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Summary
Saprotrophic cord-forming basidiomycete fungi are major agents of wood 

decomposition in woodland and support the decomposer food-web. Limited resource 

availability and the abundance of mycelium in soil leads to competition between 

fungi. These fungal interactions are aggressive involving reallocation of mycelial 

biomass, pigment formation, changes in gene expression and enzyme synthesis. 

Collembola are abundant mycophagous invertebrates in woodlands and affect fungal 

morphology and growth. Experiments investigated the effects of collembola grazing 

on fungal interaction progression and the effects of these interactions on collembola 

behaviour and mortality. In British woodlands, the collembola Folsomia Candida and 

Protaphorura armata are common as are the cord-forming fungi Hypholoma 

fasciculare, Phallus impudicus, Phanerochaete velutina and Resinicium bicolor. 

Pairwise interactions between these fungi were investigated in agar and compressed 

soil microcosms. Multiple genetic isolates of two of the fungi studied were also used. 

Fungal morphology was affected by collembola grazing in soil- but less so in agar- 

microcosms. In particular, when interacting with H. fasciculare, grazing of P. 

velutina mycelia accelerated growth over the opposing mycelium but reduced 

extension over soil. This was associated with an increased ability to colonise the wood 

resource of H. fasciculare. Grazing did not reduce the transport efficiency of P. 

velutina but the estimated cost of biomass production rose more steeply with 

increasing area than in ungrazed systems. Despite changes in progression, interaction 

outcome was not generally substantially altered by grazing. Collembola exhibited 

strong preferences for certain mycelia during interactions but showed a change in 

preference in others. Collembola mortality on fungal interactions in agar microcosms 

also varied with the species interacting. There was limited evidence of attraction of 

collembola to the fungal interaction zone. Overall, the results suggest that collembola 

grazing may have important impacts on fungal species assemblage and their ability to 

extend in search of new resources.
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1.0 Introduction
Soils are key to terrestrial life providing the habitat for primary producers. Plant roots 

are anchored within the soil matrix and also access water and nutrients for uptake. As 

well as supporting primary productivity, soils also host a high diversity of 

decomposer organisms. The decomposition processes that occur in soil are crucial to 

the continued cycling of nutrients such as carbon, nitrogen and phosphorus. The 

central importance of soils was highlighted in the dust bowl of America in the 1930s 

in which poor agricultural practices and drought turned fertile land into an 

uninhabitable desert.

Despite awareness of the fundamental importance of soils, their ecology and 

organisms have been little studied when compared with above-ground research 

(Bardgett, 2005). Such neglect is unsurprising since the opaque nature of soil makes 

both the organisms and processes within difficult to observe. In addition, the high 

diversity, small size, complex taxonomy and lack of appeal with the public compared 

with striking above-ground organisms have all served to limit soil research.

More recently, however, interest in soils has increased dramatically due in part to the 

development of new technologies such as powerful microscopic imaging and 

molecular techniques (Sugden et al, 2004; Young & Crawford, 2004). The research 

has highlighted the close linkages that exist between above-ground and below-ground 

processes (Wardle et al, 2004), and raised interesting questions about how soil 

invertebrate diversity is maintained despite an apparently limited amount of niche 

exploitation (Mauran et al, 2003). Such a resurgence in soil research is apt given the 

important role soils play within the carbon cycle and the increasing awareness of 

climate change. Soils store approximately three times the amount of carbon found in 

the atmosphere (Schimel, 1995), and both respond to, and affect, increases in 

atmospheric CO2 concentrations (Cao & Woodward, 1998).

Decomposition processes in woodland are dominated by the saprotrophic fungi whose 

combined array of enzymes can completely degrade wood to CO2 , water and 

mycelium (Rayner & Boddy, 1998). The white-rot saprotrophic cord-forming 

basidiomycetes are of particular interest due to their abundance on the temperate
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woodland floor. In addition to completely decomposing wood to water, CO2 and 

mycelium, these fungi form linear aggregations of hyphae known as cords which can 

extend for many metres across the forest floor (Caimey, 1992). Persistent networks 

of these cords form at the soil litter interface and link the heterogeneously distributed 

woody resources. Limited space and resources inevitably lead to competition 

between the fungi. Such competition is manifest in dramatic aggressive interactions 

across the entire mycelial front, resulting either in deadlock, where neither fungus is 

able to wrest resource from the other, or some degree of replacement (Boddy, 2000). 

These interactions are associated with dramatic changes in mycelial morphology and 

physiology, and probable leakage of what are normally closely-guarded nutrients 

(Wells & Boddy, 2002).

Through degrading complex polymers and leaking nutrients during interactions, fungi 

make recalcitrant nutrients available to mycophagous soil invertebrates. Among these 

invertebrates are the collembola, an abundant group of soil invertebrates found in all 

the world’s major terrestrial biomes (Petersen & Luxton, 1982). Collembola feed 

predominantly on fungi and plant material and, despite their small size and low 

contribution to soil biomass, are considered important drivers of decomposition 

processes (Hopkin, 1997). Studies of collembola grazing and preferences are 

widespread but there has been only limited work looking at their interactions with 

cord-forming decay fungi. These studies have shown that collembola grazing can 

have substantial effects on fungal morphology and physiology (Bretherton et al.,

2006; Kampichler et al., 2004; Tordoff et al., 2006, 2008). As far as the author is 

aware, however, no studies have considered the effects of fungal interactions on 

collembola grazing behaviour and the effects of collembola grazing on fungal 

interactions. This is surprising given the ubiquitous nature of both fungal interactions 

and collembola especially in woodland soils.

Using a combination of agar and soil laboratory microcosms, the experiments here 

presented set out to investigate:

1. whether collembola grazing alters the progression or outcome of fungal 

interactions in agar microcosms;
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2. the extent to which fungal isolate is important both during interspecific 

interactions and in response to collembola grazing;

3. the effect of species and isolate in fungal interactions on collembola 

movement and mortality;

4. whether collembola respond to odours emitted from fungal interactions 

through a change in movement behaviour;

5. how collembola grazing effects fungal growth and combativeness during 

interactions in soil microcosms; and

6. the effect of fungal grazing on the network architecture on fungi during 

aggressive interspecific interactions.

Through these aims the role of collembola during fungal interactions will be explored 

to provide an insight into how these two groups of organisms influence one another.

Chapter 2 is a review of the published literature on wood-decay fungi and 

collembola. Initially, soils are introduced with a focus on temperate woodlands and 

the saprotrophic decay fungi found there. Aggressive fungal interactions, associated 

changes in the mycelia and the factors influencing them are then considered. Fungal 

grazers and, in particular the collembola, are then reviewed, especially their feeding 

preferences and ecological significance. The effects of collembola on mycelial 

morphology and functioning are also addressed. Finally, the possible importance of 

fungal interactions for collembola are considered.

Chapter 3 investigates the effects the interactions of four wood-decay cord-forming 

basidiomycete species and some of their genetically distinct isolates in simplified 

systems. The effects of collembola grazing on fungal interaction progression, 

outcome and morphology are studied.

Chapter 4 records the response of collembola to fungi interacting in simplified 

systems. Changes in preference over time and collembola mortality are investigated.
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The results from the experiment in Chapters 3 and 4 suggested that collembola were 

preferentially attracted to particular regions within certain fungal interactions. To 

investigate this further and to explore the role of volatile chemicals during 

interactions, collembola movement behaviour when exposed to only the volatile 

organic chemicals emitted from fungal interactions were investigated in Chapter 5.

A soil microcosm approach was adopted in Chapter 6 in which the effects of 

collembola grazing in interspecific interactions of four wood-decay fungi were 

studied. In particular, the effect of mycelial extension and combative ability were 

investigated.

Chapter 7 introduces a novel methodology for studying the effect of both collembola 

grazing and fungal interactions on the architecture of the mycelial network. By 

translating the image of the mycelial network into a digital representation of that 

image, changes in network structure can be both visualised quantitatively and 

analysed quantitatively.

Chapter 8 seeks to draw together the salient points from the experimental chapters 

and discusses questions raised by the studies presented. Further avenues of research 

to help fill remaining gaps in the knowledge are suggested.
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2.0 Literature Review
2.1 The subterranean soil ecosystem

2.1.1 Soil functions

Soils are a central, but often neglected part of the biosphere. They provide a source of 

nutrients for plants, a habitat for a high diversity of organisms and store large reserves of 

organic carbon as well as other nutrients such as nitrogen and phosphorus. It has been 

proposed that the majority of global diversity is found in soils (Wardle, 2002) and this 

has led to them being described as the ‘poor man’s tropical forest’ (Usher et al., 1982).

As major stores of organic carbon, soils contain an estimated three times more carbon 

than the atmosphere (Schimel, 1995). Soils are also highly variable, their development 

being controlled by five major factors: parent material, climate, biota, relief and time 

(Jenny, 1941).

Growing awareness of climate change has also highlighted the important role of soils in 

the carbon cycle. In certain systems, such as arctic tundra and ombrotrophic bogs, inputs 

of organic carbon from plant production have traditionally exceeded soil decomposition 

rates, leading to carbon accumulation and the production of a carbon sink (Lai, 2004). 

This trend is particularly pronounced in the northern latitudes where an estimated 24% of 

the global soil carbon pool is located in boreal forests alone (Moore, 1996; cited in 

Lindahl et al., 2002). A combination of increasing CO2 concentration and temperature 

may, however, reverse the trend for soils to act as carbon sinks through the following 

mechanism: increasing temperature leading to increased soil respiration at levels over and 

above the predicted increases in net primary productivity though plant photosynthesis 

(Cao & Woodward, 1998). Greater nutrient inputs through anthropogenic activity can 

also lead to soils becoming carbon emitters (Mack et al., 2004). The role of soils in the 

maintenance of a habitable global climate is becoming increasingly clear and has helped 

to spark a renaissance in soil research (Bardgett et al, 2005; Ellis & Mellor, 1995; 

Schlesinger, 1997).
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2.1.2 Woodland soils

Woodlands cover an estimated 39% of the global terrestrial surface (Whittaker, 1975) 

with woody tissues accounting for 80% of the total global organic carbon pool (Rayner & 

Boddy, 1988). Woodlands can be divided into two broad groups: deciduous and 

evergreen. Deciduous forest soils are characterised by annual pulse nutrient inputs 

through leaf fall in which relatively accessible (labile) nutrients are deposited and rapidly 

degraded. In evergreen woodland, such as boreal forest, leaf litter input is steady 

throughout the year. In addition, leaf litter nutrients, due in part to the presence of 

polyphenols, are highly inaccessible (recalcitrant) to decomposer organisms (Bardgett, 

2005; Lindhal et al., 2002). Aside from leaf fall, all woodland soils are subject to 

spatially and temporally heterogeneous nutrient inputs through fallen branches and tree 

stumps (Boddy, 1999). In addition, substantial inputs of woody litter often occur 

following windy conditions. Woody litter accounts for large quantities of recalcitrant 

complex nutrients which can only be degraded by a limited number of specialised 

organisms. In systems where there are continual inputs of labile nutrients, a relatively 

homogeneous soil with a high rate of nutrient turnover develops, and bacteria dominate 

the decomposition processes (Bardgett, 2005). In woodland soils, however, it is the 

saprotrophic fiingi, with a wide array of lignolytic enzymes, which are responsible for the 

majority of decomposition (Rayner & Boddy, 1998). There are a range of bacteria 

capable of degrading wood but these account for a very small proportion of total 

decomposition when saprotrophic fungi are present (de Boer and van der Wal, 2008).

The one exception to this is in very wet situations where bacteria can account for a 

substantial amount of wood decomposition (de Boer & van der Wal, 2008).

Even though leaf litter on the forest floor is often plentiful, in unmanaged deciduous 

woodland, most of the organic carbon is bound in the wood litter, principally comprising 

fallen branches and trunks (Christensen et al., 2005). Fungal propagules, such as spores, 

are often latently present in functional sap wood but these only develop into conspicuous 

mycelium following an improvement in the abiotic conditions resulting from damage or 

death of the tree or tree section (Boddy & Rayner, 1983). Even when dead, the 

environmental conditions in standing trunks remain extreme; high temperatures and
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strongly negative water potentials dominate (Rayner & Boddy, 1988). It is, therefore, 

only when standing wood falls to the ground, ameliorating abiotic conditions, that more 

rapid decay commences (Rayner & Boddy, 1988). Indeed, fungi found in standing dead 

wood are highly specialised and tolerant of extreme abiotic conditions; the rare oak 

polypore, Piptoporus quercinus, was able to continue to grow at pH 1.8 and at over 30°C, 

enabling it to colonise the low pH environment of its habitat, oak (Quercus) heartwood 

(Wald e ta l , 2004a).

2.2 Saprotrophic fungi

2.2.1 Fungal arrival at a resource

The heterogeneous nature of coarse woody debris and the progressive decomposition of a 

resource from the point at which it becomes available, obligates fungi to engage in a 

continual search for fresh resources (Jonsson et al., 2005). Unit resource-restricted fungi 

arrive at new resources as propagules (spores or hyphal fragments) which subsequently 

develop into mycelium in the wood. Non-unit resource-restricted fungi are, however, 

capable of arriving either as propagules or as mycelium extending across the soil between 

resource patches.

2.2.2 Cord-forming basidiomycetes

When growing as extra-resource mycelium, fungi form linear aggregations of parallel 

hyphae known as cords (Rayner & Boddy, 1988). Cords form behind a diffuse growing 

mycelial front and are characterised by differentiated thick-walled hyphae at the exterior 

and large diameter apoplastic hyphae in the centre, thought to be important in nutrient 

translocation (Caimey, 1992). Other fungi, especially those in the genus Armillaria, also 

form highly melanised linear aggregations termed rhizomorphs. Important for nutrient 

transport, rhizomorphs are distinct from cords as they do not form behind a diffuse 

mycelial front rather they show apical dominance of the whole organ (Rayner & Boddy, 

1988).

Many cord-formers are saprotrophic basidiomycetes which grow at the soil-litter 

interface (Rayner & Boddy, 1988) and exhibit a spectrum of search strategies across the
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forest floor. Some, such as Hypholoma fasciculare, forage as densely packed mycelium. 

This is energy-intensive to produce, but maximises encounters of all available resources. 

Others, such as Resinicium bicolor, grow out from a resource as sparse cords, efficient 

for long range foraging and searching for more heterogeneously distributed resources 

(Boddy, 1993). A study of fungi directly inoculated in the field revealed the short range 

forager H. fasciculare to have colonised leaves as well as twigs and beech cupules, 

whereas longer-range foragers such as Phanerochaete velutina and Phallus impudicus 

were found to have colonised twigs alone reflecting the different foraging strategies 

(Dowson, et al., 1988b). The slow mycelial extension and exploitation of multiple small 

resources typified by Stropharia spp. and H. fasciculare has been termed exploitative 

growth (Donnelly & Boddy, 1998). Explorative growth, in which a larger area is covered 

with a lower density of cords, is typified by Resinicium bicolor as it forms cords with 

limited branching (Boddy, 1993).

2.2.3 The ecological significance of cord-forming decay fungi 

Cord-forming fungi extend across the woodland floor forming a network connecting 

discrete resources (Dowson, et al., 1988b), which can be tens of meters long (Thompson 

& Rayner, 1982). Rhizomorphic systems are even bigger with one fungal isolate 

covering several hectares (Smith et al., 1992). As cord systems are persistent over time, 

they not only extend in search of new resources, but also employ a sit-and-wait strategy 

in which new litter falling onto the network can be colonised immediately (Boddy, 1999). 

A key advantage of cord-forming fungi is that on encountering new resources they can 

rapidly translocate nutrients from one part of the network to the mycelium at the new 

resource (Caimey, 1992). The wood-decay fungus Phanerochaete velutina moves 

phosphorus to new resources, presumably to facilitate the initial decay process (Wells et 

al., 1990). Similarly, in boreal forests, nitrogen is translocated to new resources and then, 

as decay progresses, phosphorus is moved away probably towards other new resources 

(Lindahl & Boberg, 2008). Cord systems do not only move nutrients to areas of new 

colonisation; Hypholoma fasciculare, for example, can move phosphorus bidirectionally 

between two resources (Lindahl et al. 2001a). Nutrient translocation has been principally 

studied using radio-labelled phosphorus ( P), but work studying the nitrogen flow
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around basidiomycete mycelia indicates that it too is actively translocated, principally 

toward the growing hyphal tips (Tlalka et al., 2002). This transport is examined in more 

recent work showing that, when extending from a large wood resources, the carbon 

contained in the resource is the energy source for extension, but the morphology and 

extension rate of the fungus are modified by the nitrogen content of the surrounding soil. 

In such instances the ability to translocate nutrients is key to effective foraging (Tlalka et 

al, 2008a)

The ability to translocate nutrients surmounts the problem of the heterogeneity of 

woodland floors as fungi can effectively allocate nutrients to areas of need by 

sequestering them from other areas in contact with the network (Boddy, 1999). The exact 

process by which nutrients are moved around the network is uncertain, but mass flow 

toward the growing tips (acropetal), through non-septate cords may account for the rapid 

rates of movement seen within mycelia (Caimey, 1992). Movement of nutrients away 

from newly colonised resources is, however, thought to occur by cytoplasmic streaming 

(Caimey, 1992). The ability of cord-formers to move nutrients in this way is not only 

important from the fungal perspective; with nutrient translocation, the woodland floor 

becomes a highly dynamic environment in which nutrient inputs do not necessarily 

remain concentrated at the location where they are first added to the system. In addition, 

nutrient movement by fungi appears to be conservative with fungi evaluating the quality 

of new resources before committing high concentrations of valuable nutrients (Wells et 

al., 1990). The drive to conserve nutrients may be more important than originally 

thought; P .velutina conserves phosphorus in an established resource to the extent that 

when colonising a new resource, phosphorus in the soil surrounding the new resource is 

preferentially utilised over that already sequestered by the mycelium (Wells et al.,

1998a). This conservation of nutrients by fungi may serve to act as a buffer against 

nutrient lack in the soil environment (Boddy, 1993 ).

