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Summary

SUMMARY

This thesis uses industry 3D seismic to investigate the nature and distribution of 
strain in a deep water fold and thrust belt and describes the complex fault plane and 
stratal geometries that result from fold and thrust linkage. The principal aim is to gain 
a better understanding of the structural architecture and evolution of toe-of-slope 
compressional settings. To this end, the project represents a logical series of 
arguments involving the study of individual structures and fold and fault pairs, to 
considering a fold belt as a whole.

The outer thrust belt of the Niger Delta is observed to comprise of synthetic and 
antithetic faults that interact and link along strike. A preliminary geometric 
classification is proposed for antithetic thrust fault linkage zones based on 
observations of fault surface and stratal geometries. The relationship between fault 
interaction and fold characteristics is also investigated. The connectivity of 
stratigraphic horizons across fault surfaces and through transfer zones is shown to 
vaiy with the type of linkage and with depth. Conclusions drawn on the along strike 
variability of fault network density, orientation and vertical extent are shown to have 
significant application to modelling of fluid flow.

The concept (^num erous and geometrically distinct thrust fault linkages 
forming through-going folds is developed through the investigation of a single 
isolated fold that comprises a number of linking forethrusts and backthrusts. This 
case study, involving the quantification of the development of this relatively simple 
structure, allows conclusions to be drawn on fold growth that are later applied to a 
more complex and closely spaced fold belt. The internal structural geometry of faults 
and stratigraphic horizons within the single fold are described though detailed three- 
dimensional mapping. The analysis of the distribution of fault and fold strain, both on 
individual thrusts within the fold and for the structure as a whole, suggest efficient 
displacement transfer between numerous linking faults that accommodated shortening 
as a coherent unit. In addition to this, variations in the magnitude of fault heave are 
compensated by complementary trends in fold strain. A study of syn-kinematic units 
demonstrates that the single structural culmination present today was initially made 
up of a number of folds with local structural highs. Major thrust surfaces within the 
fold are also interpreted to be the product of the along strike linkage and 
amalgamation of initially distinct faults.

These observations made on the isolated fold are applied to a complex, closely 
spaced fold belt. The relative timing of individual faults and folds agree with 
established models of a progressive foreland propagating sequence of thrust faults but 
also display out-of-sequence events. Findings demonstrate a significant period of 
synchronous development between all structures in the fold belt. Aggregation of fault 
and fold shortening profiles indicate that displacement transfer occurs along strike and 
also in a dip-parallel direction between within the fold belt. Bulk shortening is thus 
conserved along strike within the syn-kinematic units and low lateral heave gradients 
suggest efficient displacement transfer between all constituent structures. The 
evidence presented here shows that all elements of a fold belt can be kinematically 
linked during growth. Irregularities in the distribution of deformation in pre-kinematic 
units corroborate findings that the folds are the product of along strike linkage of 
discrete segments, in a similar manner to that documented in extensional systems.
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Chapter I Introduction

CHAPTER 1 

1 INTRODUCTION

1.1 Rationale

Deep water fold and thrust belts have become the focus o f ever-increasing 

geological investigation following the progressive move of hydrocarbon exploration 

into deeper water on continental margins during the 1990s. Prior to this, early studies 

of thrust systems were based almost exclusively on outcropping geology in onshore 

mountain belts, whose orogenic mechanism were driven ultimately by plate 

convergence. Deep water fold and thrust belts can also be related to plate convergence, 

as in the case of accretionary prisms such as the Sinu-San Jacinto fold belt o f northern 

Colombia (e.g. Toto and Kellogg, 1992), or can occur by gravitational collapse on 

passive-margins, such as the fold belts offshore Angola (e.g. Morley and Guerin, 1996) 

or the Gulf of Mexico (e.g. Wu and Bally, 2000). Compressional structures can also 

form from a combination of gravity and orogenic driving mechanisms, such as in the 

north and east Borneo margins (e.g. Ingram et al., 2004). The development and 

proliferation of three-dimensional (3D) seismic surveys acquired in deep water 

settings has therefore resulted in high resolution imaging of a wide range of 

previously unknown, or at least poorly understood, thrust systems. Three-dimensional 

seismic data provide fresh insights into fault and fold growth in compressional 

settings and impacts our understanding o f toe-thrust systems and of thrust systems in 

general.

Shortening of the post rift sediments in passive margins may be accommodated by 

thrust faults and folds, the formation of a deep water fold belt, and by the movement, 

extrusion or deformation of mobile substrate such as shale or salt (Rowan et al., 2004). 

Numerous studies have shown fold belts to be the product of the propagation and 

linkage of a number of initially discrete structures (e.g. Liu and Dixon, 1991; Rowan, 

1997), however the mechanisms by which thrusts and folds initiate, propagate and 

link remain poorly defined (e.g. Davis et al., 2005). The relationship between thrust 

faults and associated folds has been extensively researched in the past two decades 

and distinct classes of structure have been described. These are widely based on 

orogenic belts exposed on land and more recently from fold and thrust belts
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associated with gravity tectonic deformation of continental margins. The description 

of fault propagation folds (Williams and Chapman, 1983; Suppe, 1985; Suppe and 

Medwedeff, 1990), break-thrust folds (Jamison, 1987; Mitchell and Woodward, 1988; 

Butler, 1992; Woodward, 1992), fault-bend-folds (Rich, 1934; Boyer and Elliot, 1982; 

Suppe, 1983) and detachment folds at the lateral terminations o f faults (e.g. Jamison, 

1987) have mainly been based on cross-sectional geometry, either derived from 

exposed sections or from 2D seismic profiles. Three-dimensional models of thrust 

fault development are fewer, although some authors have built upon plane-strain 

models of fault-bend and fault propagation folds by modelling displacement 

variations alongstrike (e.g. Wilkerson et al., 1991; Rowan, 1997). Comparatively 

more research has been carried out into the development of extensional systems. 

Numerous studies on normal faults have provided insights into fault growth (e.g. 

Watterson, 1986; Barnett et al., 1987; Cartwright et al., 1995), along strike and down

dip displacement variations (e.g. Peacock and Sanderson, 1991), fault scaling laws 

(e.g. Dawers and Anders, 1995), and classifications of fault linkage geometries (e.g. 

Gawthorpe and Hurst, 1993). This level of insight is lacking for compressional 

settings, partly due to the lack of 3D data in the past.

This PhD thesis uses large commercial 3D seismic surveys to describe the 

geometries of fault surfaces, thrust linkages and associated fold forms in part of the 

outer thrust belt o f the west Niger Delta. Quantification of deformation, through the 

study of fault displacement and bulk shortening variations and distributions, provides 

evidence for the kinematic relationship between constituent elements of the fold belt. 

The deep-water Niger Delta is ideal for such an analysis as the structures are 

extremely well imaged at deep levels in seismic reflection profiles and include syn- 

kinematic growth strata that record fold kinematics (Corredor et al., 2005). Growth 

strata preserved on fold limbs can be used to distinguish between various kinematic 

models (e.g. Rowan, 1997) and in this thesis are analysed using innovative techniques 

to determine the growth history o f faults and folds. The application here o f 

methodologies developed in the study of normal faults helps to address the imbalance 

in understanding of fault growth between extensional and compressional regimes.

This first chapter of the thesis commences by introducing the principal aims of the 

PhD research project. A brief introduction to 3D seismic data and interpretation 

follows, and a summary o f the current understanding of the mechanics and kinematics 

of fault and fold growth is also included.
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1.2 Aims of study

The research presented in this thesis focuses on the geometry and development of 

faults and folds in the toe-of-slope compressional domain o f a passive margin. This 

includes a high resolution analysis of the distribution of strain in a deep water fold 

belt. The aims of the study are outlined below:

• Describe the various three-dimensional geometries of the lateral tip regions of 

thrust fault surfaces, including within the fault linkage and transfer zones, and 

outline the along strike structural variability of a deep water fold and thrust 

belt.

•  Assess the along strike response of folding to variations in underlying fault 

plane geometry.

• Investigate the degree of down-dip stratal connectivity through a fold and 

thrust belt.

•  Quantify the spatial variability and distribution of fault heave and bulk 

shortening for i) a singly faulted fold; ii) a fold comprising numerous, linking 

faults; and iii) a fold belt as a whole.

•  Ascertain if the magnitude o f  continuous strain (such as folding) responds to

variations in the amount o f discontinuous strain (i.e. faulting) along strike.

• Analyse the geometry and spatial extent of syn-kinematic strata around a 

complex fold to provide a case study of the growth history of a propagating 

fold in a deep water fold belt.

•  Determine the sequence o f fault and fold initiation and propagation within a

fold belt and assess the degree of overlap in the duration o f growth of

individual structures.

• Describe the along strike geometric complexities surrounding the hard-linkage 

o f thrust faults of opposing dip in a closely spaced fault array.

• Document the nature and extent o f displacement transfer between i) laterally

linking faults and folds and ii) constituent structures of a fold belt.

• Investigate the differences in the distribution of displacement and shortening 

within pre- and syn-kinematic units.
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1.3 Methodology

The analysis o f the geometry and development o f the fold belt featured in this 

study relies on the utilisation and interpretation o f three-dimensional seismic 

reflection data. This section provides a basic introduction to seismic data, 

interpretation techniques, visualisation tools and the limitations and pitfalls of such 

methods.

1.3.1 3D seismic data and interpretation

The introduction and proliferation o f three-dimensional (3D) seismic acquisition 

in the 1980s and 1990s dramatically improved upon the limited spatial resolution o f 

previous 2D seismic surveys (Cartwright and Huuse, 2005). Line spacing in a 2D 

seismic survey is commonly around 1 to 10 km whereas a typical 3D seismic survey 

is acquired with a line spacing of 25 m or less, resulting in greater subsurface 

sampling density and enhanced lateral resolution (Hart, 1999; Cartwright and Huuse, 

2005). The ability to image features in detail in all directions allows complex 

geological structures to be accurately mapped in three dimensions and has thus 

impacted the petroleum industry by significantly enhancing drilling success. In this 

study the enhanced imaging potential of seismic data has been utilised to describe, 

classify and quantify thrust faults and folds in an inherently inaccessible region of a 

deep water fold and thrust belt. The opportunity to view and record the characteristics 

of thrust faults in such detail with 3D seismic data provides new insights into the 

nature and development of these settings.

Seismic waves are produced by generating an acoustic pulse from a controlled 

source, commonly an airgun in marine acquisition, and propagate through the 

subsurface (e.g. Kearey et al., 2002). Waves are refracted and reflected at geological 

boundaries that represent a change in acoustic impedance within the subsurface. 

Hydrophones (marine) and geophones (terrestrial) detect the energy o f returning 

waves and hence measure the arrival times of the waves at various distances and 

positions relative to the source (Kearey et al., 2002). Processing and migration of this 

data spatially distribute all reflections points correctly, can eliminate unwanted and 

erroneous events and increases the quality and resolution o f the data. The location and 

geometry o f a geological feature is thus calculated from the travel times of seismic
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Figure 1.1: Seismic data polarity and phase, (a) Seismic time section from a Niger Delta survey to 
show the characteristics of the seabed reflection (displayed as ‘variable area’). Note that the seabed 
produces a negative wavelet (trough), (b) Same section as a ‘variable intensity’ display, (c) Explanation 
of European polarity convention using a zero phase wavelet. Taken from Simm and White (2002). +RC 
indicates an increase in acoustic impedance downwards, (d) Nomenclature of the seismic waveform. 
Positive amplitudes are displayed in red, negative amplitudes in black, as in the seismic section in (b). 
Taken from Heinio (2007).
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wavelets and hence the vertical scaling of the data is presented in time (or two-way- 

travel time, TWT). Seismic data can be converted from time to depth (on the vertical 

scale) during a process o f depth conversion using a model of the seismic velocity of 

the lithological units. The pitfalls and limitations of using time sections are discussed 

in a later section.

Seismic reflection surveys record the waveforms reflected from points of 

abrupt acoustic impedance change in the subsurface. Acoustic impedance (Z) is 

determined by the density (p) and the seismic velocity (v) o f the lithology ( Z = pv ) 

(Kearey et al., 2002). The seismic velocity of a given lithological unit is affected by 

numerous factors including the composition, texture, porosity, fluid content, elastic 

modulus and density of the rocks (Kearey et al., 2002). Seismic data therefore is 

reliant on changes in the acoustic properties of subsurface geology and hence 

lithological boundaries that are not characterised by such a change are not visible on 

seismic data (Brown, 1999). A change in acoustic impedance (e.g. from water to 

sediment at the seafloor, Fig. 1.1) is recorded as a wavelet on a vertical trace, the 

amplitude of which is measured normal to the propagation direction (Fig. 1 .Id). A 

positive amplitude (or ‘peak’) represents a decrease in acoustic impedance with depth, 

whereas a negative amplitude (or ‘trough’) represents an increase in impedance with 

depth. This is known as ‘normal polarity’ by European convention (e.g. Simm and 

White, 2002). Data used in this thesis have normal polarity and hence the seabed 

reflection (i.e. an increase in acoustic impedance) is displayed as a trough (Fig. 1.1c). 

Finally, another characteristic of a wavelet is referred to as the ‘phase’ o f a wavelet 

and involves the shape of the waveform. A seismic survey can be of maximum, 

minimum or zero-phase. Most interpreters in recent times prefer the latter as this 

means a wavelet is symmetrical with the maximum amplitude on the central lobe and 

also because the maximum energy is aligned with the geological interface that caused 

the reflection event (Brown, 1999). Data features in this thesis are all zero phase 

(Figure. 1.1).

A 3D seismic survey comprises a volume of data that can be manipulated in a 

number of ways. Only the methods relevant to this study are described here. The most 

common and simplest method is by studying one of three orthogonal slices through the 

‘data-cube’; ‘inlines’ and ‘crosslines’ are vertical sections aligned with the direction 

of acquisition, whereas ‘time-slices’ are horizontal planes at various depths within the
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Figure 1.2: Three-dimensional seismic reflection data volumes, (a) a Gulf o f Mexico 
salt dome with associated rim syncline showing three primary orthogonal slices; vertical 
inline and crossline, and horizontal timeslice. Taken from Brown (1999). (b) part of the 
Niger Delta outer fold and thrust belt. Top surface represents an interpreted horizon.
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Figure 1.3: A demonstration of the use of seismic attributes in seismic interpretation, (a) Dip 
map of the seabed in the Niger Delta. Shades of grey correspond to the magnitude of dip of the 
seabed and highlight the morphology of present day channels. Field of view approximately 30 
km. (b) Three-dimensional view of a channel crossing a faulted fold. Seismic amplitudes 
extracted from a time window (relative to stratigraphy) are used to colour the horizon (grey). The 
true location of high amplitude channel deposits are given by ‘voxels’ that comprises areas of 
similar amplitude. Field of view approximately 15 km. (c) Map of a seismic amplitude extraction 
showing sinuous channel form.

1-8



Chapter 1 Introduction

dataset (Fig. 1.2a). Arbitrary planes are also used and can be positioned at any 

orientation or angle and can be made up of a number of panels that follow an indirect 

path such as a meandering channel system. The data can also be viewed in three- 

dimensional space where the volume of data can be cut such that seismic attributes 

can be displayed on non-planar, iregular surfaces that relate to interpretations of 

features such as deformed stratigraphic horizons or faults (Fig. 1.2b).

Interpretation of stratigraphic horizons in seismic data is done by following 

seismic reflections through a data volume, typically t> produce a structural map or 

cross-section. Certain attributes o f the seismic data can also be used to aid 

interpretation of stratigraphic and structural features and are displayed in this study 

either as a group of points (i.e. ‘voxels’) or with respect to an associated stratigraphic 

horizon (Fig. 1.3b). A ‘seismic attribute’ is simply a measurement derived from 

seismic data and can be in the form of time, frequency, dip, azimuth or amplitude 

values, to name a few. In this study two attributes are utilised; magnitude of dip, and 

amplitude (Fig. 1.3c). The magnitude of dip is a time-derived horizon attribute and is 

calculated by comparing values of time on an interpreted surface with neighbouring 

values to produce a local plane that b assigned a true value o f dip (Brown, 1999). 

These values are plotted and coloured on a map (pig. 1.3a) and can reveal subtle 

structural and topographic features. Reflection amplitude is measured at the crest of 

an identified reflection (Brown, 1999) and is commonly displayed relative to a plane, 

horizon or time window (Fig. 1.3c).

1.3.2 Resolution

It is important to understand the limits of resolution of a seismic survey when 

constructing an interpretation. In defining the spatial extent of a fault surface, for 

instance, it must be understood that an interpreted point of zero displacement on a 

fault surface only represents the limit of detectable offset of a horizon on a seismic 

line, which may vary from survey to survey. The resolution of seismic data can be 

considered with respect to the minimum resolvable distance along horizontal and 

vertical lines. The resolving power of seismic data is always measured with respect to 

the seismic wavelength (A,), which is given by ( X = v I f ) the quotient of velocity (v) 

and frequency (f) (Brown, 1999). As rocks commonly get older and more compacted 

with depth, so the velocity of seismic waves increases. The dominant frequency of
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Figure 1.4: Limits of vertical and horizontal resolution of seismic reflection data, (a) The 
horizontal sampling of a seismic reflection survey is half the receiver spacing, (b) Energy is 
returned from all points of a reflector. The part of the reflector from which energy is returned 
within half a wavelength of the initial reflected arrival is known as the Fresnel zone, (a) and (b) 
taken from Kearey et al. (2002). The width of the Fresnel zone represents the absolute limit of 
horizontal resolution (c) The effect of migration on the size and shape of the Fresnel zone. The 
focussing of energy during migration improves horizontal resolution dramatically, (d) Defining the 
vertical limit of separability of seismic reflections. Resolution from the top and bottom of a bed is 
dependent on the interaction of closely spaced wavelets, (c) and (d) are taken from Brown (1999).
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seismic data decreases with depth as higher frequencies are more quickly attenuated. 

As a result the wavelength increases significantly with depth and results in a reduction 

in the resolution of the data (e.g. Brown, 1999).

Vertical resolution is a measure of the ability to identify and distinguish between 

closely spaced reflectors (Kearey et al., 2002). Brown (1999) states that “the limit of 

separability is equal to one-quarter of a wavelength (X./4) and is simply the bed 

thickness corresponding to the closest separation of two wavelengths of a given 

bandwidth” (Fig. 1.4d). In seismic surveys featured in this thesis wavelengths vary 

from approximately 30 to 80 m within the studied time interval resulting in a 

reduction in vertical resolution from c. 7.5 m at the seabed to c. 20 m at depth. When 

layer thickness is equal to one-quarter the wavelength the amplitude o f reflection can 

be boosted due to constructive interference from wavelets associated with the top and 

the base of the bed (Fig. 1.4d). This is known as ‘tuning’ (e.g. Brown, 1999). The top 

and base of a thinning unit is therefore resolvable up to the point of tuning thickness 

(Fig. 1.4d). As beds continue to thin past this point they are increasingly attenuated 

until the limit of visibility is reached and the reflection is no longer visfole above the 

background noise (Brown, 1999). Thus it is possible to detect beds with a thickness of 

as little as A./30, but it is not possible to determine the value of thickness (Sheriff and 

Geldart, 1995).

The ultimate limit of lateral resolution in modem 3D seismic data is commonly 

considered to be equivalent to the bin spacing (i.e. -12.5 to 25 m) of the data, 

although accurate calculations incorporate the dominant wavelength and hence 

resolution can still vary with depth (Cartwright and Huuse, 2005). There are two main 

controls on the horizontal resolution of a seismic reflection survey; the first is 

determined by the spacing o f the receivers, and the second is intrinsic to the process 

o f reflection of seismic energy (Kearey et al., 2002). It can be seen that for the simple 

case of a flat lying reflector (Fig. 1.4a) the horizontal sampling is equal to half the 

receiver spacing. The closer the spacing of receivers the more reliably reflections 

from a single interface can be correlated from trace to trace in areas o f complex 

geology (Kearey et al., 2002). The latter control on horizontal resolution involves the 

way in which seismic energy is reflected back from the subsurface. The path of a 

seismic wave from source to receiver is commonly visualised as a single line ray path, 

however a more accurate description of a reflecting surface is an infinite number of
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point scatters that each contribute to the received signal. Kealey et al (2002) state that 

“energy that is returned to a detector within half a wavelength of the initial reflected 

arrival interferes constructively to build up the reflected signal, and the part of the 

interface from which this energy is returned is called the first Fresnel Zone” (Fig. 1.4b 

and c). The Fresnel Zone is a function of the velocity and frequency of a wave and the 

two-way-time to the reflector (Sheriff and Geldart, 1995; Brown, 1999). Migration is 

the principal technique for improving horizontal resolution as it repositions out-of

place reflectors due to dip and reduces the size of the Fresnel Zone (Fig. 1.4c) by 

focussing energy (Brown, 1999). In theory the radius of the Fresnel Zone can be 

reduced to 774, but in practice it is commonly X/2 (Brown, 1999).

1.3.3 Fault diagnostics and measurements

One of the most striking improvements in seismic interpretation to come from the 

move from 2D to the use o f 3D seismic data s increased detail in fault mapping 

(Brown, 1999). In seismic data faults are commonly detected by the alignment of 

terminations of reflectors on both vertical (Fig. 1.5a) and horizontal planes (Fig. 1.5c); 

however it is also possible for fault ramps to be defined by prominent fault plane 

reflections (Fig. 1.5b). Other diagnostic features include horizon offsets, bed thickness 

variations (growth packages), dip changes and in some cases, seismic diffraction 

curves.

Measurements o f the movement along a fault plane, or the amount of 

displacement on a fault, are made with reference to markers in the wallrocks. For 

faults where the hangingwall moves only vertically (that is directly up or down the 

fault plane) the term ‘dip-slip fault’ is applied. A fault with pure horizontal motion is 

termed a ‘strike-slip fault’. Most faults have a component o f both however (e.g. 

Burbank and Anderson, 2001). Displacement associated with a fault can be regarded 

as consisting of the heterogeneous or variable strain that occurs within the rock 

volume closely surrounding a fault (Barnett et al., 1987). Barnett et al (1987) states 

that “displacement on the discontinuity represented by a fault surface ranges from a 

maximum at some point on the fault surface to zero at the edge, or tip line” (Fig. 1.6a). 

Additional displacement can be distributed within the rock volume surrounding the 

fault in the form of ductile or continuous strain (Fig. 1.6b) (as opposed to the 

discontinuous deformation on the fault) or on other fault splays (Barnett et al., 1987).
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Figure 1.5: Fault characteristics on seismic reflection data in the deep water Niger Delta.
(a) Vertical seismic section (dip-parallel) through a faulted sequence. The terminations of reflectors 
are aligned systematically, (b) Another sectiop showing a prominent fault plane reflection, (c) 
Horizontal timeslice through a faulted sequence. Terminations of reflectors are once again aligned 
systematically revealing the position and extent of thrust faults.
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Figure 1.6: Fault measurements and display, (a) Schematic displacement contour diagram for a 
simple normal fault oriented normal to the fault surface. Contours represent constant values of fault 
displacement on a fault plane, (b) Cross-section through the simple fault, (a) and (b) are taken from 
Barnett et al. (1987). (c) Schematic section of a thrust fault to show the principal displacement 
measurements, a: fault throw, b: fault heave, c: along-fault displacement. Jw: footwall. hw : 
hangingwall. vl,v2,v3: varying interval velocities of stratigraphic units. Values of a and c will 
change during depth conversion due to differing velocity profiles above the hangingwall and 
footwall cutoffs. Imaging of the Jw cutoff is affected by v i, whereas the position of the hw  cutoff is 
not. (d) Schematic three-dimension diagram of a fold cut by a thrust fault along some of its length. 
Shows how displacement variations are plotted on vertical displacement-distance plots oriented 
parallel with fault strike.
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The principal measurements of the discontinuous displacement on a fault plane are 

heave, throw and along-fault displacement (Fig. 1.6c). Variations in these values 

along a fault are displayed in numerous ways however in this study we use 

displacement versus distance (d-x) graphs (Fig. 1.6d) and strike projected contour 

plots (Fig. 1.6a). The majority of fault measurements made in seismic data are 

affected by the vertical scale of two-way-travel time (TWT) on seismic sections. 

Values of throw, for instance, obtained from seismic data will be given in seconds 

TWT as throw is the vertical component of displacement. The absolute and relative 

positions of a pair o f markers in the hangingwall and footwall o f a fault will change 

vertically during depth conversion (Fig. 1.6c). The exception is fault heave which is 

the purely horizontal component of displacement and is thus unaffected by the 

majority of depth converting techniques. Small values of displacement are largely 

unaffected by time to depth conversion as travel times and ray paths of seismic waves 

to each marker are much the same. Depth conversion can be expensive and time 

consuming and hence fiult heave is used extensively in this study to allow higher 

resolution of fault movement variations to be determined.

1.3.4 Channel matching

Seismic interpretation is employed in this study to map regional stratigraphic 

horizons throughout the study area. All structural observation and measurements of 

deformation relating to faulting and folding are made and presented with respect to 

these interpreted horizons. The development of a rigorous stratigraphic framework is 

therefore imperative in achieving the aims of this thesis. The most reliable way of 

correlating horizons across faults with large displacements is to interpret a horizon 

along a continuous path around the tip of a fault. This relies on fault and fold tips 

being located within a survey area. Areas such as a deep water fold and thrust belt 

commonly comprise structures of greater lateral extent than data survey width. The 

following is a brief outline of an innovative method of ‘channel matching’ for 

interpreting seismic horizons across large displacement faults and in other 

geologically complex areas.

This method is designed to complement other seismic interpretation techniques 

and to validate existing stratigraphic interpretations. In many settings, such as deep 

water fold and thrust belts, sub-marine channel systems are important
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Figure 1.7: Simple method of channel matching across faults, (a) Assumption: Sinuous channel 
deposits in hangingwall strata that intersect a fault should also be present in footwall sequence, (b) A 
stratigraphic framework can be tested and validated across a through-going fault surface, (c) Channels 
in the hangingwall can be compared to channel forms located relative to arbitrary stratigraphic horizons 
in the footwall. (d) A successful channel match across two faults imaged using seismic amplitude 
attribute extractions. Warm colours = high amplitudes. Dark greys = low amplitudes, (e) Seismic 
corner-section through the matched channel deposits, (f) Unsuccessful channel match based on initial 
stratigraphic frame work. Panels are seismic amplitude attribute maps, (g) Successful channel matches 
by searching for corresponding channel deposits pbove and below initial stratigraphic interpretation.
The interpretation must then by altered accordingly. Dark greys = high Amp. Light greys = Low Amp.
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sedimentary processes (e.g. Davies, 2003; Deptuck et al., 2003). Channel deposits can 

be visible on seismic data due to a difference in lithology, porosity or pore fluid in 

channelised sands compared to surrounding sediments (e.g. Kastens and Shor, 1985). 

If a channel flowing on the seabed crosses a propagating fault surface, or if a fault 

cuts a channel located within a pre-kinematic sequence, then seismic attributes 

relating to channels may be observable in hangingwall and footwall rocks (Fig. 1.7a). 

As that fault develops, channel deposits located within the hangingwall will be 

increasingly offset from those in the footwall. Channel deposits can be imaged using 

amplitude extractions which are generated with respect to a given horizon. 

Stratigraphic frameworks therefore can be validated by the comparison of interpreted 

seismic horizons (Fig. 1.7b) with correlated sinuous, stacked channel forms in 

hangingwall and footwall strata (Fig. 1.7c). Figure 1.7d shows a correlated sinuous 

channel (imaged using amplitude extractions) crossing two antithetic thrust faults in 

the subsurface of the Niger Delta. The high amplitude reflections (HARs) of the 

channel deposits are visible on the seismic data (Fig. 1.7e). If HARs that relate to 

channel deposits are imaged on a hangingwall horizon, but not the footwall equivalent 

(Fig. 1.7f), this may suggest the stratigraphic correlation is incorrect Such mistakes 

can be corrected by searching for correlating channel deposits on horizons above and 

below the original (Fig. 1.7g), and adjusting stratigraphic horizons accordingly.

1.3.5 Artefacts and pitfalls

When working with seismic data, it is imperative to understand the limitations and 

pitfalls that are inherent with this type of data. Below is a brief description of 

those most pertinent to this study.

As discussed in a previous section, 3D seismic volumes commonly have a vertical 

scale in two-way-travel time (TWT). The ‘apparent’ thickness of a stratigraphic unit 

in TWT is therefore dependent on the time it took seismic energy to pass through it, 

i.e. the seismic velocity of that unit. The form of structural features can therefore be 

distorted from ‘true’ geometries due to vertical and horizontal heterogeneities in the 

velocity profile of the stratigraphy. It is therefore important to establish the 

significance of any change to structural geometries that may occur during time to 

depth conversion (see Brown, 1999). To illustrate this point a typical thrusted fold is 

depth converted and the resultant structural geometries analysed in Figure 1.8. Depth
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Figure 1.8: Depth conversion of a seismic time section using 2DMove™. (a) Seismic section 
through a thrust fault and hangingwall anticline with stratigraphic interpretation, (b )  Corresponding 
polygon cross-section. Coloured polygons are assigned defining values such as seismic velocity. 
Note an apparent footwall (fw) fold towards the base of the section, (c) Depth converted seismic 
depth section, (d ) Cross-section in depth showing the conversion of the apparent footwall fold into 
planar horizons. Note deeper units are significantly thickened during the conversion, (e) Cross- 
section at 1:1 scale.

seafloor

; Significant 
 ̂ thickness change

planar in depth- 
converted sectionIDepth sec tio n i

seafloor

1-18



Chapter 1 Introduction

conversion was performed using interval velocities from a nearby confidential 

exploration well. An increase in tie relative thickness of stratigraphic units is a 

common effect of depth conversion due to velocity, in general, increasing with depth. 

The form of hangingwall strata remains largely unchanged during depth conversion 

(Figs. 1.8b and d). The most significant structural change to the depth converted 

section is the transformation of an apparent footwall fold (Figs. 1.8a and b), located 

between 6 and 7 seconds TWT on time sections, into planar sub-horizontal reflectors 

(Figs. 1.8c and d). This is due to velocity pull-up (see Brown, 1999) caused by the 

seafloor expression of the overlying fold combined with the uplift o f high velocity 

rocks within hangingwall anticline. A depth section is useful as it can be displayed 

with no vertical exaggeration (i.e. at a scale of 1:1 in section) (Fig. 1.8e). Depth 

conversion was performed on representative sections through all structures featured in 

this thesis to validate and improve structural interpretations. Not all sections are 

presented. Changes to the form of folds and faults, such as that seen in Figure 1.8, are 

uncommon in the surveys featured in this study and time sections typically represent 

similar geometries to depth sections. Depth conversion of a complete dataset was not 

possible. Seismic time sections are therefore used to describe structural geometries 

throughout most of this thesis, with exceptional cases highlighted.

The change in footwall geometry described above was due to high velocity rocks 

being uplifted by faulting creating a fold at the seabed (Fig. 1.8). Velocity anomalies 

can also be caused sedimentary heterogeneities such as lateral variations in lithology 

or pore fluid. Anomalous low amplitudes within a gas accumulation for example, can 

result in ‘push-down’ (see Brown, 1999) of the seismic reflections below, creating an 

‘apparent’ syncline. Equally, high velocity rocks, such as in a sand-rich channel fill, 

may produce a velocity ‘pull-up’ effect creating an apparent anticline in sediments 

below.

Seismic reflection data relies on seismic waves being reflected at significant 

geological boundaries, however it is common for seismic energy to be reflected more 

than once from strong reflectors (e.g. Brown, 1999). This creates longer ray paths that 

result in the positioning of reflections in false locations and the generation of a 

multiple (e.g. Kearey et al., 2002). In modem 3D seismic data multiples are 

commonly removed during processing.
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1.4 Mechanics and kinematics of fault and fold growth

Over the last three decades numerous studies have focussed on the growth of 

faults in order to understand the processes governing the initiation, propagation and 

linkage of fault surfaces. Methods have included field based studies, numerical and 

analogue modelling and, more recently, three-dimensional seismic datasets. The 

majority of detailed quantified models into fault growth are derived from the study of 

normal faults and extensional systems. The behaviour and displacement distributions 

on contractional thrust fault remain poorly resolved and hence this study is pertinent 

in the investigation of fault and fold growth and development. The relationship 

between faults and folds has also been the subject o f much discussion in recent times 

and has impacted our understanding of the evolution of fold and thrust belts. This 

section provides a brief summary of published literature on fault analysis, thrust fault 

propagation relating to fold growth and sediment dispersal around growing folds.

1.4.1 Displacement analysis

The lateral extent o f faults varies dramatically from those found at ocean ridges 

that stretch many tens o f kilometres (e.g. Pollard and Aydin, 1984) to microstructures 

found in granite (e.g. Granier, 1985). Displacement analysis along faults can give an 

indication of fault-growth history and the effects of fault interaction (Peacock and 

Sanderson, 1991; Dawers and Anders, 1995; Manighetti et al., 2001). Global datasets 

of fault length (L) and maximum displacement (Dmax), measured primarily on normal 

faults, suggest that characteristics such as fault zone width, length and displacement 

may obey simple scaling relationships in the majority of fault systems (Scholz and 

Cowie, 1990; Gillespie et al., 1992; Schlische et al., 1996; Davis et al., 2005). The 

relationship between L and Qnax is commonly written as a power-law: Dmax = kLn , 

where k and n are constants. Davis et al (2005) note that studies into fault dimensions 

have led to fault growth models where faults begin as isolated cracks and grow in a 

self-similar manner until they interact with neighbouring structures in zones of 

overlap at which point lateral growth is retarded (Fig. 1.9) until linkage removes the 

slip deficit (e.g. Cartwright et al., 1995; Gupta and Scholz, 2000). Alternatively, 

models have been put forward involving the early establishment of fault length, a 

suggestion that deviates away from the trend defined by the slip distribution of 

earthquakes (Walsh et al., 2002). Along strike displacement profiles of theoretical
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Figure 1.9: Schematic block diagram showing one model of fault growth 
from Walsh et al. (2002).
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models describe elliptical (Pollard and Segall, 1987) or bell shaped (Cowie and 

Scholz, 1992) patterns with zero displacement at the tips and a maximum measured 

near the centre o f the crack (Davis et al., 2005). Data from real faults display 

significant variability away from these theoretical models in both profile shape and 

the location of maximum displacement (Dawers and Anders, 1995; Manighetti et al., 

2001; Davis et al., 2005). Cartwright et al (1995) suggest that much of this variability 

in the accumulation o f fault displacement may be due to mechanical interaction and 

linkage of fault segments (Fig. 1.10). As fault displacement profiles are partially 

controlled by the mechanism of fault-segment interaction it has been suggested that 

they also record the history of fault growth and delineate areas o f initial nucleation 

and linkage.

1.4.2 Fault growth by segment linkage

Simple models o f fault growth suggest two ways in which elongate faults may 

develop; by radial propagation and by segment linkage (Fig. 1.10). The conceptual 

framework of fault analysis is based on the characteristics of an individual blind 

normal fault (Fig. 1.6a) that grows by radial propagation with no migration o f the 

point of maximum displacement (Brown, 1999). During radial propagation, an 

individual fault lengthens and accumulates displacement through time and is typified 

by an elliptical fault tip line. Fault growth by segment linkage deviates from this 

pattern and involves periods of sudden fault length increase as faults link to produce a 

larger through-going fault. Numerous authors have investigated this latter mechanism 

where faults in the brittle upper crust form by the interaction and linkage of 

previously individual segments (Segall and Pollard, 1980; Granier, 1985; Ellis and 

Dunlap, 1988; Martel et al., 1988; Peacock and Sanderson, 1991; Anders and 

Schlische, 1994; Peacock and Sanderson, 1994; Trudgill and Cartwright, 1994; 

Cartwright et al., 1995) (Fig. 1.9). Such fault segments can be initially geometrically 

and kinematically isolated structures (e.g. Peacock and Sanderson, 1991; 1994; 

Cartwright et al., 1995), or they can be interrelated from inception (Fig. 1.11), as in 

the example of the bifurcation of a single fault at depth (e.g. Childs et al., 1995; 

Huggins et al., 1995; Walsh et al., 2003). In the isolated fault model, developing 

segments will propagate towards each other until mechanical interaction is possible, 

causing interference in the stress fields o f the faults. Retardation and arrest of
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Figure 1.11: Schematic illustrations of the two end-member models of formation of 
segmented fault arrays. Displacement-distance plots for the isolated fault model (b) show 
displacement deficits on aggregate profiles within the linkage zones. Displacement-distance 
plots of the coherent model (e) show that fault displacements sum to produce smooth aggregate 
profiles within the relay zones. Taken from Walsh et al. (2003).

1-24



Chapter 1 Introduction

propagating tips produces steeper displacement gradients on linking faults and results 

in a cumulative displacement minima within linkage zones (Peacock and Sanderson,

1991). In contrast, faults that have been linked throughout development should 

accumulate displacement as if a single structure (e.g. Walsh and Watterson, 1991). 

Walsh et al. (2003) suggested this can occur on the scale of large fault arrays that may 

act as a kinematically coherent system.

Kinematic interaction of two faults is based on complementary modification to 

displacement patterns and horizon geometries that indicate displacement transfer 

(Muraoka and Kamata, 1983; Larsen, 1988; Peacock and Sanderson, 1994; Huggins et 

al., 1995). The area of displacement transfer is known as a ‘transfer zone’ (e.g. 

Dahlstrom, 1970). When two overlapping synthetic normal faults are linked by an 

area of tilted bedding, the transfer zone is called a relay ramp (Larsen, 1988; Peacock 

and Sanderson, 1991; Peacock et al., 2000) or a synthetic transfer zone (Morley et al., 

1990). Within a relay ramp there is a reorientation of bedding, due to the progressive 

increase of fault displacement gradients towards the fault tips (Peacock and Sanderson, 

1994). Studies into transfer structures of linking thrust faults are fewer and, prior to 

this study, only the en echelon overlap o f synthetic thrusts (e.g. Dahlstrom, 1970), 

interactions within triangle zones (e.g. Pennock et al., 1989; Couzens and Wiltschko,

1996) and tear faults separating thrust surfaces (e.g. McClay, 1992) had been 

described. Peacock and Sanderson (1991), in documenting the stages o f  growth of 

linked faults, noted that segments may evolve by soft- linkage or may hard- link by 

breaching of the relay zone. The soft-linked segments interact with adjacent ftults, 

inhibiting propagation and therefore attaining high Dmax/L ratios. Hard linkage 

suddenly increases fault length thereafter, the linked segments rapidly accumulate 

displacement rather than length.

One of the first displacement analyses on thrust faults (Ellis and Dunlap, 1988) 

concluded that variations in displacement distributions on faults of varying sizes were 

related to fault linkage; displacement maxima corresponding to areas o f initial fault 

nucleation, displacement minima to points of linkage (Fig. 1.10b).
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1.4.3 Fault-related folding in compressional belts

Fault-related fold systems can be found in a wide range of contractional terranes 

including foreland fold and thrust belts, inverted basins, accretionary prisms and 

deltaic toe-of-slope fold belts. Such areas are commonly structurally complex and can 

have limited sub-surface data. Despite this it is widely accepted that three principal 

types of fault-fold interactions can be used to explain the majority of individual 

structures found in all these settings. These can be conveniently classified in terms of 

the timing of fold growth relative to fault propagation (Thorbjomsen and Dunne, 1997) 

and are termed detachment folds (e.g. Jamison, 1987; Dahlstrom, 1990; Groshong and 

Epard, 1994; Hardy and Poblet, 1994), fault propagation folds (e.g. Williams and 

Chapman, 1983; Mitra, 1990; Suppe and Medwedeff, 1990; Erslev, 1991; Suppe et al.,

1992) and fault bend folds (Rich, 1934; Suppe, 1983; Wiltschko et al., 1985; 

Medwedeff, 1992) (Fig. 1.12). These mechanisms are not mutually exclusive however, 

either temporally, spatially, in individual structures or within a fold and thrust belt 

(Hardy et al., 1996). A fault-propagation fold, for instance, may propagate upwards 

until it reaches a second detachment level, whereupon the fault may refract to become 

layer-parallel forming a fault-bend fold. Other hybrid folds can form that developed 

by a number of these processes such as break-thrust folds (e.g. Mitchell and 

Woodward, 1988; Butler, 1992; Morley, 1994) and fault-arrest folds (e.g. Williams 

and Chapman, 1983; Hedlund et al., 1994; Wickham, 1995). It has been suggested 

that the mechanical stratigraphy of the units involved in the thrusting may determine 

the fold-thrust relationships. The relationships between fault slip, fault-shape and 

fold-shape for many of these end member structures have been quantified in a number 

of geometric models (Suppe, 1983; Suppe and Medwedeff, 1984; Mitra, 1990; 1990).

Two basic groups of models have been proposed to explain the geometry and 

kinematics o f upper crustal folds; namely kink-band migration models (e.g. Suppe, 

1983; 1985; Suppe and Medwedeff, 1990) and limb-rotation models (e.g. Hardy and 

Poblet, 1994; Poblet and McClay, 1996). The former specify that folds grow in a self

similar manner by the widening of fold limbs during amplification (Fig. 1.13). 

Bedding surfaces undergo an instantaneous change in dip at axial surfaces and limbs 

maintain constant inclinations during fold growth (Suppe, 1983; Suppe and 

Medwedeff, 1990). In contrast, limb-rotation models involve progressive rotation of
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Figure 1.12: Three principal types of thrust-related folding, (a, b) Detachment fold, (c, d) Fault- 
propagation fold, (e, f) Fault-bend fold. After McClay (1992) .
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fold limbs such that they gradually steepen during fold evolution (Hardy and Poblet, 

1994) (Fig. 1.13).

Detachment folds

Detachment folds develop either as the result o f displacement accruement near a 

thrust tip or from buckling above a detachment such as shale or an evaporite 

(Thorbjomsen and Dunne, 1997). Such folds are not related to the development of a 

thrust ramp, but are associated with the termination of a layer parallel thrust Suit 

within a detachment layer (Jamison, 1987; Dahlstrom, 1990; Homza and Wallace, 

1995; Poblet and McClay, 1996) as displacement is transferred into folding above the 

leading edge (Fig. 1.12b). Detachment folds can also develop within a thrust sheet 

with a laterally decreasing displacement gradient.

Sedimentary units within detachment folds are commonly characterised by 

significant thickness and competency contrasts. Folds may display parallel geometries 

in the outer arcs and non-parallel, disharmonic geometries in the cores. Migration of 

ductile layers into the core of a fold during the early stages of fold growth can be 

followed by the expulsion of core material as shortening continues. Resultant 

anticlines can be flattened forming lift-off folds (Mitra and Namson, 1989). The 

evolution o f a detachment fold can involve an increase in both fold amplitude and 

wavelength by hinge migration and/or limb rotation (e.g. Suppe, 1983; Mitra, 2002). 

Flexural slip between sedimentary layering is the primary mechanism that 

accommodates limb rotation, however continued amplification can cause fold hinges 

to lock resulting in internal deformation (Mitra, 2002).

A break thrust fold, also termed ‘faulted detachment fold’ (e.g. Mitra, 2002), 

requires the formation of a fold prior to the propagation of a thrust fault (Willis, 1893) 

and hence fold shape is less dependent on fault geometries (Thorbjomsen and Dunne,

1997). Mitra (2002) states that the rotation of limb segments between locked hinges 

results in the nucleation of thrust faults, which propagate through deformation zones 

on fold limbs. Eventually, a through-going fault connects one of the major faults with 

the basal detachment. Proceeding deformation may then be accommodated by fault- 

propagation folding producing folds that may superficially resemble fault propagation 

folds (Mitra, 2002).
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Fault-propagation folds

Fault propagation folding occurs during the propagation o f imbricate faults as a 

thrust ramps up from a detachment (Fig. 1.12d). This mechanism was originally 

included within the description of tipline folds (Williams and Chapman, 1983) 

however tiis terminology is rarely used (Thorbjomsen and Dunne, 1997). Suppe 

(1985) defined fault-propagation folds as folds that “represent deformation that takes 

place just in front of the propagating fault surface” (Erslev, 1991) and hence fault 

geometries strongly influence fold shape. Geometric models of fault propagation 

folding (e.g. Suppe and Medwedeff, 1984) have adapted kink-band migration 

kinematics described on fault-bend folds. These models predicted backlimb 

development by hinge migration and forelimb by either hinge migration or limb 

rotation. Erslev (1991) argued however that “kink-band kinematics cannot replicate 

the curved fold surfaces and complex strain patterns in natural and experimental fault- 

propagation folds” and proposed a trishear model for the deformation in front of a 

propagating fault tip. In this model, triangular zones of penetrative deformation are 

identified at the fault tip.

The above models all relate to synchronous fold growth and fault propagation. 

Fault-arrest folds however postdate fault propagation (Thorbjomsen and Dunne, 1997) 

and are characterised by continued deformation on an imbricate thrust with an 

arrested and stationary fault tip (Armstrong and Bartley, 1993; Wickham, 1995). Fold 

amplification in the hangingwall sequence accommodates accumulating displacement.

Fault-bend folds

Fault-bend folds postdate fault propagation and are the result o f the change in 

fault trajectory (Suppe, 1983) such as when a fault steps up from one detachment 

layer to another (Rich, 1934). Folds are induced in hangingwall strata as it is forced 

over the non-planar fault surface (Fig. 1.121). Suppe (1983) proposed a geometric and 

kinematic model in which he described a strong relationship between fault shape and 

fold shape at positions of sharp bends in faults. Fold limbs are thought to grow in a 

self-similar manner by hinge migration such that the angle of dip of the limbs remains 

constant throughout fold development (Suppe, 1983).
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1.4.4 Growth folds

Fold growth in marine settings is typically accompanied by syntectonic 

sedimentation which can produce growth fold systems comprising syn-kinematic 

strata that typically thin towards and onto the crest of the growth anticline (Suppe et 

al., 1992). Many authors have recognised the importance o f such kinematic indicators 

as preserving a record of the geometric and temporal evolution of fault-related fold 

systems (e.g. Suppe et al., 1992; Hardy et al., 1996; Poblet et al., 1997). A number of 

models have been developed to simulate syntectonic stratal patterns associated with 

detachment folds, fault propagation folds and fault bend folds (e.g. Medwedeff, 1989; 

Suppe and Medwedeff, 1990; Suppe et al., 1992; Hardy and Poblet, 1995; Hardy et al., 

1995; Storti and Poblet, 1997). Storti and Poblet (1997) state that “different folding 

mechanisms give rise to different evolutionary paths in the shape o f thrust-related 

anticlines and, consequently, different geometries in the associated syntectonic 

sediments”. The shape o f pre-kinematic folded units, and thus the architecture of the 

growth strata, is largely controlled by axial surface activity (i.e. the length of the 

limbs), the nature of fold amplification (i.e. by limb rotation of self-similar folding) 

and the ratio of the rate of uplift to the rate of sedimentation (Storti and Poblet, 1997).

