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ABSTRACT

The systems for prediction of epileptic seizure investigated in recent 

years mainly rely on the traditional nonlinear analysis of the brain sig­

nals from intracranial electroencephalograph (EEG) recordings. The 

overall objective of this work focuses on investigation of the predictabil­

ity of seizure from the scalp signals by applying effective blind source 

separation (BSS) techniques to scalp EEGs, in which the epileptic 

seizures are considered as independent components of the scalp EEGs. 

The ultimate goal of the work is to pave the way for epileptic seizure 

prediction from the scalp EEG. The main contributions of this research 

are summarized as follows.

Firstly, a novel constrained topographic independent component 

analysis (CTICA) algorithm is developed for the improved separation 

of the epileptic seizure signals. The related CTICA model is more 

suitable for brain signal separation due to the relaxation of the inde­

pendence assumption, as the source signals geometrically close to each 

other are assumed to have some dependencies. By incorporating the 

spatial and frequency information of seizure signals as the constraint, 

CTICA achieves a better performance in separating the seizure signals 

in comparison with other conventional ICA methods.

Secondly, the predictability of seizure is investigated. The tradi­

tional method for quantification of the nonlinear dynamics of time se­
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ries is employed to quantify the level of chaos of the estimated sources. 

The simultaneously recorded intracranial and scalp EEGs are used for 

the comparison of the results. The experiment results demonstrate that 

the separated seizure sources have a similar transition trend as those 

achieved from the intracranial EEGs.

Thirdly, simultaneously recorded EEG and functional Magnetic Res­

onance Imaging (fMRI) is studied in order to validate the activated area 

of the brain related to the seizure sources. An effective method to re­

move the fMRI scanner artifacts from the scalp EEG is established 

by applying the blind source extraction (BSE) algorithm. The results 

show that the effect of fMRI scanner artifacts has been reduced in scalp 

EEG recordings.

Finally, a data driven model, spatial ICA (SICA) subject to EEG 

as the temporal constraint is proposed in order to detect the Blood 

Oxygen-Level Dependence (BOLD) from the seizure fMRI. In contrast 

to the popular model driven method General Linear Model (GLM), 

SICA does not rely on any predefined hemodynamic response func­

tion. It is based on the fact that brain areas executing different tasks 

are spatially independent. Therefore SICA works perfectly for non- 

event-related fMRI analysis such as seizure fMRI. By incorporating the 

temporal information existing within the EEG as the constraint, the 

superiority of the proposed constrained SICA is validated in terms of 

better algorithm convergence and a higher correlation between the time 

courses of the component and the seizure EEG signals as compared to 

SICA.
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Chapter 1

INTRODUCTION

1.1 Overview

The prediction of epileptic seizures has been investigated in recent 

years. Most of the developed methods rely on the analysis of brain 

signals which are obtained from inside the brain. Establishment of a 

warning system that can predict the onset of seizure based on nonin- 

vasive recording of brain signals has attracted much attention recently. 

The research presented in this thesis investigates the predictability of 

epileptic seizure from noninvasively recorded data of an epileptic brain 

by applying effective blind source separation (BSS) techniques, thus 

paving the way for epileptic seizure prediction.

This chapter mainly focuses on an introduction to the physiologi­

cal background knowledge and BSS. In the first section, the structure 

and function of the human brain are introduced and a brief review of 

epileptic seizure is given. The most widely used brain function mon­

itoring modality, i.e. Electroencephalography (EEG), is introduced. 

In addition, other modalities such as Magnetoencephalography (MEG) 

and functional Magnetic Resonance Imaging (fMRI) are briefly intro­

duced. The second section gives an overview of blind source separation 

techniques including the description of the problem, the principles of

1
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estimation and a survey of BSS algorithms. The structure of the the­

sis is described in the final section, in which the contributions in each 

chapter are addressed.

1.2 Physiological Background

1.2.1 Human Brain

The human brain consists of three main parts, the cerebrum, the cere­

bellum and the brain stem. The two hemispheres of the cerebellum 

are separated by the longitudinal fissure across which there is a large 

connective band of fibres called corpus callosum. The outer surfaces 

of the cerebral hemispheres are composed of nerve cells (neurons) that 

form the cerebral cortex. These surfaces are separated into regions by a 

number of fissures. Beneath the cortex, nerve fibres lead to other parts 

of the brain and body. Because of their colour, the regions composed of 

neurons, which include the cerebral cortex, are known as grey matter; 

fibrous tissue is called white matter [3].

C E R E B E L L U M
T ' .

B R A IN  S T E M

Figure 1.1. Lateral view of the left cerebral hemisphere [1].

The brain is divided into regions that control some specific func­

tions. Mainly, different regions (as illustrated in Fig. 1.1) are respon-
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sible for particular tasks. For example, vision information is processed 

by the occipital lobes, and hearing and language are handled by the 

temporal lobe. Sensation and movement are in the nearby areas which 

belong to the parietal lobe. Reading function is located on the bound­

ary area where vision and hearing areas interact. The right hemisphere 

deals with visual information but the left one does more analytical 

work; therefore, information is obtained from the right hemisphere and 

analyzed in the left part [3]. When someone has a brain injury, a certain 

region might be damaged, and therefore the related function is affected. 

But other undamaged regions may still function properly. For example, 

a patient with dyslexia can hear and see things, but has difficulties to 

read and understand letters.

In a simple way, the brain can be considered as an electrical and 

chemical machine. Neurons “communicate” with each other by means 

of electrical or chemical activities. The electrical activity means that 

information transfer from neuron to neuron via a small electrical charge 

which is generated by billions of axons. The information can also be 

transmitted by neurotransmitters. Neurotransmitters are chemicals 

stored in the axons and can be released when an electrical impulse 

reaches to the axons. The level of neurotransmitters can be influenced 

by nervous system diseases. Loss or imbalance of certain neurotrans­

mitters may be linked to brain system malfunction, such as Parkinson’s 

disease or some types of epilepsy [2].

1.2.2 Epileptic Seizure

Epilepsy is a disease known from ancient times and the name is derived 

from the Greek word “Epilepsia” [4]. Epilepsy covers a group of re-
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lated disorders characterized by a tendency for recurrent seizures. The 

seizures are due to a sudden development of synchronous neuronal fir­

ing in the cerebral cortex. The cause of epilepsy still remains unknown.

A large number of possible causes can include genetic abnormalities, 

developmental anomalies, febrile convulsions, central nervous system 

infections, hypoxia, and tumors [4].

Different types of epilepsy have been discovered. In terms of di­

agnosis, an epilepsy is usually referred to as idiopathic, cryptogenic, 

symptomatic, generalized, focal, or partial [46]. The first three classify 

the epilepsy based on the following reasons. Idiopathic means there is 

no apparent cause but perhaps a family history. Cryptogenic means 

there is a likely cause but it has not been identified. Symptomatic 

means that a cause has been identified. The other three mainly con­

sider whether the whole brain or just part of it is involved. Generalized 

means that the seizures involve the whole brain at once. Focal or partial 

means that the seizure originates from one area of the brain.

Different treatments are often considered for different types of epilepsy. 

For example, the idiopathic generalized epilepsy has no nervous system 

abnormalities and usually it can be treated by medication. On the 

other hand, symptomatic partial (or focal) epilepsy, which is the most 

common type of epilepsy that begins in adulthood, cannot be treated 

by medication. This type of epilepsy is caused by a localized abnor­

mality of the brain, which may be successfully treated with surgery 

by removing the abnormal brain area without compromising the func­

tion of the rest of the brain [4]. In this research work, only the focal 

or partial type of seizure is considered, for which seizure prediction is 

feasible.
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The state of an epileptic brain can be considered as having a number 

of stages [28]. The ictal stage starts at the seizure onset and ends at the 

seizure’s end. The preictal stage is the period before the seizure onset. 

The postictal stage is the period following the seizure end. The period 

between the postictal stage of one seizure and the preictal stage of the 

next seizure is called interictal stage. An example of an intracranial 

EEG recording from different stages of an epileptic seizure is given in 

Fig. 1.2. Based on the traditional nonlinear dynamic analysis methods, 

the seizure can be predicted by evaluating the dynamical changes in 

these different stages.

interictal — ► pre-ictal —  ictal

Tb » (•« * * ) Tnrfwcwb) Tkt(secmfc)

Figure 1.2. An example of a 20-minute intracranial EEG recording 
before a spontaneous seizure, which shows three different stages of an 
epileptic seizure [41].

1.2.3 Brain Function Monitoring Modalities  

EEG

Introduced by Hans Berger in 1929, EEG represents the electrical ac­

tivity of the brain which is recorded from electrodes placed on the scalp. 

It provides a noninvasive means of monitoring brain activity and inves­

tigating brain function disorders. EEG plays a very important role in 

the diagnosis of specific neurological diseases such as epilepsy and it is
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a very useful tool in clinical diagnosis and applications.

The EEG is a recording of the electrical current potentials spon­

taneously generated by cortical nerve cell inhibitory and excitatory 

postsynaptic potentials. These postsynaptic potentials summate in the 

cortex and extend to the scalp surface where they are recorded as the 

EEG signals (EEGs). Generally, the EEG reflects the changes of cere­

bral function directly and reliably, especially if the structural lesions 

are localized near the surface of the hemispheres. The EEG recording 

system basically consists of sensors (electrodes), amplifier circuit, and 

a computer as the terminal for archiving and displaying the data. The 

electrical activity is monitored from an array of many electrodes and 

the EEGs are recorded simultaneously.

The most commonly used electrode types in clinical EEG are metal 

discs or cups which can be attached to the scalp and the other record­

ing sites. The electrodes are placed to cover the entire head evenly and 

connected to the amplifying and recording channels (as shown in Fig. 

1.3). The most widely used EEG electrode placement is referred to as 

the International 10-20 system [5]. In this system, each electrode site 

has a letter to specify the lobe, along with a number to identify the 

hemisphere. The letters used are: F (Frontal lobe), T (Temporal lobe), 

C (Central lobe), P(Parietal lobe), and O (Occipital lobe), and Z refers 

to an electrode placed on the mid-line . Odd and even numbers repre­

sent, respectively, the left and right hemispheres. Fig. 1.4 illustrates 

the electrode placement of the International 10-20 system.
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Figure 1.3. An example of the EEG recording system NeuroScan, 
which shows how the electrodes are placed over the head [5].

F igure 1.4. The electrode placement of the International 10-20 sys­
tem. The letters are used to specify the lobe, F (Frontal lobe), T (Tem­
poral), C (Central lobe), P (Parietal lobe), and O (Occipital lobe), and 
Z refers to an electrode placed on the mid-line [5].
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Other Brain Function Monitoring Modalities

With the development of advanced technology, more measurement de­

vices have been made to monitor the small physiological changes in 

the human brain. Apart from EEG, other recording modalities include 

MEG, fMRI and Positron Emission Tomography (PET).

MEG is another noninvasive technology for functional brain map­

ping, which measures the magnetic field emanated by the synaptic cur­

rents from the brain. Unlike EEG, in which the spatial resolution is 

poor due to poor skull conduction, MEG provides much higher spa­

tial resolution than EEG because the magnetic fields are less affected 

by the changes in electrical conductivity. Compared with fMRI, which 

provides structural or anatomical images, MEG reveals the functional 

mapping information by locating the sources of evoked responses [6].

fMRI is an advanced imaging technique which can delineate the 

brain activated areas responding to the designed stimuli such as sound 

and light. The principles of MRI are based on nuclear magnetic reso­

nance (NMR). The NMR signal originates from the hydrogen nucleus 

which has a single proton. When the proton is placed in an exter­

nal magnetic field, transitions of energy occur as the proton absorbs 

or emits a photon (more detail of NMR is introduced in Chapter 5). 

The NMR signals generated by this energy transition can be detected 

and presented in an anatomical image. fMRI is able to show the blood 

flow in the activated areas in the images as the blood oxygen level- 

dependence (BOLD) response, and therefore it can provide valuable 

spatial information on the brain. But, because it relies on blood flow 

response rather than electrical activities, it has a relatively slow re­

sponse to temporal changes [108].
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It is seen that each modality has its own advantages. How to inte­

grate various modalities and maximize their advantages in real applica­

tions has become a very interesting topic in recent years. For example, 

EEG reflects the brain changes on a timescale of milliseconds (1kHz or 

more), which is capable of capturing the dynamic changes of the brain 

very well. However, it has poor spatial resolution due to being recorded 

from a limited number of electrodes on the scalp, and the problem of 

source localization from the EEG still remains a research challenge. On 

the other hand, fMRI is extremely powerful for investigation of spatial 

aspects of brain function, but it is slow to follow the brain activities 

because it relies on the brain blood flow response rather than electri­

cal activities. Therefore, a combined EEG-fMRI system becomes more 

attractive. Fusion of these two modalities has been of increasing in­

terest to researchers to exploit the temporal and spatial information 

effectively at the same time. In this work, the fusion of EEG and fMRI 

is investigated and discussed in Chapter 5 and Chapter 6.

In the next section, one of the most important and widely used 

tools in brain signal analysis and source separation, namely independent 

component analysis, is reviewed.

1.3 Independent Component Analysis

1.3.1 Problem Description

Blind source separation (BSS) is an effective technique to recover the 

unknown signals or sources from an observed signal mixture based on 

the weak assumption of the mutual independence between the sources. 

BSS is often performed by means of Independent Component Analysis
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(ICA). A famous example describing this problem is the so called cock­

tail party problem. Imagine that in a room there are m  people speaking 

simultaneously, and n microphones are recording the time signals. Each 

of these recorded signals is the weighted sum of the signals from the m  

speakers under a certain unknown mixing system. Then the aim of BSS 

is to extract the signals of each speaker as the independent components 

(ICs). The term “blind” means that the sources and their combination 

method are unknown. For the sources, the number and their statistical 

properties are unknown except that mutual independence between the 

sources is assumed. For the combination system, the sources could be 

linearly or nonlinearly combined, or could be instantaneously or con- 

volutively combined.

The simplest ICA model is the instantaneous model which assumes 

that the source signals arrive at the sensors at the same time. Then the 

problem can be described mathematically as follows. The n  channels 

of observed data x(t) =  [^i(t), ^ 2 ^), ■••■,xn{t)]T are linear and instanta­

neous mixtures of m  underlying sources s (t) = [si(t), S2 ( t ) , ..., sm(t)]T,

where A is an n x m  mixing matrix, e(t) is the observation noise, and t 

denotes discrete time index. The sources s can be estimated by a sep­

aration matrix W  through inversion of the data model in Eq. (1.3.1),

x(£) =  As (t) +  e(t) (1.3.1)

y(t) =  s(t) =  W x(t) (1.3.2)

where y(t) is the estimated source, and W  =  A* is the pseudo-inverse 

of the mixing matrix and W A =  I.
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Ambiguities in ICA

Since ICA is used to find the solutions for both the mixing matrix 

A and the unknown sources s simultaneously, the solutions are not 

unique. The product As can be combinations of different sets of sta­

tistically independent signals, because any scalar multiplier in source 

Sf can be cancelled by dividing the corresponding column of A by the 

same scalar. The ICs can also have an arbitrary permutation of the 

original sources. These ambiguities can be expressed mathematically 

as

y(t) = S (t) =  W A s(f) =  P D s(t) (1.3.3)

where P  is a permutation matrix and D is a nonsingular scaling matrix.

The indeterminacies associated with the order and scale of the ICs 

seem to be the limitations, but in most applications, these limitations 

are not troublesome since the most relevant information about the 

source signals is contained in the waveforms of the sources but not in 

their amplitude or the order in which they are arranged. For example, 

in the cocktail party problem, which speaker’s signal is distinguished 

first is not that important. In some applications such as speech cod­

ing techniques, scaling of the signals can be tolerated since the most 

important factors concern frequencies rather than magnitudes of the 

waveforms [69]. In existing ICA algorithms, in order to determine the 

scales, some constraints can be imposed on the unmixing matrix and 

estimated sources explicitly or implicitly. In practice, a preprocessing 

called whitening is usually applied, which not only rescales the data to 

have unit variance, but also make the unmixing matrix orthogonal and
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therefore ensures the recovered sources have unit variance too. 

Whitening

Two zero mean real random variables yi and yj are said to be uncorre­

lated if their covariance is zero [65]:

cov(yi:yj) = E{yiyj}  -  E{yi}E{y j}  = 0 (1.3.4)

where E{}  is the statistical expectation operator and cov(-) denotes 

the lag zero covariance between two variables. For the variables with 

zero mean and unit variance, the covariance is equal to correlation 

cor(yi, yj) = Efy iy j}1. A zero-mean random vector y  is said to be white 

if its elements yi are uncorrelated and have unit variance, E { y y T} =  I, 

with I the unit matrix. Data whitening can be performed by linear 

transformation of the observed data x  by linearly multiplying it by a 

matrix V, i.e.

z = V x  (1.3.5)

where V  is the whitening matrix, and z is the data vector after whiten­

ing with i7{zzT} =  I, for which each element has unit variance. A 

popular technique for whitening is using the eigenvalue decomposition 

(EVD) of the covariance matrix, i.e.

£{x x t } =  U $ U T (1.3.6)

1In the statistical literature, correlation is often defined as a normalised version 
of covariance [65]. In this thesis, this simpler definition of correlation is used, which 
is given in Eq. (4.3.7), unless otherwise mentioned.
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where U is the orthogonal matrix of unit-length eigenvectors of E { x x T} 

and $  is the diagonal matrix of its eigenvalues. And the whitening 

matrix V  is obtained by V  =  U<f>"“1//2 U T. After data whitening,

z= V A s= A s (1.3.7)

-  t  ~
where A =  VA is a new mixing matrix and is orthogonal A A =  I. 

As whitening is essentially a decorrelation process followed by scaling, 

it is a useful and standard preprocessing for ICA. (In this thesis, all 

experimental data were preprocessed by removing their mean values 

and whitening so that the estimated sources had unit variance.)

Number of Sources

Another indeterminacy in ICA is that the number of sources is gener­

ally unknown. For simplicity, many learning algorithms for ICA usually 

assume that the number of sources is equal to the number of sensors, 

or is known a priori. However, in practice, these assumptions do not 

often hold. When the number of sensors is less than the number of 

sources (n < m), the BSS problem becomes underdetermined. In this 

case, the source signals are difficult to be completely separated as there 

are more unknowns than available information. The problem may be 

solved under some special circumstances, such as assuming the col­

umn vectors of the mixing matrix satisfy some special conditions [8 ]; 

assuming that the signals are sparse and therefore have a sparse distri­

bution [9]. Some advanced clustering techniques such as k-mean com­

bined with gap statistics have been exploited for detection of the active 

sources [10]. When the number of sensors is larger than the number of 

sources (n > m), the BSS problem is overdetermined, and the learn­
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ing rules become relatively complicated as the unmixing matrix will be 

related to the pseudo-inverse of the mixing matrix. Several neural net­

work architectures, together with the associated learning algorithms, 

have been discussed to solve the problem [1 1 ]- [16].

For an overdetermined case, in practice, the most popular method 

to separate the signal and noise subspace is using Principal Component 

Analysis (PCA). The number of principal components is determined by 

analysing the eigenvalues of the covariance matrix. The eigenvalue se­

quence of a covariance matrix for the observed data is usually sharply 

decreasing, a threshold can be set where the eigenvalues become con­

stant. In some applications, the number of sources is simply chosen as 

the minimum number of principal components tha t contain 90% of the 

variance [65].

Estimation of the number of independent sources is still an open 

question and the problem becomes more complex when it comes to 

brain signal separation. Some methods have been investigated in [14]- 

[16] for estimation of the number of sources in EEG signals for the 

overdetermined case. In these methods, an approach based on an in­

formation theoretic criterion is applied to the eigenvalues of the covari­

ance matrix. As in [14], the information criterion consists of two parts, 

the first part is a likelihood function tha t represents the information 

obtained from the measured data, which are dependent on the assumed 

number of sources. The second part is a penalty function of the data 

points in the time domain, which represents the uncertainty of parame­

ters in the probabilistic model with increase of the data points. Then 

the information criterion value with eigenvalues are calculated based on 

the proposed method, and the number of sources with minimum infor­
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mation criterion value is selected as the estimated number of sources. 

