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Su m m ary

We study the SU(  3) A  T>£ graphs, which appear in the classification of modular in­
variant partition functions from numerous viewpoints, including determination of their 
Boltzmann weights, representations of Hecke algebras, a new notion of A2 planar algebras 
and their modules, various Hilbert series of dimensions and spectral measures, and the 
K-theory of associated Cuntz-Krieger algebras.

We compute the K-theory of the of the Cuntz-Krieger algebras associated to the S U (3) 
A V £  graphs.

We compute the numerical values of the Ocneanu cells, and consequently representa­
tions of the Hecke algebra, for the A V £  graphs. Some such representations have appeared 
in the literature and we compare our results. We use these cells to define an 5/7(3) ana­
logue of the Goodman-de la Harpe-Jones construction of a subfactor, where we embed the 
A2-Temperley-Lieb algebra in an AF path-algebra of the 5(7(3) A V £  graphs. Using this 
construction, we realize all S U (3) modular invariants by subfactors previously announced 
by Ocneanu.

We give a diagrammatic representation of the A2-Temperley-Lieb algebra, and show 
that it is isomorphic to Wenzl’s representation of a Hecke algebra. Generalizing Jones’s 
notion of a planar algebra, we construct an A2-planar algebra which captures the structure 
contained in the SU(3) AT>£ subfactors. We show that the subfactor for an AT>£ graph 
with a flat connection has a description as a flat A2-planar algebra. We introduce the 
notion of modules over an A2-planar algebra, and describe certain irreducible Hilbert A 2- 
Temperley-Lieb-modules. A partial decomposition of the A2-planar algebras for the A V £  
graphs is achieved.

We compare various Hilbert series of dimensions associated to A D E  models for S U (2), 
and the Hilbert series of certain Calabi-Yau algebras of dimension 3. We also consider 
spectral measures for the A D E  graphs and generalize to S U (3), and in particular obtain 
spectral measures for the infinite 5/7(3) graphs.
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Chapter 1 

Introduction

In this thesis we study the S U (3) A V E  graphs, which appear in the classification of mod­

ular invariant partition functions from numerous viewpoints including the determination 

of their Boltzmann weights, representations of v42-Temperley-Lieb or Hecke algebra, a 

new notion of A 2 planar algebras and their modules, endomorphisms of infinite factors, 

and K-theory of associated Cuntz-Krieger algebras.

In this preliminary Chapter 1 , we introduce the background, notions, notation and 

definitions which we need from operator algebras, particularly the theory of subfactors in 

von Neumann algebras and modular invariant partition functions in statistical mechanics 

and conformal field theory.

Then in Chapter 2, we warm up by explicitly constructing endomorphisms on Cuntz 

algebras for the inclusion of infinite factors associated to some very basic statistical me­

chanical models.

In Chapter 3, we study the K-theory of the Cuntz-Krieger algebras Og where Q is 

one of the Dynkin diagrams. We completely derive (K 0(Og), [1]) and compute its K \  

group. For the 5(7(3) AV E  graphs, we compute the K0, K \  groups for the A V E  and 

their 01-parts.

We compute in Chapter 4 the numerical values of the Ocneanu cells, and consequently 

representations of the Hecke algebra, for the A V E  graphs. Some of the representations of 

the Hecke algebra have appeared in the literature and we compare our results.

We use these cells in Chapter 5 to define an 5(7(3) analogue of the Goodman-de 

la Harpe-Jones construction of a subfactor, where we embed the A2-Temperley-Lieb or 

Hecke algebra in an AF path algebra of the S U (3) A V E  graphs. Using this construction, 

we realize all the 5(7(3) modular invariants by subfactors.

Chapter 6 looks at the A2-Temperley-Lieb algebra and the subfactors of Chapter 5
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from the viewpoint of planar algebras. We give a diagrammatic representation of the 

A2-Temperley-Lieb algebra, and show that it is isomorphic to Wenzl’s representation of 

a Hecke algebra. Generalizing Jones’s notion of a planar algebra, we construct an A2- 

planar algebra which will capture the structure contained in the 517(3) A V E  subfactors. 

We show that the subfactor for an A V E  graph with a flat connection has a description as 

a flat A2-planar algebra. We introduce the notion of modules over an A2-planar algebra, 

and describe certain irreducible Hilbert A2-T L-modules. A partial decomposition of the 

A2-planar algebras for the A V E  graphs is achieved.

In the final Chapter 7, we compare various Hilbert series of dimensions associated to 

A D E  models for 5/7(2), and compute the Hilbert series of certain ^-deformed Calabi-Yau 

algebras of dimension 3. We also consider spectral measures for the A D E  graphs in terms 

of probability measures on the circle T. We generalize this to 5/7(3), and in particular 

obtain spectral measures for the infinite 5/7(3) graphs.

1.1 Statistical Mechanical Models

1.1.1 T he Ising M odel

The Ising model is a lattice model in the plane, with sites constrained to be +  or — 

corresponding to a particle at that site with a positive or negative spin. This model 

is given by the Dynkin diagram A3, with the endpoints labelled by +  and —, and the 

other vertex is a dummy spin. A configuration is a distribution of the edges of A3 on 

the edges of the square lattice and the energy function, or Hamiltonian, H  is for nearest 

neighbour interactions, i.e. H(a) — — p 7<r(a)cr(/?), where a  is a configuration and the 

summation is over all nearest neighbours a , /3, with J  given by the interaction between 

nearest neighbours. Ising [55] introduced his model for a ferromagnet in an external 

magnetic field for the one-dimensional model with n lattice sites. As the external magnetic 

field tended to zero, he found that the solution admitted no phase transition, i.e. no 

sudden change from negative to positive magnetization (or vice versa), and concluded 

that his model did not exhibit phase behaviour in any dimension. But this is not true, 

since in higher dimensions it is possible for the model to have non-zero magnetization 

when the external field goes to 0. This is called non-zero spontaneous magnetization. 

Whilst the Ising model is a simplified description of ferromagnetism, other systems can be 

mapped exactly or approximately to the Ising system, which allows the use of simulation 

and analytical results of the Ising model to answer questions about the related models.
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Figure 1.1: Dynkin diagrams An, n =  2 , 3 , ,  and A

Figure 1.2: Dynkin diagrams Dn, n =  4 , 5 , . . .  , and D  

1.1.2 G eneralized M odels v ia  other G raphs

This model can be generalized to other lattice models using other graphs Q. The Dynkin 

diagrams A n of Figure 1.1 give the ABF models of Andrews, Baxter and Forrester [1]. Or 

one could use the other Dynkin diagrams of Figures 1.2-1.3, or more general graphs such 

as the 5(7(3) AT>£ graphs of Section 1.5.

The graphs Dn+2 are the Z2-orbifolds of the graphs A2n+i, n =  2 , 3 , . . . ,  whilst the 

tadpole graphs Tadn of Figure 1.4 are the Z2-orbifolds of the graphs A2n, n =  1 , 2 , . . . .

A configuration is now a distribution of the edges of Q on the edges of the lattice, and 

the Hamiltonian H  is again an energy function from the configuration space to R. We 

associate to each local configuration a Boltzmann weight Xi(u):

p / \ p>
X M  =  <  >Pi\u/P ,

for edges pi of G, i =  1,2,3,4.  The integrability condition is a sufficient condition for

1 2 3 4 5  1 2 3 4 5 6

8E> _____
1 2  3 4 5 6 7

Figure 1.3: Dynkin diagrams Eq, E7 and E8
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■------ -------— ... —  o
1 2  3 n-\ n

Figure 1.4: Graph Tadn

p̂ n>

Figure 1.5: The Yang-Baxter equation

the model to be solvable, namely that there exists an infinite set of commuting transfer 

matrices T(u),  where the u are in some interval. This is equivalent to requiring the 

Boltzmann weights Xi(u)  to satisfy the Yang-Baxter equation:

Xi{u)Xi+l{u +  vJXiO;) =  X i+l(v)Xi(u  +  v ) X i+l(u), (1.1)

which is given pictorially in Figure 1.5.

In the context of critical lattice SU( N)  models, di Francesco and Zuber take the 

following ansatz for Xi(u):

Xi(u)  =  sin(7r(A — u))l{ +  sin n uUi,

where 1* is the identity operator acting on site i and A is a real parameter. The Boltzmann

weight Xi(u)  satisfies (1.1) provided the Ui s satisfy the Hecke algebra relations H1-H3,

where S is related to A by S =  2 cos7rA.

At criticality, with

gi =  q~1 - U i , (1.2)

the Boltzmann weights reduce to the natural braid generators gi which satisfy

9i9j =  9j9i, if Ij  ~  A >  1, (1-3)

9i9i+i9i =  9i+i9i9i+i- (1-4)

When <7 = 1 , the <7i, i =  1, . . . ,  A , give a representation of the permutation group -Syv+i

acting on a line of N  + 1  sites, where, for i =  1 , . . . ,  N , gi is associated to the transposition

Ti}i+ T o  any a  E 5at+1, decomposed into \Ia\ transpositions of nearest neighbours a =  

riie/a Titi+1, we associate the operator

g o’ == J[ gi^
i€la
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which is well defined because of the braiding relation (1.4). Then the commutant of 

the quantum group S U (N )q is obtained from the Hecke algebra by imposing an extra 

condition, which is the vanishing of the g-antisymmetrizer

1.2 Hecke Algebras

1.2.1 Tem perley-L ieb A lgebra

The algebraic structure behind the Ising model is the Temperley-Lieb algebra. For integers 

n >  0 and any non-zero 8 G C, the abstract Temperley-Lieb algebra T L n(8) is defined to 

be the *-algebra generated by the identity 1 and projections e*, z =  l , . . . , n  — 1 , which 

satisfy the Jones-Temperley-Lieb relations:

We see that (1.6) is satisfied with Ui =  5ei, i =  1 , . . . ,  n — 1 . There is a standard pictorial 

representation of T L n(8) given by the *-algebra over C with basis consisting of all planar 

n-diagrams on a rectangle with n vertices along the top and bottom, due to Kauffman 

[69]. These n-diagrams consist of disjoint curves, called strings, whose endpoints are the 

vertices along the top and bottom edges of the rectangle such that every vertex is the 

endpoint for one string. Multiplication S T  of two n-diagrams S, T  is defined by placing 

S  on top of T  in such a way that the n vertices along the bottom of S  and along the top 

of T  coincide. These vertices are then removed, and the strings smoothed if necessary. 

The new diagram may contain closed loops 0>  which are removed, each one contributing 

a scalar factor 8. The adjoint T* of a planar n-diagram T  is given by reflecting T  about 

the horizontal line passing midway between its top and bottom edges. The element E* 

is shown in Figure 1.6. The elements 8~l Ei are projections which satisfy TL1 and TL2, 

and in fact any planar n-diagram can be written as a product of the E*, i =  1, . . .  n — 1, 

so that T L n(8) is isomorphic to the algebra of all planar n-diagrams.

(1.5)

For S U (2) it reduces to the Temperley-Lieb condition

UiUi±iUi - U i = 0 ,

and for S U (3) it is

(U{ — Ui+2Ui+\Ui +  Ui+i) (Ui+\Ui+2Ui+i — Ui+1) =  0 . (1.7)

( 1 .6 )

TL1 : e^ej =  ejei, if \j -  i\ >  1

TL2 : e-iei±\ei =  8~2ei.

5



1 2

E, =

Figure 1.6: n-diagram E{

1.2.2 H ecke A lgebras for SU(N)

The algebraic structure behind the S U (N )  models are the Hecke algebras IIn{q) of tyPe 

.An_i, for q G C, since the Boltzmann weights lie in ((g)N MN)SUW  or ( ® NM N)SUW ' .  

The Hecke algebra Hn(q) is the algebra generated by operators 1, U\, U2, ■ ■ •, Un- \  which 

satisfy

HI: Uf =  8Ui,

H2: UiUj =  UjUi, |i j \  >  1,

H3: UiUi+\Ui — U{ =  Ui+iUiUi+i — f/j+i,

where £ =  g +  g-1 . We will say that a family of operators {Um} satisfy the ^-Tem perley- 

Lieb relations if they satisfy the Hecke relations H1-H3 and the extra condition (1.7). If 

we let g3 — q~l -  Uj, then H1-H3 are equivalent to the relations

( q ' 1 -  9 j ) ( q  +  9 j )  =  0,

9i9j =  9 j9 i>

9i9i+l9i =  9i+l9i9i+l•

When 9 = 1 ,  the first relation becomes g? =  1, so that Hn( 1) reduces to the symmetric, 

or permutation, group Sn, where gj represents a transition (j, j  -I-1).

It is well known that the irreducible representations of the symmetric group Sn can 

be labelled by Young diagrams with n boxes such that mi >  m 2 >  • • • >  m n >  0, where 

mi denotes the number of boxes in row i. A Young tableau is obtained by inserting the 

numbers 1 , . . . ,  n in the boxes of a Young diagram, and a Young tableau is called standard 

if the entries in each row and each column are increasing. The dimension of the irreducible 

representation labelled by a Young diagram A is equal to the number of different standard 

Young tableaux that can be obtained from the diagram. In a similar way as for the 

symmetric group Sn, Wenzl [112] defined representations of the Hecke algebra Hn(q) on 

Young diagrams with at most N  rows. Let H ^ q )  denote the inductive limit of the Hn(q). 

When q is not a root of unity, there is a representation it\  corresponding to each Young

6



diagram A. For x E Hn(q), the direct sum 7t(.t) := © a 7ta(.t), where the summation 

is over all Young diagrams A with n boxes, defines a faithful representation of Hn(q). 

Then if Bn — ® a 7tA( / /n (<?)), where the summation is again over all Young diagrams A 

with n boxes, Bn C Bn+1 has inclusion matrix given by the adjacency matrix for the 

SU( N)  graph A^°°\ where B0 =  C is identified with the apex vertex ( 0 , 0 , , 0). When 

q =  e2 n l there are representations corresponding to a special class of Young diagrams, 

called (N,  /)-diagrams, for which Aj Ayv < I — N,  given by 7̂ '^ .  For x E Hn(q), 

the direct sum 7r̂ N,l^(x) := © A7rA(:r), where the summation is over all (TV, /)-diagrams A 

with n boxes, defines a faithful representation of Hn{q). If Bn is the algebra defined by 

£n =  0 A 7rA7V’̂ ( //n(<7)), then Wenzl showed that Bn C Bn+1 with inclusion matrix given 

by the adjacency matrix for the S U( N)  graph A^l\  where B0 =  C is identified with the 

apex vertex ( 0 , 0 , . . . ,  0) of A ^ .  A representation p of Hn(q) is called a (^-representation 

if p(S~l Ui) is a self-adjoint projection for i =  1 , . . . ,  n — 1. The following result is contained 

in [112, Theroem 3.6]:

T h eorem  1.2.1 (a) For q E M, q >  1, if  p is a C*-representation of H00(q) with trace

tr such that tx(p(5~l Ui)) =  (1 — q~N+1) / ( l  +  <?)( 1 — q~N), then tr is a Markov trace 

and the traces are non-zero on those representations of Hn(q) which belong to Young 

diagrams with at most N  columns.

(b) For I >  N  and q =  e± 2 n i if p is a C*-representation of / / 00(qf) with Markov trace 

tr such that tT(p(S~1Ui)) =  (1 — q~N+1) / ( l  +  q)(l — q~N), then the representation 

corresponding to the GNS construction with respect to this trace is equivalent to 

n̂ N,l\  and has positive definite trace.

1.3 Representation Theory

1.3.1 R epresentation  T heory o f SU(N)

Let p : SU (N ) —* Myv denote the fundamental representation of SU (N ).  The restriction 

of p to the (N  — l)-torus T N~l is given by

(/?|t n-i)(£i, t2, . . . ,  £yv-i) =  diag(£i, t2, . . . ,  £yv-i, t), (1.8 )

where t =  txt2 • • • £yv-i, and U E T.

Every irreducible representation pm is classified by a signature, or highest weight, 

m =  . . .  ,myv_i), where my are integers such that mi > m2 > • • • >  myv_i >  0,

for i =  1 , . . . ,  N  -  1. A signature m can be represented by a Young diagram with at most
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N  — 1 rows, and m* boxes in the ith row, i =  1 , . . . ,  N  -  1. The trivial representation has 

signature ( 0 , 0 , . . . ,  0) and corresponds to the empty Young diagram 0  with no boxes at 

all, whilst the fundamental representation has signature ( 1 , 0 , 0 , . . . ,  0) and corresponds to 

the Young diagram □ . Given a Young diagram m, we can obtain a new Young diagram by 

adding a box to one of the rows (including the N th row if ra^-i > 0). Suppose the Young 

diagram m  has N  — 1 rows, so that m ^ -i > 0. Then if we add a box in the N th row, we 

obtain a diagram with N  rows and we delete all the boxes in the first column. The fusion 

rules of the irreducible representations pm of SU(N)  with respect to the fundamental 

representation p are given by

Pm 0  p =  @  Prn>'
m'>m

where on the right hand side we have a direct sum of all irreducible representations pm> 

for which the Young diagram of m! can be obtained from the Young diagram of m  by 

adding one box. Let ej, j  =  1 , . . . ,  N,  be the unit vector given by the edge on the fusion 

graph from a vertex labelled by a Young diagram /  to the vertex labelled by the Young 

diagram obtained by adding a box in the j th row. The fusion graph for SU( 2) is the 

infinite Dynkin diagram ^4  ̂ (see Figure 1.1), where the signatures are just the integers 

k >  0. It is well known that the kth symmetric product of C2 gives the irreducible level 

k representation.

For SU(3)  the fusion graph is the infinite graph 4̂̂ °°̂ . The graph is illustrated 

in Figure 1.7, where the vertices are labelled by “Dynkin labels” (Ai, A2): if p, q denote 

the number of boxes in the first, second row respectively of a Young diagram, the corre­

sponding Dynkin label is (p — q , q). There are then edges on from the vertex (Ai, A2) 

to the vertices (Ai +  1 , A2), (Ai — 1, A2 +  1) and (Ai, A2 — 1), i.e. edges in the directions of 

the vectors ei, e2, e3 respectively.

1.3.2 Loop G roups

The loop group L S U (TV) is the group of smooth maps from S’1 into S U (N ) under pointwise 

multiplication. The projective representations of LSU(N)  x Rot(S'1), where the rotation 

group acts on the maps of S l in a natural way such that the infinitesimal generator Lq of 

the rotation group is positive, are called positive energy representations and are classified 

by irreducible representations of SU( N)  and a level k . To obtain positive energy, the 

admissible irreducible representations at level k are those labelled by signatures g such 

that <71 < k, and g\ +  g2 +  • • • +  gN-i <  k. For N =  3, these correspond to the vertices 

(Ai, A2) of the infinite graph ^4(oo) where Ai +  A2 <  n -  3. For a level k we have finite



(0,0) (1,0) (2,0) (3.0) (4,0)

Figure 1.7: The infinite SU (3) fusion graph

A
*4(4) A i5) A ((,)

Figure 1.8: A ^  for n =  4 ,5 ,6

graphs .4(n\  where n =  fc +  3. These are illustrated in Figure 1.8 for n =  4 , 5 , 6 .

For a level k, let A =  (A], A2) be the irreducible representations of S U (3) which label

where the numbers N% are non-negative integers. For a group G, if ir is a representation 

on the complex vector space V  then the conjugate representation W is defined on the con­

jugate vector space V* by n(g) =  n(g) for all g E G. The conjugation of a representation 

A =  (Ai.A2) is given by A =  (A2,Ai),  and the fusion rules are invariant under conjuga­

tion: N j =  N ^ .  The colour (sometimes called the triality in the literature) r(A) of a 

representation A is given by r(A) =  Ai — A2 mod 3. For the fundamental representation 

p =  (1,0),  the fusion rules define the adjacency matrix A^n) of the graph ^4^, that is,

the vertices of A^n\  n =  k +  3. These representations obey the fusion rules:

( 1 .10)

( A ^ ) ) v  =  N fx [110].
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1.4 Modular Invariant Partition Functions

Modular invariant partition functions come about as continuum limits in statistical me­

chanics, i.e. letting the lattice spacing tend to zero whilst simultaneously approaching 

the critical temperature. They play a fundamental role in conformal field theory. Let 

Xx =  tr(<7Lo-C//24) denote the character of the irreducible representation A, which is the 

trace in the positive energy representation of a loop group, where q =  e2niT, Im(r) >  0. 

Here Lq is the conformal Hamiltonian which is the infinitesimal generator of the rotation 

group on the circle. Typically, the characters are transformed linearly under the action of 

S L {2;Z), e.g. X a ( - l / r )  =  Y^bSa*Xb{r), Xa{r +  l) =  T ,bTa,bXb(r), where S  is a symmet­

ric unitary matrix which diagonalizes the fusion rules (see (1.11)), with Sx,o >  £ 0,0 >  0, 

and T  is a diagonal matrix. Then a modular invariant partition function is of the form

2 (T) =  5Z ^A # Xa(7-)X(i(t )*-
X , f i

The problem of the classification of modular invariants is to find all non-negative integer 

valued matrices Z  such that Z S  =  S Z , Z T  =  T Z ,  subject to the constraint Zo,o =  1 

(which reflects the physical concept of the uniqueness of the vacuum state). The non­

negative integer requirement on the entries of Z  comes from the understanding of the 

entries as multiplicities of the decomposition of the underlying Hilbert space. The trivial 

modular invariant, given by Zx,  ̂ =  Sxlfx or Z =  ^ a  Ixa|2 is always a solution. There may 

also be permutation invariants Z =  5ZaXaa£,(a)> where u j  is a permutation of the labels 

which preserves the fusion rules and o;(0) =  0. For a Rational Conformal Field Theory 

(RCFT) the partition function is at most a permutation matrix Z®xt, =  5T)ta>(r/), where r, 

t '  label the representations of an extended chiral algebra and u j  is now a permutation 

of these labels (see [89]). The extended characters y®xt can be decomposed in terms of 

the original characters xa as XrXt =  E a bT,xX\ f°r some non-negative coefficients 6 T)a , and 

%x,n =  5ZT bT,xbuj(T),n- The modular invariants are of two types: those for which uj is trivial 

are called type I, i.e. Zext =  J2T IXrXt|2> whereas those corresponding to non-trivial u j  are 

called type II, i.e. Zext =  Xr^X^r))*- The matrices Z \ f o r  these type I invariants

are symmetric, whereas for the type II invariants only “vacuum coupling” is necessarily 

symmetric: Z0,a =  Za,o for all A. However, we will modify this notion of classifying type 

in Section 5.2.7, where type will instead refer to an inclusion TV C  M  of factors.
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1.4.1 C lassification o f Z  for SU( 2)

The S U (2) modular invariants at level k are:

fc+i

^ +. =  E i^aI2. * > i .
A=1

4p+l 2p— 1
^D?p+2 E  |Xa|2 +  2|X2p+l|2 +  (xaxJp+2-a +  X4p+2-aXa)

Aodd=l,A/2p+l Aodd=2
2p—1

=  ^  Ixa +  X4p+ 2 - a |2 +  2 |x 2 p + i |2> & =  4p, p > l ,
Aodd=l

4p—1 2p-2
^£>2P+i =  Ixa |2 -+- 2 |x2p|2 H- ^ 2  (xxX*4p-x +  X4p-aXa) > k  =  Ap -  2, p  >  2,

Aodd=l Aeven=2
Ze6 =  |Xi +  X712 +  |X4 +  Xsl2 +  |X5 +  X n|2> A; +  2 =  12,

Z e7 =  Ixi +  Xi?|2 +  |X5 +  Xi3|2 +  Ix? +  Xnl2 +  1x912

+(X3 +  Xi5)Xg +  X9(X3 +  X15)*) k +  2 =  18,

Z es =  Ixi +  Xu +  Xl9 +  X29I2 +  1x7 +  X13 +  Xl7 +  X23|25 k +  2 =  30.

The A D E  classification of the SU(2) modular invariants is due to Cappelli, Itzykson and 

Zuber [18], and the list was shown to be complete in [19] and independently by [68]. The

original reason for the A D E  classification was because the diagonal entries Z\,x of the

modular invariant Zg at level k are given exactly by the multiplicity of the eigenvalue 

2cos(7rA//i) for the Dynkin diagram Q with Coxeter number h =  k +  2. The trivial 

modular invariant is Z ah+1. Let N \  =  ], where the are the fusion coefficients of

SU(2)k which are related to the S'-matrix by the Verlinde formula [110]

=  E  ( i - n )
G

The matrices Nx satisfy NxNp =  Nxyp.N„. Since the adjacency matrix of Ak+\ 

is given by the level k  fusion matrix N p of the fundamental representation p , A a  can 

be interpreted as the fundamental representation matrix in the regular representation of 

the fusion rules. The D  and E  graphs turn out to be the fundamental matrices Gp of a 

whole family of non-negative integer valued matrices (nimreps for short) Gx which provide 

a representation of the original SU{2)k fusion rules, i.e. GxGp =  N ^ G U. For the 

graphs An, the eigenvalues AJn, j  =  1 , . . . ,  n, are given by

XJn =  2cos(j7r/(n +  1)). (1.12)
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Writing the modular invariant associated to a graph Q as Z — JT  |x i|2 +  remainder, the 

integers i for which the diagonal term |x i|2 appears are called the Coxeter exponents of 

the graph. The eigenvalues \ j of the graph Q are given by

AJ =  2cos(7rmj//i), (1-13)

where rrij are the Coxeter exponents of Q and h is the Coxeter number.

The modular invariants arising from SU(2)k  conformal embeddings are (see [34]):

•  E6: SU(2)iq C S O( 5)i ,

•  Eg- SU( 2)28 C (G 2)i ,

•  Ef. automorphism or twist of the orbifold invariant D i0 =  SU( 2) iq/Z2-

1.4.2 C lassification o f Z  for SU(3)

The list below of all S U (3) modular invariants was shown to be complete by Gannon [45]. 

Each one has a corresponding A  V S  graph. We label the vertices of A ^  by /z =  (/zi,/z2)

for , /z2 =  0 , . . . ,  n — 3 such that +  /z2 < n ~  3. We define the automorphism A

of order 3 on the weights /z =  (/zI?/z2) of - 4 ^  (where the apex is denoted (0,0)) by 

A (nU (i2) =  {n -  3 -  iii -  /z2,Mi).

The identity invariant is

Za m =  E ,  n ^ 4- <1 1 4 )

and its orbifold invariant is given by

1
Zp(3k) =  -  IX/i +  XAfi  +  X a 2h \2 i k > 2 , (1-13)

neA(-3k'>
Hi  — H2  = 0n nod 3

z v (-) =  ^ 2  n > 5 , n ^ 0 m o d 3 .  (1.16)
H&AW

The conjugate invariant ZA(n)* =  C  and the conjugate orbifold invariants ZP(„). =  ZV(n)C 

are

2 AW* =  ^ 2  x »x i'  n > 4 ,  (1.17)
ĥ a w

z v(3k> — 2 X /  (x » +  Xa* +  Xa2ii)(Xji +  +  X7a )̂> k > 2 ,  (1.18)
neÂ 3k̂

Hi  — H2 =  0rnod3

Zvl„). =  n >  5, n =£ 0mod3. (1.19)
^e.4(n)
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There are also exceptional invariants, i.e. invariants which are not diagonal or orbifold, 

or their conjugates,

%£W =  |X(0,0) +  X(2,2)|2 +  |X(0,2) +  X(3,2)|2 +  |X(2,0) +  X(2,3)|2 +  |X(2,1) +  X(0,5)|2

+|X(3,o) +  X(o,3)|2 +  I X(i ,2) +  X(s,o) 12 7 (1.20)

^£(8). =  |X(0,0) +  X(2,2)|2 +  (X(0,2) +  X(3,2))(X(2,0) +  X(2,3))

+  (X(2,0) +  X(2,3)) (X(0,2) +  X(3,2)) +  (X(2,l) +  X(0,5))(X(1,2) +  X(5,0))

+  |X(3,0) +  X(0,3)|2 +  (X(l,2) +  X(5,0)) (X(2,l) +  X(0,5))» (1-21)

^ j 12) =  IX(0,0) +  X(0,9) +  X(9,0) +  X(4,4) +  X(4,l) +  X(l,4)|

+2|X(2,2) +  X(2,5) +  X(5,2)|2 — Zg(i2)t (1-22)£.

Z£(i2) =  |X(0,0) +  X(0,9) +  X(9,0) P +  |X(2,2) +  X(2,5) +  X(5,2)|2 +  2|X(3,3)|2

+  (X(0,3) +  X(6,0) +  X(3,6)) (X(3,0) +  X(0,6) +  X(6,3))

+  (X(3,0) +  X(0,6) +  X(6,3))(X(0,3) +  X(6,0) +  X(3,6)) +  |X(4,4) +  X(4,l) +  X(l,4)|2

+  (X(1,1) +  X(l,7) +  X(7,1))X(3,3) +  X(3,3) (X(l,l) +  X(l,7) +  X(7,l))» (1-23)

^ 5 12) =  l̂ (O.O) +  X(0,9) +  X(9,0)|2 +  |X(2,2) +  X(2,5) +  X(5,2)|2 +  2|X(3,3)|2

+  |X(0,3) +  X(6,0) +  X(3,6) |2 +  |X(3,0) +  X(0,6) +  X(6,3) | 2 +  |X(4,4) +  X(4,l) +  X (l ,4 ) | 2 

+  (X(1,1) +  X(l,7) +  X(7,1))X(3,3) +  X(3,3) (X ( l , l )  +  X(l,7) +  X(7,l))» (1.24)

%£(**) =  |X(0,0) +  X(4,4) +  X(6,6) +  X(10,10) +  X(21,0) +  X(0,21) +  X(13,4) +  X(4,13)

+ X ( 10,1) +  X ( l ,10) +  X(9,6) +  X(6,9) |2

+  |X(15,6) +  X(6,15) +  X(15,0) +  X(0,15) +  X(10,7) +  X(7,10) +  X(10,4)

+X(4,10) +  X(7,4) +  X(4,7) +  X(6,0) +  X(0,6) | 2 , (1-25)

where ZF{ 12), Z a  12) and ZS(24) are self-conjugate, and ZF{ 12) =  Z P(u)C. The modularC-1 12 t4 C5
invariant Z£{ 12) is the Moore-Seiberg invariant [89]. The modular invariants arising from 

SU(3)k conformal embeddings are (see [34]):

• SU (3)3 C  S'0(8)1, also realised as an orbifold S U (3)3/Z3,

• £ ^ :  SU (3 )5  C  SU(6)  1 , plus its conjugate S =  £ (8)/Z 3,

•  £f12̂ : SU( 3)9 C  (Ee)i, with two nimreps £ ^  and =  £[12̂ /%$,

(l2)
•  £b : Moore-Seiberg invariant, automorphism of the orbifold invariant SU(3) q/ Z z, 

plus its conjugate £^  =  £$12̂ *,

•  S U (3)21 C (E7),.
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1.5 SU(3) AVE  graphs

The S U (3) graphs A^n\  n =  4 , 5 , ,  were introduced in Section 1.3.2. There is another 

infinite series of graphs V^n\  where V ^  is obtained from A ^  by an orbifold procedure 

[76, 27]. The graph A (n) is left invariant by the Z /3Z  automorphism a  defined by rotation 

of the graph by 27r/3. When n is not a multiple of 3, there are no fixed points under the 

rotation. Then the graph is given by the “fundamental domain” of cr, i.e. if a vertex 

v is mapped to a{v)  =  v' then the vertices v and v' are identified, and similarly for the 

edges of A ^ . The the graph is not three-colourable. For n =  3k for some positive 

integer k, the vertex (k — 1, A: — 1) of A ^  is a fixed point. This vertex is split into three 

distinct vertices, and we also split the edges which joined the vertex (k — l , k  — 1) to 

other vertices. For the other vertices and edges of we have the same procedure as 

for n ^  0 mod 3. The graphs are three-colourable. The graphs are illustrated 

in Figure 1.9 for n =  5, 6, 7, 8, 9.

V V v{p)

Figure 1.9: for n =  5 , 6 , 7 , 8 , 9

Two more infinite series of graphs are given by A ^ * , V respectively, which are 

“conjugations” of the graphs A^n\  T>^ respectively. The term conjugation here is due to 

the fact that the modular invariants corresponding to A and P (n^are the conjugate 

modular invariants of those corresponding to A ^  and V^nK The graph A can be 

obtained from V by an orbifold procedure as described above. These graphs are 

illustrated in Figures 1.10 and 1.11. For the graphs .4 ^ ,  V^n\  A ^ *  and we call n 

the Coxeter number of the graph.

There are also a number of exceptional graphs: 8 ^  and its conjugate 6 ^ *  (which 

both have Coxeter number 8), S\l2\  i — 1 , . . . , 5 ,  (with Coxeter number 12) and £ (24)
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9  _ 9  Q _ 9  . 9  9  9  9  .9 . 9  9  9
1 2  1 2  1 2 3  1 2 3  1 2 3 4

,̂.1- A ,»- A m- A <n. A *» A m.

Figure 1.10: A M ' for n =  4 , 5 , 6 , 7 , 8 ,9

(̂<>)* p (7 > .

Figure 1.11: X>(n)* for n =  6 , 7 ,8 ,9

(which has Coxeter number 24). These are illustrated in Figures 1.12 - 1.15. The graphs 

S[l2\  i =  1, 2,3,  are isospectral, and indeed may be constructed as a Z /3Z orbifold 

of S^2\  and vice versa. The graph £ j 12̂  is the conjugate of the graph £g12̂  which is 

associated with the Moore-Seiberg invariant (1.24). Since we are looking for graphs which
/ -I n \

represent modular invariants through nimreps (M -N ) or from subfactors, the graph £3 

is discarded as it does not appear in these descriptions.

All the graphs except V^n\  n ^  0 mod 3, A ^ * , n =  4 , 5 , . . . ,  are three-colourable. 

For these graphs (except for the graph £5^ )  the distinguished vertex *, with the lowest

Figure 1.12: £^8̂  and its Z3 orbifold £(8)*
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s r

Figure 1.14:

( 1 2 ) s:( 12)

Figure 1.13: £{12\  and the virtual graph

s;( 1 2 )

Moore-Seiberg graph £g12̂ and conjugate Moore-Seiberg graph S[12̂

Figure 1.15: S ^
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Perron-Frobenius weight, is said to have colour 0, and there is a conjugation on the graphs 

which switches the vertices of colours 1 and 2. For S ^  there are two vertices with lowest 

Perron-Frobenius weight, one of colour 1 and one of colour 2, which are conjugate to each 

other. For the non-three-colourable graphs we define the j-coloured vertices to be all the 

vertices of the graph, for any j  =  0,1,2.

The Perron-Frobenius theorem for an irreducible square matrix A with non-negative 

entries states that the spectral radius of A is an eigenvalue, called the Perron-Frobenius 

eigenvalue, and that the corresponding (Perron-Frobenius) eigenvector has all entries pos­

itive. All other eigenvectors of A have at least one negative entry. Any irreducible graph 

has an adjacency matrix of this form. The eigenvalue (3̂  corresponding to the vertex 

a =  (ai,<72) of is given by [27]:

=  exp +  2<t2 +  3)^ +  exp ^ ~ ^ - ( 2cri +  °2 +  3)^ +  exP ~

(1.26)

and has a corresponding eigenvector (p^  =  {<p^)\- In terms of the S-matrix, we have an 

orthonormal basis of eigenvectors <p^ =  S \a for the eigenvalues

/?<*> =  Spa/ S ^  (1-27)

where we denote by 0 the apex (0,0) of the graph *4^ . In particular, the Perron-Frobenius 

eigenvector <p =  (p^ has the form [24]:

 ̂ _  sin((Ai +  l)7r/n) sin((A2 +  1)tt/n )  sin((Ai +  A2 +  2)tt/n )  „
*P\ • 2/ / \ • /o / \ 'sin (7r/n) sin(27r/n)

D efin ition  1.5.1 (Q uantum  N u m b ers) For m e  Z and q e  C \  {0,1,  - 1 } ,  the quan­
tum number [raL is defined as

qm — q m
[ro]« =  " P F 1"

Note that [m]q =  qm~l +  qm~3 +  qm~5 -I so that when q =  1 the quantum

numbers recover the integers: [m]i =  m.

Then, in terms of quantum numbers, the Perron-Frobenius eigenvalue is [3]9, where 

q =  exp(?;7r/n), and the eigenvector (p is

(Px =  [̂ 1 +  l]q [A2 +  l]q [A l +  A2 +  2}q 
[2]

Note, the quantum numbers [m]q satisfy the fusion rules for the irreducible represen­

tations of the quantum group SU (2)n, i.e.

min(a+6,2n —a—6)

[“].[*>]« =  (1-3°)
c= |6—a|: a + 6+c even
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whilst the entries of the Perron-Frobenius eigenvector (1.29) give a one-dimensional rep­

resentation of the fusion rules for the irreducible representations of the quantum group 

SU(3)n.
It will be shown in Section 5.2 that the above graphs all appear as the M -N  graphs 

for certain subfactors TV C  M , and we have an associated modular invariant as in Section 

1.4.2. Then by the Verlinde formula (1.11), the eigenvalues (3^  of these graphs are 

again ratios of the 5-matrix given by (1.27) for vertices A of A ^  which are the Coxeter 

exponents of the graph Q, where n is the Coxeter number of Q. The multiplicity of the 

eigenvalue is given by the entry Z \,\  of the corresponding modular invariant [13, 

Theorem 4.16]. For an AV E  graph Q with Coxeter number n we will often write [m] for 

[m]g when q =  exp(i7r/n).

1.6 Subfactors

1.6.1 A F  algebras

Let Co C  C\ C  C 2 C  • • • be a sequence of finite dimensional C*-algebras with inclusion 

maps j n : Cn —> Cn+\. An AF algebra is an inductive limit C^  =  lim_.Cn. To each 

AF algebra we can associate a Bratteli diagram. The Bratteli diagram associated with 

an AF algebra is not unique, however the AF algebra given by any Bratteli diagram is 

unique. For the inductive limit of multi-matrix algebras Cn the Bratteli diagram is given 

as follows. Let the embedding of C„ in C„+i be given by the multiplicity An =  (AjJ). For 

all n >  0 let q ^  denote the number of simple subalgebras or minimal central projections 

of Cn, and let the sequence fl[n] =  (ijn\  • • •, represent the minimal central 

projections of Cn. Then we draw a graph consisting of two parallel horizontal rows of 

vertices, where the top row has q ^  vertices indexed by Q[n] representing the minimal 

central projections of Cn, and the bottom row has g(n+1) vertices indexed by Q [n + 1], and 

we draw A ^  edges between the vertex along the top row and the vertex along the 

bottom row. It is convenient to adjoin an additional stage given by the unital embedding 

C =  Co —> Ci with multiplicity graph A0. The Bratteli diagram for the AF algebra is 

obtained by concatenating the multiplicity graphs An for n >  0, identifying the vertices 

along the bottom of the graph for An with the corresponding vertices along the top of the 

graph for An+i.
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For any two matrix algebras Mn, Afm, the embedding of Mn Mm is given by

/

x u

Xi \

Xk

\ 0

u ,

for some unitary u G Mm and unique integer k, where Xi =  x for i =  1 , . . . , k and 0 is a 

p x p zero-matrix for p =  m  — kn. Then suppose A , £ ,  A', B' are multi-matrix algebras 

and that the Bratteli diagrams for inclusions 7ri : A —> B, n2 : A' —» B' are the same, 

then 7Ti and 7r2 are unitarily equivalent and hence isomorphic. Hence a one-dimensional 

Bratteli diagram has a unique limit which determines an AF algebra.

However, if we consider a tw o-dim ensional B ratteli diagram  we obtain  a double se­

quence o f fin ite d im ensional algebras:

Co,o c Co,i c Co,2 c
n n n

CVo c Ci,i c Cia c
n n n

£ 2,0 c £ 2,1 c c 2,2 c
n n n

The Bratteli diagram alone is no longer sufficient to determine the embeddings of different 

horizontal or vertical AF algebras. Consider for example the squares given by

C

I
Ai

M2 <8>C 

i
m 2 ® m 2

for i =  1,2, where A\ =  C 0  M2, A2 =  M2 0  C. These two squares are not isomorphic 

since for i =  1 any element of the algebra M2 0  C in the upper right corner of the square 

will commute with any element A\ in M2 0  M2, however this is not true for i =  2. The 

extra ingredient needed to measure this freedom is the connection.

A connection is the assignment of a complex number

I p\

V P 1 .P 2  _  
P3iP4

I

P3| |P2

k j

G C
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1 pi
I — > I

to each square P3[  j & in the two-dimensional Bratteli diagram.

k ~P4* j
The unitarity property of connections is given by

E  X R £  ( l -31)
P3-P4

whilst the Yang-Baxter equation for connections is

E  * £ £ * £ £ =  E  x £ £ -  (1 3 2 )
o'li<7'2iO'3 cri,eT2,<73

The Yang-Baxter equation (1.32) is represented graphically as in Figure 1.5.

1.6.2 P ath  A lgebra M odel o f an A F  A lgebra

W e describe th e path  algebra m odel for a B ratteli diagram  which describes unital em bed­

dings. T he vertices at the r f i1 level o f th e B ratteli diagram  are those which correspond to  

the sim ple subalgebras o f Cn, i.e. the vertices fi[n]. For i £  fi[m ], j  £  fi[n] w ith  m < n ,  we 

denote by Path(«,ji) the space o f all paths in the B ratteli diagram  from i to  j .  For a path  

7  E Path(z, j ) ,  i is called th e source o f 7 , denoted  by s(7 ) =  ■/, and j  is called the range of 

7 , denoted by r (7 ) =  j ,  and |7 |, the length  o f the path  7 , is n  — m.  T he space Q,[m, n] of 

all paths from level m  to  level n is given by f2[m, n] =  UiGn[m] j 6n[n]Pa,th(i, j ) .  For p ath s of 

length  zero we let P a th (i, i) =  {«} and Path(z, i') =  0  i f «, i' £  Q[m] such th at i ^  . T hen  

n [m ,m ] =  fi[ra]. Let m  < n < m \  i £  Q[m], j  £  Q[n] and k £  Q[m']. T hen for any path s  

fi £  P a th (i, j ) ,  v  £  P a th (j, k), the path  fi • v  £  Path(z, k) is defined by concatenating  the  

paths fj. and v. For m < n  and any i £  j  £  Q[n], let Ai j  =  E nd(£2(P a th (z ,j ) ) )  gen­

erated by m atrix units (7 1 , 7 2 ) indexed by paths 7 1 , 7 2  E P a th (i, j ) ,  and A[m,n\  =  © A j  

where the sum m ation is over all i £  Q[m], j  £  Q[n]. Thus A[m,n]  is generated by m atrix  

units (7 1 , 7 2 ) where 7 1 , 7 2  E Q[m, n] where 5 (7 1 ) =  5 (7 2 ), r ( 7 1 ) =  r ( 7 2 ). For m  > m', 

n <  n', we em bed A[m,n\  in A{m',n'] by

(71 , 72) • 7i • • 72 • v ), (1-33)
P ,u

for 71,72 E Path(z,i), where the summation is over all /i £ Path(i',i), v £ Path(j, j') and 
all i' £ Q{m'}, j ' £ S7[n']. For mi < ni < m2 < n2, any ai £ j4[mi,ni] and <22 £ A[m2,n2] 
commute,

d\CL2 = d2ai. (L34)
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Then A[m , n] =  .4(0, raj'fl A[0, n], and in particular the centre of An =  A[0, n] is identified

with A[n, n] =  C^Qjn]) =  <CfiM, and the minimal central projections of A[0,n] can be

identified with f l[n] by (i, i) i. The AF algebra associated with the Bratteli diagram

is then A =  lim^ An where the embedding of An =  A[0, n] in An+i is given in (1.33). We

will write A(Q) for the path algebra A where the embeddings on the Bratteli diagram are
t  Vi

given by the graph Q, and will denote the finite dimensional algebra Ak at the k in level 

of the Bratteli diagram by A(Q)k-

1.6.3 Von N eum ann algebras

Let H  be a Hilbert space and B(H)  the space of all bounded linear operators on H.  For 

a subset S  C B(H)  the commutant of S  is S' =  {x £ B(H)\xy =  yx  for all y £ S}.  A 

von Neumann algebra is a *-subalgebra M  of B(H)  which contains the identity operator 

1 and satisfies M" =  M.  A finite dimensional von Neumann algebra is *-isomorphic to a 

multi-matrix algebra since it is a C*-algebra.

A trace on a finite dimensional matrix algebra A is uniquely determined up to a 

scalar multiple of the canonical un-normalized trace given by tr(x) =  JT Xiti for a matrix 

x =  ( )  £  A. Then a trace on a finite dimensional multi-matrix algebra A is determined 

by a sequence (s*), indexed by the minimal central projections of A, with s* £ C, called 

a trace vector, given by tr((BiXi) =  ]TV Sitri(xi), where tr* is the canonical un-normalized 

trace on the simple subalgebra A* of A. The trace is positive if >  0 for all i and 

faithful if Si >  0 for all i. Let A and B  be finite dimensional C*-algebras such that A 

is embedded in B with the embedding given by matrix A, and let tr^, tr# respectively, 

be the traces on A, respectively, with trace vectors s, t respectively. The traces are 

compatible under the embedding given by A if and only if s =  ATt , where AT denotes the 

transpose of A. Then we just write tr for the trace. We have an inner-product defined 

by the trace by (x, y) =  tr(t/*x) for x, y  £ £ ,  and we can regard A as a subspace of B. 

For any inclusion of (possibly infinite dimensional) von Neumann algebras A C B  with a 

finite faithful normal trace on B which coincides with a finite faithful normal trace on A, 

the conditional expectation Ea . B —* A is the projection Ea onto A such that £U(6) is 

the unique element b' £ A which satisfies tr(b'a) =  tr(6a) for all a £ A. We call Ea the 

conditional expectation of B  onto A with respect to the trace.

D efin ition  1.6.1 Let
Mi  C M2 

U U

a / 3 c  m 4
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be four von Neumann algebras with a finite faithful norm,al trace on M4. We say they 

form a commuting square if they satisfy one of the following equivalent conditions, 

where the conditional expectations are relative to the trace:

1. E m 2 ( M 3) C  M i .

2. Em3 (M2) C  Mi.

3. Em2 Em3 — Emi ■

4■ Em3Em2 =  EMl.

5. Em2 Em3 =  Em3 Em2 and Mi =  M 2 n  M%.

6 . EMl{x) =  Em2 (x) for x e  M3.

7. EMl(x) =  E Mz{x ) for x G M2.

The following proposition regarding von Neumann inclusions is found in [51]:

P ro p o sitio n  1 .6 .2  Let N  C M  be a pair of von Neumann algebras, with a finite faithful

normal trace tr on M  and let S  be a self-adjoint subset of N . Then

S ' D M  C  M  

U U

S ' H N  C  N

is a commuting square.

1.6.4 Factors

A factor is an infinite dimensional von Neumann algebra M  which has trivial center, 

i.e. M  fl M' =  C. Factors are classified into types In (n =  l , 2 , . . . , o c ) ,  III, Iloo and

III. Type In factors are matrix algebras Mn(C), and a type 1^ factor is B(H)  on an

infinite-dimensional Hilbert space H . A Hi factor is an infinite dimensional von Neumann 

algebra M  which has a unique a-weakly continuous linear functional tr, called a trace on 

M,  satisfying

1. tr ( l)  =  1,

2. tr(x*a:) > 0 for all x G M,

3. If ti{x*x) =  0, then x =  0,
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4. tv(xy) =  t i (yx)  for all x , y  E M.

A type IIqo is a tensor product of a type IIi factor and B(H).  All other factors are called 

type III. A factor M is said to be finite if the multiplicative identity 1 of M is a finite 

projection in M , or equivalently, if M does not contain any non-unitary isometry, and 

is called infinite otherwise. If M is a factor and A" is a von Neumann subalgebra of M  

which is also a factor then we call N  a subfactor.

A hyperfinite von Neumann algebra is defined to be the weak closure of a union of 

an increasing sequence of finite dimensional von Neumann algebras. If A is the union 

of a sequence M0 C Af] C • • ■ of finite dimensional von Neumann algebras with a trace 

tr which is compatible with the inclusions. Then we define an inner-product on A by 

(x, y) =  tr{y*x), and completing A with respect to this inner-product we obtain a Hilbert 

space H.  If n(a) E B ( H ) is the extension of the left multiplication by a on A, we 

can regard 7r(A) as a *-subalgebra of B(H).  We can extend tr to the weak closure 

M of A  by tr(:r) =  ( x l , l ) ,  where 1 E H  is the image of 1 E A. This trace satisfies 

conditions 1-4 above, and hence the hyperfinite von Neumann algebra M is a Hi factor. 

All hyperfinite III factors are isomorphic, however the position of one hyperfinite Hi 

embedded as a subalgebra of another hyperfinite Hi has a rich structure. The investigation 

of this structure is the main point of subfactor theory.

Suppose M is a Hi factor acting on a Hilbert space / / ,  where the action of M on / /  is 

isomorphic to the action of M on (@J=1 L2 (M))p  by left multiplication, where p =  (pjk) 

is some projection in M„(C) ® M with E M. The coupling constant dimmH  of M  

in H  is defined as X]j=i T̂(Pjj)- ^  action of M on H is not of this form then the 

coupling constant is set to be oo. For dim mH  < oc, the commutant M'  of M in B(H)  

is a Hi factor with a unique trace trM/. The Jones index [M : N] of a subfactor N  in M  

was introduced by Jones in [61]. It is defined to be dim^L 2 ( M ) : where N  acts on L2 (M)  

by left multiplication. It was shown in [61] that the Jones index has value r if and only 

if r E {4cos2(7r/n)|n =  3 ,4 ,5 , . . .  } U [4, oo].

For a subfactor N  C M  with finite index, the relative commutant N'  D M  is finite 

dimensional, and in particular, if [M : N] <  4 then N ' n M  =  C. For a subfactor with finite 

index, the conditional expectation En : M  —> N  naturally extends to a projection ei of 

L2(M)  onto L2(N).  The algebra Mi =  (M ,ej) is the von Neumann algebra generated by 

M  and ei, and this construction is called the basic construction. Let J be the conjugation 

on L2(M)  defined by J(x) =  x* for x E M, where we use the notation x to denote the 

image of x in L2(M).  The algebra Mi is also a Hi factor since Mi =  JN'J.  The basic 

construction can be repeated for M C Mi to obtain M2 =  (Mi, e2), and continuing in this
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way gives the Jones tower N  C M C M\  C M2 C • • • of Hi factors. The Jones projections 

ej, j  =  1 ,2 , . . .  , satisfy the Temperley-Lieb relations TL1, TL2, with 8  =  [M : N] 1̂ 2. 

Since the Jones index satisfies [M : N] =  [M : P][P : n] for factors N  C P  C M with 

[M : N] <  00, and [Mi : M] = [M : AT], the Jones index [Mfc : N] = [M : N k+1] < 00, 

and the higher relative commutant N'  fl Mjt is finite dimensional.

For a finite index subfactor TV C M, the map $  : N' D M —* M ’ H Mi given by 

$ (x ) =  Jm x*Jm , where Jm is the canonical conjugation on L2(M ), is an anti-isomorphism 

which is not trace-preserving in general. Trace-preserving means that the normalized trace 

trjv' on N' coincides on N' fl M with the trace tr on M. By [100, Cor. 4.5], $  is trace- 

preserving if and only if En>nA/(ei) G C for a Jones projection ei E M\.  Such a subfactor 

N  C M  is called extremal.

For a inclusion of type III factors with finite index, the lattice of higher relative 

commutants M[ D Mj is called the standard invariant of the subfactor. The standard 

invariant can be described as a certain category of bimodules [91]. In [102], Popa obtained 

an axiomatization of lattices of inclusions (Aij)0 <i<j, which he called standard A-lattices, 

which is the standard invariant for extremal subfactors. More recently, the standard 

invariant has been described as a planar algebra [64].

1.6.5 Sectors

Let M, N  be type III factors. We denote by Hom(M, N)  the set of all unital morphisms 

from M to N,  and End(M) =  Hom(M, M ). For p € Hom(M, TV), the positive number 

dp =  [N : p(M )]1/2 is called the statistical dimension of p, where [N : p(M)] is the Jones 

index of the subfactor p{M)  C N.  For pi, p2 G Hom(M, N ), we denote by (pi, P2) the set 

of intertwiners between p\ and P2, that is

(Pi,P2) := {y  € N\ypi (x)  =  p2 {x)y for all x G M }.

Let p i,p 2 G Hom(M,TV). We say that pi and p2 are unitarily equivalent if and only if 

there exists a unitary u G M such that pi =  Ad(u) o p2.

We call the equivalence class [p] of a morphism p a sector, and denote by Sect(M, N)  

the quotient of Hom(M, N)  by the unitary equivalence. We can define sum and product 

of sectors on Sect(M ) := Sect(M, M) which satisfy associativity and distributivity in the 

following way: Since we assume M to be a type III factor, there exist non-zero projections 

Pi,P2 £ M and isometries v \ , v 2 G M such that ViV* =  Pi, i =  1,2, and p\ + p 2 =  1- For 

Pi, p2 G Hom(M, N)  we define p G Hom(M, N)  by p(x) =  v\pi{x)v{  -I- v2 p2 (x)vl  so that 

[pi] © [p2] =  [p]. This sum is well-defined as it does not depend on the choice of pi
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and P2 in their classes or on the choice of v\ and V2 - if h,  t<2 are two other isometries 

in Af satisfying the t \ t \  +  t2 t\  =  1 then u =  t iv{  +  t2v£ is a unitary in (p, p') where 

p'(x) =  t \pi(x) t \  +  t2 p2 (x)t%. The sector [p] contains the sector [pj, i =  1,2, and we will 

write [p] D [pi]. Product is defined by the composition of morphisms p\ £ Hom(Af, TV) 

and p2 G Horn(TV, P)  [pi] [p2] =  [P1P2], so that [P1P2] G Sect(Af, P).
We say that p G Hom(Af, TV) is irreducible if (p, p) =  1. This is equivalent to the 

subfactor p(M)  C TV having a trivial relative commutant, i.e. TV n  p(Af)7 =  C. We call 

p self-conjugate if and only if [p] =  [p], where [p] is the conjugate sector of [p], as given 

by Longo [80]. For irreducible p £ Hom(Af, TV), the conjugate sector [p] £ Sect(TV, Af) 

is the irreducible sector such that [p][p] D [id^/], i-e. the sector product [p] [p] contains 

the identity sector [idji/]- Then the multiplicity of [idA/] in the decomposition of [p][p] 

is one, and the product [p] [p] also contains [id^] with multiplicity one. We denote a 

representative of the sector [p] by p. Note that a  £ Aut(M ) is self-conjugate if and only 

if a 2 is inner, i.e. a 2 is given by a 2 (x) =  uxu* for some unitary u £ Af.

Let M, N  be infinite factors with N  C M.  A vector £ in a Hilbert space H  is a 

cyclic vector if H — A/£, and separating if x£ =  0 for x £ M  implies x =  0. We can 

represent Af on H  where there is a vector £ £ H  which is cyclic and separating for 

both Af and N.  Let Jm be the corresponding Tomita-Takesaki modular conjugations 

where J ^ N J n =  TV7, Jm M J m =  M', and define the canonical endomorphism 7  from M  

to TV as in [79] by 7 (.t) =  Jn Jm %Jm Jn - Different choices of Hilbert spaces and cyclic 

and separating vectors give a unitarily equivalent endomorphism, hence the sector [7 ] is 

well-defined. We can then obtain a sequence of inclusions of factors

• • • C 7 7 (TV) C 7 7 (Af) C 7 (TV) C y (M )  C TV C M.

This sequence called the Jones tunnel. By using the endomorphism C(.r) =  Jm Jn x Jn Jm 

instead we can also extend the sequence to the right by

N  C M  C C(N)  C C(M)  C CC(W) c  • • ■

which is called the Jones tower. However the sequence has period two in the sense that 

the inclusion y (N )  c  'y(M) is isomorphic to the inclusion TV c  Af, and the inclusion 

7 (A/) C TV is isomorphic to A/ C C(^0- The restriction of 7  to TV is called the dual 

canonical endomorphism 0 =  *y\N for TV C Af.

If we denote the inclusion homomorphism by 1 : TV <-* Af, a conjugate homomorphism 

I : Af —> TV is given by l{x) =  j ( x )  for x £ Af. Then the canonical and dual canonical 

endomorphism are 7  =  u  and 9 = It. Let Irr(TV) c  Sect(TV), Irr(Af, TV) c  Sect(Af, TV)
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denote the set of all irreducible subsectors of [01], [0lZ\, respectively, i =  1 ,2 , . . .  . The 

principal graph of the inclusion N  C M  is given by labelling the even vertices by the 

elements of Irr(AT) and the odd vertices by the elements of Irr(M, N),  and there are 

(Al, fi) edge connecting the vertex labelled by [A] E Irr(./V) to the vertex labelled by 

[//] E Irr(M, /V), where (AT, p) is computed by decomposing [Az] into irreducible sectors 

of Irr(M, N).  By Frobenius reciprocity we have (pA,cr) =  (A, per) =  (p, crA). It is well 

known that for index [M : N] <  4, the principal graph is one of the Dynkin diagrams 

An, Dn, Eg, E7, E8 [51, Cor. 4.6.6]. Ocneanu proved that Dodd, and E7 cannot appear as 

the principal graphs for any subfactor. This was later proved by Izumi in [57] using the 

fusion rules of sectors.

1.6.6 ct-induction

For a type III factor /V, let j^X^ denote a finite system of irreducible inequivalent en- 

domorphisms of N,  that is, for any A E jv'T/v there is a representative A E jv'T/v of the 

conjugate sector [A], and for any A,p E nXn,  a representative of each sector in the ir­

reducible decomposition of [A//] is in ^X^.  Then in particular id E nX^.  Let 

denote the set of finite sums of endomorphisms in n X n . A system ^X^  is braided if for 

any A,/x E n X n  there is a unitary operator s(X,p)  E (A,//), called a braiding operator, 

subject to the initial conditions e(id, p) =  e:(A,id) =  1 and which satisfy the Braiding 

Fusion Equations (BFE) [12, Def. 2.2]. For every braiding e+ =  e there is an “opposite” 

braiding e~ defined by e~(\,p,) =  (e+ (/x, A))*. A braiding is said to be non-degenerate if 

£+ (A,/i) =  e~(X,/x) for all pi E nXn  implies A =  id. If we have an inclusion l : N  *—> M  

of type III factors together with a non-degenerately braided finite system n X n  such that 

the dual canonical endomorphism 6  =  Zl E then we call N  C M  a braided

subfactor. The a-induced morphisms a j  E End(M ), which extend A E n X n , are defined 

by the Longo-Rehren formula [81] a j  =  Z_1 o Ad(e± (A, 0 ) ) o A o  Z, and satisfy a^i =  lX. 

A “coupling matrix” Z  can be defined [12] by Z \ >M =  (q J ,q “ ), where A,pi EE 

normalized so that Zo,o =  L By [11, 34], this matrix Z  commutes with the modular S- 

and T-matrices, and therefore Z  is a modular invariant. We let C End(M) de­

note a system of endomorphisms which are representatives of the irreducible sectors [/„AZ], 

A E nX^.  We define the chiral induced systems as the subsystems mX^  C mXm of all 

P such that [p] is an irreducible subsector of [aj], and the ambichiral, or neutral, system  

M K  =  n  mXm . The modular invariant Z  is a permutation matrix if and only if 

mXm =  mXm-

A modular invariant Z  associated to a subfactor N  C M  is said to be of type I if
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Zq x =  ($,A) for all A G n%n  [11]- This is equivalent to chiral locality holding, i.e. 

£+ (0, 0)v2 =  v2, where v G (id, tl) is an isometry. It was also shown in [11], using results 

on intermediate subfactors, that if a braided subfactor N  C M  has an associated modular 

invariant Z, there are intermediate subfactors N  C M± C M such that N  C M± satisfy 

chiral locality. The modular invariants Z ± associated to the subfactors N  C M± are 

called the type I parents of Z. We have Z j 0 =  Z\$  and ZqX =  Z0ia, so that Z + , Z~ is 

the type I modular invariant which has the same first row, column respectively as Z.

Evans and Pinto [40, Theorem 3.6] showed that if iV c  M a, N  C M b  are braided 

inclusions with associated modular invariants Za, Z<, respectively, then the product ZaZ j  

also arises from a braided inclusion through a process of a-induction.
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Chapter 2 

The Ising M odel

In this chapter we present the two-dimensional Ising model as a model on the Dynkin 

diagram v43, and its generalization to other graphs. We explicitly construct the extension 

of the Kramers-Wannier endomorphism to p on 0 2 — Oa 3 • For the inclusion of purely 

infinite factors M  D p{M)  with finite index \/3  and principal graph A5, we construct the 

endomorphism p2 on O3. We also show that the crossed product of OA3n+i by the Z2 

action induced by the Z2 action on /t2n+1 is stably isomorphic to 0D n+2, and similarly 

0 Dn+2 x Z2 is stably isomorphic to C?>i2n+1.

2.1 The Classical Ising Model

Ising introduced his model for a ferromagnet in an external magnetic field for the one­

dimensional case in his PhD thesis [55]. He found that the solution admitted no phase 

transition, i.e. a sudden change from negative to positive magnetization (or vice-versa), 

and concluded that his model did not exhibit phase behaviour in any dimension. But 

this is not true, since in higher dimensions it is possible for the model to have non­

zero spontaneous magnetization. Whilst the Ising model is a simplified description of 

ferromagnetism, other systems can be mapped exactly or approximately to the Ising 

system, which allows the use of simulation and analytical results of the Ising model to 

answer questions about the related models.

The two-dimensional Ising model of a magnet is modelled on a square lattice, where 

each site on the lattice represents a particle which has a spin, or magnetization. We 

restrict the spin to be either positive or negative, with values + 1  and -1 respectively.

In the case of a general discrete model on a lattice the Dynkin diagram shows which 

values sites that are connected may take. If we use a diagonal lattice and the Dynkin
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± ± ± ± +
• • • •

± ± ± + +
• • • •

± + + ± ±
• • • •

+ + ± ± ±

Figure 2.1: Dynkin diagram A3 Figure 2.2: Ising Configuration Space

diagram A3 (Figure 2.1), we have the configuration space of Figure 2.2 where ±  indicates 

that the site may take either the value +1 or -1. Here, the odd sublattice merely has 

frozen spins •, and we get a copy of the Ising model on the even sublattice. To complete 

the description of the model, we need to specify the Hamiltonian, or energy, in each 

configuration. Let us consider a square lattice Alm with L rows and M  columns, and we 

impose periodic boundary conditions. Then the Hamiltonian for a configuration a  G Plm 

where Plm is the space of all configurations on the lattice, is

M  L

H LM(a) =  +  J2a (i J ) a (i J  +  ! ) )
i=i j =i

where Ji, J2 are the interaction energies between neighbouring sites in the horizontal and 

vertical direction respectively.

For an observable F  of the system, the expectation value (F) of F  is given by 

Z p 1 Yla F(c7 )e~0H â\  where Zp is the partition function Zp =  Non­

zero spontaneous magnetization exists in the two-dimensional case, or at least,

lim inf > 0,
|A|—*00 A

X

where (cr(x))+ is the expectation value of the magnetization with +  boundary conditions, 

since Peierls’ estimate [98] says that for fixed a G (0,1) there exists @o such that for all 

(3 > (30 we have (<j(a:))J > a, independent of a: in A, with +  boundary conditions.

The spontaneous magnetization was computed by Onsager [97] as

* _  I I1 “  (sinh 2/?J)_4]s T  < T C 

m ~  1 0 T  > Tc,

where the critical temperature Tc satisfies sinh 2(3CJ =  1, (3C =  1/A:FC, as shown by Kramers 

and Wannier [77].

The existence of this spontaneous magnetization is related to the non-differentiability 

of the free energy. For arbitrary boundary conditions, the free energy per lattice site in
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finite volume is f b =  - ^ l o g Z b. In the thermodynamic limit, / ( / / )  =  limiAj—oo/^ (//) , 

where H  is an external magnetic field. /  exists and is independent of boundary conditions, 

but is not differentiable at H =  0. This can be shown without computing / ( / / ) ,  by using 

Peierls’ estimate. Onsager [96] computed /(0 )  in the two-dimensional case using the 

transfer matrix formalism, but we cannot explicitly compute / ( / / )  in higher dimensions, 

even for H =  0. The existence of phase transitions in higher dimensions of the nearest- 

neighbour Ising model can still be proved by putting all interactions to be zero, except in 

parallel two-dimensional planes, using Peierls’ estimate, then turning on the interactions 

in new dimensions and using the GKS inequalities.

2.2 Algebraic Approach

If we call the configuration along the row crJ =  (cr(l, j ) , . . .  E { ± 1 } M, then

a configuration cr will be given by

( aL\
a =

\ al J
Then the Hamiltonian is

n LM(o) =  j r  s(<7j ) + £  v ,
j =i j =i

where
M M

i=l i=l
and a, o' E { ± } M are row configurations.

This gives the partition function

Zp =  XtT l

where the transfer matrix T  is a symmetric 2M x 2M matrix with rows and columns 

labelled by the a  E { ± } M. For a, a' E { ± } M,

S(a)  +  S'(a')
=  exp( -  /?{ +

The transfer matrix T  can be identified with an element of the Pauli algebra =

=  1, • • • , M, a =  x ,y,  z) =  (g)^ M2, where, for i =  1 , . . .  M, crla is given by

£7, 1 ® cra 0  1 1 ,
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where crQ is in the place. The Pauli matrices aa are given by

’ 1 0

1
O

1

’ 0 1 "
G y crz =

0 - 1 1 1 . 0 1 1 0

These satisfy =  1, and oaop =  iay where (a ,/? ,7 ) is some cyclic permutation of 

(x ,y , z ) .  Then T  =  (2 sinh2 K \ )^ V ^  W V *,  where

M M

V =  exp K 2 ^ a 3xa  
3=1

3+1
X  '■ W =  expK \

j=i

and Kj =  p j j ,  s in l^ /f i sinh 2/^* =  1.

The matrix V  is diagonal (since the a3x are diagonal matrices), and comes from the 

interactions along horizontal rows. The scalar factor (2sinh2/fi)^V F  comes from the 

interactions between neighbouring rows.

The expectation value of a local observable F  on A/m, where I < L, m < M , is given

l F ^  =  tr(T L ps )
( trT L

where Fq1 is an operator in M 2 independent of L. Here the transfer matrix T  has 

strictly positive entries providing K\  is finite (or, equivalently, K {  ^  0). By the Perron- 

Frobenius theorem T  has a unique eigenvector f2M associated with the largest eigenvalue, 

with £lM (a) > 0 ,  <f £ { ± } M. Letting L —> 00 we pick out the eigenspace associated with 

the largest eigenvalue:

(f )™ =  (F$*nM, n M).

As M  —* 00, Fp* is eventually constant, and the states ^  on M 2

converge to a state Lpp on A p =  (g)^° M2.

The factor (2 sinh 2/Ci) ^  will cancel in {F)pM, and so we can regard K 2 and K {  as 

independent parameters. The extreme temperature p  =  0 corresponds to K 2 =  PJ2 =  0, 

and the extreme temperature P =  00 corresponds to K\ =  pJ i  =  00, or =  0.

After removing the scalar (2 sinh 2 /^1)^ ,  the transfer matrix is now T  =  V *W V *.  So 

T  is essentially W  when K 2 =  0, and V  when =  0.

If we let e2i =  (l+cr*)/2, e2i+1 =  (l-fcr^aJ.+1)/2 , then these e* are projections satisfying 

the Temperley-Lieb relations TL1, TL2.

The transfer matrix T  is then described by

M M
V =  expK 2 e2i+u W  =  expK* ^  e2i.

i= 1
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2.2.1 T he K ram ers-W annier Endom orphism

To extract further information we make use of the high temperature-low temperature 

duality used by Kramers and Wannier to locate the value of the critical temperature 

[77]. The Kramers-Wannier high temperature-low temperature duality, which, roughly 

speaking, interchanges the role of V  and W  in T, is effected by the shift e* —> ei+i.

The Pauli algebra is graded by the symmetry 6  =  Ad(a^), a period two au­

tomorphism, so that 9(crlz) =  a\,  9(alx) =  —o lx, ^(ay) =  ~ ay- Then the even part 

A p =  {x G Ap \6 (x) =  x} of the Pauli algebra A p =  ® NM2 is generated by o\  and 

axax+1. The Kramers-Wannier automorphism n on A p is then given by

it was shown in [39, Cor. 7.11] that ac does not extend to an automorphism of A p .

But ac can be extended to an endomorphism of the Pauli Algebra. Let Z /2  act on C2 

by transposition a. Then the crossed product C2 x (Z /2) =  M2, which is generated by 

unitaries u \ ,u 2 satisfying u2 =  l ,w iu2 =  —u2 ui, and M2 is generated by self-adjoint 

unitaries u i ,u 2, . . .  satisfying u{Uj =  UjUi, if |i — j | > 1, and UiUi+1 =  —ui+1Ui. We can 

then identify A p with C*(uj\j € N) by

Then (cr̂ cr̂ +1 } ^ i  =  {u3, u5, u7, u9. . . .  }. So the even part A p is generated by 

u2 ,u3, u4, . . .  , and A p by A p and u\. By the universal property of a crossed prod-

The Cuntz algebras O n were studied by Cuntz in [20]. They are the simple C*-algebras 

generated by n >  2 isometries S \ , . . .  Sn which satisfy the Cuntz relations:

so that Ac(e*) =  ei+\.

Although Ac2[^p =  cr, where a  is the unilateral shift

ac 2 {a3z) =  a i+\  k2 (aJxcr3x+1) =

{a3x)T= 1 =  ( wi» wi«3, U1U3 115, uiu3u5u7, . . .  }, 

{<7^}°^ =  {u2 ,u 4 ,u 6 ,u 8, . . .  }.

uct, there exists a unique endomorphism u : A p — > A p which sends u* to ui+1. Then ac 

is extended to v, since z^ p  =  Acĵ p. Then v 2\Ap =  cr, but v 2 ^  a  since z/2(<j£) =  axcr3+1.

2.3 The Cuntz Algebra On

(2 .1)
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Any C*-algebra generated by n isometries S [ , . .  .S'n on a Hilbert space, which also satisfy

(2.1) is canonically isomorphic to On. Isometries S i , . . .  Sn satisfying (2.1) may be con­

structed as follows [39, §2.8]: The (full) Fock space F on the Hilbert space Cn is given 

by
oo

F(C") =  0  ( <8>m C")
m = 0

where 0 mCn =  Cn 0  Cn 0  • • • 0  Cn, m  copies of Cn, and 0 °C n is the one-dimensional 

Hilbert space spanned by vacuum vector f2. We define t(£) G B(F)  by t(£) =  ®™=0 

where tm(£) : 0 mCn — > <0m+1Cn and are given by tm(£)f  =  £ 0  / ,  t°(£)Q =  £. We 

write U =  t(e{) where { e i , . . .  , en} is an orthonormal basis for Cn. These ti satisfy

i

where T  is the linear map T ^ f  =  ( / ,  77)^. The rank one operator Tq q G /C, the compact 

operators on Cn, which is an ideal in B(F).  Let it be the quotient map n : B(F)  — > 

B {F ) /K .  We have that t^[ 1 -  =  Te^e^f, so Tn =  .. , t n) contains

every rank one operator and so contains /C. Then n(Tn) =  C*(s \ , . . .  , sn) =  (9n, where 

Si =  tt(U) and satisfy the Cuntz relations (2.1).

2.3.1 E xtend ing v  to  th e C untz A lgebra O 2

To get a better understanding of the Kramers-Wannier endomorphism we extend it to 

the Cuntz algebra 0 2 ■ The extension of v  to p on 0 2 is given by Evans [35] as

p[(5+ +  <7S _ ) /v/ 2] =  5 + 5 ,5 ;  +  5 _ 5 _ , s : „  (2.2)

where a =  ± .  Then

p2( 5 , )  =  5 + 5 ,5 ;  + 5 . 5 _ ,5 !

=  5 + id ( 5 ,) 5 ; + 5 _ a ( 5 ,) 5 ! ,

where a  is the automorphism of O 2 which is the switch 5 ,  —* 5_„, i.e. a  =  a u where 

u =  az. This means that

[p]2 =  [id] © [a] (2.3)

as sectors on 0 2. Our notion of sectors on type III von Neumann algebras clearly makes 

sense in the (7*-setting of 0 2.

We give an explicit construction of the endomorphism p defined above (2.2) satisfying 

the Ising fusion rules (2.3), using a similar method to that which Izumi used to construct
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endomorphisms given by the fusion rules for the principal graphs of certain inclusions of 

factors [58, §3].
Let p be an endomorphism of a purely infinite factor M  such that M  D p(M)  has 

finite index y/2 and principal graph A3. Then, by [57, §3.2], p satisfies the following fusion 

rules of sectors:
[p2] =  [id]©[a], (2.4)

H M  =  M. [«21 =  M -

We have the following diagram of the descendant sectors:

[id] [«]

\P\

We take representatives p, a  such that

a - p  =  p, p • a =  Ad(U)  • p, (2.5)

where U is a unitary in (p2, p2) (since p2 =  pap =  Ad(U)p 2 and so p2U =  Up2). Equation 

(2.4) means that there exist isometries S i, S2 G M  which generate 0 2 and satisfy

S \ X  =  p2(x)S i, x G M, (2.6)

S2 a(x) =  p2 (x)S2, x e  M, (2.7)

i.e. Si G (id, p2) ,S 2 G (c*,p2). By [80, Cor. 5.8], dim(id,pp) =  1 if p, p are irreducible 

conjugate endomorphisms with finite index. Then dim(id, p2) =  1 since p is self-conjugate. 

Theorem 5.2 of [80] says that for every isometry v G (id, pp) there exists a unique isometry 

v G (id,pp) such that v*p(v) =  l / \ /2 ,  where \/2  is the index of M  D p{M).  Then we 

have Sjp(Si) =  ± l / \ / 2 .  Then from (2.5) we obtain a(S 2) G a ( ( a , p 2)) =  (id,p2), and 

since (id, p2) is one-dimensional and Si G (id, p2) , we have that o:(S2) =  cSi, with c G C. 

Since a (S 2 )*a(S2) =  a ( l )  =  1, we require cc =  1, and so o:(S2) =  cSi, G T. Changing 

the relative phase between Si and S2 if necessary (i.e. letting S[ =  dS \ ,  c ' g T ) ,  we may 

assume a(S 2) =  S\ and a (S i) =  a 2 (S2) =  S2.

From (2.6), (2.7) we obtain

S^p(S1)p(x) =  Stp(SiX) =  S Zp t f W S i )  =  a(p (x))S2-p(S,) =  p(x)S2'p(S ,),
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and so S2p(Si) G (p, p) =  C (since (p, p) is every element in M  which commutes with 

p(x) for all x G M, and so (p, p) =  p(M)' fl M  =  C for [M : p(M)] < 4). Then we have

p(5i) =  +  5252')p (5:) =  ± © 5 :  +  / 5 2, /  €  C.

Since ap(Si)  =  p(Si), we have ± l / \ / 2 S i  +  / S 2 =  ±1 / \Z2S2 +  fS \ .  Pre-multiplying 

by SI gives /  =  ± l / y / 2 . And so we have

p(Si) =  +  ^2)-

Since p2 is reducible as [p2] =  [id] © [a], the space of intertwiners between [id] © [a] 

and [id] © [a] is two-dimensional. By (2.6), SiSf  € (p2,p2) and similarly S2 S2 £ (p2 , p 2) 

using (2.7). Then we have (p2,p2) =  CSiSj +  CS2S2 , where the unitary U in (2.5) is 

given by U =  gS \S j +  <7,  ̂ £  C, and since UU* =  ggS\S\  +  J1J1S2 S2 =  1, we have

that p, h G T. Then since p(Sa) =  p (a(S i)) we obtain

p(52) =  Up{S\)U'  =  (95:5,* +  /*525 2') (± -)= (5 :  +  52))[ /' =  ± ^ = ( g S i  +  hS2) U ' .

Due to orthogonality of p{S\)  and p(Sa) we have that

p(S iYp(S2) =  i ( 5 f  +  5 2') ( ff5: +  hS2 )U‘ = l-  =  l- { g  +  h)U' =  0, 

and so h =  —g. Then

p(52) =  ± - ^ 9 9 ( 5 ,  -  52) (5 ,5 , ' -  525 2*)

=  ± © ( 5 ,  -  5 2)(5 ,5 ,' -  5 25 2).

We can still change S \ , S 2 —> tS \ , tS 2 (t £  T) if necessary, without changing the relative 

phase between Si and S2, and so we can take p (S i),p (S 2) to be:

P (5 i)  =  © ( 5 :  +  52),

p(52) =  © ( 5 : - 5 2) ( 5 , 5 r - S 25') .

This gives

p{(S1 +  S2) / V 2] = ^(S1 + S2 + (S1 - S 2)(S1S r - S 2S2+))
1
-(SitSiSJ + S2S2*) + S2(S!SJ + SaSJ) + SjSiSJ -  S & S .2
- S 2SiS* + S2S2S*)

= s1s1sr + s2s2s2*,
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and

p[(S, -  S2)/V2] = i(S i(S 15r + 5252“) + S2(5I51* + 5252* ) - 5 1S1S1* + S15252* 

+ S 2S tS l  -  S2S2SZ)

=  S iS2S2 +  5 25i5J .

Setting 5 i =  S+, 5 2 =  S', and o — ± , we have

/>[(S+ + <7S_)/>/2] = s +5„s; +  S-S -rS l„

as given earlier (2.2).

2.4 The Cuntz-Krieger Algebra O a

The Cuntz-Krieger Algebras O a were introduced by Cuntz and Krieger in [22]. They 

were a generalization of the Cuntz algebras and had a close relationship with topological 

Markov chains, whose theory is part of symbolic dynamics. Let E be a finite set of 

cardinality m. If A =  (A (z,j))ijee *s a finite {0, l}-m atrix the Cuntz-Krieger algebra 

O a is the C*-algebra generated by a family of (non-zero) partial isometries {Si\i G E} 

satisfying

s:sj = o idytj, s;si = '£,AdJ)sjs;. (2.8)

If the matrix A is irreducible then the Cuntz-Krieger algebra O a is unique up to isomor­

phism [22, Theorem 2.13] and is simple [22, Theorem 2.14]. An irreducible {0, l}-m atrix  

A defines a connected graph Q with m  vertices labelled by the elements of E, and for 

G E there is an edge from vertex i of Q to vertex j  if A ( i , j )  =  1. Then A is the 

adjacency matrix of the graph Q. We will often write Og for the Cuntz-Krieger algebra 

O a - Note, we can obtain a different graph by indexing the matrix A by m  edges labelled 

by the elements of E, where for any two edges z, j  G E there is a vertex v such that 

r(i) =  v =  s( j)  if A(z, j )  =  1.

The partial isometries {S'ilz G E} may be constructed in a similar way to the construc­

tion of the isometries that generate the Cuntz algebra (see §2.3) as follows [39, §2.10]: 

Let denote the vertex set of Q. If An(Q) denotes the paths of vertices of length n 

in Q, we define Fa =  © ^ 0  Then for each vertex i G 51 ,̂ we again define a

partial isometry on Fa by a shift action:

/  e ix i f  A ( ? ; , s ( . t ) )  ^  0
i ̂ x — \

I 0 otherwise,
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for any path x £ An(G), where {eu\v £  An(<?)} is a canonical orthonormal basis for 

£2(A„(£)). Then {Ti\i £ 93^} satisfy the relations

f y i  =  1 2  ^  ® ^
j

where £2(A0(£ )) is defined to be a one-dimensional space spanned by a vacuum vector 

fl. Then, TA =  C*(Ti\i £  93s ) contains the compact operators /C, and we have the exact 

sequence

0 — > J C - ^ T a ^ O a — > 0

where O a =  TA/ K  is generated by partial isometries {Si\i £  93s } satisfying the relations 

(2.8).

These partial isometries were indexed by the set 93s of vertices of Q. But partial 

isometries satisfying Cuntz-Krieger relations may also be indexed by the set (Es of edges 

of Q. A path a  £ A given by a  =  i o i i . . .  in, where ij are vertices of Q, j  =  1 , . . . ,  n may 

easily be written as a path of edges of Q by a  =  a i . .. a„, where s (a i)  =  io and r(otj) =  i j , 

j  =  1 , . . . ,  n. Then 5 (a) =  i0, r(a)  =  in and |a | =  n as before.

We define J5-Fock space F#, where B  is the adjacency matrix of the edges of a Q given

by

B {x , y ) = \  1 i f r M  =  ^ >
[ 0 otherwise,

as Fb ©^Lo 2̂(An(^)), where An denotes the paths of length n in Q. For each edge x £ (£s , 

define a partial isometry tx on Fb by a shift action:

f  ex\  if r(x) =  s{A)
t x e X =  < ^

0 otherwise,

where {ej/u  £  An(C/)} is a canonical orthonormal basis for £2 (An(Q)). Then, as before, 

Tb =  C*(tx\x £  (£s ) contains the compact operators /C =  /C(FS), and we have the exact 

sequence

0 — >jc — — > 0B — ► 0

where O b is generated by partial isometries {sx|x £ (£s } satisfying the Cuntz-Krieger 
relations (2.8):

s x s x =  s v s y =  12 B ( x ^ y ) s v s r
y:s{y)=r(x) y £ &

Theorem 6.5 of [106] states that two simple Cuntz-Krieger algebras O a , Ob  are sta­

bly isomorphic, i.e. K  <g> Oa =  /C 0  O b , if and only if K 0 (OA) =  K 0 (OB)- They are

isomorphic if and only if (K 0 (OA), [1]) and ( K 0 (OB), [1]) are isomorphic, i.e. there is a
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Figure 2.3: Directed A 3

group isomorphism between the /Co-groups that maps the class of the unit [1] of Oa  to 

the class of the unit [1] of Ob- So K 0 is a complete invariant for the stable isomorphism 

class of Cuntz-Krieger algebras, and together with the position of the unit it is a complete 

invariant for the isomorphism class of Cuntz-Krieger algebras.

It is well-known that if the matrix A given by the edges of Q and the adjacency matrix 

B of Q are both {0, l}-matrices then they give isomorphic Cuntz-Krieger algebras, i.e. 

O a — O b - Mann, Raeburn and Sutherland give a proof of this in [84].

2.4.1 Different R epresentations of O 2

The Cuntz algebra On is a particular case of the Cuntz-Krieger algebras O a introduced

by Cuntz and Krieger in [22, §1], where A is the n x n matrix where every entry is 1. In

the case of O 2 we then have that O 2 =  O c , where

C  =
1 1 

1 1

O 2 may also be identified with the algebras Oa =  O b , where A is the adjacency matrix 

of Q and B  is the matrix indexed by the edges of Q given by

B { x , y )  ^r(x),s(y)  1

where Q is the directed A 3 graph (Figure 2.3). Then A , B  are given by

/  0 1 1 0 \
( 0 1 0 ^

A = 1 0 1 B =

1° 1 °J
(2.9)

1 0  0 0 
0 0 0 1 

\  0 1 1 0 /
From the K-theory of Ob,  where B  is the adjacency matrix of the bipartite graph 

j43 , and O 2 we get K q{ O b ) =  K \ ( O b ) =  K o ( 0 2 ) =  ^ 1 (0 2 ) =  0, and hence we have 

Oa =  Ob — O c — O 2 [106]. We give another proof that Oa — O 2 , similar to that to [84, 
Prop. 4.1], which gives an explicit isomorphism.



P ro p o sitio n  2 .4 .1  Let A be the adjacency matrix of A 3 defined in (2.9). Then Oa — 0 2 -

Proof. Let s+ ,s_  be isometries that generate 0 2, i.e. they satisfy s*s„ =  1, s+s*+ +

s-s*_ =  1. We define mutually orthogonal partial isometries S i, £ 2, S3 £ C*{s tj.) by 

Si =  s +s - s *_, S2 =  S-S+, S3 =  s +s+s*_. Then s+ =  s+(s+s*+ +  s_s!_) =  S3 +  Si =  

Si +  S3S2, and s_ =  s_(s+s+ 4- S-S*_) =  S-S*+S3 s_s+ 4- s-s*+S\ =  S2Si 4- S2S3S2. Thus 

C *(5#1) =  C*(Si).
We now need to verify that the Si generate O a - We have S^Si =  s_sls+s+ s_s!_  =  

s _ s * , S3S3 =  s_ s+ s+ s+ s+s!_ =  s_s!_, S2S2 =  s_s+s+s!_ =  s_s*,  and so S jS i =  S2S2 , 

S3*S3 =  S2S2*. Also, S2*S2 =  s+s*_s_s; =  s+ s ; , S iS ; 4- S3S3* =  s+s_s*_s_s*_s; +  

s+s+s*_s-s*+s+ =  s+ (s-s*_ 4- <s+«s+).s+ =  <s+«s+, and so S3S2 =  SiSJ1 4- S3S3. Then these 

Si do satisfy the Cuntz-Krieger relations S^S* =  . A(i, j )S jS*.  Thus by the uniqueness

of 0 2 we have O a =  C*(Si) =  C * ( s ^  <92. □

The automorphism a  on 0 2 given in (2.3) acts by switching s+ <-> s_. On (9,4 the cor­

responding action is given by the involution which switches Si S2S3S2, S3 <-> S 2 S iS 2 

and S2 «-> S3. Then a  leaves the AF-part of (9,4 invariant. However the isomorphism con­

structed in the proof above does not identify the AF-parts T 2, Ta  of 0 2, Oa  respectively, 

since it sends s_s+ £ F 2 to S2 £  Ta-

2.5 The Generalization of the Ising Model to other 
graphs

The Ising model is constructed using the graph A 3 . Other lattice models may be con­

structed using other graphs, such as the Q-state Potts model using the graph in Figure 

2, whilst the Dynkin diagrams An of Figure 1.1 give the ABF models of Andrews, Baxter 

and Forrester [1].

*

1 2  3 Q

Figure 2.4: Q-State Potts Model

The Potts model was described by Potts [103] and is a generalization of the Ising 

model. Ashkin and Teller had earlier considered a four-component version [2]. As with
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Figure 2.5: An Ising model configuration Figure 2.6: A Hard square configuration

Figure 2.7: Dynkin diagram A 4

the Ising model, it is useful for gaining insight into the behaviour of ferromagnets and 

certain other phenomena in solid state physics. Potts defined two models: one is now 

known as the clock model, the other is the (standard) Potts model. In the clock model, 

the spin at each sight may take one of Q possible values, distributed uniformly about 

the circle at angles 9n =  2irn/Q. The Hamiltonian of the interactions between nearest 

neighbours is given by

H =  j J 2  cos(es i - 9 Sj),
( i j )

where the summation is over nearest neighbour pairs (z, j )  over all lattice sites, and the 

site colours s* E { 1 , . . . ,  Q}. The Potts model uses a simpler Hamiltonian

( i j )

The Q =  2 Potts model is equivalent to the two-dimensional Ising model.

The Ising model could be used to describe a lattice gas as well as a magnet, where +  

means an occupied site •  and — an unoccupied site o, as in Figure 2.5. The hard square 

model is used to represent particles with non-zero volume, where a similar state space is 

used and a square is drawn around each occupied site as in Figure 2.6. Then these squares 

must not overlap so that distinct particles do not occupy the same portion of space. If 

we use the distributions of the vertices of the Dynkin diagram A 4 (Figure 2.7), we get the 

state space of the hard square model.



2.5.1 C onstruction  of P2 for Principal Graph

For a purely infinite factor Af and p E End(Af) with dp <  oo, Izumi [57] computed the 

fusion rules of descendant sectors of p, which are the rules of the irreducible decomposition 

of sectors, for the cases where the principal graph of M  D p(M)  is one of the Dynkin 

diagrams.

In a similar way to the construction of p for principal graph A 3 in §2.3.1, we construct 

the endomorphism p2 for the case where the inclusion M  D p(M),  for A/, p{M)  infinite 

factors, has finite index y/3 and principal graph A5. From [57], the diagram for the 

multiplication of the sectors by [p] is:

[id] [p2] [a]

\fi] M

Since \p2 \[p}2 =  [̂ 2]([id] © [p2]) =  [p2\ © [p2 ]2 but also \p2 )[p}2 =  ([p] © M ) H  =  
[id] © 2 [p2] © [qj] then we obtain

[p2]2 =  [id]®[p2]©[a] ,  (2 .10)

and similarly, since [a][p]2 =  [a)([id]©[p2]) =  [a] © [a] [02] and [ ", ]2 =  [ap] [p] =  [p2]©[a],

we have [a][p2] =  [p2]. Proposition 3.3 of [57] says that [a2] =  [id].

Since

[P2HP2] =  ([id] © [̂ 2] © [a]) IP2 ] =  IP2 ] © [P2]2 © H [P2],

and

[P2][P2]2 =  \P2 [ ([id] ® [p2] © [a]) =  [p2] © [p2]2 © [P2]M ,

we have

W W  =  Hlft] = N -  (211)

From (2.10) we have that there exist Cuntz isometries S i , S 2 , S 3 which generate 0 3

and satisfy

Six =  pl(x)S l , x e  Af, (2 .12)

$2P2(x)

CN 
C

N

II x e  Af, (2.13)

S3 a(x) =  pl(x)S3, x e  Af, (2.14)

i.e. Si €  ( id ,p |) ,S 2 e  (p2, p l ) ,S 3 6  (a,pi) .
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From (2.11) we may choose representatives of a , p2 such that

a  • P2 =  P2 , P2 • a  =  Ad(U) • p2 (2.15)

for U a unitary in (p2,pi).
By (2.10), [p2]2 contains [id], [p2\ and [a] each with multiplicity one, and hence 

dim((id, pi)) =  dim((p2,pi)) =  dim((a,pi)) =  1- Then from (2-15) we obtain a (S 3) G 

a  ((<*, pi)) =  (id, p |), and so a (S 3) =  cSi, c G T. So changing the relative phase between 

S\ and S3 we have
a(S 3) =  S u a ( S l ) =  a 2(S3) =  S3. (2.16)

From (2.15), a (S 2) G ot({p2 ,p\))  =  (p2,pi)> so Q(S2) =  £iS2, £i G T. Now S2 =  

a 2 (S2) =  e2 S2 giving z \  =  1, so we have

a(S 2 ) = e i S 2, £i G {±1} .  (2.17)

Since p2 is self-conjugate, we have Sjp2(Si) =  ± l / d P2 =  ± 1 / 2  =  e2 / 2, £2 G {±1} ,  

as in Section 2.3.1. Then using (2.15), (2.16) S^p2{S\) =  a(S\)*p2(S\) =  a(S^p2(Si)) =  

a(e2/ 2) =  e2/2 .

From (2.12),(2.13) we obtain

SJp^Sia:) =  S*2p2{p22{x)Sl ) =  p2(p2(x))S2p2{Si) =  pI ^ S I p^ S x),

so S*2p2(Sx) G (p2,p|).  Then S^p2(Sx) =  f S 2, /  G C.

