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Abstract

This study combines a range of contemporary genetic analysis methods to analyse the 

Dexter cattle breed in conjunction with the development of a novel method of admixture 

determination. The Dexter was chosen for its heterogeneous genetic composition due to 

a complex population history. Comparison against other European cattle breeds showed 

the Dexter to be one of the most diverse breeds and clearly distinguishable from other 

breed populations. The levels of migrant individuals exchanged between the Dexter and 

other European breeds was seen to be in the middle of the range for all breeds, as was 

the conservation value of the Dexter as determined through the Weitzman genetic 

distance approach. The Dexter was shown to stand out from other European cattle 

breeds due to high levels of subdivision into different regions of the herd book. The 

hypothesis that the ancestry of subdivisions was entirely responsible for this genetic 

divergence could not be proven. The quantification of admixture proportions were made 

for two putative ancestral representative breeds, Red Devon and Kerry. It was found that 

a selection of carefully chosen Traditional Dexter individuals were more closely related 

to the Kerry breed. Admixture contributions for remaining breed populations were 

inconclusive with the exception of a small sample group representing the breed in 

America which demonstrated a higher Red Devon contribution. Genetic drift is heavily 

implicated in the results shown and it is notable that high levels of variance were 

associated with admixture contributions.

An approximate Bayesian computation approach was designed and developed to better 

model the admixture scenario of interest. A method allowing for two admixture events 

was constructed in order to calculate parental contributions and compare them to 

simulated datasets according to a genetic model. Initial testing proved successful using 

a single admixture event. The addition of a second admixture event reduced the 

accuracy of the method. Testing scenarios of up to half a million simulations with nine 

loci were unable to successfully quantify either simulated or real admixture events here. 

Testing suggests that the effectiveness of the approach is thought to increase with 

numbers of simulated datsets used. Recommendations for the successful application of 

the method are made.
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Chapter 1. 
Introduction
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1. Introducing population genetics

Population genetics has been a rapidly expanding science since the advent of 

molecular (especially DNA based) methods and their continuous development has 

allowed far greater insight into population dynamics than ever before. Domestic 

livestock provide convenient models with which to analyse genetic variation. One of 

the areas dramatically improved by molecular genetic advances is that of the study of 

gene-flow and admixture of populations. Recognition of the increasing need for 

application of admixture detection methods has led to the development of a number 

of different models and approaches. This review provides an assessment of the 

demographic processes which underly admixture events and an overview of the 

methods applied to investigate them.

1.1. Molecular genetics in conservation

The continued development of molecular techniques has largely fuelled the advance 

of population biology, promoting consideration of new problems and allowing re

analysis of old ones (Pertoldi et a/. 2007). The consequences of these advances 

affect studies of all levels of interactions, from species (e.g. molecular barcoding 

(Hebert et al, 2004)), intra-population molecular diversity (e.g. using microsatellites 

(Avise, 2004)), and individual-based approaches (e.g. genetic fingerprinting (Buntjer 

et al, 2002)). The concomitant development of mathematical models to describe and 

predict changes in populations both temporally (e.g. Beaumont, 1999) and spatially 

(e.g. Dupanloup et al, 2002) has further advanced the field. Both conservation 

biology and ecology have benefited from renewed emphasis as a result of advances 

in the new discipline of ‘conservation genetics’, now well represented in the literature 

(e.g. Loeschcke et al. 1994; Avise et al. 1997; Frankham et al. 2002). Conservation 

genetics encompasses aspects of molecular ecology and population genetics as well 

as components of both evolutionary biology and systematics.

The distribution of genetic variation in endangered populations is the basis for 

conservation genetic studies and is determined by the contemporary and historical 

processes predominantly involving genetic drift, gene flow and migration but also 

including the two other evolutionary forces of selection and mutation (Slatkin, 1987). 

Advances in efficiency of DNA technologies have allowed the non-invasive sampling 

of subjects where previous sampling methods were ethically undesirable or
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unfeasible (Taberlet and Luikart, 1999). Techniques specialising in retrieval of small 

samples for genetic analysis allow the use of hair, faeces, and body fluids. Genetic 

information from a set of polymorphic marker regions within the genome allow the 

identification of variation in distribution of alleles (Avise, 2004). According to the rate 

of sequence evolution in these marker regions, relationships can be inferred to the 

population and individual level. The focus of this chapter is the following; genetic 

diversity and structure, how assessment of that variation allows attribution of 

conservation value, and how it is possible to use methods to quantify genetic 

variation in the context of particular approaches (e.g. estimating genetic admixture).

1.2. Population genetic diversity

1.2.1. Microsatellites

In order to measure and describe the genetic variation present within individuals and 

populations, an appropriate marker system is required. Genetic diversity at marker 

loci is generated by mutations which cause changes in the DNA sequence of the 

marker region generating novel allelic states. Microsatellites are one of the most 

rapidly evolving genomic elements used as genetic markers in population biology, 

with a mutation rate of around 10'5per generation (Wan et al, 2004). It is because of 

this high mutation rate compared with other genomic regions that microsatellites are 

often employed in population studies. Microsatellite are currently the marker of choice 

in population genetics due to their high mutation rate, ease of application, and 

availability although there are many examples of population studies that have 

employed other markers; minisatellites (Jeffreys et al. 1990), mitochondrial DNA 

(Michaux et al. 2005); as well as anonymous markers in the form of RFLP and AFLP 

data (Yan et al. 1999). Microsatellites have been seen to replace protein markers 

such as allozymes where differential expression and lack of neutrality reduced the 

effectiveness of their application (Beebee and Rowe, 2004). There is evidence that 

single nucleotide polymorphisms (SNPs) will soon replace microsatellites in 

population studies as the cost of sequencing decreases, for example systems exist 

which are capable of analysing a thousand SNPs across a haploid genome (Wang 

et al, 2005).

A microsatellite locus usually comprises a one to five base-pair motif repeated up to 

40 times (Willard 1989). As predominantly autosomal markers, microsatellite loci



4

applied in tandem can be variable enough to allow the unequivocal identification of 

individuals in animal and plant populations (Paetkau et al, 1998). Microsatellites have 

been widely accepted as useful tools for measuring genetic diversity and divergence 

within and among populations (e.g. Bowcock et al, 1994; Blott et al, 1999). 

Microsatellite loci have also been shown to be much more useful than less variable 

markers, such as proteins, in determination of genetic variation and differentiation 

among closely related populations such as cattle breeds (Arranz et al, 1996). Hence 

microsatellite studies are now prolific and numbers of available loci identified in 

commercial species had reached the thousands by the mid nineties (Mommens et al, 

1998) with applications from parentage testing (e.g. Liron et al, 2004) to population 

studies (e.g. Kantanen et al, 2000).

1.2.2. Within-population variability

For most population studies, selectively neutral markers are desirable. The 

distribution of alleles for these neutral markers is ultimately compared to those 

frequencies expected according to applied evolutionary models. The conformation of 

allele frequencies to those expected under Hardy Weinberg equilibrium (HWE) 

(Hardy 1908; Weinberg 1908) is commonly assumed in genetic analysis. The 

concept of HWE is that, in a large randomly mating population with non-overlapping 

generations, the genotype frequencies are the product of the allele frequencies and 

remain constant between generations irrespective of allelic dominance. Implicit in 

HWE are several properties; infinite population size, random mating, equal mutation 

rates between alleles, and negligible migration rates (Avise, 2004). Deviations from 

HWE can themselves be used to make inferences about a population and selective 

forces, for example clustering algorithms can use these deviations in calculating 

individual assignments between populations (e.g. Pritchard et al. 2000).

In order to give an unbiased representation of population processes, molecular 

markers must be chosen carefully, particularly in populations potentially under strong 

selection pressure. Selection can influence large areas of the genome, for example 

chromosome-specific selection can result from female mate choice acting on the Y 

chromosome (i.e. male traits) in Poeciliid fish (Lindholm and Breden, 2002). Close 

physical association of the genetic basis of a trait with another locus would be likely 

to increase the incidence of certain alleles alongside the beneficial alleles of the trait 

as selection drives it toward fixation. This is known as Linkage Disequilibrium (LD)
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and whilst this is true of large randomly mating populations where there is low 

recombination, LD can be linked to other sources; variation in recombination rates, 

selection, genetic drift (founder effects and population bottlenecks), and population 

admixture (e.g. Slatkin, 1994 ; McKeigue, 1998 ; Pritchard and Przeworski, 2001 ; 

Ardlie et al., 2002).

Genetic variation within a population can be characterised using measures such as 

expected heterozygosity (He) and allele numbers (nA). Providing relative levels of 

diversity in a study as well as for populations typed using the same loci, HE and nA 

can provide indications of departures from demographic stability and selective 

neutrality (Chikhi and Bruford, 2005). In addition to contemporary diversity, historical 

demographic events are also reflected in population genetic data, but in order to do 

this, genetic models of evolution have to be adopted. There are three prevailing 

models describing the mutational processes of microsatellite loci; The Infinite Allele 

Model (IAM) (Kimura and Crow, 1964) is based on the assumption that each new 

mutation creates a unique allele. The continuation of this assumption is that all 

equivalent alleles are identical by descent. The Stepwise Mutation Model (SMM) 

(Kimura and Ohta, 1978) adopts the assumption that a mutation changes the allele 

by a single repeat unit. Under this model alleles of the same size are more closely 

related but not necessarily identical by descent. Based on the SMM is the Two Phase 

Model (TPM) (Di Rienzo et al, 1994) which has the addition of a proportion of multi- 

step mutations in order to better simulate marker behaviour. Whilst it is accepted that 

the mode of mutation of microsatellites is that of a stepwise process, the allelic 

variation at many loci conforms better to predictions based on the IAM and not the 

SMM (Neff et al, 1999). The suggestion by Di Rienzo et al (1994) is that a multi-step 

process giving rise to novel alleles is the cause of this apparent fit to the IAM. Which 

model is adopted has consequences when considering demographic events such as 

population bottlenecks (Cornuet and Luikart, 1996).

1.2.3. Population bottlenecks

The effective size of a population affects genetic composition with particular influence 

on processes such as inbreeding and genetic drift. Populations can be subject to 

fluctuation in effective size over time and this can result in population bottlenecks, i.e. 

periods of variable duration where there are low numbers of breeding individuals.
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During these periods there is commonly a reduction in genetic variation due to 

genetic drift and the increased probability of losing rare alleles (Nei et al., 1975), 

sometimes resulting in extreme changes in allele frequencies in comparison with the 

pre-bottlenecked population. This is both as a result of a sampling effect of those 

alleles perpetuated in the fewer remaining individuals, as well as the increased 

chances of fixation of alleles (Nei and Maruyama, 1975). Population bottlenecks are 

associated with a correlative and progressive reduction of both allele number and 

heterozygosity, the relationship between these is one way of identifying a bottleneck 

event having occurred (Cornuet and Luikart, 1996). A more rapid loss of allelic 

diversity relative to heterozygosity can sometimes be detected and is a consequence 

of the loss of rare alleles which have a less immediate effect on heterozygosity. This 

results in a transient deficiency of numbers of alleles found in the sample population, 

meaning that the observed allele numbers is less than numbers expected from the 

observed heterozygosity (for a population at mutation-drift equilibrium). The allele 

deficiency is dependent on four parameters concerning the bottleneck event; time 

since the start of the bottleneck, the population size ratio before and after the start of 

the event, the mutation rate of the locus, and the sample size of genes involved. 

Severe and long-term population bottlenecks can often be identified, but the power of 

these methods is limited and perhaps only improved through the use of temporal data 

in the form of ancient sample information (Beaumont, 1999). A lack of bottleneck 

signature from a known event may infer that the bottleneck was sufficiently ancient 

for the effects to be undetectable. Alternatively the introduction of introgression from 

another source post-bottleneck may have obscured the evidence of the bottleneck 

entirely.

1.2.4. Population differentiation

Nowadays, analysis of population genetic differentiation can be carried out in a wide 

variety of ways according to the particular question, assumptions made, and 

computational limitations. At perhaps the most basic level, Wright’s F St  (Wright, 

1951) is a standard measure of population differentiation used which determines the 

relative fixation of alleles in subpopulations. F s t  has the advantages of ease of 

calculation and a relatively low dependency on the underlying assumptions of either 

stepping-stone or n-island models making it a good summary statistic. Although 

comparisons of Fst values among studies can be limited in the information that they 

provide (especially due to sampling differences and where populations are of



unequal size), Fst is an easy and generally effective measure of general 

relationships between sample groups within a study (Chikhi and Bruford, 2005). One 

additional problem with Fst is the weighting given to rare alleles, although these can 

be calculated separately according to the prescribed models (Nei, 1987 ; Weir and 

Cockerham, 1984 ; Robertson and Hill, 1984). The same is true for other summary 

statistics such as genetic distances which can be calculated across a similar model 

range (Nei 1987; Cavalli-Sforza and Edwards, 1967).

Population genetic differentiation accumulates as a result of the temporal and 

geographical separation of populations (Wright, 1943). Populations that are very 

close to one another geographically which exchange individuals or which share a 

very recent common ancestor will usually have a greater proportion of shared allelic 

combinations than those which diverged long ago and which do not exchange genes 

(including reciprocally). A simple scenario of unidirectional transfer is an example 

where unreciprocated gene-flow can dramatically affect one population and not the 

other, but population interactions are commonly far more complex (Hansson et al,

2000). The spatial distribution of genetic diversity often varies even within the range 

of single populations. Through selective advantage for phenotypic characters as a 

result of environmental heterogeneity, variation can be partitioned within regions in a 

complex manner and as dines on a variety of spatial scales (Merila and Crnokrak,

2001). Such patterns may be a consequence of directional selection (Endler, 1986) 

and the high level of linkage of traits with a heritable component (Houle, 1992). The 

amount and distribution of genetic variation found in populations develops over time, 

for example commonly populations in the heart of a species distribution will be more 

diverse than those at the edge of its range (Merila et al. 1997). The geographic 

history of populations can result in complex relationships and can, for example, 

provide evidence tracing range origin back to glacial refugia (Valdiosera et al. 2007). 

But population differentiation is not always geographically correlated and 

anthropogenically managed populations can have even more complicated 

relationships.

Populations do not always require extended time periods or strong selection to 

become differentiated, small populations in particular can be altered rapidly through 

genetic drift. Genetic drift is a stochastic process by which allele frequencies vary 

from one generation to the next as a consequence of finite populations size (Kimura,
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1971). Genetic drift has greater consequences in smaller populations and hence is 

an important factor in endangered species. When populations are at low numbers the 

effects of drift can be important, because the likelihood of rare alleles becoming fixed, 

and of common alleles being lost, increases. In such populations, genetic diversity 

tends to diminish as alleles are more likely to be lost and less likely to be generated 

spontaneously by mutation. A combination of drift and selective processes will act to 

increase the differentiation between separated populations whereas gene flow 

between them will act to stabilise this in a dynamic fashion (Beebee and Rowe, 

2004).

Summary methods can be used to reduce genetic information from individuals in a 

population into single values, in order to measure inter-population differentiation. 

These are often quick to perform and require relatively low levels of computational 

resources. However because the methods reduce the dimensions of the data in such 

a way, information is inevitably lost. An alternative to using summary statistic based 

methods is to adopt an approach that co-assigns individuals into populations, or 

populations into groups, with an associated proportion or likelihood. More complex 

scenarios can also be considered such as those accounting for geographic 

information (e.g. Dupanloup et al. 2002), using admixture models (Pritchard et al. 

2000), or classifying individuals as first generation migrants (Piry et al. 2004). The 

application of many of these methods can be made in the same way as F-statistics, 

so as to guide subsequent analytical approaches or as an indication of general 

patterns of gene flow across a physical or temporal barrier. The admixture model in 

Pritchard et al. (2000) for example, allows the consideration of many populations and 

attributes admixture proportions based on each inter-breeding population (at Hardy 

Weinberg Equilibrium) in accordance with contemporary allele frequencies.

1.3. Assignment of conservation value

The diversity hierarchy commonly represents the three levels of importance as being 

of ecosystems, species, and genes, but this is commonly questioned with regard to 

the importance of populations (Bowen, 1999). Similarly the functional units in 

conservation are chiefly concerned with considerations of scale (Crandall et al, 

2000). Conservation scenarios involving wild organisms often use species or 

subspecies as the unit of interest, but this does not preclude consideration at the 

population or individual levels. Mayr (1963) demonstrated the value of variation in
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ecologically important traits between populations. If adaptively significant gene 

combinations differ between populations within a species, they could be considered 

separately if that species is to be managed as a conservable entity with its 

evolutionary potential intact. Problems arise with the determination of how best to 

assess both genetic diversity and the myriad of factors pertinent to its conservation, 

and this is exacerbated when prioritisation calculations need to be made.

Studies investigating how genetic composition can allow identification of threats to 

population persistence have highlighted some important factors affecting populations 

such as low levels of variation (Ujvari et al. 2002), the accumulation of deleterious 

alleles (Bataillon and Kirkpatrick, 2000), and introgression of genes from other 

species or populations (Randi and Lucchini, 2002). Genetic threats to populations 

may include ongoing effects on persistence, such as the expression of deleterious 

genes which can manifest themselves in phenotype (Land and Lacy, 2000). But no 

less important are those factors which may act over the longer term such as low 

genetic variation diminishing the capacity of a population to maintain its evolutionary 

potential in a changing environment (Frankel and Soule, 1981). The loss of genetic 

adaptation specific to a population can be more difficult to identify or quantify making 

management problematic (Garcia-Moreno et al, 1996). In particular it can be these 

gradual processes that appear not to warrant immediate conservation action that can 

result in population extinction through allee effects (Allee, 1931). Populations can 

become caught in a feedback loop where persistence deteriorates rapidly towards 

extinction (the so-called extinction vortex).

Avise (2004) suggested that programmes for protecting threatened species requires 

the identification of unambiguous units of management which reflect evolutionarily 

important lineages. Taxonomic distinctiveness can be investigated by summarising 

genetic data into a single ‘genetic distance’, where greater separation of one species 

in a group of species increases its value as a conservable entity. However, this kind 

of method has been shown to be ineffective at a finer scale where distances between 

populations are compromised by within population diversity effects (Cabellero and 

Toro, 2002; Bruford, 2004). When used in studies of populations within a species it 

can provide a good indication of genetic value but without the resolution to 

adequately resolve relationships between them (Laval et al, 2000). Many traditional 

allele frequency or genetic distance based methods are similarly limited when applied
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to closely related populations due to incomplete use of the data through their reliance 

on summary statistics. Simianer (2005) suggests that genetic drift is the major cause 

of loss of allelic diversity in domestic cattle and predicted risk of extinction based on 

allele numbers alone. An interesting result of this approach is the suggestion of using 

marker loci to indicate genetic erosion as a parallel to quantitative characters, where 

loss of an allele represents the loss of a beneficial trait or significant variation within 

that trait. Populations that have recently experienced a severe reduction in size are 

particularly important to identify for conservation due to increased extinction risk, and 

can be evaluated based specifically on this loss of alleles when compared to the loss 

of heterozygosity (Cornuet and Luikart, 1996).

1.4. Genetic admixture

Information from admixture scenarios can be used in identifying genetic linkage and 

heritability as in congenital diseases (e.g. Chakraborty and Weis, 1988; Stephens et 

al. 1994), biogeography and historical population origins (e.g. Shriver et al. 2003), 

and in more contemporary population genetics and conservation contexts (e.g. 

Susnik et al. 2004). It is the latter of these that is of particular interest here. Admixture 

occurs as a result of gene-flow between two genetically differentiated populations. 

When admixed individuals subsequently backcross into their own or a new population 

the genes acquired through the admixture event are said to have been introgressed 

into that population (Rhymer and Simberloff, 1996). The dynamics of this interaction 

depend on the levels of differentiation between the populations. The difference 

between admixture and the general concept of gene-flow between populations 

depends largely on context. The long term associations of taxa as described by 

hybrid zone dynamics can be complex (Beebee and Rowe, 2004). Genetic exchange 

can spread back into the parent populations over huge areas or can be restricted to 

the formation of temporary intermediate hybrid populations not spreading into either 

parent population. Over brief periods of contact, there may just be a few mating 

events and little genetic exchange. These transferred genes can still be detected in 

the populations for many generations after the event even if this degree of exchange 

is limited (Hansen, 2002).

Gene flow between differentiatied populations can occur both naturally as a result of 

Pleistocene range shifting reconnecting populations (Arnold, 1997), and with 

anthropogenic influence such as between the domestic dog and Ethiopian wolf
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(Gottelli et al, 1994). This degree of differentiation of individuals that can still produce 

offspring, and more importantly fertile offspring, is not necessarily directly related to 

the time since coalescence of their populations. The process of reproductive isolation 

can develop incidentally when there are no forces maintaining compatibility as well as 

being a result of drift and selective pressures in each population (Turelli et al, 2001). 

Such isolation will occur to a lesser extent if there is gene flow between the 

populations. This can lead to complex situations in which populations are able to 

exchange genes with those adjacent to them but not with more distant populations. In 

this situation intermediate populations can therefore facilitate gene flow across the 

whole geographical range as seen in ‘ring-species’ (Irwin et al, 2001).

Introgression resulting in the exchange of genes with another differentiated 

population can allow the creation of new allelic combinations. If the new alleles 

entering a population demonstrate a large selective advantage to the individuals 

carrying them they may perpetuate. If the new allelic combinations demonstrate 

maladaptive traits then the individuals carrying them may suffer disadvantage and the 

new alleles are likely to remain excluded or at low frequency. If two populations are 

very different phenotypically or genetically then it may be that the probability of a 

successful cross-population mating and subsequent back-crossing is very low 

because of this creation of maladaptive combinations. If the populations are more 

divergent still, genetic exchange may be excluded through incompatibilities in 

physiology or behaviour (Turelli et al, 2001). Introgression may be prevented in an 

indirect manner through the exclusion of the F1 generation due to low survival 

probability from a maladaptive phenotype, sterility, or lack of sexually selected traits. 

If this selection against hybrids is strong it can create a barrier against introgression 

of negatively selected and neutral alleles, but in some circumstances strongly 

positively selected alleles may be able to cross such a barrier (Pialek and Barton, 

1997).

Gene flow is not always balanced, an effect occurring increasingly as inter-population 

differentiation increases. In some instances unidirectional transfer results from an 

aspect of behavioural or physiological biology. A consequence of this is that one 

population will receive genetic material without reciprocal transfer. A good example of 

this in the context of inter-population genetic exchange is between bison, Bison 

bison, populations and domestic cattle, Bos taurus (Ward et al, 2001). In this case
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the differential is a direct result of asymmetry of mating preference and male hybrid 

sterility resulting in the exclusion of male cattle haplotypes from entering the bison 

population. In a Scottish hybrid zone between Sika and Red deer, the much larger 

red deer were thought to be unlikely to mate with the introduced Sika (Goodman et 

al, 1999). But despite the classification of all 246 animals into one of two distinct 

types; Red type and Sika type, admixture was detected. This showed a higher rate of 

backcrossing into the Sika population than into the red deer population per 

generation. This rate was seen to be very dependant on the demographic 

fluctuations in each population and perhaps any imbalance can be explained in this 

way. Although low in incidence here, admixture can vary according to population 

dynamics and could increase with expansion of population ranges.

1.4.1. Admixture affecting conservation

Conservation status is paramount in the management of populations and can be 

compromised through genetic introgression. Applying conservation status to a taxon 

can be dependent on a great variety of factors, among them extant numbers and 

genetic diversity being notable (King and Burke, 1999). Where introgression is 

suspected, careful consideration has to be taken as to the extent and the 

consequences of the introduction of this new material. Devaluation of populations of 

proposed conservation status can readily occur, often through admixture with a 

common taxon. Examples of this include; the Scottish wildcat populations that coexist 

with domestic cats (Beaumont et al, 2001), the rare Red wolf and the common coyote 

in Southeastern United States (Miller et al, 2003), and the wild wolf and domestic dog 

in Europe (Randi and Lucchini, 2002).

Preventing the loss of genetic diversity is among the most important contemporary 

issues in conservation management (Frankham 1995). Increasing the variation of a 

population through addition of variation from another source has the consequence of 

homogenisation of the two populations involved. In such a situation the loss of a unit 

of diversity, whether population or species, occurs when populations are no longer 

distinguishable from each other. This effect is the reason for much resistance in 

programs of species reconstruction, such as that involving the Florida panther that 

seek to reverse the decline of small inbred populations through crossing or upgrading 

(Land and Lacy, 2000). As well as being able to monitor admixed individuals in an 

upgrade programme of this kind it is also possible to use this ability of admixture
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detection for the exclusion of admixed individuals entirely. This is an invaluable tool if 

re introduction or founding populations are to be created in a habitat. One example of 

molecular selection with exclusion of hybrid animals is that of the Siamese crocodile, 

Crocodylus siamensis, for reintroduction into Vietnam (Fitzsimmons et al, 2002). 

Hybrids formed with the Cuban crocodile, C. rhombifer, could not be readily 

distinguished through phenotype so specific genetic markers were used instead. If 

marker loci produce alleles from a different species animals are excluded from the 

reintroduction or breeding programme. Benefits of this kind of study extend to the 

suggestion that marker heterozygosity may reflect wider heterozygosity within a 

genome (Moritz, 1999) therefore the most genetically diverse non-introgressed 

individuals could be chosen.

The introduction of new genetic material into a population can also be a beneficial 

process, particularly if the population has low prior genetic variation. This kind of 

introgression can increase the probability of persistence of a population, usually with 

greatest effect in small or declining populations suffering from inbreeding depression. 

This was seen in an adder introduction in Sweden (Madsen et al, 1999). In this 

example an isolated declining population was picked for an introduction of genetically 

variable males from other populations. The population was left for four generations 

and then surviving introduced males removed. Subsequent to the maturation of the 

progeny from these breeding seasons there was a significant increase in recruitment 

due to a sharp decrease in juvenile mortality. The corresponding increase in genetic 

variability of the newly recruited individuals supports the increased recruitment as a 

release from inbreeding depression. Other examples of introduction of genetic 

material between sub-species can be found in management applications, as was the 

case for additions of Texas puma to a Florida panther population (Land and Lacy,

2000). Detailed strategies can be formed for the genetic upgrading without loss of 

adaptive variation as was considered in this case (Hedrick, 1995).

1.5. Quantification of admixture

The study of admixture events and genetic introgression has become well 

established since initial concepts of introgressive hybridisation (Anderson, 1949) and 

mixture proportions in a hybrid population (Glass and Li, 1953). But early solutions to 

the admixture problem did not consider changes in gene frequencies between the 

contemporary samples and the ancestral (pre-admixture) populations (e.g. Elston,
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1971). Therefore no account was made for processes with a stochastic element such 

as selection and genetic drift. Thompson (1973) subsequently introduced such a 

component in the hybrid population only, in order to model drift. But early studies had 

to assume that the admixed population had undergone enough time (in generations) 

of random mating for elimination of the allelic associations due to the admixture 

event. More recently statistical methods have been developed to overcome this and 

elucidate structure in recently admixed populations on an individual basis (Rannala 

and Mountain 1997; Paetkau et al.1995; Pritchard, et al. 2000). There has been a 

concurrent development in methods of determining admixture proportions at the 

population level (Bertorelle and Excoffier 1998; Chikhi et al. 2001; Wang, 2003) using 

several major approaches, these are detailed below.

1.5.1. Different methods of determining admixture proportions

There are a number of methods that have been developed and applied in the 

estimation of parental contributions after an admixture event. In general they are 

based on a simplified model scenario in which two parental populations, which have 

diverged from a common origin, subsequently meet to create a hybrid population 

before separating again (Figure 1.1).



Figure 1.1. A common representation of a simplified admixture scenario. Pa 

represents the ancestral origin of the parental populations P1 and P2. The hybrid Ph 

is the consequence of genetic input from each parental population, A1 and 1- A1 

respectively. The time since separation of the parental populations is represented by 

t1, and the time between the admixture event and the present is t2. The time-scaled 

demographic factors affecting the evolution of the populations are represented by d 1, 

dh, and d2 respectively (adapted from Choisy et al. 2004).

The methods that can be applied to genotypic data are varied but all use allele 

frequency information in the calculations. What follows is a brief summary description 

of the premise behind each of the general methodological approaches that can be 

applied to investigate admixture. The first four of these methods use allele 

frequencies directly and are based on the application of a linear projection of the 

allele frequencies in the parental populations to the hybrid. This is from Bernstein’s 

equation (1931) and shows how the frequency pi(h) of allele i in the hybrid is a result 

of the allele frequencies Pi(1)and pP  in the parental populations (Equation 1). 

pP = Api(1) + (1 -  AJpP (Equation 1)
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1.5.1.1. Gene identities

This method derives a relationship with gene identities that reflects that of allele 

frequencies (Chakraborty, 1975). Using arithmetic means of the probabilities of gene 

identity over all loci within population Pi, between populations Pi and P2 , and 

between populations Pi and the hybrid. The estimation of gene identity coefficients 

allows estimation of the admixture proportions.

1.5.1.2. Private alleles Madansky’s regression

Bernstein’s equation can be rearranged for any allele to take the form of a linear 

equation as originally suggested by Roberts and Hiorns (1962, 1965).

Pi(h) = A(pi<1)-  Pi<2)) + pi<2) (Equation 2)

Therefore the admixture proportion A can be seen as being the slope of the linear 

regression (Equation 2). This slope can then be estimated through a least square 

formula across I independent alleles (total allelic number minus number of loci).

Using the concept of the private allele, one whose presence is found in only one 

group of individuals (Neel, 1973), this method simplifies the Bernstein equation to pi(h) 

= Api(1). The original estimator developed by Madansky (1959) is a least square 

regression with private allele frequencies in parental and hybrid populations as 

covariates but is estimated with potentially large errors. This error is reduced 

substantially where estimates are possible from alleles private to Pi and P2 

respectively.

1.5.1.3 Maximum likelihood

The maximum likelihood approach to admixture estimation has been continually 

improved since early application by authors such as Roberts and Hiorns (1965). The 

likelihood of the hybrid sample genotypes are expressed as a function of the allele 

frequencies in the parental populations and the admixture proportion. Across 

independent loci the likelihood of any particular multilocus genotype is calculated 

through the likelihood at each locus, with the likelihood of the total hybrid population 

sample being a multiplication of likelihoods across individuals. The advantage of the 

method is its optimum use of the data (i.e. without losing data through summary 

statistics) but this carries with it the consequence of high computational demand. A 

recent application by Wang (2003) applies a pseudo maximum likelihood method to 

simplify calculations and reduce computational expenditure. The multi-dimensional
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joint probabilities of the data are approximated using the product of the marginal 

probabilities as well as employing a transition matrix and using a hidden Markov 

chain algorithm (Wang, 2001).

1.5.1.4. Coalescence times

In order to account for both allele frequencies and molecular information these 

methods use a coalescent approach to estimate the mean coalescence time for a 

pair of genes. Ancestral lines coalesce when two ancestors in the sample share a 

common ancestor, in this case one allele from the hybrid and one from a parental 

population (Griffiths and Tavare, 1994). The coalescence event can manifest in one 

of two ways; the ancestral gene line for the hybrid switches to the same parental 

population as the second gene of the pair and the two coalesce back to the 

admixture event, the alternative is that the gene switches to the other parental 

population and coalescence will only occur in the ancestral population (Pa). Therefore 

the probability of each of these routes of coalescence is either A or 1 -A, (or 1- A and A 

when considering the other parent population (Choisy et al. 2004). An example of a 

recent application of this method is that of Bertorelle and Excoffier (1998) that 

measures two estimators mx and my, the latter of which considers the coalescence of 

the genes in the parental populations in addition to those of the hybrid. The use of 

this additional information of molecular differences between parent and hybrid 

populations improves the performance of the proportion estimate.

1.5.1.5. Monte Carlo Markov chain method

The approach to full likelihood coalescent simulation is one which is designed for 

application onto larger datasets without the problems associated with direct 

simulation. The application of a Monte Carlo Markov chain is a statistical approach 

which avoids independent simulations at different parameter values. The likelihood 

function is derived through approximations from the method of Griffiths and Tavare 

(1994). The parameter space is explored through a stepwise process whereby the 

transition between states is dependant on the likelihood of the data at those 

parameter values. This is the method used in Chikhi et al. (2001), to estimate the 

combined probability of the three observed gene samples of parental and hybrid 

populations. The process involves simulating a coalescence tree of gene lineages 

that ends just before the time of the admixture event. The importance sampling
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scheme computation is completed through consideration of the vectors of allelic 

distributions in the parent populations as draws from a specific distribution. The 

parental proportion is taken directly from the posterior distribution.

1.5.2. Methodological comparisons

The five methods highlighted above were compared as to their relative performance 

under a range of admixture circumstances by Choisy et al. (2004). Similar accuracy 

was seen between all of the methods in the analysis of recent admixture with highly 

differentiated parental populations, determined as being ‘optimal conditions’, but 

performance differences varied across a range of other applied circumstances. Using 

the Gene Identity method for an admixture event 1000-generations ago, under 20% 

of runs resulted in the actual parental proportion falling within the confidence interval 

of the method. As well as the age of admixture, parental differentiation was 

particularly important in method performance. The overall conclusions to be drawn 

from the Choisy et al. (2004) comparisons were that the Gene Identity and Private 

Allele Regression methods are limited in their applicability and suffer a general 

reduction in performance with increasing time since the admixture event. The 

remaining approaches were all found to be highly applicable, hence could be used in 

a wide variety of scenarios, and were shown to perform well in the majority of applied 

situations. Of the three latter approaches there are associated advantages and 

limitations; the likelihood method gave consistently good estimation apart from those 

for low differentiation between parentals and ancient admixture, the method based on 

coalescence times (Bertorelle and Excoffier, 1998) did have slightly higher variance 

of estimations, and the Markov chain method (Chikhi et al. 2001) was time 

consuming but accurate for low parental differentiation.

It is desirable for the method applied to be efficient in its use of the data, but this 

often has implications on the computational expenditure. Approaches like Bertorelle 

and Excoffier (1998) do not use all of the information in the data, but instead 

summarise into ‘moments’ which attempt to capture the properties of the distributions 

into single values. Notably, Wang (2003) summarises admixture approaches into two 

broad categories, moment and likelihood estimators. The former, as mentioned 

previously, has reduced statistical power due to only using a few moments of a 

distribution (allele frequency or coalescence time) but is simpler to calculate because 

of this. Likelihood based methods can be further separated into full likelihood and
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partial likelihood methods. In a Bayesian approach, using a partial likelihood provides 

a convenient approximation and simplification process which allows bypassing of the 

prior distribution of nuisance parameters (Cox, 1975). In contrast, the full likelihood 

method of Chikhi et al. (2001) uses the Metropolis-Hastings algorithm to integrate 

over the nuisance parameters. It is the time and computational expenditure that have 

limited the wide testing of this full likelihood approach.

1.5.3. Approximate Bayesian computation

Following the increased use of Bayesian methods in biology there has been a drive 

toward reducing computational costs associated with different methodological 

approaches. Approximate Bayesian Computation (ABC) is a relatively recently 

developed approach. ABC attempts to address the computational problems caused 

by large numbers of nuisance parameters which currently limits Bayesian methods 

(Beaumont et al. 2002). The ABC approach is based on using a rejection-sampling 

algorithm that generates an approximate posterior for a given parameter set. This 

is possible due the ability of advances in stochastic simulation methods to generate 

sample data using a particular model (e.g. Hudson, 2002). Once the summary 

statistic is calculated for the observed dataset, simulated data is generated 

according to a model and a summary statistic is calculated and accepted or 

rejected according to a given tolerance. Despite this reliance on summary 

statistics, which do not use all of the data, it has been shown to be accurate when 

compared to full likelihood methods (Beaumont et al. 2002; Marjoram et al. 2003). 

As such the ABC method can be applied to more complex scenarios, provided that 

the model can simulate the data. An approximate Bayesian method has been 

applied previously by Excoffier et al. (2005) and has shown a matching 

performance to recent maximum likelihood methods with an increased accuracy in 

calculating ancient admixture. This method has a very similar model basis to the 

other methods discussed previously and is specifically designed to take mutations 

into account. The method is also comparable in computational expense with 

previous methods suggesting that ABC is a potentially advantageous approach.

1.6. Domestic animal populations

The results of anthropogenic utilisation of animals and plants can be seen in 

domesticated forms found worldwide, animal populations alone comprising several 

thousand breeds across some sixteen species (DAD-IS,2007). Selective breeding
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and population isolation has produced great diversity from a small selection of 

species over a relatively short timeframe. In cattle (-1500 breeds) the first evidence 

of domestication can be found at sites such as Qatal Huyuk in Turkey around 7800 

year ago (Perkins, 1969). Many breeds have resulted from high degrees of 

specialisation in utility and preference through both human-mediated artificial 

selection and environmental adaptation. This combination of high levels of 

differentiation between populations of the same species, as well as unparalleled 

levels of parentage data and ease of study have made these domestic populations 

invaluable subjects for study. Genetic investigations that have been applied to 

domestic livestock include straightforward genotype-phenotype relationships 

(Andersson, 2001), including quantitative traits such as milk production in cattle 

(Georges et al. 1995), as well as studies using livestock as models for human 

congenital diseases (Patterson et al. 1982). Population-level studies are also 

commonplace, focussing on within-breed genetic variation and inbreeding (e.g. Blott 

et al. 1998a; Machugh et al. 1998; Hanslik et al. 2000; Kantanen et al. 2000; 

Giovambatista et al. 2001; Cleveland et al. 2005), among breed variation (e.g. Beja- 

Pereira et al. 2003) and using a variety of measures to re-construct breed 

relationships (e.g. Casellas et al. 2004) and even origins (Caramelli, 2006). 

Applications of these methods are being used to make management 

recommendations (e.g. Freeman et al, 2004) as well as to refine genetic models of 

population level processes (van Hooft et al, 1999). The changing socio-economic 

environment can put breeds at risk creating the need for conservation methods to be 

applied to domestic populations (Taberlet et al. 2008). Rather than providing simple 

models for natural systems however, domestic populations also provide an insight 

into studies of selection and advancing methods in animal breeding (Bijma et al.

2001).

1.7. Man-made populations -  a brief history of domestic cattle

Modern cattle have been shown to have originated from at least two major 

morphological groups of the widespread Pleistocene species, the wild aurochs Bos 

primigenius, with a distribution throughout Europe, Asia, and North Africa (Clutton- 

Brock, 1987). These two groups are recognised as the humped Bos primigenius 

indicus, and the humpless Bos primigenius taurus (Manwell and Baker, 1980). B. 

indicus or zebu cattle are thought to have expanded from the Baluchistan region, 

whilst B. taurus is from the Near East, possibly North Africa (Kumar et al, 2003). This
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has given rise to their current distribution as they spread out from these regions 

(Figure 1.2). Mitochondrial sequence data has placed their divergence from a 

common ancestor between 200,000 and 1 million years ago (Loftus et al, 1994). 

From archaeological and genetic evidence it is thought that domestic cattle originated 

from each of these progenitors through separate domestication events (Kumar et al,

2003). Subsequent to their separate domestications, there is evidence of genetic 

exchange between these taurine-type and indicine-type cattle resulting in the current 

distributions and forms (Hanotte et al. 2002). This distribution gives us valuable 

insight into the initial dynamics of domesticated cattle in and around Africa and the 

Near East.

Taurmc (humpfcss) «

j Zebu (humped)

Zobu/teurine- crossbreds 

] Bos (Uit>os| sp. and crossbreds

Figure 1.2. A geographical representation of the distribution of the major types of 

extant domestic cattle, including the proposed pattern of dispersal (inset). The 

patterns of dispersal for the two different taurine forms; shorthorn (black) and 

longhorn (dark blue) are identified separately (Adapted from: Payne, 1970; Epstein 

and Mason, 1984).

The domestication of cattle was associated with a rapid recent population expansion 

relative to other bovids (Finlay et al. 2007). The development of different morphology



22

since the use of cattle for meat, milk and as a utility animal has resulted in a diversity 

of extant forms. There are now a great many types of cattle worldwide estimated at 

around 800 distinct breeds in the mid-20th century (Moazami-Goudarzi et al, 1997) 

the current figures stand at around 1400 (Ajimone-Marsan, 2008). The cultural and 

environmental driving forces behind this diversification process are dynamic. 

Selection for characteristics such as trypanosomiasis and drought resistance are 

particularly important in breed specialisation in parts of Africa and India.

More recently, and particularly in more technologically developed countries, strong 

emphasis has been placed on increasing livestock productivity. This has been 

manifested in the form of strong trait selection and has promoted a shift toward the 

prevalence of a few specialist breeds, such as the Holstein-Friesian. Breed 

development has been accelerated by the ease of exchange of breeding stock 

between regions and the introduction of new reproductive techniques, particularly 

artificial insemination (Al). This has led to increased concern about the reduction of 

genetic diversity, particularly through the loss of traditional breeds, and since the 

1980s there have been renewed efforts of conservation of cattle diversity (FAO, 

1981). It is important to determine breeds of particular conservation value using 

objective criteria so that the loss of variation does not restrict the options available to 

tackle unknown future scenarios. As there is not yet sufficient information to measure 

breeds according to all genes of agricultural importance, overall genetic diversity 

conserved should be maximised.

1.7.1. Coarse-scale gene flow

Due to the morphological and genetic differentiation between the two major sub

groups of cattle, much work has focussed on their interaction. Population geneticists 

have attempted to explain the current distribution of variation according to different 

models of gene flow. In 2000 Hanotte et al. showed a clustered pattern of 

microsatellite genotypes across Africa implying definite structure to cattle distribution. 

They identified geographical areas which corresponded to those animals of ‘indicine’ 

morphology and implied regions where high levels of introgression from Zebu-type 

cattle had occurred. This potentially indicates the regional origins of cattle types and 

infers likely patterns of movement between regions. The use of out-crossing for trait 

acquisition and the subsequent selection process is commonplace in domestic 

organisms. The crossing between indicine and taurine cattle to confer beneficial traits
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has been used extensively across the African and Indian regions. Desirable traits, 

such as the Zebu tolerance for heat and humidity, have been exchanged between 

populations in this way. A study of admixture across Asian breeds similarly confirmed 

taurine influence in the Indian subcontinent, again showing patterns of movement to 

and from Africa (Kumar et al, 2003). The level of taurine alleles in the Asian cattle 

breeds is greater in those populations geographically proximal to the Near East. The 

temporal aspect of this admixture has not been determined however, and the present 

genetic distribution may have developed over a long time period or could even be the 

result of high levels of recent upgrading crosses (Felius, 1995). However, faunal and 

artistic evidence in these regions from the third millennium BC (Zeuner, 1963) 

discounts recent gene flow as the sole explanation. Diagrammatic representations 

confirm that there was movement of many human-associated species between the 

two regions as well as clear depictions of the different cattle types themselves.

Despite this high degree of genetic exchange across the Near East, there is very little 

evidence of Indicine contribution seen in the cattle that were brought into Europe. 

The two routes of entry of taurine cattle were from North Africa and across from 

Western Asia (Figure 1.2; Caramelli, 2006). The original B. primigenius found in 

Europe has been extinct for 400 years, but there is suggestion that this represented a 

third cattle domestication event (Loftus et al. 1994; Bradley et al. 1996), prior to the 

influx into Europe of stock from Western Asia. Furthermore, there is evidence that 

this original B. primigenius was introgressed into the introduced B. taurus before 

becoming extinct (Bailey et al. 1996). Contemporary European breeds express a high 

degree of differentiation from both the taurine, and particularly indicine breeds found 

closer to the Near Eastern origins of domestication.

1.8 European cattle

The high number of breeds across Europe has resulted in a large proportion of 

domestic livestock studies focussing on the region. Europe not only has the highest 

breed diversity in the world, but as might be expected from this, it is also the region 

with the greatest number of extinct breeds (Scherf, 2000). As a result of the 

colonisation of many parts of the world by European human populations there has 

been an associated distribution of domestic livestock. Many breeds originating in 

Europe now have populations distributed across several continents e.g. Aberdeen 

Angus (Pimentel et al. 2003), Hereford (Blott et al. 1998a), and Holstein-Friesian
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(Hanslik et al. 2000). The value in understanding the dynamics of breeds in Europe is 

clear, particularly if warnings of breed extinctions (Taberlet et al. 2007) are to be 

heeded.

1.8.1. Assessing genetic variation

An extensive literature has developed in characterising the genetic diversity in 

domestic cattle in Europe. The progression of molecular assessment of this diversity 

has meant a degree of standardisation of methodology. Indeed, microsatellite 

markers from a set recommended by the Food and Agriculture Organisation (FAO) 

were used in 79% of domestic livestock studies in a review by Baumung et al. (2004). 

