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Summary

The hydrogen evolution reaction (HER) has been examined on a variety o f Pt and Pt- 

group metal surfaces to investigate the rate o f the reaction. Pt stepped single crystal 

surfaces were investigated in relation to the HER using cyclic voltammetry, linear 

sweep voltammetry and multi-frequency AC voltammetry. It was found that the 

hydrogen evolution reaction activity did not show a dependence on the structure o f 

single crystal platinum electrode surfaces. Thick films o f Au, Rh and Pd were 

deposited onto Pt {111} and successfully annealed to give pseudomorphic surfaces of 

the bulk metal. The aim o f such measurements was to investigate whether strains 

within the crystal lattice o f these films would result in enhanced HER activity. None 

o f the surfaces investigated showed significant HER enhancement. Rather, results 

similar to those observed using the bulk metals were obtained.

Rough Ir and Pt deposits on P t{111} were also investigated. Enhanced HER activity 

was observed on these surfaces. This enhancement was interpreted in terms o f the 

structural arrangement o f the Ir and Pt deposits.

For Pd films on Pt {111} (0 < #Pd < 2 monolayers); it was observed that Pt dominated 

the HER kinetics for Pd coverages up to one monolayer and was still influential on 

the HER at two monolayers o f Pd. Similarly Pd-Pt surface alloys also showed that Pd 

had little or no influence on the HER kinetics even with 75 % Pd in the surface layer. 

Possible mechanisms for this behaviour have been proposed, in particular, the role of 

subsurface hydrogen in HER on Pt is discussed.
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Chapter 1 
Introduction

The recent award o f the 2007 Nobel Prize for Chemistry to Gerhart Ertl reflects the 

importance o f interfacial phenomena, particularly the physics and chemistry o f solid 

surfaces in the physical sciences. A central theme of E rtfs work has been the 

investigation o f mechanisms in heterogeneous catalysis1 l 4l  Catalysts play such an 

important role in industrial chemical processes that even small improvements in 

performance or selectivity can generate great profits for the companies that develop 

such materials. When heterogeneous catalysis is coupled with electrochemical charge 

transfer behaviour (using an electrochemical cell), one denotes such phenomena as 

belonging to the set o f reactions broadly termed electrocatalytic.

Electrocatalysis relates to the study o f rates o f reactions at different electrode 

materials involving electron transfer and more specifically, attempting to increase 

these rates or reducing the overpotential required to drive the reaction. It is a rapidly 

expanding area o f research due to its applied and fundamental relevance.

1.1 Hydrogen as a fuel

Greenhouse gas formation is currently a major global concem[5]. Toxic NCb and SO2 

(which can cause acid rain) are formed in the combustion of fossil fuels, as well as 

man-made CO2 which has been largely attributed to be the cause of global warming, 

an environmental and political issue. A further disadvantage o f using fossil fuels is 

their non-renewability which will lead to the eventual depletion of available sources, 

possibly as early as 2050 in the case o f petroleum1̂ . Hence, the importance o f 

researching electrocatalytic reactions, which may, in future, become sufficiently 

economically viable to replace the use o f less efficient systems which employ the 

burning o f fossil fuelst7J.

An alternative to the internal combustion engine (i.e. the common petrol or diesel 

engine) used in the vast majority o f automotive vehicles, could be an electrocatalytic 

fuel cell^ . Proton exchange membrane fuel cells (PEMFCs) are o f significant 

interest as they function using hydrogen and oxygen as reactants[9].
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A wide range o f fuel cells which use hydrogen gas as a fuel are currently under 

investigation, including SOFCs^101 (solid oxide fuel cells), MCFCs[ll] (molten-
\ 1 ̂  1 f 1 ̂  1carbonate fuel cells), PAFCs1 “J (phosphoric acid fuel cells) and AFCs1 “J (alkaline 

fuel cells). Nevertheless the type which are considered the most promising for future 

implementation are proton exchange membrane fuel cells (PEMFCs), often referred to 

as polymer electrolyte membrane fuel cells (keeping the same acronym). The 

advantages o f these fuel cells include a more environmentally friendly source of 

power than combustion engines, and lower operating temperatures than the other 

types o f fuel cell (~ 80 °C compared to 200 °C for PAFCs, 800 °C for MCFCs and 

500 - 1000 °C for SOFCs, AFCs have a similar operating temperature ~ 70 °C).

The overall reaction in the hydrogen fuel cell is given by:

2 H2(g)+ 0 2(g) 2 H20 (d (1.1.1)

Hence, the by-product o f the reaction is pure water, making this reaction a much more

environmentally friendly source o f power than the burning o f fossil fuels[l3].

In PEMFCs, hydrogen gas is passed into the cell where it is oxidised at the anode, the 

protons then pass across a polymer electrolyte membrane to the cathode, whilst the 

electrons flow through an external circuit, producing power (see fig. 1.1.1). At the 

cathode, the protons and electrons react with oxygen to give pure water as a by­

product.

The anode reaction is therefore:

H2 —► 2 H+ + 2 e' (1.1.2)

Whilst at the cathode:

4 H+ + 4 e + 0 2 —► 2 H20  (1.1.3)

One o f the most commonly used membranes is Nation®, though polybenzimidazole

and phosphoric acid may also be used and others are being investigated.

Air is generally used as a source o f oxygen, rather than flowing pure oxygen into the 

cell. It is also economically advantageous to use hydrogen from reformed 

hydrocarbons as hydrogen storage is not yet advanced enough to be economically 

viable^61. However this poses problems as the reformation o f hydrocarbons requires
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an external fuel processor. An external fuel processor will raise the cost of the system 

and more importantly, produce CO which blocks the electrode surface, reducing the 

activity o f the cell dramatically. Therefore, in order to avoid hydrocarbon 

reformation, a more economical means o f hydrogen production must be developed. 

One of the main alternatives is the use of water electrolysis which is able to produce 

pure hydrogen gas. In order to improve the efficiency of this process, more effective 

hydrogen evolution catalysts are required.

Electrical Current

Excess
Fuel

Water and 
Heat Out

Fuel In Air In

Anode I Cathode 
Electrolyte

Fig 1.1.1 Schematic diagram o f a PEMFC.

The development of fuel cells has also led to an increased interest in the planning for 

a hydrogen economy^b\  which is the effort to utilise the cleanliness of hydrogen as an 

energy carrier with the efficiency of fuel cell systems to transform this energy into 

electricity and heat16' ,4' l5\  Some communications even predict that hydrogen will be 

the main carrier of energy by 2050f6J. Fig. 1.1.2 (a) shows the present energy 

situation, with the primary fuel sources, the types of energy they are converted into 

and the areas to which the energy is distributed. It can be seen that there is currently a 

heavy dependence upon non-renewable fuels such as oil, particularly for transport but 

also for heating and industry. Increasing amounts of biomass (which currently 

contributes the greatest amount of energy ffom a renewable source) and natural gas
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are also noteworthy in the heating and industry area. Coal is a major source of 

electricity. Fig. 1.1.2 (b) shows a predicted energy model for 2050 based on a 

hydrogen econom^b\  though it does not quote direct figures of how the energy is 

sourced. The model removes oil as a fuel and incorporates a hydrogen network, 

catering for industry, residential and transport sectors.

Nuclear Natural 6as Biomass

f  ‘ Jj  0̂ 3% { [ 5A7o j ) 8 27. 11.27.

15 7% total 
electricity 

EU objective 
(2010): 22.1%

Electricity
networks

Heat and 
industry networks

d is t r ib u t io n

12 57.

20 27.

Industry Residential and others £*3 Transport
(a)

Natural 6as C oci Myd'oelectnc Nuclear?

CO; capture A 
storage (CCS)

Gasification

Biomass

co2< oi 
» • • • • •  
•

Electrolysis
(reversible) T h erm ochenical 

cycles Bo 
m ethanol

Renewable sources 
integration

E lectric ity
network

Hydrogen
network

CCS (CO.. < 0 ) I

R efo rn

C.H.P.

Residential /  CommercialIndustry Transport

Fig. 1.1.2 Diagram showing energy sources (a) at present and (b) predicted for future (possibly as early 

as 2050). * includes agriculture commerce and services^61.
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Hydrogen as a fuel is currently used on a relatively small scale (though it is growing) 

with 227 fuel stations in operation globally as of May 2006f61 (with the highest density 

in Japan). Most o f these fuel stations generally provide fuel to government projects 

involving public transport, such as fleets o f buses, which use hydrogen internal 

combustion engines (ICE-H2 ) as opposed to PEMFCs. The ICE-H2 systems offer 

energy efficiencies o f 20 -  38 % whereas PEMFCs give rise to efficiencies o f 50 -  60 

%[6J. Moreover PEMFCs are pollutant free and silent[61. However the presence o f the 

ICE-H2 engines may be enough to implement more hydrogen refuelling stations until 

PEMFC technology draws level. There is still much work to do before hydrogen 

technology becomes cheap enough to compete directly with petrol for general use. 

Increasing the efficiency o f hydrogen production, overcoming problems o f hydrogen 

storage and achieving more CO-tolerant PEM FCs^ are all important factors in the 

cost reduction o f hydrogen technology.

1.2 The hydrogen evolution reaction

The hydrogen evolution reaction (HER) is one o f the simplest methods for the 

production o f hydrogen^161 and has been the subject of many investigations. This is 

due, in part, to its common occurrence in industry, where it is the cathode reaction in 

some chlor-alkali cells117' l81. It is also a competing reaction in some metal deposition 

reactions119' 211 e.g. the electrolytic reduction o f Ir(IV) to Ir deposited onto Pt. This 

reaction occurs via the intermediate Ir(I) where the reaction of Ir(IV) —► Ir(I) has to 

compete with the HER (which occurs at a more positive potential than the Ir 

reduction), as the hydrogen produced oxidises the Ir(I) to Ir(III)t211. Also, the HER
[TT 0 4 ] . . . ") +

can be involved in corrosion1" '"  . When iron is oxidised as an anode (Fe —*► Fe" + 2 

e ) hydrogen may be evolved as the parallel cathode reaction (2 H+ + 2 e' —>► H2 )[241. 

Moreover, the HER is the desired reaction for hydrogen production via the 

electrolysis o f water and hence is becoming more relevant as society tries to move 

towards hydrogen as a fuel and away from fossil fuels. However, the electrolysers 

which produce the hydrogen are currently far ffom ideal as the cathodes are made o f 

expensive materials (generally Pt or Pt-group metals). Also water electrolysis
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requires electrical energy which must itself be sourced from fuels which are likely to 

be non-renewable and polluting. Hence, efforts to find a more effective or 

inexpensive catalyst and to lower the amount o f energy required to drive the reaction 

are o f great importance for obvious economical and environmental reasons. 

Alternative fuel sources for the water electrolysis stage could also be implemented, 

such as photovoltaic cells (which will, themselves require improvement before 

becoming a major power source). Nuclear energy (though public opinion is generally 

still sceptical o f the associated safety aspects and decontamination processes are 

detrimental to the environment) is another possibility in this regard. Hydrogen may 

also be produced by the reforming o f fossil fuels or hydrocarbons, i.e. the removal o f 

hydrogen atoms from these organic compounds. Reforming is currently used as a 

source o f hydrogen in preference to using electrolysis o f water, yet requires an 

external fuel processor. As mentioned earlier, residual compounds such as CO may 

adsorb onto the working electrodes, blocking the surface and decreasing fuel cell 

activity. Also, reformation will produce greenhouse gases and, in the case o f fossil 

fuels as reformates, remains a non-renewable source o f hydrogen.

The hydrogen evolution reaction has two main forms depending on the type o f 

electrolyte (acid/basic)[23J.

The overall reaction in acid solution is:

2 H30 + + 2 e ^  H2 + 2 H20  (1.2.1)

and under basic conditions:

2 H20  + 2 e -> H2 + 2 OH' (1.2.2)

The reaction rates have been found to be faster in acid electrolytes than in alkali[25’26̂ , 

due to the facility for the abstraction o f hydrogen atoms decreasing on going from 

H3Cf (i.e. acid solution) to H20  (i.e. basic conditions), which has led to the reaction 

being studied much more commonly under acidic conditions.

The HER in acid involves an initial discharge step known as the Volmer reaction[27J:

M + H30 + + e'' «-► MHads + H20  (I) (1.2.3)

where M is the metal (or cathode material) at which the reaction takes place.
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This can then be followed by one of, or a combination of a recombination step (Tafel 

reaction^271:

MHads + MHajs — 2 M + H2 (II) (1.2.4)

and an electrochemical desorption step (Heyrovsky reaction^271:

MHads + H30 + + e' «-► M + H20  + H2 (III) (1.2.5)

Each o f the three reactions gives rise to its own rate equation1281,

Volmer: v, = k ^ .  (\ - 6u )e a"! - k  AOne ^ a),n (I) (1.2.6)

Tafel: v, = k 26>u2 -  k ( C ^  / C * 2 )(1 -  6 >, ) 2 (II) (1.2.7)

Heyrovsky: v, = C*y{.0 ne~‘*n -k _ ,(C ° 2 IC \u )(1 - 0 n)e{'-a)rtl (III) (1.2.8)

where k\, ki and &3 are the rate constants for the forward reactions o f I, II and III 

respectively, k.\ and k.i are the rate constants for the back reaction o f I and II 

respectively, a is the transfer coefficient, 0\\ is the surface coverage o f H, r\ is 

overpotential,/ =  nF/RgT, where F  is the Faraday constant (9.649 x 104 C mol"1), Rg is 

the universal gas constant (8.314 J mol" 1 K"1), T is the temperature in K and n is the 

number o f electrons involved in the reaction (one in each case), c* is the

concentration o f H+ in the electrolyte, C,°, is the concentration o f H2 at the electrode

surface and C,*( is the concentration in the bulk in mol cm"3.

If it is assumed that the Tafel and Heyrovsky steps are independent, we obtain four 

possible reaction mechanisms1231.
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A. M + H30+ + e «-> MHads + H20 

MHads + MHads —► 2 M + H2

Volmer step slow 

Tafel step fast

B. M + H30 + + e ~  MHads + H20  

MHads + MHads —► 2  M + H2

Volmer step fast, pre-equilibrium 

Tafel step slow

C. M + H3Cf + e‘ «-> MHads + H20

MHads + H30  + e *► M + H20  + H2

Volmer step slow 

Heyrovsky step fast

D. M + H30 + + e‘ «- MHads + H20

MHads + H30  + e ►̂ M + H20  + H?

Volmer step fast, pre-equilibrium 

Heyrovsky step slow

Different parameters are often used to measure the relative rates of HER on a material 

(see section 2.1). The rate constant, k, can be determined and is probably the most 

direct indicator o f the reaction rate. However, k is often disregarded in favour o f the 

exchange current density, yo, which is also indicative of the overall reaction rate and is 

easier to calculate ffom raw data. j () is the cathodic (or the equal and opposite anodic) 

current density when an electrochemical system is at its equilibrium potential (the net 

current is zero)[29l  The Tafel slope (i.e. the gradient of a plot of log current versus 

overpotential (the “excess7' potential, from the equilibrium potential, required to force 

a particular reaction rate to occur)) is also commonly quoted. The Tafel slope is not a 

direct indicator o f rate, but provides an insight into the nature o f the reaction 

mechanism. The basic reaction mechanisms for HER have distinct associated Tafel 

slopes, assuming a is 0.5 (which indirectly relate to reaction rate as certain 

mechanisms are associated with faster rates than others). When the Volmer step 

(equation (1.2.3)) is rate-limiting, the Tafel slope should be -118 mV/dec[3(,] (this is 

observed with metals such as Pb, Tl, Cd and Hg[23]). If the Tafel step is the rate- 

limiting step (which is the case for HER on Pt and Pt-group metals (Ir, Os, Rh, 

Ru)t23̂ ) it should be -29  mV/dec[3()J and for the Heyrovsky step being the slowest, the 

Tafel slope should be -42  mV/dec[3()̂ (observed for Ag, Au, Ni and Ti amongst 

others[23]). These values have been calculated for steady state conditions and at low 

hydrogen coverage (negative potential close to 0 V vs. RHE).



1.3 Hydrogen evolution on platinum group metals

Research into the HER in the 1950s by Bockris and co-workers131' 331 discovered that 

Pt had a low free energy o f activation for the reaction. Hence, Pt worked well as a 

catalyst for the HER. Further work by the same authors investigated the effects of 

electrode preparation on the rate, finding that the system was sensitive to 

contamination and required high purity electrolytes and clean equipment for reliable 

electrochemical measurements1341. Roger Parsons^ 351 work on the HER then 

investigated the relationship between the free energy of adsorption o f hydrogen on 

metal surfaces (AG°, i.e. the amount o f energy required to transfer a proton from the 

bulk o f solution to the electrode interface^361) and the exchange current, z'o, (or 

exchange current density, jo )  for hydrogen evolution. Using the equation:

(i - </)
J « = °  N

* — VV _ A Q ° \
p . ,  “ A C  
pu, exP 2 k J

l + /H ; e x p - = —  G, (1.3.1) 
2  k j

where <?h+ is the activity o f H+ ions in solution, a is the transfer coefficient (see 

section 2.1.1.1) Ph2 is the hydrogen pressure, is the Boltzmann constant, T  is 

temperature and

G, = ^ ^ - e x p - [ ( l  - a ) A G f  + a A G “\ / k BT (1.3.2)

where eo is the charge on an electron (1.602 x 10' 19 C) and AG" and AG,° are the 

free energies associated with the forward and backward processes o f the Volmer 

reaction respectively. From equation (1.3.1) Parsons determined that when k (jjlk & T  

»  1 there was little tendency for hydrogen to adsorb at the metal surface and jo 

would increase with AG°, whereas, for 1 »  &G°l2k&T, the adsorption o f hydrogen 

was strong and jo  decreased as AG° increased. Hence, there would be an optimum 

point for exchange current density where AG° is zero. A plot of log jo  versus AG° 

confirmed this, giving a “volcano” shaped graph (fig. 1.3.1 (a)).

It was also predicted that the best electrode materials for the reaction are the Pt group 

metals (Pt, Ir, Os, Pd, Rh, Ru) as they have relatively low AG° values, and that those
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with higher AG° values, such as Hg and Pb, would be much less effective for 

catalysing HER. This was confirmed experimentally by various groups using a range 

o f metal cathodes137"431 (different types o f electrode were studied under a range o f 

conditions in different acid electrolytes in various concentrations, but averages were 

taken for comparison). The resultant data was compiled into a plot by Trasatti 4̂41 in 

1972 (though AG° was replaced on the .v-axis by an equivalent energy, the metal- 

hydride bond energy, fig. 1.3.1 (b)) giving a shape very close to that predicted by 

Parsons1351 (shown schematically in tig. 1.3.1 (a)).

Hence, it is unsurprising that Pt and the other Pt-group metals have been, and still 

remain, a source o f great interest in this field145-*91.

When the cathode in the HER is a Pt-group metal electrode, the intermediate species 

in the mechanism (M Hads) refers to “overpotentially deposited” hydrogen (OPD- 

H)*301, that is, hydrogen which is adsorbed at potentials negative to 0 V versus the 

reversible hydrogen electrode (RHE). This is because the PGMs possess a large -  

AG° value which results in a full surface coverage (#Hads = 1) o f underpotentially 

deposited hydrogen (UPD-H), i.e. hydrogen which adsorbs to the metal surface at 

potentials positive to 0 V vs. RHE (fig. 1.3.2). Whether or not UPD-H is actually 

involved in the HER is a subject which has been much discussed[3()' 5()"521.

AG
(a)

50 70
M-H Bond S l r e n g l h / k c o l  n o f 1

Fig. 1.3.1 “Volcano” curves o f the logarithm o f exchange current versus (a) free energy o f hydrogen 

adsorption, predicted by Parsons1351 (schematic) and (b) metal-hydride bond strength, compiled by

Trasatti1441.
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,  -  -  OPD H isotherm ?XI

For Pt metals, OPD H 6 is 
additional to UPO H at

U PD O PD

increasing
■AGHjodsCD

values at RHE 
potential

Positive (UndrpotomtoO 0 Negative (Overpotwuiai) 

ELECTRODE POTENTIAL (vs RHE)

Fig. 1.3.2 Langmuir-type isotherms (see section 2.7) for various, arbitrary, values of -AG° (1,2,3 and 

4, where isotherm 1 represents a platinum group metal) showing H-coverage, #n.ads as a function o f

potential v.v. RHE1531.

Fig. 1.3.2 shows a schematic depiction o f hydrogen coverage as a function o f 

potential, the positions o f the isotherms being arbitrary. However, the most negative 

isotherm (number 1) is a semi-quantitative representation of a PGM, showing full 

UPD-H coverage (#H,ads = 1) at 0 V vs. RHE. OPD-H is still seen, despite the full 

UPD-H coverage, which leads to the debate as to its nature. Proposed theories 

include those o f Conway, who suggested that UPD-H resides beneath the surface with 

OPD-H bonded in atop metal sites[30]. This model is similar to that suggested by 

Horvat-RadoSevic where hydrogen absorbs within the metal surface layer[54] (fig.

1.3.3 (a)). Conway’s second proposal was a communal array arrangement[55], similar 

to that suggested by Horiuti and Toya1561. The model consists of both UPD-H and 

OPD-H occupying surface sites on the metal, but with each o f the two species having 

distinct, discrete energies or different weakly and strongly bound states (fig. 1 .3 . 3

(b)).
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(a) (b)

Fig. 1.3.3 Schematic diagrams o f proposed structures for arrangements o f OPD-H (red) and UPD-H 

(green) on a Pt group metal (blue) with (a) UPD-H absorbed below the surface layer o f the metal and 

OPD-H atop surface sites and (b) UPD-H and OPD-H occupying surface sites in a communal

arrangement.

1.4 Single crystal surfaces

1.4.1 Pt single crystals

Single crystal electrodes are electrodes formed in such a way as to expose a specific 

crystal plane of the bulk lattice (for further details, see section 2.3). They are o f great 

importance in electrochemistry as rates o f certain reactions are enhanced by particular 

crystal electrode orientations. Examples o f such reactions include that found by 

Koper et al showing the reduction o f NO2 to be structure sensitive with more activity 

observed on P t{111} than on Pt{100}[57]. The activity of ethylene glycol oxidation 

was also found to be faster on Pt {1 0 0 } than on Pt {1 1 1 } by Clavilier et aP*\ Other 

examples of structure specific behaviour include the reduction of CO2 in experiments 

investigating the reaction on the three basal plane Pt single crystals (where Pt {110} 

was found to be the most active surface and P t{111} was the least active)[59]. 

Electro-oxidation of D-mannitol shows a dependence on single crystal structure, 

where Pt {110} is found to be the least active o f the three basal plane surfaces (whilst 

P t{111} and {100} show similar activity to each other)[60].

Single crystals are useful for isolating specific sites for investigation. The surfaces 

can simplify analysis of what may be a more complicated system by separating out
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contributions from individual surface components that would be present at 

polycrystalline surfaces.

Single crystal electrodes have been in use since the 1950s, gaining more popularity in 

the 1960sf6l’65), when W ill's investigations using cyclic voltammetry on Pt led to the 

assignment o f weakly and strongly adsorbed hydrogen states at {1 1 0 } and {1 0 0 } sites 

respectively on polycrystalline Pt{661 (see section 2.1.1.2). Methods of single crystal 

formation included the Bridgman method, which involves drawing an ingot from a 

molten metal, allowing it to cool slowly such that it adopted a single crystalline 

structure. The ingot could then be aligned to the desired orientation using X-ray 

diffraction and cut/polished. Another method involved solidifying molten metal 

droplets in vacuo in glass capillaries so that they formed oriented wires, which were 

cleaved at a specific angle to obtain the desired single crystal surface planet64]. 

However, both o f the Bridgman method and the oriented wires procedure were very 

difficult and few groups were able to construct single crystal electrodes in this way, 

although it was possible to purchase single crystals from specific manufacturing 

companies.

Electrochemical research on single crystals was revolutionised with the advent of 

Clavilier's “bead" m e th o d ^  for single crystal electrode construction, which made the 

manufacture and manipulation o f single crystal electrodes more simple and accessible 

to a greater number o f groups. The process involves melting a length o f wire into a 

molten bead form and, after cooling, cutting and polishing this single crystal bead to 

generate the desired Miller index plane surface (for further experimental details see 

section 3.4). These bead electrodes exhibit a significantly greater surface area as 

compared to the oriented wires used prior to this technique. Other advantages o f the 

Clavilier bead electrodes over oriented wires are that they are easier to manipulate in 

terms o f contact with electrolyte. Pre-electrolysis treatments such as flame annealing, 

to clean or order the surface may also be facilitated Consequently, these electrodes 

have been a major area o f interest for the HER ever since, in order to elucidate 

structural effects125, 30, 50, 68_72J. The manufacturing technique for single crystal 

electrodes has become much more refined, making it easier to construct electrodes o f 

any desired Miller index structure, and is now employed by a number o f groups 

throughout the world146, 6 8 , 7 3‘8 4 1.

The HER on Pt single crystals has caused an ongoing debate surrounding the question 

as to whether or not there is a structural dependence for the reaction, i.e. whether
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hydrogen evolution occurs faster on different Miller index crystal electrode 

orientations. Certain groups believe that there is no dependence of HER on crystal 

structure168'701. For example, Feliu and co-workers observe similar values for 

exchange current density on the Pt {111} and {100} surfaces (see table 1.4.1) with a 

higher value on the P t{110} surface which is claimed to be within experimental 

error1701. Prior to Feliu’s investigations, Lipkowski et al had stated that the HER was 

not sensitive to surface crystallography after observingy'o values between 1.7 mA cm ' 2 

(on P t{511}) and 3.0 mA cm ' 2 (on P t{111}) despite also quoting an error of 10 %1691. 

However other groups disagree150 71 ]. Markovic et al state that there is a dependence 

on surface structure, with HER rate increasing on the basal Miller plane surfaces in 

the order Pt{ 111} < P t{100} «  P t{110} in acid solution1711 (with a different order in 

alkaline solution, P t{100} < P t{111} < P t{110}[851). Barber and Conway agree that 

there is a structural dependence1501, but these authors are not in agreement with 

Markovic in terms o f the order o f particular surface planes in relation to increasing 

HER rate as they quote P t{100} < P t{111} < P t{110}[501. Conway’s observation is 

obtained from rate constants (for Volmer reaction) rather than exchange current 

densities which are used in the Markovic work.

jo/ mA cm'^ P t{ l11} Pt{100} Pt{l 10} Electrolyte

Feliu et a P ^ 0.84 0.84 0.97 0.5 M H2S04

Lipkowski et a / 1691 3.0 1 . 8 0.1 MHCIO4

Markovic et a / 17 ’ 1 0.45 0.60 0.98 0.05 M H2SO4

Table 1.4.1 Comparing exchange current density values for the basal plane single crystal surfaces o f  

platinum from three different research groups.

Looking at table 1.4.1, it is difficult to draw a conclusion concerning the structure 

sensitive nature o f the reaction. It can be seen that there is a variation in all three data 

sets, with Markovic’s showing the greatest variation in percentage terms. It is 

interesting to note the high values found by Lipkowski compared to the other groups, 

when the only obvious experimental difference is the electrolyte used. It is also 

interesting to see that Lipkowski finds the highest value of jo on Pt {111}, whereas 

Markovic finds this surface to have the lowest value.
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1.4.2 Non-Pt single crystals

It is also possible to prepare single crystal electrodes from metals other than Pt e.g. 

Rh1861, Ru187,8X1, Ir1891 and Pd189' 901, using the same Clavilier bead preparation method.

HER data has been reported for Ru{0001 ) and Ru{ 101 0} electrodes, withy(> values of 

0.13 and 0.16 mA cm "2 respectively1881, significantly lower than that for single crystal 

Pt which gave values o f 0.45 and 0.98 mA cm "2 for Pt {111} and Pt {100} respectively 

from the same author1881. No figures have been quoted for the HER on the other 

single crystal electrodes o f Ir, Pd and Rh, though data for the polycrystalline surfaces 

o f these metals have not shown an enhanced HER activity compared to (single 

crystalline) Pt electrodes144' 8 8 ' 91 \

1.5 Deposition of metal films onto single crystal electrode surfaces

Deposition o f metals onto Pt single crystal substrates to give epitaxial films of the 

deposited metal with structures analogous to that o f the Pt crystal has been achieved 

by evaporating the metal in vacuo, with the single crystal electrode substrate present, 

the evaporated metal coating the electrode and adopting its single crystal structure1921 

(this technique has also been used for non-Pt substrates e.g. Pd deposited onto Au 

single crystal surfaces1931). The nature o f the deposited film depends on the growth 

mode o f the deposited metal onto the substrate (see section 2.6). New electroless 

deposition methods o f performing this task are an issue o f interest at present1731, 

including novel methods for the formation o f single crystal Ru surfaces1731, which 

involves “forced'' deposition194’ 95]. In forced deposition a droplet of a metal ion in 

solution (in this case Ru from an aqueous Ru complex) is held in contact with a Pt 

single crystal electrode and reduced in a stream of hydrogen gas to leave a deposited 

layer o f that metal, which can then be annealed subsequently by resistive heating 

under nitrogen atmosphere to give a surface analogous to the single crystal 

substrate1731. One reason why these surfaces are o f great interest is that they provide a 

less expensive means o f forming a single crystal surface (particularly for metals
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which may not form single crystals readily using the Clavilier bead method). In 

addition the deposition may cause strains within the crystal lattice to develop due to 

different relative sizes o f the substrate and adsorbate atoms, which may lead to altered 

catalytic properties.

1.6 Hydrogen evolution on alloys

Trasatti found Pt to be the most electroactive pure metal catalyst for HER [441 from 

experiment and based on his “volcano" plot (fig. 1.3.1 (b)). However, many mixed 

metal systems have also been investigated, including a range o f Pt alloys. These 

alloys include PtjSn and PtRu which have shown good catalytic properties in relation 

to the electrochemical oxidation o f COl%’98]. In particular the Pt3 Sn{111} single 

crystal alloy, where the potential for the onset o f CO oxidation is 0.7 V lower than

that on Pt {111 PtRu has also been found to be an extremely good catalyst for
2 2methanol electro-oxidation, with a limiting current > 1 A cm" compared to 0.3 A cm" 

on pure Pt[98]. Yet none o f these alloys have been found to catalyse the HER more 

effectively than pure Pt.

Bockris published work on hydrogen evolution on noble metal alloys^"1, none of 

which showed faster rates than Pt, though Pd and its associated alloys were found to 

give y'o values which matched those on the Pt surface. The profiles o f exchange 

current density versus percentage o f metal composition within the alloy for Bockris’ 

results1" 1 are shown in fig. 1 .6 . 1 .

Most alloys have proved significantly slower for hydrogen evolution than pure Ptt100,

1 0 However, as research has progressed, alloys have been discovered which give

rise to higher exchange current densities than Pt. Some of the most promising alloy

areas o f investigation are Ni-Sll(,2J and Ni-S-Co |1031 alloys which have been shown to
-*)

give jo values o f 4.6 and 6.2 mA cm " respectively.
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Fig. 1.6 .1 Graphs of exchange current density versus alloy composition for (a) Au-Pd or Au-Pt (b )Pt-

Ni (c) Ni-Pd and (d) Pt-Pd alloys as found by Bockris et al. [99]

Greeley et al have performed hydrogen evolution experiments on pseudomorphic Pd 

films on various substrates (Au, Pt, PtRu alloy, Rh, Ir, Ru and Re) and found greatly 

enhanced exchange current densities when the substrate was Pt or PtRu (l : l  

segregated alloy), both givingyo values o f 6.32 mA cm‘2[l04l  The same group have 

more recently performed theoretical computational high-throughput screening density
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functional theory (DFT) calculations on over 700 surface alloys with the aim of 

finding a more effective HER catalyst by using theory based techniques before 

exploring the surfaces experimentally11051. These calculations predicted BiPt alloys to 

be o f similar or better activity than bare Pt. Experiments were performed on Pt, Bi on 

Pt and annealed BiPt surface alloy all deposited on a fluorine-doped tin oxide 

substrate. It was found that the BiPt alloy gave a greater exchange current density 

than the Pt film (-0.95 mA cm'“ compared to 0.56 mA cm'“) though it is similar to the 

values generally found for bare Pt electrodes and the Pt value was lower than is often 

reported.

1.7 Project Aims

• This project aims to investigate the HER reaction on a range o f surfaces, in 

order to further the knowledge o f the area and to explore areas o f uncertainty 

within the literature.

•  Polycrystalline and single crystal Pt electrodes will be studied in order to 

determine whether there is a structural dependence for the hydrogen evolution 

reaction.

• Epitaxial films o f Pt-group metals will be deposited onto Pt single crystal 

electrodes to examine effects o f lattice strain and whether these surfaces show 

an enhanced catalytic activity for the HER compared to their equivalent bare 

P t{hkl\ analogues.

• Alloys and other deposited metal surfaces will be investigated in order to 

study any changes in HER mechanism or rate.

• Overall it is hoped that a better understanding o f the HER mechanism can be 

achieved, with a view to finding more effective catalysts for the reaction than 

are currently available.
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Chapter 2 

Theoretical Background

2.1 Electrochemical Analysis Methods

2.1.1 Direct Current Techniques

Direct current (DC) analysis techniques are important in electrochemistry, as they 

supply useful current versus potential information for electrochemical systems. This 

can either be at steady state (where a reaction is controlled by electron transfer rate) or 

controlled by mass transport o f reactants (the rate o f diffusion o f a species from the 

bulk o f the solution to the electrode surface) to the electrode. In comparison with 

alternating current (AC) analysis techniques, steady state DC experiments are easier 

to perform and interpret. As a result o f this, they are more widely used in 

electrochemistry. Some o f the most significant DC electrochemical techniques are 

described in the following section.

2.1.1.1 Linear Sweep Voltammetry/ Tafel Data

Linear sweep voltammetry (LSV) is the simplest voltammetric technique as it 

involves measuring the current produced by an electrode as a function o f potential 

applied between a working electrode and a reference electrode (see section 2.4) in a 

stationary solution. This potential is swept at a constant rate between two potential 

limits and gives rise to a current which flows between the working electrode and a 

third electrode, the counter electrode.

A typical potential ramp and a current-potential response curve for an electroactive 

redox species are shown in fig. 2.1.1. The rise in current on the current-potential plot 

represents the release o f electrons as a species, R, is oxidized to species O at a 

particular potential.

23



t

R —> 0  + ne

E
(b)

Fig. 2.1.1 (a) Potential ramp and (b) generalized current-potential response for redox species in LSV 

experiments at steady state (dashed line) and at a fast, non-steady state, sweep rate (solid line).

One o f the important applications for linear sweep voltammetry, with particular 

reference to the hydrogen evolution reaction is to provide data for analysis using the 

Tafel equation. Measurement o f Tafel parameters involves applying a slow (steady 

state) scan rate linear potential sweep and monitoring the current response (i.e. slow 

enough that the response did not change at slower scan rates). The Tafel equation is 

derived from Butler-Volmer kinetics. For a one-electron transfer at steady state (with 

no mass-transport effects) the Butler-Volmer equation relating a current response to 

an applied overpotential is applicable:

- a F (1 - a ) F  ]
exp -------7 -e x p ------  VR J RJ

where rj is overpotential, Rg is the universal gas constant, T  is temperature, a is the 

transfer coefficient, F  is the Faraday constant, i is current and /o is the exchange 

current (current density, j  and exchange current density, jo may be used instead of i 

and z'o respectively by normalising the current to the electrode area, making it easier 

for comparison o f results where different electrode areas are used and hence different 

currents produced).
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At steady state (and at large overpotentials), the anodic current component is 

negligible, giving:

-  aF
i = z() exp

R J
(2 .1.2)

This leads to the Tafel equation:

2.3 R J  2.3 R,T
'  log/() log i

aF aF
(2.1.3)

If

2.3 R T
a =

aF
logi„

and

-2 .3  R T
b = ---------*—

aF

(2.1.4)

(2.1.5)

the common form o f the Tafel equation is obtained:

rj = a + b \o g i  (2.1.6)

Tafel experiments are important in the study o f the hydrogen evolution reaction,

where the system potential is swept sufficiently negative that hydrogen is evolved 

from the working electrode. Rearrangement o f equation (2.1.2) gives:

aF
log; = log/,, -  2 iR  T 'l I2-1-7)

Tafel plots o f log current versus overpotential (i.e. the excess potential, from the

equilibrium potential, required to force a particular reaction rate to occur) (fig. 2.1.2) 

are used to obtain kinetic parameters for the HER. The exchange current, /'o, is a good 

indicator o f electrode activity and may be obtained from the intercept on the log i axis
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at // = 0. The Tafel slope is independent o f area and can take distinct values for each 

o f the HER mechanisms, as explained in section 1.2. The slope also gives the transfer 

coefficient, «, which is a measure o f the symmetry o f the energy barrier (or reaction 

coordinate for a redox couple), it takes the value 0.5 for a perfectly symmetrical 

energy barrier^ and is involved in many equations in electrochemistry, particularly 

Butler-Volmer kinetics.

The HER is not a simple, one electron transfer process as explained in section 1.2, 

though the Tafel equations may be applied to the individual steps of the reaction, 

where the Tafel kinetics (and the Tafel slope) for the reaction will be related to the 

rate determining step.

log i

Slope = Slope = -a£72.3J?a7’

log 11

-8.5

-102 -150 -300

r\i mV

200

Fig. 2.1.2111 Tafel plots for anodic and cathodic branches o f a redox couple with transfer coefficient, a

0.5.
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2.1.1.2 Cyclic Voltammetry

Cyclic voltammetry is an important method for characterising electrode surfaces and 

testing the cleanliness and reproducibility o f an electrochemical system. This method 

is similar to that of linear sweep voltammetry though the applied potential is increased 

and decreased in a sawtooth waveform (fig. 2.1.3),

0.8

0.6

>
cc
Cc 0.4
cQ-

0.2

0 .0 -

60 80 1000 20 40

Time/ s

Fig. 2.1.3 Potential waveform applied to working electrode in cyclic voltammetry. This waveform 

shows three full potential sweeps between 0 and 0.8 V at a sweep rate of 0.05 V s'1.