Then p2(Si) =  (S ^ *  +  S2S2* +  S3S3*)p2(Si) =  £2(Si +  S3)/2  +  / S 2S2. Since we have 

P2 (Si)*p2 (Si) =  1 we find that / /  =  1/2, and so /  =  f / V 2, / '  G T. Changing the 

relative phase between S \ , S3 and S2 if necessary, we may assume f  =  1 , and so we have

P2 {S\) — 2 £'2^ 1 ^  e2 € { ± 1}-

From U G (pi, p22) =  C SiSf +  CS2S2* +  CS3S3*, we have t/ =  +  jS 2S2* +  kS 3 S2.

Then UU* =  hhS\Sl  +  j j S 2 S2 +  kkS3 S% =  1 implies that /i, j, k G T. We may take h =  1, 

since Ad((7) • p2 =  Ad([/') • p2, where U1 =  U/t ,  t G T. Then we have

f/ =  S i +  e3S2S2 +  £^S3S^  e3, £4 G T.

Now from (2.15), (2.16)

P2(S3) =  p ^ o /S i))  =  Up2 (S\)U* =  (~z2Si ±  —= e 3 S2 S2 +  - 6 2 4̂ ^3 )^*
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. Due to orthogonality of p2(S ,) and f>2 (S3) we find that e4 =  1,£3 =  —1. So we have 

U = SiSl -  S2SJ +  S3S%, and

P2(S3) =  Q e2(5i + S3) -  ^ 52S2)  (SrSj* -  S2S2* + S3S3*).

From (2.12), (2.13), (2.14) we obtain

5 1*p2(52p2(:r)) =  S[p2{p22{x)S2) =  p2(x)Slp2(S2),

and so 5i/92(52) G (p2,P2 ) =  {(P2 ,P2)Y- Then 5Jp2(52) =  /5 2, I G C.
From (2.12), (2.13), (2.14) we also obtain

S2p2(S2p2(x)) =  S2p2(p22(x)S2) =  p2{p2{x))S2p2(S2) =  p l(x )S2p2{S2),

and so S*2p2(S2) € (p22,p22) =  C 5 ^  4- C 525 2* +  C 535 3*. Then 5 2*p2(52) =  +

m25 252 + 77135353, 77li,7772,77l3 G C.

And again, from (2.12), (2.13), (2.14) we obtain

S^p2(S2p2{x)) =  S%pl(p2(x))p2{S2) =  a(p2(x))S^p2(S2) =  p2{x)S^p2{S2),

and so 5 3*p2(52) G (pi.tfa) =  ((/>2,p2))*- Then 5 3p2(52) =  n52, n G C.

Then p2(52) =  (5 ^ *  +  5 25 2* +  5 35 3*)p2(52) =  /5 i5J +  m 1525 15 1* +  m 2S2S2S * +

7n3525 353 +  nS3S2.

From the Cuntz relations of p2(5 i), p2(52) and p2(Sz) we find that / =  p j y j2 =  —n, 

m2 — 0 and p, m i , m 3 G T. Then

p2(S2) =  -^ p S rS ; +  m 1S2S ,S 1' +  m3S2S3S3* -  4 p S 3S2*. (2.18)

Now using (2.15) we have

P2(S2) =  a(p2(S2)) =  ^=P£iS3S2- +  m i£iS2S3S3 +  m3e152S 1S* -  T p d S j S J .  (2.19)

Then comparing (2.18) and (2.19) yields E\ — —1 and mi =  —m 3.

Computing p2(Si) and using (2.12), (2.13) we find that p  =  777, e2 =  1, and that m 

satisfies m3 =  1. Then we conclude that

P2(Si) =  l ( S 1 + S 3) +  + S 2Si,

p2(S2) =  + a ( S 1 - S 3)S2* +  aS2(S1S 1* - S 3S3*),

p2(S3) = (1(S , + S3) -  ^S2S2)  (SrS,* -  S2S2* + S3S3*), 

a(S.) =  S3, a(S2) = —S2, a(S3) = S„

and there are three non-conjugate solutions, given by a =  e2nk%/3 G T, for k G {0,1, 2}.
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2.5.2 Oa as a Crossed P roduct

Cuntz and Krieger [22] showed that the stable algebra K ® O a also arises as the crossed

product of an AF algebra by a shift operator as follows.

Let E again be a finite set of cardinality m  and A =  ( A ( i , j ) ) i j eu a finite {0,1}-  

matrix. The matrix A is used in topological dynamics to construct one-sided and two- 

sided subshifts. Let X A =  {(xi) i€Z e  Ez \A{xj, xj+ i) =  1, j  £ Z}. The two-sided subshift 

oA acts on the compact spaces X A and is defined by a,*(a:)* =  x £ X A. The pair 

( X A, a A) is called a topological Markov chain.

For m < n, let X myn =  {(£i)"=m £ En-m|A(xj ,Xj)  =  1 , j  =  m ,m -f  1, . . . ,  n — 1} so

that X A =  X qq̂qq. For j  £ E, let X — {(■ î)j=Tn £ X mtn\xm i^xn j } ,  so that

\X%n\ =  An~m(i, j)  and X ro,n =  (Jij x %n- For m > 0 we use the notation X\g  for X y myTn 

so that X m =  U  Let Fm =  where =  M (\x ikj \) is the ful1 n x  n
complex matrix algebra, n =  |X ^ ’|, and is generated by matrix units e ^ ,  n , v  £ X y .  

We define a homomorphism (f)m ' Fm —> ^m+ i by 0m(eMil/) =  ^ P)q€E A(p, i)A(j ,  q)ePMtPuq 

for /i, v  £ X y .  Then we can construct an AF algebra T A — lim -.f^n , 0m).

For a subset Y  of X Al we define its unstable manifold by

W (Y )  =  {x  =  (Xi) £  X A\xj =  yj for some y =  (yi) £ K, for all j  <  jo for some jo £ Z},

which has the inductive limit topology inherited from the shift space. If x £ X A, let 

F(x)  =  { a kAx\k £ Z}, which is a countable shift invariant subset of X A. If x,x'  £ X A, 

there exists a homeomorphism /i : W (F(x))  —> VF(F(a:/)) such that /i(y)i =  ?/i for all 

i > 0, y £ W(F(a:)). Let G(x)  denote the uniformly finite dimensional homeomorphisms 

of W(F(x)) ,  i.e. the homeomorphisms g of W(F(x))  such that g(y)i =  yi for all i > 0. 

Then hG(x)h~l =  G{x') and the following construction doesn’t depend on the choice 

of x. Let V A =  Co(VF(F(x))) be the algebra of continuous complex-valued functions 

on W(F(x))  that vanish at infinity, and let A  be the crossed product of V A by G (x ), 

i.e. A  =  C*(Ua ,G ( x )). Let U be the canonical representation of G(x)  in the multiplier 

algebra of A , so that for every g £ G(x)  there is a corresponding unitary U(g) in the 

multiplier algebra of A.  If J  is the closed ideal of A  generated by all elements of the form 

U(g)PB — U(g')PB, where u, v are uniformly finite dimensional homeomorphisms which 

agree on the compact open set B  of W(F(x)) ,  and Pb is the characteristic function of B. 

Then we define the AF algebra T A =  A j  J . The shift induces an automorphism a of T A, 

and let O a denote the corresponding crossed product O a =  T A x Z =  C*(TA,Z).  Cuntz 

and Krieger [22, Theorem 3.8] proved that there is an isomorphism so that O a =  JC<S>Oa , 

and as a consequence of [21, Theorem 2.3], the same isomorphism gives T A =  /C ® F A. It
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should be noted however that the decomposition of O a as the crossed product of an AF 

algebra by the integers is not unique.

For the Dynkin diagrams ;42n+i, Dn+2, n >  2, illustrated in Figures 1.1, 1.2, there 

are Z2 actions on both A2n+i and Dn+2. For A2n+i this is given by reflecting the graph 

horizontally about the vertex n-f 1, sending the vertex i to the vertex 2n +  2 — i (the vertex 

n +  1 is invariant under this action). For Dn+2 the Z2 action is given by interchanging 

the vertices 1 and 2, and leaving the others invariant.

P ro p o sitio n  2.5.1 The stable algebra /C0O£>n+2 is isomorphic to the crossed product of 

the stable algebra JC 0  0 A2n+1 by the Z2 action on 0 A2n+l induced by the above Z2 action 

on the graph A2n+i. The reverse is also true, that JC®0A2n+j is isomorphic to the crossed 

product o / / C 0  O on+2 by the Z2 action on O on+2 induced by the above Z2 action on the 

graph Dn+2.

Proof

The Z2 actions on A2n+i, Dn+2 induce actions on the algebras 0 A2n+1, Oon+2 by 

the uniqueness of Cuntz-Krieger algebras. Let (f) be the Z2 action on 0 A2n+l, and let 

IV =  W(F(x))  U W(F(<t>{x))). Then with V A2n+1 =  CQ{W)  and A  =  C*(VA2n+1,G(x)) ,  

let F A2n+i be the AF algebra A /  J  as above. Then K  0  0 Ain+1 x Z 2 =  F A2n+1 x Z x Z2. 

Since the crossed product T A2n+1 x Z2 of the AF algebra F Ain+l is isomorphic to TD n+2, 

the AF algebra for Dn+2, which is the Z2-orbifold of A2n+1, and the Z and Z2 actions 

commute, K  0  0 A2n+1 x Z2 =  F A2n+l x  Z2 x Z =  F Dn+2 x Z =  /C 0  0 Dn+2. The reverse 

statement follows similarly. □
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Chapter 3

The K -Theory of Cuntz-Krieger 
Algebras of the SU(N)-lSAodels

For the K-theory of the Cuntz-Krieger algebras Og where Q is one of the Dynkin diagrams 

we completely derive (K 0(Og), [1]) and compute its K\  group. For the S U (3) A V E  graphs, 

we compute K 0(Og) for the graphs A^n\  V^n\  n <  20, the exceptional 8  graphs, and the

01-parts of these graphs. We also compute their K\  groups explicitly.

K-theory provides invariants which may be used to classify (7*-algebras. The classi­

fication of (7*-algebras began with the classification of AF algebras by Elliott in [30] in 

terms of the ordered group K 0. Murray-von Neumann equivalence on projections in a 

unital C*-algebra A is given by the equivalence relation e /  if there exists an element 

v e  A such that e =  v*v and /  =  vv*. Let D(A)  denotes the space of equivalence classes 

of projections in A. For the matrix algebra Mn(A) over A , there is a *-homomorphism

induced map ipn : D (M n(A)) —> D (M n+i(A)),  and we let D ^ A )  =  l im _(D (M n(A)), ijjn). 

Then K 0(A) is the enveloping group of the semigroup D ^ A ) ,  which is formed in the 

same was as going from the semigroup S =  { 0 , 1 , . . . ,  N }  to Z by taking the equivalence 

classes of differences in S. The K-group K\(A)  is defined similarly in terms of unitaries 

rather than projections: The unitary group Un(A) of Mn(A) is embedded in Un+i(A)  by

U<x>{A)o is the connected component of the identity.

It is well known from [21] that for an n x n matrix A, K q(Oa) =  Zn/(1  — AT)Zn, 

whilst K x(Oa ) =  Ker(l -  AT) =  {uG Zn| (1 -  AT)v =  0}, i.e. K ^ O a ) =  TP, where p  is 
the multiplicity of 1 as an eigenvalue of A.

ipn which embeds Mn(A) in Mn+i(A)  given by xjjn{a) Then there is an

and we let Uoo(A) =  lim^ Un(A). Then K \(A )  =  Uoo(A) /Uoo(A)0 where
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3.1 5 /7 (2)

By a classification theorem of R0rdam [106, Theorem 6.5], two simple Cuntz-Krieger 

algebras O a and O a> are stably isomorphic , i.e. K ® O a — K,<8>Oa>, if and only if K 0(Oa ) 

is isomorphic to K 0(OA>), and O a is isomorphic to O a> if and only if (K 0(OA),[ l})  and 

(K 0(OA’), [1]) are isomorphic. The K-theory of the Cuntz-Krieger algebras Og where Q 

is one of the Dynkin diagrams was given by Izumi in [59]. However, in order to compute 

the position of the unit [1] we completely derive (K 0(Og), [1]) here.

3.1.1 D ynkin D iagram  An

The n x n adjacency matrix A An of An is given by

/  0 1 0

A An

0 \

1 0 1 

0 1 0 

; i

Vo

i

0 /

(3.1)

We will use the notation An =  1 — A j n (=  1 — A^n).

First we consider n — 2: Let w =  (w{) E Z2 be a column vector. Since

A2w = w  =  ( w i  — w 2 , - w i  +  w 2) t ,

the space A2Z2 is one-dimensional, generated by the single vector, (—1 , 1)T. Then Z2/A 2Z2 

can be described as the space of equivalence classes of Z2, with equivalence relation defined 

by v ~  w if Vi +  v2 =  wi +  w2 , for v =  (Vi), w =  (wt). There is an isomorphism 

v : Z2/ A2Z2 — > Z given by v ( (ai,  ot2)T -I- A2Z2) =  cti -1- a 2.

The equivalence class [1] of the identity is [1] =  7r ( (1 ,1)T) =  ((1 +  k, 1 — k)T) +  A2Z2, 

where 7r is the quotient map tc : Z2 — ► Z2/A 2Z2, which is mapped to ( l +  fc) +  (l — fc) =  2 

in Z. So for A2, (K 0(OA2), [1]) =  (Z, 2).
Next we consider n =  3. We have

/  1

- 1

\  0

—i o N 
i  - l  

- !  1

47



Then
A3Z3 =  {(u;i -  w2, —wi T w 2 w3, - w 2 +  w3)t \ w i , w 2, W3 G Z} .

By the successive changes of variables W\ — w2 —► ai and —w 2 +  u>3 —> a3 , then —a\ — 

g3 +  w 2 —* a2 we can rewrite A3Z3 as A3Z3 =  { (ai , a2, a3)r | cii,CL2 ,a 8 G Z} =  Z3. So 

Z3/A 3Z3 =  Z3/Z 3 =  0, and the equivalence class of the identity is trivial, [1] =  0. Then 

we have, for A3, (K 0 (Oa3), [1]) =  (0 , 0). The same holds for A4.

We now move to the case when n >  5.

AnZn =  {(wi -  w2, - w \  + w 2 -  w3, - w 2 +  tu3 — iu4, . . . ,  —wn- 1 +  wn)T| Wi e  Z} .

By the changes of variables w\ — w 2 ► a \ , ai — iu3 —> a2 and —w 2 — w4 +  a\ — a2 —> a3 , 

we can rewrite AnZn as

AnZn =  {(ai,  a2, a3, w4 -  w5 -  +  a2, - w 4 +  w 5 - w 6, . . . ,  - w n- 1 +  wn)T| ai,Wj G Z} .

So we can see that a vector u; G AnZn can be written as u; =  u © u' G Z3 © A'n_3Zn~3, 

where A^_3Zn_3 is the space of vectors u' =  ? where is any vector in

An_3Zn_3, and uO) =  (uj1̂ ) G Zn~3 is the vector with =  — u\ +  u2 and =  0 for 

all other j .  Since is fixed by the choice of u =  (uj) G Z3, u' relates A'n_3Zn_3 and 

An_3Zn~3 as isomorphic vector spaces. Then

Zn/A nZn =  Zn/  (Z3 © A ;_3Zn~3) ^  Z3/Z 3 © Zn -3/A^_3Zn_3 

=  Zn-3/A^_3Zn-3  =  Zn_3/A n_3Zn_3.

When n =  5, A^_3Zn_3 =  A2Z2 =  { ( —a — i/i © u2, a)r | a G Z} . Since u i ,u 2 are 

fixed by the choice of u, in a similar way to the case when n =  2 above, there is an 

isomorphism /z : Z2/ A2Z2 — ► Z given by /x ((ai,  a 2)T +  A2Z2) =  qj +  a 2. This extends

to an isomorphism  ̂ : Z5/A 5Z5 — > Z, given by

v ( n ( w ) )  =  v  ( (0,0,0,  u>4 +  -  w2 +  A:, iz>5 -  fc)T +  A5Z5) =  w 5 +  te4 -  w 2 +  ,

where 7r is the quotient map n : Z5 — > Z5/A 5Z5, w =  (w{) G Z5.

When n =  8 , A3Z5 =  {(ai — ui +  u2, a2, a3, —k +  ai +  a2, A;)T| ai, a2, a3, A: G Z} . Per­

forming the change of variable a\ -  u\ +  u2 —» a'j, we get

A5Z5 =  { (uj, a2, a3, —/c +  a2 — — tzi +  u2, A;)̂ | , a2, a3, /c G Z} .

The isomorphism  ̂ : Z8/A 3Z8 — > Z is now given by

i/(7r(u>)) =  v  ( ( 0 , . . . ,  0, w 7 +  w4 — w5 +  w\ -  w 2 +  A:, w 8 -  k)T +  A8Z8)

=  w8 + w 7 -  w 5 +  w 4 -  w 2 +  Wi,
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where 7r is again the quotient map.
Consider now n =  2 mod 3, for n >  8. We have an isomorphism v  : Zn/A nZn — * Z, 

given for w =  (Wi) G Zn by

V  ( 7r ( w ) )  =  +  iun - l  -  ^ n - 3  +  W n - 4 “  ^ n - 6  +  ^ n - 7  “  Wn _ 9 +  U>n _ i 0

-  . . .  -  W 2 +  U ) i .

The identity 1 =  (1); is the column vector with 1 as every entry. Its equivalence class [1]

Next we compute K \  for OAn• For the adjacency matrix A^n of An, the eigenvalues 

A£, k =  1 , . . . ,  n, are given by (1.12). Then Aj; =  1, for some k , if

Since |fc| < n and h,n >  0, the left hand side satisfies 0 < kn/(n  +  1) < n. Then the 

right hand side of the equation must also lie within these bounds, giving the constraint 

0 < (1 +  6r)/3 < 1, so that —1/6 < r <  1/3. Then r =  0, and (3.3) becomes Skn =  

(n +  l)7r, and we get k =  (n +  l) /3 .  Here k is only an integer when n =  3q +  2, for q G Z,

3.1.2 D ynkin  D iagram  Dn

We first compute K q of O on• The n x n adjacency matrix A p n of Dn is given by

in Z is again 2. So, for An, n =  2 mod 3, (Ko(OAn), [1]) =  (Z, 2).

For n ^  2 mod 3, n >  5, we have Zn/A nZn =  Zn_3/A n_3Zn_3 =  0. 

Summarizing, we have the following for An:

(3.2)

(3.3)

and hence A* =  1 only when n =  2 mod 3 and has multiplicity one. 

Hence we have the following result for An:

^ 0 1 0  

1 0 1

0 1 ••

0 \

1 

1 0  1 1

(3.4)
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and we will again denote by An the matrix An =  1 -  A £n (=  1 -  A Dn). 

When n =  4,
/ 1 -1 0 0 \

-1  1 - 1  - 1
A4 =

0 - 1 1 0  

V o - i  o i /

and the vector space A4Z4 is

A4Z4 =  { (^ i -  w2, —Wi +  w 2 — w 3 — w4, w 2 -f w3, —w2 +  w4)TI w u . . .  , w4 G Z} ,

which, by the change of variables w\ -  w 2 —> ai, —w2 +  w 3 —> a3 , —iu2 +  iw4 —> a4 and

w2 —*■ k , A4Z4 can be rewritten as

A4Z4 =  {(a i, —ai — a3 — a4 — 2k, a3,a 4)T| a i ,a 3, 04, /c G Z} .

Then the quotient map 7r : Z4 — ► Z4/A 4Z4 sends

v =  ( )  — > (0, Ui +  v2 +  v3 H- v4 +  2k, 0 ,0)T +  A4Z4,

where A: is the unique integer such that v\ +  v2 +  u3 +  v4 +  2k G {0 ,1}. Then there is an

isomorphism u : Z4/A 4Z4 — > Z2 given by 1/ ( ( 0 , 6, 0 ,0 )T +  A4Z4) =  b, or, equivalently, 

for w =  (u>j) G Z4,

/ / u /  1 i f E i wi iso d d >
‘' ( ' H I  =  „ , , v  . ̂ 0 it 2^i wi is even.

So the equivalence class [1] of the identity is mapped to 0 in Z2 for D4. Then we have 

(K 0 (ODa), [1]) =  (Z2 ,0).

When n =  5, A5Z5 is given by

{(u>! -  w2, -W i  +  w 2 -  w3, - w 2 +  w 3 -  w4 -  w5, - w 3 +  w4, - w 3 +  W5)T\ Wi G Z} .

Performing the successive changes of variables W\ — w2 —> a\ , —a\ — w 3 —> a2 , u;4 +

0,1 +  a2 —> a4 , ?n5 4 - ax +  a2 —>► a5 , and lastly —in2 +  0,1 +  a2 — a4 — a5 —> a3 , we find

that A5Z5 =  {(<21, a2, a3, a4, as)T| a\ , . . . ,  a5 G Z} =  Z5, and Z5/A 5Z5 =  Z5/Z 5 =  0. So,

for D5, (A'o(Ods), [1]) =  (0,0). The same holds for D6.

Since, for n > 7, Dn is just the graph D 4 with the graph A n - 4 added as a tail, then, 

in the same way as for An, we have AnZn =  Z3 © A'n_3 Zn~3, and A'n_3 Z n ~ 3 =  An_3Zn_3.

When n =  7, A^Z4 =  {(a! — u\ 4  u2, —a\ — a3 — a4 — 2k, a3, fl4)T| ai, a3, a4, I c G Z ) .  

Performing the change of variable a\ — u\ 4  u2 —> a'x , we get

A4Z4 =  {(a i, - a i  -  a3 -  a4 -  a i +  a2 -  2k, a3, a4)T| ai, a3, a4, k G Z} .
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Then the quotient map 7r : Z7 — > 17 /  K i l 7  sends

v =  ( )  — > (0 ,0 ,0 ,0 , U5 +  U4 +  1̂ 6 +  U7 +  Uj — V2 +  2/c, 0 ,O f  +  A7Z7,

where, again, fc G Z such that U5 +  U4 +  t>6 +  V7 +  V\ — t»2 +  2k G {0 ,1}. Then there is an

isomorphism v : Z7/A 7Z7 — ► Z2, given, for w  =  (u>i) G Z7, by

) 1 if u;7 +  u;6 +  tu5 +  iu4 -  W2 +  wi is odd,
^(7r(u;)) =  <

[ 0  if w 7 +  u>6 +  ^ 5  +  ^ 4  -  tU2 +  wi is even.

For general n =  1 mod 3, n >  7, the isomorphism i/ : Zn/A nZn — > Z2, is given, for 

ic =  (wi) G Zn, by
1 if w is odd,

u(tt(w )) =
I 0 if w  is even,

where

W  =  W n  +  W n - i  +  W n _ 2 +  W n - 3  -  W n - 5  +  W „ - 6  -  W „ _ 8  +  W n - 9  

-  . . .  ~ W2 +  Wi.

The sum w  is even when w  is the identity 1 , so the equivalence class of the identity is

always 0. Then, for all n =  1 mod 3, (Ko(ODn), W)  =  (^2i 0 ).

When n ^  1 mod 3 ,n  > 7, Zn/A nZn =  Zn_3/A n_3Zn~3 =  0.

Summarizing, we have the following for Dn:

(k  t o  w m - / (Z2'0) if n = lm o d 3 ’(^0(O DJ . [ l ] ) - |  (()j0) ,f n ^ l m o d 3  (3.5)

We now compute K \  for O on• The eigenvalues A*, k =  0 , 1 , . . .  , n — 1, of the adjacency 

matrix A p n are given by (1.13). Then Aj; =  1 for some k if

( 2 / c + 1 ) 7T 7T

~ 2 n ^ 2 ~  =  3 r’ r 6 Z '

Using the same argument as for An we find that r =  0, and we find that k must satisfy 

k =  (2n — 5)/6. For k to be an integer we require that n =  39 +  5/2, for some 9 G Z, 

so n cannot be an integer. Then 1 is never an eigenvalue for any n. Hence, for Dn, 

K \(O o n) =  0, for all n >  4.

Since O a 2ti+1 is a subalgebra of O a 2ti+1 * Z 2, there is a map O a 2ti+1 O a 2n+1 x Z 2. As a 

result of Proposition 2.5.1, this should give a map O a 2ti+1 e-* O o n+2, and K 0{ O A 2n+1) maps 

into K 0 (ODn+2). By the results (3.2), (3.5) we have K o ( 0 A2n+1) =  % and K 0 (ODn+2) =  Z2,
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so that this claim is true. Similarly, there is a map K 0 { 0 En^2) ^ o(^ ^ 2n+i)- However,

we see that the unit [1] =  0 in K 0 (ODn+2) does not map to the unit [1] =  2 in K 0 (OA2n+1), 

hence the algebras 0 A2n+ 1 * ^2  and O o n+ 2 are only isomorphic when we tensor with the 

compact operators. We expect similar results for the K-theory of the algebras 0 A(n) and 

0 V(n), since the graph V M is a Z3-orbifold of the graph .4 ^ ,  and vice versa, and hence 

we expect that JC 0  0 A(n) x Z3 =  K  0  0 V(n) and K  0  0 V(n) x Z3 =  JC 0  0 A(n). There 

should then be maps Ko(GA(n)) —► K 0 (OV(n)) and K 0 (OV(n)) —> K o ( 0 A(n)).

3.1.3 E xceptional D ynkin  D iagram  Eq, Ej and E$

For Eg, the adjacency matrix A ^ 6 is given by

0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

We let A -  1 -  A £6. Then

AZ6 =  {(wi -  W2, - W i  +  w2 -  w3, w2 +  wz -  w4 -  U)q, ~ w 3 +  w4 -  w5,

—w4 +  w$, - w 3 -I- w6)T\wi G Z}.

By the successive changes of variables W\ — w 2 —» a\, —ai — w3 —> a2, w 5 — w 4 —+ 05 ,

ai +  a2 -I- wq —> 06 and —w2 — w4 — a& —>► a3, we can write AZ6 as

AZ6 =  {(o i, a2, a3, a\ +  a2 — as, as, ao)T\ai £ •

Then the quotient map n : Z6 —► Z6/A Z 6 sends

u =  (uj) ► (0 ,0 ,0 , v4 — V\ — v2 +  Vs, 0 ,0)7" +  AZ6,

and there is an isomorphism v  : Z6/A Z6 —► Z given, for w — (w^ G Z6, by

i/(7r(u;)) =  i/((0 ,0,0, v4 — Vi — v2 4 - u5, 0 ,0)T -I- AZ6) =  v4 — — v2 -f i>5.

Then for the identity 1 =  (1)* G Z6, v (n ( l ) )  =  1 - 1 - 1  +  1 =  0. Then for E6 we have

(E o(Oe6), [1]) =  (Z, 0).

Next we compute K\  for O e&. From (1.13) we see that the adjacency matrix A Eq of 

Eq has the eigenvalue 1 once, and hence K \ { 0 Eg) =  Z.

For Q either of the Dynkin diagrams E7 or E8, K 0 (Og) =  0 [59], and hence we have 

( K o(Oe7)< [1]) =  (K0(Ob,) ,  [1]) =  (0 , 0 ), and ( K , ( 0 E7) =  ( K , ( 0 Ei) =  0 .
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3.2 K-Theory for Og where Q is an 5 /7 (3) A V £  graph.

To obtain the following results for Ko(Og)  where Q is an SU (3) A V S  graph we wrote a 

code in Visual Basic to reduce the matrix 1 — Ag  to Smith normal form- a diagonal form 

where the diagonal elements are the elementary divisors of the matrix. This is achieved 

by using the following elementary (determinant) row and column operations:

1. Add a multiple of one row to another row, or a multiple of one column to another 

column

2. Interchange two rows or two columns, and multiply one of them by a factor —1.

If ai, a2, . . . ,  a*; are the (moduli of the) elementary divisors that appear along the diagonal, 

then K 0 (Og) =  Zai © . . .  © Zafc. If a has prime decomposition a =  '' 'V°m ^ en

Za =  Zgi © Zq2 © • • • © Z9m, where qi =  p*.  We list the prime decomposition of the 

integers a,j in the following tables. The computations of the K i  groups are shown in 

Section 3.2.6.
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3.2.1 A  graphs

n ttj, . . . , CL/j K i (Oa m )

4 0 Z
5 2,2 0
6 7 0
7 22, 13 0
8 0, 2, 32, 7 z
9 37, 109 0
10 2, 2, 24, 24, 41 0
11 67, 109, 199 0
12 0, 32 , 32 , 5 , 7, 37, 109 z
13 32 , 5, 5, 13, 13, 13, 13 , 433 0
14 2, 24, 13, 43, 43, 239, 757 0
15 2, 2, 61, 241, 271, 271, 5851 0
16 0, 2 , 2 , 2, 23 , 32 , 7, 7, 17, 17, 79, 241, 4561 z
17 103, 137, 919, 2857, 4591, 6971 0
18 17, 19, 19, 37, 109, 199, 271, 11719, 44281 0
19 7, 7, 7, 37, 229, 419, 15581, 77863, 175447 0
20 0, 2 , 2 , 2 , 2 , 23 , 23 , 26 , 26 , 5 , 5 , 52, 11, 11, 19 , 29 , 41, 41, 61, 241, 1321 z

01-part o f A

n Ko ( < V > )
4 Z
5 0 0
6 z 2
7 0 0
8 z 3
9 0 0
10 z 4
11 0 0
12 z 5
13 0 0
14 z 6
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3.2.2 V  graphs

n C L\ , . . . , flfc

5 1 0

6 7 0

7 22 0

8 0, 2, 3 Z

9 37 0

10 41 0

11 67 0

12 0, 3, 73 z
13 3, 241 0

14 2, 24, 239 0

15 2, 2, 61, 241 0

16 0, 2, 2, 2, 23, 3, 17, 17 z
17 137, 6971 0

18 7, 19, 19, 37, 199 0

19 9, 4613701 0

20 0, 5, 5, 5, 52, 29, 41, 41 z
21 2, 2, 2, 22, 13, 43, 421, 1933 0

22 24, 232, 31, 199, 1163 0

23 47, 47, 47, 1657, 5521 0

24 0, 2, 3 , 3, 3, 32, 32 , 5, 5, 5, 11, 97, 337 z
27 33, 5, 13, 2789321, 4353169 0

3.2.3 A* graphs

n Ko(0 Ain).)

n =  0 mod 4 Z z
77 ^  0 mod 4 0 0
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3.2.4 V* graphs

n o,\, . . . ,  d}~ t f i ( C W )

6 7 0

7 13 0

8 0 ,7 z
9 37 0

10 23, 23 0

11 109 0

12 0, 3, 3, 7 z
13 5, 5, 13 0

14 13, 41 0

15 2, 2, 241 0

16 0, 7, 79 z
17 2857 0

18 7, 19, 37 0

19 37, 229 0

20 0, 24, 24, 19 z
21 13, 1933 0

22 109, 397 0

23 74521 0

24 0, 3, 3, 7, 7, 97 z
01-part o f V*

n i'm 01
2 k +  1 0 0

4k Z f c  ©  z z
4/c +  2 Z f c 0
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3.2.5 £ graphs

e K0(O£) Ki(Oe)
£ ( 8) Z 2  ©  Z 2  ©  Z 7 0

£ < 12) Z  ©  Z  ©  Z 3  ©  Z 3 z 2
c (1 2 )
c 2 Z  ©  Z  ©  Z 3  ©  Z 3 z 2
c (1 2 )
c 3 Z  ©  Z  ©  Z 3  ©  Z 3 z 2
c (1 2 )
c 4 Z  ©  Z 3  ©  Z 3 z
c (  12) 
c 5 Z  ©  Z 3  ©  Z 3  ©  Z 5 z
£ ( 24) Z 5  ©  Z 5  ©  Z 9 7 0

01-part o f £

£ * o ( 0 * n ) * l ( 0 £ b i )

£ ( 8) Z 2 z 2
£ < 12> Z 2 z 2
£•(12)
c 2 Z 2 z 2
- (1 2 )
3 z 2 z 2

c (1 2 ) z z
c (1 2 )
c 5 z z
£ ( 24) 0 0

3.2.6 Ki(Og)

We begin by computing Ki(Og)  for the graphs A (n):

Lemma 3.2.1

* , ( © * . , )  =  ( 2  if n s 0 m o d 4 ' 
y 0 if n ^  0 mod 4.

Proof

The eigenvalues of the adjacency matrix A n of are given by (1.26). 

yields the following equations:

C° S (^ n ^ 1 +  2f>2^) + C°S (^ n ^ Pl + P2^) +  C°S ( l ^ Pl ~ P 2̂ )

Sin (li^ 1 + 2/?2̂ ) ~~ Sin ( ^ 2pi + P̂ ) + Sin ( ^ Pl ~~ P̂ )

T h e n  0 ^  =  1

=  1 . ( 3 . 7 )

=  0 . ( 3 . 8 )
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Using trigonometry sum-to-product identities we can rewrite equation (3.8) in the 

following three ways:

From equations (3.10), (3.11) we see that if =  1, then (5^ =  1, where p =  (p2,pi).  

Using the double angle formula, we can write (3.9) as

We have two cases:

Case (1): cos {tt{pi — p2 ) /3n) — cos (n(pi +  p2)/ft) =  0.

Then n(pi -  p2 ) /3n =  ±n{pi  +  p2) /n  ~  27r r, r e  Z. For the positive case we have

Since the R.H.S. is positive, the L.H.S. must also be positive, so we have r G N, and using 

the restriction to the Weyl Alcove p\ +  p2 < n — 1, we find 3rn — 2p2 +  p2 <  n — 1, 

3rn — n + 1  < p2. Since p2 < n — 2, we get 3r < 2 — 3/ n  <  2. But r G N 

so we have a contradiction. We arrive at a similar contradiction when we consider 

tt(Pi ~  P2)/3n =  — 7r(pi +  p2) /n  -  2 nr.

Case (2): sin (7r(pi — p2 ) /3n) =  0. Then p \ — p2 =  3an for some a G Z. If a >  0 we have

Pi =  3an +  p2 > n, whilst for a < 0 we have p2 =  p\ — 3an > n. So we must have a =  0 

and pi =  p2. Putting pi =  p2 back into equation (3.7) gives 0 =  0, and equation (3.8) 

becomes 2cos(27r/?i/n) +  l =  1. Solving cos (2npi/n) =  0 gives 2'npi/n — 7r/ 2  +  &7r, b G Z, 

so pi =  n (26+ 1)/4 . Since pi, n >  0, b must be non-negative, and either n or (26+1) must 

equal 4k for some positive integer k. The latter is impossible since 6 =  2k — 1/2 cannot 

be an integer for any k G N. So for 1 to be an eigenvalue, we must have n =  0 mod 4.

We now show that the eigenvalue 1 only occurs once. Let n =  4/c, and pi =  p2. Solving 

equation (3.7) gives it p i /2k  =  tt/2 +  7r m, for some m G Z, so

sin ^ ( P i  -  P2)^ ~  2 sin ( ^ ( P i  -  P2) )  cos {^(Pi  +  P2))  =  0, (3.9)

-  sin ^ ( 2Pi +  P2 ) j  +  2 sin ( ^ ( 2Pi +  p2)) cos ( ^ 2)  =  0, (3.10)

s^  ( ^ ( P i  + 2P2) )  -  2 sin (t^ (P i +  2p2))  cos (^ P i)  =  0 - (3 1 1 )

2 sin

P i  -  P2 =  3p i  +  3p 2 -  6 r n  

6r n  =  2 p i  +  4p 2 -

pi =  k(2m +  1). (3.12)
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Now m  >  0 since pi, k >  0, so p\ +  p2 <  n — 1 gives

Pi <  2k — (3.13)

Combining equations (3.12) and (3.13) we get 2m < 1 — 1/2A: < 1. Since m >  0 must

be an integer, m =  0. Then pi =  k{2m -f 1) =  k, and the only vertex for which 1 is an

eigenvalue is p =  (pi,pi)  =  (k, k). □

C orollary 3 .2 .2  (i) For n =  5 , 6 , . . .  ,

K i ( O vin)) =

(ii) For n =  5 , 6, . . .  ,

K i ( 0 A(n).) =

(in) For n =  5 , 6 , . . .  ,

^ i(^ p (n)*) ==

(iv) K i ( O e m) =  K i ( O ew )  =  0,

Z if n =  0 mod 4, 

0 if n ^  0 mod 4,

Z if n =  0 mod 4, 

0 if n ^  0 mod 4,

Z if  7i e e  0 mod 4, 

0 if n ^  0 mod 4,

(V  7fi(Of (ia)) =  / f i ( 0 £(.2)) =  ^ ( O ^ ) )  =  Z2,

(vi) K ^ O m *)  =  K , { 0 £m ) =  Z.
4 5

Proof. The results follow from the multiplicity of the exponent (72/ 4 , 72/ 4 ) (which gives 

the eigenvalue 1) in the corresponding modular invariant for each graph, as given in 

(1.14)-(1.25). □
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Chapter 4 

Ocneanu Cells and Boltzm ann  

W eights

Here we will compute the numerical values of the Ocneanu cells, and consequently repre­

sentations of the Hecke algebra, for the A V S  graphs. However we have been unable thus 

far to compute the cells for the exceptional graph S^2\  For the graphs k =  2 , 3 , . . .  , 

n =  6, 7 , . . .  , and £ j12̂ we compute solutions which satisfy some additional con­

dition, but for the other graphs we compute all the Ocneanu cells, up to equivalence. 

The existence of these cells has been announced by Ocneanu, although the numerical 

values have remained unpublished. Some of the representations of the Hecke algebra have 

appeared in the literature and we compare our results.

For the A  graphs, our solution for the Ocneanu cells W  gives an identical representation 

of the Hecke algebra to that of Jimbo et al. [60] given in (4.15). Our cells for the *4^* 

graphs give equivalent Boltzmann weights to those given by Behrend and Evans in [4]. 

In [27], di Francesco and Zuber give a representation of the Hecke algebra for the graphs 

7)(6)* and whilst in [108] a representation of the Hecke algebra is computed for the 

graphs £j12̂  and Our solutions for the cells W  give an identical Hecke representation 

for £(8) and an equivalent Hecke representation for £-[12\  However, for 8 2̂A\  our cells give 

inequivalent Boltzmann weights. In [43], Fendley gives Boltzmann weights for which 

are not equivalent to those we obtain, but which are equivalent if we take one of the 

weights in [43] to be the complex conjugate of what is given.

60



4.1 Ocneanu Cells

Let T be a subgroup of S U (3) and denote by T its irreducible representations. One can 

associate to T a graph Qr whose vertices are labelled by the irreducible representations 

of T, where for any pair of vertices j  G T the number of edges from i to j  are given 

by the the multiplicity of j  in the decomposition of i 0  p into irreducible representations, 

where p is the fundamental irreducible representation of 5/7(3), and which, along with 

its conjugate representation p, generates 5/7(3), the irreducible representations of 5/7(3). 

The graph Qr of & subgroup T of 5/7(3) or 5 /7 (3)„ is made of triangles, corresponding 

to the fact that the fundamental representation p satisfies p <g> p 0  p 3  1. For a graph Q, 

a triangle A ^ 7  ̂ =  i j  k i is a closed path of length 3 on Q, consisting of 

edges a, /?, 7  of Q such that s(a) =  r(7 ) =  i, s(P) =  r(a)  =  j  and 5 (7 ) =  r(p)  =  k. For 

each triangle the maps a, P and 7  are composed:

. id®det* . 7 0 id , /3®id . a®id .
I -----> 2 0 / 9 0 / 9 0 / 0 ----->  > J  0  p  -----> 2,

and since 2 is irreducible, the composition is a scalar. Then for every such triangle on Qr 

there is a complex number, called an Ocneanu cell. There is a gauge freedom on the cells, 

which comes from a unitary change of basis in Hom[z 0  p , j ]  for every pair 2, j .

Let Q be one of the finite A V S  graphs with Coxeter number n, let q =  em n̂ so that 

the Perron-Frobenius eigenvalue of Q is [3]q. We will denote the quantum number [n]q 

simply by [n], n G N. A type I frame in the graph Q is a pair of edges a, a' which have 

the same start and end points. A type II frame is given by four edges i =  1,2, 3,4,  

such that sftti) =  s (a 4), s(c*2) =  s (a 3), r^Oi) =  r (a 2) and r (a 3) =  r (a 4).

D efin ition  4 .1 .1  ([94]) A cell s y s t e m  W  on Q is a map that associates to each oriented 

triangle in Q a complex number W  ^ A with the following properties:
a

(1) for any type I frame in Q we have

£  A d  w \ A . = pi bk, ,3„ /3_, \J a ij  \J a' if

^ __Q._
j- .  g -  m  Q we flave

(4.1)

(2) for any type II frame

= < 5 « , . a A ■>/>/ ,
(4.2)
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w  = W  w [ ¥ £ ) = w  ( =  7 y 0
 a   «

Figure 4.1: Cells associated to trivalent vertices

Figure 4.2: The Yang-Baxter equation

These rules correspond precisely to evaluating the Kuperberg relations K2, K3 respec­

tively (see Section 6.1.2), associating a cell W ( A Q)jgi7) to an incoming trivalent vertex, 

and W ( A a,0n) to an outgoing trivalent vertex, as in Figure 4.1.

We define the connection

where Uj£’pH is given by the representation of the Hecke algebra, and is defined by

This definition of the connection is really Kuperberg’s braiding of (6.1).

The above connection corresponds to the braid element ^  (1.2), which is the Boltz­

mann weight at criticality. It was claimed in [93] that it satisfies the unitarity property 

of connections (1.31) and the Yang-Baxter equation (1.32). The Yang-Baxter equation 

(1.32) is represented graphically in Figure 4.2. We give a proof that the connection (4.3) 

satisfies these two properties.

L em m a 4 .1 .2  The connection defined in (4-3) satisfies the unitarity property (1.31) and 

the Yang-Baxter equation (1.32).

k p4 j

for Q by

(4.3)

(4.4)
A
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Proof

We first show unitarity.

^pl[p4 Xp3,p% — { q3fipi,p3fip2,p4 Q 3 ± a ^ 03,̂ 4,A^P1,/?2,A
\  x y)s(p\){rr{p2)

PZ,PA P3.P4 \  A ^  >

* E ,a !a“  <t>s{Pl)<t>r(p2) J

P3,P4

( Q ^ > 3 ^ 4  _  Q

P̂i,Pi P̂3,p'3 y  y ±2 x2
P3’P4 s {pi) r(pz)
A,A'

y   ̂ / i  ( ^ ^ P 1 ,P 3 ^ P 2 ,P 4 ^ / P/1 ,P/2 ,A ^ P 3 ,P 4 ,A  +  9 ^ p i ,P 3 ^ P 2 .P 4 ^ / P 3 ,P 4 ,A ^ / p i ,p 2 ,A )

P 3 iP4|A

=  &pi,p\bpz,p'z +  y   ̂“72 T2 ^ /pi,P2,A^o/1,p/2,A[2]0s(p3)0r(p4)̂ A,A/
A,A' s (p i) r (P2)

=  P̂l.Pî P3,P3’

since <7+<7-1 =  [2], where we have used Ocneanu’s type I equation (4.2) in the penultimate 

equality.

We now show that the connection satisfies the Yang-Baxter equation. For the left 

hand side of (1.32) we have

E V ^ l  ,<72 V -P3>P4 VCT3,P5  
P i iP2 <71,^3 <r2 ,pQ

.,<72,03

=  E  ~  )  (H 'W k A s .m  “  9 ’w£ ,’£j)

x ( ^ ' W a ' W s  “  9*W« , « )

CT1 .̂ 2,̂ 3

? 2 ' W « ' W 1 ' W  -  , 3  ^  ^  W £ £  +  $ > £ £

03
l V ' '  7/P3.CT2 7 7P4.P5 l Jf \  ^ 7 7<71 ,^2  7 /P 3 .P 4  _  « “ 1 7VCT1 >^2 7 7P3.P4 7 7^3 ,P5

+  P1-P2 M <72,P6 +  P5>P6 2 ^  W P1^P2 ^ , < 7 2  9  ^ 2 , P 6
<72 <71 ,<72 <7j

-  ?<W« « £ £  -  29^  w £ £  +  E w£ £  « £ £  +  E w ":« P5 
P6

<72

+  dP5,P6 y  y / / / < P̂l,P2.Â <7i,<72,Al/Fcri)Cr2)<\/l4/p3)/34t<\<
*7^2 V^PiWrinWsitoWrfa)
A.A'

_ j 1 _______  _______  ________
9 /  v T2 T T T "7 ^Pl,P2.A^<7l,<72,AWcrii(73)̂ /l/Fp3)p4)<X/Worjpg^//VForj p5

^(p,)^r(p2)0r(p4)0a(a2)0r(pe)
A',A'
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(73 £72

+  ̂ P 5 , P 6  Â Ia Â I  ^ P l , P 2 , A ^ P 3 , P 4 , A / [ 2 ] 0 r ( p 2 ) ^ )3 ( p i ) ^ A , A /
 ̂ 0a(pi)07(p2)</>a(p3)0r(p4)

~ Q  1 y~^ “72 7  7  7  ^ /rpi,P2,A^P3,P4,A/ f^A,p6^A/,p5<̂ T-(p2)^(P6)^(p4)
A ,A ' ^ >s ( p i ) ^ >r’( P 2 ) ^ r ( P 4 ) ^ ( P 6 )

+̂ A,A'̂ p5,P6(̂)s(pi)0r(p2)^(P6)^

= A - .*  W » *  -  qspun U » £  -  2 ^  w « 5  + X > « ; £  w«.«  + E w” « w&
£73 £72

"̂ [2]̂ P5,P6 ^pl ',P2 Q sk ^ /P1,P2,P6̂ /P3,P4,P5 9 P̂5,P6 p̂i',P2
Ys(pi )

=  <l%,pjp*,pjp5,pe -  q6pup3 u % £  -  q6P5,P6 U » £  +  5 > * £  UZ %  +  E ^ S
(73 (72

1
Q I ^ ^ P l  iP2iP6 ^/̂ P 3 iP 4 iP 5  ’

0 a(pi)

Computing the right hand side of (132) in the same way, we arrive at the same expression.

□

4.2 Computation of the cells W for A V S  graphs

In this section we will compute cells systems W  for each A V S  graph Q, with the exception 

of the graph S^12K

Let be the triangle i j  z in £ . For most of the A V S  graph,

using the equations (4.1) and (4.2) only, we can compute the cells up to choice of phase 

W (Aj“’f ’7 )̂ =  ^if'k\ VF(Aj“-’f ,7 )̂| for some A“fj?  € T, and also obtain some restrictions on 

the values which the phases A m a y  take. However, for the graph D (n)*, n =  5 , 6 , . . .  , 

we impose a Z3 symmetry on our solutions, whilst for the graphs V ^ k\  k =  2 , 3 , . . .  , and 

£j12̂ we seek an orbifold solution obtained using the identification of the graphs V ^ k\  

S as Z3 orbifolds of A^3k\  S ^  respectively. There is still much freedom in the actual 

choice of phases, so that the cell system is not unique. We therefore define an equivalence 

relation between two cell systems:

D efin ition  4 .2 .1  Two families of cells W\,  W2 which give a cell system forQ are equiv­

alent if, for each pair of adjacent vertices i, j  of Q, we can find a family unitary matrices 

(ii(cri, cr2))c7i,cr27 where o\,  o 2 are any pair of edges from i to j ,  such that

w i (A &,fc7)) =  E  ^ ( ^ cr,)^ (P ^ /)^(7>7/)VF2( A S j / ’V)), (4.5)
£7/ ,p / , 7 /
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where the sum is over all edges a' from i to j ,  p' from j  to k, and 7 ' from k to i.

L em m a 4 .2 .2  Let Wi,  W2 be two equivalent families of cells, and X^l\  X ^  the cor­

responding connections defined using cells W\,  W2 respectively. Then and X ^  are 

equivalent in the sense of [39, p. 542], i.e. there exists a set of unitary matrices (u(p , a ) )p>£7 

such that

=  ^ U(P3’a3)u (P4,V4)u{Pl ,° l )u (p2,V2)X l2̂ l ,<72-
Oi

Let for / =  1,2, be two families of cells which give

cell systems. If |IF i(A ^’£7))| =  |W2(A ^ ’£7))|, so that W\ and W2 differ only up to phase 

choice, then the equation (4.5) becomes

a ! ^ ’7 =  u(a ’*')u(P'P')u(7’7')MllkP,y- (4 -6)
a '  , p '  ,7'

For graphs with no multiple edges we write Ajj,* for the triangle A |“’f ,7\  For such 

graphs, two solutions W\ and W2 differ only up to phase choice, and (4.6) becomes

xi %  =  (4 -7)

where ua, up, u7 e T  and a  is the edge from i to j , p the edge from j  to k and 7  the edge 

from k to i.

We will write Û x,y  ̂ for the matrix indexed by the vertices of Q, with entries given by 

for ad ed§es P*> i =  1 , 2 , 3 ,4  on Q such that s(pi) =  s(p3) =  x , r(p2) =  r(p4) =  y,
i.e.

We first present some relations that the quantum numbers [a]q satisfy, which are easily 

checked:

Lem m a 4 .2 .3  (i) If q =  ex\>(m/n) then [a]q =  [n — a]q, for any a =  1 , 2 , . . .  ,71 — I,

(ii) For any q, [a]9 — [a — 2\q =  [2a — 2]9/[a  — l]g, for any a G N,

(Hi) For any q, [o]2q -  [a -  1 ]q[a +  1], =  1 and [a]q[a +  b\q -  [a -  1 ]q[a +  b +  1], =  [b +  1]9> 

for any a € N.

4.2.1 A  graphs

Let the vertices of the graph A ^  be labelled by (A1? A2), Ai,A2 > 0 ,  Ai +  A2 < n — 3, 

as in §1.5, with (0,0) as the distinguished apex. For the triangle A(iuj l)(i2,j2)(i3 ,j3) =  

(ii> j i )  —1> (̂ 2,^2) —> fe ,  .73) —► (ii, j i)  in A (n) we will use the notation W^(i,j) for the cell 

M/(A (ij)(i+ij')(tj+i)) and Wv(ij) for the cell VF(A(i+ij)(i)j+i)(i+iJ+1)).
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T h eorem  4 .2 .4  There is up to equivalence a unique set of cells for A^n\  n < oo, given 

by:

Wa(k,m) —  ^/[/c +  l][/c 4- 2][ m  4- 1 \ [ m  -I- 2][k 4- m  4- l][/c 4- m  4- 2]/[2], (4.8) 

^v(fc,m) =  \/[/c +  l][fc +  2]\rn +  1][^ 4- 2][A: 4- m  4- 2][k 4- m  4- 3]/[2], (4.9)

for all h ,m  >  0. For the graph with Perron-Frobenius eigenvalue a  >  3, there is a 

solution given by replacing [j] by [j]q where q =  ex for any such that a  =  [3]9.

Proof

Let n <  0 0 . We first prove the equalities

|WA(jfc,m)| =  \/[A: +  l][/c +  2] [m 4- l][m. +  2] [A: 4- m  +  1][& +  m  4- 2]/[2], (4.10)

|Wv(fc,m)| =  \/[/c +  1] [A: 4- 2][m +  l][m 4- 2][k 4- m  +  2][A: 4- m  +  3]/[2], (4.11)

by induction on h,m,. The Perron-Frobenius eigenvector for .4 ^  is given in (1.29). By 

considering the type I frame * •   ̂ equation (4.1) gives |Wa(o,o)|2 =  [2][3], whilst from

the type I frame we obtain |WA(0,o)|2 +  |Wv(o,o)|2 =  [2][3]2, giving |WV(o,o)|2 =

[3][4], We assume (4.10) and (4.11) are true for (k,m)  =  (p ,q ). We first show (4.10) is 

true for (k , m) =  (p 4 -1, q) and (k , m) =  (p ,q +  1) (see Figure 4.3). From the type I frame
(p+ l,g+l) (p+1,9)

•  —> • we get

|Wa(p+i,9)|2 +  |Wv(p,<7)|2 =  [p +  2 ]2[q 4- 1] [<7 4- 2 ][p 4- q 4- 2][p +  q 4- 3]/[2],

and substituting in for |Wv(Pi9)|2 we obtain

|WA(p+i,q)|2 =  \p 4- 2][qr 4- l][q 4- 2][p +  q +  2][p 4- q 4- 3]([2][p 4- 2] — [p +  l])/[2]2

=  \P +  2][p +  2][q 4- l][q -I- 2][p +  q 4- 2][p 4- q +  3]/[2]2.

Similarly, from the type I frame (p,<j+1)_^p+1̂ 9+1) we get

|Wa(p,9+i)|2 =  [p +  1][p +  2][q -I- 2][q +  3][p 4- q +  2][p +  q +  3]/[2]2,

as required.

For k ,m  >  0, (4.11) follows from (4.10): consider the type I frame 
We get

|VPA(fc,m)|2 +  |Wv(fc,m)|2 ~  [A: +  1][A; 4- 2][rn +  l][m 4- 2][A: +  m  4- 2]2/[2], 

and substituting in for |VFA(fc,m)|2 we obtain

l^v(fc,m)|2 =  [k +  1][/C 4- 2 ][m +  l][m 4- 2] [A; 4- m  4- 2] ([2] [A: +  ra +  2]-[A: +  ra +  l])/[2]2

=  [A; 4- 1][k 4- 2][m 4 -1][ni +  2][A: +  m +  2][A; 4- m  4- 3]/[2].
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(p.q+2)

(0 ,3)

(0 ,2)

(2 , 1 )( 1 , 1 )(0 , 1)

(2 ,0) (3,0)( 1,0)(0,0)

Figure 4.3: Triangles in A ^  Figure 4.4: Labels for the vertices and edges of A ^

Hence (4.10) and (4.11) are true for all k , m >  0.

There is no restriction on the choice of phase for A^n\  so any choice is a solution. 

We now turn to the uniqueness of these cells. Let W a be another family of cells, with 

WA(k,m) =  V.rrolWA^m)! and Wv{k,m) =  A(fc,m)I v̂(fc,m)I (any other solution must be of 
this form since there are no double edges on *4^). We label the edges of A ^  by 

Pi*\ l \ j \  j  =  1) • • •»n — 3, i =  1 , . . . ,  j , as shown in Figure 4.4.

Let us start with the triangle A (0jo)(i,o)(o,i)> equation (4.7) gives 1 =  u^ijiyuu^ijA^o)- 

Choose u (i) =  u (i) =  1 and u (i) =  Aroo)-a \ 7i Pi v , /
Next consider the triangle A (i)0)(o1i)(i,i)- We have 1 =  (2)A(o,o)AJ00), so choose  7i _________

ua(2) =  1 and u (̂2) =  A(o,o)A(0)0)- Similarly, setting uam =  u ^ )  =  1, up(2) =  A(00)A(o,o)A(iio) 

and up(2) =  A(0)i) then equation (4.7) is satisfied for the triangles A (10)(2,o)(i,i) and

A(01l)(l,l)(0,2) ■
Continuing in this way we set, for each k , u (*o =  1, (i =  1 , . . . ,  k), u <k) =  1, u (k> =

_______________________________  ai yk 7,
Up\k~l^(k-i- i, i - i) '  1, . .  ■, A: 1) and upw  (i — L . . . ,  k).
Hence, any choice of A and A' will give an equivalent solution to (4.8), (4.9).

For */4(°°), we have Perron-Frobenius eigenvectors <f> =  (0Ai,a2) given by

[Al +  l]qr [A2 +  l] g [A 1 +  A2 +  2 ]q
0(Ai,A2) =

[2]«

Then the rest of the proof follows as for finite n. □

Using these cells W  we obtain the following representation of the Hecke algebra for 

A (n). We have written the label for the rows (and columns) in front of each matrix.

f/((Ai 1A3),(Ai ,A2+1)) _  (Ai + 1,A2)
(Ai-1,A2+1)

[Ai+2] v/[Ai][Ai+2]
[Ai + 1] [Ai + 1]

\/[Ai][Ai+2] [Ai]
[Ai+1] [Ai+1]

(4.12)
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( / ( ( A i . A a M A i - l . A a ) )  =  ( A l  1 > A 2 + 1 )

( A i . A a - 1 )

(Ai+1,A2)

A2+2} V||7[A2][A2+2] \
A2+I] [A2+I] I

-V /P 2P2+2] feL /  ’
[A2+I] [Aa+ i]  /

A1+A2+3] ^/[Aj+A2+ 1][Ai+A2+ 3]
A1+A2+2] [A1+A2+2]t t ( {  A i  , A 2 ) , ( A i + 1 , A 2 - 1 ) )  __

( A i  A o - l )  I  \ / 1 A i 4 - A 2 + 1 ] [ A i + A 2 + 3 ]  [ A 1 + A 2 + I ]
\  [ A 1+ A 2 + 2 ] [ A 1+ A 2 + 2 ]

Wenzl [112] constructed representations of the Hecke algebra, which are given in [27]

as:
A — ► A +  Cfc
i  l  (4.15)

A +  ej — > A 6j +  6k

where A =  (Ai, A2) is a vertex on *4(n), A7 =  (Ai +  1, A2 +  1), the vectors ej are defined in 

Section 1.3.2, Sji(X) =  sin((7r/n)(ej -  ei) • A) and the inner-product is given by ej ■ ek =  

8jtk — l / N .  Note that this weight is 0 when j  =  /.

L em m a 4 .2 .5  The weights in the representation of the Hecke algebra given above for  

A™ are identical to those in (4-15).

Proof

For j  =  I the result is immediate since there is no triangle A —> A+e^ —► A+2ej —* A on 

A^n\  and hence the weight in our representation of the Hecke algebra will be zero also. For 

an arbitrary vertex A =  (Ai, A2) of A^n\  Sji(A' ) =  sin((7r/n)(ej—ei)-((A1+ l) e i - ( A 2+ l) e 3)). 

We will show the result for j  =  1, / =  2 (the other cases follow similarly). We have 

5i2(A') =  sin((Ai +  l)7r/n) and s^ A ' +  ej) =  S1 2 (A7 +  ei) =  sin((A! +  2)7r/n). We also 

have Si2(A7 +  e2) =  sin(Ai7r/n). Then for k =  1, (4.15) becomes

V sin2((A1 +2)7r/n ) [A, +  2] _  ^ . . A ^ i i i y  , 4 wi
sin((A! +  l ) 7r/n) [A, + 1 ] 1 )(a,+i,a2),(a1+i,a2)-

For k =  2, (4.15) becomes

^/sin((A] +  2)ir/n)sin(Ai7r/n) _  ^ [ A iP ,  +  2] _  , , , ( (A1,A2),(A1,A2+i)h
sin((A, +  l ) 7r/n) [A, + 1 ] 1 ) ( a 1+ i ,a j >,(a1- i , a 2+ i ) ,

as required. □

4 . 2 . 2  V  g r a p h s

The Perron-Frobenius weights for the vertices of A ^  are invariant under the Z3 symmetry 

given by rotation by 2n/3. Since comes from an orbifold of A ^  (as illustrated in
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(2,2)'(0 .2 )

(3-iyd.iy(0 , 1)

(3.0) (4,0)(0 ,0) (2,0)( 1.0)

(2 ,2 ),(1,2)
(0,2) = (4,0) =(3,1)

(0, 1)
(2 , 1)

(1,0) (2,0)(0,0)

Figure 4.5: *4^ and its Z3 or bifold V ^

Figure 4.5 for n =  9), the Perron-Frobenius weights for the vertices of V ^  are equal to 

the corresponding weights in A^n\  except that for n =  3k +  3, for integer k > 1, the 

vertices (k} k) 1, (k , k)2 and (k , /c)3 (see Figure 4.6) which come from the fixed point (k, k) 

of A^3k+3  ̂ under the rotation whose Perron-Frobenius weights are a third of the weight 

for the vertex (k,k)  of 4̂̂ 3A:+3). The absolute values \WA\ of the cells for A ^  are also 

invariant under the rotation.

Let n >  5, n ^  0 mod 3. We will find one solution (up to a choice of phase) for 

the cells of V M by identifying the absolute values |W ^ | for the cells in A ^  with the 

absolute values IW ^I for the corresponding cells in V ^  when taking the orbifold. Each 

type I frame in V ^  has a corresponding type I frame in A^n\  and similarly for the type 

II frames. Since the Perron-Frobenius weights are the same for A ^  and V^n\  these \ W V\ 

will certainly satisfy (4.1) and (4.2) since the \WA\ do. As in the case of A^n\  there are 

no restrictions on the choice of phase. Then we have the following theorem:

T h eorem  4 .2 .6  Every orbifold solution for the cells ofV^n\  n ^  0 mod 3, is equivalent 

to the solution for which the cells in are equal to the corresponding cells in A ^  given 

in (4 .8 ), (4.9).

Proof

The unitaries uitj € T, for z, j  vertices on X>(n\  may be chosen systematically as in
_____________1 /q

the proof of Theorem 4.2.4, beginning with uikjk)>{k>k) =  X{ktk)^k>k)̂ ktk) if n =  3k +  4 or
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-1/3 ..U(k+Itk),(k+I,k) =  \k+i,k),(k+i,k),(k+hk) if n =  3k +  5, and proceeding triangle by triangle.
□

Now let n =  3k +  3 for some integer k > 1. For q =  eln^3k+3\  we have [(3A: +  

3)/2  +  i\q =  [(3/c -P 3)/2  — i\q where i £  Z for k even and i £  Z +   ̂ for k odd. In 

particular we will use [2k +  2 +  j] =  [k +  1 -  j] for j  £ Z. The Perron-Frobenius weights 

=  <?W) / 3 =  [& +  1]2[2A: +  2]/(3[2]) =  [A; +  l]3/(3[2]), i =  1,2,3.  We again find 

an orbifold solution for the cells for T>̂ 3k+3\  except for those which involve the vertices 

(lb, k)i, i =  1,2,3,  which correspond to the fixed point (k, k) on the graph A^3k+3 .̂ Let 7 , 

7 ' be the two edges in the double edge of T>̂ 3k+3\  where 7  is the edge from (k, k — 1) to 

(k — 1, k) and 7 ' is the edge from (A;, k — 1) to (k + 1 , k — 1) in ,4(3fe+3) (see Figure 4.5). We 

will use the notation W ^ k k) to denote the cell for the triangle

where the edge £ £  {7 , 7 '} is used, for v =  (k — l , k  — l),  (k +  l , k  — 2) or (A;, k)i, i =  1,2,3.  

Then in particular we have the following:

(7) 2 _  [k]2[k +  l]2[2k][2k +  1] _  [k]2[k +  l]2 [A: +  2}[k +  3]
I (k — l,fc—l),(k,k— l),(fc — l,fc) I [012 [012 ’

\w.
[2]2 (2]‘ 

(y) |2 [A: — 1][A:][A; -P 1][Aj + 2][2A: -(- 1][2A: -1- 2]
(fc-t-l,fc—2),(k,k— l),(fc— l,fc)l J2j2

[A: — 1] [A:] [A: -f-1]2[A: + 2]2 
[2]2

Since 7 ' is not an edge used to form the triangle A^-i,k-i),(k,k-i),{k-i,k) in Â 3k+3\  we

have | l 7 / / 1,fc-i),(M-:),<*-U)l2 =  °> ^  similarly |W(*li,*-2),(/t,*-i),(*:-i,*)l2 =  °- The “ Us 
involving the vertices (k , k)i coming from the triplicated vertex (A;, k) in Â 3k+3̂ will then

(k—1 k) (k k)i
be a third of the corresponding cells for Â 3k+3̂ , since the type I frames • give

l̂ (fc-i,fc),(fc,fc)i>(fe,fc-i)l2 +  =  W[^ +  f]4[̂  +  2]/(3[2]) for i — 1,2,3. So

I2 =  - \ w  I2 — 1 [k]2[k + 1]2[2A; + 1][2A: + 2]
I (k— l,k),(k,k)i,(k,k— 1) I gl (k — l,k),(k,k),(k,k—l)\  ̂ J2J2

1 [fc]2 [fc +  l]3[fc +  2]
3 [2]2

i

\[k}{k +  \]2\k +  2}[2k +  l)[2k +  2] 1 [fc][fc +  l]3[/c +  2]2
3 [2]2 _  3 [2]2

For Ai, A' €  T, be the choice of phase for W ^_imkJ>)ukJs_ iy  *),,(*,*-!> re-
spectively, so that and =

I .*),(*,*><,(*,*_i)l. for 1 =  1.2,3. Similarly, let

W(0 — IW^ I¥Y (k-l,k-l),(k,k-l),(k-l,k) ~  A(k-l,k-l),(k,k-l),(k-l,k)\VV(k-l,k-l),(k,k-l),(k-l,k)\'
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(k+2,k-2) (Jfc+U-1) 
= (k-2,k) =(k-l,k)

Figure 4.6: Labels for the graph X>̂ 3fc+3̂

where f  G {7 , 7 '}, and WVUV2fV3 =  XvuV2tV3\Wvl)V2,V3\ for all other triangles A V1)U2>U3 of 

A':

(k,k— 1) (k—l,fc)<p(3fc+3) ^ p e jj £rame \  | gives the following restriction on the phases A*,

AiA'j +  A2A2 +  A3A3 — 0. (4.16)
(,k,k)i (k,k-1) (fc.fc)j

From the type II frame •  —> ’• «— •  we obtain Re(AjAjAJAj) =  —1/2 for i ^  j ,

giving AjA' =  ( - 1 / 2  +  eij \ /3i /2)XjX,j , Eij G {± 1}. Note that Eji =  - e^, and substituting 

for A* A' with j  =  i +  1 into (4.16) we find £12 =  £23 =  £31 • Then we have

1 \/3
AA' =  ( - 5  +  e V )Ai+lA;+1’ (4 1 7 )

for e G {± 1 }, i =  1,2,3 (mod 3). Then there are two solutions for the cells of V^3k+3\  

W  and its complex conjugate W.  The solution W  is the solution to the graph where we 

switch vertices (k , k )2 <-> (k, k )$.

T heorem  4 .2 .7  Every orbifold solution for the cells ofV^3k+3  ̂ is given, up to equivalence, 

by the inequivalent solutions W  or its complex conjugate W, where W  is given by:

(7) _  [k] y/[k +  1 }3[k +  2]
vv(k-l,k),(k,k)i,(k,k-l) ~  y/3[2]

Tx/(y) _  [̂  +  2] y/[k][k +  l]3
vv(k-i,k),(k,k)i,(k,k-i) ~  \ / 3 [2]

(7) _  [k] [k +  1] y/[k +  2] [/c +  3]]
(k—l,k—l),(k,k—l),(k — l,k) ~  |2]

(Y) _  [k +  1] [k +  2] y/[k -  l][fc]
(k+l,k—2),(k,k—l),(k—l,k) ~~ j2] ’

w ^  — w ^  — 0(k—l,k—l),(k,k—l),(k—l,k) ~~ yv (k+l,k-2),(k,k-l),(k-l,k) ~  u’

where e\ =  1, €2 =  e2nl/3 =  ê , and all other cells are equal to the corresponding cells in 

«4(3fc+3) given in (4-8), (4-9).
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Figure 4.7: Triangles and j  + 1)

Proof
Let i y tt be any orbifold solution for the cells of X)(3fc+3). Then W 11 is given, for i =  1,2,3,

by

M/UW — I
(k—l,k),(k,k)it(k,k—l) ~  A i \ VV {k - l , k ) , ( k , k ) i , (k , k - l ) \ ’

W^7  ̂ — A^IW ^ IVV(k-hk) , ( k , k ) i , ( k , k - l )  ~  A i r K(fc-l,fc),(fc,fc)i,(fc,fc-l)l’
w m  _  ab(o iwti(o I
vv ( k - l , k - l ) , { k , k - l ) , { k - l , k )  ~  A ( k - l , k - l ) , ( k , k - l ) , ( k - l , k ) \ vy ( k - l , k - l ) , ( k , k - l ) , { k - l , k ) \ ^

where £ G {7 , 7 '}, and W *UV2<V3 =  for all other triangles A V1>V2,V3 of

p (3fc+3), an(j where the choice of A*j, Ajj' satisfy condition (4.17) with e =  1. We need to find 

a family of unitaries {up} for edges p ^  7 ' of £>(3fc+3), where uy =  (u7(£, £')),£,  £' € {7> 7 7} > 

is a 2 x 2 unitary matrix, and G T for all other p. These unitaries must satisfy (4.6) and 

(4.7), i.e. q =  uwwM/(ti7(7 , 7 )Aj +  m7(7 , 7 ;)A}') and ef =  uwuM/(w7(y , 7 )Aj +  u7(j',  t /)A?/), 

for I =  1,2,3,  and

1 =  uaiua2 y ^ u ( £ , £  )A^_\ k_u (k k_l) rfc-1 fc>>,
S'

1 =  u^Ug^ y ^ u ( £ , £  )Ar[.J1 .fc_2̂ .(fc,fc-n.ffc-i.fcv
s'

For all other triangles of £>(3fc+3) we require 1 =  upluP2uP3ApliP2iP3.

For ?x7 we choose ?x7 (7 , 7 ) =  1, 7̂ ( 7 , 7 ') =  ?/7 (7 ' ,7 ) =  0 and =  A}a{. We set

=  1 and Upl =  cAi,  for I =  1 , 2 ,3, and uCT1 =  ua> =  1 , =  Â fc l _̂i),(fc,fc-i),(fc-i,fc) an(^
? , _  \tt(7')

2 ~  (fc+l,fc—2),(fc,fc—l),(fc—l,fc)'
For the remaining triangles we proceed as follows. Let m =  2k — 2. For each triangle 

35 in Figure 4.7 (and similarly for triangles A {iM i-.l>j+i)tiij +l)) such 

that i +  j  =  m, if either upw  or up(2) hasn’t yet been assigned a value we set it to be

1, and set upm =  V > u(><J>A(ij).«-ij+i).W +i)- Next’ for each trianSle 
as in Figure 4.7 (and similarly for triangles A ^ + ij-ij^ jj^ + ij))  such that i +  j  =  m,

if either up{\), or up(2), hasn’t yet been assigned a value we set it to be 1, and set
u

up(3)i =  up(i)'Up(2)l\ ( i_l j j î ^^i_1j +ly We then set m  =  2k -  3 and repeat the above



steps. Continuing in this way, for m =  2k -  4 , . . . ,  3, we find the required unitaries {up}. 

The proof for the uniqueness of the complex conjugate solution can be shown similarly. 

For the solutions W  and W  to be equivalent, we require unitaries as above such that

i i  \— \/[& +  2] . /\ \
ej = uwiV;(tM7,7)ei +  Trf?-M7(7, 7 )*i),

fi =  , u A VW)
VW)

l i t ,  L l i t ' v ,   ■ ■

" *‘Ksfik +  2l

for / =  1,2,3.  This forces u7(7 , 7 ) =  u7(7 ', 7 ') =  0, u7(7 , 7 ') =  V W /V W + ^ J  anc  ̂

7̂ (7 ', 7 ) =  v ^ F + 2 j/> /M . But then u7 isn’t a unitary. □

Using the cells W  we obtain the following representation of the Hecke algebra for
£)(3/c+3).

(fc,fc~l)(7>
£y((fc-l,fc-l),(fc-l,fc)) =  ( M _ 1)(V)

(k—2,k)

(  [fc+1] A \
[k] U [fc]
0 0 0

V(fc-l][fc+l] n |fc—1]
[fc] U [k]

=  {/((M-i).(fc-i,fc-U) ^  rows labelled by (jfe -  1, k){l\  (k -  1, k){Y\

(fc.fc-l) )̂
U((k+l,k—2),(k—l,k)) =  (fcfc_1)(V)

(fc-2,fc)

[fc+1
[fc+2

0
\/[fc+l][fc+3]

[fc+2]

/[fc+2] [fc+2]

_  £j((fc,fc-i),(fc+i,fc-2)) rows labelled by (k — 1, fc)^, (A: — 1, A;)^, {k, k — 2),

,fc 1W(7) /  _I*L ^ .y / S + l( j d ^ k - i U k , ^ )  _  ( * - W  / [jb-m [fc+1]
(fc-l.fc)^7) \  ,  [fc+2]

\  e* [fc+1] [fc+1]

=  [/((M)»,(fc-i,fc)) rows labelled by (k , A; — 1)̂ 7\  (k , A; — 1)̂ 7 \

f/((fc—l.fc) :(fc>fc—1))

/ [2iffc+n2 [fc+1] a [fc+ l]a

(fc.fc)l
3[fc] [fc+2] 3[fc] [fc+2] 3[fc] [fc+2]

[fc+l]a [2] [fc+1]2 [fc+ l]a
(fc, fc) 2 3[fc] [fc+2] 3 [fc] [fc+2] 3 [fc] [fc+2]

(fc.fc) 3
jfc + lja [fc+ l]a [2] [fc+1]2

3[fc] [fc+2] 3[fc] [fc+2] 3[fc] [fc+2]

(fc—l,fc —1) -y/jfc+l][fc+3] «2-y/[fc+l][fc+3] £2 \/[fc+ l][fc+ 3]

(fc+1 ,fc—2)
n/ 3 [fc+2] n/ 3 [fc+2] y/Z [fc+2]

\

■y[fc-l][fc+ l] « 2 \ / t fc- 1]lfc+ 1] £2-y/[fc-l][fc+ l]
n/ 3 [fc] n/ 3 [fc] N/3[fc]

\/[fc+ l][fc+ 3] \ / [ f c - l ] [ f c + l]  ^
y/3[fc+2] n/ 3 [fc]

£2 \/[fc+ l][fc+ 3] £2 ^ /[fc— l][fc-l-l]

n/ 5  [fc+2] >/3 [fc]
C 2\/[fc+ l][fc+3] £ 2 \/[ fc - l] [* :+ l]

n/3 [*+2] v m
[fc+3] n
[fc+2] U

[fc-11
/0

where a =  e2[fc] +  €2[A:+  2], and we use the notation if the path uses the edge 7 , where 

v is a vertex of £>Ufc+3) Another representation of the Hecke algebra is given by taking 

the complex conjugates of the weights in the representation above.
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In [43], Fendley gives Boltzmann weights for X>(6), which at criticality and with the 

parameter u =  1, give a representation of the Hecke algebra. However these Boltzmann 

weights are not equivalent to the representation of the Hecke algebra using the cells W  

or W.  To see this, we use a similar labelling for the graph V ^  as in [43]- see Figure 4.8.

Figure 4.8: Labelling the graph V ^

 (g 2)
Consider the weight [U r' ]7,y, where we label the rows and columns by 7 , 7 ' to 

denote which edge from 1 to 2 is used for the path of length 2 from 3r to 2, r =  0,1,  2, 

and the weight U is the complex conjugate of that given above, i.e. it is the weight given 

by the solution W  for the cells of Then for equivalence we require a unitary u3ri 1 E T 

and a 2 x 2 unitary matrix uy such that

=  \u*ri\2 +

+ u 7 (7 , 7 > 7 (y ,  +  “7 (7 , V W Y , • (4-18)

Since uy is independent of r, for (4.18) to be satisfied for each r =  0,1,2,  we require 

^7 (7 * , l ' ) — 1 and the other terms to be zero, which gives u7 (7 , 7 ') =  u7(7 ', 7 ) =  0
 /j g \

and u7 (7 ', 7 ') =  (u7 (7 , 7 ))-1. But now if we consider the weight [U ’ r ]7iy  > with u2,3r £ T, 
we have

+ “7 (7 . 7 ')“t(7'> 7)^2 +  ^ ( 7 .7 > t ( 7 ' ,7 ' ) [ §

 ^  \/[3]
but [U ’ r ]7f7/ =  for r =  0,1, 2. We obtain a similar contradiction when consider­

ing the weights U defined using the solution W  for the cells.

Suppose however that the Boltzmann weight denoted by VF~~3t̂  in [43] is the complex 

conjugate of that given. Then the Boltzmann weights at criticality of Fendley [43] are
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equivalent to the representation of the Hecke algebra given by the solution W  for the cells 

of We choose a family of unitaries iz0)i =  1*2,0 =  u2>3r =  1, u3r,i =  r =  0,1,2,  and 

choose Uy to be the 2 x 2  identity matrix.

4.2.3 A* graphs

First we consider the graphs ,4(2n+1)*? illustrated in Figure 1.10. The Perron-Frobenius 

weights on the vertices are given by fa =  [2z — 1], i =  1 , . . . ,  n.

T heorem  4 .2 .8  There is up to equivalence a unique set of cells for n < oo,

given by:

j =  2 „
v v  I — 1,1,1 rr-%------------r  > 1 #6,

V l» -  !]
v /[j -  1][2i -  1][2i +  1]

1 — /r~i* ’  ̂ — 2 , . . .  ,n 1,

Wu i  =  ( - I ) i+1- ^ L J L ,  i =  2 , . . .  ,n.
x / F T F I

Proof

We first prove the equalities

|W^-i,i,i| =  ------------_  1, ’-, i =  2 , . . . , n ,  (4.19)

=  [ t~ 1Il2i~ 11[2t +  11, » =  2 , . . .  , n — 1, (4.20)

\Wititi\2 =  i =  2 , . . . , n .  (4.21)

We have the following equations from type I frames:

|kFi,2,2|2 =  [2] [3], (4.22)

\Wi>iti+i\2 -f |VFjii+1)i+1|2 =  [2][2z — l][2z +  1], z =  2, . . . , n — 1, (4.23)

|Wi-M,z|2 +  | | 2 +  iWi^i+il2 — [2][2z — l]2, i =  2 , . . . ,  n — 1, (4.24)

|Wn—i,n,n|2 +  |Wn,n)n|2 =  [2]3, (4.25)

and from type II frames we have:

|VFi_i)M|2|Wiiiii+i |2 =  [2i -  3][2i -  l]2[2z +  1], i =  2 , . . . ,  n -  1, (4.26)

+  p T T i J l ^ i l 2) =  [2i -  3][2i -  l]2,

z =  2 , . . . ,  n. (4.27)
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For i =  2, (4.19) is trivial by (4.22), and (4.21) follows from (4.27). From (4.24) we then 

have |VF2>2)3|2 =  [2][3]2 -  |VFi)2)2|2 -  |VF2>2|2|2 =  [3][5]/[2], so (4.20) is true for i =  2. We 

assume (4.19)-(4.21) are true for i =  k <  n — 1. Then from (4.23),

i2 [ * - l ] [ 2 * - l ] [ 2 *  +  l] [fc +  l][2fc-l][2fc +  l]
1144,fc+i,fc+i| = [2\[2k -  1J[2k + 1J-------------------------------------------------------------- •

From (4.27),

|H/t+i,fc+i,t+i|2 =  f e ^ r ( W 2 - [ * - ! ] [ * :  +  1]) =  ^  +  ^[k][h + 1] [fc][fc +  l ] ’

and finally, from (4.26),

2 [Ac] [2k +  1] [2 A; +  3]
|VFfc+i,fc+i,fc+2| — [fc +  1] ’

as required. So (4.19)-(4.21) are true for i =  2 , . . . ,  n - 1. The result for |VFn_i>ntn|2 follows 

from (4.23), and lastly, from (4.25),

-  [2] ( [ n - l ] - [ n  +  3]) =  r J ? L T([n +  2 ] - [ n - 2 ] ) =  ^
[n — 1] [n — 1] [n — l][n]

Let W ij tk =  for Xijtk £ T. From type II frames we have the restriction

^i.i.i+l^t+M+M+l =  —\,i+l,t+l^i>*,*> (4.28)

for i =  2 , . . .  ,n — 1. Let Wfjtk =  Ajj |Wij,fc| be any other solution to the cells, where

the A11 satisfy (4.28). We need to find a family of unitaries where uitj is the

unitary for the edge from vertex i to vertex j  on A^2n+1^,  which satisfy (4.7), i.e. 

— 1 =  ull2l\ \ l2l2l for I =  l , . . . , [ n / 2 j ,  and 1 =  UiUjUkA j f o r  all other triangles

We choose Ui^+i — 1 (i — 1 , . . .  ,ti 1), 112,1 ~  (A2)2)2)  ̂ Aj 2 2, Ui+i,i =
~(A2,2,2)1̂ 3A2,3,3A3,4,4 ' ' ‘ Af-i^^A^^Ag g  ̂• • • i (z =  2, ■ ■ ■ , 71 — 1), W22 =  —(X2 2 2) 1̂ 3

and Uiti =  — (A2)2)2)1//3A2)2i3A3)3)4 • • • Ajl.j^j^Aj^^Ag^ • • • Ajj  ̂^  (i =  3 , . . . ,  n). □

For ,4 (2n+1)*, the above cells W  give the following representation of the Hecke algebra:

[ i -1] ^ /[» -!][*+!]
[/(*.*+1) _  * [ [*] [*]

i+1

1) =  [t-1] [i-1]
[*-2] W _[»]_
» - l ]  [ i-1 ]
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v / [ i - l ] [ i + 1] [i+ 1 |

W [<]

[i—2] \ / [ i - 2 ] [ i ]



[/(*>*) =

i —1

i+ 1

[»][2i-3] ( ~ l ) i+V [ 2 i - 3 ]  y'[2t-3][2t+l] ^
[t - l] [2 i- l ]  [*_i]v/[2»- l ]  [2*-l]____

( - l ) i+V [ 2 i - 3 ]  l ( - l ) i+1\/[2*+l]
[i] y [2 z - i ][»-!][*]

V

[i- l ] y / [2 i - l ]  
y/[2i-3} [2»+l] ( - l ) i+V [ 2 i + l ]

[2<~1] Wy/pET]
[i-l][2i+l]

[»][2*-l] /
In [4], Behrend and Evans give Boltzmann weights

W
a d 

b c
u

which at criticality, with u =  1, give a representation of the Hecke algebra. (Note, these 

Boltzmann weights are not to be confused with the Ocneanu cells W .)

Lem m a 4 .2 .9  The weights in the representation of the Hecke algebra given above for  
<4 (2n+l)* are equivalent to the Boltzmann weights at criticality given by Behrend-Evans in

m

Proof

To make our notation the same as that of [4] one replaces i with (a +  1)/2 . Then it 

is easily checked that the absolute values of our weights given above are equal to those 

for the Boltzmann weights in [4], setting q =  0, in all but a few cases. We will show that 

the absolute values in these other cases are also equal. For i+1> the Boltzmann

weight in [4] is

[a +  2] -  [a +  2] /  [a] [a +  2] . . .  . .. [a+  2] [ |(a  -  l)][a +  1]
[a +  1] [a][a +  1] llJj “  [a][a +  1] [ |(a  +  1)] ’

which is equal to our weight, and similarly for For we have to do

the most work. From [4] its value is

1 [a +  2]E|(a — 5)] [ a - 2 ] [ | ( a  +  5)) \
[3] V1 J [«][§(<•+ 1)] [a ] [ i(o -  1)] J

[2][a][§(a ~  l) ] [ |(a  +  1)] -  [a +  2][l(a -  5)][|(a  -  1)] -  [a -  2][l(a  +  l)][l(a  +  5)]
[3 ][a ] [ i(a - l) ] [ |(a  +  l)]

Using (1.30), we can write the numerator as

[2][a]([2] +  [4] +  . . .  +  [ a - l ] ) - [ a  +  2]([3] +  [5] +  - . .  +  [a — 4]) — [a — 2]([3] +  [5] +  • • • +  [a +  2])

(4.29)
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=  [a]([ 1] 4- [3] 4- [3] +  [5] 4------- b [a -  2] +  [a])

— ([a 4- 2] +  [a — 2])([3] 4- [5] 4- • — b [a — 4]) — [a — 2]([a — 2] 4- [a] +  [a 4- 2])

=  [a] 4- (2[a] — [a 4- 2] — [a — 2])([3] 4- [5] 4- • • • 4- [a — 4] +  [a — 2]) +  [a]2 — [a — 2][a]

=  [a] +  ([a] -  [a 4- 2])([3] +  [5] H b [a — 2])

— + ([al — [a ~  2])([3] +  [5] 4 b [a — 2] 4- [a])

=  [a] +  [(a -  3 )/2 ][(a 4- l)/2]([a] -  [a +  2]) 4- [(a -  l)/2][(a  +  3)/2]([a] -  [a -  2]).

(4.30)

Now

[(a -  3)/2][(a4- l)/2]([a] -  [a 4- 2])

=  [(a -  3)/2]([(a 4- l)/2 ] 4- [(a 4- 5)/2] 4------- b [(3a -  l)/2]

- [ (a  4- 5)/2] -  [(a +  9 ) /2 ]  [(3a +  3)/2])

=  [ ( a - 3 ) / 2 ] ( [ ( a + l ) / 2 ] - [ ( 3 a  +  3)/2])

=  [3] +  [5] 4- • • • 4~ [a — 2] — [a -b 4] — [a +  6] — • • • — [2a — 1],

and

[(a — l)/2][(a  4- 3)/2]([a] — [a — 2])

=  l(a ~  l)/2 ]([(a  +  l)/2 ] 4- [(a 4- 3)/2] 4------- b [(3a 4- l)/2]

- [ (a  -  5)/2] -  [(a -  l ) / 2 ]  [(3a -  3)/2])

=  [ ( a - l ) / 2 ] ( [ ( 3a  +  l ) / 2 ] - [ ( a - 5 ) / 2 ] )

=  [a 4~ 2] +  [a -b 4] +  • • • 4- [2a — 1] — [3] — [5] — ••• — [a — 4].

Substituting back into (4.30) we obtain [a] 4- [a -  2] 4- [a 4- 2] =  [3][a], and (4.29) becomes

[3 ][a ][I (a -l)][ |(a  +  l)] [ | ( a - l ) ] [ i ( a + l ) ]

as required. To show equivalence, we need unitaries Uij 6 T, for vertices i, j  of A such 

that

Then we set itM =  1 for all z, and for m =  0 , . . . ,  (n -  2)/2 , u2m+i,2m =  ^2m,2m+i =  

^2m+2,2m+i ~  1 and ^2̂ -1-^2771+2 =  !• n
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For the graphs ,4(4n)* (illustrated in Figure 1.10) the Perron-Frobenius weights on the 

vertices are given by fa =  [2i]/[2], i =  1, . . .  , 2n -  1. There are now two solutions W +, 

W~  for the cells for which are not equivalent since |VF+ | ^  \W~\ and the graph

*4 (4n)* does not contain any multiple edges.

T h eorem  4 .2 .10  The cells for A ^ * ,  n <  oo, are given, up to equivalence, by the in­

equivalent solutions W +, W ~ :

VF

ii/±  _  \ / [ 22][2z +  2] . . .
i'w+1 ~  [ 2 y \ 2 i  +  \\

r± =  4- /[o7- i o] +  m
i,i+1,i+1 [2]y/[2i +  l]

w*.  • =  <i,i,i ( - i )

[2]-v/[2* — l][2t +  l]
n+l_______ 1M _ _

V T 2 ] p ] ± [ 4 i ] ,

i / [ 2 ][2 n  — l][2 n  +  1 ] ’

2 =  1 , . . . ,  2n — 2,

2 =  1, . . . ,  2n — 2 ,

2 =  1, . . . ,  n — 1 , 

i =  n,

( - i ) i+ l j ® ^/[2] [2i] =f= [8n — 4i], * =  n +  1 , . . . ,  2n — 1.

Proof

Due to the symmetry on the graph A ^ * ,  we only need to consider half of the type I 

frames. In so doing, we are not assuming that the cells are invariant under this symmetry. 

We have the following equations from type I frames:

|W i,i,i|2 +  |VFi,ii2|2 — [2],
Iw  I2 +  111/ i2 _  P *][22 +  2]
I ** i,i,i+l I "T |^ t , i + l , i + l |  —

[2]

lVFi_M.il2 +  |VV’Mii|2 +  |WiiM+1|2 = M
[2]

(4.31)

2 =  l , . . . , n —1, (4.32)

2 =  2 , . . . ,  n — 1, (4.33)

and from type II frames we have:

| H / - lli 1i l2 | + i ,i + l | 2 =  — ~  2 l [2 i ]2 l2 i  +  2 )
[2]‘

[2]2' l*J +  [2i 2l[2i]2
[22 -  2]

From (4.33) and (4.34) we have 

[2*1

[2*]

i =  2 , . . . ,  n, (4-34)

, 2 =  2 , . . . ,  n. (4.35)
[2]

l + v l 2 =  -  W - i , i , i \ 2 -  —  2][2i]2[2i +  21" "  ' - 2
[2] [2]‘

(4.36)
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and substituting for IW ^I2, and also for iW i-i.i-i,*!2 from (4.32), into (4.35) we obtain 

the quadratic equation

y  , . _  2\2m w - , .  f + v - g m i + i ]  =  o
[2* -  2][2i] 1 +  [2]2

Then, for i =  2 , . . . ,  n,

W - w ?  =  l̂ 2 i ]- l } m  ±  [11)’ (4 '37)

and, from (4.32),

For i =  1 , . . . ,  n — 1, (4.33) gives

W -M -w P  =  { J i ^ = l } ( [ 2i - 2] =F [I]). (4.38)

' ' • - ' ■ ■ i f p r k l i l * 1' 1 " -  (4-39>

Note that | Ŵ*,*,*!2 >  0 for alH =  1 , . . . ,  n — 1: We have [2][2i] — [4i] =  [2i — l] +  [2z +  l] — [4z] 

and sin((2z — l ) 7r/4n) +  sin((2z +  l ) 7r/4n) — sin(4z7r/4n) =  2 sin(4z7r/4n) cos(27r/4n) — 

sin(4z7r/4n) > 0 since cos(27r/4n) > 1/2.

From (4.36) with i =  n we have

IWn,n,n
2

[2] [2]2[2n - 1]
[2 n]2 i

[2]2[2n — 1] [2n + 1] (
[2n]2 (

[2]2[2n — 1] [2n + 1] (
([2n][2n +  1] — [2 n — 1] [2 n — 2]) =

[2][2n — l][2n +  1] ’ 

From (4.34) with i =  n, we have

|2 [2n - 2][2n]
\ W n ,n ,n + i \  -  [ 2 ] 2 [ 2 n - l ] ( l2 n ' T

and the equations for | and | i =  n +  1 , . . . ,  2n -  1 follow.