The presence of saprotrophic cord-formers at the soil-litter interface, along with latent 

propagules in fallen wood and the arrival at new resources of spores of unit resource- 

restricted fungi, leads to inevitable competition between fungi. Competition is often for
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occupation of space within a resource from which nutrients can then be extracted over 

time (Boddy, 2000). Another factor in competition is the changing nature of wood during 

the decomposition process. Community progression in wood has been widely studied 

and three main strategies known as competitive (C), stress-selected (S) and ruderal (R) 

have been identified (Rayner & Boddy, 1988). In standing dead wood the challenging 

abiotic conditions favour fungi exhibiting stress-selected characteristics, whereas on first 

falling to the floor many ruderal species rapidly colonise. As fungi employing ruderal 

strategies are normally unable to degrade the complex polymers in wood and are 

generally poor competitors, they are rapidly replaced by more competitive fungi. Fungi 

with ruderal growth strategies are commonly prolific spore producers with a high 

dispersal capability (Boddy & Heilmann-Clausen, 2008). More competitive fungi are 

characterised by a strong combative ability and long residence times in the substrate with 

a wide spectrum of enzymes to degrade more complex polymers such as lignins (Boddy, 

2001). It is important to note, however, that a species will often display more than one 

given strategy with changing environmental conditions (Boddy, 2001). Fungi are 

therefore described as displaying a given characteristic under a given set of 

environmental conditions. Unless a highly disturbed environment, woodland decomposer 

communities will tend to be dominated by competitive-selected organisms and these will 

be responsible for the bulk of wood decay (Boddy, 2001). In terms of nutrient cycling in 

established systems, therefore, the competitive selected species are of particular interest.

2.2.4 Fungal interactions

Competitive interactions between fungi fall into two broad groups: interactions mediated 

at a distance and interactions following hyphal or mycelial contact (Boddy, 2000). 

Antagonism mediated at a distance arises through the production of volatile or diffusible 

organic compounds (VOC/DOCs). The most well known example of antagonism at a 

distance is the antibiotic activity of Penicillium spp. which inhibits the growth of 

microbes through VOC production (Flemming, 1929). Similar responses are seen in 

wood-decay fungi, where growth of different species in close proximity to one another 

leads to the production of stress compounds and low molecular weight metabolites 

(Woodward & Boddy, 2008). In addition, some wood-decay species emit VOCs when
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growing on woody substrates which may have antibiotic effects (Woodward et al., 1993). 

For example, the mycelial extension of Piptoporous quercinus was inhibited when 

growing in the presence of some basidiomycetes, but stimulated in the presence of others 

(Wald etaU  2004a).

Whilst interactions do occur at a distance they do not necessarily prevent fungi from 

meeting. Fungal interactions following contact occur at the level of the individual 

hyphae and the entire mycelium. There are two groups of hyphal interaction: 

mycoparasitism and hyphal interference. During mycoparasitism the attacker physically 

attaches to the host (e.g. Pseudotrametes gibbosa on Bjerkandera spp.) and obtains 

nutrients either necrotrophically or biotrophically (Boddy, 2000). In hyphal interference, 

the attacking fungus makes contact with a hypha of an opponent and vacuolation and 

death of the hyphal compartment follows. The most widely studied example of 

mycoparasitism is where hyphae of Phlebiopsis gigantea destroy compartments of the 

tree pathogen Heterobasidion annosum creating a highly effective biocontrol agent 

(Rayner & Boddy, 1988).

The most important interaction type among wood-decay basidiomycetes occurs across the 

entire mycelial front (gross mycelial contact) and can be highly aggressive (Boddy,

2000). These interactions occur both in wood resources and at the soil-litter interface, 

and have been widely studied (e.g. Donnelly & Boddy, 2001; Griffith et al., 1994; 

Iakovlev et al., 2004; Wald et al., 2004a, b). During the early stages of an interaction, 

immediately following contact, mycelial morphology often changes producing dense 

mycelia at the interaction site with reallocation of mycelial biomass away from the non­

interacting colony centre (Boddy, 2000). Changes in resource allocation are dynamic; the 

addition of precolonised wood blocks onto the established mycelium of Phanerochaete 

velutina led to increased biomass toward the precolonised resource but not increased 

allocation of 32P. This suggests that the nutrient was allocated to the “safest” resource, the 

original Phanerochaete velutina wood block (Harris & Boddy, 2005). Aside from 

morphological changes, fungal biochemical activity also increases during interactions, 

with the upregulation of genes (Iakovlev et al., 2004) and increased enzyme synthesis.
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For example, the white rot basidiomycete Hypholoma fasciculare increased laccase 

production when growing in the presence of other soil organisms, but no such increase 

was recorded when growing across sterilised soil (Baldrian, 2004). Fungal interactions 

are also characterised by pigment production and changes in VOC emissions. The 

interaction of Resinicium bicolor with Hypholoma fasciculare showed increased emission 

of some VOCs compared to when the species were growing alone, and the production of 

10 novel VOCs (Hynes et al., 2007).

2.2.5 The role of biotic and abiotic factors during interactions 

The outcome of interactions between basidiomycete fungi can be characterised as 

deadlock, where neither species gains territory or resource, or replacement where one 

species gains over the other (Boddy, 2000). In some interactions, fungi only partially 

replace the opponent whilst in others each replaces the other in different areas of the 

mycelium (mutual replacement; Boddy, 2000). When not growing in a wood, mycelia 

may sometimes overgrow each other without one fungus replacing the other. When 

multiple species are interacted pairwise, interaction hierarchies can be established, and 

these are frequently broadly repeatable (Chapela et al., 1988; Dowson et al., 1986).

Often, however, the combative ability of one fungus is not superior against all opponents 

and this serves to maintain fungal diversity (Boddy, 2000). This situation is complicated 

further as interaction outcome also depends on other factors. Inoculum size plays a key 

role with species occupying larger resources generally having a competitive advantage 

(Holmer & Stenlid, 1993, 1997). The interaction of Hypholoma fasciculare with the 

ectomycorrhizal fungi Suillus variegatus or Paxillus involutus favoured the sparotroph 

when it grew out from the larger 1.6 cm3 inocula. This was reversed when H. fasciculare 

grew from the smaller 0.44 cm3 resource. This study was of particular interest as the 

inoculum size also determined which fungus scavenged 32P from the other hence 

determining whether the nutrients were returned to the plant system via the mycorrhizal 

symbiont or remained in the soil within the saprotroph (Lindahl et al., 2001b). In another 

study, the highly combative Resinicium bicolor was interacted with opponents using an 

experimental design permitting a change in fungal inoculum size whilst retaining the 

same interaction area. Resinicium bicolor could not defeat any opponent when it
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occupied only 8% of the total available inoculums, but with a larger share of the resource 

successfully replaced all opponents (Holmer & Stenlid, 1993). Interestingly, a further 

study not only confirmed the importance of inoculum size for competitiveness but also 

revealed that species which were rapid to fruit were poorer competitors, whereas those 

which took longer to fruit were more competitive, supporting the R-, C- and S- selected 

theory discussed earlier (Holmer & Stenlid, 1997).

The state of decay of a resource is also thought to be important in determining combative 

ability (Boddy, 1993). As resources are decomposed, their nutrient content decreases and 

a loss of combative ability over time may, therefore, reflect a reduction in resource 

quality (Boddy, 1993). Abiotic variables, such as water potential, temperature and 

gaseous regime, can also alter fungal interaction progression and outcome (Chapela & 

Boddy, 1988). When growing on beech (Fagus sylvatica), the cord-forming fungi 

Phallus impudicus and Phanerochaete velutina were effective at replacing Trametes 

versicolor in atmospheric gaseous conditions but, under low O2 / high CO2 concentrations 

comparable to those found in wood, the interaction outcomes were sometimes completely 

reversed (Chapela et al., 1988). In another example, Hypholoma fasciculare was less 

combative when water potential was reduced and at low 0 2 /high CO2 levels when 

interacting with rare tooth fungi (Wald et al., 2004b).

Often fungal interactions have been studied in pairwise combinations on sterile media or 

defaunated soil but, in the field, interactions take place in the presence of a wide range of 

other soil flora and fauna. The importance of considering the natural environment was 

demonstrated by White et al. (1998); the outcomes of tripartite fungal interactions were 

not predictable by extrapolating from the outcomes of pairwise interactions involving the 

same species. In another study, variability in the outcomes of pairwise basidiomycete 

interactions was caused by the presence of diffusible metabolites of the ascomycete 

Trichoderma harzianum (Schoeman et al., 1996). Substrate type can also alter fungal 

competitive ability. In a study comparing combative interactions in agar, in wood and 

across soil, Steccherinum fimbriatum was highly effective at replacing opponents in wood 

but not in soil or on agar (Dowson et al., 1988a). Such combative variability may be due
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to morphological and physiological differences when growing on homogeneous media 

such as agar compared to soil; Hypholoma fasciculare rarely produces cords on agar but 

does in soil systems (Boddy, 1993). Another example of the effects of resource quality 

was shown in Phanerochaete sanguinea which, in interactions with other wood-decay 

basidiomycetes, was able to retain its resource 80% of the time when extending over clay 

but only 60% of the time when extending over sand (Holmer & Stenlid, 1996).

The wide variety of factors playing a role in determining the combative ability, and 

outcome of fungal interactions, probably serves to maintain fungal diversity within 

woodland ecosystems. In addition, the changes seen in fungal mycelia during aggressive 

interactions such as alteration of enzyme production, emissions of volatile and diffusible 

chemicals, and the movement of nutrients are likely to have an effect on other soil 

organisms. For example, fungi are major agents of nutrient mineralisation but, as 

discussed, they appear to be more conservative of nutrients than has been previously 

thought. During interactions, however, leakage of nutrients at the point of interaction has 

been suggested as a potential route for nutrient mineralisation (Wells & Boddy, 2002).

2.3 Fungal mycelia as a food resource
2.3.1 Fungal feeding by invertebrates

Once fungi have successfully degraded the nutrients in soil and litter they become a food 

source in the decomposer food web (Bardgett, 2005; Rayner & Boddy, 1988). The 

diversity of soil invertebrates is very high and they are regularly classified either by size 

(Petersen & Luxton, 1982) or by the role they play in the ecosystem (termed their 

functional group; Rusek, 1998). For example, a study in temperate forests in Vancouver 

Island analysed collembola gut contents and assigned them to four distinct functional 

groups based on their feeding habits (Addison et al., 2003). The collembola in three 

groups fed on different types of fungi and the fourth consisted of collembola consuming 

particulate organic matter (Addison et al., 2003). Species of nematodes, enchytraeid 

worms (Oligochaeta, known as potworms), mites (Acari) and collembola are known to be 

mycophagous. Like many nematodes, the mycophagous Aphelenchus avenae has 

specialised mouthparts (the stylet) for penetrating fungal hyphae (Bakhtiar et al., 2001). 

Nematodes are also numerically important with densities of 30 million m'2 having been
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recorded (Volz, 1951; cited in Bardgett, 2005). In boreal forests with acidic soils, 

enchytraeid worms can make up a substantial part of the biomass and are considered 

‘keystone’ species (Didden, 1993). In temperate woodland soils, however, collembola 

are highly abundant with typical densities of 104 to 105 m'2 (Petersen & Luxton, 1982). 

Their small body size, up to a maximum of about 10 mm but more commonly 1-2 mm 

(Hopkin, 1997), means that collembola account for only a small biomass in the soil with 

an estimated 110 mg dry mass collembola m'2 in deciduous woodland (Petersen & 

Luxton, 1982). The reported collembola biomass figure in temperate deciduous 

woodland was second only to tundra ecosystems, indicating the high populations 

compared to other ecosystems (Petersen & Luxton, 1982; Rusek, 1998).

2.3.2 Collembola

Collembola are microarthropods, apterous and have six abdominal segments. 

Traditionally considered to be primitive insects (Hopkin, 1997), analysis of collembola 

mitochondrial DNA suggests that they are neither in the insect nor crustacean clades with 

divergence occurring before that of crustaceans and insects (Nardi et a l , 2003). The total 

number of collembola species is unknown with many new species being described each 

year (Rusek, 1998), but over 8000 species have already been classified (Gullan & 

Cranston, 1994). Collembola are traditionally divided into three main groups based on 

their habitat. Epidaphic species are found above-ground and on vegetation, hemiedaphic 

species are found in the upper layers of the soil and in the leaf litter. The widely studied 

collembola Folsomia Candida is a hemiedaphic species. Euedaphic species are soil 

dwellers and often have no pigmentation and reduced antennae (Hopkin, 1997). Other 

systems for collembola classification have been attempted but, as with all broad 

definitions, it is difficult to account for all species within such categories (Hopkin, 1997).

There have been many studies investigating the diets of collembola (e.g. Bardgett et al, 
1993b; Hedlund et al, 1995; Jensen et al, 2006; Nakamori & Suzuki, 2005b; Ruess et 

al, 2000; Scheu & Simmerling, 2004; Visser & Whittaker, 1977). Often gut content 

analysis has been used (e.g. Addison et al., 2003) but this has limitations in that 

substrates that are totally degraded within the gut may be under represented or not
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represented at all (Poole, 1959). In addition, undigested particles may be unrecognisable 

having undergone mastication and enzymic attack. If the collembola diet consists largely 

of fungi, distinguishing fungal species from hyphal fragments is particularly challenging. 

Furthermore, some collembola appear to be generalists ingesting whatever falls in their 

path (Maraun et al., 2003). In such a situation it is impossible to determine whether the 

collembola are deriving nutritional benefit from a given item present in the gut. 

Laboratory studies have shown collembola to exhibit distinct preferences (Klironomos et 

al, 1992; Maraun et al., 2003; Shaw, 1988) although caution is required when 

extrapolating laboratory-derived preferences to actual field behaviour. Despite the 

difficulties, collembola diets have been elucidated and collembola shown to feed 

predominantly on detritus and fungi (Jorgensen et al., 2005; Newell, 1984a, b; Hopkin, 

1997). There are also incidences of camivory such as nematode predation (Lee & 

Widden, 1996) and herbivory (Rusek, 1998; Scheu & Folger, 2004).

As an alternative to basic gut content analysis, enzyme gut assays reveal what can be 

degraded in the gut and provide a guide to possible food sources. Cellulase, chitinase, to 

degrade fungal cell walls, and trehalase, to digest hyphal contents, have all been found 

(Berg et al., 2004; Urbasek & Rusek, 1994), but it is not clear whether these are produced 

by gut microflora or by the collembola themselves (Thimm et al., 1998). Either way, the 

presence of these enzymes indicates that collembola eat both plants and fungi although, 

whether these are preferentially consumed as living or dead material in the field is 

indeterminable. More recent advances in the use of biomarkers such as phospholipid 

fatty acids (Haubert et al., 2008), stable isotope analysis (Jonas et al., 2007) and 

molecular analysis (Jorgensen et al, 2005) have permitted a greater understanding of 

collembola feeding habits. Nematodes are often rapidly digested within the collembola 

gut, but may form an important part of their diet (Lee & Widden, 1996). By labelling 

fungi and nematodes with different stable isotopes of carbon and utilising the different 

fatty acid profiles exhibited by each species, the dietary preferences of the collembola 

Proisotoma minuta and Folsomia Candida were studied. Both species of collembola fed 

almost exclusively on nematodes (Chamberlain et al., 2006). These techniques remove
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many of the problems associated with traditional dietary analysis although use in the field 

can be limited.

2.3.3 The ecological significance of collembola

Despite their small size and low contribution to soil organic biomass, collembola form an 

important part of ecosystem functioning. The comminution of leaf litter (breaking it 

down into smaller particles) increases its surface area to volume ratio and, therefore, the 

ability of bacteria and fungi to degrade them. Collembola also mineralise nutrients 

releasing nutritional faecal pellets, potentially accelerating the rate of decomposition 

(Hopkin, 1997). To quantify the contribution to decomposition, some experimental 

designs have compared systems with collembola absent and present (Teuben & Verhoef, 

1992 Teuben & Roelofsma, 1990). The general trend is for collembola to accelerate the 

rate of decomposition, soil respiration (either oxygen consumption or carbon dioxide 

release), the rate of nutrient release and enzymic activity (Teuben & Verhoef, 1992). In 

terms of total ecosystem functioning, the importance of collembola presence will depend 

on the field populations. The effect of removal of collembola in grassland for example, is 

likely to be lower than in arctic tundra where collembola are central to soil decomposition 

processes (Hopkin, 1997).

Aside from direct effects on decomposition, collembola also effect fungal growth and 

distribution through grazing. By feeding in one area and defecating in another, 

collembola may act as a dispersal mechanism for bacteria and fungi provided that they 

can survive the digestive process. On the other hand, propagules damaged through 

digestion may be selected against when ingested. For example, the spores of cultivated 

fungus Hypsizygus marmoreus were damaged, to different degrees, by collembola of the 

genus Hypogastura, possibly inhibiting the ability of H. marmoreus to disperse within the 

soil (Nakamori & Suzuki 2005 a,b). Selective digestion may also affect bacteria; the gut 

of the collembola Folsomia Candida was found to reduce populations of some bacteria by 

60 000 fold and others by only 500 fold, substantially altering the bacterial faecal 

community compared to that which was ingested (Thimm et al., 1998). These indirect 

effects on decomposition may, therefore, be as important as direct feeding. Indeed,
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Petersen (1994; cited in Hopkin, 1997) concluded that the main functional role of 

collembola in decomposition processes was through the stimulation and inhibition of 

microorgranisms.

