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ABSTRACT

In this thesis we investigate the influence of certain physical effects on the collapse and 

fragmentation of isolated, low-mass, low-turbulence cores, in particular on the mass distribution, 

binary statistics and kinematics of the resulting stars.

We perform numerical simulations using a Smoothed Particle Hydrodynamics code to 

model this mode of star formation. Firstly we model acoustic oscillations of a self-gravitating 

isentropic monatomic gas sphere using our SPH code and find that if the smoothing lengths are 

adjusted so as to keep the number of neighbours in the range N SUB ± AA/rNEIB, ANNE1B should be 

set to zero, to reduce the level of numerical dissipation and diffusion. We suggest that this should 

become a standard test for codes simulating star formation, since pressure waves generated by 

the switch from approximate isothermality to approximate adiabaticity play a crucial role in the 

fragmentation of collapsing cores.

We perform a laige ensemble of SPH simulations of cores having different levels of turbu

lence, using a new, more realistic treatment of thermodynamics, developed by Stamatellos et al. 

(2007), which takes into account the thermal history of protostellar gas and captures the thermal 

inertia effects. We compare the results with simulations using a standard barotropic equation 

of state. We find that increasing the level of turbulence generally tends to reduce the fraction 

of the core mass which is converted into stars, and increase the number of stars formed by a 

single core. Using the new treatment results in more protostellar objects being formed, and a 

higher proportion of brown dwarfs. Of the multiple systems that form, they tend to have shorter 

periods, higher eccentricities and higher mass ratios. We also note that in our simulations the 

process of fragmentation is often bimodal, in the following sense. The first protostar to form is 

usually, at the end, the most massive, i.e. the primary. However, frequently a disc-like struc

ture subsequently forms round this primary, and then, once it has accumulated sufficient mass, 

quickly fragments to produce several secondaries. We believe that this delayed fragmentation 

of a disc-like structure is likely to be an important source of very low-mass stars in nature (both 

low-mass hydrogen-burning stars and brown dwarf stars).

We also model the evolution of an ensemble of prestellar cores in the Ophiuchus Main



Cloud using initial conditions for the sizes and levels of turbulence constrained by the obser

vations of Motte et al. (1998) and Andre et al (2007), and the recently revised core masses of 

Stamatellos et al. (2007). We find that star formation in these core is extremely efficient with 

typically the formation of a single star, but we also see the formation of multiple systems in a 

number of cores. We find that the number of stars formed by a core is highest if the core has 

high mass, and/or if it has a high initial level of turbulence, and/or if it starts from a low initial 

density. We explain why.

Finally we explore the effect metallicity has on the mass distribution and binary statistics 

of stars formed from low-mass low-turbulence cores. We find that reducing the metallicity de

creases the number of stars formed from a single core and reduces the number of brown dwarfs 

formed. It also reduces the binary frequency.
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Chapter 1

Introduction

Star formation is a dynamical, violent process, which we do not yet fully understand. 

The aim of astronomy is to understand how the Universe has previously evolved and 

will continue to evolve. Since stars influence the structure of galaxies, which are an 

important element in the structure of the universe, star formation plays a powerful and 

crucial role.

Over the last few decades there have been some major developments in the ob

servational techniques used to study star formation. We have seen the introduction of 

infrared (IR) telescopes, such as IRAS and Spitzer, and also sub-millimetre telescopes 

such as JCMT. We can now map clouds at a higher sensitivity than ever before, and even 

observe young stellar objects and determine their properties, without the problems of 

dust obscuration as in optical observations. The future of star formation research is also 

very promising, with the commissioning of SCUBA-2, a second generation instrument, 

designed to map large areas of sky up to 1000 times faster than SCUBA. This will pro

vide us with a phenomenal amount of data, allowing us to probe the early stages of star 

formation with increasing depth and accuracy.

Numerical simulations are required to explain the physics behind these observa

tions. Star formation is a rapid, dynamical process which can scale over 20 orders of

1



2 CHAPTER 1. INTRODUCTION

magnitude in density, and involves self-gravitating, non-LTE fluid dynamics, so numer

ical simulations require very powerful modem supercomputers.

In this thesis we perform numerical simulations to gain an insight into the way in 

which stars are formed from dense molecular cores. Before we present the results, we 

shall discuss the main stages of star formation to put our results into context.

1.1 Star formation in molecular clouds

Most young stellar objects form from the contraction of dense regions in huge molecular 

clouds. These clouds are large condensations of interstellar gas and are concentrated in 

the galactic disk near the spiral arms of a galaxy. Typically, their sizes range from 

~ 0.1 pc to ~ 100 pc in diameter, with masses from ~ 102M© to ~ 106M©. Clouds 

with masses exceeding 104 M© tend to be called Giant Molecular Clouds (GMCs). The 

gas in GMCs is so cold and dense, with temperatures below 100 K and densities from 

10-22g cm-3 to 10“20g cm-3, that the gas is predominantly molecular hydrogen.

GMCs have a hierarchical structure, consisting of small subclouds within large sub

clouds. Their general structure can be mapped via molecular line observations of CO 

(e.g. Myers et al. 1983; Myers & Benson 1983). Observations show they tend to be 

filamentary in shape, rather than spherical. An example of this is shown in Fig. 1.1 

for the Taurus molecular cloud. Dense clumps have been observed in molecular clouds, 

such as in Ophiuchus (Motte et al. 1998), also dense cores (Andre et al. 2007) which 

are thought to be the precursors of protostars. These higher density regions within the 

clouds can be mapped using the lines of NH3 (e.g. Myers & Benson 1983), N2H+, CS 

and HC3N.

One of the most intensively researched star-forming regions is Orion, which is ~ 

100 pc in size and has a mass of 105 M©. This molecular cloud complex is located at a
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Figure 1.1: Taurus molecular cloud seen in extinction, taken from Dobashi et al. (2005) and 
modified by Nutter (private communication). The contour levels are Av=1, 2,4.

distance of ~ 450 pc. A closer example is the quiescent low-mass star-forming region 

Taurus, which is ~ 140 pc away (see Fig. 1.1). The stars most visible in Taurus are 

referred to as T-Tauri stars; they have masses in the range of 0.5 -  1.0 M©, and are found 

in small groups of < 10 members. This region is smaller in size than Orion, spanning 

~ 20 pc. Orion is a far more violent region than Taurus, producing both high- and low- 

mass stars, whereas Taurus appears to produce just low-mass stars.

The actual sites of star formation are in the dense cores within molecular clouds. 

Here the densities are exceptionally high (£ 10-20g cm-3), and the temperatures are very 

low (< 10 K). When a core becomes gravitationally unstable, it contracts and reaches 

sufficient densities for hydrogen fusion to occur. Hence, a star is formed. The first stage 

of star formation occurs when a molecular cloud becomes gravitationally unstable.

Consider a non-rotating, non-magnetic molecular cloud of radius R, mass M, den

sity p0 and temperaure T. If this cloud is gravitationally bound, its maximum radius is 

given by the Jeans length
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R )1/Z,
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where G is the gravitational constant, aQ is the isothermal sound speed

(kT\m
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and m is the mean gas particle mass. This cloud will contract if R > R ^ s ,  and collapse 

if R »  Rjeass- We can also define a minimum mass that is required for a cloud to be 

unstable, referred to as the Jeans mass

m  /375 \,/2_ f [ l _ _  n  n
,EANS ~ \ 4 n )  G ^ W 2 '

In this case, the cloud will contract if M  > MmAm, and collapse if M »  MJEANS1 •

Substituting a temperature of ~ 10K and a density of 10-22gcm-3 for molecular 

hydrogen results in a Jeans length far smaller than the size of a typical molecular cloud 

and so these clouds should collapse. However, this is not what happens, since, if it 

were the case, the rate of star formation in the Galaxy would be much higher than we 

observe. There must be some form of support that prevents collapse occurring on freefall 

timescales. Thermal pressure alone is insufficient, so it is presumed that there are other 

supporting mechanisms. Supersonic velocity dispersions are found to exist on large 

scales within the clouds, which suggests the presence of turbulence (Larson 1981). This

1 These expressions for the Jeans radius and mass are derived on the basis of the time-dependent Virial 
Theorem applied to a uniform-density cloud. If instead one invokes a critical Bonner-Ebert sphere, the 
expressions become

=  1.8 2 — a ° . „  =  0.763
(Gpc)'12 ' (Gp)1/2'

a o Gn
=  4.43 —  = 1.86 °

G3/2pi/2 G3/2p1/2 ’

where pc is the central density, and p  is the mean density
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could provide the support against collapse. Magnetic fields may also contribute to the 

support.

However, searching for a mechanism to provide this additional support may not 

actually be required, since evidence suggests that the lifetime of a cloud is less than the 

1 Gyr timescale previously thought. Therefore, molecular clouds are not equilibrium 

structures but instead may be transient structures which assemble, produce stars, and 

disperse over only a few dynamical times (Elmegreen 2000).

1.2 Cloud collapse

Magnetic fields may play an integral role in regulating cloud collapse. In molecular 

clouds, the magnetic field is frozen to the gas, provided that the conductivity of the gas 

is sufficiently high. The charged particles are then constrained to move along the field 

lines by the Lorentz force. The neutral particles experience this Lorentz force indirectly, 

when they collide with charged particles and transfer momentum. This causes there to 

be an ‘ion-neutral friction’ generated when the neutrals slip relative to the ions and field, 

making it hard for the neutral particles to move relative to the ions.

This process can be dealt with in two ways, via Magneto-hydrodynamics, MHD. In 

ideal MHD, also referred to as single fluid MHD, we ignore the motion of the neutral 

particles relative to the ions and hence relative to the field. However, in some situations, 

this may not incorporate the whole process entirely and so we require non-ideal MHD, 

also referred to as multifluid MHD. Here, the neutral particles diffuse through the ions 

and the magnetic field. This is referred to as ambipolar diffusion (Mestel & Spitzer 

1956). Modelling ambipolar diffusion requires at least two fluids, an ion fluid and a 

neutral fluid, instead of just one as in the case of ideal MHD.

The process of ambipolar diffusion results in magnetic support being lost from the
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region and hence cloud collapsing occurring (Mestel & Spitzer 1956). Ambipolar diffu

sion is quite rapid in molecular clouds because the ionisation fraction is low, typically 

in the range of 10-8 to 10-6 (Caselli et al. 1998).

An indication of whether magnetic support is sufficient to prevent collapse is given 

by the ratio of the mass M  of the cloud to the magnetic flux through it (Mouschovias

critical value, making it magnetically supercritical. For it to withstand self gravity, the 

cloud must be magnetically subcritical, with its mass to flux ratio less than the critical 

value (Mouschovias & Spitzer 1976).

In a dense core, ambipolar diffusion acts to increase the mass to flux ratio, not 

by dissipating magnetic flux, but by redistributing the matter in the central flux tubes 

(Mouschovias 1976). Eventually self gravity overcomes the forces supporting the cloud 

causing it to become gravitationally unstable to collapse.

Once the cloud becomes gravitationally unstable, collapse proceeds. During the 

initial stages of collapse when the density is less than 10-13gcm-3, the condensation is 

optically thin and the gravitational potential energy released is freely radiated away at 

such a rate that the cloud remains isothermal at a temperature of 10K. The cloud 

collapses on a timescale close to the freefall time,

where p Q is the central density. When the density in the core exceeds ^  10~13gcm~3, the 

core becomes opaque to its own radiation and so increases in temperature. Eventually, 

the thermal pressure in the core becomes high enough to slow down further collapse, at 

-  200K. The core then contracts quasistatically. At a temperature of 2000K, molecular

1976)

(1.4)

For the cloud to undergo gravitational collapse, the mass to flux ratio must exceed this

(1.5)
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hydrogen in the core is dissociated. The energy generated from the cloud collapse is used 

in this dissociation and so the core remains at almost a constant temperature. Collapse 

of the core continues once the dissociation of hydrogen is complete and the temperature 

continues to increase once again. Finally, an opaque hydrostatic protostar forms at the 

centre. This central protostar can then accumulate mass from the surrounding infalling 

envelope and accretion disk.

1.3 Prestellar cores

V

A prestellar core represents the phase in which a gravitationally bound core has formed 

in a molecular cloud and evolves through gravity towards higher degrees of central con

densation, but does not yet have a central protostar (Andre et al. 2000; Ward-Thompson 

et al. 2007). Sometimes this term is confused with the term ‘starless core’ but the term 

‘starless core’ includes both prestellar cores and cores that are not gravitationally bound 

(and therefore presumably will not form stars). Observations of a double-peaked veloc

ity profile with a blue shifted larger peak shows the presence of infall in these prestellar 

cores (Ward-Thompson et al. 1994).

Prestellar cores are very cold, and so they emit at far IR and sub-mm wavelengths. 

The density profiles of prestellar cores have a flattened central region and then fall as r~n 

with 2 < 77 < 5 in the outer regions, until eventually merging with the background (e.g. 

Ward-Thompson et al. 1994; Andre et al. 1996; Ward-Thompson et al. 1999; Andre et 

al. 2 0 0 0 ).

Many different factors affect the timescale on which these prestellar cores collapse 

to form one or multiple stars. More realistic models of core collapse include magnetic 

fields’, turbulence and rotation. However, we must be clear what effect each of these 

physical processes have on the results, since many authors include all of these processes 

simultaneously. In this thesis, we are concerned with exploring the collapse of prestellar
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cores, by means of numerical simulations, with a view to evaluating (a) how the statis

tical properties of the resulting protostars depend on the initial conditions, and (b) what 

role is played by thermal, chemical and radiative processes. Therefore, we adopt an ana

lytic approach. That is to say, we do not seek to implement all the deterministic physical 

effects, and hence we do not expect to reproduce all the observed aspects of real star 

formation. Rather, we seek to establish whether particular physical effects, namely the 

thermal and radiative processes, influence the outcome in a systematic way. Given the 

complexity of star formation, and the limitations of numerical codes, this seems a more 

fruitful approach to take.

1.4 Evolutionary stages of star formation

A low-mass prestellar core evolves to form a young stellar object (YSO). YSOs are all 

at different evolutionary stages and so we divide their evolution into 4 classes, forming 

a sequence (Lada 1987; Andre et al. 1993). We note that this sequence is only well 

established for low-to-intermediate mass stars.

Class 0

This is the earliest stage of protostar formation (Andre et al. 1993). Here, the protostar, 

which has just formed inside the core, has a mass less than that of the envelope. Its 

spectral-energy distribution (SED) resembles a single temperature blackbody at ~ 15 - 

30K. The SED peaks in the sub-mm, due to the dust grains in the infalling envelope 

absorbing the radiation and re-emitting it in the sub-mm (Andre et al. 1993). The 

protostar cannot be observed directly at this stage since it is deeply embedded in the 

core. However, we may see indirect evidence of its presence either through a radio 

continuum source, a collimated CO outflow, or an internal heating source. This is the 

main accretion phase, lasting for ~ 104yrs with a rate of accretion onto the central 

object of > 10-5Moyr-1. At the end of this stage, the protostar should have reached 

approximately half of its final mass.



i .4. EVOLUTIONARY STAGES OF STAR FORMATION 9

Class I

Objects that are in the Class I stage are sometimes referred to as late or evolved pro

tostars. Here, a disk has started to form, through which the material with high angular 

momentum can accrete onto the protostar. However, traces of the envelope can still be 

seen. Whilst the SED still peaks in the sub-mm, there is also an excess of IR emission. 

This is likely to be from the circumstellar disc being heated up by the central proto

star. There is no optical emission from the central protostar due to it still being deeply 

embedded. The Class I stage lasts for a few 105yrs, now with a lower accretion rate 

(~ 10-6Moyr-1) compared to the Class 0 phase.

Class II

These objects are also known as classical T-Tauri stars. This phase corresponds to a 

stage where the majority of the envelope has been dissipated and there now exists a 

geometrically-thin optically-thick disc of mass ~ 0.01 Mo- These discs have been di

rectly observed using the Hubble Space Telescope. The central object is no longer 

embedded but is now optically revealed. Its SED peaks at IR wavelengths, attributed 

to the heating of the dust in the disk and re-emission in the IR. The accretion rate has 

now fallen to ~ 10~8Moyr_1. The material accreting onto the stellar surface produces 

a strong Ha emission line and veiling of the UV absorption lines. This phase lasts for 

~ 1 -  4 x 106yrs.

Class III

Class III objects are also known as weak-line T-Tauri stars. Their SEDs show weak 

H a emission and no major IR excess, which must signify that the disk has dissipated 

and there is little or no accretion occurring. After ~ 107yrs of this stage, the protostar 

evolves onto the main sequence.
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1.5 Accretion Disks

Accretion discs form when circumstellar gas and dust attempt to fall onto the central pro

tostar, but are prevented from doing so by centrifugal forces. The angular velocity of the 

material increases and therefore forces it to collapse down to form a circumstellar disc. 

The disc then evolves through angular momentum transport outwards and mass trans

port inwards onto the protostar, increasing its mass. This process of angular momentum 

transport is required to solve the problem of conservation of momentum in star forma

tion. We know that molecular cloud cores possess angular momentum, which may be 

revealed as ordered rotation (velocity ~ 0.1 kms-1) or as turbulence. However, this an

gular momentum cannot be conserved minutely and so must be removed or redistributed 

otherwise centrifugal forces will prevent collapse and hence star formation (Mestel & 

Spitzer 1956). The redistribution of angular momentum through the disk could be driven 

by gravitational torques, or by viscosity. Another possible process is magnetic braking. 

Here, angular momentum is transported to the outer regions via Alfven waves. These 

waves are generated from the magnetic field lines which are twisted into a helical pattern 

from the rotation of the cloud.

Indirect observational evidence for the existence of discs can be found in the SEDs 

of the protostellar cores. Dust in the disc is heated by stellar irradiation, compression 

and viscous dissipation, which produces an IR excess in the SED. In the last few years 

discs have been directly observed. Many of these observations have been made by the 

Hubble Space Telescope, and by ground-based adaptive optics. Observations show that 

these discs span 10 -  1000 AU with masses 0.001 — 0.1 M©. As mentioned earlier, they 

are present from very early in the evolution of a collapsing core to the final stages such 

as in CTTs and WTTs.

Observations have shown that a small fraction of the accreted material is ejected in 

bipolar jets or outflows (e.g. Richer et al. 2000), which are perpendicular to the disk. 

These are thought to carry away the excess angular momentum of the infalling matter.
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The jets extend to lengths of 10 2 to 1 pc and are highly collimated, reaching velocities 

of hundreds of kms-1.

Density perturbations can grow in protostellar discs causing them to become grav

itationally unstable. A measure of their stability against fragmentation is the Toomre 

stability parameter (Toomre 1964);

( 1 6 >

where c  is the sound speed, k  is the epicyclic frequency, and I  is the mass surface density 

within the disc. For a disc to remain stable against self gravity, Q must exceed 1.

If a disc becomes gravitationally unstable and fragments, it is possible for multiple 

systems to be formed. It has also been shown that discs can promote the formation of 

low-mass stars in binaries and also boost the number of triple and quadruple systems 

formed, via star-disc interactions (e.g McDonald & Clarke 1995).

1.6 Main Sequence stars and brown dwarfs

Once a star becomes sufficiently dense and hot enough to begin hydrogen burning, it en

ters the main sequence phase. Here the energy created from the thermonuclear reactions 

that convert hydrogen into helium provides enough pressure to stop further collapse of 

the core. Not all stars at this stage have the required density and mass and so they never 

reach the main sequence. These stars are called brown dwarfs. They are sometimes 

referred to as ‘failed stars’. This is due to their masses being insufficient (approximately 

< 0.08Mo) for hydrogen burning to occur. Hence, they do not have a main sequence 

phase. Instead, they are dense enough to be supported by electron degeneracy pressure. 

Observations of brown dwarfs are extremely difficult to make since these objects are 

very faint, with luminosities < 10-4Lo. A significant number of young brown dwarfs



12 CHAPTER 1. INTRODUCTION

have disks. Evidence of this is shown by the IR excess in their SEDs.

With improved sensitivity of telescopes, brown dwarfs are now routinely observed 

(e.g. Martin et al. 2001; Wilking et al. 2004; Luhman 2004). However, the mechanism 

behind their formation has not yet been confirmed. It is not known whether they form in 

the same way as more massive stars, or whether a different process is involved.

There currently exist many possible theories, all plausible but none yet confirmed. 

One theory is that brown dwarfs are formed by the ejection of low mass stellar embryos 

from their prestellar cores (Reipurth & Clarke 2001). This is a result of fragmentation 

producing multiple systems which then grow by competitive accretion. These systems 

then interact dynamically, ejecting the lowest mass object. This could explain the lack 

of brown dwarfs in close orbits around Sun-like main sequence stars (the Brown Dwarf 

Desert). This method seems quite possible since it only requires a protostar of 0.08M© 

being in existence with two other protostars, which will almost inevitably result in the 

lowest mass object being ejected. However, we see evidence of brown dwarfs in multiple 

systems whereas this mechanism usually produces single brown dwarfs (Whitworth & 

Goodwin 2005). Also, during the ejection process it is unlikely that they will retain their 

disks.

Other theories of brown dwarf formation involve gravitational instabilities in cir

cumstellar disks (Stamatellos et al. 2007b), opacity limited fragmentation in turbu

lent molecular clouds (Boyd & Whitworth 2005) or photo-evaporation of massive cores 

where a stable pre-existing core is overrun by a HU region (Whitworth & Zinnecker 

2004).
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1.7 Plan of thesis

In this thesis, we investigate star formation in molecular cloud cores, with the aim of 

understanding how the physical processes influence the mass distribution, kinematics 

and binary statistics of the resulting hydrogen-burning stars and brown dwarfs.

In Chapter 2, we discuss the algorithms and features of the numerical code that we 

use to model the prestellar cores. The code uses Smoothed Particle Hydrodynamics, and 

we describe the additional features we have added to our code to improve its speed and 

accuracy.

In Chapter 3, we test our numerical code by performing acoustic oscillations of 

an isentropic sphere. This test is designed to measure the numerical dissipation and 

numerical diffusion in a code. We show that it is an important test for codes used in 

simulating star formation.

In Chapter 4, we simulate the collapse and fragmentation of isolated, low-mass 

cores having different levels of turbulence. To treat the energy equation and associated 

radiative transport, we use a new technique developed by Stamatellos et al. (2007a). 

We discuss the effect this has on the resulting stars compared to those formed using a 

barotropic equation of state.

In Chapter 5, we perform simulations of the prestellar cores in the Ophiuchus Main 

Cloud. Each core has a different mass, a different initial density and a different initial 

level of turbulence. We discuss the effects these parameters have on the mass distribu

tion, kinematics and binary statistics of the resulting stars.

In Chapter 6 , we investigate how the metallicity of the gas effects the mass distri

bution and binary frequency of stars formed from a low-mass core.

In Chapter 7, we summarise the main conclusions drawn from this work and discuss
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our future plans.

CHAPTER 1. INTRODUCTION



Chapter 2 

Smoothed Particle Hydrodynamics

In this chapter, we review Smoothed Particle Hydrodynamics (SPH), the technique we 

employ to simulate astrophysical problems, in particular star formation. SPH is a par

ticle method in which we represent a fluid by using particles, and follow their evolution 

under the influence o f certain forces such as pressure or gravity. We discuss the hydrody- 

namical equations and how we incorporate these into the code. We also discuss modifi

cations made to the code to improve its efficiency, such as an octal spatial-decomposition 

tree to calculate the gravitational acceleration o f a particle, and modifications to im

prove the accuracy, such as artificial viscosity fo r  shocked regions.

2.1 Self-Gravitating Compressible Flow

Numerical simulations play an increasingly important role in the study of star forma

tion, and of other non-linear phenomena involving self-gravitating gas dynamics. These 

include the development of cosmological structure, galaxy formation, star formation 

and stellar collisions. To model such phenomena, we need to look at the equations of 

hydrodynamics.

In order to describe the evolution of a self-gravitating, viscous, compressible, non

15
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magnetic fluid, we must solve the continuity equation, Euler’s momentum equation and 

the energy equation. By solving these we can determine the flow properties in terms of 

the velocity v, pressure P, specific internal energy u and density p  of each fluid element.

There are two possible forms for the equations; Eulerian and Lagrangian. In the 

Eulerian formulation, the properties of the fluid are functions of position and time. We 

define a fixed volume in space upon which the fluid moves. The time derivatives that 

are calculated in this formulation are therefore partial derivatives and give the rate of 

change of a quantity at a fixed position r. The equations of continuity, momentum and 

energy take the following Eulerian forms:

Continuity equation

^  = -V -(pv) (2.1)
at

This describes the conservation of mass i.e. the rate of decrease in density in an infinites

imal volume of space at r equals the divergence of the flux of matter at that position.

Euler’s momentum equation

d \  VP— = -v  . V v-----
dt p
—  = -V • Vv -  —  + aGRAV (2.2)

Here the terms on the righthand side give the contributions to the rate of increase in 

velocity due to (i) advection of momentum into the volume, (ii) the acceleration due to 

the hydrodynamic pressure forces, and (iii) the gravitational acceleration.

Energy equation
du PV  • v— = -v  V u-------
at p

= -v  • V u   v ”WEAD (2.3)

The terms on the right hand side give the contributions to the rate of increase in internal 

energy in an infinitesimal volume of space at r due to (i) advection of internal energy 

into the volume, (ii) compressional heating, and (iii) radiative heating.

This is the formulation upon which most finite difference codes are based. The fluid
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quantities are defined on a regular spatial grid.

In the Lagrangian formulation, the properties of the fluid are associated with a 

particular fluid element. Equations (2.1), (2.2) and (2.3) now take the Lagrangian forms:

• Continuity equation

^  = -pV  • V (2.4)
at

Euler’s momentum equation

d \  VP
dt p +  a 0RAv (2-5)

Energy equation
du PV v
~t  = -----—  + H u* ■ (2-6)dt p

In both formulations we relate the pressure of a gas to its density p  and temperature 

T via an equation of state. It is generally of the form P = P(p, u). If the gas is isothermal, 

the equation of state is given by

P = a2oP (2.7)

where aQ is the constant isothermal sound speed.

Grid based codes have certain advantages over Lagrangian codes, depending on the 

type of physics we wish to model. However, during the evolution of a star formation 

simulation, the local density may increase by many orders of magnitude and as a result 

there may be a need for very high spatial resolution in certain parts of the computational 

domain. Adaptive mesh refinement (AMR) has been developed to address this prob

lem (Truelove et al. 1998). Here a high resolution grid is reconstructed at each new
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timestep in order to calculate accurate spatial derivatives where they are needed. This 

can be computationally expensive, much more so than Lagrangian codes. Lagrangian 

codes automatically concentrate resolution in regions where matter is concentrated, and 

as these tend to be the regions where greater resolution is required, there is no need for 

complex refinement algorithms. In this way they resolve regions of high density without 

wasting computational effort on regions of low density. In addition, particle-based La

grangian methods have no imposed geometrical constraints, and make much less use of 

imposed grids. They are therefore well suited to handling complex geometries. These 

are the two main reasons we choose to adopt a Lagrangian formulation.

2.2 The concept of SPH

Smoothed Particle Hydrodynamics (SPH) is a numerical technique introduced by Lucy 

(1977) and Gingold & Monaghan (1977). It is used to model complex, non-axisymmetric 

situations in astrophysics, for example star formation and also many problems in other 

areas of physics and industry, such as geophysics and engineering. SPH is a particle 

method in which the fluid is represented by discrete points (particles) whose motion, 

and therefore evolution, can be followed under the influence of forces representing pres

sure, gravity, viscosity and magnetic fields.

Each of the N  SPH particles is defined by its own physical properties, such as po

sition, mass and velocity. These properties are distributed or ‘smoothed’ over a finite 

volume, to represent a continuous fluid. We compute the physical variables at the posi

tion of particle i by summing contributions from all its neighbours j.  A list of neighbours 

of each particle is found by searching through an octal tree, as explained in Section 2.7.1.

A smoothing kernel is used to interpolate over the neighbouring particles. The 

kernel is a weighting function and determines the strength and extent of a particle’s
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influence. The value of a continuum variable A at position r is given exactly by

where £(r -  r') is the Dirac delta function centred at r. In order to smooth over the 

particles we replace the delta function by a finite interpolation kernel, W(r -  r ' , h). This 

kernel has a scale length h and a radius of interaction of 2h. The chosen kernel function 

should satisfy two conditions. Firstly the kernel must tend to a delta function as the 

smoothing length tends to zero, i.e.