For a normal ohmic conductor, the voltammogram would show the current increasing 

and decreasing linearly with the voltage. However when we apply the potential to an 

electrode/electrolyte system a very different picture is seen.

For a simple redox couple o f the form:

O + n e ^ R  (2.1.8)

where O is the oxidised species in the reaction, R is the reduced species, and n is the 

number of electrons involved in the reaction. If the process in equation (2.1.8) is fast 

and the reaction mechanism is the same (but opposite) for the forward and back 

reactions, it is said to be reversible and will give a cyclic voltammogram similar to 

that seen in fig. 2.1.4. The voltammogram in fig. 2.1.4 shows two equal but opposite
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positive and negative current peaks corresponding to the oxidation of species R and 

the reduction o f species O respectively. The peak current for such a process is given 

by:

ip = 2.75x10~5« 3 V 2Co*Z)0‘ 2 (2.1.9)

where v is the potential sweep rate in V s '1, C* is the bulk concentration o f the

electroactive species in bulk solution in mol cm'3 and D0 is the diffusion coefficient in
0 1cnT s' . The potential separation between the two peaks is given by the equation:

R T
l ^ o x - Rc d l  2 218—5— (2.1.10)
1 1 nF

where E °x and £ pRed are the potentials o f the oxidation and reduction peaks 

respectively.

/
R ->  O f  nz

0

Fig. 2.1.4 Diagram o f cyclic voltammogram for a simple reversible redox couple. Note that the 

separation o f the redox peaks in this case is given by 59In mV.
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A more specific electrochemical system which is very relevant to this project is Pt in 

H2SO4, where a more intricate voltammogram is observed (fig. 2.1.5). This is due to 

the electrolyte and the surface reactions that occur at specific potentials i.e. the 

adsorption/desorption o f H and OH on the Pt electrode surface. At sufficiently low 

sweep rate, the peak potentials and intensities are free o f mass transport influence, 

hence surface adsorption peak intensities vary directly with sweep rate (i.e. ip oc v) 

instead o f ip oc v1/2 (for semi-infinite linear mass transport).

4

0

-2

-4

1600600 800 1000 1200 14000 200 400
Potential/ mV vs. Pd/H

Fig. 2.1.5 Cyclic voltammogram of polycrystalline platinum in 0.1 M H2S 0 4. Sweep rate 0.05 V s*1.

Fig. 2.1.5 shows a typical cyclic voltammogram (CV) observed when a 

polycrystalline Pt working electrode is used, with a Pt counter electrode and a 

palladium-hydride (Pd/H) reference electrode in 0.1 M H2SO4 at room temperature 

and a potential sweep rate o f 0.05 V s’1. Each o f the coloured sections shows an 

electrochemical process occurring on the working electrode surface. Hence when 

different electrode materials are used (or indeed different electrolytes or even 

electrode orientations) the surface energetics o f these processes are affected, resulting
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in differently shaped peaks and shifts in potential. Therefore, a distinct, well- 

characterised, voltammogram for a given electrode/electrolyte combination may be 

described.

Regions A and B constitute the hydride stripping region, where H adsorbed on the 

electrode surface is electrochemically desorbed, producing electrons and therefore 

producing a current. The reaction in this region is:

Hads * H+(aq) + e (2.1.11)

The distinction between regions A and B stems from the types of adsorption sites for 

the hydrogen atoms. Region A is commonly referred to as “weakly” bound and 

region B as “strongly" bound at {110} and {100} step sites respectively121.

Region C corresponds to the double layer region, where the only charge flowing is the 

capacitative current due to the charging o f the electrochemical double layer. The 

thickness o f the double layer region is significant as its size is proportional to the 

capacitance o f the electrode, which not only depends on the material, but also the 

electrode surface area. Hence if  an electrode is rough and unpolished the double layer 

region will be much wider than if  it were not. There are numerous models proposed 

for the distribution o f ions at the electrode/electrolyte interface leading to capacitative 

processes and these are discussed in more detail in section 2.5.

Region D is the oxide forming region, where water from solution adsorbs onto the 

electrode surface, forming OH and oxide species, which also produces electrons and a 

positive “anodic" current.

H20  ->  OHads + H\aq> + e (2.1.12)

Point E is the switching potential point, i.e. the point at which the positive potential 

sweep is stopped and the reverse sweep is commenced (the peak potential on the 

sawtooth potential waveform). If the potential is swept above this point (1.55 V vs. 

Pd/H for this particular system) oxygen gas is evolved from the Pt electrode.
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Region F is the oxide stripping region, where the reverse reaction to that o f region D 

occurs. Hence a negative "cathodic" current is produced as electrons are transferred 

from the electrode to the electrolyte.

Regions G and H comprise the hydride forming region, where the reverse reaction o f 

that in regions A and B occurs and again producing a cathodic current. Similarly to 

regions A and B, the hydrogen atoms adsorb strongly at {100} sites (region G) and 

weakly at {110} sites (region H).

Point I is the minimum potential applied to the electrode, it is the point where the 

negative potential sweep is switched to a positive going potential sweep. When the 

potential is swept negative o f point I, 0.06 V vs. Pd/H (0 V vs. RHE), hydrogen gas is 

evolved.

The area o f an electrode may be calculated from its cyclic voltammetry if the number 

o f electrons involved in the surface reaction and the charge density o f the electrode 

surface, a, are known. In the case o f polycrystalline Pt in H2SO4, the charge density 

o f the surface, <r, is approximately 210 pC cm'" for the underpotentially deposited 

hydrogen in the potential range 0 - 0.4 V vs. Pd/H. This value is calculated by taking 

an average o f the known atomic densities o f the three basal plane surfaces and 

assuming that, in the formation o f a hydrogen adsorption layer, one hydrogen atom 

adsorbs to one Pt atom (or, more specifically, one electron is transferred per Pt atom). 

The area can be calculated using the equation:

a = Q  (2.1.13)
a

where Q is the charge on the working electrode calculated from the area o f the UPD- 

H peaks, i.e. regions G and H or regions A and B from fig. 2.1.5.
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2.1.1.3 Rotating Disk Electrode

A significant problem faced when Tafel experiments for HER in acid are performed is 

the steady state problem; the reaction must be controlled by the rate o f electron 

transfer rather than diffusion. For a stationary electrode, this involves performing the 

experiments very slowly (i.e. the rate at which the potential is swept must be slowed 

down until results are the same irrespective o f sweep rate). However, it is found that 

hydrogen forming at the electrode will interfere with these results, since bubbles of 

gas often form and attach themselves to the electrode surface, blocking the electrolyte. 

A way around such problems is to rotate the electrode at high speed (assuming the 

electrode surface is flat) which results in the system reaching steady state at faster 

potential sweep rates. In addition the hydrogen gas is forced away from the surface 

due to the rotation o f the electrode.

This “forced” mass transport o f bulk electrolyte to the electrode surface (fig. 2.1.6) 

results in a layer of solution being formed at the surface which is rotating at the same 

rate as the electrode and is therefore effectively stationary. The thickness of this layer 

depends on the speed of rotation, from the relation:

= [ 1.61y1 2D 0' 3]«/' 2 (2.1.14)

where 6 is the diffusion layer thickness, y is the kinematic viscosity of the solution, D0 

is the diffusion coefficient o f the oxidized species and co is the rotation rate in rad s '1. 

Thus as rotation rate increases, the diffusion layer thickness decreases. The thinner 

the diffusion layer, the faster the diffusion rate, and hence the less influence diffusion 

has on the electrode kinetics, leading to steady state at higher scan rates.
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Fig. 2.1.6 Schematic diagram, showing the solution flow to a Rotating Disk Electrode, where r is the 

distance from the centre of the electrode along the electrode plane and y  is the distance from the 

electrode surface perpendicular to the plane[3].

Taking Tafel data (section 2.1.1.1) using the rotating disk electrode at various rotation 

rates allows production o f Koutecky-Levich p lo ts^  (1/i versus \/co12) from the 

relationship in equation (2.1.15), where i is the current at a particular potential and co 

is rotational frequency in Hz. The current density, j , is often used in preference o f i 

(as in fig. 2.1.7), as it enables the direct comparison o f similar results on electrodes of 

different areas by normalising the figures to area.
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Fig. 2.1.7 Koutecky-Levich plots o f l/ j  versus l/col/2 at overpotential between 0 -  0.1 V at rotation 
rates between 500 and 4000 rpm for Pt electrode in 0.05M H2S 04.

From the Koutecky-Levich graph a value for (the current in the absence of any 

mass transfer effects) can be found using the relation:

1J_ = J _  _______
j  ~A + 0.620 nFCV 2

(2.1.15)

where n is the number o f electrons taking part in the reaction and C* is the

concentration of the oxidised species o f the redox couple in the solution.

This then leads us to a value o f kf (the reaction rate constant) from the equation:

A  = nFk'C l (2.1.16)

A plot of In kf versus overpotential, rj, yields values of a and k (the standard rate 

constant), since:

Inkr = In/: -
o anFij

RJ
(2.1.17)
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where k° is the rate constant for a reaction at the formal potential o f the couple. It 

thus reflects the intrinsic kinetic facility and hence the catalytic ability o f the electrode 

material.

One drawback o f the rotating disk method is that it may be rather mechanically 

stressful to the electrodes, which is a particular problem for metal plated electrodes if 

the coating is not robust.

2.1.1.4 Chronoamperometry/Chronocoulometry

Chronoamperometry is another important method in electrochemical analysis. In this 

technique, current is recorded as a function o f time at constant potential. It may often 

be used for testing if  the activity o f an electrode is constant with time, an important 

feature in testing materials as catalysts which may be used over long time periods, e.g. 

for use in fuel cells.

Using the Cottrell equation[l]:

Kt) = nFA°2\  f °  (2.1.18)
71 t

I ^i can be plotted against 1 It “ to obtain a straight line. From this, a value for the 

diffusion coefficient, A ,, the electrode area or concentration o f the solution can be 

found (depending on which parameters are known) via the gradient.

Chronocoulometry is similar to chronoamperometry, but here, charge is recorded as a 

function o f time and the Cottrell equation is modified slightly in terms of charge[l]:

Q = 2nFAD» (2.1.19)
7T

Q is thus plotted against t ] 2 in this case, before the values o f the various constants can 

be obtained from the gradient o f the graph as in chronoamperometry.
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2.1.2 AC Techniques

All o f the DC techniques in section 2.1.1 have advantages. However, when studying 

the nature o f OPD-H, DC techniques become less useful and AC techniques are 

required. This is due to the OPD-H coverage being governed by potential. Hence at 

any given potential the current would be constant and no further information could be 

obtained relating to the processes occurring. In AC studies, the DC bias determines 

the surface coverage whilst an applied AC signal may be used to obtain information 

relating to frequency dependences o f processes occurring at the electrode[4l  For 

hydrogen evolution specifically, the DC techniques rely on steady state measurements 

which are not able to separate out the contributions from the different processes 

occurring (i.e. solution resistance, adsorption/desorption and diffusion), whereas AC 

methods may be used to break down the different contributions of these processes 

depending on their time constants.

2.1.2.1 AC Circuits

It is often useful to imagine the composite parts of an electrochemical system as an 

arrangement o f electrical components. This allows for the measurement of current 

and potential responses being assigned to specific cell elements.

A sinusoidal voltage is most easily thought o f as a rotating vector (or phasor) with a 

length o f E and rotating with a frequency o f ( 0  (see fig 2.1.8). The observed voltage 

at a time t is a projection o f this vector onto some axis (usually taken to be at 0 °). It 

may be expressed as:

E ac = Esin  cot 
Similarly, the sinusoidal current may be expressed as:

(2.1.20)

/  A( = /  sinfro/ + <j>) 

where (f) is the phase angle between the current and voltage phasors.

(2.1.21)
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Fig. 2.1.8 Phasor diagram for an a.c. voltage signal, E, o f frequency a).

From Ohm’s law, it is known (in direct current (DC) terms) that:

F
DCR d c = - ^ -  (2.1.22)
DC

where Roc is resistance, Eoc is potential and Ioc is the DC current. A generalised 

form o f this equation is:

Z = y  (2.1.23)

where Z is impedance (a generalised resistance term), E  is total potential and I  is total 

current. This holds true for AC circuits, where Z may be split into real and imaginary 

components:

Z(a>) = Z Re (2.1.24)

Where ZRe and Zim are the real and imaginary components o f impedance respectively 

andyim is given by:

V,„ (2.1.25)

ZRe represents the in phase (resistive component o f Z(co) whilst Z\m represents the out 

o f phase (capacitative) component o f Z(co).
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The real and imaginary terms are given by:

Z Rc = R lx. (2.1.26)

and

z„„ = x t. = (2.1.27)
(oC

where C is capacitance and X q is capacitative resistance.

Hence, the impedance may be given by:

Z  = (2.1.28)
cot

The magnitude and phase angle o f Z are given by equations (2.1.29) and (2.1.30) 

respectively.

!z |2 = : + r L  = Z l  + Zfm (2.1.29)
(coC)

tand = = ^  = — '----  (2.1.30)
Z Ke eoRlx.C

The impedance response o f an electrochemical system can be modelled as a 

combination o f capacitances and resistances such that the current passed has the 

equivalent amplitude and phase angle as the system as a function o f frequency. The 

most commonly used circuit for this modelling procedure is the Randles equivalent 

circuit in fig. 2.1.9.
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c  DL

Fig. 2.1.9 Randles equivalent circuit, representing the capacitance and resistance in an electrochemical
cell151.

The components o f the circuit represent the electrical contributions from the 

electrochemical cell. In fig. 2.1.9 the resistor, Rn, represents the solution resistance 

and the capacitor Cdl, represents the double layer capacitance (the effect seen when 

ions in the double layer between the electrode surface and solution are used to store 

charge, making it behave almost as a pure capacitor, see section 2.5). The faradaic 

term, Zf, is more complicated and can not be represented as a simple circuit element 

in most situations as it is frequency dependent. The faradaic term is often represented 

in one o f two ways, either using a series combination o f a resistance, Rp, and a 

pseudo capacitance, Cp[6], or separating it into a pure (charge transfer) resistance, Rct, 

and the Warburg impedance, Zw[7] (a theoretical element used to represent mass 

transport effects). Rn and Cdl can be found experimentally or by mathematical 

calculation, therefore it is possible to monitor the effect o f variation o f Rct and Zw 

with changes in electrochemical system parameters.
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2.1.2.2 AC Impedance Spectroscopy

AC Impedance spectroscopy keeps the concentration ratio of the redox couple 

constant by applying a constant DC potential while the frequency of the superimposed 

AC voltage is altered. By plotting a graph of real versus imaginary components (fig. 

2.1.10) o f the impedance it is possible to find the charge transfer resistance, Rev, 

which is inversely proportional to k°, and the uncompensated solution resistance R& 

Fig. 2.1.10 shows an Argand diagram, which is a plot of the real component of 

impedance, Zre, versus the imaginary component, Zim at various frequencies. The 

system can be modelled using a Randles equivalent circuit with Zf represented as a 

pure charge transfer resistance, Rct, and a Warburg impedance, Zw, as explained in 

section 2.1.2.1.

As the impedance varies with frequency, limiting factors involved in AC impedance 

processes18, may be observed from the plot. At high frequencies the curve 

represents the system under kinetic control (faradaic processes) where the charge 

transfer resistance dominates the total faradaic impedance, Zf. In contrast, at lower 

frequencies, diffusion becomes more important and the plot is dominated by the 

Warburg impedance, producing a characteristic 45° slope in this impedance 

representation.

Increasing
FrequencyReal

Impedance
Component,
z Rj n Rct dominates Zf

at high frequencies, Kinetic control

Zw dominates Zf 
at low frequencies, 
Diffusion control

Imaginary Impedance Component, Z \J  D

Fig. 2.1.10 Schematic Argand diagram/complex plane plot o f real versus imaginary components of
impedance for an electrochemical system^51.
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2.1.2.3 AC Voltammetry151

Conventional AC Voltammetry is a slightly different technique to AC impedance

spectroscopy as it applies a single AC frequency on top o f a stepped DC potential,

E qc, potentiostatically. Eoc is varied over a long time scale compared to the AC 

voltage, /sAC’ which allows the determination the surface concentrations for the 

oxidised and reduced species, using the Nemst equation, which is derived from a 

generalised half-cell reaction:

naO + ne <-► nrR (2.1.31)

where n0 and nx are the stoichiometric coefficients of the oxidised and reduced species 

respectively. The cell reaction, when coupled with a hydrogen electrode, is then 

given by:

n00  + n u H2 <-*■ nrR + « (|. H+ (2.1.32)

The free energy for this reaction is then given by:

a R a u-AG  = AG" + /{.Tin " (2.1.33)n„ "lii 
ao a u

where a\ is the activity o f species i and AG° is the standard Gibbs free energy o f the 

cell. It is known that

A G = -n F E  (2.1.34)

and

ACE = -nF E °  (2.1.35)

where E° is the standard cell potential.
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As a u. and a,, are unity for the SHE, substitution o f equations (2.1.34) and (2.1.35) 

into equation (2.1.33) and rearranging gives:

£  = £■'’ + — 111^- (2.1.36)
nF a'H-

Equation (2.1.36) can be written as the Nemst equation:

R T C*
E = E" + - i -  In - f  (2.1.37)

nF  C R

where E  is the formal potential o f the reaction, C(',and are the bulk 

concentrations o f species O and R respectively.

AC voltammetry is often performed at various frequencies to see the effect it has on 

the I-E  characteristics o f a system^101.

2.1.2.4 Multi-Frequency AC Voltammetry

To advance and improve the system o f AC Voltammetry, Smith[11, 121 designed a 

system of Multi-Frequency AC Voltammetry (MFACV) which applies many AC 

signals at the same time. This is very useful for AC voltammetry results, since it has 

two very major advantages. Firstly, fewer experiments need to be performed to allow 

determination o f kinetic parameters and secondly, the electrode surface is the same 

for each frequency, whereas, with standard AC voltammetry, the surface may change 

slightly after each run or between runs.

MFACV is very sophisticated, but very useful, so is regaining popularity as an 

analysis tool^13' 151. The technique works by applying a long time scale linear DC 

potential sweep (£bc) as in standard AC Voltammetry but instead of a single 

frequency signal, a “noise" signal consisting o f multiple AC sine waves is applied^161 

(fig. 2.1.11). This signal is generated in the frequency domain and Fourier 

transformed116'221 into the time domain, before application to the cell. The current 

response signal then has to be transformed back into the frequency domain for 

analysis.
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Fig. 2.1.11 schematic diagram showing the applied, long term potential, £ do and short term AC signal,

Eac, for MFACV.

Many parameters, including potential, frequency, admittance, complex impedance 

components (including phase angle) and time may be collected during the MFACV 

measurement. One o f the most useful plots to observe the response is a three 

dimensional Bode plot with potential along the x-axis, frequency on the y-axis and 

admittance along the z-axis (fig. 2.1.12).

A
Admittance
Density/
Q 1 c m 2

Frequency/

Hz

Potential/V 
vs. Pd/H

Fig. 2.1.12 MFACV o f Pt{ 111} single crystal electrode in 0.1 M H2S 0 4, under N2 atmosphere at room 

temperature, with DC potential sweep rate 0.00125 V s'1.
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2.2 Preparation of electrodes

Several electrode preparation treatments were used during the course of the present 

study. These techniques, along with some others are discussed in this section.

2.2.1 Electrodeposition123'251

Electrodeposition is the electrochemical deposition of a substance (also referred to as 

electroplating), from a plating solution (or plating bath), onto an existing electrode by 

applying a potential between two electrodes in the solution. The deposit is usually 

metallic (e.g. Pt[24,251 or Ru[23̂ ) and plates onto the cathode as the product o f reducing 

a cation o f a salt o f the metal to be deposited. Various deposition methods exist, 

differing in their application o f potential. Four of the main deposition methods[25J are

(i) constant potential (where the appropriate potential for plating is applied for 

a set length o f time)

(ii) cyclic potential (where the potential is cycled between the deposition 

potential and a second, fixed potential which does not affect the reaction)

(iii) double potential step (consisting o f numerous sharp potential pulses 

between the same limits as used for the cyclic potential method) and

(iv) constant current (where the appropriate current for plating is applied for a 

set length o f time).

Each method has advantages, for example, the constant potential and constant current 

methods are quick and simple experimentally, whereas the cyclic potential is slower, 

but has a greater “throwing pow er,[5] i.e. the deposited metal plates more uniformly. 

The double potential step method is not thought to result in an even particle dispersion 

but can result in a large amount o f deposited material. A schematic diagram of a 

generalised electroplating system is shown in fig. 2.2.1.

Electrodeposition has been used in this project to coat Ru onto Pt and the 

experimental details o f the procedure are discussed in section 3.1.2.1.
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Fig. 2.2.1 Schematic diagram o f general electroplating system, M will coat the cathode when current is

applied.

2.2.2 Thermal Decomposition

When a precursor material is heated to a temperature high enough to make it 

"degrade" to the metal, it is referred to as thermal decomposition or thermal 

degradation1261. This procedure can take various forms. Often it may be carried out 

over a relatively long period o f time at high temperatures in a furnace (e.g. the 

decomposition o f CaC0 3  to CaO on Pt electrodes at 850 °C for 30 minutes1271 or 

RuCb decomposing to RuC>2 on Ti electrodes when heated for 30 minutes at 75 °C 

followed by calcinations at 400 °C for 1 hour1281). Thermal decomposition is useful 

for forming porous electrodes1261. A variation of thermal decomposition is the much 

faster process o f flame annealing, which has been used in this project to reduce 

H2 lrCl6 solution to Ir on a Pt electrode (section 3.5).
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2.2 .3  F lam e and  P lasm a S p ra y in g

A plasma is an electrically conducting gas containing charged particles. In this 

technique, a flame is used to heat gas atoms (helium, nitrogen, argon or hydrogen 

typically) to high energy levels, causing ionisation and thus producing a plasma124, M)\  

The plasma is then accelerated electrostatically onto a material where it cools rapidly 

and coats the surface (fig. 2.2.2). One drawback with this technique is that the 

particles are not very strictly ordered. Current research is looking into spraying 

complete layers onto the surface^301. A similar method is flame spray pyrolysis 

(FSP)^311 which uses an aerosol o f a precursor material fired through a flame which 

atomises it such that the resulting material can be plated onto a substrate material (e.g. 

Sn0 2  and Pt/Sn0 2  ceramic nanoparticles have been produced from a liquid precursor 

using this method^321).

bIncoming
molten
particles

kJ

Spreaded
splats

substrate

Fig. 2.2.2129’ Schematic diagram o f plasma spraying. Molten particles hit the substrate, coating it with

a fairly disordered layer.
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2.2.4 Pressing and Sintering

In cases where a material is very fine (i.e. in powder form), pressing and sintering 

may be used to form a solid electrode1331 The powder is heated to just below its 

melting point so that it starts to agglomerate (forming larger particles). It is then 

compacted under pressure to form a solid electrode material (e.g. electrodes of 

CoxByH/ have been constructed by pressing the material in powder form at pressures 

between 20 -  100 MPa and heating between 150 -  450 °C[33]).

2.2.5 Electroless Deposition

When an electrode is placed into a solution o f a plating material it can become coated 

by that material due to differences in redox potentials. Since no current is involved, 

this is called electroless deposition 3̂4,35\  Another form of this process is possible if 

an electrode is immersed in a metal solution where the metal cation may be 

chemically reduced to its metal form without applying an electric current. Examples 

include Pd being reduced onto Pt by placing a droplet of a dilute K^PdCU solution 

onto a Pt electrode and holding it in a stream o f EE gas[36]. A similar procedure may 

be implemented for the deposition o f Ru. If the substrate used is a single crystal, the 

deposited film may be annealed in a Bunsen flame or by resistively heating to give a 

single crystal film o f the deposited material. This procedure has been used in this 

project to form Au, Pd, Rh and Ru single crystal films on Pt (see section 3.5).
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2.2.6 Single Crystals

Single crystal electrodes are oriented surfaces o f a crystalline material, cut such that 

the exposed electrode face has a well-defined atomic structure with good long-range 

order137-411.

The most popular method for manufacturing single crystal electrodes is the Clavilier 

method139' 4 2 '4 6 1. A Pt wire is heated in a flame until the end forms a molten bead 

which, when cooled slowly and without vibration will adopt a single crystal structure. 

This spherical form is then oriented and ground/polished to give the desired surface. 

The experimental procedure is discussed in much greater detail in section 3.4.

Previous work has also been reported on mixing metals of similar atomic sizes (e.g. 

Platinum-Palladium^421) within single crystals by melting portions of both metals into 

the same Clavilier bead.

Single crystals play an important role in the experimentation described in this thesis 

and are discussed in greater detail in section 2.3.

2.3 Single crystal nomenclature

Single crystal electrodes are o f great electrochemical interest as it has been found that 

certain reactions occur at different rates on specific single crystal orientations (some 

examples are given in section 1.4). These surfaces are formed by exposing a metallic 

plane in which the atomic arrangement is well ordered and repeats throughout the 

surface.

Metals generally take one o f three ordered crystal structures, face-centred cubic (fee), 

hexagonal close-packed (hep) and body-centred cubic (bcc). The unit cells for each 

o f these structures are shown in fig. 2.3.1. Pt adopts the fee structure and hence will 

be the predominant structure discussed for the remainder o f this section, due to the 

importance o f Pt in the present study.
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Fig. 2.3.1 Unit cells for (a) fee, (b) bee and (c) hep crystalline structures. The red spheres are 

structurally identical to the blue spheres, they have simply been highlighted to make the diagram more

clear.

If a plane is cut through an fee crystal it may be labelled using Miller index notation 

(named after the British crystallographer who identified them, W.H. Miller). Miller

-► —>
indices for fee crystal planes {hkl} are defined using three vectors; a , b and

c (representing the three axes o f the unit cell) with the points at which the plane cuts 

these axes, labelled a, b and c. Where:
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(2.3.2)

and

/  = (2.3.3)

',0,0) V  %

Fig. 2.3.2 Diagram showing the orientation o f the a, b and c axes in relation to the fee unit cell

However, rather than adopting the fractional values found from these equations, the 

{hkl} values are multiplied to appropriate integer values, e.g. if a plane were to cut the

a, b and c axes at 1,2 and 3 unit cell distances (or arbitrary units) respectively, 

equations (2.3.1) -  (2.3.3) would give {hkl} values of {1/1,1/2,1/3}, which would be 

multiplied by 3 to give integer {hkl} values o f {321}.

The three most commonly investigated single crystal surfaces are the {111}, {110} 

and {100} surfaces. These are called the “basal” planes, and are depicted 

schematically in relation to the fee unit cell in fig. 2.3.3, with the corresponding 

atomic arrangements in fig. 2.3.4. Fig. 2.3.5 shows the arrangement of Pt atoms in an 

fee crystal structure and the corresponding cyclic voltammograms of the three basal 

planes.
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1 (a)

(b)

(c)

Fig. 2.3.3 Orientations o f the (a) {111}, (b) {110} and (c) {100} crystallographic planes (basal planes)

for fee single crystal surfaces.

-----

51



fx.c(lOO)
J ( c )

Fig. 2.3.4 Atomic arrangements for (a) {1 1 1 } ," ; /  and (c) {100} crystallographic planes (basal

planes) for fee single crystal surfaces1471.
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Fig. 2.3.5 Schematic diagram o f the atomic arrangement within a cubo-octahedral fee single crystal 

structure, showing the corresponding cyclic voltammograms of Pt for the thee basal planes (taken in 

0.1 M H2 S 0 4  at a potential sweep rate o f 0.05 V s'‘)[48].
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If the plane o f a fee single crystal structure intersects any o f the three crystal axes at 

fractional values of the lattice constant, the resulting surface is denoted as being 

stepped. These surfaces are shown schematically on the stereographic triangle (fig. 

2.3.6) where the three basal planes are represented at the comers (poles). Each side o f 

the stereographic triangle (zone) joining two poles represents the range of stepped 

surfaces associated with sites containing each pole. Taking the zone between fee 

{1 1 1 } and fee {1 0 0 } as an example, a surface which has a {1 1 1 } terrace with a 

monatomic {100} step every 6  atoms will be labelled as a {755} plane (see fig 2.3.7). 

This value may be represented in microfacet notation, which is an alternative 

nomenclature to the Miller index form1471. For a fee {111} surface which has a {100} 

step every n atoms, the full notation is given by:

M(s)[n{l 11 }x{100}]

(where M is the metal, (s) denotes the surface is stepped and n is an integer i- 1) 

and adopts the Miller index form:

{h,k,l} = (n+ l,n -l,n -l) (2.3.4)

Thus, the {755} plane in microfacet notation is given by M(s)[6 {l 11 }x{100}] in 

microfacet notation. The microfacet notations and their corresponding Miller index 

forms for each region o f the stereographic triangle are shown in fig. 2.3.6.

Each zone o f the stereographic triangle has a point where n in the microfacet notation 

is 2 , i.e. when there is a step (which is two atoms in length) every two atoms of 

terrace, hence the contributions from each basal plane is effectively equivalent, this 

point is called the turning point o f the zone. The turning point for each zone is shown 

on fig. 2.3.6 as the corresponding Miller index.

If a crystallographic plane cuts all three basal planes at unequal points (i.e. h ± /),

a kinked surface is achieved. Kinked surfaces are more difficult than stepped surfaces 

to manufacture accurately due to the extra rotational alignment required before the 

crystal is cut. They are chiral in nature, which is an area currently under 

investigation149,5(,J. Kinked surfaces will not be discussed in great detail here as they 

have not been employed in the present study.
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Pt(544)
Pt(775)
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Fig. 2.3.6 The stereographic triangle showing the relative positions and microfacet notations for a range 

o f fee single crystal surfaces (Pt in this case). Pt{311}, Pt{331} and Pt{210} denote the turning points

o f the corresponding zones.

(Ill)Terrace 
(100) Step

fcc(755)=6( 111 )x( 100)

Fig. 2.3.7 Schematic diagram showing the atomic arrangement o f a fee {755} single crystal surface, 
consisting o f a { 1 1 1 } terrace with a { 1 0 0 } step every 6  atoms1471.

55



Pt is the most commonly studied fee metal surface in electrochemistry. A 

comprehensive set o f clean cyclic voltammetric curves for single crystal Pt electrodes 

in sulphuric acid was published by Furuya and Koide in 198915'1 showing systematic 

changes in electrochemical response on moving around the stereographic triangle. 

The positive going potential sweeps o f the cyclic voltammograms for these flat and 

stepped single crystal surfaces o f Pt in 0.5 M H2 SO4 are shown in fig. 2.3.8, showing 

how hydrogen and oxygen electrosorption changes systematically with Pt single 

crystal structure.

o

Fig. 2.3.8 Cyclic Voltammograms o f a range o f Pt stepped surfaces in 0.5 M H2 SO4 1511.
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2.4 Reference electrodes

The reference electrode is an electrode o f constant potential; it is beneficial in an 

electrochemical cell, both for physical and academic purposes. The variation of 

potential between the working and reference electrodes allows current to flow 

between the working and counter electrodes using a potentiostat.

All potentials are effectively meaningless unless quoted against a reference electrode 

as comparison o f results across different experimental groups would not be possible. 

Physically, an electrochemical cell may function without the reference electrode, 

though potential control o f the cell is sacrificed. The reference electrode experiences 

virtually zero current flow so is at a fixed potential. As mentioned in section 2.1.1.2, 

the potential between the reference electrode and the working electrode is varied and 

the current response monitored (using a counter electrode).

The internationally accepted zero-potential reference electrode is the standard or 

normal hydrogen electrode (SHE or NHE), consisting of a Pt electrode in contact with 

hydrogen gas in a strong acid solution, where all the redox active components are at 

unit activity (unit fugacity for Ho <g)). This electrode is seldom used experimentally, 

since the experimental setup is not very convenient. Therefore, electrode potentials 

are commonly quoted against a more practical reference electrode, e.g. the reversible 

hydrogen electrode (RHE). The RHE consists o f platinised Pt in contact with H2 at 

unit fugacity and can be used in contact with the given electrolyte, giving a potential 

just a few mV removed from the SHE in 0.1 M acidic solution.

Numerous reference electrodes have been produced, one o f the most common being 

the saturated calomel electrode (SCE) which consists o f Hg in contact with a paste o f 

Hg2 Cb (calomel) and saturated KC1 solution (-0.241 V vs. SHE).

Another widely used reference electrode is the silver/silver chloride electrode which 

consists o f a Ag wire in contact with AgCl in a KC1 or NaCl solution. Depending on 

the concentration of the KC1 and the temperature, the potential o f the Ag/AgCl 

reference electrode can change, though by definition, it will stay constant throughout 

an experiment assuming KC1 concentration and temperature remain constant.

This project initially used the Ag/AgCl electrode (-0.197 V vs. SHE) but changed to 

the Pd/H reference for reasons which will be discussed in Chapter 5. The Pd/H 

reference is a Pd wire which is heated in a Bunsen flame for cleaning purposes and
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held in a stream of H2 in order for hydrogen to absorb within the metal crystal lattice 

to give the (3-phase of Pd which gives rise to a constant potential of ~ 0.06 V vs. SHE.

2.5 The electrical double layer

The electrical double layer arises from the capacitative nature of the electrode­

electrolyte interface. It depends on electrode roughness, electrode material and the 

nature of the electrolyte. It is not fully understood on an atomic level, though there 

have been numerous models proposed regarding the distribution of molecules and 

ions at the electrode-electrolyte interface and the effects of electric field on the 

molecular arrangement. Some of the most prominent of these proposals are described 

here.

2.5.1 The Helmholtz model

The first model of the electrode-electrolyte interface was that proposed by 

Helmholtz1521. The Helmholtz model assumes that an electrode in an aqueous 

electrolyte may be represented as two sheets of charge; that of the charged electrode,

with the counter charge from the solution residing at the surface, hence the term

“double layer”. This model is equivalent to a parallel plate capacitor, following the 

relationship^’1:

cr = ^ V  (2.5.1)
d

Where a is the stored charge density in C cm' , V is the potential drop between the 

plates in V, e is the dielectric constant of the medium (dimensionless), eols the
o ^ l  1permittivity of free space, equal to 8.854 x 10’ C N’ cm' and d  is the distance 

between the “plates” in cm. The differential of charge density with potential gives the 

capacitance of the surface, from the equation1’1:

—  = c „ = ^  (2.5.2)
8V H d
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Thus, this model predicts that capacitance is constant and independent of potential.

A schematic diagram of the Helmholtz model is shown in fig. 2.5.1 along with the 

corresponding potential profile with respect to the distance from the electrode surface, 

showing that the potential change between the metal and electrolyte is linear.

* j

~ 5  A
(a)

BULK
SOLUTION

~ 5 A DISTANCE

(b)
Fig. 2.5.1 (a) Diagram o f Helmholtz model o f electrode-electrolyte interface and (b) the potential 

profile of the region close to the interface, where Ai is the potential o f the metal and (jk, the potential of

the solution.

2.5.2 The Gouy-Chapman model

Gouy and Chapman expanded upon the Helmholtz model as flaws had been 

observed1'1. It had been shown that double layer capacitance was not linear as a 

function of potential at low electrolyte concentrations. Hence the pure parallel plate 

capacitor model was not sufficiently robust to account for all capacitative behaviour. 

Gouy and Chapman independently proposed very similar models of the double
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layer153, 54]. Their statistical mechanical approach implied that the excess charge 

density would decrease exponentially from the electrode-electrolyte interface to the 

bulk solution, forming a diffuse layer as opposed to the rigid layer model adopted by 

Helmholtz11]. The diffuse layer arises from a compromise between the applied 

electric field forcing the ions in solution (which are assumed to be point charges) to 

the electrode surface and the natural thermal randomisation of the ions within the 

solution. A schematic diagram of the model and the potential profile are shown in fig. 

2.5.2.
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Fig. 2.5.2 (a) Diagram o f the Gouy-Chapman model o f electrode-electrolyte interface, where [+] and [- 

] represent the concentrations o f positively and negatively charged ions in solution respectively and (b) 

the potential profile o f the region close to the interface. This potential follows an exponential decay 

curve as a function o f distance away from the electrode.
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2.5.3 The Stern model

The Gouy-Chapman double layer model was imperfect as it only applied well to 

potentials near the potential o f zero charge (PZC) (i.e. the potential at which there is 

no excess charge on the electrode surface) and for electrolytes of very low 

concentration (<0.001 M). The model breaks down due to the assumption that the 

ions in the solution may be considered as point charges^11. Gouy and Chapman’s 

assumption implies that at high surface charges on the electrode or at relatively high 

concentrations the separation between the solution and the electrode charges can 

approach zero. However, ions with a finite size cannot approach the surface any 

closer than their ionic radius.

The Stem model combines elements o f both the Helmholtz and Gouy-Chapman 

models. Stem suggested that ions o f a finite size would form a rigid layer in contact 

with the electrode, whilst a diffuse layer between this region and the bulk solution 

was also present (fig. 2.5.3)[1' 55l  The Stem model can therefore be represented as 

two capacitors connected in series to give a total capacitance (where the smallest term 

will dominate the overall capacitance), Ct, given by the equation[l]:

1 1 1—  —----- 1-----  (2.5.3)
C C CT  ^  H D

where Ch is the capacitance o f the Helmholtz layer and Co is the capacitance o f the 

diffuse layer. Thus, at potentials near the PZC and at low solution concentrations, 

where the Guoy-Chapman model is obeyed, the diffuse layer capacitance will 

dominate, but for other conditions, the total capacitance will be dominated by the 

Helmholtz layer capacitance.
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Fig. 2.5.3 (a) Diagram o f the Stem model o f electrode-electrolyte interface and (b) the potential profile

o f the region close to the interface.