This enables a greater degree of comparison between studies alongside other 

practises such as the combination of datasets through the overlap of genotyping 

(Freeman et al. 2006). There has concurrently been development of techniques 

allowing greater numbers of markers and individuals to be used in studies, a recent 

study typing over 1000 cattle across 81 bi-allelic loci (Negrini et al. 2007). One 

consequence of this is that of the expansion of studies, previously restricted to 

specific regions or breed groups, allowing studies to encompass large geographic 

regions and numerous breeds. Consideration of the population dynamics of many 

breed populations can help to explain the effects of gene flow across regions. 

Diversity patterns between large groups of breeds can be important in determining 

breed composition which may be absent on a smaller scale. The consequence of 

commercialisation leading to differential upgrading of populations in Eastern Europe 

and the Balkans is a good example (Li et al. 2007). In this case there is a separation 

of the native traditional populations from those that have been introgressed with 

commercial breeds across a wide area. It is possible to determine breed membership 

as being to either commercial or traditional breed-groups, with commercial breeds 

often displacing less productive breed populations (e.g. Kantanen et al. 2000).

Many cattle breed studies are performed according to country, with examples 

including; Argentina (Giovambattista 2001), Australia (Harper et al. 1998), Belgium 

(Peelman et al. 1998), Chirikof Island, Alaska (MacNeil et al. 2007), France (Boichard 

et al. 1996), Hungary (Bartosiewicz, 1997), Italy (Ciampolini, 1995; Moioli et al.

2004), Jersey Island, U.K. (Chikhi et al. 2004), Portugal (Mateus et al. 2004), Spain, 

(Arranz et al. 2006), Switzerland (Schmid et al. 1999), and the United States of 

America (Cleveland, 2005). This is the level at which application of national
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management and conservation actions are typically applied. Studies at this scale 

regularly include measures of heterozygosity at neutral markers and a measure of 

breed distinction often through a genetic distance or principal component analysis. 

Morphological characteristics can be used to indicate breed relationships and colour 

type has been found to be a strong indicator of variation in underlying loci and useful 

for describing breeds (Klungland, 2000). However, there are lower levels of genetic 

differentiation found between breeds than their divergent morphology might suggest 

(Wiener et al. 2004). Even so, studies of cattle breed relationships have found many 

breeds to be significantly differentiated at the genetic level (Machugh, 1996) but this 

does not mean that the relationships between them are clear. Traditionally applied 

inter-specific methods may not be appropriate to describe relationships between 

breeds. This has led to difficulty in the meaningful application of genetic distances 

between breeds, particularly when there are high levels of gene flow, which results in 

poor statistical support for relationship clusters (Blott et al. 1998b). Contradictory 

findings across different studies can be found; for example the relationships between 

the Holstein, Simmental, and Swiss Brown breeds vary between authors (Machugh et 

al. 1998; Gryzbowski et al. 2004; Schmid et al. 1999). Breed relationships can also 

be vulnerable to choice of population, in this last example the German and Swiss 

Simmental populations differ markedly through the stepwise weighted genetic 

distance method (Gryzbowski et al. 2004) affecting higher order relationships.

There has been a relatively recent transition towards newer clustering algorithms in 

cattle studies (worldwide examples) as well as migrant assignment methods (e.g. as 

applied in Moioli et al. 2004). This transition follows concern that using traditional 

phylogenetic methods based on genetic distances to set conservation priorities are 

inappropriate for breed conservation (Caballero and Toro, 2002). But simple genetic 

distance methods are still commonly applied on inter-breed relationships (Tapio et al. 

2006; Li et al. 2007; MacNeil et al. 2007). There can be consensus in breed 

relationships as seen by Edwards et al. (2000) where a genetic distance approach 

was taken to elucidate relationships between the endangered Pustertaler-Sprinzen 

and three other European breeds. In this case the breed relationships found through 

distance methods were shown to be supported by historical information about breed 

relationships. But even those distance methods which account for drift, such as 

Reynold’s distance, are prone to major inflation due to genetic substructure, 

inbreeding and extreme drift. The result is many breeds with similarly high distance
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values. Consequently any trees produced are unstable (i.e. have no statistical 

support) and random in the connections they make. Trees, which largely assume no 

reticulation and often equal rates of evolution, are simply inappropriate for domestic 

populations (Bruford, 2004). This has subsequent consequences for other methods 

that rely on genetic distance determinations such as measures of breed distinction 

(e.g. WEITZPRO by Derban et al. 2002). Not only can clustering algorithms allow the 

specification of populations but can be used to indicate assignment of individuals to 

populations as has been used in studies of breed admixture (Freeman et al. 2006). It 

is also recognised that assignment tests are becoming important in other areas such 

as through tracing livestock products (Ciampolini et al. 2006).

Domestic lineages have been subject to various evolutionary and demographic 

processes at different stages throughout their histories. Contemporary populations 

have been shaped through repeated incidences of founder effects and population 

bottlenecks, combined with small population sizes and a variety of selective forces 

both natural and anthropogenic (Blott et al, 1998a). Extant diversity and inbreeding 

measures can help assess how recent demographic fluctuations have affected 

current populations but can also allow predictions to be made. Kantanen et al. (1999) 

demonstrated the difference between temporally removed populations using a 

genetic distance method to compare contemporary and historical genetic information. 

In this case the allelic frequencies observed showed very little change over time. It 

was also possible to estimate migration rates between breeds demonstrating that the 

populations were not closed and displayed relatively high levels of gene flow. 

Population founder effects and isolation can result in the differentiation of same- 

breed populations across international borders. The difficulties in characterisation of 

particular breed populations spread between countries can lead to separation in 

phylogenies as suggested previously in German and Swiss Simmental populations 

(Gryzbowski et al. 2004). Many breeds in the UK enforce a closed herd book, Jersey 

cattle are a good example. The population on the island of Jersey has demonstrated 

that a closed herd book can maintain an overall genetic diversity that is well 

represented across its island range (Chikhi et al, 2004). The Jersey comprises 

approximately 4000 individuals and was investigated under concern that loss of 

genetic diversity and increased inbreeding may result from the absence of imported 

individuals onto the island. This was not the case and the success of traditional 

management practises in the Jersey shows the potential to maintain diversity in a
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closed herd book. This is increasingly important with the advent of new technologies 

that have the potential to reduce the effective population size. From being simply a 

record keeping system, the herd book now has the potential to allow rapid reference 

to the incidence of individuals and bloodlines in a herd and can allow choice of sires 

to introduce new blood, preventing inbreeding effects particularly during selection 

(e.g. Woolliams and Bijma, 2000).

1.8.2. Breed conservation

In addition to European breed literature, recent studies of cattle breed conservation 

have been made worldwide, examples ranging from Asia (Kim et al, 2003), Africa 

(Hanotte et al, 2000), to the New World (Russell et al, 2000). Concern for domestic 

livestock conservation is increasing (e.g. MacHugh, 1997; Taberlet et al. 2007) 

alongside a growing recognition of the need to conserve domestic cattle in less 

developed nations (Reist-Marti et al, 2005). Livestock breeds worldwide are 

recognised as being important to biodiversity (Hall and Ruane, 1993), and around a 

third of these are considered under threat of extinction (Simianer et al. 2003).

Optimisation of allocation of resources for livestock conservation has been developed 

in order to minimise loss of genetic diversity between breeds (Simianer, 2003), but 

this has been without being based on molecular analysis (Lenstra et al. 2006). There 

has been considerable discussion as to the most appropriate approach for assigning 

value according to genetic diversity measures. Ruane (1999) criticised the commonly 

used genetic distance methods and their implications for breed individuality and 

conservation and suggested that a molecular approach should be one of a number of 

criteria applied. Simianer et al. (2003) continued this argument, saying that there 

should be conservation priority attributed according to a more utilitarian concept of 

value in addition to classic diversity measures. It is generally accepted as being 

essential to employ a wide range of criteria in order to make an informed decision 

about value and determination of conservation priorities. However, due to the 

difficulty in measurement and lack of standardisation of many of these factors, 

studies often concentrate on particular criteria with greater perceived importance. To 

date these have included; level of endangerment (Danell et al. 1998; Simianer,

2005), economic viability (Rege and Gibson, 2003), cultural value (Gandini and Villa,

2003), and socioeconomic functions of breeds (Tisdell, 2003).



28

The most commonly applied conservation assessment tool in cattle studies is the 

Weitzman approach (1992, 1993). Being genetic distance based, the main 

disadvantage of the Weitzman method is its failure to account for within-population 

genetic variation (Thaon D’arnoldi et al. 1998). Weitzman-based approaches to 

conservation priority assessment are still the most common tool applied to genetic 

data in cattle literature (e.g. Canon et al. 2001; Reist-Marti et al. 2003). Eding et al. 

(2001) developed an alternative method to rank breeds according to estimated 

minimised kinship and this has been further developed (Caballero and Toro, 2002). 

Both the Weitzman and minimised kinship methods have been applied to pig and 

cattle breeds repectively (Fabuel et al. 2004; Lenstra et al. 2006) reinforcing the 

vulnerability of the genetic distance based phylogenetic approach to inbreeding and 

genetic drift. The global coancestry approach performed particularly well against the 

Weitzman method when comparing diversity contributions by individual populations 

(Fabuel et al. 2004). These marginal value assessments were also questioned as to 

their utility in short or medium term application in assessment of diversity value 

related to extinction risk in Garcia et al. (2005). It is apparent that the ease of both 

application and interpretation of the Weitzman methodology encourages its use, and 

despite the advancement of alternative approaches it is still being applied in breed 

population studies (Tapio et al. 2006; Li et al. 2007; MacNeil et al. 2007). A potential 

solution to this may lie in the application of a set of independently applied summary 

methods that can be used easily and in parallel. The combination of heterozygosity 

measures (Weir and Cockerham, 1984), estimators of historical demographic events 

(e.g. BOTTLENECK (Cornuet and Luikart, 1996)), and an estimate of how important 

gene-flow or drift have been in shaping the population (e.g. GENECLASS2 (Piry et al.

2004), ESTIM (Vitalis and Couvet, 2001)) can all be used. There are also a range of 

commonly applied clustering algorithms that can be used to give indications of within- 

population segregation (STRUCTURE (Pritchard et al. 2000)) or between population 

groupings (PARTITION (Belkhir and Dawson, 2001), SAMOVA, BAPS4).

Successful conservation measures to ameliorate diminishing breed populations have 

been mounted, sometimes irrespective of their position as regards value in the wider 

breed community. Where breeds have been identified as threatened with imminent 

extinction, breeding programs have been applied as in the case of the Hungarian 

Grey example mentioned previously. The Hungarian Grey was subject to a sharp 

decline after the Second World War and subsequent recovery was facilitated by the
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use of Maremman crossings to eliminate the risks of inbreeding and upgrade the 

traditional characteristics of the breed (Bartosiewicz, 1997). The White park breed 

similarly recovered from low population numbers through outcrossing with the 

Longhorn in the early 1900s (Hall and Clutton-Brock, 1989). But there is inherent 

reluctance in mounting management programs for introgression of genes from other 

breed populations due to the fear of loss of breed distinction. It is often only in the 

situation where a breed is in immediate risk of extinction that measures are taken. 

Whilst inter-breed gene flow can maintain genetic diversity, particularly where small 

populations or intensive selection are involved, it can also erode genetic 

distinctiveness realising the problem of ‘extinction by hybridisation and introgression’ 

coined by Rhymer and Symberloff (1996). Outbreeding for improved production traits 

remains a contentious issue, but increasing commercial viability may be the only way 

to maintain popularity and therefore retain some breed populations (Vollema and 

Groen, 1997).

1.8.3. Breed management
The breeds recognised across Europe today represent a process of environmental 

and anthropogenic selection across hundreds of years. The genesis of breed 

populations has until recently been a process of development of stock to efficiently 

fulfil the often combined needs of production and draught, in a local physical and 

economic environment. Contemporary breed evolution is driven through both 

production traits and by a selection process for stereotypical characteristics 

representing breed standards. The balance between these two major driving forces 

of largely commercial against largely cultural is greatly dependant on the breed itself. 

For many traditional breed populations there are a significant proportion of breeders 

aiming towards a particular phenotype of animal, represented through performance at 

individual animal competition level. As pointed out in Bartosiewicz (1997) this 

encompasses a culturally idiosyncratic concept based on how animals ‘should look’ 

(Kroeber and Richardson, 1940). Many characteristics attributed to a successful 

competition animal do not necessarily relate to production value but at the same time 

act as a (potentially dynamic) target for selective breeding.

A possible counterpoint to a ‘breed standard’ type of selective process for breed 

management and development is that of an outcrossing regime in order to actively 

select for particular characters from other populations. Because of the density of 

differentiated breed populations across Europe there is a high potential for breed
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interaction. Gene flow between neighbouring breed populations is a dynamic process 

reducing the separation of European cattle breeds, as well as maintaining genetic 

variation within them. Whilst much inter-breed gene flow is thought to be accidental 

or at least unrecorded in herd books, there is a practice of active out-breeding 

programs. Discrete admixture events have occurred multiply in some breed 

populations in order to acquire novel traits. A good example of this admixture to 

maintain competitive production is that of the Lincoln Red breed. The Lincoln Red 

has had two managed admixture events in its recent history, once for the purpose of 

polling in 1963, and a further continental influence in the mid seventies to facilitate a 

shift from dual-purpose into beef production (S.J. Hall, pers. comm.). Many modern 

breed populations have originated from crosses between older breeds. The Murray 

Grey is a good example of this, being the product of Aberdeen Angus crossed with 

Shorthorn. Other breeds have been subject to far more recent introgression as in the 

Dairy Shorthorn (Blott et al, 1998b) and Holstein Friesian (Hanslik et al, 2000). 

European Holstein Friesian cattle provide a good example of a breed having 

experienced recent introgression, in this case from imported and genetically distinct 

New World Holstein Friesians. After separation of around 200 years there has been 

gene-flow since the 1960’s into Europe and in some cases this has been substantial, 

as is the case in some German herds. Despite this introgression from the New World 

most European populations are still significantly differentiated. Breed distinction also 

has a definite importance economically and it is not always the case that high 

production commercial breeds command the market. There is an economic climate of 

increased interest in products from rare and endangered cattle breeds. Specialist 

commercial value is now attached to the milk and beef of such breeds as Guernsey 

and Aberdeen Angus respectively as well as many others (Blott et al, 1999). This 

benefit of breed individuality can be seen as directly conflicting with the selection for 

those economically beneficial traits that act to homogenise them (Ciampolini et al, 

1995).

1.8.4. Agricultural progression

The selective pressures acting on a population are important in determining the 

characteristics of its constituent individuals. For important commercial cattle breeds 

the selection pressures come from artificial manipulation towards the development of 

economically desirable traits. The selection for commercial traits in many traditional 

breeds is generally not as strong due to the constraints of breed identity and the fact



31

that many are kept in small herds as subsidiary income or for hobby purposes. The 

relaxation of anthropogenic selective pressures in this way often allow breeds to 

become more genetically diverse and could even allow a degree of local 

environmental adaptation (Giovambattista et al, 2001).This could be facilitated 

through schemes that specifically promote use of traditional breeds such as for 

conservation grazing. Rough pastures and difficult terrain are often not compatible 

with the larger and less agile commercial breeds and their production systems so in 

the use of traditional breeds, maintenance of pasture in a traditional manner is still 

possible (Hobbs, 1992).

Artificial Insemination (Al) has been proposed as causing a reduction in overall 

reproductive population sizes seen in a breed where the same males are used far 

more than would have been possible previously. Reducing effective population size 

can then have a detrimental effect on extant diversity in a population. The effect of 

Al and embryo transfer methods was tested in this respect in the Aberdeen Angus 

in the United Kingdom (Vasconcellos et al, 2003), a highly specialised beef breed 

that uses these technologies more than many others. In comparison with eight 

other breeds the Angus did not show any reduction in average heterozygosity and 

gene diversity. But there may be more of an effect seen in smaller populations 

where Al technology is used, and problems may arise where individuals with mixed 

breed ancestry are somehow allowed onto an Al register. The concerns over Al 

and its effects have also been touched upon in the Dexter through pedigree 

analysis (Sheppy, 1998) and in the Holstein by molecular means (Miglior and 

Burnside, 1995). The former study examined the result of the effective reduction of 

numbers of bulls to those widely available through Al. The latter example supports 

this and refers to the consequence of inbreeding due to intense selective pressure 

combined with preferential use of few highly ranked bulls through Al. This 

difference of consequence of Al use may demonstrate the variation in outcome 

from the differential application of Al technology but it is clear that overuse of few 

males in a national herd will act towards homogenisation of the greater population. 

There is also the potential to increase the frequency of specific recessive genetic 

disorders present in the few males used which will be revealed when homozygosity 

increases. Taberlet et al. (2008) commented on the particularly extreme effects of 

Al on effective population sizes of commercial breeds. The most extreme example
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is that of the French population of Holstein cattle composed of 2.5 million animals 

and estimated as having an effective population size of 46 (Boichard et al. 1996).

1.9. Introducing an out-bred British cattle breed: the Dexter

The modern Dexter cattle breed is one of a number of traditional specialist British 

cattle breeds still in existence. The breed is described in the literature as usually 

being black, but also can be red and dun (Moss, 1890; Mason, 1988). The Dexter 

has been the focus of a number of studies alongside the traditional historical breed 

accounts detailing breed origin and early characteristics (e.g. Hooper, 1898; Moyles, 

1959). Subjects covered include elucidation of the genetic basis of coat colour 

(Berryere et al. 2003) and investigation of the genetic disorder known as 

chondrodysplasia, not seen in other cattle populations (Harper, 1998). There have 

also been population genetic studies that have included Dexter cattle, with conflicting 

conclusions (Buys and Chiperzak, 1992; Blott et al. 1998b; Wiener et al. 2004). This 

is almost certainly due to a unique breed history and management resulting in a 

breed with high variation therefore leading to problems with such effects as 

ascertainment bias.

1.9.1. Breed origins

The Dexter is the smallest of the cattle breeds in the United Kingdom and records of 

its existence began in Ireland in the late 19th century with its inclusion into the Kerry 

and Dexter herd book in 1890. It spread throughout the UK and can now be found 

worldwide including populations in Australia, North America, and South Africa. 

Described as both beef and milk producing the breed was originally found in two 

colours; red and black. Size is particularly variable according to a heritable trait which 

produces leg length variants of short, medium, and long (Curran, 1990). The modern 

Dexter is largely true to the historical descriptions concerning the above characters 

as well as details of head, neck and body proportions.

Historical information is largely contradictory on the major influences in the Dexter 

breed since its origin from within the Kerry breed in Ireland. There are various 

accounts to suggest a wide range of different breeds involved but with no supporting 

information. A major difficulty lies in a huge demographic contraction of the Dexter 

breed in the UK between 1965 and 1975 where yearly numbers registered with the 

breed society fell dramatically. By the 1969-1970 herd book, numbers had fallen from
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an average of around 25 to only 3 bull registrations, with cow registrations falling from 

a previous average of approximately 100 to a low of 35 in 1970. This population 

bottleneck prompted a relaxation of breed regulations to allow ‘upgrading’ outcrosses 

to be registered in the breed society herd book. An experimental register, established 

in the 1960’s, brought both Aberdeen Angus and Jersey into the Dexter. By allowing 

introgression of other breeds in this way, there was an almost exponential rise in 

numbers of registrations over the following decade (Sheppy, 1998). Those breeds 

thought to have been used in this process include; Aberdeen Angus, Red Poll, Red 

Devon, Guernsey, Fresian, and Jersey (A.J. Sheppy, pers. comm.). Due to the 

paucity of information available for the breeds involved in this outcrossing the list may 

not be complete. At the point of the process of ‘upgrading’ there can be perceived to 

be a number of primary breed lineages distinguished through their founding sires as 

seen in Figure 1.3.

1957

1959
Line 7 Marsh Warrior

Line 4 Sylvan Ebony
1965
1966Time

Line 3 Shadwell Robert

Line 1 Atlantic Finbar

Line 2 Canwell Buster 

Line 6 Woodmagic Mudstopper

1971

1973

Line 8 Melbry Duster

Line 5 Templeton Michaelmas 
Squeak

Figure1.3. The major identifiable lineages in the Dexter prior to the expansion of the

breed after the 1965-1975 bottleneck, arranged with respect to birth years of the line 

founders.

In this basic scenario the eight principal lineages represent the extant Dexter diversity 

present prior to the majority of the introgression of the hypothesised breeds. These 

lineages can be identified less easily with each passing generation as admixture
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occurs. Only one of these lineages can be identified with ease due to its historical 

isolation, that of Woodmagic. Due to this isolation it is thought to be entirely free from 

any upgraded animals to date and as such is an interesting measure against other 

purebred Dexters. However, this isolation has allowed the maintenance of characters 

abnormal to the breed and may have removed its importance as a possible breed 

standard in the same way as might be assumed from the other historical lineages 

(Sheppy, 1998). Woodmagic Dexters are smaller than those animals with the 

genetically determined long leg length without carrying the achondroplasia gene 

responsible for the short leg length condition (Rutherford, 2005).

Modern Dexter numbers are higher than ever previously recorded (~9000), resulting 

in their withdrawal from the list of ‘rare’ cattle held by the Rare Breeds Survival Trust 

(RBST) (Sheppy, 1998). However, the proportion of admixed individuals is unknown 

in the population and this has led to concern about the integrity and authenticity of 

the modern Dexter as a breed. Some conditions are accepted as historically Dexter 

such as the dwarfism condition whereby animals of both short and long legs can be 

identified (Brenig et al, 2003). In the modern Dexter there are various traits that 

appear to be previously unrecorded, and as such could be taken as only recently 

occurring. Two particularly obvious examples would be the incidence of hornless or 

polled individuals and a novel colour, ‘dun’. In this latter example the genetic basis 

has now been established as a mutation in the Tyrosinase related protein 1 (TYRP1) 

which is involved in the coat colour pathway (Berryere et al, 2003), but it is unknown 

whether this originated an ancestor of the contemporary South Devon breed (A 

separate breed population to the Red Devon). Research into breed influences and 

origins of the Dexter are limited, but examples can be found in which close ties with 

the historically documented progenitor, Kerry, are questioned (Buys and Chiperzak, 

1992) and closer relationships shown with other contemporary breeds such as the 

Aberdeen Angus (Blott, 1997). This is of particular interest due to the implication of 

introgression into the Dexter through outcrosses with breeds such as the polled 

Aberdeen Angus. Polled members of the Dexter breed are presumed to be from this 

source as Wilde (1858) stated that the Dexter and Kerry breeds were unrelated to 

any polled breeds in Ireland.

Through its inclusion in studies of breed relationships the British Dexter can be seen 

to be unremarkable with respect to levels of genetic diversity and genetic distances to
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other breeds (Blott et al, 1998b; Wiener et al, 2004). This may be a consequence of 

the upgrading process with a number of separate breeds. In fact in the principal 

component analysis of Blott et al. the Dexter commanded a very central position 

between other breeds, but remained a separate entity perhaps due to the one way 

nature of Dexter crosses with other breeds. This noted, the Dexter was seen to have 

the lowest number of private alleles, twinned with the Highland, of three across 30 

loci. Maximum numbers of private alleles in the study was ten with an average of 

about six (Wiener et al, 2004). The closest relationship to the Dexter was found to be 

with the Jersey, although it must be noted that the Kerry was absent from Wiener et 

al,'s study. Again the proximity of Jersey to Dexter is interesting because of 

implication of the Jersey in upgrading crosses.

1.9.2. Introgression in the Dexter

The most instantly intuitive method of admixture detection is that of visual 

determination through phenotypic characters. Traits unique to each parent population 

can be investigated for presence in the progeny of the cross. The drawbacks of such 

a method might include; lack of objectivity, potential for unusual expression of traits 

not found in the parent populations which may mislead the observer. Pelage has 

been used in the Scottish wildcat (Beaumont et al, 2001) and it was demonstrated 

that groups constructed in this way possessed informative differences in allele 

frequencies. However, the level of differentiation can be highly variable between 

species and the reliance on aspects such as pelage to differentiate two black cattle 

breeds, for example, has obvious limitations. Other more informative characters as 

given in breed descriptions may be useful if applied as a complete set and the 

presence of population specific traits will help determination in this way. Whilst not 

universally informative, this methodology can be swift to employ and give indications 

on the provenance of individuals of uncertain parentage that can be subsequently 

tested with other methods. It is not possible to know for certain whether an individual 

is a result of cross population mating even if it does not demonstrate abnormal 

morphology. Confounding this problem is that of the numbers of generations between 

an individual and a crossed ancestor. The proportion of nuclear genes from the other 

population diminishes (although this is not necessarily the case for mitochondrial or 

Y-chromosome DNA) and is increasingly unlikely to be represented in obvious 

characters.
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Accurate pedigree information can be used in the identification of admixture since the 

proportion of genes likely to be present in an individual downstream from an 

introgression event can be calculated. Using the known number of generations 

between a parent and an individual and given that there is equal parental contribution 

for each parent in each progeny can be crudely numerically represented as a 50:50 

split each generation (Chesser and Baker, 1996). This can be used to calculate 

average proportional influence of parental populations in an individual. As distance 

from a cross event changes per generation the proportion of introgressed material 

decreases by a half; 0.5, 0.25, 0.125 etc (assuming pure matings since the 

introgression event). This approach, however, can be time and information intensive 

and is subject to the validity of the pedigree itself which in itself is its greatest 

disadvantage. If the value of an individual would be compromised by the declaration 

of influence from another source outside the breed, it may be that parentage 

information is altered to disguise the fact.
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1.10. Statement of aims

This project will apply a variety of molecular markers to genotype a sub-sample of the 

Dexter breed as well as several other breeds thought to have been introgressed into 

the breed at origin or since the population bottleneck. Using the allelic configuration 

found in individuals using these markers, the aim is to understand the recent 

admixture or introgression history of the Dexter breed. To carry out this analysis I 

typed individuals at a number of microsatellite loci. I also worked on the development 

of new Bayesian methods to determine relationships between the breeds involved. 

Using this type of modelling approach I aim to identify introgressed lineages within 

the Dexter breed.

This will be separated into several parts;

• Dexter relationships within a wide selection of European breeds.

• Dexter breed origins, the founder population contributions will be investigated 

as to their relationship with the identified subdivisions in the Dexter breed.

• An improved admixture detection method based on Approximate Bayesian 

Computation will be developed in order to explore breed dynamics more 

accurately.

• The novel method of admixture detection will be tested on an accurately 

documented case of introgression in the Lincoln Red cattle breed.

• The novel method will be applied to the Dexter breed to extract more 

information on the more complex admixture scenario that the breed presents.
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I An introduction into the methods used

is section provides a complete description of the processes involved in the 

actical and analytical work that is applied in the subsequent chapters. This includes 

j concepts included in software descriptions as well as sampling, practical data 

mipulation, and additional software used in formatting. Initial methods describe the 

►oratory processes of DNA extraction and creation of genotypic information for 

ch animal, following this are the analytical methods applied for population genetics 

well as the admixture analysis including the newly developed Approximate 

yesian method.

!. Sampling

mpling from the Dexter breed was conducted through a selection process 

:ording to pedigree analysis carried out in collaboration with Andrew Sheppy 

Dbthorn Trust). In order to satisfy the requirements for the admixture analysis 

imals were sampled from several major demographic groups within the herd book 

d included a selection of animals with a closer relationship to (i.e. as far as 

ssible, directly descended from) putative ancestral lines within the breed, 

aditional’ dexters were also selected where the herd-book indicated they were free 

documented introgression and were therefore chosen as an accurate 

>resentation of the historical breed. Appendix 2.1 provides an anonymised record 

the samples analysed including their farm name, approximate location (by county) 

d the herdbook category to which they were assigned. The precise details 

jrdbook numbers, owners etc) is proprietory information belonging to the Dexter 

ttle Society, which can be applied for on request.

mpling also targeted longstanding herds known to have had considerable 

uence on the formation of the contemporary Dexter. The Ypsitty herd group was 

med from what is thought to be the oldest Dexter herd population and Ypsitty 

scendents are commonly found in contemporary pedigrees. The closed 

)odmagic herd group was chosen due to unique selective breeding for the removal 

an adverse genetic condition (achondroplasia) and its demographic isolation. The 

Dodmagic herd has subsequently been extensively used as breeding stock in the 

)dern Dexter and represents an important component of the breed. The 

ntemporary Dexter population as it predominantly exists today was sampled 

ough a diverse selection of individuals from throughout the herdbook chosen to
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represent the breed average. A further sample of animals of American descent were 

included as a comparison of a semi-isolated breeding population originating from 

common Dexter stock.

Dexter sample groups comprised between 12 and 91 individuals (Table 2.2). DNA 

was obtained from combination of plucked hairs and cryogenically stored semen 

samples. The British individuals sampled originated from farms over a wide 

geographical area (Figure 2.1). The American samples were chosen to represent a 

selection of older breeding lines and also included some animals with high levels of 

early Woodmagic herd ancestry.
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Figure 2.1. Distribution of sampled animals according to natal farm. Farm names;

(1)Apple, (2)Atlantic, (3)Beeches, (4)Bolyns, (5)Bookhams, (6)Bradash, (7)Butterbox, 

(8)Byfield, (9)Canwell, (10)Chalicewood, (11)Clivedon, (12)Cobthorn, 

(13)Coppinswell, (14)Cullaford Vale, (15)Dolau, (16)Donard grange, (17)Elmwood, 

(18)Frith, (19)Godshill, (20)Flarron, (21)Honely hall, (22)llsington, (23)Kidmore, 

(24)Knotting, (25)Lowercombe, (26)Melbry, (27)Minden, (28)Mindoro, (29)Moomin, 

(30) Parndon, (31)Saltaire, (32)Sarum, (33)Statenboro, (34)Sunnyside, 

(35)Swanthorpe, (36)Sylvestor, (37)Templeton, (38)The Gaer, (39)Vatch, 

(40)Vycanny, (41)Wantsley, (42)Whitegates, (43)Woodmagic, (44)Woodmanor, 

(45Ypsitty, & (46)Ytene.
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Other cattle breed populations were sampled broadly to construct a representative 

sample of their allelic spectra for comparison with the Dexter (Table 2.1). Those 

breeds of close association with the Dexter were specifically sampled and genotyped. 

These included; Aberdeen Angus, Guernsey, Kerry, Lincoln Red, Mainland Jersey, 

Red Devon, Red Poll, Shorthorn, and Welsh Black. Semen samples from bulls 

available to all breeders in their respective breed societies were utilised where 

possible due to their potential for providing highly representative and influential 

individuals from across the herd book. A dataset containing a further 16 breed 

populations was obtained and used to place the Dexter in the context of a much 

wider group of traditional breeds in Europe. These comprised; Angeln, Belted 

Galloway, Berrenda, British White, German Black Pied, Gloucester, Hungarian Grey, 

Irish Moiled, Island Jersey, Jutland, Limousin, N’Dama, Sussex, Traditional Hereford, 

and White Park.
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Table 2.1. Sample group sizes, Numbers of typed loci, and origins of DNA

Sample population Sample 

group size
Numbers of 
typed loci origin of DNA

American Dexter 13 22 All plucked hair

Traditional Dexter 12 22 2 plucked hair/10 semen

Woodmagic Dexter 19 22 15 plucked hair/ 4 semen

Ypsitty Dexter 13 22 12 plucked hair/1 semen

Dexter breed population 91 22 71 plucked hair/ 20 semen

Beef Devon 20 22 8 plucked hair/12 semen

Milking Devon 32 22 All plucked hair

Kerry 32 12/22 10 plucked hair/10 semen

Aberdeen Angus 20 22 6 plucked hair/14 semen

Beef Shorthorn 11 22 All semen

Lincoln Red 60 23 All plucked hair

Red Poll 20 22 13 plucked hair/ 7 semen

Welsh Black 17 22 All semen

UK Mainland Jersey 21 22 All plucked hair

Guernsey 12 22 6 plucked hair/ 6 semen

Shetland 31 12 All plucked hair

Belted Galloway 15 12 All plucked hair

Irish Moiled 20 12 All plucked hair

British White 11 12 All plucked hair

Traditional Hereford 19 12 All plucked hair

Sussex 50 12 All plucked hair

White Park 33 12 All plucked hair

Gloucester 14 12 All plucked hair

Island Jersey 25 12 All plucked hair

Jutland 17 12 All plucked hair

Angeln 24 12 All plucked hair

German Black Pied 19 12 All plucked hair

Hungarian Grey 16 12 All plucked hair

Limousin 23 12 All plucked hair

Berrenda 31 12 All plucked hair

N’dama 9 12 All plucked hair
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Due to the dynamic and heterogeneous nature of cattle populations it is important to 

use those populations which are most similar to the historical type involved in the 

admixture events. For this reason two populations of Devon cattle were sampled. 

These were both the beef producing Red Devon, and the Milking Devon. This latter 

population is now extinct in Britain and therefore a surviving American population was 

sampled.

2.3. DNA extraction
Both plucked hair and semen samples were extracted using one of the following 

three methods;

2.3.1. ChelexlOO method

The chelex 100 protocol described in Walsh et al (1991) and adapted by Goossens 

et al (1998) was applied; the numbers of hairs used depended on hair size and 

availability, this typically ranged from ten to twenty. One centimetre of hair was cut 

from the root end and placed in a 1.5ml eppendorf tube with 200pl of a five percent 

chelex (Bio-Rad, Catalogue:142-1253) suspension. Tubes were then incubated for 

six hours at 56 °C with agitation. Tubes were then placed in boiling water for 8 

minutes to deactivate the chelex. Extracts were allowed to cool and stored at -20 °C.

2.3.2. Buffer-based extraction method

This method is a simplified cell lysis approach as detailed by Vigilant (1999). One pi 

of proteinase k is added to 20pl Qiagen PCR buffer and 79pl de-ionised water and 

incubated overnight with agitation. Extracts were allowed to cool and stored at -20 

°C.

2.3.3. Kit method

Semen samples were extracted using the DNeasy Tissue extraction kit method using 

a modification of the inclusion of 1pl Sodium Diothreitol (DTT) in the incubation stage 

of each extraction. From the extractions 1.5pl was added as template in each PCR 

reaction. Extracts were allowed to cool and stored at -20 °C.

The Qiagen DNeasy Micro extraction kit method was also used in samples for which 

the previous methods proved unsuccessful, or where there was a very limited amount 

of material available. The extraction was performed as in the Qiagen handbook.
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2.4. Genotyping

Twenty two microsatellite markers used in this study were taken from the United 

Nations Food and Agriculture Organisation (FAO) list of cattle markers that have 

been used in a number of recent studies (Beja-Pereira et al. 2003; Kumar et al. 2003; 

Wiener et al. 2004). The microsatellites were; hell, hel5, hel9, hell3 (Kaukinen and 

Varvio, 1993), ilstsOOS (Brezinsky et al. 1993a), csrm60 (Moore et al. 1994), eth3, 

eth10 (Solinas-Toldo et al. 1993), tgla 227, tglal22, tglal26 (Georges and Massey, 

1992), sps115 (Moore and Byrne, 1993) , inra032, inra037, inra063 (Vaiman et al. 

1994), eth152, eth225 (Steffen et al. 1993), bm1818, bm1824 (Bishop et al. 1994), 

ilsts006 (Brezinsky et al. 1993b), haut27 (Thieven et al. 1997), and cssm66 

(Barendse et al. 1994). The markers are from a panel of microsatellites selected by 

the FAO for their common application in cattle studies, polymorphism, and suitability 

for automated sequencing, multiplexing and readability. The 22 markers used here 

are distributed across 15 chromosomes with up to three on any one chromosome 

(Table 2.2). Known positions for those markers sharing a chromosome suggest that 

there is a low likelihood of linkage between them, inter-locus distances being no less 

than 15 kilobases (Table 2.3).
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Table 2.2. Multiplex and primer details for the Microsatellite markers applied.

Multiplex Primer Chromosome Primer seq. For / Rev Allelelic range Dye Label

1 HEL9
8 CCCATTCAGTCTTCAGAGGT/ 

CACATCCAT GTT CT CACCAC 141-173 FAM

ILSTS005
10 GGAAGCAATGAAATCTATAGCC/

TGTTCTGTGAGTTTGTAAGC 176-194 HEX

CSRM60
10 AAGAT GT GAT CCAAGAGAGAGGCA/ 

AGGACCAGATCGTGAAAGGCATAG 79-115 HEX

ETH3
19 GAACCT GCCT CT CCT GCATTGG/ 

ACTCTGCCTGTGGCCAAGTAGG 103-133 FAM

ETH10
5 GTTCAGGACTGGCCCTGCTAACA/

CCTCCAGCCCACTTTCTCTTCTC 207-231 HEX

2 TGLA227
18 CGAATTCCAAATCTGTTAATTTGCT/ 

ACAGACAGAAACT CAAT GAAAGCA 75-105 HEX

TGLA126
20 CTAATTTAGAATGAGAGAGGCTTCT/

TTGGTCTCTATTCTCTGAATATTCC 115-131 HEX

SPS115
15 AAAGT GACACAACAGCTT CT CCAG/ 

AACGAGTGTCCTAGTTTGGCTGTG 234-258 HEX

ETH225
9 GATCACCTTGCCACTATTTCCT/ 

ACAT GACAGCCAGCT GCTACT 131-159 FAM

INRA063
18 ATTTGCACAAGCTAAATCTAACC/

AAACCACAGAAATGCTTGGAAG 167-189 HEX

ETH152
5 TACTCGTAGGGCAGGCTGCCTG/

GAGACCTCAGGGTTGGTGATCAG 181-211 FAM

3 HEL1
15 CAACAGCTATTTAACAAGGA/

AGGCTACAGTCCATGGGATT 99-119 FAM

INRA037
11 GATCCTGCTTATATTTAACCAC/

AAAATTCCATGGAGAGAGAAAC 112-148 HEX

HEL5
21 GCAGGATCACTTGTTAGGGA/

AGACGTTAGTGTACATTAAC 145-171 NED

INRA032
11 AAACTGTATTCTCTAATAGCTAC/

GCAAGACATATCTCCATTCCTTT 160-204 HEX

TGLA122
21 CCCTCCTCCAGGTAAATCAGC/

AATCACATGGCAAATAAGTACATAC 136-184 FAM

BM1824
1 GAGCAAGGTGTTTTTCCAATC/

CATTCTCCAACTGCTTCCTTG 176-197 NED

4 ILSTS006
7 TGTCTGTATTTCTGCTGTGG/

ACACGGAAGCGATCTAAACG 277-309 HEX

HAUT27
26 Til IAIG I ICATTTTTTGACTGG/ 

AACTGCTGAAATCTCCATCTTA 120-158 NED

CSSM66
14 ACACAAATCCTTT CTGCCAGCT GA/ 

AATTTAATGCACTGAGGAGCTTGG 171-209 FAM

HEL13
11 TAAGGACTTGAGATAAGGAG/

CCATCTACCTCCATCTTAAC 178-200 HEX

BM1818
23 AGCTGGGAATATAACCAAAGG/ 

AnmrTTTr AArjnTrrATrjr 248-278 FAM
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Table 2.3. Inter-locus distance information about all homo-chromatic loci used. All 
values given in Kilobases (ArkDB, 2008)

Marker Mapping Chromosome

Name Chromosome Position range

ETH10 5 55.000 0-142.000

ETH152 5 127.000 0-142.000

CSRM60 10 77.816 0-100.800

ILSTS 10 97.400 0-100.800

INRA032 11 68.182 0-130.965

INRA037 11 - 0-130.965

HEL13 11 114.500 0-130.965

SPS115 15 - 0-94.000

HEL1 15 27.700 0-94.000

TGLA227 18 145.000 18.000-145.000

INRA063 18 93.000 18.000-145.000

HEL5 21 18.000 18.000-106.000

TGLA122 21 75.000 18.000-106.000

The markers were applied in multiplexes of up to six primer pairs, one primer from 

each pair synthesized with a fluorescent dye FAM, HEX, or NED on the 5’ end. 

Where loci overlapped in size range of amplified fragments different dyes were used 

to label each marker (Table 2.3). Marker amplification was performed using the 

Qiagen multiplex kit according to manufacturers’ instructions. Amplification of the loci 

was carried out in 6pl reactions (1 x QIAGEN PCR Multiplex Master Mix (3mM 

MgCI2), 0.2pM each primer). Thermocycling conditions were as follows: initial 

denaturation at 95 °C for 15 minutes followed by 35 cycles of 60 seconds at 94°C, 

annealing for 90 seconds at 55°C then extension for 60 seconds at 72°C, with a final 

extension for 10 minutes at 60°C. All PCR products were separated using an ABI 

3100 automated sequencer.

Gels were analysed using Genescan analysis 2.0™, Genotyper 1.1™ and 

Genemapper™ software. Scoring of alleles was made by hand using a number of 

reference individuals for comparison of peak morphology. Minimum fluorescence for 

allele peaks was set at 150 units, alleles failing to meet these criteria were not scored 

and the sample was repeated. Where high levels of non specific amplification was
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evident, samples were also repeated or eventually discarded. Accurate scoring was 

maintained through upgrades of fragment analysis hardware and software using 

reference samples. Retyping of this reference material after an upgrade allowed the 

tracking of allelic size shifts and the maintenance of a consistent and comparable 

dataset.

2.5. Analytical approaches and software used

Specific applications were employed for creation and conversion of input files for use 

in analytical software as suggested by the overview of population genetic software by 

Excoffier and Heckel (2006). To create input files for STRUCTURE a basic format 

was created either by hand or using the Convert (Glaubitz, 2004) application. The 

Genepop (Raymond and Rousset, 1995) application was used to convert between 

Convert version and Genepop version formats which are accepted by most 

applications. The Populations (Langella, 1999) application was used to convert 

Genepop version formatted data into LEA version, ADMIX version, and Genetix 

version formats.

2.5.1. Genetic diversity measures

Genetic diversity measures included here were; Observed Heterozygosity (Ho), 

Expected Heterozygosity ( H e ), and Non-biased Heterozygosity (Hn.b), calculated 

using the GENETIX 4.03 software (Belkhir et al. 2002). Observed heterozygosity is 

the average of the heterozygosity values across loci for the sample. Expected 

heterozygosity is the heterozygosity that would be found in the population of origin 

calculated from the sample. The non-biased heterozygosity is a heterozygosity 

measure that is corrected for sample size.

Wright’s F statistics were applied in accordance with Weir and Cockerham (1984) 

through the GENETIX 4.03 software (Belkhir et al. 2002). Departure from the null 

hypothesis, which was no genetic variation for Fst and Hardy-Weinberg equilibrium 

for Fis and F|T, was tested over 104 permutations. The statistics f(= Fis), F(= Fu), and 

Theta(= F s t ) are generated, as seen in Equations 3-5.
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Theta=

F

F

1- C/(A+B+C) (Equation 3)

1-C/(B+C) (Equation 4)

A/(A+B+C) (Equation 5)

Equations 2-4. The basic formula for calculation of the statistics f, F, and theta in 

GENETIX, where A is the inter-population variation in allele frequencies, B is the 

within-population variation, and C is the between-individual variation

In order to investigate whether a relationship existed between the recorded number 

of breeding females and the diversity of the breed populations a regression was also 

performed in the MINITAB 3.2 software. The data for numbers of breeding females 

was also transformed using the logarithmic and square-root transformations in order 

to investigate whether any relationship found was better described than using a 

simple linear function.

2.5.2. Investigation of demographic processes and events

The forces of migration, mutation and selection govern genetic changes in

populations over time (Wang, 2005). Genetic data give us the opportunity to

investigate historical events through modelling these forces in order to determine 

pertinent demographic processes and infer particular events such as population 

bottlenecks. Measuring gene identity is a method used in estimating population 

substructure, as for example developed by Vitalis and Couvet (2001) and applied in 

the ESTIM 1.0 software. This method employs the parameter F to estimate averaged 

per locus gene identities which are used as a measure of within-population genetic 

drift. In a finite population, genetic variation is continually lost, with neutral genes this 

is dependant on population size so the smaller the population the greater the loss of 

alleles. This observation has a direct link to the time elapsed since two genes 

diverged from a common ancestor (the coalescence time) since this time increases 

with increasing effective population size. The perspective of many stochastic theories 

within population genetics is to assume constant population size but population 

fluctuations are likely to be more often the case (Sano et al, 2004). Similarly the

assumption of isolated populations is often more unrealistic than attempting to

include a degree of migration between populations. This has been tackled 

successfully by adopting a maximum likelihood approach (Tufto et al. 1996) but on 

the basis of known population size. The method used in the ESTIM 1.0 application
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provides simultaneous estimates of both the effective population size and the 

migration rate using a method-of-moments approach (Vitalis and Couvet, 1996).

