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ABSTRACT

Polyamines are small organic molecules which modulate many physiological 

processes. Here, an inhibitory effect of spermine on rat carotid body chemoreception 

is reported. Spermine inhibits catecholamine release, from isolated carotid bodies, 

induced either by high K+ or by hypoxia. This inhibitory effect could be mediated by: 

the activation of the Ca2+ sensing receptor (CaR) or the inhibition of the voltage- 

dependent Ca2+ channels. Measurements of intracellular Ca2+ in dissociated type 1 

cells, demonstrated that spermine inhibits Ca2+ influx evoked by either high K+ or 

hypoxia, but did not affect the resting intracellular Ca2+ levels. Then, the expression 

of the voltage-dependent Ca2+ channels and CaR were assessed by reverse- 

transcription polymerase chain reaction and immunochemistry in the carotid body. 

Cav1.2 and Cav2.2 were found to be especially expressed in type 1 cells while Cav1.3, 

Cav1.4, Cav2.1, Cav2.3, Cav3.1, Cav3.2 and Cav3.3 could not be detected. CaR was 

detected only in the nerve ending. Having declined a role of the CaR in mediating the 

spermine inhibition of type 1 cell chemoreception, the effect of spermine on Cav1.2 

was investigated using patch-clamp recording of HEK293 cells transiently or stably 

expressing human Cav1.2. Spermine inhibits Cav1.2 using 2 mM Ba2+ as a charge 

carrier but not with 20 mM Ba2+. The inhibition of Cav1.2 by spermine in type 1 cells 

was then confirmed by co-application with nifedipine using Ca2+ imaging. These 

experiments demonstrate an inhibitory effect of spermine on Cav1.2 and potentially 

Cav2.2 in rat type 1 cells. In conclusion, spermine inhibits catecholamine release by 

type 1 cells, via the direct inhibition of Cav1.2 and possibly Cav2.2. This mechanism 

could act as a negative feedback on the type 1 cells and limit neurotransmitter release.
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CHAPTER 1

GENERAL INTRODUCTION



Introduction

This study focuses on the effect of spermine on the carotid body function, based on 

hypothesis of a co-secretion of spermine with neurotransmitters by type 1 cells, similarly to 

neurons. It tests the hypothesis of an activation of the CaR and/or an inhibition of voltage- 

dependent Ca2+ channels by spermine in type 1 cell. The introduction aims to review the 

literature on these topics. The part 1.1 deals with the regulation of respiration, showing the 

role of the carotid bodies in the intact respiratory system. The part 1.2 describes the 

molecular, cytoplasmic and membrane mechanisms involved in pC>2, pCC>2 and pH sensing 

in the carotid body type 1 cells. The activation of type 1 cell by such stimuli leads to the 

excitation of the petrosal nerve endings via synaptic transmission. This particular point is 

discussed in the part 1.3 with the description of the neurotransmitters released and their 

post- and pre-synaptic effects. The section 1.4 concerns the modifications observed in the 

carotid body in response to chronic sustained or intermittent hypoxia during which the 

polyamine levels are likely to increase. The metabolism and the physiological roles of 

polyamines are also examined in the section 1.5. Finally, the parts 1.6 and 1.7 review the 

literature about the two putative targets of spermine in type 1 cell tested in this study, the 

CaR and the voltage-dependent Ca2+ channels.
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Introduction

1.1 RESPIRATION

1.1.1 Respiration and chemoreceptors

During the life of any mammal the circulatory and respiratory system need to be 

tuned to match the oxygen demand of the organism. These adaptations of the circulatory 

and respiratory systems appear in response to variation in the organism’s oxygen (O2) 

consumption or to a decrease in O2 availability in the air. To be compatible with the 

homeostasis of the organism, the partial pressure of oxygen (PO2) and the partial pressure 

of carbon dioxide (pCC>2) in the blood must be maintained within narrow optimal levels 

(Gonzalez et al., 1994). For instance, in the systemic arterial circulation, pC>2 should be 

around 95 mmHg and pCC>2 around 40 mmHg (Ganong, 1997). This gas homeostasis is 

maintained by the balance between the cellular consumption of O2, the production of CO2 

and gas exchanges in the lung. To match the needs of the organism the respiratory and 

circulatory systems are able to adapt quickly to any changes in pCVpCC^ in the air/blood.

Changes in pC>2 and pCC>2 are detected in the blood by chemoreceptors: carotid 

bodies, aortic bodies and central chemoreceptors in the brainstem, and in the air by the 

neuroepithelial bodies (Ganong, 1997; Ward, 2008). The aortic and carotid bodies are the 

main chemoreceptors detecting the blood pC>2, indeed following their denervation the 

response to a drop in blood pC>2 is almost completely blocked. The remaining response is 

due to the pC>2 sensitivity of the brainstem. In contrast the pCC>2 and pH sensing takes place 

in the carotid bodies and the central chemoreceptors. The function of the carotid bodies is 

the sens these parameters in the blood whereas the central chemosenreceptors detect their

8



Introduction

level in the brain fluid (Kawai et al., 1996; Duprat et al., 1991; Lahiri & Forster, 2003). In 

the carotid body, the detection of pCC>2 and pC>2 act in synergy (Pepper et al., 1995; Kumar 

& Bin-Jaliah, 2007). The information sent by all of these chemoreceptors is integrated in 

the brain respiratory centres at the level of the nucleus of the solitary tract which then 

modulates ventilation. The nucleus of the solitary tract is an important centre of integration 

comporting neurons receiving input from the cardiac, respiratory and gastric system (Paton 

& Kasparov, 2000).

Three main centres are involved in the control of the respiration (Fig. 1.1). The first, 

the pontine respiratory group, receives input from the lung baroreceptors and modulates the 

lung volume and the switch between inspiration and expiration. The second group, the 

dorsal respiratory group, which lies next to the nucleus of the tract solitarus, receives input 

form the chemo- and mechanoreceptors. It acts as a relay influencing the respiration by 

effecting the two other groups and the spinal cord (Benarroch, 2007). The third group, the 

ventral respiratory group, situated in ventral medulla, controls the resistance of the airway 

and contains the pre-Botzinger area regrouping critical neurons responsible for the 

rhythmicity of the respiration (Feldman & Del Negro, 2006). There is a very strong 

concentration of pC02-chemosensitive neurons in the ventral medullary group, and some 

others more diffusely spread throughout the brainstem (Nattie, 1999; Benarroch, 2007).
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E NEURONS

IE NEURONS

£ j |  I NEURONS 

H I  E NEURONS Figure 1.1: Location of the respiratory centres in 

the brainstem . Schematic dorsal view of the 

brainstem showing the pontine respiratory (PRG), the 

dorsal respiratory (DRG) and the ventral respiratory 

group (VRG) of neurons involved in the regulation of 

respiration. Each group includes neurons which are 

active, especially during inspiration (I, black) or 

expiration (E, dots). From Nattie, 1999.

PRG

DRG

VRG

1.1.2 Response to hypoxia

Decreases in pC>2 in the air or in the arterial blood are classified as acute hypoxia, 

chronic intermittent hypoxia and sustained hypoxia. They result from pathological 

situations such as sleep apnoea or chronic obstructive pulmonary disease or during ascent 

to altitude. Both chronic intermittent and sustained hypoxia lead to pathological situations 

such as pulmonary or systemic hypertension, respectively (Kemp, 2006).

Hypoxic air or obstruction of the airways induces a situation in which the 

pulmonary alveolar air becomes hypoxic. As a result, the blood pC>2 decreases and the 

blood pC 02 increases. These changes in gas concentration are sensed by the carotid bodies 

which then stimulate the brainstem respiratory centres and lead to the activation of the 

sympathetic nervous system (Schultz & Li, 2007). As a result, the heart rate increases 

producing an increase in blood pressure. In addition, the activation of the sympathetic
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Introduction

system and the hypoxic blood induce a systemic vasoconstriction and long lasting changes 

in the blood vessel resistance (Rouwet et al., 2002; Phillips et a l ,  2006).

In the lung, the presence of hypoxic air induces a pulmonary vasoconstriction 

(HPV) which aims to prevent blood reaching unventilated alveoli. This mechanism is under 

the control of the pulmonary smooth muscle cells, which contract in response to hypoxia 

(Gurney, 2002). This vasoconstriction induces a pulmonary hypertension (Levitzky, 2008).

Conjointly, the low blood pC>2 triggers the secretion of erythropoietin by the kidney 

(Levitzky, 2008). This hormone acts on the bone marrow and stimulates an increase in the 

hematocrit in order to improve the oxygen transport (Levitzky, 2008). The result of this 

increase in hematocrit is an increase in blood viscosity and pressure, which can lead to 

cardiac problems (Wagner et al., 2001).

Chronic sustained and intermittent hypoxia trigger several mechanisms, activation 

of the sympathetic system, pulmonary vasoconstriction and increase in hematocrit. The 

carotid body plays an important role in the response in mediating the activation of the 

sympathetic system which then induces hypertension. Better understanding of the 

functioning of the carotid body and the development of pharmacological tools may help to 

find a therapeutic cure to prevent pulmonary or systemic hypertension resulting from 

chronic sustained or intermittent hypoxia.
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1.2 CHEMORECEPTION BY CAROTID BODY

1.2.1 Anatomy of the carotid body

The carotid bodies are located between the bifurcation of the carotid artery, in 

closed proximity to the superior cervical ganglion (SCG) (Fig. 1.2). The carotid bodies are 

innervated by the carotid sinus nerve (CSN) and by the ganglioglomerular nerve. The CSN 

is afferent and makes contact with: i) type 1 cells (sensing the O2, CO2 and the pH) and ii) 

the blood vessels inside the carotid bodies (sensing the blood pressure). The somata of the 

CSN are located in the petrosal ganglion (PG) and project to the nucleus tractus solitarius, 

one of the brainstem respiratory centres (De Castro & Rubio, 1968). The carotid bodies are 

supplied with arterial blood by a branch of the external carotid artery which allows them to 

sense p02, pCC>2 and pH at the aorta level. The organ is vascularised with a network of 

blood vessels and capillaries, which together occupy one-quarter of the volume of the 

carotid body (Pallot, 1987). The chemoreceptor type 1 cells (glomus) are located near the 

capillaries and are organized into clusters (glomeruli) surrounded by glial-like type 2 cells 

(De Kock, 1951).
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Figure 1.2: Anatomy of the complex carotid bifurcation/carotid body. A) Photo of the 

carotid bifurcation as it is in the rat prior to its removal for carotid body isolation. The 

vagus nerve follows the common carotid artery on its external side. The glossopharyngeal 

nerve passes transversally above the two branches of the carotid artery. The nerve is used 

as a reference to enable resection of the carotid bifurcation, with the carotid body. The 

position of the carotid body, which is not visible and among the conjunctive tissue between 

the two branches of the carotid artery and the position of the superior cervical ganglion 

(SCG), on the other side of the bifurcation, are drawn in dashed line. B) Photograph and 

schematic representation of the carotid bifurcation with the carotid body along the internal 

carotid artery (IC). The carotid body blood supply is provided by small blood vessels 

emerging form external carotid artery (EC). Common artery, CC. B) Taken from 

McDonald, 1981.
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1.2.2 Chemoreception in type 1 cells, general mechanism

Chemoreception by the type 1 cells can be divided into detection of changes in pC>2 

and the detection of changes in pCCVpH (Fig. 1.3). The latter are closely linked because 

the blood pH drops as pCC>2 increases. At the cellular level, the mechanisms supporting the 

detection of changes in pC>2, pCC>2 and pH have been the subject of numerous studies but 

are still not fully understood. Moreover, reports indicate that the carotid body is sensitive to 

osmotic pressure (Gallego & Belmonte, 1979) and, although more controversially, to 

glucose (Pardal & Lopez-Bameo, 2002; Zhang et al., 2007).
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Figure 1.3: Sensitivity of the carotid body to pC>2, pCC>2 and pH. Recordings of the cat

carotid sinus nerve activity plot against the arterial partial pressure in CO2 (PaC02, A), the 

pH (B) and arterial partial pressure in O2 (Pa02, C) obtained by Biscoe et al. in 1970 

(Biscoe et a l, 1970). The carotid sinus nerve activity is strictly dependent upon the 

activation of the carotid body by Pa0 2, PaC 0 2 and pH. The CSN propagates action 

potential, even at Pa0 2 of 600 mmHg; therefore there is not a threshold for activation of 

chemosensitivity Biscoe et al., 1970.
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It is generally accepted that p 0 2, pC 02 and pH modulate the activity of a variety of 

ion channels, such as large-conductance, voltage and Ca2+-activated K+ channels (B K c a) 

(Peers, 1997), TASK-like channels (Buckler, 1997) and acid-sensing ion channels (ASIC) 

(Tan et al., 2007). The closure of K+ channels or activation of ASIC leads to depolarization 

and Ca2+ entry via voltage-dependent Ca2+ channels. It is the attendant increase in 

intracellular Ca2+ concentration ([Ca2+]0 that induces neurotransmitter release.

1.2.3 0 2 sensitive ion channels in the carotid body

Lopez-Bameo et al. was the first group to show involvement of K+ currents in 

response to diminution of p 0 2 in the rabbit (Lopez-Bameo et a l ,  1988), giving rise to the 

membrane hypothesis of 0 2 sensing.

1.2.3.1 BKCa channel and heme oxygenase-2

Figure 1.4: Schematic representation of a subunit of 

BKCa channel, a  subunit of BKca possesses 7 

transmembrane domains (1 to 7) and a pore (P). The C- 

terminal part (C-ter) is inside the cell and comprises the 

Ca2+ sensitive segment. Adapted from Lopez-Lopez & 

Perez-Garcia, 2007.

BKca (or maxiK) channels are large-conductance, voltage- and Ca2+-activated K+ 

channels. The channels are formed by tetramers of a  subunits. The a  subunit contains 7 

transmembrane domains and comprises the Ca2+-sensitive segment in the C-terminal tail
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(Jiang et al., 2001; Patel & Honore, 2001). [Ca2+]j modulates the activity of the channel, as 

the intracellular Ca2+ concentration increase, the activity of BKca increases (Riesco- 

Fagundo et a l,  2001). The regulation of the channel by low pC>2 requires an additional 

factor identified as heme oxygenase-2 (Williams et al., 2004). Heme oxygenase-2 (HO-2) 

is a membrane protein, constitutively expressed in carotid body (Prabhakar et al., 1995). 

HO-2 and BKca are closely associated because the channel is still sensitive to p0 2  in 

excised membrane patches, where a very small part of the cell membrane is taken out from 

the cell and recorded (Williams et al., 2004). In the presence of 0 2, HO-2 degrades heme in 

biliverdin and CO, and the later activates BKca- CO modulates the channel activity via the 

C-terminal part with a redox-independent mechanism (Williams et al., 2008). However, 

studies with mice deficient in HO-2 are contradictory. In such mice, Adachi et al. found a 

decrease of the ventilatory response to hypoxia, supporting the hypothesis that HO-2 is an 

oxygen sensor (Adachi et al., 2004) whereas Ortega-Saenz et al. reported similar responses 

to hypoxia in control versus knock-out mice (Ortega-Saenz et al., 2006). These divergent 

conclusions remain unexplained and the role of HO-2 in O2 sensing requires more 

investigation. Moreover, McCartney et al. have revealed an alternative O2 sensing 

mechanism, due to the presence of cysteine-rich motif in alternatively spliced version of 

BKca (McCartney et al., 2005).

1.2.3.2 TASK-like channels

Figure 1.5: Schematic representation of TASK

channel. TASK channel is made of 4 transmembrane 

domains and has 2 pores (P). Adapted from Lopez-Lopez 

& Perez-Garcia, 2007.
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TASK-like channels belong to the K2P family, containing two-pore domains 

(Lotshaw, 2007). TASK channels have 4 transmembrane segments and produce 

background currents which are insensitive to voltage. The K+ current is not affected by 

caesium, tetraethylammonium and 4-aminopyridine and it is blocked by barium, quinine, 

zinc (Kim et al., 1998; Patel et a l ,  1999). Moreover, the current is extremely sensitive to 

pH in the physiological range. At an external pH of 7.3, the channel is half-maximally 

activated and reaches is maximum activation at pH of 7.7. The sensitivity to pH is 

physiologically consistent with the sensitivity to O2, indeed when the pC>2 decreases, due to 

the increase of cellular metabolism, the pCC>2 increases and pH decreases (Duprat et al., 

1997; Buckler et al., 2000). Nevertheless, in the pathological situations of metabolic 

acidosis or alkalosis, where the pC>2 and p C 0 2 are constant only the changes in pH activate 

the channel. In the excised patch-clamp configuration, the channel loses its O2 sensitivity 

suggesting that the channel response to hypoxia occurs indirectly via a modification of an 

intracellular component such as auxilliary proteins or pH (Patel & Honore, 2001). When 

expressed in HEK293 cells, hTASK-1 channel is sensitive to O2 (Lewis et al., 2001) but 

when expressed in immortalized adrenomedullary chromaffin cells the channel is 

insensitive to O2, demonstrating that the TASK channel O2 sensitivity is determined by the 

cell type (Johnson et al., 2004). The TASK channel O2 sensitivity is therefore dependent 

upon specific cytosolic factors. TASK channels have been show to be modulated by 

inhibition of mitochondrial function (Ortega-Saenz et al., 2003; Wyatt & Buckler, 2004). 

The AMP kinase plays an important role as a link between the decrease of the 

mitochondrial activity and the inhibition of TASK channels (Evans et al., 2005). Therefore 

the channels would be activated by phosphorylation which is confirmed by the fact that
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addition of ATP induces, in excised patch, a rapid increase in channel activity (Williams & 

Buckler, 2004).

1.2.3.3 Kv3 and Kv4 channels

Figure 1.6: Schematic representation of a  subunit 

of Kv channel. The a subunit of Kv channel has 6  

transmembrane domains and one pore (P). Adapted 

from Lopez-Lopez & Perez-Garcia, 2007.

Kva channels (named KvX.X) have 6  transmembrane domains and are voltage 

gated channels (Lopez-Lopez & Perez-Garcia, 2007). They are associated with regulatory 

subunit such as Kvp. Kv channels play a major role in O2 sensing in the rabbit carotid 

body. Indeed, negative construct to block expression of Kv4.x suppresses the 

depolarisation induced by hypoxia. In contrast, the construct blocking K vl.x has no effect 

(Perez-Garcia et al., 2000). The expression of Kv4.2 alone in HEK293 cells shows no 

effect of hypoxia or redox stimulation but co-expression with Kvp 1.2 restores the hypoxia 

and redox sensitivity of Kv4.X as observed in the rabbit carotid body (Perez-Garcia et al., 

1999).The Kvp subunit is therefore the chemosensor and it is constituted of an 

oxidoreductase enzyme changing the conformation of the complex Kv4.2/Kvpi.2 

depending of its state, either reduced form NADPH or oxidized form NADP+ (Pongs et al.,

1999). In confirmation of the precedent studies, Sanchez et al have shown the expression of 

Kv3.1, Kv4.1 and Kv4.3 at the mRNA and protein levels, in the rabbit carotid body 

(Sanchez et a l , 2002). These two channels, Kv3.1 and Kv4.3, produce both a fast

N-ter C-ter
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inactivated current but only the application of antibody against Kv4.3 inhibits the hypoxic 

response. Kv3.1 would contribute to speed up the action potential rate in the rabbit carotid 

body without being the primary O2 sensor (Lopez-Lopez et al., 2003).

In the rat, Kv current (Kv2) is present but is not sensitive to change in O2 (Lopez- 

Lopez & Perez-Garcia, 2007). Finally, mouse type 1 cells express Kv2.2, Kv3.1 and Kv3.2, 

but pharmacological studies reveal that only Kv3.X are O2 sensitive and weakly 

responsible for the O2 sensing (Lopez-Lopez & Perez-Garcia, 2007).

1.2.3.4 HERG channel

In the rabbit type 1 cells, the K+ channel HERG has been shown to be expressed 

and to participate in the resting membrane potential (Overholt et al., 2000). To date, there 

is no experiment demonstrating a role of HERG in O2 sensing in rabbit carotid body 

nevertheless a strong arguments is in favour of this hypothesis as HERG channels have 

been shown to be modulated by reactive oxygen species while expressed in Xenopus 

oocytes (Taglialatela et al., 1997).

In parallel to the O2 sensing membrane theory, other experiments suggest the 

involvement of NADPH oxidase, mitochondria and AMP kinase whose activity depend 

directly or indirectly on O2 availability.

NADPH oxidase and mitochondria produce reactive oxygen species (ROS, i.e. O2 

and OH ) during hypoxia (Gonzalez et al., 2007). Then ROS act as second messenger and
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modify the redox potential in the cell and interfere with K+ channels BKca and TASK-like 

channels (Acker, 1994; Kemp, 2006).

1.2.4 Other O2 sensors

1.2.4.1 NADPH oxidase

The enzyme is made of several subunits linked to a small GTPase (Rac) (Dinger et 

al., 2007). There are different isoforms of the catalytic subunit of NADPH oxidase: Noxl- 

5, Duoxl and Duox2 (Porwol et al., 2001). Only the expression of Nox2 and 4 have been 

investigated in the carotid body and only Nox4 has been detected in type 1 cells (Gonzalez 

et al., 2007). In its resting form Nox4 is probably inactive and is switched on by increase in 

[Ca2+]i via the activation of the protein kinase C (Dinger et al., 2007). The active enzyme 

catalyses the following reaction:

NADPH + 0 2 -> NADP+ + 0 2

Then, the 0 2 is converted into H20 2 due to the action of the superoxide dismutase 

(Dinger et al., 2007). The H20 2 produced acts as a second messenger and modulates the 

activity of BKca and TASK channels. Indeed, data obtained with normal and p47phox (a 

subunit common to all the Nox isoform) knock-out mice reveal that hypoxia activates ROS 

production which then opens BKca channel (He et al., 2005). Moreover, it has been shown 

the Nox4 and TASK channels are closely associated, co-localized at the plasma membrane 

and that Nox4 is responsible for the modulation of TASK channel activity by 0 2 (Lee et
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al., 2006). In contrast, the co-expression of Nox2 and TASK channels do not modulate the 

activity of the channel in hypoxia (Lee et al., 2006). The different interactions between 

NoxX and TASK channels give a functional meaning to the specific expression of Nox4 in 

the type 1 cells (Gonzalez et al., 2007).

In conclusion, in normoxia Nox is in its inactive form and gets activated by the rise 

in [Ca2+h induced by hypoxia. Then, Nox produces O2 which is converted in H2O2 and 

activates BKca and TASK channels which repolarise the type 1 cells. This hypothesis is 

also supported by the fact that deletion of Nox (by knock-out) does not suppress the carotid 

body response to O2 and enhances chemoreceptor sensitivity, demonstrating an inhibitory 

effect of Nox on the chemoreception (Roy et al., 2000; He et al., 2002).

1.2.4.2 Mitochondria

Very early studies suggested mitochondria as the O2 sensor. Indeed, application of 

drugs which inhibit mitochondrial function activates the carotid body (Heymans, 1931). 

The mitochondria can produce ROS due to the activity of the cytochrome oxidase or the 

complex I, II and III in the electron transport chain but the amount of ROS which is 

produced is highly debated. In the first line of thought, hypoxia triggers a decrease in the 

activity of the cytochrome oxidase and a shift of the redox state within the mitochondria 

(Mansfield et al., 2005). This increases the production of O2 (Chandel & Schumacker,

2000). This phenomenon happens in every cell type but is especially strong in carotid body 

mitochondria due to the expression of a particular form of cytochrome oxidase with a low 

affinity for O2 (Mills & Jobsis, 1972). The second way of ROS production involves the
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complex I, II and III, of the respiratory chain, which convert O2 molecules into O2 , the 

complex HI is thought to produce the most O2 (Brunelle et al., 2005; Guzy & Schumacker, 

2006). O2 is then converted by superoxide dismutase into H2O2, which crosses the 

mitochondrial membrane (Sauer et al., 2001) and plays a role as a second messenger. 

Although, these two mechanisms have been identified and mitochondria were shown to 

play a role in O2 sensing in pulmonary smooth muscle cells (Waypa et al., 2001) and intact 

arterioles (Leach et al., 2001), it is still uncertain that they play such a function in the 

carotid body (Gonzalez et al., 2002; Gonzalez et al., 2007). Indeed, the study of Piruat et 

al. on mice knocked-out for the complex II shows no modification of the type 1 cells 

response to hypoxia and interestingly a decrease in the activation threshold of K+ channels 

(Piruat et al., 2004). This refutes the involvement of complex II in the detection of O2. The 

second study, carried out on rat type 1 cells, demonstrates that inhibition of the electron 

transport chain by specific blockers inhibits background K+ channel and induces Ca2+ 

influx, supporting the role of mitochondria in O2 sensing in the carotid body (Wyatt & 

Buckler, 2004).

1.2.4.3 GSH/GSSG

In the context of ROS production by mitochondria and Nox, it was thought that 

cytosolic glutathione, which is a tripeptide (glutamate, cysteine and glycine) would be 

involved. Indeed, the main role of the glutathione is to act as an antioxidant and protect 

cells against free radical damage. In normal conditions most of the glutathione present in 

the cells is in the reduced form, GSH. In the presence of H2O2, the reduced form GSH give 

a proton and an electron, becomes oxidised and reacts with another oxidised glutathione to 

give GSSG. This reaction is catalysed by the glutathione peroxidase:
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2GSH + H20 2 GSSG + 2H20

The GSSG is normally reduced in GSH by the G reductase (Gonzalez et al., 2007), but in 

presence of H20 2 the GSSG production becomes too high to be converted again in GSH:

GSSG + NADPH2+ -»  2GSH + NADP+

Therefore, the production of GSSG and the use of GSH decrease the redox environment in 

the cell. The increase of the redox environment of the cell modifies channel activities by 

oxidation of the methionine or cysteine residues present in the proteins. For instance, in 

BKca channels, methionine oxidation increases the channel activity whereas cysteine 

oxidation decreases it (Tang et al., 2001; Tang et al., 2004; McCartney et a l,  2005). The 

redox sensitivity can be located in the auxiliary subunit, such as Kvp 1.2 which is associated 

with Kv4.2 (Perez-Garcia et al., 1999). There is no influence of the redox state on TASK 

channels as demonstrated by the absence of effect of addition of NADH on excised channel 

activity (Williams & Buckler, 2004).

1.2.4.4 AMP kinase

AMP kinase is an attractive candidate for the 0 2 sensor because its activity is 

dependent upon the energy status of the cell, which decreases in hypoxia. Indeed, as a 

consequence of 0 2 depletion, mitochondrial activity decreases, creating an energetic stress. 

The lack of energy is translated into an increase in ADP/ATP ratio. To compensate the lack 

the decrease in ATP production, the ADP is used to produce ATP by the enzyme adenylate 

kinase with the result that the AMP/ATP ratio rises. This ratio is sensed by the AMP kinase
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which has been proposed as a sensor for metabolic stress (Hardie et a l ,  2003). This 

enzyme is made of one catalytic a  subunit and 2 regulatory p and y subunits. AMP binds to 

the regulatory subunits and activates the kinase (Scott et a l ,  2004). In type 1 cells, AMP 

kinase-a subunit is especially located at the plasma membrane, as demonstrated by 

immunostaining (Evans et a l ,  2005). Activation of the AMP kinase results in direct 

phosphorylation of (^-sensing K+ channels, TASK and BKca (Hall & Armstrong, 2000; 

Wyatt et a l,  2007). Once phosphorylated, the channels close leading to a depolarization 

and activation of voltage-dependent Ca2+ channels.

In conclusion, several candidates rise as an O2 sensor and none of the hypotheses 

can explain, on it own, all the data collected. It is more likely that the type 1 cells sense the 

change in p0 2  using multiple mechanisms which is more reliable than the involvement of a 

single one. The integration of all the mechanisms lead to the closure of K+ channels (Fig. 

1.7) which depolarises the cell and trigger the neurotransmitter release.
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Figure 1.7: Schematic representation of the proposed O 2 sensing mechanisms in carotid 

body type 1 cells. On the plasma membrane are the K+ channels, TASK, BKcaandKv. BKca 

is associated with heme oxygenase-2 (HO-2), which produces CO in presence of O2 and 

heme. Kva is modulated by p0 2  via the subunit Kvp. Inside the cell, the mitochondria play a 

role due to energetic stress induced by the lack of O2, which increases the ratio ADP/ATP, 

and then AMP/ATP, which activates AMP kinase. The AMP kinase acts as an inhibitor of 

the K+ channels and a regulator of gene transcription via hypoxia inducible factor 1 a (HIF- 

la). In addition, the debated role of reactive oxygen species in hypoxia is shown. The 

mitochondria produce O2 due to the perturbation of the mitochondrial activity. O2 is then 

converted into H2O2 by the super oxide dismutase (SOD) and leaves the mitochondria. The 

NADPH oxidase, such as Nox4, associated with TASK channels, is another source of O2 

production. The presence of H2O2 leads to the modification of the redox potential of the cell 

and alters the GSH/GSSG ratio, which also modulates TASK, BKca and Kva (via Kvp) 

channel activities. Adapted from Lopez-Lopez et al., 2003; Dinger et al., 2007; Gonzalez et 

al., 2007; Wyatt & Evans, 2007.
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1.2.5 CCVpH sensing

The carotid body is sensitive to pCC>2 and pH, which are tightly associated. How the 

variations in pCC>2 and pH are sensed by type 1 cells is only partially understood. The type 

1 cell response to hypercapnia is characterised by a rapid increase in [Ca2+]i followed by a 

slight decrease and stabilisation to a plateau (Fig. 1.8) (Buckler & Vaughan-Jones, 1993).
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Figure 1.8: Effect of 20 % C 0 2 on type 1 [Ca2+]|. 20 %

C 0 2 induces a rapid increase [Ca ]i followed by a decrease 

and stabilisation to a plateau value. From Buckler & 

Vaughan-Jones, 1994a.