With the substitution of the kernel, the smoothed value of A at position r is therefore

In order to find the value of function A at the position of particle i, we approximate the 

integral interpolant (2 .1 1 ) by a summation interpolant over the neighbouring particles, 

h

where nij is the mass of the particle, p j is the density at r;, and Aj is the value of the 

parameter A of j. Here rrijlpj replaces the volume element d3r'. The gradient of A can 

then be calculated by differentiating (2 .1 2 ), so

(2 .8)

lim [W(r -  r', h)] = 6(r -  r').
h^O J

(2.9)

Secondly, the kernel must be normalised such that

(2 .10)

(2 . 11)

(2 . 12)

VA(rl) = Y r̂ -A jVW(ri - r j ,h ).
i P j

(2.13)
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2.3 Kernels

The first type of kernel used by Gingold & Monaghan (1977) was a Gaussian. Since 

then, many kernels have been tested, but the most extensively used to date is the cubic 

spline M4 kernel developed by Monaghan & Lattanzio (1985), and this is used in our 

work. In 3-dimensions, the M4 kernel is

where u = |r,- -  rj\/h  (Monaghan & Lattanzio 1985). The first derivative of this kernel is

This kernel has compact support, i.e. it is of finite extent. This is a realistic approach 

because physical quantities such as p  and P  are local and so need not be smoothed over 

the entire fluid in the computional domain. This is a great advantage computationally 

since it means smoothed variables only have contributions from a small number of close 

neighbouring particles. By using the M4 kernel, particles that are more than 2h away 

from i do not interact and so are not considered, keeping the computational cost low. 

In contrast, the Gaussian kernel of Gingold & Monaghan (1977) extends over the entire 

spatial domain so that all particles in the simulation contribute to summations. If large 

numbers of particles are used, this is computationally very expensive.

1 -  |  u 2 + |  w3, for 0  < u  <  1,

M 4(\ri  -  Tj\, h) = < 1 ( 2  -  M)3, for 1 < u < 2 , (2.14)

0, otherwise,

3u -  |m2, for 0  < u < 1 ,

(2.15)

0, otherwise.



2.4. SPH EQUATIONS 21

2.4 SPH equations

With the use of SPH interpolation, the equations describing the evolution of a self- 

gravitating, compressible flow, as given in Section 2.1, can be rewritten as;

• Continuity equation

The summation interpolant (2.12) can be used to give an expression for the density p, at 

r,-,
N

Pi = T j  mjWjj, (2.16)
j =  1

where Wij = W|(r, -  ry, /z|. Using the time derivative of this expression (2.13), we can 

rewrite the continuity equation as

$  = Z  mj*u ■ W j  (2.17)
7=1

where v<y = v, -  vy .

Momentum equation

We can symmetrise the pressure force between two particles by using the identity

VP

P
= V( ^ ) + ^ V p .

\ p )  p 2
(2.18)

Using this expression, the momentum equation then takes the form

dVj
dt

7=1

+ a,GRAV ‘ (2.19)

Therefore the pressure force between two particles is symmetric, hence linear and angu

lar momentum are conserved.
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• Energy equation

We can symmetrise the energy equation using the identity

—V • y = V •
P

(2.20)

The rate of change of the specific internal energy of an SPH particle becomes

The smoothing length essentially determines the level of resolution in SPH. The choice 

of h is extremely important, since we must ensure we are resolving on a scale compara

ble with or less than the scale of the physical processes we are interested in. Failing to 

resolve on these scales means we may smooth over some important features.

When SPH was first introduced, smoothing lengths were constant in time and uni

form in space (Gingold & Monaghan 1977). However it has since been demonstrated 

that if each particle has its own h which is allowed to vary in time, the spatial resolution 

is substantially improved (Hemquist & Katz 1989). By having a smoothing length that 

varies in time and space, the number of neighbours of each particle can remain roughly 

constant. This means that high density regions can be better resolved since a smaller h 

is required in order to meet this condition.

The smoothing length of a particle is adjusted so that its neighbour list contains 

A/neib other particles. The choice of is a compromise between good sampling and 

good resolution. If N neib is increased, the sampling is improved and hydrodynamic vari

ables are smoother, but resolution is degraded. Conversely if N NEm is reduced, sampling 

is degraded and hydrodynamic variables are noisier, but resolution is improved. Having

(2.21)

2.5 Smoothing Lengths
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a larger also increases the computational time, so it is important to strike the right 

balance. Experience suggests that AfNE1B « 50 is a good compromise. Many SPH simula

tions in the literature allow JVNEIB to fluctuate within some tolerance AJVNE1B. In Chapter 

4, we show that if the tolerance is set to zero, there is a marked reduction in the rates of 

numerical dissipation and diffusion .

Some SPH codes (e.g. Price & Monaghan 2004) do not specify the number of 

neighbours, but instead, for each particle, iterate around a loop,

m

P,

1/3

(2 .22)

* •  c “ >

until fractional changes in p i drop below a user-defined tolerance, e. Here h0 is a constant 

of order unity, and the summation is over all neighbours j  for which |r -  r(| < 2h i (i.e. 

all particles within the smoothing kernel of particle /). Provided e is sufficiently small, 

this is statistically equivalent to setting N SE1B = 32nh3/3 and AJVNEIB = 0 .

2.6 Artificial Viscosity

Artificial viscosity is introduced in order to treat shocks correctly. When shocks are 

simulated in SPH, small oscillations can occur behind the shock front. This is a result 

of the discrete nature of the particles, and so the oscillations are unphysical. Another 

problem that arises here is colliding streams of particles travelling at high Mach numbers 

can penetrate each other. In these situations, an extra pressure term is added to the 

momentum equation which produces a repulsive force between particles that are close 

and rapidly approaching each other. This effectively slows the colliding streams down 

and, in the case of shocks, allows the shocked region to be approximately resolved.

The standard form of artificial viscosity is described by Monaghan (1992). With
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artificial viscosity, the equation of motion for particle i is given by

GRAV » (2.24)

where II ,7  is
■acijHij+Pn;

(2.25)

and

(2.26)
|ry|2 + 0.01ft?.

(Monaghan 1992). Here, rl7 = rf -  rj, vl7 = v,- -  v7, h j  = (h  + hj)/2, p tj = (pt +pj)/2  and 

Cij =  ( Ci +  c j ) / 2, where c, and c j  are the sound speeds for particles i and j  respectively. 

Similarly, the energy equation becomes

We stress that this extra viscosity is only incorporated when particles are approaching 

i.e. (Yij.Tij) < 0, as required in shocks, a  and (3 are user defined parameters which con

trol the strength of the viscosity. Good results are obtained with a  = 1.0 and = 2.0 

(Monaghan 1992). The a  term is a bulk velocity, and is dominant for small veloc

ity differences e.g. subsonic velocity oscillations. The (3 term is a second order, von 

Neumann-Richtmyer-type viscosity, and is dominant when there are large velocity gra

dients e.g. high Mach number shocks. Standard artificial viscosity is symmetric, so that 

two approaching particles, i and j ,  exert equal and opposite forces on each other, and 

therefore linear momentum and angular momentum are conserved. This means we can 

capture the basic jump conditions across a shock with acceptable accuracy.

However, this prescription is applied to the whole fluid, even though it is only 

required where and when shocks occur. This can cause problems, because in regions 

away from shocks where there are shear flows, it can lead to angular momentum being

(2.27)
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transported unphysically. To limit the level of shear viscosity produced, various switches 

and forms of artificial viscosity have been devised, such as the Balsara switch and time- 

dependent viscosity.

2.6.1 Time-dependent viscosity

This approach to reducing the amount of shear viscosity was proposed by Morris & 

Monaghan (1997). In standard artificial viscosity, or, one of the parameters controlling 

the strength of viscosity, is set at a fixed value for all particles in the simulation. In 

time-dependent viscosity, each particle is given its own viscosity parameter or,, a, is 

then evolved according to the equation

da,; Cti — O'* „
— !■ = —  --------- + S i .  (2.28)
dt t

a* is the minimum value that or, decays to in the absence of shocks, over a timescale r. 

Morris & Monaghan (1997) adopt a* = 0 .1 , because it allows the effect of viscosity to

be reduced by an order of magnitude for particles away from the shock, but still treats

the particles in the shocked region with the required bulk velocity. S, is a source term, 

which Rosswog et al. (2000) take as

Si = max(-V • v, 0)(2.0 -  a ) . (2.29)

Si is chosen such that the viscosity grows as the particle approaches a shock front. The 

timescale on which a t decays is chosen to be

T/ = L  ■ (2.30)
CiC

Ci is the local sound speed in the fluid and C is a dimensionless parameter with value 

0.1 < C < 0.2. Morris and Monaghan (1997) recommend C = 0.1 to obtain good 

results. ^  is then set to 2 o r , - .
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2.6.2 Balsara switch

Rather than having the level of viscosity decay for particles away from shocked regions 

as in time-dependent viscosity, the Balsara switch (Balsara 1995) is designed to simply 

turn on viscosity for particles in shocked regions only. Here, a dimensionless factor /  is 

defined for a particle i and its neighbour j. It describes the local flow for each particle 

and is given by
|V • V|;f. = --------------- ! !i__________  (2 31

IV • vL- + |V x v|i + 0,0001a /h i ' v }

For each particle-particle interaction, n i; is multiplied by fij = (/• + fj)/2 . The factor

approaches unity in regions of strong compression i.e. shocked regions, since here |V •

v| > |Vxv|. In regions of pure shear flow, the factor approaches zero, since |V-v| |Vxv|.

2.7 Gravity

In each form of the momentum equation given in this chapter, we have included a term to 

describe the gravitational acceleration of i due to all of the other particles. For a system 

of point masses, this is given by

ZN m ,T; j

rrii- (-232'>
j = \ m 1 r »  1

Here we are using units such that G = 1. Generally SPH codes use kernel-softened 

gravity to calculate the gravitational acceleration when the separation of particles is less 

than 2hij\ this is to avoid violent gravitational scatterings. For all other situations, i.e. 

when the separation is greater than tree gravity is used.
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2.7.1 Tree Code Gravity

An accurate estimate of the gravitational acceleration can be made much more efficiently 

using a tree to organise the particles into groups. We incorporate the Bames-Hut octal 

tree (Barnes & Hut 1986) in our star formation code. An alternative is to perform a 

direct summation over all particles, but this is extremely computionally expensive. For 

N  particles, a direct summation requires O iN 2) calculations, whereas using a tree we 

can reduce this to 0{N logN ).

The tree is constructed as follows. Firstly, we set the entire computational domain 

as the rootcell of the hierarchy. This rootcell is then subdivided into 2n subcells (where 

n is the number of dimensions) and these in turn are repeatedly subdivided. This subdi

vision continues until a cell contains a single particle or no particle at all. The rootcell is 

at the top level of this hierarchy and its 2" subcells are the next level down. Any cell that 

does not directly contain particles, but is subdivided, stores the centre of mass due to all 

its lower level subcells. This means that the rootcell contains the centre of mass of the 

whole computational domain. Each cell is defined by its total mass, centre of mass and 

pointers to its subcells. The structure of a 2-dimensional tree constructed for a simple 

distribution is shown in Fig. 2.1.

To calculate the gravitational acceleration on a particle, we must decide whether we 

can treat the particles in a cell as a group. In order to make this decision, the following 

criterion is applied to each cell in turn, starting at the top of the tree,

^  < 6. (2.33)
a

d  is the distance from i to the cell in question, S is the linear size of the cell, and 9 is the 

maximum opening angle. If this condition is obeyed, the particles in the cell and all its 

subcells are treated as a cluster. If not, the cell is opened and the subcells are examined. 

If the cell contains a single particle then the gravitational acceleration is found by direct 

calculation, i.e. a particle-particle interaction is calculated. Accurate estimation of the
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Figure 2.1: The structure of a 2-dimensional tree constructed for a simple distribution. De
pending on the value of 6, we can determine whether to calculate the gravitational accelerations 
directly or approximate the particles as a cluster.

gravitational acceleration requires 6 < 0.577 (Salmon, Warren & Winckelmans 1994). 

We use 6 = 0.5.

In addition to calculating the gravitational acceleration in an efficient manner, we 

can use a tree to construct lists of the neighbours of each particle, which are required for 

SPH summations.

2.7.2 Kernel Softened Gravity

From the calculation for the gravitational acceleration in Equation (2.32), due to the 1/r2 

term, particles at small separations can experience large forces and hence violent accel

erations. To avoid this we soften these interactions by smoothing the particle, no longer 

treating it as a point mass. In this scenario the particles are taken to be spherically sym

metric with finite extent of 2h. When the inter-particle separation is less than 2/i,y, i.e.
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the particles overlap, we use Gauss’ gravitational theorem to calculate the gravitational 

acceleration.

In the vicinity of particle i, the mass interior to radius shj is m(s) = m,W*(s) where

W *(s)=  f  4ns2W(s)ds. (2.34)
Jo

In accordance with Gauss’s gravitational theorem, we neglect the mass of particle i 

outside of s/i,. Hence, the contribution to the gravitational acceleration of particle j  due 

to particle i is

(2J5>
The gravitational potential at distance ri; from particle i is then

0 « - r ? r ( r , h '  ( 2 m

Integrating by parts and multiplying by miy the mutual potential energy of particles i and 

j  is given by

mtyjj = - ’̂ ■ [ W k(s) + lV**(i)] (2.37)
rH

where

r * ( s )  = s f  (2.38)

For the M4 kernel, W* and W** are

W*  =
30

40^3 -  3 6 5 s + 15s6, for 0 < s < 1,

80s3 -  90s4 + 36s5 -  5s6 -  2, for 1 < s < 2, (2.39)

30, for s > 2;
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14 -  20s2 + 15s4 -  6s5, for 0 < s < 1, 

W** = — < (2s + 1)(2 -  s)4, for 1 < s < 2, (2.40)

0, for s > 2.

2.8 Integration Scheme

In order to update the positions, velocities and accelerations of the SPH particles with 

time, we use a second-order Runge-Kutta integration scheme. To advance a particle i 

from the nth to the (n + l) th step, separated by time At, we need the current acceleration 

a". This is found from Equation (2.19) which we write formally as

(2.41)

The positions and velocities at the half timestep are then

(2.42)

We then use these to calculate the acceleration at the half timestep

,n+1/2 v «+1/2^
i ’ wi (2.43)

This then gives the new positions, velocities and accelerations

(2.44)

The choice of timestep At is of particular importance to avoid non-physical effects. We 

choose the minimum of each timescale to prevent the timestep being so long that it
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evolves a particle for a time longer than that appropriate for the local conditions. 

For each particle /, the maximum timestep A?, is

Analysing Equation (2.45), we see it is dependent on various factors. The first two terms 

inside the brackets, (fy/lv,!) and (/i,7|a,|)1/2, ensure that the change in position is small. 

The final term (/ij/cr,) ensures that the courant condition is obeyed, i.e. no disturbance 

propagates faster than the local effective signal propagation speed,

a  and {3 are the same viscosity parameters described in Section (2.6). y  is the Courant 

number and is usually set at 0.3.

Multiple particle timesteps (MPT) is a scheme whereby each particle is assigned an in

dividual timestep which can vary from step to step according to its needs (e.g. Bhattal 

1996). This method is beneficial in simulations where both rapidly evolving regions (re

quiring short timesteps) and slowly evolving regions (not requiring such short timesteps) 

coexist. This means that particles are only evolved when necessary and so computation 

time is decreased.

MPT creates a hierarchy of timestep bins each containing particles whose timesteps 

are twice that of those in the next lower bin. To keep the system synchronised at reg

ular intervals, particles are only allowed to move through these time bins and not with 

arbitrary sized timesteps. The maximum timestep is A /^ ,  and each discrete timestep 

used by particles in different bins is calculated as a fraction of this maximum timestep.

(2.45)

cr, =  Ci +  1.2(orc, +  /3MAX[fUij] ) . (2.46)

2.9 Multiple Particle Timesteps
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Therefore the timesteps can have the values

A w ,  A w /2 ,  A w /4 ,  A W /8 , A ( J 2 * * - - ' ,  (2.47)

where Nbins is the total number of available time bins.

At any time in the simulation Atmax = Atmin2Nmin~l and so we can express the cur

rent position along the largest timestep as sAtmin where s is the step position of value 

s = 0, 1, 2, 3; 2Nmin~1. At 5 = 0, particles are in-synch since this is at the start of 

the maximum timestep.

The maximum timestep length Af, for a given particle i is initially calculated from 

Equation (2.45). The particle is then put into the next smaller time bin n with At = 

Atmax/2n, where n is given by

n = /A T (fa(^ /A?i)) + i. (2.48)

It is required that all particles are synchronised at the end of Atmax. In order to 

ensure this, a timestep may only be used if the time from the beginning of the A tmax 

period is a multiple of the time this bin represents. If this is not the case, we use the next 

descending acceptable time bin.

For example, if Nm\n = 5, this gives A t^x  = 16Atmin. If the timestep we are checking 

is At = Atmax/4  (n = 2), we can only use it if s = 0, 4, 8, 12. Otherwise, we assign 

it the timestep At = Atmax/S (n = 3) if s = 2, 6, 10, 14. If s is odd, we assign it the 

lowest available timestep (here, n = 4). This is graphically represented in Fig. 2.2.
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Figure 2.2: Graphical representation of MPT for when n -  5. Arrows indicate the steps that are 
allowed. By enforcing this, all particles will remain synchronised at the end of Atmax.
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2.10 Sink particles

In simulations of the collapse and fragmentation of a molecular cloud, the gas in the 

cloud reaches very high densities. The particles that represent these regions become 

so tightly packed that their smoothing lengths become very small. At this stage, the 

timestep required to follow their evolution becomes increasingly small, according to 

Equation (2.45). This is not ideal, because eventually all the computational resources 

are being used to follow the first protostellar condensation that forms. The simulation 

grinds to a halt, preventing us from following the formation of any further stars, or 

determining what their properties might have been. A solution to the problem has been 

proposed by Bate et al. (1995). They introduce the concept of replacing high density 

fragments with non-gaseous accreting particles, referred to as ‘sink particles’.

If we are not interested in the internal structure of a dense region, it can be replaced 

by a sink particle only if it satisfies all of the following criteria:

•  The density of one of the SPH particles i exceeds a particular threshold, p SINK. 

Typically we set p SINK = 10"n gcm _3, though it must be ensured pSINK is se

lected according to the resolution requirement of the simulation, to prevent spu

rious sink formation. Bate et al. (1995) suggest p SINK should be 105 times the 

initial cloud density. An alternative approach for determining p SINK involves us

ing the Jeans criterion (Jeans 1928). In SPH the mass resolution of a code is 

MMin = where is the total mass in the computational do

main. Mmin is the minimum mass required to resolve any features and is 

the total number of SPH particles. The Jeans condition requires the minimum 

resolvable mass to be smaller than the Jeans mass, where

Failure to do this means that gravitational instability can not be resolved properly

JEANS Q 3 / 2 p l / 2 (2.49)
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(Bate & Burkert 1997). This can lead to clouds fragmenting when they should 

be Jeans stable. However, with the kernel that we use it can be shown (Whit

worth 1998; Hubber et al. 2006) that this does not lead to artificial fragmentation. 

Rearranging Equation (2.49), the highest resolvable density pJEANS is given as

p slNK must be smaller than pJEANS, in order for the condition to be satisfied.

•  Particle i has negative velocity divergence.

•  Particle i and its neighbours have net negative energy i.e. are bound.

By fulfilling these criteria, we can be sure that the region in question would continue to 

collapse under gravity to form a single star or a close multiple system, had it not been 

replaced by a sink particle.

When a sink is formed, it incorporates all the neighbours of particle i within a dis

tance Rswk. Typically, we set RslNK ~ 5 AU, depending on the resolution requirements 

near the sink. Any particle which subseqently passes within RSINK and is bound to that 

sink, is accreted. The mass, linear monentum and angular momentum of the accreted 

particle is added to that of the sink. Removing particles reduces the number of force cal

culations at each timestep, and hence speeds up the simulation. Therefore, incorporating 

sink particles enables the evolution of the cloud and resulting protostars to be followed. 

This is particularly important since observations of main sequence stars show that most 

stars are in binary or multiple systems (Duquennoy & Mayor 1991). We must therefore 

aim to explain their formation, and using sink particles is a way in which to do this.

NEIB TOT

(2.50)
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2.11 Summary

In this chapter we have described the concept of Smoothed Particle Hydrodynamics, the 

technique we use to simulate star formation. We have discussed the features of a typical 

SPH code, including the integration scheme, multiple-particle timesteps and artificial 

viscosity. In our work we use the Cardiff star formation code DRAGON (Goodwin et 

al. 2004a). It is a standard SPH code, has all the features described in this chapter, and 

has been extensively tested and optimised. The following chapters report the results of 

simulations of certain star-forming scenarios performed using DRAGON.



Chapter 3

Acoustic oscillations of an isentropic 
monatomic gas sphere

In this chapter, we investigate the levels of numerical dissipation and diffusion in our 
SPH code. To do this, we simulate acoustic oscillations of a self-gravitating isentropic 
monatomic gas sphere. This test was originally performed by Lucy (1977), and is a 
highly relevant test for star formation codes. This is because pressure waves generated 
by the switch from approximate isothermality to approximate adiabacity play a crucial 
role in the fragmentation of collapsing cores. We find that, if the smoothing lengths in 
an SPH code are adjusted so as to keep the number of neighbours in the range ± 
Â neib> should be set to zero, to reduce the level of numerical dissipation and
diffusion.

3.1 Introduction

It is important to test numerical codes using known analytic or semi-analytic solutions. 

Such tests play an integral role in verifying that the code can model the same physical 

phenomena that occur during star formation, such as gravitational fragmentation. They 

also provide a good way of investigating the validity of different numerical modelling

37
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techniques. It is well known that an adaptive mesh refinement finite difference code 

is in general more expensive computationally that an SPH code. However, ultimately 

neither method is useful, unless it can be shown that the results are converged and are 

not compromised by numerical artefact.

We propose such a test here, and in this chapter we apply it to our SPH code 

DRAGON. This test involves acoustic oscillations of a self-gravitating, isentropic, monatomic 

gas sphere in the fundamental radial mode. This test was originally performed by Lucy 

(1977) in his seminal paper introducing SPH, and therefore we shall refer to it as the 

Lucy test. It has been performed subsequently (e.g. Steinmetz & Muller 1993; Nelson 

& Papaloizou 1994), but infrequently. It is an appropriate test because it measures (i) the 

level of dissipation associated with artificial viscosity, in the absence of shocks; (ii) the 

extent to which transients, due to the discrete nature of particles (or cells), remove energy 

from genuine modes and transfer it to other spurious modes (i.e. numerical diffusion);

(iii) the ability of the code to model acoustic oscillations, and in particular adiabatic 

bounces; and (iv) the ability of the code to deal with free (or nearly free) boundaries.

Point (iii) is particularly important because it seems that collapsing prestellar cores 

are most prone to fragment at the stage when the gas switches from being approximately 

isothermal to being approximately adiabatic (e.g. Boss et al. 2000). Fragmentation at 

this juncture is presumably due to interactions between the complex system of pressure 

waves which is generated by adiabatic bounces in a converging but disordered inflow, 

and it is therefore essential that spurious waves are not being generated. In this context it 

is worth noting that the isentropic assumption is not strictly the same as adiabaticity, and 

is made here for analytic convenience rather than realism. In simulations where shocks 

develop, artificial viscosity must be incorporated, in which case, either the resulting 

energy dissipation must be included in the energy equation, or -  if the thermal timescale 

is sufficiently short, and the main concern is not with the detailed structure of the shock 

front — a barotropic equation of state may be invoked. There are no shocks in the present 

simulation, and therefore the rate of energy dissipation due to artificial viscosity is low,
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but not negligible. The isentropic assumption then simply implies that the small amount 

of energy dissipated by artificial viscosity is replenished from the background radiation 

field.

It is also appropriate to point out that, although the gas in prestellar cores is largely 

molecular, it behaves as a monatomic gas (i.e. the effective adiabatic exponent y  = 5/3) 

until the temperature rises above ~ 100 K. At lower temperatures the rotational degrees 

of freedom are not significantly excited, since para-H  has its first excited level (J = 2) 

at ^ (5 1 2  K), and ortho-Hj has its first excited level (J  = 3) at &b(854K) (e.g. Black & 

Bodenheimer 1975). Neglect of this fact can lead to artificially enhanced fragmentation 

of collapsing prestellar cores, since with y  -  5/3 the Jeans mass increases quite rapidly 

with increasing density in the adiabatic regime (A/jeans o c  p 1 /2 ) ,  whereas with y  -  7/5 it 

increases much more slowly oc p 1/10).

3.2 Initial Conditions

The gas sphere modelled in these simulations is isentropic and monatomic. An isen

tropic gas has the equation of state

P = Kpy = K pl+l* (3.1)

where K , y  and n are constants; In [AT] is the specific entropy and y  is the adiabatic 

exponent. For a monatomic gas y  = 5/3 and therefore n = 3/2. To set up a polytrope of 

this type, we must first visit the Lane-Emden equation and its functions.
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3.2.1 Lane-Emden Equation

If a spherically symmetric self-gravitating polytrope is to be in hydrostatic balance we 

require
1 dP(r) GM{r)

= gif) = ------ 5— , (3.2)p(r) dr r2

where r is defined as the radial distance from the centre, p(r) is the density at r and M{r) 

is the mass interior to r. This can be written as

^  dp(T)
M {r)  = - G ^ r ) - 1 T ’ ( 3 3 )

which differentiates to
dM{r) _ 1 d i r2 dP{r)\ 

dr G d r\p (r) dr /

and hence
dM(r)

dr

By equating (3.4) with (3.6) we obtain

(3.4)

Applying conservation of mass gives

r r'=r
M(r) = I p{rf)4nrf2dr' (3.5)

J r '=o

= p(r)47rr2. (3.6)

i { £ ) ^ ) + 4 K G ^ = 0 - (3-7)

Substituting (3.1) in (3.7) gives

We introduce the dimensionless variables £ and 0n, defined as
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and
p(r = £Ro) (3.10)

P c

where p c is the central density and Rq is a scale length, given by

(3.11)

With substitution of these dimensionless variables, (3.8) reduces to the form

(3.12)

Equation (3.12) is the Lane Emden (LE) equation.

3.2.2 Lane-Emden Functions

In order to solve the LE equation, we must find solutions which satisfy the boundary 

conditions, which are as follows.

Firstly, from the definition of the dimensionless variable 9 in (3.10), it follows that

P(0) = P r[#„(£ = 0)]" = p c . (3.13)

Therefore

0n(  0 )  =  1. (3.14)

The second boundary condition can be deduced from realising that there is no grav

itational acceleration at the centre due to there being no central point mass. Therefore,
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the pressure gradient must be zero at the centre.

= K ^ - ^ p c° +1M[0n(g = 0 ) ] - f ( £  = 0) Ro at; (3.16)

(3.15)

=  0 . (3.17)

Therefore,

(3.18)

There exist three analytical LE functions corresponding to n = 0,1 and 5. However, 

the polytrope to be examined is one in which n = 3/2, and so the LE function for this 

case can only be found by numerical integration of the LE equation.

In order to divide this second-order equation into two first-order equations, we de

fine the dimensionless variable

(3.19)

Hence, by differentiating we obtain

(3.20)

which has the boundary condition

0 (£ =  0) =  0 . (3.21)

Also, by rearranging (3.19), we obtain

dQ <p
d t  = ~ ¥ ’

(3.22)
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Figure 3.1: Solution to the Lane Emden equation for n = 3/2 

which has the boundary condition

9(g = 0) = 0. (3.23)

(3.20) and (3.22) must therefore be integrated in order to produce a tabulation of g and 

the corresponding values 9 and 0. Since Equation (3.22) is singular at the origin, we 

start with a series expansion valid for small £, i.e.

< 3 2 4 )

From (3.19), it follows that

</> a  + ... (3.25)
3 30

By incorporating this series expansion, 9 and 0 are calculated accurately when f  1. 