A method of detecting recent population size changes (bottlenecks or growth; 

Cornuet and Luikart 1996) implemented in the BOTTLENECK 1.2.02 program, was 

applied. The method relies on the patterns of genetic diversity expected for a 

demographically stable population (null hypothesis), using two summary statistics of 

the allelic frequency spectrum, namely the number of alleles (da) and the expected 

heterozygosity (He). Simulations were performed to obtain the distribution of He 

conditional on Ha and the sample size for each population and locus. In order to test 

for significant deviations from the null hypothesis, 10000 simulated He values were 

compared to those obtained from the real dataset, using the Wilcoxon Sign Rank 

Test, under three mutational models: infinite allele model (I.A.M.), stepwise mutation 

model (S.M.M.), and a two-phase model (T.P.M.), in which, 30% of mutations were 

allowed to occur under a multi-step manner.

2.6. Application of clustering algorithms

There are a number of methods available for clustering individuals or groups of 

individuals into genetically cohesive groups (populations, regions or breeds). It is 

often useful to compare the underlying models through a selection of methods in 

order to assess the effects of changing assumptions and model estimation of 

parameters (Beerli, 2006). Pritchard et al. (2000) suggest two broad methods by 

which clusters can be made of these individuals which do not include the subjective 

bias introduced through predetermined populations; distance-based, and model- 

based. The former uses a pairwise distance matrix whereby a graphical 

representation can be made of the distances between each pair of individuals. In this 

way clusters can be identified by eye. In model-based methods the assumption is 

that observations from each cluster are random draws from some parametric model. 

Inference for the parameters of each cluster is then made alongside the assignment 

of the cluster membership of each individual. Distance-based methods are usually 

easily applied but tend to be more suited to exploratory analysis than to fine statistical 

inference. Bayesian methods rely on the calculation of the probability of observing 

the data given specific values of the parameters. The Bayesian approach focuses on 

what information the data provides about the parameters (Lindley, 1986). Any 

information known about the model’s parameters can be used to establish a ‘prior
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distribution’. The data are then combined with information from the prior distribution 

to give a probability distribution known as the ‘posterior distribution’ (Wade, 2000). 

Equation 1 represents Bayes’ Theorem (Bayes, 1763) the first term of which 

represents the prior, the second term represents the probability of observing the data 

under the statistical model, and the third represents the probability of the data.

p(^|D) = p W p (D m  (Equation 6)
P(D)

Equation 6. A mathematical representation of Bayes’ theorem describing the 

probability distribution of the parameter set (^ ) given the data pO+'P), where D is the 

observation of the data (Chikhi et al, 2001).

The application of methodology to investigate underlying genetic structure in this 

study was used to validate the assumptions of extant pre-determined sample 

populations and to investigate, as far as possible, population associations. A variety 

of methodologies were applied: initial comparisons through F statistics, model-based 

clustering algorithm that operates without consideration of pre-existing populations, a 

method to analyse the spatial analysis of molecular variance, and three model-based 

assignment methods to estimate recent immigration rates.

2.6.1. Individual assignment

The populations used in this analysis are closely related, with varying presumed 

levels of recent and ancient genetic exchange. In order to investigate any cryptic 

population structure the whole dataset was examined using the Bayesian model- 

based clustering approach developed by Pritchard et al. (2000). This approach is 

implemented to detect the structure of a genetic sample without prior information 

affecting the origin of individuals, and so is independent of the sampling regime. The 

method, originally applied by Pritchard et al. (2000) and improved by Falush et al. 

(2003), is implemented in STRUCTURE 2.1 and uses the term K to describe 

homogeneous clusters of individuals that are as close to Hardy-Weinberg and 

Linkage equilibrium as can be identified within the parameter space of the dataset. At 

any given value of K, a Markov Chain Monte Carlo (MCMC) approach with a Gibbs 

sampler was used to obtain the posterior distribution of the parameters. This 

parameter distribution is dependent on the genotypes and the population value, K. 

This process can be performed with, or without the consideration of admixture. For
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this study admixture was considered, giving the additional parameter of the 

proportion of each population in the ancestry of a given individual.

I therefore examined how the populations separate relative to one another and 

although the value of K is specified for each independent program run, an estimation 

of the likelihood of the resulting assignment is given and this can give an 

approximate indication of the most likely partitions within the dataset. Consideration 

of the likelihood value was originally suggested as a method to favour partition values 

within the data. Where the increase in likelihood of successive K values would 

asymptote, the optimum K had been reached. This approach was criticised due to its 

non-statistical basis by Evanno et al. (2005), who suggested the mode of the AK 

distribution as a more robust approach and incorporated the variation in the standard 

deviation of the likelihood estimates at K for calculating the most likely number of 

partitions present in the data. However this method becomes increasingly difficult to 

apply as the K value increases due to the increased variation of the likelihood 

estimates at any given value of K. This variation is at least in part due to the 

presence of multiple potential solutions of that particular number of partitions in the 

data, all with different estimated likelihoods. When this method is calculated it is 

important to distinguish between these multiple estimated likelihood ‘peaks’ in the 

data. If several different distributions of assignment are made at the same value of K 

then it may be that the variation in likelihood estimations are not informative of the 

particular value of K due to the presence of multiple scenarios and this will affect the 

calculation for estimation of the real K value. In this case the most likely scenario 

should be chosen and the runs resulting in any others discarded.

To take account of the above problem it is important to consider the subdivision of 

population groups where a dataset potentially contains large numbers of populations. 

We set the value of K from 1 to the number of populations in the analysis plus 2 in 

order to determine the uppermost hierarchical level of population structure. The runs 

were performed 20 times each with a different starting point for each value of K and 

AK was calculated as AK = m{\L(K+J\) -  2L(K) + L(K-1)\)/s[L(K)], where m and s 

represent the average and standard deviation of the corresponding values across 20 

runs (Evanno et al. 2005). Experimentation on the full dataset of over 500 individuals 

was investigated to check for convergence of the Markov Chain and it was found that 

a burnin of 5x104 followed by 5x105 steps was sufficient to give a stable estimated
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likelihood. Runs of length 1x106 were also used to confirm convergence of the 

Markov chain.

2.6.2. Spatial clustering

Partitioning of individuals accounting for geographic associations between each 

closed population was performed according to the method of Dupanloup et al. 

(2002). The method assumes geographic homogeneity within populations that are 

maximally geographically removed from one another. The algorithm sorts an initially 

random partition of populations into a specified K number of groups (equal to or less 

than the number of populations) optimally and iteratively moving geographically 

adjacent populations between groups until the maximum proportion of total genetic 

variation can be attributed to differences between groups. This application of spatial 

analysis of molecular variance is performed in the SAMOVA 1.0 software. In the 

software application a coordinate file was created using a set of regionally centred 

coordinates estimated for each breed. In this way the algorithm can adjust genetic 

relationships according to geographical ones in order to distribute partitions across 

the landscape.

2.6.3. Higher-order clustering

The Corander et al. (2004) method also utilised a Bayesian model-based clustering 

method and was applied through the BAPS 2 program. This method assumes 

populations and given a maximum value for the number of partitions in the data, uses 

a stochastic optimisation process in order to reach the clustering solution with the 

highest likelihood of K. The value of K is varied until a stable likelihood is reached 

over a number of repetitions. We used 20 repeats per value of K, varying K from 2 to 

28.

2.6.4. Migration between clusters

Additional to the methods employed to infer population structure are those whose 

application can identify migrants between the populations. The investigation into 

migrant assignment was performed through the method described in Piry et al. in 

2004. This method aims to go some way towards rectifying the excess exclusion of 

resident individuals in other methods, relying on a genetic distance criterion, an allele 

frequency based criterion, and a criterion based on a derivation of the Bayesian 

method developed by Rannala and Mountain (1997). The assignments criterion is the
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genetic distance between the individual for assignment and the reference population 

(Cornuet et al. 1999). Frequency based assignment was based on the likelihood of 

an individual originating from a sample given the frequency of that individual’s alleles 

in the population. The Bayesian method similarly calculates a likelihood, the prior 

distribution for allele frequency being a Dirichlet distribution for the current allele 

given all allelic states over all reference populations. The implementation of this 

method through the software GENECLASS2 differs from the precursor GENECLASS 

through its use of a simulation algorithm that generates population samples of the 

same size as the reference sample. The assignment critera are then calculated for 

each individual other than the one in question. Due to the inclusion of the sample 

size of the reference population, the sampling variance associated with the analysed 

dataset is better reflected.

2.7. Analysis of admixture

The admixture methodology applied here is based on the Monte Carlo Markov chain 

method of Chikhi et al. (2001) although two other methods are included for 

comparative purposes. A purely coalescent approach is applied in ADMIX2.0 

(Dupanloup and Bertorelle, 2001) and a maximum likelihood method through 

LEADMIX (Wang et al. 2003). All three methods are used as high performance 

estimators of relative parental contributions (Choisy et al. (2004).

2.7.1. LEA

The Likelihood-based Estimation of Admixture (LEA) method is detailed in Chikhi et 

al. (2001). This method initially assumes two independent parental populations 

(P1,P2) of given sizes (N1,N2) that mix to produce a hybrid population (H) a number of 

generations in the past (T) (Figure 2.2). The parental populations each contribute a 

proportion to the hybrid population (pr,p2) summing to 1. At the point of hybridisation 

the gene frequency distributions of Pi, P2, and H are also represented (xi,x2, and 

(P1X1 + p2x2)). After the admixture event, all populations evolve independently but 

without mutations until the present. The time since the admixture event is scaled by 

the effective population size for each of the populations (tit2th).

In the Bayesian approach of this method the aim is to draw inferences about a 

parameter, or parameter set, of a model using the information contained in the 

data. The resultant probability density function describes the probability distribution
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as a result of the given data. The prior probability density function (pdf) describes 

what is already known about the parameters, the posterior pdf is produced when 

the given data is considered. A full-likelihood approach assumes that all relevant 

information is contained in the posterior density function. This puts the emphasis 

on the complete distribution rather than using point estimates of parameters as 

summary statistics.

A Bayesian requirement is that a prior is provided on all model parameters. When 

is not possible to infer a particular prior distribution then this lack of knowledge can 

be represented as flat. The result is that the posterior will be proportional to the 

likelihood function. In this case the flat prior applies to p-i, ti, t2, and th, but the xi 

and x2 priors are such that any possible allele frequencies are equally possible 

through a uniform Dirichlet distribution. This allows no dependence on the genetic 

distance between the parental populations, allowing any possible history of these 

populations to be accounted for.

Calculating the full Likelihood requires calculation of the probability of observation 

of allelic configurations given those of the founders just after admixture, the 

probability of observation of coalescent events within the timescale, and a measure 

of the probability of the allelic configuration of the founders given the distribution in 

the ancestral parental population and amount of admixture. Large numbers of 

allelic configurations renders the estimation of the likelihood directly is 

computationally expensive. An alternative is to make estimations of the allelic 

configurations at each coalescent event. The Griffiths and Tavare (1994) method 

harnesses a Monte Carlo approach to evaluate the likelihood at specific parameter 

values.



77

Past

j t
I r'
: I
: I
*  f

; Present 

t

Figure 2.2. The admixture model of LEA. A single admixture event is assumed T 

generations ago, the populations are allowed to have different sizes N1, N2, and 

Nh. The contribution of the first parental population is P1.

The Markov chain has a given starting point in parameter space for each run of the 

LEA program. To ensure that this starting point has no effect on the analysis result 

there is a ‘burn-in’ period during which the Markov chain reaches an equilibrium 

position, this portion of the run must be discarded. The application of the Gelman 

statistic (Gelman, 1996) can be used to compare whether a number of chains have 

converged on the same result. Taking a variety of run lengths, this statistic can be 

used to compare the similarity of the result after removal of a proportion of the 

beginning of the Markov chain (ten percent was a usual value chosen). Typical 

lengths of LEA runs in this study were 5 x105 steps with checks being made using 

at least one repeat run of 1 x106 steps.

The output generated by LEA is in the form of six columns of data with one row for 

each five steps of the run. The columns represent; program iteration, likelihood, p1f 

ti, t2, and th. Due to the potentially large size of output files, R language (lhaka and 

Gentleman, 1996) was employed for analysis. A density plot was used to generate 

a distribution for each parameter. The distribution is used to calculate the estimate 

for the parameter and the confidence margins.
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2.7.2. ADMIX2.0

The model employed in this method is developed and detailed in Bertorelle and 

Excoffier (1998) with an extension to include multiple parental populations made by 

Dupanloup and Bertorelle (2001). It introduces my as an estimator of the admixture 

coefficient based on coalescence times between pairs of genes sampled within and 

between populations. The model is based on a simplified admixture scenario; an 

ancestral population splits into two parental populations and generates a hybrid 

population with proportions combining two fractions of genes ( j j  and (j j -  1)) taken at 

random from each parent population (Figure 2.3). The assumption is made that the 

parental populations simultaneously contribute to the hybrid population. From that 

point the populations evolve independently for tA generations, my is a least squares 

estimator of j j  which is derived and applied to the data. The initial term in the model 

considers the number of coalescence events that will occur from the present time 

until the admixture event, the second term is concerned with the coalescence events 

during the time period over which the parental populations were kept separated. In 

this latter calculation, coalescent events can only occur between those genes that co

migrated in the same parental population. The last terms consider the coalescences 

occurring in the ancestral population, these events have different probabilities 

depending on whether the two genes co-migrated in the same population or not.

The coalescence times between two genes are not directly accessible and means for 

these values must be estimated from the genetic variability. For microsatellite data 

the single-step stepwise model of mutation is adopted. This employs coalescence 

times estimated from the mutation rate and the average squared difference in allele 

size. The single step mutation model, whereby each mutation can increase or 

decrease the allele size by a single repeat, has been widely accepted and applied as 

an approximation of the underlying source of diversity in microsatellites (Goldstein et 

al, 1995; Slatkin, 1995). By taking into account mean coalescence times between the 

hybrid and additional populations this estimator can be extended to the contribution 

of more than two populations to the hybrid.
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Figure 2.3. The admixture model of ADMIX2.0.

2.7.3. LEADMIX

This admixture method adopts the model applied in Bertorelle and Excoffier (1998) 

but with some important differences; the former method is a moment estimator only 

and estimates just p-i as well as assuming an equal effective size of all populations. 

The method applied here through LEADMIX (Wang, 2003) has been extended for 

application with any number of parental populations and also takes into account the 

differentiation between parental populations in the admixture calculation. This latter 

feature is a consequence of the potential introduction of bias that could result in the 

likelihood methods from falsely assuming independent uniform priors for the allele 

frequency distributions of populations Pi and P2 when the admixture event occurs. 

The model employs eight parameters; the admixture proportion the two periods 

of time in generations,  ̂ and qj, and the average effective sizes of the parental 

populations Pi and P2 during the period 5 (ni and n2) and of the parental and hybrid 

populations during period qj (N1f N2, and N3) (Figure 2.4). The number of 

parameters is reduced to six through the rescaling of time by the effective sizes of 

the populations.
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Figure 2.4. The admixture model of LEADMIX. The ancestral population P0 splits 

into two parental populations P1 and P2 (of sizes n1 and n2), which evolve 

independently before they contribute genes of proportions p1 and 1-p1 to form the 

hybrid population Ph. After formation of the hybrid population P1, P2, and P3 with 

effective sizes N1, N2, and Nh evolve independently. £ and ip represent the time 

periods between the separation of the parental populations and the admixture 

event, and the time since admixture event respectively

2.7.4. Approximate Bayesian computation

The MATLAB v7 (The Mathworks, 2001) platform was used for the application of the 

ABC method. A graphical interface initiates the computation which comprises four 

main stages; specification of model parameters, generation of the simulated data, 

calculation of summary statistics for observed and simulated data, and application of 

a comparison between observed and simulated data in order to predict population 

parameters.

2.7.4.1. Generation of parameter information

Like all admixture models the ABC approach developed here is model based and 

relies on this model in order to specify the parameters for the admixture event. 

Although the parameters required are dependent on the genetic model detailed 

below, the process of parameter generation is the initial step in the actual application 

of the approach so shall be detailed first.

In order to run potentially millions of simulations over a range of values for each 

parameter an automated procedure is required for practical purposes. Random
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values can be generated using information about the distribution and range. A 

graphical user interface (GUI) can be used for the specification of these (Figure 2.5). 

The generated value for each parameter is then stored by row in a file, each column 

representing a single parameter. In this interface the distribution of the parameters in 

the range can be uniform, normal, gamma, or log normal. Error messages are set to 

be generated if the ‘Run’ button is pressed without correct completion of the input 

regions. The program executes on the selection of the ‘Run’ button and output files 

are generated.

Population 1 ©  Uniform ©  Normal Q  Gemma ©  Log Normal

©  Uniform ©  Beta

© Uniform Q  Beta

p°Plia ton  ^  ©  Uniform Q  Normal O  Gamma ©  Log Normal

Hybrid population © u rtfo rm  © N orm d  ©Gam m a © L o g

Sample size of PI (Nsaml):
Ancestral PopiJrfian 0 W o m  Q  Normal Q  Gamma Normal

Time of recert admbdure (generators) :
Sample size of P3 (Nsam3):

Figure 2.5. The Graphical user interface for the specification of parameter limits, 

number of loci, and number of simulations.

2.7.4.2. Simulation of data through the genetic model

The specification of the genetic model to use is made through the ms application 

(Hudson, 2002). The application requires a command line for the generation of 

microsatellite data under a particular genetic model. The method applied here uses 

the same model (i.e. parameter values) to generate data independently for as many 

loci as are present in the observed data. The process is repeated for each simulated 

dataset with different parameter values from the range. The model applied is one of 

an initial split event creating three populations, the first two of which admixed to form 

a hybrid population which later receives genes from an admixture event with the third 

parental population. The parameters that need to be specified in this model are; 

effective population sizes, mutation rate of the molecular marker, time of
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coalescence, time of first admixture event, time of second admixture event, size of 

the ancestral population, and sizes of sample populations (Figure 2.6).

QNa (16)A Mutation rate (1) 
Reference N (17)

(13,14,15)

(9,11,12)

(6 ,8 )

Nh N2 N3

Figure 2.6. The genetic model parameters as included in the ms command. In 

numerical order these are; 1 mutation rate (A), 2 (N1) size of first parental population, 

3 (N2) size of second parental population, 4 (N3) size of third parental population, 5 

(Nh) size of hybrid population, 6(8) (ta2) scaled time since recent admixture event 

(/4*Nref), 7 (1-p3) proportion contribution in recent admixture event, 9(11,12) (ta1) 

scaled time since older admixture event (/4*Nref), 10 (p1) proportion contribution in 

recent admixture event, 13(14,15) (ts) scaled time since initial split from ancestral 

population (/4*Nref), 16 (Na) size of ancestral population, 17 reference population 

size.
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As detailed in the ms user information, simulations are generated according to the 

command entered (Figure 2.7. ) in conjunction with the file of parameter information. 

The program is able to generate independent simulations with the use of ‘tbs’ which 

allows the values to be inserted using the same framework for each line of the 

parameter file. In this case although independent values are generated for each 

simulation, the same parameters are then used for each locus within a simulated 

dataset. In this way the same model is applied to all of the loci in a simulation 

although the resultant allelic information will be different in each locus due to 

independent generation.

command=['c:\Data_Analysis\Ms\ms.exe', num2str(Nsam),'

num2str(handles.Nsim*handles.nb_loci),' -t tbs -I 4 ', num2str(handles.Nsam1),' ', 

num2str(handles.Nsam2),' ', num2str(handles.Nsam3), ' ', num2str(handles.Nsam4),'

-n 1 tbs -n 2 tbs -n 3 tbs -n 4 tbs -es tbs 4 tbs -ej tbs 5 3 -es tbs 4 tbs -ej tbs 6 2 -ej 

tbs 4 1 -ej tbs 3 2 -ej tbs 2 1 -en tbs 1 tbs

Figure 2.7. The ms command for generation of simulated data under he two 

admixture model.

2.7.4.3. Applying summary statistics

Due to the stochastic process of generation of simulated datasets it is most 

convenient to summarise the data into a set of statistics. These were chosen in order 

to accurately represent the genetic information in the population data. For this the 

following statistics were applied;

• A measure of heterozygosity for each population followed by an overall 

heterozygosity across all populations.

• Allelic range by population and overall allelic range.

• Private alleles by population and an overall measure of private alleles among 

the populations.

•  F St  by population and overall F s t -

The generation of the summary statistics is performed once for the observed data 

and then separately for each simulation of the data generated according to the input 

model parameters. This enables the independent comparison of each simulation with 

the observed data. Across the four populations involved in this model there are 23
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statistics which need to be compared between the simulated and observed data. A 

measure of the difference between the summary statistics in each must be calculated 

to allow their concatenation into a single measure. A proportional weighting is 

therefore introduced to avoid a bias on any single statistic due to relative magnitude.

2.7.4.4. Prediction of parameters

The distance measure is calculated for each simulated dataset against the observed 

data. Lower distance measures reflect greater proximity between the observed and 

simulated data. In order to only include a subset of the simulated datasets 

corresponding to the lowest distance measures, a rejection scheme is applied 

accepting values according to a tolerance determined by a particular percentage of 

the distribution of distances. The procedure samples the first 10,000 observed- 

simulated distances in order to calculate a distance margin within which fall the 

lowest proportion of the distance values depending on the chosen tolerance (e.g. 

10%). This allows comparisons to be made including the simulations whose summary 

statistics most closely approximate the observed data. The distribution of values for 

each parameter can be plotted for this subset of simulations accepted in the rejection 

process. From characterising the distribution of the simulated parameter values an 

estimate of the parameter is made.
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3.1. Abstract.

Genetic diversity and breed structure were investigated in 27 distinct original 

traditional cattle breed populations, many of which have become minority breeds in 

recent times. Despite potentially high levels of gene flow between some breed 

populations, all maintain identifiable genetic distinctiveness. Genetic differentiation 

was not shown to clearly correlate with geographic origins. Previous findings 

partitioning variation between some British Isles and European mainland breed 

populations were recapitulated. The genetic signature of demographic events and 

migration was shown to be key to the development of contemporary breed variation. 

A Weitzman-based diversity measure suggested further partitioning of extant genetic 

diversity and the existence of two groups of British breed populations. We provide 

evidence for the distortion of breed importance in small populations that have 

undergone significant levels of genetic drift. We also suggest that there is a 

potentially important relationship between within breed diversity and breed 

distinctiveness that may prove detrimental in applying Weitzman for determining 

priorities for breed conservation.

3.2. Introduction

The almost ubiquitous distribution of domestic cattle worldwide reflects their historical 

importance to humans and has resulted in the -1400 extant breed populations that 

we recognise today (Ajmone-Marsan, 2008). The spread of cattle from Near East and 

African origins since domestication explains much of the extant diversity at a large 

spatial scale (Loftus et al. 1994; Bradley et al. 1996; Hanotte et al. 2002; Caramelli, 

2006). However, finer scale within and among-breed variation can be unrelated to 

geographic separation (Jordana et al. 2003) and commercial breed development has 

been noted as contributing to this phenomenon (Rendo et al. 2003). Even local-scale 

selection strategies can be shown to produce variation between herds within a breed 

(Beja-Pereira et al. 2003) contributing to breed evolution. The cultural heritage 

represented in traditional breed populations has been historically affected by the 

socio-economic environment in which the breed has been developed (Bartosiewicz, 

1997). Periodic changes in emphasis on particular traits have been seen to effect 

homogenisation and divergence among breeds and this phenomenon can be related 

to temporary changes in breed popularity (Notter, 1999) often with the result of breed 

decline. Low levels of gene flow between populations can act to maintain diversity 

and reduce the inter-population differentiation that accrues through genetic drift. High
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levels of gene flow can reduce inter-population differentiation and erode population 

distinctiveness altogether (Slatkin, 1985). This reduction in breed differentiation due 

to gene flow has been seen in sympatric populations that are known to exchange 

genetic material (Beja-Pereira et al, 2003). The consequences of this gene flow can 

therefore affect the conservation value attributed to breed populations.

Weitzman’s (1992,1993) diversity concept for conservation has been influential in 

consideration of conservation priorities in domestic animal populations (Reist-Marti et 

al. 2003), although is not so well acknowledged in the wild species literature, for 

which the approach was originally designed. The approach combines genetic 

distance/diversity information (among breeds/ within a set of breeds) and estimated 

survival probabilities to assess the potential change in overall diversity according to a 

specified time horizon and breed persistence. This provides a framework for 

predicting which populations could be most cost effectively managed to maximise the 

predicted level of surviving diversity. Implicit in this approach is the marginal diversity 

that is attributed to populations. Those populations that, once removed from the 

breed group, display greater differentiation relative to the remaining group members 

are attributed a higher marginal diversity and greater conservation value. There has, 

however, been widespread criticism since the first Weitzman application to cattle by 

Thaon D’arnoldi et al. (1998), highlighting the failure of the approach to include intra

population genetic diversity with the suggestion of improved methodologies 

(Caballero and Toro 2002; Eding et al. 2002). A selection of non-genetic and 

combined approaches to breed conservation and prioritisation has also been 

suggested: Simianer et al. (2003) argued that there should be conservation priority 

attributed according to a more utilitarian concept of value in addition to classic 

diversity measures. This use of aspects of breed utility includes attributing value 

scores to qualitative concepts such as unique production traits and social, cultural, 

and religious roles. Producing recommendations according to a wide range of these 

more subjective criteria is potentially important for making an informed decision about 

conservation priorities but there is still merit in making more simplified breed 

descriptions limited to a single factor such as level of endangerment (Danell et al. 

1998; Simianer, 2005), economic viability (Rege and Gibson, 2003), cultural value 

(Gandini and Villa, 2003), and socioeconomic functions of breeds (Tisdell, 2003).
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European cattle breed populations have been studied widely to assess their 

molecular diversity and inter-breed relationships (e.g. Blott et al. 1998; Beja-Pereira 

et al. 2003; Wiener et al. 2004), including in a conservation context (Ruane, 2000; 

Canon et al. 2001; Gandini 2003; Simianer 2005). Examples exist of the recognition 

of threat and the successful mitigation of declining breeds (Bartosiewicz, 1997) as 

well as the upgrading of production traits to increase commercial viability (Vollema 

and Groen, 1997). What seems less clear however, is how overall breed population 

dynamics compare across traditional breed populations, all of which display unique 

histories. These traditional populations are potentially important to maintain, not least 

for their role as reservoirs of diversity (Giovambattista et al. 2001), but despite this 

many are classified as endangered (EFABIS, 2007). To what extent the unique 

diversity of these older, traditional (i.e. autochthonous breeds that have been subject 

to less intensive selection) populations has been maintained, particularly those that 

have experienced severe or extended demographic bottleneck events, is of great 

conservation interest. Furthermore, whether the older traditional breed populations 

have been robust in response to the increased potential of selection and 

introgression in today’s competitive agricultural landscape is unknown.

In this study we apply a number of diversity measures and population clustering 

approaches to a selected set of traditional European cattle breed populations in order 

to assess inter-population differentiation and compare relationships both accounting 

for and ignoring geographical separation. How the extant breeds reflect their 

individual demographic histories with specific reference to population bottlenecks, 

and to what extent breed evolution can be identified through measures of genetic 

drift, was also investigated. Finally, we used these data to reassess the applicability 

of Weitzman-derived approaches towards prioritisation for conservation. Genetic 

distance-based approaches are still being widely applied in contemporary domestic 

cattle literature (Tapio et al. 2006; Li et al. 2007; MacNeil et al. 2007) although they 

may present a poor reflection of genetic relationships between breed populations 

(e.g. Bruford, 2004). Weitzman marginal diversity measures are genetic-distance 

based and commonly applied in conjunction with other approaches (eg. Glowatzki- 

Mullis et al 2008) and for comparison with newly developed methods (Caballero and 

Toro, 2002; Eding et al. 2002; Fabuel et al. 2004; Ollivier and Foulley, 2005). In this 

case the breeds used span multiple regional and country boundaries and the 

assessment of breed ‘value’ at this scale is of limited direct utility. However, we are



interested in the performance of the genetic distance approach, theoretical limitations 

notwithstanding, in the relative assessment of the original population traditional 

breeds used in this study.

The particular aims of this study are to assess the degree to which the traditional 

breed populations used here can be distinguished and how any distinction can be 

attributed to geographic or demographic determinants. In addition, we are particularly 

interested in the potential effects of migrant exchange between breeds and whether 

regional migration maxima can be identified.

3.3. Materials and methods

3.3.1. Sampling

Twenty six traditional UK and European breeds of cattle, and one breed from West 

Africa for comparison, were sampled using carefully chosen original populations. 

These were populations whose herd book records showed little or no influence of 

recent introgression or modernisation through intensive selection for commercial 

traits. Sample sizes ranged from nine to 154 individuals, and ranged from rare to 

non-endangered status (Table 3.1). Both plucked hair and cryogenically frozen 

semen samples were used. 762 individuals of British, European, and West African 

origin were typed at nine loci, 334 of these were also typed across an additional 3 

loci. Each sample group reflects a separate breed.



Table 3.1. Sample information by breed
Breed Sample Origin Number of 

individuals

Number of 

loci

Breed type and 

specific attribute

Conservation status / trend

Shetland * UK 31 12 dual Rare / stable

UK 20 9 beef Not endangered / stable

Belted

Galloway+

UK 15 12 beef Rare / stable

Irish Moiled UK 20 12 dual Rare / increasing

Beef Shorthorn * UK 11 9 beef Rare / stable

Lincoln Red UK 60 9 beef Unknown / stable

British White + UK 11 12 dual Unknown / stable

Kerry * UK 32 12/ 9 dairy Rare / stable

Traditional 

Hereford *

UK 19 12 beef Rare / unknown

Red Poll * UK 20 9 dual Rare / stable

Welsh Black UK 17 9 beef Not Endangered / decreasing

Ireland 154 9 dual Not Endangered / stable

Sussex UK 50 12 beef Rare / stable

White Park * UK 33 12 beef Rare / increasing

Gloucester * UK 14 12 dairy Rare / stable

Milking Devon UK 32 9 dairy Not Endangered / stable

Beef Devon UK 20 9 beef Not Endangered / stable

UK Mainland 

Jersey

UK 21 9 dairy Not Endangered / stable

Guernsey UK 12 9 dairy Not Endangered / stable

Island Jersey UK 25 12 dairy Not Endangered / stable

Jutland * Denmark 17 12 dairy Potentially endangered / 

increasing

Angeln Germany 24 12 dairy Not Endangered / stable

German Black 

Pied

Germany 19 12 dairy Endangered / stable

Hungarian Grey Hungary 16 12 beef Unknown / unknown

Limousin France 23 12 beef Not endangered / unknown

Berrenda Spain 31 12 beef/fighting bulls Unknown / stable

N’dama*

sifSillilliSi®
West Africa 9 12 dual Not endangered / unknown



3.3.2. DNA extraction

Plucked hair samples were extracted using either the chelex 100 protocol described 

in Walsh et al (1991) with specific details in Goossens et al (1998) or with a PCR 

buffer-based method described in Vigilant (1999). Semen samples were extracted 

using a modification of the Qiagen Dneasy tissue extraction method according to 

manufacturers’ instructions. From the extractions 1.5pl was added as template in 

each PCR reaction.

3.3.3. Genotyping

The microsatellite markers used in this study were taken from the Food and 

Agriculture Organisation (FAO) list of cattle markers that have been used in a number 

of recent studies (Beja-Pereira et al. 2003; Kumar et al. 2003; Wiener et al. 2004). 

Data are combined, where appropriate, from studies using nine and twelve loci. The 

first nine microsatellite markers were; inra063 (Vaiman et al. 1994), eth225 (Steffen 

et al. 1993), hel5 (Kaukinen and Varvio, 1993), eth10 (Solinas-Toldo et al. 1993), 

bm1818 (Bishop et al. 1994), ilsts006 (Brezinsky et al. 1993), haut27 (Thieven et al. 

1997), tgla227 and tglal22 (Georges and Massey, 1992). Three additional markers 

used in the larger dataset were inra005 (Vaiman et al. 1992), bm2113, and bm1314 

(Bishop et al. 1994). These were amplified using the Qiagen multiplex kit according to 

manufacturers’ instructions. One primer from each pair was synthesized with a 

fluorescent dye FAM, HEX, or NED on the 5’ end. Amplification of the loci was 

carried out in 6pl reactions (IxQIAGEN PCR Multiplex Master Mix (3mM MgCI2), 

0.2pM each primer). Thermocycling conditions were as follows: initial denaturation at 

95’ for 15’ followed by 35 cycles of 60s at 94°C, annealing for 90s at 55°C then 

extension for 60s at 72°C, with a final extension for 10’ at 60°C. Markers were 

applied in multiplex conditions using up to seven pairs per PCR. All PCR products 

were analysed using an ABI 377 and 3100 semi-automated DNA analysers. Gels 

were analysed using Genescan analysis 2.0™, Genotyper 1.1™, and Genemapper™ 

software.

3.3.4. Statistical Analysis

3.3.4.1. Genetic variability and Population Structure

Genetic diversity measures included Expected Heterozygosity (HE), and Observed 

Heterozygosity (Ho) and Wright’s F statistics, computed following the method of Weir
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and Cockerham (1984), as well as a heterozygosity measure that accounts for bias 

due to sample size (Nei 1978). Their departure from the null hypothesis, which was 

no differentiation between populations (F St )  and Hardy-Weinberg equilibrium 

between individuals in subpopulations (F|S) and individuals in the total population 

(Fu), was tested over 104 permutations as implemented in the GENETIX 4.03 

software (Belkhir et al. 2002).

The majority of populations used in this analysis are relatively closely related taurine 

cattle with varying levels of recent and ancient genetic exchange. In order to 

investigate cryptic population structure, the whole dataset was examined using the 

Bayesian model-based clustering approach developed by Pritchard et al. (2000). This 

method, further improved by Falush et al. (2003) is implemented in STRUCTURE

2.1. This groups individuals into K homogeneous clusters (populations) that are as 

close to Hardy-Weinberg and Linkage equilibrium as possible. For each K value, we 

performed 20 runs with different starting points, having a 105 burn-in period followed 

by 105 steps (we tested different run lengths ranging from 104 to 106 and found that 

convergence was achieved after 105 steps). Then, for each K  value, we calculated 

the average and standard deviation of the ‘log estimated likelihood’ [L(K)] across the 

20 runs. The values of AK (Evanno et al, 2005) statistics were obtained as AK  = 

m(\L(K+'\) -  2L(K) + L(K-1)|)/s[/_(K)], where m and s represent the average and 

standard deviation of the corresponding values across 20 runs, respectively. The AK 

statistic was thus used to determine the uppermost level of population structure. In 

order to determine whether each cluster was itself subdivided into smaller and less 

differentiated units, the identified clusters were reanalysed independently. This was 

repeated for each subgroup until the most likely K was shown to be 1. For all these 

analyses, the program was run under the admixture model, considering independent 

allele frequencies.

The breed sample populations were largely of either British or European mainland 

origin. To investigate potential geographical explanations for current breed 

relationships, an analysis was performed using coordinates of origin for each sample 

population. These coordinates were obtained using approximate centralised values 

of either region of origin or entire country if the breed is widespread. The analysis 

was applied according to the method of Corander et al. (2003, 2004, 2007) using 

prior knowledge of sampling location and estimating the posterior probabilities for all
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the different ways of combining populations. Stochastic optimisation is used to infer 

the posterior mode of the genetic structure applied in the software BAPS 4.

The investigation into migrant assignment was performed through a method 

described in Piry et al. in 2004. This method uses three assignment criteria; genetic 

distance, allele frequency, and a measure based on the Bayesian method developed 

by Rannala and Mountain (1997). Implementation of this method is through the 

software GENECLASS2.

3.3.4.2. Demographic analysis

Of particular interest to us was the presence of the signatures of demographic events 

in the recent histories of these populations. A method of estimating population 

substructure was used to identify populations in which genetic drift had played a 

particularly important role; populations in isolation or at small sizes for extended 

periods. Developed by Vitalis and Couvet (2001), this was performed through the 

parameter F, an averaged measure of probability of identity for each locus 

(equivalent to a within population F s t ). This has been used to measure population 

substructure and applied as a measure for genetic drift within a population (Sousa et 

al. In press). This method was implemented in the ESTIM 1.0 software. A method of 

detecting recent population size changes (bottlenecks or growth) developed by 

Cornuet and Luikart (1996), is implemented in the BOTTLENECK 1.2.02 program. 

Comparisons are made against the patterns of genetic diversity expected for a 

demographically stable population (null hypothesis), using two summary statistics of 

the allelic frequency spectrum, namely the number of alleles (nA) and the expected 

heterozygosity (He). Simulations were performed to obtain the distribution of He 

conditional on nA and the sample size for each population and locus. In order to test 

for significant deviations from the null hypothesis, 10000 simulated He values were 

compared to those obtained from the real dataset, using the Wilcoxon Sign Rank 

Test, under three mutational models: infinite allele model (I.A.M.), stepwise mutation 

model (S.M.M.), and a two-phase model (T.P.M.), in which, 30% of mutations were 

allowed to occur under a multi-step manner. A further investigation into the 

demographic dynamics of these breed populations was to see whether a relationship 

existed between the recorded numbers of breeding females and the diversity of the 

breed populations. To this end a regression was performed using the MINITAB 3.2 

software.
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3.3.4.3. Weitzman application

For a comparative conservation assessment, we applied a theoretical approach 

which was developed by Weitzman (1992) in which pairwise genetic distances 

between the populations are used to construct a maximum-likelihood diversity tree 

through the program WEITZPRO (Derban et al. 2002). In the Weitzman measure of 

diversity, populations are also ranked based on their contribution to diversity by 

excluding each population in turn from the original tree. This allows the relative 

genetic contributions to overall diversity of each breed population to be examined in 

the context of the total diversity among all breeds. Here we compare and contrast the 

findings of the Weitzman approach with other carefully selected methods in order to 

determine how the value assignments correspond to the genetic characteristics of the 

populations inferred from these methods.

3.4. Results

3.4.1. Genetic variability and population structure

The within-population heterozygote deficiency values (F |S) are given in Appendix 3.1. 

Five of these populations exhibited positive Fis values which diverged significantly 

from Hardy Weinberg Equilibrium. These populations were; Shetland, Belted 

Galloway, Traditional Hereford, Guernsey, and Berrenda Heterozygosity measures 

for the breed populations ranged widely with He values from 0.53 to 0.71 (Table 3.2). 

All F St  values but one showed populations as being highly significantly differentiated 

from one another (P<0.001) (Appendix 3.2). The lowest pairwise F St  was between 

the Guernsey and Beef Devon ( F s t : 0.03), but the populations were still significantly 

differentiated (P<0.05). The highest F s t  value was 0.37 between the White Park and 

Mainland Jersey breeds.



Table 3.2. European breeds sampled including; number of breeding females (N) 

(EFABIS, 2007; Alderson, 2007), number of genotyped individuals (n), expected, 

non-biased and observed heterozygosity (HE, Hn.b., HO)

Breed Population N n
n

■
H e Hn.b. Ho

Guernsey 4,217 12 0.71 0.74 0.65

German Black Pied 1,130 19 0.70 0.72 0.72

Red Devon 3,332 20 0.69 0.71 0.71

Aberdeen Angus 20,500 20 0.69 0.70 0.67

Limousin 808,500 24 0.68 0.70 0.70

Dexter 9,000 154 0.68 0.69 0.70

Milking Devons 600 32 0.68 0.68 0.67

Angeln
'

220 24 0.67 0.68 0.66

Welsh Black 9,412 17 0.66 0.68 0.65

Jutland 120 17 0.66 0.68 0.65

Berrenda 870 31 0.65 0.66 0.56

Shorthorn 4,520 11 0.65 0.68 0.69

Red Poll 1,804 20 0.65 0.66 0.70

Lincoln Red 2,038 60 0.63 0.63 0.65

Island Jersey 3,400 25 0.62 0.63 0.62

Kerry (UK) 60 32 0.62 0.63 0.61

Sussex 2,467 50 0.62 0.62 0.61

Mainland Jersey 22,750 21 0.61 0.62 0.60

Hungarian Grey 1,520 15 0.59 0.61 0.57

Belted Galloway 2,608 15 0.58 0.60 0.56

British White 1,655 11 0.58 0.61 0.57

Shetland 664 31 0.57 0.58 0.54

N'dama 2,000,000 9 0.57 0.60 0.65

Traditional Hereford 616 19 0.56 0.58 0.52

Gloucester 500 14 0.55 0.57 0.52

Irish Moiled 308 20 0.53 0.54 0.54

White Park 727 33 0.53 0.54 0.52
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Initial partitioning of the dataset gave the maximum likelihood value of K  as two. This 

produced a group comprising 16 of the 20 British breeds and a group containing all 

six European breeds, the African N’Dama, and the remaining four British breed 

populations. Substructure within the British partition consisted of four levels of nested 

subdivisions resulting in 13 identifiable clusters of individuals. The European partition 

was divided through three nested subdivisions also resulting in 13 identifiable 

clusters. Breed structure is shown in Figure 3.1. Across the dataset six breeds failed 

to separate into distinct units (Aberdeen Angus, Beef Devon, Guernsey, Red Poll, 

Shorthorn, Welsh Black), and two breeds were further separated into two 

subpopulations each (Berrenda, White Park).
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Figure 3.1. Population structure for the entire breed dataset as determined by the 

STRUCTURE software without using pre-defined populations. Nodes represent the 

points at which the data was identified as containing a split of individuals and new 

datasets were constructed from each subset and run through the same analysis 

process once more. Thickened and dotted lines represent sample groups that either 

failed to separate, or were the result of a sample group split respectively.

3.4.2. Geographical population clustering

Twenty-two population clusters were identified, (this result was identical when the 

analysis was performed excluding geographic information). Twenty of the clusters 

corresponded to breed sample groups. Two clusters contained multiple sample 

populations. One cluster comprised; Aberdeen Angus, Beef Devon, Guernsey, 

Shorthorn, and Welsh Black. The remaining cluster was composed of Angeln and 

German Black Pied. Although a breakdown of probabilities across the ten most 

visited clustering results is available, in this case no other results were found leaving 

the associated probability as one for a result of 22 clusters.
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3.4.3. Migrant analysis

Under the analysis of first generation migrants 99 individuals (13%) were reclassified 

as being from a population other than that from which the animal truly originated. This 

reclassified proportion of each population varied from zero individuals in the British 

White, Traditional Hereford, Hungarian Grey, Island Jersey, and White Park up to half 

of the individuals for the Guernsey (Appendix 3.3). There was a strong geographic 

aspect to the genetic exchange identified here. Almost all of the migration was seen 

to be intra-regional within both Britain and mainland Europe. Of the 99 migrants 

identified, three were between British and European breeds contrasting markedly 

with the 10 migrants identified within the cluster of six European breeds and 85 

between the greater 20 British breed group. A single migrant was also identified from 

the African breed N’Dama and assigned to the European Limousin.

3.4.4. Demographic history and conservation value

The F statistic calculated in ESTIM varied from low values in the Guernsey, and 

German Black Pied (0.07, 0.08) to high values in the White Park and Irish Moiled 

(0.32, 0.31) (Appendix 3.4). Under the infinite alleles model 23 of the populations 

showed significant heterozygote excess consistent with a population bottleneck 

determined using the Wilcoxon Signed Rank test using the program BOTTLENECK 

(Appendix 3.5). Nine of the breeds showed bottleneck signatures under TPM, and 

three assuming the SMM. One breed, the Kerry, demonstrated a heterozygote 

deficiency (P<0.005) under the SMM as well as a heterozygote excess under the IAM 

Only the Berrenda, Gloucester, and Jutland breeds showed a bottleneck signature 

under all three methods, another six displaying signatures in both IAM and TPM. 

However, a regression of estimated effective numbers of breeding females of the 

breed populations against HE showed no significant relationship.

The maximum-likelihood phenogram resulting from the Weitzman approach (Figure 

3.2) distinguished two initial partitions separating ten of the British breeds (Mainland 

Jersey, Red Poll, Milking Devon, Shorthorn, Lincoln Red, Aberdeen Angus, 

Guernsey, Beef Devon, Dexter, Welsh Black). The next major division partitioned the 

remaining British from the European breeds (and the N’Dama) with the exception of 

the Traditional Hereford and Island Jersey which clustered with the European breeds. 