We again obtain the restriction on the phase given in (4.28). Let W j - k be another 

solution for the cells of A {An)* such that \Wlj k \ =  \W^tk\. Then the equivalence of these 

solutions follows in a similar way to the ,4 (2n+1)* case. □

For the graphs ,4 (4n+2)* (again illustrated in Figure 1.10) the Perron-Frobenius weights 

on the vertices are again given by =  [2z]/[2], i =  l , . . . , 2 n .  There are again two 
inequivalent solutions VF+, W~  for the cells of 4̂ (4n+2)*,
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T heorem  4.2 .11 The cells for Ĵ (4n+2)*> n < oo, are given, up to equivalence, by the 

inequivalent solutions W +, W ~ :

W t u + 1  =  f r f21 + 1 ̂ 2»] T M' i =  1, . . . ,  2n — 1 ,
w +  [2] , / [ 2j +  l]

Ŵ <+1 <+1 =  s /p i  +  2) ±  [1], i =  1, . . . ,  2n — 1,
1 1  [2]x/[ 2 i + 1]

lylyl

( - l ) i+1----- . V-l' ‘ ---- =V[2][2j]T[8n +  4 -4 i] , j = n + 1, . . . ,  2n.
V 1 [2]v^[2i — l][2t +  1] )l 1 1  1

Proof

We again have (4.31)-(4.39), where equation (4.32) is now for i =  1 From

(4.36) with i — n we have

2

[2n f  _  [2n - 2][2n] _  [2n][2n +  2]
[2] [2]2[2n -  1] U 1 1 [2]2[2n +  1] U 1 T 1 "

[2n ]2
([2][2n -  l][2n +  1] -  [2n -  2][2n +  1] -  [2n -  1][2n +  2j)

- AJ

T [2]2[2„ - l ] [ 2n +  l ] ([2" '  2,[2" +  11 ‘  [2" “  1][2n +  2D

[2]2[2n -  l][2n +  1] 

[2n ]2
[2]2[2n — l][2n +  1]

2[2n 
[2 n]

([2n][2n +  1] — [2 n — l][2n]) 

T l2]2[2n j l l [2ra +  1l (l2" -  2][2n +  1] -  I2" ~  HI2"])

([2n] ±  [1]).
[2][2n — l][2n +  1]

From (4.33) we find

I  I2 =
[2]2[2n +  l]

whilst from (4.32) we have

Il^n,„+!,„+!|2 =  d2” 1 ±  [1])'

Then the equations for | a n d  | i =  n +  1 , . . . ,  2n follow. Equiva­

lence of solutions follows as in the previous cases. □
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For A {2n)*, the cells W + above give the following representation of the Hecke algebra:

[2z] — [1] \ /  ([2»]~[l])([2i+ 2]+[l])
Tj(i,i+1) _  1 | [2i+ ll [2i+ l]

i+ 1 \  V ([2i]-[l])([2i+ 2]+[l]) [2i+ 2]+[l]
[2i+ l] [2i+ l]

i - 1

t /<M) =  i 

i+1

(
[2z - 2l- [ l]  v/( [2i - 2]-[l])([2i]+[l])

[2i - 11 [2i - l ]

V ([2< -2]-[l])([2»]+[l]) [2i]+[l]
[2. - 1] [2» -l]

(  [2i - 2]([2i]+[l]) ( - l ) i+ V x [ 2i - 2]([2i]+[l]) \J\2i-2]  [2i - l ] [ 2i+ 2] ^
[2i][2i+ l] y/[2i}[2i+l] [2i}yJ[2i+l]______

(-1 )<+V * [ 2<-2](124+[1]) ( - l ) i+ V x [ 2i+ 2]([2t]-[l])
>/[2*][2t+l] X y /[ 2 ^ i+ T ]

y j  [2i- 2] [2i —1 ] [2t+ 2] ( - l ) i+V x [ 2i+ 2]([2*]-[l]) [2i+ 2]([2»l-[!])
^  [2i]y/[2i+1] y/[2i][2i+\] [2*][2*+l]where, for positive integer m, if n =  2m,

[2][2*1+&J_ for i =  1 m — 1[2»-l][2t][2*+l] lor 1 A>

x for * =  m -
[2][2»]~I l̂~i*l for z =  m  +  1 2m -  1[2i—l][2i] [2i+ l] IOr 1 ~  m  I" 1 , • • • , 1 ,

and if n =  2m +  1 ,

f P)P»1+[4<] , for i  -  i  m
J [2i - i ] [ 2t][2»+i] io r  4 -  1 , . . . ,  m ,
 ̂ (2][2i] —[4n— f  . _  j  g  ‘
f  [2i - l ] [ 2i][2*+l] ' ' "  1

Lem m a 4 .2 .12  77ie weights in the representation of the Hecke algebra given above for
A (2 n)* are equivalent to the Boltzmann weights at criticality given by Behrend-Evans in

[41-

Proof

To make our notation the same as that of [4] one replaces i with a/2.  To see that 

the absolute values of our weights are equal to those of the Boltzmann weights in [4] one 

needs the following relations on the quantum numbers:

+  [j] =  +  1] ^  +  2] ^  [2j] _  w  =  |2« - l M «  +  2] ,
[2l -  ljg/ [2I +  ljq'

where q1 =  yfq (q =  et7r//n). Again, a bit more work is required for For equivalence

we make the same choice of ( 35 f°r *4 (2n+b*. □
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Figure 4.9: Labels for the vertices of £>(2n+1)* and T)(2n)*

4.2.4 V* graphs

We label the vertices of p (2n+1)* by ij, ji and ki, I =  1, . . .  ,n,  as illustrated in Figure 

4.9. The Perron-Frobenius weights are (pit =  0j, =  4>kt =  [2/ — 1], / =  1, . . .  , n. Since the 

graph has a Z3 symmetry, we will seek Z3-symmetric solutions (up to choice of phase), i.e. 

\w ip,jq,kr\2 =  \w iq,jr,kp\2 =  \w irdp,kq\2 -■ \Wp>q>r\2, p ,q,r  G { l , . . .  ,n }. Using this notation, 
we have the following equations from type I frames:

I WT,2,2|2 =  [2] [3], 

|W W il2 +  |IVM+1,I+1|2 =  [2][2i -  l][2i +  1], 

|Wi-i,i,i|2 +  |M/i,(,i|2 +  \Ww + i\2 =  [2][2Z — l]2, 

|M/ „ - lin,n |2 +  \Wn,n,n\2 =  [2]3,

and from type II frames we have:

|V ^ -i,i/ |H /M,i+i |2 =  [ 2 / - 3 ] [ 2 / - l ] 2[2Z +  l], 1 =  2......... n - 1 ,  (4.44)

1 =  [2/ -  3] [21 -  l]2, l =  2 , . . . , n ,  (4.45)

which are exactly those for the type I and type II frames for the graph *4(2n+1)*. Since 

the Perron-Frobenius weights and Coxeter number are also the same as for .A(2n+1)*, the 

cells follow.

From the type II frame consisting of the vertices z;, ji, ii+i and j /+1 we have the 

following restriction on the choice of phase

(4.40)

/ =  2 , . . . ,  n — 1, (4.41)

/ =  2 , . . . ,  n — 1, (4.42) 

(4.43)
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Theorem 4.2.13 Every Z^-symmetric solution for the cells W o/Z>(2n+1)*, n < oo, is 
equivalent to the solution:

y/[t \[2l -  3][21 - 1}

^ [ l  -  l][2l -  1}\2T+T]
" W i  = Wihjl+1,kl =  Wil+Ujl,kl =  ^ ^  « = 2..........n - 1 ,

,i+i PI -  1]Wit it kl =  (—1)  p=TTT-T-:, / =  2 , . . . ,  n.
y / [ l -  1][Z]

Proof
Let W 11 be any Z3~symmetric solution for the cells of £>(2n+1)*? where the choice of 

phase satisfies the condition (4.46). Since X>(2n+1)* does not contain any multiple edges, 
we must have \Wfjk\ =  \Wijk\ for every triangle A ijk of X>(2n+1)*. We need to find a 
family of unitaries {uPtQ}, where up,q is the unitary for the edge from vertex p to vertex 
q on p(2n+i)*} which satisfy (4 .7 ), i.e. - 1  =  ui2l j 2luj2hk2luk2lyi2l>̂ 2lj 2hk2l for the triangle 
A i2lj 2l}k2n 1 = 1 , . . . ,  [n/ 2 \, and 1 =  uPluP2 uP3 XP U P 2 } P 3 for all other triangles on £>(2n+1K 
For triangles involving the outermost vertices, we require 1 = uiuJ2uJ2>k2uk2)ix A-ij2)fci,

1  U i 2  J j  U j l k 2 U k 2 t  i 2 X { 2  Jitfc2 ’ ^  ^ i 2 J 2 ^ j 2 i f c l ^ f c l » * 2 ^ t 2 ) j 2 > f c l  a a d  _ ^  U i 2 , j 2 U j 2 , k 2 U k 2 , t 2 X i 2 , j 2 , k 2 ’

H
So we choose U{Xtj2 uji,k2 3̂ 2 ^ 2  ^̂ 2^2 ^ 2ji Xi2 ,ji,k2 ^
A5ij2,fc2> u^h =  ~ XLj 2 ,k2 and uhM =  - XLj 2 MXLj 2 M- Next consider the equations 1 =  

Ui2,jzU3Z,k2Uk2,i2Xi2 ,j2,k2'>  ̂ ”̂*3,32Uj2,k2Uk2,is\3,j2,k2 1 Ui2,j2Uj2,k3Uk3,i2Xi2 ,j2,k3'
U i 2 , 3 3  —  U j 2 , k 3  ~  U k 2 , i 3  =  U i 3 , 3 2  ~  X i 3 , j 2 , k 2 ’ U 3 3 , k 2  =  X i 2 , j 3 , k 2  a n d  U k 3 , i 2  =  ~ X i 2 , j 2 , k 2 X i 2 , 3 2 , k 3 '

Next we consider the equations

^ ^ 2 ,33 ̂ 33 ,k3 ̂ k 3,12 Xi2 j ' 3 ,fc3 ,^3 ^ i 2 ,J21^2 ^*2  ,j2,k3 A ^2 J 3  ,^3 1

-|   /  ̂ \  U   \  )j \  p
1 — Ui3,j2Uj2,k3Uk 3 , i 3 \ 3,j2,k3 ~  Uk3,i3*i3,j2,k2 I3,j2,k3 '

1 =  Ui3,j3Uj3,k2Uk2,i3X i3,j3,k2 =  Ui303X i2,j3,k2X i3,j3,k2 -

We make the choices ufc3,i3 =  and uhM =

- ALj2,k3* l j 2M Xlj*,ic3- Then

  _ \fl \" \B \« \B \B   1
U i 3 , j 3 U j 3 , k 3 U k 3 , i 3  i 3 , j 3 , k 3  ~  I 2 , j 3 , k 2  l 3 , 3 3 , k 2  i 2 , 3 2 , k 3  i 2 , 3 2 , k 2  i 2 , 3 3 , k 3 \ 3 , j 2 , k 2  i 3 , 3 2 , k 3  —

by (4.46), as required. Continuing in this way we are done. □
For p(2n+1)*? the Hecke representation for the cells W above is given by the Hecke 

representation for .4(2n+1)*, where [U{il'kr)]jmj p =  [Uijl'ir)]krn>kp = [U{kl'jr)}imtip are given by 
the weights [f/(/’r)]m(p for ^(2n+1)*i for any l ,m ,p ,r  allowed by the graph.
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We now consider the graphs £>(2n)*. Labelling the vertices of p (2nl* by q, ji and kh 

for I =  1 , . . . ,  n — 1 (as in Figure 4.9), the Perron-Frobenius weights are fa  =  fat =  f a  — 

[2/]/[2], and we again assume \Wip>jqtkr\2 =  \Wiqj r,kp\2 =  \Wirj p,kq\2 =■ I ^ W I 2, where 
p, q, r £ — f}. Then as for p (2n+1)*j the Z3-symmetric solution for the cells

follows from the solution for and we have the same restriction (4.46) on the choice

of phase. So we have

T heorem  4 .2 .14  Forn <  oo, the 7j^-symmetric solution for the cells o f V ^ *  are given 

by:

= W t± . k =  W *  =  v M Pj ± j l ^ [ 2/] qp [!] I =  1 , . . .  ,2n — 2,
ii,ji>Ki+1 uoi+iM [2] y/^21 -f 1]

14/.* k =wt± ik =wf . = VI2*][2i± S ,/p; + 91 + h] / = l,...,2n-2,
UOl+lM+l H+lOlM+i [2] \ / [ 2/ +  1]

" f t . *  =  <

( - i )I+1 

( - i )

[2 ] v l 2 r = l l  

n+ 1 __________ [2 n
2/ + 1] v m n  ±  [4i],

( - i )

V ^ p n - l p n + l ] ’

/ =  1 , . . . ,  n — 1 ,

I =  n,

[2]^/[2/ — l][2l +  1] 

and the Z3-symmetric solution for the cells of Z>l4n+2)* are:

v / [2)[2i] T [8n -  4(], l =  n +  l , . . . , 2 n - l ,

HA*. , =  HA*. , ty*  j k =  ^ l 21̂ 21 +  21 ^ [ 2 i] T [1], ( =  l , . . . , 2n —1 ,
[2] V p T l l

V [2<][2/ +  2]

[2] v W + l J
v/[2/ +  2] ±  [1], / =  ! , . .  , , 2n - l ,

w ± . .H,3lM

( - 1)

( - 1)

y / M .
[2 ] v ' [ 2 / - l ] [ 2 /  +  l ]

I =

Z+l M
[2]-v/[2/ — 1][2/ +  1]

•v/[2][2/]q=[8n +  4 - 4 / ] ,  I =  n +  1, . . .  , 2n.

The uniqueness of these solutions follows in the same way as for p (2n+1)*< if w +  is a 

solution for the cells of X>(2n)*, then W~  is a solution for the cells of the graph where we 

switch vertices i t <-> in_u j t <-► j n_t and ki «-► kn_h for all / =  1 , . . . ,  n — 1.

For p (2n)*; the Hecke representation for the cells W + above is given by the Hecke 

representation for A {2n)\  where [t/(i|**r)]jWp =  =  [C/(fc|J'r)]im><p are given by

the weights [Û l'r ]̂m,P for A ^ * ,  for any r allowed by the graph.
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In [27], di Francesco and Zuber gave a representation of the Hecke algebra for the 

graph with the absolute values of the weights there equal to those for our weights

given above. The two Hecke representations are not identical as the weights in [27] involve 

the complex variable i. However it has not been possible to determine whether or not the 

two representations are equivalent as there are known to be a number of typographical 

errors in the representation in [27].

4.2.5 £ (8)

We will label the graph £ <8) in the following way. We will label the six outmost vertices 

by ii and the six inmost vertices by j/, I =  1 , . . . ,  6 , such that there are edges from ii to ji 

and from ji to ij+1. The Perron-Frobenius weights on the vertices are 0*, =  1, (j)jt =  [3]. 

With [a] =  [a]9, q =  el7r/8, we have [4]/[2] =  y/2.

We will again use the notation W ij tk for W ( A i j tk)- Then from the type I frames on 

the graph we have the following equations:

I W W . I 2 =  I2! frAn  =  P M

l " W , l  l^ri+i jiji-i I +  I Wji j< - 1 ji - 212 — =  [2][3]2.

Then |Wjl+ujhjl_1\2 +  \ W =  [3][4]. Since there is a Z6 symmetry of 8 ^  we assume

\w ji+uji,ji-x\2 = \ w jk+iJkJk-i\2 for a11 Siving

= i[3][4] =

The Z6 symmetry of the cells can be deduced from equation (4.48). Finally, for the type 

I frames • — we h a v e \WjwJl+lJl\2 +  \WjtJl+2ijlJ 2 =  [2][3]2 giving

\W . .  . |2 -  [21[3,2 _  E E  _  m
I 3 l ,3 l+ 2 ,3 l+ 4  I —  •

Let

~  \/[2] [3], / — 1 , . . . ,  6 ,

w  =  \  ( i )  [2 ]  \ / M  ,  ,  f i

* y p j  ' (4.47)

_  '(2)[2] [3]

>/PT
W  =  / — 1 2yy31,31+2,31+4 Ajt n ~ . l ~  A, z-
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The only type II frames that yield anything new are those for the frame involving the 

vertices j/_2, j i - 3(=  ji+3), ji+i and j t:

0  —  0  j j _ x _  2 ,jl - 1 ,jl Wjl + j J i  j ,  _  x W j j  _  x J i+1 , j i+ 3  W j j  _  1 ,ji _  2 J i  -  j

[ 2 ] 4 v W , ( i ) , ( i )  > ( i )  \ ( 2 )  . P r v W i d )  > ( i )  \ ( «  \ ( 2 )
— [ i p — A J< A i H 2 A J . H - 4 A 3 . - i  +  — j i p —  ; i - i  j i + i  J 1+3 j i  ’ 

which for any / =  1 , . . . ,  6 gives

« « = (4-49)

From the type II frame above we see that there must be a Z6 symmetry on the cells, 

\WJl+lJhjl^  =  |W j k + x j k j k - x ] 2  for all k,l,  is correct since otherwise the coefficients of the 

two terms in equation (4.48) would be different, and (4.49) would be

\  ( 1 )  \  ( 1 )  \  ( 1 )  \  ( 2 )  _  _  x ( l ) x ( l ) x ( l ) x ( 2 )
j l  33 j b  n  32 34 36 31 ’

for some constant cG M  with |c| 7  ̂ 1 , which is impossible.

T heorem  4 .2 .15  There is up to equivalence a unique set of cells for £ ^  given by:

\2\J\3\
=  v M  " 'a j .- .j .- , =  - y j j n  » =  ! . • • - . 6 ,

W  -  ®  [2 [31-  / m.  W- -  I ll 1
v/PT y p j

Proof

Let VF11 be any solution for the cells of £^8\  where the choice of phase satisfies the 

condition (4.49). We need to find a family of unitaries {uP)9}, where uPi9 is the unitary for 

the edge from vertex p to vertex q on £^8\  which satisfy (4.7), i.e. —1 =  Uj2j 4Uj4j 6Uj6j 2\ f J  

for the triangle A j2j 4j 6, and 1 =  upluP2uP3Ap1)P2jP3 for all other triangles, where XPl;P2>P3 is 

the phase associated to triangle A Pl>P2)P3. We choose uilj l =  ujlj l_1 Aip U j l y j l + 1  =  1 for I =  
1 fi u . . =  u . . = 1  u . . u -  ■ -  A(1)A(1)A(2)A(1)A(1) 7/-  • 7/

’ ’ • • ’ ’ a  32,31 u 35,34  -L “ J U 6  * j 2 > u 33,32  ~  * j 2 * j e  * j i  j  1 A J 3 ’ U 34,33 ~  * j 5 > F ? 6 J 5  —

A(1) u  =  77- =  7/- • =  1 7/- • -  A(1)A(1)A(1)A(2) 7 / -  A(1)A(1)A ^ A ^ A ^ A ^ A ( 2)
36  ’ “ ? 3 J5  34>36 U 3 6,32 1 J U 3 l , 3 3  32 * 3 2  * 3 6  * j l  ’ U J 2 J 4  ~  A j 2 A J3 A J5 A J2 A J4 A J6 A j l

and uAJl =  A“ A<‘>A<.;). □

For the above cells VF give the following representation of the Hecke algebra:
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( j ( j l  ,31- 2 )  —

j j { j l , j l + 1)

Ji- 1 

j l + 2

Ji —1 

j l + 2

H+l

[2] ^  
[2]

(  J_ J_
[2] [2]

[2]
x
[2]

1 1 
V x/M x/M

(-l)i+1x/[3]
[2]
M
[2]

_L_ \  
y/W

l
y/W)
M
[3] J

for I =  1, . . .  ,6  (mod 6 ). This representation is identical to that given by di Francesco- 

Zuber in [27]. (The representation in [27] is given for the graph £ (8)*, and the represen­

tation for £ (8) is obtained by an unfolding of the graph £ (8̂ .)

4.2.6

We will label the vertices of the graph £ ^ *  as in Figure 1.12. The Perron-Frobenius 

weights for £ (8)* are fa =  fa =  1, fa =  fa =  [3]. As with the graphs A (n) and £ (8) 

we easily find IW123I2 =  [2] [3] and |W234|2 =  [2] [3]. Then by the type II frame 

we have [3]-1 |WI23|2|W223I2 =  [3]2, and so |VF223|2 =  [3]2/[2]. Similarly IVV233I2 =  [3]2/[2]. 

From the type I frame we get IW^mP +  I^ m I2 — [2][3]2, giving |VF222|2 =  [3]3/[2], and 

similarly |W333J2 =  [3]3/[2]. Let Wijk =  \ijk\Wijk\- Then from the type II frame consisting 

of the vertices 2 ,2 ,3,3 we obtain the following restriction on the choice of phase:

A222A233 =  —̂ 333̂ 223- (4.50)

T heorem  4 .2 .16  There is up to equivalence a unique set of cells for £ ^ *  given by:

123 —

W223 =

W222 =

Proof

Let W* be any cell system for £(8)*, where the choice of phase satisfies the condition 

(4.50). We need to find a family of unitaries {uP)(?}, where up>q is the unitary for the

edge from vertex p to vertex q on £(8)*, which satisfy (4.7), i.e. —1 =  U33A333 for the

triangle A 3)3i3, and 1 =  UijUj^u^iXijk f°r aU other triangles, where Ay*. is the phase
  ___ 1

associated to triangle We choose u3)1 =  u3)2 =  u4)3 =  1, u24 =  A234, u3)3 =  — A3333,
1 ______  ’ ’  1 ’ ’ ’ ______________ i

u 2,3  —  — A 3 3 3 A2335 ^ 1 ,2  =  — A 233^ 1 2 3 ^ 3 3 3 3 a i l d  U 2)2 =  — A 2 3 3 ^ 2 2 3 A 3 3 3 3 • D

l/l/234 —

W233 —

v w

J!L
y p j ’

W:333
VW
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Figure 4.10: £ and

For £ the above cells W  give the following Hecke representation:

U (1’3) =

J J { 2.2) =  

_

U{2'3) =

jj{2, 1) _  jry(3,4) _  £/(4,2)

1 y/m 
[2] [2]

vM  ia 
[2] [2]
j .  _ y i
[2] PI
vM  M

[21 [2]
(  -L X

[2],

3 \ _

[2] [2]

[2] [2]

_JL_ \
y/m 

1
y/M
M 
[3]

1 1

(/(3<2) with rows labelled by 2 , 3 , 1.

This representation is identical to that given by di Francesco-Zuber in [27].

4.2 .7  £ (12)

We label the vertices and edges of the graph £212̂ as in Figure 4.10. The Perron-Frobenius

weights for are

( p i  1 )  ( p j  —  ( p k  —  [ 3 ] ,  ( p P l  —
[2];

1Pqi (Prt —
[2] [3] I =  1,2,3.

[4] ’ ^  ^  [4] ’

With [a] =  [a\q, q =  el7r/12, we have [2]2 =  [5] and [3]2 =  [1] -I- [3] +  [5] =  [2]2 +  [7] =  

[5] +  [7] =  [2][6].
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As in the A  case, we have \Wi)j>k\2 =  [2][3]. Then from the type II frames 

(I =  1,2,3)  we have l \WPhjtk\2\Wij,k\2 =  giving |WptJtk\2 =  [2]2[3]/[4], 1 =  1,2,3.

From the type I frames (I =  1,2,3) we have

[214 [31
| W r« J . n l 2 +  +  IWp^ I 2 =

giving

|H'*j.r,la +  |W'»Jfl+,l2 =  ^ ( [ 2 ] a - l )  =  ^ - .  ' =  1.2,3.  (4.51)

Similarly,

|M/p̂ | 2 +  |M/pm,-1,-c|2 =  ^ ( [ 2 ] 2 - 1 )  =  1 ® .  / =  1,2,3.  (4.52)

Ql k Ql—1
From the type II frames • —>•*— • (/ =  1,2,3) we get

[2121313
'l>m\Wn,<iiA2\WP>m-uk\2 =  = Lgpf-,

and substituting for |WPhqi_ltk\2 in equation (4.52) we obtain the quadratic equation 

M3|W W I 4 -  [2]2[3]3[4]31 ,fc|2 +  [2]5[3]3 =  0.

Solving, we get

\W .. , I2 =
[4]2

\WP„«,k\2 =  IS([2][4] ±  y p p ) ,  I =  1,2,3.

Then from (4.52) we have

|W W „ * I2 =  ||{J([2][4] =F y / f f i ) ,  ' =  1,2,3.

Next consider the type I frames (/ =  1,2,3): |VFPî _1)rJ2 +  |WVl,qi_uk\2 =  [2]5[3]/[4]2 

giving
[2]

I Wpj.9i-i.nl — [4]2 ([2]2 ^  v[2][4])i / — 1,2,3.

r t p i
Then by considering the type I frames for / =  1,2,3 we obtain

\ w v i , i , t ,\2 = jj([2][4] =F V m i  ' =  1,2,3,

and from (4.51)
[2]3 

[4]
| ! W , J 2 =  tn*([2][4] ±  v W | ) ,  I =  1,2,3.
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Finally, from the type I frames • —> •  (I =  1 , 2,3)  we get

l ^ , ^ +1|2 =  j f ( [ 2 ] 2 T ^ 2 M ) .  ( =  1.2,3.

Let WVUV2,V3 =  AVl,V2]t;31 WVl,V2,U31 for vertices i>i, v2, u3 of £^12). The type II frames 

consisting of the vertices /c, pj_i and r* give a restriction on the phases AUl)V2)U3:

 ̂ — (f>ql- l W p l_ 1,ql_ 1, r iW p l_ ltql_ lfk W p hql_ lt leW p hql_ 1>rl

T $j - 1,j ,r iILpj_i ,j,fcLFpjj(fcVFPij )ri

/[2] [3]:
[4]‘

^ P l - l ,q i - l , r t ̂ p i , q i - i , k ^ p i - i , q i - \ tk^pi,qi_i,ri

E E x  A A A------V K]5 J’r' Pl'i'k Pl-i'i'k n o m

so we have, for I =  1 , 2 ,3,

^pi-i,qi-i,rt^pi,qi-i,k^pi_i,qi.i,k^pi,qi î,ri =  ~^Pi-i,j,rl^pl,j,k^pl_1,j,k^pij,rr (4.53)

Then there are two solutions W+, W _ for the cell system for

T heorem  4 .2 .17  Every solution for the cells of is either equivalent to the solution 

\V+ or the inequivalent conjugate solution W ~ , given by:

K *  = VMM- K j* = ^ p j p

K , « - u n  =  =  - ^ V p i w P m -

WL *  =

for I =  1,2,3.

Proof

Let IF11 be another solution for the cells of £^12), with =  AjliUait>3| W+)U2>1;3|, and

where the AB’s satisfy the condition (4.53). We need to find unitaries uvliV2 G T such that 

uPhqiU,qi,ri+\'U'iri+l p̂l\phql rl+1 1, I 1,2,3,  and uVl V̂2uV2̂V3uV3tVlA5,1)U2)V3 — 1 for all other 

triangles on • We choose uj^ rtfĉ  — ^qi,k =  r̂(+i,pi =  L =  ^iJj k̂’>
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lPl,Ql- 1 AL * AL - , , * AL ,r ,+1’ and U«.n+1 =  - AL > 1+, AL , * AL ,* AL .r ,+1- for 1 =  i - 2 ' 3 '
Similarly, for any solution with |WjJ>V2|t>3| =  \W~UV2 V3\.

The solutions W + and W~  are not equivalent since |W + | \W~\, and there are

no double edges on £j;12\  We remark that the complex conjugate solutions W ± are 

equivalent to the solutions W T: we choose a family of unitaries which satisfy (4.5) by 

^ii,ji — ^p,ji — — 'U'kiiP — 1) q̂,r — and 2 x 2 unitary
matrices ua =  up =  u where u is given by u( i , j )  =  1 — Sij. □

For £212\  the cells W + above give the following representation of the Hecke algebra, 

where I =  1,2,3 (mod 3):

jj(k ’J) —

M
[3]

Pi

vW \
[3]>/W

y w  [2]2 
mVw (3][4] /

pi

pi

[2]2([2][4]+v 2̂]M) 
[3]2 [4]

y /W  
V m \

[2]2([2][4]-x/fl4])
[3p[4]vffi

U&ai) with rows labelled by p,pi+1,

jj(qhPi) = k

rl +1

(  m ]+y w )  - \l \m ~ y m \ \
[2][3] [2JVM

— \J [2] [4] — \Z[2j[4] [2}2- y m )
\  [2}y/i3} [2] [3]

lj(pi,ri+1) rows labelled by j, <#,
/

<ll-1

(  \2M-y/m]  y / m w - V m ] \  
[2][3] [2]y/W]

y / i m - V m )  m2+ y m }
\  [2}y/W) [2] 13]

Uiqi~uPl) with rows labelled by /c,n,
/

£/(n+i,9i) _ Pi

Pl+1

(  [2]([2]2-V ® ])  
[3F
I2L

J 2L
y M

[2]([2]2 + vl2H4i) 
[3F



/  i y / m ) - \ / m ]  y/miM+Vm] \
j w \/MMM

rT(Pl,k) _  y / im i - V m ]  p m - y / i m  Vw
9i_1 y/iiiMM mm y r n
91 V/[2][4]+v# j  y^6] [2][4]+7m

\  \ / mMm \/MM /

4 .2 .8  5 j(12)

For the graph £{12̂ (illustrated in Figure 4.10) we will use the notation W ^ tV2!V3 for the 

cell of the triangle where there are no double edges between any of the vertices

vi, ^2> ^3- For triangles that involve the double edges a, at' or (3, (31 we will specify which of 

the double edges is used by the notation a S U2,U3, and WvliV2m^) := W(A$ ). Since 

the graph £{12̂ is a Z3-orbifold of the graph £212\  we can obtain an orbifold solution for 

the cells for £j12̂ as follows. We take the Z3-orbifold of £2^  with the vertices z, j  and k all 

fixed points- these are thus triplicated and become the vertices ii , ji and hi, I =  1,2,3,  on 

£j12\  The vertices pi, p2 and p3 on £212̂  are identified and become the vertex p on £{12\  

and similarly the qi and r* become q and r. The edges 0 7 , a 2 and 0:3 are identified and
(1 o’)

become the edge a  on £\ , also the edges c^, a'2 and a'3 are identified and become the

edge a'. Similarly the edges $ ,  (3[ and 7 / become the edges /3, f3' and 7  respectively on
(\0\

£f . The Perron-Frobenius weights for the vertices are (f)iL =  1, <f>jt =  (f)kl =  [3], / =  1, 2,3,  

4>p =  [2] [4] and (f>q =  (f)r =  [3] [4]/[2]. Note that these are equal to the Perron-Frobenius 

weights for the corresponding vertices of £j12̂ up to a scalar factor of [4]/[2].

From the type I frames • —►•, / =  1,2,3,  we have \ W ^ hiJ 2 =  [2][3] (which is equal 

t0  (W /[2])2|Wî | 2/3 ). Then the type I frame • -> • ,  I =  1,2,3,  gives |W ^ k{\2 =  [3][4] 

(=  ([4]/[2])2|M/p2j fc|2/3). Since the triangle A ^ i r in £ j12̂ comes from the triangle A PiJin 

in £<12), then

i < U > i 2 =  j f i < U 2 =  [2]([2][4] =f v m y

The triangle Ap“-*r in £j(12) comes from the triangle A Phjtri+1 in £2^ ,  giving

K L « ') \ 2 =  { f  l < i n +J2 =  [2]([2][4] ±  V m ) -

Similarly

=  { f  K l J 2 =  [2]([2][4] ±  y p j i i i ) ,

K i w f  =  j f  i < , L  J 2 =  [2] ([2 ] [4] qp Vm\)-
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The three triangles A B,„,r,+1, 1 =  1 ,2,3, in £^12) are identified in £,tl2) and give the triangle 

A so that =  3([4]/[2])2|H ,̂2j„,r,+1|2 =  ([4]/[2])2([2]2=f v/[2][4]). Similarly

\Wp«Aa,0')\2 =  3([4]/[2])2|W^2L 1,r,|2 =  ([4]/[2])2([2]2 ±  a / P P ) -  Then from the type I 

frame we have I 12+ 1 12+ 1 12 + 1 )12 =  P H 4]2/ ! 2]-
Substituting in for |W ^ A a, s ) |2 and |W ™ r ( o |2 we fin d \ W ^ AaJ3)\2 +  =  0,

so that llTp^r^jj)!2 =  IWp̂ .riQ'^ ') !2 =  0- The reason for this is that the triangle A^'/r 

(and similarly for the triangle Ap%f  ) in £[12> comes from the paths pi —* <?j —» rj+1 —* pj+i 

in which do not form a closed triangle.
r  p  P Q

From the type I frames and we obtain the equations

Al(Q)Al(Q') +  ^2(a)^2(a') +  A3(Q)A3(a/) — 0> (4.54)

Ai(/3)Ai(/3') +  A2(/3)A2(/3/) +  ^3(p)^3(0') — 0, (4.55)

where WPj hr^) =  A ^ lWpj hr(£)\, for £ G {a, a ' , /?,/?'}, I =  1,2,3.  Another restric­

tion on the choice of phase is found from the type II frames for I ^  m,

Re(A/(a)Am(a )̂A/(a/)ATn(a)) =  —1/2, and similarly for the type II frames • —>•<—*•*, I 7  ̂ m, 

giving

_____________  ̂ y/2>
l̂(a)^m(a') l̂(a')^m(a) m 2 (4.56)

, V3
A ^ j A ^ / j A ^ / j A ^ )  =  (4 -5 7 )

where e/,m,£J m G {± 1}. Lastly, from the type II frame consisting of the vertices j i , fcf, q 

and r (I =  1, 2 ,3) we have

Aj(a)Aj(/j/)Af(a/)Aj(0) — — A(a /̂)A(a/ )̂, (4.58)

where =  A(€l>ft)|iyPigir(€l̂ 2)|, for & G {a, a'}, f 2 G {/?, /?'}, I =  1,2,3.  Then for

I 7  ̂ m,

and, from (4.56) and (4.57) we find £^m =  e'l rn. Substituting in for Aj(a)Aj(Q/) from (4.56) 

into (4.54), we see that £/,/+1 =  £m,m+i for all l ,m  =  1,2,3,  and that £^_i =  -£ /,/+ 1- 

Then the restrictions for the choice of phase are (4.58) and

__________    2 ^/3 2ni
Ai(a)A/+i(Q/)A/(Q/)A/+i(Q) =  Ai(/j)Ai+i(/3/)A/(^)A/+i(yS) =  —-  +  =  z£~ , (4.59)

where e G {±1}.

Then we have obtained two orbifold solutions for the cell system for £{12): W + , VL- .
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T h eorem  4 .2 .18  The following solutions W +, W~ for the cells of £1(12) are inequivalent:

K j .M =  V *  K h M  =  V i * .

w L a *) =  e-VM  K j ,a «)  =  V W l

w L w )  =  e‘v /p j K m ?)  =

K m  = ^  V p F w I i ,  ^ „ r(a,,) = -  -fiL V p F I T H ,

Wp̂ ,r(a/3) =  ^ptz.rV/?') =  

for I =  1, 2 ,3 , where e\ =  1 and e<i =  e2™/3 =  63.

Proof

The solutions W+ , are not equivalent, as can be seen by considering (4.5) for the 

triangle A pj hr. We have the following two equations, for I =  1,2,3:

K k A c )  =  “rJi“A.r («a (o , a ) W ~Jhr(a) +  uQ(a, <*') iir(Q())  .

^pj(.r(a') =  UPOlUJir {U"(a  ’ a )^pji,r(a) Ua(o  ,0  )Wpjlir(a')) '

So we require uPJP Ujhr E T and a 2 x 2 unitary matrix uQ such that, for I =  1,2,3,

a)e/^/[2] 2:_ +  uQ(o:, a')e/^ [ 2]^+) > (4 -60)

=  upJlujl}r (ua( a \ a ) e i ^ f i \ x _  + u a(a' ,a')ei \ / \Z\x+'Sj  . (4.61)

where x± =  ^[2] [4] =L ^/[2][4]. Equation (4.60) must hold for each I =  1,2,3.  On the

left hand side we have q, hence we require ua{a,ot!) =  0 because ua does not depend

on /, and the difference in phase between and e* is 0 , e~27rl/3, e2nl/ 3 respectively for

I =  1,2,3 respectively. This difference in phase for each I cannot come from uPJiUji)T.

(although upj n Ujhr do depend on I) since in (4.61) the difference in phase is now 0, e27ri//3,

e-2m/3 reSpectively for / =  1,2,3 respectively, so we would need upj lUjhr to take care of

the phase difference here, not uPJtUjii7.. Then we have ua(a ,a )  =  upj lujhr x +/x _ ,  and

similarly uQ(a', a) =  0 and ua(a', a') =  x _ / x + . But now ua is not unitary. □
(1

For £\ , the cells W + above give the following representation of the Hecke algebra,

where I =  1,2,3 (mod 3):

l/iUM) =  ijUiAi) =  |2], j jikidi) —
M
[3

P
[3]
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/  [2]2([2][4]+y/j2H4l)
p(a)

p ( a ') V
[3]2[4]

*i>/W \
V m i

[2]2([2][4]-yil4])
x / m

lj(ki,q) wjth rows labelled by p(/3'), p(/3),

kt
r(a)

r(a ')

f
[2]

e [̂2l[4] + v/ m
y/mfiw 

e i s / i m - V i m
\  \ / m m

hy/mm+y/m] tiy/ [2 m -y /m )  \  
v / i w i
e,v/g

V m m
m ] + y / m \

[3][4]

v W

V^iw

[3] [4]

jj{pM) whh rows labelled by ji ,q(P'),q(P),

U(r>q) —

p(oc(3) 

p{a(3') 

p{a'P) 

p ( a '/ 3 ')

(  0 

0

0

V o

0

[2]([2]2-v/i2H4])
[3]2

_ \ / §
>/M
0

0

y/m
y/m

[2]([2]2+ v l2M)
[3]2 

0

0 \  

0

0

oy

/7 (p>r) with labels j i , j 2 , j 3 ,q{P),q(P’) =  with labels k i ,k 3 , k2,r (a ' ) , r (a )  =
( M

[4]
-m 2+iy /m\

[3] [4] [3] [4]

- m 2+ i y / m ]  [31 -[2]2- i y / \ m
[3] [4] [4] [3] [4]

-[2}2- i y / m \  - W + i y / m ]
[3] [4] [3] [4]

- y j m \ + y / m \  
l*]y/W]

P m ] - y / m \  \
[4]y^

}4]y/Fi WyM
M
[4]

V

- s ] m ] + y / m \  - ^ \ 2M + s / m ]  - ^ y / m w + y / m ]
[4] ^  [4] y ^ |  [4] y ^

y / m - y / m ]  ^y/[2}[4]-y/m) v y j m - y / v m
[4]y/W] W y /W  [4]y/\3]

-e2y /m }+ y / \m  W (m - y / m i
Wy/W]

[2]2 + \/[2j|4]
[2] [3]

Wy/W 

0

0 m 2- y / m )  
[2] [3]

Our representation of the Hecke algebra is not equivalent to that given by Sochen 

for £[12̂ in [108], however we believe that there is a typographical error in Sochen’s 

presentation and that the weights he denotes by £/(4’2r) =  ([/(3r,6)j* should be the complex 

conjugate of the one given. In this case, the representation of the Hecke algebra we give 

above can be shown to be equivalent by choosing a family of unitaries uilj l =  Ujukt — 

uki,it =  Upjt =  UkltP — ^9,r =  1’ uji,r — ~ ei =  UqM and set the 2 x 2 unitary matrices uQ, 
up to be the identity matrix.
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11 17

Figure 4.11: Labelled graph £g12̂

4.2.9 4 12)

We label the vertices of £g12* as in Figure 4.11. T he Perron-Frobenius weights associated  

to  the vertices are 0 i  =  [3] [6]/[2], 0 2 =  03 =  0s =  4>u =  [3] [4]/[2], 0 4 =  0 5 =  0 9 =  

015 =  [3], 06 =  0 1 2  =  [2][3]2/[6] =  [2]2, 0 7  =  0 13 =  [3]2[4]/[6] =  [2][4], 0io =  0 ie  -  1, 

0 n  =  017 =  [4]/[2]. T he distinguished *-vertex is vertex 10. T he following cells follow as 

in the A  case: IJV^io.isI2 =  |W 5)9(i6 |2 =  [2][3], |W4)7)i5 |2 =  |W5i9>i 3 |2 =  [3][4], |W2j7)15|2 =  

|W4i7ii4 |2 =  |WF2 ,9 ,i3 | 2 — |M/5,8,i3 | 2 =  [3]2[4], w hilst from the type I frames <?—»• and 

we have |W 3)11)i4 |2 =  |W3)8)i 7 |2 =  [3][4]2/[2].
2 7 13 2

From the type I frames • —>• and we have: |Ŵ2,7,i212 +  l ^ j . i s l 2 +  l ^ j . i s l 2 =

[3]3[4]2/ [6] and iW^Aial2 +  |^ 2,7,i3|2 +  IFp2,9,i312 =  [3]3[4]2/ [6], giving

IIV  I2 I I I F  I2 — (A  1| FV/2,7,121 +  1 2̂,7,13 —--- ---- FTi----- ) (4 .52)
M

l w  « +  w  ,2 _  [2][3]3[4]
I »/</2,6,131 +  */*/2,7,131 —--- ---- fTi----- 1

[6]
7 12 6 13

so |W2i7|i2| =  Î 2,6,131• The type I frames • —>• and then force |Wi|7ii2| =  |Wif6|13|. 

Similarly, we find that |W3)7)14| =  |VF3>8>13| and |Wi|7|14| =  |W1>8|13|. So there is an auto­

matic Z 2 symmetry for the cells of the graph £ 812̂ .

From other type I frames we obtain the following equations

|VFi,7,i4|2 +  |VF3,7il4|2 =  (4.63)
[6]

I ̂ 1,8,1412 +  1^3,8,14|2 =  (4.64)

\w  |2 , \W  |2 _  [3]2[4][6] (Ap<\
\yy\jM\  + | W i i8,i4| — — pj— > (4.65)
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Î 3,7,1312 +  | ̂ 3,7,1412 —  ̂ ) (4.66)

l^i , 7,12I2 +  l^i,7,1312 +  l^i,7,14j2 ^  [3]3[4], (4-67)

H i' I2 , l « '  I2 [212[3]4[4] MI 1,7,121 +  1*^2,7,121 — ------ jg p  > ( 4 .0 0 )

|Wl,6,12|2 +  1^2,6,1212 =   ̂ jg|2  ̂ ’ (4.69)

I^ i,6,i2|2 +  I ̂ /i,7,i212 =  [2][3]3. (4-70)

Next, consider the type II frame , which gives

07 +  08 1 |̂ 4/ri j8,13|2 |^^ll8,14i2 =  01401013-

Substituting in for |W/ri,8,i4|2 from (4.65), and since |Wif8|i3|2 =  |I^i,7,i4|2, we get

 ̂  ̂ ‘11̂ 1,7,13|2|Ŵ l,7,14|2 +  [3] [6] 11 1̂,7,1412 — 7̂ 77171 ̂ 1,7,1414 =   ̂ JJJ • (4-71)[3]2[4] i” i,ci4i , [3][4] 1 , 1  [2]5

7 13 8
Finally, from the type II frame we have

0 F 11 4̂ 1̂,7,131211^1,8,1312 +  03 1|I4'3i7)13|2 |W3j8)13|2 =  0701308-

Substituting in for 11̂ 3,7,13 |2 from (4.66) and |VF3)7)i4|2 from (4.63), and using the Z2 

symmetry of the cells, we get

161 +  (4-72)[3]2[4] -.14 [2][4]'"‘-'-»' [3]2[4]2 [2]2

Then equating the \W\j ^ \ 2W i j m \2 term in (4.71) and (4.72) we get the following 

quadratic for IW ij^I2:

[2]|VF1)7)14|4 -  [3][4][6]3|W1i7i14|2 +  [2][3]6[4]2 =  0,

which has solutions |Wi>7)14|2 =  [2]3[3][4][6] or |M̂ i,7,i4|2 =  [3][4][6]/[2]. Substituting 

the first solution into (4.63) gives |iy3>7,14|2 < 0, so we have |VFi)7)i4|2 =  |VFij8)i3|2 —

[3][4][6]/[2], and from (4.63) |VT/3j7,i4|2 =  |W3,8ji3|2 =  [3][4]2/[2]. From (4.62)-(4.71) we 

obtain the following values for the remaining cells: |VFi)8)i4|2 =  [3][4]2[6]/[2]2, |VF3)8ii4|2 =

[4]2[6]/[2]2, |Vy1)7)13|2 =  [3] [4]2/ [2], |VFli7ll2|2 =  | ^ li6)13|2 =  [2]2[3][4], |W2,7,i2|2 =

| ^ 2)6,13|2 =  [2]2[4], |lTi,6,i2|2 =  [2][3], |W2)6,12|2 =  [2][4]2, |VF2)7,13|2 =  [2][4]2 and

|M/3,7,i3|2 =  [4]2 [6].

With VFVl|V2|V3 =  Ki,v2,v3 \Wv1,v2 ,v3 \, Avi,v2,v3 £ T, we find two restrictions on the choice 
of phase

Ai,6,12A2)7,i2Ai)7)i2A2i6)12 — — Aii6)13A2,7,13Ai,7)13A2)6,13 > (4-73)

Ai,7,14Ai)8)13Ai)7)13Aii8)i4 — — A sj^  A3i8)i3A3)7)i3A3)8)i4. (4-74)
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T heorem  4 .2 .19  There is up to equivalence a unique set of cells for  £

^ 1,6,12 =  ^4,10,15 =  ^ 5 ,9 ,16  =  \/[2] [3],

given by:

^ 1,6 ,13  =  v y 1)7)12 =  [2 ]v^ 3p ,

Wi ,7,13 =  ^ 3 ,7 ,14  — ^3,8 ,13  — ^ 3 ,8 ,17  — ^3,11,14 — ^ 2,7 ,15  — ^ 2 ,9 ,13  — ^ 4 ,7 ,14  — ^ 5 ,8 ,13

^1,8,14 —
n/P I  ’

W2M2 =  [4]/[2j,

^2,7,13 =  -[4 ]n /M . 

[4 In/161

[4 ]y l3 l

V P I ’

W l,7,14 =  ^ 1 ,8 ,13
v m m  

v m

^ 2,6 ,13  — ^ 2 ,7 ,12  =  [2]yffi,  

^3,7 ,13  =  — W x / M )

W‘3,8,14 —
[2]

W<4,7,15 Wi5,9,13 v m -
Proof

Let W* be any solution for the cells of £5(12), with Ŵ 1)V2 t;3 =  and

where the Â ’s satisfy the conditions (4.73) and (4.74). We need to find unitaries uVUV2 G T 

such that 1/ 7 , 131/ 1 3 , 21/ 2 , 7 ^ 2 , 7 i l 3  —  —  1? ^ 7 , 1 3 ^ 1 3 ,3 ^ / 3 , 7 ^ 3 ,7 ,1 3  — — 1 and 
1 for all other triangles A

^ V l  ,V2 U V2 ,V3 U V 3  ,V1 ^ V l , V 2  ,V3

( 1 2 )on £5 . We choose u2j  =  1/2,9Vl,V2,V3 1/3,8 1/3,11

u 6,13 1/7,13 1/7,14 — 1/8,13 — 1/8,17 — 1/9,16 — 1/10,15 — ^12,1 — 1/ 12,2 =  U  13,5 —

1/14,7 — 1/15,2 ~  1, 1/5,8 — ^5,8,13) U7,12 — -^2,7,12) u 7,lb — ^2,7,15) U U,14 ~  ~ ^3,11,

1/13,1 =  ^1,6,13’ Hl3,2 — —^2,7,13’ 1/13,3 =  ^3,8,13’ u 14,4 =  -^4,7,14) u 17,3 =  ^3,8,

14)

3,8,17)

— A 2,7,12^1,7,12) u 2,6 ~  ~ ^2,7,13^2,6,13) ^3,7 ~  —^3,8,13^3,7,13) w9,13 =  —^2,7,13^2,9,13)
  \|j _ \(| \(( \(| _ \ H \ (I \ (J

1/15,4 — / *2,7,15 4,7,15) u 4,10 —  A4,7,15^2,7,15^4,10,15) ?i5,9 =  ~  ̂ 2,9,13^2,7,13^5,9,13) ?/6,12 —
_  \M/V \U \tt

'2,6,13 2,6,12 ̂ 2,7,13) 1/14,1 ^1,7,12^1,7,14^2,7,12) 1/14,3 — 3,7,13 3,7,14^3,8,13) 1/ 1,6 =

_ \B \tt \tt \H _  \H \tt \# \tl _  \tt \ti \tt \tt
2,6,12 2,7,13 1,6,12 2,6,13) ^ . 8  ~  ^1 ,7 ,12^1,7,13^1,8,13^2,7,12) w8,14 — ^1,7,14^1,8,13^1,7,13^1,8,14

and 1/16,5 — ~  A2,7,13A5,9,13A2,9,13A5,9,16. □
( 1 2 )For £5 , we have the following representation of the Hecke algebra:

j j (  5,16) _  j j ( 16,9) _  j j ( 10,4) _  ^-(15,10) _

£/(3,17) =  jy(17,8) _  ^(11,3) _  ^(14,11) =  P ]

7/(2,15) =  r/(4,14) =  t /  (8,5) =  rr(9,2) =  W
[3] ’

[/(14-8)
(  x  \  |2i VM

^  [31 , \  VM [ 1 /
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( / ( I V )  =
± iM
[2]_ [2]

M  M
[2] [2]

£y(3,13) _ X
[2]

[2]

x/M
[2]

M
[2]

_  [/( 13,6) rows labelled by 2 , 1 ,

— [/(7>3) with rows labelled by 14,13,

r̂y (5,13)

[/(13>9) with labels 5,2

^ j ,
[2] ypp

>/W (41
V v / i ^  ^

f/(7-4) with labels 15,14 =  [ /(15,7) with labels 4,2,

JJ( 2,12) =
[21 y /W \
m PI

w i
[S] [S]

[/(6-2) with labels 13,12 =  [ /(4,15) with labels 10,7 

[/O’14) =  7
M
(31

[2]v/i4] 
[5]

[2]>/i4] |2i[4}
[3] [3]

[ / (9’5) with labels 16,13, 

L 8̂,1) with labels 13,14,

jy(12,6) =
(31 \4\VW ]

W  ~ W ~
[4\y/\$ [4]2

[2]3 [2]3

[/O ’12) =
V i i  

[6]
[2] [4] [21(4]

=  ( /(60) with labels 12,13,

[6] [6]

U (13,8) =

(  X
[2]
x  
[2]

x
[2]

x
[2]

y/m \  

[2]>/W

[2]y/\A
  _____ JSL

V [2]y/W] \2)y/W] [2][4] /

\

y/W] y/W)
j j O4,7) with labels 4,3,1,

[/(3’14) =

( 1 i 1
8 [2] y/W)

1 M M7
V m [3] [3]

11 i M M
13] [3]

=  [ /(8’3) with labels 14,13,17,

/
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£/(2,13) _

[2]

yM
\  y / \ m

Vm
M
[3]

y / W

[3]>/W

y/m \
V i m

y / W  

[3]>/W 
[2]2 

[3][4]

=  t/(7,2) with labels 15,13,12,

JJ{ 1,13)

JL
[2] [2}y/\6]

y M  [4]
[2]\/|6i PM

V [6]

v z  \
v/M 

^/m4i 
[6]

121!
[6]

=  ( /{7)1) with labels 14,13,12,

/  1 V m y p  \
2 [2] y / W [2]2

J6L V(3][6]
3

V w [2]2 v w
1 y / M V[3][6] J3L

\  [2]2 y / W [2]3 /

4.2.10

We label the vertices of the graph as in Figure 4.12. The Perron-Frobenius weights 

are: 0i =  08 =  1, 02 =  0 7 =  [2] [4], 03 =  06 =  [4] [5]/[2], 04 =  05 =  [4][7]/[2], 0 9 =  0 16 =  

017 =  024 =  [3], 0io =  015 =  018 =  023 =  [3] [4]/[2], 0n  =  0 i4 =  0 19 =  0 22 =  [3] [5] and 

012 =  013 =  020 =  02i — [9]. With [a] =  [a]q, q =  et7r/24, we have the relation [4]2 =  [2][10].

T h e follow ing cells follow  from  th e  A  case: |VFii9ii7|2 =  |Ws,i6.24|2 — [2][3], |Vp2,9,i7 12 =  

11̂ 7,16,2412 =  [3][4], 114̂ 2,9,1812 =  |VF2l10,17|2 =  11̂ 7,15,2412 =  |FV7)i6,23|2 =  [3]2[4], |W2,10,19|2 =  

I ii, is  12 =  1^7,14,2 3 12 — I H/7,i5>2212 =  [3] [4] [5], |442 ,n ,i9 |2 =  | ̂ 7 ,14,22 |2 =  [3]2[4][5] and  

IVF3.10.19I2 =  144̂ 3,14,2312 =  |44^6,ii,i8|2 =  144̂ 6,15,2212 =  [3] [4]2 [5]/[2].
The type II frame • —><»<—• gives 0 n1|4V’2,ii,i9|2|4F4|i i ti9|2 =  [3][4]2[5][7], and so we 

obtain IW^n^ 2 =  [4][5][7]. From the type I frame V—► <? we have the equation | W2,n,i9 |2+

144/4,11,1912 +  |^ 5,11,19|2 =  [2][3]2[5]2, giving |W’5>n >i9|2 =  [4][5][7] =  |VF4)ii,i9|2. Then by
4 11 22 4

con sid erin g  th e  ty p e  I fram es and • —>•, w e see th a t |14/4)i4)22|2 =  |W 5,i4>22 |2 =

144 4̂ ,11 (1 9 12 =  |W 5 .1 1 .1 9 l2, and sim ilarly  |W 4)i2,i9 |2 =  |W 4a4>2i | 2 =  |W 5fi i ,2 o|2 =  |W 5,i3,22|2 

and |4V'3>i2,i9|2 =  |4F3)i4)2 i |2 =  |4F6)ii,2o |2 =  | 4V(5,1 3 ,2 2 12> an d th e  ce lls have a  Z 2 sym m etry . 

From  ty p e  I fram es w e have th e  equations:

|4F4>ii,i9|2 +  |W4)i2,i9|2 +  I W4>i4>i9|2 =  [3] [4] [5] [7], (4-75)

I4W3.12.19I2 +  144̂ 4,12,1912 =  [2] [3] [5] [9], (4-76)
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20 13

Figure 4.12: Labelled graph

| ^ 3 , 1 0 , 1 9 |2 +  |1 ^ 3 ,1 2 ,1 9 |2 +  |1 ^ 3 ,1 4 ,1 9 |2 =  [ 3 ] [ 4 ] [ 5 ] 2 , ( 4 - 7 7 )

|W / 3)i 4 ,i 9 |2 +  1 ^ 4 ,1 4 , i 9 | 2 +  |W ^ 5 ,i4 ,i9 |2 =  [ 2 ] [ 3 ] 2 [5 ]2 , ( 4 - 7 8 )

I ^4/ 3 ,i2 ,i9 1 2 +  1143 ,12 ,21 | 2 =  [4] [5] [ 9 ] ,  ( 4 - 7 9 )

11^ 3 ,1 2 ,2 1 12 +  11 4 4 4 2 ,2 1 12 — [ 2 ] [ 9 ] 2 . ( 4 . 8 0 )

F i n a l l y ,  t h e  t y p e  I I  f r a m e  •  —><?<— <► w e  h a v e  f a 1 1W/4 , h >i 9 | 2 | W r4ii 2 , i 9 | 2 =  [3 ]2 [5 ]2 [9 ] ,  g i v i n g  

|V F 4)i 2)i 9 | 2 — [3 ]2 [ 5 ] [ 9 ] / [ 2 ] .  T h e n  u s i n g  t h e  e q u a t i o n s  ( 4 . 7 5 ) - ( 4 . 8 0 )  w e  o b t a i n  |V F 4)i 4)i 9 | 2 =

[5 ]2 [ 7 ] / [ 2 ] ,  | W W | 2 =  [3] [5] [ 9 ] / [ 2 ] ,  |V ^ 3 , i 4 , i 9 |2 =  [3 ]2 [5 ]2 / [ 2 ] ,  | W 5, i 4 , i 9 | 2 =  [5 ] [7 ] [ 1 0 ] ,  

\W 3ti2,2i \ 2 =  [5 ]2 [ 9 ] / [ 2 ]  a n d  |W 4 , i 2 ,2 i | 2 =  [ 7 ] [ 9 ] / [ 2 ] .

W i t h  W VUV2>V3 =  K i ,v 2,v3\W VUV2>v3\, K , V 2,V3 £  w e  h a v e  t h e  f o l l o w i n g  r e s t r i c t i o n s  o n  

t h e  A ’s :

A3,12,19̂ 3,14,21̂ 3,12,21̂ 3,14,19 =  — A4,i2,l9 A4,i4,21 A4,12,21 A4,14,19, (4-81)

A4,n ,22 A4,14,19 A4,11,19 A4,14,22 =  ""As^i^As,14, ^ 5,11, ^ 5,14,22, (4.82)

A 5 ,ll,2 o A 5 ,i3 ,2 2 A 5 ,n ,2 2 A 5 ,1 3 ,2 0  == ~  A 6 ,11,20A 6 ,13,22 A e, 11,22 A 6 ,13,20- ( 4 . 8 3 )

T h eorem  4 .2 .20  There is up to equivalence a unique set of cells for  £424) given by: 

W l,9 ,1 7  =  1 4 s , 16,24 =  \ / [ 2 ]  [3 ] , W 2 ,9 ,1 7  =  W 7 ,16,24 =  \ / [ 3 ]  [4 ] ,

142 ,9 ,18  — 14^2,10,17 =  147 ,15 ,24  =  147 ,16 ,23  =  [ 3 ] \ Z [ 4 ] ,

142 .10 .19  — 41^2,11,18 =  14^7,14,23 =  44/7 ,i5 ,22  =  \ / [3] [4] [5 ] ,

4 4 2 , i i , i 9  — 4 4 7, 1 4 , 2 2  =  [3] \ / [ 4 ]  [5 ] ,

143 .10 .19  ;=  14^3 14 23 =  4 4 6  11  1 8  —  146 ,15 ,22  =  ~  ̂ ,
V l 2 j
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^ 4 , 1 1 ,1 9  — ^ 4 , 1 4 , 2 2  — ^5,11,19 — ^ 5 , 1 4 , 2 2  —  \/[4] [5] [7],

n / _  [3]v/l5]M
I 'M , 12,19 =  ” 4 ,14 ,21  =  M 's ,11 ,20  =  M 'S ,13,22 —  ------- “ / = ------ .

U/ W  W  WrK 3 ,12 ,19  =  */ */ 3 ,14 ,21 =  W e ,  11 ,20  =  W e , 13,22 —
v/M  ’

^ 3 , 1 4 , 1 9  =  V V6.11,22 =  VV4 )i 4 )i9  =  W 5 in >22 =

W/5)i4)i9 — V ^ l iT p ] ,  ^ 4,11,22 — —

H, [5]v/[9] H, H, _  v f f lMW3.i2.2i =  W6)i3i20 =  y p j  1 W4)12,21 — W5!i3i20 — - y p j -

Proof

Let W* be any solution for the cells of Ŝ 2A\  with Wj1>U2>i;3 =

and where the Att’s satisfy the conditions (4.81), (4.82) and (4.83). We need to find

unitaries uvljV2 G  T such that u i2,211*21,3^3,12^ 2,21 =  - 1> ui3,20^20,6«6,13^6,13,20 =  - 1 ’

1̂ 11,22^22,4^4,11 ̂ 4,11,22 == V and '̂ /vi,v2 "̂V2 ,v3 '̂V3 ,vi^vi1v2 ,v3  ̂ d̂r all other triangles / \ Vi V̂2jV:i
on 8^2A\  We make the following choices for the uvlyV2:

113,12 —  113,14 —  114,11 —  115,13 =  115,14 =  U l l ,20 =  H l4 ,1 9  —  1120,6 —  1121,3 =  H 2 1 ,4  —  H 22,6  =  1 ,  

Ti _  "\1 _  Ttf — Tti
H l2 ,2 1  —  — ^ 3 ,1 2 ,2 1 ’ H l4 ,2 1  —  A 3 ,1 4 ,2 1 ’ H l9 ,3  —  A 3,14,19> H l9 ,5  _  A 5 ,1 4 ,1 9 ’

U 4 ,12  —  — ^ 3 ,1 2 ,2 1 ^ 4 ,1 2 ,2 1 ’ W4 ,14  —  ^ 3 ,1 4 ,2 1 ^ 4 ,1 4 ,2 1 ’ w 6 , l l  —  ^ 5 ,1 4 ,2 2 ^ 6 ,1 1 ,2 0 ’

  \ (I \ (t_______________ _ \ t) \ U \ (I
H l2 ,1 9  —  A 3 ,1 4 ,1 9 A 3 ,1 2 ,1 9 ’ H l l , 2 2  —  A 6 ,1 1 ,2 0 A 5 ,1 4 ,2 2 A 6 ,1 1 ,2 2 ’

  xR xfl xfl   _  X B \ B \B \ B
H l9 ,4  —  ^ 4 ,1 4 ,2 1  3 ,14 ,21  4 ,1 4 ,1 9  > U 2 2 ,4  —  A 5 ,1 4 ,2 2 A 6 ,11 ,22  A 4 , l l ,2 2  A 6 , l l , 2 0 ’

115,11 —  ^ 4 ,1 1 ,2 2 ^ 4 ,1 4 ,2 1 ^ 5 ,1 4 ,2 2 ^ 3 ,1 4 ,2 1 ^ 4 ,1 4 ,2 2 ^ 5 ,1 1 ,2 2

H l l , 1 9  —  ^ 3 ,1 2 ,2 1 ^ 3 ,1 4 ,1 9 ^ 4 ,1 2 ,1 9 ^ 3 ,1 2 ,1 9 ^ 4 ,1 1 ,1 9 ^ 4 ,1 2 ,2 1 ’

  \ (j \ (J \  (J \ |J \ (j \ Jj
1120,5 —  — A 3 ,1 4 ,2 1 A 4 ,1 4 ,2 2 A 5 ,1 1 ,2 2 A 4 ,1 1 ,2 2 A 4 ,1 4 ,2 1 A 5 ,1 1 ,2 0

_  _  x B \B  \t)  \ t t  \B  \tt
1122,5 —  A 3,14,21  4 ,1 4 ,2 2  6 ,1 1 ,2 2  4 ,1 1 ,2 2  A 4 ,14,21 6 ,1 1 ,2 0 ’

   \  (j x tt \ t l  \M \ t t  \  tt \  tl
^ 1 3 ,2 2  —  A 4 ,1 1 ,2 2 A 4,14,21  A 6 ,11,20 A 3 ,14,21 A 4 ,14,22 A 5 ,13,22 A 6 , l  1 ,2 2 ’

  \  (J \ \  (J \  tl \  tl \  tl \  tl
^ 1 4 ,2 2  —  “  A 4 ,11,22 A 4 ,14,21 A 6 ,11,2 0 A 3 ,14,21 A 4 ,14,22 A 5 ,14,22 A 6 ,11,22

  _ xb \B \ R \B \R \R \B \B
u 6 ,13  —  A 3 ,14,21 4 ,14 ,22  A 5 ,13 ,22  6 ,1 1 ,2 2  4 ,1 1 ,2 2  4 ,14 ,21  6 ,1 1 ,2 0  6 ,1 3 ,2 2  >

u 13,20 —  ^ 4 ,1 1 ,2 2 ^ 4 ,1 4 ,2 1 ^ 6 ,1 1 ,2 0 ^ 6 ,1 3 ,2 2 ^ 3 ,1 4 ,2 1 ^ 4 ,1 4 ,2 2 ^ 5 ,1 3 ,2 2 ^ 6 ,1 1 ,2 2 ^ 6 ,1 3 ,2 0
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The uVltV2 involving the vertices 1, 2, 7, 8 , 9, 10, 15, 16, 17, 18, 23 and 24 are chosen in 

the same way as in the proof of uniqueness of the cells for the A  graphs. □

For £(24\  we have the following representation of the Hecke algebra (we omit those 

weights which come from the A ^  graph):

JJ{ 3 ,21)
12

14

M
[41 
T3][5] 

[4]

=  f/O2-3) with labels 21,19 =  £/(6>20) with labels 13,11 =  [/(13-6) with labels 20,22,

JJ{  19,12) _ [2]_ I2]
v /§  M
[2] 121

f/(21>14) with labels 3,4 =  (/(20,1O with labels 6,5 =  {j(22>13) with labels 6,5,

j j {  5 ,19) _
n

14

|2| VM S
M _ I3!

/[2][4] |4 |

[S] [8]

=  f /0 4-5) with labels 22,19,

f/(4,22) _ 14

11

M 
m
T2][4]

[S]

U(UA) with labels 19,22,

t/(20-13) =
5 \  _

[5]2 [5]i/m \
[2] [9] [2] [9]

[siv/m j7]_
[2l [9] [2] [9]

t / (21-12) with labels 3,4,

[ / ( 4 .2 1 )

/  j_  l3) ^  \
12 w My/M
14 [3]2 [5]

V Wv/m ™ /
=  f /(12,4) with labels 21,19 =  f /(5,20) with labels 13,11 =  f / (13,5) with labels 20,22,

(19 ,14) _

l f(22M) =

/  1 Vm
3 I2] [2]i3]
A y/W\ JZL± [2H3] M 2
5 y/mo) m y/m

\  mVrnm [3l 2 V l2 H 5 l

i

6 t2] [2H3]
5

y/m
[2][3] l #

4

'

^ m m [ 7 ] \ / M

[3lv'f2H5] m2y / m i

V m m  \
m y /m \
m V m

m2V \ m
HIM 
I3)2I3] j

Vrnrn \
[six/î Hs]

i3i2\/E2n5i
HIM
m sj /
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/ 1*1 [4 ]\/m Wy/m \
[S] [3] [5] [3] [5]

[4][7] [4] [7]
[3][5]_

WvTi
[3]2[5] [3]2 [5]

V
[4] [7] [4] [7]

[3][5] [3]2[5] [3]2 [5]

=  [/(22'14> with labels 7,4,5,

M y/m x /M  \
10 [51 x /M [51

14
x/M 151 x/ pipi
x/isi [41 Mv̂ M

12 x/M x/PIP] JU­
[5] n iv'M MP] /

=  [ /<14l3) with labels 23,19,21 =  U(e'22) with labels 15,11,13 

=  1/ (11’6) with labels 18,22,20,

(  M x/[2][5] y / \ m  \
11 [3] [3]\Z[4] y/mn

14
y / i m J5L x/[5][9]

[3] x/M [3] [4] [4ix/m
12 x/(2][9] y / i m [3] [9]

\  y / i m Wy/m [4] [7] y

=  U (14'4) with labels 22,19,21 =  t /(5'22) with labels 14,11,13

=  t /(n '5) with labels 19,22,20.

The Hecke representation given above cannot be equivalent to that given by Sochen 

in [108] for £ (24) as our weights [£/(14,4)]i9)i9, [1/ (14,4)]21,21, [t/(11,5)]2o,20, [£/(11,5)]22,22 and 

[t/(19'n)] 2,2 (as well as the corresponding weights under the reflection of the graph which 

sends vertices 1 8 ) have different absolute values to those given by Sochen (and there

are no double edges on the graph). We do not believe that there exists two inequivalent

solutions for the Hecke representation for and that the differences must be due to 

typographical errors in [108].
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Chapter 5 

A2-G oodm an-de la Harpe-Jones 
construction

In [51] Goodman, de la Harpe and Jones constructed a subfactor B  C C  given by the 

embedding of the Temperley-Lieb algebra in the AF-algebra for an SU (2) A D E  Dynkin 

diagram G. We will present an SJJ(3) analogue of this construction, where we embed the 

A2-Temperley-Lieb or Hecke algebra in an AF path algebra of the SU (3) AV E  graphs. 

Using this construction, we are able to realize all the SU(3)  modular invariants by sub- 

factors.

5.1 General construction

In this section we will construct the A2-Goodman-de la Harpe-Jones subfactors. We first 

present some results that will be needed for this construction.

Let U\, U2, • • • Um- 1 be operators which satisfy H1-H3 with parameter 5. We let

Fi =  UiUi+1Ui - U i  =  Ui+1UiUi+1 -  Ui+1, (5.1)

for i =  1, 2 , . . . ,  m  — 2 .

L em m a 5.1.1 With Fi defined as above, FiFi+\Fi =  62Fi if and only if the U{ satisfy the 

extra SC/(3) relation (1.7).

Proof

The condition (1.7) can be written as

Ui+2Ui+1UiUi+1Ui+2Ui+1 — UiUi+1 — UiUi+iUi+2Ui+i — Ui+2Ui+\UiUi+\

— S{Ui+1Ui+2Ui+1 — Ui+1 ). (5.2)
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We have

FiFi+1Fi =  (Ui+lUiUi+l -  Ui+1)(Ui+1Ui+2Ui+1 -  Ui+i)(Ui+1UiUi+i -  Um )

=  (Ui+1Ui -  l) (U 2+1Ui+2U2+1 -  U2+l)(U,Ui+1 -  1)

=  8(Ui+1UiUi+1 -  Ui+1)(SUi+2 -  l){Ui+1UiUi+l -  Ui+1)

=  S(UiUw Ui -  Ui)(6Ui+2 -  -  Ui)

=  SyUiUi+iUiUi+iUiUi+iUi -  SUiUi+1UiUi+2Ui -  SUiUi+iUiUi+iUi 

+SUiUi+2Ui -  UiUw U?Ui+1Ui +  UiUi+lUf +  U?Ui+lUi -  {/?).

In the following we use relation H3 to transform each expression, and we indicate which 

terms have been replaced at each stage by enclosing them within square brackets [ ]. Since 

Ui, Ui+2 commute by HI, we have

S2(SUiUi+1Ui+2[UiUi+1Ui] -  6UiUi+1Ui+2Ui -  SUi+2UiUi+lUi +  6UiUi+2 

-UilUi+xUiUi+^Ui +  2UiUt+xVi -  Ut)

=  ^(SUilUi+iUi^Ui+ilUiUi+i — WiUi+\Ui+2Ui+i +  5UiUi+\Ui+2Ui — 5UiUi+iUi+2Ui

-SUi+MUi+xUi +  5UiUi+2 -  U2Ui+1U2 -  UiUi+lUi +  Uf +  2UiUi+lUi -  U{)

=  62(5Ui+2[UiUi+1Ui]Ui+2Ui+x -  SUiUi+2U,Ui+i +  <5£/([(/i+1C/j£/j+1] -  bU{Ui+xUi+2U{ 

-SUi^iUiUi+xUi] +  6UiUi+2 -  (52 -  l)(UiUi+1U, -  U())

=  52(5Ui+2Ui+lUiUi+1Ui+2Ui+1 -  S[Ui+2Ui+lUi+2]Ui+1 +  SUi+2 UiUi+2Ui+i 

- b 2Ui+2UiUi+1 +  SUfUi+1Ui -  bU2 +  SUiUi+1 -  SUiUi+1Ui+2Ui+l 

-6 U i+2Ui+1UiUi+1 +  bUi+2Ui+1 -  6Ui+2Ui +  SUiUi+2 -  {b2 -  l)(UiUi+1Ui -  U{)) 

=  b2{b(Ui+2Ui+ lUiUi+1Ui+2Ui+1 +  UiUi+1 -  UiUi+1Ui+2Ui+1 -  Ui+2Ui+iUiUi+i) 

—bUi+iUi+2U2+1 +  bU2+1 — bUi+2Ui+i +  bUi+2Ui+i +  UiUi+iUi — Ui)

=  b2(b2(Ui+iUi+2Ui+i — Ui+i) — b2(Ui+iUi+2Ui+i — Ui+\) +  UiUi+1Ui — Ui)

=  b2 Fi,

where the penultimate equality follows from (5.2). □

Note that if the condition (1.7) is satisfied, alg(l,F i|z =  l , . . . , m  — 1) is not the 

Temperley-Lieb algebra, since although FiFj =  FjFi for \i -  j \  >  2 , it is not the case for 

|i — j\  =  2, indeed FiFi+2Fi =  bFiUi+3 (cf. (6.7), (6 .8 )) so that F», Fi±2 do not commute.

Let Q be a finite A V £  graph with Coxeter number n <  oo. We write [2] =  [2]9,

[3] =  [3]q, where q =  el7r̂ n. Let M0 =  Cn° where no is the number of 0-coloured vertices 

of Q, and let Mq C M\ C M2 C • • • be finite dimensional von Neumann algebras, with the

Bratteli diagram for the inclusion Mj C Mj+\ given by the graph Q, j  > 0. Let ( /a / / )  be

107



matrix units indexed by paths /x, / /  on Q, and denote by 93  ̂ the vertices of Q. We define 

operators Uk G M*+i, for A: =  1 ,2 , . . . ,  by

Uk =  (5.3)
cr,0i,li

where the summation is over all paths a  of length k — 1 and edges 0 1? 0 2,7 i, 72 of Q such

that r(a)  =  s (0 1) =  s(02), 5 (7*) =  K0O for i =  1,2, and r(7 i) =  r(72), and is
defined in (4.4). We will use the notation WpltP2iP3 for W (A ^|1i,2̂ P3̂ ), where ii — s(pi),

I =  1 ,2 ,3 .

Lem m a 5 .1 .2  With Uk G Mk+i given as in (5.3), the operator Fk G Mk+2 defined in 

(5.1) is given by

F k =  ^ 2  (a  ' & ' &  • 03, • 7i • 72 * 73), (5-4)
(̂ 3)

w/iere £/ie summation is over all paths a  of length k — 1 and edges 7* o/C?, i =  1 ,2 ,3 .

Proof

We have

UkUk+1Uk

°i,0 i,

X (<72 • H2 • 03 • 73, 02 • / i2 • 04 • 7 4 X 0 3  • 05 ■ 75 • A*3, 03 ' 06 ’ 76 ' ^ 3 ) 

=  £  (ffi ■ A  • 7, ■ w . *1 • A  • m ■ » )
Vi,Pi,

=  , 5 ,. WrtiA.*. A

.71. A 3 ( c r i  - 0 1 - 7 1  - ^ 1 , 0 1  - 0 6  - 7 6  - ^ 3 )

°i>0i,1i 
Mi.Aj

+  Âi,A3^l.M30r(Ai)0«(/i3)^r(/i3)) (^1 ’ 01 ’ 7 l  ’ P i , 01 ' 06 * 7 6  * ^3) (5-5)

=  S  ^2----- ^6,76,/i3  W/3i,7i,Mi (01 • 01 • 71 ’ PU  01 • 06 ' 7 6  • ^ 3 ) +  Uk ,
a,0i, ^(Ml)
•Vi./ij

where we obtain (5.5) by Ocneanu’s type II equation (4.2). □
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Note that if p is a minimal projection in Mk corresponding to a vertex (v, k) of the 

Bratteli diagram Q of Q, then a ~ l8~l Fk+\p is a projection in Mk+3 corresponding to the 

vertex (v ,k  +  3) of G, since from (5.4) we see that the last three edges in any pairs of 

paths in Fk+1 form a closed loop of length 3 and hence the pairs of paths in Fk+ip G Mk+3 

must have the same end vertex as p G Mk.

Lem m a 5.1.3 The operators Uk defined in (5.3) satisfy the A 2 -Temperley-Lieb relations. 

Proof

These operators satisfy the Hecke relations H1-H3 since the connection defined in

(4.3) satisfies the Yang-Baxter equation. We have left to show that they satisfy (1.7). By 

Lemma 5.1.1, we need only show that FkFk+iFk =  [2]2Fk. We have

FkFk+iFk

f x .

(cTi • fix • (32 • 03 • Ml, <*\ ' 7l • 72 • 73 • Ml)(°2 • M2 ' 04 ’ fib * A>, ^2 * M2 • 74 ’ 75 ’ 76) 

x (cr3 • p7 • /?8 • /?9 • /i3, a3 • 7? • 78 • 79 • ^3)

^   ̂ T2 T2 T2 ^ 17,1 8,1 9 ^ 0 7,08,09  ̂ 0 8,0 9 ,̂ 3 ^ 0 4,05,^1  ̂ 0 7 ,0 4 ,0 5^ 0 1 ,02,03

fl-M,

(C7i • (3i • /32 • /?3 ' Ml> • 77 • 78 • 79 • A*3)
r0 i2  <t>s(ni)(t>r(ni)(l>8{/*3)<ftr(/*3) T;f/ 7 ? /-------- r  r
l~J /  v <2 J.2 J.2 ™ 17,18,19 ™ 01,02,03* m ,0 7 °  Hl,H3

(Pr{03)<Prfai)(PsM

(<Tl • f t  • ’ fiz ' Ml> V i  ’ 77 • 78 * 79 ' M3)

P12 E  A ,f t  ( ° i  ' A  ' A  ■ A  ■ Ml 1 '7 7  - 78 ' 7 9  ■ A<1 )
'1 ’

=  P]2^ -

□
By [28, Theorem 6.1] there is a unique normalized faithful trace on \Jk Mk, defined as 

in [38] by

tr((<7i,<72)) =  5 a u a 2 [ S \ ~ k <l>r { a x ) ,  (5-6)

for paths cq of length k , i =  1,2, fc =  0 ,1 , . . .  . The conditional expectation of Mk onto 

Mk- i  with respect to the trace is given by

E((ai -<T\,a2 '<r'2)) =  8a> > [3]-1^ ^ - ( a u a2),

for paths <jj of length A: — 1, and o\ of length 1, i — 1, 2, k >  1 (see e.g. [39, Lemma 11.7]).
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L em m a 5 .1 .4  For an A V £  graph Q, let Mq =  Cn° where n0 is the number of O-coloured 

vertices of Q .  Let M0 C M\ C M 2 C • • • be a sequence of finite dimensional von Neumann 

algebras with normalized trace. Then for the operator Uk £ Mk+i defined in (5.3), tr is a 

Markov trace in the sense that tr(xUk) =  [2][3]“Hr(x) for any x G Mk, k =  1 ,2 , . . . .

Proof

Let x G Mk be the matrix unit (c*i • a\,OL2 • cd>). Then

xUk =  ^ 2  ' ai ’ V ' a2 ' a 2 • p ) ’ ( a  * P i ’ 7i, <* ' ( h  • 7 2 )

=  12  (ftl • a\ • /».ff • @2 • 7 2 )

= 5Z U * 27 ( a ' - o i \ - H , a 2 - ! h -  7 2 ),
#2.72, A*

' a i • ^  « 2  • A2 • 7 2 ))
/?2,72,M

E  =  5a1,<^3]-*+1X X t > < ' ‘>

^ai.n^l^] ^   ̂T 7  ^A ,aj,fi^X,n'2,n4>r(fi)
“  0 S(a')0r(M)

<*«! ,a2 [3] “*+1 ——  [2]05(a; )0r(a'1)<*a' ,a' =  [2] [3]~1 tr(x),
Y ŝ(aj)

where we have used Ocneanu’s type I equation (4.1) in the penultimate equality. The 

result for any x G Mk follows by linearity of the trace. □

Then we have tr (Uk) =  [2]/[3], and the conditional expectation of Uk £ Mk+\ onto Mk 

is E(Uk) =  [2]I * / [3], for all k >  1. We will need the following result:

L em m a 5 .1 .5  Let Fi G Mi+2 be as above and tr a Markov trace on the Mi} i =  1 ,2 , . . . ,  , 

then tr(Ffc+1x) =  [2][3]_2tr(x), for x G Mk, k G N.

Proof

Now tr(£/fc+ i(4+ 2[4 +ix) =  tT(Uk+2Uk+ixUk+i) =  [2][3]_1tr(t4 + ix t/fc+i), since tr is a 

Markov trace. Then tr(Uk+ixUk+i) =  tr(U%+1x) =  [2]tr(£/fc+ix) =  [2]2[3]_1tr(x). We also 

have tr(Uk+\x) =  [2][3]-1tr(x), so that

tr((UM Uk+2UM  -  UM )x) =  ( { J  -  j | )  tr ( i)  =  |^ tr ( .r ) .

□

and

t T ( x U k )  =
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P ro p o s itio n  5 .1 .6  With Uk £ Ah + i  as above and x E Mk, k =  1 , 2 , ,  , x commutes 

with Uk if and only if x E Mk~\, i-e. Mk- 1 =  {Uk}' H Mk-

Proof

In the notation of Section 1.6.2 we have Uk £  A[k — 1, k +  1] and x E 4̂[0, A: — 1], and 

hence by (1.34) x commutes with Uk-

We now check the converse. Let x =  Y lQl a' AQl ai>(c*i - a 2, ot\ •a '2) £ Mk , where the 

summation is over all |of*| =  k — 1, |a'| =  1, i =  1,2. Assume that a: commutes with Uk- 

We have the inclusion of x in Mk+i given by x =  Q, M AQ1.a2iQ/.a^(a! • a 2 • /i, a i -a'2 - fi). 

Since a: commutes with Uk we have U%x =  UkxUk, and taking the conditional expectation 

onto A/fc we have

By the Markov property of the trace on the Mk , the left hand side gives [2]E(Ukx) =  

[2]E(Uk)x =  [2]2a;/[3], since x E Mk- For the right hand side of (5.7) we have

[2 ]E(Ukx) =  E(UkxUk). (5.7)

E(UkxUk) =  e (  £  ■ A  • 73, <r • 04 ■ 74)/T .
x ^ ,M 2Aai a2'Qi Q2(a i ‘ a 2 • a i • #2  • 7 2 )

/

Ql-Ql \ Q2'a2 03,02 '

01,02

/li, (32 on Q we have

where b, Then for any paths Oi, a\  and edges



— }   ̂ ,2 A, £̂*1-0:2,a'i a'2 ( ^   ̂ ^ 0:2^2 ̂ ^27(2

=  ^ ! "72 T ^aia2,a'1a'2 [ <l)T(a2)4>3{a2)cttr{Pi) â2,a'2 P̂i,P2
<*2 ,<4 5(a 2) <̂ r (^1)

_̂ 0s(Q2)0r(/3x)0s(a2)^a2-/3i ̂ <4 ,#2̂

E ^r(a2) x X , \
^5(02)

(5.8)

where equality (5.8) follows by Ocneanu’s type II equation (4.2). We define

\  __ r ,
' V ( a i )  •—  /  O s ( 0 ' ) , r ( a i )  , ^ a j / 3 ' , a \  •/?' i

$  0r(a i)

which only depends on the range of the paths c*i and a \ . Then we have for the right hand 

side of (5.7)

E{UkxUk) =  [3]-1 ( V  ^<£2>AQ1.Qa,Q..Q-<5/3l,fll(a I • ft ,a ', • f t )

+ Aar l̂i0'.^(ai • ft, aj • ft))
0\,02,
q 1 ’q/1

=  [3]
-1

A a ( / 3 ) ( a i  1 / ? ,  Q i  * / 3 )  +  A a r / g 1 ) a / . ^ ( a !  • / ? ! ,  a q  • / ? 2 )

0,a\,a\ 0\,02- 
ai ,Qi

=  [3] {w +  x),

where w  =  K (ai)((*i* « i)  £ Mk- 1. Then (5.7) gives ([2]2 -  1).?; =  w, so :r E

□
Remark. The above proof was motivated by the following pictorial argument, which 

uses concepts which will be introduced in Chapter 6.

Let j  be the inclusion of Mk~\ in Mk and i the inclusion of M k in Mk+\- For x E Mk-\ ,  

we have the embedding i]{x) of x into M k+i, and U\ E M k+\ given by the tangles:

Then inserting x and U\ into the discs of the multiplication tangle Mo.fc+i, we have
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Figure 5.1: i{x) for x £ Mk

and clearly U\ij(x) =  i](x)U\.

Conversely, if x £ Mk we have i(x) £ Mk+i as in Figure 5.1. Let U\i{x) =  i(x)U\,  

then we have the following equality of tangles:

Let T  be the tangle

Enclosing both sides of U\i(x) =  i(x)U\  by the tangle T  we obtain: T(U\i{x))  =  82i(x), 

and T{i(x)U\)  is

x =  (52 -  1) 1j(v) ,  i.e. x £ Mk- v

We define the d ep th  of the graph Q to be dg =  maxdv v>, where we take the maximum 

value over all u, v' £ and dVyV> is the length of the shortest path between any two 

vertices u, v' £ V3g .
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L em m a 5 .1 .7  Let Q be an S U (3) AT>£ graph Q (except for n ^  0 mod 3, and 

). Then with Uj G Mj+x as above, any element of Mm+i can be written as a linear 

combination of elements of the form aUmb and c for a,b,c  G Mm, m >  dg +  3.

Proof

Let a =  (Ai • A2,Ci • C2) ,b =  ((1 • £2 ^ 1  • ^2) € Mm such that Ax, ( 1, v\ are paths of 

length m — 1 on Q starting from one of the 0-coloured vertices of G, and A2, C2, ^2 are

edges on Q. Then with Um as in (5.3), and embedding a , b in Mm+1, we have

aUmb =  ^  ^  ^ J '1 , 7 1  ^C l> <7^C2>*/ 1 ^ M > 7 l (^ 1  ^ 2  Ti ^1 ^2 ■ T )

=  WC2,M (Al ’ A2 ’ 1/1 ■ V<1 ' ^

=  V  - — - ±— IV (A K'fof*))W''(A<«W) (A, • A2 • /i, I/, • i/2 ■ //)•  (5.9)

The proof for each graph is similar, so we illustrate the general method by considering 

the graph £{12\  which contains double edges. Let m > dg +  3 be fixed. We denote by 

B the set of all linear combinations of elements of the form aUmb and c for a,fc,cG Mm. 

The elements in Mm+i will be written in the form

oo =  (Ai • A2 • A3, ui • u2 • 1/3) (5.10)

where Ax, 17 are paths of length m — 1 on <7 with s(Ai) =  s(ui),  and Ax, A2, 17, u2 are edges

of Q with r(A3) =  r(u3). Since the choice of the pair (Ai • A2,*7 • u2) in a, b is arbitrary,

the proof will depend on specific choices of Q2, ^  in (5-9) in order to obtain the desired
(12^element. We let 7 vy  denote the edge on S\ from vertex v to v'.

We first consider any element (5.10) where r(A2) =  r{u2). For any such pair (Ai • 

A2, 17 • u2) with r(A2) =  7 , I G {1 ,2 ,3 } , there is only one element x , which is given by 

the embedding of x' =  (Ax • A2,*7 • u2) G Mm in M m+\. If r(A2) =  7 , / G {1 ,2 ,3 } , there 

are two possibilities for the edges A3 =  u3. If we choose C 2 — C 2 ~  7*ijj then (5.9) gives 

— (^1 ' ^2 • ^1 • y 2 • 7fji,kX s0 x \^ € B, I =  1 ,2 ,3 . Embedding x' in Mm+i we
obtain (Ai • A2 • 7 7itT., u\ • u2 • 7jhr) =  x' — x\ 1̂ G B,  for / =  1,2, 3. A similar method gives 

the result for the case when r(A2) =  r(u2) =  ki, I =  1 ,2 ,3 .

For any pair (Ai • A2,*7 • u2) with r(A2) =  r(u2) =  p , there are seven possibilities for 

A3, i/3. We denote these elements by x ^ \  x ^ ) ,  for I =  1 ,2 ,3 , £,£' G {P,P'},  where 

x\2) =  (Ax • A2 • 7pj (, i/i • u2 • 7Pj , ), =  (Ax • A2 • f , ux • u2 • £'). First, choosing (2 =  Q =  a,

equation (5.9) gives

1 i,.r 12 (2) , 1 irr/ i2„(2) . 1



rh At I ^ P > 9>r (Q/3')  I X{0',0')'<pr(Pq

where yo is an element in B. Using the solution W + for the cells of £ j12̂  given in Theorem 

4.2.18, we obtain

2/i =  [2lr ih (* i2) +  4 2) +  4 2))  +  W r2 XW',P')’ (5-n )

where r f  =  ([2][4] ±  ^/[2][4]), =  ([2]2 ±  y/[2][4]) and yi G B. Similarly, the choices

C2 =  C2 =  C2 =  <*, C2 =  a ' and C2 =  <*', C2 =  a  give

y2 =  [2 ]rf ^ (j2) +  x {2 ] +  x (32))  +  [4 ]r£ x (0t0), (5.12)

2/3 =  [2] yjr*r f  (x(2) + ux!>2) + u x f^  +  [4] yjr}r3 x{0,t0)i (5.13)

2/4 =  [2]y / r f r ^  ( 4 2) +  ^ 4 2) +  ^ 4 2))  +  [4]\ J r2 x {0y0l), (5.14)

where lj =  e2m/3 and yj G £ ,  j  =  2 ,3 ,4. We can obtain three more equations by choosing 

C2 =  C2 =  7fcjlP f°r 2 =  1 ,2 ,3 . Then (5.9) gives

(l) (2) (2) (2) [2]2 _ _ [2]2 FT T
y\ =  x\> +  x\> +  ^  +  |3p p ri XW )  +  V ri ri XW )

[2]2 / 1  [2]2
+ e /M l4 F ^ ri+7T * 0 ^ )  +  | 3 p i r  ̂ (5*15)

where e/ =  cjz_1 and y ^  € B, I =  1, 2,3. Equations (5.11)-(5.15) are linearly independent, 

and hence we can find xj2\  %(£,£') in terms of yj, j  =  1 , . . . , 4 ,  and y3 \  for I =  1 ,2 ,3 , 

G {P,P'};  i.e. x\2\ x {ut) G B.

For any pair (Aj • A2, v\ -v2) with r(A2) =  r {v2) =  <7, there are four possibilities for A3, z/3. 

We denote these elements by ;r j3̂ , xr , for I =  1 ,2 ,3 , where x }3̂  =  (Ax • A2 • 7 q,kt, *7 • *7 • IqM), 

xr =  (Ai • A2 • 7 , v\ • v2 • 7 )- Choosing £2 =  C2 =  Pi equation (5.9) gives

2/6 =  [2]rj~ ( 4 3) +  4 3) +  4 3))  +  [4]rJ z r, (5.16)

where y6 G £ . Similarly, the choices C2 — C2 — P '\ C2 =  Pi C2 =  P ' and C2 =  /?', C2 =  P  
give

2/7 =  [2]rx+ ( 4 3) +  4 3) +  4 3))  +  [4]7*2 xri (5.17)

2/s =  [2] y / r t r i  ( 4 3) +  ujx{3) +  u x ^  +  [4 ]y 4 jr 2“ xr , (5.18)

2/9 =  [2]y j r f  r f  (xj3) +  u>43) + c j 4 3))  +  [ 4 ] r} r2~ xr, (5.19)

where G B, j  =  7 ,8 ,9 . Equations (5.16)-(5.19) are linearly independent, and we find 

x\3\ x r G B  for I =  1 ,2 ,3 .
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For any pair (Ai • \ 2,v\  • v2) with r(A2) =  r(y2) =  r, there are four possibilities for 

A3, i/3, and we denote these elements by a:^/) =  (Ai • A2 • 1/1 • z/2 • £'), £,£' £ {o^o:'}.

Choosing C2 =  C2 =  7 > equation (5.9) gives

2/10 "̂2 ^(a,a) "b "̂2 *̂ '(a/,or,)» (5.20)

where j/io € B. We obtain three more equations by choosing C2 — C2 ~  7j/,r» ̂ == 1, 2 ,3:

J/ff =  ^  £(«,«) +  t i \ / r \ r i ^ r f  x (a*)a) +  r f  z (a/ia/), (5.21)

where G /i, / =  1 ,2 ,3 . So from (5.20) and (5.21) for / =  1 ,2 ,3 , we find that %($£>) £ B

for £,£' £ {» ,« '}•
We now consider any element x in (5.10) where r(A2) 7  ̂ ^(^2)- When r(A2) =  i i , 

=  p, there is only one possibility for A3, z/3, which is A3 =  7 i, JP ^3 =  7P,jP  ̂ =  1, 2,3, 

given by choosing C2 =  7 fc*,*P C2 =  7 fcl>P- Then x =  (Aj • A2 • 7*,jP ^1 * ^2 * 7Pj,) £ 5 .  When 
r(A2) =  ji, r (v2) =  I =  1 ,2 ,3 , there is again only one possibility for A3, j/3. So x G  B. 