2.3.4 Collembola as prey

Collembola also form the food source for a wide range of soil organisms. Whilst there 

are examples of vertebrates including lizards, frogs and birds consuming collembola, the 

majority fall prey to other arthropods (Hopkin, 1997). Predators include harvestmen 

(Opiliones), beetles (Coleptera) ants (Formicidae) and mites (Acari). The main method 

of predation avoidance in collembola is the furca. This springing organ derives from a 

fused pair of appendages on the fourth body segment and is everted away from the body 

causing the collembola to leap, in some cases considerable distances, avoiding predation 

(Hopkin, 1997). It is the spring that gives collembola the English name springtails. Some 

ground beetles (Carabidae) and rove beetles (Staphylinidae) have highly specialised 

organs for trapping collembola before they can leap to safety (Hopkin, 1997). The 

compact nature of the soil environment renders the furca ineffective and many soil 

dwelling species have a reduced or absent furca and these prey species are of particular 

importance to the mites (Hopkin, 1997).

2.3.5 Collembola interactions with fungi

Collembola are fungal grazers and this grazing activity alters fungal species abundance, 

mycelial morphology and function (Bretherton et al, 2006; Hedlund et al, 1991; 

Kampichler et al, 2004; Newell, 1984a, b; Tordoff et al, 2006, 2008). As is the case 

with most soil animals, collembola do not appear to have highly specialised preferences 

for particular resources (Mauran et a l , 2003; Ponge, 2000). This is surprising as, in 

above-ground systems, it is thought that niche specialisation permits high diversity 

among insect herbivores (Strong et al, 1984, Visser, 1986). In addition, the wide variety 

of complex secondary chemicals emitted by fungi would normally be expected to 

facilitate the development of specialist feeding guilds (see earlier, Scheu and Folger,

2004). Adding further to this paradox is that, in laboratory tests, collembola tend to 

demonstrate a hierarchy of preferences (Jorgensen et a l, 2003; Klironomos et a l , 1992;
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Shaw, 1988; Visser & Whittaker, 1977). The collembola Protaphorura armata fed 

predominantly on one of 33 different fungal taxa present in soil samples (Jorgensen et al.,

2005). Not only do feeding preferences exist but collembola fitness also varies with 

fungal resource (Chen et al., 1995). Reproduction of the collembola Heteromuras nitidus 

was significantly lower when fed on Aspergillus jumigatus than when fed on the 

ectomycorrhizal fungus Laccaria laccata (Scheu & Folger, 2004). When fed on mixed 

diets collembola performance improved further. The dense soil environment may limit 

collembola movement thus preventing the expression of the preferences often observed in 

laboratory conditions where freedom of movement is often part of the experimental 

setup.

Most studies of saprotrophic fungi indicate a general preference for dark pigmented 

(dematiaceous) microfungi, including the genera Cladosporium, Altemaria and Phoma 

(Jorgensen et al., 2003; Klironomos et al., 1992; Maraun et al., 2003; Poole, 1959). 

Whilst these fungi do contain high levels of nutrients compared to other fungi, they are 

also highly melanised rendering them difficult to digest and, therefore, other explanations 

for such preference are needed. Their abundance in soil, as evidenced through isolation 

onto sterile media, has been suggested as one possibility although soil isolations tend to 

favour these highly sporulating species (Harley, 1971). The pigmented microfungi may 

also indicate a particular stage of substrate decay and may, therefore, be ingested 

coincidentally (Mauran et al., 2003). The link between collembola preference and 

resultant fitness, however, challenges this interpretation (Klironomos et al., 1992). A 

striking example of collembola preference was shown by Newell (1984a, b) working in 

plantation forests in the English Lake District. Onychiurus latus significantly preferred 

Marasmius androsaceus over Mycena galopus grazing the former much more extensively 

than the latter (Newell, 1984a). In the absence of grazing, however, M. androsaceus 

dominated the litter at the expense of M. galopus (Newell, 1984b). The study linked the 

presence of collembola with the distribution of fungi in the field. M. androsaceus was 

restricted to the upper litter layer, an area too dry for the O. latus, making the fungus safe 

from high grazing pressure.
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Collembola preferences have also been demonstrated in mycorrhizal fungi, but the results 

have been mixed. The collembola Proisotoma minuta grazed heavily on a variety of 

ectomycorrhizal (EM) species exhibiting a hierarchy of preferences within the study 

species (Klironomos & Kendrick, 1996). When presented with a choice between EM 

fungi and a pathogen (Rhizoctonia solani), however, the pathogen was preferred (Hiol 

Hiol et al., 1994). Kaneda and Kaneko (2004) found that collembola preferred to graze 

on hyphae of the ectomycorrhiza Pisolithus tinctorius when they had been severed from 

the rest of the mycelium indicating a preference for low vitality hyphae. In another 

study, Schultz (1991) investigated collembola grazing of ectomycorrhizal fimgi and 

concluded that observed preferences were probably due to avoidance of toxic species as 

opposed to nutritional benefit of the preferred fungi. Together these studies suggest that 

EM fungi may be consumed by collembola primarily due to their abundance and not their 

palatability.

Whilst collembola have been demonstrated to feed on, and exhibit preferences for, 

arbuscular mycorrhizal (AM) fungi (e.g. Shaw, 1985; Thimm, 1993), in studies with a 

choice between AM and saprotrophic fungi, the saprotrophs were consistently 

preferentially grazed (Klironomos et al., 1999; Klironomos & Kendrick, 1996). Indeed, a 

reduction in reproductive output was seen in Folsomia Candida when grazing exclusively 

on AM fungi (Klironomos et al., 1999).

Collembola do, therefore, appear to exhibit feeding preferences, preferring saprotrophic 

micro fungi and some EM species over AM fungi. Preferences for EM fungi over AM 

species may not be surprising as EM fungi are generally associated with trees (Smith & 

Read, 1997) and therefore woodland, where collembola are often highly abundant. 

Preference studies are limited, however, almost exclusively to microcosm and in vitro 

experimental designs. There is also a limited amount of information regarding the grazing 

preferences of wood-decay basidiomycetes. Despite these shortcomings, it is likely that 

collembola grazing does alter soil ecosystem function and this is explored below.
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2.3.6 The effects of collembola on ecosystem functioning

Many studies into the effects of collembola on ecosystem functioning have concentrated 

on mycorrhizal associations (Gange, 2000 although see Bardgett et al., 1993a, b, c; 

Newell, 1984a, b). This is probably because of the importance of mycorrhizae in plant 

growth and development, and below-ground effects can be easily measured above-ground 

such as change in plant biomass. Collembola tend to have a negative impact on fungal 

biomass or extension but the effect on plant growth is generally positive at medium 

grazing densities (Finlay, 1985; Harris & Boemer, 1990). When birch (Be tula pendula) 

and Scots pine (Pinus sylvestris) seedlings were grown in a complex (high soil fauna 

diversity and abundance) and simple (nematodes alone) system, a high diversity of soil 

fauna led to increased carbon and nitrogen concentration in the foliage and a greater 

above-ground biomass (Setala, 1995). This was despite a reduction in the amount of EM 

fungi in the complex systems (Setala, 1995). Despite collembola grazing on fungi being 

beneficial to plants, grazing itself was also advantageous to the plant. The lack of a 

negative effect implies that collembola did not reduce the capability of the EM fungi and 

this may be due to grazing of weak or dead hyphae. In fact, preference has been shown 

for low vitality hyphae of EM fungi (Kaneda & Kaneko, 2004). Indeed grazing appears to 

be beneficial to the plant, and collembola grazing of older and senescing hyphae may 

improve fungal performance (Bardgett et al., 1993a). Disruption of ecosystem 

functioning through collembola grazing has also been reported. For example, a field 

study involved adding P. armata to cores with a mesh permitting the passage of AM 

hyphae but not roots showed that collembola grazed AM hyphae and this decreased 

mycorhizosphere respiration (Johnson et al., 2005). The study demonstrated the 

disruption of the hyphal network by collembola and was interpreted as a negative effect.

It should be noted, however, that the absence of a resource for saprotrophic fungi in this 

study may have obliged collembola to feed on the AM mycelium. In studies where a 

saprotrophic component is present collembola grazing does not appear to have a negative 

effect even at high densities (Klironomos & Kendrick, 1995; Schreiner & Bethlenfalvay 

2003).
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Collembola have also been shown to alter processes in saprotrophic fungi. At greater 

than typical field densities Onychiurus procampatus had a negative impact on fungal 

biomass and respiration (Bardgett et al., 1993c). Due to the above normal levels of 

hyphae in the microcosms and the tendency of collembola to aggregate in the field the 

results may be more realistic that at first appears (Bardgett et al., 1993c). The studies by 

Newell (1984a, b) also showed collembola regulating field distribution of basidiomycete 

fungi (Section 2.3.5). In another study the mycelium of the cord-forming wood-decay 

basidiomycete, Resinicium bicolor was completely removed through grazing by Folsomia 

Candida and Proisotoma minuta whilst the less active Protaphorura armata had a limited 

effect on fungal morphology (Tordoff et al., 2006). In other studies, the cord-forming 

fungus Hypholoma fasciculare changed growth rate and morphology in response to 

grazing by Folsomia Candida (Harold et al, 2005; Kampichler et al., 2004). In small 

systems, the mycelial extension of Phanerochaete velutina has been shown to be 

substantially reduced through collembola grazing activity at normal densities (Tordoff et 

al., 2006, 2008), accelerated or over compensated at low densities (Bretherton et al.,

2006), and unaltered when grown in large microcosms (Wood et al., 2006). In these 

larger systems it was thought that collembola grazed senescing hyphae hence not 

adversely affecting the fungal growth.

As in fungal interactions, resource size and quality also affects fungal responses to 

collembola grazing. For example, the mycelium of Hypholoma fasciculare when 

extending out from both older and larger inocula was more luxuriant than from younger 

and smaller wood blocks, and showed a greater tolerance of collembola grazing (Harold 

et al., 2005). There are clearly a wide number of factors that come into play in 

determining fungal response to collembola grazing. These differences could be important 

for determining the composition of species assemblages. For example, a highly 

competitive species such as Resinicium bicolor (Holmer & Stenlid, 1996) may be less 

competitive if substantially negatively affected by grazing (Tordoff et al., 2006). Despite 

the wealth of research on the occurrence and importance of aggressive fungal interactions 

(Boddy, 2000), there are apparently no studies investigating the effect of invertebrate 

grazing on the outcome of fungal interactions. The study by Newell (1984a, b) showed
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that collembola altered fungal community structure, but the fungi were not necessarily 

interacting aggressively; rather the collembola grazing partitioned the two fungal species. 

One reason for the possible value of studies into invertebrate grazing during fungal 

interactions is that when fungi interact they increase biochemical activity and may leak 

what are normally closely guarded nutrients (Wells & Boddy, 2002). These sites of 

interaction are, therefore potential sources of valuable nutrients for fungal feeders.

Recent work has highlighted changes in the VOC bouquet of fungi during interactions 

and this appears to be linked with DOCs as well (Evans et al., 2008; Hynes et al., 2007; 

Su, 2005). A range of soil and ground-dwelling invertebrates are known to detect and 

respond to fungal odours. Ciid beetles, for example, were able to discriminate between 

fungal bracket species and even bracket age using odour as a method for resource 

partitioning (Guevara et al, 2000a). Termites are particularly well known for being 

attracted to timber decomposed by certain brown rot species (Swift and Boddy, 1984 and 

references therein). More specifically, collembola can detect and respond to mycelial 

odours (Bengtsson et al., 1988) and other chemicals, such as odours emitted by dead 

conspecifics (Nilsson & Bengtsson, 2004).

2.3.7 Conclusions

This literature review has highlighted the vital role of soils in not only supporting a high 

faunal biodiversity but also hosting a wide array of complex decomposition processes. 

These, in turn, lead to cycling of essential nutrients within the ecosystem. In particular, 

the key roles of wood-decay cord-forming fungi and collembola have been examined; 

fungi degrading complex polymers into labile compounds and collembola activity 

potentially accelerating soil processes. The review has highlighted the dearth 

of knowledge concerning the interaction of these two taxonomic groups, despite their 

abundance and acknowledged importance. A greater understanding of the interactions 

that occur between these organisms and how they affect their functioning will help 

unravel the complexities of soil decomposition processes.
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3.0 Fungal interaction progression and outcomes: The effect of 

collembola grazing and distinct fungal isolates.

3.1 Introduction

As many species of saprotrophic cord-forming fungi occupy similar spatial niches at 

the soil-litter interface, interactions are inevitable (Boddy, 2000). Interspecific fungal 

interactions are highly aggressive and generally occur following gross mycelial 

contact (Boddy, 2000). Interactions result in either deadlock or some form of 

replacement; these outcomes are variable and can be substantially affected by both 

biotic and abiotic variables (Chapela et al., 1988; Woods et al., 2005). Intraspecific 

genetic variability may also be important in determining fungal interaction 

progression and eventual outcome. Most studies investigating interactions of higher 

fungi have tended to concentrate on one genetic isolate of each species studied. A 

few studies with Trichoderma species (Ascomycota) interacting with wood rot fungi 

have involved multiple isolates (Bruce et al., 2000 but see Phillip et al., 1995; 

Wheatley et al., 1997), but most of these have focussed on strains of medical or 

biocontrol value (Vainio et a l, 2001; Walker et al., 1995). Despite possible 

implications for both species abundance and diversity, the role played by fungal 

genetic variability in fungal fitness remains unknown.

As well as encountering other fungi, non-unit resource restricted fungi growing out 

from resources are also more accessible to grazers. Various soil invertebrate taxa, 

including nematodes, collembola and earthworms, are known to graze on fimgal 

mycelia and can substantially alter fungal morphology and physiology (Boddy & 

Jones, 2008; Harold et al., 2005; Ruess et al., 2000; Tordoff et a l, 2006). Such effects 

are likely to alter fungal fitness and, therefore, their combativeness in interactions 

with other soil microorganisms, including fungi.

The visible changes in morphology and physiology during fungal interactions are 

associated with biochemical change, such as increased enzymic activity and 

production of diffusible (DOC) and volatile (VOC) organic compounds (Baldrian, 

2004; Griffith et al., 1994; Hynes et a l, 2007). This enhanced activity may also lead 

to compartment lysis and nutrient leakage into the surrounding environment (Wells &
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Boddy, 2002). Numerous plant species use chemicals emitted as result of insect- 

herbivore action to attract parasitoids to the vicinity (Dicke, 1994; Tentelier & 

Fauvergue, 2007); a similar process may occur with fungi. Mycophagous grazers 

may use chemical cues arising from interaction activity to locate high quality resource 

patches while fungi may recruit grazers to provide a competitive advantage over an 

opponent. Orientation to fungal odours by invertebrates has been well documented 

(Guevara et al., 2000b; Hedlund et al., 1995; Swift & Boddy, 1984) and anecdotal 

evidence exists of attraction of fungus gnats to fungal interaction zones (Boddy et al., 

1983).

This study aims to: (i) elucidate the effects of invertebrate grazing on the 

morphological and competitive abilities of basidiomycete fungi when interacting 

interspecifically; (ii) determine if there is evidence of preferential invertebrate grazing 

at the interaction zone and (iii) whether fungal isolate variability affects fungal 

combativeness and invertebrate grazing.

3.2 Materials and methods

3 .2.1 Collembola culturing

Folsomia Candida (obtained from Centre for Ecology and Hydrology Lancaster, UK; 

Appendix I) were cultured in 0.61 plastic tubs with pierced lids for aeration. Each tub 

contained 9:1 plaster of Paris (Minerva Dental Ltd., Cardiff, UK): activated charcoal 

(Sigma, UK). Collembola were supplied with dried baker’s yeast (Saccharomyces 

cerevisiae, Spice of Life Ltd., Cardiff) weekly. Tub moisture was maintained with 

deionised water (DI).

Experimental F. Candida were selected using a stacked sieving system with sieves of 

known pore size, the larger sieves being uppermost (Nickel-Electro Ltd., Weston- 

super-Mare, UK). Collembola were added to the top sieve and allowed to self-sort by 

moving through the sieves for 5 minutes. Those of body diameter 250-400 pm were 

placed in fresh culture pots and left without food for 24 h to evacuate gut contents. 

Collembola were transferred to experimental plates using an electrical entomological 

suction pump or 'pooter’.
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3.2.2 Fungal isolates

Hypholoma fasciculare (four isolates labelled 1-4; see Appendix 1), Phallus 

impudicus, Phanerochaete velutina and Resinicium bicolor (two isolates; labelled 1, 

2) were cultured on 2% malt extract agar (MEA, 20g L '1 malt, Munton and Fison, 

UK, Lab M agar no. 2, Fisher Scientific, UK) and maintained in the dark at 20°C.

Fig 3.1 : Interaction of Phanerochaete velutina (growing left to right, white lettering) 

and Hypholoma fasciculare (black lettering) marked with the five possible areas of 

the interaction. M1/M2 = original mycelium, 0 1 /0 2  = overgrowth and the dashed 

line the original interaction zone. The original interaction zone was defined as being 

2 mm either side of this line. X indicates points o f collembola addition.

3.2.3 Agar plate inoculation

Fungi were paired in all possible (36) combinations (10 replicates of each) and 

inoculation was timed to ensure that when the two mycelia met each individual had 

colonised an equivalent area of agar. Three, 5 mm inoculum plugs were spaced 

equidistantly along a chord 2 cm from the edge of 2% MEA plates (Fig 3.1). Plates 

were incubated at 20°C in the dark and maintained in cardboard boxes within black 

polythene bags to reduce water loss. Twenty collembola were added at two points, 10 

on each mycelium (see Fig. 3.1) to each of five replicates per combination when the
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interacting fungi in a minimum of 50% of the replicates had made contact for 2 d or 

more (Fig. 3.1).

3.2.4 Data collection

Digital photography of inoculated plates using a Nikon"0 Cooolpix ™ 5700 mounted 

on a Kaiser RA1 camera stand (Kaiser, Germany) set at 36.7 cm started on the day of 

collembola addition (to) and then every 2 d until 14 d, followed by every 4 d to 26 d.