In this thesis, this method was applied to estimate the number of EEG 

sources, and the number of sources was assumed to be equal or less 

than the number of sensors.

1.3.2 Principles of Estimation 

Assumption of Independence

The task of BSS is to find a separation system to reconstruct the un­

known sources which are as independent as possible based only on the 

observed data and weak assumptions of independency between the un­

known sources. Technically, the independence of the data can be de­

fined by using their probability densities. Consider the random vari­

ables 2/1 , 2/2 , 2/nj having a joint pdf of p(yu y2, . . .yn ) and marginal pdfs 

of p(yi), then y i,y2, ...,yn are said to be independent if their joint pdf 

can be factorized as:

n

p ( y u y 2 , - y n) = Y lp iv i )  (1.3.8)
i=l

There are certain assumptions that the basic ICA model must fol­

low [65]: (1) the sources are assumed to be statistically independent; 

(2 ) the independent components must generally have non-Gaussian dis­

tribution; (3) the number of independent components is equal to the 

number of observed mixtures.

The principle of ICA estimation is to maximize the independence 

between the outputs as much as possible. Popular approaches include 

maximization of non-Gaussianity, minimization of mutual information, 

maximization of likelihood estimation, and tensorial methods [65].
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Maximization of Non-Gaussianity

Maximization of non-Gaussianity is based on the Central Limit Theo­

rem, which states that the distribution of a sum of independent random 

variables tends towards a Gaussian distribution. Therefore, each source 

is less likely to have Gaussian distribution than the sum of the sources. 

The classical quantitative measurement of non-Gaussianity are kurtosis 

and negentropy.

The kurtosis of a random variable y is defined by

kur(y) = E { y 4} -  3(E {y2})2 (1.3.9)

For simplicity, y is assumed to be centered (zero mean) and has variance 

equal to one. Thus the kurtosis is simplified as E { y 4} — 3. For a 

Gaussian y, the fourth moment equals 3(E {y2})2. Thus, kurtosis is 

zero for a Gaussian variable [65]. Variables with negative kurtosis are 

referred to as sub-Gaussian and those with positive kurtosis are called 

super-Gaussian .

Maximization of non-Gaussianity by measuring negentropy is based 

on a fundamental result of information theory, in which a Gaussian vari­

able has the largest entropy among all continuous random variables of 

equal variance [7]. Entropy is one of the basic concepts in informa­

tion theory, which can be interpreted as the degree of information that 

the observed random variable delivers. The more “random” or unpre­

dictable the variable, the larger is its entropy. For a discrete-valued 

random variable y , the entropy H  is defined as:

H (y) =  p (y  =  a i ) lo 92P ( y  =  ai)  (1 .3 .10)
i
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where a* is a possible value of y and P  is the probability that y = a*.

The unit of entropy is depended by the base of logarithm, which is bit

for base of 2 , and nat for natural logarithm.

The differential entropy H  of a continuous random vector y  with 

density p(y) is defined as:

/ + oo

P(y)log2p (y )d y  (1.3.11)
-O O

Negentropy J  is an extension of the differential entropy which is 

zero for a Gaussian random vector and always non-negative,

A y) =  H (ygauss) -  H (y) (1.3.12)

where y gauss is a Gaussian random vector.

Minimization of Mutual Information

Mutual information is a measure of the information in common between 

the various sets of random variables. Information about one variable 

can therefore reduce the uncertainty about the other. For example, if x 

and y are independent, then knowing x  does not give any information 

about y and vice versa, so their mutual information is zero. Using 

entropy, the mutual information I  between n  scalar random variables 

yi, i = 1 , ...,n, can be given as,

n

(1.3.13)
i=1

If we assume that y  =  W x, an invertible linear transformation of 

mutual information is expressed [65] as:
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n

Kvu V2 , - , y n) = ^ 2  ~  ^ ( x ) “  log\deiW\ (1.3.14)
2—1

where | * | is the absolute value, and det(-) is the determinant of the 

matrix. It is noticed that if the estimated sources are constrained to 

be uncorrelated and of unit variance, the mutual information is equal 

to the negative sum of negentropy. Thus, minimizing the mutual infor­

mation is equivalent to maximization of the non-Gaussianity [7].

Maximization of Likelihood Estimation

Maximum likelihood estimation is one of the most common statisti­

cal estimation principles which can be used for estimation of the ICA 

model. Assuming the linear instantaneous ICA model x  =  As, the 

likelihood for the mixtures can be expressed as:

n
p(x) = |detW | J Jp i(s i)  (1.3.15)

2 = 1

As a result, the log likelihood can be written as [65]:

^logL(W ) =  E { ^ 2  logPi(v/Jx)} +  log{\detW\) (1.3.16)
2 = 1

where log is generally the natural logarithm operator, and w* is the z-th 

column of W . The likelihood is therefore a function of the unmixing 

matrix W , which can be estimated by various algorithms.
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Tensorial Method

The tensorial method provides a different approach to ICA estimation 

by using a high-order cumulant tensor. The cumulant tensor is a four 

dimensional array whose entries are given by the fourth-order cross- 

cumulant of the data, cum(xi , Xj, x k,xi). The fourth-order cumulant is 

given as [65]:

cum(xi,xj,xk,xi) = E{xiXjXkxi} -  E{xiXj}E{xkxi} -  E{xiXk}E{xjXi}

-  E{xiXi}E{xjXk} (1.3.17)

It is seen that the cumulant tensor can be considered as a four­

dimensional covariance matrix. By making all its “off-diagonal” ele­

ments equal to zero it will give an estimation of the independent compo­

nents. The problem with the tensorial method is tha t it is not suitable 

for high dimensional spaces due to the expensive computation of the 

coefficients of the fourth-order tensor. However, it provides an efficient 

alternative solution for low-dimensional problems.

1.3.3 Algorithms

As described in the above section, the main objective for BSS is to find 

the separation matrix which can separate the mixtures into their con­

stituent statistically independent components. Practically, the solution 

is based on the optimization of some cost function, also called objec­

tive function or contrast function. The cost function is a function of 

the distribution of the output y  =  W x  and must be designed in such a 

way that source separation is achieved when the cost function reaches 

its minimum or maximum value. The cost function can be designed



Section 1.3. Independent C om ponent Analysis 20

based on the above estimation principles.

The steps of a general procedure for executing a BSS algorithm 

are: 1 ) centring the variables, which means removing the sample mean 

from the observed variables; 2 ) “whitening” or “sphering” , which will 

decorrelate the data; 3) dimension reduction, if needed, by choosing 

the number of principal components; 4) choosing and performing the 

proper separation algorithm.

There are various well established ICA algorithms which can solve 

the ICA problem efficiently. For example, FastICA [7] is based on a 

fixed-point iteration scheme for maximizing non-Gaussianity of the es­

timated sources; blind source extraction (BSE) [83] can extract the 

sources one-by-one by maximizing the kurtosis of the output. (BSE 

is explained in detail in Chapter 5). The contrast function of Info- 

max [133] is derived from a neural network viewpoint, which was based 

on maximization of the mutual information between the input and out­

put. The detail of the Infomax algorithm is explained in Chapter 6 . 

An algorithm based on the tensorial method called joint approximate 

diagonalization of eigenmatrices (JADE) [17] is introduced in Chapter 

4. There axe also some algorithms developed based on the modified 

ICA model, such as topographic ICA, which relaxes the independence 

assumption. It assumes that the sources that are geometrically close 

to each other are less independent, and instead have some dependence 

which can be defined by high-order correlation. Details of the topo­

graphic ICA are given in Chapter 3.
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1.4 Organization of the Thesis

In this chapter, the physical background about brain structure and 

basic functions are first introduced, following the basic knowledge of 

epileptic seizure. The advanced brain function monitoring modalities 

such as EEG and fMRI are introduced. The fundamental concept of 

ICA and the principles of ICA estimation are also given in this chapter. 

The remainder of this thesis is organized as follows.

In Chapter 2, the traditional methods for epileptic seizure prediction 

are reviewed. The review focuses mainly on the nonlinear analysis 

methods in prediction. The theory of chaos is introduced and two 

chaos quantification techniques, namely the Lyapunov exponent-based 

and correlation dimension-based methods, are explained. The research 

approach of the work is addressed in the final section of the chapter.

In Chapter 3, a novel constrained topographic ICA (CTICA) algo­

rithm is proposed. In contrast to other well-known ICA algorithms, 

CTICA relaxes the assumption of independence and considers that 

sources geometrically close to each other are less independent. By in­

troducing the spatial and frequency information of seizures as the con­

straint, the proposed CTICA algorithm achieves a better performance 

for seizure source separation than other well-known ICA algorithms. 

The details of the algorithm are given and the results are discussed.

In Chapter 4, the predictability of epileptic seizure is investigated. 

The algorithms are applied to the simultaneously recorded intracranial 

and scalp EEGs. The traditional nonlinear method is applied to exam­

ine the predictability of the separated seizure sources. It is shown that 

the predictability measured from the estimated sources using CTICA 

is comparable with the results obtained from intracranial EEGs. Also
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the CTICA is more computationally efficient than the other two algo­

rithms.

In Chapter 5, one technical problem in fusion of EEG and fMRI, 

scanner artifact in EEGs, is studied. An effective method is introduced 

to remove the fMRI scanner artifact from the jointly recorded EEG- 

fMRI data. Blind source extraction is applied to extract the fMRI 

scanner artifacts, which is more convenient and efficient than the tra­

ditional averaging and subtraction approach.

A new approach for analysis of epileptic seizure fMRI is addressed in 

Chapter 6 . Unlike the popular general linear model (GLM) [105], spa­

tial ICA does not rely on the predicted stimuli response and predefined 

hemodynamic response function (HRF). Instead, unknown sources are 

assumed to be spatially independent, based on the fact that brain areas 

executing different tasks are spatially independent [114]. A constrained 

spatial ICA is developed by incorporating EEG as the temporal con­

straint. The experimental results show that the seizure activated area 

is clearly detected.

In the final chapter, the presented work is summarised and the 

promising perspective of applying the proposed methods to real epilep­

tic seizure prediction is provided. Also the limitations and future work 

are discussed and the conclusions are given.



Chapter 2

EPILEPTIC SEIZURE 

PREDICTION: 

LITERATURE REVIEW

2.1 Introduction

Epilepsy is characterized by sudden occurrences of synchronous activity 

within relatively large neuronal networks that disturb the normal work­

ing of the brain. Such activity may lead simply to a brief impairment 

of consciousness but also to a more or less complex series of abnormal 

sensory and motor manifestations, which is usually called a seizure [46]. 

Because of its unforeseeable occurrence, the seizure may cause fatal haz­

ards to the patient. The pharmacological method is still the primary 

treatment for epilepsy and patients have to take anticonvulsant drugs 

daily to avoid seizures. Surgical intervention is an alternative solution, 

but only patients with focal type seizures (for which the epileptogenic 

zone can be accurately detected) can be treated by surgery. Also side 

effects from both pharmacological and surgical treatments have been re­

ported. There are still large numbers of epilepsy patients whose seizures 

cannot be controlled by any available treatm ent methods. Therefore,

23
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an advanced warning of the impending seizure which can anticipate 

clinical attacks becomes very important.

Epilepsy can be considered as a dynamical disease of brain systems. 

The state of an epileptic brain can be considered as having a number 

of stages, mainly, interictal (normal brain activity), preictal (prior to 

seizure onset), ictal (seizure onset) and postictal (after seizure) [28]. 

The transition between interictal and ictal can either occur as a contin­

uous sequence of phases in some cases of focal seizures, or as a sudden 

leap in most cases of absence seizures [46]. In the case of the grad­

ual transition, the seizures could be anticipated in an early phase by 

applying some mathematical tools.

In this chapter, firstly, the concept of chaos is introduced and two 

nonlinear system quantification methods, namely Lyapunov exponent 

and correlation dimension, are explained. Then, a literature review of 

seizure prediction based on nonlinear analysis approaches is presented. 

In the third section, the main approach of this research is addressed.

2.2 Nonlinear Dynamic System

2.2.1 Chaos and Dynamic System Reconstruction 

Chaos

In physical science, chaos is the term used to describe irregular but 

deterministic motion [25]. A chaotic system can be considered as a 

system that consists of a set of variables, which change according to 

certain dynamic equations. The system can be multidimensional. The 

space constructed by these variables is called a phase space. The path 

through which the variables move is referred to as the trajectory. The
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trajectory to which the system converges is the equilibrium state and is 

called an attractor. The number of independent geometric coordinates 

in the phase space is defined as the embedding dimension, which is 

needed to capture the behaviour of an attractor [23] [25].

Dynamic System Reconstruction

A system with chaotic behaviour can be considered as a nonlinear dy­

namic system that changes with time, but can not be modelled by any 

transfer function as for a linear system. Dynamic modelling is aimed at 

finding a model of the system to illustrate the underlying nonlinear dy­

namics that cause its chaotic behaviour. In order to build a model, the 

dynamic state space requires to be reconstructed from a given chaotic 

time series. The dynamic system reconstruction can be carried out 

based on the delay-embedding theorem [24].

The delay-embedding theorem was introduced by Takens and Mane 

in 1981 [24]. According to this theorem, an unknown dynamical system 

in discrete time is described as [23]:

where x(£) is the d-dimensional state vector of the system at time t, 

and F(-) is the vector-valued function. The output of the system y (t) 

is defined in terms of the state vector x(t) as follows:

where h(-) is a scalar-valued function, and e(t) denotes additive noise. 

Eq. (2.2.1) and Eq. (2.2.2) describe the state-space behaviour of the

(2 .2 .1)

y(t) = h(x(t))  +  e(t) (2 .2 .2)
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dynamical system. According to Takens’ theorem, the reconstruction 

of a dynamic system can be obtained by unfolding the output y with 

e(t) =  0 in a D-dimensional space. The space constructed from the 

new vector y R(t) can be written as:

y jzM =  y ( t - r ) , . . . , y ( t - ( D -  1 )r)]T (2.2.3)

where T  denotes the transpose, and r  is a positive integer called the 

embedding delay. The delay-embedding theorem states that it is possible 

to reconstruct the dynamical system under the condition that D > 

2d +  1, where d is the dimension of the attractor. The procedure to 

look for D is called embedding. The system can be reconstructed when 

D reaches its minimum integer value. This minimum of D  is referred 

to as the embedding dimension [23].

2.2.2 Nonlinear System Quantification 

Lyapunov Exponents

Lyapunov exponents measure the average exponential rates of conver­

gence or divergence of nearby trajectories within the phase space [26]. 

The mathematical definition can be explained as in an n-dimensional 

phase space, an infinitesimal n-sphere under initial conditions will be­

come an n-ellipsoid after the long time evolution due to the local de­

forming nature of the attractor. As an example, Fig. 2.1 shows a circle 

under initial condition evolving into an ellipse after a certain evolution 

time. The circle has radius do in the initial state. After a continu­

ous transition time t ', the circle is deformed into an ellipse with major 

axis length d\ = doeXlt' and minor axis length d2 =  doeX2t' . The ith
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Lyapunov exponent is then defined by:

(2.2.4)

The Lyapunov exponent determines whether a system is chaotic or 

not. If the system trajectory attracts to a stable fixed point, then it will 

have a negative Lyapunov exponent, in which case the system exhibits 

asymptotic stability and is called the dissipative or non-conservative 

system. A system with zero Lyapunov exponent is conservative, in 

which the orbits would maintain a constant separation. If the Lya­

punov exponent is positive, then the system is chaotic and unstable, 

whereby the nearby points will diverge to any arbitrary separation. By 

convention, Lyapunov exponents are ordered from largest to smallest 

as Ai >  A2 > A3.... Each dimension contains one Lyapunov exponent. 

The sum of the Lyapunov exponents is the time averaged divergence of 

the phase space velocity. It is common just to refer to the largest one, 

because it determines the predictability of a dynamical system.

Figure 2 .1 . An example to illustrate the evolution of a circle under 
initial conditions into an ellipse due to the deforming nature of the 
attractor, where do is the radius of the circle in the initial state, d \ and 
d-2 are the major axis length and minor axis length of the ellipse.
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Correlation Dimension

In mathematics, dimensions are the parameters required to describe 

the position and relevant spatial characteristics of any object within 

a conceptual space. As in Euclidean geometry, points have dimension 

d = 0. The dimension d equals 1, 2, 3 for lines, a plane surface and 

a solid, respectively. Standard objects in Euclidean geometry have 

integer dimensions, but in a dynamical system, the dimension of the 

attractors can be non-integer. In chaos theory, an attractor with non­

integer dimension is called a strange attractor [23] and its dimension 

can be defined by a fractal dimension. A fractal is generally “a rough 

or fragmented geometric shape that can be split into parts, each of 

which is (at least approximately) a reduced-size copy of the whole” 

and fractals are often considered to be infinitely complex [27]. The 

fractal dimension is a statistical quantity that gives an indication of 

how completely a fractal appears to fill a space, when the fractal zooms 

down to finer and finer scales [26].

One simple example to quantify the fractal dimension of a space 

is called the box-counting dimension. This is a measure of how many 

balls with radius e are taken to fill that space, and how this measure is 

changed as the radius e becomes smaller. The dimension D  is quantified 

[26] as:

p  =  Um« £ )  (2 .2 .5 )
£ - > o  log2t

where N  is the number of balls with radius e. The box-counting dimen­

sion is also referred to as D0. Another alternative is the correlation 

dimension , which is defined [32] as:
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Z>2 =  lim los*(C W )  (2.2.6)
r->o log2r

where C(r) is the correlation integral (also called correlation sum) and 

r is a distance threshold. In chaos theory, the correlation integral is the 

mean probability that a randomly selected pair of points is separated 

by a distance less than r,

Ĉ  = n ™ 0 (r  ~  “  y i?0’)ll2) (2-2-7)
i,j= 1

where || • H2 is the Euclidean norm, and ©(•) is the Heaviside step 

function (©(&) =  0, if k < 0; Q(k) = 1, if k > 0). N  is the number 

of points embedded in a reconstructed dimension, and y R is already 

defined in Eq. (2.2.3).

2.3 Literature Review

Before the early 1940s, the general belief in the medical community was 

that epileptic seizure could not be predicted. Seizures were assumed to 

occur randomly over time. In the 1940s, reports from clinical practi­

tioners pointed out that patients could sense various feelings of auras 

before the seizure [19], which provided evidences that seizures might 

be predictable. The early investigations on predictability of seizures 

were conducted by Vigilone et al. in the 1970s [20]. The experiments 

were based on the analysis of scalp EEG recordings by applying pat­

tern recognition techniques in order to capture the preictal (brain stage 

prior to seizure onset) features of EEG in the frequency domain. The 

research project was abandoned due to too many false warnings. In 

the early 1980s, it was reported that there were consistent changes of
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spike activity prior to seizure onset [21] [22]. Lange et al. showed that 

the spatial pattern of spikes changed progressively and the number of 

spikes increased significantly prior to seizure. But their experiments 

were performed by counting spikes visually, therefore the analysis was 

too difficult to be carried out in long-term continuous EEG recordings 

due to the time consuming nature of the analysis method.

After the 1980s, with the development of new signal processing 

methodologies, more methods for seizure prediction were developed, 

including frequency-based method [43], wavelet decompositions [44], 

and nonlinear dynamic analysis of EEG signals [28]- [31]. In this work, 

the focus is on the nonlinear dynamic approach. The nonlinear dy­

namic methodologies rely on evaluation of the chaotic behaviour of 

the epileptic brain by quantification of the nonlinear dynamics of the 

recorded data time series. The nonlinear techniques are mainly based 

on reconstruction of the dynamic system, and then apply the nonlinear 

quantification methods to characterize the system. Examples of these 

quantification methods include the Lyapunov exponent (the mean rate 

of divergence of initial neighbouring states), the correlation dimension 

(the quantification of the system complexity), and Kolmogorov entropy.