2 .5 .4  T h e G ra h a m e m od el

The Grahame model added further to the Stem model by the inclusion of a term for 

specific adsorption, i.e. adsorption o f ions at an electrode surface over and above the 

number expected based on purely electrostatic considerations. Grahame suggests that 

such ions could come closer to the electrode surface than the Helmholtz layer by 

shedding their solvation shell and becoming specifically adsorbed^. Specific 

interactions are short-range in nature and the specifically adsorbed ions are tightly 

bound to the electrode surface[l]. Ions with the opposite charge to the electrode 

become specifically adsorbed, showing that the interaction must be greater than any
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Coulombic force^57̂ . This suggestion led to the Helmholtz layer being modelled as 

two separate regions (i) the inner Helmholtz plane (IHP), which covers the region 

between the electrode surface and the loci o f the centres of the specifically adsorbed 

ions and (ii) the outer Helmholtz plane (OHP), which is the region between the IHP 

and the loci o f the centres of the non-specifically adsorbed ions (i.e. solvated ions)[ll  

Thus, there are three distinct regions in the Grahame model, the IHP, the OHP and the 

diffuse layer. The IHP may also contain solvent molecules, particularly at low 

electrolyte concentrations and at low surface charges^11.

The potential profile increases linearly in the IHP, decreases linearly in the OHP and 

decreases exponentially in the diffuse layer; this is shown along with a schematic 

diagram of the model in fig. 2.5.4.
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Fig. 2.5.4 (a) Diagram o f the Grahame model o f electrode-electrolyte interface and (b) the potential
profile o f the region close to the interface.
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2.6 Growth modes of deposited metal layers

When metals are deposited onto solid surfaces, they may adopt different structures 

depending on the deposition conditions. There are three main types of growth mode, 

first classified by Ernst Bauer[581, (i) Frank and Van der Merwe. (ii) Stranski- 

Krastanov and (iii) Volmer and Weber.

The Frank and Van der Merwe (FM) growth model describes the deposited metal 

growing in distinct monolayers, such that when there is a complete monolayer 

coverage, the second layer may commence growing on top of the first layer. The 

third layer may then grow when the second layer is complete and so on[59 60].

The Stranski-Krastanov (SK) model consists initially of the formation of a small 

number of monolayers o f the deposited metal, followed by the growth of three- 

dimensional islands o f the metal on top o f the uppermost completed layer161 \

The Volmer and Weber (VW) model is described by islands of the deposited metal 

forming directly on the substrate surface, without the formation of monolayers1621. 

These three models are shown schematically in fig. 2.6.1.

The determination o f which growth mode will be prevalent arises from the 

comparison of the instability free energy of the film, yp/s + yi (which is the sum of the 

surface free energy of the growing film, yp/s and the interfacial energy between the 

film and the substrate, yi) with the surface free energy of the substrate, ys. FM growth 

takes place when (yp/s + yi) < /s throughout the deposition process, which leads to 

layer by layer growth. VW growth (or three-dimensional growth) occurs when the 

surface energies are in the opposite sense to that for FM growth, i.e. (y^s + yi) > ys at 

all stages o f metal deposition. SK growth occurs when a specific combination of the 

energy is obeyed, such that (yp/s + yi) < ys must hold for a number of monolayers (FM 

growth) followed subsequently by (yp/s + yi) > ys (VW growth). The Bauer 

classification relies solely on a thermodynamic interpretation of growth, with growing 

films and substrates being in constant equilibrium with each other and the gas phase at 

all times. However, kinetics o f the growth can also play a significant role.

64



Fig. 2.6.1 Schematic diagram showing the three main growth modes associated with thin film metal 

deposition onto a metal substrate (a) FM growth (b) SK growth (c) VW growth. It should be noted that 

each of these growth modes ignore any kinetic processes that may also be occurring during metal

deposition.

2.7 Adsorption isotherms

The process of adsorption may be described as

(i) associative, whereby a gas-phase molecule will adsorb onto a surface 

without fragmentation or

(ii) dissociative, where molecular fragmentation does occur.

Langmuir developed models for both processes in terms o f the fractional adsorbate 

coverage, 6, where:



where NA is the number of adsorbate molecules and N  is the total number of available 

adsorption sites. When 0 = 1, the surface coverage is one monolayer. Langmuir 

made some simplifying assumptions in order to develop these models[47J

(i) The solid surface is uniform and contains a number of equivalent sites which 

each support one adsorbate molecule.

(ii) A dynamic equilibrium exists between the gas (at pressure, P) and the 

adsorbate layer at constant temperature.

(iii) Gas-phase adsorbate molecules continually collide with the surface. If they 

impact a vacant site they will adsorb, if  they hit a filled site, they will be 

deflected back into the gas-phase.

(iv) Once adsorbed, the adsorbate molecules are fixed in position and do not 

interact with each other. Hence the energy o f adsorption o f each site will be 

the same, irrespective o f coverage.

So, for associative adsorption, the dynamic equilibrium exists as[47]:

M lti+ S + + M - S  (2.7.2)
'̂d

where M  is an adsorbate molecule, S  is a surface site, kd and kd are the adsorption and 

desorption rate constants respectively, giving, at pressure, P:

and

hence, at equilibrium:

rearrangement gives:

where:

rate o f adsorption = kdP( 1 -0)

rate o f desorption = kd0

kdP(\-0) = kd6

0  = KP - N a
1 + KP N

k.,

(2.7.3)

(2.7.4)

(2.7.5)

(2.7.6)

(2.7.7)

Equation (2.7.6) is the Langmuir adsorption isotherm for associative adsorption 

processes and is often written in the form:
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Q ka „  =  P
(1 - 0 )  k d

(2.7.8)

The gas-phase Langmuir isotherm may be adapted to electrochemical systems. 

Pressure, P, is replaced by the concentration o f the aqueous oxidised species, C* / t , 

from the equilibrium:

This leads to:

M  (aq) +  Z C  * +  M  (ads)

( 1 - 0 )  * d

(2.7.9)

(2.7.10)

Also, for an electrochemical system, the adsorption constant, K, is potential dependent 

since the adsorption reaction involves a transfer o f charge across the metal-electrolyte 

interface. For a reaction taking place with a complete charge transfer, i.e. the 

formation o f a neutral adatom at the electrode surface, the Gibbs energy o f adsorption 

AG(ads) is given by:

* G ^ , = * G ^ + n F E  (2.7.11)

where E  is the electrode potential and AG“ds) is the Gibbs energy of adsorption in the 

absence o f an electric field. Hence, AG"ds) represents the chemical potential of

species M  and nFE  represents the electrochemical potential of M  z+. The adsorption 

constant may then be expressed as:

K  = —  = exp 
k A

- A G (ads)

RJ
(2.7.12)

From equation (2.7.11):

K = —  = exp

At constant temperature:

R J
exp

- A G (ads)

R J

'N f -  nFE 
exp --------

I RJ
(2.7 A3)

exp
- A G A

(ads)

RJ
= constant = K (2.7.14)

Combination o f equations (2.7.13) and (2.7.14) into equation (2.7.10) gives the 

Langmuir adsorption isotherm for an electrochemical system:
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e
— K  exp

-n F E
C (2.7.15)

( 1 - 0 )  ‘ I R T  , 

where K' is the adsorption equilibrium constant in the absence of an electric field

An extended version o f the Langmuir isotherm is the Frumkin isotherm, in which 

adsorbed molecules on the surface may interact with other species and can affect the 

further adsorption o f other molecules by attractive or repulsive interactions^631.

0

where exp

(1- 0 ) 

r

exp
(  (

■^int
V V

6 - -

2
= K exp f - n F E "  

RJ  j
cM'- (2.7.16)

A J O - is the van der Waals term for adlayer interactions, with A mi
J)

representing the magnitude o f the attractive (- A-mt) and repulsive interactions (+ A ml).

The BET isotherm (Brunauer, Emmett and Teller) is another variation on the 

Langmuir isotherm as it allows for the adsorption o f more than one monolayer of 

adsorbate, assuming the second layer adsorbs on top of the first completed monolayer 

and the third on top o f the second etc[471. It takes the form:

P _  1 ( 0 - 1 )  P
N S(P0 - P )  ~ NB NB PQ

(2.7.17)

where Po is the saturated vapour pressure o f the adsorbate and

/
B * exp

R, T
(2.7.18)

where A//" is the standard enthalpy o f desorption (equal to the negative enthalpy of 

adsorption) and AH" is the standard heat o f vaporisation of the adsorbate.
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2.8 Types of adsorption

Adsorptive/desorptive processes in electrochemistry are called non-Faradaic 

processes. They involve the charging o f the electrode/electrolyte interface structure 

(though no charge is transferred) at potentials where no charge-transfer reactions 

occur (though external currents may flow due to changes in potential, electrode area 

or solution composition). An example o f a non-Faradaic process is the charging of 

the electrical double layer (see section 2.5). Faradaic processes are electrochemical 

processes which obey Faraday’s law, i.e. when the charge transfer involved is related 

to electrons (or charged particles) transferring across the metal-solution interface 

(causing oxidation or reduction to occur) into the bulk electrolyte. The extent of the 

resultant reaction is proportional to the applied electrical power. Both Faradaic and 

non-Faradaic processes occur when the electrode reaction takes place.

There are two distinct types o f adsorptive bonding at a surface, chemisorption and 

physisorption.

Chemisorption involves the exchange o f electrons between adsorbate and substrate 

forming chemical bonds which are relatively strong compared to physisorptive 

interactions. The adsorbate molecule bonds to the surface such that the coordination 

number is maximised with respect to the substrate. The chemical bonding can be 

associative, where a molecule is adsorbed from the gas phase without fragmentation, 

or dissociative where the adsorbate molecule breaks apart before the fragments 

chemisorb to the surface.

In comparison to chemisorption, physisorption is very weak and is associated with 

Van der Waals type interactions between molecules, arising from a redistribution of 

charge within the adsorbate and the adsorbent. The enthalpy of adsorption, A //a°ds, for

physisorption is generally between -2 and -30 kJ mol' 1 compared to that of 

chemisorption which is usually more negative than -35 kJ m o l1.
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Chapter 3 
Experimental

3.1 Rotating disc electrode experiments

3.1.1 Hydrogen oxidation on Pt

Rotating disc electrode (RDE) hydrogen oxidation experiments were performed on 

polycrystalline Pt in 0.1 M HCIO4 (Analar) and 0.05 M H2 SO4 (Analar).

The experiments were performed using a polycrystalline Pt working electrode (BAS, 

3 mm diameter Pt rod encased in Nylon) in a three-electrode cell, with a Pt counter 

electrode and a Ag/AgCl in 3 M NaCl reference electrode (BAS, +0.262 V vs. RHE in 

0 .1 M HCIO4, +0.292 V vs. RHE in 0.05 M H2SO4, though the potential varied with 

concentration, all potentials quoted are converted to Pd/H or RHE where appropriate). 

A BAS standard cell (25ml) was used in conjunction with a BAS RDE-2 cell stand. 

The data was recorded using a BAS CV-50W potentiostat, which was connected to a 

PC running BAS 100W software. Fig 3.1.1 shows the rotating disc electrode 

apparatus used for these tests.

The working electrode was polished by hand using increasingly fine grade diamond 

paste (15 pm, 6  pm, 3 pm, 1 pm) until a mirror finish was achieved, it was rinsed 

with nanopure deionised water before each experiment.

Electrochemical cells were cleaned by washing with detergent and soaking in a 

mixture of 2 : 1  concentrated nitric acidiconcentrated hydrochloric acid for 

approximately 2  hours to remove organic contaminants before rinsing with deionised 

water and drying in an oven (this cleaning procedure was abandoned when the project 

moved to single crystal work which is even more sensitive to contaminants as this 

treatment did not clean the glassware satisfactorily).
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Fig 3.1.1 Rotating Disc Electrode apparatus.

The experimental setup described above (shown in fig. 3.1.1) was used with aqueous 

0.1 M HCIO4 (Analar) as the electrolyte, purged with hydrogen and kept under a 

hydrogen atmosphere (blanket coverage o f the solution, BOC gases 99.995%). A salt 

bridge was placed between the solution and the reference electrode to counteract any 

leaching o f ions from the reference electrode into the electrolyte. The potential o f the 

working electrode, relative to the reference, was swept in a positive direction (from 

-0.262 to -0.162 V vs. Ag/AgCl) from the rest potential (open circuit potential) to
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study H2 oxidation on the working electrode, for comparison with literature results^. 

Cyclic voltammograms (CVs) o f the Pt surface were recorded after each RDE 

measurement to verify that the electrode surface had not been physically affected by 

the experiment. Current versus voltage (/-£) curves were taken for rotation rates 

between 500 - 4000 rpm at 500 rpm intervals. The experiment was repeated with 0.05 

M H2 SO4 as an electrolyte.

3.1.2 Hydrogen evolution

Hydrogen evolution tests were performed in 0.1 M H2SO4 using the same 

experimental configuration and techniques as described in section 3.1.1, with a 

negative-going potential sweep (from -  0.292 to -  0.492 V vs. Ag/AgCl). The 

electrode surfaces investigated were polished polycrystalline Pt (BAS, 3 mm diameter 

Pt rod encased in Nylon), polished polycrystalline Ir (workshop constructed, 3mm 

diameter Ir rod encased in Nylon) and Ru (electroplated onto the polished 

polycrystalline Pt electrode previously mentioned).

3.1.2.1 Electroplating Ru

A layer o f Ru was successfully electroplated onto a polycrystalline Pt electrode. A 

plating bath (provided by Johnson-Matthey PLC) consisting of 10 g I 1 Ru from 

K3[RU2IVNC18(H2 0 )2] (30.53% Ru) and 10 g l' 1 H C0 2NH4 dissolved in Millipure®

H20  was used^ . The solution was heated to 70 °C and the pH adjusted to 1.3 using
— 1

0.5 M HC1, before a current o f 6.219 mA cm “ was passed through a Pt electrode for 

approximately 1 hour using Pt as a counter electrode. A complete surface coverage of 

Ru was achieved, which showed no visible defects under x 3 magnification. Attempts 

were also made to electroplate Ru onto Ni, Ti, Au and glassy carbon, in order to find a 

more inexpensive substrate electrode material. These attempts, however, proved 

unsuccessful as the deposited Ru layers either did not cover the substrate surface 

completely or they were insufficiently robust when rotated in RDE experiments.
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3.2 Multi-Frequency AC Voltammetry (MFACV)

Multi-Frequency AC Voltammetry was performed using a three-electrode cell 

consisting of a working electrode (made from the metal under investigation), a 

reference electrode (Ag/AgCl in 3 M NaCl (BAS)) and a Pt counter electrode. The 

experiments were run in a BAS standard (25ml) cell on a BAS cell stand (see fig. 

3.1.1), connected to a Solartron 1286, which was connected to a PC running Labview 

5 software and a NI PCI-MOI-1-1E multifunction input output card with two digital- 

analogue converters as is shown in fig. 3.2.1.

0

DAC
1

PC

0

ADC
2

Summing
Amplifier

-► Attenuator J

Vir

Solartron
1286

■out

V,out

Fig. 3.2.1 Schematic diagram o f Multi-Frequency AC Voltammetry apparatus.

MFACV was performed on a polished, polycrystalline Pt electrode (3 mm diameter 

rod encased in Nylon) in 0.05 M H2 SO4 , under N2 atmosphere. The DC potential was 

swept from 0.30 to -0.38 V vs. Ag/AgCl at -0.00125 V s '1. The sweep rate was not 

controlled directly but by two separate parameters; the number of potential steps and 

sample time. The input parameters gave a resulting sweep rate of 0.005 V every 4 s 

(i.e. the DC potential varied in 0.005 V increments every 4 s). AC frequencies 

applied were between -  1 — 100 Hz with amplitude of -  2 mV. A frequency o f 1.71 

Hz was used as the base frequency in order that multiples of this frequency (which 

comprised the applied AC signal) did not correspond to electrical noise frequencies, 

which would interfere with the results. Variations on the above setup were employed 

for further investigation o f the Pt surface; 0.25 M H2 SO4 was used as an electrolyte to 

investigate the effect o f H+ ion concentration on HER. N2 and H2 were used to degas 

the system to investigate effects o f overpressure o f different gases on HER. Also tests 

were performed at various rotation rates (0 -  5000 rpm) and temperatures (5 -  45 °C).

76



3.3 Single crystal cyclic voltammetry

CV and MFACV tests were performed on basal plane single crystal surfaces and 

various stepped single crystal surfaces. In the latter case the effect of {111} steps on 

{100} terraces and o f {100} steps on {111} terraces during HER was studied. Hence, 

the surfaces along one side o f the stereographic triangle (from the {1 1 1 } pole to the 

{100) pole) were studied in order to investigate the dependence of HER on single 

crystal surface structure. The manufacturing process for these single crystal 

electrodes is described in section 3.4.

All tests were performed in a customised three-electrode cell (fig. 3.3.1) with a Pt 

mesh counter electrode and a Pd/H reference electrode (+0.060 V vs. RHE). The cell 

was designed such that an overpressure o f gas could be used to expel air from the 

system. This feature was extremely useful for single crystal results as it kept out 

airborne contaminants.

The Pd/H reference electrode had to be charged at the beginning of each day. This 

involved heating the Pd wire in a Bunsen flame (to eliminate contaminants) and 

partially submerging it in water in a cell with H2 bubbling through it for 30 minutes 

(through gas inlet 1, see fig. 3.3.1). The Pd would absorb the hydrogen and hold its 

charge (and therefore its potential) for up to 1 0  hours.

Electrolytes were prepared in clean glassware using Aristar grade sulphuric acid and 

ultra-pure water.

The cell was degassed by bubbling with N2 before each experiment (BOC gases 

(99.999%) through gas inlet 3, see Fig. 3.3.1) to expel oxygen or other airborne 

contaminants and held under a N2 overpressure throughout (gas inlet 2 ).

CV data were recorded using a BAS C3 cell stand connected to a BAS 100 B 

potentiostat, which was, in turn, connected to a compatible PC with BAS 100 W 

software. The applied potential waveform is shown in fig. 3.3.2.
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Fig. 3.3.1 Diagram o f electrochemical ceil used for single crystal measurements.
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Fig. 3.3.2 Potential waveform for CV and HER experiments on Pt single crystals.
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Before each CV was taken, single crystal electrodes were cleaned by flame annealing 

(in a Bunsen tlame), cooled in H2 and protected with a droplet of ultra-pure water 

(18.2 Mf2 cm resistivity from Millipore Milli-RO/Milli-Q purifying system) to 

prevent contamination before immersion into the electrochemical cell, as described 

elsewhere131. It has been shown that this procedure gives rise to surface topographies 

reasonably close to the nominal ones14- 51

MFACV experiments were performed as described in section 3.2, but with the 

electrochemical cell apparatus depicted in fig. 3.3.1. The DC potential was swept 

from 0.1 to -0.19 V vs. Pd/H in 0.1 M H2 S 0 4 electrolyte.

All glassware (including electrochemical cells, volumetric flasks, gas bubblers and 

associated stoppers) was cleaned by rinsing multiple times (generally 1 0  times) and 

soaking overnight in “green acid" (concentrated H2 SO4 with a small amount of 

potassium permanganate dissolved into it, until apple green) to remove any organic 

contaminants. The glassware was again repeatedly rinsed with ultra-pure water, then 

large items (electrochemical cells and gas bubblers) were supported over a clean 

conical flask containing boiling ultra-pure water and steam-cleaned by the stream of 

steam produced (for 30 minutes). The steam-cleaning process was followed by 

further rinsing with ultra-pure water. Conical flasks and beakers were filled lA full 

with ultra-pure water, placed on a hotplate and the water was boiled for 30 minutes 

producing a flow o f steam to clean the glass. They were then rinsed repeatedly with 

ultra-pure water. Small items such as stoppers and holders were submerged in boiling 

ultra-pure water in a clean beaker for 30 minutes, then rinsed thoroughly with ultra- 

pure water.

If the steam-cleaning/boiling process did not clean sufficiently, and there were still 

organic contaminants present, the glassware was soaked overnight in 3 M NaOH to 

etch the glass, before rinsing and steam cleaning as above.

The Pt wire connection for the working electrode was heated in a flame to remove 

organic contaminants and the glass capillary holder which supports the wire was 

thoroughly dried to avoid interference o f electrical signals due to contact between the 

wire and water trapped in the glass capillary. Similarly the reference electrode and 

counter electrode connections were also dried.
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3.4 P re p a ra tio n  o f single c ry s ta l e lec trodes

Single crystal electrodes were prepared using the Clavilier bead method[6] . A small 

amount of Pt wire (5 cm, 0.2 mm diameter, 99.999% purity, Goodfellow Metals Ltd) 

was melted without vibration to form a molten bead and cooled slowly and steadily to 

form a single crystal (as described in section 2.2.6). The bead was then placed in a 

goniometer cradle on an optical bench (fig. 3.4.1) and aligned using a He-Ne Laser to 

determine the positions of the single crystal facets and calculate the angle required to 

achieve the desired surface orientation.

The single crystal bead of an fee metal (Pt, Pd, Ag, and Au among others) may be 

oriented so that it may be cut to expose a specific single crystalline surface based on 

the diffraction o f He-Ne laser light by the {111} and {100} facets. The {111} and 

{1 0 0 } facets produced characteristic diffraction patterns which were used to orient the 

crystal bead to the desired cutting angle.

G ON IOM ETER HEAD FOR 
HOLDING AND ALIGNING 

CRYSTALS

He-Ne LASER WITH

FOCUSING LEN POLISHING W HEEL

P-ANGLE 
ROTATION

Fig. 3.4.1 The optical bench used for the manufacture o f single crystal bead electrodes.

80



Measurement of the angles between the {111} and {100} diffraction patterns from 

surface crystal facets is also a useful tool in determining whether the bead is single 

crystalline or not. Fig. 3.4.2 is a schematic diagram showing the diffraction patterns 

from the facets on a single crystal bead and the angles between them. The diffraction 

from the {1 1 1 } facets will appear as a set of sharp, concentric rings, whereas those of 

the {100} facets will be a similar shape but rather more diffuse (see fig. 3.4.2). Due 

to these reflections, the fee {1 1 1 } and {1 0 0 } surfaces are the simplest to manufacture 

using the Clavilier method. For other orientations, the appropriate angle for polishing 

must be calculated from the geometry of the crystal structure.

{111} * ► {100} * ► {111}* ► {111}
54 ° 45 ’ 54 ° 45 ’ 70 ° 33 ’

(no diffraction pattern)

35° 1 7 ’ 35° 1 7 ’

Fig. 3.4.2 Schematic representation o f diffraction patterns produced by {111} and {100} planes from a 

single crystalline fee bead. When aligned correctly, these facets will appear in the same plane of 

rotation, with the corresponding angles between them.

The crystal was set into position with epoxy resin. A grinding/polishing wheel, 

positioned perpendicular to the optical bench was used to grind the crystal bead to a 

hemispherical shape using carborundum paper with grades of decreasing roughness 

(600 grit ~1 hour, 1200 grit ~1 hour, and 2400 grit ~ 2 hours) with ultra-pure water as 

a lubricant. Once the hemisphere was reached, the crystal was polished to a mirror 

finish using the same polishing wheel, but with nylon polishing pads coated with fine 

grade diamond paste (3 pm ~2 hours, 1 pm ~2 hours and XA pm ~1 hour) using ethanol 

based lubricants. The remaining epoxy resin was removed by soaking overnight in 

dichloromethane. Once removed from the epoxy resin, the single crystal was heated
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for two hours in a blue Bunsen flame in order to anneal the surface and remove 

impurities.

3.5 Deposition of metal films onto Pt single crystals

Metal films (Pd, Au, Rh, Ru, Ir) were deposited onto Pt electrodes. All of the metals 

were deposited from dilute chloride solutions -1 0 ' 6 mol dm ' 3 (K^PdCU, HAuCU, 

R hC f, R uC f and I-TIrC^ respectively) (Johnson Matthey).

Droplets o f Pd, Rh and Ru solutions were attached to a Pt electrode in a stream of 

hydrogen to chemically deposit the metal from its ions following the general reaction:

Pt + M/+(aq) + Z/2 H2 (g) —> Pt- M (adsorbed) + Z H+ (aq) (3.5.1)

Films o f Pd, Au and Rh could then be annealed by gentle heating in a Bunsen flame 

followed by cooling in hydrogen to give well ordered surfaces analogous to a single 

crystal o f the deposited metal. This forced deposition procedure for preparing well- 

defined films has been reported previously171. These metal films could also form 

alloys with the Pt substrate under certain heating conditions.

Ru films were less easily annealed as volatile RuC>2 was readily formed in a Bunsen 

flame. Instead, the Ru film on Pt was resistively heated under nitrogen atmosphere by 

passing currents up to -1 0  A through the electrode for -2 0  s (enough to make the 

crystal bead glow orange).

Ir did not readily deposit onto Pt by hydrogen reduction and had to be “flash” 

reduced. The “flash" reducing method involves a droplet o f the Ir solution being held 

on the Pt bead and evaporated quickly in a Bunsen flame to leave just the metal on the 

surface, followed by cooling in hydrogen. Bi was irreversibly deposited onto Pt 

electrodes by immersing the Pt electrode into a dilute Bi(NC>3) solution.
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3.6 CO and the hanging-meniscus and submerged-bead electrode 

configurations

In order to eliminate edge effects from crystal beads in the hanging meniscus 

conformation the following technique was employed. The crystal bead was flame 

annealed and cooled in hydrogen. A cyclic voltammogram of the surface was then 

taken in the hanging meniscus configuration to confirm the surface structure and 

system cleanliness. When a good quality surface had been achieved, the crystal bead 

was placed in a stream of CO which adsorbed strongly to the surface and tended not 

to interfere with surface structure. The bead was then transferred to the 

electrochemical cell and connected to the electrolyte with a hanging meniscus contact. 

A cyclic voltammogram was taken (0 -  0.85 V vs. Pd/H). The first (positive) 

potential sweep o f this voltammogram would electrochemically remove CO from the 

electrode surface in contact with the electrolyte as CO is readily oxidised from Pt by 

electrochemically sweeping to moderately positive potentials (it starts to desorb from 

the surface at 0.4 V vs. Pd/H and is completely removed by 0.8 V vs. Pd/H). 

However, the CO on the hemisphere o f the bead (not in contact with the electrolyte) 

was not affected. Subsequent potential sweeps would then give cyclic 

voltammograms o f the Pt surface in the hanging meniscus configuration. If these did 

not match those o f the flame annealed surface, the results were discarded and the 

experiment repeated.

The crystal electrode was kept under potential control (~ 0.001 V vs. Pd/H, low 

enough that CO would not be oxidised) and partially submerged into the electrolyte, 

such that the crystal edges were no longer in a hanging meniscus conformation (see 

fig. 3.6.1). Cyclic voltammograms were again taken (but only between 0 -  0.35 V vs. 

Pd/H so that no further CO was removed from the submerged bead surface) to 

confirm the surface had not changed and that the hemisphere of the electrode was still 

coated with CO. Hence the voltammogram showed no contributions from the 

hemisphere o f the bead and matched the equivalent section o f the voltammogram for 

the flame annealed crystal surface. If the voltammogram had changed, the result 

would be discarded and the experiment would be reattempted.

83



MFACV tests were then attempted on these partially submerged surfaces but, due to 

the length of time required to run each experiment, the CO would be displaced from 

the surface, hence the cyclic voltammetry was different at the start and the end of the 

experiment, rendering the results null and void.

However, it was possible to carry out DC tests as they have a much shorter 

experimental timescale. Linear sweep voltammograms were taken at steady state, 

sweeping negative into the hydrogen evolution region (between 0.1 and -0.1 V vs. 

Pd/H). The LSVs were performed firstly on the clean, flame annealed crystal surface 

in the hanging meniscus configuration, then, after the CO had been removed from the 

flat crystal surface in the hanging meniscus configuration followed by another on the 

partially submerged bead (still with CO on the bead hemisphere). Cyclic 

voltammograms were taken before and after each of these linear sweeps in order to 

ensure that the surface was not changing throughout the course of the experiment. If 

the CVs were different at any stage of the experiment, the result would be discarded.

Hanging m eniscus

CO adsorbed on surface

CO stripped from surface

Submerged bead

Fig. 3.6.1 schematic diagram to show the steps involved in CO coating experiments to eliminate crystal

bead edge effects.
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Chapter 4 
Results

4.1 Hydrogen evolution and hydrogen oxidation on polycrystalline Pt

4.1.1 Hydrogen electro-oxidation on poly crystalline Pt

Rotating disc electrode (RDE) hydrogen oxidation experiments were performed on 

polycrystalline Pt in 0.1 M HCIO4 and 0.05 M H2SO4. The Pt electrode gave rise to 

exchange current densities, jo, o f 2.45 and 0.89 mA cm ' 2 in 0.1 M HCIO4 and 0.05 M 

H2SO4 respectively, with transfer coefficients, «, o f 0.65 and 0.68. The standard rate 

constants, k°, for the perchloric and sulphuric acid electrolytes were found to be 2.46 

x 10-4 and 1.10 x 1 O' 4  cm s ' 1 respectively.

4.1.1.1 HOR on Pt in 0.1 M HCIO4

Rotating disc electrode experiments were performed as described in section 3.1.1, 

using 0.1 M HCIO4 as the electrolyte. The electrolyte was purged with hydrogen and 

kept under a hydrogen atmosphere (blanket coverage o f the solution). Cyclic 

voltammograms (CVs) o f the Pt surface were recorded between each rotating disk 

measurement (fig. 4.1.1). Current versus voltage (l-E) curves were taken for rotation 

rates between 500 - 4000 rpm at 500 rpm intervals (fig. 4.1.2).
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 '----1----'----1----  1----1----1----'--- 1----'----1— '— I— 1— I— '— I
-0 .2  0 .0  0 .2  0 .4  0 .6  0 .8  1 .0  1.2 1.4 1.6

Potential/ V vs. Pd/H

Fig. 4.1.1 CVs o f Pt in 0.1 M HC104  under a hydrogen atmosphere taken before and after RDE 

experiments. Potential sweep rate 0.1 V s'1. Pd/H reference electrode.
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Fig. 4.1.2 Rotating disc electrode data for Pt in 0.1 M HC104, for rotation rates between 500 - 4000

rpm.
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A modified version o f the Koutecky-Levich equation was used to analyse the data in 

the same manner as in published work from Maruyama et

j  (b ~  1) j k 0.62 n F D ^ c y 1 V
ni-
R T 1where b = e * , j  is the measured current density, j \  the current density in the

absence o f mass transport effects, n is the number o f electrons transferred in the 

reaction (2 in this case) F  is the Faraday constant, 9.649 x 104 C m o l1, D0 is the 

diffusion coefficient for the system, C* is the bulk concentration of the oxidised

species in solution (H 2 in this case), y is kinematic viscosity in cm2 s '1, co is the 

frequency o f rotation o f the electrode, Rg is the universal gas constant, 8.314 J mol' 1 

K '1, T is the temperature in Kelvin and t] is the overpotential.
| '•y

A graph o f 1 !j versus Mco ~ was plotted (fig. 4.1.3 (a)) and a value of found from 

the Mj axis intercept for each rotation rate.

The general Koutecky-Levich equation for rotating disk electrodes is[2]:

— ~ -----1----------------—*—TT—TT (4.1.2)j  a  0.620n F D ^ C y \ o xl

However, this equation assumes that the forward reaction is much faster than the 

reverse reaction, which is not true in the case o f anodic hydrogen oxidation at low 

overpotentials, leading to the extra factor o f [b/{b-1)] being used in equation (4.1.1). 

The j \  values were then used to find the homogeneous rate constant for the forward 

reaction, from the equations:
r-»/ ’ ! ( \~cr )nh // / ? , / !  /  A 1  *y\

J k = n F k i C o — Joe (4.1.3)

and j {)= n F k{)C*o (4.. 1.4)

In kf was then plotted against overpotential, a/, to find the standard rate constant, k°, 

from the relation:

lnAf = l n r  + (1- Q')”F ,/ (4.1.5)
Rt T

Similarly In /k was plotted against overpotential, //, (fig. 4.1.3 (b)) to find the
'y

exchange current density, jo (taking the active electrode area as 0.265 cm' for the Pt



electrode used, calculated from charge under the cyclic voltammogram assuming a 

charge density of 220 pC cm* for polycrystalline Pt), and transfer coefficient, a, 

using the relation

w here/is F/RgT.

In A  = ln A + 0  -« )« / '? (4.1.6)

8000-

6000-

o  4000-

2000-

0-

0.04

Increasing

overpotential

0.06 0.06 0.10

(Ô /S1'2
0.12

—I—
0.14

(a)

.̂o-

c
-&0-

-5.5-

-6.0
0.02 0.03 0.04 0.05 0.060.00 0.01

Q/erpotential/ V (b)
Fig. 4.1.3 (a) Koutecky-Levich plots at overpotentials between 0 and - 0.1 V and (b) l n v e r s u s  

overpotential for Pt in 0.1 M HCIO4  using Maruyama’s modified version o f  the Koutecky-Levich

equation.
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The results obtained were found to lie in a similar range as those found by Maruyama 

et al.[1J shown in table 4.1.1.

4.1.1.2 Pt in 0.05 M H2S 0 4

The same experimental conditions were used as in section 4.1.1.1, but with 0.05 M 

H2 SO4 as the electrolyte solution instead o f 0.1 M HCIO4 . Similarly, the quantitative 

analysis was the same as that used in section 4.1.1.1, with results shown in table 4.1.1.

0.1 M HCIO4 0.05 M H2S 0 4

Transfer coefficient 0.52 0 . 6 8

Standard Rate constant/ 

cm s' 1

1.26 x \0A 0.79 x 104

Exchange Current 

Density/ mA cm ’2

2.42 0.89

Table 4.1.1 Data for hydrogen oxidation on Pt in 0.1 M HCIO4  and 0.05 M H2 S 0 4.

4.1.2 Hydrogen evolution on Pt-group metal electrodes

4.1.2.1 Hydrogen evolution on Pt in 0.1 M H2S 0 4

The same experimental arrangement as was used in the H2 oxidation experiments was 

used for hydrogen evolution, with the Pt working electrode immersed in 0.1 M 

H2SO4, under a hydrogen atmosphere.

The Koutecky-Levich calculations for HER are slightly different for those of HOR. 

HOR is controlled by the reverse reaction rate as well as hydrogen diffusion whereas

for HER current density, the reverse reaction plays an insignificant role. The

factor[IJ in equation (4.1.1) from the modified Koutecky-Levich equation can 

therefore be neglected for HER analysis, which thus reverts to the original form of the 

equation (equation (4.1.2)).

90

b
(b - .)



Also, as hydrogen evolution is concerned with the opposite branch of the Tafel curve 

compared to hydrogen oxidation, wherever ( 1  - a) is used for hydrogen oxidation

calculations, it is replaced by (-a) for hydrogen evolution calculations. Thus,

equations (4.1.5) and (4.1.6) become (4.1.7) and (4.1.8) respectively.

ln*r = l n * o _ ^ 7  (4.1.7)
RgT

In j k = ln j 0 -  ccnfr] (4.1.8 )

Results of this treatment are shown in fig. 4.1.4, fig. 4.1.5 and table 4.1.2.
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Potential/ V vs. Pd/H

Fig. 4.1.4 Rotating Disk Electrode results for HER on Pt in 0.1 M H2 S 0 4  under hydrogen atmosphere.
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Fig. 4.1.5 Graph of lnj \  versus overpotential for HER on Pt, under hydrogen atmosphere (with best fit

line in black).
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4.1.2.2 Hydrogen evolution on Ir in 0.1 M H2S 0 4

Polycrystalline Ir was used as the working electrode and examined in the same 

manner as Pt described in section 4.1.2.1. Fig. 4.1.6 shows a plot of ln y'k versus 

overpotential. It is linear over the potential range plotted and exchange current 

density, jo, could be estimated from the intercept on the y-axis. The resultant data is 

displayed in table 4.1.2.

-4.0 -|

-4 .5-

-5 .0 -

-5 .5 -c

- 6 .0 -

-6 .5 -

-7.0
-0.08 -0.06 -0.04-0.16 -0 14 - 0.12 -0.10

Overpotential/ V

Fig. 4.1.6 Graph of ln versus overpotential for HER on bulk Ir, under hydrogen atmosphere (with

best fit line in black).

4.1.2.3 Hydrogen evolution on Ru plated on Pt

Attempts were made to electroplate Ru onto Ni, Ti, Au and glassy carbon, in order to 

produce a more cost effective electrode consisting of a layer of electrocatalytic 

material on an inexpensive, less noble metal substrate. These attempts proved 

unsuccessful. However, a layer o f Ru was successfully plated onto Pt. A plating bath 

(provided by Johnson-Matthey Ltd.) consisting of 10 g I- 1  Ru from 

K3[Ru2 ,vNClg(H2 0 )2 ] (30.53% Ru) and 10 g I' 1 HCO2NH4 dissolved in deionised 

H2O (18.2 cm resistivity) was used[3]. The solution was heated to 70°C and the 

pH adjusted to 1.3 using 0.5 M HC1, before 6.219 mA cm was passed through the Pt 

electrode for approximately 1 hour. The Pt electrode was plated with Ru and showed
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no visible defects under 3 x magnification (the cyclic voltammogram of the surface is 

shown, along with those of Ir and Pt, in fig. 4.1.7).

