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Summary

We study the SU(3) ADE graphs, which appear in the classification of modular in-
variant partition functions from numerous viewpoints, including determination of their
Boltzmann weights, representations of Hecke algebras, a new notion of A, planar algebras
and their modules, various Hilbert series of dimensions and spectral measures, and the
K-theory of associated Cuntz-Krieger algebras.

We compute the K-theory of the of the Cuntz-Krieger algebras associated to the SU(3)
ADE graphs.

We compute the numerical values of the Ocneanu cells, and consequently representa-
tions of the Hecke algebra, for the ADE graphs. Some such representations have appeared
in the literature and we compare our results. We use these cells to define an SU(3) ana-
logue of the Goodman-de la Harpe-Jones construction of a subfactor, where we embed the
Az-Temperley-Lieb algebra in an AF path-algebra of the SU(3) ADE graphs. Using this
construction, we realize all SU(3) modular invariants by subfactors previously announced
by Ocneanu.

We give a diagrammatic representation of the A;-Temperley-Lieb algebra, and show
that it is isomorphic to Wenzl’s representation of a Hecke algebra. Generalizing Jones’s
notion of a planar algebra, we construct an A,-planar algebra which captures the structure
contained in the SU(3) ADE subfactors. We show that the subfactor for an ADE graph
with a flat connection has a description as a flat A,-planar algebra. We introduce the
notion of modules over an A,-planar algebra, and describe certain irreducible Hilbert A»-
Temperley-Lieb-modules. A partial decomposition of the A,-planar algebras for the ADE
graphs is achieved.

We compare various Hilbert series of dimensions associated to ADE models for SU(2),
and the Hilbert series of certain Calabi-Yau algebras of dimension 3. We also consider
spectral measures for the ADE graphs and generalize to SU(3), and in particular obtain
spectral measures for the infinite SU(3) graphs.
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Chapter 1
Introduction

In this thesis we study the SU(3) ADE graphs, which appear in the classification of mod-
ular invariant partition functions from numerous viewpoints including the determination
of their Boltzmann weights, representations of A,-Temperley-Lieb or Hecke algebra, a
new notion of A, planar algebras and their modules, endomorphisms of infinite factors,
and K-theory of associated Cuntz-Krieger algebras.

In this preliminary Chapter 1, we introduce the background, notions, notation and
definitions which we need from operator algebras, particularly the theory of subfactors in
von Neumann algebras and modular invariant partition functions in statistical mechanics
and conformal field theory.

Then in Chapter 2, we warm up by explicitly constructing endomorphisms on Cuntz
algebras for the inclusion of infinite factors associated to some very basic statistical me-
chanical models.

In Chapter 3, we study the K-theory of the Cuntz-Krieger algebras Og where G is
one of the Dynkin diagrams. We completely derive (Ky(Og), [1]) and compute its K
group. For the SU(3) ADE graphs, we compute the Ky, K, groups for the ADE and
their 01-parts.

We compute in Chapter 4 the numerical values of the Ocneanu cells, and consequently
representations of the Hecke algebra, for the ADE graphs. Some of the representations of
the Hecke algebra have appeared in the literature and we compare our results.

We use these cells in Chapter 5 to define an SU(3) analogue of the Goodman-de
la Harpe-Jones construction of a subfactor, where we embed the A,-Temperley-Lieb or
Hecke algebra in an AF path algebra of the SU(3) ADE graphs. Using this construction,
we realize all the SU(3) modular invariants by subfactors.

Chapter 6 looks at the A,-Temperley-Lieb algebra and the subfactors of Chapter 5



from the viewpoint of planar algebras. We give a diagrammatic representation of the
A,-Temperley-Lieb algebra, and show that it is isomorphic to Wenzl’s representation of
a Hecke algebra. Generalizing Jones’s notion of a planar algebra, we construct an A,-
planar algebra which will capture the structure contained in the SU(3) ADE subfactors.
We show that the subfactor for an ADE graph with a flat connection has a description as
a flat Ap-planar algebra. We introduce the notion of modules over an A,-planar algebra,
and describe certain irreducible Hilbert A,-T L-modules. A partial decomposition of the
As-planar algebras for the ADE graphs is achieved.

In the final Chapter 7, we compare various Hilbert series of dimensions associated to
ADE models for SU(2), and compute the Hilbert series of certain g-deformed Calabi-Yau
algebras of dimension 3. We also consider spectral measures for the ADFE graphs in terms
of probability measures on the circle T. We generalize this to SU(3), and in particular

obtain spectral measures for the infinite SU(3) graphs.

1.1 Statistical Mechanical Models

1.1.1 The Ising Model

The Ising model is a lattice model in the plane, with sites constrained to be 4+ or —
corresponding to a particle at that site with a positive or negative spin. This model
is given by the Dynkin diagram Az, with the endpoints labelled by + and —, and the
other vertex is a dummy spin. A configuration is a distribution of the edges of A3 on
the edges of the square lattice and the energy function, or Hamiltonian, H is for nearest
neighbour interactions, i.e. H(o) = —}_, 5 Jo(a)a(B), where o is a configuration and the
summation is over all nearest neighbours «, 3, with J given by the interaction between
nearest neighbours. Ising [55] introduced his model for a ferromagnet in an external
magnetic field for the one-dimensional model with n lattice sites. As the external magnetic
field tended to zero, he found that the solution admitted no phase transition, i.e. no
sudden change from negative to positive magnetization (or vice versa), and concluded
that his model did not exhibit phase behaviour in any dimension. But this is not true,
since in higher dimensions it is possible for the model to have non-zero magnetization
when the external field goes to 0. This is called non-zero spontaneous magnetization.
Whilst the Ising model is a simplified description of ferromagnetism, other systems can be
mapped exactly or approximately to the Ising system, which allows the use of simulation

and analytical results of the Ising model to answer questions about the related models.



Figure 1.2: Dynkin diagrams D,,, n = 4,5,..., and D

1.1.2 Generalized Models via other Graphs

This model can be generalized to other lattice models using other graphs G. The Dynkin
diagrams A, of Figure 1.1 give the ABF models of Andrews, Baxter and Forrester [1]. Or
one could use the other Dynkin diagrams of Figures 1.2-1.3, or more general graphs such
as the SU(3) ADE graphs of Section 1.5.

The graphs D,,,, are the Z,-orbifolds of the graphs Ag,+1, n = 2,3,..., whilst the
tadpole graphs Tad, of Figure 1.4 are the Z,-orbifolds of the graphs A;,, n =1,2,....

A configuration is now a distribution of the edges of G on the edges of the lattice, and
the Hamiltonian H is again an energy function from the configuration space to R. We
associate to each local configuration a Boltzmann weight X;(u):

14 Py
X(u) =

) [

for edges p; of G, ¢ = 1,2,3,4. The integrability condition is a sufficient condition for

Figure 1.3: Dynkin diagrams Fg, 7 and Fg
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Figure 1.4: Graph Tad,
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Figure 1.5: The Yang-Baxter equation

the model to be solvable, namely that there exists an infinite set of commuting transfer
matrices T'(u), where the u are in some interval. This is equivalent to requiring the

Boltzmann weights X;(u) to satisfy the Yang-Baxter equation:
Xl-(u)XH,,(u -+ ’U)X—;(’U) = X.H_l(’U)X,'('U. + v)X,~+1(u), (11)

which is given pictorially in Figure 1.5.
In the context of critical lattice SU(N) models, di Francesco and Zuber take the

following ansatz for X;(u):
X;(u) = sin(m(A — w))1; + sin 7ul;,

where 1; is the identity operator acting on site ¢ and \is areal parameter. The Boltzmann
weight X;(u) satisfies (1.1) provided the U;’s satisfy the Hecke algebra relations H1-H3,
where 4 is related to A by § = 2cos .

At criticality, with

9i=q"'-U (1.2)

the Boltzmann weights reduce to the natural braid generators g; which satisfy

99; = gig, if[j—il>1, (1.3)

9i9i+19i = Gi+19iGi+1- (1.4)

When ¢ =1, the g;, 2 = 1,..., N, give a representation of the permutation group Sy,
acting on a line of V41 sites, where, fori = 1,..., N, g; is associated to the transposition

Tii+1- 10 any o € Syy1, decomposed into |/,| transpositions of nearest neighbours ¢ =

[lics, 7i+1, we associate the operator

9o = Hgi,

i€l

4



which is well defined because of the braiding relation (1.4). Then the commutant of
the quantum group SU(N), is obtained from the Hecke algebra by imposing an extra
condition, which is the vanishing of the ¢g-antisymmetrizer
> (—gelg, =0. (1.5)
0ESN+1

For SU(2) it reduces to the Temperley-Lieb condition
UiUin1 U; — U; =0, (1.6)
and for SU(3) it is
(Ui — Uip2Ui1U; + Uitr) (Uis1Uiz2Uiyr — Uipr) = 0. (1.7)

1.2 Hecke Algebras

1.2.1 Temperley-Lieb Algebra

The algebraic structure behind the Ising model is the Temperley-Lieb algebra. For integers
n > 0 and any non-zero & € C, the abstract Temperley-Lieb algebra T L,(8) is defined to
be the x-algebra generated by the identity 1 and projections e;, i = 1,...,n — 1, which

satisfy the Jones-Temperley-Lieb relations:
TL1: eiej = €;e;, if l] - Zl > 1,
TL2 : €i€i416; = 6-2&'.

We see that (1.6) is satisfied with U; = de;, ¢ = 1,...,n—1. There is a standard pictorial
representation of T'L,(d) given by the x-algebra over C with basis consisting of all planar
n-diagrams on a rectangle with n vertices along the top and bottom, due to Kauffman
[69]. These n-diagrams consist of disjoint curves, called strings, whose endpoints are the
vertices along the top and bottom edges of the rectangle such that every vertex is the
endpoint for one string. Multiplication ST of two n-diagrams S, T is defined by placing
S on top of T in such a way that the n vertices along the bottom of S and along the top
of T coincide. These vertices are then removed, and the strings smoothed if necessary.
The new diagram may contain closed loops (), which are removed, each one contributing
a scalar factor 4. The adjoint 7 of a planar n-diagram T is given by reflecting T about
the horizontal line passing midway between its top and bottom edges. The element F;
is shown in Figure 1.6. The elements 6! E; are projections which satisfy TL1 and TL2,
and in fact any planar n-diagram can be written as a product of the E;, i = 1,...n — 1,

so that T'L,(6) is isomorphic to the algebra of all planar n-diagrams.

5
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1.2.2 Hecke Algebras for SU(N)

The algebraic structure behind the SU(N) models are the Hecke algebras /1,(g) of type
An_1, for g € C, since the Boltzmann weights lie in (®y Mn)U™) or (@ Mn)SY M.
The Hecke algebra H,(q) is the algebra generated by operators 1,U,,Us, ..., Un—1 which

satisfy
Hi: U? = 4U;
H2: Uin = UjUi, |l —]| > 1,
H3: UiUinUi = Uy = Ui UilUigy — Ui,

where § = qg+q~'. We will say that a family of operators {U,,} satisfy the A;-Temperley-
Lieb relations if they satisfy the Hecke relations H1-H3 and the extra condition (1.7). If

we let g; = ¢! — Uj;, then H1-H3 are equivalent to the relations

(' —g)g+g;) = 0,
9i9; = 99, |i—j|>1,
gi9i+19i = Gi+193iGi+1-

When ¢ = 1, the first relation becomes g7 = 1, so that H,(1) reduces to the symmetric,
or permutation, group S,, where g; represents a transition (j, j + 1).

It is well known that the irreducible representations of the symmetric group S, can
be labelled by Young diagrams with n boxes such that m; > my > -+ > m, > 0, where
m; denotes the number of boxes in row i. A Young tableau is obtained by inserting the
numbers 1,...,n in the boxes of a Young diagram, and a Young tableau is called standard
if the entries in each row and each column are increasing. The dimension of the irreducible
representation labelled by a Young diagram A is equal to the number of different standard
Young tableaux that can be obtained from the diagram. In a similar way as for the
symmetric group Sy, Wenzl [112] defined representations of the Hecke algebra H,(q) on
Young diagrams with at most N rows. Let H(q) denote the inductive limit of the H,(q).

When ¢ is not a root of unity, there is a representation m corresponding to each Young

6



diagram X\. For z € Hy(q), the direct sum 7(z) := €, mx(x), where the summation
is over all Young diagrams X with n boxes, defines a faithful representation of Hy,(q).
Then if B, = @, ma(Hn(q)), where the summation is again over all Young diagrams A
with n boxes, B, C B, has inclusion matrix given by the adjacency matrix for the
SU(N) graph A where By = C is identified with the apex vertex (0,0, ...,0). When
q = e?>™/! there are representations corresponding to a special class of Young diagrams,
called (N,!)-diagrams, for which Ay — Ay < I — N, given by ‘/TE‘N’[). For z € H,(q),
the direct sum 7V(z) := @, ma(z), where the summation is over all (N, !)-diagrams A
with n boxes, defines a faithful representation of H,(q). If B, is the algebra defined by
B, =@, ﬂf\N’l)(H,,(q)), then Wenzl showed that B, C B,,; with inclusion matrix given
by the adjacency matrix for the SU(N) graph AY, where By = C is identified with the
apex vertex (0,0,...,0) of A®. A representation p of H,(q) is called a C*-representation
if p(6=1U;) is a self-adjoint projection fori = 1,...,n—1. The following result is contained
in [112, Theroem 3.6):

Theorem 1.2.1 (a) Forq € R, q > 1, if p is a C*-representation of Hy(q) with trace
tr such that tr(p(671U;)) = (1 — ¢~ V) /(1 + q)(1 — ¢~ ), then tr is a Markov trace
and the traces are non-zero on those representations of H,(q) which belong to Young

diagrams with at most N columns.

(b) Forl> N and q = e*?™/' if p is a C*-representation of Hy(q) with Markov trace
tr such that tr(p(67'U;)) = (1 — ¢~V /(1 + ¢)(1 — q¢V), then the representation
corresponding to the GNS construction with respect to this trace is equivalent to

7D and has positive definite trace.

1.3 Representation Theory

1.3.1 Representation Theory of SU(N)

Let p: SU(N) — My denote the fundamental representation of SU(N). The restriction
of p to the (N — 1)-torus TV-! is given by

(pITN—l)(tl, t2, - ,tN—l) = diag(tl, tz, ey tN_l,-t—), (18)

where t = tty---ty_1,and t; € T.
Every irreducible representation p,, is classified by a signature, or highest weight,
m = (my,my,...,my_1), where m; are integers such that m; > mgy > .- > my_; > 0,

fori=1,...,N —1. A signature m can be represented by a Young diagram with at most

7



N — 1 rows, and m; boxes in the i*" row, i = 1,..., N — 1. The trivial representation has
signature (0,0,...,0) and corresponds to the empty Young diagram @ with no boxes at
all, whilst the fundamental representation has signature (1,0,0,...,0) and corresponds to
the Young diagram (. Given a Young diagram m, we can obtain a new Young diagram by
adding a box to one of the rows (including the N** row if my_; > 0). Suppose the Young
diagram m has N — 1 rows, so that my_; > 0. Then if we add a box in the N*! row, we
obtain a diagram with N rows and we delete all the boxes in the first column. The fusion
rules of the irreducible representations p,, of SU(N) with respect to the fundamental

representation p are given by
pm®p= P pm- (1.9)

m'>m

where on the right hand side we have a direct sum of all irreducible representations pp,
for which the Young diagram of m’ can be obtained from the Young diagram of m by
adding one box. Let e;, j =1,..., N, be the unit vector given by the edge on the fusion
graph from a vertex labelled by a Young diagram f to the vertex labelled by the Young
diagram obtained by adding a box in the j** row. The fusion graph for SU(2) is the
infinite Dynkin diagram A, (see Figure 1.1), where the signatures are just the integers
k > 0. It is well known that the k*" symmetric product of C? gives the irreducible level
k representation.

For SU(3) the fusion graph is the infinite graph A(). The graph A is illustrated
in Figure 1.7, where the vertices are labelled by “Dynkin labels” (A;, A): if p, ¢ denote
the number of boxes in the first, second row respectively of a Young diagram, the corre-
sponding Dynkin label is (p— g, q). There are then edges on A from the vertex (A1, A2)
to the vertices (A\; + 1, A2), (A1 — 1, A2+ 1) and (A, A2 — 1), i.e. edges in the directions of
the vectors e;, e,, e3 respectively.

1.3.2 Loop Groups

The loop group LSU(N) is the group of smooth maps from S! into SU(N) under pointwise
multiplication. The projective representations of LSU(N) x Rot(S?!), where the rotation
group acts on the maps of S? in a natural way such that the infinitesimal generator Lo of
the rotation group is positive, are called positive energy representations and are classified
by irreducible representations of SU(N) and a level k. To obtain positive energy, the
admissible irreducible representations at level k are those labelled by signatures g such
that g < kand g + g2+ -+ gnv-1 < k. For N = 3, these correspond to the vertices
(A1, X2) of the infinite graph A where A\; + A, < n — 3. For a level k& we have finite



.0 (1,1) (2,1) 3.1

(0.0) (1,0) 2,0) (3.0) (4.0)

Figure 1.7: The infinite SU(3) fusion graph A

N W)

A(4) A(S] A(6)

Figure 1.8: A™ for n = 4,5,6

graphs A™ where n = k + 3. These are illustrated in Figure 1.8 for n = 4,5, 6.
For a level k, let A = (A;, \2) be the irreducible representations of SU(3) which label

the vertices of A(™, n = k + 3. These representations obey the fusion rules:

A@u= > N, (1.10)
veAl™)

where the numbers N}, are non-negative integers. For a group G, if 7 is a representation
on the complex vector space V' then the conjugate representation 7 is defined on the con-
jugate vector space V* by 7(g) = ;@ for all g € G. The conjugation of a representation
A = (A1, \y) is given by X = (Ag, A;), and the fusion rules are invariant under conjuga-
tion: ngﬁ = Ny,. The colour (sometimes called the triality in the literature) 7()) of a
representation A is given by 7(A) = A; — A, mod 3. For the fundamental representation
p = (1,0), the fusion rules define the adjacency matrix A 4 of the graph A®™, that is,
(A 4m ) = Njy [110].



1.4 Modular Invariant Partition Functions

Modular invariant partition functions come about as continuum limits in statistical me-
chanics, i.e. letting the lattice spacing tend to zero whilst simultaneously approaching
the critical temperature. They play a fundamental role in conformal field theory. Let
X» = tr(g“—°/?%) denote the character of the irreducible representation A, which is the
trace in the positive energy representation of a loop group, where ¢ = €27, Im(7) > 0.
Here Ly is the conformal Hamiltonian which is the infinitesimal generator of the rotation
group on the circle. Typically, the characters are transformed linearly under the action of
SL(2;Z), eg. Xa(—1/7) =3 SanXe(7)s Xa(T +1) =D, Tapxs(7), where S is a symmet-
ric unitary matrix which diagonalizes the fusion rules (see (1.11)), with S)o > Spo > 0,

and T is a diagonal matrix. Then a modular invariant partition function is of the form
Z(1) =Y Zawix(T)xu(r)".
A

The problem of the classification of modular invariants is to find all non-negative integer
valued matrices Z such that ZS = SZ, ZT = TZ, subject to the constraint Zpo = 1
(which reflects the physical concept of the uniqueness of the vacuum state). The non-
negative integer requirement on the entries of Z comes from the understanding of the
entries as multiplicities of the decomposition of the underlying Hilbert space. The trivial
modular invariant, given by Z, , = d,, or Z = Y, |x»|? is always a solution. There may
also be permutation invariants Z = ), XAX,,(»> Where w is a permutation of the labels
which preserves the fusion rules and w(0) = 0. For a Rational Conformal Field Theory
(RCFT) the partition function is at most a permutation matrix Z2, = 0ru(r), Where T,
7' label the representations of an extended chiral algebra and w is now a permutation
of these labels (see {89]). The extended characters x®* can be decomposed in terms of
the original characters x, as x&* = )", b, Ax» for some non-negative coefficients by, and
Zxp = D, brabu(r)u- The modular invariants are of two types: those for which w is trivial
are called type I, i.e. Z®* =3 _|x®*|?, whereas those corresponding to non-trivial w are

called type II, i.e. Z%* = 37 xP*(xg.))*. The matrices Zy, for these type I invariants
are symmetric, whereas for the type II invariants only “vacuum coupling” is necessarily
symmetric: Zy ) = Zy for all \. However, we will modify this notion of classifying type

in Section 5.2.7, where type will instead refer to an inclusion N C M of factors.
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1.4.1 Classification of Z for SU(2)

The SU(2) modular invariants at level k are:

k+1
ZAk+l = Zle\iza k>1,
A=1
4p+1 2p-1
ZDopy2 = Z xal? + 2lx2p011” + Z (XAXapr2-» + Xap+2-2X3)
Aodd=1,A#2p+1 Aodd=2
2p--1
= Z lX/\ + X4p+2—AI2 + 2|X2p+1|2a k = 4p7 p _>. 11
Aodd=1
4p—1 202
ZDser = . Dol +2xz+ D (Xipor+Xeerxd),  k=4p-2,p22,
Aodd=1 Aeven=2
Zgs = le+X7|2+|X4+X8|2+|X5+X11|2, k+2=12,
Zg, = |xa+ X17|2 + |x5 + X13|2 + |x7 + X11|2 + |X9|2
+(x3 + x15)Xs + Xo(Xx3 + x15)",  k+2=18,
Zes = |xa+xu+ X9+ Xl + |x7 + x13 + X17 + X3, k+2=30.

The ADF classification of the SU(2) modular invariants is due to Cappelli, Itzykson and
Zuber [18], and the list was shown to be complete in [19] and independently by [68]. The
original reason for the ADFE classification was because the diagonal entries Z,  of the
modular invariant Zg at level k are given exactly by the multiplicity of the eigenvalue
2cos(mA/h) for the Dynkin diagram G with Coxeter number h = k + 2. The trivial
modular invariant is Z4,,,. Let Ny = [N} |, where the Ny  are the fusion coefficients of
SU(2), which are related to the S-matrix by the Verlinde formula [110]

Ny, = %S‘,#S;,V. (1.11)
The matrices N, satisfy NyN, = Nf'”N,,. Since the adjacency matrix Ay of Axyy
is given by the level k fusion matrix N, of the fundamental representation p, A4 can
be interpreted as the fundamental representation matrix in the regular representation of
the fusion rules. The D and E graphs turn out to be the fundamental matrices G, of a
whole family of non-negative integer valued matrices (nimreps for short) G which provide
a representation of the original SU(2), fusion rules, i.e. G\G, = >, N{,G,. For the

graphs A,, the eigenvalues M, j = 1,...,n, are given by

M =2cos(jm/(n +1)). (1.12)

11



Writing the modular invariant associated to a graph G as Z = ), |x;|* + remainder, the

integers ¢ for which the diagonal term |x;|? appears are called the Coxeter exponents of

the graph. The eigenvalues A’ of the graph G are given by
N = 2cos(mm;/h), (1.13)

where m; are the Coxeter exponents of G and h is the Coxeter number.

The modular invariants arising from SU(2)x conformal embeddings are (see [34]):
[ ] Eﬁl SU(2)10 C 50(5)1,
[ ] Egi SU(2)28 - (Gg)l,

e E;: automorphism or twist of the orbifold invariant Do = SU(2)16/Z;.

1.4.2 Classification of Z for SU(3)

The list below of all SU(3) modular invariants was shown to be complete by Gannon [45].
Each one has a corresponding ADE graph. We label the vertices of A™ by u = (i1, p2)
for yt3,42 = 0,...,n — 3 such that puy + uo < n — 3. We define the automorphism A
of order 3 on the weights u = (u;, 1) of A™ (where the apex is denoted (0,0)) by

Apr, p2) = (n = 3 — p1 — pia, ).
The identity invariant is

Zam =Y Ixul’s n=4, (1.14)
peAn)

and its orbifold invariant is given by
1

Zpwy = 3 o It xantxanl k22 (1.15)
ue A3k)
#1 —H42=0mod3
Zpmy = Z x,tx;(,._a)(m_,,z)“, n > 5,n # Omod3. (1.16)
ucAln)

The conjugate invariant Z 4m. = C and the conjugate orbifold invariants Zpm). = ZpmC

are

ZA(")‘ = Z XﬂX%a n 2 4) (117)
HEAM)

P ]- * * *

Zpen. = 3 Z (Xu + Xap + Xa2a) (X + X5 + X;,z—u), k22, (1.18)

pe A3K)
) —p42=0mod3

Z'D(n)- = Z X“X:T(':m, n>o,n ¢ Omod3. (1.19)

HEAM)

12



There are also exceptional invariants, i.e. invariants which are not diagonal or orbifold,

or their conjugates,

Zew = Ixoo +xeal® +Ix0 + xeal’ + Xeo + xeal + Ixen + Xos’

+x@o) + xo3)* + Ixa2 + x60l, (1.20)
Zew- = Ixo0 +xe2l’ + (x02 + X62) (X0 + X23)

+(x20 + X23)) (Xo2 + X52) + (Xe1n + X(0,5))(X{1,2) + X(5.0))

+lx@0o) + X031 + (xa.2) + X6.0) (X{21) + X{0.5)): (1.21)
Zeon = |X00) T X09) F X0 T X@a,0) T X1 + Xl

+2|x(2,2) + X285 + X(s,z)l2 = Zgéu)) (1.22)
Zeﬁ"’ = X000+ X09 + X(9.0)|2 +x@2) + X@s5) + X2l + 2lx@)?

+(X(03) + X(6.0) + X(3.6)) (X{3,0) T X{o,6) T X(6,3))

+(X@,0) + X(06) + X6,3) (X{o,3) + X(s,0) T X(3,6)) T |Xa0) + X(a1) + Xa.!°

+xan +xan + xe)Xies + x63 (X + X0,7 T X)), (1.23)
Zeon = X0+ X9 + X0l + 1x@2 + X@s + X629 + 2Ix@3)?

+|x03) + X(6.0) + X(3,6)|2 + |x@3.0) + X©6) + X(s,g)I2 + |x@4) + X@a1) + X(1,4)|2

+(xa.n + xan + X(7,1))Xf3,3) + X(3,3)(X?1,1) + X?m) + XZ7,1))v (1.24)
Zean = [X©00) t X(44) T X(66) T X(10,10) + X(21,0) + X(0.21) + X(13.4) + X(4,13)

+X@0,1) + X(1,10) + X(9.6) + X(6,9)|>
+Xx(15,6) + X(6,15 + X(15.0) + X(0,15) + X(10,7) + X(7.10) T X(10,4)
+X(410) + X(7.4) + Xa7) + X6,0) + X(0.6)]%, (1.25)

where ngm, Zeé”’ and Zg4 are self-conjugate, and ng) = Z£<12>C. The modular
4 5
invariant Z a2 is the Moore-Seiberg invariant [89]. The modular invariants arising from
5
SU(3)k conformal embeddings are (see [34]):

e DO®: SU(3)3 C SO(8),, also realised as an orbifold SU(3)s/Zs,

o £®: SU(3)s C SU(6);, plus its conjugate E®* = £6) /7,

E{™: SU(3) C (Ee)s, with two nimreps £ and £ = £{'") /7,

. 85512): Moore-Seiberg invariant, automorphism of the orbifold invariant SU(3)y/Z3,
. . (12) (12)+
plus its conjugate £, 7 = &,

PACOR SU(3)21 C (E7)1.
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1.5 SU(3) ADE graphs

The SU(3) graphs A™, n =4,5,..., were introduced in Section 1.3.2. There is another
infinite series of graphs D™, where D™ is obtained from .A™ by an orbifold procedure
[76, 27]. The graph A™ is left invariant by the Z/3Z automorphism o defined by rotation
of the graph by 27/3. When n is not a multiple of 3, there are no fixed points under the
rotation. Then the graph D™ is given by the “fundamental domain” of o, i.e. if a vertex
v is mapped to o(v) = v’ then the vertices v and v’ are identified, and similarly for the
edges of A™. The the graph D™ is not three-colourable. For n = 3k for some positive
integer k, the vertex (k— 1,k — 1) of A®® is a fixed point. This vertex is split into three
distinct vertices, and we also split the edges which joined the vertex (k — 1,k — 1) to
other vertices. For the other vertices and edges of A%} we have the same procedure as
for n # 0 mod 3. The graphs D®*) are three-colourable. The graphs D™ are illustrated
in Figure 1.9 for n = 5,6,7,8,9.

= B Do

D(S) D(b) DU)

D(N D(‘))

Figure 1.9: D™ for n =5,6,7,8,9

Two more infinite series of graphs are given by A™* D)= respectively, which are
“conjugations” of the graphs A™ D™ respectively. The term conjugation here is due to
the fact that the modular invariants corresponding to A™”* and D™*are the conjugate
modular invariants of those corresponding to A™ and D™. The graph A™* can be
obtained from D™* by an orbifold procedure as described above. These graphs are
illustrated in Figures 1.10 and 1.11. For the graphs A™ D™ AM* and D™* we call n
the Coxeter number of the graph.

There are also a number of exceptional graphs: £® and its conjugate £®* (which
both have Coxeter number 8), 8,.(12), i =1,...,5, (with Coxeter number 12) and £(*%

14



Q ! 2 1 2 3 1 3 1 3 4
1 2 2 2
Al‘)' AlSl‘ A(6)- A(7)c Am. A(‘))a

Figure 1.10: AM™* forn =4,5,6,7,8,9

VY

,D(S)- D(ﬂa Dls): D(‘))a

Figure 1.11: D™* forn =6,7,8,9

(which has Coxeter number 24). These are illustrated in Figures 1.12 - 1.15. The graphs
5}“2), i =1,2,3, are isospectral, and indeed 52(12) may be constructed as a Z/3Z orbifold
of 51(12), and vice versa. The graph 5}12) is the conjugate of the graph 55(12) which is
associated with the Moore-Seiberg invariant (1.24). Since we are looking for graphs which
represent modular invariants through nimreps (M-N) or from subfactors, the graph £§12)
is discarded as it does not appear in these descriptions.

All the graphs except D™, n % 0 mod 3, A™* n =4,5,..., are three-colourable.

For these graphs (except for the graph 55(12)) the distinguished vertex *, with the lowest

Dz%

£ £

Figure 1.12: £® and its Z; orbifold £®*
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(12) (12) (12)
£, £, E,

Figure 1.13: 51(12), 82(12) and the virtual graph 5:512)

12 (2
EM E

Figure 1.14: Moore-Seiberg graph 85(12) and conjugate Moore-Seiberg graph 5}12)

Figure 1.15: £2%
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Perron-Frobenius weight, is said to have colour 0, and there is a conjugation on the graphs
which switches the vertices of colours 1 and 2. For 85512) there are two vertices with lowest
Perron-Frobenius weight, one of colour 1 and one of colour 2, which are conjugate to each
other. For the non-three-colourable graphs we define the j-coloured vertices to be all the
vertices of the graph, for any j =0,1,2.

The Perron-Frobenius theorem for an irreducible square matrix A with non-negative
entries states that the spectral radius of A is an eigenvalue, called the Perron-Frobenius
eigenvalue, and that the corresponding (Perron-Frobenius) eigenvector has all entries pos-
itive. All other eigenvectors of A have at least one negative entry. Any irreducible graph
has an adjacency matrix of this form. The eigenvalue 3(°) corresponding to the vertex

o = (01,02) of A™ is given by [27]:

” 2w 2w 2w
@ = exp (—3——n—(01 + 209 + 3)) + exp (—377(201 + 09 + 3)) + exp (—éz(a] — 02)>
(1.26)
and has a corresponding eigenvector ¢(?) = (¢E\°)) ». In terms of the S-matrix, we have an

orthonormal basis of eigenvectors ¢E\a) = Sy for the eigenvalues
B = S0/ Sos, (1.27)

where we denote by 0 the apex (0, 0) of the graph A™. In particular, the Perron-Frobenius

eigenvector ¢ = ¢(® has the form [24]:

_ sin((A; + 1)m/n) sin((Ag + 1)7/n) sin((A; + Ag + 2)7/n)
sin?(m/n) sin(27/n) '

Definition 1.5.1 (Quantum Numbers) Form € Z and q € C\ {0,1, -1}, the quan-

tum number [m|, is defined as

P (1.28)

[m], = e

Note that [m], = g™ 1 +¢™ 3 +¢™ 3 +.--+¢ (™1 50 that when g = 1 the quantum
numbers recover the integers: [m]; = m.
Then, in terms of quantum numbers, the Perron-Frobenius eigenvalue is [3],, where
q = exp(im/n), and the eigenvector ¢ is
A1+ 1g[Ae + (A + A2 + 2],
2] '

Note, the quantum numbers [m], satisfy the fusion rules for the irreducible represen-

b\ =

(1.29)

tations of the quantum group SU(2),, i.e.

min(a+b,2n—a—b)

[a]q (0], = Z [clq, (1.30)

c=|b—al: a+b+c even
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whilst the entries of the Perron-Frobenius eigenvector (1.29) give a one-dimensional rep-
resentation of the fusion rules for the irreducible representations of the quantum group
SU(3)n.

It will be shown in Section 5.2 that the above graphs all appear as the M-N graphs
for certain subfactors N C M, and we have an associated modular invariant as in Section
1.4.2. Then by the Verlinde formula (1.11), the eigenvalues S of these graphs are
again ratios of the S-matrix given by (1.27) for vertices A of A™ which are the Coxeter
exponents of the graph G, where n is the Coxeter number of G. The multiplicity of the
eigenvalue B is given by the entry Zj , of the corresponding modular invariant [13,
Theorem 4.16]. For an ADE graph G with Coxeter number n we will often write [m] for

[m], when g = exp(im/n).

1.6 Subfactors

1.6.1 AF algebras

Let Cy C Cy C Cy C --- be a sequence of finite dimensional C*-algebras with inclusion
maps J, : Cp, — C,y1. An AF algebra is an inductive limit Co, = lim_, C,,. To each
AF algebra we can associate a Bratteli diagram. The Bratteli diagram associated with
an AF algebra is not unique, however the AF algebra given by any Bratteli diagram is
unique. For the inductive limit of multi-matrix algebras C,, the Bratteli diagram is given
as follows. Let the embedding of C,, in Cyp4; be given by the multiplicity A, = (Af’;)) For
all n > 0 let ¢™ denote the number of simple subalgebras or minimal central projections

z‘§"),i§"), . ,ifl?,?)) represent the minimal central

of Cy, and let the sequence Qn] = (
projections of C,. Then we draw a graph consisting of two parallel horizontal rows of
vertices, where the top row has ¢® vertices indexed by Q)[n] representing the minimal
central projections of Cy, and the bottom row has ¢™*+? vertices indexed by Q[n+ 1], and

th vertex along the top row and the jth

we draw /\g-f? edges between the i vertex along the
bottom row. It is convenient to adjoin an additional stage given by the unital embedding
C = Cy — C; with multiplicity graph Ag. The Bratteli diagram for the AF algebra is
obtained by concatenating the multiplicity graphs A, for n > 0, identifying the vertices
along the bottom of the graph for A,, with the corresponding vertices along the top of the

graph for A, 4.
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For any two matrix algebras M,, M,,, the embedding of M, — M,, is given by

Z1

Tk

0

for some unitary u € M,, and unique integer k, where r; =z fori=1,...,k and O is a
p X p zero-matrix for p = m — kn. Then suppose A, B, A’, B’ are multi-matrix algebras
and that the Bratteli diagrams for inclusions m : A — B, my : A — B’ are the same,
then m; and 7y are unitarily equivalent and hence isomorphic. Hence a one-dimensional
Bratteli diagram has a unique limit which determines an AF algebra.

However, if we consider a two-dimensional Bratteli diagram we obtain a double se-

quence of finite dimensional algebras:

Cop C Coy C Coo C

n N N
Cip C Gy C Cip C
N N N
Coo C Cyp C Cyn C
N N N

The Bratteli diagram alone is no longer sufficient to determine the embeddings of different

horizontal or vertical AF algebras. Consider for example the squares given by

C - McC

l l :
A,‘ - M2®M2

for 2 = 1,2, where A; = C® M,, A, = My ® C. These two squares are not isomorphic
since for ¢ = 1 any element of the algebra M, ® C in the upper right corner of the square
will commute with any element A; in My ® M, however this is not true for ¢ = 2. The
extra ingredient needed to measure this freedom is the connection.

A connection is the assignment of a complex number

12
Xosba = sl lm €C
k e j

19



l P1 .
_ 1

to each square p;] lp2 in the two-dimensional Bratteli diagram.
k o j
The unitarity property of connections is given by

77
E pr.p2 YP1P2 __ 5
Xp3,p4 Xp3~p4 - oﬂl.ﬂ'16P2.P§’ (1'31)

P3.P4

whilst the Yang-Baxter equation for connections is

01,02 Y P3:.P4 Y O3.P5 _ P3,02 Y 01,03 Y Pa.P5
X102 XPaps X XPs:02 X105 X parps. (1.32)

P1,02 01,03 02,06 £1,01 £2.,P6 72,03
01,02,03 01,02,03

The Yang-Baxter equation (1.32) is represented graphically as in Figure 1.5.

1.6.2 Path Algebra Model of an AF Algebra

We describe the path algebra model for a Bratteli diagram which describes unital embed-
dings. The vertices at the nth level of the Bratteli diagram are those which correspond to
the simple subalgebras of C,, i.e. the vertices Q[n]. Fori € Q[m], j € Q[n] withm < n, we
denote by Path(z, j) the space of all paths in the Bratteli diagram from i to j. For a path
v € Path(i, j), 7 is called the source of v, denoted by s(y) = 7, and j is called the range of
v, denoted by r(v) = j, and |y|, the length of the path v, is n — m. The space Q[m,n| of
all paths from level m to level n is given by Q[m, n] = Uicapm),jeamPath(s, j). For paths of
length zero we let Path(s,7) = {¢} and Path(i,') = @ if ¢, 4’ € Q[m] such that i # ¢. Then
Qm,m] = Q[m]. Let m < n <m', i € Qm|, j € Qn] and k € Q[m']. Then for any paths
p € Path(i, 7), v € Path(g, k), the path u - v € Path(7, k) is defined by concatenating the
paths p and v. For m < n and any i € Q[m], j € Q[n], let A;; = End(¢?(Path(s, 5))) gen-
erated by matrix units (7,,y;) indexed by paths 7,7, € Path(z, j), and A[m,n] = ®A;;
where the summation is over all i € Q[m], j € Q[n]. Thus A[m,n] is generated by matrix
units (y1,72) where 7,7, € Q[m,n| where s(v;) = s(v2), r(m1) = r(v2). For m > m/,

n < n', we embed A[m,n| in A[m’,n’] by

mm) = Y (e vpe 2 v), (1.33)

2114

for vy, v, € Path(z, j), where the summation is over all u € Path(¢, ), v € Path(j, j') and
all &' € Q[m/], j' € Qn']. For my < ny < my < ny, any a; € Almy,ny] and ay € A[my, ny)
commute,

a0y = aa,. (1.34)
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Then A[m,n] = A[0,m}'NA[0,n], and in particular the centre of A, = A[0,n] is identified
with A[n,n] = C(Q[n]) = CUl, and the minimal central projections of A[0,n] can be
identified with Q[n] by (i,7) « i. The AF algebra associated with the Bratteli diagram
is then A = lim_, A,, where the embedding of A, = A[0,n] in A,4, is given in (1.33). We
will write A(G) for the path algebra A where the embeddings on the Bratteli diagram are
given by the graph G, and will denote the finite dimensional algebra A, at the kth level
of the Bratteli diagram by A(G)x.

1.6.3 Von Neumann algebras

Let H be a Hilbert space and B(H) the space of all bounded linear operators on H. For
a subset S C B(H) the commutant of S is S’ = {x € B(H)|ry = yr forally € S}. A
von Neumann algebra is a *-subalgebra M of B(H) which contains the identity operator
1 and satisfies M” = M. A finite dimensional von Neumann algebra is *-isomorphic to a
multi-matrix algebra since it is a C*-algebra.

A trace on a finite dimensional matrix algebra A is uniquely determined up to a
scalar multiple of the canonical un-normalized trace given by tr(z) = )", z;; for a matrix
z = (z;;) € A. Then a trace on a finite dimensional multi-matrix algebra A is determined
by a sequence (s;), indexed by the minimal central projections of A, with s; € C, called
a trace vector, given by tr(®;z;) = Y, s;tri(;), where tr; is the canonical un-normalized
trace on the simple subalgebra A; of A. The trace is positive if s; > 0 for all ¢ and
faithful if s; > 0 for all i. Let A and B be finite dimensional C*-algebras such that A
is embedded in B with the embedding given by matrix A, and let try, trg respectively,
be the traces on A, B respectively, with trace vectors s, ¢t respectively. The traces are
compatible under the embedding given by A if and only if s = ATt, where AT denotes the
transpose of A. Then we just write tr for the trace. We have an inner-product defined
by the trace by (z,y) = tr(y*z) for 2,y € B, and we can regard A as a subspace of B.
For any inclusion of (possibly infinite dimensional) von Neumann algebras A C B with a
finite faithful normal trace on B which coincides with a finite faithful normal trace on A,
the conditional expectation E4 : B — A is the projection E4 onto A such that E4(b) is
the unique element ¥ € A which satisfies tr(b'a) = tr(ba) for all a € A. We call E4 the
conditional expectation of B onto A with respect to the trace.

Definition 1.6.1 Let

M] C M2
U U
M3 C M4

21



be four von Neumann algebras with a finite faithful normal trace on My. We say they
form a commuting square if they satisfy one of the following equivalent conditions,

where the conditiqnal ezpectations are relative to the trace:
1. Ep,(M;) C M.
2. Epy(M2) C M.
3. Em,Ermy = Eny.
4. EpmyEnm, = Epy,.
5. EvyEpmy, = EpyEy, and My = Mo N M;.
6. Erm (z) = Enr,(z) for x € Ms.
7. Ewm(z) = Epg(x) for x € M,.
The following proposition regarding von Neumann inclusions is found in [51]:

Proposition 1.6.2 Let N C M be a pair of von Neumann algebras, with a finite faithful
normal trace tr on M and let S be a self-adjoint subset of N. Then

SN"M Cc M
U U
SSNN C N

1S a commuling square.

1.6.4 Factors

A factor is an infinite dimensional von Neumann algebra M which has trivial center,
ie. M NM = C. Factors are classified into types I, (n = 1,2,...,0c), II;, Il and
III. Type I, factors are matrix algebras M,(C), and a type I, factor is B(H) on an
infinite-dimensional Hilbert space H. A II, factor is an infinite dimensional von Neumann

algebra M which has a unique o-weakly continuous linear functional tr, called a trace on

M, satisfying
1. tr(1) = 1,
2. tr(z*z) > 0forall z € M,
3. If tr(z*z) =0, then z = 0,
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4. tr(zy) = tr(yz) for all z,y € M.

A type Il is a tensor product of a type 1I; factor and B(H). All other factors are called
type III. A factor M is said to be finite if the multiplicative identity 1 of M is a finite
projection in M, or equivalently, if M does not contain any non-unitary isometry, and
is called infinite otherwise. If M is a factor and N is a von Neumann subalgebra of M
which is also a factor then we call N a subfactor.

A hyperfinite von Neumann algebra is defined to be the weak closure of a union of
an increasing sequence of finite dimensional von Neumann algebras. If A is the union
of a sequence My C M; C --- of finite dimensional von Neumann algebras with a trace
tr which is compatible with the inclusions. Then we define an inner-product on A by
(r,y) = tr(y*z), and completing A with respect to this inner-product we obtain a Hilbert
space H. If w(a) € B(H) is the extension of the left multiplication by a on A, we
can regard m(A) as a *-subalgebra of B(H). We can extend tr to the weak closure
M of A by tr(z) = (z1,1), where 1 € H is the image of 1 € A. This trace satisfies
conditions 1-4 above, and hence the hyperfinite von Neumann algebra M is a II; factor.
All hyperfinite II; factors are isomorphic, however the position of one hyperfinite II;
embedded as a subalgebra of another hyperfinite II; has a rich structure. The investigation
of this structure is the main point of subfactor theory.

Suppose M is a II; factor acting on a Hilbert space H, where the action of M on /1 is
isomorphic to the action of M on (], L*(M))p by left multiplication, where p = (p;i)
is some projection in M,(C) ® M with p;, € M. The coupling constant dimy H of M
in H is defined as ) 7_, tr(pj;). If the action of M on H is not of this form then the
coupling constant is set to be co. For dimyH < oo, the commutant M’ of M in B(H)
is a II; factor with a unique trace trps. The Jones index [M : N] of a subfactor N in M
was introduced by Jones in [61]. It is defined to be dimy L?(M), where N acts on L%(M)
by left multiplication. It was shown in [61] that the Jones index has value 7 if and only
if 7 € {4cos*(n/n)|n =3,4,5,... } U4, 0].

For a subfactor N C M with finite index, the relative commutant N’ N M is finite
dimensional, and in particular, if [M : N] < 4 then N'NM = C. For a subfactor with finite
index, the conditional expectation Ey : M — N naturally extends to a projection e; of
L?(M) onto L?(N). The algebra M, = (M, e;) is the von Neumann algebra generated by
M and e,, and this construction is called the basic construction. Let J be the conjugation
on L?(M) defined by J(Z) = z* for x € M, where we use the notation Z to denote the
image of z in L?(M). The algebra M, is also a II; factor since M; = JN'J. The basic
construction can be repeated for M C M, to obtain M, = (M), e;), and continuing in this
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way gives the Jones tower N C M C M, C M, C --- of II; factors. The Jones projections
ej, j = 1,2,..., satisfy the Temperley-Lieb relations TL1, TL2, with § = [M : N]*/2.
Since the Jones index satisfies [M : N] = [M : P][P : n] for factors N C P C M with
[M : N] < o0, and [M; : M] = [M : N}, the Jones index [Mj : N] = [M : N*!] < o0,
and the higher relative commutant N’ N M is finite dimensional.

For a finite index subfactor N C M, the map ® : NN M — M’ N M, given by
®(x) = Jyx*Jpr, where Jyy is the canonical conjugation on L?(M), is an anti-isomorphism
which is not trace-preserving in general. Trace-preserving means that the normalized trace
tryr on N’ coincides on N’ N M with the trace tr on M. By [100, Cor. 4.5], ® is trace-
preserving if and only if Enina(e1) € C for a Jones projection e; € M;. Such a subfactor
N C M is called extremal.

For a inclusion of type Il; factors with finite index, the lattice of higher relative
commutants M N M; is called the standard invariant of the subfactor. The standard
invariant can be described as a certain category of bimodules [91]. In [102], Popa obtained
an axiomatization of lattices of inclusions (A;;)o<i<;, Which he called standard A-lattices,
which is the standard invariant for extremal subfactors. More recently, the standard

invariant has been described as a planar algebra [64].

1.6.5 Sectors

Let M, N be type III factors. We denote by Hom(M, N) the set of all unital morphisms
from M to N, and End(M) = Hom(M, M). For p € Hom(M, N), the positive number
d, = [N : p(M)]"/? is called the statistical dimension of p, where [N : p(A{)] is the Jones
index of the subfactor p(M) C N. For p;, p» € Hom(M, N), we denote by (p;, p2) the set

of intertwiners between p; and p,, that is

(1, p2) = {y € Nlypi(z) = po(x)y for all z € M}.

Let p1,p2 € Hom(M, N). We say that p, and p, are unitarily equivalent if and only if
there exists a unitary u € A/ such that p; = Ad(u) o ps.

We call the equivalence class [p] of a morphism p a sector, and denote by Sect(M, N)
the quotient of Hom(M, N) by the unitary equivalence. We can define sum and product
of sectors on Sect(M) := Sect(M, M) which satisfy associativity and distributivity in the
following way: Since we assume M to be a type III factor, there exist non-zero projections
p1,p2 € M and isometries vy, v, € M such that v;v} = p;, 1 = 1,2, and p; + p, = 1. For
p1, p2 € Hom(M, N) we define p € Hom(M, N) by p(z) = vip1(z)v} + vepa(z)v] so that
[p1] ® [p2] = [p]. This sum is well-defined as it does not depend on the choice of py
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and p in their classes or on the choice of v; and w,- if ¢, t2 are two other isometries
in M satisfying the ¢t} + tt; = 1 then u = tyv} + tov; is a unitary in (p,p’) where
P (z) = t1p1(x)t] + tap2(z)ts. The sector [p] contains the sector [p;], i = 1,2, and we will
write [p] D [:]. Product is defined by the composition of morphisms p; € Hom(M, N)
and p; € Hom(N, P) [p1][p2] = [p1p2], so that [p1pe] € Sect(M, P).

We say that p € Hom(M, N) is irreducible if (p,p) = 1. This is equivalent to the
subfactor p(M) C N having a trivial relative commutant, i.e. N Np(M) = C. We call
p self-conjugate if and only if [p] = [p], where [p] is the conjugate sector of [p], as given
by Longo [80]. For irreducible p € Hom(M, N), the conjugate sector [o] € Sect(N, M)
is the irreducible sector such that [p][g] O [idpy], i.e. the sector product [p][p] contains
the identity sector [ids]. Then the multiplicity of [ida] in the decomposition of [p][p]
is one, and the product [p][p] also contains [idy] with multiplicity one. We denote a

representative of the sector [p] by p. Note that o € Aut(M) is self-conjugate if and only

2 is given by o?(x) = uzu* for some unitary u € M.

if a? is inner, i.e. «

Let M, N be infinite factors with N C M. A vector £ in a Hilbert space H is a
cyclic vector if H = M¢, and separating if z& = 0 for z € M implies z = 0. We can
represent M on H where there is a vector £ € H which is cyclic and separating for
both M and N. Let Jy, Jp be the corresponding Tomita-Takesaki modular conjugations
where JWNJy = N', JyM Jpy = M, and define the canonical endomorphism v from M
to N as in [79] by v(z) = JyJumxzJImJn. Different choices of Hilbert spaces and cyclic
and separating vectors give a unitarily equivalent endomorphism, hence the sector [v] is

well-defined. We can then obtain a sequence of inclusions of factors
- Cyy(N) cyy(M) cy(N)cy(M)C N C M.

This sequence called the Jones tunnel. By using the endomorphism ((z) = Jyy JnTJnJIpm

instead we can also extend the sequence to the right by
NCMC({N)CM)c¢(N)YC---

which is called the Jones tower. However the sequence has period two in the sense that
the inclusion v(N) C (M) is isomorphic to the inclusion N C M, and the inclusion
¥(M) C N is isomorphic to M C ((N). The restriction of v to N is called the dual
canonical endomorphism 6 = |y for N C M.

If we denote the inclusion homomorphism by ¢ : N < M, a conjugate homomorphism
T: M — N is given by 7(z) = y(z) for x € M. Then the canonical and dual canonical
endomorphism are v = (T and 6 = 7v. Let Irr(N) C Sect(N), Irr(M, N) C Sect(M, N)
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denote the set of all irreducible subsectors of [6¢], [#°7], respectively, « = 1,2,... . The
principal graph of the inclusion N C M is given by labelling the even vertices by the
elements of Irr(N) and the odd vertices by the elements of Irr(M, N), and there are
(AT, 1) edge connecting the vertex labelled by [A] € Irr(N) to the vertex labelled by
[u] € Irr(M, N), where (Xt,p) is computed by decomposing [A7] into irreducible sectors
of Irr(M, N). By Frobenius reciprocity we have (pA,0) = (\,po) = (p,oX). It is well
known that for index [M : N] < 4, the principal graph is one of the Dynkin diagrams
Ap, Dy, Es, Eq, Eg [51, Cor. 4.6.6]. Ocneanu proved that Doy and E7 cannot appear as
the principal graphs for any subfactor. This was later proved by Izumi in [57] using the

fusion rules of sectors.

1.6.6 o-induction

For a type III factor N, let yXn denote a finite system of irreducible inequivalent en-
domorphisms of N, that is, for any A € yXy there is a representative A € yXy of the
conjugate sector [X], and for any A\, u € yAXn, a representative of each sector in the ir-
reducible decomposition of [Ay] is in yXx. Then in particular id € yXn. Let ) (vXn)
denote the set of finite sums of endomorphisms in yXy. A system yXp is braided if for
any A, u € yXn there is a unitary operator (A, u) € (A, u), called a braiding operator,
subject to the initial conditions e(id, u) = €(\,id) = 1 and which satisfy the Braiding
Fusion Equations (BFE) [12, Def. 2.2]. For every braiding et = ¢ there is an “opposite”
braiding €~ defined by e~ (A, u) = (¥ (i, A))*. A braiding is said to be non-degenerate if
et(A\ pu) =¢e (A p) for all 4 € yXy implies A = id. If we have an inclusion ¢ : N — M
of type III factors together with a non-degenerately braided finite system Xy such that
the dual canonical endomorphism § = @ € Y yXn, then we call N C M a braided
subfactor. The a-induced morphisms af € End(M), which extend A € yXn, are defined
by the Longo-Rehren formula [81] of = 77! 0 Ad(e*(),6)) 0 A o7, and satisfy afc = ().
A “coupling matrix” Z can be defined [12] by Z), = (af,a;), where A\, u €€ NN,
normalized so that Zpo = 1. By [11, 34], this matrix Z commutes with the modular S-
and T-matrices, and therefore Z is a modular invariant. We let p Xy C End(M) de-
note a system of endomorphisms which are representatives of the irreducible sectors [tAZ],
A € yAXn. We define the chiral induced systems as the subsystems MX,@ C mXy of all
B such that [A] is an irreducible subsector of [a}], and the ambichiral, or neutral, system
mXYy = MXzy N mXy;. The modular invariant Z is a permutation matrix if and only if
MX = XY,

A modular invariant Z associated to a subfactor N C M is said to be of type I if
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Zox = (0,)) for all A € yXy [11]. This is equivalent to chiral locality holding, i.e.
et (6,0)v? = v?, where v € (id, (7) is an isometry. It was also shown in [11], using results
on intermediate subfactors, that if a braided subfactor N C M has an associated modular
invariant Z, there are intermediate subfactors N C My C M such that N C My satisfy
chiral locality. The modular invariants Z* associated to the subfactors N C M, are
called the type I parents of Z. We have ZIO = Zyo and Z;, = Zy», so that Z*, Z~ is
the type I modular invariant which has the same first row, column respectively as Z.
Evans and Pinto [40, Theorem 3.6] showed that if N C M,, N C M, are braided
inclusions with associated modular invariants Z,, Z, respectively, then the product ZGZK

also arises from a braided inclusion through a process of a-induction.
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Chapter 2

The Ising Model

In this chapter we present the two-dimensional Ising model as a model on the Dynkin
diagram Aj, and its generalization to other graphs. We explicitly construct the extension
of the Kramers-Wannier endomorphism to p on O, = O,4,. For the inclusion of purely
infinite factors M D p(M) with finite index v/3 and principal graph As, we construct the
endomorphism p; on O3. We also show that the crossed product of Og,,,, by the Z,
action induced by the Z; action on Aj,y; is stably isomorphic to Op,,,, and similarly

Op,.,, % Z, is stably isomorphic to Oy,,, -

2.1 The Classical Ising Model

Ising introduced his model for a ferromagnet in an external magnetic field for the one-
dimensional case in his PhD thesis [55]. He found that the solution admitted no phase
transition, i.e. a sudden change from negative to positive magnetization (or vice-versa),
and concluded that his model did not exhibit phase behaviour in any dimension. But
this is not true, since in higher dimensions it is possible for the model to have non-
zero spontaneous magnetization. Whilst the Ising model is a simplified description of
ferromagnetism, other systems can be mapped exactly or approximately to the Ising
system, which allows the use of simulation and analytical results of the Ising model to
answer questions about the related models.

The two-dimensional Ising model of a magnet is modelled on a square lattice, where
each site on the lattice represents a particle which has a spin, or magnetization. We
restrict the spin to be either positive or negative, with values +1 and -1 respectively.

In the case of a general discrete model on a lattice the Dynkin diagram shows which

values sites that are connected may take. If we use a diagonal lattice and the Dynkin
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Figure 2.1: Dynkin diagram Aj Figure 2.2: Ising Configuration Space

diagram Az (Figure 2.1), we have the configuration space of Figure 2.2 where * indicates
that the site may take either the value +1 or -1. Here, the odd sublattice merely has
frozen spins e, and we get a copy of the Ising model on the even sublattice. To complete
the description of the model, we need to specify the Hamiltonian, or energy, in each
configuration. Let us consider a square lattice App with L rows and M columns, and we
impose periodic boundary conditions. Then the Hamiltonian for a configuration o € P

where Py is the space of all configurations on the lattice, is

H™M0) ==Y} (Jla(i,j)a(i +1,5) + Joo (G, 5)o(é, § + 1))

i=1 j=1
where J;, J; are the interaction energies between neighbouring sites in the horizontal and
vertical direction respectively.

For an observable F of the system, the expectation value (F) of F is given by
Z;'y, F(o)e™P#(@) where Zs is the partition function Zz = Y ocPry e P Non-
zero spontaneous magnetization exists in the two-dimensional case, or at least,

lim inf % %:<o(m)>+ > 0,

[Al—o0

where (o(x))* is the expectation value of the magnetization with + boundary conditions,
since Peierls’ estimate [98] says that for fixed a € (0,1) there exists f§, such that for all
G > [y we have (a(:c))x > a, independent of z in A, with + boundary conditions.

The spontaneous magnetization was computed by Onsager [97] as
_ [~ (sinh 28J)~4]s T <T,
0 T > T,

where the critical temperature 7, satisfies sinh 203,J = 1, . = 1/kT, as shown by Kramers
and Wannier [77).
The existence of this spontaneous magnetization is related to the non-differentiability

of the free energy. For arbitrary boundary conditions, the free energy per lattice site in
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finite volume is f* = — gz log Z°. In the thermodynamic limit, f(/) = limja|—oo f2(H),
where H is an external magnetic field. f exists and is independent of boundary conditions,
but is not differentiable at H = 0. This can be shown without computing f(H), by using
Peierls’ estimate. Onsager [96] computed f(0) in the two-dimensional case using the
transfer matrix formalism, but we cannot explicitly compute f(H) in higher dimensions,
even for H = 0. The existence of phase transitions in higher dimensions of the nearest-
neighbour Ising model can still be proved by putting all interactions to be zero, except in
parallel two-dimensional planes, using Peierls’ estimate, then turning on the interactions

in new dimensions and using the GKS inequalities.

2.2 Algebraic Approach

If we call the configuration along the ;1 row o9 = (0(1,7),...,0(M,j)) € {£1}M, then

a configuration o will be given by

Then the Hamiltonian is

H™(0) =Y " S(0%) + > 1(o?,07*)

=1 =1

where
M M

S@) =—% ) (e +1), I(3,5') = -J1 )_5(j)a(j)

i=1 =1
and 7,7 € {£}™ are row configurations.

This gives the partition function
Zﬁ = tI'TL

where the transfer matrix 7 is a symmetric 2 x 2M matrix with rows and columns
labelled by the 7 € {+}™. For 7,5 € {£}¥,

T(7,7) = exp( - ﬁ{ﬂﬁ)—“;sﬂ + 1(5,?)}).

The transfer matrix T can be identified with an element of the Pauli algebra Af, =
C*oili=1,... .M, a==zxy,2)= ®11w M,, where, for i =1,... M, o' is given by

0h=18 " ®1830,31® - ®1,

30



where o, is in the ;th place. The Pauli matrices o, are given by

1 0 0 =1 01
Oz = oy = ] o, = .
0 -1 -1 0 10

These satisfy 02 = 1, and 0,05 = i0, where (o, (,7) is some cyclic permutation of
(z,9,2). Then T = (2sinh2K1)Azl‘V%WV%, where

M M
V = expK, 2 oloit! W = expK} E ol,
i=1 Jj=1

and K; = #J;, sinh2K,;sinh2K} = 1.

The matrix V is diagonal (since the o are diagonal matrices), and comes from the
interactions along horizontal rows. The scalar factor (2sinh2K 1)%W comes from the
interactions between neighbouring rows.

The expectation value of a local observable F on Ay,, where [l < L, m < M, is given

by
tr(TEFT)
trTL

where Fé"’ is an operator in ®iw M, independent of L. Here the transfer matrix T has

(F)5" =

strictly positive entries providing K is finite (or, equivalently, K # 0). By the Perron-
Frobenius theorem T has a unique eigenvector QM associated with the largest eigenvalue,
with QM (%) > 0, 7 € {£}M. Letting L — oo we pick out the eigenspace associated with
the largest eigenvalue:

(FYY = (FMQM,QM).

As M — oo, Fg! is eventually constant, and the states ¢}’ = (-:QM, QM) on QY M,
converge to a state g on A¥ = @7 M,.

The factor (2sinh2K;)% will cancel in (F)4™, and so we can regard K, and K} as
independent parameters. The extreme temperature 8 = 0 corresponds to Ky = 8J, = 0,
and the extreme temperature # = oo corresponds to K; = 3J; = 0o, or K} = 0.

After removing the scalar (2sinh 2K;)%, the transfer matrix is now T = VW V3. So
T is essentially W when K; =0, and V when K} = 0.

If we let ey = (1+0%)/2, eair1 = (1+0i0i1) /2, then these e; are projections satisfying
the Temperley-Lieb relations TL1, TL2.

The transfer matrix T is then described by

M M
V = expK; Z €241, W = expK} Z €2;.
i=1

i=1
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2.2.1 The Kramers-Wannier Endomorphism

To extract further information we make use of the high temperature-low temperature
duality used by Kramers and Wannier to locate the value of the critical temperature
[77]. The Kramers-Wannier high temperature-low temperature duality, which, roughly
speaking, interchanges the role of V and W in T, is effected by the shift e; — e;4;.

The Pauli algebra is graded by the symmetry § = @), Ad(c?), a period two au-
tomorphism, so that 6(cl) = oi, 0(c.) = —o}, 0(0}) = —o). Then the even part

AP = {z € AP|f(z) = z} of the Pauli algebra A" = @y M, is generated by o% and

oloit!. The Kramers-Wannier automorphism « on AF is then given by

k(o]) = ool K(o]ol*) = o],

so that k(e;) = ;4.

Although k?|,r = o, where o is the unilateral shift:
2( 5\ — i+l 2( 0 o+ o i+ _j+2
K (0";) - 0'; ’ K (0’%0’3_. ) - UaJr Ua]v: )

it was shown in [39, Cor. 7.11] that x does not extend to an automorphism of A”.

But & can be extended to an endomorphism of the Pauli Algebra. Let Z/2 act on C?
by transposition a. Then the crossed product C? x (Z/2) = M,, which is generated by
unitaries uy,u, satisfying u? = 1,ujuy = —uguy, and @y M, is generated by self-adjoint
unitaries uy, uy, ... satisfying wu; = uju;, if |i — j| > 1, and wui41 = —uipu;. We can
then identify AP with C*(u;|j € N) by

j 1 00
{o2}321 = {u1,waus, wyugus, wugusug, ... },
oo
{Uﬁ}j=1 = {ug, uq,up. us, - .- }.
Then {agag“};?‘;l = {us,us,u7,u9,... }. So the even part A? is generated by
u,us, ug,... , and AP by AL and u;. By the universal property of a crossed prod-

uct, there exists a unique endomorphism v : A¥ — AP which sends u; to u;4;. Then &

is extended to v, since v|4r = £[p. Then u2|Af =g, but v? # ¢ since v?(0l) = gloit!.

2.3 The Cuntz Algebra O,

The Cuntz algebras O,, were studied by Cuntz in [20]. They are the simple C*-algebras
generated by n > 2 isometries Si,...S, which satisfy the Cuntz relations:
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Any C*-algebra generated by n isometries S7,. .. .S, on a Hilbert space, which also satisty
(2.1) is canonically isomorphic to O,. Isometries Si,...S, satisfying (2.1) may be con-
structed as follows [39, §2.8]: The (full) Fock space F on the Hilbert space C" is given
by

F(C™) = é ( Q™ cc")

m=0
where "C* =C"®C"® --- ® C*, m copies of C*, and ®°C" is the one-dimensional
Hilbert space spanned by vacuum vector Q2. We define ¢(£) € B(F) by t(€) = @pe_o t™(£),
where t™(€) : ™C* — ®™*+!C" and are given by t™(£)f = €® f, t°(§)Q =& We

write t; = t(e;) where {e;,... ,e,} is an orthonormal basis for C*. These ¢; satisfy
ity =051, Y ttf+Toa=1,

where T is the linear map T¢, f = (f,n)§. The rank one operator T o € K, the compact
operators on C", which is an ideal in B(F). Let m be the quotient map 7 : B(F) —
B(F)/K. We have that t,[1 — Y 7" titf}t%, = Tepe,p fr50 T = C*(t1,... ,t,) contains
every rank one operator and so contains K. Then 7(7,) = C*(s1,... ,Sx) = On, where

s; = m(t;) and satisfy the Cuntz relations (2.1).

2.3.1 Extending v to the Cuntz Algebra O,

To get a better understanding of the Kramers-Wannier endomorphism we extend it to

the Cuntz algebra O,. The extension of v to p on O, is given by Evans [35] as

pl(Sy +0S-)/V2) = S 5,5: + S_S_,S" (2.2)

~o

where ¢ = +. Then

P%(S,) = 8,8,5%+5.S_,8"
= S,id(S,)S% + S_a(S,)S™,

where o is the automorphism of O, which is the switch S, — S_,, i.e. a = a, where

u = 0,. This means that

[o)* = lid] & [a] (2.3)
as sectors on O,. Our notion of sectors on type III von Neumann algebras clearly makes
sense in the C*-setting of O,.

We give an explicit construction of the endomorphism p defined above (2.2) satisfying

the Ising fusion rules (2.3), using a similar method to that which Izumi used to construct
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endomorphisms given by the fusion rules for the principal graphs of certain inclusions of
factors [58, §3].

Let p be an endomorphism of a purely infinite factor M such that M D p(M) has
finite index v/2 and principal graph Az. Then, by [57, §3.2], p satisfies the following fusion

rules of sectors:
[0*] = [id] @ [«], (2.4)
[l =[ol,  [o®] = [id].

We have the following diagram of the descendant sectors:

[id] [a]

l]

We take representatives p, o such that
a-p=p,  p-a=AdU) p, (2.5)

where U is a unitary in (p?, p?) (since p? = pap = Ad(U)p? and so p?U = Up?). Equation

(2.4) means that there exist isometries S}, S; € M which generate O, and satisfy

Six = p*x)S, TeM, (2.6)
Sea(r) = p*(x)S,, TEM, (2.7)

ie. S € (id, p?), S, € (o, p?). By [80, Cor. 5.8], dim(id, pp) = 1 if p, p are irreducible
conjugate endomorphisms with finite index. Then dim(id, p?) = 1 since p is self-conjugate.
Theorem 5.2 of [80] says that for every isometry v € (id, pp) there exists a unique isometry
v € (id, pp) such that v*p(v) = 1/v/2, where /2 is the index of M D p(M). Then we
have S;p(S)) = £1/v/2. Then from (2.5) we obtain a(S,) € a ((a, p?)) = (id, p?), and
since (id, p?) is one-dimensional and S; € (id, p?), we have that o(S;) = ¢S, with ¢ € C.
Since a(S2)*a(S2) = a(l) = 1, we require c¢ = 1, and so a(S;) = ¢Si, € T. Changing
the relative phase between S; and S, if necessary (i.e. letting S| = ¢Sy, ¢ € T), we may
assume a(S;) = S; and a(S)) = a?(S,) = S,.
From (2.6), (2.7) we obtain

S;p(S1)p(z) = S5p(S12) = S;p(p*(x)S1) = a(p(x))S5p(S1) = p(x)S3p(S1),
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and so S3p(S)) € (p,p) = C (since (p, p) is every element in M which commutes with
p(z) for all z € M, and so (p,p) = p(M)' N M = C for [M : p(M)] < 4). Then we have

1
p(S1) = (5187 + 8253)p(S1) = i7§51 + fS,, feC

Since ap(S;) = p(S1), we have £1/v2S, + S, = £1//2S; + fS;. Pre-multiplying
by S} gives f = £1/+/2. And so we have

1
S1) = +—=(51 + So).
p(S1) \/5( 1+ S2)
Since p? is reducible as [p?] = [id] ® [a], the space of intertwiners between [id] @ [a]

and [id] @ [o] is two-dimensional. By (2.6), $;S; € (p?, p?) and similarly S,S; € (p?, p?)
using (2.7). Then we have (p?, p?) = CS;S; + CS,S;, where the unitary U in (2.5) is
given by U = ¢SS} + hS,8S3, g,h € C, and since UU* = g§S,S; + hhS,S3 = 1, we have
that g, h € T. Then since p(S;) = p(a(S;)) we obtain

1
V2

Due to orthogonality of p(S;) and p(S2) we have that

p(S2) = Up(S1)U* = (95157 + hS2S5)(£—=(S1 + $2))U* = £——=(gS1 + hS,)U™.

1
V2

1 1 1
P(51)"p(S2) = 5 (ST + 53)(g51 + hS3)U” = 5 = S(g + WU* =0,

and so h = —g. Then

1 - * *
p(S2) = i—ﬂgg(Sl — 52)(5157 — 5253)
1 * *
= iﬁ(sl - Sg)(SlSl - 5252).

We can still change Sy, S; — t5;,tS; (t € T) if necessary, without changing the relative
phase between S; and S,, and so we can take p(S;), p(S2) to be:

p(S1) = %(S]'*‘Sg),
p(S2) = %(SI—SZ)(Sls:—szss»

This gives
1
pl(S1+ S2)/V2] = 5(51 + 52+ (51 — S2) (5157 — S$253))

1

= 3(Si(S18] + 5253) + Sx(8157 + $25) + 51515 — 51,3
—525187 + 525,53)

= .5'1518{‘ + SzSgS;,
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and

1 * * *
pl(S) — S2)/V2] = §(sl(slsr + 58%) + S5(815; + 8283) — 815157 + S1525;
48,5188 — 555,85)

= 513255 + stls;
Setting S, = S,, S = S_ and ¢ = £, we have
pl(Sy +0S8-)/V2) = 8,5,8: +S_5_,5",,

as given earlier (2.2).

2.4 The Cuntz-Krieger Algebra Oy

The Cuntz-Krieger Algebras O, were introduced by Cuntz and Krieger in [22]. They
were a generalization of the Cuntz algebras and had a close relationship with topological
Markov chains, whose theory is part of symbolic dynamics. Let ¥ be a finite set of
cardinality m. If A = (A(7,7))ijes is a finite {0,1}-matrix the Cuntz-Krieger algebra
O, is the C*-algebra generated by a family of (non-zero) partial isometries {S;|i € X}
satisfying
SpS;=0ifi#j  SISi=) A(,j)S;S;. (2.8)
JEE

If the matrix A is irreducible then the Cuntz-Krieger algebra 04 is unique up to isomor-
phism [22, Theorem 2.13] and is simple [22, Theorem 2.14]. An irreducible {0, 1}-matrix
A defines a connected graph G with m vertices labelled by the elements of 3, and for
i,j € ¥ there is an edge from vertex i of G to vertex j if A(7,j) = 1. Then A is the
adjacency matrix of the graph G. We will often write Og for the Cuntz-Krieger algebra
O4. Note, we can obtain a different graph by indexing the matrix A by m edges labelled
by the elements of ¥, where for any two edges 7,7 € ¥ there is a vertex v such that
r(i) =v =s(j) if A(z,7)=1.

The partial isometries {S;|: € £} may be constructed in a similar way to the construc-
tion of the isometries that generate the Cuntz algebra (see §2.3) as follows [39, §2.10]:

Let 09 denote the vertex set of G. If Kn(g) denotes the paths of vertices of length n
in G, we define F4 = @7, 2(A,(G)). Then for each vertex i € V9, we again define a
partial isometry on F4 by a shift action:

Tz, — { €ir if A(s,s(z)) #0

0 otherwise,
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for any path = € A,(G), where {&,|v € A,(G)} is a canonical orthonormal basis for
(A, (G)). Then {T})i € T} satisfy the relations

titi=»  AG,j)tt] + Q@0
j
where ¢2(A¢(G)) is defined to be a one-dimensional space spanned by a vacuum vector
Q. Then, T4 = C*(T|i € V%) contains the compact operators K, and we have the exact
sequence

0 —K—T4y—04—0

where O4 = T4 /K is generated by partial isometries {S;|i € 09} satisfying the relations
(2.8).

These partial isometries were indexed by the set U9 of vertices of G. But partial
isometries satisfying Cuntz-Krieger relations may also be indexed by the set &9 of edges
of G. A path o € A given by a = 4¢1; ... i,, where i; are vertices of G, j = 1,...,n may
easily be written as a path of edges of G by @ = o .. . @y, where s(a;) = ip and r(a;) = 35,
j=1,...,n. Then s(a) =iy, r(a) = i, and |a| = n as before.

We define B-Fock space Fg, where B is the adjacency matrix of the edges of a G given
by

B(z,y) = { 1 if r(x) = s(y)
0 otherwise,
as Fp @:r, ¢2(A(G)), where A, denotes the paths of length n in G. For each edge z € €9,

define a partial isometry ¢, on Fg by a shift action:

ezx if r(z) = s(A)
tze) =
0  otherwise,

where {e,|u € An(G)} is a canonical orthonormal basis for £2(A,(G)). Then, as before,
Tp = C*(t;]z € €9) contains the compact operators K = K(Fg), and we have the exact
sequence

0 —K—71T3— 0 —0

where Op is generated by partial isometries {s;|r € &9} satisfying the Cuntz-Krieger

relations (2.8):
SpSy = Z SySy = Z B(z,y)sys;,.

y:s(y)=r(x) yees
Theorem 6.5 of [106] states that two simple Cuntz-Krieger algebras @4, Op are sta-
bly isomorphic, i.e. K ® Oy = K ® Op, if and only if Ko(O4) = Ko(Op). They are
isomorphic if and only if (K¢(O4),[1]) and (Ko(Op),[1]) are isomorphic, i.e. there is a

37



2
[ / \ [ ]
1 3
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group isomorphism between the Ko-groups that maps the class of the unit [1] of Oa to
the class of the unit [1] of Op. So Kj is a complete invariant for the stable isomorphism
class of Cuntz-Krieger algebras, and together with the position of the unit it is a complete
invariant for the isomorphism class of Cuntz-Krieger algebras.

It is well-known that if the matrix A given by the edges of G and the adjacency matrix
B of G are both {0,1}-matrices then they give isomorphic Cuntz-Krieger algebras, i.e.
O, = Op. Mann, Raeburn and Sutherland give a proof of this in [84].

2.4.1 Different Representations of O,

The Cuntz algebra O, is a particular case of the Cuntz-Krieger algebras O, introduced
by Cuntz and Krieger in [22, §1], where A is the n x n matrix where every entry is 1. In
the case of Oy we then have that O & O, where

C=(11).

O, may also be identified with the algebras O4 = Op, where A is the adjacency matrix
of G and B is the matrix indexed by the edges of G given by

B(z,Y) = br(z)s(v)»

where G is the directed A; graph (Figure 2.3). Then A, B are given by

0110
010 1000
A=|101]|, B= (2.9)
0001
010
0110

From the K-theory of Og, where B is the adjacency matrix of the bipartite graph
Az, and O, we get Ko(Og) = K1(0Og) = Ko(O2) = K;(O2) = 0, and hence we have
04 = 0p = O¢ = 0, [106]. We give another proof that O4 = O,, similar to that to [84,

Prop. 4.1], which gives an explicit isomorphism.
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Proposition 2.4.1 Let A be the adjacency matriz of As defined in (2.9). Then O4 = O,.

Proof. Let s;,s— be isometries that generate Oy, i.e. they satisfy sis, = d,,1, s48} +
s_s* = 1. We define mutually orthogonal partial isometries Sj, S2,S3 € C*(s,) by
Sy = 548_8", Sy =s_8%, S3 = s;1548*. Then s, = s, (548} +s_s*) = S3s_87 + 51 =
Sy + S35,, and s_ = s_(s48% +s_s%) = s_83S35_5% +5_8751 = 5251 + 52535;. Thus
C*(s,) = C*(S:).

We now need to verify that the S; generate O4. We have S7S; = s_s* s} s s st =
s_s*, 5353 = s_sisis.8.80 = s_s, 5355 = s_sis,st = s_s”, and so S1S1 = 5355,
S3S3 = 5355, Also, S35, = systs_sy = s;8%, S15] + 5355 = sys_sts_sts) +
SpS48ts_sisy = sy(s-s* + 548 )8t = s.5%, and so S35 = 5157 + S535;. Then these
S; do satisfy the Cuntz-Krieger relations SiS; = }_; A(1, 7)8;S;. Thus by the uniqueness
of Oy we have O4 = C*(S;) = C*(s,) = O,. O

The automorphism « on O, given in (2.3) acts by switching s; < s_. On O4 the cor-
responding action is given by the involution which switches S; « 535352, S3 «— 525152
and S; — S;. Then « leaves the AF-part of O4 invariant. However the isomorphism con-
structed in the proof above does not identify the AF-parts F3, F4 of Oz, O4 respectively,
since it sends s_s% € F3 to So € Fa.

2.5 The Generalization of the Ising Model to other
graphs

The Ising model is constructed using the graph Aj;. Other lattice models may be con-
structed using other graphs, such as the (J-state Potts model using the graph in Figure
2, whilst the Dynkin diagrams A,, of Figure 1.1 give the ABF models of Andrews, Baxter

and Forrester [1].

Figure 2.4: Q-State Potts Model

The Potts model was described by Potts [103] and is a generalization of the Ising

model. Ashkin and Teller had earlier considered a four-component version [2]. As with
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the Ising model, it is useful for gaining insight into the behaviour of ferromagnets and
certain other phenomena in solid state physics. Potts defined two models: one is now
known as the clock model, the other is the (standard) Potts model. In the clock model,
the spin at each sight may take one of @ possible values, distributed uniformly about
the circle at angles 6, = 27n/Q. The Hamiltonian of the interactions between nearest
neighbours is given by
H=1J) cos(fs —0s,),
(.9)
where the summation is over nearest neighbour pairs (¢, j) over all lattice sites, and the

site colours s; € {1,...,Q}. The Potts model uses a simpler Hamiltonian

H=-J) 6.,

(4.9)

The Q = 2 Potts model is equivalent to the two-dimensional Ising model.

The Ising model could be used to describe a lattice gas as well as a magnet, where +
means an occupied site ® and — an unoccupied site o, as in Figure 2.5. The hard square
model is used to represent particles with non-zero volume, where a similar state space is
used and a square is drawn around each occupied site as in Figure 2.6. Then these squares
must not overlap so that distinct particles do not occupy the same portion of space. If
we use the distributions of the vertices of the Dynkin diagram A, (Figure 2.7), we get the
state space of the hard square model.
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2.5.1 Construction of p; for Principal Graph A;

For a purely infinite factor M and p € End(M) with d, < oo, Izumi [57] computed the
fusion rules of descendant sectors of p, which are the rules of the irreducible decomposition
of sectors, for the cases where the principal graph of M O p(M) is one of the Dynkin
diagrams.

In a similar way to the construction of p for principal graph Az in §2.3.1, we construct
the endomorphism p, for the case where the inclusion M > p(M), for A, p(M) infinite
factors, has finite index v/3 and principal graph As. From [57], the diagram for the

multiplication of the sectors by [p] is:

[id] (] [a]
[r] [op]
Since [pal[pl? = [pa]((id] @ [pa]) = [pa] © [pal? but also [pal[ol? = (o] @ [arl] =
[id] & 2[p2] ® [o] then we obtain

[02)? = [id] ® [p2] & [a], (2.10)

and similarly, since [a][p]* = [o]([id]® [p2]) = [a] @ [a][02] and [e][p]* = [ep][p] = [p2] @[],
we have [a][ps] = [p2]. Proposition 3.3 of [57] says that [@?] = [id].

Since
[o2)?[2) = ([id] ® [p2] @ [e]) [o2] = [p2] @ [p2]? B [e][p2],
and .
[oa][p2)? = [p2] ([id] © [p2] @ [@]) = [p2] @ [p2]* ® [p2] [,
we have

[oa]le] = [a]lp2] = [p2] (2.11)

From (2.10) we have that there exist Cuntz isometries Sy, Sp, S; which generate O,

and satisfy

Six = pi(x)S, T € M, (2.12)
Sgpg(l‘) = pg(.L)Sg, HAS] A’[, (213)
Ssa(z) = pi(x)Ss, r € M, (2.14)

ie. S € (id, p3), Sz € (p2, p2), S3 € (e, p2).
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From (2.11) we may choose representatives of «, p such that
a-pp=ps, p2-a=Ad{U): p (2.15)

for U a unitary in (p2, p3).