The response is largely dependent upon the pH leading to the hypothesis that the 

p C 0 2 could be sensed via the variations of pH (Buckler et al., 1991; Fitzgerald et al., 

2006). Indeed, the augmentation of pC0 2  induces an acidification of the blood and a 

decrease in intracellular pH due to the activity of the carbonic anhydrase in type 1 cells 

(Black et al., 1971; Yamamoto et a l ,  2003; Zhang & Nurse, 2004). This enzyme catalyses 

the reaction:

C 0 2 + H20  -> H C 03 + H+

The decrease of the intracellular pH modulates ion channel activity (TASK channels) and 

induces neurotransmitter release (Stea et al., 1991; Stea & Nurse, 1991; Buckler & 

Vaughan-Jones, 1993; Duprat et al., 1997). The carbonic anhydrase has been shown to be 

responsible for the first rapid increase in [Ca2+f  as it disappears when inhibitors of the 

enzyme are used (Buckler et a l ,  1991). In contrast, the second phase is very sensitive to the
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extracellular pH and is nonexistent in isohydric hypercapnia (increase in pCC>2 at pH 7.4) 

(Buckler & Vaughan-Jones, 1993). The carotid body sensitivity to the extracellular pH is 

due to the expression of recently discovered ion channels sensitive to extracellular pH, the 

acid sensing ion channels (ASIC). They are especially permeable to Na+ and are activated 

by a decrease in extracellular pH (Tan et al., 2007). The pHso of the channel is 6.3 and 

ASIC are partially open at pH 7. Rat carotid body expresses ASIC1 and 2. Moreover, 

carotid body cells express other proteins sensitive to pH such as: TASK channels (Buckler 

et a l ,  2000); inwardly rectified K+ (K ir) channels CO2 and pH sensitive (Yamamoto et a l, 

2008) and pH sensitive Cl' currents (Petheo et al., 2001). In conclusion, activation of ASIC 

and of C1‘ channels in association with the closure of TASK-1 and of K[r channels during 

acidosis lead to type 1 cells depolarisation and neurotransmitter release.

There is a multiplicative effect of the detection of pCC>2 and pC>2 in the carotid 

body. Indeed, at a low constant pC>2, the increase in pCC>2 leads to a greater activation of 

the type 1 cells (Pepper et al., 1995). This interaction is also true for the response to pCC>2 

which is enhanced by low pC>2 (Pepper et al., 1995). The molecular mechanisms leading to 

the interactions between pCC>2 and pC>2 sensing are not elucidated. Experiments conducted 

on newborn animals shown that there is a post natal increase in the interaction between the 

stimuli which could explain the postnatal increase in sensitivity to pCC>2 and pC>2 (Pepper et 

al., 1995; Calder et al., 1997).
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1.2.6 Glucose sensing

The sensitivity of the carotid body to low glucose was first demonstrated by 

Alvarez-Buylla showing that infusion of glucose in the carotid decreases the carotid body 

activity and raises its threshold to hypoxia (Alvarez-Buylla & de Alvarez-Buylla, 1988). 

Later on, several studies reported evidence for a sensitivity of the carotid body to 

hypoglycaemia, such as release of ATP and acetylcholine in hypoglycemia or activation of 

petrosal neurons by type 1 cells in co-culture (Pardal & Lopez-Bameo, 2002; Garcia- 

Femandez et al., 2003; Zhang et a l, 2007). The glucose response involves TASK channels 

(Duprat et al., 1997) and is mediated by Ca2+ influx which induces neurotransmitter 

release. However, other groups were not able to reproduce this result making the carotid 

body glucose sensitivity very controversial (Bin-Jaliah et a l ,  2004; Conde et al., 2007; 

Kumar, 2007).

Type 1 cells are responsive to a large spectrum of stimuli p02, pC02/pH, 

extracellular osmolarity, glucose. Activation by these stimuli appears to converge toward a 

single effect which is the depolarisation of the type 1 cells. This depolarisation activates 

voltage-dependent Ca2+ channels and/or voltage activated Na+ channels.

1.2.7 Expression of Ch-sensitive ion channels in rat carotid body

In rat type 1 cells, the presence of B K c a channel has been certified by 

electrophysiological recordings. Indeed, blockade of the Ca2+ influx with the use of Cd2+ 

inhibits the K + current induced by depolarisation steps (Fig. 1.9) (Peers, 1990a). The 

shoulder on the K+ current observed near 20 mV, in control conditions, is due to the
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activation of the voltage-dependent Ca2+ channels. Moreover, the B K c a is activated at 

resting membrane potential and inhibited by hypoxia (Fig. 1.9) (Peers, 1990b; Ganfomina 

& Lopez-Bameo, 1992; Wyatt & Peers, 1995; Riesco-Fagundo et al., 2001; Buttigieg & 

Nurse, 2004). The application of iberiotoxin, a specific blocker of B K c a channel 

corroborates the expression of this channel in rat type 1 cells (Peers & Carpenter, 1998; 

Pardal et al., 2000).
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Figure 1.9: Rat type 1 cells express B K c a channel. A) K + current, recorded with 10 mV 

step from a holding potential of -  70 mV in control condition (closed circle) and in 

presence of Cd2+ (open circle). The current is inhibited by suppression of the Ca2+ influx, 

from (Peers, 1990a). B ) Current voltage relationship in control (closed circle) and hypoxia 

(open circle). Hypoxia inhibits the K + current, from Peers, 1990b. These two 

characteristics, Ca2+ activation and hypoxic inhibition demonstrate the presence of B K c a in 

rat type 1 cells.

In addition, TASK channels play an important role in rat type 1 cells in mediating 

the response to hypoxia. Experiments conducted in presence of BKca channel blockers 

(tetraethylammonium chloride) reveal the presence of a second K+ current oxygen 

sensitive, TASK, in the rat type 1 cells (Fig. 1.10) (Buckler, 1997; Buckler et al., 2000).
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Figure 1.10: Rat type 1 cells express TASK channels. A) Voltage current relationship 

recorded in 140 mM extracellular K+ and extracellular Ca2+-free solution with TEA. The 

current is recorded in control and hypoxic conditions, hypoxia reduces the membrane 

conductance. B) Trace of the oxygen sensitive component of the K+ current recorded in A 

obtained by subtraction of the traces under control and hypoxic conditions. From Buckler 

et al., 2 0 0 0 .

Rat type 1 cells have been shown to express TASK-1, TASK-2, TASK-3 and 

TRAAK channels by immunochemistry and in situ hybridization (TASK-1) (Yamamoto et 

al., 2002);(Buckler et al., 2000) or RT-PCR (Nurse & Fearon, 2002; Kim et al., 2006). In 

the rat, Kv current (Kv2) is present but is not sensitive to change in pC>2 (Lopez-Fopez & 

Perez-Garcia, 2007).

To conclude, in rat type 1 cells, intracellular or membrane mechanisms have been 

reported for the chemosensitivity to O2, CO2 and pH. The intracellular mechanisms could 

be regulated by the intracellular concentration of polyamine which is very likely to increase 

in chronic hypoxia (see section 1.5), however it is not investigated in this study. In 

addition, the membrane mechanisms involving K+ channels could be inhibited by 

extracellular spermine secreted by type 1 cells, a hypothesis which is tested in chapter 2 .
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1.3 NEUROTRANSMITTERS RELEASED BY TYPE 1 CELLS

A great variety of neurotransmitters have been identified in type 1 cells including 

catecholamines (dopamine and adrenaline), ATP, ADP, acetylcholine, GABA, histamine, 

serotonin and some neuropeptides such as opioid-like peptide, substance P, 

cholecystokinin, galanin, neurotensin, calcitonin and atrial natriuretic peptide (Gonzalez et 

a l , 1994; Koemer et a l ,  2004). Most of the neurotransmitters released act both on the PG 

nerve endings and on type 1 cells, where they modulate further the type 1 cells 

chemosensitivity.

1.3.1 Catecholamines

The presence of catecholamines in the carotid body has been assessed by 

immunohistochemistry of enzymes responsible for their synthesis, of the neurotransmitters 

themselves, and by functional studies (Gonzalez et a l ,  1994). Tyrosine hydroxylase, the 

first enzyme involved in the synthesis of catecholamines, is expressed in type 1 cells 

(Karasawa et a l ,  1982) and is now currently used as an immunostaining marker of type 1 

cells. Dopamine and adrenaline are the two more abundant catecholamines in the carotid 

body, and are secreted in response to hypoxia and acidosis in rat (Vicario et a l ,  2 0 0 0 b); 

(Donnelly, 1993; Gauda et a l ,  1996), cat (Rigual et a l,  1991; Chen et a l,  1997) and rabbit 

(Gomez-Nino et a l,  1990; Gonzalez et a l ,  1994).
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1.3.1.1 Effect o f catecholamines on nerve endings

In the rat, cat and rabbit, the PG neurons, express dopamine receptors D1 and D2 

(Gauda et al., 1996; Bairam et al., 1998). D1 and D2 receptors are coupled to Gs and Gi, 

respectively, and their activation results in an activation/inhibition of adenylate cyclase 

activity. Many experiments have shown that catecholamines are secreted following type 1 

cell activation (Gonzalez et al., 1994) but their roles as excitatory neurotransmitters is 

uncertain. For instance, experiments conducted in cat reveal that dopamine itself can not 

induce action potentials in PG neurons (Donnelly, 1996; Iturriaga & Alcayaga, 2004). 

Moreover, in co-cultures of rat type 1 cells and PG neurons, blockade of dopamine 

receptors have no effect on PG neuronal activity induced by hypoxia (Zhong et al., 1997). 

The absence of a direct link between catecholamines release and PG neuronal activity leads 

to the conclusion that catecholamines modulate the responses of PG neurons induced by 

other neurotransmitters rather than stimulating them directly (Iturriaga & Alcayaga, 2004; 

Nurse, 2005). This hypothesis is supported by the observation that in dopamine D2 receptor 

knock-out mice, the ventilatory response to hypoxia is still present but reduced (Prieto- 

Lloret et al., 2007).

1.3.1.2 Effect o f catecholamines on type 1 cells

Rat type 1 cells express D2 receptors (Czyzyk-Krzeska et al., 1992b; Gauda et al., 

1996; Gauda et al., 2000) which, when activated, inhibit the Ca2+ influx induced by 

hypoxia (Benot & Lopez-Bameo, 1990; e Silva & Lewis, 1995; Jiang & Eyzaguirre, 2004; 

Carroll et al., 2005). Therefore, dopamine acts as a negative feedback signal by blocking 

Ca2+ currents and reducing the sensitivity of the carotid body to hypoxia. Mice lacking the
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D2 receptor secrete more catecholamines than the wild type, supporting the existence of 

such a negative feedback in carotid body type 1 cells (Prieto-Lloret et a l, 2007).

1.3.2 Acetylcholine (ACh)

ACh was proposed to be an excitatory neurotransmitter very early on in the study of 

carotid body (Von Euler, 1939). Type 1 cells have been shown to express the molecular 

machinery needed to synthesise, breakdown (Nurse & Fearon, 2002) and secrete ACh (via 

the ACh vesicular transporter) (Nurse & Zhang, 1999).

1.3.2.1 Effect o f ACh on nerve endings

The nicotinic ACh receptors has been observed in rat PG neurons. The functional 

evidence for the existence of such a receptor came originally from patch-clamp studies in 

the somata of cultured PG neurons where ACh exerts an excitatory influence (Zhong & 

Nurse, 1997). This hypothesis is largely supported by other experiments using co-culture of 

type 1 cells and PG neurons (Zhong et al., 1997; Zhang et a l ,  2000) or intact carotid body- 

nerve preparation (Kholwadwala & Donnelly, 1992). Here, hypoxia induces a 

depolarisation of PG neurons. This can be mimicked by administration of ACh and is 

partially inhibited by the nicotinic receptor antagonists hexamethonium and 

mecamylamine. The partial inhibition obtained with nicotinic receptor blockers indicates 

that ACh is not the only neurotransmitter involved in excitation of PG neurons (Fitzgerald, 

2000).
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1.3.2.2 Effect o f ACh on type 1 cells

Anatomical studies using radioiodinated a-bungarotoxin, a specific ligand of the a7 

subunit of the nicotinic receptors have revealed the a l  subunit expression in carotid type 1 

cells (Chen et a l , 1981). Moreover, the action of ACh on type 1 cells, which induces a rise 

in [Ca2+]j, can be partially inhibited by nicotinic or muscarinic antagonists, suggesting the 

presence of the two receptors (Dasso et al., 1997; Jiang & Eyzaguirre, 2004). Functionally, 

muscarinic receptors induce a rapid increase in [Ca2+]i followed by a plateau phase. 

Experiments conducted in absence of extracellular Ca2+ show that the response depends on 

release of Ca2+ from the intracellular stores followed by Ca2+ influx (Dasso et al., 1997). 

Furthermore, electrophysiological data in neonatal rat type 1 cells confirm the presence of 

nicotinic receptors in these cells and show that nicotinic agonists induce inward Ca2+ and 

Na+ currents (Wyatt & Peers, 1993). In conclusion, ACh is thought to be involved in a 

positive feedback at the type 1 cells, as it increases [Ca2+]i (Conde & Monteiro, 2006a).

1.3.3 ATP

ATP is believed to be an excitatory neurotransmitter at the carotid body type 1 cells. 

Indeed, studies carried out in cat (Obeso et al., 1985), rat (Conde & Monteiro, 2006b) and 

rabbit (Verna et al., 1990) show that a high amount of ATP is present in type 1 cells (Bock, 

1980) and that this decreases after exposure to hypoxia. Using a bioluminescence essay to 

detect ATP, Buttigieg and Nurse have provided direct evidence that ATP is released during 

hypoxia by rat isolated carotid body, carotid body slice and type 1 cell (Buttigieg & Nurse, 

2004). These observations have been confirmed by a second study in which the authors 

measured the amount of ATP released using an enzymatic probe combined with
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amperometry (Masson et al., 2008). ATP was found to be released in response to high K+, 

normoxic hypercapnia and hypoxia. In addition, the cat carotid body possesses a high 

amount of ectonucleotidase which is a strong indication of extracellular ATP release 

(Starlinger, 1982).

1.3.3.1 Effect o f ATP on nerve endings

Numerous experiments in situ, made mostly in cat, show that application of ATP 

induces a dose-dependent increase in action potential frequency in the CSN (McQueen & 

Ribeiro, 1986; Iturriaga & Alcayaga, 2004; Reyes et al., 2007; Zapata, 2007). These results 

have been reproduced in vitro with a co-culture of rat type 1 cells and PG neurons. In this 

preparation, ATP and its analogue a,p-MeATP induce a fast and dose-dependent inward 

current in PG neurons (Zhang et al., 2000). The kinetics of the response suggests that rat 

PG neurons express P2 X2/P2 X3 heteromultimers. Moreover, immunostaining (Zhang et al., 

2000; Rong et al., 2003) and RT-PCR (Prasad et al., 2001) performed on rat PG neurons 

confirm the expression of P2 X2 and P2 X3 . The involvement of ATP as an excitatory 

neurotransmitters is confirmed by the use of its antagonists suramin or PPADS (pyridoxal- 

5’-phosphate-6-azophenyl-2’,4’-disulphonic acid), which partially inhibit the response to 

hypoxia and to isohydric hypercapnia in mice (Rong et al., 2003), cat (Reyes et al., 2007) 

and in rat co-cultures of type 1 cells and PG neurons (Zhang et al., 2000; Zhang & Nurse, 

2004).

Mice deficient in P2 X2 receptors show a markedly attenuated ventilatory response 

to hypoxia, but not to hypercapnia (Rong et al., 2003). In contrast, P2 X3-deficient mice 

show no difference in hypoxia and hypercapnia responses compared to the wild type (Rong
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et al., 2003). The double knock-out for P2 X2 and P2 X3 is highly lethal. In P2 X2 knock-out 

mice, the respiratory response to hypoxia is strongly attenuated; this suggests that P2 X 2 is 

the receptor for ATP in hypoxia. The inhibitory effect of the deletion of P2 X2 on carotid 

body hypercapnia chemoreception is not visible in the knock-out mice. This can be 

explained by the fact that the CO2 sensors in the brain sense hypercapnia and compensate 

the disfunctioning of the carotid body. In co-culture application of suramin and 

hexamethonium, antagonist of P2X and nicotinic receptor, respectively, blocks almost 

totally the activity of PG neurons, indicating that ACh and ATP are the two principal 

excitatory neurotransmitters in rat carotid body (Zhang et al., 2000).

The ATP receptors, P2 X2, P2 X 3, P2 X4 and P2X7 have also been reported to be 

expressed in nitric oxide synthase (NOS) positive fibbers present in the carotid body. These 

NOS positive fibbers belong to neurons located along the glossopharyngeal nerve. Such 

neurons play a role as negative modulator of the type 1 cells via the release of nitric oxide. 

When the type 1 cells are activated they release ATP which induces the release of nitric 

oxide by the NOS positive fibbers and inhibits the chemoreception (Campanucci et al., 

2006).

1.3.3.2 Effect o f ATP on carotid body type 1 and 2 cells

The effect of ATP on carotid body type 1 and 2 cells were studied by Xu and al. 

(Xu et al., 2003; Xu et al., 2005). In type 1 cells, ATP inhibits the [C a2+]i increase induced 

by hypoxia. This inhibition is not linked to activation of TASK or to that of BKca channels. 

Patch-clamp experiments reveal that ATP induces an increase in input resistance, due to the 

inhibition of voltage-dependent C a2+ channels. Combined pharmacological and
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immunohistochemistry studies yielded to the conclusion that type 1 cells express P2Yi (Xu 

et al., 2005). In type 2 cells, ATP triggers a release of Ca2+ from the internal stores, via 

P2 Y2. In conclusion, ATP exerts a negative feedback to the type 1 cells since it inhibits 

Ca2+ influx and serves as a paracrine signal between type 1 and type 2 cells in rat carotid 

body.

1.3.4 Adenosine

Adenosine is another molecule which is believed to play a role in carotid body 

chemotransduction. During hypoxia, the amount of adenosine in the synaptic cleft increases 

significantly due to a release from type 1 cells, through activation of the equilibrative 

adenosine transporters, and degradation of ATP by ectonucleotidase (Conde & Monteiro, 

2004). Application of adenosine is known to increase CSN firing rate in both cat (Runold et 

a l,  1990) and rat (Monteiro & Ribeiro, 1987). This effect has been reported to be mediated 

by the adenosine 2A receptors present on the nerve ending (Conde et al., 2006b). 

Adenosine A l receptors have also been shown to be expressed in PG neurons by in situ 

hybridization but their physiological role is unknown (Gauda et a l,  2000). On type 1 cells, 

which express adenosine 2A and 2B receptors (Conde et al., 2006b; Xu et al., 2006), the 

action of adenosine was reported to be excitatory. Excitation mediated by the closure of 

TASK channels which underlines the effect of hypoxia (Xu et al., 2006). In contrast, 

Kobayashi et al. have observed, in type 1 cells, an inhibition of voltage-dependent Ca2+ 

channels induced by adenosine and therefore a reduction of the effect of hypoxia 

(Kobayashi et al., 2000).
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1.3.5 Histamine

Following the observations that systemic injection of histamine HI and H3 receptor 

agonists increases the burst frequency of respiratory neurons in mice (Dutschmann et al., 

2003), the putative role of histamine in the carotid body has been investigated. RT-PCR 

and immunohistochemistry studies show that histidine decarboxylase, the main enzyme 

responsible for histamine synthesis, is expressed in type 1 cells (Koerner et al., 2004). 

Moreover, the mRNA for histaminergic receptors, H I, H2, H3 and H4, have been 

amplified in carotid body although only HI and H3 can be localized by immunochemistry 

in type 1 cells, and nerve endings (Koemer et al., 2004; Lazarov et al., 2006). In contrast, 

the only study available on the effect of histamine application in carotid body reveals an 

increase in cAMP, which suggests the involvement of H2-type receptors (Mir et al., 1983). 

Furthermore, application of HI and H3 agonists in carotid body induces a small increase in 

phrenic nerve activity (Lazarov et al., 2006). In conclusion, as H3 is an autoreceptor which 

has the ability to modulate release of histamine and of other neurotransmitters, and as 

histamine has a little effect on nerve activity, histamine probably acts as a modulator of 

type 1 cells secretion and nerve endings activity rather than being involved as primary 

excitatory neurotransmitter.

1.3.6 Gamma-aminobutyric acid

Gamma-aminobutyric acid (GABA) and the enzyme glutamate decarboxylase are 

expressed in mouse type 1 cells as shown by immunostaining (Oomori et al., 1994). In the 

rat carotid body, the activation of the GABAb receptors, present on type 1 cells, leads to 

activation of the Gi protein which inhibits the protein kinase A and activates TASK 

channels (Fearon et al., 2003). The activation of TASK channels tends to hyperpolarise the
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type 1 cells and acts as an inhibitory influence on chemoreception. Thus, GAB A 

participates in a negative feedback on the chemoreception.

In summary, the activation of type 1 cells by its natural stimuli, hypoxia, 

hypercapnia or pH, induce a release of two principal excitatory neurotransmitters, ACh, 

ATP. In addition, other neurotransmitters are secreted such as catecholamines, adenosine, 

histamine which modulates both the effects of the principal neurotransmitters on PG nerve 

endings and on the type 1 cells themselves, stimulating or inhibiting their chemosensitivity 

(Fig. 1.11). The affinities of the neurotransmitters with their pre- and post-synaptic 

receptors could be affected by the spermine released in the synaptical cleft. However, these 

putative interactions are not investigated in this study.
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Figure 1.11: Schematic representation of carotid body and the effect of neurotransm itters 

in ra t. The type 1 cell, in green, is the chemosensitive cell of the carotid body and possesses 

specific mechanisms for sensing pC>2, pCC>2, extracellular pH, osmolarity and glucose. It 

expresses K+ channels sensitive to pC>2, (BKca and TASK-like), acid sensing ion channels 

(ASIC1 and 3) sensing changes in extracellular pH (pHe) and C1‘ channels (VSOAC) sensing 

changes in osmolarity (osm). In addition, type 1 cells express inward rectifier K+ channels (Kir

4.1 and 5.1) and the transient receptor potential channels (TRPC1 and 3-7). Depending on the 

type of stimulus, the activation of ASIC or Cl' channels or the closure of BKca and TASK-like 

channels, induces a depolarisation, which activates both Na+ channels (Nav 1.1, 1.3 and 1.6) and 

voltage-dependent Ca2+ channels (VDCC). This leads to an increase in [Ca2+]i, which triggers the 

release of the neurotransmitters ATP, ADP, dopamine (DA), acetylcholine (ACh), GABA and 

histamine (His). ADP present in the synaptic cleft comes from a release by type 1 cells and the 

degradation of ATP into ADP. The neurotransmitters activate their specific receptors and 

mediate the action indicated by the arrows. Nicotinic receptor (N), muscarinic receptor (M), 

ADP receptors A2Aand A2B, ATP receptors P2X2, P2X3, P2Y1 and P2Y2, histaminergic receptors 

Hi and H2, dopamine receptor Di and D2 and endoplasmic reticulum (ER). From the references 

cited in the text and Carpenter & Peers, 1997; Caceres et al., 2007.
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1.4 EFFECT OF CHRONIC HYPOXIA ON CAROTID BODY

Chronic hypoxic events are classified either as chronic sustained hypoxia or chronic 

intermittent hypoxia. Chronic sustained hypoxia can result for instance from ascent in 

altitude or chronic obstructive respiratory disease, whereas chronic intermittent hypoxia is 

due to sleep apnoea. Chronic hypoxia can induce physiological and morphological changes 

in the carotid body, leading to its sensitisation to an acute hypoxic stimulus. Chronic 

intermittent hypoxia does not induce morphological changes (Peng et al., 2003) whereas, as 

a consequence of chronic sustained hypoxia, the carotid body undergoes a deep structural 

change comprising enlargement of the organ, change in the electrical properties of type 1 

cells and increases in neurotransmitter release (Lam et al., 2008). In some severe case, 

chronic sustained hypoxia induces carotid body tumour (Knight et al., 2006). Both forms of 

chronic hypoxia are important for human health but this section mainly reviews the 

modifications induced by chronic sustained hypoxia, as it produces the strongest adaptive 

effects on the carotid body.

1.4.1 Effect of chronic intermittent hypoxia

Chronic intermittent hypoxia induces a sensitisation of the chemosensitivity in the 

carotid body (Pawar et al., 2008) and a long-term facilitation which corresponds to a 

lasting increase in baseline activity after a stimulus (Olson et al., 2001; Peng et al., 2003; 

Peng & Prabhakar, 2004). In contrast, in chronic sustained hypoxia, the carotid body 

becomes more sensitive but without long-term facilitation (Olson et al., 2001) and increase 

of size (Pawar et al., 2008). The long-term facilitation is triggered by the increase in
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reactive oxygen species (Peng et al., 2003). This long-term facilitation has very important 

clinical implication as it leads to a constant stimulation of the sympathetic nervous system 

activity. The latter activates the heart and increases the blood vessel resistance leading to a 

systemic hypertension (Lai et al., 2006).

1.4.2 Effect of chronic sustained hypoxia

1.4.2.1 Morphological changes o f the carotid body

Under chronic sustained hypoxia, the carotid body undergoes morphological 

changes, including enlargement of the organ, hyperplasia of type 1 cells, and 

neovascularisation. In chronic sustained hypoxia, the carotid body grows several fold, with 

an increase in the number and size of type 1 cells (McGregor et al., 1984). The origin of the 

new type 1 cells is controversial, it is not yet clear if the new type 1 cells come from the 

division of pre-existent ones (Wang et al., 2008) or from the differentiation of the type 2 

cells (Pardal et al., 2007). In addition to the increase in type 1 cell number, the glomerular 

organisation is altered. The cluster size decreases, which increases the contact areas 

between the cells and blood vessels. Concident with this cluster modification, the 

vascularisation increases in the carotid body (Gonzalez et al., 1994) due to the activation of 

vascular endothelial growth factor (VEGF) regulated by HEF (Prabhakar & Jacono, 2005). 

In contrast to the type 1 cells, the type 2 cells become more numerous without change of 

size.
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1.4.2.2 Electrical changes in the type 1 cell

In chronic sustained hypoxia, the type 1 cells become more excitable as a result of 

the modification of ion channel expression. Experimentally, as chronic hypoxia induces an 

increase in type 1 cell volume, the amplitude of the currents recorded by patch-clamp 

appears greater (Hempleman, 1996). Therefore, the comparative evolution of ion channel 

expression is made by comparing the density of the currents rather than their amplitudes 

(Hempleman, 1996; Carpenter et al., 1998). The oxygen sensing K+ channels, BKca do not 

seem to be involved in this sensitisation which, appears to be largely due to a decrease in 

expression of Ca2+-insensitive voltage gated K+ currents (Carpenter et al., 1998) facilitating 

the depolarisation of the cell. In addition, Nox4 which is associated to TASK channels, is 

up regulated by chronic hypoxia which may provide a greater sensitivity of TASK channels 

to hypoxia (Gonzalez et al., 2007). More conflicting results are available for the voltage- 

dependent Ca2+ channels, Hempleman reported an increase of a non L-type channel 

expression (Hempleman, 1996) whereas Carpentier et al. showed no modification of the 

voltage-dependent Ca2+ channels (Carpenter et al., 1998). Finally, Na+ channels appear to 

be up regulated as a consequence of chronic hypoxia in rat carotid body (Stea et al., 1992; 

Hempleman, 1995; Caceres et al., 2007).

These adaptive changes to chronic sustained hypoxia make the type 1 cells more 

excitable as a consequence of the suppression of hyperpolarising K+ currents and the 

increase in depolarising Na+ currents. Moreover, the neurotransmitter release might be 

strengthened by a larger voltage-dependent Ca2+ influx during hypoxia.
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1.4.2.3 Change in neurotransmitter release

In chronic sustained hypoxia, the neurotransmitter metabolism is altered. Indeed, 

tyrosine hydroxylase gene expression is up regulated (Czyzyk-Krzeska et al., 1992a) and 

the catecholamine turnover is increased (Gonzalez-Guerrero et al., 1993). In addition, new 

neurotransmitters have been shown to be recruited such as endothelin 1 (Prabhakar & 

Jacono, 2005). Endothelin 1 is the principal neurotransmitters explaining the sensitisation 

of the carotid body in response to chronic sustained hypoxia. Chronic sustained hypoxia 

induces an increase in expression of endothelin 1 and its receptor ETa in type 1 cells. 

Endothelin 1 potentiates the response to hypoxia as the activation of the receptor ETa leads 

to an increase in Ca2+ influx via an increase in cyclic AMP (Chen et al., 2000; Chen et al., 

2002).