The variation of 9 with g is shown in Fig. 3.1. 9 and 0 are required for the next section 

in which we set up a uniform density sphere and then stretch it radially to reproduce the 

density profile of a polytrope with exponent 5/3.
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Figure 3.2: The two-dimensional lattice with inter-particle separation s.

3.2.3 Constructing the gas sphere

To set up the equilibrium isentropic sphere, we place equal-mass particles on an hexag

onal close-packed array within a sphere of radius unity. Each particle has exactly 12 

neighbours at an inter-particle separation s. This is achieved by firstly making a row of 

equally spaced particles along the x-axis. This row is then copied into the x — y plane by 

translating each particle by the vector nr, where n = ± 1, ±2,..., and

to produce an hexagonal close-packed layer. This layer is illustrated in Fig. 3.2.

In order to produce the next layer of the lattice, we translate each particle in this 

layer by the vector n'r', where n' = ±1, ±2,...,

(3.26)

(3.27)

A sphere of radius R0 is then cut out of this array.

The next step is to stretch this uniform-density sphere radially to reproduce the 

density profile of a polytrope with exponent 5/3.
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The sphere is initially of radius Ra with particle i at a radius rf. Therefore, the mass 

interior to that particle is

"(£)’■ <328)

In order to make an isentropic sphere with y  = 5/3, but still imposing that the radius

and mass are unity, this particle must be moved to a new radius r*, conserving the mass

interior to it. This position is defined as

r* = £/?o. (3.29)

In the polytrope, each particle has a radius £/& , where jjb is the value of £ at the

boundary, and a mass 0(6)/0(6>) interior to it. Hence, for each particle we must set the

new radius by first finding the value of 6  which satisfies

m )  = # 6 ) ( f - )  • (3-30)

The factor F  by which the particle’s position must be scaled is then

= (3.31)
r, r,

and so each particle is now at a position

x *  =  F x i \

y* = Fyr, (3.32)

z* = Fzi.

Fig. 3.3 shows the overall structure of the sphere for N ^  = 5,895 particles. The 

density profile of this unsettled sphere, compared to the analytical profile, is shown in 

Fig. 3.4.
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Figure 3.3: 2-D plot of the isentropic monatomic sphere, constructed as described in section 
3.2.3.
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Figure 3.4: Density profile of sphere before settling. Red line represents the analytical solution; 
green points represent the actual particle densities.
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Figure 3.5: Density profile of the settled distribution.

The system is then relaxed by evolving the particle positions using the SPH code, 

until the net kinetic energy falls to a very small value (relative to the magnitude of the 

gravitational potential eneigy). The settled density profile is shown in Fig. 3.5. Another 

check to ensure the sphere is settled is to look at the magnitude of the hydrostatic accler- 

ation and gravitational acceleration of each particle. If the sphere is settled, they should 

be equal. A plot of this is shown in Fig. 3.6. The red open squares show the magnitude 

of the gravitational accelerations and the filled green circles show the magnitude of the 

hydrostatic accelerations, both as a function of the radius.

The next step is to perturb the sphere in order to undergo oscillation. To do this we 

must excite the fundamental radial mode.

3.2.4 Exciting the fundamental mode

To excite the fundamental mode, each particle is displaced radially from its equilibrium 

radius R  to a new radius R ' = R [1 + A£(/?//?0)], and then released from rest. Here £(s) 

(0 < s < 1) is the eigenfunction of the fundamental radial mode of a self-gravitating
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Figure 3.6: Radial components of the gravitational accelerations (red open squares) and hy
drostatic accelerations (filled green circles) of the particles in a settled sphere, as a function of 
radius.

isentropic monatomic gas-sphere. This was very kindly supplied, in the form of a dense 

look-up table, by Alfred Gautschy. A is the initial amplitude of the oscillation, which 

we set to A = 0.1.

The density of the sphere then becomes

p'(/0 = p(«)[i + <rw/?0r 2[i + + (3.33)

Originally, the gravitational acceleration is

f l GRAV C ^ )  —

GM(R)
R2 ’ (3.34)
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however, upon perturbation this acceleration then becomes

GM(R) 
R’2

= < W « )[1  + ((R/R«))-2 

-  «gw v(K )U  -  2((R/R°)}-

Likewise, the hydrostatic acceleration changes from being

^HYDRO ( ^ )

1 dp
p(R)dR  

-yK p y~2(R) dR

to

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

a'HYDIto(R') = - yATp '< r - 2 ) f ^ 2
HYDROv '  I r  in,

= « h y d r o  m i + m R o ) r 2̂ i + m + *  £ ]  r { i  -

(3.40)

P ( R )

!+ £(/?) + /?
-l

dp/dR

a 4 , )

= - a GRAV( R ) [ l + ^ / « 0)]-2(>'-|) 1 +

d O ~ l l+ ( (R /R 0) + R - ±  
dR

(w + m r . w 'J L

-  aGRAV {1 -  (3y -  2){(R/R0) -  -  P(/J)

dp/dR  

)} (3.42)

dp/dR
x

2  -  2((R/R o) ~ R ^dR
* L
dR

\ - Z { R /R 0) - R * L
dR

(3.43)

To be able to complete coherent radial oscillations, the restoring acceleration at
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each radius of the perturbed sphere must be proportional to the displacement, so that

(3.44)

(3.45)

(3.46)

where a> is the pulsation frequency. By ignoring the non-linear terms we obtain

(§SlS - . f3’’ - 4 - g^)k(K"!-) = »• <3«>
However, the equation of hydrostatic balance can be rewritten as

P ( R )  _  y K R 2pV ~ \R )

dp(R)/dR ~ GM(R)
_  _  yR 2P(R)
~  G M (R)p(R)  »

and so (3.47) simplifies to

^ , ( 4  G M (R )p(R )AdC ( 2 O r  -  4)GM(R) , 1 p(R)
d &  + 1R &  P(R))dR + T  # j y ^ (R/R^  ~ ° ' (3 50)

The eigenfunction £(R) and eigenfrequency gj are obtained by solving this equation 

subject to

(3.48)

(3.49)

a

* aGRAVW {0r-4K W «o) + r « |  + ^ g ^ x

+
dR

R
— ))dR2))

« -  aj2R{(R/Ro),

( ( R / R o )  =  1

dr
- =  0) =  0.

0-51)

0-52)
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3.2.5 Numerical Details

We represent the isentropic gas sphere with = 5,895 particles. Four simula

tions are performed, each with the same initial conditions, but evolved with AWNE1B = 

0, 2, 5, and 10. We use the star formation code DRAGON, described in Chapter 2.

Figures 3.7 and 3.8 show oscillations simulated with A N SE1B = 0, 2, 5, and 10. In Fig. 

3.7, the quantity plotted is the mean ^-displacement

(the mean being taken over all the particles, with equal weighting), as a function of time 

(normalised to the central freefall time, t^ , in the unperturbed equilbrium state). xi is 

the distance of particle i from the centre of mass on the x  axis. In Fig. 3.8, the quantity 

plotted is the total kinetic energy, normalised to the magnitude of the gravitational po

tential energy in the equilibrium state (i.e. 7C7IOJ, where 7C is the total kinetic energy, 

Q is the total gravitational potential energy, and subscript 0 refers to values in the un

perturbed equilibrium state), again as a function of time (normalised to t^). Some decay 

parameters are recorded in Table 3.1.

In addition to the fundamental mode, some additional modes are unintentionally 

excited from the outset. This is because, following relaxation, the equilibrium state of 

an isentropic monatomic sphere is not modelled exactly, due to the smoothing inherent 

in SPH. In particular, the density is underestimated near the centre and near the bound

ary. (This can be improved by increasing B and / / TOr/ / / NEIB, but that requires extra

The time-dependent artificial viscosity prescription is invoked (see Section 2.6.1 for a 

description). Each simulation is evolved for 100 freefall times.

3.3 Results

i
(3.53)x
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computational resource.) Furthermore, the fundamental mode is excited with finite am

plitude, but the eigenfunction is derived on the assumption of infinitesimal amplitude. 

(This can be moderated by adopting a lower value for A, but the test is not then relevant 

to real simulations of star formation, where ultimately we are concerned with non-linear 

perturbations.)

3.3.1 Decay of the fundamental mode

Setting aside the effect of other modes present in the initial conditions, the subsequent 

decay of the fundamental mode is in general due to two effects. First, the oscillation 

energy may be dissipated by artificial viscosity. The dissipation of energy due to arti

ficial viscosity occurs wherever two neighbouring SPH particles approach one another. 

Second, the oscillation energy may be transferred to other modes. This occurs wherever 

local density or velocity fluctuations are created by the discrete nature of the SPH parti

cles, or by the ‘peculiar velocities’ of individual SPH particles. Both effects occur more 

rapidly for larger values of A A /^ . (They also occur more rapidly for smaller values of 

A/tot and smaller values of W ^ ,  but these parameters are not varied here.)

When AA^g = 0, the neighbour list of an SPH particle changes very seldom, 

and -  when it does -  very little. Therefore the acceleration experienced by the particle 

varies very slowly, and the velocity field is very smooth. The upshot is that neighbour

ing particles only approach one another very slowly, and the rate of dissipation due to 

artificial viscosity is low. Notwithstanding the slow rate of dissipation, there are small 

fluctuations in density and velocity, and these feed energy into other modes, so that the 

fundamental mode decays (see Figs. 3.7 & 3.8).

As A A f^  is increased, the neighbour list of an SPH particle changes more fre

quently, and more abruptly. Therefore the acceleration experienced by the particle varies 

in a more idiosyncratic manner, and the velocity and density fields are more noisy. The 

upshot is that neighbouring particles often approach one another more rapidly, and the
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Figure 3.7: The mean jc-displacement, x (where the mean is over all particles, with equal 
weighting), against time, / (in units of the freefall time in the equilibrium state, t^). The re
sults are displaced vertically by A jc  to fit them all on one plot. Reading from the top, (a) 
A = 0, A jc  =  0; (b) = 2, A jc  =  -0.05; (c) A = 5, A jc = -0.10; (d)
A = 10, A jc  =  -0.15 .

rate of dissipation due to artificial viscosity is therefore higher. In addition, the noisy 

velocity and density fields are very effective at feeding energy into other modes, so that 

the fundamental mode decays more rapidly (see Figs. 3.7 & 3.8).

In principle, the number of neighbours can change by 2AWneib at each timestep, 

from N wb -  A A /^  to + A N ^  or vice versa. Thus with = 50 and A N ^  = 

10, the number of neighbours can change from 40 to 60 or vice versa. In practice 

such large changes are unlikely, but it is still the case that increasing A A /^  results 

in increased fluctuations in the neighbour lists. In particular, particles in condensing 

regions tend to have N  fluctuating between ~ and ~ ( N ^  + A A /^), whilst 

particles in expanding regions tend to have N  fluctuating between ~ and ~ (N SElB -

^ ^ neib)*
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Figure 3.8: The total kinetic energy, 7C (normalised to the magitude of the self-gravitational 
potential energy in the equilibrium state, |Q0|), against time, t (in units of the freefall time in 
the equilibrium state, t^). The results are displaced vertically by A9C to fit them all on one 
plot. Reading from the top, (a) A N ^  = 0, A7C = 0; (b) A = 2, ATT = -0.003; (c) 
AA^ib = 5, A7C = -0.006; (d) ANmiB = 10, A<K = -0.009 .
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3.3.2 Decay statistics

In Table 3.1, we record, for each value of AA/^g (column 1), the e-folding time of the 

amplitude of the fundamental mode, TA, in terms of its period, P0 = 3.7/^ (column 

2); the oscillation energy left after ten periods, £ 10, as a fraction of its initial value, £ 0 

(column 3); and the simulation time to evolve the oscillating gas-sphere for 10 periods 

on eight 2.2Ghz Opteron CPUs each with 8GB memory (column 4). The oscillation 

energy is given by

6  = %  + ( T - T 0) + ( n - n 0), (3.54)

where *K is the kinetic energy, T  is the thermal energy, and Q is the gravitational poten

tial energy. Again the subscript 0 indicates the unperturbed equilibrium state.

We note that the oscillation energy decays rather slowly due to dissipation, even 

with AÂ nejb = 10. This is because the oscillations have low amplitude, and therefore the 

relative velocities between neighbouring particles are always very subsonic. Not only 

are the initial amplitudes low, but in the cases with high A N ^  the amplitudes decay 

rapidly due to numerical diffusion. In other words, when A //NEIB is high, the rate of 

dissipation is reduced because diffusion rapidly spreads the oscillation energy amongst 

many different modes and thereby reduces even further the relative velocities between 

neighbouring particles. This is reflected in the results presented in Fig.3.8 and the third 

column of Table 3.1. Because the decay of the fundamental mode is largely due to nu

merical diffusion, the oscillation energy only falls by a few percent after ten periods 

(see the third column of Table 3.1), whereas the amplitude of the variation in kinetic en

ergy falls much more rapidly. The variation in kinetic energy eventually disappears, not 

because the kinetic energy itself disappears, but because numerical diffusion transfers 

oscillation energy to other modes with different periods and different phases. Conse

quently the oscillation energy becomes thermalised, and %  is finite but approximately 

constant.
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Table 3.1: Decay of the fundamental mode. The first column gives AN NmB. The second column 
gives the e-folding time for the amplitude of the fundamental mode, TA, as a multiple of its 
period, PQ. The third column gives the net oscillation energy left after 10 periods, S 10, as a 
fraction of the initial oscillation energy, £ 0. The fourth column gives the simulation time to 
evolve the oscillating gas-sphere for 10 periods on eight 2.2Ghz Opteron CPUs each with 8GB 
memory, f10.

•̂^NEIB T J P 0 610/60 ' io /s

0 1 3 .6 0 .9 5 5 9 5 4 5
2 7 .6 0 .9 3 9 9 4 0 3
5 3 .8 0 .9 2 7 8 9 9 6

10 3 .1 0 .9 2 5 8 1 6 4

The simulations presented here have been continued for 100 periods. In this limit, 

there are so many modes excited, with so many different phases, that the gas-spheres 

become virialised with

27C + 2 T  + Q  a  0 ; (3.55)

%  is still finite.

3.4 Summary

From the plots in Figs. 3.7 & 3.8, and the above discussion, we infer that the results 

obtained with A A /^  = 0 are far more reliable than those obtained with A -  10, 

and significantly more reliable even than those obtained with A N ^  = 2, both in terms 

of having less dissipation and — more importantly — in terms of having less numerical 

diffusion.

Setting A A r^  = 0 also requires little extra computation. For example, to follow 

10 oscillation periods with A N m  = 0 takes only 17% longer than with A N m  = 10.
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Moreover, 7% of this increase is due to the fact that with A //NE1B = 0 the sphere continues 

to oscillate with a significant amplitude after 10 periods, and therefore the timestep 

remains short. When allowance is made for this, the real cost of reducing A A /^  from 

10 to 0 is only a 10% increase in computation.

Therefore our principal conclusions are (i) that A //NEIB = 0 should be the default 

option for SPH codes which adapt smoothing lengths in this way; and (ii) that the Lucy 

test provides a very useful way of evaluating the fidelity of codes used in simulations of 

star formation.

We emphasise that we have not set out to reproduce as accurately or economically 

as possible acoustic oscillations of a self-gravitating isentropic sphere in the fundamen

tal mode. We have simply demonstrated how the results produced using a standard SPH 

code, with a modest number of particles (N lxyr = 5,895) depend on A A ^ . There are ad

justments to SPH which will improve (extend) the timescales for numerical dissipation 

and numerical diffusion in the present simulation. For example, using standard artificial 

viscosity with a  = 0 and f3 = 0.1 increases the e-folding time for the fundamental mode 

to ~ 60 oscillation periods, but at the same time compromises the shock-capturing abil

ity of the code so that it can not then be used for simulations in which shocks are likely. 

Similarly, the e-folding time for the fundamental mode can be extended by increasing 

^neib or nejb, but this must inevitably be at the expense of resources which are

needed elsewhere, viz. to maximise the extent and/or duration of a simulation.

The useful duration of the present simulation can be identified with the e-folding 

time of the fundamental mode, which with AA/j^ = 0 is 13.6 oscillation periods, but 

with A / / ^  = 10 is only 3.1 oscillation periods.

We propose that Adaptive Mesh Refinement codes used for simulating star for

mation aim to reproduce or improve upon the results produced here, using comparable 

computational resources. In addition, they should do so for a gas-sphere which moves 

at constant velocity relative to the underlying Cartesian grid, in order to match the La-
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Chapter 4

Simulating star formation in molecular 
cores

In this chapter we simulate the collapse and fragmentation o f  relatively isolated low- 

turbulence cores. We perform multiple realisations o f a large ensemble o f cores, all 

having the same mass, initial density profile and turbulent power spectrum, but with 

three different initial levels o f turbulence. This problem was first investigated by Good

win et al. (2004b), using a simple barotropic equation o f state. However, a barotropic 

equation o f state is not realistic, because it does not take into account the thermal his

tory o f proto stellar gas, and it is unable to capture thermal inertia effects. We therefore 

revisit this problem, but now using a new treatment o f the energy equation devised by 

Stamatellos et al. (2007b) which treats the energy equation and the associated radiative 

transport more realistically. We quantify the differences between simulations performed 

using a barotropic equation o f state and simulations which use the new treatment o f 

the energy equation and associated radiative transport. We also compute the statistical 

properties o f the resulting stars, including their mass distribution, kinematics and binary 

statistics.

59
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4.1 Introduction

Current observations suggest that a significant fraction of low-mass stars condense out 

of small, relatively isolated, low-turbulence prestellar cores, with each core spawning a 

small cluster of stars. The evidence for this mode of star formation is as follows.

Isolated cores

The evidence supporting the idea that the cores are relatively isolated comes from a 

number of studies. Andre et al. (2007) have carried out a study of the L1688 protocluster 

in the central Ophiuchus molecular cloud. They estimate the one-dimensional intercore 

velocity dispersion (i.e. the dispersion in the bulk velocities of the cores relative to their 

neighbours) to be AvIN11ERC0RE ^  0.36 km s-1, the collision cross-section between cores to 

be crCOLL ^  10"3 pc2 (including the effect of gravitational focussing), and the number- 

density of cores to be nCORE ^  80 pc-3. Hence the mean time between collisions between 

cores is

rCOLL “   -----— \  ----------- ~ 30,000 kyr. (4.1)
CORE COL INTERCORE

In contrast, the condensation timescale for a typical core is fCOND ~ 100 kyr. Therefore 

a typical core is likely to have collapsed and fragmented, internally, before it interacts 

with a neighbouring core.

Low turbulence

The observed turbulent motions in low-mass prestellar cores are estimated to be sub

sonic, or occasionally transsonic (e.g. Myers 1983; Myers et al. 1991; Myers 1998; 

Andre et al. 2007). Indeed, Myers (1998) concludes that the decay of turbulence to 

subsonic levels may well be a prerequisite for the formation of low-mass protostars. If 

the level of turbulence is characterised by the parameter

...fi-U RB ( 4  2 )
TURB I J 7  I ’ V + - * * )

I GRAVI
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where E j ^  is the turbulent energy, and £ GRAV is the self-gravitational potential energy, 

then the typical values in low-mass prestellar cores are mainly in the range 0 < a TCRB ~ 

0.3 (see Jijina et al. 1999; and Fig. 2 in Goodwin et al. 2004a). We note that this is 

much lower than the values used by Bate et al. (2002a,b, 2003) to initiate the evolution 

of more massive cluster-forming cores.

Each core spawns only a few  stars

The evidence that each core spawns only a few stars comes from the binary statistics 

of young low-mass stars, which show that a high fraction are in binary or higher-order 

multiple systems. The binary fraction decreases with decreasing primary mass, and with 

increasing age, but for a 1M© primary it is still ~ 60% in the field (Duquennoy & Mayor 

1991). Goodwin & Kroupa (2005) and Hubber & Whitworth (2005) have shown that 

this high multiplicity requires newly-born stars to complete their early dynamical evo

lution in small sub-clusters containing just a few stars (i.e. A/sUBCLUSTER ~ 4 ± 1 stars). 

This is because, in a small sub-cluster, Af-body interactions tend rather quickly to de

liver a tight binary, usually comprising the two most massive stars, and to eject most 

of the remaining stars as singles (McDonald & Clarke 1993; Goodwin & Kroupa 2005; 

Hubber & Whitworth 2005). Therefore, if WSUBCLUSTER is increased, a higher proportion 

of stars are ejected as singles, and therefore the primordial binary fraction is reduced, in 

contradiction with the observations.

4.1.1 The influence of the level of turbulence

Goodwin et al. (2004a,b) were the first to explore how the level of turbulence affects the 

collapse and fragmentation of small, relatively isolated prestellar cores. In their study, 

they simulate the evolution of a large ensemble of cores. The cores are all of mass 

M  = 5AM q and all have the same initial density profile and turbulent power spectrum. 

They vary the initial level of turbulence, as measured by the ratio of the turbulent kinetic
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energy to gravitational potential energy, so that

= i f 222? = o ., 0.01, 0.025 , 0.05 , 0.10 , 0.25. (4.3)
' GRAVI

For each value of 0 ^ 3 , they perform many different simulations, each with a different 

realisation of the initial turbulent velocity field, in order to obtain good statistics.

They find that the minimum level of turbulence required to produce multiple sys

tems is = 0.05. Further to this, increasing the level of turbulence in the core 

increases both the total number of stars formed, and the proportion of brown dwarfs. 

The mass distribution produced appears to be bimodal. It consists of a low-mass peak 

occupied by brown dwarfs ejected from the core before they can accrete much mass, 

and a higher mass peak occupied by stars which have remained in the core and grown 

by accretion to become hydrogen-burning stars.

In a subsequent paper, Goodwin et al. (2006) investigate the effect of the turbu

lent power spectrum on the fragmentation of cores with low levels of turbulence. They 

consider different turbulent power spectra, of the form Pk oc k~x, with x  = 2, 3, 4 and 5, 

and find that increasing jc results in more fragments. This is because increasing x  gives 

more turbulent power on long wavelengths, and hence more large-scale fragmentation 

resulting in separate protostars.

However, in their simulations Goodwin et al. (2004a,b, 2006) use a simple barotropic 

equation of state. In practice this is not realistic, because (a) a barotropic equation of 

state does not take into account the thermal history of a protostar, which depends on its 

environment, geometry and mass, and (b) a barotropic equation of state is unable to cap

ture thermal inertia effects, which are critical at the stage when fragmentation occurs. 

By thermal inertia we mean the situation when the thermal timescale is longer than the 

dynamical timescale.

We have therefore revisited the study of Goodwin et al. (2004a,b), but now using



4.2. INITIAL CONDITIONS 63

a new treatment of the energy equation due to Stamatellos et al. (2007b). This new 

treatment captures the critical thermal and radiative effects and is therefore much more 

realistic than a barotropic equation of state. We shall describe this technique in more 

detail later in the chapter.

4.2 Initial Conditions

We use the same initial conditions as Goodwin et al. (2004b). These initial conditions 

are designed to fit the observed properties of prestellar cores, such as L I544. The density 

profiles of prestellar cores are approximately flat in a central region of a few thousand 

AU, then fall as r'*1 with 2 < tj < 5 in the outer regions, until eventually merging with 

the background (e.g. Ward-Thompson et al. 1994; Andre et al. 1996; Ward-Thompson 

et al. 1999; Andre et al. 2000). A Plummer-like profile of the form

( 4 ' 4 )

gives a good fit to the observed density of these cores, is the central density

(3 x  10-|8g c n r 3) and is the radius inside which the density is approximately

uniform (5,000 AU). The core extends out to Rcore = 50,000 AU, so its total mass 

= 5.4Af©. The mass inside flKERNEL is only MKERNEL = 1.1 Mq.

We start with an isothermal core at T = 10 K, giving a ratio of thermal to gravita

tional energy of
F

_  _  THERM q  , a c\
O'™** =  1 ~ 0-3 ■ (4.5)

I GRAVI

We impose a divergence-free Gaussian random velocity field on each core (Bate et al. 

2002a,b, 2003; Bonnell et al. 2003). This approach of initialising the velocity field 

is normally referred to as turbulence, but we recognise that it is not self-consistent, 

fully developed turbulence (c.f. Offner et al. 2008). We set the power spectrum of 

the velocity field to P(k) oc k~4, which mimics that observed in giant molecular clouds
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and cores (Burkert & Bodenheimer 2000). The level of turbulence is characterised by 

<*turb = °*25’ where a TmB is defined in Equation (4.3). This is a fairly low

level of turbulence in comparison to some simulations (e.g. Bate et al. 2002a,b, 2003) 

but we note these are typical values for the level of turbulence in observed low-mass 

cores (see catalogue of Jijina et al. 1999).

4.2.1 Using a barotropic equation of state

At low densities (p < pCRIT ^  10-13 g cm-3) the gas in a core is approximately isothermal 

at T -  10K. Once the density exceeds p CRrr, the cooling radiation becomes trapped 

by the high optical depth. This results in the gas switching from being approximately 

isothermal to being approximately adiabatic (Larson 1969; Tohline 1982; Masunaga & 

Inutsuka 2000). This can be modelled using a barotropic equation of state:

where P  is the pressure, p  is the density, cs is the isothermal sound speed and c0 = 

0.19km s-1 is the isothermal sound speed in molecular gas at T  = 10K. Until the tem

perature rises above ~ 100 K, the rotational degrees of freedom of molecular hydrogen 

are not significantly excited, and so the effective adiabatic exponent is y  ~ 5/3. This in 

turn means that the Jeans mass increases rather rapidly once the density exceeds p ^ ,  

roughly as MmANS oc p 1/2. We note that the simulations of Bate et al. (2002a,b, 2003) 

and Bonnell et al. (2003) use a similar barotropic equation of state but with y  = 7/5 

in the adiabatic regime; consequently their Jeans mass increases much more slowly, 

^jeans 00 P 1/10> giving a greatly extended window of opportunity for fragmentation at 

low masses.

Equation (4.6) gives a good fit to the run of temperature with density at the centre 

of a collapsing non-rotating 1M© protostar, as obtained by the detailed computations of 

Masunaga & Inutsuka (2000). However, simulations producing condensations which

2/3-j

(4.6)
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have masses below 1M© and/or are non-spherical are compromised by this assumption. 

Such condensations will tend to become opaque and heat up at a significantly higher 

density. This is because the optical depths are lower, and because the rate of compres- 

sional heating is slower.

In addition to this, a barotropic equation of state does not capture properly thermal 

inertia effects, such as the complex system of interacting pressure waves which domi

nates the dynamics when the gas becomes adiabatic. At this stage, the thermal timescale 

suddenly becomes longer than the dynamical timescale. This is when fragmentation oc

curs, as evidenced by the simulations of Boss et al. (2000). Therefore, capturing the 

thermal inertia effects is crucial, and requires a more realistic treatment of the energy 

equation and associated radiation transport.

4.2.2 New energy treatment

Stamatellos et al. (2007a) have introduced a new alogorithm for treating the thermal 

and radiative effects influencing the energy equation. The algorithm allows the thermal 

behaviours of protostars of different mass, in different environments and having differ

ent metallicities to be distinguished, without having to treat in detail the associated 3-D, 

frequency-dependent radiative transfer. It also captures the trapping of cooling radia

tion, opacity changes, and internal energy changes due to the effect of rotational and 

vibrational degrees of freedom of H2, H 2 dissociation and the ionization of H°, He° and 

He+.

This algorithm uses an SPH particle’s density, p„ temperature, Th and gravitational 

potential, to estimate the mean optical depth, f„  between the SPH particle and the 

ambient medium. The mean optical depth then determines the extent to which the SPH 

particje is shielded from external radiation and the extent to which the SPH particle’s 

cooling radiation is trapped. To determine this, a spherically-symmetric pseudo-cloud 

is defined around each particle, through which the particle heats and cools. The details
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possible positions of 
the SPH particle 
inside its pseudo-cloud 
(dashed-circles)

Figure 4.1: Schematic representation of the pseudo-cloud around an SPH particle.The location of 
the SPH particle inside its pseudo-cloud is not specified. Taken from Stamatellos et al. (2007a).

of the algorithm are explained here, but see Stamatellos et al. (2007a) for a detailed 

description and various tests.

The SPH particle i is embedded at radius R = £R0, in the pseudo-cloud with cen

tral density pc, scale-length RQ, and polytropic index n. Fig. 4.1 shows a schematic 

diagram of the pseudo-cloud around an SPH particle. pc and RQ are chosen such that 

they reproduce the actual density and gravitational potential of the SPH particle at the 

dimensionless radius £, i.e.