Figure 1.14 shows a fault propagation fold and a fault-bend fold and the related 

growth stratal geometries. The latter is characterised by rotated strata o f uniform 

thickness on the backlimb (Fig. 1.14a) and thinning or onlapping strata on the 

forelimb (e.g. Suppe et al., 1992). In the case of ftult propagation folds (Fig. 1.14b), 

thinned and rotated growth sequences develop on both limbs (e.g. Suppe et al., 1992; 

Storti and Poblet, 1997) and are governed, in part, by the ramp angle. The role of 

limb-rotation and hinge rrigration in the amplification of folds was discussed in a 

previous section Growth strata geometries generated by each model mechanism vary 

significantly (Fig. 1.15). Hinge migration generates limb-parallel and flat-lying panels 

in the growth strata (Suppe et al., 1992), whereas Imb rotation causes continuous 

variation in the angle of dip of depositional surfaces on growing fold limbs (Fig. 

1.15b and d) leading to wedge like geometries in the growth strata (Riba, 1976; Hardy 

and Poblet, 1994; Storti and Poblet, 1997). The competition between tectonic uplift 

rate (U) and the rate of syn-tectonic sedimentation (S) is also described. Storti and 

Poblet (1997) state that when the U/S ratio b greater than 1, tectonic uplift exceeds 

sedimentation and a positive bathymetric relief is generated during folding. A ratio
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Figure 1.14: Growth stratal geometries relating to (a) fault-bend folds, and(b) fault-propagation 
folds. Adapted from Suppe et al. (1992).
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less than 1 results in syntectonic sediments being continuous across a fold. Different 

amounts of uplift and sedimentation rates, therefore, cause different onlap, offlap and 

overlap relationships in syn-kinematic strata in each mechanism of fold amplification 

(Storti and Poblet, 1997) (Fig. 1.15).

1.4.5 Sediment dispersal and channel diversion in deep water settings

Accommodation space on shelf settings is primarily controlled by sea level 

change and subsidence (e.g. Hooper et al., 2002). However in slope and basin floor 

settings fluctuations in sea level have less of an impact and the graded profile of the 

slope plays a more important role. Hooper et al (2002) state that “this profile 

represents a long-term morphodynamic equilibrium between depositional and 

erosional processes on the slope, establishing a stable angle of progradation”. In deep 

water fold and thrust belts, like that of the Niger Delta, slope profiles are disrupted by 

gravitational deformation tectonic processes (i.e. faults and folds) and by the erosional 

and depositional action o f gravity-flow systems. Thus, accommodation space in such 

areas may be largely impacted by structural and sedimentary controls (Hooper et al., 

2002).

In the deep water Niger Delta the grade of the slope is initially altered by the 

development of toe-of-slope fold and thrust belt. Low relief structures create 

structural highs and lows which become influential in focussing submarine flows 

(Hooper et al., 2002). Channel systems can therefore be diverted by structural relief 

on the seabed (Fig. 1.16). Ductile movement of overpressured shale units can also 

contribute to changes in the delta slope angle. Accommodation space created by 

growing structures, such as on the back-limb of the frontal fold and thrust, is 

progressive infilled as sediments are ‘intercepted’.
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Figure 1.16: Channel diversion in response to changes in the slope profile due to gravitational 
deformation processes, (a) Seismic amplitude extraction map showing high amplitude reflections in 
a sinuous channel, (b) Topographic map of the stratigraphic horizon closest to the channel. The 
outline of the zone of high amplitude reflections is overlain. Note that the channel follows the 
structurally low regions, (c) Three-dimensional imaging of (a). Channel can be seen to, firstly, pass 
through the saddle point of a fold, and secondly deviate around the tip of the next downdip 
structure. Field of view approximately 30 km.
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1.5 Thesis Layout

The core of this thesis comprises three papers written for publication in scientific 

journals (Chapters 3, 4 and 5). These represent a logical series o f arguments that first 

consider individual structures and linking fault pairs, before moving to the more 

complex scenario of a closely spaced fold belt. At the time of submission of the thesis 

Chapter 3 has been published and Chapter 4 is in review. The writing of these sections 

for publication has affected their style and may introduce some repetition within the 

introductory paragraphs of each paper. A brief summary of each chapter is given 

below.

Chapter 2 reviews the geological setting and structural evolution of the Niger 

Delta. The 3D seismic surveys are introduced. There is also a summary of the main 

characteristics of fault-related folding in gravity-driven fold and thrust belts and some 

comments on the difference between salt and shale detached deformation.

Chapter 3 introduces latic descriptions of antithetic transfer zones from 3D 

seismic data. A preliminary geometric classification model for the along strike linkage 

of thrust faults of opposing dip is proposed. The effects of fault interaction on fold 

geometries is described with reference to the along strike changes in fold vergence 

and stratal connectivity through various transfer zones.

Chapter 4 applie s the geometries of fault linkage and the observations of stratal 

connectivity from Chapter 3 to an individual, isolated fold comprising numerous 

interacting faults. Measurements of fault heave and bulk shortening are presented for 

individual faults and the fold as a whole. The quantification of strain throughout an 

individual fold allows conclusions to be drawn on the kinematic relationship between 

constituent structural features. The chapter concludes with the analysis of growth 

strata to determine the growth history of the fold and structural evolution of the 

linking faults.

Chapter 5 considers the distribution of strain within the fold belt as a whole. 

Firstly the sequence of fault and fold initiation and cessation is established to 

determine the degree of synchronous growth in the system. Displacement transfer is 

investigated between structures both along strike and in a dip-parallel direction. A 

discussion o f the degree of kinematic interaction and displacement transfer between 

constituent features of the fold belt concludes the chapter.
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Chapter 6 draws together the conclusions of Chapters 3, 4 and 5. A model for 

fold and thrust belt development is proposed and the controls on the geometries of 

antithetic fault linkages are discussed. The implications of this study on other types of 

settings are considered. Finally, a brief overview of the limitations, uncertainties of 

this study and proposals for future work conclude the chapter.

Chapter 7 lists the main conclusions of the thesis.
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CHAPTER 2

2 NIGER DELTA: GEOLOGICAL SETTING, DATABASE AND 
STRUCTURAL REVIEW

2.1 Geological and stratigraphic framework

The Niger Delta extends into the eastern Gulf of Guinea on the western margin 

of Africa (Fig. 2.1) and is one of the largest regressive deltas in the world (Doust and 

Omatsola, 1990). Neogene clastic sediments reach an estimated maximum thickness 

o f 12 km (Whiteman, 1982; Damuth, 1994) over extended oceanic and continental 

crust. The delta is located at the southern end of the Benue Trough which represents a 

failed arm of a triple junction that formed during the opening of the Atlantic in the 

late Cretaceous (Lehner and Ruiter, 1977; Whiteman, 1982; Damuth, 1994). 

Following this event the Benue trough progressively filled with Albian and younger 

post-rift deposits and the delta became established over the continental margin by the 

Late Eocene (Damuth, 1994).

A three-fold subdivision of stratigraphy into the Akata, Agbada and Benin 

Formations, representing prograding depositional environments, has been adopted by 

numerous authors (Knox and Omatsola, 1989; Doust and Omatsola, 1990; Damuth, 

1994; Cohen and McClay, 1996; Morgan, 2004). The Late Cretaceous - Palaeocene 

Akata Formation at the base of the delta is of marine origin and is composed of thick 

shale sequences that are thought to be over-pressured (e.g. Morley and Guerin, 1996; 

Wu and Bally, 2000). On seismic sections this formation is characterised by a lack of 

internal reflections (Fig. 2.2) with the exception o f a strong, high-amplitude reflection, 

which has been shown to act as a regional detachment level for deep water thrust 

faults (Corredor et al., 2005; Briggs et al., 2006). Anomalously low P-wave seismic 

velocities within the Akata Fm imply under-compaction (Morgan, 2003) and may 

point to regional fluid overpressures (Bilotti and Shaw, 2005).

The boundary between the Akata and Agbada megasequences is readily 

identified on seismic profiles (Fig. 2.2) in the lower slope region (the area of study in 

this thesis) as a regionally consistent seismic reflection event that separates two 

regions of distinct seismic character (Morgan, 2004). The base of the overlying 

Eocene-recent Agbada Formation is marked by a distinct change in depositional style
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location of Surveys A and B. Locations of shale diapirs taken fromSaugy andEyer (2003).
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with the appearance of major fan lobes and a major progradational succession. 

Sediments consist of paralic siliciclastics that exceed 3.5 km thickness and comprise 

the main body of the Niger sediment apron. Alternations o f sands, silts and clays were 

deposited in various proportions in a number of delta-front, delta-topset and fluvio- 

deltaic environments (Doust and Omatsola, 1990). Channel and basin floor fan 

deposits within the Agbada Formation form the primary reservoirs in the Niger Delta 

(Corredor et al., 2005).

The Akata Formation is the distal equivalent of the Agbada Formation, which is 

the marine equivalent to the non-marine Benin Formation (Morgan, 2003). The Benin 

Formation is the thinnest and least laterally extensive unit (Cohen and McClay, 1996), 

is largely fluvial in composition and overlies the Agbada Formation onshore and in 

some coastal settings.

In general, the Niger Delta has a high sedimentation rate and is dominated by 

mudstone (>80%) (e.g. Davies, 2003). This study focuses on the deepwater where a 

succession of confined turbidite channel complexes, surrounded by deepwater 

mudstones (e.g. Davies, 2003; Deptuck et al., 2003), contain sinuous channel forms 

that act as conduits for clastic sediments to be sorted and transported into the deep 

water setting (Deptuck et al., 2003). Sedimentation below the shelf edge is dominated 

by mass transport including slumps, slides, debris flows gravity-controlled density 

flows (Damuth, 1994).

2.2 Database

Two 3D seismic surveys (termed surveys A and B), acquired by CGGVeritas in 

1999 and 2002, comprise the 3D seismic data used in this study (Fig. 2.3). The total 

coverage of these two datasets amounts to over 5000 km2 of the deep water toe-of- 

slope region on the Niger Delta. Both surveys were acquired with line spacing, in both 

the inline and crossline direction, of 12.5 m and a sampling interval of 4 ms. All data 

were processed using ray-traced Kirchoff pre-stack time migration and are zero-phase 

with SEG reverse polarity.

The dominant frequency of the data changes with depth as velocities vary 

vertically due to lithology, compaction and diagenesis (e.g. Brown, 1999). The main 

stratigraphic interval of interest herein is the Agbada Formation, which comprises the 

majority of thrust faults in the deep water fold and thrust belts. The dominant
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frequency at the top of the studied interval is c. 55 Hz and hence vertical resolution 

(A./4) is approximately 7.5 m. Resolution at the base is c. 20 m. When calculating the 

resolution, interval velocities and check shot data from a nearby confidential 

exploration well were used along with the velocity model o f Morgan (2003). Seismic 

sections were depth converted using these velocities for use in restoration, shortening 

calculations and to validate geometric structural observations. Seismic attributes, such 

as dip and amplitude, were utilized to reveal structural and depositional features.

2.3 Structural history of the Niger Delta

The Niger Delta continental margin has undergone a complex phase o f evolution from 

initial extension in the Cretaceous to the present day passive margin. The first rift 

phase associated with the opening of the South Atlantic is tentatively dated at 150 Ma 

(Tithonian) to c. 130 Ma (Hauterivian) with the final separation o f the African and 

South American continents occurring between 100 and 105 Ma (Mascle et al., 1988; 

Numberg and Muller, 1991). The Niger Delta is located at the southern culmination 

of the Benue Trough, a failed arm of a rift triple junction, in which the rifting ceased 

in the Late Cretaceous (Lehner and Ruiter, 1977). Fracture zones associated with sea- 

floor spreading during the opening of the South Atlantic, such as the Charcot Fracture 

Zone (Fig. 2.1b) with its associated ridges and trenches, continue to influence the 

shape and internal structure of the Niger Delta (Corredor et al., 2005). Following the 

cessation of rifting the margin has undergone gravitational collapse above basinward 

dipping detachments producing large scale extension in the proximal delta and 

downdip contraction in a toe-thrust system on the outboard part of the slope. This type 

of margin failure is common on passive margins which typically comprise distinctive 

zones of linked extensional, transitional and contractional deformation (e.g. Evamy et 

al., 1978; Doust and Omatsola, 1990; Cobbold et al., 1995; Letouzey et al., 1995; Peel 

et al., 1995; Morley and Guerin, 1996; McClay et al., 1998; Rowan et al., 2000; Wu 

and Bally, 2000; Morley, 2003; Rowan et al., 2004).

The Niger Delta has long been recognised as having these three structural 

domains of extension, translation and contraction (Damuth, 1994) (Figs. 2.4 and 2.5). 

More recently authors have further subdivided the delta into five zones 

(Corredor et al., 2005) including (i) an extensional domain comprising regional and 

counter-regional normal growth faults located below the continental shelf; (ii) a mud
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diapir zone, including shale ridges and vertical diapirs, situated beneath the upper 

continental slope; (iii) an inner thrust belt made up of oceanward verging imbricate 

thrust faults and some detachment folds; (iv) a transitional detachment fold zone 

characterised by areas little or no deformation; and (v) an outer thrust belt comprising 

both landward- and oceanward-verging thrust faults (Fig. 2.1a).

The majority o f these domains are arcuate in form and extend along the full 

width of the delta (Fig. 2.1a). The outer thrust belt however, on which this study 

focuses, forms two lobes (Fig. 2.1a), separated by elevated basement topography that 

corresponds to the northern end of the Charcot Fracture Zone (Fig. 2.1b). Structures in 

the outer thrust belt are predominantly fault propagation folds that may have initiated 

in low relief buckles. A typical cross section contains ten to twenty, oceanward 

propagating forethrusts however there are local domains dominated by landward 

verging backthrusts. In such areas fault linkage gives rise to transfer zones comprising 

faults of similar and opposing dip. Sediments involved in the deformation o f the outer 

toe thrust belt are predominantly weakly consolidated muds, silts and sands limiting 

the amount o f structural topography that may develop during fold growth. Failure of 

sediments at fold crests can rapidly truncate propagating faults and hence thrusts 

rarely roll over onto the seafloor.

Differential progradational loading of the ductile substrate o f overpressured 

pro-delta shales has given rise to extensional growth faults that are mechanically 

linked to the contractional fold and thrust system at the delta toe (Morley and Guerin, 

1996; McClay et al., 1998). The thickness of mobile Akata shales involved in the 

thrust belt varies considerably around the delta (Morley and Guerin, 1996). In the 

eastern margin of the delta thick mobile shales are associated with a narrow, rather 

chaotic contractional belt. In contrast, the central parts of the delta display a broad 

imbricate zone of regularly repeated, orderly structures (Morley and Guerin, 1996) in 

an area that contains little evidence of thick mobile shales.

2.4 Gravity-driven fold and thrust belts

The linked deformational system of proximal extension and distal compression, 

observed on many passive margins (e.g. Figs. 2.4 and 2.5), is driven by gravitational 

failure and results in the horizontal translation of post-rift cover. Landward dipping 

detachments that accommodate gravity gliding into the foreland are commonly 

comprised of evaporates or over-pressured shales. Internal deformation of a
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sedimentary wedge by gavity spreading can take place where a rock mass distorts 

under its own weight by vertical collapse (e.g. Rowan et al., 2004). Distal shortening 

can be accommodated in a number of ways, including the formation of faults and 

folds in deep water fold and thrust belts, deformation relating to the movement and 

extrusion of salt nappes and the structural alteration o f pre-existing diapirs. Layer 

parallel shortening, by lateral compaction, pressure solution and small scale folds, can 

also accommodate shortening however such features are rarely within the resolution 

of seismic data and are predicted as having minor contributions to bulk shortening 

(Rowan et al., 2004).

Deep water fold belts and collisional or accretionary fold belts share many 

structural characteristics but are distinguished by a fundamental difference in their 

driving force. The former is driven by the internal gravitational collapse o f passive 

margins, the latter by external collision or subduction of tectonic plates. The amount 

o f contraction and the rate o f deformation in deep water fold belts is also less due to 

weaker driving forces that may only be marginally higher than the strength o f the 

rocks they deform (Rowan et al., 2004). As a result distal shortening is largely 

controlled by, and sensitive to, sedimentation patterns in proximal regions as well as 

increases in margin tilting. Deformation by gravitational collapse is naturally self- 

limiting as margin failure seeks to reduce the bathymetric slope and gravity potential 

of sediments deposited on the shelf and upper slope.

Deep water fold and thrust belts are commonly characterised by arrays of 

regularly spaced, imbricate forethrusts that sole out onto a detachment (Morley, 2003) 

(Fig. 2.6). In general, fold and thrust belts display a hinterland to foreland sequence of 

deformation superposed with occurrences of out-of-sequence and hinterland verging 

thrusting events (e.g. Wiltschko and Dorr, 1983; DeCelles and Mitra, 1995; Mitra and 

Sussman, 1997; Chester, 2003). Fault related folds tend to form asymmetric, 

oceanward-verging hangingwall anticlines in the overburden (Fig. 2.7). Fault 

propagation folds are widespread in areas with a single detachment layer, whereas 

fault bend folds are common in regions with multiple detachments as thrusts climb 

stratigraphy from one detachment level to the next. Pre-kinematic sequences generally 

display a uniform thickness and comprise the lower parts o f structures, whereas syn- 

kinematic packages thin over the crests of growing folds (Fig. 2.7). Faults and folds 

can dramatically influence sediment dispersal within the deep water settings as
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Figure 2.7: Seismic section across a typical thrust and fold from the deep water Niger Delta. Some 
structural characteristics include a relatively planar thrust ramp, a prominent fault plane reflection, a 
broad backlimb that dips less than the underlying thrust, and a narrow forelimb situated above the top 
of the thrust ramp. The fault detaches onto the Agbada-Akata interface
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ponded basins form on the flanks of growing structures and act as possible traps for 

turbidite sands. Imbricate zones are limited in lateral extent and can often pass into 

regions of low shortening where only a few faults, detachment folds and triangle 

zones develop (Morley and Guerin, 1996; Hooper et al., 2002). Considerable changes 

in fold and thrust belt geometry and bulk shortening along strike may be linked to 

variations in thickness o f the detachment unit (Morley, 2003). Although it is possible, 

as attempted above, to describe the general form and features o f deep water gravity- 

driven fold and thrust belts this does not do justice to the significant lateral and 

temporal changes in structural styles that can occur in these settings (Morley, 2003).

2.5 Salt vs. shale tectonics

Various structural styles in deep water fold belts on passive margins are largely 

dependent on the nature of the detachment layer rather than the driving forces of 

deformation (Rowan et al., 2004). Deep water fold belts commonly detach onto one of 

two decollement layers: evaporites or overpressured shale (Fig. 2.8). Contractional 

salt tectonics occurs in the deepwater regions of passive margins such as offshore 

Brazil, Angola (e.g Marton et al., 2000; Hudec and Jackson, 2002; Cobbold et al., 

2004; Fort and Brun, 2004) or the Gulf of Mexico (e.g. Rowan et al., 2004). Fold belts 

detached on overpressured shale include parts of the Gulf of Mexico (e.g. Weimar and 

Buffler, 1992; Peel et al., 1995), the Sergipe-Alagos and Para-Maranhao Basins in 

Brazil (e.g. Rowan et al., 2004) and the Niger Delta (e.g. Evamy et al., 1978; Doust 

and Omatsola, 1990). Morley and Guerin (1996) noted that the overpressured nature 

of mobile shales resulted in significant differences in structural style compared with 

salt tectonics. This is partly due to the rheological nature of each medium. Salt 

deforms as a viscous material laving little or no ultimate strength. It can therefore 

flow when subjected to minimal shear stress (Urai et al., 1989; Weijermars et al., 

1993) and the overall rheological properties o f salt are constant through time. In 

contrast, shale is a plastic material and deforms only when the deviatoric stress 

overcomes the strength of the shale (Rowan et al., 2004). The rheological properties 

of shale are independent of the strain rate (Hubbert and Rubey, 1959; Weijermars et 

al., 1993). The shear strength of shale is partially dependent on the effective vertical 

stress which can be described as the lithostatic pressure at the base of the overburden 

minus the overpressure. Therefore as overpressure within a shale unit increases and
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approaches the lithostatic pressure, the effective vertical stress tends to zero and the 

resistance to deformation becomes minimal. Rapid burial, either by sedimentation or 

by tectonic loading, is the most common cause of over-pressure (Morley and Guerin, 

1996), however the generation of hydrocarbons resulting in significant volume change 

is the most significant internal mechanism.

As salt is viscous and has effectively no strength, deformation can begin 

immediately after deposition, provided an adequate driving force is applied, and can 

take place over the entire extent of the salt sheet. As a result, salt-cored folds tend to 

initiate and grow simultaneously as opposed to a forward-propagating sequence of 

development typical of shale-detached fold belts (Davis and Engelder, 1985). Shale 

detached deformation does not begin until sufficient overpressure accumulates to 

overcome the critical yield stress of the shale. This is reflected in the Niger Delta by a 

sequence of uniform thickness, pre-kinematic units immediately above the Akata 

Shales (Figs. 2.6 and 2.7). The area of overpressure within a mobile shale unit may 

move oceanward through time due to prograding deltas on passive margins moving 

locations of major depocentres. Foreland propagating deformation follows this trend 

although due to local dewatering of shales (Rowan et al., 2004) out o f sequence 

thrusts are common (Morley and Guerin, 1996; Wu and Bally, 2000). Salt-cored fold 

belts typically comprise symmetric detachment folds that can be cut by reverse faults 

on one or both limbs (Rowan et al., 2004). Squeezed diapirs and salt walls, thickened 

and shortened salt massifs and allochthonous salt canopies are also common (Fig. 2.8) 

and can accommodate some o f the shortening in a deep water setting. Shale-cored 

fold belts, in contrast, are characterised by asymmetric, oceanward verging thrust 

imbricates, multiple detachment levels and fault bend and fault propagation folds 

(Rowan et al., 2004) (Fig. 2.8). Symmetric features can also exist within this setting if 

over-pressures are high or deformation slow. The extreme mobility o f salt is such that 

structures involving salt deformation continue to evolve until the salt source layer is 

either exhausted, salt welds form preventing further movement, or the salt is dissolved 

by surface processes (Rowan et al., 2004). In contrast the leaking off of pore fluids in 

overpressured shales will cause deformation to cease. Repressurisation can occur by 

further release of water by compaction and dehydration reactions or the generation of 

hydrocarbons, particularly the transition from oil to gas (Morley and Guerin, 1996). 

Shale structures, therefore, may exhibit a more episodic evolutionary path compared 

to salt systems.
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2.6 Fault-related folding in the deep water Niger Delta

Thrust faults in the deep water Niger Delta are commonly characterised by 

discrete, planar surfaces and extend for several tens o f kilometres along strike. Fault 

surfaces sole out on multiple detachment levels within the Akata Formation and are 

readily identified on seismic section by truncated stratigraphy and fault-plane 

reflections (Fig. 2.7). Associated hangingwall anticlines are generally characterised by 

long planar backlimbs that dip to a lesser degree than the underlying fault ramp. 

Evidence for a component of limb rotation during fold growth exists as upward 

reduction in dip of growth strata on backlimbs (e.g. Hardy and Poblet, 1994; Shaw et 

al., 2004) (Fig. 1.13). Folds verge in the direction of dip-parallel fault propagation 

producing shorter and typically steeper forelimbs. Strong fold asymmetry is often 

associated with an underlying thrust tip similar to fault-propagation folds. Growth 

structures on the forelimbs display more consistent dips than those on the backlimbs 

possibly suggesting a dominant mechanism of folding by kink-band migration rather 

than limb rotation (Corredor et al., 2005). The relationship between growth 

sedimentation rates and fold and fault uplift rates varies from structure to structure. 

Patterns of fold onlap above fold limbs are apparent on some folds indicating 

relatively low sedimentation rates compared to uplift, whereas others demonstrate 

continuous reflections across fold crests at all stratigraphic levels suggesting similar 

rates of growth and deposition.

In parts of the deep water of the Niger Delta, in particular the western lobe of 

the outer fold and thrust belt, backthrusts (i.e. landward-vergent faults) and tectonic 

wedges are common. In such areas the bathymetric slope and basal detachment show 

less disparity in their angle o f dip and are sub-parallel with the maximum horizontal 

stress. In such a scenario there is no mechanical advantage between the formation of a 

forethrust or a backthrust (Bilotti and Shaw, 2005) and hence fault arrays comprise 

thrusts of opposing dip. The close spacing and along strike propagation of such faults 

leads to antithetic thrust fault linkages and the merger of the overlying associated 

asymmetric folds (Fig. 2.9). Along strike vergence reversals of folds characterises 

much of the area of interest in this study.
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Figure 2.9: An example and illustration of an along strike vergence reversal in folding o f the present 
day seabed, (a) is part of the 3D seismic survey A. Front panel shows interpreted hard-linked thrust 
faults and associated hangingwall anticlines, (b) Gridded surface representing seabed topography to 
illustrate the change in vergence of the fold, (c) Diagrammatical description o f an along strike vergence 
reversal in a fold.
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2.7 Mechanical stratigraphy

Regions that have undergone layer parallel shortening can be dominated by 

faulting or folding. The Idaho-Wyoming-Utah thrust belt (e.g. Armstrong and Oriel, 

1965) and southern Appalachian thrust belt (e.g. Rich, 1934) for example, have 

deformed primarily by faulting, whereas other regions such as the central Appalachian 

Plateau (e.g Gwinn, 1964), Jura (e.g. Pierce, 1966) and Parry Islands (e.g. Harrison 

and Bally, 1988) have deformed primarily by folding (Erickson, 1996). It has been 

suggested that the differing styles of deformation may result from differing 

mechanical stratigraphy (i.e. the strength and thickness of layers), namely the 

presence and characteristics of a weak decollement layer (e.g. Erickson, 1996). Many 

fold and thrust belts comprise a basal layer of salt or overpressured shale and a cover 

of clastic or carbonate rocks, and the style of deformation is determined by both the 

strong and vseak layers within the sequence (Woodward and Rutherford, 1989). The 

differences between salt and shale detachment layers have been discussed in a 

previous section. Mechanical analyses of the influence of competence contrasts in 

stratigraphic layering on the mechanisms of folding and the geometries o f folds (e.g. 

Currie et al., 1962; Johnson and Fletcher, 1994; Fischer and Jackson, 1999) have 

improved our understanding of vertical changes in the mechanical properties of a 

sedimentary sequence.

In fold and thrust belts, the role played by the lateral variation o f the mechanical 

stratigraphy is frequently considered one of the most important factors explaining the 

presence of lateral and oblique ramps, tear faults and pericline terminations (e.g. 

Fischer et al., 1992; Letouzey et al., 1995; Ravaglia et al., 2004). Lateral variation in 

the mechanical properties of a sequence can occir for a number of reasons (e.g. 

Ravaglia et al., 2004) including channel development. In the deepwater Niger Delta 

the Agbada Formation is characterized by a succession of confined turbidite channel 

complexes, surrounded by deepwater mudstones (e.g. Davies, 2003; Deptuck et al., 

2003) (Fig. 2.10). Sinuous channel forms in the deep water fold and thrust belts of 

offshore West Africa and the Gulf of Mexico have been proven to be viable 

exploration targets (e.g. Kolia et al., 2001) as they act as conduits for clastic 

sediments to be sorted and transported into the deep water setting (Deptuck et al., 

2003). High amplitude reflections (Fig. 2.10) within a background of lower amplitude
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(a)
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c h a n n e l  l e v e e  s y s t e m  r c h a n n e l  d e p o s i t  fr o m  H A R s

Figure 2.10: A seismic section orientated perpendicular to delta slope to demonstrate lateral variability 

is seismic facies within the Agbada Formation, (a) 3D seismic crossline imaging a stacked channel 

levee complex, (b) Interpreted section highlighting high amplitude reflections (HARS).
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seismic facies are thought to indicate coarser-grained turbidites associated with 

aggrading or migrating channel axes (e.g. Kastens and Shor, 1985). Structural features, 

such as seafloor relief above a toe-thrust, can cause the deflection of channel 

complexes resulting in ponding of coarser-grained sediments. Morgan (2004) 

documented channel complexes following transfer faults such that repeated channel 

development lead to the clustering of channel complexes around these structures. This 

compartmentalization of lithologies leads to heterogeneity in the Agbada Formation 

and variation in its mechanical properties along strike.
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CHAPTER 3

3 ANTITHETIC FAULT LINKAGES IN A DEEP WATER FOLD AND 

THRUST BELT

3.1 Abstract

Deep water fold and thrust belts consist of both forethrusts and backthrusts that 

can link along strike to form continuous folds in the overburden. The interaction of 

faults of opposing dip are termed ‘antithetic thrust fault linkages’ and share the 

common feature o f a switch in vergence o f overlying hangingwall anticlines. Using 

three-dimensional seismic data, on the toe-of-slope of the Niger Delta, linkages are 

classified into three distinct structural styles. This preliminary classification is based 

on the vertical extent o f faulting within a transfer zones relative to the branch line of 

the antithetic faults. The stratigraphic level of the lateral tip of the fault, the shape of 

lateral tip region of a fault plane and the stratal deformation within the transfer zones 

is also distinctive in each type of fault linkage. A Type 1 linkage comprises faults that 

overlap exclusively above the level of the branch line. A ‘pop-up’ structure forms 

within the transfer zone with sediments below remaining planar. The lower tip lines of 

faults climb stratigraphy towards the linkage zone creating asymmetric, upward- 

tapering lateral tip regions. In Type 2 linkages fault overlap occurs lower than the 

level of the branch line such that lateral fault tips are located within the footwall of the 

counterpart fault. Faulting is thus limited to the deeper section within the transfer zone 

and creates unfaulted, symmetric, bell-shaped folds in the overburden Upper tip lines 

of faults lose elevation within the transfer zone creating asymmetric, downwards- 

tapering lateral tip regions. In Type 3 linkages both faults continue above and below 

the branch line within the transfer zone resulting in cross-cutting fault relationships. 

Horizon continuity across the folds, through the transfer zones, varies significantly 

with depth and with the type of fault intersection
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3.2 Introduction

Research into the growth, propagation and linkage o f faults has predominantly 

focused upon extensional rather than reverse displacement. Numerous studies on 

extensional faults have provided insights into along strike and down-dip displacement 

variations (e.g. Peacock and Sanderson, 1991), fault growth (e.g. Watterson, 1986; 

Barnett et al., 1987; Cartwright et al., 1995), fault scaling laws (e.g. Dawers and 

Anders, 1995), and classifications of fault linkage geometries (e.g. Gawthorpe and 

Hurst, 1993). Thrust faults are fundamental as a mechanism for accommodating 

shortening in convergent tectonic settings and in gravitational detachment systems. 

Despite this, the mechanisms by which thrusts initiate, propagate and link are not well 

defined. Most studies have focused on fault geometries, displacement variations and 

growth using dip-parallel outcrop exposures (e.g. Williams and Chapman, 1983; 

Eisenstadt and De Paor, 1987; Ellis and Dunlap, 1988). Analyses o f along strike 

variations and linkage are fewer (e.g. Dahlstrom, 1970; Aydin, 1988; Harrison and 

Bally, 1988; Nicol et al., 2002; Davis et al., 2005), possibly due to partial exposure 

and the preferential erosion of hangingwalls within ancient thrust systems (Davis et 

al., 2005). Analogue modeling of thrust systems provide useful indications as to how 

thrusts may initiate and grow by segment linkage (e.g. Liu and Dixon, 1991) but 

remain largely untested in the field. This paper will describe and classify along strike 

linkages of thrust faults o f opposing dip and demonstrate an associated change in fo Id 

geometry. This is intended as a preliminary classification to form a basis for further 

research.

The acquisition of high resolution three-dimensional seismic data over deep water 

fold and thrust belts offers an opportunity to better resolve fault plane geometries and 

linkages in three-dimensions. We have selected the compressional domain of the deep 

water Niger Delta fold and thrust belt, as it provides first class examples o f  along- 

strike linkage o f thrusts.

3.2.1 Along strike thrust fau lt linkage

Thrust faults can link in the direction of strike such that displacement reduces to 

zero on one fault, whilst increasing in the same direction on the next (e.g. Davis et al.,

2005) in a similar manner to extensional fault systems (Larsen, 1988). This can take
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place on faults that have similar or opposing direction o f dip, termed synthetic and 

antithetic respectively (Peacock et al., 2000). The regions where fault displacement is 

transferred from one fault to the next are termed ‘transfer zones’ (Dahlstrom, 1970). 

Connectivity of thrusts through transfer zones is not a new concept (e.g. Douglas, 

1958; Dahlstrom, 1970; Boyer and Elliott, 1982). Pfiffner (1985), for instance, 

described a decrease in master fault displacement by the “consumption” of slip by 

minor splays, whilst Dahlstrom (1970) illustrated the transfer of displacement 

between paired faults (and folds) along a through-going sole thrust. This led to a 

simple three-dimensional model of a synthetic transfer zone o f en echelon thrust faults 

(Dahlstrom, 1970 their Figure 26).

Descriptions o f antithetic interactions are less common and are largely contained 

within studies of triangle zones and descriptions of back thrust splays on larger 

synthetic ‘master’ faults (e.g. Mandl and Crans, 1981). McClay (1992) and Couzens 

and Wiltschko (1996) classify two types of triangle zone from existing literature; the 

first involving two thrusts detaching on a single decollement (Fig. 3.1a) and the 

second, also described as an intercutaneous wedge (McClay, 1992), containing 

multiple decollements (Fig. 3.1b). The first type can be described as a structure 

composed of two dipping reflections underlain by horizontal reflections (Couzens and 

Wiltschko, 1996) (Fig. 3.1a). Some interactions between faults in this study fulfill this 

criteria but, importantly, overlap both laterally and downdip within the transfer zone. 

Back thrust splays have less relevance to this study as they are not thought to be due 

to the interaction and linkage of two distinct, independent faults and may exist to 

accommodate strain induced in the hangingwall during ramp climb of the master fault 

(Butler, 1982).

The initiation and propagation o f thrusts can lead to the development o f an 

asymmetric hangingwall anticline ahead of the fault (e.g. Suppe, 1985 their Figure 

9.47). Figure 3.2 describes how this asymmetry can be given as a direction of fold 

vergence, defined here as being towards the shorter, commonly steeper limb from the 

axial surface. The most evident indication that thrust faults of opposing dip are linking 

along strike, within the subsurface, can be a switch in the direction o f vergence of 

associated folds in the overburden (Fig. 3.2). These changes in vergence of 

hangingwall anticlines are common in the deep water Niger Delta and represent the 

interaction of detaching forethrusts and backthrusts in the underlying sediments. The

3-3



Chapter 3 Antithetic thrust fau lt linkages

(a) T riangle z o n e

T rian gle z o n e

Figure 3.1: Illustration of triangle zone geometries (from Couzens and 
Wiltschko, 1996). (a): “Type I triangle zone” (Couzens & Wiltschko 1996).
(b) Intercutaneous wedge (McClay 1992) or “Type II triangle zone” (Couzens 
& Wiltschko 1996).
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Figure 3.2: Diagrammatical 
description of fold vergence reversal 
and antithetic thrust fault linkage. 
Thrust faults in the subsurface 
underlie asymmetric, verging 
anticlines. Vergence is defined as 
toward the shorter, steeper limb from 
the core of the fold. The upper block 
diagram shows a switch in the 
vergence of the fold along strike 
coinciding with an antithetic thrust 
fault linkage below. Antithetic linkage 
is defined as the interaction of faults 
with opposing dip. The geometry of 
the transfer zone between the two 
thrusts varies and is classified into 
three types in the text. Ax.: Axial 
plane
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seismic data used here contain examples of along strike overlap and interaction of 

fault tip regions, although the considerable scale of the faults means it is uncommon 

for both ends of a particular fault to lie within data limits. Displacement transfer, 

indicated by horizon geometries, heave-length profiles and the complimentary shape 

of overlapping fault tip lines, implies kinematic interaction between all the fault pairs 

identified in this study (Huggins et al., 1995). As a result, the rock volume within a 

zone of geometric overlap between two fault tips is referred to here as a transfer 

zone’ (Dahlstrom, 1970). The examples of transfer zones, imaged using three- 

dimensional seismic data, are classified into distinct structural styles and geometries.

3.3 Study Area

The 3D seismic survey used in this study covers ~ 3000 km of the compressional 

toe-of- slope fold and thrust belt o f the Niger Delta. Inline and crossline spacing is

12.5 m(e.g. Brown, 1999) with vertical resolution varying from approximately 7.5 m 

in shallow levels to 20 m at the base of the studied intervaL A review o f the geology 

of the Niger Delta is provided by Doust and Omatsola (1990). Extension and 

contraction within the delta system is driven by large-scale gravitational collapse on 

regional detachment levels existing within the Akata Formation (e.g. Bilotti and 

Shaw, 2005) resulting in the downslope translation of the overlying Agbada 

Formation. Individual thrust faults have been documented as detaching at numerous 

levels within the succession of the Niger Delta (Corredor et al., 2005; Briggs et al.,

2006). There are two detachments levels imaged in this data set; at the Agbada-Akata 

Formation boundary and a regional detachment within the Akata itself. Within the 

study area the Agbada Formation comprises a series of stacked cfeepwater channel- 

levee systems (e.g. Deptuck et al., 2003) and is deformed into 21 large-scale, 

detaching oceanward-vergent forethrusts and landward-vergent backthrusts. The fold 

and thrust belt, if modelled as a critical taper wedge, has a relatively shallow 

bathymetric slope (Bilotti and Shaw, 2005) leading to the inference of a weak basal 

detachment. This causes the maximum principal compressive stress to be 

subhorizontal and close to the angle of the detachment. In such a scenario there is 

little mechanical advantage between the formation of a forethrust or a backthrust, 

which have similar dip angles and are equally efficient at accommodating shortening 

(Bilotti and Shaw, 2005). The focus of this paper surrounds the linkage of thrusts of
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opposing dip. We do not expect the predominance o f antithetic linkage to be generic 

or universal; it simply indicates a difficulty in clearly imaging synthetic interactions, 

due in part to overprinting of displacement variations by well-developed, closely- 

spaced, stacked forethrusts. Forethrust-forethrust interactions in this area are 

commonly characterised by a subtle bend in the fault trace and an along strike 

displacement minimum. It is conceivable that if linkage between similarly dipping 

and laterally aligned faults occurred early in their history then signs of this mechanism 

may be lost at the resolution of seismic data.

3.4 Depth Conversion

This paper will describe the geometries of fold and thrust structures using 3D 

seismic data and two-way-travel time (twt) seismic sections. It is therefore important 

to establish the significance of any change to structural geometries that may occur 

during time to depth conversion (see Brown, 1999). Depth conversion was performed 

on all seismic sections used in the study using interval velocities from a nearby well. 

Figure 3.3 shows two representative time sections (a & c) across two linkage zones 

and their depth converted equivalents (b & d). It is apparent that, in both cases, the 

shallow section (< ~ 5 seconds and ~ 4 km) is relatively unchanged in thickness and 

geometry during the calculation. The deeper section however displays some dramatic 

thickening of the section, below 6 seconds and 5 km, due to an increase of velocity 

with depth. If one ignores the thickness changes, the (d) depth section is largely 

unchanged geometrically and is typical of the majority of sections in this data set. 

Depth conversion of the (a) time section, however, results in apparent symmetric folds 

(between 6 and 7 seconds) being transformed into planar dipping reflectors in the (b) 

depth section (Fig. 3.3). This is less common in this study and is due to velocity pull- 

up (see Brown, 1999) caused by the seafloor expression of the overlying fold 

combined with the uplift o f high velocity rocks within the pop-up structure.

Seismic time sections are therefore used to describe structural geometries herein 

as the large majority of time sections are not significantly altered during depth 

conversion (as in Fig. 3.3, (c) to (d)). Exceptional velocity effects are referred to in the 

text.
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Figure 3.3: Cross sections to show depth conversion o f representative time sections.
(a), (b): A section containing a pop-up structure in a Type 1 linkage, (c), (d): A section towards the 
lateral edge of a Type 2 linkage. Above 4km (b & d) sections are relatively unchanged by depth 
conversion. Deeper than 4km, there is significant thickening. In (a), symmetrical folds beneath the 
pop-up are transformed into planar, dipping reflectors during depth conversion (b). Geometrically 
(ignoring thickness changes) (c) resembles (d), even at depth.
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Observations

3.4.1 Profile o f  a single fault andfold

Many studies o f fault linkage within extensional settings use a single, isolated, 

blind normal fault as a reference standard from which to identify modifications to a 

fault profile due to interaction with a free surface, mechanical boundary, 

unconformity or neighbouring fault (e.g. Barnett et al., 1987; Walsh and Watterson, 

1991; Huggins et al., 1995). In the Niger Delta, where faults are commonly longer 

than the extent of 3D datasets, there is a paucity of fully imaged, compressional faults. 

In addition to this, all faults observed in this structural domain either interact with 

another fault or detach at some point along their length and may, in the case o f fault 

propagation folds, have nucleated in the decollement.

The simplest example o f a fold and thrust from the Niger Delta dataset, and one 

that shows little evidence of having interacted with neighbouring structures, is 

described in Figure 3.4. This structure is only partially imaged and extends 

approximately 25 km from the fault and fold tip to the data edge (Fig 3.4a). The fault 

trace is somewhat arcuate in map view but shows no significant jogs that could 

indicate linkage (e.g. Cartwright and Trudgill, 1994). The profiles of fault 

displacement and fold crest elevation increase similarly away from the tip o f the 

structure and show no major changes in gradient along their length (Fig 3.4b and c). 

The shape of the single fault plane within the fold (Fig. 3.4d and e) is used as a 

reference when describing examples of antithetic linkage in this study. O f particular 

importance here is the shape of the lateral tip region of the fault expressed by the 

upper tip line, the upper edge o f the gridded surface (Fig. 3.4d and e). Ideal isolated 

normal faults (Barnett et al., 1987) are described as elliptical with a symmetric lateral 

taper, such that upper and lower tiplines converge equally towards a central lateral 

fault tip. In the case of this detaching thrust (Fig. 3.4) a large part o f the fault plane is 

hidden in a zone o f bed parallel shear within the detachment, whilst a lateral portion is 

not imaged due to the location of the data limits. As a result it may be argued that as 

little as a quarter of the fault is observable. It is evident fom  the gridded surface of 

the single thrust (Fig. 3.4e) that the tipline decreases in elevation along strike towards 

the tip, whilst increasing in gradient, such that the shape of the fault plane resembles a
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Chapter 3 Antithetic thrust fault linkages

quarter-ellipse (Fig. 3.4e). It is predicted that a complete, isolated fault would form a 

semi-ellipse, the chord of which would be located on the detachment. It is 

hypothesised that linking faults display modifications to this model that are 

characteristic of the type of linkage involved.

3.4.2 Antithetic linkage (forethrust to backthrust)

Antithetic transfer zones have a range of distinct structural geometries whilst all 

showing vergence reversals (the switching of vergence along strike) in associated 

folds (Fig. 3.5). The term ‘transfer zone’ is used to describe a region of displacement 

transfer between two interacting thrust faults. This can be demonstrated using 

displacement-length (d-x) profiles for each transfer zone that compare the magnitude 

of faulting on each constituent fault with distance along strike. Here, fault heave is 

used, as opposed to along-fault displacement (Fig. 3.6). Note the example profiles 

(Fig. 3.6) comprise measurements made on the faults corresponding to the folds of 

Figure 3.5. Ideal, isolated faults are thought to have linear d-x profiles, from the point 

of maximum displacement (dMAx) to the fault tip, approximating to the Walsh and 

Watterson (1987) cumulative slip profile (Peacock and Sanderson, 1991). Linking 

faults have been shown to display modifications to this model such that d-x profiles 

can consist of two straight portions, the first from dMAx to the start o f the relay and a 

second, steeper section, from the start of the relay to the fault tip (Peacock and 

Sanderson, 1991). The overlap of elastic strain fields during growth causes the slip 

distribution of a fault to be affected by the other (Segall and Pollard, 1980; Childs et 

al., 1995; Nicol et al., 1996). This can produce convex-up profiles resulting from an 

increase in displacement gradient towards the fault tips due to a retardation or arrest 

of lateral propagation and the transfer of displacement between linking structures. 

Overlapping faults that lack displacement transfer are therefore kinematically 

independent and are either too widely separated spatially or grew at different times. 

All faults described in this study exhibit abrupt increases in heave gradient towards 

the linkage zones and commonly have steeper profiles within the linkages than 

without (Fig. 3.6). The backthrust of the Type 2 example (Fig. 3.6b) is the exception 

as a significant part of it not imaged beyond the edge of the data. The profiles of 

antithetic thrust fault linkages (Fig. 3.6) therefore indicate kinematic interaction 

during linkage and suggest fault pairs grew concomitantly.
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S tructu ra l
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Figure 3 .5 : Maps of a folded horizon for antithetic Types 1, 2 & 3 linkages given in two-way- 
time (ms) to demonstrate vergence reversals along strike. Dark greys represent structural lows, 
lighter greys are structural highs. FW: footwall; HW: hangingwall. Hinge lines are represented 
by a stippled white line and black diamonds. The hangingwall intersection with the fault is 
given by black triangles. (p -p \ q -q \ r-r’) give the locations of seismic sections in Figures 3.7, 
3.9 & 3.10. The vergence of the fold can be determined to be towards the steeper limb from the 
fold crest as shown by the contours and shading. Note that structural highs occur close to the 
zone of overlap of the faults in Type 1 & 2 linkages. Also, the amount o f overlap o f the faults 
seen here only corresponds to this given horizon. For maximum fault overlap see later Figures.
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Figure 3.6: Heave-distance plots for examples of Type 1-3 linkage, (a) Type 1 antithetic 
thrust fault linkage. Stippled circles indicate points of abrupt change in displacement 
gradient towards the linkages, (b) Type 2 antithetic thrust fault linkage, (c) Type 3 antithetic 
thrust fault linkage.
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Chapter 3 Antithetic thrust fault linkages

These examples of kinematically linked, antithetic faults are used in this study to 

illustrate three subdivisions of thrust interaction based on fault plane geometries and 

horizon deformation that incorporate all permutations of linkage seen in this part of 

the Niger Delta.

3.4.2.1 Antithetic Type 1 linkage

This type of interaction is illustrated by the linkage of two thrusts which detach at 

similar levels (Fig. 3.7). The faults are spatially coincident within a single, 30 km 

long, continuous anticline that spans the hangingwalls. The fold switches vergence 

and is doubly-plunging with the culmination occurring above the mid-point of the 

transfer zone (Fig. 3.5, Fig. 3.7b). Fold amplitude decreases to zero away from the 

linkage along strike in one direction, and remains relatively constant until meeting the 

data limit in the other. The interaction of these faults is illustrated using successive 

seismic sections across the fold (Figs. 3.7a, b & c) the locations of which are given in 

Figure 3.5.

Relatively simple thrusted folds on either side of the transfer zone are contrasted 

with the structures within. Along strike of the zone of overlap a single backthrust (Fig. 

3.7a) ramps upward from the detachment and has an approximate maximum along- 

fault displacement of 1.5 km (Fig. 3.7 p-p’) measured on horizons immediately above 

the Agbada-Akata Fm boundary. The hangingwall anticline verges in the transport 

direction (to the right) with the shorter forelimb facing upslope and the longer, 

shallowly dipping backlimb facing downslope. The Agbada - Akata Fm boundary is 

offset and displays ‘apparent’ footwall folding caused by a velocity effect due in part 

to the seafloor expression of the fold (see below & Fig. 3.3).