Some level of agreement with the STRUCTURE method was shown in the distinction 

of the Belted Galloway and White Park breeds from the main British grouping as well
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as the close association of the Aberdeen Angus, Beef Devon, and Guernsey breeds. 

The level of marginal diversity that would be lost by removal of any one sample 

population varied between 1.3 and 8.8 percent. The highest of these was found for 

the White Park breed and lowest for the Lincoln Red. A regression of this measure 

against the Geneclass2.0 average percentage proportional assignment within breeds 

was significant (P<0.05).
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Figure 3.2. Maximum Likelihood tree and marginal diversity values (%) as 

determined by the WEITZPRO software (Derben et al. 2002).

3.5. Discussion

The genetic variability seen in this study is similar to the range shown for 

breeds over a number of recent studies based on commonly used microsatellites in 

European cattle populations (e.g. Kantanen et al, 2000; Wiener et al, 2004). This is 

true even for those populations whose effective size were estimated as below one 

hundred, such as the Kerry breed ( H e = 0 .6 2 ) .  The lowest breed variability here was 

displayed by the White Park ( H e = 0 .5 3 ) ,  and this may reflect low population numbers 

in the 1970s (Alderson, 1997). The departure from Hardy Weinberg equilibrium seen 

in some breed populations may be the consequence of selective breeding, or may
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simply reflect population substructure perhaps demonstrated here by the Berrenda 

breed, which is seen to split into separate breeding populations by coat colour.

Through the application of the clustering algorithms we were assessing how the 

genetic variation is distributed among the breed populations sampled. We applied the 

method of Pritchard et al. (2000) for non-spatial clustering despite the suggestion that 

it is unable to effectively discriminate individuals with closely related genotypes or low 

levels of genetic differentiation (Ibeagha-Awemu and Erhardt, 2005) as might be 

expected in domestic breeds. This follows its successful implementation in such 

studies as Negrini et al. (2007) and their application to AFLP data in European cattle. 

The method identified 21 of the 27 breed populations, finding further substructure in 

two of the breeds. The primary partition in the breed dataset suggested the presence 

of two groups of breeds; British and European. A UK-Europe split of this kind might 

be expected from interpretation of some previous studies (MacHugh et al. 1994; Blott 

et al. 1998) but is not supported by others (MacHugh et al. 1996; MacHugh et al. 

1997). Re-analysis of this dataset including only the nine common loci across all 

breeds showed that the analysis was largely robust to the number of loci used, and 

that this was not influential in determining whether breeds could be individually 

distinguished by the clustering algorithm. The iterative application of this method 

allowed more fine scale elucidation of population relationships than a single 

application on the whole dataset, particularly given the number of samples involved. 

However, partitions resolved in this manner represent decreasing differentiation at 

each level therefore the importance of and confidence in each subsequent partition 

must be considered carefully. Consistent with the hypothesis that high levels of 

recent gene flow is likely to obscure ancestral breed relationships, we found that 

beyond the initial partition there appeared little reflection of co-ancestry i.e. clustering 

of breeds of the same colour-type or local origin. The presence of some British 

breeds in the European partition can be putitively explained by documented historical 

breed associations. There is a recognised association of the Hereford with European 

breeds, similarly found by Machugh et al. (1994), reflecting pre-founding input from 

northern Europe (Heath-Agnew, 1983). Likewise the Belted Galloway association in 

an otherwise German-only breed cluster can be traced to the northern European 

mainland, from its origin as a hybrid of the Galloway and the Dutch Belted (Wallace 

and Watson, 1923). A further breed relationship of note is that between the Island 

and mainland populations of the Jersey. It can be seen that the two populations are
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markedly different from their separation into different clusters in both the 

STRUCTURE and Weitzman analyses and this is supported by a high FST of 0.25 

between the populations. This is likely to be almost entirely due to the influence of 

migration on the mainland Jersey from the other mainland breed populations, the 

Island Jersey being completely isolated and closed to such influences.

The inclusion of spatial data added little further information to breed partitioning using 

the BAPS approach. This analysis suggested that all breeds were separate apart 

from two breed clusters; 1) five of the British breeds that failed to separate out 

individually from the STRUCTURE analysis (Aberdeen Angus, Shorthorn, Welsh 

Black, Beef Devon, Guernsey), and 2) the European mainland breeds of Angeln and 

German Black Pied. Other than the suggestion that there is a British core of similar 

populations and to a lesser extent a European one, the spatial approach here fails to 

reinforce the English Channel as an important barrier to gene flow. Migration events 

across the channel might involve more individuals at a time rather than the gradual 

exchange between neighbouring farms seen elsewhere, and due to the large width of 

the channel itself this might even reduce the effective geographic distance between 

the two landmasses. The analysis of first generation migrants however, contradicts 

this conclusion. The pattern seen is that of two regional migration maxima combined 

with very low inter-regional migration levels. Total levels of migrant assignment 

showed that 13% of individuals were reassigned to another population on the basis 

of being a first-generation migrant. Of these only 3% of all migrants were exchanged 

between the British and European regions. In a similar migrant analysis by Li et al. 

(2007) this type of regional association was not seen in cattle breeds across northern 

Eurasia and the Near Eastern Balkans. The greatest influence on migrant 

assignment in this case was concluded to be due to upgrading crosses for adaptive 

(through the Red Steppe) and commercial (through the Finnish Holstein-Friesian) 

purposes. Conversely, our study shows no single breed to be particularly influential in 

the other populations, perhaps due to the exclusion of the more commercial breeds. 

Our results fail to support any convergence of breeds by utility in these traditional 

populations by any of the methods used.

The history of a population, how it affects the distribution of extant genetic variation, 

and whether we can identify important demographic events is of particular value in 

traditional domestic populations. We would expect genetic drift to be far greater in
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isolated populations that had been subjected to a period of low population size 

(Futuyma, 1998). Genetic drift has been shown to be the major force leading to the 

loss of alleles in cattle breeds (Simianer, 2005), as such we were interested in being 

able to identify populations in which drift may have been important. The Vitalis and 

Couvet (2001) gene identity measure F is a way of doing just this. The range of F 

measures found here are high and comparable to highly inbred captive populations 

of Goodeid fish (Bailey et al. 2007). The spectrum of values presented is particularly 

interesting in reference to the Island Jersey breed. The Island Jersey population has 

been closed to immigration for over 200 years and comprises a stable 3-4000 

individuals which were shown not to be at risk from inbreeding (Chikhi et al. 2004). 

Using the Island Jersey as a comparison, those breed populations with appreciably 

higher F may be more at risk of the detrimental consequences of being small isolated 

populations. This would suggest the White Park and Irish Moiled breeds being 

potentially at risk of loss of diversity due to genetic drift and inbreeding and to a 

lesser extent also the Gloucester, Traditional Hereford, and Shetland breeds. Among 

British breeds there is a significant negative relationship (P<0.05) between the F 

value and the current effective size of breed populations which might suggest 

(naively assuming constant historical population sizes) that levels of gene flow 

between breed populations are comparable. However, breed populations are far from 

constant and this has profound consequences on estimations of demographic 

parameters. For this reason we looked for indications of severe demographic 

perturbation such as population bottlenecks or expansions in each population. We 

found evidence of bottlenecks in the majority of breeds under the IAM, the most 

highly significant of these also giving a bottleneck under the TPM and to a lesser 

extent the SMM. Microsatellites are better approximated as evolving under the SMM, 

and the TPM has been shown to be the best representative for microsatellite 

datasets (Di Rienzo et al. 1994). For these reasons we concentrate on bottlenecks 

that are present in those breeds showing a signature only under the SMM and TPM. 

It might be expected that the Irish Moiled and White Park have such high F measures 

due to bottleneck events, but this was not found to be the case. One potential 

explanation for this is that for enough time to have passed for drift to have become 

highly influential in population genetic structure the signature of any bottleneck that 

may have been present is likely to be obscured. This is likely to be the case in the 

White Park breed whose numbers were in the seventies in 1976 (Alderson, 1997) yet 

show no bottleneck signature here. Four breeds stand out from this bottleneck
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analysis, the Berrenda, Gloucester, and Jutland breeds all showing the signature of a 

population bottleneck in TPM and SMM. and the Kerry which shows evidence of 

population expansion (heterozygote deficiency) under the SMM only. The Berrenda 

comprises two colour forms which, as identified in the clustering methods, actually 

appear genetically distinct and this was considered a potential reason for the 

significant bottleneck result. Re-analysis with the colour forms as separate sample 

populations showed that one of these subgroups still shows significant heterozygote 

excess (data not shown) inferring a genuine bottleneck event. The Gloucester and 

Jutland breeds show evidence of recent population bottlenecks and this is perhaps 

consistent with small current population sizes (-180 and -500 respectively), but it is 

difficult to expand on this without further demographic information. The Kerry was the 

only population to show a heterozygosity deficit, implying a population expansion, 

and it is noted in Cornuet and Luikart (2001) that this deficit effect is more 

pronounced following a population size reduction. Despite the low current population 

numbers (-60) the UK population is known to have expanded from lower numbers in 

its recent history. This is similar to trends in Ireland where the population currently 

stands at over 450 breeding females having suffered a decline from around 1000 in 

the 1890’s to below 300 in the mid to late 20th century (Olori and Wickham, 2004).

We were interested in a general comparative tool with which to summarise an ad hoc 

diversity value in each breed. The Weitzman-based genetic distance summary tool 

was first applied to cattle by Thaon d’Arnoldi et al. (1998) and we use it here fully 

aware of the criticism of distance methods and their failure to consider within-breed 

variation, an important part of practical breed management (Tapio et al. 2006). 

Distance-based approaches are still widely applied in cattle breed studies (Canon et 

al. 2001; Machado et al. 2003; Negrini et al. 2007) due to their providing a basic 

relative measure of distinctiveness, which can be informative when applied in 

conjunction with other methods (e.g Caballero and Toro, 2002). The Weitzman 

marginal diversity measure here produces a tree suggesting the existence of a 

subset of British breeds that separate from the rest even before the divergence of the 

European breeds. Subsequent to this initial divergence the method does recognise a 

British-European division as described previously in the other clustering methods. 

The high density of breed populations in Europe and particularly in the UK makes the 

process of characterising and explaining cryptic breed relationships problematic. 

Methods that rely on genetic distances are attractive due to their quick and easy
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application relative to the more computationally intensive methods such as those 

employing Bayesian algorithms. We found that the breed clusters produced by the 

genetic distance based approach contrasted with the Bayesian-derived clusters in 

the initial separation of a subset of British breeds. Low accuracy of estimation from 

genetic distance approaches has been previously noted between individuals and 

populations (Cornuet et al. 1999), and has been shown to be sensitive to population 

size fluctuation (Estoup et al. 1998). This latter aspect is particularly pertinent to 

domestic livestock and may account for some of the differences between the 

outcomes of the different methods.

The calculation of a Weitzman marginal diversity contribution of each breed 

individually was the most problematic aspect of the application of the genetic 

distance approach here. Our findings contribute further speculation about the validity 

of this Weitzman approach within a species, adding to some previously noted 

criticisms, such as failure to account for effective population sizes (Caballero and 

Toro, 2002). Specifically, the Weitzman derived marginal diversity of each breed 

displayed a highly significant (P<0.001) inverse relationship to He (Appendix 3.6). 

This seems to reiterate the problem of the Weitzman approach promoting the 

maintenance of many inbred lines as suggested by Eding et al. (2002). In this 

scenario, having low genetic diversity effectively increases the genetic distance 

between a breed and the remaining breed cluster, somewhat counterintuitive to a 

conservation prioritisation scheme. To our knowledge, this inverse genetic diversity -  

marginal value relationship has not been reported previously. However, we 

calculated the same inverse relationship (for both He and allele number when 

compared against diversity loss by removal of individual breeds from a breed cluster) 

using data in published Weitzman analyses of pig (Laval et al. 2000) and goat 

(Glowatzki-Mullis et al. 2008) breeds. The low-diversity bias is illustrated particularly 

well in our data for the White Park breed, being the least genetically diverse of all of 

the breeds in this study yet having the highest marginal diversity. It can’t be ruled out 

however, that genetic drift on this breed during a period of low population size 

caused the chance fixation of alleles absent or rare in the other breed populations 

resulting in very unique current diversity. The potential explanation of genetic drift for 

the attribution of marginal diversity may be argued. There is a highly significant 

positive relationship between the marginal diversity and Cornuet and Luikart (2001) F 

values (Appendix 3.7) Although this relationship is almost certainly affected by other
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population parameters such as HE and effective size. This suggests a propensity to 

overestimate the importance of populations in which drift has played a greater role for 

demographic reasons (small population size, repeated population bottlenecks etc.). 

Conclusions drawn about breed relationships from basic genetic distance data may 

be similarly affected and this sensitivity should be considered when applying any 

genetic distance based methodology. In cases of low population differentiation, such 

as in the context of domestic breeds, we would strongly recommend the avoidance of 

genetic distance methods for anything other than a superficial summary statistic used 

to guide subsequent analysis.

3.5.1. Implications for the conservation of genetic diversity

Genetic distinction was found between all of the traditional cattle breeds studied 

here, suggesting that they are useful as reservoirs of genetic diversity for the more 

commercial breeds. A logical consequence of this is that many of these breeds will 

contain unique genes or combinations of genes that need to be preserved. Almost all 

of the breeds here have high variability and it is possible to see genetic distinction 

between European and British breeds. The genetic legacy of European ancestry is 

identifiable in some British breed populations. As suggested in Giovambattista et al. 

(2001), it is the characteristic population structure in traditional breeds without 

intensive artificial selection that favours the maintenance of diversity, some of this 

adaptive. The consequences of maintenance of traditional breeds at small fluctuating 

population sizes do not seem to have detrimentally affected their diversity although 

inter-breed gene flow between some of the breeds has almost certainly contributed to 

this. The extreme genetic distinction between the Island and mainland Jersey 

populations is indicative of the consequences of maintaining separate herd 

populations. Equally, that populations can maintain their distinctiveness under the 

influence of the levels of gene flow suggested here reflects either a recent trend 

towards out-crossing, or simply the success of breed management in maintaining 

breed diversity. Recommendations from this work are that breeds demonstrating 

recent population bottleneck events, and in particular those at low population sizes 

such as the Jutland, should be regularly monitored for any signs of genetic 

deterioration.

Despite, and partially because of, the large numbers of extant traditional breed 

populations many are under threat from extinction and many of the breeds in this
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study are listed as rare, potentially endangered, or endangered. Their continued 

existence as distinct breeds is still entirely dependent on their management. The 

generally high levels of variation found here suggests that these populations are 

likely to persist if the populations continue under careful management schemes. But 

the genetic status of breed populations is entirely dependent on the human interest in 

the breed, and it is imperative to promote this to maintain the diversity of breeds seen 

today.
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4.1. Abstract

The genetic structure of the Dexter, a minority cattle breed with complex 

demographic history was investigated using microsatellite markers and a range of 

statistical approaches designed to detect both admixture and genetic drift. Modern 

representatives of two putative ancestral populations, the Devon and Kerry, together 

with the different populations of the Dexter, which have experienced different 

demographic histories, were analysed. Breed units showed comparatively high levels 

of genetic variability ( H e = 0 . 6 3 - 0 . 6 8 ) ,  however, distinct genetic subgroups were 

detected within the Dexter which could be attributed to known demographic events. 

Much lower diversity was identified in three small, isolated Dexter populations 

(HE=0.5 2 - 0 . 5 5 )  and higher differentiation (F st > 0 . 1 3 ) ,  was found. For one of these 

populations, where strong selection has taken place, we also found evidence of a 

demographic bottleneck. Three methods for quantifying breed admixture were 

applied and substantial method-based variation in estimates for the genetic 

contribution of the two proposed ancestral populations for each subdivision of the 

Dexter was found. Results were consistent only in the case of a group consisting of 

selected Traditional Dexter animals, where the ancestor of the modern Kerry breed 

was also determined as the greater parental contributor to the Dexter. This 

inconsistent estimation of admixture proportions among methods highlights the 

potentially confounding role of genetic drift in shaping small population structure and 

the consequences on accurately describing population histories from contemporary 

genetic data.
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4.2. Introduction

In domestic animals, among-population demographic relationships can be linked to 

breed origins and distribution (see Caramelli, 2006 for a review) as well as to breed 

management practices such as upgrading and selection (Takeshima, et al. 2003). 

There are many documented accounts of such demographic events shaping well- 

known breed populations (Bartosiewicz, 1997). Isolation of breed populations into 

herd-book schemes is a relatively recent development (Taberlet et al, 2008), but it 

can rarely be assumed that gene exchange among breeds has ceased entirely. 

There remain relatively few completely closed populations, the island Jersey cattle 

currently being one (Chikhi et al, 2004). Conversely the management schemes of 

many traditional breed populations have involved an outbreeding regime to improve 

production value of stock, such as polling in Hereford cattle (Heath-Agnew, 1983). It 

remains largely untested if the genetic signature of such admixture events can be 

similarly quantified if undocumented, or not linked to an obvious trait, or how the 

relationships between a population and its ancestors are affected.

The Dexter cattle breed provides a model example of the population dynamics found 

in a number of minority domestic breeds. The Dexter itself is thought to have been 

formed in Ireland from a Celtic black cattle population, the most direct modern 

aescendent of which is thought to be the Kerry (Wilson, 1909a). The Dexter is 

thought to have become gradually demographically separated from the Kerry as it 

became established in England, Wales and Scotland and is also reputed to have 

received genetic input from the old Devon breed shortly prior to the creation of the 

Dexter herd book in 1890 (Wilson, 1909b) (Figure 4.1). Since the creation of the 

Dexter herd book all three breeds have been maintained independently. As is typical 

of many livestock breeds, the modern Dexter is divided into different populations or 

herds that may be separated from each other and have had their own, sometimes 

independent, demographic history.

This study investigates the origin and relationships of the different subgroups within 

the Dexter, by (i) assessing patterns of molecular diversity and differentiation and (ii) 

estimating the relative contributions of the two breeds thought to be ancestral to the 

Dexter breed using genetic data from their modern descendents. We predicted that 

there would be a number of distinct partitions within the Dexter due to the
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demographic isolation of some herds. Genetic distinctiveness would be expected to 

be greater in geographically isolated populations and for those under strong 

selection. We expected greater genetic drift in isolated populations due to lower 

effective sizes, and to find evidence of population bottlenecks and lower genetic 

diversity. The Dexter as a whole could, however, be expected to retain high overall 

levels of genetic variation since outcrossing is implicated in the expansion of the 

breed in the 1960s and 1970s. The Kerry breed was predicted to be the most similar 

to the Dexter’s ancestor due to its close historical associations with the Dexter.

Ancestral
populations
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populations

Figure 4.1. Schematic representation of a putative history for the traditional Dexter 

breed. Dotted horizontal lines represent gene-flow or introgression that is suspected 

to have taken place between populations. The order and length of these arrows is for 

illustration only and does not correspond to a chronological sequence.

4.3. Materials and Methods

4.3.1. Data collection

We sampled both cryogenically frozen semen and plucked hair from the Dexter, the 

Kerry and the Red Devon (Table 4.1). Both extant Devon types were sampled, the 

milking Devon which is present only in North America today, and the British beef 

Devon. Individuals representing the oldest form of the Dexter (not known to have
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been upgraded in herdbook records) were collected to form a sample of ‘Traditional’ 

Dexters. The oldest single herd represented in the breed today was sampled as an 

example of a traditional yet demographically isolated population (‘Ypsitty’). American 

Dexters were sampled to represent a population established through exports prior to 

1914. An additional isolated population receiving no genes from the rest of the breed 

for over 25 years and subject to strong selection was also analysed (‘Woodmagic’). A 

larger group representing the wider Dexter breed as it exists today was also sampled: 

this group could potentially have been introgressed by a number of other breeds 

during upgrading in the 1970’s.

Table 4.1. Sample group sizes and description of origins of DNA from either plucked 

hair or cryogenically frozen semen.

Sample population No. individuals origin of DNA

American Dexter 13 Plucked hair

Traditional Dexter 12 2 plucked hair/10 semen

Woodmagic Dexter 19 15 plucked hair/4 semen

Ypsitty Dexter 13 12 plucked hair/1 semen

Dexter breed population 91 71 plucked hair/ 20 semen

Beef Devon 20 8 plucked hair/1 2  semen

Milking Devon 32 Plucked hair

Kerry 20 10 plucked hair/10 semen

4.3.2. DNA extraction

DNA was extracted from plucked hair samples using either chelex 100 as described 

in Walsh et al. (1991) with modifications in Goossens et al. (1998) or with a PCR 

buffer-based method described in Vigilant (1999). Semen samples were extracted 

using a modification of the Qiagen Dneasy tissue extraction method according to 

manufacturers’ instructions. From the extractions, 1.5pl was added as template in 

each PCR reaction.

4.3.3. Genotyping

Twenty two microsatellite markers used in this study were taken from the UN Food 

and Agriculture Organisation (FAO) list of cattle markers. The microsatellites were; 

hell, hel5, hel9, hell3 (Kaukinen & Varvio, 1993), ilsts005 (Brezinsky et al. 1993a),
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csrm60 (Moore et al. 1994), eth3, eth10 (Solinas-Toldo et al. 1993), tgla 227, tglal 22, 

tglal26 (Georges & Massey, 1992), sps115 (Moore & Byrne, 1993) , inra032, 

inra037, inra063 (Vaiman et al. 1994), eth152, eth225 (Steffen et al. 1993), bm1818, 

bm1824 (Bishop et al. 1994), ilsts006 (Brezinsky et al. 1993b), haut27 (Thieven et al. 

1997), and cssm66 (Barendse et al. 1994). These were amplified in 4 multiplex 

reactions using the Qiagen multiplex kit according to manufacturers’ instructions. 

Amplification was carried out in 6pl reactions (IxQIAGEN PCR Multiplex Master Mix 

(3mM MgCI2), 0.2pM each primer). Thermocycling conditions were as follows: initial 

denaturation at 95’ for 15’ followed by 35 cycles of 60s at 94°C, annealing for 90s at 

55°C then extension for 60s at 72°C, with a final extension for 10’ at 60°C. All PCR 

products were electrophoresed using an ABI 3100 semi-automated DNA analyser. 

Gels were analysed using Genescan analysis 2.0™, Genotyper 1.1™ and 

Genemapper™ software.

4.3.4. Genetic variability, population size change and structure

General genetic diversity estimates were made, such as observed and expected 

heterozygosity under random mating (HE) and Wright’s F statistics, following Weir 

and Cockerham (1984). The departure of these statistics from the null hypothesis, 

which was no genetic differentiation for F St and Hardy-Weinberg equilibrium for F\S 

and Fit, was tested over 104 permutations as implemented using GENETIX 4.03 

(Belkhir et al. 2002). Gene identity was estimated to further explore population 

substructure (Vitalis and Couvet, 2001) using ESTIM 1.0. The parameter F estimates 

average per locus gene identities as a measure of within-population genetic drift. In 

finite populations variation is continually lost at a rate depending on population size 

and coalescence times scale inversely with effective population size. ESTIM 1.0 

provides simultaneous estimates of both the effective population size and the 

migration rate using a method-of-moments approach (Vitalis & Couvet, 1996).

A method of detecting recent population size changes (bottlenecks or growth; 

Cornuet & Luikart 1996) implemented in the BOTTLENECK(version 1.2.02) program, 

was applied. We used 104 simulated HE values for comparison to those obtained 

from the real dataset, using the Wilcoxon Sign Rank Test, under three mutational 

models: infinite allele model (I.A.M.), stepwise mutation model (S.M.M.), and a two- 

phase model (T.P.M.), in which, 30% of mutations were allowed to occur under a 

multi-step manner. This analysis was performed to determine whether it was possible
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to detect the bottleneck which is thought to have taken place in the recent history of 

the Dexter Woodmagic population. One question was whether other events such as 

admixture could have obscured any signal of this event.

To investigate population structure we used the Bayesian model-based clustering 

approach developed by Pritchard et al. (2000). This method, further improved by 

Falush et al. (2003) is implemented in STRUCTURE 2.1 and groups individuals into 

K homogeneous clusters (populations). We applied the Evanno et al. (2005) 

approach of selection of the K value corresponding to the mode of the AK 

distribution. We set K to vary between 1 and 8, and for each K value we performed 

20 simulations with different starting points, having a 105 burn-in period followed by 

105 steps (we tested different run lengths ranging from 104 to 106 and found that 

convergence was achieved after 105 steps). For each K  value we calculated the 

average and standard deviation of the ‘log estimated likelihood’ [L(K)] across the 20 

runs. In order to determine whether each cluster was itself subdivided into smaller 

and less differentiated units, the identified clusters were reanalysed independently. 

This was repeated for each subgroup until the most likely K was shown to be 1. The 

program was run under the admixture model, considering independent allele 

frequencies.

4.3.5. Investigating admixture

We aimed to determine the relative contributions of the two breeds that are thought to 

be descendent from those also ancestral to the Dexter, the Devon and Kerry. The 

methods described below were shown by Choisy et al. (2004) to perform well under 

different conditions. For the purpose of the admixture analyses we pooled the two 

Devon lineages to form a single parental population. The three admixture methods 

are implemented in three software packages ADMIX2.0, LEADMIX and LEA.

4.3.5.1. ADMIX2.0

The ADMIX2 (Dupanloup & Bertorelle, 2001) method uses a simple moment-based 

estimator mYl the calculation of which is based on coalescence times between pairs 

of genes sampled within and among populations. The method assumes a simple 

model where two or more parental populations diverge from an older ancestor, these 

parental populations then meet during an admixture event to create a third ‘hybrid’ 

population. All populations then drift from each other without exchanging genes. This



128

method is the only one (among those used here) that accounts for mutations, 

however we applied the basic method option and did not therefore incorporate inter- 

allelic distances into the admixture calculation.

4.3.5.2. LEADMIX

Based on the same demographic model as in ADMIX2, Wang (2003) developed a 

maximum likelihood method that also takes into account the genetic differentiation 

between parental populations in the admixture calculation. In this way the method 

aims to avoid falsely assuming independent allele frequency distributions of the 

parental populations and any resultant bias in the admixture calculation.

4.3.5.3. LEA

This method is based on a different demographic model where the two parental 

populations are assumed to be at demographic equilibrium and the allele 

frequencies prior to admixture are sampled from independent uninformative prior 

probability distributions (see Chikhi et al. 2001 for details). The difference from the 

previous methods is that this approach is a full-likelihood Bayesian method and 

hence provides posterior distributions for the parameters of the model, rather than 

point estimators. It also accounts for genetic drift, which is estimated through the 

scaled parameters ti=T/Ni, t2=T/N2 th=T/Nh, where T is the time since the 

admixture event (in generations), and Nj is the effective size of population i (with 

i=1,2, h). A full-likelihood Bayesian approach assumes that all relevant information 

is contained in the posterior distribution. For each population either two or three 

independent runs were performed, using different starting values in the parameter 

space, in order to determine whether equilibrium had been reached. Each run had 

at least 500,000 steps together with a thinning interval of five. Also, a few longer 

runs (up to 1x106 steps) were used to check for convergence.

4.4. Results and Discussion

Table 4.2 shows that genetic diversity varied widely across the populations sampled. 

He and F values were, as expected, highly negatively correlated (Pearson’s r= - 

0.993). Diversity was lowest in the Dexter subpopulation groups that have been 

isolated for longer periods from the rest of the breed (Woodmagic HE=0.52, and 

Ypsitty He=0.54, & American Dexter HE=0.54) compared with HE 0.63-0.68 for the 

remaining populations. Diversity estimates in the Dexter, Devon and Kerry breed
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populations was comparable to the range of estimates seen in a number of 

contemporary cattle breed studies (Peelman et al. 1998; Loftus et al. 1999; Martin- 

Burriel et al. 1999; Chikhi et al. 2004) (Table 4.3). The Traditional Dexter and main 

Dexter breed populations demonstrated extremely similar levels of diversity to a 

previous study of Wiener et al. (2004) on the Dexter breed using many of the same 

marker loci.

Table 4.2. Observed and expected heterozygosity, mean number of alleles per locus 

and average one-locus identity probabilities (F) for all populations

Population Ho He Allele/locus F

Dexter breed

population 0.71 0.68 6.41 0.05

Kerry 0.68 0.64 5.00 0.08

Traditional Dexter 0.73 0.63 4.64 0.07

Devon 0.61 0.63 5.64 0.11

American Dexter 0.56 0.55 4.18 0.20

Ypsitty Dexter 0.57 0.54 3.68 0.20

Woodmagic Dexter 0.58 0.52 3.41 0.26
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Table 4.3. A comparison of previously determined breed diversities where marker 

loci have overlapped with this study

Overlapping 

loci / Total 

loci Breeds (H e) Reference

9/23

Belgian Blue (0.65), Holstein Friesian (0.69), East Flemish 

(0.69), Red Pied (0.71)

Peelman et < 

1998

12/30

Menorquina (0.56), Fighting Bull (0.59), Pyrenean (0.62), 

Asturian Mountain (0.67), Nordwest Brown group (0.67), 

Asturian Lowland (0.68)

Martin-Burrie 

et al 1999

2/12

Hereford (0.40), Jersey (0.41), Angus (0.42), Simmental 

(0.43), Charolais (0.46), Friesian (0.49)

MacHugh 

al. 1994

14/20

N’Dama (0.54), Hungarian Grey (0.62), Jersey (0.63), 

Ongole (0.64), Nellore (0.65), Charolais (0.66), Damascus 

(0.74), Turkish Grey (0.76), Anatolian Black (0.78), South 

Anatolian Red (0.78), East Anatolian Red (0.78), Egypt 

(0.78), Iraqi (0.78), Kurdi (0.79)

Loftus et « 

1999

8/12 Jersey (0.64)

Chikhi et < 

2004

21/30

A. Angus (0.61) Ayrshire ( 0.68) Dexter (0.65) Friesian 

(0.67) Guernsey (0.63) Hereford (0.63) Highland (0.56) 

Jersey (0.60)

Wiener et 

2004

Across the three bottleneck detection methods significant signals of demographic 

bottlenecks were found in all groups except American Dexter (1AM), a bottleneck was 

again found in Woodmagic Dexter (TPM), and signals of expansion were found in 

American Dexter, Kerry, and Devon (SMM). The Kerry and Devon breeds 

simultaneously showed the signal of heterozygote excess under the 1AM and 

deficiency under the SMM. The only consistent bottleneck signal present was 

detected in the Woodmagic herd which is known to have been founded by only five 

individuals (four females and one male) (Rutherford, 2005).

Despite the high degree of similarity between the Traditional Dexter and the Dexter 

breed group (theta <0.01), all other pairwise comparisons showed significant
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differentiation (Table 4.4). As expected, the most divergent populations were also 

those that had the lowest levels of within-population variability. The high F st values 

between the Woodmagic Dexter and all other samples is presumed to be a result of 

small founder number, extended isolation from the UK herd with a small population 

size, and the application of strong selection (Rutherford, 2005). The level of 

divergence of the Woodmagic from the rest of the Dexter is at least at the level of 

among-breed values seen for the other samples here, and for values observed 

among other commonly studied European breeds (Canon et al. 2001). Similarly, the 

Ypsitty population represents the oldest Dexter herd, older extant animals represent 

the closed nature of the population through unique allele spectra. The American 

Dexter underwent a bottleneck that took place when it was founded, and showed 

lower F St values compared with both the Dexter breed and Traditional Dexter groups 

(0.08, 0.10 respectively) and the other breeds (Kerry-0.15, Devon-0.09), than the 

Woodmagic herd. This lower degree of differentiation from UK populations may be 

explained by a combination of cross-Atlantic gene flow, (at least eleven animals are 

documented as receiving export licenses for the United States between 1951-1988 

(Dexter Cattle Society Herdbook; 1951, 1988)), chance retention of similar allelic 

spectra over time, or that the bottleneck was not as strong as originally believed. This 

latter suggestion is supported by the failure to detect the genetic signature of a 

bottleneck in this sample. Other breeds such as the Hereford have demonstrated 

significant genetic differentiation across multiple countries (Blott et al. 1998), the 

American Hereford cattle population itself experienced post-foundation inbreeding 

levels of up to 11.5% (Cleveland et al. 2005). However, uniquely within this dataset, 

the American sample analysed represents a low proportion of the extant total 

(approximately 6,000) and therefore inference may be improved by using an 

extended dataset. The rapid change in gene frequencies in the three Dexter 

populations is similarly supported by the high gene identity estimates shown for 

Woodmagic, Ypsitty, and American Dexter samples, contrasting with the low values 

seen in the Dexter breed group.
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Table 4.4. Weir and Cockerham’s theta (F St ) values for all populations and their 

significances (P<0.05*,0.01 **,0.005***, non-significantNS)

Dexter

breed Kerry

Original

population

Dexter Devon

Woodmagic

Dexter

American

Dexter

Ypsitty

Dexter

Dexter breed 0.085 0.002 0.102 0.129 0.085 0.054

Kerry *** 0.078 0.094 0.214 0.146 0.152

Traditional Dexter NS *** 0.12 0.158 0.103 0.067

Devon *** *** *** 0.202 0.094 0.157

Woodmagic Dexter *** *** *** 0.197 0.207

American Dexter *** * * * * *** 0.157

Ypsitty Dexter *** *** *

A summary of the hierarchical population clustering obtained using STRUCTURE 

can be seen in Figure 4.2, AK support for each level of clustering is shown in Table

4.5. Based on a simple interpretation of F st values one may have predicted that 

the clusters that would split first, as identified using STRUCTURE, would be the 

Woodmagic and Ypsitty Dexters, but this was not the case. STRUCTURE analysis 

identified the Devon as the most divergent set of genotypes with very little overlap 

with the Dexter cluster. The Kerry breed was intermediate, individuals largely 

belonging to the Devon cluster but with an average membership of some ~25% to 

the Dexter cluster. This, together with the admixture analysis suggests that the 

Kerry is closer to the Dexter than the Devon and hence that it probably contributed 

most to its genome, as would also be expected from the breed history and 

geography (these breeds both originate from Ireland). However, whilst the structure 

algorithm is a useful tool for finding hidden genetic substructure, it is important to 

stress that it does not account for the known demographic history of the breeds. 

The method of Pritchard et al. (2000) is a clustering method unlike the admixture 

methods used here that aim to account, at least to some extent for this unknown 

history, and they suggest that the picture is less clear cut.



Figure 4.2. Hierarchical analysis of population clustering, determined through 

STRUCTURE. The data were split into K groups of populations using the Evanno et 

al. (2005) method. Members of each identified cluster were separated into individual 

datasets and the process repeated until terminal groups (indicated by solid arrows) 

were formed in which no further clusters were identified.

Table 4.5. Relative log likelihood and delta K values for population partitioning in 

STRUCTURE.

Negative

likelihood

log

AK

Initial split -12500 550

Devon-Kerry

split -3900 170

Woodmagic split -7800 100

Second Dexter

split -6800 10

4.4.1. Parental proportions and admixture

The representation of the population relationships and potential genetic exchange 

(Figure 4.1) indicates how the admixture hypotheses were established to estimate 

the relative contributions of the ancestral populations to the Dexter breed populations 

(Table 4.6). The admixture methods did not converge on one ancestral population
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being the major contributor to all of the extant groups, although there was a high 

degree of agreement between the ADMIX2 and LEA methods. There was 

consistency among all methods that the Kerry was the greater contributor in the 

Traditional Dexter group only with contributions from 0.63-0.86, even considering the 

large error margins (0.10-0.32). One of the methods also suggested that the Dexter 

breed group has greater Kerry influence. Conversely, the American Dexter population 

appears to have a greater contribution from the Devon using all of the methods 

(Devon proportion = 0.75-0.78). The Traditional Dexter group was sampled from 

different pedigree lineages with no evidence of introgression and is therefore 

expected to reflect the historical links with the Kerry breed in the least biased way. 

That even this group has large variation in both parental proportions and within- 

method variance highlights the problematic determination of ancestry. The differing 

amount of genetic drift that is likely to have taken place in the history of the different 

groups makes these results more difficult to interpret. Discordance between the 

contributions calculated using each program is likely to be at least in part due to their 

different assumptions. Whilst LEADMIX and LEA account for drift, ADMIX2.0 does 

not, and also assumes that mutation plays a role in population divergence. For 

domestic breeds in general and for the Dexter in particular, due to the short timescale 

in generations and the relatively small effective population sizes involved, drift is 

more likely to have generated the observed patterns of differentiation than mutation.

Table 4.6. Relative parental contributions from Kerry (variance in parentheses) for 

each Dexter population as determined using the programs, ADMIX2.0, LEADMIX, 

and LEA

Method

Hybrid population 

Traditional Breed Ypsitty Woodmagic American

ADMIX2.0

LEADMIX

LEA

0.67(0.10)

0.86(0.32)

0.63(0.13)

0.52(0.10) 

0.98(0.27) 

0.46(0.11)

0.50(0.10)

0.58(0.40)

0.39(0.17)

0.42(0.13)

0.58(0.38)

0.41(0.15)

0.22(0.07)

0.25(0.22)

0.22(0.13)

The source of the observed variation in parental contribution in this dataset is likely to 

be complex, due to the wide diversity of results for different methods and populations. 

If the parental populations were isolated for a few generations (since divergence from 

the ancestral population) then most admixture methods would be expected to
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estimate parental contributions close to 0.5 with a large associated variance 

(Bertorelle & Excoffier, 1998). Similarly if the hybrid and parental populations have 

drifted significantly since the admixture event, the variance in the estimation will be 

large and the posterior distribution for the Bayesian method would tend to be flat. It 

can therefore be statistically difficult to distinguish the two effects mentioned above. 

That there are nine (of sixteen) cases where the estimated contributions fall within 

10%  of 0 .5  (equal contribution) and that large F St values are observed between the 

samples suggests that genetic drift is a major source of uncertainty. Importantly, 

similarity between parental populations at the point of admixture is also expected to 

reduce the methods’ utility to estimate admixture proportions, and the Fst value 

between the modern day Devon and Kerry is not large, although this may have been 

smaller or larger in the past, depending on the extent of genetic drift.

The variation in contributions for the different hybrid populations could be explained 

by three non-exclusive factors. First, if, as seems likely, there was a large amount of 

genetic variation across the Dexter herd prior to the demographic bottleneck in the 

1960s, sampling (founder) effects could explain differential contribution to lineages 

which became demographically isolated. Second, introgression into the separate 

populations may have occurred during or shortly after foundation of some of the 

groups, though none is documented for any except the Dexter Breed group. Finally 

extreme genetic drift may by chance have obscured the true parental contributions of 

the different groups sampled. While this effect is likely to have contributed for groups 

such as the American Dexter sample, Woodmagic, Ypsitty and the Kerry, the LEA 

approach (Chikhi et al. 2001) is designed to account for drift yet shows similar 

variation in results to the other non mutation-based estimators. It should be stressed 

that if genetic drift is a major feature of the data, then most of the information related 

to the admixture (or any other) event will become lost as time increases from the 

point of admixture. Thus, in cases of extreme drift, it may simply have to be 

acknowledged that limitations to the methodology exist because information lost 

cannot be retrieved, at least with genetic data alone.

For management purposes it should be recognised that there are measurable 

differences between allele frequencies in subpopulations of the breed, and that 

these may be partially due to the contributions of ancestral populations. If the



136

Traditional Dexter sample is accepted as being representative of the original breed, 

the implication is that other subpopulations have potentially diverged from this 

specific type. However, to avoid widespread use of individuals from these 

subpopulations may risk the loss of potentially unique alleles (when considering 

present-day populations as random samples from the diversity present in the 

Dexter at its formation). This concern is a potentially valid one provided 

introgression has not contributed to this divergence of subpopulations. Genetic 

data such as those presented here therefore cannot by themselves answer all the 

questions relevant to the Dexter breed conservation.

What is clear from this study is that the admixture approaches used here did not 

allow us to draw uniform conclusions regarding the relative parental contributions. 

Developments such as the ability to account for multiple admixture events and to 

account for multiple parental populations would be useful in this context but 

whether this would increase the precision in admixture estimates has yet to be 

explored. Inherent small population stochasticity and the implications of genetic 

drift, particularly during and after population bottlenecks, still presents a major 

challenge for accurate admixture determination.

4.5. Acknowledgements

We thank the Rare Breeds Survival Trust, Dexter Cattle Society, Instituto 

Gulbenkian de Ciencia, Universite Paul Sabatier and Cardiff University for funding 

and infrastructural support for this research, which forms part of TCB’s PhD. Part of 

this work was carried out during visits by TCB to Lisbon and Toulouse. Thanks go 

to A. Coutinho and B. Crouau-Roy. LEA calculations were performed using the 

High Performance Computing resource at the Instituto Gulbenkian de Ciencia 

(IGC) with the help of P. Fernandes and using the Condor cluster at Cardiff 

University with the help of S. Adams (School of Biosciences) and J. Osborne 

(ARCCA). Some of this manuscript was written while L.C. was visiting IGC: the 

CNRS and B. Crouau-Roy are thanked for making this possible.



4.6. References

Barendse W., Armitage S.M., Kossarek L.M., Shalom A., Kirkpatrick B.W., Ryan 

A.M., Clayton D., Li L., Neibergs H.L., Zhang N., Grosse W.M., Weiss J., 

Creighton P., McCarthy F., Ron M., Teale A.J., Fries R., McGraw R.A., Moore

S.S., Georges M., Soller M., Womack J.E., & Hetzel D.J.S. (1994) A genetic 

linkage map of the bovine genome. Nature Genetics 6, 227-235.

Bartosiewicz L. (1997) The Hungarian grey cattle: a traditional European breed. 

Agriculture 21, 49-60.

Beja-Pereira A., Alexandrino P., Bessa I., Carretero Y., Dunner S., Ferrand N., 

Jordana J., Laloe D., Moazami-Goudarzi K., Sanchez A., & Canon J. (2003) 

Genetic characterisation of Southwestern European bovine breeds: A historical 

and biogeographical reassessment with a set of 16 microsatellites. Journal of 

Heredity 94(3), 243-250.

Belkhir K., Borsa P., Chikhi L., Raufaste N., & Bonhomme F. (2001)

GENETIX 4.03, logiciel sous Windows™ pour la genetique des populations. 

Laboratoire Genome, Populations, Interactions, CNRS UMR 5000, Universite 

de Montpellier II, Montpellier, France.

Bertorelle G. & Excoffier L. (1998) Inferring admixture proportions from 

molecular data. Molecular Biology and Evolution 15, 1298-1311.

Bishop M.D., Kappes S.M, Keele J.W., Stone R.T., Sunden S.L.F., Hawkins 

G.A., Solinas -Toldo S., Fries R., Grosz M.D., Yoo J., & Beattie C.W. (1994) A 

genetic linkage map for cattle. Genetics 136(2), 619-639.

Blott S.C., Williams J.L., & Haley C.S. (1998) Genetic variation within the 

Hereford breed of cattle. Animal Genetics 29(3), 203-211.

Brezinsky L.S., Kemp J. And Teale A.J. (1993a) ILSTS005: a polymorphic 

bovine microsatellite. Animal Genetics 24, 73.



138

Brezinsky L.S., Kemp J., & Teale A.J. (1993b) ILSTS006: a polymorphic bovine 

microsatellite. Animal Genetics 24, 73.

Canon J., Alexandrino P., Bessa I., Carleos C., Carretero Y., Dunner S., Ferran 

N., Garcia D., Jordana J., Laloe D., Pereira A., Sanchez A., & Moazami- 

Goudarzi K. (2001) Genetic diversity measures of local European beef cattle 

breeds for conservation purposes. Genetics, Selection, Evolution 33, 311-332.

Caramelli D. (2006) The origins of domesticated cattle, Human Evolution 

21:107-122.

Chikhi L, Bruford M. W, and Beaumont M. A. (2001) Estimation of admixture 

proportions: A likelihood-based approach using Markov chain Monte Carlo. 

Genetics 158, 1347-1362.

Chikhi L., Goossens B., Treanor A., & Bruford M.W. (2004) Population genetic 

structure of and inbreeding in an insular cattle breed, the jersey, and its 

implications for genetic resource management. Heredity 92, 396-401.

Choisy M., Franck P., & Cornuet J. M. (2004) Estimating admixture proportions 

with microsatellites: comparison of methods based on simulated data. Molecular 

Ecology 13, 955-968.

Cleveland M.A., Blackburn H.D., Enns R.M., & Garrick D.J. (2005) Changes in 

inbreeding of U.S. Herefords during the twentieth century. Journal of Animal 

Science 83, 992-1001.

Dexter Cattle Society Herd Book Volume LI (1951) Dexter Cattle Society

Dexter Cattle Society Herd Book Volume LXXXVIII (1988) Dexter Cattle 

Society

Dupanloup I. & Bertorelle G. (2001) Inferring admixture proportions from 

molecular data: extension to any number of parental populations. Molecular 

Biology and Evolution 18(4), 672-675.