By (2.10), [p2]® contains [id], [p2] and [a] each with multiplicity one, and hence
dim((id, p2)) = dim((p2, p2)) = dim((a, p3)) = 1. Then from (2.15) we obtain «(S53) €
a((a,p?)) = (id, p3), and so a(S3) = ¢S, ¢ € T. So changing the relative phase between
S; and Ss3 we have

a(S;) =S, a(S;) = o*(S3) = Ss. (2.16)

From (2.15), a(S;) € a((p2, p2)) = (pa2,p3), so a(S2) = €152, €1 € T. Now S; =
a?(S;) = €25, giving €2 = 1, so we have

a(Sz) =£15y, €€ {ﬂ:l} (217)

Since p, is self-conjugate, we have S}pa(S1) = £1/d,, = £1/2 = €,3/2, g5 € {£1},
as in Section 2.3.1. Then using (2.15), (2.16) S;p2(S1) = a(S1)*p2(S1) = a(S;p2(S1)) =
0(62/2) = 62/2.

From (2.12),(2.13) we obtain

S3p2(S17) = S5 p2(p3()S1) = pa(pa(x))S3p2(S1) = p3(x) S5 p2(S1),

SO Sgpg(Sl) S (pg,p%). Then S;pz(sl) = fS,y, f€C.
Then p2(S1) = (S]S; + SZS; + 5355),02(51) = 82(31 + 53)/2 + szSQ. Since we have
p2(S1)*p2(S1) = 1 we find that ff = 1/2, and so f = f'/V/?2, f' € T. Changing the

relative phase between S;, S; and S, if necessary, we may assume f’ = 1, and so we have

1 1
PZ(SI) = 562(51 + 53) + %5282, €9 € {:}:1}.

From U € (p3, p%) = CS1S; + CS,S; + CS3S3, we have U = hS; S5} + jS2S3 + kS3S3.
Then UU* = hhS; S} + 575253 +kkS3S; = 1 implies that h, j,k € T. We may take h = 1,
since Ad(U) - p2 = Ad(U’) - pa, where U’ = U/t, t € T. Then we have

U= SIS; + EgSgS; + E4SgS§, €3,€4 € T.
Now from (2.15), (2.16)

v * 1 1 Y v 1 v *
p2(S3) = pa(a(S1)) = Upp(S1)U™ = (55251 + %635252 + 5625453)(/
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. Due to orthogonality of py(S1) and p2(Ss) we find that £4 = 1,65 = —1. So we have
U= Slsf - 5235 + S3S3*, and

1 1 * * *
p2(53) = (582(51 + 53) - -\/—55252> (S]Sl - 5252 + 5353).

From (2.12), (2.13), (2.14) we obtain
Stp2(Sap2(x)) = S1pa(p3(2)S2) = pa(2)STp2(S2),
and so Sp2(S2) € (p3, p2) = ((p2,£3))"- Then Sipa(S2) = 1S3, L € C.
From (2.12), (2.13), (2.14) we also obtain
53/)2(32/)2(51”)) = Sgﬂz(Pg(z)Sz) = Pz(/)z(l'))sspz(sz) = Pg(x)siﬂz(sz),

and so S;pz(Sz) € (p%,p%) = CSISf + CSgSE + CS;;S; Then S;pg(SQ) = mlslsf +
szZSg + m3838§, my, mg, mg € C.
And again, from (2.12), (2.13), (2.14) we obtain

S3p2(S2p2(z)) = S3p5(p2(2))p2(S2) = a(p2(x))S3p2(S2) = p2(2)S3pa(S2),

and so S3p2(S2) € (p3, p2) = ((p2,£3))". Then S3p2(S2) = nS3, n € C.

Then py(S3) = (S1S7 + 5255 + S353)pa(S2) = 15155 + m1S251ST + maS25255 +
m3S2535; + nS3S;.

From the Cuntz relations of py(S)), p2(S2) and py(Ss) we find that [ = p/v/2 = —n,

mo = 0 and p, my,m3 € T. Then

1 1
pz(Sg) = EpSISQ + ml.S'gSle + m352535§ - EPS;;S; (218)
Now using (2.15) we have
1 1
,Og(SQ) = a(pg(Sg)) = EPEISBS;‘ + m1€1.5'2535'§ + mgengSISf - ﬁpelslsg. (219)

Then comparing (2.18) and (2.19) yields £y = —1 and m; = —ms.
Computing p3(S;) and using (2.12), (2.13) we find that p = m,e, = 1, and that m
satisfies m® = 1. Then we conclude that

1 1
p2(S1) = 2(51 + S3) + \/55252,
1
pg(SQ) = ﬁ_(Sl — Sg)S; + aSz(SlS'; - S\;S;),
1 1
pg(Sg) = (5(51 -+ 53) - 53252) (Sls; - 5255 + SgS;),

a(Sl) = S3, a(Sg) = —Sz, 0(53) = S],

and there are three non-conjugate solutions, given by a = 2™*/3 ¢ T, for k € {0,1,2}.
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2.5.2 (@4 as a Crossed Product

Cuntz and Krieger [22] showed that the stable algebra K ® Oy4 also arises as the crossed
product of an AF algebra by a shift operator as follows.

Let ¥ again be a finite set of cardinality m and A = (A(¢, ))ijes a finite {0,1}-
matrix. The matrix A is used in topological dynamics to construct one-sided and two-
sided subshifts. Let X4 = {(2:)icz € L%|A(zj,zj41) = 1,j € Z}. The two-sided subshift
o4 acts on the compact spaces X, and is defined by c4(z); = zi41, € X4. The pair
(X a,04) is called a topological Markov chain.

For m < n, let Xpn = {(z))%,, € Z" ™ A(zj,z;) = 1,j =m,m+1,...,n — 1} so
that X4 = Xoowo. For i,j € I, let X3, = {(z:)ieyy € XmnlTm = i,7n = j}, so that
| X3, = A"™(i,5) and Xpmn = U, ; X3/ For m > 0 we use the notation X for X¥,
so that Xp, = U;; X4, Let Fr = @, ; i/, where F7 = M(|X;J]) is the full n x n
complex matrix algebra, n = |X#|, and is generated by matrix units e,,, p,v € X}/
We define a homomorphism ¢, : Fry — Fny1 by ¢mlens) = 3°, jes Alp, 1) AU, q9)€puq.pra
for u,v € X%J. Then we can construct an AF algebra F4 = lim_,(F, #m).

For a subset Y of X4, we define its unstable manifold by
W(Y) = {z = (z;) € Xa|z; =y; for some y = (y;) € Y, for all j < jo for some j, € Z},

which has the inductive limit topology inherited from the shift space. If x € Xy, let
F(z) = {o%z|k € Z}, which is a countable shift invariant subset of X4. If 2,2’ € X4,
there exists a homeomorphism h : W(F(z)) — W(F(z')) such that h(y); = y; for all
i >0,y e W(F(z)). Let G(z) denote the uniformly finite dimensional homeomorphisms
of W(F(z)), i.e. the homeomorphisms g of W (F(z)) such that g(y); = y; for all i > 0.
Then hG(z)h~! = G(z’) and the following construction doesn’t depend on the choice
of z. Let Dy = Co(W(F(z))) be the algebra of continuous complex-valued functions
on W(F(z)) that vanish at infinity, and let A be the crossed product of D4 by G(z),
i.e. A= C*(Dg4,G(z)). Let U be the canonical representation of G(z) in the multiplier
algebra of A, so that for every g € G(z) there is a corresponding unitary U(g) in the
multiplier algebra of A. If 7 is the closed ideal of A generated by all elements of the form
U(g)Ps — U(g')Pg, where u, v are uniformly finite dimensional homeomorphisms which
agree on the compact open set B of W(F(z)), and Pp is the characteristic function of B.
Then we define the AF algebra F4 = A/J. The shift induces an automorphism o of F4,
and let O, denote the corresponding crossed product O4 = F4 x Z = C*(F4,Z). Cuntz
and Krieger [22, Theorem 3.8] proved that there is an isomorphism so that O4 = K® O,

and as a consequence of [21, Theorem 2.3|, the same isomorphism gives F 4 = K ® F4. It
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should be noted however that the decomposition of O, as the crossed product of an AF
algebra by the integers is not unique.

For the Dynkin diagrams As,41, Dny2, n > 2, illustrated in Figures 1.1, 1.2, there
are Z, actions on both Agns1 and Dy 4o, For Ag, ., this is given by reflecting the graph
horizontally about the vertex n+1, sending the vertex ¢ to the vertex 2n+2—i (the vertex
n + 1 is invariant under this action). For D, the Z, action is given by interchanging

the vertices 1 and 2, and leaving the others invariant.

Proposition 2.5.1 The stable algebra K ® Op, ., 1s isomorphic to the crossed product of
the stable algebra K ® Oa,,,, by the Z, action on Oa,,,, induced by the above Z, action
on the graph Aasny1. The reverse is also true, that K® Oa,, ., is isomorphic to the crossed
product of K ® Op,,,, by the Zy action on Op,,, induced by the above Zy action on the
graph Dy ya.

Proof

The Z; actions on Agny1, Dpyo induce actions on the algebras Og,,,,, Op,,, by
the uniqueness of Cuntz-Krieger algebras. Let ¢ be the Z, action on Og,,,,, and let
W = W(F(z)) U W(F(¢(z))). Then with Dg,,,, = Co(W) and A = C*(Da,,,,,G(z)),
let F a,,,, be the AF algebra A/J as above. Then K ® Oa,.,, % Zs = Fa,.,, X Z X Ls.
Since the crossed product F 4,,,, x Z, of the AF algebra F 4, ., is isomorphic to Fp,__,,
the AF algebra for D, ., which is the Z,-orbifold of A,,,;, and the Z and Z, actions
commute, K ® Op,yy XZy X Fp, XLy XL Fp ,XZ=K® Op,.,,- The reverse

statement follows similarly. g
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Chapter 3

The K-Theory of Cuntz-Krieger
Algebras of the SU(N)-Models

For the K-theory of the Cuntz-Krieger algebras Og where G is one of the Dynkin diagrams
we completely derive (Ko(Og), [1]) and compute its K; group. For the SU(3) ADE graphs,
we compute Ko(Og) for the graphs A™, D™ n < 20, the exceptional £ graphs, and the
01-parts Gp; of these graphs. We also compute their K; groups explicitly.

K-theory provides invariants which may be used to classify C*-algebras. The classi-
fication of C*-algebras began with the classification of AF algebras by Elliott in [30] in
terms of the ordered group Kj,. Murray-von Neumann equivalence on projections in a
unital C*-algebra A is given by the equivalence relation e f if there exists an element
v € A such that e = v*v and f = vv*. Let D(A) denotes the space of equivalence classes

of projections in A. For the matrix algebra M,(A) over A, there is a *-homomorphism

0
Y, which embeds M,(A) in M,,1(A) given by ¢¥,(a) = ( g 0 ) Then there is an

induced map ¥, : D(M,(A)) — D(M,,1(A)), and we let Do (A) = lim_ (D(M,(A)), ¥n).
Then Ko(A) is the enveloping group of the semigroup D (A), which is formed in the
same was as going from the semigroup S = {0,1,..., N} to Z by taking the equivalence
classes of differences in S. The K-group K;(A) is defined similarly in terms of unitaries
rather than projections: The unitary group U,(A) of M, (A) is embedded in U,;(A) by

0
u — ( g ) >, and we let U (A) = lim_, U,(A). Then K;(A) = Ux(A)/Ux(A)s where

Ux(A)o is the connected component of the identity.
It is well known from [21] that for an n x n matrix 4, Ko(O4) = Z"/(1 — AT)Z",
whilst K1(O4) = Ker(1 — AT) = {v € Z"| (1 — AT)v = 0}, i.e. K1(O4) = ZP, where p is

the multiplicity of 1 as an eigenvalue of A.
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3.1 SU(2)

By a classification theorem of Rgrdam [106, Theorem 6.5], two simple Cuntz-Krieger
algebras @4 and Q4 are stably isomorphic , i.e. K®O4 = K®O 4, if and only if Ko(O4)
is isomorphic to Ko(Oy4/), and O, is isomorphic to O4 if and only if (Ko(O4),[1]) and
(Ko(Oa), [1]) are isomorphic. The K-theory of the Cuntz-Krieger algebras Og where G
is one of the Dynkin diagrams was given by Izumi in [59]. However, in order to compute

the position of the unit [1] we completely derive (Ko(Og), [1]) here.

3.1.1 Dynkin Diagram A,

The n x n adjacency matrix A4, of A, is given by

[0 10 0
101
010 1
Dp, = (3.1)
1
.01
\ 0 1 0

We will use the notation A, =1— A% (=1-A4,,).
First we consider n = 2: Let w = (w;) € Z? be a column vector. Since

1 -1
A2w — ( 1 1 ) w = ('u)l — Wq, =W + w2)Ta

the space A,Z? is one-dimensional, generated by the single vector, (—1,1)7. Then Z2/A,Z?
can be described as the space of equivalence classes of Z2, with equivalence relation defined
by v ~ w if vy +v2 = wy + wq, for v = (v;), w = (w;). There is an isomorphism
v:Z*[AZ? — Z given by v (a1, 02)" + A2Z?) = a1 + ay.

The equivalence class [1] of the identity is [1] = 7 ((1,1)T) = ((1 + k,1 — k)T) +A,Z2,
where 7 is the quotient map 7 : Z2 — Z%/A,Z2, which is mapped to (14+k)+(1—k) = 2
in Z. So for Az, (Ko(Oa4,),[1]) = (Z,2).

Next we consider n = 3. We have
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Then

AZ8 = {(wl — Wy, —wp + w2 — W3, —wWz + w3)T| wy, Wy, W3 € Z} :

By the successive changes of variables w; — wy — a; and —wy + w3 — a3z, then —a; —
a3+ wy — ay we can rewrite A3Z°® as A3Z® = {(a1,a2,a3)T| a1,a2,a3 € Z} = Z*. So
78/ AsZ3 = Z3/Z3 = 0, and the equivalence class of the identity is trivial, [1] = 0. Then
we have, for Az, (Ko(O4,), [1]) = (0,0). The same holds for Ay.

We now move to the case when n > 5.
A7 = {(w1 — Wo, —W) + Wy — W3, —Wg + W3 — Wy, ..., —Wp_1 + wn)T| w; € Z} .

By the changes of variables wy —ws — a1, a; — w3 — a2 and —wp —ws+a; —ay — as,

we can rewrite A,Z" as
n T
AZY = {(01702,03»w4 — w5 — a1 + Ay, W4 + W5 — We, . . ., —Wn_1 + Wy)" | @, w; € Z} .

So we can see that a vector w € A,Z" can be written as w = u® u' € Z & A,_;Z"3,
where A/,_,Z"3 is the space of vectors v = @(©® + u® | where u® is any vector in
Ap_3Z" 3, and o) = (ﬂ?)) € Z™3 is the vector with ﬂgl) = —u; + uy and 7&5-1) = 0 for
all other j. Since & is fixed by the choice of u = (w;) € Z3, ' relates A/,_,Z"~® and

An_3Z™3 as isomorphic vector spaces. Then
ZMAZY = 7' (2PN, 203222 e 23 /AN, 278
o Zn—B/A:l_:;Z'n—S o Zn—3/An_3ZTL—3.

When n = 5, A,_jZ"3 = AZ? = {(—a—u; +up,a)T| a €Z}. Since uy,uy are
fixed by the choice of u, in a similar way to the case when n = 2 above, there is an
isomorphism p : Z?/AyZ? — Z given by p ((c1, a2)T + A4Z?) = a1 + a,. This extends
to an isomorphism v : Z5/AsZ°% — Z, given by

V(’/T('I.U))=U((0,0,0,'U)4+wl —w2+k,w5——k)T+A5Z5) = w5 + wg — Wy + Wy,

where 7 is the quotient map 7 : Z° — Z°/AsZ5, w = (w;) € Z°.
When n = 8, A{Z° = {(a) — w1 + ua, a3,a3, —k + a1 + a2, k)T| a1, a2, a3,k € Z} . Per-
forming the change of variable a; — u; + us — df, we get

A’SZ“" = {(a'l,ag, as, '—k + ag — a’l — U + Ug, k)TI a'l, a2,a3,k € Z} .
The isomorphism v : Z8/AgZ® — Z is now given by

I/(ﬂ'(’u})) = u((O,...,O,w7+w4—w5+w1 ——w2+k,w8—k)T+ASZS)

= 'wg+w7—w5+w4—-w2+w1,
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where 7 is again the quotient map.
Consider now n = 2 mod 3, for n > 8. We have an isomorphism v : Z"/A,Z" — Z,

given for w = (w;) € Z" by

v(n(w)) = Wnp+ Wno) — Wno3+ Wn-g — Wn_g + Wn_7 — Wn_g + Wn_10

— ... —wy+uw.

The identity 1 = (1); is the column vector with 1 as every entry. Its equivalence class [1]
in Z is again 2. So, for A,, n =2 mod 3, (Ko(Oa,),[1]) = (Z,2).

For n # 2 mod 3,n > 5, we have Z"/A,Z" &= Z" 3 /A, _3Z"3 = 0.

Summarizing, we have the following for A,:

_ ) (Z,2) if n=2mod3,
(Ko(Oan), 1) = { (0,0) if n#2mod 3. (3.2)

Next we compute K, for O4,. For the adjacency matrix A4, of A,, the eigenvalues
M k=1,...,n, are given by (1.12). Then A\* = 1, for some k, if

kn vis
1 —§+27rr, r€Z. (3.3)

Since |k| < n and k,n > 0, the left hand side satisfies 0 < kn/(n + 1) < m. Then the
right hand side of the equation must also lie within these bounds, giving the constraint
0 <(1+6r)/3 <1, sothat -1/6 < r < 1/3. Then r = 0, and (3.3) becomes 3kr =
(n+1)7, and we get k = (n+1)/3. Here k is only an integer when n = 3¢+ 2, for q € Z,

and hence A* = 1 only when n = 2 mod 3 and has multiplicity one.

Hence we have the following result for A,:

Z if n=2mod3,

Ki(O4,) =
1(On) {0 if n#2mod 3.

3.1.2 Dynkin Diagram D,

We first compute Ky of Op,. The n x n adjacency matrix Ap_ of D, is given by

(01 0 SR

101

01
Ap, =

n

[e—
— e O =

\ 0
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and we will again denote by A, the matrix A, =1 - AL (=1- Ap,).
When n =4,

1 -1 0 O
-1 1 -1 -1
A4 = )
0 -1 1 0
0 -1 0 1
and the vector space A4Z* is
A4Z4 = {(wl — Wy, —W] + Wy — W3 — Wy, —W2 + wg, —wWy + w4)T| Wy,... ,Wy € Z} s

which, by the change of variables w; — wy — ay, —w, + w3 — ag, —wp + wy — a4 and

wy — k, AyZ* can be rewritten as
AZ4 = {(al, —a; — a3 — ag — 2k, a3,a4)7| a1, a3,a4,k € Z} .
Then the quotient map 7 : Z* — Z*/A4Z* sends
v =(v;) — (0,01 + vy + v3 + v4 + 2k, 0,0)T + A4Z*,

where k is the unique integer such that v; + ve + vz + v4 + 2k € {0,1}. Then there is an
isomorphism v : Z*/A,Z* — Z, given by v ((0,b,0,0)T + AyZ*) = b, or, equivalently,
for w = (w;) € Z4,

1 if ), w;is odd,

0 if ), w;is even.

y(m(w)) = {

So the equivalence class [1] of the identity is mapped to 0 in Z, for Dy. Then we have
(Ko(Op,), [1]) = (Z2,0).
When n = 5, AsZ® is given by

{(w) — wy, —wy + wy — w3, —wy + w3 — W4 — W5, —W3 + Wy, —w3 + ws)" | w; € Z} .

Performing the successive changes of variables wy; — wy — a;, —a; — w3 — ay, wy +
ay +ay — a4, ws +a; + a; — as, and lastly —wy + a1 + ay — a4 — a5 — a3, we find
that AsZ® = {(a1,a2,a3,a4,0a5)7| a1,...,a5 € Z} = Z5, and Z°/AsZ° = Z°/Z° = 0. So,
for D5, (Ko(Ops), [1]) = (0,0). The same holds for Ds.
Since, for n > 7, D,, is just the graph D4 with the graph A,_, added as a tail, then,
in the same way as for A,, we have A,Z" =Z3 ® A}, ,Z"73, and A}, _,Z"3 = A, _3Z"3.
When n = 7, AjZ* = {(a; — uy + uz, —a; — a3 — a5 — 2k, a3,04)7| a1, 03,04,k € Z} .

Performing the change of variable a; — u; + u2 — af, we get
AQZ“ = {(a’l, —0,,1 — a3z — a4 — Uy + Ug — 2k,a3,a4)T| a'l,a3,a4, k€ Z} .
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Then the quotient map 7 : Z7 — Z7/A;Z" sends
v = (v;) — (0,0,0,0,vs + vg + V6 + V7 + 11 — va + 2k,0,0)7 + A;Z,

where, again, k € Z such that vs + v4 + v + vz +v1 — vo + 2k € {0,1}. Then there is an

isomorphism v : Z7/A7Z7 —> Z,, given, for w = (w;) € Z7, by

1 if wy +we + ws + wy — wy + w; is odd,

0 if w7+ we+ ws+ wg —wy+ w; is even.

y(m(w)) = {

For general n = 1 mod 3, n > 7, the isomorphism v : Z*/A,Z" — Z,, is given, for
w = (w;) € Z", by
1 if wis odd,
v(r(w)) = e~
0 if w is even,

where

W = Wp+ Wpo1+ Wp2+ Wn-3— Wp_5+ Wn6— Wn-g+ Wn9

— ... — Wy + uwn.

The sum w is even when w is the identity 1, so the equivalence class of the identity is
always 0. Then, for all n =1 mod 3, (Ko(Op,), [1]) = (Z,,0).

When n # 1 mod 3,n > 7, Z* /A, Z" = Z" 3 /A, _3Z"3 = (.

Summarizing, we have the following for D,:

_ | (Z,,0) if n=1modS3,
(Ko(Oo. ), 1)) = { (0,0) if m#1mod3. (3.5)

We now compute K; for Op,. The eigenvalues \X, k = 0,1,... ,n—1, of the adjacency

matrix Ap, are given by (1.13). Then A% =1 for some k if

(2k+1n
Tnj—Q-—3+27r7”, r € Z.

Using the same argument as for A,, we find that r = 0, and we find that k£ must satisfy
k = (2n — 5)/6. For k to be an integer we require that n = 3q + 5/2, for some q € Z,
so n cannot be an integer. Then 1 is never an eigenvalue for any n. Hence, for D,,
Ki(Op,) =0, for all n > 4.

Since Og,,,, is a subalgebra of Og,,,, XZ,, thereis amap Oa,,,, — Oa,,.,, XZ;. Asa
result of Proposition 2.5.1, this should give a map Oa,,,, — Op,,,, and K¢(Oa,,,,) maps
into Ko(Op,,,)- By the results (3.2), (3.5) we have K¢(Oa,,,,) = Z and Ko(Op,,,) = Z,
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so that this claim is true. Similarly, there is a map Ko(Op,,,) — Ko(Oa,,,,)- However,
we see that the unit [1] = 0 in Ko(Op,,,) does not map to the unit (1] = 2 in Ko(Oa,,,,),
hence the algebras O4,,,, X Z; and Op,,, are only isomorphic when we tensor with the
compact operators. We expect similar results for the K-theory of the algebras O 4 and
Opm, since the graph D™ is a Zs-orbifold of the graph A™) and vice versa, and hence
we expect that £ ® O X Z3 = K ® Op and K Q Opmy X Zz = K ® O 4. There
should then be maps Ko(O 4) — Ko(Opw) and Ko(Opm)) — Ko(O4m).

3.1.3 Exceptional Dynkin Diagram FEg, E7 and Ej

For Eg, the adjacency matrix Ag, is given by

(01 0000)
101000
010101

Ag. = 3.6

#7loo0101 (36)
00010
\0 01000/

We let A =1— A% . Then
AZ® = {{wy — wy, —wy + wy — w3, —wq + w3 — Wy — We, —W3 + W4 — W,

—wy + ws, —ws + wg) " |w; € Z}.

By the successive changes of variables wy, — wy — aj, —a; — w3 — ag, ws — wy — as,

a; + az + wg — ag and —wy — wy — ag — az, we can write AZS as
AZ® = {(a1,as,a3,a1 + a2 — a5, as,a6)" |a; € Z}.

Then the quotient map 7 : Z% — Z5/AZ8 sends
v =(v;) — (0,0,0,v4 — v; — vy +v5,0,0)T + AZE,

and there is an isomorphism v : Z8/AZ® — Z given, for w = (w;) € ZS, by

v(m(w)) = v((0,0,0,v4 — v; — vy + v5,0,0)T + AZ8) = vy — vy — vy + vs.
Then for the identity 1 = (1); € Z%, v(7(1)) =1—1-1+1 = 0. Then for Es we have
(Ko(Og), [1]) = (Z,0).

Next we compute K, for Og,. From (1.13) we see that the adjacency matrix Ag; of
Es has the eigenvalue 1 once, and hence K,(Og,) = Z.

For G either of the Dynkin diagrams E; or Es, Kq(Og) = 0 [59], and hence we have
(Ko(Ok), [1]) = (Ko(Og,), [1]) = (0,0), and (K1(Og,) = (K1(Og,) = 0.
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3.2 K-Theory for O where G is an SU(3) ADE graph.

To obtain the following results for Ko(Og) where G is an SU(3) ADE graph we wrote a
code in Visual Basic to reduce the matrix 1 — Ag to Smith normal form- a diagonal form
where the diagonal elements are the elementary divisors of the matrix. This is achieved

by using the following elementary (determinant) row and column operations:

1. Add a multiple of one row to another row, or a multiple of one column to another

column
2. Interchange two rows or two columns, and multiply one of them by a factor —1.

If ay, ay, ..., ax are the (moduli of the) elementary divisors that appear along the diagonal,

C1 C2.

then Ko(Og) = Zo, © ... ® Z,,. If a has prime decomposition a = p{'p3?---pS~ then
Lo & Loy ®Zg, © -+ ® Z,,,, where ¢; = p*. We list the prime decomposition of the
integers a; in the following tables. The computations of the K, groups are shown in

Section 3.2.6.
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3.2.1 A graphs
n ay, ., Qg KI(OA("))
4 0 Z
5 2,2 0
6 7 0
7 22 13 0
8 0,2, 37 Z
9 37, 109 0
10 2,2, 24 24 41 0
11 67, 109, 199 0
12 0, 32, 32, 5, 7, 37, 109 Z
13 32, 5,5,13, 13, 13, 13, 433 0
14 2,24 13, 43, 43, 239, 757 0
15 2, 2, 61, 241, 271, 271, 5851 0
16 0,222 2% 3% 7 7, 17,17, 79, 241, 4561 Z
17 103, 137, 919, 2857, 4591, 6971 0
18 17, 19, 19, 37, 109, 199, 271, 11719, 44281 0
19 7,7, 7, 37, 229, 419, 15581, 77863, 175447 0
201 0,2,2,2,2,23 2% 26 26 5 5 52 11, 11, 19, 29, 41, 41, 61, 241, 1321 Z

O0l-part of A

n | Ko(O ) | Ka(O )
4 z

5 0 0
6| 2z

7 0 0
8| =z

9 0 0
0] z

S 0
2] 7

3] o 0
4|
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3.2.2 D graphs

n a1y, A K1 (Opm)
) 0
6 7 0
7 22 0
8 0,23 Z
9 37 0
10 41 0
11 67 0
12 0, 3,73 Z
13 3, 241 0
14 2, 24,239 0
15 2, 2,61, 241 0
16 0,222 23 17,17 Z
17 137, 6971 0
18 7, 19, 19, 37, 199 0
19 9, 4613701 0
20 0, 5, 5, 5, 52, 29, 41, 41 Z
21 2, 2,2,22% 13, 43, 421, 1933 0
22 24 232 31, 199, 1163 0
23 47, 47, 47, 1657, 5521 0
241 0,2,3,3,3,3?32%5,5,5, 11, 97, 337 Z
27 33, 5, 13, 2789321, 4353169 0
3.2.3 A* graphs
n Ko(O gn)») K1(@A(n):)T
n =0 mod 4 Z Z
n # 0 mod 4 0 0
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3.2.4 D* graphs

0l-part of D*

n a,...,Qax K1 (Opm).)
6 7 0
7 13 0
8 0,7 Z
9 37 0
10 23, 23 0
11 109 0
12 0,337 Z
13 5, 5,13 0
14 13, 41 0
15 2, 2, 241 0
16 0,7, 79 Z
17 2857 0
18 7,19, 37 0
19 37, 229 0
20 0,24 24 19 Z
21 13, 1933 0
22 109, 397 0
23 74521 0
2410,3,3,7,7,97 Z
n KO(OD,(;;") Kl(O,Dg,;).)
2% + 1 0 0
4k Z, L Z
4k + 2 Zy 0
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3.2.5 £ graphs

£ Ko(O¢) K1(O¢)
E® Zo ®Zy ® Ly 0
ED | 20202:0Zs | 72
EP N ZoZo0Z;02; | 72
P 202002 | 27

EP | ZoZyols Z
EP N 202, 02,02
£(24) Zs ® Zs ® Zo7 0
Ol-part of £
8 KO(O&n) K1(0€01)
£® 72 /e
81(12) Z2 Z2
82(12) Z2 Z2
8§12) 72 72
8}12) 7 7
55(12) 7 Z
£ 0 0
3.2.6 K;(Og)

We begin by computing K;(Og) for the graphs A™:
Lemma 3.2.1

Z if n=0 mod 4,

K 0 n =
1(Oam) {o if n#0 mod4.

Proof
The eigenvalues of the adjacency matrix A, of A™ are given by (1.26). Then ) = 1

yields the following equations:

2 27 27
cos (5%(/71 + 2p2)) + cos (%(Qpl + pz)) + cos (B—n(pl - p2)) =1, (3.7

sin (g—Z(pl + 2p2)) _sin (g—Z(Qpl + m)) +sin (%(pl _ m)) — 0 (38
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Using trigonometry sum-to-product identities we can rewrite equation (3.8) in the

following three ways:

sin <§—Z(p1 — pz)) — 2sin (%(pl — pg)) cos (%(pl + p2)> = 0, (3.9)
—sin (%(Zpl + pz)) + 2sin (?%(Qpl + pg)) cos (%pz) = 0, (3.10)
sin (%(pl + 2p2)> — 2sin (3%(/)1 + 2,02)) cos (%pl) = 0. (3.11)

From equations (3.10), (3.11) we see that if 3() = 1, then 8 =1, where p = (p2, p1)-

Using the double angle formula, we can write (3.9) as
N m m B
2sin (%(Pl - pz)) [cos (é—r—l(pl - [)2)) — cos (;(pl + pz))] =0.

We have two cases:
Case (1):  cos(m(p; — p2)/3n) — cos (7(p1 + p2)/n) = 0.
Then w(p; — p2)/3n = xn(p1 + p2)/n — 27r, r € Z. For the positive case we have

pr—p2 = 3p1+3pa—6rn
6rn = 2p; + 4p..

Since the R.H.S. is positive, the L.H.S. must also be positive, so we have 7 € N, and using
the restriction to the Weyl Alcove p; + p2 < n—1, we find 3rn — 2p0+ po < n -1,
3rn—n+1< p,. Since pp < n—2, weget3r <2-3/n <2 Butr €N
so we have a contradiction. We arrive at a similar contradiction when we consider
m(p1 — p2)/3n = —m(p1 + p2)/n — 277

Case (2):  sin(n(p1 — p2)/3n) = 0. Then p; — p2 = 3an for some a € Z. If a > 0 we have
p1 = 3an + p, > n, whilst for a < 0 we have p; = p; — 3an > n. So we must have a = 0
and p; = pp. Putting p; = p, back into equation (3.7) gives 0 = 0, and equation (3.8)
becomes 2 cos (2mp;/n)+1 = 1. Solving cos (27p, /n) = 0 gives 2wp, /n = 7/2+bm, b € Z,
so p1 = n(2b+1)/4. Since p;,n > 0, b must be non-negative, and either n or (2b+ 1) must
equal 4k for some positive integer k. The latter is impossible since b = 2k — 1/2 cannot

be an integer for any k£ € N. So for 1 to be an eigenvalue, we must have n = 0 mod 4.

We now show that the eigenvalue 1 only occurs once. Let n = 4k, and p; = p;. Solving

equation (3.7) gives mp;/2k = w/2 + wm, for some m € Z, so

p1 = k(2m+1). (3.12)
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Now m > 0 since p1,k > 0, s0 p; + p2 < n — 1 gives

o1 < 2% — % (3.13)

Combining equations (3.12) and (3.13) we get 2m < 1 —1/2k < 1. Since m > 0 must
be an integer, m = 0. Then p; = k(2m + 1) = k, and the only vertex for which 1 is an
eigenvalue is p = (p1, ) = (k, k). O

Corollary 3.2.2 (i) Forn=25,6,...,

Ky(Opiwy) = Z if n=0 mod {4,
e 0 if n#0 modd,

(i) Forn=25,6,...,

K\ (O ) = Z if n=0 modd4,
A 0 if n=#0 modd4,

(iit) Forn =35,6,...,

K1 (O ) = Z if n=0 mod4,
e 0 if n#0 modd,

(1v) K1(Og®) = K1(Og29) =0,
(U) Kl(ogfw)) = Kl(ogélz)) = Kl(ogém)) = Z2,

(vi) K1(08£12)) = Kl(ogén)) =7Z.

Proof. The results follow from the multiplicity of the exponent (n/4,n/4) (which gives

the eigenvalue 1) in the corresponding modular invariant for each graph, as given in
(1.14)-(1.25). O
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Chapter 4

Ocneanu Cells and Boltzmann
Weights

Here we will compute the numerical values of the Ocneanu cells, and consequently repre-
sentations of the Hecke algebra, for the ADE graphs. However we have been unable thus
far to compute the cells for the exceptional graph 5512). For the graphs DG%) k=23, ...,
DM* n =6,7,..., and 81(12) we compute solutions which satisfy some additional con-
dition, but for the other graphs we compute all the Ocneanu cells, up to equivalence.
The existence of these cells has been announced by Ocneanu, although the numerical
values have remained unpublished. Some of the representations of the Hecke algebra have
appeared in the literature and we compare our results.

For the A graphs, our solution for the Ocneanu cells W gives an identical representation
of the Hecke algebra to that of Jimbo et al. [60] given in (4.15). Our cells for the .AM*
graphs give equivalent Boltzmann weights to those given by Behrend and Evans in [4].
In [27], di Francesco and Zuber give a representation of the Hecke algebra for the graphs
D©* and £®), whilst in [108] a representation of the Hecke algebra is computed for the

1(12) and £ Our solutions for the cells W give an identical Hecke representation

graphs €
for £® and an equivalent Hecke representation for £'?. However, for £@4, our cells give
inequivalent Boltzmann weights. In [43], Fendley gives Boltzmann weights for D® which
are not equivalent to those we obtain, but which are equivalent if we take one of the

weights in [43] to be the complex conjugate of what is given.
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4.1 Ocneanu Cells

Let T" be a subgroup of SU(3) and denote by T its irreducible representations. One can
associate to I' a graph Gr whose vertices are labelled by the irreducible representations
of ', where for any pair of vertices 7,7 € T the number of edges from ¢ to j are given
by the the multiplicity of j in the decomposition of ¢ ® p into irreducible representations,
where p is the fundamental irreducible representation of SU(3), and which, along with
its conjugate representation g, generates %, the irreducible representations of SU(3).
The graph Gr of a subgroup I' of SU(3) or SU(3), is made of triangles, corresponding
to the fact that the fundamental representation p satisfies p® p ® p 3 1. For a graph G,

a triangle A,(;",f (L LI L,k 2 iis a closed path of length 3 on G, consisting of
edges a, 0, v of G such that s(a) = r(y) =1, s(8) = r(e) = j and s(y) = r(8) = k. For
each triangle A%’,f 7), the maps o, § and -y are composed:

§ 9edg” i®p®p®p@k®p®pﬁ—®§j®p@i,
and since % is irreducible, the composition is a scalar. Then for every such triangle on Gr
there is a complex number, called an Ocneanu cell. There is a gauge freedom on the cells,
which comes from a unitary change of basis in Hom[i ® p, j] for every pair 4, j.

Let G be one of the finite ADE graphs with Coxeter number n, let ¢ = ™/ so that
the Perron-Frobenius eigenvalue of G is [3],. We will denote the quantum number [n],
simply by [n], n € N. A type I frame in the graph G is a pair of edges «, o/ which have
the same start and end points. A type II frame is given by four edges o;, i = 1,2, 3,4,

such that s(a;) = s(as), s(az) = s(as), r(e1) = r(az) and r(a3) = r(ay).

Definition 4.1.1 ([94]) A cell system W on G is a map that associates to each oriented
triangle Afj‘kﬂ " in G a complex number W (Afj‘kﬁ "

a

(1) for any type I frame =" in G we have

k k
W f 2 W 3 2 = 5 ' 2 . :
S| i) = anma a

a ! a
———— Qi .
>,
e e

(2) for any type II frame <°l LTE in G we have

k k k k
RAVSErRRISEDS
,‘%" * i,Aiz g i,/\i i‘éi,

Q, a,
B,
= 5(!,,&, 6(:,,(:, ¢i‘ ¢i, ¢i, + 60,.0‘ 60‘4&, ¢i, ¢i, d)i\

) with the following properties:

(4.2)

61



Figure 4.2: The Yang-Baxter equation

These rules correspond precisely to evaluating the Kuperberg relations K2, K3 respec-
tively (see Section 6.1.2), associating a cell W(A,s,) to an incoming trivalent vertex,
and W (A, p~) to an outgoing trivalent vertex, as in Figure 4.1.

We define the connection
l P1

— 1
Xosbs = ol Le2
ko j
for G by
Xoaps = q§5m,p3‘spz,p4 - q-%u,f;,’ﬁ, (4.3)

where U2 is given by the representation of the Hecke algebra, and is defined by
1 - P304\ 117 { A (PP1P2)Y
URLEE =D By riom W (BT IW (D50, (4.4)
A

This definition of the connection is really Kuperberg’s braiding of (6.1).

The above connection corresponds to the braid element g; (1.2), which is the Boltz-
mann weight at criticality. It was claimed in [93] that it satisfies the unitarity property
of connections (1.31) and the Yang-Baxter equation (1.32). The Yang-Baxter equation
(1.32) is represented graphically in Figure 4.2. We give a proof that the connection (4.3)
satisfies these two properties.

Lemma 4.1.2 The connection defined in (4.3) satisfies the unitarity property (1.81) and
the Yang-Baxter equation (1.32).
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Proof
We first show unitarity.

) 2 _1 1
Z X;’J;::Xgal gf = Z (qséﬂl,mapzym -q 3 Z é ( )¢ ( )Wﬂs,ﬂq ,\W 1,P2, )\)
s(p1)Pr(p2

£3.P4 P3,P4 A

1 1

( 5p;p35p'2,,4 QEZWWpQ,pgAwamA)

pa,m Wy, P2, AWp’, N »\Wps»pw\

- .+
01,0, 0ps.04 2
oL aszp:4¢ (pl)¢r(pz)

1

-1 W o
(qém 302,00 Wit o1, AW pir +4 001,03904.00 Wos.00. Wor 2, ,\)
Ps P1)¢"(P2)

£3,P4,A

- +
p1 N ps Iz 2
A w4 (m)¢r(m)
i} 1 o
—(g+q7") E mwpg,pg.,\wpl,m,,\

Wor e, Wi maW, e /\[2]¢s(ps)¢r(p4)5'\ A

= 6 16

p1.,019p3.05>

since g+q~! = [2], where we have used Ocneanu’s type I equation (4.2) in the penultimate
equality.
We now show that the connection satisfies the Yang-Baxter equation. For the left
hand side of (1.32) we have
Z X 01,02 X P3.P4 X 03.P5

P1,P2 01,03" 02,06
01,02,03

2 2
— E 3 _ Z {01:02 -3 Z {P3:P4
(q3 691 101 5/?2,02 P1,01 ) (q 3 501 3 503,,04 o1 03)

01,02,03

2 1
-3 —_ -Z(U&Ps
X (q 360’2:03696:P5 q3 Uz,pﬁ)

— 2 _ P4,P5 __ P3.P4 __ P3:pa P3:P4 7 [03,P5
= q 591 7P36P2»P4 6/’5»!’6 691 P3 upz P6 695 »P6 upl,pg q5P5.PG upl p2 upl o3 upg 06

+ § :ugls Z: ug;,gﬁs + 5p5 6 E : UOLo2 L fP3Pe _ q—l E : U102 1fP3:P4 uaayps

P1,p2 71,02 £1.P2 71,03 02,P6

01,02
— 2 _ P4:P5 __ P3.P4 P3:P4 1 493,05 4 03,02 7 4P4,P5
= 4q 5/’1 r935P2xP4 6P5:96 5Pl »P3 upz P6 2q695v/’6 up] P2 upl 03 upz P6 up] 02 uaz P6

P5P6 E :

W . )\W ) ,AW R XW N
¢s(m)¢r(m)¢s(m)¢r(m pre|aonoRA T enen T Pk

71,92
AN
1 1 —_ —_ -
1 ¢2 ¢ ¢ o 1) WPI-P2’>‘W01-Uz)‘walaﬂav\'WP3.P4./\’W62,06,A”Wol‘ps,z\“
o Ps(p1)Prp2) Pr(pa) Ps(o2)Pr(ps)
AI,A,’
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— 2 _ P4,P5 __ P3,P4 § P3,P4 7 f03:P5 § P3,02 7 /P4:P5
= q 5!’1,#36/121174595»06 anI,PS upmpﬁ 2q5/’5ﬂ°6 upl»pz + upl,ﬂs upz:ﬂs + uplypz uﬂz‘Ps
o3 g2

1 I
+6 W20 Wz a3 [2] B (p2) Ps (1) Oa N
ps,ps%¢3(Pi)¢r(m)¢3(l)3)¢7(m) propma bt pRITeA

-1 1
AN ¢§(p1)¢r(m)¢"(/’4)¢"(l’6)

-9 pr ,m,AWps,p-:.A’ (6/\,p5 (5,\',p5 ¢r(ﬂz)¢r(pe)d’r(m)

+5z\.>\’505,P6¢8(p1)¢r(92)¢r(l76))
= ¢%0, ,.0....0 —ab. o UPHPS —2q8. . UYPIPL 4 Zuﬂa-m UoPS 4 Eups,az PP
= 47 0p1,030p2,040p5.06 — 9%p1,p3 005,06
o3 o2

P2,P6 £1,P2 P1,03 7 P2,P6 £1,P2 72,06

1

p3.p4 _ 1 _ 1 P3.P4
+[2]5p5,p6 um,pz q ¢ WPI »P2:P6 Wpa.p4,Ps q 5/’5»1’6 upl,pz
s(p1)
2 _ P4,P5 __ P3,P4 P3,P4 7 /03,05 P3,02 7 /P4.P5
= q 5p1,p36p2,p45p5,ps q5m.p3 upz,pﬁ q‘sps,pe um,pz + § :upl,aa upz,pe + § :upl,pz uaz.pe
o3 o2
1 -
-1
—q ¢ WP! 1P2,P6 WPS,IM P5°
s(p1)

Computing the right hand side of (1.32) in the same way, we arrive at the same expression.
O

4.2 Computation of the cells W for ADE graphs

In this section we will compute cells systems W for each ADE graph G, with the exception
of the graph 5&12).

Let AE,‘;ZQ’” be the triangle i —*> j —— k — 4 in G. For most of the ADE graph,
using the equations (4.1) and (4.2) only, we can compute the cells up to choice of phase
W(Ag‘;gﬂ) = /\f’fj TIW( E‘;QW)M for some /\f'fk'y € T, and also obtain some restrictions on
the values which the phases )\zf,;” may take. However, for the graph D™* n=56,...,
we impose a Zz symmetry on our solutions, whilst for the graphs D®%) k=2 3,..., and
81(12) we seek an orbifold solution obtained using the identification of the graphs D®F),
51(12) as Zs orbifolds of A®GF) 2(12) respectively. There is still much freedom in the actual
choice of phases, so that the cell system is not unique. We therefore define an equivalence

relation between two cell systems:

Definition 4.2.1 Two families of cells Wy, Wy which give a cell system for G are equiv-
alent if, for each pair of adjacent vertices i, j of G, we can find a family unitary matrices

(u(01,02))0,.0,, Where a1, o are any pair of edges from i to j, such that

WiA5EM) = 3 u(o, 0 )ulp, p)u(y, vIWa(DG ), (4.5)

a.oy
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where the sum is over all edges o’ from i to j, p' from j to k, and ' from k to i.

Lemma 4.2.2 Let W;, W, be two equivalent families of cells, and X M X®@ the cor-
responding connections defined using cells Wy, Wy respectively. Then X M and X@ are
equivalent in the sense of [39, p.542], i.e. there exists a set of unitary matrices (u(p,))p0
such that

X(eree Z u(ps3, 03)u(ps, 54)u(p1, 01)u(ps, 02) X 27172,

gi

Let Wi(A2M) = ADery (A :»M)| for | = 1,2, be two families of cells which give

1,5,k 1 .k z gk
cell systems. If |W1(Af‘;i7))| = |W, (AE';’,’C"))I so that W, and W, differ only up to phase
choice, then the equation (4.5) becomes
a, 2)o,
NDEPT = 3 ulo,0'Yulp, p)uly, YNGR (4.6)
ooy

(a ﬂw)

ijk - For such

For graphs with no multiple edges we write A, ;x for the triangle A
graphs, two solutions W, and W differ only up to phase choice, and (4.6) becomes

A\

1,5,k u”upu‘)’/\E])k’ (47)

where u,, u,, u, € T and o is the edge from ¢ to j, p the edge from j to k£ and v the edge
from k to <.

We will write U®¥ for the matrix indexed by the vertices of G, with entries given by
U[,’;fj for all edges p;, i = 1,2,3,4 on G such that s(p1) = s(p3) = z, r(p2) = r(ps) = v,

e. [U(s(m),r(m))]r(pl),r(pa) =Une.

We first present some relations that the quantum numbers [a], satisfy, which are easily
checked:

Lemma 4.2.3 (i) If ¢ = exp(im/n) then [a]y = [n — a]y, for anya=1,2,...,n—1,
(ii) For any q, [a]ly — [a — 2]q = [2a — 2],/[a — 1],, for any a € N,
(i1i) For any q, [a]2 — [a — 1g[a+ 1], = 1 and [a]g[a + b]y — [a — 1g[a+ b+ 1], = [b+ 1],
for any a € N,

4.2.1 A graphs

Let the vertices of the graph A™ be labelled by (A}, A2), A, Az >0, Ay + Ay < n — 3,
as in §1.5, with (0,0) as the distinguished apex. For the triangle A, ji)is.50)Gajs) =
(t1,51) — (i2,72) — (43, J3) — (i1,J1) in A™ we will use the notation Wi, for the cell

W(A s i+1.56,5+1) and Wy j) for the cell W (A i41,5)6,i4+1)641,5+1))-
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Theorem 4.2.4 There is up to equivalence a unique set of cells for A™, n < co, given

by:

Wagkm) = VIk+1k+2][m+1]m+2]k+m+1)[k+m+2]/[2], (4.8)
Wywm = V[k+1k+2][m+1][m+2]k+m+2][k+m+3]/[2], (4.9)

for all k,m > 0. For the graph A with Perron-Frobenius eigenvalue a > 3, there is a

solution given by replacing [j] by [j], where ¢ = €* for any z € R such that o = [3],.

Proof
Let n < oo. We first prove the equalities
Wagm! = VIk+1k+2[m+1)[m+2k+m+1)k+m+2]/[2, (4.10)
Wowml = VIE+1k+2)[m+1m+2k+m+2k+m+3]/[2, (4.11)

by induction on k,m. The Perron-Frobenius eigenvector for A™ is given in (1.29). By
considering the type I frame L0 equation (4.1) gives |Wa(o,0)|* = [2}[3], whilst from
the type I frame GO we obtain (Wapol? + [Wyol? = [2][3]% giving [Wyl? =
(3][4]. We assume (4.10) and (4.11) are true for (k,m) = (p,q). We first show (4.10) is
true for (k,m) = (p+1,q) and (k,m) = (p,q+1) (see Figure 4.3). From the type I frame

(p+1,g+1) (p+1,9)
e — e  weget

Wap+10)* + 1Wyeal* = [P+ 21%[g + 1lg+ 2][p + g+ 2[p + g + 3]/[2],

and substituting in for |Wyg, )|* we obtain

Wagiol® = p+2lg+1lg+2p+q+2p+q+3)([2lp+2) - [p+1))/[2)
= [p+2p+2lg+1lg+2p+q+2lp+q+3)/[2"

(p.g+1)  (p+1,g+1)
® g [ ]

Similarly, from the type I frame we get

\Wawa+nl® = [p+1][p + 2][g + 2]lg + 3][p + g + 2)[p + g + 3]/[2)?,

as required.
(k+1,m) (k,m+1)
o .

For k,m > 0, (4.11) follows from (4.10): consider the type I frame o —
We get
Wawm|® + [Weml* = [k + 1]k + 2)[m + 1][m + 2)[k + m + 21*/[2],

and substituting in for |Wa,m)|? we obtain

IWo (k,m) |

[k + [k +2][m + 1])[m + 2][k + m + 2)([2][k + m + 2] — [k + m + 1])/[2)?
= [k+ 1)k +2)[m +1][m + 2]k + m + 2)[k + m + 3]/[2].
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(p.g+1) (P“‘q“)#
®.9) @la) 29 0y o an 7 en 7 6o
Figure 4.3: Triangles in A™ Figure 4.4: Labels for the vertices and edges of A™

Hence (4.10) and (4.11) are true for all k,m > 0.

There is no restriction on the choice of phase for A™, so any choice is a solution.
We now turn to the uniqueness of these cells. Let W* be another family of cells, with
Wi(k,m) = Ak,m)|Wak,m)| and Wé(k,m) = Akm)|Wv(k,m)| (any other solution must be Qf
this form since there are no double edges on .A™). We label the edges of A™ by al(] ),
p,(-j), 'yi(j), j=1,...,n=3,1=1,...,4, as shown in Figure 4.4.

Let us start with the triangle A g 0)(1,0)(0,1), €quation (4.7) gives 1 = u (1)up(1)u7<1))\(0 0)-

7y 1 1 ’

Choose Uy = ) = 1 and u,m = A(0,0)-

Next consider the triangle A 0)0,1)1,1)- We have 1 = “a("’)ua,(?)’\(O,O)’\'(o 0)» SO choose

2 1 ’

Uy = 1 and U@ = /\(0,0)/\’(0'0). Similarly, setting Uy = U o) = 1, u@ = ’\20,0)/\(0,0)'\(1,0)
and u,e = A,1) then equation (4.7) is satisfied for the triangles A 0)2,0)1,1) and
D0,1)1,1)02)-

Continuing in this way we set, for each k, uw =1, (i=1,...,k), u ) = 1, u, o =

i k 1

upsk-l)A/(k—i—l,i-l)’ (l = 1, e ,k - 1) and upgk) = up'(ik_l)A,(k—i—l,i—l)/\(k_i‘i_l)’ (Z = 17 R k)~

Hence, any choice of A and X’ will give an equivalent solution to (4.8), (4.9).

For A we have Perron-Frobenius eigenvectors ¢ = (¢, »,) given by

_ [)\1 + 1]q[A2 + I]q[x\l + Ao+ 2]q
¢(/\1,«\2) = [2]q :

Then the rest of the proof follows as for finite n. a

Using these cells W we obtain the following representation of the Hecke algebra for

A We have written the label for the rows (and columns) in front of each matrix.

AL+2 v [M][A+2]
U(O1A2),(AnA2+1)) - (A1+1.22) '\i‘*l (A1+1] (4.12)
(A1—-1,A2+1) Pa]idi+2) M) , .
[A1+1] M+1]
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A2 +2 y/ [A2]{A2+2]
U((’\l v’\2)7(’\1 _1|A2)) — (Al—l’/\2+l) /\:+1 (/\2-}-1] (4.13)
(A1,22-1) Y [A2](A2+2] [A2] '
[1\2'*‘1] [Az-}-l]
\ A1+Az+3 VA e+ 1A+ Ao +3]
G-y - it ) Ai+A2+2 Piri2+2] (4.14)
(A1, Az-1) M +A2+1][A1+22+3] [ArtAg+1]
' Di+ra+2] X +A2+2]

Wenzl [112] constructed representations of the Hecke algebra, which are given in [27]

A — A+ e
_ \/Sj[()\/ + ej)sj,()\’ + ek)
1 l =(1-43) 520%) , (4.15)

)\+ej — )\+6J‘+6k

where A = (A1, \g) is a vertex on A™, X = (A; + 1, X2 + 1), the vectors e; are defined in
Section 1.3.2, s;;(A) = sin((m/n)(e; — e;) - A) and the inner-product is given by e; - e, =
d;k —1/N. Note that this weight is 0 when j = [.

Lemma 4.2.5 The weights in the representation of the Hecke algebra given above for
A™ are identical to those in (4.15).

Proof

For j = [ the result is immediate since there is no triangle A — A+e; — A+2e; — Aon
A™  and hence the weight in our representation of the Hecke algebra will be zero also. For
an arbitrary vertex A = (A1, Ag) of AM™, s;(N) = sin((7/n)(e;—e1)- (M +1)er—(A2+1)e3)).
We will show the result for j = 1, { = 2 (the other cases follow similarly). We have
s12(N) = sin((A + 1)7/n) and s12(N + €;) = s12(N + e1) = sin((A; + 2)7/n). We also
have s12(\ + e3) = sin(A\j7w/n). Then for k = 1, (4.15) becomes

Vsin?((A\, + 2)7/n) _Ma+2] (A0,
Sil’l((/\1 + 1)71'/1’1.) [/\1 + 1]

For k = 2, (4.15) becomes

MDY (ML A)-

Vsin((A; + 2)r/n) sin(M/n) /[ M][A + 2]

= (U(('\l WAz) (A1, z\z+1)))
sin((A; + 1)7/n) [A +1]

()«1+1,A2),()\1 —1,22+1)>»

as required. O

4.2.2 D graphs

The Perron-Frobenius weights for the vertices of A™ are invariant under the Z3 symmetry

given by rotation by 27/3. Since D™ comes from an orbifold of A™ (as illustrated in
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(0,0) (1.0) (2,0) (3.0) 4,0) 0,0 1,0 (2.0)

Figure 4.5: A® and its Z; orbifold D®

Figure 4.5 for n = 9), the Perron-Frobenius weights for the vertices of D™ are equal to
the corresponding weights in A, except that for n = 3k + 3, for integer k > 1, the
vertices (k, k)1, (k, k)2 and (k, k)3 (see Figure 4.6) which come from the fixed point (k, k)
of A®¥+3) under the rotation whose Perron-Frobenius weights are a third of the weight
for the vertex (k, k) of AG%+3). The absolute values [W#| of the cells for A™ are also
invariant under the rotation.

Let n > 5, n #Z 0 mod 3. We will find one solution (up to a choice of phase) for
the cells of D™ by identifying the absolute values |W 4| for the cells in A™ with the
absolute values |W ()| for the corresponding cells in D™ when taking the orbifold. Each
type I frame in D™ has a corresponding type I frame in A™), and similarly for the type
11 frames. Since the Perron-Frobenius weights are the same for A™ and D™, these |W?|
will certainly satisfy (4.1) and (4.2) since the |W#| do. As in the case of A™, there are

no restrictions on the choice of phase. Then we have the following theorem:

Theorem 4.2.6 Every orbifold solution for the cells of D™, n. # 0 mod 3, is equivalent

to the solution for which the cells in D™ are equal to the corresponding cells in A™ given

in (4.8), (4.9).

Proof
The unitaries u;; € T, for i, j vertices on D™, may be chosen systematically as in

the proof of Theorem 4.2.4, beginning with w k), k,k) = /\(k,k),(k,k),(k_k)l/s ifn=3k+4or
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Ukt 1,k),(k+1,k) = /\(k“,k),(kﬂ,k),(kﬂ,k)l/s if n = 3k + 5, and proceeding triangle by triangle.
O
Now let n = 3k + 3 for some integer k > 1. For ¢ = ei™/(3k+3)  we have [(3k +
3)/2 + 1], = [(8k + 3)/2 — i), where i € Z for k even and i € Z + 3 for k odd. In
particular we will use [2k + 2 + j] = [k + 1 — j] for j € Z. The Perron-Frobenius weights
Py = Pwiy/3 = [k + 1212k + 2]/(3[2]) = [k +1]*/(3[2]), i = 1,2,3. We again find
an orbifold solution for the cells for DG*+3)  except for those which involve the vertices
(k,k);, i = 1,2, 3, which correspond to the fixed point (k, k) on the graph A®*+3). Let ~,
4" be the two edges in the double edge of D®%+3) where v is the edge from (k,k — 1) to
(k—1,k) and ' is the edge from (k,k—1) to (k+1,k—1) in AG¥*+3) (see Figure 4.5). We
will use the notation Wf()k,k—l),(k—l,k) to denote the cell for the triangle A, (kk-1),(k-1,k)
where the edge € € {7,7'} isused, forv= (k—1,k-1), (k+1,k—2) or (k,k);, 1 =1,2,3.
Then in particular we have the following:

[K)?[k +1)2[2k][2k +1]  [K]*[k + 1]%[k + 2][k + 3]

() 2 _
W01 - kk-n -1 = [2]2 - [2]2 ’
W o = o= 1lkllk+ 1lk + 2](2k + 1)[2k + 2]
(k+1,k-2),(kk—1), (k-1 k)| = [2]2
[k — 1][k][k + 1]%[k + 2)?
[2]? '

Since 7' is not an edge used to form the triangle Ag_1k_1),(kk-1),(k-1,k) ID ABk+3) - we
) S

have lW(I;Y-l,k—1),(k,k—l),(k:—1,k)|2 = 0, and similarly |W((,le'k_2),(k’,c_1),(,6_1,,6)|2 = 0. The cells

involving the vertices (k, k); coming from the triplicated vertex (k, k) in AG*¥+3) will then

be a third of the corresponding cells for AG*¥+3) since the type I frames IR give

™) ' :
Wk ereen—nl? + |W((,Z_)]’,c),(kyk)h(k,k_l)|2 = [k][k + 1]k + 2]/(3[2)) for i = 1,2,3. So

) 1 1 [k)%[k + 1)%[2k + 1][2k + 2
|W(I:—l,k),(lc,k)i,(k,k—l)|2 = g|W(lc—lJc),(k,k),(k,lc—l)|2 = §[ H | [[2]2 I |
_ 1[KPk + 1Pk + 2]
-3 2]? ’
|W(‘Y') |2 _ llw 2
(k—1,k),(k,k)i,(k,k—1) -3 (k+1~k—l)‘(k,k),(k,k-l)|
_ 1 [k][k + 1]2[k + 2][2k + 1)[2k + 2] _ 1 (k][k + 1]3[k + 2]2
3 [2]? -3 [2]? '

For A;, A} € T, be the choice of phase for W((,:llvk),(k'k)h(k,k_1), W((,:i)l k), (kok)s, (k k—1) T€
. (7) _ ('Y) ( 's WRGA R,
spectively, so that Wi, b k1) = )‘ilW(k—l,k),(k,k)f,(k,k—l)l and W(:Z-)l,k),(k,k).-,(k,k—l) =

)\glW((,Z_)l’k),(k,k)h(k‘k_l)I, for i =1,2,3. Similarly, let

(&) _ (&) (3]
W(k-l,k—l),(lc,k—1),(k—1,k) = A(k—l,k—l),(k,k—l),(k-l,k)IW(k—l,k——1),(k,k—1),(k—l,k)|’
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(k+2,k-2)  (k+1.k-1) (k)
=(k-2k) =(k-1,k)

Figure 4.6: Labels for the graph DG*+3)

where £ € {7,7'}, and Wy, sp.05 = Avy,va.vs| Worvaws| for all other triangles Ay, ;.05 of
kk-1)  (k=1,k) . L
Dk+3) The type 1I frame bk gives the following restriction on the phases \;,
Al
M, 4 Ao X + Ay = 0. (4.16)

i W= k)k . .
From the type II frame kg ¢ c)’ we obtain Re(\;\] ) = —1/2 for i # j,

giving L\, = (—=1/2 + a,-j\/gi/2))\-7 gij € {£1}. Note that €;; = —¢;j, and substituting

for ;M with j =44 1 into (4.16) we find €12 = €23 = €3;. Then we have

V3
2

for e € {1}, i =1,2,3 (mod 3). Then there are two solutions for the cells of D®k+3),

W and its complex conjugate W. The solution W is the solution to the graph where we

switch vertices (k, k)2 < (k, k).

AX = (—5 + e Mo, (4.17)

Theorem 4.2.7 Every orbifold solution for the cells of D +3) is given, up to equivalence,

by the inequivalent solutions W or its complex conjugate W, where W is given by:

W [k]\/ [k + 113k + 2]

(k=1,k),(k,k)i,(k,k=1) — V312 )
W) Sl 2VIkIE + 1)
(k=1,k),(kk)i,(k,k=1) — V32 ,
o )ik -+ 1)/ + 2Tk 3]
(k 1,k=1),(k,k—=1),(k—=1,k) — 2]
) _ e+ 1k +2]y/[k - 1][K]
W,
(k+1,k=2),(k,k=1),(k=1,k) — 2] ,
) o)
W(k 1,k=1),(k,k—1),(k— lk)"W(k+1Ic 2),(kk-1),(k-1,6) = >

where €¢; = 1, e = €2™/3 = &3, and all other cells are equal to the corresponding cells in

AGK+3) given in (4.8), (4.9).
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@i-14+1) pm @ij+h) (-1+1)

3 2)* )

p pm p p

() G-15) P ()

and A(p(“’,p(z)’,p(”')

. . M),52),53)
Figure 4.7: Triangles AY 2" # (i-1,§),(6,9),(i=1,3+1)

(ivj)v(i— 1v3+1))(1'».7+1)

Proof
Let W be any orbifold solution for the cells of DG®*+3). Then W is given, fori = 1,2, 3,
by

) — \hw®
W(kzl,k),(k,k).-,(k,k—l) = )‘z’|W(k-l,k),(k,k),-,(k,k-l)"

v D ()
W(kzl,k),(k,k)i,(k,k—l) = )‘i/|W(lz—l,k),(k,k),-,(k,k—l)|’

(3] — W& #€)
Wik ko1 b ko1 k1) = Aeotk~1), (k=1 b= 16)| W (e k1) (k1) k1)
where £ € {v,7'}, and W} . .. = M . [Wi .| for all other triangles A, o, of

DB+3) and where the choice of A, A¥ satisfy condition (4.17) with € = 1. We need to find
a family of unitaries {u,} for edges p # 7' of D®*+3) where u, = (u,(£,£')), £, €' € {7,7'},
is a 2 x 2 unitary matrix, and u, € T for all other p. These unitaries must satisfy (4.6) and
(4.7), ie. & = upuy (uy(7, ’Y)’\;1 + uv('Y»V’))‘g') and € = uy,uy (u'y(’Y/»V)’\g + “7(7"7/)A¥,),
forl=1,2,3, and

#(¢")
1 = U5, Zu(f»él)’\(k—l,k—l),(k,k—1),(k—l,k)’

5[
_ #(¢’)
1 = uﬂ'xuﬂ’zZ“(5*fl)’\(k+1,k-z),(k,k—l),(k—l,k)'
{l

; (p1.p2.P3) 3k+3 ; = H
For all other triangles Ag'%5" of D3 we require 1 = w,, upUp Al o

For wu., we choose u,(7y,7) = 1, uy(7,7) = u4(¥',7) = 0 and u,(v%') = )\'}/\_’i We set

uy =1and uy, = q)«f, for{=1,2,3,and usy = upy = 1, up, = )‘?Ec—y—)l,k—1)‘(k,k—1),(k—1,k) and

— ()
Uoy = A(kll,lc—Z),(k,k«1).(k—l,k)'
For the remaining triangles we proceed as follows. Let m = 2k — 2. For each triangle

( . :
Ef_ jl))”(’:(_z)l’g(j)l))’(i,j +1) as in Figure 4.7 (and similarly for triangles A j) (i-1,+1),6,5+1)) such

that ¢ + j = m, if either U,y OT Uy hasn’t yet been assigned a value we set it to be

A(p“)’,p(’”,p(”’)
(i-1,5),(4,5),(i-1,5+1)

as in Figure 4.7 (and similarly for triangles Agiy1;-1),a)G+1,4)) such that ¢ + j = m,

1, and set Uy = up(l)upmA?i,j),(i—l,j+l),(i,j+l)‘ Next, for each triangle

if either u,n) or u,e. hasn’t yet been assigned a value we set it to be 1, and set

Uy = uﬁ“)'uﬂ(z)’)‘l(ii—-l,j),(i,j),(i—1,j+1)' We then set m = 2k — 3 and repeat the above
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steps. Continuing in this way, for m = 2k —4,...,3, we find the required unitaries {u,}.
The proof for the uniqueness of the complex conjugate solution can be shown similarly.

For the solutions W and W to be equivalent, we require unitaries as above such that

/T

€ = Uu,uy;(u—y(%’)’)a-i-—\/—m—uv(%')")fl),

VI

€ = up,up;(_[k—:Q—]uq(’Y’,’Y)El +U7(’7/,’Y’)5l)s
for I = 1,2,3. This forces u,(7,7) = u,(v,7) = 0, uy(7,7) = V[kl//Ik+2] and
wy (v, v) = [k + 2]/+/[k]. But then u, isn’t a unitary. O

Using the cells W we obtain the following representation of the Hecke algebra for
D(3k+3)2

(k,k—1) El;:—]ll 0 Q[k—[g[kﬂl

UW=1R=DB=18) o 0 0 0 )
(k—2.8) V0k=1]{k+1] 0 k-1
T k]

U(kk-1),(k-1k=1)) with rows labelled by (k — 1,k)™, (k — 1, k)",

(Ic,k—l)('” 0 0 O
~ _ , v [k+1][k+3
U ((k+1,k=2),(k=1k)) (k,k—1)(") 0 I,::_; [ [k+]2[] = ’
(k=24) 0 V [k+1][k+3] [k+3)
[k+2] [k+2]

UEE-1.(+1E-2) with rows labelled by (k — 1,k)™, (k — 1,k)0), (k, k — 2),
[k _ lf[k][k+2]

yltk=1)(kk)) 1RO Erl G o]
(k=1,k)0") € [k][k+2] [k+2] ’
i k] (k+1]

U (kR (k=1.6)) with rows labelled by (k,k — 1), (k, k — 1)0),

U((k—l,k)(k,k—l))

[ Rkt [k+1]a [k+1]a Ik 1][k+3] k- 1][k+1] \
(k,k)1 3[k]{k+2] 3{k][k+2] 3[k][k+2) V3[k+2] V3 [K]
[k+1]a 12][k+1]2 [k+1]a e2y/[k+1][k+3] & \/Tk—1](k+1]
(k.k)2 3[k][k+2] 3[k][k+2] 3[k][k+2] V3 [k+2] V3 [K]
— (k)3 [k+1]a _k+1]a [2][k+1]2 a2y/[k+1]k+3]  e2/[k—1][k+1]
’ 3[k][k+2] 3{k][k+2] 3[k][k+2] V3 [k+2] V3[k] ’
(k-1k=1) VIE+1)[k+3]  E2/[k+1][k+3]  e2q/[k+1][k+3] [k+3] 0
V3 [k+2 V3 [k+2] V3 [k+2] [k+2]
(k+1,k—2) K ViE=1k+1]  e2/Te=1]lk+1]  &2/k=1]k+1] 0 [k=1]
VA Vi va G,

where a = e;[k] + €[k +2], and we use the notation v\ if the path uses the edge -y, where
v is a vertex of DG*+3)  Another representation of the Hecke algebra is given by taking

the complex conjugates of the weights in the representation above.
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In [43], Fendley gives Boltzmann weights for D®), which at criticality and with the
parameter u = 1, give a representation of the Hecke algebra. However these Boltzmann
weights are not equivalent to the representation of the Hecke algebra using the cells W
or W. To see this, we use a similar labelling for the graph D©® as in [43]- see Figure 4.8.

0

Figure 4.8: Labelling the graph D®

Consider the weight [U(sr’ )

denote which edge from 1 to 2 is used for the path of length 2 from 3, to 2, r = 0,1, 2,

and the weight U is the complex conjugate of that given above, i.e. it is the weight given

]y, Where we label the rows and columns by v, 7' to

by the solution W for the cells of D®. Then for equivalence we require a unitary us_; € T

and a 2 x 2 unitary matrix u, such that

e’——[:ﬂ \/m

2 1 (v A
o] = |us, 1l (uv(%’y)uv(%v)m+u7(%7)u7(7,7)62 2]

— =y VB

(7, Y )y (¥, V)G 2] + 1wy (7, Y )y (7, 7){2}) . (4.18)

Since u, is independent of r, for (4.18) to be satisfied for each r = 0,1,2, we require
uy(7,Y)u,4 (7', ¥") = 1 and the other terms to be zero, which gives u,(v,7") = u,(v',7) =0
and u, (v, 7") = (u,(7,7))~!. But now if we consider the weight [U(l’sr)]ml, with ugs, € T,

we have
V13 — 1 — 3
€ [2[]] = |ugg,|* (uw(%v)uq(v’,v)[—g—] + Uy (7, My (¥, V)G [2[]]
——— V3] —— 3]
+uy (1,7 )uy (Y, 1) 2] + 1y (7,7 ) (7 7){ 2
but [U(l'sr) Jyy = 65@, for r = 0,1,2. We obtain a similar contradiction when consider-

ing the weights U defined using the solution W for the cells.
Suppose however that the Boltzmann weight denoted by W-l~3’ in [43] is the complex

conjugate of that given. Then the Boltzmann weights at crltlcahty of Fendley [43] are
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equivalent to the representation of the Hecke algebra given by the solution W for the cells

of D®. We choose a family of unitaries Up1 = Ugp = Ug3, = 1, u3,1 =6, 7=0,1,2, and

choose u, to be the 2 x 2 identity matrix.

4.2.3 A" graphs

First we consider the graphs A®"+1* jllustrated in Figure 1.10. The Perron-Frobenius

weights on the vertices are given by ¢; = [2¢ — 1], i =1,...,n.

Theorem 4.2.8 There is up to equivalence a unique set of cells for APM+)* n < oo,

given by:
W, — V0R-3J2i-1]
: [i —1]
Wiiinn = \/[z — 1][24 ;] 1][2: + 1]
oy [2—1]
S )
Proof

We first prove the equalities
[i][27 — 3][2: — 1]

2
IWi—l,i,il = [Z _ 1] )
W2 = [i—l][2i—.1][2i+1]
h (2
IWi,i,i|2 = U

R

We have the following equations from type I frames:

[Wi22l® = [2](3],

Wisisal® + Wiirrinl* = [2][2i — 1][2i + 1],
|"Vi—1,i,i|2 + |VVi,z’,il2 + IWi,i,i+1|2 = [2] [2i - 1]2,

IWn—l,n.nl2 + IWn,n,n|2 = [2]3’

and from type II frames we have:

Wis1,i: 2 Wi = [20 — 3][2i — 1)%[24 + 1],

1 1

|Wi-1,i,i|2(

()

)
)
Lon—1, (4.24)
)

= Wistil? + ——=
=g Vel +

(4.19)
(4.20)

(4.21)

(4.22
(4.23

(4.25

—1, (4.26)
Wiial?) = [2i — 3][2i — 12,

(4.27)



For i = 2, (4.19) is trivial by (4.22), and (4.21) follows from (4.27). From (4.24) we then
have |W2,2’3|2 = [2][3]2 - |W1,2|2|2 - |W2’2’2|2 = [3][5]/[2], SO (420) is true for ¢ = 2. We
assume (4.19)-(4.21) are true for ¢ = k < n — 1. Then from (4.23),

[k — 1)[2k —1)[2k +1] _ [k + 1][2k — 1][2k + 1]
(k] - (K] '

Wi ko) = [2)[2k — 1][2k + 1] —

From (4.27),

2 RE+1P
Wit k+1641]° = m—[m([k] — [k = 1]k +1])

2k +1?
Kk +1)

and finally, from (4.26),

[k][2k + 1][2k + 3]
[k +1] ’

|Wk+1,k+1,k+2|2 =

as required. So (4.19)-(4.21) are true for i = 2,...,n—1. The result for |W,_; ,,|* follows
from (4.23), and lastly, from (4.25),

U%MP=[N%—W—MWE?W_”=W—%@%
[21*

R o -
moqn ==+ 8) = P2 - - 2) =

Let Wik = i jklWi ikl for Aijx € T. From type II frames we have the restriction
Azi,i+1)\i+1,i+1,i+1 = —/\?,i+1,,-+1)\i,¢,i, (4.28)

fori=2,...,n—1. Let ij_k = Agyj’kIWi,j,kl be any other solution to the cells, where

the A! satisfy (4.28). We nced to find a family of unitaries {u;;}, where u;; is the
unitary for the edge from vertex i to vertex j on AG"D* which satisfy (4.7), i.e.

-1 = ugm)\gmm for Il = 1,...,|n/2], and 1 = uiujuk/\g,j’k for all other triangles
Ak We choose ujgyr = 1 (6 = 1,...,n = 1), upy = —(,\5,2,2)1/3%, Uiy1; =
—(’\5,2,2)1/3/\‘12,3,3’\"3,4,4'"/\E—l,i,i)‘g,z,s)‘g,a,4'"’\g,i,i+1 (=2..,n—1), ugs = —(Ny)"/°
and u;; = —()\uz,z,z)l/s)\g,z,3)‘g,3,4 v "\g—l,i—l,i)‘g,3,3’\g,4,4 e /\5—1,1',1' (t=3,...,n). 0

For AC™*+1* | the above cells W give the following representation of the Hecke algebra:

) [i-1] lf[i—l][iﬂ]
[+l : [z] 2]
itl [i—[ll][i+1] %l
- - -2 V-2l
U(l,t—l) — i—1 [i-1]
i V=26 [ ’
[i-1] [i-1]
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[4][2i-3] (-1 /[2i-3)  /[2i-3][2i+1]]

i1 [i—l][2i—l] [i_ll\/[%_ll [2i—1]
e I VN N aaRv/es)
-t li-1]y/[2i-1] [i-1]0] [i1v/]2i-1]
i+1 [2i-3][2i+1]  (=1)"*!/[2i+]] [i—1}[2i+1]
[2i-1] [i]y/12i-1] [i]2i-1]

In [4], Behrend and Evans give Boltzmann weights

a d
w ul,

which at criticality, with u = 1, give a representation of the Hecke algebra. (Note, these

Boltzmann weights are not to be confused with the Ocneanu cells W.)

Lemma 4.2.9 The weights in the representation of the Hecke algebra given above for

ACr+D* gre equivalent to the Boltzmann weights at criticality given by Behrend-Evans in

[4].

Proof

To make our notation the same as that of [4] one replaces ¢ with (a + 1)/2. Then it

is easily checked that the absolute values of our weights given above are equal to those

for the Boltzmann weights in [4], setting ¢ = 0, in all but a few cases. We will show that

the absolute values in these other cases are also equal. For [U®9)]. +1i41» the Boltzmann
weight in [4] is

a+2]—[a+2]/[a] [a+2]

o la+2] [Fla=1a+1]
41 = Wergd -0

Cldle+1 G+

which is equal to our weight, and similarly for [U®9];_;; ;. For [U®)];; we have to do

the most work. From [4] its value is

1 (0 lat2Ba-5)] a2l
g ([2] @l (a+ D) [a][%(a—n])

[2lla)l5(e — D](a+ 1)) — [a+ 2)[3(a - 5)][5(a — 1)] = [a — 2J[3(a + 1)][3(a + 5)]

Blal[5(a — 1)][3(a + 1)] '
(4.29)

Using (1.30), we can write the numerator as

2llal(2]+ 4]+ +[a—1]) - [a+2)([B8]+ 5]+ - +[a—4]) — [a~2)([8] + [5] +- - -+ [a+2))
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= [a(R]+ B+ B+ 5]+ + e -2 +]a])
~(a+2)+[a-2)(B]+ 5]+ +[a—4) —[a—2([a—2]+a] +[a+2])

= la]+(2[a] — [a+2] = [a— 23] + [5] + -+ [a — 4] + [a — 2]) + [a]* — [a — 2][q]

= la]+ ([a] = [a+2D)(BI+ [5] +--- +[a—2))

= +(la] = [a=2))([38] + 8] + -+ +[a - 2] +[d])

= [a] +[(a = 3)/2)[(a +1)/2]([a] — [a+2]) + [(a - 1)/2]{(a+ 3)/2]([a] - [ —2]).

(4.30)
Now
[(a —3)/2][(a +1)/2]([a] — [a +2])
= [(a=3)/2([(a+1)/2] + [(a+5)/2] + - -+ [(3a — 1)/2]
—[(a+5)/2] = [(a+9)/2] = --- = [(3a +3)/2))

= [(a—3)/2)([(a+1)/2] - [(3a + 3)/2])

= B]+[B]+ +a—-2-[a+4-[a+6 - —[2a - 1],
and

[(a —1)/2][(a + 3)/2]([a] - [a - 2])
= [@=1)/2([(a+1)/2] +[(a+3)/2] + - +[(Ba +1)/2]
—(a-5)/2] - [(a-1)/2] = --- = [(3a - 3)/2])
= [(a—1)/2)([(3a +1)/2] - [(a — 5)/2])
= [a+2]+fa+4]+ - +[2a—-1-[3] =[5 =+~ [a—4].

Substituting back into (4.30) we obtain [a] + [a — 2] + [a + 2] = [3][a], and (4.29) becomes
3lia _ I
Bllallz(a = Dllzla+ 1] [3(a = D][3(a+1)]

as required. To show equivalence, we need unitaries u; ; € T, for vertices i, j of A™* such
that

I = uiuipi41. 1 = wui -0, =1 = i 1uio1 U 1 Uit
N R i+l 2
(-1) = U; Ui+ 1 U414, (=1) = U Uii-1Ui-1,-
Then we set u;; = 1 for all ¢, and for m = 0,..., (n —2)/2, Usmi12m = Usmom+1 =
Uzm42,2m4+1 = 1 and Uom+1,2m+2 = —1. O
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For the graphs A“™* (illustrated in Figure 1.10) the Perron-Frobenius weights on the
vertices are given by ¢; = [2i]/[2], 4 = 1,...,2n — 1. There are now two solutions W+,
W~ for the cells for A“™* which are not equivalent since |W*| # |W~| and the graph

AU™* does not contain any multiple edges.

Theorem 4.2.10 The cells for AU™* n < oo, are given, up to equivalence, by the in-

equivalent solutions W+, W~

Wk, = vm[f;]i%ﬂ VI FI i=1,....20-2

V[24][2
Wi:;+l,i+l [z[z—i— \/[2 + 2]+ [1] i=1,...,2n -2,
[2]/[2

( _1Vi+l \/[Q_l ; - . -
D avm- 2 ][2 T VAR =L...,n-1,
Wi, =<{ (1) VERr - 1pen+1] i=n,
_1)i+l [21] _ . .
~( ) [2]\/[2i—1][2i+1]\/[2“2’]¢[8" 4], i=n+1,...,2n—1.

Proof
Due to the symmetry on the graph A“™* we only need to consider half of the type I
frames. In so doing, we are not assuming that the cells are invariant under this symmetry.