3.2.5 Reisolations

To identify which fungi replaced the other in the agar resource, reisolations were 

carried out. Twelve weeks following collembola addition all plates not contaminated 

by bacteria or fungi were inverted and agar cut from the media in the centre of each 

fungal interaction area (as defined) and plated onto fresh 2% MEA under aseptic 

conditions. The mycelium growing out from each reisolation was identified. 

Contaminated plates were discarded.

3 .2.6 Visual outcome of interactions

Twenty-six days following collembola addition, interaction outcomes were classified 

by visual assessment as follows:

• Deadlock: neither mycelium progressed into the territory of the other

•  Partial replacement: mycelium of one species overgrew the other but did not 

reach the opposite side of the Petri dish from where it was inoculated. 

Overgrowth deemed to have occurred when at least 5 mm mycelial 

progression was observed beyond the original interaction line.

• Total replacement, as with partial replacement but the mycelium reached the 

far side of the Petri dish

• Mutual replacement: each mycelium overgrew in part and was overgrown in 

part by the opposing mycelium.

3.2.7 Competitive analysis

To analyse quantitatively the competitiveness of the different fungal isolates the 

interaction outcome for each replicate of all interactions was attributed a score. 

Scoring was based on the proportion of replicates displaying each outcome for any
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given interaction. For each replicate scores were: total replacement of opponent 2; 

partial replacement of opponent 1; deadlock 0; partial replacement by opponent -1; 

total replacement by opponent -2 (after Crockatt et a l, 2008). A species showing total 

replacement in all replicates, therefore, scored 10, while a species totally replaced in 

all replicates -10. A cumulative score was attributed to each species providing a 

competitiveness index. This was repeated for all species but the wide range of 

interactions masked important competitive differences; only comparisons of all 

species interacting with H. fasciculare are shown.

3.3 Results

For clarity, results are considered per species, focussing in each case on combative 

ability in both overgrowth and through-medium replacement (as tested using 

reisolations), morphological changes during interactions, pigment production and 

responses to grazing including holes grazed in the mycelia and morphological change 

not seen in ungrazed plates.

3.3.1 Hypholoma fasciculare

H. fasciculare was strongly combative. Only P. velutina was successful in completely 

overgrowing it. H. fasciculare 1 was the most combative of the four isolates, H. 

fasciculare 2 and 3 were also strongly combative (Tables 3.1, 3.2) while, of the four 

isolates used, H. fasciculare 4 was the weakest competitor at both overgrowth and 

within-medium combat (Tables 3.1, 3.3). H. fasciculare was effective at wresting 

resource from opponents (Table 3.3). There were, however, marked differences 

between isolates. H. fasciculare 3, for example, replaced./?, bicolor 1 whereas//. 

fasciculare 4 did not (Tables 3.2 and 3.3). All H. fasciculare isolates were unable to 

replace P. impudicus within the medium. Furthermore, H. fasciculare 3 partially 

overgrew R  bicolor 1 but R. bicolor 1 replaced H. fasciculare 3 within the agar in the 

majority of replicates. In contrast H. fasciculare 2 overgrew opponent species to only 

a limited extent, yet it always partially replaced R  bicolor 1 through the substratum. 

H. fasciculare grew as dense mycelium from the inoculum and overgrew with the 

formation of cords (Table 3 .4), occasionally emerging through the interaction zone 

from several discrete points (Fig. 3.2a). H. fasciculare 4 often produced non-linear, 

apparently disordered, cords when overgrowing other species (Fig. 3.2 i). While there 

were no visible morphological changes in H. fasciculare attributable to grazing,
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combativeness was altered; grazing increased combativeness in two isolates (H. 

fasciculare 2 and H. fasciculare 3) and reduced it in the others (Table 3.1). All H. 

fasciculare isolates produced yellow pigment although H. fasciculare 1 only produced 

pigmentation (Fig. 3.2 a, b) when overgrowing another species. With the exception of 

the cords of H. fasciculare 4 when interacting with P. impudicus, which developed a 

yellow colour (Fig. 3.2 i), all new growth of H. fasciculare isolates was white.

3.3.2 Phallus impudicus

Although it was overgrown to varying degrees by all H. fasciculare isolates, except H. 

fasciculare 4, P. impudicus was strongly combative (Tables 3.2, 3.3). Uniquely 

among the fungi in the study, when in the presence of heterospecifics, P. impudicus 

morphology changed before contact occurred. This change was in the form of dense 

aerial cords originating from up to 1 cm behind the growing front (Fig. 3.2 k, Table 

3 .3). This morphological response also occurred when P. impudicus was paired 

against itself, but has not been seen when growing alone (T.D. Rotheray unpublished 

data). P. impudicus mycelium often proliferated around the original inoculum plugs 

leading to dense aerial hyphae (Fig. 3.2 g). In interactions where P. impudicus was 

substantially overgrown it occasionally broke through the opposing mycelium at the 

interaction zone, producing fast growing attack plumes (Fig. 3.2 g).

P. impudicus mycelia darkened in some interactions but did not produce strong 

pigmentation (Table 3.4). Occasionally, P. impudicus produced exudate when 

overgrowing other species and this usually occurred at the initial point of contact (Fig. 

3 .2 o). During interactions with R. bicolor, a zone of lysis, where the interaction 

enzymes lead to a zone of clearing between the two species, was produced at the 

interaction zone as P. impudicus replaced R. bicolor (Table 3.3, Fig. 3.2 k, o). In these 

interactions with both isolates of R. bicolor, there was distinct burrowing by 

collembola along the lytic zones (Fig. 3 .2 n). Grazing had no effect on the 

combativeness of P. impudicus which ranked fourth both when grazed and when 

ungrazed (Table 3.1).

3.3.3 Phanerochaete velutina

P. velutina was frequently successful at gaining a ‘foothold’ in the territory of the 

opposing mycelium of all species and growing across, albeit not replacing, it (Table
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3.3). When overgrowing another mycelium, P. velutina formed finely branched cords 

often emerging from a narrow point of the interaction zone (Fig. 3.2 j). When paired 

against itself, and when overgrown by R. bicolor 1, P. velutina formed cords between 

inocula, and aerial mycelium.
V/'

P. velutina did not benefit from grazing pressure, being ranked sixth most combative 

compared to fifth when ungrazed (Table 3.1). Grazing increased the extension rate 

over an opposing mycelium (Table 3.3, Fig. 3.2 c, d; see Chapter. 6). In the 

interaction with P. impudicus, P. velutina was always partially replaced in the 

substrate in grazed but not ungrazed, interactions (Table 3 .3). At the surface P. 

velutina did not overgrow P. impudicus in the absence of collembola (Table 3.2) but, 

when grazed both species overgrew the other. P. velutina, produced limited 

pigmentation except if overgrown, when a dark pigment permeated the medium below 

it. This pigment was also seen when P. velutina interacted with itself.

3 .3 .4 Resinicium bicolor

R, bicolor 1 was the more combative of the two P. bicolor isolates. R. bicolor 2 partly 

replaced only one isolate (H. fasciculare 4) whereas only H. fasciculare 3 and P. 

impudicus were consistently able to overgrow R. bicolor 1. The combative ability of 

K  bicolor 1 through the medium was greater than surface overgrowth (Table 3.3). 

Following contact with mycelium of a different species, R. bicolor 1 rapidly produced 

dense aerial hyphae up to about 1 cm behind the interacting front (Fig. 3.21), but this 

was either less marked or absent in R. bicolor 2 (Table 4). R. bicolor overgrew as 

dense, tightly packed, unbranched linear cords (e.g. Fig. 3.2 1). Uniquely, R  bicolor 

did not produce cords behind the interaction zone. When R. bicolor self-interacted, 

areas of low density mycelium were produced where the individuals met.
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Table 3.1: Combative scores of H. fasciculare isolates against other species

R. bicolor 2_________R. bicolor 1_________ P. velutina________ P. impudicus
Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Total row score Combative rank

H. fasciculare 1 Ungrazed
Grazed

10
10

1
0

10
10

4
3

25
23

1
1

H. fasciculare 2 Ungrazed
Grazed

10
10

4
3

-2.5
2.5

0
1

11.5
16.5

2
2

H. fasciculare 3 Ungrazed
Grazed

3
3

5
5

-1.1
5.5

0
0

6.9
13.5

3
3

H. fasciculare 4 Ungrazed
Grazed

-5
-1

-3.5
-3

0
-10

-5
-5

-13.5
-19

7
7

Inverse column score -22 -22 -6.5 -5 -6.4 -8 1 1
Combative rank 8 8 6 5 5 6 4 4

Total replacement in all replicates scored 10 points, partial replacement, 5 points, and deadlock or mutual replacement 0 points. Overall 
interaction score is based on the outcome of all replicates. Score in the right column is for the isolates listed in the corresponding row. Scores in 

the bottom row relate to the species listed in the columns. The combative rank is based on the scores for either grazed (in bold type) or ungrazed 

(in normal type) the highest cores being ranked 1 and the lowest 8. Inverse column score is the negative value of the sum of scores in that 
column.



Table 3.2: Surface outcome of interactions after 24-26 d.
R. bicolor 2_________ R. bicolor 1_________ P. velutina_________P. impudicus_____ H. fasciculare 4 H. fasciculare 3 H. fasciculare 2

Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed r  Ungrazed Grazed
H. fasciculare 1 o 100 o 100 M 80 M 60 O 100 O 100 M 20 M 40 D 100 D 100 D 100 D 100 D 100 D 100

P 20 P 20 P 80 p 60
P 20

H. fasciculare 2 p 100 p 100 M 20 M 40 M 76 M 75 M 100 M 80 D 100 D 100 D 100 D 100
p 80 P 60 O 25 o 25 p 20

H. fasciculare 3 p 60 p 60 p 100 P 100 M 22 0 77 M 100 M 100 D 100 D 100
D 40 D 40 0 33 O 22

O 44

H. fasciculare 4 P 100 M 80 M 30 M 30 M 20 O 100 P 100 P 100
P 20 P 70 P 60 D 80

D 10

P. impudicus p 100 p 100 p 100 P 100 M 40 M 100
o 60

P. velutina M 80 M 80 p 20 M 20
D 20 p 20 o 80 P 40

0 40

R. bicolor 1 D 100 D 100

Outcomes were mutual overgrowth (M), partial overgrowth (P), total overgrowth (O) and deadlock (D). For outcomes designated P and R,

uppercase signifies overgrowth was by the fungus listed in the column whereas lowercase signifies overgrowth by the fungus listed in the row. 

Values are percentage of replicates exhibiting a given response.



Table 3.3: Outcome of fungal interactions from reisolations taken from the underside of agar substrate.
R. bicolor 2________ R. bicolor 1________ P. velutina________P. impudicus H. fasciculare 4 H. fasciculare 3 H. fasciculare 2

Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed Ungrazed Grazed
H. fasciculare 1 - - - - - - P 100 P 100 D 100 D 100 D 100 D 100 D 100 D 100

H. fasciculare 2 p 100 D 20 P 100 P 100 . . M 100 M 40 D 100 D 100 D 100 D 100
p 80 P 60

H. fasciculare 3 p 60 p 50 r 11 r 22 . r 80 D 100 P 33 D 100 D 100
D 40 D 50 P 89 P 78 R 20 D 67

H. fasciculare 4 P 100 P 100 P 10 d 11 . • D 100 D 100
P 40 M 11
R 50 P 22

R 56

P. impudicus p 100 p 100 p 100 p 100 D 25 p 100
P 50
P 25

P. velutina - - - -

R. bicolor 1 D 100 D 100

Outcomes were mutual replacement (M), partial replacement (P), total replacement (R), and deadlock (D). For outcomes designated P and R 
uppercase signifies replacement was by the fungus listed in the column whereas lower case signifies replacement by the fungus listed in the row. 
Values are a percentage of replicates exhibiting a given response. Hyphen (-) indicates contamination in three or more replicates hence 
insufficient data. Reisolations taken 12 weeks following collembola addition.



Table 3.4: Changes in fungal morphology and pigmentation during interactions
Morphology______________________ Pigmentation

H.fasciculare 1 vs.
Change Time Change Time Change Time Change Time

H. fasciculare 1 C >0d C >0d WY 14 d WY 14 d
H. fasciculare 2 C 10 d C 10d MY 10 d MY 10d
H.fasdculare 3 CSB 14 d - - MY 14 d MY 10 d
H. fasciculare 4 CS 14d CS 08 d SY 02 d MY 08 d
P.impudicus CA 04 d AeCSB >0d WY 06 d - -
P. velutina - - CA 02 d - - - -
R.bicolor 1 CA 06 d AeM >0 d SY 10d SR 04 d
R.bicolor 2 CA 04 d AeM >0 d SY 10 d WR 04 d
H. fasciculare 2 vs.
H.fasdculare 2 - - - - - - -
H.fasdculare 3 CSB 14 d CSB 14 d MY 10 d MY 10 d
H.fasdculare 4 - - - - WY 10 d SY 04 d
P.impudicus CB 00 d AeCS >0d MY 02 d -
P. velutina CDA 06 d CDA 02 d MY 06 d Wda 06 d
R.bicolor 1 CDA 04 d AeM >0 d MY 06 d SR 04 d
R.bicolor 2 CDA 04 d AeM >0 d SY 08 d WR 06 d
H.fasdculare 3 vs.
H.fasdculare 3 - - - - WY 10 d WY 10d
H.fasdculare 4 AeM 06 d AeM 10 d SY 02 d SY 06 d
P.impudicus AeC >0d AeC >0 d MY 02 d - -
P. velutina CDB 04 d CDB 02 d WY 06 d WD 10 d
R.bicolor 1 CDA 02 d - - SY 02 d SR 02 d
R.bicolor 2 CA - - SY 12 d - -
H.fasdculare 4 vs.
H.fasdculare 4 AeM 06 d AeM 06 d - - - -
P.impudicus CDB 04 d AeC >0 d MY 04 d - -
P. velutina - - CD 04 d WY 06 d - -
R.bicolor 1 - - CDA 10 d SY 04 d few WR
R.bicolor 2 CDA 04 d - - WY 02 d - -
P.impudicus vs.
P.impudicus 
P. velutina

CD
CB

>0 d 
>0 d

CD
CS

>0 d 
10 d MD 08 d

- -

R.bicolor 1 CD >0 d - - MD 08 d - -
R.bicolor 2 CD >0 d - - MD 08 d - -
P.vehidna vs.
P. velutina AeM 04 d AeM 04 d WD 06 d WD 06 d
R.bicolor 1 - - DC 06 d MD 06 d - -

R.bicolor 2 - - CS 06 d MD 10d - -
R.bicolor 1 vs.
R.bicolor 1 - - - - - - _
R. bicolor 2 - - - - WR 22 d - -
R.bicolor 2 vs
R.bicolor 2 - - - - - - - -
Time indicates when change first observed. In morphology columns C=cord

formation, A=aggregated, Ae=aerial, B=branched, D=dense, M=mycelium and 

S=sparse. In pigmentation columns D=darkened, M=medium, R=red, S=strong, 

W=weak and Y=yellow. Changes are an overall summary; some replicates did not 

confirm exactly to what is described here. For each descriptor (morphology, 

pigmentation) the two left columns describe the species listed in bold, the two right 

columns describe the species listed in that row.
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Fig 3.2: Morphological and pigment changes during interactions. Hf: Hypholoma fasciculare, Pi: Phallus impudicus, Pv: Phanerochaete velutina, Rb: 
Resinicium bicolor. Images a-m are 9 cm diameter. Images n, o (scale bar 5 mm) are interaction zone close-ups.



The combative score of R. bicolor 1 improved when grazed whereas the score of R. 

bicolor 2 remained unchanged (Table 3.1). When interacting with H. fasciculare, R  

bicolor produced deep red pigments in regions of H. fasciculare overgrowth (Fig. 3.2 

e, f, h); this pigment generally was more pronounced in R. bicolor 1 than in R. bicolor

2 (Fig. 3.2 e, f  but see h). Red pigment was also produced whenR. bicolor 2 

interacted with P. velutina. Only in this interaction was the red pigment seen in the 

overgrowing cords as opposed to the ‘defending’ mycelium (Fig. 3.2 m).

3.4 Discussion

3 .4.1 Combative ability

Combative ability varied within and between species, and between replicates, with no 

strain emerging as overall superior. Such transitive hierarchies, in which one fungus 

is able to out-compete another which is in turn out-competed by a third individual out- 

competes the first (i.e. A>B>C but C>A) has been observed previously (Boddy,

1993). This lack of complete fungal dominance may be a key to the maintenance of 

wood decomposer diversity in temperate woodland ecosystems. Deadlock was never 

the predominant outcome of interspecific interactions; one or both isolates always 

partially overgrew and sometimes replaced. This may be a result of the large initial 

inoculum (3, 5mm plugs per isolate) used in the present study as inoculum size is 

central to fungal combativeness (Holmer Sc Stenlid, 1993; Zakaria Sc Boddy, 2002).

In addition, the ability to overgrow the opponent was not necessarily an indicator of 

an isolate’s ability to replace an opponent through the medium.

Whilst one species may be successful at invading the territory of another, such 

overgrowth may confer no advantage in terms of resource gained. Surface outcomes 

alone may, therefore, be inadequate to determine the combative ability of a species in 

the field. The surface interaction is similar to soil outgrowth, in which fungi forage 

whilst searching for a new resource (Donnelly Sc Boddy, 1997a). What happens 

within the agar is more closely allied to wood, where fungi grow in a carbon-rich, 

poorly-aerated medium (Hughes Sc Boddy, 1994; Lindahl & Finlay, 2006). It is not 

surprising that fungi behave differently in these two environments. P. velutina, for 

example, was effective at oversowing other species on the agar surface but poor at 

replacement within the medium, whereas P. impudicus was effective at both retaining 

and wresting territoiy from opponents. These two species may represent extreme ends
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of a combative spectrum. P. velutina grows rapidly, reaching and quickly colonising 

new resources, but is out-competed by slower ‘late-comers’. In contrast, the slower- 

growing P. impudicus may arrive at a resource and successfully take territory from 

other species. P. velutina could, therefore, be considered as demonstrating r-selected 

behaviour relative to the more K-selected behaviour of P. impudicus. When 

compared among the guild of wood-rotting fungi, however, white-rot cord forming 

basidiomyeetes are highly combative; strategies observed in this present study are, 

therefore, a spectrum of strategies within the more combative end of the guild of 

wood-rotting fungi (Boddy, 1993, 2000).