139

Evanno G., Regnaut S., & Goudet J. (2005) Detecting the number of clusters of 

individuals using the software STRUCTURE: a simulation study. Molecular 

Ecology 14, 2611-2620.

Falush D., Stephens M., & Pritchard J.K. (2003) Inference of population 

structure using multilocus genotype data: linked loci and correlated allele 

frequencies. Genetics 164, 1567-1587.

Georges M. & Massey, J.M. (1992) Polymorphic DNA markers in Bovidae. 

Patent WO 92/13102 (1992).

Goossens B., Waits LP., & Taberlet P. (1998) Plucked hair samples as a 

source of DNA: reliability of dinucleotide microsatellite genotyping. Molecular 

Ecology 7, 1237-1241.

Heath-Agnew, E. (1983) A history of Hereford cattle and their breeders. 

Duckworth, London.

Kaukinen J. & Varvio S.L. (1993) Eight polymorphic bovine microsatellites. 

Animal Genetics 24, 148.

Loftus R., Ertrugrul O., Harba A., El-Barodys M., MacHugh D., Park S., & 

Bradley D. (1999) A microsatellite survey of cattle from a centre of origin: the 

near east. Molecular Ecology 8, 2015-2022.

MacHugh D.E., Shriver M. D., Loftus R.T., Cunningham, P., & Bradley D.G. 

(1997) Microsatellite DNA variation and the evolution, domestication and 

phylogeography of Taurine and Zebu cattle (Bos taurus and Bos indicus). 

Genetics 146, 1071-1086.

Martin-Burriel I., Garcia-Muro E., & Zaragoza P. (1999) Genetic diversity 

analysis of six Spanish native cattle breeds using microsatellites. Animal 

Genetics 30, 177-182.



140

Moore S.S. & Byrne K. (1993) Dinucleotide polymorphism at the bovine 

calmodulin independent adenylcyclase locus. Animal Genetics 24, 150.

Moore S.S., & Byrne K., Berger K.T., Barendse W., McCarthy F., Womack J.E., 

& Hetzel D.J.S. (1994) Characterisation of 65 bovine microsatellites. 

Mammalian Genome 5, 84-90.

Peelman L.J., Mortiaux F., Van Zeveren A., Dansercoer A., Mommens G., 

Coopman F., Bouquet Y., Burny A., Renaville R., & Portetelle D. (1998) 

Evaluation of the genetic variability of 23 bovine microsatellite markers in four 

Belgian cattle breeds. Animal Genetics 29(3), 161-167.

Pritchard J.K., Stephens M., & Donnelly P.J. (2000) Inference of population 

structure using multilocus genotype data. Genetics 155, 945-959.

Rutherford B. (2005) My Love Affair With The Dexter (publisher Triple D 

Books, Wagga Wagga, NSW, Australia, ISBN 0 9756829 0 3

Solinas-Toldo S., Fries R., & Steffen P. (1993) Physically mapped, cosmid 

derived microsatellite markers as anchor loci on bovine chromosomes. 

Mammalian Genome 4, 720-727.

Steffen P., Eggen A., Dietz A.B., Womack J.E., Stranzinger G., & Fries R. 

(1993) Isolation and mapping of polymorphic microsatellites in cattle. Animal 

Genetics 24(2), 121-124.

Taberlet P., Valentini A., Rezaei H. R., Naderi S., Pompanon F., Negrini R., & 

Ajmone-Marsan P. (2008) Are cattle, sheep, and goats endangered species? 

Molecular Ecology 17(1), 275-284.

Takeshima S., Saitu N., Morita M., Inoko H., & Aida Y. (2003) The diversity of 

bovine MHC class II DRB3 genes in Japanese Black, Japanese Shorthorn, 

Jersey and Holstein cattle in Japan. Gene 316, 111-116.



141

Thieven U., Solinas-Toldo S., Friedl R., Masabanda J., Fries R., Barendse W., 

Simon D., & Harlizius B. (1997) Polymorphic CA-microsatellites for the 

integration of the bovine genetic and physical map. Mammalian Genome 8, 52- 

55.

Vaiman D., Osta D., Mercier D., Grohs C., & leveziel H. (1992) 

Characterization of five new bovine microsatellite repeats. Animal Genetics 

23, 537.

Vigilant L. (1999) An evaluation of techniques for the extraction and 

amplification of DNA from naturally shed hairs. Biological Chemistry 380, 

1329-1331.

Vitalis R. & Couvet D. (2001) Estimation of effective population size and 

migration rate from one and two-locus identity measures. Genetics 157, 911- 

925.

Walsh P.S., Metzger D.A., & Higuchi R. (1991) Chelex R100 as a medium for 

simple extraction of DNA for PCR-based typing from forensic material. 

Biotechniques 10, 506-513.

Wang J. (2003) Maximum-likelihood estimation of admixture proportions from 

genetic data. Genetics 164, 747-765.

Weir B.S., & Cockerham C.C. (1984) Estimating F-Statistics for the analysis of 

population structure. Evolution 38, 1358-1370.

Wiener P., Burton D., & Williams J.L. (2004) Breed relationships and 

definition in British cattle: a genetic analysis. Heredity 93, 597-602.

Wilson J. (1909a) The origin of the Dexter breed of cattle. Scientific 

Proceedings of the Royal Dublin Society 12(1) 1-17.

Wilson J. (1909b) The evolution of British cattle and the fashioning of breeds 

(London) p. 75.



142

Chapter 5.

Development of a novel approximate Bayesian 

computation method for admixture quantification
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5.1. Introduction

This chapter details the development of the new Approximate Bayesian Computation 

admixture estimation method. Our aim was to develop a user-friendly graphical 

interface that could be easily used and later improved to estimate admixture 

proportions in a model that is likely to represent the demographic history of a number 

of breeds. Unlike previous methods, this application takes into account two separate 

admixture events under a wide range of possible parameter values. The addition of 

an extra admixture event allows the more accurate modeling of scenarios that were 

previously forced to consider admixture events independently. The process of testing 

and refining the working program structure is detailed. Following the testing-by- 

simulation approach is a section through which the working program is applied to 

data from two cattle breed examples. The development of the working script is 

summarised, especially alterations made after initial programming difficulties were 

resolved. Omitted from this account are those errors that have been largely due to 

inconsistencies in directory use, incorrect combination of functions, and use of 

erroneous script grammar. Included in this description are the formative steps 

through which the computational demand, efficiency, and program output formats 

were checked and finalised.

Although the development process has involved producing many functional versions 

of the program, only the final version is described in detail in the subsequent testing 

and application sections. Appendix 5.1 contains the entire program script including 

the main program file and all associated functions for generating summary statistics. 

Several important methodological improvements were made in the finalisation of the 

working application and these should be mentioned.

5.1.1. Reliance on the GUI

For simplicity of program use the application runs from a graphical interface that 

translates the parameters chosen by the user into a command used by ms, the 

simulation program developed by Hudson (2002). As detailed in Figure 2.5, the GUI 

can be time-consuming (since there are many parameters to specify, due to the 

complexity of the model). This is why the script for the final version allows the user to 

run the program without the graphical interface. To do this a ‘graphical’ field can be 

specified as on (1=T) or off (‘=0’). The removal of the graphical interface not only
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allows rapid testing using pre-set parameters but also provides the basis for future 

parallelisation of the script. This can be simply modified to enable the program file to 

be submitted with a datafile and text command file detailing what parameters are 

required onto a parallel processing system such as Condor (Litzkow, 1988). This is 

directly comparable to the STRUCTURE application (Pritchard et al. 2000) in which 

separate run jobs can be submitted onto available processors simultaneously, 

reducing calculation time.

5.1.2. Automatic generation of observed data

Initial versions of the application saved all file information as it was generated. The 

correct function of the script could be verified by checking each file to make sure that 

input parameters were reflected in the simulated data being generated. The large 

quantities of data generated in longer runs prohibited this in later versions. Therefore 

the use of the saved simulated allele frequencies (generated using known 

parameters) as observed data was no longer possible. A replacement code was 

included for generation of an observed data file at set parameter values. This 

necessitates the use of the ‘make_observed’ field in the final script. Where an 

observed file is not recognised the field will be -O’ and an observed file will be 

generated according to an automatic set of parameters. This will allow both 

determination of run times as well as a greater understanding of the program 

functions through investigation of the observed data and associated files: 

observed.txt, obs_sumstat.txt, and rel_obs_sumstat.txt.

5.1.3. Separate function files

The initial script, comprising a single file, included all of the associated functions 

together. The management and efficiency of this arrangement was improved by 

separation into the specific functions which can be called as required. Changes to 

functions can be tested separately and will not create errors in the main script which 

can often prove complicated to uncover. Initial functions were also improved through 

changes in the language employed (i.e. removal of unnecessary loops), increasing 

efficiency and reducing calculation time.
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5.2. Use and testing of program application

Initiation of the program application is through the MATLAB v7 (Mathworks, 2001) 

platform prior to creation of a stand-alone application. Requirements to run the 

program are that the ms (Hudson, 2002) application for simulation of genetic data is 

installed into the C:\ drive of the machine to be used.

The program script can be run with or without the GUI. To ensure that all changes 

function with the more complicated call functions from the graphical window the 

testing was performed through the GUI. Before executing the script through the ‘run’ 

button, a data file must exist against which the simulated data can be compared. This 

file carries the identifier ‘observed.txt’, and takes the form of ASCII text format. As 

mentioned previously the observed file may be generated automatically but may also 

be generated manually from ‘real’ data. To manually generate an observed file it is 

possible to use any of a number of genetic analysis software to calculate allele 

frequencies such as GENETIX (Belkhir et al. 2002). The observed file adopts a 

specific format with as many lines as there are loci, it is imperative that the simulated 

data use the same number of loci or an error will be generated. Each row represents 

a single locus, for each locus the initial column contains a value ‘n’ representing the 

number of alleles at that locus. The subsequent n columns correspond to the allele 

counts for each allele in population 1. Following this are the allele counts for 

populations 2, 3, and the hybrid (H). At the end of each row are n numbers describing 

the relative allele sizes (measured in microsatellite repeats). A typical observed data 

file with 5 loci might look like Figure 5.1 (boxes have been included for the first locus 

only to explicitly show how the data are coded).

0 3 18 24 0 8 36 1 5 0 4  36 3 2 20 20

6 00 04  1526 1 21 15 1 7 0 0 2 3 2 2  0 0 0 2  15 9 39  7-7 -6-5-3 -2-1 

5 00 5 12 283 5 1 21 15 0 2 17 19 7 0 3 7 24 11 -5-4 -3 -2 -1

4 4 0 18 23 0 8 31 6 0 6 2 37 2 2 14 27 -3 -2 -1 0

7 0 12 17 2 0 0 14 0 0 3 33 9 0 0 0 0 1 1 12 31 0 1 6 11 6 5 11 5 - 8 - 7 - 5 - 4 - 3 - 2  0

Figure 5.1. input file format for the program
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The observed data file is transformed into the summary statistics which are saved 

separately for comparison against the summary statistics of the simulated datasets. 

The twenty five summary statistics comprise four categories; heterozygosity, allelic 

range, private alleles, and pairwise F St . The exact composition of each group of 

summary statistics is detailed in the individual program functions (Appendix 5.1).

Initial script testing was performed by fixing some parameters at set values. Due to 

the large number of parameters of the model, it seemed reasonable to first test the 

inference method by fixing some parameter values so as to reduce the uncertainty on 

the estimation of some parameters. Since we were particularly interested in 

estimating admixture and determining whether the admixture events could be located 

in time, we fixed all parameters of the models (Table 5.1) but the event times, and 

admixture proportions. This narrowing of the numbers of parameters upon which 

variation in simulated data depends means that only five parameters are of interest in 

the analytical process. Additionally, for the initial program testing a simplified scenario 

was applied using only a single admixture event, further reducing the initial analysis 

to three parameters of interest (Figure 5.2). The reason for this is that by doing that 

the model became similar to the admixture model of Chikhi et al (2001) and identical 

to that of Excoffier et al. (2005). This way we had the possibility to determine 

whether the inference approach chosen was giving reasonably good results 

compared to these two methods.
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Table 5.1. Program parameters specified for the generation of simulated data in the 

ms application.

Parameter

number

Value of 

observed

Simulated 

parameter range Parameter description (ms value conversion)

1 0.0001 0.0001 theta (4*Ref_N*mutation rate)

2 5000 5000 relative N1

3 5000 5000 relative N2

4 5000 5000 relative N3

5 5000 5000 relative N4

6 1 0-10 time of recent admixture, or tadm2 (/4*Ref_N)

7 0 0 proportion from recent admixture event (1-p3)

8 1 0-10 time of recent admixture, or tadm2 (/4*Ref_N)

9 10 0-50 time of initial admixture event or tadm 1(/4*Ref_N)

10 0.7 contribution of p1

11 10 0-50 time of initial admixture event or tadm 1(/4*Ref_N)

12 10 0-50 time of initial admixture event or tadm 1(/4*Ref_N)

13 10000 9000-12000 time of split(/4*Ref_N)

14 10000 9000-12000 time of split(/4*Ref_N)

15 10000 9000-12000 time of split(/4*Ref_N)

16 1 1 relative size of ancestral population(/Ref_N)

17 5000 5000 Ref N

Q N a  (16)A Mutation rate (1) 

Reference N (17)

(13.14,15)

(9,11,12)

Figure 5.2. Simplified admixture scenario with the unused portion of the complete 

model shaded.
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5.2.1. Data Collection

Once simulated data were generated through ms, summary statistics were calculated 

as a series of independent functions and are summarised to be saved in a results 

folder ‘simulation_database’. Summary statistics between the mean of the observed 

data across all loci were compared with the same statistics across a mean of the 

same number of simulated loci (generated under the same specified model). A 

standardisation process was adopted to ensure that no single summary statistic was 

given a disproportionate weighting in the comparison between observed and 

simulated data. The method used for calculation of this standardising factor was to 

divide by the mean of the first 10,000 simulated summary statistics. Included in the 

calculation was the setting of a tolerance limit, above which distance values were 

discarded. The following program script gives an example of the process in an 

annotated Matlab language format (Figure 5.3).
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sim_sumstats_mean_file = fopen('./simulations_database/sim_sum_means_1 .txt'.'r');

% read the first nbsim_tol lines

sim_data_mean = fscanf(sim_sumstats_mean_file, '%g', [ nb_sumstats nbsim_tol]);

% Close the simulated datafile 

fclose(sim_sumstats_mean_fi!e); 

sim_data_mean = sim_data_mean';

% Get the mean and standard deviation of each sum_stat over the tol_sim 

% This will be used to standardize the observed and simulated sum stat 

mean_sim_mean = mean(sim_data_mean,1); 

std_sim_mean = std(sim_data_mean,0,1);

% Standardize the simulated data

% The second step avoids division.by zero when the std is zero 

sim_data_mean = (sim_data_mean-(ones(nbsim_tol,1)*mean_sim_mean)); 

evaluate = std_sim_mean ~= 0;

sim_data_mean(:, evaluate) = sim_data_mean(:, evaluate) ./

(ones(nbsim_tol,1)*std_sim_mean(evaluate));

% Read the observed data for the rep observation 

obs_data_mean = fscanf(fid_mean,’%g,,nb_sumstats);

% Standardize the observed data mean

obs_data_mean = (sumstat_obs_mean' - mean_sim_mean);

obs_data_mean(evaluate) = obs_data_mean(evaluate)./ std_sim_mean(evaluate);

Figure 5.3. An example of Matlab format program code.

Once standardised, each simulated summary statistic could be subtracted from its 

equivalent observed statistic. The positive mean of these values provided a measure 

of the similarity of simulated and observed data. This ‘distance’ measure allows 

selection of those simulated data which are most similar (shortest distance measure) 

to the observed data, and therefore allows the determination of corresponding 

parameter values.

5.2.2. Data analysis

Using the R language software (lhaka and Gentleman, 1996), the prior parameter 

distributions were checked to ensure that they conformed to that specified (uniform 

distributions were used but distributions may also take the form of; normal, gamma, 

or log normal). The parameters corresponding to the shortest distances could then be 

plotted in a density plot. This stage was combined with a regression step (Beaumont 

et al., 2002; Hamilton et al, 2005), to increase the accuracy of parameter prediction. 

The specific R commands used for each of these processes can be seen in Appendix
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5.2. The posterior distribution of the parameters corresponding to the shortest 

distances between observed and simulated data can then be plotted as a histogram. 

Mean, modal value, and the associated variance can be calculated for each 

parameter.

5.3. Results -  program testing through simulation

The initial observed data file was created using a single simulation where all 

parameters were fixed at the desired values. For this testing scenario parameter 

settings were as shown in Table 5.1. The number of simulated datasets used was 

varied to investigate how this affected the quality of the inference of the parameters 

whose values were known. The probability density plots were also drawn employing 

different tolerances to illustrate how the prediction was affected by the proportion of 

the distances used. In previous test runs the large standard deviations proved 

problematic in the admixture determination. To initially solve this, and to test the 

effectiveness of the approach using a simpler scenario, the most recent admixture 

event was removed. This was done by setting the contribution of population 3 to zero. 

The following results section is divided into two sections, the first detailing the results 

using a single admixture event, and a second where the second admixture event was 

included. In all scenarios the sample sizes of the simulated datasets were set at 50 

and the number of loci used was nine. The sample size was chosen to be sufficiently 

high to reflect the model applied whilst limiting the calculation time for generation of 

simulated data. The numbers of loci was again limited by calculation time and was 

also made to correspond with the available loci in the Lincoln Red dataset.

Where values are given in the text they refer to the means and variances of the 

parameter values corresponding to the accepted distances. These were calculated in 

R subsequent to the initial analysis and plots using a separate script (Appendix 5.3).

5.3.1. Single admixture event scenario

The results of the runs using only one admixture event between populations 1 and 2 

to create the hybrid population are shown in Table 5.2. The estimates for P1 

contribution where the observed value is set to 0.7 give a good accuracy for 100,000 

simulations. The estimation of the 0.7 P1 proportion varied between 0.65 (+/- 0.06) 

and 0.0.70 (+/- 0.07). Estimates of the time of admixture varied between 3.8 (+/- 2.1) 

and 8.2 (+/- 4.6) generations. The estimation of time of split varied between 9110 (+/-
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880) and 10310 (+/- 700) generations. The density plots for the posterior distributions 

and variance of P1 in the longer run can be seen in Figure 5.4 using dataset 1 as an 

example.

Table 5.2. An analysis of five observed files generated under the same single 

admixture model against 100,000 simulated datasets fixed for population size.

Parameters

Set

values 1 2

Datasets

3 4 5

P1 Mean 0.70 0.69 0.65 0.70 0.69

Adjusted mode 0.7 0.71 0.71 0.65 0.71 0.70

Variance 0.06 0.07 0.06 0.07 0.06

Time of admixture

event (generations) Mean 10 3.83 8.24 7.36 4.90 7.92

Variance 2.06 4.62 3.92 2.55 4.22

Time of split

(generations) Mean 10,000 9105 10120 9948 10310 10090

Variance 880 754 778 702 739

Tadm l

0 5 10 15 20 25

POSIt. i)

Tsplit

P1

0.4 0.6 0.8 1.0

3

I-----------------------------1-----------------------------1-----------------------------1---------------------------- 1
I 6000 9000 10000 11000 12000

! posit, a

Figure 5.4. Posterior plots of the predicted parameters compared against 100,000 

simulated datasets in a single admixture scenario. Tadml represents the time of 

admixture event, P1 is the admixture proportion of population 1, Tsplit is the time of 

split.
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5.3.2. Full admixture scenario-100,000 simulations

The full model was then applied including the second admixture event but retaining 

fixed population sizes and mutation rates. The observed values for P1 and 1-P3 were 

both set at 0.7. For 100,000 simulations the P1 estimation varied between 0.453 (+/- 

0.15) and 0.860 (+/- 0.07) and 1-P3 between 0.56 (+/- 0.10) and 0.65 (+/- 0.10) 

(Table 5.3). These estimates were more variable than for the single admixture 

scenario as a direct result of the added parameter and therefore complexity of the 

model. The mean regression histograms for p1 and 1-p3 can be seen in Appendix

5.4. The time of the most recent admixture event was overestimated and highly 

variable, with estimates between 1.4 (+-1.1) to 11.5 (+-7.8). The older admixture 

event was underestimated with estimates varying between 1.4 (+-1.0) to 10.4 (+-6.0). 

The time of split was underestimated in one of the scenarios (9700). In all other runs 

the mean values were within 60 generations either side of the true value, but with 

high variances of between 750 and 790 generations.

Table 5.3. An analysis of observed data generated under a two admixture event 

model against 100,000 simulated datasets fixed for population size

Parameters

Set

values 1 2

Datasets

3 4 5

P1 Mean 0.7 0.64 0.66 0.45 0.86 0.62

Adjusted mode 0.67 0.72 0.45 0.90 0.66

Variance 0.14 0.15 0.15 0.07 0.16

1-P3 Mean 0.7 0.64 0.56 0.65 0.600 0.65

Adjusted mode 0.65 0.59 0.65 0.590 0.67

Variance 0.08 0.10 0.08 0.10 0.10

Time of recent admixture

event (generations) Mean 1 2.90 3.56 4.10 1.40 11.5

Variance 1.75 2.19 2.45 1.12 7.76

Time of older admixture

event (generations) Mean 10 3.79 5.35 5.02 1.40 10.40

Variance 2.05 2.87 2.59 1.02 6.00

Time of split

(generations) Mean 10,000 10060 10000 9950 9940 9720

Variance 773 778 764 749 792
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5.3.3. Full admixture scenario - 500,000 simulations

In this scenario the restrictions of fixing the population sizes and mutation rate were 

removed. The full model was then applied including the second admixture event. The 

observed values for P1 and 1-P3 were both set at 0.7. For 500,000 simulations the 

P1 estimation varied between 0.12 (+/- 0.16) and 0.70 (+/- 0.25) and 1-P3 between 

0.11 (+/- 0.28) and 0.99 (+/- 0.23) (Table 5.4). The mean regression histograms for 

p1 and 1-p3 can be seen in Appendix 5.5, which show that the performance is much 

poorer, and predictions from the mean and modal values bore very little if any 

relationship to the true parameter that is being predicted. Figure 5.5 is an example of 

a test run of 500,000 simulations using 20 loci. Compared to the previous results for 

9 loci, this data demonstrates a substantial improvement in the posterior distribution 

of the 1-p3 parameter. This data suggests that the small increase in numbers of loci 

used from 9 to 20 has an effect on the 1-p3 parameter estimate. Times of the 

admixture events were similar in accuracy to the 100,000 simulation run, with the 

recent admixture event slightly overestimated (0.02 -  4.8 generations) and the older 

admixture event underestimated (1.8 -  6.2 generations). The posterior plots in Figure 

5.5 illustrate this well, showing very little difference between the two parameters. The 

time of split estimates were considerably worse than the previous runs and estimates 

varied between 2,000 and 13,000 generations with variances of up to 2400 

generations.
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Table 5.4. An analysis of observed data generated under a two admixture event 

model against 500,000 simulated datasets allowing for variation in all parameters.

Parameters

Set

values 1 2

Datasets

3 4 5

P1 Mean 0.7 0.70 0.25 0.24 0.68 0.12

Adjusted mode 0.93 0.07 0.078 1.00 0.10

Variance 0.25 0.24 0.23 0.27 0.16

1-P3 Mean 0.7 0.48 0.24 0.99 0.71 0.11

Adjusted mode 0.1 0.05 0.78 0.93 0.37

Variance J3.30 0.24 0.23 0.26 0.28

Time of recent admixture

event (generations) Mean 1 0.02 4.80 1.5 0.07 2.21

Variance 00.1 3.10 6.87 1.46 11.1

Time of older admixture

event (generations) Mean 10 1.76 6.2 3.98 2.98 3.92

Variance 0.95 29.9 2.05 1.82 2.61

Time of split

(generations) Mean 10,000 1990 12500 13400 1210 616

Variance 2440 2130 1260 1650 1230
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Figure 5.5. A plot of the mean regression of the shortest 1000 accepted distances 

using 500,000 simulations, and 20 loci. P1 = 0.7, 1-P3 = 0.3. (plots courtesy of Vitor 

Sousa, Gulbenkian Institute).

5.4. Detailing applied population scenarios for analysis

Using microsatellite data from actual cattle populations allows determination of the 

utility of the method for real data. Whether the results from the test scenarios can be 

upheld in real admixture situations is a true test of the methodology. For simulated 

testing scenarios the data were generated with a relatively ancient split since which 

populations have differentiated, this is often not the case with real data and 

decreasing differentiation time between populations may reduce the ability of this 

(and probably of any) approach to quantify admixture events (Bertorelle and 

Excoffier, 1998). In addition to the Dexter breed, a secondary population of interest in 

this study, is the Lincoln Red which was hoped would provide an effective test 

scenario for the method.
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5.4.1. Lincoln Red Scenario

The Lincoln Red breed is one where the history is thought to be relatively simple, two 

recent admixture events having been influential in shaping the modern breed. The 

recent and quantifiable nature of the admixture contributions provides a natural test 

situation for the method developed here. Information on herd composition within the 

breed allowed more fine-scale investigation and comparison of relative admixture 

proportions than would be possible in other breed populations.

The earliest known reference to Lincolnshire cattle is thought to be that of Markham 

in 1695. Two types of Shorthorn cattle were initially recognised in 1822 (Coates herd 

book), the first Lincoln Red herd book being produced in 1896 (Lincoln Red herd 

book). Lincoln Red cattle were initially dual purpose but were increasingly bred for 

beef. The breed became polled through use of red Aberdeen Angus animals from 

1963 and the subsequent breed development program reinforced the beef qualities 

through the Breed Development Programme of introduction of continental breeds 

such as (but not exclusively) Limousin from around 1973 (S.J. Hall, pers. comm.).

The Lincoln Red data available included four herds which differed in their genetic 

composition relative to the described ancestral breeds (Figure 5.6). For the purposes 

of the admixture method test analysis one herd will be used to ascertain whether the 

program provides accurate admixture determination. The Wardle and Harrington 

herds are both thought to have had only minor influence from the Limousin breed, 

contributions to the other herd populations are less easy to quantify at this time but 

the McTurk herd is though to have had the greatest level of upgrading by Limousin. 

From the structure plot in Figure 5.7 the Harrington herd can be seen to have a 

greater proportion of its members in common with other herd populations, when 

compared to the Wardle herd, implying a higher rate of gene flow. In order to use a 

population with a known (very low) Limousin proportion, the Wardle herd was 

therefore chosen. In addition to this the McTurk herd was used to provide a 

comparison of the method within the breed.
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Figure 5.6. Diagrammatical representation of the historical interactions of the 

Lincoln Red breed with its ancestral and contributory breed populations (S.J. Hall 

pers. comm.).
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Figure 5.7. STRUCTURE representation of the genetic composition of the Lincoln 
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Prior to running the new admixture determination method described here, another 

admixture calculation was done with the LEA (Chikhi et al. 2001) application. This 

was run for each of the possible single admixture scenarios separately, namely the 

parental populations being Shorthorn and Aberdeen Angus, and then Shorthorn and 

Limousin. The proportions determined through LEA for the Wardle herd in the 

different scenarios were; Aberdeen Angus contributed 0.02(+/-0.09) and Limousin 

contributed 0.01(+/-0.07). For the McTurk herd these contributions were 0.11 (+/-0.09) 

and 0.08(+/-0.07) respectively.

5.4.2. Lincoln Red admixture predictions

Given our knowledge of the population scenarios that are being investigated by the 

new admixture determination application we were able to make predictions about the 

expected proportions to be calculated. The Lincoln Red scenario involves very recent 

admixture events and the information about them is good. The predicted admixture 

proportions for the Wardle herd would therefore be expected to be around 0.05-0.1 

for the contribution of the earlier admixture event by the Aberdeen Angus at around 

5-10 generations ago, with the Limousin contribution being 0-0.05 up to 5 

generations ago (S.J. Hall, pers. com). The McTurk herd would be expected to be 

marginally higher perhaps up to 0.15 for Aberdeen Angus and 0.1 for Limousin. 

However, the very low contributions of Aberdeen Angus and Limousin may mean that 

the admixture proportions are more difficult to determine and may be associated with 

a greater amount of variance.

5.4.3. Dexter Scenario

As described in previous chapters the Dexter breed is diverse and information 

about admixture across the breed is more difficult to quantify. For the application of 

the new admixture method to the Dexter it makes sense to use the contemporary 

Dexter breed whose history can be modelled as a two admixture scenario; the 

initial admixture event (as in Chapter 4) being between the Kerry-like ancestor and 

the ancestor of the Devon breed, the second being the Aberdeen Angus which is 

known to be introgressed into the Dexter to an as yet unknown extent. In this way 

the divergent subpopulations and traditional animals, which do not adhere as 

closely to the modelled scenario, are not included in the analysis. Using LEA to 

suggest potential admixture proportions for these separate scenarios (Kerry and
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Devon, and Kerry and Aberdeen Angus) gives the contribution of the Devon breed 

as 0.54(+/-0.11) and the contribution of the Aberdeen Angus as 0.11 (+/-0.12).

5.4.4. Dexter scenario predictions

Pedigree-based admixture information for the Dexter breed is more difficult to 

calculate than that available for the Lincoln Red due to the greater time periods 

involved and the inconsistency of some breeding accounts. This makes it difficult to 

form accurate predictions for the admixture contributions. Only very rough predictions 

can therefore be made which are 0.2-0.5 for the Devon breed and 0-0.1 for the 

Aberdeen Angus breed.

5.5. Combined comparative results from application to real data scenarios

The application of the full admixture scenario to the Lincoln Red and Dexter datasets 

was made using 9 loci per run. For the case of the Dexter more loci were available, 

two runs were performed on the same breed population. Table 5.5 details the results 

from a 500,000 simulation run on the two Lincoln red populations and the Dexter 

breed population. The parameter estimation for the Lincoln Red herds for P1 differs 

dramatically from 0.89 (+-0.18) in the Wardle herd to 0.08(+-0.13) in the McTurk 

herd. There is less variation between the 1-p3 prediction which shows the admixture 

proportion of the Limousin breed to be slightly greater in the McTurk herd population 

0.35(+-0.29) compared to 0.25(+-0.25). In the Dexter breed population there was 

marked difference between the two sets of loci used. An average combining the 

results of both sets of loci attributes 0.25(+-0.29) proportion contribution of the Devon 

in the older admixture event whilst more recently a 0.34 (+-0.26) contribution from the 

Aberdeen Angus.

The estimated times for the admixture events in the scenarios were highly variable 

suggesting that the recent admixture event was between the present and just over 6 

generations ago in the Lincoln Red populations and between 3 and 5 generations 

ago in the Dexter. The older admixture event was far more uncertain, estimates 

between 2 and 20 generations for the Lincoln Red and 6 to 8 generations in the 

Dexter. The associated variances of these estimates were also very high, up to 31 

generations in the Lincoln Red and 19 generations in the Dexter. Estimates of time of 

split were between 3400 and 8400 generations in the Lincoln Red and 2500 and 

9600 generations in the Dexter. As in the 500,000 simulation test data used
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previously, the variance in the time of split was also high at 3700-3900 generations 

for Lincoln Red and 2900-3500 generations for the Dexter.

Table 5.5. An analysis of two cattle datasets against 500,000 simulated datasets.

Datasets

Lincoln Red Dexter breed

Lincoln Red Wardle McTurk Dexter Loci Loci

Parameters predictions herd Herd predictions 1-9 10-18

P1 Mean 0.89 0.08 0.48 0.97

Adjusted mode 0.05-0.1/0.15 1 0 0.5-0.8 0.16 1.0

Variance 0.18 0.13 0.29 0.07

1-P3 Mean 0.75 0.65 0.94 0.33

Adjusted mode 0-0.05/0.1 1 1 0-0.1 1 0.04

Variance 0.25 0.29 0.12 0.26

Time of 

admixture

recent
Mean

event
0-5 6.24 0.01 0-10 3.43 4.87

(generations) Variance 3.74 0.02 1.96 2.95

Time of 

admixture

older
. Mean event 5-10 20.31 1.87 10-20 8.23 6.02

(generations) Variance 30.85 1.07 19.41 18.42

Time of split Mean 50-500 8390 3470 50-500 9590 2460

(generations) Variance 3910 3720 3540 2920

5.6. Discussion

The results for the calculation of admixture contributions for the single admixture 

scenario were generally accurate. This was true despite the relatively small numbers 

of simulations being used for comparison. The best performance was seen in the P1 

parameter with only slight underestimation of the true value across the five observed 

datasets. This underestimation was also seen in the time of admixture, and despite 

relatively high variance, was seen to a lesser extent in the time of split. Although this 

was a testing scenario and therefore only small numbers of simulations were applied, 

this appears to be a successful method of determining admixture proportions for a 

single event. However, the aim of this project was to develop methodology to 

interpret and describe cases of multiple admixture events and as such the single 

admixture application was designed for the verification of the initial approach. For this 

reason the further exploration of the single admixture scenario was curtailed and the
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testing expanded to the full two admixture event scenario. The estimation of the 

parameters for the two admixture events mode! showed less consistent results over 

the five observed datasets tested here. Even though it is difficult to make strong 

predictions about the parameters which will be best estimated, it seemed reasonable 

to think that the estimation of the 1-p3 proportion corresponding to the most recent 

admixture event would provide the best results. Indeed, due to the reduced time 

period over which allele frequencies can change from their parental frequency 

distribution this parameter should be easier to estimate. It is difficult to draw strong 

conclusions from only 5 independent runs but the current results suggest that this 

parameter could be underestimated, at least when the mean is used as a point 

estimator. If that were the case this could suggest a bias toward 0.5 which has been 

described in the literature as a failure of methods to determine admixture proportions 

accurately particularly in cases where parental populations are undifferentiated 

(Bertorelle and Excoffier, 1998). Indeed, if there is little information in the data, the 

posterior mean will tend to be equal to the prior mean which is 0.5. The 1-p3 

parameter variance was still high, averaging around 0.1. Whereas the estimation of 

p3 was fairly consistent over the five datasets there were bigger differences across 

the runs for the p1 parameter with estimates ranging from 0.45 to 0.86 (true value 

0.7) with an average variance of 0.13.

The reduction of efficiency of parameter estimation by adding the second admixture 

event is expected simply because it increases the number of parameters. It also 

suggests that the number of simulations used here is not large enough for the 

number of loci applied and the scenario used. In an approximate Bayesian approach 

applied by Hamilton et al. (2005) they suggest that to predict three parameters one 

million simulations is sufficient, greatly reducing variance of estimated parameters in 

comparison to fewer simulations. The full model applied here, when the population 

sizes and mutation rate are not fixed, attempts to estimate eleven parameters. I 

chose to relax the previously fixed parameters to analyse the performance of the 

approach in a full scenario where all parameters are allowed to vary. This highlighted 

that as parameters such as theta vary, so the memory demand increases as more 

data are required to describe the variation present. What was evident from the results 

of the 500,000 simulation runs was that, as expected, the consistency declined from 

the previous run at a lower number of simulations. It is intuitive that the introduction of 

variation at more parameters means that far fewer simulations closely match the
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state of the data (calculated through the summary statistics) despite the five-fold 

increase in simulated data used. The inferential results for these new runs are 

particularly poor and highlight the need to significantly increase the number of 

simulations in a ‘full parameter’ scenario. The mean regression histograms showed 

that the previous scenario was achieving consistent parameter values (Appendix

5.4), in the current scenario the posterior is not very different from the prior (Appendix

5.5). As can be seen from the plots of an additional run with 20 loci (Figure 5.5) there 

are suggestions that the estimates of the 1-p3 parameter were beginning to improve. 

Although still insufficient for consistent and accurate quantification, this shows that 

increasing the numbers of loci, and particularly numbers of simulations, will make an 

important difference to the parameter estimation as seen in other Bayesian methods 

(Excoffier et al. 2005).

5.6.1. Application to cattle data

Whilst the cattle data used here provided a test case for the application of the new 

methodology to real admixture scenarios, it is important to show that accurate 

estimation is possible even if longer runs are required for reliable data. The results of 

the admixture determination were inherently interesting, but must be accepted as 

being test data and therefore not yet a reliable and definitive description. It is 

tempting at this stage to declare that the results show a potentially accurate 

description of the history of the Lincoln Red Wardle Herd, for example. The admixture 

proportions are suggestive that, allowing for some degree of bias toward 0.5 for the 

admixture proportions, there is a 0.11 (+/-0.18) contribution of Aberdeen Angus and 

0.25 (+/-0.25) contribution by Limousin. However, the results for the Wardle herd are 

placed into perspective by that of the McTurk herd, expected only to have slightly 

differing contributions but instead suggested a completely different, almost opposite, 

proportion of the ancestral Shorthorn relative to Aberdeen Angus contribution. It may 

be logical to restrict interpretation of only the more recent admixture event having 

seen the results for the 20 locus dataset in Figure 5.5, and to ignore the older 

admixture contribution. A higher relative Limousin proportion is attributable in the 

McTurk herd as might be expected but caution must clearly be exercised in this 

interpretation.

The Dexter application of this admixture method is as diverse as might be expected 

for the two sets of loci. If the interpretation is restricted to the more recent admixture
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event and the two results are made into an average the result is an Aberdeen Angus 

contribution similar to that of the Limousin contribution in the McTurk herd, 0.64 (+- 

-0.19). As the McTurk and Dexter breed predicted proportions are similar, the 

similarity of their actual results may reflect the accuracy of the methodology at this 

number of simulations. However, this interpretation should be reserved until further 

information can support it. One current interpretation is that whilst there does appear 

to be a degree of estimation of the true admixture contributions (parameters) there is 

still a high associated inaccuracy.

5.6.2. Appraisal of the methodology

The change in analysis between using simulated observed data and the actual 

collected data is potentially important. The ms program generated data according 

to the input command and relies on a model on which to base calculations. This 

means that the observed data are generated using exactly the same process as 

the simulated data against which it is being compared. This means that there are 

no differences in the evolutionary processes between observed and simulated 

data. As the model under which the ms application generates its samples is an 

approximation of evolutionary processes this will differ to some degree from the 

processes under which the observed data collected from our cattle populations was 

generated.

To achieve accurate admixture quantification the bounds of the parameters, within 

which the simulated data will vary, should be small. More accurate knowledge of 

the scenario will therefore allow narrower parameter margins and therefore higher 

accuracy of admixture estimates. A consequence of this is that to have large prior 

distribution margins will allow for a better testing scenario but will mean fewer 

simulated datasets closely reflecting the observed data. In order to maintain the 

same accuracy of a narrower parameter distribution more simulations are therefore 

necessary. In all of the simulations used in this study there was a uniform 

distribution of prior parameters and it is possible that a more intuitive use of 

parameter distribution may have been made. A gamma distribution has been 

shown for mutation rates in some genomic regions, for example (Schneider and 

Excoffier, 1999).
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It must be reinforced that the testing process is a dynamic one and whilst this 

represents the culmination of a large number of previous program versions more 

testing can always be performed. The reality of the process is that analysis will be 

tailored to suit the users. It is strongly suggested by the results presented here that 

the method is increasingly effective at higher numbers of simulations. Test 

simulations were performed on a machine with a 1.7 gigahertz processor and 512 

megabytes of RAM. Due to the relatively high specifications of new machines, it 

would be expected that the increase in accuracy of the method could be great 

indeed and it would be recommended that numbers of simulations were increased 

to the order of around 10 million (numbers prohibitively high to use on the test 

machine). Furthermore, as stated previously, accuracy of admixture determination 

can be improved with increased numbers of loci, but again at the cost of calculation 

time. The importance of the complete testing of an application of this type is 

paramount to the removal of any bugs and mistakes in the script. This may require 

the comparison against hundreds of observed datasets and not just the five 

employed here. From the simulations completed is it expected that the levels of 

accuracy in parameter prediction can be increased to a point where it will be able 

to be effectively employed in real data scenarios. Whilst the use of the method in a 

real data scenario may be considered premature in this case, it provided 

reassurance that the application is functional (if to a lower degree of effectiveness 

at the levels of simulations shown) and should be able to be implemented across a 

range of admixture scenarios. It is worth mentioniong here that in principle it should 

be possible to simulate data varying number of loci and using admixture scenarios 

that are close to the scenarios that are likely for the species of interest. This way, 

one could determine the minimum number of loci necessary to have precise 

estimation for the species the user is working on. For instance, for the cattle breeds 

analysed here we could study the properties of the ABC scheme, only for values of 

the parameters that are “realistic”. This way, we would know whether it is worth 

genotyping more loci to get reasonably good estimates.

The development of this program is the present position of work begun towards the 

end of this PhD thesis. As described, the application is currently slow and at 

present has not been tested fully or for as many simulations as would be desired. It 

is my intention to complete this work to construct an accurate and fully functional
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multiple-admixture determination method and to describe it to a publication 

standard. This process is ongoing and more simulations are currently being run.
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Chapter 6. 
General discussion
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6.1. Contemporary population studies and the Dexter breed

Despite well recorded historical and pedigree information for modern traditional cattle 

breeds there is a great deal of cryptic variation that exists in these domestic 

populations. The aim of this thesis was to reveal in detail a particular case of 

introgression in the Dexter minority cattle breed. To accomplish this, the Dexter was 

first considered in the context of a wide set of cattle breed populations in Europe. It 

was previously assumed that influences in the Dexter breed were from several breed 

backgrounds, and this is reflected in its genetic diversity being amongst the highest in 

the wider European breed dataset. There have been a number of recent comparable 

studies of cattle breeds in Europe (Blott et al. 1998a; Loftus et al 1999; MacHugh et 

al 1994; Martin-Burriel et al. 1999; Peelman et al. 1998; Wiener et al., 2004 etc.) but 

unlike these the breeds included here were carefully chosen to be a set of traditional 

breeds. As such it was hoped to better reflect those with which the Dexter may have 

undergone genetic exchange. However, the Dexter did not display close associations 

with any of the breed populations in this breed dataset. Its position in the wider 

European context demonstrates that the Dexter has maintained a genetic 

uniqueness throughout the period of the herd book remaining open to appendixed 

animals from an out-breeding register. However, there was some information from 

the migrant analysis that indicated geneflow between breeds. Dexter individuals were 

reassigned to several breed populations; Milking Devon, Kerry, Guernsey, Mainland 

Jersey, Shorthorn, and Sussex. But these few migrants constituted a small proportion 

of the population (less then ten percent). Indeed, the proportion of correctly assigned 

individuals in the Dexter was actually higher than over half of the other breeds in the 

study. The suggestion of this analysis was that a more detailed view of the Dexter 

breed was required, in a narrower breed scenario.

The Dexter was then analysed specifically to examine its relationship with two 

historically associated breeds; the Devon and Kerry. More microsatellite loci were 

added to improve the genetic information available and it was possible to resolve that 

the Dexter was subdivided in a way not seen in the previous analysis. As the known 

associations of the Dexter with the Kerry and Devon were not represented in the 

wider breed analysis, it is thought that this may be a consequence of this highly 

variable composition. The variability of the Dexter itself meant that there were a 

number of distinct breed subgroups one of which, the Woodmagic herd, was
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differentiated from other Dexter groups to a degree equal to that expected at a 

between-breed level. This subdivision of breed populations is usually only seen 

where the breed is split between separate populations in different countries (e.g. 

Achmann et al. 2004). There appears to be a paucity of research below the breed 

level, although one good example is that of the Hereford breed of cattle (Blott et al. 

1998b). But generally even research specifically aimed at the analysis of subdivided 

populations is not seen to examine genetic structure or diversity below the breed 

level (Caballero & Toro, 2002). An explanation of this subdivision in the Dexter is 

potentially high levels of genetic drift. Similar gene identity measures to that seen in 

the Dexter Woodmagic herd population were also found in a fish population isolated 

in a single location with limited population size and also implicated as having 

undergone high levels of inbreeding (Bailey et al. 2007). Although the Woodmagic 

population has only been isolated for -25 years the line-breeding process and small 

population size may have amplified the effects of genetic drift.

