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Abstract

The work presented in this thesis is split into two chapters. The first chapter 

involves the studies of the chemistry of phosphaalkynes and the second chapter 

involves the preparation and reactivity of transition metal® guanidinate and 

amidinate complexes.

The introduction to the first chapter gives general information about the 

cycloaddition, co-ordination as well as oligomerisation chemistry of phosphaalkynes, 

and the preparation of the unhindered methyl-phosphaalkyne via a modified 

literature preparation. Part 1.3.1 shows the reaction of P=CMe and its bulkier 

analogue P^CBu1 with 2,4,6-tri-/er/-butyl-1,3,5-triphosphabenzene and 1,3,5,7- 

tetraphosphabarrelene, giving differing cycloaddition and oligomerisation products. 

Part 1.3.2 discusses the reaction of P=CMe with diazomethane, TMS- and 1- 

adamantyl-azide. Cycloaddition products were isolated and similarities with their 

bulkier and less bulkier phosphaalkyne analogues were highlighted and discussed. 

Part 1.3.3 describes the reaction of P^CMe with R2E=ER2 (E = Ge or Sn, R = - 

CH(SiMe3)2) and Ar2Sn=SnAr2 (Ar = C6H2Pri3-2 ,4 ,6 ), showing co-ordination and 

cycloaddition products in which a 1,3-hydrogen migration has taken place. 

Differences to the products from their bulkier phosphaalkyne analogues were 

observed and discussed. Part 1.3.4 describes the reaction of [Cp2Ti(NNPh2)(py)] with 

P^CBu1, giving the first cycloaddition product of any transition metal hydrazide 

complex. Part 1.3.5 describes the cycloaddition reaction of [W(CO)5(THF)] with 

P^CMe and its bulkier phosphaalkyne analogues. Differences between head to tail 

and head to head cycloadditions are highlighted and discussed. Part 1.3.6 shows a 

rare phosphaalkyne r]1-co-ordination complex formed by reacting P=CMe with 

[MH(dppe)2]’ (M = Ru or Fe). The results have been compared to those from bulkier 

phosphaalkynes. Part 1.3.7 shows the reductive coupling reaction of a samarium(II) 

complex with P=CBul. The resulting product was compared to similar products from 

reactions with alkynes and nitriles. Part 1.3.8 shows the co-ordination and 

cycloaddition reactions of P=CMe with [Pt(PCy3)2(ri2-C2H4)] and [Pt(P-P)(ri2-C2H4)] 

(P-P = dppe or (PEt3)2). Different products have been observed and the results were 

compared with those from reactions with bulkier phosphaalkynes.

- I V -



A b s t r a c t

The introduction to the second chapter gives a general introduction to the p- 

diketiminate (nacnac), amidinate and guanidinate ligand systems and their main 

group and transition metal complexes, including those with the metal in the + 1  

oxidation state. Part 2.3.1 details the reduction of an iron(II) amidinate complex in a 

variety of solvents, under a dinitrogen or argon atmosphere. These gave iron(I) 

amidinate complexes. These were reacted with CO to give a iron® carbonyl 

complex. Similarities and differences with bulkier nacnac analogues have been 

investigated and were discussed. Part 2.3.2 shows the preparation of cobalt(H) 

amidinate and guanidinate halide complexes and their reduction in a variety of 

solvents under a dinitrogen atmosphere, giving cobalt® amidinate and guanidinate 

complexes. Those cobalt® complexes were reacted with CO, TMS-azide and 1- 

adamantyl-azide. Similarities and differences to their bulkier nacnac analogues have 

been investigated and were discussed. Part 2.3.3 shows the preparation of nickel(II) 

guanidinate halide complexes and their reduction in a variety of solvents under a 

dinitrogen atmosphere, giving nickel® guanidinate complexes. In addition, the 

guanidinate nickel(H) halide complexes were reacted with LiCp and the nickel® 

complexes with CO, TMS-azide and 1 -adamantyl-azide. Similarities and differences 

to their bulkier nacnac analogues have been investigated and discussed.

A CD with CIF, INS and TEX files of the measured structures can be found

at the end of this thesis
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Chemical Science
A magazine providing a snapshot of the latest 

developments across the chemical sciences.

Unhindered phosphaalkyne 

Complexes
21 August 2006

The first complexes of a sterically unhindered 

phosphaalkyne have been studied by UK chemists.

Phosphaalkynes-molecules which contain a 

phosphorus-carbon triple bond are versatile starting 

materials for many reactions including the synthesis of 

organophosphorus cages, heterocycles and coordination 

complexes. Taking advantage of newly developed routes to 

the simple methyl phosphaalkyne, Cameron Jones and 

colleagues at Cardiff University have examined its 

coordination chemistry for the first time.

The chemistry of phosphaalkynes stabilised by bulky 

substituents has been a developing area for many years, but, 

despite its importance, the chemistry of the simple derivative 

methyl phosphaalkyne has remained unknown. According to 

Jones, this has been a goal for phosphorus chemists for some 

time and is particularly interesting because methyl 

phosphaalkyne is an analogue of propyne, which is an 

important industrial feedstock.

John Nixon, FRS, professor of chemistry at the 

University of Sussex, UK, and an expert in the coordination 

chemistry of phosphorus, is enthusiastic about the chemists' 

work. He explained that while the presence of bulky t-butyl 

groups in phosphaalkynes can provide kinetic stability, it 

also introduces its own steric effect on reaction pathways. 

Their initial results show that as well as exhibiting some 

similar behaviour to the t-butyl phosphaalkyne systems, 

other synthetic pathways can result using the much smaller 

methyl-containing derivative,' said Nixon.

One of the next challenges for chemists is the linear 

polymerisation of phosphaalkynes with the hope of finding 

useful optical or electronic properties. 'This has never been 

achieved because of the propensity of phosphaalkynes to 

form cyclic oligomers and cage complexes,' said Jones. 

'With methyl phosphaalkyne, we see the potential to realise 

this goal.

Caroline Moore

Dalton Trans., 2006, 31, 3733

Inorganic Chemistry
ACS Publications

Unusual Reactivity of 

Methylphosphaalkyne (P=CMe)...
13 May 2007

Inorg. Chem., 2008, 47,1273

Reactions of methylphosphaalkyne, PC=Me, with a 

digermene, R"2Ge=GeR"2 (R" = -CH(SiMe3)2), and two 

distannenes, R"2Sn=SnR"2 and Ar'2 Sn=SnAr'2 (Ar' = 

C6H2Pr'3-2,4,6), have given moderate to high yields of the 

first bridged 2,3,5,6-tetraphospha-l,4-

dimethylidenecyclohexanes,

[R2E {C(MeXH)PC(=CH2)P} ]2 (R = R" or Ar', E = Sn or 

Ge), all of which have been structurally characterized. 

Their mechanisms of formation are thought to involve 

successive [2 + 1] and [2 + 2] phosphaalkyne 

cycloaddition, heterocycle rearrangement,

phosphaalkene/vinylphosphine tautomerization, and 

intermolecular hydrophosphination reactions. In one 

reaction, two intermediates have been spectroscopically 

observed and one trapped by coordination to one or two 

W(CO) 5  fragments, yielding the first diphosphagermole 

complexes, {[W(CO)5} ior2 {R"2Ge[C(Me)PC(Me)P]}], 

which have been structurally characterized. Differences 

between the reactivities of P^CMe and P=CBu are 

highlighted.

- VIII-
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Abbreviations

A Angstrom units, 1 0 '10 m

Ad 1 - Adamantyl

anal. Analysis

Ar A general aromatic substituent

b.p. Boiling point

br. Broad

Bun Normal butyl

Bul Tertiary butyl

ca. Approximately

cm' 1 Wavenumber unit for frequency (= v/c)

calc. Calculated value

cf. Compare with

cm 1 0 '2 m

cm3 ml

COD 1,5-Cyclooctadiene

COT Cyclooctatetraene

Cp* 1,2,3,4,5-Pentamethylcyclopentadienyl

crypt[2 2 2 ] hexaoxa-1,10 -diazabicyclo[8 .8 .8 ]hexacosane

Cy Cyclohexyl

Cp Cyclopentyl

d Doublet

DBU 1,8-Diazabicyclo[5.4.0]undecene-7

DCM Dichloromethane

dd Doublet of doublets

dec. Decomposes

5 (Delta) Chemical shift in ppm

Diglyme Diethylene glycol dimethyl ether, CH3 0 (CH2CH2 0 )2CH3

Dipp 2,6-diisopropylphenyl

DPPE Bis(Diphenylphosphino)ethane-P,P ’

e Electron

E A general non-metal

-DC-
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Et2 0  Diethylether

EI/CI Electron impact / chemical ionisation

Et Ethyl

Fc Ferrocene ([Fe(ti5-C5H5)2])

g Grams

rjn Hapticity, through n atoms

HOMO Highest occupied molecular orbital

Hz Hertz, s' 1

ipso ipso-substituent

IR Infrared

nJxy Coupling constant between nuclei X and Y, over n bonds, in Hz

L A general ligand

LUMO Lowest unoccupied molecular orbital

M A general metal or concentration in moles per litre

m. Multiplet

M+ Molecular ion

Me Methyl

p Symbol for bridging ligands

Me Methyl

Mes 1,3,5-Trimethylphenyl

Mes* 1,3,5-T ri-/er/-butylphenyl

meta meta-substituent

ml Millilitres

MO Molecular orbital

m.p. Melting point

MS(APCI) Atmospheric Presure Chemical Ionisation Mass Spectroscopy

MS(EI) Electron Ionisation Mass Spectroscopy

MW Molecular weight

nm 1 0 '9m

NMR Nuclear magnetic resonance

ortho ortho-substituent

OTf Triflate anion

para para-substituent

Ph Phenyl
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ppm Parts per million

Pr1 Isopropyl

Prn Normal propyl

q Quartet

R A general non-aromatic organic substituent

RT room temperature

s Singlet or strong

sept septet

Tetraglyme Tetraethylene glycol dimethyl ether, CH30 (CH2CH20 )4CH3

THF Tetrahydrofuran

TLC Thin layer chromatography

TMS Trimethylsilyl

tr. Triplet

u Frequency

UV Ultra violet

X Halide
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1.1 C o -o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

1. Co-ordination and Cycloaddition Chemistry of Methyl- 
and 7&rl-butyl-Phosphaalkyne

1.1 Introduction

It was Becker et al. in 1981 who published the preparation of the first room 

temperature stable phosphaalkyne, P^CBuV11 Since then, phosphaalkynes have 

developed from being chemical curiosities to multifaceted synthons, that are now 

widely used for the preparation of organophosphorus cages, heterocyclic and acyclic 

compounds^2,3] as well as phospha-organometallic, coordination and cycloaddition 

complexes. As there are over 700 publications on P=CBul to date, this and other 

hindered phosphaalkynes have shown their synthetic versatility and have proven to 

be much more alkyne than nitrile-like in their reactivity. Although hindered 

phosphaalkynes have been investigated for over two decades, unhindered 

phosphaalkynes, e.g. P=CH or P=CMe, are still largely unexplored. To show 

differences and similarities between hindered and unhindered phosphaalkynes, a 

study of the reactivity of the unhindered phosphaalkyne, P=CMe, with a variety of 

reagents were carried out. This study forms the basis of this chapter.

1.1.1 Phosphaalkyne Chemistry

The first experimental evidence for a phosphaalkyne (P=CH) was found by 

Gier in 1961, by performing an experiment in which phosphine (PH3) was subjected 

to an electronic arc struck between two graphite electrodes. By condensing the 

product at -196 °C, he was able to identify methylidynephosphane (P=CH) by IR
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spectroscopy. P=CH can be stored at temperatures below -124 °C, but above this 

temperature it polymerises.[4] However, it can be stored under reduced pressure to up 

to 20 °C without polymerisation, or for a shorter period as a toluene solution below - 

70 °C over two days. It is worth mentioning, that the evidence for the structure of 

P=CH, was obtained by reacting it with anhydrous HC1, which yielded only 

CH3PCI2. Years later, different phosphaalkynes were identified, e.g. P=CMe, which 

was prepared in 1976,[5’ 6] or P=CSiMe3 prepared in 1981.[7] Most importantly, 

Becker et al. reported in 1981 the first kinetically stabilized phosphaalkyne, P=CBul 

(1) (Scheme 1).[1]

BuV\  OH-
C = P v A /S iM e 3 ------------  ► P ^ C B u *

Me3SiO -(Me3Si)20
1

Scheme 1 Preparation of P=CBu‘

P=CBu* is a stable colourless liquid, with a boiling point of 61 °C, and is the 

most widely used of all phosphaalkynes. A high precision low temperature X-ray 

diffraction study of P=CBul revealed that its lone pair is located much closer to the P 

atom than in the phosphaalkene precursor,[8] and the P=C bond length was found to 

be 1.548 A.[9] The HOMO of this phosphaalkyne involves the ir-bonding orbitals of 

the PC triple bond and not the P lone pair, a situation which strongly suggests that 

phosphaalkynes would be expected to have a chemistry closely related to that of 

alkynes instead of nitriles.[10,11] Thus, the P=C bond in phosphaalkynes is polarised
Cl c

in the sense P C ' and it has been established that in spite of the presence of the P 

lone pair, protonation of P=CBu* occurs exclusively at the carbon centre.[12]
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Nixon et al prepared the unhindered phosphaalkyne, P=CMe (2) in 1976 by 

pyrolysis of ethyldichlorophosphine vapour at low pressure which flowed slowly 

through to a 900 °C hot quartz tube and was identified by a microwave spectroscopy 

(Scheme 2).[5]

MeCH2PCl2 'HC1
A T

H3CHC=PC1
-HC1

—  ----- ► P =C M eAT
2

Scheme 2 Preparation of P=CMe

Since then, a variety of different routes to prepare unhindered 

phosphaalkynes have been published. These preparations mostly involve VGSR 

(Vacuum Gas-Solid Reaction) conditions and require high temperature, high vacuum 

and a HC1 absorbing compound e.g. K2CO3. Guillemin at al. published in 2001 a 

different way of preparing unhindered phosphaalkynes, e.g. P=CR, (R = H, CH3, Et, 

Bu11), under standard conditions by chemoselective reductions of phosphonates with 

A1HC12) followed by HC1 elimination reactions with a strong Lewis base (DBU) 

(Scheme 3).[13"16] The unhindered phosphaalkyne, P=CMe, is a colourless liquid with 

a freezing point of ca. -90 °C and a boiling point of ca. 20 -  30 °C. P=CMe is 

extremely pyrophoric but not moisture sensitive. It is known that pure P=CMe is 

unstable at room temperature and even polymerises upon storing as a pure sample at 

-80 °C over days. However, as a diethylether solution, P^CMe is stable at room 

temperature for days and can even be stored at -20 °C for a month before 

decomposition starts.
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[1986]

RCH2PC12 ----------   ► P=CR + 2HC1 ------- --------
iii

R = H or Me

i = 10'3 torr, 3.5 cm i.d. x 90 cm quartz tube, 750°C
ii = horizontal half-filled column of 1,3,5-tricylohexylhexahydro-triazine
iii = cold trap at -120°C

P =  CR 
90%

[1991]

RC12PH2
k 2c o 3

VGSR, 300°C

R

Cl

VC = P JWVH
k 2c o 3

VGSR, 350°C
P=CR

80%

R = H, Me, Et, Bun, MeSi, Cl

[1992]

Me_ c = c _ pH io r ii », P^CMe 1 =NEt3,10°CorDBU,-90°CinTHF
2 ii = K2C 03, 20°C

90%
R= H, Me, Ph

[2001]

. (?Pr' A1HC12 dbu

Pr,° “ r CC^ R diglyme-78°C> H' PCCl2R digl yme 60°C» P" CR
°  -HC1 75%

R = H, Me, Et, Bu"

[2002]

/ 0Pri * r a n  / H K2C 03
H—C = C - P OPr‘ ► H C = C  P  *  P=CMe

O H
\  VGSR, 150°C 

H

Scheme 3 A variety o f ways to prepare unhindered phosphaalkynes

The theoretically optimised structure of P=CMe shows a C-C=P angle of 

179.9° and a P=C bond length between 1.549 to 1.557 A.[17,18] This is slightly longer 

than that of the hindered phosphaalkyne P=CBul (1.548 A).[9] The first ionisation 

energy, which is associated with electron excitation from the 7t(C=P) bonding orbital
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and not the a  non-bonding orbital, was calculated to be 9.84 eV for P C M e,119, 201 

and 9.61 eV for P C B u 1. ^ 01 Studies have shown that the phosphaalkyne, P=CMe, is 

more acidic than P=CH, N C M e,[16,18̂ and PCBu*. The stretching vibration of the 

P C  bond was found at 1559 cm '* for P C M e t15,17,21,221 and 1543 cm _1 for P=CBul 

in their IR spectral1] The P C  bond in P C M e is also polarised in the sense (P5+C8‘ 

)[,8‘ 23] and calculations have shown that the stretching forces for the generalized 

P C ,  P=C and P C  bonds are 915 -  987, 512 -  598 and 266 -  284 Nm ~lP l] 

Moreover, the phosphaalkyne, PC M e, has been calculated to be the global 

minimum of the various C2H3P isomers by 17 -  30 kcal/mol (Figure 1).[24]

Figure 1 C2H3P optimised isomers

1.1.1.1 Co-ordination Chemistry

Phosphaalkynes have five possible modes of co-ordination to metal

P

h p = c = c h 2 h 2p - c = c h
H2C CH

H1
P

h 2p — Cx C = p  —c h 3

H HC CH

centres.125,261 Type A co-ordination occurs solely via the phosphorus lone pair,[27]
*y

while type B involves a side on co-ordination through the P-C triple bond in an re

fashion, which is commonly observed for alkyne co-ordination.[28] Type C is a 

combination of both A and B type co-ordination modes.
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Bu Bu Bu1 Bu

M— M— I

M
*
M

/ \  
I---------
\ v

Bu1

M- — M 
✓

A B C
Figure 2 Co-ordination modes of phosphaalkynes

D
M

E

In D the phosphaalkyne acts as a r|2-bridge[29] and in E the phosphaalkyne 

acts simultaneously as rj2-bridge and electron pair donor (Figure 2).[30] The t]1-co- 

ordination of type A is the most uncommon, as the phosphaalkyne is poorly 

nucleophilic (P ̂ C 5-). As a result, this mode requires bulky precursor complexes, in 

which an end on coordination of the linear phosphaalkyne into a sterically hindered 

pocket (e.g. that of 6 ) is the only way for the phosphaalkyne to coordinate (Figure 

3 ) pi] Therefore rj2-co-ordination is favoured over q1-co-ordination, as for example, 

in compound 3. Examples of type D and E coordination complexes are shown in 4 

and 5 (Figure 3).[28]

/
Bu

PPhi P

Bu

F
OC— Mo— —Mo— CO

oc<  > P<  \ o
4

Bu1
I

^ F
OC— Mo— —Mo— CO

*  T  Vco
T
W(CO)5 
5

OC

Ar
I

Ar

CBu*
III i
p JI /Mô
I ^
P
111 tCBu
6

P
I

Ar
Ar =/^Tolyl

Figure 3 r[- and q1 -co-ordination of P=CBu‘ in Pt and Mo metal complexes
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An interesting general feature of complexes of type B is their longer 

phosphorus-carbon distance compared to that of the free phosphaalkyne [1.548(1) A 

in P=CBul] . [283 This phosphorus-carbon distance is an effect of the donation of 71- 

electron density from the phosphaalkyne to the metal centre and back donation of 

metal d-electron density into the empty n* LUMO of the phosphaalkyne which leads 

to a reduction in the phosphorus-carbon bond order. This is reflected in a bending 

away of the tert-butyl group from linearity, which indicates an change in the 

hybridization of the phosphorus and carbon centres from sp to sp2.[83 The lengthening 

of the phosphorus-carbon bond in rj -complexes is in contrast to the phosphorus- 

carbon bond length of rj1-complexes which is close to that in the free phosphaalkyne 

and consistent with bonding through the phosphorus lone pair.[27] Type D[28, 293 and 

E[31, 323 complexes, e.g. 4 and 5, are known, in which the phosphaalkyne can be 

viewed as a four or six electron donor respectively.

1.1.1.2 Cycloaddition Chemistry

Like alkynes, phosphaalkynes have the potential to readily undergo [2 + 1], 

[2 + 2], [3 + 2] and [4 + 2] cycloadditions with transition metal and main group 

fragments to give an interesting spectrum of novel heterocyclic compounds.[33,343

The [ 2 + 1 ]  cycloadditions involving P=CBu with one equivalent of the 

bulky heavier carbene analogous :ER2 (7a-c) (E = Si, Ge; R = Bu1, Mes, 

C6H2 {CH(SiMe3)2}3-2 ,4 ,6 , CH(SiMe3)2), give three-membered heterocycles, 8 a-c, 

containing P=C bonds which are able to undergo subsequent rearrangements. 

Reacting P^CR (R = Ad or 2-methylcyclohexyl), with one equivalent of 9 forms 

product 11 via two [1 + 2 ] cycloaddition steps (Scheme 4).[35'383
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E
R1 R2

P— CBu
Rv  r2

E (a)E = Si,R 1 = R2 = Bu*
(b) E = Si, R1 = raesityl, R2 = C6H2{CH(SiMe3)2}3-2,4,6A

Bu1
C P (c) E = Ge, R1 = R2 = CH(SiMe3)2

hv
Mes2 
Si

Mes2Si SiMes2
P = C R  + MeS!Si(SiMe3h  ' / \  + Mes2Si(SiMe3h  ' '

P
c—P

R
10 11

Scheme 4 [2+1] cycloadditions of P^CR with group 14 precursors

[2  + 2 ] cycloadditions are often initiated by low coordination metal 

complexes. For example, one equivalent of P=CBul reacts with one equivalent of 

[Sn{CH(SiMe3)2}2]2 (12) to form the four-membered heterocycle 13 (Scheme 5).[39J

2 {(Me3Si)2CH}2Sn [{(Me3Si)2CH}2Sn]2 + p=CBu*

10

{(SiMe3)2HC}2Sn— Sn2{CH(SiMe3)2} 

.C = P
Bu

11

Scheme 5 [2 + 2] cycloaddition of P=CBu* with [Sn{CH(SiMe3)2}2]2

P=CBul reacts with diazomethanes (14a-f) to form exclusively 3-H-1,2,4- 

diazaphosphole products (16a-f) via [3 + 2] cycloadditions in almost quantitative 

yields. Steric factors are typically found not to oppose the electronic factors of these 

reactions (Scheme 6 ). [3 + 2] cycloaddition reactions with alkylazides have also 

been reported.1[4(M3]

P = C B u * > = N=
H

R

H N*

14

Bu

N X I

15

N*
H 16

R = H Me Bu* COPh COzMe POPh2

Scheme 6 [3 + 2] cycloadditions of P^CBu* with diazomethanes



1.1 C o -o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

An example of a [4 + 2] cycloaddition is the reaction of one equivalent of 

P^CBu* with one equivalent of 2,4,6-tri-te?7-butyl-l,3,5-triphosphabenzene 17[44] to 

form the 1 ,3 ,5 ,7 -tetraphosphabarrelene (18) (Scheme 7).[45]

Bu1

PzEEECBu +  ^

Bu* v ' '  Bu*

17

Scheme 7 A [4 + 2] cycloaddition of P^CBu* with a triphosphabenzene

1.1.1.3 Oligomerisation Chemistry

Phosphaalkynes have the ability to undergo metal mediated 

cyclooligomerisation reactions^25, 26] and have shown similar behaviour to that of 

alkynes in this respect.[34] For example, [M(r|5-C5R5)(r|2-C2H4)2] (R = H, M = Co, 

Rh; R = Me, M = Co, Rh, Ir) (19) react with two equivalents of P=CBu* to give the 

1,3-diphosphacyclobutadiene complexes (20a-e) via head to tail couplings (Scheme 

8 ).[46] It is worth mentioning that theoretical studies have predicted that head to head 

dimerisations (to give 1 ,2 -diphosphabicyclobutadienes) are more favourable, but 

most experimental studies shown only 1,3-diphosphacyclobutadiene ring formations, 

which is probably due to steric reasons (see also 1.3.5)J46,47]

Bu'

Bu1

Bu'



1.1 C o -o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

R

R =  H, M = Co (a), Rh (b)

R = Me, M = Co (c), Rh (d), Ir (e)

Bu1
19 20

Scheme 8 Cyclodimerisations of P=CBu* by Co, Rh and Ir precursors

Theoretical and photoelectron studies on (20a) and [Fe(r|4-1,3- 

P2C2But2)(CO)3] have indicated that the diphosphacyclobutadiene moiety is bound 

more strongly than the r|4-cyclobutadiene unit of related hydrocarbon complexes.[48] 

It is therefore no surprise that liberation of the diphosphacyclobutadiene fragment of 

the complexes 2 0 a-e has not been achieved to date.

Three equivalents of P=CBul have been reacted with [Hf(r|8-COT)(r|4- 

CH2=CHCH=CH2)] (21) at -78 °C to give complex 22 which contains a cyclic trimer 

of P=CBul. After treating 22 with hexachloroethane, 2,4,6-tri-/er/-butyl-1,3,5- 

triphosphabenzene (17) was obtained in 53 % yield (Scheme 9).[49]

toluene/
pentane

140°C Bu* Hf

Scheme 9 Cyclooligomerisations of P^CBu* by a Hf precursor

Treatment of 21 with two equivalents of P=CBul yields a complex 

containing a COT ligand and a head to tail coupled 1,3-diphosphacyclobutadiene 

fragment at the metal centre (23). Further treatment with hexachloroethane liberated

- 10-



1.1 C o -o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

the 1,3 -diphosphacyclobutadiene which undergoes a series of cycloadditions to give 

the tetraphosphacubane (24) in a 34 % yield (Scheme 9).[50] 2,4,6-tri-tert-butyl-l,3,5- 

triphosphabenzene (17) can also be prepared by reacting P=CBul with the strong 

Lewis acid B u ^ ^ C U  in toluene from -75 to 25 °C. In this reaction compound 17 

was isolated in a 6 8 % yield (Scheme 10).[44]

P=C Bu*
Cl3V=NBut

toluene, -78- 25°C P\ ^ P
Bu*
17

Scheme 10 Preparation of 2,4,6-tri-ter/-butyl-1,3,5-triphosphabenzene by Cl3V=NBu‘

The zirconium complex, 26, was synthesised by the reaction of zirconocene 

dichloride (25) with P^CBu* in the presence of BunLi, in a 70 % yield. [51] When 26 

is treated with hexachlorethane in benzene, 24 is formed over 5 days in a 70 % yield. 

Treatment of 26 with [(PPhs^NiCy affords a further isomer of 24, namely 27 

(Scheme 11).[52]

[(ti5-C5H5)2ZrCl2l + P = C B u *  

25

Bu"Li
Zr-78°C 5d, 25°C

Bu*

26

Bu'

Bu'
Bu'

B u\ Bu*

P ^ B u *

24

Scheme 11 P=CBu* tetramerisations by a Zr precursor

In 1995 Binger et al. reported the hafnium complex 28. Treatment of 28 with 

P^CBu1 yields the 1,3,5,7-tetraphosphabarrelene complex 29 in a 8 8  % yield.

- 11-



1.1 C o-o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

Treatment of complex 29 with hexachloroethane gives the tetraphosphabarrelene (18) 

in a 88 % yield.[45] This compound (18) is air sensitive but thermally stable (Scheme 

12).

Bu*

+ 3 P=CBu*
XLHf

Bu*
Bu*« Bu'

Bu*Bu
touene

3 days, 70°C
Bu*

182928

Scheme 12 Tetramerisation of P=CBu* by a Hf precursor

Binger et al. also reported, in 1987 and 1991, the cyclodimerisation of a 

phosphaalkyne with alkynes within the co-ordination sphere of transition metals^53,54] 

(Scheme 13).

W
Me3SiC = C S iM e3

SiMe3

/KCo— —Co

Y
SiMe-»
4 P = C B u * i;

►  Bu* 9 °  SiMe3 But\ J °  „ 

Bu* Bu1

ci
Pr\P^ \

J Rh

Prl3p /
Ph

Ph

(i) LiCp

(ii) P=CBu*

Bu* Rh Ph

/(5
Bu

Cl
Pr\PA =

P = C B u * ^ R h  ^  Bu*
PH

Bu*

Scheme 13 Dimerisations of P=CBu* with alkynes bound to transition metal centres
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1.1 C o -o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

Phosphaalkyne oligomerisations have also be observed in the absence of any 

metal centre. For example, heating P^CBu1 at 180 °C forms a mixture of products 

which include the tetraphosphacubane 24 (Scheme 14).[55]

Bu*Bu*
Bu*Bu1

180°C +
oligomerisation

Bu1

B . A . P
£ -B u'

„U Bu  ̂ ^Bu‘
24

Scheme 14 Solvent free oligomerisations of P=CBu‘

Oligomerisation of P^CBu* in the presence of reactive elemental metals has 

also proved facile when utilising metal vapour synthesis as a technique. Here, 

phosphaalkyne is co-condensed at -196 °C with metal vapours. Upon warming to 25 

°C a variety of novel phosphaorganometallic compounds are often formed. [56'58]

Examples of phosphaalkyne penta- and hexamers can also be found in the 

literature. For example a pentamer can be formed by reacting three equivalents of 

[Li][l,2,4-triphophacyclopentadienyl] (30) and two equivalents of [Li] [1,3- 

diphosphosphentacyclopentadienyl] (31) in DME with an excess of FeCl3 or 

CoBr3.[59] These reactions give the pentaphosphorus cage 32 in a 24% yield via 

oxidative coupling reactions. The five phosphorus atoms in product 32 are contained 

in two five-membered rings, three four-membered rings, and one three-membered 

ring.

The only known hexamer is formed on reacting 30 and 31 with [PtCl2(cod)] 

gave the hexaphosphorus cage, 33, along with two pentaphosphorus cages,the known 

cage 32 and the new protonated cage 34 (Scheme 15).[60]

- 13-
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Bu* Bu

■G/p + f\Q
Bu* Bu* Bu* 

30 31

Bu*

FeCl3 or CoCl2 P-----/
^ / p  y t ' h  bu*

Bu*

PtCl2(cod)

32

p Bu* Bu*

Bu' r^ p  
Bu*

33

Bu*

Bu

Bu* P H

34

Bu*

Scheme 15 Preparation of phosphaalkyne oligomers

1.1.1.4 Polymerisation Chemistry

In 2002, Wright and Gates published a report on a ^-conjugated 

macromolecule, poly(p-phenylenephosphaalkene) 36, which was prepared by a 

thermally induced polycondensation of the two bifunctional monomers, 2,3,5,6- 

tetramethylterephthaloyl dichloride and 1,4-bis-(l, 1,1,3,3,3-

hexamethyldisilaphosphan-2-yl)benzene.[61] The polymeric compound, 36, may be 

regarded as the first phosphorus analogue of the now well known conjugated poly(p- 

phenylenevinylenes) (35), which have drawn attention due to the 

electroluminescence they often exhibit (Figure 4).[62,631

OSiMe3

Me3SiO

35

Figure 4 ^-conjugated marcromolecules

Just two years later in 2004, Smith and Protasiewicz reported two further 

thermally stable low coordinate phosphorus polymers, 37 and 38, (Figure 5).

- 14-



1.1 C o -o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

Compound 38 is the first example of a polymer featuring multiple bonds between 

two heavier main group elements along a polymer backbone. This successful 

stabilization of diphosphene units suggests the possibility of stabilizing other, 

heavier, EE multiple bonds in a similar way. In this respect, an analogue of 38 

having As=As units in the main chain has been prepared by the same group and is 

currently under investigation.[64]

c 6h 13Q

o c 6h 13

C6Hi3Q

OC6H13 38

Mes
Figure 5 Low coordinate phosphorus polymers

The preparation of tt-conjugated polymers incorporating phosphorus moieties 

opens the way for the preparation of a wide range of fundamental new materials.[65] 

Their preparations may involve the large variety of reactions known for 

phosphaalkynes e.g. phosphorus coupling reactions or co-ordination complex 

formation.126,33]

- 15-



1.1 C o - o r d in a t io n  a n d  C y c l o a d d it o in  C h e m is t r y  [In t r o d u c t io n ]

1.1.2 The Preparation of P^CMe

The unhindered phosphaalkyne, P=CMe which is used in reactions described 

in this thesis has been prepared via the following literature route and was stored after 

purification as a diethylether solution at -25 °C.

Compound 40 was prepared by heating tri-zso-propyl phosphate (39) at reflux 

with a large excess of CCU over 24 h, giving 40 in 90% yield.[66] Reacting a THF 

solution of 40 with BunLi at low temperature followed by adding dimethyl sulfate at 

the same temperature gave 41 in a 70% yield (Scheme 16).[67]

i 1 OPr* OPr*
Pr*Ov  OPr1 | I

P  CO*--------  p rio— P—CCI3  BuMJ, Me?S0 4 ^  Pri0 _ ^ _ c c l  Me
I 80°C II THF, -80°C ||

OPri O O

39 40 41

Scheme 16 Preparation of the phosphanate 40 and the phosphanate 41

Compound 42 was prepared by reacting the phosphonate, 41, with AIHCI2 at 

-60 °C to give 42 in 90% yield. Treating 42 with DBU at low temperature leads to 

the unhindered phosphaalkyne, P=CMe. To obtain pure samples of P=CMe, diglyme 

should be used as solvent in the reduction and elimination steps. The mixture was 

fitted on a vacuum line equipped with two cold traps. The first one was cooled at -45 

-  -50 °C (acetone) to remove the solvent, while the second one cooled at -120 °C 

(ethanol) allowed the trapping of P=CMe (Scheme 17). The low boiling compound 

was distilled in vacuuo (10' 1 mbar). At the end of the distillation, this trap was 

disconnected from the vacuum line. Pure P=CMe should be kept at low temperature 

(< -80 °C).[13]

OPri
I AlHCli H \  DBU

PriO— P—CCl2Me ---------------------   ► P—CCl2Me ---------------------- ► P = C M e
|| diglyme -78°C diglyme -60°C
O

41 42

Scheme 17 Preparation of phosphine, 42, and P=CMe
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1.2 Co o rdinatio n  a nd  Cy c lo a d d ito in  Ch e m istr y  [Rese a r c h  Pr o po sa l ]

1.2 Research Proposal

The chemistry of the hindered /er/-butyl-phosphaalkyne (P=CBul) has been 

investigated for over two decades. In its reactions with main group and transition 

metal precursors it undergoes co-ordination, cycloaddition, oligomerisation and 

polymerisation processes to give a variety of interesting complexes. Unhindered 

phosphaalkynes, e.g. P=CH or P=CMe, are still mostly unknown as reagents or 

reactants. This can by explained by their difficult preparation and handling, before 

Guillemin et al. reported a high yield, multi-gram synthesis for unhindered 

phosphaalkynes including P=CMe in 2001.[13]

After discovering how to handle the very air and temperature sensitive 

phosphaalkyne, P=CMe, Guillemin challenged chemists to begin the examination of 

the co-ordination, cycloaddition, oligomerisation and polymerisation reactions of this 

phosphaalkyne. With this aim in mind, an investigation to compare the chemistry of 

P=CMe with its more hindered analogues and alkynes themselves were carried out. 

The results of this study from the basis of this chapter

- 19-



1.3.1 R e su lts  a n d  D isc u ssio n  [Tr iph o sph a b e n z e n e  & T e t r a ph o sph a b a r r e l e n e ]

1.3 Results and Discussion

1.3.1 Reactivity of Phosphaalkynes with a Triphosphabenzene and a

T etraphosphabarrelene

The previously reported thermally induced oligomerisation of P=CBul 

(31P{1H) NMR: 8 = -67 ppm) by heating a neat sample of the phosphaalkyne to 180 

°C led to a range of different oligomerisation products (24, 43 and 44), including the 

phosphaalkyne tetramer 24 (31P{!H} NMR: 8 = 257.4 ppm) (Scheme 18). The 

mechanism of formation of compound 24 likely involves a head to tail [2 + 2] 

dimerisation of P=CBu* to yield a 1,3-diphosphacyclobutadiene, followed by a 

second dimerisation and an intermolecular [2 + 2] cycloaddition to form compound 

24 (see 1.3.5 for mechanism).[25,551 Investigations with the phosphaalkyne P=CPh 

(45), have been carried out and show that it spontaneously oligomerises above 25 °C. 

This reaction leads to a range of unknown polyhedral oligomers (46) (Scheme 18). 

Although formation of linear oligomers would be unlikely if 45 oligomerises by 

cycloaddition mechanisms, the more modest steric requirements of the phenyl group 

may provide opportunities for the formation of higher molecular weight species such 

as ladder polymers, or even branched polymers analogous to polyphenylcarbyne.[68]

Bu* Bu* D

180°C Bu*
P = C B u * + P P

oligomerisation
Bu*> = < Bu1

44

45 46

Scheme 18 Solvent free oligomerisation of phosphaalkynes
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1.3.1 R e su lts  and  D isc u ssio n  [Tr ip h o sp h a b e n z e n e  & Te t r a ph o sph a b a r r e l e n e ]

To compare the reactivity of P=CMe with that of P=CBul, a neat sample of 

P=CMe was heated under reduced pressure at 50 °C and the reaction was monitored 

by 31P{1H} NMR spectroscopy. The 31P{1H} NMR spectrum showed many 

phosphorus containing products with resonances between 140 and -250 ppm. No 

unreacted P=CMe was present in the mixture. Unlike the oligomerisation reaction of 

P=CBut[25,55̂ (Scheme 18), none of these products could be isolated or characterised. 

As a result, it was decided to compare the reactivity of these phosphaalkynes by their 

treatment with 2,4,6-tri-ter/-butyl-1,3,5-triphosphabenzene (17)[44] and 1,3,5,7- 

tetraphosphabarrelene (18)[45]. These were thought good examples to understand the 

major differences in the reactivity between the unhindered phosphaalkyne, P=CMe; 

and the hindered phosphaalkyne, P=CBu\

It is well known, that 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene (17) reacts 

with one equivalent of P=CBul via a [4 + 2] cycloaddition process at room 

temperature over 12 h to give the 1,3,5,7-tetraphosphabarrelene (18)[45] [31P{!H} 

NMR: 6 = -87 ppm (d, Vpp = 35 Hz), 323 ppm (d, Vpp = 1 2  Hz)] in almost 

quantitative yield.[44,69] In a similar reaction, compound 17 ^^{ 'H } NMR: 8 = 133 

ppm] was reacted with an excess of P=CMe to give the mixed substituted species, 

47, in only 1 h and in a high isolated yield (66%) (Scheme 19). The 31P{1H} NMR 

spectrum of the compound exhibits two low field signals at 301 and 308 ppm 

corresponding to the P=C fragments, while three higher field resonances were 

observed at 60, 9.4 and -  100 ppm, all of which reveal Jpp couplings (e.g, lJvv =176 

Hz) in the expected ranges.^2,3’70]

-21-
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W(CO)5
[W(CO)5THF]

W(CO)52 P = C M e

Bu‘ 18

Scheme 19 Reaction of 17 with P=CR (R = Me and Bu*)

The rapid reaction of P=CMe with 17 clearly illustrates that unhindered 

phosphaalkynes are much more reactive, and react differently, than sterically 

hindered phosphaalkynes. An attempt to react 17 with only one equivalent of P=CMe 

was monitored by 31P{,H} NMR spectroscopy and showed the presence of 47 and 

the starting material, 17, in a 50 : 50 ratio with no evidence of any intermediates. The 

absence of observed intermediates in this reaction eliminates the opportunity to 

explore its mechanism. However, it seems reasonable that the first reaction step 

involves a [4 + 2] cycloaddition of compound 17 with one equivalent of P=CMe, to 

give a tetraphosphabarrelene analogous to 18. It proved impossible to growe X-ray 

quality crystals of the cycloaddition product, 47. To identify its core structure, it was 

reacted with [W(CO)s(THF)], followed by chromatographic workup (silica 

gel/hexane) to give compound 48 as an orange crystalline product (Figure 6).

The spectroscopic data for 47 and 48 are similar in that their !H NMR spectra 

each display signals due to the protons of their three chemically inequivalent tert- 

butyl groups and two methyl substituents. The 31P{1H} NMR spectrum of 48 exhibits 

two low field signals at 315 and 243 ppm corresponding to the P=C fragments, along
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1.3.1 Re su l t s  a n d  D isc u ssio n  [Tr iph o sp h a b e n z e n e  & Te t r a ph o sph a b a r r e l e n e]

with three higher field signals at 72, 11.7 and -119 ppm, all of which reveal Jpp

couplings (Vpp =180  Hz, 2JPP = 1 2 - 2 4  Hz) in the expected rangesJ2, 3’ 70] In

1addition, two of the resonances (72 and 243 ppm) for 48 are flanked by W 

satellites.