1.4.3 Role of HIF-la, -2a and -3a in chronic and sustained hypoxia

H IF-la, -2a and -3a have been shown to be involved in the regulation of gene 

transcription in response to chronic hypoxia, for instance of tyrosine hydroxylase (Norris & 

Millhom, 1995; Lam et al., 2008). H IF-la, -2a and -3a are constantly synthesised by the 

cells and are degraded keeping the level of HIF low. Hypoxia, via AMP kinase activation 

and production of reactive oxygen species (Leff, 2003; Guzy & Schumacker, 2006; Wyatt 

& Evans, 2007), prevents proteasomal degradation of H IF-la, -2a and -3a which, then, 

translocate to the nucleus where they activate gene transcription by binding to specific 

promoter sequences (Tanimoto et al., 2000). The responses to chronic intermittent and 

sustained hypoxia involve different subtypes of HIF. Indeed, chronic intermittent hypoxia 

induces an increase in HIF-2a and -3a whereas chronic sustained hypoxia induces an
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increase in all the HIF subtypes, H IF-la, -2a and -3a (Semenza, 2004; Lam et al., 2006). 

These data are supported by the fact that rat carotid body constitutively express HIF-2a and 

-3a (Lam et al., 2006). These specific HIF subtypes regulation are correlated with the 

expression profile of the targeted genes involved in the carotid body response to hypoxia. 

HIF-2a and -3a trigger the expression of endothelin-1 and tyrosine hydroxylase and HIF- 

la  induces the expression of the vascular endothelial growth factor (Lam et al., 2008). In 

addition, Peng et al., using mice partially deficient for H IF-la, found an important role of 

H IF-la for mediation by the carotid body of the systemic response to chronic intermittent 

hypoxia (Peng et al., 2006). Indeed, in knocked-out mice for H IF-la, the characteristic 

responses induced by chronic intermittent hypoxia, long term facilitation, increase in blood 

pressure and increased hypoxic ventilatory response are non-existent or attenuated.
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1.5 POLY AMINES

The polyamines spermine, spermidine and putrescine are low molecular weight 

organic molecules which are positively charged at physiological pH. Polyamines are 

involved in many physiological and pathological processes such as cell growth, 

differentiation, responses to hypoxia, modulation of ions channels (from inside and outside 

the cell) and modulation of mitochondrial function (Lapidus & Sokolove, 1993).

1.5.1 Synthesis of poiyamines

Polyamines are produced in every cell type by the conversion of ornithine into 

putrescine by ornithine decarboxylase in the mitochondria, followed by the actions of

A
Arginine

Arginase

Ornithine

Figure 1.12: Scheme of polyamine synthesis.
A) Polyamines, putrescine, spermidine and 
spermine are synthesised from arginine adapted 
from Heby, 1986. B) Structure of the spermine, 
adapted from Seiler et al., 1996.
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spermidine and spefmine synthase to produce, consecutively, spermidine and spermine 

(Fig. 1 .1 2 ). The ornithine decarboxylase has a short half life of about 5-15 min allowing for 

rapid control of lhe cellular level of the enzyme and, therefore, for regulation of the 

production of poly amines (Heby, 1986). In addition, all cells possess an uptake system for 

polyamines which is dependent upon the proteoglycan (such as heparan sulphate) 

expressed on the cell surface (Belting et al., 2003). In complement to endogenous 

production, polyandries also come from food. Most of the polyamines present in the blood 

are stored in lymphocytes, granulocytes and erythrocytes, giving an estimated blood 

concentration of spermine of about 6  pM (Cohen et al., 1976). In contrast, the plasma 

concentration of spermine is probably below 0.5 pM (Chaisiri et al., 1979). However, the 

level of polyarniues can increase locally, for instance during tumorigenesis and 

development (Chaisiri et al., 1979). The intracellular concentration of polyamines has been 

estimated to be about 0.4 mM for spermine and 0.2 mM for spermidine in intestinal smooth 

muscle (Sward et qI., 1994). However, it is likely thought that polyamines are bound to 

cellular macrorn°lecules such as DNA and RNA, which would decrease the free 

intracellular concentration to the pM range (Watanabe et al., 1991). Polyamines are also 

present in synaptic vesicles where their concentrations may be as high as 2 mM (Masuko et 

a l,  2003).

1.5*2 Regulation °f polyamine levels

As a consequence of hypoxia, polyamine metabolism and levels have been reported 

to be increased in the brain (Longo & Packianathan, 1995), lung (Babal et al., 2002) and 

heart (Tantini et 0 /., 2006). These changes in polyamine levels are only local and it has 

never been shown that the plasma concentration can be affected by hypoxia. In the brain,
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where polyamines are normally secreted by neurons (Fage et a l, 1992) and astrocytes 

(Laube & Veh, 1997), the increase in polyamine content, as a consequence of hypoxia, may 

be neuroprotective (Clarkson et al., 2004). In the lung, polyamines regulate the response of 

pulmonary vascular smooth muscle cells to hypoxia. Hypoxia induces a decrease in the 

activity of ornithine decarboxylase and an increase in polyamine uptake (Babal et al.,

2002). In the heart, spermine has a protective effect and prevents apoptosis after ischemia 

(Zhao et al., 2007). The protective effect of spermine in hypoxia is linked, in part, to its 

oxidant property, since polyamines act as free radical scavengers (Muscari et al., 1995). 

Moreover, polyamines have the property to alter the chromatin structure and to protect 

DNA against breakdown by reactive oxygen (Ha et al., 1998).

1.5.3 Polyamines in the carotid body

Very little is known about polyamines in the carotid body and no study has been 

conducted which investigates their levels during hypoxia. The only data available come 

from Ganfomina et al., who reported a down regulation of the transcription of ornithine 

decarboxylase in chronic hypoxia (24h at 10 % pC>2) (Ganfomina et al., 2005). By analogy 

to other tissues, it can be hypothesised that such decrease in polyamine synthesis due to the 

down regulation of ornithine decarboxylase, in chronic hypoxia in carotid body, will induce 

an increase in polyamine uptake to maintain the intracellular level of polyamines (Seiler et 

al., 1996; Babal et al., 2002). Moreover, spermine could be involved in the remodelling of 

the carotid body during chronic hypoxia since spermine regulates cell growth and 

differentiation (Heby, 1986). Furthermore, as spermine is co-packaged with 

neurotransmitters in vesicles of neurons and is excreted with them (Fage et al., 1992; 

Masuko et al., 2003), spermine levels within the type 1 cell vicinity may increase during
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carotid body stimulation. Extracellular spermine inhibits voltage-dependent Ca2+ channels 

(Chen et al., 2007), TASK channels (Musset et a l,  2006) and activates the CaR (Quinn et 

al., 1997) and, therefore, could play a role in carotid body chemoreception.
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1.6 THE EXTRACELLULAR CALCIUM-SENSING RECEPTOR

1.6.1 Structure of the extracellular calcium-sensing receptor (CaR)

The CaR, originally cloned from bovine parathyroid gland (Brown et al., 1993), 

belongs to the G protein coupled receptor super family (GPCR). The amino acid sequence 

of CaR is well conserved across species, with the sequences for human, rat and rabbit 

receptor being more than 90 % identical to that of bovine CaR (Bai, 2004).

As with other GPCRs, the CaR has three major structural domains: a large 

extracellular amino (N)-terminal domain (612 amino acids); a central core containing 7- 

transmembrane domains and a hydrophilic intracellular domain (fig. 1.13). The 

extracellular domain possesses 11 N-linked glycosylation sites and is responsible, with the 

TM7 (Hu et al., 2005), for the interaction with extracellular Ca2+. The extracellular domain 

forms a so-called Venus flytrap in which the Ca2+ interacts directly with 5 residues (S170, 

D 190, Q193, S296 and E297) and 3 others (Y218, F270 and S147) coordinate the interaction (Silve 

et al., 2005; Hu & Spiegel, 2007). When Ca2+ interacts with the CaR, it stabilizes the 

Venus flytrap in the closed configuration (Hu & Spiegel, 2007).

To be functional, the CaR has to be present in a homodimeric form (Bai et al.,

1998) or heterodimeric form with the type B gamma aminobutyric acid receptor (Chang et 

al., 2007; Cheng et al., 2007). In the homodimeric form, the two CaR molecules are held 

together via both covalent (disulphide link) and non-covalent interactions (Bai et al., 1998).
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Figure 1.13: Predicted structure of the CaR. EC-1 N-terminal extracellular domain; EC- 

2-4, extracellular loops 2-4; IC-1-3, intracellular loops; IC-4, C-terminal tail. P indicates 

the putative consensus sites for protein kinase C (PKC) phosphorylation. Yellow boxes 

enclose the seven transmembrane regions. From Chang et al., 2004.
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Genetic studies on inherited mutations in CaR gene, which induce a loss- or gain- of 

function of CaR, and a knock-out murine model, show that the mutations in the CaR gene 

are associated with problems in Ca2+ homeostasis, supporting the role of CaR in mineral ion 

metabolism due to impaired hormonal secretion (Thakker, 2004).

1.6.2 Allosteric modulators of the CaR

The principal physiological agonist of the receptor is serum ionised Ca2+, but it can 

also be activated by other molecules such as polyvalent cations (Ba2+, Mg2+, Gd3+), 

polyamines (spermine, spermidine) and aminoglycoside antibiotics (streptomycin, 

neomycin) (Urena & Frazao, 2003). Together, these are known as type I calcimimetics. The 

type I calcimimetics (Ca2+, spermine, neomycin) are non selective molecules and so lack 

therapeutic utility. Therefore, other molecules more specific to the CaR have been 

synthesised. These are derivatives of Ca2+ channel blockers and include NPS-R-568, NPS- 

S-568 (later referred to as R-568 and S-568, Fig. 1.14), NPS-1377 and AMG-073. These 

molecules are termed type II calcimimetics. They modulate the activation of the CaR by the 

class I calcimimetics by increasing the affinity of the CaR for its natural ligands. Thus, the 

class II calcimimetics act like allosteric modulators as they do not activate the receptor in 

the absence of extracellular Ca2+ and bind to the CaR in a different place from the class I 

calcimimetics (Petrel et al., 2004).
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OCH3 Figure 1.14: Structure of the calcimimetics R- 
568 and 5-467, from Nemeth, 2004

RsH: NFS467 
R«Cfc NPS568

Class II calcimimetics are derived from fendilines and other drugs which block 

voltage-dependent Ca2+ channels and were shown to have non-specific effect at high 

concentrations, > 100 nM (Nemeth, 2004). Nevertheless, when used at the appropriate 

concentrations (<100 nM), they constitute a good tool for investigating the activity of the 

CaR. R-568 and S-568 have a stereoselective effect on the CaR, with R-568 being 100 

times more potent than the S enantiomer (Nemeth et al., 1996). This stereoselectivity is 

important as it allows investigators to distinguish between specific and non-specific effects 

on the CaR. Indeed, the blocking effects of 568 compounds on ion channels (voltage- 

dependent Ca2+ channels, NMD A) are not stereoselective (Nemeth, 2004) and of relatively 

low affinity.

The activity of the CaR can also be modulated by extracellular pH by modifying the 

charge on acidic and basic amino acids present in the CaR. In alkaline conditions, the 

receptor is more sensitive to its agonists, making the CaR a potential pH sensor (Quinn et 

a l, 2004). In addition to the actions on the receptor, the pH can affect protonation of 

certain agonist such as polyamines (Heby, 1986).

Similarly to pH, ionic strength modulates the CaR activity by modulating 

electrostatic interactions between the receptor and its agonists. As the ionic strength 

decreases, the CaR becomes more sensitive to its agonists (Quinn et al., 1998).
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1.6.3 Signal transduction pathways of the CaR

The human CaR possesses several putative sites for phosphorylation by protein 

kinases C and A and activation of the receptor is coupled to the G proteins Gj, Gqn and 

G 12/13 (Fig. 1.15) (Gomeza et al., 1996; Huang & Miller, 2007). Activation of these G 

proteins induces a decrease in cAMP (Gai) and an activation of phospholipase C (by Gqn) 

to produce inositol tris-phosphate (IP3) and 1,2 diacyglycerol generation. IP3 induces 

release of Ca2+ from intracellular Ca2+-IP3-sensitive stores. Activation of the protein G um  

stimulates the Rho pathway and induces changes in actin stress fibre assembly (Davies et 

a l,  2006). Furthermore, the receptor can activate cytosolic phospholipase A2, 

phosphatidylinositol 3-kinase and phosphatidylinositol 4 kinase (Ward, 2004). Thus, 

activation of the receptor leads to the activation of MAP kinases, including p38 MAP 

kinase, jun amino terminal kinase and extracellular signal regulated protein kinase.

1.6.4 Role of CaR in the regulation of secretion

The CaR was discovered and first studied in the parathyroid glands (Brown et al., 

1993) where it regulates the release of parathyroid hormone (PTH), a hormone responsible 

for the body’s Ca2+ homeostasis (Nemeth & Scarpa, 1987; Muff et al., 1988). In the 

parathyroid gland, the CaR plays a role in PTH secretion and gene regulation (Garrett et 

al., 1995) and its signal transduction pathways are now well known (Randolph & G., 

2004). Studies have shown that, in addition to the parathyroid, CaR is also expressed in 

many cells which are not directly implicated in whole body Ca2+ homeostasis. CaR plays a 

role in regulation of secretion in the thyroid gland (calcitonin and serotonin
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4 c A M P

Figure 1.15: Summ ary of the intracellular pathways activated by the CaR. Activation 

of the CaR leads to activation of i) Gi which, modulates adenylate cyclase (AC); ii) Gq, 

which activates phospholipase C (PLC) producing inositol tri-phosphate (IP3) and 1,2 

diacyglycerol (DAG); iii) phospholipase A2 (cPLA2), producing arachidonic acid (AA); iv) 

phosphatidilinositol 3 kinase (PI3 K) mediating Akt (protein kinase B) activation; vi) 

protein kinase C (PKC); vii) phosphatidilinositol 4 kinase (PI4 K) leading to production of 

phosphatidulinositol 4,5 bisphosphate (PIP2); viii) MAP kinase including p38 kinase (p38), 

jun amino-terminal kinase (JNK) and extracellular signal regulated protein kinase (ERK) 

and ix) G 12/13 mediated phospholipase D (PLD) activation, leading to phosphatidic acid 

(PA) production. From Ward, 2004.

(McGehee et a l, 1997)), the pituitary gland (adreno corticotropic hormone (ACTH) 

(Emanuel et a l,  1996) and growth hormone (Romoli et a l, 1999)), the stomach (gastrin 

(Ray et a l,  1997)) and the pancreas (insulin (Kato et a l, 1997)). Except for calcitonin 

secretion where the activation of the CaR leads to opening of voltage-dependent Ca2+ 

channels, the modulation of hormonal secretion is mediated by mobilization of Ca2+ from 

the internal stores via second messengers. The activation of CaR may induce an increase or 

a decrease of the secretion in a cell specific manner. In the majority of tissues, an increase 

in [Ca2+]i stimulates secretion, as occurs in pituitary (Emanuel et a l,  1996; Romoli et a l,

1999), thyroid (McGehee et a l,  1997), gastric G cells ((Ray et al., 1997) and pancreatic P-
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cells (Kato et al., 1997)), while in parathyroid glands (Brown et a l, 1991) and pancreatic 

a-cells (Efendic et al., 1982) an increase in [Ca2+h leads to an inhibition of tonic secretion. 

The mechanism of the latter is still not understood.

Most secretory processes (in both neurosecretion and chemoreceptor secretion) 

involve an increase in [Ca2+]i via voltage-dependent Ca2+ channels (Gonzalez et al., 1994; 

Catterall et al., 2003). L-type channels are the main contributor and, in some cases, P/Q- 

type contributes weakly (Rocher et al., 2005). An increase in [Ca2+]i mediates the secretory 

stimulus for the release of neurotransmitters in the carotid body (Obeso et al., 1992), 

ACTH secretion (Hockings et al., 1991; Loechner et al., 1999) and growth hormone from 

the pituitary (Drouva et al., 1988) and serotonin secretion from the thyroid (McGehee et 

al., 1997) and neuroepithelial bodies (Fu et al., 2002). In parafollicular cells of the thyroid 

gland, activation of CaR induces an increase in [Ca2+k which evokes release of serotonin 

and calcitonin (McGehee et al., 1997). In these cells, it appears clearly that activation of 

CaR is coupled to Ca2+ influx since the L-type channel blocker, nimodipine, prevents both 

the rise in [Ca2+]i and the secretion induced by CaR (McGehee et al., 1997). McGehee et al. 

have demonstrated that activation of CaR activates protein kinase C which opens a non 

selective cation channel which depolarises the cells and open L-type Ca2+ channels, leading 

to Ca2+ influx and hormone release (McGehee et al., 1997).

1.6.5 Ion channel regulation by the CaR

As described above, the CaR plays an important role in the regulation of secretion 

in many cell types. By their nature, secretory cells are excitable and the secretory processes 

depend mostly on changes in transmembrane potential and opening of voltage-dependent
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Ca2+ channels (Randolph & G., 2004; Conde et al., 2006a). The CaR regulates [Ca2+]i and 

secretion by mobilising Ca2+ from the internal stores or/and by altering the Ca2+ influx via 

direct or indirect modulation of ion channels. This paragraph aims at reviewing the 

modulation of ion channels by the CaR.

The inward rectifier K+ channels, Kir4.1 and Kir4.2, have been co- 

immunoprecipitated with the CaR from rat kidney samples, suggesting a direct interaction 

between the proteins (Huang et al., 2007). In this organ, Kir4.1 and Kir4.2 are negatively 

modulated by the activation of CaR. The CaR modulates other channels, listed below, via 

intracellular transduction pathways:

i) The transient receptor potential channel 1 (TRPC1). TRPC1 has been shown to be 

alternatively activated by the CaR and inhibited by the rise in [C a2+]j induced by activation 

of the CaR (via the protein kinase C) (Rey et al., 2006). This alternative activation and 

inhibition of TRCP1, induced by activation of CaR, produces [Ca2+]j oscillation.

ii) A Ca2+ activated K+ channel, present in astrocytes and activated by CaR via p38 

MAP kinase (Ye et al., 2004).

iii) A voltage independent cation current in parathyroid cells where the channel is 

regulated by protein kinase A. In these cells, CaR activation reduces the amount of cAMP, 

resulting in down regulation of protein kinase A (Chang et al., 1998).

iv) Non selective cation channels have been reported in many cell types to be 

activated by the CaR. For instance, in thyroid cells, non selective cation channels 

transiently open via CaR dependent activation of protein kinase C (McGehee et al., 1997) 

(Liu et al., 2000). In addition, in rat hippocampal neurons and HEK293 cells, the CaR has a 

direct functional interaction with selective cation channels (Ye et al., 1996a; Ye et al.,
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1996b), whilst breast cancer cells also express selective cation channels which are 

regulated by CaR via activation of the phospholipase C (El Hiani et a l, 2006).

The CaR, by modulating the Ca2+ homeostasy via the regulation of ion channels or 

the release of Ca2+ from the intracellular stores, has been shown to modulate secretion in 

many cell types. In the carotid body, if the CaR is expressed, its activation by spermine 

could lead to a release of Ca2+ from the intracellular stores and modulate neurotransmitter 

release.
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1.7 CALCIUM CHANNELS

1.7.1 Channels mediating Ca2+ current

Several channels expressed on the plasma membrane are able to mediate a Ca2+ 

influx, some of them have a specific conductance to Ca2+ whereas others are permeable to 

several cations. These channels can be classified by their opening modality: i) voltage- 

gated channels: voltage-dependent Ca2+ channels ii) ligand-gated channels, such as ATP 

receptor, P2X receptor (conveying Na+, K+, Ca2+ current); and nicotinic acetylcholine 

receptor (permeable to Na+, Ca2+); iii) acid sensing ion channels (permeable to Na+, K+, 

Ca2+); and iv) the channels belonging to the transient receptor potential family which are 

mostly activated by Gq/n (Alexander et al., 2006).

1.7.2 Structure and family of voltage-dependent Ca2+ channels

The voltage-dependent Ca2+ channels are a complex association of four or five 

proteins: one central conducting subunit (a l)  and several auxiliary regulating subunits (a2 ? 

p, y, 8 ; Fig. 1.16). Ten channels have been identified based on the genetic diversity of the 

pore-forming subunit ai (Doering & Zamponi, 2003). The genetic distinction of the voltage- 

dependent Ca2+ channels gave rise to the old nomenclature aIX  and the new one CavX.X 

(table 1.1). The a l  subunit is made of 4 homologuous domains constituting 6  

transmembrane segments (S1-S6). The S4 segment plays a role as a voltage sensor. The 

specific selectivity to Ca2+ is due to the pore loops between the segment S5 and S6 .
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Figure 1.16: Schematic representation of the voltage-dependent Ca2+ channel 

subunits. From Catterall et al., 2003.

According to their electrophysiological and pharmacological properties, voltage- 

dependent Ca2+ channels can be divided in two main groups: high voltage activated (HVA, 

activated near -50 mV) and low voltage activated (LVA, activated near -70 mV) (Perez- 

Reyes, 2003). In addition to their different activation potentials, LVA currents deactivate 

more slowly and at a lower potentials leading to slower tail current (Perez-Reyes, 2003). 

The HVA group comprises the family L-, N-. P/Q- and R-type channels whereas LVA 

includes only T-type channels (table 1.1).

1.7.3 Expression and role of voltage-dependent Ca2+ channels

Each family is expressed in specific cell types where it plays a particular function. 

Cavl. l  is expressed only in the muscle where it has a crucial role in the excitation 

contraction coupling (Altafaj et al., 2005). Cav1.4 is present exclusively in the retina, in rod 

and bipolar cells, where its activation triggers neurotransmitter release (Catterall et al.,

2003). All the other voltage-dependent Ca2+ channels are widely expressed and are found in
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several cell types. For instance Cav1.2, Cav3.1 and Cav3.2 are expressed in cardiac 

myocytes and play an important role in the generation of action potential (Maltsev et a l, 

2006). In neurons, all the voltage-dependent Ca2+ channels (except Cavl . l  and Cav1.4) are 

expressed with a preferential expression in the soma, dendrites or axon. In neurons, 

voltage-dependent Ca2+ channels are implicated either in neuronal excitability or 

neurotransmitter release (Doering & Zamponi, 2003). In addition, similarly to neurons, 

voltage-dependent Ca2+ channels are involved in regulation of secretion in endocrine cells. 

For instance, in adrenal chromaffin cells, Cav1.2 and Cav1.3 regulate the adrenaline and 

adrenaline secretion in response to nerve stimulation (Marcantoni et al., 2007). In pituitary 

gland (Loechner et al., 1999), L- and P/Q-type are responsible for the secretion of ACTH. 

In the thyroid (McGehee et al., 1997), carotid body (Buckler & Vaughan-Jones, 1994b; 

Peers et a l,  1996; Conde et al., 2006a) and neuroepithelial body (Fu et al., 2002), L-type 

mediated secretion or neurotransmitter release.

1.7.4 Ion channels mediating Ca2+ influx in rat type 1 cells

Many experiments have been performed regarding Ca2+ influx in rat type 1 cells 

and its modulation. In 1993, Fieber et McCleskey were the first to show the involvement of 

L-type Ca2+ channels in carotid body chemoreception (Fieber & McCleskey, 1993) using 

nifedipine and Bay K 86449 (an antagonist and agonist of L-type Ca2+ channels, 

respectively). Voltage-dependent Ca2+ channel types responsible for the Ca2+ entry have 

been fully identified in rabbit carotid body. Here, L- and P/Q-type channels support the 

response to hypoxia (Rocher et al., 2005). Experiments in rat carotid body

61



Introduction

Gene
Nomenc

tic
ature Localization

Biophysic
nomenclature Specific

antagonistsNew Old Super
family family

Cavl.l a ls Skeletal muscle

High
voltage

activated

L
DihydropyridinesCav1.2 a le Cardiac myocytes, endocrine 

cells, neuronal cells

Cav1.3 a id Endocrine cells, neuronal cells

Cav1.4 a l f retina Not established

Cav2.1 a la Nerve terminal and dendrite P/Q co-agatoxin IVA

Cav2.2 a lb Nerve terminal and dendrite N co-conotoxin
GVIA

Cav2.3 a le Neuronal cells R SNX482

Cav3.1 a lg
Neuronal cells, cardiac 

myocytes
Low

voltage
activated

T Not establishedCav3.2 a lh Neuronal cells, cardiac 
myocytes

Cav3.3 a l i Neuronal cells

Table 1.1: Nomenclature, localization and antagonist of voltage-dependent Ca2+ 

channels. Adapted from Catterall et al., 2003.

show that Ca2+ influx might be mediated by L-type and/or N-type, as well as an 

indeterminate voltage-insensitive Ca2+ channels (Urena et al., 1989; Buckler & Vaughan- 

Jones, 1994c; e Silva & Lewis, 1995; Jiang & Eyzaguirre, 2004). Indeed, in these studies, 

the use of L-type channel blockers induces only a partial (74 % and 67 %, respectively) 

inhibition of Ca2+ influx (Buckler & Vaughan-Jones, 1994c; e Silva & Lewis, 1995). 

Moreover, co-conotoxin, which is a specific antagonist of the N-type channel, reduces the 

Ca2+ influx by 40 % in the adult rat type 1 cells (e Silva & Lewis, 1995) and has an 

inhibitory effect on some type 1 cells in the neonatal rat (Peers et al., 1996). In contrast, 

Fieber and McCleskey found no effect of co-conotoxin in rat type 1 cells (Fieber &
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McCleskey, 1993). The participation of P/Q-type Ca2+ channels can be excluded because 

co-agatoxin has no effect on Ca2+ influx in type 1 cells induced by hypoxia (Peers et a l,

1996). These results support a role for L- and N-type Ca2+ channels in the rat type 1 cell

9 - i -  •hypoxic response. The voltage-insensitive Ca currents observed by many authors in 

patch-clamp recordings (Urena et a l ,  1989; Buckler & Vaughan-Jones, 1994c; Jiang & 

Eyzaguirre, 2005) are likely to be member of the TRPC family (Buniel et a l,  2003). Using 

immunohistochemistry, expression of TRPC1 and TRCP3 to 7 in tyrosine hydroxylase 

positive cells has been described (Buniel et a l ,  2003). The TRPC are activated by the G 

protein Gq/n pathway (Buniel et a l ,  2003), which can be activated in the type 1 cells via, 

for example, the activation of muscarinic receptors (Alexander et a l ,  2006). Therefore, 

TRPC induces an increase in [Ca2+h, acting as a positive feed back on the type 1 cells. The 

presence of TRPC channels can explain the residual current resistant to voltage-dependent 

Ca2+ channels blockers. Until now, no T-type currents have been reported in type 1 cells. 

The release of Ca2+ from internal stores, which might participate in the increase in [Ca2+h? 

does not seem to play any important role. Indeed, all the pharmacological manoeuvres used 

to prevent the Ca2+ release from the stores have had little or no effect on the exocytosis 

process induced by hypoxia (Vicario et a l,  2000a; Conde et a l ,  2006a).

To conclude, rat type 1 cells express voltage-dependent Ca2+ channels which couple 

the hypoxic induced depolarisation with neurotransmitter release. The nature of the Ca2+ 

channels expressed is not fully characterised, however L- and N-type are likely to be 

involved. Because voltage-dependent Ca2+ channels have been shown to be inhibited by 

polyamines they may play a role in mediating an inhibitory effect of spermine on type 1 

cell chemoreception.
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1.8 OBJECTIVES

By analogy with other tissues, several studies suggest the involvement of 

polyamines in the carotid body physiology. Indeed, polyamines have been shown to be co­

secreted with neurotransmitters by neurons in the brain, and this is likely to be the case also 

in type 1 cells as type 1 cells are derived from neuronal crest and share many properties 

with neurons (Gonzalez et al., 1994). Moreover, during growth and development, 

polyamines have an important regulatory role. For instance, in the lung arterial smooth 

muscle cells, the down regulation of the transcription of the ornithine decarboxylase and 

the polyamine uptake trigger the morphological changes observed after hypoxia. Similarly, 

in the carotid body the transcription of ornithine decarboxylase is down regulated during 

chronic sustained hypoxia. Also, as reported by many groups, the extracellular polyamines, 

especially spermine, are known to block the voltage-dependent Ca2+ channels. The latter 

play a crucial role in the carotid body chemoreception as they induce the release of 

neurotransmitters by type 1 cells.

In addition, the CaR, which is strongly activated by spermine, is known to be 

involved in the regulation of many secretory processes and to modulate many ion channel 

activities, but its expression in the carotid body has never been investigated.

The aim of this study was to assess the putative role of extracellular spermine as a 

modulator of the type 1 cell chemoreception and to investigate the role that the Ca2+ 

channels and CaR play in mediating the spermine effect on carotid body function (Fig. 

1.17). The first hypothesis is that an activation of the CaR by spermine induces a Ca2+
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release from the intracellular stores via IP3-dependent pathway. This release of Ca2+ would

induce an increase in neurotransmitter release. The second hypothesis postulates an

inhibitory effect of spermine on the voltage-dependent Ca2+ channels leading to a reduction

of the Ca2+ influx and neurotransmitter release.

