aft (in  th is  

case  p itc h  = 10  m m ).

T h ere fo re

. 1 2 0 x l 0 x / ;  12.5 r . . ,
feedrate =  — = 12.5 x f =   m m /m m

8x12 1 A7 L J

L et x feed ra te  an d  y fe e d r a te  b e  th e  fe e d ra te  in  X  a n d  Y  d ire c tio n  th e n  th e  

d irec tio n / an g le  0 is  c a lc u la te d  u s in g  fo llo w in g  e q u a tio n

6  = tan'
 ̂xfeedrate  ̂

[d e g re e s ]
yfeedrate

Calculations of feedrate and Direction of cut

Test No X feedrate 
(mm/min)

Y Feedrate 
(mm/min)

Resultant Feedrate 
(mm/min)

Cutting Direction 
(degrees)

1 100 0 100 0
2 150 0 150 0
5 0 100 100 90
6 0 150 150 90
11 96.59 25.88 100 15

12 86.60 50 100 30

13 70.71 70.71 100 45

14 50 86.60 100 60

15 25.88 96.59 100 75

16 193.19 51.764 200 15

17 173.21 100 200 30

18 141.42 141.42 200 45

19 100 173.21 200 60

20 51.764 193.19 200 75
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A pplication o f Technique for w hole cutting cycle

I Nil ITttf |iUU-l ifttt11 Nil
; / /p 4 x number of cycles in 0.5 seconds as each cyde contains 2 pulses i i I i ! M ! t i H  ! < i i i i i i ! i 1 S I »

0 5 5 :5 :5 :5 :5 :5:5:515:5 : 5 5  5 5 |5 15:5 :5 :5 :5i5 15:5 :5:5  15:5:5  ;5i5 :5:5;5:5 15 :5:5:5;5 5 :515 ;515|5j515 i5 j5i5j51515 :5:5:5:515

0 2 4 6 8 10 12 14 16 18 20 22  24 26 28 30
time (sec)

At Tool Entry

—  X-A» s R-Current (A)
—  X-A» s S-Current (A)
—  X-Aa s T-Current (A)
— min{ptj,|ISi,yn)

?j0 nunimii

-10 -

-12
5 .023.02 4.022.021.020.02

time (sec)

At Tool Exit
8 — X-Axis R-Curreot (A)

—  X-Axis S-Currect (A)
—  X-Axis T-Current (A ) 
— tdnlSRLlISLSm}

6

4

2

~ 0

•6

■8
-10

-12
29.022 8 .0227.0226 .0225.0224.02

time (sec)

These plots show that the technique described is capable of finding the feedrate under 

all varying cutting condition and different events such as tool entry, tool exit and 

milling into shoulders.
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Appendix F

Additional Sensor Analysis Tests

PING Sensor Analysis Tests 

Restricting and focusing the ultrasonic signal

Tx restricted  Normal Operation

150

130

10

S  70

50
15013090 11050 70

Distance (mm)

 Rx restricted  Normal Operation

150

3  110

70

50
150130110907050

Distance (mm)
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UNAM Sensor Analysis Tests

Measurement on Slope

70

60

50

Measured Profile20

10
O bject Profile

0
201 401 601 801 1001 1201 1401 1601

Sam ple#

Measurement on the Object Edges

30

25

20

43
'5

15

10

O b ject P ro file  M easu red  P ro file

/T

1 201 401 601 801 1001 1201 1401 1601 1801 2001 2201
S am p le #
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Determination of Object profile from Sensor Output

•SP‘53

20
18

16
14

Object Profile Measured Profile12

10

8

6
4
2
0

10 15 20 25 30 35 40 45 50 55
distance (mm)

Measurement on Incremental changes in height

too

20

18
— Object shape
— Measured Profile

16
14

12

10

8

6

4
2

0
0 20 40 60 80 100 120 140 160

Length (mm)

11mm hole detection and object profile measurement

Measured ProfileObject Profile
<DOCcd '■‘Y=~r

i
hole ihole

110 12010040-10
height(mm)

6.25mm6.25mm6.25mm

(})=! 1mm(j)=l 1mm 75mm 25mm

I
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Appendix G

List of Publications from Research Work

Full Text of these publications is provided in attached CD in folder “Appendix 
G”

1. R.A. Siddiqui, Q. Ahsan, R.I. Grosvenor and P.W. Prickett, “The role of 

Emerging Technologies in e-Monitoring,” in proceeding o f  COMADEM 31st 

August — 2 September 2005, 18th International Congress on Condition 

Monitoring and Diagnostic Engineering Management, Cranfield UK. Cranfield 

University Press, UK ISBN 1871315913, pp. 263-271.

(Oral presentation in the 18th International Congress on Condition Monitoring 

and Diagnostic Engineering Management, Cranfield, UK)

2. Q. Ahsan, R.A. Siddiqui, R.I. Grosvenor and P.W. Prickett, “Adaptable e- 

Monitoring System for Multi-Loop,” in proceeding o f  COMADEM 31st August 

-  2nd September 2005, 18th International Congress on Condition Monitoring 

and Diagnostic Engineering Management, Cranfield UK. Cranfield University 

Press, UK ISBN 1871315913, pp. 211-220.

(Oral presentation in the 18th International Congress on Condition Monitoring 

and Diagnostic Engineering Management, Cranfield, UK)

3. R.A. Siddiqui, Q. Ahsan, W. Amer, M. Al-Yami, R.I. Grosvenor and P.W. 

Prickett, “Distributed Process Monitoring and Management,” In proceeding o f  

IEEE International Conference on Engineering o f  Intelligent Systems, ICEIS  

2006, 22-23 April 2006. Islamabad, Pakistan. Pp 336-341.

(Oral presentation in the IEEE International Conference on Engineering o f  

Intelligent Systems, 2006, Islamabad, Pakistan)
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4. R.A. Siddiqui, M. Al-Yami, R.I. Grosvenor and P.W. Prickett, “On-line 

Measurement o f Process Parameter for e-Monitoring Applications” in 

proceeding o f  COM ADEM  10-13th June 2008, 21st International Congress on 

Condition M onitoring and Diagnostic Engineering Management, Prague Czech 

Republic. ISBN 978 80 254 2276 2, pp. 435-444.

5. M. Al-Yami, R.A. Siddiqui, R.I. Grosvenor and P.W. Prickett, “A Pressure- 

based Approach to the Monitoring o f a Pneumatic Parallel Gripper” in 

proceeding o f  COMADEM 10-13th June 2008, 21st International Congress on 

Condition Monitoring and Diagnostic Engineering Management, Prague Czech 

Republic. ISBN 978 80 254 2276 2, pp. 33-42.

Journal Paper

6. R.A. Siddiqui, W. Amer, Q. Ahsan, R.I. Grosvenor, P.W. Prickett, “Multi-band 

Infinite Impulse Response Filtering using Microcontrollers for e-Monitoring 

Applications,” International Journal o f  Microprocessors and Microsystems, 

vol. 31,2007, pp. 370-380.
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