The molecular structure of 48 was determined by X-ray crystallography and 

its molecular structure is depicted in Figure 6. The structure reveals it to have a 

pentaphosphaisolumibullvalene cage core with two P-C double bonds [P(l)-C(l) 

1.678(7) A, P(5)-C(5) 1.673(7) A], that are in the expected range. The P(l) and P(2) 

centres are both coordinated to W(CO)s fragments, seemingly because these are the 

least sterically hindered P-atoms.

-23-



1.3.1 Resu lts  and  D iscussion  [Triphosphabenzene  & Tetraph o sph abarrelene]

Figure 6 Molecular structure of 48 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°): W (l)-P(l) 2.495(2), W(2)-P(2) 2.551(2), 

P(l)-C(l) 1.678(7), P(l)-C(3) 1.921(7), P(2)-C(l) 1.836(7), P(2)-C(2) 1.866(7), 

P(2)-C(4) 1.877(7), P(3)-C(2) 1.862(7), P(3)-C(3) 1.902(7), P(3)-P(4) 2.239(3), P(4)- 

C(5) 1.814(7), P(4)-C(2) 1.881(7), P(5)-C(5) 1.673(7), P(5)-C(4) 1.875(8), C(3)-C(4) 

1.544(10), C(l)-P(l)-C(3) 98.3(3), C(l)-P(2)-C(2) 99.9(3), C(l)-P(2)-C(4) 92.4(3), 

C(2)-P(2)-C(4) 97.2(3), C(2)-P(3)-C(3) 97.1(3), C(2)-P(3)-P(4) 53.7(2), C(3)-P(3)- 

P(4) 107.9(2), C(5)-P(4)-C(2) 109.1(3), C(5)-P(4)-P(3) 110.1(3), C(2)-P(4)-P(3) 

52.9(2), C(5)-P(5)-C(4) 106.5(3).

It was also of interest to see if a similar product to 47 could be formd by 

reacting 1,3,5,7-tetraphosphabarrelene (18) with an excess of P=CMe. However, 

monitoring the reaction by 31P{1H} NMR spectroscopy showed that a mixture of 

phosphorus containing products formes with numerous resonances between 360 and 

-239 ppm. Treating the reaction mixture with an excess of [W(CO)5(THF)], followed
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by chromatographic workup (silica gel/hexane), gave 49 as the only identified 

product, yield 32% (Scheme 20).

Bu1

p— pBn1 -P
= C M e

P
Bn*

Bu118

Scheme 20 Reactivity o f a tetraphosphabarrelene with P=CMe

The 31P{1H} NMR spectra of compound 49 displays the expected number of

resonances, although those for the t\ -coordinated P=C fragments are at relatively

1 82high field (8 -4.9 to 53.4 ppm) and do not display observable W satellites, 

presumably due to small magnitudes of the !Jpw couplings. The shifts of these 

signals are, however, similar to those seen for other ^-coordinated (P=C)2 fragments 

of phosphabarrelenes.[71] One other apparent anomaly in the s1P{'H} NMR spectrum 

of 49 is the very small Vpp coupling constants (Vpp = 24 and 56 Hz, 2JPP = 7 Hz) 

between the three contiguous P-centres. The magnitudes of these couplings 

presumably arise from the acute angles about the central P-atom which lead to a high 

degree of p-character in the two bonds between these three P-atoms. The mechanism 

of this reaction is not clear but most likely involves a series of cycloaddition and 

rearrangement processes.

The molecular structure of 49 was determined by X-ray crystallography, and 

its molecular structure is depicted in Figure 7. Compared to 48, the lengths of the 

two P=C bonds in 49 are significantly greater, [P(2)-C(3) 1.750(6) A, P(l)-C(18) 

1.753(6) A], because they are both r|2-coordinated to a W(CO)4 fragment.
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Additionally, P(3) ligates a W(CO)s unit in an q 1-fashion with a P-W distance of 

2.552 A.

C3£13
P2

C8

W1P4 PS'

,cia_

C2

W2

Figure 7 Molecular structure of 49 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level)

Selected bond lengths (A) and angles (°): W(l)-P(l) 2.6238(16), W(l)-P(2) 

2.6518(16), W(2)-P(3) 2.5524(15), P(l)-C(18) 1.753(6), P(l)-C(l) 1.873(6), P(2)- 

C(3) 1.750(6), P(2)-C(l) 1.849(6), P(3)-C(l) 1.864(5), P(3)-C(8) 1.867(5), P(3)-P(4) 

2.182(2), P(4)-C(13) 1.857(6), P(4)-P(5) 2.257(2), P(5)-C(3) 1.826(6), P(5)-C(18) 

1.851(6), C(8)-C(13) 1.369(8), C(18)-P(l)-C(l) 107.5(3), C(3)-P(2)-C(l) 107.4(3), 

C(l)-P(3)-C(8) 114.0(2), C(l)-P(3)-P(4) 107.7(2), C(8)-P(3)-P(4) 79.12(19), C(13)- 

P(4)-P(3) 75.26(19), C(13)-P(4)-P(5) 108.14(18), P(3)-P(4)-P(5) 103.50(8), C(3)- 

P(5)-C(18) 95.6(3), C(3)-P(5)-P(4) 111.72(18), C(18)-P(5)-P(4) 96.82(18).

The published preparation of 18 involves the reaction of 17 with a slight 

excess of P=CBul to give a nearly quantitative yield of 18.[44] Therefore it can be 

assumed that there are no significant quantities of other phosphorus containing 

products. However, monitoring the reaction by 31P{1H} NMR spectroscopy showed a
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very small amount of a phosphorus containing by-product. In an attempt to identify 

the product, the reaction was repeated with an excess of P=CBul at room temperature 

over two days, after which a new compound could be separated from 18 by 

chromatographic workup (silica gel/hexane). This product was identified as 50 using 

a combination of NMR spectroscopy and X-ray crystallography (Scheme 21).

Bu
, ABu P

  f \  ^ 1'P
P = C B u *

t Bu*
-Bu*

Bu
'-P

+

Bu*

50

ŷp
Bu1 P Bu1 ^ut

17 18

Scheme 21 Reactivity o f a triphosphabenzene with P=CBu*

The *H NMR spectrum of 50 exhibits different resonances due to the 

presence of five inequivalent tert-butyl groups. Similarly, the 31P{1H} NMR 

spectrum also displays five signals, one of which is at low field (5 387.6 ppm) and 

corresponds to the P=C unit in the compound. Of the two P-P bonds, one (that in the 

three-membered ring) has a normal Vpp coupling associated with it (185 Hz), while 

that associated with the four-membered ring gives rise to a small coupling (60 Hz). 

The same reasons discussed for the small 1JPP couplings in 48 can be used to explain 

this observation. Compound 50 crystallises in the chiral space group, P4\, with 2 

enantiomeric molecules in the asymmetric unit. There are no significant geometric 

differences between the two molecules and therefore only the molecular structure of 

one is depicted in Figure 8. The compound has an "open cage" structure formed by 

the fusion of a three-membered, a four-membered and two five-membered rings. 

This leaves two unsaturated bonds, P(3)-C(ll) and C(16)-C(21), the inter-atomic 

distances of which are consistent with bond orders of two. As no intermediates could
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be observed by 31P{'H} NMR spectroscopy during the formation of 50, the nature of 

the reaction mechanism is still unknown.[72] To confirm that compound 18 is not an 

intermediate of 50, a pure sample of 18 was reacted with an excess P=CBul over 2 

days. Monitoring the reaction by 3IP{1H} NMR spectroscopy revealed that no 

reaction occurred.

Figure 8 Molecular structure of 50 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): P (l)-C (ll) 1.825(3), P(l)-C(l) 1.886(3), 

P(l)-P(2) 2.1973(12), C(l)-P(4) 1.862(3), C(l)-P(2) 1.872(3), P(2)-C(6) 1.890(3), 

P(3)-C(ll) 1.676(3), P(3)-C(6) 1.863(3), P(4)-C(16) 1.843(3), P(4)-P(5) 2.1986(12), 

P(5)-C(21) 1.872(3), P(5)-C(6) 1.915(3), C(16)-C(21) 1.361(4), C(11)-P(1)-C(1) 

109.78(13), C(11)-P(1)-P(2) 98.40(11), C(l)-P(l)-P(2) 53.91(10), P(4)-C(l)-P(l) 

132.57(17), P(2)-C(l)-P(l) 71.57(12), C(l)-P(2)-C(6) 99.96(13), C(l)-P(2)-P(l) 

54.52(10), C(6)-P(2)-P(l) 99.05(9), C(11)-P(3)-C(6) 104.01(15), C(16)-P(4)-C(l) 

119.76(14), C(16)-P(4)-P(5) 77.90(10), C(l)-P(4)-P(5) 102.51(10), C(21)-P(5)-C(6) 

108.43(13), C(21)-P(5)-P(4) 75.68(10), C(6)-P(5)-P(4) 96.85(10), C(21)-C(16)-P(4) 

102.1(2), C(16)-C(21)-P(5) 103.3(2).
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Phosphaalkyne pentamers like compound 47 are of interest, as they are 

valence isoelectronic analogues of the (CH)io family of hydrocarbons. The (CH)io 

hydrocarbon family has 71 constitutional formulas representing isomeric forms. 

Many of these forms have been shown by experiment to interconvert under 

photochemical or thermal conditions.[72] As compound 47 represents the first 

example of a pentaphospha-analogue one of these isomers, isolumibullvalene, 51, it 

is of interest to investigate the photochemical and thermal behaviour of these 

compounds.

The thermolysis of compound 47 has been investigated by heating a hexane 

solution of this compound in a sealed Young tube at 90 °C for 6 h. The reaction was 

monitored by 31P{1H} NMR spectroscopy which indicated that no reaction occured. 

The isolumibullvalene, 51 on the other hand, transformed to bicyclo[4.4.0]deca- 

2,4,7,9-tetraene(9,10-dihydronaphthalene), 52, on heating to 100 °C via a reverse 

Diels-Alder reaction (Scheme 22).[73,74] Compound 47 is likely not to be able to 

undergo this rearrangement due to the presence of bulky Bu1 groups.

51

100°C

52

Scheme 22 Thermal rearrangement of isolumibullvalene

Compound 47 also exhibits different behaviour than 51 towards photolysis. A 

hexane solution of 47 was irradiated with UV light (X 254 nm), and the reaction

T1 1monitored by P{ H} NMR spectroscopy. This showed a complicated mixture of 

many phosphorus containing products after just 5 min. The large number of products 

made their characterisation and/or isolation very difficult. This chemistry is
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significantly different to that of the isolumibullvalene 51, which does not change 

upon irradiation.[73,74]

With respect to how compound 47 could be formed, it is of interest that 

triphosphaisolumibullvalenes, 53, have been prepared by two successive [4 + 2] 

cycloadditions of alkynes with 17.[75] An analogous reaction might be occurring for 

47, followed by a-rearrangement to give 47. It is of note that, isolumibullvalene and 

triphosphaisolumibullvalenes are readily valence isomerised (Scheme 23).[74,76]

17 R' 53

R = Ph H CQ2Me -(CH2)6- CQMe ph 

R '= H H H H D

Scheme 23 Preparation of triphosphaisolumibullvalenes, 53
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1.3.2 Reaction of Phosphaalkynes with Diazomethane and Alkyl Azides

Earlier studies have shown that phosphaalkynes, e.g., P=CR (R = 1- 

adamantyl,[77] Pr1̂ 78-1 neopentyl/781 1 -methyl-1 -cyclohexyl,[78] 1-methyl-1- 

cyclopentyl[78] or But[40]) react with different azides (54a-h) at 0 °C in diethylether to 

form 3-R-1,2,3,4-triazaphospholes (55a-h) via [3 + 2] cycloadditions in good yields 

(76 -  100%). As phosphaalkynes and azides have dipolar character, the formation of 

reversed dipole orientated products like 1 -R-1,2,3,4-triazaphospholes (56a-h) could 

be understood.

However, all known reactions show only the formation of compounds 55a-h 

with no evidence for the reversed dipole orientated products, e.g. 56. Even if the 

differences of the Pauling electronegativities between phosphorus and carbon (2.1 

and 2.5, respectively) are not very large, the cycloaddition is apparently 

electronically controlled. The fact that the reaction of P=CBu with 54a-h leads to the 

products 55a-h, the product orientation cannot directly attributed to the spatial 

requirements of the substituents.[40̂

That steric aspects are not a factor was shown by Regitz and Binger et al. who 

reacted 54a with the unhindered phosphaalkyne P=CH, in diethylether, yielding 3- 

methyl-l,2,3,4-triazaphosphole 57 (8 187.8 ppm) without any sign of other products 

in the reaction mixture (Scheme 24).[43]
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+ rn3

54

-N

\ / 
p = = c \  

55 Bu*
a b c d e

R = Me Bu* Ph ch=c h 2 C02Me

^  \  R
N N-----

\ /
P-----

f e h
R = c h 2cn CH2SiMe3 SiMe3

R' = H or Bu*

56 R'

P = C H  + MeN3

50a

\ / 
P = C

57 \
H

Scheme 24 Reaction of P=CBu* and P=CH with alkyl azides

The reactions of diazomethane derivates 58a-f with P^CBu, and 58a and c 

with P=CH at room temperature in diethylether yielded the [3 + 2] cycloaddition 

products, 1 -H-1,2,4-diazophosphole 60a-f and 61a and c, which are similar to the 

related azide products. Only the reaction yielding 60d shows an intermediate 3-H- 

1,2,4-diazophosphole, 59d, which could be isolated and characterised by *H NMR 

spectroscopy (Scheme 25).[41,43]

P==CBu N2
H

58

N2
H

58a and c

R

H N"

Bu1

N

59

a b c d e f

R = H Me Bu* COPh COzMe PoPh2

R

N
>N

H 61

R

Bu
/

N
N ‘

H 60

Scheme 25 Reaction of PsCBu‘ and P=CH with diazomethane derivates
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These results are in agreement with theoretical studies which have shown, 

that the activation energies for the formation of the reverse dipole orientated product 

(TS1) are lower than those for their dipole orientated (TS2) products. The activation 

energies are listed in Table 1. As a result, the acidic side of one reagent reacts with 

the basic side of the other reagent to form products e.g. 55a-h, 57 and 60.[79]

Reaction E in kcal/mol
TS1 TS2

h 2c n n + p =c h 5.86 6.92
H2CNN+ P=CMe 9.47 12.37
HNNN + P=CH 8.77 11.12
HNNN + P=CMe 12.38 14.85

Table 1 Activation energy (kcal/mol) of products from [3 + 2] cycloadditions of phosphaalkynes 

with diazomethane and HN3

In analogies with the reaction of azides and diazomethane with hindered and 

unhindered phosphaalkynes, it is worth mentioning, that mono-acceptor substituted 

acetylenes do respect the dipole orientation in their reaction with azides. Reacting 

one equivalent of 62 with one equivalent of phenylazide (34c) gives the dipole 

orientation product, 63, in 75% yield. The reaction of 3-phenylpropynol (64) with 

phenylazide (54c) in boiling CHCI3 over one day gives a 2 : 1 ratio of product 65 and 

66 (Scheme 26).[42)

Ph C = C  C6F13

.N
Ph— _ X  ^  

Ph N = N = N  N N

\ _ /.C C.
62 54c Ph 63 C<iFl3

Ph C = C  CH2OH

.N. Nv
Ph  /  ^  ^  \  ^ Ph

N N + N N
Ph— N= N = N>r  ̂ I \  I

cx  c c
64 54c Ph M CH2OH Ph 66 CH2OH

Scheme 26 Reversed dipole cycloaddition of acetylenes with phenyl azide
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As steric needs are not the motivation to form dipole orientation products 

with hindered and unhindered phosphaalkynes in their reacions with azides, it is no 

surprise that similar reactions involving the unhindered phosphaalkyne, P=CMe,

when excess P=CMe was reacted with 1-adamantylazide (67) at room temperature in 

a hexane/diethylether mixture, and the reaction followed by 31P{,H} NMR 

spectroscopy, only one singlet resonance at 8 167 ppm was observed. This signal is 

in the same region as the P=CBul related products, 55a-h (8 161 -  180 ppm) and the 

P=CH related product 57 (8 187.8 ppm). Therefore, it can be assume the formation of 

3vtflM,2,3,4-triazaphosphole (68) via a [3 + 2] cycloaddition in the reaction. After 

all volatiles were removed in vacuo, the residue was redissolved in hexane and stored 

in a freezer yielding 68 as a crystalline product in a 90% yield (Scheme 27).

The reaction of an excess of P=CMe with TMS-azide (TMS = trimethylsilyl) 

at room temperature in a hexane/diethylether mixture was followed by 31P{1H} NMR 

spectroscopy which showed an unexpected singlet resonance at 8 98 ppm. However, 

after all volatiles were removed in vacuo, the residue was redissolved in hexane 

yielding a mixture of phosphorus containing products exhibiting resonances between 

8 213 and -130 ppm. No products could be characterised or isolated from this 

reaction.

yield similar products to those in Scheme 24.[43] Likewise, it can be observed that

P = C M e  +

67 68 Me

Scheme 27 Reaction of P=CMe with 1-adamantylazide
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The spectroscopic data for complex 68 are not publishable, but consistent 

with its structure shown in Scheme 27. Most informative is the 31P{'H} NMR 

spectrum which displays one low field singlet resonance at 8 167 ppm. The H NMR 

spectrum displayed three signals due to the protons of the two chemically 

inequivalent CH2 groups and one CH group of the adamantyl, and one signal for the 

methyl group.

The reaction of P=CMe with a diazomethane (69) has been carried out and 

the results have been compared with those from similar reactions involving the 

unhindered phosphaalkyne, P=CH, and the bulkier analogue, P=CBu\ An excess of 

P=CMe was reacted with TMS-diazomethane (TMS = trimethylsilyl) in diethylether 

at room temperature. Monitoring this reaction by 31P{1H} NMR spectroscopy 

showed three resonances at 8 82.8, 83.1 and 93.6 ppm. However, after all volatiles 

were removed in vacuo, the residue was redissolved in hexane and stored at -20 °C 

yielding 70 (62%) as a crystalline product. The 31P{!H} NMR spectrum of the 

compound shows only one singlet resonance at 8 83.1 ppm. It is likely that the 

resonance at 8 93.6 ppm originates from the intermediate, 72, while the TMS group 

is still attached. The signal at 8 82.8 ppm could be due to the isomer, 73, after losing 

the TMS group and before the hydrogen shift. Reacting 70 in THF with 

[W(CO)5(THF)] at room temperature over 24 h leads to product 71. After all 

volatiles were removed in vacuo, the residue was extracted in hexane and stored in a 

freezer yielding 71 (35%) (31P{1H) NMR 8 74 ppm) as a crystalline solid (Scheme 

28).
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P = C M e  +
Me,Si

Me,Si

X XH N \

(OC)5W

U -H  shift //  ^  iW(CO)s(THF)l //  N

H_c\  x  — "  B_\  XP Me p Me

70
/

(O Q jW
71

Scheme 28 Reaction of P=CMe with TMS-diazomethane

The !H NMR spectra of 70 and 71 show the expected numbers of proton 

signals in the normal regions. Similarly, the 31P{]H} NMR spectra of both products 

display one signal at low field, 70 8 83.1 ppm and 71 8 74.8 ppm (Vpw = 264 Hz), 

corresponding to the P=C unit in each compound. The molecular structure of 71 was 

determined by X-ray crystallography, and the molecular structure is depicted in 

Figure 9.

C3
H2

C2
N2

N1

Cl,W1

Figure 9 Molecular structure of 71 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°):W(1)-P(1) 2.4590(16), P(l)-C(2) 1.715(6), 

P(l)-C(l) 1.728(6), N(l)-C(l) 1.320(7), N(l)-N(2) 1.364(6), N(l)-W(2) 2.262(4), 

N(2)-C(2) 1.342(7), C(2)-C(3) 1.486(8), C(2)-P(l)-C(l) 88.9(3), C(2)-P(l)-W(l) 

129.3(2), C(l)-P(l)-W (l) 141.5(2), C(l)-N(l)-N(2) 110.0(5), C(l)-N(l)-W(2)

127.5(4), N(2)-N(l)-W(2) 122.5(4), N(l)-C(l)-P(l) 114.5(5), C(2)-N(2)-N(l)

116.3(5), N(2)-C(2)-C(3) 119.9(6), N(2)-C(2)-P(l) 110.4(4), C(3)-C(2)-P(l)

129.6(5).
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1.3.3 Reaction of Phosphaalkynes with Germanium and Tin Precursors

Stericaly hindered phosphaalkynes have been reacted with different Group 14 

precursors to give differing co-ordination and cycloaddition products. The reactions 

of P=CBul with precursors 7a-c has given the three-membered heterocyclic 1 : 1 

products, 8a-c, via [2+1] cycloadditions (Scheme 29)J35,36,80]

r\  nr 2
E P=CBu* E> (a) E = Si, R ^ R ^ B u *

Rl" ^  R2 ------------------------► /  \  (b) E = Si, R1 = mesityl, R2 = C6H2{CH(SiMe3)2}3-2,4,6
(c)E = Ge,R1 = R2 = CH(SiMe3)2

7 8 

Scheme 29 Reaction of Si and Ge precursors with P=CBu*

Germadiphosphacyclobutene (75) was prepared by reaction of the germylene 

74 with two equivalents of P=CBu. The first step likely involves a [2 + 1] 

cycloaddition, similar to that which gave 8c, followed by a ring opening and a 

subsequent dimerisation reaction of two phosphagermirenes which leads to the four- 

membered ring system of 75 (Scheme 30)J37̂

Ar2G e = G e A r 2 - V  "  —  2 ?  CBu ^ Ar2Ge P/
Ar Ar

GeAr2

II ,
C Bu

74 /
Bu

C P

75Ar = C6HMe3Buf-2,3,4,6 

Scheme 30 Reaction of germylene with P^CBu*

Differing four-membered ring systems (11 and 13) have been formed by 

reacting phosphaalkynes with the distannene, 12, and the silylene, 9. The reaction of 

12 with the phosphaalkyne, P=CBu4, likely involves a [2 + 2] cycloaddition to give 

the phosphadistannacyclobutene 13.[39] A silicon analogue, 10, has been reported to

- 3 7 -



1 .3 .3  R e s u l t s  a n d  D is c u s s io n  [G e &  Sn P r e c u r s o r s ]

from in the reaction of two equivalents of silylene, 9, with one equivalent of P=CR 

(R = adamantly or 2-methylcyclohexyl). The first step probably involves a [2 + 1] 

cycloaddition of one equivalent of silyene (9) and one equivalent of P=CR to form 

10. The second step involves a ring opening mediated by reaction with a second 

silylene giving 12 (Scheme 31).[38]

{(SiMe3)2HC}2Sn— Sn2{CH(SiMe3)}2 
2 {(Me3Si)2CH}2S n : — [{(Me3Si)2CH}2Sn]2 + P=CBu* --------------- I— I

/
12 BU 13

Mes. Mes
e; Mes2Si---- SiMes2

kv I I
PEECR + Mes2Si(SiMe3)2  -  «• /  \  +  Mes2Si(SiMe3)2 hv

-(M e3Si)2 *  -

8

q  ~ p  -(Mc3Si)2 y C  P

10 R 11

R = adamantyl or 2-methylcyclohexyl

Scheme 31 Reaction of Si and Sn precursors with phosphaalkynes

P=CMe has been reacted with similar and different Group 14 precursors, e.g.

ER2 (E = Si, Ge, Sn and Pb, R = CH(SiMe3)2, C6H2Pr13-2,4,6) and the outcomes of

these reactions compared to those from earlier studies on bulkier phosphaalkynes,

P=CR (R = Bu1, adamantyl or 2-methylcyclohexyl).

P=CMe was reacted with the diplumbene, Ar2Pb=PbAr’2 (Ar = CethPrV

2,4,6) and the plumbylene, :Pb{CH(SiMe3)2}2, which is monomeric in the solid state.

The reactions were carried out in 1 : 1, 1 : 2 and 1 : 4 stoichiometries and were 

1̂ 1followed by P{ H} NMR spectroscopy. Each gave an intractable mixture of 

phosphorus containing compounds. [SiMes2]3 is known to be a monomer in the solid 

state. However, irradiation of a solution of [SiMes2]3 with UV light (k = 254 nm) 

provides the dimeric species Mes2Si=SiMes2,[81] which was reacted with P=CMe in 1 

: 1, 1 : 2 and 1 : 4 stoichiometries. Following the reactions by 31P{,H} NMR
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spectroscopy showed, again, many phosphorus containing products which could not 

be characterised or isolated.

Cowley et al. have attempted the reaction of the monomeric :Sn{N(SiMe3)2}2 

with P=Bul, but this gave no reaction.[36] Similarly the attempted reaction of P=CMe,
1 1  i

although it is a more reactive species, showed no reaction, as determined by P{ H} 

NMR spectroscopy.

Other precursors were needed to be found to react with P=CMe. The 

ditetrelenes R2E=ER2 (E = Ge or Sn, R = -CH(SiMe3)2) (76 and 77) ware chosen for 

this task. Precursors, 76 and 77 have been reacted with P=CMe in a 1 : 4 

stoichiometry at -80 °C, followed by warming to room temperature over 4 h and 

stirring at this temperature for a further 18 h. Colourless crystals precipitated from 

these reaction mixtures which were found to be the bridged products, 79 (85% yield) 

(Figure 11) and 80 (81% yield). The distannene Ar2Sn=SnAr2 (Ar = C6H2Pr13-2,4,6) 

(78), generated in situ by UV irradiation (X = 254 nm) from the trimer [Sn(Ar2)]3 at - 

80 °C in toluene, was also reacted with P=CMe in a 1 : 4 stoichiometry to give the 

related bridged product 81 in a 31% yield (Figure 13), (Scheme 32).

76 E = Ge, R = CH(SiMe3) 2

77 E = Sn, R = CH(SiMe3) 2

78 E = Sn, R = ^ 2^ 3-2 ,4,6

79 E = Ge, R = CH(SiMe3 ) 2

80 E = Sn, R = CH(SiMe3) 2

81 E = Sn, R = C6H2Pri3-2,4,6

Scheme 32 Reaction of Ge and Sn precursors with PsCM e
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The low solubility of 79 to 81 leads to them precipitating from their toluene 

reaction solutions. It is difficult to re-dissolve these compounds in most deuterated 

solvents but 79 and 80 had sufficient solubility in CD2CI2 or Dg-THF to obtain their 

!H and 31P{1H} NMR spectra. Similarly, these spectra can be acquired for weakly
1 0  1

saturated C6D6 solutions of 81, but meaningful C{ H} NMR spectra could not be 

obtained for any complex. Also, the NMR samples of 80 and 81 were too dilute for 

signals to be observed in their 119Sn{1H} NMR spectra.

The !H and 3,P{1H} NMR spectra of 79 to 81 show that they are formed 

completely diastereoselectively. Four trimethylsilyl methyl singlets were observed 

in the ]H NMR spectra of 79 (6 0.19, 0.21, 0.27, 0.30 ppm) and 80 (5 0.09, 0.19, 

0.27, 0.29 ppm), while the spectra of all three complexes display two inequivalent 

alkenic proton signals, each split into a doublet of doublets by two Jph couplings (32 

-  46 Hz) (N.B.: geminal Jhh couplings for these signals were not observable). The 

31P{1H} NMR spectra of 79 to 81 are similar and each consist of two doublet signals 

with characteristic XJPP couplings. 79: 31P{*H} NMR 8 -13.7 ppm (br. d, ]JPP = 

303.1), 31.7 ppm (br. d, lJPP = 303.1 Hz), 80: 8 -63.2 ppm (br. d, lJPP = 311.2 Hz, 

!«/snP = 621.2 Hz), 16.5 ppm (br. d, Vpp = 311.2 Hz), 81: 8 -76.3 ppm (d, ]Jpp = 320 

Hz, lJsnp = 614 Hz), 15.8 ppm (d, lJPP = 320 Hz). In addition, *JsnP satellites of 

typical magnitudes flank the high field signals of the tin complexes, 80 (621.2 Hz) 

and 81 (614 Hz). Moreover, the doublets in each spectrum are broadened, 

presumably because of unresolved second order JPP couplings. Molecular ion signals 

exhibiting the expected isotopic abundance patterns are present in the El mass 

spectra of 79 -  81.

The molecular structure of 79 -  81 was determined by X-ray crystallography. 

Complexes 79 and 80 are isomorphous so only the molecular structure of 79 is
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depicted in Figure 10. Compound 81 has a near identical core structure to those of 

79 and 80 and its molecular structure is shown in Figure 11.

Figure 10 Molecular structure of 79 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°) for 79 Ge(l)-C(l) 2.020(2), Ge(l)-P(l) 

2.3715(7), P(l)-C(3) 1.832(2), P(l)-P(2)’ 2.2298(8), P(2)-C(3) 1.830(2), P(2)-C(l) 

1.875(2), C(3)-C(4) 1.335(3), C(l)-Ge(l)-P(l) 98.30(6), C(3)-P(l)-P(2)' 100.81(7), 

C(3)-P(l)-Ge(l) 91.21(7), P(2)'-P(l)-Ge(l) 105.36(3), C(3)-P(2)-C(l) 101.78(9), 

C(3)-P(2)-P(l)’ 105.21(7), C(l)-P(2)-P(l)' 97.76(7), P(2)-C(l)-Ge(l) 112.51(10), 

P(2)-C(3)-P(l) 121.22(11). symmetry operation:' -x+2, -y, -z+2.
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Figure 11 Molecular structure of 81 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°): Sn(l)-C(l) 2.202(2), Sn(l)-P(l) 2.5565(9), 

P(l)-C(3) 1.843(3), P(l)-P(2)' 2.2097(12), P(2)-C(3) 1.833(3), P(2)-C(l) 1.863(2), 

P(2)-P(l)’ 2.2097(12), C(3)-C(4) 1.338(3), C(l)-Sn(l)-P(l) 94.78(7), C(3)-P(l)-P(2)' 

107.75(9), C(3)-P(l)-Sn(l) 90.23(8), P(2)'-P(l)-Sn(l) 98.91(3), C(3)-P(2)-C(l) 

100.00(11), C(3)-P(2)-P(l)’ 106.71(8), C(l)-P(2)-P(l) 103.52(8), P(2)-C(l)-Sn(l) 

112.13(12), P(2)-C(3)-P(l) 123.11(13). symmetry operation:' -x+2, -y, -z+1.

The digermene analogue to 78, Ar2Ge=GeAr2 (Ar = C6H2Pr‘3-2,4,6), shows 

no reaction with P=CMe which perhaps can be explained by the fact, that 

Ar2Ge=GeAr2 remains largely intact while R2E=ER2 (E = Ge, Sn; R = CH(SiMe3)2) 

(76 or 77) and Ar2Sn=SnAr2 (78) significantly dissociate into germylene or 

stannylene[82] fragments in solution. It is also of interest that R2Ge=GeR2 (R = 

CH(SiMe3)2) is known to react in a completely different fashion with N=CMe, in that 

upon dissociation of the digermene, the germanium centre of the monomeric
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germylene inserts into one C-H bond of the nitrile to give R.2Ge(H)CH2C=N (R = 

CH(SiMe3)2) (82), which has been structurally characterized (Scheme 33).[83]

  (Me3 Si)2HC^ H
NzzzCMe

1/2 [{(Me3Si)2CH}Ge] 2    ^  V
(Me3 Si)2HC CH2CN

76 82

Scheme 33 Reaction of [ {(Me3Si)2CH) 2Ge] 2 with N^CMe

It is logical that products 79 to 81 (Scheme 32) have formed over several 

steps including a 1,3-hydrogen migration. To get an idea of the mechanism of the 

reaction, 76 was reacted with an excess of P=CMe in Dg-toluene at -80 °C the 

reaction monitored by 31P{1H} NMR spectroscopy. An immediate reaction could be 

observed at -80 °C giving rise to a singlet resonance at 5 436.6 ppm. This resonance 

completely disappears after 5 min giving rise to two signals at 6 319.8 and 305.5 

ppm; 2Jpp = 29.8 Hz, with the simultaneous consumption of the P^CMe reactant (5 - 

60.49 ppm). It can be assumed that the low field singlet resonance at 5 436.6 ppm 

(83) is due to an analogous [2+1]  cycloaddition product of 8a, which gives a singlet 

resonance at 5 315 ppm[36l  Compound 83 likely further reacts rapidly with excess 

P=CMe to give a diphosphagermole, 84, (cf. the 2,4-diphosphatellurole, TeP2C2Bul2: 

8 299, 302 ppm; 2JPp = 50.8 Hz).[84] Even if there is no direct evidence for the 

formation of 84 from 83, it is likely that there is a [2 + 2] cycloaddition of 47 with 

another P=CMe involved to give intermediate 86, which rapidly rearranges to 84 via 

a 1,3-hydrogen migration and likely stays in equilibrium with 85. The intermediates, 

84 and 85, stay present in solution at -80 °C until warming to room temperature 

whereupon two molecules of 85 react via hydrophosphination of the P=C bond of 

each other to give 79. Product 79 has low solubility and precipitates from the
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reaction mixture over a period of ca. 12 h (Scheme 34). The reaction to form 

products 80 and 81 have also been monitored by 31P{1H} NMR spectroscopy, and no 

short lived intermediates could not be observed.

P = C M e

1/2 of 76 
[2+1]

(Me3Si)2H C ^  ^CH(SiMe3)2 

Ge

83

Me

P =C M e

[2+2]

(Me3Si)2H C ^  ^CH(SiMe3)2 

Ge

Me.

Me

Jr
86

MeN /Ge|CH(SiMe3)2]2

1/4 [{(Me3Si2CH}2Ge]2 P - —P

Me

79

(Me3Si)2HC^ ^CH(SiMe3)2 (Me3Si)2HC^ ^CH(SiMe3)2

Me> / Ge\  Mev
P PH

W // 13-H shift
w

Me CH,

84 85

Scheme 34 Mechanism of formation of 79

As 83 and 84 are long lived enough to be observed by 31P{1H} NMR 

spectroscopy, attempts were made to isolate these intermediates. Reacting P^CMe 

with an excess of 76, gave the phosphagermirene intermediate, 83, which is stable in 

solution below -50 °C but decomposed into unidentified products upon warming to 

room temperature. A more promising intermediate to isolate is the longer lived 84. 

Precursor 76 was reacted with an excess of P^CMe at room temperature in THF to 

generate intermediate 83, followed by adding [(W(CO)5)(THF)] after 5 min and

- 4 4 -



1.3 .3  R e s u l t s  a n d  D is c u s s io n  [Ge & Sn P r e c u r s o r s ]

stirring for 20 h. After chromatographic workup (silica gel/hexane), two low yield 

products 87 (13%) and 88 (15%) were obtained as crystalline solids (Scheme 35). 

The isolation of these compounds gives strong support to the proposed structure of 

86. Both compounds are indefinitely stable in solution as they are presumably 

prohibited from further intermolecular reactions to give tungsten carbonyl complexes 

of 79 or related species.

™ 0.,„  . (Me3Si)2HC. CH(SiMe3)2 (Me3Si)2HC CH(SiMe3)2
(Me3Si)2HC. ^CH(SiMe3)2 \  /  A  /

V  Mk  A  M e. / ^ x  ^ W (C O )5
X ,  [(W(CO)5(TII|.-)| X  T \ \1 // - - - - - - -   V -l * M

/  \  /* Me '  Me
Me (OC)5W (OC)5W

84 87 88

Scheme 35 Reaction of 84 with [W(CO)5(THF)]

The spectroscopic data for the tungsten carbonyl complexes, 87 and 88, are 

consistent with their structures. Most informative are their 31P{!H} NMR spectra 

which each display two low field doublet signals related by mutual JpP couplings 87: 

8 247 ppm (d , 2J PP = 53.8 Hz, './wp = 257 Hz), 342 ppm (d, VPP =83.8 Hz) 88: 8 251 

ppm (d , VpP = 66 Hz, ' j WP = 245 Hz), 287 ppm (d, 2JPP = 66 Hz, 'Jwp = 256 Hz). 

Both resonances in the spectrum of 88 possess Vw? satellites while only the higher 

field signal in the spectrum of 87 does. It is of note that the phosphaalkenic 

resonances for 87 and 88 are in the normal low field ranged2,3’70]

The molecular structures of 87 and 88 were determined by X-ray 

crystallography. As the heterocycle geometries of 87 and 88 are not significantly 

different, only the molecular structure of 87 is depicted in Figure 12.
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Figure 12 Molecular structure of 87 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°): W(l)-P(2) 2.4848(12), Ge(l)-C(3) 

1.975(3), Ge(l)-P(l) 2.3403(9), P(l)-C(l) 1.691(3), P(2)-C(3) 1.674(2), P(2)-C(l) 

1.813(2), C(l)-P(l)-Ge(l) 96.10(8), C(3)-P(2)-C(l) 106.85(12), C(3)-P(2)-W(l) 

128.08(9), C(l)-P(2)-W(l) 124.85(9), P(l)-C(l)-P(2) 124.09(14), P(2)-C(3)-Ge(l) 

114.25(12).
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1.3.4 Reaction of Phosphaalkynes with Titanium Precursors

A variety of Ti precursors have been reacted with phosphaalkynes, alkynes or 

acetonitrile to give a variety of cycloaddition products. Treatment of 89 with an 

excess of the phosphaalkyne, P=CBul, at room temperature in toluene yields the [2 + 

2] cycloaddition product 90, in which the phosphorus atom of the phosphaalkyne is 

bonded to the imido-derived nitrogen while the carbon is bonded to the titanium 

centre (Scheme 36). The 31P{!H} NMR spectrum of 90 shows a low field signal at 5

209.4 ppm.[85]

Scheme 36 Reaction of P=CBu* with a Ti=NBu precursor

The reaction of 91a with alkynes MeC=CR (R = Me or Ph) led [2+2] 

cycloaddition reactions and the titanazetidine products, 93a-b, which were also 

formed by reacting 91a with Me(H)C=C=CH2 or Ph(H)C=C=CH2. It was proposed 

that addition of a methyl C-H bond across the Ti=NR linkage occurs, followed by a 

proton shift and the formation of a o-bonded allene ligand. [2 +2 ] cycloadditions then 

give the titanazetidine products, 93a-b. It is worth mentioning that similar 

precursors, 91b-c, react with aryl acetylenes (HC=CR, R= Ph or tolyl) to form the [2 

+ 2] cycloaddition complexes, 92.

The reaction of 91 with N^CMe generates the binuclear derivative 94. The 

titanium centrers in 94 form part of a ladder-type motif composed of three four-

89 Py = pyridine

/  C— PSiMe3 /
Bu* 90

-47-



1.3 .4  R e s u l t s  a n d  D is c u s s io n  [T i P r e c u r s o r s ]

membered metallacyclic rings. In 94, the carbon atom of the N=CMe moiety is 

bonded to the imido-derived nitrogen, which is in contrast to 90 in which the N-P co

ordination is formed (Scheme 37).[86'88]

Bu

r i l  N
R' = Tolyl. or Xyl 
R" = Ph or Tol.

M eC=CR'

R' = SiMe3 
R" = Me (a), Ph (b) 
[Ti] = K3-N2Npy

py
Bu‘ H

R' = SiMe3 (a), Tolyl (b). Xyl (c)
Me

Bu1

N=CMe Ti'

SiMe-
Me

94

T i-C H 2

N - C

Scheme 37 Reaction o f P=CBu*, alkynes or N=CMe with Ti=NBul precursors

The reaction of two equivalents of PsCBu* with 95a at 55 °C in toluene gives 

97 in which the phosphorus atom is bonded to the imido derived nitrogen substituent. 