Type 2 cell Petrosal nerve
ending

ER

Nucleus

D1
D2NT

H1, 3CaR
Sper

Nucleus
Ca2* channel

maxi-K

Task like 
channel

Type 1 cell
XO

Figure 1.17: Schematic representation of carotid body illustrating the working 
hypotheses. Type 1 cell possibly co-released spermine (sper) with neurotransmitters (NT). 
The putative effects of spermine on type 1 cell are investigated following two hypotheses: 
the activation of CaR and/or the inhibition of voltage-dependent Ca2+ channel.

In chapter 2, the effect of both extracellular spermine and activators of CaR on 

catecholamine release and Ca2+ increase induced either by hypoxia or high K+ in type 1 

cells are characterised. Then, in chapter 3, to identify the molecular mechanisms mediating 

the inhibitory effect of spermine on chemoreception, the expression of CaR and voltage- 

dependent Ca2+ channels in rat type 1 cells are investigated at the mRNA and protein 

levels. Finally, in chapter 4, the effect of spermine on Cav1.2 current is tested in HEK293 

cells expressing Cav1.2 and on carotid body type 1 cells.
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CHAPTER 2

EFFECT OF SPERMINE, NEOMYCIN AND R-568 

ON CATECHOLAMINE RELEASE AND [Ca2+]j 

IN RAT CAROTID BODY
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2.1 INTRODUCTION

The regulation of respiration depends on the detection of the crucial parameters in 

the blood: p0 2 , PCO2 and pH. Diverse organs have the ability to monitor changes in these 

parameters: the neuroepithelial body, the carotid sinus, the respiratory centre in the 

brainstem and the carotid body (Ganong, 1997). The mechanisms by which the carotid 

body senses the blood composition and how the carotid body function is modulated are not 

yet fully understood.

Polyamines, which are small organic molecules, have been shown to play a crucial 

role during hypoxia or hypoxia/ischemia in many tissues: lung (Babal et a l,  2002), brain 

(Longo & Packianathan, 1995) or heart (Tantini et a l ,  2006) where there is a modification 

of the polyamine metabolism leading to increase in intracellular or extracellular spermine 

concentration. It is probable that a similar mechanism takes place in other tissues such as 

carotid body. In addition, the spermine has been shown to be co-secreted with 

neurotransmitters by neurons (Masuko et al., 2003) which could also to be the case in the 

carotid body type 1 cells. The first part of my work was to test the effect of spermine on 

carotid body function. Experiments, carried out in collaboration with C. Gonzalez 

laboratory (University of Valladolid, Spain), with isolated carotid body revealed that 

spermine inhibited catecholamine secretion.

Spermine is a well known agonist of the CaR (Riccardi & Maldonado-Perez, 2005) 

a G protein coupled receptor (Pin et a l,  1994). The CaR was discovered in 1993 (Brown et 

a l, 1993), it plays a major role in the regulation of the extracellular Ca2+ homeostasis. But
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the recent discoveries that the CaR is expressed in many cell types not involved in 

extracellular Ca2+ homeostasis (Squires, 2000) and its ability to regulate secretory 

processes for instance, in pituitary gland (Emanuel et al., 1996) and stomach (Ray et a l,

1997) leads to the hypothesis that the CaR might play a role in the regulation of secretion in 

carotid body cells. In addition, the activity of the CaR is modulated by extracellular pH 

(Quinn et al., 2004) making the CaR a potential candidate for pH-dependent modulation of 

carotid body secretion.

To test the effect of spermine and the putative involvement of the CaR on carotid 

body chemoreception, spermine, neomycin (a CaR agonist) and R-568 (an allosteric 

modulator of the CaR) were tested on catecholamine release from isolated carotid body and 

on [Ca2+]i homeostasis in dissociated carotid body cells. HEK293 cells stably transfected 

with CaR were used as a positive control and to compare the potency of R-568 and its less 

active enantiomer, S-568.
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2.2 MATERIALS AND METHODS

2.2.1 Surgery and carotid body isolation

Male or female Wistar rats (100-350g) were anesthetized with sodium pentobarbital 

60 mg/kg, injected intraperitoneally (IP, Euthatal, Merial, UK), according to the Home 

Office regulations. After a tracheotomy, the carotid bifurcations were located, removed and 

placed in a Lucifer chamber with ice-cold Tyrode solution containing (in mM): 143 NaCl, 

2 KC1, 2 CaCL, 1.1 MgCL, 5.5 glucose and 10 HEPES, adjusted to pH 7.4 with NaOH and 

bubbled with 100 % O2. The carotid bodies were identified and cleaned of surrounding 

connective tissue under a dissecting microscope, collected in glass vials containing ice-cold 

Tyrode’s solution. Animals were killed with an intracardiac overdose of pentobarbital (180 

mg/kg).

2.2.2 Labelling of catecholamine stores and release of [ H] catecholamine

2.2.2.7 Labelling o f the catecholamine stores

The carotid body catecholamine release was quantified using a radioactive 3,5- 

[3H]tyrosine. Before the experiment, the carotid bodies (12 carotid bodies/experiment) 

were incubated for 2 h with 30 gM [3H]tyrosine (with specific activities of 48 Ci/mmol), 

100 \iM  of 6 -methyl-tetrahydropterine and 1 mM of ascorbic acid; they are cofactors of 

tyrosine hydroxylase and dopamine-p-hydroxylase, respectively. These reagents were 

dissolved in HEPES-buffered solution containing (in mM): 140 NaCl, 5 KC1, 2 CaCU, 1.1
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MgCb, 5 glucose, 10 HEPES, pH 7.4). Afterwards, the [3H]tyrosine which had not been 

incorporated into catecholamine was washed from the carotid body by rinsing the carotid 

body in HEPES-buffer for 1 h and changing the solution every 20 min.

2.2.2.2 [ 'H]catecholamine release experiments

For the release experiments, the carotid bodies were placed individually in 4 ml of 

bicarbonate-buffered solution containing (in mM): 116 NaCl, 24 NaHCC>3, 5 KC1, 2 CaCl2,

1.1 MgCl2, 5 glucose, 10 HEPES, pH 7.4 equilibrated with 20 % O2, 5 % CO2, 75 % N2. 

The carotid bodies were shaken and kept at 37.5°C. Every 10 min, the bathing solution was 

collected and replaced by the appropriate solution according to the protocol. The collected 

solution, containing the secreted [3H]catecholamine, was supplemented with 50 pi of 

glacial acetic acid (at pH = 3) to prevent the degradation of the neurotransmitters. The 

solutions used for the protocols were bubbled either with a) 20 % O2, 5 % CO2 and 75 % 

N2 (normoxia); b) 7 % O2, 5 % C 0 2 and 88 % N2 (hypoxia) or; c) 20 % O2, 5 % CO2 and 

75 % N2 (high K+) where NaCl and KC1 were changed to 86 and 35 mM, respectively. 

Except for hypoxia, all the gas mixtures were firstly bubbled in distilled H2O prior to be 

bubbled in the experimental solution to prevent evaporation and hence, concentration of the 

solution. R-568 (Amgen) was initially dissolved in dimethyl sulfoxide (DMSO) at 10 pM 

as a stock solution and subsequently stored at -20 °C. 500 pM spermine, 100 nM R-568 or 

300 pM neomycin were dissolved in the bicarbonate buffered solution and incubated for 20 

min prior to the stimulus. Some experiments were performed with two stimulations, a first 

control stimulation S 1 (hypoxia or high K+) and a second stimulation (S2) after application 

of drug in one of the groups. In other experiments, the treatment was applied at the 

beginning and only one stimulation was performed.
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2.2.2.3 Quantification o f [' H]catecholamine release

The [3H]catecholamines present in the collected solution were bound to 100 mg of 

alumina, 5 ml of 2.5 M tris(hydroxymethyl)aminomethane (Tris) buffer (pH = 8.6) before 

being shaken for 10 min at room temperature. Afterwards, the alumina was filtered and 

washed extensively with water and the [3H]catecholamines were eluted using 1 ml of 1 N 

HC1. 4 ml of scintillant Optiphase Hisafe (PerkinElmer, Massachusetts, USA) were added 

and the radioactivity was quantified by liquid scintillation counting. Scintillation is based 

on the principle that the [3 particles emitted by the radioactive compounds excited aromatic 

molecules present in the solvent. The excited molecules dissipate their excess of energy by 

emission of light which is quantified by the counter. This value is reported as counts per 

min (cpm) which is then converted in disintegration per min (dpm) by correcting the 

background and the efficiency corresponding to the real level of [3H]catecholamine. The 

increase in catecholamine secretion was calculated as the quantity secreted above the 

baseline and expressed as a percentage of the baseline value just before the stimulus was 

applied. This normalization allowed comparison of the results obtained with different 

carotid bodies, which might be of different sizes, and that would have quantitatively 

different amount of catecholamine contents. Data are presented as mean ± SEM and 

differences assessed using a two-tailed unpaired Student t-test, as two independent groups 

of carotid bodies were compared, with the significance achieved at p < 0.05.

71



Chapter 2

2.2.3 Carotid body dissociation

Whole isolated carotid bodies ( 2 - 4  carotid bodies/experiment), extracted as 

explained above, were used for dissociation of type 1 and type 2 cells. The carotid bodies 

were incubated in 2 ml of Ca2+- and Mg2+- free Tyrode solution containing collagenase (2.5 

mg/ml, Sigma-Aldrich, Gillingham, Dorset, UK) and albumin (6 mg/ml, Sigma-Aldrich), 

for 15 min at 37°C. The solution was then replaced with a fresh Ca2+- and Mg2+- free 

Tyrode’s solution containing trypsin (1 mg/ml, Sigma-Aldrich) and albumin (6 mg/ml, 

Sigma-Aldrich) for 20 min at 37°C. Next, the carotid bodies were placed in F- 

12/Dulbecco’s Modified Eagle’s Medium (DMEM, Invitrogen, Paisley, UK) supplemented 

with 10 % foetal calf serum (Invitrogen, Paisley, UK), 1 % (v/v) antibiotic/antimycotic 

(Invitrogen), 200 mM L-glutamine (Invitrogen) and the carotid bodies were mechanically 

dissociated by pipetting the solution up and down using a P I000 Gilson pipette (Gilson, 

Middleton, USA). The isolated cells were then centrifuged at 1,200 g, resuspended in 50 pi 

of F12/DMEM and seeded onto poly-L-lysine coated coverslips (0.1 mg/ml, Sigma- 

Aldrich) placed in 12 well plate (5 to 10 pl/coverslip). After letting the cells adhere for 50 

min, 500 pi of medium were added to each well. The carotid body cells were used for Ca2+ 

imaging experiments after 16 -  24 h of culture to let the cells recover and allow the type 2 

cells to take their characteristic spindle shape (Xu et a l,  2005) and therefore, make 

identification of type 1 cells by eye much easier. The cells were cultured at 37.5 °C in 20 % 

0 2, 5 % C 0 2 and 75 % N2.
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2.2.4 Calcium imaging on dissociated carotid body cells

Fura-2 was used for [Ca2+]i measurement because it is a ratiometric dye. With 

ratiometric dyes the measurement of [Ca2+]i is independent of the quantity of the dyes 

present in the cells, which is a major advantage for prolongued experiment since the dyes 

can be destroyed. Moreover, ratiometric technique allows suppression of several artefacts 

(drift along z-axis, autofluorescence of the cells) because both wave lengths (340 and 380 

nm) are affected at the same rate (Lohr, 2003).

Carotid body cells were loaded with fura-2 acetoxy methyl esther (4 piM, Molecular 

Probes, Eugene, OR, USA) for 40 min in a HEPES-buffered solution containing (in mM): 

125 NaCl, 4 KC1, 1 CaCl2, 1 M gS04, 1 NaH2P 0 4, 20 HEPES, 6 glucose (pH 7.4) 

supplemented with 0.1 % (w/v) bovine serum albumin (Sigma-Aldrich). The cells were 

then washed for 15 min in HEPES-buffered physiological solution containing (in mM) : 

135 NaCl, 5 KC1, 0.5 CaCl2, 0.5 MgCl2, 10 glucose and 5 HEPES, pH 7.4, each of the steps 

were carried out at 37.5°C in 20 % 0 2 and 5 % C 0 2. The coverslips were mounted in a 

perfusion chamber (Warner Instruments, Hamden, CT, USA) and continuously superfused 

with HEPES-buffered physiological solution from a gravity-fed perfusion system at a rate 

of 1-2 ml/min. The cells were observed under a Nikon Diaphot inverted microscope 

(Tokyo, Japan) equipped for epifluorescence with quartz optics using a 40x-oil immersion 

objective. Excitation light was produced by a xenon short arc lamp (Osram Gmbh, 

Miinchen, Germany) with the wavelength alternatively selected at 340 and 380 nm with a 

bandwidth of 10 nm using a CAIRN Optoscan monochromator (Cairn, Kent, UK). Then, 

the light was reflected on an excitation dichroic mirror 400DCLP (reflecting only the 

wavelength under 400 nm, Olympus, Watford, UK). The emission light produced by Fura-
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2 at 540 nm passed then through the 400DCLP filter without being affected and reached the 

emission dichroic filter D510/80m (Olympus), which is a band pass filter at 510 nm, with a 

bandwidth of 80 nm especially allowing the passage of the light between 470 and 550 nm. 

The light at 540 nm was detected by a slow-scan CCD camera (Kinetic Imaging Ltd, 

Nottingham, UK) and images of the two emission intensities for 340 and 380 nm were 

acquired at 0.2 Hz. All the recordings were done at 22 ± 1°C (to be in the same condition 

than the patch-clamp experiments presented later) by heating the solution passing through 

the perfusion line using a heated stage (Caim).

The experiments were carried out using the following solutions. HEPES-buffered 

physiological solution used for the experiment contained (in mM): 115 NaCl, 5 KC1, 0.5 

CaCl?. 0.5 MgCl2. 5 HEPES and 10 glucose, pH 7.4. For the “high K+ solution”, the NaCl 

was lowered to 105 mM and the KC1 increased to 15 mM, pH 7.4. Spermine (300 pM, 

Sigma-Aldrich), neomycin (200 pM, Sigma-Aldrich) or R-568 (100 nM, Amgen) were 

diluted on the day of the experiment in the physiological solution or high K+ solution as 

desired. The Ca2+ and Mg2+ were raised to 1.2 mM in the spermine dose-response curve (to 

be in physiological condition) and in experiments with R-568 to allow the allosteric 

modulation of the CaR.

For the experiments involving hypoxic stimulus, the control or spermine solutions 

were bubbled either with medical air (control) or 100 % N2 (hypoxia) for 20 min prior to 

the experiments. The p 0 2 in the bath was constantly recorded by a carbon-fibre 

microelectrode (ProCFE, Continental Laboratory Product, San Diego, USA) normalized to 

a potential of -600 mV. The reduction of 0 2 induced a current which was recorded with a 

CV2003 BU Headstage (Axon Instruments, Sunnyvale, USA), connected to an Axopatch
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200B voltage-clamp amplifier (Axon Instruments) and digitalized with Digidata 1322A 

(Axon Instruments). The cells were first exposed to a control high K+ stimulus (~30s) 

before being challenged twice by hypoxia (~30s, pC>2 < 10 mmHg). 200 \iM  spermine 

(Sigma) was then incubated for 3 min and applied in conjunction with hypoxia. After 2 min 

wash, a last hypoxic challenge was performed.

The analyses of the recordings were carried out off-line. The evolution of fura-2 

340/380 ratio (later referred as 340/380 ratio) is expressed either as absolute value or 

normalized to the increase induced by a high K+/hypoxia control stimulation, therefore 

each cell acted as its own control. The amplitude of the increase in 340/380 ratio is 

calculated as value above baseline. Data are reported as mean ± SEM, N = number of rats 

used, n = number of cells recorded. The concentration-response curves where fitted using 

the Hill equation:

Y = maximum response / (1 + (X/M1)m2)

Where M 1 = EC50 and M2 = Hill coefficient

In the experiments with hypoxia, [Ca2+]i has been plotted against pC>2 using a single 

exponential:

y = yb + AeRx

Where yb is the baseline value (value at x —» 00), A give value at y = 0 (y0 = yb + A) and R 

reflects the sensitivity of the type 1 cell to pC>2.

Two-tailed, paired Student’s t-test or ANOVA with Tukey post-hoc test were used, 

as appropriate, for statistical analyses with differences considered significant at p < 0.05.
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2.2.5 Tyrosine hydroxylase immunostaining

The dissociated carotid body cell preparation contained mostly, but not exclusively, 

type 1 cells and type 2 cells. “Contaminating” cells included vascular smooth muscle cells 

and fibroblasts. In the Ca2+ imaging experiments, high K+ was used as a stimulus which 

could, therefore, potentially activate both type 1 and smooth muscle cells, as both of them 

express voltage-dependent Ca2+ channels. To identify positively the cell type from which 

[Ca2+]j measurements were recorded, immunocytochemistry against tyrosine hydroxylase, 

which is a specific marker of type 1 cell (Caceres et al., 2007), was performed at the end of 

Ca2+ imaging experiment. The following protocol was used (10 min per step, except for 

fixation, at room temperature): washing with phosphate-buffered saline (PBS, in mM: 0.14 

NaCl, 0.84 Na2H P04 and 0.16 NaHP04H20 , pH 7.4 ), fixation with 4 % (v/v) 

paraformaldehyde (5 min), washing with 0.1 % (v/v) Triton x-100 and 5 % seablock in 

PBS (solution B), incubation with mouse antibody against rat tyrosine hydroxylase (1:500, 

Sigma-Aldrich) dissolved in solution B, washing with PBS, incubation with secondary 

antibody (1:500, FITC goat anti-mouse, Molecular Probes, Paisley, UK) dissolved in 

solution B and washed with PBS. All the manipulations were undertaken carefully to avoid 

any movement of the preparation. At the end of the protocol, the cells were observed using 

the same microscope and the same software as the one used for Ca2+ imaging.

76



Chapter 2

2.2.6 CaR-HEK293 cells culture

A line expressing the human parathyroid CaR in HEK293 cell, was available in the 

laboratory. The cells were maintained in MEM (containing Earle’s salts and L-glutamine, 

Invitrogen) supplemented with 10 % (v/v) foetal calf serum (Hyclone, Cramlington, UK), 

and 1 % (v/v) antibiotic/antimycotic with 200 pg/ml hygromycin B (Sigma) to select the 

cells containing the plasmid. Cells were grown in 10 ml of medium in 25 ml flask. Every 3- 

4 days, when 80 % confluency was reached, the cells were dissociated as follow: 2 washes 

with PBS Ca2+- and Mg2+-free (Gibco, Invitrogen), 3 min incubation with tryspin IX in 

PBS (Gibco) then 7 ml of medium was added and the cells were spun down at 1,200 g for 4 

min. Cells were resuspended in 10 ml of fresh medium and cultured at the concentration 

1:10 in a new culture flask at 37.5 °C in 20 % O2, 5 % CO2 and 75 % N2.

In preparation for the Ca2+ imaging experiments, cells were seeded at a low 

confluence on 16 mm coverslip placed in 12 well plate and cultured for 24 h prior to the 

experiment.

2.2.7 Calcium imaging on CaR-HEK293 cells

The CaR-HEK293 cells were processed as explained for the dissociated carotid 

body cells, with the exception that the loading was done for 20 min with 2 pM of fura-2 

AM. The recordings were performed at room temperature and the extracellular Ca2+ and 

Mg2+ used were 1.2 mM for the experiment involving R-568 or S-568 and 0.5 mM for the 

dose-response curve to neomycin. The Ca2+ concentration was adjusted to allow a 

maximum activation of the CaR in the presence of different drugs. As Ca2+ and neomycin
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are both class I calcimimetics, then the Ca2+ concentration was lowered at 0.5 mM to 

minimize the competition for the activation of the CaR. In contrast, the R-568 is a class II 

calcimimetic and requires prior activation of CaR by Ca2+ to modulate its activity, therefore 

a higher Ca2+ concentration was used with R-568 (1.2 mM). The S-568 was stored in 

aliquots as described for the R-568. The CaR agonists were dissolved in the HEPES-buffer 

physiological solution on the day of the experiment. Each cell was exposed, for 3 min, only 

to one concentration of one of the CaR allosteric modulator to avoid any problems 

associated with the refilling of the intracellular stores, which could easily skew the 

amplitude of the response during the second stimulation. The variations in [Ca2+]j following 

the stimulation were assessed by quantifying three parameters: the amplitude of the [Ca2+]i 

increase, the increase in the number of oscillating cells and increase in the frequency of 

oscillation, when applicable. The frequency was calculated over a period of 3 min before 

and during the application of calcimimetic. The amplitude of the response was quantified 

as the increase in 340/380 ratio above the base line. When the stimulus induced an 

oscillation in [Ca2+]i then the amplitude of the first increase was used. All the data were 

pooled for each condition and presented as mean ± SEM, N = number of experiments, n = 

number of cells recorded.
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2.3 RESULTS

2.3.1 Spermine inhibition of catecholamine release induced either by hypoxia or high 

K+ from isolated carotid body

In isolated carotid body, a control application of an acute hypoxic challenge (7 % 

O2 for 10 min) induced a H-CA secretion (Fig. 2.1.A1). In the control group the acute 

hypoxia triggered a release of 3H-CA of 857 ± 16 dpm/carotid body, n = 6 above the 

baseline secretion. Then, one of the groups was treated with 500 piM spermine. The 

application of spermine did not affect the baseline secretion of H-CA. Indeed, in the 

control and spermine group, after 20 min of incubation, the run down of the 3H-CA release 

was similar in both groups, respectively 621 ± 65  to 440 ± 37 dpm/carotid body and 709 ± 

76 to 553 ± 70 dpm/carotid body (n = 6, Fig. 2.1.A1). Conversely, the 3H-CA secretion 

induced by 7 % O2 was inhibited in the spermine group compared to the control group. The 

ratios between the two stimulations were significantly lower in the spermine group than in 

the control group with an inhibition of 55 % (n = 6, p < 0.01, Fig. 2.1.A2). After the 

stimulation, the basal 3H-CA secretions returned to similar values in the two groups. The 

effect of 500 gM spermine on high K+ evocated released was, as well, inhibitory. The 

secretion, expressed as % of content, in the control group was 17.9 ± 0.9 % and in the 

treated group 2.3 ± 0.3 %, spermine induced an inhibition of 3H-CA release of 60 %, (n = 

6, p <  0.01, Fig. 2.1.B).
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Figure 2.1: Inhibitory effect of spermine on 3H-CA secretion induced either by 

hypoxia o r high K+ in isolated carotid body. A l) Hypoxic challenge induced a release of 

3H-CA in rat carotid body (stimulus SI). In the group preincubated with spermine (red) the 

3H-CA release induced by a second hypoxic challenge (S2) was drastically inhibited 

compared to the control group (black). A2) Histogram presenting the ratio of S2/S1, 

extracted from data show in A 1, in 3H-CA release between the first and second stimulation 

in the control (write) and spermine (grey) group. In the treated group, the ratio was 

inhibited by 55 % (n = 6, p < 0.01). B) Effect of spermine on catecholamine release 

induced by high K+. In the group preincubated with spermine (red) the catecholamine 

release was inhibited compared to the control group (black).
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2.3.2 Dose-response curve to neomycin in CaR-HEK293 cells

Neomycin was used to test the functional expression of the CaR in dissociated 

carotid body cells. Prior to the experiment in dissociated carotid body cells, neomycin was 

applied to CaR-HEK293 cells in order to establish a positive control and to determine the 

sensitivity of the CaR to neomycin. Neomycin was applied from 10 to 300 pM and induced 

a transient increase in [Ca2+f  . The response was characterised by a rapid increase in [Ca2+h 

followed by a slow return to baseline (Fig. 2.2A, B and C). The calculated EC50 was 40.24 

± 0.54 pM and the Hill coefficient was 2.56 ± 0.08 (4 < N for each point, Fig. 2.2D). Since 

the CaR-HEK293 cells over expressed the CaR, for the experiment with the dissociated 

carotid body cells, where the receptor expression is likely to be weaker, neomycin was used 

at the concentration of 300 pM.
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Figure 2.2: Dose-response curve to neomycin in CaR-HEK293 cells. Neomycin from 10 

to 300 pM was applied on CaR-HEK293 cells. Typical Ca2+ imaging recording of CaR- 

HEK293 cells exposed to 10, 60 and 300 pM neomycin (A, B and C). D) Dose-response 

curve, EC50 was calculated as 40.24 ± 0.54 pM with a Hill coefficient at 2.56 ± 0.08 (N > 4 

for each point).

82



Chapter 2

2.3.3 Comparative effect of R-568 and S-568 on CaR-HEK293 cells

R-568 and S-568 are enantiomers which have been reported to activate the CaR 

with different potencies (Nemeth et a l ,  1998). The use of these two enantiomers allows 

verifying that the effect observed is due to the activation of the CaR, as a stereoselective 

effect should be observed, with R-568 being 10-100 fold more potent than S-568.

The aim of this experiment was to determine the concentration at which the 

stereoselective activation of the CaR was the more visible. R-568 and S-568 were tested at 

1, 10 and 100 nM on CaR-HEK293 cells in 1.2 mM extracellular Ca2+ (Fig. 2.3). The 

allosteric modulation of the CaR gave complex patterns of responses which could not be 

summarized as a strong increase in [Ca2+]i, like for the activation of the CaR by neomycin. 

Indeed, the modulation of the CaR had different effect according to the basal activity of the 

cells and to the concentration of calcimimetic applied. The application of R-568 or S-568 

could induce either a single transient increase in [Ca2+h (i.e. Fig. 2.3A1, A2, B l, B2) or 

oscillations of the [Ca2+h, which lasted after the end of the stimulation, depending to the 

dose and the potency (Fig. 2.3B2, C l and C2). In case of oscillating cells, a sufficient dose 

of modulator increased the frequency of oscillations (Fig. 2.3B2 and C2).

To analyse these responses, the amplitude of the increase in 348/380 ratio, the 

increase in percentage of oscillating cells and the increase in frequency of oscillations were 

quantified (Fig. 2.4A, B and C). The average percentage of oscillating cell was 15 ± 3 % 

and average frequency was 0.22 ± 0.27 m in'1 (all groups together, N = 28). It appeared that 

the R-568 was a more potent allosteric modulator of the CaR than the S-568 only at 10 nM. 

Indeed, at 10 nM the R-568 had almost is maximum effect and was able to induce an

83



Chapter 2

absolute increase (maximum peak amplitude) in 348/380 ratio 0.56 ± 0.09 (n = 45, N = 4), 

increase the number of oscillating cells 30.19 ± 8.04 % (n = 61, N = 5) and increase in 

frequencies, for the oscillating cells, 0.50 ± 0.09 m in 1 (n = 45, N= 4), in contrast the S-568 

had the similar effect only at 100 nM with an increase 348/380 ratio at 0.68 ± 0.19 (n = 79, 

N = 5), increase in number of oscillating cells of 26.68 ± 8.19 % (n = 63, N= 4) and an 

increase in frequency of 0.61 ±0.11 m in'1 (n = 63, N = 4). In conclusion, at 10 nM, the 

stereoselectivity of the R-568 and S-568 was very apparent whereas at 100 nM the effects 

of the two enantiomers were the same.

2.3.4 Absence of an effect of neomycin and R-568 on carotid body catecholamine 

release

To test the hypothesis that the CaR was involved in mediating the inhibition 

induced by spermine, two CaR activators were used: an agonist, neomycin, and a positive 

allosteric modulator R-568. Application of 300 pM neomycin (Fig. 2.5A) or 100 nM R-568 

(Fig. 2.5B1 and B2) did not have any effect on the catecholamine release induced by 

hypoxia. The inhibitory effect of spermine could not be mimicked by the activation of the 

CaR, indicating that the CaR is not involved in mediating the spermine effect on carotid 

body catecholamine release.
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Figure 2.3: Effect of R-568 and S-568 on the increase in [Ca2+]; in CaR-HEK293 cells. R-

568 (right panel) and S-568 (left panel) were applied at 1, 10 and 100 nM for 3 min (A, B and C) 

on CaR-HEK293 cells. Each graph shows 10 typical cell recordings during the same experiment. 

The cells responded to the stimulation by either a single increase in [Ca2+]i, as in B l, or in case 

of a stronger stimulation, by a train of spikes, i.e. C l and C2.
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Figure 2.4: Dose-response curves to R-568 and S-568 in CaR-HEK293 cells. Three 
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potency of R-568 and S-568. A) The amplitude of response (increase in 340/380 ratio), B) 

the percentage of oscillating cells (p < 0.05 at 10 nM) and C) the increase in frequency of 

the oscillations (p < 0.05 at 10 nM). R-568 was, for the three parameters analysed, a more 

potent allosteric modulator of the CaR at the concentration of 10 nM. (2 < N < 6 and 24 < n 

<82).
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Figure 2.5: Absence of effect of neomycin and R-568 on 3H-CA secretion induced by 

hypoxia in isolated carotid body. A) In isolated carotid body, the 3H-CA secretion induced by 

hypoxia was not inhibited by preincubation with 300 pM neomycin (control group in black, 

neomycin treated group in red, n = 6). B l) Hypoxic challenge induced a release of 3H-CA in 

rat carotid body (stimulus SI). In the two groups, control (black) and preincubated with R-568 

(100 nM, red) the 3H-CA release induced by a second hypoxic challenge (S2) was similar. B2) 

Histogram presenting the ratio of S2/S1, extracted from data show in B l, in 3H-CA release 

between the first and second stimulation in the control (write) and R-568 (grey) group (n = 6). 