The same experimental procedure was performed on the Ru-plated Pt electrode as 

with the Ir and Pt electrodes. The Ru-plated Pt results gave significantly lower 

exchange current density and standard rate constant values compared to those of Pt 

and Ir. The results are displayed in table 4.1.2.

0.00015-1

0.00010 -

E  0 .00005  - o
<
^  0.00000 - 
c  0)
Q

-0 .00005  -

3
°  - 0 .00010 -

-  Ir
Ru

-0 .0 0 0 1 5 -

0.5 1.0 1.50.0

Potential/ V vs. Pd/H

Fig. 4.1.7 Cyclic voltammograms o f Pt, Ru and Ir in 0.1 M H2 S 0 4.

Pt Ru on Pt Ir

Transfer

Coefficient

0.13 0.17-0.20 0.19

Standard rate 

Constant/ cm s '1

0.94 x lO'4 0.11 -0 .1 3  x 10-4 0.24 x 1 O'4

Exchange Current 

Density/ mA cm'2

1.88 0.24 - 0.27 0.50

Table 4.1.2 Data obtained from hydrogen evolution experiments on Pt, Ir and Ru (plated onto Pt)

surfaces in 0.1 M H2 S 0 4.
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4.2 Multi-Frequency AC Voltammetry

Multi-Frequency AC Voltammetry (MFACV) experiments were performed on a Pt 

electrode in dilute H2SO4. The effects o f a range of system parameters were 

investigated, including the aqueous acidic electrolyte concentration, rotation rate, 

temperature and gaseous atmosphere.

4.2.1 Varying acid strength

MFACV was performed on Pt in 0.05 M and 0.25 M H2SO4, using the same 

experimental apparatus as described in section 3.2, with a DC potential sweep 

between 0.20 and -0.32 V vs. Ag/AgCl for the 0.25 M electrolyte (0.38 and -0.14 V 

vs. Pd/H) and 0.30 to -0.38 V vs. Ag/AgCl for the 0.05 M electrolyte (0.53 to -0.15 V 

vs. Pd/H). The voltammograms in the two electrolytes give very similar shapes when 

plotted on scales normalised to their maximum admittance densities, confirming that 

the reaction is the same in both systems. When plotted on the same absolute scale (as 

shown in fig. 4.2.1) it can be seen that the limiting admittance density is

approximately five times greater in the 0.25 M H2 SO4 electrolyte than in the 0.05 M
1 0  _

solution (1.20 Cl cm' and 0.25 Q' cm' respectively). This figure corresponds

directly to the ratio o f acid concentrations in the two experiments. Note that the AC

frequency ranges for the two tests are different (8 -  180 Hz and 40 -  400 Hz for the

0.05 M and 0.25 M H2S 0 4 electrolytes respectively). However, this will not affect the

frequency-independent magnitude of the limiting admittance density.

▲
A dm ittance
D ensity/
Q '1 cm '2

F requency /

Potential/V  
vs. Pd/H

(a) (b)

Fig. 4.2.1 Multi-Frequency AC Voltammograms ofPt in (a) 0.05M and (b) 0.25M H2 S 0 4.
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4.2.2 V ary in g  th e  H 2 o v e rp re s su re

Multi-frequency AC voltammograms were obtained for Pt using the setup described 

in section 3.2, over an AC frequency range of 40 -  400 Hz. The system used 0.25 M 

H2S 0 4 as the electrolyte, degassed with N2 for the first run and performed under a 

nitrogen atmosphere. The measurement was then repeated with H2 as the background 

gas.

▲
A dm ittance
D ensity/
Q '1 cm '2

F requency /

Potential/V  
vs. Pd/H

Fig. 4.2.

It can be seen from fig. 4.2.2 that the peaks are strongly affected by the hydrogen in 

solution. The frequency independent OPD-H peak around -0.18 V vs. Pd/H is not 

visible with hydrogen atmosphere, implying that the H2 evolution has been suppressed 

by the purging. This may be expected since if there is more hydrogen already in 

solution, further production o f hydrogen would be expected to occur less readily.
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4.2.3 R o ta tin g  D isk M FA C V

Multi-Frequency AC Voltammetry experiments were performed using a rotating Pt 

working electrode in 0.25 M H2SO4 (degassed with N2) over an AC frequency range 

of 8  -  180 Hz. The potential was swept between 0.20 and -0.32 V vs. Ag/AgCl (0.38 

and -0.14 V vs. Pd/H).

It was found that rotating the electrode at 1000 rpm gave a MFACV with significantly 

lower admittance than the same test at a stationary electrode (figs. 4.2.3 (a) and (b)). 

Rotating the electrode at 2000 rpm (fig. 4.2.3 (c)) gave a lower admittance again and 

all subsequent, higher, rotation rates tested (3000 rpm (fig. 4.2.3 (d)), 4000 rpm and 

5000 rpm) gave essentially identical voltammograms.

▲
A dm ittance
D ensity/
Q '1 cm '2

Frequency /

Potential/V  
v-s. Pd/H

Fig. 4.2.3 Multi-Frequency AC Voltammograms o f Pt in 0.25 M H2 S 0 4  with the electrode (a) 

stationary and rotating at (b) 1000 (c) 2000 (d) 3000 rpm.
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4.2.4 T e m p e ra tu re  d ep en d en ce  o f  M FA C V

MFACV tests were performed on Pt in 0.25 M H2S 0 4 at temperatures from 278 - 318 

K (5 - 45 °C), over an AC frequency range of 40 -  400 Hz, degassed with N2. The 

results show that the admittance of the system increased with temperature (fig. 4.2.4 

(a)-(d)), however, at 313 K. and above (fig. 4.2.4 (e)(f)), it decreased. This happened 

on repeating the experiment (running at 278, 283, 288, 298, 308, 313, and 318 K).

A dm ittance
D ensity/
Q-1 cm '2

Frequency /

Potential/V  
vs. Pd/H

Fig. 4.2.4 Multi-Frequency AC Voltammograms o f Pt in 0.25 M H2 S 0 4; varying temperature (a) 278 K (b) 288 

K (c) 295 K (atmospheric temperature) (d) 308 K (e) 313 K (f) 318 K.
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4.2.5 DC temperature dependence measurements of the HER

Tafel data (positive potential sweep at 0.01 V s’1) was taken for Pt in 0.05 M H2SO4 

rotating at 900 rpm, purged with N2 and varying the temperature between 273 - 323 

K.

Tafel plots o f log [jdj/(jd 7 )] versus overpotential were produced to find values of log 

jo. Where j  is the measured current density and yj is the diffusion limited current 

density, calculated from the equation:

j d = 0.62nFD;{ > 1 bs0col 2 (4.2.1)

5 ^ 1where D h is the diffusivity o f hydrogen in the solution (taken as 3.7 x 10' cm“ s’ ), y
2 I

is the kinematic viscosity o f the solution (taken as 1.07 x 10'“ cm s' ) so is the 

solubility o f H2 in the solution (taken as 7.14 x 10'3 M) and co is the rotation rate in 

Hz.

The Tafel data (fig. 4.2.5) produced a good linear Arrhenius plot (logy'o versus 1/7) 

(fig. 4.2.6) which gave an activation energy (apparent enthalpy of activation at the 

reversible potential) o f A77°# = 17.91 kJ m ol'1 for polycrystalline Pt, using the 

equation:

= (4.2.2)
d{M T) 2.3/?g

The result was in good agreement with the findings by Markovic et al (c.f. 9.5 - 18 kJ 

m ol'1 for single crystal faces^).
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Fig. 4.2.5 Tafel plots o f log D*d//(/d ~/)] f°r temperatures between 273 - 323 K as shown in the legend.
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Fig. 4.2.6 Arrhenius plot o f logyo versus MT to find activation energy from gradient.
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The cyclic voltammetry also yielded some consistent trends for increasing 

temperature (fig. 4.2.7). Most clearly visible are the Pt oxide forming and stripping 

peaks, both o f which increase significantly with temperature. A reversal of this trend 

was not observed at 313 K and above as was seen with MFACV. The slope of the 

voltammograms also increases with temperature.

Similar experiments have recently been published by Jerkiewicz et a P 1 in which an 

increased oxide thickness/charge is also observed as temperature is increased. 

Jerkiewicz did not observe an increase in CV slope with increasing temperature as 

was observed in the present study.

2 7 3  K 
2 8 3  K 
2 9 3  K 
3 0 3  K 
3 0 8  K

0 . 0 0 0 1 0  -

0 . 0 0 0 0 8  -

Eo
<
I '
(A
C
QJQ

0 . 0 0 0 0 6  -
3 2 3  K

0 . 0 0 0 0 4  -

c<D 0 . 0 0 0 0 2  -

0.00000 -

- 0 . 0 0 0 0 2  -

- 0 . 0 0 0 0 4
0 .4 0.6 0.8 1.0 1 .20.2

P o t e n t i a l /  V vs. P d / H

Fig. 4.2.7 CV showing temperature dependence o f Pt in 0.05 M H2 S 0 4, rotating at 900 rpm, N 2  

degassed, between 273 - 323 K at potential sweep rate of 0.1 V s'1.
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4.3 Single crystal electrode studies

4.3.1 Cyclic voltammetry and MFACV studies

Cyclic voltammetry and MFACV tests were performed on the basal plane single 

crystal Pt electrode surfaces together with various stepped surfaces between the {111} 

and {100} zones o f the stereographic triangle (see section 2.3) in order to investigate 

possible relationships between surface structure and HER rate.

Single crystal experiments are highly sensitive to contamination. Organic molecules 

are particularly troublesome as they block the crystal surface and require the 

application o f high positive potentials to the electrode in order to remove them via 

electro-oxidation. This results in electrochemical roughening of the electrode surface 

due to oxide formation which perturbs the surface structure. Therefore it is not a 

viable option o f surface cleaning when examining well-defined single crystal 

surfaces. Hence, clean conditions must be maintained at all times.

Cyclic voltammograms were taken before and after every test in order to evaluate the 

cleanliness o f the solution. If the voltammograms o f the surface under investigation 

did not match before and after each HER measurement (with ± 2 % of total UPD-H 

charge), the measurement would be rejected.

This led to a large amount o f time and effort going into cleaning processes and 

investigating contamination sources. The general cleaning procedure for the 

glassware is described in section 3.3.

Good voltammetric data was observed for the three basal plane Pt single crystal 

surfaces ({111}, {100}, {110}) as depicted in fig. 4.3.1 and a range of stepped 

surfaces between P t{111} and {100} (fig. 4.3.2).
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Fig. 4.3.1 Cyclic voltammograms o f Pt{ 111}, Pt{ 110J and Pt{ 100} in 0.1 M H2 S 04, sweep rate 0.05 V
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Fig. 4.3.2 Cyclic voltammograms o f Pt{21 1 Pt{311}, Pt{511}, Pt{711}, Pt{911}, Pt{ 11,1,1} and 
Pt{ 13,1,1} in 0.1 M H2 S 0 4, sweep rate 0.05 V s'1.
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After cyclic voltammetry had confirmed cleanliness and reproducibility o f the single 

crystal surfaces under investigation, multi-frequency AC voltammetry was performed 

on each of the surfaces in 0.1 M H2SO4. The DC potential sweep was between 0.10 

and -0.19 V vs. Pd/H at 0.00125 V s '1 sweep rate with the AC frequency range 

between 1 0 -1 0 0  Hz. The data obtained are shown in fig. 4.3.3 - 4.3.4.

Fig. 4.3.3 MFACVs for Pt single crystal surfaces (a) {111} (b) {755} (c) {533} (d) {211} (e) {311} (f)

{511} in 0 . 1  M H 2 SO4 .

Frequency /

| £ r
Potential/V  
vs. Pd/H

A
A dm ittance 
D ensity/
Q 1 cm' 2
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(g )

(i)

Fig. 4.3.4 MFACVs for Pt single crystal surfaces (g) {711} (h) {911} (i) {11,1,1} (j) {13,1,1} (k)

{100}, in 0.1 M H2S 0 4.
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Fig. 4.3.5 Phase plots for selected MFACV voltammograms shown in fig. 4.3.4. (a) Pt{ 111} (b)

Pt{533} (c) Pt{311} (d) P t{100f

The phase plots for the single crystal surfaces tested (some o f which are displayed in 

fig. 4.3.5) show a frequency dependent anion region between 0 and 0.1 V, becoming 

frequency independent in the hydrogen evolution region. The phase angle decreases 

to zero on all o f the Pt single crystal surfaces tested (at potentials negative o f ~0.02 V 

vs. Pd/H). No hysteresis is observed between the forward and reverse potential 

sweeps.
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Initial HER activity comparisons can be taken from the limiting admittance density;

i.e. the point on the MFACV plot (1 Z versus oj versus V) at which the admittance 

density reaches a plateau.

A graph o f limiting admittance density versus crystal step density (i.e. density o f 

{111 I x 1100 J or J100 {x {111 J steps per cm2 crystal electrode area) was plotted (fig. 

4.3.6) to investigate any structural dependence for the HER rate.

The step densities were calculated using two equations for the two investigated 

regions o f the stereographic triangle (from J111 j to the turning point and from the 

turning point to J100 J, excluding the planar surfaces, which we assume have zero 

step density).

For the region between {111} and the turning point at {311}, where the surface has 

the general micro facet notation:

Pt(s)[n{111 }x{ 100}] 

and adopts the Miller index form:

{h,k,l} = (n + l,n - l,n -l)  (4.3.1)

step density, N, is calculated from161:

2 1
yfl.d.,, n -  1

WSI, = — ---------- — (4-3-2)
„ 3

where dPl is the Pt atomic diameter (2.78 A) and n is the associated series number of 

the crystal.

Similarly, for the surfaces in the region between the turning point and {100} which 

have the general microfacet notation:

Pt(s)[n {100} x {111} ]

with the Miller index formula:

|h,k,l j = (2 n -1,1,1) (4.3.3)

step density can be calculated from the formula161:

M*. = 7  T "  (4-3-4)d„ rt - 1 2

The step densities are displayed in table 4.3.1.
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Pt fee {M/} surface n Step density/10 cm

{111} oo 0

{755} 6 7.33

{533} 4 11.33

{211} ( -  {422}) 3 15.57

{311} 2\\2 24.45

{511} 3 14.39

{711} 4 10.28

{911} 5 7.99

{11,1,1} 6 6.54

{13,1,1} 7 5.53

{100} 00 0

Table 4.3.1 Step densities for the single crystal surfaces under investigation.

•  Pt{111}-{533} 
a  Pt{211}
■ Pt{311 }-{100}

0.35 n

o, 0.30 - 111}

0 .2 5 -

0.20-
A {211}

0 .1 5 -

0.10-
■ {100}

0.05

020 1020100
Step Density/106cm'2

Fig. 4.3.6 Graphs o f limiting admittance density taken from MFACV in 0.1 M FI2S 0 4 versus Pt crystal

structure for surfaces between {111} - {100}.
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Observing the data displayed in tig. 4.3.6, it is seen that the plot may be split into two 

separate data sets, those relating to the crystal surfaces with larger {111} terrace 

width and those with larger {100} terrace width. As the plot moves from {111} 

towards {31 l j ,  there is a trend o f decreasing limiting admittance density until it 

reaches the turning point on the stereographic triangle, {311}, (where there is equal 

{111! and {100} character). The {211} surface is the point on the graph which 

reverses the decreasing trend, which then increases to a maximum at {311}. The 

trend between {311 \ and J100} is then seen to exhibit a general decrease in limiting 

admittance density. The above analysis would imply a structure dependence for the 

HER, enhanced by {111} terraces and by {111}x {100} steps.

It was noted, however, that the crystals tested were o f differing surface area, and more 

specifically, that the largest crystals were giving rise to the smallest limiting 

admittance density. Consequently, a graph o f limiting admittance density versus the 

reciprocal o f the crystal area was plotted in order to test this relationship (fig. 4.3.7).

It was found that there was a positive correlation, showing that there was an inverse 

dependence o f HER on electrode area, despite the absolute admittance value already 

being normalised to area. This implies that there is another factor, related to area, 

which is playing a significant role in HER rate. It was suggested that the hanging 

meniscus was playing a role in this behaviour. Therefore, in order to investigate this 

possibility, an experiment was devised to eliminate any edge effects by coating the 

crystal bead with CO (see experimental section 3.6). After stripping CO from the 

surface o f the electrode in the hanging meniscus configuration, the crystal was 

submerged below the level o f the electrolyte, thereby exposing only the Miller index 

plane to the electrolyte whilst the rest o f the bead electrode was protected by a 

chemisorbed CO layer. This experiment is discussed in more detail in section 4.3.2.
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Fig. 4.3.7 Graph o f  limiting admittance density versus reciprocal o f  crystal surface area.

4.3.1.1 Model circuit analysis of MFACV data

As explained in section 2.1.2.1, electrochemical cells may be modelled as a circuit 

consisting of contributions from an arrangement resistors and capacitors representing 

the various elements within the cell. Ideally, the MFACV data should be modelled 

using the circuit depicted in fig. 4.3.8. This circuit separates the pure, charge transfer 

resistance and a theoretical, frequency dependent impedance, the Warburg impedance, 

which represents mass transport effects within the solution.

The frequency independence o f the MFACV data over the range studied, however 

renders it impossible to define a Warburg impedance term as there is no possibility o f 

separating resistances in series without additional information. Thus the equivalent 

circuit must be reduced to a potential dependent charge-transfer resistance, Rct  and a 

series resistance term, Rs , which includes the solution resistance (which may vary 

with electrode area) and all other resistance terms which could influence the 

admittance. The double layer capacitance also becomes impossible to fit in the 

plateau region of the MFACV, due to the frequency independence of the admittance. 

The circuit therefore reduces simply to that shown in fig. 4.3.9.

109



c D L

Fig. 4.3.8 Model circuit exam ple, separating Fardaic impedance into charge transfer resistance and

Warburg impedance.

Rs  R c  t

Fig. 4.3.9 The equivalent circuit which had to be used for the MFACV analysis due to the frequency 

independent nature o f  the data in the OPD-H region.

For the analysis o f the single crystal MFACV data, it was assumed that any frequency 

dependence observed on the MFACVs (figs. 4.3.3 and 4.3.4) was related to the 

desorption o f species positive o f 0 V vs. RHE and was independent o f the hydrogen 

evolution reaction on the Pt surfaces. Each MFACV was then simulated using 

equations (4.3.4) -  (4.3.6)

Y =
ZZ

(4.3.4)

1  ̂ 2 where Y is the admittance density in Q ' cm ", A is the electrode area in cm and Z is

the electrochemical impedance in Q, given by:

Z = RS + Rcl (4.3.5)

1 1 0



where:

Rci = ^o ex p (— — E)
RJ

(4.3.6)

where Ro is simply the pre-exponential factor in the charge transfer resistance.

The simulated MFACVs were generated by modelling the lowest frequency MFACV 

data (admittance density versus potential at approximately 8 Hz, see fig. 4.3.10) for 

each surface by manipulation of Rq, Rs and a until a good fit was achieved. The 

simulation was then expanded over the experimental frequency range to produce a 

MFACV (which is valid as it has been assumed that any frequency effect observed in 

the real data is due to anion desorption effects and not hydrogen evolution).

Admittance 
density Cl'1 c m :

0 .3 - 0.3

0.25

0.2- 0.2

0.15

0.05
• •
1

-0.05 0 -0.05-0 15 -0.15 -0.1
Potential V vs. 
PdH

Fig. 4.3.10 (a) Real and (b) simulated admittance density versus potential curves at low frequency (8.07 

Hz) for Pt{ 11,1,1! electrode surface in 0.5 M H2S 0 4. The simulated curve takes the values o f R0 =

1600 n , Rs = 120 ft, a  = 0.64.
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An example o f a simulated MFACV in comparison to the experimentally recorded 

data (for the P t{11,1,1} electrode) is shown in fig. 4.3.11. The data used to simulate 

each MFACV (Ro, Rs and a) is presented in table 4.3.2.

035-

0 3 -

•U-,
Admittance 
density Q 1 cm 1

'it,

»

-0 1
Potential V  vs. 
PdH

-003

Fig. 4.3.11 (a) Real and (b) simulated multi-frequency AC voltammograms for Pt{ 11,1,1} single crystal 

electrode in 0.5 M H2SQ4 R0 = 1600 Q, Rs = 120 SI, a = 0.64.

Crystal R o /n /?s/ n a

P t{ l11} 3500 165 0.55

Pt {755} 1050 84 0.80

Pt {533} 1000 99 0.70

Pt {211} 1500 159 0.70

Pt {311} 2700 88 0.75

Pt {511} 2300 106 0.60

Pt {711} 2000 143 0.64

Pt {911} 2200 122 0.64

Pt{l 1,1,1} 1600 120 0.64

Pt {13,1,1} 1900 103 0.64

Pt{100} 350 120 0.60

Table 4.3.2. Data used to simulate single crystal MFACVs.
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Rj
n

Ro was found to vary linearly with limiting admittance density and 1/area (see fig. 

4.3.12), whilst the graph o f R0 versus crystal step density showed the same 

relationship as that observed with the plot o f limiting admittance density versus 

crystal step density. The transfer coefficient showed no systematic variation with 

limiting admittance density, 1/area or crystal step density. Similarly, the series 

resistance showed no significant dependence on any of the three factors investigated.
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Fig. 4.3.12 Plots o f R0 versus (a) limiting admittance density (b) 1/area and (c) crystal step density.
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4.3.2 C O  b lo ck in g  e x p e rim e n ts

It proved unreliable to perform the CO blocking tests with MFACV techniques due to 

the length o f  time required to run each experiment. The MFACV measurements took 

approximately 10 minutes to obtain good, steady state data with little noise. During 

this time, the CO would be displaced from the crystal bead hemisphere, resulting in an 

increase in electrode area during the course o f the measurement (as shown by cyclic 

voltammetry in fig. 4.3.13), hence the signal being measured consisted of other 

contributions in addition to the Pt {hkl} plane. This would mean that the HER would 

no longer be originating from the desired single crystal electrode plane, but would 

also be produced from the sides o f the crystal.

0.000005 

0 000004 

0 000003 

0 000002 

0 000001 

0.000000 
-0.000001 

-0.000002 

-0.000003 

-0.000004

-0.000005

Before MFACV 
(flat Pt{111} surface) 
After MFACV 
(flat Pt{111} surface with 
contributions from bead 
hemisphere)

-0.05 0.00 0.05
—I—
0.15

—i— 0.200.10
P o ten tia l/ V vs. Pd/H

—i—
0.25 0.30 0.35 0.40

Fig. 4.3.13 Cyclic voltammograms taken before and after a MFACV measurement on a CO-coated 

Pt{ 111} electrode submerged blow the electrolyte surface, showing that the CO had been removed 

over the time period o f the experiment, rendering the result invalid.

Therefore, an equivalent DC test was undertaken. A single crystal electrode was 

flame annealed and cooled in hydrogen, a cyclic voltammogram was taken (0 -  0.85 

V, 0.05 V s '1) in a normal hanging-meniscus configuration, followed by linear sweep 

voltammetry (LSV) (0.1 to -  0.1 V, at a sweep rate o f 0.005 V s '1). A CV was taken 

to confirm both the cleanliness o f the system after the LSV measurement. The single 

crystal electrode surface was then blocked using chemisorbed CO and a CV taken (0 -
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0.85 V, 0.05 V s '1) to remove CO from the flat electrode surface. After a further LSV, 

the CV was repeated to confirm that no adsorption sites had been exposed (by 

displacement o f CO) in addition to those in the Pt{M/} plane. The bead was then 

partially submerged in the electrolyte. A cyclic voltammogram was run (0 -  0.35 V, 

0.05 V s '1), the maximum potential being the most positive potential the system could 

be swept to without affecting/removing CO from the bead hemisphere, yet still 

providing a Pt {111} cyclic voltammogram response for cleanliness/reproducibility 

comparisons. A linear sweep voltammogram into the HER potential region was then 

performed, followed by a final CV to check once again for changes in CV response 

after HER. If all cyclic voltammograms did not match within a reasonable error 

throughout the test, the results would be discarded (see fig. 4.3.14).

Exchange current density was plotted against single crystal step density and also 

reciprocal o f electrode area for each o f the three electrode configurations tested. The 

results are shown in figs. 4.3.15 - 4.3.20 (the error bars for the data points arise from 

variation in jo from multiple tests performed on each surface).
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Potential/ V vs. Pd/H

Fig. 4.3.14 CVs o f Pt {511} at various stages throughout the CO blocking experiment.

 C lean flame annealed Pt{511} in hanging meniscus conformation
Bare Pt{511} after LSV in hanging meniscus conformation 
Removal of C O  from Pt{511} surface in hanging 

m eniscus conformation (hemisphere blocked by CO)
Pt{511} after LSV in hanging meniscus 

conformation (hem isphere blocked by CO)
Subm erged bead Pt{511)
Subm erged bead Pt{511} after LSV

115



{311}

{111}
§  0.9-  
<
^  0.8 - >*

I  o-7-
Q
c  0 .6  -a>t
d  0 .5-
a>cn
§ o-4 -

JZo
UJ 0 .3-

{100}

0.2
0 10 20 20 10 0

Step Density/106cm' 2

Fig. 4.3.15 Graph o f exchange current density versus single crystal step density for annealed Pt single 

crystal electrodes in hanging meniscus configuration. Taken from Tafel slopes of LSVs performed in

0.5 M H2S 0 4, 0.005 Vs*1.
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Fig. 4.3.16 Graph o f exchange current density versus single crystal step density for Pt single crystal 

electrodes in hanging meniscus configuration after being coated with CO (which had been stripped 

from the crystal face). Taken from Tafel slopes o f LSVs performed in 0.5 M H2S 0 4, 0.005 V s'1.
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Fig. 4.3.17 Graph o f exchange current density versus single crystal step density for Pt single crystal 

electrodes, partially submerged in the electrolyte with bead hemisphere coated with CO. Taken from 

Tafel slopes o f  LSVs performed in 0.5 M H2S 0 4, 0.005 V s'1.
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Fig. 4.3.18 Graph o f exchange current density versus reciprocal o f crystal area for annealed Pt single 

crystal electrodes in hanging meniscus configuration. Taken from Tafel slopes of LSVs performed in

0.5 M H2S 0 4, 0.005 V s'1.
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Fig. 4.3.19 Graph o f exchange current density versus reciprocal o f crystal area for Pt single crystal 

electrodes in hanging meniscus configuration after being coated with CO (which had been stripped 

from the crystal face). Taken from Tafel slopes o f LSVs performed in 0.5 M H2S 0 4, 0.005 V s'1.
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Fig. 4.3.20 Graph o f exchange current density versus reciprocal o f crystal area for Pt single crystal 

electrodes, partially submerged in the electrolyte with bead hemisphere coated with CO. Taken from 

Tafel slopes o f  LSVs performed in 0.5 M H2S 0 4, 0.005 V s'1.
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A plot o f current density versus crystal step density ({111 }x{100} and {100}x{111} 

steps) for the clean, flame annealed, single crystal working electrodes (fig. 4.3.15 - 

4.3.17) showed a very similar trend to that seen when admittance density from the 

MFACV results was plotted in the same manner (fig. 4.3.6). A positive correlation 

was also seen when current density was plotted against the reciprocal of crystal 

surface area (fig. 4.3.18 - 4.3.20).

The data for the single crystal electrodes in the hanging meniscus configuration, after 

being coated in CO (which had been stripped from the planar surface by electro­

oxidation) (fig. 4.3.16) followed a similar trend to the clean flame annealed surfaces. 

The absolute current density values were significantly lower than those for the 

annealed surfaces, despite the CVs matching well (excluding that of P t{311} which 

invariably reconstructed significantly after being coated with CO, see fig. 4.3.21).
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Fig. 4.3.21 Pt{311} in hanging meniscus configuration (0.5 M H2S 0 4, 0.05 V s'1) when flame annealed 

(red line) and reconstruction after coating with CO (black line).

When the crystal bead was partially submerged into the solution (still with CO 

coating the hemisphere), no significant trend was observed for current density versus 

step density or 1/area, i.e. current density was found to be independent o f both o f 

these parameters in this configuration.
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4.3.2.1 Fitting rate constants to single crystal Tafel data

A fitting routine (using a prewritten routine in MatLab, shown in appendix I) was 

applied to the Tafel data for each o f the stepped single crystal electrodes tested in 

sections 4.3.1 and 4.3.2. The program adjusted the rate constants for the forward and 

backward reactions associated with the appropriate HER mechanism (from initially 

inputted figures); i.e. the Volmer-Tafel mechanism for Pt (giving k\ and k.\ from 

equation (4.3.7) and kj and k . 2  from equation (4.3.8)). Using equations (4.3.7) -  

(4.3.9),

Volmer: v, = A.C*. (1 - 0 n )c u,n - k_lOlie {l~a)pl (I) (4.3.7)

Tafel: v, = k 26 u2 -  k 2( C ^  / C*, )(1 - 6 U )2 (II) (4.3.8)

Heyrovsky: \ \  = C* 6 uc u>" -  k y( C ^  ! C'Ui) { \ - 6 u )e('~a)"1 (III) (4.3.9)

where the parameters are defined in section 1.2.

At steady state:

86
dt

— =  v , — 2 v 2 -  v ,  =  0 (4.3.10)

dC 11,
dt

=  v 2 +  v_, =  0 (4.3.11)

Combining (4.3.10) and (4.3.11) gives:

v , -  v ,  =  0 (4.3.12)

Substituting in (4.3.7) and (4.3.8) for V| and vo gives:

- a n F 1
R .T  _

-  k i6 u exp
(1 -  a )n F  

ReT
(4.3.13)

which can be rearranged to give a quadratic in terms o f 6\\.
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a<V +*0H +^ = 0 (4.3.14)

where:

a = k_2(C°H2/C'tt2) - k 2 (4.3.15)

b =
— anF

C ’ .* ,e sp -------- 1
. RJ

+ 2

— anF
C '.^ .e x p E

R J
+*-2 (C S ,/C ^ )

(4.3.16)

(4.3.17)

Solving this quadratic and inputting the relevant parameters, the isotherm in fig. 

4.3.22 is achieved.
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Fig. 4.3.22 Simulated isotherm for OPD-H surface coverage as a function o f potential on a Pt electrode 

in 0.5 M H2S 0 4, using parameters; a = 0.5, k (= 1.3 x 10'3, k.t = 5.4 x 10"4, k2 = 1.59 x 10'8, k.2 = 7.42 x

IQ21 and ( C ° / C * ) =  1.
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The quality o f the Tafel data fitting for hydrogen evolution on a Pt surface is shown in 

fig. 4.3.23, the fit result converging to the actual data in the hydrogen evolution 

region. The Volmer-Tafel-Heyrovsky fitting routine also converged well to the Pt 

data but gave unreasonably high Heyrovsky values implying that the Heyrovsky 

kinetics dominate the rate o f the reaction which is not true for Pt. Simply inputting 

low values for the Heyrovsky term in this fitting routine would not allow the fit to 

converge to the actual data, hence the Heyrovsky term had to be completely omitted 

(by using the Volmer-Tafel fitting routine) to obtain a reasonable result.

2.2
 Data
 Fit Result

X

0.6

-0.2
008 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

E / V  vs. RHE

Fig. 4.3.23 Volmer-Tafel fitting routine for hydrogen evolution on Pt in 0.5 M H2S 0 4.

Similarly, the Volmer-Tafel and Volmer-Tafel-Heyrovsky fitting routines were both 

applied to Au (which is known to follow the Volmer-Heyrovsky mechanism). Fig. 

4.3.24 shows (a) the Volmer-Tafel routine, which did not converge well to the Au 

surface data (and would therefore not be used for results purposes) and (b) the 

Volmer-Tafel-Heyrovsky routine which gave a very good fit.

1 2 2



8.0
 Data
 Fit Result

4.8

Eo
<OO

1.6

008 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02
E / V  vs. RHE

(a)
8.0

 Data
 Fit Result

4.8
Eo
<
OO

1.6

■0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02
E /  V vs. RHE

Fig. 4.3.24 Data fitting for hydrogen evolution (current density versus RHE potential) on a Au surface 

(which is known to adopt the Volmer-Heyrovsky mechanism) in 0.5 M H2S 04, using (a) Volmer-Tafel 

and (b) Volmer-Tafel-Heyrovsky fitting routines.
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The OPD-H surface coverage plot, as a function o f potential, may be automatically 

generated from the rate constants calculated from the fitting routine. Hence, it can act 

as an indicator as to whether the fitting routine has yielded credible values. Therefore 

a high value o f Heyrovsky rate constant, A'3 , may give data which fits well with the 

linear sweep voltammograms, yet the surface hydrogen coverage may be 

inappropriately low (< 0.3 monolayers). This would lead to the result being discarded 

and a different set o f initial rate constant figures entered into the routine. The initial 

rate constant figures inputted may lead to different fitting o f the data, so the OPD-H 

surface coverage is a useful tool in the deduction o f genuinely acceptable rate 

constant values. In the case o f the Pt stepped single crystals, which are known to 

adopt the Volmer-Tafel HER mechanism, the Heyrovsky step was eliminated from 

the fitting routine.

The figures for k\, k.\ and ki from the data fitting are shown in table 4.3.3 -  4.3.5, k . 2 

has not been displayed in these tables (or throughout this thesis) as it was so small that 

it was effectively zero, hence the absolute values were meaningless.

The ratio o f k\ and k.\ gives the Volmer reaction equilibrium constant K\ (assuming a 

is approximately 0.5) as:

Similar ratios o f the Tafel and Volmer rate constants give equilibrium constants K 2  

and Kt, respectively.

(4.3.18)

and

(4.3.19)

Therefore, when K  is defined as:

(4.3.20)

If a = 0.5, it is fair to assume that at any given potential:

K
k
k_

(4.3.21)
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k\/ 10'3 

cm s'*

k.\l 10-4 

mol cm‘2 s '1

k2l 10'8 

cm s’1

Pt {111} 1.31 5.44 1.59
Pt{755} 1.52 4.78 1.31
Pt {533} 1.18 4.35 1.81
Pt {211} 0.06 0.32 1.76
P t{311} 0.07 0.29 1.26
P t{511} 0.42 1.19 1.10
P t{711} 1.49 4.35 1.60
P t{911} 1.40 5.00 1.33

P t{ ll ,l , l} 1.36 4.95 1.55
P t{ 1 3 ,l,l} 0.71 2.43 1.44

Pt{100} 1.61 3.54 1.06

Table 4.3.3 Volmer-Tafel data for stepped single crystal electrodes, flame annealed and held in the 

hanging meniscus configuration in 0.5 M H2S 0 4.

k\! 10'2 

cm s '1

k.\l 10'2 

mol cm'2 s '1

k2l 10'8 

cm s '1

P t{ l11} 2.07 1.09 2.23
Pt {755} 2.21 1.03 2.28
Pt {533} 2.74 0.74 1.10
Pt {211} 2.61 1.70 2.56
Pt{311} 2.60 1.68 2.60
Pt {511} 2.63 1.61 2.63
Pt{711} 2.37 0.83 1.14
Pt{911} 2.12 0.92 1.65

Pt{l 1,1,1} 2.22 1.09 2.38
Pt{13,1,1} 2.22 1.12 2.27

Pt{ 100} 3.25 0.89 1.32

Table 4.3.4 Volmer-Tafel data for stepped single crystal electrodes, CO coated and stripped, held in the

hanging meniscus configuration in 0.5 M H2S 0 4.
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k xi 10'3 

cm s ' 1

k.\l 10'3 

mol cm'2 s '1

k2l 10'8 

cm s '1

P t{ l11} 0.35 0.19 1.94
Pt{755} 30.62 12.8 2.08
Pt {533} 0.18 0.06 1.07
Pt{211} 0.12 0.07 1.62
Pt{311} 0.20 1.12 2.05
Pt{511} 0.16 0.09 1.84
Pt{711} 31.75 5.72 0.35
Pt{911} 24.81 14.24 2.12

P t{ ll ,l , l} 5.42 3.21 2.66
P t{ 1 3 ,l,l} 5.07 3.15 2.99

Pt{100} 0.53 0.19 2.47

Table 4.3.5 Volmer-Tafel data for stepped single crystal electrodes, with CO coated hemisphere, 

submerged below the electrolyte surface in 0.5 M H2S 0 4.

The rate constants for the forward and backward Volmer reactions were plotted 

against exchange current density, the reciprocal o f the surface area and the crystal step 

density for the three electrode configurations. The same was done for the forward 

Tafel rate constants. None o f the plots showed a significant positive correlation.
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4.3.3 Pt{ 111} crystals of different sizes

A simple experiment was performed to investigate whether the exchange current 

density on Pt single crystal electrodes was related to crystal structure or electrode 

area. A second, larger, P t{111} crystal was manufactured (section 3.4) and tested in 

the same way as previously stated (section 3.6). It was found that the larger crystal 

gave significantly lower exchange current density than the smaller one used 

throughout the rest o f section 4.3.

Pt {111} 

Crystal Area/ 

cm2

Crystal

Circumference/

cm

Circumference/Area 

Ratio/ cm '1

Exchange Current Density/ 

mA cm'2

0.029 0.60 20.8 0.82

0.049 0.74 17.1 0.59

Table 4.3.6 Comparing data for two Pt{ 111J crystals, clean, flame annealed in 0.5 M H2S 0 4.

Referring to table 4.3.6, it can be seen how the crystal exchange current density is 

affected by edge/area ratio for two clean, flame annealed Pt {111} electrodes. The 

smaller electrode has an edge/area ratio 1.22 times greater than the larger electrode 

and jo value 1.39 times greater.

4.3.4 Pt{l 10} and different cooling methods

Previous work from Lipkowski|7J and Feliu181 proposed that there is no 

crystallographic structural dependence for the HER. However, the Feliu group quote 

values o f exchange current density on P t{110} higher than those on P t{111} and 

P t{100) (0.97 mA cm'2 c.f. 0.84 mA cm'2 and 0.84 mA cm'2 respectively) despite not 

declaring it in relation to a structure sensitivity for HER.