The first group which reported the application of nonlinear dynam­

ics to EEGs for epileptic seizure prediction was led by Iasemidis, Sackel- 

lares and Williams. They reported that EEG during epileptic seizure 

could be better modelled as an output of a nonlinear system than a 

linear system [28]. Their research was based on analysis of continu­

ous multichannel EEG at different stages (preictal, ictal and postictal), 

by quantifying the dynamic changes of epileptic seizures by means of 

short-term largest Lyapunov exponent (STLmax). The core finding
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was that the focal seizure can cause transition of the epileptic brain 

from less ordered (chaotic) to more ordered, and then back to less or­

dered, referring to this as a chaos-to-order-to-chaos transition [4]. This 

transition may start from seconds, minutes or hours before the clinical 

seizure onset [29]. In their latest research, they applied the nonlinear 

measurement to continuous long-term EEG recordings, and seizure pre­

diction was carried out by an adaptive algorithm when the time of the 

first seizure was known. The results raised the hope that nonlinear dy­

namic techniques could be applied for real diagnostic and therapeutic 

applications.

Since the 1990s, Lehnertz and Eiger have examined the spatio- 

temporal dynamic of the epileptogenic area by investigating the com­

plexity changes in neuronal behaviour [32] [33], with complexity de­

fined by means of the correlation dimension. In their results, pro­

nounced changes of the dimension in time were found, with a gradual 

decrease observed as the distance from the focal area increased. Also, 

the complexity was observed to decrease during the transition of epilep­

tic seizure. The lowest complexity was found in the focal area during the 

ictal state. This study showed the spatio-temporal dynamical changes 

during the progress of seizure.

Quyen et al. [35] proposed a new method to analyse the long-term 

non-stationary EEGs by measuring the similarities in dynamics be­

tween different parts of the time series. The similarity measures the 

correlation integral of the EEGs within a sliding window with a refer­

ence EEG segment. The reference was chosen far away from the seizure 

segments. (More detail of similarity can be found in [35]). They showed 

that the method can track, in real time, the spatio-temporal changes in
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the brain dynamics several minutes prior to seizure. Their results were 

accordant with other nonlinear analysis findings, in which the similar­

ity gradually decreases prior to seizure onset and the lowest value of 

similarity corresponds to the seizure. The results from all these ap­

proaches provide evidences that there are measurable differences in the 

EEG prior to seizure onset, which can be exploited for epileptic seizure 

prediction.

So far, most seizure prediction techniques have been based on the 

analysis of intracranial EEG signals in which surgical operation is re­

quired to implant the electrodes in the brain. In order to capture 

the seizures, the electrodes must be implanted close to the epilepto­

genic zone, otherwise the seizure can not be captured and prediction 

may not be accurate. Also, the surgery may be hazardous to the pa­

tients. Therefore, a warning method based on analysis of the noninva- 

sive recording of scalp EEG is highly desirable.

It has been reported that the scalp EEG contains sufficient dynamic 

information which can be used for analysis of changes prior to seizure 

[36] - [42]. The seizure transition in scalp EEG has been investigated by 

Iasimidies’ group [36] [37]. They observed a similar preictal transition in 

scalp EEG as in the intracranial EEG recordings, which suggested the 

possibility of prediction by the analysis of scalp EEG. Quyen et al. [41] 

evaluated scalp EEG recordings based on measurement of similarity 

from 26 patients with temporal lobe epilepsy. In most cases (25 out 

of 26), the measurements showed the predictability of the seizure by 

several minutes prior to seizure. Although their work demonstrated 

that scalp EEG can be used for dynamic changes, it was also pointed 

out that the potential produced by scalp electrodes may also be driven
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by events generated by deeper cerebral structures and more studies 

were required using source localization methods.

However, seizure prediction from standard scalp EEG has faced cer­

tain difficulties. It is well-known that the neural electrical potentials 

recorded from scalp EEG are not only attenuated by the skull and scalp, 

but are also subject to noise and artifacts, which remain as major prob­

lems for seizure prediction from scalp EEG. A novel approach proposed 

by Corsini et al. [42] applied blind source separation (BSS) to separate 

the seizure sources from the EEG mixtures prior to chaos measurement 

and therefore to investigate the predictability from the scalp EEG. This 

work provided very encouraging results. In this method, seizures were 

considered as contributing sources of EEGs, which can be separated 

using BSS techniques. Then, traditional nonlinear methods (Lyapunov 

exponent) were applied to the separated sources. They demonstrated 

that the largest Lyapunov exponent for some sources shows a decreas­

ing trend prior to seizure. Although there are unsolved problems, such 

as seizure source identification and expensive computational cost, this 

approach opened a new field for seizure prediction.

2.4 The Research Approach

In this chapter, the background knowledge of nonlinear dynamic sys­

tem has been introduced and two nonlinear quantification methods have 

been explained. Literature review of seizure prediction based on non­

linear analysis methods has been presented.

The objective of this research was to continue the exploration of 

predictability of seizure from scalp EEG by using BSS techniques and 

incorporating spatial information of fMRI, which allowsed both the sep-
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aration and the localization of seizure from the multi-channel EEGs. 

The challenge of this research was, (1) to develop a separation algorithm 

which can separate the seizure sources effectively; (2 ) to solve the prob­

lem of seizure source identification by fusion of EEG and fMRI; and (3) 

to investigate the predictability of seizure by evaluating the nonlinear 

dynamics of the estimated sources within a long time multi-channel 

EEGs.



Chapter 3

CONSTRAINED 

TOPOGRAPHIC ICA FOR 

SEPARATION OF EPILEPTIC 

EEG

3.1 Introduction

ICA for EEG Signal Separation

Independent component analysis (ICA) has been increasingly employed 

for brain signal analysis and has been fruitful for decomposition of 

multichannel EEGs to obtain the desired source signals [47]. Applica­

tion of ICA to EEG has been used for many purposes, such as source 

localization [48] [49], seizure signal separation [52] - [54], tracking of 

epileptiform activity [55], and removal of artifacts [56]- [58].

For conventional ICA, the identification of ICs, especially those ap­

proximating the desired sources, is a problem to be solved. In the 

most commonly used method, the desired ICs are selected by a post­

processing based upon the special statistical features of the sources. 

Shoker et al. [56] proposed a method which combined BSS and support

35
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vector machine (SVM) to remove the eye blink artifacts from the EEGs. 

The components related to eye blink artifacts were identified from the 

estimated sources based on classification of the features correspond­

ing to the eye blink. The artifact-free EEG signals were reproduced 

by setting the artifact components to zero and remixing the remain­

ing signals. Nakamura [57] applied four ICA algorithms to separate 

the EEG signals for removing ballistocardiogram (BCG) artifacts from 

EEG. The BCG artifacts were selected by first visually checking the 

time course of the ICs, then bandpass filtering the ICs with a certain 

frequency range (1 1 Hz - 17Hz) for BCG artifacts. The artifact-free 

EEGs were recovered by back projection of sources after removal of the 

BCG components. In the applications to epileptic seizure separation, 

the seizure components can be identified by examining the rhythmical 

activity of the components provided tha t the frequency range of the 

epileptic seizure is known as a priori [52] [53]. A method of nonlinear 

analysis has also been exploited to distinguish the seizure components. 

In [53] [54], complexity measurement proposed by Roberts [51] was ap­

plied to investigate the nonlinear dynamic change of the components 

prior to seizure onset. The ICs for which the complexity decreased 

prior to seizure and the rhythmical activity matched with the seizure 

frequency range were selected as the seizure components. These post­

processing methods involve redundant computation due to examining 

the unnecessary signals, which can be time consuming especially in high 

dimensional applications.

A practical alternative to extract the desired ICs is to incorporate 

the available knowledge (prior information) of the desired sources as 

the constraint into the ICA separation process, which is referred to as
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the constrained ICA [61]. In the general framework of the constrained 

ICA, the prior information can be added into the original cost function 

in the form of equality or inequality constraints. The optimal solution 

of the overall constrained function can be found by using the Lagrange 

multiplier method [61] [69]. In some applications [49] [50] [62] [64] [69] 

[125], the prior information of the desired source was used to construct 

a rough template or a reference signal. Then the optimal solution of 

the constrained ICA is the IC closest, in the Euclidean distance sense, 

to the reference.

Topographic ICA

Theoretically, the conventional ICA model is built based on statistical 

assumptions: 1 ) the source signals are statistically independent; 2 ) at 

most one of the constituent sources has Gaussian distribution; 3) the 

number of independent components is less than or equal to the number 

of input channels [65]. However, practically, the assumption of sta­

tistical independence between the sources can not hold in some real 

applications such as that for brain signal separation. Generally, the 

multichannel EEG recordings reveal the sum of the electrical current 

potentials spontaneously generated by cortical nerve cells, and those 

cells “communicate” with each other by means of electrical or chemical 

activities. Once a neural cell is fired, the information is transferred to 

the nearby cell via a small amount of electrical charge or by releas­

ing chemicals. Therefore, physiologically, the neural cells which are 

geometrically close to each other have very sophisticated connections. 

However, this kind of connection is usually ignored in most existing 

ICA models by simply assuming that all sources are statistically inde­
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pendent. Hence, a model which can take such dependency between the 

nearby ICs into account is more reasonable for brain signal separation.

Topographic ICA (TICA) proposed by Hyvarinen et al. [6 6 ] is a 

modified ICA model, which is also considered as a generalization of 

the model of independent subspace analysis (ISA) [67]. TICA relaxes 

the assumption of statistical independency of the components, consid­

ering that the components geometrically close to each other are not 

completely independent but have certain dependencies, which can be 

defined by a certain neighbourhood function. In the output, the nearby 

sources are grouped together. In this study, TICA was applied for the 

separation of the epileptic seizure EEGs, and the performance was im­

proved by introducing novel spatial and frequency constraints in TICA. 

In the following sections, the constrained TICA is denoted as CTICA.

This chapter is organized as follows. First, the principle of the 

TICA model is explained. Then the CTICA model is developed. The 

experimental results obtained by applying the proposed method to the 

simulated data and real epileptic seizure EEG are then presented. The 

discussion and conclusion are provided in the final section.

3.2 Method

3.2.1 Topographic ICA

Recall that the conventional noise-free ICA generative model can be 

expressed as:

x(£) =  A s (t), (3.2.1)

where x(t) =  [x1(t ) ,x2(t), . .. ,xn(t)]T , x  G is the vector of observed 

signals at time t , (-)T denotes transpose operation, s(t) =  [si(t), s2(t) , ...,
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sm(t)]T is the unknown independent source vector (s € and m < 

n), and A G 3£nxm is the mixing matrix. The estimated sources 

y (t) = [2/1 (t), y2 (t), ym(t)]T can be obtained by a separation matrix 

W  through inversion of the above mixing model,

y(t) = W x(t) (3.2.2)

where in an ideal case W  =  A 1" is the pseudo-inverse of the mixing 

matrix and WA =  I. In conventional ICA, the sources are assumed to 

be completely statistically independent, and the estimated signals have 

no particular order. In TICA, the assumption of independence of the 

components is relaxed, meaning tha t the sources geometrically far from 

each other are considered approximately independent and those close 

to each other are assumed to have certain dependencies. The depen­

dency can be defined by higher-order correlation between the estimated 

sources, such as the correlation of their energies [6 6 ]:

cov(s2, s2) = E { s 2s2} -  E { s 2} E { s 2}  ^  0 (3.2.3)

where cov(-) is the covariance of the two sources s* and Sj, and E{ } is 

the statistical expectation operator. Therefore, the estimated sources 

from the TICA are still uncorrelated, but their energies are not.

The concept of addressing the dependency using the high order 

features is similar to independent subspace analysis (ISA) [67], in which 

the components in each subspace are assumed to be dependent, and the 

feature subspace can be represented by a set of orthogonal basis vectors. 

The value of the feature can be calculated as X^=i(w f x )2> where d is 

the dimension of the subspace. In ISA model, for the data vector
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x(£), t = 1,..., N,  the logarithm, generally natural, of the likelihood can 

be expressed as [65]:

N  Ns d

logL(W) = ^ 2  /o# P (X ^ w ^x W )2) +  N l°g(\detW\) (3.2.4)
t= i j = i i-1

where Na is the total number of subspaces, w, is the z-th column of W , 

and p(-) refers to the probability density function.

The TICA model is illustrated in Fig. 3.1. In the model, the vari­

ances of components are not constant, but instead, they are generated 

by some high-order independent variables Ui, i = 1,2,3. These variables 

are mixed linearly in the topographic neighbourhood, which is defined 

by a neighbourhood function h ( i , j ), i , j  = 1,2,3. The mixtures are 

then transformed by a nonlinearity function G(-). The components s* 

with different variance erf are finally linearly mixed to form the ob­

served variables £*. Based on this model, the estimated components in 

the same neighbourhood are energy correlated.

Figure 3.1. Illustration of TICA model. The component s* is gen­
erated by the nonlinear transformation of the variables Ui, which are 
mixed linearly according to the neighbourhood function [6 6 ].

In this work G(-) is selected as defined in [6 6 ]:
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G{y) =  - a y / e  +  y (3.2.5)

where a  and e are scalar constants. The neighbourhood function h(i,j) 

which specifies the geometrical relationship between sources s* and Sj 

in topography is usually defined as a monotonically decreasing function 

of some distance measurement. In this study, a simple neighbourhood 

function is applied, such that

1  if \i — j\ < m
(3.2.6)

0  otherwise.

where m  is the width of the neighbourhood.

In TICA model, the approximation of the joint density of the vector 

of sources s, denoted as p(s), is then expressed as [6 6 ]

n n

£(s) =  n e z p ( G ( ^ / i ( z , . 7> ? )) , (3.2.7)
3 *

where h(i, j)  is the neighbourhood function, s =  [si, S2 ? •••? sn]T, n is 

the number of sources, and G(-) is the scalar function defined by Eq.

(3.2.5). For the whitened data, the approximation of the log-likelihood 

of TICA model, denoted as L(W ), is given as

N  n n

logL(W) = j)(w fz(£ ))2) +  Nlog(\detW\)  (3.2.8)
t = l  j = i  i = i

where z (t) is the vector of whitened measurements as defined in Eq.

(1.3.5). It is noticed that the difference between ISA and TICA is that 

TICA considers each neighbourhood as one subspace; the dependence is 

not only inside the d subspace but among all neighbouring components.
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Therefore, the optimal solution W ^  for estimation of TICA is ob­

tained when the above log-likelihood function is maximized. It is no­

ticed that the unmixing matrix needs to be constrained to be orthogonal 

such that the second term of the above equation can be ignored as the 

determinant of an orthogonal matrix is one. Thus, the log-likelihood of 

Eq. (3.2.8) can be maximized by:

r\

OyylogL( W )|w = w opt= 0  (3.2.9)

The computation of the gradient is reduced to calculation of the

gradient of

Fj( W ) =  G ( f > ( i J ) (  w fz (t))2) (3.2.10)
i= 1

with respect to the component w*,, which is the k -th column vector of 

W ,

n

v w kFj = 2 g{^2h( i , j ) (w Jz{ t ) )2)h {kJ ) (w lz ( t ) ) z ( t )  (3.2.11)
i= 1

where g(-) is the first order derivative of the scalar function G(-). The 

final gradient of Eq. (3.2.8) is obtained as:

N  n n

Vw* (logL(W)) = 2 ^ 2 z ( t ) ( - w l z ( t ) ) ^ 2 h { k J ) g ( ^ 2 h { i J ) { w J z ( t ) ) 2)
t=l j = 1 i= 1

(3.2.12)

Based on the model, one advantage of TICA is that it can group the 

nearby sources due to the relaxation of the assumption of independency. 

However, the performance of TICA has certain limits, such as the effect 

of grouping ICs may not be that significant unless the nearby sources
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are active at the same time. In [6 6 ], in order to demonstrate the effect 

of grouping sources, the experiment was designed to generate some 

typical high energy sources such as by biting teeth for 2 0  seconds to 

create myographic artifacts. But in most real applications, the energy 

of the active sources may not be very significant, or there may be only 

one or two active desired sources. Then the performance of grouping the 

nearby sources may not be that significant. However, the performance 

can be improved to some extent by introducing certain constraints into 

the separation process of TICA.

3.2.2 Constrained Topographic ICA 

CTICA

Adding prior information as a constraint to conventional ICA has been 

previously explored in EEG signal separation and analysis [50] [62] 

[63]. For EEG signal separation, incorporating suitable prior knowledge 

into the separation process can help to reduce the indeterminacies and 

thereby extract the desired sources. The general form of the constrained 

TICA can be expressed as:

max Jm(W ) subject to Jc(W ) (3.2.13)

where Jm(W ) is the main cost function, which is based on the TICA 

model as in Eq. (3.2.8). Jc(W ) is the constraint cost function, which is 

defined as the function of the closeness between the estimated sources 

yi and a reference signal yr. The common and simple measurement of 

closeness of two signals can be their Euclidean distance norm, over some 

time interval, or the correlation between them, which requires both yi
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and yr to be normalized to have the same mean and variance [64] [69]. 

The optimal solution of the constrained algorithm provides the sources 

as close to the reference signal as possible.

In this study, the constrained cost function JC(W ) is defined as 

the squared Euclidean norm between the estimated sources and the 

reference signal:

Jc(W ) =  llw?zM “  Vr(t)\\l (3.2.14)
t= 1 i=l

where z (t) is the vector of whitened data, the reference signal yr(t) 

is defined based on the spatial and frequency constraints, and || • H2 

denotes Euclidean norm. The idea behind generation of the reference 

signal is explained in the following section. The overall cost function is 

then written as:

J( W , A) =  Jm( W ) +  Jc( W , A) (3.2.15)

where A =  diag{Au}, i = 1, ...,n, is a diagonal weight matrix, which is 

updated iteratively based on

A = p-diag{\car(yr(t) ,y1(t) ) \ , ..., \cor(yr(t),yn(t))\} (3.2.16)

where yi(t), ...,yn(t) are the estimated sources, | • | is the absolute value, 

and cor(-) denotes the correlation measured by the correlation coeffi­

cient. In this equation, p is a positive weight parameter to adjust the 

contribution of the constraint term to the overall cost function. Both 

yr(t) and ?/*(£), i = 1  ,...,n , are normalised to have unit variance and 

zero mean. To form JC(W , A), Eq. (3.2.14) is modified to become
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N  n

u W , A) =  £  A^llwfzW  -  yr(t)111 (3.2.17)
t=l i—1

The optimal solution can be found by using the steepest descent 

adaptive learning algorithm [83], and the update equation is:

(3.2,8)

where fi is the empirically chosen learning rate, k is the iteration num­

ber, and 9Jc-̂ -Â  is calculated as A ( k ) (Z (W T(k)Z — Y r)T), where 

Z =  [z(l),z(2),...,z(iV)], and Y r =  [yT.( l) ,y r (2), . . . ,yr(N)], which is a 

matrix with the reference signal y r in each row.

Fig. 3.2 shows a block diagram of the CTICA algorithm. The 

source signals s (t) are first mixed by an unknown mixing matrix A, 

the mixed signals and noise n(t) are recorded at sensors x(£). Then the 

observed data are preprocessed by removing the mean and prewhitening 

(by performing PC A). The whitened data z (t) have unit variance. A 

reference signal y r(t) is constructed based on the observed data. The 

adaptive learning algorithm updates the unmixing matrix W  based on 

the CTICA model until the optimal solution is obtained.