Pc n o  pi. (4.7)

-AnG pcR l m  * ; ■ (4-8)

where 0(g) is the Lane-Emden Function for index n (Chandrasekhar 1939),

d6
m  + (4 .9 )

and the dimensionless boundary of the polytrope (see Section 3.2.1 for a derivation 

of this function).

pseudo-cloud

SPH  p artic le
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By fixing n and giving £ an arbitrary value -  but not exceeding £B -  we obtain

Pc

4 n  G pi <(>(£)

1/ 2

(4.10)

(4.11)

The central temperature of the pseudo-cloud is also chosen in the same manner to give 

the actual temperature of the SPH particle, i.e.

Tc m  = Ti9 

t c = Tt er l(g).

(4.12)

(4.13)

The column density on a radial line from this radius to the boundary of the pseudo-cloud 

is then given by

l'2
0 " (f)< if . (4.14)

The pseudo-mean column density is obtained by taking a mass-weighted average of 

£/(£) over all possible values of £, i.e.

% =

=  Cn

dQ 1
~ ^ 2 f (fB)] J  o

^ iP ii1/2
n G  J

(4.15)

[- ^b «(& )] *s total dimensionless mass of the polytrope, 0 "(£)£2d f is the dimen- 

sionless mass element between £ and £  + d£, and

in  =
«"(f)
m

1/2

(4.16)

We adopt a value of n = 2 which corresponds to a polytropic exponent of 3/2.
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To calculate the pseudo-mean optical depth, we take the same approach as with the 

pesudo-mean column density. If the Rosseland-mean opacity is a function of density and 

temperature only, k r (jd, T), the radial optical depth from radius R = £R0 to the boundary 

of the pseudo-cloud is

K]Je=e
{pcP { g \  t c0(O )  Pcn ? ) R 0d ?

-V iP iW g )

p
K \ P i

1/2

X

(K?)
m

d ? , (4.17)

and the mass-weighted pseudo-mean optical depth is

d9
Ti =

“r\Pi
0 ( f ) ]" t \8(£
m  j " ‘1 0 ©

We define a pseudo-mean mass opacity

n e w
m

1/2

(4.18)

Tj
,1 = j - . (4.19)

which is a function of p t and T, (if n is fixed). This quantity needs only be calculated 

once, and so can be stored in a dense look-up table. For point (p, T), the pseudo-mean 

opacity is given by

*R( p ,r )  =
1 r f *

J f=o

*r \P
[0 (f) 1

n

T [0© )l ) [0"+2© j
0 ©  J

> 1
[ 0 © J ) m  J

1/2

(4.20)

From Equation 4.19 we can calculate the pseudo-mean optical depth t*. This takes into 

account the radiation absorbed or emitted by i when it passes through the surround

ing material, which will have a different density and temperature, and hence different
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opacity. The parameters are then used to calculate the net radiative heating rate

dui
~dt

4 cr (T4 -  T4)
' (4.21)

where crSB is the Stefan-Boltzmann constant, and Kp(ph Tt) is the Plank-mean opacity. 

T0 is the background temperature and the term involving T£(rj) in Equation (4.21) rep

resents the radiative heating due to the background radiation field. The negative term 

involving Tf represents the radiative cooling of the SPH particle. If T f »  T^fa) ,we can 

neglect the heating term and consider two limiting regimes:

(i) If £?*R(p„ Ti) «  Tj), we are in the optically thin cooling regime and

Equation (4.21) approximates to

dui
~dt

*  - 4o-SBT*Kp(ph Ti) , (4.22)

in exact agreement with the definition of the Planck-mean opacity.

(ii) If t ]  KR(pi, Ti) »  /cp 1 (ph T^, we are in the optically thick cooling regime and 

Equation (4.21) approximates to

dui
I t 2 T,

RA D

^ tf’sB T f c aSB T4SB ' -  SB * (4.23)
X ;KR(ph Td S/ff

where c is the speed of light, aSB is the radiant energy density constant. The second 

expression is obtained by substituting 4 crSB = caSB and % KR(ph T )  = f,.

Gas-phase chemistry

To treat the gas-phase chemistry we assume the gas is 70% hydrogen and 30% helium 

by mass, since metals make very little contribution to the equation of state. Hydrogen 

is molecular at low temperatures, but is dissociated as the temperature rises, and then 

ionised. Helium is neutral atomic at low temperatures, but as the temperature increases it
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becomes ionised, first to He+, and then to He++. The Saha equations give the abundances 

of these constituents (e.g. Black & Bodenheimer 1975). These equations assume that 

the dissociation of H2 is complete before ionization of H° begins; and similarly, that the 

ionization of He° is complete before the ionization of He+ begins.

Equation of state

We define y = «Ho/2nH2 to be the degree of dissociation of hydrogen, x  = nH+ /nH° to be 

the degree of ionization of hydrogen, z i = «He+ /«He° to be the degree of single ionisation 

of helium, and z2 = «He++/«He+ to be the degree of double ionisation of helium. The 

mean molecular weight is then given by

For densities up to ~ 0.03 g cm 3 the ideal gas approximation holds, and hence the 

gas pressure is

Specific internal energy of the gas

The specific internal energy (energy per unit mass) of an SPH particle i is given by

lii = jd(ph Ti) = |Q  + y + 2xy) -  + (1 + z\ + Z1Z2) ^  . (4.24)

u i ~  MH2+ MH + «He + WH2DISS + MHlON + WHeION + WHe+ION, (4.26)
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where

«h2 = X ( l - y )

« h  = X y ( l + x )

« H e  = Y  ( 1  + Zi +  Z1Z2 )

K h 2DISS

Mh  io n

W HelON =  Y Z \ ( l - Z 2 )

w He+ ION

= X jty

/ > h 2d i s s

2m H
/ h ION

2 + ^ W )  

3 ^
2m H ’

3 k J \
8mH ’

V ;  
2 mH *

mH
He ION

4m H

= F Zl Z2
H e+ION

4m H

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

Here, £ > h 2d i s s  = 4.5 eV is the dissociation energy of H2; J h i o n  = 13.6eV, / H e i o n  =  

24.6 eV and Jhc+ion = 54.4 eV are the ionisation energies of H°, He0 and He+, respec

tively; and the function

c m  = 1 R O T

T,
exp (Tne/Ti) 

[exp(rvlB/r ,) - l] :
(4.34)

with T^jj. = 85.4 K and / VIB = 6100 K accounts for the rotational and vibrational degrees 

of freedom of H2 .

Opacity

For the dust and gas opacity, Stamatellos et al (2007) use the parametrisation proposed 

by Bell & Lin (1994), i.e.

K„(fi,T) = Ke(p ,T ) = K0Pa Tb . (4.35)

Here (ac0, a, b) are constants which depend on the dominant physical process contributing 

to the opacity in different regimes of density and temperature. Fig. 4.2 shows how the
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local Rosseland-mean opacity varies with density and temperature. At low temperatures 

the opacity is due to icy dust grains. As the temperature reaches T  ~ 150 K, these icy 

dust grains evaporate and the opacity is dominated by metal grains up to T  ~ 1,000 K. 

Between T ~ 1,000 K and T ~ 2,000 K the opacity drops considerably and is now 

mainly due to molecules. In this temperature range it is too hot for dust to exist and 

too cold for H” to contribute. Above T ~ 2,000 K the opacity rises again due to H“ 

absorption, and then decreases above T  ~ 104 K. At this stage free-free transitions 

dominate. At even higher temperatures, electron scattering dominates the opacity.

To calculate the pseudo-mean opacity used in Equation (4.21), the local Rosseland- 

and Plank-mean opacities in Equation (4.35) must be convolved with the polytropic 

density and temperature profiles according to Equation (4.20). The resultant pseudo

mean opacity is shown in Fig. 4.3.

This new method to treat the energy equation has been extensively tested by Sta

matellos et al. (2007) and has shown to give a good fit to the computations of Masunaga 

& Inutsuka (2000), of a collapsing, non-rotating 1M© protostar. It has also been tested 

against the analytic solutions of Spiegel (1957) and performs well in both the optically 

thin and optically thick regimes. The algorithm is very efficient, and computationally 

inexpensive since density, temperature and gravitational potential are already calculated 

using the standard SPH formalism. When compared with an otherwise identical simula

tion performed using our standard barotropic equation of state, a simulation performed 

with the new treatment of the energy equation requires at most 4% more CPU time.
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io3
Tem perature (K)

108

Figure 4.2: The variation of the local Rosseland-mean opacity with density and temperature. 
Isopycnic curves are plotted from p = 10-18  gem-3  top = 1 gem-3, every two orders of magni
tude (from bottom to top). The opacity gap is evident at temperatures ~ 1 ,000 to 3,000 K, over 
a wide range of densities. Taken from Stamatellos et al. (2007).
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Figure 4.3: The variation with density and temperature of the pseudo-mean opacity. Isopycnic 
curves are plotted as in Fig. 4.2. For comparison the local opacity at density p = 10-6  g cm-3  is 
also plotted (dashed line). Taken from Stamatellos et al. (2007).
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4.3 Numerical Details

4.3.1 Setting up the cores

To produce the initial conditions described in Section 4.2 we start by placing a large 

number of particles randomly in a cube, which we then settle using DRAGON to give 

a relaxed uniform-density distribution. Next we cut out a sphere containing the number 

of particles that we require, in this case 25,000. Finally we stretch this uniform-density 

sphere radially to reproduce the Plummer-like density profile (Equation (4.4)).

4.3.2 Resolution

In computer simulations it is extremely important that there exists a suitable resolution, 

to ensure we properly resolve the physical processes that occur. The simulations in this 

study are performed with = 25,000 SPH particles. Hence the mass resolution is

~ ~ 0.01 Mo. (4.36)
™TOT

Any structures with mass below this value are therefore not resolved. We use sink parti

cles to identify the stars in our simulations (see Section 2.10 for a description of sinks). 

We adopt a sink density p SINK = 10“ 11 gem -3  and a sink radius RSINK = 5 AU. Therefore, 

the minimum linear resolution is 5 AU. The discs which form in these simulations typ

ically have radius RDlsc ~ 50 AU and half-thickness ^ ISC ~ 5 AU, so they are only just 

resolved in the vertical direction. However, we do not believe that this compromises our 

results, since the fragmentation of a disc is essentially a two-dimensional process. The 

forces which drive the accumulation of matter into a protofragment are in the plane of 

the disc and so we do not need to resolve accurately the vertical direction. We note that 

this is a different view to some authors, in particular Nelson (2006), who argues that 

enhanced fragmentation is a direct consequence of failing to resolve a disc vertically.
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Turbulent, self-gravitating gas dynamics is very chaotic in nature and so to make 

robust statistical inferences we require many realisations. Therefore, for each value 

of (= 0.05, 0.10, 0.25) we perform an ensemble of 20 simulations using the 

barotropic equation of state, and an ensemble of 2 0  simulations using the new treatment 

of the energy equation.

The 20 simulations in each set all have the same treatment of the thermodynamics 

(either the barotropic equation of state, or the new treatment of the energy equation) 

and the same initial level of turbulence; they are distinguished solely by having different 

realisations of the turbulent velocity field. We use a random-number seed to generate 

the initial turbulent velocity field. We evolve each simulation for 300 kyr.

4.4 Results and Discussion

Table 4.1 lists, for each simulation performed with the barotropic equation of state, the 

identifier ( i d ) ;  the initial level of turbulence ( o r ^ g ) ,  the total mass which ends up in 

stars (£{M*}/Mo), the total number of stars (A/*), and the total number of brown dwarfs 

(AfBD), at the end of the simulation; the types of multiple system that have formed; and 

the masses of the individual stars (M*/M©), with a superscript indicating which ones are 

components of multiple systems. Table 4.2 lists the same information for.the simulations 

performed using the new treatment of the energy equation.

4.4.1 Efficiency and timing of star formation

Table 4.3 records -  for each treatment of the thermodynamics and each initial level of 

turbulence -  the number of different realisations ( N ^ J ,  the efficiency (i.e. the mean 

fraction of the core mass converted into stars after 300 kyr, 77 = £{Af*}/AfCORE), and the 

mean number of stars formed from one core (A/*). With each treatment of the thermo-
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Table 4.1: Results of the simulations performed using the barotropic equation of state with 
t̂urb = 0.05, 0.10 and 0.25, at time t = 300 kyr. Column 1 gives the simulation identifier, 

column 2 gives column 3 gives the total mass of stars formed, £{M*}/M©, column 4 gives 
the total number of stars formed, W*, column 5 gives the total number of brown dwarfs formed, 
JVBD, column 6 gives the order of any multiple systems formed, and column 7 gives the masses of 
individual stars, with a superscript to indicate those which are components of of binary systems
(M*), triple systems (Ml),  or quadruple systems (M*).

ID °TU R B AT* Â bd Mult m*/m g

N071 0.05 3.731 4 0 T 1.297', 0.970,0.749', 0.715'
N072 0.05 3.867 5 0 T 1.638', 1.204', 0.472', 0.285, 0.268
N073 0.05 3.282 5 0 B 1.216*, 1.111*, 0.386, 0.186,0.383
N074 0.05 4.001 7 3 Q 1.1749, i.i06<7, 0.8119, 0.8069,0.049, 0.031, 0.024
N075 0.05 3.307 4 0 T 0.956', 0.911', 0.728', 0.712
N076 0.05 3.915 7 2 Q 1.0019, 0.9149, 0.694, 0.5939, 0.5839, 0.088, 0.042
N077 0.05 3.646 1 0 s 3.646
N078 0.05 3.814 6 0 T 0.998', 0.892', 0.854', 0.763, 0.199, 0.108
N079 0.05 3.959 3 0 T 2.319', 0.823', 0.817'
N080 0.05 3.700 1 0 S 3.700
N081 0.05 3.690 1 0 S 3.690
N082 0.05 3.928 5 2 T 1.322', 1.286', 1.214', 0.070,0.036
N083 0.05 3.905 2 0 B 2.459*, 1.446*
N084 0.05 3.987 2 0 B 3.056*, 0.931*
N085 0.05 3.911 2 0 B 2.151*, 1.760*
N086 0.05 3.774 6 1 Q 1.0379, 1.0079, 0.7419, 0.7329, 0.219, 0.038
N087 0.05 3.404 1 0 S 3.404
N088 0.05 3.874 1 0 s 3.874
N089 0.05 3.491 5 0 B 1.005*, 0.934*, 0.695, 0.693,0.164
N090 0.05 3.778 1 0 S 3.778
N001 0.10 3.570 5 0 Q 1.0219, 0.9469, 0.7729, 0.7159, 0.116
N002 0.10 3.529 10 2 Q 1.9999, 0.3669, 0.2879, 0.2859, 0.203, 0.122,0.100,0.083, 0.055,0.029
N003 0.10 3.596 1 0 s 3.596
N004 0.10 3.455 1 0 s 3.455
N005 0.10 3.342 6 1 T 1.253', 0.813', 0.674', 0.400, 0.160, 0.042
N006 0.10 3.596 1 0 S 3.596
N007 0.10 3.519 6 1 Q 1.6309, 0.6759, 0.6229, 0.4799, 0.082, 0.031
N008 0.10 3.679 2 0 B 2.449*, 1.230*
N009 0.10 3.497 1 0 S 3.497
N010 0.10 3.479 4 0 Q 1.0299, 1.0149, 0.7259, 0.7119
N011 0.10 3.742 3 0 T 1.519', 1.142', 1.081'
N012 0.10 3.785 4 0 Q 1.5729,0.8819,0.8819, 0.4519
N013 0.10 3.286 9 2 TT 0.597,0.593'1, 0.541'1,0.415'1, 0.371, 0.368'2, 0.365'2, 0.029,0.007'2
N014 0.10 2.962 6 1 T 0.919', 0.885', 0.545', 0.361, 0.174, 0.078
N015 0.10 3.696 4 0 Q 2.8159, 0.2969,0.2959, 0.2909
N016 0.10 3.533 1 0 s 3.553
N0I7 0.10 3.741 6 1 Q 1.3859, 0.9899, 0.5999, 0.5929,0.103, 0.073
N018 0.10 3.726 2 0 B 2.199*, 1.527*
N019 0.10 3.692 5 0 T 1.108', 1.098', 1.003', 0.310, 0.173
N020 0.10 3.602 6 2 T 1.378', 0.952', 0.991', 0.226, 0.078, 0.057
N041 0.25 3.225 5 0 T 0.788', 0.787', 0.712', 0.623, 0.315
N042 0.25 3.209 6 1 Q 2.0249, 0.3299, 0.3139, 0.3029,0.164, 0.077
N043 0.25 3.312 4 0 Q 1.1039, 0.8259,0.6949, 0.6909
N044 0.25 3.402 5 0 T 1.560', 0.544', 0.502,0.465', 0.331
N045 0.25 3.272 7 1 TT 0.583'1,0.578'1,0.571'1,0.539'2, 0.531'2, 0.409'2, 0.061
N046 0.25 3.138 2 0 B 1.642*, 1.496*
N047 0.25 3.442 5 0 BT 0.927*, 0.861', 0.590', 0.581', 0.483*
N048 0.25 2.852 6 1 T 1.055, 0.594', 0.469', 0.377,0.323', 0.034
N049 0.25 3.271 5 0 Q 2.0019, 0.3989,0.3969, 0.3819, 0.095
N050 0.25 3.291 5 0 Q 1.0069,0.9489, 0.6169, 0.6099,0.112
N051 0.25 3.716 4 0 Q 1.0949, 1.0469,0.7969. 0.7809
N052 0.25 3.843 3 0 T 2.184', 0.834', 0.825'
N053 0.25 3.943 5 0 Q 1.2549, 1.0489,0.7529, 0.7489,0.141
N054 0.25 3.772 6 2 Q 1.1269, l.OlO9, 0.7849, 0.7839, 0.040, 0.029
N055 0.25 3.762 5 0 T 1.074', 0.957, 0.819', 0.800', 0.112
N056 0.25 3.857 5 1 T 1.426', 1.231', 1.059', 0.105, 0.036
N057 0.25 3.007 5 0 Q 0.9039,0.8389,0.5439, 0.5419,0.182
N058 0.25 3.769 6 0 T 1.155', 1.031', 0.757', 0.374, 0.360, 0.092
N059 0.25 3.723 6 1 Q 1.2499, 1.0579, 0.6429, 0.6389, 0.109, 0.028
N060 0.25 3.866 6 2 Q 1.1699, 0.9569, 0.9079, 0.7829,0.046, 0.006
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Table 4.2: Results of the simulations using the new treatment of the energy equation. Columns
follow the same labelling as Table 4.1.

ID a TURB ^B D Mult MJMq

T071 0.05 3.161 8 3 B 0.825*, 0.810*, 0.622,0.494,0.346,0.029,0.020,0.015
T072 0.05 2.212 6 1 BT 0.750*, 0.603*, 0.281', 0.279', 0.275', 0.024
T073 0.05 3.200 5 1 B 0.877*, 0.870*, 0.696,0.678,0.079
T074 0.05 3.561 13 6 BT 0.830*, 0.828*, 0.439', 0.432', 0.427', 0.328,0.154,0.039,0.034,0.023, 0.013,0.007

0.007
T075 0.05 3.252 7 2 BB 0.753*1, 0.748*1, 0.599*2, 0.553, 0.546*2, 0.032,0.021
T076 0.05 3.918 9 5 Q 1.118®, 1.104®, 0.722®, 0.715®, 0.079,0.070,0.056,0.029,0.025
T077 0.05 3.884 7 3 B 1.338*, 1.149*, 0.702, 0.635,0.032, 0.017,0.011
T078 0.05 3.559 12 3 T 0.679, 0.678', 0.505', 0.478', 0.435,0.261,0.191,0.168,0.087, 0.040, 0.023,0.014
T079 0.05 3.410 10 1 T 0.733', 0.722, 0.487', 0.481', 0.461, 0.186, 0.139,0.095,0.088, 0.018
T080 0.05 3.894 4 1 B 1.480*, 1.237, 1.159*, 0.018
T081 0.05 3.613 5 1 B 1.158*, 1.059*, 0.686, 0.645, 0.065
T082 0.05 3.741 7 2 T 0.907, 0.884', 0.758', 0.754', 0.399,0.026, 0.013
T083 0.05 3.739 5 1 B 0.999, 0.983*, 0.912*, 0.815, 0.030
T084 0.05 3.868 8 3 B 1.219*, 1.191*, 1.123, 0.139, 0.092, 0.051,0.031,0.022
T085 0.05 3.749 7 2 B 0.882*, 0.850, 0.832,0.804*, 0.332, 0.026,0.023
T086 0.05 3.898 6 1 Q 0.863®, 0.850®, 0.849®, 0.840®, 0.460, 0.036
T087 0.05 3.434 1 0 S 3.434
T088 0.05 3.381 8 3 BB 1.435*1, 1.073*1, 0.332*2, 0.320*2, 0.164, 0.021,0.019,0.017
T089 0.05 3.259 9 2 B 0.645*, 0.617*, 0.612, 0.542, 0.342, 0.314,0.146, 0.022, 0.019
TWO 0.05 3.811 7 2 T 2.100', 1.032', 0.248', 0.187, 0.122,0.058,0.034
T001 0.10 3.434 6 0 T 0.642', 0.622', 0.607,0.572', 0.528,0.463
T002 0.10 3.245 10 4 Q 1.064®, 0.891®, 0.340®, 0.339®, 0.336,0.156,0.078,0.019, 0.012,0.010
T003 0.10 3.698 1 0 S 3.698
T004 0.10 3.481 1 0 S 3.481
T005 0.10 3.551 4 0 T 1.482', 0.845', 0.824', 0.400
T006 0.10 3.456 4 0 B 0.958, 0.919*, 0.819*, 0.760
T007 0.10 2.790 11 5 BT 0.719*, 0.659*, 0.421, 0.375,0.248', 0.247', 0.060, 0.035, 0.011,0.009', 0.006
T008 0.10 3.549 3 0 T 1.392', 1.108', 1.0491
T009 0.10 3.509 1 0 S 3.509
T010 0.10 3.270 8 2 Q 0.748®, 0.620®, 0.494®, 0.485®, 0.445,0.408,0.052,0.018
T011 0.10 3.287 6 0 B 0.770*, 0.757*, 0.616, 0.526,0.512,0.106
TO 12 0.10 3.771 7 1 BT 0.702', 0.686, 0.669', 0.664', 0.532*, 0.501*, 0.017
TO 13 0.10 3.761 12 6 Q 0.791®, 0.785®, 0.602®, 0.553®, 0.460,0.353, 0.055,0.041, 0.039, 0.033,0.029, 0.020
T014 0.10 3.422 7 3 B 0.966*, 0.966*, 0.681, 0.666,0.055,0.051,0.037
T015 0.10 3.552 5 2 T 1.286', 1.205', 0.918', 0.075,0.068
T016 0.10 3.115 6 1 B 0.989, 0.959*, 0.411*, 0.391,0.387,0.018
TO 17 0.10 3.779 5 0 T 1.19&, 0.837', 0.826', 0.467, 0.459
TO 18 0.10 3.524 12 6 T 0.914', 0.869', 0.488,0.466', 0.464,0.194,0.050,0.032,0.024, 0.009, 0.008,0.006
T019 0.10 3.802 4 0 Q 0.974®, 0.968®, 0.933®, 0.927®
T020 0.10 3.054 11 4 BT 0.666', 0.664', 0.654*, 0.324', 0.239,0.225,0.136, 0.074,0.044,0.016, 0.012*
T041 0.25 3.369 7 2 BT 0.821', 0.809', 0.782°, 0.778°, 0.138', 0.025,0.016
T042 0.25 3.055 4 0 T 1.083', 0.932', 0.913', 0.127
T043 0.25 3.306 9 3 BT 0.798', 0.586*, 0.585*, 0.494', 0.488', 0.271,0.039, 0.033,0.012
T044 0.25 3.260 14 8 BB 0.763*1,0.762*1, 0.462*2,0.450*2, 0.426,0.235,0.054, 0.032, 0.025,0.016, 0.010,

0.009,0.008, 0.008
T045 0.25 3.193 13 4 QT 0.444®, 0.438®, 0.379', 0.378', 0.368', 0.342®, 0.340®, 0.332, 0.081,0.034,0.031,

0.018, 0.008
T046 0.25 3.362 5 0 T 0.853, 0.768', 0.768', 0.573', 0.400
T047 0.25 3.024 12 5 BT 0.591*, 0.591*, 0.411', 0.404', 0.403', 0.327,0.110,0.067,0.057, 0.033, 0.019,0.011
T048 0.25 3.509 11 4 TT 0.653'1,0.614'2,0.606'2,0.509'1,0.506'1,0.372'2, 0.155,0.040, 0.023, 0.023, 0.008
T049 0.25 2.466 6 1 T 0.679', 0.678', 0.455', 0.316, 0.312,0.026
T050 0.25 3.010 8 1 BT 0.729*, 0.697*, 0.325', O J ^ , 0.317', 0.307,0.282, 0.034
T051 0.25 2.669 10 2 BB 0.654*1,0.526*1, 0.440*2, 0.323,0.274*2, 0.160,0.129, 0.092, 0.048, 0.023
T052 0.25 3.717 13 6 Q 0.859®, 0.856®, 0.442®, 0.439®, 0.321, 0.318, 0.271,0.057, 0.046, 0.037,0.029, 0.024,

0.018
T053 * 0.25 3.343 12 5 T 0.762', 0.687', 0.660,0.385,0.285, 0.267,0.161, 0.044,0.036, 0.026, 0.016, 0.014'
T054 0.25 3.506 12 5 B 0.779*, 0.592*, 0.504,0.466,0.350,0.334,0.315,0.073, 0.027,0.026, 0.022, 0.018
T055 0.25 3.791 6 1 Q 0.935®, 0.924®, 0.850®, 0.847®, 0.182, 0.053
T056 0.25 3.841 6 1 Q 1.111®, 1.051®, 0.563®, 0.552®, 0.531, 0.033
T057 0.25 3.712 4 0 Q 1.183®, 0.913®, 0.813®, 0.803®
T058 0.25 3.758 11 4 B 0.985, 0.966*, 0.547*, 0.457,0.452, 0.105, 0.084, 0.059, 0.052, 0.032, 0.019
T059 0.25 3.510 10 2 BBT 0.847*1,0.786*1, 0.663,0.298', 0.296', 0.289', 0.127*2, 0.122,*2 0.078, 0.014
T060 0.25 3.882 8 3 T 1.155, 0.930', 0.885', 0.426', 0.418,0.031, 0.023, 0.014
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Table 4.3: For each treatment of the thermodynamics (barotropic equation of state or new treat
ment of the energy equation) and each value of the initial level of turbulence (04^ ) ,  we record 
the number of different realisations simulated (NmAL), the efficiency (i.e. mean fraction of the 
core mass converted into protostars, 77 = the mean number of stars formed from
a single core (JV*), the numbers of singles (S), binaries (B), triples (T) and quadruples ( 0 ,  the 
multiplicity frequence (mf), the companion probability (cp), and the companion frequency (cf).

THERMODYNAMICS ®TURB ^REAL V N* s B T Q mf cp cf

BAROTROPIC 0.05 20 0.694 3.45 29 5 6 3 0.33 0.58 1.19
0.10 20 0.658 4.15 30 2 7 7 0.35 0.64 1.57
0.25 20 0.600 5.05 27 2 10 10 0.46 0.73 1.82

NEW TREATMENT 0.05 20 0.605 7.20 88 15 6 2 0.21 0.39 0.63
0.10 20 0.629 6.20 67 7 9 4 0.23 0.46 0.94
0.25 20 0.623 9.05 98 12 13 5 0.23 0.46 0.90

dynamics, increasing the initial level of turbulence has the following effects.

Using a barotropic equation of state

Using a barotropic equation of state, increasing the level of turbulence (a) decreases 

the efficiency of star formation, 77, and (b) increases the mean number of stars formed 

from a single core, TV*.

• Efficiency o f star formation is reduced

Increasing the initial level of turbulence reduces the efficiency because the outer, 

more diffuse parts of the core become more vigorously dispersed. At the end of 

the simulation (300 kyr) these diffuse regions have not yet had time to fall back 

into the core and be incorporated into stars, and so the fraction of the core mass 

incorporated into stars is lowered.