This geometry is mirrored along strike, in the opposite direction from the transfer 

zone (Fig. 3.7c). An oceanward propagating forethrust, with approximately 1.3 km 

displacement in this section, produces an asymmetric hangingwall anticline that 

verges downslope (to the left, Fig. 3.7 r-r’). The Akata marker surface is again offset 

in a reverse sense, with ‘apparent’ folding (see below & Fig. 3.3) close to the fault 

plane in the footwall.

The transition along strike from forethrust to backthrust occurs within a transfer 

zone, the centre of which is shown in Figure 3.7b (q-q’). Here the fold displays no
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Chapter 3 Antithetic thrust fault linkages

vergence and two faults converge on a predicted point of intersection, or ‘branch 

point’ (e.g. McClay, 1992). A symmetrical fold in the shallower stratigraphy has 

equally dipping limbs and is bounded on both sides by faults in a ‘pop-up’ structure 

above the branch point. At deeper levels, below the intersection, the faults no longer 

offset horizons and deformation appears to be by folding alone. Depth conversion 

however reveals that apparent folding of the sub-thrust stratigraphy is due to velocity 

pull-up (see Brown, 1999) caused by the seafloor expression of the fold and the higher 

velocity rocks within the uplifted pop-up structure (Fig. 3.3a). Following conversion, 

stratigraphy below the branch point is planar (Fig. 3.3b) with a dip similar to the 

regional delta slope. Accurate description of the true deformation of this lower section 

is problematic due to poor imaging.

Cross sections are essential in clearly presenting the changing geometries, but 3D 

seismic data allow the along strike transition from forethrust to backthrust to be 

resolved in greater detail. Fault sticks interpreted on successive diplines through this 

structure have been gridded to produce a 3D representation of the fault planes (Fig. 

3.7d & e). The edges of the grids either correspond to the tip lines of the fault where 

displacement is zero, or the edge of the data set as labelled on the images. The F igures 

do not show the entire grids, but only the portions near the fault linkage. The along 

strike, horizontal overlap of the faults is approximately 3 km in this example. The 

upper tip-lines of both faults, shown as the top edges of the gridded surfaces, are 

located no more than 0.5 seconds (twt) under the seafloor. Tracing the tip-lines into 

the transfer zone there is a change in strike of the faults such that, at the tips, they 

curve as if to intersect each other (Fig. 3.5). This is similar to results from studies of 

fault segment linkage in extensional settings (e.g. Peacock and Sanderson, 1994). The 

shape of the lateral tip region of a fault plane is used in this study to define the 

geometry of fault interaction. The profile of a single fault and fold (Fig. 3.4) predicts 

isolated faults to be characterised by semi-ellipses (Fig. 3.8). Linked faults display 

modifications to this ideal that can be diagnostic of the type of linkage involved. In an 

antithetic Type 1 linkage faults have asymmetric, upward-tapering lateral tip regions 

(Fig. 3.8). This requires the lower tip lines to leave the zone of bed parallel shear in 

the detachment and climb stratigraphy towards relatively shallow lateral fault tips, 

while the upper tip lines maintain elevation. The result is an overlap of faults above 

the line of fault intersection, or ‘branch line’ (Boyer and Elliott, 1982; Butler, 1982;
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Shape of the lateral tip region of a thrust fault

(a) Non-linking fault
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Figure 3.8: Diagrammatical strike projections of faults to describe the shape of a fault plane around 
the region of the lateral tip for non-linking and linked faults, (a) A non-linking fault describes a 
quarter-ellipse from dMAX to tip (as here) and a semi ellipse from tip to tip. (b) A Type 1 linkage has 
an elevated lower tip line and an upward-tapering lateral tip region, (c) A Type 2 linkage has a 
‘depressed’ upper tip line and a downwards-tapering lateral tip region. Portions of tip lines that may 
form branch lines with counterpart faults (see Fig. 3.11) are indicated by white stippled lines. Type 3 
is not shown as it does not have a diagnostic fault shape.
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McClay, 1992), and an absence of faulting below this, close to the detachment, within 

the transfer zone (Fig. 3.3b). This is best demonstrated in section (Fig. 3.7b) by 

contrasting the vertical extent of faulting relative to the branch point (Fig. 3.3b).

The geometry of this first class of linkage has been simplified in block form in 

Figure 3.7f. An inset horizon has been included to demonstrate the increase in offset 

of horizons away from the zone of linkage. Stratal deformation varies with depth due 

to the shape of the lateral tip regions o f the fault planes in the transfer zone. The 

horizon in Figure 3.7f is at a relatively shallow level and is continuous and unbroken 

from hangingwall to hangingwall through the transfer zone.

3.4.2.2 Antithetic Type 2 linkage

An example of antithetic Type 2 linkage from this data set (Fig. 3.9) shows an 

along strike reversal of thrust fault transport direction and fold vergence through the 

transfer zone, as in Type 1. The shape of the lateral tip region of the faults, however, 

and the geometry of the fault overlap is markedly different (Fig. 3.8). The fold 

associated with the thrust faults forms a continuous and buried anticline that trends 

obliquely to thrust strike through the centre of the transfer zone (Fig. 3.5b). 

Representative, successive seismic sections across this fold (Fig. 3.9a, b & c) give an 

illustration of this transition between forethrust and backthrust In Figure 3.9a a 

detaching backthrust carries a landward verging hangingwall anticline. The backlimb 

of this fold is onlapped by landward-stepping sedimentary packages. Maximum 

along-fault displacement on this fault is approximately 1.5 km. Footwall stratigraphy 

is essentially planar, but is deformed by a small forethrust (f2) with displacement of 

less than 200 m.

The structural geometry described in Figure 3.9a is reversed on the other side of 

the transfer zone (Fig. 3.9c). In this instance the forethrust (f2) is dominant with 

approximately 1.3 km maximum along-fault displacement. Fold vergence is now 

oceanward with onlap packages, although present in the footwall, predominating in 

the hangingwall where they abut the long shallowly-dipping backlimb. Footwall 

deformation is characterised by a small backthrust with a maximum displacement of 

less than 200 m in this section
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Chapter 3 Antithetic thrust fault linkages

A transfer zone lies between these two selected lines where neither forethrust nor 

backthrust is dominant f ig .  3.9b). Maximum displacements are almost identical at 

800 m and 900 m respectively. The two opposing thrusts are seen to abut, are over

steepened and underlie a ‘bell-shaped’ fold in the overburden. Changes to this 

structure during depth conversion were considered inconsequential. The symmetry of 

the fold and the vertical axial plane demonstrate a lack of vergence at this point and 

onlap packages occur on both limbs, stepping towards the anticlinal crest. This fold 

shape, with a lower interlimb angle, characterises Type 2 linkages within the dataset.

The wireframe and transparent fault planes (pig. 3.9d, e and f) illustrate the 

forethrust and backthrust geometries in and around the transfer zone. The amount of 

along strike overlap of these faults is calculated, by extrapolating fault displacement 

gradients for fault 2 beyond the data boundaries, as approximately 9.5 km. The switch 

in dominance of the corresponding faults, indicated by the amount o f displacement 

and the height of the upper fault tip-line, occurs over a distance of 2 km. Unlike the 

Type 1 example, the trends of the fault planes in map view do not change strike into 

the zone of overlap despite a decrease in the elevation of the upper tip-line. 

Downward-tapering lateral tip regions (Fig. 3.8) lead to relatively deep lateral fault 

tips as the lower tip lines remain within a zone of bed parallel shear within the 

detachment. This causes faults to overlap exclusively below  the branch point, seen in 

cross section (Fig. 3.9b), close to the detachment and results in an absence of faulting 

in the hangingwall above. Shallower horizons, those stratigraphically higher than the 

branch line, remain unbroken across the midpoint of the linkage zone (Fig. 3.9g, q-q’) 

due to displacement along a fault, and hence horizon offset, decreasing to zero at the 

tip lines and the shape of the lateral tip regions.

3.4.2.3 Antithetic Type 3 linkage

Linking faults need not be of similar displacement or lateral extent to form 

through-going folds. The antithetic Type 3 example (Figs. 3.6c and 3.10) comprises 

a backthrust measuring 9.5 km between lateral tips and a forethrust that extends 47 km 

from one lateral tip before being lost at the edge of the data set. Again, sequential 

seismic sections illustrate the changing fault geometries. In Figure 3.10a a landward 

propagating backthrust (fl), detaching on the Agbada-Akata Fm boundary, produces a
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Chapter 3 Antithetic thrust fault linkages

landward verging hangingwall anticline. An undisturbed seafloor suggests this fault is 

no longer active and depth conversion did not alter structural geometries to any 

significant degree. Small, very low displacement forethrusts are present in the 

footwall and align with a slight bend in the backthrust fault plane. Displacement on 

the dominant backthrust is about 600 m here. Along strike (Fig. 3.10c), an oceanward 

verging fold overlies a forethrust (f2) that detaches within the Akata section. The 

shape of the fold is complicated by branching o f the fault plane at around 6 seconds 

twt, possibly due to the formation of a footwall imbricate. This geometry is not 

spatially extensive and is only present for 2.5 km of the fold length close to the 

transfer zone. The footwall is relatively undeformed indicating this is outside the area 

of overlap.

Within the transfer zone (Fig. 3.10b) the backthrust (f l)  is cross-cut by the less 

developed forethrust (f2), and complicated stratal geometries result along strike (Fig. 

3.10 g & h). The complexity ensues due to the complimentary displacement patterns 

of faults 1 and 2 along strike (i.e. both faults are losing displacement towards the 

transfer zone). In Figure 3.10d, ‘i’ represents a point of zero displacement on fault 2, 

whereas ‘ii’ and ‘iii’ locate two points o f zero displacement on fault 1. Points ‘ii’ and 

‘in’ were once joined and have been separated by movement on fault 2. Fault 1 has 

therefore been cross-cut by fault 2. The crucial point to note therefore is that 

displacement along fault 1 decreases from the centre o f  its fault plane to the tipline, 

whilst the degree by which fault 1 is displaced when cross-cut increases in the same 

direction due to the interaction and nature of fault 2. This can lead to tapering, 

triangular sections of stratigraphy existing within the hangingwall-hangingwall 

section of the anticline (pig. 3.1 Oh). The fold retains a slight landward vergence 

within the transfer zone (Fig. 3.10b) due to the backthrust, at this point, having the 

larger displacement despite both faults acting upon the fold. The backthrust segment 

isolated within the forethrust hangingwall has convex-up curvature (Fig. 3.10b), 

suggesting deformation of the backthrust by folding prior to being cross-cut. The 

steady plunge of the fold across the transfer zone (Fig. 3.5c), the complimentary 

heave gradients and the cumulative heave curve similar to that o f a single fold (Fig. 

3.6) indicate these faults have been kinematically linked since conception (e.g. Nicol 

et al., 2002). The exclusive cross-cutting of fault 1 by fault 2, however, suggests fault 

1 may have become inactive prior to the hard linkage of the faults.
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The 3D model of the intersecting fault planes is more complicated than other 

types due to cross-cutting faults. The shape of lateral tip regions within the transfer 

zone (Fig. 3.1 Od) resemble that o f non-linking faults (Fig. 3.8) with lower tiplines 

remaining in the detachment. The shape o f the fault plane is therefore not distinctive 

for a Type 3 linkage and classification is based on both faults extending above and 

below branch lines in 3D, or the continuation of both faults past branch points in 

section, producing cross-cutting fault planes.

3.4.3 Comparing the structural geometry o f  transfer zones

The three types of antithetic fault linkage display very distinct fault plane 

geometries and fold styles within the transfer zones. The location and extent of faults 

relative to branch lines, and the offset and shape of selected horizons at various levels 

within the stratigraphy, are compared in Figure 3.11.

The shape of the upward-tapering lateral tip regions of the faults in the Type 1 

example leads to a ‘pop-up’ structure forming in the shallower section, such that 

neither fault reaches detachment within the zone of linkage. Hence, along the entire 

length of the related anticline there can be a maximum of one fault detaching into the 

shaly Akata Fm. In contrast to this, the anticlines associated with antithetic Types 2 & 

3 linkages display double detachments within the transfer zones.

Horizon continuity across the folds, through the transfer zones, varies between the 

three types of linkage depending on the vertical extent o f faulting relative to the 

branch lines (Fig. 3.11). Here, strata above this line are considered shallow and those 

beneath described as deep. In Type 1 the deeper horizons are continuous, planar and 

unbroken in a down-dip direction across the transfer zone, although a loss of seismic 

resolution in this area means smaller scale deformation may not be recorded here. 

Shallower horizons are also continuous along a convoluted surface through a 

hangingwall-hangingwall (hw-hw) transfer fold (Fig. 3.11). In contrast the deeper 

horizons in both the Type 2 and Type 3 geometries are connected through an indirect, 

undeformed footwall-footwall (fw-fw) ‘corridor’. They differ within the shallow 

section however with the Type 2 horizons being continuous in a down-dip direction 

through the tight ‘bellfold’ whilst Type 3 horizons are connected by a tortuous hw-hw 

transfer fold (Fig. 3.11). Type 3 is more complex and horizons in the mid section, 

close to and above the convergence o f the detaching thrusts, frequently show 

recurring repetition of stratigraphy.
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Varying stratal geometries with depth and type of linkage

Type 1 Type 2 Type 3
— Horizons above level of branch line of antithetic faults (a, c, e) —

Bend in fault due 
to displacement on 
\counterpart fault

Tight,
bell-shaped

fold

Hanging- 'X  
-wall offset fcy'v 
counterpart fault

— Horizons below level of branch line of antithetic faults (b, d, f) —
hw-hw’: Indirect hangingwall-hangingwall transfer fold, fw-fw’: Indirect footwall-footwall 'corridor', 

fo-fo’: Continuous, folded in downdip direction. fl-fT:Continuous, planar in downdip direction

Diagrammatical antithetic thrust fault linkages

branch line

branch line

branch line

Figure 3.11: Diagrammatical representation of the main stratal geometries of antithetic thrust 
fault relay zones. Two horizons are depicted for each linkage type, demonstrating the 
deformation above a branch line (a, c & e) and below (b, d & f). Simplified fault geometries 
are given to demonstrate the position o f the branch lines.
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3.5 Discussion

This is the first classification o f antithetic thrust fault linkages and contributes to 

the understanding of fold and thrust belts. The three classes of forethrust-backthrust 

interaction are presented as static geometric observations. One of the major questions 

concerning how these geometries formed is whether folding predates fault growth and 

interaction, or whether fault interaction drives fold formation. Until this is 

determined, we cannot conclude the root causes of the different geometries, and 

therefore this contribution is descriptive. Several possible models could account for 

the structures seen in this study, for example:

1. Two kinematically separate faults with associated fault-propagation folds 

propagate laterally, converging and linking, creating a continuous fold (Fig. 3.12a).

2. Folding precedes faulting. In this case a laterally extensive fold forms first, 

then nucleating numerous faults along its length that grow by segment linkage; 

synthetic faults joining to form larger through-going faults, faults with opposing dip 

forming antithetic transfer zones (Fig. 3.12b).

Analogue models exist that support the second hypothesis, that folding precedes 

faulting (Dixon and Liu, 1991; Liu and Dixon, 1991). These authors suggest that 

numerous thrusts could nucleate at different points along a single fold and propagate 

along strike, to link and produce larger structures. The models also show that the 

encompassing fold may be the product of along strike propagation and linkage of 

several smaller, doubly plunging folds.

Few published examples o f along strike antithetic thrust linkage can be found 

within literature: three are discussed here. Harrison and Bally (1988) describe the 

Parry Island Fold Belt, in the Canadian Arctic, as having a near equal development of 

forward- and backward-verging fold and thrusts. Numerous surface folds demonstrate 

along strike vergence reversals (Harrison and Bally, 1988 their Figure 6) associated 

with apparent antithetic thrust fault linkage in the underlying succession (Harrison and 

Bally, 1988 their Figure 7). The authors describe “pop-up” structures within the 

transfer zones and relate them to displacement transfer between the overlapping 

thrusts. They create a model for “pop-up” formation that is similar in general to our 

Type 3 linkage (Harrison and Bally, 1988 their Figure 13).

Aamir and Siddiqui (2006) document an apparent Type 2 Linkage between the
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linkage

faults propagate 
laterally into 
undeformed 
strata Fold growth 

driven by fault 
propagation

leading to 
antithetic 
linkage

leading to 
synthetic

Faults grow by 
segment linkage 

within fold

Figure 3.12: Hypothetical models of the evolution of antithetic thrust fault linkage 
(based on a Type 2 linkage geometry). Two possible mechanisms of fold and fault 
linkage, (a) Two kinematically separate faults with associated fault-propagation folds 
propagate laterally, converging and linking, creating a continuous fold, (b) Folding 
precedes faulting. In this case a laterally extensive fold forms first, then nucleating 
numerous faults along its length that grow by segment linkage; synthetic faults joining 
to form larger through-going faults, faults with opposing dip forming antithetic transfer 
zones, (a’/b’) A schematic diagram of a Type 2 linkage observed in the data.
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Domeli Thrust (DT) and the Dil Jabba (DJ) Thrust in Eastern Potwar, Pakistan. In this 

study they show that the DJ thrust system overrides DT in the southwest whilst being 

overridden by DT, along strike, in the northeast. Between these two extremes they 

identify the point at which neither fault holds dominance (Aamir and Siddiqui, 2006 

their Figure 16). This pattern suggests downward-tapering lateral tip regions 

indicative of a Type 2 Inkage (Fig. 3.8), although fold styles in the overburden are 

not available for comparison. The DJ and DT faults result from northwest-southeast 

Himalayan compression (Aamir and Siddiqui, 2006) that creates a more complex 

thrust system than those in the Niger delta which are driven by gravitational collapse 

(e.g. Rowan et al., 2004). A Type 2 transfer zone present in a triangle zone of Eastern 

Potwar suggests that antithetic thrust fault linkages can be applied more generally 

than just to toe-of-slope fold and thrust belts.

Butler et al. (1987) describe alternating displacement between forethrusts and 

backthrusts in the Himalayan mountain front in the Salt Range of northern Pakistan. 

They discuss a necessary rotation of interacting thrust sheets o f opposed polarity due 

to differing nature of forethrusts and backthrusts. They argue that the propagation of a 

backthrust may lead to the movement o f the footwall ramp into the foreland due to 

footwall rocks being forced under the hangingwall. Forethrusts, on the other hand, 

have static footwall ramps as hangingwall rocks are simply transported up and over 

the footwall (Butler et al., 1987). This was not observed in the fold and thrust belt of 

the Niger Delta, possibly due to lower fault displacements.

3.5.1 Implications

This research raises important questions about fault growth and linkage in 

compressional settings. Future work involving detailed displacement analyses and 

examination o f fold and thrust timing may give clues to the controls on the type of 

linkage created at a point of fault interaction and the relationship between fault 

displacement and shortening within the transfer zones.

The geometry o f three-dimensional thrust fault linkages described here could also 

impact modeling of fluid migration and transmissibility of deep water deltaic 

sequences. Understanding of (a) the connectivity of sand bodies in a stacked channel- 

levee system (b) the 3D geometry o f the faults that intersect potential reservoir and
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seal lithologies and (c) how faults link the reservoirs to the underlying source rocks 

are all critical questions for successful hydrocarbon exploration and production.

3.6 Conclusions

We define three types o f linkages o f thrust faults of opposing dip within a fold 

and thrust belt.

Type 1. Faults overlap laterally within the shallow section only, above the level of 

the branch line of the antithetic thrusts. This creates a ‘pop-up’ structure within the 

transfer zone and a convoluted hangingwall-hangingwall (hw-hw) transfer fold.

Type 2. Faults overlap laterally within the deep section only, below the level of 

the branch line o f the antithetic thrusts. This creates distinctive, tight folds in the 

overburden and an indirect, undeformed footwall-footwall (fw-fw) ‘corridor’.

Type 3. Faults cross-cut one another so that both are present above and below the 

branch line. Strata above this line form a convoluted hw-hw transfer fold, those below 

form an indirect, undeformed fw-fw ‘corridor’ with an increase in horizon repetition 

in the mid section.

All share the common feature o f an along strike switch in vergence in the 

respective hangingwall anticline, however deformation o f sediments within the 

transfer zones varies with depth due to the shape of the lateral tip regions of fault 

planes as they overlap.

Such intersections represent a fundamental aspect o f compressional fold and 

thrust belts and hence this simple scheme for defining how the component faults and 

folds link should have global applicability.
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CHAPTER 4

4 INTERNAL ARCHITECTURE AND GROWTH HISTORY OF A 

THRUST-RELATED ANTICLINE IN A DEEP WATER FOLD BELT

4.1 Abstract

The structural evolution of a fold-and-thrust belt is investigated through the 

analysis of a single, isolated fold imaged using 3D seismic data over part of the deep 

water Niger Delta. Numerous thrust faults, o f similar and opposing dip, link and 

transfer displacement through transfer zones within the structure creating a central 

structural culmination and causing the vergence to vary along strike. These linkages 

vary in spatial extent and have distinctly different styles. Fault heave and shortening 

measurements are presented for each instance as displacement-length profiles and 

strike projections with reference to a simple fold comprising a single fault plane. Syn- 

kinematic growth packages are used to chart fold and fault growth through time and 

allow for an understanding of the early structural growth history. This evidence forms 

the basis for a model of fold-and-thrust fault growth for toe-of-slope compressional 

settings. Several detachment folds initiate with individual structural culminations and 

grow towards each other by lateral propagation along strike. Numerous faults nucleate 

at various stratigraphic levels along the length of the structure on both flanks 

producing an asymmetric fold shape. Analysis of lateral fold tip structures suggests 

the faults propagate some distance above the detachment. Continuing fault 

development results in the migration o f the point of maximum displacement, observed 

in a given 2D section, downwards towards the detachment. Folds coalesce and faults 

link along strike, resulting in structural culmination migration to a single central apex 

and the formation of synthetic and antithetic thrust fault linkages. The bulk shortening 

profile resembles that of an individual fault and fold indicating component structures 

have acted as a coherent unit since inception. Final fault and fold geometries display 

fluctuating fault heave values and a smoother shortening profile that suggests 

deformation by folding compensates for deficits in fault heave along strike.
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4.2 Introduction

The relationship between thrust faults and associated folds has been 

extensively researched in the past two decades (Thorbjomsen et a l, 1997). Distinct 

classes of structure are now clearly defined and widely described from orogenic belts 

exposed on land and more recently from fold and thrust belts associated with gravity- 

driven deformation o f continental margins. The description of fault-bend-folds 

(Rich, 1934; Boyer and Elliott, 1982; Suppe, 1983), fault propagation folds 

(Williams and Chapman, 1983; Suppe, 1985; Suppe and Medwedeff, 1990), 

break-thrust folds (Jamison, 1987; Mitchell and Woodward, 1988; Butler, 1992; 

Woodward, 1992) and detachment folds at the lateral terminations of faults (e.g. 

Jamison, 1987) have mainly been based on cross-sectional geometry, either derived 

from exposed sections or from 2D seismic profiles. However, our current 

understanding of the initiation, propagation and along strike linkage of such 

structures remains limited, although analogue and numerical models have led to 

significant recent advances (e.g. Liu and Dixon, 1991). The advent of 3D seismic data 

as a research tool has been a major factor in the revolution in our understanding of 

normal fault propagation and linkage (Childs et al., 1995; Nicol et al., 1995; 1996; 

Meyer et al., 2002) and thus far, this imaging potential has not been employed to 

analyse the three-dimensional evolution o f thrust related folds to the same degree.

A primary aim of this paper is to demonstrate the potential for the use of 3D 

seismic data in the structural analysis o f fold and thrust belts. Advancements in 

seismic imaging resulting from modem 3D migration algorithms enable thrusts to be 

accurately mapped and reveal subtleties of geometrical form that are vital for the 

correct reconstruction of their growth history. We use the example of a superficially 

simple fold structure from a deepwater fold and thmst belt of the Niger Delta 

(Corredor et al. 2005; Briggs et al. 2006) to analyse thrust and fold growth histories 

through detailed strain analysis. We describe several novel techniques to define the 

strain history, and fom this we show that a single, kinematically coherent structure 

has evolved by a process of segment propagation and linkage directly analogous to 

that known for normal faults (e.g. Segall and Pollard, 1980; Ellis and Dunlap, 1988; 

Peacock and Sanderson, 1991; Cartwright et al., 1995). Linkage of propagating 

segments to form thrust faults with relay structures or transfer zones is not a new
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Chapter 4 Structural geometry and development of a single thrusted fold

concept (Dahlstrom, 1970; Elliott, 1976; Ellis and Dunlap, 1988; Nicol et al., 2002), 

but the use of 3D seismic data to constrain this process has not previously been 

attempted for fold and thrust settings.

The paper concludes with a discussion of the growth history of a fold in the 

context of current uncertainties in how thrust faults evolve. This uncertainty is 

reflected in the various competing models of thrust development in vogue at present 

(e.g. Thorbjomsen and Dunne, 1997). Some authors propose that the role o f the fault 

is over-emphasised in feld-and-thrust belt literature and conclude that fault ramps 

nucleate at points localised by earlier folding of competent units. Dixon and Liu 

(1991) argued that fault linkage may be preceded by the along strike propagation and 

merger of colinear, periclinal detachment folds (Fig. 4.1). Upward propagation of 

faults into the competent units produce fault propagation folds. Subsequent fault 

refraction into the weaker units above may eventually lead to the development of fault 

bend folds. A final aim of this paper, therefore, is to evaluate these models against a 

single, but well constrained case study example. The quantitative description of thrust 

fault linkages that exist within a single fold, along with detailed analysis of the spatial 

extent and form of syn-kinematic packages, provides the basis for a discussion of: i) 

the internal architecture of a complex faulted fold, ii) the geometry and kinematics of 

thrust fault linkage, iii) the relationship between folding and faulting in 

accommodating shortening and iv) the timing and location of fold and fault growth.

4.3 Database

This paper is based on two 3D seismic surveys (A and B) acquired over the 

compressional fold and thrust belt located in the toe-of-slope region of the Niger 

Delta. Survey A covers 3000 km2, and was acquired with a 6 km offset length, a 12 

seconds $) record interval and a sampling interval of 4 milliseconds. Inline and 

crossline spacing is 12.5 m with vertical resolution varying from approximately 7.5 m 

in shallow levels to 20 m at the base of the thrusted interval. Survey B (Fig. 4.2) is 

located upslope of the main fold and thrust belt, covers an area o f c. 2000 km? and has 

lines spaced at 12.5 m The resolution o f survey B is comparable to that of survey A. 

Eleven key seismic horizons were mapped in both survey areas using Schlumberger’s 

IESX interpretation software and dated biostratigraphically by correlation to a nearby
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Figure 4.2: Seismic survey B. Two selected stratigraphic horizons (h7 and h3) showing a single, isolated thrusted-fold. Horizon h7 is 
stratigraphically above horizon h3. Elevation of the horizon is presented in two-way-time (ms). Note the change in fold vergence along strike 
indicated by closely spaced contours (yellow lines). Red/orange colours: structural highs. Purple/blue colours : structural lows. Contour 
interval: 40 ms.
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Chapter 4 Structural geometry and development of a single thrusted fold

confidential exploration well. Interval velocities and check shot data from the well 

were used to depth convert seismic sections for use in restoration, shortening 

calculations and to validate geometric structural observations. Seismic lines 

perpendicular to the regional strike of fold and fault structures were used for fault 

interpretation, fault heave measurements and calculations of shortening.

4.4 Structural setting

Surveys A and B are located in the outer part o f a gravity-driven fold and thrust 

belt in the deepwater Niger Delta which has been described by Short and Stauble 

(1967), Onuoha and Ofoegbu (1988), Doust and Omatsola (1990) and Cohen and 

McClay (1996). Deltaic sedimentation began during the late Paleocene to Eocene 

upon the underlying Albian marine succession (Whiteman, 1982). Neogene clastic 

sediments are thought to reach a maximum thickness of 12 km in the Niger Delta 

(Whiteman, 1982). Gravitational collapse of the delta is driven by differential 

progradational loading and results in the downslope translation of the paralic Agbada 

Formation (e.g. Bilotti and Shaw, 2005) on major detachment levels that exist within 

pro-delta marine shales of the Akata Formation (Briggs et al., 2006). The Niger Delta 

has previously been described as having three structural zones: an extensional 

province beneath the outer shelf comprising listric growth faults; a zone of mud 

diapirism located beneath the upper continental slope; and a more distal compressional 

zone (Damuth, 1994).

This deep water compressional zone has been sub sequently further subdivided to 

differentiate two fold and thrust belts with differing degrees of forethrusts and 

backthrusts (e.g. Connors et al., 1998; Corredor et al., 2005). The inner thrust belt is 

predominantly made up of oceanward-verging imbricate thrust faults and folds and 

some detachment folds. The outer belt, in contrast, is characterized by both landward- 

and oceanward-verging thrusts and folds (Corredor et al., 2005; Briggs et al., 2006). 

Separating the two is a transitional detachment fold zone exhibiting large areas of 

little or no deformation. The main focus of this study is on an isolated faulted fold 

located within this transitional detachment fold zone. Survey A images part of the 

outer fold and thrust belt.

Gravitational deformation is active at present, having initiated in the early 

Tertiary on detachments thought to be a product of overpressure in the shaly Akata 

unit (Morley and Guerin, 1996; McClay et al., 1998). Thrust faults are documented as
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detaching at numerous levels within the succession of the Niger Delta (e.g. Corredor 

et al., 2005; Briggs et al., 2006), although only two detachment levels are seen in this 

data; at the Agbada-Akata Formation boundary and a regional detachment within the 

Akata itself. In this study area, the Agbada Formation comprises a series of 

compensationally stacked deepwater channel-levee systems (e.g. Deptuck et al., 2003) 

and is deformed by both oceanward-vergent forethrusts and landward-vergent 

backthrusts. The relative age o f thrust and fold initiation does not simply progress 

from the foreland into the hinterland. Thrust systems can locally show signs of both 

break-forward and break-backward thrusting (Corredor et al., 2005).

4.5 Methods

4.5.1 Strike projected contour plots

Shortening values and fault heave measurements are presented using plane- 

vertical strike-projections, following techniques developed for analysis of normal 

faults (e.g. Rippon, 1985). Shortening calculations incorporate folding as a major 

mechanism of deformation. Shortening values are based upon and refer to marker 

horizons as the datum for plotting purposes. Fault heave and bulk shortening are 

calculated for each of the eleven key seismic horizons and are plotted at a 

corresponding undeformed, ‘regional’ horizon depth downdip of the fold structure to 

avoid introducing spatial positioning errors resulting from variable fold amplitudes 

(Fig. 4.3). Fault heave is plotted using the same methodology as for shortening values, 

rather than at a cut-off position (e.g. Williams and Chapman, 1983) or at the midpoint 

between cut-offs (e.g. Ellis and Dunlap, 1988). Our plotting convention allows direct 

comparison between variations in faulting and bulk shortening. The major limitation 

of our method, however, is that upward displacement gradients along fault planes will 

be apparently reduced compared to previous studies. This effect is compounded if a 

fault has a listric character in sectional profile such that a fault decreases in dip with 

depth, as heave will be seen to increase for the same along-fault displacement. This 

may produce an apparent increase in the upward displacement gradient. This has 

limited impact however, as faults in this study are approximately planar for the 

majority of their height as ramps are restricted to within 300 -  400 milliseconds (ms) 

above the detachment. In addition, the main focus of this paper is on along strike 

changes in fault and fold geometries which are unaffected by these limitations.
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sh1 = (a+ b) - C 
sh 2  = (d + e) - c

FT - Forethrust 
BT - B ackthrust

more 
shortening

less 
shortening

Figure 4.3: Methodology for the calculations of shortening and the display of strike 
projected contour plots. Three sequential depth converted cross-sections showing a 
change in structural geometry along strike through an antithetic thrust fault linkage. FT: 
forethrust. BT: backthrust. Values o f shortening (e.g. sh l, sh2) are calculated by line 
length analysis, a, b: length of selected stratigraphic horizons in the footwall. d, e: 
length of selected horizons in the hangingwall. c: length of section. Values of shortening 
(e.g. shl, sh2) are plotted on a vertical strike projection plane at depths corresponding to 
undeformed, ‘regional’ horizon depths downdip of the fold structures to allow 
correlation with fault heave measurements. Values are contoured.
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Shortening values are calculated by simple line length balancing (e.g. Dahlstrom, 

1969; Tearpock and Bischke, 1991) (Fig. 4.3). Fifteen sequential seismic lines spaced 

along the length of the fold, and perpendicular to the regional fold and fault strike 

were depth converted using local well data. The sections were pinned away from the 

structure at a point o f undeformed layer-cake stratigraphy. The width of the section 

(c) is subtracted from the summed lengths of the hangingwall (a) and footwall (b) 

sections of each horizon, such that Shortening (sh) = (a+b) - c (Fig. 4.3). The 

assumptions, limitations and potential errors associated with the measurement of 

strain from seismic data are discussed in Chapter 6.

4.5.2 Timing o f deformation

Individual fault-related folds in the deep water Niger Delta are characterized 

by an upward shallowing of dips above long, planar back limbs suggesting 

progressive limb rotation during sedimentation (Corredor et al., 2005). The continuity 

of the majority of syn-kinematic seismic reflections across the fold described in this 

study suggests sedimentation rates were similar to the rate of structural uplift. 

Discrete onlap towards the fold crests is rare suggesting that sediment supply 

generally exceeded fold amplification rate. The onset and duration of folding and 

faulting are quantified by the analysis of growth packages on the limbs of anticlines 

(e.g. Medwedeff, 1989; Suppe et al., 1992; Storti and Poblet, 1997). Two variables are 

defined and measured here; isopach ratios and upward dip reductions.

Isopach ratios compare the depth converted, orthogonal thickness of sediments 

on the limbs of a fold to those on the crest (Fig. 4.4) and are expressed as the flank 

thickness relative to crestal thickness. As folds begin to grow, synform sedimentary 

confinement causes the interval isopach ratio to increase. In layered siliciclastic 

sediments pre-kinematic sediments should have a constant thickness across a fold, 

whereas syn-kinematic sediments should thin towards and onto a fold.

Upward dip reductions quantify the change in dip of stratal reflections along 

vertical profiles positioned on the limb of folds (Fig. 4.4). Progressive limb rotation 

due to fold growth causes strata on the flanks to steepen (e.g. Storti and Poblet, 1997), 

while the depositional surface above them remains sub-horizontal. Flence, the dip 

measured upwards along a vertical profile should show an abrupt decrease as folding 

begins. Measurements are made on depth converted dip attribute maps that eliminate
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Figure 4.4: Diagrammatical description of locations of vertical profiles (used in calculating 
isopach ratios and upward dip reductions) relative to growth packages associated with Fold 
B. 1,2: locations of vertical profiles in forelimb and backlimb respectively. Geometry of 
growth strata adapted from Storti and Poblet (1997) and represents stratal forms associated 
with fold development predominantly by limb rotation and similar rates of uplift and 
sedimentation.
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errors produced by local dip variations such as within channel-levee complexes. Dips 

of successive horizons are subtracted (Fig. 4.4), and a negative value is interpreted as 

indicative of a syn-kinematic package. Pre-kinematic sediments, deposited as layer- 

cake stratigraphy, should have consistent dip along the vertical profile. Comparisons 

of values recorded by forelimb-backlimb paired profiles allow conclusions to be 

drawn on the degree of asymmetry of the fold through time (Fig. 4.4).

4.6 Results

Two case studies have been selected from the array of thrusts and associated folds 

in the two survey areas to demonstrate the techniques that can be employed in strain 

analysis using 3D seismic data, and to provide a basis for the later discussion of fold 

growth. We contrast two faulted folds: Fold A represents the simplest example of a 

faulted fold within the surveys, in terms of fault plane geometry, linkage, fold shape, 

fault displacement and shortening profile. Fold B, in contrast, is more complex, 

consisting of numerous faults of opposing dip, includes synthetic and antithetic fault 

linkages, along strike fold vergence reversals and irregular fault displacement profiles. 

The growth history of Fold B is the main focus of this paper and hence is the subject 

of more analysis than Fold A.

4.6.1 Fold A

Fold A is developed within the frontal zone of the fold belt, but exhibits little 

evidence of along strike interaction with neighbouring structures f ig . 4.5). Full 

analysis, however, is unfortunately limited as this structure is only partially imaged 

for 23 km along strike from the fold tip to the edge of the survey (Fig. 4.5a). The 

structure consists of a single seismically resolved fault plane (Fig. 4.5d) with no 

significant jogs in the fault trace (Fig. 4.5a) that are commonly interpreted as zones 

where fault linkage has occurred (e.g. Peacock and Sanderson, 1991; Cartwright et al., 

1995). Fold amplitude of a selected horizon, termed horizon ‘x’, exceeds 1200 m 

between 0 and 4 km along strike and decreases at a steady gradient towards the fold 

tip at the 22 km position (Fig. 4.5c). Fault heave displays a first-order tapering, 

convex- up profile (horizon x) along the length of the fold, superimposed on which are 

small amplitude irregularities (Fig. 4.5b). These irregularities correlate with 

undulations in fault heave contours (Fig. 4.5f). Fault heave increases with depth on all 

parts of the fault such that maximum displacement is predicted to be located within
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F ig u re  4 .5 : Heave and shortening profile o f Fold A. Along strike distances measured from 
a point close to the edge o f the survey area, (a ) Elevation map of horizon ‘x’ in two-way- 
time showing fault trace and hangingwall anticline. Thrust fault trace denoted by black 
triangles in the hangingwall. FW: footwall. HW: hangingwall. (b )  Heave- length and 
shortening profile of the thrust fault measured on horizon x. (c ) Depth to fold crest for 
horizon x. (d )  Fault heave strike projected contour plot, (e) Bulk shortening strike 
projected contour plot, ( f) and (g ) 3D images of fault plane. Note that the tipline of the 
thrust surface resembles a quarter-ellipse (g). (h ) Representative seismic section oriented 
perpendicular to fault strike.
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the detachment. There is no evidence in the heave pattern of any segmentation. Total 

shortening across this structure has a smoother profile than heave and is closer to the 

trend of crestal height (Fig. 4.5b). The area contained within the zero shortening 

contour (Fig. 4.5g) is larger than that within the zero heave contour (Fig. 4.5f). This is 

due to the decreasing elevation o f the fault tipline along strike, above which sediments 

are deformed by folding alone.

The smooth decrease in both heave and bulk shortening exhib ited by the visible 

portion of Fold A can be used to predict the distribution of heave and shortening on a 

single, mechanically isolated (i.e. no interaction or linkage with a neighbouring 

structure) thrust and fold, albeit with the restrictions imposed by the limits of the 

survey (Fig. 4.5e). In this respect it resembles the profiles o f single, isolated, normal 

faults (Barnett et al., 1987; Walsh and Watterson, 1991) which die out upwards, 

downwards and laterally towards an elliptical fault tip line oriented with the shorter 

axis parallel with the transport direction However, because of the incomplete imaging 

in this case, it is only possible to conclude that shortening decreases systematically 

upward and laterally from a maximum located immediately above the detachment 

approximately 6 km along strike (Fig. 4.5 g).

4.6.2 FoldB

Fold B is a single isolated fold, located 30 km upslope of the major outer fold and 

thrust belt, and is fully encompassed on survey B (Fig. 4.2). Stratal horizons are offset 

by a number of forethrusts and backthrusts that detach at Akata-Agbada Formation 

boundary and link along strike within the fold producing a maximum fold amplitude 

in excess of 1 km. Surrounding strata are undeformed for a minimum lateral distance 

of approximately 12 km away from Fold B.

4.6.2.1 Fold shape

Superficially Fold B appears to be a simple, single structure (Fig. 4.2a), however 

in detail fold and thrust geometries vary along strike and with depth. Changes in fold 

vergence are clearly related to faulting and are therefore indicative of the interaction 

of a number of thrusts of opposing dip within the fold.

Two key seismic horizons (h7 & h3) mapped in the survey area (Fig. 4.6) and six
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Figure 4.6: Fold B. Maps of 
horizon elevation in two-way-time 
(ms), (a) Horizon h7. (b) Horizon 
h3. Fault traces of the four major 
faults comprising Fold B are 
labeled F I, F2, F2b and F3. Fault 
traces denoted by black triangles in 
the hangingwalls. Note the changes 
in fold vergence along strike. Lines 
a-a’ to f-F show the locations of the 
six sections through Fold B 
presented in Figure 4.7. Red/orange 
colours: structural highs. 
Purple/blue: structural lows. 
Contour interval: 40 ms.
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representative seismic sections (Fig. 4.7) are used to describe the fold. Fold B extends 

approximately 32 km along strike measured from a reference point at the left hand 

limit of the structure (Fig. 4.6). Horizon h3 is cut by thrust faults FI, F2, F2b and F3 

along the majority of fold length (from 3 - 3 1  km along strike) whereas only isolated 

sections of h7 are offset (Fig. 4.6). Both horizons exhibit a single structural 

culmination at approximately 13 km along strike with the fold plunging symmetrically 

away from this point in both directions. Beyond 26 km along strike the plunge 

decreases and the fold changes strike by approximately 20°. A low amplitude, local 

structural culmination at around 29 km along strike is apparent on horizon h3 (Fig. 

4.6b).

The fold \ergence varies along strike resulting in an irregular fold shape in plan 

view, particularly at the level of h3 (Fig. 4.6b). This horizon has a strong westward 

vergence at the 8 km mark, but verges eastwards at the culmination at the 13 km 

position (Fig. 4.6). The transition o f  vergence corresponds to a zone of overlap of two 

major faults, the traces of which can be mapped along the base of the steep limbs. The 

fold is symmetrical at the centre of these zones. These changes in vergence are 

expressed in deflections of the hinge on horizon h7 (Fig. 4.6). This detailed fold 

geometry differs considerably from Fold A and is suggestive o f more than one fault 

acting upon the fold.

4.6.2.2 Internal architecture o f  the fo ld

The changes in fold vergence along strike, observed on horizons h7 and h3, are 

related to the interaction and linkage of thrust faults of opposing dip (Higgins et al. 

2007), and are illustrated further using representative seismic sections across the fold 

(Fig. 4.7). Evidently the distribution, orientation and intensity of faulting vary 

significantly along strike. Towards the southern end of the fold a single forethrust 

(F3), detaching close to the Agbada-Akata interface (hi), produces a westward 

verging hangingwall anticline in the overburden (Fig. 4.7a). Approximately 5.5 km to 

the north, the dominant fault is a backthrust (F2) that detaches within the Akata and 

carries a fold that verges to the east (Fig. 4.7c). Two smaller faults, FI and F3, are 

imaged in the hangingwall and footwall respectively. Towards the northern end of the 

fold there is a low displacement, single forethrust (FI) with a low amplitude, 

westward verging fold in the overburden (Fig. 4.71). These three faults (FI, F2 and
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Figure 4.7: Fold B. Selected seismic sections perpendicular to fold strike illustrating change in 
fold vergence, fault geometry and dominance along strike. Locations of seismic lines is given 
in Figure 4.7. Each seismic section (a-f) is displayed along side a seismic interpretation (a2, b2, 
etc). FI, F2, F2b and F3 are major faults, h i -  hlO are regional stratigraphic horizons, v. 
indicates the direction of vergence o f a fold.
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F3) are the dominant structural features along the length of Fold B(Fig. 4.7a, c and f), 

accommodating the majority o f displacement and controlling the vergence of the fold.

The transitions from one fault to another along strike are in the form o f antithetic 

thrust fault linkages (Fig. 4.7b, d and e) (Higgins et al., 2007). A 3D model of the 

geometry of the fault planes is presented in Fig. 4.8. The backthrust (F2) dominates 

the central portion of the fold and links with forethrusts FI to the north and F3 to the 

south. Higgins et al. (2007) used the vertical extent o f faulting relative to branch lines 

of antithetic faults to describe three types of antithetic fault linkage, two of which are 

apparent within fold B (Figure 4.8). Faults FI and F2 interact in a Type 1 linkage 

(Higgins et al., 2007) as they overlap exclusively above their branch line such that the 

lateral tip regions are located in the hangingwall of the counterpart fault (Figs. 4.7d/e 

and 4.8). Faults F2 and F3 form a complex cross-cutting relationship within the 

transfer zone indicative of Type 3 antithetic thrust fault linkages (Higgins et al., 2007) 

where fault planes continue above and below branch lines (Fig. 4.8), or branch points 

if viewed in section (Fig. 4.7b).

4.6.2.3 Individual fau lt heave profiles

Strike projection plots of the four main faults that comprise Fold B(Fig. 4.9) are 

much more complex than the simple profile of fault and fold A (Fig. 4.5). In contrast 

to smooth fault heave contours forming approximate semi-ellipses around a central 

maximum, profiles commonly have an irregular shape, exhibit several maxima and 

have lateral tips located some distance above the detachment.

For the most part, strike projections of the detaching thrusts within Fold B do not 

resemble an ideal semi-elliptical profile, with the exception of the southern portion of 

fault F3 (c. 0 - 5 km along strike) which displays smooth, evenly spaced contours 

(Fig. 4.9). The most dramatic disruptions to contour patterns occur within the zones of 

antithetic fault linkage. Lateral tip regions within the F2/F3 linkage, for instance (c. 8 

-  14 km along strike), are downwards-tapering and faults display depressed tip lines 

that can be concave-up in shape (F3).

Fault F3 is the only fault within Fold B to reach a detachment along its entire 

length. Faults FI and F2 interact in a Type 1 antithetic thrust fault linkage (Higgins et 

al., 2007) such that within the transfer zone, bwer tiplines are not located in the zone 

of bed parallel shear within the detachment, but form a branch line with the
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intersection

Higgins et al. 200y

Type 1 Antithetic Thrust Line of fault 
intersection

Type 3 Antithetic Thrust

Line of fault

Figure 4.8: Three-dimensional conceptual diagram of antithetic fault geometries and 
linkages in Fold B. Faults FI (blue), F2, F2b (pink) and F3 (green) detach on the grey 
surface. The Types of antithetic fault linkages taken from Higgins et al. (2007). Faults 
FI and F2 interact in a Type 1 linkage as fault surfaces overlap exclusively above the 
line of intersection or branch line. Faults F2 and F3 interact in a Type 3 linkage as both 
fault surfaces continue above and below the branch line resulting in cross-cutting 
relationships. Both these faults have cross-cut the other a number of times creating the 
inter-leaved geometry o f a number o f thrust surfaces.
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Chapter 4 Structural geometry and development of a single thrusted fold

counterpart fault at around 6300 m depth (Fig. 4.9). Faults in the northern part of Fold 

B (c. 1 4 - 3 2  km) also have lateral tips that are stratigraphically higher than both the 

detachment and the branch lines, at between 5750 and 6000 m depth (Fig. 4.9). At 21 

km along strike, for instance, the lower tip line of fault F2 ceases to form a branch line 

with fault F 1 and climbs northwards into hangingwall strata, such that the most lateral 

part of the fault is located at c. 6000 m depth (Fig. 4.7e).

The stratigraphic level and relative location of zones of maximum fault heave 

varies for each fault (Fig. 4.9). None conform to an ideal central location on, or 

immediately above, the detachment. The most striking characteristic of fault FI is the 

two distinct maxima in fault heave along its length, the first centred at c. 22 km along 

strike and the second at the 28.5 km position The minimum that separates the two 

corresponds to a saddle in the fold of the h3 horizon at around 26 km along strike 

(Fig. 4.6b). Fault F3, in contrast, has a single, central maximum (between 6 and 8 km 

alongstrike) but also displays mushroom-shaped contours, such that sections taken 

either side of the maxima would record greatest displacement some distance above the 

detachment, at approximately 5800 m depth. Fault 2 has a central maximum value 16 

km along strike, but this does not correlate with the greatest vertical extent of the fault 

(13 -  15 km along strike) due to asymmetry of the tip line.