It is likely that the formation of 97 is via two stepwise [2 + 2] cycloadditions. The 

first step involves one equivalent of P=CBul which reacts with 95a to form the 

intermediate 96, before reacting with a second equivalent of P=CBu* to form the final
i

product, 97. The P{ H} NMR spectrum of 97 shows two resonances for its two 

inequivalent phosphorus atoms at 8 296.5 and -139.5 ppm, VPP 40.5 Hz. It is of 

interest that the products of this type of reaction depend on the imido ligand 

substituents, as illustrated in the reactions of 95b (R ^  Bu1) with P=CBul, which give
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the metal free 1,2,4-azadiphosphole rings 98b-d (Scheme 38) The 31P{1H} NMR 

spectra of 98b and 98d show two resonances for their inequivalent phosphorus atoms 

in the unsaturated region (98b: 8 262.5, 153.5 ppm, VPP = 29.2 Hz, 98d: 

6  247.3, 148.1 ppm, VPP = 34.9 Hz) . [85,86' 891

py

R
I

N

.Ti

py

95

R = Bu* (a) Bu*
' n -

1
1

y V
C l :  

a

P=CBu*
toluene 55°C
52 hrs

R = Ph (b), Et (c),
Pr^d)

py Bu

P=CBu*

96

R = Bu (a), Ph (b), Et (c), Pr* (d)

R
I

r ^ ' Y -  B"'

Bu

98

Bu

. A ,Bu1 /
'N

\

ci : pya

97

Bu*

Scheme 38 Reaction of P=CBu* with [Ti(NR)Cl2(py)3]

The reactions of 99a-b with two equivalents of P^CBu1 in toluene at room 

temperature gives the products lOOa-b in 71% and 75% yields respectively (^P^H} 

NMR spectrum of 100a: 8  215.4, -190.8 ppm, 2JP.p -  38.7 Hz and 100b: 8  216.9, - 

192.9 2Jp.p = 39.6 Hz). In contrast, reacting an excess of P^CBu1 with precursor 101 

the non metal containing 1,2,4-azadiphophole ring systems, 1 0 2  which one 

analogous yields to 98b-c (Scheme 39). The 31P{!H} NMR spectrum of 102 shows 

two resonances for inequivalent phosphorus atoms in the unsaturated region ( 8  260.0 

ppm and 154.6 ppm, 2Jp-p -  29.2 Hz).[90]
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r
n
NI
Bu*

R
2P=CBu'

Bu*
100

N

Ti 2P=CBu*
60°C

R = H (a) or SiMe3 (b) 101 102

Scheme 39 Reaction of P=CBu* with titanium imide precursors

We reacted the precursors 95, 99 and 101 with the unhindered 

phosphaalkyne, P=CMe, in attempt to investigate differences and or similarities 

with the P=CBu* reactions. Following these reactions by 31P{1H} NMR 

spectroscopy showed no resonances except those of the phosphaalkyne, P^CMe 

(8  -60.49 ppm). No products could be isolated.

Mountford et al. reported in 2007 the preparation of the terminal hydrazide 

[Ti(N2Npy)(NNPh2)(py)] (103) which was reacted with alkynes and N=CMe 

(Scheme 40).[911 Reaction of 103 with PhC=CMe in C6D6 gave an equilibrium 

mixture containing the cycloaddition product [Ti(N2Npy){N(NPh2)C(Me)CPh}] 

(107) and starting material 103. Removal of the volatiles and redissolving the 

residue in showed the compound to be pure as judged by NMR

spectroscopy.[87, 88] Addition of an excess of pyridine to pure 107 reformed 103 

and free PhC=CMe, confirming the reversibility of the cycloaddition process. 

Although a cycloaddition species is the kinetic product for the reaction of 103 and 

PhC=CMe, over time (3 days at RT) or upon briefly heating (15 mins at 100 °C) 

new products were formed from which the Na-Np insertion product 

[Ti(N2Npy){NC(Ph)C(Me)NPh2}(py)] 108 was obtained (Scheme 40). Reaction of 

103 with the sterically less demanding alkyne, PhC=CH, gave quantitative 

conversion to the cycloaddition product [Ti(N2Npy){N(NPh2)C(H)CPh}] (106) in 

ca. 60% yield. Addition of pyridine to pure 106 reformed 103 along with
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PhC=CH.[87] Reaction of 103 with N=CMe gave the [2+2] cycloaddition dimer 

[Ti2(N2Npy) 2 (p-N(NPh2)C(Me)N}2] (104) (Scheme 40).

Me
104

N=CM e

103

pyridine PhC=CM e

SiMe3

C =
Me

107

SiMe3 N

N MejSi /  
Ph2N

PhCECH

pyridine
Ti N — NPh2SiMe3

SiMe3 /
Ph H 106

slow Ph

Me

108

Scheme 40 Reactions o f 103 with alkynes and N=CMe

The successful use of a heteroalkyne in stabilizing 105 encouraged us to 

explore reactions of 103 with phosphaalkynes which have known similarities with 

alkynes.1[3] The reaction of [Ti(N2Npy){N(NPh2)C(Me)CPh}] with the

phosphaalkyne, P^CBu1, was followed by 31P{1H} NMR spectroscopy which 

revealed that no reaction occurred. After all volatiles were removed in vacuo, a
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!H NMR spectrum was obtained in benzene-dfc- This revealed only starting 

material was present.

Mindful of previous reports of the reactions of imidozirconocenes 

“Cp2Zr(NR)” (R = Bu1 or aryl) (109a-b) with P=CBul (Scheme 41)[85] A reaction 

of the of the very recently reported [Cp2Ti(NNPh2)(py)] (111)[91], with P=CBu* 

were carried out. Brown crystals of [Cp2Ti{N(NPh2)PCBut}] (112) (Scheme 41) 

were isolated in 70% yield after 30 h at room temperature.

Scheme 41 Reaction o f P=CBu* with [Cp2Zr(NR)] and [Cp2Ti(NNPh2)(py)]

The ’H and 31P{1H} NMR spectra of 112 show all the expected signals. 

The protons of the tert-butyl group resonate at 8  1.48 ppm and the Cp protons at 

5.45 ppm in the JH NMR spectra. The 31P{1H} NMR spectra of 112 shows one 

singlet resonance at 5 -28.9 ppm. This resonance is rather up field compared to 

110, (■ca. 60 to 80 ppm)[85] or 90, (209.4 ppm) . [85’ 921

The molecular structure of 112 is shown in Figure 13, confirming it as a 

monomeric [2+2] cycloaddition product. Compound 112 is the first example of a

R = Bu* (a) or aryl (b)
109 110

NPh2

benzene 
30 hrs

111 112
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product from the reaction of an M=NNR.2 species with a phosphaalkyne. The 

N (l)-P(l) and C(l)-P(l) distances (1.7329 and 1.677 A) within the metallacyclic 

core of 112 are comparable to those in imido-based [(L)M{N(R)PCR}] units, e.g. 

110 (1.729 and 1.692 A).

Figure 13 Molecular structure of 112 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ti(l)-N(l) 1.9772(17), Ti(l)-C(l) 

2.115(2), N(l)-P(l) 1.7329(18), C(l)-P(l) 1.677(2), N(l)-N(2) 1.400(2), N(l)-P(l)- 

C(l) 98.93(9), N(l)-Ti(l)-C(l) 78.51(7).

The orientation of the [2+2] cycloaddition process found in the formation of 

112 appears to be favoured on steric grounds and is analogous to those previously 

reported for imido-derived examples, [(L)M{N(R)PCR}] e.g. 110. However, the 

orientation of the less sterically demanding NCMe fragment in 104 and 105 is the 

opposite to that in 112 (Ti-heteroatom formation in 104 vs. Ti-C formation in 

112). Calculations were carried out by Eric Clot on the alternative regioisomers
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of 112 (112-Q and 112-alt-Q) using DFT (B3PW91) (Figure 15). According to 

the DFT-studies, 112-alt-Q is more stable (but only marginally, by ca. 6  U m o l1) 

than the experimentally observed one in terms of electronic energies. As
O 1

mentioned, the observed and calculated P shifts for 112 are more upfield than 

expected. At first sight this could be attributed to the NNPh2 fragment in 1 1 2 . 

However, replacing NNPh2 by NPh in 112-Q had little effect on the 31P chemical 

shift (-53.1 ppm). Further work is underway to try to rationalise these differences. 

The calculated 31P shifts for 112-Q and 112-alt-Q are -47.8 and +319 ppm. This 

supports the suggestion that 112-Q represents the experimental solution and solid 

state species. Although Figure 14 shows that the formation of 112-alt-Q is 

thermodynamically competitive with 112-Q, the transition state (TS) energies 

predict that the experimentally observed species (modelled by 112-Q) is certainly

i onkinetically favoured (AE =11.4 kJmol' in favour of forming 112-Q ). Further 

calculations using the sterically less demanding phosphaalkyne P^CMe gave ArE 

values of -97.7 kJmol"1 for the Ti-C bound isomer [Cp2Ti{N(NPh2)PCMe}] but 

-134.1 kJmol' 1 for the Ti-P bound alternative [Cp2Ti{N(NPh2)C(Me)P}]. This 

confirms that the Ti-P/N-C orientated [2+2] cycloaddition process is the 

electronically preferred one.
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26.4
✓
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Cp2Ti=NNPli2

V \
\  \' \X \ ' \

Cp2Ti
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1 1
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V  -80.5

' ------------------------------86.6

Figure 14 Schematic representation o f the two TS and product electronic energies (B3PW91, kJ 

mol'1) for the reaction of base-free Cp2Ti(NNPh2) with P=CBu‘

Carrying out the reactions of 109 and 111 with excess P=CMe led to no
i

new resonances in their P{ H} NMR spetra, and only that for the free 

phosphaalkyne, P=CMe, was observerd. However, the !H NMR spectra from the 

reactions of 109 and 111 with excess P=CMe changed, and no signals for their 

starting materials (109 or 111) could be seen. Attemps to crystallise any products 

failed.
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1.3.5 Reaction of Phosphaalkynes with a Tungsten Precursor

As mentioned in 1.2.1 two equivalents of P=CBu* undergo a thermal [2 + 2 ] 

cycloaddition to yield the head to tail 1,3-diphosphacyclobutadiene (113) as an 

intermediate. This is followed by a dimerisation and an intramolecular [2 + 2]

Theoretical studies on such dimerisations have suggested that head to tail 1,3- 

diphosphacyclobutadiene complexes are more favoured for bulky groups, P=CR (R = 

Bu1, Mes), while head to head 1,2-diphosphacyclobutadiene complexes are 

significantly more thermodynamically favourable for small groups, P=CR (R = H, 

Me). The reason here is that the energy difference between model 1,2- or 1,3- 

hetrocyclic complexes for P=CMe compounds is 48 kJ/mol. However, for P=CBu\ 

there is little energy difference between the resultant 1,2- or 1,3-hetrocyclic 

complexes (3kJ/mol), a consequence of the steric influence of the bulky tert-butyl

[931groups.1 J

cycloaddition to form the phosphaalkyne tetramer cube (114) (Scheme 42).

56]

[25, 26, 55,

180°C
P CBu*

[2 + 2]

113

Dimerisation

24 114

Scheme 42 Solvent free oligomerisation of terf-butyl-phosphaalkyne
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Bulky phosphaalkynes are well known to dimerise in the co-ordination sphere

1,3-isomer of the heterocycle. This is indeed the case in the reactions of P=CR, R = 

Bu1 or Mes, with [W(CO)s(THF)] which have yielded a variety of 1,3-

R' = Bu1 and Mes 
R" = Mes

Scheme 43 Dimerisation of phosphaalkynes with [W(CO)5(THF)]

In an attempt to confirm the differences seen in the theoretical studies on 

hindered phosphaalkyne dimerisation, P=CR (R = Bu1, Mes) versus that of 

unhindered phosphaalkynes, P=CR (R = H, Me), P=CMe was reacted with 

[W(CO)5(THF)] at low temperature. In contrast to the related reaction with P=CBul, 

both head to head and head to tail coupled complexes, 117 and 118, were observed in 

the reaction mixture in a ca. 80 : 20 ratio (Scheme 44).

The complexes were subsequently purified by column chromatography (silica 

gel/hexane) and recrystallisation. In accord with the afore mentioned theoretical 

study, the preferential formation of 117 does suggest that metal mediated head to 

head couplings of unhindered phosphaalkynes are favoured over head to tail 

couplings.

of low valent transition metal fragments to give r|4-diphosphacyclobutadiene 

complexes.[2,3’70] Almost invariably, this occurs in a head to tail fashion to give the

diphosphacyclobutadiene complexes including 115 and 116 (Scheme 43)J94]

W(CO)s

[W(CO)5(THF>]

(OC)5W(OC)5W
115 116
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Me MeMe,

— rMf +

(CO)5W
Me

W(CO)4 W(CO)4

117 118

Scheme 44 Dimerisation of P^CMe with [W(CO)5(THF)]

Most informative of the characteristic data for 117 and 118 are their 31P{,H} 

NMR spectra which exhibit singlets with 183W satellites having characteristic one 

bond /pw couplings (117: 8  -74.8 ppm, !Jwp = 148.2 Hz; 118 : 8  -4.0 ppm, *Jwp = 

251.2 Hz). Crystal structure analyses of both complexes were carried out and the 

molecular structure of 117 is depicted in Figure 15 and that of 118 in Figure 16. 

The intra-ring distances in both are suggestive of significant delocalisation, as has 

been previously observed in many 1,3-diphosphacyclobutadiene complexes/2,3’ 70] 

and the only structurally characterised complexes containing a 1 ,2 -isomer of this 

heterocycle type, viz. [Ti(COT)('n4-l,2 -P2C2But2)], COT = cyclooctatetraarene/95] 

and [Fe(CO)3 {rt4-l,2 -P2[W(CO)5]2C2But2}][96] (N.B. the latter complex was not 

formed via a phosphaalkyne dimerisation).
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Figure 15 Molecular structure of 117 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): W (l)-P(l) 2.4772(15), P(l)-C(l) 1.799(6), 

P(l)-P(2) 2.161(2), P(l)-W(3) 2.5314(15), C(l)-C(3) 1.527(8), C(l)-W(3) 2.353(5), 

W(2)-P(2) 2.4721(14), P(2)-C(2) 1.818(6), P(2)-W(3) 2.5099(14), C(2)-C(4) 

1.501(7), C(2)-W(3) 2.366(5), C(l)-P(l)-P(2) 78.04(18), C(2)-C(l)-C(3) 127.2(5), 

C(2)-C(l)-P(l) 102.7(4), C(3)-C(l)-P(l) 129.3(4), C(2)-P(2)-P(l) 77.91(18), C(l)- 

C(2)-P(2) 101.4(4).
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Figure 16 Molecular structure of 118 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): W(1)-P1 2.440(5), P(l)-C(3) 1.765(16), 

P(l)-C(l) 1.797(17), P(l)-W(3) 2.494(5), C(l)-P(2) 1.806(16), W(2)-P(2) 2.440(4), 

P(2)-C(3) 1.755(17), P(2)-W(3) 2.492(4), C(3)-P(l)-C(l) 84.2(8), C(3)-P(l)-W(l) 

135.3(6) C(l)-P(l)-W(l) 136.1(6), C(2)-C(l)-P(l) 131.8(13), C(2)-C(l)-P(2) 

132.2(13), P(l)-C(l)-P(2) 93.8(7), C(3)-P(2)-C(l) 84.3(7), C(3)-P(2)-W(2) 135.0(6), 

C(l)-P(2)-W(2) 135.7(5), P(2)-C(3)-P(l) 96.8(8).
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1.3.6 Reaction of Phosphaalkynes with a Ruthenium Precursor

Earlier studies from Nixon et al. have shown that dinitrogen complexes trans- 

[M(dppe)2(r|1-N2)2] (M = W, 119 or Mo, 1 2 0 ), react with two equivalents of P=CBu* 

to give 121 or 122, where P=CBul is co-ordinated to the metal centre in an re

fashion. However, complexes exhibiting rj1-phosphaalkyne co-ordination are very 

rare (see also 1.1.1.1) (Scheme 45).[27’97'101]

CBu'

p
III

Pb2 CBu1 Ph2Ph2

119 M = W 121 M = W
120 M = Mo 122 M = Mo

Scheme 45 Reaction of [M fdppe^fV -^h] with P=CBu‘

Considering the above, efforts have been made to prepare the first example of 

a complex displaying r\l-co-ordination of an unhindered phosphaalkyne, by reacting 

119 with an excess of P^CMe. Surprisingly, no reaction could be observed when

3 1 1monitoring the reaction by P{ H} NMR spectroscopy. It is likely that the less 

electron donating methyl group, compared to the terf-butyl-group, makes P=CMe a 

weaker Lewis base than P^CBu1. As a result, other bulky unsaturated metal 

fragments needed to be found, which had the potential to co-ordinate P=CMe without 

the need to displace other ligands. The cationic complexes, [MH(dppe)2]+ (M = 

Ru[97] or Fe [102]), were chosen as bulky phosphaalkynes (P=CR, R = Bu1, SiPh3, 

CPI13) are known to co-ordinate to them in an q 1-fashion (123, 125, 126). It is worth 

mentioning, that Grutzmacher et al. have prepared the first example of a phosphorus
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"cyaphide" complex (124) by reacting [RuH(dppe)2(P=CSiPh3)]+ (123), with NaOPh 

(Scheme 46).[98]

[CF3SO3][CF3SO3]

NaOPh

p4 E-I 111 
Ph2CBa'

!S»[BPhj)

Ti[BF4]INH4][BF4]

125 126

Scheme 46 r\l -co-ordination of phosphaalkynes

For purpose of comparison, P=CMe was reacted with [RuH(dppe)2][CF3SC>3] 

in dichloromethane at room temperature to give an analogue of 123, e.g. 127, in 75% 

yield after crystallising from a dichloromethane/hexane mixture (Scheme 47). 

P=CMe was also reacted with [FeH(dppe)2][BPh4]. The reaction was monitored by 

31P{1H} NMR spectroscopy and this showed a mixture of phosphorus containing 

compounds which probably includes [FeH(dppe)2(P=CMe)][BPh4]. However, this 

compound could not be isolated upon work up.

The 31P{1H} NMR spectrum of compound 127 is similar to that of 123. It 

displays a doublet signal for the dppe ligands (5 61.5 ppm, 2JPP = 30 Hz) and a 

quintet for the phosphaalkyne at a chemical shift (5 -38.7 ppm) significantly 

downfield from that of the free phosphaalkyne ( 8  -60.5 ppm).[13] The hydride signal 

in the *H NMR spectrum of the compound appears as a doublet of quintets ( 8  -9.60 

ppm, Jpu =127 and 17 Hz). Similar spectral patterns have been observed for the 

complexes, [RuH(dppe)2(P=CR)][CF3S03] (R = SiPh3[981or CPh3[97]).
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The molecular structure of 127 was determined by X-ray crystallography, and 

its cationic component is depicted in Figure 17. Its P-C triple bond length (1.535 A) 

is close to those in the few structurally characterized free phosphaalkynes (e.g. 1.538 

A in P=CCPh3[97] and 1.532 A (mean) in the diphosphaalkyne, 

P^CC(C6H4 )3CC=P),[1031 but significantly shorter than the P-C bonds in r|2- 

complexes of methyl-phosphaalkyne (e.g. 1.617 A in [Pt(PCy3)2 (r|2-P=CMe)]. 

Although the phosphaalkyne in 127 is close to linear, its coordination to the distorted 

octahedral ruthenium centre deviates significantly from linear (Ru-P-C 153.7(2)°) 

because of interactions with the surrounding phenyl groups.

Figure 17 Molecular structure of 127 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ru(l)-P(l) 2.3148(13), Ru(l)-P(5) 

2.3453(11), Ru(l)-P(2) 2.3592(11), Ru(l)-P(4) 2.3682(11), Ru(l)-P(3) 2.3786(11), 

P(l)-C(l) 1.535(6), C(l)-C(2) 1.474(8), C(l)-P(l)-Ru(l) 153.7(2), C(2)-C(l)-P(l) 

174.7(5), P(2)-Ru(l)-P(3) 80.82(3), P(5)-Ru(l)-P(4) 82.94(4).
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As mentioned before, treatment of the related complex 

[RuH(dppe)2 (P=CSiPh3 )]+ (123) with NaOPh has been reported to give the first 

terminal "cyaphide" complex, [RuH(dppe)2 (C=P)] (124).[98] A prior theoretical study 

on P=CMe concluded that its methyl protons are quite acidic compared to those of 

N=CMe and that it should be more easily deprotonated.[16] As a result, it seemed that 

compound 127 could prove useful as a platform to test the further reactivity of 

P=CMe towards electrophiles and nucleophiles. Accordingly, treatment of 127 with a 

variety of bases (e.g. NaOH, KOBu1, NaOPh and LiNPr^) but all reactions led to 

intractable mixtures of products. Attention then turned to the reaction of the

31 1electrophilic reagent Mel with 127 in CH2 CI2 . Monitoring this reaction by P{ H} 

NMR spectroscopy revealed that a compound was formed at ca. -50°C with a 

spectral pattern similar to that of 127, but with the signal derived from the 

phosphaalkyne shifted by ca. 200 ppm down field (5 165.6 ppm, quint., Jpp = 28 Hz, 

5 65.2 ppm, d, 27pp = 28 Hz, 4 P). This observation suggests the product contains a 

P-coordinated phosphaalkene or phosphaalkenyl fragment, though its structure is 

unknown. [1 041 Upon warming the reaction mixture past -10°C, the product appeared 

to decompose to an unidentifiable mixture of phosphorus containing products which 

prohibited its isolation and further characterization.

Previous studies have shown that bulky r\l-P-coordinated phosphaalkynes can 

be transformed to, for example, phosphaalkenes,[99] phosphines[99]and phosphorus 

heterocycles[97] upon treatment with proton sources. In a similar vein, the reaction of 

127 with a excess of a diethylether solution of HBF4  ledes to a moderate yield of the 

difluorophosphine complex, 128 (Scheme 47), after recrystallisation from a 

hexane/dichloromethane solution. In this reaction, the HBF4  is presumably acting as 

a source of HF which doubly reduces the coordinated phosphaalkyne. The HBF4  is
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1.3.6 R e su lts  and  D isc u ssio n  [Ru  Pr e c u r so r s]

also the source of the counter anion in 128. It is noteworthy that P=CBul (within the 

complex /ror«5-[FeH(dppe)2(r|1-P=CBut)]+) has been similarly reduced to F2PCH2But 

by treatment with HBF4.[99] In that reaction, the stepwise nature of the reduction was 

confirmed by the isolation of an intermediate containing a P-coordinated 

fluorophosphaalkene, FP=CHBul. No similar intermediate (viz. trans- 

[RuH(dppe)2 {r|1-P(F)=C(H)Me}]+) was observed in the current reaction, which is 

perhaps in line with the previously demonstrated greater reactivity of P=CMe over 

P=CBu\ Indeed, treating 127 with one equivalent of HBF4 led only to a mixture of 

128 and unreacted 127.

The spectroscopic data for 128 are compatible with its solid state structure. 

In its 31P{1H} NMR spectrum the fluorophosphine signal appears as a triplet of 

quintets at low field (8  244.4 ppm) displaying characteristic ’JPf and 2JPp couplings 

(1094 and 30 Hz respectively). The low field position of this signal is not surprising 

in light of the electron withdrawing nature of the fluorine substituents and it can be 

compared to a chemical shift of 5 279.5 ppm for the corresponding signal in the 

spectrum of /ra«5-[FeH(dppe)2 {r|1-P(F)2C(H)2But}]+.[100] The structure of the 

cationic component of 128 (Figure 18) reveals its ruthenium centre to have a similar 

octahedral geometry to that of 127, while the geometry of the PF2Et ligand is 

unremarkable. Saying this, there has been no previous crystallographic elucidation 

of this phosphine.

[RnH(dppe)2] [CF3SO3] ^

Ph2
1 Ph2 [CF3s o 3]

h b f 4

Ph2
1 Ph2

p i
1 p ? 
Ph2 III * 

CMe 2 -L 'i\ L2
Et 2

127 128

Scheme 47 Reaction of P^CMe with [RuH(dppe)2][CF3S 03]

-65-
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Figure 18 Molecular structure of 128 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ru(l)-P(l) 2.2941(13), Ru(l)-P(5) 

2.3394(12), Ru(l)-P(3) 2.3607(13), Ru(l)-P(4) 2.3684(13), Ru(l)-P(2) 2.3783(13), 

P(l)-F(2) 1.583(3), P(l)-F(l) 1.610(3), P(l)-C(l) 1.811(4), C(l)-C(2) 1.518(7), F(2)- 

P(l)-F(l) 98.66(15), F(2)-P(l)-C(l) 103.21(19), F(l)-P(l)-C(l) 96.86(18), P(3)- 

Ru(l)-P(2) 78.79(4), P(5)-Ru(l)-P(4) 84.40(4), C(2)-C(l)-P(l) 115.6(3).
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1.3.7 Reaction of Phosphaalkynes with a Samarium Precursor

The samarium(II) complex, [(C5Me5)2Sm(THF)2] (129),[105] is known to 

undergo reductive transformations with unsaturated substrates in a variety of 

ways.[106‘109] For example, its reaction of with one or two equivalents of 

trimethylacetonitrile in THF gives the monomeric compound, 130. However, 

changing the solvent to toluene gives the trimeric compound 131 (Scheme 48).[108]

CBu«

THF

CBu‘
130

^ * 
Cp 2Bu NC,

Sm

toluene
Bu*NC

Sm

129

Sm N = C  Sm
. /  \  *Cp 2 Cp 2

131

Scheme 48 Reaction of a [(Cp*)2Sm(THF)2] (129) with a nitrile

Examples of reactions of samarium(II) complexes with alkynes can also be 

found in the literature. The reactions of the samarium(II) complex, 129, with alkynes, 

132a-e, in toluene, give the monomeric samarium(HI) complexes, 133a-e. These 

complexes have been formed via reductive C-H cleavage of the alkynes at the 

samarium centre, to form the THF-solvent alkynides 133a-e. However, the THF free 

samarium(II) complex, 134,[110, 111] shows different behaviour in its reaction with 

alkynes, 132e-f. These give the dimeric samarium(IH) complexes 135e-f, formed via 

reductive C-H cleavage and coupling of the alkynes (Scheme 49).[109]

-67-



1.3.7 R e s u l t s  a n d  D isc u ss io n  [Sm P r e c u r s o r s ]

Sm— O,

129

HC=CR
toluene

132

Sm

133 R = CH2CH2Ph (a), CH2NEt3 (b),
CHMe2 (c), Mej (d), CH2CH2CHMe2(e) 
CH2CH2Ph (f)

I
Sm HC=CR

toluene

132

/ % _  Cp*2S m ^  C C.
\ ' /  

C

SmCp*2

134 135

Scheme 49 Reaction of [(Cp*)2Sm(THF)2] 129 and [Sm(Cp*)2] 134 with alkynes

The samarium(II) complex, [(CsMes^SmCTHF^] (129) was also reacted with 

two equivalents of the phosphaalkyne, P^CBu1, in toluene, giving the dimeric 

complex, 136, via reductive coupling^112]

\  > °  
Sm

129

C p \
Sm'

— * Cp

toluene

Sm

136

Scheme 50 Reaction of [(Cp*2)Sm(THF)2] (129) with P=CBu‘

In this curent study a samarium(II) complex, 137,[113] were reacted with 

phosphaalkynes, P=CMe and P=CBul. The reaction of 137 with an excess of P=CMe 

in toluene at -90 °C was followed by 31P{1H} NMR spectroscopy. This showed an 

intractable mixture of phosphorus containing compounds, from which no product 

could be isolated. However, the reaction of 137 with an excess of P^CBu1 followed

31 1by P{ H} NMR spectroscopy, showed no new resonances, most likely due to 

paramagnetic nature of the products. After all volatiles were removed in vacuo, the
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residue was extracted with hexane and stored at -25 °C to give the dimeric product

138 (Scheme 51). As phosphaalkynes have been shown to be more alkyne than 

nitrile like in there reaction, it is no surprise seeing similarities between the alkyne 

product 135e-f, and the two phosphaalkyne products, 136 and 138.

Scheme 51 Reaction of a samarium(II) precursor with P=CBu*

The molecular structure of 138 was determined by X-ray crystallography, 

revealing to contain two coupled phosphaalkyne molecules bridging between two 

samarium fragments (Figure 19). The C=P bond lengths are 1.660 A (P(l)-C(l)) 

and 1.673 A (P(2 )-C(6 )) which are slightly shorter than those found in 136 (1.694 

and 1.698) and consistend with C=P double bounds.

Me

2

Et N*I
Me

►  L— Si..

138

P— F
C

Sm— L

L = (Pyrrol)4Me2Et8

137
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Figure 19 Molecular structure of 138 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level)

Selected bond lengths (A) and angles (°): Sm(l)-C(l) 2.524(12), Sm(2)-C(6) 

2.520(11), P(l)-C(l) 1.660(12), P(l)-P(2) 2.267(5), P(2)-C(6) 1.673(11), C(l)-C(2) 

1.539(15), C(6)-C(7) 1.521(14), C(l)-P(l)-P(2) 116.3(5), C(l)-P(l)-Sm(l) 59.2(4), 

P(2)-P(l)-Sm(l) 165.32(17), C(6)-P(2)-P(l) 114.8(4), C(6)-P(2)-Sm(2) 56.9(4), 

P(l)-P(2)-Sm(2) 165.41(16), C(2)-C(l)-P(l) 132.0(10), C(2)-C(l)-Sm(l) 141.3(8), 

P(l)-C(l)-Sm(l) 86.5(5), C(7)-C(6)-P(2) 132.8(9), C(7)-C(6)-Sm(2) 137.8(7), P(2)- 

C(6)-Sm(2) 89.3(5).
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1.3.8 Reaction of Phosphaalkynes with Platinum Precursors

That phosphaalkynes co-ordinate in a rj -fashion to metal centres has been 

discussed in section 1.1.1.2. Nixon et al. have shown that hindered phosphaalkynes,

t 0P=CR (R = Mes, Bu), are more likely to form 1 : 1 r| -complexes with Pt(0) 

precursors like [(P-P)Pt(ii2-C2H4)], (P-P = dppe, (PPh3)2) (Scheme 52),[28' 1141 while 

unhindered phosphaalkynes, P=CR (R = H, Me), could react differently as their 

smaller substituents give space for further co-ordination and/or cycloaddition 

processes.

| Pt(P P)(t|2-C 2 H4) ] f  P\  C
P = C B u l ----------------------------- '

Bu1
/

(   I I I  C „  “ " P I *
P p P (PPh3)2

Scheme 52 Reactivity of [Pt(PP)(Ti2-C2H4)] (PP = dppe, (PPh3)2) with P=CBu‘

The reaction of [Pt(PCy3)2(r|2-C2H4)] (139) with an excess of P=CMe at room

31 1temperature was followed by P{ H} NMR spectroscopy over 24 h and this showed 

a resonance form at 5 8 6 .6  ppm, similar to that seen for [Pt(PP)(r|2-P=CMes)] (PP = 

PPh3) = 89.4 ppm. Thus, it can be assumed that an r|2-co-ordination to the metal 

centre has occurred. After all volatiles were removed from the reaction mixture in 

vacuo, the residue was redissolved in toluene and the extract stored in a freezer 

yielding 140 (Figure 20) as a crystalline product (Scheme 53).

Me
/

______________  [Pt(PCy3)2(T12-C 2H4)] Cy3p\  C
P = C M e   ► Pt----- HI

Cy3P p

139 140

Scheme 53 Reaction of [Pt(PCy3)2(r|2-C2H4)] (139) with P=CMe
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The 31P{’H} NMR spectroscopic data for 140 are similar to those for related 

complexes, e.g. [Pt(dppe)(rj2-P=CBut)],[1151 and in particular, the phosphaalkyne 

resonance displays a very small Vptp coupling constant (143.6 Hz).

The molecular structure of 140 was determined by X-ray crystallography 

displaying disorder of the coordinated phosphaalkyne over two sites. Although 

successfully modelled, this disorder affects the reliability of comment on the 

phosphaalkyne co-ordination geometry to some extent. The structure of 140 is 

comparable with that of, for example, [Pt(PPh3)2(r|2-P=CBut)],[10] as both exhibit 

phosphaalkyne P-C distances (1.623 A (mean) and 1.672(17) A respectively) longer 

than that in free P^CBu1 (1.548(1) A).[81

Figure 20 Molecular structure of 140 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level)

Selected bond lengths (A) and angles (°): Pt(l)-C(l) 2.034(8), Pt(l)-P(3) 2.3035(11), 

Pt(l)-P(2) 2.3072(10), Pt(l)-P(l) 2.354(3), P(l)-C(l) 1.623(9), C(l)-C(2) 1.505(11), 

C(l)-Pt(l)-P(3) 106.7(3), C(l)-Pt(l)-P(2) 140.0(3), P(3)-Pt(l)-P(2) 113.32(3), C(l)- 

Pt(l)-P(l) 42.6(3), P(3)-Pt(l)-P(l) 149.35(8), P(2)-Pt(l)-P(l) 97.33(8), C(l)-P(l)- 

Pt(l) 58.1(3), C(2)-C(l)-P(l) 140.9(6), C(2)-C(l)-Pt(l) 139.8(6), P(l)-C(l)-Pt(l) 

79.2(4).
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Further investigations have been carried out with less bulky Pt(0) precursors 

including [Pt(P-P)(r)2-C2H4)] (P-P = dppe or (PEt3)2), 141 or 142. Treatment of 

precursors 141 and 142 with an excess of P=CMe was followed by 31P{lH} NMR 

spectroscopy and this showed resonances appear at 8  102.4 ppm (143) and 5 90.4 

ppm (144). Once again it can be assumed that there is a rj -P=CMe co-ordination to 

the metal centre which leads to the 1 : 1 product. However, after volatiles were
<5 1 i

removed in vacuo and the residues redissolved, the P{ H} NMR spectra had 

substantially changed. The r| -P=CMe observed resonances had shifted up-field by 

ca. 200 ppm (145: 5 -101.2, 146: 8  -115.5 ppm) suggesting the presence of saturated 

P-centres in the final product (Scheme 54). The change to less bulkier Pt(0) reaction 

precursors, shows that unhindered phosphaalkynes have the potential to react with a 

second Pt(0) fragment to form the 2 : 1 bridged products (145 and 146).

Me Me

  [P1(PPK112-C!H4H C jjj [PKPP)<n2- c 2H4)i / " p\P=CMe   II!    J

c p /"pI = dppe 141 I = dppe 143 (  = dppe 145
(PEt3)2 142 P (PEt3)2 144 ^ P  (PEt3)2 146

Scheme 54 Reactivity o f [Pt(PP)(rj2-C2H4)] (PP = dppe or (PEt3)2) with P=CMe

The molecular crystal structures of these compounds, 145 and 146, 

determined by X-ray crystallography reveal each to contain a phosphaalkyne 

molecule bridging two platinum fragments. The mechanism of formation of 145 and 

146 probably involves 143 and 144 being in equilibrium with the free 

phosphaalkyne, thus allowing attack of 143 and 144 by a second "Pt°(P-P)" fragment 

upon removal of volatiles, including P=CMe, from the reaction mixtures. Similar 

secondary reactions do not occur for complexes of bulkier phosphaalkyne-
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platinum(O) complexes, e.g. [Pt(dppe)('n2-P=CBut)],[I15] presumably because attack at 

the P-C multiple bond is not facile for steric reasons.

The 31P{1H} NMR spectroscopic data for 143 and 144 are similar to those for 

related complexes, e.g. [Pt(dppe)(ri2-P=CBut) ] , [1153 and in particular, their 

phosphaalkyne resonances display very small Vptp coupling constants (143 178.0, 

144 167.5 Hz). Interestingly, these couplings for the bridged complexes, 145 and 

146, are too small to be observable. The high field position of the phosphaalkyne 

resonances (145 8-101.2 ppm, 146 5-115.5 ppm) in these complexes can, however, 

be compared to those in other phosphaalkyne bridged complexes, e.g. 

[ {CpMo(CO)2} 2(h-P=CBu')] , 8  -110 ppm.[l,6]

The molecular structure of 154 and 146 was determined by X-ray 

crystallography displayed disorder of the coordinated phosphaalkyne over two sites. 

Although successfully modelled, this disorder affects the reliability of comment on 

the phosphaalkyne co-ordination geometry to some extent. The P-C distances of 145 

(1.744 A mean), (Figure 2 1 ) and 146 (1.728 A mean) are longer those of 140 (1.623 

A mean) and the free P=CBu* (1.548(1) A).[8] Also of note are the Pt2PC fragments 

of 145 and 146, which are non-planar and exhibit angles between their three- 

membered rings of 96.4° and 96.8°, respectively.
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Figure 21 Molecular structure of 145 (25% thermal ellipsoids, non-methyl hydrogens omitted for 

sake of clarity)

Selected bond lengths (A) and angles (°) relating to one of the two components of 

the disordered PCMe ligand: Pt(l)-C(l) 2.075(13), Pt(l)-P(2) 2.2568(12), Pt(l)-P(3) 

2.2618(12), P(l)-C(l) 1.734(12), P(l)-Pt(2) 2.347(2), C(l)-C(2) 1.537(10), C(l)- 

Pt(2) 2.059(11), Pt(2)-P(4) 2.2498(10), Pt(2)-P(5) 2.2611(10), C(l)-Pt(l)-P(l) 

45.4(3), P(2)-Pt(l)-P(3) 86.75(4), C(l)-Pt(2)-P(l) 45.8(3), P(4)-Pt(2)-P(5) 86.43(4), 

C(l)-P(l)-Pt(2) 58.3(4), C(l)-P(l)-Pt(l) 58.4(5), Pt(2)-P(l)-Pt(l) 80.34(7), P(l)- 

C(l)-Pt(2) 75.9(4), P(l)-C(l)-Pt(l) 76.3(5), Pt(2)-C(l)-Pt(l) 94.7(4).
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1.3.9 Miscellaneous P^CMe Reactions

The following list shows reagents and reactants which were reacted with the
' j  1 i

phosphaalkyne P=CMe. Some reactions have shown signals in their P{ H} NMR 

spectra which have been listed. For different reasons, no raction, or tracteblle 

products could be isolated or characterised or no reaction occured at all.

Metal and metal halide reactions 3 1 PI1HI NMR resonances
GeCl2, Cul, GaCl3, TaCl5, SnCl2, GeCU, Sml2, 
Ini, InBr, Gal

no reaction

Na, 5 d 324 ppm
K, Mg decomposition / polymerisation

Metal carbonvls
Co(CO) 8 decomposition
Fe(CO) 9 5 s 150, s 98, s 84, s 1 ppm

Ru Drecursors
RuHCl(PPh3)2(CO) 5 s 463, s 458, m 35, m 26, s -4 ppm
RuCl2(PPh3) 3 5 m 63, m 60, m 49, m 41, m -1 ppm
RuH2(dppe)2 no reaction
(RuCp*H2)2 no reaction
[RuCp*(CH3CN3)]3+ no reaction

Rh precursors
[RhCl(PPh3) 3]2 5 s 24, s -4 ppm
RhCl(CS)(PPh3)2 decomposition
[RhCl(COE)2l2 decomposition

Amidinates (Bu^CfNDiD?) (DiD = C*H*PrS-
2.61 (Pisol and Guanadinate flGNlCfNDh)?!
<R = Pr1 (Prisof or Cv fGisol)
(Giso)GeCl no reaction
[(Giso)Gel+ [GeCLtT no reaction
(Giso)Ga no reaction
(Giso)SnCl no reaction
{(Gsio)NiBr}2 decomposition
{(Priso)NiBr}2 decomposition
{(Priso)Ni} 2(|Li-toluene) decomposition
{(Priso]Ni}2 decomposition
{(Piso)FeN}2 decomposition
(Priso)Co) 2 decomposition
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{(Giso)As}2 decomposition
(Giso)AlH2 decomposition

Lewis Acids and Bases
n-Buli 5 s 178, s -10, m. -14, s -28, s -31 ppm
LiNCPr1̂ 5 s 296, s 274, s 263, s 212, s 177 ppm
NaOPh no reaction
h b f4 no reaction

Others
Pd(PPh3)4 6 s 29, s 4 ppm
MgCyCl 8 m -28 ppm
MgPhBr 8 m 7, ppm
PI3 8 m 136, s 98, s 89, s 57 ppm
PCI3 8  s 264, s 219 ppm
{Ir(COD)Cl2}2 decomposition
ZnEt2 decomposition
Ni(COD) 2 decomposition
Pt(COD)Cl2 decomposition
Cp2ZrCl2 no reaction
P4 no reaction



1.4 Co n c lu sio n

1.4 Conclusion

Phosphaalkynes are interesting compounds as they undergo co-ordination, 

cycloaddition, oligomerisation and polymerisation reactions with main group and 

transition metal precursors in which their behaviour is more like alkynes than 

nitriles.1' 01

Special focus in this part of this thesis was on the mostly unexplored methyl- 

phosphaalkyne. After investigating the preparation and handling of the unhindered 

phosphaalkyne, P=CMe, (which was revealed to be more challenging than that of the 

hindered phsophaalkyne P=CBul) it was shown to have interesting reactivity towards 

main group and transition metal complexes. The results of this study have revealed 

significant differences as well as similarities to the reactivity of bulkier 

phosphaalkyne analogues. This can mainly be explained on steric grounds. This is 

just the beginning of the investigation of unhindered phosphaalkynes and there is 

much more potential which is waiting to be discovered. Further study of methyl- 

phosphaalkyne chemistry will be maintained in the Jones group, using these results 

as the basis for future work.
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1.5 Exper im en ta l

1.5 Experim ental

General considerations. All manipulations were carried out using standard 

Schlenk and glove box techniques under an atmosphere of high purity argon or N2. 