The analysis of the Dexter relationship with the Kerry and Devon breeds was 

modelled as an admixture event using several methods to estimate the parental 

contributions. The analysis was restricted to populations known to be good 

representatives of those involved in the admixture of the Dexter breed, and was 

performed using specific admixture applications (LEA (Chikhi et al. 2001), ADMIX2 

(Dupanloup and Bertorelle, 2001), and LEADMIX (Wang 2003)) rather than the 

clustering algorithms commonly applied to make geographical admixture inferences 

(e.g. in Freeman et al. 2006). The application of specifically designed admixture 

approaches was intended to provide more accurate proportion estimates through 

specifically accounting for the effects of different evolutionary processes, such as 

genetic drift in LEA (Chikhi et al. 2001). The expected closer association of the 

Dexter with the Kerry (relative to the Devon) was suggested by the allele frequency 

based clustering approach of Pritchard et al. (2000), but the specific admixture 

determination methodology was not so clear cut. The admixture analysis methods 

demonstrated a clear difficulty in determining the proportional contribution of the 

putative ancestors. Parental proportions were calculated with large associated 

uncertainty and the high levels of genetic drift that are likely to be acting in these 

small populations are thought to be the cause of such inaccurate admixture 

determinations.
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The high levels of genetic variation uncovered in the Dexter breed has had both 

potentially positive and negative effects in terms of its genetic analysis. Firstly, the 

Dexter appears to have maintained a high level of genetic uniqueness when 

compared to many other breed populations. This has been manifested in relatively 

high differentiation between it and other breeds, but particularly within the breed 

itself. Secondly, a greater potential for objective fine-scale admixture analysis is 

revealed through the subdivision of the breed into discrete genetically-similar groups. 

This has allowed investigation into relationships between distinct subdivisions within 

the breed. However, a third consequence is that demographic perturbation and 

isolation is likely to have obscured admixture proportions, particularly older 

contributions.

In light of the information provided by this study, management of the Dexter needs to 

be addressed. It is important that a few males or subpopulations of the herd book are 

not over-represented and this is particularly pertinent if the individuals in question 

originate from a genetically divergent subpopulation. The Woodmagic population in 

this study might be an example of this over-representation as potentially desirable 

characteristics are sought from a small number of males. Whilst it would be a loss of 

the unique allelic spectra of the subpopulation if it were not perpetuated, the clear 

genetic distinction of the Woodmagic individuals is such that they have the potential 

to disproportionately alter the composition of the wider breed. One recommendation 

might be to limit the use of any individuals whose semen is commercially available 

and perhaps to enforce a further limit where multiple males are available from a 

restricted herd population.

6.2. Admixture modelling

In order to attempt to provide further insight into the population dynamics of the 

Dexter breed, a new method was required that could overcome the problems found 

to be confounding admixture determination. It was theorised that accounting for 

multiple admixture events in a new approach may be a valid way to do this. In 

developing a novel method in which to investigate multiple admixture events which 

occur at different times we begin to open out the possibilities of more flexible 

applications. The difficulties in developing methodology begin with the description of, 

and adherence to, a particular model. The benefits to model development of recent 

methods and applications can be seen in programs such as ms or ‘make sample’



172

(Hudson, 2002). The efficient use of data in population genetic algorithms can be 

approached in different ways, the method here is that of approximating a posterior 

distribution through corresponding properties of the sample as described by 

Beaumont et al. (2002). In this way a set of summary statistics is calculated and used 

as a means of comparing datasets in accordance to a rejection sampling method as 

in Tavare et al. (1997). An approach is dependent on its constituent summary 

statistics to accurately reflect the underlying genetic processes involved in the 

formation of each genetic sample. It is always possible that the choice of a different 

or extended set of summary statistics could improve the performance of this method. 

Unfortunately there is an associated calculation cost to additional functions and data 

that must be stored in memory or saved to file. The function of the software 

developed here is of limited use at the numbers of simulations and loci applied here 

(-500,000 simulations, nine loci). It is thought that there is no technical or 

methodological reason that the results seen in the runs for which many of the 

parameters are fixed, might not be replicated in a full scenario where all parameters 

are varied. The process of population genetic software development is a continual 

one of updating and testing. Although now a complete script, the developed method 

for admixture detection needs testing across more scenarios, and notably in longer 

runs.

6.3. Domestic animal conservation genetics; present and future

As seen across much of population biology, typical breed characterisation and 

diversity studies have shown a trend of increasing levels of marker application from 

single figures (Blott et al. 1998a) to tens of marker loci applied (Zhang et al. 2007). 

Matching this is the increased scale of study which can encompass breed 

assemblages of hundreds of individuals across entire regions e.g. West Africa in 

Thevenon et al. (2007). A result of the increasing information available in each study 

has been a shift in emphasis towards analysis of demographic influences on breed 

structure such as population bottlenecks (Fatima et al. 2008). It is also increasingly 

notable that comparative applications can now be made between genetic variation 

studies on the same breeds with the availability of marker systems as suggested 

through organisations such as the Food and Agriculture Organisation (FAO). The 

comparison between studies can be important for the interpretation of genetic data, 

perhaps more so in minority domestic breeds where ascertainment bias could be 

particularly influential and potentially cause large discrepancies between studies.
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The advent of assignment algorithms and quantification of migration has changed the 

way that breeds are analysed, illuminating both exchanges of migrants and 

phylogenetic associations between regions (Loftus et al. 1999). The analysis of 

detailed scenarios where migration or population subdivision is important will become 

more common in the literature as methods evolve to make better use of the 

information available. It is now possible to identify dines of upgrading crosses for 

increased breed productivity within a region, for example (Li et al. 2007). Assignment 

criteria can also be employed in situations where animal products need to be verified 

for reasons of food safety and authenticity (Negrini et al. 2007). The recent 

development of approximate Bayesian methods (Beaumont et al. 2002) is just one 

example of the innovations in theory that are driving the advancement of population 

genetic analysis. The identification of analytical limitations continues to create new 

areas for study, particularly so where high computational demand was the previously 

limiting factor.

There is also an apparent urgency for conservation action promoted by conservation 

assessments in domestic animals (Taberlet, 2008). The climate of increasing 

environmental awareness and sustainability has begun to raise the profile of minority 

breed populations amidst the threat of extinction to make way for their intensively 

produced counterparts (Tisdell, 2003). Recognition of continued threats to 

populations maintains the discussion of prioritisation of funds for conservation (Reist- 

Marti et al 2005; Tapio et al 2006; Reist-Marti et al 2006). It seems likely that 

increasingly accurate methods of assessing domestic breed survival probability will 

continue to play a part in the literature including new approaches to assessment of 

the genetic value of individual breed populations. It is also likely that the results of 

restorative breed management programs will begin to appear as a consequence of 

the continued recognition of the detrimental legacy of management of small 

populations and artificial selection programs.

6.4. Conclusions and future work

Not only are the population genetics of domestic breeds complex, they have been 

found here to be even more so than previously predicted. The possibilities for future 

genetic investigation of the Dexter are consequently significant. It has been 

established here that extensive population structure and subdivision exists across the
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Dexter breed. The work done here will provide an excellent basis for subsequent 

analysis at the population genetic level. Opportunities exist for investigating 

phenotypic characters and genes affecting production and animal welfare such as 

the Major Histocompatibility Complex. The disruptive effects of anthropogenic 

selection acting according to each breeding unit makes the breed more dynamic than 

most, as does the diversity of forms of the Dexter, making it a unique breed. Genetic 

traits under breeders’ selection include colour forms, leg length, and even presence 

or absence of horns. More detailed genetic work may shed further light on the 

complexities of the admixture history of the breed and perhaps on a relationship to 

some of these morphological characters. The difficulty of quantification of the 

introgression from even the major contributors in the breed’s history means that 

minor influences from other breeds are still unknown. The rapid progression of 

technology and methodology suggests that admixture studies of this kind may 

become increasingly effective in the future. The development of the methodology 

detailed here will go some way towards achieving a solution to the problem of 

admixture in complex demographic scenarios. There exist many potential extensions 

and improvements that can be made to the current application as the need and 

opportunity arises. The consideration of two admixture events could potentially be 

increased to three as the application evolves and the computational demands can be 

absorbed by more powerful processors or serialisation of run jobs. Binary file formats 

to speed up the calculations is just one possibility that could be implemented along 

with other associated applications to generate input files from popular file formats.
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endix 2.1.

pie group.

Dexter identifiers including farm and county of origin, arranged by

Animal Farm Analysis

code code County group

s124, 43 Devon Woodmagic

11, 43 Devon Woodmagic

143, 43 Devon Woodmagic

149, 43 Devon Woodmagic

52, 43 Devon Woodmagic

53, 43 Devon Woodmagic

54, 43 Devon Woodmagic

55, 43 Devon Woodmagic

56, 43 Devon Woodmagic

57, 43 Devon Woodmagic

58, 43 Devon Woodmagic

59, 43 Devon Woodmagic

60, 43 Devon Woodmagic

61, 43 Devon Woodmagic

62, 43 Devon Woodmagic

63, 43 Devon Woodmagic

64, 43 Devon Woodmagic

65, 43 Devon Woodmagic

s6, 43 Devon Woodmagic

s13, 43 Devon Woodmagic

s42, 43 Devon Woodmagic

7, 12 Somerset Traditional

8, 12 Somerset Traditional

s1, 42 Monmouthshire Traditional

s2, 45 Cumberland Traditional

s4, 20 Cumberland Traditional

s15, 32 Warwickshire Traditional

s36, 37 Devon Traditional

s45, 40 Yorkshire Traditional

s47, 32 Warwickshire Traditional



X O I

s51, 9 Pembrokeshire Traditional

119, 27 Norfolk Traditional

149, 3 Shropshire Traditional

s66, 26 Berkshire Breed

s68, 9 Pembrokeshire Breed

66, 31 Oxfordshire Breed

68, 31 Oxfordshire Breed

69, 31 Oxfordshire Breed

70, 31 Oxfordshire Breed

165, 23 Warwickshire Breed

176, 8 Hampshire Breed

s46, 2 Buckinghamshire Breed

6, 12 Somerset Breed

21, 12 Somerset Breed

48, 34 Dorset Breed

49, 35 Surrey Breed

50, 36 Wiltshire Breed

51, 14 Devon Breed

141, 28 Somerset Breed

142, 15 Carmarthenshire Breed

143, 15 Carmarthenshire Breed

151, 37 Devon Breed

159, 8 Hampshire Breed

160, 8 Hampshire Breed

163, 10 Gloucestershire Breed

s5, 16 N. Ireland Breed

s26, 5 Devon Breed

s29, 41 Dorset Breed

s40, 22 Devon Breed

s43, 37 Devon Breed

s54, 41 Dorset Breed

2, 4 Essex Breed

28, 1 Berkshire Breed

31, 24 Bedfordshire Breed

39, 24 Bedfordshire Breed



40, 12 Somerset Breed

45, 44 Somerset Breed

46, 44 Somerset Breed

s7, 7 Sussex Breed

s8, 31 Oxfordshire Breed

s11, 31 Oxfordshire Breed

s34, 37 Devon Breed

s39, 13 Gloucestershire Breed

s41, 44 Somerset Breed

167, 42 Monmouthshire Breed

171, 31 Oxfordshire Breed

172, 31 Oxfordshire Breed

173, 31 Oxfordshire Breed

174, 31 Oxfordshire Breed

175, 31 Oxfordshire Breed

176, 8 Hampshire Breed

177, 37 Devon Breed

178, 25 Hampshire Breed

179, 21 Somerset Breed

180, 17 Northamptonshire Breed

181, 17 Northamptonshire Breed

182, 38 Powys Breed

183, 38 Powys Breed

184, 46 Wiltshire Breed

185, 46 Wiltshire Breed

186, 46 Wiltshire Breed

187, 24 Bedfordshire Breed

188, 17 Northamptonshire Breed

189, 11 Somerset Breed

190, 11 Somerset Breed

191, 24 Bedfordshire Breed

192, 24 Bedfordshire Breed

193, 33 Kent Breed

194, 29 Kent Breed

195, 29 Kent Breed



183

196, 17 Northamptonshire Breed

197, 6 Cheshire Breed

198, 8 Hampshire Breed

199, 31 Oxfordshire Breed

200, 19 Dorset Breed

201, 31 Oxfordshire Breed

203, 29 Kent Breed

208, 31 Oxfordshire Breed

209, 31 Oxfordshire Breed

210, 31 Oxfordshire Breed

211, 31 Oxfordshire Breed

212, 31 Oxfordshire Breed

214, 45 Cumberland Breed

244, 24 Bedfordshire Breed

245, 39 Powys Breed

246, 40 Yorkshire Breed

250, 18 Worcestershire Breed

254, 45 Cumberland Breed

393, 21 Somerset Breed

406, 21 Somerset Breed

407, 12 Somerset Breed

408, 12 Somerset Breed

s1, 42 Monmouthshire Breed

s100, 30 Somerset Breed

s101, 24 Bedfordshire Breed

s123, 33 Kent Breed

s125, 33 Kent Breed

109, 45 Cumberland Ypsitty

217, 45 Cumberland Ypsitty

218, 45 Cumberland Ypsitty

219, 45 Cumberland Ypsitty

231, 45 Cumberland Ypsitty

232, 45 Cumberland Ypsitty

233, 45 Cumberland Ypsitty

234, 45 Cumberland Ypsitty
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235, 45 Cumberland Ypsitty

240, 45 Cumberland Ypsitty

241, 45 Cumberland Ypsitty

242, 45 Cumberland Ypsitty

243, 45 Cumberland Ypsitty

405, - - American

409, - - American

220, - - American

221, - - American

222, - - American

223, - - American

224, - - American

225, - - American

226, - - American

227, - - American

228, - - American

229, - - American

230, - - American



Appendix 3.1. F\s values of European cattle per breed and locus

Marker Shetland
Aberdeen
Angus

Belted
Galloway

Irish
Moiled Shorthorn

Lincoln
Red

British
White Kerry

Traditional
Hereford Red Poll

Welsh
Black Dexter Sussex

White
Park

INRA063 0.18 -0.09 0.68 0.33 -0.16 0.03 -0.28 0.32 -0.13 -0.41 0.10 0.03 -0.06 0.1£
INRA005 0.21 -0.08 -0.25 -0.23 0.02 0.05 -0.03 -0.3f
ETH225 -0.07 -0.06 0.13 -0.16 -0.18 0.00 0.46 0.16 0.01 0.00 -0.04 0.01 -0.06 0.01
HEL5 0.24 0.03 0.30 -0.04 0.05 -0.10 -0.30 -0.04 0.54 -0.16 0.03 -0.05 -0.02 0.31
ETH10 -0.01 0.07 0.17 -0.23 0.14 -0.03 -0.21 -0.02 0.48 0.06 0.30 0.00 0.49 -0.1'
BM2113 0.06 0.44 -0.07 0.43 -0.02 -0.01 0.03 0.2'
BM1818 0.01 0.14 0.05 -0.10 -0.16 -0.14 0.21 -0.25 0.49 0.14 -0.01 0.11 -0.09 0.21
ILSTS006 -0.06 0.15 0.03 0.04 0.13 0.02 -0.07 -0.11 -0.07 -0.11 0.08 -0.03 0.00 -0.1:
HAUT27 0.15 0.16 -0.13 0.21 0.23 0.09 -0.36 0.08 -0.01 0.04 0.12 0.01 -0.01 0.2(
TGLA227 -0.05 -0.05 -0.13 0.36 -0.18 -0.14 0.63 0.02 -0.22 -0.18 -0.04 0.00 0.38 0.0(
TGLA122 0.08 0.04 -0.11 0.22 0.08 0.02 0.34 0.21 0.09 0.04 -0.07 0.10 -0.13 -0.0<
BM1314 -0.14 0.05 -0.09 0.17 0.27 -0.03 -0.02 0.1!
Average 0.05 0.04 0.12 0.02 -0.01 -0.03 0.07 0.05 0.10 -0.06 0.05 0.02 0.04

od

Appendix 3.1. (continued)

Marker Gloucester
Milking
Devons

Red
Devon

Mainland
Jersey Guernsey

Island
Jersey Jutland Angeln

German 
Black Pied

Hungarian
Grey Limousin Berrenda N'dama

INRA063 0.57 -0.19 0.13 0.04 0.35 0.08 -0.25 -0.04 0.08 -0.06 -0.35 0.06 -0.46
INRA005 -0.01 0.25 -0.29 -0.08 0.18 0.09 -0.12 0.18 -0.07
ETH225 0.18 -0.06 0.20 0.02 0.49 -0.07 -0.17 0.02 -0.17 -0.32 -0.11 0.05 0.05
HEL5 -0.15 0.03 0.06 0.07 -0.02 0.15 0.15 0.07 -0.13 0.39 -0.09 -0.02 0.19
ETH10 -0.19 0.04 -0.11 -0.03 -0.27 -0.06 -0.16 -0.01 -0.07 -0.05 0.12 0.00 -0.40
BM2113 -0.19 -0.21 0.19 0.09 -0.14 0.11 0.19 0.23 -0.11
BM1818 -0.13 0.11 -0.02 0.13 0.09 0.13 0.03 0.18 -0.10 0.18 -0.03 0.26 -0.23
ILSTS006 0.19 0.04 -0.06 0.02 0.07 -0.03 0.25 -0.07 0.31 0.13 " 0.01 0.11 -0.06
HAUT27 -0.04 -0.02 -0.04 -0.03 0.08 0.15 -0.14 -0.04 -0.02 -0.13 -0.03 0.41 0.17
TGLA227 1.00 -0.15 -0.01 0.27 0.20 -0.13 0.23 0.21 0.00 0.03 -0.06 0.22 0.07
TGLA122 0.01 -0.09 -0.11 0.06 -0.06 0.21 0.12 0.10 0.19 0.37 0.16 -0.07
BM1314 -0.06 -0.06 0.23 0.11 0.06 0.18 -0.03 0.14 -0.10
Average 0.11 -0.02 0.01 0.04 0.12 0.01 0.02 0.05 0.01 0.06 -0.01 0.15 -0.08



Appendix 3.2. Weir and Cockerham (1984) Pairwise F St values (upper triangle) with their respective significance levels (lower 
triangle).

FST 1 2 3 4 5 6 1

00 CD 10 11 12 13 14
(1)SHETL 0.19 0.30 0.24 0.15 0.20 0.24 0.16 0.27 0.17 0.21 0.19 0.21 0.31
(2)AANGU ★★★ 0.20 0.15 0.07 0.11 0.19 0.10 0.23 0.11 0.06 0.09 0.16 0.27
(3)GALLO 0.30 0.22 0.21 0.23 0.23 0.21 0.20 0.21 0.21 0.23 0.20
(4)IMOIL ★★★ 0.10 0.13 0.23 0.18 0.34 0.15 0.15 0.15 0.25 0.35
(5)SHHOR kkk •kifk kkk * * * 0.06 0.14 0.11 0.23 0.09 0.09 0.11 0.21 0.29
(6)LRED kkk kkk  *★* * * * **★ 0.17 0.14 0.26 0.09 0.14 0.12 0.20 0.26
(7)BWHIT * * * 0.18 0.18 0.22 0.21 0.22 0.21 0.29
(8)KERRY * * * * * * * * * kkk 0.22 0.17 0.10 0.11 0.14 0.27
(9)HEREF kkk kkk **★ kkk 0.26 0.25 0.24 0.22 0.23
(10)RPOLL kkk ★★★ * * * **★ kkk kkk * * * 0.14 0.12 0.16 0.29
(11)WBLAC * * *  * * * * * * * * * kkk kkk * * * 0.11 0.21 0.25
(12)DEXTE kkk ★** ★★★ * * * kkk kkk * * * 0.15 0.25
(13)SUSSE **★ kkk * * * kkk * * * kkk kkk * * * ★★★ kkk 0.28
(14)WPARK ★ * * * * *  * * * * * * kkk *★* kkk kkk kkk * * * * * * kkk kkk

(15)GCEST * * * ★★★ ★** * * * kkk kkk kkk * * * kkk kkk kkk * * *

(16)MDEVO ★** * * * * * * * * * kkk kkk kkk kkk kkk kkk kkk * * *

(17)BDEVO ★ ★★ *★* ★** * * * * * * ★★★ kkk kkk kkk kkk kkk kkk kkk * * *

(18)MJERS * * * * * * * * * * * * * * * kkk kkk kkk kkk kkk kkk kkk kkk

(19)GUERN ★★★ * * * **★ * * * kkk kkk kkk kkk kkk kkk kkk kkk

(20)JERSE ★ * * * * *  * * * *■** * * * * * * kkk kkk kkk * * * kkk kkk kkk kkk

(21)JUTLA * * * * * * * * * kkk kkk kkk kkk kkk kkk kkk

(22)ANGEL * * * ★** ★★★ * * * * * * kkk kkk kkk * * * kkk kkk kkk kkk

(23)GERMB * * * kkk •kick kkk kkk kkk kkk * * * **★ kkk kkk kkk

(24)HGREY ★ * * *★* * * * kkk kkk kkk kkk kkk * * * kkk kkk kkk

(25)LMOUS kkk ★** * * * * * * kkk kkk kkk kkk *★* * * * kkk kkk kkk

(26)BERRE * * * * * *  it'k'k * * * kkk kkk kkk kkk kkk kkk kkk kkk kkk

(27)NDAMA * * * kkk * * * ★★★ kick kkk * * * kkk kkk kkk kkk kkk kkk

1



TTXT

Appendix 3.2. (continued)

FST 15 16 17 18 19 20 21 22
(1)SHETL 0.22 0.16 0.14 0.21 0.15 0.26 0.21 0.19
(2)AANGU 0.15 0.13 0.06 0.14 0.06 0.20 0.15 0.16
(3)GALL0 0.23 0.21 0.20 0.27 0.17 0.21 0.15 0.13
(4)IM0IL 0.22 0.19 0.16 0.21 0.16 0.29 0.22 0.24
(5)SHHOR 0.10 0.15 0.07 0.13 0.06 0.22 0.17 0.19
(6)LRED 0.12 0.17 0.12 0.19 0.09 0.25 0.19 0.21
(7)BWHIT 0.13 0.23 0.17 0.26 0.16 0.26 0.16 0.16
(8)KERRY 0.13 0.10 0.07 0.18 0.10 0.23 0.18 0.15
(9)HEREF 0.25 0.25 0.23 0.26 0.22 0.24 0.14 0.11
(10)RPOLL 0.18 0.14 0.12 0.15 0.05 0.24 0.19 0.20
(11)WBLAC 0.16 0.12 0.09 0.16 0.09 0.22 0.16 0.17
(12)DEXTE 0.13 0.14 0.10 0.12 0.07 0.22 0.19 0.18
(13)SUSSE 0.18 0.17 0.11 0.23 0.09 0.27 0.20 0.17
(14)WPARK 0.31 0.31 0.31 0.37 0.29 0.28 0.21 0.21
(15)GCEST 0.16 0.09 0.19 0.09 0.26 0.19 0.17
(16)MDEV0 **★ 0.09 0.16 0.09 0.20 0.19 0.18
(17)BDEV0 * * * * * * 0.14 0.03 0.21 0.16 0.14
(18)MJERS kick 0.11 0.25 0.23 0.20
(19)GUERN * * * k kkk 0.21 0.14 0.15
(20)JERSE * * * kkk kkk kkk 0.19 0.16
(21)JUTLA * * * * * * kkk kkk kkk kkk 0.08
(22)ANGEL **★ kkk kkk kkk kkk * * *

(23)GERMB ★★★ kkk kkk kkk kkk * * * kkk

(24)HGREY kkk * * * kkk kkk kkk kkk *** kkk

(25)LMOUS * * * kkk kkk kkk kkk * * * kkk

(26)BERRE ★★★ •kick kkk kkk kkk kkk * * * kkk

(27)NDAMA kkk kkk kkk kkk kkk kkk kkk kkk

23 24 25 26 27
0.15 0.26 0.23 0.26 0.29
0.13 0.18 0.13 0.18 0.19
0.13 0.19 0.12 0.18 0.24
0.20 0.30 0.26 0.27 0.29
0.16 0.19 0.19 0.24 0.26
0.19 0.24 0.22 0.27 0.28
0.17 0.19 0.19 0.25 0.29
0.12 0.22 0.18 0.21 0.25
0.13 0.15 0.16 0.25 0.25
0.16 0.24 0.19 0.23 0.26
0.14 0.22 0.15 0.20 0.21
0.17 0.23 0.17 0.20 0.21
0.17 0.26 0.19 0.24 0.27
0.18 0.24 0.19 0.26 0.31
0.17 0.23 0.20 0.23 0.30
0.11 0.24 0.15 0.19 0.19
0.13 0.21 0.14 0.19 0.23
0.19 0.23 0.20 0.23 0.26
0.12 0.18 0.12 0.16 0.22
0.15 0.20 0.15 0.21 0.21
0.09 0.17 0.10 0.18 0.16
0.06 0.14 0.08 0.13 0.17

0.14 0.08 0.14 0.14
0.14 0.18 0.27

* * * 0.08 0.13
* * * kkk kkk 0.20
* * *  * * *  * * *  * * *



Appendix 3.3. Assignment of individuals to populations and percentage of correct classification (P<0.0001) of the Bayesian 

approach in the program Geneclass 2.0 (Cornuet et al. 1999).

Correctly

total 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 assigned

31 1 1 0.94

I 20 1 1 2 2 0.70

15 1 0.93

20 1 1 0.90

t 11 1 1 0.82

60 1 3 1 1  0.90

11 1 0.91

32 1 1 1 3 0.81

19 100

L 20 2 1 0.85

.C 17 3 1 1 0.71

E 154 3 2 1 1 1 2 1 3 2 1 5 0.86

E 50 1 1 3  1 0.88

*K 33 100

T 14 1 0.93



Appendix 3.3. (continued)

total 1 2 3

)EVO 32

EVO 20 1

ERS 21

IERN 12 1

RSE 25

TLA 17

GEL 24 1

:r m b 19 1

iREY 15

OUS 24

RRE 31

AMA 9

igned 0 1 1 2

4 5 6 7 8 9

1

2

0 11 1 1 7 1

10 11 12 13

1

1 1 

2

2 2

6 5 10 1

16V

Correct

14 15 16 17 18 19 20 21 22 23 24 25 26 27 assigne

2 2 0.81

2 1 0.60

1 0.86 

1 0.50

1.00

1 0.94

2 0.88

3 0.79

1.00

1 1 0.92

2 0.94

1 0.89

1 0 5  11 1 13 0 0  4 2 0 5 1  0
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Appendix 3.4. F values for each breed groups as calculated in the ESTIM 1.0 
software.

Breed F
White Park 0.32
Irish Moiled 0.31
Traditional Hereford 0.26
Shetland 0.26
Gloucester 0.26
N'dama 0.24
Belted Galloway 0.23
Hungarian Grey 0.23
British White 0.22
Mainland Jersey 0.22
Sussex 0.21
Lincoln Red 0.20
Island Jersey 0.20
Kerry 0.20
Red Poll 0.17
Berrenda 0.16
Shorthorn 0.15
Welsh Black 0.15
Dexter 0.15
Jutland 0.14
Milking Devons 0.13
Angeln 0.13
Aberdeen Angus 0.12
Red Devon 0.11
Limousin 0.11
German Black Pied 0.08
Guernsey 0.07
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Appendix 3.5. The presence of population bottlenecks and expansions in each 
population under the three models applied; Infinite Alleles, Two Phase, and Stepwise 
Mutation.

Bottleneck signal/significance (+=Heterozygote excess, -= Heterozygote 
deficiency | P<0.05,0.01,0.005 = * * * * * *  respectively)

Breed
Infinite Allele Model Two Phase Model Stepwise Mutation 

Model
Shetland 
Aberdeen Angus 
Belted Galloway

“ ‘ bottleneck 
*** bottleneck 
“ * bottleneck ** bottleneck

Irish Moiled 
Shorthorn 
Lincoln Red 
British White 
Kerry

* bottleneck 
*** bottleneck 
“ * bottleneck 
“ * bottleneck 
“  bottleneck ‘ expansion

Traditional Hereford 
Red Poll

“ * bottleneck 
*“  bottleneck “ * bottleneck

Welsh Black 
Dexter 
Sussex 
White Park 
Gloucester

* bottleneck 
“ * bottleneck 
“ * bottleneck “ * bottleneck * bottleneck

Milking Devons 
Red Devon

*** bottleneck 
“ * bottleneck *** bottleneck

Mainland Jersey 
Guernsey 
Island Jersey

*** bottleneck 
* bottleneck 
*** bottleneck * bottleneck

Jutland *** bottleneck *** bottleneck * bottleneck
Angeln
German Black Pied

“ * bottleneck 
*** bottleneck ★ ★

Hungarian Grey 
Limousin “ * bottleneck * bottleneck
Berrenda *** bottleneck ** bottleneck * bottleneck
N'dama

Appendix 3.6. The regression of Marginal Diversity against Expected Heterozygosity for 
all 27 breed populations

df SS MS F
Significance

F
jression 1 27.02491 27.02491 20.94095 0.000112
iidual 25 32.26323 1.290529
al 26 59.28814

Coefficients
Standard

Error t Stat P-value Lower 95%
Upper
95%

Lower
95.0%

Upper
95.0%

rcept
ariable

15.12826 2.568199 5.890613 3.8E-06 9.83896 20.41757 9.83896 20.41757

-18.6858 4.083313 -4.57613 0.000112 -27.0955 -10.276 -27.0955 -10.276
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Appendix 3.7. The regression of Marginal Diversity against ESTIM F values for all 27 
breed populations

df SS MS F
Significance

F
egression 1 30.97928 30.97928 27.35829 2.06E-05
esidual 25 28.30886 1.132354
otal 26 59.28814

Coefficients
Standard

Error tS tat P-value Lower 95%
Upper
95%

Lower
95.0%

Upper
95.0%

rtercept
Variable

0.347949 0.621744 0.559633 0.58071 -0.93256 1.628455 -0.93256 1.62845

16.54727 3.163603 5.230515 2.06E-05 10.03171 23.06283 10.03171 23.0628

Appendix 5.1. Complete Approximate Bayesian Computation method script, 
inclusive of functions.

function varargout = abc_twoadmixture(varargin)
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Copyright 2002-2003 The MathWorks, Inc. 
graphical = 1 % 1 to run graphical interface, zero otherwise 
nb_obs = 1;
sim_by_file = 100000 %how many simultions in each file?

% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...
'guijOpeningFcn', @abc_twoadmixture_OpeningFcn, ...
'gui_OutputFcn', @abc_twoadmixture_OutputFcn, ...
’gui_LayoutFcn', [], ...
'gui_Callback', []); 

if nargin && ischar(varargin{1}) 
gui_State.gui_Callback = str2func(varargin{1}); 

end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else
gui_mainfcn(gui_State, varargin{:});

end
% End initialization code - DO NOT EDIT 
% — Executes just before abc_twoadmixture is made visible, 
function abc_twoadmixture_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject;

% Update handles structure 
guidata(hObject, handles);

% UIWAIT makes abc_twoadmixture wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% — Outputs from this function are returned to the command line.
function varargout = abc_twoadmixture_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
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% eventdata reserved - to be defined in a future version of MATLAB 
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure 
varargout{1} = handles.output;
%==================== PARAMETERS ========================================
% — Executes on button press in uni_N1.

function uni_N1_Callback(hObject, eventdata, handles) 
set(handles.norm_N1 ,'Value',0) 
set(handles.gamma_N1,'Value',0) 
set(handles.log_N1,'Value',0) 
set(handles.param1N1,'String','Min') 
set(handles.param2N1,'String','Max') 
set(handles.val1_N1,'Visible','on') 
set(handles.val2_N1,'Visible','on')

% — Executes on button press in gamma_N1.
function gamma_N1_Callback(hObject, eventdata, handles)
set(handles.uni_N1, 'Value', 0)
set(handles.norm_N1, 'Value', 0)
set(handles.log_N1,'Value',0)
set(handles.param1 N1, 'String',''Shape')
set(handles.param2N1, 'String',''Scale')
set(handles.val1_N1,'Visible','on')
set(handles.val2_N1,'Visible','on')

%
% — Executes on button press in norm_N1. 
function norm_N1_Callback(hObject, eventdata, handles) 
set(handles.uni_N1,’Value',0) 
set(handles.log_N1 ,'Value',0) 
set(handles.gamma_N1,'Value',0) 
set(handles.param1 N1,'String',’Mean') 
set(handles.param2N1,'String','Var') 
set(handles.val1_N1,'Visible','on') 
set(handles.val1_N1,'Visible','on') 
set(handles.val2_N1,'Visible','on')

% — Executes on button press in log_N1. 
function log_N1_Callback(hObject, eventdata, handles) 
set(handles.uni_N1,'Value',0) 
set(handles.norm_N1,'Value',0) 
set(handles.gamma_N1, 'Value', 0) 
set(handles.param1N1, 'String', 'Mean') 
set(handles.param2N1,'String','Stad Dev') 
set(handles.val1_N1, 'Visible','on') 
set(handles.val2_N1,'Visible','on')

%============= N1 chosen distribution parameters ==========================
function val1_N1_Callback(hObject, eventdata, handles)
N1_1= str2double(get(hObject, 'String')); 
handles. N1_1 = N1_1; 
guidata(hObject, handles)
function val1_N1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_N1_Callback(hObject, eventdata, handles)
N1_2= str2double(get(hObject, 'String')); 
handles.N1_2 = N1_2;
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guidata(hObject,handles)
function val2_N1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'default(JicontrolBackgroundColor’)) 

set(hObject,'BackgroundColor','white'); 
end

% = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =  N 2  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function uni_N2_Callback(hObject, eventdata, handles) 
set(handles.log_N2,'Value',0) 
set(handles.norm_N2,'Value',0) 
set(handles.gamma_N2, 'Value', 0) 
set(handles.param1N2,'String','Min') 
set(handles.param2N2,'String','Max’) 
set(handles.val1_N2,'Visible','on') 
set(handles.val2_N2,'Visible','on')

% --- Executes on button press in gamma_N2. 
function gamma_N2_Callback(hObject, eventdata, handles) 
set(handles.log_N2,'Value',0) 
set(handles.norm_N2,’Value’,0) 
set(handles.uni_N2,'Value',0) 
set(handles.param1N2,'String','Shape') 
set(handles.param2N2, 'String', 'Scale') 
set(handles.val1_N2,'Visible','on') 
set(handles.val2_N2,'Visible','on')

% — Executes on button press in norm_N2. 
function norm_N2_Callback(hObject, eventdata, handles) 
set(handles.log_N2,'Value',0) 
set(handles.uni_N2, 'Value', 0) 
set(handles.gamma_N2,'Value',0) 
set(handles.param1N2,'String','Mean') 
set(handles.param2N2,'String','Var') 
set(handles.val1_N2,'Visible','on') 
set(handles.val2_N2,'Visible','on')

% — Executes on button press in log_N2. 
function log_N2_Callback(hObject, eventdata, handles) 
set(handles.uni_N2,'Value',0) 
set(handles.norm_N2,'Value',0) 
set(handles.gamma_N2,'Value',0) 
set(handles.param1N2,'String','Mean') 
set(handles.param2N2,'String','Std Dev') 
set(handles.val1_N2, 'Visible', 'on') 
set(handles.val2_N2, 'Visible', 'on')

%==================== ^2 parameters ======================================
function val1_N2_Callback(hObject, eventdata, handles)
N2_1= str2double(get(hObject, 'String')); 
handles.N2_1 = N2_1; 
guidata(hObject, handles)
function val1_N2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundCo!or'), get(0,’defaultUicontrolBackgroundCo!or’)) 

set(hObject,'BackgroundColor','white'); 
end

function val2_N2_Callback(hObject, eventdata, handles)
N2_2= str2double(get(hObject, 'String')); 
handles. N2_2 = N2_2; 
guidata(hObject, handles)
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function val2_N2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

%======================= N3 ============================================

function uni_N3_Callback(hObject, eventdata, handles) 
set(handles.log_N3,'Value',0) 
set(handles.norm_N3, 'Value', 0) 
set(handles.gamma_N3,'Value',0) 
set(handles.param1N3,'String','Min') 
set(handles.param2N3,'String','Max') 
set(handles.val1_N3, 'Visible', 'on') 
set(handles.val2_N3,'Visible','on')

function norm_N3_Callback(hObject, eventdata, handles) 
set(handles.uni_N3,'Value',0) 
set(handles.log_N3,'Value',0) 
set(handles.gamma_N3,'Value',0) 
set(handles.param1N3,'String','Mean') 
set(handles.param2N3, 'String', 'Var') 
set(handles.val1_N3,'Visible','on') 
set(handles.val2_N3,'Visible','on')

% — Executes on button press in norm_N3. 
function gamma_N3_Callback(hObject, eventdata, handles) 
set(handles.uni_N3, Value',0) 
set(handles.norm_N3,'Value',0) 
set(handles.log_N3,'Value',0) 
set(handles.param1N3, 'String','Shape') 
set(handles.param2N3, 'String', 'Scale') 
set(handles.val1_N3,'Visible','on') 
set(handles.val2_N3,'Visible','on')

% — Executes on button press in log_N3. 
function log_N3_Callback(hObject, eventdata, handles) 
set(handles.uni_N3,'Value',0) 
set(handles.norm_N3, 'Value', 0) 
set(handles.gamma_N3,'Value',0) 
set(handles.param1N3, 'String', 'Mean') 
set(handles.param2N3,'String','Std Dev’) 
set(handles.val1_N3, 'Visible','on') 
set(handles.val2_N3, 'Visible', 'on')

%===================== chosen dist parameters =============================
function val1_N3_Callback(hObject, eventdata, handles)
N3_1= str2double(get(hObject, 'String')); 
handles.N3_1 = N3_1; 
guidata(hObject, handles)
function val1_N3_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,’defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_N3_Callback(hObject, eventdata, handles)
N3_2= str2double(get(hObject, 'String')); 
handles. N3_2 = N3_2; 
guidata(hObject, handles)
function val2_N3_CreateFcn(hObject, eventdata, handles)
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if ispc && isequal(get(hObject,'BackgroundCo!or'), get(0,'defaultUicontroiBackgroundColor')) 
set(hObject,'BackgroundColor','white'); 

end

%============================= Nh ======================================
% — Executes on button press in uni_Nh. 

function uni_Nh_Callback(hObject, eventdata, handles) 
set(handles.log_Nh,'Value',0) 
set(handles.norm_Nh,'Value',0) 
set(handles.gamma_Nh,'Value',0) 
set(handles.param1Nh,'String','Min') 
set(handles.param2Nh,'String','Max') 
set(handles.val1_Nh, 'Visible','on') 
set(handles.val2_Nh,'Visible','on')

% — Executes on button press in norm_Nh. 
function norm_Nh_Callback(hObject, eventdata, handles) 
set(handles.log_Nh,'Value',0) 
set(handles.uni_Nh,'Value',0) 
set(handles.gamma_Nh,'Value',0) 
set(handles.param1Nh,'String','Mean') 
set(handles.param2Nh,'String','Var') 
set(handles.val1_Nh,'Visible','on') 
set(handles.val2_Nh,'Visible','on')

% — Executes on button press in gamma_Nh. 
function gamma_Nh_Callback(hObject, eventdata, handles) 
set(handles.log_Nh,'Value',0) 
set(handles.norm_Nh,'Value',0) 
set(handles.uni_Nh,'Value',0) 
set(handles.param1Nh,'String','Shape') 
set(handles.param2Nh,'String','Scale') 
set(handles.val1_Nh,'Visible','on') 
set(handles.val2_Nh,'Visible','on')

% — Executes on button press in log_Nh. 
function log_Nh_Callback(hObject, eventdata, handles) 
set(handles.uni_Nh,'Value',0) 
set(handles.norm_Nh,'Value',0) 
set(handles.gamma_Nh,'Value',0) 
set(handles.param1Nh,'String','Mean') 
set(handles.param2Nh,'String','Std Dev') 
set(handles.val1_Nh,'Visible','on') 
set(handles.val2_Nh,'Visible','on')

function val1_Nh_Callback(hObject, eventdata, handles)
Nh_1= str2double(get(hObject, 'String')); 
handles. Nh_1 = Nh_1; 
guidata(hObject, handles)
function val1_Nh_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_Nh_Callback(hObject, eventdata, handles)
Nh_2= str2double(get(hObject, 'String')); 
handles.Nh_2 = Nh_2; 
guidata(hObject, handles)
function val2_Nh_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,’defaultUicontrolBackgroundColor'))
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set(hObject,'BackgroundColor7white');

end

%====================== Mutation rate ===================================:
function uni_mut_rate_Callback(hObject, eventdata, handles) 
set(ha nd les. log_m ut_rate, 'Va I u e', 0) 
set(handles.param1mut,'String','Min') 
set(handles.param2mut,'String',’Max') 
set(handles.val1_mut_rate,'Visible','on') 
set(handles.val2_mut_rate,'Visible','on')

% — Executes on button press in log_mut_rate. 
function log_mut_rate_Callback(hObject, eventdata, handles) 
set(handles.uni_mut_rate,'Value',0) 
set(handles.param1mut,'String','Mean') 
set(handles.param2mut,'String','Std Dev') 
set(handles.val1_mut_rate,'Visible','on') 
set(handles.val2_mut_rate,'Visible','on')

function val1_mut_rate_Callback(hObject, eventdata, handles) 
mutjrate_1 = str2double(get(hObject, 'String')); 
handles. mut_rate_1 = mut_rate_1; 
guidata(hObject,handles)
function val1_mut_rate_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_mut_rate_Callback(hObject, eventdata, handles) 
mut_rate_2= str2double(get(hObject, 'String')); 
handles.mut_rate_2 = mut_rate_2; 
guidata(hObject,handles)
function val2_mut_rate_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor', 'white'); 
end

0/0= = = = = = = =  = = = = = = = =  = = = ==  = = = = == = = = = = = = ==  = = = = = =  = = =  = = = = = = =  = = =

% — Executes on button press in uni_Tadm2. 
function uni_Tadm2_Callback(hObject, eventdata, handles) 
set(handles.norm_Tadm2,'Value',0) 
set(handles.gamma_Tadm2,'Value',0) 
set(handles.log_Tadm2,'Value',0) 
set(handles.param1Tadm2, 'String', 'Min') 
set(handles.param2Tadm2,'String','Max') 
set(handles.val1_Tadm2, 'Visible','on') 
set(handles.val2_Tadm2,'Visible','on')

% — Executes on button press in norm_Tadm2. 
function norm_Tadm2_Callback(hObject, eventdata, handles) 
set(handles.uni_Tadm2,'Value',0) 
set(handles.gamma_Tadm2,'Value',0) 
set(handles.log_Tadm2,'Value',0) 
set(handles.param1Tadm2,'String','Mean') 
set(handles.param2Tadm2,'String','Var') 
set(handles.val1_Tadm2,'Visible','on') 
set(handles.val2_Tadm2, 'Visible', 'on')

% — Executes on button press in gamma_Tadm2. 
function gamma_Tadm2_Callback(hObject, eventdata, handles)
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set(handlesmorm_Tadm2,'Value',0) 
set(handles.uni_Tadm2,'Value',0) 
set(handles.log_Tadm2,'Value',0) 
set(handles.param1Tadm2,'String','Shape') 
set(handles.param2Tadm2,'String','Scale') 
set(handles.val1_Tadm2, ’Visible','on') 
set(handles.val2_Tadm2, 'Visible', 'on')

% — Executes on button press in log_Tadm2. 
function log_Tadm2J3allback(hObject, eventdata, handles) 
set(handles.norm_Tadm2,'Value',0) 
set(handles.gamma_Tadm2, 'Value', 0) 
set(handles.uni_Tadm2, 'Value', 0) 
set(handles.param1Tadm2,'String','Mean') 
set(handles.param2Tadm2,'String','Std Dev') 
set(handles.val1_Tadm2,'Visible','on') 
set(handles.val2_Tadm2,'Visible','on')

function val1_Tadm2_Callback(hObject, eventdata, handles)
Tadm2_1= str2double(get(hObject, 'String')); 
handles.Tadm2_1 =Tadm2_1; 
guidata(hObject, handles)
function val1_Tadm2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_Tadm2_Callback(hObject, eventdata, handles)
Tadm2_2= str2double(get(hObject, 'String')); 
handles.Tadm2_2 = Tadm2_2; 
guidata(hObject,handles)
function val2_Tadm2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,’defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

%=============== Earlier admixture time ===================================
% — Executes on button press in gamma_Tadm1. 

function gamma_Tadm1_Callback(hObject, eventdata, handles) 
set(handles.norm__Tadm1,'Value',0) 
set(handles.log_Tadm1,'Value',0) 
set(handles.uni_Tadm1, 'Value', 0) 
set(handles.param1Tadm1,'String','Shape') 
set(handles.param2Tadm1, 'String', 'Scale') 
set(handles.val1_Tadm1,'Visible','on') 
set(handles.val2_Tadm1,'Visible','on')