We have the following equations from type I frames:

W11 + (Wi 2]? = [2], (4.31)
, 2i][27 + 2

Wisiril> + Wiisrinl* = M, i1=1,...,n—1, (4.32)

(2]

232
IWi—l,i,i|2 + |Wi,i,i|2 + lWi,i,i+l|2 — %, 2 = 2, . o ,TL b 1, (433)
and from type Il frames we have:

2i — 2][2i]?[2i + 2

Wizt Wisi1]? = [ ][[2]]4[ ], 1=2,...,n, (4.34)
[ ] [2] [2i — 2][24]?
IWi—11,1,| ( VVi— Ji— ,i2 Wzm = T a1 =2,...,n. (435
From (4.33) and (4.34) we have
242 2i — 2][2¢]%[2: + 2

(Wisl® = L — Wil - [ Jl2i} 2 ]|Wi—1,i,i|_2, (4.36)

2} [2]¢
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and substituting for |W;;;|?, and also for |W;_;;_1;|® from (4.32), into (4.35) we obtain

the quadratic equation

%:[_-212—]*[-21—,}|Wi_1,i,,~|4 o2 Win ial? + 22 2][[;‘1[21 U_y
Then, for i =2,...,n,
Wis1ial* = %‘2[:2%23([21'] +[1]), (4.37)
and, from (4.32),
|Wicrio14l® = %%([Qi = 2] ¥ [1]). (4.38)
Fori=1,...,n—1, (4.33) gives
Wol? = o2 ((a]f] = [a]). (4.39)

- [2)2[2 - 1)[25 + 1)

Note that |W; ;|2 >0foralli =1,...,n—1: We have [2][2i] - [4¢] = [2i — 1]+ [2i+1] — [47]
and sin((2i — 1)7/4n) + sin((2¢ + 1)7/4n) — sin(4in/4n) = 2sin(4in/4n) cos(2n/4n) —
sin(4im/4n) > 0 since cos(27/4n) > 1/2.

From (4.36) with ¢ = n we have

|Wn,n,n|2
2n]*  [2n — 2][2n] _Palent2)
2 -1 2 ) - G (B F 1D
[2n]?
= BPRn - 1pn g1 AR~ URn+ 1] = 2n =220 4+ 1] - [2n — 120 - 2))
[2n]? [2n)?

p((2nlf2n+1] = (20— 120 - 2)) =

2P2n — 12n + 2l2n - 12n+ 1]

From (4.34) with i = n, we have

2 _ [2n — 2][2n]
Wanntl® = W_l]([zn] F (1)),

and the equations for |W_y;_1|, |[Wi-1,::] and Wil i=n+1,...,2n — 1 follow.

We again obtain the restriction on the phase given in (4.28). Let Wf,j,k be another
solution for the cells of A“™* such that IW}‘YJ.,,J = |W. |- Then the equivalence of these
solutions follows in a similar way to the A®@*+1)* case. ([

For the graphs A(4"+2* (again illustrated in Figure 1.10) the Perron-Frobenius weights
on the vertices are again given by ¢; = [2i]/[2], ¢ = 1,...,2n. There are again two
inequivalent solutions W+, W~ for the cells of A(“n+2)*
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Theorem 4.2.11 The cells for A4*2* n < oo, are given, up to equivalence, by the

inequivalent solutions W+, W~

. V/EIRiTY o o -
Wi,i,i+1 [2]\/[_2____ [24) F 1], i=1,..., 2 1,

« o VIRIRIHY ey i=1,....2m—1
Wz,z+1,t+1 [2]\/[2— [ + ] vvvvv )
R SR VA MY ;) -7 ] i=1.. ..n

W _ 2/ B
. —1)*! 2] i n il, i=n n
(-1) A7 1][2z+1]f2]¢[8 + 4 — 4i], +1,..., 2n.

Proof
We again have (4.31)-(4.39), where equation (4.32) is now for i = 1,..., n. From
(4.36) with ¢ = n we have

|Wn,n,n|2
_ [P [Pn-2p2n] _Lnlln+a)
(2] [2]2[2n — 1] (f2n] £ [11) 22[2n + 1 (2n] 7 (1])

[2n]®

= e a1 2 ~ Ul 1= = 2li2n +1) - 20 - 1fon 4 2)
T 22n £27111][2n Ty(en = 2l2n +1) - fon - 2)f2n + 2)
~ PPn ??12[% Tj{(2nlien +1] - 20 — 1j2n)
T 2PRn £271’/]][271 1] (12n - 2][2n + 1] - [2n — 1][2n])
[2n]

= BEn - ge e =0
From (4.33) we find
[2n]?

Wnnn B
I +1| [2]2[2 + 1]

(12n] 7 (1),

whilst from (4.32) we have

[2n)?
B g (20 1)

IWn,n+1,n+1 I2

Then the equations for |W;_y; 1|, [Wi_1:: and |Wiiil i=n+1,..., 2n follow. Equiva-
lence of solutions follows as in the previous cases. O
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For A@™* the cells W+ above give the following representation of the Hecke algebra:

, [2i]-[1] V! ([2i]—[1])([2]i+2]+[1])
(i+1) — " [2i+1] [2i+1
v : it ﬁ2il—[1]?({2i+2]+l1]) (2i+2]+[1] !
[2i41] [2i+1]
- [2i-2]-[1] v/ ([2i-2]-[1])([24]+[2])
(i4-1) _ 7 [2i-1] [2i-1]
v ; V/(12i=2]-[1])([2]+[1]) [2i]+[1] ’
[2i-1] [2i—1]

2i-2)([2i]+[1)) (=1)**1 /z[2i-2)([2]+(1]) [2i-2][2i-1)[2i+2]
i1 [2d]{2i+1] [24)[2i+1] [2i]/[2i+1]
ped) — (=1 y/=[2i-2]([2d)+[1)) (=1 y/=(2i+2)((21)-[1])

oy

[23][2i+1] \/[21.”21, 1) )
i+1 [2i-2][2i—1][2i+2] (=) fx[20+2)((2:] - [1]) [2i+2]((2]—[1])
(2i]y/[2i+1] Vizizi+] 2i[2i+1]

where, for positive integer m, if n = 2m,

2][21)4-[44

BB ] fori=1,....,m—1,
2

r= [2m-1]2 for ¢ = m, ,
Rt for j = m+1,...,2m — 1,

[2i-1)24[2i+1)
and if n =2m + 1,

2)(24)4 (44 . ’
= Eg%ﬁlﬂlzilﬁl fori=1,....m, |
Q2] -[an—di] oo +1,...,2m,

[2i—1][24][2i+1)

Lemma 4.2.12 The weights in the representation of the Hecke algebra given above for

ACn)* are equivalent to the Boltzmann weights at criticality given by Behrend-Evans in

[4]-

Proof

To make our notation the same as that of [4] one replaces ¢ with a/2. To see that
the absolute values of our weights are equal to those of the Boltzmann weights in [4] one
needs the following relations on the quantum numbers:

(2 + 1)y [4i + 2]y
2i -1y

[2i — l]q/ [4i + 2]q/
2i+1,

2 +[1] = 2] - [1] =

where ¢’ = /g (g = €"/™). Again, a bit more work is required for [U(%); ;. For equivalence

we make the same choice of (u;;);; as for ACn+1*, 0O
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Figure 4.9: Labels for the vertices of D?n+1)* and D(m)*

4.2.4 D* graphs

We label the vertices of D@**1)* by 4, j, and k;, | = 1,...,n, as illustrated in Figure
4.9. The Perron-Frobenius weights are ¢;, = ¢;, = ¢, = [2l — 1], 1 =1,...,n. Since the
graph has a Z3 symmetry, we will seek Z3-symmetric solutions (up to choice of phase), i.e.
Wi goke |2 = Wi o> = Wi joka|> =1 [Whor[% pog, 7 € {1,...,n}. Using this notation,

we have the following equations from type I frames:

[Wiaal® = [2][3], (4.40)
Wigis)? + Wigra)? = [2][20 - 1][20 + 1], 1=2,...,n—1, (4.41)
|VV[_1,1'[|2 + |VV1,1,1|2 + |VVl,l,z+1|2 = [2][2l - 1]2, [=2,...,n—1, (4.42)
|W —l,n,ni2 + |Wn,n,n|2 = [2]31 (443)
and from type Il frames we have:
Wi 2 Wil = [20 = 3)[20 — 1)%[20 + 1], 1=2,...,n—1, (4.44)
1 1
Wi (= Wircu? + —— W) = [21 — - 1)? =2,... .
W1 ([2l = 3]| 1-1-1° + o= 1]| wal?) =20 =3)[20 - 1%, 1=2,...,n,(4.45)

which are exactly those for the type I and type II frames for the graph A®*+)*  Since
the Perron-Frobenius weights and Coxeter number are also the same as for A"+1)* the
cells Wy 4| follow.

From the type II frame consisting of the vertices ¢;, j;, 441 and j;;; we have the

following restriction on the choice of phase
)\ihjhkl+l)‘ihjl-{-l;klAil+1»jl»klAil+lyjl+l»kl+l = —/\il»jt,kt)‘it,julykul>‘iz+1,jlykt+1/\it+1.jt+1,kc' (4'46)
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Theorem 4.2.13 Every Zs-symmetric solution for the cells W of D) < o0, is

equivalent to the solution:

VIR,

Wit_l,jz,k( - Wum vk = Wiujt,kt—l - [l = 1] > y 1,
VIR =@ +1]
Wit,jhk1+1 = VViusz,kt = VViz+1,j1,kz = ) l=2,...,n—-1,

U

[2t —1]j

Wi ik = (—I)H'l————, l=2,...,n.

(- 1)1

Proof
Let W! be any Zs-symmetric solution for the cells of D("+1* where the choice of

phase satisfies the condition (4.46). Since D®"*1* does not contain any multiple edges,
we must have |W, ]kl = |Wijk| for every triangle A of DEr+D)*  We need to find a
family of unitaries {u,q}, where u,, is the unitary for the edge from vertex p to vertex
q on DE+D* which satisfy (4.7), i.e. —1 = uizl,jmujz,,kmuk%m)\E%j%,cm for the triangle
A

. . . . . _ ]
For triangles involving the outermost vertices, we require 1 = i j,Uj, kyUke,ir Asy jy k10

ik L = Loy [1/2], and 1 = up Up,tpy Apy pp s fOT all other triangles on D27 +1x,

— . Y — ar. Ay A\ _ f
1= ulz,jxujl,kzukz,lz’\iz,jl,kz’ 1= u12y12u.72yk1uklﬂZAiz,jz,kl and —1 = ui2uj2uj2»k2uk2ui2A‘ig,jg,kz'
= Ay — R — — Y _
So we choose Uiy,jo = Ujrke = Ukyde = Ujp ke = Ukgiip = 1, Uiz,i = )\iz,jl,kz’ Ukyiy =
N o=\

i1,j2,k2 Yiz,dz 12,j2,k2

. — _\ L} ; ; —
and uj,k; = —Aj, 4, kN5, gk, - VX consider the equations 1 =

Yy B\ — . 1 _ i
“12,J3“Js,kz“kz,lz’\ig,jg,kg’ 1= uls,jz“jz,kzukz,is’\is,'2,k2 and 1 = w;, j,Uj, ko Ukg iy A; k3 We set
J 2,32,
g, = = o=\ o=\ — i i
Uigjs = Ujp kg = Ukgig = 1, Uigjp = )‘ia,jg,kgv Ujs k2 = )\iz,jg,kz and Ui, = ’\zz,Jz,kg)‘ig,jg,kg'

Next we consider the equations

[ # # i
1= Uiy, ja uJS k3 Uk i /\12 ,33, k3 —Ujz,ks3 Alz ,Jj2.k2 A‘Lg,_]z,ka /\1,2 ,j3.k3?

—ar o are o oars . A _ [} #
1= Uiz, ja Ujp k3 Uks,is )\ig,jg,ka = ukaﬂ's’\is J2,k2 /\ia,jz,k:;’

— U s U B\ — N
1= ulSsJSu]3xk2uk2y1»3/\i3,j3,k2 - ui3s]3A12,]3,k2/\13,_]3,k2

: o # # i —
We make the choices uiyjo = Aj i, Ao kyy Uksis = )‘wa,n,kz’\za gaks 8Dd Ujg kg =
Y #
’\12.12 k3 ’\12.12,162 )‘12 \J3,k3” Then
L Y f f i ! _
ulwau}s»ksukaﬂ3’\i3,ja,k3 - /\12,13,192 13,]3,162)‘12,]2,’63)‘12,J2,k2’\nyjsyks/\13.12,102’\13,]2,’93 = -1,
by (4.46), as required. Continuing in this way we are done. O

For D+ the Hecke representation for the cells W above is given by the Hecke
representation for AC**D*, where [UCtk)]; = (UG = [Ukedn)); . are given by

the weights [U*7)],, , for A@"+D* for any I, m,p,r allowed by the graph.

84



We now consider the graphs D®"*. Labelling the vertices of D®* by 4, j, and ky,
for{ =1,...,n—1 (as in Figure 4.9), the Perron-Frobenius weights are ¢;, = ¢;, = ¢, =
[2!]/[2], and we again assume |Wi, ;. k. > = Wi jrkol® = [Wijpk|? =1 [Wparl|?, where
p,g,r € {1,...,n —1}. Then as for D@ *1*  the Z3-symmetric solution for the cells
follows from the solution for A®™* and we have the same restriction (4.46) on the choice

of phase. So we have

Theorem 4.2.14 Forn < oo, the Zs-symmetric solution for the cells of D“™* are given

by:

+ ot Vi[[2l +2] (TEI _ _
W:Jz kier vvihjtﬂ,kx - Wil+lajl:kl [2]\/_ l=1,...,2n-2,

Wik, = Wit = Winin = e VB E T, 1= 1.
i+ 1.kl 4 nJnkir Ut LJi+ 1.k [2] 2l + 1]

[y V2] _ o
(1)[m¢m ume‘mmi;ﬁ_ I=1,...,n—1,

¢MQn—upn+u’

e V2] — o n—
| (1) m¢m_”m+”ﬂmm¢w,4¢z +1,...,2m -1,

and the Zs-symmetric solution for the cells of DU**+2* gre:

Wi _ W:t - W:t V [21][21 + 2 \/_
injukier —  indisnkn o andnkt T [2]\/[21_

. . e ‘mmﬁi*fvﬁ_ﬁﬁz_' 1

L 2n—2,

lelt.]l ki — =9 (_1)"+1

l=1,...,2n—-1,

Wiu]’:+1,kz+1 - Wi¢+1,jc.kt+1 T vk T [2]\/—-— »2n—1,
NI
) [2] IE! I=1,....n
A R Ve
i,j
] (e 2l pRlFBEn a4, l=n+1,...om

[2]V/[21 - 1][20 + 1]

The uniqueness of these solutions follows in the same way as for D@ D* If W+ is a
solution for the cells of D®M*  then W~ is a solution for the cells of the graph where we
switch vertices 4y <> i,_y, 1 @ jnyand ky & k,_;, foralll=1,...,n—1.

For D™ the Hecke representation for the cells W+ above is given by the Hecke
representation for A®™*, where [UG4)]; ;= [UGuin), = [Ukedr)]; . are given by

the weights [U(t7)],,, for A®M* for any I, m,p,r allowed by the graph.
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In [27], di Francesco and Zuber gave a representation of the Hecke algebra for the
graph D©®* with the absolute values of the weights there equal to those for our weights
given above. The two Hecke representations are not identical as the weights in [27] involve
the complex variable . However it has not been possible to determine whether or not the
two representations are equivalent as there are known to be a number of typographical

errors in the representation in [27].

4.2.5 £®

We will label the graph £® in the following way. We will label the six outmost vertices
by ¢; and the six inmost vertices by ji;, | = 1,...,6, such that there are edges from i, to j
and from j to ¢4;. The Perron-Frobenius weights on the vertices are ¢;, = 1, ¢;, = [3].
With [a] = [a],, ¢ = €™/8, we have [4]/[2] = V2.

We will again use the notation W ;x for W(A,; ;). Then from the type I frames on

the graph we have the following equations:
Wi ” = 1216065 = [2][3],

Wisgeiis* + Wi guiia [ + Wigos? = 216565, = 2118
Then |Wj,, it P+ Winiio1.ii_o1? = [3][4]- Since there is a Zg symmetry of £® we assume
Wiiriniis | = 1Wie1gede o |2 for all k1, giving
[217[3]
2
The Zg symmetry of the cells can be deduced from equation (4.48). Finally, for the type
= [2][3]? giving

'VVJ'1+1,J'hJ'1-1 |2 Py [3] [4]

iy
I frames ¢—¢~ we have |WJl+2 Ji .nl + |W, Jz+2,jz+4|

Ileyjl+2»jl+4|2 = [2] [3]2 B [2%‘21][3] - [2][1[]3]2

Let

M/il:jhjl—l = /\i, V [2] l=1,...,6,
WJ': Ji—1,J1 = (1) [2] [3 =1 6
WJI-1J1-2 ], \/m PICIRIRIP O (447)

W, /\(2) [2] [3] 1=1,2.

Jujiv2diea = \/m
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The only type II frames that yield anything new are those for the frame involving the

vertices ji_a, ji—3(= ji+3), Ji+1 and ji:

— -—1 |/‘/ . . . ‘/‘/ . . . |/|/ . . . ‘/‘/ . . .
0 = ¢ji_1 Ji—2:01-00 Y i+ 1I6J-1 T J—10Ji4 1Ji43 T Ji-1J1-2,01-3
.-1 . . . . . . . . .
+ § ) 2 Ji-2:dudi+2 Z Ji42:J1+1:J1 2 Ji43:J142:J141 2 Ji-2,J1-3:J1+2

2 VEE 0,0 o @ +&_ VB o o o @ (4.48)

[4]2 R TR M TR S T [4]2 Ji-1 gy Vs a0
which for any [ =1,...,6 gives
(1), (1) 1)y (2) _ (1) y (1) y (1) (2)
)\jl /\js )\js )\jz - —/\jz )\1'4 /\js /\jl : (4.49)
From the type II frame above we see that there must be a Zg symmetry on the cells,
12

°_ . . . .
IWiiridviea? = Wi rimie: |’ for all k1, is correct since otherwise the coeflicients of the

two terms in equation (4.48) would be different, and (4.49) would be
(1), (1) ()4 (2) _ (1), (1), (1) (2)
Ay Nis A Agy = — AL TN AT

J1 J1?

for some constant ¢ € R with |c| # 1, which is impossible.

Theorem 4.2.15 There is up to equivalence a unique set of cells for £® given by:

Wi, = VEIBI, Wiiicriie = o

Wiijsis = 2Bl [2][3]

’ VVJ'2 Jaje T T T o
v Vi

Proof
Let W! be any solution for the cells of £®) where the choice of phase satisfies the
condition (4.49). We need to find a family of unitaries {u, 4}, where u, , is the unitary for

the edge from vertex p to vertex g on £®), which satisfy (4.7),i.e. —1 = sz’j4u‘7'4’j6u‘j6’j2)\§z)
for the triangle Aj, j, js, and 1 = up, Up, Up; Ap, 5, p, foOr all other triangles, where Ay, p, p, is

the phase associated to triangle Ay, ;, »,- We choose w;, j, = uj, j,_, Ay, uj,j,,, = 1 for I =

_ _ _ (D EENONONGIOIN 1
}_;’ -6, Ujp,1 = Ujs,ja = 1, Ujyje — ’\jz y Uz jp = A§2)A§6)A§1)A§1))\;3)? Ujs,ja = ’\_2'5)’ Uje,js =
(1) o _ N ENOGNONOND) VO NONONONONONE
/\jﬁ » Ugs.gs = Wiago = Uieja = 1, Ujijs = ’\J'z )‘jz )\js )‘3'1 » Ujaja = )‘jz))\5'3)’\5'5)’\5'2)’\§'4)’\§6))\§1)
and w5, = A AN O

For £8), the above cells W give the following representation of the Hecke algebra:

Ulvi-1) = plei) — 2],
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_1)l+1 [3]

. 1 (
pylni-2)  — Ji-1 t!ﬂ B 12] ,
; (-1) 3 3
e ] @
1 1 .
Ji1 2] [2 NG
i1, 1 1
Ulvi) = itea [_;]. o 7[?_1 ,
ly1 [ U U |
v Ve Bl

for | = 1,...,6 (mod 6). This representation is identical to that given by di Francesco-
Zuber in [27). (The representation in [27] is given for the graph £®*, and the represen-
tation for £® is obtained by an unfolding of the graph £®)*.)

4.2.6 EB*

We will label the vertices of the graph £®* as in Figure 1.12. The Perron-Frobenius
weights for £®)* are ¢, = ¢4 = 1, ¢ = ¢3 = [3]. As with the graphs A™ and £®
we easily find |Wja3|? = [2][3] and |Wa34|? = [2][3]. Then by the type II frame oo—s
we have [3]71|Wia3|%|Wags|? = [3]%, and so |Waes|? = [3]?/[2]. Similarly |Waas|? = [3]?/[2].
From the type I frame e—& we get |Wags|2+|Waas|? = [2][3]?, giving |Wan|? = [3]3/[2], and
similarly |W3s3|2 = [3]3/[2]. Let Wijx = Aije|Wijk|. Then from the type II frame consisting

of the vertices 2,2,3,3 we obtain the following restriction on the choice of phase:
)\222/\333 = —)\333Ag23. (450)
Theorem 4.2.16 There is up to equivalence a unique set of cells for E®* given by:

Wiz = Way = /[2][3],
]

3
Was = Wi = —=,
VI[2]
Wew = -V

Nk VR

W222 =

Proof

Let W be any cell system for £®* where the choice of phase satisfies the condition
(4.50). We need to find a family of unitaries {u,,}, where u,, is the unitary for the
edge from vertex p to vertex g on £®)*, which satisfy (4.7), i.e. —1 = u} 4y for the
triangle N3 33, and 1 = w;ju;rukAijx for all other triangles, where A is the phase

- 1
associated to trlangle Ai,j,k' We choose U3 1 = U3z = U443 = ]., Ug 4 = )\234, Uz g = *—/\3333,

P A [ § 1
— 3 — 3 3
Ug3 = —Aj33A233, U1,2 = —A233A123A333° and ugp = — a3z Aoz Asaz®. O
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Figure 4.10: 5'1(12) and 82(12)

For £®* the above cells W give the following Hecke representation:
U(1,3) — U(2,1) — U(3,4) — U(4,2) — [2],

, [ 1 VB
U(212) — [2] ,
2 83
(2] 2]

N3]

, [ L _YE
G 2] 2]
3 _vB B '
[2] (2]
11 1
2 CP)| )
2,3) _ 1 1 _1
e = sl m owm g
4 1 1 [
NE) B Bl

U®? with rows labelled by 2, 3, 1.

This representation is identical to that given by di Francesco-Zuber in [27].

a.2.7 &M

We label the vertices and edges of the graph 82(12) as in Figure 4.10. The Perron-Frobenius
weights for 82(12) are

¢ = 1, ¢j=¢k=[3]’ ¢m=[[%T]]31 ¢01=¢ﬂ:%v =123

With [a] = [a],, ¢ = €™/'2, we have [2]> = [5| and [3]2 = [1] + (3] + [5] = 22 + [7] =
[5] + 7] = [2][6]-
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As in the A case, we have |W;;i|> = [2][3]. Then from the type II frames b
(1=1,2,3) we have ¢kl|WkaI2|ka|2 Gi;bp, giving [Wh,;4l* = [2]2(3]/[4], { = 1, 2,3.
From the type I frames ‘s—#® (I = 1,2,3) we have

|Wp,,j,r,|2 + IWPt,J',Tt+1|2 + le,,j,k|2 = [2]¢Pl¢j = [2][153]’
ine 273 e
|Wp[,j,n|2 + IWPI,J'-7‘1+1|2 = [4] ([2] - 1) [4] l = 1’ 21 3 (451)
Similarly,
Wl + Wigralf = e - - B 1128 )

From the type II frames Sos! (1=1,2,3) we get

21[3°

d);llIthqtuk‘zlwphm—lykP = ¢W—1¢k¢ql = [4]2

and substituting for |Wp, 4,_, x|*> in equation (4.52) we obtain the quadratic equation
4P Wosaukl* = 21181 (4] [Wpiqkl* + [21°[3]° = 0.

Solving, we get
2
Wl = (2 + VBT, 1=1.23
Then from (4.52) we have

Wa-ial? = (@4 % VBT, 1=123

Next consider the type I frames S (1=1,2,3): Wpaml® + Waa, 612 = [2]°[3] /4]
giving

Wi = (27 & VD, 1=1,2,3

Then by considering the type I frames e for | = 1,2,3 we obtain

Woinl? = EE (2 VBT, 1=1,23

and from (4.51)
Wil = (@l = VBT, 1=1,23
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Finally, from the type I frames e (1=1,2,3) we get
|Wp1,q1,r1+1|2 [4]2 ([2]2 + V [2] [4 ) l= 11 2a 3.

Let Wy, s = vy vavs) Woraws| fOr vertices vy, vg, vs of £ The type II frames

consisting of the vertices p, k, p;—1 and 7; give a restriction on the phases Ay, v;,u5°

_ -1 55 7 i
0 = q- IWm 1,91 17‘1WP1 1,91~ 1kWPt q- 1’CWP1 q1-1,71
1 .
+¢j WP:-Lj,TIWPt-l,J'.kwpl,j‘kaJ,n
[2]°[3]°

[4]5 Apl—ls(Il—lyrl/\pl:‘Il—l:k)\Pl—ly‘Il—lyk/\Pl;(Il—l»Tl

Y N —
[4]5 pz LITIPLIEAPL- 1,5,k PLd T
so we have, for [ = 1,2, 3,
)\Pl—leI—lurlAPI;‘]I—1yk)‘pl—leI—lak)\Ply(Il—lxrl = _Apl—l:j:rlApl:j1k)\Pl»lvjxkAPlsj»Tl' (453)

Then there are two solutions W+, W~ for the cell system for &, (12),

Theorem 4.2.17 FEwvery solution for the cells of 5512) is either equivalent to the solution

W or the inequivalent conjugate solution W~, given by:

W= VIR, Wi, =20

Pu.sk [ 4] ?
: Zy- . _ VI
Wp’ AT [4] [2] + [2] [4]’ Wm qurier ] [2] [2] [4]a

W= W =Yl VBT

+ + _
szquk Wpun_ [4]

[2]14],
forl=1,2,3.

Proof
Let W* be another solution for the cells of £{'?, with WE v = A o osl Wk 1, 0, and

where the A’s satisfy the condition (4.53). We need to find unitaries u,, ,, € T such that

# — — —
Uppa Uiy Yrion o gy = — 1 1= 1,2,3, and Uy, vy Uoy vy Uvg iy b, 4,05 = 1 for all other

(12) U =1 , , !
triangles Ay, p05 00 & . We choose ujx = g = Ujr, = Ugk = Ury o = 1, Uij = Ak
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_
Upj = A

— )\ i — 1\ i Y # #
p[,j,"'[+1’ uk»Pl - A A url)pl - A A uPval - )\p‘,j,kA l,kA

PLITI+17 P K PLJiTi+1 7 PLITY Di,q PLITI+1?

—\! # i — )i i i # —
up[’m'l - )\PIJ»’C/\PI»QI—L’C/\Pl,jﬂ'l+l’ and uq"rH'l - )‘Phjx"'H-l/\Plthk/\Phj,k)‘Pt,j,THl’ for l - 1’ 2’ 3

Similarly, for any solution W™ with |[WH¥ | =|W,, ,, .l

The solutions W* and W~ are not equivalent since |W*| # |W~|, and there are
no double edges on 5;12). We remark that the complex conjugate solutions W= are
equivalent to the solutions W¥: we choose a family of unitaries which satisfy (4.5) by
Uipj, = Ujpk, = Ukyi; = Upyjy = Ujr = Ugk, = Ukp = 1, Ugr = —1, and 2 X 2 unitary
matrices u, = ug = u where u is given by u(¢,j) =1 -9, ;. d

For 82(12), the cells W above give the following representation of the Hecke algebra,
where [ = 1,2,3 (mod 3):

U(i7k) — U(J’l) — [2] ,

| g /eP
gk — ° Bl vl

(23 122 '

ENVCERER

[22([2)[4]++/12]]4]) [2]3

; - [B°[4] NI

U(r[,]) — Pi-1 (3][4]
n V23 [212([2][4) - /[2][4)) ’

(3}(4] BEO

= U®% with rows labelled by p pit1,

R4+ -VRI4- V24
Ular) — k 211] (2] \/ﬁ
rgr | -VRIA-VEIE 22—/l
[21v/B3] (2][3]

= UWPoree1) with rows labelled by 7,q,

24—/l R)4-/[2114]
Ueer)  — J e (2] \/T3—]
- 2l4-vi2IlH [22+/(204]
[214/13] (2]13]

= U@-1P) with rows labelled by k, 7,

(2](121>~+/[2][4]) —[2)

Urana)  — P 13]* \/ﬁ
Pi+1 —[2] R[22 +/[2114) |’

V6l (31
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. JRI-EIe 24+ /R

i 2 V1218][4] V1213]14]
yek)  — [21[4-/[2]4]  [2][4]-+/12][4] y (6]
-1 23]4] Bll4] VA

% [214]++/[2)14] 6] [2[4]+/12]4]
V213](4] v/ 3114] [31(4]

428 &

For the graph 81(12) (illustrated in Figure 4.10) we will use the notation Wifll ,),,2,1,3 for the
cell of the triangle A, 4, », Where there are no double edges between any of the vertices
v1, Va, V3. For triangles that involve the double edges a, o’ or 3, ' we will specify which of
the double edges is used by the notation A,,l vavsy aNd Wi, 1) a6 1= W(Av1 vavg)- SiNCE
the graph El is a Zs-orbifold of the graph 8212)
the cells for 51(12)as follows. We take the Zz-orbifold of &, (12) with the vertices 4, j and k all
fixed points- these are thus triplicated and become the vertices %;, j; and k;, l = 1,2,3, on

51(12). The vertices p;, p2 and p3 on 82(1 are identified and become the vertex p on 8112),

, we can obtain an orbifold solution for

and similarly the ¢, and 7, become ¢ and r. The edges a;, a; and a3 are identified and

£ also the edges o}, o and of are identified and become the

become the edge a on
edge . Similarly the edges £, §; and -, become the edges 3, (' and v respectively on
£ The Perron-Frobenius weights for the vertices are ¢, =10, =0k =13,1=1,2,3,
= [2][4] and ¢, = ¢, = [3][4]/[2]. Note that these are equal to the Perron-Frobenius
weights for the corresponding vertices of £{'* up to a scalar factor of [4]/[2)].
From the type I frames zc’—»ﬁ [ =1,2,3, we have IWSJ)‘ k> = [2][3] (which is equal
to ([4]/[2])?|W, ]k| /3). Then the type I frame $—¢, | = 1,2,3, gives |Wp1]) w2 = [3]4]
(= ([4]/12) |W(2)J .|2/3). Since the triangle A _in £ comes from the triangle AN,

in 52(12), then o
e LW = (2 = VBT

The triangle AP in 51(12) comes from the triangle A, ;.. in 52(12), giving

prr

WS ol = WSS, = 2121 % /T

Similarly
WD, = {‘;}zlw‘%lkﬁ (21((2)14) % /2T,
Wikl = B, ol = 2120 = /BT

93



The three triangles A g, vy, 1 =1,2,3,in & (12) are identified in 51(12) and give the triangle
A%, so that (W 12 = 3([4]/[2) 2 Wy [2 = (41/[2)%([2)° F /[2][4]). Similarly
W, il = 3041/ 2D2AWraan[? = (/2 v/[2][]). Then from the type I

1
frame e—e we have |W( r(aﬂ)|2+|W(lq)r(a ﬁ,)|2+|W arep T ,fq),r(a gf)|2 [31[41°/[2]-

1 1 1 —
Substituting in for |W(qr(a |* and |szq)r(a gn|* we find |W( )r(a ol W,y o s> =0,
so that |W(1)r(a ﬂ)|2 = |W,, q) o, ﬂ,)|2 — 0. The reason for this is that the triangle A5

(and similarly for the triangle A,(fq,f )) in 81(12) comes from the paths p, — q — 1141 — P

in & (12) , which do not form a closed triangle.

From the type I frames e and e=3é, we obtain the equations

A1) M) T A2@) A2(e) T A3(@)A3r) = 0, (4.54)
M) t Az ree) + A3y Ay = 0, (4.55)

where W j,-¢) = Ney\Woire)l, for € € {a,d/,3,4'}, | = 1,2,3. Another restric-
tion on the choice of phase is found from the type II frames Jo—u«—o for [ # m,

Re( (o) Am(a') Ai(a') Am(a)) = —1/2, and similarly for the type II frames ko—>g<-— o, #£m,

giving
— 1 V3.
M) Am(a M@ Amia) = =5+ Etm 0, (4.56)
— 1., V3,
Aug) Am(a) At Am(s) ~5 tem—5t, (4.57)

where €;m, €, € {£1}. Lastly, from the type II frame consisting of the vertices ji, ki, ¢
and r (I =1,2,3) we have

Ay A Ay Aig) = —Aap) A’ 8)» (4.58)

where Wpqr(,.6,) = ’\(£1,62)|Wp,qyf(51.€2)|’ for §; € {a,a'}, & € {8,6'}, 1 =1,2,3. Then for
L #m,

M) Am(a) Mi(e) Am(@) = M) Am(s") Mgy Am()
and, from (4.56) and (4.57) we find ¢;,,, = €l m- Substituting in for A\ya)Ai(ary from (4.56)
into (4.54), we see that €141 = €mm+1 for all [;m = 1,2,3, and that g,;_; = —&;;41.
Then the restrictions for the choice of phase are (4.58) and

i=€3, (4.59)

At(@) M+ 1(an) At ) M+ 1(a) = Mgy Ar1(sn Aany Mir(s) = — e

DN —

where € € {£1}.

Then we have obtained two orbifold solutions for the cell system for 51(12): W+, wW-.
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Theorem 4.2.18 The following solutions W+, W~ for the cells of €M) are inequivalent:
WE o= VEIBL, W= VB4,
W ey = /B 214 = VEIH, w:,-,,(a,)=a\/71\/{21[41wm,
WE o= aVEVRI T VEIRL Wi =avEY R + VEI,

W iasn = \[[}] PPF VR Wi = j‘[]z_] 2 £ /BT,

+ + —
44 par(af) — Wp,q,r(a’ﬁ’) =0,
for1=1,2,3, where ¢ = 1 and ¢; = >3 = 5.

Proof
The solutions W+, W~ are not equivalent, as can be seen by considering (4.5) for the

triangle A, ;, ». We have the following two equations, for = 1,2, 3:

W;j,,r(a) = UpjUj,r (ua(a’ a) p.jir(a) + 'U,a(a Q ) P ( a’)) ’

W) = Uit (“a(a"a)wpfj,,r(aﬁ“a(a o) Per(a’)>

So we require u, j, u;, € T and a 2 x 2 unitary matrix u, such that, for { = 1,2, 3,

2lzy = upju (ua(a,a)q\/@z_ + uq(a, @)/ [2] x+) , (4.60)
[2] I = UpjUjy,r (ua(a,’ a)e,\/[a]_:v_ + ua(a,’ a’)gl [2] l’.,.) . (4'61)

where z4 = \/ [2][4] = v/[2][4]. Equation (4.60) must hold for each { = 1,2,3. On the
left hand side we have ¢, hence we require u,(a, ') = 0 because u, does not depend
on I, and the difference in phase between ¢; and  is 0, e~2™/3 ¢2™/3 respectively for
[ = 1,2,3 respectively. This difference in phase for each [ cannot come from u, ;u;, r
(although u, j,, uj,~ do depend on ) since in (4.61) the difference in phase is now 0, e2™*/3,

e—21ri/3

respectively for [ = 1,2, 3 respectively, so we would need %, ,u;,, to take care of
the phase difference here, not w,ju; .. Then we have u,(c, ) = U, 4, z4+/x—, and
similarly u,(o/, o) = 0 and u,(o, &) = U, ;;u;,,, - /4. But now u, is not unitary. O

For 81(12), the cells W above give the following representation of the Hecke algebra,

where [ = 1,2,3 (mod 3):

[tk [ Gi) (kt.t) g 8 [[2}[4]
ki — [ = [2 , AL —
2] , \ VR
HEENE
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(2)2([2)[4]++/[2](4]) av/[2?
(rg) — P (31°14] NET
Urt = e w/BF rea-yEE |
/13114 BI2[4]
U9 with rows labelled by p(8'), p(8),

. a2 ay/R14-/EIE

K 2] VE2IBIE NORT
pan = o | o/EaeViEE e/ ay/6 ’
V121B]14] (3]14] (3]14]

@) | ay/Rla-/2 /18] [2)14]-/[2114]

V[218](4] V3114] (3]14]
U®*) with rows labelled by ji, q(8"),q(8),

. 0 0 0 0

p(ab) pP-/EE) V@
) 0 5 0

yiro — ) 3 l6]

B ' V12 [2)(121*++/12114D) '
p(a'B) 0 - — 0
'y [6] [ ]

p(a’B) 0 0 0

U®") with labels i, ja, 3, ¢(8), q(8") = U@P with labels ki, ks, ks, 7(e/), 7(a) =

( 3 212 ~iy/[214] pey/EE -/EE/EE e /EE
(4] (3][4] (3][4] [41y/13] (4]y/13]
—[22+iy/2]A] 1 —pP-iyEE ey REVRIE eyRI4-/2
(314 (4] (3]]4] [41y/131 (4]y/13]
— (22 —ir/1214] —[2P+iy/12]14] 3] —eoy/[241+V/214) @2/ [24)-\/2)14]
B] BI4] ] /Bl /]
R/ e/ -2y 2+ /2)4 [212++/[2][4] 0
[41y/13] [4]y/13) [414/13] [2](3]
Ela-vE2E @/R-VEE eyRd-ViEE 0 212 /1214]
\ @V NG N B

Our representation of the Hecke algebra is not equivalent to that given by Sochen

for 51(12) in [108], however we believe that there is a typographical error in Sochen’s
presentation and that the weights he denotes by U*42") = (U3~8)* should be the complex
conjugate of the one given. In this case, the representation of the Hecke algebra we give
above can be shown to be equivalent by choosing a family of unitaries w; ; = uj =
Ukyiy = Upj, = Ukyp = Uqr = 1, Uj, = —€ = Ugy, and set the 2 X 2 unitary matrices u,,

ug to be the identity matrix.
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Figure 4.11: Labelled graph 85(12)

4.2.9 &M

We label the vertices of 85(,12) as in Figure 4.11. The Perron-Frobenius weights associated
to the vertices are ¢, = [3][6]/[2], #2 = #3 = P = d1a = [3][4]/[2], b4 = &5 = @9 =
¢15 = [3], d6 = ¢12 = [2][3]°/[6] = [2]*, ¢7 = ¢13 = [3]*[4]/[6] = [2][4], b10 = b16 = L,
#11 = $17 = [4]/[2]. The distinguished *-vertex is vertex 10. The following cells follow as
in the A case: |Wy1015)* = |Ws 161> = [2][3], [Waz15]* = [Ws 9,132 = [3][4], [Wa715]* =
[Wyz14]? = [Wag13|> = |[Wss13|* = [3]?[4], whilst from the type I frames e—eand e—e
we have |W311,14|2 = |Wag17|% = [3][4])%/[2).

From the type I frames s—e and ¢ —e we have: [Waz12|? + |Waz1al? + [Waris)? =
[31°[4]2/[6] and |Wa,6,13)% + [Waz,15]* + [Wa,13]* = [3]*[4]?/[6], giving

2](3)%[4
[Waz12f® + |Wa1s* = “_[[6]]*[_1, (4.62)
2][3]3[4
[Wagasl® + [Worisl* = LIEl ],
[6]
7 12 6 13
so |Wa712| = |Wae13]. The type I frames e—e and e—'e then force |W, 710 = |[Wig.13|.
Similarly, we find that |Ws3 7 14| = |W3g13| and |W; 714 = [W1g13]. So there is an auto-

matic Z, symmetry for the cells of the graph 55(12).

From other type I frames we obtain the following equations

(Wiz14l? + [Wsz 4> = E[[%]f_[i]’ (4.63)
(Wigal® + [Wagal? = %, (4.64)
Wiz1al? + |Wigual* = &2[[;]@, (4.65)
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BI°[4)*

|W3,7,13|2 + |VV3,7,14|2 [6] ) (466)
(Whzpal® + Wizl + [Wizad® = [3°4], (4.67)

212[3)4[4
[Wizaaf® + [Wa ol [—][[g]]y[——], (4.68)

2]3[3]¢
(Wil + [Wae ol = | ][6][2] : (4.69)
Wienl® + Wizl = (238 (4.70)
Next, consider the type II frame 1;1_)1(_1.3, which gives
67 W 7132 | Wh 71a]? + 05 Wi 81321 W 8.4 = br401615.
Substituting in for |W g 14| from (4.65), and since |W)513|? = |Wi7,14|%, we get
[6] 2 2 2 [2] o+ _ [31°[42

W W . 4.71
[3]2[4]|W1713| |W1,7,14|* + [3][6)| W1,7,14]° — [3][4]| L704]" = N (4.71)

Finally, from the type II frame e—¢—e we have

o7 Wiz132 W g 13| + 63 IWa 7132 | Wag 1312 = ¢rdrsds.

Substituting in for |Ws7,3|? from (4.66) and |W37 14| from (4.63), and using the Z,
symmetry of the cells, we get

6] .., 19 6] [3)*
pp@ sl Winad™+ grg BPHP B

Then equating the |Wj713]%|W1714* term in (4.71) and (4.72) we get the following
quadratic for IW1’7,14121

= |Wy 714 — |Wizaa|* = (4.72)

[21Wh 741" — [BI[4161°|W1704f* + [2)[3]°4]° = 0,

which has solutions |W;7.14|2 = [2]*[3][4][6] or |Wiz14*> = [3][4][6]/[2]. Substituting
the first solution into (4.63) gives |W3714|? < 0, so we have |W; 7142 = |[Wig13]? =
[3][4][6]/[2], and from (4.63) |W3714|% = |Was13|> = [3][4]?/[2]. From (4.62)-(4.71) we
obtain the following values for the remaining cells: |W, g14|? = [3][4]2[6]/[2]%, |W3g14]* =
[4261/[2%, Whzasl? = BI4P/[2, Wizaal® = Wiewsl? = [2PE]M],  [Warael® =
Waeasl® = 2[4, Wieael® = 28], [Waepl* = [2][4]%, [Wezusl® = [2][4]* and
|Wa,7,3* = [4]°[6]-

With Wy, vy.05 = Aoy va.vs| Worvzvsly Aviuews € T, we find two restrictions on the choice
of phase

A1,6,12/\2,7,12)\1,7,12)\2,6,12 = _>‘1,6,13/\2,7,13)\1,7,13/\2,6,13) (473)

A1,7,1401,8,13A1,7,13A1,8,14 = —A3,7,14A3,8,13A3.7,13A3,8.14- (4.74)
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Theorem 4.2.19 There is up to equivalence a unique set of cells for 55512) gien by:

Wie12 = Wai015 = Wso,16 = V/[2][3],

Wieas = Wiz = [2]v/[3]4],
Wizis = Waz1a = Wagis = Wagir = Wa s = Wazs = Wag13 = Waria = W3
_ 4Vl
="a
=@ W1714=W1813“—M6—]

Wi8,14 2] ) = 2] )

Waen2 = [4]1/12], Was1s = Wariz = [2]v/14],
Wazaz = —[4]vV/]2), Wazas = —[4]V/16],

Wig14 = [4][\2/]—{67, Wazis = Wsg1z = /[3][4].

Proof

Let W be any solution for the cells of £ with WY rvs = A 0r 0s | Wor 0], and
where the A\!’s satisfy the conditions (4.73) and (4.74). We need to find unitaries u,, ,, € T
such that u7,13u13,2u2,7)\g,7,13 = '—1, u7Y13u13,3u3‘7/\g,7’13 = —1 and Uyy ,va Uvz,v3Uvs,0; /\EJIVU%US =
1 for all other triangles A, 4,4, OD 85512). We choose uz7 = uz9 = ugg = usz1 =
Ug13 = U713 = U714 = Ug13 = U177 = Ugi16 = U015 = U121 = Ui22 = U135 =
Uy = ws2 = 1, usg = M U712 = Ang,_ U715 = /\2,7,15_,“11.14 = —)\M,
Uz = /\11,6,13,_1613,2 = — M wzs = Mgy wag = Mg g = f\_ns_,g,_lz,
U7 = )‘u2,7,12/\_§_,_7;12_a Uz6 = —/\2,7,13/\2,6,1& Uz = —/\ﬂ3,8,13)‘g,7,13, Ug13 = —)\u2,7,13)‘u2.9,13a
U154 = )‘5,7,15’\"4,7,15’ Ug,10 = /\91,7,15)"12,7,15’\91,10,15’ Us,g = _/\uz,g,ls)‘g,7,13’\u5,9,13’ Ug,12 =
—/\2,6,13/\“2,6,12/\ﬁ2,7,13’ Ug1 = /\5,7,12/\2,7,14/\‘12,7,12, U3 = —/\?5,7,13)\'!3,7,14’\%,8,13, Uy =

i i i i _ 1\ i [] i 1\ i i i
_’\2,6,12)‘2,7,13)‘1,6,12’\2,6,13’ U8 = )‘1,7,12)‘1,7,13)‘1,8,13)‘2,7.12’ Ug,14 = )‘1,7,14/\1,8,13’\1,7,13’\1,8,14
_ # i # [
and uje5 = '—/\2,7,13’\5,9,13’\2,9,13)‘5,9,16' O

For 55(12), we have the following representation of the Hecke algebra:
U8 — 69 _ (104 _ 70510 _ 2],

yBln = pyar8) — a3 _ a1y _ E
4]’

U(2,15) — U(4,14) — U(8,5) — U(9,2) — _{i}
3,



y2n [2[3] gl = U39 with rows labelled by 2,1,
P\ E B
. 1 _VB
UG — [ 3 @[f] = U3 with rows labelled by 14, 13,

"\

1 vV [4]

ye) — ° VL

| Vo

vl

U139 with labels 5,2 = U™ with labels 15,14 = U®" with labels 4,2,

]
A |
3 3]

UG with labels 13,12 = U®! with labels 10,7 = U®® with labels 16,13,

, g @V
g — 8 (8 = U®Y with labels 13,14,

6

o m VP
U(2,12) 3

s | VA g

(3] (3]

3 [4] 34 (3]
ya28 _ 1 2] 2]

o | 4vBl 2 ’
RF. [P
. 1 /P
) — I_]__;M 12[1?21 = UBD with labels 12,13,
! g g

1 1 6]
5 7B /e
[/13.9) T . [“[{q U047 with labels 4,31,
1 [6] 6 6
evig 2y B
A1 1
s | B U VB
v = | S g # U®? with labels 14,13,17,
11 S E ]
3 B 3]



. 2] ] Bl
v = .| - @B -2 [2];] = U™ with labels 15,13,12,
6 Bl VEP
Bl @By Bl
1 Vil BR
8 2 @/ 6]
pas - ﬁ% w VB g0 it labels 14,13,12,
6 | 2B EPe  pp
6] (6] (6]
N VB /6
2 2] NEE 2
(13,7) [6] 6] __/31le]
v : PR 2
1| VB /B 3
[2]? 25 By

4.2.10 £@9

We label the vertices of the graph £2% as in Figure 4.12. The Perron-Frobenius weights
are: ¢1 = ¢g = 1, ¢ = @7 = [2|[4], ¢3 = ¢6 = [4][5]/[2], ¢s = ¢5 = [4][7]/[2], b9 = P16 =
b17 = P2g = [3], b10 = d15 = P18 = b2z = [3][4]/[2], 11 = ¢14 = ¢19 = ¢ = [3][5] and
P12 = P13 = Pao = ¢a1 = [9]. With [a] = [a],, ¢ = €"/?*, we have the relation [4]? = [2][10].

The following cells follow from the A case: |Wyg17|2 = |[Ws16241% = [2][3], |[Wao17]? =
|W,16,241* = [3][4], [Wa18]> = [Wai01712 = |Wr 15,242 = [Wr 16232 = [3]?[4], [Wa1010]2 =
|W21118| |W71423|2 = |W7 1522|2 = [3][4][5] |W21119'2 = |W7,14,22|2 = [3]2[4][5] and
[Wis10,10/* = W3 14,232 = |We 11,1812 = [W 15,22 = [3][4]%[5]/[2]-

The type II frame e— e« gives o7 |Wa 110/l Warn1o2 = [3][4]%[5][7], and so we
obtain |Wjy 11,19|2 = [4][5][7]. From the type I frame ©—¢ we have the equation |Wy 11 10|2+
[Waanel® + [Ws11,10* = [2][32[5]%, giving |Ws 11,1012 = [4][5][7) = |Wa11,10/>. Then by

considering the type I frames e—e and 202—>3 we see that |Wyi1g2)2 = |Wsi422)* =
|W4,11,19| = |W5,11,19| , and similarly |W4,12,19| = |W4,14,21| = |"V5,11,20|2 = |VV5,13,22|2

and lW3,12,19|2 = |W3,14,2112 = |W6,11,20|2 = |W6,13’22|2, and the cells have a Zz Symmetry.

From type I frames we have the equations:

(Waanol® + [Waizael? + [Waanel? = [3][4][5][7], (4.75)
|"V3,12,19|2-*'|W4,12,19|2 = [2][3][5][9], (4.76)
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Figure 4.12: Labelled graph £(%

[Wsi0,0% + [Wanz0l* + [Wanaiel* = [3][4][5]%, (4.77)
Wi aa10)® + [Waraol® + [Wsia10/> = [2)[3]7[5)%, (4.78)
|Wanz0® + [Wazan|> = [4][5][9), (4.79)
(Waizal® + [Warz* = [2][9]" (4.80)

Finally, the type II frame 101——>109<—102 we have gb;l|W4111,19|2|W4,12,19|2 = [3]2[5]2[9], giving

|Wiy 12,102 = [3]%[5][9]/[2). Then using the equations (4.75)-(4.80) we obtain |Wy1410|% =
BI[7)/12],  [Wspaael® = [B][5][9)/[2), [Wsaanel* = BI*[5]/[2], [Wspanel® = [5][7][10],
[Ws12,211% = [5]%[9]/[2] and [Wy221/* = [7][9)/[2].

With Wy, 0305 = Avsvevs|Worvzvsls Avrwaws € T, we have the following restrictions on
the A’s:

A3,12,903,1421A3,12,2103,1419 =  —A4,12,1004,14,2114,12,21A4,14,19, (4.81)
A411,2204,14,1004,11,1004,14,22 = —A5,11,2235,14,1905,11,19A5,14,22, (4.82)
A5,11,205,13,22A5,11,22451320 = —A6,11,2046,13,2206,11,22X6,13,20- (4.83)

Theorem 4.2.20 There is up to equivalence a unique set of cells for £24 given by:

Wie17 = Wsie2¢ = V[2][3], Wae17 = Wrie24 = V[3]4],

Wao18 = Wai017 = Wris20 = Wri6.23 = [3]V[4],
Wa 010 = Wani18 = Wriges = Wris22 = +/[3](4][5).

Waa,10 = Wr1422 = [3]V/[4][9],
_ M4VBIB]

Wi 1019 = W3 1403 = We 11,18 = We 1522 = 7]

1
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W4,11,19 = W4,14,22 = W5,ll,19 = W5,14,22 =V [4] [5] [7],

Blv5l9]

Wii210 = Warao1 = Ws 1120 = Ws 1322 = ,

3](5]{9
W3‘12’19 = W3,14,21 = W6,11,20 — W6,13,22 —_ [ ][ ” ],

[2]

= % Wi400 = Ws 1122 = '——[5] 7]
4 dy \/[_2_]’ 14, y41, L]

2]
Ws,1410 = V/[5][7][10], Wi = —V/[5][7][10],

5]4/19 719
Wi 221 = We 1320 = —M, Wai221 = Ws 1320 = 71l ]
VI ] [2]
Proof
Let W' be any solution for the cells of £, with W = A [Wo ;s

and where the \'’s satisfy the conditions (4.81), (4.82) and (4.83). We need to find

tand # — t —
unitaries le,vz, € T SllCh that u12,21u21,3u;3,12/\3’12’21 = —]., u13,20u20,6u6,13)\6‘13,20 = —1,
. ) # — . = ;
U11,20U22,4U4,11 N 17,22 = —1 80 Uy, 0y Uy w3 Uvg v, AD, 4, 05 = 1 fOT all other triangles Ay, v, 0

on £24). We make the following choices for the u,, ,:

U312 = U314 = Ugq,11 = U513 = Us14 = U11,20 = U14,19 = U20,6 = U21,3 = U21,4 = U226 — 1,

U12,21 = —)\g,lz,zla Urg21 = )‘ﬁ3,14,217 Uuy93 = ’\us,14.197 U195 = —/\?),14,19,
Ug,12 = —)\”3,12,21)\94,12,217 Ug14 = ’\?3,14,21)\91,14,21, Up,11 = /\?,,14,22’\25,11,207
U12,19 = /\u3,14,19)‘g,12,19a Uil,22 = )‘?5,11,20)‘g,14,22)‘g,11,22’

U19,4 = /\91,14,21)\“3,14,21)‘1,14,19, Ugz,4 = —)‘us,14,22)‘2;,11,22)‘91,11,22’\%,11,20:
Us,11 = —)\ﬁ,ll,22)‘5,14,21/\u5,14,22)\g,14,21’\5,14,22)‘,%,11,227
U9 = _’\u3,12,21’\g,14,19)\91,12,19’\?3,12,19’\91,11,19)‘3,12,21’

U205 = —/\u3,14,21/\91,14,22)\115,11,22/\91.11,22)\91,14,21)\u5,11,20»

Uz s = _’\?3,14,21Aﬁ,l4,22/\g,11,22)‘5,11,22/\91,14,21)‘2,11,20’

U2z = —/\91,11,22/\91,14,21)\Es,u,zo/\uz,m,zl/\91.14,22’\2,13,22)\%.11,22’

U14,22 = —)‘3,11,22)‘2,14,21’\55,11,20)‘%,14.21A3,14,22)\g,14,22)‘g,11,22v
Ug,13 = _’\g,l4,21’\3,14,22’\2,13,22’\116,11,22’\91,11,22’\91,14,21)\%,11,20’\ﬁ6,13,22’

=\ # 1 1 f i 1 u 1
U320 = ’\4,11,22/\4,14,21)‘6,11,20)\6,13,22’\3,14,21)‘4,14,22>‘5,13,22)\6,11,22’\6,13,20'
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The u,, ., involving the vertices 1, 2, 7, 8, 9, 10, 15, 16, 17, 18, 23 and 24 are chosen in
the same way as in the proof of uniqueness of the cells for the A graphs. O
For £, we have the following representation of the Hecke algebra (we omit those

weights which come from the A% graph):

/B

ye - 12 ]
w \ VBB
@ [

U123) with labels 21,19 = U©®29 with labels 13,11 = U39 with labels 20,22,

. L)@)

o

Ue2)  _ 2 2]
AVAC G|
2] (2]

UL with labels 3,4 = U@ with labels 6,5 = U®213) with labels 6.5,

L[ B JEE
519 3 [3] , = U9 with labels 22,19,
w | VRE
(3] [3]
. g /P
U422 _ 3 3] , = U with labels 19,22,
a \ _vEE
3] (3]
| L[ B B
[7(20,13) 2][9] [2][9] = U®L12) with labels 3.4
s \ _ByvE ’ Y
[2][9] [2][9]
1 BB
pay — 2 4 ey
" BlvEl  pPE |

WM M
U249 with labels 21,19 = U®29 with labels 13,11 = U9 with labels 20,22,

1 V17 [110]

3 (2] (2](3] 13]4/12115)

yase — V11 7] [71y/10]
(21(3] [2][3]2 B12y/12]5) |’

5 v/ [710] [714/110] (7]10]
(31y/12115]  [3]24/12](5]) [312[5]

1 Vi _ /o]
6 (2] (2113] 13]/12][5]
7]/ [10]

(22,11) _ (7] 7
U = BIE) JJP{zus T EReEnE |

4 _vimaop - [7y/o) [7)f10)
(3]v/121(8] 3]24/12](5) (31°[5]
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W WV ey
2 (5] BB BIE
(9.1 s (4[13 v 5m [3[1 ]2[[75]] [3[? ;[[75]] U214 with labels 7.4,5,
5 [4]4/[7] 4[] [4][7
BB BB BPE

10 [5]
(3,19) | 309)
v Yl Ve B W |
12 | VO JBIe e
Bl ja\/[5] 14l
= UO*Y with labels 23,1921 = U with labels 15,11,13
U016 with labels 18,22,20,
12l 2 /20
1 Bl @pvig Vi
g4 — 4, [218]  [5] [51[9]

12 @0 VBlE ()9
Viam  wy/m el
= U149 with labels 22,1921 =
U0 with labels 19,22,20.

U2 with labels 14,11,13

The Hecke representation given above cannot be equivalent to that given by Sochen
in [108] for £29 as our weights [U*%)1919, [U*D]g191, [UMD]2090, [U1)]2090 and
[U1911)],,5 (as well as the corresponding weights under the reflection of the graph which
sends vertices 1 « 8) have different absolute values to those given by Sochen (and there
are no double edges on the graph). We do not believe that there exists two inequivalent
solutions for the Hecke representation for £(24), and that the differences must be due to

typographical errors in [108].
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Chapter 5

Aos-Goodman-de la Harpe-Jones

construction

In [51] Goodman, de la Harpe and Jones constructed a subfactor B C C given by the
embedding of the Temperley-Lieb algebra in the AF-algebra for an SU(2) ADE Dynkin
diagram G. We will present an SU(3) analogue of this construction, where we embed the
Ap-Temperley-Lieb or Hecke algebra in an AF path algebra of the SU(3) ADE graphs.
Using this construction, we are able to realize all the SU(3) modular invariants by sub-

factors.

5.1 General construction

In this section we will construct the A;-Goodman-de la Harpe-Jones subfactors. We first
present some results that will be needed for this construction.
Let Uy, Us,...Up-1 be operators which satisfy H1-H3 with parameter §. We let

F; = UiUi1 Ui — U; = Ui1UiUs 1 — Uiy, (5.1)
fori=1,2,...,m—2.

Lemma 5.1.1 With F; defined as above, F;F; . F; = §°F; if and only if the U; satisfy the
extra SU(3) relation (1.7).

Proof

The condition (1.7) can be written as

Uir2Ui1UiUi 11 Ui 2Uiyy — UiUiyr — UiUs 1 Uig2Uir = Ui Ui UsUs
= 6(Uin1UisaUis1 — Uiyr). (5.2)
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We have

FiFinFi = (UnUUi — Ui) Ui Uir2Uinr = Ui1) (Uit UilUi1 — Uiia)
=- (Ui+1Ui - 1)(Ui2+1Uz‘+2Ui2+1 - Uz’il)(UiUi+1 - 1)
= d(UinUilUis1 — Uiz1)(0Uiya — 1) (Uin1UiUis1 — Usp1)
= §(UiUi1Ui = U;)(0Uiy2 — D)(UiUiaU; = Uy)
= (0UUi1UiUi Ui Ui U — 8U Ui\ UsUsy2Us — 8UU; 42U Ui U
+0UUipoU; — UsUi 1 URU 1 Us + UiUi UE + URU U — U?).
In the following we use relation H3 to transform each expression, and we indicate which

terms have been replaced at each stage by enclosing them within square brackets [ ]. Since

U;, Ui+2 commute by H1, we have

62(0UU;i11Us42[UsUs 1 U] — 6UUi 1 UiyoUs — 08U UiUs 11 Us + 6UUiya
—Ui|Ui1UiUia)Ui + 2U;Ui 1 U; = Us)
= 8*(6Ui[Ui+1UisoUi1)UiUssy — U Ui UsyoUssy + 8UUi 1 Uiy 2Us — 68U U1 Uiy 2Us
—0Ui2UiUi 1 U + 60U Uy — UiZUi-HUiZ — UiUia U + Uis + 20U 1 U; = Uy)
= 8% (8U;42(UiUi1Ui)Uii2Uis1 — 8UUs2UiUir + U Ui UsUis) — 6UiUs 1 Uiy aUs
—8Ui2[UiUia U] + 8UiUigz — (82 = 1)(UiUiaU; — Us))
= 8 (0Uisr2UinUiUi1Ui2Uipy — 8[Usp2Us1Uisa)Usr + 0Ui2UiUs Uiy
—82U;12UiUspr + 6Ui2Ui+1Ui - 5U¢2 + 6UUiy1 — 60U Ui 11 Uig Ui
—0Uir2Ui1UiUssr + 0Ui12Usp1 — 0Uiy2Us + 8UUsya — (0% — 1)(UiUia Ui — Us))
= 6*(6(UirUir1UiUin1UsroUiy + UiUspy — UsUi Uiy oUsy — Ui Ui 1 UsUiy )
—0U;11Ui2U2, ) + 8UZ | — 8Uiy2Uisy + 6UsyoUsgr + UiUi 1 U; = Uy)
= 0%(0*(Uis1Uir2Uisr — Uir) — 8*(Uis1Uis2Ussr — Ui) + UiUi Ui — Us)
= O0°F,
where the penultimate equality follows from (5.2). O
Note that if the condition (1.7) is satisfied, alg(1, Fi|i = 1,...,m — 1) is not the
Temperley-Lieb algebra, since although F;F; = F;F; for |i — j| > 2, it is not the case for
|i — j| = 2, indeed FiF; oF; = 0F;U;43 (cf. (6.7), (6.8)) so that F}, Fi1, do not commute.
Let G be a finite ADE graph with Coxeter number n < co. We write [2] = [2],,
[3] = [3]q, where ¢ = ¢'™/™. Let My = C™ where ng is the number of 0-coloured vertices

of G, and let My C My C M, C -- - be finite dimensional von Neumann algebras, with the
Bratteli diagram for the inclusion M; C M;,, given by the graph G, j > 0. Let (u, ') be

107



matrix units indexed by paths , ¢/ on G, and denote by U9 the vertices of G. We define
operators Uy € My, for k=1,2,..., by

Ue= Y UzT(o-Br-m,0- B2 1), (5.3)
0.8,
where the summation is over all paths o of length kK — 1 and edges (1, 82, 71,72 of G such
that r(o) = s(81) = s(B2), s(w) = r(B) for i = 1,2, and r(y1) = r(y2), and L{gf;yf i
defined in (4.4). We will use the notation W, ,, ,, for W(Aff P %)), where i, = s(p1),
1=1,2,3.

Lemma 5.1.2 With Uy € My, given as in (5.3), the operator Fy, € My, defined in
(5.1) is given by
1

Fe= Y WymsWa s (061 B B30 12 73), (5.4)
a,ﬂ,’,‘y,* 7'(33)

where the summation is over all paths o of length k — 1 and edges B3;,v; of G, i =1,2,3.

Proof
We have
UrUg 41Uy
ﬁl }]
= 3123,2145::,7;“5:;’: (01817 p1,01-Ba- 72 i)
3y
X(Uz'm'ﬁs '73,02'#2'ﬂ4'74)(03’ﬁ5'75'#3,03'@3'76'#3)
— B, [3 ) ﬂ
= Ul UG U (01 - B -1 1,01+ B - ¥ - 13)
Ay
= > . Wss ve. 01 Wi iais Wi s e Wi yin ia Wi
= B, 76,2 BaA 3, 1A B3
o ¢s([36)¢7‘(16)¢s(ﬂ4)¢r(u1)¢s(61)¢r('n) 6.76,A1 Y 02,84, A1 VY Ba,ua, A2 VY B3,11,02 VY B2,63,A3
HinAg

xWﬂl»’Ylv/\S (‘71 “Bimp1,01-B6 Y6 ﬂa)

1 T
= Wors. s Warcnva (O Doty Br(us)
; Ds(680)Dr00)Driu)Ds(a)frim) oo A Tk o Bslia) Prlia) Belia)
BirAg

+ 6/\1,/\36111,#3¢T(A1)¢8(u3)¢r(u3)) (01-B1-m p1,01-Bs ¥ u3) (5.5)

1 -
= Z > Wsrve s Wormun (01817 - p1,01- Be - ¥e - u3) + Uk,

.84, r(“l)
Virkhy
where we obtain (5.5) by Ocneanu’s type II equation (4.2). O
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Note that if p is a minimal projection in M; corresponding to a vertex (v, k) of the
Bratteli diagram G of G, then a~16~!Fj,1p is a projection in My, corresponding to the
vertex (v, k + 3) of G, since from (5.4) we see that the last three edges in any pairs of
paths in Fy,; form a closed loop of length 3 and hence the pairs of paths in Fi41p € My4s

must have the same end vertex as p € M.
Lemma 5.1.3 The operators Uy, defined in (5.3) satisfy the Ay-Temperley-Lieb relations.

Proof

These operators satisfy the Hecke relations H1-H3 since the connection defined in
(4.3) satisfies the Yang-Baxter equation. We have left to show that they satisfy (1.7). By
Lemma 5.1.1, we need only show that FiFy,,Fx = [2]?Fx. We have

FieFyq1 F
1

= Z ¢2 ¢2 ¢2 W‘Yv,“/s,‘vg Wﬂvﬁs.ﬂs ansrye Wﬂmﬁsﬂe Wn Y2,Y3 Wﬂl 82,03
0.8, 1 T(B3)T'r(Bs) " T(Bg)

Yisky

(01'51'ﬁz'ﬂs'#l,dl'71'72'73'#1)(02'M2'[34'ﬂ5'56,02'#2"74'75'76)

X(03-B7r-Ps-Po- 13,03 Y7 Y8 Yo 143)
1

= Z PRIV W ~v8.v0 W51 .88.80 W s 80,13 W 54,8511 W5.84.6s W51 52,85
01.8;, " T(A3)7r(11) 7 s(i3)

Vi

(0151 B2~ B3 p1,01- Y778 Y9 U3)

Ps(ur) Pr (1) Ps(ps3) Pr(us) T
- [2]2 Z ;12 T:; ;3 oW 7‘78,’79Wl31,ﬁz,ﬁ35m,ﬂ75#1,#3
r{B3) "'r(u1) " s(u3)

01.84,
Vi d‘;’

(Ul'ﬂl'ﬁz'ﬂS'Nl,Ul'77"78'79'#3)
1 —_—
= 2 Wy Warm08 (01 B1- B2 B3 11,0177 Y8 Yo - 1)

01.8;, " T(83)
Vi k]

= [2)*F%.

O
By (28, Theorem 6.1] there is a unique normalized faithful trace on J, Mj, defined as
in [38] by

tr((01,02)) = b5y.0, [3]_k¢r(01)’ (5.6)
for paths o; of length k£, i = 1,2, Kk =0,1,.... The conditional expectation of A, onto
My, with respect to the trace is given by

E Ao LA _ 5 l¢r(°'1)
((o1- 01,02 03)) = 851 4 [3]” » )( 01,02),
(o1

for paths o; of length k —1, and o] of length 1,7 = 1,2, k > 1 (see e.g. [39, Lemma 11.7]).
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Lemma 5.1.4 For an ADE graph G, let My = C™ where ng is the number of 0-coloured
vertices of G. Let My C My C M,y C - - - be a sequence of finite dimensional von Neumann
algebras with normalized trace. Then for the operator Uy € My, defined in (5.3), tr is a
Markov trace in the sense that tr(zUy) = [2][3]'tr(z) for any z € My, k=1,2,....

Proof
Let £ € My be the matrix unit (a; - o}, a2 - o}). Then
2l = Z Ugf‘fff(a] 'o‘ll -,u,ag-a;-u)-(o-ﬁl '71,0'ﬂ2"72)
o.8i, 7.1
= Z [31 7, b, ”5(1’2'[’15/‘171(01 : a,l W0 By y2)
0,8i 7.4
= Y UETe- o pan- B ),
B2,72.1
and
tr(zUs) = Z Z/{’B2 (a0 - 0 B2 0 1))
B2,72.
B2, —k —k o’y 1
= Z ua’z,zz‘sauaz‘sa’l ,ﬂz‘swyz [3] +l¢r(#) = oy [3] * Zua'zl,:; B ()
B2,72,4 i

1 —
—k+1
= 5(11.(12[3] + E —¢ (a,)¢ ”’,\,a'l,p”A,a'z,p‘pT(y)
s(a})Pr(

= 601.02[3]_k+1¢ [2]¢s(al)¢r(al)5a1 ahy = [2][3]'1tr(:r)

where we have used Ocneanu’s type I equation (4.1) in the penultimate equality. The
result for any z € M follows by linearity of the trace. O

Then we have tr(Ux) = [2]/[3], and the conditional expectation of Uy € My onto My
is E(Ux) = [2]1/[3], for all £ > 1. We will need the following result:

Lemma 5.1.5 Let F; € M;,, be as above and tr a Markov trace on the M;, 1 =1,2,...,,
then tr(Fyy1z) = [2][3]~2tr(z), for x € My, k € N.

Proof

Now tr(Uk+1Uky2Uks12) = tr(Uks2Uks12Uk41) = [2][3) 7 tr(Uks12Uk4,), since tr is a
Markov trace. Then tr(Ug412Uky1) = tr(UR, z) = [2]tr(Ukr1z) = [2]3[3]'tr(z). We also
have tr(Ug41z) = [2](3]'tr(z), so that

tr((Uk+lUlc+2Ulc+1 - Uk+1)-’”) = G;}z B %) r( L) [[32]]2t ( )
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Proposition 5.1.6 With Uy € My, as above and © € My, k = 1,2,...,, x commutes
with Uy if and only if x € My_y, i.e. My = {Ux} N M.

Proof

In the notation of Section 1.6.2 we have U, € Alk — 1,k + 1] and = € A[0, k — 1], and
hence by (1.34) z commutes with Uy.

We now check the converse. Let z =} ./ Aaj.ap,af-a (@1 @2, @) - @3) € My, where the
summation is over all |o;| = k - 1, |a}| = 1, i.= 1,2. Assume that z commutes with Uk.
We have the inclusion of x in My, given by z = Zaha:_“ Aar-az.a-ap(Q - Qg 0 - 0ty - ).
Since z commutes with Uy we have U2z = U,zUy, and taking the conditional expectation

onto M; we have
[2]E(Uxz) = E(UxzUy). (5.7)

By the Markov property of the trace on the My, the left hand side gives [2]E(Uz) =
[2] E(Uk)z = [2)?z/[3], since = € M. For the right hand side of (5.7) we have

E(UrzU;) = ( > U (o By 3,0 B va)

9.03.84,
Y3:74

X Z ufz:zzAal -02,0) - (a C Qg ,u,al Ba - 72))

aj.af.0,
Y2 K

= Z ﬁﬁ::;uﬁz'n)‘ax-az,a’l~a’25a1,0534.az574,u(0 : 53 * 73, all : 52 : ’)’2)

o.a;, a‘
By, i m

= Z uﬁsz,’;‘sufzzz’\al ag,af -« ((al B3 - 73val Ba - 72))

Qg 0 Bi,
vitu

- ¢
= BT D0 | DU e cna b g | (0 oy - o)

1 ¢T(ﬂ3)
al.al 02 &2
B3.82 Viok
-1
= « Z bal~ﬁ1,a'1~[32(al ) /Blv all * 62)1
al,a’l
B1.82
where b, g, .a,.3, = Zaz oy Use: "L{f2 i Aayaz,a} -0 ;’(‘;)) Then for any paths a;, ¢ and edges
51, B2 on G we have
1 _— 1 ¢
bﬂl'ﬂl al-B2 = Wﬁ v Wa ué _—Wa W /\ ' ————7(7)
. o1z VY B2v¢ ‘ag,a)ap
] }a: Gs@®rr) T Bstan)br(yy 2 TSRS gy
", C.
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1
= Z d) P Aay-az, a)-af ( b Wﬂn(l WawCl Waglt(z WBﬂCz)
o0 s(az)Pr(B1) YsiGi r(7)

:Z¢

Aay -az,a)-af (d’r(az)¢8(az)¢r(ﬂ1)5az,a’2 061,62

s(az)¢7'(ﬂl)
+¢s(a2)¢rwl)¢s(az)5a2.a15a'2,ﬁ2) (5.8)
¢r(a )
= Z o : /\nyaz,a’l‘a'zdﬁx,ﬂz + /\al-lil,a’l»ﬁga
, 7s(a2)

where equality (5.8) follows by Ocneanu’s type II equation (4.2). We define

d’r(ﬁ’)
’\7‘(&1) = Z 63(»3'),"(01)¢ /\OI‘B"QII'ﬁ"
5 (1)

which only depends on the range of the paths a; and o). Then we have for the right hand
side of (5.7)

¢T @
E(UkzU) = [3]” 1( > 3 E 2;/\a1va2,a;-a',5a1,ﬁz(al B,y - Ba)
PR G

a;,af

+ Z /\01 B, al ﬁl)al ﬁ?))

81,82,
aq ,u&

= [3! Z Asay(oq - B,00 - B) + Z Aay-br.al B2 (Q1 - By, @ - B2)

ﬁ,alyall 81,82,
(23} ,a'l

= [3]7N(w + ),

where w =) ot Ar(an) (@1, 0)) € Mi_1. Then (5.7) gives ([2]2 - 1)z = w, so x € My_;.
g
Remark. The above proof was motivated by the following pictorial argument, which
uses concepts which will be introduced in Chapter 6.
Let j be the inclusion of M_; in My and « the inclusion of My, in My,,. For x € My_,,
we have the embedding 27(z) of z into My, and U, € My, given by the tangles:

\‘
/4'

Then inserting x and U, into the discs of the multiplication tangle Mg 1, we have
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‘&1
i'lﬁ

Figure 5.1: 1(z) for x € My

\ﬂ
ld

and clearly Uyy(z) = vy(x)U;.
Conversely, if x € M) we have i(x) € My, as in Figure 5.1. Let Uyi(z) = o(z)U;,

then we have the following equality of tangles:

& - @

Let T be the tangle

Enclosing both sides of Uji(z) = 1(z)U; by the tangle T we obtain: T(Uyi(z)) = 6%(z),

and T((x)U},) is
2- G @
) - () (&

ie. T((x)U;) = =+ j(v), were v = Ep,_ () € Mk_1 So 6%z = z + j(v) which gives
r=(6%-1)"1y(v), i.e. x € My_1.

We define the depth of the graph G to be dg = maxd,,/, where we take the maximum
value over all v,v’ € U9 and d, . is the length of the shortest path between any two

vertices v, v’ € 9.
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Lemma 5.1.7 Let G be an SU(3) ADE graph G (except D™ for n # 0 mod 3, and
5,&12)). Then with U; € M;41 as above, any element of My, can be written as a linear

combination of elements of the form aU,,b and c for a,b,c € My, m > dg + 3.

Proof
Let a = (M - Ao, G- ()b = (G- G, 11 - 1) € My, such that Ay, (1, vy are paths of
length m — 1 on G starting from one of the 0-coloured vertices of G, and A;, (2, (3, 2 are

edges on G. Then with U,, as in (5.3), and embedding «, b in Af,,;;, we have

aUmb = Z u:lzv‘:yylzé(lla(s(Qv"]6/‘~716”2v<£6’72vl-" (Al ’ Az ’ u’ vy vy ul)

0,0i Vi bt

= Zué:::: (/\1 . /\2 {1t Vg [LI)

!

1 —_—— o

= —  W(AECIW(AGGY)) (A - Ay vy -1 -p). (5.9)

e Ds()Priw)

The proof for each graph is similar, so we illustrate the general method by considering
the graph 81(12), which contains double edges. Let m > dg + 3 be fixed. We denote by
B the set of all linear combinations of elements of the form al/,,b and ¢ for a,b,c € M,,.

The elements in M,,,; will be written in the form
T= (A1 A2 A3, 11 -1y - 13) (5.10)

where A, v; are paths of length m—1 on G with s(\;) = s(v1), and Ay, Ag, 11, V2 are edges
of G with r(A3) = r(v3). Since the choice of the pair (\; - A2, v, - 12) in a, b is arbitrary,
the proof will depend on specific choices of (3, ¢} in (5.9) in order to obtain the desired
element. We let v, ,» denote the edge on 81(12) from vertex v to v'.

We first consider any element (5.10) where r(\2) = r(v2). For any such pair (A; -
Ao, v - ) with 7(A2) = i, | € {1,2,3}, there is only one element z, which is given by
the embedding of ' = (A\; - Mg, 11 - v2) € My in My If r(Xp) = 4, | € {1,2,3}, there
are two possibilities for the edges A3 = v3. If we choose (; = (3 = 7;,;, then (5.9) gives
:rfl) = (A1 A2 Yji ko V1 - V2" Y k), SO that xl(l) € B,1=1,2,3. Embedding z’ in M,,,; we
obtain (A; - A - vjr 1 - V2 V) = T — xfl) € B, for I =1,2,3. A similar method gives
the result for the case when r(\p) =r(1p) =k, 1 =1,2,3.

For any pair (A; - Ay, vy - o) with 7(A3) = r(v2) = p, there are seven possibilities for
Az, v3. We denote these elements by xf2), Teey, for 1 = 1,2,3, & € {6,0'}, where
.rl(z) = (A1 A2 Ypjo Y1 V2 Ypiji)» Teery = (A1 A2-& v -1 - &'). First, choosing (; = (} = a,
equation (5.9) gives

1

2
Yo = I‘/Vp,j1,r(a)|2x(1 ) +

S .
¢7’¢j1

¢r¢j2
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1
+—|Wp,greon *T(2.5),
¢r¢q pg,r(af’)l L( )

where o is an element in B. Using the solution W+ for the cells of 81(12) given in Theorem
4.2.18, we obtain

= [2Jr ( P+ 2+ (2)) + [A]ry x@.m), (5.11)
where ¥ = ([2][4] £ V[2][4]), vF = ([2]* £ V/[2][4]) and y; € B. Similarly, the choices

C2=<2—aa <2—aac2—‘a and(z—a,Q:agive

v = [2r) ( @ 4 x§2) -+ x;(,z)) + [4]r5 z(5.8), (5.12)
Ys = [2]\/ 1"1 1 ( (2) +wI(22) +wx(2)) + [4]\/72 7‘2 3’.‘(5/ 8)» (513)
ys = [2]4/rir] ( @ 4 wxg2) + Ux:(f)) + []\/rSrs T3, (5.14)

where w = €?™/3 and y; € B, j = 2,3,4. We can obtain three more equations by choosing
(o = (3 = Y, p for 1 =1,2,3. Then (5.9) gives

n _ 2 2 2 [ ] [ ]2
v = et e+ [3][4]2T1 T t+& [3][4]2\/7:33(%’)
e [3[][]4]2 VTiTE 2 + [3,[]2[11]2?1 (6 ,6')s (5.15)

where ¢, = w'~! and y(l) € B, 1 =1,2,3. Equations (5.11)-(5.15) are linearly independent,
and hence we can find xl(z), T in terms of y;, j = 1,...,4, and yg), forl =1,2,3,
£, e{B,0} e :L'l(2),x(€,€l) € B.

For any pair (A;-Ag, 1y -1s) with r(A2) = r(vy) = q, there are four possibilities for A3, vs.

@ _

We denote these elements by x , r, for { = 1,.2,3, where ;7 = (A1- A2 Yo h V17 V2 Yokr)

T, = (A1 - A2 - v, v1 - v - 7). Choosing (> = {} = [, equation (5.9) gives
ve = [2)r; ( O 42 + ) + [drf =, (5.16)

where yg € B. Similarly, the choices o =G =0, =0, G=0Fand =0, =

give

y o= 2 (2P + 2 +20) + (45 3, (5.17)
v = [2\/riry ( 3) +wr§3) +wx§3)) + [4]\/rSrs z,, (5.18)

yo = [2\/rir] ( () +wx2 +wx(3)) + [4]\/rSrs z,, (5.19)

where y; € B, j = 7,8,9. Equations (5.16)-(5.19) are linearly independent, and we find
e x e Bflorl=1,2,3
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For any pair (A; - Ag, v - 1) with 7(A3) = r(v2) = r, there are four possibilities for
A3, v3, and we denote these elements by z ey = (A - A - & v1 -1 €), &€ € {a,'}.
Choosing (; = (4 = v, equation (5.9) gives

Y10 = 7'2— T(a,a) + T; La,a')s (520)

where y;9 € B. We obtain three more equations by choosing (2 = (} = v, | = 1,2,3:

y%l) = 1"1 T(aa) t e,\/rfrl' T(aa’) + q\/rfrl‘ T(ata) T T1 T(a,a')s (5.21)

where 4\ € B, 1 = 1,2,3. So from (5.20) and (5.21) for | = 1,2,3, we find that z( ¢y € B
for £, ¢ € {a,a'}.