Hexane, THF and toluene were distilled over potassium whilst diethylether was 

distilled over Na/K then freeze/thaw degassed prior to use. ]H and 31P{!H} NMR 

spectra were recorded on either a Bruker DXP400 or a Jeol Eclipse 300 spectrometer 

and were referenced to the residual lH resonances of the solvent used or external 

85% H3PO4 respectively. Mass spectra were obtained from the EPSRC National 

Mass Spectrometry Service at Swansea University. IR spectra were recorded using a 

Nicolet 510 FT-IR spectrometer as Nujol mulls between NaCl plates. Melting points 

were determined in sealed glass capillaries under argon or N2, and are uncorrected. 

1 ,3 ,5 -P3C3Bu,3 (17)'44' 69], l,3 ,5 ,7 -P4C4But4 (18)[l171, [Ge{CH(SiMe3) 2}2] 2 (76)[U8], 

[Sn{CH(SiMe3) 2}2] 2 (77)[n8], [Sn(Ar) 2]3 (Ar = C6H2Pr'3-2,4,6) (78)[l191,

[Pt(Cy3P)2(i12-C2H4)])> (139)[ml, [Pt(dppe)(r,2-C2H4)] (14X)[1201, c<s-[Pt(PEt3)2(p2- 

C2H4)] (142)[1221, [Ru(H)2(dppe)2]"231, [RuH(dppe)2][OTF][1241,

[RuH(dppe)2][BF4]1'231, [FeH(dppe)2][BPh4] [l021 were synthesised by literature 

procedures. PsCBu' was synthesised by the [Li{N(SiMe3)2}] catalysed elimination 

of hexamethyldisiloxane from (M esS iJP^^u’XOSiMe^1251. P=CMe[l3' 66, 671 was 

prepared by modified literature procedures, while all other chemicals were obtained 

from commercial sources and used as supplied.
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CClaPCOXOPiOz (40)

Triisopropyl phosphite (14.2 g, 68.04 mmol) was heated at refluxed overnight with 

CCI4 (95.5 g, 0.62 mol). All volatiles were removed in vacuo and the residue 

distilled, b.p. 62 -  64 °C 0.07 mmHg, yielding phosphonate 40 as a colourless 

liquid.

(17.2 g, 90%); 'H NMR (400 MHz, CDCI3, 298 K): 5 1.28 (v. trip, VHh = 6.3 Hz, 

VPH = 7.7 Hz, 12H, Pr'), 4.90 (sept, Vhh = 6.3 Hz, 2H, Pr‘-H); 3iP{'H} NMR (121.6 

MHz, CDCI3, 298 K): 8  4.28 (s); 13C{'H} NMR (62.9 MHz, CDC13, 303 K): 8  23.42 

(s, CH(CH3)2), 24.23 (s, CH(CH3)2), 40.0 (s, CC13), 87.60 (s, C(CH3)), 90.75 (s, 

C(CH3)).

MeCCl2(0 )(0 Pr‘) 2  (41)

LiBu11 (18 ml of a 1.6 M solution in hexane, 28.8 mmol) was added dropwise over 20 

min to a solution of phosphonate 40 (7.86 g, 27.94 mmol) in THF (80 cm3) at -85 °C 

and stirred at this temperature for 5 min. Mel (4.1 g, 28.8 mmol) was added dropwise 

over 15 min to the reaction mixture at -85 °C and the mixture was stirred for 1 h 

before warming to room temperature. Organic workup with half saturated NaHC0 3  

solution, and distillation of the organic phase (b.p. 52 -  54 °C, 0.07 mmHg) gave 

phosphanate 41 as a colourless liquid.

(5.8 g, 80%); ‘H NMR (400 MHz, CDClj, 298 K): 8  1.3 (v. trip, 3Jhh = 2.7 Hz, VPH 

= 3.5 Hz, 12H, Pr'), 2.3 (d, VPH = 12 Hz), 4.82 (sept, 3Jhh = 6.4 Hz, 2H, Pr'-H); 

31P{‘H} NMR (121.6 MHz, CDC13, 298 K): 8  11.65 (s);

MeCCl2 PH2  (42)

AICI3 (5.6g, 42 mmol) was slowly added over 5 min to a suspension of LiAlFL* (0.53 

g, 14 mmol) in diglyme (40 cm3) at -70 °C. The mixture was allowed to warm up to -
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10 °C and the suspension cooled to -80 °C. Phosphanate 41 (2.62 g, 9.96 mmol) in 

diglyme ( 1 0  cm3) was added dropwise over 10  min, maintaining the temperature 

below -60 °C. The suspension was allowed to warm up to -30 °C and degassed water 

(5ml) was added dropwise over 10 min. The suspension was heated to 0 °C and 

filtered through celite into a Schlenk flask containing 20g MgSOz*. This was stored 

for 12 h at -25 °C. The suspension was filtered and the solution, containing 

phosphine 42, was used in the next step to make P=CMe (2).

(1.0 g, 80%); 'H NMR (400 MHz, CDC13) 298 K): 5 2.4 (d, VPH = 7 Hz, 3H, CH3), 

4.0 (s, 2H, PH2); 31P{‘H} NMR (121.6 MHz, CDClj, 298 K): 5 -45.7 (s).

PsCMe (2)

DBU (2.8 g, 18.33 mmol) was added dropwise over 10 min to phosphine 42 (1.0 g,

6.64 mmol) in diglyme (50 cm ) maintaining the temperature under -60 °C. The 

suspension was allowed to warm to -10 °C and purified by trap to trap distillation, in 

which the first trap was cooled to -45 to 50 °C and the second trap cooled to -120 °C. 

2 , which freezes at ca. -90 °C, was collected in the -120 °C trap and was later 

condensed into a Youngs Schlenk, then dissolved in diethylether to give a ca. 0.25 M 

solution.

(300 mg, 6 8 %); 'H NMR (400 MHz, C6D6, 298 K): S 1.50 (d, VPH = 15 Hz, 3H, 

CH3); ^Pj'H} NMR (121.6 MHz, CDC13, 298 K): 5 -60.49 (s); 13C{‘H} NMR (75 

MHz, C6D6, 303 K): 5 14.5 (d, 2J rc = 20 Hz, CH3), 171.20 (d, ' j PC = 49 Hz, CP).

PsCjMejBuS (47)

P=CMe (6 .8  cm of a 0.25 M solution in diethylether, 1.71 mmol) was added to a 

solution of 1,3,5-P3C3Bu'3 (170 mg, 0.57 mmol) in hexane (15 cm3) at room 

temperature. After lh, all volatiles were removed in vacuo yielding a yellow solid.
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This was extracted with hexane ( 2 x 5  cm3), filtered, concentrated to 3 cm3 and 

stored at -30 °C yielding 47 as yellow crystals.

(155 mg, 6 6 %); M.p.: 206 -  208 °C; 'H NMR (400 MHz, C6D6, 298 K): 5 1.18 (s, 

9 H, Bu‘), 1.23 (s, 9H, Bu'), 1.56 (s, 9H, Bu‘), 1.73 (v. tr, VPH = VPH = 19 Hz, 3H, 

CH3-C(1)), 2.73 (ddd, l /PH = 30 Hz, VPH = 14 Hz, = 7 Hz, 3H, Me on C(4)); 

31P{'H} NMR (121.6 MHz, C6D6, 298 K): 8  -100.1 (br. d, 'JPP = 176 Hz, P(3)), 9.4 

(br. d, ‘yPP = 176 Hz, P(4)), 60.0 (br, P(2)), 301.9 (br., P(l)), 308.8 (br, P(5)); IR 

vfcnT1 (Nujol): 1377m, 1260m, 1105m, 1022m, 802m, 723m; MS (EI/70eV), mlz 

(%): 416 [M+, 25], 58 [Bu'H+, 100]; El Acc. Mass.: on M+: calc, for C19H33P5: 

416.1265, found 416.1269.

[{W(CO)5 }2(p-ti1: i, '-P5C5 Me2Bu'3)] (48)

Compound [P5C5Me2Bu‘3] (47) (150 mg, 0.36 mmol) was dissolved in THF (3 cm3) 

and [W(CO)s(THF)] (0.75 mmol) in THF (50 cm3) was added to the solution at room 

temperature. After stirring for 17 h, volatiles were removed in vacuo and the residue 

purefied by chromatography (silica gel/hexane). An orange band was collected and 

concentrated to ca. 2 cm3. Storage of this at -30°C overnight yielded 48 as an orange 

crystalline solid.

(273 mg, 45%); M.p.: 148 -  152 °C; ‘H NMR (400 MHz, C6D6, 298 K): 8  1.12 (s, 

9H, Bu‘), 1.15 (s, 9 H, Bu'), 1.56 (s, 9H, Bu'), 1.80 (v. tr., VPH = 37p h  = 19 Hz, 3H, Me 

on C(l)), 2.63. (ddd, VPH = 30 Hz, VPH = 15 Hz, VPH = 8  Hz, 3H, Me on C(4)); 

3,P{‘H} NMR (121.6 MHz, C6D6, 298 K): 8  -119.6 (dd, ' j n n  = 180 Hz, 2J P3Pi = 24 

Hz, P(3)), 11.7 (d of v. tr, ' j rm  = 180 Hz, 2JtA?2 = 2Jne5 = 12 Hz, P(4)), 72.0 (br. v. 

tr, Vp2P4 = Vp2ps = 12 Hz, 'jpw = 255 Hz, P(2)), 243.1 (d, 2J PiP3 = 24 Hz, ' j PW = 225 

Hz, P(l)), 315.8 (br. unres. m, P(5)); IR v/crrT1 (Nujol): 2069m, 1952br.s, 1938s (CO 

str.); MS (EI/70eV), mlz (%): 1064 [M+, 18], 741 [M+ - W(CO)5, 36], 418 [M+ -
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2 W(CO)5, 100]; El Acc. Mass.: on M+: calc, for C29H33O10P5W2: 1063.9775, found 

1063.9778.

[{W(CO)5}{W(CO)4}( Ji-fl1: il^PsCsMeBu^)] (49)

P=CMe (0.9 cm3 of a 0.25 M solution in diethylether, 0.22 mmol) was added to a 

solution of l,3 ,5 ,7 -P4C4But4 (84 mg, 0.20 mmol) in hexane (5 cm3) at room 

temperature. After stirring for 1.5 h, volatiles were removed in vacuo and the residue 

dissolved in THF (5 cm3). [W(CO)s(THF)] (0.50 mmol) in THF (50 cm3) was then 

added to the solution at room temperature. After stirring overnight, volatiles were 

removed in vacuo and the residue purefied by chromatography (silica gel/hexane). 

The orange band was collected and concentrated to ca. 2 cm . Storage of this at - 

30°C overnight yields 49 as an orange crystalline solid.

(69 mg, 32%); M.p.: 184 -  187 °C; 'H NMR (400 MHz, C6D6, 298 K): 8  1.01 (s, 9H 

Bu'), 1.04 (s, 9H Bu'), 1.10 (s, 9H Bu'), 1.25 (s, 9H Bu'), 2.02 (v. quint, 3J Hp = 3Jhp = 

Vhp = 18 Hz, 3H, Me); 3,P{'H} NMR (121.6 MHz, C6D6, 298 K): 8  -5.5 (dd, 'jp5P4 = 

56 Hz, Vp5P2 = 7 Hz, P(5)), - 4.9 (v. tr, 2Jp2P5 = 2./p2P3 = 7 Hz, P(2)), 0.5 (dd, 1 Jp4ps = 

56 H z, 'jp4P3 = 24 Hz, P(4)), 30.2 (dd, Vp3P4 = 24 Hz, 2J ?W2 = 7 Hz, VPW = 196 Hz, 

P(3)), 53.4 (br., P(l)); IR Wcm-1 (Nujol): 2068s, 2050s, 1983s, 1942s, 1918s (CO 

str.); MS (EI/70eV), mlz (%): 1078 [M+, 25], 782 [M+-W(CO)4, 18], 548 [M+- 

W2(CO)9, 13]; El Acc. Mass.: on M+: calc, for C31H39O9P5W2: 1078.0295, found 

1078.0302, parameters, R(observed) = R1 = 0.0382, wR2 = 0.0802, R1 = 0.0567, 

wR2  = 0.0872, largest difference peak and hole: 1.707 and -1.269 e.A"3.

PsCsBu^ (50)

P=CBul (249 mg, 2.47 mmol) was added to a solution of l,3 ,5 -P3C3But3 (250 mg, 

0.83 mmol) in hexane (30 cm3) at room temperature. After stirring for 48 h, the
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solution was concentrated to 2 cm and purefied by chromatography (silica 

gel/hexane). The first yellow band was collected and found to contain the 

tetraphosphabarrelene, 18. The second yellow band was collected, concentrated to 3 

cm3 and stored at -30°C overnight to yield 50 as a yellow crystalline solid.

(82 mg, 21%); M.p.: 112 -  114 °C; 'H NMR (400 MHz, C6D6, 298 K): 5 1.22 (s, 9H, 

Bu‘), 1.28 (s, 9H, Bu'), 1.64 (s, 9H, Bu‘), 1.73 (s, 9H, Bu'), 1.78 (s, 9H, Bu‘); 31P{]H} 

NMR (121.6 MHz, C6D6, 298 K): 6 -33.1 (ddd, 'j?\n  = 185 Hz, 2J?,P4 = 12 Hz, 

2J PIP3 = 24 Hz, P(l», 19.0 (dd, ' j T4P5 = 60 Hz, VP4Pi = 12 Hz, P(4)), 23.5 (d of v. tr, 

lJv2Pi = 585 Hz, 2./p2P3 — 2./p2i>2 - 12 Hz, P(2)), 73.6 (dd, './p.pp = 60 Hz, 2Jp5P2 = 12 

Hz, P(5)), 387.6 (dd, Ifopi = 24 Hz, 2J n n  = 12 Hz, P(3)); IR Wcm"1 (Nujol): 1362m, 

1260m, 1193m, 1103m, 1042m, 1020m, 862m, 810; El Acc. Mass.: on M+: calc, for 

C25H45P5: 500.2204, found 500.2204, parameters, R(observed) = 0.2438, wR2 = 

0.4166, largest difference peak and hole: 1.226 and -0.570 e.A~3.

MeCPN3-Ad (6 8 )

P=CMe (4.3 cm3 of a 0.52 M solution in diethylether, 2.24 mmol) was added to a 

solution of 1-azidoadamantane (100 mg, 0.56 mmol) in hexane (30 cm3) at -90 °C. 

The solution was warmed to room temperature over 3 h and stirred at this 

temperature for 24 h. All volatiles were removed in vacuo and the residue extracted 

in hexane (30 cm ). Concentration to 8 cm and storing at -30 °C, overnight, yielded 

68 as a crystalline solid.

(100 mg, 90%); M.p.: 80 -  82 °C; *H NMR (300 MHz, C6D6, 303 K): 1.41 (t, 3Jhh = 

3 Hz, 6 H, Ad-CH2), 2.13 (d, 3Jhh = 3 Hz, 6 H, Ad-CH2), 1,83 (br. s, 3 H, Ad-H), 

2.50 (d, 3Jph = 11 Hz, 3 H, CH3); 31P{'H} NMR (121.6 MHz, C6D6, 298 K): 167.4 

(s, P=CMe); I3C{‘H} NMR (74.4 MHz, C6D6, 303 K): 14.34 (d, 2J PC = 25 Hz, 

P=CCH3), 30.00 (s, Ad.-CH2), 36.00 (s, Ad-CH), 45.41 (d, VPC = 7 Hz, Ad.-CH2),
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61.71 (d, Vpc = 5 Hz, Ad.-CNP), 177.57 (d, 'Jrc = 47 Hz, P=CCH3); IR v/cnf1 

(Nujol): 1346 m, 1301 m, 1259 m, 1179 m, 1101 m, 1025 m, 817 m, 694 m, 580 m; 

acc. MS/EI m/z (%): 235 [M+, 57], 135 [M+-PCMeN3, 100]; MS (El) calc, for: 

Ci2Hi8N3P: 235.1233, found: 235.1231.

PCMeNHNCH (70) and 

I {W(CO)5} PCMeNH {NW(CO)s)} (CH)] (71)

MeC=P (2.5 cm3 of a 0.53 M solution in diethylether, 0.437 mmol) was added to a 

solution of trimethylsilyl diazomethane (50 mg, 0.239 mmol) in diethylether (10 

cm3) at room temperature. After stirring over 24 h all volatiles were removed in 

vacuo and the residue extraced in hexane (3 cm ). Storing at -30 °C, overnight, 

yielded 70 as a yellow crystalline solid.

(70 mg, 93%); M.P.: 67 °C; ‘H NMR (400 MHz, C6D6, 298 K): 52.16 (br.s, 3H, 

CH3), 8.16 (br.m, 1H, CH), 12.48 (br.m, 1H, NH); 31P{‘H} NMR (121.6 MHz, C6D6, 

298 K): 5 83.1 (s, P=CMe); l3C{'H} NMR (100.6 MHz, C6D6, 298 K): 15.1 (br. s, 

P=CCH3), 160.9 (br. s, P=CCH3), 172.8 (br. s, CH); IR v/cnT1 (Nujol): 3320 (br., 

NH str.); El Acc. Mass.: on M+H+: calc, for C3H5N2P: 100.0185, found 100.0185

[W(CO)s(THF)] (237 mg, 0.60 mmol) in THF (100 cm3) was added to a solution of 

70 (30 mg, 0.3 mmol) in THF (5 cm ) at room temperature. After stirring for 24 h all 

volatiles were removed in vacuo. The residue was extracted with hexane (2 x 10 

cm3), concentrated to 5 cm3 and stored at -30 °C, overnight, to give 71 as a yellow 

crystalline solid.

(60 mg, 22%); M.p.: 100 -  103 °C; *H NMR (400 MHz, C6D6, 298 K): 6 2.06 (d, 

3JPH = 14.0 Hz, 3H, CH3), 7.88 (d, 2JPH = 43 Hz), 9.19 (br, 1H, NH); 31P{!H} NMR 

(121.6 MHz, C6D6, 298 K): 5; 74.8 (s, ^ wp = 264 Hz, PCMe); ^C^H} NMR (100.6
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MHz, C6D6, 298 K): 12.3 (br. s, P=CCH3), 164.4 (s, P=CCH3), 190.9 (s, CH); IR 

vycnT1 (Nujol): 3320 (NH str.), 2084, 2075, 1980, 1955 (br CO str.); El Acc. Mass.: 

on M+H+: calc, for CBH5N2O10P1W2: 743.8640, found 743.86440m, 862m, 810; El 

Acc. Mass.: on M+: calc, for C25H45P5: 500.2204, found 500.2204, parameters, 

R(observed) = R1 0.0537, wR2 = 0.0650, largest difference peak and hole: 0.910 

and-1.037 e.A'3.

[R2 Ge{C(Me)(H)PC(=CH2)P} ] 2  (R= CH(SiMe3)2) (79)

P=CMe (1.2 cm3 of a 0.52 M solution in diethylether, 0.62 mmol) was added to a 

solution of [Ge{CH(SiMe3)2}2]2 (1 0 0  mg, 0.13 mmol) in toluene ( 2 0  cm3) at -80°C. 

The resultant solution was warmed to room temperature and stirred for 48 h during 

which time 79 deposited as a colorless crystalline solid. The solid was isolated by 

filtration and dried under a stream of argon.

(Yield 110 mg, 85%); M.p.: 197 -  199 °C. ]H NMR (400 MHz, CD2C12, 298 K): 5 

0.14 (s, 2H, GHSiMe3), 0.15 (s, 2H, C//SiMe3), 0.19 (s, 18H, SiMe3), 0.21 (s, 18H 

SiMe3), 0.27 (s, 18H, SiMe3), 0.30 (s, 18H, SiMe3), 1.59 (dd, 3Jhh = 7.8 Hz, 3JPH =

23.4 Hz, 6 H, CH3), 2.99 (br. m, 2H, CH), 6.25 (dd, 2H, VPH = 46 and 10 Hz, =CtfH), 

6.52 (dd, 2H, 3Jm  = 33 and 16 Hz, =CtfH); 31P{,H} NMR (121.6 MHz, D8-THF, 

298 K): 6  -13.7 (br. d, % . = 303.1 Hz, PGe), 31.7 (br. d, %> = 303.1 Hz, PPCCH2); 

IR v/cnT1 (Nujol): 1570w, 1377m, 1307m, 1250s, 1169m, 1087m, 1056m, 1025m; 

(MS/El) m/z (%): 1014 [M+, 55], 855 [M+-CH(SiMe3)2, 25], 624 [M+ - 

Ge{CH(SiMe3)2}2, 56], parameters, R(observed) = 0.0336, wR2  = 0.0690, largest 

difference peak and hole: 0.305 and -0.334 e.A'3.

[R2 Sn{C(Me)(H)PC(=CH2)P} ] 2 (R = CH(SiMe3)2) (80)
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P=CMe (3.3 cm3 of a 0.25 M solution in diethylether, 0.82 mmol) was added to a 

solution of [Sn{CH(SiMe3)2}2]2 (120 mg, 0.14 mmol) in toluene (20 cm3) at -80°C. 

The resultant solution was warmed to room temperature and stirred for 48 h during 

which time 80 deposited as a coluorless crystalline solid. The solid was isolated by 

filtration and dried under a stream of argon.

(Yield 122 mg, 81%); M.p.: 240 -  245 °C. ‘H NMR (400 MHz, CD2C12, 298 K): 5 

0.00 (s, 2H, CHSiMe3), 0.02 (s, 2H, CHSiMej), 0.08 (s, 18H, SiMe3), 0.19 (s, 18H, 

SiMe3), 0.27 (s, 18H, SiMe3), 0.29 (s, 18H, SiMe3), 1.53 (dd, Vhh = 8.0 Hz, VPH =

15.5 Hz, 6H, CH3), 2.76 (br. m, 2H, CH), 6.18 (dd, 2H, VPH = 43 and 11 Hz, =CHH),

6.65 (dd, 2H, V™ = 32 and 19 Hz, =CHH); 31P{‘H} NMR (121.6 MHz, CD2C12, 298 

K): 5 -63.2 (br. d, 'jPP = 311.2 Hz, =  621.2 Hz, PSn), 16.5 (br. d, %■ = 311.2 

Hz, PPCCH2); IR v/cm-1 (Nujol): 1564w, 1376m, 1246m, 1026m, 996m, 982m; 

(MS/EI) m/z (%): 1107 [M+, 6], 948 [M+ -CH(SiMe3)2, 28], 670 [M+ - 

Sn{CH(SiMe3)}2, 12], parameters, R(observed) = 0.0872, wR2 = 0.0879, largest 

difference peak and hole: 0.652 and -0.447 e.A'3.

[Ar2 Sn{C(Me)(H)PC(=CH2)P} ] 2  (Ar = C6H2PiV2,4,6 ) (81)

P=CMe (1.0 cm3 of a 0.51 M solution in diethylether, 0.51 mmol) was added to a 

toluene solution (50 cm3) of [Sn(Ar)2]2 (120 mg, 0.13mmol) at -80°C (which had 

been generated in situ by UV irradiation (5 = 254 nm) of [Sn(Ar) 2]3 at -80°C). The 

resultant solution was warmed to room temperature and stirred for 48 h, during 

which time 81 deposited as a colourless crystalline solid. The solid was isolated by 

filtration and dried under vacuum.

(Yield 50 mg, 31%); M.p.: 210 -  215 °C (dec.). 'H NMR (400 MHz, C6D6, 298 K): 

5 0.83 (2 x overlapping br., 24H, CH(C//3)2), 1.30 (br. overlapping m, 48H, 

CH(CiT3)2), 1.60 (br. m, 6H, CH3), 2.72, 2.93 (2 x br., 2 x 4H, Ctf(CH3)2), 2.92 (br.
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m, 2H, PC//(CH3)), 3.25, 3.46 (2 x br., 2 x 2H, C//(CH3)2), 5.80 (dd, 2H, 3J m  = 35 

and 18 Hz, =C7/H), 6.19 (dd, 2H, 3J PH = 46 and 12 Hz, =C//H), 7.03 (br., 8H, ArH); 

31P{'H} NMR (121.6 MHz, C6D6, 298 K): 6 -76.3 (d, ‘yPP = 320 Hz, 'JsnP = 614 Hz, 

PSn), 15.8 (d, 'jpp = 320 Hz, PP); IR p/cnT1 (Nujol): 1594w, 1377m, 1260m, 1154m, 

1096m, 1018m; (MS/EI) m/z (%): 1283 [M+, 7], 1079 [M+-Ar', 10], 758 [M+- 

Sn(Ar')2, 20], parameters, R(observed) = 0.0361, wR2 = 0.0723, largest difference 

peak and hole: 0.708 and -0.422 e.A"3.

[{W(CO)5 }{R2 Ge[C(Me)PC(Me)P]}] (R = CH(SiMe3)2) (87) and 

[{W(CO)5 }2 {R2 Ge[C(Me)PC(Me)P]}] (R = CH(SiMe3)2) (8 8 )

P=CMe (1.2 cm3 of a 0.52 M solution in diethylether, 0.62 mmol) was added to a 

solution of [Ge{CH(SiMe3)2}2]2 (100 mg, 0.13 mmol) in toluene (20 cm3) at room 

temperature. After 5 min. [W(CO)s(THF)] (198 mg, 0.501 mmol) in THF (50 cm3) 

was added to the solution. After stirring for 24 h volatiles were removed in vacuo 

and the residue extracted with hexane (5 cm ) and purefied by chromatography 

(silica gel/hexane). A yellow and red bands were collected, both bands were 

concentrated in vacuo yielding yellow 87 and red 88 as crystalline solids.

87: (38 mg, 13%); M.p.: 83 -  85 °C; 'H NMR (400 MHz, C6D6, 298 K): 6 0.05 (br s, 

2H, C/fSiMe3), 0.22 (br, 18H, SiMe3), 0.25 (br, 18H, SiMe3), 2.56 (d, VPH = 31 Hz, 

3H, GeC(Ctf3)P), 2.71 (v. tr, VPH = VpH = 20Hz, 3H, P2C(Ctf3)); 31P{‘H} NMR 

(121.6 MHz, C6D6, 298 K): 5 247.5 (d, 2J PP = 53.8 Hz, ' j PW = 257 Hz, PCMe), 342.0 

(d, VpP = 53.8 Hz, GePCMe); IR v/cm"1 (Nujol): 2072s, 1977s, 1948s (CO str.); 

(MS/EI) m/z (%): 831 (M+, 16), 803 (M+-CO, 12), 392 (R"2GeH+, 46); El Acc. 

Mass.: on M+: calc, for C23H44O570GeiP2Si4l82Wi: 826.0460, found 826.0462, 

parameters, R(observed) = 0.0257, wR2 = 0.0513, largest difference peak and hole: 

0.572 and-1.282 e.A'3.
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88: (32 mg, 15%); M.p.: 55 -  58 °C; 'H NMR (400 MHz, C6D6, 298 K): 8 0.05 (br, 

2H, CHSiMes), 0.28 (br, 18H, SiMe3), 0.33 (br, 18H, SiMe3), 2.40 (dd, l / PH = 35 Hz, 

VPH = 8 Hz, 3H, GeC(Ctf3)P), 2.68 (dd, VPH = 29 Hz, 3J PH = 20 Hz, P2C(Ctf3)); 

31P{'H] NMR (121.6 MHz, C6D6, 298 K): 8 251.0 (d, 2J PP = 66 Hz, ' j PW = 245 Hz, 

CPCMe), 287.5 (d, 2JPP = 66 Hz, './Pw = 256 Hz, GePCMe); IR i-cni 1 (Nujol): 

2068s, 1982sh, 1966s, 1955s (CO str.); (MS/EI) m/z (%): 1155 [M \ 2], 392 

[R”2GeH+, 86%], parameters, R(observed) = 0.0264, wR2 = 0.0538, largest 

difference peak and hole: 0.784 and -1.406 e.A 3.

[Cp2 TiN(NPh2)PC(Bu,)l (112)

PsCBu1 (102 mg, 1.02 mmol) was added to a solution of [Cp2Ti(Py)(NNPh2)] (150 

mg, 0.34 mmol) in toluene (20 cm ) at 20°C over 5 mins. After stirring for 3 h the 

solution was concentrated to 5 cm and stored at -30°C for 30 h to yield brown 

crystals of 112.

(110 mg, 70%); M.P.: 149 -  150 °C. ‘H NMR (300 MHz, C6D6, 303 K): 8 1.48 (d, 

VPH =1.2 Hz, 9 H, Bu‘), 5.45 (s, 10 H, Cp), 6.83-7.10 (m, 10H, Ar-H); 31P{‘H} NMR 

(121.4 MHz, C6D6, 303 K): 8 -28.9; 13C{'H} NMR (74.4 MHz, C6D6, 303 K): 36.6 

(d, I/pc =12 Hz, C(CH3)3), 45.6 (d, 2J K  =14 Hz, C(CH3)3), 110.4 (Cp), 121.4 (o- 

C6Hs), 122.6 (p-C6H5), 129.6 (m-C6H5) 148.8 (;>so-C6Hs); IR v/cnT1 (Nujol): 1586 

m, 1489 m, 1352 m, 1321 m, 1296 m, 1237 m,1074 m, 843 m; acc. MS/EI m/z (%): 

461 [M+, 4], 403 [M+-Bu, 12], 178 [Cp2Ti+, 100]; MS (El) calc, for C27H29N2P]Tii: 

460.1542, found: 60.152; anal. calc, for C27H29N2P]Tii: C 70.44, H 6.35, N 6.08. 

Found: C 70.59, H 6.46, N 6.18, parameters, R(observed) = 0.0586, wR2 = 0.1063, 

largest difference peak and hole: 0.341 and -0.524 e.A'3.
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[(PCMe)2 {W(CO)5}2 {W(CO>4 }] (117 head to head product) and (118 head to tail 

product)

P=CMe (1.0 cm3 of a 0.25 M solution in diethylether, 0.25 mmol) was added to a 

solution of [W(CO)5(THF)] (100 mg, 0.25 mmol) in THF (50 cm3) at room 

temperature. After stirring for 24 h volatiles were removed in vacuo and the residue 

was extracted with hexane (20 cm3). This was concentrated in vacuo yielding 117 

and 118, in a ca. 80 : 20 ratio, as brown crystalline solids after storing at -30 °C 

overnight.

117: (mg, 23%); M.p.: 98 -  100 °C; 'H NMR (400 MHz, C6D6, 298K): 5 1.32 (v. tr, 

VPH = 6.0 Hz, 6 H, PCMe); 31P{'H} NMR (121.6 MHz, C6D6,298K): 8  -74.8 (s, Vwp 

= 148.2 Hz, PCMe); IR (Nujol) v/cm1: 2075(m), 2060(m), 1980(s), 1961(s.), 1927 

(sh), 1914 (sh); (MS/EI) m/z (on a crystalline mixture of isomers 6.5 and 6 .6 ): 1059 

[M+, 64%], 1003 [M+-2CO, 13%], 919 [M+-5CO, 14%], 835 [M+-8 CO, 62%], 664 

[M+-14CO, 100%]; acc. MS (El) calc, for C18H60 i4P2W3: 1059.7755, found 

1059.7757; 7: (11%), parameters, R(observed) = 0.0343, wR2 = 0.0518, largest 

difference peak and hole: 1.285 and -0.728 e.A"3.

118: M.p.: 100 -  103 °C; *H NMR (400 MHz, C6D6, 298K): 8  1.20 (tr, 3J PH = 16.0 

Hz, 6 H, PCMe); 3IP{‘H} NMR (121.6 MHz, C6D6, 298K): 8. -4.0 (s, ' j m< = 252.2 

Hz, PCMe); IR (Nujol) v/cm': 2075(m), 2059(m), 1976(sh), 1963(br.s.), 1929 

(br.s.), 1914 (sh), parameters, R(observed) = 0.0859, wR2 = 0.1469, largest 

difference peak and hole: 1.552 and -1.850 e.A'3.

[RuH(dppe)2(n '-PsCMe)] [CF3 SO3 ] (127)

PsCMe (0.56 cm3 of a 0.34 M solution in diethylether, 0.190 mmol) was added to a 

solution of [RuH(dppe)2][CF3S0 3 ] (100 mg, 0.101 mmol) in dichloromethane (10 

cm ) at room temperature to give a yellow solution. After 3 h volatiles were removed
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in vacuo and the residue dissolved in dichloromethane (1 cm3). Layering this with 

hexane (10 cm3), at room temperature, yielded 127 as yellow crystals overnight.

(90 mg, 75%); M.p.: 188 - 190 °C; ‘H NMR (500 MHz, C6D6, 298 K): 5 -  9.6 (d of 

quin, 1 H, 2./p(dppe)H = 17 Hz, 27p(pcMe)H = 127 Hz, RuH), 2.02 (d, 3 H, 3Jph = MHz, 

CH-i) 2.10 (br, 4 H, CH2), 2.52 (br, 4 H, CH2), 7.01 -  7.32 (m, 40 H, Ai-H); 31P{'H} 

NMR (121.6 MHz, C6D6, 298 K): 8  -38.7 (quin, 2JPP, = 30 Hz, PCMe), 61.5 (d, 2J p p , 

= 30 Hz, dppe); 19F{'H} NMR (281.3 MHz, C6D6, 298 K): 5 -78.5 (s, CF3SO3); IR 

v/cm-1 (Nujol): 1560w (P=C), 1458m, 1376m, 1309m, 1272m, 1187m, 1053m, 

998m; (MS/EI) m/z (%): 958 [RuH(dppe)2(PCMe)+, 3], 899 [RuH(dppe)2+, 32%], 

398 [dppe+, 100].
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[RuH(dppe)2 (fl1-PF2 Et)][BF4] (128)

HBF4 (0.18 cm3 of a 54 % solution in diethylether, 0.135 mmol) was added to a 

solution of 127 (50 mg, 0.045 mmol) in dichloromethane (5 cm3) at room 

temperature. After 12 h volatiles were removed in vacuo and the residue dissolved in

“X  •  "Xdichloromethane (1 cm ). Layering this with hexane (10 cm ), at room temperature 

overnight, yielded 128 as yellow crystals overnight.

(20 mg, 40%); M.P.: 176-182°C; 'H NMR (500 MHz, CD2C12, 298 K): 6 -7.9 (d of 

quin, 2Jm  = 115 Hz and 21 Hz, 1 H, RuH), 2.06 -  2.50 (m, 8 H, PCH2 and 3H, C#>), 

2.80 (m, 2 H, PCH2), 7.11 -  7.33 (m, 40 H, Ar-H); 31P{'h} NMR (121.6 MHz, 

CD2C12, 298 K): 8 62.5 (d, 2Jpp, = 30 Hz, dppe), 244.4 (tr. of quin, l/pp, = 30 Hz, V pf, 

= 1094 Hz, PF2); ‘̂ { 'H } NMR (281.3 MHz, CD2C12, 298 K): 5 -153.2 (4 F, BF4), - 

56.2 (d, 2 F, 'JPF = 1094 Hz); IR iVcm 1 (Nujol): 1376m, 1261m, 1225m, 1029m, 

890m; (MS/EI) m/z (%); 1000 [RuH(dppe)2(PF2Et)+, 83%], 899 [RuH(dppe)2+, 

100%].

[{Sm[(pyrole)4 (CEt2)4 Me2 ]}(n-P2CjBu,2)l (pyrol = NC4H2) (138)

P=CBu‘ (46 mg, 0.46 mmol) was added to a solution of the samarium(II) complex 

(136) (80 mg, 0.093 mmol) in toluene (10 cm3) at room temperature. After 10 min 

volatiles were removed in vacuo and the residue extracted in hexane (10 cm ). The
-J

extract was concentrated in vacuo to 2 cm and stored overnight at -30 °C, yielding 

138 as a green crystalline solid.

(30 mg, 33%); Dec.: 190 °C

Parameters, R(observed) = 0.2149, wR2 = 0.1881, largest difference peak and hole: 

1.184 and -0.810 e.A'3.

No other analysis results could be obtained.
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[(PCy3)2Pt(MeCP)] (140)

P=CMe (0.4 cm3 of a 0.34 M solution in diethylether, 0.132 mmol) was added to a 

solution of [Pt(PCy3)2(r|2-CH2CH2)] (50 mg, 0.066 mmol) in toluene (20 cm3) at 

room temperature. After 24 h volatiles were removed in vacuo and the residue 

extracted in toluene (10 cm3). The extract was concentrated to 3 cm3 and stored at -30 

°C yielding 140 as crystalline solid.

(24 mg, 47%); M.P.: 133 -  135 °C (dec.); *H NMR (400 MHz, C6D6, 298K): 5 1.21 

-  2.62 (m, 66H, CyH), 3.61 (m, 3H, PCCH3); 3,P{1H} NMR (121.6 MHz, C6D6, 

298K): 6 32.7 (v. tr., VPP = 24.0 Hz, % P= 3195 Hz, PCy3), 44.4 (v. tr., 2JPP = 24.0 

Hz, 1/ PtP= 3195 Hz, PCy3), 86.6 (v. tr., VPP = 24.0 Hz, lJpt?= 143.6 Hz, PCMe); m/z 

(El): 752 [Pt(PCy3)2+, 5%], 280 [PCy3+, 100%], parameters, R(observed) = 0.0331, 

wR2 = 0.0665, largest difference peak and hole: 0.740 and -0.556 e.A'3.

[{Pt(dppe)}2(MeCP)] (145)

P=CMe (1.9 cm3 of a 0.34 M solution in diethylether, 0.653 mmol) was added to a 

solution of [Pt(dppe)(r|2-CH2CH2)] (100 mg, 0.161 mmol) in toluene (10 cm3) at 

room temperature. After 24 h volatiles were removed in vacuo and the residue 

extracted in toluene (10 cm3). Concentration to 3 cm3 and storage at -30 °C over 

night, yielded 145 as crystalline solid.

(34 mg, 34%); M.P.: 156 -  160 °C; *H NMR (400 MHz, C6D6, 298K): 5 1.85 (m, 

8H, PCH2), 4.12 (m, 3H, CCH3), 6.67 -  8.15 (m, 40H, ArH); 31P{1H} NMR (121.6 

MHz, C6D6, 298K): 5 -101.2 (unresolv. m., PCMe), 36.4 (unresolv. m., 1 Jiw = 3512 

Hz, dppe), 45.8 (unresolv. m., = 3123 Hz, dppe); (MS/EI) m/z: 1244 [M+, 5%],

651 [(dppe)Pt(PCMe)+, 16%], 593 [(dppe)Pt+, 12%], 398 [dppe+, 100%]; acc. MS
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(El) calc, for C s^ siP s^ : 1244.1969, found 1244.1977, parameters, R(observed) = 

0.0375, wR2 = 0.0526, largest difference peak and hole: 0.689 and -0.802 e.A'3.

[{Pt(PEt3)2 }2MeCP] (146)

P=CMe (2.2 cm3 of a 0.34 M solution in diethylether, 0.758 mmol) was added to a 

solution of [Pt(PEt3)2(r|2-CH2CH2)] (80 mg, 0.256 mmol) in THF (20 cm3) at room 

temperature. After 24 h volatiles were removed in vacuo and the residue extracted in 

toluene (10 cm3). Concentration to 3 cm3 and storage at -30 °C over night yielded 

146 as crystalline solid.

(45 mg, 57%); M.P.: 187 -  190 °C; ]H NMR (400 MHz, C6D6, 298K): 5 1.15 (m, 

36H, PCH3), 1.92 (m, 24H, PCH2), 3.92 (m, 3H, PCCH3); 31P{1H} NMR (121.6 

MHz, C6D6, 298K): 5 -115.5 (unresolv. m., PCMe), 6.6 (unresolv. m., Vptp = 3147 

Hz, dppe), 7.7 (unresolv. m., % p = 3596 Hz); (MS/EI) m/z: 920 [M+, 11%], 802 

[M+-PEt3, 13%], 684 [M+-2PEt3, 20%], 489 [M+-Pt(PEt3)2, 18%], 431 [Pt(PEt3)2+, 

100%]; acc. MS (El) calc, for C26H63PsPt2: 920.2908, found 920.2917, parameters, 

R(observed) = 0.0575, wR2 = 0.1147, largest difference peak and hole: 1.533 and - 

2.424 e.A'3.
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2. Preparation and Reactivity of Transition Metal(I) 
Guanidinate and Amidinate Complexes

2.1 Introduction

Organometallic transition metal chemistry escalated after the discovery of 

ferrocene (Fc), [Fe(r|5-C5H5)2], in 1951.[1] The unusual stability of this transition 

metal complex fascinated many researchers.S ince then, the field has been 

dominated by complexes which follow the 18-electron rule. According to molecular 

orbital theory, maximum stability for a generic ML„ organometallic complex with n 

ligands results, when all the valence shell orbitals are doubly occupied, giving rise to 

a closed-shell 18-electron configuration. Since the ligand field splitting, or HOMO- 

LUMO gap, is large, for complexes with carbon-based 7r-acidic ligands (e.g. CO, Cp, 

olefins etc.), such complexes readily adopt a diamagnetic (spin-paired) configuration. 