4.6.2.4 Aggregate heave and shortening profiles

The complexity of the profiles shown in Figure 4.9 for faults in Fold B may, by 

analogy with normal faults, be largely attributed to transfer o f displacement onto 

adjacent structures, interaction with the free surface or changes in the mechanical 

properties of layered sequences (Barnett et al., 1987; Childs et al., 1993; Nicol et al., 

1996; 2003). If  modifications to fault profiles are largely due to interaction with 

neighbouring structures, we might expect to see compensation for deficits in one 

structure, by enhanced development o f neighbouring features, thereby invoking some 

notional kinematic coherence for the array (Walsh and Watterson, 1991). We now 

consider fault heave and shortening values for the fold as a whole (Fig. 4.10) to 

establish if aggregated faults demonstrate geometric and kinematic coherence.

The northern end of the fold ( 1 3 - 3 2  km along strike), involving the aggregation 

of faults FI, F2 and F2b (Fig. 4.10d), is characterised by a smooth summed d/L 

profile and aggregate strike projection. The smooth form of the summed d/L profile
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Chapter 4 Structural geometry and development o f a single thrusted fold

Figure 4.10: Fold B. Aggregate values of fault heave and shortening, (a) Map of h3 
horizon in two-way-time with fault traces. Fold is aligned with the graphs and 
contour plots below. Contour interval: 40 ms (b) Heave-distance profiles for each 
individual fault measured on h3. Dashed line: Aggregate heave-distance profile 
summed on h3. Dashed red line: Bulk shortening of horizon h3. (c) Depth to fold 
crest for horizon h3 in metres, (d) Aggregate fault heave strike projected contour 
plot of Fold B. Lateral overlap of faults F I, F2, F2b and F3 indicated in linkage 
bracket, (e) Total shortening strike projected contour plot. Blue dashed line 
indicates the location of the aggregate heave fault tip line from(d). Note semi
elliptical contours.

linkage
F2+F1
+F2b

■Soundar^ofde/

Folding only
-.Faotttipjjne
:Foldmg ♦ faulting

Distance along strike (km)
(b) - Fault heave & Total Shortening Zoom (Fig. 4.15)

•— • Forethrust heave 
*— -Backthrust heave
 Total fault heave
•— • Shortening

5000
5400

( c )  - Crestal height (h3)

12 lb  2U
Distance along strike (km)

12 16 20 24 28
Distance along strike (km)

( d )  - Fault heave contour plot - Aggregate (all faults)

linkage

F2b + F1

4000
- Total shortening contour

4-21



Chapter 4 Structural geometry and development of a single thrusted fold

(Fig. 4.10b) is inferred to be the product of complimentary displacement gradients of 

the constituent faults. This is exemplified by corresponding, abrupt changes in heave 

gradient between F2 and F2b at c. 20 km along strike, and between FI and F2b at c. 

24 km along strike (Fig. 4.10b). Summed feult heave contours better resemble semi

ellipses in this region and there is no evidence of deficit due to linkage within the 

zone of overlap (Peacock and Sanderson, 1991; Walsh and Watterson, 1991). The 

along strike profile of crestal height shows no evidence for the effects of fault linkage 

on the northern part of the fold (Fg. 4.10c).

The southern end of the fold ( 0 - 1 3  km along strike), comprising faults F2 and 

F3, displays a deficit in the summed d/L profile (Fig. 4.10b) and the aggregate strike 

projection (Fig. 4.10d), within the zone of fault overlap. The degree of heave deficit in 

heave varies with depth The fault tip line and the 100 m heave contour maintain 

elevation and vary smoothly, whereas the 200 and 300 m contours lose elevation 

within the relay zone.

The gross along strike symmetry of the fold is disrupted by a secondary 

independent maximum in fault heave at the northern tip o f the fold, between 26 and

31.5 km along strike (Fig. 4.10). Without this northern section, the fold is reasonably 

symmetrical between 0 and 26 km along strike, centred on the major culmination at c. 

13 km (Fig 4.10d). The lower value shortening contours (0-400m) agree with this, 

describing semi-ellipses with foci at c. 13 km along strike (Fig. 4.10e). Maximum 

heave and shortening values, however, are located at 16 km along strike, effectively 

the centre of the entire 31.5 km long fold, including the secondary maxima in the 

northern part of fault F I .

4.6.2.5 Isopach ratios

Analysis of isopach ratios of the biostratigraphically defined units h i -11 suggests 

the sedimentary sequence of fold B can be separated into syn-kinematic and pre- 

kinematic packages delineated approximately by the h4 horizon Pre-kinematic 

sediments within the Agbada Formation, hi -  h4, display uniform orthogonal 

thickness across all parts of the fault and fold. The syn-kinematic package, separated 

into four units using key seismic horizons, demonstrates systematic variations in the 

isopach ratios along strike (Fig. 4.1 la).

It is intuitive to expect the along strike trend of the amount of fold growth to
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Figure 4.11: Fold B. Analysis of distribution and spatial extent syn-sedimentary units within 
the stratigraphic column, (a) Isopach ratios (comparing orthogonal thickness of sediments on 
the limbs of a fold to those on the crest). Calculated for 17 vertical profiles along length of the 
fold and displayed as bar charts. Ratio of 1 = no growth. Large bar = significant fold growth. 
Small bar = minor fold growth. Presented with reference to four time periods, delineated by 
horizons h4-h6, h6-h9, h9-hl0 and h i 0-seabed. M l, M2 and M3 indicate three areas of high 
isopach ratio separated by low ratios in the h4-h6 unit, (b )  Values for Upward Reductions in 
Dip. Presentation of results is as in (a). Note asymmetry of the plot due to differing value of 
upward reductions in dip on each limb. M ia, M l b, M2 and M3 indicate similar areas of early 
fold growth in the h4-h6 unit as in (a). M4, M5, M6a and M6b indicate similar local areas of 
growth in the h6-h9 unit.
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Chapter 4 Structural geometry and development of a single thrusted fold

resemble that of the amplitude of the fold, as the structure must necessarily have 

grown most at its culmination. The h6 -  h9 unit demonstrates just such a relationship 

(Fig. 4.1 la). The magnitude o f fold growth steadily decreases to zero at the tips, away 

from a maximum located around 12 to 15 km along strike. Fold growth is largely 

symmetrical around the central maximum which corresponds to the culmination of the 

fold. This relationship is repeated, albeit with lower isopach ratios, in units h9-hl0 

and hlO-seabed (Fig. 4.11a). The earliest evidence of growth however, given by the 

h4-h6 unit, describes a different pattern o f isopach ratios. Three maxima exist along 

strike, labelled M l, M2 and M3 (Fig. 4.11a), separated by areas of little to no fold 

growth. The maximum isopach ratio (M2) in this time period is recorded 

approximately 13.5 km along strike. This suggests that at the earliest stages of fold 

conception the structure was made up of at least three individual folds with 

culminations that, by the time o f h6 deposition, had amalgamated into a single 

structure with one culmination.

4.6.2.6 Upward reduction in dip

Observations of upward reductions in dip complement isopach analysis and give 

an indication of downdip asymmetry o f a fold through time (Fig. 4.11b). This 

technique is a valuable addition to the more standard approaches used to assess syn- 

kinematic packages, and key data can be easily and swiftly extracted from 3D seismic 

data. Asymmetric folds, such as fold B, will produce consistent discrepancies between 

data values for the east and west limbs due to unequal limb lengths and dips across the 

fold. Results suggest that the fold began to grow no earlier than the time of h4 

deposition as bounding surfaces are sub-parallel in underlying units (Fig. 4.11b). It is 

important to note that analysis of upward reductions in dip must be carried out on 

depth converted surfaces and horizons. Thickness changes on seismic time sections, 

such as in Figure 4.7, may not reflect true growth stratal geometries.

Important variations can be discerned along strike for each interval. The three 

most recent time periods (h6-h9, h9-hl0 and hlO-seabed) all show the fold to be 

active along its entire length, however the along strike trends in magnitude of the 

values do not match those of the isopach analysis (Fig. 4.11b). Several maxima occur 

in all time periods, as opposed to one central high, and are interpreted as reflecting 

local growth of numerous faults of opposing dip, within a single coherent fold 

producing structural asymmetry. In unit h6-h9, for example, the western limb is
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characterised by a broad zone of relatively high upward dip reduction values (labelled 

M4, Fig. 4.11b) at the centre o f the fold, between 12 and 18 km along strike. This 

corresponds to the portion o f the present day fold that has a dominant eastward 

vergence and incorporates the area of maximum heave of backthrust F2 (Fig. 4.9). 

The eastern limb, on the other hand, displays three distinct regions of increased dip 

reduction values centred at approximately 6, 20 and 28 km along strike, labelled M5, 

M6a and M6b respectively (Fig. 4.11b). M5 corresponds closely with the zone of 

maximum heave of forethrust F3 at 6 to 8 km along strike (Fig. 4.9). M6a and M6b 

are coincident with the two displacement maxima of forethrust FI; the first located 

between 20 and 22 km and the second at just over 28 km along strike (Fig. 4.9).

4.7 Discussion

An isolated fold comprising numerous thrust faults is an excellent example to 

consider how faults and folds coalesce and link along strike to form larger, through- 

going structures. The range of geometric relationships within the linkage zones of 

both synthetic and antithetic faults of Fold B (Fig. 4.8) point to a complex and 

fascinating growth history. One o f the most interesting aspects of this study surrounds 

the kinematic relationship between constituent features and the response of fold strain 

to variations in the magnitude o f faulting along the length of the fold. Questions we 

need to consider include; were thrusts faults active in the earliest phases of 

deformation and at what point did hard linkage occur? On the evidence presented 

here, we put forward a model o f growth of a single fold where at least eight spatially 

distinct thrust faults nucleated along the length of three early folds.

4.7.1 Fold growth by segment linkage

Examination of the earliest periods of fold development (Fig. 4.11) indicates 

that Fold B was initially made up of at least three structural culminations separated 

along strike by saddles or areas o f limited fold growth (Fig. 4.11). The locations of 

early saddle points are consistent with the sites of present day transfer zones between 

the major faults. The positions of early folds correspond to regions of strong fold 

vergence, where one of the three major faults (FI, F2, F3) now dominate the 

accommodation of shortening. Upward dip reduction values also suggest that these 

early folds quickly developed down-dip asymmetry. It is not possible to determine
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Figure 4.12: Sequential restoration of depth-converted seismic profile through Fold 
B showing different stages of structural evolution. Depth conversion used vertical 
ray paths and interval velocities obtained from a nearby confidential exploration 
well. Restoration was carried out in 2DMove™ software from Midland Valley 
Exploration. Restoration was performed using flexural slip unfold and Trishear 
algorithms. Limitations, assumptions and errors induced by these methods are 
discussed in Chapter 6. No vertical exaggeration.

4-26



Chapter 4 Structural geometry and development of a single thrusted fold

conclusively the timing o f fault initiation from the methods featured n this paper. 

Restoration of depth sections (Fig. 4.12d) suggests faults were present at the earliest 

stages of growth of low amplitude asymmetric folds. However, although the 

restoration records the presence o f faults at an early stage, it is not definitive as 

different assumptions and interpretations would allow a profile to be restored to a 

different original geometry (e.g. Rowan, 1997). This scenario does support evidence 

from growth strata (Fig. 4.11) and present day fault geometries (Fig. 4.8) that 

forethrusts FI and F3, and backthrust F2, were initially spatially distinct, associated 

with corresponding low amplitude folds and have propagated towards each other 

along strike to form antithetic thrust fault linkages.

The factors controlling the location of the three initial folds and faults are 

unclear and there is no evidence from seismic data or restorations for any pre-existing 

structures. The generation o f numerous faults of opposing dip has previously been 

explained by the inference of a weak basal detachment, from critical taper wedge 

modelling of the Niger Delta (Bilotti and Shaw, 2005). This implies the maximum 

principal compressive stress to be subhorizontal, close to the angle of the decollement, 

and would suggest there is no mechanical advantage between the formation of 

forethrusts and backthrusts. In such a scenario the faults o f opposing dip would have 

similar dip angles and be equally efficient at accommodating shortening (Bilotti and 

Shaw, 2005). Lateral tip structures o f Fold B support this hypothesis (Fig. 4.13). 

Given that Fold B is the product of the along strike linkage of initially discrete faults 

and folds, the features at the fold tip may give clues to the progression of deformation 

at many points abng the structure. The along strike extremities o f Fold B are 

characterised by low amplitude, mildly asymmetric thrusted folds (Fig. 4.13a) and 

low amplitude, symmetric, unfaulted detachment folds at the fold tip (Fig. 4.13b). 

This is of particular interest as both a forethrust and a backthrust, o f approximately 

equal displacement (Fig. 4.13a), have nucleated in, or propagated into, a low 

amplitude fold (Fig. 4.13a and b). It is likely that subsequent growth would lead to 

one orientation of fault gaining dominance resulting in increased fold asymmetry.

Fault interactions in fold B are not exclusively antithetic however. Antithetic 

linkages are easily identified by the observation of a change in fold vergence, the 

overlap of fault traces in map view and o f faults of opposing dip converging on a 

point in section. Synthetic linkages are less apparent as originally distinct fault planes
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a 2

hi

1 "1 ----------------------------
- b 2 i

th ickening t

hi

Figure 4.13: Two seismic sections showing examples of lateral tip structures in Fold B. (a) 
shows a low amplitude, mildly asymmetric thrusted fold. Two faults o f opposing dip cut the 
section (a forethrust and a backthrust) and have approximately equal displacement. Neither 
fault reaches the detachment. Maximum displacement on both faults is around the level of 
the h3 horizon, (b) low amplitude symmetric, unfaulted detachment fold. Interpretations of 
each section is given in (a2) and (b2). Seismic section (a) is closer to the lateral tip of the 
fold than section (b).
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Figure 4.14: Fold B. Correlation of the location of early fold culminations (as indicated by 
Upward Dip Reductions) with present day locations of maximum fault heave. Figure also 
contrasts areas of abrupt gradient change on heave-distance plots (shaded graphs) with changes 
in strike of fault traces (given by shaded fault polygons on map). Upward dip reductions for 
h4-h6 time period given as bars. Fault heave-distance profiles (FI, F2, F2b and F3) given as 
shaded line graphs, m.: point of maximum fault heave along length of fault trace, i.: area of 
early fold growth (dashed white lines), c.: location of crestal culmination. Contours on map 
describe topography of horizon h3 (see Fig. 4.6).
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may have subsequently joined to produce though g)ing surfaces (e.g. Cartwright et 

al., 1995; Childs et al., 1995). Evidence remains however, in the form of abrupt 

changes in the strike of fault traces indicating relay breach (e.g. Peacock and 

Sanderson, 1991; Cartwright et al., 1995; Childs et al., 1995), numerous fault 

displacement maxima on strike projections (e.g. Liu and Dixon, 1991) and the 

distribution o f the earliest syn-kinematic sequences. Figure 4.14 highlights two 

features that are symptomatic o f synthetic fault linkage: (1) changes in fault strike 

coinciding with minima or dramatic changes in fault heave, and (2) disparity between 

the locations of early fault and fold growth and the present day points of maximum 

fault heave.

Fault F2b is the clearest example of fault heave minima corresponding to a 

kink in fault strike (Fig. 4.14). The two positions of maximum displacement are 

separated by a right-lateral jog in the fault trace that could indicate relay breach 

during synthetic fault linkage (e.g. Cartwright and Trudgill, 1994; Childs et al., 1995). 

This geometry is replicated on fault F I, however the change in fault strike in this 

instance occurs over a much greater distance and is linked to a more extensive zone of 

fault heave low (Fig. 4.14). Unfortunately the identification of synthetic linkage from 

the trend of fault traces requires some degree of non-alignment of original segments. 

Fault F3, although not showing any deviations in strike that match trends in heave, is 

predicted as having two regions o f early fault growth from values of upward dip 

reduction (Fig. 4.14). The present day fault heave maximum is located between these 

two regions and suggests the linkage of at least two aligned faults and the migration of 

the point of maximum heave to a central position. This method also suggests that 

faults F2 and F2b were initially spatially discrete (Fig. 4.14) despite overlapping, both 

along strike and down dip, at present. In this case then, the lateral propagation of 

similarly dipping, collinear thrusts has not lead to hard linkage and has resulted in a 

relay structure similar to that of a relay ramp in extensional studies (e.g. Peacock and 

Sanderson, 1991; Cartwright and Trudgill, 1994; 1994).

4.7.2 Displacement transfer

Bulk shortening contours on strike projections of both fold A, comprising a single 

fault (Fig. 4.5g), and fold B, made up o f numerous linking faults (Fig. 4.10e), have 

orderly patterns and regular spacing. Recent deformation along the length of fold B
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has been accommodated in a manner similar to that of a single structure (fold A), and 

would therefore imply kinematic interaction and the efficient transfer of displacement 

between constituent faults, through ‘transfer zones’ (Dahlstrom, 1970). The criteria 

for kinematic interaction include complementary modifications to fault displacement 

patterns from a reference standard (Barnett et al., 1987; Walsh and Watterson, 1991) 

and the observation o f relay structures that indicate displacement transfer (Muraoka 

and Kamata, 1983; Larsen, 1988; Huggins et al., 1995). Each of the three major faults 

(FI, F2, F3) within fold B show an increased irregularity of heave contours (Fig. 4.9) 

compared to the single fault plane of fold A (Fig. 4.5 f). This is most apparent in the 

abrupt changes to d/L gradients (Fig. 4.10b) that can define the limits of a relay zone 

(e.g. Peacock and Sanderson, 1991) and in the trend of fault tip lines away from 

elliptical profiles in zones o f linkage. Displacement appears to have been transferred 

smoothly between faults FI and F2 in the northern half of fold B (Fig. 4.10a) leading 

to little evidence o f linkage on the aggregate fault heave profile (Fig. 4.10d). The 

relay zone between faults F2 and F3, in contrast, produces an area o f fault heave 

deficit when aggregated. It has been suggested that the nature o f displacement 

distributions in relay zones may be informative of the original kinematic relationship 

of the linking faults (e.g. Nicol et al., 2002; Walsh et al., 2003). Faults that have been 

kinematically linked since inception have a summed displacement profile resembling 

that of a single, isolated fault, with no deficit in the relay zone (e.g. Nicol et al., 2002; 

Walsh et al., 2003). Initially isolated faults, which subsequently interact through 

accidental linkage (e.g. Peacock and Sanderson, 1991; Cartwright et al., 1995; Dawers 

and Anders, 1995), are thought to maintain distinct displacement maxima on the 

adjacent fault segments, separated by a deficit in the relay zone. This rationale would 

advocate different kinematic histories for the F1/F2 and F2/F3 fault linkages in fold 

B, a conclusion not support by our data. The comparison of bulk shortening with 

aggregate fault heave indicates that the deficit in discontinuous deformation (i.e. 

faulting) around the transfer zone o f fault F2/F3 is compensated for by a rise in 

continuous displacements (Peacock and Sanderson, 1991; Dawers and Anders, 1995; 

Nicol et al., 2002; Davis et al., 2005), such as folding, as shown by the increased 

regularity o f shortening contours (Fig. 4.10e). The shortening profile of fold B 

therefore resembles that of a single fault and fold (Fig. 4.5g) and suggests that its 

components have been spatially and mechanically related since inception (Walsh et 

al., 2003).
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An alternative hypothesis is that the deficit observed within the F2/F3 linkage 

may be related to the mode o f linkage rather than the kinematic history of the 

interaction. Davis et al. (2005) observed a positive relationship between the length of 

along strike fault overlap and the efficiency of displacement transfer. The lesser 

length of fault overlap in the F2/F3 example, the steeper gradients of heave profiles 

and the heave deficit within the transfer zone all suggest a retardation of lateral 

propagation rates during linkage (e.g. Peacock and Sanderson, 1991; Nicol et al., 

1996) resulting in increased fold strain.

4.7.3 Fault related folding

The relative importance o f faulting and folding in accommodating shortening was 

documented as varying through time during centrifuge modeling of a fold and thrust 

belt (Liu and Dixon, 1991). Displacement was transferred between folding and 

faulting along strike and between en-echelon fault pairs within transfer zones. Other 

studies have shown that, h  contrast to some established models of fault-related 

folding in which fault slip accumulation directly relates to fold magnitude (e.g. Suppe 

and Medwedeff, 1990), displacement deficits within transfer zones are compensated 

for by an increase in fold strain (Nicol et al., 2002; Davis et al., 2005). A similar result 

is recorded in this study as bulk shortening strike-projections display more regular and 

smooth contour patterns than that o f aggregated fault heave (Figs. 4.5 and 4.10). This 

would suggest that significant variation in the amount of folding along strike is 

needed to compensate for fluctuations in the magnitude of fault heave. This effect is 

due, in part, to a lower sample density in the generation of shortening values which 

may reduce the irregularity o f contours. There is also, however, evidence from 

seismic data to suggest that the amount of folding is not consistent along strike. To 

demonstrate this, two seismic sections across fold B are compared (Fig. 4.15) with 

reference to measurements made on the h3 horizon.

Both seismic lines are taken from the southern end of the F1/F2 linkage zone. 

An enlarged portion o f the d/L profile o f faults in fold B (Fig. 4.10b) is included in 

Figure 4.15e to highlight the areas where perturbations in fault heave result in small 

deficits below idealised fault profiles. The aggregate value of fault heave is similar in 

each section although the amount o f heave accommodated by each of the component
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Chapter 4 Structural geometry and development of a single thrusted fold

faults varies. The first seismic section (Fig. 4.15a and b) is located close to the lateral 

tip of fault FI and values o f heave for both faults plot close to the ideal heave profiles 

(Fig. 4.15e). The second section (Fig. 4.15c and d) is located approximately 2.4 km 

along strike to the north. Here faults display a cumulative heave deficit of around 10 

% below the predicted ideal value (Fig. 4.15e). Folding compensates, to some extent, 

for the minor variations in fault heave along strike such that measurements of 

shortening produce a smoother, more elliptical profile. In this example the amount of 

shortening accommodated by folding almost doubles between the two sections, from 

69 m (Fig. 4.15b) to 121 m (Fig. 4.15d).

4.8 A structural evolution model of fold B

An evolutionary model of a single, isolated fold in the deep water Niger Delta is 

proposed based on the analysis o f structural and sedimentary features associated with 

fold B (Fig. 4.16).

(1) Detachment folds initiate with individual structural culminations and grow 

towards each other along strike. Numerous faults nucleate as both forethrusts and 

backthrusts along the length of the low amplitude anticlines (Fig. 4.16a). The model 

proposed by Dixon & Liu (1991) states that fault linkage follows the along strike 

propagation and merger o f collinear, periclinal folds however there is little conclusive 

data in this study to determine if folding preceded faulting or vice-versa. The 

distribution of syn-kinematic sediments can be used to show that the along strike 

length of fold B was established relatively early (Fig. 4.16a), albeit as three separate 

culminations.

(2) Folds coalesce along strike resulting in culmination migration to a central, 

single apex.

(3) Lateral fault propagation produces synthetic and antithetic thrust fault linkages 

(Fig. 4.16b and c). Initial offset by a propagating tip commonly occurs above the level 

of the detachment (Figs. 4.9 and 4.13a) This requires the point of maximum fault 

heave to subsequently move downwards, to either the level o f the detachment or the 

point of intersection with another fault in order to produce the profiles seen along the 

majority of the faults’ lengths.

(4) Fold B accommodates shortening as a coherent unit, producing displacement 

and shortening profiles similar to that comprising a single fault (fold A) suggesting
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Chapter 4 Structural geometry and development o f a single thrusted fold

component faults have been kinematically linked throughout development. 

Displacement is transferred between constituent faults through transfer zones. Deficits 

and perturbations in fault displacement are compensated by complementary variations 

in the amount of fold strain along strike.

4.9 Summary and conclusions

The fault heave and bulk shortening profiles along a single, isolated faulted fold 

of a deep water fold and thrust belt, Niger Delta, were presented in the first 

quantitative study o f thrust faults to use strike-projected contour plots. Measurements 

of growth sequences and detailed fault plane geometries, produced from 3D seismic 

data, described numerous faults o f similar and opposing dip linking along strike to 

create a through-going fold. The data and analyses support the following conclusions:

1. The distribution of bulk shortening along faulted folds that comprise either a 

single thrust fault or numerous linked thrusts can be simple, systematic and similar 

to that observed for extensional fault displacement.

2. Individual heave profiles of overlapping, linked faults show modification of 

contours away from systematic patterns. Displacement transfer occurs between 

overlapping faults leading to more regular profiles on aggregated plots.

3. Deficits in fault heave, both in the form of perturbations on non-linking or 

aggregated profiles and displacement minima within linkage zones, are 

compensated to some degree by an increase in the amount of fold strain. Fold 

amplitude or fold crest elevation is largely unaffected by minor variations in fault 

heave.

4. The geometry and distribution o f syn-kinematic growth strata indicates that the 

evolution o f fold B nvolved the nucleation and amalgamation of three smaller 

folds and culminations. There is evidence to suggest at least eight thrusts initiated 

with the early folds before lateral propagation and along strike synthetic linkage 

eventually created four major faults of opposing dip within fold B.
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Chapter 5 Displacement transfer in a deep water fold and thrust belt

CHAPTER 5

5. DISPLACEMENT TRANSFER DURING SYNCHRONOUS GROWTH OF 

A DEEP WATER FAULT AND FOLD ARRAY

5.1. Abstract

A three-dimensional seismic survey over the west Niger Delta comprises a complex 

interconnected network o f forethrusts and backthrusts. Stratal connectivity across the 

fold and thrust belt is continuous through a series of transfer structures related to 

antithetic and synthetic thrust fault linkages. Syn-kinematic strata record the growth 

history of folds and suggest a general foreland-propagating sequence of thrust and 

fold development, however out-of-sequence events occur within this trend. Significant 

overlap in the duration o f activity on all faults and folds in the survey indicates a 

sustained period o f synchronous growth. Complementary heave and shortening 

profiles within a hard-linked fault array demonstrate both along strike and dip-parallel 

displacement transfer between faults and folds. Deficits in shortening associated with 

some of the fault and fold linkage zones correlate with increases in deformation on 

structures up- and down-dip. Fold amplitude is commonly unaffected by along strike 

decreases in heave and shortening within transfer zones and it appears fold shape is 

adapted to maintain fold height. Aggregate profiles of all faults and folds show a 

conservation of total heave and bulk shortening along strike within the syn-kinematic 

units. Extremely low lateral heave gradients suggest efficient displacement transfer 

between constituent structures. Irregularities in the distribution of deformation in pre- 

kinematic units are evident on profiles of single structures, linking faults and folds 

and the aggregation of the fold belt as a whole. Heave- length profiles measures within 

this stratigraphic section display numerous maxima and minima relating to the 

locations of linkage zones. Evidence o f displacement transfer between all structures 

within a fold belt that developed by the synchronous growth of its constituent 

structures suggests this is a geometrically and kinematically coherent fold and fault 

array.
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Chapter 5 Displacement transfer in a deep water fold and thrust belt

5.2. Introduction

Component faults o f laterally extensive, thin-skinned fold-and-thrust belts are 

finite in map length and display along strike decreases in displacement towards their 

tips (e.g. Dahlstrom, 1970; Boyer and Elliott, 1982). Kinematic linkage between 

structures can allow shortening values to remain relatively constant along strike 

within a thrust sheet (e.g. Price and Mountjoy, 1970) and results in a range of transfer 

structures that affect stratal continuity and connectivity across a fold and fault array 

(e.g. Douglas, 1958; Dahlstrom, 1970; O'Keefe and Steams, 1982; Higgins et al., 

2007). These observations lead to the concept of displacement transfer through 

transfer zones (Dahlstrom, 1970), defined as a zone o f overlap between two thrusts 

linked via a common basal detachment (Lebel and Mountjoy, 1995). The widespread 

development o f backthrust zones within deep water fold and thrust belts (e.g. Bilotti 

and Shaw, 2005; Corredor et al., 2005; Briggs et al., 2006) can result in transfer zones 

comprising faults o f similar or opposing dip in synthetic or antithetic thrust fault 

linkages respectively (Higgins et al., 2007) (Chapter 3). The majority of studies have 

focussed on synthetic interactions and almost exclusively on the along strike linkage 

of a set of laterally aligned thrusts (e.g. Rowan, 1997; Davis et al., 2005; Higgins et 

al., 2007) or dip-parallel overlap of faults seen in section (e.g. Ellis and Dunlap, 1988; 

Nicol et al., 2002). The kinematic coherency of all elements of a complex fault array, 

a topic that has been examined in extensional systems (e.g. Walsh and Watterson,

1991), has not been discussed in a contractional setting and hence the way in which 

thrust faults and folds interact, beyond those that are spatially coincident, is not well 

understood.

The principal aim of this chapter is therefore to document displacement 

transfer within an extensive, complex network o f structures linked by common basal 

detachments in a deep water fold and thrust belt, offshore Nigeria. Displacement 

transfer can only occur between contemporaneous structures and hence kinematic 

coherence of an array is dependent on a degree of synchronous growth (Walsh and 

Watterson, 1991). In the past, various models of the sequence of fault propagation 

have been proposed advocating foreland progressing deformation (e.g. Dahlstrom, 

1970), hinterland progressing deformation (e.g. Boyer and Elliott, 1982; Butler, 1982) 

and out-of-sequence propagation (e.g. Wiltschko and Dorr, 1983; DeCelles and Mitra, 

1995; Mitra and Sussman, 1997; Corredor et al., 2005), the majority of which invoke
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a cessation o f movement on older structures soon after inception of the new (e.g. 

Boyer and Elliot, 1982). The deep water Niger Delta offers an excellent opportunity to 

investigate the timing and duration o f fold and thrust growth within an intricate array, 

as syn-kinematic strata record the development of structural features and are 

extremely well imaged by 3D seismic reflection data. This study focuses on the 

controls o f displacement distribution and will therefore include discussion on the 

relative timing o f fault growth and the effects ofpre- and syn-kinematic strata on the 

deformation.

Thrust fault growth is intrinsically associated with folding; a relationship that 

is seen to evolve through time and can vary considerably along strike (Liu and Dixon 

1991; Davis et al 2005). Isolated thrusted folds, such as Fold B described in Chapter 4 

(Fig. 4.6), have been shown to be the product of the along strike propagation and 

linkage of numerous, initially distinct culminations and fault surfaces that 

accommodate shortening in a manner similar to a single structure (Rowan 1997) 

(Chapter 4). The application of this work to the more interconnected geometries of 

fold and thrust belts will provide insight into the development of structures in deep 

water settings. This can have wide ranging implications from an understanding of the 

controls on sediment dispersal to the timing of hydrocarbon trap and seal formation.

5.3. Database

The 3D seismic survey used in this study images approximately 3000 km2 of 

the toe-of-slope region of the Niger Delta. The improved icsolution and imaging 

quality of such datasets mean this is an excellent tool for the study of stratal offset 

variations along fault surfaces and the spatial extent of growth strata. This area 

comprises a suite o f large scale thrust faults in a gravity-driven compressional fold 

and thrust belt (Fig. 5.1). Seismic lines sub-perpendicular to the regional strike of fold 

and fault structures were used for fault interpretation, fault heave measurements and 

calculations o f shortening. Fourteen key seismic horizons were mapped throughout 

the region on a dataset with inline and crossline spacing of 12.5 m (e.g. Brown, 1999). 

Vertical seismic resolution varies with depth, from approximately 10 -  20 m within 

the studied interval. This is the minimum vertical distance at which reflections from 

two horizons can be differentiated. The vertical resolution of fault measurements from
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Figure 5.1: Compressional structures comprising part of the outer fold and thrust belt of the 
deep water Niger Delta, (a) Seismic survey A. 3D visualisation of horizon m4. Horizon m4 
is a buried stratigraphic horizon located between approx. 1.8 and 2.5 km below the seabed in 
undeformed areas of the study area. Major thrust faults and fold are labelled 1 - 1 5  (referred 
to a s #  1-15 in the text). Vertical axis displayed in two-way-travel time (ms). Eroded areas 
of horizon m4 on crests o f some anticlines are reconstructed and labelled, (b) Plan view of 
fault traces (w.r.t. to horizon m3 hangingwall cut-offs). Note that no fault spans the full 
width o f the seismic survey and that through-going folds can be made up of two thrust faults 
(e.g. # 1 3  and 14).
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zero phase data (see Chapter 1) is dependent on the degree of accuracy with which the 

location of a crest o f a wavelet can be defined. This is controlled by the sample rate of 

the data and is estimated to be + 2 ms. Reliable feult heave measurements depend on 

accurate observation of hangingwall and footwall cutoffs on fault planes. Prominent 

fault plane reflections on many faults in the Niger Delta (e.g. Fig. 1.5b) reduce the 

potential error. Interval velocities, relating to key horizons tied to a nearby 

confidential exploration well, were used to depth convert seismic sections for use in 

restoration, shortening calculations and to validate geometric structural observations.

5.4. Structural setting

A gravity-driven fold belt on the passive margin of West Africa provides an 

excellent laboratory for studying fold and thrust development. An in-depth review of 

the geology of the Niger Delta is provided by Doust and Omatsola (1990). 

Deformation in the study area is driven by the gravitational collapse o f the delta and 

the downslope translation o f the Agbada Formation (e.g. Damuth, 1994; Morgan, 

2004; Bilotti and Shaw, 2005) on major detachments within the Akata Formation. 

Decoupling is thought to be the result o f overpressure in the shaly Akata unit (e.g. 

Morley, 2003; Rowan et al., 2004). Previous authors have described numerous 

detachment layers within the deltaic succession (e.g. Corredor et al., 2005; Briggs et 

al., 2006), two regional detachment levels are seen in this data set; at the Agbada- 

Akata Formation boundary and within the Akata itself. Critical taper wedge modeling 

has inferred a weak basal detachment in the Niger Delta (Bilotti and Shaw, 2005) and 

a sub-horizontal maximum principal compressive stress. Both of these factors have a 

major influence on the ratio of backthrust-to-forethrust formation (e.g. Davis and 

Engelder, 1985) and the mechanism o f  fold and fault growth (e.g. Mitra, 2002). 

Deformation, by oceanward-vergent forethrusts and landward-vergent backthrusts, is 

largely confined to the Agbada Formation which comprises a series of 

compensationally stacked deepwater channel-levee systems (e.g. Deptuck et al., 

2003). The stratigraphy of the deformed interval consists o f hemi-pelagic sediments, 

mass transport complexes and channel-confined sand bodies surrounded and sealed by 

finer grained mudstones (e.g. Davies, 2003; Deptuck et al., 2003). This is therefore a 

mechanically heterogeneous medium whose rheological complexity may have 

implications for fault and fold propagation Existing models for propagation are
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largely based upon homogeneous, hyer-cake stratigraphic models, and one of the 

themes of this research investigates the effect of mechanical stratigraphy on fault 

growth.

5.5. Methods

5.5.1. Growth package analysis

Structural uplift o f the seabed caused by growing thrusts and folds can lead to 

the formation of depositional packages that thin onto the crest o f an antiform or onlap 

onto a fold limb. Assuming the depositional system is accommodation- limited and not 

sediment supply- limited sedimentary geometries can reveal the history of fold growth 

(e.g. Suppe et al., 1992; Hardy et al., 1996; Poblet et al., 1997). Analysis of seismic 

waveform attributes around the structures in this study area does not support the 

possibility that low energy deposition, such as hemi-pelagic drapes, are concealing 

deformation by implying apparent periods of quiescence during times of active 

deformation. Channel-levee deposits respond to changes in slope and are therefore 

sensitive indicators of deformation-controlled topography (e.g. Hooper et al., 2002). 

Analysis of sedimentary growth packages has long been used to estimate the timing 

and duration of structural growth (e.g. Suppe et al., 1992). Chapter 4 showed the 

detailed analysis o f fold growth utilizing isopach ratios and measurements of upward 

reductions in dip on the limbs o f an isolated fold. In this case such methods are 

hampered structurally by closely spaced thrusts and folds and stratigraphically by 

stacked channels levee complexes (e.g. Deptuck et al., 2003) that break up regional 

marker reflections and hinder identification and correlation of onlap packages along 

strike. As a consequence, the along strike propagation of a fold is not measured here. 

Timing of fold initiation and cessation is therefore derived from onlap geometries and 

sedimentary thickness variations and represent the earliest evidence of structural 

growth along structures as a whole. The duration of fold growth is determined from 

the observation of the upper and lower bounding surfaces of growth strata defined by 

a change from uniform thickness units to horizons that onlap or stratigraphically thin 

across the fold. Depth converted sections were utilised to confirm sediment thickness 

variations from limb to crest. The timing of fold development is dated using 

stratigraphic ages derived from biostratigraphic data from the exploration borehole
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located within the data limits. This dating method can be prone to error (e.g. Miall,

1992) and hence is not used here to convey absolute ages o f horizons, but instead 

provide a first-order estimate o f the relative timing of structural features.

5.5.2. Fault heave and total shortening calculations

Quantification o f fold and fault characteristics derived from measurements on 

fourteen key seismic horizons are presented using three variables; fault heave, bulk 

shortening and fold crest elevation.

Fault heave is defined as the horizontal offset between hangingwall and 

footwall cut-offs for a given horizon (Fig. 4.4). This value does not require time- 

consuming depth conversion and is therefore less affected by velocity variations in the 

dataset. This enables a more detailed and higher resolution study of fault offset 

variation to be carried out. Fault heave is also a closer approximation to the amount of 

shortening accommodated by faulting than displacement along a fault plane.

Shortening calculations are made by line length analysis (Dahlstrom, 1969; 

Hossack, 1979) (Fig. 4.3) and assumes the dominant mechanism of folding in this 

system is flexural slip. Measurements were made across the width of the seismic 

dataset on fifteen seismic lines perpendicular to the prevalent regional fold and fault 

strike. Depth conversion was performed using interval velocities between the fourteen 

key horizons tied to the nearby confidential exploration well. The sections were 

pinned away from the structure at points o f undeformed layer-cake stratigraphy or at a 

regional level in the core o f synclines (Dahlstrom, 1969). The close spacing of 

anticlines and faults limited the viable locations of structural pins and hence it was not 

possible to perform shortening calculations across all individual folds and thrusts. As 

a result some structures are presented with heave measurements only, however 

shortening values are included wherever possible.

We present shortening values and fault heave measurements as heave-length 

profiles and contour patterns on strike-projections. Contoured displays provide a 

visual demonstration o f displacement variation over a fault plane (Walsh and 

Watterson, 1991) and were first utilised in extensional studies (Rippon, 1985). Plane- 

vertical surfaces present displacement values, recorded as the difference between 

hangingwall and footwall cut-offs and commonly plotted at the midpoint between
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these two values. In the observation of a compressional domain the degree of 

significance o f folding is expressed most effectively in the form of shortening 

calculations. However, in order to allow direct comparisons between variations in 

folding and faulting, shortening values are not plotted with respect to horizon cut-offs. 

Instead, both the shortening and heave measurements are plotted for each of the 

fourteen key seismic horizons at a corresponding undeformed, ‘regional’ depth 

downdip o f the fold and fault structure(s) (Fig. 4.3). This assumes that the dominant 

mechanism for folding in this system is flexural slip, an assumption implicit in the 

calculation of shortening by line length analysis. Aggregate profiles are generated by 

the summation of all measurements for a given horizon along dip-parallel lines, and 

are displayed in the same manner as above.

The major limitation of this method o f data plotting is that upward 

displacement gradients along fault planes will be apparently reduced compared to 

previous studies that used points relating to cut-offs. This unfortunately does not 

enable comparison with most published cross-section projections of thrust fault 

displacement. The majority o f these display offset values against a distance measured 

along a fault plane from a reference point to either (1) the hangingwall cut-off 

(Muraoka and Kamata, 1983; Williams and Chapman, 1983) or (2) the midpoint 

between hangingwall and footwall cut-offs (e.g. Ellis and Dunlap, 1988) (Fig. 4.3b). 

Similar limitations occur if a fault has a listric character in sectional profile such that a 

fault decreases in dip with depth, as heave will be seen to increase for the same along- 

fault displacement. This may produce an apparent increase in the upward 

displacement gradient. These limitations are disregarded as it is noted that most 

ramping occurs in a limited zone above the detachment as a fault leaves the region of 

over-pressure (e.g. Corredor et al., 2005) (Fig. 5.2, e.g. faults 10 and 11). Also when 

assessing the relationship between faulting and folding, measurements o f heave 

represent a closer approximation to the amount of shortening accommodated by 

faulting than displacement along a fault plane. Finally conclusions regarding the along 

strike changes in fault and fold geometries are unaffected by these limitations and 

comprise the main focus of this paper.
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..

seafloor

seafloor

Figure 5.2: Two representative seismic sections oriented parallel to regional dip to show the change in structural geometry, orientation o f  fault planes and fault spacing along strike. Stratigraphic 
and structural interpretation is presented below of each seismic line. Locations o f the lines are given in Figure 5.1b. Note the greater degree o f hard-linkage o f faults located towards the foreland 
o f  the fold belt (left) above the level o f the detachment, compared to faults in the hinterland (right).
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5.6. Results

The isolated fold described in Chapter 4 (Fold B) documented the growth of a 

single structure by segment linkage. Three initially distinct folds, and as many as eight 

thrust faults, nucleated and grew together along strike producing a single structural 

culmination and forming both synthetic and antithetic fault linkages (Fig. 4.14). The 

distribution o f shortening along strike resembled the profile of an individual structure 

due to displacement transfer between constituent faults. The application of this model 

of single fold development to a fold and thrust belt, located towards the foreland of 

the Niger Delta, provides insight into the accommodation and distribution of 

shortening in a more complex, closely spaced fold and fault array (Fig. 5.1).

5.6.1. Fault intersections and stratal connectivity across a fault andfold  array

The process o f fault growth by segment linkage is widely documented (e.g. 

Dahlstrom, 1969; Peacock and Sanderson, 1991; Cartwright et al., 1995; Gupta and 

Scholz, 2000) and observed over a large range of scales (Aydin, 1988) and for all 

modes of faulting (Walsh et al., 1999). Stratigraphy can be continuous across faults, 

from hangingwall to footwall, through the development of relay structures (e.g. 

Peacock and Sanderson, 1991) or transfer structures (e.g. Dahlstrom, 1970; O'Keefe 

and Steams, 1982; Higgins et al., 2007) (Chapter 3). In this first section we expand 

upon the descriptions o f stratal connectivity and fault plane geometries of the linking 

fault pairs featured in Chapter 3 (Higgins et al., 2007) and consider the full width of a 

fold and thrust belt.

Geometric and spatial relationships between shortening accommodating 

structures vary considerably along strike resulting in a complex inter- linking network 

of faults and folds. Deformation is continuous along this section of fold belt and )et 

no individual thrust spans the 40 km width of the dataset (Fig. 5.1). Eleven landward- 

dipping forethrusts and eight oceanward-dipping backthrusts underlie asymmetric 

hangingwall anticlines that link along strike in folded transfer zones. The distribution 

of forethrusts and backthrusts is important in controlling the degree of hard linkage 

within the thrust belt above the detachment (Fig. 5.3). If  synthetic thrust faults forma 

simple imbricate stack (e.g. Butler, 1982) their figure 4) they will be linked (in 

section) via a floor thrust or detachment. This is the case for faults and folds iff) 1 to 6
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detachment

detachm ent

Figure 5.3: A schematic cross sections o f a series of thrust faults to demonstrate 
differences in linkage of synthetic and antithetic faults, (a) All faults are of the same 
direction of dip (i.e. synthetic) forming an imbricate stack. Note that within this section 
faults are only hard-linked via a common detachment, (b) Section comprising faults of 
opposing dip (i.e. antithetic). Note that this can create numerous branch points (stippled 
circles) that represent hard-linkage o f faults above the level o f the detachment.
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(Figs. 5.1 and 5.2) with the exception o f fault 4; a backthrust that links with fault 5. 

The more distal structures ( f f l Xo  15) however, are made up of a comparable number 

of forethrusts and backthrusts resulting in hard linkage above the level of the 

detachment, due to the opposite dip o f the thrust surfaces, and a complex, 

interconnected network o f fault planes (Fig. 5.2 and 5.4). This suite of faults and folds 

( f f l  - \ 5 )  are referred to herein as the ‘Frontal Array’ and is the focus o f much of the 

quantitative analysis o f displacement transfer in this study (Fig. 5.5).

The connectivity o f strata through antithetic linkage zones was discussed in 

Chapter 3 (Fig. 3.11) and highlighted the impact of the type of linkage and the depth 

of sedimentary units relative to branch lines, on horizon continuity across a faulted 

fold (Higgins et al., 2007). Two main categories o f connective structures result; 

hangingwall-hangingwall (hw-hw) transfer folds and footwall-footwall (fw-fw) 

corridors. However, both synthetic linkages (e.g. between f f  3a and f f  3b) and 

antithetic linkages (e.g. between f f  4 and f f  5) exist within the survey area (Fig. 5.4 

and 5.5). Transfer structures relating to synthetic faults are affected by the along strike 

alignment o f faults, exemplified by the comparison of the ff3 a /3 b  linkage with that of 

f f l  lib  (Fig. 5.1). In the former example the faults are aligned along strike, there is no 

lateral deviation in the fold trend and the linkage is characterised by a saddle point in 

horizon m4 (Fig. 5.1). The fault planes have hard linked to form a through-going 

surface which causes most horizons to be discontinuous across f f l  a and 3b. Faults in 

the latter example are non-aligned laterally and therefore overlap along strike 

producing a hangingwall-footwall (hw-fw) transfer fold (Fig. 5.5b) within the linkage 

zone (Fig. 5.5a).

Horizon m4 is therefore continuous in a down dip direction across the full 

width of the fold and thrust belt via a tortuous path through numerous transfer 

structures (Fig. 5.1). Within the Frontal Array it is clear that transfer zones do not 

necessarily correspond to structural lows or saddles (Fig. 5.5). In most cases the 

linkage zones correlate with structural culminations in the hangingwalls or have fold 

crests with consistent plunge. Given the evidence from Chapter 4 that suggests fault 

linkages in this region are the product of along strike propagation and interaction of 

initially distinct faults and folds, it is predicted that structural culminations have 

migrated along strike through time and that present day linkage zones were initially 

saddle points during the early stages o f deformation (Fig. 4.16).