We now consider any element z in (5.10) where r(X2) # r(v2). When r(X;) = i,
r(v2) = p, there is only one possibility for A3, vs, which is A3 = v, j,, v3 = Y5, | = 1,2, 3,
given by choosing (2 = vk, i;» (5 = Vkp- Then z = (A1 A2 Vi, V1 - V2 - V) € B. When
r(A2) = i, 7(v2) = Jiy1, L = 1,2, 3, there is again only one possibility for A3, v3. So z € B.
Similarly when r(A2) = ki, (1) = ki1, 1 =1,2,3.

Consider the pair (A; - Ay, - 1) where r7(X2) = 5, | = 1,2,3, and r(v;) = ¢q. For
each [ = 1,2, 3, there are two possibilities for A3, v3. We denote these by :1:1(4) = (A1- g
Yinko V1 V2 Yaki)s xl( = (A1 A2 Yjro 1 - V2 - 7y). Choosing (2 = v,;, ¥4 = 3, we obtain

vz = VBl =" - Vi2ly/rs o, (5.22)
where y(l) € B, 1 =1,2,3. Similarly, choosing {3 = 7,,,, 73 = (', we obtain
vy = VB4 + VR 7, (5.23)

where yﬁ,) € B, 1 =1.2,3. Then for each | = 1,2,3, from (5.22), (5.23) we find that
IE§4),I§5) € B.

We now consider the pair (A; - Ay, vy - o) where r(\) = ki, [ =1,2,3, and r(1p) =
For each | = 1,2,3, there are two possibilities for A3, v3. We denote these by (), =
(A1 A2 Yo th - 2 - §), € € {a,&'}. Then for each | = 1,2,3, choosing (2 = v,k

ny -/ [
y§4) =€ 7"1+13(a).t + €\ T1 T(a) 1 (5.24)

where y§l4) € B, 1 =1,2,3. Similarly, choosing (s = 74, 75 = 7, we obtain

we = VT2 E(e)t = VT3 T(aryis (5.25)

where 3\) € B, [ = 1,2,3. Then for each | = 1,2,3, from (5.24), (5.25) we find that
L(a)lr Z(aryy € B. All the other elements in M,,,; are in B since y* € B if y € B. O

Y5 = ¥j,r» We obtain
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The following is an SU(3) version of Skau’s lemma. The proof is similar to the proof

of Skau’s lemma given in [51, Theorem 4.4.3].

Lemma 5.1.8 For an ADE graph G, let My = C™ where ng is the number of 0-coloured
vertices of G, and let My C My, C M, C - - - be a tower of finite dimensional von Neumann
algebras with Markov trace tr on the M;, with the inclusions M; C M;, given by an SU(3)
ADE graph G (except 8‘&12)), and operators Uy, € My, 1, m > 1, which satisfy the relation
HI1-H3 for § < 2, and such that U,, commutes with My,_,. Let M, be the GNS-completion
of szo M; with respect to the trace. Then {Uy,Us, ...} N My = M.

Proof

The first inclusion My C {Uy, Us, ...} N My is obvious, since My commutes with U,
for all m > 1.

We now show the opposite inclusion My D {Uy,Us, ...} N M. For each k > 1 let
Fy be the conditional expectation of M, onto {Uy, Uky1, - ..}’ N My with respect to the
trace. Note that FxF; = Fuink,. So we want to show Fy(Mo) C My. We first show
F3(My) C M,, for some sufficiently large m. By Proposition 1.6.2, the diagram

{Uk+1,Uk+2,...}’ﬂM°° - My,
U U
Werts Vs Y 0 (U Uganr. } € {Un Uk}

is a commuting square, for k > 1. Since {Ux+1, Ug+a, - - -} C {Uk, U1, - . .}" is isomorphic
to Ry C R;, where Ry = {1,U1,Us,...}", Ry = {1,U,,Us,...}", we may write the
commuting square as
RRNMy C My
U U
Ro,NR, C R
Let E denote the conditional expectation from R; onto R, N R; with respect to the
trace. Since Fi4 is the conditional expectation from My, onto R, N My and Ux € R;, we
have Fi11(Ux) = E(Ug). Since by Theorem 6.3.3 the principal graph of Ry C R; is the
01-part of A, and there is only one vertex joined to the distinguished vertex * of A™),
the relative commutant R; N R, is trivial for @ < 3 (which corresponds to § < 2), and
E is just the trace. Thus Fy41(Ux) € C for each £ > 1. By Lemma 5.1.7, for sufficiently
large m, any element of A, can be written as a linear combination of elements of the

form aU,,b and ¢, for a, b, c € M,,, and we have
F2(aUmb) = F2Fm+1 (aUmb) = FZ(aFm+l(Um)b) = FZ(/\ab) € F2(Mm)a
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where A € C. So Fy(My41) C Fo(M,y,), for sufficiently large m., and by induction we have
F3(My) C F3(M,), where r is the smallest integer such that Lemma 5.1.7 holds. Then
certainly F5(My) C F.;1(M,), and by Proposition 5.1.6, with £ = r, any element z in
M, commutes with U, if and only if £ € M,_;, so F.F.41(M,) C F,(M,_,). Then by
inductive use of Proposition 5.1.6 we obtain Fy(M) C F3(M;) = M, and so F}(My) =
F1Fy(My) C Fi(M;) = My, by Proposition 5.1.6. O

We now construct the A, Goodman-de la Harpe-Jones subfactor for an SU(3) ADE
graph G, following the idea of Goodman, de la Harpe and Jones for the ADFE Dynkin
diagrams [51]. Let n be the Coxeter number for G, *g a distinguished vertex and let ng
be the number of 0-coloured vertices of G. Let Ay be the von Neumann algebra C"°, and
form a sequence of finite dimensional von Neumann algebras Ag C A; C A, C --- such
that the Bratteli diagram for the inclusion A;_; C A, is given by (part of) the graph
G. There are operators U,, € A,,,; which satisfy the Hecke relations H1-H3. Let C
be the GNS-completion of Umzo A,, with respect to the trace, and B its von Neumann
subalgebra generated by {Un}m>1. We have B NC = A by Lemma 5.1.8. Then for
g the minimal projection in Ay corresponding to the distinguished vertex g of G, we
have an A, Goodman-de la Harpe-Jones subfactor B = qE C qéq = C for the graph G.
With B,, = qém and C,, = qC~'mq, the sequence {B,, C C,}m is a periodic sequence of
commuting squares of period 3, in the sense of Wenzl in [112], that is, for large enough m
the Bratteli diagrams for the inclusions B,, C B,4+1, C;n C Ciy1 are the same as those for
Bini3 C Brya, Cruys C Ciays, and the Bratteli diagrams for the inclusions B,, C C,, and
Bm+3 C Cp43 are the same. For such m the graph of the Bratteli diagram for Bs,, C Csp,
is the intertwining graph, given by the intertwining matrix ¥V computed in Proposition
5.1.10, whose rows are indexed by the vertices of G and columns are indexed by the vertices
of A™ | such that VA4 = AgV. For sufficiently large m we can make a basic construction
B, C Cpn C Dr. Then with D =\/, Dn,, B C C C D is also a basic construction. The
graph of the Bratteli diagram for C,, C D,, is the reflection of the graph for B,, C Cp,,
which is the intertwining graph. Then we can extend the definition of D,, to small m so
that the graph C,, C D,, is still given by the reflection of the intertwining graph. We see
that Do = @D, am V'V (¥4, #)C, where x4 is the distinguished vertex (0,0) of A™_ The

minimal projections in Dy correspond to the vertices y’ of A®™ such that
VV*(x, 1) >0, (5.26)

and the Bratteli diagram for the inclusion D,,_; C D,, is given by (part of) the graph
A Each algebra B,, is generated by the Uy, ..., U, _; in D,,.
Now A,0)(N) C N = P C Q, where P C Q is Wenzl’s subfactor with principal graph
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given by the 01-part A% of A™ (see Theorem 6.3.3). Then (Aa,0A1,0)Y2(N) = P C Qu,
where P C Q C @, C --- is the Jones tower. For any O-coloured vertex u of Aé’,"
let d, be the minimum number of edges in any path from (0,0) to u on .A(()'{), and let
d = max{d,—2| VV*(x4,u) > 0}. Note that each d,, is even since p is a 0-coloured vertex.
Let [0] = @, cam YV (x4, ) [Mu]. Now [(A1,0)A1,0))%?] decomposes into irreducibles as
@, nu[A.], where u are the O-coloured vertices of A™ and n, € N. Then §(N) C N
is a restricted version of (A(1,00A1,0))¥2(NV), so that (N) C N = gP C q(Qu)q where
g € PPN Qq is a sum of minimal projections corresponding to the vertices p’ such that
(0] D [A\y]. We will show that gP C ¢(Qq)g is isomorphic to a subfactor obtained by a

basic construction.

Following the example in [13, Lemma A.1] for E; in the SU(2) case, we now do the
same construction for the graph A, where ¢ is the projection corresponding to the
distinguished vertex * 4. We get a periodic sequence {E,, C Fy;, },, of commuting squares
of period 3. Then the resulting subfactor E C F, where E = \/, En,, F = Vm F, is
Wenzl’s subfactor [112].

If we make basic constructions of F,, C F,, for d — 1 times then we get a periodic
sequence {E,, C G }» of commuting squares, and each E,, is generated by the Hecke
operators in G,,. Let g be a sum of the minimal projections corresponding to the vertices
u' in Go given by (5.26). We set E, = qF,, and G = qG g, and obtain a periodic
sequence of commuting squares of period 3 such that the resulting subfactor is isomorphic
to ¢P C q(Qa)g. The Bratteli diagram for the sequence {Gp,}m is the same as that for
{Dm}m since Dy = 5’0 = C" where the r minimal projections correspond to the vertices
' of (5.26), where  is the number of such vertices u’, and the rest of the Bratteli diagram
is given by the 01-part of the graph A(™ . Each E,, is generated by the Hecke operators
Ur,...,Un_1 € G Then the sequence of commuting squares { B,, C D,, },, is isomorphic
to the sequence of commuting squares {Em - 5,,,},”, and so the subfactors B C D and
qP C q(Qa)q are also isomorphic. Since B C D is a basic construction of B C C, then the
subfactor ¢P C g(Qq4)q is also the basic construction of some subfactor. Since §(N) C N
is isomorphic to ¢P C q(Q4)q,

0= P VV*(xam)A] (5.27)

#GA(")

can be realised as the dual canonical endomorphism of some subfactor.
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5.1.1 Computing the intertwining graphs.

Let V(G) denote the free module over Z generated by the vertices of G, identifying an
element a € V(G) as a = (a,), a, € Z, v € YY. For graphs G,, G, amap V : V(G,) —
V(Ga) is positive if V;; > 0 for all i € Y%, j € V9. Let A(G) be the path algebra for G.

The following lemma and proposition are the SU(3) versions of Proposition 4.5 and
Corollary 4.7 in [37] (see also Lemma 11.26 and Proposition 11.27 in [39)).

Lemma 5.1.9 Suppose that Gy, G2 are locally finite connected graphs with Cozeter num-
ber n, adjacency matrices Ag,, Ag, respectively and distinguished vertices x;, %3 re-
spectively. Let (Um)menN, (Wm)men denote canonical families of operators in A(G,) and
A(G,) respectively, which satisfy the Ay-Temperley-Lieb relations such that U2 = [2],Un,
W2 = [2],Wn for allm € N, g = e*™/*. Let m : A(G)) — A(G2) be a unital embedding
such that:

(a) The diagram
A(gl)m '711’ (g2)m

tm | L im
A(gl)m+1 ”m_+; A(g2)m+1

commutes for all m, where T, = 7| aG,),., AN tm, Jm are standard inclusions.
(b) try - Ty = try, where tr; is a Markov trace on A(G;), i =1,2.
(c) T(Um) = (W) for allm > 1 (so mpme1(Upn) = Wiy ).
Then there ezists a positive linear map V : V(G,) — V(G3) such that:
(1) VAg, = Ag,V,
(2) V has no zero rows or columns,
(8) Vxi = ;.

Proof

Let p" denote a minimal projection in A(G;) corresponding to the vertex (i, m) of the

Bratteli diagram G, of G,. Then Tm(p) is a projection in A(Gs),,, and so there are families
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of equivalent minimal projections {q}f‘k(j)|k(j) =1,...,b} in A(Gy)m corresponding to

vertices (j, m) in 52, such that

bR
@) =D D 4k (5.28)

J k(G)=1
The numbers {b7;}; are non-negative, are independent of the choice of p[* and are not
all zero, since m,, is injective. Let FY = 2] 8] Y (UmUms1Um — Un) in A(G:), and
F? = 2] B {(WmWms1Wm — W,,) in A(G,). Now multiplying (5.28) on the left by

(2)
FmH, we have

2
F1(n-3-l7rm(pz ) - Z Z +l QJ k()

J k(=1

(1)

but by (a) and (c), F&,mm(pl") = wm+3(F$il)wm(pz"> = Tmy3(Fal1P}"), 50 we have

7rm+2( +1pz Z Z +1 Q] k()" (529)
3 k(G)=1
Since tr; and trp are Markov traces, by Lemma 5.1.5 we have tr; (F\) +19™) = [3] 72t (o),

and trz(F,EfJ)rl 7% j)) = [3]”3tr2(qZ‘k( j)). Since p[", q,;) are minimal projections, they have
trace [3]*@;, [3] %@, respectively. Then F{!), p™ has trace [3]7%~3¢;, which shows that
F,(nlll p™ is a minimal projection in A(G;)m43 corresponding to vertex (i,m + 3) of G,
and similarly F, (1) m+1 3 k(;) IS @ minimal projection in A(G2)m+3 corresponding to vertex
(j,m+3) of G». It follows from (5.28) and (5.29) that the coefficients occurring in the
decomposition of a minimal projection as in (5.28) corresponding to vertex (i,m) of §1,
m > 1, is independent of the level m, i.e. b = bg-i =: b;; for all m,1 > 0.

Now put V' = (bji);ica9: jews:, then since A(Gy)o = C = A(Ga)o, and m : A(G1)o —
A(Ga)o we see that V', = %,. Note that since = is unital, the rows of V' are non-zero. We
need to show VAg, = Ag,V

Let Ag,(m), k = 1,2, be the finite submatrix of Ag,, whose rows and columns are
labelled by the vertices v € g,‘f’) with d(v) < m + 1, where d(v) is the distance of vertex
v from =g, ie. the length of the shortest path on Gy from %, to v. Similarly let V(m)
denote the finite submatrix of V whose rows are labelled by j € 89 with d(j) < m+1,
and whose columns are labelled by i € U9 with d(i) < m + 1. It follows from (a) that
for each m we have

Ko(gm) Ko(mm) = Ko(Tm+1) Ko(tm)- (5.30)

Let Ay, M, be two multi-matrix algebras, with the embedding ¢ of A, in M, given by

a matrix A, with p; columns corresponding to the minimal central projections in M; and
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p2 columns corresponding to the minimal central projections in M,. Then Ko(M;) = ZF,
i =1,2,and Ky(p) : ZP* — ZF? is given by multiplication by the matrix A. For m of colour
7, we see that Ky(t,) is the submatrix of Ag, (m) mapping vertices of colour j to vertices
of colour j + 1, and Ko(J,) is the submatrix of Ag,(m) vertices of colour j to vertices of
colour j + 1. Similarly, Ko(7,,) is the submatrix of V (m) mapping vertices of G, of colour
j to vertices of G, of colour j. Then (5.30) implies Ag,(m)V (m—1) = V(m)Ag, (m) holds
for all m. Hence VAg, = Ag,V. a
We define polynomials S, (z,y), for v the vertices of A™, by S0 (z,y) = 1, and
2S,(z,y) = 32, Balv, 1)Su(z,y), ySu(z,y) = 3, AL(v,#)Su(2,y). For concrete values
of the first few S,(z,y) see [39, p. 610).
Proposition 5.1.10 Let G be a finite SU(3)-ADE graph with distinguished vertez *g and
Cozeter number n < oo. Let {Un}m>0, {Wm}m>o be the canonical family of operators
satisfying the Hecke relations in A(A™), A(G) respectively. We can identify A(A™)
with the algebra generated by {1, Wy, Wy,...}. If we define m : A(A™) — A(G) by
(1) = 1, 7(Uy) = Wy, then 7 is a unital embedding, and there ezists a positive linear
map V : V(A™) — V(G) such that:

(a) VAL = AgV,
(b) V has no zero rows or columns,

(c) Vx4 = *g, where x4 = (0,0) is the distinguished vertex of A™.

Let Vig,0) be the vector corresponding to the distinguished vertex *xg, and for the other
vertices define Vix, x,) € V(G) by Viaung) = Souna) (A%, Ag) Vio), for all vertices (A, Az)
of A™. Then V = (Vio0), Vir,0), Vio) Viz0ps - - - » Vioin—3))-
Proof

Now 7 : A(A™) — A(G) defined by n(1) = 1, #(Uyp) = Wy, is a unital embedding
which satisfies the condition of Lemma 5.1.9 with x; = (0,0) and *; = *g. Hence when
m is finite there exists V = (V(x,.a;)), for (A1, A2) the vertices of A™), with the required
properties. Now VA4 = (Via,—1.59) + Via+1.00-1) + V(,\l,,\2+1))(,\1,,\2),
derstood to be zero if (A;, \;) is off the graph A™. Thus VA4 = AgV implies that
AgVinua) = Via-1) + Vousaa-1) + Vouagsn- Then Via,a,) = St (A%, Ag) Vieo),

since

where V(,, 1) is un-

AgViuag = AgSpa) (AG,Ag) Vioo)
= Z Aﬁ ((/\1’ ’\2), (.uh/J'Z)) S(m,uz) (Agv AG) V(O,O)

(pe1.122)
= Vou-1a0) + Voausrae-1n) + Vou e+,
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and V(o,0) = S(0,0) (Ag, Ag) Vi0,0)- 0

For any ADE graph G the matrix V is the adjacency matrix of a (possibly discon-
nected) graph. By [10, Theorem 4.2] the connected component of * 4 of this graph gives
the principal graph of the A, Goodman-de la Harpe-Jones subfactor. For the graph £®
with vertex i; chosen as the distinguished vertex this is the graph illustrated in Figure

5.2, which was shown to be the principal graph for this subfactor in [113].

(1,49
l Js (3.0

(0,0 iy (2,2)
n S

i (03)

4N

Figure 5.2: Principal graph for the A, Goodman-de la Harpe-Jones subfactor for £®)

5.2 Modular invariants associated to the dual canon-
ical endomorphisms.

Let N C M be the SU(3)-GHJ subfactor for the finite ADE graph G, where the dis-
tinguished vertex *g is the vertex with lowest Perron-Frobenius weight. Then the dual
canonical endomorphism 6 for N C M is given by (5.27) where V is now determined in
Proposition 5.1.10. We list these 6’s below for the ADE graphs. We must point out that
as we have been unable to explicitly construct the Ocneanu cells W for Sim , the existence
of the A, Goodman-de la Harpe-Jones subfactor which realizes the candidate for the dual

: . 12) .
canonical endomorphism for Sﬁ ) is not shown here.

A® 18] = o), (5.31)
D™ 6] = [Moo) @ M) © [Maze0), (5.32)
AP (6= D M (5.33)
pueAn)
DE = P i, (5.34)
weA(2K).
7(n)=0
DEDr. 9] = b (5.35)
u=(2u1,2u2)€ A2k +1);
7(1)=0
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E® [0 = Moo ® a2, (5.36)

EO 0] = Do)l @ Pen] ® M) @ el ®© Aol @ o), (5.37)
X [0) = ool ® Pan) @ Pag] @ Pus) @ Peo) ® os), (5.38)
EX 0] = Moo ® 2D e)] @ Pan] © Mag] © 2Ae2)] © 2[Aes)]

O[Aa0)] @ [Ao.0] ® [Ao9); (5.39)
EM (6] = Poo) ® Peal © eyl @ Pl ® Pea) @ Des] @ M)

®B[Ae,0)] ® [Mo,9)], (5.40)
EXP: [0] = ool © s @ ool ® Pos), (5.41)
Y [0] = Moo)) ® [Aaa] ® Maon] ® Pai0)] © [Mee) ® [Mos] © Moo

a3 @ Aa13)] ® [Mo10] & [Maro)] © [Moa2n]- (5.42)

Note that these dual canonical endomorphisms depend only on the existence of a cell
system W for each graph G, but not on the choice of cell system since Lemma 5.1.9 and
Proposition 5.1.10 did not depend on this choice. Where we have found two inequivalent
solutions, the computations below show that either choice will give the same M-N graph,
since the computations in these particular cases only depend on the dual canonical en-
domorphism é. Similarly, even if there exists other solutions for the cells W for the D,
D* and 81(12) graphs, these will not give any new M-N graphs either. It is conceivable
however that in certain situations, for SU(N), N > 3, the M-N graph will depend on the
connection and not just on the GHJ graph.

Remark. For SU(2) it was shown in [33] that the modular invariant Z can be realized

from a subfactor with a dual canonical endomorphism of the form
6] = D Zualul, (5.43)
"

where the direct summation is over all p even. At level k these are given by

A k=1-1 [6]=[X]&[A] @[N] B D [Aops2y],

Dy: k=4l—4 [f]=[N]S M) B ® [Ma_a] ©2[Nai_2] ® [Na] D - D [M],
Dusi: k=412 (6] = o) @ o] ® ] ® - @ [N,

Es: k=10 [6] = [Xo] © [Aa] @ [A6] ® [M10],

E;: k=16 (0] = [Mo] © [Aa] D [A6] B [As] D [A10] & [M12] D [Mi6],

Eg: k=28 [6] = [Xo] € [As] ® [Mio] ® [M2] © [Mis] D [Mis] © [Aaz] © [Masg].

This raises the question of whether all the SU(3) modular invariants be realized from

some subfactor with dual canonical endomorphism € of the form (5.43), where we now
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allow p to be of any colour? For the A™* graphs the 6 given in (5.33) is automatically
in the form (5.43), where Z is the conjugate modular invariant Z 4). = C. For the A
graphs, if we choose the M-N morphism [a] to be [tA;0)], where p = |(n — 3)/2], the
sector [a@] gives [Ap,0)] @ [A1,1)] @ [A22)] @ - ® [App)], and we obtain a dual canonical
endomorphism [6] = [a@] such that [0] = D, Z, z[p], where the direct summation is over
all 4 (of any colour) and Z is the identity modular invariant Z 4 = I.

For each of the ADE graphs (with the exception of 5}12)) we have shown the existence
of a braided subfactor N C M with dual canonical endomorphisms 6 given by (5.31)-
(5.42). By the a-induction of [8, 9, 10], a matrix Z can be defined by Z,, = (o}, ;),
A i € yXn. If the braiding is non-degenerate, Z is a modular invariant mass matrix.

For the dual canonical endomorphisms 6 in (5.31)-(5.42), what is the corresponding M-
N system or Cappelli-Itzykson-Zuber graph which classifies the modular invariant? And
what is the corresponding modular invariant? For A™ the M-M, M-N and N-N systems
are all equal since N = M. Subfactors given by conformal inclusions were considered
in [9, 10]. Those conformal inclusions which have SU(3) invariants give identical dual
canonical endomorphisms @ to those computed above. The M-N system was computed
for conformal inclusions with corresponding modular invariants associated to the graphs
D® and £® in [9], and to £ and £4 in [10]. The M-N system was also computed
in [9] for the inclusion with dual canonical endomorphism (5.32) for n = 0 mod 3, which
do not come from conformal inclusions. For each of these graphs, the graph of the M-
N system and the a-graph can both be identified with the original graph itself, and the
modular invariant is that associated with the original graph. We compute the M-N graph
for the remaining #’s. Knowledge of the dual canonical endomorphism 6 is not sufficient
to determine the M-N graph, but we can utilize the fact that the list of SU(3) modular
invariants is complete. For a ADE graph G with Coxeter number n, the basic method
is to compute (LA, 1) for representations A, u on A™, and decompose into irreducibles.
Sometimes there is an ambiguity about the decomposition, e.g. if (tA, tA) =4 then could
have (A = 200D or WA = AW + 2@ 4 0G) 1 A4 where A\®, i = 1,2, 3,4 are irreducible
sectors. By [12, Cor. 6.13], s Xy = tr(Z) for some modular invariant Z, and therefore,
since we have a complete list of SU(3) modular invariants, we can eliminate any particular
decomposition if the total number of irreducible sectors obtained does not agree with the
trace of any of the modular invariants (1.14)-(1.25). We compute the trace for the modular

invariants at level & in the following lemma:
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Lemma 5.2.1 The traces of the level k modular invariants Z are

1
tI'(ZA(k+3)) = §(k + 1)(](3 + 2), (544)
1
tr(Zpwts) = g(k +1)(k +2) + c, (5.45)
k+2
(2 qwvey) = [% 1, (5.46)
k+2
tr(Zpisa) = 3L—;L I, (5.47)
tr(Zew) = 12, (5.48)
tr(Zg(s).) = {4, (5.49)
tI‘(nglz)) = 12, (550)
tI‘(Z&gu)) = 11, (551)
tI‘(Zgéu)) = 17, (552)
tr(Zg(24)) = 24, (5.53)

where ¢, = 0 if k £ 0 mod 3, c3n = 2/3 for m € N and |z| denotes the largest integer
less than or equal to x.

Proof

For the A graphs, tr(Z 4x+s) is given by the number of vertices of A*+%  which is
1+42+3+---+k+1=(k+1)(k+2)/2. For £k # 0 mod 3, the diagonal terms in
Zp+s are given by the 0-coloured vertices of A*+3), 5o tr(Zpw+s) is tr(Z 4k+3)/3. For
k = 0 mod 3 the O-coloured vertices of A%+3) again give the diagonal terms in Zpx+3
but the number of 0-coloured vertices of A**3 is now one greater than the number of
1,2-coloured vertices. The trace of Z 4x+3). is given by the number of “diagonal” elements
p =@ of A®+3) which is |k + 2/2]. For the D* graphs, when k % 0 mod 3, the trace is
given by the number of vertices u = (u1, u2) of A¥+3) such that A®-3a-k2)y = 7. For
the 0-coloured vertices this is the number of diagonal elements, whilst for the 1,2-coloured
vertices this is where Ay = 1 or A%y = 71, depending on the parity of n. In each case the
number of such vertices is |k +2/2]. For k = 0 mod 3 the trace is again given by a third
of the number of vertices of .A%+3) which satisfy each of the following p = %, Au = A%y,
A? = Ap, p = Ap, Ap = T, A%u = A2u, p = A%, Ap = Ap and A%y = . The first
three equalities are satisfied when g = 71, the second three when Ay = 7 and the last

three when A%y = . So we have tr(Zpx+s.) = 3|k + 2/2] also. The computations of

tr(Zg) for the exceptional invariants is clear from inspection of the modular invariant. O
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Lemma 5.2.2 The trace of the modular invariants at level k are all different.

Proof For level 5 we have tr(A®) = 21, tr(D®) = 7, tr(A®*) = 3 and tr(D®*) = 9,
and compare these with (5.48) and (5.49). For level 9, tr(A(%) = 55, tr(D(?) = 19,
tr(A(?*) = 5 and tr(D1?*) = 15, and compare these with (5.50)-(5.52). For level 21 we
compare tr(A?%) = 253, tr(D®) = 85, tr(A?*) = 11 and tr(D?*) = 33 with (5.53).
For all other levels we need to compare the modular invariants for the A, D, A* and D*
graphs.

Comparing the A and D modular invariants, the traces can only be equal if 3(k +
1)(k+2) = (k+1)(k + 2) + 6cx. For k = 0 mod 3 this gives £ = 0, -3, whilst if
k # 0 mod 3 we obtain kK = —1, —2. So these traces cannot be equal except when k£ = 0,
but the graphs A® and D® are both a single vertex. Comparing A-A*, the traces are
only equal if (k + 1)(k + 2) = 2|(k + 2)/2]. For even k this gives solutions k£ = 0, —4,
but when k = 0 the graphs A®* is also just a single vertex, so identical to the graph
A®) For k odd we have k = —1. Next, comparing .A-D*, the traces are only equal if
(k+1)(k +2) =6|(k+2)/2]. For k even this gives solutions k = £2, but for k = 2 the
graph D®)* is identical to A®). For k odd we obtain solutions k = —3,1, but we again
have for k = 1 that the graphs D* and A are the same. We now compare D-A*. When
k = 0 mod 3, the traces are equal only if (k+1)(k+2) +4 =6[(k+2)/2] =6|k/2] + 6,
so we have the quadratic k> + 3(k — 2|k/2]) = 0. When k is even we have only the
solution k = 0, whilst when k is odd this gives k? = —3. When k # 0 mod 3, we obtain
instead the quadratic k% + 3(k — 2|k/2]) — 4 = 0. For even k this gives the solutions
k = +2, but we notice that the graphs D® and A®* are the same, whilst for odd k we
have the solutions k = +1, but we again see that the graphs D® and A®)* are the same.
Comparing D-D* we now obtain the quadratic equations k% + 3(k — 6|k/2]) — 14 = 0,
k% + 3(k — 6|k/2}) — 18 = 0 for k = 0 mod 3, k # 0 mod 3 respectively. Neither of
these equations has integer solutions for odd or even k. Finally, comparing the 4* and
D* modular invariants, the traces are only equal if |(k + 2)/2] = 3|(k + 2)/2], giving
|(k +2)/2] = 0 which has solutions k = -2, —3. O

Since the traces of the modular invariants at any level are all different, once we have
found the number of irreducible sectors, we can identify the corresponding modular in-
variant. There may however still be an ambiguity with regard to the fusion rules that
these irreducible sectors satisfy, with different seemingly possible fusion rules giving dif-
ferent fusion graphs for the M-N system. However, as in Section 1.5, the eigenvalues of
the fusion graph must be S ,/Sp, with multiplicities given by the diagonal entry Z, ,

of the associated modular invariant, where 0 is the irreducible sector [tA(g)] and 1 the
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irreducible sector [tA(1,0)]. It turns out that the consideration of the trace and the eigen-
values is sufficient to compute the M-N graphs for A12)* D2+ 02 £02) 5pq g012)
and identify the corresponding modular invariant. The results are summarized in Table

5.1. We will say that an irreducible sector [tA,, 4,)] such that p; + p2 = m is at tier m.

5.2.1 E£©®)»

For the graph £®*, we have [0] = [A(0,0)] ® [A2.1)] ® [N 1.2)] @ [M2.2)) ® [M5.0)) © [N o,5)]- Then
computing (LA, tu) = (X, Ou) (by Frobenius reciprocity) for A, x on A® we find (LA, t\) =
1 and (eA,ep) = 0 for A, = Ao,0), A1,0), A0,1)- At tier 2 we have (tA(20), tAi2,0)) = 2,
(tA@oy: tAa,0) = 1 and (LA, tp) = 0 for p = A1), Ao0)- So [tAe0)] = [tha] ®
[1,/\2;?0)]. Since (tA2), th0,2)) = (tA(0,2), tA(20)) = 2 we have [tAga)] = [tA@20)]. Lastly
at tier 2 we have (tA1),tAq1)) = 2 and (tAq1).tAa0) = (LA@1). tAo,1y) = 1, giving
[LAan] = [tAa,0] @ [tAo). At tier 3 we have (tA@0), tA@0) = (tA@0), tAo,2) = 2, so
[tA@0)] = [tAo2)]. Similarly [tAgs)] = [tA@e]- For tAig1y we find (tAa1y,then) = 2
and (tA2,1), tA(0,0)) = (tA@1), tA@0)) = 1, giving [tA21y] = [tA0,0)] @ [tA(1,0)] and similarly
[LAa,2)] = [tA0,0)] @ [tA(0,1)]- So no new irreducibles appear at tier 3. No new irreducible
sectors appear at the other tiers either, so we have 4 irreducible sectors [tA(g,0)], [tAa,0))s
[tA1)] and [LAE;?O)]. We now compute the sector products of these irreducible sectors
with the M-N sector [p] = [A,0)]. It is easy to compute [tAo,0)][0] = [tA1,0)], [tA.0))lp] =
[Aon) @ Aeo)] = LAon] @ [1Aa0] © [tAG,] and [Aon]le] = [Aon] © A a0] © o)
We can invert these formula to obtain [L/\E;?O)] = [tA2,0)] © [tAa,0)], and so [LAE;?O)][p] =
[tA1,1) B [tA3,0)] © ([tA2,0)] @ [tA0,1)]) = [tA0,1)]- Then we see that the multiplication graph

for [p] is the original graph £®* itself, and the modular invariant associated to 8 is Zgs)..

5.2.2 &

For the graph £'”, we have [6] = [Mog) © 2Maz] ® Pyl ® Pyl @ 2As2)] ©
2[A2,5) ® M) ® Moo @ [Aog)]. We have (tA,tA) = 1 and (tA,n) = 0 for all
Ap € {Ao0) A0, Aoy} At tier 2 we have (LA, t\) = 3 and (¢A,u) = 0 for A =
A@2,0) A(1,1): A0,2), £ = A©0,0)s A1,0)» A0,1)- Then Ay, Aa,1), Ao,2) decompose into irre-

ducibles as
[Aeo] = Ay ® [LAGG] + LA, (5.54)
Lran] = [y @ LAS,] & LA, (5.55)
1 2
(o] = [Any] ® [ADy)] & [:Ay)- (5.56)
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At tier 3 we find (tA@), tAz0) = (tA@3,0), tA@,1)) = 3 so that [tAs )] = [tA@,1)], and simi-
larly [L)\(o,;;)] = [L/\(l,l)]- FI‘OIII (L/\(g,l), LA(QJ)) = 7, (L/\(g)]), L/\(l,o)) =2 and <L/\(2_1), L/\(O,Q)) =

3, and similarly for tA(; 2), we obtain

[Aan] = 20ra0] ® (Al ® [LAay] + Ay, (5.57)
[Aaal = 20ren] ® [AGg)] © [1AD)] @ [LAG,)],

and no new irreducible sectors appear at tier 3. Then we have twelve irreducible sectors
LA, [LAao)s [LAon], [L/\E;),O)], [L)\Ell),l)], [L/\&)Iz,)] for i« = 1,2,3, and the corresponding
modular invariant must be Zg(u) since tr(ZE(m) = 12.
1 1
We now look at the fusion rules that these irreducible sectors satisfy. With p = A ),

we have [tA0)]lp] = [tAa,0)

[Aaalle) = Bron] @ [Aeo) = [ron] @ BAGg] ® [ADy)] @ (AR, (5.58)
and similarly [tA1)][p] = [Lx\(o’o)]ﬂa[L/\g’)l)]éB[L)\g?l)]@[b/\g?l)]. Since [tAi2,0)][p] = [tAa,1)] D
[[As0)] = 2AX 0 ]O2AT O[N], we obtain (1) 1) S(NG o) @ (A le]) =
2 3
Q[L)‘g?l)] & 2[L’\El,)l)] & +2[")‘El?l)]'

We now use a similar argument to that in [9, §2.4]. The statistical dimension of
the positive energy representation (u;,u2) of SU(3) is given by the Perron-Frobenius
eigenvector (1.29): d(,, up) = [p1 + 1][p2 + 1)[t1 + p2 + 2]/[2]. Then from (5.58) we obtain

1) 2 3 i
divoy + dipoy + dipoy = iy = oy = B° — [3] = [3]4]/[2], where df)g) = dyo . We
may then assume without loss of generality that dgé,)o) < [3][41/(3[2]) = [2][3]/[4]. Then

since ([2](3]/[4])? =~ 2.488 < 3, [L)\g?o)][b/\g?o)] decomposes into at most two irreducible

N-N sectors. Then (L/\g?o) o p, L/\g?o) op) = (pop, L/\E;?O) o LAE;?O)) < 2. So [L/\E;?O)”p]
cannot contain an irreducible sector with multiplicity greater than one. Since, by (5.54)
and (5.57), (tAl) © 5 tAqn) = (1A LAy 0 B) = (MG Aoy + tA20) + Aaz) = 2,

using (5.55) we may assume, again without loss of generality, that

[AGollel = AL @ [1AP)].

Since [tA1,0)][p] D [L/\g?o)] and (tA(1,0), L/\g?o) op) = (tAa,00p, L/\g?o)) > 0, then [L/\g,)o)][ﬁ] D
. — 1 — -
[tAq.0)]- Thep since (L/\E;?O)Op, LA}Z?O) op) = (L)\g?o) op, L)\g?o) op) = 2, we have [LAE;?O)][p] =
kAo ® [L/\E‘é?z)], for j € {1,2,3}. By a similar argument we may also assume that [L/\E;?O)]
has statistical'/ dimension < [2][3]/[4], and using [p] instead of [p], we find [LAE;?z)][p] =
[tA,n] & [L/\g'()))], and have the freedom to set j/ = 3. Then we also have [L/\Ef),)z)][p] D
[hou)] for j = 2,3 and (AGy @GR DRl = 21 o] @Al [AGy]. From [1Au,1][e]

. 2 3
we obtain (["\8?1)] © ["\El,)l)] ® ["\21?1)])[/’] = 3[Aqo] @ 2["\8,)2)] ® 2[“\&3,)2)] ® 2["\8?2)]
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and since [IA1gl[Al = [Aeo) ® [Aay] = EAeo] ® AL ® [(AD)] @ [AD))] then
(W) 0 p ) = (MG, thae 0B = 1 and [P ]le] D [tAqe) for j = 1,2,3.
There is still some ambiguity surrounding the decompositions of [L/\E‘QO)] o], [L/\Ei?l)][p]
and [c/\%?z)][p], for j = 2,3. Computing the eigenvalues of the fusion graphs for the
different possibilities, we find that the only fusion graph which has eigenvalues S ,,/So .
with multiplicities given by the diagonal entry Z,, of the modular invariant is that for:
j j j+1 j ! ! j
(Ao lle] = (AT © (G50, (D0 = (A1 © [AD] and (MG, TlA = (o] @
[L/\E‘;:B;)] for j = 1,2,3, 1 € {1,2,3}. The fusion graph is the same for any choice of
[ =1,2,3, up to a relabeling of the irreducible representations [l)\g?o)], [Lz\g?l)] and [L/\%?z)],
and the graph is just the graph 62(12) itself, illustrated in Figure 5.3. The associated

modular invariant is Z a2 = ng).
2 1

[eXab]

Figure 5.3: M-N graph for the 82(12) Ao-GHJ subfactor

5.2.3 &%

Warning: the existence of the A, Goodman-de la Harpe-Jones subfactor which gives the
dual canonical endomorphism for 5512) has not been shown yet by us.

For £{'”), we suppose [0] = [Ao0) ® Pea)] @ Pan] ® Pan] © Peal @ Mas) @
Aa9)] ® [MNo,0)] @ [MNog)- Then computing (¢A, ) = (X, 0u) for A, u on A2, we find
(LA, td) =1 for A = Ao 0), A1,0), A0,1)- At tier 2 we have (¢A,tA) = 2 and (LA, u) = 0 for
A= A2,0), A1), A0,2)s B = A©0,0): A1,0)» A0,1)- Then [A20)], [Aa,n)], [Ao,2)] decompose into
irreducibles as

[LAeo) = [")‘E;?o)]@["’\g?o)]v (5.59)
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2
[han] = AL @ LAY, (5.60)

(Ao = LAG] @ (Al (5.61)

At tier 3, (tAs ), L/\(gyo)) = (tA@,0), tA,1)) = 2 and similarly for A 3), so that [tA@e)] =
[L/\(o’g)] = [L/\(l,l)]- From (L/\(2,1), L/\(2,1)> = 5, (LA(QJ),L)\(])(”) =1 and <L/\(2,1),L/\(0’2)> = 2,
we have two possibilities for the decomposition of [tA(g1)]:

A 2(AY 0,
[tAen] = { kAol ® [L(l()0'2)] (2) 1) ) ese (I) (5.62)
[tA1,0] ® [tAglgy) @ [tA(G)) ® [tAigy] @ [LAg ] case (i),
where we may assume j = 1 without loss of generality. Similarly,
by 20\ "),
A = { [tAon)] & [L(l()z,oﬂ o o case (2? (5.63)
(A 0.n] © [LA0)] ® [PAG0)] & [t ;1)) © [EAy))  case (i),

At tier 4 we have (tAuo), tAg0) = 3, (tA@o): tA1,0) = 1 and (tA4),tA@2) = 2, and
similarly for tA(g4), giving
1 2
[LAup] = [rao] @ [L’\Eo?2)] ® [L)‘Eo?z)]a
1 2
[Aoal = Bron] ® LAGy] © AR,
From (L/\(g’l), L/\(3,1)) = 8, (LA(;;,]), LA(O,I)) = 2, (L)\(;;']), L’\(2,0)> = 2 and (L)\(g,l), L)\(l,z)) =6

we have

2[tA01)] & 2[L/\g?0)] for case ('),
[LAsy] = (1) ) (1) @ 1 .
2[tAo,1)] @ [tAg)] © [tA )] ® [tA(g)] @ [LA(Tg)]  for case (i),
21,0 @ 2[L/\E(l)?2)] for case (i),
[LAas] = 1) (2) (1) ) ..
2[tA1,0)] ® [LA(g)] ® [tA ()] ® [tAR)] @ [LAgyy]  for case (id).

We have (L/\(ng), L)\(z’z)) = 11, (L/\(zyg), L)\(0,0)> =1 and (L/\(Q,z), L/\(l,l)> = 4, giving

[A@2)] = { [tA0,0)] ® 3[L)\8?1)] @ [,,,\g'-lg)] case 1.

(5.64)
(A 00)] ® 220 @ 2P ] @ [AG),)] @ [1AG),)] case 11,

where j € {1,2}. Again, without loss of generality, we may assume that j = 1, and we see

that for case I nothing new appears at tier 4. For case II, at tier 5 we find [tA5,0)] = [tA(0,4)),
1 2

[hos)] = Aol [Aan) = [Aaa]l = LAog] ® 20Al))] © 2A(y)] and

2 .
[L/\(g 2)] _ { 2[L/\(1,0)] ® 3[14\%(};2)] ) [L/\EO(?;))] " o for case (Z),
2 0)) ® 2[LA(0,2)] ® 2[L/\(0,2)] @ [L/\(z,l)] &) [L/\(2’1)] for case (i),

2 .
Aes] = { 2[tA,)] ® 3[L)\§%;0)] ) [LAEZ(?S))] . . for case (i),
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and nothing new appears at tier 5. Then the total number of irreducible sectors for case
I()(¢') is 9, for cases I(¢)(i7’), I(z)(3"), 11(2)(¢') we have 11, for cases I(i1)(z2'), I11(3)(i7'),
I1(77)(¢") we have 13 and for case II(i7)(ii’) we have 15. The values of tr(Z) at level 12
are tr(ZAm)) = 55, tr(Zpazn) = 19, tr(Z 402.) = 5, tr(Zpaxn.) = 15, tr( 8(12)) =

tr(Z (m = 11 and tr(Zg
(zz)(z’) II(z)(«") which have corresponding modular invariant Z £, and II(i2)(e') as-

az)) = 17. So we see that the only possible cases are I(¢)(4 )

sociated with the modular invariant Zpaz.. For case 11(2)(¢), where we again use the
notation p = )\(1 0), We have [L)\(l’g)][p] = [LA(]J)] D [L)\((),;;)] &) [L)\(2)2)] and [L)\(l,g)][p] =
([LA(O 1)1 ® 2[:A Dol = [Aoo)] @ [Aan] © 2(AGlle]), giving 2[Al 6] = 3LAL ] @
3[L/\ ] 1)] ® [l)\g)m] ) [l)\g)2)] which is impossible since [L)\(2 0)][,o] must have integer co-
efficients. Note that case II(i7)(¢') is the conjugate of case I1(:)(ii'), where we replace
LA (uy p2) € LA (ug,u)- S0 we need to only consider cases I(z)(i4") and II(47) ().

Consider first the case I(:)(i¢'). From [tA¢p]lp] = [tAe0)] ® [tAa2)] ® [tAsn] and
(5.62) we find [L)\g?l)][p] = A0 @ [trAa.2)] @ [LAsn] © ([Lhon] @ [tAen]) = [thon] &

2

[L’\(l)l)] S /\( )1)] ® [t /\(1)2)] @[ (3)2)] Then by [tAo]lp] = [tAo,n] @ [tAq,2)] and (5.61),
By 02)][p] = [L/\(o y]- From [tAq y]le] = [tAa,0)] @ [tA0.2)] @ [tA2,1)] and (5.60) we obtain

(LA ] @ (AT DI6] = 20r,0] @ 3AGh)) @ (AR, (5.65)
whilst from [tA29)][p] = [tA@1)] & [tAq,3)] @ [tAs,2)] and (5.64) we have
(BEAL) @ [ATD1e] = 4leA o] & ThAGy] @ [ty (5.66)
Then from (5.65) and (5.66) we find
[L)‘(l)l)][p] = [1Aq0] ®2[tA 02)]» [" a 1)][9] = [tAao) @ [‘A(o 2)] ® [L’\ 02)]

In the same manner, by considering [tAi2,0))lp] = [tAa)] ® [tA@)] and [thaa)]lp] =
[tAan] © [tAo3)] ® [tA@2)], and using (5.59) and (5.63), we have

(LAz) @ [AGoDlA) = 20X @ 20ATy) (5.67)
([L’\g)o)] & [L’\ 20)] ® [L’\(l 2)] ® [L’\g?z)])[/)] = [tApo)]® 5[L’\ 1 1)] © 3["’\ 1 1)]
S([LA o] @ [tAan))- (5.68)

Then from (5.67), (5.65) and (5.60), we have ([LASL)][p]) ® ([L/\E??Z)][p]) = 2[L/\(1)1)] giving

A le] = [AG)] for j = 1,2. From [tAea)][a] = [tha2) @ [tAs1)] © [tAes) and (5.64)
we have

(LA @ 2020 ) DIP] = 4ldo,n] @ 41AG))] @ 4lAy)] © (AT, @ 3LAl, ], (5.69)
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giving 2[A0) 18] = 2 o) @ 2[AGy) ® 20eA] @ 21AL,] @ 20A(,]. Then (AT 0
P, /\8)1)) = (L/\g)o),/\g)l) op) =1 for j = 1,2, and the decompositions of [L)\(2 0)][p] and
[L/\(Z)O)][p] both contain the irreducible sector [L/\(l)l)] Then [L/\(1 el = (Lhanllel) ©
([L/\(l)l)][p]) = [tA0,1)] @ [L)\(2 0)] ) [L/\E2 o) and [L)\g)o)][p] and [L)\(2 o)llp] both also contain
[L/\g?l)]. Then from (5.67) we have [L)\E';?O)][p] = [L/\g?l)] ) [Lx\g?l)]. The fusion graph with
respect to [p] for the case 1(7)(ii') is then seen to be just the graph &, (12),

Now consider the case I1(i¢)(i:'), which has corresponding modular invariant Zps2)..

We obtain the following sector products:

(LAzl) @ [AGDIl = 2A(y] @ 2LADy)

(LA @ ATHDIE] = 2iha] ©20r(ghy) © 2AAFy] © (A © (A

([L’\(o 2)] ® [L’\(o 2)])[!’] = 2LAon] @ [L/\(z,o)] ® [L/\(2)o)] ® [‘)‘(1 2)] ® [L’\(z)z)]

(A @ LGN = AR @ (Al © (1A y] @ [AD,)

(LX) @ [ATpDIE] = [AGh) @ [AD)] @ [AR] @ [1AE),
and from ([L/\g)m]@[b/\g)?)])[p] = [L)\g)l)]@[b)\g)l)] we may choose without loss of generality
[1,Agé)2)][/)] = [L/\(2 yl for j =1,2. Then there are four different possibilities for [L/\(i)l)][p],
three for [t )\g)o)][p], six for [L/\Eé)m][p] and six for [L)\E‘;)l)][p], j = 1,2. From these, the only
fusion graph which has eigenvalues S;, /S, with multiplicities given by the diagonal

entry Z,, of the modular invariant for DU?* is that for the following sector products:

[L/\EQO)] o) = 2 ["’\8?1)] )

MDA = [Aa0] @ 20AE)] @ [AEh),
[L/\%)m][p] [tAon] © [L/\(z 0)] ® [L/\g?z)]’
[L/\g)l)][ﬂl = [L/\(J)o)] © [L/\(])z)]

ATl = AT & kA

for j = 1,2. For any A € m&n, let [A][p] = D¢, xy aulp], au € C. Then (nop,A) =
(1e, Ao p) =a, for all 1 € p XN, so [p][p] D au[A]. Then if G is the multiplication matrix
for [p], GT is the multiplication matrix for [p]. This graph cannot be the fusion graph
since GGT # GTG, which means [t\][p][p] # [tA][p][0]- Then the only possibility for the

5(12)

fusion graph for the M-N system is the graph and the associated modular invariant

is Z a2, assuming that 0 is as expressed in (5.40).
4

524 &M

For the graph &' we have [0] = [A0,0)] @ [Aa,3)] @ [Ao0)] @ [Aog) Then computing
(L) = (A, 8p) for A, pon A' | we find (LA, td) = 1 for A = A(,,,,) such that
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p1+p0 < 2. At tier 3 we have (LA, tA) = 2 and (LA, epu) = 0 for A = A(3.0), A2,1), A(1,2)) A0.3)
I = A o) Such that py + pe < 2. We also have (tA), tA0,3) = 0. Then Aoy, A21),

A(1,2), A0,3) decompese into irreducibles as

[Aao] = [zl @ LAG0) (5.70)
LAyl = [L/\Eé)l)]ea[w\g)l)], (5.71)
aal = kAl @ ATy, (5.72)
[(Aom] = [AGs] @ [ADy]. (5.73)

At tier 4 we have (tA0),tA@40) = 2, (tA@0), tA) = 1 and (tA40),u) = 0 for p =
X100 A02)- Then [tAwgog)] = [L)\(g yl & [/,/\8?0)] for j € {1,2}. We have the freedom to
choose j = 1 without loss of generality. Similarly for tA(g4). Then
[tAuo] = [L)‘(l)l)] @ [t ’\(l)o)] (5.74)
[tAoa] = [A (Rz)] o (0,4)]- (5.75)
From (tA@ 1), tA@)) =3, (tAga),tA@20) =1, (tA@1), tAq,2)) =1 and (tAg), tAee) =1,

we have two possibilities for the decomposition of [tA@31)]:

Aen] = { [tAo)] @ [L/\(l 2)] 5 [L/\E;)l)] case (1), (5.76)
’ [tA2,0)) ® [L/\(l 2)] ) [L/\E(I))4)] case (it).
Similarly,
1 )
Aas] = { [tA,2)] @ [L)\(2 1)] S LA El})] case (1), (5.77)
[Aoa] @ [L)‘(z.l)] = [L/\(4 o case (i7'),

Since (tA(22), tA2,2)) = 3, (tAi2,2), tA,y) = 1, {(tA@2), tA@0) = 1 and (tA(22), tAs)) = 1,
we have 1A = [L)\(l,l)]eB{L)\gfg)]@[L)\gfs))] for j1, jo € {1,2}. We again have the freedom
to choose, without loss of generality, j; = j2 = 1, so that

(Mo = [Aan] © LAGh] @ AG,]. (5.78)

At tier 5, (tA;s,0),tA5,0) = (LA5,0): tA0,4) = 2 giving [tAs,0)] = [tA©4)], and similarly
[LAos)] = [thao]. Since (tAao), thpe) = 4, (tA@2), thae) = 1, (L/\(32 tAoz2) = 1
and (tA32),tAen) = 2, we have [tAg] = [tAag] ® [hoa)] @ [AG,)] @ [:AD))], and
similarly [tAag)] = [tAon] @ [PAeo) ® LATy] © [1AZ,]. We have (tAuy, than) =
(tA@,1), tAa,a)) = (tA@,a), tA,9)) = 3 so that [tAa ] = [tAa,e)]. Since (LA, thay)) = 1,
(LA tA@22)) = 2, (tA@g,1), LtAs,0) = 1 and (LA41),LA3)) = 1, we have two possibilities
for the decomposition of [tA(41)]:

A AL A2
[Aan] = { LAan] @ ¢ (3 0)] ® [tA3] casel, (5.79)

[L’\(l,l)] 7] [L’\(a 0)] D [L/\(1)3)] case II.
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Then we see that no new irreducible sectors appear at tier 5. We also have at tier
6, (tA51) tAs1)) = (A1) tAas)) = 3 giving [tAsy)] = [thas)). Case (i)(i') gives 16
irreducible sectors, whilst case (i7)(i7’') gives 18 irreducibles, and therefore by looking at
tr(Z) for the level 12 modular invariants Z we see that neither of these cases is possible.
Case (i1)(¢') is the ‘conjugate’ of case (¢)(i’), that is, we replace each irreducible sector
[tA] in case (i)(i') by [¢)] in case (44)(i'). We therefore only need to consider case (i)(ii’),
which has seventeen irreducible sectors: [Aog)l, [Aa,0), [Aon) Peol Panl ezl
Mool Dol Womh Bosl Rl Renl Dzl BEl Ryl Kow] and A
We now consider the sector products for these irreducible sectors, where we again
denote by [p] the irreducible N-N sector [A(1,0)]. The products [¢A][p] are inherited from
those for the N-N system for A = Ay, u,) such that p; 4+ p2 < 2, and we use (5.70)-(5.73)

to decompose into irreducibles where necessary, e.g.
[Ao2)le] = o] @ [Aan] = ron] @ ALy] @ (AT, (5.80)
From [tA@1]lp] = [tAe2,0)] ® [tAa,2)] ® [tAE,1)] and (5.71) we obtain
([LAGy) @ [AGH 6] = 2[he0) @ 20Xy ® (AT @ (MG (5:81)
Similarly, by considering [tAq,3)][p] and [tA4,0)][p], and using (5.77) and (5.74) we have

(MG @ [Nl = Aol @ 201y @ AT, @ [AG,],  (5.82)
(A @ [AZDIE] = [tAa0)] ® 20Ay] @ [1AG))] @ AR (5.83)

Then from (5.81)-(5.83) we find

Gl = [l © LA, @ AG))], (5.84)
WGP = Aol ® EATy] © [AG,), (5.85)
APl = [AD] @ (G- (5.86)

Now we focus on case 1. From [tA30)][0] = [tA(4,0)] @ [tA2,1)] and (5.70) we obtain
(LX) @ [ADle] = 2AG 0] @ LAG] @ 1AL (5.87)
Similarly by considering [t 3)][0] we have
([Xoly) @ (AT D1e] = 2iho) © [EAGy] @ AT - (5.88)
From [tA29)[p] = [tAen] @ [tAa.3)] ® [tAE2)] and (5.78) we find
([Xslo) @ [Ny Dlel = [ho] @ (A @ 2AAGy @ (A, (5.89)
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whilst from [tA@1)][p] = [tAa0)] @ [tAE2)] @ [tAs,1)] and (5.79) we find
1 2 1
(["’\2113?0)] © [L)‘Eg,)s)])[p] = [L/\(I,O)] ©® 2[‘)‘(0,2)] © Z[L)‘Ez?l)] & 2[’)‘22?1)] ® 2[L)‘E4?0)]* (5.90)

Then from (5.87)-(5.90) we obtain

Gl = 1G] @ 1G] @ ARy, (5.91)
LAGoll] = [AGh): (5.92)
Woyllel = [hoa] @ [AGH): (5.93)
[L’\E(Z)?a)][ﬂ] = [LA(o,z)]@[LAEi?O)]. (5.94)

Next, by considering [tA][p] for A = Aq1,2), A@3,1), A0,a), and (5.72), (5.76) and (5.75) we
obtain

(A @ AP DIA] = 20dan] @ [AGy)] @ 2\gy)] ® NGyl (5.95)
(AT @ [AGHDI] = [Aan] @ 20A5] @ [Aoy) © [ADy),  (5.96)
ATy @ [AGDIA = EAan] © [\l ® (Al © 2lAloy)]. (5.97)

We see from (5.95)-(5.97) that [:Al ][] € [than] @ LA © [tAG))] @ [tAG)]. From

(5.80) and (5.84)-(5.86) we see that [1A,1[A] = [thoa)] © [tAGy)] © [1AD))] @ AL,

. 1 — 1 1 1 2 1

since (1A 0 B,0A) = (A, 1Al 0 p) = 1 for X = A2y, ARy Aahys Aleyy:  Then
1 1 1 — 1 — . . 1

<L)\El1)2) o p, L/\ﬁl?z) op) = <L)\El?2) 0P, L/\gl’)z) o p) = 4 implies that we must have [L/\El?m][p] =

[LAanl© [L/\E;?O)] ® [L/\Eé?a)] ® [LAE(Z)?S)]. Then from (5.95)-(5.97) we obtain

A2 = [haa] © LA,
(ASollel = 1Ay

ADylle) = Ay

It is easy to check that the fusion graph with respect to [p] obtained in case I is just the
graph 55512).

For case II, we again have (5.95), and by considering [tA31)][0] = [tAz0)] @ [tA22)] @
[tA@,)] and (5.70), (5.78) and (5.79) we obtain

([eATp) @ LAG DA = [Aan] @ [AG] @ 2rF)] @ 20AGh),  (5.98)
and similarly from [tA(o4)][p], (5.75), (5.73) and (5.79) we obtain

([ y] @ A Do) = [tAn)] ® [AG)] © 2[Aley] & LAl ]. (5.99)
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Then from (5.95), (5.98) and (5.99) we see that 1A, ][0] C [tAqn] ® 2[eAlp)y)]. Since

- - 1
(L/\Ei?z) o p, L)\g?2) op) = (L/\g?m °p, L)\S?Z) o p) = 4, we must have [L)\g?z)][p] = 2[L)\§0?3)].
Then from (5.95) we obtain [L/\g?z)][p] =2[tAq,)]® [L)\g?o)] ® [L)\E?)?s)], and we have (L/\E%) o

A, 0B) = (1AL 0 p, i)y 0 p) = 6. From (5.80) and (5.84)-(5.86) we see that
[L/\E?2)]['p] = [LA(O,Q)]@[L/\g?I)], giving (L)\g?Q)oﬁ, Lz\g?z)oﬁ> = 2 # 6, which is a contradiction.
Then we reject case II.

Then the only possibility for the graph of the M-N system is 55(12), and the modular

invariant for 8 is Zg(w).
5

5.2.5 AM*

We compute the fusion graph for the case n = 12. It appears that the results will carry
over to all other n, however we have not been able to show this in general. For the graph
AUD*we have [6] = @,[A,], where the direct sum is over all representations u on A2
Then computing (), eie) = (A, 0p) for A, p on A2 we find that (tA(u ) Auau)) =
(t Az n)s PN ur2)) WE have [td g ] = [LA(ur gy for all (uq, p2) on AUD . At tier 0 we
have (tA(0,0), tA(0,0)) = 1. At tier 1, (tAp,0),tA1,0)) = 2 and (tA1,0), tA(0,0)) = 1, giving

(A = LAon] ® AL (5.100)

At tier 2 we have (tA0),tA20) = 3 and (tA20), tAa0) = 2, s0 [tAee)] = [tApe)] @
[LAERO)]EB[L)\E;,)O)] We also have (LA(]J), L/\(l,l)) = 6, <L/\(1y1), L)\(0,0)> = ]., (L)‘(l,l)) L/\(1,0)> =3
and (L)‘(l,l)u L)\(2’0)> = 4, g]VlIlg [L/\(]y])] = [L/\(O,O)] &%) 2[1)\8?0)] D [L/\E;?O)] At tier 3 we have
(tA3,0), tA0) = 4 and (tA(30), tA20)) = 3, so [L/\(g‘o)] = [L)\(Q’O)] S5 [L/\g?o)] @ [L’\E;?O)] &
[L’\ECI'.?O)]' We also have (L/\(g)l), L/\(g’l)) = 10, (L)\(Q)]), L/\(0‘0)> = 1, (L)\(Zl), L/\(1‘0)> = 3,
(tA@21), tA@0)) = 5 and (LA(21), tA@3,0)) = 6, giving [t 1)) = [L/\(O_O)]@Q[L/\g?o)]@2[u\g?o)]é}3
[L/\E;?O)]. Similarly, at tier 4 we find

1
[LAao] = [Aoo] @ [L/\S?O)] e [L/\g?o)] ® [‘/\E;?O)] ® [L)‘E‘;?g)],
[LAan] = [tAoo) @ 2[1,/\8?0)] e 2[L/\8?0)] ® 2[()\8?0)] ® [LAEl?O)],
heal = (ool ® 2] @ 3[AGY]  2Az) © LAy,

and at tier 5:

[LAs0)] = [tAao)l

1 1
[Aan] = (Aol ©20eA )] @ 201G @ 20eAGh)] ® 2Al] @ (AL,

[Aea] = (Moo © 20AG0)] @ 3[AGy)] @ 3LAGh] @ 2] @ (AL
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Then we have six irreducible sectors [tA(g,g))], [l,/\(1 0)] [L/\(2 b [L)\E;)O)] [L/\S)O ] and [L/\(I)O)]

We now compute the sector products. We have [tA0)][p] = [tA(1,0)] = [tA(0,0)]® [L)\(l 0)]
From [tA\q,0)][p] = [tA@0)] @ [tA0,1)) = 2[th0,0)] & 2[L/\8)0)] ® [Lx\g)o)] and (5.100) we find
[L’\ 1 o)][P] = 2[“\(0,0)]@2["\8?0)]65[L’\g)o)]e([L’\(O 0)]@[”’\(1 0)]) = [tA, 0)]@[“\ 10)]65[‘)‘ 2 0)]
Similarly, we find

(APllel = AT © (1A @ [AG ),
[AGllel = EAG] @ EAGK] @ [tAL,],
Al = (MG ® (A,

and the fusion graph with respect to [p] is .A®?*. The associated modular invariant is
Z g2

In the case above, since n = 12 is even, we have [tAs0)] = [tA4,0)] and so [tA@u0)](p] =
[tAs.0)] ® LA ] = [tA@0)] @ [tAiry]. This leads to [L/\&)O)][p] D [L/\(4 0)] and there is a
loop from [L/\(4 0)] to itself in the fusion graph. However, when n is odd, e.g. for n = 11,
we have instead [tAs0)] = [tA@0)] 50 [tA0)le] = [tAs0)] © [tAa ] = Aoy © [tA@ )
This causes [L/\E;?O)][p] ), [L/\&?O)], hence there is a loop from [L/\Ei?o)] to itself in the fusion

graph for the n = 11 case.

5.2.6 DM

We compute the fusion graph for the case n = 12. For the graph D(12)%, we have
[6] = D, [\.], where the direct sum is over all representations  of colour 0 on A2, At
tier 0 we have (LA(o), tA(0,0)) = 1. At tier 1, (tA,0),tA1,0) = 2 and (tA(1,0), tA0)) = 0,

and similarly for tA,1), giving

Lraol = AT @ LAT,), (5.101)

hon] = (Aol ® [LAGL] (5.102)

At tier 2 we have (tA(20),tA(2,0)) = 3 and (tA2,0), tA(0,1)) = 1, and similarly for ¢tA(2), so
we have

[Deo] = WAy®[ )\(2)1)] ® [LAy]: (5.103)

[Aoa] = [AGy] @ AT ® AL, (5.104)

For tA(1,1) we have (tA1,1), tA(1,1)) = 6 and (A1), tA0,0)) = 1, so there are two possibilities
for the decomposition of [tA(,1)] as irreducible sectors:

2
Ao = { [tA00)] 692[L/\(1 1)] [L/\El)l)] case I,

(5.105)
[1h00] & [1AE] @ EATY] @ [AT) © (AT @ [AT)] case I
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At tier 3 we have (tA@ ), tA30)) = 4, (tA@0), tAa,1)) = 4 and (A3 0), LA0,0)) = 1, giving

1’

2 3
[tAo0)] ® [‘)‘8,)1)] ® [L)\El?l)] & [L)\El?l)] for case II.

(1) (2) (1)
Aao) = { [LA00)] @ [tAG ] @ [LAG )] @ [tA ()] for case T, (5.106)
Then we see that for case II [tAq,1y] D [tA@0)]. However, this contradicts the following
values of the inner-products at tier 6, (tA(33),tAq,1)) = 8 and (tA33), tA,0)) = 10. So we
reject case 11.

Continuing at tier 3 we have (tA(g3), tAp3)) = (tA03), tA@,0)) = 4, s0 that [thgg)] =
[L)\(g,o)]. From (L)\(z,l),l,/\@,l)) = 10, <L/\(2,1),L/\(1,0)> = 3 and <6A(2’1),L)\(0’2)> = 5, and
similarly for tA(1 2), we have

1 2 1
[Aen] = 20Ag] @ AT @ 20AE,] @ AL, (5.107)

Waa] = 202G @ A, @ 20AG)] & AL, (5.108)

Next, at tier 4, we have (L/\(4,0), l)\(4’0)) = 5, (L/\(4’0), L/\(1,0)> = 2, <L)\(4,0), L)\(0'2)> = 3 and
(tA@,0), tA@,1y)) = 6, so there are two possibilities for the decomposition of [tA(4)], and

similarly for [tA(g4)):

1 2 1 2 :
[(Magy] = { ["\El?o)] D [LAEI?O)] ® [L)‘Eo?z)] ® [L’\Eo?m] ® [LA&)O)] case (i), (5.109)
; 1 1 . :
2[L)\El?0)] ) [L/\go,)z)] case (1),
on] = { [Aom] © (o] © (o) @ (o] @ iXgy] case (), o
' 2[Aigh ] @ [Ay] case (i').

Since (L)\(3‘1),L/\(3,1)) = 14, (L)\(g]l),l)\(o,l)) = 3, <LA(3,1),L)\(2y0)) = 5, (L/\(&]),L/\(l’g)) =11
and (tA@3,1), tA4)) = 8, then

1 2 1 1 .
Aen] = 2[LAE0?1)] ® [L/\Eo?l)] ® 2[L/\E2?0)] ) 2[LA§1?2)] ) [L/\E(l)?,l)] for case (¢'), (5.111)
' LA @ 2(AG] @ (AL for case (id').
(0,1) (2,0) (1,2)
Similarly, for [tA(1,3)],
D) = 2{L/\8?0)] ® [L/\E?O)] ® 2[L)\E(1)?2)] ® 2[1,/\8?1)] ® [L)\E;?O)] for case (1), (5.112)
’ 3[L/\8?0)] ® 2[L/\E(1)?2)] & [L)\E;?l)] for case (ii).

From <L)\(2'2), L/\(2,2)> = 19, (LA(Q,Q), L)\(O,O)) = 1, (L)\(z,g), L/\(1,1)> = 8 and (L/\(Q‘g), L/\(3,0)> = 8,

we must have

[Aam] = o] © 21AY))] @ 3[AE)] @ 20AG)] @ [AGY ) (5.113)
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At tier 5 we have (tA,0), tA5,0) = (tA5,0)) tA(©0,4)) D, EIVINg [tA(5,0)] = [tA(0,4)], and similarly
[tAos)] = [tAagl From (thza), thaz) = 27, (tAa2),thae) = 3, (tA@2), thoz) = 6,
<L/\(3,2), L/\(2,1)> = 14‘and (L/\(3,2), L)\(lyg)) = 19 we must have

(1) (2) (1) (1) (1 .
A = { 2[eh 1 0] @ [LAT )] B 3[tAgiy] @ 3[tA] @ 2[tA ()] for case (), (5.114)

3[AP) @ 3[A{py] ® 2[eAG)] @ 21AL ] © [IAy] for case (id).

However, case (ii) does not satisfy (tA(32), tA@a,0)) = 11, and hence we discard it. Similarly
we discard case (ii') since no possible decomposition of [tA(53)] exists for that case. Then

we are left with only the one case (z)(i'). We have
[(Aaa] = 2AGh)] ® [1AGh)] @ 3G @ 3uAly] @ 2[Ag) (5.115)

From (tA41), tA@ny) = 17, (tA@ 1), tA0,0) = 1, (LA, tha ) = 7, {(LA@), tA@) = 7 and
(tA@1), tA2,2)) = 17, we have
ran] = [roo] ® 27y @ 20A0))] @ 21k @ 225, (5.116)

and since (tA(1,4), tA,4)) = (LAaa): tAan) = 17, [tAq,] = [tA@1)]. We see that no new
irreducible sectors appear at tier 5, so the M-N system contains 15 irreducible sectors.

We also have the following decompositions at tier 6:

[Lreo)] = [thos] = [LAeol (5.117)
[LAsn] = 2[”‘8?0)] ® [L/\Ei)O)] o 2[”‘8}?2)] ® 2[”‘221)] ® [L’\El?m]s (5.118)
hanl = 2lrgh] ® [AGy] & 3LAGY) ® 3Ty @ 2lXgy),  (5.119)
o] = 2Noh] ® [AGh) © 21gly] @ 20AT) © gl (5.120)

We now find the sector products of the irreducible sectors with the N-N sector [p| =
Mol We have [thoglle] = [tApg] = [AT] ® (A From [tAapllel = [thao) @
[L/\(Oyg)] © [L/\(Q,l)] and (5105) we have

LAy © ATl = 4] @ 3[F,] @ 3[A{y) @ [AGh,] © (LAeo)le)
3] @ 2AT)] © 31N, @ [AG)): (5.121)

Similarly, by considering [tA3,0)](0], [tA2,2)][p] and [tA(s,1)][p], and using (5.106), (5.113)
and (5.116), we have the following:

1 2
(WG] @ Py @ DGl = 2] @ AD)] & 36, )
@2 @ (AL, (5.122)
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5[LAL ] ® 20AT)] @ Al
BBLAG)) D3N], (5.123)
AAiil) © 26NTo) @ 61Ag))]

(LA © 3ATy]  20A(5] ® [AGyDlel =

(20X ) @ 26ADy)] © 2AGy) @ 2NNl =

BBLAG ] ® 4[] (5.124)
Then from (5.121)-(5.124) we obtain the following sector products:
APyl = 1AT] @ (AT © kX))
ATl = [:A) © LAG) @ kA,
Aallel = [ © [AGhy) @ [AGY)
[Xaplle]l = [AGh] @ [hg)
Next, from [tA10)}[p] = [tA01)] @ [tA(2.0)] and (5.101) we have
(1,0) (0,1) (2,0)
([L)‘g,)o)] @ [eA f)o)])[P] = 2["’\(0 1)] © 2[“\%?1)] ® [L’\g?o)]' (5.125)

By considering [tA2)][0] = [tA©01)] @ [tA,2)] and (5.104) we obtain ([L/\(1 0)] @ [l 10)] )

[ASpDle] = 3[eAlgh)) ® 20251 @ 2[:AG) ] © 1ALy Then from (5.125) we see that

LA )e] = [AGh] ® [IA) @ [1AD] (5.126)

From [tA2,1][p], (5.107) and (5.126) we find

LAyl T @A DA = 3G, @3[AG 1 @3[AG ) 1ALy @Ay - (5.127)

Similarly, by considering [tA(1,3)][p] and [tA(5)][p), and using using (5.109), (5.112) and
[tA©5)] = [tA4,0)), we have the following:

@A) @ A& ] e 2@ 1@ MDDl = 3D @ 30AE, ] e 4D ]
D3[AL ] ® 2LAG ), (5.128)
2[L)\(])1)] ® 2 )\(2)1)] O 2 ’\(2 0)]
B2 B 2[eAgy) (5.129)

(AD)] @ [AZ] & XS] @ (AL Dol =

Then from (5.125), (5.127)-(5.129) we obtain the following sector products:

WDl = EAGLT @ [AE)] @ Ay,
~ 2
[L’\g?())][/’] = [[’)‘E(l))l)] W[L/\go)l)]

[L)‘g?l)] ol =
[WAGlle] =

[1AG) © (1AL ) @ 1A,
[(Ap] @ [AG].
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Next, since [tAp1)]lp] = [tA0,0)] @ [tA@q,), from (5.102) we have
(LA @ (MG D) = 2lh )] © 2620 © AT (5.130)

By considering [tAz0)][p] = [tAq,n] ® [tAa0)) and (5.103) we obtain (L)) @ [tAD))] ®
[AG Do)l = 2eA 0] ® (AL @ 21eAT)] © Ay Then from (5.130) we see that

2,
Azole] = [AT) ® LAT)] @ (A (5.131)
From [tA,2)][p), (5.108) and (5.131) we obtain
LA DIAS DA, Do) = 3[eA0,0)]@3[AL ) B3LAT DAL |OLAG ] (5.132)

Similarly, by considering [¢tA31)][p] and [tA(.4)][p), and using (5.111) and (5.110), we have
the following:

(2[L/\§(1)?1)]69[L/\Eg?1)]@2[0\8?2)]65[L/\E(l)?4)])[p] = 3[LA(0,0)]easmg?,)]ezxmg?l)]

B3[tAls] ® 3leAG ], (5.133)
1 2
([LAE(I)?I)] ® ["/\8?1)] ® [‘)‘8?2)] ® ["\834)])[/’] = 2[tAp0)] ® 2[‘)‘81)] o Q[L/\El?l)]
D2 @ 2Ly (5.134)

Then from (5.130), (5.132)-(5.134) we obtain the following sector products:

[(ADlle] = o) © [AG )] @ (AR,
AL = [hoo] © [AS)),
Wl = @] @ [AGy] & EAG,),
gl = EAGg] @ LA,

We thus obtain the graph D(?* as the fusion graph for the M-N system, and the

associated modular invariant is Zpz)..

5.2.7 The type I parent

Thus we have constructed subfactors which realize all of the SU(3) modular invariants,
except for the 5‘§12) case, since the existence of this subfactor is not yet shown. However,
for the modular invariant associated to the graph 5§‘2), we have Z g = Zgéu)C’, where C
is the modular invariant associated to the graph A(2*, Since C is symmetric, and both
Zgén), CT = C are shown to be realised by subfactors, the result of [40, Theorem 3.6]

shows that the modular invariant Z 2 is also realised by a subfactor.
4
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The M-N graph G of a subfactor N C M is defined by the matrix A, which gives
the decomposition of the M-N sectors with respect to multiplication by the fundamental
representation p. Similarly, multiplication by the conjugate representation defines the
matrix Az = AZ which is the adjacency matrix of the conjugate graph G. Then since
~&XN is commutate, the matrices A, and AZ commute, i.e. A, is normal. This provides
a proof that the adjacency matrices of the ADE graphs are all normal, since each of the
ADE graphs appears as the M-N graph for a subfactor N C M.

The zero-column of the modular invariant Z associated with the subfactor N C M

determines (o}, ) since a preserves the sector product
+ oy + o4 iy — 3" gt
(of af)) = (ofoj,id) = g N7, id)
J'/I

= > N Zju, (5.135)
j/l

and similarly the zero-row determines (a;, o). Then for all modular invariants with the
same zero-column, the sectors [af] satisfy the same equation (5.135) and hence have the
same fusion graphs. Let v be an isometry which intertwines the identity and the canonical
endomorphism vy = (7. Proposition 3.2 in [11] states that the following conditions are

equivalent:
1. Zxo=(6,)) for all A € yXy.
2. Zpyr=1(0,]) for all A € yXy.
3. Chiral locality holds: £*(0, 8)v? = v2.

The chiral locality condition, which can be expressed in terms of the single inclusion
N C M and the braiding, expresses local commutativity (locality) of the extended net, if
N C M arises from a net of subfactors [81]. Chiral locality holds if and only if the dual
canonical endomorphism is visible in the vacuum row, [f] = @, Zy1[\] (and hence also
in the vacuum column also).

We will call the inclusion N C M type 1 if and only if one of the above equivalent
conditions 1-3 hold. Otherwise we will call the inclusion type II. Note that the inclusions
obtained for the 81(12) and 82512) graphs realize the same modular invariant Zsf”)’ but the
inclusion for 81(12) is type I whilst the inclusion for 52(12) is type II. This shows that it is
possible for a type I modular invariant to be realized by a type II inclusion, and suggests
that care needs to be taken with the type I, II labelling of modular invariants. The fusion

graph of [af] for the identity modular invariant is the fusion graph of the original N-N
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system, whilst the fusion graph of [af] for the modular invariants associated to DG+
and £® were computed in [9], and for £!? and £2 in [10]. In these cases we have
Zxo = {6, for all A € X, for 6 given in (5.31)-(5.42). The principal graph of the
inclusion af(N) C N is then the fusion graph of [af]. The other modular invariants
all have the same zero-column as one of these modular invariants, and hence the fusion
graph of [ait] for these modular invariants must be the graph given by the type I parent
of Z, that is, the type I modular invariant which has the same first column as Z. The
results are summarized in the table below, where “Type” refers to the type of the inclusion
N C M given by the A,-GHJ construction, where the distinguished vertex *g is the vertex
with lowest Perron-Frobenius weight.! We again warn that the existence of the A;-GHJ

subfactor which gives the dual canonical endomorphism for 5512) has not been shown yet

by us.

GHJ graph Modular invariant | Type | A/-N graph | Type I parent

AM) Z pn) 1 Aln) A

A Z g~ II Al A

DEk) Z pisky I DGk DI3k)

D™ (n# 0 mod 3) Zopm) II ? A

DBk Zopak)e II DEk)+ D3k)

D™*  (n # 0 mod 3) Zpnye II D) A

£® Zew) 1 £® £®)

E@) Zes)- II B~ £®

51(12) _ 5}(12» de I 51(12) 51(12)

82(12) — 8512)* Zgl(m 1 52(12) 81(12)

£§12) _ _ _ _

gim) _ gé”)* Zgim 1 &glz) Da2)

gi? Zeoo 11 gi? D12

£(24) — g(24)+ Ze(a0) I £24) £4)

Table 5.1: The SU(3) modular invariants realized by A;-GHJ subfactors

!Note, we have only showed the .A* and D* case for n = 12. We have not done any computations for
the D™ graphs, n # 0 mod 3.
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Chapter 6
AQ-PAlanar Algebras

In this chapter we give a diagrammatic representation of the A,-Temperley-Lieb algebra,
and show that it is isomorphic to Wenzl’s representation of a Hecke algebra. Generalizing
Jones’s notion of a planar algebra, we construct an A,-planar algebra which will capture
the structure contained in the SU(3) ADE subfactors. We show that the subfactor for an
ADE graph with a flat connection has a description as a flat Aj-planar algebra, and give
the Aj-planar algebra description of the dual subfactor. We introduce the notion of mod-
ules over an A,-planar algebra, and describe certain irreducible Hilbert A,-7 L-modules.

A partial decomposition of the As-planar algebras for the ADE graphs is achieved.

6.1 As-tangles

6.1.1 Basis diagrams

In [78], Kuperberg defined the notion of a spider, which is a way of depicting the operations
of the representation theory of groups and other group-like objects with certain planar
graphs. These graphs are called webs, hence the term “spider”. In [78] certain spiders
were defined in terms of generators and relations, isomorphic to the representation theories
of rank two Lie algebras and the quantum deformations of these representation theories.
This formulation generalized a well-known construction for A; = su(2) by Kauffman, see
Section 1.2.1.