However, paramagnetism can also arise in 18-electron complexes, if the ligand field 

splitting is small. An example is the monomeric, paramagnetic, 18-electron, spin- 

equilibrium molecule Cp*Ni(acac) (acac = acetylacetonate), which is diamagnetic 

below 150K but becomes paramagnetic with increasing temperature.[3]

There are a growing number of organometallic systems, in particular for the 

first row transition metals, that are stable with less than 18-electrons.The general 

concept that low valent metal compounds may be more reactive and therefore 

potentially more important as catalytic intermediates has added interest to the study 

of these systems.[5,6]As a result, a field completely dominated by the idea that only 

diamagnetic even-electron (16 or 18) species could be involved in catalytic 

processes, has been increasingly enlightened by the potential of paramagnetic
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systems.17, 81 The presence of unpaired electrons also allows completely different 

reactivity to be observed (e.g. one-electron redox processes) compared with the more 

familiar diamagnetic systems.[2]

To stabilize transition metal centres with low co-ordination numbers, the 

employment of sterically demanding ligands is im portan t.F or instance, the bulky 

P-diketiminato ligand systems (e.g. nacnac', i.e. [{ArNC(R)}2CH]' Ar = 2,6- 

diisopropylphenyl, R = Me (Menacnac ) (1) or Bul (Bunacnac ) (2)) have shown their 

potential in this respect, by stabilising Group 5 - 1 2  first row transition metal(I) 

complexes. Over the past few years, these have displayed interesting chemistry, due 

to their high reactivity.

For comparison, the investigation of the potential of the related, sterically 

demanding amidinate [ArNC(But)NAr]' (Ar = 2,6-diisopropylphenyl) Piso' (3) and 

guanidinate ligand systems [ArNC(NR2)NAr]' (R = cyclohexyl (Giso', 4) or Pr1 

(Priso*, 5)), for the stabilisation of group 8 - 1 0  first row transition metal(I) 

complexes. Amidinates and guanidinates have great potential in this field, due to 

their effective tenability through the systematic variation of their substituents.tl0] If 

acquirable, these potentially reactive metallacycles could lend themselves to an array 

of synthetic applications, including uses as reagents for small molecule activations, 

reductive couplings, metal imide formations etc.[9,1M8] This work forms the basis of 

this chapter.
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2.1.1 P-Diketiminato Ligand Systems

P-diketiminato ligand systems, e.g. Ill, have been known since the late 

1960s .[1M3] These ligands have great tuning potential, as their substituents can vary 

from hydrogen, to alkyl, aryl or silyl and can also be incorporated into six-membered 

(IV) or five-membered (V) heterocyclic ring systems. P-diketiminato ligands and 

other isoelectronic systems (e.g. p-diketonato I (acac ) and p-enaminoketonato II) 

are shown in Figure 1 .[14]

in

ij\

IV v

Figure 1 Ligand systems I -  V

There are a variety of methods to prepare p-diketiminato ligand systems. One 

route, published by McGeachin in 1968, is the condensation reaction of a primary 

amine with a p-diketone, to form the P-diketiminato conjugate acid ligand VI 

(Scheme 1), in which the substituents in this ligand system can vary from hydrogen 

to alkyl, aryl or silyl.[11]

R R
[EtjO] [BF4]R'NH, RNHi NaOMe If !

Scheme 1 McGeachin’s route to prepare P-diketiminato ligands VI

In 1997, Feldmann et al. published the preparation of the most common p- 

diketimine [MenacnacH] (1H), by reacting 2,4-pentanedione (6 ) with ArNH2 (Ar = 

2,6-diisopropylphenyl) in ethanol (Scheme 2).[22,23]
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The deprotonated Menacnac ligand (1) and the Bunacnac ligand (2), are 

important p-diketiminato ligand systems that have received significant attention over 

the past five years for stabilising metals in the + 1  oxidation state.

+  2 ArNH,

1: HC1

2: Na2C 0 2, H20

O O

6

EtOH

Ar = 2,6-diisopropylphenyl

-N^

1H

Ar ArH

Scheme 2 Feldmann’s route to prepare MenacnacH (1H)

P-diketiminato metal complexes can be prepared, either by reacting a- 

hydrogen-ffee nitriles,[15] or isonitriles[16 ,8] with a metal alkyl. The mechanism in 

these reactions involves a C-C coupling process and two 1,3 migrations of the 

trimethylsilyl group from the carbon to the nitrogen atom, to form the p-diketiminato

metal complexes, e.g. VII (Scheme 3). Other routes can be found in the literature.[19'

28]

M— C(SiMe3)2R, N =C R 2„

Me3Si

’=  N‘M+ 13 migr. 

SiMe,

R2 SiMe3
/  3 

, =N
N = C R 2 M*3 1.3 m igr..

Me3SiC-M+ siM e3I
R1

R )= N *  M+ 

R2

Scheme 3 The nitrile route to P-diketiminato metal complexes VII

R2 SiMe3
/—N 
\

R 1 M+
/

N
\

Rz SiMe3
VII
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2.1.1.1 Metal Co-ordination Chemistry of P-Diketiminato Ligands

A variety of co-ordination modes can be found for p-diketiminato metal 

complexes which are displayed in Figure 2. Examples of each co-ordination mode 

will be discussed.

M

E F G H

Figure 2 General co-ordination modes of P-diketiminato ligands

P-diketiminato metal complexes, having a tetrahedral or distorted tetrahedral 

co-ordination environment, generally accept the co-ordination mode A. Mode A 

displays a planar ring system in which the ligand behaves in a N,N’-chelating 

fashion. An example of this complex type is 8 , prepared by reacting 7 with C0 SO4 in 

H2O. Complex 9 also shows the co-ordination mode A but with a trigonal planar 

environment (Scheme 4).[29~32] For complexes of metals having low-lying empty d- 

orbitals of appropriate symmetry, there is the possibility of the p-diketiminato ligand 

involving not only a- but also 7r-bonding and it can act as a 4- or 6 -electron donor. 

There are many other examples of type A co-ordination which can be found in the 

literature? 4’37’ 38’411
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Ph H

1/2

Ph H7

Ph Ph

— N Nrz-r

— N N—

Ph Ph
8

Me Ar

CoCl-j»3THF
—N

jCo;

THF

Me Ar

Me Ar

2 MeLi
— N Me

Co; Me

— N THF

Me Ar

Ar = 2,6-diisopropylphenyl 

Scheme 4 P-diketiminato metal complexes displaying co-ordination mode A

In contrast to co-ordination mode A, co-ordination type B displays a 

heterocycle in the boat form, in which the metal is out of plane. The extreme of this 

co-ordination mode can be viewed as the ligand acting in an r\5 mode, but only if the 

metal has unfilled accepting d-orbitals. Examples of co-ordination mode B can be 

found in complexes 10[33] and l l . [29,34] The co-ordination type B generally results 

from steric crowding around the metal centre, which forces the metal to bend away 

from the ligand (Scheme 5). Other examples have also been reported. [34'37]

ci

-N

R' = Bul, R" = SiMe3

-N

10R’

Co N --N
CoCl R’ = Ph, R” = SiMe3

N -—N
RM R'R' R”

11

Scheme 5 P-diketiminato metal complexes in co-ordination mode B
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Type C co-ordination involves chelating as well as bridging, in which both 

nitrogen atoms are four co-ordinated. Only a few examples of complexes with this 

co-ordination mode are known in the literature. Complex 12 is one of them and is 

displayed in Scheme 6 .

The co-ordination type D is very rare and only one example (13) is known in 

the literature to date (Scheme 6). In this mode, one nitrogen atom and one carbon is 

co-ordinated to the metal.[38,391

Ph

— N

— N

Ph

LiCH(SiMe3)2
SiMe3

Ph SiMe3
/

— N
/ \  /

«  L i. Li—CH

— v  \  SiMe3
THF

Ph SiMe3 j 2

Ar
\

Li~ _Et20
GeCl4

Ar = 2,6-diisopropylphenyl

Me

Ge.

Me

N

Ar
13

Scheme 6 P-diketiminato metal complexes showing co-ordination modes C and D

Examples of the co-ordination mode type E can also be found in the 

literature. Two examples of this co-ordination type can be seen in complexes 14 and 

15 (Scheme 7).[15,38] This co-ordination mode exhibits chelating as well as bridged 

N,-centres.
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Ph R

M
I

Me3Si_ C— SiMe3 

H C T
R = SiMe3

— N ,

Ph

— N.
Ph

“n = -

PhR

M = Na (14) or K (15)

Scheme 7 P-diketiminato metal complexes showing co-ordination mode E

The barium complex, 16, shown in Scheme 8 is rather unusual and its 

structure displays three of the co-ordination types in the one molecular unit (B, F and 

G).[4°3

[Ba{N(SiMe3)2}2(THF)2] Ba' Ba

Cy'

H
. N,

cy

'Cy

16

Scheme 8 A P-diketiminato barium complex exhibiting co-ordination mode B, F and G

Complex 17 displays the co-ordination type H and is shown in Scheme 9. 

The co-ordination type H is in principle a monomeric ligand system, which is N,C 

chelating (Scheme 9).[25]

Me Ar

— N
Sn— Cl

—N
Me Ar

Ar

KC„

Ar = 2,6-diisopropylphenyl 

Scheme 9 A P-diketiminato metal complex showing co-ordination mode H

Me Ar

Me—N
Sn

=N Me
Me Ar 'Ar

17
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2.1.1.2 Low Oxidation State d-block P-Diketiminato Complexes

Over the past five years, sterically hindered examples of p-diketiminates (e.g. 

1 or 2) have been utilised for the preparation of a variety of stable group 5 - 1 2  first 

row transition metal(I) complexes. These low oxidation state complexes are 

generally synthesized by the reduction of p-diketiminate metal halide precursors with 

s-block metals. The study of transition metal(I) complexes is an area of inorganic and 

organometallic chemistry that has enjoyed a resurgence in recent years.[41]

Examples of first row low oxidation state p-diketiminate transition metal 

complexes and their reactions can be found as follows.

The reduction of [Vm(Menacnac)Cl2] (18),[42] with four equivalents of KCg in 

toluene under a dinitrogen atmosphere, gives the toluene capped vanadium(I) 

complex [{VI(Menacnac)}2(ri3:ri3-C7H8)] (19) (Scheme 10).[9] The effective magnetic 

moment of ca. 4.6 pb at 9-300 K is in agreement with an S = 2 spin-only system, 

and 19 is therefore best thought of as a V(I)-V(I) complex, in which each V(I) centre 

possesses two unpaired electrons.[9] It is worth mentioning, that 

[Vm {Me3SiN(CH2CH2NSiMe3)} (p-Cl)]2 reacts with KCg in toluene under a 

dinitrogen atmosphere to give the nitrogen bridged complex 

[ Vv {Me3 SiN (CH2CH2NSiMe3)} (p-N)] 2 .[43]

Ar

~N

Ar

18

4 KC8 
toluene

ArAr

-N N—

'-V

Ar CH* Ar

19

Scheme 10 Preparation of the divanadium(I) complex 19
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Reactions of the divanadium(I) complex 19 can also be found in the 

literature. Nitrous oxide, N2O, which can either be split by low-valent and low-co- 

ordinate metal complexes to form dinitrogen and metal oxides,[44_47] or metal nitride 

and nitrosyl complexes,[44] was reacted with 19 in diethylether to give the bridged 

vanadium(IV) oxide complex 20. The magnetic moment of 2.71 //B at 293 K, is 

consistent with an S = 1 spin-only system (Scheme 11).[9]

The reaction of complex 19 with two equivalents of azobenzene in 

diethylether leads to the vanadium(V) bis(imido) complex [Vv(Menacnac)(NPh)2] 

(21) (Scheme 11).[9]

Ar Ar
/ \

— N
\ r \  /v—4r 4)-v
/

—N N
\ 1 /
Ar CH3 ^

19

3  n 2o
W

2 PhNNPh

Ar
Ph

PhAr

Ar = 2,6-diisopropylphenyl

21

Scheme 11 Reactions of the divanadium(I) complex 19 with N20  and PhNNPh

A magnesium reduction of [Crn(Menacnac)(p-Cl)]2 (22)[45] in THF in the 

presence of a small amount of benzene gives the benzene bridged chromium(I) 

complex [{CrI(Menacnac)}2(rj3:ri3-C6H6)] (23) (Scheme 12). The magnetic moment of 

7.4 yuB per dimer at 293 K is close to the spin-only moment for a strongly coupled 

system with six unpaired electrons (S = 3, jueff= 6.93 /iB).[46]
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Ar

THF, benzene

xs. Mg

A r = 2,6-diisopropylphenyl Ar Ar
22 23

Scheme 12 Preparation of the benzene capped dichromium(I) complex 23

The reaction of [ (C r^nacnac)} 2(r|3 :q3-C6H6)] (23) with an excess of dry 

oxygen in diethylether at room-temperature, gives the mononuclear dioxo 

chromium(V) complex [Crv(Menacnac)(0)2] (24) (Scheme 13).[47]

Complex 23 was also reacted with four equivalents of N3Mes (Mes = 2,4,6- 

Me3C6H2) in diethylether, which leads to the tetrahedral chromium(V) complex 

[Crv(Menacnac)(NMes)2] (25). The magnetic moment of 2.02 jub at 293 K is 

consistent with an S = Vi spin-only system (Scheme 13).[47]

The treatment of 23 with one equivalent of azobenzene in THF leads to the 

chromium(III) phenylimido-bridged dimer [Crm(Menacnac)(p-NPh)]2 (26) with a 

magnetic moment of 3.87 /is at 293 K which implies, that 26 exhibits 

antiferromagnetic behaviour (Scheme 13).t47]
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2 0 2

Ar Ar

—N N—

,Cr -Cr

—N N~

Ar Ar
23

Ar = 2,6-diisopropylphenyl

4 MesN3

Me Me
Ar

Me
Me—N

Ar
Me Me

25

2 (PhN) 2

Ph*

\  / " n /
/Cr\

'V-=N N N:

\ r  ^  Ar

Scheme 13 Reactions of the benzene capped dichromium(I) complex 23 with 0 2, MesN3 and (PhN)2

The reduction of the complex [Mnn(Menacnac)(p-I)]2  (27)[48] with a Na/K 

alloy in toluene at room temperature gives the dimeric manganese(I) complex 

[MnI(Menacnac)]2 (28) (Scheme 14). DFT calculations have indicated a strong s-s 

interaction of the two Mn(I) ions with the open shell configuration (3d54s]). Its 

magnetic moment of 3.98 jub at 290 K suggests that the magnetic behaviour of 28 

could be correctly described as the coupling between two Si = S2 = 5li spin

centres. [49]

Ar

—N
Mn

Ar

27

N a / K

toluene

Ar = 2,6-diisopropylphenyl 

Scheme 14 Preparation of the dimanganese(I) complex 28

Ar Ar

Mn Mn

Ar Ar

28
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The reaction of 28 with an excess of KMnC>4 in toluene at room temperature 

gives the dimeric manganese(III) oxide [Mnm(Menacnac)(p-0) ] 2 (29) (Scheme 15). 

Alternatively, the same product could be found by reacting 28 with predried 

dioxygen.[49]

Ar Ar

—N N—
Mn Mn

N—
Ar Ar

28

Ar A r

—N N—
Mn Mn

Ar Ar
29

KM n0 4  or 0 2

Ar = 2,6-diisopropylphenyl 

Scheme 15 Oxidation of the dimanganese(I) complex 28

The reduction of [Fen(Menacnac)2(p-Cl)]2 (30a) or [Fen(Bunacnac)(p-Cl)] (30b), with 

KCg in toluene, (30a),[50] or Et20, (30b),[51] under a dinitrogen atmosphere, gives the 

dimeric dinitrogen bridged iron(I) complexes [Fe(Menacnac)2(p-N)] 2 (31a) or 

[Fe(Bunacnac)(p-N)]2 (31b) (Scheme 16). The magnetic moments of these complexes 

are 7.9 jub for 31a and 8.4 jub for 31b per dimer. The N-N bond lengths in 31a are 

1.18 A, and in 31b, 1.192 A, which indicates a substantial N-N bond weakening 

relative to free dinitrogen (1.098 A).[52J

Fe— Cl
KCS

1 or 2
30

N2

Ar = 2,6-diisopropylphenyl 

R = Me (a) or Bu* (b)

R Ar Ar R
/  \

~ N  N—
\ ___________ /
F e— N— N------Fe >>

/  \
=N N=

\  /
R Ar Ar R

31

Scheme 16 Preparation of the dinitrogen bridged iron(I) complexes 31

The dinitrogen bridged iron complexes 31a-b were reacted with a variety of 

ligands and these reactions are displayed in Scheme 17. The reaction of 31a with 

excess CO in diethylether affords the complex [FeI(Menacnac)(CO)3] (32a). The
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magnetic moment of 2.0 /jb indicates that 32a has a low-spin (S = 1/2) electronic 

configuration at the iron centre.[52]

The reactions of the dinitrogen bridged iron(I) complexes 31a-b with ligands 

33a-j gives the [Fe(Menacnac)(Ligand)] complexes 34a-j. These reactions and some 

of the magnetic moments can be found in Scheme 11P 1,53̂

excess CO

Ar Ar
/ \

—N N—
\ /
Fe“-N = N ^ = F e

/ \
—N

\ /Ar Ar
31

Ar = 2,6-diisopropylphenyl 
R = Me (a) or Bu* (b)

R = Me, n = 3 (a)
R = Bu*, n = 3 or 2 (b)

Ligand
33

Fe(CO)„

32

Fe— Ligand

34

Magnetic moment
34a 4.7 pB
34b 4.4 pB
34c 4.8 pB
34e 4.3 pB
34h 2.5 pB
341 3.6 pB

Ligand = HCCPh (a), EtCCEt (b), CH2CHPh (c)
EtCH=CHEt (d), HCC-(p-P6H4-OCH3) (e) 
HCC-0>-C6H4-CF3) (f), CfiH* (g), AdN (h) PPh3 (i)

Scheme 17 Reaction of dinitrogen bridge iron(I) complexes 31 with CO and ligands 33a-j

The cobalt(II) complex 35 was reduced with Mg powder in toluene to give 

the toluene capped complex [Co^Ar’NCMe^CHKr^-CyHg)] (36) (Ar’ = 2,6- 

dimethylphenyl) (Scheme 18). The magnetic moment of 2.7 hb at 293 K in toluene- 

d% indicates that 36 is a d8 high spin complex.[54]

Ar*

-N I Me
Co'

Ar* Me
35

xs Mg

Ar*

—N
Co

Ar*

36

toluene 

Ar* = 2,6-dimethylphenyl

Scheme 18 Preparation of the r|6-toluene capped cobalt(I) complex 36

Complex 36 has been reacted with a variety of ligands (e.g. 0 2, N3Ar” (Ar” 

= 3,5-Me2C6H3), N3Ad (Ad = 1-adamantyl) and 0=NAr” (Ar” = 3,5-Me2C6H3))
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and the products of the reaction are displayed in Scheme 19. The addition of an 

excess of dry oxygen to 36 in diethylether at room temperature yields the dimeric 

complex [Com{(Ar’NCMe)2CH}(p-0 ) ] 2  (37). Complex 37 follows Curie-Weiss 

behavior from 50 to 200 K for which an average //efr= 3.5 juB (Scheme 19).[54]

The reaction of 36 with N3Ar” (Ar’" = 3 ,5 -Me2C6H3) in diethylether gives 

the Co(III)-imido bridged dimer [Com {(Ar’NCMe^CH} p-NAr” ) ] 2 (38). Its solution 

magnetic moment was found to be 8 .8  piB at room temperature (benzene-^) and is 

consistent with two non-interacting, high-spin d6 centres. The solid-state magnetic 

susceptibility data revealed antiferromagnetic coupling with a Neel temperature of 25 

K (Scheme 19).[54]

The reaction of 36 with the more sterically demanding azide N3Ad (Ad = 1- 

adamantyl), compared to N3Ar” (Ar” = 3 ,5 -Me2C6H3), leads to the formation of the 

three co-ordinate terminal imide complex, [Coffl{(Ar’NCMe)2CH}(NAd)] (39). DFT 

calculations gave support for the presence of a low-spin d6 cobalt(III) centre in 39, 

which is stabilized by a lcr,2;r-donation from the imido ligand. This leads to 

considerable multiple bond character in this 16-electron, three co-ordinate complex 

(Scheme 19).[54]

Complex 36 has also been reacted with 0=NAr” (Ar” = 3 ,5 -Me2C6H3) in 

diethylether which gives complex [{Com(Ar’NCMe)2CH}2(p-0 :p-NAr” )] (40). This 

4-electron reduction of a nitrosobenzene stands in contrast to the reaction of the 

related [Co(Cp)(C2H4)2] with 0=NPh which leads to complex [Co(Cp)(r|2:r|1- 

PhNO)]2.t55] The Curie-Weiss behavior of 40 over 50-300 K exhibits an average //eff 

of 4.4 nb and the solution magnetic moment at of 4.9 piB at 293 K in benzene-^ 

indicate an S = 2 spin only system (Scheme 19).[54]
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N=N=NAr'

Ar'

—N
Co

Ar'
N=N=NAd36

Ar' = 2,6-dimethylphenyl 
Ar" = 3,5M e2C6H3

0=N A r’

37

Ar' A r \
/  Ar" \

— N N:

C °x  Co 
N X

\  Ar" /
Ar' A r’

38
Ar’

—N
C o = N A d

—N

—N
Ar' Art

/  \
\  /  \  /  

/C°XN/C °Xr ^ i
\  Ar" /
A r’ Ar'

40

Scheme 19 Reactions of a ri6-toluene capped cobalt(I) complex, 36, with 0 2, azides and 0=N A r’ ’

The reduction of complex [Nin(Menacnac)Br2Li(THF)2] (41) with K/Na alloy 

at 25 °C in toluene gives the diamagnetic toluene bridged nickel dimer, 

[(Nin(Menacnac)}2(r|3:ri3-C7H8)] (42). It has been proposed that complex 42 is a 

nickel(II) dimer, bridged by a reduced C7H8 fragment, and the complex behaves as a 

convenient nickel® synthon. Alternatively, 42 can also by prepared by the reduction 

of 41 with MeMgBr in toluene (Scheme 20).[41]

Ar

-N THF

Br THF"TV
Ar

41

N a / K

toluene

Ar = 2,6-diisopropylphenyl

Ar

-N

Ar,Nr

N-

Ar

Ar

Scheme 20 Preparation of the rj -toluene bridged nickel(II) dimeric complex 42
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Compound 42 has been reacted with a variety of different ligands (43a-i), 

which gave the products [{Ni(Menacnac)}2(Ligand)] 44a-f (Scheme 21).[41,56] There 

are also other examples which can be found in the literature.[57]

Ligand
Ni— Ligand

44

Ar = 2,6-diisopropylphenyl Ligand = PhCCPh (a), Me3SiCCSiMe3 (b), NCPh (c)
Ph2CCH2 (d) Ph2CO (e), PCy3 (f), CH2(PPh2)2 (g)

Scheme 21 Reaction of 42 with ligands 43a-f

The reaction of complex 42 with reactants 45a-b gives different types of 

complexes compared to the products in Scheme 22.[41] A reductive CC coupling 

reaction of 42 with C5H5CMe2 (45a) in toluene gives the complex 

[{Nin(Menacnac)}2(r|5:r|5-C5H4CMe2)2] (46) in which two capped ligand fragments 

(45a) are bridged between two [Nin(Menacnac)] units. Another bridged complex, 

[Nin(Menacnac)(|i-PPh) ] 2 (47), was formed by reacting 42 with P5PI15 (45b), giving 

the bimetallic product containing two [Nin(Menacnac)] units, which are bridged by a 

(PPh) 2 fragment (Scheme 22).[41,57]
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CsHsCMe2 (a)

CH3 /

Ar = 2,6-diisopropylphenyl

45

Ar
Ar

—N
Ni-

-Ni—N
Ar

Ar

46

P5Ph5 (b)

45

ArAr

Ar'Ar

47

Scheme 22 Reaction of 42 with 45a-b

Examples of copper(I) p-diketiminato complexes can also be found in the 

literature. The monomeric toluene capped copper(I) complex 49 was prepared by 

reacting the thallium precursor 48a with CuBr in toluene.[58] The reaction of 48b 

with CuBr*SMe2 in the presence of either ethylene or styrene (50a-b) in benzene or 

toluene provides the thermally stable copper® complexes 51a-b (Scheme 23).[59]

-N

—N

48a

CuBr
—N

Cu

-N

49

T1 + CuBr*SMe3

50

48b

-N

Cu----

—N

51

R = H (a) or Ph (b)

Scheme 23 Preparation of copper(I) complexes 49 and 51
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The complexes 49 and 51a were reacted with N2CPI12, giving the monomeric 

complex 52 and the dimeric complex 53. As the ligand in complex 49 is more 

sterically hindered than 51a, the differences in the observed products likely result 

from steric bulk of the ligands (Scheme 24)

—N
Cu

-N

49

—N
Cu—

—N

51a

N2CPh2

N2CPh2

-N Ph
Cu

Ph

52

PhPh.

CuCu-

Scheme 24 Reactions of complexes 49 and 51a with N2CPh2

The reduction of [Znn(Menacnac)l2Li(Et2 0 )2] (54),[60] with potassium/sodium 

alloy in toluene gives the dizinc complex [ZnI(Menacnac)]2 (55) (Scheme 25). 1611 No 

reactions with this complex (55) can be found in the literature to date.

\  / l \  / OEt2 
« Z nv Li

/  V  \^N  1 OEt,

54

N a /K

toluene

Ar = 2,6-diisopropylphenyl

Ar Ar.

Zn Zn

Ar Ar

55

Scheme 25 Preparation of the dizinc(I) complex 55
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2.1.2 Amidinate and Guanidinate Ligand Systems

The amidinate ligand system, e.g. VIII, is the nitrogen analogue of the 

carboxylate anion and has been widely explored in main group and transition metal 

co-ordination chemistry. This type of ligand is of great interest due to the large 

degree of variability that is substituents can bear, in terms of steric and electronic 

properties (Figure 3).[10]

R1 = H, alkyl, aryl, etc.

R2 = H, alkyl, cycloalkyl, aryl, trimethylsilyl, etc.

VIII

Figure 3 The amidinate ligand system

The first amidinate ligand was published by Sanger in 1973. He prepared the 

N,N’-bis(trimethylsilyl)benzamidinate 56a via a two step synthesis (Scheme 26).[62] 

Oakley et al. improved this preparation in 1987 and published the preparation of 

products with a variety of differing substituents on the carbon backbone (56b-j) 

(Scheme 26).[631
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SiMe3

N

N = C — R
LiN{Si(Me)3}2

R = C6H6 (a), P-CH3Q H 4 (b), p-ClQU, (c),

[Li]+ p-Me2NC6H4 (d), p-MeOC6H4 (e), p-CF3C6H4 (f),
p-PhC6H4 (g), p-NcC6H4 (h), p-02NC5H4 (i), CF3 (j)

N

SiMe3

56

Scheme 26 The first amidinates

Closely related to the amidinate ligand system are the guanidinates, e.g. IX. 

The differences between these ligands is the substituents on the carbon backbone, 

which are changed to an amino group in guanidinates IX (Figure 4). Changing the 

fuktional group, effects the orientation of the nitrogen lone pairs of the amidinate 

fragment, and can therefore change its co-ordination chemistry. Further explanation 

of this point can be found at the beginning of section 2 .1 .2 .1 .

Figure 4 The guanidinate ligand system

Beside the amidinate and guanidinate anions, VIII and IX, there are several 

isoelectronic chelating ligand systems which have been reported in the literature. 

These include diiminosulfinate anions, X /64'66̂ the diiminophosphinate anions, XI,[67' 

71] and the dianionic boraamidinate anion, XII[72'74] (Figure 5).

N

R = alkyl, aryl, trimethylsilyl

R2 = H, alkyl, cycloalkyl, aryl, trimethylsilyl
N
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1 1

— R2
1

—
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-
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- R2
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N N 1
N

1
N

1
N

/ /
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R— < R ~S' r 2- p : r - b :

N
1

\ \ \
N| N1 N1 N1
R2 R2 r 2 _ R2 R2

viii ix  x

Figure 5 Isoelectronic chelating ligand systems

XI XII

Of relevance to this study are the bulky amidinate [(ArN^QBu1)]’, (Ar = 2,6- 

diisopropylphenyl) (Piso ) (3)[75] and the guanidinates [(ArN)2C(NR2)] (R = 

cyclohexyl: Giso' (4)[76] or Pr1; Priso' (5) which have been prepared via following 

route.

The amidine 3H was prepared by reacting the carbodiimide (57) in 

diethylether with LiBu at 0 °C. An aqueous work-up gives the amidine PisoH (3H) 

in moderate yield. The guanidine systems 4H or 5H were prepared by reacting 

Li[NR2] (R = cyclohexyl or Pr1) with the carbodiimide (57) at 0 °C in THF. An 

aqueous work-up yields GisoH (4H) and PrisoH (5H) in moderate yields (Scheme 

27).[77,783

ArAr

-N = C = N -

ArAr

57

Ar = 2,6-diisopropylphenyl

LiBu*

THF

THF

But_

3H

Ar
I

N H

N Ar

R,N-

R = Cy(4H) 
R = Pri (5H)

Ar
I

N H

N Ar

Scheme 27 Preparation of PisoH (3H), GisoH (4H), and PrisoH (5H)
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2.1.2.1 Metal Co-ordination Chemistry of Bulky Amidinate and 

Guanidinate Ligands

The general bonding modes for amidinates and guanidinates are displayed in 

Figure 6 . The most common co-ordination mode for amidinates and guanidinates are 

the chelating type I, and the bridged co-ordination type J, which can be found in 

transition metal and main group complexes. The rarest co-ordination mode is 

displayed in K. This type can be found with amidinate and guanidinate ligands with 

very bulky substituents (Figure 6 ).fl0]

R2 R2 r 2
i i .. i

/
N N- N-

I J  K

Figure 6 Bonding modes of amidinate and guanidinate ligand systems

Whether amidinates or guanidinates co-ordinate in a chelating (I) or a bridged 

(J) mode depends on their substituents.179-1 The formation of chelating complexes I is 

favoured by large substituents on the carbon backbone, as they compress the lone 

pairs of the nitrogen centres. Small substituents often support the bridged co

ordination mode, K, which leads to a parallel orientation of the N' lone pairs. The 

steric protection of the N-M-N fragment can be achieved by steric substituents on the 

nitrogen atoms and in this respect, the 2 ,6 -diisopropylphenyl group has been very 

useful.[80’83] Examples of each of the co-ordination modes will be shown and 

discussed.
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The paramagnetic iron(II) amidinate complexes [Fe(RN)2CBut]2 (R = 

cyclohexyl or Pr1) (59a-b), were prepared by reacting [Li{(RN)2CBut}] (58a-b) with 

FeCb. The co-ordination geometry around the iron(II) centre is distorted tetrahedral 

in each case (Scheme 28).t84]

R

FeCI,Bu1

/
N

R

58

R = Cy (a) or Pr* (b)

Bu‘—<<

Scheme 28 Preparation of the iron(II) complexes 59a-b

The iron(II) complexes 59a-b were reacted with CO to give the diamagnetic 

Fe(II) dicarbonyls [FeII{(RN)2CBut}2(CO)2] (R = cyclohexyl or Pr1) (60a-b) 

(Scheme 29). Compound 60b has a heavily distorted octahedral geometry with the 

carbonyls in cis-positions.[84]

R

Bu1
2 CO

R = Cy (a) or Pr* (b)

59

Scheme 29 Reactions of 59a-b with CO

Bu*

R R

60

The reaction of half an equivalent of FeCl3 with a solution of 

[Li{(Pr1N)2C(HNPr1)}] (61b) gives the bis(guanidinate) iron(III) chloride complex 

[FeIII{(PriN)2C(HNPr')}2(Cl)] (62) (Scheme 30).[85)

A similar reaction of one and a half equivalents of FeBr2 with 

[Li{(CyN)2C(HNCy)}] (61a) gives the complex [Fe11 Ip-
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(CyN)2C(HNCy)}{(CyN)2C(HNCy)} ]2  (63) (Scheme 30). The magnetic moment for 

63 (7.28 jub) is consistent with two antiferromagnetically coupled high-spin Fe(II) 

centres.[85]

The reaction of [Li{(CyN)2C(HNCy)}] (61a), with one equivalent of FeEh ,̂ 

gives complex 64 (Scheme 30). Complex 64 is a dinuclear Fe(II) complex where the 

two metal centres are held in proximity by two bridging monoanionic guanidinate 

ligands. A terminal bromide completes the pseudotetrahedral co-ordination 

environment of each iron centre. The magnetic moment of 8.63 jub obtained for 64 

suggests two independent high-spin Fe(II) centres in this complex.t85]

Pr\

H

N—(<

61

Li

R = Cy (a) or Pr* (b)

V2 FeClj

FeBr-

\  / 
Cl

Pr*x /•' Fe-

Pr1

N'
I

H
W

N N 
\ . /
Pr* Pr*

H
'N 

\ . 
Pr1

H

62

. . Pr1 | Pr*
I PA IN N

. /
N—(<̂ \ i Pr*

Fe Fe
Pr1

N N ' ,>N, N 
I Pr1 Pr11
Pr* | Pr1

• / N\
Pr1 H

H

63
cy,

H.
N

cl

Br

"Fe

/ '
N.

cy

cy

?yN.
H

64

Fe............
V  ^
Br \

Cy

Scheme 30 Reactions of 61a-b with FeCl3 and FeBr?
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A reaction of CoBr2 with two equivalents of the amidinate 

[Li{(CyN)2C(Fc)}(Et2 0 )] (65) (Fc = ferrocenyl) in THF gave the trimetallic complex 

[Con{(NCy)2(Fc)}2] (6 6 ) (Scheme 31).[86,87] Other cobalt(II) amidinate complexes, 

e.g. 6 8 a-e, were prepared by reacting the lithium salt of the amidinates (67a-e) with 

C0 CI2 (Scheme 31). Analogous manganese and iron complexes (cf. 6 8 a) and a nickel 

complex (1cf. 6 8 e) have also been reported. [88~90J

N

Fc-CC Li

N
I

Cy 65

CoBr2

Cy Cy

A A
F c-C : Co 'C -F c

N
I

Cy

R'
I

N

Fc = ferroceneyl

N
I
Cy 66 

R"
I

N

r- c : Li

67

CoCl2
r - c ; : c - r

N
I
R’

a: R' = Bu*, R" = Bu*, R = Me 
b: R' = Pri,R" = Pri,R  = Me 
c: R' = Bu*, R" = Et, R = Bu" 
d: R, = Bu*,R" = Et,R = Et 
e: R' = Bu*, R" = Et, R = Me

68

Scheme 31 Preparation of the cobalt(II) complexes 66 and 68

The bis(benzamidinate) complex [Nin{CPh(NSiMe3)2}2] (70) has been 

prepared by reacting NiBr2(DME) with [Li{CPh(NSiMe3)2}(THF)2}] (69) in diethyl 

ether (Scheme 32).[91]

SiMei

N
Me Me

\  /  
N^

ph—c :

N
I
SiMe3

N
/  \ 

Me Me

69

NiBr2(DME)
Et20

SiMe3 SiMe3

/  \Ph—C, Ni C—Ph

N
I
SiMe3 SiMe3 

70

Scheme 32 Preparation of the nickel(II) complex 70
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Two equivalents of the bulky lithium amidinate 71 were found to react 

readily with NiC^ in THF at -78 °C to yield the bis-amidinate metal complex 72. In 

this complex both halide ligands were substituted by amidinate ligands (Scheme 

33).[92] It is worth mentioning that the analogous Cr, Mn, Fe, and Co complexes of 72 

have also been prepared.[92]

N Li

2

Scheme 33 Preparation of the nickel(II) complex 72
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2.1.2.2 Unusual Low Oxidation State Amidinate and Guanidinate 
Complexes

Examples of low oxidation state amidinate and guanidinate complexes 

involving the bulky Piso', Priso' or Giso‘ ligands can be found in the literature. To 

date, most of these incorporated main group elements. Examples of these types of 

complexes are displayed in Figure 7.[93~97]

Figure 7 Examples of low oxidation state main group metal guanidinate and amidinate complexes

Examples of bulky guanidinate or amidinate transition metal(I) complexes are

very rare, and only chromium,[98̂ rhodium,[99] copper,[100 102] gold[103 107] and

complexes are not unusual, only the chromium(I), rhodium(I) and nickel® examples 

are shown as follows.

Reacently, Tsai et al. published the chromium® amidinate complex 75,[98] 

which was prepared via two reductive steps. The first step involves the reduction of

Pr*

M = In or Ti 
Ar = 0 ^ 31^ 2-2,6

M = Ga or In M = In or Tl
Ar = C6H3Pri2-2,6 R = NPr^ or Bu*

Ar = C6H3Pri2-2,6

R = Bu*, NPr*2 or NCy2 
Ar = C6H3Pri2-2,6

Ar

ArAr Ar

R = Bu*or NPr*- Ar = C6H3Pri2-2,6
Ar = C6H3Pri2-2,6

nickel[91] complexes are known in the literature to date. As copper® and gold®
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the dichromium complex, 73,[108] with one and a half equivalents of KCg in THF, 

giving the mixed-valence dichromium complex, 74, with a Cr-Cr bond order of 4.5. 

Complex 74 is paramagnetic, with an solid-state magnetic moment of about 2.21 \lb,

Further reducion of 74 in THF with one equivalent KCg in the presence of 

4,7,13,16,21,24-hexaoxa-l,10-diazabicyclo[8.8.8]hexacosane (crypt[222]), gives the 

one-electron reduced chromium(I) species 75, with a Cr-Cr bond order of 5.0 

(Scheme 34).[98]

Scheme 34 Preparation of the Cr(I) amidinate complex 75

The reaction of [Rh2(q4-COD)2Cl2] with two equivalents of [K(Piso)] (3K), 

[K(Priso)] (5K) or [K(Giso)] (4K) in toluene or THF leads to the T|5- 

cyclohexadienyl amidinate and guanidinate complexes, 76a-c (Scheme 35). Thermal 

isomerisation of these complexes was achieved by heating toluene solutions at 80 °C 

for 5 h, yielding the 16-electron N,N-chelated rhodium® isomers 77a~c (Scheme

and accordingly has one unpaired electron.[981

Cy
Pr*
-O — Cr: Cl-

C1

Pr1
Cr— O -C y  

Pr\

KC8 
1.5 equivalent

73

1 equivalent KCg
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35).1" 1 Another rhodium(I) complex e.g. [RhI{K2-N,N'-(PhN)2CPh}(COD)])[109) has 

also been published in the literature.

KN
Ar

3K, 4k or 5K

[Rh2(114-COD)2Cl2i 
toluene

Rh

N,\ Ar

Ar
I

toluene 80°C
Rh'

Ar

76

R = Bu‘ (a), NPr'2 (b) or NCy2 (c) 
Ar = C ^ P r 1̂

77

Scheme 35 Preparation of the rhodium(I) amidinate and guanidinate complexes 76a-c and 77a-c

The reduction of two equivalents of the nickel(II) complex 78 with 

MeLiLiBr in diethylether at -79 °C gives the nickel(I) complex 

[NiI{CPh(NSiMe)2}]2 (79) (Scheme 36). Complex 79 is very temperature sensitive 

due to the small groups on the nitrogen of the amidinate ligand, and therefore 

decomposes at room temperature in solution by disproportionation to metallic 

nickel(O) and the nickel(II) complex [Niu{CPh(NSiMe)2}2] (80).[91]

/ / \  /  Pb~C. Ni

SiMe3

MeLi»LiBr/EtiO

SiMe3 
N

Ph-C^
N-

Ni-

SiMe-i
78

Ni-

79

SiMe3
-N

%jjC-Ph
-NI
SiMe-»

RT
- Ni(0)

S i\le3 SiMe3 

N N
^  \  /  'V

Ph-C . Ni :c -P h
\ /  \ /

N NI I
SiMe3 SiMe3

80

Scheme 36 Preparation of the nickel(I) complex 79
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2.2 Research Proposal

Stable group 5-12 first row P-diketiminate transition metal(I) complexes (e.g. 

incorporating Menacnac' (1) and (Bunacnac ) (2)) have been investigated for several 

years, and their high reactivity is lending them to an increasing array of synthetic 

applications which include small molecule activations, reductive couplings, metal 

imide formations etcJ9,41,46,49,52,54,58,613

Amidinate and guanidinate transition metal(I) complex are very rare and only 

a few examples of first row transition metal(I) complexes, e.g. those of 

chromium,[98] copper1100'1023 and nickel[913 are known in the literature to date. Inspired 

by the comparable abilities of amidinates and guanidinates to stabilize first row 

transition metal in the +1 oxidation state, an investigation ware carried out of similar 

and differing bulky amidinate and guanidinates as ligands in complexes with the first 

row transition metals iron, cobalt, and nickel. As seen before, these ligand systems 

should have comparable abilities to those of the p-diketiminato ligands to stabilize 

transition metals in the +1 oxidation. The formed complexes should be highly 

reactive and have much synthetic potential. With this aim in mind, an investigation 

were carried out to compare the chemistry of first row transition metal p- 

diketiminato complexes with that of bulky amidinate and guanidinate complexes.