• Mean number o f  stars form ed from a single core increases

An increased initial level of turbulence increases the total number of stars formed 

from a single core, because it drives more vigorous local compression in the core. 

This results in regions becoming dense enough to be gravitationally unstable i.e. 

the creation of more protostellar seeds.
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Using the new treatment of the energy equation

If the initial level of turbulence is increased, the monotonic trend seen when using a 

barotropic equation of state disappears with the implementation of the new treatment of 

the energy equation. The efficiency, and the mean number of stars formed from a single 

core, are only weakly dependent on the initial level of turbulence.

Differences between using the two treatments of the thermodynamics

Switching from the barotropic equation of state to the new treatment of the en

ergy equation reduces the efficiency, 7/, somewhat, and significantly increases the mean 

number of stars formed from a single core, N+. There are two physical effects at work 

here.

First, the new treatment of the energy equation promotes the condensation of very 

low-mass stars, by taking proper account of the thermal history and environment of the 

gas. With the new treatment of the energy equation, a small proto-fragment tends to be 

cooler, and thereby more inclined to condense out. This is because the new treatment 

takes account of the fact that, being of lower mass (and probably also non-spherical), 

the column-density inhibiting the cooling of a low-mass proto-fragment is lower; and 

because it contracts more slowly, its heating rate is lower. Consequently its temperature 

is lower -  at a given density -  than the one prescribed by the barotropic equation of 

state, since the latter is based on the behaviour at the centre of a collapsing, spherical, 

non-rotating 1M© protostar. This is illustrated in Fig. 4.4, which shows exactly the 

same initial conditions, evolved first with the barotropic equation of state (top frames), 

and then with the new treatment of the energy equation (bottom frames). It is evident 

that disc fragmentation is far more advanced in the simulation using the new treatment 

of the energy equation.

Secondly, because the stars formed are of lower mass, they are less effective at 

mopping up the residual gas in the core, which in turn would increase their mass. This
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Figure 4.4: Simulation of the collapse and fragmentation of a 5.4 M© core, first evolved with 
the barotropic equation of state (top row) and then with the new treatment of the energy equa
tion (bottom row), using identical initial conditions. Each snapshot shows the logarithm of the 
column density.

means they remain small, and so are more likely to be ejected by dynamical interactions 

with other stars. Hence the amount of mass converted into stars is somewhat reduced, 

and the efficiency is lower.

4.4.2 Fragmentation

There is a common pattern of star formation in many of these simulations, irrespec

tive of the treatment of thermodynamics. The low angular momentum material in the 

core collapses quickly to form the first star -  hereafter the primary -  on a timescale of 

50 to 70 kyr, i.e. a bit longer than the initial freefall time at the centre of the core, which 

is ~ 40 kyr. Then material with higher angular momentum forms a circumstellar disc 

around the primary. This circumprimary disc grows in mass -  the rate of infall onto the 

disc is greater than the rate at which mass accretes from the inner disc onto the primary 

-  until the disc becomes Toomre unstable and fragments to form multiple secondaries. 

The delay between the formation of the primary and fragmentation of the circumprimary 

disc is typically between 10 and 100 kyr. During this time the disc is accumulating mass. 

Once the disc becomes Toomre unstable it normally fragments to produce between 3 and
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Table 4.4: For each treatment of the thermodynamics (barotropic equation of state or new treat
ment of the energy equation) we record the mean, fi, and the standard deviation, cr, of the delay 
times (r2 -  /,) and (r3 - 12).__________________________________

THERMODYNAMICS DELAY TIME V cr

BAROTROPIC 'i 62.3 6.3
(I2 ~ 0 29.8 24.3
(^3 ~ O 2.0 1.7

NEW TREATMENT 60.6 6.0
( * 2 - 0 11.4 9.3
(I3 ~ 12) 1.3 1.0

5 stars, in the space of a few kyr.

This pattern of fragmentation is illustrated on Figs. 4.5 and 4.6, where, for a selec

tion of simulations, we plot stellar masses as a function of time. On most of these plots, 

we see the primary forming, then a delay whilst the circumprimary disc builds up, and 

finally -  when the circumprimary disc becomes Toomre unstable -  the formation of a 

clutch of secondaries. Some of these secondaries are quickly ejected, and therefore end 

up as brown dwarfs, but others remain in the disc and accrete sufficient mass to become 

hydrogen-burning stars. Occasionally some even grow bigger than the primary.

In Fig. 4.7, for each treatment of the thermodynamics, we show the distributions of 

/, (the time of formation of the first star); t2 -  tx (the delay between the formation of the 

first and second stars); and t3 -  t2 (the delay between the formation of the second and 

third stars). The mean and standard deviation of these values are shown in Table 4.4.

/, is the time it takes the low angular momentum material to assemble into the first 

stars and should be compared with the freefall time at the centre of the core (~ 40 kyr). 

It takes slightly longer for the first stars to form when using a barotropic equation of 

state compared to when using the new treatment of the energy equation.
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Figure 4.5: Stellar masses as a function of time, for a selection of simulations. Note (i) the delay 
between the formation of the primary and the formation of a clutch of secondaries (this is the 
time during which the circumprimary disc accumulates, until it becomes Toomre unstable); and 
(ii) the rapid decline in the accretion rate onto the primary once the secondaries start to condense 
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Figure 4.7: (a,d) The delay, t{, between the start of the simulation and the formation of the first 
star (the primary). (b,e) The delay, t2 -  t{, between the formation of the first and second stars. 
(c,f) The delay, t3 -  t2, between the formation of the second and third stars. The top row (a,b,c) 
is for the simulations performed with the barotropic equation of state, and the bottom row (d,e,f) 
is for the simulations performed with the new treatment of the energy equation.

(t2 -  t j  is the time it takes to assemble a Toomre-unstable disc around the primary. 

Using the new treatment of the energy equation, the disc becomes Toomre-unstable 

quicker, shown by the distribution in Fig. 4.7(e) and the mean value in the table. This is 

because the protofragments condense out sooner, since they tend to be cooler at a given 

density. Again this is illustrated in Fig. 4.4 which shows the same initial conditions 

evolved first with the barotropic equation of state (lefthand frames) and then with the 

new treatment of the energy equation (righthand frames).

(t3 -  t2) is the time delay between the formation of the first two disc fragments. 

In both cases the mean of (t3 -  t2) is short, which reflects the fact that when the disc 

becomes unstable it becomes unstable over quite a large area, and therefore it tends to 

spawn several stars in quick succession.

Another common feature of the accretion histories is that when the circumprimary 

disc becomes Toomre unstable and fragments, the accretion rate onto the primary de

clines rapidly. Material which up until this juncture had been spiraling inwards and onto



4.4. RESULTS AND DISCUSSION 85

; ■ » .....■» .. rw"""" •
:

** •• . w S V . . ’ •

V.
r • . •

r < 

: <■)

1 0
I _00

?0

* * ** ** .
* > . : *  ;**»** /

****; * ,  [ A A* * *A 1

(b)

u
00
?

* - .*> ** *

* V  \  
*****

* *  !

*
<c)

0.1 ai
formation timo/Myr

0.1
formation timo/Myr

*• • • # f *•
r • /  *

•*S '

w>

u
00

• * \
.

w

^  0
I .0p

f • ]. A  . .  * *
■ ,  V * y  . :*

.  *Y* * • ' *. 1 * .* 
r * * * * *
: (0

0.1 0.1
formation timo/Myr

0.1
formation timo/Myr

Figure 4.8: The final mass (at 300 kyr) against the formation time. The top row gives the results 
obtained with the barotropic equation of state for (a) q,turb = 0.05, open circles; (b) tt-njRB = 0.10, 
open triangles; and (c) o'TURB = 0.25, open stars. The lower row gives the results obtained with 
the new treatment of the energy equation for (d) = 0.05, filled circles; (e) o,TURB = 0.10,
filled triangles; and (f) a ^ g  = 0.25, filled stars.

the primary star is now being used to create secondaries in the disc. This can be seen 

on most of the plots in Figs. 4.5 and 4.6, for example T002 (the top righthand plot in 

Fig.4.6).

Fig. 4.8 shows the final mass of every star plotted against its formation time. Al

though the more massive stars tend to form earlier, the correlation is fairly weak. In all 

cases there is a delay before any brown dwarfs form. This is because brown dwarfs -  

and also some low-mass hydrogen-burning stars -  form in discs around more massive 

stars, and these discs take time to accumulate.

4.4.3 The mass distribution of protostars

Material which is parked in a circumprimary disc has time to lose entropy -  to an extent 

that material which is compressed impulsively by turbulence does not. Consequently 

the masses of disc fragments are low, as predicted by Whitworth & Stamatellos (2006),
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Figure 4.9: Normalised stellar mass distributions. The top row gives the mass distributions 
obtained with the barotropic equation of state for (a) or^g = 0.05, (b) = 0.10, and (c)
qtturb = 0-25. The lower row gives the mass distributions obtained with the new treatment of 
the energy equation for (d) <24̂  = 0.05, (e) or^g = 0.10, and (f) or^g = 0.25. The black 
lines are histograms of the raw data, obtained using 15 equal logarithmic bins in the interval 
-  2 < log10(M*/M©) < + 1, and the red lines are obtained by smoothing each protostellar mass 
with a Gaussian whose width is proportional to the separation between neighbouring masses.

and demonstrated by detailed numerical simulations in Stamatellos et al. (2007b) and 

Stamatellos & Whitworth (2008a,b). However, this effect can only be captured with 

the new treatment of the energy equation, since this treatment takes account of the slow 

rate of compressional heating for matter parked in the disc, and the relatively low local 

column-densities through which its cooling radiation has to diffuse. In contrast, the 

barotropic equation of state presumes that the matter is part of a spherical 1 Mo protostar, 

which by virtue of collapsing more rapidly is heated more vigorously, and has to cool 

through a larger column-density; therefore, at a given density, it is hotter and fragments 

less readily (i.e. into more massive fragments, if at all).

The lower masses and greater numbers of stars formed with the new treatment of 

the energy equation predisposes the stars to mutual dynamical interactions which eject 

many of them before they have time to grow much by accretion. Fig. 4.9 shows the mass
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distributions obtained with the different combinations of thermodynamic treatment and 

initial level of turbulence. The black line shows the histogram obtained by distributing 

the final stellar masses into 15 logarithmic bins which are equally spaced in the interval

using a Gaussian smoothing kernel with adaptive smoothing lengths dictated by the 

separation between masses 1 . Both the histogram, and the smoothed distribution, are 

normalised, in the sense that

of the mass distribution.

However, switching from the barotropic equation of state to the new treatment of 

the energy equation not only increases the proportion of brown-dwarf stars formed, but 

actually produces a bimodal mass distribution. The larger mode comprises hydrogen- 

burning stars with masses concentrated in the range 0.3 to 1.0 M©, whilst the smaller 

mode comprises brown dwarf stars with masses concentrated in the range 0.02 to 0.06 M©, 

This smaller mode represents very low-mass stars formed by disc fragmentation (due to 

the enhanced cooling which low-mass fragments enjoy with the new treatment of the 

lrThe smoothed mass distributions are given by a sum of Gaussians,

where// = log10 (M) and /// = log10 (Mi). The standard deviation cr, is evaluated by adding -  in quadrature 
-  the mean separation between all masses across the entire mass spectrum (this is the first term on the 
righthand side of Equation 4.38), and the mean separation between the five nearest masses (this is the 
secondterm on the righthand side of Equation 4.38). Thus cr, combines a global and a local contribution 
to the smoothing. This smoothing is essentially ad hoc, and is designed purely to enable us to extract the 
large-scale features of the mass distribution, which are otherwise lost in the rather noisy histograms.

The red line shows the mass distribution obtained when each stellar mass is smoothed

rflog10(A/) = 1l°gio(AO (4.39)

From Fig. 4.9 we see that the initial level of turbulence has little influence on the form

(4.38)

(4.37)
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energy equation) and then ejected by mutual interactions (before they can grow much 

by accretion).

However, we should not necessarily expect this bimodality to be reflected in the 

overall Stellar Initial Mass Function. We have only modelled a single core mass and 

a single density profile. For different core masses and/or different density profiles, the 

trough between the two peaks is likely to move to different masses, and may even disap

pear altogether. The overall Stellar Initial Mass Function will have contributions from 

an ensemble of cores with a range of masses and density profiles, and the bimodality is 

likely to be washed out.

4.4.4 Multiplicity statistics

There appears to be some confusion in the literature over the correct terminology when 

discussing the statistics of stellar multiplicity. To eliminate this confusion, Reipurth 

& Zinnecker (1993) introduced various definitions. Their nomenclature is adopted by 

Goodwin et al. (2004b) and we follow the same nomenclature here.

Firstly we define a “system” to include single stars, and a “multiple system” to only 

include systems containing more than one star. If S is the number of single stars, B the 

number of binaries, T  the number of triples, and Q the number of quadruples, etc., then 

the total number of stars is (5 +2B+3T+4Q + ...). Similarly, the total number of systems 

is (S + B + T  + Q + ...) and the total number of multiple systems is (B + T + Q + ...).

The multiplicity frequency measures the fraction of systems which are multiple, i.e.

B + T  + Q + ...
m f = -------------- -----------. (4.40)

S + B + T  + Q + ... K J

The companion probability, cp, measures the fraction of stars which are in multiple
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systems, i.e.
22? + 3T  + 4Q + ... ..

cp = ------------------------------- . (4.41)
p S + 2B + 3T  + 4Q + ...

The companion frequency, from Goodwin et al. (2004b), measures the mean number of 

companions which a star has (irrespective of whether it is a primary), i.e.

2B + 6T + 12Q + ...
S + 2B + 3T + 4Q + . . . '

In Table 4.3 we record — for each ensemble of 20 simulations, representing a 

particular combination of thermodynamic treatment and initial level of turbulence — the 

total numbers of singles (5), binaries (B), triples (T ) and quadruples (Q) formed in all 

simulations; and the mean multiplicity frequency (mf), the mean companion probability 

(cp), and the mean companion frequency (cf).

4.4.5 Periods

Fig. 4.10 shows the number of stars formed in a simulation plotted against the periods of 

the multiple systems identified at the end of the simulation. These periods are derived on 

the assumption that all multiple systems are hierarchical, which is not always true. Thus 

the two periods for a triple system are extracted by finding the period for the pair with 

the greatest specific binding energy, then treating this pair as a single star and finding 

the period of its orbit relative to the third star. This is appropriate for stable hierarchical 

systems, but of limited value for unstable non-hierarchical systems.

We should therefore expect some subsequent evolution in these distributions, with 

mutual interactions tending to lead to close systems becoming more tightly bound (oc

casionally with exchange of components) and wide systems being disolved. Eventually 

there will also be interactions with stars formed in neighbouring cores. These inter

actions will further disrupt the wider systems but have little effect on the closer sys

tems. However, our simulations are not continued long enough for interactions with
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Figure 4.10: For each multiple system we plot the number of stars formed in that simulation, 
A4, against the period, P. (a) Results obtained using the barotropic equation of state; here open 
circles represent ar^b = 0.05, open triangles o^b = 0.10, and open stars orturb = 0.25. (b) 
Results obtained using the new treatment of the energy equation; here filled circles represent 
<*turb = 0.05, filled triangles orturb = 0.10, and filled stars orturb = 0.25.
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Table 4.5: For each treatment of the energy equation, we record the mean, fi\oglQ(p), the standard 
deviation, <J'iog10(/>)» and the range of the period distribution.

THERMODYNAMICS A*logio(P) & log 10(P) RANGE (y r )

BAROTROPIC EQUATION OF STATE 2 .2 1 .0 - 1 0  - 104

NEW TREATMENT OF THE ENERGY EQUATION 1.7 1 .0 - 3  - 104

stars formed in neighbouring cores to be important.

Fig. 4.11 shows the period distributions obtained using each treatment of the ther

modynamics, and Table 4.5 lists the statistics of the period distribution obtained using 

each treatment of the thermodynamics. With the new treatment of the energy equation, 

the periods are on average shorter (by about a factor of 3). This is because the new treat

ment allows the gas -  in particular, the gas in smaller proto-fragments -  to stay cooler 

to higher densities. Consequently the Jeans length, and hence the separations between 

neighbouring stars, tend to be smaller.

There is no obvious dependence of the period distribution on the level of turbulence, 

although this must be set against the poor statistics (between 26 and 53 periods for each 

combination of thermodynamics and initial level of turbulence).

We should also caution that the low-period systems are poorly resolved, in the sense 

that at periastron the stars are closer together than RSINK, and therefore their gravitational 

interaction is softened. This means that they should probably be somewhat more tightly 

bound. We have checked the formation of the individual stars in some of these close 

systems, and established that in each case the two constituent stars (i.e. sinks) were 

initially created from well-defined and separate Jeans-unstable density peaks.
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Figure 4.11: Period distributions. The top row gives the period distributions obtained with the 
barotropic equation of state for (a) o^rr = 0.05, (b) orturb = 0.10, and (c) or.,^ = 0.25. The 
lower row gives the period distributions obtained with the new treatment of the energy equation 
for (d) a r-^  = 0.05, (e) = 0.10, and (f) = 0.25.

4.4.6 Eccentricities

Fig. 4.12 shows orbital eccentricities (e) plotted against periods (P), at the end of the 

simulations. The eccentricities are not strongly correlated with period, nor -  modulo 

the poor statistics (see above) -  do they appear to be correlated with the initial level of 

turbulence. However, there is a noticeable difference between the distributions obtained 

with the two different treatments of the thermodynamics. Using the barotropic equation 

of state, the distribution is concentrated towards high eccentricities, but there is still a 

substantial fraction, ~ 25%, of systems having approximately circular orbits, e < 0.2. 

Using the new treatment of the energy equation, the distribution of eccentricities is more 

strongly skewed towards high values, and less than 6% have e < 0.2. This is also 

illustrated in Fig. 4.14, which shows the distribution of the orbital eccentricities for 

each treatment of thermodynamics.

The barotropic equation of state facilitates the formation of low-eccentricity bina-
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Figure 4.12: Orbital eccentricities, e, plotted against periods, P, for multiple protostars: (a) 
Results obtained using the barotropic equation of state; here open circles represent orturb = 0.05, 
open triangles orturb = 0.10, and open stars orturb = 0.25. (b) Results obtained using the new 
treatment of the energy equation; here filled circles represent orturb = 0.05, filled triangles orturb = 
0.10, and filled stars orturb = 0.25.
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lies by making it harder for circumbinary discs to fragment. At a given density the gas 

is hotter. Consequently, quite massive but relatively warm circumbinary discs resist fur

ther fragmentation and instead act to dampen orbital eccentricities by accreting slowly 

onto the existing binary components. In contrast, when the new treatment of the en

ergy equation is used, massive circumbinary discs are relatively cool, so they fragment, 

and interactions between these additional fragments and the original components of the 

binary act to amplify the orbital eccentricities.

4.4.7 Mass ratios

Fig. 4.14 shows the distributions of mass ratio, q = M2/M x, at the end of the simula

tions. The distributions are strongly skewed towards q ~ 1, i.e. nearly equal component 

masses. The mass ratios do not appear to be correlated with the initial level of turbu

lence, but again the statistics are poor. Mass ratios are correlated with orbital

periods, in the sense that shorter-period systems tend to have higher mass-ratios, which 

is comparable with observations (e.g. Mazeh et al. 1992). Since simulations conducted 

with the new treatment of the energy equation tend to produce multiples with shorter 

periods, they also tend to produce multiples with higher mass ratios.

A mechanism which drives mass ratios towards unity in simulations of star forma

tion was first described by Chapman et al. (1992), and has subsequently been noted by 

Burkert & Bodenheimer (1993) and by Bate & Bonnell (1998) (but see Ochi et al. 2005 

for a different view and Clarke 2007 for a rebuttal of this different view). If a binary 

system continues to grow by accretion, the specific angular momentum of the infalling 

material (relative to the centre of mass of the binary system) tends to increase with time. 

Consequently the component with lower mass (the secondary, M2), which necessarily is 

on a more extended orbit, is better disposed to assimilate this material with high angular 

momentum, and therefore it grows in mass until it is comparable with the primary (Mx). 

This is the mechanism that appears to be operating here. It is less effective in wide bi-
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Figure 4.13: The distribution of eccentricities, e, for multiple protostars: (a) using the barotropic 
equation of state; (b) using the new treatment of the energy equation.
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Figure 4.14: The distribution of mass ratios, q, for multiple protostars: (a) using the barotropic 
equation of state; (b) using the new treatment of the energy equation.



4.4. RESULTS AND DISCUSSION 97

nary systems, because the components of a wide system tend to accrete from separate 

reservoirs.

4.4.8 Competitive accretion

We note that there is little evidence for competitive accretion in our simulations in the 

sense that it is rare to have a situation in which several protostars are competing to ac

crete from the same reservoir of material. The first star to form (the primary) is often, but 

not always, the most massive at the end. Stars forming later in the simulation frequently 

grow to masses comparable with, and occasionally even greater than, the primary. The 

material which ends up in these stars is normally rather coherently located. For example, 

once the circumprimary disc has formed, the material destined to form a particular sec

ondary star accumulates in a particular range of radii, and sits there until it is mopped up 

by the growing secondary star. Ejection does play a role in separating some stars from 

the reservoir of material they might otherwise have accreted, and thereby creating very 

low-mass stars. However, the material which accretes onto a star was in general present 

at the star’s inception; its self-gravity contributed to the condensation which triggered 

the formation of a sink by pushing the density above p SINK.

4.4.9 Missing physics

The switch from the standard barotropic equation of state to our new realistic treat

ment of the energy equation produces significant changes in the statistical properties of 

the stars resulting from the collapse and fragmentation of an isolated, low-turbulence,

5.4 Mo core. However, there are several important physical effects missing from our 

simulations. In particular, there is no feedback from the stars, there are no (non-ideal) 

MHD effects, and the use of sink particles raises some concerns.

Feedback. Feedback from stars can take several forms.
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(i) The radiation from the stars will heat the surrounding dust and gas. Krumholz, 

Klein & McKee (2007) have recently simulated the collapse and fragmentation of more 

massive cores (100 and 200 M©) with much higher initial levels of turbulence than those 

invoked in our simulations. Their treatment of the thermodynamics takes account not 

only of the energy equation and the transport of cooling radiation, but also of radiative 

feedback from the forming stars in the core. They find that their cores only spawn a 

small number of stars. This is because the primary protostar, which forms early on from 

material with relatively low angular momentum, has a high luminosity, and therefore 

stabilises the inner parts of its circumstellar accretion disc, by heating them up. Frag

mentation is only possible in the outer more diffuse parts of the disc. We expect a similar 

-  but more modest -  effect in low-mass, low-turbulence cores, more modest because the 

primary luminosity will be much smaller. Nonetheless, it is likely that, even in the low- 

mass regime, the luminosity of the primary star is sufficient to inhibit fragmentation of 

the inner disc. The analytic work of Whitworth & Stamatellos (2006) predicts that a 

disc around a Sun-like primary is unlikely to fragment inside ~ 100 AU, and this is con

firmed by the simulations of Stamatellos et al. (2007b) and Stamatellos & Whitworth 

(2008a,b). Consequently, the primary will end up more massive (by accreting the matter 

which is unable to fragment); the circumprimary disc will take longer to grow to Toomre 

instability; and the secondaries which then condense out of it will be smaller in number, 

and at larger radii.

(ii) Mechanical feedback, in the form of bipolar outflows will punch holes in the 

core. Preliminary exploration of this phenomenon (Stamatellos et al. 2005) suggests 

that it does not greatly change the efficiency of star formation, but it does slow it down 

(i.e. the delay between the formation of the primary and the formation of the secondaries 

is longer). This needs to be explored further.

(iii) Ionising radiation and winds from massive stars produce more violent feed

back. We have recently developed the numerical machinery to explore this (Bisbas et 

al., in preparation), but it is not part of the star-formation mode we are concerned with
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here, which involves cores which have too little mass to form ionising stars.

MHD. Non-ideal MHD effects are likely to play an important role, and we have 

introduced divergence cleaning into the code of Hosking & Whitworth (2004). However, 

it is still a rather crude and inefficient code, and further work is ongoing to improve it to 

the stage where it can be used to perform a large ensemble of simulations. Price & Bate 

(2008) have simulated the collapse and fragmentation of a massive magnetised turbulent 

core, using an ideal MHD code, with a barotropic equation of state. They find that the 

magnetic field reduces both the efficiency of star formation (i.e. the fraction of the core 

mass which ends up in stars) and the production of brown dwarfs. In an earlier paper 

(Price & Bate 2007), using more idealised initial conditions (a spherical uniform-density 

cloud with an imposed m - 2  perturbation), they have shown that a magnetic field can 

also inhibit disc fragmentation, by slowing the rate of disc growth and accelerating the 

rate at which angular momentum is redistributed.

Sinks. Finally, we note that the use of sinks may compromise our results, in ways 

which are hard to quantify. First, it means that all processes on scales below ~ 2RSBiK = 

10 AU are at best not properly resolved (e.g. orbits), and at worst excised completely 

(e.g. the second collapse when molecular hydrogen dissociates). Second, the creation 

of sinks favours A-body interactions, and hence ejections of stars, whilst suppressing 

dissipative interactions between, and mergers of, stars. One can postpone the creation 

of sinks until very high densities are reached. For example, Stamatellos et al. (2007b) 

use p SINK = 10"2 gem -3. However, this is very expensive computationally.

4.4,10 Comparison with observation

Since we only treat a single core mass, with a single initial radius and a single initial 

density profile, and since -  as discussed in the preceding section -  there are several 

potentially critical physical effects which are not included in our simulations, we do not 

expect to reproduce all the observed statistical properties of real stars. Nonetheless, it is
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appropriate to rehearse the various counts on which the properties of stars formed in our 

simulations conform to, or diverge from, reality; and to speculate on the rea&ons.

Mean number o f stars per core, TV*. Our simulations form too many stars per core, 

and furthermore this over-production of stars is significantly exacerbated by the switch 

from the barotropic equation of state to the new, more realistic treatment of the energy 

equation. This is because the new treatment allows circumstellar discs, and low-mass 

fragments thereof, to stay cool to higher densities than the barotropic equation of state 

(which treats all gas as if it were at the centre of a collapsing, non-rotating 1M© pro

tostar). The analytic results of Rafikov (2005), Matzner & Levin (2005), Rratter & 

Matzner (2006) and Whitworth & Stamatellos (2006), and the numerical simulations of 

Krumholz, Klein and McKee (2007), Stamatellos et al. (2007b) and Stamatellos & Whit

worth (2008a,b) all suggest that the inclusion of radiative feedback reduces the number 

of stars formed, essentially by heating the inner disc, and thus suppressing Toomre in

stability by increasing the cooling time (Toomre 1964; Gammie 2001). Whitworth & 

Stamatellos (2006) show that, given a solar-mass primary star at the centre of the disc, 

it can only fragment at large radii, R > 100 AU. The inclusion of mechanical feedback 

(Stamatellos et al. 2005) and/or a magnetic field (Price & Bate 2008) is also likely to 

reduce the number of stars formed, and in particular the number of brown dwarfs, by 

reducing the rate of accretion onto the primary and its circumprimary disc. Indeed, these 

effects are probably essential to reduce the efficiency of star formation in low-mass cores 

to the levels infered from observation. These levels are typically ~ 30 % (e.g. Nutter & 

Ward-Thompson 2007; Simpson et al. 2008).

Mass distribution. The overall mass distribution produced by a single core, as a 

fraction of the core’s total mass, is not constrained by observation; if it were, we would 

know how to map the observed core mass function into the stellar initial mass function. 

One interesting feature of our results is the suggestion that, amongst the stars spawned by 

a single core, there might be a bimodal distribution of masses, comprising primary stars 

formed relatively early on, and secondary stars of much lower mass formed somewhat
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later by disc fragmentation. We also note that the mass of core that we are simulating 

(~ 5.4M©) is rather larger than the average isolated core (e.g. Alves et al. 2007; Nutter 

& Ward-Thompson 2007). This further complicates any attempts to map the results of 

these simulations onto the observed distributions which are the sum of a variety of core 

masses, mostly somewhat smaller than our core.