100 nM R-568 had not effect on catecholamine secretion.
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2.3.5 Control of the quality of the dissociated carotid body cell preparations

Prior to the use of dissociated, cultured rat carotid body cells, the quality and 

stability of the preparation was tested. To do so the “health status” of the cells was assessed 

by recording the [Ca2+]i over the time in culture. [Ca2+]i is a good indicator of the cell 

viability. Fig. 2.6 shows the average 340/380 ratio at different time points from 3 to 25 h in 

culture. All cell types without distinction were included in the average. The 340/380 ratio 

was stable over time with an average value of 0.65 ± 0.03 (n = 222, N = 4). As a 

consequence of these findings, the cells were used within 25 h in culture.

2.3.6 Identification of cell types recorded

At the end of the Ca2+ imaging experiments, immunostaining for the detection of 

tyrosine hydroxylase positive cells was performed to identify the nature of the cells that 

produced the recorded signal, either type 1 or type 2 (tyrosine hydroxylase positive cells 

are the type 1 cells). Figure 2.7 presents the same field of cells before and after the tyrosine 

hydroxylase staining. In this example, a small cluster of type 1 cells was strongly stained 

whereas spindle shape type 2 cells were not.

2.3.7 Effect of Cd2+ on Ca2+ influx induced by high K+ in carotid body type 1 cells

To determine if the increase in [Ca2+]i which was induced by high K+ in type 1 cells 

was due to Ca2+ influx via voltage-dependent Ca2+ channels or to Ca2+ release from the 

intracellular stores, Cd2+, a blocker of voltage-dependent Ca2+ channels (Peers et a l,  1996),
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was applied. Application of 200 pM Cd2+ on carotid body type 1 cells inhibited the high K+ 

induced increase in [Ca2+]i by 79.13 ± 10.23 % (n = 8, N = 1, Fig. 2.8).

2.3.8 Effect of spermine, neomycin and R-568 on [Ca2+]i increase induced by high K+ 

on dissociated carotid body cells

As catecholamine secretion is dependent upon Ca2+ influx, [Ca2+]i imaging was 

used to investigate whether the inhibitory effect of spermine was associated with an 

alteration of [Ca2+]j homeostasis. Moreover, spermine is an agonist of the CaR and is 

membrane-impermeable. Therefore, [Ca2+h imaging was used to test the potential role of 

CaR independently of neurotransmitter release. Indeed, in many cell types, the activation of 

the CaR involves a Ca2+ release from intracellular stores (Pin et al., 1995). The effects of 

200 pM spermine, 300 pM neomycin and 100 nM R-568 were tested on baseline [Ca2+]* 

and on the increased in [Ca2+]i induced by 15 mM K+.

Two main types of cells could be distinguished according to their responses to high 

K+. One type responded with an increase in 340/380 ratio whereas the other one did not. 

The immunostaining performed at the end of the Ca2+ imaging experiments revealed that 

among 60 cells responding to high K+ with an increase in [Ca2+h, 57 cells were tyrosine 

hydroxylase-positive. Therefore, the high K+-responding cells were considered as type 1 

cells. Of the tyrosine hydroxylase-negative cells, 20 cells responded to high K+ only after 

pre-incubation with spermine, neomycin or R-568. Finally, 29 tyrosine hydroxylase- 

negative cells did not respond at all (N = 6).
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As expected, stimulation of type 1 cells by high K+ induced a transient increase in 

the 340/380 ratio. For instance, in the spermine experiment, the average increase was of 

0.47 ± 0.09 (Fig. 2.9A and C). The application of spermine (Fig. 2.9A), neomycin (Fig.

2.11 A) or R-568 (Fig. 2.12A) did not affect the baseline 340/380 ratio, strongly suggesting 

that the CaR was not expressed in type 1 cells. However, the incubation with 200 pM 

spermine reduced the increase in [Ca2+]i induced by high K+, from 0.47 ± 0.09 to 0.32 ± 

0.07 (n= 22, N = 5, p < 0.01, Fig. 2.9A and C). The estimated IC50 for spermine in type 1 

cells was 473.5 ± 70.3 pM and the Hill coefficient was 0.84 ± 0.10 (n > 17, N > 3 for each 

point, Fig. 2.10).

Similarly to spermine, incubation with 300 pM neomycin inhibited the increase in 

[Ca2+]i induced by high K+ from 0.35 ± 0.07 to 0.07 ± 0.03 (n 11, N = 4, p < 0.01, Fig.

2.11 A and C). The inhibitory effect of spermine and neomycin were fully reversible as 

demonstrated by the ability of high K+ to evoke a response similar to the one obtained by 

the first control high K+ stimulation.

In contrast to spermine and neomycin, application of 100 nM R-568 had no effect 

on the increase in the 340/380 ratio in type 1 cells (Fig. 2.12A and C).

Surprisingly, some cells which did not express voltage-dependent Ca2+ channels (as 

evidenced by the absence of response to high K+ alone) were able to respond to high K+ 

with an increase in [Ca2+f  only after co-incubation with either spermine (Fig. 2.6B and C), 

neomycin (Fig. 2.8B and C) or R-568 (Fig. 2.9B and C). These cells were always tyrosine 

hydroxylase negative.
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Figure 2.6: Evolution of 340/380 ratio, in carotid  body dissociated cells, during  the 

time in culture. After enzymatic digestion isolated cells were plated and kept in culture 

with F12/DMEM + 10 % foetal calf serum + 1 % antibiotic/antimicotic + 200 mM L- 

glutamine. The figure shows the basal 340/380 ratio during the time in culture in 

dissociated carotid body cells. The basal 340/380 ratio did not change during the time in 

culture between 3 to 24 h, with an average value of 0.65 ± 0.03 (n = 222, N = 4).
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Figure 2.7: Tyrosine hydroxylase im m unostaining on cells previously used for C a2+ 

imaging. A) Light field view containing the recorded cells. B) View of the same field, 

using FITC fluorescence after the tyrosine hydroxylase staining. The tyrosine hydroxylase 

staining revealed the presence of three clusters of type 1 cell (arrow). A characteristic type 

2 cell, which had a spindle shape and was tyrosine hydroxylase negative, was in the middle 

of the field (indicated by the arrow end). Scale bar = 10 pm.

91



A

15 mM \C 15 mM K+ 15 mM K+

200 nM Cd‘

O
05*_
O
00
CO
o
"ST
CO

0.5
1610 12 142 4 6 80

B Time (min)

o
05

O
00
CO
o
CO

0.4 n

0 .3 -

0.2-

00
05 0.1 
0
o_c

0.0
Control 200 pM Cd2+ Wash

Figure 2.8: Effect of C d '+ on C a‘+ influx, induced by 15 mM  K +, in type 1 cells. A)

Typical recording of the 340/380 ratio from a type 1 cell. Application of 200 pM Cd2+ 

almost totally suppressed the [Ca2+]j increase induced by high K+. The effect of Cd2+ was 

fully reversible. B) Average data, for each cells, of the effect of Cd2+ on K+ dependent 

increase in [Ca2+]i (p < 0.01, n = 8, N = 1).
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Figure 2.9: Effect of 200 pM sperm ine on [Ca2+]i in dissociated carotid body cells. A)

Typical Ca2+ imaging recording of a type 1 cell. High K+ (15 mM) induced an increase in 

[Ca2+]i which was partially inhibited by co-incubation with 200 pM spermine. The 

spermine effect was reversible, as shown by the full recovery during the 3rd high K+ 

stimulation. B) Typical recording of a non-type 1 cell where the cell responded to high K+ 

only after co-incubation with 200 pM spermine. C) Bar graph showing the average increase 

in 340/380 ratio for type 1 (n = 22, N = 3, p < 0.01) and non-type 1 cells (n = 7, N = 2, p < 

0 .01).
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Figure 2.10: Dose-response curve to sperm ine in carotid body type 1 cells. The dose- 

response curve of the inhibitory effect of spermine on the [Ca2+]i increase induced by high 

K+ (15 mM) in carotid body type 1 cells gave a IC5o calculated at 473.52 ± 70.27 pM with 

a Hill coefficient of 0.84 ± 0.10 (n > 17, N > 3 for each point).
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Figure 2.11: Effect of 300 pM neomycin on [Ca2+]j in dissociated carotid body cells. A)

Typical Ca2+ imaging recording of a type 1 cell. High K+ (15 mM) induced an increase in 

[Ca2+]i which was inhibited by co-incubation with 300 pM neomycin. The neomycin effect 

was reversible, as shown by the full recovery during the 3rd high K+ stimulation. B) Typical 

recording of a non-type 1 cell where the cell responded to high K+ only after co-incubation 

with 300 pM neomycin. C) Bar graph showing the average increase in 340/380 ratio for 

type 1 (n = 10, N = 4, p < 0.01) and non-type 1 cells (n = 30, N = 4, p < 0.01).
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Figure 2.12: Effect of 100 nM  R-568 on [Ca2+]i in dissociated carotid body cells. A)

Typical Ca2+ imaging recording of a type 1 cell. High K+ (15 mM) induced an increase in 

[Ca2+]i which was not affected by co-incubation with 100 nM R-568. B) Typical recording 

of a non-type 1 cell where the cell responded to high K+ only after co-incubation with 100 

nM R-568. C) Bar graph showing the average increase in 340/380 ratio for type 1 (n = 19, 

N = 4) and non-type 1 cells (n = 35, N = 5, p < 0.01).
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2.3.9 Effect of spermine on [Ca2+]i increase induced by hypoxia on dissociated carotid 

body cells

As expected, hypoxia triggered a [Ca2+]i increase in most of the type 1 cells. The 

hypoxia-induced [Ca2+]j increase was about 62 ± 15 % (ANOVA with Tukey post-hoc test, 

P < 0.05, n > 23, N > 3) of that induced by high K+(Fig. 2.13 and 2.14A). The cells which 

responded to high K+ but did not consistently respond to hypoxia were excluded from the 

analyses. The co-application with spermine during hypoxia had a inhibitory effect, 41 ± 12 

%, on the hypoxia-induced [Ca2+]i increase (ANOVA with Tukey post-hoc test, P < 0.05, n 

> 23, N > 3, Fig. 2.13 and 2.14). This inhibition was similar to the inhibition observed 

when high K+ was used as a stimulus (Fig. 2.14B).

To gain more insight into the effect of spermine on the chemoreception in type 1 

cells, [Ca2+]i was plotted against p02 and fitted to a single exponential y = yo + AeRx (Fig.

2.15). The average equations calculated in absence and presence of spermine are:

hypoxia: y = 0.72 + 0.56e 0 08x
hypoxia + sper: y = 0.72 + 0 .18e 0 07x

Only A was statistically different in the two conditions (n = 16, N = 3). Therefore, as

observed before, spermine did not affect the baseline [Ca2+]j (yb is constant, p > 0.05) or the

sensitivity of the type 1 cells (R is constant, p > 0.05) but modified the peak value of the

ratio (A decrease with application of spermine, p < 0.05).

During the experiments, the temperature oscillated within a 2.1TC  range. Since 

temperature is likely to influence the type 1 chemosensitivity (via the pH), the effect of the 

changes in temperature on 340/380 ratio was investigated. The average linear
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Figure 2.13: Effect of high K+, hypoxia and spermine on [Ca2+]j in type 1 cells.

Recordings of the pC>2 (top), the 340/380 ratio (middle) and the temperature (bottom). 15 

mM K+ and hypoxia (pC>2 < 1 0  mmHg) induced a Ca2+ influx in type 1 cell. The application 

of 200 pM spermine reduced the hypoxia-mediated Ca2+ influx.
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Figure 2.14: Com parison of the inhibitory effect of sperm ine on Ca2+ influx induced 

either by hypoxia o r high K+. A) Bar graph showing the average increase in 340/380 ratio 

induced either by high K+, hypoxia or hypoxia + 200 pM spermine. Hypoxia triggered a 

Ca2+ influx about 62 ± 15 % of the one induced by high K+, furthermore, application of 200 

pM spermine reduced the hypoxia-mediated Ca2+ influx by 41 ± 12 %. All the conditions 

were statically different (ANOVA with Tukey test, P < 0.05, n > 23, N > 3). B) 

Comparison of the inhibitory effect of 200 pM spermine on Ca2+ influx induced either by 

high K+ (38 ± 7 %, p < 0.01, n = 36, N = 4) or hypoxia (41 ± 12 %, p < 0.01, n > 23, N > 

3). The inhibition induced by spermine was not statistically different between the two 

conditions.
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Figure 2.15: Effect of sperm ine on p 0 2 chemosensitivity. A) shows a typical example of 

the [Ca2+]i plotted against p 0 2, for one cell, in absence (black line) and presence of 200 pM 

spermine (red line). The increase in [Ca2+f  was fitted to a single exponential (y = yb + 

AeRx). Spermine induced a decrease in parameter A only which corresponds to a decrease 

of the maximum response of type 1 cell without change in sensitivity to p 0 2. B) Graph 

presenting the average calculated curves for [Ca2+h in response to change in p 0 2 in 

presence and absence of spermine. The calculated equations are show in the inset, only the 

parameter A was statistically different between the two conditions (n = 16, N = 3).
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correlation between the temperature and the 340/380 ratio (n = 19, N = 3), give the 

following equation: y = -0.008x + 0.919, where y = temperature in °C and x = 340/380 

ratio. Therefore, the largest variation of temperature observed (3.75°C) could only induce a 

variation of 340/380 ratio of 0.0614 which is far under the effect of hypoxia (0.14).

2.3.10 Effect of Ca2+-free solution on the increase in [Ca2+]j induced by high K+ and 

neomycin in type 1 and non-type 1 cells

The [Ca2+]i increase induced by high K+ and neomycin, spermine or R-568 in non­

type 1 cells was likely to be due to the release of Ca2+ from the internal stores as these cells 

did not express functional voltage-dependent Ca2+ channels. This hypothesis was tested by 

repeating the experiment in Ca2+-free solution. In non-type 1 cells, the increase in [Ca2+]i 

induced by high K+ and neomycin was not modified by removal of extracellular Ca2+ (Fig.

2.16). In contrast, the removal of extracellular Ca2+totally abolished the [Ca2+h increase 

induced by high K+ and neomycin normally observed in type 1 cells. The removal and 

reintroduction of extracellular Ca2+ induced a Ca2+ entry which was especially strong in 

type 1 cells and resulted in cell death.
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Figure 2.16: Effect of rem oval of extracellular Ca2+ on increase in [Ca2+]i induced by 

high K+ in dissociated carotid  body cells. A) Typical recordings of a type 1 cell (thick 

trace) and non-type 1 cell (thin trace). Removal of extracellular Ca2+ totally inhibited the 

increase in [Ca2+]i observed in type 1 cell but not in non-type 1 cell. Arrows indicate Ca2+ 

entry due to the removal and reintroduction of extracellular Ca2+. B) Average data, type 1 

cells (n = 15, N = 1, t-test p < 0.01) and non-type 1 cells (n = 7, N = 1, t-test p < 0.01).
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2.4 DISCUSSION

As presented in the introduction, the concentration of spermine in the plasma is 

within the |iM range, but it is believed to increase locally and to reach much higher 

concentrations (probably up to 1 mM in the synaptic cleft in the brain) under the effect of 

specific stimuli such as hypoxia (Longo & Packianathan, 1995), growth (Chaisiri et al., 

1979) and neuronal stimulation (Fage et al., 1992).

Here, I have demonstrated, for the first time, an inhibitory effect of spermine on 

catecholamine secretion in rat carotid body. Indeed, the pre-incubation of isolated carotid 

body with spermine reduced the catecholamine release induced either by 7 % O2 or high 

K+. Although [3H]catecholamine release runs down due to the diminution in 

[3H]catecholamine stocked, it was very clear that spermine did not affect the baseline 

secretion of [3H]catecholamine. As spermine is a poly-cationic molecule with 4 positive 

charges at physiological pH (Heby, 1986), it cannot cross the plasma membrane, 

suggesting that this inhibition was the result of an extracellular interaction.

The application of spermine during a hypoxic stimulus leads to an inhibition of the 

catecholamine secretion. This inhibition could be the result of: spermine-mediated 

inhibition of oxygen sensing mechanism or; downstream to these mechanisms. The oxygen 

sensing mechanisms which could be affected by extracellular molecules are the K+ 

channels, TASK (Buckler, 1997) and BKca (Wyatt & Peers, 1995), especially TASK 

channels, on which extracellular spermine is known to have an inhibitory effect (Musset et 

al., 2006). However, this did not seem to be the case here because, in conjunction with
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hypoxia, spermine would have potentiated the closure of TASK channels, and therefore 

increased the depolarisation and the catecholamine release. The quantitatively similar 

results obtained using high K+ as a stimulus rule out the possible interaction of spermine 

with the oxygen sensing mechanism and as a consequence, spermine has an inhibitory 

effect downstream to the hypoxic induced depolarisation.

Spermine is a well known agonist of the CaR (Brown et al., 1993), suggesting that 

the CaR activation might mediate the spermine-evoked inhibition of the hypoxia and K+- 

dependent inhibition of catecholamine release. Two different classes of CaR activators 

were used to test the involvement of the CaR: a positive allosteric modulator, R-568, and 

the CaR agonist, neomycin (an aminoglycoside antibiotic). Neomycin is a class I 

calcimimetics which is not naturally present in the organism but has a strong affinity for the 

CaR (Urena & Frazao, 2003). The positive controls performed on CaR-HEK293 cells 

revealed that the activation of CaR by neomycin and R-568 (or S-568) induced the 

expected increase in [Ca2+]j. The pattern of responses was different between the two type of 

activators, with neomycin (class I calcimimetic), inducing a strong increase in [Ca2+]i, and 

the allosteric modulator R-568 (class II calcimimetic), inducing oscillations, confirming 

that class I and II calcimimetics activate differently the CaR. These differences in 

activation pattern reflect the fact that class I and II calcimimetics bind to the CaR at distinct 

sites (Petrel et a l ,  2004; Hu et al., 2005). Nevertheless, it cannot be exclude that these 

difference pattern of responses were, in part, due to different concentration of the class I 

and II calcimimetics. Moreover, the comparison between the effect of R-568 and S-568 in 

the nM range pointed out that the R-568 was a more potent agonist than the S-568 only at 

the concentration of 10 nM for the parameters quantified. Below and above these 

concentrations, the R-568 and S-568 exhibited no stereoselectivity. The response pattern
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obtained with the R-568 correspond to the one describe by Miedlich and al. using the 

calcimimetic at 0.1 and 10 pM on HEK293 cells stably transfected with the human CaR. 

For instance, they observed, using Ca imaging, a peak-to-peak interval in [Ca ]i 

oscillation at 69 ± 26 s with 0.1 pM R-568 and a long lasting effect ( > 1 5  min) of the 

compound after its removal (Miedlich et al., 2002). The peak-to-peak interval with 0.1 pM 

calculated in the current study was of 86.9 ± 26.5 s (corresponding to a frequency of 0.69 ± 

0.21 m in 1) which was within the same order of magnitude as the previously reported 

values.

In the isolated carotid body, R-568 and neomycin had no effect on the K+ and 

hypoxia-evoked catecholamine release, and therefore, the involvement of CaR in mediating 

the spermine inhibition of catecholamine release seemed unlikely.

As the CaR did not appear to be involved in the inhibition of the [Ca2+]i increase by 

spermine, it seemed likely that it was mediated by an interaction of spermine with voltage- 

dependent Ca2+ channels. These channels link the depolarisation induced by either low pC>2 

or high K+ to release of neurotransmitters via Ca2+ influx (Urena et al., 1989). Ca2+ imaging 

was used as a method by which to investigate the effect of spermine, neomycin and R-568 

on [Ca2+]i homeostasis in dissociated carotid body cells.

Two control experiments were performed in order to ensure that the quality of the 

preparation was maintained high throughout the experiments. Firstly, the baseline [Ca2+]i 

was used as an indicator of the viability of the cultured cells. These values were constant 

for up to 25 h in culture. Secondly, since type 1 cells are well known to express voltage- 

dependent Ca2+ channels, the effect of Cd2+ (which blocks up to 80 % of the Ca2+ influx 

through voltage-dependent Ca2+ channels), was investigated and the cells which were
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recorded were immunostained for tyrosine hydroxylase reactivity at the end of the 

experiment. As expected, Cd2+ blocked the [Ca2+]j induced by high K+ and out of 60 cells 

expressing voltage-dependent Ca2+ channels, 57 were tyrosine hydroxylase positive. These 

cells were thus identified as type 1. According to their responses to high K+ and 

spermine/neomycin/R-568, some tyrosine hydroxylase negative cells were identified, and 

these cells are referred as non-type 1 cells.

My experiments show that, in type 1 cells, the effect of spermine on [Ca2+f  is 

characterized by an inhibition of the Ca2+ influx induced by high K+ or hypoxia without 

altering the baseline [Ca2+]i value. Therefore, spermine would inhibit catecholamine release 

by inhibiting the increase in [Ca2+f  and the subsequent exocytotic process. The estimated 

I C 5 0  is -500 pM for the inhibitory effect of spermine on [Ca2+f  increase induced by high 

K+. Interestingly, this value was in the same range as that observed to inhibit guinea-pig 

muscle contraction, i.e. 600 pM (Kim et al., 2007) suggesting the involvement of a similar 

mechanism in both tissues (see chapter 4). Moreover, application of spermine did not 

modify the sensitivity of the type 1 cells to pC>2 but decreased the amplitude of the response 

induced by a drop in pC>2 . These last data confirmed the fact that spermine did not interact 

with the pC>2 sensing mechanisms.

R-568 and neomycin had different effects on [Ca2+f . Indeed, neomycin did not 

affect the baseline [Ca2+f  but was able to inhibit the Ca2+ influx evoked by depolarization. 

Similarly to spermine, neomycin has been reported to be a non-specific blocker of voltage- 

dependent Ca2+ channels (Parsons et al., 1992; Duarte et al., 1993) (see chapter 4). The 

experiments performed in the absence of extracellular Ca2+ showed that the increase in 

[Ca2+]i observed in presence of neomycin and high K+ in type 1 cells is only due to a Ca2+
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influx, without any involvement of the intracellular Ca2+ stores. The putative release of 

Ca2+ from the internal stores has already been studied by other scientists showing no effect 

of depletion or blockage of the stores on neurotransmitter release by type 1 cells (Conde et 

a l, 2006a). In type 1 cells, the intracellular Ca2+ stores are of very small size and do not 

play a physiological role, so this point was not investigated furthermore. The R-568 had 

influence on neither the baseline ratio nor the Ca2+ influx induced by high K+.

The fact that neomycin reduced the Ca2+ influx in Ca2+ imaging experiments but not 

in the catecholamine release experiments could be explained by the different concentrations 

of extracellular Ca2+ used. Indeed, the inhibitory effect of neomycin is dependent on a 

permissive extracellular Ca2+ concentration, as demonstrated by Parsons et al (Parsons et 

al., 1992). The neomycin concentration has been kept constant in the two types of 

experiments, whereas the extracellular Ca2+ was five fold less in the dissociated cell 

experiments than in the isolated carotid body experiments. This decrease in extracellular 

Ca2+ could account for the differences in neomycin response in the two types of 

experiments. After having elucidated the inhibitory mechanism induced by spermine and 

neomycin, it appears that it would have been more appropriate to use a lower, and therefore 

permissive Ca2+ concentration (such as 0.5 mM) in the isolated carotid body experiment to 

reveal the inhibitory effect of neomycin.

In non-type 1 cells, the application of spermine, neomycin and R-568 alone had no 

effect under baseline conditions. Nevertheless, in some cells, the application of these 

compounds in association with high K+ induced an increase in [Ca2+]i. The [Ca2+]i increase 

induced by neomycin and high K+ was strictly independent of the extracellular Ca2+ and, 

therefore, came from the internal stores. These data suggested the activation of intracellular
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2_|_
pathway. This Ca release from the internal store dependent on depolarisation and on 

spermine, neomycin or R-568 has never been reported before. Interestingly, under 

depolarisation, some GPCR, muscarinic receptor, mGLURl or purinergic P2Y1, show the 

equivalent of gating current suggesting the induction of configurational change (Ben- 

Chaim et al., 2006; Stanfield, 2006). This configurational change has been shown to 

modify the affinity of such receptor for their agonist (Martinez-Pinna et a l,  2004). 

Nevertheless, none of them present an agonist affinity strictly dependent on depolarisation 

as it is the case here. The modulation of the affinity of GPCR for their agonist by 

depolarisation lead to the hypothesis that, due to depolarisation, spemine, neomycin or R- 

568 may activate a GPRC, different for CaR, and induce Ca2+ release from the internal 

store in non-type 1 cell.
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2.5 CONCLUSION

The experiments using whole isolated carotid bodies for quantification of 

catecholamine release have shown an inhibitory effect of spermine on the catecholamine 

secretion evoked either by hypoxia and high K+. The data lead to the conclusion that the 

spermine inhibited the catecholamine release downstream to the oxygen sensing 

mechanisms. As spermine inhibits the neurotransmitter release, it appears clearly than the 

CaR is not involved in stimulating the neurotransmitter release, refuting the first tested 

hypothesis of a Ca2+ release from the intracellular stores. In addition, the putative role of 

the CaR in mediating the spermine inhibition has been tested using an alternative agonist of 

the CaR, neomycin and an allosteric modulator, R-568. The application of these two 

compounds did not mimic the spermine inhibition observed during hypoxia or high K+ 

stimulation, suggesting that the CaR is not involved in mediating the spermine inhibition. 

The reproduction of the experiments with knock out mice for CaR would allow to rule out 

completely the involvement of the CaR in mediating spermine inhibition of Ca2+ influx in 

type 1 cells.

Then, the recording of the [Ca2+h in type 1 cells demonstrated that spermine inhibits 

the Ca2+ influx induced by high K+. Moreover, the experiments revealed the property of 

another cell type, tyrosine hydroxylase negative cells, which reacted to co-application of 

high K+ and spermine, neomycin or R-568 by a release of Ca2+ from the internal stores.

The spermine inhibition of catecholamine release was therefore due to the inhibition 

of the Ca2+ influx, which couples the depolarization to neurotransmitter release. 

Nevertheless, it is still unknown if the spermine inhibited directly or indirectly the voltage-
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dependent Ca2+ channels. The voltage-dependent Ca2+ channels expressed in rat type 1 

cells will then be identified (Chapter 3). The knowledge of the expression of voltage- 

dependent Ca2+ channel will allow the specific testing of the effects of spermine on the 

channels expressed in type 1 cell. It will also confirm or refute the hypothesis of an 

inhibitory effect of spermine on voltage-dependent Ca2+ channel in type 1 cells (Chapter 4).
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3.1 INTRODUCTION

Changes in O2, CO2 and pH levels lead to the release of the neurotransmitters, 

dopamine, ACh, adrenaline and ATP from carotid body type 1 cells (Gonzalez et a l, 

1994). The three main classes of ion channels believed to be involved in this process are: 

voltage-gated K+ channels, BKca channels (p02 and PCO2 sensing); background K+ 

channels (TASK-like, p02 and pH sensing); and ASIC (pH sensing). Ion channel 

modulations by these stimuli induce membrane depolarization by a decrease in K+ 

conductance (BKca and TASK-like) or an increase in Na+ conductance (ASIC). The 

induced depolarization activates voltage-dependent Ca2+ channels, which in turn results in 

Ca2+-dependent neurotransmitter release.

In rat carotid body, previous studies have shown the expression of L- and N-type 

channels (Buckler & Vaughan-Jones, 1994c; Jiang & Eyzaguirre, 2004), whereas P/Q-type 

are probably not expressed (as oo-agatoxin has no effect on Ca2+ influx (Peers et al., 1996)). 

In addition, the existence of T-type channels has never been reported.

To attempt to elucidate the molecular mechanisms mediating the spermine and 

neomycin inhibition of Ca2+ influx induced by high K+ or hypoxia in type 1 cells (reported 

in chapter 2), the molecular identities of the voltage-dependent Ca2+ channels expressed in 

rat type 1 cells was first investigated. This was necessary because most reports have 

described only functional evidence for the expression of L- and N-type Ca2+ channels 

which does not elucidate the specific genes and gene products underlying the responses.
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Indeed, the L- and T-type families comprise, respectively, four (Cavl . l ,  Cav1.2, Cavl.3 and 

Cav1.4) and three (Cav3.1, Cav3.2 and Cav3.3) genes (Doering & Zamponi, 2003).