Incidentally, other works which have discovered a dependence for HER on single 

crystal surface structure^4’ , also quote the Pt {110} surface as the fastest for HER
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under acidic conditions (as well as HOR in acid[l01 and both HER and HOR in 

alkaline solutions1111). One explanation for this may be different cooling methods 

used after flame annealing. This is particularly relevant to the Pt{110} surface as 

different cooling methods may result in different reconstructed phases o f the surface. 

When heated in a Bunsen flame and cooled in CO the Pt{110} electrode will give a 

( lx l )  surface; whereas if  cooled in H2 it will reconstruct in a (1x2) configuration^121.

In light of this, a Pt {110} crystal bead was tested in the same manner as those above 

(in hanging meniscus, CO stripped hanging meniscus and CO coated submerged 

bead). The crystal was flame annealed and cooled in CO and H2 to test the difference 

in ( lx l )  and (1x2) reconstruction.

Pt{110} CO Cooled 
Pt{110} H2 Cooled

— i----------->----------- 1-----------1-----------1-----------'-----------1-----------•-----------1-----------■-----------1
0.0 0.2 0.4 0.6 0.8 1.0

Potential/ V vs. Pd/H

Fig. 4.3.25 CVs o f Pt{ 110} crystal (0.098 cm2) cooled in CO and H2. 0.5 M H2S 0 4, 0.05 V s'1.

0.0003 -J

0.0002 -

0.0001 -

0.0000 -

-0.0001 -1

- 0.0002 -

-0.0003 -
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Exchange Current Density/ mA cm'

Crystal Area/ 

Cooling Method

Hanging Meniscus CO stripped 

Hanging Meniscus

CO coated 

Submerged Bead

0.098/CO 0.58 0.52 0.52

0.098/H2 0.58 0.52 0.51

Table 4.3.7 Exchange current densities relating to Pt{ 110} with different cooling techniques and held

in different conformations in 0.5 M H2 SO4 .

The CO cooling approach did not give a perfect ( lx l )  surface, nor did the H2 cooled 

give a perfect (1x2) reconstruction (compared to that seen by Kibler et al[l3]), however 

the two CVs were clearly different (fig. 4.3.25). The exchange current density values 

were not affected by the different reconstructed states of the surface obtained from the 

different cooling methods (the data is displayed in table 4.3.7).

Both structures o f the crystal show a small decrease in exchange current density 

between the clean annealed surface in hanging meniscus configuration and the CO 

blocked-surface stripped bead in the hanging meniscus arrangement. However, they 

also both show little or insignificant change in exchange current density between the 

hanging meniscus and submerged bead configurations of the CO-surface-stripped 

electrode (with hemisphere still blocked by CO). The exchange current density 

values for the electrode in the hanging meniscus arrangement are rather high when 

compared to the single crystal electrodes tested previously (fig. 4.3.18), however, it 

could be easily argued that they support the trend of exchange current density being 

inversely proportional to electrode area. The submerged bead configuration exchange 

current density value fits well with the previous single crystal work in section 4.3.2. 

The absolute exchange current density values were low with respect to those quoted 

in the literature; Markovic quotes a value o f 0.98 mA cm'2 (303 K), Feliu et al. 

quote 0.97 mA cm'2 [,4].
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4.4 S u rface  m od ified  Pt{hkl}  e lec tro d es

4.4.1 Epitaxial single crystal metal films

Thick films of Rh, Pd and Ru were deposited onto a Pt {111} electrode as described in 

section 3.5. When annealed, they gave CVs analogous to the equivalent metal {111} 

surface ({0001} in the case o f hep Ru) (fig. 4.4.1), in good agreement with those seen 

in the literature^8,15191 (fig. 4.4.2). It can be seen that the Pd surface is more similar to 

a semi-thick film deposited on Pt from Markovic et a/1161 (fig. 4.4.2 (b)) than bulk 

Pd {111} (fig. 4.4.2 (c)).

Linear sweep voltammetry (LSV) was then performed on these films (fig. 4.4.3) to 

give a qualitative trend as to which gave the fastest kinetics for the HER. The tests 

were performed using fast sweep rates to avoid contamination, sweeping the potential 

to -0.4 V vs. Pd/H at 0.5 V s’1. In addition to Rh, Pd and Ru, Bi was also deposited 

onto P t{111} (as described in section 3.5) and tested for HER in the same manner. 

Bare Pt and Ru on Pt gave the steepest current density versus potential slopes with Pd 

on Pt exhibiting a significantly lower activity. The Bi and Rh covered surfaces then 

gave a quite different shaped plot compared to the others; the HER was forced to 

more negative potentials and the rate o f HER rate was significantly reduced. It can 

also be seen that the region just positive o f hydrogen evolution is a much shallower 

curve for Bi/Pt {111} (less so for Rh{ 111}) than that of the other Pt-like metals.

500- B i o n  P t {111} 
P d  o n  P t {111} 
P t {111}
R h o n  P t {111} 
R u o n  P t {1 1 1>

400-

300-

200-
E 100-

fc-300-

0 -4 0 0 -

-500-

-600-

-700 “l—
0.4

—f—
0.6 TT0 02 0.8

Poten tial/ V vs. Pd/H

Fig. 4.4.1 CVs o f bare Pt{ 111} and Pt{ 111} coated with films o f Ru, Rh, Bi and Pd. In 0.1 M H2S 0 4

at a sweep rate o f  0.05 V s'1.
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Fig. 4.4.2 Examples o f CVs from well-defined electrodes from the literature, (a) Rh{ 111 }[151 (0.5 M 

H2S 0 4, 0.02 V s'1), (b) Pt{ 111} and Pd on Pt{ 111 }[K>1 (0.05 M H2S 0 4, 0.05 V s'1), (c) Pd{ 111 }II9] (0.1 

M H2S 0 4, 0.01 V s'1) (d) Ru{0001 }I,7) (0.05 M H2S 0 4, 0.02 V s'1) and (e) Bi on Pt{ 111 }[l8] (0.5 M 

H2S 0 4, 0.02 V s'1). All figures plot current density in pA cm'2 versus potential in V vs. RHE.
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P o te n tia l /  mV vs. P d /H

Fig. 4.4.3 LSVs for the various surfaces investigated, in 0.1 M H2S 0 4 at a scan rate of 0.5 V s'1. The 

relative rate of the HER for each surface may be estimated from the variation in gradient of the current 

density versus potential curve for E < 0 V vs. Pd/H.

After obtaining good CV data for each of the surfaces, multi frequency AC 

voltammograms (MFACVs) were taken (fig. 4.4.4).

H \V*.t * |  wsef t
V X

m 
W

t

W 
a /

o
d

d

1 i Admittance 
density Q '1 cm '2

Frequency Hz

Potential/ V vs 
Pd H (d>

0.3-

03

Fig. 4.4.4 MFACVs performed on (a) Pd on Pt{ 111}, (b) bare Pt{ 111}, (c) Rh on Pt{ 111}, (d) Ru on

Pt{ 111} and (e) Bi on Pt{l 11 >.
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was intermediate oetween tne t s i  ana k u  limning aammanee density values, i t  s i i u u k  

be remembered that the LSV data were collected at high sweep rates, whereas the 

MFACVs were not (0.00125 V s'1). Hence, the role o f anions in controlling electror 

transfer rate is also highlighted in the MFACV results in that at lower sweep rates, tht 

LSV data do not correlate with MFACV. The Rh MFACV gave a very differen 

shape to that o f  the other surfaces as it had to be swept to very negative potential: 

before it reached a “plateau • In facf  only the Rh film could be taken as negative as 

0.3 V. When the other electrodes are swept to -0.3 V vs. Pd/H, too much hydrogen i: 

produced, leading to blocking o f  the electrode surface, due to gas bubbles forming. 

The results in 0.5 M H2 SO4 , under steady state conditions proved to be somewha 

different. In this test, Pt{ 111) was coated once again with Pd, Rh and Au as before 

However, the LSV was now carried out at 0.005 V s' 1 (fig. 4.4.5) with the MFAC\ 

data carried out under the usual conditions (fig. 4.4.6). The data obtained from thes< 

experiments is shown in table 4.4.1.

The data in fig. 4.4.3, though not quantitative, showed Pd on Pt {111} exhibited 

faster HER rate than Rh on Pt{ 111}. However, with slower potential sweep rate an< 

higher electrolyte concentration, this does not appear to be the case, as the jo  value fo 

Rh is twice that for Pd.
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Fig. 4.4.5 CVs and LSVs o f Pt {111} and Pd, Rh and Au on Pt{ 111} in 0.5 M H2S 0 4. The potential 

sweep rates o f the CVs and LSVs were 0.05 V s'1 and 0.05 V s'1 respectively.
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Admittance 
density A 1 cm':

Frequency Hz

Potential V vs. 
Pd H

Fig. 4.4.6 MFACV of (a) Pt{ 111} and (b) Pd, (c) Rh and (d) Au on Pt{ 111} in 0.5 M H2SCX

Tafel Slope/ 

mV/dec

Exchange Current 

Density/ mA cm'2

Limiting Admittance
1 9Density/D' cm'

P t{111} 31.5 0.59 0.10

Au on Pt {111} 45.4 0.03 (did not plateau)

Pd on Pt{ 111} 44.4 0.14 0.08

Rh on Pt {111} 35.5 0.28 (did not plateau)

Bi on Pt {111} 33.4 0.28 (no data taken)

Table 4.4.1 Showing HER data for films on Pt{ 111} under steady state conditions.
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4.4.1.1 Model circuit analysis of epitaxial films MFACV data

The model circuits were fitted for the epitaxial metal films on Pt {111} as described 

for the stepped single crystal surfaces in section 4.3.1. The fitting parameters are 

shown in table 4.4.2.

R o /n R j n a

Pt 2080 23 0.4

Rh 200 25 0.1

Pd 2000 28 0.6

Au 4000 37 0.2

Table 4.4.2 Model circuit fitting parameters for epitaxial metal films on Pt{ 111}.

4.4.1.2 Fitting rate constants to epitaxial metal film Tafel data

The Tafel data for the epitaxial metal films on Pt {111} were analysed using a 

Volmer-Tafel-Heyrovsky fitting routine. This broke down for the Pt and Rh surfaces 

(giving a low H-surface coverage isotherm), so they were refitted using a Volmer- 

Tafel routine with no Heyrovsky component. The data obtained is shown in table 

4.4.3.

ki/
cm s '1

k.\! 
mol cm'2 s '1

k-J 
cm s '1

h
cm s '1

Au on 
P t{ l11}

1.12 x 10'6 2.56 x 10'7 1.08 x 10 '16 4.66 x 10'6

Pd on 
P t{ l11}

4.08 x lO 5" 9.33 x 10'6 8.50 x 10'r 5.24 x 10'5

P t{111} 2.03 x lO7 " 6.48 x 10'3 2.38 x 10'7 -
—

Rh on 
P t{ l11}

1.68 x 10‘2 1.79 x 1013 2.32 x 10's
—

Table 4.4.3 Volmer-Tafel-Heyrovsky data for epitaxial films on Pt{ 111} in 0.5 M H2S 0 4 at 0.005 V s'1.
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4.4.2 I r  d ep o s ited  o n to  Pt{ 111}

Ir proved difficult to deposit onto Pt using the hydrogen reduction (forced deposition) 

method. Consequently, a droplet o f aqueous H2 lrCl6 was contacted with the crystal 

bead and “flash” reduced onto the surface by exposure to a Bunsen flame (section 

3.5). This gave a very rough, Ir deposit (single crystalline Ir CV responses could not 

be achieved with further annealing or resistive heating in N2). These Ir deposits gave 

fast HER rates (well above any expected increase due to a small increase in area). As 

Ir was removed by heating gently in the Bunsen flame and cooling in H2 , the HER 

rate did not decrease systematically. CVs o f the Ir on Pt {111} surfaces are shown in 

fig. 4.4.7, whilst the associated LSVs are shown in fig. 4.4.8.

0.000002  -

0.000000 -

O  - 0 .0 0 0 0 0 2 -
Pt {111}
Iron Pt {111} - anneal 1 
I ron Pt {111} - anneal 2 
I ron Pt {111} - anneal 3 
I ron Pt {111} - anneal 4-0.000004 -

0.2 0.4 0.60.0

Potential/ V vs. Pd/H

Fig. 4.4.7 CVs o f Pt{ 111 j and Ir deposits on Pt{ 111J in decreasing amounts due to removal by flaming

gently. 0.5 M H2SQ4, 0.05 V s'1.
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Fig. 4.4.8 LSV into hydrogen evolution region for bare Pt{111} and Ir deposited on Pt{ 111} surfaces.

0.5 M H2S 0 4, 0.005 V s ' .

From the CVs in fig. 4.4.7, it can be seen that the Ir deposits have forced the onset of 

hydrogen evolution to occur at more positive potentials than on bare Pt {111}. Taking 

the charge under the CV graph (using the upper segment of the CV, between 0 and 0.5 

V vs. Pd/H) it can be seen that the Ir coated surfaces have similar (generally lower) 

charge than bare Pt, so for further data analysis, it is assumed that all surfaces have 

the same area, which has been taken as the geometric area of the crystal surface. 

Charge densities, a, were calculated for each surface based on UPD-H charge and 

geometrical surface area o f the electrode. The ratio of a to the corresponding charge 

density on Pt {111}, 0pt{in}, was defined as

(j
= A. (4.4.1)

F t ; 1 1 1 }

In a similar manner, the exchange current density, jo, for each surface was evaluated 

based on the geometrical area o f the electrode. The ratio of jo to the exchange current 

density from P t{111}, y‘opt{i11} was evaluated as

Jo = B.
-/oPt! 1111

(4.4.2)
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Hence, the ratio o f Z?j to An allowed a simple comparison o f the intrinsic capability of 

the Ir surfaces to promote HER over and above that of clean P t{111}. This data 

analysis is presented in table 4.4.4.

Gl pC cm '2 c/fl>*{111}

= (Aa)

Tafel

Slope/

mV/dec

jo/ mA cm' yo/yopt{iii}

= (B>)

B /A a

ratio

P t{ ll l} 241 1 33.6 0.84 1 1

Iron Pt{l 11} 

-anneal 1

267 1 .1 1 34.9 2.64 3.14 2.82

Iron P t{ ll l}  

-  anneal 2

2 2 0 0.91 36.0 2.63 3.13 3.43

Iron Pt{l 11} 

-  anneal 3

2 2 0 0.91 35.5 1.81 2.15 2.36

Iron Pt{l 11} 

-  anneal 4

208 0 . 8 6 37.0 1.05 1.25 1.45

Table 4.4.4 Data for Ir deposited onto Pt{ 111 j.

The data in table 4.4.4 shows an increase in HER over and above that directly related 

to area for Ir/Pt {111 j electrodes..

4.4.2.2 Fitting rate constants to Ir modified Pt Tafel data

Rate constants for the Volmer-Tafel HER mechanism were fitted to the Ir on Pt data 

in a similar manner to that described for the Pt single crystal surfaces in section

4.3.2.1 (shown in table 4.4.5). It was observed that the Tafel rate constant did not 

vary significantly with the exchange current density o f the five surfaces (the backward 

Tafel rate constant was insignificantly small). The Volmer forward and backward 

rate constants showed an interesting trend in that those for the Ir modified Pt surfaces 

increased quite linearly with exchange current density. However k\ and k.\ for the 

bare Pt {111} surface do not fit with the trend as the values (for both forward and 

backward rate constant) are higher than on the Ir surfaces (fig. 4.4.9).
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k \ / 10'3 

cm s '1

k.\/ 104 

mol cm' s'

k2l 1<T 

cm s '1

Pt{ 111} 2.34 3.37 3.07

Ir on Pt {111} -anneal 1 2.04 1.15 2.35

Ir on Pt{ 111} — anneal 2 2.00 1.18 2.42

Ir on Pt {111} — anneal 3 1.58 1.12 2.91

Ir on Pt {111} -  anneal 4 0.95 0.72 2.24

Table 4.4.5 Volmer-Tafel data for Ir deposited on Pt {111} in 0.5 M H2S 0 4.
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Fig. 4.4.9 Graphs o f (a) k2 and (b) k\ and k.\ versus exchange current density for Ir modified Pt

surfaces.
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4.4.3 Pt deposited onto Pt{ 111}

In order to investigate the origin o f  the Ir HER rate enhancement and whether it is 

related to structure or is a genuine catalytic effect, the Ir deposition experiment was 

repeated by depositing Pt onto Pt {111}. A P t{111} electrode was dipped into a 

solution o f  H2 PtCl6 and held in a Bunsen flame momentarily and cooled in H2 to 

reduce Pt onto the surface. The electrode was repeatedly exposed to a Bunsen flame 

to anneal Pt in order to investigate variations in Pt surface roughness. The CVs o f 

these surfaces are show n in fig. 4.4.10 and the associated LSVs are shown in fig. 

4.4.11. The data from these experim ents is displayed in table 4.4.6.

A rate enhancement was observed on the deposited Pt surfaces, though not as great as 

when Ir was the deposited metal.
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Fig. 4.4.10 CVs o f  Pt deposits on Pt{ 111}. Surface roughness was varied by repeated flame
annealing. 0.5 M H2 SO 4 , 0.05 V s'1.
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Fig. 4.4.11 LSV into hydrogen evolution region for the Pt on Pt{ 111} surfaces showing enhanced HER
rate. 0.5 M H2S 0 4, 0.005 V s*1.

Gl pC cm '2

= (Aa)

Tafel 

Slope/ 

m \  dee

/V mA cm'2 M o p tu n }

“ (*j)

B /A a

ratio

P t{ lll} 241 1 .0 0 32.6 1 .0 0 1 .0 0 1 . 0 0

Surface (a) 2 2 0 0.91 34.2 1.45 1.45 1.59

Surface (b) 2 2 0 0.91 35.0 1.69 1.69 1 .8 6

Surface (c) 2 2 0 0.91 32.7 1.43 1.43 1.57

Surface (d) 2 2 0 0.91 34.7 1.74 1.74 1.91

Table 4.4.6 Tafel and surface area data for Pt deposited on Pt{ 111
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4.4.3.1 Fitting rate constants to Tafel data from  Pt on Pt

As with the Ir deposited onto Pt surfaces, a computational fitting routine was used to 

find the rate constants for the Volmer and Tafel reactions for Pt deposited onto 

P t{111} (see table 4.4.7). It was again assumed that no Heyrovsky step was active 

for these surfaces. The forward Tafel rate constant showed no systematic change with 

exchange current density (the backward Tafel rate constant has again been omitted 

from table 4.4.7 as the values were so low, ~ 10'20 cm s '1 that they were effectively 

meaningless). The Volmer rate constants both show a positive relationship with 

exchange current density for the Pt deposited surfaces, the bare Pt {111} surface value 

even agrees with the trend for k\. However, this is not the case for k.\, where the bare 

Pt {111} value does not fit with the data for the other surfaces.

k xt 10'3 

cm s’1

k j  10*4 

mol cm’2 s '1

k2/ 10^ 

cm s '1

P t{ l11} 1.65 4.99 7.05

Surface (a) 1.48 3.35 7.51

Surface (b) 2.44 3.20 4.91

Surface (c) 2.20 3.38 5.11

Surface (d) 2.76 4.60 5.92

Table 4.4.7 Volmer-Tafel data for Pt deposited on Pt{ 111} in 0.5 M H2S 0 4.
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4.4.4 Pd film s on  P t

Pd films were deposited on Pt {111} (area = 0.022 cm2) using the “forced deposition” 

method (as described in section 3.5). The Pd films were deposited in small 

increments up to a maximum of ~2 monolayers. It was observed that submonolayer 

amounts o f Pd had little effect on the HER rate, which remained fairly constant. 

Above one monolayer the HER activity began to decrease (Tafel slope increased, 

exchange current density decreased) but settled with subsequent deposits. As the Pd 

coverage approached a second monolayer, the HER rate became slower again. The 

exchange current density and Tafel slope values for each of the coverages tested are 

shown in table 4.4.8. The results can be seen graphically in fig. 4.4.14. Cyclic 

voltammograms and linear sweep voltammograms of the surfaces are shown in fig. 

4.4.12 and 4.4.13 respectively.
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Fig. 4.4.12 Cyclic Voltammograms o f Pd deposited onto Pt{ 111} surface in 0.5 M H2S 0 4 at potential

sweep rate 0.05 V s'1.
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 Pt{111}
0.07 ML Pd on Pt{111 
0.15 ML Pd on Pt{111 
0.36 ML Pd on Pt{111 
0.54 ML Pd on Pt{111 
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Fig. 4.4.13 Linear sweep voltammograms o f Pd deposited onto Pt{ 111} surface in 0.5 M H2 SO4  at 

potential sweep rate 0.005 V s'1, corresponding to fig. 4.4.12.

Pd coverage/ monolayers Tafel slope/ mV/dec Exchange current density/ 
mA cm*2

0 32.3 1.04

0.07 32.2 0.95

0.15 32.7 0.99

0.36 31.9 1.02

0.54 31.7 1.03

0.71 31.9 1.04

0.82 32.5 0.91

1.00 32.5 0.83

1.07 32.7 0.86

1.12 34.1 0.91

1.75 35.9 0.78

1.95 39.2 0.63

Table 4.4.8 Tafel slopes and exchange current densities for Pd films on Pt{ 111}.
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Fig. 4.4.14 Graph showing the change o f Tafel slope and exchange current density with Pd coverage.

4.4.4.1 Fitting rate constants to Tafel data from Pd films on Pt

Volmer, Tafel and Heyrovsky rate constants were found for the Pd adlayer surfaces 

on Pt {111}. The Heyrovsky component was detrimental to the fitting on the surfaces 

with Pd coverage below 1 monolayer, so the data was also fitted using a Volmer-Tafel 

fitting routine, omitting the Heyrovsky analysis. At certain Pd coverages (0.82 — 1.12 

Pd monolayers), both fitting routines (Volmer-Tafel and Volmer-Tafel-Heyrovsky) 

worked well. This gives an ambiguity as to which mechanism is dominating, or if 

there are significant contributions from each o f the mechanisms, due to the reaction 

occurring separately on both the Pd and Pt surfaces. The results are displayed in table 

4.4.9.
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| Pd coverage/ 
monolayers

k \/ cm s '1
... j

k.\/ mol cm' s' kil cm s &3/ cm s

0 1.34 x 10'3 3.63 x 10-4 7.45 x 104* —

! 0.07 2.64 x 10'1 8.60 x 10'2 4.86 x 1 O’7 —

1 0.15 3.45 x 10"' 9.44 x 10"2 3.90 x 10‘7 —

0.36 2.86 x 10'1 9.38 xlO'2 5.28 x 10'7 —

I 0.54 8.69 x 10‘5 3.82 x 10'5 1.96 x 10_ii —

0.71 1.03 x 10-4 3.17 x 10'5 1.05 x 10"* —

0.82 3.23 x 10'5 3.12 x 10'5 2.73 x 10"* 4.20 x 1 O'6
1.00 2.48 x 10'5 2.1 x 10'5 2.00 x 10"* 3.15 x lO -6
1.07 1.94 x 10’5 1.77 x 10‘5 2.67 x 1 O'6 4 .2 9 xlO-* -1
1.12 2.41 x 10"5 1 .2 3 x 1 0‘5 7.45 x 10'7 4.44 x 10‘6
1.75 4.59 x 10‘5 1.12 x 10'5 1.62 x lO '7 ' 2.27 x 10"*
1.95 5.43 x 1 O'6 2.29 x 10"6 1.46 x 1 O'7 7.06 x 10"6

Table 4.4.9 Volmer-Tafel-Heyrovsky data for Pd adlayers on Pt{ 111} in 0.5 M H2S 0 4.

4.4.5 Pd-Pt alloys

Pd-Pt surface alloys were prepared by gently flame annealing bulk deposits o f Pd on a 

Pt {111} surface, such that the two metals form an alloy within the surface o f the 

crystal. Pd can be removed subsequently by heating in a Bunsen flame at 1500 K.

The percentages o f Pd in the surface layer were calculated using previous 

measurements carried out within the Cardiff Electrochemical Surface Science 

group[20]. The cyclic voltammograms o f these surfaces are shown in fig. 4.4.15 and 

the linear sweep voltammetry into the hydrogen evolution region is shown in fig. 

4.4.16.

It was found that there was little deviation from the exchange current density and 

mechanism for bare Pt{l 11} as a function of Pd composition. This implies that Pd 

shows no significant influence on the reaction rate when there is Pt present at the 

electrode surface. The results can be seen in table 4.4.10.
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Fig. 4.4.15 Cyclic Voltammograms o f Pd-Pt surface alloys, showing variation as a function of Pd 

surface composition in 0.5 M H2S 0 4 at potential sweep rate 0.05 V s'1.
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Fig. 4.4.16 Linear sweep voltammograms o f Pd-Pt surface alloys, in 0.5 M H2S 0 4 at potential sweep

rate 0.005 V s'1, corresponding to fig. 4.4.16.
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Pd in surface layer/ % Tafel slope/ 
mV/dec

Exchange 
current density/ 

mA cm'2
75 32.4 1.03

58 33.5 0.94

35 33.1 1.08

Bare Pt {111} 32.8 1.02

Table 4.4.10 Tafel data and exchange current densities for Pd-Pt alloys.

4.4.5.1 Fitting rate constants to Pd-Pt alloy Tafel data

The Volmer and Tafel rate constants for the hydrogen evolution reaction on the Pd-Pt 

alloys from the previous section were found using a computational fitting routine and 

are shown in table 4.4.11. The fitting was also attempted using a fitting routine 

including an element for the Heyrovsky mechanism, though this did not fit well, 

giving unrealistically low hydrogen surface coverage isotherms.

Pd in surface 
layer/ %

k\l 10'3 

cm s '1

k.\/ 10"4
2 i

mol cm' s'

k2l 10* 

cm s '1

Bare Pt {111} 1.34 3.63 7.45
35 2.56 6.37 7.27
58 2.61 6.18 5.79
75 1.31 3.74 8.81

Table 4.4.11 Volmer-Tafel-Heyrovsky data for Pd-Pt alloys in 0.5 M H2S 0 4.
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4.4.6 Bi o v e rlay e rs  on P t sing le  c ry s ta ls

Pt{111}, {110} and {100} were repeatedly dipped into a solution of Bi(NC>3 )3  to test 

the effect of covering active hydrogen evolution sites with an inert site-blocker, which 

should inhibit the Pt atoms below them from taking part in the HER.

The graphs o f exchange current density versus fractional Bi coverage (fig. 4.4.17, 

where 0Bi = 1 represents a complete coverage of the Pt surface with Bi) were of 

similar shape to those reported by Feliu and Gomez18,21 \  Each graph gave a similar 

shape. There was a large decrease in electrode activity (exchange current density) at 

low fractional Bi coverages (0Bi < 0.2) with little further decrease in exchange current 

density until relatively high Bi coverages were achieved and the activity decreased 

more rapidly once again.

0.9

-■ -P t{1 1 1 }  
•  Pt{110} 
a Pt{100}

o, 0.8
E
<  07 
E

0.6
'(/)
© 0.5  Q
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°  0.3 <D U)
c6 0.2
_co
X
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0.0
0.6 0.8 1.00.40.0 0.2
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Fig. 4.4.17 Graph o f  exchange current density versus fractional Bi coverage (calculated from 
proportion o f  UPD-H sites blocked) on Pt {111}, Pt {110} and Pt {100}.
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Chapter 5 
Discussion

5.1 Hydrogen evolution and hydrogen oxidation on polycrystalline Pt

5.1.1 Hydrogen electro-oxidation on polycrystalline Pt

5.1.1.1 HOR on Pt in 0.1 M HC104

Cyclic Voltammetry o f polished polycrystalline Pt in 0.1 M HCIO4 was reproducible, 

although it has since been noted that the system was not completely free of 

contaminants. Despite this, data was obtained which was in agreement with work 

from Maruyama et The general shape o f the current density versus overpotential 

plots at varying rotation rates matched the reported figures well. However the upper 

current density values at fast rotation rates (co > 3000 rpm) were not as high as those

given by Maruyama et al. The upper j  value obtained experimentally at 3500 rpm is
 ̂ 2 1.05 mA cm'* compared to that shown in the literature for 3600 rpm of 1.54 mA cm’

1 1 /?in the same electrolyte. Thus, the Koutecky-Levich plots o f f  versus co' over the 

potential range (0 -  0.1 V overpotential) were also very close to the reported findings 

except at high rotation rates. This discrepancy should not affect the values obtained 

forj \  (from the intercept on the/ '  axis) as the slope will be largely defined by the data 

at lower rotation rates. It must be noted that, as in Murayama’s work, the magnitude 

o f the gradients o f the Koutecky-Levich plots decreased with overpotential. Hence,y'k 

values were calculated in the same manner as described in Maruyama’s paper from 

the modified version o f the Koutecky-Levich equation which includes an additional 

term representing the influence o f the backward reaction rate on the kinetics (it is 

thought that this influence is the reason for high exchange current density during 

hydrogen oxidation). Subsequently the graph o f In versus // was effectively linear 

over the same potential range as in Maruyama’s work (0 -  0.06 V overpotential). In 

contrast, the graph plotted from values taken from the general Koutecky-Levich 

equation (equation (4.1.2)) was curved. These two graphs and the equivalent from 

Maruyama’s paper are shown in fig. 5.1.1, plotted on the same scales for a more 

direct comparison to the published work. The data from the modified Koutecky- 

Levich equation was used in subsequent analysis as it matched Maruyama’s data more
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closely than that found using the unmodified version. Although the graph in fig. 5.1.1

(a) is similarly linear in shape to the published graph (shown in fig. 5.1.1 (c)), the 

absolute kinetic current density values are quite different (higher at low overpotentials 

and lower at high overpotentials). Hence, the slope obtained is much shallower and 

the resulting exchange current density is significantly higher than Maruyama’s results, 

2.42 mA cm'2 compared to 1.35 mA cm'2.
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Overpotential/ mV
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1 0 -
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i) l  mV

(c)
Fig. 5.1.1. Logarithmic plots ofj \  versus t] using (a) modified version and (b) generally accepted 

version of the Koutecky-Levich equation and (c) the equivalent plot from Maruyama et a l} l]
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The j 0 values obtained in the present study and in Maruyama’s work are both high 

relative to figures quoted by Markovic et a f and Feliu et a P 1 whilst conducting 

hydrogen evolution experiments (0.45 -  0.98 mA cm ' 2 in 0.1 M H2 SO4 using single 

crystal electrodes). There are a wide range o f factors which may be influential here. 

Feliu’s experiments were performed on stationary electrodes and therefore analysed 

with a simple Tafel-slope model (where jo is found from the intercept of a plot o f logy 

versus overpotential). Markovic’s approach is different again, assuming that for 

rotating disc electrode measurements, at low overpotentials (< ± 0.01 V):

rjF
J = h  F p  (5.1.1)

V
Applying equation (5.1.1) to the data from section 4.1.1.1, a value ofy'o = 1.48 -  1.54 

mA cm ' 2 is found, which is still high compared to the Markovic and Feliu values but 

significantly lower than the value obtained using Maruyama’s analysis method. The 

result found using Markovic’s analysis method is in fact quite similar to Murayama’s 

result. Maruyama states that the high exchange current density value is related to the 

reverse reaction occurring at the electrode, but it may simply be related to his analysis 

technique. It is very difficult to analyse Maruyama’s data accurately from the 

published figures^. A rough calculation gives jo between 0.42 and 1.28 mA cm ' 2 

which is very close to the original calculation in the upper limit, yet greatly lower in 

the lower limit. All o f the analysis techniques are based on what is thought to be 

sound theoretical calculations, yet it may be possible that an incorrect assumption has 

been made at some point in the derivation o f the equations.

It can be seen from the plot o f  Iny 'k  versus t] (calculated using the modified version o f 

the Koutecky-Levich equation, fig. 4.1.3) that, though effectively linear, the linearity 

begins to break down around 0.04 V. This causes the plot to intercept the In y'k axis 

slightly higher than if  the more linear region were taken. A graph o f In y 'k  versus // for

the more linear portion o f the data (0.007 -  0.038 V overpotential, shown in fig. 5.1.2)
2 2 gives a y'o value o f 2 .1 2  mA cm' . This value is 0.3 mA cm' lower than that

calculated from the original data (which covers a wider potential range) though still

significantly higher than Maruyama’s result.
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Fig. 5.1.2 Plot o f lnyk versus rj using the same data as in fig. 4.1.3 (b) but over a narrower potential

range, giving a more linear fit.

It is surprising that the results from this section yield a high value of exchange current 

density as it has since been discovered that the electrochemical cell probably 

contained significant amounts o f contaminants. The cell was made of soda glass, 

which, though cleaned by soaking in a mixture o f 2:1 concentrated nitric:hydrochloric 

acid to remove organic molecules, contains lead-based impurities. This was unknown 

at the time of the experiment. Similarly, the electrolytes were prepared from Analar 

grade as opposed to Aristar or better. The reference electrode used was Ag/AgCl in 3 

M NaCl. However, to avoid chloride ions diffusing into the electrolyte, a salt bridge 

was placed between the reference electrode and the electrolyte solution. The cell was 

not well sealed so, although the solution was degassed with H2 and held under a H2 

atmosphere, it may have been possible for air and airborne contaminants to enter the 

solution if the gaseous overpressure was not great enough. The platinum working 

electrode was coated in nylon, which may also have introduced contamination. 

Despite all o f these potential contamination factors, the cyclic voltammograms were 

reproducible (fig. 4.1.1), though not as good (in terms of UPD-H peak definition) as 

previous published figures[l]. As the raw data matched well with Maruyama’s 

published work, it was assumed that the system was clean. As mentioned earlier in 

this section, there is a discrepancy in the results at the higher rotation rates compared 

to Maruyama’s work. This can now be assigned to small levels of contaminants 

within the solution being drawn to the electrode surface. The contamination effect 

will be more significant at higher rotation rates as the flux of material to the electrode 

is higher. Hence, more contaminants, will be drawn to the electrode and adsorb on it, 

blocking electroactive sites and therefore lowering electrochemical activity.
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5.1.1 .2  Pt in 0.05M  H2S 0 4

The aim o f this experiment was to compare the activity o f hydrogen oxidation on Pt in 

two different acid electrolytes. Aqueous sulphuric acid dissociates to form bisulphate 

anions which are known to adsorb strongly to the Pt surface relative to the more 

weakly adsorbed perchlorate anions from aqueous perchloric acid.

The results in table 4.1.1 show an increased value of transfer coefficient, «, when 

using H2SO4 as the electrolyte, compared to that o f HCIO4, with values of 0.68 and 

0.52 respectively. These values were calculated from the gradients of the respective 

graphs of In versus rj. It is commonly assumed that a = 0.5. It is thought that the 

deviation in the values o f a seen in the present results is not greatly significant and 

that a variation such as this does not correspond to a difference in reaction 

mechanism. However, it has been found using charge displacement and FTIR 

measurements that all anions should be desorbed from Pt electrodes at HER 

potentials14, 5\  Therefore the difference in transfer coefficient in the different 

electrolytes is unusual.

The exchange current density value is significantly lower in H2SO4 electrolyte than in 

HCIO4. However, an important factor here is one which could be related to the acid 

concentration rather than the electrolyte itself since, unfortunately, the solutions used 

were not of equivalent proton concentrations. 0.05 M H2SO4 was used, assuming that 

the nature o f the electrolyte was dibasic, such that two H+ ions would fully dissociate 

from the sulphuric acid molecule giving an H+ concentration o f 0.1 mol dm'3. This 

assumption was not correct and in fact an effective H+ concentration of only 0.0585 

mol dm'3 was reached in this experiment. This concentration value was calculated 

from the pKa values for the two dissociation steps where pKa = -3 for the 

first/complete H+ dissociation and 1.92 for the second/partial dissociation step. This 

should not yield drastically different results to those from 0.1 M H2SO4 and can be 

compared with the results for HCIO4. Markovic’s equivalent studies were performed 

in 0.05 M H2 S0 4 [2J (though single crystal electrodes were used), allowing an almost 

direct comparison with published works. As it stands, the present results are in good 

agreement with Markovic’s work on hydrogen oxidation (and hydrogen evolution 

which will give the same value for exchange current density) on Pt single crystal 

electrodes (0.45 -  0.98 mA cm'2). An interesting point to note is that Markovic’s 

work shows that there is a dependence upon Pt single crystal structure for the three 

basal planes. Hence, a polycrystalline electrode with structural contributions from
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each of these planes should give an exchange current density value which lies in the 

range of these single crystal values. The results from this project on polycrystalline Pt 

lie within this range, matching the prediction.

Similarly, the present result lies within the range of values for exchange current 

densities on the basal plane single crystals found by Gomez et a P 1 (0.84 -  0.97 mA 

cm'2), though, according to these authors, these findings are not thought to be related 

to electrode structure. Hence, polycrystalline Pt is likely to give an exchange current 

density within the same range. Gomez's experiments were conducted in 0.5 M 

H2 SO4 , whilst the present study used 0.05 M H2 SO4 as the electrolyte. This 

difference in concentration would be expected to lead to a large difference in 

exchange current density. Equation (4.1.3) shows explicitly the relationship between 

the exchange current density and proton concentration. Comparison of Gomez’s 

results with those from this project and those of Markovic et a P ] imply that there is 

no dependence of exchange current density on acid concentration, contradicting 

equation (4.1.3). However the comparison with Markovic’s results implies that 

results collected in this project correspond to clean electrodes, free from contaminants 

(at least over the duration of these experiments). This leads back to the matter of why 

the result in HCIO4  electrolyte gave such a high value for exchange current density. 