For the A; = su(3) case, we have the A, webs, which we will call incoming and
outgoing trivalent vertices, illustrated in Figure 6.1. We call the oriented lines strings.
We may join the A; webs together by attaching free ends of outgoing trivalent vertices to
free ends of incoming trivalent vertices, and isotoping the strings if needed so that they

are smooth.
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T

Figure 6.1: A, webs

We define a diagram D to be any oriented planar graph embedded in a disc, formed by
joining incoming and outgoing trivalent vertices together as described above. The diagram
D may have free ends, that is, strings whose endpoints are attached to the boundary of
the disc. We identify isotopic diagrams, i.e. diagrams which can be transformed into
each other by moving the strings and trivalent vertices in a planar fashion. The following

local pictures (which Kuperberg calls elliptic faces) may appear in D: ~C>~ which we

call an embedded circle, and which we call an embedded square. We will call
the diagrams without embedded circles or squares basis diagrams. Let D be a diagram
which contains embedded circles and squares. If we choose one of the embedded circles
we can obtain a new diagram by ‘removing’ this embedded circle, i.e. we replace the local
picture ~>- by

two new diagrams by ‘splicing’ the embedded square, that is, we form a new diagram by

. If we choose one of the embedded squares, we can obtain

replacing the local picture }::( by > < , and form a second new diagram by replacing

———
the by ——~ . Repeating these steps as required for each new diagram, we

eventually obtain a family of diagrams which do not contain any embedded circles or
squares. We call this family of diagrams the states of the original diagram D. We attach
a weight to each diagram in the above procedure, where if w is the weight of one diagram,
the weight for the new diagram obtained from it by removing an embedded circle is dw,
where § = [2], for some variable g, whilst the weights of the two new diagrams obtained
by removing an embedded square are both just w. The weight attached to the original
diagram D is set to be 1. A state o; of D is not necessarily a basis diagram as it may
now contain closed loops O or O. Let w; be the weight attached to the state o;, and
suppose o; contains k such closed loops. We remove these closed loops to obtain a basis
diagram o3, and define weight associated to &; to be w;a™ where o = [3],. If the diagram
D has no free ends then its states o; will consist of only closed loops. Then by Proposition
6.1.11, the &; will be polynomials in N[g,¢™!] (since d = ¢+ ¢! and o = ¢ + 1+ ¢72).
A sign string is a string of symbols ‘+’ and ‘~’. There is a sign string associated to
any basis diagram (up to any cyclic permutation of the symbols) given by the orientation

at each free end. Moving in an anticlockwise direction from one free end to the next,
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we insert a ‘+’ at the end of our string if the orientation of the string at the free end is
towards the endpoint, and a ‘-’ if the orientation is away from the endpoint. Let s be a
sign string. The A, basis web set B(s) is defined to be the set of all basis diagrams which

have sign string s, up to cyclic permutation.

6.1.2 The A, web space W(s)

The A, web space W (s) is defined to be the free vector space over C generated by diagrams
in B(s). Let D be a diagram which contains embedded squares or circles. We can write D
as a linear combination of basis diagrams by D =), w;a*G;, where state o; contains k;
closed loops. We will call this procedure “reducing” the diagram D. Then the diagrams
in W (s) can be said to satisfy the Kuperberg relations, which are relations on local parts
of the diagrams:

o
K1:

O:
K2: Q=6

- ==

There is also a braiding on an A, web space W(s), defined locally by the following

linear combinations of local diagrams in W (s) (see [78, 109]):

X (6.1)
X =q-§)( "’ix (6.2)

I
Q‘_«
———
——
'
Q‘J
Dl

)=l "
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<
!
AN

(6.4)

N
D

>
Il

(6.5)

_¥ _¥ (6:5)

where we also have relation (6.6) with the crossings all reversed.

We call the local picture illustrated on the left hand sides of relation (6.1), (6.2) re-
spectively a negative, positive crossing respectively. With this braiding, ‘kinks’ contribute
a scalar factor of ¢%/2 for those involving a positive crossing, and g~8* for those involving

a negative crossing, as shown in Figure 6.2.

6.1.3 A,-Tangles

We are now going to systematically define an algebra of web tangles, and express this in

terms of generators and relations.

Definition 6.1.1 An A;-tangle will be a connected collection of strings joined together
at incoming or outgoing trivalent vertices (see Figure 6.1), possibly with some free ends,
such that the orientations of the individual strings are consistent with the orientations of

the trivalent vertices.

Definition 6.1.2 We call a verter a source vertex if the string attached to it has ori-
entation away from the vertex. Similarly, a sink vertexr will be a vertex where the string

attached has orientation towards the vertex.

Definition 6.1.3 For m,n > 0, an Ay-(m,n)-tangle will be an As-tangle T on a rect-

angle, where T has m + n free ends attached to m source vertices along the top of the

NPT

Figure 6.2: Removing kinks
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rectangle and n sink vertices along the bottom such that the orientation of the strings is
respected. If m = n we call T simply an Ay-m-tangle, and we position the vertices so that
for every vertex along the top there is a corresponding vertex directly beneath it along the
bottom.

More generally, for my,my,ny,ny > 0, define an ((my, ms), (nq, ny))-rectangle to have
my + mgy vertices along the top such that the first my are sources and the next mo are
sinks, and ny + ny vertices along the bottom such that the first ny are sinks and the next
ny are sources. Then an Az-((my,ms), (n1,n2))-tangle T’ will be an A,-tangle on an
((my, m3), (ny,ng))-rectangle such that every free end of T' is attached to a vertez in a
way that respects the orientation of the strings, and every vertex has a string attached to
it.

Two Ag-((my, my), (n1, n2))-tangles are equivalent if one can be obtained from the other
by an isotopy which moves the strings and trivalent vertices, but leaves the boundary

vertices unchanged. We define 72 to be the set of all (equivalence classes of)

A2
m ,M2),(n1 ,Tl2)
Az-((m1, my), (n1, na))-tangles

Note, an Ay-(m, n)-tangle is just an A,-((m,0), (n,0))-tangle.
The composition T'S € T(Az

o iz (k1 k) of an Ay-((my, ms), (n1,nz))-tangle T and an A,-

((n1,n2), (k1, k2))-tangle S is given by gluing S vertically below T such that the vertices
at the bottom of 7" and the top of S coincide, removing these vertices, and isotoping the

glued strings if necessary to make them smooth. The composition is clearly associative.

Definition 6.1.4 We define the vector space V(’f:hmz)’(mm) to be the free vector space
over C with basis T 42 Then VA2

(m1,m2),(n1,n2)" (m1,m2),(n1,n2)
tiplication given by composition of tangles. In particular, we will write V42 for V

has an algebraic structure with mul-

Az
(m,0),(m,0)’

and V4 = J, 5, V2. Forn < m we have V2 C V52, with the inclusion of an n-tangle
T € T2 in T,22 given by adding m — n vertices along the top and bottom of the rectangle
after the rightmost vertex, with m — n downwards oriented vertical strings connecting the
extra vertices along the top to those along the bottom. The inclusion for VA2 in VA2 s

the lineur extension of this map.

Note that 7,42 ), (n1mz) 1S infinite , and thus the vector space V(A"fl ma)(nma) 1S infinite

(mlv
dimensional. However, we will take a quotient of VA2

(1, ma)y(n1m2) which will turn out to be

finite dimensional.

Definition 6.1.5 We define I,, C V42 to be the ideal of VA2 which is the linear span of
the relations K1-K3.
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B, = = B, = E=\\U
N /N
/TN

Figure 6.3: 3-tangles By, By, E

By the linear span of the relations K1-K3 is meant the linear span of the differences
of the left hand side and the right hand side of each of the relations as local parts of the
diagrams, where the rest of the diagram is identical in each term in the difference. Note
that I, C I41.

Definition 6.1.6 The algebra V,2? is defined to be the quotient of the space Vi by the
ideal I, and VA2 =, VA2,

m2>20"m

The algebra V42 is an A, web space W (s,,), in the sense of Section 6.1.1, where s,, is
the string of length 2m given by ++---+ — — .. —, with ‘4’ and ‘—’ both appearing m
times. The multiplication on W (s,,), for basis diagrams D; and D, is given by joining the
m free ends of D labelled ‘+’ to the m free ends of D, labelled ‘—’. The new diagram may
now contain embedded circles or squares, so we may write D, D, as a linear combination
of basis diagrams in V22, as described in Section 6.1.1.

We could replace the Kuperberg relation K1 by the more general relations:
K O O -=e

Although it now appears that we have three independent parameters a;,a,d, we

actually have only one, as shown in the following Lemma:

Lemma 6.1.7 For a fized complex number 6 # 0 we must have either a; = ay = §% — 1

ora; =ay =0 in V42,

Proof Let B; be the 3-tangle illustrated in Figure 6.3, which is the composition of three
basis tangles in VaA"’. Let B; be a 3-tangle which comes from a similar composition, and
I a basis tangle in V3A2, both also illustrated in Figure 6.3. Reducing B, using K2 twice,

we get B, = 6°FE. On the other hand, if we reduce B; using K3, we get an anticlockwise
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Figure 6.4: The m-tangle W;, 1 =1,..., m— 1.

oriented closed loop, which by K1’ contributes a scalar factor a;. Then we also have
B, = E+oE. If E#0, then 62 = 1 + a;, and by the same argument on B, we also
obtain 62 = 1 + a,. Suppose now that E = 0. Let 0,9 : W(aa*) —» W(@) be the ‘stitch’
operation of Kuperberg [78], where a = + + + and a* = — — —. Then 0,0(F) = 0 since

X0

If we use K2 to remove the left embedded circle, we obtain an anticlockwise oriented

E = 0. Pictorially, 0, (E) gives

loop, and so the diagram gives the scalar a;4. If instead we used K2 to remove the
right embedded circle we would obtain the scalar a2d. Since g,0(E) = 0 we have either
a;=ag=0o0rd=0. O

We now define a x-operation on V2, which is an involutive conjugate linear map. For
an m-tangle T € 7,2, T* is the m-tangle obtained by reflecting T about a horizontal line
halfway between the top and bottom vertices of the tangle, and reversing the orientations
on every string. Then * on V42 is the conjugate linear extension of x on 7,42. Note that
the x-operation leaves the relation K2 invariant if and only if § € R. For § € R, the
x-operation leaves the ideal I, invariant due to the symmetry of the relations K1-K3.
Then * passes to V.22, and is an involutive conjugate linear anti-automorphism.

From now on let § be real. Then ¢ can be written as § = [2], for some g, and by
Lemma 6.1.7 o = [3],.

We define the tangle 1, to be the m-tangle with all strings vertical through strings.
Then 1,, is the identity of the algebra V42, 1,,a = a = al,, for all a € V2. We also define
W; to be the m-tangle with all vertices along the top connected to the vertices along the
bottom by vertical lines, except for the ith and (14 l)th vertices. The strings attached to
the itP and (t+ l)th vertices along the top are connected at an incoming trivalent vertex,

with the third string coming from an outgoing trivalent vertex connected to the strings
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Figure 6.6: wyw; = wjw; for |i — j| > 1.

attached to the itP and (i + 1)th vertices along the bottom. The tangle W; is illustrated
in Figure 6.4.

For m € NU {0} we define the algebra SU(3)-TL,, to be alg(1,,, wili =1,...,m - 1),
where w; = W; + I,,. The w;’s in SU(3)-TL,, are clearly self-adjoint, and satisfy the
relations H1-H3, as illustrated in Figures 6.5, 6.6 and 6.7.

Let F; be the m-tangle illustrated in Figure 6.8, and define f; = F; + I, so that

fi = wiw; w; — w; = Wi Wiw;4 — wit. By drawing pictures, it is easy to see that
fifinnfi = 8f,
fifivafi = 0fiwiys, (6.7)
and
fifiafi =6 fiwi_a. (6.8)
We also find that the w; satisfy the SU(3) relation (1.7):
(Wi — WigoWip1w; + Wi1) firr = 0.

The following lemma is found in {95, Lemma 3.3, p.385]:

Lemma 6.1.8 LetT be a basis Ay-(m,n)-tangle. Then T must satisfy one of the following

three conditions:

(1) There are two consecutive vertices along the top which are connected by a cup or

whose strings are joined at an (incoming) trivalent verte,
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Figure 6.7: wywiy1w; — w; = Wi WiW;41 — Wiy

1 2 =l i 2 +3 n
12 il i) i+2 i3 n

Figure 6.8: The m-tangle F;, 1 =1,...,m — 2.

(2) There are two consecutive vertices along the bottom which are connected by a cap or

whose strings are joined at an (outgoing) trivalent verter,
(3) T is the identity tangle.

Corollary 6.1.9 For any basis Ay-m-tangle which is not the identity tangle, there must be
two consecutive vertices along the top or bottom whose strings are joined at an (incoming)

trivalent vertez.

Proof
This follows from Lemma 6.1.8 with m = 0. O
Then we have the following lemma which says that the SU(3)-Temperley-Lieb al-
gebra SU(3)-T'L is equal to the algebra V42 of all A,-tangles subject to the relations
K1-K3. This is the A, analogue of the fact that the Temperley-Lieb algebra TL, =
alg(l,ej.ez,...,e,_1) is isomorphic to Kauffman’s diagram algebra [69], which is the al-

gebra generated by the elements F,, E;, ..., E,_; on n strings, illustrated in Figure 1.6,
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along with the identity tangle 1,, where every vertex along the top is connected to a vertex

along the bottom by a vertical through string.

Lemma 6.1.10 The algebra V.22 is generated by 1,, and W; € V.22, i=1,...,m—1. So
VA2 = SU(3)-T L.

Proof

The proof that the algebra V42 is generated by 1,, and W;, i = 1,...,m — 1, is by
induction on m. For m = 1 there is only one basis tangle, 1;, whilst for m = 2 there are
only two basis tangles, 1, and W). Assume the claim is true for (m — 1)-tangles, m > 3.
Let T be a basis m-tangle in V42, We draw T as in Figure 6.9.

If T is the identity tangle then the T = 1,,, which is trivial. In what follows, vertex
i along the top, bottom respectively, will mean the it vertex along the top, bottom
respectively, counting from the left. By Corollary 6.1.9, for any other T' there exists
i € {1,...,m — 1} such that strings t; and ¢;;,, which have vertices 7 and i + 1 along the
top or bottom as endpoints, are joined at a trivalent vertex. Let us suppose that this is
the case for vertices along the top, as in Figure 6.10. If this isn’t the case there must be
vertices along the bottom for which it is true and we proceed similarly.

For a tangle T, let Iz be the set of all vertices ¢ along the top of 7" such that strings
t; and t;y; are joined at a trivalent vertex, let I} C It be the subset consisting of the
vertices 7 € I7 such that the endpoint of the string ¢ isn’t one of the other vertices along
the top, and let /2 be the subset of Ir such that string ¢ in Fig 6.10 is attached to vertex
i + 2 along the top. Note that /3. N /2 = @. Suppose T contains d trivalent vertices.

Step 1: For any i € I, the string ¢t must have an outgoing trivalent vertex as its
endpoint (it cannot have one of the vertices along the bottom as its endpoint due to its
orientation). Choose the smallest ¢ € I} and isotope the strings so that we pull out these

two trivalent vertices from the rest of the tangle as shown in Fig 6.11. Then T = W,T},

154



1 2 o Hl 2 n 2 -1 Q123 n

Y[ 1%

R
T, T/

s..

Figure 6.11: Figure 6.12:

and the number of trivalent vertices in 7 is d — 2, so that Step 1 reduces the complexity
of the resulting tangle 7.

If 1}1 # @, we choose the smallest ¢ € I, and repeat Step 1 for the tangle T to get
T = W;,W,,T,. We continue in this way until we have T' = W; W,, ---W; T’ for some
T' and 1}, = @. If T’ is the identity tangle we are done. Otherwise T is a tangle with
d’ = d — 2l trivalent vertices, for some [ € N.

Step 2: Now let 7" be an n-tangle such that I, = @, choose the smallest i € IZ,
such that R has outgoing trivalent vertices on its boundary, where R is the region in 7"
bounded by strings s and s’, as in Fig 6.12, where T} is an (m — 3, m)-tangle.

We choose the first outgoing trivalent vertex we meet as we move along the boundary
in an anti-clockwise direction, starting from the vertex ¢ — 1 along the top, and isotope the
strings to pull this vertex out from the rest of the tangle as shown in Figure 6.13. Then
T = (W;W; 1 W, — W,)T,, for some tangle T, which contains d’ — 2 trivalent vertices. If
T, is the identity tangle, we are done. Otherwise we repeat Step 1 for the tangle T3.

Continuing in this way reduces the number of trivalent vertices contained in each new
tangle T’ by two each time. However, suppose now that for every ¢ € I2,, the region R in
Fig 6.12 does not have any outgoing trivalent vertices along its boundary. Let j be the
smallest such vertex.

Case (i): If j = 1 then there must be a through string from a vertex £ > 4 along
the top to vertex 1 along the bottom, since otherwise the string which has vertex 1 along
the bottom as its endpoint must have an outgoing trivalent vertex as its other endpoint,
contradicting the fact that the region R does not have any outgoing trivalent vertices
along its boundary. We insert an embedded circle on this string, by replacing a part
of the string —— by -o , and multiply by a scalar factor . Then isotoping the
strings to pull the new outgoing vertex up out of the rest of the tangle as in Step 2, we

obtain T} = § Y (W, W, ;1 W, — W;)T,, where T} has the same number of trivalent vertices
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as T{. The tangle T; has a through string from vertex 1 along the top to vertex 1 along
the bottom (see Figure 6.14), and hence the sub-tangle to the right of this string is an
(m — 1)-tangle, which we know to be generated by W;, i = 1,...,m — 2. Hence in Case
(i) we have a tangle generated by W;,i=1,...,m — 1.
If j > 1, then there is a string s which has vertex j — 1 as an endpoint.

Case (ii): Suppose first that the string s is a through string which has vertex k along the
bottom as its other endpoint. We insert an embedded circle on the string s (and multiply
by a scalar factor 67!), and isotope the strings to pull the outgoing vertex up out of the
rest of the tangle as in Step 2 to obtain 7" = §~Y(W; W, W, — W,)T,. We have now added
and removed two trivalent vertices, hence the resulting tangle T, has the same number of
trivalent vertices as 7. We now have (j — 1) € 1%2,, and the string from vertex (j + 2)
along the top is a through string which has vertex k£ along the bottom as its endpoint, as
in Figure 6.15. If the region R’ has an outgoing trivalent vertex along its boundary, we
proceed as in Step 2, pulling the outgoing vertex out. Otherwise the string coming from
vertex (j — 2) along the top must be a through string with endpoint vertex (k — 1) along
the bottom. As before we insert an embedded circle on this string and isotope the strings
to pull the outgoing vertex up out of the rest of the tangle as in Step 2. Continuing in
this way will result in a tangle for which we can perform Step 2 without needing to insert
an embedded circle. To see this, notice first that each new tangle 7] now has a vertex
g € I%, such that j; = ji_; — 1, where j,_, was the least integer in 2!,_1 for the previous
tangle 7;_,. Suppose we have the vertex 1 € ]%,, for some ! € Z. Then T] will have a
through string from the vertex 4 along the top to a vertex £ > 1 (k = 0 mod 3) along the
bottom. The sub-tangle to the left of this string is a (3, k)-tangle, where the strings from
the 3 vertices along the top meet at an incoming trivalent vertex, so the strings which
have the vertices along the bottom as endpoints must each have an outgoing trivalent

vertex as their other endpoint, hence there will be an outgoing trivalent vertex along the

156



J2 g A2 S n

k-1 & n

Figure 6.15:

boundary of R'. Then we perform the procedure of Step 2, which removes two trivalent
vertices without first inserting any, and thus the resulting tangle will be less complex than
T.

Case (iii): Finally, suppose the string s has an incoming trivalent vertex as its endpoint.
Then we insert an embedded circle along the string as before, and isotope the strings to
pull the outgoing vertex up out of the rest of the tangle as in Step 2. If the resulting tangle
T} is as in Case (i) or (ii), we follow the procedure described for those cases. Otherwise
we are in Case (iii) again and we repeat the procedure described for Case (iii). Repeating
this procedure enough times will also result in a situation where we can proceed as in
Step 2 without needing to insert an embedded circle, since the smallest vertex i € I%l, is
reduced by one each time. If we have 1 € I%’,, for some p € N, and we cannot use Step 2,
then we must be in the situation of Case (i) considered above. In each case, we are able
to reduce the number of trivalent vertices.

We now return to Step 1, and continue as above. Each use of Step 1, and each
usc of Step 2 without first inserting an embedded circle causes a tangle T' containing d
trivalent vertices to be written as T = L,T’, where L; is an element generated by W;,
i =1,...,m—1, and the number of trivalent vertices contained in T’ is d — 2. Cases
(1)-(iii) each also result in a situation where we may use Step 1 or Step 2 without first
needing to insert an embedded circle, and thus we can write T = L,T", where L, is an
element generated by W;, i =1,...,m—1, and T” is an m-tangle which does not contain
any trivalent vertices, and hence must be the identity. Hence any m-tangle can be written
as a linear combination of products of W;, i =1,...,m — 1.

Then the ideal /,, is contained in SU(3)-TL,, and there is an isomorphism v :
SU(3)-TL,, — VA2 given by y(w;) = W,. O
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Figure 6.16: Tr(T)

6.1.4 Trace on VA

The following proposition is from [95, Prop. 1.2, p.375]:

Proposition 6.1.11 The quotient VOA2 = SU(3)-TLy of the free vector space of all planar
0-tangles by the Kuperberg relations K1-K3 is isomorphic to C.

Proof

For an oriented surface F' define S(F) to be the quotient of the space of linear com-
binations of 0-tangles on F' by the relations K1-K3. Let S? be the two-sphere, obtained
from R? by adding a point at infinity. Any 0-tangle on S? is a polyhedron which consists
of polygons. These polygons must have an even number of edges since all the edges are
oriented and the orientation changes at each vertex. Then S = S(R?) is isomorphic to
5(S?), where the isomorphism from S? to R? is given by removing a point in the interior
of one of the polygons. The polyhedron necessarily contain embedded circles or squares,
because if it consisted of polygons which all have six or more edges, then we have 6f < 2e
where [, e are the numbers of faces, edges respectively. Since the Euler number of S? is
two and the tangle is trivalent, we have v — e+ f = 2 and 2e = 3v, where v is the number
of vertices. Hence we have 6 f = 12+ 2e which contradicts the above inequality. Therefore
we can reduce the 0-tangle to obtain a scalar multiple of the empty tangle. O

We define a trace Tr on V2 as follows. For an Ay-m-tangle T € V42, we form the
O-tangle Tr(T') as in Figure 6.16 by joining the last vertex along the top of T to the last
vertex along the bottom by a string which passes round the tangle on the right hand
side, and joining the other vertices along the top to those on the bottom similarly. Then
Tr(T') gives a value in C by Proposition 6.1.11. We could define the above trace as a
right trace, and define a left trace similarly where the strings pass round the tangle on
the left hand side. However, by the comments after Proposition 6.2.12 the right and left
traces are equal. The trace of a linear combination of tangles is given by linearity. Clearly
Tr(ab) = Tr(ba) for any a,b € V42, as in Figure 6.17. For any = € I,, we have Tr(z) = 0,
which follows trivially from the definition of Tr. Then Tr is well defined on V42, We
define a normalized trace tr on V42 by tr = o~™Tr, so that tr(1,,) = 1. Then tris a

Markov trace on V42 since for = € V*?, tr(Wiz) = da~'tr(z), as illustrated in Figure
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tr((W,x) = o™

Figure 6.18: Markov trace on V42

6.18, and in particular tr(W;) = da~!. The Markov trace tr is positive by Lemma 6.1.12
and Theorem 1.2.1(b).

For each non-negative integer m we define an inner-product on V42 by
(S, T) = tx(T*S), (6.9)

which is well defined on V22 since tr is.

For § > 2, there is an z > 0 such that ¢ = €** and ¢ = [2],. For § < 2 such that
§ = [2], = [2] where ¢ = €™/*, n € N, we define V42 to be the quotient of VA2 by the
zero-length vectors in V22 with respect to the inner-product defined in (6.9). Then the
following lemma gives an identification between (a subalgebra of) the algebra of A,-tangles
and Wenzl’s Hecke representations for SU(3) (see Section 1.2.2).

Lemma 6.1.12 For § > 2, the algebra V.22 is equivalent to Wenzl’s representation m of
the Hecke algebra, and consequently VA2 gives a representation of the path algebra for
Al For § = [2],, ¢ = e™/", the algebra 17,,/,‘2 1s equivalent to Wenzl’s representation
737 of the Hecke algebra, and consequently V42 gives a representation of the path algebra

for A™,

Proof

Clearly 67'W,, i =1,...,m—1, is a self-adjoint projection in V42, and hence V,ﬁ’ isa
C*-representation of H,,(q?) for any real ¢ > 1 or ¢ = e™/™. When q = €%, z > 0, we have
n=(1-¢**+)/(1+¢*)(1 — ¢~ %) = sinh((k—1)x)/2 cosh(z) sinh(kz) = [k+1],/[2],[k],,
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whilst for ¢ = e™/™, n = sin((k — 1)m/n)/2 cos(n/n) sin(kw/n) = [k — 1]/[2][k]. Then for
k =3, n = [3]; so that the Markov trace on V2 satisfies the condition in Theorem 1.2.1.
O

Then the algebra V2 is finite-dimensional for all finite m since the mth level of the

path algebra for A™ is finite-dimensional.

6.2 General Aj-planar algebras

6.2.1 Jones’ planar algebras

Jones introduced the notion of a planar algebra in [64] to study subfactors. These planar
algebras gave a geometric reformulation of the standard invariant. Since then there has
been much interest in planar algebras; see for example [7], [6], [17], (48], [47], [52], [53],
[62], [63], [65], [66], [74], [73], [90], [105].

Let us briefly review the basic construction of Jones’ planar algebras. A planar k-
tangle consists of a disc D in the plane with 2k vertices on its boundary, £k > 0, and
n > 0 internal discs Dj, j = 1,...,n, where the disc D; has 2k; vertices on its boundary,
k; > 0. One vertex on the boundary of each disc (including the outer disc D) is chosen
as a marked vertex, and the segment of the boundary of each disc between the marked
vertex and the vertex immediately adjacent to it as we move around the boundary in an
anti-clockwise direction is labelled x. Inside D we have a collection of disjoint smooth
curves, called strings, where any string is either a closed loop, or else has as its endpoints
the vertices on the discs, and such that every vertex is the endpoint of exactly one string.
Any tangle must also allow a checkerboard coulouring of the regions inside D, which are
bounded by the strings and the boundaries of the discs, where every region is coloured
black or white such that any two regions which share a common boundary are not coloured
the same, and any region which meets the boundary of a disc at the segment marked *
is coloured white. When the outer disc has no vertices on its boundary, we replace 0 by
+, where the region which meets the outer boundary is coloured black for a +-tangle and
white for a —-tangle.

A planar k-tangle with an internal disc D; with 2k; vertices on its boundary can be
composed with a kj-tangle S, giving a new k-tangle T'0; S, by inserting the tangle S inside
the inner disc D; of T such that the vertices on the outer disc of S coincide with those
on the disc D;, and in particular the two marked vertices must coincide. The boundary
of the disc D; is then removed, and the strings are smoothed if necessary. The collection

of all diffeomorphism classes of such planar tangles, with composition defined as above,
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is called the planar operad.

A planar algebra P is then defined to be an algebra over this operad, i.e. a family
P = (P§, Py, Pi,k > 0) of vector spaces with P C P, C Py for 0 < k < k', and with
the following property. For every k-tangle T' with n internal discs D; labelled by elements
zj € Py;, j =1,...,n, there is an associated linear map Z(T) : ®7_, P, — Pk, which is

compatible with the composition of tangles and re-ordering of internal discs.

6.2.2 General Aj;-planar algebras

We will now define an Aj-version of Jones’ planar algebra, using tangles generated by
Kuperberg’s A;-spiders rather than genuinely planar tangles. Under certain assumptions,
these A,-planar algebras will correspond to certain subfactors of SU(3) ADE graphs which
have flat connections. The best way to describe planar algebras is in terms of operads
(see May [85]).

Definition 6.2.1 An operad consists of a sequence (C(n))nen of sets. There is a unit
element 1 in C(1), and a function C(n) ® C(j1) ® --- @ C(jn) — C(j1 + - -+ + Jjn) called
composition, given by (Yy®z; ® - @ x,) > yo (1 ® - ® x,), satisfying the following
properties

o associativity: yo (£10(211 8 @ L1 4,) Q ®Tp 0 (Tn1 ® -+ @ Tni,))
=yo(1® ®2,))0(211Q X1k, @ ®Ln1 @+ ®Tnk,),

e identity: yo(1®-®1)=y=1o0y.

We will define two types of As-planar tangles, which we will call (+)7, j-tangles and
(—)i, j-tangles. An Ap-planar (%)i, j-tangle (note, this is different from an (3, j)-tangle)
will be the unit disc D = Dy in C together with a finite (possibly empty) set of disjoint
sub-discs Dy, D, ..., D, in the interior of D. Each disc Dy, k£ > 0, will have an even
number 2(ix+ jx) > 0 of vertices on its boundary 8Dy, (iy = 4, jo = 7). The first ji vertices
are restricted to be sources, the next 2i, vertices alternate between sources and sinks, and
finally the last ji vertices are all sinks. For a (+)-tangle, vertex jx + 1 is restricted to be
a source for all k, whilst for a (—)-tangle it is a sink. We will position the vertices so that
the first ix + jx are along the boundary for the upper half of the disc, which we will call
the top edge, and the next iy + jx vertices are along the boundary for the bottom half of
the disc, which we will call the bottom edge. We will use the convention of numbering the
vertices along the bottom edge in reverse order, so that the 2(ix+ji)-th vertex is called the

first vertex along the bottom edge. For a (+)-tangle, the total number of source vertices
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along the top edge is |jx + (ix + 1)/2], and the number of sink vertices is |ix/2], whilst
for a (—)-tangle the corresponding numbers are |ji + (ix/2)] and |(¢x + 1)/2]. Inside D
we have a tangle where the endpoint of any string is either a trivalent vertex (see Figure
6.1) or one of the vertices on the boundary of a disc Di, k = 0,...,n, or else the string
forms a closed loop. Each vertex on the boundaries of the Dy is the endpoint of exactly
one string, which meets 0Dy, transversally. An example of an A,-planar (+)0, 4-tangle is

illustrated in Figure 6.19.

Figure 6.19: Aj-planar tangle

The regions inside D have as boundaries segments of the 3Dy or the strings. These
regions are labelled 0, 1 or 2- called the colouring- such that if we pass from a region R of
colour @ to an adjacent region R’ by crossing a vertical string with downwards orientation,
the R’ has colour a + 1 (mod 3). We mark the segment of each 8Dy, between the last and
first vertices with *p,, by € {0, 1,2}, so that the region inside D which meets 0Dy at this
segment is of colour by, and the choice of these *p, must give a consistent colouring of the
regions. For the outer boundary 0D we impose the restriction by = 0. For ¢,j = 0,0 we
have three types of tangle, depending on the colour b of the region near 9D.

Let o be + or -. We define ’ﬁ(a)i_j(La) to be the free vector space generated by
orientation-preserving diffeomorphism classes of Aj-planar (o), j-tangles with labelling
sets L,. The diffeomorphisms preserve the boundary of D, but may move the Dy’s, k > 1.
Let Py ;(L,) be the quotient of ’ﬁ(a)i,j([/a) by the Kuperberg relations K1-K3. The A,-
(0)-planar operad P(;)(L,) is defined to be Py (Lo) = U, ; Ployij(Lo). We will usually
simply write P(,) for P,)(L,) when the labelling set is obvious. For P(,); - we use the
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Figure 6.20: Composition of planar tangles

convention that the region of any tangle in P(4); oo Which meets the segment of the outer
boundary between vertices vy and v; has colour 0.

We define composition in P, as follows. Given an A,-planar (o)1, j-tangle T with an
internal disc D; with 4;, j; = ¢, j' vertices on its boundary, and an A,-planar (o), j'-tangle
S with external disc D’, such that the orientations of the vertices on its boundary are
consistent with those of D, and *p = xp,. We define the (0)i, j-tangle T'o; S by isotoping
S so that its boundary and vertices coincide with those of D, join the strings at D, and
smooth if necessary. We the remove 3D, to obtain the tangle T o; S whose diffeomorphism
class clearly depends only on those of T' and S. This gives P(,) the structure of a coloured
operad. where each Dy, k > 0, is assigned the pattern i, jx, and composition is only
allowed when the colouring of the regions match (which forces the orientations of the
vertices to agree). There are three distinct patterns for ¢,j = 0,0, corresponding to the
colouring of the region near the boundary. The Dy’s, k£ > 1 are to be thought of as inputs,
and D = Dy is the output.

163



The most general notion of an A,-planar algebra will be an algebra over the operad
P(s), i.e. a general A,-(o)-planar algebra P, is a family

Pioj = (Ployij» 4,5 > 0,4,5 # 0,0, Ply00,a € {0,1,2})

of vector spaces with P{yy o C Poyij C Py for 0 <i <, 0<j <j, a€{0,1,2}
and with the following property: for every labelled (¢)i, j-tangle T' € P(,);; with inter-
nal discs Dy, Do, ..., D,, where Dy has pattern i, jx, there is associated a linear map
Z(T) : ®p—1Poyir,jx — P(+)i,; which is compatible with the composition of tangles in the
following way. If S is a (0)i, jk-tangle with internal discs D41, . .., Dpym, where Dy has
pattern i, jk, then the composite tangle T o, S is a (0)i, j-tangle with n +m — 1 internal
discs Di, kK = 1,2,...1 — 1,1+ 1,1+ 2,...,n + m. From the definition of an operad,

associativity means that the following diagram commutes:

(®g——¢-} P(D')ikxjk) ® ( Z:::l'l P(U)ik,jk) \Z(TO,S)
id@Z(S)l Poyij» (6.10)
Q=1 Ployinin )

so that Z(T o; S) = Z(T"), where T" is the tangle T with Z(.S) used as the label for disc
D,. We also require Z(T') to be independent of the ordering of the internal discs, that is,
independent of the order in which we insert the labels into the discs. If i = j = 0, we
adopt the convention that the empty tensor product is the complex numbers C. By using
the tangle

we see that each P}, , (or simply F(}),) is a commutative associative algebra, a € {0, 1,2}.
So each P ; has a distinguished subset {Z(T')} for every (o)i, j-tangle T without any
internal discs. This is the unital operad (see [85]). Following Jones’s terminology, we call
the linear map Z the presenting map for F,.

The usual Ay-planar algebra will be the (4) one. However, in the rest of this subsection
we will mean by a general Aj-planar algebra P either (+) or (—) versions. In the figures
we omit the orientation on the strings from (7 4+ 1)-th vertices along the top and bottom

of an i, j-tangle- these will be determined by whether the tangle is an (+) or a (—)-tangle.
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6.2.3 Partial Braiding

We now introduce the notion of a partial braiding in our A,-planar operad. We will allow
over and under crossings in our diagrams, which are interpreted as follows. For a tangle
T with n crossings ¢, ..., ¢, choose one of the crossings ¢; and, isotoping any strings if
necessary, we enclose ¢; in a disc b, as shown in Figure 6.21 for ¢; a (i) negative crossing

and (i) positive crossing (up to some rotation of the disc).

X &

(D)

Figure 6.21: Disc b for (z) negative crossing, (i7) positive crossing

@ -0

Figure 6.22: Discs b, and b,

Let by, by be the discs illustrated in Figure 6.22. We form two new tangles Slm
and Tl(l) which are identical to 7' except that we replace the disc b by b; for S’l(l) and
by b, for Tl(l). If ¢; is a negative crossing then T is equal to the linear combination
of tangles ¢~23SM — !ATM | and if ¢; is a positive crossing T = ¢?/35%" — q'l/3Tl(l),
where ¢ > 0 satisfies g + g~! = 6 (cf. (6.1) and (6.2)). Then for both S and T w
consider another crossing c; and repeat the above process to obtain S} 1) = =75 @ _ T(2),
TV = 1,88 — T where 1,5 € {g*2} and 7}, 7} € {g*'} depending on whether c; is
a positive or negative crossing. Since this ‘expansion’ of the crossings is independent of
the order in which the crossings are selected, repeating this procedure we obtain a linear
combination T = Zz(n (s :S™ 4 /™), where the s;, s} are powers of g1/3,

With this definition of a partial braiding, two tangles give identical elements of the
planar algebra if one can be deformed into the other using relations (6.3)-(6.6). It is not
a genuine braiding as we cannot in general pull strings over or under labelled inner discs
Dy.
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Figure 6.23: Tangle I;;

6.2.4 Finite-Dimensionality and General A;-Planar Subalgebras

The tangles I; ; illustrated in Figure 6.23 have 2, 2j vertices on the inner and outer discs
and all strings are through strings from vertex k£ on the outer boundary along the top,
bottom respectively to vertex k on the inner boundary along the top, bottom respectively.
These tangles satisfy /; ; o T = T and also inserting I;, j, inside every inner disc Dy with
pattern ik, jx also gives the original tangle 7. Then I; ; is the unit element (see Definition
6.2.1). We let I; ;(z) denote the tangle I;; with z € P,; as the label for the inner disc.
Then, since we must have Z(/; j(z)) = = we require Z(/;;) = idp,;. This means that the
range of Z spans P, ;, by using any element of P;; as the insertion in the inner disc of /; ;.

The condition dim(P§) =1, a =0, 1,2, implies that there is a unique way to identify
each P§ with C as algebras, and Z (,) = 1, a = 0,1, 2, where (), is the empty tangle
with no vertices or strings at all, with the interior coloured a. By Lemma 6.1.7 there is

thus also one scalar, or parameter, associated to a general As-planar algebra:

Z2(@) =o, (6.11)

where the inner circle is a closed loop not an internal disc.

It follows from the compatability condition (6.10) that Z is multiplicative on connected
components, i.e. if a part of a tangle Y can be surrounded by a disc so that T =T"0; S
for a tangle 7" and O-tangle S, then Z(T) = Z(S)Z(T') where Z(S) is a multilinear map
into the field C.

Every general Aj-planar algebra contains the Aj-planar subalgebra ST L, where for
a € {0,1,2}, STL;z = C, and STL;; = P;;(D). Here the presenting map Z is just the
identity map. Note that the partial braiding defined above is a genuine braiding in ST L.
The SU(3)-Temperley-Lieb algebra introduced in section 6.1.3 is a subalgebra of STL,
given by SU(3)-TL, = ST Ly,. The action of an As-planar ¢, j-tangle T on STL is given
by filling the internal discs of T with basis elements of ST L. The resulting tangle may

then contain embedded circles and squares, which are removed using K2 and K3, and
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Figure 6.24: A tangle in Pi(;”’")

closed curves are removed using 6.11. The result is a linear combination of elements of
STL.

Definition 6.2.2 A general Ay-planar algebra P will be called finite-dimensional if

dimPF;; < oo for alli,j.

Remark. The algebras SU(3)-TL,, are finite dimensional, since from section 6.1.3 we
know that they are isomorphic to the path algebra for the SU(3) graph A). Then by
Lemma 6.2.17 it can be shown that STL;; is finite dimensional for all 4,5 > 0. This
result also follows from [78], since STL; ; and ST Lg,;+; have the same number of source
and sink vertices along the outer boundary, and by Theorem 6.3 in [78] the dimensions
must be the same.

We will now define A,-planar subalgebras P,-(';"'") C B;.

Definition 6.2.3 For 0 < m < j, let Pi(gl’") denote the subset of P;; spanned by all
tangles with the first n vertices along the top and bottom connected by vertical straight
lines, or through strings. The verticesn+ j+1,...,n+ j +m are connected by through
strings which pass over every string they cross such that there are no internal discs in the
region between the strings and the outer boundary of the tangle to the left of them. If P is
a general Ay-planar algebra with presenting map Z, we define Pi(_;n‘") = Z(P,-(?’")) C P;.

A general tangle in ”Pi(’?’") is illustrated in Figure 6.24, where we have replaced the
outer disc by a rectangle, and T is any tangle in P;_,, ;_,. Note that Pfg’o) =P;;. We
also have Pé?l’l) =~ POT since 1’()(?1’1) is just POT with a vertical line added to the left. Similarly

(012 ~y 2
P0,2)=P02-
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6.2.5 Basic Tangles in a General A;-Planar Algebra

We have the following basic tangles:

) o Ny . ~ij
o Inclusion tangles IR}, ;, 1Ly, IRy}, and IR,

iy Moo
IR, = IL;, =

i i
IRiJH IRi,j+| -

where the orientation of the rightmost string in If’fl’j is downwards for ¢ even and up-
wards for 7 odd. Both I R:j +1 and ﬁ%:; +1 add a new source vertex along the top which
immediately to the right of the first j source vertices, and a sink vertex along the bottom
immediately to the right of the first j sink vertices along the bottom. These new vertices
are regarded as being among the downwards oriented vertices rather than the alternating
vertices. They are connected by a through string, and differ only in that the through string
passes to the right of the inner disc in / RZ; +1 and to the left of the inner disc in ﬁ?x 41
We have Z(IIT"9) : Py — Pivy, and Z(IL, ), Z(IRY, ), Z(TR,,,),: Poy = Pijer.

1,J
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e Conditional expectation tangles Rﬁjl’j and ER:::;“:

(6.12)

+]

The orientation of the string from vertex i+ j 41 on the inner disc of E R;:”;l‘j is clockwise

for 7 odd and anticlockwise for ¢ even. We have Z(ERZ:,J;-I’j) : Piy1j — P,jand Z(ER::j:“) .
P, j+1 — P; ;. We also have the conditional expectation tangles ELzﬁj and EL:;E

JHl__jt2

EL i+l — a-l

ig¥l -1
i+l 37! EL. = & ]

ij+1

i+l (s

where Z(EL7MY: Py — POY and Z(ELYYY : Py — PO

i+1,5 i+1,5 i+1 Gj+1-

o  Multiplication tangles M;; : P;i; x Pi; — Py j:
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.

N7

Figure 6.25: Annular tangle Figure 6.26: Identity Tangle 1, ;
‘\‘e’"
>

Figure 6.27: Z(1,,)z = v = xZ(1;;)

7 /2

Each P, ; is then an associative algebra, with multiplication being defined by z;z, =
Z(M; j(z1,z,)), where M; ;j(z,x;) has zx € P,; as the insertion in disc Dx. The multi-
plication is also clearly compatible with the inclusion tangles, as can be seen by drawing
pictures.

An annular tangle with outer disc with pattern ,j and inner disc with pattern ¢, 5/
will be called an annular (i, j : 7/, j')-tangle. An example of an annular (2,2 : 0, 2)-tangle
is illustrated in Figure 6.25.

The tangle 1, ; illustrated in Figure 6.26 is called the identity tangle. By inserting 1, ;
and z € P, ; into the discs of the multiplication tangle M; ; as in Figure 6.27 we see that
Z(1;;)x =z =xZ(1;;), hence Z(1;;) is the left and right identity for P, ;.

Proposition 6.2.4 The Aj-planar operad P is generated by the algebra ST L, multipli-

cation tangles M, and annular tangles, which are tangles with only one internal disc.

Proof
Consider an arbitrary tangle T € P; ; with k inner discs D; with labels z;, [ =1,... k.
By an isotopy of the tangle, we may move all the inner discs so that in any horizontal

strip there is only one disc. Then we may draw T as
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J i

LYYy - |
T,
T,
I |
L1 |
T,
YIY - YY4Y -
R
where the T; are annular tangles with inner disc labelled by z;, [ =1, ... k.

Consider first the tangle 77, which has pattern 7, j along the top. Let ng, n, be the
number of strings along the bottom of 7 with downwards, upwards orientation respec-
tively. Using the partial braiding we may switch any pair of strings along the bottom of

Ty, and we replace 77 by the annular tangle Tl(l):

P 14t~ Y 14— Y YYHY |
T, - T, - o

l e AY o ‘ """:.’.’"{}".’.’.""" l Il l

In this way we may permute all the strings along the bottom of 7} to obtain an annular

tangle T1(2), where the first ny — n, — ¢; strings along the bottom all have downwards
orientation, and the next 2n,+c; have alternating orientations (with the (ng—n,—c;+1)-th
string oriented downwards), where ¢; is 0 if 7 is even and 1if 7 is odd. Thenif j > ng—n,—¢;
we have j = ny — n, — ¢; + 3p for some p € N, so we add p “double loops” (1D at the
bottom of Tl(z) (and multiply the tangle T by a scalar factor a=P§P):

Y- Y14 | AEA
TI(Z) — Tl(3)
.@@ww. YT U

On the other hand, if j < ng — n, — ¢; we have j = ng — n, — ¢; — 3p for some p € N, so
we add p “double loops” at the top of T1(2) instead. Similarly, if i > 2n, + ¢; (respectively,
i < 2ny +¢;) then ¢ = 2n, + ¢; + 2p’ for some p’ € N (respectively, —p’ € N), and we add
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p' closed loops at the bottom (respectively, top) of Tl(a) (and multiply by a scalar factor
a~?'"), and replace Tl(s) by the annular tangle T1(4) :

i i

Y- A - | Y- Y44y - |
Tl ® = Tl “4)
D EEE

where the orientation of the closed loops is anticlockwise for i odd, clockwise for i even.
Let i/ = max(, 2n,, + ¢;), j' = max(j, ng — n, — ¢;). Then we have a multiplication tangle
M j» surrounded by an annular (4,5 : ¢/, j’)-tangle A, with T1(4) as the insertion for the
first disc of My j, and the rest of the tangle, which we will call 7, as the insertion for
the second disc. If / = ¢ and j' = j then the annular tangle A is just /;;. Then T" is
an 7', j’-tangle with k¥ — 1 inner discs, and by the above procedure we can write 7" as a
multiplication tangle (possibly surrounded by an annular tangle), where the insertion for
the second disc now only has k — 2 inner discs. Continuing in this way we see that T is
generated by multiplication tangles and annular tangles. Finally, tangles with no inner

discs are elements of STL. gd

6.2.6 As-Planar Algebras

We now define an Aj-planar algebra P and two traces on P, as well as notions of non-

degeneracy, sphericity and flatness.

Definition 6.2.5 An A,-planar algebra will be a general A;-planar algebra P with
dim (F) = dim(Po(f)l’l)) = dim(PO(g’?)) =1, and Z((0)) = o non-zero.

Definition 6.2.6 We call the presenting map Z the partition function when it is
applied to a closed 0,0-tangle T with internal discs Dy of pattern iy, ji. We identify P¢
with C, so that Z(T) : ® P

ksJk C.

We define non-degeneracy and sphericity in the same way as Jones (see Definition 1.27
of [64]):

Definition 6.2.7 An A,-planar algebra will be called non-degenerate if, for x € P,;,
x =0 if and only if Z(A(x)) = 0 for all annular (0 : 4, j)-tangles A.
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Definition 6.2.8 An A,-planar algebra will be called spherical if its partition function
is an invariant of tangles on the two-sphere S? (obtained from R? by adding a point at

infinity).

Definition 6.2.7 of non-degeneracy of an A,-planar algebra involves all ways of closing

a tangle. For a spherical algebra it is enough only to consider the following:

Definition 6.2.9 Let P be an A;-planar algebra. Define two traces [Tr;; and gTr;; on

' m ) =(([). ) -=( 1))

For a spherical A,-planar algebra ;Tr; ; = grTr;; =: Tr; ;. The converse is also true-
that is, if ;' Tr; ; = gTY;; on P, ; for all 4,5 > 0 then P is spherical. Let T be any labelled
O-tangle. For sphericity we require Z(7') to be invariant no matter where we choose the
“point at infinity” to be. We make a choice of a point at infinity and isotope T so that it

looks as follows

_ () =LTr,~J-(Z(T2))=RTr,-J(Z(T2))=Z() _2 T
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Let P be a spherical algebra. If we define tr(z) = a=*~7 Tr; j(z) for z € P,;, then tr
is compatible with the inclusions P;; C P; ;4 and P;; C Py, ;, given by IR:::j:H, IR::;{I_J-
respectively, and tr(1) = 1, and so defines a trace on P itself. The following proposition
is given in [64] in the setting of his A;-planar algebras. The proof for A,-planar algebras

is identical, the only difference being in the orientation of the strings.

Proposition 6.2.10 A spherical Ay-planar algebra P is non-degenerate if and only if

Tr; j defines a non-degenerate bilinear form on P;; for each i, j.

Proof
(=) The picture defining Tr is Z(A(z)) where A is the annular (0 : 7, j)-tangle

A=

{

and therefore Tr(z) = Z(A(z)) =0z =0.

(«) It is enough to show that for any annular (0 : ¢, j)-tangle A, thereisa y € P, ;
such that Tr(zy) = Z(A(z)). By spherical invariance one may arrange A(z) so that it
has no strings crossing the radius from a point between the last and first vertices on the
outer boundary to a point between the last and first vertices on the inner boundary of A.

Then by isotoping the strings we may contain the part of A(x) outside z in a disc with

pattern 1, j:

O
Then for non-degenerate P, if we have a finite set of labelled tangles which linearly

span P; ; (under the presenting map Z), the calculation of dimP, ; is reduced to the finite
problem of calculating the rank of the bilinear form defined on F; ; by Tt as for the A;-case.
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Definition 6.2.11 Let T be any tangle with internal discs Dy, k =1,...,n. We call an
Aa-planar algebra flat if Z(T) = Z(T") where T' is any tangle obtained from T by pulling
strings over an internal disc Dy, for any k = 1,...,n. This is illustrated in Figure 6.28,

where we only show a local part of the tangle.

.2 |

Figure 6.28: Flatness

Note that we could have defined a flat A,-planar algebra to be one where strings can
be pulled under internal discs instead of over. Such an A,-planar algebra is isomorphic to
the one defined above, with the isomorphism given by replacing q by ¢~ !- this is equivalent
to reversing all the crossings in any tangle. For a flat Aj-planar algebra, the two ‘right’
inclusion tangles / R:j +1 and ﬁ?:j +1 are equal, and we will simply write / R:; 41 Fora
flat A,-planar algebra the partial braiding is a genuine braiding, as inner discs may now

be pulled through crossings.
Proposition 6.2.12 A flat A;-planar algebra is spherical.

Proof

Given a 0-tangle, we isotope the strings so that we have an n-tangle T, for n € N,
with n vertices along the top and bottom of T" connected be closed strings which pass to
the left of 7. Then the string from the nth vertex along the top and bottom of T can
be pulled over all the other strings and all internal discs of T, introducing two opposite
kinks, which contribute a scalar factor ¢%/3¢=8/3 = 1 (see Figure 6.29). We may similarly

pull the other strings which pass to the left of 7" over T. O

Figure 6.29: Flatness gives sphericity

175



6.2.7 The involution on P

We can define the adjoint T™* of a tangle T' € P; ;(L) , where L has a x operation defined
on it, by reflecting the whole tangle about the horizontal line that passes through its
centre and reversing all orientations. The labels zx € L of T are replaced by labels z}
in T*. If ¢ is the map which sends T" — T, then every region ¢(R) of T* has the same
colour as the region R of T. For any linear combination of tangles in P; ;(L) we extend
* by conjugate linearity. Then P is an A,-planar *-algebra if each F,; is a *-algebra,
and for a i, j-tangle T" with internal discs Dy with pattern i, ji, labelled by z, € P, ;,,
k=1,...,n, then
Z(Ty = Z(T*),

where the labels of the discs in T are z7. We extend the definition of Z(T) to linear
combinations of , j-tangles by conjugate linearity. The partition function on an A,-planar
algebra will be called positive if gTr; j(z*z) > 0, for all z € P, ;, i,7 > 0, and positive
definite if gTr; j(z*z) > 0, for all non-zero x € P, ;. It is not clear whether gTr; ; positive
implies that ;Tr; j(z*z) > 0 for all z € P;; also, however we will only be interested in
non-degenerate As-planar algebras, and hence we will have both gTr;;(z*z) > 0 and
LTrij(z*z) > 0 for all z € P,;, i,j > 0, by the following proposition which is contained
in [64, Prop. 1.33] for Jones’s A;-planar algebras. The proof carries over to As-planar
algebras where the only modification is that we allow slightly different orientations on the

strings.

Proposition 6.2.13 Let P be an As-planar x-algebra with positive partition function Z.

The following are equivalent:

(i) P is non-degenerate,
(1i) rTr;; is positive definite,
(it) LTr;; is positive definite.

Proof
(i) = (ii): Suppose x € P, satisfies Trg(z*z) = 0. Then if A is any annular (0 : ¢, j)-
tangle, we may isotope A(z) so it looks like
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wherey € Py j, 7' > 4,7 > j. Thus Z(A(x)) = gTr; ;(Ty), where 7 is z with j'— j vertical
straight lines added to the left and i’ — i vertical straight lines added to the right. By the
Cauchy-Schwarz inequality, |gTr;;(Zy)| < +/rTri;j(T*Z)/rTri;(¥*y), so Z(A(z)) = 0.
(So gTr; j(z*z) = 0 => z = 0 which is statement (ii).) Similarly (i) = (iii).

(i) = (i): For z = Y_; ARy, for basis elements R, of P;;, we can write gTr; ;j(z*z) =
Y1 MZ(A(z*)) where A, is the annular (0 : 4, j)-tangle

X

Then for non-zero z, gTr; j(z*z) > 0 = Z(A,(z*)) # 0 for at least one n. Alternatively,
rTr; j(z*z) = 0 = Z(Ai(z*)) = 0 for all A;. Similarly (iii) = (i). O
Then we have the following Corollary, as in [64, Cor. 1.36]

Corollary 6.2.14 If P is a non-degenerate finite-dimensional As-planar *-algebra with
positive partition function then P, ; is semisimple for all i,j, so there is a unique norm

on P, ; making it into a C*-algebra.

Definition 6.2.15 We call an As-planar algebra over R or C an Ay-C*-planar alge-
bra if it is a non-degenerate finite-dimensional Az-planar x-algebra with positive definite

partition function.
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If P is a spherical A,-C*-planar algebra we can define an inner-product on F;; by
(z,y) = tr(z*y) for z,y € P,;, which is consistent with the inclusions P;; C P; ;41 and
P;; C Pij14, given by [ R:j w1 1 Rfﬁl,j respectively, since tr is.

6.2.8 The Conditional Expectation

The justification for calling the tangles in (6.12) “conditional expectation” tangles is seen

in the following Lemma:

Lemma 6.2.16 Let P be an Ay-C*-planar algebra. For the tangles ER:;IJ and ER:::;“
defined in (6.12), E1(z) = Z(ER:J;”(:J:)) is the conditional expectation of x € Py, onto
P; ; with respect to the trace, and Ey(y) = Z (ER:::j:H (y)) ts the conditional expectation of

y € P ;41 onto P;; with respect to the trace.

Proof

We first check positivity of E;(z) for positive z € Py, ;. As P is an A,-C*-planar
algebra, the inner-product defined above is positive definite. We need to show that
(Er(z)y,y) = 0 for all y € P,;. From Figure 6.30 we see that tr(y*ERZjl’j(x)*y) =
tr(y*z*y’) = (zy',y’) > 0 for all y € P, ;, where y = Gl e Pit15.

From

we see that E)(axb) = aE(z)b, for x € Py, a,b € P, ;. Since also (E\(z),y) = (z,7'),
E) is the trace-preserving conditional expectation from P, ; onto F;;. The proof for E,

is similar. |
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Similarly, Z (EL:ii;(x)) is the conditional expectation of z € F;;;; onto Pi(i’lo,}, and

z (EL:;:[}(y)) is the conditional expectation of y € P, ;41 onto Pi(gi)l with respect to the

trace.

6.2.9 Dimensions of As-planar algebras and A,-STL.

We now present some other general results for Aj-planar algebras. We define maps ¢ :
Paugrj+1(L) = Paya;(L), w i Pajra(L) — Pag;(L) by

px) = w(x,) = "X
- ' |2I+I |}

for 21 € Pat1j+1(L), z2 € Paj+1(L), where the white circle at the end of a string
indicates that this vertex is now regarded as one of the i vertices of P;; with alternating
orientation (i = 2l + 2,2l + 1 for ¢, w respectively). The maps ¢, w are invertible, with

¢!, w™! given by

1)
1 — T N 1 7
- — j + \ u — i 20+
P (x,) X, N w(x,) X
/7
YA YA _ ) YA VA
LY N - AN -
i > S
S S
Vad! 2+1 j+1 21

for z; € Payoji(L), x2 € Pyy1,;(L), where the solid black circle at the end of a string
indicates that this vertex is now regarded as one of the j + 1 vertices of P; ;41 with al-
ternating orientation (i = 2 + 1,2l for ¢!, w™! respectively). Clearly ¢(Pa41,j+1(L)) C
Parya (L) and @(Pay1j41(L)) D Para,;(L) since Puyijra(L) D ¢~ (Pasa,;i(L)). So
©(Pars1j+1(L)) = Page;(L) and ¢ a bijection. Similarly, we see that w is a bijec-
tion and w(Py j+1(L)) = Paus1;(L). Let Z : P;;(L) — P;; be the presenting map
for an Ap-C*-planar algebra P. We define maps @ : Pay1j41(L) — Pagoj(L), @ :
Pyjn(L) — Pyuyri(L) by @(z1) = Z(p(z1)) and w(zy) = Z(w(zy)). The inverse
5 of §is §7 () = Z(¢(2)) for & € Pusay, since $713(z) = Z(p™ (Z(p(a))) =
Z(o7Yp(z)) = Z(I242,j(x)) = z. Similarly @~ !(z) = Z(w™!(z)) for £ € Pa1;. Then by

a similar argument as for ¢, we have @(Pa41,5+1) = Paya,j, and @ is a bijection since for
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every y € Py, there is an © = $7!(y) € Pay1,j41 such that $(z) = y. Similarly & is a

bijection and W( Py j+1) = Pay1,5. Then we have the following lemma:

Lemma 6.2.17 Let P be an Ay-C*-planar algebra, with presenting map Z : P;;(L) —
P, ;, for some labelling set L. Then for all integers k such that —i < k < j:

(i) dim(Pi,j(L)) = dim(Pi+k,j-k(L)):
(i) dim(P;;) = dim(Piik,j-k)-

Proof

For (i) there is a map g : P;j — Piyx,j—k for each —i < k < j which is a composition of
the maps ¢ and w. The result follows from the fact that g is a bijection and gx(P; ;(L)) =
Pivk,j-x(L). For (ii) we define maps gx : P,; — Pitxj—k by 0k(z) = Z(0k(z)), and the
result follows by the same argument as for (i). O

For L = @, we define ST L; ; to be the quotient of STL; ; = P; ;(D) by the subspace of
zero-length vectors with respect to the inner-product on ST'L; ; defined by (z,y) = T*y,
for z,y € STL; ;, where T is the tangle defined as in Figure 6.16.

Then we have the following result:

Lemma 6.2.18 The element ¢(z) is a zero-length vector in ST Loy ; if and only if x is
a zero-length vector in ST Loy1,j4+1. Similarly, w(z) is zero-length vector in ST Loy ; if

and only if x is a zero-length vector in ST Ly j11.

Proof

For ¢, if z is a zero-length vector in ST Loy j41 then (z,y) = 0forally € ST Loy ;41
Then for all y; € ST Lyi42 ;, we see by drawing tangles (p(z), y1) = ¢(z)*y1 = z*¢ (1) =
(r,y2) = 0, where yo = ¢ '(y1) € STLgy41+1. The only if part follows by a similar

argument on ¢~ !. The result for w is similar. O

Corollary 6.2.19 For all integers k with —i < k < j, dim(STL; ;) = dim(ST Ly ;).

Proof
By Lemma 6.2.17 with L = @, we have dim(STL; ;) = dim(ST L;1«,j—x). The result
follows by Lemma 6.2.18 since ¢ and w are bijections. O

If we consider the sub-operad @ = |J Q; where Q; is the subset of P;, generated by
tangles with no trivalent vertices (and hence no crossings) and where each internal disc
Dy only has pattern 4,0, then Q is the coloured planar operad of Jones in [64], and
Q = Z(Q) is his planar algebra.
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(-)4,2-tangle T (+)5,2-tangle T

Figure 6.31: T — T for duality

6.2.10 Duality

Let P+y be an Aj-(+)-planar algebra with presenting map Z : P4)(Px)) — Px), and
let P = |J,; Pij, where P;; is isomorphic to P&}%x,;‘ via A. Let Pz = P (P) be
the As-(¥F)-planar operad. Given any (F)i,j-tangle T € Py);; we form the ()i +
1, j-tangle T in the following way. First, add a vertical line to the left of the tan-
gle T, with downwards (upwards) orientation for T an (-)i, j-tangle ((+)i, j-tangle),

and relabel the vertices along the top edge (and similarly along the bottom edge) by

V1, U—jt1, UV—j42, - - -, V0, U2, U3, - - - , Vit1. Lhen using the braiding the tangle is put in stan-
dard form, i.e. so that the vertices are ordered v_;i1,v_j42,..., Vis1-
Each internal disc Dy with pattern iy, jx and vertices labelled v_j, +1,v_j4+2,...,vi,

along the top and bottom, is replaced by a disc 5k, with pattern ix+1, jx, where along the
top and bottom an extra vertex is added between vertices vy and v, and the vertices along
both top and bottom are relabeled v_j, +1,v_j,42,. .., Vi,4+1. The new vertex v; along the
top is a source, sink if T an (+)i, j-tangle, (—)i, j-tangle respectively, and is connected
to vertex v; along the bottom by a string which goes around the disc to the left, passing
over the strings coming from vertices v_j, 41, ..., vp along the top and bottom of the disc.

The labels z; for the tangle T are given by A(zy), where the zi are the labels of the
original tangle T. An example of T is shown in Figure 6.31, for a (—)4, 2-tangle T. We
set N(T) =T.

Proposition 6.2.20 Let P+) = |, ; P(+)i; be an Az-(%)-planar algebra with parameter
a and presenting map Z : Piy)(P+)) — Px). Then the dual As-planar algebra P defined
above is an Ay-(F)-planar algebra with parameter o and presenting map Z : P)(P) — P
defined by Z(T) = a;PA~Y(Z(T)), where p is the number of internal discs in T.
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Proof

Since A(P;;) C Pyiy1,, the labels in a tangle T € P (P) give valid labels for
T € P1)(Ps)) and Z satisfies the compatability condition (6.10) since Z does. Thus P is
a general As-(F)-planar algebra It clearly has the same parameter as Py, and dim(Pp) =
dim(P{Rg) = 1, dim(Py; ) = dim(P{Y,) = 1 and dim(Pyy) = dim(P$,) = 1,50 P
is an Ay-(F)-planar algebra. O

Note that in our A, situation there is a distinction between (+) and (—) planar
algebras, and for an A,-(+)-planar algebra P the dual A,-planar algebra P is an A,-
(—)-planar algebra which is isomorphic to the subalgebra P19 of P. For Jones’s planar
algebras [64] no such distinction is necessary, and every planar algebra could be regarded
as a (+)-planar algebra. The dual (A;-)planar algebra P of a (+)-planar algebra P is then
also a (+)-planar algebra, identified with a subalgebra of P given by the tangles where the
string from the first vertex on the outer boundary of any tangle is a vertical through string
whose endpoint is the last vertex on the outer boundary. The reason for this distinction
is that since in Jones’s planar algebras the orientation of each vertex alternates, he can
embed any tangle in the operad P (of tangles with 2k vertices on the outer disc) in
Pr+1 by adding a vertical through string to the left of the tangle and reversing all the
orientations. However, in our A, situation, in P;; the first j vertices along the top of any
tangle all have downwards orientation whilst the next ¢ have alternating orientations, and
we would first add a vertex along the top and bottom between the j*" and (j+1)' vertices
and connect them by a vertical through string. But then reversing all the orientations
causes the first j vertices to all have upwards rather than downwards orientation, which
is not an allowed tangle in the operad P;; ;. So we wanted to define a notion of duality
which did not involve reversing all orientations, which led us to define both As-(+)-planar

algebras and A,-(—)-planar algebras.

6.2.11 Tensor Product

Let P! = U p P1 and P? = U, P, y ; be general Aj-planar algebras with presenting maps
Zy: P(P') — P1 and Z, : ’P(Pz) — P? respectively. We will define the tensor product
P'® P? in a very similar way to the how Jones does in [64]. Let L = |J,; P}, x P}
be the labelling set for P! ® P2. We define a linear map £ : P(L) — ’P(Pl) ® ’P(Pz)
by £(T) = T ® T, where T is an i, j-tangle with internal discs Dy labelled by (z},z2),
z; € P!, 22 € P2, and T;, T, have the same unlabelled tangle as T, but with discs
labelled by x!, 22 respectively. We define ZP'®P* : P(L) — P! @ P? by ZP'®P*(T) =
(Z1 ® Z3) o L(T) = Z1(T1) ® Z5(T2). This map is surjective since an arbitrary label
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(r,y) € L will go to z ® y € P' ® P? if inserted as the label of the tangle in P(L)
illustrated in Figure 6.26.

Let A be an annular tangle labelled by L and A;, A; have the same unlabelled tangle
as A but are labelled by the first, second component respectively of the labels of A. Then
LoA=A ®AyoL, and if T € ker ZPI@Pz), then T; € ker(Z;), i = 1,2, with T} the
tangles as described above, and ZP'®P*(A(T)) = Z,(A1(T))) ® Zy(Aa(Ty)) = 0, since P!
and P? are both A,-planar algebras. It is clear that ZP'®P*(T) = Z,(T1)Zy(T,) for a 0-
tangle T (with T}, T, defined as above), in the sense that a O-tangle labelled with P! x P2
is the same as two O-tangles labelled with P!, P2 respectively. So P! ® P? is an Ay-planar
algebra if both P! and P? are. Non-degeneracy, *-structure, positivity, sphericity and
irreducibility are all inherited by P! ® P? from P! and P2. Then the tensor product of
two A,-C*-planar algebras is also an A,-C*-planar algebra. Clearly P! ® P? = P2 ® P!

as (general) As-planar algebras.

6.3 As-Planar algebra description of subfactors

We are now going to associate flat A,-planar C*-algebras to subfactors associated to ADE
graphs with flat connections.

Let G be any finite SU(3) ADE graph with Coxeter number n. Let a = [3],, ¢ = e™/™,
be the Perron-Frobenius eigenvalue of G and let (¢,) be the corresponding eigenvector.
With any choice of distinguished vertex *, we define the double sequence (B; ;) of finite

dimensional algebras by:

Boo C Boy C Bpa C --- — By
N N N N
Bio € Bjg C Bip C - — Bi
N N N N
Bap C By C Byp C - — By
n n N N

The Bratteli diagrams for horizontal inclusions B;; C B; ;41 given by G. If G is three-
colourable, the vertical inclusions B;; C Bi;1; given by its j,j + l-part G; 771, Where
p = 7(p) is the colour of p for p = j,j + 1, whilst if G is not three-colourable we use
the graph G for all the vertical inclusions B;; C B;y1,;. We identify By = C with the

distinguished vertex * of G.
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For 7 even we define a connection by

o1
—

”31- 102 = q§501.03662,04 - (I*% Uz (6‘13)

03,04
—
o4
which satisfies the unitarity axiom (1.31) as shown in Lemma 4.1.2. We denote by G the
reverse graph of G, which is the graph obtained by reversing the direction of every edge
of G. For ¢ odd, let 0, 04 be edges on G and let o2, o3 be edges on the reverse graph G

(so that o9, 03 are edges on G). We define the connection by

o] o4

- [brt0ny -
5l le = #"—”—‘ﬁl ol los . (6.14)
N ro3)Pso2)

o4 o1

Then for the inclusions
Bi; C Bijn
N N (6.15)
Bit1; C Bt

an element indexed by paths in the basis {, can be transformed to an element indexed
by paths in the basis ¥ using the above connection: Let (-0 -y ag,0-0" - -ay) be
an element in B, ;41 in the basis t, , where ¢ is a horizontal path of length j, o’ is a
vertical path of length i, o, o] are vertical paths of length 1, a2, o are horizontal paths

of length 1, and () = r(c}). We transform this to an element in the basis ¥ by

B By
- —
(-0 01 ano0o-ag)=> al g ol g (00 BiPao-d B B),
Bi B, — -
b agz a)

where the summation is over all horizontal paths (;, ) of length 1, and vertical paths [,
35 of length 1.

The Markov trace on B; ; is given in (5.6), for (01, 02) € B;j, where k =i+j, a = [3],
as usual, ¢ = exp(im/n). We define B; o to be the GNS-completion of (J,5, Bix with
respect to the trace. As in [38], the braid elements

0 1

appear as the connection.
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If G is three-colourable then its adjacency matrix Ag which may be written in the

form
0 Ay O
Ag = 0 0 Ap |,
Ay O 0

where Ag;, A2 and Ay are matrices which give the number of edges between each 0,1,2-
coloured vertex respectively of G to each 1,2,0-coloured vertex respectively. By a suitable
ordering of the vertices the matrix A5 may be chosen to be symmetric. These matrices
satisfy the conditions

Al Ao = AgpAl = A2, (6.16)

AO]Ag‘l = A20A20, (6.17)
which follow from the fact that Ag is normal.

Lemma 6.3.1 For the double sequence (B; ;) defined above, dim(B;;) = dim(Bitkj—k)
for all integers k such that —i < k < j.

Proof
If G is not three-colourable, then B;; is the space of all pairs of paths of length
i+ j on G, hence the result is trivial. If G is three-colourable, let Al be the product

of j matrices A1 = Ag1A12A20A0; -+ A]—lj, and A2 the product of ¢ matrices A

A_mAjj+lA_mAZ‘]+l -+ A', where A’ is A; 77 if 4 is odd, A - if 4 is even, and P
is the colour of p. Then if A;; = A} ;AZ;, the dimension of B;; is glven by (AiiAT;),0
Using (6.16), (6.17) it is easy to show by induction that A;;AT; = (AnAf; ). éo
dim(B; g j-k) = (A i+k,j—kAi+k,j_k)0’0 = ((AaAy) )y, = dim(Biy). O

For all 4,5 > 0 we define operators U_x € B;;, k = 0,1,...,7 — 1, which satisfy the
Hecke relations H1-H3, by

Uk = Z U (Gomem-G-¢G-r-n-G-(), 0<k<j-2,

1¢11=5-2—k,|¢|=i
[vil=In;1=1,I¢2l=k

Ujy1 = E U (C-m-n-¢,¢ramp- (),
Cl=i-1,1¢|=i-1
Jvil=In}l=1

where £, ¢ are horizontal, vertical paths respectively, and /J?,” are the Boltzmann weights
for A™. The embedding of U_, € B;; into Bi.1; is U_k, whilst the embedding of
U_x € B;; into B; 41 is U_x—1. We have B;; D alg(U_j41,U_j12,...,U_1,Up). It was
noted in Section 1.2.2 that when G = A™), the algebra B;; = alg(U_j41,U_jya,...,U_i_1)

for{ =0,1.
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Lemma 6.3.2 The square 6.15 is a commuting square.

Proof
Note that for the A graphs, the result follows by [112, Prop. 3.2]. However, we prove
the case for a general SU(3) ADE graph G. By [39, Theorem 11.2], the square 6.15 is a

commuting square if and only if the corresponding connection satisfies

¢ Bs(09)® — —
oo /By |
Z ; 5 3)¥s(03) oal loa ot loz =00y, 503,05, (6.18)
02,04 s(02)Ps(o4) _4) .

o oa

where o, o] are any edges on the graph of the Bratteli diagram for B;; C B; j11, 03, 03
are any edges on the graph of the Bratteli diagram for B;; C B;;1;, 01, and 03, o4 are
any edges on the graphs of the Bratteli diagrams for B; ;11 C Biy1j+1, Bit1,; C Biy1,j+1
respectively, such that s(o2) = r(01) = r(0]) and s(o4) = r(o3) = r(05).

For i even, the connection on G is given by (6.13). Then the left hand side of (6.18)

becomes

> SO (5,5 5, = ™ B2 S (A2 (BT )
Ds(02)Pr(os) Ds(o1)Pr(o2)

02,04

601 03502 g4 W (A 05.04))
g dmaslosse Sy otk AT )
¢'s(a])¢r(02) Z
by S W (AT AT W (A0 EO)
¢ 0‘1)¢3("1)¢r(02) 7.5
\/W( ¢r(02)6 8.

(b ¢ a1,03Y%,0%
r(o3) s(o2)

-1 60’1 ,03502,04 [

50 \0. 50 \0.
2]¢s(01)¢s(02)601 o3 42—1 [2]¢S(01)¢8(02)50’1 0%

¢8(01)¢s(02) ¢s(al)¢s(
1 -
* ¢s(a1)¢s(az)¢s(ai) (¢3(03)¢r(03)¢3(a/3)501103 Oa’l 93 + ¢T("1)¢3(‘73)¢"(03)6al,01 503'0;’))

601 ,04 00'3.0:’, 3

¢s 03)Ps(0 r(o )
V/Ps(03) Ps(o) (Z Drien) _ g2 4 1) 01050010, + 01,01 803,04

Pr(o3) o7 Ps(02)

where g+¢7! = [2], 3, ?—:”2} [2]2+1 = [3] —[2]>+1 = O since [3] is the Perron-Frobenius
eigenvalue for G, and where we have used equations (4.1) and (4.2) for the first equality.

For i odd, the connection on G and G is given by (6.14). Then the left hand side of
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(6.18) becomes

o4 04

—_
Z a3l a2 &l 172
02,04 — '—,’
g1 4
= 3 (Grasrabor5a05,0400,52 — Mmzw Ao B AGE)
- 03,04Y01,02Y%53,04V01,02 ¢ ¢
02,04 s(oq)Pr(o2)
oz -
_ -1 09504 "1 02 (v',63,01) 04,02)
q W(A 3 I)W( A 04 2)
¢3(0’4)¢1‘(02) Z
1 = —_——=C P~ i ————————————
+—2 5 Z W(A(‘Y,tu,oz))W(A(‘y’,a4,a2))W(A(’Y ,03.01))W(A(‘y.03,01)))
¢a(a4)¢r(32) 7.y
N 2 s Ty A 7 = v
= 601,0'1()03,03 [ ] ZW(A(’y’a“"n))W(A(‘Yﬂa,dl))

Pr(01)Pr(o3)
]. ! = ! T,/ A 7. = N\
¢2 2 Z[2]‘57,7’4’8(04)‘153(?72)I/V(A(7 ’03’01))W(A(7’03’al)))
8(04) 7'1(52) ~
601 o} ()03 0%
since s(o4) = r(o3), r(02) = r(o;), where we have used (4.1) for the last term of the
second equality.
Then (6.18) is satisfied, and 6.15 is a commuting square. O
Then as in [38], we define the Jones projections in B;;, fori = 1,2,.. ., by:
1 ’ ’ ~ ~
e_1 = Z _M(C.C'.ryl.v’,c.g’.nl.n’)
ICl=3,1¢"|=i~2 B8] rer

I I=ln’I=1
where E denotes the reverse edge of £&. Let Ej_, be the conditional expectation from
Bit1,00 Onto B; o with respect to the trace. For z € Biy1j, Enm, ,(z) is given by the
conditional expectation of x onto B;;, because of Lemma 6.3.2. Clearly e,z = ze;, for
z € Bj_1,00, since z and ¢ live on distinct parts of the Bratteli diagram (cf. (1.34)). Let
z = (oy-0)- P, a2 04 F3) € By, where ; are horizontal paths of length j, o] are vertical
paths of length [ — 1 and f; are vertical paths of length 1, : = 1,2. Then

1 \/@r () Br(n) v/ Privy) Prinp) b ;S
epre; = E — G-Cm-7mG-G-m-m
[3]2 ¢r((;) ¢r((§) ( 1 1 1 1 1 1 1 1 )

1¢i1=d.1¢]I=1~1
[vii=inil=1n'1=1

x(ay-ay - By pog-0n By 1) (G o Ve ¥anCa Co ey mh)

1 /@) Pr(ny) / Pr(8)Pr(a)) v 7,
Ve briny) Ve =0 (cn-ap - -7, 000 05 e mp),

= B e Pr(al)
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and

El_l(IlJ)(:’[

_ > 1 /br(y)Prw) S8y 5

B2 ¢y Priay)

/ 7 ! / ! /
ooy (oo p - Viag -y V)
I¢1=141¢" |=t-1
I I=1n'I=lu"I=1v'I=1

x(C- ¢ ¢ )

- 1 Py /e Priay)
B2 ér(ay) Pr(at)

8o (01 -0h -y Yz - 1p),

'I=In"|=1
So eire; = Ej_y(z)e forall x € By . Let y = (on-0f - oy-af, B1-B1- 85 B3) € Biyy,j, where
ay, By are horizontal paths of length j, of, 5] are vertical paths of length { — 1 and o, 3!
(i = 2,3) are vertical paths of length 1. It can be easily checked that y can be written (up
to some scalar factor) as z,e;z, for z,, 25 € B;j, by choosing z; = (a; - @} - &, 01 - 7] -&73),
Ty = (09 - 0h - ,8~§,,81 - B - B3), where oy, o}, i = 1,2, are any paths such that r(o}) =
r(03) = r(aj). So Bit1,00 is generated by B; o and e;. Then ¢, is the Jones projection for
the basic construction Bj_1 0 C Bioo C Bit1,00, { = 1,2,... . By [101, Prop. 1.2] if we
set N = By and M = B o, the sequence Byo, C Bioo C Bz C B3z C -+- can be
identified with the Jones tower N C M C M; C M, C ---. It was shown in [38] that for
G = A" n < oo, if * is now the apex vertex (0,0) of A™, then this subfactor is the
same as Wenzl’s subfactor in [112] for SU(3), and we have the following theorem from

Theorems 3.3, 5.8 and Corollary 3.4 in [38]:

Theorem 6.3.3 In the double sequence (B;;) above for G = A™ or D™ n < oo,
with * the vertexr with lowest Perron-Frobenius weight, we have B{),oo N Bi oo = By, t.e.
N'NM;_y = B;o. The principal graph for the above subfactors is given by the 01-part Gy,
of G.

The connection will be called flat if any two elements x € By and y € By, commute.

This is equivalent to the relation

o
————-—-—-ﬁ--
>

*
pl
*

where o is a path of length 2, [ € N, with the first | edges on G and the last [ edges on G

p =1 (6.19)

o

Suppose we have an arbitrary element 2° in B N B oo. If we set zy = Ep, ,(2°) then
z € B(,),l N Bk,l:
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Let d be the smallest integer such that the Bratteli diagram for the inclusion By g C By d+1
is the same as the Bratteli diagram for the inclusion By 413 C By 4+4. Then for all 3l > d,
the algebras By 3N By 3 are isomorphic, since they have as basis elements indexed by pairs
of paths on the 01-part Gp; of G which start from any 0-coloured vertex of G. Let A be
a finite dimensional C*-algebra isomorphic to these algebras, with natural isomorphism
$31 : By 3N Brai — A, so that A has as basis elements indexed by pairs of paths on the 01-
part Go; of G which start from any 0-coloured vertex of G. Let || - || be the operator norm.
Since ||¢ai(z30)l| = ||zl = ||EB, 5, (2°)]] < [|2°], the sequence {¢s(zz)}: is bounded in
the finite dimensional algebra A. Then by compactness of any bounded set in A, every
sequence has a convergent subsequence, and hence there is a subsequence {/;}; such that
b3, (z31;) — z and ¢y, 43(231,43) — 2’ as j — oo, for some z,2' € A. Let A be the algebra
illustrated in Figure 6.32, where we have two embeddings of A into Av, and along the top
and bottom we have elements indexed by paths of length 3 on G. Since ||z3 — z3143|]2 — 0
as | — 0o, we have z -id® = id® . 2, as in Figure 6.33. Here the equality means that
z-1d® is identified with id® - 2z’ using the connection, id® = EM:B(U,U) on G, and
by a - b we mean the concatenation of the paths that index the elements a, b, e.g. if

a=(p1,p2), b= (01,02) then a-b= (p; - 01, p2 - 02).

If the connection is flat we have 2/ = z, i.e. z-id® = id® . z. Let z(v) be the
component of z which has initial vertex v, and regard z(*) as an element of By . Then
lmj o ||2z31, — 2(*)||2 = 0, and 2° = z(x) € Byp. Similarly, and z(x) € Byo is in

Bj o N Bko. Then for graphs where the connection (6.13) is flat, the higher relative

6,669
id”
A A
z z'
G G ¢ id”
Figure 6.32: Algebra A Figure 6.33: z-id® and id® - 2/
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commutants are given by the By o, that is, B{,,oo N Bg,oo = Bko. The above is Ocneanu’s
compactness argument (which first appeared in [92]) in the setting of our SU(3) subfactors.
If G is a graph with flat connection, then the principal graph of the subfactor By o C Bi o
will be the 01-part Go; of G.

Flatness of the connection for the A, D graphs was shown in Theorem 6.3.3, where
the distinguished vertex * was chosen to be the vertex with lowest Perron-Frobenius
weight. The flatness of the connection for the exceptional £ graphs in not decided here.
The determination of whether the connection is flat in these cases is a finite problem,
involving checking the identity (6.19) for diagrams of size 2dg,, x 2(dg + 3), where dg is
the depth of G and dg,, is the depth of its Ol-part Gp;. This is because for the vertical
paths, the algebras B, ; are generated by B;; and the Jones projection ¢; for all I > dg,,,
and e; does not change its form under the change of basis using the connection. For the
horizontal paths, by Lemma 5.1.7 we see that the algebras B, ., are generated by B,
and U_, for | > dg + 3, and the Hecke operators U_; do not change their form under the
change of basis, as is shown in the proof of Theorem 6.3.4 below.