134



2.3.1 Resu lts  a n d  D isc u ssio n  [Ir o n (I) c o m p l e x e s]

2.3 Results and Discussion

2.3.1 Preparation and Reactivity of an Iron(I) Amidinate Complex

Of most relevance to this study is the work of Holland et al. who have shown 

that p-diketiminate iron(I) fragments can activate dinitrogen to give the iron(I) 

complexes [FeI(Lnacnac)(p-N)]2 (L = Me (31a) or Bu1 (31b)), with partially reduced 

N-N bonds (31a: N-N distance 1.18 A mean; 31b: N-N distance 1.182 A ) that are 

significantly elongated with respect to that in gaseous dinitrogen (1.0976 A) 

(Scheme 37).[50’52]

Ar = 2,6-diisopropylphenyl

3 q R = Me (a) or Bu* (b) 31

Scheme 37 Preparation of 31 a-b

Other structurally characterized dinuclear, p-diketiminate free Fe(I) 

complexes bearing bridging dinitrogen ligands, viz. [{FeI[PhB(CH2PPri2)3]}2] 

(8l)[n°. ni] and [{Fel[N(SiMe3NBuI)(C2H4PPri2)2]}2(m-N2)] (82),[" 21 which are 4-co- 

ordinate and display intermediate degrees of dinitrogen reduction, are displayed in 

Scheme 38.

135



2.3.1 Resu lts  a n d  D isc u ssio n  [Ir o n (I) c o m p l e x e s]

F1 / r‘ PH.Pr1 rr\ / n ' SiMe,

. .  . .  / N- ^ XPh B ^ Pri/  ^  Fe— N— N— Fe^. ̂  Pr^ B~Ph Bu*— ^  Fe—N— N— Fe^. ̂  Pr^ N—Bu*

F \ . p—^  V ^

** „  i / ^  ^  82 p / ^

Scheme 38 Fe(I) dinitrogen bridged complexes

The iron® p-diketiminato complexes, 31a-b, have been reacted with a 

variety of ligands (see Scheme 17 in 2.1.1.2). These include the reactions of 31a-b 

with CO or benzene. The reactions with an excess CO in diethyl ether at room 

temperature under a dinitrogen atmosphere, yield the monomeric species 

[FeI(Lnacnac)(CO)3] (32a-b) via displacement of the dinitrogen ligand (Scheme 39).

The reaction of 31a with two equivalents of benzene gives the monomeric 

benzene capped complex [FeI(Menacnac)(r|6-C6H6)] (34g) in which the benzene co

ordinates to the iron centres after displacing the dinitrogen ligand (Scheme 39).[52,53]

R Ar

excess CO

RArAr

N--N
v

Fe— N = N ^ ^ F e >;
/y

-N

Ar Ar R

31

R = Me (a) or Bu* (b)
Ar = 2,6-diisopropylphenyl

Scheme 39 Reaction of 31a-b with CO and C ^

2 Fe(CO),

-N

Ar

Ar

—N
2 Fe

-N
34gAr

An attempt was made by us, using the bulky amidinate ligand Piso' (3)[75] to 

prepare analogues of these iron(I) p-diketiminate complexes. To this end, the 

precursor complex [Fen(K2-N,N’-Piso)Br]2 (83) was readily prepared in good yield by
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Bu*

KN-

treating FeBr2 with one equivalent of K[Piso] (3K) in THF at low temperature 

yielding 77% of complex 83 after recrystallising form hexane (Scheme 40).

Ar Ar
I I

N N
2FeBr2 \  / rV /  'V  .

------------------^ Bu*-<c Fef Fe' ,^-Bu*\ /  \ /
N N

Ar = 2,6-diisopropylphenyl | |
Ar Ar Ar

3K 83
Scheme 40 Preparation of the amidinato iron(II) halide complex 83

This differs from the closely related, but less hindered, heteroleptic iron(II) 

amidinate complex, [Feu{(ArN)2CPh}Cl2Li(THF)3] (84),[113] which readily 

redistributes in toluene at room temperature to give the homoleptic complex 

[FeII{(ArN)2CPh}2] (85) (Scheme 41).

Ar Ar Ar Ar
I I I IN N N N

/*’ 2 FeCl2 / /  toluene /' 'K

/ V  Ph_% / \  ./c_Ph
^ N Li(THF)3 ^ ^
Ar Ar = 2,6-diisopropylphenyl Ar ^  Ar ^  Ar

Scheme 41 Preparation of the amidinato iron(II) halide complex 84 and the homoleptic complex 85

An X-ray crystallographic analysis of 83 revealed it to be a bromide bridged 

dimer with iron centres co-ordinated by delocalized Piso' ligands (Figure 8). The 

metal centres have differing geometries that both lie between square planar and 

tetrahedral. It is of note that the complex is thermally stable in the solid state and in 

solutions of non-co-ordinating solvents.
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Figure 8 Molecular structure of 83 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): Br(l)-Fe(2) 2.4742(11), Br(l)-Fe(l) 

2.4809(11), Fe(l)-N(l) 2.031(5), Fe(l)-Br(2) 2.4809(11), Fe(2)-N(2) 2.025(5), N(l)- 

C(l) 1.344(7), N(2)-C(18) 1.341(7), Fe(2)-Br(l)-Fe(l) 87.25(4), N(3)-Fe(l)-N(l) 

65.5(3), N(3)-Fe(l)-Br(l) 158.89(15), N(l)-Fe(l)-Br(l) 103.25(14), Br(l)-Fe(l)- 

Br(2) 92.59(5), N(4)-Fe(2)-N(2) 65.4(3), N(2)-Fe(2)-Br(2) 148.36(15), N(2)-Fe(2)- 

Br(l) 107.95(15), Br(2)-Fe(2)-Br( 1) 92.91(5), N(l)-C(l)-N(3) 109.7(7), N(4)-C(18)- 

N(2) 109.3(7).

Little useful information could be obtained from the ]H NMR spectra of the 

paramagnetic complex, 83. Its solution magnetic moment (5.4 /^ ) in benzene-^ is 

consistent with the magnetic moment (5.5 /iB) proposed for the monomeric complex 

[Fen(Bunacnac)(p-Cl)] (30b), and supports the assumption of an high spin iron(II) 

complex with a S = 2 ground stated114] The magnetic moment of the dimeric complex 

[Fen(Menacnac)2 (p-Cl) ] 2  (30a) has not been determined due to its insolubility in non 

coordinating solvents.[114]

The solution state thermal stability of 8 6  allowed investigation of its
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reduction with magnesium metal in toluene/THF or THF under a dinitrogen 

atmosphere. This afforded the dnitrogen bridged dimeric iron(I) complex, 

[Fe!(N,arene-Piso)(p-N)]2  (86), in moderate yield (71%), after crystallization from 

hexane. Alternatively, when the reduction was carried out in toluene/THF under an

1 9  f\atmosphere of argon, the monomeric toluene capped complex, [Fe ( k  -N,N'-Piso)(rj - 

C7H8)] (87), was formed in moderate yield (67%), after crystallization from hexane 

(Scheme 42).

Ar

Pr*

Mg, toluene, N2

Bu -\<

Ar

N.

N
I

Ar

Ar
I

N
Br.

/Fe' Fe'v >)—Bu*
b /

83
N
I

Ar

-MgBr2

Mg, toluene, Ar

-MgBr2

Nw
N iPr Fe—N = N —Fe iPr N

,t^N

Bu‘

toluene, N2 
slowly

I- /  UAr = 2,6-diisopropylphenyl

Scheme 42 Reduction of 83 with Mg under dinitrogen or a argon atmospheres

Although the similarities between [{FeI(Menacnac)}2(rj6-C6H6)] (34g) and 

[FeI(K2-N,N-Piso)(r|6-C7H8)] (87) are obvious, it is interesting to note that 34g is 

formed by the irreversible displacement of neutral dinitrogen from 

[FeI(Menacnac)2(p-N)]2 (31a) upon its treatment with benzene.[52] This occurs despite 

the significant Fe-N multiple bond character implied by marked reduction of the 

bridging dinitrogen ligand of 31a. Conversely, treatment of toluene solutions of 87 

with dinitrogen slowly led to the displacement of its toluene ligand and the formation 

of [FeI(N,arene-Piso)(p-N)]2 (86), despite the fact that the degree of dinitrogen 

reduction (and concomitant Fe-N multiple bond character) is much less pronounced
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than for the p-diketiminate analogues (vide infra). This displacement is irreversible, 

as evidenced by the fact that 86 can be recrystallized intact from toluene under an 

argon atmosphere. The differences in the reactivity of 31a and 86 towards arene 

solvents most likely result from the ability of the Piso' ligand (3) to vary its co

ordination mode between N,Nf- and N,arene-chelating. In the case of 86, this 

presumably leads to its Fe(I) centres being more electronically satisfied than those of 

31a.

The molecular structure of [FeI(N,arene-Piso)(p-N)] 2 (86) and [FeI(K2-N,N'- 

Piso)(r|6-C7H8)] (87) was determined by X-ray crystallography and are displayed in 

Figure 9 and Figure 10. The structure of 87 is closely related to that of 

[{FeI(Menacnac)}2(rj6-C6H6)] (34g) in that its delocalized amidinate ligand co

ordinates an iron(I) centre in an N,N'-chelating fashion. The distance from the iron 

centre to the centroid of the r|6-co-ordinated toluene ligand in 87 (1.564 A) is 

markedly shorter than the equivalent distance in 34g (1.63 A).[4, 81] A reasonable 

explanation for this observation derives from the smaller cone angle of the Piso’ 

ligand (vs. nacnac ) which leads to a lesser steric interaction with the rj6-arene ligand. 

In addition, toluene might be expected to be a better donor towards Fe(I) than the 

less electron rich benzene ligand in 34g.
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F e Z .

N4
N3

N2

N1

Figure 9 Molecular structure of 86 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): Fe(l)-N(3) 1.834(3), Fe(l)-N(2) 1.945(3), 

N(3)-N(4) 1.124(6), N(l)-C(l) 1.307(5), N(2)-C(l) 1.373(5), N(l)-C(6 ) 1.407(5), 

Fe(l)-centroid 1.560(3), N(3)-Fe(l)-N(2) 100.30(14), N(4)-N(3)-Fe(l) 176.9(4), 

C(l)-N(2)-Fe(l) 114.4(2), N(l)-C(l)-N(2) 120.0(3), C(l)-N(l)-C(6 ) 111.4(3).

N2

F e1

N1

Figure 10 Molecular structure of 87 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): Fe(l)-N(2) 1.969(2), Fe(l)-N(l) 

1.9724(18), N(l)-C(l) 1.339(3), N(2)-C(l) 1.344(3), Fe(l)-centroid 1.564(3), N(2> 

Fe(l)-N(l) 66.57(8), N(l)-C(l)-N(2) 107.4(2).
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The Raman spectrum of complex [{FeI(N,arene-Piso)}2(p-N2)] (86) exhibits 

a strong N-N stretching band centered at 2005 cm'1 (cf. N2 2331 cm'1), which is 

consistent with the proposed minimal dinitrogen activation in that complex. In 

comparison, the stretching bands of the low co-ordinate, dinitrogen activated 

complexes, 31a, appear at significantly lower frequencies (R = Me: 1810 cm'1; R = 

Bul: 1778 cm'1)^50,52] Little useful information could be obtained from the NMR 

spectra of the paramagnetic complexes, 86 and [Fe1(K2-N,N'-Piso)(r|6-C7H8)] (87), 

though the solution magnetic moment (Evan’s method) of each complex was 

determined. The value measured for 87 (2.3 jjq) is similar to that for 34g (2.5 //b),[50] 

and both are indicative of low spin Fe(I) systems (S = 1/2 ground state).

The Evans method measurements for the iron(I) complex 86 in benzene-^ 

(2.6 /iB per dimer) suggests the compound possesses two low-spin (S = 1/2) iron(I) 

centres, though the nature of any interaction between these centres is yet to be 

determined. The Evans method result is in agreement with the variable temperature 

solid state magnetic data found in the SQUID experiment. In Figure 11 the /icff vs. 

temperature data are given and these were reproducible from sample to sample. The 

fieff values decrease gradually from 2.5 /zeff at 300 K (per dimer) to -0.9 then 

plateaus down to 10 K, before decreasing more quickly to reach 0.6 //eff at 2 K. The 

behaviour below 30 K is due to monomer impurity, common in dinuclear magnetic 

susceptibility studies, which gives rise to the Curie-like increase in the molar 

susceptibility values below 30 K. The 30 -  300 K data are typical of what is expected 

for weak/medium antiferromagnetic coupling with a maximum in Xm at -80 K. The 

data fitted very well, by Dr Boujemaa Moubaraki, to a Heisenberg model -2 /S1.S2 

using S\ = Sj = V2 for a Fe(I) low-spin d7 (Figure 11).
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Figure 11 //eff v. T a n d /m v. T plot of [{FeI(N,arene-Piso)}2(p-N2)] (86)

In contrast, the low co-ordinate iron complexes, 31a-b, have much higher 

solution magnetic moments (R = Me: 7.9 R = Bul: 8.4 //b[4, 77]). These have been 

assigned as arising from the ferromagnetic coupling of two high-spin Fe(I) centres 

(each S = 3/2) leading to an S' = 3 ground stated501 An alternative assignment also 

proposes an S = 3 ground state, but resulting from strong anti-ferromagnetic coupling 

of two high-spin Fe(II) centres (SA = Sb = 2; Sab = 4) with a bridging triplet N22' (Sc 

= 1) ligand.[115]

There are significant differences between the structures of [{Fe^jarene- 

Piso)}2(p-N2)] (86) and [FeI(K2-N,N'-Piso)('n6-C7H8)] (87). Most notably, the Piso' 

ligands in the latter act as localized imino-amides which chelate the iron(I) centres in 

an N,arene-fashion. A similar co-ordination mode has been seen for this ligand in its 

monomeric indium(I) and thallium(I) complexes (Figure 12).[96̂
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PrK

Ar
Bu / R = In or T1H— N

> Bu* Ar = 2,6-diisopropviphenyl

■N

Figure 12 Indium(I) and thallium(I) complexes of the Piso' ligand

Despite the differences in the structures, the Fe-r|6-arene centroid 87 and Fe- 

N(amido) distances are similar in both complexes. The co-ordinative flexibility of 

Piso" leads to the iron centres of 86 having a higher co-ordination number (C.N. = 5) 

than they would if the ligand were acting in an N,N'-chelating mode. In contrast, p~ 

diketiminates almost invariably act as N,N'-chelating ligands,1[9, 41, 46, 49,52,54,58, 61] 

which in the case of 31a, results in 3-co-ordinate iron centre. It has been proposed 

that there is an inverse correlation between the metal co-ordination number and 

degree of dinitrogen ligand reduction (i.e. Fe—►Nfa*) back-bonding) in Fe(N2) 

complexes.^521 In line with this proposal is the significant dinitrogen reduction 

observed for 3-co-ordinate 31a (R = Me: N-N distance 1.18 A mean; R = Bu1: N-N 

distance 1.182(5) A)[50,52] and the apparently minimal reduction of the dinitrogen 

ligand of 5-co-ordinate 86 (N-N distance 1.124(6) A). These values can be

[Fe{N(SiMe3N/Bu)(C2H4Pz'Pr2)2}(B~N)]2 (82) which are 4-co-ordinate and display 

intermediate degrees of dinitrogen reduction (N-N distances of 1.138(6) A and 

1.166(3) A respectively).

There are parallels between the reactivities of 31a and 86, in that their 

treatment with excess CO leads to the structurally similar square pyramidal

compared to [Fe{PhB(CH2PPr12)3}(|Li-N)]2 (81) and
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complexes 32a,[52] and [FeI(K2-N,N'-Priso)(CO)3] (88) respectively, via displacement 

of the dinitrogen ligand. In addition, the toluene ligand of 87 is readily displaced by 

CO to give 88 (Scheme 43).

Scheme 43 Reaction of 86 and 87 with CO

Similarities can be found between complexes 31a and 87 as both are co

ordinated to three CO ligands. However, the reaction of [FeI(Bunacnac)2(p-N) ] 2 (31b) 

with excess CO gives a mixture of the tricarbonyl and the dicarbonyl complexes in 

which the dicarbonyl complex differs by the loss of the axial CO ligand. The 

dicarbonyl complex could not be separated to date and therefore no specific data 

have been determined for it.

The molecular structure of 88 was determined by X-ray crystallography and 

the molecular structure is depicted Figure 13. Compound 88 is closely related to that 

of [FeI(Menacnac)(CO)3] (32a) as both have been prepared from the nitrogen bridged 

precursors (31a and 87) respectively. The geometry around the iron centre is square 

pyramidal, where one of the carbonyl groups is in the axial position of the square 

pyramid. The bond length of the axial Fe-C bond (32a: 1.871 88: 1.842 A) is slightly 

longer than the other two Fe-C bonds (32a: 1.795, 88: 1.785 and 1.797A) as would

N iPr Fe—N =N —Fe iPr N
Ar

CO, toluene
Ar

N

Ar 88

Ar = 2,6-diisopropylphenyl
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be expected. The IR spectrum of 8 8  (2050, 1965 cm'1) and 32a (2042, 1971, 1960 

cm'1) in Nujol shown both bands in the expected carbonyl stretching region. In 

contrast to 32a, complex 8 8  shows only two bands in which one (1965 cm 1) is very 

broad, which is likely due to the overlapping of two bands

Figure 13 Molecular structure of 88 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): Fe(l)-C(32) 1.785(5), Fe(l)-C(31) 

1.797(5), Fe(l)-C(30) 1.842(5), Fe(l)-N(2) 1.975(4), Fe(l)-N(l) 1.976(4), N(l)-C(l) 

1.327(6), C(l)-N(2) 1.321(5), C(32)-Fe(l)-C(31) 93.5(2), C(32)-Fe(l)-C(30) 95.9(2), 

C(31)-Fe(l)-C(30) 93.3(2), C(32)-Fe(l)-N(2) 157.74(18), C(31)-Fe(l)-N(2)

97.95(18), C(30)-Fe(l)-N(2) 102.42(19), C(32)-Fe(l)-N(l) 97.38(18), C(31)-Fe(l)- 

N(l) 156.93(18), C(30)-Fe(l)-N(l) 105.66(19), N(2)-Fe(l)-N(l) 65.63(14), N(2)- 

C(l)-N(l) 107.9(4).

Little useful information could be obtained from the NMR spectra of this 

paramagnetic complex. The magnetic moment for complex 87 (2.4 pB) is relatively 

high compared to complex 32a[52] (2.0 /*B). However, both complexes should be seen 

as d7 low-spin complexes with an S = 1/2 ground state.
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2.3.2 Preparation and Reactivity of Cobalt(I) Amidinate and 

Guanidinate Complexes

Warren et al. published in 2004 the preparation of [Co1 {(ArNCMe)2CH} (q6- 

CyHg)] (36) as discussed in 2.1.1.2 (Scheme 44). The magnetic moment of 2.7 //b at
o

293 K in toluene-^ indicates that 36 is a cobalt® d high spin complex with two 

unpaired electrons (S = 1).[54]

xs Mg

A r

Co

A r

36

toluene

Me Ar = 2,6-dimethylphenyl
35

Scheme 44 Preparation of the cobalt(I) rj6-toluene capped complex 36

It is of note that the bulky amidinate, Piso' and guanidinate, Giso' (4), Priso' 

(5), ligand systems should have comparable abilities to stabilize cobalt in the +1 

oxidation state. As amidinate and guanidinate cobalt® complexes are unknown in 

the literature to date and the Piso' ligand (3) was successful in stabilising iron in the 

+1 oxidation state (see 2.3.1), An investigation into the ability of these ligand 

systems to stabilise cobalt in the +1 oxidation state was investigated.

Amidinato and guanidinato cobalt(II) halides are promising precursors for the 

target cobalt® complexes. The reaction of CoBr2 with one equivalent of the 

amidinate K[Piso] (3K) or the guanidinates K[Giso] (4K) and K[Priso] (5K) in THF 

at low temperature, yielded the paramagnetic cobalt(II) complexes [Con(K2-N,N’- 

Ligand)Br]2 (Ligand = Piso' (89), Giso' (90) and Priso' (91)) in moderate yields (48 -  

58%) (Scheme 45).
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Scheme 45 Preparation of complexes [{Co(K2-N,N'-Ligand)Br}2] 8 9 -9 1

The complexes 89 -  91 were assumed to be paramagnetic, with two cobalt(H) 

d7 high spin centres and six unpaired electrons (S = 3). The magnetic moment found 

for the dimeic complex 90 (3.4 //b), however, is quite low compared to the 

monomeric cobalt(II) complex 35 (3.6 nb). Therefore complex 90 could be 

considered as containing two low spin d7 cobalt(H) centers (S = 1 per dimer) with 

spin-orbit coupling leading to the higher expected /2eff value. Alternatively it could 

posses two high spin d7 cobalt(II) centres (S = 3 per dimer) that are 

antiferromagnetically coupled. Further magnetic magnetically experiments (SQUID) 

will resolve this issue.

The solution state thermal stability of 89 -  91 allowed us to investigate their 

reduction with potassium or magnesium metal in toluene, toluene/THF or 

cyclohexane under a dinitrogen atmosphere. The reduction of complexes 89 -  91 

with magnesium or potassium in toluene leads to the paramagnetic cobalt(I) q6- 

toluene capped complexes [CoI(K2-N,N'-Ligand)(q6-C7H8)] (Ligand = Piso' (92), 

Priso* (93), Giso' (94)) after crystallisation from hexane in 70 -  85% yields (Scheme 

46).

Alternatively, the reduction of 89 and 91 with potassium in cyclohexane 

gives the bridged solvent free complexes [CoI(K2-N,N’-Ligand)]2 (Ligand = Piso"
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(95), Giso' (96)) after crystallisation from cyclohexane in 52 -  57% yields (Scheme 

46).
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Scheme 46 Preparation of the cobalt(I) amidinate and guanidinate complexes 92 -  96

Complexes 92 -  94 are the analogues of complex [CoI{(ArNCMe)2CH}(r|6- 

CyHg)] (36) as all complexes show a r]6-co-ordinated toluene ligand and a trigonal 

planar cobalt centre.

The bridged co-ordination mode found in the dimeric complexes [C o(k  - 

N,N'-Ligand)]2 (95 and 96) has not been observed for transition metal p-diketiminato 

complexes. This can likely be explained by the Ar groups (Ar = 2,6- 

diisopropylphenyl) in p-diketiminato complexes enforcing N,N’-chelation of the 

metal centre in those cases.

It is of note that the reduction of complex [Fen(K2-N,N'-Piso)(p-Br)]2 (83) 

under a dinitrogen atmosphere gives the nitrogen bridged complex [Fe!(N,arene- 

Piso)(p-N)]2 (86) (see 2.3.1). However, no evidence for any dinitrogen bridged 

complexes could be found by the reduction of the cobalt(II) complexes 8 9 -9 1  under 

a dinitrogen atmosphere.
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The molecular structure of 92 -  94 was determined by X-ray crystallography 

and as there are no significant geometric differences between them, only the structure 

of complex 93 is shown in Figure 14. The trigonal planar cobalt centre is co

ordinated to a delocalised Priso' ligand and is ri6-co-ordinated to a toluene ligand. 

The distances from the cobalt centre to the centroid of the r|6-co-ordinated toluene 

ligand of 92 (1.695 A), 93 (1.662 A) and 94 (1.668 A) are markedly shorter 

compared to the distance in the analogous complex [CoI{(ArNCMe)2CH}(r|6-C7H8)] 

(36) (1.747 A). A reasonable explanation for this observation derives from the 

smaller cone angle of the amidinate and guanidinate ligands (vs. nacnac ) which leads 

to less steric interaction with the r|6-arene ligand.

N1

,N3 C1 fj C o t

N2

Figure 14 Molecular structure of 93 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°): Co(l)-N(l) 2.058(4), Co(l)-N(2) 

2.102(5), Co(l)-centroid 1.659(4), N(l)-C(8) 1.351(7), N(2)-C(8) 1.336(7), N(3)- 

C(36) 1.477(8), N(3)-C(8) 1.406(7), N(l)-Co(l)-N(2) 64.40(18), C(8)-N(l)-Co(l) 

92.9(3), C(8)-N(2)-Co(l) 91.4(3), N(2)-C(8)-N(l) 111.2(5), N(2)-C(8)-N(3) 

126.0(5), N(l)-C(8)-N(3) 122.8(5), N(3)-C(33)-C(35) 115.3(5).
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The molecular structure of 95 -  96 was determined by X-ray crystallography 

and as there are no significant geometric differences between them, only the structure 

of complex 96 is shown in Figure 15. The cobalt centres are trigonal planar with 

bond angles of N-Co-Co 91.33° and N-Co-N 175.49°. The Co-N bonds (1.923, 1.913 

A) are significantly shorter then those in the chelated complexes 92 (2.057, 2.089 A), 

93 (2.058, 2 . 1 0 2  A) and 94 (2.086, 2.046 A). The Co-Co distance in 96 (2.135 A) is 

the shortest yet reported.

N3

Figure 15 Molecular structure of 96 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°): Co(l)-N(l) 1.923(2), Co(l)-N(4) 1.929(2), 

Co(l)-Co(2) 2.1345(7), Co(2)-N(5) 1.913(2), Co(2)-N(2) 1.915(2), N(l)-C(l) 

1.359(3), N(2)-C(l) 1.352(3), N(l)-Co(l)-N(4) 176.55(8), N(l)-Co(l)-Co(2) 

91.33(6), N(4)-Co( 1 )-Co(2) 92.01(6), N(5)-Co(2)-N(2) 175.49(9), N(2)-C(l)-N(l) 

113.7(2), N(2)-C(l)-N(3) 123.7(2), N(l)-C(l)-N(3) 122.5(2),

The solution magnetic moment (Evan’s method) of complexes [Co^^-NjN'- 

PrisoXr^-CyHg)] (93) and [CoI(K2 -N,N'-Priso)(r(6-C7 H8)] (94) were determined. The 

values measured for 93 (3.17 //B) and 94 (3.09 /iB) in benzene-cfe are relatively high
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compared to that found in complex 36 (2.7 //B). The variable temperature solid state 

magnetic experiment (SQUID), which was carried out for complex 94, supports 

those results (see Figure 16). The //^values remain essentially constant at ~3.4 /iB 

between 300 and 65 K, which is higher compared to the solution magnetic moment 

found for 93 (3.17 juB) and 94 (3.09 juB). The % m 1 v s  T plot obeyed close to Curie 

behaviour, / m = C/(T -  6), with the Weiss constant 6 being -0.08 K and the Curie 

constant, 0.13 cm3 mol'1 K, indicative of paramagnetic behaviour arising from 

thermal population of an isolated S = 1 state with two unpaired electrons. The rapid 

decrease below 50 K is indicative of second order spin-orbit coupling in this 

complex. Therefore, complexes 92 -  94 should be seen as cobalt(I) d8 high spin 

complexes with two unpaired electrons (S = 1) per cobalt(I) centre with some second 

order spin-orbit coupling. Little useful information could be obtained from the NMR 

spectra of the paramagnetic complexes, 92 -  94.
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Figure 16 ( i^ v . T and/~7mv. T plot of [CoI(K2-N,N'-Priso)(n6-C7H8)] (94)

The solution magnetic moment (Evan’s method) of complexes [Co!(k2-N,N'- 

Piso)]2 (95) and [CoI(K2-N,N'-Giso)]2  (96) were determined. The observed magnetic 

moments found for [Co^K^-NjN'-Piso^ (95), (5.35 jjlb  in cyclohexane-d n  per dimer) 

and [CoI(K2-N,N,-Giso)]2  (96), (5.10 fiB in benzene-^ per dimer) are consistent with 

four unpaired electrons with little interaction between the cobalt centres. The
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variable temperature solid state magnetic experiment (SQUID), which was carried 

out for complex 95, supports those results. The effective magnetic moment, nejj of 

complex 95, as a function of temperature, is shown in Figure 17 as is the 

corresponding / m_1 vs. temperature plot. The /uejf values remain essentially constant at 

5.25 fiB at 300 K, decreasing a little down to 5.15 jub at 50 K, then rapidly to reach 

4.15 hb at 2 K. The rapid decrease below 50 K is indicative of either zero field 

splitting of the spin ground state, that arises from second order spin-orbit coupling 

effects, or weak dimer-dimer antiferromagnetic coupling effects, although the lack of 

any such pathways from the packing diagram would suggest that the latter is not
o

likely. Therefore, the complexes 95 and 96 should be seen as high spin cobalt d 

centres with four unpaired electrons per dimer (S = 2).

100

C = 3 49  
« =  -3 .07

8 0

250 300100 150 200

T i K

6 0

5 .5

4 0

30
25 0 3 0 050 100 2000 150

Figure 17 / / e f r  v. T and y[lm v. T plots of [Co(K2-N,N'-Piso)2] (95)

The very short Co-Co bond distance of complex 95 (2.1345 A) however, let 

us originally assume a Co-Co interaction. The Raman spectrum of complex 95 gave 

credence to this as a band was observed at 277 cm'1 (cf. Co2(CO)g = 229 cm'1, 

Co4(CO)i2 = 228 cm'1).^16, 117] It is worth mentioning that the Co-Co distances 

observed in complexes 95 (2.1404 A) and 96 (2.135 A) are to date the shortest found 

in the literature. Little useful information could be obtained from the NMR spectra of 

the paramagnetic complexes, 95 -  96.
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As discussed in 2.1.1.2, [CoI{(ArNCMe)2CH}(rj6-C7H8)] (36) was reacted 

with 1-adamanthyl-azide, giving the monomeric complex 

[Cora{(ArNCMe)2CH}(NAd)] (39). (Scheme 47).I54]

Different products were found by reacting TMS-azide with 

[Fen(Bunacnac)(H)]2 (97). That is, the reaction of two equivalents of TMS-azide with 

97 in diethylether gave the paramagnetic dimeric complex [Fen(Bunacnac)(p-N-N’- 

Ns)]2 (98), in which two [Fen(Bunacnac)] fragments are bridged by two p-N-N’-N3 

ligands (jueff= 4.1 //b) (Scheme 47).[118]

2 N=N=NSiMe

Ar = 2,6-dimethylphenyl 
Ar' = 3,5-Me2C6H3

Scheme 47 Preparation of the azide complexes 39 and 98

In contrast, the reaction of complexes [CoI(K2-N,N'-Priso)(ri6-C7H8)] (93) and 

[CoI(K2-N,N'-Giso)(ri6-C7H8)] (94) with TMS-azide and 1-adamantyl-azide for 

purposes of comparison were carried out. The reaction of two equivalents of TMS- 

azide with 93 in hexane gives the J1-N-N3 dimeric complex [Con(K2-N,N’-Piso)(p-N- 

N3)]2 (99), bridged by two azide ligands, by loss of the TMS groups (Scheme 48).

The reaction of one equivalent of 1-adamantyl-azide with 94 in hexane gives 

the monomeric complex [Com(K2-N,N'-Piso)(NAd)] (100) in which N-adamantyl 

fragment coordinates the cobalt centre after liberation of dinitrogen (Scheme 48).
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hexane ,Co=NAd
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Scheme 48 Reaction of 93 or 94 with TMS- and 1-adamantyl-Azide

No p-diketiminato analogues of the p-N-N3 bridged dimeric complex 

[Con(K2-N,N’-Piso)(p-N-N3)]2 (99) can be found in the literature to date. The closest 

similarity can be seen with the dimeric complex [Fen(Bunacnac)(p-N-N ’ -N3)] 2 (98), 

showing a p-N-N’-N3 (end-to-end) coordination mode. In both cases the dimerization 

has taken place by the reaction of the toluene capped complexes, 36 or 93, with two 

equivalents of TMS-azide, via loss of TMS groups. Of note is 

bis(pentafluorophenyl)boron azide[119] with an analogous P-N-N3 bridge, which was 

prepared in 2 0 0 0 .

A p-diketiminato complex similar to 100 is [Com{(ArNCMe)2CH}(NAd)] 

(39). In both complexes (39 and 100), the metal centres are coordinated to an N- 

adamantyl fragment after liberation of dinitrogen. Due to steric reasons, dimerization 

has not taken place in both complexes.

The molecular structure of complex [Con(K2-N,N'-Piso)(p-N-N3)]2  (99) was 

determined by X-ray crystallography and is shown in Figure 18. Its cobalt centres 

have tetrahedral geometries. The Co-N bond distances in 99 (1.993, 1.994 A) are
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similar to those found in bis(pentafluorophenyl)boron azide (1.241, 1.113 A). As 

complex 99 is very temperature sensitive above -30 °C in solution, no other data 

have been recorded for it.

Figure 18 Molecular structure of 99 (hydrogen atoms omitted for clarity; ellipsoids shown at the 25% 

probability level).

Selected bond lengths (A) and angles (°): Co(l)-N(2) 1.991(3), Co(l)-N(l) 1.994(3), 

Co(l)-N(10) 2.010(3), N(4)-Co(2) 2.007(3), N(4)-N(5) 1.217(4), N(5)-N(6) 1.153(4), 

N(2)-Co(l)-N(l) 67.25(11), N(2)-Co(l)-N(10) 139.05(12), N(l)-Co(l)-N(10)

125.20(11), N(2)-Co(l)-N(4) 121.36(11), (l)-Co(l)-N(4) 133.62(11), N(10)-Co(l)- 

N(4) 80.27(12).

The molecular structure of complex [Con(K2 -N,N'-Piso)(NAd)] (100) was determined 

by X-ray crystallography and is shown in Figure 19. Complex 100 is analogous to 

[Com{(ArNCMe)2CH}(NAd)] (39). The cobalt centres in 100 and 39 are distorted 

trigonal planar. The Co-N bond length in 1 0 0  (1.621 A) is slightly shorter compared 

to that in complex 39 (1.624 A) and the Co-N-C angle (172.1°) is closer to 180° than 

in 39 (161.5°). As complex 100 is very temperature unstable, above -30 °C in
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solution, the only characterising data for this coumpound is its molecular structure 

determind by X-ray crystallography.

Figure 19 Molecular structure of 100 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Co(l)-N(4) 1.621(3), Co(l)-N(l) 1.942(3), 

Co(l)-N(2) 1.947(3), N(4)-C(38) 1.434(5), N(4)-Co(l)-N(l) 145.33(15), N(4)- 

Co(l)-N(2) 144.69(16), N(l)-Co(l)-N(2) 68.52(12), C(38)-N(4)-Co(l) 172.1(3).

The reaction of an excess of CO with [CoI(K2 -N,N'-Piso) ] 2  (96) in toluene at 

90 °C gives complex 101 (Scheme 49).

Ar Ar Ar
I I  | .co

/   Co N /

Bu* ^  ~— Bu*   — ---------► Bu'— r°~"CO
hexane

N Co N N- r CO

I I  I S s
Ar 96  Ar Ar = 2,6-diisopropyIphenyI Ar O 101

Schem e 49 Reaction of [Co(K2-N,N'-Piso)2] (96) with CO

In contrast to complex 101, no analogous P-diketiminato complex can be 

found in the literature. Complex 101 is a diamagnetic 18 electron species in which
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three CO ligands are co-ordinated to the cobalt centre and one CO has inserted into a 

N-Co bond of the precursor 96.

Recently Power et al. published the preparation of complex 103,[120] by 

reacting 102 with CO giving a similar complex, in which one carbonyl ligand is 

bridged between the cobalt centre and the ipso carbon of the ligand system (Scheme

50).

CoPr\

103

Co

102

Scheme 50 Preparation of complex 103

The molecular structure of 101 was determined by X-ray crystallography and 

its molecular structure is displayed in Figure 20. The geometry around the metal 

centre is square pyramidal with three CO ligands co-ordinated to the cobalt centre 

and one bridging between the nitrogen of the ligand and the cobalt centre. The Co-C 

bond lengths to the terminal CO ligands in 101 (1.773, 1.788 and 1.823 A) are 

similar to that found in 103 (1.739 A). The significantly longer Co-C bond length to 

the bridged CO fragment in 101 (1.909 A) compares well with that in 103 (1.926 A). 

The IR spectrum of 101 in Nujol shows three bands (2064, 2004 and 1970 cm-1) in 

the carbonyl region. Its NMR spectra show all expected resonances in the expected 

regions, except the CO resonances in the ^C^H} NMR spectrum, which are not 

observed.
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Figure 20 Molecular structure of 101 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°); Co(l)-C(33) 1.7733(16), Co(l)-C(31) 

1.7885(16), Co(l)-C(32) 1.8233(16), Co(l)-C(30) 1.9095(14), Co(l)-N(l)

1.9790(13), 0(2)-C(31) 1.1364(18), N(2)-C(30) 1.4296(18), 0(3)-C(32) 1.1318(19), 

0(4)-C(33) 1.1411(19), C(33)-Co(l)-C(31) 121.73(7), C(33)-Co(l)-C(32) 91.88(7), 

C(3l)-Co(l)-C(32) 97.04(7), C(33)-Co(l)-C(30) 85.16(6), C(31)-Co(l)-C(30)

87.21(6), C(32)-Co(l)-C(30) 175.67(6), C(33)-Co(l)-N(l) 121.74(6), C(31)-Co(l> 

N(l) 113.94(6), C(32)-Co(l)-N(l) 97.43(6), C(30)-Co(l)-N(l) 81.52(5), O(l)-C(30)- 

N(2) 119.50(12), O(l)-C(30)-Co(l) 128.50(11), N(2)-C(30)-Co(l) 111.98(9), 0(2)- 

C(31)-Co(l) 178.28(14), 0(3)-C(32)-Co(l) 174.96(15), 0(4)-C(33)-Co(l)

177.84(15).
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2.3.3 Preparation and Reactivity of Nickel(I) Guanidinate Complexes

The P-diketiminato nickel(II) complexes [Nin(Menacnac)(Br)2Li(THF)2] 

(41),*-41̂ prepared by Stephan et al. in 2005, and [Nin(Menacnac)(Cl)2Li(THF)2] 

(104),[1211 prepared by Holland et al. in 2003 (Figure 21), have been shown to be 

good precursors to nickel(I) complexes.[122]

41 Ar = 2,6-diisopropylphenyl AU4

Figure 21 Menacnac nickel(II) halide complexes [Nin(Menacnac)(X)2Li(THF)2] 41 and 104

The reduction of [Nin(Menacnac)(Br)2Li(THF)2] (41) with Na/K alloy in 

toluene leads to the diamagnetic toluene bridged nickel(II) complex 

[{NiI(Menacnac)}2(rj3:rj3-C7H8)] (42) as discussed in 2.1.1.2 (Scheme 51).[41]

Complex 41 was also reacted with one equivalent of LiCp in THF at room 

temperature, yielding the paramagnetic monomeric Cp capped product 

[NiIj(Menacnac)(r|5-Cp)] (105). Complex 105 has been proposed to be a nickel(II) d8 

high spin system with a magnetic moment of 2.05 jlib (Scheme 51).[41,123]

Similarly the reaction of 41 with one equivalent of Li-indenyl in toluene leads 

to the r|3-indenyl capped complex [Nin(Mcnacnac)(ri3-ind)] (106). In contrast to 

complex 105, complex 106 is a diamagnetic nickel(II) d8 low spin complex (Scheme

51).[41’123]
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t h f

N a/K LiCp Li-indenyl

2  ((
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Scheme 51 Preparation of nickel(II) complexes 42,105 and 106

Ar
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Ar

106

The reaction of two equivalents of [Nin(Menacnac)(r|3-Cp)] (105) with 

[{Nin(Menacnac)}2(rj3:ri3-C7H8)] (42) in toluene led to the Cp bridged complex 

[Ni(Menacnac)(r|2-Cp)]2 (107). Complex 107 is a mixed-valence nickel(II)/nickel(I) 

complex with a magnetic moment of 2.74 //B (Scheme 52).[123]

105

toluene

Ar

—N
Ar,

N—

r— Ni
Ar

Ar

107

Scheme 52 Preparation of [Ni(Menacnac)(r|"!-Cp)]2  (107)

For sake of comparison, two equivalents of NiBr2 were reacted with Li[Priso] 

(3K) and Li [Giso] (4K) in THF at low temperature, yielding the diamagnetic 

nickel(II) d8 low spin halide complexes, [Nin(Ligand)(p-Br)]2 (Ligand = Priso' (108) 

or Giso' (109)), after crystallisation from hexane in moderate yield (108 = 63%, 109 

= 79%) (Scheme 53). It is worth mentioning that an attempt was made to prepare an 

analogous nickel(H) Piso' complex via this route. However, this reaction gave only a 

intractable mixtures of products.
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2 NiBr2

Li [Giso]Li [Priso]

10g Ar = 2,6-diisopropylphenyl jq9

Scheme 53 Preparation of the guanidinate nickel(II) halide complexes 108 and 109

In contrast to the dimeric bromide bridged complexes, 108 and 109, the p- 

diketiminato complexes, 41 and 104, are monomeric with two bromides bridged by a 

Li(THF)2 fragment. However, all complexes have square planar nickel centres and
Q

show diamagnetic behaviour due to their d low spin configurations.