3.4.2 Morphological change and pigment production during interactions 

Fungal combat was often associated with substantial morphological change (Fig. 3.2) 

and was normally manifested as cord formation in the overgrowing mycelium. 

Mycelial cords are thick-walled organs, resistant to the passage of compounds in or 

out of the cytoplasm within (Boddy, 1999). Thick cord walls may provide protection 

against the inhospitable environment created by a combative opposing mycelium 

(Donnelly & Boddy, 1997a). Secondly, as fungal interactions are sites of increased 

metabolic activity (Iakovlev et a l, 2004; Wells & Boddy, 2002), the development of 

transport organs would allow rapid, efficient movement of nutrients to the interaction 

area, increasing the fungus’s ‘firepower’ as it attacks its opponent. The production of 

cords before contact with an opponent in P. impudicus may be a precautionary 

response affording increased protection from opponents. This behaviour also was seen 

when P. impudicus was paired against itself. The possible reasons for aerial 

mycelium production, upon contact and during interactions, remain unclear but 

increased allocation of fungal biomass towards interaction zones is typical of 

combative basidiomyeetes (Boddy, 2000).

In addition to morphological change, pigment development during interactions was 

widespread (Table 3.4). Production of pigment was especially pronounced in H. 

fasciculare and R. bicolor through the production of yellow cords and red exudates, 

respectively. Pigment production during basidiomycete fungal interactions has been 

documented (Donnelly & Boddy, 2001; Hynes et a l, 2007). Pigment production is 

correlated with volatile organic compound production with several of these chemicals 

having putative roles as defence against attack of fungi and invertebrates (Hynes et
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a l, 2007). During combative interactions, pigmentation was observed either only 

when an isolate was attacking (e.g. some H. fasciculare isolates) or only when 

defending (e.g. R. bicolor). Pigment production appears to show that these fungi alter 

their response based on their combative ability against a given opponent. This may 

allow the fungus to optimise a response either shunting valuable nutrients to a site 

where they are either best protected (in the case of defence), or most useful in combat 

(in the case of attack). Fungal networks are known for their ability to move nutrients 

around and, with interactions being ubiquitous, such behaviour would be 

advantageous (Hughes & Boddy, 1994; Wells & Boddy, 1995).

3.4.3 The importance of genetically distinct fungal isolates

The use of multiple isolates demonstrated a wide range of combative, morphological 

and biochemical (e.g. pigmentation) responses. There is a dearth of ecological 

research concerning fungal isolates. Differences in combative ability and responses to 

abiotic variables have been seen between genetically distinct individuals of rare fungi 

(Wald et al, 2004a, b) although, similarities between isolates were also observed 

when tested for enzyme production and volatile emissions (Dyer et al, 1992; Philip et 

al, 1995). The present study indicates a wide variety of differences among isolates 

and, therefore, fungal isolate, as well as species assemblage, may be crucial in 

determining decomposer community development.

3.4.4 The impact of collembola

In addition to the effects of varying isolate, this study also examined the effects of 

collembola on fungal interactions. Collembola did not appear to have any affect on 

overall interaction outcome but did alter interaction progression. For example, when 

growing alone, P. velutina growth was inhibited by F. Candida (Tordoff et al, 2006) 

but in this study collembola interactions accelerated P. velutina growth over the 

opponent. This has also been seen in soil microcosms (see Ch. 6). Despite some 

burrowing at the interaction zone in the interaction of both isolates of R  bicolor with 

P. impudicus, there was generally no evidence of preferential occupation of the 

interaction zone, where nutrients may be expected to leak out. Such a preference 

might be expected as it has been seen in fungus gnats (Mycetophilidae; Boddy et al, 

1983); large numbers of fungus gnats were found on agar plates in which combative 

interactions between fungi were occurring but the gnats were not found on plates
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where fungi were growing alone. There was, however, extensive burrowing in 

interactions R. bicolor against P. impudicus which may indicate attraction.

3.4.5 Conclusions

The basidiomycete fungal interactions studied were highly aggressive but no clear 

hierarchy of combativeness emerged. This absence of hierarchy contrasts with 

previous studies (Donnelly & Boddy, 2001; Dowson et a l, 1988a). The pigmentation 

changes associated with combativeness may hold clues as to differential physiological 

responses of fungi to aggressive encounters, with possible effects on nutrient 

allocation on the forest floor. Although the presence of invertebrate grazers does not 

appear to alter outcome, grazing did alter interaction progression. In the longer term, 

grazers may be involved in affecting species assemblages. The variety of interaction 

outcomes from both species and isolates highlights the need for a thorough 

understanding of these organisms. Such an understanding will provide a fuller picture 

of how these systems develop and stabilise.
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4.0 Collembola foraging responses to interacting fungi.1
4.1 Introduction
Collembola are an extremely abundant (104-105 m'2 or more) group of invertebrates 
that feed on fungal hyphae and plant debris (Hopkin, 1997), and are a primary 
consumer-group in decomposer systems (Scheu & Simmerling, 2004). Fungi, 
especially basidiomycetes, are the dominant component of soil microbial biomass and 

the major agents of ligno-cellulose decomposition in forest ecosystems (Boddy,
2001). Fungal mycelia are a highly nutritious food source to the many invertebrates 
that either graze directly on mycelia or fruit bodies, or indirectly by ingesting 
mycelium within decomposing organic matter (Swift & Boddy, 1984; Maraun et al., 
2003; Boddy & Jones, 2008).

Collembola grazing induces a variety of responses in fungi including changes in 
extracellular enzyme production and mycelial morphology, increases and decreases in 
growth rate and biomass production (e.g. Hedlund et al., 1991; Scheu & Simmerling, 
2004; Tordoff et al., 2006). Some basidiomycetes have evolved defence mechanisms 
against invertebrate grazing of fruit bodies and mycelia, for example, aerial stalks of 
Pleurotus species produce droplets of toxin (Barron & Thom, 1987; Hibbett & Thom,
1994); adhesive secretory cells on hyphae or conidia of Hohenbuehelia species (Thom 
& Barron, 1984); and stephanocysts producing adhesive chemicals in some 
Hyphoderma species (Tzean & Liou, 1993).

Chemicals deposited on or within the fungal cell wall may also act as deterrents to 
invertebrate feeding. These chemicals include calcium oxalate (CaC2C>4) crystals 
(Homer et al., 1995; Connolly et al., 1999) and melanin (Rayner & Boddy, 1988; 
Scheu & Simmerling, 2004). Basidiomycete fruit bodies, mycelium and colonised 
organic matter produce a wide range of volatile (VOC) as well as dissolved (DOC) 
organic compounds (Faldt et al., 1999; Rosecke et al., 2000; Xu et al., 2004; Hynes et 
al., 2007). Some invertebrates show attraction, repulsion, arresting activity and 

antifeeding responses to these fungal chemicals (Boddy & Jones, 2008) with many 
invertebrates, including collembola, exhibiting fungal preferences (Bardgett et al.,

1 A version o f this Chapter has been accepted for publication in Ecological Entomology ( Appendix II)
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1993b; Jorgensen et al., 2003; Klironomos et al., 1999; Sadaka-Laulan et al., 1998; 
Scheu & Simmerling, 2004).

During interspecific mycelial interactions, VOCs and DOCs often increase in quantity 
and quality^when fungi are physically damaged, as, for example, when grazed (Faldt 
et al., 1999; Hynes et al., 2007; Stadler & Sterner, 1998; Woodward & Boddy, 2008). 
Gene expression, morphology and physiology are also altered, and nutrients are 
released (Baldrian, 2004; Donnelly & Boddy, 2001; Iakovlev et al., 2004; Adomas et 
al., 2006; Woodward & Boddy, 2008). There is limited circumstantial evidence that 
invertebrates are attracted to areas where different mycelia meet and interact (Boddy 
et al., 1983). Interactions between basidiomycete fungi may also cause the release of 
nutrients often closely guarded by fungi (Boddy & Watkinson, 1995) and not freely 
available in soil (Bardgett 2005). Further, different fungal individuals/strains exhibit 
differences in physiology (Clausen et al., 2000), and may therefore have differential 

effects on invertebrates.

This study: (i) investigates the response of collembola to basidiomycete mycelial 
interaction zones; (ii) tests the hypothesis that collembola exhibit consistent 
preferences for a given fungus during an interaction; and (iii) investigates the 
importance of genetic variability of fungi on invertebrate behaviour using several 
different isolates.

4.2 Materials and methods
4.2.1 Experimental design
Collembola culturing, experimental design and image recording are as described in 
Section 3.3. The location of each collembola was recorded according to the one of 
five possible areas of each interaction on which it was found (Fig 4.1). Recording 
started on the day of addition (to) and continued every 2 d until 14 d, followed by 
every 4 d until 26 d. The locations of dead collembola were recorded at the same time 
by marking positions on the lid of each dish. This permanent record of all collembola 
ensured that any individuals subsequently eaten by conspecifics were not discounted 
at future time points.
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4.2.2 Recording collembola movement

Interacting mycelia were divided into a maximum five possible areas (Fig. 4.1; 

described in detail in Section 3.3). Image J 1.33u (National Institute of Health, USA) 

was used to determine the area of each of the five regions (as defined in Fig. 4.1) on 

grazed interaction plates at the time of addition (to), 2 d, 6 d, 10 d, 18 d and 26 d. Data 

were subsequently combined with the collembola counts to determine collembola 

density on the different areas of each dish.

Fig 4.1: Repeated from Chapter 3 for clarity. Interaction of Phanerochaete velutina 
(growing left to right, white lettering) and Hypholoma fasciculare (black lettering) 

marked with the five possible areas of the interaction. M1/M2 = original mycelium, 

01/02 = overgrowth and the dashed line the original interaction zone. The original 

interaction zone was defined as being 2 mm either side of this line. X indicates points 

of collembola addition.

4.2.3 Statistical analysis

As collembola position was, in the majority of cases, confined to the initial mycelium 

of each fungus, with very few collembola being identified on the overgrowth or 

interaction areas, statistical comparisons were only carried out on the collembola 

densities on these former areas. Data were normalised using log transformation where 

applicable. Differences between the collembola density on the two mycelia in each
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interaction both overall and over time, were tested using repeated measures Analysis 
of Variance (ANOVA) using SPSS 12 statistical software. In one instance, data could 
not be normalised and the non-parametric equivalent of repeated measures ANOVA, 
the Scheirer-Ray-Hare test, was employed (Minitab 14).

4.3 Results
4.3.1 Collembola preferences
Contrary to expectation, collembola were not attracted to the interaction zone. In half 
(18) of the 36 interactions, collembola showed significant preference (Table 4.1; 
treatment effect) for one mycelium over the other. This analysis, however, does not 
enable determination of whether collembola changed preference over time; exploring 
the time*treatment interaction provides this information (Table 4.1). There was a 
persistent significant preference over time by collembola for one of the fungal 
mycelia in 12 of the 36 interactions (Table 4.1). Nine of these 12 interactions included 
H. fasciculare (Table 4.1, Fig. 4.2 b, d, e) and in most of these it was the least 
preferred mycelium that harboured greater collembola mortality, although this was not 

always significant (e.g. Figs 4.2 b, d, e and 4.3 b, d, e). Although H. fasciculare was 
consistently the least preferred species, no species was consistently preferred above 
all others, irrespective of fungal opponent. There was generally low final total 
collembola mortality in these ‘clear preference’ interactions (e.g. P. velutina against 
H. fasciculare 1 Fig. 4.3 b, e).

4.3.2 Collembola preference switch during interactions
In some fungal interactions collembola showed switching behaviour, moving from 
one mycelium to the other during the experiment. On the basis of the results, this 
switching was defined to have occurred by a change after 2 d or more following 
collembola addition. Switching occurred in 11 interactions (Table 4.1) and involved 
all eight isolates (e.g. Fig. 4.2 c, f, h, j, k). When collembola switching occurred 
movement was toward the species on which, at the end of the experiment, most dead 
collembola were found (e.g. Fig. 4.3 j). An exception was during the interaction of H. 
fasciculare 3 against R. bicolor 2 when there was a switching away from R. bicolor 2 
to H. fasciculare 3, but the greatest mortality occurred on R. bicolor (Fig. 4.2 f, 4.3 f). 
The greater mortality on the mycelium to which collembola switched was significant 
in all but two cases (e.g. Fig. 4.3 c). In P. impudicus against R. bicolor 1 (Fig 4.2. j),
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collembola movement from R. bicolor 1 to P. impudicus occurred at 5 d but no death 
was recorded on R. bicolor for the duration of the experiment. During the same 
interaction, there were dead collembola from 6 d on P. impudicus with the number of 
dead individuals rising to an average of seven on the P. impudicus mycelium by 26 d 

(Fig. 4.3 j).

4.3.3 Collembola mortality
Collembola died on both mycelia during all interactions (Fig. 4.3) and in the majority 
of interactions collembola death was significantly greater on one mycelium than the 
other (Fig. 4.3). An exception was the interaction between P. impudicus and R. 
bicolor 1 where collembola only died on P. impudicus (Fig. 4.3 j). Generally, if one 
mycelium had higher initial mortality, there was a greater cumulative number of 
deaths on that mycelium throughout the interaction (e.g. Fig. 4.3 d, g but see 4.3 i).

4.3.4 The effect of fungal isolate
Except for H. fasciculare 2, collembola showed no significant mycelial preference on 
interactions between genetically identical isolates or in interactions between R. 
bicolor 1 against H. fasciculare 2, and P. velutina against H. fasciculare 2 (Table 4.1). 
Collembola preferred one mycelium over another in four (of seven) interactions 
between genetically different individuals of the same species (Table 4.1, Fig. 4.2 a, d). 
Collembola never switched preference during any conspecific interaction (Table 4.1). 
With interactions involving different isolates of a given species against the same third 
heterospecific, such as H. fasciculare 1 or H. fasciculare 2 against P. velutina, 
collembola generally followed similar patterns of movement behaviour irrespective of 
isolate. There were, however, some exceptions. For example, the general pattern in R. 
bicolor against H. fasciculare interactions was for collembola to switch from R. 
bicolor to H. fasciculare after 5-15 d (e.g. Fig. 4.2 c, k). In these cases, most deaths 
occurred on H. fasciculare (e.g. Fig. 4.3 c, k). In H. fasciculare 4 against R. bicolor 1, 
however, no switching occurred and the greatest collembola mortality was on R. 
bicolor, the most preferred species (Fig. 4.2 g, 4.3 g). Similarly with P. velutina and 
R. bicolor (Fig. 4.2 h, i), while there was no significant difference in final collembola 
mortality in P. velutina against R. bicolor 2 (Fig. 4.3 i), in P. velutina against R. 
bicolor 1, mortality was significantly greater on R. bicolor (Fig. 4.3 h). Collembola 
mortality on P. velutina was lower when interacting with R. bicolor 1 than when 
interacting with R. bicolor 2 (Fig. 4.3 h, i).
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Table 4.1: Collembola preference during interactions.
R. bicolor 2 R. bicolor 1 P. velutina P. impudicus H. fasciculare 4 H. fasciculare 3 H. fasciculare 2 H. fasciculare 1

H. fasciculare 1 Fi,,= 16.166 Fi,8= 18.200 F,,8= 372.393 F1i8= 6.398 Flfg= 47.954 F1>8= 2.989 F, 8 = 1.303 F,,8 = 13.681
M M P P P NS ’ NS NS

(F5.40~13.587) (F5,40=19.335) (F5.4o=24.503) (F3)23=4.371)* (F5>40=10.185) (F5 ,4 o= 1-657) (F3,23=3.029)* (F2>,6=2.685)*

H. fasciculare 2 Fi>8= 0.053 F1>8= 6.156 F,,8=23.271 F,,8 = 18.995 F, 8= 0.008 F,,s= 28.805 F,(8= 4.189
M NS NS P ’ NS P P

(F5,40=4.445) (F2i18=1.782)* (F2> 17= 1-602)* (F5 >4 0 =9.957) (F5,4 o=l-041) (FMO=4.110) (F2>,9=3.481)*

H. fasciculare 3 F,,8= 7.340 F,.i6 = 9.387 (X2,,48=0.999) F,,6= 32.875 Flf8= 30.732 Fi>8= 0.603
M M P P P NS

(F3,22=28.017)* (F3,50=37.549)* <X25,48=0.997) (F2),4=6.308)* (F5,4o=4.198) (F3,26=0.211)*

H. fasciculare 4 F1>8= 1.544 F,. ,8 = 69.704 FM= 86.777 F |tjo= 9.206 F, 8= 1.272
M P P M NS

(F2>19=8.223)* (F4,67=56.315) (F4>38= 19.524)* (F5>50=34.521) (F5,40=0.654)

P. impudicus F1>6= 0.815 F, ,8 =1.545 F,i8= 0.063 F,)6= 3.344
NS M M NS

(F2>12=1.986) (F5 >4o= 10.095) (F5>30=34.643) (F5>30=1.123)

P. velutina F1>8= 0.114 F,(8= 4.506 Fj 8= 2.786
’ NS M NS

(F2 ,17= 1-908)* (F5 ,40=9.678) (F5,40=2.297)

R. bicolor 1 F1i8= 7.468 F,, 8= 3.295
P NS

(F3,16=3.980)* (F5>4o=1.037)