We have not yet been able to determine whether or not the connection defined by
(6.13), (6.14) is flat for the £ cases, where the vertex * is chosen to be the vertex with
lowest Perron-Frobenius weight, since the number of computations involved, though finite,
is extremely large. We expect that this connection will be flat for the exceptional graphs
£® £ and £@9 since these graphs appear as the M-N graphs for type I inclusions
N C M, as in Table 5.1. We expect that this connection will not be flat for the remaining

82(12), &i”) and Séu) for any choice of distinguished vertex *. We

exceptional graphs
also expect that the connection will not be flat for the A*, D* graphs, for any choice of
distinguished vertex *. The principal graph for the graphs with a non-flat connection is

given by its flat part, which should be the type I parents of Table 5.1.

6.3.1 Flat Ay-C*-planar algebra from SU(3) ADE subfactors

We will now associate a flat A,-C*-planar algebra P to a double sequence (B;;) of finite
dimensional algebras with a flat connection.

We define the tangles W_x, k= 0,...,j—1,and f;,l =1,...,1,in P; ;(D) as in Figure
6.34, where the orientations of the strings without arrows depends on the parity of i and
.

Let P,; = B;j. We will define a presenting map Z : P;;(P) — P;;. Let T be a
labelled tangle in P, ; with m internal discs Dy with pattern 7, jx and labels =\ € B;,_;,,

k=1,...,m. We define Z(T) as follows. First, convert all the discs Dy to rectangles,
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e AL IREHE L e R

Figure 6.34: Tangles W_; and f;

with the first ix + ji vertices along one edge, and the next i, + ji vertices along the opposite
edge, and rotate each rectangle so that those edges are horizontal with the first vertex on
the top edge. Next, isotope the strings of T so that each horizontal strip only contains one
of the following elements: a rectangle with label xx, a cup, a cap, a Y-fork, or an inverted
Y-fork. Let C be the set of all strips containing one of these elements except for a labelled
rectangle. We will use the following notation for elements of C, as shown in Figures 6.35,
6.36 and 6.37: A strip containing a cup, cap will be U®, N respectively, where there are
i — 1 vertical strings to the left of the cup or cap. Strips containing an incoming Y-fork,
inverted Y-fork will be Y®  A® respectively, where there are i — 1 vertical strings to the
left of the (inverted) Y-fork. A bar will denote that it is an outgoing (inverted) Y-fork.

. Bl G Rl Rz 2 R b J.

__________________________________________________________________________ T4 W .

1 i-1 i Jj 1 -1 0 i+l 2 J+2
Figure 6.35: Cup U® and cap N®

BN AL AL S A L. AL S AR

b i i o i j
Figure 6.36: Y-forks Y® and Y®

_l i-1 i i+2 _}fl ...l __________ I:-_l _______ i l+2 ________ j ‘“._1

R IR i T 1 RS i

Figure 6.37: Inverted Y-forks A and X®
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For an element ¢ € C with n;, ny strings having endpoints (we will call these endpoints
vertices) along the top, bottom edge respectively of the strip, let the orientations of these
vertices along the top, bottom edge respectively of the strip be given by the sequences v(!),
v® respectively, where for i = 1,2, v®) = (u{?,v® o .. ,v,(f)), where v{" € NU {0}
and 'u,(:) € Nfor k > 1, with 3r_, v,(:) = n;. The numbers v,(:) denote the number of
consecutive vertices with downwards, upwards orientation for k£ even, odd respectively.
Note that if the first vertex along the top, bottom of the strip has upwards orientation,
then v((,i) = 0 for ¢ = 1,2 respectively. The leftmost region of the strip ¢ corresponds to
the vertex x of G, and each vertex along the top (or bottom) with downwards, upwards
orientation respectively, corresponds to an edge on G, G respectively (g~ is the graph G
with all orientations reversed). Then the top, bottom edge of the strip corresponds is
labelled by all paths on G and G which start at * and have the form given by v, These
paths are uniquely described by the sequence of edges they pass along. Let H,, H; be the
Hilbert spaces corresponding to all paths of the form v(!), v respectively. Then Z(c)
defines an operator M, € End(H,, H,) as follows.

For a cup U®,

V Pr(s:)

(Afu(f>)aﬁ = 5a1 ﬁlo.OtZ B2 " '5ﬂ'—1 .3'—1501' ﬁ'+260‘+1 Biys " Otm 3 +26[3. Bis1 T (620)
, ) s i—1,0i i i+1,01 m,Pm i Big1 ¢3(ﬂ’)

for paths o =y -y -+ -y, B=Br - - - Bjs2.

For a cap N®,

Mn(i) = MJ(,’). (621)
For an incoming (inverted) Y-fork Y® or A(®),
. 1
(MY(i))a,B = aal,ﬁl e Oai-l»ﬁi—150i+l,ﬂl+2 T 6am.ﬁm+1 mu/(A(arﬁrﬁiH))v
(6.22)
1
(M (*))a = dq Bt '505— Bi— 601;’ \B; "'(sam ,ﬁm__—W(A Bi-Gig1-a4 )’
A 0 1,81 1.8i-1%ai 42,841 +1 ¢S(ﬂi)¢r(ﬁi) (Bi-Gig1-Gi)
(6.23)
where W is a cell system on G satisfying (4.1) and (4.2).
For an outgoing (inverted) Y-fork Y or X9
A’Iv(i) = :(,') s (624)
Moo = M. (6.25)

For a strip by containing a rectangle with label zx = 3 , Ay y(7,7') where A, » € C
and (v,7') € P, are matrix units indexed by paths v, 7/, we define the operator
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M,, = Z(bg) as follows. Let pg, pi be the number of vertical strings to the left, right
of the rectangle in strip by respectively, with orientations given by the sequences v =

U}()ik)), viPe) — (v(()p;‘),vip;‘) v(lﬁ’k)

(vlP®) | {Pe) M ) respectively. We attach trivial tails

¥yt gy

of length py of the form v(®* (on G, Q~) to zr and use the connection to transform
this to an element in the basis which has the first p; edges of the form v(®+), followed
by jx edges on G and lastly ir edges on G, G alternately (with the (pg + jk + 1)-th
edge on G). By flatness of the connection on G, this will be an element of the form
Dot M P (- §p - ¢'), where per € C are given by the connection, and v are
paths of the form v(P*). Adding trivial tails of length p) and of the form v() gives an
element 37 .0,
by all paths of length py + jx +ix +pf on G, G of the form (v j,+1,1,1,1,...,v®)).

For a tangle T' € P;; with [ horizontal strips s;, where s; is the lowest strip, s the
strip immediately above it, and so on, we define Z(T') = Z(s1)Z(s3) - - - Z(s;), which will

be an element of P, ;. This algebra is normalized in the sense that for the empty tangle O,

AyyPec (i€ v, - ¢ v) which defines the matrix M, (M, is indexed

Z((O) = 1. We need to show that this only depends on T, and not on the decomposition
of T into horizontal strips.

The following theorem shows that the double sequence (B; ;) for an ADE graph with
a flat connection gives a flat A,-C*-planar algebra. However, unlike [64, Theorem 4.2.1]
for Jones’s planar algebras, we have been unable to prove the uniqueness of this As-planar
algebra, due to the existence of the tangles f,(,f ) of Figure 6.47. These tangles and the

corresponding elements in (B; ;) are not understood very well.

Theorem 6.3.4 Let G be an ADE graph such that the connections (6.13), (6.14) are flat.
The above definition of Z(T') for any As-planar tangle T makes the above double sequence
(Bi;) for G into a flat A,-C*-planar algebra P (= P()) with dim (P) = dim(Pé,Ol’l)) =
dim(PO(f)z'z) ) = 1. This Ay-C*-planar algebra has parameter o = [3] (the Perron-Frobenius
eigenvalue for G), Z(I;;(x)) = x, where I, j(x) is the tangle I;; with x € P;; as the in-
sertion in its inner disc, and

(1) Z(W_k) =U, k>0,

(1)  Z(fi) = aey, [>1,

(i)
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“ 2l

@) a’Z ( ) =tr(x),

for x € P,j, 1,7 > 0. In the first equation of (iii) the first j + 1 wvertices along the

top and bottom of the rectangle are joined by loops, and the second equation only holds
for i # 0. In the first, second equation of (iv) respectively, the x on the right hand side is

considered as an element of P11, P;j+1 respectively.

Proof
First we show that Z(T') does not change if the labelled tangle is changed by isotopy
of the strings. We use the following notation 83:},’;’ﬂ"+’° 1= 0,8, 0ci 11,8541 OBy

Case (1)- Topological moves.
We consider the cup-cap simplifications (which Kauffman calls Move Zero in [70])

shown in Figure 6.38.

it m 1 -1 Qi m

i+

Figure 6.38: Two cup-cap simplifications

1 m i+l m
oeo

1 i-1
— I ...|

For the first cup-cap simplification of Figure 6.38 we have
(Mu(i—H) Mﬂ("))a,,@ = Z (MU(H‘I))Q,—y (MU(‘))ﬂ,'y
v

_ HXYi §amYmi2 § _____M aﬂi—lm—laﬁm Ymt2 g _M
Q1,71 @1, Yi43 Vit Yit2 ) Br1m Bivyita YiYi+l )
N V Ps(vis1) V Ps(vi)

8a:~1ﬂi‘1 amfm s s \/¢T(’Yi+1) ¢T('Yi) -5 5
ay, i S (237547 - a0
1.5 @it1,8i41 ¢T(%) /¢T(’%)

(6.26)
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The second simplification in Figure 6.38 follows from the above, since

M 6 Mg = (MU(.'+1)MH(1-))T = 1. (6.27)

Case (2)- Isotopies involving incoming trivalent vertices.

We require the identities of Figure 6.39.

| -V i+l m 1 -1 i+ m
@ | kf B X
-
| i-1 i+l m I -l P+ m
LR r oo eee
1 -1 0 i+l i+2 m+l i i-1 Qi+ i+2 m+1
(c) r\, —> I

! i-1 i it i+2 m+l 1 -1 0 i+l i+2 m+l
(d) U S .” I OO 0 BN SO . “ - —> i

1 -1 i i+l i+2 i+3 m 1 Pl i D2 43 m

WY~ 1]

Figure 6.39: Isotopies involving an incoming trivalent vertex

(e)

For (a) : (MY(i)Mn(i+l))a‘6 = Z (MY(i))a!,Y (MU(i+l))ﬁ‘,Y

5y

— E aai—lu'yi—laam+l,'7m+2 1

a1,m Qit1,Yi42 ﬁwﬁ?%mﬂ)
¥ s(c:) Pr(es)
s 8ﬁmﬁm+25~ V ¢T(”ri+1)
B1.m T Big1,7vi43 Vi+12Yit2 ——\/a-—
s(Yi+1)

aai-1.ﬂi—1 tm+1,0m 1 5 25~ W~ vV ¢s(m+1)
ay,01 ;2,011 ¢S(ai)¢r(a,—) Qig1,Yi42 Yit1.Yiv2 VY (@i Bivit1) ¢r(/3,-)

Yit1
aa:-l.ﬁi—x m+1,0m 1

1,61 ai+2,ﬁi+1mW(a;‘gi.a;‘;l) = (My®)ap-
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The identities (b), (¢) and (d) follow similarly. For (e):

(Mus-0My0)ap = Y (Myo-n) g, (My»), 5

5

— Z 801 2)Yi- zaamy')'m+2 57 . V ¢T('Yi—l)
1,71 Qi—1,Yi+1  Ti—-17i \/¢3—
(vi-1)
Yi-1.8i-1 QYm+2,8m+3 1
.01 8%+1,ﬁ1+2 ¢8(7V)¢r(7v) W(’?i'ﬂrﬁiu)
8ai—2,ﬂi—2aam,ﬂm+3 V ¢7‘(ﬁi—1) 1

e W s~ 5.5
a1,fy ai—1,0i+2 \/¢S(Bi-1) \/¢8(ﬁi—1)¢r(ﬁi-1) (Bi—1-B:i-Bit1)

and

(Mu(i—l)My(i—l))a”@ = Z (]\/[U(i——l))a,_y (]V[Y(i))%ﬁ
¥

E Hri-2:%i-2 §am Ym+2 § V- ¢’(7"~1)
1,71 Qa;—1,Yi+1 ‘Y: 1,7 ¢
v V 3(71—1)
Yi-2,0:-2 9 Ym+2:0m+3 1

-0 i Wi 8218
1,01 Y, Bit1 ¢s('yi_l)¢r(‘y,-_l) (v 1-8i)

a;_2,0; 2 am,Bm+3 1
ey 1 ai-1.8i+2 Wit s = Mus-nMye)g

s( H—l)

i

The corresponding identities for outgoing trivalent vertices hold in the same way. Then
the identity in Figure 6.40 follows from the cup-cap simplifications and identities (a)-(e)
for incoming and outgoing trivalent vertices.

-1 Qi+l 2 -l 0 12

[T = -1

Figure 6.40: An isotopy involving an incoming and outgoing trivalent vertex

Kuperberg relations. Before checking isotopies that involve rectangles, we will show that

the Kuperberg relations K1-K3 are satisfied. For K1, a closed loop gives

¢7‘ i
(Moo Mooy = D2 Mooy (M) =g D0 22
v R 7E S$(7a

s(v;)=r(e; 1)
¢T('Yi
= ,ﬁZA (r(aizn), r(m)) —2
¢T Ot, 1)

(6.28)
= 8a,8(3];

196



by the Perron-Frobenius cigenvalue equation Az = [3]z, @ = (¢,)», where A is Ag or
A% depending on whether the loop has anticlockwise, clockwise orientation respectively.

Next consider K2. For the first diagram in Figure 6.41 we have

(MyoMzo) 5= D (Mye))ay (Myor) s,

v

- E aai—lv'Yi—laama'Ym-f—l 1
Y

a1, Qig1,Yig2 ? é W@?%'%ﬂ)
V Ps(a;)Pr(a;)
aﬂi—lm—lf myYm+1 1

Br.m Bit1,Vit2 /¢s([3 )¢r(ﬁ») W(Ei"Yi"Yi+!)
Nai—1,0i-1 q0m,.Om 1 _ _
dﬁl,ﬁl ait1,0i+1 Z ¢ \Pra W(O""'Yi"YiH) W(.Bi"Yi"Vi+1)
Vi Yit+1 s(ai)¥r(es)

Hxi-1 Bi-1 Hom Bm 5 [2] (629)

ay,61 aiy1,Bi41 Y isBi

= 5a,ﬂ [2] )

where (6.29) follows from Ocneanu’s type I formula (4.1).

1 i-1 i i+t m

Figure 6.41: Tangles for checking K2 and K3

Finally, for K3 we have the second diagram in Figure 6.41, which gives

(MY(,') MI(i«l)Mv(i)MA(iq))aﬁ = Z (My(i))a’,y (My(i—n)(,,Y(MA(i))n,( (MA(i—l))n’ﬂ

v.$m
) , 1
= DGt — e Wigini)
v ¢s(ai)¢r(a,‘)
1

‘8(1—2,%‘—28C.m,jm+1 W—~__
am CivYit1 ¢3(C,‘_1)¢T((|‘-1) (Ci—1¥i-1%)

'6771'-1‘(1’—1 TIm+1,6m 1

7.$1 Ti42:i+1 ¢S(C )¢T(<‘) W((rn??rﬁ)

_am‘—zﬂi—z Gitm+1 Mm 1

W 7.~
, i+ 1,0 (rriin)
7,01 41,/ ¢s(giﬁl)¢r(/3i71) 1 1
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aai—zﬁi—z aam,ﬂm 1

ay,p1 ai+1,8i+1 ¢3(ai—1)¢7‘(ai) ¢r(a,-_1)¢r(l3i-1)
1

§ : 5(.'.’7i+15(.’—1.7h‘~1 P 4 (5?‘7,”'7141)” (Gis1-0i1-1i) W (¢i-Bi-mi) W Bi—1+MMis1)
— T(7i-1)
12 Yi4 1841
CimMi—1:75

— 805—2.5.'—2aam,3m 1

1,01 @i +1,8i41 ¢S(Gi _ 1)¢r(a¢) ¢r(a.-_ 1)¢7‘(6:— 1)

1
' Z P) W& e)Wiaior 616 W(@-§4-52)W(ﬁi—1~€4-€3)
IR

801—2 .Bz—Zaa‘m vﬁ"‘.
1,01 i+ 1,041 ¢s(a.‘—l)¢"(a*) ¢r(a,~,1)¢7‘(ﬁz—l)

: (50&—1 Bi-1 6ae,ﬁi¢5(a¢-1)¢r(cx,~~1)¢s(a',)

+ 5a,»_1,615[,vi_17§i ¢r(ﬁ¢_1)¢s(ai_1)¢r(a':l))

-5 ¢S(57i) + ao,-z.ﬂi—zaam.ﬂm N V¢T(ﬂ“’)¢r(a“’l) (6.30)

a‘a(br(ai) a1,61 ciy1,Bi1%0i-1,0:98, 1 8; ¢r(a,~)
= la,ﬁ + a(ei)a,ﬁ»

where (6.30) follows from Ocneanu’s formula for Type II frames (4.2). This is the reason
why the weights W were used in the definitions of My, My, M, and Mx.

Property (ii) and the connection.

We will next show property (i¢) in the statement of the theorem:

(MI(:‘—':)MY(:'—':))aﬁ = Z (MyG-9)y.0 (Myo-0)., 4
v

— § :8:77{—‘:1—1'(11—“—1a7i+j—l,ai+j 1

Vi-k+ 1005 - k42 \/(p—d)—w(‘raéfk'%—rk'arkﬂ)
,Y (75— &) Pr(vi-k)

YVi—k-1:85—k-1 Yi+ji—1.0i+j 1 —
.61 Vi-k+1:85-k+2 NNy k)W(w—k'ﬁ:’—k'ﬁj—kH)
- i

) . B 1
_ aa_»,—k—lyﬁ]—k—laa,.+1,.3:+1. W(XB-_ B )W(xa-_ o ren)
a1,f1 °‘J—k+2v6;—k+2; ¢s()\)¢r(z\) j—kBj-k+1 3=k O —k+1

_ aaj—k~1)ﬁj—k—laaa+j‘ﬁi+j QG kO k1 _ (U )
a1,01 k4285 kv2 Bi—k:Bi—k+1 —kla,p "

Since U_y is given by the tangle W_j, we see that the partial braiding defined in (6.2)
I
gives the connection, where (6.13) is given by X and (6.14) is given by 2. For the latter

connection, which involves the reverse graph g” , if

—

Q, — o

o «— 8

l



is a connection on the graph G, then

c — d d

N
! 1=/\a\b=
a b

—

¢¢a—>b
= , [ Lald
Ve b

c — d

So we have that Z(T) is invariant under all isotopies that only involve strings (and
the partial braiding). This shows that the operators U_;, do not change their form under

the change of basis using the connection, since

7)- %

Note that we have not used the fact that the connection is flat yet, so the operators U_g

do not change their form under the change of basis for any of the SU(3) ADE graphs.

Case (8)- Isotopies that involve rectangles.

We need to check invariance as in Figure 6.42.

O I R e L
e P - VR

e ol ||T L

o [ITEHEE = FVERE

Figure 6.42: Isotopies involving rectangles

For (a’), pulling a cup down to the right of a rectangle b is trivial since M, commutes
with M, (since b, U are localized on separate parts of the Bratteli diagram). Now consider
(b'). By definition of Z(b) for a horizontal strip b containing a rectangle labelled z, we
have for the left hand side
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where the second equality follows since Z is invariant under all isotopies that only involve

strings and the partial braiding. Similarly, for the right hand side we obtain

and the result follows from (a’). The situations for (¢), (d') are similar to (a’), (). We also
have the isotopy in Figure 6.43. Let 2 = (a1, x2) € P, ;,, y = (61,02) € P, j, such that
|ay| = ko = i1+71, |Bi] = ka = i2+J2, | = 1,2. The case for general elements x € P, ;,,y €
P, j, follows by linearity. We have Z(s1) = E,,,-,a; Pag,ag(#l'all A3 [ s, fh1 - Oy 43 fha fhs)
and Z(s2) = Z%ﬁ; Qg p,(v1 - va -3 B Vs, v w3 - By vs), where |u;| = |vi| = ki,
i =1,...,5, || = kg, |B}] = ks, 5 = 1,2, and pu, 98,8, € C are given by the

connection. Then

Z(51)Z(s2)

/ ’
= E :pa’l,a'gqﬂ’l,ﬁ’g 5#1,11150’2,'/25#3,”36#4,!356#5,'/5 (#1 O 13t gt s, V1 Ve V3 By V5)
Hivy

A
ag8;

= Z P 0,98, .6 (p1-0q - pg- By - s, pa - a’z "H3 - ﬁé “ps) = Z(s1)Z(s2).

i 0,

Case (4)- Rotational invariance.

The other isotopy that needs to be checked is the rotation of internal rectangles by

2m. We illustrate the case where rectangle b has k, = 2 vertices along its top and bottom
edges in Figure 6.44.

|‘ o U |

Eaadiaadi v Nt e el
k. k koo ks

ks

k,

Nm—

Figure 6.43: An isotopy involving two rectangles
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p(x) x

Figure 6.44: Rotation of internal rectangles by 27

Let z be the label of the rectangle b, where z is the element (v, V') given by the pair of
paths v, I/ on the graphs G and G according to the orientations of the vertices along the
top and bottom of the rectangle b. We add 4k, vertical strings to the right of the rectangle
b such that the first 2k, have orientations corresponding to the first 2k, strings in the strip
containing the rectangle b in p(z), and the next 2k, have orientations corresponding to
the last 2k, strings in the strip. Then we have r — 1/ = Z“IM (V- ey - o, V' - 1y - f12), where
the sum is over all paths pu;, po of length 2k, on the graphs G and G according to the
orientations of the vertical strings described above. Using the connection, we can write
Ad(u) (') = 32, 1 2occr Qe (k- € - pigy pr - ¢ - p2) =Y, where u is the unitary given by
the connections which change the basis of the paths which index 2’ so that it is indexed
by paths on G and G according to the orientations of the strings in the strip containing
the rectangle b in p(z), the second sum is over all paths ¢, ¢’ which have the same form
as v, V', and the numbers a¢ » € C are given by the connections. Then Y = Z (') where
V' is the strip in p(z) which contains the rectangle b.

For a horizontal strip s; and strip s, immediately above it, an entry in the operator
Z(s') = Z(s1)Z(s2) is only defined when the path corresponding to the bottom edge of
the strip s, is equal to the path given by the top edge of s;. So for example, for the two
strips s;, s, in Figure 6.45, even though there are non-zero entries in Z(s;) for any path
a=a; - ay---, the entries in Z(s') will be zero unless edge «; is the reverse edge @;;; of

a;41 since the entries in Z(sp) are only non-zero for the paths v = ;- 7, - such that
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S M
Yo Vi Y

5= ol l ...... 1 ............
e 1 al « 1

Figure 6.45: Horizontal strips s, s

Yi = Yit1-

Let € = €;---€sk,, € = €] €5, be two paths which label the indices for Y. For
simplicity we consider the case k, = 2 as in Figure (6.44). By considering the hor-
izontal strip containing the rectangle, we see that Y., = 0 unless ¢; = ¢ for ¢ =
1,2,3,4,7,8,9,10. We see that in p(z), e; is the same string as eg and €}, but that eg
has the opposite orientation to £, and €. We define the operator Y by )75,5/ = 0 un-
less €; = €3 = €5, €2 = €7 = €5 €3 = £ = £19 and g4 =s~5=§§,,and?€,€; =
Y. otherwise. Then p(x) = M w,+1) M w2 - - Mok Y Mo,y Ma@r,-1 - Maa) =
M oey+1) M xy+2) - --Mu(sk,,)?Mn(zkb)Mn(zkbq) -+ Mnm. For any € and ¢’ such that )75,51
is non-zero, the caps contribute a scalar factor \/ér(,) /\/¢3(51) = \/qbs(sg) /\/¢s(5/5) =1,
and similarly we have a scalar factor of 1 from the cups. Now ¢; is an edge on G (or

G) with s(e;) = %, and hence p(z) is only non-zero for paths €5 - €6 and €j - €5 such that
s(es) = s(eg) = *. By the flatness of the connection on G, the paths ¢, ¢’ starting from *
in Ad(u)(z') are v, V'~ the paths which indexed the original element z. Then the resulting
operator given by p(z) will have all entries 0 except for that for the pair v, v'. Then
plz) = (v,V) ==z

Then Z(T) is invariant under all isotopies of the tangle T.

Properties (i)-(v).

For (i), we have i + j vertices along the top and bottom:

(M Myasn ) g = Z (My)y o (Muasn )y 5

"
— a7l+j~laal+j la'y,'+j,ai+j+26 o \% qé"‘(al+]’)
7, VidjCltj+2 - A+ X4j+1 \/é——

~ s(aryj)

'a7l+j-—1aﬁl+j—la’7i+jyﬂi+j+26~ ¢T(ﬁt+1‘)

71,81 Yi4iBi+j+2  BieiBiei+t ¢8(ﬁc )
+Jj
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_ aal+j—1:ﬁl+j—l aai+j+2,ﬂi+j+26 V ¢7‘(al+j)¢7‘(5¢+j)

1,01 042, B4 42 X454 5,B¢+jﬁl+j+1 ¢s(a )
l+j

= « (e,)aﬁ .

Now consider property (iii). We start with the first equation. For any z € P},
Enom,_, (z) = Z(ELi:gERf;éERf:fn~ER::,’§_1(1:)), and so FEarnp,_, is the conditional
expectation onto Pi(‘(l)’o). We now show that Pi(,(l,'o) = M'NM;_,. Embedding the subalgebra
P,-%’O) of P, in P, o, we see that it lives on the last # — 1 strings, with the rest all vertical
through strings. Then Pi(},‘o) clearly commutes with M, since the embedding of M = P, o,
in P, o, has the last i —1 strings all vertical through strings, so we have M'NM;_, D P,-(,(l)’o).

For the opposite inclusion, we extend the double sequence (B, ;) to the left to get

Boo C Boy C Bpa C --- — By
N N n N N
Bi.1 C Bip C By C Byp C -+ — B
n N N N N
By 1 C Byo C By C By C - — By
M N N N N

Note that B; 1 = Bpg = C. Since the connection is flat, by Ocneanu’s compactness
argument we have B , N Bjo = B;_1. Let z = (a;,a2) be an element of B; ;. We
embed x in B; o by adding trivial horizontal tails of length one, and using the connection
we can write z as ' = ) pg, 5, (101, - B2), where pg, 5, € C. We see that 2’ € Big = Pio
is summed over all trivial edges u of length 1 starting at *, and hence is given by Z(T') for
some T € P; o which has a vertical through string from the first vertex along the top to
the first vertex along the bottom, i.e x € Pi(,é’o). SoM'NM;,_ ;=B;_; C P’if(l)’o). Similarly
we find that M, N M;_; = P&, for —1 < k < i, where M_, = N, My = M.

For the second equation of (iit), if £ € P, o thenz — Z (E:_"foo(a:)) is the conditional
expectation onto P;_; o = M,_3, and the result for x € P, ; follows by Lemma 6.3.2.

Property (iv) is clear. Finally, for (v) let z be a matrix unit («,8) € B;;, where
i+ j=k. Then

B 2(@) = 814600 2262 = 8] ¥0ri = tr((@, 0),

since ¢, = 1, where 7 is the tangle defined by joining the last vertex along the top of
T to the last vertex along the bottom by a string which passes round the tangle on the

right hand side, and joining the other vertices along the top to those on the bottom
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similarly. For b, = (o, ) € B;; such that i +j = k, | = 1,2, we have tr(bjby) =
bar,atT((B1, 82)) = [3]0a1,02081,8:Pr(a1) = [3] %0ty 40r(ar)- Then the trace is positive
definite since the matrix units b, are mutually orthogonal elements of positive length.

The A,-planar algebra is clearly flat, since by the definition of Z(b) for a horizontal
strip b containing a disc with label z with n vertical strings to the left of the disc, if Y is
the operator defined by the horizontal strip containing the disc with label x and n vertical
strings to the right of the disc which have the same orientations as those in the strip b to
the left of the disc, then Z(b) = Ad(u)Y, where the unitary u is given by the connection,
which is just the definition of flatness.

To see the x-structure, note that under %, the order of the strips is reversed so that
(Z(s1)Z(s2) - Z(s1))* = Z(01)*Z(s1-1)* - - Z(s1)*. For Myw, /Pr(8;)/\/Ps(5;) does not
change under reflection of the tangle and reversing the orientation, so that (M )* is the
conjugate transpose of M\ as required, and similarly for M. Since the involution
of the strip Y® containing an incoming trivalent vertex is I(i), whilst the involution of
the strip A® containing an incoming trivalent vertex is Y, so by (6.24), (Mgw)” is
the conjugate transpose of M, and by (6.25), (M)* is the conjugate transpose of
M, as required. To show that P is an A,-C*-planar algebra we need to show that P is
non-degenerate, which is immediate from property (v) in the statement of the theorem,
Proposition 6.2.13 and the fact that tr is positive definite. O

Definition 6.3.5 We will say that an A,-planar algebra P is an As-planar algebra for
the subfactor N C M if Pooo = N, Pioo = M, Ppoo = Mp_1, the sequence Py C P1p C
Pyo C - - is the tower of relative commutants, and if conditions (i)-(v) of Theorem 6.5.4

are satisfied.

We now give the subfactor interpretation of duality:

Corollary 6.3.6 If PN°M = P(II)CM is the Ay-planar algebra for an SU(3)-ADE subfac-
tor N C M then, with the notation of Section 6.2.10, P is an Ay-(—)-planar algebra for
the subfactor M C My, which satisfies conditions (i), (i), (iv) and (v) of Theorem 6.3.4,

and where condition (iii) becomes (vii)':

(iii)’

= ———

I = ajﬂ EM(“Mf-l(x) ’ 4 | x' ﬂ T EMi.l(x) 4

fori,j > 0.
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Proof

Let G be the SU(3) ADE graph for the subfactor N C M, x its distinguished vertex,
and *p the (unique) vertex given by r(¢) where ( is the edge such that s({) = . The
(=)-planar algebra P is the path algebra on the double sequence (B ;) where Boy is
identified with *s, the Bratteli diagrams for inclusions B;; C B; ;4 are given by the
graph G, and the inclusions B;; C By are given by its j — 1, j-part G;—75, where
p€{0,1,2},p=pmod3 forp=j5—-1,5. Forz = Z%n Az (11,72)s Apre € C,
the isomorphism A : P;; — Pfﬂ i 1s given by sending (71,72) to (¢ - 71,¢{ ) and using
the connection to transform the paths ¢ - +; to the basis for paths which index P,
which can be represented graphically as adding a string to the left of the disc containing

z and conjugating by the connection. With I; the (—)i, j-identity tangle and = € Pi;,

NN

we have Z(I7;(x)) = o 'A"Y(Z(I;;(A(z)))). In I;;(A(z)) the added string forms a closed
loop, which can be removed to contribute a factor a, giving Z ([Z_]/(-;(/SL‘))) = A(z). Then
?(I:J(r)) =A"!\(z) =z

Property (i) follows from Z(f;) = Z(fit1) = aeiy1, whilst (i) is unchanged. Condi-
tions (iv) and (v) are obvious, as is the second equality of (ii7)’. For the first equality of

condition (7i7)’ we have

=" By, (%),

O
For the subalgebra @ introduced in §6.2, we give an alternative proof of Jones’s theo-
rem that extremal subfactors give planar algebras [64, Theorem 4.2.1] in the finite depth

case.

Corollary 6.3.7 Let N C M be a finite depth type II, subfactor. For each k let
Qr = N'N M. Then Q = |J,Qx has a spherical (A,-)C*-planar algebra structure
(in the sense of Jones), with labelling set Q, for which Z(Ix(z)) = z, where Iy(x) is the
tangle Iy, with x € Qx as the insertion in its inner disc, and

() Z(f) = ce, 1>1,

Tk

= §E (), Z () = 5E, (x),
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@z - 2(2).

k+1

k

) 5z ( ) =tr(x),

for x € Qk, k > 0. In condition (iii), the x on the right hand side is considered as
an element of Qx+1. Moreover, any other spherical planar algebra structure Z' with
Z'(Ix(z)) = z and (), (i7), (tv) for Z' is equal to Z.

Proof

We define Z in the same way as above, by converting all the discs of a tangle T to
horizontal rectangles and isotoping the tangle so that in each horizontal strip there is
either a labelled rectangle, a cup or a cap. Then we define M,y and Mni) as in (6.20),
(6.21). For strip b, containing a rectangle with label z;, we define M, as in Theorem
6.3.4, using the connection on the principal graph G and its reverse graph G. The cup-
cap simplification of Figure 6.38 follows from (6.26) and (6.27). The invariance of Z
under isotopies involving rectangles as in Figures 6.42, 6.44 follows as in the proof of
Theorem 6.3.4. That closed loops give a scalar factor of § follows from (6.28), where the
Perron-Frobenius eigenvalue now is 4.

Properties (i)-(iv) are proved in the same way as properties (), (4), (iv), (v) of

Theorem 6.3.4, and uniqueness is proved as in [64]. O

6.3.2 Representation of Path Algebras as ST L Algebras

We now show that each B;; for the double sequence (B; ;) defined above for G = A™
also has a representation as S7 L;;, where ST L; (D) is the quotient of STL;; by the
subspace of zero-length vectors, as in Section 6.2. Now B ; = ST L,; by Lemma 6.1.12.
Let ¢ : By; — ST L, ; be the isomorphism given by Y(U_x) = W_4, k=0,...,5 —1. We
define maps g; for i > 2 by g2 = ¢, 03 = WY, P4 = WP, P05 = WPWP, .. ..

Let =3, Ayy(7,7), Ay € C, be an element of B; ;. Then Z(¢; ' (z)) € Bi,itj-1.
We set 2w € ST Ly;j-1 to be the element ¥(Z(¢;'(z))), and since Z(W_x) = U_
we have Z(zw) = Z(o7'(z)). For any = € B;j, oi(zw) € STL;; and Z(pi(zw)) =
Z(oi(Z(zw))) = Z(ei(Z(e;}(x)))) = Z(@ioi ' (2)) = Z(Li5(z)) = z. In fact, oi(zw) €
STLy, since if (i(aw), ai(zw)) = 0, then (z,2) = (67(2), &7 () = (ow.aw) =
(oi(zw), 0;(xw)) = 0 by Lemma 6.2.18, so that g;(xw) is a zero-length vector only if
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Figure 6.46: Element f1(3)
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z is. Then for every z € B;; there exists a unique y = g;(zw) € STL;; such that
Z(y) = z, so that Z is onto. Since, by Lemma 6.2.17 dim(ST L; ;) = dim(ST L1,i4j-1) =
dim(B!*~1) = dim(B*9), Z is a bijection. By its definition, Z is a homomorphism since
it is linear and preserves multiplication. Then Z : STL; ; — B, ; is an isomorphism, and

we have shown the following:

Lemma 6.3.8 In the double sequence (B;;) defined above for G = A™, each B;; is
isomorphic to STL,; ;

In particular, there is a representation of the path algebra for the 01-part A of A®
given by vectors of non-zero length, which linear combinations of tangles generated by
Kuperberg’s A, spiders, where A(Agl’))k is the space of all such tangles on a rectangle with
k vertices along the top and bottom, with the orientations of the vertices alternating.

Since ST L5 = alg(11,2, W_1, Wy), we have o(W_;) = ¢**W_; and (W) = ¢°/31,,—
q '3 f, so that ST Ly = alg(15,, Wp, f1). The action of w on ST L, is given by w(f1) =
fi, w(Wo) = £ — qa®fifa — g 02 fofy and w(fy — qWofi — ¢~ fiWo + Wo i) = fo,
where fl(s) is the tangle illustrated in Figure 6.46. We see that S7 L3, is generated by
1, f1, fo and fl(s). This new element fl(3) cannot be written as a linear combination of
products of 1, f; and f,. The following hold for fl(s) (they can be easily checked by

drawing pictures):
0) (/%) =610 + alfy+ ) + @2 fa + o),
@) AfP =on+8afifss LI =6f+daf2fi,
Gii) fif®f =6%1f, i=1,2,
) [OLID =B+ f) + Palfifo+ hafy), i=12

Define ¢\® = Z(fl(s)). Then A(Af{;))g = alg(1, ey, e, g§3)).
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For n > 6, with the rows and columns indexed by the paths of length 3 on Aéﬁ) which

start at vertex (0,0), g§3) can be written explicitly as the matrix

2P°/13]  V[2]*[4)/13] 0 O
o | VEFE/E /e o o
7 0 0 2] 0
0 0 0 0
For n =5, g§3) = al —e; — ey + aejes + aezen, so is a linear combination of 1,e; and e,.

This is not a surprise since A% is just the Dynkin diagram Aq, and we know that A(Ay)s
is generated by 1, e; and e;. Note also that in this case we have a = § = sin(27i/5).

It appears that STL;; = alg(l,-,j,I/V,,fl,f,(,f)|k =0,...,j—~Ll=1,...,i—-1;p =
3,...,i;m=1,...,i—p+1), where fr(,f) is the tangle illustrated in Figure 6.47 (with m
odd).

J+1 0 1 2 m-1 m m+p-1 i

e Lo LT ]
" r'+<+

Figure 6.47: Element f,(,f’)

6.4 Planar Modules and A,-ATL

We now return to the abstract setting, where our A,-planar algebras are not necessarily
flat, and extend Jones’s notion of planar algebra modules and the annular Temperley

algebra to our As-planar algebras (cf. Section 2 of [63]).

Definition 6.4.1 (cf. [63, Def. 2.1]) An Az-annular tangle T will be a tangle in
P with the choice of a distinguished internal disc, which we will call the inner disc. T
will be called an As-annular (my,my : ki, k2)-tangle if it is an Az-annular tangle with
pattern my, mq on its outer disc and pattern kq, ke on its inner disc. If m;y = my =0 or
ky = ko = 0, we replace the 0,0 with a, a € {0,1,2}, corresponding to the colour of the
region which meets the outer or inner disc respectively. When m; = k1 and mq = ky we

will call T an As-annular m,, ma-tangle.

Note, this annular tangle is different to the one defined in Section 6.2.5- here more

than one internal disc is allowed, but one of those is chosen to be the distinguished disc.
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Definition 6.4.2 (cf. [63, Def. 2.2]) If P is an A,-planar algebra, a module over P, or
P-module, will be a graded vector space V = (V;;,1,5 > 0,4,5 # 0,0, VOE,O) with an action
of P. Given an Az-annular (i,j : ¢',j')-tangle T in P with distinguished (“V input”)
internal disc D with pattern o', j' and other (“P input”) internal discs D,, p=2,...,n,
) = Vij. Z(T) satisfies

the same compatability condition (6.10) for the gluing of tangles as P itself.

with patterns iy, jp, there is a linear map Z(T) : Vi ;@ (®;‘=2Pi

pyjP

An A,-planar algebra is always a module over itself- we will call it the trivial module.
Any relation (i.e. linear combination of labelled A,-planar tangles) that holds in P will
hold in V| e.g. K1-K3 hold in V where a, § have the same values as in P.

A module over an As-planar algebra P can be understood as a module over the A,-
annular algebra A;-AP, defined as follows. We define the associated annular category
Ay-AnnP to have three objects @ for i = j = 0, a € {0,1,2}, and one object for each
t,J = 0 with 7, 7 not both equal to zero, and whose morphisms are Aj-annular labelled
tangles with labelling set all of P. Let As-F AP be the linearization of Ay-AnnP- it has the
same objects, but the set of morphisms from object 7, j to object 7', ' is the vector space
having as basis the morphisms in A;-AnnP from i, j to ¢, j'. Composition of morphisms
is A-F AP is by linear extension of composition in Ay-AnnP. The As-annular algebra
Ax-AP = {A-AP(i,j : 7, 5')} is the quotient of A;-F AP by all As-planar relations.

Definition 6.4.3 (cf. [63, Def. 2.6]) We define Ay-AP,; to be the algebra A;-AP(i,j :
i,J) for i,5 > 0 with i and j not both zero, and Ay-AP;, a € {0,1,2}, to be the algebras
spanned by As-annular tangles with no vertices on the outer and inner boundaries, and

with the regions which meet the boundaries coloured a.

Let us apply this procedure to the SU(3)-Temperley-Lieb algebra ST L defined in
Section 6.1.3, for fixed 6 € C. The labels for the internal discs are now just As-annular
tangles. For my, my,ny,ny > 0 let Ay-AnnT L(my, my : ny,ns) be the set of all basis A,-
annular (my, my : ny, ng)-tangles. Elements of As-AnnT L(m;, ms : 1y, n2) define elements
of A3-AT L(my, ms : ny,ny) by passing to the quotient of Ay-FATL by relations K1-K3.
The objects of Ay-ATL are 0, 1 and 2 for m; = my = 0. When m; and m, are not both
equal to zero, the objects are the sets of 2(m; + m,) points with pattern m;,my. As-
AT Ly, m,(0) has as basis the set of Ap-annular m,, mo-tangles with no contractible circles,
or embedded circles or squares. However, non-contractible circles are allowed, which make
each algebra Ay-AT L., m, infinite dimensional. Multiplication in Ay-AT Ly, m,(d) is by

composition of tangles, then reducing the resulting tangle using relations K1-K3.
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Figure 6.48: A basis Az-annular (2,0 : 2, 0)-tangle containing hexagons, and the possibility

of an infinite number of hexagons

For all m;, my > 0 such that m; +mg > 2, the algebras Ay-AT L,,, m, are also infinite
dimensional due to the possibility of an infinite number of embedded hexagons in basis
tangles in the annular picture, as illustrated in Figure 6.48.

We have a notion of the rank of a tangle. A minimal cut loop v in an annular
(3,7 : 7,7'")-tangle T will be a clockwise closed path which encloses the distinguished
internal disc and crosses the least number of strings. We associate a weight w., = (¢, t2)
to a minimal cut loop 7, where ¢, is the number of strings of T" that cross v with orientation
from left to right, and ¢, the number of strings that have orientation from right to left, as
we move along 7y in a complete clockwise loop. For a weight (t1, t2), let tmax = max{t;, t2}
and {;;, = min{ty, t2}. We will say (¢}, t5) is less than (t1,12), and write (], t5) < (t1,12),
if ¢ +t) < ty+ty, and if )+, = t; +1, then (&, 8)) < (t1,82) if 2t 00 +t0in < 2tmaz +tmin-
The rank of T is then given by w, = (t1,t2) such that (¢;,t2) < wy for all minimal cut
loops «'.

Let Ay-AnnT L(my, ma : my, my), t,) denote the set of tangles in Ay-AnnT L(m,, my :
my, my) with rank (¢;,¢3). Since the rank cannot increase under composition of tangles,
the linear span of Az-AnnT L(my,my : My, Ma)(, e, for all (¢1,t2) < (8),15) for any fixed

t1,t, is an ideal in Ag-AT Ly, m,.

Lemma 6.4.4 (cf. [68, Lemma 2.10]) Let P be an A,-planar algebra and let ty, ty satisfy
2tmaz + tyin = 3m. For any ty,t; such that 2tmqz + 1t .. < 3m, denote by Ag-APt(lt:’t‘:z)
the linear span in the algebra Ay-AP,, 1, of all labelled Ay-annular ty,ty-tangles with rank

(s1,82) < (t},t5). Then A2-AP((::1,};,2)) is a two-sided ideal.

Remark For A;-ATL the quotient of Ay-AT L, ,, by the ideal Ag-APt(f:l,‘:lz) is not in
general finite dimensional, for 2¢{nax + t/min < 2tmax + tyjp- For example, consider the
quotient of Ap-AT'Ly, 4, by Ap-APCE? (or Ay-APCEP), for 3 < 3k < 2tmax + tpiy- The
elements ¢ (3x,0) and (o,3x) (see Figure 6.49) have ranks (3%, 0) and (0, 3k) respectively, and
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can be composed an infinite number of times without being able to reduce the resulting

tangle.

3 3

Yo Vo
Porny = u ”‘@ Posn = u ’ﬁ‘e

Figure 6.49: ¢(k,0) and ¢ 3k)

Lemma 6.4.5 (cf. [63, Lemma 2.11]) Let V = (V;;) be a P-module. Then V is inde-

composable if and only if V, ; is an indecomposable A3-AP; j-module for eachi,j > 0.

Proof
Suppose V;; = @, Vl(f) as an Ay-AP-module, for a collection of proper submodules
Vif;), l = 1,...,m for some integer m. Then applying A>-AP to @, Vif;-c) we obtain

A-AP(P, Vl,(';),) =P, A2-AP(V,§$),) as P-modules, so V' is decomposable. Otherwise, if
A AP § i V) @ VD) # A APW, T 14 5) (Vi) @ A-AP(, 5 14, 5) (Vi)

i
as an Ay-AP; j-module for some ky,ky; € 1,...,m, k1 # k3, and some 7', j', then for
v € Vif,’;‘,), [ = 1,2, and some (7,7 : 1,j)-tangle T there exists an annular i, j'-tangle
S such that STv, = Twv,. Then applying any (7,5 : ¢,j’)-tangle 7" to Tv; and T,
we find that 7Ty, € Viff;-‘,), l = 1,2, since T'T € A;-AP;; and Vif)’;’,) is an Ay-AP, ;-
module. Now 7"ST is also an element of A,-AP; ;, so we obtain T'STv, € vif,’;l,) . But,

T'STv, = T'Tv; € V¥, which contradicts V;; = @, Vi;’ as an A;-AP-module. O
Definition 6.4.6 (cf. [68, Def. 2.12]) The weight wt(V) of a P-module V is the

smallest integer i + j for which V;; is non-zero. If Vg is non-zero for a € {0,1,2} we
say V has weight zero. Elements of Vi j for i + j' = wt(V) will be called lowest weight

vectors in V, and Vi j is an As-APy j-module which we call a lowest weight module.

Note that for i + j' = wt(V), all Viyg jr—k, —i' < k < j', are lowest weight modules
for V.

Definition 6.4.7 (cf [63, Def. 2.13]) The Hilbert series (called the dimension in [63])

of a P-module V is the formal power series
oo

1 | o
Dy (21,29) = gdim(Vﬁ eoVie V) + Z dim(V; ;)21 2.

i,7=0
1,7 not both =0
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Again, as with SU(2), the Hilbert series is additive under the direct sum of two P-

modules.

6.4.1 Hilbert P-modules

If P is a C*-As-planar algebra, the *-algebra structure on P induces a *-structure on A,-
AP, where the involution * is defined by reflecting an Aj-annular (mj, ms : ki, k2)-tangle
T about a circle halfway between the inner and outer disc, and reversing the orientation.
T* will be an Ajs-annular (k;, ks : m;, my)-tangle. If P is a C*-A,-planar algebra this
defines an antilinear involution * on A,-F AP by taking the x of the underlying unlabelled
tangle for a labelled tangle T, replacing the labels of T by their *’s, and extending by
antilinearity. Since P is an Aj-planar *-algebra, all the As-planar relations are preserved
under * on A,-F AP, so * passes to an antilinear involution on the algebra SU(3)-AP. In

particular, all the A;-AP; ; are *-algebras.

Definition 6.4.8 (cf. [63, Def. 3.1]) Let P be a C*-Aq-planar algebra. A P-module H
will be called a Hilbert P-module if each H; ; is a finite dimensional Hilbert space with
inner-product (-, -) satisfying

(av, w) = (v,a*w), (6.31)

for allv,w,€ H and a € Ay-AP.

As in the SU(2) situation, a P-submodule of a Hilbert P-module is a Hilbert P-
module. Also, the orthogonal complement of a P-submodule is a P-module, so that

indecomposability and irreducibility are the same for Hilbert P-modules.

Lemma 6.4.9 (cf. [63, Lemma 3.4]) Let P be an A,-C*-planar algebra and H o Hilbert
P-module. If W C H,; is an irreducible Ay-AP; j-submodule of H;; for some 1,3, then
Ay-AP(W) is an irreducible P-submodule of H.

Proof

Suppose v, w are non-zero elements of Ay-AP (W), j» such that As-APy j(v) is orthog-
onal to Ay-APy j/(w). Since v,w € As-AP(¥',j' : i,5)(W), we have v = av', w = bw/, for
some a,b € Ay-AP(i,j' : 1,7) and v',w’ € W. Then a*v = a*av’ and b*w = b*bw’ are
non-zero elements of W, and A,-AP; j(a*v) is orthogonal to A,-AP; ;(b*w), which contra-
dicts W being an irreducible A;-AP; j-module. Then by Lemma 6.4.5, A;-AP(W) is an
irreducible P-submodule of H. O
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Lemma 6.4.10 (c¢f. [68, Lemma 3.5]) Let P be an Ay-C*-planar algebra and H o Hilbert
P-module. Let V and W be orthogonal A,-AP, ; invariant subspaces of H;; for somes,j.
Then Ay-AP(V) is orthogonal to Ay-AP(W).

Proof

For any #,j', let v € V, w € W and a,b € Ay;-AP(7,j' : i,7). Since a*b € Ay-AP, ;
and W is invariant under A,-AP; ;, we have a*bw = w’ € W. Then (av, bw) = (v, a*bw) =
(v,w') = 0. O

As in the proof of Lemma 6.2.17, there is a bijection gi : Vi; = Vi jk, =1 < k < 5.
Then dim(V; ;) = dim(Viyk,;-k), since if v 5% 0 in V;; but gx(v) = 0 in Vjik  —r then
v = g;'ox(v) = 0,'(0) = 0 which is a contradiction. The following Lemma (which is
virtually identical to Lemma 3.7 in [63]) shows that an irreducible Hilbert P-module H is
determined by its lowest weight modules, and in particular H is determined by its lowest

weight module Ho wi(s), since for all other i + j = wt(H), H;; = 0i(Howi(s))-

Lemma 6.4.11 (cf [63, Lemma 8.7]) Let P be an A,-C*-planar algebra and let HY,
H® be Hilbert P-modules with HY irreducible. Suppose there is a non-zero Ay-AP;;
homomorphism 6 : Hi(;-) — Hi(j). Then 0 extends to an injective homomorphism © of

P-modules.

Proof

Since Hi(,lj)., is irreducible for all ¢/, j/, we can write any element v € H{", as a1’ for

)
J
some a € Ay-AP(¢,j' :4,7) and V' € H,-(,;). We set ©(v) = af(v'). Now suppose av’ = b’
for some b € Ay;-AP(¢',j' : 4,7). Then for any v’ € Hi(? and ¢ € Ay-AP(¢,j' : 1,7), we

have

(ab(v'),cw’)y = (c*ab(¥'),w') = (f(cav’),w') = (6(c"W),w’)
= (c'W(V),w') = (bO(V'),cw'’),

since c*a € A,-AP;; and 6 is an Ay-AP, ; homomorphism. Then ©(av') = ©(bv') so that
© is well defined. Now suppose O(v) = O(w) for v,w € Hi(,l’;, for some 7', j'. Let v = av/,
w = bw' for some a,b € A;-AP(¢,j' :4,j) and v, w' € Hi(;). Since ©(v — w) = 0, for
all c € Ay-AP(i,j : 7,j'), we have cO(v — w) = cab(v') — cbf(w') = O(car’ — cbw’) = 0.
Now cav’ — chuw' € Hi(,}) and 6 is a non-zero homomorphism, so we have cav’ = cbw’ for
all c € Ay-AP(i,j :7,5'). Hence v = av’ = bw’ = w. So O is injective. O

We will now determine which Aj-AP,; j-modules can be lowest weight modules.
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Lemma 6.4.12 Let P be an Ay-C*-planar algebra and H a Hilbert P-module of lowest
weight k and rank (t1,t3). With i+ j =k, any element w € H,; can be written, up to a

scalar, as aw for some a € Ay-AP;; with rank(a) = rank(w).

Proof

First form ww* € A,-AP,;;. Then dividing out by the relations K1-K3 we obtain a
linear combination of elements in A;-AP; ;, and we remove those elements that have rank
< (t1,t2). Ignoring the scalar factor we are left with a single element a € A,-AP; ; with
rank(a) = (t;,t,). If we form aw, then dividing out by K1-K3 we obtain aw = lw+)_, lyw;,
where {,[; € C and w; € H;; with rank(w;) < (1, ¢2) for each ¢. Then in H the w; are all

zero, so that ["law = w. a

Lemma 6.4.13 (cf. [683, Lemma 8.8]) Let P be an Ay-C*-planar algebra and H o Hilbert
P-module. For3(i+j—1) < 2tmagz+t,,.. < 3(i+j), let Hi(fjl’t'“’) be the As-AP; ;-submodule
of H;; spanned by the i, j-graded pieces of all P-submodules with rank < (t1,t2). Then

(Hl.(fj"”))‘L = ﬂ ker(a).

a€Az-AP{1?)

Proof

(1) We will first show (Hi(fj"”))l D (N ker(a). Choose any element w € Hi(;"”). Then
by Lemma 6.4.12 and the definition of Hi(fj"tz) , w is a linear combination of elements of the
form aw’, where a € Ay-AP(i,7 : ¢, ') with ¢'+5' < i+j, with rank(a) = (¢],5) < (t1,t2),
and w' is a lowest weight vector. Then for v € H;;, (aw',v) = (w',a*v), and a®* can
be written up to some scalar as t*ta* for some (3,7 : ¢, j')-tangle t. Then ta* has rank
at most (t],t5), so ta* € Ag—AP,.(,;“t’). So if v € ker(ta*) then t*ta*v = 0, and a*v = 0
since a* is just t*ta* up to some scalar. Then (w,v) = 0 since (w’, a*v) = (w’,0), and w
agAp-AP{1D ker(a).
(#i) For the opposite inclusion, (Hi(fj"tz))l C (N ker(a), suppose v_LHi(fj"tz) and a €

AQ-AP,.(,;”‘”) . Then a is a linear combination of elements a; € H,;, with rank(a;) =

is orthogonal to N

(9t < (41, t2) for each i. For any i and any w € Hi(‘tj"tz) we have (a;v, w) = (v, afw).
Now a}w has rank at most (19, () < (4, 13), so alw € Hi(;."tz). Since v is orthogonal
to Hi(_;””), (av,w) = (v,ajw) = 0. Then (av,w) = 0 for any w € Hi(fj"”), and since

av € Hffj””), {(av, av) = 0. This gives av = 0, so v € ker(a). O

Corollary 6.4.14 (cf. [63, Cor. 8.10]) The lowest weight modules of an irreducible P-
module of rank (t,t2) are AQ-AP,',j/Ag-APi(,;"t’)-modules, where 2tmag + tyyy = 3(E+ 7).
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Then for an A;-C*-planar algebra P, we can determine all Hilbert P-modules by
first determining the algebras A,-AF, ; /A2-AP(§f;’t2) and their irreducible modules, for

2tmax + tmip = 3J, and then determining which of these modules extend to P-modules.

6.4.2 Irreducible A,-ST L-modules

We can easily determine certain irreducible A,-ST L-modules. We will describe some
zero-weight modules. However we have not determined all irreducible Ay-ST L-modules,
even for the zero-weight case, since it is not clear that elements of the from a((,?hkz) defined
below must necessarily a contribute scalar factor, as As-AT Lz is not one-dimensional (and

hence not isomorphic to C).

Proposition 6.4.15 (c¢f. [63, Prop. 5.9]) The algebra Ay-ATLgz, a € {0,1,2}, is gen-
erated by the 0-tangles o; ;11 illustrated in Figure 6.50, j € {0,1,2}.

Proof

Given any (a,a)-tangle, removing all contractible circles, and embedded circles and
squares using K1-K3 we obtain a tangle consisting only of non-contractible circles about
the inner disc such that the regions that meet the inner and outer boundaries are coloured

a@. Clearly, such a tangle must be a product of elements 0,11, j € {0,1,2}. O

Figure 6.50: 0; ;41 and 0j;_;

Let H be an irreducible Hilbert A,-ST L-module of lowest weight zero. For i € {0, 1,2}
and integers k; = ko mod 3, let

(®) ) ) )
U(kl,kz) = (Uiui+10i+l,i+2 e 0'1:+k)—1,i+k1)(U‘i+k1,i+k1—lai+k1—],1,+k1—2 Tt az+k1—k2+l,z+kl_k2).

. —k .
If the maps a((,?hkz) just give the complex number Bk 3™ for some fixed 8 € C, i.e.

a((,i)l ka) = Bklﬁkz 1;, then the dimensions of Hz are at most 5, for a € {0,1,2}. To see
this consider an arbitrary element given by a product of elements o;;+1. Whenever the
product 0y;410741, appears, for some [ € {0,1,2}, we get a factor of |6)?. Removing all

such products we will be left with an element which contains only non-contractible circles
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with the same orientation. Any three consecutive such circles contribute a factor of 5% or
—=3
B°. Then up to some scalar, any element will have at most two non-contractible circles,

with each circle having the same orientation.

Proposition 6.4.16 (cf. [63, Theorem 5.12]) An irreducible Hilbert Ay-ST L-module H
of zﬁiight zero in which the maps a((,?l k2)? i € {0,1,2}, are given by the complex number
BB for some fized B € C is determined up to isomorphism by the dimensions of Hg,
a € {0,1,2}, and the number 3, where we require |8| < a.

Proof
The uniqueness of the A,-ST L-module is a consequence of Lemma 6.4.11 since at least

one of Hy, Hy and Hj is non-zero. Let E;, F» be the tangles

E = E, =

so that a™'E;, a~!F, are projections. Then since E,E;E, = |3|2E; we have ||a™1E, -
a B, - a7 El|| = |B2a~?||a" Ey]| so that 1 > |B]?a~2. Hence |8] < a. O

For B = o let V% = STL;; (since when § = o« there is no distinction between
contractible and non-contractible circles). For a > 3 (which corresponds to § > 2), the
inner product is positive definite by Lemma 6.1.12 and Theorem 1.2.1, and Hj; = V% is a
Hilbert A;-ST L-module. For 0 < a < 3, if the inner product is positive semi-definite on
V% we let H; be the quotient of V% by the subspace of vectors of length zero; otherwise
H}; does not exist.

Now consider the case when 0 < |3] < a. We define for cach 4,7 > 0 (with 0, 0 replaced
by @, a € {0,1,2}, as usual), the set Th;; to be the set of all (¢, : 0)-tangles with no
contractible circles and at most two non-contractible circles. Now for each § we form
the graded vector space V#, where Vf; has basis Th; ;, and we equip it with an A;-STL-
module structure as follows. Let T € A,-ATL(7, 5’ : i,j) and R € Ay-ATL;;. We from
the tangle TR and reduce it using K1-K3, so that TR = Zj 8% a%TR;, for some basis
Az-annular (7, j' : 0)-tangles TR;. Let #%, i denote the number of non-contractible circles
in the tangle T'R; which have anti-clockwise, clockwise orientation respectively. We define
integers d;, f; and g; as follows: d; = min(ﬂ;, ﬁ;), fi= 15 — ﬁ; —~ g, if i >t and f; =0
otherwise, and g; = fif — 15 — v, if § < i and g; =0 otherwise, where vy, 7, € {0, 1,2}
such that f;,g; = 0 mod 3. Then we set T(R) = }_, 5bjacfﬂdi+f73dj+gjﬁj, where TR,
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is the tangle T R; with d; + f; anti-clockwise non-contractible circles removed, and d; + g;
clockwise ones removed.

Proposition 6.4.17 The above definition make VP into an Ay-ST L-module of weight
zero in which ngf,kz) = ﬂ"lﬁkz fora=0,1,2.

As with the SU(2) situation, the choice of (i,j : 0)-tangles rather than (i, : 1)-
r (i, : 2)-tangles to define VP was arbitrary. For these other two choices, the maps
T — B Tog, T — B_lTaog respectively would have defined isomorphisms from those

modules to the one defined above.

Definition 6.4.18 (cf. [63, Def. 5.17]) Given S,T € Th; ;, we reduce T*S using K1-K3
so that T*S = 37, 6% a%(T*S); for basis (0 : 0)-tangles (T*S);. Define d;, f; and g; for
each (T*S); as above. We define an inner-product by (S,T) = 3, §b s g+

Invariance of this inner-product follows from the fact that 7*S = (S, T) T, where Tj is
the annular (0 : 0)-tangle with no strings at all. When the above inner-product is positive
semi-definite, we define the Hilbert A,-ST L-module H? of weight zero to be the quotient
of V# by the subspace of vectors of length zero. Otherwise H? does not exist.

Proposition 6.4.19 For the above Hilbert Ay-ST L-module HP of weight zero, the di-
mension of H? is either 0 or 1 for any B € C\ {0}.

Proof
For a = 0 the result is trivial since Vaa is the linear span of the empty tangle Ty given

in Definition 6.4.18. Fora = 1, VTﬁ = span(01g, 01209). Let w = |B|2012090 — B3010. Then

—3
(w,'w) = |ﬁ|4<012020,012020> - Iﬁl’?ﬁ <012020,010) - ﬁ3|ﬂ|2<0107012020> + W|6<010,010)
—3 —3
= 18*(81") — 188" 8 — B*|B1*B" +18I°|8]> = O.
Then 0y = |8]2673012090 = BB 201202 in HZ. Similarly when a = 2, 05,010 = B3 103
d

So we may define H? so that it does not contain any clockwise non-contractible circles,

—_ —2 _
where we replace every o9 by 8672012090 and every 091010 by B 87 1o2.

Proposition 6.4.20 (cf. [63, Cor. 5.8]) The Hilbert As-ST L-module H?, |B| < «, is

irreducible (when it exists).
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Proof

Since Hg is at most one-dimensional it must be irreducible, for each a € {0,1,2}.
The maps 0, ;41 moves a non-zero element in H;ﬁ to an element in Hf?, and hence the
lowest weight module Hg = Hof & HTﬂ ® Hg is irreducible as an As-AT Ly-module. Since
HP® = Ay-ATL(HP), the result follows from Lemma 6.4.9. O

Now we consider the case when 8 = 0. For each 7,5 > 0 (with 0,0 replaced by a,
a € {0,1,2}, as usual), the set Th, is defined to be the set of all (4, j : @)-tangles with no
contractible or non-contractible circles at all. The cardinality of ThZ is d,5. We form the
graded vector space V%2, where Vi?f has basis Thfj. We equip it with an A,-ST L-module
structure of lowest weight zero as follows. Let T € A;-ATL(¢', j' : i,j) and R € Th;. We
form TR and reduce it using K1-K3, so that TR = ), 6% a®% as in the case 0 < |§] < a.
We define T'(R); to be zero if there are any non-contractible circles in TR;, and TR;
otherwise. Then T(R) = 3_; 6% a%T(R);.

Proposition 6.4.21 The above definition make V% into an Ay-ST L-module of weight
zero in which 0j 4+, =0 for j € {0,1,2}.

Definition 6.4.22 (cf. [63, Def. 5.22]) Given S,T € Th;, we reduce T*S using KI1-K3
so that T*S = 3, 8% (T*S); for basis (@ : @)-tangles (T*S);. We define (S,T); to be

0 if there are any non-contractible circles in (T*S);, and 1 otherwise. Then we define an

inner-product by (S,T) = 3_,6%a%% (S, T);.

This inner-product is invariant as in the case 0 < || < a. Again, if the inner product
is positive semi-definite we define H%? to be the quotient of V%2 by the subspace of vectors

with length zero; otherwise H%? does not exist.

Proposition 6.4.23 The Hilbert Ay-ST L-module H*?, a € {0,1,2}, is irreducible (when

it exists).

Proof is as for H”.

6.5 The As-planar algebra of an ADE graph

Let G be any finite SU(3) ADE graph (not necessarily one for which there exists a flat
connection) with vertex set 09 = B§ U VY U VY, where VY is the set of a-coloured
vertices of G, a = 0,1,2. Let n, = |UY| denote the number of a-coloured vertices and

n = |Y9 = ng + n; + n, the total number of vertices of G. Note that n; = n, due to
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double sequence (C; ;) into an Aa-C*-planar algebra P9, with dim(PY) = n,, a = 0,1,2,

and parameter [3].

Proof
This follows as in the proof of Theorem 6.3.4, where the only small difference occurs
for isotopies of the tangle which involve rectangles. However the invariance is simpler
here as the connection is not used. (]
The partition functions Z : P; — C are defined as the linear extensions of the
function which takes the basis path v to ¢2. There is an extra multiplicative factor of ¢?

for the external region. This is required for spherical isotopy.

Proposition 6.5.2 (c¢f. [62, Prop. 3.4]) The partition function of a closed labelled
tangle T depends only on T up to isotopies of the 2-sphere.

Proof
It is enough to show spherical invariance for T" a 1-tangle. Let 77 and 73 be the

0-tangles

If Z(T) = (v,7) for an edge v on G, Z(Ti) = ¢, bs(r)/Br(x) = Bs(v)®r(z) 20d Z(T3) =
¢z('¥)¢"("/)/¢3(’7) = ¢8('y)¢r(7) = Z(T]) 0
We normalize (¢,) so that the partition function of an empty closed tangle is equal to

one. We will say that the SU(3)-planar algebra of a graph G is normalized if

D=1

vemg

Theorem 6.5.3 (cf. [62, Theorem 3.6]) Let PS be the normalized A,-planar algebra of
an ADE graph G, with (normalized) Perron-Frobenius eigenvector (¢,). Then forx € P,g],
tr(z) = [3]7"7Z(7)
defines a normalized trace on the union of the P’s, where T is any 0-tangle obtained
from x by connecting the first i + j boundary points to the last i + j. The scalar product

(x,y) = tr(z*y) is positive definite.

220



Proof
The normalization makes the definition of the trace consistent with the inclusions.
The property tr(ab) = tr(ba) is a consequence of planar isotopy when all the strings
added to z to get T go round z in the same direction, as in Figure 6.17. Spherical isotopy
reduces the general case to the one above. Positive definiteness follows from the fact that
the matrix units e = (y,7') € PFJ are mutually orthogonal elements of positive length:
(e,€) = [3] "Iy, ¢u, > 0, where e € PZ; is a pair of paths of length i+ j starting at vertex
v; and ending at vertex vy, and ¢, > O for all v since ¢ is a Perron-Frobenius eigenvector.
(]

6.5.1 PY as a TL-module for ADE Dynkin diagrams G

In the case of SU(2), Jones [63] determined all Hilbert modules H** of lowest weight
k > 0 and H* of lowest weight 0. We will give a brief overview of these modules. For
1 <k<m,meN, let 7F be the set of all annular (m, k)-tangles (having 2m vertices
on the outer disc and 2k vertices on the (distinguished) inner disc, where the vertices
have alternating orientations) with no internal discs and 2k through strings. If A/ﬁ/m,k
denotes the quotient of AT L,, x by the ideal generated by all annular (m, k)-tangles with
no internal discs and strictly less than 2k through strings, then the equivalence classes of
the elements of 7.¥ form a basis for ﬁim,k. The group Z; acts by an internal rotation,
which permutes the basis elements. The action of AT'L on mm,k is given as follows.
Let T be an annular (p, m)-tangle in ATL,,, and R € 7,*. Define T'(R) to be §"TR if the
(p, k)-tangle T' R has 2k through strings and 0 otherwise, where T'R contains 7 contractible
circles and TR is the tangle T'R with all the contractible circles removed. Since the action
of AT L commutes with the action of Z, as a T'L-module mm,k splits as a direct sum,
over the k1 roots of unity w, of T'L-modules V.** which are the eigenspaces for the action
of Z with eigenvalue w. For each k one can choose a faithful trace tr on the abelian C*-
algebra mk,k, which extends to AT Ly, by composition with the quotient map. The
inner-product on Zﬁm,k is then defined to be (S, T) = tr(T*S) for S,T € mm,k.

We now turn to the zero-weight case (k = 0). The algebras AT L., which have the
regions adjacent to both inner and outer boundaries shaded =, are generated by elements
o404, where oy is the (£, F)-tangle which is just a single non-contractible circle, with the
region which meets the outer boundary shaded + and the region which meets the inner
boundary shaded . Then the dimensions on V,; and V_ must be 1 or 0 for any T L-module
V. Then in V, the maps 010+ must contribute a scalar factor p?, where 0 < pu < 4. If

u =8, V? is simply the ordinary Temperley-Lieb algebra described in Section 1.2.1. When
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0 < p < 4, V#is the T L-module such that V# m > 0, has as basis the set of (m, +)-tangles
with no internal \discs and at most one non-contractible circle. The action of ATL on V¥,
0 < p <4, is given as follows. Let 7" be an annular (p, m)-tangle in AT L, ., and R be a
basis element of V*. Define T'(R) to be 6’,u2dﬁ, where T R contains r contractible circles
and 2d + i non-contractible circles, where ¢ € {0,1}, and TR is the tangle TR with all
the contractible circles removed and 2d of the non-contractible circles removed. The inner
product on V* is defined by (S, T) = d"u?¢, where T*S contains r contractible circles and
2d non-contractible circles. When u = 0, we have T'L-modules V%* and V%~ where V%
has as basis the set of (m, 4)-tangles with no internal discs and no contractible circles.
The action of ATL on V%% is given as follows. Let T be an annular (p, m)-tangle in
ATL, ., and R be a basis element of V*%. Define T(R) to be 6T R, where T'R contains
r contractible circles. Now TR is zero if TR contains any non-contractible circles, and is
the tangle TR with all the contractible circles removed otherwise. The inner product on
V%% is defined by (S,T) = 0 if T*S contains any non-contractible circles, and (S, T) = §"
otherwise, where r is the number of contractible circles in T*S.

In the generic case, § > 2, it was shown that the inner-product is always positive
definite, so that H = V is a Hilbert T'L-module, for the irreducible lowest weight k& T L-
module V. In the non-generic case, if the inner product is positive semi-definite, H is
defined to be the quotient of V by the vectors of zero-length with respect to the inner
product.

Let G be a bipartite graph. Then the vertex set of G is given by U = U, UU_, where
there are no connecting a vertex in U, to another, and similarly for 2B_. We call the
vertices in U, V_ the even, odd respectively vertices of G, and the distinguished vertex

* of G, which has the highest Perron-Frobenius weight, is an even vertex. The adjacency

A

T g ) We let 7y = |U.|. The planar
Ag O

algebra PY of a bipartite graph G was constructed in [62], which is the path algebra on G
th

matrix of G can thus be written in the form (

where paths may start at any of the even vertices of G, and where the m""! graded part
P is given by all pairs of paths of length m on G which start at the same even vertex
and have the same end vertex. Let p;, 7 = 1,...,74, denote the eigenvalues of AgAg.
Then the following result is given in [105, Prop. 13], which motivated Proposition 6.5.4:
The irreducible weight-zero submodules of PY are H*, j =1,...,r_, and r, — r_ copies
of H®, and these can be assumed to be mutually orthogonal.

Reznikoff [105] computed the decomposition of P9 as a T'L-module into irreducible
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T L-modules for the ADFE Dynkin diagrams. For the graphs A,,, m > 3,
PAm = B H*, (6.32)
j=1

where s = |(m + 1)/2] is the number of even vertices of A,, and p; = 2cos(jn/(m + 1)),
j=1,...,s. For Dy, m >3,

t s—2
PPr =P H" @ (s — t)H** @ H H¥ 7, (6.33)
j=1 J=1

where s = |(m+2)/2], t = |(m —1)/2] are the number of even, odd vertices respectively
of Dy, and p; = 2cos((2j — 1)w/(2m — 2)), j = 1,...,t. For the exceptional graphs the

results are

PEs = HM@HM @ HM™ @ H> '@ H* @ H* ™, (6.34)
PFr = H*oH* 9 H* o H" @ H> '@ H* @ H> @ H* '@ H¥1,(6.35)
PP = H"®H" @ H" ¢ H" o H>* '@ H3 o H* ' @ H*"! (6.36)

OH* @ H> ' @ H @ H%¢ ™, (6.37)

where w = €?"/3, ¢ = €?"/5 and p; = 2cos(nj/h) where h is the Coxeter number.

6.5.2 P9 as an Ay-STL-module

We now return to the Aj-case for an SU(3) graph G. As in the proof of Lemma 6.3.1, if

G is three-colourable let Al

Qg A2 be the product of j, i matrices respectively, given by

Az{j = A01A12A20A01 A A2 = A: A--——— —J+1AT— s AI,

7—1,5 3. +F12F 7514

where A’ is A; 577 if 7 is odd, AETFT if 7 is even, and P is the colour of p. If G is not
three-colourable we let Aj; = A* and A7, = AJ. Note that A}; is a normal operator
since A1 (M) = AL (AT = (AnAj )J by the proof of Lemma 6.3.1, and similarly
(AL AL = (AL)TAL; = (A Afy). Similarly A?; is a normal operator.

Let ﬁ?, I € 9§, be the eigenvalues of Ats, and v® their corresponding eigenvec-
tors. Then (A}5)Tv®) = Biv® and (Mg AT = AL (A} )Tv® = |B;/%W. Then if
A, L € BE, are the eigenvalues of Ay AT, with corresponding eigenvectors v, we have
(A AT = A3v® 50 that v’ = v® and N, = |52

Let n' = min{ng,n;}. The dimension of Pf, is given by the trace of AAT where A =
(A};)}(A%,), which counts the number of palrs of paths on G, G. Since AAT = (AAT)i+,

the trace of AAT is given by the sum Z, ,j of its eigenvalues, | = 1,2,...,n'. The
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eigenvalues Vflj) are given by |4;|2*4), where 8} are the eigenvalues of Aj;. The Hilbert

series for P9 is then given by

’

1 N 1
<I)pg(z1,z2)=§(n0+2n1—3n)+ E =
1=1

1Bi1221)(1 = |Bi|?22)

Proposition 6.5.4 (cf. [105, Prop. 18]) Let G be one of the finite SU(3) ADE graphs,
let ¢, 1l =1,2,...,n', be the non-zero eigenvalues of Aé‘s, counting multiplicity, and let

!

B, be any cubic root of (;, | = 1,2,...,n'. For all the three-colourable graphs except
55(12), we have ng > ny, and all the irreducible weight-zero A,-AT L-submodules of P9
are H% 1 = 1,2,...,n1, and (ng — n,) copies of H°, and these can be assumed to be
mutually orthogonal. For 85(,12) we have n; > ng, and all the irreducible weight-zero As-
AT L-submodules of PE™ are HP 1 =1,2,...,n9, and 2(n; — ng) copies of H®, which
can again be assumed to be mutually orthogonal. If G is not three-colourable, all the
irreducible weight-zero Ay-AT L-submodules of P9 are H?, | = 1,2,...,ng, where ng is

the total number of vertices of G.

Proof
Consider the case where ng > n; (the case for 55512) where n; > ng is similar). Each
B-eigenvector v = ('ug)), w € By of Ay AL} spans a one-dimensional subspace of Pag

that is invariant under Ay-AT L. To see this, first consider the element o¢;01209:

0010120201)([) = 001012020 Z Ug) = Z(A01A12A2O)w1,wvg),

wG‘Ug w,w
which, by the §; eigenequation gives
0010120900 = Zﬁ?vg? = ﬁf’v(l). (6.38)

Similarly for o3,07,05,. Next consider the general element o given by the composition of

_ ¥ P
2k elements 0 = 0910120900701 * * OFTROR=1E 912001

E—1,k

so® = Z(Amﬁlz“-ﬁm,zﬁl— AT v ®
= Z((AonTl)k)w',wvﬁ) = Zlﬂllzkvg? = |6*®. (6.39)

Any element of A,-ATLj is a linear combination of products of elements o} ;+; such
that the regions which meet the outer and inner boundaries have colour 0. Let o be

such an element. Then the action of ¢ on the Fi-eigenvector v®) is given by ov® =
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>t MW ,w)vg), where M is the product of matrices A, AT given by replacing every
0ji+1, O -1 in 0 by A, AT respectively. Then by (6.38) and (6.39), this gives some
scalar multiple of v®). Then each G-eigenvector v") generates the submodule H” by
Proposition 6.4.16. The inner product on H? coincides with the inner product on P¥.
Because of (6.31) we only need to check its restriction to the zero-weight part. For any
element A € Ay—AT Lg, (Av,v) ys, = c{v,v) s, whilst (Av®), v pg = d(v®, v®) pg. The
element A is necessarily a combination of non-contractible circles, which gives the same
contribution in P9 as in H? by (6.38), (6.39). So ¢ = d. This shows that the inner
product on the H? is positive definite. ’

Similarly, a 0-eigenvector generates the submodule H°, where for ng > n;, dim(Hg’ﬁ) =
1 and dim(H>") = dim(HJ?) = 0, whilst for &' we have dim(H2") = dim(H?) = 1
and dim(Hg’ﬁ) = 0. As in the SU(2) case, in order to make the resulting submodules
orthogonal we take an orthogonal set of eigenvectors. 0O

For an ADE graph G with Coxeter number n, let 5, 1,) be the eigenvalue of G given
by (1.26) for exponent (I3,l5). Then for the graphs A™, we have for n # 0 mod 3,

PA" 5 (P HPma, (6.40)

(hl2)

whilst for n = 3k, k > 2,
PA® 5 P HPmw @ HOO, (6.41)
(l,l2)

where in both cases the summation is over all (I1,l3) € {(my,mp)| 3my < n —3,3m; +
3my < 2n — 6}, i.e. each f, 1) is a cubic root of an eigenvalue of Ajz. We believe that
we in fact have equality here, so that PA™ = GB(M?) HPmi» . In the SU(2) case this
was achieved by a dimension count of the left and right hand sides [105, Theorem 15].
However, we have not yet been able to determine a similar result for the SU(3) A graphs.
For the other ADE graphs, Proposition 6.5.4 gives the following results for the zero-

weight part of P9. For the D graphs, we have

PP 5 @ HAww @ 3HOT, (6.42)
(t1,02)

for k£ > 2, where the summation is over all ({;,13) € {(my,ma)|me < k —1,m; +my <
2k — 2, m; — my = 0 mod 3}, whilst for n # 0 mod 3,

PD(") D @ Hﬁ(ll,lz)’ (6.43)
(I1,l2)

where the summation is over all (I1,12) € {(m1,m2)|3ms < n — 3,3m; + 3m, < 2n — 6}.

The path algebras for A™* and D™* are identified under the map which send the vertices
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i, 5 and k; of D™* with the vertex | of A™* [ =1,2,...,[l/2]. We have
PA(ﬂ)* — P'D(ﬂ)~ ) @ Hﬂ(ll,lz), (6.44)
(h,l2)

where the summation is over all (I1,03) € {(m,m)lm =0,1,...,|(n —3)/2]}. Similarly,
the path algebras for £® and £®* are identified, and

(8)=

PE(S) — pf D) Hﬁ(o,o) @ Hﬂ(s,o) oy Hﬂ(o,a) D Hﬂ(z,z)_ (645)

For the graphs 8,.(12), i1=1,2,3, we have
£(12)

P57 > HPoo @ 2HPeo @ HAew, (6.46)

For the remaining exceptional graphs we have

PEY 5 [Poo @ HPen @ HPws g 200, (6.47)
pgélz) 5 HPoo @ HBeo @ HP0s @ HPe» @ HPaa HOl @ |02 6.48
&) D ® @ @ ® )

p£(24) HPo00 @ HB6.0 @ HBoe @ Hwy @ HBPw @ HPun g HA®6s g HPxo0)
D &) ® ©® &5} @ <) @
(6.49)

The A,-planar algebra P of Section 6.3 for the graphs A®™ clearly have decomposition
P = H® as an Ay-AT L-module, since P = ST L which is equal to the A;-AT L-module H*
(see Section 6.4.2). Since every Ap-planar algebra contains ST L, the Aj-planar algebra
for all the ADE graphs with a flat connection will contain the zero-weight module H<.

6.5.3 Irreducible modules with non-zero weight

We will now present some conjectured irreducible A;-AT L-modules with non-zero weight.
It is not known whether the inner-products we define on these modules are positive
definite. Our construction of these modules is also based on the following assump-
tion. Let @, 1), Pty De the tangles illustrated in Figure 6.51. Note that @y,
is the rotation of ¢, ., by 7. These tangles can be viewed as some sort of “rota-
tion by one”. They have rank (¢;,¢;). It appears that the infinite dimensional algebra
A\k = AQ—ATLO,k/Az-ATL(()';’Ck) is generated by the two tangles ) and Qrr), k£ > 1.
From now on will assume that this is true.