Similarly when r(A2) =  ki, r (v2) =  ki+1} I =  1 ,2,3.

Consider the pair (Ai • A2,*7 • i/2) where r(A2) =  j i , I =  1 ,2 ,3 , and r(v2) =  q. For 

each I =  1, 2,3, there are two possibilities for A3, vz . We denote these by x\4̂  =  (Ai • A2 • 

7j/,*:P v\ • ^2 • 7*,*,)> x\5) =  (A1 • ^2 • l j ur, V\ - ' l ) -  Choosing C2 =  7pjP 72 =  A  we obtain

» §  =  V m  b 4) -  v ^ * { 8 ) . ( 5 -2 2 )
where y^l G £ ,  I =  1 ,2 ,3 . Similarly, choosing £2 =  7PJi, 72 =  ft1, we obtain

3/13 =  7 i l 4 l  arf4) +  7 M  ̂  ̂ . (5.23)

where G B, I =  1 .2 ,3 . Then for each / =  1 ,2 ,3 , from (5.22), (5.23) we find that 

a:j4),x j5) G B.

We now consider the pair (Ai • A2, V\ • v2) where r(A2) =  ki, I =  1 ,2 ,3 , and r (v2) =  r. 

For each I =  1 ,2 ,3 , there are two possibilities for A3, ^3. We denote these by x ^ j  =  

(Ai • A2 • 7fc,lP, v\ • v2 • f) , £ G {a , a'}. Then for each I =  1 ,2 ,3 , choosing C2 =  7j,,jbP 

72 =  7ji,n we obtain

Vil =  +  ei \ f r i x (c*'),h (5.24)

where y\1} £ B, I =  1 ,2 ,3 . Similarly, choosing £2 =  7 q>kl, 72 =  7 , we obtain

2/15 =  \ f ^ X{aU ~  \ f r t x (a'),h (5.25)

where G B, I =  1 ,2 ,3 . Then for each / =  1 ,2 ,3 , from (5.24), (5.25) we find that 

£(a),i 1 £ B. All the other elements in Mm+i are in B  since y* G B  if y  G B. □
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The following is an S U (3) version of Skau’s lemma. The proof is similar to the proof 

of Skau’s lemma given in [51, Theorem 4.4.3].

L em m a 5 .1 .8  For an A V S  graph Q, let Mq =  Cn° where no is the number of 0-coloured 

vertices of Q, and let M0 C Mi C M2 C • • • be a tower of finite dimensional von Neumann 

algebras with Markov trace tr on the Mi, with the inclusions Mj C A/j+i given by an S U (3) 

A V S  graph Q (except £4 ^ ), and operators Um £ Mm + m  >  1, which satisfy the relation 

H1-H3 for 5 <  2, and such that Um commutes with Mm_ 1. Let be the GNS-completion 

°f {J j  >0 Mj with respect to the trace. Then {U\, £/2, ■ ■ ■}' H M ^  =  Mq.

Proof

The first inclusion M 0 C {U\, U2, . . .}; D M^ is obvious, since Mo commutes with Um 

for all m > 1.

We now show the opposite inclusion M q D {U\,  £/2, • • -}; H M ^. For each A: >  1 let 

Fk be the conditional expectation of M ^ onto {Uk, Uk+1, . . . } '  H M ^ with respect to the 

trace. Note that FkFi =  Fmin̂ ,i)- So we want to show Fi(Moc) C M0. We first show 

^2(Mqo) C Mm for some sufficiently large m.  By Proposition 1.6.2, the diagram

{£4+1, £4+2) • • -V n  Moo c  Moo
u u

{£/fc+i, Uk+2, . . .} '  n  {£/fc, u k+i , . . c  {£/fc,£/fc+ i , . . . r

is a commuting square, for k >  1. Since {Uk+1, Uk+2, . . .} "  C {Uk, Uk+1, . . .} "  is isomorphic

to R2 C R\,  where Ri =  {1, U\, £/2, ...}" , R2 =  {1, U2 , U3 , ...}" , we may write the

commuting square as
R^2 n  Moo C Moo

u u

R!2 H R l c  Ri.

Let E  denote the conditional expectation from R\ onto R '2 D Ri with respect to the 

trace. Since Fk+ 1 is the conditional expectation from Moo onto R^DMoo and Uk £ Ri,  we 

have Fk+i(Uk) =  E(Uk). Since by Theorem 6.3.3 the principal graph of /?2 C R\ is the 

01-part of A^n\  and there is only one vertex joined to the distinguished vertex * of A^n\  

the relative commutant RI^D Ri is trivial for a  <  3 (which corresponds to S <  2), and 

E  is just the trace. Thus Fk+i(Uk) £ C for each k >  1. By Lemma 5.1.7, for sufficiently 

large m, any element of Mm+ 1 can be written as a linear combination of elements of the 

form aUmb and c, for a, b, c £ Mm, and we have

F2 (aUmb) =  F2 Frn+l {aUmb) =  F2(aFm+i(f /m)6) =  F2 (Xab) £ F2 {Mm),

117



where A G C. So F2(A/m+i) C F2(A/m), for sufficiently large ra, and by induction we have 

^2( ^ 00) C F2(Mr), where r is the smallest integer such that Lemma 5.1.7 holds. Then 

certainly F2(A/oo) C Fr+i(M r), and by Proposition 5.1.6, with k =  r, any element x in 

A/r commutes with Ur if and only if x G A/r_ 1, so FrFr+i(M r) C Fr(A/r_ 1). Then by 

inductive use of Proposition 5.1.6 we obtain F2{M(X>) C F2(M\) =  M 1, and so Fi(Moo) =  

F1F2(A/oc) C Fi(M i) =  Mo, by Proposition 5.1.6. □

We now construct the y42 Goodman-de la Harpe-Jones subfactor for an S U (3) 

graph Q, following the idea of Goodman, de la Harpe and Jones for the A D E  Dynkin 

diagrams [51]. Let n be the Coxeter number for Q, *g a distinguished vertex and let no 

be the number of 0-coloured vertices of Q. Let A0 be the von Neumann algebra Cno, and 

form a sequence of finite dimensional von Neumann algebras A q C A\  C j42 C • • • such 

that the Bratteli diagram for the inclusion ;4/_i C A i is given by (part of) the graph 

Q. There are operators Um £ Am+\ which satisfy the Hecke relations H1-H3. Let C  

be the GNS-completion of Um>o with respect to the trace, and B  its von Neumann 

subalgebra generated by {Um}m>i- We have B' n C  =  A0 by Lemma 5.1.8. Then for 

q the minimal projection in A q corresponding to the distinguished vertex *g of G, we 

have an A 2 Goodman-de la Harpe-Jones subfactor B  =  qB  C qCq =  C  for the graph Q. 

With Bm — qBm and Cm =  qCmq, the sequence {B m C Cm}m is a periodic sequence of 

commuting squares of period 3, in the sense of Wenzl in [112], that is, for large enough m  

the Bratteli diagrams for the inclusions Bm C F m+i, Cm C Cm+1 are the same as those for 

Bm+3 C Bm+4, Cm+3 C Cm+4, and the Bratteli diagrams for the inclusions Bm C Cm and 

Bm+3 C Cm+3 are the same. For such m  the graph of the Bratteli diagram for Bzm C Czm 

is the intertwining graph, given by the intertwining matrix V  computed in Proposition 

5.1.10, whose rows are indexed by the vertices of G and columns are indexed by the vertices 

of A^n\  such that V =  AgV.  For sufficiently large m  we can make a basic construction 

Bm C Cm C Dm- Then with D =  \Jm D m, B  C C  C D  is also a basic construction. The 

graph of the Bratteli diagram for Cm C Dm is the reflection of the graph for Bm C Cm, 

which is the intertwining graph. Then we can extend the definition of Dm to small m  so 

that the graph Cm C Dm is still given by the reflection of the intertwining graph. We see 

that Do =  © MĜ(n> W * ( * a > n)C, where *.4 is the distinguished vertex (0,0) of A^nK The 

minimal projections in D0 correspond to the vertices n' of A ^  such that

V V m(*,ij!) >  0, (5.26)

and the Bratteli diagram for the inclusion D m-\  C D m is given by (part of) the graph

A^n\  Each algebra Bm is generated by the U\ , . . . ,  Um- 1 in Dm-

Now X(i,o)(N) C N  =  P  C Q,  where F  C Q  is Wenzl’s subfactor with principal graph
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given by the 01-part ^4^ of .4 ^  (see Theorem 6.3.3). Then (A(1)0)A(i)0))d//2(Ar) =  P  C Qd,  

where P  C Q C Q\  C • • • is the Jones tower. For any 0-coloured vertex /z of 

let be the minimum number of edges in any path from (0 , 0 ) to /z on .4qi\ an(  ̂ ^  

d =  max{dM — 2| VV*(*a , fi) > 0}. Note that each is even since n is a 0-coloured vertex. 

Let [0] =  © m€-4(»o aO[A/J- Now [(A(10)A(10))d̂ 2] decomposes into irreducibles as

U/JAJ, where /z are the 0-coloured vertices of A ^  and ntL G N. Then 9(N)  C N  

is a restricted version of (A(1)0)A(1)0))d/2(Ar), so that 0(N)  C N  =  qP  C q(Qd)q  where 

q G P' D Qd  is a sum of minimal projections corresponding to the vertices /z' such that 

[9] D [Am/]. We will show that qP  C q{Qd)q  is isomorphic to a subfactor obtained by a 

basic construction.

Following the example in [13, Lemma A.l] for F 7 in the 5/7(2) case, we now do the 

same construction for the graph A^n\  where q is the projection corresponding to the 

distinguished vertex *^. We get a periodic sequence { E m C Fm}m of commuting squares 

of period 3. Then the resulting subfactor E  C F , where F  =  \Jm F m, F  =  \Jm Fm, is 

Wenzl’s subfactor [112].

If we make basic constructions of Fm C Fm for d — 1 times then we get a periodic 

sequence {F m C Gm}m of commuting squares, and each F m is generated by the Hecke 

operators in Gm. Let <7 be a sum of the minimal projections corresponding to the vertices 

/z' in G0 given by (5.26). We set F m =  qEm and Gm =  qGmq , and obtain a periodic 

sequence of commuting squares of period 3 such that the resulting subfactor is isomorphic 

to qP  C q(Qd) q• The Bratteli diagram for the sequence {Gm}m is the same as that for 

{ D m} m since D0 =  Go =  C r where the r minimal projections correspond to the vertices 

/z' of (5.26), where r is the number of such vertices /z', and the rest of the Bratteli diagram 

is given by the 01-part of the graph A Each F m is generated by the Hecke operators 

771, . . . ,  Z/m_i G Gm. Then the sequence of commuting squares { B m C F m}m is isomorphic 

to the sequence of commuting squares {F m C Gm}m, and so the subfactors B  C D  and 

qP  C q{Qd)q  are also isomorphic. Since B  C D  is a basic construction of B  C G, then the 

subfactor qP  C q(Qd)q  is also the basic construction of some subfactor. Since 9(N)  C N  

is isomorphic to qP  C q(Qd)q,

[« ]=  0  W K , , / 0 [ A ,J  (5.27)

can be realised as the dual canonical endomorphism of some subfactor.
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5.1.1 C om puting th e  in tertw in ing  graphs.

Let V(G) denote the free module over Z generated by the vertices of Q, identifying an 

element a G V(G) as a =  (av), av G Z, v G . For graphs £ 2, a map V : V{G\) — > 

V{G2 ) is positive if Vij >  0 for all i G £J^2, j  G QJ®1. Let A(G) be the path algebra for G- 

The following lemma and proposition are the S U (3) versions of Proposition 4.5 and 

Corollary 4.7 in [37] (see also Lemma 11.26 and Proposition 11.27 in [39]).

L em m a 5 .1 .9  Suppose that Gi, Gi Q>Te locally finite connected graphs with Coxeter num­

ber n, adjacency matrices A Gl, Ag2 respectively and distinguished vertices *i, *2 re­

spectively. Let {Um)men, (WFm)m€N denote canonical families of operators in A(Gi) and 

A(G2 ) respectively, which satisfy the A2-Temperley-Lieb relations such that U% =  [2]qUm> 

=  [2]9Wm for all m  G N, q =  e27n/ n . Let n : A(Gi) — * A(G2 ) be a unital embedding 

such that:

(a) The diagram

A(Gi)m ^  A(G2)m

i 1 Jm
A(G l)m+ l ^  A (G2)m+ l

commutes for all m, where nm =  ir\A{Gi)m> and im, j m are standard inclusions.

(b) tri • 7rm =  tr2, where tri is a Markov trace on A(Gi), i =  1,2.

(c) n(Um) =  (Wm) for a l l m >  1 (so 7Tm+i(Um) =  Wm).

Then there exists a positive linear map V  : V{Gi) — ► V(G2 ) such that:

(1) V A Gl =  Ag2V,

(2) V has no zero rows or columns,

(3) V*i =  *2.

Proof

Let p™ denote a minimal projection in A(Gi)m corresponding to the vertex (i, m) of the 

Bratteli diagram Gi of Gi- Then nm(p™) is a projection in v4(£2)m, and so there are families
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of equivalent minimal projections {q™k{j) 1^0') =  A(G2) m  corresponding to
vertices ( j ,m )  in C/2, such that

b™

* m W ) =  E  E  (5-28)
3 k(j)=l

The numbers {b™}j are non-negative, are independent of the choice of p™ and are not 

all zero, since nm is injective. Let F'm — [2]-l W l {UmUm+iUm -  Um) in A(Gi),  and 

F$n] =  [2] ~1 [3]_ 1 (WmWm+1 Wm -  Wm) in A{G2). Now multiplying (5.28) on the left by 

Fmin we have
bvl

fS I ^ pT)  =  E  E  FS h  C o ) '
3 k(j)=1

but by (a) and (c), F^jjTr^p™) =  7rm+3(F^1| 1)7rm(p7l) =  7rm+3(F^1| 1p"1), so we have

bVi

^ +2(F^+lPT) =  E  E  (5-29)
3 k(j)=1

Since tr2 and tr2 are Markov traces, by Lemma 5.1.5 we have tr^F^+j p™) =  [3]_3tri(p7l) i 

and tr2(FTJl2| 1 q™t(j.}) =  [3]~3tr2(<7™fc(j)). Since p™, q™k{j) are minimal projections, they have 

trace [3]-fc0i, [3}~k4>j respectively. Then F Ĵ+j p™ h35 trace [3]_fc_30i, which shows that 

Fm+iPi1 a minimal projection in A(G\)m+ 3 corresponding to vertex (i,m  -1- 3) of Gi, 

and similarly a minimal projection in A (£2)m+3 corresponding to vertex

(j, m  +  3) of Gi- It follows from (5.28) and (5.29) that the coefficients occurring in the 

decomposition of a minimal projection as in (5.28) corresponding to vertex (?’,m ) of G\, 

m >  1, is independent of the level m, i.e. b™ =  &L =: for all m , l  >  0.

Now put V =  (&j*)i6«DCije®C2, t îen since ^ (£ 1)0 =  C =  A (g2)o> and 7r0 : A{G\)o — > 
A(f/2)o we see that V*i =  * 2 . Note that since i t  is unital, the rows of V are non-zero. We 

need to show V A g t =  Ag2V.

Let A gk(m), k =  1,2, be the finite submatrix of Agfc, whose rows and columns are 

labelled by the vertices v £ G ^  with d(v) <  m  +  1, where d(v) is the distance of vertex 

v from *k, ie. the length of the shortest path on Gk from to v. Similarly let V(m)  

denote the finite submatrix of V whose rows are labelled by j  £ with d(j)  < m - 1-1, 

and whose columns are labelled by i £ with d(i) < m  +  1. It follows from (a) that 

for each m  we have

FoO m )F0(7rm) =  Fo(7rm+i ) F 0(6m). (5.30)

Let Mi, M2, be two multi-matrix algebras, with the embedding <p of M\ in M2 given by 

a matrix A, with pi columns corresponding to the minimal central projections in Mi and
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P2 columns corresponding to the minimal central projections in M2. Then K 0(Mi) =  If*, 

i =  1,2, and K 0(<p) : —> Tf2 is given by multiplication by the matrix A. For m  of colour

j , we see that Ko(tm) is the submatrix of A g1(m) mapping vertices of colour j  to vertices 

of colour j  +  1, and Ko(jm) is the submatrix of A g2(m) vertices of colour j  to vertices of 

colour j  4-1. Similarly, K 0(7vm) is the submatrix of V(m)  mapping vertices of G\ of colour 

j  to vertices of Q2 of colour j .  Then (5.30) implies Ag2(m)V(m — 1) =  V (m )A g1(m) holds 

for all m. Hence V A g x =  Ag2V . □

We define polynomials Su(x,y) ,  for u the vertices of A^n\  by S(oto)(x,y) =  1, and 

xS u(x,y)  =  A A(is,fj,)Sfi{x, y), yS„(x, y) =  ^  A p)S^{x,y).  For concrete values

of the first few Sfl(x ,y)  see [39, p. 610].

P ro p o s itio n  5 .1 .1 0  Let Q be a finite SU (3 ) -A V £  graph with distinguished vertex *g and 

Coxeter number n < oc. Let {f/m}m>0, {Wm}m>o be the canonical family of operators 

satisfying the Hecke relations in A ( .4 ^ ) ,  A{Q) respectively. We can identify A ( A ^ )  

with the algebra generated by {1, W\, W2, . . . } .  If we define 7r : A ( A ^ )  — ► A(Q) by 

7r(l) =  1, TT(Um) =  Wm, then n is a unital embedding, and there exists a positive linear 

map V : V ( A ^ )  — ► V(G) such that:

(a) V A a  =  A gV ,

(b) V has no zero rows or columns,

(c) V*A =  *g, where *A =  (0,0) is the distinguished vertex of A ^ .

Let V(o,o) be the vector corresponding to the distinguished vertex *g, and for the other 

vertices define V'(Ai,a2) € V(Q) by V(x1,x2) =  S(xux2) (A £, Ag)  V(0)0), for all vertices (Ai, A2) 

of A ^ . Then V =  (V(o,o), V(ifo), ^(0,1)1 ^(2,0)»• • • > F(o,n-3))-

Proof

Now 7r : A ( A ^ )  — ► A(G) defined by 7r(l) =  1, n(Um) =  Wm is a unital embedding 

which satisfies the condition of Lemma 5.1.9 with *1 =  (0,0) and *2 =  *g. Hence when 

m  is finite there exists V =  (V(Al,A2)), for (Ai,A2) the vertices of A^n\  with the required 

properties. Now V A a =  (V(Al_1>Aa) +  V{Xl+i,x2-i)  +  v '(A1,a2+ i))(AiiA2)? where V{Xl,x2) is un­

derstood to be zero if (Al5A2) is off the graph A^n\  Thus V A a  =  A g V  implies that

A g V ( A l iA 2 ) =  V ( A i  —1,A2 ) +  V ( A i  +  1 ,A2- 1 )  +  ^ ( A x . A a + l ) -  T h e n  V(X1}X2) =  S{ XUX2) ( A £ i  Ag) ^ ( 0 , 0 ) >  

since

&gV(\iM) =  ^ 5'(Ai,a2) (Ag, A G) Vjo.o)

=  X /  ^  ((Al, A2), (p i i fa ))  (Ag, Ag) l/(0)0)

=  ^(Ai - 1,A2) +  VjAj +  i . A a - i )  +  V(Ai ,A2 +  1).
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and V(o,o) — (̂o.o) (Ajj, Ag) V̂ o.o)- D
For any A V S  graph Q the matrix V  is the adjacency matrix of a (possibly discon­

nected) graph. By [10, Theorem 4.2] the connected component of of this graph gives 

the principal graph of the A2 Goodman-de la Harpe-Jones subfactor. For the graph 

with vertex i\ chosen as the distinguished vertex this is the graph illustrated in Figure 

5.2, which was shown to be the principal graph for this subfactor in [113].

(1.4)

(3.0)
(0.0) (2,2)

0 , 1)

(0,3)

(4.1)

Figure 5.2: Principal graph for the A2 Goodman-de la Harpe-Jones subfactor for

5.2 Modular invariants associated to the dual canon­
ical endomorphisms.

Let N  C M  be the S U (3)-GHJ subfactor for the finite A V S  graph G, where the dis­

tinguished vertex *g is the vertex with lowest Perron-Frobenius weight. Then the dual 

canonical endomorphism 6 for TV C M  is given by (5.27) where V  is now determined in 

Proposition 5.1.10. We list these 0’s below for the A V S  graphs. We must point out that 

as we have been unable to explicitly construct the Ocneanu cells W  for S^12\  the existence

of the A 2 Goodman-de la Harpe-Jones subfactor which realizes the candidate for the dual
( 12)canonical endomorphism for S\ is not shown here.

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
/i=(2mi ,2M2)€̂ !2fc + 1): 

t ( m) = 0

A (n) : [0] -  [A(0,0)1,
£>(n) . [0] — [̂ (0,0)] ® [̂ 4̂(0,0)] © [ ,̂42(0,0)]>

[0] =  ©  [AJ,

'pW *  .
[*] =  ©  I U

M6 -4<2fc): r(M)=0
£>(2fc+l)* . ©II5eT [\J»
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£ (8) : [0] =  [A(o,o)] © [A(2,2) ]? (5.36)

£ (8)* ; [0] =  [A(0,0)] ©  [A(2,1)] © [ \ l , 2)] ©  [^ (2,2)] ©  [^ (5,0)] ©  [^ (0,5) ] ) (5.37)

£[U) '• [$] =  [A(0,0)1 © [A(4,1)] © [A(l,4)] © [A(4,4)] ©  [A(9,0)] © [A(0,9)]i (5.38)

: W  =  [^ (0,0)] ©  2[A(2,2)] ©  [^(4,1)] ©  [^(1,4)] ©  2[A (5i2)] ©  2 [A(2,5)]

®[A(4,4)] ©  [A(9,0)] ©  [^(o,9)]» (5 .3 9 )

£ 4^  : [0 ] =  [A(0,0)1 ©  [A(2,2)] ©  [^(4,1)] ©  [A(1,4)] ©  [A(5 2>] ©  [A(2,5)] ©  [^(4,4)]

©[^(9,0)] © (0,9)] 1 (5.40)

£5(12) : [#] == [A(0,0)] © [A(3,3)] © [A(9,o)] © [A(o,9)] > (5-41)

^ (24) : [0] =  [ \o ,0)] © [A(4j4)] © [A(10,1)] © [A(1,10)1 © [A(6,6)] © [A(9,6)] © [A(6,9)]

©[A(13,4)] ©  [A(4)13)] ©  [A(10,10)] ©  [A(21,0)] ©  [^(0,21)]- (5 .4 2 )

Note that these dual canonical endomorphisms depend only on the existence of a cell 

system W  for each graph Q, but not on the choice of cell system since Lemma 5.1.9 and 

Proposition 5.1.10 did not depend on this choice. Where we have found two inequivalent 

solutions, the computations below show that either choice will give the same M -N  graph, 

since the computations in these particular cases only depend on the dual canonical en­

domorphism 9. Similarly, even if there exists other solutions for the cells W  for the £>, 

V* and £ j12̂  graphs, these will not give any new M - N  graphs either. It is conceivable 

however that in certain situations, for S U (N ) ,  N  >  3, the M - N  graph will depend on the 

connection and not just on the GHJ graph.

Remark. For S U (2) it was shown in [33] that the modular invariant Z  can be realized 

from a subfactor with a dual canonical endomorphism of the form

M =  (5-43)

where the direct summation is over all /i even. At level k these are given by

A  : k = I -  1 [*] == [Ao] e N © © • ' • ©  [A2[fc/2j],

D 21 • k = 4 / - 4 [*] == [Ao] © M © © [A2/ - 4 ] ©  2[A2Z—2] © [A2/] © • • • ® [Afc

A 2/+1 : k. = 4/ -  2 [*] == [Ao] KD © M ©• • • ©[ Af c ] ,

E6 : k = 10 [*] == [Ao] © M © [a6 © [A10] ,
E7 : k = 16 [*] == [Ao] © © [a6 ©  [As] © [A10] © [A12] © [Aie] 1

E8 : k = 28 = [Ao] rrsXV © [A10] © [A12] ©  [Aie] © [Ais] © [A22] © [A28]

This raises the question of whether all the S U ( 3) modular invariants be realized from 

some subfactor with dual canonical endomorphism 6 of the form (5.43), where we now
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allow p  to be of any colour? For the A graphs the 0 given in (5.33) is automatically 

in the form (5.43), where Z  is the conjugate modular invariant ZA(n). =  C. For the A ^  

graphs, if we choose the M - N  morphism [a] to be [̂ A(Pio)], where p =  [(n — 3)/2 j, the 

sector [aa] gives [A(0,o))] © [A(i,i)] © [A(2,2)] © • • • © [A(PlP)], and we obtain a dual canonical 
endomorphism [0] =  [aa] such that [0] =  © M<ZPiP[/x], where the direct summation is over 

all p  (of any colour) and Z  is the identity modular invariant ZA( n) — /.

For each of the A V S  graphs (with the exception of S ^ )  we have shown the existence 

of a braided subfactor N  C M  with dual canonical endomorphisms 0 given by (5.31)- 

(5.42). By the a-induction of [8, 9, 10], a matrix Z  can be defined by Z \,p =  (a ^ ,a ~ ), 

A,/i G n %n - If the braiding is non-degenerate, Z  is a modular invariant mass matrix.

For the dual canonical endomorphisms 0 in (5.31)-(5.42), what is the corresponding M-  

N  system or Cappelli-Itzykson-Zuber graph which classifies the modular invariant? And 

what is the corresponding modular invariant? For 4 ^  the M -M , M - N  and N - N  systems 

are all equal since N  =  M.  Subfactors given by conformal inclusions were considered 

in [9, 10]. Those conformal inclusions which have 5(7(3) invariants give identical dual 

canonical endomorphisms 0 to those computed above. The M - N  system was computed 

for conformal inclusions with corresponding modular invariants associated to the graphs 

V and in [9], and to Sj12̂  and S ^  in [10]. The M - N  system was also computed 

in [9] for the inclusion with dual canonical endomorphism (5.32) for n =  0 mod 3, which 

do not come from conformal inclusions. For each of these graphs, the graph of the M-  

N  system and the a-graph can both be identified with the original graph itself, and the 

modular invariant is that associated with the original graph. We compute the M -N  graph 

for the remaining 0’s. Knowledge of the dual canonical endomorphism 0 is not sufficient 

to determine the M - N  graph, but we can utilize the fact that the list of 5(7(3) modular 

invariants is complete. For a A V S  graph Q with Coxeter number n, the basic method 

is to compute (cX,ip) for representations A, p  on A^n\  and decompose into irreducibles. 

Sometimes there is an ambiguity about the decomposition, e.g. if (/.A, l\ )  =  4 then could 

have lX =  2lX ^  or lX =  tA^ +  lX ^  +  lX ^  -I- tX ^  where tA^), i =  1 ,2 ,3 ,4  are irreducible 

sectors. By [12, Cor. 6.13], — tr(Z) f°r some modular invariant Z, and therefore,

since we have a complete list of 5(7(3) modular invariants, we can eliminate any particular 

decomposition if the total number of irreducible sectors obtained does not agree with the 

trace of any of the modular invariants (1.14)-(1.25). We compute the trace for the modular 

invariants at level k in the following lemma:
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Lem m a 5.2.1 The traces of the level k modular invariants Z  are

f o ( Z A ( k + 3 ) ) — +  1)(^ + 2), (5.44)

tr(ZP(k+3>) =  -(A: +  1)(A: +  2) +  Cfc, 
b

(5.45)

tr(Z^(k+3).) - (5.46)

tr(ZP(k+3).) - (5.47)

tr(ZeW) =  12, (5.48)

tr (Z£W,) =  4, (5.49)

tr(Z (i2))ci =  12, (5.50)

tr(Z£(i2)) =  11, (5.51)

tr (Z (i2))
5

=  17, (5.52)

tr(Zf(24)) =  24, (5.53)

where c* =  0 if  k  ^  0 mod 3, c3m =  2 /3  for m  E N and [zj denotes the largest integer

less than or equal to x.

Proof

For the A  graphs, t i {Z A(k+z)) is given by the number of vertices of -4(fc+3\  which is 

1 +  2 +  3 +  -- - +  &-+-1 =  (fc+  l)(/c +  2)/2 . For k ^  0 mod 3, the diagonal terms in 

ZV(k+3) are given by the 0-coloured vertices of so tr(ZP(k+3)) is tr(Z_4(k+3))/3. For

k =  0 mod 3 the 0-coloured vertices of A^k+3  ̂ again give the diagonal terms in ZV(k+z) 

but the number of 0-coloured vertices of A f̂c+3̂  is now one greater than the number of 

1,2-coloured vertices. The trace of ZA{k+v* is given by the number of “diagonal” elements 

fi =  Ji of A^k+3\  which is [k +  2 /2 J. For the V * graphs, when A; ^  0 mod 3, the trace is

given by the number of vertices fi =  (/xi,/i2) of A^k+3  ̂ such that Â n~3̂ l ~ ^ f i  =  Ji. For

the 0-coloured vertices this is the number of diagonal elements, whilst for the 1,2-coloured 

vertices this is where Afi =  Ji or A2fi =  Ji, depending on the parity of n. In each case the 

number of such vertices is [A: +  2 /2 J. For k =  0 mod 3 the trace is again given by a third 

of the number of vertices of A^k+3  ̂ which satisfy each of the following fi — Ji, Afi =  A2fi, 

A2 =  Afi, /i =  Afi , Afi — Ji, A2fi =  A2fi, fi =  A2fi, Afi =  Afi and A2fi =  Ji. The first 

three equalities are satisfied when fi =  Ji, the second three when Afi =  Ji and the last 

three when A 2fi =  Ji. So we have tr(ZP(k+3).) =  3 [A: +  2/2J also. The computations of 

tr(Zs)  for the exceptional invariants is clear from inspection of the modular invariant. □
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Lem m a 5.2.2 The trace of the modular invariants at level k are all different.

Proof For level 5 we have tr(,A ^) =  21, tr('P ^ ) =  7, tr(*A^*) =  3 and tr(D ^*) =  9, 

and compare these with (5.48) and (5.49). For level 9, tr(*4(12̂ ) =  55, tr('D^12̂ ) =  19, 

tr(*4(12)*) =  5 and tr('D^12̂ ) =  15, and compare these with (5.50)-(5.52). For level 21 we 

compare tr(.4(24)) =  253, tr ( 'D ^ ) =  85, t r ( ^ 24̂ *) =  11 and tr(£>(24)*) =  33 with (5.53). 

For all other levels we need to compare the modular invariants for the A, T>, A* and V* 

graphs.

Comparing the A  and V  modular invariants, the traces can only be equal if 3(k +  

1 )(/c +  2) =  (A; +  l ){k  +  2) +  6cfc. For k =  0 mod 3 this gives k =  0, - 3 ,  whilst if 

k ^  0 mod 3 we obtain k =  —1 ,- 2 .  So these traces cannot be equal except when k =  0, 

but the graphs A ^  and V ^  are both a single vertex. Comparing A-A*,  the traces are 

only equal if (k +  1 )(k +  2) =  2[(k  +  2 )/2 j. For even k this gives solutions k =  0, —4, 

but when k =  0 the graphs .Â 3)* is also just a single vertex, so identical to the graph 

*4^. For k odd we have k =  — 1. Next, comparing A-V*,  the traces are only equal if 

(k +  1 )(k +  2) =  6 [(k +  2 )/2 j. For k even this gives solutions k =  ±2 , but for k =  2 the 

graph V ^ *  is identical to A ^ . For k odd we obtain solutions k =  —3,1, but we again 

have for k =  1 that the graphs and A ^  are the same. We now compare V-A*.  When 

k =  0 mod 3, the traces are equal only if (k +  1 )(k +  2) +  4 =  Q[(k +  2)/2j =  6[k/2 \  +  6, 

so we have the quadratic k2 +  3 (k — 2[k /2 \ )  =  0. When k is even we have only the 

solution k =  0, whilst when k is odd this gives k2 =  —3. When k zfi 0 mod 3, we obtain 

instead the quadratic k2 +  3(A: — 2 \k /2 \ )  — 4 =  0. For even k this gives the solutions 

k =  ±2 , but we notice that the graphs and .A^* are the same, whilst for odd k we 

have the solutions k =  ±1 , but we again see that the graphs V ^  and .4^* are the same. 

Comparing V-V*  we now obtain the quadratic equations k2 +  3 (k — 6 [k /2 \ )  — 14 =  0, 

k2 +  3(A; — 6[k /2 \ )  — 18 =  0 for k =  0 mod 3, k ^  0 mod 3 respectively. Neither of 

these equations has integer solutions for odd or even k. Finally, comparing the A* and 

V* modular invariants, the traces are only equal if [(k +  2)/2j =  3 [(A; -f 2 ) /2 j , giving 

[(A: +  2)/2j =  0 which has solutions k =  —2, —3. □

Since the traces of the modular invariants at any level are all different, once we have 

found the number of irreducible sectors, we can identify the corresponding modular in­

variant. There may however still be an ambiguity with regard to the fusion rules that 

these irreducible sectors satisfy, with different seemingly possible fusion rules giving dif­

ferent fusion graphs for the M - N  system. However, as in Section 1.5, the eigenvalues of 

the fusion graph must be 5 i iM/S ’o,M with multiplicities given by the diagonal entry Z ^  

of the associated modular invariant, where 0 is the irreducible sector [̂ A(0,o)] and 1 the
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irreducible sector [tA(ifo)]. It turns out that the consideration of the trace and the eigen­

values is sufficient to compute the M - N  graphs for , £i,12\  £ ^  and S^12\

and identify the corresponding modular invariant. The results are summarized in Table 

5.1. We will say that an irreducible sector [tA(M1 ,M2)] such that Pi +  P2 =  m  is at tier m.

5.2.1

For th e  graph £ (8)*, w e have [0] =  [A(0)o)] ®  [A(2,i)] 0  [A(lt2)] ©  [A(2j2)] ©  [A(5j0)] ©  [A(o,5)]- T h en  

co m p u tin g  ( l X ,  t p )  =  (A, Op)  (by  F rob en iu s rec ip ro c ity ) for A, p  o n  ^ 4 ^ , w e find (tA, l X )  =  

1 and  ( t X, Lp)  =  0 for A ,/z =  A(0,o). A(i,o), A(0,i). A t tier  2 w e have (fcA(2lo), tA(2,o)> =  2, 
( tA(2,o), ^A(i)o)) =  1 an d  (tA ^ o), t p )  =  0 for p  =  A(o,i), A(o,o)- So [^A(2,o)] — M ^ o )]  ©  

[ ^ ( 2?o)]- S in ce  (^ (o ,2) ,iA (0|2)) =  (tA(o,2),tA (2,o)) =  2 w e h ave [iA(0>2)] =  [tA(2)0)]. L a stly  

a t tier  2 w e h ave (iA ( u ) , iA ( u ) ) =  2 an d  ( l X { 1a) , LXih0)) =  (tA ( u ) , <A(0)i)) =  1, g iv in g  

M (i,i) ]  =  M ( i ,0)] ©  M ( 0,i)]. A t tier  3 w e h ave (<A(3)o), iA (3|0)) =  (tA (3>0), tA(0|2)) =  2, so  

[*A(3|o)] =  [tA(0)2)]. S im ilarly  [tA(0)3)] =  M (2,o)]- For tA(2>i) w e find  (rA(2,i), rA(2,i)) =  2 

an d  (^A(2,i),tA(o,o)) =  (tA(2>i)» fcA(i,o)> =  1> g iv in g  [tA(2,i)] =  M (0,o)] ©  M (i,0)] and  s im ilar ly  

[^A(ii2)] =  [^A(0,o)] ©  [^ (o .i)]- So no n ew  irred u cib les ap p ear a t tier  3. N o n ew  irreducib le  

sec to rs  ap p ear  a t th e  o th er  tiers e ith er , so  w e h ave 4 irred u cib le  sec to rs  [*<A(o,o)]j [^A(iio)], 

M (o,i)] and  [tAjjo)]- W e now  c o m p u te  th e  sec to r  p ro d u cts  o f  th e se  irreducib le  sectors  

w ith  th e  M - N  sec to r  [p] =  [A(i>0)]. It is e a sy  to  co m p u te  [^A(0,o)][p] =  [ ^ ( 1,0)], [tA(i>0)][p] =  

[^A(0,i)] ©  ^A(2,o)] =  [^A(o,i)] ©  [^A(li0)] ©  [rA^o)] an d  M (o,i)][p] =  M (o,o)] ©  M ^ o )]  ©  [/A ^ i)]. 

W e can  invert th ese  form u la  to  o b ta in  [tA^o)] =  M ( 2,o)] ©  M (i,o )], and  so  [tA |J^][p] =  

[tA(1)i) ©  [rA(3)0)] ©  ( [^A(2,o)] ©  [ a (0>i)]) =  [tA(0,i)]. T h e n  w e see  th a t  th e  m u ltip lica tio n  graph  

for [p] is th e  orig in a l grap h  £ ( 8)* itse lf, an d  th e  m od u la r  in varian t a sso c ia te d  to  9 is  Z E{&)..

5.2.2 S^12)

For the graph £ ^ 2\  we have [0] =  [A(0,0)] © 2[A(2,2)] © [A(4i1)] © [A(1i4)] © 2[A(5j2)] ©

2[A(2)5)] © [A(4>4)] © [A(9)o)] © [A(o,9)]- We have =  1 and (l\ , cp) =  0 for all

X,p  G {A(0)o), A(i)0), A(0,i)}. At tier 2 we have =  3 and (lX,up) =  0 for A =

A(2,o)i A (iii) ,  A(o)2), p  =  A(0)o), A(ij0), A(0,i). Then A^o), A(i i), A(q)2) decompose into irre­
ducibles as

[̂ A(2,o)] == A(2>o)] © [̂ (̂2|o)3 (5.54)

[rA(lil)] =  [iA™,] © [iA ® jlefrA ™ )], (5.55)

M (o,2)] =  [tA^2)] © [iA® ,] © [iA®2)]. (5.56)
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At tier 3 we find (tA^o), tA^o)) — (^ (3,0), ^ ( 1,1)) — 3 so that [/-A^o)] =  [tA(lti)], and simi­

larly [tA(0,3)] =  [^A(iii)]. From (tA(2ji), <-A(2ii)) =  7, (*-A(2ii), tA(lj0)) =  2 and (tA(2ii), tA(o,2)) =  

3, and similarly for tA(i>2), we obtain

[tA(2ii)] =  2[tA(1)0)] © +  [tA|^2)], (5.57)

[^ (1,2)] =  2[rA(o,i)] © [^ (2)o)] © [^ (2,0)] © [^ (2,0)]’

and no new irreducible sectors appear at tier 3. Then we have twelve irreducible sectors 

M(o.o)], M (ii0)], [tA(0,i)], [̂ A[o}2)] for i =  1 ,2 ,3 , and the corresponding

modular invariant must be ZF{ 12) since tr(Z„d2)) =  12.

We now look at the fusion rules that these irreducible sectors satisfy. With p =  A(i o), 

we have [tA(0)0)][p] =  M (i i0)],

M (i,0)][p] =  M (0|i)] © [tA(2>0)] =  [tA(0,i)] © [̂ Aĵ o)] © [^[^o)] © [^ S o)]’ (5.58)

an d  sim ila r ly  [^A(0>i)][p] =  [^A(0>o)]© © [^a[^1}] © [^A^1}] . S in ce  [tA(2j0)][p] =  M ^ i ) ] ©  

M ( 3,o)] =  2 [ tA ^ 1)]© 2 [tA ^ 1)]© 2 [tA ^ 1)], w e o b ta in  ( A[^q)][p]) © ( [^A((^ 0)] M A [ ^ 0)] H ) =  

2M (i!i)1 © 2M (u )l © + 2M (i!i)1*
We now use a similar argument to that in [9, §2.4]. The statistical dimension of 

the positive energy representation (p i,p 2) of SU(3)k is given by the Perron-Frobenius 

eigenvector (1.29): lt/i2) =  [pi +  l][p2 +  l][pi +  P2 +  2]/[2]. Then from (5.58) we obtain

rf(2?0) +  rf(2?0) +  rf(2?0) =  da,0) -  d(i,0) =  [3]3 -  [3] =  [3][4]/[2], where =  d Aw - We(2,0)
may then assume without loss of generality that d^o) <  [3] [4]/(3[2]) =  [2] [3]/[4]. Then

since ([2] [3]/[4])2 «  2.488 <  3, o)l decomposes into at most two irreducible

N - N  sectors. Then (tA|2|0) 0 P, ^(Jjo) 0 P) =  (P 0  A ^ [ 2!0) 0 ^(^o)) — 2-
cannot contain an irreducible sector with multiplicity greater than one. Since, by (5.54)

and (5.57), (*-Aj2̂  0 P-> ^ (i,i)) =  ^(M ) 0 P) =  (^ (2?o)> ^ ( 0,1) +  ^ ( 2,0) +  ^ ( 1,2)) =  2,
using (5.55) we may assume, again without loss of generality, that

[ < „ ) ] [ / > ]  =  M i ! ! , , ]  ©  M i ! ! , , ] -
Since [rA(io)][p] D [̂ -̂ (2,0)3 (tA(io)) "̂̂ (2,0)^ ^  — {̂ A( 1 p)^ p, ^ ( 2,0)) ^ [^ (2,0)]
M(i,o)]- Then since ( r A j ^ o p .iA ^ o p )  =  (tA{J!0) op, r A ^ , op) =  2, we have Mpjo)]]?] =  

M(i,o)] © [̂ AjjJ2j], for j  G {1 ,2 ,3 } . By a similar argument we may also assume that [tAjJ q)] 

has statistical dimension < [2] [3]/[4], and using [p] instead of [p], we find [tAjJ^Hp] =  

M(o,i)] © [iXp o)], and have the freedom to set j '  =  3. Then we also have [tA ^][p] D 

[^(o.i)] for j  =  2 ,3  and ([̂ Â 0 2)]©[^A^0̂ ])[p] =  2[^A(o,i)]® [̂ Â 2̂ o)] © [̂ (̂2 ô)]* [^^(i,i)] [p]
we obtain ( M ^ 1}] © [iA((JJ1}] © M ^ 1}])[p] =  3[iA(li0)] © 2[tA((JJ2)] © 2[*A((J2)] © 2[tAg|2)]
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and since M (ii0)][p] =  M (2lo)] © l^{i,i)} =  M (2,o)] © © M (u )l then
(tAj^i) ° p, tA(li0)> =  (tAgJjj.tAd.o) o p )  =  1 and [ ^ ^ [ p ]  D [tA(i i0)] for j  =  1,2,3.

There is still some ambiguity surrounding the decompositions of [^A^0)][p], [tX

and [^aJq^][p], for j  =  2,3. Computing the eigenvalues of the fusion graphs for the 

different possibilities, we find that the only fusion graph which has eigenvalues Si^/So^  

with multiplicities given by the diagonal entry ZMiM of the modular invariant is that for:

M & jlW  =  [ < ! ) ]  © K f t ) ’]- [tA(U)lW  =  K k ) !  © l ^ }  and M « 2)]M =  [iA(w)] ®
[^ (20 )̂ ] ôr j  =  1)2,3, / G {1 ,2 ,3 } . The fusion graph is the same for any choice of

I =  1 ,2 ,3 , up to a relabeling of the irreducible representations [^A^0j], [tAjj^] and [*-A^2j],
f 12)

and the graph is just the graph £2 itself, illustrated in Figure 5.3. The associated

modular invariant is Z~( 12) =  ZP( 12).
2

l̂ tou J

L

Figure 5.3: M - N  graph for the A2-GHJ subfactor

5.2 .3  f ] 12)

Warning: the existence of the A 2 Goodman-de la Harpe-Jones subfactor which gives the 

dual canonical endomorphism for £412̂  has not been shown yet by us.

For £ {4l2), w e su p p o se  [(9] =  [A(0,0)] ©  [A(2,2)] ©  [A(4,i)] ©  [A(i >4)] ©  [A(5)2)] ©  [A(2>5)] ©  

[A(4i4)] ©  [A(9)o)] ©  [A(0,9)]. T h en  co m p u tin g  =  (X.Of i )  for A, p  on A ^ 2\  we find

(tA, l\ )  =  1 for A =  A(0,o)) A(i,o), A(0,i). A t t ier  2 w e h ave ( t X , lX)  =  2 and (^A, Lfi) =  0 for 

X =  A(2io), A (iti), A(o)2), \± =  A(o,o)) A (i)o), A(0,i). T h e n  [A(2(o)], [A(i,i)], [A(o,2)] d ecom p ose in to  

irred u cib les as

[̂ A(2(o)j =  M (2)o)] © l^A^o)]) (5.59)
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M (i,i)l — M (i!i)1 © M (i!i)]’ (5.60)

[tA(0,2)l =  ® (5.61)

At tier 3, (zA(3)0), tA(3)0)) =  <̂ A(3j0), ^A(ia)) =  2 and similarly for zA(0)3), so that [tA(3|0)] =

[6A(o,3)] =  [<-A(i)i)]. From (tA^.i), z-A(2,i)) =  5, (̂ A(2,i), tA(i)o)) =  1 and (̂ A(2)i), tA(0,2)) =  2,
we have two possibilities for the decomposition of [tA^.i)]:

, =  f  M(i.o)] © 2[ajjJ2)] case (i),
1  M(1,0)] © M(0/2)] ® [t')k(0?2)] © [l^p!l)] © (t (̂2?i)] C3Se (**).

[̂ A(2,i

where we may assume j  =  1 without loss of generality. Similarly,

j f  M«o,1)] © 2 [ < 0)] case(i'). (5 63)

\  ['A(0,1)] © M (^0)] © ['-̂ (2?0)] 3  EtA(i!2)] © (tA(i!2)] case (»»'),

At tier 4 we have (z-A^o), tA(4io)) =  3, (tA^o), tA^o)) =  1 and (z-A^o), *-A(o,2)) — 2, and 

similarly for tA(0)4), giving

[^A(4,0)] — M (1 ,0 )] ©  [^A^q^)] ©  ^ ( 0  2)],

M (0 ,4 )]  =  A(o, 1)] ©  l^ A ^ o )]  ©  M (2?0)]-

From (tA(3)i), tA(3ii)) =  8, (zA(3)i), zA(0,i)) =  2, (zA(3ii), zA(2jo)} =  2 and (zA(3)i), zA(i)2)) =  6 

we have

2[/.A(0,i)] © 2[^a[^0)] for case ('0»
2[tA(0,i)] © [tA$0)] © [*Ag0)] © [iA[}|2)] © [a [^ 2)] for case (it'),

2[tA(i)0)] © 2[iA[JJ2)] for case (i),
2 [tA(i)0)] © [tA[JJ2)] © [tAg|2)] © [iA $1}] © [ a g 1}] for case (it).

We have (tA(2>2), *A(2,2)> =  11, (^ (2,2), ^(o,o)) =  1 and (fcA(2,2), tA(i ii )) =  4, giving

r ^ i f  M (0,0)] © 3[tA^1}] © case I,
1  [lA(o,o)] © 2[fcA[JJjj] © 2[tA[jJjj] © M j2|2)] © [tA ^j] case II,

where j  G {1 ,2}. Again, without loss of generality, we may assume that j  =  1, and we see 

that for case I nothing new appears at tier 4. For case II, at tier 5 we find [zA(5)o)] =  [^(0,4)], 

[̂ A(o,5)] =  [<-A(4i0)], [tA(4,i)J =  [zA(1,4)] =  [tA(o,o)] © [̂tAjlJjj] © 2[6A|jJjj] and

r ^ -j   f 2 [tA(ifo)] © 3[tA 0̂ 2j] © [̂ Â q2j] for case (z),

(3’2) 1 2 [tA(i,o)] © 2[iA $2)] © 2[zA[^2)] © [tA((2J1}] © [tA ^j] for case (it),

\L\  1 =  f  2 M(o,i)] © 3 [̂ (̂2?o)1 ® [̂ -A(2?o)] for case (z'),
(2,3) \  2[zA(0)i)] ©2[zAj2J0)] ©2[zA[2J0)] © [tAjJ|2)] © [zA[^2)] for case (zz'),

[̂ A(3)1)J -

[̂ A(i j3)] -
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and nothing new appears at tier 5. Then the total number of irreducible sectors for case 

I(i)(*;) is for cases I(f)(n'), I(fz)(f'), 11(2)(i') we have 11, for cases I(m)(m,)1 II(i)(n'), 

II(n)(f') we have 13 and for case II(n )(n /) we have 15. The values of tr(Z) at level 12 

are tr (ZAu2)) =  55, tr(ZP(i2)) =  19, tr(Z^(i2).) =  5, tr(ZP(i2).) =  15, tr(Z-o2)) =  12, 

tr(Z (i2)) =  11 and tr(Zr(i2)) =  17. So we see that the only possible cases are 1(f)(if'),
4 5

I(ii)(i'), II(i)(i/) which have corresponding modular invariant Z  (i2>, and II(n)(n') as-
t 4

sociated with the modular invariant Zp o2).. For case 11(2) (i7) , where we again use the 

notation p =  A(lj0), we have [*A(i>2)][p] =  [tA(U )] © [tA(0>3)] © [*A(2>2)] and [tA(li2)][p] =  

([iA(0,i)] ® 2[tA^’0)])[p] =  [f.A(o,o)J ® M (i,i)] © 2([<-Ap|0)][p]), giving 2[iA $0)][p] =  SliAj}’,,] © 

3[iA ĵ î)] © [̂ Â 2 2̂)l © M (2 2̂)3’ w^ich is impossible since [tAj2Qj][p] must have integer co­
efficients. Note that case II(n )(i/) is the conjugate of case 11(f)(if'), where we replace 

tA(̂ jj,/i2) we need to only consider cases 1(f)(if') and II(if)(if').

C on sid er  first th e  ca se  1(2) ( 22'). F rom  [^A(2ii)][p] =  [^A(2)0)J ©  [^A(ij2)] ©  [tA(3>1)] and  

(5.62) w e find  [^aJ^H p] =  M ( 2,o)] ©  ltA(i,2)] ©  M (3 ,i)l ©  ([^^(0,1)] ©  M ( 2,o)D =  [*-A(o,i)] ©  

[̂ A(2?1)1 0  [ ^ ( 2?1)] 0  [̂ A(1?2)1 0  [^ (lp )]-  T h e n  b y  M ( 0,2) lb ]  =  [^A(0,1)] 0  [tA(i,2)] and (5.61), 
M ( 0?2) ]b ] =  M (o,i)]- From  M (1,1)]W  =  [^(1,0)] 0  M ( 0,2)] ©  M ( 2)1)] an d  (5.60) w e o b ta in

(M(i?i)l 0  M(i!i)])W  =  2[tA(i>0)] © 3[tA[JJ2j] © [tA[o|2)], (5.65)

whilst from [tA(2 2)J [p] =  [̂ A(2)1)J © [tA(1)3)] © [tA(3j2)] and (5.64) we have

(3M(i?i)] © ^(iJi)])W  =  4 M(i,o)] © 7[tA[JJ2j] © [tAjoJ2)]. (5.66)

Then from (5.65) and (5.66) we find

M ( U ) ]  [p] =  M ( 1 , 0 ) 1  ©  2 [ t A [ ^ 2 ) ] >  M ( l j l ) ] [ p ]  =  M ( 1 , 0 ) ]  ©  0  [ ^ ( 0 ? 2 ) 1 -

In the same manner, by considering [tA(2)0)][p] =  [^A(i)i)J © [tA(3)0)] and [^A(i)2)][p] =  

© [̂ A(o,3)] © [̂ A(2)2j], and using (5.59) and (5.63), we have

([iA $0)]® [iA g0)])[p] =  2[a<;;i)]© 2 [ (.A ® )], (5.67)

([‘Â lo)] ® [‘ApJojl ® [<"A(1?2)] ® ['■A(iJ2)])[p] =  [ (̂0,0)] © SjtAjJJj)] © 3[iA®j,]

©(M(o,o)] © [̂ A(i5i)]). (5.68)

Then from (5.67), (5.65) and (5.60), we have ([tA^2j][p]) © ([tA|jJ2j][p]) =  2[zA((J)1)] giving

M Su)]^] =  [tA(!!i)l for j  =  i ’2- From liX(2 ,2 )][p] =  M (1,2)] © M(3,1)] © [tA(2i3)] and (5.64) 
we have

(M(i,i)] © 2[iA<|>1)])[p] =  4[tA(0,i)] © 4[tA$0)] © 4[iA®0)] © 3[tA[||2)] © 3[iA^2)], (5.69)
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g iv in g  2[tAj1^ ][p ] — 2[^A(o,i)] 0  2[tA |2^ ]  0  2[tA |2|0 ]̂ 0  2[tA |1l^] 0  2[tA |1|2 ]̂. T h en  (tA |2̂  o 

=  ( ^ ( 2  0) ’ ^ ( i \ )  °  P) =  * ôr 3 =  T 2 ,  an d  th e  d e c o m p o sit io n s  o f [tA|2^ ][p ] and  

[tA|^0)][p] b o th  co n ta in  th e  irred u cib le  sec to r  [tA ^ ^ ]. T h e n  [lX

( M ( l ! l ) ] [ p ] )  =  M ( 0 , 1 ) ]  0  [ ^ [ ^ 0 ) 1  ©  [^ ^ (2 ? 0 ) ]  a n d  [ ^ i ! o ) ] W  a n d  [6 A (2?0)1 M  b o t h  a l s 0  c o n t a i n

M ( i \ ) l -  T h en  from  (5 .6 7 ) w e h ave [tA ^ 0j][p] =  M ( i \ ) ]  0  [^ ( i \) ]*  T h e  fu sion  graph  w ith  

resp ect to  [p] for th e  case  l ( i ) ( i i ' )  is  th e n  seen  to  b e  ju s t  th e  g rap h  8 ^ 2\

N ow  con sid er th e  ca se  I I ( n ) ( u ' ) ,  w h ich  h as co rresp o n d in g  m o d u la r  invariant Z V ( 12).. 

W e o b ta in  th e  fo llow in g  sec to r  p rod u cts:

d t^(2!o)] ®  [t^(2?0)])W =  2[*A(l!l)] 0  2[tAjiJ1)],

( K J i ) ]  0  M ( 1 4 )])[p] =  2 M (1,0)] 0  2 [^^(0?2)] ©  2 [^^(0?2)] ©  [ ^ S l ) ]  ©

([tAjb2)l 0  M(o!2)])bl =  21^(0,1)] © ^(2?0)] © M^Jo)] © M(l!2)l © [t-̂ (i?2)]’

(M(2?1)] © m j ljD W  =  M (^0)] © M m I ©

(M (1?2)] © [6̂ (1?2)])[^1 =  K ! i ) ]  © [^ (14)] © M ^ ) ]  © M ^ ) ] ’

an d  from  ([^A|2^ ] 0 [ t A |2 2^])[p] =  [^A|2^ ] 0 [r A j 2^ ]  w e m ay  ch o o se  w ith o u t lo ss o f  gen era lity  

M  =  K ’,)] for j  =  1 ,2 . T h en  th ere  are four d ifferent p o ss ib ilit ie s  for [^Ab ^ ][p ], 

th ree  for [^Aj2^ ][p ] , s ix  for [^A|j^][p] an d  s ix  for [*-Aj:^][p], j  =  1 ,2 . From  th ese , th e  on ly  

fusion  grap h  w h ich  h as e ig en v a lu es S \ ^ / S o ^  w ith  m u ltip lic it ie s  g iven  by th e  d ia g o n a l 

en try  o f  th e  m o d u la r  invariant for X>02)* is  th a t  for th e  fo llow in g  secto r  prod u cts:

[ * O m = 2i * 0  ■
=  ['-A(1,0)] © 2 « 2)] © [tApI,)],

[ < 2)][p] =  M (0,1)] ©  M pjo)] ®

[ ^ u i w  =  K ! o ) ] © [ a ^ ) ] ,

=  [ < , ) ]  © [ ^ ; 2f ] ,

for j  =  1 ,2 . For an y  A € MXN, le t [A\[p\ =  (BpeMxN aM >  ai* ^ C - Then 0 A) =  
(p, A o p) =  aM for all p  G m %n , so [p][p] D aM[A]. T h e n  if  G is th e  m u ltip lica tio n  m atr ix  

for [p], GT is  th e  m u ltip lica tio n  m a tr ix  for [p]. T h is  g rap h  c a n n o t b e  th e  fusion  graph  

sin ce  G G T ^  GTG , w h ich  m ea n s [*-A][p][p] /  M ][p][p]. T h e n  th e  o n ly  p o ss ib ility  for th e  

fu sion  grap h  for th e  M - N  sy s te m  is th e  grap h  S ^ 2\  an d  th e  a sso c ia te d  m od u lar invariant 

is Z F{ 12), a ssu m in g  th a t  0 is as exp ressed  in  (5 .4 0 ).
4

5.2 .4  £ (512)

For th e  grap h  £ r l2), w e h ave [0] =  [A(0,o)] ©  [A(3,3)] ©  [A(9i0)] ©  [A(0,9)]. T h en  co m p u tin g  

(l\ , l p ) =  (A ,0 p ) for A, p  on  *4(12), w e find =  1 for A =  A(/x1iM2j such th a t
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/ i i+ / i2 <  2. At tier 3 we have ( l\ ,  tX) =  2 and ( lX,  Lfi)  =  0 for A =  A(3)0), A(2,i), A(i,2), A(0)3),

fi =  A(/il)/i2) such that ^  +  fi2 <  2. We also have (tA(3)0), tA(0,3)) =  0. Then A(3)0), A(2,i),

A(i 2)j A(o,3) decompose into irreducibles as

M (3i0)] =  [tA[^0)] © [tA^Qj], (5.70)

M(W)] =  K w ) ]  ® K ! . ) ] -  (5.71)

[^(1,2)] =  m ; 2)] © [iA ® ,], (5.72)

I^(o,3,] =  [ * A p  © [tA®,,]. (5.73)

At tier 4 we have ((-A(4io), (•A(4)o)) =  2, (tA(4)0), tA(2,i)) =  1 and ( iX^0),L(i} =  0 for /z =  

A(i,o), A(o,2)• Then [tA(4j0)] =  [tA^2)] 0  [aA[^0)] for j  e  {1 ,2 }. We have the freedom to 

choose j  =  1 without loss of generality. Similarly for tA(0,4). Then

M(4,0)l = [<„] e M 0̂)], (5.74)

m (o,4)] =  m<;;2)i ® [ < 4)]. (5 .75 )

From ((-A(3)i), tA(3>i)) =  3, (tA(3)1), tA(2|0)) =  1, (tA(3|i), j,A(i>2)) =  1 and (tA(3ii), (-A(0,4)) =  1, 

we have two possibilities for the decomposition of [̂ A(3|i)]:

r i i _  J  ttA(2.o)] © [tAj}J2)] © [tA™ ,] case (i),
F A (3i1)J -  < f2) 1 „  r x ( l )  1 / . . x  ( 5 . 7b )

M (2i0)] 0  0  [tAj0(4)] case (ii).

Similarly,

[ t A ( i  3)] =  I M (m>] ©  [ < „ ]  e [tAjJ> ] case (i'), (g ??)

I  M ( 0,2)] ©  M { 2! i)1 ©  M [ 4J0)] c a s e  ( n ' ) ,

Since (f-A(2i2), tA(2i2)) == 3, (tA(2j2), £.A(iti)) =  1, {LX(2 ,2 )> ^ ( 3 ,0 )) — 1 an(l (*A(2>2), tA(0i3)) =  1, 
we have [tA(2)2)] =  [tA(lii)]0[(.A j^]© [tA ^2̂ ] for j i , j 2 E {1 ,2}. We again have the freedom 

to choose, without loss of generality, j \  =  j 2 =  1, so that

M ( 2>2)] =  [^A(i,i)] ©  ©  [ t A ^ ] .  (5 .7 8 )

At tier 5, (tA(5i0), tA(5i0)) =  <̂ A(5i0), Â(0,4)) =  2 giving [tA(5io)] =  [tA(0>4)], and similarly 

[(-A(o,5)] =  [̂ A(4j0)]- Since (tA(3)2), tA(3)2)) =  4, (tA(3i2),/,A(1)0)) =  1, (tA(3)2), tA(0>2)) =  1

and (tA(3)2), tA(2ji)) =  2, we have [fcA(3|2)] =  [^A(it0)] © [tA(0|2)] © [iA ^ ]  © M ^ ] ,  and

similarly [tA(2|3)] =  [tA(0,i)] © [tA(2|0)] © [iX^2)] © M [^2)]. We have (tA(4>1), Â(4ii)> =  

(tA(4)i), tA(i)4)) =  (^A(1)4), tA(i>4)) =  3 so that [̂ A(4ji)] =  [tA(i)4)]. Since (*>A(4ti), tA^i)) =  1,

(tA(4>i), tA(2>2)) =  2, (tA(4jl), tA(3)0)) =  1 and (tA(4)1), (-A(0)3)) =  1, we have two possibilities

for the decomposition of [tA(4|i)J:

h A ^  i l l  =  /  ^ A(1)1)l 0  ^ U o ) }  ©  lLX\o,3)] CaSe / r  ygx

t  M ( 1,1)] ©  M ( 3!o)] 0  [a (J?3)] c a s e  II.
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Then we see that no new irreducible sectors appear at tier 5. We also have at tier 

6 , (̂ A(5>1), 6A(5>1)) =  (tA(5il),fcA(lt3)> =  3 giving [*A(5|1)] =  M (1)3)]. Case gives 16

irreducible sectors, whilst case (ii)(ii') gives 18 irreducibles, and therefore by looking at 

tr(Z) for the level 12 modular invariants Z  we see that neither of these cases is possible. 

Case ( n ) ( 0  *s the ‘conjugate’ of case that is, we replace each irreducible sector

[tA] in case ( i)(« ;) by [i\] in case (n )(i;). We therefore only need to consider case (i)(ii'), 

which has seventeen irreducible sectors: [A(0)o)], [A(i,o)], [A(0,i)], [A(2,o)], [A(i,i)], [A(o,2)]> 

[*&)]■ O -  [ O -  O  [Ag,,], [Ag,,], [A jig , [Ag,,], [Ag,,], [Ag,,] and [Ag,,].
We now consider the sector products for these irreducible sectors, where we again 

denote by [p] the irreducible N - N  sector [A(ij0)] • The products [*-A][p] are inherited from 

those for the N -N  system for A =  A(MliM2) such that p,\ +  p2 <  2, and we use (5.70)-(5.73) 

to decompose into irreducibles where necessary, e.g.

[tA(0,2)][p] =  M (0,i)] ® [iA(it2)] =  M (0,i)] © ® [^a|j|2)]. (5.80)

From [tA(2,i)][p] =  [̂ A(2jo)] © [^ (1,2)] © [^ (3,1)] and (5.71) we obtain

(I^ S i)] © =  2 ItA(2,o)] © 2[tAj5|2)] © © [fcA^]. (5.81)

Similarly, by considering [^A(i)3)][p] and [tA(4j0)][p], and using (5.77) and (5.74) we have

(M(2?i)] © K !o ) l)W  =  [̂ A(2,o)1 © 2[tAjJ|2)] © [̂ AjjJ2)] © [iA[JJ4)], (5.82)

(M(2?i)l © M(4!o)])W =  M(2,o)] © 2[tAjJJ2)] © [tAjJJjj] © [tA[JJ4)]. (5.83)

Then from (5.81)-(5.83) we find

=  M (2,o)] © MjjJ2)] © [tA^Jjj], (5.84)

M(2!i)1W =  M (2,o)] © M[}J2j] © M jj|2)], (5.85)

K ! o)]m  =  k ;2)i ©

Now we focus on case I. From [̂ A(3)0)][p] =  [*-A(4)0)] © [̂ A(2,i)] and (5.70) we obtain

([^(s!o)] © [^"^(3^0)])=  2[*'Aj2|1)] © M [2J1}] © ^ A l^ ]. (5.87)

Similarly by considering [tA(0)3)][p] we have

([^(o?3)] © =  2[tA(0,2)] © Mjgji)] © M{4J0)]. (5.88)

From [iA(2,2)][p] =  M (2,i)] © [tA(li3)] © [tA(3i2)] and (5.78) we find

([‘Ago)] ® M g 3)])W =  M (0 ,2)] © [tAg„] © 2[iAg„] © [ a g 0)], (5.89)
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whilst from [tA(4)1)][p] =  [̂ A(4j0)] © [*A(3>2)] © [^ (5,1)] and (5.79) we find

([^So)] ® =  M(i,o)l © 2 1̂ (o,2)] © © 2[^A^i)] © 2[*.A[4Jo)]. (5.90)

Then from (5.87)-(5.90) we obtain

[‘C ) i w  =  K ! i ) i ©  K ! i> ]  © K i .) ]>  t5-91>

[‘C j l M  =  [ < „ ] ,  (5.92)

=  M (o,2)] © [a® i)]. (5.93)

= [ a (o,2)l© [ a ‘‘J0)]. (5 .9 4 )

Next, by considering [tA][p] for A =  A^^), A(3ii), A(o,4), and (5.72), (5.76) and (5.75) we 

obtain

([tA((^2)l © M[iJ2)])[p] =  2[tA(lfl)] © [̂ A[JJ0j] 0  2 [tA^3)] 0  [tAj^3)], (5.95)

(M(i?2)1 © [^ g i)])b ]  =  [^A(i,i)] © 2[tA((3|0)] 0  [̂ a[JJ3)] 0  M[qJ3)], (5.96)

([£"̂ (1?2)1 ® [< 4 )])[p ] =  M(U)1 ® ® [^(o?3)] ® 2 t6̂ (0?3)]* (5-97)

We see from (5.95)-(5.97) that [tA|j 2̂ ][p] C [^A^i)] 0 [̂ a|3̂ ]  0 [/'A ^ ] 0 [fcA^]. From

(5.80) and (5.84)-(5.86) we see that [ tA ^ ]^ ]  =  [̂ A(0>2)] © [^ A ^ ] 0  0  [^A ^],

since ( l X [ \ ] 2 )  o p, l X )  =  (*a|J|2), tA^2) o p) =  1 for A =  A(0)2), a[2|1}, A ^ ,  A[^0). Then

(tAjJ 2) 0 Pi â[} 2) 0  P) ~  (^ ( 12) 0 ~P' ^ ( 12) ° p ) = 4  implies that we must have [tAjJ^jfp] =
l^A(i)i)] © [tA|3̂ ]  © [̂ a|J3j] 0 [a[o}3)]. Then from (5.95)-(5.97) we obtain

M(1?2)]W =  [^A(iti)] © [tA^3)],

M g!0)][p] =  [ < 3)],

=  K g .

It is easy to check that the fusion graph with respect to [p\ obtained in case I is just the 

graph E^2).

For case II, we again have (5.95), and by considering [̂ A(3il)][p] =  [fcA(3i0)] 0  [tA(2>2)] ©

[tA(4ji)] and (5.70), (5.78) and (5.79) we obtain

([̂ A(î 2)1 © M (3!i)1)[p] — © M (3J0)] © 2[tA|3J0)] 0 2[tAjJJ3)], (5.98)

and similarly from [̂ A(0)4)][p], (5.75), (5.73) and (5.79) we obtain

(M Su)] © [ < 4 ) ] ) b ]  =  M (l.l)] © [6̂ (3?0)] ® 2 M(0?3)] ® [^(O^)]- (5.99)
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Then from (5.95), (5.98) and (5.99) we see that C [̂ A(lji)] © 2[tAjJ^]. Since

(l\[\]2) o p , a[JJ2) op) =  (iA[J>2) o p, tA^2) o p) =  4, we must have [<A^2)][p] =  2[iA[JJ3)]. 

Then from (5.95) we obtain [tA[^2)][/o] =  2[tA(U )]© [tAjJJ0)]® and we have ( t A ^ o

p, tAjj^ o p) =  (/,a[J}2) o p, tA|J 2j o p )  = 6 . From (5.80) and (5.84)-(5.86) we see that 

M [f2)p ]  — giving (^ (i^ )0^’ ^ (i^ )0^) =  2 ^  which is a contradiction.
Then we reject case II.

Then the only possibility for the graph of the M -N  system is £$12\  and the modular 

invariant for 0 is ZF( 12).
5

5.2.5 A {n)*

We compute the fusion graph for the case n =  12. It appears that the results will carry 

over to all other n, however we have not been able to show this in general. For the graph 

^ 12)*, we have [0] =  © M[AM], where the direct sum is over all representations p  on .Â 12). 

Then computing ( i \ , i p )  =  (A,6p)  for A, p  on *4̂ 12\  we find that (lA(M2iM1), tA(/X2iMl)) =  

(L\ » 2,Mi)’ tA(Mi.M2)> we have [<A(M2)Ml)] =  [tA(Mli/i2)] for all ( p i , p 2) on *4(12). At tier 0 we 

have (^A(0,o),^A(o,o)) =  1- At tier 1 , (tA(li0), Â(li0)) =  2 and (tA(i)0), tA{0|o)) =  1, giving

[^A(iio)J =  [*-A(o,o)] © (5.100)

At tier 2 we have (tA(2fo), tA(2,o)) =  3 and (fcA(2,o), tA(i>0)) =  2 , so [tA(2,o)] =  M (0,o)] © 

M(i!o)l® We also have (^A(ljl), tA(1>1)) =  6 , (tA(1)1), tA(0,o)) =  1> (^A(1)1), tA(1)0)) =  3

and (tA(i,i),tA(2|o)) =  4, giving [iA(U )] =  [*A(0|0)] © 2[iA[}|0)] © [^a[2J0)]. At tier 3 we have 

(̂ A(3i0), rA(3)0)) =  4 and (rA(3)o), tA(2,o)) =  3, so [tA(3>0)] =  [̂ A(0,o)] ® K ! o ) l  ® M ^o)] ® 

M (3!o)l- We also have (tA^.i), tA(2,i)) =  10, (tA^i), ^A(o,o)) — T (̂ A(2)i), ^A(ito)) =  3, 
(̂ A(2)1), tA(2>0)) =  5 and (̂ A(2j1), tA(3)0)) =  6 , giving [tA(2jl)] =  [tA(0io)]©2[fcAjjJ0j]32[fcAjJJ0j]© 

[̂ A(3 o)!- Similarly, at tier 4 we find

[̂ A(4,o)] =  [̂ A(o,o)] © MjJJo)] © [̂ (̂2?o)] ® M(3!o)] ® [ (̂IJo)]*

A(3,1)] =  M (0,o)] © 2[tA|JJ0)] © 2[{,a[2J0)] © 2[tA^0)] © [tA[JJ0)],

M (2i2)] =  [iA(0|0)] © 2 [<,A[j|0)] © 3[/.a[2J0)] © 2[tA^0j] © [^A^0)],

and at tier 5:

M (5 ,0 )] =  [^A(4j0)] ,

[tA(4)1)] =  [tA(0,o)] © 2[f,A[}J0)] © 2[tA|2|0)] © 2[̂ Â 3̂ 0)] © 2[tA((̂ 0)] © [tA ^ ],

[̂ A(3)2)] =  [^ (0,0)] © 2[̂ A[5Jq)] © 3[tAj2|0)] © 3[l\[J|0)] © 2[/,A[*J0)] © [tA[JJ0)].
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Then we have six irreducible sectors [rA(o,o)], [*A(i o)L M (2 o)l> 1^(3 o)l’ ^ ( 4 0̂)1 an<̂  l^So)]- 
We now compute the sector products. We have [rA(0,o)][p] =  [̂ A(10)] =  [tA(0)o)]©[tAj}J0j]. 

From [tA(i)o)][p] =  [̂ A(2,o)] © [*A(o,i)] — 2[tA(o,o)] © 2[tA^0)] © [^A^q)] and (5.100) we find 

K lo lW  =  2M(o,o)]©2[tAj}J0)]©[tAj2j0)]©(M(o,o)]©[^AjjJ0)]) =  [tA(0j0)] © [̂ A[̂ 0)] ® [ â[ 0̂)] •
Similarly, we find

[6̂ (2?0)] [p] =  M(l!o)] © M (2!o)] ® M(3!o)]’

=  [6̂ (2?0)] ® [6̂ (3?0)1 ®

M ^ 0)]W =  M g 0)] © [ < 0)],

and the fusion graph with respect to [p] is .4 0 2 )* associated modular invariant is

^ 4(12)..

In the case above, since n =  12 is even, we have [tA(5jo)] =  [̂ A(4>0)] and so [̂ A(4jo)] [p] =  

[tA(5,o)] © [̂ A(3ii)] =  [tA(4,o)] © [tA(3|1)]. This leads to M ^ 0)][p] D M [^0)], and there is a 

loop from [tA^Qj] to itself in the fusion graph. However, when n is odd, e.g. for n =  11, 

we have instead [rA^o)] =  [̂ A(3>o)] s°  [*A(4,())][/?] == M (5,o)] © [^ (3,i)] — [*A(3,o)] © [^ (3,1)]. 
This causes [iA|^0 ]̂[p] [^Aj^], hence there is a loop from [fcA ĝj] to itself in the fusion

graph for the n =  11 case.

5.2.6 £>(n)*

We compute the fusion graph for the case n =  12. For the graph P(12)*, we have

[0] =  © M[/VL where the direct sum is over all representations p  of colour 0 on . At

tier 0 we have <̂ A(0,o)» Â(0lo)) =  1- At tier ( ^ ( 1,0), tA(1|0)) =  2 and <̂ A(li0), tA(0>o)> =  0> 
and similarly for tA(o,i), giving

Md.o)] =  ^a[5J0)] © M ^ 0)], (5.101)

M(o.i)] =  [tA®,] © [iA ® ,]. (5.102)

At tier 2 we have (tA(2i0), tA(2)0)) =  3 and (tA(2)0), rA(0ii)) =  1, and similarly for tA(0>2), so 

we have

[̂ A(2io)] =  © [tA^jj] 0  [tA^o)]* (5.103)

[tA(0,2)] =  © [tA[iJ0)] © [̂ A[J|2)]. (5.104)

For tA(11) we have (tA(1)1), tA(1)1)) =  6 and (tA(1)i), f-A(0,o)) =  1, so there are two possibilities 

for the decomposition of [tA(iti)] as irreducible sectors:

r \ I _  f  M(o,o)] © 2[tA^^] © [^Aj^ ]̂ case I,

(U) 1 M (0,0)] © [iA®,] © [tA®,] © [ a ®  ,] © [iA®,,] © [iA ® ,] case II. J
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At tier 3 we have (fcA(3t0), iA(3>0)) =  4, ( l \ ( 3 ,q), ^ ( 1,1)) =  4 and (̂ A(3j0), tA(0|0)> =  1, giving

M (so)] =  {  [tA(0'0)1 ® [tA|!!1)1 ® ® [tA| 0)1 f0r Case 11 (5.106)
\  M (0,0)] © [L̂ {i,i)] © K J i ) ]  © [^ { iA)\ for case II.

Then we see that for case II [tA(iti)] D [^A^o)]. However, this contradicts the following

values of the inner-products at tier 6 , (tA(3j3), =  8 and (tA(3)3), tA(3>0)) =  10 . So we

reject case II.

Continuing at tier 3 we have (tA(0)3), Â(0>3)) =  (̂ A(0)3), tA(3)0)) =  4, so that [tA(0)3)] =  

[iA(3>0)]. From <iA(2,i)» tA(2,i)> =  10> (^ ( 2,1), Â(i |0)> =  3 and <tA(2,i), tA(0,2)> =  5, and 
similarly for *-A(ii2), we have

M (2>1)] =  2 ^ , ]  ® [tA® ,] © 2[iA{« ,] © [ ^ j ] ,  (5.107)

[rA(1,2)] =  2 1 ^ ) ]  ® [tA ® )]e2[tA <‘|0)] © [ tA'j;2)]. (5.108)

Next, at tier 4, we have (tA^o), tA(4)o)) =  5, (tA^o), tA^o)) =  2, (iA^o), tA(o,2)) =  3 and 

(tA(4io), Â(2>i)) =  6 , so there are two possibilities for the decomposition of [tA(4)0)], and 

similarly for [̂ A(0,4)]:

r \  1 _  /  M ( i ! o ) l  ©  [t A (i?o)l  ©  ^ ( o ^ ) ]  ©  [ ^ ^ ( o ^ ) ]  ©  M ( 4 ? o ) ]  c a s e  W >  / r  i n q \

1 (4'0>l ~  l  2 M<;>,] © [ < 2,] case (ii), (M 09)

r \  1 _  /  M ( o ! l ) l  ©  K i ) ]  0  ["A(2?0)] ©  K u » l  ©  t^ (0?4)] C a S e  (* ) ’ f ^ l i m
M (0 ’4)1 -  j  2 ^ ]  © [ < 0)] case (ii'). ^

Since (*-A(3)i), tA(3)1)) =  14, (tA(3)i), tA(0,i)) =  3, (̂ A(3ji), tA(2>0)) =  5, (̂ A(3ji), tA(ii2)) =  11 

and (̂ A(3ii), tA(0,4)) =  8 , then

2 M |i!i)] © [tAgJ1}] © 2[tA^0)] © 2[tA[JJ2)] © [iA[J|4)] for case (i'), 

3M(o!l)] © 2[tA^0)] © [̂ A(1?2)] for case (*0-[ a <3’i)1 =  o x!i) 1 1 ( m i d

Similarly, for [tA(i>3)],

[^0.3,1 =  f  !!tA< ! h :  ~  ~  r ' ’(4'o)i r  ~ ~ :::: (5 i1 2 )
2M<;;0)] © [tA^0)] © 2[iA|JJ2)] © 2[tA™)] © [iA[JJ0)] for case (i), 
3[tA(lJo)] © 2 [tA(J?2)] © [iAJjJd] for case (ii).

From (tA(2)2), tA(2)2)) — 19, (tA(2>2), tA(0,o)) — 1, (̂ A(2)2), tA^i)) — 8 and (tA(2|2), tA(3)0)) =  8 , 
we must have

M (i,3)] =  M(o,o)] © 2[^AjJ|1)] © SftAjiJjj] © 2[/,A[JJ0)] © [ tA ^ ]. (5.113)
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At tier 5 we have (tA(5)0), ^ ( 5 ,0 )) =  (̂ A(5io), tA(0i4))5, giving [l\(s,o)] =  M (0i4)], and similarly 

M(o,5)] =  [̂ A(4j0)]- From (tA(3)2), *,A(3)2)) =  27, (tA(3>2), tA(ij0)) =  3, (̂ A(3)2), tA(0,2)) =  6 , 

<̂ A(3)2), tA(2>i)) =  14 and (tA(3j2), tA(ii3)) =  19 we must have

\L\  ] =  /  2 ttA(i?0)] ® ltA(l!o)] ® 3 ltA(0?2)] © 3 ['-A(2?i)] ® 2 [tA(4?0)] for Case (*). (5  114}
(3,2) \  3[iA*[j0)] e  3[iA‘JJ2)] ® 2[iAjjJj)] ® 2[tAjJJ0)] © [iA $2)] for case (ii).

However, case (ii) does not satisfy (tA(3j2), tA(4)0)) =  11, and hence we discard it. Similarly 

we discard case (ii') since no possible decomposition of [tA(2 3)j exists for that case. Then 

we are left with only the one case (i)(i'). We have

M (2,3)] =  2[tA‘JJI)] © [tA®,] © 3[tA|« j] © 3[rA<;;2)] © 2[iA $,,]. (5.115)

From (tA(4)1), tA(4)1)) =  17, (tA(4)i), tA(0)o)) =  1, (tA(4>i), tA(lti)) =  7, (̂ A(4>1), tA(3>0)) =  7 and 

(iA(4|i),£.A(2>2)> =  17, we have

M(4,«] =  [^(0,0)1 © 2[rA<;;i)] © 2 1 a ® )] © 2 [ a « 0)] © 2[tA'^2)], (5.116)

and since (tA(ij4), tA(ij4)) =  (tA(i)4), tA(4ji)) =  17, [^A(ij4)] =  [tA(4|i)]. We see that no new 

irreducible sectors appear at tier 5, so the M -N  system contains 15 irreducible sectors. 

We also have the following decompositions at tier 6 :

1̂ A(6,o)] =  |>A(o,6)] =  M (3jo)], (5.117)

[̂ A(5ii)] =  2[tAj1̂ ] © [tAjj^J © 2[iA|0̂ ]  © 2[tA|2̂ ] © |>A|4̂ ], (5.118)

[fcA(4>2)] =  2[iA[J!jj] © [tA^jj] © 3 [£.Â ô)] ® ^M[JJ2)] © 2[tA[JJ4)], (5.119)

[^A(i)5)j =  2 [tA|0̂ ]  © [iA[0J1}] © 2 [£A|2|0j] © 2 [£.a|j^] © [^A^^]. (5.120)

We now find the sector products of the irreducible sectors with the N -N  sector [p] =  

[A(i,o)]. We have [tA(0,0)][p] =  M {i |0)] =  [^A[}|0)] © [iA[^0)]. From [tA(1,i)][p] =  [tA(1>0)] © 

[̂ A(o,2)] © [̂ A(2>i)] and (5.105) we have

( 2 M ( l j ) ]  ©  =  4 [ t A j } | 0 ) ] ©  3 [ £ A [ j J0 ) ] ©  3 [ t A [ J J 2 ) ] ©  [i A ^ ) ]  ©  ( [ ^ A ( 0 ,o ) ] [ p ] )

=  © 2[£.A|1̂ ] © 3[f.A|0̂ ]  © [iA^^]. (5.121)

Similarly, by considering [iA(3f0)][p], [tA(2f2)][p] and [iA(4)i)][p], and using (5.106), (5.113) 
and (5.116), we have the following:

( K u ) ]  ® M a u i © [̂ A(3?o)i)[p] =  2 [a<;;0)j © [a ® 0)] © 3 [ a $ 2)]

®2[tA(2?i)] © ItA(4?0)]> (5122)

140



® 3 ^ ® , ]  ® 2 [tA<«0)] ® [tAg;2)])[p] =  5 ^ ® , ]  © 2 ^ ® , ]  © 7[ia®2)]

®6[tA^1)]© 3 [tA ® )]1 (5.123)

(2[iA®j] © 2[tAj^1)] © 2[rA®0)] © 2[tA$2)])[p] =  4[rA®0)] © 2[iA®0)] © 6[rA® ,]

© 6[tA ® )]© 4 [ iA ® )]. (5.124)

Then from (5.121)-(5.124) we obtain the following sector products:

K ;! i)]m  =  Mjjjo)] © M(i!o)i ® [£'̂ (o?2)]»

[< „ ][ /> ]  =  ® m ® , ,],

[ < 2)][p] =  M ® ) ] © M ® ) ] -

Next, from [tA(ii0)][p] =  [̂ A(o,i)] © [tA(2,o)] and (5.101) we have

( K ! o ) l  © [‘0 ) M  =  2ItA(W)] © 2EtA(o!i)] © (5-125)

By considering [i A(o,2) ][/>] =  [tA(0,i)] © M (i,2)] an(l  (5.104) we obtain (['A®0.] © [/A^L] ©

M [o2)])W =  5[tA(o\)] © 2[jA^)1)] © 2[tA(2o)] © [tA|J2,]. Then from (5.125) we see that

[‘O M  =  © EtA(2?o>] © Ma?2)l- (5-126)

From [*-A(2)i)][/3], (5.107) and (5.126) we find 

( 2 K g e [ 6 A |iJ 0)]® [a y i)])W  =  ®3[6A|0̂ ]  ® 3[̂ a|2̂ 0̂ ] ® [tA ĵ )̂] ® [̂ (̂0̂ 4)] • (5-127)

Similarly, by considering [^A(i>3)][p] and [tA(0,5)][p], and using using (5.109), (5.112) and 

M (o ,5)] =  [/A(4io)] , we have the following:

(2[,A<;>0)] © [̂ A[iJ0)] © 2[tA^!)] © M(4|o)])[p] =  3[tA^!j] © 3 [̂ a[q|1}] © 4[6A[^0)]

©3[iA®2)] © 2[iA®4)], (5.128)

(Ê -̂ Ino)] © © EtA(2?r)] © [tA(4?o)]) =  2[rA|0|1,] © 2[rAj0^ ]  © 2[tAj2J0,]

©2[tA®2)]© 2[iA ® 4)]. (5.129)

Then from (5.125), (5.127)-(5.129) we obtain the following sector products:

M(i!o)]M =  M (o!i)1 ® [''A(oji)] ©

=  [ < i , ]  © [ < . ) ] .
(i) ir.1 _  r, \ (!) i ^  r . \ (0  l m r . \ (0M (2,i)l\p\ ~  M (2,o)1 ® M o ,2)1 © [£'A(0j4)], 

K J o j iw  =  m ® 2)i © m ® ,] .
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Next, since [/A(0,i)]M — [^ (0,0)] © M(i,i)]> fr°m (5.102) we have

( [ < ! ) ]  © M(o!i)])W =  2 [fcA(o,o)] © 2[tA(iJi)] © [tA(u)l- (5.130)

By considering [̂ A(2,o)][/o] =  [^ (1,1)] ® [̂ A(3>0)] and (5.103) we obtain ([^A ^] ® [tAj2̂ ] ©

[z-AĴ o)])!/3] — 2[tA(0,o)] © ^[tAlj^] © 2[z,Aj2J1)] © [tAj*^]. Then from (5.130) we see that

[£'̂ (2?0)11/9] =  [tA(l!l)l ® [tA(l!l)] ® [6̂ (3?0)1 - (5.131)

From [tA(1)2)][/5], (5.108) and (5.131) we obtain 

( 2 [ < i ) ] © [ < i ) ] © K ; ; 2)])M =  3[^A(oto)]©3[^A[JJ1j]©3[tAjiJ1)]©[tA^0)]©[tAj2j2)]. (5.132)

Similarly, by considering [tA(3ti)][/o] and [tA(o,4)][/o], and using (5.111) and (5.110), we have 

the following:

(2 [tA(o!i)l © M jo^] © 2[tA[|J2)] © [tA{JJ4)])[p] =  3[tA(0,o)] © 3 (^ 5 ^ ]  © 4[^A^jj]

© 3 [a ^ 0)]© 3 [ tA g2)], (5.133)

® M(o!i)] ® M a!2)] ® Et (̂o?4)3)[p] =  2 [tA(0,0)] © © 2 M (u )l

© 2 [ < 0)] © 2 [ < 2)], (5.134)

Then from (5.130), (5.132)-(5.134) we obtain the following sector products:

M(o!i)]M =  M(o,o)] © ® [z-AjjJjj],

[tA(o!i)]W =  M(o,o)] © MjJJj)],

[^(I^Hp] ~  ® [tA(3!o)] ® [̂ (̂2 2̂)]»

K ; 4)][p] =  k ; 0)] © [tA<‘;2)],

We thus obtain the graph X>02)* ^  fusion graph for the M -N  system, and the 

associated modular invariant is Zp(i2>..

5.2 .7  T he typ e  I parent

Thus we have constructed subfactors which realize all of the S U (3) modular invariants,
(12̂except for the £\ case, since the existence of this subfactor is not yet shown. However, 

for the modular invariant associated to the graph £ i12\  we have ZF02) =  Z -m C, where C  

is the modular invariant associated to the graph A ^ * .  Since C  is symmetric, and both 

Z£{ 12), C T =  C  are shown to be realised by subfactors, the result of [40, Theorem 3 .6] 

shows that the modular invariant ZF( 12) is also realised by a subfactor.
4
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The M -N  graph Q of a subfactor N  C M  is defined by the matrix A p which gives 

the decomposition of the M -N  sectors with respect to multiplication by the fundamental 

representation p. Similarly, multiplication by the conjugate representation defines the 

matrix A p =  A^ which is the adjacency matrix of the conjugate graph Q. Then since 

yv'Tjv is commutate, the matrices A p and A^ commute, i.e. A p is normal. This provides 

a proof that the adjacency matrices of the A V E  graphs are all normal, since each of the 

A V E  graphs appears as the M -N  graph for a subfactor N  C M.

The zero-column of the modular invariant Z  associated with the subfactor N  C M  

determines (a p a p ,)  since a  preserves the sector product

( a t , a + ) =  ( a t a + , id) =  N p ,  ( a p , id)
j "

=  ( 5 -135)
j "

and similarly the zero-row determines ( a j , a j ) .  Then for all modular invariants with the 

same zero-column, the sectors [a*] satisfy the same equation (5.135) and hence have the 

same fusion graphs. Let v be an isometry which intertwines the identity and the canonical 

endomorphism 7  =  ll. Proposition 3.2 in [11] states that the following conditions are 

equivalent:

1. Z \ q =  (0, A) for all A £ n ^ n -

2. Zq \  =  (6, A) for all A £ n %n •

3. Chiral locality  holds: e+ (6,6)v2 =  v2.

T he chiral locality  condition, which can b e expressed in term s o f th e single inclusion  

N  C M  and the braiding, expresses local com m u tativ ity  (locality) o f the extended net, if

N  C M  arises from a net o f subfactors [81]. Chiral loca lity  holds if and only if the dual

canonical endom orphism  is visible in th e vacuum  row, [0] =  © a Zo,a[A] (and hence also 

in the vacuum  colum n also).

We will call the inclusion N  C M  ty p e  I if and only if one of the above equivalent 

conditions 1-3 hold. Otherwise we will call the inclusion type II. Note that the inclusions 

obtained for the Ej12̂  and E ^  graphs realize the same modular invariant ZF(12), but the 

inclusion for E is type I whilst the inclusion for E ^  is type II. This shows that it is 

possible for a type I modular invariant to be realized by a type II inclusion, and suggests 

that care needs to be taken with the type I, II labelling of modular invariants. The fusion 

graph of [a*] for the identity modular invariant is the fusion graph of the original N -N
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system, whilst the fusion graph of [a f ] for the modular invariants associated to £>(3fc+3) 

and £ (8) were computed in [9], and for and £(24) in [10]. In these cases we have 

ZXto =  (0 , \ )  for all A € n%n, for 0 given in (5.31)-(5.42). The principal graph of the 

inclusion a f ( N )  C N  is then the fusion graph of [af]. The other modular invariants 

all have the same zero-column as one of these modular invariants, and hence the fusion 

graph of [a f ] for these modular invariants must be the graph given by the type I parent 

of Z, that is, the type I modular invariant which has the same first column as Z. The 

results are summarized in the table below, where “Type” refers to the type of the inclusion 

N  C M  given by the ,42-GHJ construction, where the distinguished vertex *g is the vertex

with lowest Perron-Frobenius weight.1 We again warn that the existence of the y42-GHJ
(l2\

subfactor which gives the dual canonical endomorphism for S\ has not been shown yet 

by us.