The molecular structure of 108 was determined by X-ray crystallography and 

its molecular structure is displayed in Figure 22. The structure reveals a bromide 

bridged dimer, in which the nickel(II) centres are co-ordinated to two delocalised 

Priso' ligands, giving nickel centres with square planar geometries. The NMR spectra 

of the complex are consistent with its solid state structure.
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.N il

Figure 22 Molecular structure of 108 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Br(l)-Ni(2) 2.3373(13), Br(l)-Ni(l) 

2.3429(10), Ni(l)-N(2) 1.883(4), Ni(l)-N(l) 1.903(4), Ni(2)-Br(l)-Ni(l) 90.75(4), 

N(2)-Ni(l)-N(l) 69.74(18), N(2)-Ni(l)-Br(2) 170.78(14), N(l)-Ni(l)-Br(2)

101.12(13), N(2)-Ni(l)-Br(l) 99.90(14), N(l)-Ni(l)-Br(l) 169.63(13), Br(2)-Ni(l)- 

Br(l) 89.25(4).

The solution state thermal stability of 108 and 109 allowed us to investigate 

their reduction with potassium metal in toluene, benzene or cyclohexane under a 

dinitrogen atmosphere. The reduction of [Nin(K2 -N,N'-Priso)(p-Br) ] 2  108 with excess 

potassium in toluene or benzene at room temperature yields the diamagnetic toluene 

or benzene bridged complexes [NiII(K2 -N,N,-Priso)2 (ri3 :r|3 -solvent)] (solvent = C7H8

(1 1 0 ) or C6 H6 (111)) after crystallisation from hexane in 72% and 45% yields 

respectively (Scheme 54).

As the solvent free cobalt(I) dimers [CoI(K2 -N,N,-Ligand) ] 2  (Ligand = Piso' 

(95), Giso' (96) were successfully prepared (see 2.3.2) and the thermally unstable 

complex [NiI{CPh(NSiMe3 )2 } ] 2  (79) is known in the literature (see 2.1.2.2), attempts 

were made to reduce 108 with excess potassium in cyclohexane in order to prepare
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the solvent free analogue. These reductions yielded a mixture of two main products, 

the dimeric N,arene-co-ordinated complex, [NiI(N,arene-Priso)]2 (1 1 2 ), and the 

dimeric complex [NiI(K2-N,N'-Priso)]2  (113), which were observed by ]H NMR 

spectroscopy in solution (Scheme 54). The ratio of these complexes in solution 

differs and there were difficulties in separating them via crystallisation from hexane, 

due to their similar solubilities. It is of note that complex 113 is the analogue of the 

thermally unstable complex pMiI{CPh(NSiMe3)2}]2 (79)[91] (see 2.1.2.2).

IT 9It is worth mentioning that attempts to reduce the complex [Ni ( k  -N,N’- 

Giso)(p-Br)]2  (109) with excess potassium in a variety of solvents (e.g. toluene, 

benzene and cyclohexane) or with magnesium in toluene or THF, under atmospheres 

of either argon or dinitrogen gave only intractable mixtures of products.

Ar ArI I
. N N

,B r  /  ^  /Pr1
N Ar -  2,6-diisopropylpbcnyl

PH V /  Br \  ' /  Pr*
N NI I
Ar 108 Ar

cydotacxane benzene

Ar
Ar

; c - nk—NI k-Ni

N-C' n - c :

Ar
Ar

111110

Ar ArI I
N Ni N

-Ni Ni
N------Ni— N -iPrAr

Ar

113 112

Scheme 54 Reduction of [Ni(Priso)(|i-Br)]2 (108)

Nickel(I) complexes are expected to be paramagnetic due to their d9 electron 

configuration. However, the complexes 110 and 111 showed diamagnetic behaviour 

in their NMR spectra, in which all expected resonances were found. Therefore, 

complexes 110 and 111 should be described as containing two nickel(II) d8 low spin
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centres, bridged by a doubly reduced arene fragment in which electron transfer from 

nickel to toluene or benzene has taken place. This affords a compound in which the 

two nickel(II) centres are bridged by a dianionic toluene or benzene ligand.141,56]

The molecular structure of 110 and 111 was determined by X-ray 

crystallography and their molecular structures are displayed in Figure 23 and Figure 

24. The nickel centres in 110 and 111 are analogous to those in 

[{Nin(Menacnac)}2 (r|3:r|3-C7H8)] (42), as they are co-ordinated to a toluene or 

benzene molecule in an r|3:r|3 manner. The distances from the nickel centre to the 

centroid of the rj3: r|3-co-ordinated ligand of 110 (2.027 A) and 111 (2.035 A) are 

significantly shorter than those found in [{Nin(Menacnac)}2(ri3:ri3-C7H8)] (42) (2.173 

A). A reasonable explanation for this observation derives from the smaller cone 

angle of the Piso' ligand (vs. nacnac") which leads to a lesser steric interaction with 

the r|6-arene ligand.

Figure 23 Molecular structure of 110 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(l)-N(l) 1.9395(16), Ni(l)-N(2) 

1.9591(17), Ni(l)-centroid 2.027(2), C(33)-Ni(l)-N(l) 142.55(8), C(33)-Ni(l)-N(2) 

140.97(8), N(l)-Ni(l)-N(2) 68.05(7), C(33)-Ni(l)-C(34) 41.11(9), N(l)-Ni(l)-C(34) 

111.68(8), N(2)-Ni(l)-C(34) 176.46(8), C(33)-Ni(l)-C(32) 40.72(9), N(l)-Ni(l)- 

C(32) 176.19(8), N(2)-Ni(l)-C(32) 110.22(8), C(34)-Ni(l)-C(32) 69.82(8).
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Figure 24 Molecular structure of 111 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(l)-N(2) 1.9436(15), Ni(l)-N(l) 

1.9488(13), Ni(l)-centroid 2.035(17), C(33)-Ni(l)-N(2) 140.72(7), C(33)-Ni(l)-N(l) 

141.95(8), N(2)-Ni(l)-N(l) 68.22(6), C(33)-Ni(l)-C(34) 41.00(7), N(2)-Ni(l)-C(34) 

178.27(6), N(l)-Ni(l)-C(34) 110.36(7), C(33)-Ni(l)-C(32) 40.81(8), N(2)-Ni(l)- 

C(32) 111.70(7), N(l)-Ni(l)-C(32) 175.19(7), C(34)-Ni(l)-C(32) 69.63(7).

Interestingly the benzene bridged complex, [NiI(K2-N,N'-Priso)2 (r|3:r|3-C6H6 )] 

(111), rearranges slowly in benzene-^ solution to the N,arene-co-ordinated complex 

112 after two weeks (Scheme 55) and crystals of it were formed in the NMR tube. 

The toluene bridged complex 110 does not undergo a similar rearrangement in 

solution. The higher stability of the toluene bridged complex can be explained by the 

assumption that toluene is a better donor than the less electron rich ligand, benzene. 

The formation to the N,arene-co-ordinated complex, 112, probably occurs as the Ar 

groups (Ar = 2,6-diisopropylphenyl) are slightly more electron rich then benzene 

(Scheme 55).

After dissolving complex 112 in hexane solution and leaving the solution at 

room temperature for one month, crystals of the dimeric nickel(I) complex 113 were
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formed. It can be assumed that complex 113 is thermodynamically the most stable 

species in the absence of electron rich donors (Scheme 55).
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NI
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-Ni Ni-
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/  hexanne 
very slowly 112 Pr*
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Pr*

Scheme 55 Formation of the nickel dimer 113 from the benzene bridged nickel dimer 111 in the 

absence of electron rich donors

A similar behaviour has not been seen for p-diketiminato nickel(I) systems. 

This can likely be explained on steric grounds, as the Ar groups (Ar = 2,6- 

diisopropylphenyl) in p-diketiminato complexes enforce N,N’-chelation of the metal 

centre. A recent publication from Power et al. described the complexes 114[124] 

which disply similar metal co-ordination to that found in complex 112 (Figure 25).

Pr"
Pri

114 M * Fe or Co

Figure 25 The terphenyl metal(I) complexes 114

The molecular structure of [NiI(N,arene-Piso)]2  (112) was determined by X- 

ray crystallography and its molecular structure is displayed in Figure 26. The nickel
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centres are close to square planar with an N-Ni-C angle of 72.69° and Ni-Ni-C angle 

of 73.39°. The Ni-Ni bond length in 112 (2.6338 A) is long and can at best be 

considered an interaction. The Ni-C bond lengths (ca. 2.084 A), are similar to those 

in the arene capped complexes (110: 2.027 A, 111: 2.035 A). The Ni-Ni-N angle in 

complex 112 is 175.76° and therefore close to linear. The NMR spectra of 112 are 

consistent with the solid state structure of the complex.

Cl?

Figure 26 Molecular structure of 112 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(l)-N(l) 1.984(2), Ni(l)-C(18) 2.085(3), 

Ni(l)-C(19) 2.159(3), Ni(l)-Ni(2) 2.6338(9), C(17)-Ni(2) 2.167(3), C(16)-Ni(2) 

2.084(3), N(l)-Ni(l)-C(26) 109.65(11), N(l)-Ni(l)-C(14) 78.39(11), N(l)-Ni(l)- 

C(19) 104.66(11), C(14)-Ni(l)-C(19) 39.41(12), N(l)-Ni(l)-C(14) 97.78(12), N(l)- 

Ni(l)-Ni(2) 175.76(8), C(19)-Ni(l)-Ni(2) 73.39(9), C(14)-Ni(l)-Ni(2) 97.65(9), 

C(18)-Ni(l)-Ni(2) 86.43(9), C(18)-C(17)-Ni(2) 67.63(18), C(16)-C(17)-Ni(2) 

111.4(2), C(17)-C(18)-Ni(2) 74.08(17), C(19)-C(18)-Ni(2) 108.0(2).

The molecular structure of [NiI(K2 -N,N'-Priso) ] 2  (113) was determined by X-ray 

crystallography and the molecular structure is displayed in Figure 27. The nickel 

centres have T-shaped geometries with N-Ni-Ni angles of 90.14°. The Ni-N (1.858 

A) and the Ni-Ni (2.291 A) bond lengths are similar to those found in 

[NiI{(NSiMe3)2 CPh} ] 2 (79) (Ni-N: 1.874 and 1.876 A, Ni-Ni: 2.2938 A).
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Figure 27 Molecular structure of 113 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(l)-N(4) 1.858(4), Ni(l)-N(l) 1.873(4), 

Ni(l)-Ni(2) 2.2908(11), Ni(2)-N(5) 1.866(5), Ni(2)-N(2) 1.873(4), N(4)-Ni(l)-N(l) 

179.17(18), N(4)-Ni(l)-Ni(2) 89.24(14), N(l)-Ni(l)-Ni(2) 90.14(14), N(5)-Ni(2)- 

N(2) 179.32(18), N(5)-Ni(2)-Ni(l) 90.37(14), N(2)-Ni(2)-Ni(l) 89.32(14).

The Raman spectrum of complex 113 points towards a Ni-Ni interaction in 

that complex, as a band was observed at 266 cm’ 1 (cf. Ni-Ni 237 cm' 1 in 

Ni3 (dpa)4 (NCS)2) (dpa = di(2-pyridyl)amido)).[125] The solution magnetic moment 

(Evan’s method) of complex 113 was determined. The value measured for complex 

113 (1.93 /iB per dimer) in benzene-^ is quite low for a d9 high spin complex with 

two unpaired electrons per dimer. The variable temperature solid state magnetic 

experiment (SQUID), which was carried out for complex 113, somewhat supports 

those results. The magnetic moment, per dimer, remains constant at 2.3 juq, between 

300 and 150 K, then decreases gradually to ~1 yi/B at 5 K, and more rapidly reaching 

0.4 //B at 2 K (Figure 28). The temperature dependent behaviour suggests thermal 

population of a particular spin state above 150 K, then population of a different state
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below this temperature, possible due to antiferromagnetic coupling combined with 

zero field splitting effects, since the moments head towards zero at 0 K (i.e. S = 0 

ground state). Confirmation of antiferromagnetic coupling is provided by the 

isothermal magnetisation plots shown in Figure 28 that have very low M  values, in a 

linear type field dependence, with the 2 -  5 K lines overlapping above 3 T (30,000 

Oe). This is typical of antiferromagnetic coupling since the pairing of spins works 

against the applied field.

It is notable that the Curie-like behaviour of complex [CoI(K2-N,N,-Piso)]2

T 9(95) is not shown by complex [Ni (k-N,N'-Priso)]2  (113), despite the similar 

dinuclear structure of both complexes. He would anticipate that the antiferromagnetic 

coupling is intra-dimer rather than inter-dimer in origin.

0.053.0

2.5 0.04

2.0
0 03

s  0.02
1.0

0.01

0.000.0 _i_
300 5000020000 3000050 2000 100 150 250

H /  Oe

Figure 28 /2efr v. T and M v. N(3 plots of [Ni(K2-N,N'-Priso)2] (11.3)

The reaction of LiCp with [Nin(K2-N,N'-Ligand)(p-Br) ] 2 (Ligand = Priso' 

(108) or Giso' (109)) in THF at low temperature gave the complexes [Nin(K2-N,N'- 

Ligand)(ri5-Cp)] (Liand = Priso’ (115) or Giso' (116)) in 64 and 41% yields 

respectively after recrystallisation from hexane (Scheme 56).
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Ar = 2,6-diisopropylphenyl

R  = NPr*2 (108) or NCy2 (109) R  = NPr‘2 (115) or NCy2 (116)

Scheme 56 Preparation of [Ni(K2-N,N'-Ligand)(ii5-Cp)] (Liand = Priso' (115) or Giso' (116))

There are similarities between complexes 115, 116 and [Nin(Menacnac)(r|5- 

Cp)] (106) in that the nickel centres in all are trigonal planar. However, attempts to 

react complexes 115 or 116 with [Nin(K2-N,N'-Priso)2(r|3:ri3-C7H8)] (110) to form the 

complexes analogous to [Nin(Menacnac)(r|2-Cp)]2 (107) only gave intractable 

mixtures of products.

The molecular structure of 115 was determined by X-ray crystallography and 

the molecular structure is displayed in Figure 29. It is a monomeric complex, in 

which the nickel centre is r|5-co-ordinated to a Cp ligand with a disturbed trigonal 

planar geometry. The distance from the nickel centre to the centroid of the rj ̂ co

ordinated Cp ligand of 115 (1.758 A) is markedly shorter than the distance found in 

106 (1.865 A). A reasonable explanation for this observation derives from the 

smaller cone angle of the Priso' ligand (vs. nacnac") which leads to a lesser sterically 

interaction with the r|6-arene ligand.
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Figure 29 Molecular structure of 115 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(l)-N(l) 1.904(2), Ni(l)-N(2) 

1.909(2), Ni(l)-centroid 1.758(3), N(l)-Ni(l)-N(2) 69.01(10), N(l)-Ni(l)-C(33)

110.77(11), N(2)-Ni(l)-C(33) 177.46(12), N(l)-Ni(l)-C(35) 158.30(12), N(2)-Ni(l)- 

C(35) 116.01(12), N(l)-Ni(l)-C(34) 124.82(12), N(2)-Ni(l)-C(34) 142.80(12),

N(l)-Ni(l)-C(36) 160.71(12), N(2)-Ni(l)-C(36) 114.78(12), N(l)-Ni(l)-C(32) 

126.82(11), N(2)-Ni(l)-C(32) 139.17(12).

o
In contrast to the d high spin complex 106 (2.05 /is), the complexes 115 and 

116 have shown diamagnetic behaviour in their NMR spectra, revealing all expected 

resonances in their expected regions. Therefore, complexes 115 and 116 should be
n

seen as nickel(II) d low spin complexes.

Complex [{Nin(Menacnac)}2 (r|3:r|3-C7H8)] (42) was reacted with 2,6- 

P r2 C6H3N3 (116a) in toluene giving the dimeric bridged complex 117 by liberation 

of dinitrogen and radical coupling (Scheme 57). Complex 117 is paramagnetic with a

172



2.3.3 Results  a nd  D isc u ssio n  [Nic k e l (I) c o m pl ex es]

molecular magnetic moment of 3.6 jub in benzene-^- An analogous reaction of 42 

with 2 ,6 -Me2C6H3N3 (116b) gives diamagnetic complex 118 by the liberation of 

dinitrogen, dihydrogen and radical coupling (Scheme 57).[56]

Ar Ar Ar—N —N
Ar

N i= N Ni=N-
toluene

116 —Nr— NiAr Ar Ar

Ar

Ar’ = C6H3Pri2-2i6 (a) or C6H3Me2-2,6 (b)

Ar Ar
Ar—N —N

NI—N=
—N

ArAr
118Ar

117

Scheme 57 Reaction of 42 with arylazides

The reduction of [Nin(Menacnac)(p-Cl) ] 2 (119)[121] in diethyl ether with MeLi, 

followed by treatment with excess CO gives the nickel(I) d9 high spin complex 

[NiI(Menacnac)(CO)] (1 2 0 ) with a magnetic moment of ca. 1.2 \jlb (Scheme 58).[126]

A r Ar^

/ Clx  / N̂
Niv  Ni

C l^  \= - 
Ar Ar

MeLi, Co

119 120

Et20

Ar = 2,6-diisopropylphenyl 

Scheme 58 Reaction of [Nin(Menacnac)(p-Cl)]2 (119) with CO

For sake of comparison, the reaction of [{Nin(K2-N,N’-Priso)}2(r|3-C7H8)]

(111) with two equivalents of TMS-azide in hexane at -78 °C giving the diamagnetic 

complex [Nin(K2-N,N'-Priso)(p-N-N3)]2 (121) after crystallisation from hexane in 

53% yield (Scheme 59).
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The reaction of [{Nin(K2-N,N'-Priso)}2(q3:r|3-C7H8)] 110 or [Nir(K2-N,N'- 

Priso)]2 (113) with excess CO in toluene gives the diamagnetic complex [Ni(x - 

N,N'-Priso)(p-CO)]2 (122) after crystallisation from hexane in 68% yield (Scheme 

59).
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Scheme 59 Reaction of 110 with TMS-azide and 110 and 113 with CO

The IR spectrum of 121 shows a characteristic band in the azide region (2071 

cm'1) which is close to the band found in bis(pentafluorophenyl)boron azide (2202 

cm'1).^191 Complex 121 is diamagnetic due to the square planer d8 low spin nickel(II) 

centres and the NMR spectra show all expected resonances.

The molecular structure of [Nin(K2-N,N'-Priso)(p-N-N3)]2 (121) was 

determined by X-ray crystallography and the molecular structure is displayed in 

Figure 30. It is a P-N-N3 bridged dimer in which the two nickel centres have square 

planar geometries. The Ni-N bond lengths in complex 1 2 1  (1.958 and 1.926 A) are 

slightly shorter than those found in the analogous cobalt(II) complex [Con(K2-N,N'- 

Piso)(p-N-N3) ] 2 (1 0 0 ) (2 .0 1 0  and 2.007 A).
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Figure 30 Molecular structure of 121 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(l)-N(2) 1 .8 8 6 (2 ), Ni(l)-N(l) 1.896(2), 

Ni(l)-N(4) 1.958(3), Ni(l)-N(7) 1.962(3), N(4)-N(5) 1.110(4), N(5)-N(6) 1.201(4), 

N(4)-Ni(2) 1.962(3), N(2)-Ni(l)-N(l) 69.50(7), N(2)-Ni(l)-N(4) 174.10(7), N(l)- 

Ni(l)-N(4) 104.87(11), N(2)-Ni(l)-N(7) 103.64(11), N(l)-Ni(l )-N( 10) 172.94(11), 

N(4)-Ni(l)-N(7) 82.04(13), N(5)-N(4)-Ni(l) 124.9(2), N(5)-N(4)-Ni(2) 126.8(2), 

Ni(l)-N(4)-Ni(2) 97.96(13).

The molecular structure of [Nin(K2 -N,N'-Priso)(p-CO) ] 2  (122) was 

determined by X-ray crystallography and the molecular structure is displayed in 

Figure 31. Complex 122 is a square planar complex with metal centres bridged by 

two CO molecules. The Ni-C bond distances in 122 (1.857, 1.861 A) are 

significantly longer compared to those in the monomeric complex 

[NiI(Menacnac)(CO)] (1 2 0 ) (1.770 A). The Ni-Ni bond distance (2.437 A) is in the 

normal range for Ni-Ni interaction. The IR spectrum of 122 in Nujol shows one 

broad band (1847 cm'1) in the carbonyl region (cf. 120: 2022 m '1).
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Figure 31 Molecular structure of 122 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Ni(2)-Ni(2) 2.437, Ni(l)-C(33) 1.857(2), 

Ni(l)-C(32) 1.8616(18), Ni(l)-N(l) 1.9477(15), Ni(l)-N(2) 1.9551(16), 0(1)-C(32) 

1.165(2), C(32)-Ni(2) 1.857(2), C(33)-Ni(l)-C(32) 98.11(8), C(33)-Ni(l)-N(l) 

96.90(7), C(32)-Ni(l)-N(l) 164.89(7), C(33)-Ni(l)-N(2) 165.19(7), C(32)-Ni(l)- 

N(2) 96.63(7), N(l)-Ni(l)-N(2) 68.41(6), 0(1)-C(32)-Ni(2) 139.43(15), 0(1)-C(32)- 

Ni(l) 138.57(15), Ni(2)-C(32)-Ni(l) 81.89(8).
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2.3.4 Miscellaneous Transition Metal Guanidinate and Amidinate 

Reactions

The following list shows reactions that ware carried out which led to no 

reaction, intractable mixtures of products or only crystallographically characterised 

compounds for which no other data were obtained due to low yields or 

irrereproducibility of the reaction.

Reagent Reactant Outcome

Preparation and reduction of iron guanidinate halides
FeCl2 K[Priso] [Fe(K2-N,N'-Priso)(p-Cl)l2 (123)
Fel2 K[Giso] [Fe(K2-N,N'-Giso)(p-I)l2 (124)
[Fe(K2-N,N'-Priso)(^-Cl)]2 (123) exc. K in toluene o f THF decomposition
rFe(K2-N,N'-Priso)(n-Cl)l2 (123) exc. Mg in toluene or THF decomposition
rFe(K2-N,N'-Giso)(|i-I)]2 (124) exc. K in toluene o f THF decomposition
rFe(K2-N,N'-Giso)(n-I)l2 (124) exc. Mg in toluene or THF decomposition

Reactions of irontT) amidinates
[Fe(N,arene-Piso)2(|i-N)]2 (86) \ Ga(K2-N,N'-Giso)l no reaction
[Fe(N,arene-Piso)2(p-N)]2 (86) triphosphabenzene no reaction
[Fe(N,arene-Piso)2(|i-N)]2 (86) TMS-azide no isolated product
[Fe(N,arene-Piso)2(p-N)]2 (86) P=CBu* no isolated product
[Fe(N,arene-Piso)2(|i-N)]2 (86) P=CMe decomposition
[Fe(N,arene-Piso)2(p-N)]2 (86) tetraphosphabarrelene no reaction
rFe(K2-N,N'-Piso)(ri6-C7H8)l (87) h 2 no reaction
[Fef^-N.N'-PisoKV-CjHi,)! (87) (PhN)2 no isolated product

Prenaration and reduction of guanidinate cobalt halides
CoI2 K[Priso] [Co(K2-N,N'-Priso)(p-I)l2 (125)
rCo(K2-N,N'-Priso)(n-I)l2 (125) exc. K in toluene o f THF decomposition
rCo(K2-N,N'-Priso)(^-I)l2 (125) exc. Mg in toluene or THF decomposition

Reaction of cobaltd) guanidinates
[Co(K2-N,N,-Priso)(ri6-C7H8)] (94) [Ga(K2-N,N'-Giso)l no reaction
[Co(K2-N,N’-Priso)(Ti6-C7H8)] (94) P=CBu‘ [Co(K2-N,N'-Priso)(0)l2 (126)
[Co(K2-N,N’-Priso)(ri6-C7H8)] (94) P=CMe decomposition
rCo(K2-N,N’-Priso)(ri6-C7H8)l (94) h 2 no reaction
[Co(K2-N,N'-Priso)(ri6-C7H8)] (94) (PhN)2 no isolated product

Reaction of nickeKT) guanidinates
rNi(K2-N,N'-Priso)2(n3-C7H8)l (111) PsCMe decomposition
[Ni(K2-N,N’-Priso)2(n3-C7H8)l (111) h 2 no reaction
[Ni(K2-N,N’-Priso)2(Ti3-C7H8)l (111) (PhN)2 no isolated product
[Ni(K2-N,N’-Priso)2(n3-C7H8)l (111) P=CBu* no isolated product
rNi(K2-N,N'-Priso)2(n3-C7H8)l (111) 1 -adamantyl-azide no isolated product
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rNi(K2-N,N'-Priso)]2 (115) h 2 no reaction
[Ni(K2-N,N'-Priso)l2 (115) P^CMe no reaction

Preparation and reduction of a suanidinate hafnium halide complex
HfCU Li[Giso] rHf(K2-N,N'-Piso)(Cl)3l (127)
[Hf(K2-N,N’-Piso)(Cl)3l (127) exc. K in toluene of THF decomposition
rHflK2-N,N’-Piso)(Cl)3] (127) exc. Mg in toluene of THF decomposition

Preparation and reduction of suanidinate chromium halide com plex
CrCl2 K[Piso] [Cr(K2-N,N’-Piso)(p-Cl)l2
[ Cr( K2-N,N'-Piso)( |i-Cl)l2 exc. K in toluene of THF decomposition
[Cr(K2-N,N’-Piso)(p-Cl)l2 exc. Mg in toluene or THF decomposition

Preparation and reduction of a suanidinate m ansanese halide
MnBr2 K[Piso] [Mn(K2-N,N’-Piso)(|i-Br)]3 (128)
[Mn(K2-N,N'-Piso)(Br)l3 (128) exc. K in toluene of THF decomposition
fMn(K2-N,N'-Piso)(Br)l3 (128) exc. Mg in toluene of THF decomposition

The molecular structure of [Fe(Priso)(p-Cl)]2 (123) is displayed in Figure 33. 

It is a chloride bridged dimer with iron centres co-ordinated by two delocalised Priso' 

ligands. The metal centres have tetrahedral geometries.

N2.

[cae

Figure 32 Molecular structure of 123 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): Fe(l)-N(l) 2.0169(18), Fe(l)-N(2)

2.0208(18), Fe(l)-Cl(l)f 2.3364(9), Fe(l)-Cl(l) 2.3403(9), Cl(l)-Fe(l)f 2.3364(9),

N(l)-C(l) 1.352(3), C(l)-N(2) 1.350(3), C(l)-N(3) 1.373(3), N(l)-Fe(l)-N(2)

66.37(7), N(l)-Fe(l)-Cl(l)' 139.92(6), N(2)-Fe(l)-Cl(l)' 113.07(6), N(l)-Fe(l)-Cl(l)

113.43(5), N(2)-Fe(l)-Cl(l) 136.92(6), Cl(l)’-Fe(l)-Cl(l) 93.83(3), N(2 )-C(l)-N(l)

109.74(18), N(2)-C(l)-N(3) 125.70(19), N(l)-C(l)-N(3) 124.55(19).
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2.3.4 Results  and  D iscussion  [M iscellaneous  R ea c tio ns]

The molecular structure of complex [Fe(Giso)(p-I) ] 2  (124) is displayed in 

(Figure 31). Complex 124 is an iodide bridged dimer with iron centres co-ordinated 

to two delocalised Giso" ligands. The metal centres have square planar geometries.

Figure 33 Molecular structure of 124 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): I(l)-Fe(l) 2.7055(9), I(l)-Fe(2) 2.7082(9),

I(2)-Fe(l) 2.6989(9), I(2)-Fe(2) 2.7143(9), Fe(l)-N(l) 2.029(4), Fe(l)-N(2) 2.033(3),

Fe(2)-N(4) 2.029(4), Fe(2)-N(5) 2.035(3), N(l)-C(l) 1.347(5), N(2)-C(l) 1.362(6),

N(3)-C(l) 1.363(5), N(4)-C(38) 1.341(5), N(5)-C(38) 1.353(6), N(6)-C(38) 1.369(5),

Fe(l)-I(l)-Fe(2) 86.98(2), Fe(l)-I(2)-Fe(2) 86.99(2), N(l)-Fe(l)-N(2) 64.90(14),

I(2)-Fe(l)-I(l) 93.18(2), N(4)-Fe(2)-N(5) 64.95(14), I(l)-Fe(2)-I(2) 92.78(2), N(l)-

C(l)-N(2) 107.2(4), N(l)-C(l)-N(3) 126.9(4), N(2)-C(l)-N(3) 125.9(4), N(4)-C(38)-

N(5) 108.2(4), N(4)-C(38)-N(6) 126.9(4), N(5)-C(38)-N(6) 124.9(4).
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The molecular structure of [Co(K2 -N,N'-Priso)(jx-I) ] 2  (125) is displayed in 

Figure 34. It is an iodide bridged dimer with cobalt centres co-ordinated by two 

delocalised Priso' ligands. The metal centres have tetrahedral geometries.

Figure 34 Molecular structure of 125 (25% thermal ellipsoids; hydrogen atoms omitted).

Selected bond lengths (A) and angles (°): I(l)-Co(l) 2.6361(9), I(l)-Co(2 )

2.6375(11), Co(l)-N(l) 1.977(3), Co(l)-N(2) 1.989(3), Co(l)-I(2) 2.6375(11),

Co(l)-I(l)-Co(2) 87.56(4), N(l)-Co(l)-N(2) 67.55(12), N(l)-Co(l)-I(l) 134.43(9),

N(2)-Co(l)-I(l) 118.82(9), N(l)-Co(l)-I(2) 117.06(9), N(2)-Co(l)-I(2) 131.48(9),

I(l)-Co(l)-I(2) 92.44(4).
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2.3.4 Results and  D iscussion  [M iscellaneo us  Rea c tio ns]

The molecular structure of [Co(k -N,N’-Priso)(p-0 ) ] 2  (126) was determined 

by X-ray crystallography and the molecular structure is displayed in Figure 35. 

Complex 126 is an oxygen bridged dimer in which the geometry around the metal 

centres are square planar. The Co-0 bond lengths (1.7869 and 1.7872 A) are similar 

to those found in the dominant orientation of complex [CoIU{(ArNCMe)2 CH}(p-0 ) ] 2  

(37) (1.784, 1.793 A) (see Scheme 19 in 2 . 1 . 1 .2 ).

V

Figure 35 Molecular structure of 126 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Co(l)-0 (2 ) 1.7869(10), Co(l)-0(l) 

1.7872(12), Co(l)-N(l) 1.9210(11), Co(l)-N(2) 1.9235(13), 0(l)-Co(2)

1.7869(10), 0(2)-Co(l)-0(l) 83.08(5), 0(2)-Co(l)-N(l) 172.39(4), 0(l)-Co(l)-N (l) 

104.40(5), 0(2)-Co(l)-N(2) 103.58(5), 0(l)-Co(l)-N(2) 173.32(4), N(l)-Co(l)-N(2) 

68.94(5), Co(2)-0(l)-Co(l) 96.92(5)
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The molecular structure of [Hf(Giso)(Cl)3 ] (127) was determined by X-ray 

crystallography and the molecular structure is displayed in Figure 36. Complex 127 

is a monomeric complex in which the hafnium centre possesses a square based 

pyramidal geometry.

Figure 36 Molecular structure of 127 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Hf(l)-N(2) 2.130(2), Hf(l)-N(l) 

2.1370(19), Hf(l)-Cl(2) 2.3312(8), Hf(l)-Cl(3) 2.3515(8), Hf(l)-Cl(l) 2.3807(12), 

N(2)-Hf(l)-N(l) 61.71(7), N(2)-Hf(l)-Cl(2) 101.72(6), N(l)-Hf(l)-Cl(2) 113.69(6), 

N(2)-Hf(l)-Cl(3) 94.32(6), N(l)-Hf(l)-Cl(3) 131.48(5), Cl(2)-Hf(l)-Cl(3) 112.16(4), 

N(2)-Hf(l)-Cl(l) 148.47(5), N(l)-Hf(l)-Cl(l) 88.89(6) Cl(2)-Hf(l)-Cl(l) 100.49(4), 

Cl(3)-Hf(l)-Cl(l) 97.73(4).
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2.3.4 Results and  D iscussion  [Miscellaneo us  Re a c tio n s]

The molecular structure of [Mn(Piso)(p-Br)]3-(THF) 2  (128) was determined 

by X-ray crystallography and the molecular structure is displayed in Figure 37. 

Complex 128 displays a six membered Mn3Br3 ring system in which three 

[Mn(Piso)] fragments are bridged by three bromides.

Figure 37 Molecular structure of 128 (hydrogen atoms omitted for clarity; ellipsoids shown at the 

25% probability level).

Selected bond lengths (A) and angles (°): Br(l)-Mn(l) 2.5050(9), Br(l)-Mn(2) 

2.5843(8), Br(2)-Mn(l) 2.5140(8), Br(2)-Mn(3) 2.5913(8), Br(3)-Mn(2) 2.5909(9), 

Br(3)-Mn(3) 2.6166(9), Mn(l)-Br(l)-Mn(2) 122.11(3), Mn(l)-Br(2)-Mn(3)

123.60(3), Mn(2)-Br(3)-Mn(3) 148.78(2), Br(l)-Mn(l)-Br(2) 124.39(3), Br(l)- 

Mn(2)-Br(3) 99.85(3), Br(2)-Mn(3)-Br(3) 97.14(3).
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2.4 R esu lts  a n d  D iscu ssio n  [Co n c l u sio n ]

2.4 Conclusion

Transition metal(I) p-diketiminato complexes are interesting complexes, the 

reactivity of which lends them to synthetic applications, including uses as reagents 

for small molecule activations, reductive couplings, and metal imide formations

[9, 14, 41, 46, 49, 52, 54, 58, 61]

The focus in this part of the thesis was the investigation of the mostly 

unexplored bulky amidinate ligand system (Piso' (3)) and the bulky guanidinate 

ligand systems (Giso' (4) and Priso' (5)), and their use in stabilising first row 

transition metal complexes containing iron, cobalt or nickel in the + 1  oxidation state. 

The bulky amidinate and guanidinate first row transition metal(H) halides have been 

shown to be good starting materials to these complexes.

The results of this study have revealed that bulky amidinate and guanidinate 

ligand systems have comparable abilities to stabilise first row transition metals in the 

+1 oxidation state to those of the P-diketiminato ligands. A variety of highly reactive 

transition metal(I) complexes were prepared and attempts were made to investigate 

their reactivity towards different reagents and reactants. Further study of the 

complexes prepared in this study will be maintained in the Jones group.
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2.5 Experimental

General considerations. All manipulations were carried out using standard 

Schlenk and glove box techniques under an atmosphere of high purity argon, hexane, 

THF and toluene were distilled over potassium whilst diethyl ether was distilled over 

Na/K then freeze/thaw degassed prior to use. and 31P{1H} NMR spectra were 

recorded on either a Bruker DXP400 or a Jeol Eclipse 300 spectrometer and were 

referenced to the residual lH resonances of the solvent used or external 85% H3PO4 

respectively. Mass spectra were obtained from the EPSRC National Mass 

Spectrometry Service at Swansea University. Although molecular ion peaks 

displaying correct isotopic distribution patterns were observed for all new 

complexes, only the accurate mass data for compounds less then 1000 Da are 

reported. All other compounds have masses greater than 1000 Da and as such their 

accurate mass data are not considered meaningful. LR spectra were recorded using a 

Nicolet 510 FT-IR spectrometer as Nujol mulls between NaCl plates. Melting points 

were determined in sealed glass capillaries under dinitrogen, and are uncorrected. 

Solution state magnetic moments were determined using the Evans method.^127, 128] 

PisoH (3H ),[77> 781 PrisoH (4H) , [77' 781 GisoH (5H) , [77' 781 K[Ligand] (Ligand = Piso' 

(3), Priso (4), Giso (5)) were prepared by treating 3-5H with K[N{N(SiMe3)2}] in 

toluene. P=CBut[129] was synthesised by the [Li{N(SiMe3)2}] catalysed elimination of 

hexamethyldisiloxane from (Me3Si)P=C(But)(OSiMe3) and P=CMe[130 132] was 

prepared by modified literature procedures. All other chemicals were obtained from 

commercial sources and used as supplied.
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2.5 Ex per im e n ta l

[Fen(K2-N^'-Piso)(ji-Br)]2: 83

K[Piso] (1.00 g, 2.18 mmol) in THF (20 cm3) was added to a suspension of FeBr2 

(0.47 g, 2.18 mmol) in THF (20 cm3) at -78°C. The resultant mixture was warmed to 

20°C overnight. Volatiles were then removed in vacuo and the residue extracted with 

hexane (50 cm3). Filtration, concentration and cooling to -30°C overnight yielded 

yellow crystals of 83.

(0.93 g, 77 %), M.p. > 260°C; JH NMR (300 MHz, C6D6, 300 K): 5 -21.02, -18.21, 

4.25, 14.06, 19.22, 28.04; IR v/cm'1 (Nujol): 1615 (m), 1251 (m), 1174 (m), 1099 (s), 

757 (m); MS (El) m/z (%): 554.2 [M/2+, 5], 420.4 [Piso+, 15]; Petr (Evans, C6D6, 298 

K): 5.4 pB (per Fe centre); anal: calc, for CsgHg6N4Fe2Br2 C 62.71 %, H 7.80 %, N

5.04 %, found: C 62.85 %, H 7.86 %, N 5.17 %.

[FeI(N,arene-Piso)(p-N)]2 : 86

To a solution of [Fe(K2-N,N'-Piso)(p-Br) ] 2 (83) (0.25 g, 0.42 mmol) in toluene (40 

cm3)/THF (2 cm3) under an atmosphere of dinitrogen at 20°C was added magnesium 

powder (0.10 g, 4.12 mmol). The suspension was placed in an ultrasonic bath for 1 

hour then stirred for 72 h at 20°C, during which the solution changed from yellow to 

brown. The solution was subsequently filtered, volatiles removed in vacuo, and the 

residue extracted with hexane (10 cm ). Concentration, filtration and cooling to - 

30°C overnight yielded dark brown crystals of 8 6 .

(0.15 g, 71 %). M.p. = 183 - 185°C; ‘H NMR (300 MHz, C6D6) 300 K): 6 -1.48,0.29, 

0.92, 1.36, 1.77, 2.65, 3.29, 3.46, 5.45, 6.56, 9.62, 10.82, 19.43; IR v/cm'1 (Nujol): 

1519 (m), 1321 (m), 1082 (s), 835 (m), 764 (m); Raman (solid under Ar, 514 nm 

excitation) v (cm'1): 2005 (N-N str.); MS (El) m/z (%): 475.2 [(Piso)Fe+, 100], 420.3 

[Piso+, 10]; //eff (Evans, C6D6, 298 K): 2.6 (per iron dimer); ^  (SQUID): 2.5/^
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(per iron dimer); anal: calc, for Cs8Fl86N6Fe2 C 71.15 %, H 8.85 %, N 8.58 %, found: 

C 71.63 %, H 9.06 %, N 7.92 %, parameters, R(observed) = R1 = 0.1260, wR2 = 

0.1713, largest difference peak and hole: 0.538 and -0.453 e.A'3.