Reference Signal

In this work, a reference signal as an approximation of the desired 

source, is introduced into the constrained learning process. The ref­

erence can be a signal which carries some information to distinguish 

the desired components but is not necessarily identical to the desired 

sources [61] [64]. In some applications, it may be very difficult to find 

an ideal template for the desired source. For example, in some applica-
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Mi)Mi)

e(t)
CTICA

PCA

F igure  3.2. Block diagram illustrating the generation of the sources, 
the whitening process, the CTICA algorithm together with the refer­
ence generation.
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tions of event-related fMRI in which the designed stimulus is applied, 

the stimulus is directly used as the reference and the desired sources 

are selected by evaluating the correlation between the estimated sources 

and the reference signal [64] [125].

Here, the reference constructed from scalp EEGs was introduced 

as a ‘rough’ template of the seizure source, which was built based on 

averaging the filtered scalp EEGs obtained from the seizure area. In 

practice, it is difficult to obtain an ideal seizure template. Although 

EEG recorded from the scalp contains the noise and artifacts, it still 

carries very valuable information about the seizure. So far, EEG is 

still the most powerful tool for the diagnosis of epileptic seizure in the 

clinical field [81] [96]. The sources obtained by CTICA are not only 

separated from artifacts and noise, but also enforced to be close to the 

reference.

In this work, the reference signal was built based on averaging the 

filtered scalp EEGs obtained from the epileptogenic zone (seizure area). 

Two factors were considered based on spatial and frequency information 

of the seizure signals. Firstly, in focal epileptic seizure, the approximate 

location of seizure sources, “epileptogenic zone” , is often known as the 

prior information. Secondly, it has been known that the seizure signals 

manifest themselves within a certain frequency band [74]. Based on 

research findings the frequency band of the epileptic seizure onset is 

normally from 2.5 Hz to 15.5 Hz, although this range may vary or be 

narrowed for different types of seizures [74]- [76]. The reference signal 

built in this way is the signal which includes both spatial and frequency 

information. Therefore, the desired source is the one that not only falls 

within a frequency range, but also reflects the dynamical changes within
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the epileptogenic zone.

3.3 Experiments

Three experiments were carried out to investigate the performance of 

the CTICA algorithm. The first experiment is the simulation test to 

demonstrate how TICA works for grouping the nearby sources, which 

is the main advantage of TICA over conventional ICA algorithms. Five 

sources were generated and mixed by a designed mixing matrix as ex­

plained in the following section, such tha t three sources were geomet­

rically close to each other. The simulation results show that these 

three sources are grouped together at the output. Signal-to-noise-ratio 

(SNR) and performance index (PI) were employed to evaluate the sep­

aration performance of TICA and CTICA. The comparison of TICA 

and CTICA for separation of real EEG data with epileptic seizure was 

carried out in the second experiment. The seizure components were 

identified by a hybrid system including the complexity measurement of 

components [51] [53] [54], time-frequency analysis, and component back 

projection (topographic map). The results demonstrate that CTICA 

achieves better separation performance than TICA. In the third exper­

iment, CTICA was compared with other ICA algorithms. The results 

show as expected that the component extracted from CTICA has the 

highest correlation with the reference signal.

In all experiments, the mean of data was removed first. Then pre­

liminary whitening was performed to make the data have unit variance 

before further separation processing. The unmixing matrix was initi­

ated as a random matrix, which was constrained to be orthogonal by 

performing (W W T)~1/'2W  in each learning iteration, thus the second
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term in Eq. (3.2.8) can be cancelled [6 6 ]. Hence, the unmixing matrix 

has unit norm and unit variance. The parameters used in all experi­

ments were set up as follows: In Eq. (3.2.5), parameters a  and e of the 

scalar function G(-) are chosen respectively as 1  and 0.005 according 

to [6 6 ]. The adjusting parameter p in Eq. (6.3.14) was chosen be­

tween 6  and 10 based on the algorithm performance. The width of the 

neighbourhood was used as m  = 1 .

3.3.1 Experiment I

The simulation test was carried out in the following steps: (1) designing 

a mixing system which can present the locations of the sources; (2 ) 

generating the sources based on the TICA model such that the sources 

which are geometrically close to each other are energy correlated; (3) 

comparing the results from TICA and CTICA in terms of SNR and PI.

In the simulation, the accuracy of the recovered ICs compared to 

the sources was evaluated in terms of signal-to-noise-ratio (SNR) in dB 

as [69]

S N R  = Wlog10(Var̂ ] ) (3.3.1)

where var(-) denotes the variance of the source, and MSE denotes the 

mean square error between the generated and recovered signals. The 

separation performance was measured by the performance index (PI) 

[69] as

n  n

Z — 1  j  —  1  J  —  J- ’ - I

where Pij is the (i , j ) th  element of the permutation matrix P = W A . PI 

is close to zero if all components are perfectly separated.
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Mixing System

In this experiment, a mixing system based on the real EEG 10-20 

recording system was first constructed. By using the coordinate of 

the real EEG recording system, the sources were arranged in some pre­

defined locations. An example of such arrangement is given in Fig. 3.3. 

Five sources were generated, in which Si, S2 and S3 were arranged to be 

close to each other, and S4 and S5 were far away from each other. The 

mixed signals were recorded at the five sensors X i  to X 5 . The locations 

of the sensors x i to X5 were based on the coordinates of the electrodes 

F7, F3, Fz, F4 and F 8  in the real EEG 10-20 recording system, re­

spectively. The placement of the electrodes can be found in Fig. 1.4. 

Table 3.1 provides the coordinates of the sensors which can be found 

from the open source software EEGLAB [70], and Table 3.2 gives the 

coordinates of the generated sources. In the coordinates, x is towards 

the nose, y is towards the left ear, and z is towards the vertex.

X3

F igure  3.3. Schematic diagram of a brain mixing system including 
the sources S1-S5 and the sensors X1-X5 .

The mixing matrix A is specially designed in order to model the 

source signal propagation process. The entries of the mixing matrix 

are defined as A ^ =  1 /dfj, where dij is the distance between the ith
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Table 3.1. The coordinates of the sensors.
Sensors Xi x 2 x 3 x4 x5

X 0.586 0.677 0.714 0.677 0.587
Y 0.804 0.567 0.000 -0.567 -0.804
Z

Table 3

-0.088 

.2. Thee

0.469

oordinate

0.699

js of the

0.469

generated

-0.088

sources.
Sources Si s2 S3 s4 S5

X 0.520 0.605 0.487 0.055 -0.123
Y -0.650 -0.595 -0.536 0.087 0.325
Z 0.125 0.278 0.207 0.179 0.332

sensor and the j th source. This design is based on the conjecture of 

signal propagation that the source signal strength decreases with the 

square of the distance from the sensor. A similar model for the signal 

propagation has been used in [71] [72].

Generation of the Sources

Special consideration has been taken for generating the energy corre­

lated sources. According to the simulation in [66], the signals were gen­

erated based on the TICA model (as shown in Fig. 3.1). The variables 

Ui were firstly generated by taking absolute values of the Gaussian vari­

ables, then mixed according to the model. The neighbourhood function 

and the nonlinear function G were used as defined in Eq. (3.2.6) and 

Eq. (3.2.5) with a = 1 and e = 0.005. The sources Si and s2 generated 

in this way are energy correlated (cou(sf,s|) 7  ̂ 0).

Results

Fig. 3.4 shows five artificial simulated sources. Si and s2 were energy 

correlated with the covariance cou(si,S2 ) =  35.88 and the other three 

sources were uncorrelated. In order to demonstrate the performance of
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TICA, Si, S2 and S3 were arranged to be close to each other and close 

to the sensors x3, X4 and x 5. s4 and s5 were located far away from 

the sensors (as in Fig. 3.3). Five sources were mixed by the above 

designed matrix A and the mixed signals are shown in Fig. 3.5. The 

estimated sources are given in Fig. 3.6, which shows that IC1, IC2 and 

IC3 are grouped together. Here, s3 was set to be close to Si and s2. It 

is noticed that although s3 is energy uncorrelated with Si and s2, it is 

still grouped with them. It shows that TICA can group the sources if 

they are geometrically close to each other although they might not be 

reasonably energy correlated.

In order to test CTICA, a sensor signal x 5, which has the highest 

correlation coefficient with Si, was selected to be the reference signal. 

The comparison of separation performance is given in Table 3.3, with 

the results obtained by averaging five trials. (The reason of running 

a number of trials is to take into account the random initial condition 

of the unmixing matrix.) The SNRs were computed for the recovered 

and original sources. It can be seen that the value of PI from CTICA 

is less than that from TICA. The results of SNRs and PI indicate that 

a better separation is obtained from CTICA.

Table 3 .3 . Comparison of SNR and PI for TICA and CTICA algorithms.
SNR(dB) PI

Sl s2 s3 s4 s5

TICA 17.7912 9.5819 35.7823 8.6754 21.6763 0.6440
CTICA 21.7270 11.6819 33.9634 11.2131 22.4799 0.4226

The correlation coefficients between five recovered sources and the 

reference signal are given in Table 3.4. It can be seen that the source 

IC1 (recovered for Si) has the highest correlation with the reference



Section 3.3. Experiments 53

S ources
1 0

- 1 0
500 1000 1500 2000

10

- 1 0 (
20 

i 10
500 1000 20001500

500 1000 20001500

-2
500 1000 1500 2000

-5
500 1000 1500 2000

Y'VWV'-V‘i''VVfV'

S am ple

Figure 3.4. Simulated source signals
Mixture

1 0

- 1 0
(

1 0
500 1000 1500 2000

- 1 0
1500 2000500 1000

50

-50 I
200

500 1000 1500 2000

-200
1500 2000500 1000100

-100
1000 1500 2000500

Sam ple

Figure 3.5. The mixture of the simulated sources.
ICs from TICA

10

- 1 0
1000 1500 2000500

20

-20
(

10
1500 2000500 1000

-10
1500 2000500 1000

-5
1000 1500 2000500

-5
1500 20001000500

k-. "\ A'WfV/’/'.'W ̂  ̂

Sam ple

Figure 3.6. The estimated source signals obtained by TICA.
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signal.

Table 3.4. Correlation coefficients between the recovered sources and the refer­
ence. _______________________________________________

IC1 IC2 IC3 IC4 IC5
0.8701 0.3361 0.3359 0.1291 0.0217

3.3.2 Experiment II

Data Acquisition and Preprocessing

The multichannel EEGs with the frontal focal epileptic seizure were 

recorded using the standard silver cup electrodes applied according to 

the ‘Maudsley’ electrode placement system, which is a modification of 

the extended 10-20 system [77]. This system provides a more extensive 

coverage of the lower part of the cerebral convexity, increasing the sensi­

tivity for recording from basal subtemporal structures. The 16-channel 

EEGs were sampled at 200 Hz and bandpass filtered in the frequency 

range of 0.3 Hz - 70 Hz. The system input range was 2 mV and the 

data were digitized using a 12-bit analog-to-digital converter [42].

The signals were preprocessed by first removing the baseline to al­

leviate the effect of low frequency artifacts. Then, the EEGs were 

filtered by a 10th order Butterworth lowpass digital filter with an edge 

frequency of 45 Hz in order to eliminate the 50 Hz frequency compo­

nent. The EEGs used in the following experiment were truncated from 

the original recordings to include a duration of 10 seconds, with seizure 

starting from the middle of the data segment as shown in Fig. 3.8.
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Number of Sources

Generally, it is difficult to estimate the exact number of brain sources. 

But as Cichocki pointed out [11], it is not always necessary and desirable 

in ICA to separate all the sources contained in the matrix, especially in 

the situation for which only a few most powerful sources are of interest, 

which is the case in this work where only the seizure components are of 

interest. In a number of experiments for epileptic seizure separation [52] 

- [54] where the number of sensors were taken as 30, 25 and 12, the 

number of detected seizure sources were 3, less than 5 and less than 3, 

respectively. In these results, the number of seizure components was 

much less than the number of input channels, and one only needed to 

identify a few seizure components from the output of ICA.

In this work, in order to investigate this problem, the method pro­

posed by Bai and He [14] was applied to estimate the number of sources. 

This method applied an information theoretic criterion to the eigen­

values of the covariance matrix of EEGs to estimate the number of 

sources. (This method has been introduced in the first chapter and the 

detail can be found in [14]). This method involves the following steps. 

Firstly, all the eigenvalues of the covariance matrix were obtained by 

using singular value decomposition (SVD). Secondly, the information 

criterion value (ICV) with the eigenvalues was calculated based on the 

proposed method. Lastly, according to the rule of the information cri­

terion method, the number of sources with minimum ICV was selected 

as the estimated number of sources. By applying this method, the es­

timated number of sources was 10 (as shown in Fig. 3.7). This shows 

that the number of sources should be taken as 10 or more. In this 

experiment, the number of input channels is 16. In order to use the
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available information in EEGs as much as possible and fully investi­

gate the separated sources, the number of sources in this experiment 

was selected as 16.

x 10

-  0.8

5 10
Assumed source number

Figure 3.7. Estimation of the number of sources by applying infor­
mation criterion method [14].

S electio n  o f  S eizure C o m p o n e n ts

The separation result from TIC A is given in Fig. 3.9. The seizure 

components were selected based on the following steps:

(1) Visually checking the time course of each component. Some 

artifacts, may be easily distinguished in the first check due to exhibiting 

different rhythmic activity with the seizure.

(2) Looking for the change in the complexity which coincides with 

the seizure onset. The detail of the complexity measurement is ex­

plained in the Appendix. Based on the nonlinear characteristics of the 

seizure signal, the complexity is expected to gradually drop prior to the
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seizure onset.

(3) Looking at the rhythmic activity (frequency) in the appropriate 

time frame by applying time-frequency analysis to each component. 

This is mainly because the dominant frequency band of seizure signal 

is known to be between 2.5 Hz - 15.5 Hz [74] [75]. The frequency 

criterion has been applied for seizure component selection [52] [63] and 

seizure prediction [43].

(4) Looking at the corresponding topographic map of the indepen­

dent components. The maps of seizure components are expected to be 

more focused at the region of interest. For data used in this experiment, 

the seizure area was primarily known to be at the frontal lobe.

The seizure components were selected based on the criteria set as 

above. Firstly, by examining the time course of the components, some 

components such as IC14 and IC15 obviously do not belong to the 

seizure. Secondly, the complexity of each component was measured. 

The components which showed a decreasing trend in their complexity 

were considered as the possible seizure-related components and further 

confirmation of these components was assessed in the third test. Fig. 

3.10 shows the complexity of two artifact signals IC14 and IC15, and 

the complexity of two possible seizure components IC3 and IC4. It is 

noticed that for IC14 and IC15, the complexity manifests an abrupt 

change when the artifact is present. But for IC3 and IC4, the complex­

ities show appreciable drops. The differences of the complexity between 

these two seizure components can also help in further investigating the 

possible evolution of the seizure. The results of complexity changes re­

lated to artifacts and seizure components are also accordant with those 

presented in the literature [53] [54].
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Figure 3.10. Measurement of complexity. The left figure shows the 
complexity for two artifact components IC14 and IC15. In the right 
figure the complexity for two seizure components IC3 and IC4 is pre­
sented.



Section 3.3. Experiments 60

Thirdly, the time-frequency analysis was applied to the above se­

lected components as a further test. Fig. 3.11 shows the spectrogram 

of IC3 and IC4. The spectrogram shows the magnitude of the short- 

time Fourier transform of the components. It can be found that the 

magnitude of the frequency is higher in the seizure band (3 Hz -15 Hz).

Spectrogram of IC3
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i?c
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Figure 3.11. Spectrogram of seizure components IC3 and IC4.

Fourthly, the topographic maps of the estimated sources were stud­

ied (as given in Fig. 3.12). A topographic map reveals how each source 

signal contributes to the recordings, which can be obtained by back- 

projecting the estimated source onto the original signal space. For 

example, the back projection of ICi is X p(i), which can be obtained

Time (Second)
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by multiplying the z-th column vector of the inverse of the unmixing 

matrix by the corresponding estim ated source, X p(i) =  [W -1] ^ .  Fig. 

3.12 gives the topographic maps of the averaged energy of each IC. It 

can be noticed tha t the distribution of ocular artifacts related compo­

nent IC14 focuses on the area near the location of electrodes F p l and 

Fp2. The maps of the two seizure components IC3 and IC4 arc located 

at the fronto-lateral brain lobes.

IC1
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IC13

IC2

IC6

IC 10

IC 14

IC3

IC7

IC11

IC 15

IC4

IC8

IC12

IC16

Figure 3.12. Topographic maps of the estim ated EEG sources from 
TICA.
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R esu lts from  CTICA

CTICA was applied to the same EEG data. The reference signal was 

formed by first averaging the channels close to the seizure area which 

was confirmed by our clinical consultant. In the second experiment, 

two electrodes F4 and F8 from the right frontal lobe were selected. 

Then, 3 Hz -15 Hz bandpass filtering was undertaken to ensure that 

the frequency components of the reference signal fall in the seizure 

frequency band.

Fig. 3.13 shows the algorithm convergence of the CTICA. Two 

seizure components were selected from CTICA by applying the same 

selection rules as in TICA. Fig. 3.14 compares the topographic maps 

of these two seizure components from TICA and CTICA. It is found 

that the distribution of IC3 obtained by CTICA is more focused on the 

right frontal area (near locations of the electrode F4 and F8) due to 

the effect of constraint.
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o
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Figure 3.13. Algorithm convergence of CTICA.

The TICA and CTICA are also compared in terms of signal-to-
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Figure  3.14. Topographic maps of selected seizure components from 
TICA and CTICA.
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interference-ratio (SIR). SIR was defined to be the averaged signal en­

ergy for the estimated source y  from the direct source divided by the 

energy stemming from the other sources. A higher value of SIR indi­

cates better performance.

where [W-1]ji includes the diagonal elements in the inverse of the un­

mixing matrix, i.e., the weights from source yi to sensor X{. The off- 

diagonal elements [W-1]^ provide the weights from the source yj to 

the sensor Xi. It shows how the source yj interferes with the source y^ 

since each column of the inverse of the unmixing matrix indicates the 

distribution of each source in the mixtures.

The performance of the algorithm was evaluated by the average of 

five trials for both TICA and CTICA. The SIR was calculated based on 

the definition given in Eq. (3.3.3). Fig. 3.15 illustrates the separation 

performance (SIR) via the changes of the width of the neighbourhood. 

It can be noticed that, the SIR of TICA decreases as the neighbour­

hood width increases. This is because the wider the neighbourhood, 

the more sources are considered to be energy correlated. However, for 

the CTICA, due to the effect of the constraint, the SIR only slightly 

decreases at the beginning. It shows that generally, the CTICA has 

better performance than TICA.

3.3.3 Experiment III

In the second experiment, the results have demonstrated how TICA 

works for grouping nearby sources, and have shown that CTICA achieves
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Figure 3.15. Performance comparison of TICA and CTICA.
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better performance than TICA. In the third experiment, the CTICA 

was compared with three other ICA algorithms, TICA, JADE and Fas- 

tlCA. A component which had the highest absolute value of correlation 

with the reference signal was selected from outputs of these four algo­

rithms. The component selected by this way is the source closest to 

the reference.

Data and Preprocessing

The 64-channel epileptic EEGs with the seizure area at the right tem­

poral lobe were obtained by using the Brain Product recording system. 

The data were sampled at 250 Hz and filtered by a 10th order Butter- 

worth lowpass digital filter with an edge frequency of 45 Hz. The data 

used for the separation were truncated with duration of 10 seconds and 

included the seizure.

The number of sources was estimated based on the method proposed 

by Bai and He [14] (the same as in the second experiment). The number 

of sources obtained based on this method was 24. The width of the 

neighbourhood function was m  =  1. The rest of the parameters were 

set as in the previous experiments. The reference signal was formed 

by averaging and bandpass filtering the signals from two electrodes T8 

and P8, which was based on the suggestion by the clinical consultant 

as the seizure area was known at the right temporal lobe.