GHJ graph Modular invariant Type M - N  graph Type I parent

A {n) Zĵ rx) I A {n) a m
£ (n)* Zj n̂)* II (n)* A (n>
■p(3 k) ZV(3k) I p(3 k) X>(3fc)

(n ^ 0 mod 3) Zp(n) II ? A (n)
■p(3 k)* Z'D&k)* II p(3 k)* X)(3fc)

£>(")* (n ^  0 mod 3) Zj){n)• II X>(n)* A in)
£<8> Z£( 8) I £(S)

£(8)* Z£(8). II £(S)* £(S)

s \ l2) =  £\u)* Zm 12) C1 I £\n) £<12)
c(12) _  A12)* °2 — °2 Z (12) C1 II £.(12)

2
c*(12)°\

c(12)
c 3 - - -

-(12) _  -(12)* 
C4 ~  Ch ZF{ 12)4 II C* (12) c4 V {12)

c(12)c5 Z (12)cs II c( 12) 
c 5 £>(12)

£(24) =  £(24)* Z£{ 24) I £(24) £(24)

Table 5.1: The SU (3) modular invariants realized by i42-GHJ subfactors

!Note, we have only showed the A* and V* case for n =  12. We have not done any computations for 
the D graphs, n ^ 0 mod 3.

144



Chapter 6 

^ 2-Planar A lgebras

In this chapter we give a diagrammatic representation of the A2-Temperley-Lieb algebra, 

and show that it is isomorphic to Wenzl’s representation of a Hecke algebra. Generalizing 

Jones’s notion of a planar algebra, we construct an A2-planar algebra which will capture 

the structure contained in the SU(3) A V £  subfactors. We show that the subfactor for an 

A V S  graph with a flat connection has a description as a flat A2-planar algebra, and give 

the A2-planar algebra description of the dual subfactor. We introduce the notion of mod­

ules over an A2-planar algebra, and describe certain irreducible Hilbert v42-T’L-modules. 

A partial decomposition of the A2-planar algebras for the AT>£ graphs is achieved.

6.1 ;42-t angles

6.1.1 B asis diagram s

In [78], Kuperberg defined the notion of a spider, which is a way of depicting the operations 

of the representation theory of groups and other group-like objects with certain planar 

graphs. These graphs are called webs, hence the term “spider” . In [78] certain spiders 

were defined in terms of generators and relations, isomorphic to the representation theories 

of rank two Lie algebras and the quantum deformations of these representation theories. 

This formulation generalized a well-known construction for A\ — su(2) by Kauffman, see 

Section 1.2.1.

For the A 2 =  su(3) case, we have the A2 webs, which we will call incoming and 

outgoing trivalent vertices, illustrated in Figure 6.1. We call the oriented lines strings. 

We may join the A2 webs together by attaching free ends of outgoing trivalent vertices to 

free ends of incoming trivalent vertices, and isotoping the strings if needed so that they 

are smooth.
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Figure 6.1: A 2 webs

We define a diagram  D  to be any oriented planar graph embedded in a disc, formed by 

joining incoming and outgoing trivalent vertices together as described above. The diagram 

D may have free ends, that is, strings whose endpoints are attached to the boundary of 

the disc. We identify isotopic diagrams, i.e. diagrams which can be transformed into 

each other by moving the strings and trivalent vertices in a planar fashion. The following 

local pictures (which Kuperberg calls elliptic faces) may appear in D : ~ 0 -  which we

call an embedded circle, and which we call an embedded square. We will call

the diagrams without embedded circles or squares basis diagram s. Let D  be a diagram 

which contains embedded circles and squares. If we choose one of the embedded circles 

we can obtain a new diagram by ‘removing’ this embedded circle, i.e. we replace the local 

picture ~C > - by —■—  . If we choose one of the embedded squares, we can obtain 

two new diagrams by ‘splicing’ the embedded square, that is, we form a new diagram by

replacing the local picture \  by / \ , and form a second new diagram by replacing

the \  by . Repeating these steps as required for each new diagram, we

eventually obtain a family of diagrams which do not contain any embedded circles or 

squares. We call this family of diagrams the sta tes of the original diagram D. We attach 

a weight to each diagram in the above procedure, where if w  is the weight of one diagram, 

the weight for the new diagram obtained from it by removing an embedded circle is 8w, 

where 8 =  [2]9 for some variable q, whilst the weights of the two new diagrams obtained 

by removing an embedded square are both just w. The weight attached to the original 

diagram D  is set to be 1 . A state cq of D  is not necessarily a basis diagram as it may 

now contain closed loops O  or O  . Let be the weight attached to the state cq, and 

suppose cq contains k such closed loops. We remove these closed loops to obtain a basis 

diagram a and define weight associated to <t.\ to be where a  =  [3]9. If the diagram 

D  has no free ends then its states cq will consist of only closed loops. Then by Proposition 

6.1.11, the <7j will be polynomials in N[r/, q~l) (since 8 =  q +  q~l and a  =  q2 4-1 +  q~2)- 

A sign string is a string of symbols ‘+ ’ and ‘ — There is a sign string associated to 

any basis diagram (up to any cyclic permutation of the symbols) given by the orientation 

at each free end. Moving in an anticlockwise direction from one free end to the next,
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we insert a ‘+ ’ at the end of our string if the orientation of the string at the free end is 

towards the endpoint, and a ’ if the orientation is away from the endpoint. Let s be a 

sign string. The A2 basis web set B(s)  is defined to be the set of all basis diagrams which 

have sign string s, up to cyclic permutation.

6.1.2 T he A 2 web space W(s)

The A 2 web space W (s ) is defined to be the free vector space over C generated by diagrams 

in B(s). Let D  be a diagram which contains embedded squares or circles. We can write D 

as a linear combination of basis diagrams by D =  ]T\ where state ai contains ki

closed loops. We will call this procedure “reducing” the diagram D. Then the diagrams 

in W  (s ) can be said to satisfy the Kuperberg relations, which are relations on local parts 

of the diagrams:

Kl: O  = a

K2:
= 5

K3:
+

There is also a braiding on an A2 web space W’(s), defined locally by the following 

linear combinations of local diagrams in W’(s) (see [78, 109]):

(6 .1)

=  <? ''
(6 .2)

The braiding satisfies the following properties locally:



V - V
/ \  / \  (6-4)

t I   (6-6)
where we also have relation (6 .6 ) with the crossings all reversed.

We call the local picture illustrated on the left hand sides of relation (6.1), (6.2) re­

spectively a negative, positive crossing respectively. With this braiding, ‘kinks’ contribute 

a scalar factor of q8/ 3 for those involving a positive crossing, and q~8//3 for those involving 

a negative crossing, as shown in Figure 6.2.

6.1.3 ^ -T a n g le s

We are now going to systematically define an algebra of web tangles, and express this in 

terms of generators and relations.

D efin ition  6 .1 .1  An A 2 - ta n g le  will be a connected collection of strings joined together 

at incoming or outgoing trivalent vertices (see Figure 6.1), possibly with some free ends, 

such that the orientations of the individual strings are consistent with the orientations of 

the trivalent vertices.

D efin itio n  6 .1 .2  We call a vertex a so u rc e  vertex if  the string attached to it has ori­

entation away from the vertex. Similarly, a s in k  vertex will be a vertex where the string 

attached has orientation towards the vertex.

D efin itio n  6 .1 .3  For m ,n  >  0, an A 2 - (m ,n )- ta n g le  will be an A 2 ~tangle T  on a rect­

angle, where T  has m +  n free ends attached to m, source vertices along the top of the

Figure 6.2: Removing kinks
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rectangle and n sink vertices along the bottom such that the orientation of the strings is 

respected. I fm  =  n w e  call T  simply an A 2 -m-tangle, and we position the vertices so that 

for every vertex along the top there is a corresponding vertex directly beneath it along the 

bottom.

More generally, for m i, m 2 , n\, n2 >  0, define an ((m i, m2), (n i ,n 2))-rectangle to have 

mi +  m2 vertices along the top such that the first m \ are sources and the next m 2 are 

sinks, and n\ +  n2 vertices along the bottom such that the first n\ are sinks and the next 

n2 are sources. Then an ^ - ( ( m i ,  m2), (n\, n2)) - ta n g le  T' will be an A2-tangle on an 

((nil, m2), (ni, n2))-rectangle such that every free end of T' is attached to a vertex in a 

way that respects the orientation of the strings, and every vertex has a string attached to 

it.

Two A2-((mi, m2), (ni, 712) ) -tangles are equivalent if one can be obtained from the other 

by an isotopy which moves the strings and trivalent vertices, but leaves the boundary 

vertices unchanged. We define 7^£ m̂  ^  n^ to be the set of all (equivalence classes of) 

^ 2-((m i,m 2), (n \ ,n 2))-tangles

Note, an A2-(m, n)-tangle is just an A2-((m, 0), (n, 0))-tangle.

The composition T S  G 7 ^  ^  of an A2-((m \,  m 2), (ni, ri2))-tangle T and an A2-

( (n i,n 2), (hi, fc2))-tangle S  is given by gluing S  vertically below T  such that the vertices 

at the bottom of T  and the top of S  coincide, removing these vertices, and isotoping the 

glued strings if necessary to make them smooth. The composition is clearly associative.

D efin itio n  6 .1 .4  We define the vector space V^J1 maj n̂i naj to be the free vector space 

over C with basis m̂  n̂i n^. Then  ̂ n̂i n^ has an algebraic structure with mul­

tiplication given by composition of tangles. In particular, we will write VA2 for 

and VA2 =  Um>oKn2- For n <  m we have VA2 C VA2, with the inclusion of an n-tangle 

T  G T A2 in T A2 given by adding m  — n vertices along the top and bottom of the rectangle 

after the rightmost vertex, with m  — n downwards oriented vertical strings connecting the 

extra vertices along the top to those along the bottom. The inclusion for V„2 in v £ 2 is 

the linear extension of this map.

Note that 7 ^  m^ n^ is infinite , and thus the vector space ^ ^  n^ is infinite

dimensional. However, we will take a quotient of n̂i which will turn out to be

finite dimensional.

D efin ition  6 .1 .5  We define Im C VA2 to be the ideal o fV A2 which is the linear span of 

the relations K1-K3.
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Figure 6.3: 3-tangles B\, B2, E

By the linear span of the relations K1-K3 is meant the linear span of the differences 

of the left hand side and the right hand side of each of the relations as local parts of the 

diagrams, where the rest of the diagram is identical in each term in the difference. Note 

that / m d  Im+1-

D efin itio n  6 .1 .6  The algebra V A2 is defined to be the quotient of the space VA2 by the 

ideal Im, and V M =  U m>0 Vm2-

The algebra V A2 is an A2 web space in the sense of Section 6 .1 .1 , where sm is

the string of length 2m given b y +  +  •••-!--------  , with ‘+ ’ and ‘ — ’ both appearing m

times. The multiplication on W (sm), for basis diagrams D\ and D 2, is given by joining the 

m  free ends of D\ labelled *+’ to the m  free ends of D 2 labelled The new diagram may 

now contain embedded circles or squares, so we may write D \D 2 as a linear combination 

of basis diagrams in V^2, as described in Section 6.1.1.

We could replace the Kuperberg relation K1 by the more general relations:

K l’: O  = O  =

Although it now appears that we have three independent parameters we

actually have only one, as shown in the following Lemma:

L em m a 6.1.T For a fixed complex number 8 ^  0 we must have either c*i =  a 2 =  82 — 1 

or Oi =  a 2 =  0 in V A2.

Proof Let B\ be the 3-tangle illustrated in Figure 6.3, which is the composition of three 

basis tangles in V A2. Let B2 be a 3-tangle which comes from a similar composition, and 

E a basis tangle in V^2, both also illustrated in Figure 6.3. Reducing B\ using K2 twice, 

we get Bi =  82E. On the other hand, if we reduce B\ using K3, we get an anticlockwise
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1 2  /-I / /+!  i+2 n

1 2  /-I / i+l i+2 n

Figure 6.4: The m-tangle 147, 7 =  l , . . . , m  — 1.

oriented closed loop, which by K l’ contributes a scalar factor qj. Then we also have 

Bi =  E  +  a \E .  If E  ^  0, then 82 =  1 +  c*i, and by the same argument on B 2 we also 

obtain 52 =  1 +  Q2. Suppose now that E — 0. Let <Ta)o : W(aa*) —> W (0) be the ‘stitch’

operation of Kuperberg [78], where a =  +  +  +  and a* = --------- . Then &a,o(E) =  0 since

E =  0. Pictorially, cra$(E )  gives

If we use K2 to remove the left embedded circle, we obtain an anticlockwise oriented 

loop, and so the diagram gives the scalar ai<5. If instead we used K2 to remove the 

right embedded circle we would obtain the scalar q 2 -̂ Since crat0(E) =  0 we have either 

Qi =  02 =  0 or d =  0 . □

We now define a ^-operation on V^2, which is an involutive conjugate linear map. For 

an m-tangle T  E T ^2, T* is the m-tangle obtained by reflecting T  about a horizontal line 

halfway between the top and bottom vertices of the tangle, and reversing the orientations 

on every string. Then * on V^ 2 is the conjugate linear extension of * on 7 ^ 2. Note that 

the ^-operation leaves the relation K2 invariant if and only if 5  E JR. For <J E R, the 

^-operation leaves the ideal Im invariant due to the symmetry of the relations K1-K3. 

Then * passes to V̂ J2, and is an involutive conjugate linear anti-automorphism.

From now on let S be real. Then 8 can be written as 8 =  [2]9 for some q, and by 

Lemma 6.1.7 a  =  [3]9.

We define the tangle l n to be the m-tangle with all strings vertical through strings. 

Then l m is the identity of the algebra V^2, l ma =  a =  a l m for all a E V^2. We also define 

Wi to be the m-tangle with all vertices along the top connected to the vertices along the
f Vi th

bottom by vertical lines, except for the i and (z +  1) vertices. The strings attached to 

the and (i + 1)^*1 vertices along the top are connected at an incoming trivalent vertex, 

with the third string coming from an outgoing trivalent vertex connected to the strings
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= 8

Figure 6.5: wf =  fiw.

Figure 6 .6 : WiWj =  WjWi for \i — j\  >  1.

attached to the and (i +  l )*'*1 vertices along the bottom. The tangle W{ is illustrated 

in Figure 6.4.

For m  £ N U {0} we define the algebra S U (3)-TLm to be a lg ( lm, Wi\i =  1 , . . . ,  m  — 1), 

where Wi =  Wi +  Im■ The uVs in SU (3)-T Lm are clearly self-adjoint, and satisfy the 

relations H1-H3, as illustrated in Figures 6.5, 6.6  and 6.7.

Let Fj be the m-tangle illustrated in Figure 6 .8 , and define fi =  Fi +  Im so that 

fi =  WiWi+\Wi — Wi — wi+iWiWi+\ — Wi+\. By drawing pictures, it is easy to see that

and

(6.7)

(6 .8)f if i -2 f i  =  f i l m - 2- 

We also find that the Wi satisfy the S U (3) relation (1.7):

(Wi -  Wi+2Wi+lWi +  iui+i ) / i+i = 0 .

The following lemma is found in [95, Lemma 3.3, p.385]:

L em m a 6 .1 .8  L e tT  be a basis A2-{m,n)-tangle. ThenT must satisfy one of the following 

three conditions:

(1) There are two consecutive vertices along the top which are connected by a cup or 

whose strings are joined at an (incoming) trivalent vertex,
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r r \
= E + W,

v i y  

r r \
= E + W„

Figure 6.7: WiWi+iWi -  w{ — wi+iWiWi+i -  wi+\

1 2  /-I / /+1 i+2 i+2 n

v i y  

/T 'N
1 2 i-1 i /+! i+2 i+2 n

Figure 6 .8 : The m-tangle i =  1 , . . . ,  m — 2.

(2) There are two consecutive vertices along the bottom which are connected by a cap or 

whose strings are joined at an (outgoing) trivalent vertex,

(3) T  is the identity tangle.

C orollary  6 .1 .9  For any basis A2-m-tangle which is not the identity tangle, there must be 

two consecutive vertices along the top or bottom whose strings are joined at an (incoming) 

trivalent vertex.

Proof

This follows from Lemma 6.1.8 with m  =  0. □

Then we have the following lemma which says that the 5'6r(3)-Temperley-Lieb al­

gebra SU(3)-TL  is equal to the algebra V A2 of all /^-tangles subject to the relations 

K1-K3. This is the A 2 analogue of the fact that the Temperley-Lieb algebra TL n =  

alg(l, e\. e2, . . . ,  e„_i) is isomorphic to Kauffman’s diagram algebra [69], which is the al­

gebra generated by the elements E\, E2, . . . .  En- \  on n strings, illustrated in Figure 1.6,
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1 2 n

n

Figure 6.9: m-tangle T  Figure 6.10:

along with the identity tangle l n where every vertex along the top is connected to a vertex 

along the bottom by a vertical through string.

L em m a 6 .1 .1 0  The algebra V^2 is generated by l m and Wi G V^2, i =  1, • • •, m  — 1. So 

V *2 s  S U (3)-T Lm.

Proof

The proof that the algebra V *2 is generated by 1TO and i =  1, . . .  , m — 1, is by

induction on m. For m  =  1 there is only one basis tangle, l i ,  whilst for m  =  2 there are

only two basis tangles, I 2 and W\. Assume the claim is true for (m — l)-tangles, m  >  3.

Let T  be a basis m-tangle in V̂ J2. We draw T  as in Figure 6.9.

If T  is the identity tangle then the T  =  l m, which is trivial. In what follows, vertex
i V ii along the top, bottom respectively, will mean the i vertex along the top, bottom  

respectively, counting from the left. By Corollary 6.1.9, for any other T  there exists 

i € { 1 , . . . ,  m — 1} such that strings U and t i+1, which have vertices i and i +  1 along the 

top or bottom as endpoints, are joined at a trivalent vertex. Let us suppose that this is 

the case for vertices along the top, as in Figure 6.10. If this isn’t the case there must be 

vertices along the bottom for which it is true and we proceed similarly.

For a tangle T, let It be the set of all vertices i along the top of T  such that strings 

U and t i+i are joined at a trivalent vertex, let Î f C It be the subset consisting of the

vertices i G It such that the endpoint of the string t isn’t one of the other vertices along

the top, and let I \  be the subset of It such that string t in Fig 6.10 is attached to vertex 

i +  2 along the top. Note that 1-f n  /|> =  0 .  Suppose T  contains d trivalent vertices.

Step 1: For any i G If ,  the string t must have an outgoing trivalent vertex as its 

endpoint (it cannot have one of the vertices along the bottom as its endpoint due to its 

orientation). Choose the smallest i G / }  and isotope the strings so that we pull out these 

two trivalent vertices from the rest of the tangle as shown in Fig 6.11. Then T  =  W{Ti,
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1 2  /-I i  /'+1 i+2 n  1 2 /-I / »+l i+2 i+ 3 n

1 2 n1 2 n

Figure 6.11: Figure 6.12:

and the number of trivalent vertices in T\ is d — 2, so that Step 1 reduces the complexity 

of the resulting tangle T\.

If /ji 7̂  0 ,  we choose the smallest » e  4 , .  and repeat Step 1 for the tangle T\ to get 

T  =  Wi lWi2T2 . We continue in this way until we have T  =  • • •WitT ' for some

T' and /^, =  0 .  If T ' is the identity tangle we are done. Otherwise T' is a tangle with 

d' =  d — 21 trivalent vertices, for some I £ N.

Step 2: Now let T' be an n-tangle such that I =  0 ,  choose the smallest i £ I\,  

such that R  has outgoing trivalent vertices on its boundary, where R  is the region in V  

bounded by strings s and s', as in Fig 6.12, where T{ is an (m — 3,m)-tangle.

We choose the first outgoing trivalent vertex we meet as we move along the boundary 

in an anti-clockwise direction, starting from the vertex i — 1 along the top, and isotope the 

strings to pull this vertex out from the rest of the tangle as shown in Figure 6.13. Then 

T' =  (WiWi+iWi — Wi)T2 , for some tangle TjJ which contains d! — 2 trivalent vertices. If 

T'2 is the identity tangle, we are done. Otherwise we repeat Step 1 for the tangle T'2.

Continuing in this way reduces the number of trivalent vertices contained in each new 

tangle T' by two each time. However, suppose now that for every i £ /f.,, the region R  in 

Fig 6.12 does not have any outgoing trivalent vertices along its boundary. Let j  be the 

smallest such vertex.

Case (i): If j  =  1 then there must be a through string from a vertex k >  4 along 

the top to vertex 1 along the bottom, since otherwise the string which has vertex 1 along 

the bottom as its endpoint must have an outgoing trivalent vertex as its other endpoint, 

contradicting the fact that the region R  does not have any outgoing trivalent vertices 

along its boundary. We insert an embedded circle on this string, by replacing a part 

of the string —  by -o - , and multiply by a scalar factor 6 -1 . Then isotoping the 

strings to pull the new outgoing vertex up out of the rest of the tangle as in Step 2 , we 

obtain T[ =  6~l (WiWi+i Wi — Wi)T2, where T2 has the same number of trivalent vertices
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1 2 / -I  i  / +l  / +2 / +3 n  1 2  3 k n

I 2 n1 2 n

Figure 6.13: Figure 6.14:

as T[. The tangle T'2 has a through string from vertex 1 along the top to vertex 1 along 

the bottom (see Figure 6.14), and hence the sub-tangle to the right of this string is an 

(m — l)-tangle, which we know to be generated by Wi, i =  1, . . . ,  m  — 2. Hence in Case 

(i) we have a tangle generated by Wi, i =  1 , . . . ,  m  — 1.

If j  > 1, then there is a string s which has vertex j  — 1 as an endpoint.

Case (ii): Suppose first that the string s is a through string which has vertex k along the 

bottom as its other endpoint. We insert an embedded circle on the string s (and multiply 

by a scalar factor £-1 ), and isotope the strings to pull the outgoing vertex up out of the 

rest of the tangle as in Step 2 to obtain V  =  S~1(WiWi+i Wi — W^T^. We have now added 

and removed two trivalent vertices, hence the resulting tangle T'2 has the same number of 

trivalent vertices as T ' . We now have (j  — 1) £  /£ ,, and the string from vertex (j -I- 2) 

along the top is a through string which has vertex k along the bottom as its endpoint, as 

in Figure 6.15. If the region R! has an outgoing trivalent vertex along its boundary, we 

proceed as in Step 2, pulling the outgoing vertex out. Otherwise the string coming from 

vertex (j  — 2) along the top must be a through string with endpoint vertex (k — 1) along 

the bottom. As before we insert an embedded circle on this string and isotope the strings 

to pull the outgoing vertex up out of the rest of the tangle as in Step 2 . Continuing in 

this way will result in a tangle for which we can perform Step 2 without needing to insert 

an embedded circle. To see this, notice first that each new tangle T[ now has a vertex 

Ji e  such that ji =  j i -1 — 1 , where was the least integer in 1 ,̂  ̂ for the previous 

tangle T[_1. Suppose we have the vertex 1 £ /£ ,, for some I £ Z. Then T[ will have a 

through string from the vertex 4 along the top to a vertex k >  1 (k =  0 mod 3) along the 

bottom. The sub-tangle to the left of this string is a (3, fc)-tangle, where the strings from 

the 3 vertices along the top meet at an incoming trivalent vertex, so the strings which 

have the vertices along the bottom as endpoints must each have an outgoing trivalent 

vertex as their other endpoint, hence there will be an outgoing trivalent vertex along the
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1 2 j-2 j - 1 j j+ 1 /+2 /+3 n

k-1 *I 2 /I

Figure 6.15:

boundary of R'. Then we perform the procedure of Step 2, which removes two trivalent 

vertices without first inserting any, and thus the resulting tangle will be less complex than 

V .

Case (iii): Finally, suppose the string s has an incoming trivalent vertex as its endpoint. 

Then we insert an embedded circle along the string as before, and isotope the strings to 

pull the outgoing vertex up out of the rest of the tangle as in Step 2. If the resulting tangle 

T[ is as in Case (i) or (ii), we follow the procedure described for those cases. Otherwise 

we are in Case (iii) again and we repeat the procedure described for Case (iii). Repeating 

this procedure enough times will also result in a situation where we can proceed as in 

Step 2 without needing to insert an embedded circle, since the smallest vertex i E is 

reduced by one each time. If we have 1 E /fv for some p E N, and we cannot use Step 2, 

then we must be in the situation of Case (i) considered above. In each case, we are able 

to reduce the number of trivalent vertices.

We now return to Step 1, and continue as above. Each use of Step 1, and each 

use of Step 2 without first inserting an embedded circle causes a tangle T  containing d 

trivalent vertices to be written as T  =  L {T ', where L\ is an element generated by Wi, 

i =  1, . . .  , m — 1, and the number of trivalent vertices contained in V  is d — 2. Cases

(i)-(iii) each also result in a situation where we may use Step 1 or Step 2 without first 

needing to insert an embedded circle, and thus we can write T  =  L2T ", where L2 is an 

element generated by Wi, i =  1 , . . . ,  m  — 1, and T" is an m-tangle which does not contain 

any trivalent vertices, and hence must be the identity. Hence any m-tangle can be written 

as a linear combination of products of W{, i =  1 , . . . ,  m — 1.

Then the ideal / m is contained in SU (3)-T Lm and there is an isomorphism V; : 

S U (3)-TLm -► V̂ 2 given by ^ (w{) =  W{. □
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Tr(T)  =  f r f  •••

Figure 6.16: Tr(T)

6.1 .4  Trace on V„2

The following proposition is from [95, Prop. 1 .2 , p.375]:

P ro p o sitio n  6 .1 .1 1  The quotient V A2 =  SU (3)-TL q of the free vector space of all planar 

0-tangles by the Kuperberg relations K1-K3 is isomorphic to C.

Proof

For an oriented surface F  define S(F )  to be the quotient of the space of linear com­

binations of 0-tangles on F  by the relations K1-K3. Let S 2 be the two-sphere, obtained 

from R2 by adding a point at infinity. Any 0-tangle on S 2 is a polyhedron which consists 

of polygons. These polygons must have an even number of edges since all the edges are 

oriented and the orientation changes at each vertex. Then S  =  S (R 2) is isomorphic to 

S (S 2), where the isomorphism from S 2 to R2 is given by removing a point in the interior 

of one of the polygons. The polyhedron necessarily contain embedded circles or squares, 

because if it consisted of polygons which all have six or more edges, then we have 6/  < 2e 

where / ,  e are the numbers of faces, edges respectively. Since the Euler number of S 2 is 

two and the tangle is trivalent, we have v — e +  /  =  2 and 2e =  3u, where v is the number 

of vertices. Hence we have 6 /  =  12 +  2e which contradicts the above inequality. Therefore 

we can reduce the 0-tangle to obtain a scalar multiple of the empty tangle. □

Wo define a trace Tr on VA2 as follows. For an A2-m-tangle T  £ V^2, we form the 

0-tangle Tr(T) as in Figure 6.16 by joining the last vertex along the top of T  to the last 

vertex along the bottom by a string which passes round the tangle on the right hand 

side, and joining the other vertices along the top to those on the bottom similarly. Then 

Tr(T) gives a value in C by Proposition 6.1.11. We could define the above trace as a 

right trace, and define a left trace similarly where the strings pass round the tangle on 

the left hand side. However, by the comments after Proposition 6.2.12 the right and left 

traces are equal. The trace of a linear combination of tangles is given by linearity. Clearly 

Tr(a6) =  TV(6a) for any a, b £ V^2, as in Figure 6.17. For any x £ Im we have TV (a;) =  0, 

which follows trivially from the definition of Tr. Then Tr is well defined on V*2. We 

define a normalized trace tr on VA2 by tr =  a -mTr, so that tr ( lm) =  1. Then tr is a 

Markov trace on V As since for x £ Vj 2̂, tr(Wfc.u) =  £a!- 1tr(.T), as illustrated in Figure
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II -1
a

Figure 6.17: Tr(a6) =  Tr(ba)

tx(Wkx) = a - * - i = 5a • * - i X = (5a'1 tr(x)

Figure 6.18: Markov trace on V A2

6.18, and in particular tr(VF;) =  6a~ . The Markov trace tr is positive by Lemma 6.1.12 

and Theorem 1.2.1(b).

For each non-negative integer m  we define an inner-product on VA2 by

( S ,T ) = t i ( T * S ) , (6.9)

which is well defined on V A2 since tr is.

For 5 >  2, there is an x  >  0 such that q e2x and 5 =  [2]q. For 5 < 2 such that

8 =  [2]q =  [2] where q =  e7"/”, n €  N, we define V A2 to be the quotient of V A2 by the 

zero-length vectors in V A2 with respect to the inner-product defined in (6.9). Then the 

following lemma gives an identification between (a subalgebra of) the algebra of zf2-tangles 

and Wenzl’s Hecke representations for S U (3) (see Section 1.2.2).

L em m a 6 .1 .12  Ford >  2, the algebra V A2 is equivalent to WenzVs representation n of 

the Hecke algebra, and consequently V A<2 gives a representation of the path algebra for  
4̂ (00) p or $ =  j2]^ q =  em/nt the algebra V A<2 is equivalent to Wenzl’s representation 

7r(3,Tl) of the Hecke algebra, and consequently V A<2 gives a representation of the path algebra 

for

Proof

Clearly 8~1Wi, i =  1, . . . ,  m  — 1, is a self-adjoint projection in V Ai, and hence VA2 is a 

C*-representation of Hm(q2) for any real q >  1 or q =  em n̂. When q =  ex, x > 0, we have 

rj =  (1 -<72(-fc+1> )/(l +  q2) { l - q ~ 2k) = s in h ((k  — l)x)/2cosh(x)sm h(kx) =  [k +  \)q/[2]q[k)q,
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whilst for q =  enl/n, 77 =  sin((/c — l ) 7r/r?<)/2 cos(n/n)  sin(A:7r/n) =  [k — 1]/[2][A:]. Then for 

k =  3 ,77 =  [3] " 1 so that the Markov trace on V^2 satisfies the condition in Theorem 1.2.1.
□

Then the algebra V^2 is finite-dimensional for all finite m  since the m ^  level of the 

path algebra for A (n̂  is finite-dimensional.

6.2 General y^-planar algebras

6.2.1 Jon es’ planar algebras

Jones introduced the notion of a planar algebra in [64] to study subfactors. These planar 

algebras gave a geometric reformulation of the standard invariant. Since then there has 

been much interest in planar algebras; see for example [7], [6], [17], [48], [47], [52], [53], 

[62], [63], [65], [66], [74], [73], [90], [105].

Let us briefly review the basic construction of Jones’ planar algebras. A planar k- 

tangle consists of a disc D  in the plane with 2k vertices on its boundary, k >  0, and 

n >  0 internal discs D j, j  =  1 , . . . ,  n, where the disc Dj  has 2kj vertices on its boundary, 

kj >  0. One vertex on the boundary of each disc (including the outer disc D ) is chosen 

as a marked vertex, and the segment of the boundary of each disc between the marked 

vertex and the vertex immediately adjacent to it as we move around the boundary in an 

anti-clockwise direction is labelled *. Inside D we have a collection of disjoint smooth 

curves, called strings, where any string is either a closed loop, or else has as its endpoints 

the vertices on the discs, and such that every vertex is the endpoint of exactly one string. 

Any tangle must also allow a checkerboard coulouring of the regions inside D, which are 

bounded by the strings and the boundaries of the discs, where every region is coloured 

black or white such that any two regions which share a common boundary are not coloured 

the same, and any region which meets the boundary of a disc at the segment marked * 

is coloured white. When the outer disc has no vertices on its boundary, we replace 0 by 

± , where the region which meets the outer boundary is coloured black for a + -tangle and 

white for a — tangle.

A planar /c-tangle with an internal disc Dj with 2kj vertices on its boundary can be 

composed with a fcj-tangle 5 , giving a new A:-tangle T  oj S, by inserting the tangle S  inside 

the inner disc Dj  of T  such that the vertices on the outer disc of S  coincide with those 

on the disc D j, and in particular the two marked vertices must coincide. The boundary 

of the disc Dj is then removed, and the strings are smoothed if necessary. The collection 

of all diffeomorphism classes of such planar tangles, with composition defined as above,
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is called the planar operad.

A planar algebra P  is then defined to be an algebra over this operad, i.e. a family 

P  =  (P0+, Pq , Pk, k >  0) of vector spaces with Pq C Pk C Pk> for 0 < k < k', and with 

the following property. For every k-tangle T  with n internal discs Dj labelled by elements 

xj E Pk3, j  =  1 ,■■■ ,n, there is an associated linear map Z ( T ) : <S>j=1Pkj —» Pk, which is 

compatible with the composition of tangles and re-ordering of internal discs.

6.2.2 G eneral ^ -p la n a r  algebras

We will now define an A2-version of Jones’ planar algebra, using tangles generated by 

Kuperberg’s A2-spiders rather than genuinely planar tangles. Under certain assumptions, 

these A2-planar algebras will correspond to certain subfactors of S U (3) A V S  graphs which 

have flat connections. The best way to describe planar algebras is in terms of operads 

(see May [85]).

D efin itio n  6 .2 .1  An o p era d  consists of a sequence (C(n))n€m of sets. There is a unit 

element 1 in C( 1), and a function C(n) ® C(ji) ® • • • ® C(jn) —■► C{j\ +  • • • +  j n) called 

composition, given by (y ® x\ ® • • • ® xn) —> y  o (a  ̂ ® • • • ® xn), satisfying the following 

properties

•  associativity: y  o j i j o  ® • • • ® x iM ) ® • • • ® xn o (xn<i ® • • • ® xn<kn))

=  ( y ° { x  1 ® • • • ® xn)) o (Xi,! ® • • • ® a:1>fel ®  • • • ® xnA ® • • • ® xn k̂n),

•  identity: y o (1 <gi • 0  1) =  y =  1 o y.

We will define two types of A2-planar tangles, which we will call (+)?', j-tangles and 

(—)i, j-tangles. An A2-planar ( ± ) i , j - tangle (note, this is different from an (i,j)~ tangle) 

will be the unit disc D =  Do in C together with a finite (possibly empty) set of disjoint 

sub-discs D\, D 2, . . . ,  Dn in the interior of D. Each disc D k, k >  0, will have an even 

number 2(ik+ j k) >  0 of vertices on its boundary dDk (i0 =  i, j 0 =  j ) .  The first jk vertices 

are restricted to be sources, the next 2ik vertices alternate between sources and sinks, and 

finally the last j k vertices are all sinks. For a (-l-)-tangle, vertex j k +  1 is restricted to be 

a source for all k, whilst for a (—)-tangle it is a sink. We will position the vertices so that 

the first ik +  j k are along the boundary for the upper half of the disc, which we will call 

the top edge, and the next ik -j- j k vertices are along the boundary for the bottom half of 

the disc, which we will call the bottom edge. We will use the convention of numbering the 

vertices along the bottom edge in reverse order, so that the 2(ik+ j k)-th  vertex is called the 

first vertex along the bottom edge. For a (-t-)-tangle, the total number of source vertices
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along the top edge is [jk +  (h  +  1) / 2J, and the number of sink vertices is |^fc/2j, whilst 

for a (—)-tangle the corresponding numbers are [jk +  (ifc/2)J and [(ik +  1) / 2J. Inside D 

we have a tangle where the endpoint of any string is either a trivalent vertex (see Figure

6 .1) or one of the vertices on the boundary of a disc Dk , k =  0 , . . . ,  n, or else the string 

forms a closed loop. Each vertex on the boundaries of the Dk is the endpoint of exactly 

one string, which meets dDk transversally. An example of an A2-planar (+)0,4-tangle is 

illustrated in Figure 6.19.

Figure 6.19: A2-planar tangle

The regions inside D  have as boundaries segments of the dDk or the strings. These 

regions are labelled 0, 1 or 2- called the colouring- such that if we pass from a region R  of 

colour a to an adjacent region R' by crossing a vertical string with downwards orientation, 

the R' has colour a -I-1 (mod 3). We mark the segment of each dDk between the last and 

first vertices with bk G {0,1, 2}, so that the region inside D  which meets d D k at this 

segment is of colour 6fc, and the choice of these *bk must give a consistent colouring of the 

regions. For the outer boundary dD  we impose the restriction b0 =  0. For i , j  =  0,0 we 

have three types of tangle, depending on the colour b of the region near dD.

Let a  be +  or -. We define to be the free vector space generated by

orientation-preserving diffeomorphism classes of A2-planar (<j)z, j-tangles with labelling 

sets La. The diffeomorphisms preserve the boundary of D , but may move the Dk s, k >  1. 

Let P(a)*j(La ) be the quotient of V(a)i,j(L>(T) by the Kuperberg relations K1-K3. The A2- 

(a)-p lanar operad  V{a)(La) is defined to be V(a)(La) =  (Jij 'P(a)i,j(L„). We will usually 

simply write V(a) for -P(<T)(L(7) when the labelling set is obvious. For V(a)ii00 we use the
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T  =

*0^*0 (  o
S  =

T o2 S  =
*o *o( D

Figure 6.20: Composition of planar tangles

convention that the region of any tangle in V{a)i,oo which meets the segment of the outer 

boundary between vertices u0 and Vj has colour 0 .

We define composition in V { a) as follows. Given an ^ -p lanar (cr)z, j-tangle T  with an 

internal disc Di with i i ,j i  =  i ' , j '  vertices on its boundary, and an ^ -p lan ar (c r ) i \ j>-tangle 

S  with external disc D', such that the orientations of the vertices on its boundary are 

consistent with those of D\ and *d• — *Dr  We define the (cr)i, j-tangle T o t S by  isotoping 

S  so that its boundary and vertices coincide with those of Di , join the strings at dDi and 

smooth if necessary. We the remove dDi to obtain the tangle T o t S  whose diffeomorphism 

class clearly depends only on those of T  and S. This gives V(a) the structure of a coloured  

operad. where each D k, k >  0, is assigned the pattern ik, j k, and composition is only 

allowed when the colouring of the regions match (which forces the orientations of the 

vertices to agree). There are three distinct patterns for i, j  =  0 ,0 , corresponding to the 

colouring of the region near the boundary. The D k s, k >  1 are to be thought of as inputs, 

and D =  D0 is the output.
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The most general notion of an / l2-planar algebra will be an algebra over the operad 

i.e. a general A2-(cr) -planar algebra P(a) is a family

P(a) =  {P(o)ij,h j  >  0, i, j  ^  0 ,0 , P^o.o, a G {0 ,1 ,2 })

of vector spaces with P(“ )0 o ^  ^  for 0 < i <  «', 0 < j  < j', a G {0 ,1 ,2 },

and with the following property: for every labelled (cr)z,j-tangle T  G V(a)i,j with inter­

nal discs Di, D2, .. ■, Dn, where D k has pattern ik,jk, there is associated a linear map 

Z(T)  : ®2-iP(ff)*fcljfc — ► P{±)i,j which is compatible with the composition of tangles in the 

following way. If S' is a (cr)ik,jk-tangle with internal discs Dn+1, . . . ,  Dn+m, where Dk has 

pattern ik, jk, then the composite tangle T  o* S  is a (<j)z,j-tangle with n -fra — 1 internal 

discs Dk , k =  1 , 2 , . . .  / — 1 , 1 -I- 1, 1 -f 2 , . . . ,  n +  m. Prom the definition of an operad, 

associativity means that the following diagram commutes:

(0555 Pm * )  ® (<8£r+: Pm * )  \ ziT°‘s)
id®Z(S) P(ff ) i j ,  (6.10)

^ f c = l  P(p)ik,jk S 'Z (T )

so that Z (T  oz S) =  Z(P'), where T' is the tangle T with Z ( S ) used as the label for disc 

D{. We also require Z ( T ) to be independent of the ordering of the internal discs, that is, 

independent of the order in which we insert the labels into the discs. If i =  j  =  0, we 

adopt the convention that the empty tensor product is the complex numbers C. By using 

the tangle

we see that each P^ 0 0 (or simply P(“ )0) ls a commutative associative algebra, a G {0 ,1 ,2}. 

So each P(a)i,j has a distinguished subset { Z (T ) }  for every (cr)i,j-tangle T  without any 

internal discs. This is the unital operad (see [85]). Following Jones’s terminology, we call 

the linear map Z  the presenting m ap for P(CT).

The usual /t2-planar algebra will be the (+ ) one. However, in the rest of this subsection 

we will mean by a general j42-planar algebra P  either (+ ) or (—) versions. In the figures 

we omit the orientation on the strings from (j  +  l)-th  vertices along the top and bottom  

of an i, J-tangle- these will be determined by whether the tangle is an (+) or a (-)-tangle.
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6.2 .3  P artial Braiding

We now introduce the notion of a partial braiding in our y^-planar operad. We will allow 

over and under crossings in our diagrams, which are interpreted as follows. For a tangle 

T  with n crossings Ci , . . .  ,Cn, choose one of the crossings c* and, isotoping any strings if 

necessary, we enclose c* in a disc b, as shown in Figure 6.21 for c* a (z) negative crossing 

and (ii) positive crossing (up to some rotation of the disc).

(0  (/0 

Figure 6.21: Disc b for (i ) negative crossing, (ii) positive crossing

Figure 6.22: Discs &i and b2

Let &!, b2 be the discs illustrated in Figure 6.22. We form two new tangles

and Tj ̂  which are identical to T  except that we replace the disc b by b\ for and

by b2 for If c* is a negative crossing then T  is equal to the linear combination

of tangles q~2̂ 3S[^ — and if c* is a positive crossing T  =  q2̂ S ^  —

where q >  0 satisfies q +  q~l =  S (cf. (6.1) and (6.2)). Then for both S [^ and we

consider another crossing Cj and repeat the above process to obtain =  r \ S ^  — r[T[2\

=  r2S ^  — r'2T ^ \  where r \ , r 2 £  {q±2} and G {q,±1} depending on whether Cj is 

a positive or negative crossing. Since this ‘expansion’ of the crossings is independent of 

the order in which the crossings are selected, repeating this procedure we obtain a linear 

combination T  =  $3*11 ) (s*5fn  ̂ +  sJ7fn*), where the s*, s\ are powers of q±l/3.

With this definition of a partial braiding, two tangles give identical elements of the 

planar algebra if one can be deformed into the other using relations (6.3)-(6.6). It is not 

a genuine braiding as we cannot in general pull strings over or under labelled inner discs 

Dk.
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Figure 6.23: Tangle L j

6.2 .4  F in ite-D im en sion ality  and G eneral T^-Planar Subalgebras

The tangles L j  illustrated in Figure 6.23 have 2i, 2j  vertices on the inner and outer discs 

and all strings are through strings from vertex k on the outer boundary along the top, 

bottom respectively to vertex k on the inner boundary along the top, bottom respectively. 

These tangles satisfy L j  o T  =  T  and also inserting Iikj k inside every inner disc Dk with 

pattern ik,jk also gives the original tangle T.  Then L j  is the unit element (see Definition

6.2.1). We let L j {x )  denote the tangle L j  with x E Pij  as the label for the inner disc. 

Then, since we must have Z(Ii j (x) )  =  x we require Z(I i j )  =  idpt j . This means that the 

range of Z  spans Pij ,  by using any element of Pij  as the insertion in the inner disc of Lj .

The condition dim (Po) =  1, a =  0 ,1 ,2 , implies that there is a unique way to identify 

each Pq with C as algebras, and Z  (Oa) =  1 , a =  0 , 1 , 2 , where O a is the empty tangle 

with no vertices or strings at all, with the interior coloured a. By Lemma 6.1.7 there is 

thus also one scalar, or parameter, associated to a general ^ -p lan ar algebra:

Z ( @ )  =  a, (6.11)

where the inner circle is a closed loop not an internal disc.

It follows from the compatability condition (6.10) that Z  is multiplicative on connected 

components, i.e. if a part of a tangle Y  can be surrounded by a disc so that T  =  T' ot S  

for a tangle T'  and 0-tangle S,  then Z(T)  =  Z(S)Z(T' )  where Z(S)  is a multilinear map 

into the field C.

Every general /^-planar algebra contains the ^ -p lan ar subalgebra S T L , where for 

a E {0 , 1 , 2 }, S T  La =  C, and S T L i j  =  V i j ( 0 ) .  Here the presenting map Z  is just the 

identity map. Note that the partial braiding defined above is a genuine braiding in STL.  

The S'(/(3)-Temperley-Lieb algebra introduced in section 6.1.3 is a subalgebra of S T L , 

given by SU(3) -TLn =  5TLo,n- The action of an v42-planar i, j-tangle T  on STL  is given 

by filling the internal discs of T  with basis elements of STL.  The resulting tangle may 

then contain embedded circles and squares, which are removed using K2 and K3, and
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mn

Figure 6.24: A tangle in

closed curves are removed using 6.11. The result is a linear combination of elements of 

STL.

D efin ition  6 .2 .2  A general A2-planar algebra P  will be called f i n i t e - d i m e n s i o n a l  if  

dimPij < oo for all i , j .

Remark. The algebras SU(3)-TLn are finite dimensional, since from section 6.1.3 we 

know that they are isomorphic to the path algebra for the S U (3) graph .A ^ .  Then by 

Lemma 6.2.17 it can be shown that S T L itj is finite dimensional for all i , j  > 0. This 

result also follows from [78], since S T L itj and S T Lo,i+j have the same number of source 

and sink vertices along the outer boundary, and by Theorem 6.3 in [78] the dimensions 

must be the same.

We will now define ./^-planar subalgebras P /j1’7̂  C Pij.

D efin ition  6 .2 .3  For 0 < m < j ,  let V ^ ’n  ̂ denote the subset of V i j  spanned by all 

tangles with the first n vertices along the top and bottom connected by vertical straight 

lines, or through strings. The vertices n +  j  1 , . . .  ,n  +  j  +  ra are connected by through 

strings which pass over every string they cross such that there are no internal discs in the 

region between the strings and the outer boundary of the tangle to the left of them. If P  is 

a general A2-planar algebra with presenting map Z,  we define P =  Z{fP^'n )̂ C Pij.

(tti n.}A general tangle in P P  ’ is illustrated in Figure 6.24, where we have replaced the 

outer disc by a rectangle, and T  is any tangle in Note that =  Pi j .  We

also have Pq°{  ̂ =  P j  since Pq°{  ̂ is just Pj with a vertical line added to the left. Similarly
p(0,2) p2
M),2 — M) ’
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6.2.5 B asic Tangles in a G eneral ^ -P la n a r  A lgebra

We have the following basic tangles:

Inclusion tangles I R ^ j ,  I L ^ +l , I R q +1 and I R ij+1:

IL iJ =i j+\

i r

.{+>J

IRIU =

7+| i ' 2

where the orientation of the rightmost string in 1]+ l j is downwards for i even and up­

wards for i odd. Both I R l̂ j+l and IR-^+1 add a new source vertex along the top which 

immediately to the right of the first j  source vertices, and a sink vertex along the bottom  

immediately to the right of the first j  sink vertices along the bottom. These new vertices 

are regarded as being among the downwards oriented vertices rather than the alternating 

vertices. They are connected by a through string, and differ only in that the through string 

passes to the right of the inner disc in / / 2Vj+1 and to the left of the inner disc in I R - j+1. 

We have Z ( I ^ )  : -  Pi+tJ, and Z (7fl‘j +1) , : PtJ -  PiJ+l.
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Conditional expectation tangles E R l*- '3 and ER\

'+V+1,

n j

j+1

> i-J+1 
lU a

i+.i+ j.

(6.12)

The orientation of the string from vertex i +  j  + 1  on the inner disc of ER]*1'3 is clockwise 

for i odd and anticlockwise for i even. We have Z { E R 1* 1'3) : Pi+i j  —> Pi}j and Z { E R ]3-+1) : 

Pi,j+i —> Pi,j• We also have the conditional expectation tangles E'L-J}j and EX-j+J:

JM . j a (+/+1

/+/+1

i+j+1

V+l
'v+i a /+/'+!

/+/+1

where : Pi+1J /f t* }  and Z (E L ‘j ; i )  : PiJ+1 -  /? £ { .> ( 1,0 ) >(0 , 1)

•  Multiplication tangles M ij  : Vtj  x Vi 3 —>
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Figure 6.25: Annular tangle

i , =

Figure 6.26: Identity Tangle 1^-

Figure 6.27: Z ( l i j ) x  =  x =  x Z ( l i j )

Each Pij  is then an associative algebra, with multiplication being defined by X\X2 =  

Z ( M i j ( x i , x 2)), where M i j { x \ , x 2) has Xk G Pij  as the insertion in disc D*. The multi­

plication is also clearly compatible with the inclusion tangles, as can be seen by drawing 

pictures.

An annular tangle with outer disc with pattern z, j  and inner disc with pattern z', /  

will be called an annular (z, j  : z',/)-tangle . An example of an annular (2,2 : 0, 2)-tangle 

is illustrated in Figure 6.25.

The tangle l i j  illustrated in Figure 6.26 is called the identity tangle. By inserting 1^- 

and x G Pij  into the discs of the multiplication tangle Mi j  as in Figure 6.27 we see that 

Z ( l i j ) x  =  x =  x Z ( l i j ), hence Z ( l i j )  is the left and right identity for Pij.

P ro p o sitio n  6 .2 .4  The A2-planar operad V  is generated by the algebra STL,  multipli­

cation tangles A-I, and annular tangles, which are tangles with only one internal disc.

Proof

Consider an arbitrary tangle T  G Vij  with k inner discs Di with labels xi, I =  I , . . .  ,k. 

By an isotopy of the tangle, we may move all the inner discs so that in any horizontal 

strip there is only one disc. Then we may draw T  as
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where the 7) are annular tangles with inner disc labelled by xi, I =  1 , . . . ,  k.

Consider first the tangle Ti, which has pattern i, j  along the top. Let n ,̂ nu be the 

number of strings along the bottom of T\ with downwards, upwards orientation respec­

tively. Using the partial braiding we may switch any pair of strings along the bottom of 

7 i, and we replace T\ by the annular tangle T ^ :

T,
1

t t t - t t f t
- ( I )

In this way we may permute all the strings along the bottom of T\ to obtain an annular
(2)

tangle T{ , where the first rid — nu — q  strings along the bottom all have downwards 

orientation, and the next 2nu+C{ have alternating orientations (with the {rid—nu—Ci+l)-th  

string oriented downwards), where c* is 0 if i is even and 1 if i is odd. Then if j  > rid—nu—Ci 

we have j  =  rid — nu — Cj +  3p for some p  G N, so we add p  “double loops” GD at the 

bottom of T ^  (and multiply the tangle T  by a scalar factor a~p5~p):

1
T,

2) = T-1 (3) 
1 1

\ n n 
— .. ' i

^  'y y.. .y |... |

n,-n-c, ln u 2 n

On the other hand, if j  < rid — nu — Ci we have j  =  rid — nu — Ci — 3p for some p E N, so 

we add p “double loops” at the top of instead. Similarly, if i > 2nu +  q (respectively, 

i < 2nu +  then i =  2nu +  c* +  2p' for some p' e  N (respectively, —pf e  N), and we add
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p' closed loops at the bottom (respectively, top) of T (and multiply by a scalar factor 

aTp/), and replace T by the annular tangle Tf4̂ :

...

T,
(3)

M l
j  2 n+c,

fji (4) 
1 1

where the orientation of the closed loops is anticlockwise for i odd, clockwise for i even. 

Let i' =  max(?‘, 2nu +  c<), j '  =  max(j, — nu — c^. Then we have a multiplication tangle 

Mi>j> surrounded by an annular (i, j  : y)-tangle A, with T^  as the insertion for the

first disc of and the rest of the tangle, which we will call T ', as the insertion for

the second disc. If i' =  i and f  =  j  then the annular tangle A is just I i t j .  Then T ' is 

an tangle with k — 1 inner discs, and by the above procedure we can write T' as a 

multiplication tangle (possibly surrounded by an annular tangle), where the insertion for 

the second disc now only has k — 2 inner discs. Continuing in this way we see that T  is 

generated by multiplication tangles and annular tangles. Finally, tangles with no inner 

discs are elements of STL.  □

6.2.6 ^ -P la n a r  A lgebras

We now define an y42-planar algebra P  and two traces on P , as well as notions of non­

degeneracy, sphericity and flatness.

D efin ition  6 .2 .5  An A2- p la n a r  a lgebra  will be a general A2-planar algebra P  with 

dim (P0) =  dim(Po°1’1̂ ) =  dim(Po 22̂ ) =  1, and Z( (o ) )  =  a  non-zero.

D efin ition  6 .2 .6  We call the presenting map Z the p a r t i t i o n  f u n c t i o n  when it is 

applied to a closed 0,0-tangle T  with internal discs Dk of pattern ik , jk • We identify P0“ 

with C, so that Z(T)  : ®fcPifcJfc — ► C.

We define 11011-degeneracy and sphericity in the same way as Jones (see Definition 1.27 

of [64]):

D efin ition  6 .2 .7  An A2-planar algebra will be called n o n -d e g e n e r a te  if, for x E Pij,  

x =  0 if and only if Z(A(x))  =  0 for all annular (0 : i, j)-tangles A.
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D efin itio n  6 .2 .8  An A2-planar algebra will be called spherical if its partition function 

is an invariant of tangles on the two-sphere S 2 (obtained from M2 by adding a point at 

infinity).

Definition 6.2.7 of non-degeneracy of an j42-planar algebra involves all ways of closing 

a tangle. For a spherical algebra it is enough only to consider the following:

D efin ition  6 .2 .9  Let P  be an A2-planar algebra. Define two traces ^Tr^ and r T ^  on 

Pij hV

/ T V S )  = Z S I ,  J r , , U S J = Z | I J

For a spherical ^ -p lan ar algebra =  rIV^ =: Tr^. The converse is also true-

that is, if lTt*j =  on for all i, j  > 0  then P  is spherical. Let T  be any labelled

0-tangle. For sphericity we require Z(T)  to be invariant no matter where we choose the 

“point at infinity” to be. We make a choice of a point at infinity and isotope T  so that it 

looks as follows

t  =

where oo indicates the chosen point. Then

= Z n| =  tTr, (Z (r2)) =  J r „ (Z (r 2)) =  Z

for any integers /,m  > 0, where T2 is the tangle:

/ m
7
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Let P  be a spherical algebra. If we define tr(rr) =  Trij(.r) for x E Pi j , then tr 

is compatible with the inclusions Pij  C Pi j+1 and Pij  C Pi+i,j, given by IR\^+V IR]+\ j  

respectively, and tr(l) =  1, and so defines a trace on P  itself. The following proposition 

is given in [64] in the setting of his Ai-planar algebras. The proof for 4̂2-planar algebras 

is identical, the only difference being in the orientation of the strings.

P ro p o sitio n  6 .2 .1 0  A spherical A 2 ~planar algebra P  is non-degenerate if and only if 

TYij defines a non-degenerate bilinear form on Pij for each i , j .

Proof

(=>) The picture defining Tr is Z(A(x))  where A is the annular (0 : i,j)-tangle

A =

and therefore Tr(x) =  Z(A(x))  =  0 x =  0.

(<=) It is enough to show that for any annular (0 : z, j)-tangle A , there is a y E Pij  

such that Tr(xy) =  Z(A(x)) .  By spherical invariance one may arrange A(x)  so that it 

has no strings crossing the radius from a point between the last and first vertices on the 

outer boundary to a point between the last and first vertices on the inner boundary of A. 

Then by isotoping the strings we may contain the part of A(x)  outside a: in a disc with 

pattern i, j:

= Tr(:xy)

□
Then for non-degenerate P,  if we have a finite set of labelled tangles which linearly 

span Pij  (under the presenting map Z), the calculation of dim Pij  is reduced to the finite 

problem of calculating the rank of the bilinear form defined on Pij  by Tr as for the A r-case.
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D efin ition  6 .2 .1 1  Let T  be any tangle with internal discs Dk, k =  1, . . .  , n. We call an 

A2-planar algebra f l a t  if Z (T) =  Z(T')  where T' is any tangle obtained from T  by pulling 

strings over an internal disc Dk, for any k =  1 , . . . ,  n. This is illustrated in Figure 6.28, 

where we only show a local part of the tangle.

1 V-/
z = Z

Figure 6.28: Flatness

Note that we could have defined a flat ,42-planar algebra to be one where strings can 

be pulled under internal discs instead of over. Such an i42-planar algebra is isomorphic to 

the one defined above, with the isomorphism given by replacing q by q~l- this is equivalent 

to reversing all the crossings in any tangle. For a flat ,42-planar algebra, the two ‘right’ 

inclusion tangles I R \ i +1 and I Rf^+1 are equal, and we will simply write IR]'jj +1. For a 

flat >l2-planar algebra the partial braiding is a genuine braiding, as inner discs may now 

be pulled through crossings.

P ro p o sitio n  6 .2 .1 2  A flat A2-planar algebra is spherical.

Proof

Given a 0-tangle, we isotope the strings so that we have an n-tangle T, for n G N, 

with n vertices along the top and bottom of T  connected be closed strings which pass to 

the left of T. Then the string from the vertex along the top and bottom of T  can 

be pulled over all the other strings and all internal discs of T, introducing two opposite 

kinks, which contribute a scalar factor q8/3q~8/3 =  1 (see Figure 6.29). We may similarly 

pull the other strings which pass to the left of T  over T.  □

m l ( t

Figure 6.29: Flatness gives sphericity
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6.2 .7  T he involution  on P

We can define the adjoint T* of a tangle T  G Vi j (L)  , where L has a * operation defined 

on it, by reflecting the whole tangle about the horizontal line that passes through its 

centre and reversing all orientations. The labels Xk E L of T  are replaced by labels x*k 

in T*. If ip is the map which sends T  —> T* , then every region ( f (R) of T* has the same 

colour as the region R of T.  For any linear combination of tangles in Vij (L)  we extend 

* by conjugate linearity. Then P  is an ,42-planar *-algebra if each Ptj  is a *-algebra, 

and for a 7, j-tangle T  with internal discs Dk with pattern ik , jk> labelled by Xk £ Pikj k, 

k =  1, . . . , n, then

Z(T)*  =  Z(T*),

where the labels of the discs in T* are x k. We extend the definition of Z(T)  to linear 

combinations of i, j-tangles by conjugate linearity. The partition function on an ,42-planar 

algebra will be called p o s itiv e  if RTritj(x*x)  >  0 , for all x  E Pitj,  i , j  >  0 , and p o sitiv e  

d efin ite  if r T t i j (x*x) >  0, for all non-zero x  G Pij .  It is not clear whether RTritj positive 

implies that LTiij{x*x) >  0 for all x  G Pij  also, however we will only be interested in 

non-degenerate /f2-planar algebras, and hence we will have both Rrhi j {x*x)  >  0 and 

/,Tri j (x*x) > 0 for all x  G Pij ,  i , j  >  0, by the following proposition which is contained 

in [64, Prop. 1.33] for Jones’s j4i-planar algebras. The proof carries over to 4̂2-planar 

algebras where the only modification is that we allow slightly different orientations on the 

strings.

P ro p o sitio n  6 .2 .13  Let P  be an A2-planar *-algebra with positive partition function Z. 

The following are equivalent:

(i) P  is non-degenerate,

(ii) RTiij  is positive definite,

(li) LTii j  is positive definite.

Proof

(i) => (ii): Suppose x  G Pij  satisfies TrR(x*x) =  0. Then if A is any annular (0 : i,j)~ 

tangle, we may isotope A(x)  so it looks like
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where y G Pi'j>, i' >  i , j '  > j- Thus Z(A(x))  =  nTr i j (xy ) i where x is x with j ' —j  vertical 

straight lines added to the left and i' — i vertical straight lines added to the right. By the 

Cauchy-Schwarz inequality, \jiTrij(xy)\ <  y / rTti j (x*x)>//?Tri j (y*y),  so Z(A(x))  =  0. 

(So rTti j (x*x) =  0 => x =  0 which is statement (ii).) Similarly (i) => (iii).

(ii) =>• (i): For x =  f°r basis elements Ri of Pij ,  we can write RTii j (x*x)  =

AiZ{Ai{x*))  where Ai is the annular (0 : z,j)-tangle

Then for non-zero x , /?Tri j (x*x)  > 0 => Z ( A n(x*)) ^  0 for at least one n. Alternatively, 

RTTij(x*x) =  0 => Z(Ai(x*)) =  0 for all A/. Similarly (iii) => (i). □

Then we have the following Corollary, as in [64, Cor. 1.36]

C orollary 6 .2 .14  If P  is a non-degenerate finite-dimensional A2-planar *-algebra with 

positive partition function then Pij is semisimple for all i , j ,  so there is a unique norm 

on Pij making it into a C*-algebra.

D efin ition  6 .2 .15  We call an A 2-planar algebra over R or C an A2-C*-p lanar  a lge­

bra if it is a non-degenerate finite-dimensional A 2-planar *-algebra with positive definite 

partition function.
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If P  is a spherical y^-C^-planar algebra we can define an inner-product on Pij  by 

(x, y) =  tr{x*y) for i , i / G  Pij ,  which is consistent with the inclusions Pij  C Pij+1 and 

Pij  C P i+ i j , given by I R\'hj  respectively, since tr is.

6.2 .8  T he C onditional E x p ecta tio n

The justification for calling the tangles in (6.12) “conditional expectation” tangles is seen 

in the following Lemma:

L em m a 6 .2 .16  Let P  be an A 2-C*-planar algebra. For the tangles E R a n d  E R Vj+1 

defined in (6.12), E\(x)  =  Z ( E R l j l '^(x)) is the conditional expectation of x E Pi+ij onto 

Pij with respect to the trace, and E2(y) =  Z ( E R \ j +1 {y)) is the conditional expectation of 

onto Pij with respect to the trace.

Proof

We first check positivity of Ei(x)  for positive x E Pi+ij- As P  is an A 2- C *~planar 

algebra, the inner-product defined above is positive definite. We need to show that 

{E i(x)y ,y )  >  0 for all y E Pij.  From Figure 6.30 we see that tr(y*E R l j1,j(x)*y) =  

tT(y'*x*y') =  (xy ', y') >  0 for all y  E P i j , where y' =  G O  e  P i+ i j •

( r~Ny y *
. . .  ^
X = x'

| - | U I - I Iy y

Figure 6.30:

From

we see that Ei(axb) =  aE\(x)b,  for x E Pi+ij ,  a, 6 E Pij.  Since also (E\(x) ,y)  =  (x,y'},  

Ei is the trace-preserving conditional expectation from Pi+ij  onto Pij.  The proof for E2 

is similar. □
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Similarly, Z ( E L t̂ t i{^(x)) is the conditional expectation of x G Pi+ij onto Pi+ij, and 

Z(EL]'i+\(y)) is the conditional expectation of y  G Pij+i  onto P/°+i with respect to the 

trace.

6.2 .9  D im ensions o f ^ -p la n a r  algebras and A 2-STL.

We now present some other general results for ^ 2-planar algebras. We define maps <p 

P 21+1J+1 W  P 21+2 ,j(P)> w : P 2/,j+i(P) —> p 2i+i,j(P) by

¥>(*.) = 2/+1

21+2j

u(x2) =

j

for x\ G p 2 Z + i,j+ i(P )? %2  £ p 2 Z j+ i(P ) ,  where the white circle at the end of a string 

indicates that this vertex is now regarded as one of the i  vertices of V^j with alternating 

orientation ( i  =  21 +  2, 21 +  1 for y?, u j  respectively). The maps y?, u j  are invertible, with
-1  , . , -1u; 1 given by

< p\xx) =

* 1 1 1'v1 1 1

V ... ' 'Y'Y 'f’-j'
j

\t ••• > *A.

7T
/ I I  1 11 1

2/+1

u ' ( x 2) =
V  ...  >

♦ 1 1 1 1 1 1  1 
N i // >  H // * •* „,

' Y A  -  A Y

/ ^  2/+1

\ f  — > f A Y  -  Y A\ \ ✓\ N ' >  " \
\ \ I I I  1

4 1 ■ »

for x\  G P 2i+2j (L ) ,  %2  € p 2Z+ij(P)> where the solid black circle at the end of a string 

indicates that this vertex is now regarded as one of the j  +  1 vertices of P ij+ i with al­

ternating orientation ( i  =  21 +  1,2/ for <p~x, u j ~ 1 respectively). Clearly y?(P2Z+ij+i(P)) C 

p 2/+2j(P ) and (p(V2i+i,j+i(L)) D V2i+2j ( L )  since P 2z+ij+i(P) D <P~1( p 2i+2 ,j(L))- So 

^ (P 2z+ij+i(P)) =  V2i+2j (L )  and y? a bijection. Similarly, we see that w is a bijec- 

tion and uj(P2i j +i(L)) =  P 2/+ ij(P )- Let Z  : P i j (L )  —> P^- be the presenting map 

for an ,42-C*-planar algebra P. We define maps y? : P2z+ij+i(L) —> P2i+2j(L),  a; : 

P2/j+ i(L) —► P2/+ij(L ) by p(x i )  =  Z(tp(x 1)) and u j ( x 2 )  =  Z(cu(x2)). The inverse 

y?""1 of p  is <p~l {x) =  Z((p~l (x)) for x  G P21+2 J , since ys- 1y>(:r) =  Z(y?_1(Z(y?(:r)))) =  

Z fy ^ V M ) =  Z(hi+2,j{x )) =  x • Similarly u>_1(:r) =  Z (u ~ x(x)) for x G P2i+i,j. Then by 

a similar argument as for y?, we have fi(P2i+i,j+i) =  P21+2 J , and y? is a bijection since for
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every y G P21+2J there is an x =  p  l (y) G P^+ij+i such that p(x) =  y. Similarly a; is a 

bijection and u j ( P 2i j + i )  = P21+1J • Then we have the following lemma:

L em m a 6 .2 .1 7  Let P be an A2 -C*-planar algebra, with presenting map Z : Vij(L) —* 

Pij, for some labelling set L. Then for all integers k such that —i < k < j :

(i) d im (7\j(L )) =  dim{Vi+kj - k{L)),

(ii) dim (Pjj) =  dim(P<+fcj _ fc).

Proof
For (i) there is a map gk : Vij —► Vi+kj-k for each —i < k < j  which is a composition of 

the maps <p and u j .  The result follows from the fact that gk is a bijection and gk(Vi j (L))  =  
P i+fcj_fc(L). For (ii) we define maps gk : Pij  —> Pi+k,j-k by gk{x) =  Z(gk(x)), and the 

result follows by the same argument as for (i). □

For L =  0 ,  we define S T C i j  to be the quotient of S T L i j  =  Vij{fZ>) by the subspace of 

zero-length vectors with respect to the inner-product on STLij  defined by (x, y) =  x*y, 

for x, y G S T L i j , where T  is the tangle defined as in Figure 6.16.

Then we have the following result:

L em m a 6 .2 .1 8  The element p(x) is a zero-length vector in STL 21+2J if and only if x is 
a zero-length vector in STL 21+1J+1 . Similarly, o;(x) is zero-length vector in STL21+1J if 
and only if x is a zero-length vector in STL2ij+i .

Proof
For y?, if x is a zero-length vector in STL2i+ij+i then (x , y) =  0 for all y G STL2i+ij+ i- 

Then for all y\ G STL2i+2j ,  we see by drawing tangles (p(x), yf) =  p{x)*y\ =  x*p~l (y{) =  

(^>2/2 / =  0, where y2 =  p~1(yi) £ ST L 2J+1J+1. The only if part follows by a similar 

argument on p~l . The result for u j  is similar. □

C orollary  6 .2 .1 9  For all integers k with —i < k <  j ,  dim (STCij) =  dim(STCi+kj - k).

Proof
By Lemma 6.2.17 with L =  0 ,  we have dim(STLij) =  dim(STLi+kj - k). The result 

follows by Lemma 6.2.18 since ip and u j  are bijections. □

If we consider the sub-operad Q =  (J Qi where Qi is the subset of Vito generated by 

tangles with no trivalent vertices (and hence no crossings) and where each internal disc 

Dk only has pattern ik, 0, then Q is the coloured planar operad of Jones in [64], and 

Q = Z(Q)  is his planar algebra.
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(-) 4,2-tangle T (+) 5,2-tangle T

Figure 6.31: T  —> T  for duality

6.2.10 D u ality

Let P(±) be an A2-(±)-planar algebra with presenting map Z  : V(±){P(±)) —> P(±), and 

let P  =  j P*»ji where Pi,j is isomorphic to via A. Let P(T) — P(T)(P) be

the ^ 2-(T)-planar operad. Given any (=F)i, j-tangle T G we form the (± ) i  +

l,jf-tangle T  in the following way. First, add a vertical line to the left of the tan­

gle T, with downwards (upwards) orientation for T  an tangle ((+)L j-tangle),

and relabel the vertices along the top edge (and similarly along the bottom edge) by 

t>i, u_j+i, V-j+2 , . . . ,  fo, v2, V3 , . . . ,  vi+i. Then using the braiding the tangle is put in stan­

dard form, i.e. so that the vertices are ordered u_J+i, V-j+2 , • • • ? ^i+i-

Each internal disc Dk with pattern ik, jk  and vertices labelled u_Jfc+i ,u_jfc+2, . . .  

along the top and bottom, is replaced by a disc D*,, with pattern ifc + 1 , jfc, where along the 

top and bottom an extra vertex is added between vertices u0 and v \ , and the vertices along 

both top and bottom are relabeled v - j k+i, v - j k+2, . . . ,  Vik + The new vertex v\ along the 

top is a source, sink if T  an (+)«, j-tangle, (—)i, j-tangle respectively, and is connected 

to vertex v\ along the bottom by a string which goes around the disc to the left, passing 

over the strings coming from vertices u_Jfc+1, . . . ,  vq along the top and bottom of the disc.

The labels Xk for the tangle T  are given by A(x^), where the Xk are the labels of the 

original tangle T.  An example of T  is shown in Figure 6.31, for a (—)4,2-tangle T. We 

set \ { T )  =  T.

P ro p o s itio n  6 .2 .2 0  Let p w  =  U j  Pm*, j  be an A 2-(±) -planar algebra with parameter 

q and presenting map Z  : P(±)(P(±)) —> P(±)- Then the dual A2-planar algebra P  defined 

above is an A2-(zf ) -planar algebra with parameter a  and presenting map Z  : V ^ f iP )  —* P  

defined by Z{T)  =  a f pA~l (Z(T)) ,  where p is the number of internal discs in T.
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Proof

Since A (P i j )  C P(±)i+i,j, the labels in a tangle T  G P(T)(P) give valid labels for 

T  G P(±){P(±)) and Z  satisfies the compatability condition (6.10) since Z  does. Thus P  is 

a general j42-(=F)-planar algebra. It clearly has the same parameter as Pi±b and dim(Po) =  

dim (P^°1)0) =  1, dim(Po0;1}) =  dim (P((̂ )11)1) =  1 and d i i ^ P ^ )  =  d im (P ^ j^ ) =  1, so P  

is an ,42-(=F)-planar algebra. □

Note that in our A 2 situation there is a distinction between (+ ) and (—) planar 

algebras, and for an v42-(+)-planar algebra P  the dual j42-planar algebra P  is an A 2 - 

(—)-planar algebra which is isomorphic to the subalgebra p(h°) of P.  For Jones’s planar 

algebras [64] no such distinction is necessary, and every planar algebra could be regarded 

as a (+)-planar algebra. The dual (^i-)planar algebra P  of a (+)-planar algebra P  is then 

also a (+)-planar algebra, identified with a subalgebra of P  given by the tangles where the 

string from the first vertex on the outer boundary of any tangle is a vertical through string 

whose endpoint is the last vertex on the outer boundary. The reason for this distinction 

is that since in Jones’s planar algebras the orientation of each vertex alternates, he can 

embed any tangle in the operad Vk (of tangles with 2k vertices on the outer disc) in 

Vk+i by adding a vertical through string to the left of the tangle and reversing all the 

orientations. However, in our A2 situation, in Vij  the first j  vertices along the top of any 

tangle all have downwards orientation whilst the next i have alternating orientations, and 

we would first add a vertex along the top and bottom between the j th and (j +  l ) th vertices 

and connect them by a vertical through string. But then reversing all the orientations 

causes the first j  vertices to all have upwards rather than downwards orientation, which 

is not an allowed tangle in the operad Pi+ij-  So we wanted to define a notion of duality 

which did not involve reversing all orientations, which led us to define both / l2-(+)-planar 

algebras and A2-{—)-planar algebras.

6.2.11 Tensor P rod u ct

Let P 1 =  (Ji . PP  and P 2 =  |J i . P 2j  be general ,42-planar algebras with presenting maps 

Z\ : V { P l ) —* P l and Z 2 : V ( P 2) —> P 2 respectively. We will define the tensor product 

P 1 0  P 2 in a very similar way to the how Jones does in [64]. Let L =  ^  . PP  x P 2- 

be the labelling set for P 1 0  P 2. We define a linear map C, : V(L)  —> V ( P l ) 0  V { P 2) 

by C(T) =  T\ 0  T2, where T  is an i , j - tangle with internal discs Dk labelled by (a?j[.,:r£), 

x\  G P 1, x\  G P 2, and Ti, T2 have the same unlabelled tangle as T, but with discs 

labelled by x\  respectively. We define Z pl®p2 : V{L) —* P 1 0  P 2 by Z pl®p2(T) =  

(Z1 0  Z2) o C(T) =  Zi(Ti)  0  Z2{T2). This map is surjective since an arbitrary label
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(x, y) G L will go to x <S> y  G P 1 0  P 2 if inserted as the label of the tangle in V{L)  

illustrated in Figure 6.26.

Let A be an annular tangle labelled by L and A2 have the same unlabelled tangle 

as A but are labelled by the first, second component respectively of the labels of A. Then 

£  o  A =  A\ 0  A2 o  £ , and if T  G ker f z p l ® p 2 ^ ,  then Ti G ker(Z*), i  =  1 , 2 ,  with Ti the 

tangles as described above, and Z pl<g,p (A(T))  =  Zi(A\{Ti) )  0  Z2(.A2(T2)) =  0, since P 1 

and P 2 are both / l2-planar algebras. It is clear that z pl®p2(T) =  Z i(7 i)Z 2(T2) for a 0- 

tangle T  (with Ti, T2 defined as above), in the sense that a 0-tangle labelled with P 1 x P 2 

is the same as two 0-tangles labelled with P 1, P 2 respectively. So P 1 0  P 2 is an ,42-planar 

algebra if both P 1 and P 2 are. Non-degeneracy, ^-structure, positivity, sphericity and 

irreducibility are all inherited by P 1 0  P 2 from P 1 and P 2. Then the tensor product of 

two ^-CP-planar algebras is also an A2-C*-planar algebra. Clearly P 1 0  P 2 =  P 2 0  P 1 

as (general) A2-planar algebras.

6.3 ^ -P lan ar algebra description of subfactors

We are now going to associate flat ,42-planar C*-algebras to subfactors associated to A V E  

graphs with flat connections.

Let Q be any finite S U (3) A V E  graph with Coxeter number n. Let a  =  [3]q, q =  el7r/n, 

be the Perron-Frobenius eigenvalue of Q and let (<fiv) be the corresponding eigenvector. 

With any choice of distinguished vertex *, we define the double sequence (Bifj ) of finite 

dimensional algebras by:

Co o o c Po.i c Po,2 c * Botoo

n n n rt

Pl.o c c Bl,2 c * Pl,oo
n n n n

^2,0 c ^2,1 c ^2,2 c  • • • * $2,00

n n n n

The Bratteli diagrams for horizontal inclusions Bij  C B i j + i  given by Q. If Q is three- 

colourable, the vertical inclusions P jj C Bi+i j  given by its j ,  j  +  1-part Gjj+i,  where 

P ~  t (p) is the colour of p  for p =  j , j  +  1, whilst if Q is not three-colourable we use 

the graph Q for all the vertical inclusions Biyj C Bi+ij .  We identify P 0)o =  C with the 

distinguished vertex * of Q.
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For i even we define a connection by

O-l

si 1<72 — q 3 3<71,(73*/ <72»0'4 *(73,CT4 ’ (6.13)

(74

which satisfies the unitarity axiom (1.31) as shown in Lemma 4.1.2. We denote by Q the 

reverse graph of Q, which is the graph obtained by reversing the direction of every edge 

of Q. For i odd, let <7 i, cr4 be edges on Q and let <r2, be edges on the reverse graph Q 

(so that 02 , 03 are edges on Q). We define the connection by

(6.14)

Then for the inclusions
Bi,j C

(6.15)
^i,j +1

n n
d

an element indexed by paths in the basis can be transformed to an element indexed 

by paths in the basis ~ 1 using the above connection: Let (a • o' • ol\ • a 2, o  • o' • ol\ • a'2) be 

an element in in the basis L*. , where o  is a horizontal path of length j ,  o' is a

vertical path of length i, ot\, ot\ are vertical paths of length 1 , ct2 , &2 are horizontal paths 

of length 1, and r ( a 2) =  r{a'2). We transform this to an element in the basis by

Pi 0'x

( 0  • o' • Q i  • a 2, o  • o' • a[  • <*2) =  Qli  i '92 Qi i  1%  (a  '  ’ ^ 1  ’ ^ 2 ’ 0  # 2 )*

02

where the summation is over all horizontal paths (3\, of length 1, and vertical paths p2, 

(32 of length 1 .

The Markov trace on Bitj is given in (5.6), for { o i , o 2) £ B i j , where k =  i + j , a  =  [3]9 

as usual, q =  exp(z7r/n). We define Bij00 to be the GNS-completion of Ufc>o w^b 

respect to the trace. As in [38], the braid elements

0 1 j
/

(Jj = /

appear as the connection.
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If Q is three-colourable then its adjacency matrix Ag  which may be written in the 

form
(  0 A 01 0

Ag  = 0 0  A 12

^ A 2o 0  0  J

where Aoi, A J2 and A 2o are matrices which give the number of edges between each 0 ,1,2- 

coloured vertex respectively of Q to each 1,2,0-coloured vertex respectively. By a suitable 

ordering of the vertices the matrix A i2 may be chosen to be symmetric. These matrices 

satisfy the conditions

A 0iAoi =  A 2oA20 =  A j2 (6.16)

A oiA qj =  A^Aao, (6-17)

which follow from the fact that Ag  is normal.

L em m a 6 .3 .1  For the double sequence (B i j ) defined above, dim(Bi}j) =  dim(Bi+k,j~k) 

for all integers k such that —i < k < j .

Proof

If Q is not three-colourable, then Bitj  is the space of all pairs of paths of length

i +  j  on Q, hence the result is trivial. If Q is three-colourable, let AF be the product

of j  matrices Aj • =  A 0iA i2A 20A 0i • • • A jz ij ,  and A?j the product of i matrices A =  

A j j ^ A j j ^ A j j ^ A j j ^  • • • A', where A' is A jj+r if i is odd, A j m  if i is even, and p 

is the colour of p. Then if A*j =  AJjA?j, the dimension of Biyj is given by (A»jA^) .

Using (6.16), (6.17) it is easy to show by induction that A ijA f j  =  (AoiAo1)l+J'. So 

dim(Bi+fcj _ fc) =  (Ai+kj-khJ+kj-k) op =  ((A oi^oi)i+j) 00̂ =  dim (B^) .  □
For all i , j  >  0 we define operators U-k £ k =  0 , 1 , . . .  , j  — 1, which satisfy the 

Hecke relations H1-H3, by

U-H =  J 2  (Cl • 71 • m  ■ <2 • C'> Ci ■ 72 ■ % • C2 • C')> 0 < k < j - 2 ,
K i l = j - 2 - f c , I C / l=< 
h i l  =  |r?il =  l . K 2 l =  fc

IC I=J-1 , IC 'I=*-1  
l7il = l»»Jl = l

where £, £' are horizontal, vertical paths respectively, and Uf*™ are the Boltzmann weights 

for A (n). The embedding of U-k £ Biyj into Bj+ij is f/_fc, whilst the embedding of 

U-k £ Bij  into Bitj +i is U -k - 1- We have B ij  D alg(f/_J+i, t/_J+2, . . . ,  U-\,  Uq). It was 

noted in Section 1 .2.2  that when Q =  A^n\  the algebra Bij  =  alg(f/_j+i, U_J+2, . . . ,  C/_i_ 1) 

for I =  0 , 1 .
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Lem m a 6.3.2 The square 6.15 is a commuting square.

Proof

Note that for the A  graphs, the result follows by [112, Prop. 3.2]. However, we prove 

the case for a general S U (3) AT>£ graph Q. By [39, Theorem 11.2], the square 6.15 is a 

commuting square if and only if the corresponding connection satisfies

o\

V '' y/^sM^sicr's) , t ( _  x x (a 1Q\
/  > J. JL CT3i  i a2 V3 I i CT2 ~  0 \ ,o\ <73, >  (6.18)(rs(cX2)lrs(cr4)  .

0 2  , 0 4 tr4

where <7!, crj are any edges on the graph of the Bratteli diagram for Bij  C B ij+ i, 03 , 03 

are any edges on the graph of the Bratteli diagram for C Bi+i j ,  cr1? and a2, cr4 are 

any edges on the graphs of the Bratteli diagrams for Bij+i  C Bi+itJ C Bi+i J+i

respectively, such that 5 (02) =  r(<7i) =  r(a[)  and s(a4) =  r (a 3) =  r(a'3).

For i even, the connection on Q is given by (6.13). Then the left hand side of (6.18) 

becomes

02,04 (Ps{a2) (t)r{a3) \  0s(cr1)0 r (a 2) 7

u*l,<T3u<r2><r4 \ y ,0̂ (74))
<t>3(0[)<l>r(02) v

0s(<ri)0s(cr/1)^r(o-2) 7 y
VF(A(7’<73’cr4)) lF (A ^ ’ai’(T2))lT (A (7,’<7,1’<72))lT (A (7’<T3-CT4))

\ / 4>s{a3)4>s{o'z ) (  S T '  0 r (a 2) r «- 
j . ,

(Pr{az ) \  CT2 (f)s(a2)

0*(ai)03(a2) 0s(«ri)0s(<r2)

(4>s(a3)4>r(cr3)<fis( 0 3 ) 0̂ 1 , 0 3  ̂ o[, a3 “1“ 0r(ai)<̂>s(a3)0r(cT3) ,CTj 0̂ 3 ,0 3)
0s(cri) </>s((T2) 0 s(<Tj )

> / 0 s ( a 3 ) < f i s ( a '3 ) (  <f>r(a2 ) f o l 2  , ^ X  X i X X _ X  X
— 1 ( /  v / [2] +  1 J ôri ,0-3 ̂ CTi +  ĈTi,aî cT3,cr̂  — “cri ,0 ^ 0 3 ,0^1

(Pr{a3) \  ^  (Ps(a2) /

where 9 + 9 -1 =  [2], Y la2 r̂(g2) — [2]2 +  l  =  [3] — [2]2 +  l  =  0 since [3] is the Perron-Frobenius 

eigenvalue for Q, and where we have used equations (4.1) and (4.2) for the first equality. 

For i odd, the connection on Q and Q is given by (6.14). Then the left hand side of
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(6.18) becomes

cr4

}   ̂ 031 1̂ 2 £3! i?2
0 2 , 04  * E

E  f ^ A . A ^ A ' ,  A  -  g !"3”74̂ 1'^ E  W, (A h « * > )V ^ (A h A « ))
V <A3(.4)0r(52) v(72,̂ 4

— vV(A(y,5P3'ori))M/(A(')'/-(J4’52))
0 5(a4)0r(52) “

1 VK(A(7’<74’CT2))M/'(A('Y'’CT4-52))Vy(A(7/’,T3’ai))M/(A^'a3’ori)) J 
^loo)  rrf  /<f>2< \ —ŝ(cr4)̂ r(o-2) 7iy  

[2]=  «a,v1<S.„.i -  T — 4 ------ E  H '(A<™ '52>)VK(AhA,<n))
<f)r(ai)<f>r(CT3)

<f>‘ < \4> \ ^s{eT4)̂ r(tT2) 7iy

'<7l,0X WCT3 ,<73 5

since s(cr4) =  r(<j3), r (a2) =  r(cr1), where we have used (4.1) for the last term of the 

second equality.

Then (6.18) is satisfied, and 6.15 is a commuting square. □

Then as in [38], we define the Jones projections in Bitj , for i =  1 , 2 , . . . ,  by:

« - . =  E  i V ^ (y> K - c w - y . c - c ' - v ' - v ' )
'  [oj 0 r(C ')

ICI=j.K/ l= > -2  ^  '
lV l  =  | r / l  =  l

where £ denotes the reverse edge of £. Let Ẑ Mi-x be the conditional expectation from 

1,00 onto Bij<x with respect to the trace. For x E i^Mi-iO^) is given by the

conditional expectation of x onto 13* j ,  because of Lemma 6.3.2. Clearly etx =  xet, for 

x E £ /_ 1)00, since a: and e* live on distinct parts of the Bratteli diagram (cf. (1.34)). Let 

x =  (a i • a \ -(3[,ct2'& 2 *P2 ) ^ Biji  where a* are horizontal paths of length j , a* are vertical 

paths of length / — 1 and f t  are vertical paths of length 1, i — 1,2.  Then

<>ixei =  ^  1 S S ) ( ( l . ( ; . 7 ; . y u ( r ( i . , ; .  j )
, 3  0r(CO  0 t-(Co)

K i l = j . K , l = i - 1 1 v 2
l 'r'l =  l’?' |  =  | / / |  =  l

x (tt! • a i • /?} • / / ,  c*2 • c*2 • ^ 2  • /O f e  * C2 • 72 • 72, C2 • C2 ' ^ 2 ' V2 )

\/0r(/?i)0r(/?£) jf ( 1 1  > / ~i\
=  Z .  ---- T - - ----------- T - - ---- ^  («i * • 7j • 7i, «2 • «2 • % ■ 77J),

h[\ = W2\ = l ' T'(a 2) ^ ( « x )

187



and

Ei- i (x)et

^  1 y j 0 r (V )0 r ( i^ )  <t>r{0[) s  ( / / / / / , \
2 ^  7^12— TTZ----- 1 T —M &  (<*1 * «1 * /* ■ * .<*2 • <*2 • • 1/ )

K|=;,K'|=i-i ^r(C,) ^r(a,l)
|-/| = I’7/| = Î /| = I>'/| = 1

x(C-C' - 7 ' -7 ' , C-CWi  -v' )

E l  a /  0 r(7/)^>r(r/) \ /  0 r(/?i )^r(P') / , , ~  t t ~ \

, , „ „ P F - S 5 ------------

So e/xe* =  Ei-\(x)ei  for all x £  Bj.oo- Let y =  (ai-ot^-a^-oc^, Pi - P[ • P2 ■ P'3) £ £ /+ ij , where 

q 1} /?i are horizontal paths of length j ,  a j, /?J are vertical paths of length I — 1 and o', p[ 

(t =  2,3) are vertical paths of length 1. It can be easily checked that y  can be written (up 

to some scalar factor) as X\eix2 for x i, x 2 £  Bij ,  by choosing x\ =  (cti • • ct'2, (J\ • o\ • Q3),

^2 =  {p2 • ^2 • P^Pi  • P[ • P2), where cr*, <7', i =  1 , 2 , are any paths such that rfcrj) =  

r {a2) =  r{ct'z). So Bi+1)00 is generated by B /)00 and e*. Then e/ is the Jones projection for 

the basic construction Bf_i )00 C Bit00 C £ /+ i)00, I =  1 , 2 , . . .  . By [101, Prop. 1.2] if we 

set N  =  £ 0)oo and M  =  B ij00, the sequence B0iOO C B i j00 C B 2i00 C B 3)00 C • • • can be 

identified with the Jones tower N  C M  C Mi C M2 C • • •. It was shown in [38] that for 

Q =  7t(n), n <  0 0 , if * is now the apex vertex (0 , 0 ) of A^n\  then this subfactor is the 

same as Wenzl’s subfactor in [112] for 5/7(3), and we have the following theorem from 

Theorems 3.3, 5.8 and Corollary 3.4 in [38]:

T h eorem  6 .3 .3  In the double sequence (Bitj ) above for Q =  A ^  or V^n\  n <  0 0 , 

with * the vertex with lowest Perron-Frobenius weight, we have B'0oo n  Bi>00 =  Bi)0, i.e. 

iV 'flM j-i =  Bi0 . The principal graph for the above subfactors is given by the 01-part £ 0i

ofG.

The connection will be called flat if any two elements x £ Bk,0 and y £ Bqj commute. 

This is equivalent to the relation

P = 1 (6.19)

where a is a path of length 21, I £ N, with the first I edges on Q and the last I edges on Q 

Suppose we have an arbitrary element z° in B'0 n  £fci00. If we set zi =  EBkl(z°) then 

2/ £ Bq i n  Bk,i'
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/

Let d be the smallest integer such that the Bratteli diagram for the inclusion B0^ C Bo,</+i 

is the same as the Bratteli diagram for the inclusion Bq^ + 3  C Bo,d+4- Then for all 3/ >  d, 

the algebras B'03lnBk,3i are isomorphic, since they have as basis elements indexed by pairs 

of paths on the 01-part Qoi of Q which start from any 0-coloured vertex of Q. Let A  be 

a finite dimensional C*-algebra isomorphic to these algebras, with natural isomorphism 

03/ : Bi 3l n B k>3{ —+ A , so that A has as basis elements indexed by pairs of paths on the 01- 

part 0oi ° f  G which start from any 0-coloured vertex of Q. Let || • || be the operator norm. 

Since ||0 3i(z3/)|| =  11*3/11 =  II^Bfci3i(*0)|| <  ||*°||, the sequence {0 3/(z3,)}/ is bounded in 

the finite dimensional algebra A. Then by compactness of any bounded set in A, every 

sequence has a convergent subsequence, and hence there is a subsequence { l j } j  such that 

03/j (*3/j ) —► * and 03/j+3(*3/j-(-3) —> z' as j  —> oo, for some z, z' G A. Let A be the algebra 

illustrated in Figure 6.32, where we have two embeddings of A into A, and along the top 

and bottom we have elements indexed by paths of length 3 on Q. Since ||z3j — *3/+3||2 ~ » 0 

as I —> oo, we have z • id ^  =  id ^  • z', as in Figure 6.33. Here the equality means that 

z • id ^  is identified with id ^  • z' using the connection, id ^  =  a ) on G, and

by a • b we mean the concatenation of the paths that index the elements a, 6, e.g. if 

a =  (Pi,P2 ), b =  (cri,c72) then a • b =  (pi • a u p2 • <r2)-

If the connection is flat we have z' =  z, i.e. z • id ^  =  id ^  • z. Let z(v)  be the 

component of z which has initial vertex v, and regard z(*) as an element of Bkto- Then 

limj^oo 11z3f. — *(*)|h  =  0, and z° =  z(*) G Bk,o- Similarly, and z(*) G Bk,o is in 

Bq D Bkioo- Then for graphs where the connection (6.13) is flat, the higher relative

G G G

id(

id(

Figure 6.32: Algebra A Figure 6.33: z • id ^  and id ^  • z'
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commutants are given by the Bky0, that is, B'0 oo n  Bky00 =  Bky0. The above is Ocneanu’s 

compactness argument (which first appeared in [92]) in the setting of our S U  (3) subfactors. 