R. bicolor 2 Fi>8= 0.119
NS

(F2.,5=1.223)*
For each interaction (row vs. column) the top line gives the result of the overall ANOVA (treatment effect). Values in bold indicate a significant difference. The 

remaining two lines of each interaction refers to the repeated measures ANOVA time*treatment interaction. P and M indicate significance at P <0.05; NS 

indicates no significance. P = persistent significant preference for mycelium listed in row heading over time. P = persistent significant preference for mycelium 

listed in left column over time. M indicates collembola switching preference from one mycelium to the other during the course of the interaction. M = 

collembola switched from mycelium listed in the row heading to the mycelium listed in the left column during the interaction; M = collembola switched from 

mycelium listed in left column to mycelium listed in the row heading. Where the interaction is between the two same isolates, the mycelium listed in the top row 

was on the right hand side when data were collected. * The degrees of freedom for these F-values result from the use of the Huynh-Feldt correction factor 

(rounded to the nearest whole number).
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Fig 4.2 (i): Examples of collembola movement during the interactions. P-values are for 

repeated measures ANOVA time*treatment interaction, or where data violated 

assumptions, the Scheirer-Ray-Hare test time*treatment interaction. The P-value 

indicates whether there was a significant difference between collembola densities on the 

different mycelia over time. Hf 1-4 Hypholoma fasciculare isolates 1 to 4, Pi Phallus 

impudicus, Pv Phanerochaete velutina, Rb 1, 2 Resinicium bicolor isolates 1 and 2. (a) 

Hf I against Hf 4, (b) Hf 1 against Pv, (c) Hf 1 against Rb 1, (d) Hf 2 against Hf 3, (e) Pi 

against Hf 2, (f) Hf 3 against Rb 2, (g) Hf 4 against Rb 1, (h) Rb 1 against Pv. F-statistic 

and degrees of freedom are given in Table 4.1.
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Fig 4.2 (ii): (i) Rb 2 against Pv, (j) Pi against Rb 1, (k) Hf 3 against Rb 1, (1) Pi against 
Pi, (m) Hf 4 against Hf 4, Rbl against Rb 1.
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Fig 4.3 (i): Collembola death during interactions. The results are broad representation of 

the mortality seen on all interactions. P-values are for a one-way ANOVA on the final 
time point. Hf 1 -4 Hypholoma fasciculare isolates 1 to 4, Pi Phallus impdicus, Pv 

Phanerochaete velutina, Rb 1 2 Resinicium bicolor isolates 1 and 2. (a) Hf 1 against Hf 4 

(Fi,8=0.03), (b) Hf 1 against Pv (F1>8=0.04), (c) Hf 1 against Rb 1 (F1j8=1.17), (d) Hf 2 

against Hf 3 (F18=8.45), (e) Pi against Hf 2 (F,,8= 78.13), (f) Hf 3 against Rb 2 

(Fi s=20.48), (g) Hf 4 against Rb 1 (Fij8=144.69), (h) Rb 1 against Pv (Fi 8=56.70). Data 

represented in this figure correspond with the interactions listed in Fig. 2
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Fig 4.3 (ii): (i) Rb 2 against Pv (FU8=1.35), (j) Pi against Rb 1 (F,,8= 14.0), (k) Hf 3 

against Rb 1 (Fi j6= 5.90), (1) Pi against Pi (Fi 6= 0.03), (m) Hf 4 against Hf 4 (Fi>8= 
0.24), (n) Rb 1 against Rb 1 (F] 8= 0.03).
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4.4 Discussion
4.4.1 Collembola response to the interaction zone
There was no evidence of collembola attraction to the interaction zone in this study 
although there is evidence that some invertebrates (fungus gnats Bradysia sp.) are 
attracted to, and burrow within, fungal interaction zones (Boddy et al., 1983).
Leakage from interacting hyphae also makes these regions likely to be nutrient rich 

(Wells & Boddy, 2002).

4.4.2 Collembola preferences
Collembola showed no consistent preference for one isolate during all interspecific 
interactions; switching from one mycelium to the other occurred in 11 interactions 
while a clear preference was shown in another 12 (Table 4.1). In these latter 
interactions, the mycelium chosen was that on which the final collembola mortality 
was lowest, suggesting a causal link between survivorship and resource choice. Aside 
from H. fasciculare, which was consistently the least preferred species, collembola 
exhibited no hierarchy of preference. A possible explanation for the avoidance of H. 
fasciculare is found in a soil microcosm study where, when growing alone, H. 
fasciculare was grazed at the mycelial margin, but as mycelia filled the microcosms, 
margins with relatively palatable hyphae may not have been available (Tordoff et al.,
2006). In the system used here there was very limited mycelial margin and possibly, 
therefore, restricted palatable hyphae. As a consequence of its low palatability, 
fecundity is likely to be low on H. fasciculare, although as a stress response to a 
suboptimal food source, egg-laying may be increased (Noel et al., 2006).

Collembola preference is probably controlled by a balance between several factors. 
When growing alone, for example, the fine hyphae of P. velutina may be palatable to 
collembola, but the extracellular chemicals produced to attack a competing fungus 
(Baldrian, 2004; Xu et al., 2004) may have made it unpalatable. Collembola choice is 
likely to be a compromise between such factors, and with different interactions the 
‘optimality’ of a given mycelium may alter. Where the choice was limited, 
collembola may have chosen between two poor options neither of which would be 
selected in field conditions.
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4.4.3 Switches in collembola preference
The pattern of switching behaviour by collembola from one mycelium to the other 
appeared counter-intuitive, with collembola consistently moving toward the mycelium 
with the highest mortality by the end of the experiment (Figs. 4.2, 4.3). The lack of 
complete removal of the initial mycelium indicates that the move was not a 
consequence ofresource depletion. Initial grazing may, however, have removed fine 
hyphae leaving only thicker, less palatable hyphae and melanised cords (Harold et al., 
2005; Kampichler et al., 2004). Changes in fungal gene expression, subsequent 
physiology (Iakovlev et al., 2004) and secondary metabolite synthesis (Hynes et al.,
2007) through fungal colony ageing or aggressive fungal interaction may have made 
an initially palatable mycelium unpalatable. Equally, the initially most preferred 
mycelium may have produced volatile (VOC) or diffusible (DOC) organic 
compounds which attracted the collembola to that mycelium and/or the least preferred 
mycelium may have produced VOCs and DOCs that repelled collembola. Nitrogen is 

commonly limiting in the natural environment and collembola provide a nutrient-rich 
resource (Klironomos & Hart, 2001). The ability to attract nitrogen-rich collembola to 
their death may hold significant advantages during fungal combat, driving a selection 
pressure for this fungal behaviour. Collembola preference is not static; a mycelium 
initially preferred by collembola in one interaction was sometimes initially avoided 
when interacting with another species. This may be due to altered fungal physiology 
and chemistry with different interactions.

There was greater collembola survival in interactions in which a sustained clear 
preference was observed. Variable hypotheses are plausible to account for the 
ultimate higher mortality observed in interactions in which collembola switched 
preferences. Firstly, collembola may have ‘misinterpreted’ cues produced by the 
fungi and moved towards an attractive / away from an unattractive mycelium 
inadvertently to a poorer or even lethal resource. Secondly, fungi may have attracted 
collembola to their deaths but in some cases this attraction was weaker than the 
attraction of mycelium on which collembola were already feeding, hence switching 
did not occur in all interactions with a given isolate. Thirdly, depletion of edible 
resource in the mycelium may have forced collembola off onto the other.
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Although misinterpretation of cues by collembola has been reported, this was in a 
mutant form of A.funigatus making it more palatable to collembola, suggesting that 
the mutation had altered the palatability but not the cues used by collembola (Scheu & 
Simmerling, 2004). In addition, misinterpretation of cues by collembola would be 
unlikely to yield such a consistent trend of movement toward ‘greater mortality’ 
across replicates. In relation to the third hypothesis, there was no visible depletion of 
visible resource and since the switch (in, for example, H. fasciculare 1 against R  
bicolor 1; Figs 4.2 c, 4.3 c) sometimes occurred (16 d) when collembola death was 
already higher (from 12 d), increased mortality on that mycelium is unlikely to have 
resulted simply from an increased population size. This reduces the support for the 
third hypothesis. As increased mortality on the finally preferred mycelium is a 
consequence of dispersal from a diminishing resource, and the switching behaviour 
towards the fungus with final highest mortality was consistent, the second hypothesis 
therefore, seems more likely.

4.4.4 Collembola mortality

Collembola died on all interactions, but more on some than others (Fig. 4.3).
Although some may be attributable to natural (age-dependent) mortality it is more 
likely due to the fungi as mortality on interactions was far higher than that observed in 
soil trays and laboratory culture (pers. obs.). In some interactions mortality was so 
high that, if typical, long term population survival was unlikely. This indicated that 
the food quality was, in some instances, low. The presence of different mycelia may 
allow collembola to gain essential nutrients by mixing their diet. Naturally, such 
interactions occur within a diverse biotic environment in which other fungi and 
bacteria are present. The basidiomycete defence mechanisms against invertebrate 
grazing include specialised killing stuctures, for example, toxic droplets from 
secretory mycelial appendages (Hutchison et al., 1996) and defensive cystidia 
(Nakamori & Suzuki, 2007). It may be that the fungi in this study also have hyphae 
capable of trapping or killing collembola.

Genetically different isolates of the same fungal species generally resulted in similar 
behavioural responses. Occasionally, however, collembola showed distinct 
preferences for one isolate over another. In particular, interactions of H. fasciculare 
with R. bicolor demonstrate how different isolates can substantially alter collembola
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behaviour. Many studies have used a single isolate of one fungal species to study 
invertebrate preference or behaviour (Hedlund et al., 1991; Kampichler et al., 2004; 
Kaneda & Kaneko, 2004); the present study implies that these should be interpreted 
with caution.

4.4.5 Conclusions
In conclusion, collembola showed preferences in all interactions although fungal 
preference did change dependent on the interacting fungal species. Collembola 
behaviour on different isolates of the same fungal species was generally, but not 
always, consistent. Collembola mortality was seen on all interactions and was 
generally lowest on those interactions where collembola exhibited a consistent 
preference for one mycelium. The study raises questions as to what cues, detectable 
by collembola, are produced by interacting fungi. Future studies should explore 
collembola sensory acuity in differentiating between fungi. This would enable 
determination of whether the sub-optimal choices made by collembola are a result of a 
lack of ability to differentiate between signals or even to detect them at all.
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5.0 Collembola movement responses to fungal volatile odours

5.1 Introduction
Invertebrate population survival and growth depends on an organism’s ability to 
locate and utilise essential resources. As resources are normally patchily distributed 
within a habitat, effective searching strategies are required to maximise efficiency 
(Godfray, 1994). Visual and chemical cues, indicating the location of possible 
resources, affect invertebrate behaviour (Dicke, 1994). Most studies on invertebrate 
responses to volatile chemicals have been conducted on above-ground organisms. For 
example, plant odours are exploited by insect herbivores which follow gradients of 
increasing volatile chemical concentration until they arrive at the host (Erickson & 
Feeny, 1974; Godfray, 1994). Furthermore, plant insect herbivores are often located 
by predators such as parasitoids through a combination of both plant and herbivore 
odours (Godfray, 1994).

Fungi are also known to emit volatile chemicals attractive to invertebrates. For 
example, parasitoids which parasitise Drosophila sp. found in fimgal-dominated 
microhabitats are attracted by the habitat odours (Dicke et al., 1984). In another 
study, the volatile chemicals emitted from cut sections of fruit bodies of the wood- 
decay fungi Fomitopsis pinicola and Fomes fomentarius were attractive to a range of 
beetles (Faldt et al., 1999). Such exploitation of fungal odours can be highly specific. 
The bracket fruit bodies of the basidiomycete Trametes versicolor, for example, play 
host to two species of ciid beetle, Ocetotemnus glabriculus and Cis boleti. O. 
glabriculus is found in young fruit bodies, whereas C. boleti inhabits older brackets. 
These two beetle species effectively partition the fungal resource by using odour cues 
from the fruit bodies to determine the age of the fruit body and therefore whether it is 
a suitable habitat (Guevara et al., 2000a).

Studies investigating the responses of below-ground invertebrates to volatile chemical 
cues are less abundant than for above-ground fauna. Those studies on volatiles 
emitted by plants below-ground have been largely restricted to two main themes: 
invertebrate responses to plant roots and nematode foraging behaviour. A wide range 
of soil root-feeders are attracted to plant root chemicals with the predominant
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attractant being CO2 (Johnson & Gregory, 2006). For example, the larvae of the root 
feeding clover weevil (Sitona lepidus) use CO2 to orientate towards the roots of white 
clover (Johnson et al., 2006), and a number of other generally low molecular weight 
root exudates are known to be attractant to root herbivores (Johnson & Gregory, 
2006). As CO2 is emitted by most soil organisms, plant roots, fungi and bacteria, as 
well as other invertebrates, it is a general cue although one to which invertebrates are 
highly sensitive (Johnson & Gregory, 2006). Secondary metabolites, on the other 
hand, are more specific to a given plant, or range of plant species and therefore may 
be exploited by highly selective feeders. For example, western com rootworm 
(Diabrotica virgifera virgifera) larvae feed on maize (Zea mays) and a variety of 
other grasses. The volatile chemical 6-methoxy-2-benzoxazolinone is emitted from 
maize roots and some grasses and, along with CO2, is used by the rootworm larvae to 
locate the roots (Bjostad & Hibbard, 1992). A similar example of attraction to a 
specific chemical has been seen in the entomopathogenic nematode Heterorhabditis 
megidis, a predator of the western com rootworm. When attacked by the rootworm, 
maize plants emit a sesquiterpene (E)-jJ-carophyllene) attracting the nematode 
(Rasmann et al, 2005). The recruitment of root herbivore predators mediated through 
plant exudates (van Tol et al., 2001; Rasmann et al., 2005) is highly analogous to 
above-ground systems (Dicke, 1994).

Aside from plant-insect interactions, there has been limited study on the attraction of 
soil invertebrates to other soil biota. The majority of plant root studies have 
eliminated much, if not all, of the soil biota (Johnson & Gregory, 2006), and yet soil 
organisms emit a wide variety of compounds some of which are known to trigger 
interspecific responses. For example, Penicillium and Trichoderma fungal species 
produce a range of fungistatic compounds which inhibit fungal growth (Humphris et 
al, 2002; Kettering et al, 2004). In addition, fungi also emit volatiles which attract 
invertebrates; termites from the genus Reticulitermes sp. excavate runways directly to 
decaying wood possibly through following a gradient of attractive chemicals 
(Anderson et al., 1984). Collembola, a highly abundant soil invertebrate group 
(Hopkin, 1997), discriminate between fungal mycelial odours indicating preferences 
for one fungus over another (Hedlund et al., 1995). In addition, circumstantial 
evidence of invertebrate attraction to fungal volatiles has been seen in fungus gnats 
(Boddy et al., 1983).
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Soil invertebrates must not only detect resource cues but also differentiate between 
cues from different resources if they are to be of functional significance. The 
existence of invertebrate preferences (Hedlund et al., 1995; Jorgensen et al, 2003; 
Tiunov & Scheu, 2005) indicates discrimination between resources and this may 
extend to exploitation of volatile or diffusible chemicals as seen with fungal fruit 

bodies above ground (see above).

Decomposition processes in temperate woodland are driven by wood-decay fungi 
(Rayner & Boddy, 1988) and aggressive interactions between them may serve to 
maintain their diversity. During aggressive interactions, volatile organic chemicals 
unique to the interaction are emitted by basidiomycete fungi (Hynes et al., 2007). In 
woodland habitats where basidiomycete fungi and their associated interactions 
abound, the invertebrate mesofauna community tends to be dominated by mites and 
collembola (Bardgett 2005). Many collembola species are predominantly 
mycophagous (Hopkin, 1997) and can alter fungal morphology, foraging strategy and 

competitive interaction bias by their grazing activity (e.g Hedlund et al., 1991; 
Kampichler et al., 2004, Newell, 1984a, b). As is believed to occur with other 
mycophagous invertebrates (Boddy, 1983), collembola may exploit chemicals emitted 
by fungi and use them as cues to indicate the presence and nature of the potential 
resource. Conversely, some fungi emit chitinases (Lindahl & Finlay, 2006), which 
are potentially lethal to invertebrates covered in a chitinous exoskeleton. It would be 
of adaptive advantage to detect such chitinase synthesising fungi from a safe distance. 
As interactions of saprotrophic basidiomycetes lead to increased volatile compound 
emissions, fungal interactions form a useful system for exploring whether fungal 
volatile chemicals affect mycophagous soil invertebrate behaviour.

In this chapter the effects of fungal interaction volatiles alone on soil invertebrate 
behaviour are explored. In particular, this study aims to determine the response of 
Folsomia Candida (Collembola) to volatiles emanating from interacting fungi. It is 
hypothesised that: (i) collembola will spend more time over attractive mycelial areas; 
(ii) search behaviour will increase at attractive sites; and (iii) collembola velocity will 
be greater at sites of low attraction.
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5.2 Materials and Methods
5.2.1 Membrane frame construction
Four lengths of 25 x 2 x 2 cm kiln-dried timber, heat-sealed in strips of autoclavable 
biohazard bag to prevent wood volatile emissions, were attached using 40 mm panel 
pins to construct a square frame. A spun-bonded polypropylene membrane (Agralan 
Ltd, UK), chosen for low infra-red (IR) reflectance (allowing a clear contrast between 
collembola and membrane under experimental conditions), high volatile permeability 
but not inhibitory to collembola locomotion, was drawn over the wooden frame and 
stapled to the frame. Three membrane frames were assembled.