The aim of the experiments, which have not yet been published, was to identify, by 

molecular biology (RT-PCR) and immunohistochemistry, the voltage-dependent Ca2+ 

channel genes and proteins expressed in rat carotid body type 1 cells. Moreover, to gain 

evidence in support of functional observation, the expression of CaR was investigated.
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3.2 MATERIALS AND METHODS

3.2.1 Reverse transcription and polymerase chain reaction (RT-PCR)

3.2.1.1 Total RNA extraction from carotid body, brain and eye

Total RNA was extracted from carotid bodies, brain and eye. Carotid bodies were 

processed using RNeasy Micro kit (Qiagen, Crawley, U.K.) to extract RNA from small 

samples. Briefly, carotid bifurcations were removed from three anesthetized rats (with 

sodium pentobarbital, 60 mg/kg, IP Euthatal, Merial, Essex, U.K.) according to Home 

Office regulations and placed in cold RNAlater (Sigma, Dorset, U.K.) until the 6 carotid 

bodies were isolated and cleaned of surrounding tissues. Immediately after their isolation, 

carotid bodies were homogenized with a pestle in 350 pi of buffer containing guanidine 

thiocyanate (buffer RLT) and the solution homogenized through a Qiashredder Spin 

Colunm (Qiagen, Crawley, U.K.) at 13,400 g. To the lysate was added 70 % ethanol and 

the mixture was applied to a silica-gel-membrane to bind the RNA (RNeasy MinElute Spin 

column, Qiagen) and centrifuged at 11,000 g. The column, containing the RNA, was 

washed with 350 pi of buffer RW1 and treated with 30 units of DNase I at room 

temperature for 15 min. Finally, the column was washed again with 500 pi buffer RPE and 

80 % alcohol before being eluted with nuclease-free water (Ambion, Warrington, U.K.).

Rat eyes (2) and brain (about 100 mg of cortex) isolated from the same rats and 

kept in RNAlater, were homogenized in Trizol (1 ml, Invitrogen, Paisley, Strathclyde,
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U.K.), following manufacturer’s instruction) using a pestle. The samples were incubated at 

room temperature for 5 min to allow the dissociation of nucleotide complexes. The RNA 

was extracted by addition of chloroform (Sigma, 0.2 ml, ratio 1:5) followed by 3 min 

incubation at room temperature. A centrifugation step at 12, 000 g (15 min at 4°C), allowed 

separation of the RNA. Following centrifugation, the upper aqueous phase, containing the 

RNA, was transferred to a new tube and incubated with 0.5 ml of isopropyl alcohol (Fisher, 

Loughborough, U.K.) for 10 min at room temperature in order to precipitate the RNA. 

RNA was then pelleted by centrifugation at 12,000 g for 10 min at 4°C, washed with 75 % 

alcohol and dissolved in nuclease-free water (Ambion).

The amount and purity of the RNA obtained were checked with a 

spectrophotometer (SANYO SP65 UV/VIS, Watford, U.K.). The absorbance produced by 

the RNA and proteins were calculated at 260 and 280 nm, respectively, (with an 

absorbance of 1 optic density = 40 pg/ml for the RNA) allowing quantifying the ratio 

RNA/proteins and the concentration of RNA. Only the preparations with 260/280 ratio > 

1.7 were used.

3.2.1.2 Reverse transcription

For the RT-PCR reaction, 1 pg of total RNA from the brain and eye or all the total 

RNA extracted from carotid body was used for the reverse synthesis of single-stranded 

cDNA using the Superscript III (Invitrogen). The reaction solution contained 1 pg of oligo 

dT (Promega), 1 pi of dNTP mix at 10 mM (Bioline, London, U.K.) and 1 pg of RNA 

brought up to a final volume of 13 pi with H2O. This solution was first heated at 65°C for 5 

min to allow the association of the oligo dT with the poly A tails of the RNA. Then, 4 pi of 

5X first-strand buffer (250 mM Tris-HCl, 375 mM KC1 and 15 mM MgCU, Invitrogen), 1
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pi of 0.1 M DTT (dithiothreitol, Invitrogen), 1 pi of RNase inhibitor (RNasin Plus RNase 

Inhibitor, 40 u/pl, Promega, Southampton, U.K.) and 1 pi of Superscript HI RT (200 u/pl, 

Invitrogen) were added. The reaction mixed was incubated at 50°C for 30 min and the 

reaction was stopped by incubating the samples at 75°C for 15 min.

3.2.1.3 Polymerase chain reaction

2 pi of reverse-transcribed samples were used for the PCR reactions using the 

Premix Ex-taq polymerase kit (Lonza, Basel, Switzerland). The Premix Ex-taq polymerase 

was used with a final reaction volume of 50 pi give the following concentrations: 25 mM 

N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS, pH 9.5 at 25°C), 50 

mM KC1, 2 mM M gCU 1 mM 2-mercaptoethanol and 200 pM of each dNTP (dATP, 

dGTP, dCTP, dTTP). 35 cycles were performed, consisting of: denaturation at 95°C for 1 

min, annealing temperature adjusted according to primers (see Table 3.1) for 1 min and 

extension at 72°C for 1 min. The primers, the genes targeted and the size of their amplicons 

are listed in table 3.1. Primers were used at the final concentration of 4 pM. All primers, 

except for the positive controls tyrosine hydroxylase and P-actin, were intron-spanning and 

were tested on tissues known to express the specific mRNAs as positive control. The 

primers were designed against conserved parts of the cDNA, avoiding regions subject to 

splicing. The PCR conditions were optimised with positive control tissues in which each 

channel is known to be abundantly expressed, the eye for Cavl.l  and in the brain for all 

other channels. PCR products were visualized by ethidium bromide staining on 2 % 

agarose gel and their sizes evaluated by comparison with DNA ladder (hyperladder IV, 

Bioline). All products obtained from the carotid body amplification were sequenced. 

Negative controls consisted of samples in which the reverse transcriptase was omitted for

116



Chapter 3

the first strand synthesis and blank refers to samples in which the cDNA template was 

replaced with H2O. The expression of housekeeping genes, p-actin, and of the carotid body 

marker, tyrosine hydroxylase, were detected as positive control to attest the presence of 

viable cDNA after the reverse-transcription.

3.2.1.4 Sequencing o f the PCR products

The PCR products were extracted from the agarose gel according to the protocol 

using a QIAquick gel extraction kit (Qiagen). Brieftly, the agarose was cut around the 

amplified product and dissolved in QG buffer (300pl/100mg of agarose gel) containing 

guanidine thiocyanate and bringing the pH below 7.5 to allow binding the DNA to the 

column (low pH and high salt condition). The solution was incubated for 10 min at 50°C 

and vortexed every 2 to 3 min. Then, the solution was applied to a QIAquick column (silica 

membrane) and centrifuged for 1 min at 17, 900 g. The column was washed from any trace 

of agarose twice by adding 0.5 ml of QG buffer followed by a centrifugation step (1 min at 

17, 900 g) and then by adding 0.75 ml of PE buffer with a centrifugation for 1 min at 17, 

900 g. The residual ethanol present in the PE buffer was evaporated by 1 min of 

centrifugation after the solution has been removed. The DNA was eluted (in low salt) with 

50 \i\ nuclease-free water (Ambion, Warrington, UK) by 1 min centrifugation at 17, 900 g.
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Gene
bank

mRNA Primer sequences 5’-3’ CG% Tm/°C
Amplicon 

size, bp

AF110178 CaR

F! : ACCTGCTTACCCGGAAGAGGGCTTT 56 56.0 582
Rj : GCACAAAGGCGGTCAGGAAAATGCC 56
F2 : CTGCTTTGAGTGTGTGGAGT 50 62.5 759
R2 : GAAGATGAGCATGCTGAAGG 50

NM012517
Cav1.2

(L-type)

F : GGAGCCCGAGATGCCTGTG 68
58.3 433

R : AACGTTGATCGCGCTGGACTGAA 52

NM017298
Cav1.3

(L-type)

F : CTGCCCGTGCCCTCTTCTGTTTAT 54
56.5 512

R : GAGGAGGGGGACCATGGCTTTTAT 54

DQ393415
Cav1.4

(L-type)

F : CCGCCGGGCAGTCAAGT 71
58.5 531

R : TGGGGGAAGGTATCAAAGGTG 52

NM012918
Cav2.1 

(P/Q-type)

F : GACACGGCCTTACTTCCACTCTT 52
58.0 576

R : GCTGCCTCTTCCTCTTCTTGTTC 55

NM147141
Cav2.2

(N-type)

F : CCCGTGCGGACCGACTCATT 74
59.3 504

R : CCTTGGCTGGGCTTCTACCT 67

NMO19294
Cav2.3

(R-type)

F : TACAATACCAATGATGCCTTA 38
55.0 696

R : GACCCCAAAATCAAAGCAGT 44

NM031601
Cav3.1

(T-type)

F : GGCGGCGTGAGGAGAAGCGACTAC 67
61,0 425

R : GGGGTTGATGGGCAGCGACAGATT 58

AF290213 Cav3.2
(T-type)

F : TCGGCGCCGGGAGGAGAAAC 70
61.6 420R : ATGCGGATGATGGTGGGATTGATG 50

AF290214
Cav3.3

(T-type)

F : GCGACCGCGGGGAGGACGAG 80
61.7 485R : AGGACCCGGAGGACCCCCAGAATC 67

NM031144 P-actin
F : TCCTAGCACCATGAAGATC 47

54.0 190R : AAACGCAGCTCAGTAACAG 47

NMO 12740 Tyrosine
hydroxylase

F : CCCCAGCGCCCCCTCGCCACAGC 74
60.0 234

R : GCATTCCCATCCCTCTCCTCAAA 62

Table 3.1: Primers used for the amplification of CaR, voltage-dependent Ca2+ 

channels, p-actin and tyrosine hydroxylase transcripts by RT-PCR. From left to right, 

columns show the Gene Bank accession number, the mRNA targeted, the primer sequence 

form 5’ to 3’, the percentage in GC, the annealing temperature and the length of the 

amplicon in BP. All the primers were intron-spanning excepted for tyrosine hydroxylase 

and P-actin.
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The PCR products were then ligated in the pGEM®-T vector (Promega) by 

preparing the following solution: 5 \i\ of T4 DNA ligation buffer, 1 pi of pGEM®-T 

vector, 3.5 pi of PCR products, 1 pi of T4 ligase. The solution was incubated for 1 h at 

room temperature and stopped by at step at 4°C.

Bacteria (a-select, Bioline) were then transformed with the plasmid containing the 

PCR products. 50 pi of bacteria were incubated with 10 ng of plasmid for 30 min on ice, 

then a heat chock was applied (42°C during 50 s) and the bacteria were placed back on ice 

for 2 min. The bacteria were then growth in super optimal broth with catabolite repression 

(SOC) medium containing (in mM): 2 % Trypton Peptone, 0.5 % yeast extract, 10 NaCl,

2.5 KC1, 10 MgCl2, 10 MgSC>4 , 20 glucose for 1 h. Afterwards, the bacteria were spread on 

a pre-warmed LB agar (Sigma) plate supplemented with 100 pg/ml ampicillin (Sigma) and 

incubated for 12 h at 37.5°C. Then, three colonies, for each insert, were sent for 

sequencing

3.2.2 Immunohistochemistry on rat carotid body sections

The detection of specific gene expression in the carotid body by RT-PCR 

demonstrated that the Cav1.2 and Cav2.2 were expressed but did not provide information on 

the cell types expressing them. Therefore, immunostaining against the proteins encoded by 

the mRNA detected by RT-PCR were performed to determine the cell types expressing 

them and/or to confirm the PCR results at the protein level.
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3.2.2.1 Fixation and tissue preparation

According to the Home Office regulations, adult Wistar rats (250-300 g) were 

deeply anaesthetized with Euthatal (Merial) 60 mg/kg, IP. After the opening of the 

thoracic cavity, the rats were firstly transcardially perfused through the left ventricle with 

50 ml of a solution containing 10 unit/ml of heparin in PBS (containing, in mM: 0.14 

NaCl, 0.84 Na2HP0 4  and 0.16 NaHPCYdUO, pH 7.4) at a speed of 8 ml/min using a 

peristaltic pump (Watson Marlow 101U, Birmingham, U.K.) to flush the blood. A second 

perfusion was then performed with 75-100 ml of ice-cold fixative solution consisting of 4 

% paraformaldehyde in PBS (pH 7.4) for 4-5 min at a flow-rate of 20 ml/min. At the end 

of the perfusion, the carotid bifurcation and brain were removed and placed in 30 % 

sucrose solution in PBS at 4 °C for 24 h. The carotid bifurcation/cervical superior ganglion 

was cleaned of surrounding tissue and fat before freezing and subsequent embedding in 

OCT compound (Tissue-Tek, Sakura Finetek, Torrance, USA). 4 pm sections were cut 

with a cryostat (OTF5000 Bright, Huntingdon, U.K.) at -25 °C and placed on Superfrost- 

plus slides (VWR International, Lutterworth, U.K.). During the cutting process, the carotid 

bodies were visualised using eosin-Y coloration, which stains the cytoplasm, collagen and 

muscle fibres. The sections were kept at -80 °C until use.

3.2.2.2 Immunohistochemistry

For immunohistochemistry, the sections were processed as follows: 5 min 

rehydratation in PBS, 5 min in 1 % SDS in PBS to permeabilise the sections, 2 x 5  min 

wash in PBS and 1 h in solution A containing: 5 % Seablock (Eastcoast, Stratech 

Scientific, Soham, U.K.) in PBS, to prevent non-specific binding of the primary antibody.
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Then, the primary antibodies were incubated at the appropriate dilution overnight at 4 °C: 

tyrosine hydroxylase (1/1000, Sigma), Cav1.2 (1/200, Alomone, Buckingham, U.K.), 

Cav1.3 (1/200, Sigma), Cav2.1 (1/200 Alomone), Cav2.2 (1/100, Alomone), Cav2.3 (1/200, 

Santa Cruz, Heidelberg, Germany) and CaR (1/200, USbiological, Massachusetts, USA). 

All antibodies were diluted in solution A. After incubation with the primary antibodies, the 

slides were washed 3 x 5  min in PBS. The secondary antibodies (FITC-conjugated goat 

anti-mouse, Molecular Probes, Invitrogen, and TRITC-conjugated goat anti-rabbit, 

Molecular Probes) were diluted 1/1000 in solution A, the slides were incubated for 1 h at 

room temperature and then washed 3 x 5  min with PBS before mounting.

Negative controls were made by omitting the primary antibodies or by pre-incubating 

the primary antibodies with an excess of the antigenic peptide using the following 

protocol. The primary antibody was incubated overnight at 4 °C, at the concentration used 

for the staining, with the antigenic peptide at a ratio 1/2 Wandbody/Wpeptide diluted in solution 

A. The antibodies linked to the peptide were then spun down at 15,000 g for 15 min and 

the supernatant was used as a primary antibody solution.

As the positive stainings obtained were specifically localised in type 1 cells or in 

nerve endings, it was assumed that the staining was not due to non-selective 

immunoglobulin binding and no control was done using non-selective rabbit/mouse 

immunoglobulin.

The slides were mounted onto glass coverslips using Vectashield (Vector, Orton, 

U.K.) mounting medium and observed within the next 24 h.
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Observations were carried out with a Leica DM6000B confocal upright microscope 

linked to a laser scan head (Leica, Bucks, U.K.). The laser scanning system, TCS SP2 

AOBS, comprised one diode, one argon and two helium neon lasers allowing respectively 

the excitation of DAPI (405 nm), Alexa-488 and FITC (488 nm), Alexa-546 and TRITC 

(543 nm). Each dye was excited separately and sequentially to avoid interference. The 

entire setup was controlled with a Pentium PC running Leica Confocal Software (Version 

2.61). Images were acquired and analysed using the same software. Pictures were taken 

with a 60x-oil immersion objective. Each picture is the average value of 6 pictures of the 

same place. The z-scans were done by performing a scan every 0.7 pm with the pictures for 

the different antibodies taken sequentially for each stack, starting by the weaker staining 

(usually FITC) and finishing with DAPI staining.
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3.3 RESULTS

3.3.1 Positive control for tyrosine hydroxylase and p-actin

To asses the quality of the reverse-transcription, the presence of a housekeeping 

gene was detected. This was p-actin in the brain, eye and carotid body. In addition, a 

marker of type 1 cells, tyrosine hydroxylase, was also amplified from the carotid body 

mRNA. Figure 3.1 shows a typical example of tyrosine hydroxylase amplification, with an 

amplicon size of 234 bp (A), whereas figure 3.IB presents a P-actin amplification from the 

carotid body and eye, with bands at 190 bp, as expected. These products confirm the 

presence of bona fide tyrosine hydroxylase and carotid body transcripts in carotid body 

cDNA preparation.

3.3.2 Identification of L-type Ca2+ channel expressions in carotid body tissue

3.3.2.1 RT-PCR o f L-type Ca2+ channels

The L-type Ca2+ channel family comprises four genes: Cavl . l ,  Cav1.2, Cav1.3 and 

Cav1.4. Cavl . l  is located only in the transverse tubules of skeletal muscle and is coupled to 

ryanodine receptors (Altafaj et al., 2005), where it plays a role in excitation contraction 

coupling. Moreover, it has never been found to be expressed in another cell type, therefore 

no attempt was made to amplify Cavl . l  from carotid body. Cav1.4 is generally thought to 

be especially expressed in the retina (Soong et al., 1993). Nevertheless, McRory et al. have 

reported its expression in other tissues such as adrenal gland, bone marrow, spinal cord,
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muscle and spleen (McRory et al., 2004); so its expression in the carotid body was 

assessed. Cav1.2 and Cav1.3 are widely expressed in many cell types, including endocrine 

glands (Catterall et al., 2003) and are, therefore, very likely to be expressed in carotid body 

type 1 cells. The PCR results showed that Cav1.2 was detectable in carotid body with a 

sequenced amplicon of 433 bp (Fig. 3.2A). In contrast, Cav1.3 (Fig. 3.2B) and Cav1.4 (Fig. 

3.2C) could not be amplified while the positive controls, brain and eye, gave amplicons at 

the expected size of 512 and 531 bp, respectively. The sequencing of the PCR products 

obtained in the carotid body for Cav1.2 showed 100 % homology with the sequence 

targeted in the Cav1.2 rat mRNA obtained from Gene Bank (Fig. 3.3).
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A) T yrosine  h y d ro x y lase

ladder blank carotid body

300 bp 
200 bp <-------  234 bp

B) p-actin

ladder carotid body eye

200 bp 
100 bp

190 bp

Figure 3.1: Positive controls for the reverse-transcription from isolated rat carotid body 

mRNA. Typical examples of control PCRs run for amplification of tyrosine hydroxylase in 

carotid body (A), an enzyme marker of type 1 cells; and of p-actin, a house keeping gene (B). 

The amplicons were of the expected size for both tyrosine hydroxylase (234 bp) and for p- 

actin (190 bp). The ladder shows one band every 100 bp.
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A) C av1.2
ladder brain carotid body

500 bp 
400 bp 433 bp

B) C av1.3
brain ladder carotid body

512 bp

C) C av1.4
eye ladder carotid body

531 bp

Figure 3.2: Expression of Cav1.2 but not Cav1.3 and Cav1.4 mRNAs in carotid body. Cav1.2 was 

amphfied from the carotid body and the brain with an amplicon of the expected size of 433 bp (A). 

In contrast, Cav1.3 and Cav1.4 could not be detected in the carotid body while it was expressed in 

brain or eye samples, at 512 and 531 bp respectively (B and C). Cav1.2 is, therefore, the only L-type 

Ca2+ channel expressed in carotid body. (-) consists of total mRNA extraction sample in which the 

reverse transcriptase has been omitted. The ladder shows one band every 100 bp.
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pMGEM-T 4 0 GNATTAACGTTGATCGCGCTGGNACTGAATGCCAAAGGAGATGAGGGACA
I I I I I I I I I I I I I I I I I - I I I I I I II I I I I I I I I II I I I I I I I I I

NM_012517 3254 AACGTTGATCGCGCTGG-ACTGAATGCCAAAGGAGATGAGGGACA

9 0 CGCTAACCACCAGCAGGTCCAGGATATTGAAGTAATTTCGGCAGAAAGAGCCCTTGTGCA
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I

3210 CGCTAACCACCAGCAGGTCCAGGATATTGAAGTAATTTCGGCAGAAAGAGCCCTTGTGCA 

150 GGAAAGCCCCGTAAGCAGTCATCTTTAGAGCAATTTCAATGGTGAAAATGGTGGTAAAAA
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I

3150 GGAAAGCCCCGTAAGCAGTCATCTTTAGAGCAATTTCAATGGTGAAAATGGTGGTAAAAA 

210 CAATGTCAAAATAAAACAGAATGTGGTTCCTGAAGGAGGTGTGCTGGACGGGGTCCTCAG
I II I I I II I II I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

3 090 CAATGTCAAAATAAAACAGAATGTGGTTCCTGAAGGAGGTGTGCTGGACGGGGTCCTCAG 

270 CCGCCAGGGAGATGCTACTGAGCAGAATGAAGAAGAGGATGAGGTTGGTGAAGATCGTGT
I I I I I I I I I I I I I I I I I I I I I I I I II I I I II I I I I I I II I I I I I I I I I I I I I I I I I I I I I

3 030 CCGCCAGGGAGATGCTACTGAGCAGAATGAAGAAGAGGATGAGGTTGGTGAAGATCGTGT 

330 CATTGACAATGCGGTGGCACTGCAGGCGGAACCTGTTGTTTGGGCTGAAGATGAAAAATG
III11 III 111I I11111I I111111I I11 III 111111 III 11II Mi l l  III 11 MM

2970 CATTGACAATGCGGTGGCACTGCAGGCGGAACCTGTTGTTTGGGCTGAAGATGAAAAATG 

390 CACTGGCTTCCGGCATGGGGACTGCCTTTTCCTTAAGGTGCAGCTCAGACAGGGGCCGGG
I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I

2910 CACTGGCTTCCGGCATGGGGACTGCCTTTTCCTTAAGGTGCAGCTCAGACAGGGGCCGGG 

450 GGCGTGGGCCCACAGGCATCTCGGGCTCCAATCA 483
I II I I II I II I I I I I I I I I I I I I I I I II I

2850 GGCGTGGGCCCACAGGCATCTCGGGCTCC 2822

Figure 3.3: Alignment of the sequence of Cav1.2 product amplified by RT-PCR in the 

carotid body with the Cav1.2 sequence from the Gene Bank. Upper line shows the 

sequence of the product amplified by RT-PCR. The amplicon was inserted prior to 

sequencing in the plasmid pGEM®-T. The adjacent parts of the plasmid pGEM®-T are 

shown in bold and the primers used for the amplification are highlighted in yellow. The 

sequence presented in the lower line corresponds to part of the Cav1.2 rat mRNA targeted 

(Gene Bank accession number NM_012517). The two sequences are identical excepted for 

one sequencing mistake located in the primer. The amplified product has the expected 

length of 433 bases.
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33.2.2 Immunostaining o fC a v1.2 and Cav1.3 Ca2+ channels

To confirm the presence of protein and investigate cellular localisation of the L- 

type Ca2+ channels, immunostaining against tyrosine hydroxylase, Cav1.2 and Cav1.3 was 

performed. Figure 3.4 shows a view of the carotid body/superior cervical ganglion region 

and figure 3.5 presents tyrosine hydroxylase and Cav1.2 immunostaining in rat carotid 

body. Tyrosine hydroxylase immunostaining allowed identification the type 1 cells which 

are organised in clusters (Fig. 3.4C and 3.5B). Cav1.2 was expressed in superior cervical 

ganglion and in the carotid body (Fig. 3.4B, D and 3.5A, C). In the carotid body, tyrosine 

hydroxylase and Cav1.2 immunoreactivity co-localised, demonstrating that type 1 cells 

express Cav1.2. In addition, Cav1.2 was found to be expressed in the nerve (N, Fig.3.4B, D 

and 3.5A, C). The negative control for Cav1.2, carried out by omission of the primary 

antibody, demonstrated that no staining was detected (Fig. 3.5D).

The carotid body did not demonstrate any immunoreactivity for Cav1.3, as revealed 

by the figure 3.6. The positive control, on brain tissue (Fig. 3.6E), showed the expression of 

Cav1.3 in specific areas of cortical neurons, probably corresponding to the synapses, where 

Cav1.3 is known to be expressed (Ludwig et al., 1997).
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Figure 3.4: View of a carotid body/superior cervical ganglion region immunostained 

for Cav1.2 and tyrosine hydroxylase. A) Nuclei are stained with DAPI in blue. B) Cav1.2 

immunoreactivity is green (FITC-conjugated secondary antibody). C) Tyrosine 

hydroxylase (TH) is red (TRITC-conjugated secondary antibody). D) Merged image of A, 

B and C. Cav1.2 was present in nerve (N), type 1 cells in carotid body and superior cervical 

ganglion (SCG). Scale bar = 100 \im  and applies to all panels.
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Figure 3.5: Expression of Cav1.2 protein in type 1 cells. A) Cav1.2 is green (FITC- 

conjugated secondary antibody). B) Tyrosine hydroxylase is red (TRITC-conjugated 

secondary antibody). C) Merged image of A and B. The nuclei are stained in blue with 

DAPI. Cav1.2 and tyrosine hydroxylase co-localize within the same cells, indicating that 

Cav1.2 is expressed in type 1 cells. Cav1.2 is also expressed in the nerve as shown by the 

arrow. D) The negative control, consisting of omission of primary antibody for Cav1.2, 

shows no immunoreactivity. Scale bar = 20 pm for A, B and C and 50 pm for D.
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Figure 3.6: Absence of immunoreactivity for Cav1.3 protein in type 1 cells. A) Exemplar 

carotid body section stained for Cav1.3 in green (FITC-conjugated secondary antibody). 

Carotid body did not have any immunoreactivity for Cav1.3. B) Tyrosine hydroxylase 

staining is red (TIRTC-conjugated secondary antibody). C) Merged image of A and B with 

DAPI in blue. D) Negative control made by omission of the primary antibody. E) Positive 

control shows Cav1.3 immunostaining, in red, made in rat cortex. Scale bars = 50 pm.
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3.3.3 Identification of N, P/Q and R-type Ca2+ channel expressions in carotid body 

tissue

3.3.3.1 RT-PCR o f N, P/Q and R-type Ca2+ channels

Figure 3.7A shows a typical example of optimisation of the PCR conditions, where 

the annealing temperature was modified to obtain optimal amplification. Three 

temperatures were tested: 55.0 °C, 57.2 °C and 59.0 °C. The optimal annealing temperature 

was estimated at 57.2 °C but the best results were obtained at 59.0 °C, a temperature which 

was then used for subsequent PCR reactions. Cav2.2 (N-type) could be amplified in the 

carotid body and in the brain at the predicted size of 504 bp (Fig. 3.7B). The sequencing of 

the PCR product obtained in the carotid body for Cav2.2 shows 100 % homology with the 

sequence targeted in the Cav2.2 rat mRNA (Fig. 3.8).

Cav2.1 (P/Q-type) and Cav2.3 (R-type) could not be detected (Fig. 3.9A and B) in 

the carotid body whereas transcripts for these channels could be amplified from brain and 

gave rise to the correct amplicon sizes 576 and 696 bp, respectively.

3.3.3.2 Immunostaining o fN , P/Q and R-type Ca2+ channels

Figure 3.10 shows the immunoreactivity for Cav2.2 in rat carotid body. The same 

cells which were immunoreactive for tyrosine hydroxylase (Fig. 3.10B, C) also exhibited 

Cav2.2 immunostaining, (Fig. 3.10A, C) leading to the conclusion that type 1 cells express 

Cav2.2. The negative control, made by pre-incubation of the primary antibody with the 

blocking peptide presented no immunoreactivity (Fig. 3.10D).
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In contrast, the carotid body did not show any immunoreactivity for Cav2.1 (Fig. 

3.11) or Cav2.3 (Fig. 3.12). The use of brain tissue as a positive control confirmed the 

sensitivity of the antibodies against Cav2.1 and Cav2.3. Brain highly expresses these two 

channels and therefore exhibited a high background fluorescence (Doering & Zamponi, 

2003).
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A
ladder 55.0 °C 57.2 °C 59.0 °C

500 bp -------- ► - -------  M W  •*-------  504 bp

brain ladder carotid body

Figure 3.7: Expression of Cav2.2 mRNA in carotid body. A) Typical example of 

optimization of the annealing temperature showed here with Cav2.2. Three different 

temperatures were tested 55.0 °C, 57.2 °C and 59.0 °C. 59.0 °C gave the best result and 

was then used for the amplification of Cav2.2 from carotid body mRNA shown in (B). 

Cav2.2 was amplified from brain, as a positive control, and in carotid body at the predicted 

size of 504 bp, confirmed by sequencing.
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pMGEM-T 34 GGATTCCTTGGCTGGGCTTCTACCTCTTCCTTCTCATAATCCAAATACTG
IN  I M  ......................... I ...................................................