If Q is a graph with flat connection, then the principal graph of the subfactor B0yOO C B\yOQ 

will be the 01-part Qoi  of Q.

Flatness of the connection for the A , V  graphs was shown in Theorem 6.3.3, where 

the distinguished vertex * was chosen to be the vertex with lowest Perron-Frobenius 

weight. The flatness of the connection for the exceptional £  graphs in not decided here. 

The determination of whether the connection is flat in these cases is a finite problem, 

involving checking the identity (6.19) for diagrams of size 2d g 01 x 2 ( d g  +  3), where d g  is 

the depth of Q  and d g 01 is the depth of its 01-part £ o i-  This is because for the vertical 

paths, the algebras B j + i j  are generated by Bij  and the Jones projection e* for all I >  d g 01, 

and e* does not change its form under the change of basis using the connection. For the 

horizontal paths, by Lemma 5.1.7 we see that the algebras Biyi+i are generated by Biyi 

and U - i  for I >  d g  +  3, and the Hecke operators U - i  do not change their form under the 

change of basis, as is shown in the proof of Theorem 6.3.4 below.

We have not yet been able to determine whether or not the connection defined by 

(6.13), (6.14) is flat for the £  cases, where the vertex * is chosen to be the vertex with 

lowest Perron-Frobenius weight, since the number of computations involved, though finite, 

is extremely large. We expect that this connection will be flat for the exceptional graphs 

£<8>, f,(12) and £<24>, since these graphs appear as the M - N  graphs for type I inclusions 

TV C M, as in Table 5.1. We expect that this connection will not be flat for the remaining 

exceptional graphs £^12\  £ ]12̂ and £5^  for any choice of distinguished vertex *. We 

also expect that the connection will not be flat for the A *, V* graphs, for any choice of 

distinguished vertex *. The principal graph for the graphs with a non-flat connection is 

given by its flat part, which should be the type I parents of Table 5.1.

6.3.1 F lat ^ 2-C'*-planar algebra from  SU(3) A D S  subfactors

We will now associate a flat v42-C*-planar algebra P  to a double sequence (Biyj ) of finite 

dimensional algebras with a flat connection.

We define the tangles W _k, k =  0 , . . . ,  j  — 1, and //, / =  1 , . . . ,  i, in P jj(0 )  as in Figure 

6.34, where the orientations of the strings without arrows depends on the parity of i and 

1.

Let Piyj =  Bij .  We will define a presenting map Z  : V i j {P )  —* P i j • Let T  be a 

labelled tangle in Vij  with m  internal discs D k with pattern ik, j k and labels xk £ Bikj k, 

k =  1, . . .  ,m.  We define Z(T )  as follows. First, convert all the discs Dk to rectangles,
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1 2 j-k 1 2

W , = x /  =

j+i
KJr\

Figure 6.34: Tangles VF_k and fi

with the first ik+jk  vertices along one edge, and the next ik+jk  vertices along the opposite 

edge, and rotate each rectangle so that those edges are horizontal with the first vertex on 

the top edge. Next, isotope the strings of T  so that each horizontal strip only contains one 

of the following elements: a rectangle with label xk, a cup, a cap, a Y-fork, or an inverted 

Y-fork. Let C  be the set of all strips containing one of these elements except for a labelled 

rectangle. We will use the following notation for elements of C, as shown in Figures 6.35, 

6.36 and 6.37: A strip containing a cup, cap will be U ^, f l^  respectively, where there are 

i — 1 vertical strings to the left of the cup or cap. Strips containing an incoming Y-fork, 

inverted Y-fork will be Y ^ , A ^  respectively, where there are i — 1 vertical strings to the 

left of the (inverted) Y-fork. A bar will denote that it is an outgoing (inverted) Y-fork.

1 /-I / z'+l i+2 j+2 1 z-1 i j

• T

/ /+1 i+2

r \
M /-I i i+\ i+2

Figure 6.35: Cup and cap

J+2

1 /-I /' z+1 i+2 7+1 1 z'-l / z+1 i+2 y'+l

Y. Y
1 z-1 z z+1 j  1

Figure 6.36: Y-forks and

z'-l / z'+l 7

1 z'-l z i+2 7+1 1 z'-l z i+2 7+1

S
z'-l z z'+l z'+l 7 1 z'-l z z'+l z‘+l 7

Figure 6.37: Inverted Y-forks and
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For an element c E C  with n i, n2 strings having endpoints (we will call these endpoints 

vertices) along the top, bottom edge respectively of the strip, let the orientations of these 

vertices along the top, bottom edge respectively of the strip be given by the sequences v ^ ,  

respectively, where for i =  1,2,  =  (vq \  , . . .  , v ^ ) ,  where Vq̂  E N U {0}

and E N for k >  1, with J2k=i vl^ =  ni • The numbers denote the number of 
consecutive vertices with downwards, upwards orientation for k even, odd respectively. 

Note that if the first vertex along the top, bottom of the strip has upwards orientation, 

then Vq  ̂ =  0 for i =  1,2 respectively. The leftmost region of the strip c corresponds to 

the vertex * of Q, and each vertex along the top (or bottom) with downwards, upwards 

orientation respectively, corresponds to an edge on Q, Q respectively (Q is the graph Q 

with all orientations reversed). Then the top, bottom edge of the strip corresponds is 

labelled by all paths on Q and Q which start at * and have the form given by v ^ .  These 

paths are uniquely described by the sequence of edges they pass along. Let H \ , H2 be the 

Hilbert spaces corresponding to all paths of the form v ^ ,  respectively. Then Z(c)  

defines an operator Mc E E n d (//i, H2) as follows.

For a cup U ^,

\ J  4*r(Pi)
^cti,Pi^a2,P2 ' ' ' ^(*i-i,Pi-i^cti,Pi+2^aci+ i,Pi+3 ’ ' ’ ^atTn,Pm+2^/3i ,0i+1 /  , 1" > (6-20)

y v s i P i )

for paths a =  oti ■ ot2 - • • etj, (3 =  f3\' • • (3j+2.

For a cap f l^ ,

MnW =  (6 .21)

For an incoming (inverted) Y-fork yW or

( A ^ y  (i))ap fiai,Pl ' ' * ^ a i - l , / 3 j - l ^ Q i  +  l , / 3 ,  +  2  ' ' ’ ̂am,Pm + 1 /  ,  ̂(̂{oti-PiPi+1 ) ) >
\ / (Ps(ai)<Pr(ai)

(6 .22)
1

) a ,/3  ~  ^<x\iP\ ' ' ' ^£**+2,01+1 ' ' ' batm+i,Pm r j ---------T -------- ^ ( ^ ( / 3 , ' O i + i - a i ) ) )
yJCPsiPiWriPi)

(6.23)

where W  is a cell system on Q satisfying (4.1) and (4.2). 

For an outgoing (inverted) Y-fork or

My(i) =  M* (l), (6.24)

MX(0 =  M ;(l). (6.25)

For a strip bk containing a rectangle with label Xk =  ^7,7' (7>V) where A7i7/ E C

and (7 , 7 ') E Pik,jk are matrix units indexed by paths 7 , 7 ', we define the operator
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Mbk =  Z(bk) as follows. Let pk, p'k be the number of vertical strings to the left, right 

of the rectangle in strip bk respectively, with orientations given by the sequences =
/ (p/c) (pfc)\V0 > 1̂ ! l VPkk))l

(P' ) (V')  (v' 1(v0 h , v x k , . . . ,  vpA ) respectively. We attach trivial tails

of length pk of the form v^Pfĉ (on Q , Q) to xk and use the connection to transform 

this to an element in the basis which has the first pk edges of the form v&k\  followed 

by j k edges on Q and lastly i k edges on Q, Q alternately (with the (pk +  j k +  l)-th  

edge on Q). By flatness of the connection on Q, this will be an element of the form 

2 77',c,C'p^7.7,P<.C,(/i ‘ Ci A4 ’ O i  where p̂ <̂ G C are given by the connection, and v  are 
paths of the form v^Pfcb Adding trivial tails of length p'k and of the form v^p̂  gives an 

element ̂ 7,7'Pc,< ' ( / ■ * Ai ‘C, 'z/) which defines the matrix (M<,fc is indexed

by all paths of length pk +  jk +  ik+p'k on Q, Q of the form (v (pfc), j k +  1 , 1 , 1 , 1 , . . . ,  v ^ ) ) .

For a tangle T  E V ij  with I horizontal strips S/, where S\ is the lowest strip, s2 the 

strip immediately above it, and so on, we define Z ( T ) =  Z ( s i ) Z ( s 2) ■ • • Z(si),  which will 

be an element of Pij.  This algebra is normalized in the sense that for the empty tangle 0>  

Z ( O ) =  1. We need to show that this only depends on T, and not on the decomposition 

of T  into horizontal strips.

The following theorem shows that the double sequence (Bi j )  for an A V £  graph with 

a flat connection gives a flat y42-C*-planar algebra. However, unlike [64, Theorem 4.2.1] 

for Jones’s planar algebras, we have been unable to prove the uniqueness of this A2-planar 

algebra, due to the existence of the tangles /m  ̂ of Figure 6.47. These tangles and the 

corresponding elements in (B i j ) are not understood very well.

T h eorem  6 .3 .4  Let Q be an AT)8 graph such that the connections (6.13), (6.14) a,re fiat. 

The above definition of Z( T)  for any A 2-planar tangle T  makes the above double sequence 

(Bi j )  for Q into a flat A2-C*-planar algebra P  (=  P(+)) with d im (P 0) — dim(PQ°’1̂ ) =  

dim(Po 2’2̂ ) =  1. This A2-C*-planar algebra has parameter a  =  [3] (the Perron-Frobenius 

eigenvalue for Q), Z(I i j (x) )  =  x, where I i j (x)  is the tangle I{j with x E Pij  as the in­

sertion in its inner disc, and

(2) Z ( W_ k) =  U . k, k >  0,

(ii) Z(f i )  =  aeh I >  1,

(Hi)
i l l i n

r f f -1
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(iv)
Z = Z

ii
T  7?T 

X  
'•••ti -  ii

i m
•x‘

r w
= z 7+7 "T 

X'-W - 1

(v) a  JZ l£
j£ T i

=  t r ( x ) ,

/or .r G Pij ,  i , j  >  0. In the first equation of (Hi) the first j  +  1 vertices along the 

top and bottom of the rectangle are joined by loops, and the second equation only holds 

for i 0. In the first, second equation of (iv) respectively, the x on the right hand side is 

considered as an element of Pi+ij ,  Pij+i  respectively.

Proof

First we show that Z( T)  does not change if the labelled tangle is changed by isotopy 

of the strings. We use the following notation d ^ . ,0i+k := 5a .t0.5Qi^upj+1 • • • 6a.+kil3j+k. 

Case (1)- Topological moves.

We consider the cup-cap simplifications (which Kauffman calls Move Zero in [70]) 

shown in Figure 6.38.

I /-I i h I 7-1 i /+]

f t )

7-1 7 7+1 I 7-1 7 7+1

Figure 6.38: Two cup-cap simplifications

For the first cup-cap simplification of Figure 6.38 we have

(AI\j(i+1) M n (i ))a p  =  }  \('))/3tJ

=  d.

E Oa»,7i a«m,7m+2 X  \/* t* r  (ji+ 1) p f i j - l  ,7i — 1 o/?m.7m+2 f  . V '̂ r(7i)
oil .71 a i+l )7i+3 7*+l )7i+2 rr  01,71 0i,m+2 7»,7i+l r j — ■

7 y Vs i  7i+i) yVs^i)

,aa_i,/3i_i ^ ( 7^ 1) \ / ^ r ( 7i) _  x (6.26)
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The second simplification in Figure 6.38 follows from the above, since

■̂ in(i+1) =  =  1. (6.27)

Case (2)- Isotopies involving incoming trivalent vertices 

We require the identities of Figure 6.39.
I /'-I / /'+l m

(a)
v)

I /-1 i i+1 m

(b)

I /-I / i+l m 1 /'-l /' /'+1 m

( c )
I /-I I /+1 /+2 m+ 1 1 /-I / /+1 ;'+ 2 m+1

A)
I /'-I /' /+1 i+2 m + 1 1 /-l / /+ ! /+2 m+l

(*)

1 /-I i /+1 /+2 /+3 m 1 /- l  / /+1 /'+2 /+3 m

Figure 6.39: Isotopies involving an incoming trivalent vertex

For (a) : (M Y(t)Mn(i+i))Q  ̂ ^   ̂ (-^y(*))q,7 (-^u(,+1))p
7

— <9Qi- 1’7*-1/9am+1’7m+2______-______u /,~  ,
/  ^  a i , 7 i  c * i+ i ,7 i+ 2  / T  T  ( a » - 7 i '7 i + l )^  V0s(ai)0r(ai)

. n0i >7* ,7m+2 r _ _  V^d'Yi+i)
/?1,71 0»+l,7i+3 7*+1>7»+2 ^  ^

+ l)

Qai -  1,0i -  1 f)Otm+1,0m ________ _̂________ C \   ̂ f   T l /   \ /^ ( t > i+ l )
On ,0i dfi-i-2>0»+1 /T  T aa»+l,7»+2 07i+l,7i+2 KK(ai-0»-7i+l) /T--------

V ^ (a .)0 r(«i) !“  VPr(ft)
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The identities (6), (c) and (d) follow similarly. For (e): 

( M u ( i - l ) M Y(i))Q^ =  ' y  ^

and

_  \  ' ftai-2’,yi-2 ppm,lm+2 X  y/^rfri-l)

V  ai’71 a , _ 1 ’7 ‘+1

p p i — 1 ’0 i — 1 f f l m + 2  > P m + 3
11,Pi  l i + l , P i + 2 \/0s(7i)0r(7i

(ii-Pi-Pi+i)

\ /  4>r(Pi-i 1_  OPti-2>Pi-2 f f*Tn,Pfn+3_____________________________________ _______
o i i /J i  a t — i , 0 i + 2  /  j .  ~ /  j . j. “ (/3i - i - f i i - f l i + i )y/VsiPi-1) Y VsiPi-riYriPi-i)

:W,

E f ¥ * i - 2 , l i - 2  f¥*m  ,7m+2 X  ^ / ^ i l i - l )
Q1.71 Qi-1,7i+l 7»-l >7» /T ------------

7 V ^ (  7 ,- l )

o7i-2./3t-2 Q7m + 2,/?m+3 
' 71 >01 °7i,/3i+i \ /  0s(7i_1)0r(7i-i)

(7i- 1 •/?»-! /?i)

  f )O t l - 2 , P i  2 p f t m , P m + 3
~  °au0\

s ( f t + i )

The corresponding identities for outgoing trivalent vertices hold in the same way. Then 

the identity in Figure 6.40 follows from the cup-cap simplifications and identities (a)-(e) 

for incoming and outgoing trivalent vertices.

1 /-] i f'+l /+2 m+1 /-l / /+! /+2 m+1

Figure 6.40: An isotopy involving an incoming and outgoing trivalent vertex

Kuperberg relations. Before checking isotopies that involve rectangles, we will show that 

the Kuperberg relations K1-K3 are satisfied. For K l, a closed loop gives

7 7i: V>*(7i)

S(7l)=r(Q‘ X> (6-28) 
=  Sa,0 y z  M r (ai-1)> r (7i)) , r(7,) =  <W[3],
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by the Perron-Frobenius eigenvalue equation Ax  =  [3].t, x  =  (<()v)v, where A is Ag  or 

Ag  depending on whether the loop has anticlockwise, clockwise orientation respectively. 

Next consider K2. For the first diagram in Figure 6.41 we have

(M Y(i)Mx (i) ) Q/3 =  ^ 2  (M r ^ ) a n (Myw )/?,7
7

=  +  l \ _________ W , ~
/  v Qi.71 £*»+i >7»+2 f~L T (a*-7t-7i+l;

^  y /< P a { a i ) ( P r { a i )

-1 i7i -  1 7m +1 ___________________

A . 7 1  A + l . T i + 2  ^ s ( f t ) ( ^ r ( f t )  "

  — 1 ,Pi — 1 C\C*m ,0m
Q l,/3 l Qj+ i,/3 i+ i

7*<7i+l

  - 1. 0i  - 1 ,/?m r fol
-  d a u 0 l  d a i + u p i + 1 ° a i , 0 i M

=  5a,p[ 2],

where (6.29) follows from Ocneanu’s type I formula (4.1).

1 /-I i ;+l m I /-

Figure 6.41: Tangles for checking K2 and K3

(6.29)

i /+1 m

Finally, for K3 we have the second diagram in Figure 6.41, which gives

(M y(,)M-a-i)M^(i)Mx{i-i)) a j3 =  ^ 2  (m yw )Q)7
7.C.77

=  V  ^ » i - 1 . 7 i - 1 ^ 0 m , 7 m + l  _________ 1__________M A ~

2 .  « . , 7 .  i " i '7 , +

o C i - 2 > 7 i - 2  QCm ,7m +l ___________ ^____________ TJ/
Cl >71 Ci.7»+1 Z5T-  . A  . . 7 ( C » - l ' 7 i - r 7 » )

n^i-l.Ci-l a*7m+l,<m
r/i >Ci iy»+2,C*+i \ /  0 s(C,)0 r(Ci) 

1

WV.(Ci-f7t+r̂ i)

< iSHt-2 ,Pi — 2 iSf/m + l ,Pm _______________

Tn,/?1 r/,+1’A
VF(0i  l Vi V i - l)
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  Q Oti — 2i0i  — 2 QOtrrufi m  J_____________
oi,A “‘+>A + '^ 5(a._l)^ r(Qj)v/ 0 r(Q._l)^ r(ft_l)

5 3  <̂..-r. + 1 +1) ^(C.T, a ,_ 1 -r,) ^ (c j .ft .« )^ (ft- i-5 -w r i)
•Yi.Ti+l.Ci-l rU?»-U

<»-T»i-l ’*?»

  Q & i - 2 , P i - 2  QCtmfim ____________ _̂____________
ot\,0\ ai+ i,0x+\

^   ̂ i W{oii -£l'£2)^(aj_i-£l .£3) .̂ 4 .£2 ) ̂ {0i - 1 -̂ 4 -̂ 3 )
1̂̂ 2,C3,44 ^r(6)

  Q & i — 2<0i — 2 Q O tm ,0 m  _____________________ ^
a x , 0 i  a l+ 1 ,0 l + i 0 s ( a j  i ) 0 r ( Q j )  v / 0 r ( Q i  i ) ( />r ( / 3j _ i )

' (^ai-i,0i-i^ai,0i4>s(ai-i)<Pr(ai-i)4>s(at)

+  $ai-i,crifipi_1'Pi(i)r(0i-i)4>s(ai-i)(t)r(a~Z1) S)

=  <50 a ^ i i  +  d- ,5 (6 3 0 ^
, . <*1>P1 Q»+l >Pi+l a *-l>Q* £?,_!,ft J, v '

SKr(ai) rr(Qi)

=  la,/i ”1“

where (6.30) follows from Ocneanu’s formula for Type II frames (4.2). This is the reason 

why the weights VT were used in the definitions of M Y, My, M A and Mx-

Property (ii) and the connection.

We will next show property (u) in the statement of the theorem:

( M - ^ ( j - k )  M y ( j - k )  ) a ^ ^   ̂ ( A l y ( j - k )  )~y a  ( M y 0 - fc))7,P
7

— -̂-----------UA — . I 3
Y  ", '0 ‘ 7; - t + „ « , - t + V 0 s h ; _i ) 0 r h ) _ fc)

r f / j - k - l , 0 j - k - l  r f / x + j - l , 0 i + j  ___________1___________^ ^   ̂ ^
■n.ft 7j-k+l i 0 j - k + 2  ^ (7i, fc)0 r(7i_fc)

=  d a i A 1'03 k lda]+Jk+l*0j-k+2 X ]  0 s(A)0 r(A)

  pia j - k - l , 0 j - k - \ £ \ a i + j i 0 i + j  J  J a j - k , a j - k  +1   / [ /  \
-  °,aJ_fc+2,Pi_fc+2MPJ_fc,P:,_fc+1 -  \ k) a,0

Since f/_fc is given by the tangle VT_fc, we see that the partial braiding defined in (6.2) 

gives the connection, where (6.13) is given by / \  and (6.14) is given by / \ .  For the latter 

connection, which involves the reverse graph Q, if

a —> b

1 I
c —► d
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is a connection on the graph Q , then

So we have that Z(T)  is invariant under all isotopies that only involve strings (and 

the partial braiding). This shows that the operators U-k do not change their form under 

the change of basis using the connection, since

■ I X

Note that we have not used the fact that the connection is flat yet, so the operators U-k 

do not change their form under the change of basis for any of the 5(7(3) A D S  graphs.

Case (3)- Isotopies that involve rectangles.

We need to check invariance as in Figure 6.42.

( a 1)

( b l

KJ J L

i— r

(O
V f - 1

Y

id')
y

W Y
Figure 6.42: Isotopies involving rectangles

For (a;), pulling a cup down to the right of a rectangle b is trivial since Mu commutes 

with Mb (since 6, U are localized on separate parts of the Bratteli diagram). Now consider 

(6'). By definition of Z(b) for a horizontal strip b containing a rectangle labelled £, we 

have for the left hand side
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V

where the second equality follows since Z  is invariant under all isotopies that only involve 

strings and the partial braiding. Similarly, for the right hand side we obtain

\J

and the result follows from (a'). The situations for (c7), (d') are similar to (a7), (67). We also 

have the isotopy in Figure 6.43. Let x =  (011, 0:2) G P * ^ , y =  (Pi, P2) £ P*2j 2 suc^ that 

|a*| =  k2 =  \Pi\ =  k4 =  i 2 + j 2 , 1 =  1,2. The case for general elements x  G  n  y G

pi2)j2 follows by linearity. W eh a v eZ (si) =  E ^ ,a ' y 3 - f i 5)

and Z (s2) =  ' ^2 ■ ^3 • P[ • ^5,^1 • v2 - V3 • P2 • ^5), where |/ii| =  |^ | =  A:*,

i =  1 , .. •, 5, |o 7| =  fc2, \Pj\ =  fc4, j  =  1,2, and pa; ,a'2,9/?',/3' €  C are given by the 

connection. Then

Z ( S l) Z ( s 2)

:= ^   ̂ (p i  ’ ^1 ’ P3 ’ P4 ' P5) ^1 ’ ^2 ‘ ^3 ’ P2 ^ i)

=  Pqv <*2qPl’02 (^1 * Qi ' ■ #  ’ ^ 5’ ^  ’ a 2 ' P3 • P2 • P s) =  Z ( s i ) Z ( s 2).
./3j

C ase Rotational invariance.

The other isotopy that needs to be checked is the rotation of internal rectangles by 

2ir. We illustrate the case where rectangle b has /q, =  2 vertices along its top and bottom  

edges in Figure 6.44.

J L

ut— r
k[ h k, k4 ks

U j

Figure 6.43: An isotopy involving two rectangles

200



lev-

p(x) X

Figure 6.44: Rotation of internal rectangles by 27r

Let x be the label of the rectangle 6, where x is the element (v , v') given by the pair of 

paths v, v' on the graphs Q and Q according to the orientations of the vertices along the 

top and bottom of the rectangle b. We add 4kb vertical strings to the right of the rectangle 

b such that the first 2kb have orientations corresponding to the first 2kb strings in the strip 

containing the rectangle b in p(x),  and the next 2kb have orientations corresponding to 

the last 2kb strings in the strip. Then we have x  —> x' =  ' P 2 ,  v' • P i  ’ P 2 ) ,  where

the sum is over all paths //i, p 2 of length 2kb on the graphs Q and Q according to the 

orientations of the vertical strings described above. Using the connection, we can write 

Ad(u)(x') =  £ M1)M2 E<,<' a w ( P i  ' C • P 2 , P i  • C' • P 2 ) =  Y t where u  is the unitary given by 
the connections which change the basis of the paths which index x1 so that it is indexed 

by paths on Q and Q according to the orientations of the strings in the strip containing 

the rectangle b in p(x), the second sum is over all paths C, C which have the same form 

as 1/, v ' , and the numbers a< /̂ G C are given by the connections. Then Y  =  Z(b') where 

b' is the strip in p(x) which contains the rectangle b.

For a horizontal strip Si and strip s2 immediately above it, an entry in the operator 

Z(s') =  Z ( s i ) Z ( s 2) is only defined when the path corresponding to the bottom edge of 

the strip s2 is equal to the path given by the top edge of si. So for example, for the two 

strips 51? s2 in Figure 6.45, even though there are non-zero entries in Z{s{)  for any path 

a =  c*i • ot2 • • •, the entries in Z(s')  will be zero unless edge a* is the reverse edge ct^i of 

Qj+i since the entries in Z ( s 2) are only non-zero for the paths 7  =  71 • 72 • • • such that
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.! r \..
7m 7, 7w

s
O',., Ct, Ctj.i

Figure 6.45: Horizontal strips s i, s2

7i 7»+i •

Let e = £\ • • -£5jtb, £; =  £;i • • -£5^ be two paths which label the indices for Y . For 
simplicity we consider the case kb =  2 as in Figure (6.44). By considering the hor­
izontal strip containing the rectangle, we see that Y£j£> =  0 unless =  ej for i =  

1,2,3,4,7,8,9,10. We see that in p(x), E\ is the same string as Eg and e'5, but that Eg 
has the opposite orientation to E\ and e '5 . We define the operator Y  by Y£̂  =  0 un­
less El = Eg =  Eg, e2 =  £7 = 4  e 3 =  £6 =  £10 and e 4 =  i l  =  e 9 , and Y£>£> =  
Y£̂  otherwise. Then p{x) =  A/u(*6+2) • • • M^k^Y Mn(2kb)Mn(2kb-i) • • • Mn(i) =
A/u(fcb+i)Mu(fc6+2) • • • Mu(zkb)YMn(2kb)Mn(2kb-i) • • • Mn(i). For any £ and e’ such that 
is non-zero, the caps contribute a scalar factor \Z4>r(e4)/y/<t>s(ei) =  v ^ s(es ) / \ / 0 s(4 ) — 
and similarly we have a scalar factor of 1 from the cups. Now E\ is an edge on Q (or 
Q) with s(£i) =  *, and hence p(x) is only non-zero for paths e5 • Eq and £5 • e'6 such that 
s(£5) = s(e'5) = *. By the flatness of the connection on £, the paths £, £' starting from * 
in Ad(u)(x')  are v, z/- the paths which indexed the original element x. Then the resulting 
operator given by p{x) will have all entries 0 except for that for the pair v, 1/ . Then 
p(pc)  =  (i/,i/)  =  x.

Then Z(T)  is invariant under all isotopies of the tangle T.

Properties (i)-(v).

For (z), we have i +  j  vertices along the top and bottom:

( M n ( i + j ) M u v + j ) ) a 4 3 =  ^  ( ^ u ( ' + J ) ) 7 ,a ( M j < ‘+J>)7 ,/J

7

l>a *+j l Q7i+j,«»+j+2X 
l l + j , O c i + j + 2  ‘

>a*+j+2 ̂ __ y/^>r(ai+j)
,<*l+j + 2 Qi + j ’a i + j  + 1 /  J. “\ /  0 s(ai+J)

7

A + j + 2)7»+j A +j+2^     y / f t ’r jP l +j )
7,+, , f t +, +2
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_  f l a l + j - l ’P l + j - l  p P ‘i + j + ' 2 , P i + j + 2  c   c  _ \ /  0 r(gt+i)0 r(^+j)
Q 1>^1 a i + j + 2 ) ^ i + j + 2  a i + j > Q i + j  +  l  0 i + j , P i + j  +  i  J.rs{otl+j)

=  a (el)c,l3-

Now consider property (Hi). We start with the first equation. For any x G Pij, 

EM'r\Mi-i{x ) =  ^(ELl'^ERl'lER]'^ • • • and so #A/'nMi_i is the conditional

expectation onto P/o°^ We now show that p /q 0̂  =  M 'nM *.j. Embedding the subalgebra 

Pi()J’0) of Pi)0 in Pi)00 we see that it lives on the last i — 1 strings, with the rest all vertical 

through strings. Then P/o°^ clearly commutes with M, since the embedding of M  — P i)OG 

in Pj)00 has the last i — 1 strings all vertical through strings, so we have D

For the opposite inclusion, we extend the double sequence (B ij )  to the left to get

# 0,0 c P 0.1 c # 0 ,2 c * #0 ,oo

n n n n n

£ 1,-1 c # 1,0 c # 1,1 c # 1,2 c — > # 1,00

n n n n n

# 2 ,-1 c # 2 ,0 c # 2 ,1 c # 2,2 c  • • • * # 2,00

n n n n n

Note that # i,_ i =  Po,o — C. Since the connection is flat, by Ocneanu’s compactness 

argument we have B'l o o r\ Biy00 =  Bit- \ .  Let x =  ( a i ,a 2) be an element of P*,_1. We 

embed x in Bit0 by adding trivial horizontal tails of length one, and using the connection 

we can write x as x' =  YlnPPufoiP'fih P'fa),  where ppup2 G C. We see that x' G B it0 =  Pi,o 

is summed over all trivial edges fx of length 1 starting at *, and hence is given by Z(T)  for 

some T  G Pi,o which has a vertical through string from the first vertex along the top to 

the first vertex along the bottom, i.e x  G P/,o°^ So M 'n  M*_i =  Pi,_i C P/,o°^ Similarly 

we find that M'k Pi =  P/o+1’° \  for —1 <  k <  i, where M _i =  TV, M0 =  M.

For the second equation of ( m ) ,  if x  G Pi)00 then x —> Z ( E li ' ^ 00(x)) is the conditional 

expectation onto P i- i)00 =  A /i-2> and the result for x G P»j follows by Lemma 6.3.2.

Property (iv) is clear. Finally, for (v) let x be a matrix unit (a, 13) G B i j , where 

i +  j  =  k. Then

\Z]-kZ{x) =  [3 }~kSa,g^ 4 > l  =  [Z}~k$a,0<pr(a) =  tr((a,/3)),

since 0 * =  1 , where x is the tangle defined by joining the last vertex along the top of 

T  to the last vertex along the bottom by a string which passes round the tangle on the 

right hand side, and joining the other vertices along the top to those on the bottom
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similarly. For 6j =  ( a i , P i )  G B itj  such that i +  j  =  k , I =  1,2, we have tr(b̂ b2) =  

^ai.o3tr((/0i,^2)) =  [3]"fĉ ai,a2^ ll/320r(a1) =  [3]_fĉ 1,620r(a1)• Then the trace is positive 
definite since the matrix units 6/ are mutually orthogonal elements of positive length.

The A2-planar algebra is clearly flat, since by the definition of Z(b) for a horizontal 

strip 6 containing a disc with label x with n vertical strings to the left of the disc, if Y is 

the operator defined by the horizontal strip containing the disc with label x and n vertical 

strings to the right of the disc which have the same orientations as those in the strip b to 

the left of the disc, then Z(b) =  A d (u )y , where the unitary u is given by the connection, 

which is just the definition of flatness.

To see the ^-structure, note that under *, the order of the strips is reversed so that 

(Z{s1)Z ( s2) - ’ Z ( si)Y  =  Z(si)*Z{si- i)* -  • Z(si)*.  For Mu(i), y / f a m / y/faifr) does not 

change under reflection of the tangle and reversing the orientation, so that (M^.))* is the 

conjugate transpose of as required, and similarly for A/n(»). Since the involution

of the strip containing an incoming trivalent vertex is X ^ , whilst the involution of 

the strip X ^  containing an incoming trivalent vertex is Y^l\  so by (6.24), (MY(t>)* is 

the conjugate transpose of A/^m and by (6.25), is the conjugate transpose of

M y (i) as required. To show that P  is an v42-C*-planar algebra we need to show that P  is 

non-degenerate, which is immediate from property (v ) in the statement of the theorem, 

Proposition 6.2.13 and the fact that tr is positive definite. □

D efin ition  6 .3 .5  We will say that an A2-planar algebra P is an A2-planar algebra for 

the subfactor N  C M  if Po,oo =  N,  F i)00 =  M, Pn,oo =  AZn_i, the sequence F0,o C Pi,o C 

P2,o C ••• is the tower of relative commutants, and if conditions (i)-{v) of Theorem 6.3.4 
are satisfied.

We now give the subfactor interpretation of duality:

C orollary 6 .3 .6  If PNcM = P ^ M is the A2-planar algebra for an SU(3)-AT>£ subfac­
tor N  C M  then, with the notation of Section 6.2.10, P  is an A2-(—)-planar algebra for 
the subfactor M  C M\, which satisfies conditions (i) ,  ( i i ) ,  (iv) and (v) of Theorem 6.3.4, 
and where condition (in) becomes (in)' :

(my

/

=  a M E u ; „ MJ x ) ,  Z a E u  J  x  ) ,

for i , j  >  0 .
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Proof

Let Q be the SU(3) AT>£ graph for the subfactor N  C M, * its distinguished vertex, 

and *M the (unique) vertex given by r(£) where C is the edge such that s(£) =  *• The 

(-)-p lanar algebra P  is the path algebra on the double sequence (Bij )  where £ 0,o is 

identified with *M, the Bratteli diagrams for inclusions Bij  C # ij+ i are given by the 

graph Q, and the inclusions B ij  C £»+ij are given by its j  — 1, j-part where

p G {0,1, 2}, p =  p mod 3 for p =  j  -  1 , j .  For rr =  £ 71l7a A7l)72(7 i, 7a), A7l)72 G C, 

the isomorphism A : P i j  —> P/+i°j is given by sending (7 i , 7 2) to (C * 7 i»C * 7 i) and using 

the connection to transform the paths C • 7» to the basis for paths which index 

which can be represented graphically as adding a string to the left of the disc containing 

x and conjugating by the connection. W ith Ifj the (—)i, j-identity tangle and x G Pi j ,  

we have Z(I~j{x)) =  Q“ 1A_1(Z ( /i“ (A(x)))). In I~j(A(x)) the added string forms a closed 

loop, which can be removed to contribute a factor a , giving Z{I~-{\ {x) ))  =  A(x). Then 

Z ( / i ~ ( z ) )  =  A ~ 1A(a:) =  x .

Property (i ) follows from Z(fi)  =  Z ( f i+1) =  aei+1, whilst (ii) is unchanged. Condi­

tions (iv) and (v) are obvious, as is the second equality of (Hi)'. For the first equality of 

condition (Hi)' we have

i+i

\
7+1

=  a ■ « (* ) .

□
For the subalgebra Q introduced in §6.2, we give an alternative proof of Jones’s theo­

rem that extremal subfactors give planar algebras [64, Theorem 4.2.1] in the finite depth 

case.

C orollary  6 .3 .7  Let N  C  M  be a finite depth type I I \  subfactor. For each k let 

Q k =  N '  f! M k ~ \.  Then Q  =  UfcQfc has a spherical ( A \ - ) C * -planar algebra structure 

(in the sense of Jones), with labelling set Q , for  which Z ( I k ( x ) )  =  x ,  where I k ( x )  is the 

tangle Ik with x  G Q k  as the insertion in its inner disc, and 

(i ) Z(fi )  =  a e h I >  1,

(» ) (TxI L /

^JT
|C*0 > =  S E m (x ) ,
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(Hi) Z =  Z
i i . . -  i i

X

k+1

(*'«) <5‘ Z
6 Tl
^ J j =  t r ( x ) ,

for x e  Q k, k >  0. In condition (Hi), the x on the right hand side is considered as 

an element of Qk+i■ Moreover, any other spherical planar algebra structure Z' with 

Z'(Ik(x)) =  x and (i), (ii), (iv) for Z' is equal to Z .

Proof

We define Z  in the same way as above, by converting all the discs of a tangle T  to 

horizontal rectangles and isotoping the tangle so that in each horizontal strip there is 

either a labelled rectangle, a cup or a cap. Then we define Mu(i) and Mn(o as in (6.20), 

(6.21). For strip hi containing a rectangle with label xi , we define as in Theorem 

6.3.4, using the connection on the principal graph Q and its reverse graph Q. The cup- 

cap simplification of Figure 6.38 follows from (6.26) and (6.27). The invariance of Z  

under isotopies involving rectangles as in Figures 6.42, 6.44 follows as in the proof of 

Theorem 6.3.4. That closed loops give a scalar factor of 6 follows from (6.28), where the 

Perron-Frobenius eigenvalue now is 5.

Properties (i)-(iv) are proved in the same way as properties (i), (iii), (iv), (v) of 

Theorem 6.3.4, and uniqueness is proved as in [64]. □

6.3.2 R ep resen tation  o f P a th  A lgebras as S TL  A lgebras

We now show that each B ij  for the double sequence (Bij )  defined above for Q =  A ^  

also has a representation as S T  Li j ,  where S T L i j ( 0 )  is the quotient of S T L i j  by the 

subspace of zero-length vectors, as in Section 6.2. Now B i j  =  S T L \ j  by Lemma 6.1.12. 

Let ip : B i j  —> S T L i j  be the isomorphism given by %p(U-k) =  W-k, k =  0 , . . . ,  j  — 1. We 

define maps for i >  2 by g2 =  Qz =  g4 =  (pcocp, g5 =  uipuip, . . . .

Let x =  ^7,y ( T 7 /)> ^7,7' ^ be an element of B ^ .  Then Z ( g f l (x)) e  B ^ + j - i .
We set xw  £ S T C i j+ j - i  to be the element \ p (Z(gf l (x))),  and since Z(W-k)  =  U-k 

we have Z ( x w ) =  Z(g~ 1 (.x)). For any x  G Bij ,  gi (xw)  G S T L i j  and Z(gi (xw )) =  

Z ( 0 i (Z(xw ))) =  Z(g t (Z(g~l (x)))) =  Z ( g {g~l (x)) =  Z ( h j ( x ) )  =  x. In fact, g{(xw ) G 

S T L i j ,  since if (gi(xw ) , gi(xw )) =  0, then (x,x)  =  ( g f 1( x ) , g f 1(x)) =  (xw , x w ) =  

(Qi(xw), 6 i(xw))  =  0 by Lemma 6.2.18, so that gi(xw ) is a zero-length vector only if
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-j+ 1 0 1 2  3

f
(3) _

> <T>

> > 1 < 
r 1 Y

Figure 6.46: Element f [ 3̂

x is. Then for every x E B i j  there exists a unique y  =  6i(x w ) £ S T j  such that 

Z(y) =  x , so that Z  is onto. Since, by Lemma 6.2.17 dim ( S T  Cij )  =  dim(«ST£iii+j_ i) =  

dim (B1,t+J_1) =  dim (/TJ), Z  is a bijection. By its definition, Z  is a homomorphism since 

it is linear and preserves multiplication. Then Z  : S T C i j  —> B ij  is an isomorphism, and 

we have shown the following:

L em m a 6 .3 .8  In the double sequence (B i j )  defined above for Q =  A^n\  each B i j  is 

isomorphic to S T  Ci j

In particular, there is a representation of the path algebra for the 01-part .Aq7̂  of A ^  

given by vectors of non-zero length, which linear combinations of tangles generated by 

Kuperberg’s A 2 spiders, where A ( A qi )k is the space of all such tangles on a rectangle with 

k vertices along the top and bottom, with the orientations of the vertices alternating.

Since S T  £ \ 2 =  a lg (li,2. W_i, W0), we have y?(VF_i) =  q8̂ 3W - \  and ^(W 0) =  q5̂ 3l 2j  — 

q~l/3fi  so that S T C 2,\ =  a lg ( l2)i, Wo. / i ) -  The action of u  on S T C 2j  is given by u>(fi) =  

/ i ,  u (W Q) =  f {3) -  q o ? f \ f 2 -  q~l a 2f 2f i  and u ( f i  -  qWofi  -  q~l f \ W Q 4- W0f i W 0) =  f 2, 

where is the tangle illustrated in Figure 6.46. We see that S T is generated by 

l ) / i . /2  and f [ 3\  This new element cannot be written as a linear combination of 

products of l , / i  and f 2. The following hold for (they can be easily checked by 

drawing pictures):

(i) =  £/i(3) +  « ( / i  +  A ) +  a 2( / i / 2 +  / 2/ 1),

(ii) / i / i 3) =  Sfi +  W 1/ 2, / 2/i(3) =  Sf2 +  8 a f 2f i ,

(iii) / i / i (3)/i  =  83a ~ 1f i , i =  1 , 2 ,

(iv) f i 3)f i f i 3) =  82( f l +  f 2) 4  82a ( f i f 2 +  f 2f 1), i =  1 , 2 . 

Define g[3) =  Z ( f [ 3)). Then A ( ^ })3 =  a lg (l, elt e2, g ^ ) .
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For n >  6 , with the rows and columns indexed by the paths of length 3 on Aq^ which
/o \

start at vertex (0 , 0 ), gl can be written explicitly as the matrix

(3)
01 =

[2]3/[3] v W W /[3 ]  0 0  ̂

v m m  w /p ]  o o
0  0 [2] 0

0 0 0 0 /
(3)For n =  5, =  a l  — e\ — e2 +  o e ie 2 +  c*e2ei, so is a linear combination of 1, e\ and e2.

This is not a surprise since ,4q? is just the Dynkin diagram A4, and we know that A(A4)3 

is generated by 1, e\ and e2. Note also that in this case we have a  =  S =  sin(27ri/5).

It appears that S T  Cid =  a lg ( lij ,  Wt, f t , f $ \ k  =  0 , . . . ,  j  -  1; / =  1 , . . . ,  i -  l ; p  =

3 , , i ' ,m =  1 , . . .  , i  — p + 1), where is the tangle illustrated in Figure 6.47 (with m  

odd).

-y+1 0 1 2

f ( p) _
J m

m - 1 m  m + p - 1

t < M  -
->T<VY

Figure 6.47: Element

6.4 Planar M odules and ^ -A T L

We now return to the abstract setting, where our v42-planar algebras are not necessarily 

flat, and extend Jones’s notion of planar algebra modules and the annular Temperley 

algebra to our 4̂2-planar algebras (cf. Section 2 of [63]).

D efin itio n  6 .4 .1  (cf. [63, Def. 2.1]) An A 2- a n n u l a r  ta n g le  T  will be a tangle in 

V  with the choice of a distinguished internal disc, which we will call the inner disc. T  

will be called an A2- a n n u l a r  (m i,m 2 : k \ , k 2) - ta n g le  if it is an A 2-annular tangle with 

pattern m \ , m 2 on its outer disc and pattern k \ , k2 on its inner disc. If m\ =  m 2 =  0 or 

k4 =  k2 =  0 , we replace the 0 ,0  with a, a E {0 , 1 , 2 }, corresponding to the colour of the 

region which meets the outer or inner disc respectively. When m\ =  k\ and m 2 =  k2 we 

will call T  an A2-annular m \ , m 2-tangle.

Note, this annular tangle is different to the one defined in Section 6.2.5- here more 

than one internal disc is allowed, but one of those is chosen to be the distinguished disc.
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D efinition 6.4.2 (cf. [63, Def. 2.2]) If  P  is an A 2-planar algebra, a m o d u le  over P,  or 

P -m o d u le ,  will be a graded vector space V  =  (V*j, i , j  >  0, i, j  ^  0 ,0 , K0“0) with an action 

of P.  Given an A 2-annular ( i , j  : i ', j ')-tangle T  in V  with distinguished ( ‘V  input”)  

internal disc D\ with pattern i ' , j '  and other ( “P  input”) internal discs Dp, p =  2 , . . .  , n, 

with patterns ip, j p, there is a linear map Z (T )  : Vyy  ® (®p=2Pip,jp) —> Vid . Z(T)  satisfies 

the same compatability condition (6.10) for the gluing of tangles as P  itself.

An A2-planar algebra is always a module over itself- we will call it the trivial m odule. 
Any relation (i.e. linear combination of labelled A2-planar tangles) that holds in P  will 

hold in V , e.g. K1-K3 hold in V  where a , 6 have the same values as in P.

A module over an A2-planar algebra P  can be understood as a module over the A 2- 

annular algebra A2- A P , defined as follows. We define the associated annular category 

A2-AnnP  to have three objects a for i =  j  =  0, a G {0 ,1 ,2 } , and one object for each 

h j  > 0 with i, j  not both equal to zero, and whose morphisms are A2-annular labelled 

tangles with labelling set all of P.  Let A2- F A P  be the linearization of A2-AnnP-  it has the 

same objects, but the set of morphisms from object i , j  to object i!,j' is the vector space 

having as basis the morphisms in A 2-A n n P  from i , j  to i ' , j ' . Composition of morphisms 

is A 2- F A P  is by linear extension of composition in A 2-AnnP.  The A2-annular algebra  

A2-A P  =  { A 2-AP(i ,  j  : i ' , j ' ) }  is the quotient of A 2- F A P  by all A2-planar relations.

D efinition 6.4 .3  (cf. [63, Def. 2.6]) We define A 2-APi j to be the algebra A2- A P { i , j  : 

h j )  f ° r i , j  > 0 with i and j  not both zero, and A 2-APa, a G { 0 ,1 , 2 }, to be the algebras 

spanned by A2-annular tangles with no vertices on the outer and inner boundaries, and 

with the regions which meet the boundaries coloured a.

Let us apply this procedure to the 5'f/(3)-Temperley-Lieb algebra S T L  defined in 

Section 6.1.3, for fixed 6 G C. The labels for the internal discs are now just A2-annular 

tangles. For m 1,m 2,n 1,n 2 >  0 let A 2- A n n T L ( m i , m 2 : 7i i ,n 2) be the set of all basis A2- 

annular (m i,m 2 : n i, n2)-tangles. Elements of A 2- A n n T L { m \ , m 2 : n i, n2) define elements 

of A2- A T L ( m i , m 2 : n \ , n 2) by passing to the quotient of A 2- F A T L  by relations K1-K3. 

The objects of A2-A TL  are 0, 1 and 2 for m\  =  m 2 =  0. When m\  and m2 are not both 

equal to zero, the objects are the sets of 2(m i +  m 2) points with pattern m i,m 2. A 2- 

A T L miiTn2(S) has as basis the set of A2-annular m i, m 2-tangles with no contractible circles, 

or embedded circles or squares. However, non-contractible circles are allowed, which make 

each algebra A2-A T L mitTn2 infinite dimensional. Multiplication in A2-A TLmi)m2(6) is by 

composition of tangles, then reducing the resulting tangle using relations K1-K3.
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Figure 6.48: A basis A2-annular (2 ,0  : 2 ,0)-tangle containing hexagons, and the possibility 

of an infinite number of hexagons

For all m i,m 2 >  0 such that m i +  m 2 >  2, the algebras A 2 -A T L murn2 are also infinite 

dimensional due to the possibility of an infinite number of embedded hexagons in basis 

tangles in the annular picture, as illustrated in Figure 6.48.

We have a notion of the rank of a tangle. A minimal cut loop 7  in an annular 

( h j  '■ i’j j ' y t a ,ngle T  will be a clockwise closed path which encloses the distinguished 

internal disc and crosses the least number of strings. We associate a weight wy =  (£1, t2) 

to a minimal cut loop 7 , where t\ is the number of strings of T  that cross 7  with orientation 

from left to right, and £2 the number of strings that have orientation from right to left, as 

we move along 7  in a complete clockwise loop. For a weight (£1, £2), let £max =  m a x {fi,i2} 

and £mjn =  min{£i, t2}. We will say (t\,  t/2) is less than (£1, £2), and write (t[, t'2) <  (£1, £2), 

if £i+ £ 2 < £ i+ £2, and if £i +  £'2 =  £i +  £2 then (£i,£2) <  (£i,£2) if 2£'max+ C in <  2£max  4“ ̂ min •

The rank of T  is then given by w1 =  (£1, £2 ) such that (£1 , £2) < wy> for all minimal cut 

loops 7 '.
Let A2- A n n T L ( m \ ,m 2 : m i, m 2)̂ tlM) denote the set of tangles in A2-A n n T L (n i i ,m 2 : 

m i,m 2) with rank (£i,£2). Since the rank cannot increase under composition of tangles, 

the linear span of A 2-AnnTL{m \,nn2 : r n i ,m 2)(t l,t2) f°r ( 1̂^ 2) <  (^1^ 2) f°r any fixe(i 
t2 is an ideal in A 2- A T Lmi>m2.

L em m a 6 .4 .4  (cf. [63, Lemma 2.10]) Let P  be an A 2-planar algebra and let £1, t2 satisfy 

<2tmax Jr t min =  3m. For any t[, t'2 such that 2t'max  +  t'min <  3m, denote by A2-A P fy ^  

the linear span in the algebra A2-APt1}t2 ° f  aM labelled A 2-annular £1, t2-tangles with rank 

( s i , s 2) < (£i,£2). Then A 2-AP^] ’̂  is a two-sided ideal.

Remark For A 2-A T L  the quotient of A 2- A T L tlM by the ideal A2- A P ^ 2) is not in 

general finite dimensional, for 2£'max +  £/min <  2£max +  For example, consider the

quotient of A 2- A T L tlM by A 2- A P £ * ^  (or ^ 2-AP^0^ ) ,  for 3 <  3k <  2£max +  m̂in - ^he 

elements v?(3fc,o) an^ (̂o,3fc) (see Figure 6.49) have ranks (3k, 0) and (0 ,3k) respectively, and
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can be composed an infinite number of times without being able to reduce the resulting 

tangle.
3 3

P  (3k,0) 33 W,3*)

Figure 6.49: <̂ (3fc,o) and <p(o,3fc)

Lem m a 6.4.5 (cf. [63, Lemma 2.11]) Let V  =  (Vitj ) be a P-module. Then V is inde­

composable if and only i fV i j  is an indecomposable A 2-APiyj-module for each i , j  >  0.

Proof

Suppose Vij =  © *  as an /^ -^P -m odule, for a collection of proper submodules 

, I =  1 , . . . ,  m for some integer m.  Then applying A 2- A P  to ® fc v f f  we obtain 

M - A P { ® k Vik].)  =  ® k A 2-A P (V ™ )  as P-modules, so V  is decomposable. Otherwise, if

A2-AP{ i ' , j '  : i , j ) ( V < y  © V $ )  *  A2- A P ( i ' , f  : i , j ) ( V $ )  © A2- A P ( i ' , j ' : i , j ) ( V $ )

as an A2-A Pi>j>-module for some k \ , k 2 G ki ^  k2, and some i' ,j ',  then for

vi G Vjkj),  I =  1,2, and some { i' ,j ' : i , j )~tangle T  there exists an annular z'jj'-tangle 

S  such that S Tv\  =  T v 2. Then applying any (i , j  : z', j')-tangle T' to Tv\  and T v 2 

we find that V T v x G V$kj ) ,  I =  1,2, since T'T  G A 2-APitj and V$k!) is an A2-APid- 

module. Now T 'S T  is also an element of A 2-APitj , so we obtain T'STvi  G But,

T ’STvi  =  T T v 2 G V$kj ) ,  which contradicts Vitj =  ® fc V ^ ] as an A 2-A P -module. □

D efin ition  6 .4.6 (cf. [63, Def. 2.12]) The weight wt(V)  of a P-module V is the 

smallest integer i +  j  for which Vitj is non-zero. If  Va is non-zero for a G {0 ,1 ,2 }  we 

say V has weight zero. Elements of Vi\j> for i' +  j ' =  w t ( V ) will be called lowest weight 

vectors in V , and Vi>j' is an A 2-APi>-module which we call a lowest weight module.

Note that for i' +  j '  =  wt(V) ,  all Vi'+kj-k,  <  k <  f , are lowest weight modules 

for V.

D efinition 6 .4.7 (cf. [63, Def. 2.13]) The Hilbert series (called the dimension in [63])

of a P-module V is the formal power series
1 00 

4v ( 2i, z2) =  -dim(Vo  © Vj © V2) +  ^  dim(Vij) z \4-
3 i , j=0

i tj  not both =0
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Again, as with S U ( 2), the Hilbert series is additive under the direct sum of two P- 

modules.

6.4.1 H ilbert P -m o d u les

If P  is a C*-A2-planar algebra, the *-algebra structure on P  induces a ^-structure on A2- 

AP,  where the involution * is defined by reflecting an A2-annular (mi, m 2 : k\, /c2)-tangle 

T  about a circle halfway between the inner and outer disc, and reversing the orientation. 

T* will be an A2-annular (k i ,k 2 : m\,  m 2)-tangle. If P  is a C*-A2-planar algebra this 

defines an antilinear involution * on A 2- F A P  by taking the * of the underlying unlabelled 

tangle for a labelled tangle T,  replacing the labels of T  by their *’s, and extending by 

antilinearity. Since P  is an A2-planar *-algebra, all the A2-planar relations are preserved 

under * on A 2-F A P ,  so * passes to an antilinear involution on the algebra SU(3)-AP.  In 

particular, all the A 2-AP{j  are *-algebras.

D efin itio n  6 .4 .8  (cf. [63, Def. 3.1]) Let P  be a C*-A2-planar algebra. A P-module H  

will be called a H i lb e r t  P - m o d u l e  if each H^j is a finite dimensional Hilbert space with 

inner-product (•,•) satisfying

(av,w)  =  (v,a*w),  (6.31)

for all v , w , ( E  H and a E A 2-AP.

As in the S U ( 2) situation, a P-submodule of a Hilbert P-module is a Hilbert P- 

module. Also, the orthogonal complement of a P-submodule is a P-module, so that 

indecomposability and irreducibility are the same for Hilbert P-modules.

L em m a 6 .4 .9  (cf. [63, Lemma 3.f[)  Let P  be an A2-C*-planar algebra and H a Hilbert 

P-module. If  W  C Hij is an irreducible A 2-A Pij  -submodule of Hi j  for some i , j ,  then 

A2-A P (W )  is an irreducible P-submodule of H .

Proof
Suppose v, w are non-zero elements of A 2-A P(W )i> j> such that A 2-APi>j>(v) is orthog­

onal to A 2-APi>tf ( w ) .  Since v , w  E A 2-A P ( i ' , j '  : i, j ) ( W ) ,  we have v =  av', w =  bw', for 

some a,b E A 2-A P ( i ' , j '  : i , j )  and v' ,w'  E W.  Then a*v =  a*av' and b*w =  b*bw' are 

non-zero elements of W ,  and A 2-APij(a*v)  is orthogonal to A 2-APij(b*w),  which contra­

dicts W  being an irreducible A 2-A P i j -module. Then by Lemma 6.4.5, A2-A P (W )  is an

irreducible P-submodule of H . □
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L em m a 6 .4 .1 0  (cf. [63, Lemma 3.5]) Let P  be an A2-C*-planar algebra and H a Hilbert 

P-module. Let V  and W  be orthogonal A 2-APij  invariant subspaces ofHi  j for some i , j .  

Then A2-AP(V)  is orthogonal to A 2- A P (W ) .

Proof

For any i ' , j' ,  let v G V, w  G W  and a,b  G A2-A P( i ' , j '  : i , j ) .  Since a*b G A 2-APij  

and W  is invariant under A2-APi j ,  we have a*bw =  w' G W . Then (a v , bw) =  (v , a*bw) =  

(v, w') =  0 . □

As in the proof of Lemma 6.2.17, there is a bijection Qk : Vij —> Vi+k,j-k, —i < k <  j .  

Then dim(Vrij )  =  dim(Vi+k j - k ), since if v  ^  0 in but Qk(v) =  0 in Vi+k,j-k then 

v — Qk'ekiv) =  Qk'i0) =  0 which is a contradiction. The following Lemma (which is 

virtually identical to Lemma 3.7 in [63]) shows that an irreducible Hilbert P-module H  is 

determined by its lowest weight modules, and in particular H  is determined by its lowest

weight module //o,wt( //)5 since for all other i +  j  =  w t( / / ) ,  Hij  =  f?i(//o,wt(//))-

L em m a 6 .4 .1 1  (cf. [63, Lemma 3.7}) Let P  be an A2-C*-planar algebra and let 

HW be Hilbert P-modules with H ^  irreducible. Suppose there is a non-zero A2-APij  

homomorphism 6 : H^j —> H\2̂ . Then 6 extends to an injective homomorphism 0  of 

P-modules.

Proof

Since h [} ,̂ is irreducible for all i' , )' ,  we can write any element v G H^)j, as av1 for 

some a G A2-A P ( i ' , j '  : i , j )  and v' G H \ ^ . We set 0 (u ) =  a6(v'). Now suppose av' =  bv' 

for some b G A2-AP{i!, j '  : i, j ) .  Then for any w' G H\2̂  and c G A2-AP{i! ,)'  : i, j ) ,  we 

have

(a6{v'),cw') =  (c*a6(v'),w') =  {9(c*avt) , w l) =  (9(c*bv'),wt)

=  (c*b9(v'),w') =  (b9(v'),cu/ ) ,

since c*a G A 2-APitj and 9 is an A 2-APitj homomorphism. Then Q(av') =  Q(bv') so that 

0  is well defined. Now suppose Q(v) =  Q(w)  for v, w  G H-[j, for some i', j'. Let v =  av', 

w =  bw' for some a, b G A 2-A P ( i ' , j '  : i , j )  and v' ,w'  G H \ ^ . Since Q(v -  w) =  0, for 

all c G A2- A P ( i , j  : we have c0 (u  — w) =  ca.9{v') -  cb9{w') — 9{cav' -  cbw') =  0.

Now cav' -  cbw' G H-1}  and 9 is a non-zero homomorphism, so we have cav' — cbw' forl’>3
all c G A2- A P ( i , j  : i ' , j ') .  Hence v =  av' =  bw' =  w. So 0  is injective. □

We will now determine which A 2- A P i j -modules can be lowest weight modules.

213



Lem m a 6.4.12 Let P  be an A 2-C*-planar algebra and H a Hilbert P-module of lowest 

weight k and rank ( t \ , t 2). With i +  j  =  k, any element w  G Hiyj can be written, up to a 

scalar, as aw for some a G A 2-AP^j with rank(a) =  rank(ii>).

Proof

First form ww* G A2-APi j .  Then dividing out by the relations K1-K3 we obtain a 

linear combination of elements in A 2-A Pi j ,  and we remove those elements that have rank 

< (^i, h)-  Ignoring the scalar factor we are left with a single element a G A 2-APitj with 

rank(a) =  (ti, t2). If we form aw,  then dividing out by K1-K3 we obtain aw =  lw+J2i  

where U t  G €  and Wi G with rank(u>j) <  (£j, t2) for each i. Then in H  the Wi are all 

zero, so that l~1aw =  w. □

Lem m a 6.4 .13 (cf. [63, Lemma 3.8]) Let P  be an A2-C*-planar algebra and H a Hilbert 

P-module. For 3 ( i+ j  —1) <  2 ̂ max^t'  ̂ ^  3 (z+ j), let Hf) ' t2  ̂ be the A2-A Pij  -submodule 

of Hi j  spanned by the i , j -graded pieces of all P-submodules with rank < ( t i , t 2). Then

=  P |  ker(a ) 

aeA2-AP.

Proof

(i) We will first show ( H j j ’*2'*)1 D p)ker(a). Choose any element w  G H i j ' t2\  Then 

by Lemma 6.4.12 and the definition of H^j't2\  w is a linear combination of elements of the 

form a w where a G A 2- A P ( i , j  : i \ f )  with i ' + j 1 <  i-\-j, with rank(a) =  (t[, t'2) < ( t \ , t 2), 

and w' is a lowest weight vector. Then for v G H^j, (aw',v)  =  (w',a*v),  and a,ast can 

be written up to some scalar as t*ta* for some (i , j  : i', j')-tangle t. Then ta* has rank 

at most (^ ,^ 2)5 so ta* €  A 2- A P - j ' t2\  So if v G ker(£a*) then t*ta*v =  0, and a*v =  0 

since a* is just t*ta* up to some scalar. Then (w ,v)  =  0 since (w',a*v) =  (w',0),  and w  

is orthogonal to V\a^A2. APai.*a) ker(a).

(ii) For the opposite inclusion, (H^)'1̂ ) 1- C p)ker(a), suppose v L H f ) ' t2̂  and a G 

A2-A P l l-'t2\  Then a is a linear combination of elements a* G Hij,  with rank(aj) =  

< ( h , t 2) for each i. For any i and any w  G H ^ ’1̂  we have (aiV,w) =  (v,a*w).  

Now a*w has rank at most (^l), t (2l)) <  ( t \ , t 2), so a*w G H^j'1̂ . Since v is orthogonal 

to H l j ’t2\  (a{v , w ) =  (v,a*w) =  0. Then (av ,w) =  0 for any w  G H^j't2\  and since 

av G H -j ' t2\  (av,av)  =  0. This gives av =  0, so v G ker(a). □

Corollary 6 .4 .14  (cf. [63, Cor. 3.10]) The lowest weight modules of an irreducible P-  

module of rank (£1, t2) are A 2-APi j  /  A 2-AP^j' t2̂  -modules, where 2 t m a x + t min =  3(i +  j) .
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Then for an /^-CP-planar algebra P , we can determine all Hilbert P-modules by 

first determining the algebras A 2 -AP0j / A 2 -APQtj ’t^ and their irreducible modules, for 

2£max +  ^min =  and then determining which of these modules extend to P-modules.

6.4.2 Irreducib le A 2- S T L -m odules

We can easily determine certain irreducible ^--STL-m odules. We will describe some 

zero-weight modules. However we have not determined all irreducible A2-STL-modules, 

even for the zero-weight case, since it is not clear that elements of the from cr^ k̂  defined 

below must necessarily a contribute scalar factor, as A 2 -ATLa is not one-dimensional (and 

hence not isomorphic to C).

P ro p o s itio n  6 .4 .1 5  (cf. [63, Prop. 5.9]) The algebra A 2-ATLa, a E  { 0 , 1 , 2 } ,  is gen­

erated by the 0-tangles crJJ±1  illustrated in Figure 6.50, j  E  { 0 , 1 , 2 } .

Proof

Given any (a, a)-tangle, removing all contractible circles, and embedded circles and 

squares using K1-K3 we obtain a tangle consisting only of non-contractible circles about 

the inner disc such that the regions that meet the inner and outer boundaries are coloured

a. Clearly, such a tangle must be a product of elements crjj± 1, j  £ { 0 , 1 , 2 } .  □

Figure 6 . 5 0 :  <Jj,j+1 and

Let H  be an irreducible Hilbert A 2- S T L-module of lowest weight zero. For i E { 0 , 1 , 2 }  

and integers k\ =  k2 mod 3, let

M2) ~  ( ^ M + l ^ i + l , i + 2  ’ ’ ' G i+ k \—l,i+ k i  ) (^i+fci ,i+fci - \ & i + k \  - l , i + f c i - 2  ’ ’ ’ ^ i+ fc i - fo  +  l.i+fci - ^ 2) ’

If the maps just give the complex number Pkip k2 for some fixed ft E C, i.e.

cr|  ̂ k̂  =  p klfik2lj ,  then the dimensions of Ha are at most 5 ,  for a G  { 0 , 1 , 2 } .  To see 

this consider an arbitrary element given by a product of elements o~jj±i. Whenever the 

product appears, for some I G  { 0 , 1 , 2 } ,  we get a factor of \P\2. Removing all

such products we will be left with an element which contains only non-contractible circles
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with the same orientation. Any three consecutive such circles contribute a factor of /53 or
—3
P . Then up to some scalar, any element will have at most two non-contractible circles, 

with each circle having the same orientation.

P ro p o s it io n  6 .4 .1 6  (cf. [63, Theorem 5.12]) An irreducible Hilbert A2-STL-module H 

of weight zero in which the maps i £  {0 , 1 , 2 }, are given by the complex number

Pkl P for some fixed P £ C is determined up to isomorphism by the dimensions of Ha, 
a £ {0,1, 2}, and the number P, where we require \P\ <  a.

Proof

The uniqueness of the A 2- S T L -module is a consequence of Lemma 6.4.11 since at least 

one of Hq, Hj  and is non-zero. Let Ei,  E2 be the tangles

so that ct~l E \ , a ~ l E2 are projections. Then since E i E2E\ =  \P\2E\ we have \\a~l E\ ■ 

a -1 E2 • a - ^ iH  =  \p\2a ~ 2\\ct~l Ei || so that 1 >  \p\2a ~ 2. Hence \P\ <  a.  □

For p  =  a  let Vfj =  S T L itj (since when P =  a  there is no distinction between 

contractible and non-contractible circles). For a  >  3 (which corresponds to 8 > 2 ) ,  the 

inner product is positive definite by Lemma 6.1.12 and Theorem 1.2.1, and Hfj  =  Vg is a 

Hilbert A2- S T L-module. For 0 <  a  <  3, if the inner product is positive semi-definite on 

Vij we let Hfj  be the quotient of V]j by the subspace of vectors of length zero; otherwise 

does not exist.

Now consider the case when 0 < \P\ <  a.  We define for each i, j  >  0 (with 0,0  replaced 

by a, a E {0 ,1 , 2}, as usual), the set T h itj  to be the set of all (z, j  : 0)-tangles with no 

contractible circles and at most two non-contractible circles. Now for each P we form 

the graded vector space V^, where has basis T h iyj,  and we equip it with an A2-STL-  

module structure as follows. Let T  £ A 2-A T L ( i ' , j '  : i, j )  and R  £ A2-ATLi j .  We from 

the tangle T R  and reduce it using K1-K3, so that T R  =  . 8bja CjTRj ,  for some basis

A2-annular (z7, j '  : 0)-tangles TRj .  Let JJ“, ^  denote the number of non-contractible circles 

in the tangle T R j  which have anti-clockwise, clockwise orientation respectively. We define 

integers dj, f j  and gj as follows: dj =  min(jj“, JJJ), f j  =  7 ^ if JJ“ >  JjJ and f j  =  0

otherwise, and gj =  JJJ -  JJJ -  7^ if ^  and gj =  0 otherwise, where £ {0 , 1 , 2 }

such that f j , g j  =  0 mod 3. Then we set T (R )  =  ]TL 6bja CjPdj+ ĵ p  3+9:1 TRj,  where TRj
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is the tangle T R j  with dj +  f j  anti-clockwise non-contractible circles removed, and dj +  gj 
clockwise ones removed.

P ro p o s itio n  6 .4 .1 7  The above definition make V & into an A 2 -STL-module of weight 

zero in which k̂  =  p k i p k2 for  a —  0 ,1, 2.

As with the S U ( 2) situation, the choice of ( i , j  : 0)-tangles rather than ( i , j  : 1)- 

or ( i , j  : 2)-tangles to define V 13 was arbitrary. For these other two choices, the maps 

T  —* /?-17V0i, T  —► P 1T&q2 respectively would have defined isomorphisms from those 

modules to the one defined above.

D efin itio n  6 .4 .1 8  (cf  [63, D e f  5.17]) Given S , T  £  Thi j ,  we reduce T*S using K1-K3  

so that T*S =  Y2j 6bja Cj{T*S)j  for  basis (0 : 0 )-tangles ('T*S) j . Define dj, f j  and gj for  

each (T*S)j as above. We define an inner-product by (S,T)  =  ^2j ^bja°j Pdj+ ĵ Pd3+9j ■

Invariance of this inner-product follows from the fact that T*S =  (S ,T )T0 where T0 is 

the annular (0 : 0)-tangle with no strings at all. When the above inner-product is positive 

semi-definite, we define the Hilbert A 2- S T L-module H& of weight zero to be the quotient 

of V 13 by the subspace of vectors of length zero. Otherwise H 13 does not exist.

P ro p o sitio n  6 .4 .1 9  For the above Hilbert A 2 -S T  L-module H 0 of weight zero, the di­

mension of is either 0 or 1 for  any (3 £  C \  {0}.

Proof

For a =  0 the result is trivial since ]/£ is the linear span of the empty tangle T0 given 

in Definition 6.4.18. For a =  1, V-P =  span(<j10, <712^20)• Let w =  \P\2cri2 0 2 Q — P3&io. Then

(w, w) =  \P\4(g 1 2&2O,0 1 2 <?2o) — \P\2P (o‘l2°'20» ^lo) — P^\P\2 ( l̂O, &1 2&2o) +  |/3|6(oiOi ^lo)

=  \P\4(\P\4) - \ P \ 2P3P3 ~ P 3\P\2P3 +  \P\6\P\2 =  0 .

Then aio =  \P\2P~3g i 2 & 2 0  =  PP~2°  12020 in H ? . Similarly when a =  2, a2icrl0 =  p 2P~1cr2o-
□

So we may define H 0 so that it does not contain any clockwise non-contractible circles,
__  2

where we replace every by PP~2<J 12^20 and every g2\G\q by p  P~la2o-

P ro p o s itio n  6 .4 .2 0  (cf. [63, Cor. 5.8]) The Hilbert A 2 -ST  L-module II®, \P\ < a, is 

irreducible (when it exists).
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Proof

Since is at most one-dimensional it must be irreducible, for each a G {0,1,2}. 
The maps aj j+ i  moves a non-zero element in HS to an element in H t ^ ,  and hence the 

lowest weight module © H?  © / / |  is irreducible as an A 2- A T L 0-module. Since

H 13 =  A 2-A T L (H q), the result follows from Lemma 6.4.9. □

Now we consider the case when /3 =  0. For each i , j  >  0 (with 0,0 replaced by a, 

a G {0,1, 2}, as usual), the set Th*j  is defined to be the set of all ( i , j  : a)-tangles with no 

contractible or non-contractible circles at all. The cardinality of T /i | is 8a>6. We form the 

graded vector space V 0,a, where V®ja has basis T h “j.  We equip it with an A2- S T L -module 

structure of lowest weight zero as follows. Let T  G A2- A T L ( i ' , j f : i, j )  and R  G Thfj .  We 

form T R  and reduce it using K1-K3, so that T R  =  . 8bja Cj as in the case 0 <  \/3\ <  a.

We define T(R) j  to be zero if there are any non-contractible circles in TRj ,  and TRj  

otherwise. Then T( R)  =  ^2 j 8bjOiC:>T{R)j.

P ro p o sitio n  6 .4 .2 1  The above definition make V 0,a into an A 2- S T  L-module of weight 

zero in which &jj± i =  0 for  j  G {0,1, 2}.

D efin itio n  6 .4 .2 2  (cf. [63, D e f  5.22]) Given S , T  G Thfj ,  we reduce T*S using K1-K3  

so that T*S  =  Ylj  8 bja Cj(T*S)j  for  basis (a : a)-tangles (T* S ) j . We define (S, T ) j  to be 

0 if there are any non-contractible circles in (T * S ) j , and 1 otherwise. Then we define an 

inner-product by (S , T ) =  8 bja Cj (S ,T) j .

This inner-product is invariant as in the case 0 <  \(3\ <  a.  Again, if the inner product 

is positive semi-definite we define H 0,a to be the quotient of V 0,a by the subspace of vectors 

with length zero; otherwise H 0,a does not exist.

P ro p o sitio n  6 .4 .2 3  The Hilbert A 2-STL-module H 0,a, a G { 0 ,1,2}, is irreducible (when 

it exists).

Proof is as for H@.

6.5 The ^ 2-planar algebra o f an AT>£ graph

Let Q be any finite SU(3) A U £  graph (not necessarily one for which there exists a flat 

connection) with vertex set %Ig — u  u  ^ 2  > where QJf is the set of a-coloured 

vertices of Q, a =  0,1,  2. Let na =  |SU£| denote the number of a-coloured vertices and 

n =  |£Je | =  n0 +  ni +  n2 the total number of vertices of Q. Note that rq =  n2 due to
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double sequence (Citj ) into an A2-C*-planar algebra P G, with dim(Pj') =  na, a =  0 ,1 ,2 , 

and parameter [3].

Proof

This follows as in the proof of Theorem 6.3.4, where the only small difference occurs 

for isotopies of the tangle which involve rectangles. However the invariance is simpler 

here as the connection is not used. □

The partition functions Z  : Va — ► C are defined as the linear extensions of the 

function which takes the basis path v to There is an extra multiplicative factor of <f)1 

for the external region. This is required for spherical isotopy.

P rop osition  6 .5 .2  (cf. [62, Prop. 3.4]) The partition function of a closed labelled 

tangle T  depends only on T  up to isotopies of the 2-sphere.

Proof

It is enough to show spherical invariance for T  a 1-tangle. Let T\ and T2 be the 

0-tangles

If Z(T)  =  (7 , 7 ) for an edge 7  on Q, Z{Ti)  =  4>2r { l ) (t>s {7 ) / 0 r ( 7 ) =  <t>s{7 ) ^ ( 7 ) a n d  Z(T2) =

^s( y)(t>r(l) /  $ 3(1 ) =  $s(’y)&r(‘y) =  %{T\). 0

We normalize (0W) so that the partition function of an empty closed tangle is equal to 

one. We will say that the SU(3)-planar algebra of a graph Q is n orm alized  if

E  L

T heorem  6 .5 .3  (cf. [62, Theorem 3.6]) Let P Q be the normalized A2-planar algebra of 

an A V S  graph Q, with (normalized) Perron-Frobenius eigenvector (<f>v). Then fo r x  e  Pfj,

tr(x) =  [3 ]~l~j Z(x)

defines a normalized trace on the union of the P  ’s, where x is any 0-tangle obtained 

from x by connecting the first i +  j  boundary points to the last i +  j .  The scalar product 

(x, y) =  tr(x*y) is positive definite.

220



Proof
The normalization makes the definition of the trace consistent with the inclusions. 

The property tr(a&) =  tr(6a) is a consequence of planar isotopy when all the strings 

added to x to get x go round x in the same direction, as in Figure 6.17. Spherical isotopy 

reduces the general case to the one above. Positive definiteness follows from the fact that 

the matrix units e =  ( 7 , 7 ' )  G  are mutually orthogonal elements of positive length: 

(e, e) =  [3]-t-J’̂ 1,10W2 > 0, where e G  Pfj  is a pair of paths of length i + j  starting at vertex 

Vi and ending at vertex r>2, and (f>v >  0 for all v since 4> is a Perron-Frobenius eigenvector.

□

6.5.1 P G as a TL-m odule for A D E  D ynkin  diagram s Q

In the case of 517(2), Jones [63] determined all Hilbert modules H k,UJ of lowest weight 

k >  0 and / / M of lowest weight 0. We will give a brief overview of these modules. For 

1 < k < m, m  G  N, let 7^ be the set of all annular (m, A:)-tangles (having 2m  vertices 

on the outer disc and 2k vertices on the (distinguished) inner disc, where the vertices 

have alternating orientations) with no internal discs and 2k through strings. If A T L mtk 

denotes the quotient of A T L m>k by the ideal generated by all annular (m, A;)-tangles with 

no internal discs and strictly less than 2k through strings, then the equivalence classes of 

the elements of T£ form a basis for A T L m^. The group Z k acts by an internal rotation, 

which permutes the basis elements. The action of A TL  on A T L m%k is given as follows. 

Let T  be an annular (p, m)-tangle in A T L PtTn and R  G  Define T(R)  to be 5rT R  if the 

(p, fc)-tangle T R  has 2k through strings and 0 otherwise, where T R  contains r contractible 

circles and T R  is the tangle T R  with all the contractible circles removed. Since the action 

of ATL  commutes with the action of Z*, as a TL-module A T L mtk splits as a direct sum, 

over the k ^  roots of unity w, of TL-modules V^,UJ which are the eigenspaces for the action 

of Zk with eigenvalue lj. For each k one can choose a faithful trace tr on the abelian C*~ 

algebra A TLkjk, which extends to A T L k>k by composition with the quotient map. The 

inner-product on A T L m>k is then defined to be (5, T) =  tr(T*5) for 5, T G  A T L m>k.

We now turn to the zero-weight case (k =  0). The algebras A T L ± , which have the 

regions adjacent to both inner and outer boundaries shaded ± , are generated by elements 

<j±crT, where a± is the (± , =f)-tangle which is just a single non-contractible circle, with the 

region which meets the outer boundary shaded ±  and the region which meets the inner 

boundary shaded 7=. Then the dimensions on V+ and must be 1 or 0 for any TL-module 

V. Then in V, the maps a±aT must contribute a scalar factor /̂ 2, where 0 <  p  <  S. If 

fi =  5, V 6 is simply the ordinary Temperley-Lieb algebra described in Section 1.2.1. When
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0 < /i < 5, is the T L-module such that m  > 0, has as basis the set of (m, +)-tangles 

with no internal discs and at most one non-contractible circle. The action of ATL  on V  

0 < n < 6 , i s  given as follows. Let T  be an annular (p , m)-tangle in A T  Lp>m and R  be a 

basis element of V Define T(R)  to be 5r/j2dTR,  where T R  contains r contractible circles 

and 2d +  i non-contractible circles, where i G {0,1}, and T R  is the tangle T R  with all 

the contractible circles removed and 2d of the non-contractible circles removed. The inner 

product on is defined by (S ,T) =  Srfi2d, where T*S contains r contractible circles and 

2d non-contractible circles. When /j, =  0, we have TL-modules V 0,+ and V 0,~ , where 

has as basis the set of (m, ±)-tangles with no internal discs and no contractible circles. 

The action of ATL  on V 0,± is given as follows. Let T  be an annular (p, m)-tangle in 

ATLp^m and R  be a basis element of V 0,±. Define T(R)  to be 5rT R , where T R  contains 

r contractible circles. Now T R  is zero if T R  contains any non-contractible circles, and is 

the tangle T R  with all the contractible circles removed otherwise. The inner product on 

V 0,± is defined by (5, T) =  0 if T*S  contains any non-contractible circles, and (S', T) =  5r 

otherwise, where r is the number of contractible circles in T*S.

In the generic case, 5 >  2, it was shown that the inner-product is always positive 

definite, so that H =  V  is a Hilbert T L-module, for the irreducible lowest weight k TL-  

module V. In the non-generic case, if the inner product is positive semi-definite, H  is 

defined to be the quotient of V  by the vectors of zero-length with respect to the inner 

product.

Let Q be a bipartite graph. Then the vertex set of Q is given by 03 =  03+ U$J_, where 

there are no connecting a vertex in to another, and similarly for 53_. We call the 

vertices in QJ+, the even, odd respectively vertices of Q, and the distinguished vertex 

* of Q, which has the highest Perron-Frobenius weight, is an even vertex. The adjacency

matrix of Q can thus be written in the form ^ ^  ^  ^ . We let r± =  |9J±|. The planar

algebra P G of a bipartite graph Q was constructed in [62], which is the path algebra on Q 

where paths may start at any of the even vertices of Q, and where the rrfi1 graded part 

P^ is given by all pairs of paths of length m  on Q which start at the same even vertex 

and have the same end vertex. Let , j  =  1, . . .  ,r+, denote the eigenvalues of AgAg. 

Then the following result is given in [105, Prop. 13], which motivated Proposition 6.5.4: 

The irreducible weight-zero submodules of P G are H ĵ , j  =  1, . . . ,  r_ , and r+ — r_ copies 

of H°, and these can be assumed to be mutually orthogonal.

Reznikoff [105] computed the decomposition of P Q as a TL-module into irreducible
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TL-modules for the A D E  Dynkin diagrams. For the graphs Am, m  >  3,
S

P*" =  0 f f » ,  (6.32)
3 = 1

where s =  [(m +  1)/2J is the number of even vertices of Am and fij =  2 cos(j7r/(m  -f 1)), 

j  =  1, . . .  ,s.  For Dm, m >  3,

t s—2
=  0  h n  0  (s _  0  0  H 2 j , ~ (6 .33)

j=i j=i

where s =  [(m-(-2) / 2j, £ =  [(m — 1) / 2J are the number of even, odd vertices respectively 

of Dm, and pj =  2cos((2j -  l ) 7r /(2m — 2)), j  =  1 , . . . ,  t. For the exceptional graphs the 

results are

pBe =  e  e  H W, e  H 2,-l e  H 3»  0  H 3,u-> _ (g 34)

pJ5r =  H0*  ® H“' ®  HK ® H ”  ® H 2 - 1 ® H 3*  ® H 3'w~ '®  H * - 1 ® H s’- \(6 .35)  

P E8 =  © Hm © t f*111 © / F 13 © H 2' -1 © H 3*  © Z/ 3' " ' 1 © H4'-' (6.36)

® Hs’(2 © H 5'(~2, (6.37)

where u> =  e2*’/3t £ =  e21"^, and fij =  2 cos(7rj / h )  where h is the Coxeter number.

6.5.2 as an An-SI L-m odu 1 e

We now return to the A2-case for an SU(3)  graph Q. As in the proof of Lemma 6.3.1, if 

Q is three-colourable let AF, AF be the product of j ,  i matrices respectively, given by

A-i,j — A 01A 12A 20A 01 • • • Aj_j j ,  A — A j j +j A j j +l A -jj+j A -jj+j • • • A ,

where A' is A jj+j if i is odd, AJj+j T * ls even, and p is the colour of p. If Q is not
three-colourable we let AF =  A 1 and AF =  AT Note that AF is a normal operator

since AF(AF)* =  A F(A F )T =  (AoiAoi)-7 by the proof of Lemma 6.3.1, and similarly 

(AF)*AF — (A F)TAF =  (AoiAqi)-7. Similarly AF is a normal operator.

Let Pf, I G QJq, be the eigenvalues of A j3, and i>  ̂ their corresponding eigenvec­

tors. Then (A}3)Tv ^  =  P^v^ and (AoiAqj)3^  =  A F(A }j )t v^  =  \Pj\6v̂ l\  Then if 

A/, I e  are the eigenvalues of AoiAqi, with corresponding eigenvectors v^*, we have 

(AoiAqj)3^ '  =  Afv^ '  so that v^ '  =  vW and A; =  \Pi\2-

Let n' =  min{n0,n i} . The dimension of PF is given by the trace of AAT where A =

(A F)l(AF)J, which counts the number of pairs of paths on Q, Q. Since AAT =  (A A r )l+-7, 

the trace of AAT is given by the sum °f ^s eigenvalues, I =  1, 2 , . . . ,n ' .  The
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eigenvalues is-1]  are given by where pf  are the eigenvalues of Aj>3. The Hilbert

series for P G is then given by

$ /* (* i,Z2 ) =  3 (no +  2n, -  3n') +  £  ( i  _  _  l ^ ) -

P rop osition  6 .5 .4  (cf. [105, Prop. 13]) Let Q be one of the finite SU (3) AT>£ graphs,

let Q, I =  1, 2 , . . . ,  n', be the non-zero eigenvalues of A j3, counting multiplicity, and let

Pi be any cubic root of Q, I =  1 , 2 For all the three-colourable graphs except

£5(12), we have no >  n\, and all the irreducible weight-zero A 2 -ATL-submodules of P G

are H^1, I =  1,2, . . . , n \ ,  and (no — n\) copies of H°, and these can be assumed to be

mutually orthogonal. For £g12̂ we have ni > no, and all the irreducible weight-zero A 2 -
( 12)

ATL-submodules of P e5 are H 01, I =  1, 2, . . .  ,n 0, and 2(ni — n0) copies of H°, which

can again be assumed to be mutually orthogonal. If Q is not three-colourable, all the 

irreducible weight-zero A 2 - AT L-submodules of P G are H * ,  I =  1 , 2 , . . .  , no, where no is 

the total number of vertices ofQ.

Proof

Consider the case where no > n\ (the case for £g12̂  where n\ > no is similar). Each 

/^-eigenvector v®  =  (uff), w €  q of AoiAqi spans a one-dimensional subspace of P G 

that is invariant under A2-ATLq.  To see this, first consider the element Go\(J\2 0 2 §-

0 oi0 i202o ^  — ^0 1 ^1 2 ^ 2 0  ^ 2  v $  =  T ;(A o iA i2A 2o W £ > ,
wevtf w',w

which, by the Pi eigenequation gives

(?oi(7i2(T2ovil) =  =  Pfv{l). (6.38)
w'

Similarly for crJo^^oi- Next consider the general element a  given by the composition of 

2k elements a =  cr01(Ti2<r2o<7oi ’ ’ ’ ’ a i2 aov

cryO =  ^  (̂AqiA12 • • ‘ A fc-1 JfcA ĵ-jk • • • A 0i )w',wvU
w',w

=  =  E l A I 2*"® =  lAI” "® (6-3Q)
w',w w'

Any element of A2-A TL q is a linear combination of products of elements (?j,j± 1 such 

that the regions which meet the outer and inner boundaries have colour 0. Let a  be 

such an element. Then the action of o  on the /^/-eigenvector v® is given by av® =
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Y2W' w where M  is the product of matrices A, A T given by replacing every

0 j j +1, in a by A, A T respectively. Then by (6.38) and (6.39), this gives some

scalar multiple of v®.  Then each /^-eigenvector v® generates the submodule H & by 

Proposition 6.4.16. The inner product on H&1 coincides with the inner product on P G. 

Because of (6.31) we only need to check its restriction to the zero-weight part. For any 

element A G A2—ATLq , (A v ,v )H0 l =  c (v , v )H0l whilst (Av^l\ v ^ ) Pg =  d(v^l\ v ^ )  Pg. The 

element A  is necessarily a combination of non-contractible circles, which gives the same 

contribution in P Q as in H®1 by (6.38), (6.39). So c =  d. This shows that the inner 

product on the H 01 is positive definite.

Similarly, a O-eigenvector generates the submodule //° , where for no > n i, dim (//^’°) =  

1 and d im (H j ' )  =  dim(H^’2) =  0 , whilst for £$12̂  we have d im (//°’T) =  dim (H^'2) =  1 

and d i m =  0. As in the SU(2)  case, in order to make the resulting submodules 

orthogonal we take an orthogonal set of eigenvectors. □

For an A V £  graph Q with Coxeter number n, let P(ilti2) be the eigenvalue of Q given 

by (1.26) for exponent ( / i ,/2). Then for the graphs A^n\  we have for n ^  0 mod 3,

P aM  D 0  H 0<‘.•'*>, (6.40)

whilst for n =  3k, k > 2 ,
p A W  0  e  H0,0' (g 41)

ih,h)
where in both cases the summation is over all (Zi,/2) £ { (m i,m 2)| 3m2 <  n — 3 ,3mi +

3m 2 < 2n — 6 }, i.e. each P(ilti2) is a cubic root of an eigenvalue of Aj 3. We believe that

we in fact have equality here, so that P A{n) =  0 ^  ^  . In the SU(2)  case this

was achieved by a dimension count of the left and right hand sides [105, Theorem 15].

However, we have not yet been able to determine a similar result for the SU(3) A  graphs.

For the other A V £  graphs, Proposition 6.5.4 gives the following results for the zero- 

weight part of P s . For the V  graphs, we have

P®(3t> 3  0  H^hH) © 3 //° ’°, (6.42)
{h,h)

for k >  2 , where the summation is over all (Zi,Z2) £ { (m i,m 2)|m 2 < k — l ,m i +  m2 <

2k — 2, mi — m2 =  0 mod 3}, whilst for n ^  0 mod 3,

F ® "1 D 0  (6.43)
(h,h)

where the summation is over all (Zi, l2) G {(m i, m2)|3m 2 < n -  3 ,3mi +  3m2 < 2 n — 6 }. 

The path algebras for A and V are identified under the map which send the vertices
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it, ji and ki of X>M* with the vertex I of A (ni*, I =  1 , 2 , ,  [ i / 2J. We have

=  (6.44)
ih,h)

where the summation is over all (l\, l2) G {(m ,m )|m  =  0 , 1 , . . . ,  [(n — 3 )/2 j} . Similarly, 

the path algebras for and £(8)* are identified, and

p£W =  p £ W- D H f3(Q Q) 0  H 0(3 O) 0  H 0(Q 3) 0  H 0{2 2)_ ^  ^

For the graphs S\l2\  i =  1, 2,3, we have

P ^ 12) D H 0w  © 2H 0w  © (6.46)

For the remaining exceptional graphs we have

D / / 0<O,O) ® # 0(2,2) ® #0(4,4) ® 2 ZZ0-5, (6.47)

p 4 ' 2) D #«<“.») © ZZ'3*3'") © ZZ^3) © Z/^2'2) © Z /^ -i © zz0’1 © ZZ0-5, (6.48)

P £{24) D  0-0) ©  H 0{6'O) ©  / /^ ( ° - 6) ©  Z /% -4) ©  //^ (7 .4 ) 0  Z /% ,7 ) 0  J{0(6,6) 0  # 0 (1 0 .1 0 ).

(6.49)

The y42-planar algebra P  of Section 6.3 for the graphs *4^  clearly have decomposition 

P  =  JLQ as an A2-A TL-module, since P  =  S T L  which is equal to the A2- A T L-module H a 

(see Section 6.4.2). Since every ,42-planar algebra contains S T L , the ,42-planar algebra 

for all the A D S  graphs with a flat connection will contain the zero-weight module H a.

6.5.3 Irreducible m odules w ith  non-zero w eight

We will now present some conjectured irreducible A2- A T L-modules with non-zero weight. 

It is not known whether the inner-products we define on these modules are positive 

definite. Our construction of these modules is also based on the following assump­

tion. Let t2)> &{ti,t2) be the tangles illustrated in Figure 6.51. Note that ty(t2,ti)

is the rotation of <P{ti,t2) by 7r. These tangles can be viewed as some sort of “rota­

tion by one”. They have rank ( t \ , t 2). It appears that the infinite dimensional algebra 

Ak =  A2-ATL0,k/A2-A T L {k’k) is generated by the two tangles if(k,k) and tp{k,k), k > 1. 
From now on will assume that this is true.

Let po^ be the 0, fc-tangle given by the image of (p{k,k)V{k,k) in Ak, illustrated in Figure 

6.52, and let pi^-i be the image of p0)fc under the map Qk : A2-ATL0yk —> A2-ATLi>k-i 
as in Section 6.4.1. Then pitj  is some sort of “rotation by two”. Indeed, it can be shown
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Figure 6.51: <f(tl,t2) and (p(tl ,t2)

Po,k
k- 1

Figure 6.52: “Rotation” tangle p0,fc

for 2£max +  ^min ~  ^(i +  j ) ,  for any i , j  >  0 , that p^j is a rotation of order i +  j  in 

A2-A TLiJ/ A 2-ATL\tj M , i.e. (PiJ)i+i =  l id.