5-12



5-13

o c e a n w a r d _______________ L in k a g e__________________________________________ landw arcl

L in k a g e  
(T y p e  3 )L in k a g e  \  «

(T y p e  1) \ A

L in k a g e  
(T y p e 1)

L in k a g e s  /
(T y p e 1 s )  f f L in k a g e  

(T y p e 1)
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1 hw-fw 
transfer fold(a) 7b

5000

12b

'"''hw-hwf 
.transfer fold

twt
(ms)13b T3

5700

3km

Stratal connectivity across thrust fault linkages

hw-fw transfer fold fw-fw corridorhw-hw transfer fold

Figure 5.5: (a) Map o f horizon m4 to show the stratal connectivity through transfer zones 
between linking faults within the Frontal Array. Topography of horizon m4 displayed in 
two-way-travel time (ms). Faults and folds 7-15 are labelled, (b), (c)and(d) Schematic 
summary of the various transfer structures present within the Frontal Array, hw-fw: 
Hangingwall-footwall. hw-hw: Hangingwall-hangingwall. fw-fw: Footwall to footwall. *- 
x  ’: Path along which beds are continuous and unbroken by faults, (c) and (d) were 
described in Chapter 3. Note that horizon m4 is continuous along a tortuous route through 
numerous transfer structures (a). Note also the local structural culmination within the 
transfer zone of faults 13 and 14.
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Chapter 5 Displacement transfer in a deep water fold and thrust belt

All faults in this area either detach onto a regional decollement within the Akata 

Formation or form a branch line with another fault at their lower tip at some point 

along their length (Fig. 5.4). The characteristics o f the lower tip line of a given fault 

may not be consistent laterally such that its elevation, stratigraphic level and 

relationship to other faults may vary along strike. This is most striking in the highly 

interconnected suite o f hard-linked faults ^ 7 - 1 5 )  of the Frontal Array (Fig. 5.5). 

Fault 7, for instance, has a lower tip line located within the detachment layer in the 

southeast (Fig. 5.4), but then climbs stratigraphically to form a line of intersection, or 

branch line, with Fault 12 towards the centre of the dataset (c. 20 km along strike) 

(Fig. 5.4 and 5.6). This geometry is repeated laterally as Fault 7 intersects Fault 10 in 

the northwest (c. 24 km along strike) before tipping out in the hangingwall o f j^TO (c. 

26 km along strike) (Fig. 5.6). This ‘staircase-trajectory’ of lower tip lines typifies 

faults within the Frontal Array and leads to an intricate network of over 12 large-scale 

thrusts. All faults within this array are connected via antithetic linkages within the 

Agbada Fm. The Frontal Array is herein the subject o f quantified analysis of fault and 

fold interaction.

5.6.2. Sequence o f  fo ld  growth

Displacement transfer can only take place between contemporaneous structures 

(Peacock and Sanderson, 1991; Cartwright et al., 1995; Huggins et al., 1995) and 

hence an understanding o f the relative timing of faults is essential to describe the 

distribution of shortening through time. Here we investigate the degree of overlap in 

the duration o f activity of folds and faults in the study area.

The study o f growth packages and onlap markers on the limbs of folds in this 

survey provide evidence for highly synchronous growth between all structures in the 

fold belt and a general trend o f foreland progressing deformation. The onset and 

cessation of folding is presented for each hangingwall anticline n Figure 5.7. The 

dating of stratigraphic horizons is intended to provide relative timings of structural 

growth rather than the absolute age o f deformation. The earliest structural growth f f  

3a) occurred at approximately 11.5 Ma with the youngest feature, the most distal fault 

( ff  15), initiating around six million years later at 5.5 Ma (Fig. 5.7). There is a broad 

pattern of foreland stepping deformation that supports the theory that younger faults
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Contours: H eave (m) - Fault 7 (lateral tip region)

3 .5 -
faultJ.ipJine

200

6 0 0

4 .5 -

branch line 
with fault 10

5.5

detachm ent
branch line with fault 12

2416 20
D istance along-strike (km)

Figure 5.6: Strike projection o f heave values from the lateral tip region of Fault 7 showing the 
shape o f the fault plane at its lateral tip. Fault tip line joins the points o f zero fault heave 
observable on seismic data. Note that towards the main body of the fault (left) the lower tip 
line is located within the detachment. Towards the lateral tip (right) the lower tip line forms a 
branch line with Faults 12 and 10 creating a ‘staircase’ trajectory. The lateral tip of the fault is 
located at approx. 4.75 km depth within the hangingwall of Fault 10 (i.e. above the level of the 
branch line).
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2 -

4 - Faults a c tiv e

All but fault 15

8 -

12 - - Frontal A rray

CO CNJ CD lO
CO

Fold CO

Figure 5.7: (a) Chart o f the relative timing o f fold growth within survey A. Initiation and 
cessation of fold activity was determined by analysis o f syn-kinematic growth strata on the 
limbs of folds. The duration o f deformational activity of each fold is represented by a vertical 
bracket. Note the general foreland-propagating trend to fold initiation (younger to the left). All 
faults were active between approx 5.5 and 3 Ma, whereas all folds bar Fault 15 were active 
between approx. 7.5 and 3 Ma. (b) An example seismic section through a thrust-related fold, 
(c) Interpretation o f the seismic section (b) showing growth packages and onlapping surfaces. 
Sediments below horizon 2 are o f uniform thickness across the fold and are interpreted to be 
pre-kinematic. Folding initiated at the time o f horizon 2. Folding is interpreted to have ceased 
between the deposition o f horizon 4 and the seabed.
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and folds can nucleate downdip o f existing structures, i.e. in the footwall of 

forethrusts, (e.g. Butler, 1982). In detail there is some deviation from this pattern as, 

for instance, fault and fold 1 i f f  1) follows the initiation of f f  2, which in turn follows 

f f  3 in a hinterland stepping fashion. Previous authors have also documented out-of- 

sequence thrusting in this region (e.g. Morley, 2003; Rowan et al., 2004; Corredor et 

al., 2005; Briggs et al., 2006).

Despite an overall sequential foreland-propagating trend of fold nucleation in 

this area it is evident that for a substantial period in the history of the fold belt all 

structures accommodated shortening synchronously (Fig. 5.7). This is demonstrated 

by the overlap in the duration o f activity on all structures. The duration of 

synchronous growth varies given the set of faults considered. All folds, for instance, 

grew together for approximately 2 Ma, whereas features f f  1 to 14 were 

contemporaneous for approximately 4 Ma (Fig. 5.7).

It is important to note that the period o f activity of a fold presented here (Fig.

5.7) does not record variations in the rate of deformation on individual structures, i.e. 

periods of rapid shortening (e.g. Rowan, 1997), nor does it record episodic movement. 

The resolution within the syn-kinematic packages and the accuracy level of lateral 

horizon correlation does not allow for recognition of short-term periods of growth 

during which folds may amplify by tens of metres. Therefore we cannot comment on 

the relative magnitude o f shortening between structures during the time of 

synchronous growth.

5.6.3. Kinematic interaction between faultedfolds

Displacement transfer as a conceptual process is often discussed with reference to 

a pair or group of thrust faults that interact either along strike (e.g. Davis et al., 2005) 

or in section (e.g. Ellis and Dunlap, 1988). Studies of complete normal fault arrays 

gave rise to concepts o f geometric and kinematic coherency (Walsh and Watterson, 

1991). This hypothesis has not yet been applied to compressional tectonics. In this 

section the distribution o f fault heave and shortening on individual and linking 

structures are contrasted with aggregate profiles comprising the Frontal Array and all 

faults in the fold belt. Given the synchronous growth of structures in the fold belt (Fig.

5.7) it was considered valid to investigate the degree of along strike and dip-parallel
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displacement transfer between component features, and this forms the central theme 

of this chapter.

5.6.3.1. Along strike displacement transfer

Antithetic faults that interact laterally to produce hw-hw transfer folds (Fig. 

5.5c) transfer displacement such that aggregate profiles either plot close to the ideal of 

a single fault, or display a cumulative deficit in fault heave within the transfer zone 

(Fig. 5.8). Remarkably however, crestal height and values of fold plunge rarely 

distinguish between these two scenarios. This can be demonstrated by the comparison 

of two Type 1 linkages (i.e. antithetic faults that exclusively overlap above the level 

of the associated branch line) as defined by Higgins et al (2007) (Chapter 3, Fig. 3.7 

and 3.11). The linkage zone between faults FI and F2, located within Fold B 

described in Chapter 4 (Fig. 4.6), extends c. 7 km along strike (Fig. 5.8a) and has an 

aggregate profile similar to that predicted for a singly faulted fold (Fig. 4.5). This 

Type 1 linkage is situated in the northern half of the structure and the plunge of the 

fold (Fig. 5.8c) corresponds to the smooth gradient of cumulative fault heave that 

decreases steadily from the culmination to the tip (Fig. 5.8b). This can be compared 

with another Type 1 linkage involving fault and fold 13 i f f  13) and f f  14 which have 

an along strike fault overlap o f  ju st c. 3.5 km (Fig. 5.8d). The transfer zone, defined 

by abrupt changes in displacement profiles (e.g. Peacock and Sanderson, 1991), 

extends further than the zone o f  overlap and contains an area of significant fault heave 

deficit below the ideal aggregate profile (Fig. 5.8e). The fold amplitude, presented as 

the depth to the fold crest (Fig. 5.81), is unaffected by the shortfall in fault heave and 

is, moreover, expressed as a local culmination within the zone of linkage. This 

observation that fold amplitude is largely unaffected by deviations in fault heave away 

from the ideal profile is made on all types of linkage described by Higgins et al. 

(2007) (Chapter 3) and characterises the majority of fault interactions in this study 

area.

In previous studies it has been shown that fold strain increases to compensate 

in areas of fault heave deficit (e.g. Davis et al., 2005) (Chapter 4; Fig. 4.15) and hence 

it should perhaps be expected for fold amplitude to be maintained through such areas. 

However, it is clear that consistent fold height profiles can coincide, not only with 

instances o f fault heave minima, but also with minima in bulk shortening, which
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Figure 5.8: Comparing displacement and fold profiles through two Type 1 antithetic thrust fault 
linkage zones (as defined in Chapter 3). (a) and (d) Structure contour maps, (a) features horizon h2 
in the fault F2/F3 linkage zone featured in Chapter 4. (d) shows horizon m4 in the linkage zone 
between fault and fold iff) 13 and 14 from this chapter. Fault heave values are displayed in 
polygons in (d). Contour values represent depth to horizon in two-way-time (seconds). Lower 
contour values indicate structural highs, (b) and (e) Heave -  distance profile o f faults through the 
transfer zones. Summed profiles are given by white diamonds. The ideal fault profiles are 
displayed, predicted from the elliptical profile o f an isolated, non-linking fault, (c) and (f) Charts of 
the along variability o f the depth to the fold crests. Note that in (c) fold height follows a similar 
trend to the summed fault heave profile, while in (f) the heave deficit in the transfer zone (e) is not 
reflected in the fold profile.
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incorporates the folding component o f deformation. Such is the case with the Type 2 

linkage comprising f f  11 and f f  12 (Fig. 5.9). Here, fiult planes overlap exclusively 

below the level of the branch line between the faults (Fig. 5.9b) such that horizons 

above this level are connected through the transfer zone by a hw-hw transfer fold (Fig. 

5.9a and 5.5c). The lateral tip regions of both faults are downwards tapering, creating 

concave-up tip lines (Fig. 5.9f). As a result, fault traces drawn with respect to 

shallower horizons will display less along strike overlap than those at depth. Fbrizon 

m4, used here to demonstrate displacement transfer, is located stratigraphically above 

the level of the branch line o f 11 and 12 and hence the fault traces do not overlap 

laterally (Fig. 5.9a) resulting in fault heave decreasing to zero within the transfer zone 

(Fig. 5.9c). This deficit is represented by irregularity in the aggregate strike projection 

(Fig. 5.9e) in the form of a depression in heave contours within the linkage zone. The 

bulk shortening estimate decreases in a similar manner to a minimum of 

approximately 98 m at a point where horizon m4 is deformed by folding alone (Fig. 

5.9c). Regardless o f this reduction in both fault heave and shortening, the depth to the 

fold crest is consistent at around 4.3 km (Fig. 5.9d) and even shows a small increase at 

8.5 km along strike, the point o f zero fault heave.

5.6.3.2. Dip-parallel displacement transfer

An interesting observation within the Frontal Array is that fault heave deficits 

within linkage zones are commonly aligned up or down regional dip with 

corresponding maxima on other structures. An excellent structure to illustrate this 

concept is f f  10 located approximately 3 km updip of the f f  11/12 linkage zone (Fig. 

5.10b and 5.11) described in the previous section. Fault and fold 10 comprises a 

forethrust with a maximum fault heave in excess o f 800 m and a fold amplitude of up 

to 480 m. It is only partially imaged due to the limits of the survey area. Superficially, 

the morphology o f horizon m4, in the hangingwall anticline of f f  10, correlates with 

the linkage zone as the structural culmination o f f f  10 is aligned with the fault tips 

(w.r.t. horizon m4) of f f  11 and 12 (Fig. 5.10b), assuming the transport direction on 

the faults has occurred perpendicular to fault strike. This relationship is reinforced by 

the fault heave contours o f the strike projected profiles (Fig. 5.10c and d). The deficit 

in fault heave in the f f  11/12 linkage zone defined by depressed contours between c. 

22 and 26 km along strike (Fig. 5.10c) coincides with a balancing zone of maximum
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Figure 5.9: Analysis o f the distribution o f  fault heave in a Type 2 antithetic thrust fault 
linkage zone (as defined in Chapter 3). Linkage occurs between faults and folds 11 
(backthrust) and 12 (forethrust), (a) Topographic map of horizon m4 in the region o f the 
transfer zone presented in two-way-time (s). FW: footwall. HW: hangingwall. (b) 3D 
visualisation of the transfer zone. Fault surfaces continue in and out o f the page, (c) Heave -  
distance plot for faults through the transfer zone measured on horizon m4. Note that faults 
do not overlap with respect to horizon m4 due to its stratigraphic level and hence heave 
reduces to zero at around 28.5 km along strike. In a Type 2 linkage fault overlap varies with 
depth (see Figure 3.11). (d) Along strike variation in the depth to the fold crest on horizon 
m4. Note that fold height is maintained along strike, (e) and (f) Strike projected contour 
plots of fault heave, (e) Cumulative fault heave contoured profile (summation o f faults 11 
and 12). Stratigraphic level o f m4 shown by joined ‘cross’ symbols, (f) Individual fault 
heave contoured profiles. Note that scale is reduced on these plots. Lateral tip regions of 
faults form typical downwards-tapering, ‘depressed’ tip lines of a Type 2 linkage (see Figure 
3.8).
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Figure 5.10: Complementary heave distribution patterns on a structure located up regional dip 
from the zone of heave deficit in the transfer zone featured in Figure 5.9. (a) Conceptual 3D 
geometry of faultslO, 11 and 12. Taken from Figure 5.4. (b) Topographic map of horizon m4 in the 
region of the transfer zone presented in two-way-time (s). FW: footwall. HW: hangingwall. (c) 
Aggregate strike projected contour plot o f heave values for faults 11 and 12. Deficit in heave in the 
transfer zone is expressed as irregularities in the distribution of heave and ‘depressed’ contour lines 
between 26 and 31 km along strike, (d ) Individual fault heave contoured profile of Fault 10. The 
shape and location o f the zone o f maximum heave is aligned with the minimum recorded in (c). (e) 
Aggregate strike projected contour plot o f heave values for faults 10, 11 and 12. The addition of 
Fault 10 into the aggregated profile increases the regularity of contours between 26 and 31 km 
along strike and produces a profile closer to that of Fold A in Chapter 4 (Fig. 4.5).
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Figure 5.11: Example seismic sections through the linkage zone of Faults 11 and 12 oriented 
perpendicular to fault strike. Locations o f lines are given in Figure 5.10. (a) Seismic section 
through the centre of the transfer zone, (b) Interpretation of (a). Note the vertical extent of faults 11 
and 12, the shape o f the folds and the amount o f heave on Fault 10 on horizon m4. Faults 11 and 12 
have approx. equal displacement, one fold is symmetric and Fault 10 displays increased heave on 
horizon m4 compared to (d). (c) Seismic section along strike from the centre of the transfer zone, 
(d) Interpretation o f (c). In this case f f l  1 is dominant, folds are asymmetric and Fault 10 has 
reduced heave on horizon m4 compared to (b).
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fault heave on f f  10 (Fig. 5.10d). When aggregated, the irregularities in the contours 

related to the transfer zone are smoothed (Fig. 5.10e) and brought closer to the ideal 

profile of a single non-linking fault (Fig. 4.5). The result is not a completely smooth, 

ideal profile however, and some irregularities remain. This may be expected because 

further displacement transfer may have occurred with other neighbouring structures or 

be accommodated by variations in the amount o f fold strain (Fig. 4.5). There is no 

hard linkage between 11/12 and f f  10 but rather they are connected via a common 

detachment level (Fig. 5.11) and along strike, indirectly, via branch lines with f f l  

(Fig. 5.4). Analysis o f sedimentary packages on the flanks of these structures suggest 

that f f  10, 11 and 12 all initiated at approximately the same time (Fig. 5.7a).

5.6.4. Distribution o f  shortening in a fo ld  and thrust belt

Following the description of displacement transfer between selected linking 

structures, it is interesting to consider the distribution o f heave and bulk shortening for 

the fold and thrust belt as a whole. If displacement transfer has occurred such that an 

along strike decrease in the amount o f deformation on one structure is taken up by 

another structure (e.g. Dahlstrom, 1970), either along strike, updip or downdip across 

the array, then it is reasonable to predict values o f  bulk shortening to be somewhat 

consistent along the length o f the fold and thrust belt (e.g. Price and Mountjoy, 1970; 

Liu and Dixon, 1991). The degree to which this is true for the fold belt featured here 

varies with depth and is highlighted by a comparison of horizons m6 and m3 within 

(i) the Frontal Array and (ii) the entire fold belt. It is clear from heave-length profiles 

that aggregate values are more irregular along deeper horizons, e.g. m3 (Fig. 5.13a), 

than on shallower examples, e.g. m6 (Fig. 5.12a). In the case of horizon m6, lateral 

variations in heave along individual faults are mirrored by complementary trends on 

neighbouring faults. This can be demonstrated with faults 12 and 7 in the region of 10 

and 25 km along strike (Fig. 5.12f). A number of local heave maxima on each fault 

correspond with minima on the other producing a smoother composite profile. This 

relationship is not replicated for values o f heaw measured on horizon m3 (Fig. 5.13). 

In this instance a dramatic decrease in heave on fault 7 at around 12 km along strike 

(Fig. 5.13d) is not accompanied by a complementary trend on fault 12 (Fig. 5.13b) 

and is reflected in an irregular aggregate heave profile (Fig. 5.13a).

5-25



Chapter 5 Displacement transfer in a deep water fold and thrust belt

bulk shortening

aggregate heave

H e a v e - d is t a n c e  p lo ts  o f  F ron ta l Array fa u lts  for h o r izo n  m 6

1000
%
2 0 
CD 6
X 1000

fault 11

fault 7

fault 10fault 7b3
CO

LL
fault 9

1000 fault 13fault 14
fault 13b

1000
fault 15

15 20

D istance along strike (km)

(f)

500
E

f  ° 
1 1000 
3
CD

LL

0

Figure 5.12: Heave-distance graphs for faults o f the Frontal Array measured on the syn- 
kinematic horizon m6. (a) Aggregated heave-distance graph of all faults in the Frontal Array 
(Faults 7 to 15). Profile o f bulk shortening values across the Frontal Array is also presented, 
(b) to (e) Individual heave-distance plots for Faults 7 to 15. (b) Faults 11 and 12. (c) Faults 
7, 7b, 9 and 10. (d) Faults 13, 13b and 14. (e) Fault 15. Note that not all faults have heave 
profiles (e.g. Fault 8) as not all faults offset the shallower syn-kinematic horizons, (f) 
Zoomed plot o f part o f the heave-distance profiles o f Faults 7 and 12 to show 
complementary along strike trends in fault heave.

Zoom area of lb) and (c) above 
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H e a v e - d i s t a n c e  p lo t s  o f  F ron ta l A rray fa u lts  for h o r izo n  m 3
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Figure 5.13: Heave-distance graphs for faults o f the Frontal Array measured on the pre- 
kinematic horizon m3, (a) Aggregated heave-distance graph o f all faults in the Frontal 
Array (Faults 7 to 15). Profile o f bulk shortening values across the Frontal Array is also 
presented, (b) to (f) Individual heave-distance plots for Faults 7 to 15. (b) Faults 11,12 
and 12b. (c) Fault 10. (d) Faults 7, 7b, 8 and 9. (e) Faults 13, 13b and 14. (f) Fault 15.
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Measurements o f bulk shortening are also more consistent along strike than those of 

aggregate fault heave. This is most pronounced on the m6 horizon (Fig. 5.12a). An 

overall shortfall in heave between 15 and 27 km along strike is less significant in the 

shortening curve and would suggest an increase in continuous strain in this area, as 

described in Chapter 4 for an isolated fold (Fig. 4.5). Shorter wavelength, more 

pronounced variations in fault heave on horizon m3 correspond to a similar trend in 

shortening (Fig. 5.13a) resulting in more pronounced maxima and minima.

This contrast in the distribution of deformation at various stratigraphic levels 

within the Frontal Array is more clearly demonstrated on strike projected contour 

plots of aggregate heave and bulk shortening (Fig. 5.14). The most pronounced 

feature of these profiles is the dissimilarity between the regular, evenly spaced sub- 

horizontal contours above a depth o f around 4.25 km and the irregular contours 

below. The boundary between these two regions is approximately parallel with 

stratigraphy and coincides with the delineation of pre- and syn-kinematic sequences. 

This boundary line is defined as the stratigraphic level o f fold onset of the first 

structure(s) to nucleate within the Frontal Array, i.e. f f  10 and 11 (Fig. 5.7). Lateral 

displacement gradients within the syn-kinematic sequence are extremely low and 

heave is preserved along strike (Fig. 5.14a). Numerous maxima and minima within 

the pre-kinematic units reflect a variable trend in both heave and shortening along 

strike. The significance o f the distribution and regularity o f shortening in relation to 

the timing of fold growth is discussed in a later section.

5.7. Discussion

Previous descriptions o f isolated thrust-related folds (e.g. Rowan, 1997; 

Higgins et al., in review) have provided insight into the growth history of single 

structures from initially discrete segments (Chapter 4). The section o f a 70 km wide 

deep water fold and thrust belt featured in this study provides an exceptional 

opportunity to apply the hypotheses derived from simpler structures to a more 

complex fold and fault array. The analysis o f the distribution o f shortening within an 

area comprising numerous synthetic and antithetic fault linkages allows conclusions 

to be drawn on the nature o f displacement transfer between interlinking faulted folds. 

A remarkable aspect of this study stems from the degree of synchronous growth
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Chapter 5 Displacement transfer in a deep water fo ld  and thrust belt

within a foreland-propagating set o f faults and folds and concerns the consequent 

potential for kinematic interaction between all constituent structures. What follows is 

a discussion of the implications o f the synchronous growth of a fault and fold array 

and the impact of a three dimensional model of fault and fold growth for our 

understanding of the timing and sequence o f fault initiation in a 2D section. It is also 

interesting to consider the degree o f kinematic coherence between all component 

features within a complex array and also the differences between the distribution of 

shortening in pre- and syn-kinematic sequences.

5.7.1. Synchronous growth o f  faults andfolds

The propagating sequence o f faults within an array has long been the subject of 

discussion, based largely upon 2D sections, and has given rise to two basic models. 

Break-forward propagation, or piggy-back  thrust propagation (Dahlstrom 1970; Butler 

1982), involves the progressive propagation of structures towards the foreland, 

whereas break-back propagation, also known as an overstep sequence (Elliott and 

Johnson 1980; Boyer and Elliott 1982), involves younger faults forming towards the 

hinterland. These models also assume that nucleation and growth of a new structure 

coincides with the cessation o f movement on existing faults (e.g. Boyer and Elliot, 

1982). Evidence from growth packages on the limbs of folds suggests a general 

foreland-progressing trend in the initiation of new folds during the development of 

this part of the outer thrust belt o f the Niger Delta (Fig. 5.7). Within this pattern of 

initiation are some irregularities that are due to out-of-sequence events. Many authors 

have noted the occurrence o f such structures (e.g. Wiltschko and Dorr, 1983; 

DeCelles et al., 1995; DeCelles and Mitra, 1995; Mitra and Sussman, 1997; Corredor 

et al., 2005; Briggs et al., 2006) and Rowan et al (2004) suggested that in deep water 

settings this could reflect the nature o f shale-detached fold belts which rely on 

overpressure to accommodate gravitational collapse (e.g. Wu and Bally, 2000). Pore 

fluid pressures in the shale units can fluctuate locally due to processes such as 

dewatering following fault movement, dehydration reactions, the production of 

hydrocarbons (Rowan et al., 2004) or disequilibrium compaction Observations of the 

onset and cessation of folding also reveal a history of synchronous growth of faults 

and folds in the study area (Fig. 5.7), a finding supported by displacement transfer 

between faults and folds in the Frontal Array (Fig 5.12). This statement does not
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account for the possibility o f changes in individual rates o f shortening accumulation 

during the lifespan of a given fault and fold and hence does not describe which folds 

grew when and by how much within a period of contemporaneous growth. Rowan et 

al (2004), for instance, argue that episodic movement is common in shale based 

deformation. It does show however, that during the progression of deformation into 

the foreland, the inception o f each new structure did not coincide with the cessation of 

movement on older elements (Fig. 5.7). Synchronous growth of features in a fault 

array underlines the potential for geometric and kinematic coherence between 

structures. This coherence would be expressed as a more complex kinematic history 

with the possibility of closely spaced fold and faults experiencing stress perturbations 

from propagating neighbouring structures.

Given the three-dimensional nature of fault propagation (e.g. Suppe, 1983; 

Cooper et al., 2003), the order in which a fault appears in any given cross section may 

not reflect the order in which fault surfaces nucleated within the array (Walsh and 

Watterson, 1991). Chapter 4 demonstrated that numerous folds and faults can nucleate 

at approximately the same time and propagate along strike to link into a through- 

going structure (Fig. 4.16). Nucleation sites were shown to be close to, but not 

necessarily directly at, areas o f maximum fault leave in the present day (Fig. 4.14). 

The seismic survey featured in this chapter is located towards the foreland from this 

isolated structure in Chapter 4 and images faults that propagated within the same 

stratigraphic sequence, at a similar time, detach on the same regional decollement and 

form very similar linkage geometries. If  we therefore apply this model of growth to 

the Frontal Array, the position at which a dip-parallel 2D section is located along the 

length of the fold and thrust belt may affect the apparent order of thrust nucleation 

recorded within that section. The along strike interaction and displacement 

distribution of fault and folds f f )  10, 11 and 12 (Figs. 5.10 and 5.11), for instance, 

suggest three initially spatially distinct thrusts formed at roughly the same time (Fig.

5.7) and grew laterally towards each other. If this is the case, then sections through 

and to one side of the f f  11/12 linkage would record different sequences of thrust 

initiation (assuming sufficient stratigraphic dating resolution). Growth strata on a 

section that passes through the linkage zone indicate that Fault 10 predates Faults 11 

and 12 (given that Fault 10 nucleated close to the area of maximum heave) (Fig.

5.1 la). Fault and folds 11 and 12 would p re d a ted  10 on sections either side (e.g. Fig.

5.1 lb) containing the lateral tips o f fault 10.
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It can also be tempting to predict, from a 2D section, the temporal relationship 

between a detaching thrust fault and an intersecting antithetic fault located exclusively 

within the hangingwall and forming a branch point at its lower tip (e.g. Fig. 5.3b). The 

three-dimensional geometries o f antithetic fault linkages described in Chapter 3 (F ig. 

3.11) and the evidence for the lateral propagation of linking thrusts from chapter 4 

(Fig. 4.14) suggests the relative timing of fault surfaces is difficult to discern from 2D 

sections.

5.7.2. Response o f  fo ld  height and fo ld  shape to fault linkage

Davis et al (2005) noted a relationship between the length of the lateral overlap 

of linking faults and the efficiency o f displacement transfer, such that greater overlaps 

produce smoother aggregate displacement profiles with little or no deficit within the 

transfer zone. A similar correlation is observed in this portion of the Niger Delta 

exemplified by the comparison o f two Type 1 linkages (Fig. 5.8). The first example 

(Fig. 5.8a) has a lateral overlap o f around 7 km, described in Chapter 4, and displays 

heave values that sum close to the ideal profile of a single fault. The second example, 

involv ing^ 13 and 14 (Fig. 5.8d), has half the lateral overlap and has a deficit in fault 

heave within the zone o f overlap (Fig. 5.8e). One of the most interesting observations 

made in this study, however, is the lack of correlation between fold crest height and 

deficits in fault heave (Fig. 5.8c and f). This is noted on all types o f linkages and also 

applies to instances o f shortening deficit (Fig. 5.9c and d). Simpler structures display 

a close relationship between shortening (or heave) and the amplitude o f the fold, as in 

the case o f  the single fault and fold from Higgins et al. (2007) (Fig. 3.4) and the 

isolated fold in Chapter 4 (Fig. 4.6). Therefore it is hypothesised that fold shape must 

be modified within zones o f antithetic linkage to allow for the preservation of fold 

height. This premise appears accurate for the ̂ 1 1 /1 2  linkage where horizon m3, for 

example, forms a classic asymmetric hangingwall anticline away from the zone of 

linkage (Fig. 5.11b) but describes a tight, symmetric fold with a low inter-limb angle 

at the central position (Fig. 5.11a). This change in shape enables lower heave and 

shortening values to be associated with elevated fold crests and therefore maintain 

fold amplitudes along strike. In this case the fold shape may be controlled by the two 

thrusts faults that abut at depth producing a ‘bell-shaped’ fold in the overburden (Fig.
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5.1 la). It can be concluded therefore, that in areas of fault linkage, fold height or fold 

amplitude are not necessarily indicative o f the amount o f shortening accommodated 

by a particular horizon and that continuous deformation (i.e. folding) does not always 

compensate for deficits in fault displacement.

5.7.3. Kinematic coherency o f  a fo ld  and thrust belt

The synchronous growth o f all structures within the fold and thrust belt (Fig.

5.7) indicates there is potential for the system to be kinematically coherent (Walsh 

and Watterson, 1991). In such a scenario the timing and distribution o f displacement 

on one element o f the fold and fault belt is related to the timing and distribution of 

deformation on all other parts o f the array. The development of contemporaneous 

structures is essential for kinematic coherence and therefore it may be applicable to 

areas deforming as a critical-taper wedge, if the nucleation of structures in the 

foreland can be associated with continued accumulation o f displacement on early 

faults in the hinterland (e.g. Davis et al., 1983).

The study o f selected examples o f linking faults and folds demonstrates the 

transfer of displacement both along strike and in a dip-parallel direction. The 

minimum in shortening located within the f f  11/12 transfer zone has been shown to 

correspond with a maximum on the neighbouring updip structure, f f  10 (Fig. 5.10). 

Based on criteria for kinematic interaction, cited as complementary modifications to 

fault displacement patterns from a reference standard (e.g. Barnett et al., 1987; Walsh 

and Watterson, 1991) and the observation o f relay structures (Muraoka and Kamata, 

1983; Larsen, 1988; Huggins et al., 1995), it can be concluded that the transfer of 

displacement, and of shortening, between these structures has occurred both along 

strike and in a dip-parallel direction The aggregation of heave on these three faults 

(Fig. 5.10e) improves the regularity o f contours within the f f  11/12 transfer zone and 

produces a profile closer to that o f a single structure. This process does not however 

fully restore the deficit observed. Fault and fold 10 was the most likely candidate for 

dip-parallel displacement transfer as it is located immediately updip (Fig. 5.5) and 

displayed complementary geomorphology. It is conceivable that displacement transfer 

may have occurred between all features o f the Frontal Array, and indeed the fold belt

5-33



Chapter 5 Displacement transfer in a deep water fo ld  and thrust belt

as a whole, as all grew synchronously and are connected via common detachments 

and/or the hard- linkage o f antithetic faults.

It is interesting to firstly consider the kinematic interaction of the faults in the 

Frontal Array, apart from the rest o f the fold belt, as it is an excellent example of a 

complex folded sequence comprising a set of thrusts that are connected via common 

basal detachments but are also hard-linked into a single system via antithetic fault 

linkages above the detachment (Fig. 5.4). The aggregation of heave values for all 

faults in the Frontal Array produces sub-horizontal contours in the shallow section 

(<4.25 km depth) on the strike projection (Fig. 5.14a). This suggests that as heave 

decreases on one structure there is a corresponding complementary increase on 

another. This is most clearly demonstrated at lateral tip regions of linking faults 

within a single through-going fold such as the ^ 1 3 /1 4  interaction approximately 15 

km along strike (Fig. 5.12d). Complementary heave profiles also occur away from 

fault tips within the Frontal Array Faults 7 and 12 are hard-linked via branch lines 

that almost span the complete width o f the survey (Fig. 5.4) and show opposite trends 

in fault heave along their entire length within the shallow section (Fig. 5.12f). Small 

amplitude irregularities in fault heave on each fault is mirrored by the other, such that 

local maxima on one trace corresponds, in a dip-parallel direction, with minima on the 

counterpart fault (Fig. 5.12f). Aggregation along shallow horizons within the Frontal 

Array therefore produces relatively consistent values of fault heave along strike and 

sub-horizontal contours on strike projections that demonstrate very low lateral heave 

gradients. Minor undulations in heave contours are less pronounced on the shortening 

profile (Fig. 5.14b) again suggesting continuous strain compensates for variations in 

discontinuous deformation. Within the deeper section (>4.25 km depth) the 

distribution of aggregate heave and bulk shortening is more irregular and contours do 

not follow the sub-horizontal patterns above (Fig. 5.14). The significance of this is 

discussed in the subsequent section.

The inclusion of all structures in the fold and thrust belt in the aggregation 

produces a similar profile to that o f the Frontal Array with sub-horizontal contours 

characterising the shallow section (<4.5 km) (Fig. 5.15). All faults in this scenario are 

linked via common detachments. The uniform, regular and sub-horizontal nature of 

contours within the shallow section (< 4.5 km depth, Fig. 5.15) suggests displacement 

transfer has occurred between all structures during synchronous growth Contours are
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Figure 5.15: Distribution o f fault heave within the fold belt and its relationship with fault 
linkage points, (a) Strike projected contour plot o f aggregate fault heave for all faults within 
the fold belt (Faults 1 to 15). Cross symbols indicate the sampling points of horizon m3, 
which represents the stratigraphic level o f the onset o f folding within the fold belt (i.e. is the 
boundary between pre- and syn-kinematic units). Above horizon m3 contours are regular, 
sub-horizontal and sub-parallel with stratigraphy. Below horizon m3 contours are irregular 
and record several locations o f heave maxima. Note that the level o f fold onset here is 
stratigraphically below that given in Figure 5.14 as Folds 3a and 5 initiated earlier than those 
in the Frontal Array (see Fig. 5.7). (b) Aggregate heave-distance graph for all faults showing 
along strike variations in summed heave measured on the pre-kinematic horizon m2, (c) 
Graph to show lateral extent o f thrust faults in the fold belt. Locations o f major along strike 
linkage zones are indicated by yellow ellipses (e.g. L I 3/14 refers to the linkage between 
faults and folds 13 and 14). Spacing between fault traces are not representative of true 
distances.
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sub-parallel with stratigraphy and extend across the entire width of the survey and 

show both heave and shortening decrease uniformly upwards. At this shallow 

stratigraphic level then (m4 — seabed), deformation has been transferred between 

fifteen faults and folds, none o f which span the entire survey, to produce consistent 

values of heave and shortening along strike. Based on this evidence alone it would be 

reasonable to conclude the Frontal Array is geometrically and kinematically coherent 

(Walsh and Watterson, 1991).

In a kinematically coherent array all component structures are integral and 

essential to the accommodation o f deformation within the distinct fault system (Walsh 

and Watterson, 1991). The omission o f any individual fault or group o f faults will 

affect the aggregate profile o f the array with an increase in irregularity of contours. It 

is important to note here therefore, that the Frontal Array does not include all the 

faults found in this survey and also, when considering the fold belt as a whole, 

structures may exist outside the limits of the data. Examination o f regional 2D seismic 

suggests there are no candidate structures in the immediate vicinity of our surveys, 

however it is unclear how far displacement can be transferred upslope between 

structures. Should it, therefore, be expected that aggregate fault heave and shortening 

profiles will produce ideal horizontal contours predicted for a kinematically coherent 

system (Walsh and Watterson, 1991)? Previous studies may suggest a negative 

answer as many authors have shown that fold-and-thrust belts in the Niger Delta 

form two arcuate zones that die out along strike (e.g. Morley, 2003) and that well 

developed imbricate zones can pass laterally into regions of low shortening where 

only a few imbricates, pop-ups and triangle zones are developed (Morley and 

Guerin, 1996; Hooper et al., 2002). These changes in fold belt geometry and 

shortening may be due to variations in the thickness of mobile shale substratum 

(Morley, 2003) that could significantly affect aggregate profiles of displacement. 

Despite these observations however, it is clear that faults and folds comprising this 

section of the outer thrust belt show complementary trends in heave and shortening 

that demonstrate displacement transfer between numerous elements and move 

aggregate profiles o f the distribution o f deformation closer towards that of a single 

structure.
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5.7.4. Controls on the distribution o f  bulk shortening

It is worth considering the relationship between the timing of sedimentation 

relative to the onset o f folding and the distribution o f shortening within the 

stratigraphic section. Displacement transfer between neighbouring faults and folds, 

both along strike and in a dip-parallel direction, can lead to relatively consistent 

values of bulk shortening along strike and cumulative profile projections should 

therefore be characterised by sub-horizontal contours. We discussed in previous 

sections how this is the case for values o f heave recorded on shallow stratigraphic 

horizons (4.25 km) within this seismic survey. Below this level however (-4.25 km), 

contours are not sub-horizontal and display several maxima and minima along strike 

in both heave and shortening (Figs. 5.14 and 5.15). Childs et al. (2003) described 

similar distributions on syn-sedimentary normal faults in the Gulf o f Mexico and 

noted that on individual faults the boundary between sub-horizontal and, in their case, 

sub-vertical contours demarcates the syn- and post-sedimentary regions of the fault 

plane. To apply this observation to a compressional regime, fault heave distributions 

are discussed with respect to pre- and syn-kinematic stratigraphy for three structural 

case studies: i) a singly faulted fold, ii) a potential synthetic thrust fault linkage zone 

and iii) the fold belt as a whole.

Fault and fold iff) 3a comprises a single forethrust and an oceanward-vergent 

hangingwall anticline (Fig. 5.16). Some o f the fault and fold is located outside of the 

survey boundaries and hence only one lateral tip is maged. Fault and fold 3a links 

synthetically with f fV o  along strike, however this is considered to be at an early stage 

o f linkage as folding reduces to zero at a saddle point within the relay zone (Fig. 5.1) 

and fault heave gradients remain constant towards the linkage zone. Fault heave 

contours on the majority o f the fault length (c. 14 -  33 km along strike) are taken to 

represent an example o f the distribution o f displacement on a single fault during fold 

growth. Fault heave contours above a depth o f approximately 4.5 km are sub

horizontal, sub-parallel and cbsely  spaced (Fig. 5.16). Below this depth contours 

become more irregular to become sub-vertical close to the detachment, at around 5.75 

km depth. The boundary between these two areas coincides with the stratigraphic 

level of the onset o f folding (Fig. 5.16, dashed line), which delineates the syn- 

kinematic sediments above from the pre-kinematic sequence below. The change in 

character o f heave contour shape is clearly demonstrated by the 800 m contour (Fig.
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Figure 5.16: Strike projected contour plot showing the distribution of heave on Fault 3a. 
Fault tip line joins the points o f zero fault heave observable on seismic data. Base o f the 
plot is the level of the detachment. Dashed line indicates the depth of horizon m3, which 
represents the stratigraphic level o f the onset o f deformation for Fold 3a (i.e. is the 
boundary between pre - and syn-kinematic units). Contour display increased regularity 
above the level of m3 than below.
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5.16). Within the syn-kinematic units (c. 27.5 to 33 km along strike) the contour is 

smooth and sub-parallel to stratigraphy. As the 800 m contour passes into the pre- 

kinematic units, fluctuations in the trend of the contour are amplified immediately and 

the gradient increases to vertical towards the fault tip (Fig. 5.16). Childs et al. (2003) 

argue that for a blind fault (i.e. post-sedimentary) the length of the fault trace on any 

given horizon is a function o f the maximum displacement on that horizon. In contrast, 

the length of a fault trace on a syn-kinematic horizon (i.e. at the syn-sedimentary part 

of the fault plane) is inherited from underlying strata regardless of the how much it 

has been offset since its deposition (Childs et al., 2003). Hence syn-kinematic 

packages can display extremely low lateral displacement gradients represented by 

sub-horizontal contours.

Fault 5 displays a similar heave distribution to fault 3a with smooth, sub- 

horizontal contours within the syn-kinematic package and irregular contours below 

(Fig. 5.17a). The stratigraphic level o f fold onset again coincides with the boundary 

between these two areas and also intersects the points of maximum curvature of heave 

contours (Fig. 5.17a). In contrast to fault 3a, fault 5 exhibits two distinct areas of 

heave maxima in the pre-kinematic section separated by a significant minimum. This 

pattern is not reflected in syn-kinematic contours which remain sub-parallel with 

stratigraphy throughout (Fig. 5.17a). Two dip-parallel seismic sections located 

through the maximum at c. 19 km along strike (Fig. 5.17b, c and e), and the minimum 

at c. the 14 km position (Fig. 5.17d and f), show varying fault plane geometries. The 

former section (w -  w ’) comprises a clear single fault plane reflection (at the 

resolution of seismic) (Fig. 5.17c and e). The latter section (v -  v ’) exhibits two fault 

planes separated by a distance o f approximately 300 m (Fig. 5.17d and f). The two 

surfaces converge on a branch line at c. 5.75 s twt, seen as a branch point in section 

(Fig. 5.17d). This geometry is limited in extent from c. 12 km to 15 km along strike 

(Fig. 5.17g). One interpretation o f such geometry could be that this is a breached 

synthetic relay zone and that two initially distinct faults have linked to form Fault 5 

and the associated, single through-going fold. If  correct, the minimum in fault heave 

seen in the pre-kinematic units (Fig. 5.17a), records the location of the original relay 

zone. Childs et al (2003) also noted that, as with blind faults, much of the 

complexities seen in syn-sedimentary faults is due to fault interaction, linkage and 

capture most commonly associated with a relay zone. Deficits in heave and shortening
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Figure 5.17: Analysis o f the relationship between the distribution of heave on Fault 5 and the 
geometry of the fault plane, (a) Strike projected contour plot showing the distribution of heave on 
Fault 5. Fault tip line joins the points o f zero fault heave observable on seismic data. Base of the 
plot is the level o f the detachment. Dashed line indicates the depth o f horizon m3, which represents 
the stratigraphic level o f the onset o f deformation for Fold 5 (i.e. is the boundary between pre- and 
syn-kinematic units). Contour display increased regularity above the level of m3 than below. Of 
particular interest is the local minimum in heave located approx. 14 km along strike, (b) Seismic 
section through Fold 5. (c) and (d) Zoomed in seismic sections contrasting fault plane geometries at 
two points along the fold, (c) section v-v’ coincides with the local minimum in heave located 
approx. 14 km along strike. Locations o f sections given in (a), (e) and (f) Interpretations of sections
(c) and (d). (e) shows the interpretation o f a well imaged single fault plane reflection, (d) displays a 
wider fault zone (-300 m) interpreted as two distinct fault planes in (f). (g) Map o f the fault traces 
between 12 and 15 k along strike.

therefore are likely to represent areas that have experienced ductile deformation due 

to the propagation and interaction o f fault tips with other faults or boundaries.

The distribution o f heave on the aggregate strike projection comprising all 

faults in the fold belt has been described previously and displays similar pattern of 

regular, sub-horizontal contours in the syn-kinematic package and irregular contours 

in the underlying pre-kinematic units (Fig. 5.15a). The similarities in displacement 

distribution between the entire fold belt and an individual syn-sedimentary fault 

(Childs et al., 2003) support the hypothesis that this suite o f faults have 

accommodated deformation in a manner similar to a single structure and therefore 

upholds the idea o f a kinematically coherent fold and thrust belt. The correlation of 

zones of heave deficit measured on a horizon in the pre-kinematic sequence (Fig. 

5.15b) with the locations o f major fault linkages (Fig. 5.15c) produces interesting but 

inconclusive results. The majority o f fault linkages are located between 12 and 30 km 

along strike (Fig. 5.15c) and form two clusters that correspond with the two main fault 

heave minima on horizon m2 (Fig. 5.15b) situated around 16 km and 26 km along 

strike. This observation is in keeping with the conclusion of Walsh and Watterson 

(1991) that suggested residual irregularities in the contours of an aggregated coherent 

normal fault array occur at positions corresponding to the lateral tips of main faults 

comprising the array (ie. increased ductile shear at tips and relays).

The above analysis o f three structural case studie s implies that the distribution 

of fault heave and bulk shortening is dependent on the timing of deformation relative 

to deposition o f sedimentary layers. Irregularities in aggregate displacement 

distributions in pre-kinematic packages correspond to locations of fault linkage and 

associated relay structures and are therefore likely to be related to early fault
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interaction during the development o f the fold belt. Smooth, sub-horizontal contours 

within the syn-kinematic units, both on individual structures and aggregated profiles, 

reflect extremely low lateral displacement gradients due to fault length being 

determined by upward propagation o f the fault to the free surface, rather than the 

maximum displacement on the fault (Childs et al., 2003). Displacement transfer 

within the syn-kinematic units, where heave-length profiles are devoid of the 

perturbations caused by increased lateral tip gradients, produces cumulative profiles 

that are consistent along strike and suggest the faults and folds have behave in a 

kinematically coherent manner during the synchronous growth o f the fold and thrust 

belt.

5.8. Conclusions

1. A general foreland-propagating sequence o f thrusting is overprinted by some 

out-of-sequence nucleation o f faults and folds. Overlap in the duration of 

activity on all structures demonstrates firstly, that all faults were active for a 

significant period o f the deformation history and secondly, that the initiation 

of new folds does not coincide with cessation of movement on older features.

2. Transfer zones with similar fault plane and stratal geometries display along 

strike heave profiles that either resemble that of a single fault and fold (i.e. 

regular contours within the linkage zone) or exhibit a net deficit (i.e. an 

irregular contours within the linkage zone). There is a positive correlation 

between the lateral extent o f a transfer zone and the efficiency o f displacement 

transfer.

3. The plunge o f through-going folds, associated with antithetic transfer zones, is 

maintained along strike through the zones o f linkage, regardless of variations 

in heave and shortening. Fold shape appears to be modified within transfer 

structures to maintain fold amplitude. The reasons for a conservation of fold 

height through linkage zones is unclear.

4. Deficits in heave and shortening within transfer zones correspond to 

complementary morphologies and fault profiles o f structures located up and 

downdip indicating dip-parallel transfer o f displacement via common 

detachments.
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5. Aggregate heave and bulk shortening profiles o f a fault and fold array have 

regular, sub-horizontal contours within the shallow section. Deeper horizons 

maintain irregularities, indicating kinematic coherency

6. Sub-horizontal contours correspond to the syn-kinematic sequence with 

irregularities remaining on the pre-kinematic sediments on individual faults, 

along strike linking fault pairs and the fold belt as a whole.