The published value for y'o for HER/HOR in HCIO4 of 1.35 mA cm' 2 (from Maruyama 

et aP^) is higher than that reported for H2 SO4  of 0.45 -  0.98 mA cm' 2 (from Markovic 

et a P ]). Though these values are not directly comparable, again due to the different 

electrolyte concentrations, it is thought that this discrepancy in concentration should 

account for the difference in exchange current density. This assumption would imply 

that there is little effect due to the different electrolytes used.

The standard rate constants, k°, evaluated in the present study show a relatively small 

variation, with electrolyte, giving values o f 1.26 x 10"4 cm s’ 1 in HCIO4  and 0.79 x 10' 

4 cm s' 1 in H2 SO4 , compared to the much greater discrepancy between the jo values. 

Unfortunately no literature values for k° could be found for comparison.
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5.1.2 Hydrogen evolution on Pt-group metal electrodes

5.1.2.1 Hydrogen evolution on Pt in 0.1 M H2SO4

The hydrogen evolution experiments were performed in a similar manner to the 

hydrogen oxidation experiments on a polycrystalline Pt electrode, but the potential 

was swept in the opposite sense, from 0 V to -0.200 V vs. RHE (-0.292 V to -0.492 V 

vs. Ag/AgCl).
'■j

The experimental results afforded an exchange current density value of 1.88 mA cm'", 

which is high compared to the literature value o f 1.00 mA cm'“ reported by Bockris et 

a P \  The jo value from the present study is roughly twice as high as the value 

obtained from the hydrogen oxidation experiments in section 5.1.1 in 0.05 M H2 SO4 . 

This implies a direct proportionality between concentration and exchange current 

density, which is in agreement with the relationship:

nF kf Cl = (5.1.2)

(all symbols are defined in section 4.1.1.1) which shows the direct proportionality 

between jo and C*. However, this then contradicts the comparison of Markovic et

and Gomez et a P \  where similar jo values are found but in different 

concentrations of H2 SO4  (0.05 mol dm' and 0.5 mol dm' respectively). There must 

therefore be a further factor involved which is possibly related to the rotation o f the 

electrode. The results in the present project have been taken at varying rotation rates 

and analysed in the appropriate manner using the Koutecky-Levich equations. 

Similarly Markovic’s work was performed over a range of rotation rates. Gomez’s 

data was collected using stationary electrodes. For a fixed proton concentration, the 

exchange current density should not differ between the two techniques. However, the 

difference between the Gomez et al and Markovic et al studies appears to be 

attributable to the difference in experimental setup (if jo is proportional to electrolyte 

concentration).

The 0.1 M H2 SO4  jo value is closer to the 0.1 M HCIO4  value (section 5.1.1) than 

the value from the HOR experiments in 0.05 M H2 SO4  (1.88 mA cm'2, 2.42 mA cm"2
■j

and 0.89 mA cm' respectively). This may be expected as the more concentrated 

sulphuric acid is closer to the perchloric acid in terms of proton concentration than the 

less concentrated sulphuric acid. The discrepancy in jo can therefore be largely 

attributed to anion adsorption effects. The bisulphate anions should be
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electrochemically desorbed from the Pt electrode at hydrogen evolving potentials, yet 

there is a strong case to suggest that they do have an effect. Literature comparisons 

may be argued as supporting this concept, i.e. comparison of the Maruyama[l] and 

Bockris161 works. Maruyama finds an exchange current density of 1.35 mA cm' 2 in 

0.1 M HCIO4 , whereas Bockris et al find a value of 1.00 mA cm' 2 in a H2 SO4 solution 

of the same concentration.

5.1.2.2 Hydrogen evolution on Ir in 0.1 M H2SO4

Polycrystalline Ir was tested in the same manner as Pt as outlined in section 5.1.2.1.

Ir gave an exchange current density of 0.50 mA cm' , much lower than that found on 

polycrystalline Pt, showing that Ir is less active for the HER than Pt. Similarly, the 

standard rate constant for Ir was less than that for Pt and the transfer coefficient was 

in the same range (see table 4.1.2). A point to note about the transfer coefficient for 

hydrogen evolution is that the sum of the transfer coefficient for hydrogen evolution 

and that for hydrogen oxidation should be 1 , i.e.

ĤER + ĤOR = 1 (5.1.3)

Yet, the « h e r  values for Ir (and the other metals tested) seem particularly low, given 

that the « h o r  values for Pt in H2 SO4  did not stray too far from 0.5, which is typical for 

a reversible system and is often assumed to be the figure for use in equations when the 

real value is unknown. The « h e r  values are found to be lower than 0.2, hence it 

would not be fair to assume a value of 0.5 in this case.

Unfortunately, no previously reported data could be found for the transfer coefficient 

or the standard rate constant for HER on Ir in H2SO4, though the exchange current 

density was found for a 0.5 M H2SO4 electrolyte. It would be expected that the 

experimental value found in 0.1 M H2SO4 would be lower than that in 0.5 M H2SO4. 

However, this was not the case as the present work was found to give a value of 0.50 

mA cm' 2 compared to the literature values of 0.20 -  0.40 mA cm'2[7, 8] in 0.5 M 

H2SO4. The present Ir jo value is in a similar range to these literature values, but it 

seems to be fairly consistent with the experimental results in this section that the 

exchange current density figures are generally higher than those quoted in published 

works. This again shows that a difference is observed when measuring exchange 

current densities on effectively similar systems when using forced convection or
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stationary electrodes. However, there should be no difference between the two 

methods under steady state conditions.

5.1.2.3 Hydrogen evolution on Ru plated on Pt

Ru was plated onto the Pt electrode used in earlier experiments to assess the hydrogen 

evolution reaction on a thick Ru film in order to mimic the behaviour of a bulk 

electrode o f the metal. It is difficult to procure a pure solid Ru electrode. The plating 

proved difficult and a range o f electrolysis parameters were investigated, varying the 

current applied to the electrode, the temperature o f the plating bath and the length of 

electrolysis time amongst other factors. The final experimental parameters are 

detailed in section 3.1.2.1. Visually, the plated electrode was found to be less shiny 

than the un-plated electrode, with the full Pt surface being covered by Ru and no 

visible cracks observable in the Ru layer. A major experimental difficulty with this 

electrode was that it could not be polished since the plated Ru would be removed. 

Similarly, the electrode could not be electrochemically cleaned since soluble RuC>2 

forms when the potential is swept positive o f ~0.9 V vs. RHE. Hence, the surface was 

rough, despite being plated onto highly polished, mirror finish Pt. The cyclic 

voltammogram (fig. 4.1.7) reflects this. It can be seen that the Ru surface has a very 

high double layer capacitance which is typical o f rough Ru surfaces^. The area o f 

the Ru surface was calculated through comparison of similar eletrodeposited Ru 

cyclic voltammograms from Rand and W oods^. The area was found to be 1.475
"7 9cm , which is much higher than the values for Pt and Ir (0.265 and 0.294 cm 

respectively).

The values o f exchange current density for HER were fairly constant (0.24 -  0.27 mA 

cm'2), but all were much lower than those for Pt and Ir. This shows that this surface is 

very inactive for the HER. It is thought that this may be due to the stability o f RuC>2 

or RuO phases present under HER conditions and hence hindering the HER in the 

cases o f the lower potential limit. However, the values are greater than those found 

by Inoue et a f l0\  who performed hydrogen oxidation experiments on Ru{0001} and

Ru{1010} single crystal electrodes in 0.05 M H2SO4, reporting exchange current 

density values of 0.13 and 0.16 mA cm' respectively. This would support the effect 

o f doubling concentration causing a doubling o f exchange current density (assuming
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that there is no significant difference between y'o values on single crystal Ru surfaces 

and polycrystalline Ru). A twofold increase in Inoue’s results would give a range o f 

0.26 -  0.32 mA cm ' 2 (for a hypothetical 0.1 M H2 SO4 electrolyte) which corresponds 

well to the values o f 0.24 -  0.27 mA cm " found in this project using 0.1 M H2 SO4 .

An interpretation o f the high exchange current densities found throughout this section 

o f the project may be through a discrepancy in the determination of the electrode 

areas as a result o f contamination. It was assumed that the polycrystalline Pt 

electrode and the electrolytes were clean as reproducible CVs were obtained. It was 

therefore also assumed that the charge on the surface was measurable from the area o f 

the UPD-H charge on the CV (as explained in section 2.1.1.2) and the UPD-H charge 

density was assumed to be approximately 210 pC cm' for a polycrystalline surface. 

However, if  there were contaminants present and the surface was partially blocked, 

the charge density would be lower than the assumed value and hence the real 

electrode area would be higher than the calculated value (from equation (2.1.13)) 

which would give lower exchange current density values than those previously 

reported in section 4.1.

The transfer coefficients on all o f the Ru surfaces tested lie within a narrow range and 

are in agreement with those for Pt and Ir.

The Ru standard rate constants are very low in comparison to the other two materials. 

The standard rate constant values are fairly consistent between the three Ru surfaces 

tested, giving a range o f 0.11 -  0.13 x 1 O' 4 cm s '1. The narrow data range shows that 

the Ru surfaces are fairly reproducible using the preparation method described in 

section 3.1.2.1 (this is in agreement with the findings from the other two parameters, 

a and y'o, which also lie within a relatively narrow range). However the HER activity 

o f the plated Ru surfaces is relatively low. This low activity of the Ru electrode is 

thought to arise due to ruthenium oxides on the surface.
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5.2 Multi-Frequency AC Voltammetry

5.2.1 Varying acid concentration

Multi-frequency AC voltammetry was performed on polycrystalline platinum to 

investigate how hydrogen evolution on Pt varied with frequency. Other parameters 

were also changed (electrolyte concentration, H2 overpressure, rotation rate and 

temperature) and their influence on the frequency response monitored. The Pt 

electrode was tested in 0.05 and 0.25 mol dm'3 H2SO4. The voltammograms in both 

instances gave very similar shapes (and looked alike when plotted on their relative 

scales) which shows that the same process is occurring in both systems. Yet, it can be 

seen that the magnitude o f the MFACV in the more concentrated solution (fig. 4.2.1

(b)) is much greater than the less concentrated solution (fig. 4.2.1 (a)). This highlights 

the direct effect o f concentration on electrochemical rate, especially when considering 

the magnitude o f the admittance density in the hydrogen evolution region. The 

electrode in 0.05 M H2SO4 reaches a maximum value of 0.025 Q '1 cm'2 on the 

admittance density axis, whilst in 0.25 M H2SO4, a value o f 1.20 Q '1 cm'2 is reached. 

This shows directly a fivefold increase in concentration leading to a fivefold increase 

in admittance density. It can be seen that at the most negative potentials, the 

admittance density o f the MFACV in 0.05 M H2SO4 reaches a plateau where it does 

not increase further. This was not investigated in more depth at the time, but was later 

found to occur on Pt single crystal surfaces and is discussed in more detail in section 

5.3.1.

There is a small hysteresis on the voltammograms, which is more visible on the 0.25 

M H2SO4 voltammogram (due to the scale) (fig. 4.2.1 (b)). This is a result o f 

hydrogen bubbles forming at the electrode surface at the negative potentials of 

roughly -0.09 V vs. RHE (-0.38 V vs. Ag/AgCl, -0.15 V vs. Pd/H).
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5.2.2 Varying the H2 overpressure

The gas used to degas the system (Pt in 0.25 M H2SO4) was varied, using N2 and H2. 

The gas was then used as a blanket atmosphere in both cases to keep oxygen and any 

airborne contaminants from entering the solution. Fig. 4.2.2 shows the two 

voltammograms taken under each of these conditions. There is a strong variation in 

the shape of the voltammograms, which seems to show a suppression of the hydrogen 

evolution under hydrogen atmosphere as the two systems are swept to the same 

potential, yet only a very small amount of hydrogen is evolved under a hydrogen 

atmosphere compared to that measured under a nitrogen atmosphere. This may be 

rationalised as a consequence of the solution being already saturated with hydrogen. 

Hence, it becomes more difficult to introduce more hydrogen (evolved from the 

working electrode) into the solution. Therefore, an increased driving potential is 

required, i.e. the potential must be swept further negative before hydrogen is evolved.

5.2.3 Rotating Disk MFACV

The working electrode was rotated and the rotation rate varied to study the effect of 

this variation on the multi-frequency AC voltammetry. Fig. 4.2.3 shows some of the 

voltammograms taken, on the stationary electrode and at rotation rates of 1000 -  3000 

rpm. Subsequent runs at higher rotation rates (up to 5000 rpm) showed no change in 

the voltammetry and for that reason have not been presented in fig. 4.2.3. It can be 

seen that hydrogen evolution is suppressed as rotation rate is increased, to the point 

where virtually no activity is observed at all. Unfortunately this is not thought to be 

an effect directly related to rotation rates, but more a feature of contaminants within 

the electrolyte. The faster the working electrode is rotated, the more contaminants are 

drawn to the electrode surface, which adsorb thus decreasing the activity. Even if the 

solution appears to be very clean, with insignificant contamination effects under 

stationary conditions, this is unlikely to be the case when rotated, particularly at high 

rotation rates. This was also observed when rotating disk experiments were 

performed on clean single crystal electrodes. Though they are highly susceptible to 

contamination, the stationary electrodes gave good clean DC cyclic voltammograms,
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but the peaks diminished in magnitude when rotated. This would suggest that the 

rotating results taken in section 4.1 should be the result of contamination. It may be 

that the timescale of the MFACV experiments is relatively long compared to the DC 

measurements (approximately 20 minutes and 30 seconds respectively). Hence, the 

MFACV experiments contaminate over the timescale of the test, whilst the faster 

linear sweep voltammetry does not.

5.2.4 Temperature dependence of MFACV

Multi-frequency AC voltammograms were taken on Pt in 0.25 M H2SO4 at a range of 

temperatures between 278 and 318 K (5 -  45 °C). An interesting trend was noted and 

was reproducible on repeat runs. The measurements were taken over the same 

potential range, between 0.30 and -0.38 V vs. Ag/AgCl (0.53 to -0.15 V vs. Pd/H as 

shown in fig. 4.2.4, or 0.59 to -0.09 V vs. RHE), under N2 atmosphere. Initially, the 

temperature was varied in increments of roughly 10 K (278, 288, 295 (atmospheric 

temperature), 308, 313 and 318 K) as shown in fig. 4.2.4. It can be seen that the 

hydrogen evolution activity increased with temperature, reaching a limit around 308 

K then decreasing with subsequent runs at higher temperatures. Average values of 

admittance at each temperature have been plotted in fig. 5.2.1. A linear increase of 

admittance density is observed up to 308 K, which is followed by a sharp decrease in 

admittance density as the temperature is raised further.
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Fig. 5.2.1 Graph showing the relationship between temperature and peak admittance density in 

MFACV studies on Pt in 0.25 M H2S 0 4.
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This trend is thought to be related to contaminants as opposed to a genuine kinetic 

effect of the activity of the electrode decreasing at temperatures above 308 K. It may 

be that the mobility of any contaminants within the solution is enhanced at higher 

temperatures. This would result in more contaminants colliding with and adsorbing to 

the electrode surface, causing a decrease in activity and therefore a lower admittance 

density peak in the hydrogen evolution region. However, it is noted that it is unlikely 

that there is a particular temperature at which the contaminant mobility is suddenly 

increased. It is more likely that a constant increase throughout the temperature range 

investigated is to be expected. DC temperature dependent measurements were 

performed to investigate this phenomenon further.

5.2.5 DC temperature dependence measurements

Tafel data was taken for Pt in 0.05 M H2SO4, purged with H2 and varying the 

temperature between 273 - 323 K, specifically at 273, 283, 293, 303, 313 and 323 K. 

The Tafel data was taken using a rotating disk electrode, rotating at 900 rpm for direct 

comparison with temperature dependent studies by Markovic et a f2\  The results 

were analysed using the same method as in Markovic’s paper, as described in section

4.2.5. The Tafel plots gave exchange current densities similar to those found by 

Markovic et a P \  The data are shown in table 5.2.1. It can be seen that the 

experimentally obtained exchange current density values for polycrystalline Pt all lie 

within the range of those seen by Markovic for single crystal electrodes. At low 

temperatures the polycrystalline results agree closely with the published results for 

P t{100} whilst at higher temperatures they tend more towards the Pt{110} values. 

Nonetheless, no peak in the value of jo as a function of T was found in the DC 

measurements. Rather, jo was found to increase continuously with T, a normal aspect 

of electrochemical rate data. The logarithm of exchange current density was plotted 

against the reciprocal of the temperature (fig. 4.2.6), giving a linear Arrhenius plot 

which is in good agreement with Markovic’s results for single crystal Pt electrodes. 

This shows that the results are consistent with previously published data[2].

165



Temperature/ K Exchange current density/ mA cm'2

Experimental value Literature values^

Polycrystalline Pt P t j l l l} Pt{100} Pt{l 10}

274 0.37 (273 K) 0 .2 1 0.36 0.65

283 0.45 0.25 0.38 0.72

293 0.63 0.36 0.46 0.84

303 0.75 0.45 0.60 0.98

313 1 .0 0 0.53 0.67 1.07

323 1.21 0.74 0.71 1.24

Table 5.2.1 Exchange current density values at various temperatures.

The gradient of the arrhenius plot gives the activation energy for the hydrogen 

oxidation reaction (and hydrogen evolution reaction), i.e. the apparent enthalpy of 

activation at the reversible potential, A//°#, where

(5.2.1)
d(\ IT ) 23R g

The value found from the present results is 19.1 kJ mol'1, which is in the same range 

as that found by Markovic on a Pt{ 111} electrode (18 kJ mol'1). Markovic also found 

lower values for At f*  for the other two basal plane single crystal surfaces (9.5 kJ mol' 

1 and 12 kJ mol"1 for Pt{110} and Pt{100} respectively), though they are still within 

the same ranges as the values determined in this study.

Cyclic voltammograms were also recorded on polycrystalline Pt under the same 

conditions as employed for the Tafel data, but using N2 for degassing the 

electrolyte/overpressure and at a greater number of temperatures, particularly in the 

range 303 -3 2 3  K where the MFACV showed that the electrode was decreasing in its 

HER activity.

The cyclic voltammetry (fig. 4.2.7) showed an interesting trend with temperature. 

The charge under the oxide forming and stripping regions of the voltammogram 

increased with temperature, i.e. the oxide layer is more readily adsorbed (and hence is 

thicker, with more oxide adsorbing to the electrode). This trend was also recently 

observed in a similar experiment conducted by Jerkiewicz et a / 111, though more 

quantitatively with cleaner voltammetry.
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The DC measurements, both Tafel measurements and cyclic voltammograms show a 

continual increasing trend as temperature increases. Tafel data show exchange 

current density increasing with temperature whilst CVs show an increasing oxide 

region area. This implies that the relationship between admittance density and 

temperature shown in fig. 5.2.1 (i.e. the HER activity decreasing above approximately 

308 K) is solely related to the MFACV method. However, closer inspection of the 

DC results may offer an explanation. It can be seen that the potential of the CVs is 

shitting negative with increasing temperature. This translates to the reference 

electrode being affected by the temperature either through an increase in the mobility 

of NaVCf ions within the electrode or the variation of pH of the electrolyte. This 

feature can also be observed on the Tafel slopes in fig. 4.2.5 as the overpotential of 

the exchange current is shifting positive with increasing temperature (this was taken 

into account when calculatingy'o and therefore the calculated value of A //)# will not be 

affected). The potential shift in the DC measurements can then be used to rationalise 

the apparent trend in the MFACV data. The admittance density increases with 

temperature and at temperatures below ~ 308 K the reference potential shift is small 

enough that the admittance density increase is still observable. Whereas, at 

temperatures above 308 K the potential has shifted far enough that the admittance 

peak is significantly negative of the lowest potential in the sweep parameters. Thus, 

the assumed admittance peak is actually at a potential more positive of the actual 

peak, making it appear as thought the limiting admittance density is decreasing when 

in reality it is likely to be increasing.
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5.3 Single crystal electrode studies

The conditions and experimental arrangements for the remainder of the investigation 

were very different to those in the previous sections. Single crystal electrodes are 

highly susceptible to the adsorption of contaminants. Contaminants impact more 

significantly on the voltammetry of single crystals due to the sharpness of the 

voltammetric peaks, arising from the highly ordered nature of the surface. Small 

concentrations of contaminants will noticeably reduce the intensity of such well 

defined voltammetric peaks due to adsorption to the single crystal electrode surface, 

leading to blocking of sites for hydrogen adsorption. The experimental setup 

employed for single crystal studies was described in section 3.3. The main alterations 

to the system in relation to the earlier studies included the cell (fig. 3.3.1) which was 

fitted with gas inlets and stoppers in order to keep out air and maintain an 

overpressure of inert gas. The electrolytes were all prepared from concentrated 

Aristar grade sulphuric acid, diluted with ultrapure water (18 MQ cm) in clean 

glassware (cleaned as described in section 3.3) and hence contained minimal 

contaminants. This was supported by the cleanliness of the cyclic voltammograms. 

A Pd/H reference electrode was used (instead of Ag/AgCl) as it may be cleaned by 

heating in a Bunsen flame. There is also no chance that it will leach chloride ions into 

the solution as may occur with Ag/AgCl reference electrodes.

This led to a large amount of time being spent on ensuring the cleanliness of the 

system, which often consisted of multiple cleaning attempts using cleaning methods 

which regularly required soaking in strong oxidising acids over long periods of time.
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5.3.1 Cyclic voltammetry and MFACV studies

Good cyclic voltammetric data was obtained for the three basal plane single crystal Pt 

surfaces ({111}, {100}, {110}) and various stepped Pt surfaces between {111} and 

{100} on the stereographic triangle ({755}, {533}, {211}, {311}, {511}, {711}, 

{911}, {1 1 , 1, 1 } and {13,1,1}). The reproducibility of these voltammograms and their 

similarity to the accepted voltammetric profiles 1̂21 shows that the cell and electrolyte 

were clean, hence further tests could be reliably conducted on the surfaces.

Multi-frequency AC voltammetry was then performed in the hydrogen evolution 

region on each of these surfaces in order to investigate any structure specificity. As 

explained previously, there has been much debate between groups as to whether the 

hydrogen evolution reaction is dependent upon single crystal surface structure12,131 or 

not[3, l4, l5\  Hence, the issue is not fully resolved. These experiments on single 

crystal electrodes hope to shed some light on the issue.

HER activity comparisons were taken from the limiting admittance density; i.e. the 

point on the MFACV plot (1/Z versus co versus E) at which the admittance density 

reaches a plateau. The greater this value, the faster the HER rate.

A graph of limiting admittance density versus crystal step density (i.e. number of
'y

{111} x {100} or {100} x {111} steps per cm of electrode area) was plotted (fig. 4.3.6 ) 

to investigate a structural dependence for the reaction rate.

It was noted from this graph that Pt {111} had a relatively high admittance density 

plateau, which decreased with decreasing {1 1 1 } terrace width/ increasing 

{1 0 0 } x {1 1 1 } step density, until the structure approached the turning point on the 

relevant side of the stereographic triangle. From {211}, approaching the turning 

point, {311}, where step density is a maximum, the admittance density increased and 

reached a maximum at {311}. The P t{511} surface, which is close to {311} on the 

stereographic triangle (on the branch of decreasing {1 1 1  }x{ 1 0 0 } step density between 

the turning point and {1 0 0 }) also gave a relatively high admittance density plateau. 

The admittance density plateau then decreased with decreasing { ll l} x { l00} step 

density/ increasing {1 0 0 } terrace width.

This implies a structure sensitivity for HER rate on Pt, which decreases with 

increasing surface density of (100}x{l 11} steps for Pt(s)[n{l 11 }x{100}] crystals and
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increases with decreasing surface density of { 1 1 1 } x {1 0 0 } steps for 

Pt(s)[n{ 100} x {111}] crystals. However, both of these trends break down near the 

turning point {311} where the HER rate increases to a maximum.

Subsequently, it was then noted that, despite the data already being normalised to 

surface area, there appeared to be a trend relating decreasing admittance density with 

single crystal electrode area. A graph of admittance density plateau versus reciprocal 

crystal area was therefore plotted (fig. 4.3.7) which confirmed this trend.

Hence, there is a further factor relating to electrode area which is affecting the HER 

rate on Pt. It is proposed that this relates to the edge sites of the electrode. The 

smaller the circular electrode surface, the greater the ratio of edge sites to surface 

plane sites, (simply an argument of geometry). If these edge sites are more active for 

HER, the rate will be faster on small electrodes even after normalisation to surface 

area.

It is suggested the edge effects may be crucial as a consequence of the 

electrode/electrolyte/gas interface in a hanging meniscus configuration. If H2 is able 

to diffuse away from the electrode surface into the gas phase more quickly at the edge 

compared to when desorbing from the electrode surface into the electrolyte, then the 

faster H2 can be evolved.

MFACV experiments also record data besides potential, frequency and admittance. 

Phase angle, time and the real and imaginary components of impedance are also 

recorded. Phase plots (phase angle versus frequency versus potential) for some of the 

single crystal surfaces investigated in this chapter are shown in fig. 4.3.5. They show 

a frequency dependence in the UPD hydrogen region (which is also observed on the 

admittance magnitude plots) but no frequency dependence in the hydrogen evolution 

region, where the phase angle also drops away to zero on each of the surfaces. The 

zero phase angle is generally associated with a pure resistor, hence there is no 

capacitative effect at these frequencies in the hydrogen evolution region. Phase plots 

can be useful when a hysteresis is seen on the admittance plots, as the hysteresis 

relates to the process occurring in a different manner on the forward and reverse 

potential sweeps. The phase plots are independent of electrode area and will only 

show the hysteresis of the admittance plots if the surface has chemically changed. If 

the hysteresis is related to a decrease in area due to contaminants deactivating sites or 

hydrogen bubbles forming on the surface, this will not be observed in the phase plot.

170



Fortunately none of these single crystal MFACVs show hysteresis on the admittance 

plots and the electrodes/electrolytes were tested for cleanliness before and after each 

experiment using cyclic voltammetry.

The single crystal electrodes show similar MFACVs to those on polycrystalline Pt in 

the less clean configuration used in the earlier part of the project, though the 

admittance is significantly higher for the single crystal electrodes when considering 

the concentrations of the sulphuric acid electrolytes (0.1 M for the single crystal 

electrodes, 0.25 M for the polycrystalline electrode). A plateau is observed for the 

limiting admittance density of the single crystal electrodes when the potential is swept 

sufficiently negative into the hydrogen evolution region. The plateau region was also 

observed on a roughened (polycrystalline) single crystal Pt surface (fig. 5.3.1).

Fig. 5.3.1 MFACV o f roughened P t { l l l }  in 0.1 M H2S 0 4.

Admittance 
density O ' 1 cm '2

Frequency Hz

Potential V vs. P d  H

The MFACV of roughened single crystal Pt showed a similar shape to those observed
I 0for the single crystal electrodes, with an admittance density plateau of 0.13 Q cm' . 

This value does not agree well with the results taken for the single crystal electrodes 

in comparison with graph 4.3.7 (admittance density plateau versus 1/area) as the high 

electrode area of 0.139 cm should give an even lower admittance density plateau 

(approximately 0.07 according to graph 4.3.7), though it is in a similar range.

In comparison with the previous polycrystalline data (section 4.2.1, fig. 4.2.1(a)), it is 

observed that the admittance definitely does show a plateau on the polycrystalline Pt 

electrode at potentials negative of -0.10 V vs. Pd/H. The polycrystalline data from
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section 4.2.1 also showed the plateau around -  0.1 V vs. Pd/H. It is therefore 

surprising to see such a difference in the admittance density plateaus in the two 

electrolytes, 0.03 f t ' 1 cm'2 and 0.13 IT 1 cm'2 in 0.05 M H2S04 and 0.10 M H2S 0 4 

respectively. It may be possible that this is related to the different electrode 

configurations. In the earlier setup using a polycrystalline Pt electrode encased in 

nylon, only the flat Pt surface was exposed and submerged in the electrolyte. The use 

of a hemispherical bead electrode in meniscus contact with the solution is thought to 

lead to an enhancing effect on the HER due to the electrode/electrolyte/gas interface 

(as described earlier in this section and discussed in further detail in section 5.3.2), 

though this is unlikely to cause such a dramatic effect as that seen here. This implies 

that, for the 0.05 M H2SO4 result, there may also be an effect due to contaminants 

deactivating Pt sites without affecting the HER mechanism, which are not present in 

the cleaner solution.

5.3.1.1 Model circuit analysis of MFACV data

As shown in section 4.3.1.1, a model circuit analysis was applied to the MFACV data, 

where three parameters (Rq, Rs and a) could be adjusted in order to simulate a 

MFACV plot of the same shape as the recorded data.

/?o, the pre-exponential factor in the potential-dependent charge-transfer resistance 

term, was found to vary linearly with the limiting admittance density value and the 

reciprocal of area. This relationship seems appropriate because as surface area 

increases, the charge transfer resistance decreases and since it has been shown that 

there is a linear relationship between limiting admittance density and 1/surface area, 

there should also be a linearity between limiting admittance density and charge 

transfer resistance. It can also be seen that the region over which the charge transfer 

resistance is influential (i.e. the region between the onset of hydrogen evolution and 

the admittance density plateau) ranges over approximately the same potential region 

for each of the surfaces (between 0 and -0.1 V). Hence, the rate of increase of Rqt 

(and therefore R q) will depend upon the limiting admittance density. There was no 

systematic variation of Ro with the crystallographic step density, implying there is no 

dependence of HER on surface structure.

The series resistance in the model circuit analysis, Rs, is a more complicated term as it 

may represent many resistances in the electrochemical system which may not be
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separated from each other due to the frequency independence of the recorded data. 

Referring back to the simulation equations (4.3.4) -  (4.3.6) it can be seen that at the 

limiting admittance potentials

RS = Z  (5.3.1)

Hence, the limiting admittance density is given by

1
Y =
1 Inn RSA

(5.3.2)

Therefore \/R$A should vary linearly with limiting admittance density. This linear 

relationship is shown in fig. 5.3.2, which is effectively the raw limiting admittance 

value versus 1//?S- The good linear fit shows that the simulated Rs values are 

essentially the same as the limiting impedance values from the experimental data.
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Fig. 5.3.2 Graph o f limiting admittance density versus (Z?^)'1.

The transfer coefficient, a, showed little significant variation when plotted against any 

of the three factors investigated (limiting admittance density, 1/area and crystal step 

density) and any variation observed was not linked to these factors.
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5.3.2 CO blocking experiments

In order to investigate the influence of the hanging meniscus electrode configuration 

(specifically the effect of the crystal edge/electrolyte/gas interface) in relation to HER 

an experiment was devised to eliminate these effects. Experimental details are 

explained in sections 3.6 and 4.3.2. The general premise of this experiment is that CO 

blocks the edge sites of the electrode being tested, such that a measurement which is 

independent of these sites may be taken.

As explained in section 4.3.2, the timescale for multi-frequency AC voltammetry 

experiments was relatively long (approximately 10  minutes) during which time the 

CO was gradually removed from of the electrode (as shown in fig. 4.3.13) rendering 

the results invalid. Therefore the tests were performed under DC, steady state 

conditions (potential swept between 0.1 and -0.1 V with a sweep rate of 0.005 V s '1, in 

0.5 M H2SO4, such that the conditions were similar to published work by Gomez et 

a P ]). This allowed the tests to be conducted on a much faster time-scale, such that 

CO was still adsorbed on the electrode surface at the end of the experiment. The 

cyclic voltammetric data did not change throughout each test.

A number of important data sets were collected for each electrode in the three 

electrode configurations involved in the experiment:

(i) the clean annealed single crystal in the hanging meniscus position,

(ii) the CO coated crystal in the hanging meniscus position with CO 

electrochemically stripped from the surface,

(iii) the partially submerged electrode with the flat surface exposed to the 

electrolyte but with its hemisphere still blocked by CO.

Exchange current density was plotted as a function of step density and reciprocal of 

electrode area for each of these electrode configurations. The cyclic voltammograms 

obtained are shown in fig. 4.3.14, whilst plots of the exchange current densities versus 

atomic Pt step density and 1/area are shown in figs. 4.3.15 -  4.3.20.

The exchange current density values obtained from the DC experiments for each 

annealed single crystal in the hanging meniscus conformation followed the same trend 

as the MFACV data taken previously. The shape of the exchange current density 

versus step density graph (fig. 4.3.15) matched well with the limiting admittance 

density versus step density graph (fig. 4.3.6). Similarly, the DC graph of exchange
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current density versus reciprocal electrode area (fig. 4.3.18) showed a trend which 

agreed with that seen for the AC graph of limiting admittance density versus 

reciprocal electrode area (fig. 4.3.7).

The data for the CO coated electrode in the hanging meniscus configuration showed a 

similar trend, although it was much less pronounced and all exchange current 

densities were lower than their annealed equivalents, despite cyclic voltammetry data 

matching well. This shows that the edge sites must be partially deactivated by the 

CO. The nature of this deactivation is uncertain; one notion could be that CO 

physically hinders the diffusion o f H2 into the gas phase, thereby slowing the rate of 

evolution of hydrogen. However it is unlikely that such a significant decrease in rate 

would be observed as a result of such behaviour.

Interpretation of the clean, annealed and CO-coated beads in the hanging meniscus 

configuration is facilitated by use o f a model in which atomic hydrogen is mobile over 

Pt surfaces1 l6l  As hydrogen is evolved rapidly via the Volmer mechanism, faster than 

it can recombine via the Tafel mechanism (which is the rate determining step for the 

HER on Pt, see section 1.2) at the electrode/electrolyte interface, the concentration 

gradient becomes so great that hydrogen is forced to migrate onto the hemisphere of 

the electrode. Here it can recombine outside of the solution and desorb as H2. Hence, 

when the hemisphere of the electrode bead is covered with adsorbed CO, the mobility 

of H over the hemisphere surface is hindered, lowering the rate at which hydrogen 

may be evolved from the surface in the close proximity of the electrolyte. If the entire 

hemisphere was involved in the process, the larger electrodes would show a greater 

rate enhancement for the clean annealed surface as the hemisphere area is 

approximately equal to 2nr2 (where r is the radius of the electrode). HER rate would 

therefore increase directly with surface area, nr^. This is not found to be the case, as it 

can be seen that the HER rate is enhanced more on the smaller electrodes than the 

larger ones. Therefore only a small area of the hemisphere is involved in this process, 

which is likely to be a similar area for all the bead sizes (since it is governed by 

diffusion rate not total size) and so will have a greater effect on small crystals. It is 

therefore only a small, localised region of the hemisphere, close to the electrolyte over 

which the hydrogen is able to migrate (fig. 5.3.3).
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Migration region

H H H H H H H H H H H+ I i

Fig. 5.3.3 Two-dimensional schematic diagram showing H migration across Pt surface (represented by 

red arrows) and blocking by CO adsorbed to the surface (the blue region represents CO adsorbed on the

hemisphere o f  the electrode).

Comparison of the CO coated bead in the hanging meniscus and partially submerged 

bead configurations also showed a discrepancy in exchange current density values. 

The data for the partially submerged electrode showed no significant trends for 

exchange current density with respect to step density or crystal area (fig. 4.3.17 and 

4.3.20). This shows that there must be a further effect which is slowing the hydrogen 

evolution between the CO blocked hanging meniscus and partially submerged bead 

configurations. It is highly likely that this is related to the electrode/electrolyte/gas 

interface and the ability of H2 to diffuse away from the electrode more readily into the 

gas phase than into the electrolyte. The decrease in jo on the CO coated bead is 

relatively small between the hanging meniscus and submerged electrode 

configurations. This decrease is related to area in a similar manner as the larger 

decrease observed between the annealed and CO coated beads in the hanging 

meniscus configuration. The smallest electrodes show a greater jo  decrease than the 

larger ones. This is represented schematically in fig. 5.3.4.
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Fig. 5.3.4 Two-dimensional schematic diagram, highlighting the enhanced hydrogen evolution from 

edges at the electrode/electrolyte/gas interface comparing CO coated electrode hemispheres in the 

hanging meniscus and submerged bead configurations.

The exchange current density values for the submerged electrode are considerably 

lower than those found by Gomez et a P ] using single crystal electrodes in the same 

electrolyte (0.48 -  0.56 mA cm' compared to 0.84 -  0.97 mA cm '). Gomez et al 

also use single crystals manufactured by the Clavilier bead method with just the 

planar faces exposed (as seen by cyclic voltammograms[17]) and with no holder or 

resin delimiting the electrode from the electrolyte118], in the hanging meniscus 

configuration. It is speculated that Gomez et al would also find a similar decrease in 

jo if they were to eliminate the hanging meniscus effect. Comparing the data from this 

project for the exchange current density values in the hanging meniscus configuration, 

it is the relatively small electrodes which show values similar to those of Gomez’s 

work. Thus it is predicted that the electrodes used by Gomez et al are of surface areas 

in the range of 0.028 -  0.038 cm2.
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The P t{311} single crystal electrode obeyed the trend seen by the other single crystal 

electrodes in terms of exchange current density decreasing after the CO treatment and 

again after being partially submerged into the solution (0.90 mA cm'2, 0.54 mA cm'2 

and 0.53 mA cm" respectively). However, it showed unusual behaviour in terms of 

its cyclic voltammetry. Fig. 4.3.21 shows that the shape of the cyclic voltammogram 

invariably changed after the Pt {311} crystal was exposed to CO, despite the CO being 

electrochemically stripped, hence the surface structure was being affected. This 

phenomenon was not seen with any of the other surfaces, all of which gave cyclic 

voltammograms which matched very closely to the profile of the flame annealed 

crystal before and after the CO adsorption and stripping. The UPD-H area of the 

cyclic voltammogram of Pt (311} has not been affected and hence, the fact that it is 

still showing the same trend as the other single crystals supports the case that there is 

no dependence of the HER activity on single crystal structure. The difference in 

exchange current density values between individual single crystal electrodes is related 

to the crystal area (more specifically the edge seffects).