Multiplicity. The multiplicity frequency of the stars formed in our simulations, 

mf ~ 0.2, is too low, especially for the higher-mass stars; for the brown dwarfs and very 

low-mass hydrogen-burning stars (those with AT* < 0 . 1  M©) mf ~ 0.2 is actually in 

the middle of the range inferred from the limited observations available (Burgasser et al. 

2007; Luhman et al. 2007; Joergens (2008). The multiplicity frequency is expected to 

rise if the inclusion of extra physics reduces the number of stars formed from a single 

core. If this reduction is attributable to the suppression of fragmentation in the inner 

parts of circumprimary discs, then the simulations of Stamatellos et al. (2008b) suggest 

that it will increase the multiplicity frequency of the higher mass stars (M* ~ M©), and 

have little effect on the multiplicity frequency of the very low-mass stars (Af+ <0.1 M©); 

the simulations would then accord better with the observed distribution of multiplicity 

frequency, which appears to be a monotonically decreasing function of primary mass 

(e.g. Joeigens 2008).

Binary periods. The periods, P, of the binary systems formed in our simulations 

fall in the range 3 < [P/yr] < 104 . Systems with shorter periods cannot be resolved, 

because the gravitational fields of sink particles are softened at distances closer than 

R  = 5 AU. Systems with longer periods must either form in more extended cores than 

the one we have modelled here, or they must result from interactions between stars 

formed in separate cores. An encouraging feature of the multiple systems formed in 

our simulations is the fact that most of the very low-mass systems (Af, <0.1 M©) have 

periods in the range 10 to 100 yr, in good agreement with the separations of observed 

very low-mass systems (e.g. Joergens 2008).
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Mass ratios and eccentricities. The mass ratios of the multiple systems formed in 

our simulations are concentrated towards high values. This again accords, with what 

is observed for very low-mass systems (e.g. Burgasser et al. 2007; their Fig. 5a), 

but contrasts with the flatter distribution observed in higher-mass systems. The multi

ple systems formed in our simulations are also skewed towards much more eccentric 

orbits than observed systems. However, the eccentricity distribution at birth is almost 

impossible to compare to the distribution in older systems. Firstly, close systems will 

be circularised by tidal and other dissipative forces. Secondly, wider systems will be 

subject to encounters which will rapidly change the birth eccentricity distribution be

yond recognition (Parker et al., in preparation). Our simulations do not address these 

possibilities.

4.4.11 Convergence

We have repeated one of our simulations with 50,000 and 80,000 s p h  particles, to check 

whether our simulations are converged, in a statistical sense (i.e. whether the statistical 

distributions of stellar parameters does not depend on the number of s p h  particles used). 

For this purpose we have chosen simulation T011, which has an initial level of turbu

lence = 0.10, and uses the new treatment of the energy equation; the mean number 

of stars formed with this combination is N+ = 6.2 (see Table 4.3). In the original T011 

simulation, with just 25,000 s p h  particles, 6  stars are formed. With 50,000 s p h  particles 

6  stars are again formed. With 80,000 s p h  particles 8  stars are formed. We stress that 

in this context convergence can only be discussed in a statistical sense. This is because, 

with the low initial levels of turbulence we are using, the gravitational fragmentation 

that ensues is seeded from two sources. There are the small density enhancements cre

ated by subsonic converging flows due to the initial imposed turbulent velocity field; 

these are reproducable when using different particle numbers. However, there is also 

particle noise; this is not reproducable when using different particle numbers. Therefore 

convergence can only be tested fully by repeating the whole ensemble of simulations
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with higher particle numbers, and this is not feasible with the computational resources 

at our disposal. We are currently preparing a paper which demonstrates convergence in 

a simulation of gravitational fragmentation by using very carefully relaxed initial condi

tions; the imposed perturbation (which is reproducable) is then able to dominate particle 

noise in seeding gravitational fragmentation. These simulations exhibit excellent con

vergence, as do the simulations of Jeans instability presented by Hubber et al. (2006). 

We are therefore confident that our code is capturing gravitational fragmentation faith

fully.

4.5 Summary

We have performed a large ensemble of SPH simulations of the collapse and fragmenta

tion of an isolated, turbulent 5.4 M© core, with a view to establishing how the statistical 

properties of the resulting stars are influenced by (i) different initial level of turbulence, 

and (ii) different treatments of the thermodynamics. We consider three initial levels of 

turbulence, characterised by o,TURB = 0.05, 0.10 and 0.25. We treat the thermodynamics 

firstly with a standard barotropic equation of state, and secondly with a new treatment 

of the energy equation which captures all the important energy modes of the gas and 

takes account of radiation transport and variations in the opacity. The main results are 

summarised as follows.

1. Increasing the initial level of turbulence tends to reduce the efficiency of star forma

tion, Tj (i.e. the fraction of the core mass which is converted into stars after 300 kyr), and 

to increase the number of stars formed by a single core, A/*, but the effect is very small, 

and all the other statistical properties of the stars formed are essentially independent of

OL
T U R B

2. We observe a common pattern in which the low-angular-momentum material in the 

core collapses to form the primary after 50 to 70 kyr, and then a massive disc builds
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up around the primary. As soon as this circumprimary disc becomes Toomre unstable 

(which may take from 10 to 100 kyr), it rapidly breaks up into a bunch of secondary 

stars. Those secondaries that are quickly ejected from the disc normally end up as brown 

dwarf stars, whereas those secondaries that stay in the disc tend to grow by accretion, 

and sometimes they even grow larger than the primary.

3. Switching from the standard barotropic equation of state to our new more realistic 

treatment of the energy equation has several systematic effects:

•  the efficiency of star formation ( t j  = £  {M*} /^core) reduced significantly (by 

~ 15%);

•  the number of protostars formed (A4) is greatly increased (by ~40%);

• a higher proportion of brown dwarf stars is formed;

•  the mean period of multiple systems is reduced (by a factor ~ 3);

•  the orbital eccentricities of multiple systems tend to be higher;

•  the mass ratios of multiple systems tend to be higher (i.e. more nearly equal 

components).

All these trends can be attributed to the fact that the barotropic equation of state 

assumes that all gas is at the centre of a collapsing spherical 1 M© protostar, and therefore 

it becomes adiabatic at relatively low densities. In contrast, our new more realistic 

treatment of the energy equation allows the gas in low-mass proto-fragments to remain 

approximately isothermal to relatively high densities, because in a lower-mass proto- 

fragment the column-density trapping cooling radiation tends to be smaller, and the 

rate of contraction (and hence the rate of compressional heating) tends to be slower 

-  as compared with the rates at the centre of a collapsing spherically-symmetric 1M© 

protostar.
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4.6 Future work

We have extended this work to modelling prestellar cores in Ophiuchus, using the new, 

more realistic treatment of the energy equation and the observations of Motte et al. 

(1998) and Andr6 et al. (2007). The results are shown in Chapter 5.

Future plans involve taking into account more of the deterministic effects that occur 

in star formation. In particular, we would like to explore the effect of radiative feedback 

from stars. We predict that by modelling feedback we can reduce the efficiency of star 

formation from the very high levels produced here ( ~ 60%) to values more compatible 

with observation ( <30%; Alves et al. 2007; Nutter & Ward-Thompson 2007; Goodwin 

et al. 2008).
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Chapter 5

The evolution of prestellar cores in the 
Ophiuchus Main Cloud

In this chapter we extend our study o f  the collapse and fragmentation o f low mass cores 

using initial conditions constrained by observations. Specifically, we model the evolu

tion o f an ensemble o f prestellar cores with properties matching those detected in the 

Ophiuchus Main Cloud by Andre et al (2007). In contrast to the simulations in Chapter 

4, we are here considering cores with a range o f  masses, sizes and levels o f turbulence, 

with a view to predicting the statistical properties o f the stars they spawn. Previous 

analyses o f the Ophiuchus Main Cloud have assumed that these cores have dust temper

atures in the range o f  12K -  20K. Using a 3D radiative transfer model o f this region, 

Stamatellos et al. (2007c) find that the dust temperatures should be lower, which results 

in the core masses being larger than previous estimates, by a factor o f  ~ 2 -  3. For 

a sample o f cores we set initial conditions using the sizes and levels o f turbulence from  

Motte et al. (1998) and Andre et al. (2007) and the adjusted core masses according to 

Stamatellos et al. (2007c), and we then simulate their evolution.

107
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5.1 Introduction

The Ophiuchus molecular cloud complex is one of the closest star-forming regions, 

located at a distance of (139 ± 6) pc (Mamajek 2008). The complex consists of two main 

clouds, L1688 and L1689. In addition there are filaments extending from these clouds 

towards the north-east (see Fig. 5.1). These are usually referred to as the ‘streamers’ 

or ‘cobwebs’ of Ophiuchus, and extend over tens of parsecs (Loren 1989). Fig 5.1 also 

shows the starp  Ophiuchus 1° to the north of L1688.

Ophiuchus is an active site of star formation, with star formation efficiency in the 

range 14-40% (Vrba 1977). It is thought that the star formation may have been triggered 

by the Upper Scorpious OB association, located to the west of L1688 and L1689. In this 

scenario, cloud collapse is triggered by shocks associated with expanding HU regions, 

stellar wind shells, and supernova remnants. The resulting star formation may trigger 

further star formation, which propagates through the cloud.

L1688 is the more massive of the two clouds, with a mass of 1447 M©, and spans 

lpc x  2pc on the sky. It is for this reason L1688 is generally known as the Ophiuchus 

Main Cloud.

Numerous studies show that the Main Cloud is populated with a large number of 

prestellar cores and also protostars at different stages in their evolution (e.g Wilking et 

al. 1989, Motte et al. 1998, Johnstone et al. 2000, Stanke et al. 2006, Simpson et 

al. 2008). There are six major clumps observed in the Ophiuchus Main Cloud (Oph- 

A, Oph-B, Oph-C, Oph-D, Oph-E and Oph-F). These clumps, shown in Fig. 5.2, are 

approximately 0.3 pc in size, each with a mass of a few tens of solar masses.

The region containing the clumps has been mapped in a 1.2 mm continuum survey 

by Motte et al (1998). They sample an area of order 1 pc2, using the molecular cloud 

tracer DCO+ to identify dense clumps. They detect 58 prestellar cores and, by adopting 

dust temperatures of TD = 12K -  20K, calculate masses in the range 0 . 1 - 3  M© for
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Figure 5.1: 13CO map of Ophiuchus, taken from Loren (1989) and modified by Nutter et al. 
(2006). The contour levels give antenna temperatures of 4, 5, 6, 7, 8, 10, 12, 14, 18, 20K.



110 CHAPTER 5 . PRESTELLAR CORES IN OPHIUCHUS

-2 4 °’ 5'Q0”

-2 4 “2 0 W

scn

«o

• 24-30’CO'

-2A “35'CO'

16 25^00* 16  2A-n 4 0 m 1Bh2^"20* 1 S ^ ^ O O 5 ' ^ J ^ O *  16h23r"00'‘
a (1950)

Figure 5.2: Millimeter continuum mosaic of the 6 major clumps in the Ophiuchus main cloud, 
from Motte et al. (1998).
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these cores.

More recently, Andre et al. (2007) have re-observed the cores detected by Motte et 

al., using the molecular lines N2H+(1 -> 0), CS(2 -> 1), CS(3 2), -» l n),

and HCO+(3 —» 2). They find that the cores appear to be gravitationally bound and 

prestellar in nature. They detect subsonic levels of internal turbulence within the cores. 

They also detect strong evidence for infall in six of the cores in the Main Cloud (A- 

SM2, B2-MM16, C-MM5, C-MM6, E-MM2d and E-MM4), with a further ten cores 

showing weak evidence for infall. As in Motte et al. (1998), Andre at al. (2007) use 

dust temperatures of 12K -  20K to estimate masses.

However, Stamatellos et al. (2007c) have estimated dust temperatures in the clumps 

in the Ophiuchus Main Cloud by constructing a 3D radiative transfer model for the 

region, taking into account external heating by (i) the interstellar radiation field, and (ii) 

HD147889. The latter is a nearby luminous B2V star, thought to dominate the external 

radiation field incident on the clumps. They conclude that the temperatures of the clumps 

are lower than those which previous studies have assumed. Using the new temperatures, 

they find that the core masses calculated from millimetre observations by Motte et al. 

(1998) and Andr6 et al. (2007) are underestimated by a factor of ~ 2 -  3. The revised 

core masses obtained by Stamatellos et al. (2007c) are listed in column 4 of Table 5.2 

(Stamatellos, private communication). The resultant core mass function for this region 

does not change significantly in shape, but moves to higher masses.

To continue this study of the Main Cloud, we use the temperatures and adjusted 

masses calculated by Stamatellos et al. (2007c) to simulate the evolution of an ensemble 

of cores. Each core is modelled using the dimensions determined by Motte et al. (1998) 

and the appropriate level of turbulence observed by Andre et al. (2007). This is a 

different approach to that taken in Chapter 4, where we modelled a single core of fixed 

mass .and size, for many different realisations of the turbulent velocity field. Here we 

simulate cores with a range of masses, sizes and levels of turbulence and determine their 

evolution.
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5.2 Initial conditions

5.2.1 Density profile and mass

The density structure of a low-mass prestellar core is approximately flat in the centre of 

the core, then falls off radially with exponent 2 < -  d€og(p)/d£og(r) < 5 in the envelope. 

To represent this, we use a spherically symmetric Plummer-like density profile,

p Q is the density at the centre of the core, and a and b are the projected dimensions of 

the core. The dimensions are taken from Table 2 in Motte et al. (1998), which lists the 

full width half maximum (FWHM) of each core. We assume the core boundary to be 

rB = (ab)112. C is defined so that the density contrast between the centre of the core and 

its boundary is C + 1. Observations indicate that this contrast is typically comparable 

with the value for a critical Bonnor-Ebert sphere, i.e. C + 1 ~ 14, so we put C ~ 13. p Q 

can then be adjusted to give the required total mass, i.e.

(5.1)

M.TOT p{r) Ani2 dr (5.2)

Am2 dr (5.3)

Using the substitution

—  = tan2(0) (5.4)

and the differential of Equation (5.4)
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Table 5.1: Estimated temperatures for each clump.

Clump Oph-A Oph-Bl Oph-B2 Oph-C Oph-D Oph-E Oph-F

Temperature 6 7 7 7 7 7 8
(K)

we have

Hence, we must set

Mjv, = 4ffP o ^ j  J  tair(0) dd (5.6)

la b \ 312 r ^tan-kCW)
= 4npD I —  j  |tan(0) -  (5.7)

= 4^p0 ' [ c 'n  ~ tan-'(C 1/2)]. (5.8)

P ° (0 6 )3/2 ’ ( }
£ 3/2

^  4ff[C,/2 -  tan_1(C1/2)] ^  ^

Since we set C = 13, this gives D  = 1.62.

5.2.2 Temperature

We set the temperature of each core according to which clump it is located in. The tem

peratures estimated by Stamatellos et al. (2007c) are shown in Table 5.1. The Oph-Bl 

clump is excluded from their study because it is flattened in shape, therefore a spherical 

geometry cannot be assumed as with the other clumps. We assume that it has the same 

temperature as the nearby clumps Oph-B2 and Oph-C, i.e. ~ 7K The Oph-E clump 

is also excluded from their study, as it appears to be part of Oph-C and we therefore
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give it the same temperature as Oph-C, i.e. ~ 7K. The temperature values estimated by 

association in this way are shown in bold in Table 5.1.

5.2.3 Turbulence

We use the levels of turbulence observed by Andre et al. (2007; Table 4), i.e.

where is the ratio of turbulent to gravitational energy, and a THERM is the ratio of 

thermal to gravitational energy. To obtain ^  we calculate 0 ^ 3^  for each core and 

multiply by (o-m lcrT) 2 from column 11 of Table 4 in Andre et al. (2007). To create the 

initial turbulent velocity field in a core, we use the same prescription as in Section (4.2) 

and impose an initial divergence-free Gaussian random velocity field on that core. The 

power spectrum of this velocity field is set to be P(k) oc k~4.

5.2.4 Equation of state

The energy equation and the associated radiation transport are treated using the tech

nique described in detail in Section (4.2). The method takes into account the thermal 

history of protostellar gas, and also captures thermal inertia effects. This is a much more 

realistic approach than invoking a barotropic equation of state.

5.2.5 Numerical details

For these simulations, we use the DRAGON SPH code, described in Chapter 2. We 

adopt a sink density threshold p SINK = 10"1 0gcm " 3 and a sink radius RsmK = 1.92 AU. 

Note that the cores modelled here typically have an initial central density an order of

a.
a .

THERM

TURB (5.11)
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magnitude higher than those in Chapter 4. Hence we must increase the sink density 

threshold to mitigate the risk of spurious creation of protostars. The minimum resolvable 

mass is given by

Af -  Ko, (5 12)
400 v ’

and therefore depends on for the most massive cloud simulated here, AfMIN = 

25AfjuprrER. It would be better to fix Mmin and vary and this is the strategy we 

will adopt in the future. However, with the computational resources available to us that 

was not feasible. See Section 2.10 for further discussion of the resolution requirements 

imposed by the Jeans condition (Bate & Burkert 1997).

To set up the initial conditions we firstly place a large number of particles (N  > 

60,000) randomly in a cube and settle them using DRAGON to produce a relaxed 

uniform-density distribution. We then cut out a sphere containing the required num

ber of particles, which in this case is N  = 20,000. Finally, we stretch the particle 

distribution radially to produce the density profile in Equation (5.1).

We perform simulations for the observed prestellar cores in Oph-A, Oph-Bl, Oph- 

B2, Oph-C, Oph-E and Oph-F. We exclude the Oph-D clump because Andre et al. 

(2007) do not calculate the levels of turbulence for the cores in this clump and we do not 

have any information on which to base an estimate. There are also some cores within 

the remaining clumps that do not have a calculated orTURB. We estimate their levels of 

turbulence based on the levels of the other cores within the clump. These figures are 

shown in bold in column 6 of Table 5.2.

Stamatellos et al. (2007c) exclude the Oph-Bl clump from their simulations due 

to the difficulty in modelling its flattened structure. The clump is located in the neigh

bourhood of Oph-B2 and Oph-C, which are both estimated to be at 7K, so we assume 

Oph-Bl is at the same temperature. We also assume a temperature of 7K for Oph-E, 

because it appears to be part of Oph-C.
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5.3 Results

5.3.1 Basic parameters of the cores and the stars they spawn

For each core, Table 5.2 records the initial linear size (as projected on the sky, column 2); 

the initial temperature (column 3); the total mass (column 4); the central density (column 

5): the initial level of turbulence (column 6); the total number of stars at the end of the 

simulation (including brown dwarfs, column 7); the total number of brown dwarfs at the 

end of the simulation (column 8); the types of multiple systems formed (column 9); and 

the masses of the individual stars (column 10). The bold values -  in columns 3 and 6 

respectively -  indicate values of the initial temperature and level of turbulence adopted 

in cases where there is no reliable observational or theoretical estimate.

5.3.2 Overview

In the remainder of this chapter we analyse the results of these simulations of Ophi

uchus cores, and attempt to relate the distributions of stellar properties (stellar masses, 

multiplicities, etc.) to the input parameters (core masses, central densities, p c, and 

levels of turbulence, <2^ ^ ) .

However, at the outset we should stress that the statistics are inevitably poor, since 

we only have observed properties for 48 cores. We could improve the statistics by 

performing multiple realisations of each core in the ensemble, invoking a different seed 

for the turbulent velocity field each time. We have indeed performed a few additional 

simulations in this spirit, and these simulations confirm that the results are credible in 

the following sense. If we perform additional simulations of a core which collapses 

and fragments to form many protostars, then it usually does so in most of the additional 

simulations (typically 3 of the 4 additional simulations) -  even though the realisation 

of the turbulent velocity field is completely different in each simulation. Conversely, if
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Table 5.2: Results of the simulations of an ensemble of cores in the Ophiuchus Main Cloud, 
evolved for 300 kyr. Column 1 gives the name of the core, column 2 gives its size, FWHM, 
column 3 gives its temperature, T , column 4 gives its total mass, column 6 gives , 
column 7 gives the total number of stars formed, column 8 gives the number of brown dwarfs 
formed, N hD, column 9 gives the order of any multiple systems formed, and column 10 gives the 
masses of individual stars, with a superscript to indicate those which are components of binary 
systems (AfJ), triple systems (Ml), or quadruple systems (Af*).

Source FWHM 
(AU x AU)

T
(K)

T̂OT
(Mo)

Po
(gem 3)

aTURB K , •^bd Mult M*
(Mo)

A-MM4 4000 x 1400 6 0.450 3.256 xlO"17 0.129 8 6 T 0.113', 0.092,0.073,0.061,0.045, 
0.008,0.007', 0.002'

A-MM5 3700 x 2900 6 0.739 2.016 x l0 ~ 17 0.009 1 0 0.705
SM1N 3000 x 1800 6 4.179 3.193 xlO-16 0.010 5 1 1.182,1.059,1.003,0.782,0.021
SMI 6100x2100 6 10.287 2.151 xlO-16 0.017 14 6 T 1.776', 1.177', 1.660', 1.639,1.337,

1.143,0.538, 0.378, 0.076,0.059, 
0.056,0.035,0.027,0.015

SM2 6200 x 3400 6 4.179 4.140 xlO-17 0.014 2 0 B 2.091*, 1.960*
A-MM8 2900 x 2100 6 0.418 2.667 xlO-17 0.048 1 0 0.384
B1-MM1 400 x 400 7 0.226 3.386 xlO"15 0.009 1 0 0.224
B1-MM2 3000 x 2100 7 0.384 2.328 xlO-17 0.035 1 0 0.342
B1-MM3 1800 x 1300 7 0.361 9.670 x lO '17 0.022 1 0 0.345
B1-MM4 4600 x 3200 7 0.474 8.047 xlO"18 0.043 1 0 0.403
B1B2-MM1 2700 x 1800 7 0.226 2.023 x lO '17 0.052 1 0 0.186
B1B2-MM2 4800 x 4100 7 0.745 8.182 x lO '18 0.032 1 0 0.664
B2-MM1. 400 x 400 7 0.316 4.734 x l0 ~ l8 0.007 1 0 0.313
B2-MM2 4500 x 2400 7 1.061 2.866 xlO"17 0.017 1 0 1.030
B2-MM3 400x400 7 0.271 4.060 xlO"15 0.032 1 0 0.268
B2-MM4 2100 x 960 7 0.609 2.040 xlO"16 0.035 1 0 0.601
B2-MM5 2200 x  960 7 0.587 1.834 xlO"16 0.054 1 0 0.545
B2-MM6 4300 x 2700 7 1.761 4.268 xlO"17 0.075 0 B 0.763*, 0.472*, 0.275,0.209
B2-MM7 400x400 7 0.519 7.775 xlO"15 0.037 1 0 0.515
B2-MM8 4000 x 4000 7 3.386 5.073 xlO"17 0.045 13 0 Q 0.737*, 0.687*, 0.336, 0.297*, 0.291,

0.288,0.233,0.218,0.058,0.057* 
0.023,0.009,0.007

B2-MM9 1600 x 960 7 0.700 3.256 x l0 “16 0.068 3 0 T 0.492', 0.107', 0.088'
B2-MM10 3400 x 2200 7 1.354 6.346 xlO"17 0.044 1 0 1.318
B2-MM11 400x400 7 0.339 5.079 x lO '16 0.122 1 0 0.335
B2-MM12 2100 x 1300 7 0.880 1.871 xlO"16 0.018 1 0 0.857
B2-MM13 400x400 7 0.429 6.427 xlO"15 0.099 1 0 0.424
B2-MM14 2100 x 1800 7 0.971 1.267 xlO"16 0.095 4 1 B 0.420*, 0.253, 0.247*, 0.022
B2-MM15 400 x 400 7 0.384 5.753 xlO"15 0.092 1 0 0.379
B2-MM16 2700 x 1300 7 0.790 1.152 x lO '16 0.089 3 2 T 0.662', 0.056', 0.049'
B2-MM17 400 x 400 7 0.519 7.775 xlO"15 0.017 1 0 0.513
C-W 17000 x 8000 7 3.160 1.910 xlO-18 0.035 5 1 B 1.652*, 0.680°, 0.357,0.253,0.067
C-MM1 5900 x 3000 7 0.790 1.017 xlO"17 0.050 1 1 0.735
C-N 10000 x 8800 7 3.837 4.457 xlO"18 0.023 16 8 B 1.419,0.752,0.222,0.193*, 0.160,0.160, 

0.121, 0.093*. 0.063,0.039,0.021 
0.019,0.018,0.014,0.009,0.008

C-MM2 400x400 7 0.271 4.060 xlO-15 0.014 1 0 0.268
C-MM3 5400x640 7 0.519 7.745 xlO"17 0.034 1 0 0.4%
C-MM4 2400 x 1400 7 0.361 5.620 xlO"17 0.048 1 0 0.335
C-MM5 400x400 7 0.226 3.386 xlO '15 0.017 1 0 0.223
C-MM6 4000 x 3700 7 0.745 1.255 xlO"17 0.049 3 2 T 0.555', 0.078', 0.066'
C-MM7 400x400 7 0.293 4.390 xlO-15 0.013 1 0 0.290
E-MM1 23000 x 19000 7 6.207 6.515 xlO"1** 0.033 10 4 T 4.3 W,  0.165,0.130', 0.130,0.093,

0.085', 0.073, 0.043, 0.031, 0.031
E-MM2a 400 x 400 7 0.198 2.967 xlO"15 0.020 1 0 0.1%
E-MM2b 400 x 400 7 0.226 3.386 xiO’ 15 0.017 I 0 0.224
E-MM2c 400 x 400 7 0.226 3.386 xlO"15 0.017 1 0 0.224
E-MM2d 4200 x 2700 7 1.270 3.189 xlO-17 0.026 1 0 1.224
E-MM3 400 x 400 7 0.226 3.386 xlO-15 0.017 1 0 0.223
E-MM4 6900 x 5300 7 1.241 5.380 xlO"18 0.047 1 0 1.127
E-MM5 7700x4600 7 1.185 5.645 xlO"18 0.048 1 0 1.082
F-MM1 4800 x 2600 8 0.705 1.533 xlO"17 0.121 5 3 B 0.3%°, 0.115,0.074°, 0.052,0.018
F-MM2 2700 x 1600 8 0.339 3.620 xlO-17 0.149 1 0 0.287
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we perform additional simulations of a core which collapses to form a single star, then 

again it usually does so in most of the additional simulations (again typically 3 of the 4 

additional simulations).

The reasons why we have not extended this procedure, by performing (say) five 

realisations of each Ophiuchus core, are twofold. First, this would take quite a long time 

and use quite a lot of computational resource. Second, there are other critical issues 

with the analysis which we have used to extract initial conditions from the quantities 

tabulated by Andre et al. (2007) (basically the formalism we have used for estimating 

the initial level of turbulence is incorrect, and -  as we explain in Section 5.3.9 -  tends to 

underestimate somewhat), and there are important additional aspects of the physics 

which we need to include in our model before we can expect the results to mimic reality 

(in particular radiative and mechanical feedback). We return to these issues at the end 

of the chapter.

In the meantime, we should simply be aware that the results presented here are 

probably less representative of what we can expect to happen in Ophiuchus during the 

next 300 kyr than we had originally intended. The results do nonetheless have a value, 

in that they indicate the sense in which the properties of a star might be expected to vary 

according to what sort of core that star is bom in.

5.3.3 Star formation efficiency

Star formation in the Ophiuchus cores is predicted to be extremely efficient. Nearly 

all (~ 90%) of the core mass ends up incorporated into newly-formed stars. This high 

efficiency may be attributable to the fact that many of the cores are quite dense at the 

start of the simulations. The central densities range from 10"18 cm-3 up to 10"15 cm"3, 

and most of the cores start off significantly denser than the cores simulated in Chapter

4. Consequently, when a simulation is terminated after 300 kyr, even the outer parts of 

the core have had time to fall into the centre and accrete onto a star.
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The core observations are necessarily biased towards regions of high volume- and 

column-density, and may therefore be failing to detect the lower-density regions which 

make up the outer parts of a core. Consequently the derived parameters of our core 

ensemble may reflect only the inner parts of cores, which inevitably collapse quickly 

and form protostars with high efficiency.