5.2.2 Fungal interactions and collembola
Fungal interactions of Phallus impudicus against Resinicium bicolor 2, Hypholoma 
fasciculare 1 against R bicolor 1, and H. fasciculare 1 against R bicolor 2 (with P. 
impudicus against P. impudicus, H. fasciculare 1 against H. fasciculare 1, R. bicolor 1 
against R  bicolor 1, R bicolor 2 against R bicolor 2 and blank agar as controls), 
were set up and grown as described in Chapter 3. Fungal morphology during 
interactions was similar to that in these previous experiments. Opposing mycelia of 
fungal interactions had been in contact for 10 d before commencing experiments. 
Collembola were cultured and size selected as described in Chapter 3.

5.2.3 Experimental design
Experiments were conducted in a Sony Fitotron Constant Environment (CE) Chamber 
at 20°C, 95% RH and in darkness. A camera (Sanyo IR CCD, Sanyo Electric Co.
Ltd, Japan), with an infra red (IR) sensitive lens (Computar H6Z0812 8-48 mm 
1:1:2, CBC Co. Ltd, Japan) and filter was fixed 41 cm above the base of the camera 
stand on which experiments were carried out. An IR light source (Tracksys Ltd, UK) 
was attached below the camera (ca. 5 cm) and angled at ca. 75° from the vertical to 
obtain optimal, even lighting across the experimental area (see Fig. 5.1). The camera 
and IR equipment were connected to a PC via a port through the side of the CE 
chamber bunged to prevent air movement and light ingress. An agar plate, containing 
an ongoing interaction and with lid removed, was placed beneath the camera in the 
CE chamber. Different areas of the arena were defined into four ‘zones’ using 
Ethovision 3.1 software (Noldus Information Technology, Netherlands; Fig. 5.2). The 
zones were: outside of the Petri dish, the two separate mycelia and the interaction
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zone (defined as ca. 1 cm either side of the central interaction line where 
morphological changes marking the interaction zone commenced). In the control self­
self interactions, such as R. bicolor 1 against R. bicolor 1, one mycelium was labelled 
‘Rb top’ and the other ‘Rb bottom’ based on the abbreviated fungal name (Rb, R. 
bicolor, Pi, P. impudicus, Hf, H. fascicualre) and their orientation as seen on the 
monitor before data recording commenced. This permitted distinction between zones 
during data analysis. The four zones were used to define collembola location during 
the tracking experiments (see below). The blank agar treatment was divided into two 

zones: within/outside the agar plate. To determine the speed of movement, a ruler was 
placed in the CE chamber next to the Petri dish and used as a scale in the Ethovision 
program.

IR Camera

Lens 
IR filter

IR source

Wooden arena covered with membrane 
Interaction in 9 cm Petri dish -  lid removed 
Camera stand.

Not to Scale

Fig. 5.1: Schematic representation of the side view of the experimental set up inside 
the constant environment (CE) chamber.

5.2.4 Experimental conduct

Before commencing a run of experiments the CE chamber was switched off to 
minimise air movement during the interaction. A membrane frame was carefully 
placed over the Petri dish so that the frame was at least 2 cm from the Petri dish edge. 
The chamber was closed for 10 min to allow permeation of fungal volatiles into the
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membrane fabric. With minimal disturbance one collembola, which had been starved 

for 24 h, was added from a 1 cm diameter glass vial, and placed on the membrane 

frame directly above one of the two addition zones (Fig. 5.2). Under IR light, each 

collembola was illuminated against the membrane and for 10 min was picked up and 

tracked as an x, y coordinate by the Ethovision software. If the collembola left the 

arena for two consecutive minutes, or stopped for five consecutive minutes, the trial

was terminated.

[Arena 1

O utside

; I In te rac tion ) ' x.

Fig. 5.2: Collembola tracking arena layout. Each coloured zone was assigned a name; 

Pi = Phallus impudicus original mycelium; Rb = Resinicium bicolor original 

mycelium; Interaction = interaction zone; Outside = zone outside of the Petri dish 

(diameter 9 cm). ‘Arena 1* defined the entire arena area to be videoed. +  Point of 

collembola addition

Using the scale input at the start of the experiment, the software calculated speed of 

movement as well as changes in the direction of collembola movement (recorded as 

an angle change). At the end of the 10 minutes, the collembola and membrane frame 

were removed, a fresh membrane frame added and the CE chamber door closed for 

volatile permeation. Each interaction plate was run five times with collembola 

addition being alternated between the two points (Fig. 5.2). At the end of five runs 

the interaction plate was rotated through 90° to prevent bias from any extraneous 

sources such as materials present in the experimental setup. A naive collembola was
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used for each track and 20 tracks were recorded for each interaction plate with 
collembola added 10 times to each addition point in total (Fig. 5.2). To account for 
changes in fungal interactions over time, the plates over which collembola were 
tracked were interspersed; for example five tracks of P. impudicus against R. bicolor 
2, followed by five tracks of R. bicolor 2 against R. bicolor 2, followed by five tracks 
of P. impudicus against P. impudicus. Blank agar controls were rapidly colonised by 

airborne organisms and were, therefore, replaced daily.

5.2.5 Data analysis
Using Ethovision, the following parameters were determined and recorded for each 
collembola run:

• Total time (s) spent in each of the four zones.

• Velocity (cm s'1) within each zone.

• Mean angle of each turn made in a zone. A turn is described as the angle 
through which the collembola passed during the time from when the 
collembola left a straight line trajectory and turned consistently in clockwise 
or anticlockwise direction to the point when a straight line trajectory was 
resumed, or a turn on the opposite direction commenced. The mean angle for 
each turn is the mean of all these turn values.

• Mean angular velocity; the mean speed at which each collembola passed 
through each turn (as defined above) providing an indication of turn tightness.

• The sum of the total number of degrees through which a collembola passed 
within each zone.

• Relative time in zone; this was the time in each zone divided by the area of 
each zone. Zone areas were calculated from images saved in Ethovision using 
Image J 1.33 (National Institute of Health USA; as described in Chapter 4).

• Relative turn angle; calculated as the total absolute turn angle in each zone 
divided by the time spent by the collembola in each zone. This was calculated 
for each replicate.

5.2.6 Statistical analysis

Collembola movement as measured in each parameter (defined above) was compared 
within each interaction. Data for each parameter were transformed on a ladder of
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powers (log 10, square, cube) and these, including the raw data, were analysed for 
kurtosis and skewness (SPSS 14). Data sets where values for kurtosis and skewness 
fell within ±1 were used in a univariate General Linear Model (GLM) with Tukey’s 
honest significant difference post-hoc test (all using SPSS 14). Data violating the 
assumptions of the GLM were analysed using a Kruskall-Wallis test.

5.2.7 Point of addition data and qualitative track analysis
As collembola were added to two different areas on each interaction, it was possible 
that point of addition could bias the results. For example, collembola may have 
remained where they were added and results would misleadingly indicate collembola 
preference for the original mycelia. To determine point of addition biases, a one-way 
ANOVA was performed on data for time spent in zone for each mycelium and for 
each point of addition. For example, in the interaction between H. fasciculare 1 and 
R. bicolor 1, an ANOVA was performed between time spent over H. fasciculare 
mycelium and time spent over R  bicolor mycelium when the collembola had been 
added to H. fasciculare. This was repeated with data when collembola had been added 
to R bicolor. The same process was repeated for relative turn angle data. This 
analysis was performed on H. fasciculare 1 against R bicolor 1, P. impudicus against 
R. bicolor 2 and R bicolor 2 against R. bicolor 2.

In addition to the quantitative analysis of collembola behaviour listed above, the 
recorded tracks were also examined quantitatively for specific behaviour patterns, 
such as increased turning at plate edges.

5.3 Results
5.3.1 Collembola movement behaviour

In general collembola did not display significant preferences for one mycelial region 
over another (Fig. 5.3). Collembola did, however, spend significantly more time 
(when corrected for area covered) within the boundary of the agar plate in the 
interaction of R. bicolor 2 against P. impudicus (Fig. 5.3 b). This did not occur in any 
of the other five interactions but was seen in the blank agar controls (Fig. 5.3 h). 
Collembola velocity, mean turn angle and angular velocity were not significantly 
different in any experimental or control treatment (e.g. Fig. 5.4 a, b).
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H i=l 1.36, P=0.001, Hj=5.22 P=0.022; (d) ^ = 9 .8 7  P=0.002, H,=6.27 P=0.012; (e) 
Hi=4.03 P=0.049, Hi0.82, P=0.364; (f) H,=0.33 P=0.566, Hi=1.07 P=0.301; (g) Hi. 
=5.561 P=0.002, Hj=8.31 P=0.004.
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Fig 5.6: Track paths of individual collembola. Paths are shown over agar plate to demonstrate response in relation to each interaction 

(Petri dish 9 cm diameter), (a) blank agar; (b-c) Hypholoma fasciculare 1 against Resinicium bicolor 1; (d-e) H. fasciculare 1 against 

H. fasciculare 1; (f-g) Phallus impudicus against P. impudicus\ (h-j) P. impudicus against R. bicolor 2. The black square on each 

track indicates the collembola position when recording started.



5.4 Discussion
5.4.1 Collembola movement and turning behaviour

Collembola exhibited no preference for the interaction zones in any of the fungal 

interactions investigated. They did, however, spend increased time over the entire 

Petri dish in the interaction of P. impudicus against R. bicolor 2. This suggests 
possible attraction to, or arrestment on, the interacting fungi. Collembola did, 

however, spend more time over the Petri dish in blank agar control than outside of it. 
This may have been due to volatiles emitted by the agar itself. Enhanced turning 
behaviour was exhibited by collembola on the P. impudicus against R. bicolor 2 

interaction (no difference on blank agar), and qualitative analysis of collembola 
movement tracks indicated an edge effect, with collembola repeatedly turning at the 
plate edge keeping them directly above the plate (Fig. 5.5 h-j). As collembola 
behaviour on the P. impudicus against R. bicolor 2 interaction was significantly 

different from random across a number of different parameters, and was independent 

of point of collembola addition, behavioural differences are unlikely to be simply an 
experimental artefact.

The interaction between R. bicolor 2 and P. impudicus was originally selected as 
collembola have been shown to burrow along the interaction line of the two fungi 

(Chapter 3). Collembola may not have shown such clear attraction/arrestment in this 

particular experimental set-up as the chemical bouquet emanating may have been 
insufficient on its own to trigger such site-specific attraction behaviour. Such a 
hierarchy of stimulus-elicited response is well established among invertebrates. 
Parasitoids, for example, often use one set of cues to locate a resource habitat and 
then search for the discrete resource using other detection methods such as searching 
for diffusible organic chemicals (DOCs, e.g. Guillot & Vinson, 1972), active 

ovipositor probing or visual recognition of a prey item (Vinson, 1976). An empirical 
explanation for the lack of a preference for the interaction zone is that the membrane 

may have caused VOC mixing to occur before the stimuli reached the vicinity of the 
collembola, rendering different zones of the interaction indistinguishable. Further 

work to determine the VOCs present at the membrane surface compared to those 

directly above each area of the interaction would show if the VOCs become mixed or 

altered at the membrane surface.
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5.4.2 Collembola detection of fungal volatiles
The interaction of R. bicolor 1 against H. fasciculare 1 emits a wide range of VOCs, 

some of which are unique to the interaction (Hynes et al., 2007). The lack of any 
detectable collembola response was, therefore, unexpected. Collembola may require 
more time to exhibit a preferential behaviour; collembola response times differ 
between species and it can take several hours before a preference becomes obvious in 

some species (Kaneda & Kaneko, 2004). It is uncertain whether collembola are able 
to detect interaction-based VOCs and the presence of VOCs does not necessarily 

indicate a functional role (Gould & Lewontin, 1979). Examining collembola VOC 

detection ability through studying, for example, antennal response, would demonstrate 
which cues illicit a response and, therefore, may have functional significance. For 

example, the antennal responses of the two-spotted stinkbug Perillus bioculatus to 
volatiles produced by its prey the Colorado potato beetle, Leptinotarsa decemlineata, 
were successfully monitored by the use of electro-antennograms (Weissbecker et al,
1999). The study revealed that among the bouquet of VOCs tested two compounds 
elicited a particular response, 2-phenylethanol and (3-caryophyllene. Other VOCs 

elicited only weak antennal responses on the stinkbug and were therefore, considered 

to be of limited importance in the interaction studied.

5.4.3 Proposals for future work
Although this present study failed to provide unequivocal evidence of VOC 
exploitation by collembola during fungal interactions there remains sufficient 
anecdotal information to justify that a further, more refined, experiment with modified 
detection techniques should be executed. Such a study should:

• examine the rate of VOC transmission across the membrane to inform 
accurately the time for membrane saturation before collembola addition;

• determine collembola VOC detection through testing antennal response to the 
VOC bouquet of each interaction studied using, for example, electro- 

antennogram techniques; and

• test the interactions on a range of different substrates, for example, defaunated 

soil, to determine the role of substrate in altering collembola behaviour.
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Using this information, it would be possible to determine the role of VOCs in 
informing the behaviour of collembola during fungal interactions and provide insight 

as to whether VOCs are as important in the below-ground decomposer community as 

they are in the plant root community.
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6.0 The responses of cord forming saprotrophic fungi to collembola 
grazing during aggressive interspecific interactions.

6.0 Introduction
Networks of fungal cords are produced across the forest floor at the soil-litter 

interface (Boddy, 1999) and, as they extend across the soil, competition with other 
basidiomycetes for both space and resources are inevitable and frequent (Boddy,
2000). Many studies of such fungal interactions show fungi to be aggressive, often 
with a reproducible hierarchy of dominance between species (Donnelly & Boddy,
2001; Dowson et al, 1988a; Wald et al., 2004b). While abiotic conditions and 
duration of resource colonisation influence fungal extension rate and morphology 

(Donnelly & Boddy, 1997a; Harold et al., 2005), various other factors including 
inoculum size can also alter interaction outcome (Donnelly & Boddy, 1997a; Harold 

et al., 2005). In addition, aggressive fungal interactions may cause normally 
conservative fungal mycelia to become leaky, leading to nutrient loss to the soil 

creating a pathway for nutrient mineralisation (Wells & Boddy, 2002).

Fungal dominated ecosystems have high levels of fungal grazers such as collembola 
and mites (Bardgett, 2005; Hopkin, 1997). Many studies have attempted to elucidate 
the diets of soil invertebrates, including collembola (Moore et al., 1985; Thimm & 
Larink, 1995). Using stable isotope techniques (Chahartaghi et al., 2005), fungi have 
been confirmed as a major component of collembola diet. In general, however, there 

appears to be little dietary specialisation in soil invertebrates of all fauna groups 
(Maraun et al., 2003). As dietary niche development is considered an explanation for 

above-ground invertebrate diversity (Hunter & Price, 1992), the absence of such 
specialisation below-ground is surprising. Laboratory preference tests indicated that 
collembola prefer dark pigmented fungi (Dematiacea; Mills & Sinha, 1971; Poole, 

1959) while a complex field experiment revealed that the collembola Onichiurus latus 
exhibited a clear preference for basidiomycete fungi, accounting for 90% hyphae 
found in the gut (Newell, 1984a, b). Interestingly, O. lata grazing was attributed by 

the author to cause partitioning of two fungal species, Marasmius androsaceus and 
Mycena galopus, with the preferential grazing of M. androsaceus confining the 
species to the upper litter horizon which is too dry for O. latus. The less grazed
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Mycena galopus dominated lower in the litter. This gives rise to a paradox, with soil 
invertebrates, including collembola, being considered to be generalists but with clear 

preferences often seen in empirical studies, especially those in the laboratory.

Collembola not only exhibit preferences in the fungi chosen (Bardgett et al, 1993b), 
they also affect the fungi on which they graze. Basidiomycete fungi show reduced 

mycelial extension under grazing (Tordoff et al, 2006) therefore potentially reducing 
their ability to obtain new space and resources. Other examples of fungal responses to 
grazing have been shown in non-basidiomycete fungi. For example, Mortierella 
isabeltina changed growth pattern from ‘normal’ to fast growing appressed (non­
aerial) and sporulating mycelium when grazed by the collembola Onychiurus armatus 
(now Protaphorura armata; Hedlund et al, 1991). Furthermore, Bengtsson et al, 
(1993) observed that Verticillium bulbilosum and Penicillium spinulosum increased 
respiratory activity in response to collembola. Collembola grazing does not, 

therefore, necessarily have a uniformly negative impact on mycelium. As further 
examples, the cord-former Phanerochaete velutina exhibited compensatory growth at 

low grazing intensity (Bretherton et al, 2006) while Hypholoma fasciculare exhibited 

an occasional change in growth strategy switching from uniform growth to areas of 
rapid extension (Kampichler et al, 2004). This latter growth change was interpreted 
as a fugitive response to evade grazing attack. While this change in response was 
caused by Folsomia Candida grazing, which also reduced mycelial extension and 
cover the two other grazers used in the study, Proisotoma minuta and Hypogastrura 
cf. tullbergi, affected neither fungal extension nor cover (Kampichler et al, 2004).
To date, the majority of studies on collembola grazing of cord-forming decay fungi 
have been restricted to laboratory studies comparing the response of a single fungus to 
one grazer species. In the field, however, the frequent interactions between cord- 
forming fungi, especially in woodlands where they are very prevalent, may well alter 
the grazing patterns of collembola. This may feedback to affect fungal interaction 

outcomes and ultimately species assemblage.

This study explores the effect of collembola grazing on fungal extension, morphology 

and combativeness when two cord-forming fungi are interacting. Using four fungal 
species and two collembola grazer species, the varying nature of fungal response to 
grazing is explored. It is predicted that fungal preferences exhibited by collembola,
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along with differences in how collembola species affect mycelial morphology and 
function, will influence fungal interaction outcomes. More specifically it is 

hypothesised that: (i) species highly susceptible to grazing, such as Resinicium bicolor 
will loose combative ability when grazed; (ii) species highly resistant to grazing, such 
as Hypholoma fasciculare, will gain a competitive advantage when grazed, and (iii) 

Protaphorura armata will have much less impact on fungi than Folsomia Candida as 

it is less active and other studies employing similar systems comparing these two 
collembola, suggest limited impacts (Tordoff et al., 2008).