Results

The source that had the highest correlation with the reference was 

selected from the outputs of each algorithm. Table 3.5 gives the corre­

lation coefficients between the reference signal and the selected sources.
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It can be seen that the selected IC from the CTICA has the highest 

correlation with the reference, although it is not significant different, 

which is in common with the findings in [66].

Table 3.5. Correlation coefficients between reference and the closest source
TICA CTICA FastICA JADE
0.4747 0.5512 0.5461 0.4678

3.4 Discussion and Conclusion

A novel constrained topographic ICA algorithm has been proposed for 

separation of the epileptic seizure signals. It not only relaxes the inde­

pendence assumption of the nearby sources, but also further constrains 

the TICA model based on the spatial and frequency domain proper­

ties of the seizure signal by using some knowledge about the epileptic 

seizures in the form of an averaged and band-limited reference sig­

nal. The experimental results have shown that the CTICA algorithm 

achieves a better separation performance than the TICA and some 

other ICA algorithms.

The ambiguity problem of conventional ICA has been carefully con­

sidered. By preprocessing the data, such as centring and pre-whitening, 

the data were properly scaled to have unit variance. The unmixing ma­

trix was orthogonalized. The indeterminacy in the sign of the sources 

has no effect on the nonlinear analysis of the sources, because the non­

linear measurement as Lyapunov exponent is invariant with respect to 

the change of sign.

The proposed method can be further improved by developing a more 

appropriate neighbourhood function based on the statistical properties
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of the experimental data. More investigation in setting the proper 

learning parameters and applying different closeness measurements may 

accelerate the convergence of the algorithm.



Chapter 4

PREDICTABILITY OF 

EPILEPTIC SEIZURE FROM 

SCALP EEG

4.1 Introduction 

Traditional Prediction Method

Prediction of epileptic seizure has been investigated for decades and 

many methods have been developed based upon the nonlinear dynamic 

analysis [28]- [42]. These prediction methods rely on evaluation of the 

chaotic behaviour of the epileptic brain. It has been shown that when 

the state of the epileptic brain transforms from preictal (prior to seizure 

onset) to ictal (during seizure onset) then to postictal (after seizure), 

the corresponding brain signals change from chaotic to ordered then re­

turn to chaotic [4]. Therefore, the prediction of seizure can be achieved 

by quantifying this nonlinear dynamic change.

The first clinical investigation of the nonlinear dynamics of epilep­

tic seizures was reported by the group led by Iasemidis and Sackel- 

lares [28], which quantified the transition of brain stages by estimat­

ing of the short-term Lyapunov exponents (STLmax) from intracranial

69
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EEG recordings. Other methods such as measuring the correlation 

dimension [32]- [34], evaluation of the similarity [35] [41], and time- 

frequency analysis [43] [73], have also been investigated for epileptic 

seizure prediction. Most of these prediction methods were developed 

based on analysis of intracranial EEG. This requires surgical operation 

to implant the electrodes inside the brain, and in order to capture the 

seizures, the electrodes must be placed as close to the epileptogenic zone 

as possible. Therefore, the method based on intracranial EEGs is not 

convenient, and a “warning” method based on noninvasive recordings 

such as scalp EEG is highly desirable.

Method of BSS for Scalp EEG

Nonlinear dynamic analysis of scalp EEG has also been investigated 

[36]- [40] [44]. According to these studies, a dynamic transition prior 

to seizure onset has been found in scalp EEG, similar to that in the 

intracranial recordings, which suggests the possibility of prediction by 

analysis of scalp EEG recordings.

The main drawback of using scalp EEG is that the signals from 

the scalp are contaminated by noise and artifacts. The attenuation 

due to the soft tissue and skull also affects the accuracy of traditional 

nonlinear methods for prediction. Corsini et al. [42] firstly proposed 

a novel approach to investigate the predictability of epileptic seizure 

from scalp EEG by applying blind source separation (BSS) techniques, 

which showed very promising results. In their method, seizures were 

considered as independent components of the scalp EEG, which could 

be separated by using a BSS algorithm. Then the traditional nonlinear 

analysis method for quantification of the dynamic changes by estima­
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tion of STLmax was performed on these estimated sources to evaluate 

the predicability of seizures. The results showed that some sources 

presented a similar dynamic transition prior to seizure, suggesting the 

possibility of seizure prediction from scalp EEGs when a reliable and 

effective seizure source separation method is applied.

There are two problems with Corsini’s method. One problem is 

how to identify the seizure sources. In their approach, the calculation 

of STLmax is performed for all separated sources due to lack of infor­

mation about the seizure sources, which is computationally expensive. 

The second problem also relates to the overall high computational cost. 

In their method, in order to solve the permutation problem in BSS, a 

block-based BSS is executed for the overlapped data segments. After 

performing BSS for each segment, the correlation between the consecu­

tive estimated source segments is measured, then the source signals for 

the consecutive segments are realigned. Although the overlap window 

method solves the permutation problem, it takes a much longer time for 

data processing. This is another reason why this method is practically 

very expensive.

In this chapter, the predictability of seizure from scalp EEG has 

been further investigated by applying different ICA algorithms to the 

epileptic EEG signals. The rest of this chapter is organized as follows. 

Firstly, the traditional nonlinear method for dynamic quantification 

based on STLmax from the EEG time series is described in detail. 

Secondly, the BSS approach is explained, and the JADE algorithm 

based on fourth order statistics is introduced. In the first experiment, 

the results obtained from SOBI and JADE are compared. In the second 

experiment, the proposed constrained topographic ICA (CTICA) is
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applied to the same EEG data and the results are compared with those 

of the first experiment. In both experiments, the STLmax from the 

estimated sources and the simultaneously recorded intracranial signals 

are compared. In the final section, the overall work is concluded.

4.2 Estimation of Lyapunov Exponents from EEG Time Series

Iasemidis et al. [28] proposed a method for estimation of the short­

term largest Lyapunov exponent (STLmax) for EEG time series. Here, 

“short-term” refers to estimation of the Lyapunov exponent from short 

length EEG data. Nonstationarity of the long EEG sequences has to be 

considered in relation to dynamical measurement. Iasemidis [28] states 

that there is a physiological time scale for brain dynamics and dynam­

ical measurements should therefore be computed within this time scale 

rather than over long time intervals. In practice, a nonstationary signal 

can be assumed to be stationary by dividing the signal into blocks of 

short, pseudo-stationary segments. L. Silva et al. [45] have shown that 

an EEG epoch of tens of seconds duration can be considered as quasi- 

stationary depending on the patient’s behavioural state. In the study 

of seizure prediction based on method of correlation dimension [32] [33], 

the duration of epileptic EEG was chosen as 30 seconds. In Iasemidis’ 

experiment [28], the time duration for calculating STLmax was decided 

on the basis of two requirements: first, it should be as small as possi­

ble to provide the local dynamic information; second, it should satisfy 

the requirement of the minimum data length for calculating STLmax. 

Based on their tests, they found tha t a data duration between 10 to 1 2  

seconds is adequate to distinguish the dynamical changes between pre- 

ictal and ictal stages. And according to Wolf’s paper [30], the length of
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the data required to calculate the largest Lyapunov exponent (Ai), for 

data with a d-dimensional attractor, should be between 10d ~  30d. For 

epileptic EEG time series, the attractor dimension is 2 or 3 [31], so a 

data length of between 1000 to 27000 samples is required for estimation 

of Lyapunov exponents. Therefore, the length of data was decided as 

10 to 12 seconds in [28]. According to the studies in these literature, 

in this study, the length of data segment for measuring STLmax was 

selected as 1 0  seconds.

In order to quantify the chaotic behaviour, the dynamic system must 

first be reconstructed according to Takens’ delay-embedding theorem 

[23]. Given an EEG data segment x(t) with N  time points , then at 

time ti, the vector x* in the phase space can be constructed by:

where the value r  is the selected time lag between the elements of each 

vector in the phase space, p is the dimension of the embedding phase 

space, and U € [1, N  — (jp — 1 )r]. Then, the estimation of STLmax, L, 

can be represented as [28]:

where &Xij(0) is the displacement vector at initial time, and 5xitj(At)

Xi = [x(ti),x{ti +  t ) ,  ..., x(U +  (p -  1)t)]t  (4.2.1)

(4.2.2)

where

5 x ,J (0 ) =  x(tj) -  x(tj) (4.2.3)

and

6xij(At)  = x(U +  At) — x(tj  +  At) (4.2.4)
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is the evolution of this perturbation after evolution time At. N a is 

the number estimated within a duration of the data segment, as N  = 

NaA t +  (p — 1)t. The selection of parameters is decided as follows [28]:

• p: In the case of epilepsy, the epileptic attractor dimension d is 2 

or 3 [31]. According to Takens’ Theorem, the embedding dimension p 

has to be at least equal to (2d +  1), so that p > (2 * 3 +  1) =  7;

•  r: Should be small enough to capture the shortest changes, and 

also should be large enough to ensure possible maximum independence 

between the vectors in the phase space. The duration of a vector 

spanned in the phase space is (p — l)r , which should be at most equal 

to the period of the maximum frequency component in the data. In the 

case of an epileptic attractor, the dominant frequency component is of­

ten less than 12 Hz. Therefore, with p = 7, (7 — l ) r  =  1 / 1 2  =  83msec,

and thus r  should be approximately 14 msec.

• At: The evolution time should not be too small in order to follow 

the maximum rate of information change. If the dominant frequency 

component in the data is /o, At is usually chosen as 1/2/ 0. For the

epileptic EEG data, this gives At =  42 msec.

• The vector x(tj): should be chosen such that the previous evolved 

displacement vector £xjj(A t) is almost parallel to the candidate dis­

placement ^Xjj(O).
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4.3 Predictability of Seizure by Incorporating BSS

The main idea of applying BSS to the EEG signals for seizure predic­

tion is to consider the seizure signals as independent components of the 

scalp EEG, which can be extracted using BSS algorithms. Then the 

traditional nonlinear analysis method, i.e. quantification of the dynam­

ical changes by calculating the STLmax, is performed for the estimated 

sources to evaluate the predicability of the seizures. SOBI was applied 

for seizure source separation in Corsini’s method [42]. SOBI separates 

the signals based on the assumption of mutual uncorrelatedness within 

multiple lags, rather than independence, which is reasonable for brain 

signal separation because the distribution of brain sources is unknown. 

In the work, two more algorithms, JADE and CTICA are applied for 

seizure source separation.

4.3.1 JADE Algorithm

The JADE algorithm [17] is based on higher-order statistics. As di- 

agonalization of the correlation matrix gives the uncorrelated random 

variables, making the “off-diagonal” elements of the fourth order cu- 

mulant matrix of the output equal to zero would give an estimation of 

the independent components. Recall tha t the fourth-order cumulant 

for a real signal is defined as:

c u m( x i , X j , X k , x i )  =  E { x i X j X kx i }  — E { x i X j } E { x kx i }  -  E { x i X k} E { x j X i }

-  E{xiXi}E{xjXk} (4.3.1)
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where cum(-) denotes the cumulant. The cumulant tensor can be con­

sidered as the linear transformation of a matrix M, which is given by:

71

[ Q * ( M ) ] y  =  £  cum(xi,xj,xk,xi)mik ( 4 .3 .2 )
k ,l= l

where mik is the (l,k)th  component of matrix M. Therefore, an eigen­

value decomposition (EVD) of the tensor satisfies,

Q(M) =  AM (4.3.3)

where A is the eigenvalue and M  is the eigenmatrix. In this model, the 

data are whitened by a “whitening matrix” V,

z  = VAs =  W Ts ( 4 .3 .4 )

where matrix W  is orthogonal. The eigenmatrix is given [65] as,

M  =  Wjwf (4.3.5)

The JADE algorithm estimates the matrix W  by diagonalization of 

matrix W Q (M )W t . It is noticed that minimization of the sum of 

squares of off-diagonal elements is equivalent to maximization of the 

sum of squares of diagonal elements. Thus, the solution of W  that 

jointly diagonalizes the matrices can be obtained by the cost function 

[65]:
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where ||dmg( - ) | | 2 means the sum of squares of the diagonal elements,

|| • ||p denotes Frobenius norm. Maximization of Jj a d e  is achieved by 

joint approximate diagonalization of Q(M ).

4.3.2 Solution to Permutation Problem

For the investigation of seizure predictability, the dynamical measure­

ment needs to be carried out for long-term and continuous EEG record­

ings. By considering the stationarity and the data length for calculat­

ing STLmax, the long recording EEG data need to be segmented into 

frames of a certain duration (10 seconds in this study). The algorithm 

is then performed over the consecutive data segments. There are two 

ambiguities in BSS, first, the scale of the independent components is 

uncertain; second, the order in which the components are arranged is 

unknown. The scaling problem can be solved by pre-whitening the 

data such that the data and the estimated sources can have unit vari­

ance. The sign of the estimated source does not affect the results of 

estimation of STLmax since the dynamical property is independent 

of the sign change. The permutation problem needs to be solved to 

maintain continuity of the sources because the estimated sources may 

appear in different orders along the consecutive segments. In order to 

solve this problem in the present work, the algorithm is performed over 

overlapped frames and the sources within the overlapped segments are 

compared by measuring the correlation between the estimated sources, 

and based on this the separated sources are realigned.

For n-channel zero-mean scalp EEG, x(t) =  [xi(t), X2 (t ) , ..., x n(t)]T 

of length L, consider two consecutive windows of data Xi(£) =  x(t0 + 1) 

and x 2 (t) =  x(t0 +  Af +  t), where N  <C L, and L — N  is the length of the
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overlapping window. If the outputs of BSS for segments x i (t) and X2 (t) 

are S i (t) and S 2 (t) respectively, with 81 (t) =  [si(t),  s 2 ( t ) ,  •••, sm(t)]T and 

s 2{t) =  [ s i W ,  s'2(t), ...,s'm(t)]T, then the correlation as the normalized 

covariance between Si(t) and S 2 (t) within the overlapping sections is 

measured as:

. . cov(s\, S2 )
cor(si,s2) = ------------- (4.3.7)

CTsi ̂ 82

where as denotes the standard deviation and cov{si, S2 ) is the lag zero 

covariance of the two sources. The covariance provides a measure of 

the extent of correlation between these sources. Thus, the correlation is 

used to compare the consecutive blocks within the overlapped interval, 

whereby the estimated sources can be aligned accordingly.

In the case of applying CTICA, one reference signal can be obtained 

based on prior information about the seizure (as described in Chapter 

3), because the location of the epileptogenic zone and the dominant 

frequency of the seizure may be known in advance. For each segment, 

the source which is closest to the reference signal can be selected from 

CTICA. Then, the STLmax can be calculated for the selected source. 

Therefore, the overlapped window is not necessary any longer, and the 

computational cost can be greatly decreased.

4.4 Experiments

There are two experiments in this section. In the first experiment, 

JADE and SOBI were applied to scalp EEG data of three epileptic 

patients, in which the scalp EEGs were recorded simultaneously with 

the intracranial signals. Correlation and overlap window was used to
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solve the permutation problem. The results of STLmax obtained from 

the simultaneous intracranial and estimated sources were compared. 

In the second experiment, CTICA was tested for the same data. The 

reference signal was constructed based on the spatial and frequency 

information about the seizure (as described in Chapter 3). The source 

with the highest correlation coefficient with the reference was selected 

for further nonlinear analysis. The source obtained in this way is the 

source closest to the reference, which contains the most information 

from the seizure area.

4.4.1 Data Acquisition and Preprocessing

A set of 12-channel intracranial EEG recordings were acquired from 

multi-contact Formen Ovale (FO) electrodes. Electrode bundles were 

introduced bilaterally through the FO under fluoroscopic guidance. The 

deepest electrodes within each bundle lie next to medial temporal struc­

tures, whereas the most superficial electrodes lie at or just below the 

FO [42]. Simultaneously, the multichannel EEGs were recorded us­

ing standard silver cup electrodes applied according to the “Maudsley” 

electrode placement system, which is a modification of the extended 1 0 - 

20 system. This system provides a more extensive coverage of the lower 

part of the cerebral convexity, increasing the sensitivity for the record­

ing from basal subtemporal structures [77]. The 16 channels scalp EEG 

were sampled at 200 Hz and bandpass filtered in the frequency range 

of 0.3 Hz - 70 Hz. The system input range was 2 mV and the data were 

digitized with a 12-bit analog-to-digital converter [42].

The signals were preprocessed by first removing the baseline to al­

leviate the effect of low frequency artifacts. Then, the EEGs were
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filtered by a 10th order Butterworth lowpass digital filter with an edge 

frequency of 45 Hz in order to eliminate the 50 Hz frequency compo­

nent. The EEGs used in the following experiments were truncated from 

the original long recordings. The length of the data segment was 5-6 

minutes with the seizure onset at the end of the data segment. (The 

data used in the experiments were known to have the seizure at the end 

of the data segment though the exact time of seizure was unknown, but 

one can expect the STLmax to show a downward trend at the end of 

the segment.) In all experiments, the mean of data was removed. The 

preliminary whitening was performed to make the data have unit vari­

ance before further separation processing. The number of sources was 

chosen as 16.

4.4.2 Experiment I 

Intracranial and Scalp EEGs

Fig. 4.1 shows four channel intracranial EEG recordings with duration 

of 10 seconds. The first two channels are close to the epileptic area, from 

which it can be seen that the seizure starts from the middle of the data 

segment. The other two channels do not show the obvious dynamic 

transition compared with the first two channels, mainly because the 

electrodes were not implanted in proximity of any seizure sources. Fig.

4.2 displays the scalp EEG recordings of the same segment. Compared 

with Fig. 4.1, it is not easy to distinguish the seizure signal due to the 

noise and artifacts.
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Figure 4.1. Intracranial EEG recordings from patient 1 .
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Figure 4.2. Scalp EEG recordings from patient 1 .
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S T L m ax o f  Intracranial EEG

The data from three patients were tested and the corresponding STL­

max calculation results are shown in Fig. 4.3. It can be seen that STL­

max values are positive, which indicates that the system is chaotic. 

Because the data used in the experiments were known to have the 

seizure at the end of the data segment, one can expect the STLmax 

to show a downward trend at the end of the segment. It can be seen 

that the STLmax in Fig. 4.3 also present a gradual downward trend 

prior to the occurrence of seizure, especially in the last two patients. 

The results are in accordance with all previous research findings using 

nonlinear dynamic methods.
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Figure 4.3. STLmax values from intracranial EEG recordings. The 
dash line shows the linear approximation of the trend of STLmax.

S T L m ax o f  E stim ated  S o u rces U sin g  SO B I

The STLmax values calculated from the estimated sources by using 

SOBI are given in Fig. 4.4. For patient 1, there is one source with a 

minimum value of STLmax of around 250 sec, and another around 150 

sec. For patient 2, STLmax of source 2 and source 4 gradually drop 

before the seizure onset. For patient 3, only source 1 presents a very 

clear downward trend prior to the seizure.
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Figure 4.4. STLmax values of estimated sources by using SOBI.
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S T L m ax o f  t h e  E stim a ted  S o u r c e s  U sin g  J A D E

The STLmax values calculated from the estimated sources by using 

JADE are given in Fig. 4.5. For patient 1, source 1 shows the minimum 

STLmax near the end of the segment. For patient 2, it is seen that 

source 1 and source 2  present a gradual drop before the seizure onset. 

For patient 3, also, there are two sources showing a downward trend 

prior to the seizure. Compared with the results from SOBI, for patient 

2 and patient 3, the STLmax value from JADE seems to produce clearer 

nonlinear dynamical transitions during the evolution of seizure.

8

Time (Seconds)

Tim e (S e co n d s)T im e (S e co n d s)

a
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Figure 4.5. STLmax values of the estimated sources by using JADE.
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4.4.3 Experiment II

In the second experiment, CTICA was applied to the same scalp EEG 

data. A component which had the highest correlation with the reference 

signal was selected for the further nonlinear analysis. The component 

selected by this way is the source closest to the reference signal. As 

explained in Chapter 3, the reference signal in CTICA was formed by 

averaging and filtering the signals from the epileptic area, since the 

epileptic area and the frequency band with seizure were usually known 

a priori. Therefore, the source closest to the reference will contain more 

information from seizure area than the other sources.