5.3.4 Cores producing single stars

73% of the cores spawn just a single star. Again this is partly because the cores start 

off at quite high density, 10"18 cm-3 up to 10"15 cm-3. Since the gas becomes optically 

thick and heats up adiabatically once the density rises above 10~14 cm-3 to 10~12 cm"3 

(depending on the mass of the condensation involved), the approximately isothermal 

collapse phase has a rather short dynamic range. Hence, by the time the core becomes 

adiabatic, its linear size has only decreased by a small factor, and consequently there has 

not been much opportunity for initial density structures to be amplified by self-gravity.

The preponderance of single stars can also be attributed to the fact that initial levels 

of turbulence are generally low, and therefore there is not much density structure for 

self-gravity to amplify. Values of ô rb range from 0.009 up to 0.149, with an average 

value of Q'-njgg = 0.03; in contrast, in Chapter 4 we performed simulations with or^g = 

0.05, 0.10, and 0.25.

Finally, many of the cores have extremely low masses, and therefore it is hard for 

them to find sufficient mass to form more than one star.

5.3.5 Cores producing more than one star

27 % of the cores in the Ophiuchus ensemble form more than one star. These appear to 

be the cores which have high total mass (M ^ ), and/or high initial turbulence (a ^ g ) ,
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and/or low initial density (p0). This is presumably because high-mass cores have the 

material to form many stars. If they have a high initial level of turbulence they develop 

a lot of substructure which can then, be amplified by self-gravity to form separate pro

tostars. And if they start off at low initial density, then there is a large dynamic range 

of approximately isothermal collapse during which self-gravity can amplify these sub

structures.

There are three parameters, and there are small numbers, so looking for correlation 

is not straightforward. We start by considering each parameter in turn, and then try to 

combine them.

Fig. 5.3 shows a plot of the total number of stars formed in a core, 7V+, against the 

total core mass, Mm . From this plot we see that less than 23 % of cores with MTO <

1.4 M© form more than one star, whereas 100 % of cores with >1 .4  M© form more 

than one star. This corroborates the conclusion of Hubber (2006) who showed that if the 

initial level of turbulence is held fixed at o ^ g  = 0.2, a core with mass = 4.34 M© 

produces more stars than a core with mass Mw  = 2.17 M©. It is appropriate to pre-empt 

our overall conclusion by pointing out that the cores with relatively low masses which 

nonetheless form more than one star tend to have quite high initial levels of turbulence 

and/or low initial density.

Fig. 5.4 shows a plot of the total number of stars formed in a core, W*, against 

the initial level of turbulence, a ^ g . From this plot we see that a core with high a TURB is 

more likely to form more than one star than a core with low a^gg. For example, less than 

29 % of cores with a ^ g  < 0.06 form more than one star, whereas nearly 67 % of cores 

with q̂ turb > 0.06 form more than one star. Again we pre-empt our overall conclusion 

by pointing out that the cores with relatively low turbulence which nonetheless form 

more than one star have quite high masses and/or low initial densities. It is important to 

mention here that only a small fraction of cores have initial levels of turbulence greater 

than q^urb < 0.06, and so we must be careful not to place to much weighting on this 

conclusion.
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Figure 5.3: Logarithm of the total mass of a core (M ^ ) plotted against the number of stars 
formed, A/*.
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Figure. 5.4: For each simulation, we plot the logarithm of the initial level of turbulence in the 
core (o'TURB) against the number of stars formed (//*.)
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Figure 5.5: We plot the logarithm of the central core density, p 0 for the number of stars formed, 
JV*

Finally Fig. 5.5 shows a plot of the total number of stars formed in a core, TV*, 

against the initial central density, p Q. From this plot we see that firstly there is a very 

weak correlation, in that a core with low p Q may be more likely to form more than 

one star than a core with high p Q. For example, nearly 44 % of cores with p Q < 4 x 

10~16 g cm-3 form more than one star, whereas no core with p Q > 4 x 10-16 g cm-3 forms 

more than one star. However, this is a very weak correlation, and many more simulations 

are required to see if this conclusion is still valid.

It would be very useful to formulate these trends more precisely, using Principal 

Component Analysis, and it is our intention to do this when we have assembled better 

statistics. For the time being we have experimented with combining the different factors 

to create a single parameter thus:

M = f e ) ‘ * (t t )' * ■ <“ >

Fig. 5.6 shows a plot of the total number of stars formed in a core, N+, against
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Figure 5.6: Total number of stars formed in a core, A/*, against the parameter A t

A t  We see that there is a correlation, in the sense that cores with small M  tend to 

spawn a single star, and cores with large M  tend to spawn more than one star. There is 

potentially an interesting theorem here, which we will try to establish in the future. In 

the meantime, there does not seem to be a link between the positions of the cores in Fig. 

5.6 and the clump that they belong to. Repeated simulations will hopefully confirm if 

this is indeed the case.

5.3.6 The role of disc fragmentation

In the cores that form more than one star, we frequently observe the same pattern as 

was noted in Chapter 4, viz. a primary star forms from the material with lower angular 

momentum, and then the material with higher angular momentum accumulates into a 

circumprimary disc. The disc grows in mass until it becomes Toomre unstable, and then 

fragments to produce one -  or usually several -  secondaries; the time taken for the disc 

to accumulate and then fragment is typically ~ 20 kyr. Some of the secondaries that 

form in a disc are unable to accrete much mass before they are ejected, and so they end



124 CHAPTER 5. PRESTELLAR CORES IN  OPHIUCHUS

up as brown dwarfs or very low-mass hydrogen-burning stars. Other secondaries remain 

in the disc and accrete sufficient mass to become comparable in mass with the primary; 

sometimes they even grow more massive than the primary.

Fig. 5.7 shows the collapse and fragmentation of the core A-MM4 in Oph-A. This 

core collapses to form a primary star, and then a circumprimary disc accumulates and 

fragments to produce seven companions, of which six are brown dwarfs.

Fig. 5.8 illustrates the accretion histories for a sample of simulations. The trends 

seen here are very similar to those discussed in Chapter 4. We see that there is sometimes 

-  although not always -  a significant delay between the formation of the primary star 

and the formation of the second star. During this delay, the circumprimary disc grows in 

mass until it is Toomre unstable. Secondary stars then condense out of this disc in quick 

succession.

5.3.7 The stellar mass distribution

Fig. 5.9 shows the mass distribution for the stars formed in our ensemble of cores in the 

Ophiuchus Main Cloud. As in Section 4.4.3, the black line shows the histogram obtained 

by distributing the final stellar masses into 15 logarithmic bins which are equally spaced 

in the interval

so that A log10(M*) = 0.2. The red line shows the mass distribution obtained when each 

stellar mass is smoothed using a Gaussian smoothing kernel with adaptive smoothing 

lengths dictated by the separation between neighbouring masses. Both the histogram, 

and the smoothed distribution, are normalised, in the sense that
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Figure 5.7: Simulation of the collapse and fragmentation of a the A-MM4 core in Oph-A. Each 
snapshot shows the logarithm of the column density.
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Figure 5.8: Stellar masses as a function of time (Myr), for a selection of simulations.
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Figure 5.9: Normalised stellar mass distribution. The black lines are histograms of the raw 
data and the red lines are obtained by smoothing with a Gaussian smoothing kernel (see text for 
details).

The mass distribution shows one major peak, comprising masses in the range 0.1 to 0.6 M©. 

This peak is made up of the the majority of single stars produced from the cores. With 

the exception of a few cores, the typical mass of a core is in this range. Due to the high 

density of the cores, nearly all the mass, even in the outer parts, has sufficient time to 

accrete onto the central star before the simulation is terminated.

There also appears to be a secondary peak on the ‘shoulder’ of the larger mode, 

with masses concentrated in the range 0.04 to 0.1 M©. This secondary peak comprises 

brown dwarfs and very low-mass hydrogen-burning stars, formed by disc fragmentation 

and then ejection before they can accrete much mass.

5.3.8 Stellar multiplicity statistics

A small number of cores in each clump form multiple systems, mainly binary and triple 

systems. To calculate their multiplicity statistics, we take the same approach as in Sec-
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Figure 5.10: For each multiple system, we plot the number of stars formed in that simulation, 
against the period, P.

tion 4.4.5, where we have assumed that all multiple systems are hierarchical. In this 

situation, we compute the two periods for a triple system by finding the period for the 

pair with the greatest specific binding energy. We then treat this pair as a single star and 

find the period of its orbit relative to the third star.

Fig.5.10 shows the number of stars formed in a simulation plotted against the pe

riods of the multiple systems identified at the end of the simulations. The period distri

bution has a mean P\ogl0(P) -  3.2, with periods ranging from 102 yrs to 108 yrs. There 

appears to be no obvious dependence of the period distribution on the number of stars 

formed.

Fig.5.11 shows the distribution of orbital eccentricity (e) plotted against period (P) 

at the end of the simulations. It is clear that the eccentricities of the multiple systems 

are not strongly correlated with their periods. However, the distribution of eccentricities 

is similar to the distribution obtained using the new treatment of the energy equation 

in Chapter 4 (see Fig. 4.12). The protostars in a majority of systems tend to be on 

highly elliptical orbits (e > 0.5). Only 4 of the 21 multiple systems have eccentricities
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Figure 5.11: For each multiple system we plot the orbital eccentricity, e against the period, P. 

of e < 0.4. In section 4.4.5, less than 6% of the distribution have e <, 0.2.

Unlike the binary systems discussed in Chapter 4, we do not see any substantial 

evidence for the equalisation of mass. This is illustrated in Fig. 5.12, which shows the 

distribution of mass ratios, q = Af2/Af,, for each of the multiple systems detected at 

the end of the simulations. The distribution is skewed towards systems in which the 

components differ in mass by almost a factor of ten. One thought is that this could be 

due to the difference in the power law of the density profile used here (Equation 5.1) 

and that in Chapter 4 (Equation 4.4). However, future work on the effect of the initial 

conditions on q is required to clarify this.
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Figure 5.12: The distribution of mass ratios, q, for multiple protostars at the end of the simula
tions.

5.3.9 Revised initial conditions

Initial level of turbulence

Equation (5.11) is only valid, if we adopt the temperatures (and hence the thermal ener

gies) used by Andre et al. (2007). Since we have actually used the significantly lower 

temperatures estimated by Stamatellos et al. (2007c), it is necessary to allow for the 

fact that now a much larger fraction of the FWHM of the observed N2H+ lines has to be 

attributed to non-thermal motions.

The turbulent energy is

3 M g“L
NT (5.15)

and the thermal energy is

' iM o i
T

'THERM (5.16)
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where <xOT and crT are -  respectively -  the non-thermal and thermal velocity dispersions, 

as defined by Andre et al (2007). In particular, crT is the thermal velocity dispersion for 

a particle with the mean gas-particle mass, i.e.

1/2
(5.17)

■- -  ( ¥ )  •

The non-thermal velocity dispersion is obtained from the FW HM  of the fitted N2H+ 

lines, which is given by

FW H M 2 = 81n(2) «  + < )  • (5.18)

Here crm is the thermal velocity dispersion for an N2H+ molecule, i.e.

= f c )  ’ (519)

where mM = 29mp is the mass of an N2H+ molecule.

It follows that the turbulent energy is given by

Similarly the thermal energy is given by

E—  -  ^  > *  -  ■«“ « «  ( £ )  ( j S k ) • <«■>

and hence

£ ™b _  i t  FW H M  \2 I T  \1 f T
^T H E R M  ^T H E R M  (\2.355km S

As examples of how this revised analysis affects the estimated levels of turbulence, 

we recalculate ®turb / ^therm f°r three of the Ophiuchus cores. These three are chosen to
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Table 5.3; Sample of iwalmlatfvl values nf rv In rHERM
/ aTURB \ 
\ °THERM /.

/  a TURB \

\ “therm /.CORE
CORRECTED

B2-MM1
A-MM4

B2-MM11

0.09
0.49
1.69

1.0
1.65
7.68

be representative of the range of values spanned by Ophiuchus cores.

Since the corrected levels of turbulence are always significantly higher than those 

we have used, we should expect that simulations using these corrected levels of turbu

lence will result in many fewer cores producing just a single star. We have repeated a 

small number of simulations with the correct levels of turbulence and can confirm that 

this is the case, in the sense that each core produced more than one star in the sample 

of 3 test cases that we used. However, more simulations are required before we can can 

confirm that this result is statistically sound.

Initial aspect ratio

Our simulations may also be compromised by the assumption of spherical symmetry. 

Some cores have rather low aspect ratios, *R = a/b. For example, SM-1 has projected 

FWHM dimensions a = 6200 AU and b = 2100 AU, hence R  = 0.34. Similarly, C-W 

has a = 17000 AU and b = 8000 AU, hence R  = 0.47.

The main difficulty here is that the intrinsic shape of a core is three dimensional, 

but we only see them in projection; the intrinsic aspect ratios are in general more ex

treme than the projected ones. We are looking into ways of de-projecting the observed 

core shapes to obtain -  in a statistical sense -  estimates of the intrinsic ellipsoidal axes, 

(a o> ^cp c o)> so that we can explore the effect of starting simulations with a density profile
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of the form

jc2 y2 £
+  —  4. —

a o »

-1
p(x ,y ,z)  = p 0 (5.23)

Goodwin et al. (2002) have analysed the three dimensional shapes of cores in 

nearby star forming regions, and find that starless cores appear to be more flattened 

than protostellar cores. It will be interesting to see whether this finding is reproduced 

by our simulations, and whether elongated cores produce multiple systems, as has been 

suggested by the classical work of Bonnell et al. (1991) and Nelson & Papaloizou 

(1993).

5.3.10 Additional constitutive physics

A number of potentially important physical effects have not been included in our models. 

In particular, no account has been taken of feedback from the stars that form. Such 

feedback might be either radiative, or mechanical, or both. Nor do we include magnetic 

fields. We briefly discuss how these effects might be included in future work.

Radiative feedback

It is relative straightforward to include radiative feedback from the stars that form in 

the simulation, provided an expression can be formulated for the intrinsic luminosity 

of a newly-formed star. This must include the intrinsic luminosity, due to internal con

traction, plus the luminosity generated by accretion. Both these can be computed using 

simple phenomenological models, provided the code is able to estimate the accretion 

rate (i.e. by smoothing over the arrival of individual SPH particles).

Radiative feedback will heat the surrounding gas and dust, and this is expected to
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suppress fragmentation of the inner circumprimary disc (see Whitworth & Stamatellos 

2006). Thus the circumprimary disc will probably have to accumulate for lQnger be

fore it becomes Toomre unstable. As a result, the primary will become more massive 

by accreting the material in the inner accretion disc (the material which cannot frag

ment). Once the circumprimary discs does become sufficiently massive and extended 

to be Toomre unstable and fragment, it will spawn fewer stars and they will tend to be 

somewhat more massive.

Mechanical feedback

Mechanical feedback can also be modelled using a simple phenomenological prescrip

tion, as has been shown by Stamatellos et al. (2005). Each time two additional SPH 

particles have been assimilated by a sink, they are re-injected into the surrounding gas 

with one tenth the mass that they came in with, and with equal and opposite velocities 

of magnitude lOOkms-1, directed along the spin axis of the sink. This prescription ex

ploits the observational and theoretical rule-of-thumb that the mass-loss rate is roughly 

one tenth of the accretion rate (e.g. Pudritz 2003). (This prescription has the added 

advantage that it obviates the need to de-allocate the memory used for SPH particles 

assimilated by a sink.)

Our expectation is that mechanical feedback will both delay star formation, and 

reduce the efficiency of star formation.

Magnetic fields

The existing Cardiff SPH code for handling non-ideal MHD effects is of limited use, 

because it does not include divergence cleaning (therefore it cannot handle problems 

with large dynamic range), and it is not parallelised (therefore it can only operate with 

small numbers of particles). We have been rewriting and testing this code, but the new
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version is not yet in a state to use for this project.

The consequences of introducing magnetic fields are hard to predict. Our suspicion 

is that it will reduce the efficiency of fragmentation, resulting in fewer stars, and in 

particular fewer brown dwarfs. However, there is an even more fundamental problem, 

and that is that the initial and boundary conditions for the magnetic field are even less 

tightly constrained than those for the density and temperature field. Furthermore, if 

non-ideal effects are to be captured, then the treatment of the energy equation must be 

extended to include the ionisation balance. This is being done by Whitworth (private 

communication), but the module is not yet available.

5.4 Summary

We have modelled the evolution of the ensemble of prestellar cores observed in the 

Ophiuchus Main Cloud. The initial conditions for each core have been set up using the 

revised temperatures and adjusted masses of Stamatellos et al. (2007c), and the sizes 

and levels of turbulence measured by Motte et al. (1998) and Andr6 et al. (2007) (but 

see below). The main results are summarised as follows.

• The cores in the Main Cloud are likely to collapse and form typically a single 

star, on a timescale of 10 to 100 kyr. We find that star formation in these cores is 

extremely efficient. This is probably due to the fact that the initial central densities 

of the simulated cores are so high that, by the time the simulation is completed 

after 300 kyr, even the gas in the outer parts has accreted onto the central star.

• Some cores (15 out of 48) form multiple systems, with as many as 16 stars forming 

in one particularly prolific core. In these cores, once a primary star has formed

- from the material with low angular momentum, the material with higher angular 

momentum forms a circumstellar disc around the primary. This disc normally
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grows in mass until it becomes Toomre unstable and fragments to form multiple 

secondaries.

•  The number of stars formed by a core is highest if the core has high mass. There 

is also a much weaker dependence on the initial level of turbulence and the initial 

density, in that there tends to be more stars formed by a core if it has a high 

initial level of turbulence, and/or if it starts from a low initial density. We explain 

why, and derive a parameter M  (see Equation 5.14) which combines all these 

dependencies. It is important to stress that these conclusions are based on small 

statistics, and so require further investigation.

•  There are 21 multiple systems formed in this ensemble of simulations. Most of 

these multiple systems have highly eccentric orbits (e > 0.5). This is in agreement 

with our findings in Chapter 4.

•  Our simulations do not take account of radiative or mechanical feedback from 

the stars that form (in particular, from the primary star in simulations that form 

more than one star). We predict that the inclusion of feedback would reduce the 

high efficiency of star formation we have reported here. We have also assumed 

spherical symmetry in the initial cloud, which may be unrealistic for many of the 

cores in the Ophiuchus ensemble. Finally we note that the levels of turbulence we 

have invoked need to be revised upwards in order to be properly compatible with 

the observations.

5.5 Future work

We plan to repeat these simulations using revised values for the initial levels of turbu

lence. We will also look into ways of reproducing the observed projected shapes -in  

some statistical sense -  with triaxial ellipsoidal initial shapes. We will include radiative 

and mechanical feedback in our simulations to ascertain what effect they have on the
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efficiency of star formation and the properties of the stars formed. Ultimately we would 

also like to include the magnetic field. These revisions will all be introduced incremen

tally, so that we are able to track cause and effect. We will also seek to improve the 

statistics of our results by performing multiple realisations of the turbulent velocity field 

and/or the de-projected three-dimensional shape.
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Chapter 6

The effect of metallicity on the binary 
frequency

In this chapter we take a simplified look at the effect metallicity has on the collapse 

and fragmentation o f low mass cores. Machida (2008) recently modelled the evolution 

o f star-forming clouds fo r  various metallicities and found that the binary frequency in

creases as cloud metallicty lowers, and binary separations in lower metallicity clouds 

are on average shorter than in higher metallicity clouds. His simulations support recent 

observations made by Lucatello et al. (2005). We revisit this study but instead perform 

simulations o f relatively isolated, low turbulence, low-mass cores. We compute the sta

tistical properties o f the resulting stars, in particular the mass distribution and binary 

properties, to compare with the findings o f  Machida (2008).

6.1 Introduction

To describe the elemental composition of a star, we use X  to represent the fraction by 

mass of hydrogen, Y to represent the fraction by mass of helium, and Z to represent the 

mass of the other (in general, heavier) elements such as oxygen, carbon and nitrogen. Z

139
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is often referred to as the metallicity, and

X + Y  + Z =  1. (6.1)

The Sun, a Population I star, has an elemental composition of X  = 0.70, Y = 0.28, and 

Z = 0.02, and is referred to as metal-rich. Population I stars are relatively young stars 

which have formed in the last few Gyrs. They are typically found in the disc of a galaxy.

Stars which formed very early in the Universe are termed Population ID. Numerical 

simulations of the collapse and fragmentation of primordial clouds indicate that these 

stars were rather massive, with masses > 20 M© (Bromm et al. 2002), and had zero 

metallicity (Z = 0). No Population III star has ever been identified; if their masses were 

> 20 M© they must have burnt out long ago. However, recently a number of extremely 

metal-poor stars have been observed in the Galactic halo (Christlieb et al. 2001, Frebel 

et al. 2005). These include HE 0107-5240 and HE 1327-2326 which have [Fe/H] ^  -5  

(i.e. iron mass fraction ~ 5 x 10_6Z©)

6.1.1 Binary Frequency

It is thought that the binary frequency in the early universe was higher than that observed 

today. Currently, 60% of young, low-mass stars in the field are in binary or higher-order 

multiple systems (Duquennoy & Mayor 1991). Lucatello et al. (2005) examine the 

radial velocities of a sample of carbon-enhanced, very metal-poor s-process-rich stars 

(CEMP-s), and find that the binary fraction among these stars is higher than that found in 

the field. Based on the fact that only a small fraction of these CEMP-s can be detected, 

it is possible this fraction could be higher (<; 100%). Lucatello et al. (2005) also find 

that the binary separations of the stars are shorter than those of field stars.

Numerical simulations aiming to support this idea have recently been performed 

by Machida (2008). He follows the evolution of rotating clouds with an initial ratio



6.1. INTRODUCTION 141

of rotational to gravitational energy = 10"1 -  10~6 and metallicity Z = 0 -  ZQ. He 

finds that cloud rotation promotes fragmentation, whilst fragmentation is suppressed in 

clouds with higher metallicity. In the clouds that form multiple sysytems, he finds that 

the binary frequency is a decreasing function of cloud metallicity. In addition, the binary 

stars that form from low metallicity clouds have shorter orbital periods than those from 

high metallicity clouds.

6.1.2 The effect of metallicity

Bromm et al. (2001) have studied the effect of metallicity on the evolution of the gas 

in a collapsing dark matter mini-halo. They simulate two scenarios, one with a gas of 

metallicity Z = 10_4ZQ, and the other with a gas of metallicity Z = 10_3Zo. They 

adopt a cooling function that takes into account the metal-line cooling, but assume that 

cooling from molecular hydrogen is negligible in this scenario and so do not treat it. 

They find that the gas with the lower metallicity fails to undergo continued collapse and 

fragmentation. In contrast, the gas with the higher metallicity collapses to form a disc

like structure, which then becomes gravitationally unstable and undergoes fragmentation 

forming a large number of high-density clumps. Therefore, Bromm et al. (2001) propose 

that there exists a critical metallicity, ZCRIT = 5 x  10"4Zo, below which the presence of 

heavy elements does not greatly affect the outcome.

Jappsen et al. (2007) have simulated the collapse of warm ionised gas in small pro- 

togalactic halos. They find that at low metallicities (Z < 10"3 Z0) metal-line cooling has 

an almost negligible effect on the evolution of low-density gas. At this stage, molecular 

hydrogen dominates the cooling of the gas, and so it is the amount of H2 formed that 

determines whether or not the gas can collapse and form stars.

In this chapter we revisit the work of Machida (2008) regarding the effect of various 

metallicities on the binary frequency, by simulating the collapse and fragamentation of 

low-mass, low-turbulence prestellar cores, rather than molecular clouds. Machida im
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poses dim = 2 density perturbation to induce fragmentation, but this is not the approach 

we take with our cores. Since we do not incorporate the cooling due to molecular hydro

gen in our simulations, we model metallicities Z = Z0, Z = 0.1 ZQ and Z = 0.01 ZQ. With 

these metallicities, the gas is sufficiently cool that H2 cannot contribute to the cooling, 

since para-H, has its first excited level (7 = 2) at &B(512K), and ortho-H, has its first 

excited level {J = 3) at &B(854 K) (e.g. Black & Bodenheimer 1975). With the sink den

sity we use here (pSINK = 10-11 gem -3), the gas temperature rarely rises above ~ 200K 

and therefore the rotational levels of molecular hydrogen are not strongly excited. At 

metallicities 10-3 ZQ and below, cooling due to molecular hydrogen becomes important 

(Jappsen et al. 2007), hence we do not perform simulations with metallicities below 

0.01 ZQ.

We examine the effect that reducing the metallicity has on the number of binary 

systems formed and their separations. We compare our findings with those of Machida 

(2008) and the observations of low metallicity stars made by Lucatello et al (2005).

6.2 Initial conditions

We use the same initial conditions as those described in Chapter 4, which are designed to 

fit the observed properties of prestellar cores. We adopt a Plummer-like density profile

* r ) - ( r M f e w -  ( 6 - 2 )

Here = 3 x 10-18 gem -3 is the central density, and RKmNBL = 5,000AU is the

radius of the central region within which the density is approximately uniform. The 

core extends out to Rcore = 50,000 AU, so its total mass is AfC0RE = 5.4 M© and the 

density at the boundary of the core is 104 times lower than at the centre. We set the 

initial temperature of the gas to be T  = 10 K.
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As in Chapter 4, we impose an initial divergence-free Gaussian random velocity 

field on each core. The power spectrum of this velocity field is set to be Pkdk oc k~4dk, 

and we consider an initial level of turbulence

= I F 322] = 0-25- (6.3)
* GRAVI

6.2.1 Metallicities

To treat the energy equation and associated radiative transport, we use the technique 

described in Section 4.2.2. Since metals make very small contributions to the equation of 

state, we assume the gas is 70% hydrogen and 30% helium by mass (i.e. X  = 0.70, Y  = 

0.30, and Z = 0.) for the purpose of treating the gas-phase chemistry. However, metals 

make a substantial contribution to the opacity, particularly at low temperatures where 

dust dominates the opacity, and so to model cores of different metallicities we must 

adjust the opacity accordingly. Depending on what factor we are reducing the metallicity 

by, we reduce the opacity in the same way. The opacities in our code are evaluated once 

and for all time, and stored in a dense look up for reference and interpolation.

6.2.2 Numerical details

The cores are set up in the same way as those in Section (4.3.1), by cutting out a sphere 

of 25,000 particles from a settled uniform-density cube, and stretching it radially to 

produce a Plummer-like profile (Equation 6.2).

To identify stars that form, we invoke sink particles (see Section 2.10 for a descrip

tion), adopting a sink density threshold p SINK = 10~n gem -3 and radiuspSINK = 5 AU.

To account for the chaotic nature of the turbulent velocity field that we impose on 

the cores, we must simulate multiple realisations. Therefore, we perform an ensemble
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Table 6.1: Results of the simulations performed with metallicities Z = ZQ, Z = 0.1 ZQ and
Z = 0.01 Z0, at time t = 0.3 Myr. See text for a description of each column.