Let pox be the 0, k-tangle given by the image of Yk k)P(k,x) in /ka, illustrated in Figure
6.52, and let p;x_; be the image of po, under the map gx : A9-AT Loy — Ay-ATL;_;

as in Section 6.4.1. Then p; ; is some sort of “rotation by two”. Indeed, it can be shown
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Figure 6.52: “Rotation” tangle pg

for 2tmax + tpin = 3(¢ + J), for any 4,5 > 0, that p;; is a rotation of order i + j in
A2'ATL¢J/A2‘ATL£3’£2), ie. (pi,j)i—{-j = li,j- R
By drawing pictures it is easy to see that @ k)@ = Por in Ak, and hence that

O(k,k)s P(k,k) COmMmute in A\k. It is also easy to check that

PhB)Plkk) = Plhk)Plkk) = Pk Plkk) = Plk.k)Plhk) = Lok

so that o = go(_klk) and @ 4y = ﬁ(_k]k) are inverse elements in Ay. Again, by drawing

pictures it is clear that (w(kk)Fikr) = ik Then we have
Plery = (PleryPek) i) = Cler) oy = (@l @k Plrr)* = (Bler)*  (6.50)

~x ~k—1 * k—1 ~
and 50 Gy = Pl Plik) 20 Pli) = Plie) Pl
The algebras A are infinite dimensional, since gal(k,k), l=1,2,..., are all distinct
and non-zero in ;fk, as are @"(,C'k), [ =1,2,.... One way to obtain a finite-dimensional

Aq-AT L-module V(%)Y is to consider the element P(kk) Pk k) 85 acting as a scalar 72 in

the lowest weight module VO(,';’k)’”’, le. <p(k,k)¢’(*k,k) = v21p 4 in VO(,’,CC”C)'V, for some v € C. By

?k — -2k, 2k-1

drawing the element @ff ,, we see that ff ;) = 7v**1o4. Then we have @[, , =7 @75,

and by (6.50),

~ * - - ~2k% 2k?—k ~2k? - -
‘Pick,k) = (SO(k,k))k = (v 2k¢?}:,k)l F=n? W?k,k) = T R ])@fk,k) =7 2k()0?k,k)y
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so that &2F ) = v %@l ) =7 1ok. Now @0 &l = Pt Pliry = 1 Lok, so that

~k k+1 2 ~k+1
Bl PiamPen =T Blrn: (6.51)

But we also have

k+1  _k+1 k+1 ~2k -2 _k+1
‘F(:k)‘P(;k)S"(k k) — ‘P(;k)‘#’(k Ky =7 80(;:19)' (6.52)

Comparing (6.51) and (6.52) we find that v?@F,) = 7™y, which gives

Bl =7 Vel (6.53)
Then by (6.50), (6.53) we have
G(k.k) = &(k,k)gl(ck,k)(&zk,k))k = 61(6;11)(5’(‘k,k))k =7 2+ k;:é)(V (Sofk,k))k) = ’7_29"(k,k)-

Then it appears that

V(’c R span(gol(k,k)l 1=0,1,...,2k - 1),

where (p(k k) v*#1g k. We see that ¢ ) acts on Vo(,i’k)” as Zyk, by permuting the 2k basis
elements W(k,k)’ and so the Ay-AT L-module V*#-7 decomposes as a direct sum over the
2kth roots of unity w of Ay-AT L-modules V*F7«  where YV kk)1w is the w-eigenspace
for the action of Zy, with eigenvalue w.

For each k, we can choose a faithful trace tr’ on A\k, which we extend to a trace tr on
Ag-AT Ly, by tr = tr'om, where  is the quotient map m : Ay-AT Loy — Zk. We can define
an inner product on Ay-ATL(7,5 : 0,k) by (S,T) = tr(T*S) for any S,T € A,-ATL(i,j :
0,k). Since ¢} yP(kk) = lok, the decomposition into y(ERrw s orthogonal. If we
let z/ﬂ"" be the vector in V( k)7 which is proportional to sz !
(Vo -¥gr) = 1, then v m¥gy = wydgy. We see that dlm(V(’c K)79) = 1, and V(k k)
is the span of 1% . We define the Hllbert Ay-AT L-module H® )7+ to be the quotient of

vV (kkrw by the zero—length vectors with respect to this inner product.

(wv) ’(p(k x) such that

We can also construct a finite-dimensional Ay-AT L-module V39 with lowest weight
2 and minimum rank (3,0) as follows. Let Wi(j’o) be the vector space of all linear com-
binations of tangles with one inner disc, where the outer disc has pattern ¢, j, the inner
disc has 3 sink vertices, with one of these vertices chosen as a distinguished vertex, and
such that as we pass along the string that has this distinguished vertex as its endpoint,
the region to its right must be coloured 0. Let V(3 % be the quotient of Wi(j’o) by the
ideal generated by the Kuperberg relations K1-K3. The vector space V,(]a 9 is infinite
dimensional due to the possibility of composing the elements ¢30) an infinite number

of times, where each ‘Pl(s,oy Il =1,2,...,is a tangle which has rank (3,0) and does not
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Figure 6.53: Annular i, j-tangles U, (71, l=1,...,J

contain any closed circles, or embedded circles or squares. If however, we let Lp(3,0)¢’('3,0)

count as some scalar in V39, PE0)FE0 =7 € C, then Vi?’o) is finite-dimensional since

~. _ 2
Peo = = oo

and hence ¢l o = 7* € C (and similarly &, ;) is also a scalar). Since the elements ¢[; o,
and ¢(3,0) are the same, 73 = 90?3,0) = @‘(33’0) =753 so v € R. We will denote the module
V3.0 where C(3.0)Pa0) = v® € R by V@97 where v € R.

Let U;,U, € A-ATL;j, 1 =1,...,7, be the annular i, j-tangles illustrated in Figure
6.53. We claim that the lowest weight module \/0(,32’0)"’ is the span of v, [ = 1,...,6, where
v, is the tangle in Figure 6.54, vy = p22)va-1, | = 1,2,3, and vy = (711)2,, l=1,2
These are the only tangles we can find that have rank no smaller than (3,0), do not
contain any closed circles or embedded circles or squares, and which cannot be written as
a linear combination of tangles of the form v’ <p?§” 0) for some p € N, where v’ is one of the
elements v; above, and the tangle z,o?g,o) is inserted in the inner disc of v'.

The action of Ay-AT Ly s on Vo(g’o)’"’ is given as follows. For a tangle T € A;-ATL(i,j :
0,2) and one of the elements v; above, we form Tv; and divide out by the relations K1-K3
to obtain a linear combination of tangles with pattern ¢,j on the outer disc and three
sink vertices on the inner disc. Any tangle that has rank < (3,0) is equal to zero. For
the remaining tangles, any tangle that is of the form v’ ‘Ptjs,o) (p must necessarily by some
integer multiple of 3 to respect the colouring at the inner disc) becomes v’ € V,-f?’o)”.

For any two elements S, T € Vif?'o)"', the tangle T*S will have three (source) vertices
on its outer disc and three (sink) vertices on its inner disc. We use relations K1-K3 on
T*S to obtain a linear combination }_, ¢;(T*S); of tangles (7*S); which do not contain

any closed circles, or embedded circles or squares, where ¢; € C. We let (S, T'); be zero if
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N - @ . @
Figure 6.54: The basis elements v;, i = 1,...,6, of Vo(_g’o)”

rank((T*S); < (3,0). Otherwise, (T*S), will be equal to ¢ for some p =0,1,2,..., and
we let (S, T); be ¥*. We then define an inner product on V397 by (S,T) = 7. ¢;(S, T);-
We define the Hilbert Ay-AT L-module H®9 to be the quotient of V(397 by the zero-
length vectors with respect to this inner product.

For v # %1, Hé’géo)” has dimension 6, and the action of Ay-AT L2 on Hé?éo)” is given
explicitly by

P@2)Va-1 = U, Peva = vy, =1,2,3,
Uy = dvyoy, 1=1,2,3, Uy = vy, =12, Uve = 7o,
Peau = u, Uivy = 0, for all [.
For v = %1, the dimension of Hé?z;o)'il is 2, and Hé?z’o)’ﬂ is the span of the elements

vy, vo above. The action of Ay-AT Ly, on Hé:o’z’o)'il is given by

$2,2)V1 = U, P2V = i,
Uyvy = dvy, Uivp = ~yu,
P = u, Uy = 0, [=1,2

There is a similar description of modules H®3¥ of minimum rank (0, 3), where there
are now three source vertices on the inner disc. The roles of U; and (7[ are interchanged
for H©3),

We were able to conjecture certain irreducible modules of non-zero weight that the
Ay-planar algebra P9 for the graphs £® and D® should contain, since the action of the
rotation pg, on the Aj-planar algebras for these graphs was much easier to write down

than for the other graphs.

230



For the graph £® | its zero-weight irreducible modules are HPoo  [As0 [Po03) and
HA@»_ By computing the inner-products (v;,v;) of the elements v, € Hg , explicitly,
and using Mathematica to compute the rank of the matrix ((v;, v;)):j, we computed the
dimension of H boo  prk ﬁ(a " H, ﬂ(o ® and Hg @2 and found that P did not contain any
irreducible modules of lowest welght 1. It should be noted that Mathematica is not an
open-source software, and the users have no way of knowing the reliability of results
obtained using it. Similarly, by computing the dimensions of W = H,$ ﬁ“’ @ Hg )
H, ﬁ“’ ) Hoﬁ_ 5", we find that dim(W) = 30 whilst dim(FP¢ ) = 36, so that the dimension

of Wi N P[fés) is 6. Then for modules of lowest weight 2, we conjecture
P({(28) _ ﬁ(o 9 p Hﬁ(a 0) Hg(zo.s) ® Hﬁ(z 2 @ Héy32,0)‘61 ® H(()f)2,3),€1 ® H(%z)m €21 e Hé?f)ﬁz,ssi’

where ¢; € {£1},7 =1,2,3, and 71, 72 € T, where the exact values of these six parameters
has not yet been determined. This conjecture arises from computing the eigenvalues of
the actions of pgq, U; and U1 on W+n Pg(s). Each action is a linear transformation,
which we computed by hand, and then computed using Mathematica the eigenvalues of

the matrix which gives this linear transformation. These eigenvalues are

Poz2: 1twice, — 1 four times, (6.54)
Uy, U [4]ad 72, once, O five times. (6.55)

The eigenvalues of the actions of these elements on Hi3 ", H{% %97 and H%GY™ are given
in the Table 6.1.

Eigenvalues of the action of
Ag-AT L-module P02 U, U,
HED™ w? 0 0
H332°> 1 1, -1 0 (x2) [4]ad=2, 0
HG! 1, -1 [4]as2, 0 0 (x2)
H(‘”’il y# +1 |1 (x3), =1 (x3) 0 (x6) [4]ad=? (x3), 0 (x3)
Hg?f)il,y;éﬂ 1 (x3), —1 (x3) | [4]ad~2 (x3), 0 (x3) 0 (x6)

Table 6.1: The eigenvalues of the actions of pg 2, Uy, U, on H (2 Dy , Hy's (3 0y , Hys ©5)7

Then we see that W+ N PE,” should contain one copy of both of H{3*' and H(E?Q’S”E'l,
£1,€; € {1}, and since P€® is invariant under conjugation of the graph E®  we should

have e; = ¢}. Then we need to rank (2,2) modules of H{3>"*, Hé?é2)’72'“ such that the
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action of pg2 on both has an eigenvalue w? = —1, i.e. w = +i. Since PE® s invariant
under complex conjugation, we would either have v;,7, € R or else 7, = 7¥,. However,
to determine the exact values of €;, ¢ = 1,2, 3, and 7, 2, we would need to consider the
action of ¢(39) on win P(fés), the computation of which would take many weeks to write

down. So we conjecture that
PE(S) S H'B(O,O) e Hﬁ(s,o) I Hﬂ(o,s) f>) Hﬁ(z,z) o) H(3,0),€1 o) H(O’?')'E‘ o) H(2,2),71 21 e H(2‘2)’72‘53i.

Similarly for the graph D® we found that PP® also contains no irreducible modules
of lowest weight 1. Computing the dimensions of POT,’2(6) and W = Hg 0 @ H(‘)’;;’ as for the
£® case, we find dim(PP,”) = 16 and dim(W) = 14. Then the dimension of WLNPZ;” is

2, and hence Pg_’z(a) must either contain one copy of Hé?éo)’“’ or else Hé?z’z)"“ “1 Hé?é2)’72’w2.

By considering the action of pgo on W+ N Pg?;s), we have the eigenvalue 1 twice. Then

W = H{P™ @ HE? ™ where w? = 1, i = 1,2. Then we conjecture that
PD(G) ) HPB0.0 e 1_10,6ea H(2,2),71,51 D H(2,2),’)‘2,52,

where €1,e, € {£1}, and either 7,7, € R or else v, = ¥,. Again, to determine the values
of &i,7, 1 = 1,2, explicitly requires considering the eigenvalues of the action of (32 on
w+n PR
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Chapter 7

Spectral Measures and Generating
Series for Nimrep Graphs in
Subfactor Theory

The spectral measures for the ADFE graphs were computed in terms of probability mea-
sures on the circle T in [3]. We reproduce their results via a different method, which
depends on the fact that the ADFE graphs are nimrep graphs. This method can then be
generalized to SU(3) much easier, which we do, and in particular obtain spectral measures
for the infinite graphs A(°) and A(*) corresponding to the representation graphs of the
fixed point algebra of @y M3 under the action of SU(3) and T? respectively. We also
obtain the spectral measure for the finite graphs A™, A™* n > 4, and D®¥ k > 2, and
the subgroups Z, X Z,, n > 2, A(3n2), n =0 mod 3, and (G) = £(216 x 3) of SU(3).

We are also going to compute various Hilbert series of dimensions associated to ADE
models. In the SU(2) case this corresponds to the study of the McKay correspondence
[104], Kostant polynomials of [75], the T-series of [3], and the study of pre-projective
algebras [16, 83]. The corresponding SU(3) theory will be more complex, related to the
AdS-CFT correspondence and the Calabi-Yau algebras arise in the geometry of Calabi-
Yau (CY) manifolds.

7.1.1 Spectral Measures

A non-commutative C*-probability space (A, ) is defined to be a unital C*-algebra A
over C together with a state ¢ : A — C such that ¢(14) = 1, where 1,4 is the unit of A.
A random variable is then an element a € A.

If b € A is a normal bounded operator then there exists a compactly supported
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probability measure i, on the spectrum o(b) C C of b, which is uniquely determined by

its moments

<p(b"‘b*")=/ 2mZ"dpp(2), (7.1)
o(b)

for any non-negative integers m, n.

Suppose a be self-adjoint. Then (7.1) reduces to
olam) = [ amnate), (72)

with o(a) C R, for any non-negative integer m. The generating series of the moments of

a is the Stieltjes transform o(z) of y,, given by

o(z) = Z (a™)z™ = ;}/ﬂ(a) ™2™ dp,(z) = /(a) ] —1xz dug(z). (7.3)

m=0 o
7.1.2 General Polynomials

The classical McKay correspondence relates finite subgroups I' of SU(2) with the algebraic
geometry of the quotient Kleinian singularities C2/I" but also with the classification of
SU(2) modular invariants, classification of subfactors of index less than 4, and quantum
subgroups of SU(2). The study of quotient singularities and their resolution has been
assisted with the study of structure of certain noncommutative algebras. Minimal resolu-
tions of Kleinian singularities can be described via the moduli space of representations of
the pre-projective algebra associated to the action of I'. This leads to general programme
to understand singularities via a non commutative algebra A, often called a noncommu-
tative resolution, whose centre corresponds to the coordinate ring of the singularity. The
algebras should be finitely generated over its centre, and the desired favourable resolu-
tions is the modular space of representations of A, whose category of finitely generated
modules is derived equivalent to the category of coherent sheaves of the resolution.

In three dimensions, as part of the AdS-CFT correspondence or programme, the work
of Hanany, He and coworkers has identified intriguing connections and puzzles related to

the following concepts

e Toric geometry of singular CY-threefolds in a supergravity AdS model
e Brane tilings in the two dimension plane

e Quiver diagrams describing bifundamental fields in an effective gauge theory of a

conformal field theory
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This can probably be regarded as a higher rank analogue of the McKay correspondence
in dimension two.

Some of these links are simply explained but on the whole, these relations are mainly
not obvious. The AdS-CFT correspondence seeks to relate a supersymmetric gauge theory
on a 10 dimensional space with a conformal field theory (CFT) described by a quiver gauge
theory on a lower dimensional factor. This is encapsulated by the geometry of the toric
singularity modeled on C3/T" where I is a finite (usually abelian) subgroup of SU(3). A
brane tiling is a tiling of the plane with a planar graph where each face has an even number
of edges or the graph is bipartite. The dual graph is the (periodic) quiver describing the
gauge theory.

A dimer model has allowed configurations of non overlapping edges on a graph so that
each edge of the dimer picks up exactly one vertex of the underlying graph once only.
Taking the determinant of the Kasteleyn matrix leads to the toric geometry described via
the toric diagram of the singularity.

Evans and Gannon [36] have noted that there are similarities between this circle of
ideas and those arising in the bundle structures in twisted equivariant K-theory analysis
of conformal embeddings.

We take the superpotentials built on the ADE cells and corresponding associated
algebraic structures and proceed in another direction and try to compute the Hilbert
series of dimensions of the corresponding algebras.

We can go from a toric diagram to a noncommutative geometry or a noncommuta-
tive algebra given by a superpotential. The fundamental ideas can be gleaned from the
following example.

Take the quiver G on two vertices {1, 2} with four oriented edges {a;,az : 0 — 1;b1, bs :
1 — 0} and quartic superpotential (of Klebanov-Witten [72]) W = a;biazbs — ajbaazb;.
Thus we form the noncommutative algebra A by dividing the path algebra CG by the re-
lations given by the derivatives of W. Here the relations z; = a1b; +b1a1, 2 = asby+boas,
T3 = a1by + baay, T4 = agb; + byas, span the centre R = Z(A) = Clz1, 22, 3, T4]/ (122 —
x3x4). This is the ring of functions on Z a conifold singularity or threefold double point.
Then A can be regarded as a noncommutative resolution of the toric singularity Z the
spectrum of R.

If I1,, is the matrix of dimensions of paths of length n in a graph G in the pre-projective
algebra (see Section 7.5.4), with indices labeled by the vertices, then the matrix Hilbert
series i of the pre-projective algebra is defined as H(t) = > H,t". Let A denote the
adjacency matrix of G. Then if G is a finite (unoriented) graph which is not an ADET
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graph (where T' denotes the tadpole graph Tad,), then H(t) = (1 — At+t%)"!, whilst if
isan ADET graph, then H(t) = (14 Pth)(1—At+t?)"!, where h is the Coxeter number of
G and P is the permutation matrix corresponding to an involution of the vertices of G [83].
In the ADET cése, one can go further and compute the dimension of I as h(h + 1)r/6,
where r is the number of vertices of G.

The dual ITI* = Hom(II,C) is a II-II bimodule, not usually identified with glIly or
1I1; with trivial right and left actions but with ;II, with trivial left action and the right
action twisted by an automorphism, the Nakayama automorphism v. The Nakayama
automorphism measures how far away II is from being symmetric. In the case of the
pre-projective algebra of a Dynkin quiver, this Nakayama automorphism is identified
with an involution on the underlying Dynkin diagram. More precisely it is trivial in all
cases, except for the Dynkin diagrams A,, Ds,4+1, Es where it is the unique non-trivial
involution.

The examples coming from finite subgroups of SU(3) give CY algebras of rank three.
We are mainly interested not in the fusion graphs of SU(3), whose adjacency matrices
have norm 3, but in the fusion ADE graphs arising in our subfactor setting as describing
the SU(3) modular invariants through M-N systems which have norm less than 3.

An abelian category is a category with addition of objects and morphisms where ker-
nels and cokernels exist and are well behaved. An abelian category A gives rise to a
derived category D(A). We first pass to the chain complexes Kom(.A). These are se-
quences of objects with connecting morphisms where the product of any two connecting
maps are zero. The quotient of a kernel (the cycles) by the preceding image (bound-
aries) gives homology. The next step is to take K(A), the homotopy category of chain
complexes by identifying chain homotopic morphisms, i.e. those morphisms which yield
identical results on homology. Quasi-isomorphism are the morphisms which identify the
homology elements of the chain complexes. The derived category D(A), is obtained by
localizing at the quasi-isomorphisms - adding to the category an inverse morphism for
each quasi-isomorphism, constraining them to become isomorphisms. For the bounded
derived category D?(A), one only considers chain complexes of finite support. The de-
rived category is a triangulated category. A triangulated category is a category D with
a translation functor T, moving objects and morphisms, written say X([n] = T"X on
objects. A triangleis X — Y — Z — Z[1]. If A is an abelian category, then K(A4) is a
triangulated category with objects the chain complexes, morphisms are homotopy classes
of morphisms and the distinguished triangles are morphisms with their mapping cones.
If f: A— B isa map of complexes, then the cone of f, Cone(f) = C(f) = C is the
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complex A[1] ® B, with triangles A — B — C(f), where the maps B — C(f) — A[l] are
natural inclusions and projections .

A triangulated category D yields a cohomology and cohomological functors, say F':
D — Ainto an ébelian category A, where each distinguished triangle is mapped to a long
exact sequence in A, where — FX[i]| —» FY[i] - FZ[{] - FX[i+ 1] —. In particular
Hom(A, —) is a cohomological functor, and Ext*(A4, X) = Hom(A, X[i]) are the extension
groups.

A bounded derived category D?(A) is Calabi-Yau of dimension n if there are natural

isomorphisms
Homps 4(A, B) — Homps 4(B, A[n])* .

That is the ntM_shift is a Serre functor. An algebra A will be said to be Calabi-Yau of
dimension n if the bounded derived category of the abelian category A = Rep(A) of finite
dimensional A-modules is a Calabi-Yau category of dimension n. In this case [14] one
has the global dimension of A is n. That is for all X,Y in Rep(A) that Ext}(X,Y) =0,

unless 0 < 7 < 3. Moreover, if X,Y are in Rep(A), then there are natural isomorphisms
Extt(X,Y) ~ Ext® (Y, X)*

and natural pairings Ext% (X,Y) x Ext%;™*(Y, X) — C. The derived category of coherent
sheaves D?(CohX) over an n-dimensional Calabi-Yau manifold is Calabi-Yau category of
dimension n and they appear naturally in the study of boundary conditions of the B-model
in superstring theory over X. For more on Calabi-Yau algebras, see e.g. [14, 49)].
Bocklandt [14] has studied the types of quivers and relations (superpotentials) that
appear in graded Calabi-Yau algebras of dimension 3. Indeed he also points out that the
zero-dimensional case consists of semi-simple algebras, i.e. quivers without arrows, the
one dimensional case consists of direct sums of one-vertex-one-loop quivers. Moreover, a
Calabi-Yau algebra of dimension 2 is the pre-projective algebra of a non-Dynkin quiver.

The pre-projective algebra of a Dynkin quiver has global dimension 2.

7.2 SU(2) Case

In this section we will compute the spectral measures for the ADE Dynkin diagrams and
their affine counterparts. We will present a method for computing these spectral measures
using the fact that the graphs are nimrep graphs. This method recovers the measures
given in [3] and will allow for an easy generalization to the case of SU(3) and associated

nimrep graphs.
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-3 -2 -1 0 1 2 3

Figure 7.1: Doubly infinite graph A co-

A graph is called locally finite if each vertex is the start or endpoint for a finite number
of edges. Let G be any locally finite bipartite graph, with a distinguished vertex labelled *
and adjacency matrix A. Defining a state ¢ by the *, **! element, (- ) = [ ].., by (7.2)
the spectral measure of G is the probability measure s on R given by [, ¥(z)dua(z) =

[¢(A)]s, for any continuous function 9 : R — C, as in [3].

7.2.1 Spectral measure for Ay

We begin by looking at the fixed point algebra of @y M, under the action of the group
T. Let p be the fundamental representation of SU(2), so that its restriction to T is given
by 1.8.

Let {xi}ien, {0i}icz be the irreducible characters of SU(2), T respectively, where xo
is the trivial character of SU(2), x; is the character of p, and 0y(z) = 2%, i € Z. If o
is the restriction of x; to T, we have 0 = 07 + o_; (by (1.8)), and go; = 6;_; + 0i41,
for any i € Z. Then the representation graph of T is identified with the doubly infinite
graph A, o0, illustrated in Figure 7.1, whose vertices are labelled by the integers Z which
correspond to the irreducible representations of T, where we choose the distinguished
vertex to be * = 0. The Bratteli diagram for the path algebra of the graph A, with
initial vertex * is given by Pascal’s triangle. The dimension of the 0** level of the path
algebra is 1, and we compute the dimensions of the matrix algebras corresponding to
minimal central projections at the other levels according to the rule that for a vertex
(v,n) at level n we take the sum of the dimensions at level n — 1 corresponding to vertices
(v',n — 1) for which there is an edge in the Bratteli diagram from (v',n — 1) to (v,n). It

is well-known that these numbers give the binomial coefficients, with the j** vertex along
m
level m giving CT", and we see that o™ = Z;.”:O C;"am_Qj, where C;" = ( ; are the

binomial coefficients.

Recall that if {m;} denote irreducible representations of a group G, and if * = n;m @
nomy @ - - - on a full matrix algebra, then the fixed point algebra of the action Ad(w) is
isomorphic to M = M,,, ® M,,, ® - - -, and the dimension of M is given by the sum of the
squares of the n;. Then we see that (®*M,)T = EB;?:O Mck, and (QRn M2)T 2 A(Aco,00)-
Hence dim ((®’° MZ)T) = Z§=0(Cf)2- By comparing the coefficient of z* in the binomial
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expansions of (1 + z)¥(1+ z)* and (1 + z)?*, we have

k
Y o ctct =i, (7.4)
=0
and we obtain dim(A(Ac)k) = C2¥. Counting the number p; of pairs of paths in
A(Axo.0)k Which end at a vertex k — 2j of Ay, is the same as the dimension of the
subalgebra of A(As00)kx Which corresponds to the vertex k — 2j at level & of the Bratteli
diagram for A(Ax,), and hence p; is given by the binomial coefficient p; = C]’F.

We define an operator wz on ¢%(Z) by wz = s+ s~!, where s is the bilateral shift
on ¢%(Z). Let 2 be the vector (8;0);. Then wyz is identificd with the adjacency matrix
Aoo0o Of A 00, Where we regard the vector {2 as corresponding to the vertex 0 of Ay o,
and the shifts s, s~! correspond to moving along an edge to the right, left respectively on
Aw.0o- Then s*Q corresponds to the vertex k of Ay, k € Z, the identity s71s = ss7! =1
correspond to moving along an edge of A.  and then back along the reverse edge,
arriving back at the original vertex we started at. Applying w%, n > 0, to € gives a
vector v = (v;)iez in €2(Awo,00), Where v; gives the number of paths of length n from the
vertex 0 to the vertex i of Ay o-

The binomial coefficient C2" counts the number of ‘balanced’ paths of length 2n on
the integer lattice Z? [29], that is, paths of length 2n starting from the point (0,0) and
ending at the point (2n,0) where each edge is a vector equal to a translation of the vectors
(0,0) — (1,1) or (0,0) — (1,-1).

We define a state ¢ on C*(wz) by ¢(-) = (©, - Q). The odd moments are all zero.

For the even moments we have

2k 2k
pWF) = p((s+s71)%*) =) CFo(s™%) = CI*6; = CF.
j=0 j=0

Suppose the operator A has norm < 2, so that the support of the spectral measure p
of A is contained in [—2,2]. There is a map @ : T — [-2,2] given by

Q(u) =u+u?, (7.5)

for u € T. Then any probability measure £ on T produces a probability measure u on
[~2,2] by

2
/_21/1(m)du(:v) = /rw(u + w1 de(u),

for any continuous function ¢ : [-2,2] — C.
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The operator Ay o has norm 2. Consider the measure e(u) given by de(u) = du,
where du is the uniform Lebesgue measure du on T. Now [ u™du = 0,0, hence [p(u +
u~1)™du = 0 for m odd, and

2k

/ (wtu ) du=3 C* / W Udu = CFF = p(w}),
T

=0 T
for k > 0 [3, Theorem 2.2]. Now, we can write

1/2

1
/(u +u )™du = / (e2m0 4 e~ 2mmgp — 2 (€20 4 g=2m0ym g,
T 0

0
If we let £ = €20 +e~2"% = 2 cos(27), then dz/df = 2mi(e*™® —e~2™0) = —47sin(270) =
—2mv/4 — z2. Here the square root is always taken to be positive, since sin(276) > 0 in
the range 0 < 8 < 1/2. So
vz ,

(u+u—l Mmdu = 2 (e2m +e—2m )md9 — __/
/T ) 0 V4 — ’L'2

1 /2 o 1

mJ)_a V4-—z2
Thus the spectral measure p,,, of wz (over [—2,2]) is duy,(z) = (7vV4 — 22)! dz.

Summarizing, we have the identifications

dx

dim(A(Aw,00)k) = dim ((@kM2)T) C¥ = p(w¥) / \/"_—ﬁ

7.2.2 Spectral measure for A,

We now consider the fixed point algebra of @y M, under the action of SU(2). We have
X1Xi = Xi-1 + Xi+1, for 1 =0,1,2,..., where x_; = 0. Then the representation graph of
SU(2) is identified with the infinite Dynkin diagram A, of Figure 1.1, with distinguished
vertex * = 1. Then (Qy M)SU® >~ A(AL).

We define an operator wy on ¢2(N) by wy = [ + [*, where [ is the unilateral shift to
the right on ¢2(N), and Q by the vector (4;,);. The operators I, [* satisfy [*] = 1 and
[*Q = 0. Then wy is identified with the adjacency matrix Ay of Ay, where we regard
the vector ) as corresponding to the vertex x = 1 of A, the creation operator [ as an
edge to the right on A, and the annihilation operator [* as an edge to the left. As for
the graph Ao o, applying wh, n > 0, to Q gives a vector v = (v;)ien in £2(As), where
v; gives the number of paths of length n from the vertex 1 to the vertex ¢ of A,. The
relation [*€2 = 0 corresponds to the fact that there is no edge to the left from the vertex
lon Ay
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Let ¢, be the n'" Catalan number which counts the number of Catalan (or Dyck)
paths of length 2n in the sublattice L of Z? given by all points with non-negative co-
ordinates. A Catalan path begins at the point (0,0) and must end at the point (2n,0),
and is constructed from edges which are translations of the vectors (0,0) — (1,1) or

(0,0) — (1, —1). The Catalan numbers ¢, are given explicitly by

1 2n

We define a state ¢ on C*(wn) by ¢(-) = (€, - Q). Once again, the odd moments are

all zero. For the even moments we have ¢(w2F) = ¢, since the sequences in [, [* which
contribute to the calculation of p(w2F) can be identified with the Catalan paths of length

2k. As an example, the case for £ = 3 is illustrated in Figure 7.2.

Irri rrun
rurn rrur
It

Figure 7.2: Catalan paths of length 6

By [61, Aside 5.1.1], the dimension of the k! level of the path algebra for the infinite
graph Ay is given by dim(A(Aw)x) = ck. A connection with Catalan paths was also
shown in [61, Aside 4.1.4], since any ordered reduced word in the Temperley-Lieb algebra

alg(l,e;,...,ex_1) is of the form

(eji€j1-17" €1 )(€585-1"""€1,) -~ (€5,€5,-1" " " €1,),

where j, is the maximum index, 7, > l;,i=1,...,p,and j;41 > Ji, i1 > L, i=1,.. ., p—
1. In the generic case, when the Temperley-Lieb parameter § > 2, these words are linearly
independent. Such an ordered reduced word corresponds to an increasing path on the
integer lattice from (0,0) to (k, k) which does not go below the diagonal. Rotating any
such path on the lattice by 7/4, we obtain a path of length 2k corresponding to a Catalan
path. For example, consider the element (ezeqe;)(eses)(eses) € alg(l, ey, ..., e6). Then the
increasing path and the corresponding Catalan path are shown in Figure 7.3. For § < 2,

the ordered reduced words are linearly dependent, and we only have dim(A(Ay)x) < ck.

241



S = N W s N

Figure 7.3: Increasing path and corresponding Catalan path for (esese; )(eses)(eses).

A self-adjoint bounded operator a is called a semi-circular element with mean k € R
and variance r2/4 if its moments equal those of the semi-circular distribution centered at

x and of radius r > 0, i.e. a has the probability measure p, on [k — 7, k + r| given by

Ha(l) = %5\/7”2 — (z — K)%dz. (7.6)

When k = 0, r = 2, this is equivalent to a being an even variable with even moments

given by the Catalan numbers:

(™) Ck, if m = 2k,
a™) =
4 0, ifm odd,

Thus the operator wy above is a semi-circular element. We will reproduce a proof that
the probability measure p,,, on [-2,2] is given by du,,,(z) = (2m)~!'v4 — z2dz in the
next section. This is the spectral measure for Ay, given in [111].

Summarizing, we have the identifications

dlm(A(Aoo)k) = dim ((@kMQ)SU(2)> = ¢ = ]c—li-lclgk
2
I / VI d

7.3 Spectral measures for ADE Dynkin diagrams via
nimreps

Let Ag be the adjacency matrix of the finite (possibly affine) Dynkin diagram G with s
vertices. The m'™™ moment [ z™du(z) is given by (AZe;, e1), where e; is the basis vector
in £2(G) corresponding to the distinguished vertex  of G.

Let 87 be the eigenvalues of G, with corresponding eigenvectors z7, j = 1,...,s.
Now Ag = UAgU*, where Ag = diag(8',0%,...,6°) and U = (z!,2%,...,2°). Then
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AZ = UAGU*, so that
/ Yu+ude(w) = UATUener) = (AQU erU'er)
T
= > )"l (7.7)
j=1

where y; = 2! is the first entry of the eigenvector z'.

For a Dynkin diagram G, its eigenvalues M’ are given in (1.13), with corresponding

eigenvectors (Ya "~ )acw(g), for the exponents m; of G, j =1,...,s. Then (7.7) becomes
/Tgb(u +uNde(u) = Z()\j)m|1/)1"7|2, (7.8)
j=1

where * is the distinguished vertex of G with lowest Perron-Frobenius weight. Using (7.8)
we can obtain the results for the spectral measures of the Dynkin diagrams given in [3].
The advantage of this method is that it can be extended to the case of SU(3) ADE graphs
and subgroups of SU(3), which we will do in Sections 7.7, 7.8.

7.3.1 Dynkin diagrams A,, A

The eigenvalues M of A, are given in (1.12), with corresponding eigenvectors i = S, ; =
V/2/(n+ 1) sin(jar/(n + 1)). The distinguished vertex * of A, is the vertex 1 in Figure
1.1. With @ = e™/™+1  we have 2 cos(jn/(n+1)) = W44~ and sin(jn/(n+1)) = Im(@?).
Note that Im(w) = 0 for j = 0,n + 1. Then

/T W(u+u)de(u) = nili<2cos (nle))msiﬁ (nJI 1) (7.9)

j=1
= 2 @ A @)
n+1 po
9 2(n+1)
= — (@ + 7)™ Im(w?)?
2(n+1) j—ZO

= /T (w4 u)™ Im(u)2 dpyqu (7.10)

where d,,; is the uniform measure on the 2(n + 1)* roots of unity. Thus the spectral
measure (over T) for A, is de(u) = 2Im(u)? d,+ u. This is the result given in (3, Theorem
3.1

We again consider the infinite graph A, and note that the computation of the m'®

moment is a finite problem, [ 2™dp,,(z) = (A% e1,e1), for m < 2n. Taking the limit in
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(7.9) as n — oo (cf. the second proof of Theorem 1.1.5 in [54]), we obtain a sum which is

the approximation of an integral,

g 1 2
/a:md,uwN (z) = %/0 (2cost)™sin’tdt = — [ z™V4 — 22dr,

2 92
so that du,, (z) = (2r)~'v/4 — 22dz, and the operator wy is a semi-circular element.

Alternatively, if we take the limit as n — oo in (7.10), we obtain

[f@b(u +u")de(u) =2 /T(u +u™H)™ Im(u)%du,

where du is the uniform measure over T, as claimed in the previous section.

7.3.2 Dynkin diagrams D,

For finite n, the distinguished vertex of the graph D,, is the vertex n in Figure 1.2. The
exponents Exp of D, are 1,3,5,...,2n — 3,n — 1. For n = 2I, the exponent 2/ — 1 has
multiplicity two, and we denote these exponents by (2/ — 1, +). The eigenvectors of Dy
are given by [5, (B.6)] as:
¢£ = \/§S2l+l—a,ja a#1,2 j#2l-1,
F-1y) o Sol41-a,21-15 a#1,2,
¥ = ¢ = %521—1,1, J#2-1,
ll)ﬁle_l’i) = 1(Su_12-1 % (1 - 2€¢)/(-1)H7),

where e = 0,1 and j € £. Using (7.8) and with & = e™/(4-2)
/U’(u + u™)de(u)
T
= Z (2cos(jm/ (4l — 2)))™|V2S1,4|? + 2(2 cos(jm/ (4l — 2)))™| Sy 4|2

j#20-1
! ] m _: .
T u-2 Z (2cos(jm/(4l — 2)))™ sin®(jn/(4l — 2))
J€Exp
4 . By - 3
= g3 2 @+ m@)? = 52_2 Y @+ Im(@)?
T€ExD B j€{1,3,...,81-5}

= 2/(u + u‘l)m Im(u)2dfu_2u,
T

where dj,_, is the uniform measure on the (8! — 4)* roots of unity of odd order.
For Dy, 1, the eigenvectors are given by [5, (B.8)] as:
¥l = (-1)7 V2Sus2-a;, a#1,2, j#2I,
P2 = 0, a#1,2,
. . 1 —1 .
Y = ¢ = (—1)%—"\}3521,1', = 5 J#2,

A2l — 22l 1
1

1 - —_——
- \/ﬁv 2 - \/'Q'a

244



where j € Exp = {1,3,5,...,4l — 1,2l}. Then, using (7.8) and with & = e™/(4),

/T Wlu+u)de ()

‘ 4
= 2) (@eos(r/A)MIS P40 = & Y. (2cos(jn/4L)"sin®(jm/4])
j#2l je{1,3,...,41-1}

_ 2 Z @ +a )" Im(@)? = 2 /(u +u™ )™ Im(u)?dyu.
T

y je{1,3,...81-1}

So the spectral measure de(u) on T for D, is given by de(u) = a(u)dy), _,u, where
a(u) = 2Im(u)?, (7.11)

which recovers the spectral measure given in [3, Theorem 3.2].

Taking the limit of the graph D, as n — oo with the vertex n as the distinguished
vertex, we just obtain the infinite graph A.,. In order to obtain the infinite graph Do, we
must set the distinguished vertex * of D, to be the vertex 1 in Figure 1.2. Then using

(7.8), and taking the limit as n — oo, we obtain the spectral measure for D.

7.3.3 Dynkin diagram FEj

For Eg the exponents are 1, 4, 5, 7, 8, 11. The eigenvectors for Eg are given in [5, (B.9)].

In particular,

1 1 [3+
vi=vi=s,  wi=vl=5\

s

phoyp =13V

Then, by (7.8),
- ; . m 1 m
[ wlusudew) = 3 AP 2oostin/12)" = 3 3 1A cos(pr/12))™,
T .
FE€Exp pEBg
where Bs = {1,4,5,7,8,11,13,16,17,19,20,23}, and for j > 12 we define ¢ by ! =
4?47, Then with & = e™/12,
1
-1 _ P27 ~—-p\m
/Tw(u+u Yde(u) = ﬁpEZB 12[97)%(uP + w™P)™.
6

Now for any p € Bg, WP is a 24" root of unity, but for p = 4,8,16,20, u? is also a 6
root of unity. Since |7|? takes different values for different p, clearly we cannot write

the above summation as an integral using the uniform measure over 24" roots of unity.
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However, with « as in (7.11), we have

a(@) = 1297 -1, for p = 1,11,13, 23,
a(@) = 127 -1, for p = 4,8, 16, 20,
a(@®) = 12977 -1, for p = 5,7,17,19.

By considering a, = a(u”) + 1/2, we can write
_ 1 ~ p\m
/1r¢(u+u Nae(w) = oz O apl@ + )

P€Bg
1, -~ . ~ ~ ~ ~
—ﬁ ((u4 + u—4)m + (u8 + u—S)m + (’U.16 + u—lG)m + (,1720 + u—ZO)m) )
Since uP is also a 6 root of unity for p = 4,8, 16, 20, it may be possible to obtain the
last four terms by considering an integral using the uniform measure on 6" roots of unity.

First, we consider the integral [i(u+u~')™(2Im(u)? 4 1/2)d12u, where di, is the uniform

measure on the 24'* roots of unity, to obtain the terms in the summation above, giving
/ P(u+ u)de(u)
T

1 ~  ~
- / (ot w™ Y (@mw)? + Do — o2 3 ag(@ + 77"
T
q

1, ., - ~s . o~ - ~ ~
+ﬁ ((u4 + u—4)m + (uS + u—S)m + (ulﬁ + u—lﬁ)m + (u"/ZO + u—20)m) ,

where the summation is over ¢ € {2,3,6,9, 10,12, 14, 15,18, 21, 22,24}, that is, the inte-
gers 1 < g < 24 such that ¢ &€ Bg. For these values of ¢, we have a; = a1g = a14 = a9 = 1,
az = ag = a5 = ag; = 3/2, ag = a13 = 5/2, and a;s = ags = 1/2. Using these values for

aq, we now isolate the terms involving the 12" roots of unity, giving

/ D+ 1) de ()
' 1 12
= /r(u +u~ )™ (2Im(u)? + %)dlzu — =) @*4+ukm

24
k=1
-i(ﬂi‘ +T %)™ + i(ﬁ“ +a ™ — i(z‘f‘ T —1—(’118 + 8™
16 12 16 12
1 - 1 - 1 - 1 . ~
__l_g(u~9 + u—Q)m + :1_8_(,“12 + u-12)m _ 1_6(u15 + u-15)m + ﬁ(uls + u—lS)m

1 - - ~
— (@ T8y %(ﬁzo 0 %(uﬂl Fgym g

Now 3,2 (@ + @ %)™/12 = [(u+u~')™ds. For the remaining terms, we notice that
S gy (W + T3y /8 = [ (u + u 1) dy, giving

/Tl/)(u +u D de(u)
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1 1
= /(u—l—u'l)m(QIm(u)2 3)diau — = /(u+u D™ dgu — 5 /(u+u'1)md4u
T JT
1 ~4 ~—4\m i ~8 ~—-8\m 1 ~-12ym
+12(u +u %) +12(u +u®) 12(u +u %)

1
+l(ﬂ16+ﬁ—16)m+E(,ﬁﬂﬂ_i_a’-m)m_*_

1 ~
= (@ 4 ),

12
These last six terms are given by the integral ([i(u + u™')™d3)/2. Then the spectral

measure de(u) (over T) for Eg is
de = adyp + 3(d1a — ds — dg + d3),

which recovers the spectral measure given in [3, Theorem 6.2].

7.3.4 Dynkin diagrams F;, Eg

The following definition is given by Banica and Bisch [3, Def. 7.1]:

Definition 7.3.1 A discrete measure supported by roots of unity is called cyclotomic if

it is a linear combination of measures of type d,,, n > 1, and ad,, n > 2.

Note that since d], = 2d,, — d,, all the measures for the A and D diagrams, as well as for
Eg, have been cyclotomic. However, Banica and Bisch proved that the spectral measures
for Fy, Eg are not cyclotomic. This can also be seen by our method using (7.8).

For E; the exponents are 1, 5, 7, 9, 11, 13, 17. The eigenvectors for E; are given in
[5, (B.10)]. In particular,

Yl = (18 + 12v3cos(n/18)) "2, ¥ = 1% = (18 + 12V/3 cos(137/18)) /2,

Y7 = it = (18 + 12v/3 cos(117/18)) /2, ) =1/V3.
Then

ot udetw) = 3 il 2eostin/18)" = 5 3 [P costpr/ 1)

jE€Exp pEB7
where B; = {1,5,7,9,11,13,17, 19, 23, 25, 27, 29, 31,35}, and for j > 18 we define 9] by
Y] = 477 Then with & = e™/18,
1 p byit 4
/w (u+u)de(u) = o Z 18|72 (WP + T ~P)™. (7.12)
pEB?
Now for any p € By, 4P is a 36" root of unity, but not a root of unity of lower order,

except for p = 9, 27, in which case @ is also a 4'" root of unity. Since |} |? # |42, clearly
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we cannot write the summation in (7.12) as an integral using the uniform measure over
36" roots of unity. With o as in (7.11), we have
a(@) = 18y¥P* — 0.4076, for p=1,17,19, 35,
W) = 18JyF|* — 2.7057, for p = 5,13,23,31,
) = 18[¢7|* +0.1133, for p = 7,11, 25, 29,
) = 18JyP|? — 4, for p = 9,27.

of

o

o

Since a(uP) — 18|¢}|? also takes different values for certain p € By, and for any p € By,
P is a 36 root of unity, but not a root of unity of lower order, the summation in (7.12)
cannot be written as an integral using the measure ad;g either. So we see that the spectral
measure for E; is not cyclotomic.

For Fg the exponents are 1, 7, 11, 13, 17, 19, 23, 29. The eigenvectors for Eg are given
in [5, (B.12)]. In particular,

1/2
plo= ¢ = (2/(15(3+\/5)+\/15(130+58\/5))) ,

Pl = 9B = (2/(15(3 —VB) + \/15(130 - 58\/5))) 1/2,
oo gl = (2/(15(3 +V5) — \/15(130+ 58V/5)) 1/2,
B o= yl" = (2/(15(3 —V5) — \/15(130 - 58\/5))) 1/2.
Then
/T Y(u+u)de(u) = j;;p |41 12(2 cos(jm/30))™ = % ;)GZB:S 30[wP* (@ + @)™, (7.13)

where & = e™/*°, Bg = {1,7,11,13,17,19, 23,29, 31, 37,41, 43. 47,49, 53,59}, and for j >
30 we define ¥ by ¢ = ¢/, We have

a(w’) = 30|¥P|> — 0.4038, for p = 1,29, 31,59,
(@) = 30J9%|* — 3.5135, for p = 7,23,37, 53,
a(@) = 30|y%)? — 2.0511, for p = 11, 19,41, 49,
(@) = 30|9¥|* — 4.5316, for p = 13,17,43,47.

Now for all p € Bg, uP is a 60" root of unity, but not a root of unity of lower order. By
similar considerations as in the case of E;, we see that the summation in (7.13) cannot
be written as an integral using the uniform measure d3y or the measure ads, either. So

we see that the spectral measure for Eg is not cyclotomic.
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*
3

Figure 7.5: Affine Dynkin diagrams D,(,l), n=4,5,...

7.4 Spectral measures for finite subgroups of SU(2)

The McKay correspondence [86] associates to every finite subgroup I' of SU(2) an affine
Dynkin diagram Gr given by the fusion graph of the fundamental representation p acting
on the irreducible representations of I'. These affine Dynkin diagrams are illustrated in
Figures 7.4-7.6, where * denotes the identity representation. Hence there is associated to
each finite subgroup of SU(2) the corresponding (non-affine) ADFE Dynkin diagram G,
which is obtained from the affine diagram by deleting the vertex x and all edges attached
to it. This correspondence is shown in the following table. The second column indicates

the type of the associated modular invariant.

*

E(en s E(7') 7|

Figure 7.6: Affine Dynkin diagrams Eél), E§1) and Eél)
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Dynkin Diagram G | Type Subgroup I' C SU(2) IT'| = order of T’
A 1 cyclic, Z;4, [+1
Doy | binary dihedral, BDy, = Qox_2 8k — 8
Doy II binary dihedral, BDyk 1 = Qak_1 8k -4
E¢ 1 binary tetrahedral, BT = BA, 24
E, II binary octahedral, BO = BS; 48
Eg 1 binary icosahedral, Bl = BAs 120

It was shown in [71] that for any finite group I' the S-matrix, which simultaneously
diagonalizes the representations of I', can be written in terms of the characters x;(I';)
of I' evaluated on the conjugacy classes I'; of I', Si; = /IT]xi(T;)/V/IT]. Let N, be
the fundamental representation matrix of the fusion rules of the irreducible characters of
I'. Then by the Verlinde formula (1.11), the eigenvalues of N, are given by ratios of the
S-matrix, o(N,) = {S,,;/Sp0li = 1,...,p}, where p is the number of conjugacy classes
and p is the fundamental representation of G. Now

VIRV _ o
\/E'_IXp(FO)/\/m Sl

since x,(To) = 1. Then any eigenvalue of I can be written as x,(g9) = Tr(p(g)), where g

is any element of I';.

The elements y; in (7.7) are then given by y; = So; = \/|TjIx0(T;)/VIT| = VIT51/VITI-
Then the m*® moment ¢, is given by

m = / 2™ du(z) = Z IIFI ()™ (7.14)
We define an inverse ®~! : [-2,2] — T of the map ® given in (7.5) by
O (z) = (z +1iV4 — 12)/2, (7.15)

for z € [-2,2]. Then the spectral measure of I" (over T) is given by

19 T
/1/) (u+u"t)de(u) = Z |F| Xo(L'5)) + -1 (x,(T;))™. (7.16)
The generating series of the moments G(z) = ) ~° 1 ¢n2™, is
G(z) = ZZ Ll X,(T;)™ Z IT| ! (7.17)
moﬂm 1 T= 2x,(T5)°
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T 1| (r0)? 0%, j=1,...,n=3| 71 TO
Tyl 1 1 2 n—2|n-2
x,(L';) € [-2,2] 2| -2 g+ 0 0
=@ (T,) €T 1] 1 ¢ i | i
n— j n— 3(n—2)
g c [0, 1] 0 2(n—-22) m'_Lg) Z(T—%) 4(n-2)

Table 7.1: Character table for BD,,. Here & = e™/("~2),

7.4.1 Cyclic Group Zs,

Suppose I' is the cyclic subgroup Z,, of SU(2), which has McKay graph Ag,) Then
IT'| = 2n, and each element of the group is a separate conjugacy class. Now x,(I';) =

W+ U9 € [~2,2], where % = e™/", for each j = 1,...,2n. Then by (7.14)

2n

[ ot w ) = Y- 5@+ 79 = [ u)m dua

Jj=1

Hence the spectral measure for ASY (over T) is de(u) = dnu, as in [3, Theorem 2.1].

7.4.2 Binary Dihedral Group BD,

Let ' be the binary dihedral group BD,, = (o, 7|72 = 0™ = (70)?), which has McKay
graph DY, Then || = 4(n — 2). The character table for BD, is given in Table 7.1. Let
u = em™/* ™2 and U(j) = (@ + % 9)™. Then by (7.14)

/T (u + u=Y)de (u)

1 1 =2 (UG)+UEn-2-3)
- 4(n-2)U(0)+4(71—2)(]("_2)4"1,=1 4(n-——2)< 2 )
U= 2)/2)+ 5V Gn =272

2n-3
1 1 ~i i 1, . ~ ~ ~
= 5 E 5(,1__25(11’] +u—])m+z((u(n—Z)/2+u—(n—2)/2)m+(uS(n—2)/2+u—3(n—2)/2)m)
j=0

1
- —/(u+u—l)m dn_2u+1/(u+u-l)m (6 +6.2),
2 /7 4 Jr

where 4, is the Dirac measure at w € T. Then the spectral measure for D¢V (over T) is
de(u) = ld u~+ 1((5 +4_;)
(. 1"—2’11—2 4\t —i)y

as given in [3, Theorem 4.1].
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T 1|-1|7| p TS Ty o

|T; ] 111 1]6 4 4 4 4

x0(l'j) € [-2,2] 2|1-210 1 -1 -1 1
e2mif — q)—l(xp(rj)) eTll 1] =114 1+;/§i -1+2\/§i —14;/51' 1+%/§i

6€0.1] Ol wmlwl o | % | w | %

Table 7.2: Character table for the binary tetrahedral group BT.

7.4.3 Binary Tetrahedral Group BT

Let I" be the binary tetrahedral group BT, which has McKay graph Eél). It has order 24,
and is generated by BDy = (0, 7) and pu:

i 0 0 1 1 e’ €’
g = ) T = ) = 7 !
0 —i ~1 0 =\ e ¢

where ¢ = €2™/8. The orders of the group elements o, 7, i are 2, 4, 6 respectively. The
character table for BT is given in Table 7.2. Let & = €*"/!? and U(j) = (W + u~7)™.
Then by (7.14),

/1/1(u+u"l)de(u)
T
1 1 6 4 4 4 4
- = il > il ZU@) + — ~U(10).
24U(0)+ 24U(6)+ 24U(3)+ 24U(2)+ 24U( ) + 24U(8)+ 24U(10)
For the 6 roots of unity we have a/(eP™/¢)—1/2 = —1/2, p = 0,6, and a(eP™/6)~1/2 = 1,
p=2,4,8,10, where « is given in (7.11). Then since U(3) = U(9):

/ Y(u+u 1) de(u)
T

_ %(U(O) +U@) +U(6) + U(9))

+2—14(~2U(0) +4U(2) + 4U(2) — 2U(6) + 4U(8) + 4U(10))
11 ~3j | ~—3j\m : ~2i\  1\(~2] | ~—2j\m
= é-;z(u +u) +Z=;(a(u ) — 5) (@Y +u%)

= 5 et [ u) () - D

Hence the spectral measure for E{" (over T) is
de = (o — §)ds + 3do,
as given in [3, Theorem 6.1].
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L 1|-1 n p? 7| Kk |T6| K3
|T;] 111 8 8 6 | 6 |12 6
xo(T;) € [-2,2] 21 -2 1 -1 [0 |Vv2]0|—V2
e2mif — q)—l(xp(rj)) eTl 1] =1 1+£/§i —1;\/51 i 1_‘}%1 —i —\1/%-1
6 €[0,1] 0| 3% | 50 | o1 |2i|2 |2a| m

Table 7.3: Character table for the binary octahedral group BO.

7.4.4 Binary Octahedral Group BO

Let ' be the binary octahedral group BO, which has McKay graph E;l). It has order 48
and is generated by the binary tetrahedral group BT and the element  of order 8 given

by
e O
K= ,
0 ¢

where again € = /8, Its McKay graph is E§l). The character table for BO is given in
Table 7.3. Let & = €*™/24 and U(j) = (@ + @~7)™. Then by (7.14)

/ Y(u + ut)de(u)
T
- v+ Lua t o U(4) ‘o 8 2U®+ o U(6) ‘o U( V+ 2pag + 8
- 48 48 48 48
For the 8 roots of unity we have a(e””/g) - 1/2 = —1/2, for p = 0,12, a(eP™/%) —1/2 =
1/2, for p = 3,9,15,21, and o(eP™/®) — 1/2 = 3/2, for p = 6,18, where « is given in

(7.11). Then since U(j) =U(24 —j), j =1,...,12, we have

/zﬁ (u + u')de(u)

(U(O) +U(4) +U(8) + U(12) + U(16) + U(20))

2U(9).

+4—8(—3U(0) +3U(3) + 9U(6) + 3U(9) — 3U(12) + 3U(15) + 9U(18) + 3U(21))

/T(u +u™H)™ dau + /(u +u ™)™ (a(u) — 1)dsu.

Oslb—‘

+ Y™ 4 Z(a(a3i) D@ + %)™

N = I\DIP—‘

Hence the spectral measure for E'7 (1) (over T) is
de = (a - %)d,; + %dg,
as given in [3, Theorem 6.1].
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T; 1|-1] o0 | o® || o* | 7| o%r ks

|T;] 1|1 12 12 12 12 | 30 20 20

x,(T;) € [-2,2] 2| =2 |\pt | —p |p | -ut| 0| -1 1
e = x,([;)eT | 1| -1|vt —v= v | —vt | i %ﬁ 1+§/§i
AN DI N

Table 7.4: Character table for the binary icosahedral group BI. Here u* = (1 £ /5)/2,
v = (1++/5+iV10 F 2/5)/4.

7.4.5 Binary Icosahedral Group B/

Let ' be the binary icosahedral group BI, which has McKay graph Eél). It has order
120, and is generated by o, 7:

-3 0 1 et—ec e2-¢&3
o= y T = —= ’
0 —¢2 VE\ g2 -8 gt
where ¢ = e2mi/5

. The orders of the group elements o, 7 are 10, 4 respectively. The
character table for BI is given in Table 7.4. Let & = ¢?™/120 and U(j) = (@ + u~7)™.

Then by (7.14)

1 1 12 12 12
-1 d e —_— R _ R
/Tw(u+u )de(u) 120U(O)—i— 12 U(60) + 120U(12)—f— 120U(96)-+- 120U(36)

12 30 20 20
+E‘6U(72) + 'i“Q-OU(30) + *1—2—0[](40) + 1_26(](20)
For the 12'" roots of unity we have a(e?™/6)—1/2 = —1/2, for p = 0,6, a(e?™/%)—1/2 = 1,
for p = 2,4,8,10, a(e!™/®) — 1/2 = 3/2, for p = 3,9, and «a(eP™/®) — 1/2 = 0, for
p=1,5,7,11, where « is given in (7.11). Then since U(j) = U(120 — j), j = 1,...,60,
we have
/ W+ ude(w) = oo (U(0) + U(12) + U(24) + U(36) + U(48) + U(60)
T
+U(72) + U(84) + U(96) + U(108))
1
+m( — 5U(0) + 10U/(20) + 15U(30) + 10U/(40) — 5U(60)
+10U(80) + 15U/(90) + 10U/(100))

9 11
— %Z 116(1712]' + ﬁ-—le)m + Z(a(ﬂwj) _ %)(ﬂle + a’—le)m
=0 i=0
1
= 3 /(u +u™H™ dsu + /(u +u™)™ (afu) - 1)dsu.
T T
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Hence the spectral measure for Eél) (over T) is
de = (o — 3)ds + 3ds,

as given in [3, Theorem 6.1].

7.5 Hilbert Series of dimensions of ADE models.

We now compare various polynomials related to ADFE models.

7.5.1 T-Series

We begin first with the T-series of Banica and Bisch [3]. Let G now be any bipartite graph
with norm < 2, that is, its adjacency matrix A has norm < 2. These are the subgroups
of SU(2), with McKay graphs given by the affine Dynkin diagrams, and the modules and
subgroups of SU(2), which have McKay graphs given by the ADE Dynkin diagrams.
The generating series S(g) of the moments of the spectral measure ex (over T) for A is

given by

S(q)z/ = dea(u).

1—qu
T

Let A(G) be the path algebra for G, with initial vertex the distinguished vertex
which has lowest Perron-Frobenius weight. The Hilbert series (also called the Poincaré

series in some literature)
f(z) = dim(A(G))2* (7.18)
k=0

of G is the generating function counting the numbers [y, of loops of length 2k on G, from
the vertex  to itself, f(z) = Y o, l2k2"®. The Hilbert series f measures the dimension of
the algebra at level k in the Bratteli diagram. If G is the principal graph of a subfactor
N C M, the series f measures the dimensions of the higher relative commutants, giving

an invariant of the subfactor N C M. We define another function fby
~ -1
flz)=¢ ((1 -4 ) . (7.19)

Then f(2) = ¢(1 + 224 + 2A% + 22A% + ... ) = 3% [A"],..z"/2. Since G is bipartite,
there are no paths of odd length from * to *, and so [A%**!],, =0for k=0,1,.... Then

f(2) = Y7 0[A%], .2F = f(2). Then it is easily seen from (7.3) and (7.19) that f(22) is

equal to the Stieltjes transform o(z) of ua.

255



Suppose P is the (A;-)planar algebra for a subfactor N C M with Jones index [M :
N] < 4 and principal graph G. If dim(P;f) = 1, the Hilbert series f(z) is identical to the

Hilbert series ®p(z) which gives the dimension of the planar algebra P:

Op(2) = 7 (dim(Py") + dim(Fy)) + »_ dim(P;)2.

=1

N =

As a Temperley-Lieb module, P decomposes into a sum of irreducible Temperley-Lieb
modules, with the multiplicity of the irreducible module of lowest weight k given by the

non-negative integer ai. Jones [63] then defined the series © by

Or(g) = Z a;q’.
=0
It was shown in [3, Prop. 1.2] that ©(¢2) = 25(q) + q® — 1. The series ©(q) is essentially
obtained from the Hilbert series f(z) in (7.18) by the change of variables. More explicitly,
in [3], ©(q) is given in terms of f(z) by:

_ l1-¢g q
e(q)”q+1+qf((1+q>2>'

Banica and Bisch then introduced their T series, which is defined for any Dynkin
diagram (and affine Dynkin diagram) by
25(¢'/?) 1
l-gq

in order to compute the spectral measures for the Dynkin diagrams (and affine Dynkin

T(q) =

)

diagrams) of type E. In terms of the Hilbert series f, we have

_O(g)-q 1 q
o) = 1—gq _1+qf((1+Q)2>'

We can define a generalized T series ﬁj by

~ 1 = q
T(q) = 1Jrqf <(1+q)2>, (7.20)

where the matrix f(z) = (1 — Z%Ax)_l, and [f(z)]ij counts paths from ¢ to j. Then
J(2) = ¢(f(2)) and
T(g) = »(T(q)). (7.21)
Since (1+¢2)?/¢? = (g + q~1)* = [212, we can write 7(g?) as T(¢%) = J([21;2)/(1 + ).
The T series for the exceptional graphs Eg, F; and Eg and their affine versions are
computed in [3]. Let T}, Tj(l) denote the T series for the Dynkin diagrams Ej;, affine

Dynkin diagram EJ(-I) respectively. The T series are given by:
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(1-¢%(1-¢% ™ _ 1+ ¢°
-

= 0o g -0 )
(1-¢°)(1-¢") o 1+4¢°

= o= = A ma—oy

T (1-¢"1—-¢")(1—q"®) e 1+ g%

1-¢°)(1-¢°)(1—-g%) " (1-¢%(1-q")

7.5.2 Kostant Polynomials

We now introduce a polynomial for subgroups of SU(2) which is related to the T-series
defined in Section 7.5.1. The precise relation between the two polynomials will be given
later in Theorem 7.5.1. For a subgroup I' C SU(2) and an irreducible representation -y of
I, the Kostant polynomial F), counts the multiplicity of v in (j), the j 4+ 1-dimensional
irreducible representation of SU(2) restricted to I'. The Kostant polynomial F., is given
by

F‘Y(t) = Z((])”y,)I‘ tj,
=0

where ((j),7)r is the multiplicity of v in (j). Let F(t) = 3272 ¢/(j) = 3=, F5(t)y. Then
we obtain the recursion formulae

o0

Fye(1) = Y RByel) = > #@Hed)

=0

= Le-veu+) - ¢ +OF(0) - =,

where id is the identity representation of I'. Evaluating this polynomial by taking its

character on conjugation classes I'; of I" we obtain [56]:

T4 x5(T)
Fy(t)=) R (7.22)

The explicit result was worked out by Kostant in [75], where he showed that the polyno-

mials F,(t) have the simple form

F\(t) = = :”)((tl) —) (7.23)

where a, b are positive integers which satisfy a + b = h + 2 and ab = 2|I'|, where h is the
Coxeter number of the Dynkin diagram G, and 2,(t) is now a finite polynomial which we

will reproduce below. The values of a, b are:
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Dynkin Diagram G h a,b
A I+1 ] 2, 1+1
D, 20—-2 14,2l -4
Eg 12 6, 8
E; 18 8, 12
Esg 30 12, 20

The Kostant polynomial is related to subfactors realizing the ADE modular invariants
in [34, §3.3]. Let * label the trivial representation of I'. By the argument of changing the
t-vertex [33] it may be assumed that the subfactor N C M realizing the ADE modular
invariant has the (-vertex on the vertex which would join the extended vertex * of the affine
Dynkin diagram Gy. For all DE cases there is a natural bijection between (equivalence
classes of) non-trivial irreducible representations of I' and M-N sectors [t\;], since the
irreducible representations label the vertices of the DFE graph, as do the sectors [t);]. Let
p denote the fundamental representation of I'. Denoting the M-N morphism associated
to the irreducible representation v # * by @, (so ¢ = @,), it was shown in [34] that the

polynomials p., defined by

p,(t) — l+qk+2,
k

p,(t) = Z(amb/\jﬂjﬂ,
i=0

are equal to the numerators z,(t) of the Kostant polynomial F,(t), and consequently
Fy(8) = py()/9(t), where Q(t) = (1+ £)p. () — tp,(0).

It was shown by McKay in [87] that the finite polynomials z,(t) also arise by calculating
weights associated to the vertices of so-called semi-affine Dynkin diagrams. The semi-
affine Dynkin diagrams are given by the affine Dynkin diagrams where the edges attached
to the affine vertex * are now oriented edges, directed towards the affine vertex. Let n, =1
be a weight attached to vertex *. Then to each other vertex ¢ of the semi-affine diagram
we attach a weight n; satisfying sn; = ) n; where the summation is over all vertices
J such that there is an edge from ¢ to j. The weights are quotients of polynomials, so
we re-normalize the weights to remove the denominator. Making the change of variable
s = {+¢7!, and re-normalizing so that n, = 1+ th, the weights n; give the numerators
z(t).

For the distinguished vertex *, z,(t) = 1 + t" for each of the affine Dynkin diagrams.
For A;, the numerators z;(t) are given by z(t) =t +t"* i=1,...,I. From Kostant

[75], for the exceptional graphs, the numerators z;(t) are
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#(t) = '+ a(t) = *41¢%,
2(t) = C+t+tT+ 1, z(t) = +¢7 +1 4+,
z3(t) = 2444218 418 419, z3(t) = t1 418 418 4 120 4412 41
zt) = B+ +t7+1¢, z4(t) = B+ +t7+ 260 + 1 + 13 4 18,
z(t) = th+18, z5(t) = 24+t + 3 4+ 10 4412 41,
2(t) = t+°+¢T+¢, z(t) = t+t"+t" + 7,

z(t) = ++010+ 1

Es -

2(t) = t+t+ 19+ 1%,

zg(t) _ t2+t10+t12+t18+t20+t28,

z(t) = L4+ H B+ 11+ 2 7

zg(t) = "+ 8+t M 10 18 420 22 4%
z(t) = 15 4 7 4 10 4 410 4 413 4 g5 417 4419 4 421 4 428 4 425
ze(t) = 04+ 4+ 12 1 4 16 1 18 122 4 2,

z7(t) = tT+tP 417+ %,

2g(t) = (8410 4414 4 16 4 420 4 g2

Notice that the Kostant polynomial F,(t) for the graphs E,, n = 6,7,8, is just the
T-series T,sl)(tz) of Section 7.5.1 for the affine graphs W n=6,78 (see Theorem 7.5.1

(iii)).

7.5.3 Molien Series

Another related polynomial is the Molien series. Let I' be a finite subgroup of SU(N)
as above. For: = 0,1,..., let M; be a representation of I with dim M; < oo, and let
M = @;2, M;. With v an irreducible representation of I', the Molien series Py, of M is
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defined in [50] b

o0

Puy(t) = Z(Miﬁ)r t,

=0
and counts the multiplicity (M;,y)r of v in M.

Let CN denote the dual vector space of CV, and denote by S = @, S*(CV) the
symmetric algebra of CN over C, where S*(CV) is the k™ symmetric product of CV.
Let p be the fundamental representation of I' and p its conjugate representation, let
{po =1id, p1 = p, p2, ..., ps} be the irreducible representations of I and ; be the character

of pj for j =0,1,...,s. Then we have Molien’s formula for Ps,,(t) given as [50]:

P Z x,(g
S0t 0] £ det(1 - (9)8)’

Let Ry be the sum of the representations of SU(/N) with Dynkin labels A1, A, ..., Av-1)
such that Ay +---+ Aw-1) =k, and R = @i, Rk. Then in this notation, Pg., recovers

the Kostant polynomial F),, where 7 is an irreducible representation of I':

Pr,(t) = i(&-,y)p t = F,(t,t,...,1). (7.24)

=0

Since there is only one Dynkin label A for any representation of SU(2), Ry = (k), the

(k + 1)-dimensional representation of SU(2), for each k. Then by (7.24) the Molien series

Pr(t) for a subgroup I' C SU(2) is equal to the Kostant polynomial F,(t). From Section

1.3.1, the k*" symmetric product of C? gives the irreducible level k representation, so that
R = S for SU(2), and Ps,(t) = F,(t).

7.5.4 Hilbert Series of Pre-projective Algebras

Finally, we introduce another related polynomial, the Hilbert series H(t), which counts
the dimensions of pre-projective algebras for the ADE and affine Dynkin diagrams. Let
G be any (oriented or unoriented) graph, and let CG be the algebra with basis given by
the paths in G, where paths may begin at any vertex of G. Multiplication of two paths
a, b is given by concatenation of paths a - b (or simply ab), where ab is defined to be
zero if r(a) # s(b). Note that the algebra CG is not the path algebra A(G) for G in the
usual operator algebraic meaning. Let [CG, CG] denote the subspace of CG spanned by all
commutators of the form ab—ba, for a,b € CG. If a, b are paths in CG such that r(a) = s(b)
but r(b) # s(b), then ab — ba = ab, so in the quotient CG/[CG, CG] the path ab will be
zero. Then any non-cyclic path, i.e. any path a such that r(a) # s(a), will be zero in
CG/[CG,CG]. If a = ajay - - - ax is a cyclic path in CG, then ajay---ar —aga; - - ax_1 =0
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in CG/[CG,Cg], so ajay - - - ax is identified with axa; - - - ax_;. Similarly, a = a;jay - - ax is
identified with every cyclic permutation of the edges a;, j =1,..., k. So the commutator
quotient CG/[CG, CG] may be identified, up to cyclic permutation of the arrows, with the
vector space spanned by cyclic paths in G.

The pre-projective algebra II of a finite unoriented graph G is defined as the quotient
of CG by the two-sided ideal generated by

0=>_0r,

where the summation is over all vertices i and edges o of G such that ¢ is an endpoint
for o, and 67 € CG is defined to be the loop of length two starting and ending at vertex
i formed by going along the edge ¢ and back again. So the pre-projective algebra is the
quotient algebra under relations ¢, and any closed loop of length 2 on G is identified with
a linear combination of all the other closed loops of length 2 on G which have the same
initial vertex. In the language of planar algebras for bipartite graphs (see Section 6.5.1),
this is closely related to taking the (complement of the) kernel of the insertion operators
given by the cups and caps.

For a graph G without any closed loops of length one, i.e. edges from a vertex to itself,
the pre-projective algebra II has the following description as a quotient of a path algebra
by a two-sided ideal generated by derivatives of a potential . We fix an orientation for
the edges of G, and form the double G of G, where for each (oriented) edge v we add the
reverse edge 7 which has s(7) = r(7), 7(¥) = s(v). We define a potential ® by & = 37,
where the summation is over all edges of G. Let v17s - - - vx be any closed loop of length
k in CG/[CG,CG], k > 1. We define derivatives 8; : CG/[CG,CG] — CG for each vertex
i € Ug of G by 0;i(my2: - v) = Zj YiYi+1* YY1+ Yj-1, where the summation is over
all 1 < j < k such that s(v;) = i. Then on paths v§ € CG/[CG,CG], we have

vy if s(v) =1,
a(yy) =4 ¥y ifr(v) =1, ,

0 otherwise.

and I1 = CG/(8,® : i € Vg). For any graph G and potential ®, Bocklandt {14, Theorem
3.2] showed that if A(CG,®) is Calabi-Yau of dimension 2 then A(CG,®) is the pre-
projective algebra of a non-Dynkin quiver.

We can define the Hilbert series for A(CG, @) as

o0
Ha(t) =) HEt*,
k=0
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where the HJ’F,- are matrices which count the dimension of the subspace {i - a - jla €
A(CG, @)}, where A(CG, @) is the subspace of A(CG, ®) of all paths of length k, and 1,
j are paths in A(CG, @), corresponding to vertices of G.

Let ¢ € C\ {0}. If ¢ = %1 or ¢ not a root of unity, the tensor category C, of
representations of the quantum group SU(2), has a complete set {L,}2, of simple objects
of C4, where L, is the deformation of the (s + 1)-dimensional representation of SU(2),

which satisfy the tensor product decomposition

r+$
L,®L~ P L. (7.25)

t=|r—sj
t=r+s mod 2

If g is an nth

root of unity, C, is the semisimple subquotient of the category of represen-
tations of SU(2),. In this case, the set {L,}*%~? is the complete set of simple objects of
Cq, where L is again the deformation of the (s+ 1)-dimensional representation of SU(2),
and h(q) is n when n is odd and n/2 when n is even. These simple objects satisfy the

tensor product decomposition

k
LL~ P L, (7.26)
=t omodz
where
_ r+s ifr+s<h(q) -1,
2h(q) —4—-r—s ifr+s>h(q) —1.

Semisimple module categories over C, where classified in [32]. A semisimple C;-module
category D is abelian, and is equivalent to the category of I-graded vector spaces My,
where [ is the set of isomorphism classes of simple objects of D. The structure of a
C, category on M, is the same as a tensor functor F : C;, — Fun(Mj, M), where
Fun(Mj, M) = M4 is the category of additive functors from M; to itself. When
q = £1 or q is not a root of unity, by [32, Theorem 2.5], such functors are classified by
the following data:

e a collection of finite dimensional vector spaces V;;, i,j € I,

e a collection of non-degenerate bilinear forms E;; : Vi; ® V;; — C, subject to the
condition, Y. Tr(Ey;(E];)™') = —g— ¢, foreach i € I.

When ¢ is a root of unity there is an extra condition given in [32], due to the fact that C,

is now a quotient of the tensor category whose objects are V™ m € N.
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Let A be the matrix given by A;; = dimV;; (= dimVj; since E;; is non-degenerate).
The quantum McKay correspondence gives a graph with adjacency matrix A and vertex
set I. The free algebra T in C, generated by the self-dual object V' = L, maps to the
path algebra of the McKay graph under the functor F' : C; — Mj.;. Let S be the
quotient of T by the two-sided ideal J generated by the image of 1 = Ly under the map
198 Yoy ey ®V, where ¢ is any choice of isomorphism from V to its conjugate
representation V. In the classical situation, ¢ = 1, S is the algebra of polynomials in two
commuting variables. More generally, S is called the g-symmetric algebra, or the algebra
of functions on the quantum plane. The structure of these algebras is well known, see
for example [67]. Applying the functor F to S gives an algebra N=F (S) which is the
quotient of the path algebra with respect to the two-sided ideal F(J). Then given any
arbitrary connected graph G, there exists a particular value of ¢ and choice of C;-module
category D such that II is equal to the pre-projective algebra II of G [83, Lemma 2.2].

th

When q is not a root of unity, the m"" graded component of the g-symmetric algebra

S is given by S(m) = L, for m € N. Then by the fusion rules given in (7.25),
Ll (034 Lm jad Lm—l ® Lm+1. (727)

Then summing (7.27) over all m € N, with a grading t™, gives tL; ® S = t2S ® S © L.
Applying the functor F' one obtains a recursion tAH (t) = H(t) + t2H(t) — 1, where A is
the adjacency matrix of the (quantum) McKay graph G. Then we obtain the following

result [83, Theorem 2.3a]:
1

H(t) = 1—At+2

(7.28)

For an ADET graph G, q is an ntP root of unity, and h(g) = h is the Coxeter number of
G. The mth graded component is given by S(m) = L,, for 0 <m < h—2, and S(m) =0
for m > h — 1. Defining 5§ = SO t"(Ly-2® S) ® t2M(Lh—2 ® L ® S) O - - -, the fusion
rules (7.26) give the recursion L; ® §(m) ~ §(m -1)® §(m +1). Applying the functor F
gives 1+ "F(Ly_o) +tAH(t) = H(t) +t*H(t), where the matrix P = F(L;_,). Then for
the Dynkin diagrams (and the graph Tad,,), there is a ‘correction’ term in the numerator,

so that (83, Theorem 2.3bj:
1+ Pth
Hit)= —"""
® 1-At+1¢?’
where P is a permutation corresponding to some involution of the vertices of the graph.
Since Ly o ® Lp_g =~ Lo, P2 = F(Lp_o ® Ly_3) = F(1) so P? is the identity matrix. The
matrix P is an automorphism of the underlying graph [83]; for A,, Dy,y1, Eg it is the

unique nontrivial involution, while for Dy,, E7, Fg (and Tad,) it is the identity matrix,
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i.e. the matrix P corresponds to the Nakayama permutation 7 for the ADE graph [31].
A Nakayama automorphism of II is an automorphism v of edges for which there exists
an element b of the dual II* of IT such that ba = V(a)’(; for all a € II. The Nakayama
automorphism is related to the Nakayama permutation by v(a) = €¢(a)7r(a) for all edges
a of the Dynkin quiver, where ¢(a) € {£1}. For these graphs the pre-projective algebra
is finite dimensional, and we have [83, Cor. 2.4]
dimIl = MR+ D1
6

where r is the rank, i.e. the number of vertices of the Dynkin diagram.

For a class of graphs called star graphs, which consist of n A-tails (or rays) of lengths
p1,-..,Pn attached to a central vertex i., one can define the spherical subalgebra II;,;,
of II to be IL;,;, = 4. - II - ¢,, the algebra of all paths in II beginning and ending at the
central vertex i,. One can define a grading of II; ;, by setting the degree of the loops
given by any edge from i, and its reverse edge to be one. If h(t) is the Hilbert series of
the subalgebra II; ;, with respect to the above grading and the star graph is not of ADE
type, then h(t) = (1+¢—>_._,(t —tP?)/(1 — tP=))~!. If the star graph is of DE type then
B(t) = (14— S0, (= ) /(1 — t72)) 1 (1 + 14/2).

In the case where the star graph is the McKay graph for a subgroup I' C SU(2), the
algebra II;,;, has the presentation II; ;, = alg(z,y, 2|z® = y® = 2° = 2+ y + z = 0), where
a, b, c denote the lengths of the rays on the McKay graph. Here z is identified with the
loop of length one (due to the grading) from 4, to the adjacent vertex along the ray of
length a, and back again. Similarly y and z are identified with loops of length one from
ix. The dimension of II;,;, is given by dimlII; ;, = |T'|/2.

We now present the following result which relates these various polynomials:

Theorem 7.5.1 LetT be a finite subgroup of SU(2) so that Gr is one of the affine Dynkin
diagrams, with the vertices of Gr labelled by the irreducible representations v of ', with
the distinguished vertex x labelled by id. Let G(z) be the generating series of the moments
for finite subgroups of SU(2) in (7.17), T be the generalized T series defined in Section
7.5.1, and let P,, F., be the Molien series, Kostant polynomial respectively of I'. Then for
the Hilbert series H of Gr as in (7.28), the following hold:

(i) T(t?) = H(t),
(”) Hmid(t) = Pv(t) = F‘y(t))
(ii1) T(t*) = Hiaua(t) = Pa(t) = Fa(t) = 532G ()
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Proof.

(i) From (7.20) we have

@) = 1 7 t2 1 1 B 1
T4+ \Q4+2)2) T 142 1-t(1+2) 1A 1+ - tA
= H(t).

(ii) By [50, Cor. 2.4 (ii)], for the symmetric algebra S = S(C?), P,, = Ps,,, satisfies

S

D ARy Py, (1) = (L + 17 Py () — 1716,

j=0
where v1,...,7, are the irreducible representations associated with the vertices

1,...,s of Gr. Then multiplying through by ¢ we obtain

]

> [1 - Art 4187, Psy,(t) = big.

=0
From (7.28) we see that the matrix (1 — Art + 1t2) is invertible, and hence by the

definition of matrix multiplication, we see that

P(t) = [(1 — Art+182)” ]

‘yld

which is the first equality. The second was shown in Section 7.5.3.

(iii) The first equality follows from (7.21), and the next two are immediate from (ii).