Applying the seizure detection techniques to identify seizure com­

ponents from the ICA outputs is not feasible for seizure prediction , as 

in long EEG recordings seizure maybe present or absent from time to 

time. Identification of seizure components in the each EEG segment 

is not only extremely time consuming, but even may not be necessary 

as seizure maybe absent in some segments. On the other hand, the 

component closest to the reference is always capable to reflect the dy­

namic changes in the epileptic area irrespective of the occurrence of 

the seizure, thereby, it is suitable to be applied for nonlinear dynamic 

analysis to investigate the predictability of seizure.

In this experiment, the reference signal was selected as the aver­

age of F8  and F7 since the epileptic zone was known near the frontal 

area, followed by bandpass fi tering with frequency range 3 Hz - 15 Hz. 

The CTICA was performed for each consecutive EEG segment and one 

source which has the highest correlation with the reference signal was 

selected. Then, STLmax was estimated from this source. The main ad­

vantage of applying CTICA is that STLmax can be calculated for one



Section 4.5. Conclusion 8 6

source only and no overlapping window is needed, therefore the com­

putational cost is much less and this approach is more efficient than 

that in the first experiment.

Fig. 4.6 gives the results of STLmax obtained from same patients 

as the above experiment. It is noticed that, in all cases, a gradual drop 

is observed prior to seizure, in accordance with the results from the 

intracranial EEGs (as in Fig. 4.3).
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Figure 4.6. STLmax values of the seizure source obtained from 
CTICA. The dash line shows the linear approximation of the trend 
of STLmax.

4.5 Conclusion

Predictability of epileptic seizure has been investigated in this chap­

ter. By using BSS techniques, the seizure components can be extracted 

from the scalp EEG background. The results of nonlinear quantifica­

tion present a similar downward trend as for the intracranial recordings, 

which suggests predictability of seizure from scalp EEG. By incorpo­

rating the prior spatial and spectral information about the seizure as 

the constraint, the CTICA algorithm proves to be an effective and su­

perior method for seizure source separation, which not only can extract 

the seizure source, but also is less computationally expensive than the
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other popular separation methods.



Chapter 5

FUSION OF EEG AND FMRI: 

SCANNER ARTIFACT 

REMOVAL

5.1 Introduction

Simultaneous EEG and fMRI recording combines two advanced modal­

ities to monitor the micro neural functions by exploiting both tempo­

ral and spatial information. Clinically, EEG remains as the principal 

tool for the diagnosis and classification of brain function disorder syn­

dromes such as schizophrenia and epileptic seizures. This is because 

EEG presents the micro neural activities with high temporal resolu­

tion. On the other hand, fMRI, with high spatial resolution, compen­

sates for the low spatial resolution drawback of EEG. Therefore, fusion 

of these two modalities can exploit more efficiently the spatio-temporal 

information related to the brain activity.

Combined EEG and fMRI recording plays a very important role for 

diagnosis of epilepsy and identification of the epileptogenic zone. Focal 

epilepsy is characterized by its onset within a distinct area. There­

fore, it can be treated by surgical operation to remove the epileptic

88
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cells from the brain, if the epileptogenic zone can be identified accu­

rately [96]. The signature of blood oxygen level-dependence (BOLD), 

potentially available from fMRI, provides very valuable spatial informa­

tion for identification of the epileptogenic zone and the final surgical 

decision.

The technical problems in collection of simultaneous EEG-fMRI 

recordings include the mutual effects in both EEG and fMRI data. 

The study in this chapter was only focused on the interferences caused 

by the fMRI scanner in the EEG recordings. There are different types 

of artifacts which contaminate the EEGs. One common type is caused 

by the body movement in a magnetic field. This type of artifact can 

be reduced by mechanical means such as fixing the subject and wires, 

and avoiding loops in the wires. Another type of artifact is cardiac 

pulse interference, which can cause a small movement of electrodes and 

scalp due to the expansion and contraction of scalp arteries. The pulse 

artifacts can be reduced by using some post-processing methods, such 

as the ECG-triggered subtraction of an averaged artifact at each EEG 

channel [78]. The most significant interference is the MRI scanner ar­

tifacts which originate from switching magnetic field gradients during 

the process of MRI scanning. Fig. 5.1 shows the EEG signals which 

contain such scanner artifacts. It can be seen that the scanner arti­

facts intensively obscure the EEG signals, which makes it impossible 

to extract the diagnostic information from EEG.

Various methods for scanner artifact removal have been investi­

gated previously, such as processing in the frequency domain [79] [80], 

introducing certain recording methods [81], and post-processing ap­

proaches [82]. In [79] and [80], the focus is on elimination of the artifact-
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Figure 5.1. EEGs containing scanner artifacts in which the real EEGs 
are obscured by the scanner artifacts.
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specific power spectrum by utilizing the fast Fourier transform (FFT) 

and reconstructing the artifact-free signal by inverse FFT. The spec­

trum of the scanner artifact was detected by comparing the EEG spec­

trum before and during the MR imaging sequence. Some approaches 

have been attempted to improve the recording methods to minimize 

the scanner effect, such as carefully choosing the image sequence and 

blanking the EEG segments during the scan period using a scanner­

generated trigger pulse [81]. The artifact removal method proposed 

by Allen [82] reduced the artifacts by subtracting the averaged arti­

fact waveform from the EEG channels, followed by a noise cancelling 

procedure to remove the residual artifact. This method is the most 

commonly applied method.

In the present work, a new approach is applied based on an iterative 

blind source extraction (BSE) algorithm which can mitigate the scanner 

artifact effectively. The BSE algorithm is based on higher order sta­

tistics (HOS), in which the sources can be extracted by maximization 

of non-Gaussianity of the output signals [83]. The difference between 

BSE and other block-based blind source separation (BSS) algorithms 

is that BSE can extract one source signal from the mixtures at a time, 

rather than separating all the sources at the same time. If more than 

one source is expected, then BSE can extract the sources one-by-one. 

The process of deflation following the extraction in each iteration can 

exclude the extracted source from the rest of the mixture. In this work, 

the scanner artifacts are the sources to be extracted from the EEGs. 

After performing a number of extractions and deflations, the scanner 

artifacts can be reduced effectively.

In the following sections, the physical background of MRI signals
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is briefly introduced. The BSE algorithm is then explained in detail. 

The experiments are carried out on both simulated data and real EEG 

data with fMRI scanner artifacts. The results are presented at the end 

of this chapter.

5.2 MRI Signal and Scanner Artifact 

Nuclear Magnetic Resonance

Magnetic resonance imaging (MRI) is an imaging technique which can 

provide high quality images from inside the human body. The principle 

of MRI is based on nuclear magnetic resonance (NMR), a property of 

atoms first observed by Bloch and Purcell [84]. Most MRI looks at the 

NMR signal from the hydrogen nucleus. The hydrogen nucleus contains 

one single proton, which possesses an intrinsic property called spin. In 

physics and chemistry, spin is the angular momentum intrinsic to a 

body, and elementary particles such as protons, electrons and neutrons 

possess spin. The spin of the particle can be considered as a magnetic 

moment vector which makes the particle behave like a magnet. When 

the proton is placed in an external magnetic field, the spin vector of 

the particle aligns itself with the external field. Then the proton may 

experience the energy transition between two states: a proton in the 

lower energy state absorbs a photon and ends up in the upper energy 

state; a proton which emits a photon can transfer from a higher to a 

lower energy state. It is this energy transition that generates the NMR 

signal, and this transition between the lower and higher energy states 

is called resonance [84].

If a particle with spin is placed in a magnetic field of strength B, 

it absorbs a photon of frequency v, which is referred to as the reso­
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nance frequency, and the relation between the magnetic field and the 

resonance frequency is given as,

v = 7 B (5.2.1)

where 7  is the gyromagnetic ratio of the particle. The transition of 

energy, E, happens when the particle absorbs a photon and changes 

from the lower energy state to the higher energy state. This energy is 

related to the frequency, 1 7  by Planck’s constant h, i.e. [84].

E  =  hv  (5.2.2)

Therefore, the energy needed for a transition between the two states is

E  =  h7B (5.2.3)

Hence, the NMR signal originates from this energy transition procedure 

and the energy is proportional to the strength of the magnetic field.

Scanner Artifact

A magnetic resonance image is the picture that presents the NMR 

signals in the object. In order to form an image, the NMR signals must 

be linked to the spatial region. The procedure to find the relationship 

between the resonance frequency and position is referred to as frequency 

encoding.

From the resonance equation v  =  7 B, one can see that the resonance 

frequency of the spin is proportional to the magnetic field strength B. 

In MRI, in order to link the frequency to the spatial region, a magnetic 

field gradient is applied. A magnetic field gradient is a variation in the
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magnetic field with respect to position. For example, a one-dimensional 

magnetic field gradient varies along the x  axis direction. Suppose that, 

at the centre of the magnetic field, the magnetic strength is B 0, the 

resonance frequency is i'o, and the gradient along the x axis is G x, then 

the relationship between the resonance frequency v and position x  can 

be written as,

v =  7 (B 0 +  z G x) =  v0 +  j x G x  (5.2.4)

then

x = ( y -  i/0 ) / ( 7 G x) (5.2.5)

This equation forms the basic principle of magnetic resonance imaging.

During the process of MRI scanning, the object is placed in a mag­

netic field, a one-dimensional magnetic field is applied at one certain 

angle in one desired plane and the NMR signals are recorded. Then 

this magnetic field is applied to the next angle and the same process 

is repeated until the whole object is scanned. The scanner artifacts 

originate from switching magnetic field gradients during the process of 

MRI scanning. (The more information about fMRI methods can be 

found in [85]).

5.3 Scanner Artifact Removal by Blind Source Extraction

One of the solutions for removal of scanner artifacts, proposed by Allen 

et al. [82], is based on subtraction of the averaged artifact from each 

EEG channel. In this method, the scanner artifact waveform was ob­

tained by averaging 25 epochs of EEGs. The scanner-generated “slice 

trigger pulse” was used to ensure that the artifacts from one epoch to 

another are synchronised. Then, the averaged artifact was subtracted
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from EEGs for each epoch. Theoretically, since the scanning process 

is periodic, the averaging-and-subtraction can remove this kind of arti­

fact. In general, this method provides a significant improvement in the 

EEG quality. However, some useful information in EEGs maybe lost by 

the averaging method, and the “slice trigger pulse” requires a very del­

icate connection between the scanner and the EEG recording system. 

In the present work, a blind source extraction technique is proposed 

which does not need any synchronization process as the “slice trigger 

pulse” , but can reduce the scanner artifact effectively.

Blind Source Extraction Algorithm

The BSE algorithm is based on the maximization of non-Gaussianity 

of the output signals. Spike-type scanner artifacts always have higher

kurtosis than normal EEGs, and therefore BSE is a suitable choice to

extract these high kurtosis artifacts.

Given n-channel observed data x(£) =  [x\(t),X2 (t), .. . ,xn(t)]T, t =  

1,..., N,  as a linear and instantaneous mixture of m  underlying sources 

s (t) = [«i(£), s2 ( t ) , s m(f)]T, which are mixed by the mixing system 

A as,

x(£) =  A s (t) (5.3.1)

then the estimated source y  is obtained by using

y =  w r X  (5.3.2)

where X  =  [x ( l) ,..., x(iV)], and w is the unmixing vector which is 

estimated based on the maximization of non-Gaussianity of the output 

signal y. The cost function of BSE is then expressed [83] as:
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J (w ) =  ~ \ \ H y ) \  = ~ j k 4(y) (5.3.3)

where k±(y) is the normalized kurtosis, which measures the flatness (for 

the sub-Gaussian signal) or peakedness (for the super-Gaussian signal) 

of a distribution of a signal. The parameter (3 determines the sign of 

the kurtosis of the extracted signal, and is selected to be — 1 or + 1  when 

the extracted source has negative or positive kurtosis respectively. The 

normalized kurtosis for zero-mean signals is defined by,

where £7{} is the statistical expectation operator. Applying the stan­

dard gradient descent approach [83] to minimize the cost function (5.3.3) 

one can obtain:

where the moments are given by m q(y) = E{yq{t)}. w can be obtained 

by applying the simple local type least mean square (LMS) learning 

rule:

(5.3.5)

where y,(t) > 0  is a learning rate, and

(5.3.6)

w  (k +  1) =  w  (k) +  n(k)ip(y(k))x.(k) (5.3.7)

where k is the iteration number. Since BSE extracts the sources one-
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by-one, in order to avoid the previous source to be separated again, 

a deflation process follows the extraction process. Assuming that Xj 

and yj are the j th  mixture and j th  extracted components respectively, 

the deflation process finds a new mixture x J + 1  iteratively based on the 

following update equation,

Xj+i(&) =  Xj(k) -  w jy j (k) (5.3.8)

where Uj(k) = wjxj(/c), and w j is estimated by minimization of the 

following cost (energy) function [83]:

J(™j) =  5 £ { ] C xi+i,p} (5-3-9)
v- 1

The above cost function can be considered as an energy function, the 

minimum of which is achieved when the extracted source is eliminated 

from the mixtures of sources. By minimization of the mean square cost 

function

J(wj) =  £ {x j+1xi+i} =  £{x J Xj} -  2WjE{x.jyj} +  wJWjE{y?}

(5.3.10)

with respect to w j , one can get an alternative simple updating equation 

[83]:
E{XjVj} _  £ {xjx ,.}w ,

Ŵ -  E{y] }  ~  E{y>} (5'3-U)

Implementation

As BSE is based on maximization of the output kurtosis, each time run­

ning BSE will produce one source that has higher kurtosis. In this case, 

the estimated source is the scanner artifact. The extraction process
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first extracts the artifact as one source, a deflation process removes 

this source from the EEG mixtures, and then the BSE algorithm is 

performed on the remaining EEGs.

In order to remove the whole scanner artifacts, it is necessary to run 

the BSE a number of times. The number of times is decided by mea­

suring the kurtosis of the mixtures iteratively during the BSE process. 

Theoretically, once the scanner artifacts are removed from the EEG, 

the kurtosis of the scanner artifact-removed EEG would be decreased. 

Thereby, kurtosis measurement is selected as the criterion to decide the 

number of iterations for running the overall BSE, and is carried out by 

comparing the measured normalized kurtosis with an empirically pre­

defined threshold value. Care has to be taken in order to avoid removal 

of any informative sources. For this case, this threshold value is set to 1. 

Thus the BSE algorithm stops once the normalized kurtosis decreases 

to less than 1 .

5.4 Experiments

5.4.1 Experiment I: Simulation

Three source signals were generated with kurtosis of 1.5, 3.0 and 4.15 

respectively. The simulated source signals are shown in Fig. 5.2. The 

mixed sources are shown in Fig. 5.3, which were mixed by a matrix 

with elements drawn from a zero mean and unit variance Gaussian 

distribution. The result after BSE is given in Fig. 5.4. It is seen that 

the mixed source signals have been extracted, note the expected change 

of amplitudes and order of sources.
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Section 5 .4 . Experim ents 100

5.4.2 Experiment II: Application to  Simultaneous EEG and fMRI 

Data

Data and Preprocessing

The second experiment was carried out based on simultaneously recorded 

EEG and fMRI data, in which the 28-channel EEGs were recorded with 

a sampling frequency of 1000Hz. The EEGs that were contaminated by 

the scanner artifact are given in Fig. 5.5. It can be seen that the scan­

ner artifacts obscure the real EEG signals. The data were preprocessed 

by first removing the baseline and then the mean value was removed 

from the data. A 10th  order Butterworth lowpass digital filter with a 

cut-off frequency of 45 Hz was used to remove the 50 Hz interference. 

The EEGs after the lowpass filtering are shown in Fig. 5.6, which still 

contain scanner artifacts. The data were then whitened before fur­

ther processing. Because BSE extracts source one-by-one, there is not 

necessary to estimate the number of source before separation process.

Results from BSE

The BSE algorithm was applied to the filtered EEGs to remove the 

high kurtosis components, and the number of iterations was decided 

based on the normalized kurtosis. Fig. 5.7 gives the measured kurtosis 

which is obtained by averaging the kurtosis from 28 EEG channels. The 

graph shows that the kurtosis decreases as the number of iterations is 

increased. The iteration stops when the kurtosis decreases to less than 

1. Fig. 5.8 gives the final result obtained by the proposed method, 

from which it can be observed tha t the effect of scanner artifacts has 

been reduced in the EEG recordings.
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5.5 Conclusion

In this chapter, an effective method for removing the scanner artifacts 

has been presented, in which BSE was applied to extract the high 

kurtosis scanner artifacts. The results show that the effect of scanner
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artifacts has been reduced from the EEGs. The results of this study 

pave the way for the application of the fusion of simultaneous EEG and 

fMRI in many areas such as prediction of epileptic seizures from scalp 

EEGs.



Chapter 6

ANALYSIS OF EPILEPTIC 

EEG-FMRI SIGNALS

6.1 Introduction 

Relationship between fMRI and EEG

As one of the advanced brain function monitoring modalities, fMRI 

provides high resolution spatial information which helps visualization 

of the brain activities. Blood-oxygenated level-dependence (BOLD) 

regions in fMRI result from event-related, movement-related, and ab­

normal brain activities such as seizures, which provides valuable infor­

mation for localization of the brain activation regions. EEG, on the 

other hand, reveals the neural electrical activation and provides the 

high temporal resolution. Many unanswered questions about the re­

lationship between the cerebral haemodynamic changes (measured by 

fMRI) and the underlying neural electrical activity (revealed by EEG) 

are of interest to many researchers.

Although the spatiotemporal relationship between fMRI and EEG 

is still far from straightforward, there are promising perspectives pre­

sented in the literature. Logothetis et al. [101] compared local field 

potentials (LFPs) with the fMRI responses from the visual cortex of

104
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monkeys. The largest magnitude changes observed in LFPs at recording 

sites characterized by transient responses were the signals that highly 

correlated with the haemodynamic response. In [102], the relationship 

between fMRI and event-related potential (ERP) was examined during 

an auditory oddball paradigm. Horovitz et al. [102] have shown for 

the first time that for auditory stimuli, the amplitude of the hemody­

namic response in the region of interest (ROI) follows the amplitude 

of the ERP changes. BOLD signals from the source location of P300 

have high correlation with the amplitude of the P300. In a more re­

cent simultaneous EEG-fMRI study of painful electric stimulation [90], 

Christman et al. have shown that the BOLD changes in ROI were 

correlated with the dipole strength of the EEG source and revealed a 

close relationship of BOLD signal and possible underlying neural elec­

trical activity in ROI. Although these studies were based upon clinical 

and physiological experiments, the results provided evidence that there 

were underlying connections between fMRI and EEG. How to combine 

the signals from these two modalities technically has started to attract 

more attention in recent years.

Fusion of fMRI and EEG

Multimodal data fusion has raised much attention in the last few years 

and numerous efforts have been directed towards combining high spatial 

information provided by hemadynamic based imaging methods, such as 

fMRI, with the high quality temporal data generated by EEG or MEG. 

These approaches mainly focus on three aspects [91]. The first aspect is 

referred to as direct data fusion, such as the most common method used 

in EEG source localization. The geometrical information on the source
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activation region obtained from fMRI can be used as the constraint for 

localizing the EEG dipole sources [87] - [90], because there is no unique 

solution for the ill-posed inverse problem for EEG source localization 

in the absence of constraints. For example, in [89] the geometrical in­

formation from fMRI provided the realistic head model as a volume 

conductor medium to help reduce the EEG localisation solution space. 