NM_147141  4 099 CCTTGGCTGGGCTTCTACCTCTTCCTTCTCATAATCCAAATACTG

8 4 ACCCCTGCAGTCCCGCTCCAGCTCCTTGGACTCATCAGTGCAGTAAAAGAACTTCCCTTT
111111111111111111111111111111111111111111111111111111111111 

4054 ACCCCTGCAGTCCCGCTCCAGCTCCTTGGACTCATCAGTGCAGTAAAAGAACTTCCCTTT

144 GAAGAGTTGGACGGCGATGACGGCAAATATAAACATGAAGAGCATGTAGACGATCAGGAT
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II I I I I I I I I II I I I I I I I I I I I I I I I I I

3 994 GAAGAGTTGGACGGCGATGACGGCAAATATAAACATGAAGAGCATGTAGACGATCAGGAT 

204 GTTCAAGACATTCTTCAGAGAGTTCACCACACAGTCAAACACAGCCTTGAGTTTAGGCAG
I I I I I I I I I I II I II I I I I I I I II I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I

3 934 GTTCAAGACATTCTTCAGAGAGTTCACCACACAGTCAAACACAGCCTTGAGTTTAGGCAG 

264 CCGCTTGATGGTCTTGAGGGGCCGCAGGACTCGCAGGACTCTCAGAGACTTGATGGTATT
I I I I I I II I I I I I II I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I I I I I I I I I I I

3874 CCGCTTGATGGTCTTGAGGGGCCGCAGGACTCGCAGGACTCTCAGAGACTTGATGGTATT 

324 GATGTCTTTCCCTTTGGATCCTGAGAATGCAAATGCCACCAGGGCTCCACTGACAACAAT
l l l l l l l l l l l l l  I I I I  Mi l  11I I I I 11I I 11I I I I 11111111111 Mi l  II11 III I

3814 GATGTCTTTCCCTTTGGATCCTGAGAATGCAAATGCCACCAGGGCTCCACTGACAACAAT 

384 GAAGTCCAGAATGTTCCACAGGTCCCGGAAGTAGGCCCCAGGGTGCAGCAGCAGGCCCAA
I I I I I I I I I I I I I I I I II II I I I I I I I I I I 11 I II I I I II I I I I I I I I I I I I I I I I I I I I

3754 GAAGTCCAGAATGTTCCACAGGTCCCGGAAGTAGGCCCCAGGGTGCAGCAGCAGGCCCAA 

444 GTCTATCATCTTTATGACCATCTCAAAGGTGAAGACTCCTGTAAAGATGTAGTCCATGTA
I I I I I I I I I I II I I I I I I I I I I I I I I I 1 II I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

3694 GTCTATCATCTTTATGACCATCTCAAAGGTGAAGACTCCTGTAAAGATGTAGTCCATGTA 

504 CTTCAGAGCATTGTTCCGGAATGAGTCGGTCCGCACGGGAATCA 54 8

l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
3634 CTTCAGAGCATTGTTCCGGAATGAGTCGGTCCGCACGGG 3 595

Figure 3.8: Alignment of the sequence of Cav2.2 product amplified by RT-PCR in the 

carotid body with the Cav2.2 sequence from the Gene Bank. Upper line shows the 

sequence of the product amplified by RT-PCR. The amplicon was inserted prior to 

sequencing in the plasmid pGEM®-T. The adjacent parts of the plasmid pGEM®-T are 

shown in bold and the primers used for the amplification are highlighted in yellow. The 

sequence presented in the lower line corresponds to the part of the Cav2.2 rat mRNA 

targeted (Gene Bank accession number NM_147141). The two sequences are identical and 

the amplified product had the expected length of 504 bases.
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A) C av2.1
brain ladder - carotid body

B) C av2.3
brain ladder carotid body

696 bp

Figure 3.9: Absence of expression of Cav2.1 and Cav2.3 mRNAs in carotid body. A)

Cav2 .1 mRNA could not be amplified in the carotid body sample while the positive control 

gave the appropriate amplicon at the size of 576 bp. B) Cav2.3 mRNA could not be 

detected in the carotid body. The RT-PCR carried out on brain mRNA (positive control) 

produced an amplicon at the expected size at 696 bp and probably amplified a splice- 

variant at a slightly lower weight near 600 bp. A non-specific band appeared around 450 bp 

in the brain and carotid body. The sequencing of this amplified transcripts revealed that this 

band corresponded to the amplification of adenosine phosphorylase transferase indicating a 

non specific product.
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D

Figure 3.10: Expression of Cav2.2 protein in carotid body type 1 cells. Typical 

immunostaining to detect Cav2.2 in green (FITC-conjugated secondary antibody). B) 

Tyrosine hydroxylase is red (TRITC-conjugated secondary antibody). C) Merged image of 

A, B with the nuclei stained in blue with DAPI. Tyrosine hydroxylase positive cells also 

exhibited Cav2.2 immunoreactivity demonstrating that type 1 cells express Cav2.2. D) is a 

negative control made by pre-incubation of the primary antibody with the blocking peptide. 

Scale bar = 20 pm.
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Figure 3.11: Absence of immunoreactivity for Cav2.1 protein in type 1 cells. A) DAPI staining 

is blue. B) Cav2.1 immunoreactivity is green (FITC-conjugated secondary antibody). C) Tyrosine 

hydroxylase is red (TRITC-conjugated secondary antibody). D) Merged image of A, B and C. 

Carotid body did not present any immunoreactivity for Cav2.1. The asterisk (*) marks a blood 

vessel cut transversally. A negative control (omission of the primary antibody) in the carotid body 

is shown in (E) and a positive control was made using a brain slice (F). F) Presents a typical 

staining with numerous nerves positive to Cav2 .1 in green. Scale bars = 50 pm.

138



Chapter 3

Figure 3.12: Absence of immunoreactivity for Cav2.3 protein in type 1 cells. A) DAPI 

staining is blue. B) Cav2.3 is green (FITC-conjugated secondary antibody). C) Tyrosine 

hydroxylase is red (TRITC-conjugated secondary antibody). D) Merge imaged of A, B and C. 

Carotid body did not present any immunoreactivity for Cav2.3. A negative control (omission of 

the primary antibody) in the carotid body is shown in (E) and a positive control was made 

using a brain slice (F). F) shows a typical staining with the soma of a neuron (thick arrow) and 

some nerves (thin arrow) positive to Cav2.3 in green. Scale bars = 50 pm.
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3.3.4 Identification of T-type Ca2+ channels expression in carotid body tissue

T-type currents are known to regulate many processes taking place in the carotid 

body in chronic hypoxia such as neurosecretion, differentiation, growth and proliferation, 

leading to the hypothesis of an involvement o f T-type currents in these processes in type 1 

cells. In addition, in response to chronic hypoxia, T-type (Cav3.1) current is up regulated in 

PC 12 (Del Toro et al., 2003) and chromaffin (Carabelli et al., 2007) cells. Because of these 

findings, the expression of the T-type genes was investigated in rat carotid body.

Cav3.1, Cav3.2 and Cav3.3 mRNAs could not be amplified in the carotid body (Fig. 

3.13A, B and C) whereas the positive control (brain) produced the amplicons at the 

expected sizes of 425, 420 and 480 bp, respectively.

3.3.5 Identification of CaR expression in carotid body tissue

Using RT-PCR, CaR mRNA could not be amplified from rat carotid body (Fig. 

3.14A). Indeed, with two different set of primers the CaR was not amplified in the carotid 

body, yet the positive controls yielded amplicons at the expected sizes of 582 and 759 bp.

Immunostaining for tyrosine hydroxylase and CaR proteins revealed that the CaR 

was expressed in the nerve endings but not in type 1 cells or type 2 cells (Fig. 3.14B, C and 

D). The use of confocal imaging clearly shows that the CaR immunostaining follows a line 

pattern characteristic of nerve terminals. Moreover, a side view of the z-stack, presented on
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the side of the merged image, shows the section of the nerve which appeared like a circle- 

shape abutting the type 1 cells (Fig. 3.14D).
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A) C av3.1
ladder brain carotid body

B) C av3.2
ladder brain carotid body

C) C av3.3
brain ladder - carotid body

Figure 3.13: Absence o f expression of T-type Ca2+ channel mRNAs in carotid body.

RT-PCR from carotid body total mRNA for Cav3.1 (A), Cav3.2 (B) and Cav3.3 (C) did not 

give any products whereas the positive control, brain mRNA, gave amplicons at the 

predicted sizes, of 425, 420 and 480 bp, respectively.
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CB brain ladder brain CB

582 bp 759 bp

vTr-; _ #-

Figure 3.14: CaR protein was not expressed in carotid body type 1 cells but was present in 

nerve endings. A) CaR could not be amplified by PCR in rat carotid body (CB) using two different 

sets of primers. Although, the positive controls, plasmid containing the human CaR, produced the 

right size amplicons at 582 and 759 bp. Double immunostaining in carotid body slice to detect CaR 

(in green, B) and tyrosine hydroxylase (in red, C) revealed that the CaR was expressed only in the 

nerve ending, but not in type 1 cells. The merge confocal image (D) also shows the z-stack at the 

level where the lines cross (DAPI was in blue). E is the sum of the maxium signal from each slice. 

The CaR staining follows a linear pattern corresponding to the nerve. Scale bar = 10 pm.
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3.4 DISCUSSION

The results of this study show the presence Cav1.2 and Cav2.2 mRNAs in the 

carotid body and the expression of Cav1.2 and Cav2.2 proteins in type 1 cells. In addition, 

other voltage-dependent Ca2+ channels, namely Cav1.3, Cav1.4, Cav2.1, Cav2.3, Cav3.1, 

Cav3.2 and Cav3.3 could not be detected either by RT-PCR or by immunostaining. 

Therefore, these channels are not expressed or are present at undetectable levels. In 

addition, the CaR was shown to be expressed only in the nerve ending.

The detection of an L-type Ca2+ channel is in agreement with most of the previous 

electrophysiological data obtained in rat carotid body, showing a central role of L-type 

current in mediating the Ca2+ influx (Buckler & Vaughan-Jones, 1994c; e Silva & Lewis, 

1995) and others (see Introduction to this chapter). According to their expression profiles in 

neurons and neuroendocrine cells (Catterall et al., 2003), both Cav1.2 and Cav1.3 were 

expected to be expressed in type 1 cells; yet only the expression of Cav1.2 was detected. 

For instance, in the adrenal gland, chromaffin cells express Cav1.2 and Cav1.3 and both of 

these channels link the catecholamine secretion with the depolarisation (Marcantoni et a l, 

2007). Or, contrary to the carotid body, rat pinealocytes, which secrete melatonin, express 

only the subtype Cav1.3 (Chik et al., 1997). The expression of Cav1.2 and Cav1.3 is, 

therefore, tissue specific. This specificity can be explained by the different electrical and 

pharmacological properties of Cav1.2 and Cav1.3. Indeed, Cav1.3 is activated at a 

membrane potential of - 65 mV and Cav1.2 at - 40 mV (Xu & Lipscombe, 2001) and 

Cav1.3 is less sensitive to dihydropyridines than Cav1.2 (Xu & Lipscombe, 2001). Type 1 

cells have a resting membrane potential of - 50 mV (Gonzalez et al., 1994), therefore, it is
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coherent that they express Cav1.2 but not Cav1.3. Moreover the activation of voltage- 

dependent Ca2+ channels in rat type 1 cells start at - 40 mV (Peers et al., 1996), 

corresponding to the value found for Cav1.2 (Xu & Lipscombe, 2001).

The identification of Cav2.2 (N-type) in rat carotid body by RT-PCR and 

immunostaining corroborates the results obtained by others showing the participation of 

Cav2.2 to the Ca2+ influx induced by hypoxia (e Silva & Lewis, 1995; Peers et al., 1996). In 

addition, Cav2.1 (P/Q-type) and Cav2.3 (R-type) could not be detected by either RT-PCR or 

by immunohistochemistry. The absence of expression of Cav2 .1 gene is in accordance with 

the lack of effect of co-agatoxin IVA, a specific blocker of Cav2.1, on Ca2+ influx in type 1 

cells (Peers et al., 1996). To date, no functional data can confirm the absence of expression 

of Cav2.3 in rat carotid body found in this study as the effect of SNX482, the only specific 

blocker of Cav2.3, has never been tested on type 1 cells.

It is interesting to notice that BKca can form macromolecular complexes with 

Cav1.2, Cav2.1 and Cav2.2, as shown by co-immunoprecipitation from solubilised plasma 

membranes from rat brain (Berkefeld et al., 2006). The formation of this complex would 

help to supply quickly Ca2+ to BKca to induce the activation of this latter channel. As all the 

voltage-dependent Ca2+ channels, with the exception of Cavl . l  and Cav1.4, are expressed in 

the brain, it is likely that BKca only forms macromolecular complexes with the channels 

found to co-immunoprecipitate: Cav1.2, Cav2.1 and Cav2.2. Since the carotid body 

expresses Cav1.2 and Cav2.2, it is possible that this macromolecular complex exists in the 

carotid body as well.
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The fact that T-type Ca2+ channels are up regulated by chronic hypoxia in 

chromaffin cells (Cav3.2) (Carabelli et a l ,  2007) and in PC 12 cells (Cav3.1) (Del Toro et 

al., 2003) has lead to the hypothesis that T-type Ca2+ channels could be expressed in 

carotid body type 1 cells. Nevertheless, T-type Ca2+ channels were not detectable by RT- 

PCR. This result is consistent with functional observations which show the lack of T-type 

currents in type 1 cells. Indeed, Ca2+ currents in type 1 cells, begin to be activated at - 40 

mV (Peers et al., 1996; Lopez-Lopez et al., 1997) which is above the threshold of 

activation of T-type currents (Perez-Reyes, 2003). For these reasons, the immunochemistry 

against T-type channels was not carried out. The absence of expression of T-type Ca2+ 

channels in normoxia does not refute the hypothesis that they might be up regulated in 

chronic hypoxia in the carotid body. According to Hempleman, the amplitude and density 

of Ca2+ currents increases in chronic hypoxia (Hempleman, 1996). This increase is 

probably due in part to an increase in Cav1.2. Indeed, in HEK293 cells stably transfected 

with Cav1.2, the current density and Cav1.2 protein expression increased after 24 h of 

chronic hypoxia (Scragg et al., 2005). Nonetheless, a dihydropyridine-insensitive channel 

increases its expression after chronic hypoxia, and in chronic hypoxia nifedipine blocks 

only 43 % of the current (whereas it blocks about 70 % of the current in normoxia (Buckler 

& Vaughan-Jones, 1994c; e Silva & Lewis, 1995)). These results should be considered 

carefully as Peers and Carpenter observed only an increase in current amplitude, but not 

current density, following chronic hypoxia (Peers et al., 1996; Carpenter et al., 1998). This 

increase in current amplitude but not density is due to the fact that in chronic hypoxia the 

cells are bigger but, relatively, do not express more channels as the density of the current is 

constant between normoxia and chronic hypoxia.
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My results also show that the CaR could not be amplified by RT-PCR from rat 

carotid body but was detected by immunostaining in the nerve ending. These results are in 

agreement with the absence of effect of CaR agonists, spermine and neomycin, and of the 

allosteric modulator, R-568, on [Ca2+]i homeostasis in type 1 and type 2 cells, observed in 

chapter 2. The fact that the CaR mRNA could not be detected by RT-PCR but the protein 

was found in the nerve ending can be explained by the fact that the mRNA is synthesised in 

the soma of the neurons, whereas the protein is synthesised there and then trafficked to the 

nerve ending. The expression of CaR in the nerve ending corroborates the results of Ruat 

and al. showing the expression of CaR in other neuronal nerves ending (Ruat et a l ,  1995).
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3.5 CONCLUSION

This study represents the first complete description of the gene expression of 

voltage-dependent Ca2+ channel mRNA and protein in rat carotid body. The results show 

the expression of Cav1.2 and Cav2.2 in rat type 1 cells, confirming the conclusions of the 

electrophysiological data gathered by others. In addition to the data obtained by Buriel et 

al. on transient receptor potential channel (TRPC) expression in rat carotid body (Buniel et 

al., 2003), a complete picture of the ion channels responsible for the Ca2+ influx in type 1 

cells can now be produced. Thus, Cav1.2 and Cav2.2 are the voltage-dependent Ca2+ 

channels mediating the primary Ca2+ influx induced by membrane depolarisation and 

leading to neurotransmitter release. The release of ACh leads to the activation of 

muscarinic receptor which, via the protein Gq, opens the transient receptor potential 

channel 1 and 3 to 7 inducing a Ca2+ influx.

Regarding the effect o f spermine on carotid body, the experiments in chapter 2 

revealed an inhibitory effect of this polyamine on catecholamine release due to an 

inhibition of the Ca2+ influx mediated by voltage-dependent Ca2+ channels. The molecular 

identification of the voltage-dependent Ca2+ channels expressed in rat carotid body lead to 

the hypothesis that spermine should inhibit Cav1.2 and/or Cav2.2. This hypothesis will be 

assessed in the chapter 4.

The absence of expression of CaR in type 1 and type 2 cells corroborates the 

absence of effect of CaR modulators on [Ca2+]i in type 1 and type 2 cells. Moreover, CaR 

has been implicated in neuronal development. It modulates axonal and dendritic growth
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(Vizard et al., 2008) and neuronal migration (Chattopadhyay et al., 2007). In accordance 

with these findings, in the carotid body, the CaR could be involved in the remodelling of 

the nerve endings in chronic hypoxia as the carotid body increases in size (Gonzalez et al.,

1994). Further studies, using normoxic and hypoxic carotid body from wild type versus 

CaR knock-out mice, are needed to test this hypothesis.
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EFFECT OF SPERMINE, NEOMYCIN AND R-568 ON 

VOLTAGE-DEPENDENT Ca2+ CHANNELS Cav1.2 

EXPRESSED IN HEK293 CELLS

AND

EFFECT OF CO-APPLICATION OF SPERMINE AND 

NIFEDIPINE ON TYPE 1 CELLS
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4.1 INTRODUCTION

In chapter 2, the modulation of catecholamine secretion and [Ca2+]; homeostasis by 

spermine, neomycin and by R-568 was investigated. Spermine had an inhibitory effect on 

both catecholamine secretion and [Ca2+]i increase induced by high K+ and neomycin was 

able to block the Ca2+ influx whilst R-568 did not interact with any of this process. The 

conclusion was that the spermine and neomycin were inhibiting, directly or indirectly, the 

voltage-dependent Ca2+ channels through which the Ca2+ entered the type 1 cells.

Electrophysiological data from other groups (Fieber & McCleskey, 1993; Buckler 

& Vaughan-Jones, 1994c; e Silva & Lewis, 1995) have shown the central role of L-type 

channels in mediating the [Ca2+]i increase evoked by hypoxia. Moreover, other channels 

could be implicated to a lesser extent, such as N-type and/or voltage insensitive calcium 

channels (Buniel et al., 2003). The molecular analysis, performed in chapter 3, of the 

expression of voltage-dependent Ca2+ channels in rat carotid body supports the functional 

evidence of L- and N-type (Peers et a l ,  1996) calcium channels in type 1 cells and have 

pushed forward the investigation by identifying the genes expressed. Indeed, the 

experiments showed that L-type channel expressed in carotid body is Cavl.2.

The next experiments aimed to elucidate the mechanism mediating the inhibitory

2_j_
effect of spermine and neomycin on voltage-dependent Ca channels expressed m rat 

carotid body. This inhibition could be either direct or indirect. The fact that L-type calcium 

channels are responsible for 70-80 % (Buckler & Vaughan-Jones, 1994c; e Silva & Lewis,

1995) of the [Ca2+]i increase in type 1 cells, and that Cav1.2 is the only L-type Ca2+ channel
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gene detectable in rat carotid body, led to the hypothesis that spermine and/or neomycin 

might inhibit Cav1.2. In addition, as calcimimetics are derivates of Ca2+ channel blockers, 

the effect of R-568 on Cav1.2 was investigated. These hypotheses were tested by patch- 

clamp recording and Ca2+ imaging in HEK293 cells transiently and stably transfected with 

human Cav1.2. The alignment of the amino acid sequence of the human (Gene Bank 

accession number AF465484) and rat (NM012517) Cav1.2 channel shows 94 % of 

identities. The electrical and pharmacological properties of the two channels are very likely 

similar and the results obtained with the human Cav1.2 channel are transferable to the rat 

channel.

Finally, to test the involvement of Cav1.2 in mediating the spermine effect in type 1 

cells, spermine and nifedipine were co-applied simultaneously on type 1 cells.
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4.2 MATERIALS AND METHODS

4.2.1 Wild-type HEK293 and Cav1.2-HEK293 Cells Culture

HEK293 cells were used to study the effect of spermine on Cav1.2. Compare to 

carotid body cells or more generally, to any primary cultured cells, HEK293 cells have the 

advantage to express specifically and, usually at a high level, the cDNA stransfected. The 

high expression of Cav1.2 allows testing the direct effect of spermine on the channel, 

without any possible interference due to the presence of other molecules which could be 

expressed in native cells line such as other Ca2+ channels or CaR.

Wild-type HEK293 cells were purchased from ATCC (Teddington, UK) and 

HEK293 cells stably expressing human Cav1.2 (Cav1.2-HEK293) were kindly donated by 

Prof C. Peers (Leeds University, UK). All cells were maintained in DMEM containing 

Earle’s salts and L-glutamine (Invitrogen, Paisley, UK) supplemented with 10 % (v/v) 

foetal calf serum (Hyclone, Cramlington, UK), and 1 % (v/v) antibiotic/antimycotic; with 

500 mg/1 of G418 (Invitrogen) for Cav1.2-HEK293 cells. The G418 is an antibiotic for 

which the resistence gene was included in the plasmid, therefore only the transfected cells 

were able to grow. Cells were grown in 10 ml of medium in filter capped T25 culture 

flasks. Every 3-4 days, when -8 0  % confluency was reached, the cells were dissociated as 

follow: 2 washes with Ca2+- and M g2+-free PBS (Gibco, Invitrogen), 3 min incubation with 

trypsin IX in PBS (Gibco), 7 ml of medium was then added and the cells were spun down 

at 1, 200 g for 4 min. Cells were resuspended in 10 ml of fresh medium and cultured at the 

concentration 1:9 in a new culture flask at 37 °C in 5 % CO2 and 95 % air.
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In preparation for patch-clamp and Ca2+ imaging experiments, cells were seeded at 

a low density on 16 mm coverslips placed in 12 well plates and cultured for 24 h prior to 

the experiments to let the cells recover and settle down.

4.2.2 Transfection of HEK293 cells with Cav1.2 plasmid

4.2.2.1 Transformation o fE .co li with Cavl.2 plasmid

The plasmid containing the human Cav1.2 was a gift from Prof C Peers (Leeds 

University, UK). For the transformation, 50 pi of E.coli cells (Bioline, London, UK) with 

10 pg of plasmid were placed on ice for 30 min before a heat shock was administrated at 42 

°C for 50 s. Subsequently, the bacteria were placed on ice for 2 min and then suspended in 

150 pi of super optimal broth with catabolite repression (SOC) containing (in mM): 2 % 

trypton peptone, 0.5 % yeast extract, 10 NaCl, 2.5 KC1, 10 MgCU, 10 MgSCL, 20 glucose. 

The cells were then shaken for 1 h at 37 °C. Afterwards, the bacteria were spread on a pre­

warmed LB agar (Sigma) plate supplemented with 100 pg/ml ampicillin (Sigma) and 

incubated for 12 h at 37.5 °C. The Cav1.2 plasmid contains a gene providing the resistance 

against ampicillin, which allows especially the growth of the bacteria expressing the 

plasmid. One of the colonies was then picked, dissolved in 1 ml of LB Broth EZMIX 

medium (20.1 g/1 Sigma) with 100 pg/ml ampicillin and incubated at 37.5 °C. 8 h later, the 

1 ml of the E.coli culture was incubated into 100 ml of LB Broth EZMIX medium (with 

ampicillin) and incubated one more time overnight before the extraction of the plasmid.
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4.2.2.2 Purification o f the Cav1.2 plasmid

To purify the Cav1.2 plasmid from E.coli, a Maxiprep kit from Invitrogen was used 

as follows. The bacteria were pelleted by centrifugation at 8,000 g for 10 min. The 

supernatant was then removed and the pellet resuspended in 10 ml of buffer containing 

RNase (buffer R3). The bacteria were then lysed by addition of 10 ml of the lysis buffer 

(L7). The solution was mixed gently and incubated for 5 min at room temperature. The 

cellular debris were then precipitated using the precipitation buffer (N3) and spun down at 

15, 000 g for 10 min. The supernatant was passed through a column to purify the plasmid. 

The column contained small resin particles associated to an anion exchanger molecule 

allowing binding of the plasmid. The column was then washed with buffer (W8) and the 

plasmid eluted with the buffer (E4). To concentrate and wash the DNA, the eluted solution 

was centrifuged at 15, 000 g for 30 min at 4 °C and the supernatant was removed. The 

resulting DNA pellet was washed with 70 % ethanol and, after evaporation of the ethanol, 

the DNA was resuspended and kept in nuclease-free water (Ambion, Warrington, UK) at - 

20 °C.

The amount and purity of the DNA obtained were checked with a 

spectrophotometer (SANYO SP65 UV/VIS, Watford, UK). The absorbance produced by 

the DNA and proteins were calculated at 260 and 280 nm, respectively, (with an 

absorbance of 1 optic density = 50 pg/ml for the DNA) allowing quantification of the ratio 

DNA/proteins and the concentration of DNA. Only the extractions with a DNA/proteins 

ratio >1 .7  were used.
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4.2.2.3 Transfection ofH EK 293 cells with Cav1.2 plasmid

The transfection was made by nucleofection following the Amaxa protocol for the 

HEK293 cells (kit V, Amaxa, Cologne, Germany). The nucleofection consists of making 

transient, holes into the plasma membrane by applying short electric pulses 

(electroporation). At 70-80 % confluency, the cells to be transfected were gently removed 

from the flask using trypsin and pelleted by centrifugation. Cells were resuspended in 100 

pi of nucleofector solution with 5pg of Cav1.2 DNA and transfected with an Amaxa 

Nucleofector II machine. To optimize the protocol and/or visualise the transfected cells, 2 

pg of plasmid of the green fluorescent protein (GFP) were used (provided with the kit). To 

perform the co-transfection, the two plasmids were incubated together for 20 min at room 

temperature in the nucleofector solution prior to the transfection. By doing so, the Cav1.2 

and GFP plasmids combined due to their electric charges and therefore transfected 

conjointly into the cells. Immediately after the transfection, the cells were diluted into 500 

pi of pre-warmed medium and seeded at low density on coverslips. The experiments were 

performed 24 to 48 h after the transfection. Since the plasmid used for the transient 

transfection is the same than the one used to create the stable cell line, the transiently and 

stably transfected cells gave indentical results. The data were then pooled and treated 

without distinction.

4.2.3 Electrophysiological recordings

Electrophysiological recordings were made in the whole-cell configuration of the 

patch-clamp technique. Currents were recorded with a CV2003 BU Headstage (Axon 

Instruments, Sunnyvale, USA), connected to an Axopatch 200B voltage-clamp amplifier
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(Axon Instruments), digitised with Digidata 1322A (Axon Instruments) and analysed with 

Clampfit (Axon Instruments). The bath solutions used for gigaseal formation was a 

HEPES-buffered physiological saline with the following composition (in mM): 135 NaCl, 

5 KC1, 1.2 CaCh, 1.2 MgCl2 , 5 HEPES and 10 glucose, pH 7.4. The pipette was made by 

pulling, in two steps, a glass tube (World Precision Instrument, Stevenage, UK) using a 

Narishige electrode puller (Narishige, Tokyo, Japan). The pipette solution, sterilized by 

passing it through a 22 pm filter, contained (in mM): 120 CsCl2, 20 Tetraethylammonium 

chloride (TEA-C1), 2 MgCl2, 10 EGTA, 10 HEPES, 2 Na-ATP, pH 7.2 with CsOH. After 

the whole-cell configuration had been achieved in the physiological solution, the cells were 

perfused with a solution containing 2 or 20 mM Ba2+ (in mM): 113 or 95 NaCl 

respectively, 5 CsCl, 0.6 M gCl2, 2 or 20 BaCl2, 5 HEPES, 10 glucose and 20 TEA-C1, pH

7.4 with NaOH. The solutions contained TEA and CsCl to block K+ channels. Spermine, 

R-568 and nifedipine were dissolved in the Ba2+ solution to the desired concentration. The 

effect of neomycin could not be tested by patch-clamp as neomycin precipitated in 

presence of Ba2+. Cell membrane potential was held at -60 mV. The protocol, applied at 0.1 

Hz, consisted of a hyperpolarising step to -100 mV for 50 ms followed by a ramp from - 

100 mV to +100 mV over 200 ms. After 50 ms a step from -80 mV to +15 mV for 100 ms 

was applied. The steps at -80 mV were done to reactivate the Cav1.2 channels, which are 

normally inactivated at positive potentials. The final step at +15 mV was carried out to 

activate rapidly all the Cav1.2 channels, as the increase in potential during the ramp could 

produce some inactivation. Nevertheless, no differences were observed between the peak of 

the current during the ramp or the +15 mV step. The analyses of the currents were 

performed with the value obtained during the step. Normalized data were used in 

preference of current density since the HEK293 cells transfected expressed at different 

level Cav1.2 which would result in high error bar in control condition and also during
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application of spermine. To normalise the data, the reference maximum value (100 %) of 

the current was obtained by calculating the average of the three maximum values in control 

condition.

Signals were filtered with a low pass Bessel filter at 2 kHz. The currents were leak- 

subtracted off-line in all experiments by subtracting the slope, calculated at the beginning 

of the ramp between -100 to -80 mV.

In the first set o f experiments, the effects o f the CaR agonists on Cav1.2 channels 

were studied. The CaR agonists were diluted in the 20 mM Ba2+ solution and administrated 

through the perfusion line. The cells were exposed to the drugs: spermine (300 pM) and R- 

568 (100 nM) for 3 min and then washed away by Ba2+ solution. Nifedipine (10 pM, 

Sigma), a specific blocker of the L-type channels, was used as a control to verify the nature 

of the current. Each cell was exposed only to one drug.