By drawing pictures it is easy to see that <P(k,k)'p{k,k) =  Po,k in Ak, and hence that

<P{k,k) commute in Ak. It is also easy to check that

=  <!?(*,fc) =  =  =  lo,fe>

so that (̂fcfc) =  V(kk) anc  ̂ &(kk) =  &(kk) are inverse elements in Ak. Again, by drawing

pictures it is clear that {¥(k,k)¥(k,k))k =  Pfk,k)- Then we have

(P(k,k) =  (<P(k,k)(P(k,k))k(P(k,k) =  ( (̂fc.fc)) V(fc,fc) =  ( ) fc (̂fc.fc))fc =  (̂ (fc.fc))** (6.50)

and so y \kk) =  and <p\kik) =  f \ p k)!fk(ktky

The algebras Ak are infinite dimensional, since I =  1 ,2 , . . .  , are all distinct

and non-zero in Ak, as are £>(fcfcp I =  1 ,2 , . . .  . One way to obtain a finite-dimensional 

A2-ATL -module Vr f̂c,fĉ 7 is to consider the element V{k,k)<P[kk) 35 acting as a scalar 7 2 in 

the lowest weight module V ^ ’̂ ’7, i.e. <P(k,k)<P(k,k) ~  ^2lo,fc in K),fc ,̂7> ôr some 7  £ C. By 

drawing the element k) we see that (̂jffc) — 7 2ATo,Jt- Then we have =  7 _2V(£fc)i 
and by (6.50),

rxk _  /,.* \k _  / , - 2fc,_2fc-l\fc _  _ -2k2,n2k2-k _  ^-2k2 2k(k-l),„k „ -2k „k
¥ ( k , k )  ~  (^(fc.fc)) = ( 7  ^ (M 0) - 7  ^ ( fc,fc) 7 7 V(M0 =  7 Vfyb,*)’
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so that $llk) =  7 4V(M) =  7  2tlo,i:- Now = V’(fe,*)^*,fc) = 7 2lo,fc> so that

~ f c + l  , - f c + l  ~ f c - 1   _  2  ~ / c + l  c i \
V?(fc,fc)Ĉ(fc,fc)VP(fc,A:) — 7 (̂fc.fc)- (0.51)

But we also have
~ f c + l  , - f c + l  r r f c - 1   ___________________ __  . - 2 / c  f c + 1  / £ ?  c o \
'■P(k,k){P[k tk ){P{ktk) ~  ^ { k , k ) ^ { k , k )  ~  7  (̂fc.fc)* (0.52)

Comparing (6.51) and (6.52) we find that 7 2¥>JJJ) =  7 _2V(£fc)> which gives

? ( « )  =  7 - 2<*+1)< * r (6-53)

Then by (6.50), (6.53) we have

(̂fc.fc) =  ^ { k , k ) ^ \ k , k ) { if [ k , k ) ) k =  'P(k]e)({P{k .fc))^ =  7  2^ +1V ^ f c ) ( 7 2fc(V:,(fc,fc))fc) =  7  2(f ( k , k ) -  

Then it appears that

< fcfc’fc)’7 =  sPan(̂ (fc,fc)l 1 =  0,1, • • •, 2k -  1),

where (f2kk) =  7 2fclo,fc- We see that (p(k,k) acts on Vq̂ ' 1 as Z2fc, by permuting the 2A: basis 

elements y>{fcfc), and so the A2- A T  L-module V^k’k n̂ decomposes as a direct sum over the 

2 k ^  roots of unity u  of ^-.ATL-modules V^k'k '̂1,UJ, where y ( k>k)^’u is the o;-eigenspace 

for the action of Z2fc with eigenvalue u.

For each k , we can choose a faithful trace tr' on Ak, which we extend to a trace tr on 

A2-A T L0,fc by tr =  tr'o7r, where n is the quotient map n : A 2-A T L 0^ —» Ak. We can define 

an inner product on A2-A T L { i , j  : 0, A;) by (S', T)  =  tr(T*5) for any S , T  G A2-A T L ( i , j  : 

0,/c). Since <£*fc *,)<£(*:,fc) =  lo,fc? the decomposition into V f̂c,fc),7,u' is orthogonal. If we 

let be the vector in V q ^ ’7^ which is proportional to Y ^ Y o ^ l Y ^ ^ k )  such ^bat 

W'k-^o,k) =  then =  ^ 7 ^o,fc- We see that diin(Vr0(tfc,fc)’'r,w) =  1 , and V $ k)'y'u
is the span of iPq’% . We define the Hilbert A2- A T  L-module H^k'k ,̂1,UJ to be the quotient of 

y{k,k),7,w Zero-length vectors with respect to this inner product.

We can also construct a finite-dimensional A2- A T L-module \Ẑ 3,0̂  with lowest weight 

2 and minimum rank (3,0) as follows. Let be the vector space of all linear com­

binations of tangles with one inner disc, where the outer disc has pattern z, j , the inner 

disc has 3 sink vertices, with one of these vertices chosen as a distinguished vertex, and 

such that as we pass along the string that has this distinguished vertex as its endpoint, 

the region to its right must be coloured 0. Let V ^’0  ̂ be the quotient of by the

ideal generated by the Kuperberg relations K1-K3. The vector space V ^’0̂  is infinite 

dimensional due to the possibility of composing the elements ^(3,0) an infinite number 

of times, where each </>(30p / =  1 , 2 , . . .  , is a tangle which has rank (3,0) and does not
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/+ l

Figure 6.53: Annular i, j-tangles Ui, Ui, I =  1 , . . . ,  j

contain any closed circles, or embedded circles or squares. If however, we let y?(3,o)V^o) 

count as some scalar in W3,0), <£(3,o)<?(3 0) =  7 3 £ C, then V 3̂,0̂  is finite-dimensional since

<A:3,0) (3,0

and hence y?330) =  7 3 £ C (and similarly ?^30) is also a scalar). Since the elements <̂ (3,o) 

and <£(3,0) are the same, 7 3 =  y?330) — ?f3 o) =  7 3, so 7 3 G R. We will denote the module 

l/(3,°) where ^(3,o)<?(3 0) =  7 3 € R by fA3,0)’7, where 7  G R.
Let Ui, Ui G A2-A T L itj , / =  1 , . . . ,  j ,  be the annular i, j-tangles illustrated in Figure 

6.53. We claim that the lowest weight module Vq2°^7 is the span of ty, I =  1 , . . . ,  6 , where

Vi is the tangle in Figure 6.54, v2i =  <P(2 ,2 )V2 i -i ,  I — 1 ,2 ,3 , and u2/+i =  Uiv2i, I =  1,2.

These are the only tangles we can find that have rank no smaller than (3,0), do not 

contain any closed circles or embedded circles or squares, and which cannot be written as 

a linear combination of tangles of the form u'y^ 3 0) f°r some p G  N, where v' is one of the

elements vi above, and the tangle y?3J0) *s inserted in the inner disc of v '.

The action of A2-ATLq^2 on V̂ ’0 ’̂7 is given as follows. For a tangle T  G A2- A T L ( i , j  : 

0, 2) and one of the elements vi  above, we form T v t and divide out by the relations K1-K3 

to obtain a linear combination of tangles with pattern i , j  on the outer disc and three 

sink vertices on the inner disc. Any tangle that has rank <  (3,0) is equal to zero. For 

the remaining tangles, any tangle that is of the form (p must necessarily by some

integer multiple of 3 to respect the colouring at the inner disc) becomes j pv '  G V̂ 3,0̂ 7.

For any two elements 5 ,T  G K/3,0̂ 7, the tangle T*S  will have three (source) vertices 

on its outer disc and three (sink) vertices on its inner disc. We use relations K1-K3 on 

T*S to obtain a linear combination . Cj(T*S)j of tangles (T*S)i which do not contain 

any closed circles, or embedded circles or squares, where Cj G C. We let (S,T)i  be zero if
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V, =

V.

V,

V, = v* =

Figure 6.54: The basis elements vi} i =  1 , . . . ,  6 , of /O|0)i7

rank((T*S)/ < (3,0). Otherwise, (T*S)i will be equal to </̂ 3)0) f°r some p =  0,1, 2 , . . .  , and 

we let (S', T)i be 7 P. We then define an inner product on V (3>°)’7 by (S, T) =  cj(S,  T)j .  

We define the Hilbert A2-ATL-mod\ile //C3-0).̂  to be the quotient of \A3,0)’7 by the zero- 

length vectors with respect to this inner product.

For 7 7  ̂ ±1 , H {3f )n has dimension 6 , and the action of A 2-A T L qi2 on Hq3̂ ' 1 is given 

explicitly by

V?(2,2)^21 —1 =  V2l, P(2,2)V2l =  ^21-1, Z =  1 ,2 ,3 ,
U\v2i-i =  8v2i- i ,  1 =  1 ,2 ,3 , Uiv2i =  v2i+\, 1 =  1,2,

P̂(2 ,2 )vi =  vi, UiVi =  0 , for all /.

Ui Vq =  7 3^1,

For 7  =  ±1, the dimension of Hq3̂ ^ 1 is 2, and is the span of the elements

v\, v2 above. The action of A2- ATL qj2 on is given by

^(2 ,2)^1 =  v2, <P( 2,2)V2 =  Vu
Um =  Svi, U\V2 =  l v l

V?(2,2 )vl =  vh UM =  0 , i =  1,2.

There is a similar description of modules / / ( ° i3)’7 of minimum rank (0,3), where there 

are now three source vertices on the inner disc. The roles of Ui and Ui are interchanged
for //(° ’3)’T\

We were able to conjecture certain irreducible modules of non-zero weight that the 

/ l2-planar algebra P g for the graphs and V ^  should contain, since the action of the 

rotation p0,2 on the j42-planar algebras for these graphs was much easier to write down 

than for the other graphs.
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For the graph £(8\  its zero-weight irreducible modules are //%>.°), 3-°), Z/^0-3) and

///?(2,2) By computing the inner-products (vi,Vj) of the elements vi G Z/qi explicitly, 

and using Mathematica to compute the rank of the matrix {(vi,Vj))i,j, we computed the 

dimension of and and found that P £{8) did not contain any

irreducible modules of lowest weight 1. It should be noted that Mathematica is not an 

open-source software, and the users have no way of knowing the reliability of results 

obtained using it. Similarly, by computing the dimensions of W  =  Hq̂ '0) © Po^'0) © 

//^ (20,3) © we find that dim(VF) =  30 whilst dim(P^28>) =  36, so that the dimension

of W 1- fl Fq 2*° 6 - Then for modules of lowest weight 2, we conjecture

Pot =  tf£(2°,0) © Ho$'0) © Ho!23) © H * 2 2) © ^ 0320),£1 © ^o°23)’£1 © ,

where G {± 1 } , i =  1 ,2 ,3 , and 71,72  G T, where the exact values of these six parameters 

has not yet been determined. This conjecture arises from computing the eigenvalues of 

the actions of p0,2> U\ and U\ on W 1 fl P^2 • Each action is a linear transformation, 

which we computed by hand, and then computed using Mathematica the eigenvalues of 

the matrix which gives this linear transformation. These eigenvalues are

p0,2 : 1 twice, — 1 four times, (6.54)

U\,U\ \ [4]c*J-2 , once, 0 five times. (6.55)

The eigenvalues of the actions of these elements on //q 3̂ ’7 and //q^ ’7 are given

in the Table 6.1.

A2-AT  L-module P0,2

Eigenvalues of the actioi

Ui

[1 of

Ui
r r (  2,2),7,u; 
n 0,2 OJ2 0 0
r r ( 3 , 0 ) , ± l

0 ,2 1 , - 1 0 ( x 2 ) [4]ct<5-2 , 0
i t  (0 ,3 ) ,± 1
P q,2 1 , - 1 [4]ai5_2, 0 0 ( x 2)

7  *  ± 1 1 (x 3 ) , - 1  (x3 ) 0 ( x 6 ) [4]a6~2 (x3 ), 0 ( x 3)

7  *  ± 1

coXT“H1co'XrH [4]a<5-2  (x 3 ), 0 (x 3 ) 0 ( x 6 )

Table 6 .1: The eigenvalues of the actions of p0)2, £/i, U\ on H q̂ ’7,w, Hq3̂ ' 1, Hq0̂ ^ .

Then we see that W 1- D Pq ™ should contain one copy of both of Hq3̂ ’*1 and >

£ i , e [  G  {± 1 } , and since P £(8) is invariant under conjugation of the graph £(8\  we should 

have e\ =  Then we need to rank (2,2) modules of Hq2̂ ’11’", Hq2̂ ' 12'1̂ such that the
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action of po,2 on both has an eigenvalue J 1 =  —1, i.e. lj =  ± i .  Since P £{s) is invariant 

under complex conjugation, we would either have 71,72  £ R or else 7 ! =  7 2. However, 

to determine the exact values of Si, i =  1 , 2 ,3, and 71 , 72 , we would need to consider the 

action of <̂ (2,2) on W 1  f l  P q ^  > the computation of which would take many weeks to write 

down. So we conjecture that

P £ W  D  H 0 W  ©  Z / ^ 3-0) ©  ©  Z / ^ 2.2) 0  / / ( 3 ,0 ) ,e i  0  # ( 0 ,3 ) ,£l 0  # ( 2,2),7l ,e2t 0  # ( 2 ,2 ) ,72,e37

Similarly for the graph V ^ , we found that P p(6) also contains no irreducible modules 

of lowest weight 1. Computing the dimensions of P ^  and W  =  Hq^'0) 0  ZZjf as for the 

case, we find dim (Pfy^) =  lb and dim(VT) =  14. Then the dimension of W ± n P ^ 2 ) is 

2 , and hence P ^  must either contain one copy of Hq^ ’7 or else Hq2̂ ' 11' 1̂ 0  Hq2̂ ' 12̂ 2 . 

By considering the action of po,2 on W 1  fl P^ » we have the eigenvalue 1 twice. Then 

W  =  Hq2̂ ' 11'1̂1 0  Hq'^'12'̂ 2, where u 2 =  1, i =  1,2. Then we conjecture that

p p(6) D  H 0 w  © ZZ0,5 0  H {2'2 ) n i '£l  0  ZZ(2,2)’72,£2,

where , er2 £ {± 1 } , and either 71,72  £ K or else 72 =  7 2. Again, to determine the values 

of c j ,7 i, i =  1 , 2 , explicitly requires considering the eigenvalues of the action of <̂ (2,2) on
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Chapter 7

Spectral M easures and G enerating  
Series for N im rep Graphs in  
Subfactor Theory

The spectral measures for the A D E  graphs were computed in terms of probability mea­

sures on the circle T in [3]. We reproduce their results via a different method, which 

depends on the fact that the A D E  graphs are nimrep graphs. This method can then be 

generalized to SU (3) much easier, which we do, and in particular obtain spectral measures 

for the infinite graphs A ^  and corresponding to the representation graphs of the

fixed point algebra of M3 under the action of SU(3)  and T2 respectively. We also 

obtain the spectral measure for the finite graphs A^n\  A ^ * , n >  4, and V^3k\  k >  2, and 

the subgroups Zn x Zn, n >  2, A(3n2), n =  0 mod 3, and (G ) =  £(216 x 3) of S U {3).

We are also going to compute various Hilbert series of dimensions associated to A D E  

models. In the SU(2)  case this corresponds to the study of the McKay correspondence 

[104], Kostant polynomials of [75], the T-series of [3], and the study of pre-projective 

algebras [16, 83]. The corresponding SU(3)  theory will be more complex, related to the 

AdS-CFT correspondence and the Calabi-Yau algebras arise in the geometry of Calabi- 

Yau (CY) manifolds.

7.1 .1  Spectral M easures

A non-commutative C*-probability space (A ,p )  is defined to be a unital C*-algebra A 

over C together with a state (p : A —► C such that p {1a ) — b  where 1  ̂ is the unit of A. 

A  random variable is then an element a £ A.

If b £ A is a normal bounded operator then there exists a compactly supported
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probability measure on the spectrum a(b) C C of b, which is uniquely determined by 

its moments
tp(bmb*n) =  f  z ^ d ^ i z ) ,  (7.1)

J o(b)
for any non-negative integers m, n.

Suppose a be self-adjoint. Then (7.1) reduces to

<p(am) =  [  xmdfia{x), (7.2)
J 17(a )

with a (a) C M, for any non-negative integer m. The generating series of the moments of 

a is the Stieltjes transform a(z)  of fia, given by

OO OO a /* 1
a{z) =  V  <p(am)zm =  J 2  xmz mdfia(x) =  / ---- ---------dfia{x). (7.3)

m=0 m=0 a(a) 1 XZ

7.1.2 G eneral Polynom ials

The classical McKay correspondence relates finite subgroups T of S U (2) with the algebraic 

geometry of the quotient Kleinian singularities C2/T  but also with the classification of 

S U (2) modular invariants, classification of subfactors of index less than 4, and quantum 

subgroups of 5/7(2). The study of quotient singularities and their resolution has been 

assisted with the study of structure of certain noncommutative algebras. Minimal resolu­

tions of Kleinian singularities can be described via the moduli space of representations of 

the pre-projective algebra associated to the action of T. This leads to general programme 

to understand singularities via a non commutative algebra A, often called a noncommu­

tative resolution, whose centre corresponds to the coordinate ring of the singularity. The 

algebras should be finitely generated over its centre, and the desired favourable resolu­

tions is the modular space of representations of A, whose category of finitely generated 

modules is derived equivalent to the category of coherent sheaves of the resolution.

In three dimensions, as part of the AdS-CFT correspondence or programme, the work 

of Hanany, He and coworkers has identified intriguing connections and puzzles related to 

the following concepts

• Toric geometry of singular CY-threefolds in a supergravity AdS model

• Brane tilings in the two dimension plane

• Quiver diagrams describing bifundamental fields in an effective gauge theory of a 

conformal field theory
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This can probably be regarded as a higher rank analogue of the McKay correspondence 

in dimension two.

Some of these links are simply explained but on the whole, these relations are mainly 

not obvious. The AdS-CFT correspondence seeks to relate a supersymmetric gauge theory 

on a 10 dimensional space with a conformal field theory (CFT) described by a quiver gauge 

theory on a lower dimensional factor. This is encapsulated by the geometry of the toric 

singularity modeled on C3/r where T is a finite (usually abelian) subgroup of S U (3). A 

brane tiling is a tiling of the plane with a planar graph where each face has an even number 

of edges or the graph is bipartite. The dual graph is the (periodic) quiver describing the 

gauge theory.

A dimer model has allowed configurations of non overlapping edges on a graph so that 

each edge of the dimer picks up exactly one vertex of the underlying graph once only. 

Taking the determinant of the Kasteleyn matrix leads to the toric geometry described via 

the toric diagram of the singularity.

Evans and Gannon [36] have noted that there are similarities between this circle of 

ideas and those arising in the bundle structures in twisted equivariant A-theory analysis 

of conformal embeddings.

We take the superpotentials built on the A D S  cells and corresponding associated 

algebraic structures and proceed in another direction and try to compute the Hilbert 

series of dimensions of the corresponding algebras.

We can go from a toric diagram to a noncommutative geometry or a noncommuta- 

tive algebra given by a superpotential. The fundamental ideas can be gleaned from the 

following example.

Take the quiver Q on two vertices {1 ,2} with four oriented edges {a l5 a2 : 0 —» 1; fe i ,  b2 : 

1 —> 0} and quartic superpotential (of Klebanov-Witten [72]) W  =  aib\a2b2 — a\b2a2b\. 

Thus we form the noncommutative algebra A by dividing the path algebra C £ by the re­

lations given by the derivatives of W . Here the relations x\ — a\b\ +  b\a\, x2 =  a262 +  62a2, 

,t3 =  a,ib2 +  b2d \ , x 4 =  a2bi +  b\a2 span the centre R  =  Z(A)  =  C [.ti,.t2,.T3,.t4]/(.x,1.t2 -  

x 3x 4 ).  This is the ring of functions on Z  a conifold singularity or threefold double point. 

Then A can be regarded as a noncommutative resolution of the toric singularity Z  the 

spectrum of R.

If Hn is the matrix of dimensions of paths of length n in a graph Q in the pre-projective 

algebra (see Section 7.5.4), with indices labeled by the vertices, then the matrix Hilbert 

series H of the pre-projective algebra is defined as H(t) =  Hntn. Let A denote the 

adjacency matrix of Q. Then if Q is a finite (unoriented) graph which is not an A D E T
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graph (where T  denotes the tadpole graph Tadn), then H(t) =  (1 -  A t  +  £2)-1 , whilst if Q 

is an A D E T  graph, then H(t) =  (1 +  P t h)( l  —A t-K 2)-1 , where h is the Coxeter number of 

Q and P  is the permutation matrix corresponding to an involution of the vertices of Q [83]. 

In the A D E T  case, one can go further and compute the dimension of II as h(h +  l ) r / 6 , 

where r is the number of vertices of Q.

The dual II* =  Hom(II,C) is a 11-11 bimodule, not usually identified with nHn or 

i l l i  with trivial right and left actions but with ill„  with trivial left action and the right 

action twisted by an automorphism, the Nakayama automorphism v. The Nakayama 

automorphism measures how far away II is from being symmetric. In the case of the 

pre-projective algebra of a Dynkin quiver, this Nakayama automorphism is identified 

with an involution on the underlying Dynkin diagram. More precisely it is trivial in all 

cases, except for the Dynkin diagrams An, D 2n+i , E& where it is the unique non-trivial 

involution.

The examples coming from finite subgroups of SU(3)  give CY algebras of rank three. 

We are mainly interested not in the fusion graphs of S U (3), whose adjacency matrices 

have norm 3, but in the fusion ADE graphs arising in our subfactor setting as describing 

the SU(3)  modular invariants through M - N  systems which have norm less than 3.

An abelian category is a category with addition of objects and morphisms where ker­

nels and cokernels exist and are well behaved. An abelian category A  gives rise to a 

derived category V(A) .  We first pass to the chain complexes Kom(.4). These are se­

quences of objects with connecting morphisms where the product of any two connecting 

maps are zero. The quotient of a kernel (the cycles) by the preceding image (bound­

aries) gives homology. The next step is to take K ( A ) ,  the homotopy category of chain 

complexes by identifying chain homotopic morphisms, i.e. those morphisms which yield 

identical results on homology. Quasi-isomorphism are the morphisms which identify the 

homology elements of the chain complexes. The derived category V (A ) ,  is obtained by 

localizing at the quasi-isomorphisms - adding to the category an inverse morphism for 

each quasi-isomorphism, constraining them to become isomorphisms. For the bounded 

derived category V b(A), one only considers chain complexes of finite support. The de­

rived category is a triangulated category. A triangulated category is a category V  with 

a translation functor T, moving objects and morphisms, written say X[n] =  T nX  on 

objects. A triangle is X  —> Y  —* Z  —> Z[ 1]. If A  is an abelian category, then K {A )  is a 

triangulated category with objects the chain complexes, morphisms are homotopy classes 

of morphisms and the distinguished triangles are morphisms with their mapping cones. 

If /  : A —> B is a map of complexes, then the cone of / ,  C one(/) =  C (f )  =  C  is the
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complex A[l\ © B, with triangles A -+ B —> C ( f ) ,  where the maps B —> C {f )  —> A[l\ are 

natural inclusions and projections .

A triangulated category V  yields a cohomology and cohomological functors, say F  : 

V  —> A  into an abelian category A , where each distinguished triangle is mapped to a long 

exact sequence in A , where —> FX[i]  —» FY[z] —> FZ[i] —» F X [ i  +  1] —>. In particular 

Hom(A, —) is a cohomological functor, and Ext1 (A, X )  =  Horn (A, A[i]) are the extension 

groups.
A bounded derived category V b(A)  is Calabi-Yau of dimension n if there are natural 

isomorphisms

Hompb^A, B)  —> RomVbA(B, A[n])* .

That is the n^ -sh ift is a Serre functor. An algebra A will be said to be Calabi-Yau of 

dimension n if the bounded derived category of the abelian category A  =  Rep(A) of finite 

dimensional A-modules is a Calabi-Yau category of dimension n. In this case [14] one 

has the global dimension of A is n. That is for all A, Y  in Rep(A) that Ext^(A, Y )  =  0, 

unless 0 < i <  3. Moreover, if X, Y  are in Rep(A), then there are natural isomorphisms

Ext^(A, Y)  ~  Ext^_fc(Y, X)*

and natural pairings Ext^(A, Y)  x Ext^-/c(Y, X )  —* C . The derived category of coherent 

sheaves V b(C o h X ) over an n-dimensional Calabi-Yau manifold is Calabi-Yau category of 

dimension n and they appear naturally in the study of boundary conditions of the B-model 

in superstring theory over X .  For more on Calabi-Yau algebras, see e.g. [14, 49].

Bocklandt [14] has studied the types of quivers and relations (superpotentials) that 

appear in graded Calabi-Yau algebras of dimension 3. Indeed he also points out that the 

zero-dimensional case consists of semi-simple algebras, i.e. quivers without arrows, the 

one dimensional case consists of direct sums of one-vertex-one-loop quivers. Moreover, a 

Calabi-Yau algebra of dimension 2 is the pre-projective algebra of a non-Dynkin quiver. 

The pre-projective algebra of a Dynkin quiver has global dimension 2.

7.2 SU{2) Case

In this section we will compute the spectral measures for the A D E  Dynkin diagrams and 

their affine counterparts. We will present a method for computing these spectral measures 

using the fact that the graphs are nimrep graphs. This method recovers the measures 

given in [3] and will allow for an easy generalization to the case of SU(3)  and associated 

nimrep graphs.
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Figure 7.1: Doubly infinite graph Ax,>00.

A graph is called locally finite if each vertex is the start or endpoint for a finite number 

of edges. Let Q be any locally finite bipartite graph, with a distinguished vertex labelled * 

and adjacency matrix A. Defining a state p  by the *, *th element, p(  • ) =  [ • ]*,*, by (7.2) 

the spectral measure of Q is the probability measure fi& on M given by f R'ip(x)dp,^(x) =  

[^(A)]*,*, for any continuous function ^  : R —► C, as in [3].

7.2.1 S pectra l m easure for A oo)00

We begin by looking at the fixed point algebra of 0 N M2 under the action of the group 

T. Let p be the fundamental representation of S U (2), so that its restriction to T is given 

by 1.8.

Let {o'ijiez be the irreducible characters of S U (2), T respectively, where xo

is the trivial character of SU (2), Xi is the character of p, and a ^ z ) =  z l , i G Z. If a 

is the restriction of Xi to T, we have a =  +  <r_! (by (1.8)), and ooi  =  \ +  cri+1,

for any i G Z. Then the representation graph of T is identified with the doubly infinite 

graph Aoo^, illustrated in Figure 7.1, whose vertices are labelled by the integers Z which 

correspond to the irreducible representations of T, where we choose the distinguished 

vertex to be * =  0. The Bratteli diagram for the path algebra of the graph Aqo.oo with 

initial vertex * is given by Pascal’s triangle. The dimension of the 0th level of the path 

algebra is 1, and we compute the dimensions of the matrix algebras corresponding to 

minimal central projections at the other levels according to the rule that for a vertex 

(u, n) at level n we take the sum of the dimensions at level n — 1 corresponding to vertices 

(v',n — 1) for which there is an edge in the Bratteli diagram from (v', n — 1) to (u, n). It 

is well-known that these numbers give the binomial coefficients, with the j th vertex along
/  tyi \

level m  giving CJ71, and we see that crm =  SJLo where C™ =  ( 1 are the

binomial coefficients.

Recall that if { 7t*} denote irreducible representations of a group (7, and if 7r =  n i7Ti © 

n27r2 © • • • on a full matrix algebra, then the fixed point algebra of the action Ad(7r) is 

isomorphic to M  =  Mni 0  Mn2 0  • • • , and the dimension of M  is given by the sum of the 

squares of the rij. Then we see that (<S>fcM2)T =  ® kj =QMCk, and ( 0 N Â ) 1 — A(Aoo)0O). 

Hence dim f(<8>fcM2) TJ =  Yl j=o(^ j )2- By comparing the coefficient of xk in the binomial
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expansions of (1 -t- x )fc(l +  x)k and (1 4- x)2k, we have

k
£  C*Ct-i = Cf ,  (7.4)
3=0

and we obtain dim(j4(j4oo>0o)fc) =  C*fc. Counting the number pj of pairs of paths in 

^(^oo,oo)k which end at a vertex k — 2j  of Aoot00 is the same as the dimension of the 

subalgebra of A(A00t00)k which corresponds to the vertex k — 2j  at level k of the Bratteli 

diagram for A(A00y00)̂  and hence pj is given by the binomial coefficient pj =  C k.

We define an operator wz  on £2(Z) by wz  =  s 4 - s -1 , where 5 is the bilateral shift 

on £2(Z). Let 12 be the vector (£i,o)*- Then wz  is identified with the adjacency matrix 

Aoo,oo of -̂100,00? where we regard the vector 12 as corresponding to the vertex 0 of j4oo,oo> 

and the shifts s, s -1 correspond to moving along an edge to the right, left respectively on 

^oo.oo- Then sk 12 corresponds to the vertex k of A^,  k G Z, the identity s~1s =  s s~x =  1 

correspond to moving along an edge of /loo,oo and then back along the reverse edge, 

arriving back at the original vertex we started at. Applying n >  0 , to 12 gives a 

vector v =  (vi)iez in 2̂(A00joo), where Vi gives the number of paths of length n from the 

vertex 0 to the vertex i of i4ooi00.

The binomial coefficient C2n counts the number of ‘balanced’ paths of length 2n on 

the integer lattice Z2 [29], that is, paths of length 2n starting from the point (0,0) and 

ending at the point (2n, 0 ) where each edge is a vector equal to a translation of the vectors 

(0 , 0 ) - ( 1, 1) or (0 , 0 ) - ( 1 , - 1).

We define a state tp on C*(wz) by (p( •) =  (IT, • f2). The odd moments are all zero. 

For the even moments we have

2k 2k
i f (w f )  =  <p((s +  s - 1)2*) =  ^  C f i f ( s 2k~2i) =  C 2k6j,k =  c f .

3=0 j=0

Suppose the operator A has norm <  2, so that the support of the spectral measure p. 

of A is contained in [—2,2]. There is a map $  : T — [—2,2] given by

$(m) = u + u-1, (7.5)

for u G T. Then any probability measure e on T produces a probability measure p  on 
[ - 2 , 2] by

/ 'ip(x)dp(x) =  /  ip(u +  u~1)de(u),
2 J T

for any continuous function ip : [—2 , 2] — C.
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The operator Aooi00 has norm 2. Consider the measure e(u) given by de(iz) — du , 

where du is the uniform Lebesgue measure du on T. Now f T umdu =  6mt0, hence JT(u +  

u~1)rndu =  0 for m  odd, and

r  2 f c  r

/  (u +  u~l )2kdu =  V  C f  /  u2k~2jdu =  C f  =  ip iwf) ,J T J = 0  J T
for k >  0 [3, Theorem 2.2]. Now, we can write

r  r 1 C l 2
/  (u +  u~l )mdu =  /  (e27ri£l +  e - 2nie)mde =  2 {e2nie +  e^2nt(,)m

J T Vo JO
d6.

If we let x =  e27n0-fe 2?n0 =  2cos(27r0), then dx/d6  =  27rz(e27rt0 —e 27rl(?) =  —47rsin(27rd) =  

-2ttx /4  — x2. Here the square root is always taken to be positive, since sin(27rd) >  0 in 

the range 0 < 6 <  1/ 2 . So

C f 1!2 1 P~2 1
(u +  u-1)mdu =  2 /  (e2" '9 +  e~2"ie)mdO =  —  /  xn- = = d x

J T JO Tr J 2  V 4 — .T2

1 f 2 n  1
7T 7 -2

— X

dx.
x*

Thus the spectral measure /z ^  of (over [—2,2]) is d/iwz{x) =  (7r\ /4  -  x2) -1  dx. 

Summarizing, we have the identifications

dim(j4(i400)00)fc) =  dim ((<8>fcM2) T)  =  C f  =  (p (w f ) =  -  f  x2k 1 =  dx.
'  /  7T J _ 2 V 4  -  X2

7.2.2 Spectral m easure for vl00

We now consider the fixed point algebra of (^)N M2 under the action of S U (2). We have 

XiX* — Xi-1 +  W+i> for z =  0 ,1 ,2 , . . .  , where X -i =  0. Then the representation graph of 

SU (2) is identified with the infinite Dynkin diagram Aoo of Figure 1 .1 , with distinguished 

vertex * =  1. Then ((g)N M2)SU^  =  AfAoo).

We define an operator w^  on £2(N) by w N =  I + 1*, where I is the unilateral shift to 

the right on £2(N), and fl by the vector (£*,i)». The operators /, /* satisfy 1*1 =  1 and 

I* ft =  0. Then is identified with the adjacency matrix A,*, of where we regard 

the vector fl as corresponding to the vertex * =  1 of A<*,, the creation operator I as an 

edge to the right on and the annihilation operator /* as an edge to the left. As for 

the graph AOCioo, applying w^, n >  0 , to fl gives a vector v =  in 2̂(Aoo), where

Vi gives the number of paths of length n from the vertex 1 to the vertex z of A<*,. The 

relation l*fl =  0 corresponds to the fact that there is no edge to the left from the vertex

1 on A0c.
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Let Cn be the nth Catalan number which counts the number of Catalan (or Dyck) 

paths of length 2n in the sublattice L of Z2 given by all points with non-negative co­

ordinates. A Catalan path begins at the point (0,0) and must end at the point (2n,0), 

and is constructed from edges which are translations of the vectors (0 , 0 ) —► (1 , 1) or 

(0,0) —* (1 ,-1 ) .  The Catalan numbers Cn are given explicitly by

* - 4 t C2”Vn +  1 \  n J

We define a state tp on C*(wn ) by •) =  (O, • O). Once again, the odd moments are 

all zero. For the even moments we have cp(wjy) =  c ,̂ since the sequences in /, I* which 

contribute to the calculation of <p(w]§) can be identified with the Catalan paths of length 

2k. As an example, the case for k =  3 is illustrated in Figure 7.2.

/ \/ K
/

/ \ / \
/ \

/7/77/

/7/7/7

/ \
/ \ / \

/ \ / \ / \

/77//7 / \
/ \ / \

Figure 7.2: Catalan paths of length 6

By [61, Aside 5.1.1], the dimension of the kth level of the path algebra for the infinite 

graph Aoo is given by dim(A(Aoo)fc) =  c .̂ A connection with Catalan paths was also 

shown in [61, Aside 4.1.4], since any ordered reduced word in the Temperley-Lieb algebra 

alg(l, e i , . . . ,  e*_i) is of the form

iej i ej i - i ' '  ’ ei i ) i ej2ej2-i  ''' eh ) ' ’ ’ i ejpejp-1 ’ ’ ‘ eiP)i

where j p is the maximum index, ji >  li, i =  1 , . . . ,  p , and j i+i > j i , li+1 > l i , i  =  1 , . . . ,  p — 

1 . In the generic case, when the Temperley-Lieb parameter 6 >  2, these words are linearly 

independent. Such an ordered reduced word corresponds to an increasing path on the 

integer lattice from (0,0) to (k , k) which does not go below the diagonal. Rotating any 

such path on the lattice by 7r /4 , we obtain a path of length 2k corresponding to a Catalan 

path. For example, consider the element (e3e2ei)(e4e3)(e5e4) G alg(l, e \ , . . . ,  ee). Then the 

increasing path and the corresponding Catalan path are shown in Figure 7.3. For S <  2, 

the ordered reduced words are linearly dependent, and we only have dim(A(A00)*:) <  c .̂
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/ \ /
/ / \ / \

/ \
0 1 2 3 4 5 6

Figure 7.3: Increasing path and corresponding Catalan path for (e3e2ei)(e4e3)(e5e4).

A self-adjoint bounded operator a is called a semi-circular element with mean k € R 

and variance r2/4  if its moments equal those of the semi-circular distribution centered at 

k and of radius r >  0 , i.e. a has the probability measure /xa on [n — r, k +  r] given by

A*a(0 =  ---- o \ / r2  -  ( X  -  k ) 2cI x .'KV‘i
(7.6)

When n =  0, r =  2, this is equivalent to a being an even variable with even moments 

given by the Catalan numbers:

Cfc, if m  =  2k,

0 , if m  odd,

Thus the operator above is a semi-circular element. We will reproduce a proof that 

the probability measure iiWN on [—2,2] is given by d îWN(x) =  (27r)-1 \/4  — x2dx in the 

next section. This is the spectral measure for A ^  given in [111].

Summarizing, we have the identifications

SU(  2 ) \  =  1
dim(A(A00)fc) =  dim ((<g>fcM2) J =  ck =  ^

»2
c i2k

=  (p(w^) =  -7-  /  x2k\/A — x2 dx.
2 tt J_2

7.3 Spectral measures for A D E  D ynkin diagrams via  

nimreps

Let, A g be the adjacency matrix of the finite (possibly affine) Dynkin diagram Q with s 

vertices. The mth moment J  xmdfi(x) is given by (A ^ej, ei), where e\ is the basis vector 

in £2(G) corresponding to the distinguished vertex * of Q.

Let f t  be the eigenvalues of Q, with corresponding eigenvectors xj , j  =  l , . . . , s .  

Now Ag = UAgU*, where Ag =  diag({31, /32, . . . , /3s) and U  =  (x1, x2, . . . ,  xs). Then
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AJ* =  UA%W,  so that

i!>(u +  u - l)<k(u) =  (U \ '$U ’ei , e i ) =  (Ag'W’e,, tt*e,)J
J  T

=  E o ^ r i s / i i 2. (7 .7 )
j=i

where y* =  is the first entry of the eigenvector x \

For a Dynkin diagram Q, its eigenvalues Xj are given in (1.13), with corresponding 

eigenvectors {^ a3)a&o{G)̂  f°r the exponents rrij of Q, j  =  1 , . . . ,  s. Then (7.7) becomes

/
J  T

V>(it +  u l )de(u) =  J 2 ( * T \ ^ 3\2, (7-8)
j =i

where * is the distinguished vertex of Q with lowest Perron-Frobenius weight. Using (7.8) 

we can obtain the results for the spectral measures of the Dynkin diagrams given in [3]. 

The advantage of this method is that it can be extended to the case of S U (3) A V S  graphs 

and subgroups of S U (3), which we will do in Sections 7.7, 7.8.

Loo7.3.1 D ynkin  diagram s An, Ac

The eigenvalues XJn of An are given in (1.12), with corresponding eigenvectors ifjJa =  Saj  =  

y j2 /(n  +  1) sm (jan /(n  +  1)). The distinguished vertex * of An is the vertex 1 in Figure 

1.1. With u =  eni^n+1\  we have 2 cos(j7r /(n + l) )  =  v?+u~* and sin (j7r /(n + l) )  =  Im(iP). 

Note that Im(uJ) =  0 for j  =  0, n +  1. Then

J
J  T

* („  +  „ -> )* („ )  =  sin2 ( ^ - j )  (7-9)

2 n 
7 1 + 1  ^3 = 1

2(n+l)

=  — - V  (i? +  u~j )m ImivP)2
2(n + x) +  V K ‘

=  2 j  (u +  u~1)m Im(u)2 dn+iu (7-10)
J T

where dn+i is the uniform measure on the 2 (n +  l ) th roots of unity. Thus the spectral 

measure (over T) for An is d e ( u )  =  2Im(u)2 d n+\U. This is the result given in [3, Theorem 

3.1]

We again consider the infinite graph Aoo, and note that the computation of the mth 

moment is a finite problem, f  x m df iWN( x )  =  (A™ne i,e i) ,  for m  < 2n. Taking the limit in
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(7.9) as n —> oo (cf. the second proof of Theorem 1.1.5 in [54]), we obtain a sum which is 

the approximation of an integral,

[  xmdfj,WN(x) — — f  (2 cos t)m sin2 tdt  =  —- f  xm\/4  — x2dx,
J n Jo 27r J_2

so that dfiWN(x) =  (27t)-1 \/4  — x2dx, and the operator w n is a semi-circular element.

Alternatively, if we take the limit as n —► oo in (7.10), we obtain

j  ip(u +  u~1)de(u) =  2 J ( u - u ~ 1)m Im (u)2du,
J t  J T

where du is the uniform measure over T, as claimed in the previous section.

7.3.2 D ynkin diagram s Dn

For finite n, the distinguished vertex of the graph Dn is the vertex n in Figure 1.2. The 

exponents Exp of Dn are 1, 3 , 5 , . . . ,  2n — 3, n — 1. For n =  2/, the exponent 21 — 1 has

multiplicity two, and we denote these exponents by (21 — 1 , ± ) . The eigenvectors of D 2i

are given by [5, (B.6)] as:

“¥a =  V2S2i+i-a,j, a ^  1 , 2 , j  21 — 1 ,
^ ( 21- 1,± )  =  S 2 J + l  a  2 J 1 ]  a  ^  1 . 2 ,

=  'Pi =  7552( - i j ,  j ^ 2 l - l ,

=  i ( 5 21- 1,2i_ 1 ± ( l - 2 e ) ^ / R F T).

where e =  0,1 and j  € S. Using (7.8) and with u =  eni^il~2\

Jtip(u +  u )de(u)

=  (2 cos(j7T/(4/ -  2)))m|>/2S1 J |2 +  2 (2 cos(j7r /(4 / -  2)))m|5 1 J |2
j& l- l

=  4 j~T2  (2 c°sO'7r/(4Z -  2)))m sin2( j7r/(4Z -  2))
jeExp

=  i r h  ^  { P  +  Im (5 ' )2 =  v h l  £  (u3 + u - > r i m ( u i ) ‘-
j c  Exp je{l,3,...,8Z—5}

=  2 f (u +  u-1)m lm(u)2d'4l_2u,
J T

where d'4l_2 is the uniform measure on the (8 / — 4)th roots of unity of odd order.

For D2i+i , the eigenvectors are given by [5, (B.8 )] as:

t i  =  ( - l ) ^ \ / 2  S a + 2 - a j ,  a ?  1, 2,  j ?  21, 

iP» =  0 , a ^  1, 2 ,
1 C____ _ __^ 2 1  J, ~_ ,1,21  __

V2 ’  ̂ ~  ^2 ’

V>j =  V>2 =  ^  j  ^  21,
ipf =  -u , J #  ~
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where j  G Exp =  { 1 , 3 , 5 , . . . ,  4/ -  1,2/}.  Then, using (7.8) and with u =

So the spectral measure de(u) on T for D n is given by ds(u) =  a(u)d'2n_2u , where

which recovers the spectral measure given in [3, Theorem 3.2].

Taking the limit of the graph Dn as n —> oo with the vertex n as the distinguished

must set the distinguished vertex * of D n to be the vertex 1 in Figure 1.2. Then using 

(7.8), and taking the limit as n —» oo, we obtain the spectral measure for D^.

7.3.3 D ynkin  diagram  E q

For Eq the exponents are 1, 4, 5, 7, 8 , 11. The eigenvectors for Eq are given in [5, (B.9)]. 

In particular,

Now for any p G Bq, up is a 24th root of unity, but for p =  4 ,8 ,16 ,20 , up is also a 6th 

root of unity. Since iV'il2 takes different values for different p, clearly we cannot write 

the above summation as an integral using the uniform measure over 24th roots of unity.

a(u) =  21m (u)2, (7.11)

vertex, we just obtain the infinite graph A^.  In order to obtain the infinite graph Doo we

Then, by (7.8),

J'tjj(u +  u 1)de(u) =  ^  W |2(2 c°s (jf7r /12))m =  ^ l'0 f |2(2 c° s (p7r /12))7Tl,

where J56 =  {1 ,4 ,5 ,7 ,8 ,1 1 ,1 3 ,1 6 ,1 7 ,1 9 ,2 0 ,2 3 } , and for j  >  12 we define ip{ by =  

Then with u =  entZ12,

(  V>(u +  u 1)de(u) =  J -  12I-01 |2(up +  u p)m.
T 24 peB6
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However, with a as in (7.11), we have

a(vr)  =  1 2 |^ |2 - | ,  for p =  1 ,11 ,13,23,

a(up) =  12 |^ f |2 — for p =  4 ,8 ,16 , 20,

0 (1? ) =  12|^0i I2 — | ,  for p =  5 ,7 ,17 ,19 .

By considering ap =  a(up) +  1/2, we can write

+  u- 1)d£(u) =  777 ap(up +  u~p)mJ
J  T 24 OpeB6

+ “ + m +  + s + m +  (“ I 6 + 5 ' 16)m + ( « “ + « _20)m) ■

Since up is also a 6th root of unity for p  =  4 ,8 ,16 , 20, it may be possible to obtain the 

last four terms by considering an integral using the uniform measure on 6th roots of unity. 

First, we consider the integral JT(u +  u “ 1)m(2Im(u)2 +  l /2 )d i2it, where d\2 is the uniform 

measure on the 24th roots of unity, to obtain the terms in the summation above, giving

/ il)(u +  u~l )ds(u)
J T

=  f(u+  u _1 )m ( 2 I m ( i i ) 2 +  i)dl2u - t y  a , ( u ’  +  u ' T  
J T q

+ Ta +  “ _4)m +  (“* +  “ ~8)m +  (“ 16 +  “ ~16)m +  (“ 20 +  « ' 20)m) . 

where the summation is over q £ {2 ,3 ,6 ,9 ,1 0 ,1 2 ,1 4 ,1 5 ,1 8 , 21, 22,24}, that is, the inte­

gers 1 < q < 24 such that q ^ B6. For these values of q, we have a2 =  aio =  au  =  a22 =  1, 

a3 =  a9 =  ais =  a21 =  3/2, a6 =  a i8 =  5 /2 , and 012 =  <224 =  1/2. Using these values for 

aq, we now isolate the terms involving the 12th roots of unity, giving

/  i/j (u +  u l )de(u)
’ T

12

=  J(u + u - I ) m ( 2 I m ( i i ) 2 +  | ) d 12u  -  ^  f j t s 2* +  5 - “ ) m

- ^ ( s 3 + s - 3r  +  ^ ( « 4 + o m -  ^ ( 2 * + «~6r + ^ ( « 8 + s ' 8)m 

-  A ( “®+ s - ' r + t s ( “ 12+ « “12)m -  4 ( “ 15+ s_15)m + ^r(“ 16+ s - 16r16 48 16 12

- A (“ 18 +  s_18)m +  4 ; ( s20 +  “ “2T  -  ^ t " 21 +  “ "2I)m +  i t 524 +  5_24)m16 12 16 48

Now +  u~2k)m/ 12 =  f T(u +  u~1)mdQ. For the remaining terms, we notice that

Yfk= i(^ k +  u~3k)m/8  =  f T(u +  u~1)md4, giving



These last six terms are given by the integral (fT(u -f u 1)md3) / 2. Then the spectral 

measure de(u) (over T) for Eq is

de =  otd\2 +  2(^12 ~ dQ — di d3),

which recovers the spectral measure given in [3, Theorem 6.2].

7.3.4 D ynkin  diagram s Ej, Eg

The following definition is given by Banica and Bisch [3, Def. 7.1]:

D e f i n i t i o n  7 .3.1 A discrete measure supported by roots of unity is called c y c l o t o m i c  if 

it is a linear combination of measures of type dn, n >  1, and a d n, n >  2.

Note that since d'n =  2d2n — dn, all the measures for the A and D  diagrams, as well as for 

Eq, have been cyclotomic. However, Banica and Bisch proved that the spectral measures 

for E7, Eq are not cyclotomic. This can also be seen by our method using (7.8).

For E7 the exponents are 1, 5, 7, 9, 11, 13, 17. The eigenvectors for E7 are given in 

[5, (B. 10)]. In particular,

■4>\ =  ^  =  (18 +  12v /3cos(tt/18))“ 1/2, =  il>\3 =  (18 +  12V 3cos(137r/18))"1/2,

=  (18 +  1 2 v /3 c o s ( ll7 r /1 8 ))-1/2, =  l / \ / 3 .

Then

[  ip(u +  u~l )de(u) =  ^  W l 2(2 c o s 0 -7r/ 18) )m =  \  ^2 l ^ r i 2(2 c o s ( W l 8 ) ) m ,
^  j e E x p  p € B 7

where B7 =  {1 ,5 ,7 ,9 ,1 1 ,1 3 ,1 7 ,1 9 ,2 3 ,2 5 ,2 7 ,2 9 ,3 1 ,3 5 } , and for j  > 18 we define %jj{ by 

■01 =  '0i6_J - Then with u =  e7”/ 18,

f  'ipiu +  u~l )de{u) -  ^ 2  +  u~p)m. (7.12)
Jt ™ pgb7

Now for any p  €  B7, up is a 36th root of unity, but not a root of unity of lower order, 

except for p =  9,27, in which case up is also a 4th root of unity. Since \(p\\2 7  ̂ |'0f|2, clearly



we cannot write the summation in (7.12) as an integral using the uniform measure over 

36th roots of unity. With a  as in (7.11), we have

a(v?) =  1 8 |^ |2 -  0.4076, for p =  1 ,17,19,35,

otivP) =  1 8 |^ |2 -  2.7057, for p =  5 ,13 ,23 ,31 ,

a(iF) =  18 |^ f|2 +  0.1133, for p =  7 ,11,25, 29,

afiF) =  18|t/>p|2 — 4, for p =  9, 27.

Since a(up) — 18|-0f|2 also takes different values for certain p G £ 7, and for any p G B7, 

up is a 36th root of unity, but not a root of unity of lower order, the summation in (7.12) 

cannot be written as an integral using the measure a d \8 either. So we see that the spectral 

measure for E7 is not cyclotomic.

For E8 the exponents are 1 , 7, 11, 13, 17, 19, 23, 29. The eigenvectors for Eg are given 

in [5, (B. 12)]. In particular,

=  (2 /(15(3  +  y/5) + \ j  15(130 +

= ,j}f =  (2 /(15(3  -  VE) + \J  15(130 —

ipl1 =  V’l19 =  (2 /(1 5 (3 +  \/5) — ^/l5(130 +

,fi{3 =  </>;r =  (2 /(15(3  — %/5) — y  15(130 -

1/2

1/2

Then

[  ip(u +  u l )de {u )=  l^ j|2(2cos(j7r/30))m =  ^  ^  3 0 [^ |2(up +  u p)m, (7.13)
^  j e E x p  p € B s

where u =  e7”/30, B8 =  {1 ,7 ,1 1 ,1 3 ,1 7 ,1 9 ,2 3 ,2 9 ,3 1 ,3 7 ,4 1 ,4 3 ,4 7 ,4 9 ,5 3 ,5 9 } , and for j  > 

30 we define 1̂ 1 by ip{ =  i/j 0̂ We  have

a(up) =  30 |^ f|2 -  0.4038, for p =  1 ,29,31,59,

a ^ )  =  3 0 |< |2 -  3.5135, for p =  7 ,23 ,37 ,53 ,

a(up) =  3 0 K |2 -  2.0511, for p =  11,19,41,49,

a(up) =  301^112 — 4.5316, for p =  13,17,43,47.

Now for all p £ B8, up is a 60th root of unity, but not a root of unity of lower order. By 

similar considerations as in the case of £ 7, we see that the summation in (7.13) cannot 

be written as an integral using the uniform measure d80 or the measure ad80 either. So 

we see that the spectral measure for E8 is not cyclotomic.
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1 2 n-i

Figure 7.4: Affine Dynkin diagrams n — 2,3,

3 4 5 «-2 « -i x  +

Figure 7.5: Affine Dynkin diagrams Dn \  n =  4,5,

7.4 Spectral m easures for finite subgroups of SU{2)

The McKay correspondence [86] associates to every finite subgroup V of S U (2) an affine 

Dynkin diagram Qr given by the fusion graph of the fundamental representation p acting 

on the irreducible representations of T. These affine Dynkin diagrams are illustrated in 

Figures 7.4-7.6, where * denotes the identity representation. Hence there is associated to 

each finite subgroup of SU (2) the corresponding (non-affine) A D E  Dynkin diagram Q, 

which is obtained from the affine diagram by deleting the vertex * and all edges attached 

to it. This correspondence is shown in the following table. The second column indicates 

the type of the associated modular invariant.

1 2 3 4 5 6

1 2  3 4 5

* I 2 3 4 5 6 7

Figure 7.6: Affine Dynkin diagrams E$ \  E ^  and Eg^
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Dynkin Diagram Q Type Subgroup T C SU{2) |T| =  order of T

Ai I cyclic, Zj+i l +  l

D2k I binary dihedral, B D 2k =  Qik - 2 8k, — 8

D2k+i II binary dihedral, B D 2k+1 =  Q 2k- \ 1oo

e 6 I binary tetrahedral, B T  =  B A 4 24

e 7 II binary octahedral, BO  =  B S 4 48

Eg I binary icosahedral, B I  =  B A 5 120

It was shown in [71] that for any finite group T the S-matrix, which simultaneously 

diagonalizes the representations of T, can be written in terms of the characters Xj(L'i) 

of T evaluated on the conjugacy classes T* of T, Sij =  y / \Tj|Xi(Lj) / y/\T\. Let Np be 

the fundamental representation matrix of the fusion rules of the irreducible characters of 

T. Then by the Verlinde formula (1.11), the eigenvalues of Np are given by ratios of the 

S-matrix, cr(Np) =  {S pj / S Pio\j =  1 , . . .  , p}, where p is the number of conjugacy classes 

and p is the fundamental representation of G. Now

y ir jT x ,(r j)/v T T r

v f i i x P( r o ) / v f i

since x^(Lo) =  1- Then any eigenvalue of T can be written as Xp(9) =  Tr(p(p)), where g 
is any element of i y

The elements y{ in (7.7) are then given by y{ =  S0J =  ^/\T j\xo(^j) /VW\  =  V W 7 \ / V W l  
Then the mth moment is given by

?m =  J x md»(x)  =  g  lj^ lx ,(r j )m.

We define an inverse <f>_1 : [—2,2] —> T of the map given in (7.5) by

$ - 1(.t) =  (x +  iy/  4 — x2)/2,  

for x G [—2,2]. Then the spectral measure of T (over T) is given by

/
J  T

(7.14)

(7.15)

Hu + «-')*(«) = fjlj^l(*-1(x,(rj)) + *-‘(x,(ri)))’ (7.16)

The generating series of the moments G(z) =  is

m=u j f t  in  i -  zXp(t s ) (7.17)
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T J 1 (rcr)2 crJ , j  =  1 , . . .  ,n  -  3 T rcr

lr il 1 1 2 n  — 2 n — 2

X p ( F i ) € [ - 2 , 2 ] 2 - 2 £j' + r j 0 0

e2̂  =  ^>-1(Xp(r j )) €  T 1 - 1 i — i

0 € [0,1] 0
n —2

2(n -2 )
3

2(n—2)
n —2

4(n—2)
3(n—2) 
4(n—2)

Table 7.1: Character table for B D n. Here £ =  enl^n 2\

7.4.1 Cyclic Group Z2n

Suppose T is the cyclic subgroup Z2n of S U (2), which has McKay graph y4^. Then 

|T| =  2n, and each element of the group is a separate conjugacy class. Now Xpffj) =  

+  u~i E [—2,2], where u =  em n̂, for each j  =  1 , . . . ,  2n. Then by (7.14)

f  ip(u +  u _1)d£:(u) =  +  u~j )m =  f  (u +  u~l )m dnu.
Jt  2n yT

Hence the spectral measure for (over T) is de{u) =  dnu , as in [3, Theorem 2.1].

7.4.2 B inary D ihedral G roup B D n

Let T be the binary dihedral group B D n =  (cr, r |r 2 =  a n =  (rcr)2), which has McKay 

graph D n \  Then |T| =  4(n — 2). The character table for B D n is given in Table 7.1. Let 
u =  eW2(™-2) anci =  (uj +  it- *7')”1. Then by (7.14)

j  ip(u +  u_1)dc(u)

3-

+ ^ 2) U({n ~  2) /2 )  +  4^ 2) U{3{n ~  2 ) /2 )

1 1 1
=  — - _  ( u j  +  U~j )m +  -  ( ( u {n- 2)/2 +  S - ( " - 2)/2)™ +  (5 3<"-2)/2 +  5 -3 (n -2 )/2 )m J

2 2(n “  2) 4

=  \  f  ( U +  U ~ 1) m  d n - 2 U  +  \  [  { u  +  l i - 1 ) m  ( ^  +  (5 _ i) ,

where Su is the Dirac measure at u  E T. Then the spectral measure for Dn  ̂(over T) is

d e { u )  -  i d n- 2U  +  ^(<*t +  S - i ) ,

as given in [3, Theorem 4.1].
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1 - 1 r M2 p5

lr jl 1 1 6 4 4 4 4

Xp(Tj )  e  [-2 ,2 ] 2 - 2 0 1 - 1 - 1 1

e2me =  $ - i ( Xp(iv )) € T 1 - 1 i l+ v /3 i
2

—  1+V3i 
2

-l+V^i
2

l+ \ /3 i
2

0 6  [0 , 1] 0 6
12

3
12

2
12

4
12

8
12

10
12

Table 7.2: Character table for the binary tetrahedral group BT.

7.4.3 B inary Tetrahedral G roup B T

Let T be the binary tetrahedral group B1  

and is generated by B D 2 =  (cr, r) and p:

Let T be the binary tetrahedral group B T , which has McKay graph E $ \  It has order 24,

z 0 \  /  0 1 \  I ( £7 e7

‘M o  - i  r  T I - 1  0 r  ^ V 2 £

where £ =  e2n̂ 8. The orders of the group elements cr, r, p are 2, 4, 6 respectively. The 

character table for B T  is given in Table 7.2. Let u =  e2™/12 and U(j)  — (uJ +  u~j )m. 

Then by (7.14),

'T

=  T u (  0) +  ± 1 /(6 )  +  ^ ( 3 )  +  ± C /(2 ) +  ± 1 /(4 )  +  ± C /( 8) +  ± £ / (  10).

For the 6th roots of unity we have a(epni 6̂) —1/2  =  —1/2, p =  0 ,6 , and a (ep7n/6) —1/2 =  1, 

p =  2 ,4 ,8 ,10 , where a  is given in (7.11). Then since Z7(3) =  U(9):

/  /̂>(u +  u~l )d£(u)
J T

=  ± (£ /(0 )  +  1/(3) +  £/(6 ) +  1/(9)) 

+ ± ( -2 C /(0 )  +  41/(2) +  417(2) -  2t/(6) +  4£/(8) +  4f/(10))

=  5 E  + 5_3j ) m + E w ^ )  -  5) ( ^ +
j=o 7=0

=  i  f  (u +  u~l )m d2u +  f  (u +  u~l )m {a(u) -  \)dzu.
* J T J T

Hence the spectral measure for (over T) is

de — {oL — \)d$ +  \ d 2,

as given in [3, Theorem 6.1].
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r J 1 - 1 V2 r n TK «3

lr J-l 1 1 8 8 6 6 12 6

Xpp j )  e l - 2 , 2 ] 2 - 2 1 - 1 0 V 2 0 - y / 2
e2me =  $ - i ( Xp(r j )) g T 1 - 1 1 + v ^ i

2
— l+\/3i 

2
1 +1 —z - i +* 

%/2

0 e  [0 , 1] 0 12
24

4
24

8
24

6
24

3
24

18
24

9
24

Table 7.3: Character table for the binary octahedral group BO.

7.4.4 B inary O ctahedral G roup BO

Let T be the binary octahedral group B O , which has McKay graph E ^ \  It has order 48 

and is generated by the binary tetrahedral group B T  and the element n of order 8 given 

by

where again e =  e27”/8. Its McKay graph is E ^ \  The character table for BO  is given in 

Table 7.3. Let u =  e2™/24 and U(j)  =  (uJ +  u~i)m. Then by (7.14)

/ ijj(u +  u~1)de(u)
J T

= i y(0) + î (12)+ +  iu{8) + + l y(3)+i y(18)+
For the 8th roots of unity we have a(epm/8) — 1/2 =  —1/2, for p =  0,12, a(epiT%/Q) — 1/2 =  

1/2, for p =  3 ,9 ,15 ,21 , and a(epni/6) — 1/2 =  3 /2 , for p =  6,18, where a  is given in 

(7.11). Then since U(j)  =  1/(24 — j ) , j  =  1 , . . . ,  12, we have

/  ip(u +  u~1)ds(u)
J  T

=  ^ (C /(0 ) +  U{4) +  (7(8) +  17(12) +  1/(16) +  (7(20))

+ L ( -3 (7 (0 )  +  3(7(3) +  9(7(6) +  3(7(9) -  3(7(12) +  3(7(15) +  9(7(18) +  3(7(21)) 
48

5

= \ ( uAj+ u 4j)m + Y l ( a (u3j) -  2)(u3j+  ̂ 3jy
j - 0 j=0

=  ^ /  (u +  u _1)m d3u +  M u +  u " 1)"1 (a(u) -  l)d 4«. 
^ / t  . / t

Hence the spectral measure for Ej1̂  (over T) is

de =  (a — \ ) d A +  /rf3,

as given in [3, Theorem 6.1].
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r J 1 - 1 a (J2 <73 a 4 T <j 2t cr7r

lr jl 1 1 1 2 1 2 1 2 1 2 30 2 0 2 0

Xp(Fj) € [ - 2 , 2 ] 2 - 2 - / * “ M" 0 - 1 1

e ^ o  =  ^ - i { X p { T j ) )  e T 1 - 1 v+ —v~ v~ —i>+ i -l+>/3»
2

l+ v ^ i
2

o e  [o, i] 0 60
120

12
120

96
120

36
120

72
120

30
120

40
120

20
120

Table 7.4: Character table for the binary icosahedral group BI.  Here /i* =  (1 ±  \/5 )/2 , 

=  (1  ±  y/5 +  iV  10 =F 2>/5)/4.

7.4.5 Binary Icosahedral Group 5 /

Let T be the binary icosahedral group £ / ,  which has McKay graph E^\  It has order 

1 2 0 , and is generated by a , r:

_  /  - £ 3 0 \  f 2 _ e 3 \

<J_ V 0 -s2 J’ T~ V5 Ve2-£3 J '
where 5  =  e27ri/5 The orders of the group elements cr, t are 10, 4 respectively. The 

character table for BI  is given in Table 7.4. Let u =  e 27rt/ 120 and U(j) =  (tP -f u~j )m. 
Then by (7.14)

JT<,(u + u- ')de(u) =  ± U ( 0 )  +  ± u m  +  £ 0 U(12) +  £ 0 U{m) + £ 0 U m

+ § o u ^ + w o u ^ + w o u ^ + m u ^ -

For the 12th roots of unity we have a (ep7ri/6) —1/2 =  —1/2, forp =  0,6, a (ep7a/6) —1/2 =  1, 

for p =  2 ,4 ,8 ,10 , a(ep7ri/6) -  1/2 =  3 /2 , for p =  3,9, and c*(ep7ri/6) -  1/2 =  0, for 

p =  1 ,5 ,7 ,11 , where a is given in (7.11). Then since U(j) =  L/(120 — j ) ,  j  =  1 , . . . ,  60, 

we have

J  ip(u + u~l)de(u) = ( i t (0) +  (7(12) +  (7(24) +  (7(36) +  (7(48) +  (7(60)

+(7(72) +  (7(84) +  (7(96) +  17(108))

-  5(7(0) +  10(7(20) +  15(7(30) +  10(7(40) -  5(7(60)

+10(7(80) +  15(7(90) +  10(7(100))



Hence the spectral measure for Eg1̂ (over T) is

de =  (a — \)d§ +  2 ^5’

as given in [3, Theorem 6.1].

7.5 Hilbert Series o f dim ensions o f A D E  m odels.

We now compare various polynomials related to ADE  models.

7.5.1 T-Series

We begin first with the T -series of Banica and Bisch [3]. Let Q now be any bipartite graph 

with norm < 2, that is, its adjacency matrix A has norm <  2. These are the subgroups 

of SU(2), with McKay graphs given by the affine Dynkin diagrams, and the modules and 

subgroups of SU(2)k, which have McKay graphs given by the ADE  Dynkin diagrams. 

The generating series S(q) of the moments of the spectral measure (over T) for A is 

given by

■%) =  [  ,  1'_-,(feA(u)-Jj  1 — qu
Let A{Q) be the path algebra for Q, with initial vertex the distinguished vertex * 

which has lowest Perron-Frobenius weight. The Hilbert series (also called the Poincare 

series in some literature)
oo

f ( z ) =  ^2dim(A(G)k)zk (7.18)
k = 0

of Q is the generating function counting the numbers of loops of length 2 k on Q, from 

the vertex * to itself, f(z) =  YlkLo^zk- The Hilbert series /  measures the dimension of 

the algebra at level k in the Bratteli diagram. If Q is the principal graph of a subfactor 

N  C  M, the series /  measures the dimensions of the higher relative commutants, giving 

an invariant of the subfactor N  C M. We define another function /  by

/ ( z) =  V ^ ( i - ^ a ) “^ .  (7.19)

Then f(z) =  <p( 1  +  z 1/2A +  zA 2 +  z 3^ 2 A 3 +  . . . )  =  o[^n]*.*zn//2- Since Q is bipartite,

there are no paths of odd length from * to *, and so [A2A:+1]*)* =  0 for k =  0 , 1 , . . .  . Then 

f i z ) — =  f ( z )- Then it is easily seen from (7.3) and (7.19) that f ( z 2) is

equal to the Stieltjes transform a(z) of fi^.
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Suppose P is the (Ai-)planar algebra for a subfactor N C  M with Jones index [M : 

Â ] < 4 and principal graph Q. If dim(P0±) =  1 , the Hilbert series f(z)  is identical to the 

Hilbert series which gives the dimension of the planar algebra P :
1 OO

$ / > ( * )  =  2 ( d i m ( P °+ ) +  d i m ( p o " ) )  +
j  =  1

As a Temperley-Lieb module, P  decomposes into a sum of irreducible Temper ley-Lieb 

modules, with the multiplicity of the irreducible module of lowest weight k given by the 

non-negative integer a*,. Jones [63] then defined the series © by
oo

®p{q) =
j = o

It was shown in [3, Prop. 1.2] that ©(g2) =  2S(q) +  q2 — 1. The series ©(g) is essentially 

obtained from the Hilbert series f{z)  in (7.18) by the change of variables. More explicitly, 

in [3], ©(g) is given in terms of f(z)  by:

©fa) =  Q +  7 7 ^ /
1 +  g \ ( l  +  q) 2

Banica and Bisch then introduced their T  series, which is defined for any Dynkin 

diagram (and affine Dynkin diagram) by

1 -  q

in order to compute the spectral measures for the Dynkin diagrams (and affine Dynkin 

diagrams) of type E. In terms of the Hilbert series / ,  we have

1-9 1 + 9 \(1 + <?);
We can define a generalized T  series X̂ - by

™ -tV  (+?#'• ( 7 -2 0 )

where the matrix f(z) =  ^ 1  — z^Ax^j , and [f(z)]ij counts paths from i to j.  Then 

/fa )  =  V?(/fa)) and
T(q) =  ip(T(q)). (7.21)

Since (1  +  g2 )2 /g 2 =  (g +  g - 1 ) 2 =  [2]2, we can write T(g2) as T(g2) =  /([2]~2) / ( l  +  g2).

The T  series for the exceptional graphs Eq, E-? and E8 and their affine versions are 

computed in [3]. Let 7}, T)-1̂ denote the T  series for the Dynkin diagrams Ej, affine 

Dynkin diagram E respectively. The T  series are given by:
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(1 -  96)(1  -  qs) II 1 +  96

(1 — 9 3 ) ( 1  — 9 12) ’ (1 -  q 3 ) ( l  -  q4)'
(1 — 9 9 ) ( 1  — 9 12) T 7(1) =

1 +  q9
( 1 - < ? 4)(1  - q 6)'

( 1 - 9 10) ( 1 - 9 15) ( 1 - ? 18) 'p ( l )  _
18 ~

1 +  <J15
(1 -  <?5)(1  -  <?9)(1  -  <73° )  ’ (1 -  9 ® ) ( 1  -  « 1 0 )

n  =  

t 7

T*

7.5.2 Kostant Polynomials

We now introduce a polynomial for subgroups of SU(2) which is related to the T-series 

defined in Section 7.5.1. The precise relation between the two polynomials will be given 

later in Theorem 7.5.1. For a subgroup T C SU(2) and an irreducible representation 7  of 

T, the Kostant polynomial Fy counts the multiplicity of 7  in (j), the j  +  1-dimensional 

irreducible representation of SU (2) restricted to T. The Kostant polynomial F7 is given 

by CX)
^7 ( 0  =  ] C ( 0 ' ) ,7 , ) r tj ,

j = 0

where ( ( j ) ,7 >r is the multiplicity of 7  in (j ). Let F{t) =  0 tj (j) =  2 7 ^ ( 0 7 -  Then 

we obtain the recursion formulae
0 0

f ( o ® (  1 ) =  X ^ W 7 0 1̂) =  X ^ ) 0 1̂)
7 j=o
00

=  E ^ ( C i - 1) © a  +  1)) =  1 +  0 P ( 0 - p
j =0

where id is the identity representation of T. Evaluating this polynomial by taking its 

character on conjugation classes Tj of T we obtain [56]:

( * ■ » )

The explicit result was worked out by Kostant in [75], where he showed that the polyno­

mials F«f(i) have the simple form

w > < “ 3>
where a, 6 are positive integers which satisfy a -f b = h +  2  and ab =  2 |T|, where /i is the 

Coxeter number of the Dynkin diagram Q, and zy(t) is now a finite polynomial which we 

will reproduce below. The values of a, b are:
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Dynkin Diagram Q h a, b

Ai I +  1 2 , / +  1

A 2 1 - 2 4, 21 -  4

e g 1 2 6 , 8

e 7 18 8 , 1 2

Eg 30 1 2 , 2 0

The Kostant polynomial is related to subfactors realizing the ADE modular invariants 

in [34, §3.3]. Let * label the trivial representation of T. By the argument of changing the 

L-vertex [33] it may be assumed that the subfactor N  C M realizing the ADE  modular 

invariant has the l- vertex on the vertex which would join the extended vertex * of the affine 

Dynkin diagram Qp. For all DE  cases there is a natural bijection between (equivalence 

classes of) non-trivial irreducible representations of T and M-N  sectors [tA*], since the 

irreducible representations label the vertices of the DE  graph, as do the sectors [l\i\. Let 

p denote the fundamental representation of T. Denoting the M-N  morphism associated 

to the irreducible representation 7  ^  * by a7 (so 1 =  ap), it was shown in [34] that the 

polynomials p1  defined by

p , ( t )  =  1 +  qM ,
k

i= 0

are equal to the numerators zy(t) of the Kostant polynomial Fy(t), and consequently 

Fy(t) = py(t)/Q(t), where Q(t) =  ( 1  +  t2 )p*(t) -  tpp(t).
It was shown by McKay in [87] that the finite polynomials zy(t) also arise by calculating 

weights associated to the vertices of so-called semi-affine Dynkin diagrams. The semi- 

affine Dynkin diagrams are given by the affine Dynkin diagrams where the edges attached 

to the affine vertex * are now oriented edges, directed towards the affine vertex. Let n* =  1 

be a weight attached to vertex *. Then to each other vertex i of the semi-affine diagram 

we attach a weight n* satisfying sri; =  Y l nj where the summation is over all vertices 

j  such that there is an edge from i to j .  The weights are quotients of polynomials, so 

we re-normalize the weights to remove the denominator. Making the change of variable 

s = t + t~l , and re-normalizing so that n* =  1 +  th, the weights rii give the numerators

Zt(t).
For the distinguished vertex *, z*(t) =  1 +  th for each of the affine Dynkin diagrams. 

For A/, the numerators Zi(t) are given by Zi(t) =  t% +  th~l, i =  1 , . . . , / .  From Kostant 

[75], for the exceptional graphs, the numerators Zi(t )  are
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Eq : E7 :

00HO+HOII*7 Z i ( t ) =  £6 +  £12,

^ (O  — T t8 +  t7 +  £9, z2 (t) =  £5 +  £7 +  tn +  £13,

z3 (t) =  £2 +  £4 +  2 / 6 +  £8 +  £10, z3 (t) =  t4 +  t6 +  t8 +  t, 10 +  t12 +  £14,

z4 (£) =  t3 -f-t3 T t7 T t9, z4 (t) =  £3 +  £5 +  £7 +  2 £ 9 +  £n +  £13 +  £

zq (t) =  t4 +  t8, z${t) =  £2 +  £6 +  £8 +  £10 +  £12 +  £16,

- 6  ( 0  — £ +  £5 +  £7 + ze(t)

z7 (t)

=  t  + t 7 + t n  + t 17,

= t4 +  t8 +  I10 +  I14,

E8 :

Zl(t) = t +  tu + t l 9  +  t29,

z2 (t) = t2 +  t 10 +  t12 +  t 18 +  t20 +  t28,

z3 (t) =  t3 +  t9 + tn +  t13+  t17+  t19+  t21+  t27,

Z 4 ( t ) =  £4 +  t 8  +  t 1 0  +  t 12 +  £14 +  t 16 +  £18 +  t 2 0  +  £22 +  £2 6 ,

z5 (t) =  t5 +  t7 +  t9 +  £n  +  t 13 +  2 t lb +  t 17 +  t 19 +  t21 +  t23 +  t25,

z6 (t) =  t6 +  t8 +  t 12 -I- t 14 +  t 16 +  t 18 +  t22 4- t24,

z7 (t) =  t7 +  t 13 +  t 17 +  £23,

z8 (t) =  t6 +  t10 +  tu  +  t 16 +  t20 +  f24.

Notice that the Kostant polynomial F+(l) for the graphs En, n =  6,7,8,  is just the 

T-series T n \ t 2) of Section 7.5.1 for the affine graphs En \  n =  6 , 7 , 8  (see Theorem 7.5.1 

(hi)).

7.5.3 Molien Series

Another related polynomial is the Molien series. Let T be a finite subgroup of SU(N) 
as above. For i =  0 , 1 , . . .  , let Mi be a representation of T with dim Mi < oo, and let 

M =  ©°^o Mi- With 7  an irreducible representation of T, the Molien series Pm,7 of M is
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defined in [50] by
oo

j ) r  t%,

i — 0

and counts the multiplicity (M*, 7 )r of 7  in

Let CN denote the dual vector space of C^, and denote by 5  =  @ kSk(CN) the 

symmetric algebra of CN over C, where Sk(CN) is the kth symmetric product of CN. 
Let p be the fundamental representation of T and p its conjugate representation, let 

{Pq — id, p\ = p, p2 , . • •, ps} be the irreducible representations of T and Xj be the character 

of pj for j  =  0 , 1 , . . . ,  s. Then we have Molien’s formula for Psnj{t) given as [50]:

p  ( t \  ..  1
’ | r | Z ? det (1 - p ( 9W

Let Rk be the sum of the representations of SU(N)  with Dynkin labels Ai, A2, . . . ,  X(n - i)
such that Ai H 1- Apv-i) =  k, and R =  ® £L 0 Then in this notation, P r 7  recovers

the Kostant polynomial F7, where 7  is an irreducible representation of T:

00

7 ^r  t% =  (7 -24)

Since there is only one Dynkin label A for any representation of SU(2), Rk =  (k), the 

(k +  l)-dimensional representation of SU(2), for each k. Then by (7.24) the Molien series 

PRn(t) for a subgroup T C 5(7(2) is equal to the Kostant polynomial F7((). From Section

1.3.1, the kth symmetric product of C2 gives the irreducible level k representation, so that 

R = S for 5(7(2), and Ps,y(t) =  Fy(t).

7.5.4 Hilbert Series of Pre-projective Algebras

Finally, we introduce another related polynomial, the Hilbert series / /( ( ) ,  which counts 

the dimensions of pre-projective algebras for the ADE  and affine Dynkin diagrams. Let 

Q be any (oriented or unoriented) graph, and let CQ be the algebra with basis given by 

the paths in Q, where paths may begin at any vertex of Q. Multiplication of two paths 

a, b is given by concatenation of paths a • b (or simply ab), where ab is defined to be 

zero if r(a) 7  ̂ s(b). Note that the algebra CQ is not the path algebra A(Q) for Q in the 

usual operator algebraic meaning. Let [C<7, CQ] denote the subspace of CQ spanned by all 

commutators of the form ab—ba, for a, b G CQ. If a, b are paths in CQ such that r(a) =  s(b) 
but r(b) ±  s(6 ), then ab — ba =  ab, so in the quotient C(//[C(/, C£] the path ab will be 

zero. Then any non-cyclic path, i.e. any path a such that r(a) 7  ̂ s(a), will be zero in 

c g / [ c g ,  eg].  If a =  a\a2 • • • ak is a cyclic path in CG, then a\a2 • • • ak — akai ■ • • ak-\ =  0
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in CC7/[C(?, C(/], so a\a2 • ■ • ak is identified with akai • • • a^-i. Similarly, a =  aia2 • • • a,k is 

identified with every cyclic permutation of the edges aj, j  =  1 , . . . ,  k. So the commutator 

quotient C£//[C£/, CQ] may be identified, up to cyclic permutation of the arrows, with the 

vector space spanned by cyclic paths in Q.
The pre-projective algebra II of a finite unoriented graph Q is defined as the quotient 

of CQ by the two-sided ideal generated by

i , < j

where the summation is over all vertices i and edges a of Q such that i is an endpoint 

for cr, and Q° E CQ is defined to be the loop of length two starting and ending at vertex 

i formed by going along the edge o and back again. So the pre-projective algebra is the 

quotient algebra under relations 6 , and any closed loop of length 2  on Q is identified with 

a linear combination of all the other closed loops of length 2 on Q which have the same 

initial vertex. In the language of planar algebras for bipartite graphs (see Section 6.5.1),

this is closely related to taking the (complement of the) kernel of the insertion operators

given by the cups and caps.

For a graph Q without any closed loops of length one, i.e. edges from a vertex to itself, 

the pre-projective algebra II has the following description as a quotient of a path algebra 

by a two-sided ideal generated by derivatives of a potential <I>. We fix an orientation for 

the edges of Q, and form the double Q of Q, where for each (oriented) edge 7  we add the 

reverse edge 7  which has 5 (7 ) =  r(7 ), r (7 ) =  s (7 ). We define a potential $  by $  =  ^  7 7 , 

where the summation is over all edges of Q. Let 7 1 7 2  •• - 7 * be any closed loop of length 

k in C£//[C<7,C£/], k > 1. We define derivatives di : C£//[C£, C£] —> CQ for each vertex 

i E Zfg of £  by di(7!72 • • • 7fc) =  Ylj 7j7j+i • '' 7fc7i ■ * • 7j-i> where the summation is over 
all 1 < j  < k such that s(7 j) =  i. Then on paths 7 7  E C£/[C£?,C£/], we have

1
7 7  if 5 (7 ) =  i,

7 7  if r(7 ) =  i, ,

0  otherwise.

and II =  CQ/(di$ : i E 3Jg). For any graph Q and potential $ , Bocklandt [14, Theorem 

3.2] showed that if A(CQ,$)  is Calabi-Yau of dimension 2  then A(CQ,<&) is the pre- 

projective algebra of a non-Dynkin quiver.

We can define the Hilbert series for A(€,Q,Q) as

00

HA(t) =  Y , Hiitk’
k = 0261



where the are matrices which count the dimension of the subspace {z • a • j\a £ 

A(CQ, $)*;}, where A(CQ, <F)fc is the subspace of A(CQ, <f>) of all paths of length A;, and z, 

j  are paths in A(CQ, <F)o, corresponding to vertices of Q.
Let q £ C \  {0}. If q =  ±1  or  ̂ not a root of unity, the tensor category Cq of 

representations of the quantum group 5 /7 (2)9 has a complete set {Ls} ^ 0 of simple objects 

of Cq, where Ls is the deformation of the (5  +  l)-dimensional representation of 5/7(2), 

which satisfy the tensor product decomposition

r + s

Lr ® L s ~  0  Lt. (7.25)
t=|r-s| t = r+s mod 2

f- Vi
If q is an n root of unity, Cq is the semisimple subquotient of the category of represen­

tations of SU(2)q. In this case, the set {Ls}^ q ~ 2 is the complete set of simple objects of 

C9, where Ls is again the deformation of the ( s +  l)-dimensional representation of 5/7(2), 

and h(q) is n when n is odd and n / 2 when n is even. These simple objects satisfy the 

tensor product decomposition

k
Lr 0  Ls ~  Lt, (7.26)

t=|r-s|t=r-|-amod2

where
f r +  s if r +  s < h(q) — 1 ,

^ 2h(q) —4 — r — s if r +  s >  h(q) — 1.

Semisimple module categories over Cq where classified in [32]. A semisimple C9-module

category V  is abelian, and is equivalent to the category of /-graded vector spaces M i ,

where I is the set of isomorphism classes of simple objects of V. The structure of a 

Cq category on M i  is the same as a tensor functor F : Cq —> Fun(A4/, M i),  where 

Fun {Mi, M i)  =  M i xi is the category of additive functors from M i  to itself. When 

q =  ±1 or q is not a root of unity, by [32, Theorem 2.5], such functors are classified by 

the following data:

• a collection of finite dimensional vector spaces V*j, z, j  £ / ,

• a collection of non-degenerate bilinear forms Eij : Vij <S> Vji —> C, subject to the

condition, )TV Tr(Eij(Eji)~1) =  — q — q~l , for each z £ /.

When q is a root of unity there is an extra condition given in [32], due to the fact that Cq
is now a quotient of the tensor category whose objects are l/®m, m £ N.
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Let A be the matrix given by A =  dimV^ (=  dimVjj since Eij is non-degenerate). 

The quantum McKay correspondence gives a graph with adjacency matrix A and vertex 

set I. The free algebra T  in Cq generated by the self-dual object V — L\ maps to the 

path algebra of the McKay graph under the functor F : Cq —» Aiixi-  Let S be the 

quotient of T by the two-sided ideal J generated by the image of 1 =  L0 under the map 
 ̂ coevv y  idv®̂  y ®  V, where 0  is any choice of isomorphism from V to its conjugate 

representation V. In the classical situation, q =  1, S  is the algebra of polynomials in two 

commuting variables. More generally, S  is called the g-symmetric algebra, or the algebra 

of functions on the quantum plane. The structure of these algebras is well known, see 

for example [67]. Applying the functor F to S gives an algebra n  =  F(S) which is the 

quotient of the path algebra with respect to the two-sided ideal F(J). Then given any 

arbitrary connected graph Q, there exists a particular value of q and choice of C^-module 

category V  such that IT is equal to the pre-projective algebra II of Q [83, Lemma 2.2].

When q is not a root of unity, the m ^  graded component of the g-symmetric algebra 

S is given by S(m) =  Lm, for m G N. Then by the fusion rules given in (7.25),

L\ 0  Lm ~  Lm_i © Lm+i. (7.27)

Then summing (7.27) over all m G  N, with a grading tm, gives tL\ 0  S = t2S © S' © L0. 
Applying the functor F one obtains a recursion tAH(t) =  H(t) +  t2 H(t) — 1 , where A is 

the adjacency matrix of the (quantum) McKay graph Q. Then we obtain the following 

result [83, Theorem 2.3a]:

m  =  i d r r F  (7-28)

For an ADET  graph £/, q is an root of unity, and h(q) =  h is the Coxeter number of 
t  Y\Q. The m graded component is given by S(m) =  Lm for 0 <  m <  h — 2, and S(m) =  0 

for m > h — 1 . Defining S — S Q th(Lh~2 0  S) © t2h(Lh- 2 0  L/i- 2 0  S) © • • • , the fusion 

rules (7.26) give the recursion Li 0  S(m ) ~  S(?7i — 1) © S(m  +1) .  Applying the functor F
gives 1 +  thF(Lh_2) +  tAH(t)  =  H(t) +  t2 H(t), where the matrix P =  F(L/l_2). Then for

the Dynkin diagrams (and the graph Tadn), there is a ‘correction’ term in the numerator, 

so that [83, Theorem 2.3b]:

H ( t ) =  1 +  P t "1 -  At  +  t2 ’
where P is a permutation corresponding to some involution of the vertices of the graph. 

Since 2 0  L^ _ 2 L0, P 2 =  F(Lh- 2  0  L/i-2 ) =  S ( l )  so P 2 is the identity matrix. The
matrix P  is an automorphism of the underlying graph [83]; for Ani D 2n+1, Eq it is the 

unique nontrivial involution, while for D 2n, F 7, E8 (and Tadn) it is the identity matrix,
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i.e. the matrix P  corresponds to the Nakayama permutation it for the ADE  graph [31]. 

A Nakayama automorphism of II is an automorphism v of edges for which there exists 

an element b of the dual II* of II such that ba = is(a)b for all a G II. The Nakayama 

automorphism is related to the Nakayama permutation by v{a) =  e(a)n(a) for all edges 

a of the Dynkin quiver, where e(a) E {± 1}- For these graphs the pre-projective algebra 

is finite dimensional, and we have [83, Cor. 2.4]

dimll =  ft(/l+1)r,
6

where r is the rank, i.e. the number of vertices of the Dynkin diagram.

For a class of graphs called star graphs, which consist of n A-tails (or rays) of lengths 

P i , . . . ,pn attached to a central vertex z*, one can define the spherical subalgebra Ilj.i, 

of II to be UitU =  z* • II • z*, the algebra of all paths in II beginning and ending at the 

central vertex z*. One can define a grading of 11^. by setting the degree of the loops 

given by any edge from z* and its reverse edge to be one. If h(t) is the Hilbert series of 

the subalgebra with respect to the above grading and the star graph is not of ADE  
type, then h{t) =  (1 -f-t — — P̂s)/(1  — £Ps))-1 - If the star graph is of DE  type then
h(t) =  (1  + 1 -  £ " =1(( -  t » . ) / (  1 -  (* .) ) - ! ( !  +  t v » ) .

In the case where the star graph is the McKay graph for a subgroup T C SU(2), the 

algebra n*.i, has the presentation =  alg(a;, z/, z\xa =  yb =  z° =  x +  y +  z =  0 ), where 

a, 6 , c denote the lengths of the rays on the McKay graph. Here x is identified with the 

loop of length one (due to the grading) from z* to the adjacent vertex along the ray of 

length a, and back again. Similarly y and z are identified with loops of length one from 

z*. The dimension of is given by d im n ^ .  =  |r | / 2 .

We now present the following result which relates these various polynomials:

T heorem  7.5.1 Let T be a finite subgroup of SU(2) so that Qr is one of the affine Dynkin 
diagrams, with the vertices of Qr labelled by the irreducible representations 7  of T, with 
the distinguished vertex * labelled by id. Let G(z) be the generating series of the moments 
for finite subgroups of SU(2) in (7.17), T be the generalized T series defined in Section
7.5.1, and let F7 be the Molien series, Kostant polynomial respectively ofT. Then for 
the Hilbert series H of Qr as in (7.28), the following hold:

(i) T(fi) = H(t),

(a) =  py(t) =  F7 (t),

(in) T(t2) = HiAM(t) =  Pi6 (t) =  Fid(t) =  y ^ G
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Proof.

(i) From (7.20) we have 

1
T(t ) =

1 + t2

= m -

/ (1 +  £2)2/  1 +  f2 1 — i( l  +  t2) - 1A 1 +  i2 -  t A

(ii) By [50, Cor. 2.4 (ii)], for the symmetric algebra S' =  S(C 2), Plj =  Ps,yj satisfies

s

£ [ A r}ijl%{t) =  (/- +  r x)Plt (t) -  r'Si,0 ,
j=0

where 7 1 , . . . ,  j s are the irreducible representations associated with the vertices 

1 , . . . ,  s of Qr- Then multiplying through by t we obtain
s

5 ^  [ l  -  A r £ +  1 Ps,7j{t) =  <5i)0. 
j = 0

From (7.28) we see that the matrix (1 — Art  +  I t2) is invertible, and hence by the 

definition of matrix multiplication, we see that

7 ,id
Py(t) =  [(1 -  A r t + I t2) 1

which is the first equality. The second was shown in Section 7.5.3.

(iii) The first equality follows from (7.21), and the next two are immediate from (ii). 
For the last equality, using (7.22) we have

Xo(Fj) _  1 Y" IFjI_______
1 +  t2 Z -  i nF«(t) =  t lFj

j = 1

G

|r| 1 -  ( r h )  Xp(r,)

1 + 12 \  1 + 12

□

7.6 5 (7(3) Case

We will now consider the case of SU(3). We no longer have self-adjoint operators, but 

are in the more general setting of normal operators, whose moments are given by (7.1). 

We will first consider the fixed point algebra of ® N M3 under the action of the group T2 

to obtain the spectral measure for the infinite graph which we call .4(°°)6. We will then 

generalize the method presented in Section 7.3 to the case of SU(3) graphs.
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0

0

- l
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(7.29)

CO 2 J

7 .6 .1  Spectral m easure for 4̂(°°)6

W e first consider the fixed point algebra of 0 N M3 under the action of the group T2. Let 

p  b e  the fundamental representation of SU(3), so that the restriction of p to T2 is given 

by
/

0

0 u u 

for (cji, cj2) G T2.

L e t  {X(a1,a2)}a1)a2€N, {^(A1,A2)}A1,A2ez b e  th e  irred u c ib le  c h a ra c te rs  o f 517(3), T 2 re­

s p e c tiv e ly , w here if X(Ai,a2) is th e  c h a ra c te r  o f a  re p re se n ta tio n  n th e n  X(a2,ao is th e  

c h a r a c te r  of th e  co n ju g a te  re p re s e n ta tio n  7f of n. T h e  tr iv ia l  c h a ra c te r  o f SU(3) is 

X (0,0)7 X(i,o) is th e  ch a rac te r  o f p, a n d  o p i  ,a2) (p, <?) =  (pXl,QX2), for Ai, A2 G Z. If cr 

i s  t h e  re s tr ic tio n  of X(i,o) to  T 2, we h av e  a  =  ct(1)0) +  o^o.-i) +  ^ ( - 1,1) (by (7 .29 )), an d  

^ (A ^ A a )  =  ^(Aj+i.Aa) +  ^(Ai,A2- i )  +  V(\i- i ,a 2+ i) , for an y  Ai, A2 G  Z . So th e  re p re se n ta tio n  

g r a p h  o f T 2 is identified  w ith  th e  in fin ite  g ra p h  . A ^ 6, i l lu s tra te d  in  F ig u re  7.7, w hose 

v e r t ic e s  a re  labelled  by p a irs  (Ai, A2) G  Z 2, a n d  w hich  h a s  a n  edge from  v e rte x  (Ai, A2) to  

t h e  v e rtic e s  (Ai +  1 , A2), (Ai, A2 — 1) a n d  (Ai — 1, A2 +  1). T h e  6 in  th e  n o ta tio n  is 

t o  in d ic a te  th a t  for th is  g ra p h  we a re  ta k in g  six  in fin ities, one in  each  of th e  d irec tio n s  

g iv e n  b y  ie * ,  i =  1 ,2 ,3 , w here  th e  v ec to rs  e* a re  as in  S ectio n  1.3.1. W e choose th e  

d is t in g u is h e d  v ertex  to  b e  * =  (0 ,0 ) . H ence ( 0 N A73)T =  A(A (°°16).

(0,1)X - U )

(1,0)( - 1,0) '(0.0)

'(0,-D

Figure 7.7: The infinite graph *4.(°°)6.

We define a normal operator vz  in £2(Z ) 0  £2(Z ) b y u z  =  . s 0 l - f i l 0  s _1 +  s - 1  0  s, 

w here s is again the bilateral shift on (?2 (Z ). Let f2 0  Q, be the vector ((^o)* 0  (<5i,o)i- 

T h en  vz  is identified with the adjacency matrix A of where we regard the vector

12 0 ) f 2 as corresponding to the vertex (0 , 0 ) of A ^ 6, and the operators s 0 ) 1 , s - 1  0  s, 

1 0 s - 1  as corresponding to an edge on in the direction of the vectors e i , e 2 , e3
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respectively. Then (sAl 0  s _A2 )(f2 0  fi) corresponds to the vertex (Ai, A2) of .A ^ 6, for 

any Ai,A2 G Z, and applying u™ujn(f2 0  f2) gives a vector y =  {y(\u\ 2)) in 2̂ (̂ 4̂ °°̂ 6), 

where y(Ai,A2) gives the number of paths of length m +  n from (0,0) to the vertex (Ai, A2), 

where m edges are on .A^ 6 and n edges are on the reverse graph The relation

( 1  0  s _1)(s_1 0  s)(s 0  1 ) =  s -1s 0  5 —1 s =  1 0  1 corresponds to the fact that traveling 

along edges in directions e\ followed by e2 and then e3 forms a closed loop, and similarly 

for any permutations of 1 0  s _1, s _1  0  s, s 0  1 .