In [87], fMRI was not used as a rigid constraint but helped in selecting 

more likely inverse solution among the possible solutions. The second 

aspect is based on the use of computational neural models, in which 

the relation of EEG and fMRI is modelled on the basis of some hy­

potheses of certain neural activities [92] [93]. In these approaches, the 

EEG and fMRI data are not linked directly, but are compared inside 

a simulated neural model. The main challenge for this approach is to 

construct a recurrent neural model for simulation of the complex neural 

physiological activities, which is still questionable from the physiologi­

cal aspect because the simulated neural model simplifies the complexity 

of neural activities [91]. The third type of these fusion approaches is 

more commonly used in the clinical or neurological field in which tem­

poral information from the EEG helps to time-lock the events in the 

fMRI. As the studies discussed in [94]- [98], the epileptic EEG and 

fMRI data were simultaneously recorded during seizure onset, and the 

spikes within the seizure EEG were modelled as the stimuli which can 

be used in the statistical parameter mapping in fMRI. The provided 

brain map of seizure can be used for help in surgical planning. In this 

study, the work is related to the third aspect, which aims at combining 

EEG and fMRI for identification of the “epileptogenic zone”.
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Model-based Method for fMRI Analysis

Several techniques have been proposed for detecting the brain activa­

tion regions in fMRI. The most commonly used model-based approach 

is the general linear model (GLM) [105]- [107] developed by Friston 

et al. (1995) [105]. According to GLM, fMRI data from each voxel 

is considered as a linear combination of the hemodynamic responses 

of stimuli and their corresponding weighted parameters. The stimuli 

are modelled as delta functions and the response is the convolution 

of the stimulus and the predefined hemodynamic response functions 

(HRF) [105]. The response is referred to as Design Matrix in GLM, 

and the HRF can be chosen from some well defined functions such as 

the Gamma function and Fourier set (windowed sines and cosines). 

Therefore, based on GLM, in order to specify the model, prior knowl­

edge or specific assumptions about the time courses contributing to the 

signal changes are required. After the model specification, the weight 

parameters can be estimated by using estimation techniques such as 

maximum likelihood estimation (MLE) or Bayesian estimation. The 

active areas are then detected by evaluating the statistical significance 

of the whole brain voxels [105]. Several software toolboxes for fMRI 

analysis have been developed based on GLM, which can be used for 

fMRI data preprocessing, model specification, statistical parameter es­

timation and parameter mapping, such as statistical parametric map­

ping (SPM) [109] and FMRIB Software Library (FSL) [110]. Details of 

application of SPM are given in the following section.
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Data-based Method for fMRI Analysis

In contrast to the model-based GLM, the data-based model relies on 

the data instead of prior information on stimuli or predefined brain 

function. One of these approaches has raised more attention recently 

[114]- [127]. This was proposed by McKeown et al. [114] as the first 

application of ICA to fMRI data analysis. In the ICA model, the fMRI 

data are considered as a linear combination of a number of temporally 

or spatially independent components. Comparing with GLM, the data- 

driven model is more suitable for analysis of brain signals because no 

assumptions regarding the stimulus response are required. The brain 

function and its hemadynamic response are so complicated that it is still 

questionable to simply choose certain predefined HRF and to assume 

that the shape of the HRF remains constant during the events for each 

brain voxel. In the following section, the details of the ICA model are 

discussed and the experimental results show that the ICA approach can 

be used to analyze the fMRI data in those cases that the GLM cannot 

work.

Apart from ICA, some other model-free approaches have been ap­

plied to fMRI analysis, such as support vector machine (SVM) [129] 

- [132], and mutual information (MI) [128]. The core concept of us­

ing SVM or any other pattern classification method is based on the 

fact that the voxels within the active areas certainly contain some spe­

cial patterns which can distinguish the active part from the rest of the 

brain. These features can be image features such as image intensity, 

probability density, statistical information from each voxel, or the shape 

of the temporal sequence of the designed event. By means of feature 

extraction, the region of activation can be detected.
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Information theory has also been applied to various research topics 

in neuroscience in the last decade. The main idea is to estimate the in­

formation across the whole brain voxels under the designed experiments 

and then to decide the active areas based on the mutual information 

criterion. As in [128], Galit et al. proposed a model-free method based 

on measuring the entropy and MI, which detected the location of the 

event-related activity by evaluation of the temporal information across 

different brain regions. The stimulus was used as a reference, the MI 

between the fMRI signals in each voxel and the stimulus was measured. 

The active areas were then detected by selecting those voxels which had 

higher MI according to the task conditions.

fMRI Analysis for Epileptic Seizure

In comparison with the common fMRI analysis, for which the functional 

data are acquired from the designed experiments, the fMRI data from 

epileptic seizures are very different. As the spontaneous brain activity 

caused by certain functional disorders, the response of epileptic seizure 

is very difficult to be modelled. There has been limited literature [94] - 

[96] [98] that investigated the statistical parameter mapping of epileptic 

seizure spikes. Those results were limited by carefully choosing func­

tional data that have distinguishable periodic seizure spikes, in which 

the spikes were used as the stimulus to construct the design matrix. 

Therefore, these approaches cannot work for unpredictable events, such 

as seizure onset. However, the seizure active area can be detected with­

out concerning the seizure time course by using a model-free method 

such as ICA. If the information available in EEG and fMRI can be in­

corporated in the separation process of ICA, then the performance of
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ICA can be improved. This is the main objective of the present work.

This chapter is arranged as follows. First, the GLM is briefly ex­

plained. Second, the spatial ICA model is described in detail and also a 

comparison between the spatial and temporal ICA models is discussed, 

with the development of the constrained spatial ICA algorithm given 

afterwards. In the final section, the experimental results are given and 

discussed.

6.2 Model Based Methods

6.2.1 General Linear Model

The General Linear Model (GLM) is a linear model which can be pre­

sented as:

Y  =  X B  +  E  (6.2.1)

where Y  is an N  x V  matrix representing the fMRI time series in

each voxel, N  is the number of scans, and V  is the number of voxels

involved in the analysis. X  is an N  x F  matrix referred to as the

design matrix, which is the predicted event response by convolving the 

stimulus with the predefined hemadynamic response function, and F  

is the number of stimuli (events). B is an F  x V  matrix of unknown 

parameters which are to be estimated, and E  represents the errors which 

are assumed to be independently and identically distributed normal 

random variables [105].

For the fMRI data from the j t h  voxel, the elements of the above 

matrix equation can be represented as:
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From the above equation, one can see tha t the column vector b j =  

[bij,..., bpjY is actually the weight factor of each event response at the 

j t h  voxel. An estimation of the parameter B which represents the 

weight for all voxels, denoted as B, can be obtained as,

B =  ( X 'X ^ X 'Y (6.2.3)

The conventional approach for fMRI analysis is based on evaluation of 

the statistical significance in each voxel, for example by means of the t- 

statistic [105]. The activated areas are detected by selecting the voxels 

in which the statistical significance is higher than a certain threshold 

value.

6.3 Data Based Methods

Although the GLM is widely used in fMRI data analysis, the assump­

tions made in this model are still questionable from different aspects. 

As Alpert et al. [99] pointed out, a constant HRF for each voxel is fun­

damentally problematic because the HRF shapes have actually been 

shown to vary across regions, subjects, and even cortical layers. They 

also questioned the linear relation between the stimulus and the cor­
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responding BOLD response, because it has been shown that for a sus­

tained stimulus, the response is actually a sub-linear function of the 

stimulus duration. McKeown et al. [114] also questioned the approaches 

used in SPM, which test the signal at each voxel using univariate mea­

sures (e.g., t-test) under the hypothesis tha t the values are distributed 

under a known probability distribution (e.g. Gaussian). They also 

raised questions concerning the fact tha t the variance and covariance 

between repeated measurements are assumed to be equal, and that the 

time course (of the design matrix) is estimated in advance by selecting 

certain HRFs. The GLM is based on the predefined paradigm, there­

fore, it is more suitable for event-related tasks in which all stimuli of 

the task can be accurately specified. But for more complicated events, 

such as some spontaneous stimuli in the brain tha t are impossible to be 

pre-defined, a data-driven model is more appropriate and more feasible.

6.3.1 Spatial ICA

The first application of the spatial ICA model for fMRI analysis was 

proposed by McKeown et al. [114]. According to the authors, the phys­

iological foundation for the ICA model is based on the two complemen­

tary principles of brain function, namely localization and connection. 

Localization implies tha t each psychomotor function is performed in a 

small region of the brain area; the principle of connection reveals that 

the active brain area involved in certain functions may be widely dis­

tributed in the multiple distinct brain systems [114]. Based on these 

two principles, McKeown et al. introduced the spatial ICA model. In 

this model, the brain areas executing different tasks are assumed to 

be spatially independent. Each of these areas can be considered as an
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independent component associated with a time course. According to 

the statistical definition of independency, the spatial independence can 

be defined as:

n

p(cu  c2, c n) =  J Jp i(c i)  (6.3.1)
1 = 1

where c* is the zth independent spatial component, and the joint pdf 

p(-) is the multiplication of the marginal pdfs of the components. As 

for the conventional ICA model, the spatial ICA model is formed as:

X  -  M C  (6.3.2)

where X  is a T  x V  matrix of the mixtures, T  is the length of the 

fMRI scan, V  is the number of brain voxels involved in the analysis, 

C is an N  x V  matrix of unknown sources, M  is a T  x N  mixing 

matrix, and N  is the number of unknown spatially independent sources. 

Each column of M  represents the time course of the corresponding 

independent component. Based on this model, fMRI signals can be 

decomposed into a number of spatially independent components C and 

their associated time course of activation M . The spatial components 

can be estimated from:

C =  W X  (6.3.3)

where W  is an N  x T  unmixing matrix to be estimated, and W  is the 

pseudoinverse of M , i.e. W  =  M*.

In contrast to conventional ICA, which is based on temporal inde­

pendence, the spatial ICA is based on the assumption of spatial inde­

pendence. Although some research has exploited both the spatial and
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temporal independence [127], most approaches are still based on the 

assumption of spatial independence due to lack of good understanding 

of the unknown brain activities for the temporal dynamics of fMRI. 

Another reason that spatial ICA is more favourable for decomposing 

fMRI data is that it is computationally less expensive. Temporal and 

spatial ICA analysis of fMRI data has been compared by Calhoun et 

al. [121]. Fig. 6.1 illustrates the difference between the two models. It 

is noticed that, for the mixture, X  (fMRI data matrix) in the spatial 

model is the transpose of X  in the temporal model, and the spatial 

dimension is much higher than the temporal one because the number 

of brain voxels is larger than the number of time points of the scans. 

For estimation of the unmixing m atrix in temporal ICA, a covariance 

matrix on the order of V 2 must be calculated, which is more computa­

tionally expensive than tha t for spatial ICA. For these reasons, spatial 

ICA is selected in this work and is denoted as SICA in the following 

section.

6.3.2 Constrained ICA for fMRI Analysis

The constrained ICA has been applied to fMRI signal analysis in order 

to incorporate prior information since the SICA model does not take the 

fMRI time course into account. Although very limited, recent work has 

shown that the performance of the application of ICA to fMRI analysis 

is improved if some prior information is incorporated into the estimation 

process [120]. Lu and Rajapakse [125] applied a predefined stimulus 

as the reference signal in the temporal ICA model. By minimizing the 

distance between the output and reference signal, the source component 

closest to the reference can be obtained. Calhoun et al. developed a
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semi-blind spatial ICA [126], in which a constraint is introduced by 

incorporating the GLM design matrix which contains information on 

the fMRI time course. The column vectors of the mixing matrix are 

constrained according to their closeness to the time course estimated 

from the design matrix. At each iteration, apart from updating w * 

based on the Infomax algorithm, an additional updating rule is set by 

measuring the correlation between the columns of the mixing matrix 

[W171 and the time course estimated from the design matrix. The 

additional updating rule is only performed if the correlation is lower 

than a certain threshold.

Although the semi-blind spatial ICA developed by Calhoun provides 

some promising results, their constraint still relies on GLM, therefore it 

is only suitable for the case tha t the stimuli of the fMRI data are pre­

specified. For an epileptic fMRI, this approach cannot work because it 

is very difficult to model the epileptic seizures. In this work, the idea is 

to incorporate the information from the simultaneously recorded EEG 

as the constraint into the spatial ICA. As one can see from the spatial 

ICA model (shown in Fig. 6.1), the fMRI data can be decomposed into 

spatially independent components and the associated time courses, for 

which each column of the mixing matrix represents the time course 

of one component activation. Therefore, the temporal constraint can 

be introduced by linking the EEG with the columns of W -1 in the 

separation process. In the following section, constrained spatial ICA is 

denoted CSICA.
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6.3.3 Algorithm

The performance of different ICA algorithms for fMRI data separation 

have been studied by several groups [111] [136] [137]. Basically, selec­

tion of the separation algorithm depends on the assumption about the 

distribution of the sources. For example, fMRI data are commonly as­

sumed to have super-Gaussian distribution [120], from which one can 

expect that the algorithm which is more suitable for super-Gaussian 

signals will achieve a better performance. As it will be explained in the 

following section, Infomax is suitable for super-Gaussian signals. Also 

as shown in [137], Infomax consistently yields reliable results for sep­

aration of fMRI followed by JADE and FastlCA. Therefore, Infomax 

was selected in this work. In the following sections, the principle of 

Infomax is explained. Then the constraint is introduced to the Info­

max learning rule and the development of the constrained algorithm is 

given.

Infomax

Infomax is based on information theory by maximizing the output en­

tropy or information flow of a neural network with nonlinear outputs, 

hence the name Infomax. Assume that the neural network with output 

y and input x  is of the form:

Vi = <M w fx ) +  e (6.3.4)

where </>*(•) are some nonlinear scalar functions, the w* are the weight 

vectors of the neurons, and e is the additive Gaussian white noise. The
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entropy of the output is:

H(y) = H (<t>l ( w f x ) , 0 n(w£x)) (6.3.5)

For an invertible transformation of the random vector x, y  =  /(x ) , the 

relation between the entropies of y  and x  can be expressed as [65]

H{y) =  # (x )  +  E{log \ de tJ f (x )  |} (6.3.6)

where <//(•) is the Jacobian matrix of function /(•). According to Eq. 

(6.3.6), the transformation of the entropy in Eq. (6.3.5) can be obtained 

as
dF

H iy) =  # (x ) +  E{log | det— (x) |} (6.3.7)

where i?(x) =  (0 i(w fx ) , ..., 0n(wj[x)) denotes the nonlinear function

defined by the neural network. As H (x) is independent of W , the

entropy of output can be expressed as

H(y) =  E { l°9(t>i{^J'^)} + log I d e tw  \ (6.3.8)
i

It is noticed tha t maximization of the output entropy is very closely re­

lated to the maximum likelihood (ML) estimation. The ML estimation 

yields [133]

A W  oc [(WT)-1 -  t/?(y)xT] (6.3.9)

where the nonlinear function <p(y) is the column vector whose z-th 

component is
dp(Vi )
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where p(yi) is an approximate model of the pdf of the z-th source signal. 

In practice, <p{yi) =  2tanh(yi) is selected as it is suitable for super- 

Gaussian signals [65]. By defining ip(-) in a different way, the Infomax 

can also work for sub-Gaussian signals, which is referred to as extended- 

Infomax [134].

An efficient way to maximize the log-likelihood is to follow the nat­

ural gradient learning method [83],

a w  <x =  [I -  v (y )y r ] w  (6.3.11)

Then, the updating rule can be written as

w (k +  1) =  W (k) -  7j(k) [I -  *p(y(k))y(k)T]W(k)  (6.3.12)

where k  is the iteration number, I  is the identity matrix and rj(k) is the 

learning rate.

The optimal solution for W  is obtained when the estimated sources 

yi and yj are independent. As shown in [83], the stability condi­

tion of the learning rule in Eq. (6.3.11) converges to an equilibrium 

point corresponding to the optimal solution which can be expressed as 

E{(pi(yi)yi} =  1. This is not only the condition for local stability of 

the algorithm, but also determines the scaling of the estimated sources. 

(This condition is invariant with respect to the sign of yi as Pi(yi) is 

selected as an invertible (monotonic) function tanh(yi)). As Infomax 

is very similar as ML estimation (see Eq. 6.3.8), the unmixing matrix 

must be constrained to be orthogonal such that the determinant of W  

is one and the second term  in Eq. (6.3.8) can be ignored. In practice, 

W  is usually initiated as the identity matrix, and therefore no more



Section  6.3 . D ata Based M ethods 120

orthogonalization process will be needed. This is because based on nat­

ural gradient learning rule, W  is rescaled in each training iteration by 

W TW .

Constrained Algorithm

In this work, the objective is to incorporate the EEG signal as the 

constraint into the fMRI data separation process since EEG contains 

valuable temporal information about the brain activity. As the columns 

of the mixing matrix represent the time courses of the estimated compo­

nents, intuitively the temporal constraint can be added to the columns 

of the mixing m atrix such tha t the EEG information can be taken into 

account. However, incorporating this information into the separation 

process is a problem to be resolved.

The relationship between fMRI and EEG is far from straightfor­

ward due to the complexity of the brain mechanism and very limited 

understanding of it at present. Although neural networks have been 

exploited to model the relationship between fMRI and EEG [92] [93], 

it is still hard to be established in the neurophysiological and clinical 

fields, because theoretically the complexity between the hemadynamic 

changes and neural activities can not be fully represented by a sim­

ple mathematical model [91]. Practically, correlation measurement has 

been widely used in the existing studies for investigating the relation­

ship between fMRI and EEG [90] [101]- [104]. Therefore, in this work, 

correlation is used to connect the time course of fMRI components and 

the corresponding EEG signals.

The constraint term  reflects the closeness between the ith  column 

vector of the inverse of unmixing m atrix [W ]"1 and the processed EEG
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time series u. The seizure signal u has to be selected carefully either 

by applying temporal ICA to EEG data to obtain the seizure compo­

nent, or based on prior clinical information about the seizure. In this 

work, u is formed on the basis of prior clinical information, since the 

epileptogenic zone is known as a priori.

The constraint is imposed in the Infomax update rule in Eq. (6.3.9). 

(A similar method to add a constraint in the natural gradient rule can 

be found in the nonholonomic learning rules [83] [135]). The basic 

natural gradient learning equation is then extended as:

W(fc +  1) =  W(Jfc) -  T){k)[I -  <p(y(k))y(k)T -  aA(fc)]W(fc) (6.3.13)

where a  is the factor adjusted based on the stability of the algorithm. 

A =  diag{Au},i = 1,..., N  is a diagonal weight matrix containing the 

information from the EEG, which is updated as

A(k) = diag(cor([W]^1(k),u))  (6.3.14)

where cor(-) denotes correlation. According to the adaptive learning 

rule in Eq. (6.3.13), W  is updated based on the Infomax principle, 

also the column vectors of its inverse are forced to be close to the 

corresponding processed EEG signal u.

As shown in Eq. (6.3.14), A is updated iteratively according to the 

closeness between [ w i r 1 and u. Here, the entries of A are bounded 

since the absolute value of correlation coefficient is less than 1. Due 

to the additional constraint, the new algorithm can converge to the 

lower minimum of the cost function than the one before imposing a 

constraint, whereby the performance of algorithm can be improved.
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6.4 Experiments

The experiments comprise two parts. In the first part, both GLM and 

SICA are applied to the auditory fMRI data. The procedure of us­

ing SPM is described and the result from SPM is compared with that 

from SICA. In the second experiment, SICA and CSICA are applied 

to the epileptic fMRI data (GLM cannot work in this case because it 

is impossible to pre-model the epileptic seizure signals). The simulta­

neously recorded EEG was introduced as the constraint in CSICA and 

the process of constructing the constraint is described in detail. The 

performances of SICA and CSICA are compared in terms of algorithm 

convergence and the closeness between the dominant IC and seizure 

EEG, which demonstrate the superiority of CSICA.