7. Irregularities in pre-kinematic package correspond to locations of maximum 

fault heaves and present day linkage zones.
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Chapter 6 Summary and Discussion

CHAPTER 6

6 SUMMARY AND DISCUSSION 

6.1 Introduction

This thesis has used the 3D seismic reflection analysis o f a deep water fold and 

thrust belt to investigate the nature and distribution of strain in a toe-of-slope 

compressional setting and to describe the complex fault plane and stratal geometries 

that result from fold and thrust linkage. The previous chapters are structured so as to 

represent a logical progression o f thought from the linkage and interaction o f fold and 

fault pairs, to considering a fold belt as a whole. This has provided new insights into 

the development and growth history o f structures in gravity-driven fold belts on 

passive margins. This chapter aims to draw together the conclusions from Chapters 3, 

4 and 5 to summarise the findings o f this study (Fig. 6.1). A discussion follows that 

develops the themes o f fault and fold segment linkage in the compressional domain, 

and the controls on locations and geometry o f linkages. The potential errors 

uncertainties o f strain measurements are also summarised along with their impact on 

the findings o f this project. The chapter concludes with a consideration of the 

limitations o f the study and some suggestions for future research.

6.2 Summary of results

6.2.1 Geometry and characteristics o f  thrust fau lt antithetic linkages (Chapter 3)

Chapter 3 presented a descriptive classification for along strike antithetic 

thrust fault linkage zones based on observations of fault surface and stratal geometries. 

Few studies, prior to this thesis, had investigated the geometry o f transfer structures 

associated with linking thrust faults and only the en echelon overlap o f synthetic 

thrusts (e.g. Dahlstrom, 1970), interactions within triangle zones (e.g. Pennock et al., 

1989; Couzens and Wiltschko, 1996) and tear faults separating thrust surfaces (e.g. 

McClay, 1992) had been described. This work therefore represents the first 3D 

description o f antithetic thrust linkages and was facilitated by the versatile imaging 

potential o f modem 3D seismic data. This classification of fault interaction has 

implications on our understanding o f fold belt development that is expanded on in

6 - 1



s
■§

OniK>

t>3a 
S 
S a

<3a aft.
b5’ft
IFigure 6.1: A schematic structural diagram of part of a deep water fold and thrust belt to summarise and illustrate some of the main S’

findings of this pro ject. See text for further discussion.

F Chapter 4
Fold development can be 
the product of the lateral 
linkage of numerous 
initially distinct folds, 
resulting in structural 
culmination migration, v;

hw-hw transfer fok)

E Chapter 4 
Numerous thrust faults 
nucleate along the length 
of a fold and propagate 
along strike to link within 
the folded unit.

A Chapter 3
/  Thrust faults of opposing dip link along strike in a 
Type 1 Linkage. Types 2 and 3 vary in fault plane geometry 

X and stratal deformation. Displacement is transferred 
\  within a transfer zone. Stratal connectivity differs for each 

linkage type. In this case the upper horizon is continuous 
along an indirect'hangingwall-hangingwall transfer fold’.

C h a p te r  4
Fault nucleation 

occurs within folded units 
some distance above the 
detachment. Thrusts then 
propagate downwards 
t̂owards the decollement v

Chapter 5
General foreland propagating sequence to fold 

and fault development (here towards the top left). The 
nucleation of a new structure does not coincide with 
cessation of movement on pre-existing structures. 
The fold belt grows by synchronous growth of all 
.constituent faults and folds for much of its history.

Chapters 4 and 5
Deficits in along strike fault heave resulting 

from the linkage of thrust segm ents is 
compensated by increases in fault heave on 
neighbouring structures. In this case the fault and 
fold immediately up-dip from the linkage zone 
displays a local maximum.

Displacement transfer between all faults 
and folds within this array leads to consistent 
values of along strike bulk shortening within the
syn-kinematic units.



Chapter 6 Summary and Discussion

Chapters 4 and 5. The conclusions drawn on the connectivity of stratal reflections 

through transfer zones should also have significant application to modelling of fluid 

flow in a system that is compartmentalised by either flow-enhancing or flow- 

inhibiting faults.

The characteristic and diagnostic features o f Types 1 to 3 linkages were 

defined in Chapter 3 and are summarised here in Figure 6.2. The classification vas 

based primarily upon the vertical extent o f fault surfaces within a transfer zone 

relative to the branch line o f the interacting antithetic faults (Fig. 6.2). High resolution 

interpretation o f fault planes indicated that Type 1 linkages overlap exclusively above 

the level of the branch line within the transfer zone, whereas Type 2 linkages overlap 

exclusively below this level. Type 3 linkages are distinctive as both faults continue 

above and below the branch line resulting in cross-cutting relationships between the 

constituent faults. This is presented in Chapter 3 as a preliminary classification that 

incorporates all variations o f fault interactions observed in this part of the Niger Delta, 

although it is acknowledged that further linkage geometries may be described upon 

further investigation. It is possible that these end member geometries are the result of 

gradual evolution rather than genetically different mechanisms. However the well 

developed nature o f fault linkages in folds featured in Chapter 4 argue against this. 

This is discussed further in a later section. The stratigraphic level o f the lateral tip o f a 

fault, the shape of the lateral fault tip regions and stratal deformation in and around a 

transfer zone are also shown to be distinctive in each type o f linkage (Fig. 6.2).

Fold shape, and in particular fold symmetry, is inherently associated with 

thrust plane geometry as folds commonly verge towards the transport direction in 

many modes o f faulting, such as fault propagation folds (e.g. Williams and Chapman, 

1983; Mitra, 1990; Suppe and Medwedeff, 1990; Erslev, 1991; Suppe et al., 1992), 

fault bend folds (Rich, 1934; Suppe, 1983; Wiltschko et al., 1985; Medwedeff, 1992) 

and break-thrust folds (e.g. Mitchell and Woodward, 1988; Butler, 1992; Morley, 

1994). Chapter 3 therefore demonstrated that the along strike linkage of faults of 

opposing dip results in a switch in fold vergence along strike. The lateral continuity of 

a fold through a linkage zone was shown to depend on the type of transfer zone and 

varied with depth (Fig. 6.2). Hence Chapter 3 also defined the various connective 

transfer structures associated with antithetic fault interaction including ‘hangingwall- 

hangingwall transfer folds’ and ‘footwall-footwall corridors’ (Fig. 6.2).
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Chapter 6 Summary and Discussion

The findings o f Chapter 3 were compared with examples of antithetic fault 

linkage in different geological settings within published literature to demonstrate the 

application o f this research. The chapter concluded with a discussion that considered 

possible modes of structural evolution (i.e. fold-first or fault-first). This question was 

further investigated in Chapter 4.

6.2.2 Fold growth by segment linkage (Chapter 4)

C hapter 4 sought to build upon the descriptions o f fault linkages in chapter 3, 

all of which were located in a tightly spaced fold belt, by investigating a single 

isolated fold (Fold B) that comprised numerous linking forethrusts and backthrusts. A 

case study involving the quantification o f the development of this relatively simple 

structure allowed conclusions to be drawn on fold growth that was later applied to the 

more complex and closely spaced fold belt in Chapter 5. Chapter 4 took investigative 

and presentation techniques developed in the study o f extensional laults and adapted 

them for use in compressional regimes. Strike projected contour plots for instance, 

allow the distribution o f fault displacement to be mapped in great detail on a fault 

surface. Inferences o f fault interaction from these plots are made with reference to a 

singly-faulted non-linking fold. Mmy o f these methods had not been applied t) 

thrusted fold belts and hence it provides a unique look at their development.

The research undertaken in Chapter 4 focussed on four main subjects. The first 

consisted of describing in detail the internal structural geometry o f faults and 

stratigraphic horizons within the single fold. A clear definition o f the constituent 

structures within Fold B established the type o f linkages involved in forming this fold 

and validated the classification model in Chapter 3. It also provided a basis for the 

second focus o f Chapter 4, that o f quantifying the distribution o f fault and fold strain 

both on individual thrusts within the fold and for the structure as a whole. 

Comparisons o f the heave and shortening profiles produced information on 

displacement transfer between constituent faults and the kinematic relationship 

between them. Results showed that individual structures displayed irregular 

displacement profiles indicative o f kinematic linkage with neighbouring structures. 

The fold as a whole had a shortening profile similar to that of simpler, non-linking 

structures and also blind faults from extensional studies. This suggested efficient 

displacement transfer between numerous linking faults that accommodated shortening 

as a coherent unit. The third subject o f study looked at the response in the magnitude
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of fold strain to along strike variatio ns in the amount of fault heave which were shown 

to fluctuate along strike. The amount o f shortening, and indeed fold shape, were 

shown to increase in areas o f fault heave deficit compensating to some extent for the 

shortfall. Finally the growth history o f Fold B was investigated using innovative 

techniques that charted the spatial extent o f  syn-kinematic stratigraphy in three- 

dimensions. It was shown that Fold B, although exhibiting a single structural 

culmination at the present day, was initially made up o f a number of folds with local 

structural highs (Fig. 6.1). Correlation o f this pattern with the location and extent of 

the major thrust surfaces indicated that this single fold was the product o f the along 

strike linkage and amalgamation o f both faults and folds.

6.2.3 Distribution o f  deformation in a kinematically coherent fau lt andfo ld  array

(Chapter 5)

The model of fold growth by segment linkage proposed in Chapter 4, based on 

the study o f a single isolated fold, was applied to the fold and thrust belt in C hapter 5. 

The main objective o f this chapter was to gain a better understanding of the 

distribution o f strain within a fold and thrust belt and its relation to the growth and 

interaction o f propagating faults and folds. The methods employed in Chapter 4 to 

chart fold growth through time could not be applied here due to the close down-dip 

spacing o f hangingwall anticlines in the fold belt, along with channelised deposits in 

the limb o f folds and in synclines that disrupt regional reflections. Hence the 

application o f results from Chapter 4 was key to achieving this goaL

Chapter 5 was structured around a number o f lines o f investigation. Firstly the 

relative timing o f individual faults and folds was established from a broad study of 

growth strata on folds limbs. Results agreed with established models o f a progressive 

foreland propagating sequence to thrust faults (e.g. Dahlstrom, 1970) but also 

displayed evidence o f out-of-sequence events (e.g. Wiltschko and Dorr, 1983; 

Corredor et al., 2005). Contrary to current models however was the degree of overlap 

of the durations o f fold growth, and therefore findings in this chapter demonstrate a 

significant period o f synchronous development o f all structures in the fold belt.

Through the mapping o f fault heave on all thrusts in the fold belt, the scale of 

displacement transfer between contemporaneous structures was investigated. 

Displacement transfer was demonstrated not only to have occurred between faults and 

folds along strike, as in Chapter 4, but also in a dip-parallel direction (Fig. 6.1). This
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was evident due to complementary trends in horizon morphology and heave and 

shortening profiles that, when aggregated, produced smoother profiles o f deformation. 

The summation o f heave and shortening values of all structures in the fold belt 

demonstrated a conservation o f the amount o f deformation along strike within the 

syn-kinematic units. Extremely low lateral heave gradients suggest efficient 

displacement transfer between all constituent structures. Chapter 5 therefore shows 

that all elements o f a fold belt can be kinematically linked during growth. 

Irregularities in the distribution o f deformation in pre-kinematic units corroborate 

findings o f Chapter 4 that the folds are the product o f along strike linkage o f discreet 

segments. Evidence suggests that displacement minima on heave profiles o f through- 

going faults record the locations o f early linkages and transfer zones.

In summary, tie various styles o f antithetic thrust fault linkages described 

geometrically in Chapter 3 have been showed to transfer displacement efficiently 

along strike in Chapter 4 such that numerous faults, aligned along strike, can grow 

and accommodate displacement as a single structure. The study o f the full width of a 

fold belt in Chapter 5 however demonstrated a more three-dimensional transfer o f 

displacement as local deficits in shortening at linkage zones are compensated for 

within the array. Geometric and kinematic coherence o f the fold and fault array is 

possible due to the synchronous growth o f its constituent structures. Stratal 

geometries around transfer zones outlined in Chapter 3 show that fault linkages can be 

characterised by through-going fold crests that maintain structural elevation or display 

a local apex (Fig. 6.1). Given the evidence in Chapters 4 and 5 for fold growth by the 

lateral propagation and interaction o f discrete segments it is concluded that present 

structural highs are the result o f culmination migration through time. What follows is 

a discussion o f segment linkage in the compressional domain and the controls on the 

style and location of such linkages.
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6.3 Discussion

6.3.1 Segment linkage in the compressional domain

The concept o f segment linkage o f thrust faults and folds has been discussed 

over the past few decades for a range o f structural settings and experimental 

arrangements. Ellis and Dunlap (1988), for example, described displacement patterns 

on thrust systems o f varying maturity and size and presented a hypothesis of large 

fault development through pervasive footwall deformation and fault linkage. Liu and 

Dixon (1991) used their centrifuge models o f thrust propagation to highlight the 

importance o f folds in controlling the nucleation and linkage of multiple, initially 

discrete faults. Rowan (1997) utilised 2D seismic data to discuss the three- 

dimensional geometry and evolution o f a segmented detachment bid in the deep 

water Gulf o f Mexico. More recently, Davis et al. (2005) investigated fault-growth 

and fault-segmentation models through the analysis o f the geometry and scaling of 

fault segments in an active thrust fault zone in New Zealand. Despite the 

advancements in this area, research into normal fault growth processes has resulted in 

a greater understanding o f extensional systems compared to compressional settings. 

This thesis represents the first study to fully utilise 3D seismic data in examining 

thrust fault growth by segment linkage. This high-resolution 3D data have allowed the 

detailed distribution o f fault heave on individual and linking thrust faults to be imaged 

for the first time. It also allows our findings from well constrained natural geological 

examples of thrust fault growth by segment linkage to be compared with modelled 

laboratory results. This section therefore contrasts the results o f Liu and Dixon (1991) 

with the evidence presented in Chapters 3, 4 and 5.

Liu and Dixon (1991) and Dixon and Liu (1991) presented experimental 

investigations into the along strike structural variation in a fold and thrust belt, the 

three-dimensional interaction and propagation o f thrust faults in duplex structures, 

and the mechanisms o f displacement transfer between adjacent thrust faults and folds. 

In these studies they contrast their findings with the natural geological example o f the 

central Appalachians (Liu and Dixon 1991). Although this proved a useful exercise, 

the capacity to view 3D seismic data on unlimited planes and sections allows for more 

rigorous testing o f experimental models. The conclusions drawn from the models in 

discussion here are centred around four main topics: i) the order of initiation and
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propagation o f faults and folds, ii) the mechanisms o f fault and fold nucleation and 

growth, iii) the structural variability o f a fold belt along strike, and iv) displacement 

transfer between structures (Dixon and Liu, 1991; Liu and Dixon 1991). Each of these 

themes shall be considered in turn below.

The methods by which the sequence o f fold and thrust initiation was 

determined differed between this thesis and the research by Dixon and Liu (1991). 

The progressive evolution o f the centrifuge model was monitored by cutting profiles 

parallel to the shortening direction at regular stages during deformation (Dixon and 

Liu 1991). In this thesis the timing and duration o f fold and fault activity was 

ascertained from growth packages on the limbs of folds within syn-kinematic units 

(e.g. Fig. 5.7). The results from the experimental model agree with many findings in 

this study (Fig. 6.3). Dixon and Liu (1991) describe the early stages o f deformation as 

being characterised by harmonic buckle-fold trains in competent units. These folds 

were observed to have nucleated serially from hinterland to foreland and grew 

progressively in amplitude (Fig. 6.3a). The authors also documented the nucleation of 

thrusts in the front limb o f the folds at a later stage o f deformation, although they 

display the same sequence o f nucleation as the folds. This supports results presented 

in Chapter 5 o f this thesis that showed an overall foreland progressing trend to fold 

initiation (Fig. 6.3c). In contrast, however, folds in the deep water Niger Delta also 

display some out-of-sequence events within this trend, an observation supported by 

other authors who describe thrusting in this region (e.g. Morley, 2003; Rowan et al., 

2004; Corredor et al., 2005; Briggs et al., 2006). This pattern is not observed in the 

modelling study (Dixon and Liu 1991) (Fig. 6.3a and b). Another similarity between 

this 3D seismic research and the laboratory study is the conclusion that the nucleation 

of new faults does into coincide with cessation o f movement on the older structures, 

despite a successive move towards the foreland (Fig. 6.3). This is in contrast to simple 

models of thrust fault development in fold belts (e.g. Dahlstrom 1970; Butler 1982; 

Elliot and Johnson 1980; Boyer and Elliot 1982) and argues for the synchronous 

growth of numerous structures within a fold belt. Dixon and Liu (1991) state that “this 

agrees with the critical Coulomb wedge model o f Davis et al (1983) which involves 

the continued accumulation o f displacement on early faults in the hinterland”.

The mechanisms by which faults and folds nucleate and propagate are easier to 

establish using experimental studies where deformation can be observed taking place,
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Figure 6.3: Comparison o f results in this thesis regarding the sequence and duration 
thrust fault and fold propagation with experimental modelling results from Dixon and 
Liu (1991). (a) and (b) Line drawings o f model sections and bar chart showing the stage 
of initiation and duration o f displacement o f faults in two experimental centrifuge 
models. Note that the fault ramps nucleate serially from hinterland to foreland, and not a 
single thrust dies during the deformation. Taken from Dixon and Liu (1991). (c) 
Findings from this thesis (Chapter 5) showing the sequence o f initiation and duration of 
faults and folds in a deep water fold belt o f the Niger Delta. Two line cross-sections are 
presented as not all faults are present in any one dip-parallel section. Note the 
similarities with the modelling results in (a) and (b). A general foreland-propagating 
sequence o f fault initiation and a significant period o f synchronous growth. However 
out-of-sequence events occur within this pattern and not all faults continue to the 
present day.
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than in natural geological examples where deformation histories must be predicted 

using assumptions and models o f structural growth. As a result the centrifuge 

modelling of Liu and Dixon (1991) produced a much more in-depth theory of fold 

growth than could be derived from seismic data in this thesis. In their models bids 

and faults have a constant spacing controlled by the nucleation sites of early buckle 

folds. The spacing of the folds is determined by the material properties and thickness 

of the mechanical units that establish the buckling wavelength (Dixon and Liu, 1991). 

The evolution of a fold into a thrust involves the initial development of a detachment 

fold. The subsequent nucleation o f a thrust ramp in the front limb creates a thrust- 

propagation fold with a lower tip that propagates down into a decollement. Further 

upwards propagation leads to the development o f a fault bend fold as the trajectory of 

the fault changes within the overlying incompetent unit (Dixon and Liu (1991).

In contrast, i  is difficult to determine the relative timing o f faults and folds 

from the data featured in this study. In Chapter 4, restoration o f depth sections (Fig. 

4.12d) suggested faults nucleated after the formation o f low amplitude asymmetric 

detachment folds. However restorations, in this case, are not definitive as different 

assumptions and interpretations would allow a profile to be restored to a different 

original geometry (e.g. Rowan, 1997). The lateral tip structures of folds described in 

Chapters 4 and 5 do, however, support the theory that faults propagate laterally within 

a previously folded unit (Fig. 4.13) and that propagation may occur at a level some 

distance above the detachment. This agrees with Dixon and Liu’s (1991) suggestion 

that faults can nucleate within the fold limb and propagate down towards the 

detachment. The along strike extremities o f the fold in Chapter 4, for instance, were 

characterised by low amplitude, symmetric, unfaulted detachment folds at the fold tip 

(Fig. 4.13b). Faults close to the fold tips do not reach the detachment and have a 

maximum displacement located within the Agbada Fm (i.e. above the detachment). 

This relationship between faulting and folding towards the lateral tips is clearly 

demonstrated on Fault 15 in Figure 6.4. Fault 15 is the youngest (Fig. 5.7) and most 

distal (Fig. 5.1) fault in the fold and thrust belt featured in this study. It is only 

partially imaged as it intersects the limits o f the seismic survey. The imaged fault 

segment is located in the hangingwall stratigraphy of Fault 13 and hence the lower tip 

line of Fault 15 forms a branch line with Fault 13 for much of its length (Fig. 5.4). 

One of the interesting attributes o f Fault 15 is that maximum fault heave values are
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Figure 6.4: Profile o f fault and fold 15 from Chapter 5 as an illustrative example of the stratigraphic 
level of lateral propagation o f many faults in this study, (a) Strike projection contour plot o f fault 
heave values. Note the elliptical shape o f the contours and the location of the zone of maximum 
heave some distance above the lower tip line (branch line with fault 13). (b) Schematic block diagram 
of the structural characteristics o f Fault 15 (yellow). Note that towards the lateral tip of the fault the 
lower tip line changes from forming a branch line with fault 13 (blue) and climbs stratigraphy to a 
central lateral tip. This is also evident in figure (a), (c) Schematic cross sections relating to figure (b).
(d) and (e) Seismic sections o f Fault 15. Locations are shown on figure (a). Note the lesser vertical 
extent of the fault in the section closer to the lateral fault tip. (f) Schematic diagram of a Type 1 
antithetic thrust linkage showing propagation o f faults in the hangingwalls. P. indicates propagation 
direction.
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located some distance above the lower tip line forming elliptical heave contours on 

the strike projected plot (Fig. 6.4a). The upper and lower tip lines taper symmetrically 

towards a central lateral tip (Fig. 6.4b and c). Given the evidence presented in Chapter 

4 showing that linkage and overlap o f faults within the hangingwall section was a 

result of the lateral propagation o f initially distinct segments (Figs. 4.8 and 4.11) it is 

reasonable to assume that the level o f the lateral tip of Fault 15 (Fig. 6.4d) represents 

that level of lateral propagation o f the fault. This geometry is typical of many faults 

and folds in the survey area. If  this is true then in any given dip-parallel section a fault 

will first appear within the section above the detachment, possibly within the more 

competent units o f a folded sequence and propagate downwards towards the 

detachment. A comparison o f the strike projected fault heave plots o f Fault 15 (Fig. 

6.4a) with a more established fault such as Fault 12 (Fig. 5.10c) lends weight to this 

argument as maximum heave values are located closer (or even in) the detachment on 

older faults. This supports work by Eisenstadt and De Paor (1987) and Liu and Dixon 

(1991). The final stage in the progress in deformation, from fault-propagation folds to 

fault-bend folds described in experimental models above, is not observed in this study. 

Thrusts imaged in the seismic surveys features here do not reach an upper detachment 

or the seafloor to form fault-bend folds, however such structures have been 

documented within the deep water Niger Delta by previous authors (e.g. Corredor et 

al., 2005).

A significant difference between the models o f Liu and Dixon (1991) and 

faults described here is the ratio o f forethrusts to backthrusts observed in the data. 

Deformation in the experimental studies lead to an evenly spaced synthetic sequence 

of forethrusts that nucleate in the front limbs o f folds. Sections featured here can have 

an equal number o f fore- and back-thrusts (Fig. 5.2). This is likely to be due to 

differing mechanical properties o f the detachment layers in each case (e.g. Bilotti and 

Shaw, 2005), however there is insufficient information from well data to investigate 

this.

One o f the main conclusions o f this thesis has been that displacement and 

shortening transfer occurs between fault and fold pairs along strike (Chapter 4) and 

between all structures within a kinematically coherent fold and fault array (Chapter 5) 

such that numerous faults accommodate shortening as if a single structure. Liu and 

Dixon (1991) record similar observations in their modelled study of the along strike 

variability o f a fold and thrust belt. They state that “displacement transfer occurs
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between pairs o f en-echelon thrust faults, between pairs o f imbricate thrusts, and 

between thrust faults and folds. The transfer accommodates structural change along 

strike while the total transverse shortening stays relatively constant” . This contrasts to 

some degree with the findings o f this thesis as consistent values of transverse 

shortening were only observed in syn-kinematic packages, with pre-kinematic units 

displaying irregular along strike bulk shortening profiles. Almost all faults within Liu 

and Dixon’s model were o f a similar direction o f dip and hence the transfer of 

displacement associated with antithetic interaction cannot be compared. Points of 

linkage between the synthetic forethrusts were identified by deficits in along strike 

profiles of displacement, while points o f maximum displacement were assumed to 

represent points o f fault nucleation (Liu and Dixon, 1991). Detailed analyses of syn- 

kinematic growth strata in Chapters 4 and 5 o f this thesis question the validity o f these 

conclusions. Although linkage zones within the Niger Delta can be characterised by 

deficits in heave and shortening, they can also interact to produce smooth aggregate 

profiles through a transfer zone (Fig. 5.8). In addition to this, the point o f nucleation 

of a fault does not always correspond to maximum values o f displacement. It was not 

possible to demonstrate the site o f fault nucleation with any degree o f accuracy in this 

study, however Chapter 4 demonstrated the along strike linkage a two initially distinct 

faults and folds into a single through-going thrust with a maximum heave value at the 

point of original linkage (Figure 4.14). This must necessarily have involved an along 

strike migration the points o f  maximum heave and shortening. It has also been 

discussed in this section that the location o f maximum displacement can migrate 

vertically on a fault plane during fold and thrust growth.

Many o f the findings o f  the experimental studies o f Liu and Dixon (1991) and 

Dixon and Liu (1991) are supported by the findings in this thesis. In general, the 

modelling studies produced much simpler results than those from seismic data, such 

as a clearer sequence of thrust nucleation (Fig. 6.3) and a consistent direction o f fault 

dip. This is possibly due to a greater degree of heterogeneities in the natural 

geological examples, both in the nature o f the detachment and variations in 

mechanical stratigraphy (Fig. 1.10). The possible controls on the range of 

structural linkages styles observed in the deep water Niger Delta are discussed in the 

following section.
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6.3.2 Controls on location and geometry o f  linkages

The classification scheme o f antithetic thrust fault linkages presented in 

Chapter 3 was based upon a geometrical analysis o f fault plane interactions and stratal 

deformation within transfer zones (Fig. 6.2). This represented a purely descriptive 

study of fault linkage and hence Chapters 4 and 5 aimed to build on this work and 

investigated the kinematic relationships and history o f the constituent structures. 

Despite the research in previous chapters, it remains unclear what controls the type of 

antithetic thrust fault linkage manifest at each transfer zone. It could be that linkages 

develop through types 1-3 (Higgins et al., 2007) (Fig. 6.2) during the accumulation o f 

displacement such that the classification represents a gradual evolution rather than 

genetically different mechanisms. However the well developed nature o f the F1/F2 

fault linkage in fold E$ described in Chapter 4, argues against this (Fig. 4.8). The 

faults are kinematically coherent, accommodate large amounts o f displacement, 

produce a smooth aggregated profile and appear to have a stable geometrical 

relationship (Fig. 4.10). This Type 1 linkage zone (F1/F2) has efficiently transferred 

displacement between component thrusts, at all strata! levels, to allow the fold to act 

as a single structure and it is unlikely, if  propagation continued, to deviate from this 

relationship. This section therefore aims to discuss the possible controls on the 

varying geometries and displacement characteristics o f the three types o f linkage 

outlined in Chapter 3 (Fig. 6.2).

One possible control on the mechanism o f antithetic fault linkage could be the 

stratigraphic level o f the line o f fault intersection o f the linking faults. All the faults in 

fold B maintain a near uniform dip following the ramp out of the detachment (Fig. 

4.7), such that the level o f intersection o f antithetic faults will, in turn, be controlled 

by the along strike alignment of the faults themselves (Fig. 6.5a). When combined 

with the stratigraphic level o f lateral fault propagation (Fig. 6.5b to e), this may 

determine whether approaching faults overlap in the hangingwalls (Type 1), footwalls 

(Type 2) of by fault-on-fault offset (Type 3) (Fig. 6.2).

As has been previously discussed, fold tip structures, away from linkage zones, 

suggest that faults may propagate laterally at a stratigraphic level some distance above 

the detachment (Figs. 4.13). In figure 6.5b two faults of opposing dip have 

approximately equal maximum displacement values located near the h3 horizon. They 

converge on a point o f intersection, or branch point, at the level of horizon h2 in
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Figure 6.5: Illustration of a possible control on the types of linkages described in Chapter 3. (a) Schematic diagram 
demonstrating the effect of along strike alignment of thrust faults with essentially planar, uniform dips on the level 
of a branch line (line of intersection), i. ii. and iii. indicate the level of branch lines for three linkages with varying 
alignments, (b) Analysis of fold tip structures featured in Figure 4.13. Two thrusts of opposing dip are located close 
to the lateral tip of Fold B (Chapter 4). Heave-distance profiles show that the point of maximum heave is located 
close to horizon h3 on both faults. Horizon h3 is characterised by higher seismic amplitudes than surrounding 
reflections, (c), (d) and (e) Schematic block diagrams to show various stratigraphic levels of lateral fault 
propagation on linking antithetic faults. The alignment of faults does not change in each diagram, (c) Propagation 
high in the section, towards hangingwall rocks. May lead to Type 1 linkage, (d) Propagation in the mid-section, 
towards branch line. May lead to Type 3 linkage, (e) Propagation lower in the section, towards footwall 
rocks. May lead to Type 2 linkage, hw: hangingwall. fw:footwall. P.: propagation direction.
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conjugate-fashion and tip out before reaching the regional detachment (h i) (Fig. 6.5b). 

These faults are located close to the fold tip o f fold B (Chapter 4) and therefore 

represent either a fault at an early stage o f growth that has subsequently accrued little 

displacement, or the more recent result o f laterally advancing faults. Regardless, in 

this example (Fig. 6.5b) faulting would have first appeared, in a given dip-parallel 

section, close to horizon h3 which is characterised by a triplet o f high seismic 

amplitude reflectors. This concept is supported by the depth o f the lateral tips o f faults 

FI and F2 within the relay zone (Fig. 4.9), which are located at approximately 5800m 

depth, around the level o f horizon h3. Lateral propagation o f faults therefore, and 

possibly nucleation o f faults also, occurs around the stratigraphic level of the h3 

horizon in the vicinity o f this fold.

Now consider the depth o f the branch point o f the linking antithetic faults (Fig. 

6.5a). In the F1/F2 linkage (Type 1) the depth o f the branch line is generally located 

below the h2 horizon (with respect to the hangingwall sequence, Fig. 4.7d). Given 

that thrusts may propagate along strike at the level o f the h3 horizon, faults would first 

appear in the linking fault hangingwall (Fig. 6.5c) and then propagate up and down 

section towards the surface and a branch point respectively. The absence of any 

significant faulting in the footwall o f either fault at any point within the relay 

indicates that lateral propagation has occurred exclusively within the hangingwalls of 

the linking faults and not at the detachment. The lower tips o f both faults have not 

propagated through the counterpart fault surface and have instead formed a branch 

line (Fig. 4.8).

The F3/F2 linkage, in contrast, has a significantly shallower branch line 

located approximately on the h3 horizon (Fig. 4.7b). This could be due to the dip o f 

the fault planes or the alignment o f laterally propagating faults mentioned above. If 

fault propagation and fault intersection are at the same stratigraphic level, this will 

cause approaching fault tips to meet ‘head on’ (Fig. 6.5d). In this scenario, the 

laterally propagating tips must either change stratigraphic level by increased 

advancement o f the fault tip line above or below horizon h3, thus forming a Type 1 or 

Type 2 linkage, or otherwise cross-cut the counterpart fault surface (i.e. Type 3) (Fig. 

6 .2).

This relationship between the depth o f a propagating tip and the alongstrike 

alignment o f faults may control linkage geometries. Many authors have suggested that 

faults may nucleate within the more competent units o f a heterogeneous sequence (e.g.
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Eisenstadt and De Paor, 1987 Liu and Dixon). Horizon h3 is characterised by a high 

amplitude seismic triplet (Fig. 6.5b) and is regional in extent. Relatively high seismic 

amplitudes can indicate a change in lithology (e.g. Brown, 1999). In the setting of the 

deep water Niger Delta high amplitude reflections commonly occur within a 

background of lower amplitude seismic facies and may indicate coarser-grained 

turbidites associated with aggrading or migrating channel axes (e.g. Kastens and Shor, 

1985; Deptuck et al., 2003). The seismic facies associated with the high amplitude, 

continuous, triple reflection o f horizon h3 may indicate a more competent unit 

compared to sediments above and below. A lack o f well data, however, means this is 

unverifiable and remains speculative. Taking a broader view, if coarser grained 

sediments are confined to stacked channel-levee systems (e.g. Deptuck et al., 2003) 

mechanical stratigraphy within a fold is expected to vary along strike and hence the 

level at which fault nucleate, propagate and, ergo, link may also be laterally 

inconsistent.

6.4 Implications for fold belt evolution and hydrocarbon exploration

The research presented in this thesis includes novel geometric and kinematic 

observations that help to further our understanding o f fold and thrust belt evolution. 

The utilisation o f 3D seismic data have enabled one o f the first detailed descriptions 

of the distribution o f strain on thrust fault surfaces and within compressional folds. 

The conclusions o f this study are made with reference to the gravity-driven fold and 

thrust belt o f the deep water Niger Delta. Chapter 3 discussed the possible application 

of some of the findings o f this thesis to other geological locations and settings around 

the world. Similar structural geometries are recorded in studies o f other passive 

margins but also have been described in with orogenic belts. It should be noted 

however that while there are significant similarities between gravity-driven thrust 

belts and the classic orogenic thrust belts, there are also significant differences in 

mechanism and structural style (see section 2.4). It may be wise to consider passive 

margin thrust belts as related to, but in many ways dissimilar to constructive margins. 

Deep water fold belts are a relatively new area o f geological investigation and 

therefore this thesis complements established thrust fault literature based 

predominantly on onshore orogenic belts. Further discussion o f the shared and unique 

characteristics o f each geological setting should lead to a better understanding of both
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types. The implications o f this study involve a number of geological topics including 

aspects of basin analysis, deep water sediment dispersal and hydrocarbon exploration. 

These are discussed below.

Sedimentation patterns provide fundamental control on deformation in gravity- 

driven fold belts on passive margins (e.g. Rowan, 2004). Numerous studies have 

documented the linked structural system of updip extension and downdip contraction 

that accommodates gravitational collapse above regional decollements (e.g. Morley 

and Guerin, 1996; Wu and Bally, 2000; Morgan, 2003; Rowan et al., 2004). Analyses 

of such systems have focussed on both the landward extensional domain and the 

basinward contractional domain and provide quantitative estimates o f translation 

magnitude (Jackson and Hudec, 2005). Many questions remain however over 

displacement transfer within the translational domain, and the disparities between net 

values of extension and contraction (e.g. Ings and Shimeld, 2006). Detailed analyses 

of the along strike variability o f downdip contraction within deep water fold belts, 

such as that presented here in Chapter 5, provide important information that can be 

applied to such issues.

A brief description o f the effect of structural development on deep water 

sediment dispersal was presented in Chapter 1 (Fig. 1.16). This can be summarised in 

by the observation that low  relief structures create structural highs and lows which 

become influential in focussing submarine flows (Hooper et al., 2002). Given the 

findings of Chapters 4 that documented the growth o f a single fold by the along strike 

linkage of several initially distinct folds, this concept o f channel diversion can be 

expanded further. The evidence for the migration and amalgamation of structural 

culminations (Fig. 4.16a) suggests that undeformed areas between advancing fold and 

fault tips (Fig. 6.1) will develop into saddle points o f a through-going fold following 

linkage (Fig. 6.6a) and may even become a local culmination as deformation proceeds 

(Fig. 3.3). One effect on channel systems may be to focus sediment pathways through 

narrow channels for significant periods o f time. This is demonstrated in Figure 6.6. In 

this case two thrust faults o f similar dip interact along strike forming a synthetic 

linkage zone (Fig. 6.6a). Displacement is transferred between the structures within a 

transfer zone characterised by a significant minimum in fault displacement and 

topography, labelled point ‘s ’ (Fig. 6.6). Three channels located at various 

stratigraphic levels are oriented perpendicular to fault strike and intersect the fault at
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Figure 6.6: Demonstration o f ‘channel-funnelling’ due to interaction and lateral propagation o f folds, (a) Topographic map of horizon m4 showing a saddle point ( ‘s )  
between two linking forethrusts and folds. Also included is displacement-distance plot of individual and cumulative along strike fault displacement profiles. Note that the 
saddle point corresponds to the minimum in fault displacement, (b) Dip map of the present day seabed. Channel flows sub-parallel with regional dip of the delta and 
intersects the fault at a right angle close to the saddle point, (c) and (d) Amplitude extraction maps of sediments 200 milliseconds and 400 milliseconds below the seabed. 
The channels imaged in (b), (c) and (d) all have distinct morphological characteristics, but all insect the fault linkage at point ‘s ’.
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the saddle point ‘5 ’ (Fig. 6.6b, c and d). The high amplitude channelised deposits can 

be seen to narrow towards the saddle point (Fig. 6.6c) as if  being funnelled by the 

topography of the linking folds. The channels are imaged in Figure 6.6 show how 

sediments have been focussed on this point for a significant period of time resulting in 

the stacking of channelised deposits beneath the transfer zone. This organisation of 

channels in to a vertical stacking pattern may be o f particular interest to the 

hydrocarbon industry as sinuous channel forms have been proven to be viable 

exploration targets (e.g. Kolia et al., 2001).

Complex fault geometries are integral to sedimentary basins and have a 

significant impact on reservoir modelling. The three-dimensional analysis of the 

geometric and kinematic history o f part o f a highly prospective deep water fold and 

thrust belt has important implications for the hydrocarbon industry. An understanding 

of (a) the connectivity o f sand bodies in a stacked channel- levee system (b) the 3D 

geometry of the faults that intersect potential reservoir and seal lithologies and (c) 

how faults link the reservoirs to the underlying source rocks is critical for successful 

hydrocarbon exploration and production. These points are briefly considered with 

reference to the Niger Delta below.

As previously described in Chapter 2, the Agbada Formation is characterised 

by a succession o f confined turbidite channel complexes, surrounded by deepwater 

mudstones that form reservoir and seal respectively for hydrocarbons (e.g. Davies, 

2003; Deptuck et al., 2003) (Fig. 6.7a). Prospective sinuous channel forms act as 

conduits for clastic sediments to be sorted and transported into the deep water setting 

(Deptuck et al., 2003). High amplitude reflections (labeled ‘r’ -  Fig. 6.7b) within a 

background of lower amplitude seismic facies are thought to indicate coarser-grained 

turbidites associated with aggrading or migrating channel axes (e.g. Kastens and Shor, 

1985). The connectivity o f channel deposits therefore has great impact on the 

production of a reservoir (Fig. 6.7c) The density and complexity o f faulting of stacked 

channel- levee systems within and around an antithetic linkage zone will consequently 

either enhance of inhibit hydrocarbon production depending on whether fault planes 

act as conduits or barriers to fluid flow. This concept is summarized in Figure 6.7. 

High amplitude, sinuous channelised deposits coincide with a Type 3 antithetic thrust 

fault linkage (Chapter 3). A cross-section through the linkage zone shows movement 

on both the forethrust and backthrust has resulted in the repeated offset o f one fault by
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Figure 6.7: Implications o f complex fault networks o f a Type 3 antithetic thrust fault linkage 
on reservoir connectivity in a deep water Channel Levee Complex, (a) 3D seismic crossline 
imaging a stacked channel levee complex, (b) Interpreted section highlighting high amplitude 
reflections, (c) Figure adapted from Larue and H ovadik (2006) describing connectivity of 
channel deposits in a deep water setting, (d) Amplitude extraction map of horizon ‘x’ 
containing a meandering, buried channel crossing a Type 3 antithetic thrust fault linkage 
(Chapter 3). High amplitudes are light; lows amps dark, (e) Sketch cross sections to show 
variations in complexity of fault networks from simpler structures (sections 1 & 3) into a more 
complex Type 3 antithetic thrust fault linkage (section 2). (f)Zoom  on section 2 in (e )to  detail 
cross-cutting faults causing an interconnected fault network and repetition of horizon ‘x \  (g) 
3D model for horizon ‘x ’ of the Type 3 linkage to show the complex trap geometries in and 
around the linkage zone.
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the other creating an intricate fault network (Fig. 6.7e, cross section 2). Assuming 

faults in this area act as conduits for fluid flow (e.g. Morgan, 2003) this may increase 

both the link between source and trap and, potentially, the connectivity of sand bodies 

within the channel- levee. A greater understanding o f the range o f geometries o f thrust 

fault linkages presented in Chapter 3 will also aide the generation o f reserv oir models 

in an area of structural complexity (Fig. 6.7g).

6.5 Errors and uncertainties in strain measurements

Strain analysis of sediments in the deep water fold belt featured in this study 

involved the measurement of fault displacement, fault heave and bulk shortening. 

Strain measurements were made on 2D time and depth sections from 3D seismic 

surveys. The methodologies of these measurements are outlined in previous chapters. 

These techniques come with inherent assumptions and limitations regarding the nature 

and style of deformation, the scaling of the data and the uncertainty o f structural 

histories. These factors can affect not only the significance o f the values of strain 

obtained, but also way in which data must be displayed. Many o f the points discussed 

here regarding strain measurements are applicable and related to other techniques 

such as section balancing and restoration and hence have wide implications on our 

approach to structural analysis. This chapter therefore considers the possible errors 

and uncertainties introduced during the course o f a study.

6.5.1 Fault measurements

The three components o f fault movement are commonly referred to as the 

displacement (the distance of movement along the fault plane), throw (the vertical 

offset of a faulted sequence) and heave (the horizontal offset o f faulted rocks). 

Measurements of all o f these components are affected by the orientation o f the plane 

of reference relative to the direction o f movement of hangingwall strata. 

Measurements must be made on planes parallel to fault propagation direction 

otherwise ‘apparent’ values o f displacement will be recorded. Fault displacement and 

throw are also influenced by time to depth conversion o f seismic data. This is 

discussed in greater detail in Chapter 1 along with a consideration o f seismic 

resolution. For the purposes o f this study fault heave was predominantly recorded in 

order to minimise the influence of inaccurate depth conversion. True values of fault
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heave and throw may also be altered by post-kinematic rotations o f sediments, by 

process such as differential compaction, subsidence or a second phase of deformation. 

Fault displacement is unaffected in this case.

A major limiting factor on the reliability of values o f fault movement in areas 

such as the deep water Niger Delta is the stratigraphic interpretation of seismic 

reflections across large displacement fault planes. The simplest method of horizon 

correlation involves interpreting a seismic reflection around the lateral tip of a fault, 

effectively making a direct link between hangingwall and footwall sediments. This 

was not possible on many faults in the Niger Delta due to the limited extent of the 

seismic surveys. In this case, other methods such as channel matching were employed 

(see section 1.3.4) to ensure a rigorous stratigraphic framework.

6.5.2 Bulk shortening measurements and assumptions

In this study, shortening measurements were made with reference to eleven 

interpreted seismic horizons using a simple line-length comparison methodobgy (Fig. 

4.3). All methods o f shortening calculation have inherent limitations and assumptions 

that must be considered. Much o f the uncertainty is due to the assumptions that are 

necessary for the construction and restoration o f balanced cross-sections (e.g. 

Dahlstrom 1969, W oodward et al., 1986) such as plane strain, conservation of bed 

length and area and isometric folding. The process o f section balancing was 

developed to test the validity o f cross-sections and structural interpretations in areas 

of insufficient seismic data (Woodward et al., 1985). The use o f high resolution 3D 

seismic data therefore helps to produces more credible interpretations, but error can 

still be introduced in the conversion from time to depth for example. Sequential 

structural restorations, although an excellent tool for the estimation o f orogenic 

contraction (e.g. Hossack, 1990), were generally not suitable for the purposes of this 

study and are discussed below. In this section the validity of methods regarding the 

estimation shortening values is considered.

Plane strain and isometric fo ld ing

The notion o f ‘plane strain’ assumes that strain can be completely described by 

changes in size and shape in a single orientation of plane through a body (Twiss and 

Moores, 1992). That is to say that no deformation occurs normal to that plane. The 

assumption of plane strain is commonly used during the analysis of deformation as it
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is an easier concept to understand and generalisations to three-dimensions do not 

always increase insight into the geometric characteristics o f deformation (Twiss and 

Moores, 1992). As a result the majority o f strain calculations in this study are 

performed on 2D sections. It is often invalid to assume plane strain in many natural 

geological settings however. The geometric changes across a thrust-belt that most 

affect the restoration o f cross-sections are changes in folding styles and mechanisms. 

An understanding o f the style o f folding can validate the use of plane strain as, for 

example, parallel folds limit displacement to within a single transport plane. The 

preservation o f section area presupposes parallel folding and preservation o f bed 

lengths (Woodward et al 1985). W hen non-parallel or non-flexural slip folding occurs 

because of cleavage formation, then folding deviates from isometric bending (Lisle 

1992) and it does not strictly maintain bed length in 3 dimensions. Hence Shackleton 

and Cooke (2007) state that “during the development o f non-cylindrical folds a 

component o f out-of-plane motion may develop where material displacement vectors 

deviate from the transport plane” thereby invalidating assumptions of plane strain. 

The majority o f large scale folds in deep water fold and thrust belts, such as the Niger 

Delta, adhere to the former description and form simple structures where curvature is 

predominantly perpendicular to the fold axis. The amount of bedding curvature 

parallel to the fold axis is minimal so such non-plane strains are likely to be very 

small (Mason 1997). For folds where these conditions do not apply, measurements 

should always lead to minimum estimates o f shortening (Hossack 1979). 

Measurements o f deformation made on 2D lines are also dependent on the orientation 

of that plane relative to the transport direction of faults and folds (e.g. Cooper, 1983). 

Price (1981) suggested that section lines within 30° o f the transport direction are close 

enough for most section constructions (less than 15% error), however others have 

suggested +/- 5° error is more reasonable (Woodward et al. 1986). All faults and folds 

featured in this study lie within this margin o f error.

Ductile thickening during deformation

Given the assumptions above, balanced geological cross-sections are 

commonly drawn with the condition that the area of section has not changed during 

deformation (Hossack, 1979). In areas where most o f the folds have been formed by 

flexural slip, the thickness o f the beds measured normal to the bedding, as well as bed 

lengths, also remain constant (Dahlstrom 1969). This conventional section balancing
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procedure can under- or over-estimate the true shortening values however, due to 

ductile deformation (Cooper and Trayner 1986). Strain within a thrust sheet is known 

to occur by a combination o f rigid-body translation, internal rotation (i.e. folding) and 

distortion (layer-parallel shortening, LPS) mechanisms (Geiser, 1988). Some authors 

have attempted to account for this by the construction o f balanced cross sections that 

incorporate strain not described by large scale features (e.g. cleavage, veins) in areas 

o f penetratively deformed rocks (e.g. Mason, 1997). Ductile deformation in the 

internal zone o f an orogenic belt, for instance, renders balancing dubious and 

shortening estimations are best carried out on highly competent beds, such as 

sandstone (Cooper and Trayner 1986).

To justify the use o f balanced cross sections to calculate shortening, published 

studies cite a number o f observations such as: i) comparable bed thicknesses of 

deformed strata in the fold belt and undeformed strata in the foreland (Dahlstrom, 

1969), ii) a lack o f penetrative deformation in outcrop (e.g. Mason, 1997), or iii) 

high stratigraphic competence contrasts that make deformation by fexural slip 

likely. Ductile strain may also be estimated from the position of the study area, 

such as external or internal parts o f an orogenic belt (Woodward 1987). Thrust- 

zone strains and cleavage in the external zones, for instance are usually restricted to 

the lower 30-70 m of thrust sheets, so that they are negligible (<1% area) for 

practical purposes (Woodward et al., 1987). In gravitational fold belts, the 

amount o f deformation is significantly less than in orogenic or accretionary fold 

belts (Rowan 2004).