Define a state on C*(vz) by y?( •) =  (Q 0  Q, • (H 0  S7)). When m ^  n mod 3 it 

is impossible for there to be a closed loop of length m +  n beginning and ending at the 

vertex (0 , 0 ), with the first m edges are on and the next n edges are on the reverse

graph *4(°°)6. Hence =  0 for m ^  n mod 3. We use the notation (a, 6 , c)! to

denote the multinomial coefficient (a +  b +  c)!/(a!6 !c!). For m =  n mod 3, we have

A v™v*zn) = ^ 2  (fci,fc2,ra -  ki -  k2 )\{h,l2,n -  lx -  l2)\ (f(sri 0  sr2)
0<kx +fc2 
0<*i+*2<n

— ^ 2  (^1 ’ ^2’m ~ ^1 — ^2 )K̂ l>̂ 2 > n — 1̂ ~  2̂ )! ^ri,0 r̂2,0 j
0</cj + ̂ 2 — m 

+ ̂ 2 — n

where

r\ =  2ki +  k2 — 2li — / 2 -F n — m, r2 =  2l2 +  l\ — 2 k2 — ki +  m — n. (7.30)

Then we get a non-zero contribution when li =  k\ +  r, l2 =  k2 +  r, where n =  m +  3r, 

r E Z. So we obtain

<f(vzV*zn) — ^ Z ^ 1’ ^ 2 ’ 771 — ^  ~ +  r,fc2 +  r,ra +  7* -  fci -  k2)\ (7.31)
k\,fc2

where the summation is over all non-negative integers ki, k2 such that max(0 , — r) <  

k\ ,k 2 < min(m,m +  2 r) and k \ +  k2 < m in(m ,m  +  r ) .

P ro p o sitio n  7.6.1 The dimension of the mth level of the path algebra for the infinite 
graph *4(°°)6 is given by

m
d im  ( (® m M 3)T2)  =  d im ( / l ( .4 <0°><% )  =  { C f f .

3 = 0

Proof
When m =  n we have

^ ( W )  =  ^ 2  ((ki ' k^ m -  k\ -  k2 ) \ ) 2
0<fci+fc2<m
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m  m  —  k  i

E E
k \  = 0  &2 —  0

ml
ki\k2\(m — ki -  k2)\

=  E ml 2 m  —  k i

E
* ,= 0  “  kl)'J -  *i -  **)!

(m — &i)!

m  —  k \

= ER)! E(cr '“)2 = E ^ )2̂-*.
fcj= 0  /c2=0  /ci= 0

where we have used (7.4) in the last equality. □

Since the spectrum cr(s) of s is T, the spectrum a(vz ) of vz  is the set 2) =  {uji +  

cj^ 1 + U i lu2\ <jJ\,uj2 £ T}, the closure of the interior of a three-cusp hypocycloid called a 

deltoid; see Figure 7.8. Any point in 2) can be parameterized by

x =  r(2cos(2nt) +  c o s ( 4 7 t £ ) ) ,  y =  r(2sin(27rt) — sm (47r£)), (7.32)

where 0 < r < l , 0 < £ < l ,  with r =  1 corresponding to the boundary of 2 ).

3e'

Figure 7.8: The set 2), the closure of the interior of a deltoid.

Thus the support of the probability measure fivz is contained in 2). There is a map 

: T2 —> 2) from the torus to 2) given by

$(o^l, UJ2 ) — UJ\ T Ĉ2 +  ^2 i (7.33)

where tui ,u 2 G T.

Let G denote the subgroup of GL(2 ,Z) generated by the matrices T2, T3 , of orders 2, 

3 respectively, given by

0 -1 \
T , =

0  - 1

1 - 1
To =

- 1  0
(7.34)
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which is isomorphic to the permutation group S3 . Then 4>(u;i,u>2 ) is invariant under the 

action of G given by T(lo\,u)2 ) =  (cjJ11^ 12,o;“21o;J22), for T =  (a -̂) G G, i.e.

$ (^ 1 ,^ 2 )  =  $ (a > i,o j \ l j 2 *) — $ (^ 2  1, 0̂ 10̂ 2 1) =  ^ (^ 2  1 >a;i *) =  lw 2 , ^ i 1) — ^ ( ^ 1 1c*̂2 , ^2)

Any G-invariant probability measure e on T2 produces a probability measure /i on X) 

by moans of the map 4>:

/ ' t p(z )dn(z)  =  /  + U i l U2 )de{uj i ,uj 2 ),
J v  J  T2

for any continuous function i/j : X) —> C, where d£((Ji,u;2) =  de(g(oj\,uj2))  for all g G G.

T heorem  7.6 .2  The spectral measure de{u\,uj2 ) (on T2) for the graph .4 ( ° ° ) 6 is given by 
the uniform Lebesgue measure

de(u)i,oj2) =  duji d<jj2■ (7.35)

Proof
With this measure we have

I (oj\ T  ̂ T  ̂ "b 0J2 -f- UJ1CJ2 )̂ndu)\ duj2
J  T2

=  X ( ( k i , k 2)m  -  h  -  k 2) \ ( l i j 2 , n  -  li -  l2y. f  u ^ u ^ d u i  d u ^ \0<k1+k2<m '  *^T 2  '
=  X (kh k2 ,m -  ki -  k2 )\(li,l2,n -  h -  l2)\ Sr i t 0  <5r2i0,

0<fci 4-̂ 2 -m 
0<ii+'2<n

where ri, r2 are as in (7.30). This is equal to (piv^v^1) given in (7.31). □

The quotient T2 /Z 3, where the Z3 action is given by left multiplication by T3 is a 

two-sphere § 2 with three singular points corresponding to the points ( 1 , 1 ), (e2™/3, e47rly/3), 

(e4yn/3, e27”/3) in T2 [42]. Under the Z2 action given by left multiplication by T2 on this 

two-sphere, we obtain a disc with three singular points, which is topologically equal to 

the deltoid X). The boundaries of the deltoid X) are given by the lines 6 \ =  1 — 6 2 ,

91 =  20 2  and 20! =  02. The diagonal 0x =  02 in T2 is mapped to the real interval 

[—1,3] C X). The mapping of the ‘horizontal’ lines on T2 between points (e27rim/ 12, e2,rm/i2) 
and (e27rt(m+1)/i2 ? e27rm/i2  ̂ an(j ‘verticar lines on T2 between points (e27rim/i2 ) e27rm/i2̂  

and ( e 27rtm/i2i e 2 7 r t (n + i ) / i2 ) j onto X), for 0 <  m, n <  11, is illustrated in Figure 7.9.

Thus the quotient T2/G  is topologically equal to the set X). A fundamental domain 

G of T2 under the action of the group G is illustrated in Figure 7.10, where the axes are
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Figure 7.9: Mapping T2 onto the deltoid X).

l
I 
i

e2 \
i 
i 
0

0 ,

Figure 7.10: A fundamental domain C of T2 /G.

labelled by the parameters 9\, O2 in (e27n01, e2lxxQ2) G T2. The boundaries of C map to the

boundaries of the deltoid X). The torus T2 contains six copies of C.
We will now determine the spectral measure fivz over X). Now

I  +  UJ2 1 +  OJi * T  U>2 “t- ^1^2 ^)ndcJi dbJ2
J T2

= 6 I (o>i + + Wj 1CJ2)rn(̂ ’i 1 + Co»2 + ̂ 1̂ 2 1)ndu;i diJ2
Jc

=  6  J { e 2ni01 +  e~ 27ri° 2 +  e27rt(02-0i))m^e-27r:01 +  id2 +  ^

where the last integral is over the values of 0i, 02 such that (e27rt̂ , e2nl°2) G C. Under the
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change of variable z =  e2ni01 +  e 2ni02 +  e2̂ 02 01\  we have

x := Re(z) =  cos(27r^!) +  cos(27T^2) +  cos(27r(^2 ~  ^i) ) 5 

y := Imfz) =  sin(27T0i) — sin(27T02) +  sin(27r(02 — 0i))-

Then

I (^ 1  T ^ 2  * "b ^ 1  *^2 )m(kfi * T ĉ 2 T ^ 1 ^ 2  )̂nduji du>2 
J T2

=  6  f (x +  iy)m{x +  iy )n|,/_1 |<fa: dy, (7.36)
J v

where the Jacobian J =  det(d(:r, y) /d{ 6 \, 6 2 )) is the determinant of the Jacobian matrix

d{x,y) _  (  dx/dQi dx/dd2 \  

d(0 i , 0 2 ) \  dy/dOi dy/d 0 2 J

Computing the partial derivatives:

dx dx
—  =  27r(sin(27r(02 -  0 i)) -  sin(27T0i)), —  =  -27r(sin(27r02) +  sin(27r(02 -  0 i))) ,
U U \  OU2

dy dv
—— =  27r(cos(27r0i) +  cos(27t(02 -  0i))),  — 27r(cos(27r(02 -  0i)) -  cos(27t02)),UU\ UU2

we find that the Jacobian J = J {6 1 , 6 2 ) is given by

J {6 1 , 6 2 ) =  47r2(sin(27r(02 — # i))  cos(27r(02 — # i))  — sin(27T0i) cos(27r(02 — # i))

— sin(27r(02 — 0 i))  cos(27t02) +  sin(27T0i) cos(27r6>2) +  sin(27r02) cos(27t0!)

— sin(27r^2) cos(27r(02 _  # i))  +  sin(27r(02 — 0 i))  c o s (27T0i )

— sin(27r(^2 — 0i)) c o s ( 27t (02  — $i)))

=  47r2(sin(27r(0i +  6 2 )) — sin(27r(20i — 6 2 )) — sin(27r(262 — 0i)))- (7.37)

The Jacobian is real and vanishes on the boundary of the deltoid 2). For the values of 

0i, 6 2 such that {e2nidl, e2m02) are in the interior of the fundamental domain C illustrated

in Figure 7.10, the value of J is always negative. In fact, restricting to any one of the

fundamental domains shown in Figure 7.10, the sign of J is constant. It is negative over 

three of the fundamental domains, and positive over the remaining three. The Jacobian 

J{6 i , 6 2) is illustrated in Figure 7.11. When evaluating J at a point in z G 2), we pull back 

z to T2. However, there are six possibilities for ( w i , ^ )  £ T2 such that ^{ui,(jj2) =  z, 
one in each of the fundamental domains of T2 in Figure 7.10. Thus over V, J is only 

determined up to a sign. To obtain a positive measure over V  we take the absolute value 

| J\ of the Jacobian in the integral (7.36).
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Figure 7.11: The Jacobian J.

Writing Uj = e2nl0j, j  =  1,2, J is given in terms o f w i , ^  € l  by,

J (cJi, u)2) =  47r2Im(u;iu;2 —

=  —2,7T2 i(uJ\UJ2 — ^ ^2 * — ^ 1 ^ 2  * "b ^ 1  ^ ^2 — ^ ^ 2  ~b ^1 ^ 2  )̂* (7.38)

Since

(a;ia;2 — 2u>2 — cjf 1a;J +  cjiu;  ̂2 ) 2

=  —6  4* 2 (cJjCJ2 “b CJj * H- ^ 1 ^ 2   ̂ ~b ^ 1 ^ 2  * ~b ^ 1  * ^ 2  ~b ^ 1  2^2 )

—2(cJ3 -f- CcJj  ̂T Cî 2 “b ^ 2   ̂~b ^ 1 ^ 2   ̂~b ^ 1  ^^2 )

+(cJ2tJ2 T Wj 2Ĉ2  ̂"b ^ 1 ^ 2   ̂“b ^ 1 ^ 2   ̂ ~b 2Co>2 "b ^^2 ) ’

the square of the Jacobian is invariant under the action of G. Since z, z are also invariant

under G , J 2 can be written in terms of z, z, and we obtain J(z, z ) 2 =  47r4(27 — 18zz +

4z3 4- 4z3 — z2z2) for z G D. Since J is real, J 2 >  0. Then

\J\ =  2tt2\/2 7  -  18zz +  4z3 +  4z3 -  z2 z2

=  2tt2 v/27 -  18(x2 +  y 2) +  8 z(;r2 -  3y2) -  (x2 + y2)2, (7.39)

where the expression under the square root is always real and non-negative since J2 is, 

and by y/~̂  we mean the positive square root. Alternatively, in terms of the parameters 

r, t given in (7.32) we can write | J\ as

|J(r, t)\ =  27t2a/(1 -  r)((5 +  4 cos(67r£))2r3 — 9(7 +  8 cos(67rt))r2 +  27r +  27). (7.40)
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We have thus obtained the following expressions for the Jacobian J :

\J(z,z)\ = 2tt2\/27 — \&zz +  4 z 3 +  4 z 3 — z 2 z2,

\J(x,y)\ =  2n2y/27 — 18(.x2 +  y2) +  Sx(x2 — 3 y2) — (x2 +  y2)2,

\J(r,t)\ =  27r2\ / ( l  — r)((5 +  4 cos(67r£))2r3 — 9(7 +  8  cos(67r£))r2 +  27 r +  27),

where 0 < 6 1 , 6 2  < 1, cji,o>2 € T, z =  i | i | / 6 5 )  and 0 < r < l , 0 < Z < l .  Again, the 

positive value of the square root is meant in the last three expressions.

We have shown the following:

T heorem  7.6 .3  The spectral measure fivz (over'D) for the graph is

7.6.2 Spectral measure for A ^

We now consider the fixed point algebra under the action of the group SU( 3). The 

characters of SU(3) satisfy X{i,o)X{\iM) =  X ( a 1 + i , a 2) +  X ( A i ,a 2 - i )  +  X ( A i - i , a 2+ i ) ,  for any 
Ai, A2 > 0, where X ( a , - i )  =  0 for all A >  0. So the representation graph of S U( 3) is 

identified with the infinite graph A ^  illustrated in Figure 1.7, with distinguished vertex 

* -  (0 , 0 ). Hence ( ® z M3)5t/(3) *  A(A(oo)).
Let us define a normal operator vjv on £2 (N) ® £2 (N) by

where I is again the unilateral shift on £2 (N). If we regard the element H <g> as corre­

sponding to the apex vertex (0 , 0 ), and the operators Z® 1 , 1 ®/* as corresponding to

3 dz (7.41)
tt V 2 7  -  18zz  +  4z3 +  4z3 -  z2 z 2

where dz := dRez dlmz denotes the Lebesgue measure on C.

To summarize the situation for the fixed point algebra under the action of T2, we have 

obtained the following identifications

d im (A (.A ^ 6)fc) =  dim
j = 0

1 dz.

Vn =  I <g> 1 +  1 ® I* +  I* <g> I (7.42)
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the vectors e i , e 2 , e3 on then (ZAl 0  (l*)X2)(Q 0  fl) corresponds to the vertex (Ai, A2)

of for Ai,A2 >  0. We see that vn is identified with the adjacency matrix A .4 of

.4 (oo), and v%v™(Q 0  Q) gives a vector y = (y( \u\ 2)) in 2̂ (*4(oc)), where P(Ai,a2) gives the 
number of paths of length m +  n from (0,0) to the vertex (Ai, A2), where m edges are 

on .Â 00) and n edges are on the reverse graph .Â 00). The relation (I* 0  • )(Q 0  •) =  0 

corresponds to the fact that there are no edges in the direction —e\ from a vertex (0, A2) 

on the boundary of A2 >  0, and similarly (• 0  /*)(• 0  ft) =  0 corresponds to

there being no edges in the direction e3 from a vertex (Ai,0),  Ai >  0. The relation 

(1  0 Z*)(Z* 0  Z)(Z 0  1) =  1*10 1*1 =  1 0 1 again corresponds to the fact that travelling along 

edges in directions ei followed by e2 and then e3 forms a closed loop, and similarly for 

any permutations of 1 0  I*, I* 0  Z, Z 0  1, but now the product will be 0 along one of the 

boundaries Ai =  0 or A2 =  0 for certain of the permutations, but 1 everywhere else.

The vector Q, 0  O is cyclic in 2̂ (N) 0  £2 (N). We can show this by induction. Suppose 

any vector lklQ, 0  lk2tl G £2 (N) 0  £2 (N), such that k\ +  k2 <  p, can be written as a linear 

combination of elements of the form VxV™(n<g)$l) where m +  n <  p. This is certainly true 

when p =  1 since vm(Q<8 >Q) =  (Z0 l  +  l0Z*+Z*0Z)(f20f2) =  Zf20f2 and tf^(f20f2) =  f20Zfi. 

For j  — 0 , 1 , . . . ,  p, we have v^(lp~^Q 0 IHV) =  Zp-J+1fZ 0  Pfl +  Zp-JfZ 0  ZJ_1f2 +  lp~i~lQ 0  

lJ+ln. Then Zp- J+1ft 0  PQ = vN{lp~m  0  Pti) -  lp~j n  0  p-'Q -  lp-i~lSl 0  P+1 ft, and 

lp- j+1n® lj n, for j  =  0 , 1 , . . . ,  p, can be written as a linear combination of elements of the 

form ujyvjjl(f2 0 fi) where m +  n <  p + 1 .  Since a lso ft0 Zp+1ft =  ?;Ĵ (ft 0 Zpft) — Zft 0 Zp -1ft, 

then every Zfclf l 0  Z*2ft, such that k\ +  k2 < p +  1, can be written as a linear combination 

of elements of the form 0  ft) where m +  n < p + 1 .  Then C*(vn)(Q 0  ft) =
£2 (N )0 2̂ (N).

We define a state on C*(vN) by <p( •) =  ( f i 0 fi, • (ft 0  ft)). Suppose ip(x*x) =  0 for 

some x G C*(vN). Then x(Q 0  ft) =  0. Since vN is normal, C*(vn ) is abelian, and hence 

xC*(vn)(Q 0  ft) = C*(vN)x(Cl 0  ft) =  0, so that xy(Q 0  ft) =  0 for all y G C*(vn). Then 

x(P(N) 0  £2 (N)) =  0 since ft 0  ft is cyclic, giving x =  0. Then tp is faithful.

The moments (̂nJJnJJ1) are all zero if m — n ^  0 mod 3, and for m =  n mod 3, the 

first few moments are given by

v( i )  =  i,

v {vnv 'n) =  i f ( l l ' '®l )  +  i fi (l®l) +  if(l2 ® r )  +  i f i ( r ®l , ) +  f ( \ ® r i )  +  i p ( l ®( r ) 2)

+ v ( ( r ) 2 ®i) + <p(r ® i2) +  p ( r i ® i r )  =  <p(i ® r i )  =  i,

<p{v%) = <p{l'l®l'l) =  1 ,

v (v%) =  <p{ri®ri)  =  i,
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<p(v2Nv%) =  v ? ( l 0 /*/*//) +  <,?(/*/0 1) =  2,

<p(vifV*N) =  ip(vNv*j}) =  3,

v(v%) = v (vn ) =  5,

<p{v%v$) =  6.

The moments count the number of paths of length m + n  on the SU (3) graph

starting from the apex vertex (0 , 0 ), with the first m edges on and the other 

n edges on the reverse graph A ^ .  Let A'(A^)m,n  be the algebra of all pairs (771, 772) 

of paths from (0,0) such that r(r]i) =  r fo ) ,  |t7i| =  m and |t72| =  n. Then we define the 

general path algebra ^ ( .A ^ )  for the graph .A ^  to be ^'(.A^00)) =  ® mn A ( A ^ ) m)n- 
Then ^(ujyujv) giyes the dimension of the m ,n th level of the general path

algebra A 'fA ^ ) . In particular, </?(u™u’yn) for m =  n gives the dimension of the mth level 

of the path algebra for graph i.e. =  dim(A(A^°°^)m).

The moments <p(vj}v™) have a realization in terms of a higher dimensional analogue of 

Catalan paths: Let E =  { / 1 , / 2, fa} be the set of vectors fi =  (1,1,0),  / 2 =  (1, —1,1), =
(1 ,0 , —1) G Z3, which are illustrated in Figure 7.12. These vectors correspond to the 

vectors e* above, i =  1,2,3.

(0.1,0) (0,1,1)

(1.0.0) (1,0,1)

Figure 7.12: The vectors fi G Z3, i =  1,2,3.

We define the conjugate /  of a vector /  G E by (1 ,y,z)  =  ( 1 , — y, — z), and let 

E =  { / i , / 2, / 3}. Let L be the sublattice of Z3 given by all points with non-negative 

co-ordinates. Then define Cm)n to be the number of paths of length m +  n in L, starting 

from (0 , 0 , 0 ) and ending at (m +  n, 0 , 0 ), where m edges are of the form of a vector from 

E and n edges are of the form of a vector from E. Then =  cmjn, and for m =  n,

» > ( W )  =  Cm,m =
We now consider the probability measure fiVN on D for the normal element vN. Since 

(f is a faithful state, by [111, Remark 2.3.2] the support of p,VN is equal to the spectrum 

ct(vn ) of vn. Consider the exact sequence 0  —> K  —> C*(v^) —> C * ( v n ) / I C  —> 0 , where 

/C =  /C(£2 (N) 0  £2 (N)) C B(£2(N) 0  £2 (N)) are the compact operators. Let 7r : B(£2(N) 0  

f?2 (N)) —> B(£2(N) 0  £2 (N))//C be the quotient map. The resolvent p{vN) of vyv is a 

subset of p(n(vjv)) since for any A G p(A), applying 7r to (v^ — A)b =  1, for some
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b G B(£2(N) ® 2̂ (N)), gives (7t(vn ) — X)ir(b) =  1. Then a(vN) D <t(tt(vn)). Now 7r(vN) =  
u ® l  +  l®w* +  u *®n  where u is a unitary which has spectrum T, so that the spectrum 

of t t (vm)  is given by cr(7r(u/v)) =  { 0 7  d- u j ^ 1 d - t o f 1̂ !  0 7 , ^ 2  €  T} =  X). Then C X).

Consider the measure c t e ( a ; i , a ; 2 ) on T2 given by

de(ui,uj2) = du2

=  — g ( ^ i ^ 2  d~ ^ 1 ^ 2   ̂ d~ 2uj2 — ^ ^ 2  * — ^ 1 ^ 2   ̂ ^^ 2 )^ dc^2 (T .4 3 )

on T2, where dujj is the uniform Lebesgue measure on T, j  =  1,2. We will prove in the 

next section that this is the spectral measure (over T2) of ujv, so that a(vn ) — X). With 

this measure we have

— — j  (c^i +  UJ2 1 +  1^ 2 ) m ( ^ l  1 d- ^ 2  d“ OJ\U)2 J ) n
b 7 t2

X (U)\UJ2 d~ UJ\U)2 2 d-  CJj 2CJ2 —  ̂ — ^ 1 ^ 2   ̂ — ^ 1  ^ ^ 2 )^ du )\ d(jJ2

=  - i  f (fci, k2,m -  hi -  k2 )\(li,l2,n -  h -  l2)\
r\<? t-. \0<fcj +fc2<Tn 
0<«i d“̂ 2 — n

x I uf̂ ujr̂  (uj\UJ2 d- CJ1CJ2  ̂d- 2oj2 — ^ 1  ^^2  ̂ — ^ 1 ^ 2   ̂ — ^ 1  ^ 2̂ )̂  do>2 I7t 2 /

£ S  ( (^i’ ^2 > m — k\ — k2 )\(li,l2, n — li — l2)\ 7 a1|02

,fl2 0<fcj+/c2<m
0<<i+i2<n

x J  w[,+0 ,u>[2 + “2 dwj d u A ,

where 7 7 , r2 are as in (7.30), and the summation is over all integers 0 7 , a2 such that 

(ai,a2) G T =  {(Ai, A2 )| Ai =  A2 mod 3, |Ai d- A2 j ^  4, |Ai| d- |A2 1 5̂  6 }. The set T 

is the set of all pairs (0 7 , a2) of exponents of uj^uj^ 2 that appear in the expansion of 

(cjiu2 d- u>iuj2 2 d- w f2(j2 — u)\lu)2  1 — ujj u2 l — cof1̂ 2)2, and the integers 7 a u a 2  are the 

corresponding coefficients. Let 61 =  (2ai 4 - a2)/3 and b2 =  (0 7  -f 2a2)/3. The m , n th 

moment for the measure de{uji,uj2) is zero if m ^  0 mod 3, and for n =  m +  3r, r G Z, 

the m, nth moment is given by

'yai,a2 (ki,k2 , m - k i - k 2 )\ ( k i+ r  +  bi,k2 +  r - b 2,m +  r - b i + b 2 - k i - k 2)\ (7.44)
fcj ,fc2 
“1 ’a2

where the summation is over all 0 7 , a2 G Z such that (0 7 , 0 2 ) £ T, and all non-negative 

integers ki , k2 such that

max(0, —r —6 1) <  A7  < min(m, m +  2r — 6 1) (7.45)

max(0, — r d- 6 2 ) < k2 < min(m, m +  2r +  62) (7.46)

ki +  k2 < min(m, m d- r -  bi +  62)- (7-47)
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As in (7.36), under the change of variables uj\ +  cj2 1 + oj1 l & 2  == 2 , the spectral measure 

fiVN (z) is given by

d̂ 2) = W\2 Ĵ2 dZ = ^  ̂
Then to summarize the situation for the fixed point algebra under the action of SU (3), 

we have obtained the following identifications

2 ? / , I*'” ' 7"
— 18zz +  4z3 +  4z3 — z2 z2 dz.

7.7 Spectral m easures for A V £  graphs via nimreps

Let Ag be the adjacency matrix of a finite graph Q with s vertices, such that Ag is normal. 

The m, nth moment f  zmzndfi(z) is given by (Ag'(Ag)nei, ei),  where e\ is the basis vector 

in £2 (G) corresponding to the distinguished vertex * of Q. For convenience we will use the 

notation

R m ,n{u  1^ 2) (^1 +  CJ2 1 +  ^1 1 +  +  ^1^2 (^-48)

so that JT2 Rm,n(u\,U2)de(u)i,u)2) =  J zrnzndii(z) — (Agl(A j)nei, ei).

Let be the eigenvalues of f/, with corresponding eigenvectors xJ, j  =  l , . . . , s .  

Then as for SU(2), AJ1 =  UAg(Ag)nU*, where Ag =  diagj/?1,/?2, . . .  ,PS) and U =  

( .r1, x2 , . . . ,  .ts), so that

[  Rm,n(ui>U2 )de(ui,V2 ) =  (U A% {\*g)nU* ex, ex) =  (A2(A*g)nU*e1 ,U*e1)
J T 2

s

=  E c m ; ^ r i ^ i 2, (7.49)
j=i

where ?/j =  rj is the first entry of the eigenvector xj .

For a finite A D £ graph £/ with Coxeter exponents Exp, its eigenvalues (3^ are ratios 

o f the ^-matrix given by (1.27) for A E Exp, with corresponding eigenvectors (^a)aev(g)- 
Then (7.49) becomes

/
J T

^m,n(wi,w2 )rfe(a;i,a;2 ) =  (/?(A))m(/ (̂A))n| ^ | 2, (7.50)
AGExp

where * is the distinguished vertex of Q with lowest Perron-Frobenius weight.

Before we compute the spectral measure for the graphs *4^, A®*, I > 4, and V^k\  
k >  2, we briefly remark about the relation between the generalized T-series defined
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in (7.20) and the SU(3) AV £  graphs. For the 01-part Goi of a finite three-colourable 

SU(3) AV£  graph G, we have T(t2) =  H(t), where H(t) is the Hilbert series for the pre- 

pro jective algebra of the bipartite graph Go\ (this follows in the same way as the proof of 

part (z) of Theorem 7.5.1). If Q has a flat connection, then by the comments at the end 

of Section 6.3 it is expected that the Hilbert series /  for Gol counts the dimensions of the 

higher relative commutants for the subfactor with principal graph Goi-

7.7.1 Graphs A^l\  I < oo.

The distinguished vertex * of the graph A ^  is the apex vertex (0,0). Its eigenvalues (5^ 
are given in (1.27), with corresponding eigenvectors -0* =  where the S-matrix for 

SU(3) at level k = I — 3 is [45]:

S'\,n
—z

^exp(^(2A1/z1 +  +  ^2 AH d~ 2A2 /z2)) +  exp(< (̂A2/i1 Aj/Zj -f-2Aj/z2 A2 /z2))

+  exp(£(Aj/z2 — Aj/Zj — 2A2/Zj — A2 /z2)) — exp(£(—2Xifi2 ~  ^iAH — ^ 2/H ~  2A2/Zj)) 

— exP(^(2A1/z1 +  Aj/z2 4- A2/Zj — A2/z2)) — exp(^(A1/z2 — Aj^Zj +  A2/Zj +  2A2/z2))

(7.51)

where f =  -2ni/3l,  A = (Ai, A2), /z =  (/zi,/z2), and A' = Aj + 1, /z' =  /z7 +  1, for j  = 1,2. 
Then 0* is found by setting /z =  (0,0) in (7.51), giving

S,(0,0),A
—  Z

U/3 exp (“ir^'1+3A'̂ )+ exp (_̂ "̂_3A20 + exp (-¥ (_3Ai))
-  exp ( - ^ - ( ~ 3A'i -  3 A2 ) )  -  exP ( - ^ d 3 A2 )) -  exp

sin | - -̂ (Ai 1 ) )  ( — ( A2 "P 1 ) )  — sin (~^~(Ai +  -^2 "t" 2 ) (7.52)

Z {(Ai 4- 2 A2 4- 3)/3(, (2A, +  A2 +  3 ) /3 / ) ,  (7.53)
2^/3tt2/

where in (7.53) 6 \ =  (Ai -f-2A2 -t-3)/3Z and 02 =  (2Ai-t-A2 +3) /3/ ,  so that (Ai +1)/Z =  292—6\ 
and (A2 -(-1)// — 29\ — 6 2.

Since the S-matrix is symmetric, we also have 0 * =  so that the Perron-Frobenius 

eigenvector 0 (o*°) has entries 0i(0,0̂  given by (7.52). Since the S-matrix is unitary, the 

eigenvector 0 (°>°) has norm 1. Recall that the Perron-Frobenius eigenvector for A ^  can 

also be written as (1.28), with n =  Z, where 0 (o,°) has norm > 1. In fact, 0 (o,°) has norm 

/\/3(8sin(27r//) sin2 (7r/Z))_1, so that //A0’0) =  8  sin(27r/Z) sin2 (7r/Z) <̂ 0,°)/7\/3. Then using
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th e  expression for 5(0,0),a given in (7.53),

J ( 6  1 , 6 2 ) =  -2 \/37r2/ 'ip(l{2l2 _ 6 l ) _ 1 i(201_02)_1)

=  -2x/3?r2/ ^ = s in (2 7 r /0 s in 2(7r/0 ^ _ (l). 1J{Ml. , 2) .,)

=  — 167T2 sin((202 — sin((2#i — 02 )n) sin((0i +  6 2 )7:),

so  th a t  the Jacobian J (6 1 , 6 2 ) can also be written as a product of sine functions. From 

th is  form  for J we see that the expression for J(u\,u2) in (7.38) factorizes as

J(ui,l j2) — — 2n2 i(u{lu\ — u iu ^ i u f u ^ 1 — u^2u2 )(uiu2 — u^u^1),

w h e re  U\ =  u \ ^ 2 and u2 =  J ^ 2 take their values in {e%6\ 0 <  6  < 7r}.

W e now compute the spectral measure for A The exponents of A ^  are all the 

v e r t ic e s  o f A l̂\  i.e. Exp =  {(Ai,A2)| Ai,A2 >  0 ; Ai +  A2 <  1 — 3}. Then summing 

over a ll (Ai, A2) G Exp corresponds to summing over all (6 1 , 6 2) G { (^ 1  / 3Z, <7 2 /3 0 1  Qi,Q2 =  
0, 1 ...........3/ — 1}, such that 6 \ +  6 2 =  0 mod 3 and

262 — 61 =  (Aj +  1 )/^ ^ l/^i 2 6 1  —6 2 — (A2 +  1 )/  ̂ ^  1 / / ,

6 \ T  6 2  — (Aj +  A2 +  2)/l <  (I — 1)/^ — 1 — l / l.

L et L^e1 ,e2) be the set °f all such (6 1 , 6 2 ), and let Ci be the set of all (a; 1 , 0 2̂ ) G T, 

w h e re  luj =  e2m9j, j  =  1 , 2 , such that (6 1 , 6 2 ) £ ^(0i,e2)- ^  is easy check that (3^ = 
uji -b +u)^lu2. Using (7.50),

/  Rm,n(uuU2 )de(u)i,u)2) (7.54)
J T 2

1 ( 0 ^ r ( 0 W ) nJ ((2A, +  A2 +  3 )/3 /, (A, +  2A2 +  3 )/3 1)2
1 2 ?r4 / 2

A€Exp

—  ~~ry2 (Ct;i ^ 2  1 +  Ul la;2 )m(^l 1 +  ^ 2  +  W\UJ2 1)n
(wi ,oj2)€Ci

x(cjilj2 +  +  W{2uj2 — — oj\uj2 1 — u ^ u ;2)2- (7.55)

I f  w e let C  be the limit of Cj as I —* oo, then C is a fundamental domain of T2 under 

th e  a c t io n  of the group G , illustrated in Figure 7.10. Since J =  0 along the boundary of 

C , w h ich  is mapped to the boundary of 2) under the map $  : T2 —> *&, we can take the 

su m m a tio n  in (7.55) to be over (cji,cj2) G C. Since J2 is invariant under the action of G, 
w e h a v e

/ Rm,n(wi,U2)de(Ui,LJ2)
J  T 2
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— — g3/2 (^1 +  o;2 1 +  1CJ2)m(^’l 1 +  ^2 +  ^ 1 ^ 2  J)n
(u;i,a>2)€D/

X (iJ\U)2 UJ1UJ2  ̂“1“ ^^2 — ^ 1  ^ 2̂  ̂ — ^1^2  ̂ — ^1 ^^2 )^’ (7.56)

w here

Di =  {(e27ri*l/3/, e27ri92/3/) G T2| 9l> g2 =  0 , 1 , . . . ,  3/ -  1; 9l +  q2 =  0 mod 3} (7.57)

is the image of Ci under the action of G. The number of such pairs in the interior of a 

fundam ental domain C can be seen to be equal to n^ =  (I — 2 )(/ — l ) / 2 , where n® is the 

num ber of vertices of A®, whilst the number jj  ̂ of such pairs along the boundary of C is 
n (*+3) _  n(i) — 1 _|_ 1 ^ 1  +  2 ) — (I — 2)(/ — l ) ] /2 =  3/. Then the total number of such pairs

over the whole of T2 is | A | =  6 #^  +  3j*  ̂ — 6  since we count the interior of C six times 

b u t only count its boundary three times. The vertices at the corners of the boundary of 

C  are overcounted twice each, hence the term —6 . So \Di\ =  3(/ — 2)(/ — 1 ) +  9/ — 6  =  3/2, 

and we have

/  Rm,n(Vl,V2 )de(<jJi,UJ2 )
J T 2

— — q]D~\ XZ (^ 1  ^ 2  1 +  U 1 luJ2 )m(^i 1 +  ^ 2  +  ^ 1 ^ 2  2)n
(u>1,U>2)EDi

x(lJiU2 +  U)\0j f 2 +  UJi2U2 ~ ~  1 —

— ~ /  (uJ\ +  CJ2 1 +  1^ 2 )m(^l 1 T tJ2 +  0J\LL>2 1)n
b JT2

x(u>iu;2 +  2 +  UJi2U)2 — ^ \ l^2 l ~ ^ 1 ^ 2  1 — ^ f 1^ ) 2 1 ,^ 2),

w here is the uniform measure over all pairs (uq,u>2 ) G A - Then we have proved the 

following:

T h e o r e m  7.7.1 The spectral measure of A® (over T2) is given by

de(ovu u2) =  2 ^ 4 J(vi ,V 2 )2 d{l\ u i , u 2). (7.58)

We can now easily deduce the spectral measure of claimed in Section 7.6.2.

L etting  I —> oo, the measure dSl\uj\,uj2 ) becomes the uniform Lebesgue measure du)\ du2

on  T 2. Thus we have:

T h e o r e m  7 .7 .2  The spectral measure of A ^  (over T2) is

de(u)i,oj2 ) =  2 4 ^4 *7(^ i>t02)2du>i du2 , (7.59)
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where dw is the uniform Lebesgue measure over T. Over D, the spectral measure pVN{z) 
o fA {oo) is

dpVN(z) =  dz. (7.60)
Z7T

Remark: Gepner [46] proved that this is the measure required to make the polynomials 

z), defined in Section 5.1.1 for vertices p of . 4 ^ ,  orthogonal, i.e.

-^r [  Sfl(z,z)Su(z ,z ) \ /27^-~iS^¥^-^z^-^2^-^ :̂ d z  =  Snu- 2tt2 Jj2

Then in particular, the dimension of the nth level of the path algebra for 4^°°) is given 

by (7.44) with m = n (i.e. r =  0 ), or equivalently by the integral JJ)\z\2mdpVN(z) with 

measure given by (7.60).

The dimension of the irreducible representation tt\ of the Hecke algebra Hn(q), labelled 

by a Young diagram A =  (pi ,p2 , 7i — Pi — P2 ) with at most 3 rows, is given by the 

determinantal formula (see e.g. [107]):

dim(7T\) =  71,!
1/P i! l / (Pi  +  l)- l/(P i +  2)!

1 /( P 2  -  1)5 I / P 2 ! 1 / ( P 2  +  1)!

l / ( n - p 1 - p 2 - 2 )\ 1 / (n — pi — P2 — 1 )! \ / { n - p l - p 2)\
(7.61)

where l/q\ is understood to be zero if q is negative. Computing the determinant in 

equation (7.61), we can rewrite the right hand side as a sum of multinomial coefficients:

dim(7rA) =  (pi,p2,n -  pi -  p2)! -  (pi ,p2 +  l , n  -  p2 -  p2 -  1)!

+(pi +  l ,p 2 +  l ,n  -  pi -  p2 -  2 )! -  (pi +  l ,p 2 -  l ,n  -  pi — p2)!

+  (Pl + 2 , p 2 -  1,77, -  Pi - p 2 -  1)! -  (pi +  2, p2, 77, — Pi - p 2 -  2)(7.62)

We can also obtain another formula for the dimension of 4(4(°°))n- The number 

c£  a2) Paths of length n on the graph 4*°°) from the apex vertex (0 , 0 ) to a vertex 

(Ai,A2) is given in [25] as

(n)   (Ai +  1)(A2 +  l)(Ai +  A2 +  2 ) 7i!_______________
(Al-A2> “  ((n +  2Ai +  A2 +  6)/3)!((n -  Aj +  A2 +  3)/3)!((n  -  Ai -  2A2)/3)!' 1 '

Then we have the following results:

L em m a 7.7.3 Let Â  be the number of paths of length n from (0,0) to the vertex 
(Ai, A2) on the graph 4^°°^ as given in (7.63), and let 4 /( 4 ^ )  be the general path algebra 
defined in Section 7.6.2. Then, for fixed integers m,n < 0 0 , the following are all equal:

(1 ) d im (4 '(4 (oo))m)n),
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(2 ) 2J5 fj) zmznV27 -  I8 zz  +  4z3 +  4z3 — z2~z2 dz,

( 3 )  2^t f j 2 ( w i  +  u;2 1 +  c j 1 1co2 ) T n ( u j 1 1 +  u>2 +  ^ 1^2 1)n*̂ (a;i5 w 2 ) 2 d u \  d w 2 ,

( 4 )  -lYl'yai,a2 (ki,k2 , n -  ki -  k2)\ (hi + r  +  &i,k2 +  r -  b2,m + r -  bi +  &2 -  h  -  k2)\,

t*)) V r (m) r(n)(Jy Z^C(A1,A2)C(Ai,A2)̂

where in (4 ), n = m + 3r, r € Z, &i =  (2ai +  a2 )/3 , b2 =  (a\ +  2a2)/3  and the summation 
is over all a i , a2 G Z such that (ai,a2) G T, and all non-negative integers k\, k2 which 
satisfy (7.45)-(7.47). The summation in (5) is over all 0 <  Ai, \ 2 < m in ( m ,n) such that 
Ai +  A2 < m in (m , n) and m = n =  Ai +  2A2 m od 3.

Proof
The identities (1) =  (2) =  (3) =  (4) were shown above. The other identity (1) =  (5) is 

trivial since the dimension of A '{A ^ )m yn is equal to the number of pairs of paths (with 

lengths m, n respectively) which begin at (0 , 0 ) and end at the same vertex of □

C orollary 7 .7 .4  Let fp^ P2 be the sum of multinomial coefficients given by (7.62). Then, 
in particular, for fixed n < oo, the following are all equal:

(1) dim

(2) 2^2 / 2  \z\2n\/27 — 18zz +  4z3 +  4z 3 — z2 z 2 dz,

(3) 2^4 Jt2 IW1 +  U 2 1 +  U 1 |2n j (uAi, CoJ2 ) 2 duj 1 dw2,

( 4 )  T , 1 aua2 {ki,k2,n -  ki -  k2)\ (Aq + bx,k2 -  b2,n -  bx +  b2 -  kx -  k2)\,

( v

(6 ) £ ( # L 2,)2,

where in (4), b\ =  (2ai +  a2)/3,  b2 =  ( a i + 2 a 2) /3 and the summation is over alla\,a2 G Z 
such that (al 5a2) G T, and all non-negative integers k\, k2 which satisfy (7.45)-(7.47). 
The summation in (5) is over all 0 <  p2 <  p\ < n such that n — p\ < 2p2, whilst the 
summation in (6 ) is over all 0 <  Ai, A2 <  n such that Ai +  A2 <  n and n =  Ai +  2A2 mod 3.

Proof
The identities (1) =  (2) =  (3) =  (4) =  (6 ) follow from Lemma 7.7.3. The identity (1) 

=  (5) follows from (7.62) and the fact that (®nM3)5c/^  =  A ( A ^ ) n =  © A n\(Hn{q)), 
where the summation is again over all Young diagrams A with n boxes. □
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7 . 7 . 2  G r a p h s  V^n\  n  =  0  m o d  3 .

The exponents of V̂ -3k\  for integers k >  2, are the 0-coloured vertices of A^3k\  i.e. 

Exp =  {(A1? A2)| Ai, A2 >  0; Ai +  A2 <  3k — 3; Ai — A2 =  0 mod 3}, where the exponent 

(A: — 1, A; — 1) has multiplicity three. For we have | ^ |  =  ^S^o.oj.a for all A £ Exp 

except for A =  (k — l ,k  — 1). For this exponent however the eigenvalue =  0,

so that this term does not contribute in (7.50). Then for A ^ (k — l ,k  — 1), =

J ((Ai +  2A2 +  3) /3/, (2Ai +  A2 +  3 ) /3 /) /Gkiv2.
Since the exponents for V ^  are all of colour zero, under the above identification

between Ai, A2 and 6 \, 6 2 , the exponents A correspond to all pairs (6 1 , 6 2 ) such that

6 \ — 02 =  0 mod 3 and (e2m0x, e27”02) £  C. These pairs (6 1 , 6 2 ) are thus in fact all of the 

form (pi/3k,p2 /3k), for p i,p 2 £ { 1 ,2 , . . .  ,3 k — 1}. Under the action of G , these pairs 

are mapped to the all the points (9 1 , 9 2 ) €  [0, l]2 such that e2mqj is a 3kth root of unity, 

for j  =  1,2, except for the points the points (9 1 , 9 2 ) which parameterize to the boundary 

of V. However, we can again use the fact that the Jacobian is zero at the points which 

parameterize to the boundary of T).
Then by (7.50) we have

/ Rm,n(ui,UJ2 )d£(uJi,UJ2 )
J  T 2

=  E  (PW r ( W > ) nJ ((A, +  2A2 +  3 )/3 /, (2A, +  A2 +  3)/3()2
71  ̂ ' AeExp

where the last summation is over all (# i,02) £ {(pi/3k,p2 /3k)\ p\,p 2 — 1 ,2 , . . .  ,3 k — 1}. 

Then we have obtained the following result:

T heorem  7.7.5 The spectral measure ofV^3k\  k >  2, (overT2) is

de(u\,u)2) =  -^^J(a>i,w2 ) 2 d^/2 < 1̂ d^/2^2  ̂ (7-64)

where d.sk/2^ is the uniform measure over the 3kth roots of unity.

For the limit as k — > 0 0  we simply recover the measure (7.59) for This is due

to the fact that taking the limit of the graph V ^  as k — > 0 0  with the vertex *  =  (0,0) 

as the distinguished vertex, we just obtain the infinite graph In order to obtain

the infinite graph we must set the distinguished vertex * of to be one of the 

triplicated vertices (k — l ,k  — l)i, i =  1 ,2 ,3  (see e.g. Figure 4.5). Then using (7.50), and 

taking the limit as k — » 0 0 , we would obtain the spectral measure for T>̂ °°\
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7.7 .3  Graphs A I  <  oo.

The exponents of *4^* are Exp =  {(j , j) \  j  =  0 , — 3 ) /2 j}. From [44] its 

eigenvectors are ^  =  2\ZF^sin(27ra(Ai +  1)/Z), where A =  (Ai,A2) G Exp and a =  
1 ,2 , . . . ,  [(/ — 1)/2J, as in Figure 1.10. Then

,  4  L(i-3)/2J __

/  Rm,n{ui,V2 )de(ui,u2) =  -  V ]  sin2(27r(j +  1)//).
•'t2 1 j = 0

Since all the eigenvalues /?0j ) 0f ^(0* are rea]5 there is a map 4>i : T —> 2) given

by $i(u) = u +  u-1 +  1 so that the eigenvalues are given by $ j(e 27rl̂ +1^ )  G [—1,3] for

j  =  0 ,1 , . . . , [ ( /  — 3)/2J}. Then the spectral measure of A®* can be written as a measure 

over T. Then with u =  e2n%^ 1, we have

L(/- l) /2j

j
J  T

(u +  u~l )m+nde(u)  =  J ( i?  +  +  l ) m+n sin(?P)2.
T 1 j=i

For all /, sin(u°) =  0, and sin(53?') =  sin(uz — j) ,  for / =  1 , 2 , . . . ,  [(/ — 1)/2J. If I is even, 

we also must consider when j  =  1/2. In this case sin(5Iz/2) =  0. Then we can write

[ (u  + u~1)m+nd£(u) =  I y V u *  +  u~j +  l ) m+n s in (f f ')2 (7.65)
h  1 j=0

=  2  f  (u +  u~l +  l ) m+n sin(u)2di/2u,
J T

where dp is the uniform measure over the 2pth roots of unity. Then we have:

T h eo rem  7.7.6 The spectral measure of A®*, I < oo, (over Tj is

de(u) =  a(u)di/2u, (7.66)

where di/2u is the uniform measure over the Ith roots of unity, and a is given in (7.11).

Since (u +  u~l +  l ) z =  o ^l(u +  u~lYi f°r even I = 2k we can express the m, nth
moment as a linear combination of the moments of the Dynkin diagram Ak~\.

P m + n  p m +n

/  (u +  u~1)m+nde{u) =  Y ]  C™+n /  (u +  u - y  21m{u)2dl/2u =  V  C ^ + V ,
j = 0 ^  i =0

where is the j th moment of Ak-\.  When I —> oo, the 7 th moment ^  of A00 is given by

the Catalan number Cj/ 2 when j  is even, and 0 when j  is odd. Then for the infinite graph
4̂ (0°)*,

[ ( m + n ) / 2 J

( u + u - ir +nM + =  E  c s fnc*-
k= 0
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In fact, the spectral measure for has semicircle distribution: Letting / —> oo in

(7.65), we have the approximation of an integral

2 1
lim -  V ( i ?  +  u~j +  l ) m+n sin(uj ) 2 =  2 (e2nid +  e~ 27ti6 +  l ) m sin2(27T0)d0.
i_" ° ° 1 p ;  Jo

Making the change of variable x =  e2ir%e +  e~ 2n l0  +  1 =  2 c o s (27 t0 )  + 1 , we have 2 sin(27T0) =  

y/4 — (x — l ) 2, and dx/dO =  —47rsin(27r0) =  —27r>/4 — (x — l ) 2. Then

j x m d n ( x )  =  2 J  {e2*ie +  e ~ 2*i,> +  l)m s m 2(2nB)d6

[ 2 (e2nie +  e ~ 2nie +  l ) m sin2(27r0)d0 
Jo

[  xmy/4 — (x — 1 )2dx — [  xm\/4  — (x — 1 )2 dx,
J3 27T

=  4

—4 ' - 1 
87r

which is the semicircle law centered at 1 with radius 2. Then the spectral measure (over 

[—1,3]) for the infinite graph has semicircle distribution with mean 1 and variance

1, i.e. dfi(x) =  y /4 ^ (x ^ ly * d x .
The graph A ^ *  has adjacency matrix A^2̂ * =  A/_i +  1, where A* is the adjacency 

matrix of the Dynkin diagram At. Hence the spectral measure for A ^ *  is the spectral 

measure for 4 /_ i but with a shift by one.

7 . 7 . 4  G r a p h

The spectral measures for the graphs *4^, Z>(3fc) are measures of type dp x dp, J 2 dp x dp, 
d ^  or for 2p G N. We will show in Section 7.8 that the spectral measures for

certain finite subgroups of SU(3) are also linear combinations of measures of these types. 

However, we will now show that the spectral measure for E^  is not a linear combination 

of measures of these types. The exponents of E^  are

Exp =  {(0,0), (5,0), (0, 5), (2 ,2), (2 ,1), (1,2), (3,0), (2,3), (0,2), (0,3), (3,2), (2,0)}.

Let u = e2nt/3 and A be the automorphism of order 3 on the vertices of .4 ^  given by 

v4(//i,//2) =  (5 — fi\ — //2, /^i)• For the eigenvalues P̂ x\  =  u P ^  and /?M2(̂ )) =

cuP{x\  the corresponding eigenvectors are ( u A, u A, u A),  (vx, o j v x , u v x ) and (vx,uivx, l j v x ) 

respectively, where the row vectors vx are given in [26, Table 17.3] (We normalize the 

eigenvectors so that ||'0A|| =  !)• Hence -0A =  = 41* ^  for A £ Exp. With 9\ =
(Aj +  2A2 +  3)/24, 02 — (2Ai +  A2 +  3)/24, we have
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A G Exp ($ i, 0 2 ) £ [0, l]2 l ^ * | 2

(0 ,0), (5 ,0), (0 ,5) /  3 3 \  / 8 13 \ /13 8 \  
V 24 ’ 24 / ’ v 24 ’ 24 > ’ v 24 ’ 24 >

2 - V 2
24 00 1 to

(2 ,2), (2 ,1), (1,2) ( 9 9 \  ( 7  8 \  ( 8 7 \  
'  24 ’ 2 4 b  V24 > 24 / ’ v 24 ’ 24/

2+v^2
24 3 +  2\/2

(3,0), (2 ,3), (0,2) ( 6  9 \  (11 10 \  ( 7 5 \  
V 24 ’ 24 J ’ V 24 ’ 24 / ’ V 24 ’ 24 /

1
12 2

(0,3), (3 ,2), (2 ,0) ( 9  6 \  / 10  11 \ ( 5  7 \  
124 ’ 2 4 b  v24> 24 / ’ t 24> 24 /

1
12 2

From (7.50),

(^(5(A)))m^(5(A)))n|^(A)|2 (y 6?)

Now the pairs (#i, 02) given by g(X) for A G Exp, g G G, are illustrated in Figure 7.13. 

Consider the pairs (#i, 02) =  (7 /2 4 ,8 /2 4 ), (8 /24 ,13 /24), (10/24,11/24). For each of these, 

(^ + + 2) =  (e27a6>1 ,e 27”02) G T2 can only be obtained in the integral in (7.67) from either 

the product measure di2 x di2 on pairs of 24th roots of unity, or the uniform measure 

on the elements of D8 ((7/24, 8 /24), (8 /24 ,13 /24), (10/24,11/24) are each in D8, but 

none are in Dk for any integer k < 8). Since these points ( tJ i,^ )  cannot be obtained 

independently of each other, we must find a linear combination s' =  C\E\ +  c2J 2£2 of 

measures, where ey must be either dJ2 x d12 or d ^  for j  =  1,2 (it doesn’t matter at this 

stage which of the two measures we take 6 j to be), such that the weight e'(e27ri01, e2wl°2) 
is (2 +  y/2)/24, (2 -  >/2)/24, 1/12 for (0lt 02) =  (7 /24 ,8 /24), (8 /24 ,13 /24), (10/24,11/24) 

respectively. Suppose for now that E\ =  s 2. Then we must find solutions c i,c 2 G C such 

that

ci +  (3 — 2 a/ 2 ) c2 =  — — — , Ci +  (3 -F 2\/2 )c2 =  — —— , ci +  2c2 =  — . (7.68)

Solving the first two equations we obtain Ci =  c2 =  1/48. However, substituting for these 

values into the third equation we get 1/48 +  2/48 =  1/16 ^  1/12, hence no solution exists 

to the equations (7.68), and hence the spectral measure for is not a linear combination 

of measures of type dp x dp, J2 dp x dp, d ^  or J2 d̂ p\  for 2p G N.

7 . 7 . 5  G r a p h  E
(12}We will now show that the spectral measure for S\ is also not a linear combination of 

measures of type dp x dp, J2 dp x o?p, d ^  or J 2 d̂ p\  for 2p G N. The exponents of 8 are

Exp =  {(0 ,0 ), (9 ,0), (0 ,9), (4 ,4), (4 ,1), (1,4), and twice (2,2), (5,2), (2,5)}.

Computing the first entries of the eigenvectors, we have

[ Rm,n(^11 ^2 )de(u>i, U2) — ~ ^
g € G  A € E x p



1

e2

*• . * . . \
A* •

*

v r v  i  y  ‘A ' n  i

Figure 7.13: The points (0 i,02) G {#(A)| A G Exp,# G G} for £<8).

| * { M ) | »  =  | ^ 4 4 , | 2  =  i ^ J l .  4 ) |2  =  2 + v S

whilst for the repeated eigenvalues, for the exponents with multiplicity two which we will 

label by (Ai ,A2) i , (Ai, A2)2» we have

i v w  +  l t f ^ l 2 =  |V'!5'2)l|2 +  l ^ 5,2)2l2 =  I t f W  +  l t f 1* !*  =  -■9

With =  (Ai 4- 2A2 “I- 3)/24, 02 =  (2Ai 4- A2 T 3)/24, we have

A G Exp (01,  0 2) G [0, l]2 I S F ^ i . f c ) 2
(0,0), (9,0), (0,9) fJL ± )  ( JL ± )  ( ±  I . )

V 12’ 1 2 / ’ M 2 ’ 12 '  ’ V 12’ 12/
7 —4 \ / 3

4

(4,4), (4 ,1), (1,4) ( A .  JL)  ( ±  A . )  ( A .  ± )
M 2 ’ 1 2 / ’ M 2 ’ 1 2 / ’ V 12 ’ 12/

7 + 4 V 3
4

(2,2), (5 ,2), (2,5) ( A .  JL)  ( A .  ± )  ( ±  JL)
M 2 ’ 1 2 / ’ M 2 ’ 12 / ’ '  12 ’ 12/ 4

Again, from (7.50),

* ) =  J E  E  (/3(9(A)))m( ^ » ) nW (A)|2. (7.69)
g £ .G  A e E x p

We illustrate the pairs ( 0 i ,0 2) given by #(A) for A G Exp, g G G, in Figure 7.14. 

Consider the pairs ( 0 i ,0 2) =  (4 /12 ,7 /12 ), (3 /12 ,5 /12). For both of these, {u\,<jJ2) =  

(e2nt01, e2m°2) G T2 can only be obtained in the integral in (7.69) by using either the prod­

uct measure d6 x d6 or the measure <A12) ((4 /12 ,7 /12), (3 /12 ,5 /12) are both in D 12, but 

neither are in Dk for any integer k <  12). With either of these measures, we will also obtain 
the point (e27rt5/ i 2 ? e27n6/i2̂  integrai (7.69). The corresponding pair (0 i ,0 2) is indi­

cated by the white circle in Figure 7.14. The point (e2?n5/ 12, e2m6/i2  ̂ can ajg0 onjy obtained
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1

00
0 ,

Figure 7.14: The points (9\,92) €  {p(A)| A E Exp, <7 E G} for S^2\  The white circle 

indicates is the point (5 /12 ,6 /12 ).

by using the measures c?6 x d6 or dSl2\  Since these points (uq, u>2) cannot be obtained inde­

pendently of each other, we must find a linear combination z' — CiZ\ +  c2 J2z2 of measures, 

where Zj must be either dG x dQ or d ^  for j  =  1,2, such that the weight £/(e27ri6’1, e2lTl°2) 
is (2 -  >/3)/36, (2 +  >/3)/36, 0 for (9U92) =  (4/12, 7/12), (3 /12 ,5 /12), (5 /12 ,6 /12) re­

spectively. Suppose for now that Z\ =  z2 (again, it doesn’t matter at this stage which of 

the two measures we take eq, z 2 to be). Then since J (5 /1 2 ,6 /1 2 )2 =  3/4, we must find 

solutions c i , C2 E  C such that

7 — 4 \/3  _ 2 - V 3  , 7 +  4V3 _ 2 +  V3 , 3  „
Ci + J C 2 - - g g — , C i+  -  c2 - ^ — . Cl +  j c 2 - 0 .  (7.70)

Solving the first two equations we obtain 4ci =  c2 =  1/36. However, substituting for 

these values into the third equation we get 1/144 +  3/144 =  1/36 ^  0, hence no solution 

exists to the equations (7.70), and hence the spectral measure for £ j12̂ is not a linear 

combination of measures of type dp x dp, J2 dp x dp, or J2 d&\ for 2p E  N.

7.8 Spectral measures for finite subgroups of SU(3)

The classification of finite subgroups of SU (3) was begun by Miller, Blichfeldt and Dickson 

[88, Chapter XII] in 1916. Further work was done in [41, 15]. The classification was finally 

completed by Yau and Yu [115] in 1993. Clearly, any finite subgroup of SU(2) is a finite

s u m ,  ™ . . .  s u m  s u m  *  ^

SU(3), for any A E  SU(2). These subgroups of SU(3) are called type (B). There are 

three other infinite series of finite groups, called types (A), (C), (D). The groups of type
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(A) are the diagonal abelian groups, which correspond to an embedding of the two torus 

T2 in SU(3) given by (1.8). The groups of type (C), (D) are A(3n2), A (6n2) respectively, 

which are considered in [15]. They generalize the dihedral subgroups of SU(2). There are 

also eight exceptional groups (E)-(L). The complete list of finite subgroups of SU(3) is 

given in Table 7.5.

Subgroup T C SU(3) |r| =  order of T

(A): Zn x Zn n2

(B): Groups isomorphic to finite subgroups of SU(2) -
(C): A (3n2) =  Zn x Zn/Z 3 3 n2

(D): A (6n2) 6n2

(E) =  E(36 x 3) 108

(F) =  E(72 x 3) 216

(G) =  E(216 x 3) 648

(H) =  E(60) 60

(I) =  E(168) 168

(J) 180

(K) 504

(L) =  E(360 x 3) 1080

Table 7.5: The finite subgroups T of SU(3).

The fundamental representation p of SU(3) corresponds to the vertex (1,0) of the 

graph The McKay graph Gr is the graph associated to the subgroup T, as for

SU(2) in Section 7.4. For most of the graphs Gr there is a corresponding SU(3) AV£  
graph/quiver G, which is obtained from Gr by now removing more than one vertex, and 

all the edges that start or end at those vertices, as well as possibly some other edges, as 

was noted in [27] (to obtain the graph £$12̂ from the McKay graph for (K) an extra edge 

must also be inserted1). These graphs are illustrated in Figures 7.15 - 7.25. In the graph 

in Figure 7.16, the three vertices at the corners of the outer triangle are identified with 

the corresponding vertices of the innermost triangle. However, unlike with SU{2), for 

SU(3) there is a certain mismatch between the subgroups T, with their associated McKay 

graphs Gr, and the A V £  graphs. The correspondence is as in Table 7.6, where we use the 

same notation as Yau and Yu [115] for the subgroups (E)-(I). The notation [zj denotes 

the integer part of x.
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A V E  graph Type Subgroup T C S U( 3)

.4 (n) I (A): Zn _ 2  x Zn _2

II -

(n =  0 mod 3) I (C): A(3(n -  3)2) =  Zn _ 3 x Zn_3 /Z 3

V ( n  ^  0 mod 3) II -

- - (C): A (3n2), (n ^  0 mod 3)

- - (D): A (6 n2)
£)(n)* II ^L(«+2)/2j x ^3

I (E) =  E(36 x 3)

II -
£(12) _  £(12). I (F) =  £(72  x 3)
c(12) _  *-(12). II (G) =  £(216 x 3)

*.(12)
C3 - T>4 ® (7j23

*ii II (L) =  £(360 x 3)
*.(12) II (K)

£(24) _  £(24)* I -

- - (H) =  £(60)

- - "hh II i—
*

05 00

- - (J)

Table 7.6: Relationship between AT>E graphs and subgroups T of SU{ 3).

We will now consider the spectral measure for the McKay graph Qp associated to a 

finite subgroup T C SU(3).  It was shown in Section 7.4 that any eigenvalue of T can be 

written in the form xp(<?) =  Tr(p(gf)), where g is any element of the conjugacy class Tj.

The diagonal abelian groups Zn x Zn correspond to the torus, so clearly the trace of 

any element, which is the sum of its eigenvalues, will be of the form

eidl +  ei02 + e ~ i(01+02), (7.71)

for 0 < 0 i,02 < 27r, and hence the spectrum is contained in X). For any group isomorphic 

to a finite subgroup of S U (2), the trace of any element is of the form 1 +  u +  ?z-1 for some 

u G T, since the trace of any matrix in S U (2) is given by u +  u_1, u G l  The generators 

of the subgroups (C)-(L) of S U ( 3) are given in [115]. Using these, we computed the trace 

of any element in the groups (C)-(L), and found that they can all be written in the form 

(7.71), and hence are in X).

*1 am grateful to Jean-Bernard Zuber for pointing this connection out to me.
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Figure 7.15: Zn_2 x Zn_2 for n — 6; vertices which have the same symbol are identified.

Figure 7.16: Zp x Z3 for p =  3 Figure 7.17: (E) =  £ ( 3 6  x 3)
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K

6

Figure 7.18: (F) =  £ ( 7 2  x 3) Figure 7.19: (G) =  JZ(216 x 3)

10

Figure 7.21: (L) =  2 (3 6 0  x 3)Figure 7.20: ® cr123
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Figure 7.22: (H) =  £ ( 60) Figure 7.23: (I) =  £ (1 6 8 )

Figure 7.24: (J) Figure 7.25: (K)
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For the group SU(3) itself, the adjacency matrix A of the fusion rules is given by the 

operator A =  G B(£2 (N)®£2 (N)), where vN is as in (7.42). Consider the exact sequence 

0 -+ K -> C*(A) -> C*(A)//C -> 0, where K  =  /C(£2 (N) 0  2̂(N)) C B(£2(N) 0  £2(N)) are 

the compact operators. Let n : B(£2(N) 0  2̂(N)) —► B(£2(N) 0  £2 (N))/JC be the quotient 

map. The resolvent p(A) of A is a subset of p(7r(A)) since for any A G p(A), applying 

7r to (A — X) b  =  1, for some b G £?(£2(N) 0  2̂(N)), gives (7r(A) — A)7r(6) =  1. Then 

cr(A) D a(7r(A)) =  2).

So if T is SU(3) or one of its finite subgroups, the spectrum cr(A) of A is contained in D, 

illustrated in Figure 7.8. Thus the support of p& is contained in D, and Jc 'ip(z)dp^(z) =  

)dp&(z), where ip’ is the restriction of ip to 5). Since V  is bounded, the spectral 

measure p& is uniquely determined by its moments fX)zmzndp,&(z).
Since the 5-matrix simultaneously diagonalizes the representations of T, then as 

in Section 7.4 for SU(2), the elements y* in (7.49) are then given by y* =  Soj =  

\/Ir71xo(rj)/v1ri =  VW 7 \/VW\-  Then the moment is given by

W  =  J  Z ^ d ^ z )  =  g  M ^ r v ) ”* ^ ) "  (7.72)

Let : T2 —> D be the map defined in (7.33). We wish to compute ‘inverse’ maps 

(F~1 : ‘D —> T2 such that 4> o <F_1 =  id. For z G V,  we can write z =  uji +  cj2 1 +  1^ 2

and z — 1 +  u>2 +  â uAT1. Multiplying the first equation through by we obtain

zuj\ = uj\+ oj\UJ2 l +  Then we need to find solutions uj\ to the cubic equation

uj\ — zuj\ +  ~zuj i — 1 =  0. (7.73)

Similarly, we need to find solutions uj2 to the cubic equation cjf — +  zu;2 — 1 =  0.

We see that the three solutions for u>2 are given by the complex conjugate of the three 

solutions for wj. Solving (7.73) we obtain solutions k =  0 ,1 ,2 , given by

J k) =  (z +  2~1/3 ekP  +  21/3e^(z2 -  3 z )P _1)/3 ,

where =  e2mk/3, 21/3 takes a real value, and P  is the cube root P  =  (27 — 9zz +  2z3 +  

3\Z3>/27 — 18zz +  4z2 +  4z3 — z2^2) 1/3 such that P  G {re16| 0 <  9 < 27r/3}. For the roots 

of a cubic equation that it does not matter whether the square root in P is taken to be 

positive or negative. We will take it to have positive value. We notice that the Jacobian 

J appears in the expression for P  as the discriminant of the cubic equation (7.73). We 

can define maps : D —* T2 by

M e  {0 ,1 ,2 }, (7.74)

294



for z 6 3 .  Now ^  z, for k =  0 ,1 ,2 , however, for the other six cases (k,,l G

{0 ,1 ,2 }  such that k ^  I) we do indeed have <E>o<l>~j =  id. These six are the images

of $q }(z) under the action of the group G =  S3 . The spectral measure of T (over T2) can 

then be taken as the average over these

/ Rm,n{Ul,UJ2 )dE(uJi,U)2 )
J  T 2

1 n
-  \ Y  Y.j  = 1 *,{£{0,1,2}:k*-l

where $ _1(Xp(rj)) =  for k,l G {0 ,1 ,2 } , k ^ l .

7 . 8 . 1  G r o u p  Z n x  Z n

We will now compute the spectral measure for the graph Qr corresponding to the subgroup 

T =  Zn x Zn. This group has the SU(3) McKay graph which is the “affine” version of 

the graph Â n+2̂ . The group contains |T| =  n2 elements, each of which is a separate 

conjugacy class I \ f ,  fc, I G {0 ,1 , 2 , . . . ,  n -  1}. Now Xp{^k,i) =  S f  +  0J2 1 +  ^ 1 ^ 2  ^ 

where ujj =  e2nlin, j  =  1,2. Then by (7.75),

71— 1 1

Rm,n{w\, U ) 2 ) d e { t d \ ,  U 2 ) =  ^  (<̂ 1 +  UJ2 1 +  k^ 2 ) m ( UJl  ^ +  U 2 +  ^ 1 ^ 2  *)” •
^ '  77/  j,k=Q

T h eo rem  7.8.1 For T =  Zn x Zn, Z/ie spectral measure of Qr on T2 is given by the 
product measure

de{u)i,u)2 ) =  dn/2Ui dn/2U>2 , 

where dm is the uniform measure on the 2mP1 roots of unity.

7 . 8 . 2  G r o u p  A ( 3 n 2) ,  n =  0  m o d  3

This group has order |T| =  3n2. Let n =  3k, k G N. Then the group has the SU (3) McKay 

graph which is the “affine” version of the graph For f c , / GZn, let (k,l) denote the

set {(£:, Z), (Z, —k — Z), (—k — Z, A:)}. The character table for A(27k2) is given in Table 7.7 

([82]). Here Kn is the set of all pairs {(&, Z)| k, I G Zn} \  {(0 ,0), (n/3, 2n/3), (2n/3, n /3)}  

such that Kn contains exactly one element from each (k, I) (except for (0,0), (n/3, 2n/3), 

(2n /3 , n/3)). There are two copies of the fundamental domain Cn (see Section 7.7) in Kn. 
The final row in the table denotes the pair (Oi,02) given by (e2n%01, e2ia,°2) =  ^ “H x^r?)).
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r i r  1 r 2 r 3 r fc>(, ( k j )  €  /f„ r ' ,  j  =  1 ........6

lr il 1 1 1 3 n2/ 3

X p i T j )  e  V 3 3u> 3cJ
2irik 2nil 2ni(l — k)e n +  e n -j- e n 0

®_1(xp(r'i)) e  t 2 ( i , i ) (w,a7) (uJ,u>) ĝ27rifc g27riẐ ( w , l )

(®i> @2 ) £  [0 . 1]2 (0 ,0) (I  * )V3’ 3' (— I)V3’ 3/ ( M ( l.o )

Table 7.7: Character table for group A (3n2), n =  0 mod 3. Here u) =  e2ni/3.

Let lj =  e2n'/n, and

Q(k, I) =  (uk +  u~l +  u l- k)m{u-k + & +  u k~l)n. (7.76)

Then by (7.75),

I  Rrn,n(Ul,U>2)d£(.Ui,U)2)
J T2

= 3^n(0’0) + 3^n(3’i) + 3^a(5'5) + 3̂ 2 E  n(M + ^ E n(M)
k,l£Kn j=1

= 3^n(0'0) + 3bn(5d) + 3^n(§d) + 3  ̂ E  «(*.')

+g g(̂ (o> + (̂o, I)+ + n(|, |) + n(|,o) + f2(|, |))
j= l

= 3̂ 2 + g(̂ (o>3) + (̂o>I) + (̂!>o) + fi(|,|) + n(§,0) + n(|,|)).
k , l £  Z n

Then we have obtained:

T h e o r e m  7 .8 .2  The spectral measure (over T2) for the group A (3n2), n =  0 mod 3, is

j l N 1 J J , <W ) +  %.*) +  <W) +  <*(«,«) +  <W) +  dV,w) ff7 ^de{uji, Lo'2 ) =  2  n/2 ^ 1  dn/2U2 H---------------------------------  , (7.77)

where dn is the uniform measure over 2nth roots of unity, lj =  e2™/3, and S(uy )  is the 
Dirac measure at (u,u') G T2.

7.8.3 Group (G) = £(216 x 3)

The subgroup (G ) has order 648, and its McKay graph is the “affine” version of the graph 

Ê . T h e  character tab le for (G) is given in Table 7.8 ([23]).
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j 1 2  3 4 5 6 7 8 9

lr jl 1 1 1 12 12 12 12 12 12

x ,(r ,)  € d 3 ^ e n i / l 8 v/3e357ri/18

( ^ 1 , ^ 2 )  g  [0 , 1 ]2 (0,0) ( ! ,§ )  ( 1 ,1) ( I  2 \  (l 5 \  n  2 \  
v 9 ’ 9/ v9 ’ 9/ v 9 1 9 '

( 2  1 \  ( 2  7 n / 5 IN 
v 9 ’ 9/ V9 > 9 / V 9 ’ 9/

3 10 11 12 13 14 15

W 36 36 36 36 36 36

X p p j ) e17m/9 g7Tl/9

(01,02) ( A  _L) 
1 18 ’ 1 8 ' (A  1.)  

' 18 ’ 1 8 7
(— ±)  
W 8 ’ 187

(JL A )  ( ±  A )  (JL 2-\
V 1 8 ’ 187  V i 8 ’ 1 87  V i 8 ’ 187

j 16 17 18 19 20 21 22 23 24

lr jl 54 54 54 9 9 9 24 72 72

X p p j ) 1 - 1 0 0 0

(Oi,e2) (0 , |) (A  JL)
'  12 1 127

(A  A ) 
V 12 ’ 12 7 ( o , | ) ( 2  1\ ( 1  2 \ 

V 6 ’ 6 7  V6 ’ 6 7 (0 .D ( o , | ) ( o , | )
Table 7.8: Character table for group (G) =  E(216 x 3). Here lj =  e2n̂ 3.

Let us denote be EJJ the summation

j?2

Eh = I E  E ^ " '  +  " ”92 +  ^  +  we' - 92))n,
j = j i s e G

where for each j , 0i,02 are given in Table 7.8, cD =  e2™/18, and the action of g G (7 

on (cj01 +  uj~ ° 2 +  uje2~61) is defined as follows. Suppose g(ijdl,u>62) =  (ujp,u)q). Then 

g (£ 01 -f c5_<?2 +  uj°2~dl) =  (ujp +  u)-9 +  ujq~p). Then by (7.75),

/  ^7n,n(< l̂, ^ 2 )ds(o;i, 6̂ 2)
J T 2

=  —  E3 4- —  E9 4- — E 15 +  —  E 18 +  —  E21 +  24 +  72 +  7 2 y;24 /y
648 1 648 4 648 10 648 16 648 19 648 22’ 1 ^

For j  =  1 ,2 ,3 , E3 =  where £l(k,l) is defined in (7.76) and the summation is

over (k,l) G {(0 ,0), (1/3, 2 /3 ), (2 /3 ,1 /3 )} , which give the fixed points in T2 under the

action of G. These are the points (k,l) such that (e2nikt e2nd) G D \/2. Let

I\ds{uj\ , CJ2 )] — I (â i +  cj2 1 T- 1kJ2)m(kfi 1 T +  oj\id2 1)nds(cji, u^)- (7.79)
J T 2

Then Ej =  3/[d^^(a;i,a;2)]> where is again the uniform measure on the elements 

of Dm. For j  =  4 , . . . ,  9, the points (du 02) e  [0, l]2 are (1 /9 ,2 /9 ), (1 /9 ,5 /9 ), (7 /9 ,2 /9 ),
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(a) (b) (c)

o 650

1

0000 i

Figure 7.26: (a) the points {g(6 i, 6 2)\g E G} for j  =  4 , . . . ,  9; (6) the points (0i, 02) such 

that (e2ni91, e2nt62) E G3/2; (c) the points (0 i , 0 2 ) such that e27Tl9k is a 3rd root of unity, 

k =  1,2.

(2 /9 ,1 /9 ), (2/9, 7/9), (5 /9 ,1 /9 ) . Under the action of G, each of these pairs has three 

images. These points are illustrated in Figure 7.26(a). We can obtain this distribu­

tion of points by taking the points (0 i , 0 2 ) such that (e2m01, e2nt92) E G3/2, illustrated 

in Figure 7.26(6), and then removing the points (0 i,02) such that 0* E {0 ,1 /3 ,2 /3 } ,  

k =  1,2, illustrated in Figure 7.26(c). Then we can write 3 E4 =  ]C(e2irifc,e27ri')eD3/2 0  — 

Z l/= o !-(^'/3,//3), giving =  27/[d(3/2)(wi,w2)] -  9/[d3/2uii d3/2w2].
For j  =  10, . . . ,  15, the points (0!,02) are (5 /18 ,1 /18), (2 /18 ,7 /18), (8 /18 ,1 /18), 

(1/18,5/18), (1 /18 ,8 /18), (7 /1 8 ,2 /1 8 ). Under the action of G, each of these pairs has six 

images, which are illustrated in Figure 7.27(a). At these points, J2 =  4 8 7T4. We can ob­

tain this distribution of points by taking the points (6 1 , 6 2 ) such that (e2iridl, e2nt92) E Z)3, 

illustrated in Figure 7.27(6), each with the weight J2 evaluated at that point. Since 

the points indicated by white circles in Figure 7.27(6) map to the boundary of 2), here 

J2 =  0. We must then remove the points indicated by black circles in the interior 

of the triangular regions in Figure 7.27(6) which are not in {<7(0 1 , 0 2 )1 0  £ G}. This 

can be done by removing the points (0 i , 0 2 ) such that e2nt9k is a 6th root of unity, 

for k — 1,2, illustrated in Figure 7.27(c), again with the weight J2 evaluated at each 

point. The value of J2 at the black circles near the corners of the triangular regions 

is 127r4. For the points in the centre of each triangular region, the eigenvalue is zero, 

therefore these points do not contribute to the summation in (7.75). Then 6£}q =  

Ŷ (e2”'k,e2"il)£D3 J2 0/487T4-]Cfc,z=o ^ 2 ^(&/6, //6)/127t4, and therefore for £}§ we have 
obtained Z \ 50 =  108/[J2 u/2)]/2887r4 -  36 /[J2 d3̂ i d3cj2]/727r4.

For j  =  16,17,18, the points (0i, 6 2) are (0 ,1 /4 ), (1/12, 5/12), (5 /12,1/12). Under the 

action of G, each of these pairs has six images, which are given by the solid black circles
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(a) (b) (c)

9in

A
0

9 Li0

1

Is

90

9TO
TS

0
9 £ 1

0, 0, 0,

Figure 7.27: (a) the points {g{0i,02)\g E G} for j  — 10 , . . . ,  15; (6) the points (0i,02) 

such that (e2?rt01, e2lx%°2) E Z)3; (c) the points (0i, 02) such that e2lxl6k is a 6th root of unity, 

A: -  1,2.

9n

0 3TO nn0

Figure 7.28: The points (0i,02) such that (e27ri01, e27”02) E D 2.

in Figure 7.28. At these points, J2 == 647r4. N o w  the points indicated by white circles in 

Figure 7.28 all map to the boundary of 2), and hence the value of J2 at these points is zero. 

Therefore 6E}f =  2̂ ie2^ik^u) e D 2  J 2 Sl{k,l)/ 167T4, giving E j| =  4 8 /[J2 d(2)(cji, u2)}/96n4.
For j  =  19,20,21, the points (0i,02) each have three images under the action of G. 

The points in {g{9\,02)\g £ G} are the points (k j )  such that (e2nik, e2ni1) £ D\, apart 

from (k,l) E {(0 ,0), (1 /3 ,2 /3 ) , (2 /3 ,1 /3 )} , which give the fixed points of T2 under the

action of G. So 3E^g — 5^(e2,r*k,e27ri9er}i ^ (^  0  5-/(e27r*#c,ê 7ri0e^i/2 ^(^>0> ^ ^ 1 9  =
121[dSl\uj 1 , uj2)) — 31[d^^(uji,uj2)\. Finally, (0 i, 02) =  (0 ,1 /3 ) for j  =  22,23,24, which 

has six images under the action of G. These are the points in the interior of the triangular 

regions in Figure 7.26(c) (but not the fixed points (0i, 02) E {(0 ,0), (1 /3 ,2 /3 ), (2 /3 ,1 /3 )}). 

These points can be obtained by taking the points (0 i, 2̂) such that e2mdk is a 3rd root of 

unity, for k =  1, 2, with the weight J2 evaluated at each point. For the fixed points J 2 — 0,
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whilst for all the other points J2 — 127r4. Then 6 E22 =  1=0 J2 ^ (^ /3 , / / 3)/127r4, giving

E% = 9I[J2 d3/2u 1 dV2u2)/72^.
Then (7.78) becomes

/  Rm,n (^1 > ^ 2 ) d£ {u)\, U)2 )
JT2

=  (û 1, u2)] +  - 7 [ ^ 3//2^(o;i, u>2)\ — — I[d3/2u>i ^3/2^ 2]

—j I [ J2 d(3\u>i,u>2)] — —  j 7[«72 <̂ 3̂ 1 ^3^2] 4- 7^—t 7[*/2 d(2\uji,u)2)]
487T4 ’ 367r4 967r4

+Yg^M (1)(u;i ) a;2)] -  C6̂ !> ^ 2 )] +  2167T4 ^ 2 ^3/2a;i <̂3/ 2Co'2]•

Thus we obtain the following result:

T h eorem  7.8 .3  The spectral measure (over T2) for the group (G) =  E(216 x 3), is

de = ^ j i dm + J _ j 2 dm + i dw2)+ i dm _ _ L d(i/2)
487r4 967T4 6 18 108

“ i j2  d3 d3 + { 2 ^ j 2  ~ h ] 4 /2  d3/2' (7-80)

where dm is the uniform measure over 2mth roots of unity and d ^  is the uniform measure 
on the points in Dm.

7 . 8 . 4  K o s t a n t  P o l y n o m i a l

We briefly mention the Kostant polynomial, which can also be defined for finite subgroups 

of SU(3). For 7  an irreducible representation of T C SU(3), the Kostant polynomial is

P7(*i»*2) =  '5 2 ( /y,P(\iM))r t ^ t 2 2 ,

Ai ,A2

where the summation is over all Ai ,A2 >  0 , and ( 7 ,  P(Ai,A2) ) r  is the multiplicity of 7  in 

the representation P(Ai,a2) ° f 37/(3) restricted to T, where P(Ai,a2) is the representation of 

SU(3) with Dynkin labels (Ai,A2 ).

For SU(2) the Kostant polynomial F1  has the simple form (7.23). Does a similarly 

simple form exist for the Kostant polynomial F7 for SU(3)? Desmier, Sharp and Patera

[23] compute this polynomial for the groups (I) =  E(168), (G) =  £(216 x 3), (L) =  

£(360 x 3) and G (13,3, 3) =  Z 12 x Z3, where they have the form

p  ,,  ± \  (1 - t l t 2)Zy( t l , t 2)_______
•A >• (1 _ tf)(1 _  tj)(i  _  tf)(i _  q ) ( i  -  4*)(x -  q y

where z7 (t\, t2) is a finite polynomial, and a, 6, c are the integers given in Table 7.9
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Subgroup T C SU{3) a b c

(I) =  £(168) 4 6 14

(G) =  £(216 x 3) 9 1 2 18

(L) =  £(360 x 3) 6 1 2 30

Z 12 X  Z3 3 13 16

Table 7.9: Integers a, b, c for Kostant polynomial F1

7.9 Hilbert Series of q- deformat ions of CY-Algebras 
of Dimension 3

We will now introduce the Calabi-Yau and g-deformed Calabi-Yau algebras of dimension 

3, which are the SU(3) generalizations of the pre-projective algebras of Section 7.5.4. For 

certain ADS graphs we will also compute the Hilbert series of the g-deformed CY-algebras 

of dimension 3.

Let Q be an oriented graph, and CQ, [C£7,C£7] be as in Section 7.5.4. We define a 

derivation da : CQ /[CQ ,CG] —» CQ by

^o(®l ' ’ ‘ ®n) — ^   ̂&j +1 ’ ’ ’ —1 >
j

where the summation is over all indices j  such that aj — a. Then for a potential <E> G 

CG/[CG, CGI which is some linear combination of cyclic paths in Q, we define the algebra

A (C G ,$ )^ C G /{d a $ } ,

which is the quotient of the path algebra by the two-sided ideal generated by the elements 

da<& G CG, for all edges a of Q. We define the Hilbert series H^t)  as in Section 7.5.4.

If A(CQ, 4>) is a Calabi-Yau algebra of dimensions d > 3 and deg 4> =  d, then

1 - A g t  +  A l ^ - 1 -  td’

Note that since H^t)  is a formal power series in t , if the matrix B(t) := (1 — Agt + 
A Tgtd~l -  td) is not invertible then it would not be invertible if t was any value in C. 

However, when t =  0, B(0) is just the identity matrix, which is trivially invertible. Hence 

B(t) is invertible.

Let T be a subgroup of SU(3). For the McKay graph Gy one can define a cell system 

IF as in [49], where W(Aijk) is a complex number for every triangle A ^  on Gy whose
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vertices are labelled by the irreducible representations i, j ,  A; of T. We introduce the 

following potential

* r =  £  W( A ijk)- Aijk £ C 0r/[C 0r,C 0r].

Then dividing out C£r by the ideal generated by for all edges a of Qr, by [49, 

Theorem 4.4.6], ^ (C t/n ^ r ) is a Calabi-Yau algebra of dimension 3, and the Hilbert 

series is [14, Theorem 4.6]

H aW  =  1 - A r t  +  A f P - t 3'

T heorem  7.9.1 Let T be a finite subgroup of SU{3),{po =  id, pi =  p, p2 , ■ ■ ■, Ps} its 
irreducible representations and Qr its McKay graph. Then if Ps,Pj is the Molien series of 
the symmetric algebra S of €.N, and H{t) is the Hilbert series of A{<CQr, $r)>

* W 0  =  p s,Pj(t).

Proof. Let T be a subgroup of SU(3) with irreducible representations pj, j  — 1 , . . .  , s, 

where p0 =  id is the identity representation and p\ — p the fundamental representa­

tion. The fundamental matrices A r, A f  defined by p <S> Pi — Ylj=o(^r)ijPji P ® P* =  

T,Sj=o(Ar)ijPj, satisfy, by [50, Cor. 2.4(i)],

s

Y  (_ (^ r )pi,pjt +  (&r)pi,Pjt2) Ps,Pj(t) =  - ( 1  -  t3)Ps ,Pl(t) + 8 i,o,
j=o

so we have

~ i^^)pi,pjt +  ( ^ r )pi,pjt ~ 1Pi,Pjt ) Ps,Pi(t) = Si<0

j=o

Y  (■*■ ~  (Ar)* +  ( A f ) t2 — 1 t 3) p. p. Ps,Pj(t) = 6 i$.
j =o

Then {ps,Pj(t)) p. is the first column of the inverse of the matrix ( l  — (Ar)* +  (A f ) t2 — 1 *3),  

which is invertible since it is just the identity when t =  0, that is,

PSlPj(t) = ( ( 1 -  (A r )i +  (A f)*2 -  I*3) ' 1)  =  HPjtP0.
' 'Pi ,P0

□
For the AVE graphs, we define a potential $  by

* = E  w(*«*) • ecg/\cg,cg\,
i,j,k
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where the Ocneanu cells W (A ijk) are computed in Chapter 4. If the AVE graph Q has an 

associated subgroup T of SU (3), as given in Table 7.6, then the quotient algebra A(CQ, <$) 

provides a Calabi-Yau deformation of the algebra v4(C£, 4>r ). For certain AVE graphs, 

the Hilbert series for the g-deformed algebra A(CQ, <E>) is given by the following:

(i) Let Q be one of the following AVE  graphs, A^n\  V^n\  Then

H (t\ =  l ~ Pth
a W  1 -  A< +  A Tt2 -  t3'

where P is the permutation matrix corresponding to a Z /3Z  symmetry of the graph.

(ii) Let Q be _4(2mK  Then

1 +  W t”
A {}  1 — A t +  A Tt2 — t3 ’

where W is the permutation matrix corresponding to the Z /2Z  involution of the 

graph A^2m̂ *.

(hi) Let Q be V^2m>. Then

1 +  PW tm
HA(t) =

1 - A* +  A r *2 - * 3’

where P, W  respectively are permutation matrices corresponding to a Z /3Z  sym­

metry, Z /2Z involution respectively of the graph .

(iv) Let Q be E^\  Then

HA(t) =  (1 +  Bst5 -  B6 t6 -  B7 t7 -  B8 t8)( 1 -  A t +  A Tt2 -  t3)~ \

where Bk, k =  5 ,6 , 7, 8, are matrices which are zero almost everywhere.

In (i) and (iii) the involution P  is an automorphism of the underlying graph, which 

is the identity for V ^ . For the graphs A^n\  let V be the permutation matrix

corresponding to the clockwise rotation of the graph by 27r/3. Then

p  \  V for A {n\
\  Vm for

For Â 2m̂ *, W  is the involution which sends vertices p — ► / —p, for p =  1, . . .  , [(m —l) /2 j ,  

/ =  [(m +  1)/2J, whilst for W  is the involution which sends

ar
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for p =  1 , . . .  , |_(ra — 1)/2J, I =  l(m +  1 ) / 2 J. Since the permutation matrices P and 

W commute, the matrix PW  has order 6 , and generates a group of permutations of the 

vertices of X>(2m)* which is isomorphic to Z6. The matrices Bk, k =  5 , 6 , 7 , 8 , in (iv) are 

zero almost everywhere, apart from

B5 U1J 1+1) =  for 1 =  2 , 3 , 5 , 6 , and B5( j i , h)  =  B5 (j4 , j 2) =  1,

BeUiJi+2 ) =  1, for I =  2 , 3 , 5 , 6 , and B6 (ju i6) =  B6 (j4 , i3) =  1,

B7 (ji»U-2 ) =  1, B8 (ii,ii-2) =  1 , for I =  1 , . . . ,  6 .

Since Q be a permutation matrix which corresponds to a symmetry of a graph with 

adjacency matrix A. Then A =  Q~l A Q , so that QA  =  A Q. Similarly QAT =  ATQ. 
Then we see that the numerator in (i)-(iii) commutes with the denominator. In (iv), the 

matrices (1 +  B$t5 — B8 t6 — B7 t7 — B8 t8) and (1 — At  +  A Tt2 — £3) -1 do not commute.

Indeed, HA(t) =  (1 -  At  +  A Tt2 -  t3) - \  1 +  Bbt5 -  B'6 t6 -  B'7 t7 -  B8 t8), where J3', B '7

are unitarily equivalent to Bq, B7 respectively, obtained by conjugating by the unitary U 
defined, for i , j  =  1 , 2 , . . . ,  8, by Uij =  1 if j' =  i' +  1 mod 4, where i',j' G {1, 2, 3 , 4}  such 

that j  — j' = i — i! =  4k for k G {0,1,  2}, and C/jj =  0 otherwise.

The formulas above have been checked “by hand” for the graphs A ^  for n =  4,5,  6 ,7,  

V for n =  5,6,7,  n =  6, 8, 10,  and £^8\  where we explicitly wrote out all the

allowed paths in A{QQ, <f>) and compared the dimensions that appeared with those given 

by the Hilbert series. The space of allowed paths for these graphs does not particularly 

depend on the values of the cells W ( except  for whether the cells are zero or non-zero. 

In fact, were we to replace the non-zero cells W(Aijk)  by an arbitrary choice of non-zero 

complex numbers W'(Aijk) (which would not be a solution for the cells of the graph), then 

A(CG, $ ) would most likely be isomorphic to A(CQ, $ '), where 4>; =

However, suppose a path 7  G C-G is identified with a linear combination ]T) b^i of paths 

7 i in A(CG,$),  with 6* 7  ̂ 0  for all i. For certain choices of W'(Aijk) it is possible that 

now bi =  0 for all i 1 and hence 7  =  0 in A(C^,^>'). In this case dim(7l(C^, 4>')jt) <  

dim (/l(C£, 4>)fc) for some k G N.

For n =  6 , 8 ,10,  and the polynomials are infinite, but there is only at most

one allowed path of length k > n from vertex i to j  on the graph, found by adding a 

closed loop j  —> j' —* j" —> j  to the allowed path of length k — 3 from i to j ,  and hence 

the allowed paths in y t(C ^ ,$ ) could be written out explicitly here also. In the S(J(2) 

case, the permutation matrices P  appearing in the numerator of H^it) corresponded to 

the Nakayama permutation of the Dynkin diagram. The above claim then raises the
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question of the relation between the automorphisms which appear in the numerators of 

the expressions for //^(£) with Nakayama’s automorphisms.
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