% — Executes on button press in log_Tadm1. 
function log_Tadm1_Callback(hObject, eventdata, handles) 
set(handles.norm_Tadm1,'Value',0) 
set(handles.gamma_Tadm1,'Value',0) 
set(handles.uni_Tadm1,'Value',0) 
set(handles.param1Tadm1,'String','Mean') 
set(handles.param2Tadm1,'String','Std Dev') 
set(handles.val1_Tadm1,'Visible','on') 
set(handles.val2_Tadm1,'Visible1,'on')

% — Executes on button press in norm_Nh. 
function norm_Tadm1_Callback(hObject, eventdata, handles) 
set(handles.log_Tadm1,'Value1,0)
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set(handles.param2Tsplit,'StringVScale') 
set(handles.val1_Tsplit,'Visible','on') 
set(handles.val2_Tsplit, 'Visible', 'on')

% — Executes on button press in log_Tsplit. 
function log_Tsplit_Callback(hObject, eventdata, handles) 
set(handles.norm_Tsplit,'Value',0) 
set(handles.gamma_Tsplit,'Value',0) 
set(handles.uni_Tsplit,'Value',0) 
set(handles.param1Tsplit,'String','Mean') 
set(handles.param2Tsplit,'String','Std Dev') 
set(handles.val1_Tsplit,'Visible','on') 
set(handles.val2_Tsplit,'Visible','on')

%
function val1_Tsplit_Callback(hObject, eventdata, handles)
Tsplit_1= str2double(get(hObject, 'String')); 
handles.Tsplit_1 =Tsplit_1; 
guidata(hObject, handles)

function val1_Tsplit_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_Tsplit_Callback(hObject, eventdata, handles)
Tsplit_2= str2double(get(hObject, 'String')); 
handles.Tsplit_2 = Tsplit_2; 
guidata(hObject,handles)
function val2_Tsplit_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor', 'white'); 
end

%======================= p3 ============================================:
function uni_p3_Callback(hObject, eventdata, handles) 
set(handles.beta_p3,'Value',0) 
set(handles.param1p3,'String','Min') 
set(handles.param2p3,'String','Max') 
set(handles.val1_p3,'Visible','on') 
set(handles.val2_p3, ’Visible’, ’on')

% — Executes on button press in beta_p3. 
function beta_p3_Callback(hObject, eventdata, handles) 
set(handles.uni_p3,'Value',0) 
set(handles.param1p3,'String','a') 
set(handles.param2p3,'String','b') 
set(handles.val1_p3,'Visible','on') 
set(handles.val2_p3, 'Visible','on')

function val1_p3_Callback(hObject, eventdata, handles) 
p3_1= str2double(get(hObject, 'String')); 
handles.p3_1 = p3_1; 
guidata(hObject, handles)
function val1_p3_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor’, 'white'); 
end

function val2_p3_Callback(hObject, eventdata, handles)
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p3_2= str2double(get(hObject, 'String')); 
handles.p3_2 = p3_2; 
guidata(hObject, handles)
function val2_p3_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

% =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  = = =  =  =  p 1  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = :

function uni_p1_Callback(hObject, eventdata, handles) 
set(handles.beta_p1,'Value',0) 
set(handles.param1 p1,'String1,'Min') 
set(handles.param2p1,'String',’Max') 
set(handles.val1_p1,'Visible1,'on') 
set(handles.val2_p1, 'Visible', 'on')

% — Executes on button press in beta_p1. 
function beta_p1_Callback(hObject, eventdata, handles) 
set(handles.uni_p1,'Value',0) 
set(handles.param1 p1,'String','a') 
set(handles.param2p1,'String','b') 
set(handles.val1_p1,'Visible','on') 
set(handles.val2_p1,'Visible1,'on')

function val1_p1_Callback(hObject, eventdata, handles) 
p1_1= str2double(get(hObject, 'String')); 
handles.p1_1 = p1_1; 
guidata(hObject, handles)
function val1_p1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function val2_p1_Callback(hObject, eventdata, handles) 
p1_2= str2double(get(hObject, 'String')); 
handles.p1_2 = p1_2; 
guidata(hObject, handles)
function val2_p1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

%============================= Nanc ====================================:
function uni_Nanc_Callback(hObject, eventdata, handles) 
set(handles.norm_Nanc,'Value',0) 
set(handles.gamma_Nanc,'Value',0) 
set(handles.log_Nanc,'Value',0) 
set(handles.param1 Nanc, 'String', 'Min') 
set(handles.param2Nanc,'String','Max') 
set(handles.val1_Nanc,'Visible','on') 
set(handles.val2_Nanc, 'Visible', 'on')

% — Executes on button press in norm_Nanc. 
function norm_Nanc_Callback(hObject, eventdata, handles) 
set(handles.uni_Nanc,'Value',0) 
set(handles.gamma_Nanc,'Value',0) 
set(handles.log_Nanc,'Value',0) 
set(handles.param1 Nanc,'String','Mean') 
set(handles.param2Nanc,'String','Var') 
set(handles.val1_Nanc,'Visible','on')
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set(handles.val2_Nanc,'Visible','on')

% — Executes on button press in gamma_Nanc. 
function gamma_Nanc_Callback(hObject, eventdata, handles) 
set(handles.norm_Nanc,'Value',0) 
set(handles.uni_Nanc, 'Value', 0) 
set(handles.log_Nanc,'Value',0) 
set(handles.param1 Nanc,'String','Shape') 
set(handles.param2Nanc,'String','Scale') 
set(handles.val1_Nanc, 'Visible',''on') 
set(handles.val2_Nanc,'Visible','on')

% — Executes on button press in log_Nanc. 
function log_Nanc_Callback(hObject, eventdata, handles) 
set(handles.norm_Nanc,'Value',0) 
set(handles.gamma_Nanc,'Value',0) 
set(handles.uni_Nanc,'Value',0) 
set(handles.param1 Nanc,'String','Mean') 
set(handles.param2Nanc,'String','Std Dev') 
set(handles.val1_Nanc,'Visible','on') 
set(handles.val2_Nanc,'Visible','on')

function val1_Nanc_Callback(hObject, eventdata, handles)
Nanc_1= str2double(get(hObject, 'String')); 
handles. Nanc__1 =Nanc_1; 
guidata(hObject, handles)
function val1_Nanc_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor’)) 

set(hObject,'BackgroundColor','white'); 
end

function val2_Nanc_Callback(hObject, eventdata, handles)
Nanc_2= str2double(get(hObject, 'String')); 
handles. Nanc_2 = Nanc_2; 
guidata(hObject,handles)
function val2_Nanc_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

samples sizes ======================================
function Nsam1_Callback(hObject, eventdata, handles)
Nsaml = str2double(get(hObject, 'String')); 
if isnan(Nsaml) 

set(hObject, 'String', 0); 
errordlg('Nsam1 must be a number','Error'); 

end
if Nsaml <=0 

set(hObject, 'String', 0);
errordlg('Nsam1 must be a positive number','Error'); 

end
handles.Nsaml = Nsaml; 
guidata(hObject,handles)

% — Executes during object creation, after setting all properties, 
function Nsam1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundCo!or'), get(0,’defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end
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function Nsam2_Callback(hObject, eventdata, handles)
Nsam2 = str2double(get(hObject, 'String')); 
if isnan(Nsam2) 

set(hObject, 'String', 0); 
errordlg(’Nsam2 must be a number','Error'); 

end
if Nsam2<=0 

set(hObject, 'String', 0);
errordlg('Nsam2 must be a positive number','Error'); 

end
handles.Nsam2 = Nsam2; 
guidata(hObject,handles)

% — Executes during object creation, after setting all properties, 
function Nsam2_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,’defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function Nsam3_Callback(hObject, eventdata, handles)
Nsam3 = str2double(get(hObject, 'String')); 
if isnan(Nsam3) 

set(hObject, 'String', 0); 
errordlg('Nsam3 must be a number','Error'); 

end
if Nsam3<=0 

set(hObject, 'String', 0);
errordlg('Nsam3 must be a positive number','Error'); 

end
handles.Nsam3 = Nsam3; 
guidata(hObject,handles)

% — Executes during object creation, after setting all properties, 
function Nsam3_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,’defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function Nsam4_Callback(hObject, eventdata, handles)
Nsam4 = str2double(get(hObject, 'String')); 
if isnan(Nsam4) 

set(hObject, ’String', 0); 
errordlg('Nsam4 must be a number','Error'); 

end
if Nsam4<=0 

set(hObject, 'String', 0);
errordlg('Nsam4 must be a positive number','Error'); 

end
handles.Nsam4 = Nsam4; 
guidata(hObject,handles)

% — Executes during object creation, after setting all properties, 
function Nsam4_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor’)) 

set(hObject,'BackgroundColor','white'); 
end

function Nsim_Callback(hObject, eventdata, handles)
Nsim = str2double(get(hObject, 'String'));
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if isnan(Nsim) 
set(hObject, 'String', 0); 
errordlg('Nsim must be a number','Error'); 

end
if Nsim<=0 

set(hObject, 'String', 0);
errordlg('Nsim must be a positive number1,'Error'); 

end
handles.Nsim = Nsim; 
guidata(hObject,handles)

% — Executes during object creation, after setting all properties, 
function Nsim_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,’BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

function nb_loci_Callback(hObject, eventdata, handles) 
nbjoci = str2double(get(hObject, 'String')); 
if isnan(nbjoci) 

set(hObject, 'String', 0); 
errordlg('nb_loci must be a number',’Error1); 

end
if nb_loci<=0 

set(hObject, 'String', 0);
errordlg('nb_loci must be a positive number','Error'); 

end
handles.nbjoci = nbjoci; 
guidata(hObject,handles)
% — Executes during object creation, after setting all properties, 
function nb_loci_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundCo!or'), get(0,'defaultUicontrolBackgroundColor')) 

set(hObject,'BackgroundColor','white'); 
end

% = = = = = = = = = = = = = = = =  ru n  = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

function Calculate_Callback(hObject, eventdata, handles)
% if exist('abc_twoadmixture','dir') ~= 7 
% eval(['mkdir abc_twoadmixture']);

% : = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = : = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

%=
% IN CASE YOU DON'T WANT TO USE THE GRAPHICAL INTERFACE define the parameters here 
graphical = 1 
make_obs = 0 
if graphical == 0

handles.Nsim = 1000000 
handles.nbjoci = 2 
handles.Nsaml = 20 
handles.Nsam2 = 20 
handles. Nsam3 = 20 
handles.Nsam4 = 20

end

% SIMULATE OBSERVED DATA 
if graphical == 0 & make_obs==1

nb obs = 500



205

% effective size
handles. N1=10000*ones(1,nb_obs)'; 
handles. N2=10000*ones(1,nb_obs)'; 
handles. N3=10000*ones(1,nb_obs)'; 
handles.Nh=10000*ones(1,nb_obs)'; 
handles.Nanc=10000*ones(1,nb_obs)';

% tadm2 prior (unif 1-10) 
handles.Tadm2=10*ones(1,nb_obs)';

% tadml prior (unif 1-100) 
handles.Tadml=10*ones(1 ,nb_obs)';

% tsplit (unif 1000-10000) 
handles.Tsplit=50000*ones(1,nb_obs)';

% mut rate (unif 0.00001 - 0.001) 
handles.mut_rate=0.0001*ones(1,nb_obs)';

% p1 and p3 (unif 0-1) 
handles.p3=0*ones(1 ,nb_obs)'; 
handles.p1=0.7*ones(1,nb_obs)';

end

nb_obs = 1; 
sim_by_file = 100000
nbfiles = ceil(handles.Nsim/sim_by_file); % how many files 
nbsimfile = sim_by_file*ones(1,nbfiles-1); % how many sim per file
nbsimfile(nbfiles) = handles.Nsim - sum(nbsimfile); % vector with number of simulations of each file 
tic
% GO FROM FILE 1 TO NBFILES 
for file = 1:nbfiles

% SAMPLE PARAMETERS FROM THE PRIORS %

if graphical == 1

%N1 :
% If the normal distribution for the prior is selected 
if get(handles.norm_N1 ,'Value')==1 
%if handles. norm_N1==1 

handles. N1 =zeros(nbsimfile(file), 1);
% Negative values are not allowed, and hence a new value will 
% be sampled until it is positive 
for j=1:nbsimfile(file) 

while handles.N1(j)<=0
handles. N1(j)=ceil(normrnd(handles.N1_1, handles. N1_2,1,1)); 

end 
end

% selecting the lognormal prior 
elseif get(handles.log_N1 ,'Value')==1 

handles.N1=ceil(lognrnd(handles.N1_1,handles.N1_2,nbsimfile(file),1));
% selecting the gamma prior 
elseif get(handles.gamma_N1 ,Value')==1 

handles.N1=ceil(gamrnd(handles.N1_1,handles.N1_2,nbsimfile(file),1));
% selecting the uniform prior 
elseif get(handles.uni_N1,'Value')==1
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handles. N1=ceil(handles.N1_1+(handles.N1_2-handles.N1_1)*rand(1,nbsimfile(file)))'; 

else
errordlg('N1 distribution has not been recognised '/Error'); 

end

%N2 :
% If the normal distribution for the prior is selected 
if get(handles.norm_N2/Value')==1 

handles. N2=zeros(nbsimfile(file), 1);
% Negative values are not allowed, and hence a new value will 
% be sampled until it is positive 
for j=1:nbsimfile(file) 

while handles.N2(j)<=0
handles.N2(j)=ceil(normmd(handles.N2_1,handles.N2_2,1,1));

end
end

% selecting the lognormal prior 
elseif get(handles.log_N2,'Value')==1 

handles. N2=ceil(lognrnd(handles.N2_1 .handles. N2_2,nbsimfile(file),1));
% selecting the gamma prior 

elseif get(handles.gamma_N2,'Value')==1
handles. N2=ceil(gamrnd(handles.N2_1 .handles. N2_2,nbsimfile(file),1));

% selecting the uniform prior 
elseif get(handles.uni_N2,'Value')==1 

handles. N2=ceil(handles.N2_1 +(handles.N2_2-handles.N2_1 )*rand(1, nbsimfile(file)))'; 
else

errordlg('N2 distribution has not been recognised '/Error'); 
end

%N3 (same as in N1 and N2): 
if get(handles.norm_N3/Value')==1 

handles. N3=zeros(nbsimfile(file),1); 
for j=1:nbsimfile(file) 

while handles. N3(j)<=0
handles. N3(j)=ceil(normrnd(handles.N3_1 ,handles.N3_2,1,1)); 

end 
end

elseif get(handles.log_N3/Value')==1 
handles. N3=ceil(lognrnd(handles.N3_1,handles.N3_2,nbsimfile(file),1)); 

elseif get(handles.gamma_N3,'Value')==1 
handles. N3=ceil(gamrnd(handles.N3_1,handles.N3_2,nbsimfile(file),1)); 

elseif get(handles.uni_N3,'Value')==1 
handles.N3=ceil(handles.N3_1+(handles.N3_2-handles.N3_1)*rand(1,nbsimfile(file)))'; 

else
errordlg('N3 distribution has not been recognised '/Error'); 

end

%Nh (same as in N1 and N2): 
if get(handles.norm_Nh/Value')==1 

handles. Nh=zeros(nbsimfile(file),1); 
for j=1:nbsimfile(file) 

while handles.Nh(j)<=0 
handles.Nh(j)=ceil(normrnd(handles.Nh_1,handles.Nh_2,1,1)); 

end 
end

elseif get(handles.log_Nh,'Value')==1 
handles. Nh=ceil(lognrnd(handles.Nh_1 .handles. Nh_2,nbsimfile(file), 1)); 

elseif get(handles.gamma_Nh,'Value')==1 
handles.Nh=ceil(gamrnd(handles.Nh_1,handles.Nh_2,nbsimfile(file),1)); 

elseif get(handles.uni_Nh,'Value')==1
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handles.Nh=ceil(handles.Nh_1 +(handles.Nh_2-handles.Nh_1 )*rand(1 ,nbsimfile(file)))'; 
else

errordlg('Nh distribution has not been recognised 'Error'); 
end

%Tadm2
% (this is the time of the most recent admixture event):
% if a normal prior is assumed 
if get(handles.norm_Tadm2,'Value')==1 

handles.Tadm2=zeros(nbsimfile(file),1);
% Negative values are not allowed, and hence a new value will 
% be sampled until it is positive 
for j=1:nbsimfile(file) 

while handles.Tadm2(j)<=0
handles.Tadm2(j)=ceil(normrnd(handles.Tadm2_1,handles.Tadm2_2,1,1));

end
end

% if the prior is lognormal
elseif get(handles.log_Tadm2,'Value')==1

handles.Tadm2=ceil(lognrnd(handles.Tadm2_1,handles.Tadm2_2,nbsimfile(file),1));
% if the prior is gamma 
elseif get(handles.gamma_Tadm2,'Value')==1 

handles.Tadm2=ceil(gamrnd(handles.Tadm2_1,handles.Tadm2_2,nbsimfile(file),1));
% if the prior is uniform 
elseif get(handles.uni_Tadm2,'Value')==1 

handles.Tadm2=ceil(handles.Tadm2_1+(handles.Tadm2_2- 
handles.Tadm2_1)*rand(1,nbsimfile(file)))'; 

else
errordlg('Tadm2 distribution has not been recognised '/Error'); 

end

%Tadm1
% (this is the time of the oldest and first admixture event):
% note that the values of Tadml must be higher than Tadm2 
%(Tadm1 >.Tadm2) 
if get(handles.norm_Tadm1 ,'Value')==1 

handles.Tadm1=zeros(nbsimfile(file),1);
% Values Tadml < Tadm2 are not allowed and new values are 
% sampled until we get Tadml > Tadm2 
for j=1:nbsimfile(file) 

while handles.Tadm1(j)<=handles.Tadm2(j)
handles.Tadm1(j)=ceil(normrnd(handles.Tadm1_1,handles.Tadm1_2,1,1));

end
end

% if lognormal prior
elseif get(handles.log_Tadm1,'Value')==1 

handles.Tadml =ceil(lognmd(handles.Tadm1_1, handles.Tadm1_2,nbsimfile(file),1)); 
for j=1:nbsimfile(file) 

while handies.Tadm1(j)<=handles.Tadm2(j) 
handles.Tadm1(j)=ceil(lognrnd(handles.Tadm1_1,handles.Tadm1_2,nbsimfile(file),1)); 

end 
end

% if gamma prior
elseif get(handles.gamma_Tadm1 ,'Value')==1 

handles.Tadm1=ceil(gamrnd(handles.Tadm1_1,handles.Tadm1_2lnbsimfile(file),1)); 
for j=1:nbsimfile(file) 

while handles.Tadml (j)<=handles.Tadm2(j) 
handles.Tadm1(j)=ceil(gamrnd(handles.Tadm1_1,handles.Tadm1_2Inbsimfile(file),1)); 

end 
end
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% if uniform prior
elseif get(handles.uni_Tadm1 ,'Value')==1

% this is a uniform prior between Tadm2 and max_Tadm1 (if mac 
% Tadm2 > min Tadml) 
if handles.Tadm1_1 < handles.Tadm2_2

handles.Tadm1=ceil(handles.Tadm2+(handles.Tadm1_2-
handles.Tadm2).*rand(1,nbsimfile(file))');

else
handles.Tadm1=ceil(handles.Tadm1_1+(handles.Tadm1_2-

handles.Tadm1_1)*rand(1)nbsimfile(file))');
end

else
errordlg('Tadm1 distribution has not been recognised '/Error'); 

end

%Tsplit:
% (this is the time of split of the ancestral population that 
% gave rise to the parental populations):
% note that the values of Tsplit must be higher than Tadml 
% (Tsplit > Tadml > Tadm2) 
handles.Tsplit=handles.Tadm1; 
for j=1:nbsimfile(file)

% A new value will be sampled until Tsplit is higher than Tadml 
while handles.TsplitQ)<= handles.Tadm1(j) 

if get(handles.norm_Tsplit,'Value')==1
handles.Tsplit(j)=ceil(normrnd(handles.Tsplit_1,handles.Tsplit_2,1,1)); 

elseif get(handles.log_Tsplit,'Value')==1
handles.Tsplit(j)=ceil(lognrnd(handles.Tsplit_1,handles.Tsplit_2,1,1)); 

elseif get(handles.gamma_Tsplit,'Value')==1
handles.Tsplit(j)=ceil(gamrnd(handles.Tsplit_1,handles.Tsplit_2,1,1)); 

elseif get(handles.uni_Tsplit/Value')==1 
handles.TsplitG)=ceil(handles.Tsplit_1+(handles.Tsplit_2-handles.Tsplit_1)*rand(1,1))'; 

else
errordlg('Tsplit distribution has not been recognised '/Error'); 

end 
end 

end

%Nanc:
% effective size of the ancestral population 
if get(handles.norm_Nanc/Value')==1 

handles. Nanc=zeros(nbsimfile(file), 1); 
for j=1:nbsimfile(file) 

while handles.Nanc(j)<=0
handles.Nanc(j)=ceil(normrnd(handles.Nanc_1, handles. Nanc_2,1,1)); 

end 
end

elseif get(handles.log_Nanc,'Value')==1 
handles. Nanc=ceil(lognrnd(handles.Nanc_1,handles.Nanc_2,nbsimfile(file),1)); 

elseif get(handles.gamma_Nanc/Value')==1 
handles.Nanc=ceil(gamrnd(handles.Nanc_1,handles.Nanc_2,nbsimfile(file),1)); 

elseif get(handles.uni_Nanc,'Value')==1 
handles.Nanc=ceil(handles.Nanc_1+(handles.Nanc_2-handles.Nanc_1)*rand(1,nbsimfile(file)))'; 

else
errordlg('Nanc distribution has not been recognised '/Error'); 

end

%mut_rate:
% mutation rate
if get(handles.uni_mut_rate/Value')==1
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handles.mut_rate=(handles.mut_rate_1+(handles.mut_rate_2-
handles.mut_rate_1)*rand(1,nbsimfile(file)))';

elseif get(handles.log_mut_rate,'Value')==1
handles. mut_rate=ceil(lognrnd(handles.mut__rate_1 .handles. mut_rate_2,nbsimfile(file),1)); 

else
errordlg('Mutation rate distribution has not been recognised '/Error'); 

end

%p3:
% proportion of the hybrid population that came from parental 
% population 3, in the second admixture event (Tadm2) 
if get(handles.beta_p3,'Value')==1 

handles.p3=ceil(betarnd(handles.p3_1,handles.p3_2,nbsimfile(file),1)); 
elseif get(handles.uni_p3,'Value')==1 

handles.p3=(handles.p3_1+(handles.p3_2-handles.p3_1)*rand(1,nbsimfile(file)))'; 
else

errordlg('p3 distribution has not been recognised '/Error'); 
end

%p1:
% proportion of the hybrid population that came from parental 
% population 1 in the first admixture event (Tadml) 
if get(handles.beta_p1 ,'Value')==1 

handles.p1=ceil(betarnd(handles.p1_1,handles.p1_2,nbsimfile(file),1)); 
elseif get(handles.uni_p1,'Value')==1 

handles.p1=(handles.p1_1+(handles.p1_2-handles.p1_1)*rand(1,nbsimfile(file)))'; 
else

errordlg('p1 distribution has not been recognised '/Error'); 
end

else % if graphical is zero (when we don't want to use graphical interface)

% effective size prior (uniform 1000-15000) 
handles.N 1 =ceil(1000+(15000-1000)*rand(1 ,nbsimfile(file)))'; 
handles. N2=ceil(1000+(15000-1000)*rand(1,nbsimfile(file)))'; 
handles.N3=ceil(1000+(15000-1000)*rand(1,nbsimfile(file)))'; 
handles.Nh=ceil(1000+(15000-1000)*rand(1,nbsimfile(file)))'; 
handles.Nanc=ceil(1000+(15000-1000)*rand(1,nbsimfile(file)))';

% tadm2 prior (unif 1-100)
handles.Tadm2=ceil(1+(100-1)*rand(1,nbsimfile(file)))';

% tadml prior (unif 1-100)
handles.Tadm1=ceil(handles.Tadm2+(100-handles.Tadm2).*rand(1,nbsimfile(file))');

% tsplit (unif 1000-10000)
handles.Tsplit=ceil(1000+(15000-1000)*rand(1,nbsimfile(file)))';

% mut rate (unif 0.00001 -0.001)
handles.mut_rate=(0.00001+(0.001-0.00001 )*rand(1,nbsimfile(file)))';

% p1 and p3 (unif 0-1)
handles. p3=(0+(1-0)*rand(1,nbsimfile(file)))';
handles.p1=(0+(1-0)*rand(1,nbsimfile(file)))';

end; % END OF IF NOT GRAPHICAL, OTHERWISE THE PARAM WERE SAMPLED BEFORE

% STANDARDIZE THE PARAMETERS ACCORDING TO ms

param = [];
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nb_pop=4;
Nsam=handles. Nsaml +handles.Nsam2+handles.Nsam3+handles.Nsam4;
ref_N=max([handles.N1 handles.N2 handles.N3 handles.Nh],[],2);%added third parental population
theta=4*ref_N.‘ handles.mut_rate;%theta is the mutation parameter
param(1,:)=theta;
relative_N=[handles.N1 handles.N2 handles.N3 handles. Nh]./[ref_N ref_N ref_N ref_N]; 
param(2:5,:)=relative_N';
time_adm2=handles.Tadm2./(4*ref_N);%time of admixture 2 (recent)
param(6,:)=time_adm2;
param(7,:)=1-handles.p3;
param(8,:)=time_adm2;
time_adm1=handles.Tadm1./(4*ref_N);%time of admixture 1 (ancient)
param(9,:)=time_adm1;
param(10,:)=handles.p1;
param(11,:)=time_adm1;
param(12,:)=time_adm1;
time_split=handles.Tsplit./(4*ref_N);%time of split (coalescence of populations)
param(13,:)=time_split;
param(14,:)=time_split;
param(15,:)=time_split; %added for the third parental population at the coalescence point 
rel_size_anc_pop=handles.Nanc./ref_N;%relative size of the ancestral population 
param(16,:)=rel_size_anc_pop;
param(17,:)=ref_N; %INCLUDING THE ref_N as the 17th column

% SAVE the standardized parameters sampled from the priors in a text file 
% This will be read by ms with the tbs option

% Create a folder where all simulations will be saved

mkdir('simulations_database');

% Creation of a text file which contains the parameters for each simulation 
% before multiplying by nbjoci
fid2=fopen(['./simulations_database/simparametersJI num2str(file), '.txt'],'w'); % open the file to save 
fprintf(fid2,'%6.6f %0.6f %0.6f %0.6f %0.6f %6.10f %0.6f %6.10f %6.6f %0.6f %6.6f %6.6f %6.6f %6.6f 

%6.6f %6.6f %8.0f \n',param);
fclose(fid2); % close connection to the file

% In order to simulate the data we need to repeat each line of the 
% parameter file by the number of loci.
% NOTE: THIS ASSUMES THAT ALL LOCI HAVE THE SAME MUTATION RATE 

% create file to save the summary means across loci
means_file = fopen(['./simulations_database/sim_sum_meansJ, num2str(file),'.txt'], V ) ;
% create file to save the summary statistics variance across loci
var_file = fopen(['./simulations_database/sim_sum_varJ, num2str(file), '.txt'], 'w');

% FOR LOOP FROM SIMULATION 1 TO NBSIM OF CURRENT FILE 
for nbsim=1:nbsimfile(file);

%nbsim

if mod(nbsim, 10000) == 0 
nbsim 

end

%RUN MS COMMAND FOR EACH SIMULATION

command=[’"C:\ms\ms.exe"', num2str(Nsam),'', num2str(handles.nbJoci),' - t ', 
num2str(param(1,nbsim)),' -I 4 ', num2str(handles.Nsam1),'', num2str(handles.Nsam2),'', 
num2str(handles.Nsam3),'', num2str(handles.Nsam4),' -n 1 ', num2str(param(2,nbsim)), ' -n 2 ',
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num2str(param(3,nbsim)),' -n 3 num2str(param(4,nbsim)),' -n 4 num2str(param(5,nbsim)),' -es 
num2str(param(6,nbsim)),' 4 ', num2str(param(7,nbsim)),' -e j', num2str(param(8,nbsim)), ' 5 3 -es ', 
num2str(param(9,nbsim)), ' 4 ', num2str(param(10,nbsim)),' -e j', num2str(param(11,nbsim)),' 6 2 -e j ', 
num2str(param(12,nbsim)),' 4 1 -e j ', num2str(param(13,nbsim)),' 3 2 -e j ', num2str(param(14,nbsim)), ' 2 1 -  
en ', num2str(param(15,nbsim)),' 1 ', num2str(param(16,nbsim)),' | c:\ms\microsat'];

[status,ms_result] = eval(['dos(command)']); % this creates a string "ms_result"

% transform ms_result string into a matrix 
% each line has the results for each locus 
ms_result = str2num(ms_result);

% initialize the data and sumstat matrix
data = {}; % this is a matrix of matrices (cell), that is the reason for the {} 
sumstat = [];

if isempty(ms_result)

nbsim = nbsim -1
command
ms_result
data
sumstat

else

%Loop for each locus 
for locus=1 :handles.nbjoci

% CALCULATION OF SIMULATED ALLELE FREQUENCIES FOR EACH 
% LOCUS
% get the allele frequency for each simulation
data{locus} = [getallfreq(ms_result(locus,1:Nsam), [handles.Nsaml handles.Nsam2 

handles.Nsam3 handles.Nsam4])]';

% CALCULATING SUMMARY STATS FOR EACH LOCUS 
% get the number of alleles for locus sim 
sim_nb_all = length(data{locus}(:,1));

%HETEROZYGOSITY
heterozygosity = het(data{locus}(:,1:nb_pop), sim_nb_all);

%ALLELIC RANGE
all_range = a_range(data{locus}, sim_nb_all, nb_pop);

% NUMBER OF ALLELES EACH POP AND PRIVATE ALLELES 
private_alleles = [priv_all(data{locus}(:,1:nb_pop), sim_nb_all, nb_pop)];

%PAIRWISE FST
pairwisejst = pairJst(data{locus}(:,1:nb_pop), heterozygosity, nb_pop, sim_nb_all);

% Save the summary statistics in a matrix (each colum is a 
% locus)
sumstat(:,locus) = [heterozygosity,all_range,private_alleles(1 :end),pairwisejst]; 

end

% COMPUTE THE MEAN ACROSS LOCI FOR THE SIMULATED SUMSTAT 
% get the number of summary statistics 
if nbsim == 1
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nb_sumstats = sum([length(heterozygosity), length(all_range), length(private_alleles(1:end)), 
length(pairwise_fst)]); 

end

% get the mean and variance of the sumstat matrix 
sim_sum_mean = mean(sumstat,2); 
sim_sum_var = var(sumstat,0,2);

% save the mean in the mean file 
fprintf(means_file,'%g ’,sim_sum_mean); 
fprintf(means_file,'\n');

% save the variance in the var file 
fprintf(var_file,'%g ',sim_sum_var); 
fprintf(var_file,’\n');

end % END OF IF MS_RESULT IS EMPTY

end % END OF LOOP TO SIMULATE DATA from sim 1 to nbsim(file) 
fclose(means_file); % close the file with the mean summary stats 
fclose(var_file); % close the file with the mean summary stats

end; % END OF LOOP FROM FILE 1 TO NBFILES

% CALCULATING THE SUMMARY STATS FOR THE OBSERVED DATA

observed_file = fopenCobserved.txt'/r')

nb_obs = 1;

% Open file to save the mean and variance across loci for each observed repetition 
% each line corresponds to a observed repetition 
fid_mean = fopen('obs_mean_sumstats.txt','w'); 
fid_var = fopen('obs_var_sumstats.txt','w');

% Go from repetition 1 to repetition nb_obs 
for rep = 1: nb_obs 

rep

% open file to save the observed sumstats and print the header 
mkdir(['run_', num2str(rep)])
fid=fopen(['run_', num2str(rep), '/obs_sum_stats.txt'],'w'); %Creation of a text file 
fprintf(fid,'ov_nb_all,He_pop1, He_pop2, He_pop3, 

He_pop4,Ov_He,all_range_pop1,all_range_pop2,all_range_pop3,all_range_pop4,ov_all_range,nb_all_pop1, 
nb_all_pop2lnb_all_pop3,nb_all_pop4,priv_all_pop1,priv_all_pop2,priv_all_pop3,priv_all_pop4,fst_pop1 J2,fs 
L P °P 1_3,fst_pop1_4,fst_pop2_3,fst_pop2_4,fst_pop3_4,ov_fst\n');% Print the results in the text file

% Read the data for each locus 
for locus=1:handles.nbjoci

% read first element which contains the number of alleles 
obs_nb_all = fscanf(observed_file, '%i', 1);
% read the data for each locus and creates a matrix from the allele frequencies 
obsjoc = fscanf(observed_file,[obs_nb_all nb_pop+1]);

%HETEROZYGOSITY
heterozygosity = het(obsjoc(:,1:nb_pop), obs_nb_all);

%ALLELIC RANGE
all_range = a_range(obsJoc, obs_nb_all, nb_pop);
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% NUMBER OF ALLELES EACH POP AND PRIVATE ALLELES 
private_alleles = [priv_all(obs_loc(:,1:nb_pop), obs_nb_all, nb_pop)]';

% PAIRWISE FST
pairwise_fst = pair_fst(obs_loc(:,1:nb_pop), heterozygosity, nb_pop, obs_nb_all);

% Save the summary statistics
fprintf(fid,'%g heterozygosity,all_range,private_alleles(1:end),pairwise_fst); 
fprintf(fid,'\n'); 

end
fclose(fid); %close file to save the obs_sum_stats

% Get the mean across loci for the observed data 
% read the file with the observed sumstat for each locus 
fid_sumstat = fopen(['runJ, num2str(rep), 7obs_sum_stats.txt'],'r');
% skip first line containing header text 
temp = fgets(fid_sumstat);
%create a matrix where each line is a locus and each column a statistic 
sumstat_obs = fscanf(fid_sumstat, '%g', [nb_sumstats handles.nbjoci]);
%sumstat_obs = sumstat_obs.';

% get the mean across loci for each sumstat 
%sumstat_obs_mean = mean(sumstat_obs,1); 
sumstat_obs_mean = mean(sumstat_obs,2);

% get the variance across loci for each sumstat 
sumstat_obs_var = var(sumstat_obs,0,2);

% save mean in a new file 
fprintf(fid_mean,'%g ', sumstat_obs_mean); 
fprintf(fid_mean,'\n');

% save variance in a file 
fprintf(fid_var,'%g ', sumstat_obs_var); 
fprintf(fid_var,'\n', sumstat_obs_var);

% close the observed file from where sumstats were read 
fclose(fid_sumstat);

end;

%close input file connection to read 
fclose(observedjile);

% close the file 
fclose(fid_mean);

% close the variance file 
fclose(fid_var);

% REJECTION STEP %
% CALCULATING THE DISTANCE BETWEEN THE SIMULATED AND OBSERVED DATA % 
% FIRST STEP: COMPUTE THE TOLERANCE as the to ljeve l quantile of 10000 distances 
% SECOND STEP: STANDARDIZE THE SUMSTATS

toljevel = 0.01

%nbsim=handles.Nsim;
% if nbsim<=10000; %allows you to use fewer simulations to test that it is working 
% nbsim Jol=nbsimfile(1);
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% elseif nbsim>10000;
% nbsim_tol=10000;
% end

% 1ST STANDARDIZE SUMSTAT reading the sim_sum_means_1.txt 

% Open the files to save the mean and variance
mean_std_file = fopen('./simulations_database/mean_mean_std.txt', 'w'); 
var_std_file = fopen('./simulations_database/var_mean_std.txt', 'w');

% MEAN
% Open simulated data from file 1
sim_sumstats_mean_file = fopen('./simulations_database/sim_sum_means_1 .txt','r');
% Read the simulated data from file 1
sim_data_mean = fscanf(sim_sumstats_mean_file, '%g', [ nb_sumstats nbsimfile(l)]);
% Close the simulated datafile 
fclose(sim_sumstats_mean_file);

% Invert the matrix to have nbsumstat * nbsim matrix 
% i.e. each row is a sumstat and each column a simulation 
sim_data_mean = sim_data_mean';

% Get the mean and standard deviation of each sum_stat over number of 
% simulations. This will be used to standardize the observed and simulated sum stat 
mean_sim_mean = mean(sim_data_mean,1); 
std_sim_mean = std(sim_data_mean,0,1);

% Standardize the simulated data
% The second step avoids division by zero when the std is zero 
sim_data_mean = (sim_data_mean-(ones(nbsimfile(1),1)*mean_sim_mean)); 
evaluate = std_sim_mean ~= 0;
sim_data_mean(:,evaluate) = sim_data_mean(:.evaluate)./ (ones(nbsimfile(1),1)*std_sim_mean(evaiuate));

% Write the relative mean and std sumstat into the file 
fprintf(mean_std_file, '%5.5fmean_sim_mean, std_sim_mean);

% VARIANCE
% Read the simulated data from file 1
sim_sumstats_var_file = fopen('./simulations_database/sim_sum_var_1 .txt'.'r');
% read the simulated data
sim_data_var = fscanf(sim_sumstats_var_file, '%g', [nb_sumstats nbsimfile(l) ]);
% Close the simulated datafile 
fclose(sim_sumstats_var_file);
% invert the matrix 
sim_data_var = sim_data_var';

% Get the mean and standard deviation of each sum_stat over the tol_sim 
% This will be used to standardize the observed and simulated sum stat 
mean_sim_var = mean(sim_data_var,1); 
std_sim_var = std(sim_data_var,0,1);

% Standardize the simulated data var
% The second step avoids division by zero when the std is zero 
sim_data_var = (sim_data_var-(ones(nbsimfile(1),1)*mean_sim_var)); 
evaluate = std_sim_var ~= 0;
sim_data_var(:,evaluate) = sim_data_var(:,evaluate)./ (ones(nbsimfile(1),1)*std_sim_var(evaluate));

% Write the relative mean and std sumstat of the variance across loci into the file 
fprintf(var_std_file, '% 5.5fm ean_sim _var, std_sim_var);
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% Close the files to save mean and std of mean and variance sumstats
fclose(mean_std_file);
fclose(var_std_file);

% 2nd STANDARDIZE OBSERVED SUMSTAT

% Open the file to read the observed mean sumstat 
fid_mean = fopen('obs_mean_sumstats.txt','r'); 
fid_var = fopen('obs_var_sumstats.txt7r');

% Open the file to save the relative obs sumstat and save the mean and 
% standard deviation of the simulated sumstats 
obs_relative_file_mean = fopenCobs_rel_sumstat_mean.txt', 'w'); 
obs_relative_file_var = fopenCobs_rel_sumstat_var.txt', 'w');

% go from datafile 1 to the nb_observations 
for rep = 1: nb_obs

% MEAN
% Read the observed data for the rep observation 
obs_data_mean = fscanf(fid_mean,'%g',nb_sumstats);

% Standardize the observed data mean 
obs_data_mean = (obs_data_mean' - mean_sim_mean);
obs_data_mean(evaluate) = obs_data_mean(evaluate)./ std_sim_mean(evaluate);

% Write the relative observed sumstat into the file 
fprintf(obs_relative_file_mean, '% 5.5fobs_data_m ean); 
fprintf(obs_relative_file_mean, '\n');

% VAR
% Read the observed data for the rep observation 
obs_data_var = fscanf(fid_var,'%g',nb_sumstats);

% Standardize the observed data var 
obs_data_var = (obs_data_var' - mean_sim_var);
obs_data_var(evaluate) = obs_data_var(evaluate)./ std_sim_var(evaluate);

% Write the relative observed sumstat into the file 
fprintf(obs_relative_file_var, '% 5.5fobs_data_var); 
fprintf(obs_relative_file_var, '\n');

end; % end for from repetition 1 to nbrep

% Close the files
fclose(obs_relative_file_mean);
fclose(obs_relative_file_var);
fclose(fidjnean);
fc!ose(fid_var);

% 3rd REJECTION STEP
% compute the distance and ACCEPT closest simulations 

% Open observed files
obs_relative_file_mean = fopenCobs_rel_sumstat_mean.txt', 'r'); 
obs_relative_file_var = fopen('obs_rel_sumstat_var.txt', 'r');

% go from file 1 to nbfiles 
for file = 1:nbfiles
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% we don't need to reopen file 1 because this was done when 
% standardizing the allele frequencies 
if file > 1

% MEAN
% Open simulated datafile
sim_sumstats_mean_file = fopen(['./simulations_database/sim_sum_means_', num2str(file),'.txt'],'r'); 
% Read the simulated datafile
sim_data_mean = fscanf(sim_sumstats_mean_file, '%g', [ nb_sumstats nbsimfile(file)]);
% Close the simulated datafile 
fc!ose(sim_sumstats_mean_file);
% transpose the matrix 
sim_data_mean = sim_data_mean';

% Standardize the simulated data mean 
% The second step avoids division by zero when the std is zero 
sim_data_mean = (sim_data_mean-(ones(nbsimfile(file),1 )*mean_sim_mean)); 
evaluate = std_sim_mean ~= 0;
sim_data_mean(:,evaluate) = sim_data_mean(:,evaluate)./ 

Dnes(nbsimfile(file),1)*std_sim_mean(evaluate));

% VAR
% Open simulated data
sim_sumstats_var_file = fopen([\/sim ulations_database/sim _sum_var_', num2str(file),'.txt']I'r');
% read simulated data
sim_data_var = fscanf(sim_sumstats_var_file, '%g', [ nb_sumstats nbsimfile(file)]);
% Close the simulated datafile 
fclose(sim_sumstats_var_file);
% transpose the matrix 
sim_data_var = sim_data_var';

% Standardize the simulated data var
% The second step avoids division by zero when the std is zero 
sim_data_var = (sim_data_var-(ones(nbsimfile(file), 1 )*mean_sim_var)); 
evaluate = std_sim_var ~= 0;
sim_data_var(:,evaluate) = sim_data_var(:,evaluate)./ (ones(nbsimfile(file),1)*std_sim_var(evaluate));

end % end of IF file > 1

% go from datafile 1 to the nb_observations 
for rep = 1: nb_obs

rep

% get the observed sumstats
obs_data_mean = fscanf(obs_relative_file_mean, '%g', nb_sumstats); 
obs_data_var = fscanf(obs_relative_file_var, '%g', nb_sumstats);

% Initialize dist and index matrices 
dist_1_mean = []; 
dist_1_var = []; 
dist_1 = [];

final_dist_1_mean=[]; 
final_dist_1_var=[]; 
final_dist_1 =[];

index_1_mean=[]; 
index_1_var=[]; 
index_1 =[];
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final_sim_data_mean=[]; 
f i n a l_s i m_d a ta_va r=[]; 
final_sumstat=[];

% MEAN
% COMPUTE THE DISTANCE
% Compute the distance metric 1 between observed and sum_stat vectors
dist_1_mean = sqrt(sum( (ones(nbsimfile(file),1)*obs_data_mean' - sim_data_mean) .A 2, 2));

% Get the accepted values of mean as a given proportion of 
% closest simulations ( to lje v e l)
index_1_mean = find( dist_1_mean < quantile(dist_1_mean, toljevel)); 
final_dist_1_mean = dist_1_mean(index_1_mean); 
final_sim_data_mean = sim_data_mean(index_1_mean,:);

% VAR
% compute the distance
dist_1_var = sqrt(sum( (ones(nbsimfile(file),1)*obs_data_var' - sim_data_var) A 2, 2));

% Get the accepted values of variance as a given proportion of 
% closest simulations ( to lje v e l)
index_1_var = find( dist_1_var < quantile(dist_1_var, toljevel)); 
final_dist_1_var = dist_1_var(index_1_var); 
final_sim_data_var = sim_data_var(index_1_var,:);

% MEAN + VAR
% Get accepted distances putting together the mean and variance together 
dist_1 = sum([dist_1_mean dist_1_var], 2);

% Get the accepted values of sum mean and variance 
indexjl = find( dist_1 < quantile(dist_1, toljevel)); 
final_dist_1 = dist_1(index_1);
final_sumstat = [sim_data_mean(index_1,:) sim_data_var(index_1,:)];

% Save the dist and the index into a file 
text = repmat(' %g', [1 nb_sumstats]);
file_name = [ 'ru n j,  num2str(rep) ,7distance_sum_state_meanJ, int2str(file), '.txt']; 
save_dist_1_mean = fopen(file_name, 'w');
fprintf(save_dist_1_mean, ['%i %g text, '\n'], [index_1_mean final_dist_1_mean 

final_sim_data_mean]');
fclose(save_dist_1_mean);