[F e V -N ^ ’-PisoXT^-QHg)!: 87

To a solution of [Fe(K2-N,N'-Piso)(p-Br)]2  (83) (0.25 g, 0.42 mmol) in toluene (40 

cm3)/THF (2 cm3) under an atmosphere of argon at 20°C was added magnesium 

powder (0.10 g, 4.12 mmol). The suspension was placed in an ultrasonic bath for 1 h 

then stirred for 72 h at 20°C, during which time the colour of the solution changed 

from yellow to brown. The solution was subsequently filtered, volatiles removed in 

vacuo, and the residue extracted with hexane (10 cm ). Concentration, filtration and 

cooling to -80°C overnight yielded red crystals of 87.

(0.16 g, 67 %), M.p. 138 -140°C; 'H NMR (300 MHz, C6D6, 300 K): 6 -0.75, 0.28, 

0.77, 1.61, 2.09, 3.52, 5.40, 6.95, 11.85, 15.95; IR v/cm’1 (Nujol): 1615 (m), 1585 

(m), 1310 (s), 1173 (m), 803 (m), 767 (m); MS (El) m/z (%): 475.2 [(Piso)Fe+, 65],

420.3 [Piso+, 72]; /4tr (Evans, CsD^, 298 K): 2.3 //b (per iron centre); anal: calc, for 

C36H5iN2Fe, C 76.17 %, H 9.06 %, N 4.93 %, found: C 75.56 %, H 9.60 %, N 4.47 

%, parameters, R(observed) = 0.0736, wR2 = 0.1033, largest difference peak and 

hole: 0.453 and -0.287 e.A’3.

[Fel(K2-NJP-Piso)(CO)3]: 8 8

Compound [Fe(K2-N,N'-Piso)(r}6-C7H8)] (87) (50 mg, 0.088 mmol) was dissolved in 

toluene (10 cm3) in a Schlenk flask and cooled to -90 °C. The Schlenk flask (ca. 100 

cm volume) was filled with CO and sealed. The colour of the solution changed 

from red-brown to deep green over 20 h. All volatiles were then removed from the
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solution in vacuo and the residue extracted with hexane (10 cm3). The extract was 

concentrated to ca. 5 cm3 and stored at -30 °C overnight to give deep green crystals 

of 88.

(30 mg, 61%), M.p. 153 - 155 °C; 'H NMR (300 MHz, C6D6, 300 K): 8 0.38, 1.50, 

3.21, 3.50, 7.10, 9.50; IR v/cm'1 (Nujol): 2050 (s), 1965 (s), 1955 (sh.) (CO str.); MS 

(El) m/z (%): 531.3 [M+-CO, 14], 475.2 [(Piso)Fe+, 100], 420.3 [Piso+, 15], 

parameters, R(observed) = 0.0762, wR2 = 0.1733, largest difference peak and hole: 

0.951 and -0.503 e.A 3.

N.B. 88 can also be formed in a 71% isolated yield by treating a toluene solution of 

[FeI(N,arene-Piso)(p-N)]2  (86) with CO.

[Con(K2-NrN,-Piso)(p-Br)]2: 89

K[Piso] (2.06 g, 4.50 mmol) in THF (40 cm3) was added to CoBr2 (1 g, 4.50 mmol) 

in THF (20 cm3) at -78°C. The mixture was warmed to room temperature slowly 

overnight. Volatiles were removed in vacuo and the residue washed with hexane (15 

cm ) and extracted with toluene and filtered (100 cm ). All volatiles were removed 

from the filtrate in vacuo yielding 89 as a green solid. (1.3 g, 52 %).

[Con(K2-N,N,-Priso)(p-Br)l2: 90

K[Priso] (2.25 g, 4.50 mmol) in THF (40 cm3) was added to CoBr2 (1 g, 4.5 mmol) 

in THF (20 cm3) at -78°C. The mixture was warmed to room temperature slowly 

overnight. Volatiles were removed in vacuo and the residue washed with hexane (15 

cm ) and extracted with toluene and filtered (100 cm ). All volatiles were removed 

from the filtrate in vacuo yielding 90 as a green solid.

(1.2 g, 58 %), ]H NMR (300 MHz, C«D6, 300 K): 5-36.36 (s), 0.49 (s), 0.89 (s), 1.32 

(s), 1.54 (s), 3.54 (s), 5.26 (s), 7.40 (m), 11.05 (s), 17.52 (s), 71.43 (s); UV-Vis
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(toluene): 746 (e = 66 M 'W 1), 423 (e = 422 M 'W 1), 316 (e = 316 M 'W 1), 316 

(e = 1366 M^cm'1); /ieff (Evans, C6D6, 298 K): 5.2 //b (per cobalt dimer).

[Con(K2-N,N,-Giso)(p-Br)]2: 91

K[Giso] (1.86 g, 3.20 mmol) in THF (40 cm3) was added to CoBr2 (0.7 g, 3.20 

mmol) in THF (20 cm3) at -78°C. The mixture was warmed to room temperature 

slowly overnight. Volatiles were removed in vacuo and the residue washed with 

hexane (15 cm3) and extracted with toluene and filtered (100 cm3). All volatiles were 

removed from the filtrate in vacuo yielding 91 as a green solid. (1.0 g, 48 %).

|Col(K2-N,N’-Piso)(Ti6-C7 Hs)]: 92

[Con(K2-N,N'-Piso)(|i-Br)]2  (89) (300 mg, 0.26 mmol) in toluene (30 cm3) was added 

to a potassium mirror (195 mg, 5.0 mmol) at room temperature. After stirring for 1 to

1.5 h the solution was filtered. Volatiles were then removed in vacuo and the residue 

extracted with hexane (20 cm ). After concentration to 5 cm the solution was placed 

at 6°C for 24 h yielding red crystals of 92.

(250 mg, 84%),(250 mg 84%), M.p. 175 -  178 °C 'H NMR (300 MHz, C6D6, 303 

K): 8 -30.16 (s), -10.13 (s), 0.25 (s), 0.79 (s), 1.25 (m), 3.33 (m), 5.40 (s), 7.05 (m); 

//eff (Evans, C6D6, 298 K): 3.17 /&; acc. MS/EI m/z (%): 478 [M+, 2], 244

[Ph(Pri)2N(But), 100]; MS (El) calc, for C36H51C0N2: 478.2753, found: 478.2758, 

parameters, R(observed) = 0.0927, wR2 = 0.1651, largest difference peak and hole: 

1.660 and -0.464 e.A'3.

[Co!(K2-NdV-Priso)(Ti6-C7H8)]: 93

[Con(K2-N,N'-PrisoXji-Br)]2 (90) (300 mg, 0.25 mmol) in toluene (30 cm3) was 

added to a potassium mirror (195 mg, 5.0 mmol) at room temperature. After stirring
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for 1 to 1.5 h the solution was filtered, volatiles were then removed in vacuo and the

3 3 *residue extracted with hexane (20 cm ). After concentration to 5 cm the solution

was placed at 6°C for 24 h yielding red crystals of 93.

(220mg, 72%), M.P. 138 °C (dec.); 'H NMR (300 MHz, C6D6, 303 K): 8  27.08 (br. 

s), -9.65 (s), -2.02 (s), 0.90 (s), 1.26 (s), 1.92 (s), 3.46 (s), 5.14 (s), 5.38 (s), 5.51 (s), 

8.18 (s), 13.48 (s), 17.86 (s); IR v/cm' 1 (Nujol): 1609 s, 1581 s, 1260 s, 1098 br, 1019 

br, 932 s, 864 br, 799 s, 767 s; UV-Vis (toluene) : 353 (e = 1683 M '1cm'1); /refr 

(Evans, C6D6, 298 K): 3.09 /* ; ftir (SQUID): 3.4/*; MS/EI m/z (%): 462.4 

[PrisoH+, 10 %], 521.3 [M+-toluene, 100 %]; anal: calc, for C38H56C0 N3: C 74.36 %, 

H 9.20 %, N 6.85 %, found: C 74.37 %, 9.51 H %, N 7.57 %, parameters, 

R(observed) = 0.1589, wR2 = 0.2106, largest difference peak and hole: 1.558 and -

1.070 e.A'3.

N.B. 93 can also be formed in a 82% isolated yield by treating a toluene/THF 

solution of [Co(K2-N,N,-Priso)(Br)]2 (90) with Mg.

|Col(K!-N,N'-Giso)(ti6-C7 H8)]: 94

[Con(K2-N,N'-Giso)(|i-Br)]2  (91) (300 mg, 0.22 mmol) in toluene (30 cm3) was added 

to a potassium mirror (172 mg, 4.4 mmol) at room temperature. After stirring for 1 to

1.5 h the solution was filtered. Volatiles were then removed in vacuo and the residue
-3 -3

extracted with hexane (20 cm ). After concentration to 5 cm the solution was placed 

at 6°C for 24 h yielding red crystals of 94.

(210mg, 70%), M.p. 165 -  170 °C; 'H NMR (300 MHz, C6D6, 303 K): 8 22.32 (br. 

s), 17.91 (br. s), 7.85 (br. s), 1.47 (br. s), 0.19 (br. s), -0.83 (br. s), -1.95 (br. s), -3.36 

(br. s), -10.05 (br. s); IR ifcm '1 (Nujol); 1613m, 1217m, 1157m, 1020m, 768m, 

855m; MS/EI m/z (%): 603 [M+-C7H8, 4], 543 [M+-Co(C7H8)+, 7], 92 [C7H8+, 63];
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MS (El) calc, for C37H56C0N3: 601.3801, found: 601.3800; anal. calc, for 

C37H56C0N3: C 73.85, H 9.38, N 6.98. Found: C 73.69, H 9.38, N 6.26, parameters, 

R(observed) = 0.1090, wR2  = 0.2317, largest difference peak and hole: 3.428 and - 

0.819 e.A'3.

N.B. 94 can also be formed in a 85% isolated yield by treating a toluene/THF 

solution of [Con(K2-N,N'-Giso)(p-Br) ] 2 (91) with Mg.

[CoV -N jN ’-PiscOh: 95

[Con(K2-N,N'-Piso)(|i-Br)]2  (89) (350 mg, 0.31 mmol) in cyclohexane (40 cm3) was 

added to a potassium mirror (245 mg, 5.27 mmol) at room temperature. After stirring 

for 3 to 5 h the solution was filtered. Volatiles were then removed in vacuo and the 

residue extracted with hexane (20 cm ). After concentration to 5 cm the solution 

was placed at 6 °C for 24 h yielding red crystals of 95.

(170 mg 57%), M.p. 210-125 °C ‘H NMR (300 MHz, C6D6, 303 K): 8  26.62 (br. s), 

12.54 (br. s), 8.14 (br. s), 6.36 (br. s), 4.53 (s), 4.20 (s), 2.51 (s); IR v/cm 1 (Nujol): 

1613m, 1315m, 1260m, 1170m, 1099m, 799m, 758m; Raman (solid under 

dinitrogen, 782 nm excitation) v (cm 1): 277 (Co-Co str.); /zefr (Evans, C6D6, 298 K): 

5.35 jLt& (per cobalt dimer); //eff (SQUID): 5.25/Zb (per cobalt dimer); MS/EI m/z (%): 

478 [1/2M+, 25], 420 [PisoH+, 53], 244 [ArNHBut+, 100]; MS (El) calc, for 

C58H86C02N4: 957.5416, found: 957.5514; anal. calc, for CsgHwCcfeN* C 72.78, H 

9.06, N 5.85. Found: C 72.53, H 9.21, N 5.59, parameters, R(observed) = 0.0465, 

wR2  = 0.0957, largest difference peak and hole: 0.677 and -0.513 e.A'3.

[C o V -N ^ ’-Giso)]!: 96

[Con(K2-N,N'-Giso)(p-Br)]2 (91) (500 g, 0.37 mmol) in cyclohexane (40 cm3) was 

added to a potassium mirror (225 mg, 5.8 mmol) at room temperature. After stirring
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for 3 to 5 h the solution was filtered. Volatiles were then removed in vacuo and the 

residue extracted with hexane (20 cm ). After concentration to 5 cm the solution 

was placed at 6 °C for 24 h yielding red crystals of 96.

(230 mg 52%), M.p. 210 °C; IR v/cm-1 (Nujol): 1611m, 1318m, 1260m, 1160m, 

1093m, 1019m, 748; jue (Evans, C^De, 298 K): 5.10 /fe(per cobalt dimer); anal. calc, 

for C74H112C02N6: C 73.85, H 6.98, N 9.38. Found: C 72.04, H 6.63, N 9.27, 

parameters, R(observed) = 0.0713, wR2 = 0.1336, largest difference peak and hole: 

2.066 and -0.773 e.A I

[Con(K2-NJV'-Piso)(n-N-N3)]2: 99

Me3SiN3 (188 mg, 0.16 mmol) was added to a solution of [Co’O^-hhN'-PrisoXri3- 

C7H8)] (93) (100 mg, 0.16 mmol) in hexane (20 cm3) at -78 °C. The resultant 

mixture was warmed to room temperature overnight. Volatiles were then removed in 

vacuo and the residue extracted with -30 °C cold hexane (10 cm3). Filtration, 

concentration and storing at overnight yielded coloureles crystals of 99.

(60 mg, 32 %).

parameters, R(observed) = 0.0790, wR2 = 0.1567, largest difference peak and hole: 

1.496 and-0.758 e.A‘3.

[Conl(K2-N,N'-Giso)(NAd)]: 100

AdN3 (72 mg, 0.41 mmol) was added to a solution of [CoI(K2-N,N'-Giso)(r|3-C7H8)] 

(94) (280 mg, 0.41 mmol) in hexane (20 cm3) at -78 °C. The resultant mixture was 

warmed to room temperature overnight. Volatiles were then removed in vacuo and 

the residue extracted with cold hexane (10 cm3). Filtration, concentration and storing 

at -30 °C overnight yielded coloureles crystals of 100.

(160 mg, 53 %).
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parameters, R(observed) = 0.1156, wR2 = 0.2044, largest difference peak and hole: 

1.184 and -0.417 e.A'3.

[Con{ArNC(Bu')N(Ar)(CO)}(CO)3 l: 101

[Co’(K2-N,N'-Piso)]2 (95) (70 mg, 0.07 mmol) was dissolved in toluene (10 cm3) in a 

Schlenk flask and cooled to -90 °C. The Schlenk flask (ca. 100 cm3 volume) was 

filled with CO and sealed. The colour of the solution changed from red to deep 

brown yellow over 20 h. All volatiles were then removed from the solution in vacuo 

and the residue extracted with hexane (10 cm ). The extract was concentrated to ca. 5 

cm3 and stored at -30 °C overnight to give deep green crystals of 101.

(30 mg 73%), M.p. 115 °C, dec. 120 °C; 'H NMR (300 MHz, C6D6, 303 K): 5 0.79 

(s, 9H, Bu'), 1.22 (vt, 3Jhh = 7 H z, 12H, Pr1), 1.36 (vt, Vhh = 7 H z, 12H, Pr1), 3.04 

(sept, 3Jhh = 7 Hz, 2H, Pr‘-H), 3.29 (sept, 3JHh = 7 Hz, 2H, Pf-H), 7.15 -  6 .8  (m, 6 H, 

Ar-H); l3C NMR (75 MHz, CsDs 303 K): 8  22.3 (CH(CH3)2), 23.89 (CH(CH3)2), 

25.46 (CH(CH3)2), 26.35 (CH(CH3)2), 28.30 (CH(CH3)2), 30.43 (CH(CH3)2), 30.97 

(C(CH3)3), 40.98 (C(CH3)3) 124.07 (o-C6H3Pr'2), 124.41 (o-CsHjPr1,), 126.31 (p- 

CsHsPry, 130.23 (p-C6H3Pr'2), 138.71 (m-C6H3Pr2), 142.5 (m-CsH^ry, 148.34 

(jpso-CtHsPr^), 151.43 (ipso-C6H3Pr‘2), 165.70 (CN3); IR v/cm 1 (Nujol): 2064m, 

2004m, 1970m, 1661m, 1554m, 1304m, 1047m, 809m; MS/EI m/z (%): 534 [M+- 

2CO, 2], 506 [M+-3CO, 6 ], 478 [M+-4CO, 100]; MS (El) calc, for C33H41CoN20 2 

(M+ -2 CO): 534.2651, found: 534.2655; anal. calc, for C33H43CoN20 4: C 67.11, H 

7.34, N 4.74. Found: C 67.12, H 7.19, N 4.80, parameters, R(observed) = 0.0420, 

wR2  = 0.0849, largest difference peak and hole: 0.343 and -0.365 e.A'3.
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[Nin(K2-N,N’-Priso)0i-Br)]2: 108

Li[Priso] (l.OOg, 2.14 mmol) in THF (20 cm3) was added to a suspension of NiBr2 

(459 mg, 2.14 mmol) in THF (30 cm3) at -78 °C. The resultant mixture warmed to 

room temperature overnight. Volatiles were then removed in vacuo and the residue 

washed with hexane (20 cm ) and extracted with toluene (100 cm ). Filtration, 

concentration and cooling to -30 °C overnight yielded green crystals of 108.

(1.0 g 63%); M.P. 170 °C (dec.); 'H NMR (300 MHz, C6D6, 303 K): 5 0.48 (d, 3J Hh  

= 6 Hz, 12H, Pr'), 1.28 (d, Vhh = 6 H z, 12H, Pr‘), 2.19 (d, VHh = 6 H z, 12H, Pr1), 

3.48 (sept, Vhh = 6 H z, 2H, Pr'-H), 4.18 (sept, 3Jhh = 6 H z, 2H, PF-H), 6.82 (m, 6H 

Ar-H); 13C NMR (75 MHz, C6D6 303 K): 8 22.98 (NCH(CH3)3), 23.20 (CH(CH3)3), 

25.91 (CH(CH3)3), 28.54 (CH(CH3)3), 47.55 (NCH(CH3)3) 123.64 (o-C6H3Pr2), 

125.53 (p-C<sH3Pr'2), 140 (m-CfHsPrV), 145.29 (ip.so-C6H3Pri2), 165.4 (CN3); IR 

v/cm_l (Nujol): 1925m, 1858m, 1790m, 1562m, 1327m, 1051m, 933m, 799m; ace. 

MS/EI m/z (%): 1202.4 [M+, 1], 601 [1/2M+, 1], 420 [M ^NlPr^, 100]; anal. calc, 

for C62H96Br2N6Ni2 (1202.661): C 61.92, H 8.05, N 6.99. Found: C 60.63, H 8.10, N 

6.84, parameters, R(observed) = 0.0825, wR2 = 0.1616, largest difference peak and 

hole: 1.544 and -0.648 e.A'3.

[Nin(K2-N,N’-Giso)0i-Br)]2: 109

Li[Giso] (1.00 g, 1.83 mmol) in THF (20 cm3) was added to a suspension of NiBr2 

(400 mg, 1.83 mmol) in THF (30 cm3) at -78 °C. The resultant mixture warmed to 

room temperature overnight. Volatiles were then removed in vacuo and the residue 

extracted with hexane (50 cm3). Filtration, concentration and cooling to -30 °C 

overnight yielded green crystals of 109.
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(1.36 g, 79 %). M.P. 255 °C (dec.); 'H NMR (300 MHz, C6D6, 303 K): 8 0.54 (br. s 

11H, C6H„), 1.14 (br. m 11 H, C6H„), 1.42 (d, Vhh = 6 Hz, 12H, Pr1), 2.24 (d, 3J hh 

= 6 Hz, 12H, Pr'), 3.15 (sept, Vhh = 6 H z, Pr‘-H), 4.00 (sept, Vhh = 6 H z, 4H, Pr'-H), 

6.88 (m, 6H, Ar-H); 13C NMR (75 MHz, C6D6 303 K): 8 22.96 (CH2),) 25.75 

(CH(CH3)2),), 26.45 (CH(CH3)2), 28.86 (CH(CH3)2), 32.71 (CH2), 35.03 (CH2),

56.70 (HCN), 123.59 (o-C6H3Pr'2), 125.13 (p -C ^P r^ ), 141.04 (m-C6H3Pr‘2), 144.52 

(;pso-C6H3Pr'2), 168.16 (CN3); IR v/cm-1 (Nujol): 1495m, 1433m, 1226m, 1019m, 

1795m; acc. MS/EI m/z (%): 1362.6 [M+, 1], 681.3 [1/2M+, 1], 180 N(Cy)2+, 100]; 

anal. calc, for C74Hn2Br2N6Ni2 (1362.916): C65.21, H 8.28, N 6.17. Found: C 65.03, 

H 8.37, N 6.12.

| {NiII(K2-N,N’-Priso)}2(ri3 :ti3-C7H8)] : 110

[Nill(K2-N,N'-Priso)(|i-Br)]2 (108) (340 mg, 0.28 mmol) in toluene (40 cm3) was 

added to a potassium mirror (55 mg, 1.41 mmol) at room temperature. After stirring 

for 18 to 27 h the solution was filtered, volatiles were then removed in vacuo and the 

residue extracted with hexane (20 cm ). After concentration to 5 cm the solution 

was placed at 6°C for 24 h yielding red crystals of 110.

(230 mg, 72%), Mp: 235 °C; ‘H NMR (300 MHz, C6D6, 303 K): 8 0.65 (d 3J HH = 7 

Hz, 24H, Pr'), 1.3 (d, 42H, Vhh = 7 H z, Pr1), 1.57 (d, 24H, Vhh = 7 H z, Pr1), 2.07 (s, 

Ar-CH3), 3.66 (sept, 3Jh h  = 7 H z, 4H, Pr‘-H), 3.88 (sept, V Hh = 7 H z, 8H; Pr-H), 

6.94 (m, 12H Ar-H); 13C NMR (75 MHz, C6D6 303 K): 8 22.84 (NCH(CH3)2), 23.68 

(CH(CH3)2), 25.04 (CH(CH3)2), 27.93 (CH(CH3)2), 48.29 (NCH(CH3)3), 123.31 (o- 

C6H5CH3), 123.44 (p-C6H3Pr‘2), 143.14 (m-C(,H3Pr12), 145.17 ((>so-C6H3Pri2), 167.39 

(CN3); IR v/cnT1 (Nujol): 1433m, 1408m, 1327m, 1277m, 1125m, 795m, 754m, 

658m; acc. MS/EI m/z (%): 1040 [M+-C6H5CH3, 100], 420 [l/2M+-N(Pr')2, 100]; MS

195



2.5 Ex per im e n ta l

(El) calc, for C62H96N6Ni2: 1040.6398, found 1040.6399; anal. calc, for 

C69Hio4N6Ni2 (1134.991): C 73.02, H 9.24, N 7.40. Found: C 71.97, H 9.21, N 7.28, 

parameters, R(observed) = 0.0598, wR2 = 0.1121, largest difference peak and hole: 

0.449 and -0.394 e.A'3.

[{Niu(K2-N,N’-Priso)}2(Ti3:Ti3-C6H6)]: 111

[Nin(K2-N,N'-Priso)(p-Br)]2 (108) (470 mg, 0.39 mmol) in benzene (40 cm3) was 

added to a potassium mirror (200 mg, 5.11 mmol) at room temperature. After stirring 

for 4 to 6 h the solution was filtered, volatiles were then removed in vacuo and the 

residue extracted with hexane (20 cm ). After concentration to 5 cm the solution 

was placed at 6°C for 24 h yielding red crystals of 111.

(300 mg 45%), Mp: 244 °C, Dec: 250 °C; 'H NMR (300 MHz, C6D6, 303 K): 6 0.65 

(d, Vhh = 7 Hz, 24H, Pr'), 1.33 (dVhh = 7 H z,, 24H, Pr1), 1.57 (d, l /HH = 7 Hz, 24H, 

Pr'), 3.66 (sept, Vhh = 7 Hz, 4H, Pr'-H), 3.88 (sept, 3J HH = 7 Hz, 8H, Pr‘-H), 6.94 (s, 

12H, Ar-H); 13C NMR (75 MHz, C6D6 303 K): 5 21.93 (NCH(CH3)3), 22.83 

(CH(CH3)2), 23.67 (CH(CH3)2), 25.04 (CH(CH3)2), 27.93 (CH(CH3)2), 48.28 

(NCH(CH3)3), 123.30 (o-C6H3Pr'2), 125.53 (p-QHsPr),), 143.14 (m-C6H3Pri2), 

145.17 (tpio-C6H3Pr'2), 167.37 (CN3); IR v/cnf1 (Nujol): 1613m, 1510m, 1328m, 

1278m, 1125m, 1024m, 796m, 755m; acc. MS/EI m/z (%): 1042.4 [M+-C6H6, 100],

420.4 [l/2M+-N(Pr‘)2, 76%]; anal. calc, for C68Hio2N6Ni2 (1120.964): C 72.86, H 

9.17, N 7.50. Found: C 71.11, H 8.78, N 6.97, parameters, R(observed) = 0.0557, 

wR2 = 0.0919, largest difference peak and hole: 0.416 and -0.362 e.A*3.

[N^CNjarene-Priso)]!: 112 and [Ni^ic^NjN’-Priso)]!: 113

[Nin(K2-N,N'-Priso)(p-Br)]2 (108) (470 mg, 0.39 mmol) in cyclohexane (40 cm3) was 

added to a potassium mirror (200 mg, 5.11 mmol) at room temperature. After stirring
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for 20 to 30 h the solution was filtered, volatiles were then removed in vacuo and the 

residue extracted with hexane (20 cm ). After concentration to 5 cm the solution 

was placed at 6°C for 24 h yielding brown crystals of 112.

(110 mg, 27%), Mp: 248 °C; 'H NMR (300 MHz, C6D6, 303 K ): 8 1.02 (d, V hh = 7 

Hz, 24H, Pr1), 1.22 (d, V hh = 5 H z, 12H, Ni Pr1), 1.34 (d, VHH = 7 Hz, 12H, Pr1), 1.47 

(d, V hh = 7 H z, 12H, Pr1), 1.76 (d, V hh = 5 Hz, 12H, Ni Pr1), 3.10 (sept,, VHH = 7 

Hz, 4H, Pr'-H), 3.45 (sept,, V hh = 7 H z, Pr'-H), 5.18 (t, VHH = 7 Hz, 2H, Ar-H), 7.02 

(s, 5H, Ar-H), 7.28 (d, 5H, V hh = 7 H z, Ar-H); l3C NMR (75 MHz, C6D6 303 K): 5 

21.62 (NCH(CH3)3), 22.45 (CH(CH3)2), 23.85 (CH(CH3)2), 24.32 (CH(CH3)2), 25.86 

(CH(CH3)2), 27.42 (CH(CH3)2), 30.58 (CH(CH3)2), 47.09 (NCH(CH3)2), 85.60 

(CsHjPr^) 109.62 (C6H3Pri2), 123.67 (C6H3Pr‘2), 124.45 (C6H3Pr'2) 126.42 

(C6H3Pti2), 132.06 (C6H3Pr'2), 144.17 (C6H3Pr'2), 146.50 (C6H3PrV), 167.11 (CN3); 

IR rfcm-1 (Nujol); 1510m, 1427m, 1336m, 1258m, 1107m, 1031m, 801m; acc. 

MS/EI m/z (%): 1042 [M+, 61], 420.4 [l/2M+-N(Pr1)2, 100]; anal. calc, for

C62H96N6Ni2 (1042.853): C 71.51, H 9.28, N 8.06. Found: C 60.86, H 8.28, N 5.84, 

parameters, R(observed) = 0.0984, wR2 = 0.1371, largest difference peak and hole: 

0.767 and -0.378 e.A'3.

Leaving a hexane solution of the mixture at room temperature for 2 weeks yielding 

orange crystals of [Ni^i^-NjN'-Priso)]! (113).

(60 mg, 15%), M.P.: 220 °C (dec.); ‘H NMR (300 MHz, C6D6, 303 K): 8 -5.62 (s, 

3H, Pr'-H), -4.23 (s, 3H, Pr'-H), -1.49 (s, 12H, Pr1), -0.82 (s, 12H, Pr1), 0.26 (s, 12H, 

Pr1 0.70 (s, 12H, Pr1), 1.29 (s, 12H, Pr1), 2.99 (s, 12H, Pr1), 7.03 (m, 6H, Ar-H), 8.51 

(m, 6H, Ar-H), 12.79 (s, 3H, Pf-H), 17.53 (s, 3H, Pr1-!!); 13C NMR (75 MHz, C6D6 

303 K): 8 -15.4 (s), -16.61 (s), -7.40 (s), 1.24 (s), 28.83 (s), 32.57 (s), 33.98 (s), 47.78 

(s), 56.42 (s), 56.28 (s), 102.71 (s), 193.63 (s), 245.71 (s); IR v/cm'1 (Nujol): 2365m,
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1613m, 1584m, 1259m, 1105m, 1019m, 797m, 753m; Raman (solid under N2, 782 

nm excitation) v (cm 1): 266 (Ni-Ni str.); ^  (Evans, C6D6, 298 K): 2.1 (per 

nickel dimer); //eff (SQUID): 2.30/fe (per nickel dimer); acc. MS/EI m/z (%): 1040 

[M+, 11], 520 [1/2M+, 3], 462 [PrisoH+, 100]; MS (El) calc, for C32H96N6Ni2: 

1040.6398, found: 1040.6400, parameters, R(observed) = 0.1155, wR2 = 0.2866, 

largest difference peak and hole: 3.952 and -1.230 e.A'3.

[Nin(K2-NdV’-Priso)(ii5-Cp)]: 115

LiCp (36 mg, 0.48 mmol) in THF (5 cm3) was added to a solution of [Nin(K2-N,N- 

Priso)(p-Br)]2 (108) (300 mg, 0.24 mmol) in THF (5 cm3) at -78 °C. The resultant 

mixture warmed to room temperature overnight. Volatiles were then removed in 

vacuo and the residue extracted with hexane (30 cm ). Filtration, concentration and 

cooling to -30 °C overnight yielded lilac crystals of 115.

(190 mg, 64%), M.p. 226 °C; 'H NMR (300 MHz, C6D6, 303 K): 8 -12.22 (s 5H, 

Cp), 0.20 (d, V hh = 9 Hz, 12H, Pr1), 1.46 (d, V hh = 6Hz, 12H, Pr1), 2.60 (d, V hh = 

6.0Hz, 12H, Pr1), 3.65 (m, 2H, Pr'-H), 5.29 (m, 4H, Pr'-H), 5.42 (m, 2H, Ar-H), 8.09 

(dVm = 6.0Hz, , 4H, Ar-H); 13C NMR (75 MHz, C6D6 303 K): 5 23.52 

(NCH(CH3)3), 26.90 (CH(CH3)2), 31.81 (CH(CH3)2), 37.3 (CH(CH3)3), 62.55 

(NCH(CH3)3), 98.20 (Cp), 118.23 (o-C6H,Pr2), 133.58 (p-C6H3Pr2), 160.56 (m- 

Q;H3Pr'2), 168.02 (/ps0 -C6H3Pr'2), 184.06 (CN3); IR v/cm-1 (Nujol): 1613m, 1583m, 

1416m, 1280m, 1123m, 1044m, 776m; acc. MS/EI m/z (%): 585 [M+, 100], 100 

[N(Pr‘)2+, 67]; MS (El) calc, for: C36Hs3N3Ni: 585.358, found 385.358; anal. calc, for 

C36H53N3Ni (585.358): C 73.72, H 9.11, N 7.16. Found: C 73.38, H 9.26, N 7.06 

parameters, R(observed) = 0.0749, wR2 = 0.1252, largest difference peak and hole: 

1.065 and -0.974 e.A'3.
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[Nin(K2 -N ^ ’-Giso)(!]5-Cp)]: 116

LiCp (40 mg, 0.52 mmol) in THF (5 cm3) was added to a solution of [Nin(K2-N,N- 

Giso)(p-Br)]2  (109) (350 mg, 0.26 mmol) in THF (5 cm3) at -78 °C. The resultant 

mixture warmed to room temperature overnight. Volatiles were then removed in 

vacuo and the residue extracted with hexane (20 cm3). Filtration, concentration and 

cooling to -30 °C overnight yielding lilac crystals of 116.

(70 mg, 41%), M.p. 210 °C; 'H NMR (300 MHz, C6D6) 303 K): 8-13.60 (br. s, 5H, 

Cp), 0.84 (m, 20H, Cy), 1.56 (d , V hh = 6 H z, 12H, Pr1), 2.77 (d , V hh = 6 H z, 12H, 

Pr1), 5.27 (m, 2H, Cy-H), 5.71, (m, 4H, Pri-H), 8.18, (d , V hh = 6 H z, 6H, Ar-H); 13C 

NMR (75 MHz, CtJDe 303 K): 8 23.13 (CH2), 25.47 (CH2), 27.27 (CH(CH3)2), 31.82 

(CH(CH3)2), 32.73 (CH(CH3)2), 34. 85 (CH(CH3)2), 37.67 (CH(CH3)2), 41.51 (CH2),

43.70 (HCN), 71.73 (o-CfttsPrV, 117.59 (p -C ^ P r1̂ , 134.05 (m-C6H3Pr'2), 162.54 

(ipso-CfyWiVr'2)\ IR v/cm-1 (Nujol): 2361m, 11610m, 1319m, 1280m, 1019m, 696m, 

795m, 773m, 752m; acc. MS/EI m/z (%): 665 [M+, 100], 180 [N(Cy)2+, 86]; MS (El) 

calc, for C42H6iN3Ni: 665.421, found 665.4211; anal. calc, for C42H6iN3Ni 

(665.421): C 75.67, H 9.22, N 6.30. Found: C 75.67, H 9.23, N 6.26.

[Ni(K2 -N,N’-Priso)(p-N-N3)]2: 121

Me3SiN3 (16.2 mg, 0.14 mmol) was added to a solution of [ {Nin(K2-N,N'- 

Priso)}2(r|3:r|3-C7H8)] (110) (80 mg, 0.07 mmol) in hexane (10 cm3) at -78 °C. The 

resultant mixture warmed to room temperature overnight. Volatiles were then 

removed in vacuo and the residue extracted with hexane (20 cm3). Filtration, 

concentration and cooling to -30 °C overnight yielding yellow crystals of 121.

(43 mg, 53%); M.p. 195 °C; 'H NMR (300 MHz, C6D6, 303 K): 8 0.49 (d, V hh = 6 

Hz, 24H, Pr1), 1.26 (d, V hh = 6 H z, 24H, Pr1), 2.36 (d, V hh = 6Hz, 24H, Pr1), 3.47
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(sept, 6 Hz, 4H, Pr'-H), 4.09 (sept, V hh = 6 H z, 2H, IV-H), 6.81 (m, 12H Ar-H); 13C 

NMR (75 MHz, C6D6 303 K): 8 22.96 (NCH(CH3)3), 23.17 (CH(CH3)2), 24.27 

(CH(CH3)2), 29.00 (CH(CH3)2), 47.42 (NCH(CH3)3), 123.54 (o-CsHjPrV, 125.62 

(p-CsHjPr^), 137.68 (m-QHjPr'j), 145.11 {ipso-C ^W i), 166.73 (CN3); IR vtcm' 

(Nujol): 2077m, 1263m, 1125m, 1050m, 937m, 874m, 798m, 755m, 661m; acc. 

MS/EI m/z (%): 1126.5 [M+, 10], 1068.6 [M+-2N2, 58], 420 [l/2M+-N(Pri)2, 100],

parameters, R(observed) = 0.0712, wR2 = 0.1299, largest difference peak and hole: 

0.967 and -0.448e.A'3.

[Ni(ic2-N,N'-Priso)(CO)]2: 122

[{Nin(K2-N,N'-Priso)}2(r|3:ri3-C7H8)] (110) (50 mg, 0.04 mmol was dissolved in 

toluene (10 cm3) in a Schlenk flask and cooled to -90 °C. The Schlenk flask (ca. 100 

cm volume) was filled with CO and sealed. The colour of the solution changed 

from red-brown to deep green over 20 h. All volatiles were then removed from the 

solution in vacuo and the residue extracted with hexane (10 cm3). The extract was 

concentrated to ca. 5 cm and stored at -30 °C overnight yielding deep green crystals 

of 122.

(30 mg, 68%), M.P. 130 °C (dec.); 'H NMR (300 MHz, C6D6, 303 K): 5 0.65 (d, 

V hh = 7 H z, 12H, Pr'), 1.23 (d, V hh = 7 H z, 12H, Pr!), 1.39 (d, V hh = 7 Hz, 12H, 

Pr'), 3.58 (sept, V hh = 7 H z, 6H, Pr*-H), 3.99 (sept, V hh = 7 H z, 4H, Pr'-H), 7.11 (m, 

12H, Ar-H); l3C NMR (75 MHz, C6D6 303 K): 8 23.1 (NCH(CH3)3), 23.41 

(CH(CH3)2), 24.64 (CH(CH3)2), 27.92 (CH(CH3)2), 49.03 (NCH(CH3)2), 123.38 (o- 

CsHjPrV, 124.96 (p-CeHjPrV, 140.40 (/n-C6H3Pri2), 144.81 (ipso-QHjPr1,), 166.81 

(CN3), 230.45 (CO); IR w'cm-1 (Nujol): 1847m, 1308m, 1204m, 1109m, 938m, 

874m, 797m, 752m, 659m; MS/EI m/z (%): 1096 [M+, 2], 1042 [M+-2CO, 53], 520

200



2.5 Ex per im e n ta l

[1/2M+-C0, 100], 420 [l/2M+-N(Pri)2, 73]; MS (El) calc, for Ce^gNeNfeO* 

1096.6296, found: 1096.6286; anal. calc, for C64H98N6Ni20 2: C 69.95, H 8.81, N 

7.65. Found: C 68.41, H 8.66, N 7.32 parameters, R(observed) = 0.0484, wR2 =

0.0927, largest difference peak and hole: 0.567 and -0.515 e.A'3.

N.B. 122 can also be formed in a 76% isolated yield by treating a toluene solution of 

[NiI(K2-N,N'-Priso)]2 (113) with excess CO.
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Appendix I

General Experimental Procedures

All manipulations were performed using standard Schlenk and glovebox 

techniques under an atmosphere of high purity argon or dinitrogen (BOC 99.9 %) in 

flame-dried glassware. All glassware was cleaned by overnight storage in an 

isopropyl alcohol solution of sodium hydroxide, followed by rinsing with dilute 

hydrochloric acid, distilled water and acetone, and was stored in an oven at 110 °C. 

Hexane, diethyl ether, toluene and tetrahydrofuran were pre-dried by storage over 

sodium wire and were refluxed under an atmosphere of high purity dinitrogen for

1 13 1twelve hours over either potassium or Na/K alloy prior to collection. H and C{ H} 

NMR spectra were recorded on either a Bruker AMX 500 spectrometer (500.13 

MHz, 125.76 MHz), Bruker DPX 400 spectrometer (400.13 MHz, 100.62 MHz), a 

Bruker DPX 300 spectrometer (300.13 MHz, 75.47 MHz), a Jeol Eclipse 300 

spectrometer (300.52 MHz, 75.57 MHz), or a Bruker AV 200 spectrometer (200.13 

MHz, 50.33 MHz) in CDCI3, C6D6, CDCI2, toluene-^ or THF-Jg (freeze-thaw 

degassed and dried over sodium) and were referenced to the residual lH or 13C

31 1resonances of the solvent used. P{ H} NMR spectra were recorded on a Jeol 

Eclipse 300 spectrometer operating at 121.66 MHz were referenced to 85 % H3PO4. 

El and APCI mass spectra and accurate mass El and APCI mass spectra were 

obtained from the EPSRC National Mass Spectrometric Service at Swansea 

University. IR spectra were recorded using a Nicolet 510 FT-IR spectrometer as 

Nujol mulls between NaCl plates. Melting points were determined in sealed glass 

capillaries under argon and are uncorrected. Microanalyses were obtained from 

Medac Ltd. or the Campbell Microanalytical Laboratory, University of Otago.
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Appendix II

Publications in Support of this Thesis

1. Synthesis and characterization of a diphosphaalkene, a diphosphaalkyne and the 

first diphosphavinyl lithium complex, F. Brodkorb, M. Brym, C. Jones, C. 

Schulten, J. Organomet. Chem., 2006, 691, 1025.

2. The first complexes and cyclodimerisations of methylphosphaalkyne (P=CMe).

C. Jones, C. Schulten, A. Stasch, Dalton Trans., 2006, 31, 3733. Designated a 

"hot article”

3. Differing reactivities of P=CMe and P=CBut towards a triphosphabenzene and a 

tetraphosphabarrelene: Synthesis of new phosphaalkyne pentamers 

(P5C5MenBuVn, n = 0, 1 or 2), C. Jones, C. Schulten, A. Stasch, Dalton Trans., 
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Inorg. Chem., 2008,10, 1555.
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p-Diketiminate Chemistry, R. P. Rose, C. Jones, C. Schulten, S. Aldridge, A. 

Stasch, Chem. Eur. J., 2008,14, 8477.
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