The comparison o f bed thicknesses between deformed and undeformed areas 

in the study area showed that the majority o f  units thin naturally downslope due to the 

nature o f deposition in a prograding delta. Predicted thicknesses within the deformed 

section were therefore projected from parts o f the section up and down dip o f the fold 

belt. Thicknesses were also only compared within the pre-kinematic units within the 

Agbada Formation, as growth packages thin towards and over fold crests. No 

significant thickness increases within the deformed sector o f the section, that would 

indicate ductile deformation during fold growth, were observed. Limitations in 

estimating bed thicknesses related to seismic resolution are minimised by considering 

larger packages o f sediments. It was not possible to investigate the amount of 

penetrative deformation in the area due to a lack of published or released well data in 

the region. Few boreholes have been drilled in this part o f the deep water Niger Delta 

at the time o f submission of this thesis.
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The sediments o f the Agbada Formation comprise alternating layers of sand, 

silt and clays laid down in delta-front environments (e.g. Doust and Omatsola 1990). 

Competence contrasts between these layers may result in a predominance o f flexural 

slip folding, however it is not clear if this is the case from data presented here. 

Corredor et al. (2005) inferred the predominance o f flexural slip folding in the Niger 

Delta during sequential structural restorations o f 2D seismic lines. Without such 

inferences the structural restorations are invalid. This also supports the assumptions 

for plane strain outlined above as beds in flexural slip folds with axes normal to the 

section will suffer no shortening or elongation along the axes.

The possible errors induced in shortening measurements caused by ductile 

deformation and layer-parallel shortening would result in estimations in bulk strain 

from balanced sections to be minimum values (Hossack, 1979). In addition to this it is 

reasonable to predict some forms o f ductile deformation, if  active in this area, to be 

consistent throughout the study area. Pre-thrust and -fold layer-parallel shortening, for 

instance, involves the bulk thickening o f a layer prior to fold of fault initiation (e.g. 

Geiser, 1988) and would affect the entire 3D seismic surveys. This would result in 

absolute values o f shortening recorded in this study to be erroneous but would not 

affect relative changes in displacement or the distribution of shortening within the 

fold belt, which is the main focus o f this thesis.

Velocity models

Estimations o f shortening made on time seismic data either using 

measurements o f horizon line lengths, or based on sequential restorations o f a 

balanced section, must necessarily follow the process o f depth conversion. Previously 

in this chapter it was shown that fault heave is unaffected by post-migration depth 

conversion methods and so can be calculated from time sections. The true geometry 

and dimensions o f a fold, on the other hand, can only be measured on a depth section. 

The values o f shortening calculated by line-length comparisons across a fold will 

therefore be dependent on the velocity model used during the depth conversion. This 

is demonstrated using a simple, conceptual fold in Figure 6.8a. The folded strata are 

assigned a velocity Vj and are surrounded by sediments of velocity Y>. The four 

scenarios describe the depth conversion effects o f varying the ratio between V 1 and 

V2 . IfV i=V 2 then fold geometries will resemble the time section (Fig. 6.8a). As the
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Figure 6.8: Error analysis o f an inaccurate velocity model on depth conversion and shortening 
measurements, (a )  Illustration of changing fold shapes during depth conversion due to different 
velocity models, (b) and (c) Typical time sections interpreted from seismic data, (d) Depth converted 
section using velocity model based on borehole data, (e) and (f) Depth converted hangingwall 
sections using velocity model from (d) altered by + /- 10%. (g) Measurements o f  shortening using 
line-length comparison method for each of the three depth sections. The maximum percentage error 
between calculations from (d) and those made on (e) or (f) and displayed.
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ratio of velocities between the sediments increases (i.e. Vi »  V2) the fold will 

become progressively flattened due to a larger proportion of the section being made 

up of the slower material on the flanks o f the fold compared with the crest (Fig. 6.8a).

All depth converted sections in this thesis used interval velocities obtained 

from a confidential exploration well located within the limits of the survey. The effect 

o f errors to this velocity models, either due to incorrect measurements in the borehole 

or from lateral heterogeneities in sediments away from the well, are estimated in 

Figure 6.8. A typical time section comprising a thrusted fold (Fig. 6.8b and c) was 

depth converted using the interval velocities from the well (labelled ‘true’ velocity, 

Fig. 6.8d). The velocity model was then altered by plus and minus 10% and further 

depth sections generated (Fig. 6.8e and f). The line lengths of hangingwall strata from 

the three depth sections are contrasted in Figure 6.8g). The maximum error induced 

by varying the velocity models to this degree was around 20% on the shallow 

horizons. The percentage error reduces to a typical value of less than 5 % within the 

faulted sequence (Fig. 6.8). It is noted here that velocity error of this magnitude is 

unlikely in this project as accurate interval velocities were obtained from borehole 

data located within the survey area.

Vertical compaction

Measurements o f bed lengths o f buried strata will be affected by compaction in 

a similar manner to the effects o f velocity variations described above. As the 

thickness o f the overburden increases due to sedimentation, underlying units will be 

compressed by varying amounts depending on lithology, porosity and pore fluid 

(e.g. Brown, 1999). Deposition o f syn-kinematic strata during fold development 

can also lead to growth strata thinning towards and onto the crest. This can in turn 

result in differential compaction as the greater thickness of sediments on the flanks 

o f the fold causes greater compaction beneath increasing fold amplitude. This is all 

accounted for during the process o f back-stripping and structural restoration (e.g.

Corredor et al., 2005). This section assesses the possible errors induced in

this thesis during the measurement o f shortening by line-length comparisons 

without decompacting sections. Figure 6.9 presents an example depth section of a 

thrusted fold which is decompacted to the m3 horizon using lithology

characteristics, such as porosity, from a confidential exploration borehole

within the study area. No attempt at restoration is made here so that the effect of
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Figure 6.9: Demonstration o f the effect o f decompaction on shortening values obtained 
using the line-length comparison methodology, (a) Typical depth converted section 
through a thrusted fold in the deep water Niger Delta. Shortening of the m3 horizon is 
calculated to be 885 metres, (b) Decompacted section down to the m3 horizon. 
Decompaction was performed using 2DMove software and information on lithological 
properties o f the overburden obtained from a nearby borehole. No attempted at structural 
restoration was made in order to highlight the effect of decompaction alone on shortening 
values. Shortening of horizon m3 following decompaction of the overburden was 
calculated as 872 metres, a change 13 metres or c. 1.5%.
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vertical compaction alone can be ascertained. In this example, decompaction of 

the overburden down to horizon m3 resulted in a reduction in observed 

shortening o f 13m, a potential error of approximately 1.5%.

6.5.3 Problems with structural restorations

Balanced cross-sections were developed to provide guidance for structural 

interpretations in areas o f limited seismic or well data (Dahlstrom 1969; Woodward et 

al., 1985). The restoration o f balanced sections has proved valuable in the past to 

calculate estimates o f bulk shortening in orogenic belts (e.g. Cooper, 1983). 

Estimations o f  shortening can be achieved by the comparison of balanced and restored 

sections and are more successfully obtained in well-constrained thin-skinned foreland 

fold and thrust belts (e.g. Dahlstrom, 1969; Boyer and Elliott, 1992; Chen, 1999). It 

was an initial aim o f this thesis to use sequential restorations of faulted folds in the 

Niger Delta to record the amount and distribution of shortening through time. This 

methodology proved inappropriate for the accurate measurement of deformation in 

this project. The following sections give a brief outline of the reasoning and 

investigation into the methodology used in this study.

Structural restorations within this project were carried out on the 2DMove™  

software program provided by Midland Valley Exploration, with the aim of 

measuring shortening on numerous lines. Restoration methods and algorithms use 

many o f the assumptions outlined in the previous section regarding section 

construction, such as a conservation o f rock volume. A number of tools for restoration 

are available for use in this software, all with inherent assumptions. The Flexural Slip 

Unfolding algorithm, for instance, maintains line lengths and orthogonal bed 

thicknesses that relate to a ‘template bed’ (i.e the bed to be restored), however line 

lengths are not preserved in passive beds that are not parallel to this template (Fig.

6.10). Therefore, although restoration may produce realistic geometries and true 

values o f shortening on the template bed, any further stage of restoration will be using 

bed-lengths that no longer reflect the original interpreted section. Flexural unfolding 

may cope well in the folded part o f the section (i.e. the shallow section o f the 

hangingwall), and not so well in the less folded part (i.e. the deeper section) (Fig.

6.11). Fault Parallel Flow also assumes a predominance of deformation by flexural 

slip between layers, however the key parameters for this algorithm are the geometry
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Figure 6.10: Summary o f the restoration tools available in the 2DMove™ software, (a) 
Flexural Slip Unfolding algorithm- maintains line lengths and orthogonal bed 
thicknesses that relate to a ‘template bed’ (i.e. the bed to be restored). Line lengths are 
not preserved in passive beds that are not parallel to this template, (b) Trishear 
algorithm - attempts to  deal with folding ahead of a propagating fault tip through the 
definition o f a trishear zone. Outside o f the trishear zone beds in the hangingwall are 
deformed using Fault Parallel Flow methodology, (c) Inclined Shear algorithm, (d) 
Fault Parallel Flow - assumes deformation by flexural slip between layers. Key 
parameters for this algorithm are the geometry of the fault plane at depth, the angular 
relationship between bedding and a fault plane and the ‘angular shear’ factor. Particles 
are restored along lines parallel to a fault plane. Images presented here are taken from 
the 2DMove™ software help package provided by Midland Valley exploration.
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Figure 6.11 : Schematic sections showing the evolution o f a thrust-propagation fold to 
illustrate the variation in the relative amounts o f folding and faulting through time and 
with depth. At any given time the amount of shortening taken up by faulting and/or 
folding varies for each horizon.
Time A: All layers are pre-kinematic.
Time B : Horizon c is both faulted and folded, whereas horizons a and b are only 
folded.
Time C: Horizon c is faulted more than it is folded, whereas horizons a and b are 
only folded.
Time D: Horizons c and b are faulted and folded, whereas horizon a is only folded.
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of the fault plane at depth, the angular relationship between bedding and a fault plane 

and the ‘angular shear’ factor. Particles are restored along lines parallel to a fault 

plane and hence only honour the assumption o f inter-bed slip if bedding is also sub

parallel with the fault, (i.e. long hangingwall-flat sections). Commonly, sections in 

this study display a high angle between bedding and fault planes (e.g. Fig. 6.9a) and 

hence this method would effectively be modelling inclined simple shear in the 

hangingwall. One limitation o f  Inclined Shear algorithms is a change in bed thickness 

on restored sections which can be problematic when trying to recognise fold growth. 

Finally, the Trishear algorithm attempts to deal with folding ahead o f a propagating 

fault tip through the definition o f a trishear zone (e.g. Erslev, 1991) (Fig. 6.10). 

Unfortunately, outside the trishear zone beds in the hangingwall are deformed using 

Fault Parallel Flow  methodology and are thus affected by similar limitations.

A summary o f the effects o f structural restoration algorithms on restored 

sections is presented in Figure 6.12 which applies these tools to synthetic sections. 

This is not intended to reflect a realistic geological scenario, but instead aims to use 

simple geometric structures to assess the adaptations made to beds during the 

restoration process. Many o f  the limitations described above are confirmed by this 

exercise. Fault parallel flow , trishear and inclined shear all cause an increasing 

change in bed thickness with depth (Fig. 6.12b, c and d), even on a synthetic section 

where all hangingwall strata are parallel (Fig. 6.12a). Flexural slip unfold successfully 

restores parallel beds in the first synthetic section (Fig. 6.12d), however when folding 

of the shallow section is introduced (Fig. 6.12b) this results in deeper beds being 

restored down the fault, past original positions (Fig. 6.12h).

In general, many structural restoration techniques use one method for the 

restoration o f deformation by folding (e.g. flexural slip unfold), and another to move 

hangingwall stratigraphy along a fault plane (e.g. fault parallel flow). Each method is 

designed using assumptions specific to the task being performed, and hence can 

induce error on the other mechanism. This is problematic as the relative amounts of 

faulting and folding during the development o f a fault propagation fold, for instance, 

can be shown to vary with depth and through time for any given horizon (Fig. 6.11).

The measurement o f shortening on sequential restorations o f a folded and 

faulted cross section also produces uncertainties due to the errors induced by the 

restoration algorithms mentioned above. If the restoration o f the uppermost bed leads

6-34



Chapter 6 Summary and Discussion

Beds thinned 
increasingly with depth

(c) - Trishear

Thicknesses preserved 
- uneven extension 
to to shape  of fault

(d) - Flexural Slip Unfold

Thicknesses preserved 
- uneven extension due 
to to sh ap e  of fault

Sam e as  Fault Parallel 
Flow above

(e) - Inclined Shear (60°) (f) - Inclined Shear (O')

Lower beds in 
extension following 
restoration
(h) -  Flexural Slip Unfold

—

Thicknesses preserved 
• uneven extension due 
;o to shape of fault
(i) - Inclined Shear (0°)

Testing 2Dmove 
Restoration Algorithms 
on Synthetic Sections

(g) Synthetic section (fold)a) Synthetic section (flat)

Beds thinned —  
increasingly with depth

(b) - Fault Parallel Flow

Figure 6.12: Two synthetic sections are presented in order to test the algorithms of structural 
restoration; the first (a) with parallel, uniform hangingwall beds, the second (g) with folded 
shallow hangingwall strata.
Restorations o f the first synthetic section, (b) Fault parallel flow: Beds are thinned 
increasingly with depth, (c) Trishear. Very similar to (b) as outside the trishear zone, beds in 
the hangingwall are deformed using Fault Parallel Flow, (d) Flexural slip unfold: Thicknesses 
are preserved as all beds in the hangingwall were parallel. Additional extension at the base of 
the section due to the shape of the fault, (e) Inclined Shear (60°): Thins hangingwall strata and 
‘under-restores’ the base of the section, (f) Inclined Shear (0°): Thicknesses preserved -  
effectively a simple ‘fault-slide’.
Restorations of the second synthetic section, (h) Flexural slip unfold: Lower beds put into 
extensional geometry following restoration due to non-parallel horizons in the original 
hangingwall section, (i) Inclined Shear (0°): Thicknesses preserved -  effectively a simple 
‘fault-slide’.
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Figure 6.13: Quantification of errors in shortening measurements induced limitations in structural 
restoration methods, (a) Typical depth converted section showing a thrusted fold, (b) Structural 
restoration of horizon m il  in (a) back to paleo-seabed geometry. Flexural slip unfold algorithms was 
applied in this case. Amount o f shortening was measured as the amount o f section protruding outside 
the section width (right) following restoration, (c) Zoom on part of (b) to show inconsistent amounts 
o f shortening with depth following restoration. Horizon m l 1 suggests 112 metres of shortening have 
been restored during this step. Horizon m4 (a pre-kinematic horizon) suggests 373 metres have been 
restored during this step, (d) Table contrasting maximum shortening values of horizon m4 on four 
seismic lines using sequential restoration and line-length comparison methods. Present day 
measurements o f fault heave on the m4 horizon are also included. Note that maximum values of bulk 
shortening, calculated by the restoration method, are commonly less than fault heave.
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to distortion o f underling, non-parallel units, as in the case of flexural slip unfold then 

the amount o f apparent shortening will vary with depth on each horizon and at each 

stage in the restoration process. Figure 6.13 shows an example section to illustrate this 

point. In this case, the unfolding o f a shallow unfaulted unit results in various amounts 

o f shortening being recorded to the right o f the section (Fig. 6.13). If the value of 

shortening is measured on the horizon that was restored to its depositional geometry 

(m il), a much smaller value is obtained compared to that measured on a pre- 

kinematic unit (m4) (Fig. 6.13c). When the process of restoration is continued for the 

remaining deformed beds, the maximum  bulk shortening of pre-kinematic units is 

commonly lower than the amount o f fault heave measured on the original section (Fig. 

6.13d). This clearly cannot be the case as true bulk shortening, which incorporates 

both folding and faulting, must necessarily be equal to or greater than the value of 

faulting alone. It is suggested here that the errors induced during the restoration 

process make estimations o f shortening from the sequential restoration o f sections 

inaccurate and unreliable at these scales.

For this reason, and for the reasons highlighted in the earlier sections, a simpler 

method o f shortening calculation by line-length comparisons was utilised to estimate 

bulk shortening within the deep water Niger Delta.

6.5.4 Line-length comparison method

The above assumptions, limitations and uncertainties associated with structural 

restorations and strain measurements lead to the decision with regards this thesis to 

calculate shortening values by a method o f simple line-length comparisons. The 

methodology o f this process is highlighted in the Chapters 4 and 5 (Fig. 4.3). This 

method has the advantages o f allowing time-efficient calculations that facilitate 

higher-definition plots o f the distribution o f shortening. It is less prone to errors 

induced by restoration algorithms and assumptions. Potential error does exist with 

method in the form of vertical compaction and erroneous velocity models used in 

depth conversion. In this study these uncertainties are considered to be within 

acceptable limits as both are typically less than 5% error (Fig. 6.9) and data from the 

velocity model was obtained direct from borehole data within the survey limits. 

Potential errors are also most likely to affect the absolute values o f shortening. This 

study has been most concerned with along strike variations and trends in deformation 

and it is suggested that the limitations associated with this method, such as vertical
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compaction, velocity errors and pre-thrust ductile thickening, are likely to be 

relatively consistent throughout the survey area thereby minimising the effect on 

shortening distribution.

6.6 Project limitations and further research

The work presented in this thesis is a comprehensive study, based on 3D 

seismic data, o f the geometry and interaction o f structural components of part o f the 

deep water fold and thrust belt o f the Niger Delta. The utilisation o f 3D data have 

produced high-definition mapping and measurement of strain within a fold belt that 

was previously inattainable. However, whilst this project provides fresh insight into 

fold belt characteristics and development, some o f the interpretations and conclusions 

made here have been partially hindered by a number o f limitations. The final part of 

this chapter row considers the project limitations with reference to future paths of 

research that may overcome these difficulties.

A significant limitation throughout this research has been the incomplete 

coverage o f the study area by the seismic surveys. Although the data sets utilised in 

this study covered a combined area o f c. 5000 square kilometres only part of the outer 

fold and thrust belt is imaged (Fig. 1.1). The lengths o f both folds and faults generally 

exceeded the width o f the survey and only partial profiles were obtained (Chapters 3 

and 5). More extensive, regional 2D seismic datasets are inherently unsuitable for 

high-resolution mapping o f faults due to wide spacing o f seismic lines. The 

acquisition o f expensive 3D seismic data over this part o f the Niger Delta is driven by 

pioneering hydrocarbon exploration in deep waters, and hence for future work to 

provide a more complete study o f fault and fold characteristics is dependent on the 

production and release o f more data.

Another significant limitation imposed on this project has been the paucity of 

well data in this part o f the Niger Delta. This is due in part to the high costs of drilling 

boreholes in such deep water. As the outer thrust belt o f the Niger Delta represents an 

emerging prospective area for hydrocarbons, the majority o f wells that have been 

drilled remain confidential and therefore are not released for academic study. The 

single well used in this study had the benefit o f being located within the survey area 

allowing direct comparison between measured interval velocities and seismic 

reflections. These values were applied in this study during depth conversion and back-
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stripping, but the well information could not be included. There is also very little 

information available on the nature o f the detachment in the outer most parts of the 

Niger Delta. Very few wells have been able to pierce the Akata Formation due to 

intense over-pressures. As more well data becomes available from the ongoing 

exploration activity o f industry, the additional information on mechanical and 

lithological heterogeneities, the characteristics of the decollement and a more accurate 

velocity model will enable clearer conclusions to be drawn on fault and fold 

development.

Within this discussion section the consideration o f the controls on fault and 

fold linkage geometries highlighted the potential effect o f the dip and lateral 

alignment o f linking faults (section 6.3.2). Interesting questions that arise from such a 

hypothesis include what controls the locations of fault and fold nucleation? Do pre

existing structures play an important role in more recent structural growth? Can the 

nature and distribution o f over-pressure and mobility o f the shales in the detachment 

unit be described? Do these characteristics vary spatially or temporally? Due to the 

time constraints o f a PhD project these pertinent uncertainties could not be 

investigated in any real depth. It is known for instance that the part o f the Niger Delta 

featured in this thesis overlies a basement sequence with dramatic horizontal variation 

in character and thickness associated with the Charcot fracture zone (e.g. Davies, 

2005). It is the opinion o f the author that an appreciation o f the relationship between 

the deformation manifest in pre-delta rocks and more recent sediments would be a 

useful and fruitful avenue for future research.
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CHAPTER 7

7 CONCLUSIONS

This study has been one o f the first to use 3D seismic data to describe detailed 

distributions o f strain within a fold and thrust belt. The preceding chapters have 

demonstrated that this novel approach has provided important insight into the 

geometry, interaction and kinematic relationship o f compressional structures that 

accommodate deformation in a toe-of-slope deltaic setting. Although investigations 

into thrust fault development and linkage have been the focus o f geological interest 

for several decades through extensive field studies of orogenic belts, new generation 

seismic data allow for three-dimensional observations and conclusions to be drawn, 

that will complement established models o f thrust growth. Whilst this project focused 

on one geographic area it is anticipated that the findings are relevant and applicable to 

fold and thrust belts worldwide. The primary conclusions o f this PhD project, and 

specific summarising statements drawn from each of the previous chapters, are listed 

below.

7.1 General Conclusions

■ The Niger Delta is an ideal setting to investigate the initiation and 

development o f folds and thrusts as numerous 3D seismic surveys have been 

acquired during recent hydrocarbon exploration, thrust fault and stratal 

geometries are well imaged down to significant depths and patterns of 

sedimentation recorded in the stratigraphic column chart fold and fault 

development through time.

■ 3D seismic data provides a unique opportunity to explore the characteristics of 

fold belts from a number o f angles, including detailed analysis o f fault plane 

geometries, high-resolution mapping o f the spatial extent o f syn-kinematic 

growth strata and high-density measurements o f the distribution o f fault and 

fold strain.
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7.2 Antithetic fault linkages in a deep water fold and thrust belt

■ The portion o f the deep water fold belt featured in this project is comprised of 

comparable numbers o f thrust faults o f opposing dip. This has provided the 

basis for this study to document both synthetic and antithetic fault linkages.

■ Along strike linkage o f thrust faults o f opposing dip in the Niger Delta results 

in the along strike switch in the vergence o f associated hangingwall anticlines.

■ Along strike antithetic thrust fault linkages occur in a number o f distinct 

structural styles and geometries that comprise all permutations of antithetic 

fault interactions observed in this thesis.

■ Antithetic thrust fault linkages can be classified based primarily upon the 

vertical extent o f fault surfaces within a transfer zone relative to the branch 

line o f the interacting antithetic faults. The classification comprised three sub

divisions.

■ Type 1 antithetic thrust fault linkages are defined by faults that overlap 

exclusively above the level o f the branch line of the antithetic thrusts within 

the transfer zone.

■ In Type 2 linkages fiults overlap exclusively below the level o f the branch 

line o f the antithetic thrusts within the transfer zone.

■ Type 3 linkages are defined by both faults continuing above and below the 

branch line in the transfer zone resulting in cross-cutting relationships between 

the constituent faults.

■ Stratal deformation and connectivity across an antithetic linkage zone varies 

with each type o f interaction and with depth. Displacement is transferred 

between linking faults and folds through a number o f transfer structures.

■ In a Type 1 linkage sediments above the branch line form a ‘pop-up’ structure

and are connected via an indirect ‘hangingwall-hangingwall transfer fold’. 

Below the branch line beds are continuous and planar in the downdip direction.

■ Distinctive tight folds characterise deformation above the branch line in a

Type 2 linkage, whereas below this level strata are connected via an indirect, 

undeformed footwall-footwall ‘corridor’.

■ Strata above the branch line in Type 3 linkages form indirect hangingwall-

hangingwall transfer folds, while those below form indirect, undeformed
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footwall-footwall ‘corridors’. An increase in horizon repetition is commonly 

evident in the mid section, close to the branch line.

■ Examples o f antithetic linkages are also interpreted from literature from 

studies o f  fold belts in the Canadian Arctic and Pakistan.

7.3 Fold and thrust growth by segment linkage

■ The fault heave and bulk shortening profiles along a single, isolated faulted 

fold o f a deep water fold and thrust belt represents the first quantitative study 

o f thrust faults to use strike-projected contour plots.

■ Measurements o f growth sequences and detailed fault plane geometries 

described numerous faults o f similar and opposing dip linking along strike to 

create a through-going fold.

■ The distribution o f bulk shortening along faulted folds that comprise either a 

single thrust fault or numerous linked thrusts can be simple, systematic and 

similar to that observed for extensional fault displacement.

■ Individual heave profiles o f overlapping, linked faults show modification of 

contours away from systematic patterns. Displacement transfer occurs 

between overlapping faults leading to more regular profiles on aggregated 

plots.

■ Deficits in fiult heave, both in the form of perturbations on non-linking or 

aggregated profiles and displacement minima within linkage zones, are 

compensated to some degree by an increase in the amount o f fold strain. Fold 

amplitude or fold crest elevation is largely unaffected by minor variations in 

fault heave.

■ The geometry and distribution o f syn-kinematic growth strata indicates that 

the evolution o f a fold involved the nucleation and amalgamation o f three 

smaller folds and culminations. A t least eight thrusts initiated along the length 

o f the early folds before lateral propagation and along strike synthetic linkage 

eventually created four major faults of opposing dip. Lateral fault propagation 

produced synthetic and antithetic thrust fault linkages.

■ There is little conclusive data in this study to determine if folding preceded 

faulting or vice-versa.
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■ The distribution o f syn-kinematic sediments can be used to show that the 

along strike length o f  fold B was established relatively early albeit as three 

separate culminations.

■ Folds coalescence along strike results in culmination migration to a central, 

single apex.

■ Initial offset by a propagating tip commonly occurs above the level o f the 

detachment. The point maximum fault heave subsequently move s downwards, 

to either the level o f  the detachment or the point o f intersection with another 

fault.

■ Folds can accommodate shortening as a coherent unit, producing displacement 

and shortening profiles similar to that comprising a single fault. This 

suggesting component faults have been kinematically linked throughout 

development.

7.4 Synchronous growth of a fold and thrust belt

■ The use o f 3D seismic data has demonstrated a kinematic relationship between 

all faults and folds within a fold belt.

■ A general foreland-propagating sequence o f thrusting is overprinted by some 

out-of-sequence nucleation o f faults and folds. Overlap in the duration of 

activity on all structures demonstrates firstly, that all faults were active for a 

significant period o f the deformation history and secondly, that the initiation 

o f new folds does not coincide with cessation of movement on older features.

■ Transfer zones with similar fault plane and stratal geometries display along 

strike heave profiles that either resemble that of a single fault and fold (i.e. 

regular contours within the linkage zone) or exhibit a net deficit (i.e. an 

irregular contours within the linkage zone). There is a positive correlation 

between the lateral extent o f a transfer zone and the efficiency o f displacement 

transfer.

■ The plunge o f through-going folds, associated with antithetic transfer zones, is 

maintained along strike through the zones o f linkage, regardless o f variations 

in heave and shortening. Fold shape is modified within transfer structures to 

maintain fold amplitude.

■ Deficits in heave and shortening within transfer zones correspond to 

complementary morphologies and fault profiles o f structures located up and
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downdip indicating dip-parallel transfer of displacement via common 

detachments.

■ Aggregate heave and bulk shortening profiles o f a fault and fold array have 

regular, sub-horizontal contours within the shallow section. Deeper horizons 

maintain irregularities indicating kinematic coherency.

■ Sub-horizontal contours correspond to the syn-kinematic sequence with 

irregularities remaining on the pre-kinematic sediments on individual faults, 

along strike linking fault pairs and the fold belt as a whole.

■ Irregularities in pre-kinematic package correspond to locations o f maximum 

fault heaves and present day linkage zones.

■ The synchronous growth o f structures within a fold belt, along with the 

evidence o f efficient displacement transfer between all constituent features, 

suggests a three-dimensional nature to kinematic interaction of faults and folds.
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APPENDICES

The core chapters presented in this thesis have been written as scientific 

papers and are therefore structured and formatted with publication in mind. The 

following appendices provide lists, figures and data to demonstrate the full extent of 

the body of work summarised in the papers. A caption is included with each of the 

figures, giving a brief description of its significance, but they are not referred to in the 

text. A digital copy of the complete thesis is also included in the final appendix.

Appendix 1 - List o f mapped seismic horizons and interpreted faults. 

Appendix 2 - Supplementary figures of major horizons and fault geometries. 

Appendix 3 - Fault heave data and depth plot points from Chapter 4. 

Appendix 4 - Fault heave data and depth plot points from Chapter 5. 

Appendix 5 - Digital copy of this thesis on CD.
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Appendix 1 Seismic horizons and faults

APPENDIX 1: List of mapped seismic horizons and faults

A list of all seismic horizons mapped and all faults picked are given below. Each one 
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Appendix 2 Supplementary figures

APPENDIX 2: Supplementary figures

Figures APP1.0 -  APP 1.19 provide example time maps and seismic sections of major interpreted 
horizons used in this study for structural description and strain measurements. Each map is followed by 
an inline and a crossline from the relevant seismic survey.

(S) aiUIJ |8ABJl-AeM-0Ml

Figure APP1.0: Seismic section showing all of the interpreted horizons used in this thesis. See list in 
Appendix 1. Not all horizons were mapped to the lull extent of the data set as some correspond to 
channel forms, levees and erosional features. The main horizons used in this thesis (mO -  ml 1) are 
labelled and are featured in the following Figures.



Appendix 2____________  Supplementary figures

Ft33v?®3

Figure APP 1.1: Example seismic time map of Horizon m l in seismic survey A, presented in two- 
way-travel time (ms). Locations of two seismic sections (an inline and a crossline) in following figures 
are indicated by red lines. The world coordinates of the ends of the seismic sections are given as x  and 
y  in metres. Warm colours represent structural highs, cool colours show structural lows.
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Figure APP1.2: Seismic section (inline) oriented perpendicular to fault strike showing an example of 
Horizon m l interpretation. For location and coordinates of section see Figure APP1.1.
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Figure APP1.3: Seismic section (crossline) oriented sub-parallel to fault strike showing an example of 
Horizon ml interpretation. For location and coordinates of section see Figure APP1.1.
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Figure APP1.4: Example seismic time map of Horizon m2 in seismic survey A, presented in two- 
way-travel time (ms). Locations of two seismic sections (an inline and a crossline) in following figures 
are indicated by red lines. The world coordinates of the ends of the seismic sections are given as x  and 
y  in metres. Warm colours represent structural highs, cool colours show structural lows.
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Figure APP1.5: Seismic section (inline) oriented perpendicular to fault strike showing an example of
Horizon m2 interpretation. For location and coordinates o f section see Figure APP1.4.
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Figure APP1.6: Seismic section (crossline) oriented sub-parallel to fault strike showing an example o f
Horizon m2 interpretation. For location and coordinates o f section see Figure APP1.4.
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Figure APP1.7: Example seismic time map of Horizon m3 in seismic survey A, presented in two- 
way-travel time (ms). Locations of two seismic sections (an inline and a crossline) in following figures 
are indicated by red lines. The world coordinates of the ends of the seismic sections are given as x and 
y  in metres. Warm colours represent structural highs, cool colours show structural lows.
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Figure APP1.8: Seismic section (inline) oriented perpendicular to fault strike showing an example of
Horizon m3 interpretation. For location and coordinates o f section see Figure APP1.7.
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horizon m3

Figure APP1.9: Seismic section (crossline) oriented sub-parallel to fault strike showing an example o f
Horizon m3 interpretation. For location and coordinates o f section see Figure APP1.7.
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Figure APP1.10: Example seismic time map of Horizon m4 in seismic survey A, presented in two- 
way-travel time (ms). Locations of two seismic sections (an inline and a crossline) in following figures 
are indicated by red lines. The world coordinates of the ends of the seismic sections are given as x  and 
y  in metres. Warm colours represent structural highs, cool colours show structural lows.
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Figure APP1.11: Seismic section (inline) oriented perpendicular to fault strike showing an example of Horizon m4 
interpretation. For location and coordinates of section see Figure APP1.10.
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Figure APP1.12: Seismic section (crossline) oriented sub-parallel to fault strike showing an example
of Horizon m4 interpretation. For location and coordinates o f section see Figure APP1.10.
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Figure APP1.13: Example seismic time map of Horizon m6 in seismic survey A, presented in two- 
way-travel time (ms). Locations of two seismic sections (an inline and a crossline) in following figures 
are indicated by red lines. The world coordinates of the ends of the seismic sections are given as x and 
y  in metres. Warm colours represent structural highs, cool colours show structural lows.
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Figure APP1.14: Seismic section (inline) oriented perpendicular to fault strike showing an example of
Horizon m6 interpretation. For location and coordinates o f section see Figure APP1.13.
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Figure APP1.15: Seismic section (crossline) oriented sub-parallel to fault strike showing an example 
of Horizon m6 interpretation. For location and coordinates of section see Figure APP1.13.
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Figure APP1.16: Example seismic time map of Horizon m i l  in seismic survey A, presented in two- 
way-travel time (ms). Locations of two seismic sections (an inline and a crossline) in following figures 
are indicated by red lines. The world coordinates of the ends of the seismic sections are given as * and 
y  in metres. Warm colours represent structural highs, cool colours show structural lows.
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Figure APP1.17: Seismic section (inline) oriented perpendicular to fault strike showing an example of Horizon ml 1 
interpretation. For location and coordinates of section see Figure APP1.16.
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Figure APP1.18: Seismic section (crossline) oriented sub-parallel to fault strike showing an example 
of Horizon ml 1 interpretation. For location and coordinates of section see Figure APP1.16.
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Figure APP1.19: Example seismic time map of Horizon mO in seismic survey A, presented in two- 
way-travel time (ms). Horizon mO is the Agbada-Akata Fm interface. Warm colours represent 
structural highs, cool colours show structural lows.
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Figure APP1.20: 3D visualisation of Horizons ml 1 and mO using IESX Geoviz™ software to show changing structural geometries 
with depth. 3D visualisations were used in this study to better understand stratal geometries associated with thrust faults. A mid- 
Akata reflection is also imaged as the lowermost red surface.
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Figure APP1.21: 3D visualisation of Horizons m6 using IESX Geoviz™ software. Horizon m6 is shown as a partially transparent 5.
white surface. 3D visualisations were used in this study to better understand stratal geometries associated with thrust faults. Q
ff. denotes fault numbers referred to in Chapter 5. The colour of faults corresponds to the depth in the section of a given point on the ^

JJJ
fault surface.



Supplementary figures

F ig u re  A P P 1 .2 2 : 3D visualisation of selected faults from Chapter 5, imaged using IESX Geoviz™ 
software. 3D visualisations were used in this study to describe and classify fault plane geometries. 
ff\ denotes fault numbers referred to in Chapter 5. The colour of faults corresponds to the depth in the 
section of a given point on the fault surface.



ill

F ig u re  A P P 1 .2 3 : 3D visualisation of thrust faults and Horizons m6 using IESX 
Geoviz™ software. Horizon m6 is shown as a coloured point map. Warm colours (red) 
indicate structural highs; cool colours show structural lows. 3D visualisations were used 
in this study to better understand stratal geometries associated with thrust fault linkages. 
In this case faults 13 and 14 are linking along strike (see Fig. 3.7). ff. denotes fault 
numbers referred to in Chapter 5.
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Appendix 2 Supplementary figures

F ig u re  A P P 1 .2 4 : 3D visualisation of thrust faults and Horizons m6 using IESX Geoviz™ software. 
Horizon m6 is shown as a coloured point map. Warm colours (red) indicate structural highs; cool 
colours show structural lows. 3D visualisations were used in this study to better understand stratal 
geometries associated with thrust fault linkages. In this case faults 11 and 12 are linking along strike 
(see Fig. 3.9). f fi  denotes fault numbers referred to in Chapter 5.
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F ig u re  A P P 1 .2 5 : 3D visualisation of synthetic thrust faults using IESX Geoviz™ software. 3D 
visualisations were used in this study to better understand fault linkage geometries. In this case faults 
3a and 3b are linking along strike (see Fig. 5.1). ff:  denotes fault numbers referred to in Chapter 5. The 
colour of faults corresponds to the depth in the section of a given point on the fault surface. Yellow 
dots represent the base of the thrust ramp. Blue dots represent hangingwall cutoffs for a given horizon. 
Note the position of the base of the ramp coincides with a low in displacement (indicated by blue dots).



Appendix 3 Fault heave measurements (Chapter 4)

APPENDIX 3 - Fault heave values (F I, F2, F2b and F3) from seismic survey B. (Chapter 4) 
Measurements were made on sequential inlines oriented perpendicular to fault and fold strike. 
Spacing between lines: 350 m

Depth to data point points used to plot heave values for each of the major horizons.

D e p t h  to  d a t a  p o in t s  o n  e a c h  s e i s m i c  lin e  fo r  e a c h  h o r iz o n  (m )
L ine  # h i h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 1 0 c b

0 6500 6252 5956 5764 5564 5388 5132 4924 4448 4036 3636
1 6500 6251 5956 5764 5564 5387 5131 4923 4447 4035 3632
2 6499 6250 5956 5765 5565 5386 5131 4922 4446 4035 3629
3 6499 6249 5956 5765 5565 5386 5130 4921 4445 4034 3625
4 6499 6249 5955 5766 5565 5385 5129 4920 4444 4034 3622
5 6498 6248 5955 5766 5566 5384 5129 4919 4444 4033 3618
6 6498 6247 5955 5767 5566 5383 5128 4918 4443 4033 3615
7 6498 6246 5955 5767 5566 5383 5127 4917 4442 4032 3611
8 6497 6245 5955 5768 5566 5382 5127 4917 4441 4032 3608
9 6497 6244 5955 5768 5567 5381 5126 4916 4440 4031 3604

10 6496 6244 5955 5768 5567 5380 5125 4915 4439 4031 3601
11 6496 6243 5955 5769 5567 5380 5125 4914 4438 4030 3597

12 6496 6242 5954 5769 5568 5379 5124 4913 4437 4030 3594

13 6495 6241 5954 5770 5568 5378 5123 4912 4436 4029 3590

14 6495 6240 5954 5770 5568 5377 5123 4911 4436 4029 3587

15 6495 6239 5954 5771 5569 5377 5122 4910 4435 4028 3583

16 6494 6238 5954 5771 5569 5376 5121 4909 4434 4027 3580

17 6494 6238 5954 5772 5569 5375 5121 4908 4433 4027 3576

18 6494 6237 5954 5772 5570 5374 5120 4907 4432 4026 3573

19 6493 6236 5953 5772 5570 5374 5119 4906 4431 4026 3569

20 6493 6235 5953 5773 5570 5373 5119 4905 4430 4025 3566

21 6493 6234 5953 5773 5571 5372 5118 4904 4429 4025 3562

22 6492 6233 5953 5774 5571 5371 5117 4903 4428 4024 3559

23 6492 6233 5953 5774 5571 5371 5117 4903 4428 4024 3555

24 6491 6232 5953 5775 5571 5370 5116 4902 4427 4023 3552

25 6491 6231 5953 5775 5572 5369 5115 4901 4426 4023 3548

26 6491 6230 5953 5776 5572 5368 5115 4900 4425 4022 3545

27 6490 6229 5952 5776 5572 5368 5114 4899 4424 4022 3541

28 6490 6228 5952 5776 5573 5367 5113 4898 4423 4021 3538

29 6490 6228 5952 5777 5573 5366 5113 4897 4422 4021 3534

30 6489 6227 5952 5777 5573 5365 5112 4896 4421 4020 3531

31 6489 6226 5952 5778 5574 5365 5111 4895 4420 4019 3527

32 6489 6225 5952 5778 5574 5364 5111 4894 4420 4019 3524

33 6488 6224 5952 5779 5574 5363 5110 4893 4419 4018 3520

34 6488 6223 5951 5779 5575 5362 5109 4892 4418 4018 3517

35 6488 6222 5951 5780 5575 5362 5109 4891 4417 4017 3513

36 6487 6222 5951 5780 5575 5361 5108 4890 4416 4017 3510

37 6487 6221 5951 5780 5576 5360 5107 4889 4415 4016 3506

38 6486 6220 5951 5781 5576 5359 5107 4889 4414 4016 3503

39 6486 6219 5951 5781 5576 5359 5106 4888 4413 4015 3499

40 6486 6218 5951 5782 5576 5358 5105 4887 4412 4015 3496

41 6485 6217 5951 5782 5577 5357 5105 4886 4412 4014 3492

42 6485 6217 5950 5783 5577 5356 5104 4885 4411 4014 3489
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43 6485 6216 5950 5783 5577 5356 5103 4884 4410 4013 3485
44 6484 6215 5950 5784 5578 5355 5103 4883 4409 4013 3482
45 6484 6214 5950 5784 5578 5354 5102 4882 4408 4012 3478
46 6484 6213 5950 5784 5578 5353 5101 4881 4407 4011 3474
47 6483 6212 5950 5785 5579 5352 5101 4880 4406 4011 3471
48 6483 6211 5950 5785 5579 5352 5100 4879 4405 4010 3467
49 6483 6211 5949 5786 5579 5351 5099 4878 4404 4010 3464
50 6482 6210 5949 5786 5580 5350 5099 4877 4404 4009 3460
51 6482 6209 5949 5787 5580 5349 5098 4876 4403 4009 3457
52 6482 6208 5949 5787 5580 5349 5097 4875 4402 4008 3453
53 6481 6207 5949 5788 5580 5348 5097 4875 4401 4008 3450
54 6481 6206 5949 5788 5581 5347 5096 4874 4400 4007 3446
55 6480 6206 5949 5788 5581 5346 5095 4873 4399 4007 3443
56 6480 6205 5949 5789 5581 5346 5095 4872 4398 4006 3439
57 6480 6204 5948 5789 5582 5345 5094 4871 4397 4006 3436
58 6479 6203 5948 5790 5582 5344 5093 4870 4396 4005 3432
59 6479 6202 5948 5790 5582 5343 5093 4869 4396 4005 3429
60 6479 6201 5948 5791 5583 5343 5092 4868 4395 4004 3425
61 6478 6200 5948 5791 5583 5342 5091 4867 4394 4003 3422
62 6478 6200 5948 5792 5583 5341 5091 4866 4393 4003 3418
63 6478 6199 5948 5792 5584 5340 5090 4865 4392 4002 3415
64 6477 6198 5947 5792 5584 5340 5089 4864 4391 4002 3411
65 6477 6197 5947 5793 5584 5339 5089 4863 4390 4001 3408
66 6477 6196 5947 5793 5585 5338 5088 4862 4389 4001 3404
67 6476 6195 5947 5794 5585 5337 5087 4861 4388 4000 3401
68 6476 6195 5947 5794 5585 5337 5087 4861 4388 4000 3397

69 6475 6194 5947 5795 5585 5336 5086 4860 4387 3999 3394

70 6475 6193 5947 5795 5586 5335 5085 4859 4386 3999 3390

71 6475 6192 5947 5796 5586 5334 5085 4858 4385 3998 3387

72 6474 6191 5946 5796 5586 5334 5084 4857 4384 3998 3383

73 6474 6190 5946 5796 5587 5333 5083 4856 4383 3997 3380

74 6474 6190 5946 5797 5587 5332 5083 4855 4382 3997 3376

75 6473 6189 5946 5797 5587 5331 5082 4854 4381 3996 3373

76 6473 6188 5946 5798 5588 5331 5081 4853 4380 3995 3369

77 6473 6187 5946 5798 5588 5330 5081 4852 4380 3995 3366

78 6472 6186 5946 5799 5588 5329 5080 4851 4379 3994 3362

79 6472 6185 5945 5799 5589 5328 5079 4850 4378 3994 3359

80 6472 6184 5945 5800 5589 5328 5079 4849 4377 3993 3355

81 6471 6184 5945 5800 5589 5327 5078 4848 4376 3993 3352

82 6471 6183 5945 5800 5590 5326 5077 4847 4375 3992 3348

83 6470 6182 5945 5801 5590 5325 5077 4847 4374 3992 3345

84 6470 6181 5945 5801 5590 5325 5076 4846 4373 3991 3341

85 6470 6180 5945 5802 5590 5324 5075 4845 4372 3991 3338

86 6469 6179 5945 5802 5591 5323 5075 4844 4372 3990 3334

87 6469 6179 5944 5803 5591 5322 5074 4843 4371 3990 3331

88 6469 6178 5944 5803 5591 5322 5073 4842 4370 3989 3327

89 6468 6177 5944 5804 5592 5321 5073 4841 4369 3989 3324

90 6468 6176 5944 5804 5592 5320 5072 4840 4368 3988 3320
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Heave values for Fault FI.

F a u lt  h e a v e  v a l u e s  (m )  m e a s u r e d  o n  11 h o r iz o n s  (fa u lt F 1 )
L in e  # h i h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 1 0 S e a b e d

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 55 0 0 0 0 0 0 0 0
2 0 50 100 63 0 0 0 0 0 0 0
3 0 75 59 99 75 43 0 0 0 0 0
4 0 137 125 162 100 25 0 0 0 0 0
5 0 150 138 163 87 62 0 0 0 0 0
6 0 125 195 112 113 87 0 0 0 0 0
7 0 62 226 162 163 125 0 0 0 0 0
8 0 200 251 163 170 125 0 0 0 0 0
9 0 245 200 126 188 137 0 0 0 0 0

10 0 111 150 87 114 125 0 0 0 0 0
11 0 100 113 50 124 87 0 0 0 0 0
12 0 137 75 62 38 50 25 0 0 0 0
13 0 112 75 51 25 50 13 0 0 0 0
14 0 162 50 43 37 50 38 0 0 0 0

15 0 162 50 50 63 38 26 0 0 0 0

16 0 126 37 38 50 25 25 0 0 0 0
17 0 158 38 62 62 12 51 0 0 0 0

18 0 206 50 13 75 62 38 0 0 0 0

19 0 287 63 38 12 25 26 0 0 0 0

20 0 425 99 75 62 37 0 0 0 0 0

21 0 425 237 87 62 0 0 0 0 0 0

22 0 363 325 212 125 25 0 0 0 0 0

23 0 451 400 250 112 13 0 0 0 0 0

24 700 400 351 263 195 101 0 0 0 0 0

25 424 442 388 287 263 87 25 0 0 0 0

26 38 513 363 237 263 112 37 0 0 0 0

27 286 500 375 287 300 114 0 0 0 0 0

28 412 563 376 350 325 126 38 0 0 0 0

29 475 488 375 251 226 225 25 0 0 0 0

30 237 537 388 200 187 150 38 0 0 0 0

31 0 600 438 275 237 150 0 0 0 0 0

32 0 565 400 251 224 87 0 0 0 0 0

33 236 401 400 150 188 50 0 0 0 0 0

34 0 226 338 212 162 100 0 0 0 0 0

35 0 251 325 250 187 137 0 0 0 0 0

36 0 263 325 175 150 112 0 0 0 0 0

37 0 363 300 238 225 63 0 0 0 0 0

38 0 300 326 250 287 113 0 0 0 0 0

39 0 338 287 238 251 125 0 0 0 0 0

40 0 253 275 188 201 137 0 0 0 0 0

41 0 262 251 225 201 163 0 0 0 0 0

42 0 149 187 162 100 75 0 0 0 0 0

43 0 150 187 112 138 75 0 0 0 0 0

44 0 137 150 62 113 88 0 0 0 0 0

45 0 75 137 62 112 113 0 0 0 0 0

46 0 0 137 62 112 62 0 0 0 0 0

47 0 0 124 0 62 0 0 0 0 0 0

48 0 0 87 0 37 0 0 0 0 0 0

49 0 0 50 0 0 0 0 0 0 0 0
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Fault heave measurements (Chapter 4)

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

- 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ! o
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Heave values for Fault F2.