% Save the dist and the index into a file
file_name = [ 'ru n j,  num2str(rep) ,'/distance_sum _state_varJ, int2str(file), '.txt']; 
save_dist_1_var = fopen(file_name, ’w 1);
fprintf(save_dist_1_var, ['%i %g text, '\n'], [index_1_varfinal_dist_1_var final_sim_data_var]'); 
fclose(save_dist_1_var);

% Save the dist and the index into a file
file_name = [ 'ru n j,  num2str(rep) ,7distance_sum_stateJ, int2str(file), '.txt']; 
save_dist_1 = fopen(file_name, 'w');
fprintf(save_dist_1, ['%i %g ', text, text, '\n'], [index_1 final_dist_1 finajsumstat]'); 
fclose(save_dist_1);

end;
end;

% Close observed files 
fclose(obs_relative_file_mean);
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fclose(obs_relative__file_var); 

msgbox('ABC finished with no errors!') 

toe

function a_range = a_range(data,numb_all,numb_pop);

ov_alLrange=abs(data(1,numb_pop+1)-data(numb_all,numb_pop+1));

%searching for the first and last allele of each population 
for j=1:numb_pop 

done_fpop(j)=0; 
done_lpop(j)=0; 

for i=1:numb_all

%first allele
if (data(i,j)~=0) & (done_fpop(j)==0) 

fir_all_popG)=data(i,numb_pop+1); 
done_fpop(j)=1;%first allele found 

end

%last allele
if (data(numb_all+1-i,j)~=0) & (done_lpop(j)==0) 

last_all_pop(j)=data(numb_all+1-i,numb_pop+1); 
done_lpop(j)=1;%last allele found 

end 
end

a_range_pop(j)=abs(fir_all_pop(j)-last_all_pop(j));

end

a_range = [a_range_pop ov_all_range]; 

return;
%f p ri n tf (f id2,' %g ', o v_a 11_ra ng e);

function [n_gaps]= n_gaps(data)

data_zeros=find(data==0)
gap=0

tor i=1 :length(data_zeros)-1 
gap=gap+(data_zeros(i)+1 ~=data_zeros(i+1))

snd

gap=gap+1

■eturn

Vo G E T A L L F R E Q

Vo function that returns the allelic frequency for a given number of 
Vo populations, given the microsatellite alllele lengths and the sample size 
Vo of each population 
Vo A R G S

Vo mstat (vector): vector of size nsam1+nsam2+nsam3+..+nsamn with



219

% allelic length in repetitions
% nsam (vector): vector with the sample size of each population.
% the lenght of nsam is the number of populations
function result = getallfreq(msat,nsam);

% create empty matrix 
result = [];

% get the minimum and maximum allele repetitions
mx=max(msat);
mn=min(msat);

%creates a vector with all alleles that we can find in one simulation 
all=(mn:mx);

%creates a matrix were each line are the allellic frequencies in 
%each pop
if length(all)==1 % if there is only one allele 

result=nsam'; % data matrix is the same as the inverted nsam vector 
else

% get the cumulative sum of nsam 
index = [0 cumsum(nsam)];

% go pop by pop (line by line)
% to get the allele frequencies of each population 
for i = 1:length(nsam) 

result(i,:) = hist(msat((index(i)+1):index(i+1)),all); 
end 

end

% add the allele length at the last row 
result = [result; all];

return;

%This scri
sam_size=100; %number of samples in each population (the same for all pops)
Nsim=1000;
nb_pop=10;
N=1000; 
mig_rate=0.01; 
mut_rate=0.001; 
npop_lsampled=10;
directory=['MS_command_lslModer,'_nb_Pop-',num2str(nb_pop))'_N-,,num2str(N),'_IVIig_rate-
',num2str(mig_rate),'_Number_sampled_pops-',num2str(npopJsampled)];
nb_sample=sam_size*npop_lsampled;

fid4=fopen('ms_result_hap.txt','r');
fid3=fopen('hap_stats.txt','w');

for i=1:6 
fgetl(fid4);

end

for j=1:Nsim

% clear all;
% clear data;
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clear line; 
d=fgetl(fid4); 
dMength(d); 
line(1,(1:dl))=d;

for i=2:nb_sample %gets the alleles for all populations
Iine(i,(1:dl))=fgetl(fid4);
end

% %Compare between each allele for each population 
% %line=num2str(line) 

result=[1:nb_sample]; %generate a sequence of Nsam

for a=1:nb_sample-1 
for b=a+1 :nb_sample

if strcmp(num2str(line(a,(1 :dl))),num2str(line(b,(1 :dl))))==1 
result(b)=result(a); 

end
end

end

%Matrix with number allelic frequencies for each pop
aux=[1,(1+sam_size):sam_size:nb_sample,nb_sample+1];
data=[];
mx=max(result); 
mn=min(result); 
all=(mn:mx); 
for h=1:length(aux)-1 

if h==1
data=[hist(result(aux(h):(aux(h+1 )-1 )),all)]; 

else
data(h,:)=[hist(result(aux(h):(aux(h+1)-1)),all)];

end
end

data=[data(: ,sum(data, 1 )~=0)]';

%all(sum(data,1)~=0)
nb_all=length(data(:,1))
eval(['cd
eval(['cd

ht = het(data, nb_all);
fst = pair_fst(data, ht, npopjsampled, nb_all);

%fid2=statistic(data, 1,1,0,0,0,0, directory, fid2,j); 
eval(['cd SimulationsV,directory]);
% eval(['cd simulations']);
% eval(['cd ' directory]);

fprintf(fid3,'%0.3g ', ht); 
fprintf(fid3,'%0.3g ', fst); 
fprintf(fid3,'\n');

for k=1:4 
fgetl(fid4); 

end

end
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fclose(fid4)
fclose(fid3)

load hap_stats.txt 
load ms_sumstats.txt 
[rh,ch]=size(hap_stats)
[rm, cm]=size( ms_sumstats)

Fst_hap_data=mean(hap_stats(:,ch))
Fst_mcs_data=mean(ms_sumstats(:,cm))
Fst_kallelesM=1 /(1 +(4*N*mig_rate*nb_popA2)/(nb_pop-1 )A2) %Slatkin 1995

Fst_infSiteM=1/(1+4*N*mut_rate+4*N*mig_rate)

y=linspace(1,300,0.001); 
hist(hap_stats(:,ch))
%axis([0 0.05 0 300]) 
hold on
plot(Fst_hap_data,y,'r-')
%text(Fst_data,1 ,'Fst data') 
hold on
plot(Fst_infSiteM,y,'g-')
text(0.15,250,’ red: hap data average; green: InfSiteModel Fst; blue: microssat data average; black: 
kAllelModel Fst') 
hold on
plot(Fst_kallelesM,y,'k-')
%text(Fst_kal!elesM,1 ,'Fst kallelesM') 
hold on
plot(Fst_mcs_data,y,'c-')
xlabel('Fst')
ylabel('simulations')
text(0.03,250,' red: hap; g: InSM; b: ms; b: kAIM')
title(['nb Pop-',num2str(nb_pop),'N:',num2str(N),' MigRate:',num2str(mig_rate),'
NumberSampledPops:',num2str(npopJsampled),' MutRate:',num2str(mut_rate),' red: hap; g: InSM; b: ms; b: 
k A I M 1] )

% Compute Heterozygosity from a nb_pop by nb_all matrix 
% This function returns the Heterozygosity of each population and the overall 
% heterozygosity 
% ARGS
% data(matrix): nb_all by nb_pop matrix with the absolute allele frequencies 
% num_all(integer): number of alleles 
function het = het(data, numb_all);

frequencies=data';
sum_freq=1 ./sum(frequencies,2);
rel_freq=frequencies.*(sum_freq*ones(1,numb_all));
Heterozygosity = 1-sum(rel_freq.A2,2);

ov_frequencies=sum(sum(frequencies,2), 1); 
ov_reLfreq=sum(frequencies,1)./ov_frequencies; 
o v_re l_f req=o v_re l_f req. A2;
Ov_Heterozygosity = 1-sum(ov_rel_freq,2);

het = [Heterozygosity' Ov_Heterozygosity];

return;

%Compute number of gaps from the allelic frequencies vector 
%ARGS:
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%n_pop: number of populations 
%data(matrix): nb_allleies, nb_pops+1

function n_gaps= n_gaps(n_pop,data)

gap=zeros(1,n_pop)
all=data(:,n_pop+1);

for i=1:n_pop 
%nb_gaps(i)==0 
aux=data(:,i)
aux=[aux(aux~=0) all(aux~=0)]

for a=1 :length(aux(:,2))-1 
if aux(a+1,2)~=aux(a,2)+1 

gap(i)=gap(i)+1 
end 

end 
end

n_gaps=gap;

return

%This function returns fst pairwise values and overall fst value 
% ARGS:
% data(matrix): nb_all by nb_pop matrix with the absolute allele frequencies 
% hetrz(matrix): 1 by nb_pop+1 matrix with the heterozygosity of each 
% population and the overall heterozygosity in the nb_pop+1 
% nb_all(integer): number of alleles 
% nb_pop(integer): number of populations

function pair_fst_pop = pair_fst(data, hetrz, nb_pop, nb_all);

freq=[]; 
for i=1:nb_pop 
for j=(i+1):nb_pop 

he_local_(i,j)=(hetrz(i)+hetrz(j))/2;

% Total heterozigoty (heterozigoty of every two pops as one) 
freq=[sum(data(:,[i j]),2)]; 
relative_freq=([1./sum(freq,1)].*ones(nb_all,1)); 
relative_freq=(relative_freq.*freq).A2;
he_total(i,j)=1-sum(relative_freq,1); %returns a matrix were each element is the heterozigosity for 

each two pops

%CALCULATION OF Fst PAIRWISE 
if he_total(i,j)==0 

fst_pop(i,j)=0; 
else

fst_pop(ij)=(he_total(i,j)-hejocal_(i,j))/he_total(i,j); %matrix (nb_pop-1)*nb_pop 
end; 

end; 
end;

fst_result=[]; 
for i=1:nb_pop-1 

fst_result=[fst_result fst_pop(i,((i+1):nb_pop))]; 
end
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%Overall Fst
ov_fst_loc=sum(hetrz(1:nb_pop))/nb_pop; %Sum of heterozygosity of each population divided by the 

number of populations

if hetrz(nb_pop+1)==0 
ov_fst=0; 

else
ov_fst=(hetrz(nb_pop+1 )-ov_fst_loc)/hetrz(nb_pop+1);

end

pair_fst_pop = [fst_result ov_fst]; %vector were each element is fst_pairwise values (by this order: pop 1 
vs all other pops, pop 2 vs all other, etc...) followed by overall fst value

return;

% Get the number of private alleles from a nb_pop by nb_all matrix 
% This function returns the number of alleles of each population and 
% the number of private alleles at each population 
% ARGS
% data(matrix): nb_all(rows) by nb_pop(column) matrix with the absolute allele frequencies 
% num_all(integer): number of alleles 
% num_pop(integer): number of populations 
function [private] = priv_all(data, num_all, num_pop); 

zero_data=(data==0); 
nb_all_pop = num_all-sum(zero_data,1); 
sum_zero_data=sum(zero_data,2); 
private_allele=zeros(num_all,num_pop);
%for each allele 
for i=1:num_all

%if there is a line with a private allele 
if sum_zero_data(i)==(num_pop-1) 

private_allele(i,:)=(zero_data(i,:)==0); 
end 

end
private=[nb_all_pop sum(private_allele, 1)];

return;

% Compute and saves in the sumstats file the statistics 
% asked (heterozigosity; private alleles; allelic range; FST pairwise)and 
% return a file connection (this must be closed by the user)

function[fid2]=statistic(data,he,fst,priv_allele,all_range,gaps,alleles,directory,fid2,sim)

eval(['cd SimulationsY,directory]);

%Number of alleles:
[nb_all,nb_pop]=size(data);
%Number of populations (last column contains the allele size): 
nb_pop=nb_pop-1;

%Save the summary statictics in a text file 
if (exist('ms_sumstats.txt','file')~=2) || sim==1

%Creation of a text file which contains the allelic frequencies 
fid2=fopen('ms_sumstats.txt','w');

%First line of the text file to explain which summary
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%statictics have been chosen

%heterogosity 
if he==1

fprintf(fid2,'Expected heterozygosity for each pop,Overall He,'); 
end
%Private alleles 
if priv_allele==1 

fprintf(fid2,'Number of private alleles for each pop,'); 
end
%Allelic range 
if all_range==1

fprintf(fid2,’Allelic range for each pop,Overall allelic range,'); 
end
%Fst pairwise 
if fst==1

fprintf(fid2,'Fst pairwise and Overall Fst,'); 
end

if gaps==1
fprintf(fid2,'Number of gaps,'); 
end

if alleles==1
fprintf(fid2,'Number of alleles'); 
end

fprintf(fid2,'\n\n')

end

eval(['cd ..']); 
eval(['cd ..']);

%================= Heterogosity ======================
if he==1 || fst==1 

heterozygosity = het(data(:,1:nb_pop), nb_all); 
end

% Print the results in the text file 
if he==1

eval(['cd SimulationsV, directory]); 
fprintf(f id2,' %0. 3g 1, heterozygosity); 
eval(['cd ..']); 
eval(['cd ..']); 

end

%============== Private alleles ========================
if priv_allele==1 

%private_alleles = priv_all(data(:,1:nb_pop), nb_all,nb_pop); 
private_alleles = [priv_all(data(:,1:nb_pop), nb_all,nb_pop)]’;

% Print the results in the text file 
eval(['cd SimulationsV, directory]);
%fprintf(fid2,'%g \private_alleles((nb_pop+1):(2*nb_pop))); 
fprintf(fid2,’%g ',private_alleles(1 :end); 
eval(['cd ..']); 
eval(['cd ..']); 

end

% Allelic range
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if all_range==1 
allelic_range = a_range(data, nb_all, nb_pop);

% Print the results in the text file
eval(['cd SimulationsV, directory]);
fprintf(fid2,'%g ’,allelic_range);
eval(['cd
eval([’cd

end

%================= Fst pairwise and Overall fst =========

if fst==1
fst = pair_fst(data(:,1:nb_pop),heterozygosity, nb_pop, nb_all);

% Print the results in the text file 
eval(['cd SimulationsV, directory]); 
fprintf(fid2,'%0.3g ',fst); 
eval(['cd ..']); 
eval(['cd ..']); 

end

%============== Number of gaps =====================
if gaps==1 

gaps = n_gaps(nb_pop,data)

% Print the results in the text file 
eval(['cd SimulationsV, directory]); 
fprintf(fid2,'%0.3g ',gaps); 
eval(['cd ..']); 
eval(['cd ..']); 

end

%=================== number of alleles ===============
if alleles==1

% Print the results in the text file 
eval(['cd SimulationsV, directory]); 
fprintf(fid2,,%0.3g ',nb_all); 
eval([’cd ..']); 
eval(['cd ..’]); 

end

fprintf(fid2,’\n’);
eval(['cd SimulationsV, directory]);
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Appendix 5.2. R script for analysis of Admixture program

# DEFINITION OF FUNCTIONS USED: tranform, back_transform

# TRANSFORM: Transformation of parameters (as in Hamilton et al 2005) 
transform.ham <- function(posterior, priorjnin, prior_max) {

if(min(posterior) <= prior_min){
x.tmp <- ifelse(posterior <= prior_min,max(posterior),posterior) 
x.tmp.min <- min(x.tmp)
posterior <- ifelse(posterior <= priorjnin, x.tmp.min,posterior)

}
if(max(posterior) >= prior_max){

x.tmp <- ifelse(posterior >= priorjnax,min(posterior),posterior) 
x.tmp.max <- max(x.tmp)
posterior <- ifelse(posterior >= priorjnax, x.tmp.max,posterior)

}

y <- -log( (tan( ((posterior - prior_min)/(prior_max - prior_min)) * (pi/2)) )A(-1 ))
y

}

# BACK TRANSFORM Tranform back into the natural parameter scale 
back.transform.ham <- function(posteriorTransformed, priorjnin, priorjnax) {

x <- (2/pi)*(prior_max - priorjnin) * atan(exp(posteriorTransformed)) 
x

}

IIIIII llll IIII It IIIIIIIIIIIIIIIIIIIIIIIIII llll IIII It IIIIIIIIIIII INI It II M il m i l  IIIIIIIIIIIIII It IIII im #
# SETTINGS #
# CHANGE THESE VALUES!!!!!!!!!!!!!!!!!!! #
# #
# define the number of sumstats #
nb_sumstat <- 25 #
# define number of parameters
nb_param <-11 #
# number of "observed" datasets analysed
nb jep  <-10 #
# number of files with simulated data
nb_files <- 2
# number of simulations
nbsim <- 10000
# #
# #
M fiiiM iiiM it itM iiitm tm fttf iii iit iii iiiii iiiim iiiitt if ii it iiiii im iiiim iiitM itm #

# list to save the parameters of each observed dataset analysed

acc_param_mean <- list() 
acc_sumstat_mean <- list() 
acc_dist_mean <- listQ

acc_param_var <- list() 
acc_sumstat_var <- list() 
acc_dist_var <- list()

acc_param <- list() 
acc_sumstat <- list() 
acc_dist <- list()
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# Go from file 1 to nb_file and get the accepted parameters and sumstat 
for(file in 1:nb_files) {

# Read the scaled parameters
param <- matrix(scan(paste("./simulations_database/simparameters_", file,".txt", 

sep-"')), ncol=17, by row=T)

# Get the parameters into the normal scale

# Transform the scaled parameters into the real values
# create a new matrix to save the parameters of interest (mut_rate, N1, N2, N3, N4, Tadm2, (1-p3), 

Tadml, p1, Tsplit, Nanc)
# this matrix has 11 columns and the same number of rows as distance (the number of rows of 

distance is given by length(distance[,1])
new_param <- matrix(,length(param[,1]),11)
new_param[,1
new_param[,2
new_param[,3
new_param[,4
new_param[,5
new_param[,6
new_param[,7
new_param[,8
new_param[,9

<- param[, 1 ]/(4*param[, 17]) # mut_rate = theta/(4*RefN)
<- param[,2]*param[,17] # N1=relative N1*RefN 
<- param[,3]*param[,17] # N2=relative N2*RefN
<- param[,4]*param[,17] # N3=relative N3*RefN
<- param[,5]*param[,17] # N4=relative N4*RefN
<- param[,6]*(4*param[,17]) # Tadm2(gen) = Tadm1*(4*RefN) 
< -param[,7] #1-P3
<- param[,8]*(4*param[,17]) # Tadml (gen) = Tadm2*(4*RefN) 
<-param[,10] # P1

new_param[,10] <- param[,13]*(4*param[,17]) # Tsplit(gen) = Tsplit*(4*RefN) 
new_param[, 11 j <- param[, 16]*param[, 17] # Nanc=relative Nanc*RefN

# Clear memory (remove param) 
rm(param)

# Make the histograms to be sure that the priors were ok 
par(mfrow=c(3,4))
for(i in 1:11) {

hist(new_param[,i], nclass=20, freq=F)
}

# Go from repetition 1 to nb_obs and get the accepted parameters from file 1 
for(rep in 1:nb_rep) {

# Read the distances file for the mean
# this file has:
# 1st column: index of accepted param
# 2nd column: corresponding distance
# 3rd and remaining: corresponding standardized sumstats
dist_sum_mean <- matrix(scan(paste("./run_", rep, ,7distance_sum_state_mean_", file, ".txt", 

sep="")), byrow=T, ncol=2+nb_sumstat)

# Get the index, dist variables and standardized sumstat 
index_at_param <- dist_sum_mean[,1]
dist <- dist_sum_mean[,2]
scaled_sumstat <- dist_sum_mean[,3:(nb_sumstat+2)]
# clear memory 
rm(dist_sum_mean)

# Get only the closest param (already sorted according to the distance)
# the [[]] are here because param_reg is a list of matrices 
if(file==1) {
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# save sorted param
acc_param_mean[[rep]] <- new_param[index_at_param,]

# Sort the simulated sumstat according to the closest distance 
acc_sumstat_mean[[rep]] <- scaled_sumstat

# Save the sorted distance 
acc_dist_mean[[rep]] <- dist

}
if(file > 1) {

# save sorted param
acc_param_mean[[rep]] <- rbind(acc_param_mean[[rep]], 

new_param[index_at_param,])

# Sort the simulated sumstat according to the closest distance 
acc_sumstat_mean[[rep]] <- rbind(acc_sumstat_mean[[rep]], scaled_sumstat)

# Save the sorted distance 
acc_dist_mean[[rep]] <- c(acc_dist_mean[[rep]],dist)

}

# Read the distances file for the var
# this file has:
# 1st column: index of accepted param
# 2nd column: corresponding distance
# 3rd and remaining: corresponding standardized sumstats
dist_sum_var <- matrix(scan(paste("./run_", rep, ,7distance_sum_state_var_", file, ".txt", 

sep="")), byrow=T, ncol=2+nb_sumstat)

# Get the index, dist variables and standardized sumstat 
index_at_param <- dist_sum_var[,1]
dist <- dist_sum_var[,2]
scaled_sumstat <- dist_sum_var[,3:(nb_sumstat+2)]
# clear memory 
rm(dist_sum_var)

# Get only the closest param (already sorted according to the distance)
# the [[]] are here because param_reg is a list of matrices 
if(file==1) {

# save sorted param
acc_param_var[[rep]] <- new_param[index_at_param,]

# Sort the simulated sumstat according to the closest distance 
acc_sumstat_var[[rep]] <- scaled_sumstat

# Save the sorted distance 
acc_dist_var[[rep]] <- dist

}
if(file > 1) {

# save sorted param
acc_param_var[[rep]] <- rbind(acc_param_var[[rep]], new_param[index_at_param,])

# Sort the simulated sumstat according to the closest distance 
acc_sumstat_var[[rep]] <- rbind(acc_sumstat_var[[rep]], scaled_sumstat)
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# Save the sorted distance 
acc_dist_var[[rep]] <- c(acc_dist_var[[rep]],dist)

}

# Read the distances file for the mean+variance
# this file has:
# 1 st column: index of accepted param
# 2nd column: corresponding distance
# 3rd and remaining: corresponding standardized sumstats
dist_sum <- matrix(scan(paste("./run_M, rep, 7distance_sum_state_", file, ".txt", s e p -"')), 

byrow=T, ncol=2+(nb_sumstat*2))

# Get the index, dist variables and standardized sumstat 
index_at_param <- dist_sum[,1]
dist <- dist_sum[,2]
scaled_sumstat <- dist_sum[,3:((nb_sumstat*2)+2)]
# clear memory 
rm(dist_sum)

# Get only the closest param (already sorted according to the distance)
# the [[]] are here because param_reg is a list of matrices 
if(file==1){

# save sorted param
acc_param[[rep]] <- new_param[index_at_param,]

# Sort the simulated sumstat according to the closest distance 
acc_sumstat[[rep]] <- scaled_sumstat

# Save the sorted distance 
acc_dist[[rep]] <- dist

}
if(file > 1) {

# save sorted param
acc_param[[rep]] <- rbind(acc_param[[rep]], new_param[index_at_param,])

# Sort the simulated sumstat according to the closest distance 
acc_sumstat[[rep]] <- rbind(acc_sumstat[[rep]], scaled_sumstat)

# Save the sorted distance 
acc_dist[[rep]] <- c(acc_dist[[rep]],dist)

}

} # end of for loop between repetition 1 and nb_obs 
} # end of for loop between file 1 and nb_file

AT THIS POINT 
we have the:

1 - accepted parameters of each repetition in a list - acc_param[[]]
2 - accepted standardizes sumstat of each repetition in a list - acc_sumstat[[]]
3 - accepted distances of each repetition in a list - acc_dist[[]]

All these lists have the accepted values for each file, after each other
We need to sort the parameters, and sumstat according to closest distance 
This way, it will be straighforward to analyse different tolerance levels
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# SORT the acc_param and acc_sumstat according to acc_distance 
for( rep in 1:nb_rep) {

# MEAN
# sort the distance of observed dataset rep 
aux <- order(acc_dist_mean[[rep]]) 
acc_dist_mean[[rep]] <- acc_dist_mean[[rep]][aux]

# re-order acc_param and acc_sumstat accordingly 
acc_param_mean[[rep]] <- acc_param_mean[[rep]][aux,] 
acc_sumstat_mean[[rep]] <- acc_sumstat_mean[[rep]][aux,]

# VAR
# sort the distance of observed dataset rep 
aux <- order(acc_dist_var[[rep]]) 
acc_dist_var[[rep]] <- acc_dist_var[[rep]][aux]

# re-order acc_param and acc_sumstat accordingly 
acc_param_var[[rep]] <- acc_param_var[[rep]][aux,] 
acc_sumstat_var[[rep]] <- acc_sumstat_var[[rep]][aux,]

# MEAN + VAR
# sort the distance of observed dataset rep 
aux <- order(acc_dist[[rep]]) 
acc_dist[[rep]] <- acc_dist[[rep]][aux]

# re-order acc_param and acc_sumstat accordingly 
acc_param[[rep]] <- acc_param[[rep]][aux,] 
acc_sumstat[[rep]] <- acc_sumstat[[rep]][aux,]

}

# Read the observed sum stat mean
obs_sum_stat_mean <- matrix(scan("obs_rel_sumstat_mean.txt"), byrow=T, ncol=nb_sumstat)

# Read the observed sum stat variance
obs_sum_stat_var <- matrix(scan("obs_rel_sumstat_var.txt"), byrow=T, ncol=nb_sumstat)

# Put the mean and variance together
obs_sum_stat <- cbind(obs_sum_stat_mean, obs_sum_stat_var)

legenda_hista <- c("mut_rate", "N r, "N2", "N3", "N4", "Tadm2", "1-p3", "Tadml", "pi", "Tsplit", "Nanc")

# Go from observed 1 to nb_obs datasets 
for( rep in 1:nb_rep) {

print(paste("rep", rep))

# Save the Sorted acc_param, acc_dist and acc_sumstat for each repetition
# this files have the posteriors for the parameters obtained with the rejection step
# with the tolerance defined in the matlab code (usually 10%)
# MEAN
write.table(acc_param_mean[[rep]], paste("./run_", rep, 7acc_parameters_mean.txt", sep="M), 

col.names=F, row.names=F)
write.table(acc_dist_mean[[rep]], paste("./run_", rep, "/acc_dist_mean.txt", sep=""), col.names=F, 

row.names=F)
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write.table(acc_sumstat_mean[[rep]], paste("./run_", rep, "/acc_sumstat_mean.txt", sep="M), 
col.names=F, row.names=F)

# VAR
write.table(acc_param_var[[rep]], paste("./run_", rep, "/acc_parameters_var.txt", sep=""), 

col.names=F, row.names=F)
write.table(acc_dist_var[[rep]], pastef./runj', rep, 7acc_dist_var.txt”, sep=""), col.names=F, 

row.names=F)
write.table(acc_sumstat_var[[rep]], paste("./run_", rep, "/acc_sumstat_var.txt", sep=""), col.names=F 

row.names=F)

# MEAN + VAR
write.table(acc_param[[rep]], paste("./run_", rep, '7acc_parameters.txtM, sep=""), col.names=F, 

row.names=F)
write.table(acc_dist[[rep]], paste("./run_", rep, 7acc_dist.txt", sep=""), col.names=F, row.names=F) 
write.table(acc_sumstat[[rep]], paste("./run_", rep, '7acc_sumstat.txt", sep=""), col.names=F, 

row.names=F)

# define the tolerance array with the tolerance levels (closest accepted points)
#tol.array <-

c(min(length(acc_sumstat[[rep]][, 1 ]),length(acc_sumstat_var[[rep]][, 1 ]),length(acc_sumstat[[rep]][, 1 ])), 5000, 
1000, 500)

tol.array <-
c(min(length(acc_sumstat_mean[[rep]][,1]),length(acc_sumstat_var[[rep]][,1]),length(acc_sumstat[[rep]][,1])), 
250, 100)

for(tol in 1:length(tol.array)) {

print(paste("tolerance", tol.array[tol]))

# Perform the Rejection Step analysis for different tolerance values
# MEAN
par(mfrow=c(4,3)) 
for(i in 1:nb_param) {

hist(acc_param_mean[[rep]][1:tol.array[tol],i], main=legenda_hista[i])
}
dev.print(device=pdf, width=16, height=14, paste("./run_", rep, '7acc_param_tol_median_", 

tol.array[tol],".pdf', sep=""))

# VAR
par(mfrow=c(4,3)) 
for(i in 1:nb_param) {

hist(acc_param_var[[rep]][1:tol.array[tol],i], main=legenda_hista[i])
}
dev.print(device=pdf, width=16, height=14, paste("./run_", rep, 7acc_param_tol_var_" 

tol.array[tol],".pdf', sep=,,M))

# MEAN + VAR 
par(mfrow=c(4,3)) 
for(i in 1:nb_param) {

hist(acc_param[[rep]][1:tol.array[tol],i], main=legenda_hista[i])
}
dev.print(device=pdf, width=16, height=14, paste("./run_", rep, '7acc_param_tol_", 

tol.array[tol],".pdf', sep=""))

# Perform the Regression step for a given tolerance
# define the tol.array (this means that first, we do the regression accepting all values)
# and then with the closest 1000, etc
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# MEAN
# Transform the parameters to make the regression
# (this is done to avoid that after the regression
# the parameter values are outside the prior limits)
# NOTE: NEED TO CHANGE PRIOR LIMITS!!!!

tranf_param <- matrix(,length(acc_param_mean[[rep]][1:tol.array[tol],1]),nb_param)

[1:tol.array[tol],1], 1e-5, 1e-3) # 

1:tol.array[tol],2], 1000,15000) #

tranf_param[,1] <- transform.ham(acc_param_mean[[rep]] 
mut_rate = theta/(4*RefN)

tranf_param[,2] <- transform.ham(acc_param_mean[[rep]]
N1 relative N1*RefN

tranf_param[,3] <- transform.ham(acc_param_mean[[rep]]
N2=relative N3*RefN

tranf_param[,4] <- transform.ham(acc_param_mean[[rep]]
N3=relative N3*RefN

tranf_param[,5] <- transform.ham(acc_param_mean[[rep]]
N4=relative N4*RefN

tranf_param[,6] <- transform.ham(acc_param_mean[[rep]]
Tadm2(gen)

tranf_param[,7] <- transform.ham(acc_param_mean[[rep]] 
tranf_param[,8] <- transform.ham(acc_param_mean[[rep]]

Tadml (gen) = Tadm2*(4*RefN)
tranf_param[,9] <- transform.ham(acc_param_mean[[rep]] 
tranf_param[,10] <- transform.ham(acc_param_mean[[rep

# Tsplit(gen) = Tsplit*(4*RefN)
tranf_param[,11] <- transform.ham(acc_param_mean[[rep]][1:tol.array[tol],11], 1000,15000)

# Nanc=relative Nanc*RefN

1:tol.array[tol],3], 1000,15000) #

1:tol.array[tol],4], 1000,15000) #

1:tol.array[tol],5], 1000,15000) #

1:tol.array[tol],6], 1,100) #

1:tol.array[tol],7], 0,1) # 1-P3 
1:tol.array[tol],8], 0,100) #

1:tol.array[tol],9], 0,1) # P1 
][1 :tol.array[tol], 10], 1000,15000)

# Epanechnikov Kernel Weights 
regwt < -1-

acc_dist_mean[[rep]][1:tol.array[tol]]A2/max(acc_dist_mean[[rep]][1:tol.array[tol]]A2)

# Perform the Regression with tolerance equal to tol
fitO <- lm(tranf_param ~ acc_sumstat_mean[[rep]][1 :tol.array[tol],], weights=regwt)

# Compute predicted values
xOp <- c(1, obs_sum_stat_mean[rep,]) 
predmean <- numeric(nb_param)
for(i in 1:nb_param) predmean[i] <- sum(x0p*coef(fit0)[,i], na.rm=T)

# Add the residuals to the predicted mean 
post <- matrix(,tol.array[tol],nb_param)
for(i in 1:nb_param) post[,i] <- residuals(fit0)[,i] + predmean[i]

# Back transform the regressed parameters to the original scale 
post[,1] <- back.transform.ham(post[,1], 1e-5, 1e-3)#m ute rate 
post[,2] <- back.transform.ham(post[,2], 1000, 15000) #N1
post[,3] <- back.transform.ham(post[,3], 1000, 15000) #N 2
post[,4] <- back.transform.ham(post[,4], 1000, 15000) # N3
post[,5] <- back.transform.ham(post[,5], 1000, 15000) # N 4

post[,6] <- back.transform.ham(post[,6], 1, 100)#Tadm 2  
post[,7] <- back.transform.ham(post[,7], 1,1) # 1-p3

post[,8] <- back.transform.ham(post[,8], 0, 100)# Tadml 
post[,9] <- back.transform.ham(post[,9], 0, 1) # p1

post[, 10] <- back.transform.ham(post[,10], 1000, 15000) # Tsplit 
post[,11]<- back.transform.ham(post[,11], 1000, 15000) # Nanc
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# plot the posteriors 
par(mfrow=c(4,3)) 
for(i in 1:nb_param) {

hist(post[, i], main=legenda_hista[i])
}
dev.print(device=pdf, width=16, height=14, paste("./run_", rep, 7mean_posterior_reg_", 

tol.array[tol],".pdf", sep=M"))

# Save the posterior distributions 
if(tol > 10000){ t = 0.1
} else {t <- tol/nbsim}
write.table(post, file=paste("./run_", rep, "/reg_posterior_mean_tol_", t, "_rep_", rep, ".txt", 

sep=""), row.names=F, col.names=F)

# VAR
# Transform the parameters to make the regression
# (this is done to avoid that after the regression
# the parameter values are outside the prior limits)
# NOTE: NEED TO CHANGE PRIOR LIMITS!!!!

tranf_param <- matrix(,length(acc_param_var[[rep]][1 :tol.array[tol],1]),nb_param)

tranf_param[,1] < - transform.ham(acc_param_var[[rep]][1:tol.array[tol],1], 1e-5, 1e-3) #
mut_rate = theta/(4*RefN)

tranf_param[,2] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],2], 1000,15000) #
N1=relative N1*RefN

tranf_param[,3] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],3], 1000,15000) #
N2=relative N3*RefN

tranf_param[,4] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],4], 1000,15000) #
N3=relative N3*RefN

tranf_param[,5] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],5], 1000,15000) #
N4=relative N4*RefN

tranf_param[,6] <- transform.ham(acc_param_var[[rep]][1:tol.array[tolJ,6], 1,100) #
Tadm2(gen)

tranf_param[,7] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],7], 0,1) # 1-P3
tranf_param[,8] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],8], 0,100) #

Tadml (gen) = Tadm2*(4*RefN)
tranf_param[,9] <- transform.ham(acc_param_var[[rep]][1:tol.array[tol],9], 0,1) # P1
tranf_param[, 10] < - transform.ham(acc_param_var[[rep]][1:tol.array[tol], 10], 1000,15000) # 

Tsplit(gen) = Tsplit*(4*RefN)
tranf_param[,11] <- transform.ham(acc_param_var[[rep]][1 :tol.array[tol],11], 1000,15000) # 

Nanc=relative Nanc*RefN

# Epanechnikov Kernel Weights
regwt <- 1-acc_dist_var[[rep]][1 :tol.array[tol]]A2/max(acc_dist_var[[rep]][1 :tol.array[tol]]A2)

# Perform the Regression with tolerance equal to tol
fitO <- lm(tranf_param ~ acc_sumstat_var[[rep]][1 :tol.array[tol],j, weights=regwt)

# Compute predicted values
xOp <- c(1, obs_sum_stat_var[rep,]) 
predvar <- numeric(nb_param)
for(i in 1:nb_param) predvar[i] <- sum(x0p*coef(fit0)[,i], na.rm=T)

# Add the residuals to the predicted var 
post <- matrix(,tol.array[tol],nb_param)
for(i in 1:nb_param) post[,i] <- residuals(fitO)[,i] + predvar[i]
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# Back transform the regressed parameters to the original scale 
post[,1] <- back.transform.ham(post[,1], 1e-5, 1e-3) # mute rate 
post[,2] <- back.transform.ham(post[,2], 1000, 15000) # N1 
post[,3] <- back.transform.ham(post[,3], 1000, 15000) # N2 
post[,4] <- back.transform.ham(post[,4], 1000, 15000)#N3  
post[,5] <- back.transform.ham(post[,5], 1000, 15000) #N 4

post[,6] <- back.transform.ham(post[,6], 1, 100)#Tadm 2  
post[,7] <- back.transform.ham(post[,7], 1,1) # 1-p3

post[,8] <- back.transform.ham(post[,8], 0, 100)# Tadml 
post[,9] <- back.transform.ham(post[,9], 0, 1) # p1

post[,10]<- back.transform.ham(post[,10], 1000, 15000) # Tsplit 
post[,11]<- back.transform.ham(post[,11], 1000, 15000) # Nanc

# plot the posteriors 
par(mfrow=c(4,3)) 
for(i in 1:nb_param) {

hist(post[,i], main=legenda_hista[i])
}
dev.print(device=pdf, width=16, height=14, paste("./run_", rep, 7var_posterior_reg_", 

tol.array[tol],".pdf', sep=""))

# Save the posterior distributions 
if(tol > 10000){ t = 0.1}
else {t <- tol/nbsim}
write.table(post, file=paste("./run_", rep, "/reg_posterior_var_tol_", t, "_rep_", rep, ".txt", 

sep=""), row.names=F, col.names=F)

# MEAN + VAR
# Transform the parameters to make the regression
# (this is done to avoid that after the regression
# the parameter values are outside the prior limits)
# NOTE: NEED TO CHANGE PRIOR LIMITS!!!!

tranf_param <- matrix(,length(acc_param[[rep]][1:tol.array[tol],1]),nb_param) 

tranf_param[,1] <- transform.ham(acc_param[[rep]][1:tol.array[tol],1], 1e-5, 1e-3) # mut_rate
= theta/(4*RefN)

tranf_param[,2] <- transform.ham(acc_param[[rep]][1:tol.array[tol],2], 1000,15000) #
N1=relative N1*RefN

tranf_param[,3] < - transform.ham(acc_param[[rep]][1:tol.array[tol],3], 1000,15000) #
N2=relative N3*RefN

tranf_param[,4] < - transform.ham(acc_param[[rep]][1:tol.array[tol],4], 1000,15000) #
N3=relative N3*RefN

tranf_param[,5] <- transform.ham(acc_param[[rep]][1:tol.array[tol],5], 1000,15000) #
N4=relative N4*RefN

tranf_param[,6] < - transform.ham(acc_param[[rep]][1:tol.array[tol],6], 1,100) #
Tadm2(gen)

tranf_param[,7] <- transform.ham(acc_param[[rep]][1:tol.array[tol],7], 0,1)# 1-P3 
tranf_param[,8] <- transform.ham(acc_param[[rep]][1:tol.array[tol],8], 0,100) #

Tadml (gen) = Tadm2*(4*RefN)
tranf_param[,9] <- transform.ham(acc_param[[rep]][1:tol.array[tol],9], 0,1)# P1 
tranf_param[,10] < - transform.ham(acc_param[[rep]][1:tol.array[tol], 10], 1000,15000) #

Tsplit(gen) = Tsplit*(4*RefN)
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tranf_param[,11] <- transform. ham(acc_param[[rep]][1: tol. array [tol], 11], 1000,15000) #
Nanc=relative Nanc*RefN

# Epanechnikov Kernel Weights
regwt <- 1-acc_dist[[rep]][1 :tol.array[tol]]A2/max(acc_dist[[rep]][1: to I. array [to I]] A2)

# Perform the Regression with tolerance equal to tol
fitO <- lm(tranf_param ~ acc_sumstat[[rep]][1:tol.array[tol],], weights=regwt)

# Compute predicted values 
xOp <- c(1, obs_sum_stat[rep,]) 
pred <- numeric(nb_param)
for(i in 1:nb_param) pred[i] <- sum(x0p*coef(fit0)[,i], na.rm=T)

# Add the residuals to the predicted 
post <- matrix(,tol.array[tol],nb_param)
for(i in 1:nb_param) post[,i] <- residuals(fitO)[,i] + pred[i]

# Back transform the regressed parameters to the original scale 
post[,1] <- back.transform.ham(post[,1], 1e-5, 1e-3)# mute rate 
post[,2] <- back.transform.ham(post[,2], 1000, 15000) # N1 
post[,3] <- back.transform.ham(post[,3], 1000, 15000)#N2  
post[,4] <- back.transform.ham(post[,4], 1000, 15000) #N 3  
post[,5] <- back.transform.ham(post[,5], 1000, 15000)#N 4

post[,6] <- back.transform.ham(post[,6], 1, 100)#Tadm 2  
post[,7] <- back.transform.ham(post[,7], 1,1) # 1-p3

post[,8] <- back.transform.ham(post[,8], 0, 100)# Tadml 
post[,9] <- back.transform.ham(post[,9], 0, 1) # p1

post[,10]<- back.transform.ham(post[,10], 1000, 15000) # Tsplit 
post[, 11 ] <- back.transform.ham(post[,11], 1000, 15000) # Nanc

# plot the posteriors 
par(mfrow=c(4,3)) 
for(i in 1:nb_param) {

hist(post[,i], main=legenda_hista[i])
}
dev.print(device=pdf, width=16, height=14, paste("./run_", rep, "/posterior_reg_", 

tol.array[tol],".pdf', sep=""))

# Save the posterior distributions 
if(tol > 10000){ t = 0.1} 
else {t <- tol/nbsim}
write.table(post, file=paste("./run_", rep, "/reg_posterior_tol_", t, "_rep_", rep, ".txt", sep=""), 

row.names=F, col.names=F)

}

}
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Appendix 5.3. R script for calculation of means, variance, and adjusted modal 
values of the posterior distribution.

#For analysis of 1adm and 2adm scenario
Calculates modal values (and sd) for P1, 1-P3, tadm2, tadml, and tsplit 

library(locfit) # to use package
param9.fit1 <- locfit(~post[,9], alpha=0.7, xlim=c(min(0),max(post[,9]))) # to create density 
find.mode <- function(sequence, param9.fit1) {
mode <- sequence[predict(param9.fit1 ,sequence)==max(predict(param9.fit1,sequence))] 
mode 
}
seqtest <- seq(0,1,0.001) #sets the intervals of .001 
find.mode(seqtest,param9.fit1) #finds the peak at intervals of .001 
sd (post[,9]) 
mean (post[,9])

param6.fit1 <- locfit(~post[,6], alpha=0.7, xlim=c(min(0),max(post[,6]))) # to create density 
find.mode <- function(sequence, param6.fit1) {
mode <- sequence[predict(param6.fit1 ,sequence)==max(predict(param6.fit1 .sequence))] 
mode 
}
seqtest <- seq(0,1,0.001) #sets the intervals of .001 
find.mode(seqtest,param6.fit1) #finds the peak at intervals of .001 
sd (post[,6]) 
mean (post[,6])

param10.fit1 <- locfit(~post[,10], alpha=0.7, xlim=c(min(0),max(post[,10]))) # to create density 
find.mode <- function(sequence, param10.fit1) {
mode <- sequence[predict(param10.fitl ,sequence)==max(predict(param10.fitl .sequence))] 
mode 
}
seqtest <- seq(0,1,0.001) #sets the intervals of .001 
find.mode(seqtest,param10.fit1) #finds the peak at intervals of .001 
sd (post[,10]) 
mean (post[, 10])

param7.fit1 <- locfit(~post[,7], alpha=0.7, xlim=c(min(0),max(post[,7]))) # to create density 
find.mode <- functionjsequence, param7.fit1) {
mode <- sequence[predict(param7.fit1 ,sequence)==max(predict(param7.fit1 .sequence))] 
mode 
}
seqtest <- seq(0,1,0.001) #sets the intervals of .001 
find.mode(seqtest,param7.fit1) #finds the peak at intervals of .001 
sd (post[,7]) 
mean (post[,7])

param8.fit1 <- locfit(~post[,8], alpha=0.7, xlim=c(min(0),max(post[,8]))) # to create density 
find.mode < - functionjsequence, param8.fit1) {
mode <- sequence[predict(param8.fit1,sequence)==max(predict(param8.fit1 .sequence))] 
mode 
}
seqtest <- seq(0,1,0.001) #sets the intervals of .001 
find.mode(seqtest,param8.fit1) #finds the peak at intervals of .001 
sd (post[,8]) 
mean (post[,8])
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Appendix 5.4. Mean regression histograms for p1 and 1-p3 for two admixture events 
using 500,000 simulations.
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Appendix 5.5 Mean regression histograms for p1 and 1-p3 for two admixture events 
using 500,000 simulations.
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