ID Z/Zq A4 •̂ BD Mult Af*/Mo

T041 1.0 3.369 7 2 BT 0.821', 0.809*, 0.782®,0.778®, 0.138', 0.025,0.016
T042 1.0 3.055 4 0 T 1.083', 0.932', 0.913', 0.127
T043 1.0 3.306 9 3 BT 0.798', 0.586®, 0.585®, 0.494', 0.488', 0.271, 0.039, 0.033,0.012
T044 1.0 3.260 14 8 BB 0.763®1,0.762®1,0.462®2,0.450®2, 0.426,0.235,0.054,0.032,0.025,0.016,0.010,

0.009, 0.008, 0.008
T045 1.0 3.193 13 4 TQ 0.4449, 0.4389, 0.379*, 0.378', 0.368', 0.3429, 0.3409,0.332,0.081,0.034,0.031,

0.018,0.008
T046 1.0 3.362 5 0 T 0.853, 0.768', 0.768', 0.573', 0.400
T047 1.0 3.024 12 5 BT 0.591®, 0.591®, 0.411', 0.404', 0.403', 0.327,0.110,0.067,0.057, 0.033, 0.019,0.011
T048 1.0 3.509 11 4 TT 0.653'1, 0.614'2,0.606*2, 0.509*1,0.506'1,0.372*2, 0.155,0.040,0.023,0.023,0.008
T049 1.0 2.466 6 1 T 0.679*, 0.678', 0.455', 0.316,0.312, 0.026
T050 1.0 3.010 8 1 BT 0.729®, 0.697®, 0.325', 0.319*, 0.317', 0.307,0.282, 0.034
T051 1.0 2.669 10 2 BB 0.654®1, 0.526®1,0.440®2, 0.323, 0.274®2, 0.160, 0.129,0.092,0.048,0.023
T052 1.0 3.717 13 6 Q 0.8599,0.8569, 0.4429,0.4399,0.321, 0.318,0.271, 0.057,0.046,0.037,0.029,0.024,

0.018
T053 1.0 3.343 12 5 T 0.762', 0.687', 0.660, 0.385,0.285,0.267,0.161, 0.044,0.036,0.026,0.016, 0.014'
T054 1.0 3.506 12 5 B 0.779®, 0.592®, 0.504,0.466, 0.350, 0.334,0.315,0.073,0.027,0.026,0.022,0.018
T055 1.0 3.791 6 1 Q 0.9359,0.9249, 0.8509,0.8479,0.182,0.053
T056 1.0 3.841 6 1 Q 1.1119,1.0519, 0.5639,0.5529,0.531,0.033
T057 1.0 3.712 4 0 Q 1.1839,0.9139,0.8139, 0.8039
T058 1.0 3.758 11 4 B 0.985, 0.966®, 0.547®, 0.457, 0.452,0.105,0.084,0.059,0.052,0.032,0.019
T059 1.0 3.510 10 2 BBT 0.847®1,0.786®1, 0.663, 0.298', 0.296', 0.289*, 0.127®2, 0.122,®2 0.078, 0.014
T060 1.0 3.882 8 3 T 1.155, 0.930*, 0.885', 0.426', 0.418,0.031, 0.023,0.014
V041 0.1 3.330 8 3 Q 0.8079,0.8049, 0.7589,0.7489,0.081, 0.054,0.041,0.037
V042 0.1 3.198 10 2 BQ 0.9079, 0.8999, 0.4749,0.2709,0.164,0.159,0.097®, 0.0%®, 0.069,0.063
V043 0.1 3.354 6 0 BQ 0.715®, 0.712®, 0.5109,0.5099,0.4569,0.4529
V044 0.1 3.388 9 4 T 0.866', 0.860*, 0.559*, 0.536,0.495, 0.040,0.011,0.011,0.010
V045 0.1 2.713 10 2 TT 0.523'1, 0.515'1,0.301*2, 0.291,0.288*2, 0.274*2,0.266'1, 0.185,0.049,0.021
V046 0.1 2.878 5 0 T 0.674', 0.590*, 0.584', 0.571,0.459
V047 0.1 3.509 8 1 TQ 0.613', 0.611', 0.5359,0.5349, 0.4449,0.4029,0.362', 0.008
V048 0.1 3.369 11 5 BT 0.598', 0.594', 0.528®, 0.524®, 0.483,0.461', 0.053,0.05,0.042, 0.024,0.012
V049 0.1 3.302 3 0 T 1.400*, O ^ ,  0.942'
V050 0.1 3.377 7 2 Q 0.8959,0.8819, 0.6859,0.6829,0.189, 0.027,0.018
V051 0.1 3.614 5 0 B 0.755, 0.740,0.710®, 0.705, 0.704®
V052 0.1 3.679 6 0 B 0.926, 0.846®, 0.740®, 0.577, 0.399,0.191
V053 0.1 3.732 7 2 BQ 0.8009,0.7599, 0.7559, 0.7109,0.645,0.048®, 0.015®
V054 0.1 3.824 13 8 Q 0.9879,0.9839, 0.613,0.5199,0.5129, 0.042,0.042,0.033, 0.029,0.018, 0.017,

0.015, 0.014
V055 0.1 3.568 13 6 B 0.657®, 0.646®, 0.524,0.464,0.415,0.358,0.353,0.043,0.030, 0.029, 0.018,

0.017,0.014
V056 0.1 3.571 16 8 BQ 0.8099,0.7679,0.4509,0.4109,0.360,0.337,0.133,0.099®, 0.055,0.033,0.028,

0.026®, 0.022,0.017,0.016,0.009
V057 0.1 3.475 10 4 Q 1.0539,0.6469, 0.6149,0.3839,0.372,0.298,0.050,0.025,0.023,0.011
V058 0.1 3.818 6 2 Q 1.0269,1.0229,0.8739,0.8719,0.OI6, 0.010
V059 0.1 3.849 8 5 T 1.620*, 1.072', 1.072', 0.038,0.015,0.013,0.010,0.009
V060 0.1 3.886 4 0 Q 1.0729,1.0719, 0.8639,0.8609
W041 0.01 2.440 7 2 Q 0.9669,0.6459,0.6389,0.2659,0.152,0.023,0.011
W042 0.01 3.250 4 0 Q 0.9299,0.9189, 0.8869,0.5199
W043 0.01 3.250 6 0 Q 0.8369,0.8349,0.6209, 0.6139,0.179, 0.171
W044 0.01 3.360 7 2 BT 0.794', 0.792', 0.585®, 0.583®, 0.562', 0.076, 0.015
W045 0.01 3.250 6 0 BQ 0.845®, 0.637®, 0.4669,0.4639,0.4249,0.4199
W046 0.01 2.040 5 0 T 0.446', 0.427', 0.424', 0.398,0.344
W047 0.01 3.340 6 0 T 0.867, 0.788, 0.555', 0.431', 0.427', 0.276
W048 0.01 3.380 9 2 BT 0.622', 0.594', 0.566®, 0.563', 0.482®, 0.377,0.122, 0.038,0.012
W049 0.01 2.770 7 2 Q 1.1409,1.1059, 0.1919,0.1889,0.114, 0.020,0.016
W050 0.01 3.140 6 0 Q 0.9389,0.7099, 0.4529, q.4509, 0.444,0.145
W051 0.01 3.230 5 0 Q 0.9279, 0.9269, 0.6199,, 0.6179, 0.138
W057 0.01 3.760 5 0 T 1.070*, 0.784,0.704', 0.674', 0.524
W053 0.01 3.700 8 3 Q 0.9929,0.873,9 0.8629,0.7029,0.108,0.075,0.051, 0.034
W054 0.01 3.850 4 0 Q 1.0289,1.0249, 0.9069,0.8949
W055 0.01 3.710 7 2 Q 0.9629, 0.9609, 0.7979,0.7919,0.132, 0.040,0.026
W056 0.01 3.830 6 2 Q 1.0609,1.0379, 0.8279,0.8239, 0.O6O, 0.021
W057 0.01 3.850 3 0 T 1.781', 1.038', 1.029'
W058 0.01 3.580 8 4 Q 0.9289,0.9209, 0.8179,0.8109, 0.049,0.029,0.020,0.011
W059 0.01 3.890 3 3 T 1.740*, 1.080*, 1.070*
W060 0.01 3.880 4 0 Q 1.0999,1.0629,0.8689,0.8469
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Table 6.2: We record the metallicity (Z/Ze), the number of different realisations simulated 
(A^al), the efficiency (i.e. mean fraction of the core mass converted into protostars, rj = 
Z{M*}/MCORE), the mean number of stars formed from a single core (AT*), the numbers of singles 
(5), binaries (B), triples (T) and quadruples (Q), the multiplicity frequence (mf), the companion 
probability (cp), and the companion frequency (cf)._______________________________

Z/ZG R̂EAL V N* S B T Q mf cp cf

1.00 20 0.623 9.05 98 12 13 5 0.23 0.46 0.90
0.10 20 0.643 8.25 81 8 8 11 0.25 0.51 1.19
0.01 20 0.624 5.80 37 3 7 13 0.38 0.68 1.81

metallicity has a much greater effect on the mean number of stars formed from a single 

core, A/*. Lowering the metallicity reduces the number of stars substantially.

In all of these simulations we see the same pattern of star formation. We can see the 

formation of the first star on a timescale of 50 to 70 kyr, and then the formation of a cir- 

cumstellar disc around the primary from the material with too much angular momentum 

to accrete onto the central object. This disc then grows in mass and eventually becomes 

Toomre unstable and fragments to form multiple secondaries. This typically happens 

10 to 100 kyr after the formation of the disc. Fig.6.1 and Fig.6.2 show the accretion his

tories for simulations with Z = Z0, Fig.6.3 and Fig.6.4 for Z = 0.1 Z0, and Fig.6.5 and 

Fig.6.6 for Z = 0.01 Z0. We can see this pattern of accretion in these plots. The majority 

show the primary star forming, then a delay whilst the disc forms and increases in mass 

and becomes Toomre unstable, and then fragments to produce a clutch of secondaries. 

In the high metallicity simulations (Z = ZQ) some of these secondaries are ejected and 

become brown dwarfs, whilst the remaining secondaries stay in the disc and grow in 

mass to become hydrogen-burning stars. In the low metallicity simulations (Z = 0.1 ZQ), 

a smaller number of secondaries are ejected, with the majority staying in the disc and 

accreting mass. This is because these fragments are initially higher in mass and fewer 

in number, and so are less likely to be ejected through interactions.



Io
9

,0 
m 

lo
g

,0 
m 

to
g1

0 
m 

lo
gl

0 
m

 

0.01
 

0.1 
1 

0.01
 

0.1 
1 

0.01
 

0.1 
1 

0.01
 

0.1 
1 

0.0
1

6.3. RESULTS 147

o

(T041)

0.1 0.2 0.3

o

oo
(T043)

0.1 0.2 0.3

o
o
d

(T043)

0.1 0.2 0.3

t/Myr t/M yr t/Myr

(T044)

0.1 0.2 0.3

E
c

Oo
(T045)

0.1 0.2 0.3

o

o
d

(T046)

0.1 0.2 0.3

t/Myr t/M yr t/Myr

(T047)

0.1 0.2 0.3

o

qo
(T048)

0.1 0.2 0.3

o

oo
(T049)

0.1 0.2 0.3

t/Myr t/M yr t/Myr

(T050)

0.1 0.2 0.3

o

oo
(T051)

0.1 0.2 0.3

o

oo
(T052)

0.1 0.2 0.3

t/Myr t/Myr t/Myr

0.1 0.2 0.3

o

oo
(T054)

0.1 0.2 0.3

o

o
d

(T055)

0.1 0.2 0.3

t/M yr t/Myr t/Myr

Figure 6.1: Stellar masses as a function of time, for simulations with Z = ZQ.
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Figure 6.2: Stellar masses as a function of time, for simulations with Z = ZQ.

6.3.2 Mass distributions

Fig.6.7 shows the mass distributions obtained for different metallicities of gas. The 

black line shows the histogram obtained by distributing the final stellar masses into 15 

logarithmic bins which are equally spaced in the interval

- 2   ̂MS)  ̂ *•

The red line shows the mass distribution obtained when each stellar mass is smoothed 

using a Gaussian smoothing kernel with adaptive smoothing lengths dictated by the 

separation between masses. Both the histogram, and the smoothed distribution, are 

normalised, in the sense that

f log10(M) d \ o g l 0 ( M )  =  1. (6.4)

At solar metallicities (Fig.6.7(a)), the mass distribution is bimodal. Hydrogen-burning 

stars of masses 0.2 to 1.0 M© make up the larger mode of the mass distribution, whilst 

brown dwarfs with masses in the range 0.02 to 0.06 M© make up the secondary peak.
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. Figure 6.3: Stellar masses as a function of time, for simulations with Z = 0.1 ZQ.
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Figure 6.4: Stellar masses as a function of time, for simulations with Z = 0.1 Z0.

However, reducing the metallicity to Z = 0.01 ZG removes this bimodality com

pletely, leaving only the larger mode. The switch from high to low metallicity increases 

the broadness of this mode, meaning overall less stars are formed. It also increases the 

height of its peak and shifts it to the right of the graph, resulting in more high-mass 

stars, in the range 0.3 to 1.2 Mo. This larger mode now consists of the stars that are 

too massive to be ejected by mutual ejections, and can enjoy more growth in mass via 

accretion by sweeping up residual gas in the system.

6.3.3 Companion star frequencies

To see the effect that altering the metallicity has on the multiplicity of stars formed, we 

use the same conventions as discussed in Section 4.4.4, of which we remind the reader 

here. “Systems” are defined to include single stars, and “multiple systems” include only 

systems that contain more than one star. We define S , B, T and Q as the number of 

single, binary, triple and quadruple systems respectively.

The multiplicity frequency, m f ,  measures the fraction of systems which are multi-
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Figure 6.5: Stellar masses as a function of time, for simulations with Z = 0.01 ZQ.
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Figure 6.6: Stellar masses as a function of time, for simulations with Z = 0.01 ZQ

pie, i.e.

mf =
B + T + Q + ...

(6.5)
S + B + T  + ^  + ...

The companion probability, cp. is the fraction of stars which are in multiple systems, i.e.

cp = 25 + 37 + 4<2 + ...
S + 2 5  + 37 + 4(2 + ...

(6.6)

The companion frequency, cf, measures the mean number of companions which a star 

has (irrespective of whether it is a primary), i.e.

cf = 25 + 67 + 12(2 + ...
S + 2 # +  3 7 +  4 0  + ...

(6.7)

In Table 6.2 we record — for each value of metallicity — the total numbers of 

singles (5), binaries (B), triples (7) and quadruples (Q) formed in all simulations; and 

the multiplicity statistics, mf; cp; cf.

A core with Z = 0.01 ZQ spawns fewer single-star systems but more quadruple sys

tems than a gas with Z = ZQ. This is reflected in the calculated quantities (mf, cp, 

cf). The fraction of stars in multiple systems (cp) increases as the metallicity decreases.
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Further to this, the mean number of companions (cf) increases sharply, so that star for

mation in a core with metallicity Z = 0.01 ZQ has twice as many companions.as a star 

formed in a core with solar metallicity. This means that, of the multiple systems that 

form, more are high-order systems (e.g triple or quadruple).

This result is in agreement with the findings of Machida (2008). He finds that 

the binary frequency of clouds with low metallicity tends to be higher than for high 

metallicity gas. We do not explore such a wide parameter space as Machida (2008; 

Z = 0 -  ZQ) since we do not take into account cooling by molecular hydrogen, and hence 

modelling very low metallicities is not possible with our present code.

6.3.4 Orbital parameters

Fig. 6.8 shows —  for each level of metallicity — the number of stars formed in a 

simulation, plotted against the semi-major axis of the multiple systems identified at the 

end of the simulation. The distribution of the semi-major axis for each system is shown 

in Fig. 6.9.

By reducing the metallicity, it is clear that the number of stars formed in a simula

tion decreases substantially. This is shown in Fig. 6.8c, in which no multiple system has 

more that 9 stars, where as in Figs. 6.8a, and b, the multiple systems have a maximum of 

14 and 16 stars respectively. This can be attributed to the fact that when the metallicity 

is low, the inner parts of the disc can cool better and fragment here, and so the stars that 

form are higher in mass and fewer in number. With solar metallicity, the inner parts of 

the circumbinary disc cannot cool as quickly, and so the secondaries tend to form in the 

outer regions of the disc. Here the stars tend to be much lower in mass, and high in 

number.

With a metallicity of Z = Z0, the semi-major axis distribution of multiple systems 

formed has a mean ̂ ioglo(a) -  1.2 and a standard deviation o"iogl0(a) ^  0.8; with Z = 0.1 ZQ
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a mean fiiogl0(a) - 1 . 4  and standard deviation crloglo(fl) a  0.8; with Z = 0.01 Z0 a mean 

/iiogjo(a) -  1.5 and a standard deviation c r logl0(P ) -  0.7. Therefore, in our simulations 

lowering the metallicity slightly increases the binary separation of multiple systems. 

This is in contrast to the findings of Machida et al. (2008) who finds that the separation 

actually decreases with low metallicity. However, the increase in separation that we see 

is only marginal, and due to the fact that we impose a turbulent velocity field on the 

cores modelled, more realisations may reduce the effect.

This trend is also reflected in the period distribution. Fig.6.10 shows orbital ec

centricities, plotted against the periods. At a metallicity of Z = Z0, the period distri

bution of multiple systems formed has a mean //iOg10(P) - 1 . 7  and a standard deviation 

<r1Og10(/>) -  1.1; periods range from a few ~ 104yrs down to ~ 5yr. With a metallic

ity of Z = 0.1 Z0 the distribution has a mean fi\og 10<p) -  2.0 and a standard deviation 

°riog10(/>) - 1 .1 .  When we reach low metallicities of Z = 0.01 Z0, the period distribution 

has a mean /iiogl0(P) -  2.1 and a standard deviation crlogio(/>) -  1.0, and no simulations 

form more than 9 stars.

The multiple systems formed in the simulations with different metallicities show a 

slight correlation between their eccentricities and periods. Multiple systems that have 

elliptic orbits tend to have longer periods, and this correlation appears stronger in low 

metallicity gas. It is also noticable that at low metallicites there is a lack of stars in the 

top righthand comer of Fig. 6.10c. This could potentailly be related to the low number 

of stars produced in this regime. If there are less stars produced then there are likely to be 

a smaller number of dynamical interactions occuring which would alter the eccentricity 

of the orbital systems produced (Parker et al., in preparation). However, to investigate 

this further requires N-body simulations, in order to evolve the systems correctly.
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metallicities (a) Z = ZQ, (b) Z = 0.1ZG, and (c) Z = 0.01 ZQ.
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6.3.5 The effect of reducing the metallicity

It has been known since the work of Low & Lynden-Bell (1976) that -  at least in the 

regime where dust dominates the opacity -  decreasing the metallicity increases the min

imum mass for star formation. Hence it becomes harder to form brown dwarfs, and 

this is exactly what we observe in our simulations (in common with Machida 2008). 

In addition, we find that the separations of binaries increase somewhat with decreasing 

metallicity, although this is a small effect (and in the opposite sense to what Machida 

reports). These changes appear to be caused by a fundamental shift in the dominant 

pattern of star formation, due to the alteration in the cooling properties of the gas which 

accompanies a decrease in the metallicity.

When the metallicity is solar, a primary star forms from the material with low an

gular momentum, and then a disc often accumulates around this primary star. The inner 

parts of this circumprimary disc cannot fragment, because they are unable to cool fast 

enough (Gammie 2001; Stamatellos et al. 2008a). In contrast, the outer parts of the cir

cumprimary disc usually fragment to produce a clutch of low-mass secondaries (brown 

dwarfs and very low-mass hydrogen-burning stars). Many of the resulting multiple sys

tems are the result of one of these secondaries being scattered inwards to form a tight 

binary with the primary. However, many others are formed by two of the low-mass sec

ondaries pairing up, and these systems also tend to be tight, because the components 

are of low mass and therefore have normally been bom quite close together. Because 

there are usually many secondaries, there are multiple scattering events between the 

secondaries, and many of them are ejected as single stars.

When the metallicity is low, a primary star again forms from the material with 

low angular momentum, and again a disc often accumulates around this primary star. 

How.ever, the inner parts of the circumprimary disc are now better able to cool. As 

a result more of the circumprimary discs fragments to produce secondaries, and these 

secondaries tend to have larger masses mid greater separations at birth. As a result,
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fewer very low-mass secondaries are produced, and hence fewer stars overall. Because 

there are fewer secondaries, the binary systems which are formed by a secondary being 

scattered inwards and pairing up with the primary are somewhat looser. And because 

the secondaries formed in the outer parts of the circumprimary disc are further apart, 

the binary systems that are formed by their pairing up also tend to be somewhat looser. 

In addition, because there are substantially fewer secondaries formed, there are fewer 

scattering events, and therefore fewer single stars are ejected. Consequently, the net 

multiplicity frequency, companion probability and companion frequency are all higher.

6.4 Summary

In this chapter we have looked at the effect which reducing the metallicity has on the 

mass distribution and binary statistics of stars formed from low-mass low-turbulence 

cores. We have performed an ensemble of simulations of the collapse and fragmentation 

of a 5.4 M© core with an initial level of turbulence = 0.25 (as in Chapter 4). We 

have considered three different metallicities, Z = Z©, Z = 0.1 Z© and Z = 0.01 Z©. 

Reducing the metallicity appears to have the following effects.

•  The mean mass of the stars increases, and the mean number of stars decreases. 

There appears to be little change in the efficiency of star formation, in the sense 

that the fraction of the core mass converted into stars after 300 kyr is in all cases 

63 ± 1%.

• There are many fewer brown dwarfs formed. The bimodal mass distribution ob

served with Z = Z© changes with decreasing metallicity in the sense that the low- 

mass mode (the one which comprises brown dwarfs and very low-mass hydrogen 

burning stars) steadily wanes, and the high-mass mode (the one comprising Sun

like stars) steadily waxes. Once the metallicity has decreased to Z = 0.01 Z©, the 

low-mass mode disappeares altogether, and is replaced by a flat extension to lower
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masses (see Fig. 6.7).

• The binary frequency increases substantially; this is in agreement with the results 

of Machida (2008). However, in our simulations the binary separations increase 

somewhat, in contrast with what Machida finds. This has to do with the change 

in the pattern of disc fragmentation that accompanies a decrease in metallicity, as 

explained in the preceding section.

•  There is some evidence that eccentricities and periods are anti-correlated (i.e. 

long-period systems tend to have low eccentricities).
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Chapter 7

Summary

7.1 Numerical diffusion and numerical dissipation in star 

formation codes

In Chapter 3 we have measured the levels of numerical diffusion and numerical dissi

pation in our Smoothed Particle Hydrodynamics (SPH) code (described in Chapter 2). 

To do this we model acoustic oscillations of a self-gravitating isentropic monatomic 

gas-sphere. We explain that this is a highly relevent test code for star formation codes, 

in particular those that model the fragmentation of collapsing cores, since the pressure 

waves generated by the switch from approximate isothermality to approximate adiabac- 

ity play a crucial role at this stage of star formation.

We find that for SPH codes that adjust the smoothing length of a particle so as to 

keep the number of neighbours in the range ± A A /^ , AWNEIB should be set to zero. 

This ensures that the level of numerical diffusion of oscillation energy to other modes, 

and the level of numerical dissipation due to artifical viscosity, both remain low.

We propose that this should become a standard test for star formation codes, and 

encourage users of Adaptive Mesh Refinement codes to attempt to reproduce the results

163
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obtained with SPH.

7.2 Treatment of the thermodynamics in collapsing cores

In Chapter 4 we have performed SPH simulations of the collapse and fragmentation of 

cores having different initial levels of turbulence (aTURB = 0.05, 0.10, 0.25). We use a 

new, more realistic treatment of the energy equation which captures (i) excitation of the 

rotational and vibrational degrees of freedom of H2, dissociation of H2, ionisation of H 

and He, and (ii) the transport of cooling radiation against opacity due to both dust and 

gas (including the effects of dust sublimation, molecules and H” ions). We have also 

performed comparison simulations using a standard barotropic equation of state. The 

main results are summarised as follows.

•  Increasing the level of turbulence generally tends to reduce the fraction of the core 

mass which is converted into stars, and increase the number of stars formed by a 

single core.

•  Many simulations show the same pattern of star formation, in which the core 

collapses to form a primary after 50 to 70 kyr, with the accumulation of a mas

sive disc around it. After 10 to 100 kyr this disc becomes Toomre unstable, and 

fragments to form a clutch of secondaries. Many of these secondaries are brown 

dwarfs or very low-mass hydrogen-burning stars. Some of them are ejected into 

the field.

•  Switching from the standard barotropic equation of state to the new treatment of 

the energy equation has the following effects.

-  The fraction of core mass converted into stars is reduced (by ~ 16%).

-  The number of protostars formed from a single core is greatly increased 

(~ 40%), with a higher proportion of brown dwarf stars.
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-  The mean period of multiple systems is reduced (by a factor ~ 3).

-  The orbital eccentricities of multiple systems tend to be higher.

-  The mass ratios of multiple systems tend to be higher (i.e. more nearly equal 

components).

We conclude that the differences in results obtained depending on the treatment of ther

modynamics is due to the fact that the standard barotropic equation of state is designed 

to mimic the gross thermal behaviour of the gas at the centre of a collapsing, non

rotating 1M© protostar. Therefore it becomes adiabatic at low densities. Alternatively 

the new treatment of the energy equation allows the gas in low-mass protofragments to 

stay approximately isothermal to higher densities. This is because the column density 

inhibiting the cooling of the fragments is lower, and their rate of contraction, and there

fore rate of heating, is lower. Despite this method being still being an approximation for 

radiative transport, it is nevertheless a much more realistic treatment than a barotropic 

equation of state.

7.3 Prestellar cores in the Ophiuchus Main Cloud

In Chapter 5, we have modelled the evolution of an ensemble of prestellar cores in 

the Ophiuchus Main Cloud. We have simulated a range of masses, sizes and levels 

of turbulence, using initial conditions constrained by observations, and also recently 

revised dust temperatures, with a view to predicting the statistical properties of the stars 

that will form from these cores. The main results are summarised as follows.

• The star formation in the cores is extremely efficient, with typically a single star 

being produced on a timescale of 10 to 100 kyr. This is likely to be due to fact 

that the cores modelled have very high central densities, and so at the end of the
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simulation all of the material in the outer parts of the core has had time to accrete 

onto the central star.

•  Some of the cores produce multiple systems, according to the same pattern of star 

formation seen in Chapter 4, in which a primary star is formed followed by the 

formation and subsequent fragmentation of a disc into multiple secondaries. Of 

the multiple systems that form, the majority have highly eccentric orbits.

•  The number of stars formed by a core is highest if the core has high mass. There is 

also a weak dependence on the initial level of turbulence and the initial density, in 

that cores with a high initial level of turbulence, and/or starting from a low initial 

density may produce more than one star.

7.4 The effect of metallicity on the core collapse

In Chapter 6 we have performed an ensemble simulations of the collapse and fragmen

tation of a 5.4 M© core with an initial level of turbulence = 0.25, and explored the 

effects of different metallicities Z = Z©, Z = 0.1 Z© and Z = 0.01 Z©. We summarise the 

main results.

• Reducing the metallicity decreases the number of stars formed from a single core.

•  Fewer brown dwarfs are formed at lower metallicities. At Z = Z©, the mass 

distribution is bimodal, consisting of 2 modes, the first in the low mass region 

comprising brown dwarfs and very low-mass stars, and the second in the higher 

mass region comprising hydrogen-burning stars. At At Z = 0.01Z©, the low-mass 

mode disappears completely.

•  Reducing the metallicity increases the binary frequency, which is in agreement 

with previous authors. However, it also increases the binary separations, which
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is not in agreement with the same authors. We explain this trend in terms of the 

pattern of disc fragmenation and how it changes with different metallicities.

7.5 Future work

I plan to continue to develop and improve our star formation code DRAGON. In partic

ular, I would like to improve the sink algorithm. The current version of the algorithm 

may compromise our results, in terms of resolution. Physical processes may not be 

properly resolved on small scales, which may result in different results for the binary 

systems obtained in this thesis. Sinks also favour N-body interactions. We adopt grav

itational softening for their interactions and this may cause stars to be wrongly ejected 

from systems, whilst suppressing dissipative interactions between, and mergers of, stars.

I will perform more simulations of collapsing cores covering a wider parameter 

space than that already explored, in order to further investigate what effects the initial 

level of turbulence, the core mass and the metallicity, have on the mass distribution, 

kinematics and binary statistics of the resulting stars. Also, I will perform more simula

tions of the existing parameter space to improve upon the results I have already obtained. 

The work in Chapter 5 on the models of prestellar cores in Ophiuchus will be revisited 

using the revised initial levels of turbulence. It would be interesting to see if our initial 

findings, regarding the effects that the core mass, initial level of turbulence and central 

density have on the outcome, still stand. I will also look into a way of reproducing 

the observed projected shapes, rather than assuming spherical geometry which is not 

realistic for all of the cores in the ensemble.

I plan to continue a systematic investigation into determining whether certain phys

ical effects influence the outcome in any way. The next stage is to introduce feedback, 

both mechanical and radiative, into the simulations. The levels of star formation in the 

current results are very high. Including radiative feedback from the surrounding stars,
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and mechanical feedback in the form of bipolar outflows is likely both to delay star 

formation and to reduce the efficiency of star formation.

Finally, it is thought that magnetic fields will have a serious effect on the findings in 

this thesis, and so I plan to continue to develop the existing Cardiff SPH code designed 

for handling non-ideal MHD effects. The code currently does not include divergence 

cleaning, and so I would like to develop this.
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