6.4.1 Preprocessing of fMRI Data 

Image Data Format

The primary functional image data format used in this work is Analyze

7.5 [86]. An Analyze 7.5 data format consists of two files, an image file 

and a header file, with extensions “.img” and “.hdr” respectively. The 

.img file contains the image data information. The .hdr file contains 

the volume information of the .img file, such as voxel size, and the 

number of pixels in the x, y and z directions (dimensions). Also, a 

MATLAB file .mat is added to the .hdr and .img pair which includes 

some information on the orientation of the image, generated by the 

realignment and coregistration processes [86]. In this coordinate system 

for Analyze data format, the x-direction is from left to right, the y- 

direction is from back to front, and the z-direction is from bottom to
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top. The image obtained from one scan is referred to as one volume. 

Each volume consists of a  num ber of slices through the brain, and each 

slice has a certain  thickness and is com posed of a num ber of 3D unit 

elements called voxels (as shown in Fig. 6.2). The volume of a voxel 

is approxim ately 3 m m 3. In general, th e  analysis of fMRI is executed 

based on each voxel.

Voxel

Tlucknes:?

F ig u re  6.2. Illustration  of th e  voxel in one slice of an MRI image [86]. 

P r e p r o c e s s in g

In order to  apply ICA to  the  functional data , certain  preprocessing 

must be perform ed before th e  d a ta  are ready for further analysis. The 

preprocessing includes not only the  basic tem poral and spatial pre­

processing as needed in SPM , bu t also the  d a ta  dimension reduction 

and d a ta  s tru c tu re  conversion which are required before applying ICA.

T he first basic step  is tem poral and spatial preprocessing for the 

raw fMRI d a ta  by m eans of slice tim ing and realignment in order to
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remove the motion artifacts. In both experiments, this preprocessing 

is carried out by using the established tool in the SPM.

The second step is data dimension reduction. The analysis of fMRI 

is always computationally expensive due to the large number of brain 

voxels. Therefore, a very important step of preprocessing before per­

forming any fMRI analysis is to reduce the number of voxels involved 

in the analysis, and thereby to reduce the data dimension for further 

analysis. This can be executed by either removing the off-brain voxels 

(i.e. the pixels which fall outside the brain boundary), or extracting 

the voxels within the area of interest. Both processes can be carried 

out by applying various techniques. For example, in SPM, the standard 

images of grey and white m atter of the brain are provided to be used 

as mask images, so tha t the user can extract the voxels of interest. In 

another medical image viewing and processing toolbox MRIcro [113], 

the user can choose some masking images as in SPM. Also, in MRIcro, 

extraction of the region of interest (ROI) can be performed directly 

by drawing the ROI on the original images manually, then the ROI 

is converted to the Analyze 7.5 format which is readable in SPM. In 

the Matlab based software FMRLAB [112], the off-brain voxels are 

excluded by manually setting a threshold value. The user can visu­

ally check the changes in brain images during the process of removing 

off-brain voxels in the graphic interface, and decide on the threshold 

value. In the following experiments, the toolbox in FMRLAB was used 

to extract the brain voxels.

In the case of applying GLM to fMRI analysis, the above two steps 

of preprocessing are required. But for applying ICA to fMRI, one also 

needs to construct the input (data mixture) in order to perform the
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ICA. As seen from the ICA model (Eq. 6.3.2), the input data mixture 

has dimensions of T  x V, where T  is the number of scans and V  is the 

number of brain voxels involved in the analysis, which are the voxels 

after excluding the off-brain voxels. For each scan (one time point of 

fMRI data), which is referred to as one volume, the data are in 3D 

form (i.e., with X, Y and Z directions). In order to construct the 2D 

mixture with size T  x V,  it is necessary to first compress all scans into 

a 4D dataset, which i s T x X  x  Y  x Z,  then reshape the 2D mixture 

into the dimension T  x V, in which V  is smaller than X  x Y  x Z  since 

the unnecessary voxels are excluded in the second step.

In all experiments, the data were first centred to have zero mean. 

Then preliminary whitening was performed to make the data have unit 

variance before further separation processing. The estimation of num­

ber of spatial components in fMRI has been attem pted recently [138], 

in which the information-theoretic criteria was applied on the simulated 

data based on the minimization of the Kullback-Leibler divergence be­

tween the true model and the fitted model. However, it is still a rel­

atively new research topic and many questions remain. In this study, 

the number of source was selected as the same as the number of input 

channels, which is the time points of fMRI data.

6.4.2 Experiment I: Analysis of Auditory fMRI Data 

Data Details

In this experiment, the single subject fMRI data from a block audi­

tory activation experiment were used. The preprocessed data set was 

downloaded from the SPM web site [109]. In total 96 acquisitions were 

made in blocks of 6, with a repeat time (RT) of 7s between scans. The
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condition for successive blocks alternated between rest and auditory 

stimulation, starting with rest. The functional data started acquisition 

at the 4th scan and the first few scans were discarded. These whole 

brain BOLD images were acquired on a modified 2T Siemens MAG- 

NETOM Vision system. Each acquisition consisted of 64 contiguous 

slices, giving the image dimension of 64 x 64 x 64 and voxel size of 

3m m  x 3m m  x 3mm.

R esu lts  from  S P M

The model was first specified in SPM, in which one needs to select the 

fMRI scans, to specify the details of the stimulus such as time and 

period, and to choose the pre-defined HRF to be convoluted with the 

stimulus to format the design matrix. The parameter estimation was 

carried out after model specification. Then, the statistical significance 

of the parameters was evaluated by the t-statistic and the area of acti­

vation was shown in the brain volume. Fig. 6.3 gives the results of the 

statistical parameter mapping, from which one can see that the BOLD 

area is located at the auditory region.

F igure  6.3. The analysis results for the auditory activation experiment 
obtained from SPM.
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R esu lts  from  SIC A

The raw fMRI da ta  were first compressed into 4D data  format using 

MRIcro, then the off-brain voxels were excluded in FMRLAB. The 

SICA algorithm was then applied to the functional data. The dominant 

independent component was selected based on the prior information of 

the region of interest. The BOLD of the selected dominant IC is shown 

in Fig. 6.4 as the highlighted area, comprising voxels with z-value 

(normalized standard  deviation) higher than  the predefined threshold 

(which is set to 1.5 in this experiment). It is seen th a t the highlighted 

area is also located in the auditory region, but more focused than the 

result from SPM.

F igure  6.4. The analysis results for the auditory activation experiment 
obtained from SICA.

6.4.3 Experiment II: Analysis of  Epileptic EEG-fMRI

D a ta  D e ta ils

The simultaneously recorded EEG and fMRI data  were obtained from 

the National Society for Epilepsy, University College London (UCL). 

The functional d a ta  were acquired on a modified 3T GE Horizon sys­

tem and EEG d a ta  were recorded by the Brain Product system. The 

length of EEG-fM RI d a ta  is approximately 5 mins before and during
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the seizure onset. The functional data were acquired from the 16th scan. 

In this experiment, the functional data were truncated from acquisition 

20 to acquisition 107, which is the scan just before seizure onset. The 

first four scans were discarded in order to remove the initial magnetic 

gradient effect in the fMRI recording. Each acquisition comprised 47 

contiguous slices, with image dimension of 64 x 64 x 47, and the volume 

size was 3.75mm x 3.75mm x 2.5mm. The interval between each scan, 

the RT, was 3 sec. The simultaneous 64 channel EEGs were sampled 

at 250 Hz. Before applying the proposed algorithm over the simulta­

neous EEG-fMRI data, the scanner artifacts were removed by the data 

provider.

Experiment Setup

In this experiment, SICA and CSICA were applied to the epileptic 

EEG-fMRI data and the performances of these two algorithms were 

compared. The functional data were preprocessed as in the first exper­

iment. After realignment to remove the motion artifacts, the raw data 

were first compressed into 4D format, then the off-brain voxels were 

removed and the 2D data were constructed for ICA.

As described in the above section, the constraint was formulated as 

the closeness between the EEG information and the column vectors of 

the mixing matrix, in which the closeness was measured by correlation. 

The special electrodes F8 and P8, which contain the most significant 

seizure information, were selected as the reference signal as suggested 

by the clinical consultant.

For measuring the correlation, the difference in resolution between 

the EEG and fMRI must be resolved first, because the temporal resolu­
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tion of EEG is much higher than tha t of fMRI time series. In order to 

solve this problem, the following process was performed: (1) selecting 

electrode P8 or F8 as the EEG reference signal; (2) filtering the refer­

ence signal by lowpass filter with cut-off frequency 15 Hz, thus ensuring 

that the important seizure information is kept (because the frequency 

of seizure is in the range 2.5 to 15 Hz [74] [75]); (3) down-sampling 

the reference EEG and up-sampling each column of the mixing ma­

trix to ensure tha t they have the same data length; (4) measuring the 

correlation between reference EEG and columns of the mixing matrix.

Results and Discussion

SICA and the proposed CSICA were applied to the processed fMRI 

data. In each iteration of CSICA, the correlation between the column 

vectors of W -1 and the EEG reference vector was measured as the 

factor of constraint. Then, the unmixing matrix W  was updated ac­

cording to Eq. (6.3.13). The performances of the two algorithms were 

compared in terms of convergence, the correlation between the seizure 

EEG and the corresponding columns of the mixing matrix, and the 

mapping of the selected component.

Fig. 6.5 gives the algorithm convergence curve, and clearly shows 

that the proposed CSICA algorithm converges to the local minimum of 

the cost function, which is less than tha t for unconstrained SICA. Fig. 

6.6 illustrates the region of activation obtained from both algorithms. 

The level of activity is represented by the normalized standard devia­

tion (z-value). The activation area is the brain area in which the voxels 

have a higher z-value than the threshold level (1.5 in this experimental 

result). The mapping of the component (activated area) is then dis­
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played by overlaying the area on top of the high resolution structural 

images. Based on the clinical expertise, the highlighted part in the left 

frontal area is introduced as the MRI scan noise, and the right tem­

poral area is verified to be within the epileptic zone. This means that 

the detected BOLD is in line with the clinical findings. Also based on 

clinical investigations, the small patch at the right temporal region is 

more focused in the result obtained from CSICA.

CSICA
SICA

500 600300 
Training steps

400100 200

Figure 6.5. Comparison of algorithm convergence for SICA and 
CSICA.

Table 6.1 gives the maximum correlation coefficients between the 

column vectors of the mixing matrix and the EEGs, which were ob­

tained by averaging five trials for each algorithm. It can be seen that 

the results from CSICA provide a higher correlation between the seizure 

signal and the corresponding column vectors of W -1 than that the re­

sults from SICA.
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F igu re  6.6. The BOLD obtained from separation of fMRI data by 
using (a) SICA and (b) the proposed CSICA, which incorporates the 
EEG signals as the constraint into the update equation.
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Table 6.1. The maximum correlation coefficient between the EEG and the 
column vectors of mixing matrix.

SICA CSICA
0.181 0.195

6.5 Conclusions

In this chapter, various techniques for fMRI analysis have been re­

viewed and the established techniques such as GLM and SICA have 

been discussed in terms of their mathematical frameworks. More impor­

tantly, for the first time, a novel constrained spatial ICA algorithm has 

been proposed which incorporates the simultaneously recorded seizure 

EEG into the fMRI separation process. The experimental results have 

shown that the BOLD region, as the result of seizure onset, has been 

detected using the proposed constrained SICA. This algorithm outper­

forms the existing unconstrained ICA algorithm in terms of convergence 

and closeness between the component time course and the seizure EEG 

signals.

The relationship between fMRI and EEG has indeed been a chal­

lenging problem to date, therefore in this study, this relationship was 

simply chosen by closeness between time course of fMRI component and 

processed EEG signal. Further improvements to the proposed method 

can be achieved if a better mathematical modelling of the relationship 

between EEG and fMRI can be developed. Another limitation of the 

proposed method is tha t the EEG signal used in this work was the scalp 

EEG, which is the signal tha t is mixed with noise and artifacts, and 

is therefore not a perfect choice for seizure reference. This may be the 

reason why the obtained results for the correlation measurement are 

not sufficiently significant. Further investigations can be carried out
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by applying a proper ICA algorithm to extract the seizure component. 

These can be an agenda for future research in this area. Nevertheless, 

the results presented here are still very promising, and have shown a 

new direction for fusion of fMRI and EEG. The idea can be further 

exploited in both separation and localization of seizure signals in joint 

EEG-fMRI signal processing.



Chapter 7

CONCLUSION

7.1 Discussion 

Perspective of Applications

The results presented in this work have shown a very promising per­

spective for seizure prediction based upon the non-invasive approach. 

Although BSS has been of theoretical interest in seizure signal sep­

aration [52]- [55] [63], very few studies [42] have attempted BSS for 

separation of EEGs for seizure prediction, because there are still many 

questions remaining in the application of BSS to brain signal separa­

tion. Apart from the limitation of ICA itself, the complexity of brain 

functions sometimes may make the results obtained from ICA difficult 

to be interpreted physiologically, which may lead to doubts about the 

accuracy of the estimated sources.

The work presented in this thesis has shown that as a consequence 

of applying a well developed separation algorithm, the predictability 

of seizure from the scalp EEG can be verified. The proposed CTICA 

algorithm has demonstrated a better performance compared to other 

ICA methods. First, the TIC A model relaxes the assumption of in­

dependence and therefore is more suitable for brain signal separation. 

Second, CTICA introduces an averaged and band-limited reference sig­

134



Section  7 .1 . D iscussion 135

nal, which further constrains the TICA model based on the spatial and 

frequency domain properties of the seizure signal. The reference sig­

nal can be constructed based on long time recorded EEGs, which can 

continuously capture the dynamic changes within the epileptic brain. 

Third, by imposing the constraint, the source closest to the reference 

can be obtained and the dynamic changes of the source can be exploited 

in the prediction. The presented results have suggested a great poten­

tial in applying the CTICA to real application of seizure prediction.

Fusion of EEG and fMRI is a relatively new topic in research field. 

There are very limited studies [121] which have attempted ICA to the 

combined EEG and fMRI. The results presented in this work have pro­

vided a stepping stone in the forefront of this new field. For the first 

time, the temporal information from EEG has been incorporated into 

the spatial ICA model for fMRI analysis. This provides a new technique 

in which the information from EEG and fMRI can be fused through a 

mathematical model. Not only this, the presented work also has es­

tablished a new method for mapping of the spontaneous brain activity, 

which is the problem th a t can not be solved by using the popular ap­

proach of general linear model (GLM). The overall results may have 

more meaningful impact on the methodology development for the hu­

man brain function mapping in neuroscience.

Limitations and Future Work

First, the ICA model has its own limitations. Although the ambiguity 

of scaling can be overcome by data preprocessing or imposing some con­

straints on the sources and unmixing matrix, the evaluation of the exact 

number of sources remains an open question in all applications of ICA,
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even though some methods have been suggested in the literature [8]

- [16]. In the presented work, the number of sources was assumed to be 

equal or less than the number of sensors. The case when there are more 

sources than sensors, is of theoretical and practical interest. Further 

studies on this subject may help to improve the proposed methods.

Second, the TICA model has some limitations. Based on this model, 

the nearby sources can be grouped together in the output. However, 

the results have shown tha t it can also group the artifact with the 

desired source if they are geometrically close to each other and active 

at the same time. This is one reason tha t when TICA is applied to the 

real EEG data, the effect of grouping nearby sources might not be very 

ideal. The strategy to overcome this problem can be by developing a 

proper neighbourhood function based on the statistical properties of the 

desired source, by which the artifacts and ideal source can be clustered 

in the different groups even they are close to each other.

Third, much more work needs to be done in fusion of EEG and fMRI. 

Further exploration of the relation between EEG and fMRI, and devel­

oping more complex probabilistic models especially if larger data sets 

are available, may provide more solid foundation for combination for 

these two modalities. Further study may provide an engineering ground 

to fully exploit and illustrate the functional, anatomical, pathological, 

and physiological characteristics of the human brain.

In addition to these limitations, it is also worthwhile to apply the 

CTICA to more real epileptic EEG data sets, therefore the robustness 

of the algorithm can be further investigated.
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7.2 Conclusions

In this thesis, the predictability of epileptic seizure based on the scalp 

EEGs has been investigated by applying BSS techniques and nonlinear 

analysis method. The proposed CTICA algorithm not only relaxed 

the assumption of independency of the sources, but also constrained 

the TICA model based on the spatial and frequency domain properties 

of the seizure signal by using an averaged and band-limited reference 

signal. The results have demonstrated tha t CTICA achieved a better 

separation performance for seizure EEGs than other ICA methods. The 

results based on the data from three epileptic patients have shown that 

the chaos measurement (using Lyapunov exponent) after application of 

the CTICA has similar trend as tha t estimated from the intracranial 

EEGs. Fusion of EEG and fMRI has also been studied. By applying 

a blind source extraction (BSE) algorithm, the effect of fMRI scanner 

artifacts are reduced effectively from simultaneously recorded EEGs. 

By introducing the EEG as a temporal constraint into the spatial ICA, 

the seizure BOLD has been detected effectively. The overall results 

from the present work have demonstrated a very promising technique 

for seizure prediction using combined EEG and fMRI analysis.



APPENDIX: 

EMBEDDING-SPACE 

DECOMPOSITION

Roberts et al. [51] proposed a method of embedding-space decompo­

sition to measure the signal’s complexity. In their study, this method 

was applied to track the changes of complexity in multichannel EEG 

time series. This method has been successfully applied to identification 

of the seizure components which are separated from ICA by James [53] 

and Paul [54]. Because epileptic seizure presents the nonlinear dynamic 

changes prior to seizure onset, one can expect to see the complexity 

change as a seizure signal becomes more apparent.

As for all nonlinear analysis methods, the EEG time series are firstly 

reconstructed based on Taken’s delay-embedding theorem [23]. Given 

an EEG data segment x(t) with the number of time points N,  then at 

time the vector x* in the phase space can be constructed by:

Xi =  [x(ti),x(ti +  r) , ...jx(ti 4- {p — 1)t)]t  (8.2.1)

where the value t  is the selected time lag between the elements of each 

vector in the phase space, p is the dimension of the embedding phase

138
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space, and U G [1, iV — (p — l)r]. According to Takens’ Theorem, the 

embedding dimension p has to be at least equal to (2d +  1), where d 

is the attractor dimension. In Roberts’ method, p was chosen large 

enough in order to capture as much information as possible. According 

to the literature, p varies from 20 to 90 in different experiments. In 

this thesis work, the parameters are chosen based on the experiment 

in [53], r  = 1 and p = 90.

Secondly, subspace decomposition of the reconstructed matrix is 

performed by using singular value decomposition (SVD).

X  = U S V T (8.2.2)

where X is an N  x p embedding matrix, U and V are orthogonal. S is a 

diagonal matrix with elements Su =  cq, where Oi is the singular values 

and &i >  0. S defines the singular value spectrum, which describes 

the signal and noise structure in the observed data. Therefore, for a 

number of consecutive data  segment, the relative complexity can be 

reflected in the changes of singular value spectrum, which the change 

is measured by means of entropy. Normalising the singular values such 

that

<T = <7j/ X ^  (8-2'3)
i

The entropy is defined as

p
H  = — alogcr (8.2.4)

i=1

Choosing a logarithmic base of 2, the complexity, given the entropy
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measure, is defined as

f l  =  2H (8.2.5)

In this work, the param eters used for measuring the complexity were 

decided based on the results presented in [53] and [54]. The parameters 

include: embedding dimension p  =  90, lag r  =  1, length of segment to 

reconstruct an em bedding m atrix  was chosen as 290, and an embedding 

matrix was reconstructed every 100ms.

A simple example showing this m ethod is given in Fig. 8.1, which 

shows one generated signal and the complexity measured by method 

of embedding-space decomposition. It is seen th a t the complexity 

increases when the signal becomes more irregular. For the epileptic 

seizure analysis, the complexity is expecting to drop due to the seizure 

presents the transition  from chaos to order when brain state changes 

from preictal to ictal stage.
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F igu re  8.1. M easure of the complexity of the generated signal by 
embedding-space decomposition.
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