F a u lt  h e a v e  v a l u e s  (m )  m e a s u r e d  o n  11 h o r iz o n s  (fa u lt F 2 )
L ine  # h i h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 1 0 S e a b e d

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0

26 0 0 100 38 0 0 0 0 0 0 0

27 0 25 138 25 12 0 0 0 0 0 0

28 0 50 125 0 0 0 0 0 0 0 0

29 0 125 125 37 24 0 0 0 0 0 0

30 0 201 150 38 25 0 0 0 0 0 0

31 0 88 112 100 124 0 0 0 0 0 0

32 0 162 163 50 125 0 0 0 0 0 0

33 0 183 195 100 99 0 0 0 0 0 0

34 0 476 350 275 200 0 0 0 0 0 0

35 351 388 338 287 231 50 0 0 0 0 0

36 337 450 338 300 251 75 0 0 0 0 0

37 363 363 337 362 188 100 62 0 0 0 0

38 513 538 388 275 188 113 0 0 0 0 0

39 462 637 500 251 200 138 0 0 0 0 0

40 562 838 737 300 263 238 0 0 0 0 0

41 563 813 687 437 401 188 0 0 0 0 0

42 951 888 750 500 476 226 0 0 0 0 0

43 607 888 725 450 363 188 0 0 0 0 0

44 975 1051 800 488 488 325 88 0 0 0 0

45 723 950 875 588 488 350 150 37 0 0 0

46 1263 975 813 575 438 288 187 101 0 0 0

47 1326 863 863 675 376 226 76 0 0 0 0

48 838 776 825 538 340 275 150 75 0 0 0

49 1643 762 850 425 350 325 226 75 0 0 0
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Fault heave measurements (Chapter 4)

626 800 375 476 337 126 98 0 0 0
751 800 377 312 275 226 100 0 0 0
708 725 662 530 333 250 70 0 0 0
788 643 506 451 425 288 126 0 0 0
513 552 412 357 424 188 0 0 0 0
561 465 328 345 258 95 0 0 0 0
475 535 325 251 188 25 0 0 0 0
613 434 175 263 138 75 0 0 0 0
450 354 113 150 62 50 0 0 0 0
388 288 100 87 100 0 0 0 0 0
330 195 200 87 0 0 0 0 0 0
199 149 138 87 0 0 0 0 0 0
251 107 75 37 0 0 0 0 0 0
250 75 0 0 0 0 0 0 0 0
150 13 0 0 0 0 0 0 0 0
137 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Appendix 3 Fault heave measurements (Chapter 4)

Heave values for Fault F2b.

F a u lt  h e a v e  v a l u e s  (m )  m e a s u r e d  o n  11 h o r iz o n s  (fau lt F 2 b )
L i n e # h i h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 1 0 S e a b e d

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0
16 0 0 50 21 0 0 0 0 0 0 0
17 0 62 125 68 0 0 0 0 0 0 0

18 0 43 138 45 75 0 0 0 0 0 0

19 0 70 200 158 87 37 0 0 0 0 0

20 0 65 200 205 118 50 0 0 0 0 0

21 0 100 138 138 75 25 0 0 0 0 0

22 0 71 78 100 62 50 0 0 0 0 0

23 0 50 37 50 38 0 0 0 0 0 0

24 0 0 124 55 75 58 0 0 0 0 0

25 0 0 115 75 76 50 0 0 0 0 0

26 0 0 150 124 138 62 0 0 0 0 0

27 0 62 99 75 100 58 0 0 0 0 0

28 0 91 112 87 162 62 25 0 0 0 0

29 0 62 95 82 99 50 0 0 0 0 0

30 0 0 113 62 63 0 0 0 0 0 0

31 0 0 112 70 138 75 0 0 0 0 0

32 0 0 50 38 21 38 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0

36 0 0 0 0 0 0 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0

46
No heave

0

values on

0

ines 47  to

0

90.

0 0 0 0 0 0 0 0
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Appendix 3 Fault heave measurements (Chapter 4)

Heave values for Fault F3.

F a u lt  h e a v e  v a l u e s  (m )  m e a s u r e d  o n  11 h o r iz o n s  (fa u lt F 3 )
L in e  # h i h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 1 0 S e a b e d

0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0 0 0

24 0 0 0 0 0 0 0 0 0 0 0

25 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0 0 0 0 0 0 0 0

27 0 0 0 0 0 0 0 0 0 0 0

28 0 0 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0 0 0 0 0 0 0

32 0 0 0 0 0 0 0 0 0 0 0

33 0 0 0 0 0 0 0 0 0 0 0

34 0 0 0 0 0 0 0 0 0 0 0

35 0 0 0 0 0 0 0 0 0 0 0

36 0 0 0 0 0 0 0 0 0 0 0

37 0 0 0 0 0 0 0 0 0 0 0

38 0 0 0 0 0 0 0 0 0 0 0

39 0 0 0 0 0 0 0 0 0 0 0

40 0 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 0

43 0 0 0 0 0 0 0 0 0 0 0

44 0 0 0 0 0 0 0 0 0 0 0

45 0 0 0 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0 0

48 0 0 0 0 0 0 0 0 0 0 0
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Appendix 3 Fault heave measurements (Chapter 4)

49 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0
51 0 0 0 0 0 0 0 0 0 0 0
52 0 163 0 0 0 0 0 0 0 0 0
53 0 124 0 0 0 0 0 0 0 0 0
54 0 124 0 0 0 0 0 0 0 0 0
55 0 125 0 0 0 0 0 0 0 0 0
56 0 75 136 0 0 0 0 0 0 0 0
57 0 175 155 0 0 0 0 0 0 0 0
58 0 263 207 37 62 0 0 0 0 0 0
59 0 338 242 175 87 125 75 0 0 0 0
60 0 238 294 162 100 113 88 0 0 0 0
61 0 225 247 250 226 112 99 0 0 0 0
62 0 412 375 251 313 251 87 0 0 0 0
63 0 439 513 250 313 200 50 0 0 0 0
64 0 538 513 225 263 238 38 0 0 0 0
65 0 450 576 250 275 238 113 0 0 0 0
66 0 462 563 488 424 317 50 0 0 0 0
67 0 475 600 650 400 373 0 0 0 0 0
68 0 513 613 675 400 250 0 0 0 0 0
69 0 585 638 650 337 150 0 0 0 0 0
70 0 625 613 513 287 200 0 0 0 0 0
71 0 625 664 588 313 175 0 0 0 0 0
72 0 550 625 588 375 150 0 0 0 0 0

73 0 488 676 449 312 212 0 0 0 0 0
74 0 363 525 488 401 263 50 0 0 0 0

75 0 375 525 450 438 275 0 0 0 0 0

76 0 500 488 488 338 238 38 0 0 0 0
77 0 463 401 500 275 200 0 0 0 0 0

78 0 468 413 400 388 150 0 0 0 0 0

79 0 425 325 312 263 137 0 0 0 0 0

80 0 287 363 313 313 137 0 0 0 0 0

81 0 326 275 325 213 50 0 0 0 0 0

82 0 312 238 325 212 0 0 0 0 0 0

83 0 213 212 263 163 50 0 0 0 0 0

84 0 250 113 100 87 0 0 0 0 0 0

85 0 138 50 62 26 0 0 0 0 0 0

86 0 70 99 25 0 0 0 0 0 0 0

87 0 100 100 25 0 0 0 0 0 0 0

88 0 137 62 37 0 0 0 0 0 0 0

89 0 62 37 0 0 0 0 0 0 0 0

90 0 0 0 0 0 0 0 0 0 0 0
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Appendix 4 Fault heave measurements (Chapter 5)

APPENDIX 4 - Fault heave values (faults 2 to 15) from seismic survey A (Chapter 5). 
Measurements were made on sequential inlines oriented parallel with regional dip. 
Measurements were made on lines spaced at 40 inlines (i.e. 500m).

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15
8400 ml 5545 1502 830 1687 121 1398 173 1150

m2 5015 1478 440 1349 0 1610 380 880
m3 4530 958 331 477 0 1482 341 1201
m4 4363 378 224 680 0 1377 122 1054
m6 4226 220 49 488 0 1122 48 580
m7 3979 47 13 241 0 930 46 551
m8 3811 0 0 0 0 421 0 202
m9 3732 0 0 0 0 348 0 98
m11 3519 0 0 0 0 123 0 31
seabed 3240 0 0 0 0 0 0 0

8360 ml 5536 1573 0 601 1431 180 1375 200 931
m2 4995 1149 0 398 1144 44 1425 77 1361
m3 4523 748 0 344 431 0 1175 231 962
m4 4357 446 0 177 583 0 1025 162 957
m6 4219 122 0 26 480 0 850 26 644
m7 3970 0 0 0 222 0 750 46 608
m8 3809 0 0 0 19 0 450 0 131
m9 3730 0 0 0 0 0 400 0 49
m11 3514 0 0 0 0 0 100 0 77
seabed 3230 0 0 0 0 0 0 0 0

8320 ml 5529 1430 16 661 1281 281 1275 124 630

m2 4998 144 50 452 931 0 1575 153 1134

m3 4528 821 0 375 730 0 1250 202 1060

m4 4341 324 0 301 699 0 1025 198 856

m6 4220 69 0 22 484 0 425 0 652

m7 3970 0 0 0 231 0 375 0 431

m8 3807 0 0 0 0 0 275 0 105

m9 3724 0 0 0 0 0 200 0 98

m11 3515 0 0 0 0 0 0 0 67

seabed 3235 0 0 0 0 0 0 0 0

8280 ml 5540 1427 98 731 1031 246 1150 82 1189

m2 5003 1557 66 480 780 0 1425 134 1181

m3 4511 902 0 477 648 0 1200 126 1005

m4 4345 436 0 253 537 0 1075 155 806

m6 4209 140 0 48 380 0 475 51 551

m7 3961 22 0 0 177 0 450 0 569

m8 3799 0 0 0 0 0 300 0 334

m9 3720 0 0 0 0 0 225 0 203

m11 3509 0 0 0 0 0 50 0 101

seabed 3226 0 0 0 0 0 0 0 0

8240 ml 5519 1502 76 679 964 398 1400 186 708

m2 5000 1340 66 443 631 119 1325 226 1261

m3 4517 877 0 446 578 0 925 219 1148

m4 4369 369 0 281 575 0 1000 157 771

m6 4211 144 0 74 401 0 625 26 580

m7 3968 119 0 29 176 0 675 0 631

m8 3810 46 0 0 0 0 500 0 397

m9 3726 0 0 0 0 0 325 0 249

m11 3504 0 0 0 0 0 75 0 98
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Appendix 4__________________________________________________ Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

seabed 3224 0 0 0 0 0 0 0 0
8200 ml 5508 1830 112 649 798 374 1700 198 661

m2 5010 1530 98 681 480 419 1425 144 1428
m3 4524 998 0 349 198 0 1025 131 1078
m4 4361 470 0 380 256 0 1025 97 930
m6 4213 180 0 122 154 0 700 48 640
m7 3962 146 0 26 49 0 525 26 664
m8 3806 0 0 0 0 0 350 0 331
m9 3728 0 0 0 0 0 225 0 180
m11 3508 0 0 0 0 0 50 0 101
seabed 3216 0 0 0 0 0 0 0 0

8160 m l 5501 1649 125 789 710 387 1875 130 887
m2 5014 1482 102 551 306 349 1650 121 1130
m3 4521 1022 12 451 161 0 1200 91 901
m4 4343 570 0 350 224 0 1050 70 843
m6 4204 349 0 222 170 0 675 62 580
m7 3971 130 0 50 24 0 625 21 449
m8 3810 72 0 0 15 0 375 0 283
m9 3730 0 0 0 0 0 250 0 181
m11 3507 0 0 0 0 0 75 0 80
seabed 3206 0 0 0 0 0 0 0 0

8120 ml 5493 1842 214 675 630 704 2175 56 781
m2 5022 1301 183 601 238 431 1875 29 1262

m3 4524 1024 27 487 96 0 850 19 1108
m4 4334 605 0 399 194 0 750 13 632

m6 4197 301 0 202 251 0 400 0 581
m7 3975 162 0 88 116 0 450 0 525

m8 3810 139 0 0 13 0 375 0 306

m9 3720 0 0 0 0 0 300 0 196

m11 3506 0 0 0 0 0 0 0 91

seabed 3192 0 0 0 0 0 0 0 0

8080 ml 5484 1600 304 811 441 892 1675 0 830

m2 5020 1215 178 701 304 681 1575 0 1147

m3 4508 1147 13 296 0 0 1025 62 779

m4 4322 660 0 321 0 0 1075 22 653

m6 4175 298 0 195 0 0 800 0 521

m7 3980 72 0 71 0 0 600 0 485

m8 3813 71 0 0 0 0 350 0 192

m9 3728 0 0 0 0 0 250 0 67

m11 3504 0 0 0 0 0 0 0 0

seabed 3188 0 0 0 0 0 0 0 0

8040 ml 5512 1448 357 649 486 1088 1600 0 680

m2 5020 1189 261 599 260 631 1375 0 1077

m3 4512 960 27 311 0 181 1050 51 902

m4 4325 687 0 432 0 149 900 78 756

m6 4183 392 0 244 0 0 725 19 553

m7 3971 130 0 47 0 0 500 0 451

m8 3805 98 0 0 0 0 225 0 206

m9 3736 0 0 0 0 0 125 0 73

m11 3501 0 0 0 0 0 0 0 0

seabed 3161 0 0 0 0 0 0 0 0

8000 ml 5504 1600 447 0 731 482 971 1650 0 522

m2 5015 1485 361 0 499 143 783 1525 0 856
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Appendix 4_________ Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 I % 7b 8 9 10 11 12 13 13b 14 15

m3 4513 992 50 0 388 0 281 875 76 931
m4 4331 502 0 0 296 0 283 1075 71 680
m6 4181 180 0 0 216 0 30 750 34 453
m7 3984 30 0 0 109 0 0 575 21 323
m8 3806 0 0 0 0 0 0 275 0 155
m9 3737 0 0 0 0 0 0 375 0 98
m11 3498 0 0 0 0 0 0 0 0 0
seabed 3175 0 0 0 0 0 0 0 0 0

7960 ml 5507 1598 400 97 949 281 998 1600 0 1003
m2 5032 1330 254 0 441 144 874 1425 0 777
m3 4494 732 23 0 351 0 181 850 28 801
m4 4318 382 0 0 348 0 265 900 48 566
m6 4165 78 0 0 122 0 46 800 26 245
m7 3971 0 0 0 23 0 0 550 17 280
m8 3792 0 0 0 0 0 0 300 0 77
m9 3728 0 0 0 0 0 0 175 0 23
m11 3492 0 0 0 0 0 0 0 0 0
seabed 3179 0 0 0 0 0 0 0 0 0

7920 ml 5490 1528 534 117 381 262 966 1750 0 811
m2 5021 1128 203 47 662 144 735 1625 57 932
m3 4476 778 65 0 401 0 348 800 60 697
m4 4331 360 25 0 451 0 381 800 54 556
m6 4162 0 0 0 98 0 74 675 48 451
m7 3978 0 0 0 0 0 71 500 26 303

m8 3788 0 0 0 0 0 0 250 0 180

m9 3704 0 0 0 0 0 0 150 0 151

m11 3481 0 0 0 0 0 0 50 0 52

seabed 3160 0 0 0 0 0 0 0 0 0

7880 ml 5486 1240 725 312 381 244 946 1550 0 530

m2 5025 1081 231 123 648 149 987 1550 77 997

m3 4457 932 0 0 351 0 635 875 68 930

m4 4306 444 0 0 331 0 501 900 51 626

m6 4134 78 0 0 77 0 76 725 26 333

m7 3981 0 0 0 0 0 64 475 19 252

m8 3775 0 0 0 0 0 0 400 0 131

m9 3712 0 0 0 0 0 0 225 0 49

m11 3490 0 0 0 0 0 0 50 0 0

seabed 3157 0 0 0 0 0 0 0 0 0

7840 ml 5459 1280 567 298 0 502 268 1010 1450 0 352

m2 5017 998 115 265 0 477 100 989 1250 0 707

m3 4458 753 43 34 0 252 0 730 1025 102 631

m4 4289 386 0 0 0 197 0 601 1000 51 561

m6 4113 182 0 0 0 0 0 131 750 23 374

m7 3978 0 0 0 0 0 0 0 450 0 211

m8 3784 0 0 0 0 0 0 0 325 0 125

m9 3700 0 0 0 0 0 0 0 150 0 80

m11 3477 0 0 0 0 0 0 0 125 0 0

seabed 3176 0 0 0 0 0 0 0 0 0 0

7800 ml 5455 1462 661 530 0 0 488 175 1081 1525 0 452

m2 5007 968 83 312 0 240 374 98 1101 1200 0 598

m3 4436 732 23 65 0 131 210 0 860 1050 18 601

m4 4314 192 0 97 0 97 247 0 564 1025 41 451

m6 4120 95 0 0 0 0 26 0 261 625 14 226
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...
Fault heave (m)

Inline Hor Depth (m) 2 3a 3b 4 5 6 7 :Pb 8 9 10 11 12 13 13b 14 15
m l 3965 0 0 0 0 0 0 0 0 400 0 123
m8 3765 0 0 0 0 0 0 0 0 325 0 80
m9 3715 0 0 0 0 0 0 0 0 200 0 24
m11 3468 0 0 0 0 0 0 0 0 100 0 0
seabed 3269 0 0 0 0 0 0 0 0 0 0 0

7760 m l 5456 1230 583 761 230 0 0 0 1161 1475 0 302
m2 4978 932 0 337 341 335 333 0 1200 1650 0 531
m3 4439 756 0 181 198 115 101 0 948 1075 44 586
m4 4284 301 0 80 30 104 49 0 830 975 43 326
m6 4099 87 0 0 0 71 26 0 331 600 0 180
m7 3974 0 0 0 0 0 0 0 0 300 0 151
m8 3769 0 0 0 0 0 0 0 0 225 0 98
m9 3706 0 0 0 0 0 0 0 0 175 0 0
m11 3479 0 0 0 0 0 0 0 0 75 0 0
seabed 3289 0 0 0 0 0 0 0 0 0 0 0

7720 ml 5459 1372 402 580 480 121 0 1301 1325 0 202
m2 5013 880 0 375 231 224 198 1152 1475 0 580

m3 4454 730 0 166 125 149 177 909 1200 0 551
m4 4301 305 0 68 45 89 124 831 1000 0 374

m6 4107 88 0 0 0 46 0 405 550 0 80

m7 3984 0 0 0 0 0 0 19 325 0 69
m8 3785 0 0 0 0 0 0 0 175 0 0

m9 3720 0 0 0 0 0 0 0 75 0 0

m l 1 3488 0 0 0 0 0 0 0 0 0 0

seabed 3158 0 0 0 0 0 0 0 0 0 0

7680 ml 5471 1395 334 831 398 281 0 1144 1325 301

m2 4990 882 0 651 649 374 34 1226 1275 444

m3 4478 687 0 330 622 198 198 998 1150 431

m4 4302 348 0 212 330 119 0 899 1050 323

m6 4120 148 0 130 80 65 0 281 600 90

m7 3989 51 0 0 49 0 0 0 400 0

m8 3787 0 0 0 24 0 0 0 250 0

m9 3706 0 0 0 0 0 0 0 100 0

m11 3489 0 0 0 0 0 0 0 0 0

seabed 3172 0 0 0 0 0 0 0 0 0

7640 ml 5487 1330 187 1182 398 475 0 1177 1350 181

m2 4973 902 0 861 649 630 31 1350 1375 431

m3 4474 525 0 502 616 269 22 1026 1200 267

m4 4314 427 0 275 323 230 0 687 1000 223

m6 4129 240 0 90 80 16 0 230 550 0

m7 4003 56 0 0 49 0 0 98 350 0

m8 3773 0 0 0 23 0 0 0 225 0

m9 3724 0 0 0 0 0 0 0 100 0

m11 3499 0 0 0 0 0 0 0 0 0

seabed 3170 0 0 0 0I 0I 0 0 0 0

7600 ml 5485 1669 0 1045 593I 498 0 1028 1450 130

m2 4981 878 0 981 747' 566 19 1064 1600 481

m3 4478 502 0 351 623i 195 0 1203 1225 210

m4 4314 382 0 246 425i 206 0 680 1000 131

m6 4103 215 0 77 150i 61 0 195 750 0

m7 3994 106 0 0 39i 0 0 34 500 0

m8 3779 0 0 0 38i 0 0 0 425 0

m9 3724 0 0 0 0 0 0 0 200 0
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

m11 3505 0 0 0 0 0 0 0 0 0
seabed 3172 0 0 0 0 0 0 0 0 0

7560 ml 5483 1498 1144 0 449 381 0 1131 1350 164
m2 4972 880 802 0 607 647 39 1178 1025 229
m3 4472 502 432 0 581 99 0 1028 1100 121
m4 4317 349 301 0 600 87 0 698 1075 74
m6 4103 182 100 0 77 0 0 244 775 0
m7 4008 60 0 0 68 0 0 48 600 0
m8 3776 0 0 0 14 0 0 0 350 0
m9 3712 0 0 0 0 0 0 0 250 0
m11 3506 0 0 0 0 0 0 0 0 0
seabed 3164 0 0 0 0 0 0 0 0 0

7520 ml 5471 1289 1077 28 551 555 0 1197 1250 202
m2 4973 956 1068 23 535 441 0 1344 925 452
m3 4465 582 382 0 499 148 0 1264 925 543
m4 4322 244 223 0 293 121 0 707 950 177
m6 4126 146 92 0 97 0 0 251 725 44
m7 4012 130 0 0 0 0 0 97 450 0
m8 3770 92 0 0 0 0 0 0 225 0
m9 3710 0 0 0 0 0 0 0 150 0
m11 3519 0 0 0 0 0 0 0 0 0
seabed 3163 0 0 0 0 0 0 0 0 0

7480 ml 5481 1298 1131 147 527 480 1178 1000 0

m2 4959 880 953 98 556 551 1203 1200 230

m3 4469 490 451 0 543 78 864 1025 131

m4 4317 168 281 0 236 124 731 1050 52

m6 4137 87 82 0 0 0 305 650 0

m7 4012 0 0 0 14 0 81 525 0

m8 3761 0 0 0 0 0 0 300 0

m9 3714 0 0 0 0 0 0 175 0

m11 3519 0 0 0 0 0 0 0 0

seabed 3150 0 0 0 0 0 0 0 0

7440 ml 5438 1189 1102 198 898 440 1151 1225 0

m2 4937 805 931 280 731 341 1203 1350 77

m3 4457 466 552 0 580 111 1054 1375 75

m4 4298 135 250 0 298 167 681 1200 44

m6 4139 26 143 0 89 0 255 725 0

m7 3998 0 0 0 48 0 46 475 0

m8 3766 0 0 0 21 0 0 500 0

m9 3707 0 0 0 0 0 0 375 0

m11 3518 0 0 0 0 0 0 0 0

seabed 3148 0 0 0 0 0 0 0 0

7400 ml 5415 1150 1245 631 830 0 1105 900 0

m2 4930 782 851 130 798 131 1181 1175 99

m3 4438 330 580 0 804 98 931 1100 31

m4 4287 62 251 0 480 87 651 925 0

m6 4116 0 99 0 331 0 243 550 0

m7 3994 0 0 0 197 0 101 450 0

m8 3760 0 0 0 101 0 0 325 0

m9 3721 0 0 0 39 0 0 175 0

m11 3523 0 0 0 0 0 0 0 0

seabed 3151 0 0 0 0 0 0 0 0

7360 m l 5389 0 998 1131 445 1832 0 1449 1200 0
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Appendix 4___________________ Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

m2 4930 0 645 902 130 1119 101 1177 1125 0
m3 4423 0 330 730 0 753 97 776 1175 0
m4 4261 0 94 441 0 261 77 480 1025 0
m6 4109 0 0 80 0 198 0 202 675 0
m7 3991 0 0 0 0 180 0 39 425 0
m8 3754 0 0 0 0 75 0 0 250 0
m9 3702 0 0 0 0 0 0 0 150 0
m11 3548 0 0 0 0 0 0 0 0 0
seabed 3152 0 0 0 0 0 0 0 0 0

7320 ml 5378 549 887 1081 398 1431 0 1431 1225
m2 4931 119 802 880 310 1221 0 1249 1025
m3 4427 24 237 477 0 680 76 830 1350
m4 4227 0 0 330 0 509 0 624 1150
m6 4077 0 0 127 0 271 0 147 475
m7 3984 0 0 0 0 230 0 0 275
m8 3772 0 0 0 0 149 0 0 250
m9 3690 0 0 0 0 80 0 0 125
m11 3554 0 0 0 0 0 0 0 0
seabed 3150 0 0 0 0 0 0 0 0

7280 ml 5346 969 780 1075 530 1530 0 1202 900
m2 4913 324 601 808 442 1131 0 1040 1175
m3 4411 616 105 431 80 580 0 810 950
m4 4225 148 0 202 0 481 0 603 775
m6 4066 48 0 54 0 329 0 164 425
m7 3975 0 0 39 0 180 0 0 350
m8 3770 0 0 0 0 83 0 0 275
m9 3697 0 0 0 0 69 0 0 175

m11 3558 0 0 0 0 0 0 0 0

seabed 3160 0 0 0 0 0 0 0 0

7240 ml 5322 998 682 1132 780 1653 1130 775

m2 4921 894 481 730 346 1647 1174 950

m3 4410 774 63 446 130 881 756 775

m4 4174 321 0 275 0 605 523 650

m6 4058 171 0 197 0 356 126 350

m7 3968 123 0 0 0 154 0 225

m8 3764 0 0 0 0 98 0 200

m9 3688 0 0 0 0 47 0 100

m11 3560 0 0 0 0 0 0 0

seabed 3186 0 0 0 0 0 0 0

7200 ml 5311 1473 667 1034 1054 998 1241 550

m2 4911 1274 998 1076 480 1487 1108 725

m3 4400 1001 0 512 83 889 707 425

m4 4196 601 0 201 0 553 539 400

m6 4037 360 0 100 0 351 94 450

m7 3959 224 0 0 0 223 0 225

m8 3777 49 0 0 0 127 0 200

m9 3689 0 0 0 0 47 0 150

m11 3580 0 0 0 0 0 0 0

seabed 3187 0 0 0 0 0 0 0

7160 ml 5303 1750 730 887 1181 1143 1185 400

m2 4915 1274 500 1003 605 1523 1041 825

m3 4388 1023 0 661 230 788 961 575

m4 4208 748 0 261 0 487 647 500
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Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

m6 4035 369 0 89 0 217 241 350
m7 3955 24 0 0 0 147 0 250
m8 3748 0 0 0 0 78 0 225
m9 3711 0 0 0 0 21 0 100
m11 3574 0 0 0 0 0 0 0
seabed 3184 0 0 0 0 0 0 0

7120 ml
m2
m3
m4
m6
m7
m8
m9
m11
seabed

5319
4912
4391
4198
4053
3950
3779
3715
3583
3188

1774
1373

988
749
399
124

74
73

0
0

575
342

15
0
0
0
0
0
0
0

998
969
613
471
280

0
0
0
0
0

1102
581
180

0
0
0
0
0
0
0

961
1223

989
647
230
121

98
0
0
0

1037
870
971
702
326

71
0
0
0
0

275
500
400
400
350
175
100
50

0
0

0
0
0
0
0
0
0
0
0
0

7080 ml
m2
m3
m4
m6
m7
m8
m9
m11
seabed

5335
4913
4393
4183
4054
3962
3790
3716
3577
3196

1904
1649
1022
470
370
122

71
48

0
0

632
442

87
0
0
0
0
0
0
0

1001
848
571
430
220

0
0
0
0
0

1706
734
254

0
0
0
0
0
0
0

1180
1209
1097

662
453
180
45

0
0
0

1035
981
956
704
298

31
0
0
0
0

175
575
675
600
325
350
275
150

0
0

0
174
100
145

0
0
0
0
0
0

7040 ml 5334 1720 661 0 930 1481 1147 998 0 0
m2 4915 1470 608 0 1002 771 1143 945 550 331
m3 4398 1398 111 0 711 370 989 889 550 296
m4 4200 490 0 0 351 0 580 597 600 345
m6 4059 340 0 0 175 0 498 298 275 221

m7 3959 190 0 0 0 0 180 97 175 94

m8 3810 0 0 0 0 0 47 0 150 0

m9 3714 20 0 0 0 0 0 0 125 0

m11 3585 0 0 0 0 0 0 0 0 0

seabed 3204 0 0 0 0 0 0 0 0 0

7000 ml 5348 1774 760 72 881 1554 1080 1071 0 80

m2 4939 1574 620 65 925 551 1253 997 400 331

m3 4417 1169 248 0 566 224 860 680 300 296

m4 4218 498 0 0 389 47 480 809 325 551

m6 4048 249 0 0 144 0 578 241 300 299

m7 3976 98 0 0 0 0 247 181 125 185

m8 3816 73 0 0 0 0 29 0 100 47

m9 3723 48 0 0 0 0 0 0 100 0

m11 3587 0 0 0 0 0 0 0 0 0

seabed 3210 0 0 0 0 0 0 0 0 0

6960 ml 5355 2021 601 120 669 1487 1460 997 0 176

m2 4960 1873 441 70 952 701 1631 1087 0 330

m3 4429 971 97 0 651 298 652 680 300 601

m4 4229 398 0 0 330 203 547 700 275 714

m6 4048 170 0 0 254 23 445 244 125 542

m7 3980 120 0 0 0 0 142 143 25 281

m8 3824 48 0 0 0 0 89 0 0 246
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14

m9 3710 0 0 0 0 0 0 0 0 0
m11 3595 0 0 0 0 0 0 0 0 0
seabed 3212 0 0 0 0 0 0 0 0 0

6920 ml 5345 2250 551 110 480 1478 1330 888 0 480
m2 4980 1650 498 143 989 1103 1189 931 0 701
m3 4449 875 87 0 530 554 730 571 125 652
m4 4244 525 0 0 331 146 500 426 125 775
m6 4066 249 0 0 256 19 366 332 50 626
m7 4002 190 0 0 0 0 0 19 0 443
m8 3831 45 0 0 0 0 0 0 0 350
m9 3722 22 0 0 0 0 0 0 0 0
m11 3606 0 0 0 0 0 0 0 0 0
seabed 3212 0 0 0 0 0 0 0 0 0

6880 ml 5374 2305 352 125 580 1998 1587 980 0 551
m2 4980 1750 269 166 998 1258 919 931 0 769
m3 4470 1122 112 71 625 472 698 531 0 935
m4 4254 448 0 0 177 170 380 524 0 910
m6 4067 139 0 0 80 19 432 361 0 624
m7 4003 120 0 0 0 0 11 70 0 534
m8 3840 50 0 0 0 0 0 0 0 222
m9 3716 48 0 0 0 0 0 0 0 279
m11 3606 0 0 0 0 0 0 0 0 0
seabed 3207 0 0 0 0 0 0 0 0 0

6840 ml 5379 2070 315 235 602 2203 1221 771 685
m2 4966 1690 265 181 980 1077 1114 931 960
m3 4488 1120 60 0 530 387 699 480 790
m4 4266 427 0 0 202 197 387 553 877
m6 4064 55 0 0 0 20 497 296 901
m7 4020 152 0 0 0 0 93 28 476
m8 3846 77 0 0 0 0 0 0 351
m9 3717 45 0 0 0 0 0 0 346
m11 3609 0 0 0 0 0 0 0 0

seabed 3207 0 0 0 0 0 0 0 0

6800 ml 5388 1874 0 880 1047 2002 1247 698 1302

m2 4974 1454 318 245 980 1049 880 798 1001

m3 4480 1051 169 0 530 389 631 381 831

m4 4269 400 0 0 275 197 580 401 832

m6 4072 245 0 0 23 71 662 606 822

m7 4010 170 0 0 0 0 332 106 551

m8 3846 76 0 0 0 0 198 0 431

m9 3725 22 0 0 0 0 43 0 398

m11 3616 0 0 0 0 0 0 0 0

seabed 3220 0 0 0 0 0 0 0 0

6760 ml 5377 1945 0 987 947 2097 1678 789 1041

m2 4990 1620 198 181 1225 1123 1623 853 1211

m3 4482 945 48 66 530 256 1189 377 880

m4 4282 402 0 0 288 154 798 404 953

m6 4070 305 0 0 154 0 743 98 897

m7 4008 101 0 0 0 0 423 0 680

m8 3843 52 0 0 0 0 276 0 501

m9 3714 0 0 0 0 0 123 0 333

m11 3616 0 0 0 0 0 0 0 0

seabed 3231 0 0 0 0 0 0 0 0
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15
6720 ml 5398 2110 0 1021 1227 2156 1979 630 1380

m2 4994 1730 268 223 1402 1343 1576 649 1100
m3 4494 1080 0 0 461 347 1157 380 1031
m4 4269 430 0 0 302 225 780 202 1080
m6 4072 149 0 0 198 80 698 130 932
m7 4016 49 0 0 0 47 487 0 705
m8 3837 24 0 0 0 0 400 0 475
m9 3726 0 0 0 0 0 225 0 269
m11 3621 0 0 0 0 0 0 0 0
seabed 3242 0 0 0 0 0 0 0 0

6680 ml 5418 1820 0 1275 1047 1943 2301 0 599 1284
m2 4991 1610 0 841 1080 1280 2115 0 640 1061
m3 4486 1250 0 323 630 480 1653 0 401 802
m4 4276 530 0 74 502 312 1229 0 331 931
m6 4074 280 0 0 131 87 1034 0 121 898
m7 4018 149 0 0 0 0 447 0 0 924
m8 3838 105 0 0 0 0 380 0 0 501
m9 3726 80 0 0 0 0 331 0 0 352
m11 3620 0 0 0 0 0 80 0 0 0
seabed 3251 0 0 0 0 0 0 0 0 0

6640 ml 5420 1770 1532 1131 1989 2880 0 681 1401
m2 4980 1280 681 1124 1128 2231 0 580 1102
m3 4482 1110 310 650 556 1581 22 269 856
m4 4273 580 130 281 223 998 0 230 889
m6 4082 410 43 13 70 810 0 49 745
m7 4025 90 0 0 0 503 0 0 625
m8 3827 45 0 0 0 392 0 0 346
m9 3728 80 0 0 0 224 0 0 324
m11 3636 0 0 0 0 47 0 0 0
seabed 3271 0 0 0 0 0 0 0 0

6600 ml 5408 1777 1421 1040 2103 2487 0 448 1444

m2 4995 1102 860 1123 1127 1981 24 751 1236

m3 4485 1024 721 597 523 1361 48 331 1019
m4 4276 456 345 288 356 1187 21 198 786
m6 4076 310 234 0 97 1078 0 77 686

m7 4024 162 0 0 24 630 0 0 551

m8 3825 48 0 0 0 504 0 0 451

m9 3731 72 0 0 0 431 0 0 398

m11 3637 0 0 0 0 80 0 0 98

seabed 3278 0 0 0 0 0 0 0 0

6560 ml 5398 1840 1443 1002 1898 1887 0 243 1552

m2 4995 1170 1223 1145 1354 2045 101 451 1460

m3 4475 320 743 730 802 1550 48 261 937

m4 4277 253 320 280 432 1254 0 249 771

m6 4083 248 145 0 221 1132 0 68 674

m7 4018 140 76 0 74 581 0 0 651

m8 3826 70 0 0 0 456 0 0 480

m9 3718 72 0 0 0 297 0 0 369

m11 3636 0 0 0 0 39 0 0 201

seabed 3284 0 0 0 0 0 0 0 0

6520 ml 5397 1778 1512 1302 2352 2138 0 177 1350

m2 4989 1270 1443 1260 1550 2043 0 245 1380

m3 4470 530 1065 730 1147 1345 24 225 1169
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

m4 4282 380 343 361 574 1287 54 34 980
m6 4073 380 202 0 280 1103 0 0 471
m7 4010 158 95 0 102 631 0 0 349
m8 3833 0 0 0 14 498 0 0 346
m9 3728 0 0 0 0 377 0 0 155
m11 3636 0 0 0 0 34 0 0 91
seabed 3290 0 0 0 0 0 0 0 0

6480 ml
m2
m3
m4
m6
m7
m8
m9
m11
seabed

5412
4988
4481
4284
4083
4016
3823
3719
3623
3296

1720
1228
710
580
380

52
0
0
0
0

1777
1465
930
445
225
103

0
0
0
0

1330
1423

841
414

0
0
0
0
0
0

2330
1532
1330
632
413
131
180

25
0
0

2300
1844
1366
1187
1123
651
554
476

80
0

0
0

26
51

0
0
0
0
0
0

461
263
181

80
0
0
0
0
0
0

990
1074
1161
1021
410
431
349
341
160

0
6440 ml 5421 1860 1333 1228 2147 2443 0 0 249 530

m2 4979 1460 1302 1180 1670 1876 0 44 187 708
m3 4484 780 787 582 1031 1524 0 34 131 880
m4 4273 560 480 495 680 1223 0 21 97 849
m6 4077 402 235 118 304 961 0 0 0 310
m7 4007 27 155 0 130 680 0 0 0 205
m8 3823 0 34 0 98 552 0 0 0 174
m9 3715 0 0 0 47 430 0 0 0 46
m11 3630 0 0 0 0 80 0 0 0 0
seabed 3300 0 0 0 0 0 0 0 0 0

6400 ml 5427 1824 1696 1168 2370 2511 0 0 243 430
m2 4999 1680 1115 1146 1632 2376 43 130 261 731
m3 4483 1010 835 780 1031 1621 0 49 77 820
m4 4280 530 460 375 830 1421 0 30 64 746
m6 4089 432 378 0 554 555 0 0 0 248
m7 4007 110 80 0 198 700 0 0 0 222
m8 3823 49 90 0 147 576 0 0 0 123
m9 3715 96 0 0 80 443 0 0 0 0
ml 1 3627 0 0 0 0 30 0 0 0 0
seabed 3304 0 0 0 0 0 0 0 0 0

6360 ml 5423 2182 1553 1400 2581 2721 81 0 0 641

m2 5004 1992 1256 1131 1980 1280 122 44 197 711

m3 4507 1387 936 505 1275 1183 44 18 55 680

m4 4287 980 634 403 930 1102 98 0 78 649

m6 4086 611 445 0 552 768 21 0 0 301

m7 4018 180 165 0 249 589 0 0 0 251

m8 3813 130 0 0 139 480 0 0 0 131

m9 3721 98 0 0 89 98 0 0 0 21

m11 3628 0 0 0 31 13 0 0 0 0

seabed 3312 0 0 0 0 0 0 0 0 0

6320 ml 5417 1980 1480 1298 2224 2524 161 0 0 651

m2 5025 1777 1253 1134 1709 2123 103 31 0 654

m3 4516 1229 865 680 1125 1953 98 70 152 520

m4 4273 905 465 300 856 1477 23 0 81 517

m6 4073 786 323 0 634 1180 0 0 18 344

m7 4015 256 97 0 280 707 0 0 0 260
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

m8 3813 195 0 0 213 580 0 0 0 130
m9 3726 143 0 0 212 453 0 0 0 80
m11 3625 0 0 0 0 123 0 0 0 0
seabed 3314 0 0 0 0 0 0 0 0 0

6280 ml 5448 1760 1636 1444 2190 2621 181 0 0 430
m2 4954 1689 1234 1261 1610 2378 223 19 0 415
m3 4533 1224 698 661 1143 1807 263 81 0 446
m4 4385 856 365 347 707 1409 171 41 0 441
m6 4167 731 231 249 530 1026 95 0 0 339
m7 4047 259 80 45 249 680 0 0 0 261
m8 3823 130 0 0 251 509 0 0 0 182
m9 3744 159 0 0 90 354 0 0 0 97
m11 3624 0 0 0 0 38 0 0 0 0
seabed 3291 0 0 0 0 0 0 0 0 0

6240 ml 5455 1946 1661 1153 2453 2754 198 0 461
m2 4967 1999 1167 1234 1409 2254 224 0 552
m3 4535 1560 734 651 1075 1753 221 77 481
m4 4372 1232 134 606 780 1309 145 0 496
m6 4162 966 146 298 602 1223 97 0 544
m7 4055 152 0 98 275 909 0 0 356
m8 3838 97 0 0 180 654 0 0 223
m9 3740 146 0 0 139 534 0 0 180
m11 3624 0 0 0 0 78 0 0 0
seabed 3295 0 0 0 0 0 0 0 0

6200 ml 5447 1810 1864 1447 2134 2809 581 0 374
m2 4982 1880 1413 1333 1809 2513 474 22 581
m3 4534 1502 617 607 1401 1625 331 130 431
m4 4348 1053 180 498 710 1525 224 0 530
m6 4169 758 95 280 403 1274 123 0 421
m7 4071 178 0 94 260 880 0 0 306
m8 3827 226 0 0 211 706 0 0 152
m9 3740 25 0 0 151 531 0 0 131
m11 3622 0 0 0 30 54 0 0 0
seabed 3281 0 0 0 0 0 0 0 0

6160 ml 5442 2125 1674 1553 2105 3050 530 0 316
m2 4967 1926 1153 1408 1856 2850 498 29 498
m3 4536 1430 532 651 1309 1950 471 91 301
m4 4340 926 281 452 880 1525 392 0 380
m6 4161 758 174 382 447 1250 149 0 151
m7 4068 80 0 131 198 900 0 0 124

m8 3841 198 0 0 210 675 0 0 0

m9 3731 154 0 0 143 525 0 0 0
m11 3620 0 0 0 0 75 0 0 0

seabed 3272 0 0 0 0 0 0 0 0

6120 ml 5404 2040 1531 1333 2425 3225 680 0 274

m2 4990 1710 1153 1243 1776 2800 581 92 401

m3 4539 1382 687 843 1367 1900 619 66 326

m4 4357 1179 431 430 580 1425 297 0 424

m6 4164 699 333 380 302 1400 80 0 71

m7 4063 0 0 80 130 1050 0 0 129

m8 3830 174 0 0 74 825 0 0 80

m9 3744 152 0 0 70 650 0 0 31

m11 3614 0 0 0 0 75 0 0 0 I
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 14 15

seabed 3267 0 0 0 0 0 0 0 0
6080 ml 5429 2080 1783 1446 2124 2889 798 0 431

m2 4988 1878 1204 1102 1330 2680 668 81 261
m3 4529 1552 969 813 980 2147 480 31 381
m4 4347 1160 342 477 698 1846 230 0 180
m6 4174 530 341 350 555 1504 98 0 98
m7 4069 77 0 210 198 930 0 0 97
m8 3834 28 0 0 145 727 0 0 15
m9 3739 49 0 0 90 530 0 0 0
m11 3611 0 0 0 0 31 0 0 0
seabed 3251 0 0 0 0 0 0 0 0

6040 ml 5444 2248 2013 1447 2166 2802 851 48 202
m2 5003 1902 1286 1546 1671 2777 777 32 210
m3 4524 1356 702 680 819 2204 421 44 198
m4 4345 1080 513 525 580 1653 281 0 177
m6 4166 752 435 333 432 1347 98 0 131
m7 4053 60 0 298 198 830 24 0 31
m8 3822 80 0 0 134 580 0 0 0
m9 3740 26 0 0 166 423 0 0 0
m11 3607 0 0 0 0 82 0 0 0
seabed 3271 0 0 0 0 0 0 0 0

6000 m l 5491 2081 2166 1547 2514 2804 580 96 130
m2 5018 1930 1332 1474 1843 2577 430 80 222
m3 4514 1378 960 899 861 1978 349 21 244
m4 4336 1048 426 688 625 1747 298 0 160
m6 4168 520 413 441 398 1447 76 0 0
m7 4056 45 0 250 193 960 70 0 0
m8 3822 127 0 0 87 681 26 0 0
m9 3736 138 0 0 43 445 19 0 0
m11 3616 0 0 0 0 0 0 0 0
seabed 3283 0 0 0 0 0 0 0 0

5960 ml 5494 2201 1823 1547 2000 2627 681 0 0
m2 5000 1936 1352 1702 1733 2380 349 0 140
m3 4495 1405 813 939 988 1931 402 0 60
m4 4337 1078 512 751 605 1721 310 0 131
m6 4167 684 480 441 333 1414 161 0 0
m7 4047 148 77 280 98 934 30 0 0

m8 3808 125 0 0 81 605 25 0 0

m9 3742 0 0 0 66 395 23 0 0

m11 3605 0 0 0 0 0 0 0 0

seabed 3287 0 0 0 0 0 0 0 0

5920 ml 5492 2081 1380 1700 1902 2569 580 0

m2 4993 1875 1227 1698 1654 2245 432 74

m3 4506 1374 880 1024 702 1831 381 130

m4 4324 1132 377 840 580 1631 129 52

m6 4161 786 354 569 347 1405 49 0

m7 4041 52 0 298 150 909 73 0

m8 3802 76 0 47 77 602 22 0

m9 3743 0 0 0 98 431 26 0

m11 3596 0 0 0 0 0 0 0

seabed 3277 0 0 0 0 0 0 0

5880 ml 5483 2222 1412 1761 2040 2823 477 0

m2 4979 1911 1052 1703 1688 2504 451 0
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Appendix 4 Fault heave measurements (Chapter 5)

Continued...

Fault heave (m)
15Inline Hor Depth (m) 2 3a 3b 4 5 6 7 7b 8 9 10 11 12 13 13b 141

m3 4483 1132 689 1111 830 1587 469 46
m4 4324 1048 354 830 637 1572 330 69
m6 4163 1078 180 441 398 1147 280 0
m7 4038 45 0 204 146 680 198 0
m8 3804 46 0 0 44 500 98 0
m9 3738 0 0 0 78 289 80 0
m11 3601 0 0 0 0 0 24 0
seabed 3258 0 0 0 0 0 0 0

5840 ml 5462 1974 1381 1624 2034 2619 598 0
m2 4960 1888 1126 1705 1532 2377 448 0
m3 4493 1152 778 1231 880 1707 480 0
m4 4326 1102 324 1019 630 1426 302 18
m6 4151 835 246 555 443 1178 222 0
m7 4025 96 0 330 202 754 198 0
m8 3804 0 0 149 132 551 150 0
m9 3735 0 0 0 80 398 110 0
m11 3597 0 0 0 0 0 32 0
seabed 3252 0 0 0 0 0 0 0

5800 ml 5466 2174 1187 1789 2283 2598 444 0
m2 4961 1773 1181 1623 1681 2401 431 0
m3 4478 1078 807 1156 976 1849 451 0
m4 4320 998 473 880 730 1451 198 0
m6 4138 530 333 430 441 1253 302 0
m7 4019 99 0 302 234 808 177 0
m8 3782 0 0 80 132 560 132 0
m9 3723 0 0 0 110 389 98 0
m11 3600 0 0 0 0 0 0 0
seabed 3257 0 0 0 0 0 0 0

APP4-13