The second group of experiments aimed to establish the relationship between [Ba2+] 

and the amplitude of the Cav1.2 current recorded. Four concentrations of Ba2+ were used (in 

mM): 20, 5, 2 and 1. The cells were exposed to 20 mM [Ba2+] then shifted to 5, 2 or 1 mM 

until the current stabilized. Experiments in reverse order were also performed to negate 

time-dependent effects. The relationship between [Ba2+] and Icavi.2 was fitted to a 

Michaelis-Menten curve defined by the equation:

Y = Vmax* X / ( K m + X)

Where Vmax is the maximum response and Km is the affinity.
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The data are presented as mean ± SEM. Two-tailed, paired Student t-test was used 

for statistical analysis with differences considered significant at p < 0.05.

4.2.4 Calcium imaging on Cav1.2-HEK293 cells

The Cav1.2-HEK293 cells were prepared for the Ca2+ imaging experiments as 

described for the CaR-HEK293 (see Chapter 2). Spermine, neomycin and R-568 were 

applied for 2.5 or 3 min in HEPES-buffered physiological solution containing (in mM): 

135 NaCl, 5 KC1, 1.2 CaCl2 , 1.2 M gCh, 10 glucose and 5 HEPES, pH 7.4. The cells were 

stimulated by a depolarisation induced by high K+ solution of the same composition than 

the HEPES-buffered physiological solution where K+ was increased to 30 mM and NaCl 

decreased to 110 mM to keep the osmolarity constant. Two-tailed, paired Student t-test was 

used for statistical analysis with differences considered significant at p < 0.05.

4.2.5 Effect of spermine and of nifedipine on Ca2+ influx in type 1 cells

The effect of spermine and of nifedipine on Ca2+ influx in type 1 cells was assessed 

by Ca2+ imaging. Carotid body preparation and the Ca2+ imaging experiments were carried 

out as explained in Chapter 2. Spermine (Sigma) was used at the 200 pM and the 

nifedipine (Sigma) at 0.1, 1 and 10 pM. The drugs were applied in the order indicated in 

the figures and text. N is the number o f rats used and n is the number of cells recorded. The 

data are presented as mean ± SEM. Analysis was carried out with a paired t-test excepted 

for the comparison of the pooled data where an ANOVA with Turkey post-doc test was 

used, significant was achieved at p < 0.05.
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4.3 RESULTS

4.3.1 Absence of effect of spermine and R-568 on Icavi.2 recorded in 20 mM Ba2+

The Cav1.2 current recorded from Cav1.2-HEK293 demonstrated a slow rundown 

over time in control condition (Fig. 4.1 A). Perforated whole-cell patches did not attenuate 

the rate of this rundown significantly (data not shown). The pre-application of either 300 

pM spermine or 100 nM R-568 did not affect the amplitude of the current recorded in 20 

mM Ba2+ compared to the control (Fig. 4. IB, C and D). Indeed, in the three conditions, 

control, spermine and R-568, the rundown was similar (Fig. 4 .ID). Considering the effects 

on Ca2+ influx shown in Chapter 2, this was a surprise. This difference could be the result 

of using different Ba2+ concentrations in patch-clamp (20 mM Ba2+) and Ca2+ imaging (0.5 

and 1.2 mM Ca2+ and Mg2+) experiments. Therefore, in the next experiment, the effect of 

different Ba2+ concentrations were tested.
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Figure 4.1: CaR activators, spermine and R-568, have no effect on Icavi.2 carried by 20 

mM external Ba:+. Cav1.2 expressed in HEK293 is not inhibited by 3 min incubation with 

the CaR activators: 300 pM spermine or 100 nM R-568 in 20 mM Ba“+. Typical raw data 

showing the intensity of the current at t = 0 (drug application), t = 1, t = 2 and t = 3 min in 

control conditions (A) and in cells exposed to 300 pM spermine (B) or 100 nM R-568 (C). 

The insets represent the current induced by a +15 mV step. Scale bar, 200 pA and 40 ms. 

D) Normalized average values: 300 pM spermine (open square, n = 5) or 100 nM R-568 

(open circle, n = 5), control (closed triangle, n = 6). The rundown of the current was similar 

and comparable in the three conditions. Nifedipine (10 pM) fully blocked the channel, as 

expected (closed square).
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4.3.2 Effect of Ba2+ concentration on Icavi.2

The Ba2+ concentration affected the amplitude of the current recorded according to 

Michaelis-Menten kinetics (Fig. 4.2). The maximum value (Vmax) for ICavi .2 was calculated 

to be at 121.96 ± 8.69 % of the ICavi.2 obtained with 20 mM Ba2+ and affinity (Km) at 4.56 ± 

0.86 mM. At 1 mM Ba2+, the amplitude of the current was about 30 % of that in the 

standard condition of 20 mM Ba2+. This experiment showed the feasibility of using a low 

Ba2+ for the recording of Icavi .2 in Cav1.2-HEK293.

4.3.3 Effect of addition of 0.5 mM extracellular Ca2+ on Icavi.2 recorded in 2 mM Ba2+

For future experiments with other cell types and involving the Ca2+ influx (i.e. 

neurotransmitter release by type 1 cells), the effect of addition of 0.5 mM extracellular Ca2+ 

on Icavi.2 was tested. Figure 4.3 reveals that the addition of 0.5 mM extracellular Ca2+had 

an inhibitory effect of on Icavi.2 - It inhibited by 87 ± 19 % (n = 3) the current compared to 2 

mM Ba2+ alone.
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Figure 4.2: Effect of extracellular Ba2+ concentration on Icavi.2* A) Typical examples of 

Icavi.2 recorded from the same cell in either 2 or 20 mM Ba2+. The inset shows the 

corresponding trace induced by the step at +15 mV. Scale bars are 100 pA and 40 ms. B) 

Curve presenting the intensity of the current in relation to extracellular Ba2+ concentration. 

The amplitude of the current was normalised to the amplitude of the current recorded with 

the standard patching solution with 20 mM Ba2+. The curve was fitted using Michaelis- 

Menten equation, Vmax = 121.96 ± 8.69 % and Km = 4.56 ± 0.86 mM. At 1 mM Ba2+, the 

amplitude of the current is about 30 % of the intensity obtained in the standard condition 

with 20 mM Ba2+. N = 4 for each points.
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Figure 4.3: Effect of addition of 0.5 mM extracellular Ca2+ on Icavu recorded in the 

presence of 2 mM external Ba2+. A) Raw data showing the inhibitory effect of addition of 

0.5 mM Ca2+ on IcaVi .2 recorded in 2 mM Ba2+. The insets show the data obtained with the 

step at +15 mV, scale bars 25 pA and 40 ms. B) Average data of the normalized value of 

the current at the +15 mV step, 0.5 mM Ca2+ has an inhibitory effect on Icavi.2 (n = 3, 87 ± 

19 %).
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4.3.4 Inhibitory effect of spermine and absence of effect of R-568 on ICavi.2 recorded in 

the presence of 2 mM Ba2+

Using a concentration of 2 mM extracellular Ba2+ in the recording solution to 

measure I c a v i . 2 ,  application of 200 pM  spermine for 1.5 min appeared to have a strong 

inhibitory effect on the current (Fig. 4.4). The inhibition was 53 ± 3 % and was fully 

reversible (n = 3 , p < 0 . 0 1 ) .  In contrast, the application of 100 nM R-568 for 2.5 min did 

not effect I c a v i . 2  (n = 3, Fig. 4.5). The inhibition of I c a v i . 2  by spermine in the presence of 2 

mM Ba2+ showed the influence of the concentration of divalent cation on the effect of 

spermine. Moreover, this result confirmed the inhibitory effect of spermine on Ca2+ influx 

in type 1 cells.

4.3.5 Effect of C aR  modulators, spermine, R-568 and neomycin, on Icavi.2> as assessed 

by Ca2+i imaging

The previous experiments showed the influence of the external Ba2+ concentration 

on the effect of spermine on Icavi.2- Moreover, the use of Ba2+ as a charge carrier did not 

allow testing of the effect of neomycin on Icavi.2 as neomycin precipitated in Ba2+ solution. 

Therefore, to avoid these limitations, the effect of spermine, R-568 and neomycin were 

assessed by Ca2+ imaging which allowed experiments to be performed using a 

physiological solution containing 1.2 mM extracellular Ca2+. In this condition, 200pM 

spermine and 300 pM neomycin had an inhibitory effect on Ca2+ influx through Icavi.2 

which was of 76.6 ± 3.6 % (n = 3, p < 0.01) and 99.1 ± 0.9 % (n = 3, p < 0.05), 

respectively. However, 100 nM R-568 did not effect Ca2+ influx (n = 3, p > 0.05).
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Figure 4.4: Inhib ito ry  effect of sperm ine on Icavi.2 recorded in presence of 2 mM 

external Ba2+. A) Typical examples of the effect of 200 pM spermine on Icavi.2 recorded in 

the presence of 2 mM external Ba2+.The effect of spermine was reversible. The inset shows 

traces obtained at the +15 mV step. Scale bars are 50 pA and 40 ms. B) Average data of the 

normalized Icavi.2 current over time. The reversible inhibition induced by spermine was 53 

± 3 % of the Icavi.2 control current (N = 3 , p < 0.01).
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Figure 4.5: Absence of effect of R-568 on Icavi.2 recorded in the presence of 2 mM 

external Ba2+. Typical recordings made in control solution (A) or with application of 100 

nM R-568 for 2.5 min. (B) The drug application was at t = 1. The inset shows the currents 

induced by a +15 mV step. Scale bars are 50 pA and 40 ms. C) presents the average time- 

course data and indicates that the rundown of the I C av 1.2 currents was the same in the control 

(open circles, n = 5) and R-568 treated cells (closed circles, n = 6). Application of R-568 is 

indicated by the black bar.
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co-application with 300 pM neomycin (A, n = 3) or 200 pM spermine (C, n = 3) inhibited 

the Ca2+ influx induced by high K+. The neomycin and spermine effects were reversible, as 

indicated by the third high K+ stimulation. In contrast, 100 nM R-568 (B, n = 3) had no 

effect on Icavi.2- The effect of neomycin (p < 0.05) and spermine (p < 0.01) were 

statistically significant (D).
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4.3.6 Effect of co-application of spermine and nifedipine on Ca2+ influx in type 1 cells

4.3.6.1 Effect o f  nifedipine on Ca2+ influx

To test if the inhibition of Cav1.2 by spermine in Cav1.2-HEK293 also takes place 

in type 1 cells, a specific blocker of L-type Ca2+ channels was applied in conjunction with 

spermine. Prior to these experiments, the effect of application of nifedipine alone was 

tested at the concentrations of 0.1, 1 and 10 pM. Figure 4.7 shows that nifedipine inhibition 

reached an inhibitory plateau at 1 pM (45.3 ±5 .2  %, n = 17 and N = 3).

4.3.6.2 Effect o f  co-application o f nifedipine and spermine on Ca2+ influx

Application of 200 pM  spermine or 1 pM nifedipine induced a similar inhibition of 

the Ca2+ influx in type 1 cells. Indeed, spermine induced an inhibition of 44.3 ± 4.3 % (p < 

0.01, n = 18 and N = 3) and nifedipine 39.4 ± 5.5 % (p < 0.01, n = 9 and N = 3). The 

difference between the effect of spermine and nifedipine applied alone was not statistically 

significant (p = 0.14, Fig. 4.8E). Moreover, the co-application of spermine and nifedipine 

had always a stronger effect than the application of one of them alone. For instance, 

spermine induced 44.3 ± 4.3 % of inhibition whereas spermine + nifedipine

169



Chapter 4

A

1 nM
0.9-

O
05

00 08  -  

CO
o
CO

0.7-

0 2 4 6 8 10 12 14

time (min)

B
100-1

80-
CC o

o  C 
00 o  
CO o
o  o
CO "O

, s  .a

03 E
2  o  o  c  c

60-

40-

2 0 -

1 10Control 0.1

Figure 4.7: Inhib itory  effect of nifedipine on C a2+ influx in type 1 cells. A) Typical 

recording showing the effect of increasing concentrations of nifedipine (0.1, 1 and 10 pM) 

on Ca:+ influx induced by high K+ in type 1 cells. The nifedipine inhibition was reversible. 

B) Bar graph of the average data showing that at 1 pM nifedipine reached its maximal 

inhibitory effect (15 < n < 17 and N = 3 for each concentration).
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induced 54.9 ± 3.5 % (n = 18, N= 3 and p < 0.01, Fig 4.8A and C). Similarly, nifedipine 

alone induced 39.4 ± 5.5 % of inhibition and nifedipine + spermine induced 50.6 ± 2.1 % 

(n = 9, N = 3, p < 0.05, Fig. 4.8B and C). The achievement of a stronger inhibitory effect 

with the co-application of the two drugs suggested the involvement of partially different 

mechanisms. When all the data where pooled together, the synergic effect of co-application 

of spermine and nifedipine was statistically significant only in the case of nifedipine (n = 

18 and N = 6) versus nifedipine + spermine (n = 27 and N = 6). This can be explained by 

the fact that, with the pooled data, each cell does not act as its own control.
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4.4 DISCUSSION

As suggested by the Ca2+ imaging experiments in carotid body type 1 cells (Chapter 

2), spermine and neomycin are able to inhibit voltage-dependent Ca2+ influx induced by 

hypoxia or high K+. Nevertheless, these previous experiments did not allow any 

conclusions as to whether the inhibition is direct or indirect.

Neomycin and spermine belong to two different classes of molecule, an 

aminoglycoside antibiotic and a polyamine, respectively. Nevertheless, they share the 

characteristic of being variably protonated and becoming positively charged at 

physiological pH. Indeed, neomycin possesses 4.4 positive charges (McLarnon & Riccardi, 

2002) and spermine has 4 charges (Heby, 1986) at pH 7.4. It is possible that these positive 

charges confer to neomycin and spermine the ability to block the channel. Whereas R-568 

is not positively charged at physiological pH (Nemeth, 2004).

With a standard patch-clamp solution containing 20 mM Ba2+, spermine had no 

effect on the Cav1.2 current, but lowering the Ba2+ concentration to 2 mM revealed a 

dramatic inhibition of the current by spermine. Moreover, the Ca2+ imaging experiments 

showed that neomycin and spermine were strong inhibitors of Cav1.2 in physiological 

solutions (containing no Ba2+ and 1.2 mM extracellular Ca2+). R-568 did not have any 

effect on the Cav1.2 current recorded by patch-clamp in either 20 or 2 mM Ba2+ or by Ca2+ 

imaging. The results found with patch-clamp in 2 mM Ba2+ and Ca2+ imaging are in 

accordance with the data obtained in carotid body type 1 cells showing that spermine and 

neomycin inhibit voltage-dependent Ca2+ channels. For the patch-clamp experiment no 

recording with Ca2+ as a charge carrier was attempted as the amplitude of the current in 2
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mM Ba2+ was only about 50-100 pA. Indeed, the use of Ca2+ would have decrease the 

amplitude of the current as Ca2+ has a lower permeability through the voltage-dependent 

Ca2+ channel and inhibits the channel. Moreover, the nature of the interaction between 

spermine and Cav1.2 has not been investigated, single channel recording would have been 

usefull to study the effect of spermine on the conductance and the opening probability of 

Cav1.2.

The inhibition of Cav1.2 by spermine and neomycin presented in this study are in 

agreement with most data obtained by other groups in native cells. For instance, neomycin 

has been reported to inhibit voltage-dependent Ca2+ channels in chromaffin cells (50 to 200 

pM) (Duarte et al., 1993), neurons (IC50 at 50 pM) (Parsons et al., 1992) (90 to 400 pM) 

(Keith et al., 1992) and cardiac myocytes (IC50 at 90 pM) (Belus & White, 2001). In 

addition, spermine induces an inhibition of voltage-dependent Ca2+ channels in muscle 

(100 to 1000 pM) (Gomez & Hellstrand, 1995) and (IC50 at 800 pM in 10 mM Ba2+) (Kim 

et a l, 2007) and retinal neurons (IC50 at 28 pM  )(Lasater & Solessio, 2002).

The fact that the inhibitory effect of spermine is dependent upon the permeating 

cation concentration is suggestive of a competitive process between spermine and cations. 

The situation is likely to be the same with neomycin as suggested by the experiment of 

Parson et al. in which the inhibitory effect of neomycin on voltage-dependent Ca2+ 

channels in nerve can be suppressed by increasing the Ca2+ concentration from 2 to 10 mM 

(Parsons et al., 1992). The mechanism of the inhibitory effect of spermine and neomycin is 

probably the same and due to the presence of positive charges on these molecules. 

Spermine and neomycin might screen the negative charges which are on the plasma 

membrane and modify the opening of the voltage-dependent Ca2+ channels or reduce the
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effectiveness o f the Ca2+ (Belus & White, 2001). Increasing the cation concentration, in my 

experiments and in those of Parsons et al. (Parsons et a i,  1992), may either increase the 

competition between spermine/neomycin and cations to screen the charge on the plasma 

membrane or/and increase the driving force which may compensate the decreased opening

of the channel. The fact that the inhibitory effect of spermine can be observed only with a

• 2+  2+low cation (Ba or Ca ) concentration may explain the absence of effect observed by 

Herman et a l  on neurons (Herman et al., 1993). Indeed, the Ba2+ concentration used in 

their experiments was 110 mM with a spermine concentration of 1 mM. R-568, which does 

not possess positive charges, has no effect on the Cav1.2, which is consistent with charge- 

screening hypothesis. Interestingly, and supporting the screening hypothesis, among the 

three polyamines, spermine is the most potent at inhibiting the voltage-dependent Ca2+ 

channels and is also the most charged polyamine (Nilsson et al., 2002).

Moreover, R-568 does not have any other type o f interaction with Cav1.2 at the 

concentration tested. This finding completes and confirms the data of Nemeth et al. 

showing an inhibitory effect o f this calcimimetic on L-type Ca2+ channels only at 

concentrations of 500 nM and above (Nemeth, 2004).

The experiments in this chapter carried out on Cav1.2-HEK293 demonstrate a very 

likely interaction between Cav1.2 and spermine or neomycin. Nevertheless, excised patch- 

clamp experiments would have been more appropriate to test for a direct interaction. In the 

case of spermine, my data confirm the result of Gomez et al. who were the only one to 

show a direct inhibition of voltage-dependent Ca2+ channels by spermine using excised 

patch-clamp configuration with guinea-pig smooth muscle cells (Gomez & Hellstrand, 

1999). In all other studies, it cannot be excluded that spermine/neomycin inhibit the
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voltage-dependent Ca2+ channels indirectly by acting on a receptor, like CaR. The idea of 

modulation of voltage-dependent Ca2+ channels by activation of the CaR was my first 

hypothesis to explain the inhibition of catecholamine release by spermine in isolated 

carotid body. However, further experiments revealed that the CaR was not expressed in 

type 1 cells and, therefore, not involved in the inhibitory effect of spermine. Nevertheless, 

the hypothesis of modulation of the voltage-dependent Ca2+ channels by the CaR could 

explained some of the data obtained by other groups on native cell types which may 

express the CaR, i.e. neurons (Quinn et al., 1997). Moreover, Parkash has recently shown a 

co-localisation of CaR and voltage-dependent Ca2+ channels in beta-cells supporting the 

hypothesis of an indirect modulation of the voltage-dependent Ca2+ channels by CaR 

(Parkash, 2008).

The comparative effect of spermine and nifedipine on Ca2+ influx in type 1 cells 

was assessed by Ca2+ imaging in preference to patch-clamp. This choice was made on the 

basis that the inhibitory effect of spermine could only be studied at low cation 

concentration (2 mM Ba2+), which mediates a weak current, and therefore requires a high 

expression of Cav1.2. The use of Ca2+ imaging appears to be a good alternative to avoid this 

problem.

The application of nifedipine alone induces an inhibition about of 45 % of the Ca2+ 

influx in type 1 cells. This value is slightly less than the 74 % and 67 % obtained by other 

groups studying the voltage-dependent Ca2+ channel by patch-clamp in these cells (Buckler 

& Vaughan-Jones, 1994c; e Silva & Lewis, 1995). The smaller inhibition found in this 

study can be explained by the fact that type 1 cells still ossociated in small cluster have 

been used rather than totally dissociated cells, as required for patch-clamp experiments.
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This may have reduced the access of nifedipine to the channel and therefore equally 

reduced the inhibitory effect. However, the experiment corroborates the evidence for 

expression of L-type Ca2+ channels in type 1 cells. The inhibitory effects of applications of 

either spermine or nifedipine, quantitatively, do not differ. Nevertheless, nifedipine is a 

specific blocker of the L-type Ca2+ channels whereas spermine is not and at the 

concentration used (200 pM) does block only partially (about 50 %) the Cav1.2 current in 

Cav1.2-HEK293. These points lead to the conclusion that nifedipine blocks almost fully the 

Cav1.2 current while spermine blocks partially Cav1.2 current and partially blocks Cav2.2 

which gives the same total inhibition of the Ca2+ influx that the one observed with 

nifedipine. To furthermore confirm this point, it would have been usefull to compare the 

effect of spermine or nifedipine on Cav1.2-HEK. The comparison of the inhibition induced 

by spermine and nifedipine alone or following co-application shows that the two drugs 

together have a mildly additive effect. In addition, their effects are not due to totally 

distinct mechanisms because the drug co-application gives a smaller inhibition (about 60 

%) than the sum of their inhibition alone, which would be near 80 %. These results confirm 

that spermine blocks partially Cav1.2 and possibly Cav2.2 in type 1 cells. According to the 

screening charge hypothesis, the effect of spermine should be unspecific and inhibit Cav1.2 

and Cav2.2. The inhibition of Cav2.2 by spermine is in agreement with recent the 

conclusion of Cino and al. showing an inhibitory effect of 500 pM spermine on Cav2.2 in 

rat dorsal root ganglion neurons (Cino & Formenti, 2008).
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4.5 CONCLUSION

The experiments on carotid body and dissociated type 1 cells have revealed an 

inhibitory effect of spermine and neomycin on neurotransmitters release and on the Ca2+ 

influx induced either by hypoxia or high K+. Using molecular techniques, I have 

demonstrated that carotid body type 1 cells express Cav1.2 and Cav2.2. In this chapter, the 

effect of spermine, neomycin and R-568 on Cav1.2 was investigated. The 

electrophysiological experiments show that spermine has an inhibitory effect on Cav1.2 

depending on the extracellular Ba2+ concentrations, with a stronger effect at low Ba2+ 

concentration. Moreover, experiments carried out in physiological conditions, using Ca2+ 

imaging, confirm the inhibitory effect of spermine and neomycin on Cav1.2. In addition, 

the use of HEK293 cells expressing Cav1.2 has ruled out the possible interaction of 

spermine and neomycin with an extracellular receptor and demonstrated a direct inhibition 

of Cav1.2 by these molecules. In type 1 cells, the co-application of spermine and nifedipine 

has demonstrated that spermine partially inhibits Cav1.2 and probably Cav2.2. Therefore, 

the inhibition of the catecholamine release by spermine is due to the direct inhibition, by 

spermine, of Cav1.2 and Cav2.2.

178



DISCUSSION AND PERSPECTIVES

179



Discussion and Perspectives 

DISCUSSION AND PERSPECTIVES

This study on the carotid body has reported, for the first time, an inhibitory effect of 

spermine on chemoreception using different approaches. Spermine inhibits catecholamine 

secretion from isolated carotid body and Ca2+ influx in type 1 cells induced either by high 

K+ or hypoxia. Then, the molecular mechanisms mediating this inhibition were 

investigated. The expression of voltage-dependent Ca2+ channels in rat type 1 cells was 

detected. RT-PCR and immunohistochemistry showed the presence of Cav1.2 and Cav2.2 in 

type 1 cells. As L-type Ca2+ channels are the major way of Ca2+ entry in the cytosol, the 

effect of spermine on Cav1.2 was then tested by patch-clamp and Ca2+ imaging in Cav1.2- 

HEK293. These experiments demonstrated an inhibitory effect of spermine only with a low 

extracellular cation concentration and a direct inhibition of the channel by spermine. The 

co-application of spermine and nifedipine in type 1 cells showed that spermine inhibits 

Cav1.2 and Cav2.2. Therefore the inhibitory effect of spermine on catecholamine secretion 

is due to an inhibition of Cav1.2 and Cav2.2, resulting in a smaller [Ca2+]i increase and 

weaker neurotransmitter release (Fig. 4.9) as postulated in the second hypothesis.

The physiological relevance of the spermine inhibition of the carotid body 

chemoreception depends on the extracellular concentration of spermine. The plasma 

concentration of spermine is in the pM range which is far below the minimal spermine 

concentration required to inhibit Cav1.2 in rat type 1 cells. Indeed, the IC50 for spermine in 

dissociated type 1 cells is -500  pM. The plasma spermine concentration is known to be 

increased in certain physiological situations (during development (Tabor & Tabor, 1984), 

due to hormonal variations (Gilad et al., 2002)) as well as pathological situations
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(malignant tumour (Casero & Marton, 2007)). In such situations the plasmic spermine 

concentration increases but not sufficiently to have an effect on carotid body function. So, 

the plasma concentration of spermine can not inhibit carotid body function.

Type 2 cell Petrosal nerve
ending

ER
CaR

Nucleus

D1
D2

NT
H1, 3

Sper

Ca2* channel 
Cav1.2

\  C a v 2 -2

Nucleus

maxi-K

Task like 
channel

Type 1 cell
XO

Figure 4.9: Schematic representation of carotid body illustrating the expression of 

CaR and voltage-dependent Ca2+ channel and the inhibitory effect of spermine on 

type 1 cells. Type 1 cells express the voltage-dependant Ca2+ channel subunits Cav1.2 and 

Cav2.2 but not the CaR which was found to be expressed in the nerve endings. The 

spermine (Sper), co-released with neurotransmitters (NT), inhibits the Cav1.2 and possibly 

Cav2.2. This inhibition induces a reduction of the Ca2+ influx and then of the 

neurotransmitter release.

In neuronal tissue, independently of the plasma contribution in spermine, the 

extracellular spermine concentration can be increased, locally, as a result of spermine
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secretion in the synaptic clef. It has been shown that neurons and potentially glial cells are 

able to release spermine in the extracellular medium under high K+ stimulation (Masuko et 

al., 2003) or N-methyl-D-aspartate receptor activation (Fage et al., 1992). In neurons, 

spermine is concentrated, up to 2.8 mM, in intracellular vesicles via a proton gradient- 

dependent transporter (Masuko et al., 2003). Depolarisation of neurons inducing 

neurotransmitters release leads to secretion of spermine in the synaptic cleft (Fage et al., 

1992). Since type 1 cells are derived from the neuronal crest (Gonzalez et al., 1994) and 

share many properties with neurons, it is possible that, similarly to neurons, type 1 cells co­

release spermine with their neurotransmitters. The spermine release by type 1 cells would 

then prevent an over stimulation of type 1 cells by reducing the Ca2+ influx induced by 

hypoxia or other stimuli. This spermine meditated inhibition would act in synergy with 

other pathways leading to the inhibition of neurotransmitters release. For instance, release 

of neurotransmitters by type 1 cells induces activation of GABAb, P2Y 1, or D2 receptors 

present on type 1 cells and inhibits the neurotransmitter release (Fearon et al., 2003; Xu et 

al., 2005; Prieto-Lloret et al., 2007).

Further work is needed to gain better understanding of the role of polyamines in 

carotid body physiology. Indeed, on one hand, polyamine could be co-secreted with 

neurotransmitters and, locally, modulate ion channels and on another hand, polyamines 

could be involved in the regulation of cell division and growth during chronic sustained 

hypoxia. In the carotid body, as in the lung vascular smooth muscle cells, hypoxia induces 

a decrease in ornithine decarboxylase gene expression (Babal et al., 2002; Ganfomina et 

al., 2005) and probably, similarly to the situation in the lung, an increase in polyamine up­

take which triggers the morphological changes, such as cell division (Babal et al., 2002).
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To complete this study further more experiments are needed, especially concerning 

the spermine metabolism in carotid body. In a very short future, I am planning to quantify 

the spermine up-take and release by isolated carotid body in normoxia versus hypoxia 

using [14C]-spermine. By analogy with the situation in lung vascular smooth muscle cells, I 

would anticipate that the uptake would be higher in hypoxia. Also, the release of spermine, 

by isolated carotid body induced either by high K+ or hypoxia, will be quantified to assess 

the hypothesis of a co-release of spermine and neurotransmitters. In addition, the putative 

effect of spermine on the receptors expressed on the petrosal nerve endings, specifically for 

ATP or ACh which are the two main excitatory neurotransmitters, could be tested to have a 

full picture of the effect of spermine on carotid body chemoreception.

Another interesting approach to the role of spermine in carotid body 

chemoreception would be to determine the effect of low spermine concentration on type 1 

cells. Indeed, it has been recently shown that spermine potentiates Cav2.2 when applied in 

the nM range on rat dorsal root ganglia neurons (Cino & Formenti, 2008). If spermine has a 

similar effect on Cav1.2 and Cav2.2 in type 1 cells, spermine would potentiate or inhibit the 

neurotransmitters release according to its concentration.
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