5.3.2.1 Fitting rate constants to single crystal Tafel data

The Volmer and Tafel rate constants were found for a range of stepped single crystal 

Pt electrodes in the three electrode configurations described in section 5.3.2 using a 

computational fitting routine. The data is displayed in tables 4.3.3 -  4.3.5. No 

prominent trends are observed when plotting the Volmer or Tafel rate constants 

against exchange current density, the reciprocal of crystal area or even crystal step 

density. This is consistent with little structural dependence of HER rate.
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5.3.3 Pt{ 111} crystals o f different sizes

A further test was constructed to investigate the findings relating to exchange current 

density dependence on area as opposed to single crystal structure. Two similar, flame 

annealed Pt {111} crystals of different sizes were tested in the hanging meniscus 

configuration and measured for exchange current densities. The results can be seen in 

table 4.3.6. It can be seen that the smaller crystal gave a significantly higher 

exchange current density than the larger one, supporting the present findings that 

hydrogen evolution is dependent upon single crystal electrode area (specifically 

related to edge sites) as opposed to surface structure. Both values are in good 

agreement with data taken in the hanging meniscus configuration for the experiments 

in section 4.3.2, and would fit well on the graph of exchange current density versus 

reciprocal electrode area (fig. 4.3.18). Of course the larger crystal would not support 

the hypothetical trend relating to structure dependence of hydrogen evolution detailed 

in section 4.3.1 (fig. 4.3.6). The cyclic voltammograms of the two Pt{111} surfaces 

are shown in fig. 5.3.5.
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Fig. 5.3.5 Cyclic voltammograms o f the two Pt{ 111} crystals under investigation in section 4.3.3, in 

0.5 M H2S 0 4 at potential sweep rate 0.05 V s '1.
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5.3.4 Pt{ 110} and different cooling methods

At this point, we have seen that there is no dependence of hydrogen evolution rate on 

Pt single crystal surfaces between {111} and {100} on the stereographic triangle once 

edge effects are eliminated. This is in agreement with previous work by the 

Lipkowski1151 and Feliu131 groups. However, looking at Feliu’s exchange current 

density values, it can be seen that Pt{111} and {100} give the same value, 0.84 mA 

cm 2, whilst the figure quoted for P t{110} is significantly higher at 0.97 mA cm'2. 

This is overlooked in terms o f a structural dependence and is said to be within error. 

Coincidentally, the works by Conway1131 and Markovic 2̂1 which support the structure 

sensitivity of HER on Pt single crystals also quote Pt{110} as having the fastest rate 

for HER in acid.

It was therefore thought to be important to address Pt {110} as the structural 

dependence analysis so far in this project has been based on single crystal surfaces 

lying between {1 1 1 } and {1 0 0 } on the stereographic triangle.

An interesting phenomenon associated with the Pt {110} surface which has been 

exploited in this test was the formation of two different structures of the surface when 

cooled in different atmospheres. When a P t{110} crystal is cooled in H2 the surface 

reconstructs in a partial ( 1x2 ) atomic arrangement with every second row of top layer 

atoms absent1191, but when cooled in CO it reconstructs to a ( lx l)  arrangement, 

(shown schematically in fig. 5.3.6).

O

\ a) ( b )

First layer atoms Q  Second layer atoms ^  Third layer atoms

Fig. 5.3.6 Schematic diagram o f Pt {110} in (a) lx l  and (b) 1x2 reconstruction1201.
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The cyclic voltammograms in fig. 4.3.25 show that the different cooling methods 

have resulted in different surface reconstructions of the Pt {110} electrode, yet neither 

a perfect {1x1} or {1 x2} reconstruction was achieved. Instead two intermediate 

surfaces were achieved. However, they were sufficiently different to warrant further 

investigation. Hence, the CO coating/electrode submersion experiment was 

performed as with the single crystal surfaces (as described in section 3.6).

As can be seen in table 4.3.7 the exchange current density values of the flame 

annealed crystal are relatively low, as expected due to the large electrode area (0.098 

c i t T ) .  There is a small decrease in jo  when the crystal bead is coated in CO and little 

or no significant change when the electrode is partially submerged. The data for the 

two surface reconstructions agree very closely, showing no significant dependence 

upon surface structure at all. The figures also fit with the exchange current density 

versus 1/area graphs for the previously tested single crystal electrodes in the three 

investigated electrode configurations (figs. 4.3.18 -  4.3.20). This, then contradicts the 

findings of Conway et a t niand Markovic et a P \  Rather, in the present study at least, 

there is no dependence o f exchange current density on single crystal structure.

The structural dependence observed by Markovic and Conway must therefore be 

related to the experimental processes used. Markovic’s work utilises cylindrical Pt 

electrodes with single crystal surfaces, flame annealed, cooled in H2 and mounted in a 

rotating ring disk electrode holder1211. The high exchange current densities observed 

must therefore be related to the rotation o f the electrode. However it is not known 

precisely why the Markovic group see a variation of jo  with surface structure. It 

would be useful if, in future, systematic measurements could be performed in the 

Markovic configuration. Then it may be expected that systematic changes in 

exchange current density as a function of step density would be observed.
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5.4 Surface Modified Pt{hkl} electrodes

5.4.1 Epitaxial single crystal metal films

Thick films of Pd, Rh and Ru were deposited onto a Pt {111} single crystal electrode 

(0.022 cm") and annealed to give the equivalent single crystal surface (i.e. Pd {111}, 

Rh {111} and Ru{0001}) using the forced deposition technique described in section

3.5. Fig. 4.4.1 shows the cyclic voltammograms of these surfaces and fig. 4.4.2 

shows the bulk metal equivalents from literature sources. It can be seen that the 

shapes of the appropriate voltammograms are in good agreement with each other, 

showing that the deposition was successful and yielded metallic layers analogous to 

their bulk single crystal surfaces. This technique has a range of advantages. It is 

much cheaper than manufacturing the individual single crystal surfaces as it only 

requires a small amount o f the metal to be studied in a solution and only one single 

crystal electrode template is required as a substrate for the investigation of a number 

of different metals. A further advantage in the present study is that any edge effects 

would be “constant" throughout the experiment. However, it can be difficult to anneal 

the surface to the correct point, particularly when annealing in a Bunsen flame, such 

that the surface becomes single crystalline without removing too much of the 

deposited metal (as a volatile oxide). This was found to be particularly problematic in 

the case of Ru, which subsequently had to be resistively heated by the passage o f up 

to 11 A o f current through the electrode for 1 -  2 minutes, whilst under a N2 

atmosphere (i.e. no oxygen present). The surfaces are therefore not ideally suited for 

flame annealing, though this may become easier as the technique is refined. A further 

drawback associated with the technique is that small amounts of the deposited metal 

may alloy with the bulk substrate electrode, which can be difficult to remove and can 

require prolonged periods of flame annealing or electrochemical cycling to regenerate 

the pristine Pt surface.

Initial linear sweep measurements were taken on the surfaces described above in 0.1 

M H2SO4 (fig. 4.4.3), but not under steady state conditions (with a sweep rate of 0.5 V 

s' 1 over a wider potential range than is generally used for HER, 0.8 to -0.4 V). These 

initial results are therefore merely qualitative indicators of relative catalytic activity. 

Hence, exchange current density figures could not be taken from these plots. Pt and
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Ru appear to give the highest HER activity based on the magnitude of the HER 

currents generated. Bi gave the lowest activity. Since Bi blocks HER active Pt sites 

and hydrogen evolution still occurred despite all UPD-H sites being blocked, it is 

concluded that UPD-H is not involved in the HER as reported previously by Gomez^3,
1") i

. The Rh surface gave rise to a similarly shaped LSV to the Bi surface, in that the 

onset of hydrogen evolution started at more negative potentials than for the other 

three surfaces, though the HER on Rh did appear faster than on Bi. The Pd linear 

sweep voltammogram resided roughly midway between the Ru and Rh 

voltammograms.

Multi-frequency AC voltammograms were also taken on the five surfaces in 0.1 M 

H2S 0 4 (see fig. 4.4.4). They were performed at steady state (0.00125 V s '1) and should 

therefore be reliable in comparison with the linear sweep voltammograms above. It

can be seen that bare Pt and Ru give the highest limiting admittance density values at
1 20.32 and 0.28 cm' respectively, which is expected from the linear sweep

I 9voltammetry. Pd gave a lower value of 0.21 cm' . The Bi and Rh surfaces give

the lowest admittances, with admittance on the Bi covered Pt surface reaching a
1 2plateau at 0.18 Q' cm' , whilst that for Rh did not reach a plateau. The Rh surface 

gave quite a distinct shape and did not reach a limiting admittance (at 0 . 2 0  Q' 1 cm’2) 

density until swept to very negative potentials (-0.35 V vs. Pd/H) compared to the 

other surfaces which all reached a constant admittance value before -0.19 V vs. Pd/H. 

The Rh voltammogram also shows a large hysteresis which is not observed on the 

other surfaces. Although on Pt, FTIR shows that HSOT anions are already desorbed 

from the surface at HER potentials15̂, this may not necessarily be the case for Rh. 

This strong UPD-H adsorption is even observed at very low sweep rates and is 

therefore an intrinsic property of HSOT anions on the surface. It may be that this 

strong irreversibility in anion adsorption and desorption just prior to UPD-H may be 

causing the hysteresis effect observed for the Rh surface in the MFACV 

measurements. Thus the strongly adsorbed HSO4' is present on the negative-going 

MFACV potential sweep and desorbs at negative potentials, forcing hydrogen 

evolution to occur at potentials negative of this. However the anions are not present 

on the return (positive) potential excursion, hence the difference in surface, giving rise 

to the hysteresis on the MFACV. The phase plot for the Rh surface (fig. 5.4.1) is very 

“noisy” between 0 and -0.1 V vs. Pd/H, showing that the nature of the surface is 

changing in this region, which is likely to be due to the adsorption/desorption of
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HSO4’ anions. At more negative potentials the phase plot shows no hysteresis, 

implying that the hysteresis observed on the admittance plot is related to a change in 

available surface area (as phase plots are independent of area). The admittance plot 

hysteresis is therefore likely to be due to hydrogen bubbles formed on the surface as a 

result of the high negative potential to which the system must be driven to in order to 

desorb the anions before hydrogen is evolved.

The cyclic voltammograms of each surface taken before and after the MFACV (fig. 

5.4.2), show a small change, though not significant.
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Fig. 5.4.1 Phase plot for deposited Rh on P t{111} in 0.1 M H2S 0 4, corresponding to the admittance

plot in fig. 4.4.4 (c).
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Fig. 5.4.2 Cyclic voltammograms o f Rh on Pt{ 111} before and after MFACV experiments were

performed on the surface.
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The Rh, Pd and Bi coated Pt surfaces were reproduced and tested using linear sweep 

voltammetry under steady state conditions, in 0.5 M H2SO4, at potential sweep rate 

0.005 V s '1. A Au {111} surface was also prepared using the same method as that for 

the other films. However a Ru surface of similar quality proved difficult to reproduce 

and was subsequently not included in this set of results.

The linear sweep voltammograms were recorded over a significantly shorter potential 

range than the non-steady state tests above (0.1 to -0.1 V vs. Pd/H) and showed 

different trends. Bare Pt is again the most active surface giving a (relatively low) jo 

value of 0.59 mA cm'2 (see table 4.4.1). Bi gives a lower exchange current density 

value as expected, though the HER mechanism is not changing, as the Tafel slope 

does not vary far from that of bare Pt (33.4 mV/dec compared to 31.5 mV/dec on bare 

Pt). This implies that the Bi coverage, though completely blocking UPD-H activity, 

does not completely block HER activity and there are still Pt sites available for 

hydrogen evolution. Experimental works and proposed models by Gomez et a f22] 

deduce similar findings, yet show a far greater decrease in HER activity (0.85 mA cm' 

2 on bare Pt decreasing to 0.12 mA cm'2 at approximately full Bi coverage of the 

Pt {111} surface^22̂ ) than is observed in this experiment (0.59 mA cm'2, decreasing to 

0.28 mA cm’2) under the same conditions. This phenomenon is discussed further in 

section 5.4.6.

Rh displays a very similar linear sweep voltammogram to that of Bi on Pt, with a 

slightly higher Tafel slope (35.5 mV/dec), but the same value for exchange current 

density as Bi on Pt (0.28 mA cm'2). The increase in Tafel slope is surprisingly large 

for Rh which is reported to adopt the Tafel recombination mechanism for HER[23,24] 

(with the Tafel step being rate determining) similarly to Pt. It would be expected to 

give a Tafel slope in the region of 29 mV/dec. In the present study, the experimental 

value is approaching the value of 42 mV/dec which is representative of the Volmer- 

Heyrovsky mechanism.

A significant difference between the steady state results for the single crystalline 

metallic overlayers on Pt compared to the non-steady state results is found for Pd. It 

is somewhat less active for HER than the Bi coated Pt {111} electrode and the Rh 

layer when under steady state conditions. This was not the case under non-steady 

state conditions. It can be seen from the Tafel data in table 4.4.1 that Pd adopts the 

Volmer-Heyrovsky mechanism for hydrogen evolution (where the Heyrovsky step is 

rate determining) as the Tafel slope is 44.4 mV/dec. The Pd surface is therefore likely
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to be less active for HER than other surfaces which evolve hydrogen via the Volmer- 

Tafel mechanism.

The Au {111} surface then gives the lowest exchange current density value of 0.03 

mA cm'“, making it almost inactive for hydrogen evolution. The small amount of 

hydrogen which is produced is via the Volmer-Heyrovsky mechanism as the Tafel 

slope is not dissimilar to that on Pd (45.4 mV/dec compared to 44.4 mV/dec) despite 

the relatively large difference in jo (0.03 mA cm'2 for Au compared to 0.14 mA cm'2 

for Pd).

Multi-frequency AC voltammograms were taken on the metallic surfaces in 0.5 M 

H2SO4 and showed some intriguing results when compared to the DC measurements. 

Unsurprisingly, the bare Pt surface was the most active, giving a limiting admittance 

density of 0.10 Q ' 1 cm'2, yet Pd was the next most active surface for HER as it gave a
I 7limiting admittance density o f 0.08 Q‘ cm' . As was observed with the MFACVs of 

the surfaces in the earlier experiment using 0.1 M H2SO4 as the electrolyte, the Rh 

surface could be swept to relatively high negative potentials before the admittance 

density reached a plateau (in this case it had not even reached a plateau at -0.45 V vs. 

Pd/H). This is thought to be a consequence of the strong adsorption of HSO4' anions 

as described above. Hence, as the electrolyte concentration is greater in this 

experiment than that used previously (0.5 M H2SO4 compared to 0.1 M H2SO4 used in 

the previous experiment), the anion adsorption/desorption effect is so strong that the 

hydrogen evolution reaction kinetics are still not dominant over the anion desorption 

even at -0.45 V vs. Pd/H and no plateau is observed. Similarly, the highly inactive Au 

layer did not reach an admittance density plateau despite being swept to -0.45 V vs. 

Pd/H, compared to the Pd and Pt surfaces were only be swept to -0.29 V vs. Pd/H.

An intriguing point of note is the discrepancy between the Rh and Pd surfaces when 

using multi-frequency AC voltammetry and linear sweep voltammetry. The exchange 

current density data from the linear sweep voltammetry indicates that Rh on Pt {111} 

is more active for the HER than Pd on Pt {111}, yet the opposite is shown by the 

multi-frequency AC voltammetry. It is unclear why this should be, as both 

experiments were done on the same respective surfaces and under the same 

conditions. Both features appear to be genuine. Pd is known to produce hydrogen via 

the Volmer-Heyrovsky mechanism[25] and should therefore yield a linear sweep 

voltammogram with a Tafel slope close to 42 mV/dec which is observed in the
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present study. Also the feature of the MFACVs, whereby Pd produces a plateau and 

Rh does not, was observed both in 0.5 M H2SO4 and in 0.1 M H2SO4 electrolyte, both 

of which were performed under steady state conditions.

5.4.1.1 Model circuit analysis of epitaxial films MFACV data

The model circuit data in table 4.4.2 shows the variation in R q, R s and a  for the 

epitaxial metal films. It can be seen that the two surfaces which give multi-frequency 

AC voltammograms which do not plateau (i.e. the Au and Rh films) both have very 

low transfer coefficient values of 0.1 and low R q values of 200 Q and 400 Q for Rh 

and Au respectively compared to 2080 Q and 2000 Q for Pt and Pd respectively. An 

interesting point of note is that Rs shows very little variation between the four 

surfaces with a range of just 23 -  29 Q. This supports the findings from the stepped 

single crystal Pt electrodes as it shows that external resistance effects (such as those 

which may arise from variations in solution concentration, edge effects, electrode 

shape or changes in meniscus configuration) do not vary significantly between 

different metals if the shape and size of the electrode surface does not change. The 

absolute Rs figures for these surfaces are much lower than those seen on the stepped 

single crystal Pt electrodes due to the concentration of the electrolyte used in each 

case, 0.5 M H2SO4 for the epitaxial films and 0.1 M H2SO4 for the stepped single 

crystals, i.e. the higher the acid concentration, the lower the resistance within the 

solution.

5.4.1.2 Fitting rate constants to epitaxial metal film Tafel data

The rate constants of the films on Pt support the accepted HER mechanisms. The 

Volmer-Tafel-Heyrovsky fitting routine broke down for the surfaces which are known 

to adopt the Volmer-Tafel mechanism[23] (Pt and Rh) yet it fitted well for the surfaces 

which are known to adopt the Volmer-Heyrovsky mechanism (Pd[26J and Au[24]). The 

different possible mechanisms make comparisons of rate constants between surfaces 

difficult as only the Pt and Rh surfaces have meaningful Tafel rate constants, whilst 

only the Pd and Au surfaces have meaningful Heyrovsky rate constants. The Volmer 

forward and backward rate constants show an increase with exchange current density. 

However, due to the small number of surfaces tested, it is not reliable to deduce if the
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trend is linear or if another dependence is present. A point of note is that the forward
n

Tafel rate constant on Pd is much higher than that for the Au surface (8.5 x 10' and 

1.08 x 10' 16 cm s' 1 on Pd and Au respectively). It is even higher than that for Pt and 

Rh (2.38 x 10'7 and 2.32 x 10'7 cm s' 1 respectively). Thus the kinetics of the HER on 

Pd are being affected by the Tafel reaction, which could be due to the recombination 

reaction occurring on Pt below the Pd surface due to absorbed hydrogen within the 

Pd. The Pd film is reasonably thick, though it is not quite bulk-like. Hence, it may be 

possible for the kinetics of the HER on the subsurface Pt to be influencing the rate 

constants. However, the Tafel slope does not appear to be affected by the Tafel 

mechanism as it takes a value of 44.4 mV/dec. This Tafel slope is representative of 

Volmer-Heyrovsky kinetics (where the Tafel slope is approximately 42 mV/dec(27]), 

suggesting that the Tafel reaction is not involved in the HER on Pd. It is therefore 

suggested that the Heyrovsky step is the rate determining step, whilst the extent of the 

Tafel reaction occurring in this instance may be real, but not great enough to influence 

the kinetics of the HER to any considerable degree.

5.4.2 Ir deposited onto Pt{l 11}

Ir was found to be difficult to deposit onto Pt using the forced deposition method and 

therefore the method of using a Bunsen flame to “flash reduce” a droplet of Ir(III) 

solution onto the electrode (as described in section 3.5) was employed. This resulted 

in a rough Ir deposit which did not give rise to a single crystalline structure 2̂81 upon 

gentle flame annealing or even by resistively heating under a N2 atmosphere. A high 

Ir coverage could be achieved by the flash deposition method, whilst linear sweep 

voltammetry and cyclic voltammetry were used to study the surface. The Ir modified 

Pt electrode was heated in a Bunsen flame (to systematically remove small amounts 

of Ir) and subsequently cooled in H2, in order to study the effect of Ir loading on the 

hydrogen evolution activity. The CVs and LSVs of these various Ir covered surfaces 

are shown in fig. 4.4.7 and fig. 4.4.8 respectively. It can be seen from the cyclic 

voltammetry that the Ir-modified surfaces cause hydrogen evolution to occur at less 

negative potentials as a significant amount is evolved at potentials positive of 0 V vs.

1 8 8



Pd/H. The Tafel slopes for the Ir surfaces are slightly larger than that for the bare 

Pt {111} surface, although it is not thought that this increase is great enough to 

represent a change in HER mechanism. The cyclic voltammetry also shows that the Ir 

surface area decreases with annealing as more Ir is removed. However, the decrease 

in activity shown by the linear sweep voltammetry does not correlate directly to the 

decrease in Ir area. This correlation was quantified by normalising the charge density 

of each surface to that of the bare Pt {111} surface and similarly normalising the 

exchange current density value from each surface to that of Pt {111}. The ratio of 

these two figures then corresponds to the relative activity of each surface compared to 

the bare Pt surface. It can then be seen from the data in table 4 .4 .4  (taken from fig. 

4 .4 .7  and fig. 4 .4 .8 ) that the increase in HER activity is a genuine observation which 

must be related either to Ir being either a more effective catalytic material or to some 

geometric feature associated with the roughness of the deposit. It was observed 

earlier in the project (section 4 . 1.2.2) that bulk Ir is a less effective catalyst for the 

HER than Pt, hence it was suspected that the increased hydrogen evolution activity 

observed for Ir deposited onto Pt {111} was related either to surface alloying or to the 

geometry of the deposits. However, recent density functional theory calculations 

from Norskov et a /*29'311 suggest that Pt-Ir alloys would not be significantly more 

active for hydrogen evolution than Pt. Hence, in section 4 .4 .3 , an experiment was 

designed to test whether or not the enhanced HER activity observed on the Ir surfaces 

is related to the morphology of the Ir film. This is discussed further in section 5.4 .3 .

5.4.2.2 Fitting rate constants to Ir modified Pt Tafel data

The HER responses of the Ir on Pt surfaces were all fitted to find Volmer and Tafel 

rate constants (omitting any Heyrovsky term). The results are displayed in table

4 .4 .5 . The fitting routine broke down when the Heyrovsky step was modelled, 

showing that the HER on the Ir surfaces is occurring via a Volmer-Tafel mechanism. 

The low Tafel rate constant values with respect to the Volmer rate constants shows 

that the Tafel step is rate determining. The individual rate constants were plotted 

against exchange current density in order to see if any meaningful trends could be 

seen (fig. 4 .4 .9 ). The Ir surfaces showed that k\ and k.\ increased linearly with j 0, 

though the Pt {111} surface did not fit with the trend. k2 showed a general decrease 

with y'o, though one of the Ir surfaces (anneal 4 ) did not fit the trend. If there was a
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genuine relationship between ki and jo it would be expected that hydrogen evolution 

activity (and therefore jo )  should increase with rate (and therefore the limiting rate 

constant, ki). It was therefore deduced that plotting the individual rate constants 

against exchange current density was not meaningful and they were not plotted in 

subsequent experiments. However, the fitting routines were still applied to 

subsequent results as they indicate the HER mechanism on the surface under 

investigation.

5.4.3 Pt deposited onto Pt{l 11}

In a similar experiment to that performed in the previous section with Ir, a solution of 

Pt(IV) was flash reduced onto a Pt {111} surface to give a rough Pt layer. The results 

were also analysed in a similar manner to those from section 4.4.2. Cyclic 

voltammograms were taken of the surfaces from a large bulk-like Pt deposit, 

decreasing the surface area of the overlayer in small increments by gentle heating in a 

Bunsen flame until a well-ordered Pt {111} surface was obtained. Cyclic 

voltammograms of the rough Pt deposits again show the onset of hydrogen evolution 

beginning at more positive potentials relative to the smooth Pt {111} surface (as was 

also observed with the Ir deposits). As with Ir, as small amounts of Pt were removed 

from the surface, the exchange current density (taken from the linear sweep 

voltammograms in fig. 4.4.11) did not decrease accordingly. The Tafel slopes 

increased slightly on the deposited Pt surfaces, yet not significantly. The quantitative 

data shown in table 4.4.6 shows that all of the deposited Pt surfaces have slightly 

lower UPD-H charge than bare Pt (and therefore charge density also, as it has been 

assumed that the surface area is the same as the geometric area on all of the surfaces, 

0.022 cm'2). The comparison of the exchange current density/charge density ratio 

relative to bare Pt shows an increase in HER activity, though not as significant as that 

observed with Ir (1.44 -  1.91 for deposited Pt compared to 1.45 - 3.43 with Ir).

This then indicates that the increased HER rate is a result of the arrangement of the 

deposited atoms as opposed to a genuine electrochemical catalytic effect from the 

material (which may have been an explanation for the effect with deposited Ir). Here,
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a model is proposed for the arrangement, to explain the results. It is suggested that 

small islands/mountains form under the “flash” deposition conditions, which cause an 

increased radial diffusion to and from the electrode1321. These deposits act as 

microelectrodes (or even nanoelectrodes) and are separated such that the collective 

diffusion domains which they enclose is greater than that of a planar Pt{111} 

electrode. Diffusion domain theory has been investigated in depth by Compton and 

Davies132'341. Fig. 5.4.3 is a schematic diagram from Davies and Compton1331 showing 

the diffusion profiles for various types of diffusion on an array of microelectrodes 

embedded in an insulator. It shows the cases for (1) small linear diffusion, (2) small 

non-linear diffusion, (3) overlapping (or large) non-linear diffusion layers and (4) 

large, overlapping linear diffusion. The nature of the diffusion domains overlapping 

results in a deactivation of diffusion to the surface overall. However, when the 

domains are sufficiently far apart that there is no overlap, the gap between the 

diffusion domains leaves a region with no diffusion. Hence, there is an optimum 

spacing between microelectrodes at which the total diffusion area enclosed is a 

maximum. This spacing should be equal to 2r, where r is the radius of the spherical 

diffusion domain associated with each microelectrode (assuming they are of equal 

size).

©  individual small diffusion layers 
linear diffusion

\
m icroelectrode in* " B,or 

in su la to r

individual diffusion layers: 
non-linear diffusion

'x \
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©  overlapping diffusion layers

/  ' / . / /   N '• ! » S s% — '' \  \  >. A •V ,'  - — ' n \  \  \  \

©
heavily  overlapping diffusion layers 

linear diffusion

Fig. 5.4.3 Schematic diagram presenting different possible diffusion profiles for an array o f 

microelectrodes within an insulating material. Reproduced from Davies and Compton1331.
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If it is assumed that the diffusion to the surface of the flash deposited metal is similar 

to that at microdisc electrodes as seen in fig. 5.4.3 (2) or (3), with non-linear diffusion 

(greater than the linear diffusion on the planar Pt {111} substrate electrode) then a 

version o f Davies and Compton’s model may be applied to the system. The different 

annealed states o f the surface give rise to different overlapping interactions o f the 

diffusion domains. When the inter-island spacing is so small that there is a strong 

diffusion domain overlap, the diffusion becomes effectively linear and akin to that o f 

the bulk surface. Therefore, the surfaces which give rise to the greatest enhancement 

for the HER are speculated to have average island spacing closest to the optimum 

value. This is shown schematically in fig. 5.4.4. The possible drawback with this 

model is that the area o f the electrode is increasing in proportion to the diffusion 

domain, yet the cyclic voltammograms o f Ir on Pt and Pt on Pt show little or no 

increase in charge, implying that there is a small or insignificant increase in area. 

This suggests that the diffusion domains associated with the islands o f deposited 

metal must be much greater than that o f the planar Pt substrate, so much so that they 

are highly dispersed and do not relate to a significant increase in electrode area. 

Looking specifically at the cyclic voltammograms o f Ir deposited onto Pt {111} (fig. 

4.4.7), it is clear that the surface is very close to P t{111} in nature and that only a 

small amount o f Ir must be present on the surface. This supports the speculation that 

there is a large spacing between islands.

Fig. 5.4.4. Two-dimensional schematic diagram showing how the island spacing affects the net 

diffusion domain (yellow) o f  the islands (grey) deposited on a surface (blue) with (a) linear diffusion 

domain o f  a flat electrode, (b) radial diffusion domains o f  highly dispersed islands, (c) radial diffusion 

domains o f  islands close to the optimal spacing and (d) strongly overlapping diffusion domains o f  close

islands, approaching linear diffusion.
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Cyclic voltammograms o f the Pt deposited on Pt {111} surface show less long range 

{111} order than those o f Ir deposited on Pt {111}. Thus the deposited Pt islands 

cover a greater proportion o f the surface than the Ir islands. This may arise from 

either Pt islands being much wider and flatter than the Ir islands (and therefore 

covering a greater surface area) or they m ay simply be more numerous, breaking up 

the long-range order. However, a high number o f islands is unlikely in these cases as 

no significant area increase is observed, which would be expected with many small 

islands as the simulated surface is effectively rough. The suggested island 

arrangements for the Ir and Pt islands are shown in fig. 5.4.5.

Fig. 5.4.5 Schematic diagram showing possible arrangements o f  (a) Ir and (b) Pt islands deposited onto

P t { l l l } .
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A further suggestion relating HER enhancement to enhanced radial diffusion at the 

monoatomic high edge sites o f islands was disregarded because such small atomic 

structures causing enhanced HER effects is unlikely considering there is no 

discrepancy between HER rate on different single crystal surface structures.

Pandelov and Stimming reported a similar enhanced HER rate for Pd islands 

deposited on Au{ 111} surfaces1351. They find that for submonolayer coverages o f Pd, 

the smaller the Pd deposits, the greater the HER enhancement. This is partially in 

agreement with the proposed model for Ir on Pt {111} in the present study where 

diffusion to and from islands allows for augmented HER kinetics. However, the 

suggestion o f HER rate decreasing with increasing island deposits can only apply for 

surfaces where the diffusion domains o f the islands overlap. It can be seen from 

Pandelov's graph o f exchange current density versus the percentage of gold in the 

surface (fig. 5.4.6) that one could interpret a maximum (representing the optimum 

island spacing) around 95 % Au, though the authors have not assumed this. This is in 

agreement with the present study as it shows that the optimum island spacing may 

arise at a very low coverage, which appears to be true o f the Ir islands. Pandelov’s 

proposed model is that the Volmer discharge step is the rate-determining step for the 

HER and occurs quickly on Pd islands. The adsorbed intermediate hydrogen is then 

able to move relatively freely over the Au surface (spillover) where it recombines 

(which also occurs on the Pd surface), leaving Pd sites free for the Volmer process to 

continue. Though, if  this model is correct, it is unclear why the same enhancement 

should not be observed for all Pd coverages up to one monolayer. Further arguments 

arise with this spillover model as it is known that the Volmer step is not rate- 

determining on either Au or Pd[24], rather it is the Heyrovsky desorption step on both 

materials. Thus the mention o f recombination o f hydrogen (i.e. Tafel step) by 

Pandelov and Stimming1351 creates a flaw, though it is thought that the description 

would also apply to the actual mechanism (including the Heyrovsky step).
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Fig. 5.4.6 Plot o f  exchange current density versus percentage o f  Au in surface for Pd islands deposited

on A u {111}[35].

It has been suggested that the spillover model[35] could offer an explanation for the 

HER enhancement observed in the present study. This could apply by way o f mobile
I

adsorbed hydrogen being evolved at the Pt surface and spilling over onto Ir islands 

where it can recombine and leave the surface more readily than on the Pt-electrode 

surface as the M-H bond strength on Ir is lower than on Pt. However, Trasatti’s 

volcano curve[36] (fig. 1.3.1 (b)) the M-H bond strength is actually very slightly 

stronger on Ir than on Pt. Also, this is not supported by the enhanced HER observed 

from depositing Pt on Pt {111}-

A means o f rationalising the enhanced HER rate on both Pt and Ir modified P t{111} 

surfaces would be to suggest that the shape o f the deposits facilitates the spillover 

effect. This would relate to an optimum enhancement as a balance between the 

structural spillover effect and the deactivation o f hydrogen evolution due to the less 

active deposited material blocking more active Pt sites. Thus, the Pt on Pt {111} goes 

against the theory once again as an optimum HER enhancement would relate to a very 

rough surface and therefore an increase in area, which is not observed. Therefore, it is 

thought that the spillover model may be disregarded in favour o f the diffusion model 

for the present study.
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5.4.3.1 Fitting rate constants to Tafel data from Pt on Pt

The Pt deposited onto Pt {111} surfaces gave rate constants fitted using a Volmer- 

Tafel fitting routine. An attempt to model the data using a Heyrovsky-based fitting 

routine did not work well, showing that the HER mechanism on these surfaces does 

not involve a Heyrovsky step. The data is displayed in table 4.4.7. The Pt-modified 

surface rate constants fit more closely with the Pt {111} surface than those on the Ir- 

modified surfaces from the previous section. The forward Volmer rate constants 

appeared to increase fairly linearly with exchange current density, though this was 

assumed to be coincidental as k . \  and k i  showed no trend relating to j o .

5.4.4 Pd films on Pt

As well as depositing a relatively thick film o f Pd onto Pt {111} to obtain a model, 

near bulk-like Pd {111} surface (section 5.4.1), very small amounts o f Pd were added 

in increments, up to a coverage o f two monolayers using the forced deposition method 

described in section 3.5. The figures in section 4.4.4 illustrate the results. Table 4.4.8 

shows the data, in terms o f monolayer fractional coverage, Tafel slope and exchange 

current density. The Tafel slope and exchange current density are plotted against 

fractional Pd coverage in fig. 4.4.14. This graph indicates that the Tafel slope shows 

little change below one monolayer Pd coverage. It begins to increase when the Pd 

coverage is greater than one monolayer but does not quite reach 42 mV/dec as is 

observed on bulk Pd surfaces where the HER mechanism tends to the Volmer- 

Heyrovsky as opposed to the Volmer-Tafel mechanism (which occurs on Pt). 

Similarly, the exchange current density at Pd coverages below one monolayer does 

not vary far from the figure on bare Pt. As the coverage approaches one monolayer, 

there is a small but significant, decrease in jo. This value remains fairly constant until 

the Pd coverage approaches two monolayers. The surface behaviour then becomes 

more Pd-like with further significant decreases in exchange current density 

accompanied by a simultaneous increase in Tafel slope.

The results show that depositing small amounts o f Pd onto a Pt surface has little effect 

on the HER activity below a monolayer coverage, with the surface behaving as

1 9 6



though there were no Pd present. It is not until the Pd coverage is close to a full 

monolayer that an effect is observed, though this partial change in mechanism is not 

great enough to show that the HER is taking place solely via the Volmer-Heyrovsky 

mechanism. This suggests that Pt is still actively catalysing the HER despite being 

covered by Pd. Pt actually appears to be more influential on the hydrogen evolution 

mechanism at one monolayer Pd coverage than Pd, as the Tafel slope and exchange 

current density figures match more closely to those on bulk Pt than on bulk Pd. Even 

at two monolayers o f Pd deposited onto the Pt electrode, the Pt still has a strong 

influence on the hydrogen evolution as the HER mechanism is still not representative 

o f bulk Pd.

In similar experiments conducted by Markovic et aPb̂ (at 278 K in 0.05 M H2 SO4  

using a rotating disc electrode) it was found that the deposition of a monolayer o f Pd 

resulted in a change in mechanism to the Volmer-Heyrovsky mechanism and that the 

HER rate actually increased with Pd coverage up to one monolayer. Markovic 

attributes this to small defects or steps within the Pd layer. He also shows that the Pd 

is adopting the Pt structure pseudomorphically, where HER enhancement may arise 

from the induced lattice strain within the Pd layer (where the lattice constants for Pd 

and Pt are 3.89 A and 3.92 A respectively). The results are not in agreement with the 

present study either mechanistically (the present study suggests that there will not be 

such a significant change in mechanism at one monolayer Pd) or kinetically (there 

should not be increased HER kinetics with Pd deposited on Pt). It is thought that the 

differing results must arise due to the different experimental approaches between the 

groups, yet the present study suggests it unlikely that monolayer coverage o f Pd on Pt 

should give an enhanced HER rate.

5.4.4.1 Fitting rate constants to Tafel data from Pd films on Pt

Two different fitting routines were used in the analysis o f the Pd films on Pt. This 

was because the HER mechanism was not the same over all surfaces. Similar to the 

results seen for the exchange current density altering with Pd coverage, there were 

three distinguishable regions which applied for the fitting routines. At low Pd 

coverages (< 0.82 monolayers), the Volmer-Tafel fitting routine was applied, whilst at 

high coverages (approaching two monolayers) this broke down and the Volmer-Tafel- 

Heyrovsky fitting routine was applied. The intermediate surfaces could be fitted
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reliably with both fitting routines (those using the Volmer-Tafel-Heyrovsky routine 

were shown in the results section, table 4.4.9).

An important point to note is that, whilst applying the Volmer-Heyrovsky model to 

the Pd adlayers data, the Tafel reaction rate constant is significantly large for all o f the 

surfaces, even at the higher Pd coverages. A similar point was also observed for the 

semi-thick Pd layer on Pt {111} discussed in section 5.4.1.2. Hence, in the case o f 

these thin Pd films it appears that the Tafel reaction is influential to a degree on all o f 

the surfaces as the forward Tafel rate constants are in the same range as the forward 

Heyrovsky rate constants as can be seen in table 4.4.9. This is also supported by the 

change in Tafel slope with increasing Pd coverage, as the slope does not reach the 

figure o f 42 mV/dec (the accepted figure for the Tafel slope o f HER occurring via the 

Volmer-Heyrovsky mechanism[27]) which is due to the influence o f the Tafel kinetics. 