For the last equality, using (7.22) we have

IT; xo(T5) T 1
O = ST < RS T

1 t
B 1+t2G(1+t2>'

7.6 SU(3) Case

We will now consider the case of SU(3). We no longer have self-adjoint operators, but
are in the more general setting of normal operators, whose moments are given by (7.1).
We will first consider the fixed point algebra of @y M3 under the action of the group T?
to obtain the spectral measure for the infinite graph which we call A, We will then

generalize the method presented in Section 7.3 to the case of SU(3) graphs.
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7.6.1 Spectral measure for A(s

We first consider the fixed point algebra of @y M; under the action of the group T?. Let
p be the fundamental representation of SU(3), so that the restriction of p to T? is given
by
wy 0 0
(ple2)(wi,w2) =] 0 wy? 0 , (7.29)
0 0 wy AN
for (w;,w;) € T2
Let {X(1.02) }rirzeNs {F(A102) }ara0ez be the irreducible characters of SU(3), T? re-
spectively, where if x(x, ;) is the character of a representation 7 then x(,,) is the
character of the conjugate representation 7 of w. The trivial character of SU(3) is
X(0.0)» X(1,0) is the character of p, and o, x,)(p.q) = (p*,¢?), for A\, X2 € Z. If o
is the restriction of x(1,0) to T?, we have o = o1,0) + 0(0,-1) + 0(-1,1) (by (7.29)), and
OO (A1 A2) = O(A+1,0) T T(A0a=1) + T —1,041), for any A;, Ay € Z. So the representation
graph of T? is identified with the infinite graph A(>)s  illustrated in Figure 7.7, whose
vertices are labelled by pairs (\;, A2) € Z?2, and which has an edge from vertex (A1, A2) to
the vertices (A; + 1, A2), (A1, A2 — 1) and (\; — 1, Ay + 1). The 6 in the notation .A(s is
to indicate that for this graph we are taking six infinities, one in each of the directions
given by *e;, i = 1,2,3, where the vectors e; are as in Section 1.3.1. We choose the
distinguished vertex to be * = (0,0). Hence (Qy M3)T2 > A(As),

NAL \on

(-1,0) (0,0 1,0

- \/1-D

Figure 7.7: The infinite graph ,A()s,

We define a normal operator vz in £3(Z) @ ¢#(Z) by vz =s®1+1®s ' +s5 1 ®s,
where s is again the bilateral shift on ¢2(Z). Let @ ® Q be the vector (d;0); ® (8;0):-
Then vy is identified with the adjacency matrix A of A, where we regard the vector
Q ® Q as corresponding to the vertex (0,0) of A and the operators s® 1, s™! ® s,

1 ® s~! as corresponding to an edge on A% in the direction of the vectors ej, ez, e3
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respectively. Then (s ® s7%2)(Q ® Q) corresponds to the vertex (A;, Ay) of A for
any A;, A2 € Z, and applying vZv7* (2 ® Q) gives a vector y = (y,,zy)) in 2 (Als),
where y(x, ,) gives the number of paths of length m +n from (0, 0) to the vertex (A1, Az),
where m edges are on A and n edges are on the reverse graph m . The relation
(1®s (s !'®s)(s®1) =s's®s s =1® 1 corresponds to the fact that traveling
along edges in directions e; followed by e; and then ez forms a closed loop, and similarly
for any permutations of 1 ® s7}, s7' ® s, s® 1.

Define a state ¢ on C*(vz) by ¢(+) = (Q®Q, - (2 ® Q)). When m # n mod 3 it
is impossible for there to be a closed loop of length m + n beginning and ending at the
vertex (0,0), with the first m edges are on .A(®)¢ and the next n edges are on the reverse
graph m Hence ¢(vZvy*) = 0 for m # n mod 3. We use the notation (a,b,c)! to

denote the multinomial coefficient (a + b + ¢)!/(alblc!). For m = n mod 3, we have

p(vFvyt) = Z (k1 koym — ky — k)W (Ui, la,m — 1y — 1) (8™ ® s™)

0<kq+ko<m
0<iy+ig<n

= Y (ki kem—ky— k)l lo,n— Iy = 1) 6,0 610,

0<ky +hkg<m
0<i}+13<n

where
r1=2k1+k2—2ll—12+n—m, r2=2l2+l1—-2k2—k1+m—n. (730)

Then we get a non-zero contribution when l; = k; +r, ly = ky + r, where n = m + 3r,

r € Z. So we obtain

pvgvyt) = Z(kl, ka,m — ki — ko)W (ky + 1, ke +1,m 41 — ky — ko)! (7.31)

k1,k2
where the summation is over all non-negative integers k;, k; such that max(0, —r) <

k1. ko < min(m, m + 2r) and k; + k2 < min(m, m + r).

Proposition 7.6.1 The dimension of the m'™ level of the path algebra for the infinite
graph A% is given by

dim ((®’"M3)T2> = dim(A(A),, Z c¥(cry?

Proof

When m = n we have

pvZvy") = Z ((ky, kg, m — Ky = ky)1)?

0<ki+ka<m
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m m-—k;

= Z Z (kl‘kg'(m ky — kz)')

=0 ko=
i ( m! )”‘i( (m — ky)! )2
B = \kil(m — k)l 2= \kol(m — ky — ky)!
m— k] m
— Z(C Z Clrcr;—kl)Z _ Z( )2 2(m— kl)’
k2=0 k1=0
where we have used (7.4) in the last equality. O

Since the spectrum o(s) of s is T, the spectrum o(vz) of vz is the set D = {w; +
wy ' + wylwy| wy,wy € T}, the closure of the interior of a three-cusp hypocycloid called a

deltoid; see Figure 7.8. Any point in ® can be parameterized by
z = r(2cos(2nt) + cos(4wt)), y = r(2sin(2nt) — sin(4nt)), (7.32)

where 0 <r <1,0<t <1, with r =1 corresponding to the boundary of D.

A
3 emr/.\

3 e-i 2r/3

Figure 7.8: The set ®, the closure of the interior of a deltoid.

Thus the support of the probability measure pu,, is contained in ®. There is a map
® : T? - D from the torus to D given by

D(wy,wy) = wy +wy ! +wilw,, (7.33)

where wy,w, € T.
Let G denote the subgroup of GL(2,Z) generated by the matrices T3, T3, of orders 2,
3 respectively, given by

T3=<0 —1>, T2=( 0 _1), (7.34)
1 -1 ~1 0
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which is isomorphic to the permutation group S;. Then ®(w,,ws) is invariant under the

action of G given by T(wy,ws) = (W' w3, wi*wy?), for T = (a;) € G, ie.

®(wy,wa) = O(wr, wiwy ) = B(wy !, wiws?) = B(w; !, wit) = S(wy wy, wit) = &(wi wa, wa).

Any G-invariant probability measure € on T? produces a probability measure u on D

by means of the map ®:
/ Y(z)du(z) = /2 Ywy + wy! + wilwy)de (w1, wa),
D T
for any continuous function ¢ : ® — C, where de(w,ws) = de(g(wi,w2)) for all g € G.

Theorem 7.6.2 The spectral measure de(wy,ws) (on T?) for the graph A is given by

the uniform Lebesgue measure
de(wy, wy) = dwy dws. (7.35)

Proof

With this measure we have

2(wl +wy! +wilwe) ™ (Wit + wa + wiwy ) dwy dws
T

= kl,k‘g,m — kl - k2 ! ll,lz,n — ll — lz)' w”w”dwl dw2
) 1 %2
T

0<k1+ko<m
0<l)+l3<n

= Y (knkam—k — k)l lan— 1 = 1)! 6, 0 6ry0,

0<ky+ka<m
0<ly+l3<n

where 71, 72 are as in (7.30). This is equal to p(vZvy*) given in (7.31). d

The quotient T?/Z3, where the Z3 action is given by left multiplication by 73 is a
two-sphere S? with three singular points corresponding to the points (1, 1), (e27/3, e4™/3),
(e™/3,e?™/3) in T? [42). Under the Z? action given by left multiplication by T; on this
two-sphere, we obtain a disc with three singular points, which is topologically equal to
the deltoid ®. The boundaries of the deltoid © are given by the lines §; = 1 — 0,
6, = 26, and 20, = 6,. The diagonal §; = 6, in T? is mapped to the real interval
[-1,3] C D. The mapping of the ‘horizontal’ lines on T? between points (e27™/12  g2min/12)
and (emi(m+1)/12 2min/12) "and the ‘vertical’ lines on T? between points (e2™™/12 g2min/12)
and (e?mm/12 g2mi(n+1)/12) "onto D, for 0 < m,n < 11, is illustrated in Figure 7.9.

Thus the quotient T?/G is topologically equal to the set ®. A fundamental domain

C of T? under the action of the group G is illustrated in Figure 7.10, where the axes are
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Figure 7.9: Mapping T2 onto the deltoid X).

0,

Figure 7.10: A fundamental domain C of T2/G.

labelled by the parameters 9\, Q in (e27n0l, ¢2xx@®) G T2. The boundaries ofC map to the
boundaries of the deltoid X). The torus T2 contains six copies of C.

We will now determine the spectral measure fivz over X). Now

I + U1+ Qi *T P2 172 Mndcdi dbJ2
J12
= 6/ @i+ +WIDN( 1+ @+ 2 Dockg 2
c
= ¢ J{emior + e-27ic2 + e2ZM(2-0i))m”e-27r:01 + id + A

where the last integral is over the values of 0i, (> such that (e2it" ,e2n°2) GC. Under the
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change of variable z = €201 4 e~27i02 4 2mi(02-61)  we have

t = Re(z) = cos(276;) + cos(2mb;) + cos(2m (6, — b)),
y = Im(z) = sin(2760;) — sin(276;) + sin(27(6, — 64)).

Then
./T2 (w1 4wyt + wilwy )™ (Wit + wy + wiwy ) dw; dws
6 /D (@ + i)™ (z + iy)"|J-|dz dy, (7.36)
where the Jacobian J = det(9(z,y)/0(0:, 62)) is the determinant of the Jacobian matrix

8(z,y) [ 0z/06, 0x/d6,
9(61, 62) dy/08, 0y/, |

Computing the partial derivatives:

g; = 27 (sin(27 (6, — 6,)) — sin(276,)), ng = —27(sin(276,) + sin(27 (0, — 6,))),
2
887‘1! = 27(cos(270;) + cos(2w (6, — 61))), % = 2m(cos(27m (62 — 61)) — cos(276y)),
1 2

we find that the Jacobian J = J(6:,6,) is given by

J(0,,0,) = 4n*(sin(27(6, — 6,)) cos(2m(0y — 6,)) — sin(276;) cos(27 (8, — 6;))
—sin(2n (62 — 0;)) cos(2762) + sin(276;) cos(2ml,) + sin(2m6,) cos(276;)
— sin(276;) cos(2m (0, — 61)) + sin(27(6; — 6;)) cos(276;)
—sin(27(02 — 6,)) cos(27m(62 — 61)))
= 47*(sin(27(0; + 02)) — sin(27(26; — 6,)) — sin(27(20, — 61))). (7.37)

The Jacobian is real and vanishes on the boundary of the deltoid ©. For the values of
61, 62 such that (2™, ¢?"2) are in the interior of the fundamental domain C illustrated
in Figure 7.10, the value of J is always negative. In fact, restricting to any one of the
fundamental domains shown in Figure 7.10, the sign of J is constant. It is negative over
three of the fundamental domains, and positive over the remaining three. The Jacobian
J (61, 65) is illustrated in Figure 7.11. When evaluating J at a point in 2z € D, we pull back
z to T2, However, there are six possibilities for (w;,ws) € T? such that ®(w;,ws) = z,
one in each of the fundamental domains of T? in Figure 7.10. Thus over D, J is only
determined up to a sign. To obtain a positive measure over © we take the absolute value
|J| of the Jacobian in the integral (7.36).
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Figure 7.11: The Jacobian J.

Writing Uj = e2nl0j,j = 1,2, J is given in terms ofwi,” € 1 by,

J(cli,u?2) 42 Im(ujiug2 —

—2B7BiulUR2 —  ~rr2 *—A 1122 ¥'a1 Av2 —  an2 b2 N (7.38)

Since

(asia;z — w2 —cjfias + cjiugt2)2
= —6 42@JjCk ‘b () *HMNir2 AbM1r2 *br1 #r2 et 2”2)
23 @G T G2D 2 *~b 172 *~br1 *2)
+(c2thh T Wj2G2 "' 1~2 A*bM1r2 A~b 262'D M2)°
the square of the Jacobian is invariant under the action of G. Since z, z are alsoinvariant

under G, J2 can be written in terms of z, z, and we obtain J(z, z)2 = 4m4(2718zz +

4z3 4- 423 —z222) for z GD. Since J is real, J> > 0. Then

NN = 2t02\/27 - 18zz + 4z3 + 423 - 7222

= 2ttav/27 - 18(x2+ y2) + 8z(Gr2 - 3y2) - (x2+ y2)2, (7.39)

where the expression under the square root is always real and non-negative since J: is,
and by )~" we mean the positive square root. Alternatively, in terms of the parameters

r, t given in (7.32) we can write |Jl as
[J(r, Y\ = 272a/(1 - r)((5 + 4 cos(67r€))2r3 —9(7 + 8 cos(67rt))r2 + 27r + 27).  (7.40)
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We have thus obtained the following expressions for the Jacobian J:

J(61,0;,) = 4n*(sin(2m(6; + 6,)) — sin(2m(26; — 6)) — sin(27(20, — 61))),
J(wi,wy) = —2r%(wiwy — wilwy ! — Wiy +witwy — witwd + wiws?),
|J(2,2)| = 2n°V/27 — 1827 + 423 + 43° — 2222,
|J(z,y)] = 2m%\/27 — 18(z + y2) + 8x(2? — 3y?) — (a2 + ¢?)?,
|J(r,t)] = 27*/(1 —r)((5+ 4 cos(6mt))2r3 — 9(7 + 8 cos(6mt))r2 + 27r + 27),

where 0< 0,6, <1, w,uwr €T, z=2x4+iyeDand 0 <r <1,0<t <1 Again, the
positive value of the square root is meant in the last three expressions.

We have shown the following:

Theorem 7.6.3 The spectral measure p,, (over ®) for the graph A is

3
71227 — 1827 + 428 + 47° — 2277

dz, (7.41)

6
dﬂv (Z) = dz
g /]
where dz := dRez dlmz denotes the Lebesgue measure on C.

To summarize the situation for the fixed point algebra under the action of T2, we have

obtained the following identifications

k
dim(A(A)%),) = dim((®kM3)T) = Zij(CJ’-‘)"’ = @(Jvz|*)

i / |Z|2k 1
™ Jp V27 — 1827 + 423 + 47° — 2232

dz.

7.6.2 Spectral measure for A()

We now consider the fixed point algebra under the action of the group SU(3). The
characters of SU(3) satisfy X(1,00X(\.02) = X(a+1,02) T X(A.ha-1) + X(M-1,35+1), fOT any
A1, A2 > 0, where x(x-1y = 0 for all A > 0. So the representation graph of SU(3) is
identified with the infinite graph A illustrated in Figure 1.7, with distinguished vertex
= (0,0). Hence (®, M3) V® = A(AC),

Let us define a normal operator vy on ¢?(N) ® ¢2(N) by

ow=1®1+10" +1I*®|, (7.42)

where [ is again the unilateral shift on ¢2(N). If we regard the element Q ® Q as corre-

sponding to the apex vertex (0, 0), and the operators [®1, [*®![, 1®!* as corresponding to
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the vectors ey, ez, e3 on A then (IM ® (I*)*2)(Q ® ) corresponds to the vertex (A1, Az)
of A for A1, Ay > 0. We see that vy is identified with the adjacency matrix A 4 of
A and v (Q ® Q) gives a vector y = (y(a,,ag)) in £2(A)), where y(x,.»,) gives the
number of paths of length m + n from (0,0) to the vertex (A;, A2), where m edges are
on A and n edges are on the reverse graph A, The relation (I*® - )(Q® -) =0
corresponds to the fact that there are no edges in the direction —e; from a vertex (0, Ap)
on the boundary of A X; > 0, and similarly (- ® I*)(- ® Q) = 0 corresponds to
there being no edges in the direction e; from a vertex (A;,0), A; > 0. The relation
(1MP*el)(®l) =" l®l*l =1®]1 again corresponds to the fact that travelling along
edges in directions e; followed by e, and then ez forms a closed loop, and similarly for
any permutations of 1 ® I*, [* ® [, [ ® 1, but now the product will be 0 along one of the
boundaries A; = 0 or A, = 0 for certain of the permutations, but 1 everywhere else.

The vector Q ® Q is cyclic in £2(N) ® ¢£2(N). We can show this by induction. Suppose
any vector [¥1Q ® I%2Q € £2(N) ® ¢2(N), such that k; + k; < p, can be written as a linear
combination of elements of the form vV (2 ®) where m+n < p. This is certainly true
when p = 1since vy (Q2Q0Q) = (IQ1+1Q1*+1*®1) (N®N) = IN®N and vy (NSN) = QRIQ.
For j =0,1,...,p, we have uy(P7Q @ I’Q) = IPIHQQUQ + IPIQQ P10+ P70 ®
PU*1Q. Then IP3H1IQ @ 190 = uvy(P7Q Q@ Q) — PIQ @ 1971Q — P771Q ® 17+1Q, and
PIHIQQIQ, for j = 0,1,...,p, can be written as a linear combination of elements of the
form VU (2 Q) where m+n < p+ 1. Since also Q®IPHQ = v} (AR IPQ) - IN®IP71Q,
then every [¥1Q ® I¥2Q), such that k; + k; < p+ 1, can be written as a linear combination
of elements of the form vyu* (2 ® Q) where m +n < p+ 1. Then C*(un)(R® Q) =
*(N) ® ¢3(N).

We define a state ¢ on C*(un) by ¢(-) = (Q®Q, - (2 ®Q)). Suppose p(r*z) =0 for
some x € C*(vy). Then z(2 ® ) = 0. Since vy is normal, C*(vy) is abelian, and hence
rC*(un)(2® Q) = C*(uy)z(Q®N) = 0, so that zy(R®N) = 0 for all y € C*(vy). Then
z(¢%(N) ® £2(N)) = 0 since Q ® Q is cyclic, giving = 0. Then ¢ is faithful.

The moments p(vvy') are all zero if m —n # 0 mod 3, and for m = n mod 3, the

first few moments are given by

() = 1,
elonvy) = o@D +¢( @D+l +o(lI* @1*) + p(1 I*]) + p(I ® (I")?)
+o((I")?RD) +p(* @)+ (Il U*) = (1) = 1,
pR) = pleI) = 1,
puy) = eI®Il) = 1,
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o) = 1RV +¢(*l®1)
plvyvy) = ¢luwvy) = 3,

p(v}) = p§) = 5,

e(v3vR) = 6.

The moments p(vFv) count the number of paths of length m+n on the SU(3) graph
A starting from the apex vertex (0,0), with the first m edges on A and the other
n edges on the reverse graph Al Let A’ (A®)),. ., be the algebra of all pairs (n1,72)
of paths from (0,0) such that r(m;) = r(n2), |[m| = m and |n2] = n. Then we define the
general path algebra A'(A®) for the graph A to be A'(A) = @, A'(A))pn.
Then @(vuit) gives the dimension of the m,n'* level A’(A(),, . of the general path
algebra A’(A(). In particular, p(vvi™) for m = n gives the dimension of the m'" level
of the path algebra for graph A ie. p(vPvim™) = dim(A(A®)),,).

The moments p(vjvy') have a realization in terms of a higher dimensional analogue of
Catalan paths: Let E = {f1, fo, f3} be the set of vectors f; = (1,1,0), fo = (1,-1,1), f3=
(1,0,—1) € Z3, which are illustrated in Figure 7.12. These vectors correspond to the
vectors e; above, 1 = 1,2, 3.

(0.1,0) ©.LD
h0) (1L.LD

ﬁ = (0.0,1) /1; = \ f; =

(0.0.0)

(1.00) (1.0.h

Figure 7.12: The vectors f; € Z3,i=1,2,3.

We define the conjugate f of a vector f € E by (1,y,2z) = (1,—y, —2), and let
E = {f,,f4 f3}. Let L be the sublattice of Z* given by all points with non-negative
co-ordinates. Then define ¢, , to be the number of paths of length m +n in L, starting
from (0,0, 0) and ending at (m + n,0,0), where m edges are of the form of a vector from
E and n edges are of the form of a vector from E. Then p(vv}i) = ¢man, and for m = n,
P(VRVN") = Cmm = dim(A(A(oo))m)'

We now consider the probability measure p,, on D for the normal element vy. Since
¢ is a faithful state, by [111, Remark 2.3.2] the support of u,, is equal to the spectrum
o(vn) of uy. Consider the exact sequence 0 — K — C*(vy) — C*(uny)/K — 0, where
K = K(¢*(N) ® £3(N)) c B(¢*(N) ® ¢>(N)) are the compact operators. Let 7 : B(¢*(N) ®
?(N)) — B(#2(N) ® £2(N))/K be the quotient map. The resolvent p(vy) of vy is a
subset of p(m(vy)) since for any A € p(A), applying 7 to (uy — A\)b = 1, for some
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b € B(£2(N) ® £2(N)), gives (r(vy) — A\)w(b) = 1. Then o(vn) D o(n(vn)). Now 7(vy) =
u®1+4+1®u*+u*®u where u is a unitary which has spectrum T, so that the spectrum
of m(vy) is given by a(m(vn)) = {w1 + wy ' + wilws| wi,we € T} =D. Then o(vy) C D.

Consider the measure de(w;,w2) on T? given by

de(wy, wa) J (w1, ws)?dw, dw,

1
2474
1
= —g(wlwg + wiwy 2+ witwy — witwy ! — Wiyt — witw?)? dw; dws (7.43)

on T?, where dw; is the uniform Lebesgue measure on T, j = 1,2. We will prove in the
next section that this is the spectral measure (over T?) of vy, so that o(vy) = D. With

this measure we have

1
- - -1 -1
—= | (W Fwit oyt w) M (wit + we + wiwy )
6 Jro

X (wywy + wiwy 2 4 wilwy — wilwy ! = Wiyt — witlw?)? dw, dw,

1
= 5 > ((kl,kz,m——kl—kg)!(ll,l2,n—l1—l2)!

0<ky +ky<m
0<i+12<n

-1 - -1, 2
x/ Wi (wiws + wiws 2 4+ wiwy — wilwy ! — wiwg ! — wilw?)? dw, dw2>
2

1
= -2 2 ((kl,kz,m—kl—/@)(ll,lz,n—ll—tz) Yor 0z

ay,a2 0<k) +ky<m
0<l;+l3<n

x/ wittMwizte? du,y dwz),
']I‘?

where 7, 7o are as in (7.30), and the summation is over all integers a;, as such that
(a1,a2) € T = {(A1,22)] A1 = Adgmod 3,|A1 + Ao| < 4,|M| +|X2] £ 6}. Theset T
is the set of all pairs (a;,ap) of exponents of wi'wy? that appear in the expansion of
(wiwa + wiwy? + wilwy — wilwy! — Wiyt — wilwd)?,

corresponding coefficients. Let b, = (2a; + a2)/3 and by, = (a; + 2a;)/3. The m,n'h

and the integers 7,, o, are the

moment for the measure de(w,ws) is zero if m # 0 mod 3, and for n = m + 3r, r € Z,

the m, n'* moment is given by
1
~6Zvahaz(kl,kz,m—kl—kg)! (k1+7+b1, ka7 — by, m+71—by +by— ky — ko)! (7.44)
ky.ko
aj,ag

where the summation is over all a;,as € Z such that (a;,a3) € T, and all non-negative

integers kq, ky such that

max(0, -7 — b)) < ki < min(m,m+ 2r — b) (7.45)
max(0, —7 + b)) <k < min(m,m + 2r + by) (7.46)
ki +ky < min(m,m+7r — by + by). (7.47)
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As in (7.36), under the change of variables w; +w; ' +wy 'wy = z, the spectral measure

Uy (2) is given by
6 1

= ] 240

Then to summarize the situation for the fixed point algebra under the action of SU(3),

1
dﬂvN(Z) J2 dz=m|.]! dz.

we have obtained the following identifications

dim(A(A)) = dim ((8°Ms)™®) = p(jun[*)

1
= _Z—F/ |z|2’“\/27 — 1827 + 423 + 423 — 22722 d2.
D

7.7 Spectral measures for ADE graphs via nimreps

Let Ag be the adjacency matrix of a finite graph G with s vertices, such that Ag is normal.
The m,n'™ moment [ z™2z"du(z) is given by (AZ(Ag) 1, e1), where e; is the basis vector

in £%(G) corresponding to the distinguished vertex x of G. For convenience we will use the

notation
Ron(wi,wa) i= (w1 +wy' + wilwa)™ (Wit + we + wiwy )™, (7.48)
so that [, Rma(wy, wo)de(wr,ws) = [ 2m2%du(z) = (AF(Ag) e, e1).
Let & be the eigenvalues of G, with corresponding eigenvectors z7, j = 1,...,s.

Then as for SU(2), A} = UAF(AL)"U*, where Ag = diag(8*,6%,...,0°) and U =

(r',2%,...,2°%), so that
Rpn(wi,wo)de(wr,w2) = (UAG(AZ)"U ey, er) = (AZ(AZ)"U ey, U er)
']I‘2

= ) _(B)™(B) "yl (7.49)
j=1
where y; = x{ is the first entry of the eigenvector z7.
For a finite ADE graph G with Coxeter exponents Exp, its eigenvalues ") are ratios
of the S-matrix given by (1.27) for A € Exp, with corresponding eigenvectors (¥})acu(g)-
Then (7.49) becomes

/ Bnl(wr,wp)de(wy,wg) = S (B0)™ (@) |2, (7.50)
T2 A€Exp

where * is the distinguished vertex of G with lowest Perron-Frobenius weight.
Before we compute the spectral measure for the graphs A®, AY* | > 4, and DBk,

k > 2, we briefly remark about the relation between the generalized T-series defined
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in (7.20) and the SU(3) ADE graphs. For the 0l-part Gy of a finite three-colourable
SU(3) ADE graph G, we have T(t2) = H(t), where H(t) is the Hilbert series for the pre-
projective algebra of the bipartite graph Go; (this follows in the same way as the proof of
part (i) of Theorem 7.5.1). If G has a flat connection, then by the comments at the end
of Section 6.3 it is expected that the Hilbert series f for Gy, counts the dimensions of the

higher relative commutants for the subfactor with principal graph Gy;.

7.7.1 Graphs AY, | < oo.

The distinguished vertex * of the graph A® is the apex vertex (0,0). Its eigenvalues 3™
are given in (1.27), with corresponding eigenvectors 1,/);} = S, where the S-matrix for
SU(3) at level k =1 — 3 is [45]:

Sap
= \/‘g [exp(f(%lul + Nty + Xapty + 2X545)) + exp(§(Ngpy — ANypy + 2X 5 — Agpy))
+exp(E(Njpy — Mgy — 20ou1 — Ajp)) — exp(E(—2X u5 — Njp) — Ajpy — 2X541))
— exp(§(2X1p + A + Aoy — Aapt)) — exp(§(Mipg — Ay + Mgy + 2/\2u2))]
(7.51)

where £ = —2mi/3l, A = (A1, A2), = (1, p12), and Ny = \j + 1, p = p; + 1, for j = 1,2,
Then 1} is found by setting x4 = (0,0) in (7.51), giving

Soma = T [exp( LLLIFSVIRESY )) +exp< o 3x2)) + exp (-%(—:ng))
—exp (——;’l—z(-sxg - 3,\’2)) — exp (——(3)\ )) — exp ( 2mi (3/\’)>]

- = [sm (2 (A + 1)) +sin (27”(A2 + 1)) _sin <2T(/\1 e+ 2))} (7.52)

= 2f 77 (Qu 220 +3)/3L (20 + X2 +3)/31), (7.53)

where in (7.53) 6; = (A\;+2)\2+3)/3l and 8, = (2A;+X2+3) /31, so that (A1 +1)/] = 26,6,
and (/\2 + 1)/[ = 261 - 02.

Since the S-matrix is symmetric, we also have w,’} = Sy, so that the Perron-Frobenius

eigenvector 1% has entries 1[1,(\0’0) given by (7.52). Since the S-matrix is unitary, the
eigenvector 1(®® has norm 1. Recall that the Perron-Frobenius eigenvector for A®) can
also be written as (1.28), with n = I, where ¢(®%) has norm > 1. In fact, ¢(*9 has norm
1v/3(8sin(27/1) sin?(7 /1)), so that @9 = 8sin(27/l) sin®(7/l) $(*9/1\/3. Then using
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the expression for S, given in (7.53),

— 27 ,,(0,0)
J(01,62) = —2V/3n lw(l(202—01)—1,l(201—02)—1)

8 . . (0,0)

V3
= —167*sin((20; — 6;)7) sin((26; — 6,)7) sin((6; + 62)7),

so that the Jacobian J(6;,6;) can also be written as a product of sine functions. From

this form for J we see that the expression for J(w;,ws) in (7.38) factorizes as
J(wr,wg) = —2r%i(u ud — wyug?) (Wiug ! — ulug) (uaug — uytuyt),

where u; = w;’? and uy = wy/? take their values in {9 0< 0 <7}
We now compute the spectral measure for A®. The exponents of AY are all the
vertices of AV ie. Exp = {(A1,A2)] A1,A2 > 0; A\ + Ay < [ —3}. Then summing

over all (A, A2) € Exp corresponds to summing over all (61, 6,) € {(¢1/3!, g2/3!)| 1,92 =
0.1..... 3l — 1}, such that 6; + 6, = 0 mod 3 and

202—91 = (/\1+1)/l Z l/l, 291—62 = (/\2+l)/l Z 1/l,
6, +60, = M+X+2)/l < (I-1/1 = 1-1/L.

Let L, 0,) be the set of all such (6;,6,), and let C; be the set of all (w;,w2) € T,
where w; = €™, j = 1,2, such that (61,62) € L, ¢, It is easy to check that g™ =
w1 4+ wy b + wilwy. Using (7.50),

/T  Ronalion,w2)de(, 02) (7.54)

= o 3 (B EE) (@0 + da +8)/31, (1 + 2y + 3)/31)
A€Exp

Z (w1 4wyt + wilws)™ (Wit + wy + wywy )"

(w1,w2)€C)

1
312
X (wiwy + wiwy ? 4+ wilws — wilws ! — Wiyt — witw?)?. (7.55)

If we let C be the limit of C; as [ — oo, then C is a fundamental domain of T? under
the action of the group G, illustrated in Figure 7.10. Since J = 0 along the boundary of
C, which is mapped to the boundary of D under the map ® : T?> — D, we can take the
summation in (7.55) to be over (w;,w;) € C. Since J? is invariant under the action of G,

we have
/2 Rpn(wi, wo)de(wy, w2)
T
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11 _ _ ms - -
- 6302 Z (w1+w21+w11w2) (w11+w2+w1w21)n

(w1,w2)ED;

- -2 -1 - ~1_ -1 2y2
X (wiws + wiwy ? + wilwy — wilwy ! — Wiwg ! — wilws)?, (7.56)
where

D, = {(e*m /3 2ma/3y e T2| g, g, =0,1,...,3l — 1;¢, + g2 = 0 mod 3} (7.57)

is the image of C; under the action of G. The number ﬁl(f\)t of such pairs in the interior of a

fundamental domain C can be seen to be equal to n¥ = (I —2)(I — 1)/2, where n® is the
number of vertices of A®, whilst the number § of such pairs along the boundary of C is
nl+3) —n® = [(1+1)({+2) - ({ —2)({ —1)]/2 = 3I. Then the total number of such pairs
over the whole of T2 is |D;| = 64"} + 3:1§;) — 6 since we count the interior of C six times
but only count its boundary three times. The vertices at the corners of the boundary of
C are overcounted twice each, hence the term —6. So |D;| = 3(1 —2)(I —1) + 9! — 6 = 3!,

and we have

/ . R n(wr, wo)de(wy, w2)
T
11

= <y L rturl Fere) w4+ o)
t (w1,w2)ED;

-2 -2 -1 -1 _ . 2 —1_ -1 22
X(wiwe + wiwy © + wy “we — wy wy — wiw,  — wy ws)*,
1
~1 — — —
= 5 (Wi +wyt 4+ wilwy)™ (Wi + we + wiwy )™
T2

1 2

- - -1 - - -1 22 4
X (Wiwe + wiwy 2 + wiws — wilwy! — Wiyt — witwsd) d® (w1, ws),

where d® is the uniform measure over all pairs (w1,wz) € D;. Then we have proved the

following:
Theorem 7.7.1 The spectral measure of AY (over T?) is given by

J(wl,w2)2d(l)(w1,w2). (758)

1
de(wy, ws) = oY

We can now easily deduce the spectral measure of A(>®) claimed in Section 7.6.2.
Letting [ — oo, the measure d¥)(w;,w,) becomes the uniform Lebesgue measure dw; dw,

on T2. Thus we have:
Theorem 7.7.2 The spectral measure of A (over T?) is

de(wl y (/J2) = J(wl, w2)2dw1 dUJz, (759)

1
2474
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where dw is the uniform Lebesgue measure over T. Over D, the spectral measure pyy(2)

of A is

1
Aoy (2) = 5 V27 — 1827 + 423 + 473 — 2222 dz. (7.60)

Remark: Gepner [46] proved that this is the measure required to make the polynomials

S.(2,%), defined in Section 5.1.1 for vertices u of A®) orthogonal, i.e.

L/ S,(2,2)8,(2,2) V2T — 1822 + 423 + 42° — 2222 dz = §,,,.
271'2 T2

Then in particular, the dimension of the n'! level of the path algebra for .A(™) is given
by (7.44) with m = n (i.e. 7 = 0), or equivalently by the integral [ |z|*"dp.(2) with
measure given by (7.60).

The dimension of the irreducible representation 7, of the Hecke algebra H,(q), labelled
by a Young diagram A = (p;,p2,n — p; — p2) with at most 3 rows, is given by the

determinantal formula (see e.g. [107]):

1/p:! 1/(p1 + 1)! 1/(p1 +2)!
dim(my) = n! 1/(p2 — 1)! 1/po! 1/(p2 + 1)! , (7.61)
1n—pi—p2=2)! 1/(n=p1—p2—1)! 1/(n—p1—p2)!

where 1/q! is understood to be zero if ¢ is negative. Computing the determinant in

equation (7.61), we can rewrite the right hand side as a sum of multinomial coefficients:

dim(my) = (p1,p2,n—p1 —p2)! — (p1,p2+ 1,n — p1 — py — 1)!
+(m+1pe+1,n—pr—p2—2)! = (p1 + 1,p2 — 1,n—p1 — p2)!
+(pr1+2,p2—Ln—p1—p2— 1) = (p1 + 2,p2,n — p1 — p2 — 2)(7.62)

We can also obtain another formula for the dimension of A(A®),. The number
(

c(';z‘ )y Of paths of length n on the graph A(>®) from the apex vertex (0,0) to a vertex
(A1, A2) is given in [25] as
Ar22) 7 ((n 4 201 + A2 + 6)/3)((n — A+ A2 4+ 3)/3)1((n — Ap — 2X9)/3)V

(7.63)
Then we have the following results:

Lemma 7.7.3 Let CEQ.AQ) be the number of paths of length n from (0,0) to the vertex

(A1, A2) on the graph A as given in (7.63), and let A’(A®)) be the general path algebra
defined in Section 7.6.2. Then, for fized integers m,n < oo, the following are all equal:

(1) dim(Al(A(oo))mm)’
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(2) 32 [52™7"V27T — 1827 + 423 + 42° — 227° dz,
(3) mam fw(wl + wy '+ wilwe)™ (Wi + wa 4 wiwy ) (wr, wo)?dwy dws,

(4) —%Z%l,az(kl,kz,n—kl —k2)' (kl +r+b1,k2+r—b2,m+r—b1+b2 —kl —k‘Q)!,

(m) (n)
(5) ZC,\l A2)C(A1,22)7

where in (4), n =m+3r, r € Z, by = (2a; + a2)/3, by = (a1 + 2a2)/3 and the summation
is over all a1,ay € Z such that (a;,az) € T, and all non-negative integers ki, ko which
satisfy (7.45)-(7.47). The summation in (5) is over all 0 < A, Ay < min(m, n) such that
A1+ A2 <min(m,n) and m = n = A\ + 2X2 mod 3.

Proof
The identities (1) = (2) = (3) = (4) were shown above. The other identity (1) = (5) is
trivial since the dimension of A’(.A),, . is equal to the number of pairs of paths (with

lengths m, n respectively) which begin at (0,0) and end at the same vertex of A, O

Corollary 7.7.4 Let f,g?)m be the sum of multinomial coefficients given by (7.62). Then,

in particular, for fited n < oo, the following are all equal:

(1) dim (&)™),

(2) 37 [512]"V27T — 1822 + 423 + 42° — 2222 dz,

(3) 5tz [ lwr + w3t + wi w2 J(wr, wp)? dwi dws,

(4) =5 X Vor ok, ko — k= ko)l (ky by, by = bayn = by + by = ka = k)L,
(5) 3 [,

(6) 32(c(n ap))?,

where in (4), by = (2a1+a3)/3, by = (a1 +2a3)/3 and the summation is over all a;,a; € Z
such that (ay,az) € T, and all non-negative integers ky, ko which satisfy (7.45)-(7.47).
The summation in (5) is over all 0 < py < p; < n such that n — p; < 2py, whilst the
summation in (6) is over all 0 < A1, A2 < n such that \y+X; < n andn = A\ +2X; mod 3.

Proof
The identities (1) = (2) = (3) = (4) = (6) follow from Lemma 7. 7 3. The identity (1)
= (5) follows from (7.62) and the fact that (@"M;)°Y®) = A(A( = @, mr(Hn(q)),
where the summation is again over all Young diagrams )\ with n boxes. O
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7.7.2 Graphs D™, n =0 mod 3.

The exponents of D®¥ | for integers k > 2, are the O-coloured vertices of A®K), i.e.

Exp = {(A1, A2)] A1, A2 > 0; A\p + A2 < 3k —3; Ay — A2 = 0 mod 3}, where the exponent
(k — 1,k — 1) has multiplicity three. For D®*) we have |}] = v/3S(00) for all A € Exp
except for A = (k — 1,k — 1). For this exponent however the eigenvalue S*¥) = 0,
so that this term does not contribute in (7.50). Then for A # (k — 1,k — 1), [¢}] =
J (A + 22g +3)/3L, (2A1 + Az + 3)/31) /6kn2.

Since the exponents for D®¥) are all of colour zero, under the above identification
between \;, A and 6,, 0, the exponents A correspond to all pairs (;,62) such that
6, — 6, = 0 mod 3 and (e2™¥1,e2"¥2) ¢ C. These pairs (6, 60;) are thus in fact all of the
form (p,/3k,p2/3k), for p1,ps € {1,2,...,3k — 1}. Under the action of G, these pairs
are mapped to the all the points (g1, q2) € [0, 1]? such that e?™% is a 3k*" root of unity,
for j = 1,2, except for the points the points (q;, g2) which parameterize to the boundary
of ©. However, we can again use the fact that the Jacobian is zero at the points which
parameterize to the boundary of ©.

Then by (7.50) we have

/T Rmnlon,0)de(er, 1)

_ L 1 (Nym (ZOT)n 2
= 1 3R Agp(ﬁ MY (BR)T (A1 + 2A2 +3) /3L, (2M1 + Az + 3)/31)

= 1 1 (MM R\
= 24 (3k)° g:oz(,@ NYym (B J (6, 0,)2,

where the last summation is over all (6,6,) € {(p1/3k,p2/3k)| p1,p2 = 1,2,...,3k — 1}.

Then we have obtained the following result:

Theorem 7.7.5 The spectral measure of D®¥) k > 2, (over T?) is

dG(wl,wz) = J(w1,w2)2 d3k/2w1 d3k/2w2, (7-64)

1
2474
where dagjow s the uniform measure over the 3k roots of unity.

For the limit as k — oo we simply recover the measure (7.59) for A, This is due
to the fact that taking the limit of the graph D®* as k — oo with the vertex * = (0,0)
as the distinguished vertex, we just obtain the infinite graph .A(®). In order to obtain
the infinite graph D) we must set the distinguished vertex * of DG* to be one of the
triplicated vertices (k— 1,k — 1);, ¢ = 1,2, 3 (see e.g. Figure 4.5). Then using (7.50), and

taking the limit as k — oo, we would obtain the spectral measure for D).
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7.7.3 Graphs AY* | < .

The exponents of AV* are Exp = {(j,5)| j = 0,1,...,[(! — 3)/2|}. From [44] its
eigenvectors are ¥ = 2v/[-1sin(2ma(\; + 1)/1), where A = (A\;,A;) € Exp and a =
1,2,...,1(l=1)/2], as in Figure 1.10. Then

l(l 3)/2]
Run (w1, wp)de ( wl,wz)— Z (BY)™(BGA))™ sin®(2m (5 + 1)/1).
T2

Since all the eigenvalues U4 of A®* are real, there is a map ®; : T — D given
by ®;(u) = u+u~! + 1 so that the eigenvalues are given by ®,(e?™U+V/) € [~1, 3] for
j=0,1,...,[(l-3)/2]}. Then the spectral measure of A"* can be written as a measure

2mifl

over T. Then with © = e*™/*, we have

(CIVCI . .
> @+ 4+ 1) sin(W)?
j=1

[yt =

For all [, sin(4°) = 0, and sin(%@’) = sin(@ — j), for | = 1,2,...,|({ — 1)/2]. If | is even,
we also must consider when j = [/2. In this case sin(4@/?) = 0. Then we can write

1
/ (utu )y rde(u) = 23 (@ 4T + 1™ sin@)? (7.65)
T l

=0
= Q/T(u +u™h 4+ 1)™" sin(u)?dyjqu,
where d, is the uniform measure over the 2p*" roots of unity. Then we have:
Theorem 7.7.6 The spectral measure of AY*, | < oo, (over T) is
de(u) = a(u)diqu, (7.66)

where dyjou is the uniform measure over the I'™® roots of unity, and « is given in (7.11).

Since (u+u! + 1)) = ' CHu + u~')}, for even | = 2k we can express the m,n'

moment as a linear combination of the moments of the Dynkin diagram Ax_;:

m+n m+n

/(u +u )™ de(u) = Z crn /(u + u™'Y 2Im(u)?dyjou = Z Cned,
where ¢ is the j** moment of Ax_;. When | — oo, the j** moment ¢/ of A, is given by
the Catalan number c;/; when j is even, and 0 when j is odd. Then for the infinite graph
Al)r

L(m+n)/2]

/(u +u™ )™ de (u) = Z Cht"cy.
T k=0
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In fact, the spectral measure for .A(®)* has semicircle distribution: Letting | — oo in

(7.65), we have the approximation of an integral

l—o00

! 1
2 ~ o~ ~ : : ,
lim i E (@ + a7 + 1)™" sin(@)? = 2/ (e*™0 4 =28 L 1)™ sin®(274)d0.
=0 0

Making the change of variable = = 2™ 4 ¢=2"0 1.1 = 2 cos(27f) + 1, we have 2sin(276) =

V4 — (z —1)?, and dz/df = —4nsin(2n0) = —271/4 — (x — 1)2. Then
1
/f"d,u,(x) = 2/ (€2 4 720 4 1)™ sin%(270)d6
0
1
= 4 /2(62”"0 + e 20 L 1)™ sin?(276)df
_'40 -1 1 3
= g/g z™/4 - (z—1)%dz = 2—7;/_1 z™\/4 — (z — 1)%dz,

which is the semicircle law centered at 1 with radius 2. Then the spectral measure (over
[-1,3]) for the infinite graph A(®)* has semicircle distribution with mean 1 and variance
1, ie. du(z) = /4 — (z — 1)2dz.

The graph A®)* has adjacency matrix A@)* = A;_; + 1, where A, is the adjacency
matrix of the Dynkin diagram A;. Hence the spectral measure for A@)* is the spectral

measure for A;_; but with a shift by one.

7.7.4 Graph £®

The spectral measures for the graphs A®, D®k) are measures of type d, x d,, J%d, x d,
d® or J2d®), for 2p € N. We will show in Section 7.8 that the spectral measures for
certain finite subgroups of SU(3) are also linear combinations of measures of these types.
However, we will now show that the spectral measure for £® is not a linear combination

of measures of these types. The exponents of £® are
Exp = {(0,0), (5,0), (0,5), (2,2),(2,1),(1,2),(3,0),(2, 3),(0,2), (0,3), (3,2), (2,0)}.

Let w = €?™/3 and A be the automorphism of order 3 on the vertices of A®) given by

A1, pi2) = (5 — py — pig, 11). For the eigenvalues SV, g(AN) = B3 and A M) =

A A

wBY, the corresponding eigenvectors are (v*,v*,v?), (v*,wv?,@wv?) and (v}, @v?, wot)

respectively, where the row vectors v* are given in [26, Table 17.3] (We normalize the
eigenvectors so that ||¢*|| = 1). Hence ¢} = wf N = 1&:‘ N for A € Exp. With 6, =

(/\1 + 2)\2 + 3)/24, 92 = (2)\1 + )\2 + 3)/24, we have
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A € Exp (6:,8:) €[0,1)? W22 | 22 J(61,62)?
(0,0), (5,0), (0,5) | (&, 5), (. 8), (B3, 8) | 5L | 3-2v2
(2,2), (1), (1L2) | Ghm), (Fom) (B &) | B2 | 3+2v2
(3,0), (2,3), (0,2) | (&, 2), (2,890, (L&) & 2
0,3), (3,2), 2,0) | (& &), (9,1, 5. 2| & 2
From (7.50),
/ Rm,n(wl,w2>da<wl,w2>=%z (B (BEON[sM 2. (7.67)
T2

9€G AeExp

Now the pairs (6y, 62) given by g(\) for A € Exp, g € G, are illustrated in Figure 7.13.
Consider the pairs (6,,0,) = (7/24,8/24), (8/24,13/24), (10/24,11/24). For each of these,
(wi,wy) = (™1 e2™%2) € T? can only be obtained in the integral in (7.67) from either
the product measure dijs X dia on pairs of 24" roots of unity, or the uniform measure
d® on the elements of Dg ((7/24,8/24), (8/24,13/24), (10/24,11/24) are each in Dg, but
none are in Dy for any integer £ < 8). Since these points (w;,w;) cannot be obtained
independently of each other, we must find a linear combination ¢’ = c;; + cpJ%e; of
measures, where ¢; must be either di; X dj2 or d® for j = 1,2 (it doesn’t matter at this
stage which of the two measures we take ¢; to be), such that the weight £’(e?"if1, e2mif2)
is (24 v/2)/24, (2— V/2)/24, 1/12 for (61, 6,) = (7/24,8/24), (8/24,13/24), (10/24, 11/24)
respectively. Suppose for now that €; = £,. Then we must find solutions ¢;, c; € C such
that

2 -2 2++2 1
2)cy = =—. (T.
T e+ (34 2V2)c, p 0 G t2=15 (768)

Solving the first two equations we obtain ¢; = ¢, = 1/48. However, substituting for these
values into the third equation we get 1/48 +2/48 = 1/16 # 1/12, hence no solution exists

c + (3 - 2\/5)02 =

to the equations (7.68), and hence the spectral measure for £® is not a linear combination
of measures of type d, x dp, Jd, x dp, dP or J2dP, for 2p € N.

7.7.5 Graph 51(12)

We will now show that the spectral measure for 81(12) is also not a linear combination of
measures of type d, X d,, J2d, x d,, d® or J2d®, for 2p € N. The exponents of £ are

Exp = {(0,0), (9,0), (0,9), (4,4), (4,1), (1,4), and twice (2,2), (5,2), (2,5)}.

Computing the first entries of the eigenvectors, we have

>

2 —

(002 _ (9,002 _ (0,9)12
PO = PO = ) o
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Figure 7.13: The points (0i,02) G {#(A)| AG Exp,# G G} for £<8).

[*{M )[» = [~ 44 ]2 = irJ1.4)[2 = 2 + v S

whilst for the repeated eigenvalues, for the exponents with multiplicity two which we will

label by (A1,A2)1, (Ai, A2)2»we have

ivw +1tfr12 = [VISD)I2+ 175222 = TtfW + 1tfF!* = P
With = (Ai 4-2A2F3)/24, 02 = (2Ai 4- A2 T 3)/24, we have
AGEXp (01, 02) G [0,1]2 ISF ~i.fe)2

) 7—4\/3
/

(0,0), (9,0), (0,9) L ) (1 =) (x 1 4
+

1
(4,4), (4,1), (L,4) (.15, (14 (o1
(2,2), (5,2), (2,5) {295 a3 (0 1Y 4

Again, from (7.50),

ﬁ 7+4V3

¥ =JE E (3%A))m(~* »)nW (A)2. (7.69)
g£.G AcExp

We illustrate the pairs (0i,02) given by #(A) for A G Exp, g G G, in Figure 7.14.
Consider the pairs (0i,02) = (4/12,7/12), (3/12,5/12). For both of these, {ful,5J2) =
(e2nt01, e2n°2) G T2 can only be obtained in the integral in (7.69) by using either the prod-
uct measure d6 x d6 or the measure <Al2) ((4/12,7/12), (3/12,5/12) are both in D12, but
neither are in Dk for any integer kK < 12). With either of these measures, we will also obtain
the point (e2AtYiz2 ?e27n6/i2" integrai (7.69). The corresponding pair (0i,02) is indi-
cated by the white circle in Figure 7.14. The point (e22n5 12, e2ms/i2 “can ajg0 onjy obtained
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/ : Vod
3 / . .
12 / - e
/ 7
ST )
ST S U |
0,

Figure 7.14: The points (6;,6,) € {g(A\)| A € Exp,g € G} for £ . The white circle
indicates is the point (5/12,6/12).

by using the measures dg x dg or d!?. Since these points (w;,ws) cannot be obtained inde-
pendently of each other, we must find a linear combination €’ = c;e; + cpJ %€, of measures,
where ¢; must be either dg x dg or d'? for j = 1,2, such that the weight ¢’(e?™*1, ¢?"2)
s (2 — v/3)/36, (2 + v/3)/36, 0 for (61,6,) = (4/12,7/12),(3/12,5/12),(5/12,6/12) re-
spectively. Suppose for now that €; = €5 (again, it doesn’t matter at this stage which of
the two measures we take €1, €2 to be). Then since J(5/12,6/12)? = 3/4, we must find
solutions ¢;, ca € C such that

+ 7 _:\/§C2 = 2 _36\/5’ ca + 7 +f\/§cz = 2 ;6\/5, c + %Cz =0. (7.70)
Solving the first two equations we obtain 4¢; = ¢; = 1/36. However, substituting for
these values into the third equation we get 1/144 + 3/144 = 1/36 # 0, hence no solution
exists to the equations (7.70), and hence the spectral measure for 81(12) is not a linear

S

combination of measures of type d, x dp, J%d, x d, dP or J2d®, for 2p € N.

7.8 Spectral measures for finite subgroups of SU(3)

The classification of finite subgroups of SU(3) was begun by Miller, Blichfeldt and Dickson
[88, Chapter XII] in 1916. Further work was done in [41, 15]. The classification was finally

completed by Yau and Yu [115] in 1993. Clearly, any finite subgroup of SU(2) is a finite
A0

1
SU(3), for any A € SU(2). These subgroups of SU(3) are called type (B). There are

three other infinite series of finite groups, called types (A), (C), (D). The groups of type

subgroup of SU(3), since we can embed SU(2) in SU(3) by sending A —
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(A) are the diagonal abelian groups, which correspond to an embedding of the two torus
T? in SU(3) given by (1.8). The groups of type (C), (D) are A(3n?), A(6n?) respectively,
which are considered in [15]. They generalize the dihedral subgroups of SU(2). There are
also eight exceptional groups (E)-(L). The complete list of finite subgroups of SU(3) is
given in Table 7.5.

Subgroup I' C SU(3) |T'| = order of T
(A): Z, x Zy, n?
(B): Groups isomorphic to finite subgroups of SU(2) -
(C): A(Bn?) =2Z, x Z,/Zs 3n?
(D): A(6n?) 6n>
(E) = 2(36 x 3) 108
(F) = =(72 x 3) 216
(G) = (216 x 3) 648
(H) = £(60) 60
(I) = £(168) 168
(J) 180
(K) 504
(L) = $(360 x 3) 1080

Table 7.5: The finite subgroups I' of SU(3).

The fundamental representation p of SU(3) corresponds to the vertex (1,0) of the
graph A(). The McKay graph Gr is the graph associated to the subgroup T, as for
SU(2) in Section 7.4. For most of the graphs Gr there is a corresponding SU(3) ADE
graph/quiver G, which is obtained from Gr by now removing more than one vertex, and
all the edges that start or end at those vertices, as well as possibly some other edges, as
was noted in [27] (to obtain the graph 8;12) from the McKay graph for (K) an extra edge
must also be inserted'). These graphs are illustrated in Figures 7.15 - 7.25. In the graph
in Figure 7.16, the three vertices at the corners of the outer triangle are identified with
the corresponding vertices of the innermost triangle. However, unlike with SU(2), for
SU(3) there is a certain mismatch between the subgroups I', with their associated McKay
graphs Gr, and the ADE graphs. The correspondence is as in Table 7.6, where we use the
same notation as Yau and Yu [115] for the subgroups (E)-(I). The notation |z] denotes

the integer part of z.
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ADE graph Type Subgroup I" C SU(3)
A®) I (A): Zp_g X Ly
A 11 -
D™ (n=0mod3)| I |(C) AB(n—3)%) =2Z,_3xZn_3/Zs
D™  (n#ZO0mod3)| II -
- - (C): A(3n?), (n #Z 0 mod 3)
- - (D): A(6n?)
D)+ 11 Z\(n+2)/2) % Z3
E® I (E) = £(36 x 3)
FAOL 11 -
gD = g2 I (F) = 2(72 x 3)
e = g1 11 (G) = £(216 x 3)
53512) - '1/7: & o123
gD = gl 11 (L) = £(360 x 3)
gid 11 (K)
8(24) —_ 5(24)t | _
- - (H) = %(60)
] - (I) = (168)
- - ()

Table 7.6: Relationship between ADE graphs and subgroups I' of SU(3).

We will now consider the spectral measure for the McKay graph Gr associated to a
finite subgroup I' € SU(3). It was shown in Section 7.4 that any eigenvalue of I" can be
written in the form x,(g9) = Tr(p(g)), where g is any element of the conjugacy class ;.

The diagonal abelian groups Z, x Z, correspond to the torus, so clearly the trace of

any element, which is the sum of its eigenvalues, will be of the form
ei01 + ei92 +6—i(01+02), (771)

for 0 < 64,0, < 27, and hence the spectrum is contained in ©. For any group isomorphic
to a finite subgroup of SU(2), the trace of any element is of the form 1+ u+u~? for some

! u € T. The generators

u € T, since the trace of any matrix in SU(2) is given by u+ u~
of the subgroups (C)-(L) of SU(3) are given in [115]. Using these, we computed the trace
of any element in the groups (C)-(L), and found that they can all be written in the form

(7.71), and hence are in D.

!'T am grateful to Jean-Bernard Zuber for pointing this connection out to me.
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o A4

Figure 7.15: Z,,_9 X Z,_5 for n = 6; vertices which have the same symbol are identified.

Figure 7.16: Z, x Z3 for p = 3. Figure 7.17: (E) = > (36 x 3)
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= ¥°(216 x 3)

Figure 7.19: (G)

57(360 x 3)

Figure 7.21: (L)

Figure 7.20: Dy ® 0123
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Figure 7.22: (H) = (60)

Figure 7.24: (J)
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Figure 7.23: (I) = }_(168)

/7

Figure 7.25: (K)



For the group SU(3) itself, the adjacency matrix A of the fusion rules is given by the
operator A = vy € B(?(N)®¢?(N)), where vy is as in (7.42). Consider the exact sequence
0— K — C*(A) — C*(A)/K — 0, where K = K(£2(N) ® £2(N)) C B(£3(N) ® ¢2(N)) are
the compact operators. Let 7 : B(¢2(N) ® ¢2(N)) — B(£*(N) ® ¢£2(N))/K be the quotient
map. The resolvent p(A) of A is a subset of p(7m(A)) since for any A € p(A), applying
7 to (A — A)b = 1, for some b € B(£?(N) ® £3(N)), gives (m(A) — A\)w(b) = 1. Then
a(A) Da(n(Ad)) =D.

So if 'is SU(3) or one of its finite subgroups, the spectrum o(A) of A is contained in D,
illustrated in Figure 7.8. Thus the support of u is contained in D, and [ ¥(2)dua(z) =
Jo¥'(2)dpa(z), where ¢ is the restriction of % to D. Since D is bounded, the spectral
measure upa is uniquely determined by its moments fD 2MZ dpna(z).

Since the S-matrix simultaneously diagonalizes the representations of I', then as

in Section 7.4 for SU(2), the elements y; in (7.49) are then given by y; = Sp; =
IT51x0(T;)//ITF = +/IT51/+/IT]. Then the m,n'™® moment ¢, , is given by

— " |T; m—n
Smpn = /zmz du(z) = Zl‘rfjl"Xp(Fj) Xp(T) - (7.72)
j=1

Let ® : T2 — D be the map defined in (7.33). We wish to compute ‘inverse’ maps
®~!: D — T2 such that ® o d~! = id. For z € D, we can write z = w; + w; ' + wy 'wy

1

and 7 = w;' + wy + wyw;!. Multiplying the first equation through by w;, we obtain

2wy = w? + wiw; ' + wy. Then we need to find solutions w; to the cubic equation

WP — 2w+ 72w -1 =0. (7.73)

Similarly, we need to find solutions w, to the cubic equation w3 — Zw? + 2wy — 1 = 0.

We see that the three solutions for w, are given by the complex conjugate of the three

solutions for w;. Solving (7.73) we obtain solutions w®), k = 0,1, 2, given by
w® = (2 + 271, P + 25 (2* — 37) P")/3,

where ¢, = €2*/3 21/3 takes a real value, and P is the cube root P = (27 — 92z + 223 +
3v3V27 — 1827 + 422 + 47% — 2222)'/3 such that P € {re?| 0 < 6 < 27/3}. For the roots

of a cubic equation that it does not matter whether the square root in P is taken to be

positive or negative. We will take it to have positive value. We notice that the Jacobian
J appears in the expression for P as the discriminant of the cubic equation (7.73). We

can define maps ®;; : ® — T? by
®r1(2) = (W®,w®),  kle{0,1,2}, (7.74)
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for z € D. Now ®(®,;(2)) # z, for k = 0,1,2, however, for the other six cases (k,! €
{0,1,2} such that k # I) we do indeed have ®o®;; = id. These six ;| (z) are the images
of ®5}(z) under the action of the group G = S;. The spectral measure of I' (over T?) can

then be taken as the average over these ®;;(2):

&n,n(wl ) w2)d5(w1 ) w2)
T2

n
= %Z Z %(w(k’j) + wh?) 4 H*I) YLD ) (k) 4 E5) 4 ED BN (7.75)

7=1 k,1e{0,1,2):
k1

where ®7!(x,(T;)) = (wk), wlta), for k,1 € {0,1,2}, k # L.

7.8.1 Group Z, X Z,

We will now compute the spectral measure for the graph Gr corresponding to the subgroup
I' = Z, x Z,. This group has the SU(3) McKay graph which is the “affine” version of
the graph A™*?. The group contains |I'| = n? elements, each of which is a separate
conjugacy class Ty, k,0 € {0,1,2,...,n — 1}. Now x,(Tx;) = &F + &;' + o7*@h € D,
where @; = €™/, j = 1,2. Then by (7.75),

nel g

/T B n(wn, wp)de (w1, ws) = ;0 (@ + "+ By @ + &+ Dy )"

k=
Theorem 7.8.1 For I" = Z, x Z,, the spectral measure of Gr on T? is given by the
product measure

de(wr, w2) = dpjowr dnjowa,

th

where d,, is the uniform measure on the 2m™" roots of unity.

7.8.2 Group A(3n?), n=0 mod 3

This group has order |T'| = 3n2. Let n = 3k, k € N. Then the group has the SU(3) McKay
graph which is the “affine” version of the graph D®*). For k,l € Z,,, let m denote the
set {(k,1),(I,—k —1),(=k — 1,k)}. The character table for A(27k?) is given in Table 7.7
([82]). Here K, is the set of all pairs {(k,!)| k,l € Z,} \ {(0,0), (n/3,2n/3), (2n/3,n/3)}
such that K, contains exactly one element from each (/k\,l/) (except for (0,0), (n/3,2n/3),
(2n/3,n/3)). There are two copies of the fundamental domain C,, (see Section 7.7) in K.

The final row in the table denotes the pair (6;, 62) given by (21, €22) = ®=1(y,(T;)).
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T; r, T, T, Tk, (k1) € Ky rj=1,...,6
L] 1 1 1 3 n%/3
x,(T;) €D 3 3w | 3T |eBE 4B LY 0
O (xp(T) €T | (1,1) | (w,@) | (@,w) (€27, i) (w, 1)
(61,6,) € [0,1) (0,0) (%’ % (3’ 3 (k, 1) (%, 0)

Table 7.7: Character table for group A(3n?), n = 0 mod 3. Here w = €?"/3,

Let @ = e?™/™ and

Qlk,l) = @+ + ™G F + &'+ TFHn. (7.76)

Then by (7.75),

,/K‘Z RY",n(wl ) w2)d€(wla UJZ)

_ 1 1 1 2 1 2 l 2/3
= WQ(O,O)+WQ(§,§)+% 2 1 Z Qk,0) + ZQ
1
= Q(O 0)+—Q(3,3)+—Q(§ D+ 33 > Q(k, 1)
k,€Zn

(k,D#(0,0),(3.%).(3. D)
6

Z kl)+ Q00,1 +9(0,2) + 3,0+ 03, 3) + 22,0 + Q. 2)).
€Z,

(@0, H+0, 3 +e3,0+00 H+20+0E2)

oo
= co!o—'
cal'-d

Then we have obtained:

Theorem 7.8.2 The spectral measure (over T2) for the group A(3n?), n =0 mod 3, is

d(1,0) T 0012 + 0w,1) + Sww) + @1 + d@w)

1
de (wl s wg) = g dn/2w1 dn/QOJ2 + 9

(7.77)

where d,, is the uniform measure over 2n'" roots of unity, w = €*™/3, and &,y is the

Dirac measure at (u,u’) € T?.

7.8.3 Group (G) = £(216 x 3)

The subgroup (G) has order 648, and its McKay graph is the “affine” version of the graph
82(12). The character table for (G) is given in Table 7.8 ([23]).
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j 1 2 3 4 5 6 7 8 9

¥ 1 1 1 12 12 12 12 12 12
Xo(l';) €D 3 V/3emi/18 /3e35mi/18
e e01P[00) D GD[GD G GD[GD GDH G
7 10 11 12 13 14 15
T 36 36 36 36 36 36
X(T) £ e
6.0 ) G i) Gd) GY God

j 16 17 18 19 20 21 | 22 | 23 | 24
Ity | 54 54 54 9 9 9 | 24 | 72 | 72
X(T;) 1 -1 0 0 0
(61.62) | 0,3) (515) (539) ] 0.3) (.8 (5:3)](03)]03)]03)

Table 7.8: Character table for group (G) = £(216 x 3). Here w = e2™/3.

Let us denote be ij the summation

£ = ZZ (9@ + &% + &% )™ (@™ + &% + &% )",
Jj=j1 g€G
where for each j, 6, 92 are given in Table 7.8, @ = €*>™/18 and the action of g € G
on (0% + &% 4 G%~%) is defined as follows. Suppose g(w%,%%) = (©P,&?). Then
g(@% + &% + G%2-01) = (TP + &9 + &97P). Then by (7.75),

) an,n(wl, w2)d5(w1, w2)
T

_ lys, 1259 36 54 9 ”
= 518> T eas™i t aas gas=w t gt g ow (178)

For j =1,2,3, &3 = Y Q(k, 1), where Q(k,!) is defined in (7.76) and the summation is
over (k,1) € {(0,0),(1/3,2/3),(2/3,1/3)}, which give the fixed points in T? under the
action of G. These are the points (k,l) such that (e2™*,e?"!) € D;/;. Let

24472472
Tio + 71z 516 +

I[de(wy, w2)] = / (w1 + w4+ witwe)™(wi ! + wa + wiwy V) de(wr, wa). (7.79)
T2

Then ¥} = 37[d*/?(w,,ws)], where d™ is again the uniform measure on the elements
of D,,. For j =4,...,9, the points (6,6,) € [0,1]? are (1/9,2/9), (1/9,5/9), (7/9,2/9),
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(@ (b) ©

/ / /

/‘ /'//‘ // /

0, //// \ ////, 9, /7 ' /,/ 0, /
///
§

/ Y /

l/"/ / //
0

0k . = S
0 $ § I 0 3 1 0 3 § 1
01 ] 6|

Figure 7.26: (a) the points {g(6;,62)|g € G} for j =4,...,9; (b) the points (;,82) such
that (261, e™%2) € Dj9; (c) the points (6;,62) such that e®% is a 3™ root of unity,
k=12

(2/9,1/9), (2/9,7/9), (5/9,1/9). Under the action of G, each of these pairs has three
images. These points are illustrated in Figure 7.26(a). We can obtain this distribu-
tion of points by taking the points (61, 0,) such that (€27, ¢e?"2) € Ds,, illustrated
in Figure 7.26(b), and then removing the points (6;,6;) such that 6, € {0,1/3,2/3},
k = 1,2, illustrated in Figure 7.26(c). Then we can write 353 = 3 aris gomitye p, L Sk D) —
S 1o Uk/3,1/3), giving 383 = 271[d®/? (wy, ws)] — 9 [ds/aw1 dajaws).

For j = 10,...,15, the points (61,6,) are (5/18,1/18), (2/18,7/18), (8/18,1/18),
(1/18,5/18), (1/18,8/18), (7/18,2/18). Under the action of G, each of these pairs has six
images, which are illustrated in Figure 7.27(a). At these points, J? = 487*. We can ob-
tain this distribution of points by taking the points (6, 8;) such that (21 e2m2) € Dj,
illustrated in Figure 7.27(b), each with the weight J? evaluated at that point. Since
the points indicated by white circles in Figure 7.27(b) map to the boundary of ©, here
J? = 0. We must then remove the points indicated by black circles in the interior
of the triangular regions in Figure 7.27(b) which are not in {g(6;,602)|]g € G}. This
can be done by removing the points (6;,60;) such that e*™% is a 6" root of unity,
for k = 1,2, illustrated in Figure 7.27(c), again with the weight J? evaluated at each
point. The value of J? at the black circles near the corners of the triangular regions
is 127%. For the points in the centre of each triangular region, the eigenvalue is zero,
therefore these points do not contribute to the summation in (7.75). Then 6X}j =
D (eank gamitye pg J 2 UK, l)/487r4-22,l=0 J2Q(k/6,1/6)/127*, and therefore for £15 we have
obtained £18 = 1081[J2 d® (w, wy)]/2887* — 361[J? daw; dsws]/72m".

For 7 = 16,17, 18, the points (6, 62) are (0,1/4), (1/12,5/12), (5/12,1/12). Under the

action of G, each of these pairs has six images, which are given by the solid black circles
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l l ] v
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L Brosg o/ /«/ / f AN ////’ ’ //
# . # . ) L// & . . . ) . # 7
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Figure 7.27: (a) the points {g(6,,6:)|g € G} for j = 10,...,15; (b) the points (6,,6,)
such that (e2"1 e2"%2) € Dj; (c) the points (8;,62) such that e?™ is a 6'* root of unity,
k=12

o /
s, . ; / // / //
\‘\\ // P - /
5 \‘\ /ﬁ///' .
</
/ A //
- / *
6, k7 / e
-/
J .
/
& // / ,.(‘/
/)’ ./'/0/ //
/ ) // . /
0 &= %
0 ? & f-’: 1

Figure 7.28: The points (6;,6,) such that (e2™1 e?m2) € D,.

in Figure 7.28. At these points, J2 = 647%. Now the points indicated by white circles in
Figure 7.28 all map to the boundary of ®, and hence the value of J? at these points is zero.
Therefore 61§ = 3= janik ganitye p, J° Ok, 1) /167%, giving Ti§ = 481[J? d® (wy, wy)] /9672
For j = 19,20, 21, the points (6, 6;) each have three images under the action of G.
The points in {g(6;,0:)|g € G} are the points (k,[) such that (e*"*,e*") € D, apart
from (k,1) € {(0,0),(1/3,2/3),(2/3,1/3)}, which give the fixed points of T? under the
action of G. So 3%3§ = 3 anik ganityep, UK, 1) — 2(62,,*)62,,,-,)6[,1/2 Qk, 1), ie. 353 =
121[dY (wy, w)] — 31[dY?P (w1, w,)]. Finally, (6,6;) = (0,1/3) for j = 22,23, 24, which
has six images under the action of G. These are the points in the interior of the triangular
regions in Figure 7.26(c) (but not the fixed points (61, 62) € {(0,0), (1/3,2/3),(2/3,1/3)}).
These points can be obtained by taking the points (8}, 6,) such that 2™ is a 3" root of
unity, for k = 1,2, with the weight J2 evaluated at each point. For the fixed points J2 = 0,
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whilst for all the other points J2 = 127*. Then 6X323 = Ei,l:o J2Q(k/3,1/3)/1274, giving
%35 = 9I[J? dsjpwy d3jows) /T2
Then (7.78) becomes

/ Ry n(wi, we)de(wr, w2)
11‘2

= 2161[d(1/2) (wla CJ2)] + El[d(3/2) (w11w2)] - -]_—gl[d;}/zwl d3/2w2]
. 2d® 1 2 1 2 (2
gl 1V 40w wa)] = e [ dson dywn] + g 1% 4P e, w2)]

I[J2 dg/gwl d3/2w2].

1 1 7
L _ L gam
+18 [d (w1, w2)] 72I[d (w1, w2)] + 5167

Thus we obtain the following result:

Theorem 7.8.3 The spectral measure (over T?) for the group (G) = £(216 x 3), is

1 1 1 1 1
de = J2d® 4 1 g24@ 4 Z6/2) 4 - q0) _ 2 40/2)
£ T B * 9674 T T8 108
I 7 5, 1
367{'4 J d3 d3 + (2167T4 ‘] 18) d3/2 d3/2a (7.80)

where dy, is the uniform measure over 2m'™ roots of unity and d™ is the uniform measure

on the points in D,,.

7.8.4 Kostant Polynomial

We briefly mention the Kostant polynomial, which can also be defined for finite subgroups

of SU(3). For v an irreducible representation of I' C SU(3), the Kostant polynomial is

Fy(t1,t2) = Z (7, o)) 11152,
A1A2
where the summation is over all A;, A2 > 0, and (7, p(a;.0,))r is the multiplicity of v in
the representation p(y,,x,) of SU(3) restricted to I, where p(x, »,) is the representation of
SU(3) with Dynkin labels (A1, A2).

For SU(2) the Kostant polynomial F, has the simple form (7.23). Does a similarly
simple form exist for the Kostant polynomial F, for SU(3)? Desmier, Sharp and Patera
[23] compute this polynomial for the groups (I) = X(168), (G) = £(216 x 3), (L) =
3(360 x 3) and G(13,3,3) = Z;2 x Zs3, where they have the form

(1 — tltz)z,y(tl, t2)
1 -)(@—)A - 5)(1 - )1 = 3)(1 - ¢5)

where 2,(¢;, {3) is a finite polynomial, and a, b, ¢ are the integers given in Table 7.9

Fy(t1,t2) =

300



Subgroup I' ¢ SU(3) a| b | ¢
(I) = £(168) 4 14

(G) = =(216 x3) | 9] 12] 18
(L) = (360 x 3) |612]30
Zaa X Zs 311316

Table 7.9: Integers a, b, ¢ for Kostant polynomial F,

7.9 Hilbert Series of g-deformations of CY-Algebras

of Dimension 3

We will now introduce the Calabi-Yau and ¢-deformed Calabi-Yau algebras of dimension
3, which are the SU(3) generalizations of the pre-projective algebras of Section 7.5.4. For
certain ADE graphs we will also compute the Hilbert series of the ¢-deformed CY-algebras
of dimension 3.

Let G be an oriented graph, and CG, [CG,Cg] be as in Section 7.5.4. We define a
derivation 9, : CG/[CG,CG] — CG by

Oa(a1---0a,) = E Qjt1° - 0py " G-,
J

where the summation is over all indices j such that a; = a. Then for a potential ® €

CG/[CG,Cg], which is some linear combination of cyclic paths in G, we define the algebra
A(CG,®) = CG/{6,9},

which is the quotient of the path algebra by the two-sided ideal generated by the elements
09,% € CG, for all edges a of G. We define the Hilbert series H4(t) as in Section 7.5.4.
If A(CG,®) is a Calabi-Yau algebra of dimensions d > 3 and deg ® = d, then

1
t) = :
)=12 Agt + AZtd-1 — ¢d

H a(

Note that since H4(t) is a formal power series in ¢, if the matrix B(t) := (1 — Agt +
AZt4! — ¢4} is not invertible then it would not be invertible if ¢ was any value in C.
However, when t = 0, B(0) is just the identity matrix, which is trivially invertible. Hence
B(t) is invertible.

Let T be a subgroup of SU(3). For the McKay graph Gr one can define a cell system
W as in [49], where W(Ai) is a complex number for every triangle A, on Gr whose
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vertices are labelled by the irreducible representations i, j, k£ of . We introduce the

following potential

®r= ) W(Diw) Lye € CGr/[CGr,CGrl.
Dijk€Gr
Then dividing out CGr by the ideal generated by §,Pr for all edges a of Gr, by [49,
Theorem 4.4.6], A(CGr, ®r) is a Calabi-Yau algebra of dimension 3, and the Hilbert
series is [14, Theorem 4.6)

1

Ha(t) = .
Al) 1—Art+ ATz — 3

Theorem 7.9.1 Let I' be a finite subgroup of SU(3),{po = id,p1 = p,p2,...,ps} ils
irreducible representations and Gr its McKay graph. Then if Ps,, is the Molien series of
the symmetric algebra S of CN, and H(t) is the Hilbert series of A(CGr, ®r),

Hy 10(t) = Ps,,(t).

Proof. Let I" be a subgroup of SU(3) with irreducible representations p;, 7 = 1,... ,s,
where py = id is the identity representation and p; = p the fundamental representa-
tion. The fundamental matrices Ar, AL defined by p ® p; = Z;=O(Ar)i,jpj, PR p; =
>i—o(AT)ijp4, satisfy, by [50, Cor. 2.4(i)],

L

Z (—(Af)m,pjt + (A%‘)Pi’l’jtz) PS:P;‘ (t) = —(1 - ts)PS,m(t) + 51‘,0,

Jj=0

so we have

(lm,p; - (AI’)P-«pjt + (Ag)php;’f? - 1pz-,pjt3) PSst(t) = dip
j=0
Z (1 - (Ar)t + (A?)tz - lts)pi’pj PS,pj (t) = 51',0-

=0

<.

Then (Psypj(t))p_ is the first column of the inverse of the matrix (1 — (Ar)t + (AT)t2 — 1£3),
J

which is invertible since it is just the identity when ¢ = 0, that is,

Pop® = ((1= (@)t +ADE=16)") = H, .

P3P0

For the ADE graphs, we define a potential ® by

¢ = Z W(Aik) - Lije - € CG/[CG,CG],

.5,k
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where the Ocneanu cells W(A,;) are computed in Chapter 4. If the ADE graph G has an
associated subgroup I of SU(3), as given in Table 7.6, then the quotient algebra A(CG, ®)
provides a Calabi-Yau deformation of the algebra A(CG, ®r). For certain ADE graphs,
the Hilbert series for the ¢-deformed algebra A(CG, ®) is given by the following:

(i) Let G be one of the following ADE graphs, A™, D™, Then

1- Pt

Hat) =12 At + ATEZ — 43

where P is the permutation matrix corresponding to a Z/3Z symmetry of the graph.

(ii) Let G be A®™*. Then

1+ Wim
1—At+ ATt2 — 37

Hy(t) =

where W is the permutation matrix corresponding to the Z/2Z involution of the
graph AGm)*,

(iii) Let G be D@™* Then

14+ PWt™

Ha(t) = 1— At + AT2 — 3’

where P, W respectively are permutation matrices corresponding to a Z/3Z sym-

metry, Z/27Z involution respectively of the graph D®™)*,
(iv) Let G be £®. Then
Hu(t) = (1 + Bst® — Bgt® — Byt” — Bgt®)(1 — At + AT#? —*)71,
where By, k = 5,6, 7,8, are matrices which are zero almost everywhere.

In (i) and (iii) the involution P is an automorphism of the underlying graph, which
is the identity for D™. For the graphs AM DE™)* let V be the permutation matrix
corresponding to the clockwise rotation of the graph by 27/3. Then

vV for A™,
Vm for DEmM*

For A®™* W is the involution which sends vertices p — l—p, forp=1,... , [(m—1)/2],
I = |(m+1)/2], whilst for D®™* W is the involution which sends

a, — 0y_p, a € {i,j,k},
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forp=1,... ,[(m—-1)/2|,1 = |(m + 1)/2]. Since the permutation matrices P and
W commute, the matrix PW has order 6, and generates a group of permutations of the
vertices of D®*™* which is isomorphic to Zg. The matrices By, k = 5,6,7,8, in (iv) are

zero almost everywhere, apart from
BS(jl7j1+l) = 17 for l = 2a 3a 576) a'nd B5(jl3j5) = B5(j43j2) = 1,

Bﬁ(jl,il+2) = 1, for [ = 2,3,5,6, and Bﬁ(j],is) = Bs(j4,’i3) = ].,
B7(j[,i1_2) = 1, Bg(il,il_g) = 1, for |l = 1, e ,6.

Since () be a permutation matrix which corresponds to a symmetry of a graph with
adjacency matrix A. Then A = Q7'AQ, so that QA = AQ. Similarly QAT = ATQ.
Then we see that the numerator in (i)-(iii) commutes with the denominator. In (iv), the
matrices (1 + Bst5 — Bgt® — Byt” — Bgt®) and (1 — At + ATt?2 — t3)~! do not commute.
Indeed, Ha(t) = (1 — At + AT¢2 — £3)71(1 + Bst® — Bjt® — Bjt” — Bgt®), where B}, Bj
are unitarily equivalent to Bg, By respectively, obtained by conjugating by the unitary U
defined, fori,j =1,2,...,8, by U;; = 1if j/ = ¢+ 1 mod 4, where 7, j' € {1,2,3,4} such
that j — j' =i —4' =4k for k € {0,1,2}, and U;; = 0 otherwise.

The formulas above have been checked “by hand” for the graphs A™ for n = 4,5, 6,7,
D™ for n = 5,6,7, D™* n = 6,8,10, and £®, where we explicitly wrote out all the
allowed paths in A(CG, @) and compared the dimensions that appeared with those given
by the Hilbert series. The space of allowed paths for these graphs does not particularly
depend on the values of the cells W (A;;x), except for whether the cells are zero or non-zero.
In fact, were we to replace the non-zero cells W (A;;x) by an arbitrary choice of non-zero
complex numbers W'(A;;i) (which would not be a solution for the cells of the graph), then
A(CG, ®) would most likely be isomorphic to A(CG, ®'), where @' =}, ,, W'(Ayjk)- Diji-
However, suppose a path v € CG is identified with a linear combination Y b;v; of paths
v; in A(CG, ®), with b; # 0 for all 5. For certain choices of W'(A,jx) it is possible that
now b; = 0 for all 4, and hence v = 0 in A(CG,®’). In this case dim(A(CG, ®');) <
dim(A(CG, ®)) for some k € N.

For D™* n = 6,8, 10, and £® the polynomials are infinite, but there is only at most
one allowed path of length k£ > n from vertex 7 to j on the graph, found by adding a
closed loop j — j' — j” — j to the allowed path of length & — 3 from 7 to j, and hence
the allowed paths in A(CG, ®) could be written out explicitly here also. In the SU(2)
case, the permutation matrices P appearing in the numerator of H,4(t) corresponded to

the Nakayama permutation of the Dynkin diagram. The above claim then raises the
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question of the relation between the automorphisms which appear in the numerators of

the expressions for H4(t) with Nakayama’s automorphisms.
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