Throughout the present study, it has been observed that the Tafel reaction is occurring 

on Pd on Pt {111}. It is also observed that the HER mechanism tends towards 

Volmer-Heyrovsky kinetics as Pd film thickness increases. This is to be expected if  it 

is assumed that the Tafel reaction is occurring on the Pt substrate and the Heyrovsky 

reaction is occurring on the Pd surface. The thicker the Pd layer, the less absorbed 

hydrogen will be seen at the Pt surface and therefore the less hydrogen will be 

evolved via the Tafel mechanism, whilst more hydrogen will be evolved via the 

Heyrovsky mechanism occurring on the Pd. In addition to this point, at low Pd 

coverages (i.e. below one monolayer) the Pd atomic arrangement is likely to be closer 

to that o f Pt (and the Pd may adopt more Pt-like properties) than a similar Pd layer in 

a bulk Pd structure. Hence, the more deposited Pd layers, the more the nature o f the 

surface will become like bulk Pd.

It can be seen from table 4.4.9 that k 2 and fa do not vary linearly with Pd coverage 

(nor do they vary linearly with each other), though it can be seen that in general the 

Heyrovsky kinetics become more influential at the higher Pd coverages, whilst the 

Tafel kinetics become less influential.

The data in table 4.4.9 from the Volmer-Tafel fitting routine shows that fa and fa have 

no dependence on Pd coverage. Rather, the values vary non-systematically over a 

wide range (8.9 x 10' 5 -  0.34 cm s' 1 for fa and 7.45 x 10' 9 -  5.28 x 10‘7 cm s' 1 for kj). 

The data taken using the Volmer-Tafel-Heyrovsky mechanism seem much more 

consistent, yet they still do not show any definitive trends between rate constants and 

Pd surface coverage. The forward Volmer rate constant appears to show a general
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decrease with Pd coverage, though the value at 1.75 monolayers appears to be an 

outlier. Similarly with Ay, one outlying point (in this case that at 1.95 monolayers) 

skews the plot so that a genuine trend can not be observed. The Tafel rate constant 

appears to decrease with Pd coverage but again it is not acceptable to assign a definite 

trend with so few data points.

5.4.5 Pd-Pt alloys

When a thick layer Pd deposited on a Pt surface is heated gently in a Bunsen flame, 

some Pd will be removed as the volatile palladium oxide, whilst a small residue can 

remain to form a surface alloy with Pt. This procedure was followed and gave rise to 

three Pt-Pd alloys with different proportions o f the two metals (35, 58 and 75 % Pd). 

The cyclic voltammograms o f these surfaces are shown in fig. 4.4.15 and the linear 

sweep voltammograms are presented in fig. 4.4.16. The Tafel slopes and exchange 

current density data are presented in table 4.4.10.

The results show a very interesting finding that, over the range of alloys tested, there 

is no significant change in exchange current density, which takes values in the range 

0.94 -  1.08 mA cm'2, with no trend relating to alloy composition. The figure remains 

relatively close to that found on the bare Pt {111} surface, 1.02 mA cm" . There is 

also no significant variation in Tafel slope (32.4 -  33.5 mV/dec). Thus showing that 

there is no change in HER mechanism at all throughout the range o f alloys in this 

experiment, as the Tafel slope is representative o f the Volmer-Tafel HER mechanism, 

typical o f a pure Pt electrode. It is noted that the Tafel slopes are slightly high 

compared to the accepted values for the Volmer-Tafel mechanism, but this has been 

the case throughout the project. The typical value observed in these experiments is 

roughly 31.5 -  33.5 mV/dec compared to the accepted value o f 29 mV/dec when the 

Tafel step is rate determining[37]. A similar finding is also noted when the Volmer- 

Heyrovsky mechanism is thought to be occurring on a surface. The theoretical value 

should be 42 mV/dec[27] yet the results from section 4.4.1 for semi-thick Pd and Au 

films show figures between 44 and 46 mV/dec.
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Fig. 5.4.7 Diagram showing that Pd (red) adsorbed to Pt (grey) in submonolayer amounts does not

hinder hydrogen evolution.

The Pd-Pt alloys therefore show little or no effect o f Pd on the hydrogen evolution 

reaction even with 75 % Pd present in the alloy. This is a highly surprising result as 

such a high proportion o f Pd would be expected to affect the HER activity. This 

result can be compared to that observed with the submonolayer Pd film coverages on 

Pt from section 4.4.4 which showed a similar, negligible effect providing there was 

still Pt in the surface layer (shown schematically in fig. 5.4.7). This is significant and 

has not previously been reported. One explanation for this observation is that the 

catalytic effect o f Pt is so great in comparison to Pd that even a small amount o f Pt in 

the surface layer will dominate the mechanism. However, if  this were the case Pd 

would block Pt sites as observed in the cyclic voltammetry and would therefore 

presumably deactivate the hydrogen evolution to some extent. The HER must 

therefore still be occurring as normal on Pt atoms despite the Pd adsorbed on the 

surface/alloyed within the surface layer. The surface layer Pd coverage may be easier 

to explain as hydrogen atoms could still diffuse relatively freely about the Pt surface. 

However, such diffusion processes are probably more complicated when the Pd is 

alloyed in the surface layer. It may be that the alloyed Pd in the surface absorbs 

hydrogen atoms produced from the Volmer reaction on the surface atoms (as is 

known to occur on bulk Pd[38]) which then undergo Tafel recombination on subsurface 

Pt sites as normal (fig. 5.4.8 (a)). However, this seems unlikely as the Pd would 

surely hinder the evolution o f hydrogen if  there were extra absorption and desorption 

steps involved in the process.
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Fig. 5.4.8 Two dimensional schematic diagrams showing three possible explanations for the 

insignificant variation in HER activity between Pt-Pd surface alloys (a) Pd absorbing atomic H, which 

recombines on subsurface Pt, (b) Pd adopting Pt mechanism, (c) HER occurring mainly on Pt in the

bulk o f  the electrode.
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Another suggestion is that Pd adopts the role o f Pt when within the Pt lattice (fig. 

5.4.8 (b)). The alloy structure must then match the bulk Pt structure, even with 

relatively high Pd composition, which may be possible due to the similar atomic radii 

o f the two metals (1.37 and 1.39 A for Pd and Pt respectively). This explanation is 

supported by the fact that there is no influence from the typical palladium mechanism 

(Volmer-Heyrovsky) on the Tafel data and no decrease in exchange current density 

either. This model would also apply to Pd layers deposited on Pt. The first Pd 

monolayer would adopt the Pt structure and Pt-like behaviour. When further Pd 

layers were added, the structure o f the Pd layer (and hence the properties o f the layer) 

would become more bulk Pd-like.

A further suggested model which supports the findings in this section along with 

those in the previous section regarding the submonolayer surface coverages o f Pd, is 

that hydrogen evolution occurs mainly within the bulk of the electrode and the surface 

composition has little effect on the HER activity (fig. 5.4.8(c)). This suggestion may 

also link strongly to the single crystal experiments in section 4.3. If the HER 

occurred within the bulk o f the electrode (i.e. a few atomic layers below the surface), 

the rate would not depend significantly on the atomic arrangement o f Pt atoms in the 

surface layer.

5.4.5.1 Fitting rate constants to Pd-Pt alloy Tafel data

The Tafel data for the Pd-Pt alloys was analysed using a Volmer-Tafel fitting routine 

to find the HER rate constants. The analysis was also performed using a fitting 

routine which included a Heyrovsky rate constant feature. However the latter analysis 

did not yield acceptable results since simulated OPD-H coverage isotherms showed 

that for the Heyrovsky step to be influential in the HER kinetics, the OPD-H surface 

coverage would be unrealistically low. Hence, it can be noted that the Pd (which is 

known to evolve hydrogen via a Volmer-Heyrovsky mechanism) is not significantly 

influencing the HER kinetics over Pt even when the alloy consists o f a ratio o f 75:25 

Pd:Pt. This directly supports the results seen in the analysis o f the exchange current 

density figures from the same data in section 5.4.5. Quantitative trends between rate 

constants and exchange current density (or Pd fraction) could not be drawn 

confidently due to the lack o f data points.

2 0 2



5.4.6 Bismuth overlayers

Bi was deposited onto three Pt single crystal surfaces (P t{111}, {100} and {110}) in 

order to investigate a structural dependence on the adsorption on the HER. The 

experiments were conducted solely in the hanging meniscus electrode configuration. 

The results can be compared to similar experiments conducted by Feliu and Gomez [3, 

221 on Pt {111} and Pt {100}. Feliu and Gomez plot the exchange current density 

against bismuth adatom coverage, #Bi, which is related to the fractional bismuth 

coverage (0Bi as used in the present study) by the relationship

0 BI = n Pl0 B i (5.4.1)

where np{ is the number o f Pt sites blocked (in the UPD-H region) by each Bi atom, 

generally accepted to be 2 -  3[22], with <2>Bi taking the value o f unity when all Pt UPD- 

H sites are blocked. The cyclic voltammograms are shown in fig. 5.4.9 and are on a 

similar scale to those o f Gomez et aP' 22\

The graph o f exchange current density versus fractional bismuth coverage on 

Pt {111} in fig. 4.4.17 gives a shape very similar to that o f Gomez et a P 2\  in that the 

initial decrease in jo activity is relatively sharp, with just a small amount o f Bi on the 

surface. The plot then continues on a shallower negative gradient until the Bi 

coverage approaches a full monolayer when the activity decreases more sharply again. 

The absolute values o f exchange current density for P t{111} are quite different 

between the present study and Gom ez's results[22]. Both sets give an initial value (i.e.
•j

for bare P t{111}) o f approximately 0.9 mA cm' , yet Gomez’s data diminishes to 

below 0.2 mA cm ' 2 with only 1/3 o f the surface blocked by Bi. However, the jo 

values in this project do not go lower than 0.5 mA cm' even when the P t{111} 

surface is almost fully blocked by Bi. Comparison o f the results for the Pt{100} 

surface show that the present study and Gomez’s results*^ are in good agreement over 

the range o f Bi coverage tested in this project. However, Gomez managed to achieve 

very high Bi coverages by the use o f  high Bi concentrations in H2 SO4  solution. The 

high Bi coverages in Gomez’s work lead to the exchange current density decreasing 

rapidly, though it does not reach zero.
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All of the results from the present study and from Gomez’s work are in agreement 

that hydrogen evolution is still occurring despite UPD-H sites being blocked. Thus, 

UPD-H is not related to the intermediate H in the HER.

These findings may be in agreement with those of the previous section which imply 

that hydrogen evolution is occurring on subsurface sites as well as on the electrode 

surface. Hence, even though the surface sites may be deactivated and blocked for

—i— '— i— •— i— •— i— '— i— •— i
0.0 0.2 0.4 0.6 0.8 1.0

Potential/ V vs. Pd/H

-OBi  
0.18 Bi

0.00015

<  0.00005
S
g 0.00000
<D

-  -0.00005
a>
i  -000010

-0.00015

-0.00020

- I — ■— I— '— I— '— I— '— I— '— I— '— I— '— 1— '— I— >— 1— '— 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Potential/ V vs. Pd/H

2 0 4



UPD-H, HER may still be occurring below the surface layer. The hydrogen evolution 

is then suppressed at very high Bi coverages when a Bi “compression structure” is 

formed1221.

The Tafel slopes were plotted as a function of Bi coverage for the three single crystal 

surfaces tested, the plots are shown in fig. 5.4.10. There is little variation o f Tafel 

slope and all of the values lie within the range 30.8 -  34.6 mV/dec, showing that the 

HER mechanism is not changing significantly with the Bi deposits. Hence, the 

Volmer-Tafel mechanism is still occurring, despite the UPD-H sites on the Pt surface 

being blocked. Over the Bi coverage range tested in this project, Gomez also 

observes little change in Tafel slope with Bi coverage on Pt {111 } [221 or Pt{100}[3]. 

However, Gomez achieved high Bi coverages under certain deposition conditions 

(using a high concentration o f Bi solution for the Bi deposition or a long deposition 

time) on the Pt {111} surface. The Bi adatom spacing permitted a surface coverage 

greater then the full coverage obtained by the standard forced deposition method, i.e. 

where > 1/3 (or fractional Bi coverage > 1 ). At these high coverages the Tafel 

slope increases rapidly, reaching figures around 60 mV/dec[22].
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Chapter 6 
Summary and Conclusions

The present study was intended to investigate the hydrogen evolution reaction on Pt 

and Pt-group metal (PGM) surfaces. The exploration into the most active surfaces 

for catalysing the reaction was important, with a view to increasing the efficiency and 

reducing the cost o f electrocatalytic hydrogen production for use as a fuel, either in 

proton-exchange membrane fuel cells (PEMFCs) or hydrogen based internal 

combustion engines (ICE-H 2 ) as an alternative to the combustion of fossil fuels.

The project aims outlined in section 1.7 give a more insightful view as to the specific 

intentions o f the work and will be discussed in this section.

The initial experimental aspect o f the project was concerned with the HER and HOR 

on polycrystalline Pt and the HER on other PGM surfaces (specifically Ir and Ru). 

The results for HOR were conducted partly as a test to calibrate the system in order to 

determine if  the experimental setup used could reproduce published results by 

Maruyama et aP^ for polycrystalline Pt in 0.1 M HCIO4. The exchange current

density figures were found to lie in the same range as the published works but the
2 2 absolute values were considerably higher (2.42 mA cm’ compared to 1.35 mA cm"

found by Maruyama). This result was considered acceptable and subsequently the

same tests were performed in 0.05 M H2SO4 which gave jo  values which were directly

comparable to figures found by Markovic et aP^ (0.89 mA cm ’2 compared to 0.45 -

0.98 mA cm ’2 found in the published work).

The second section o f the project involved the application o f  multi-frequency AC 

voltammetry (MFACV) to the polycrystalline Pt electrode. It was noted that the 

UPD-H activity was frequency dependent over the frequency range tested, whilst 

OPD-H activity was frequency independent. A number o f parameters within the 

experiment were varied to monitor the effect on hydrogen evolution. It was observed 

that variation in acid concentration was directly linked to the admittance signal o f the 

MFACV as a fivefold increase in acid concentration resulted in a fivefold increase in 

admittance.
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H2 and N 2 were both used to degas the electrolyte solution (and subsequently for 

atmospheric overpressure) and it was found that hydrogen evolved less readily when 

under a hydrogen atmosphere.

MFACV was combined with rotation o f the electrode to investigate the effect o f 

rotation rate. However, it was found that the rotation forced contaminants to the 

electrode surface, blocking sites and hindering hydrogen evolution activity.

The temperature o f the system was varied between 278 -  318 K. The admittance 

increased linearly with temperature up to 308 K, though above this temperature, the 

admittance decreased sharply. This was not observed with DC Tafel measurements 

taken over the same temperature range.

As the project advanced, the experimental setup was refined dramatically in order to 

increase the reproducibility and reliability o f results by using more rigorous cleaning 

methods and higher grade reagents. This facilitated the investigation of single crystal 

electrode surfaces which are highly susceptible to contaminants.

The third section o f the project involved the investigation o f stepped single crystal Pt 

electrodes. This yielded one o f the most important findings o f the study, showing the 

structural independence o f the hydrogen evolution reaction on stepped single crystal 

surfaces. This finding adds fuel to the debate surrounding this topic. Whilst it 

supports the findings o f Feliu et a P ] along with earlier work from Lipkowski et 

and Kita et a P \  it disagrees with research by Markovic et af2'6] and Conway et aP  ̂

who believe that the rate o f HER does vary with Pt single crystal structure. The early 

stages o f the single crystal investigations in the present study indicated that different 

stepped Pt surfaces were giving rise to a range o f exchange current density values and 

limiting admittance density values (in the MFACV experiments). This indicated that 

the HER was occurring at different rates on each surface and that the reaction was 

therefore dependent upon the single crystal surface structure. On further investigation 

it was noted that the larger crystal beads gave rise to the lower exchange current 

density values and the smallest crystal beads gave the higher values. Thus, there was 

a proportionality between the exchange current density and the reciprocal o f the 

electrode area (despite all voltammograms being normalised to electrode area). 

Numerous experiments were then constructed to deduce the nature o f this 

discrepancy. Linear sweep voltammetry was performed on two P t{111} crystals o f
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different size which yielded jo figures supporting the observations (i.e. the larger 

electrode gave the lower exchange current density figure). The same test was 

performed on a P t{110} crystal which, depending on the cooling method after 

annealing, reconstructed in different surface morphologies. It was observed that 

cooling the crystal in CO or H 2 gave differently shaped cyclic voltammograms, yet 

the linear sweep measurements on the two reconstructions gave very closely matching 

j o  values, showing that the discrepancies in exchange current density previously 

observed were not related to structural differences. However, the most significant 

experiment involved the range o f stepped single crystals and repeating the experiment 

in three different configurations in relation to the electrolyte. The electrode was (i) 

annealed and held in the hanging meniscus configuration. It was then (ii) coated in 

CO and held in the hanging meniscus configuration, and (iii) partially submerged into 

the electrolyte with the hemisphere o f the bead still coated with CO (shown 

schematically in fig.3.6.1). This experiment eliminated the hanging meniscus and any 

enhanced diffusion which may occur at electrode edge sites. The stepped single 

crystals in configuration (i) showed a linear relationship between exchange current 

density and area. This was also visible to an extent in configuration (ii), though it was 

much less pronounced. No such trend could be seen in when the electrode was 

partially submerged. The difference in j o  between configurations (i) and (ii) 

represents the effect o f the electrode hemisphere being blocked by CO, deactivating 

the Pt sites and thereby inhibiting the mobility o f H atoms over the Pt surface. The 

discrepancy between the exchange current density is greater for the smaller 

electrodes, showing that the recombination o f hydrogen on the hemisphere o f the bead 

adjacent to the planar surface is more significant for these electrodes. The smaller the 

electrode, the greater the ratio o f  “active” hemisphere area to planar surface area 

hence the more significant the decrease in exchange current density will be when the 

hemisphere is deactivated. The difference in jo between electrode configurations (ii) 

and (iii) therefore represents the (less significant) effect o f diffusion at the edge sites 

at the gas/electrode/electrolyte interface, which does not occur when the bead is 

partially submerged in the electrolyte. Thus with these effects eliminated, it can be 

seen that there is no significant change in the exchange current density across all o f 

the stepped Pt single crystal surfaces tested, and hence there is no structural effect on 

the hydrogen evolution reaction.
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Thick metal films of Rh, Au and Pd were deposited onto a P t{111} electrode surface 

using the "forced-deposition" method^8’ and annealed to give single crystalline 

surfaces comparable to published bulk electrode equivalents[ l 0  l2]. The aim was to 

investigate whether strain within the lattice o f the deposited film resulted in an 

enhanced hydrogen evolution rate. It was found that none o f the thick single crystal 

films were more effective at evolving hydrogen than the bare Pt {111} surface. Tafel 

slopes on each o f  the surfaces were similar to the accepted values for the bulk metals.

Attempts were made to form a bulk Ir electrode in the same manner as the other single 

crystal thick films, though it was found that Ir would not deposit via the “forced- 

deposition" method. Subsequently, Ir was deposited via the contact o f a droplet o f 

HoIrCU with the electrode and momentary exposure of this to a Bunsen flame. 

However, the deposit was not single crystalline and formed a rough Ir surface. This 

surface was annealed in an attempt to rearrange the Ir to form a single crystalline 

structure, though this proved unsuccessful. Instead, a dispersed array o f Ir islands was 

speculated to form. This surface gave an enhanced hydrogen evolution rate, with 

exchange current density greater than that on bare Pt. In order to determine whether 

this effect was related to the arrangement o f  the deposit or a genuine catalytic effect 

from the Ir, the test was repeated by depositing Pt onto the Pt {111} electrode using 

the same deposition method. This produced a similarly rough Pt surface which also 

gave enhanced hydrogen evolution activity (though not as great as that observed with 

the Ir deposits). The cyclic voltammetry o f the Pt and Ir deposited surfaces showed 

no increase in surface charge, implying that the area o f the electrode was not 

increased as a result o f the deposition. It was concluded that the Ir deposits were 

highly dispersed and sharp, covering very little o f the electrode surface (as the cyclic 

voltammograms showed the surfaces to have significant Pt {111} structure), giving 

rise to a net diffusion domain greater than that that o f the planar electrode surface 

without a significant increase in electrode area. The Pt deposits were assumed to be 

much wider and flatter, covering a greater surface area (though not significantly 

increasing the surface area) since the cyclic voltammograms showed less Pt {111} 

long-range order than those on the Ir deposited surface.

Pd was deposited onto a Pt {111} electrode in submonolayer increments and the 

hydrogen evolution activity was monitored accordingly. It was observed that the Pd

2 1 1



coverage had little effect on the HER kinetics until almost a full monolayer coverage 

was reached. As further Pd was added, the surface began to adopt more Pd-like 

characteristics, i.e. the Tafel slope increased from 32.3 mV/dec on bare P t{111} to 

39.2 mV/dec at Pd coverage o f almost two monolayers (compared to accepted figures 

o f 29 mV/dec on Pt[13̂ and 42 mV/dec on Pd[l3J). Fitting rate constants to the data 

using a computational fitting routine showed that the Pt surface was still influencing 

the HER at this Pd coverage (hence why the Tafel slope was not as high as 42 

mV/dec). When the fitting routine was applied to the bulk single crystal Pt surface, it 

was also observed that the Tafel rate constant (for the HER occurring on Pt) was high, 

yet it was not influencing the overall kinetics in this case as the Heyrovsky rate 

constant (for the HER on Pd) dominated.

Pd-Pt surface alloys were created by gently heating large Pd deposits on a Pt {111} 

electrode in a Bunsen flame. It was found that the Pd within the surface layer had no 

significant effect on the HER as the exchange current density and Tafel slope were 

unaffected even at 75 % Pd in the surface alloy. These results are both new and 

intriguing. In order to rationalise the independence o f the HER on Pt {hkl} electrodes 

and on model thin films, it is suggested that a large proportion o f the HER kinetics 

may be occurring within the electrode surface rather than at the surface. Hence the 

surface composition and atomic structure do not greatly influence the overall 

hydrogen evolution kinetics.

Bi was deposited onto Pt {111}, Pt {100} surfaces as in experiments conducted by 

Gomez and Feliu[3’ 14] as well as P t{110}. It was found that hydrogen was still 

evolved at a significant rate when all UPD-H Pt sites were blocked by Bi adsorbed on 

the surface. Gomez and Feliu found that the exchange current density diminished 

below 0.1 mA cm ' 2 on P t{111 }[l4], whilst in the present study the figure was found to 

go no lower than 0.51 mA cm'2. The Pt{100} results were in good agreement with 

Gomez’s results over a similar Bi coverage range[3], although the very high surface 

coverages achieved by Gomez could not be reproduced here. The Bi on Pt{ 110} 

results showed similar trends to the Pt {111} and Pt{ 100} surfaces tested. All o f the 

results confirm previous findings that UPD-H appears to play no role in HER kinetics.
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Reviewing these results in light o f the project aims, this work has been successful in 

the broadness o f the study, despite many experimental problems and drawbacks.

•  Hydrogen evolution has been studied on a wide range of surfaces, bringing

clarity to the area by combining many results together, facilitating

comparisons between the activity, rates and mechanisms for the reaction.

•  Polycrystalline Pt and a range o f stepped single crystal Pt electrodes were 

studied (using cyclic voltammetry, linear sweep voltammetry and multi­

frequency AC voltammetry) and it was determined that there was no 

dependence o f the HER on the structure of the planar Pt surfaces. It was 

however observed that electrode configuration does have a strong influence 

over the rate o f hydrogen evolution.

• Epitaxial films o f  Au, Pd and Rh were successfully deposited onto a Pt {111}

electrode, producing single-crystalline thick films similar to the bulk metal

electrodes. It was observed that there was no significant effect relating to 

lattice strain within these thick films as they behaved in a similar manner to 

the bulk metal, none o f  the surfaces producing higher hydrogen evolution rates 

than the Pt substrate.

• Further surface investigations showed that rough deposits o f Ir and Pt on a 

Pt {111} electrode enhanced the hydrogen evolution activity. The deposits are 

thought to be highly dispersed islands, with diffusion domains greater than 

those o f the planar substrate, leading to the increased hydrogen evolution rate 

observed.

• Pd was deposited onto a Pt {111} electrode in small increments, showing that 

Pt dominated the hydrogen evolution mechanism on the surface at Pd 

coverages up to one monolayer and was still highly influential on the kinetics 

at two monolayers o f  Pd.

• Pd-Pt surface alloys showed that Pd had little or no influence on the HER 

activity even when the alloy composition was 75 % Pd. This led to the 

suggestion that hydrogen evolution is occurring on subsurface sites which is 

highly influential on the overall HER rate, providing an explanation as to why 

Tafel kinetics are still influential when thin Pd films are deposited onto Pt and 

why the surface arrangement for Pt{M/} electrodes has no significant 

influence on the HER kinetics.
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There are still many areas o f interest which could be further investigated. The 

MFACV was not used to the extent it could have been. It is potentially a powerful 

tool, though the measurements in this project were performed at AC frequencies too 

low to monitor the frequency dependence o f OPD-H.

Also, much further work could be invested into the investigation o f alloys. Although 

no rate-enhancing results were observed in this work, recent work on Pt-Bi alloys[17] 

and Ni-S-Co alloys1181 have given exchange current densities greater than those 

observed on Pt.

Another avenue which requires further exploration is the deposition o f metals onto Pt 

to give ‘"rough" surfaces. Firstly, scanning probe techniques could be used to view 

the structure o f the surfaces, followed by investigation into the reproducibility o f the 

surfaces. Refinement o f the island size and dispersion may lead to much greater HER 

enhancement and it may prove possible to produce microelectrodes to mimic this 

activity and even more “active" supported electrocatalysts.

This study also poses the possibility that the complete elucidation o f the kinetics o f 

HER on different metals (particularly Pd on Pt) may lie in a full understanding o f the 

selvedge region. This would explain clearly the lack o f structural sensitivity o f the 

HER on P t{hkl} electrodes and thin films deposited onto Pt electrodes in the present 

study.

However hydrogen evolution advances in the future, it is hoped that this study may, in 

some small way contribute. It is also hoped that hydrogen fuel cell technology and 

hydrogen storage advance alongside this, in order to provide a cleaner and more 

sustainable fuel source for generations to come.
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Appendix I

(A) The Matlab fitting routine used to find Volmer, Tafel and Heyrovsky rate 

constants from Tafel data.

f u n c t i o n
[fitted_values, errevalue, flag, counter] = fit_routine (E, I, initial_values 
,params)
[fitted_values, err_value,flag]=fit_routine(E,I,initial_values, params

)
Fits Tafel slope for hydrogen evolution based on the
Volmer (klf klb), Tafel (k2f k2b) and Heryovsky (k3f k3b) steps
E
- I
initial_values - estimates for the parameters to fit (can be quite 

crude)
initial_values=[klf,klb,k2f, k2b, k3f, k3b] 
params - constants for the dataset 
params= [alpha,T ,Cs/Cb,cH,A]
fitted_values - parameter values from routine 
err_value - final least squares error 
flag - 1 converged or 0 failed

set options for fitting 
options=optimset('Display', 'iter', 'To1Fun' , le-9, 'ToIX',le- 
12,'maxiter',2000);

start the solver
[fit, fval, flag]=fminsearch ( 0 (fit)fitfun(fit,params,E,I),initial_value 
s,options);
fitted_values=abs(fit); 
err value-fval;

'.plot the result

stepup=logspace(0, 3, 1000) ; 
for 1=1:6

count e r (1)=0; 
sens=fval;err=0; 
t e s t (1)= 0;
while (counter(1) < 1000 & test(l) < 0.001)

counter(1)=counter(1)+1; 
tfit=abs(fit);
tfit(1)=t fit(1)*stepup(counter(1));
klf=tfit(1)/
klb=t fit(2) ;
k2f=tfit(3);
k2b=tfit(4 ) ;
k3f=tfit ( 5) ;
k3b=t fit ( 6);

alpha=params(1);
T=params(2)+273.15;
CsCb=params(3); 
cH=params(4);
A=params(5);



F-96485;
R=8.314 5; 
f-F/ (R*T);

a = (k2b*CsCb)-k2f ;
b=-( (cH*klf*exp(-alpha*f*E) )+(2*k2b*CsCb)+(klb*exp( (1- 

alpha) * f * E ) ) ) ;
c = (cH * klf* exp(~alpha*f*E) ) + (k2b*CsCb); 
theta=-(b+sqrt(b.^2-(4.*a.*c) ) ) . / (2.*a);
vl=cH*klf*(1-theta) .*exp(-alpha* f*E )-(klb.*theta.*exp( (1- 

alpha)* f * E ) );
v2=(k2f.*theta.^2)-(CsCb.*k2b.*(1-theta) . * 2 ) ;
v3=cH*k3f*theta.*exp(-alpha* f*E)-(k3b*CsCb*(1-theta) .*exp( (1- 

alpha)*f*E));
J=A* F * (vl + v3);
e r r = 0 ;
for k=l:length(E)

t(k)=(real(loglO(I(k)))^2- 
real(loglO(J(k) ) )* 2 )/real (loglO ( (I(k) ) ) ) ;

err=err+loglO(1+(0.5*t(k)~2));
end
test (1)=abs(sens-err)/sens;

end
end

fit=abs(fit); 
klf = fit (1); 
klb=fit (2) ; 
k2f = fit ( 3) ; 
k2b=fit (4) ; 
k3f = fit (5); 
k3b=fit(6);

alpha=params(1);
T=params(2)+273.15;
CsCb=params(3); 
cH=params ( 4 ) ;
A=params(5);
F=9 64 8 5;
R=8 .314 5; 
f=F/(R*T);

a = ( k2b * CsCb)-k2 f;
b =-( (cH*klf*exp(-alpha* f*E) ) + (2*k2b*CsCb) + (klb*exp( (1-alpha)*f*E))); 
c — (cH*klf*exp(—alpha*f*E) ) + (k2b*CsCb) ; 
theta=-(b+sqrt(b.^2-(4.*a.*c)))./(2.*a);
vl=cH*klf* (1-theta).*exp(-alpha*f*E)-(klb.*theta.*exp((1- 
alpha)*f*E) ) ;
v2=(k2f.*theta.* 2 ) - (CsCb.*k2b.*(1-theta).A2);
v3=cH*k3f*theta.*exp(-alpha*f*E)- (k3b*CsCb*(1-theta) .*exp ( (1- 
alpha)* f*E) ) ;
J=A*F*(vl + v3) ;

figure(1) 
hold off
plot(E,real(loglO (I) ) , 1r : 1 ) 
hold on
plot (E, real (log 10 (J) ) , 'b— ' ) 
legend({'Data' 'Fit Result'}) 
xlabel ('E / V')



ylabel ( ' I ' ) 
figure (2) 
plot; ( E, theta ) 
xlabel ( ' E /  V )  
title(1\theta 1 ) 
f i g u r e ( 3 )
plot (E,real(loglO( [v2 v3] ) ) ) 
legend({'\itv\rm_2' '\itv\rm_3'})
xlabel ('E / V' ) ~

fitting function 
function err-fitfun(fit,params,E ,I) 
function err^Tafelfit(fparams,params,E)
Fits Tafel slope for hydrogen evolution based on the 
Tafel, Volmer and Heryovsky steps 
fparams=[klf,klb,k2f,k2b,k3f,k3b] 
pa r arris = [alpha, T , Cs/Cb, cH, A]

fit=abs(fit); 
klf=fit(1); 
k 1 b = fit (2) ; 
k2f = f it ( 3) ; 
k2b=f it ( 4 ) ; 
k3f = fit (5) ; 
k3b=fit(6);

alpha=params(1);
T-params(2)+273.15;
CsCb=params(3); 
cH=params(4);
A=params(5);
F = 9 6 4 8 5 ;
R=8.314 5; 
f=F/(R*T);

e r r - 0;

a =• ( k2 b * CsCb) - k2 f ;
b = - ( (cH* klf* exp(-alpha* f *E) )+ (2 * k2b*CsCb) + (klb*exp( (1-alpha) * f*E) ) ) ; 
c= (cH*k1f * exp(-alpha * f * E ) ) + (k2b*CsCb) ; 
t h e t a =- - (b + s q r■ t (b . ̂  2 - ( 4 . * a . * c ) ) ) . / ( 2 . * a ) ;
vl-=cH* kl f * (1-theta ) . ‘exp ( - alpha* f *E) - ( klb . * theta . *exp ( (1- 
alpha)* f *E ) ) ;
v2=(k2f.*theta.^2)-(CsCb.*k2b.*(1-theta) . * 2 );
v3 = cH*k3f*theta.*exp(-alpha*f*E)- ( k3b*CsCb*(1-theta) .*exp((1- 
alpha)*f*E));
J=A*F*(vl+v3);

for k=l:length(E )
t (k)=(real(loglO(I(k)))^2- 

real (log10(J(k) ) )* 2 ) /real(loglO ( (I(k) ) ) ); 
err=err+logl0 (l+(0.5*t(k)~2));

end
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(B) The Matlab fitting routine used to find Volmer and Tafel rate constants from 
Tafel data.

funct ion
[ fitted_values, err_value, flag, counter] = voltaf_fit (E, I, initial_values, 
params)

set options for fitting 
opt ions=optimset('Display', 'iter', 'TolFun' , le-9, 1TolX',le- 
12,’maxiter',2000);

start the solver
[fit, fval, flag]=fminsearch(@ (fit) fit fun ( fit, params, E, I) , init ial_value 
s,opt ions) ;
fitted_values=abs(fit); 
err value=fval;

■Check the sensitivity of the values

stepup=logspace(0,3,1000); 
for 1=1:4

counter(1)=0; 
sens=fval; 
test(1)= 0;
while (counter(1) < 1000 & test(l) < 0.001) 

counter(1)=counter(1)+1; 
tfit=abs(fit);
tfit(l)=tfit(l)*stepup(counter (1)); 
e r r = 0;

t f i t = abs (fit) ; 
klf = tfit (1) ; 
klb=tf i t ( 2) ; 
k2:1 t : it ( 3 ) ; 
k2b=t f i t (4);

T=params(1)+273.15; 
cH=params(2)/
A=params(3);
CsCb=params(4); 
alpha=params(5);

F= 9 6 4 8 5;
R=8.314 5; 
f=F/(R*T); 
a=(k2b*CsCb)-k2f;



b = - ( (cH * klf * exp(-alpha* f * E ) ) + (2*k2b*CsCb) + (klb*exp( (1- 
alpha) *f *E) ) ) ;

c= (cH*klf*exp ( - a lpha * f * E ) ) + ( k2b*CsCb) ; 
theta=-(b + sqrt (b.^2-(4.*a .* c ) ) ) . / (2. *a) ;

vl=cH*klf*(1-theta).*exp(-alpha*f*E)-(klb.*theta.*exp((1- 
alpha) * f *E ) ) ;

J-F.* v1;
for k=l:length(E)

t(k) = (real(loglO(I(k) ) )~2-real(loglO(J(k) ) )A2)/real(log10 ( (I(k) ) )) 
err=err+loglO(1+(0.5*t(k)A2 ));

end
test (1)=abs(sens-err)/sens;

end
end

Plot the results

fit=abs(fit); 
tfit = abs (fit) ; 
klf=tfit (1) ; 
klb=tfit (2) ; 
k2f=tfit (3) ; 
k2b=tfit (4 ) ;

T=params(1)+273.15; 
cH=params(2);
A=params(3);
CsCb=params(4); 
alpha=params(5);

F= 9 64 8 5;
R=8.314 5;
f—F/(R*T);
a = (k2b*CsCb)-k2f;
b=-((cH*klf*exp(-alpha*f*E))+(2*k2b*CsCb)+ (klb*exp((1-alpha)*f*E) ) ) ; 
c=(cH*klf*exp(-alpha* f*E) ) + (k2b*CsCb) ; 
theta=-(b+sqrt(b./%2-(4.*a.*c) ) ) ./ (2 . *a) ;
vl=cH*klf* (1-theta) .*exp(-alpha*f*E)-(klb.*theta.*exp ( (1- 
alpha)*f*E));
J=F.*vl; 
figure(1) 
hold off
plot(E,real(loglO(I) ) , 1 r : ’) 
hold on
plot(E,real(loglO(J)),1b--’) 
legend({'Data' 'Fit Result'})



xlabel ('E / V ') 
ylabel(11 1) 
figure(2) 
plot (E,theta) 
xlabel ( 'E / V') 
title ( 1\theta')

*6 *6

%fitting function
function err=fitfun(fit,params,E,I)
% function err=Tafelfit(fparams,params,E )
%Fits Tafel slope for hydrogen evolution based on the 
%Tafel, Volmer and Heryovsky steps 
%fparams=[klf,klb,k2f,k2b,k3f,k3b]
%params=[alpha,T,Cs/Cb,cH,A]

fit=abs(fit); 
tfit=abs(fit); 
klf=tfit(1); 
klb=tfit (2); 
k2f=tfit(3); 
k2b=tfit(4) ;

T=params(1)+27 3.15; 
cH=params(2);
A=params (3) ,*
CsCb=params(4); 
alpha=params(5);

F=96485;
R=8.3145;
f=F/ (R*T);
a= (k2b*CsCb)-k2f;
b=-((cH*klf*exp(-alpha*f*E)) + (2*k2b*CsCb) + (klb*exp((1-alpha)*f*E)) ) ; 
c=(cH*klf*exp(-alpha*f*E))+(k2b*CsCb); 
theta=- (b+sqrt (b./N2-(4.*a.*c) ) ) . / (2 . *a) ;
vl=cH*klf*(1-theta).*exp(-alpha*f*E)- (klb.*theta.*exp((1- 
alpha)*f*E));
J=F.*vl; 
err=0;
if alpha > 1

err=alpha*le6;
end
for k=l:length(E)

t(k)=(real(loglO(I(k)))"2-real(loglO(J(k)))"2); 
err=err+loglO(l+(0.5*t(k)"2));

end

vi