6.2 Materials and Methods
6.2.1 Soil tray preparation
Soil collected from mixed deciduous woodland in Tintem, Monmouthshire 
(S0517069) was air-dried for 7 d, and sieved through a 4 mm and 2 mm mesh to 
remove organic material and stones. The soil was then frozen for 24 h to defaunate 

(but minimising effects on microbial community) before rewetting with 350 ml 
deionised water (DH2O) kg 1 soil. The wet soil (200 g per tray) was evenly 

compacted to 4 mm depth into 24 x 24 x 2 cm non-vented lidded bioassay trays 

(Nunc-Gibco, Paisley, UK), which were then weighed to 0.01 g and stored in stacks 
of 20 double wrapped in black PVC bags to prevent desiccation (20°C ±1°C, dark). 

Trays were used within 7 d of being made and rewetted to original weight with DH2O 
every 7 d. During the experiment any contaminating flora were removed. No non- 
experimental fauna were observed.

6.2.2 Wood block preparation and sterilisation
Wood blocks were cut from freshly felled beech (Fagus sylvatica) timber (Coed 
Cymru Hardwood Sawmill, Wentwood, UK) into 2 x 2 x 1 cm blocks. Blocks with 

discolouration and knots were discarded. Groups of 20 blocks were double-wrapped 
in heat-sealed biohazard bags and autoclaved for two separate 1 h sessions each being 

24 h apart. Sufficient blocks were inoculated for 1.5 times the requirements of the 
experiment.

6.2.3 Wood block inoculation
Phanaerochaete velutina, Resinicium bicolour, Hyphloma fasciculare and Phallus 
impudicus were cultured in darkness on 2% malt extract agar (MEA, 20g L'1 malt,
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Munton and Fison, UK, Lab M agar no. 2) and maintained in the dark at 20°C until 
the mycelium covered the surface of 9 cm diameter non-vented Petri dishes. Inocula 
excised from each culture were transferred to 14 cm diameter vented Petri dishes 

filled with MEA, sealed with Nescofilm® and stored at 20°C in darkness. The 
mycelia from a single 9 cm plate was used to inoculate two 14 cm plates. Once the 

mycelium had covered the entire surface of each 14 cm plate, 15 sterile beech (Fagus 
sylvatica) wood blocks (preparation described below) were added, the plates resealed, 
and returned to 20°C and darkness. When the mycelium had entirely covered the 

wood blocks the Nescofilm was removed and the plates stored in PVC bags to prevent 
desiccation. Wood blocks were subjected to colonisation for three months before 
use.

6.2.4 Experimental design
External mycelium was removed from each wood block before addition to trays. 

Growth rates (approximate) were determined by placing two wood blocks colonised 
by each species on soil trays and measuring growth under experimental conditions 

(20°C, dark in PVC bags) for one week. For the main experiment prepared soil trays 
were randomly allocated to different fungal interactions. To each tray a wood block 

of the slower growing of the two fungal species was added 9 cm away from a comer 
along a diagonal between comers, and the tray weighed. At the appropriate time (see 
below) the second wood block was added, 9 cm away from the opposite comer. 
Timing of inoculation for each of the interacting species was calculated on the basis 
of growth rate estimation to ensure that fungi met when the mycelia were 
approximately 8 cm diameter. The tray was weighed again and this was used as the 
target weight for subsequent rewetting.

All four fungal species were interacted in every possible combination with 
heterospecifics, with 20 soil trays per interaction (total 120 soil trays). Only trays 

with good fungal outgrowth of both species were eventually used in the experiment. 
To half of the trays, collembola were added (described below).

6.2.5 Collembola addition

Folsomia Candida were cultured and size sorted and starved before experimental use 
as described in Section 3.2. For any given interaction, when 50 % or more of the
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fungi had met the opposing fungus, for a minimum of 2 d, 20 collembola were added 
to each comer of the tray (80 per tray). Protaphorura armata (80 per tray) were used 

in two additional interactions: R. bicolor against H. fasciculare and P. impudicus 
against H. fasciculare. Methodology for culture and addition of P. armata was the 
same as for F. Candida.

6.2.6 Data recording
Data were collected by digital photography using a Nikon Coolpix 5500 camera 

(Nikon Corporation, Japan) mounted on a stand (Kaiser RA1, Kaiser, Germany) at 47 
cm with artificial illumination provided by two 1000 W spot flood lamps (Gamma 7 
Al, Gamma, Chicago USA), each set 60 cm either side of the stand and 120 cm above 
it. Tray photography commenced on the day of collembola addition, to, and continued 

every 2 d for the first 11 d ( t io ) ,  then every 4 d until 23 d (t22), every 10 d until 43 d 
(t42) and finally at d 85 (t^).

6.2.7 Outcomes between mycelia interacting on the soil surface

Outcome of interactions between extra resource mycelia was determined through 
examination of images at the final time point. Where a mycelium completely 
overgrew the opponent and extended to the opposite side of the microcosm, total 
overgrowth was recorded. Partial overgrowth was considered as any overgrowth of 
the opponent mycelium level with or past the opponent wood block but less than total 
overgrowth. Reciprocal overgrowth by both mycelia, where the mycelium of each 
species was seen to be overgrowing the other, was recorded as mutual overgrowth.
For comparison the outcomes of interactions were attributed percentages based on the 
proportion of replicates exhibiting a given outcome.

6.2.8 Harvesting
All harvesting was completed within 48 h of the final photograph. Only wood blocks 
that had been reached by the mycelium of the opposing fungus were harvested. These 
blocks were cut in half and three wood chips taken from the freshly cut surface. 
Woodchips were then plated onto MEA (Fig. 6.1). Plates were sealed with Nescofilm 

and stored for 7 d (20°C, dark). Plates were then examined and the species 
outgrowing from the wood chips were identified on the basis of their mycelial 
morphology. Unless the overgrowing mycelia was isolated from the wood block the
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outcome was recorded as overgrowth by the opponent but not replacement. If both 

fungal species were isolated the result was recorded as partial replacement. If only 
the opposing species was re-isolated, the outcome was recorded as total replacement. 

Results for each interaction were recorded as overgrowth, partial replacement or 

overgrowth, and expressed as a percentage of total reisolations.

W ood block rem oved 
from tray, d e a n e d  
an d  w iped with d o th  
containing 70%  
ethano l. Aseptically 
cu t in half with chisel.

F re sh  cu t 
su rfa ce  

-sa m p led  to 
m inim ise 
con tam ination

H alf block sam p led  
a t  th re e  points. 
E a c h  sam p le  
a d d e d  to  MEA.

J W

Block d ipped in 
5% b leach  for a  
sec o n d  tim e and  
resam p led  from 
th e  s a m e  
location.

Fig. 6.1 : The wood block harvesting process

6.2.9 Extension rate measurement and statistical analysis 

Growth rates were measured up to the time point where at least one fungus had 

reached the opposing wood block in 50% or more trays, treach- Further analysis was 

carried out at two or three evenly spaced time intervals between the time of 

collembola addition (to) and treach.

Mycelial extent was measured as the furthest visible extent of mycelium at four equal 

angles through a 90° segment of the mycelium, and in the direction of the opponent 

(Figs. 6.2 and 6.3 a). Unless removed through grazing the mycelium in the two 

central measurements (30° and 60°) was invariably in contact with the opposing 

mycelium. Cords severed form the mycelium through grazing and not visibly 

connected to the wood block were not included in measurements. Both species in all 

replicates of each interaction were measured at to and treach- Change in mycelial 

extent was determined from treach - to-

The comparisons made using the measurement data were: (1) the difference in 

mycelial extent between grazed and ungrazed trays across all four measurements at 

the final time point (Wh); (2) the difference in mycelial extent between grazed and
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ungrazed trays when growing toward (or over) the opponent mycelium (30° and 60° 

measurement) at the final time point (treach); (3) the difference in mycelial extent over 

time between grazed and ungrazed trays when growing toward (or over) the opponent 

mycelium; (4) the difference in mycelial extension over time between grazed and 

ungrazed trays when growing over soil (0°and 90°); (5) the difference in mycelial 

extension over time when growing over soil compared to when growing over the 

opponent mycelium in grazed trays; (6) The difference in mycelial extension over 

time when growing over soil compared to when growing over the opponent mycelium 

in ungrazed trays. This complete analysis was not always appropriate and a 

framework was developed to determine the suitable level of analysis for each species 

in each interaction (Fig. 6.3)

Fig. 6.2: Four measurements (indicated with white single arrows) taken for both 

species in every interaction at to and W h  The length of the double-headed arrow 

(22.6 cm - internal tray width) was applied to scale all images.
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The observation that fungal extension 
appeared to be different dependent on 
whether it was growing across (or toward) 
the opponent led to the subsequent test in all 
interactions.

Significant differenceNo significant difference
i f

Mean negative 
extension Mean positive extension

Mycelia sometimes appeared to be 
extending at different rates over the 
opponent and over the soil within 
grazed and ungrazed treatments. To 
test this the following step was used.

(c) No further analysis (d) The mycelial extent was measured at three equally 
spaced time points between to and treach.

(i) RM ANOVA comparing extension over opponent and 
over soil within both grazed and ungrazed trays.

(g) Carried out RM 
ANOVA comparing 
extension toward opponent 
in grazed and ungrazed 
trays using 30° and 60° 
measurements.

(e) Repeated Measures (RM) ANOVA comparing the change in 
mycelial extent over time in grazed and ungrazed trays across all 
four measurements.

(a) A comparison of the mycelial extent across all four measurements between grazed trays with 
ungrazed using a two-sample t-test (at Treach).

(b) A comparison of the mycelial extent across (or towards) the opponent (30° and 60° measurements) 
between grazed and ungrazed trays using a two-sample T test (at Treach).

(f) Data examined to determine whether overall extension 
measurement mean was negative (mycelium reducing over time) or 
positive (mycelium extending over time) at three equally spaced 
time points between to and treach.

(h) Both the time points and replicates in which 
mycelium commenced overgrowing the opponent 
mycelium in the 0° and 90° measurement were 
determined. The data were subsequently grouped into 
two sets (i) extension toward/over opponent mycelium, 
and (ii) extension over soil sets. RM ANOVA 
comparing extension over opponent in grazed and 
ungrazed trays, and extension over soil in grazed and 
ungrazed trays.

Fig 6.3: The framework applied to refine application of statistical tests in mycelial extension 

change analysis. Where data violated normality a Mann-Whitney U test (instead of the t-test), 

or a two-way ANOVA on ranked data (instead of the RM ANOVA) was used.



6.3 Results
6.3.1 Changes in interacting fungi
R. bicolor mycelia were always completely grazed away by F. Candida (e.g. Fig. 6.4, 

c) whereas P. armata had little impact (Fig. 6.4, d). P. velutina was sometimes 
heavily grazed, but not to extinction, in some interactions, especially those with R. 
bicolor (Fig. 6.4, c). In interactions of R. bicolor and P. velutina, cords of the latter 
grew to both sides of the R. bicolor wood block forming a complete ring. This 
comprised a thick cord in ungrazed systems (Fig. 6.4 a, b) but the arching mycelia did 

not fuse to form a complete loop in grazed systems. P. velutina did not encircle 
inocula of opponents in any other combination (e.g. Fig. 6.4 f, g). H. fasciculare was 
usually only sparsely grazed, except when interacting with P. velutina where it was 
completely removed in grazed systems by 64 d (Fig. 6.4, g). In this case collembola 
grazed through the P. velutina mycelium down to the H. fasciculare leaving distinct 
holes (Fig. 6.4, i). Evidence of collembola grazing preferentially at the interaction 

zone when H. fasciculare was interacting with P. impudicus and P. velutina was seen 
as depleted mycelium where the two fungi met (Fig. 6.4, h, i, respectively)

6.3.2 Outcomes between mycelia interacting on the soil surface
In three (of six) interactions, grazing by F. Candida altered the outcome between 
mycelia interacting on the soil surface (Table 6.1). For example, the mutual 

overgrowth of P. velutina and R. bicolor in ungrazed systems shifted to complete 
overgrowth by P. velutina when grazed (Table 6.1; Fig. 6.4 a, b). Grazing also 

conferred a competitive advantage to P. impudicus when interacting with R. bicolor. 

Interactions involving H. fasciculare were little changed when grazed except when 
interacting with P. velutina, where F. Candida grazing shifted the balance in favour of 
the latter (Table 6.1). In two thirds of interactions grazing by F. Candida had no 

effect on interaction outcome at the soil surface (Table 6.1). There were no outcome 
differences between grazed and ungrazed systems in either of the interactions grazed 
by P. armata (Table 6.1). Grazing never completely reversed any interaction 

outcome when compared to the ungrazed systems.
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Table 6.1: Surface outcomes from interactions after 50-56 d.
Fungal species H.fasciculare H.fasciculare P. impudicus P. velutina

Grazed by 
F. Candida

Ungrazed Grazed by 
P. armata

Ungrazed Grazed by Ungrazed 
F. Candida

Grazed by Ungrazed 
F. Candida

R. bicolor P 100 P 100 P 100 P 100 O 100 P 100 O 100 M 100

P. velutina o 100 o 70 
M 30

- - M 100 M 100

P. impudicus o 100 o 90 
M 10

o 100 o 100

Outcomes were mutual overgrowth (M), partial overgrowth (P) and total overgrowth 

(O). For outcomes designated P and O, uppercase signifies replacement was by the 
fungus listed in the column whereas lowercase signifies replacement by the fungus 
listed in the row. Numbers refer to percentage of replicates exhibiting a given 
response. There were eight to 20 replicates per interaction.

6.3.3 Outcome of interactions within wood

F. Candida grazing enhanced the ability of P. velutina to replace H. fasciculare; in the 
presence of P. armata, H. fasciculare was less able to replace R. bicolor but there was 
a high variability between both sets of ungrazed controls for this interaction (Table

6.2). In three interaction combinations, grazing did not alter the outcome. In three 
other interaction combinations F. Candida grazing reduced the extent of replacement 
of the original incumbent in the wood block by the opponent fungus (Table 6.2). P. 
velutina mycelia reached the H. fasciculare wood block more rapidly when grazed 
than when ungrazed, although, overall, the mycelium in grazed systems appeared less 
extensive (Fig. 6.4 e, f, considered further below).

There was evidence of preferential grazing by F. Candida at the interaction zone, for 
example with H. fasciculare when interacting with either P. velutina or P. impudicus 

(Fig. 6.4 e, h, i). In some interactions fungi produced pigments and exudates at the 
point of contact with the opponent (Fig. 6.4 j, k). R. bicolor produced a red pigment 

along the interaction line when interacting with H. fasciculare and small globules of 
exudate were visible where R bicolor cords met those of P. velutina (Fig. 6.4 j, k).
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Table 6.2: Outcomes of interactions after 80-84 d from woodblock reisolations.
Fungal species H. fasciculare H. fasciculare P. impudicus P. velutina

Grazed by 
F. Candida

Ungrazed Grazed by 
P. armata

Ungrazed Grazed by 
F.candida

Ungrazed Grazed by 
F.candida

Ungrazed

R bicolor P 20 P 40 R 29 R 42 O 100 O 100 O 100 R 20
O 80 O 60 o  71 P 29 

O 29
P 20 
O 60

P. velutina r  100 r 70 
R 10 
P 10 
O 10

M 100 M 100

P. impudicus o  100 o  100 o  100 o  100

Outcomes were mutual overgrowth (M), partial replacement (P), total replacement (R) 
and overgrowth (O). For outcomes designated PR, R and O, uppercase signifies 
replacement was by the fungus listed in the column whereas lowercase signifies 
replacement by the fungus listed in the row. Overgrowth is where woodblock was 
reached but original incumbent not replaced. Numbers refer to percentage of 
replicates exhibiting a given response. There were four to 10 replicates per 
interaction treatment.

6.3.4 Radial extension
In five interaction combinations the change in mycelial radial extent was significantly 
different between grazed and ungrazed treatments (Table 6.3). Of these three 
interactions, R. bicolor against H. fasciculare, P. impudicus and P. velutina, the 
presence of F. Candida resulted in a fall in mycelial extent of R. bicolor. This, 
however, was only significant over time for R. bicolor against H. fasciculare and R  
bicolor against P. impudicus (Table 6.3, Fig. 6.5 a, c, e). In both interactions, growth 
toward the opposing mycelium was significantly reduced by grazing (Fig. 6.5, b, d).

In the other two interactions, F. Candida grazing of P. velutina interacting with either 
H. fasciculare or P. impudicus, significant differences were seen between grazed and 
ungrazed treatments (Table 6.3, Fig. 6.6). In these interactions both grazed and 
ungrazed mycelia increase in size over time (Fig. 6.6 a-f). The radial extension of P. 
velutina (for all four extension measurements taken per replicate) was significantly 
less in grazed than in ungrazed treatments when interacting with P. impudicus but not 
significantly different when interacting with H. fasciculare (Fig. 6.6 a, b). Although 
P. velutina growth over H. fasciculare was slightly faster in grazed trays than in 
ungrazed trays, this was not significant (Fig. 6.6 c). When over soil and interacting 
with H. fasciculare, however, mycelial extension of P. velutina was significantly 
faster in ungrazed trays (Fig. 6.6 e).
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(j) ungrazed

Fig 6.4: Mycelial morphology during interspecific interactions in systems grazed or ungrazed by Folsomia Candida unless otherwise stated. Abbreviations: 

Hf, H fasciculare, Pi, P. impudicus, Pv, P. velutina, Rb, R. bicolor. Scale bar (10 cm) on image h applies to images a-h. Scale bar (2 cm) on image i 

applies to image i alone. Images j and k show pigment and exudate production (arrowed), respectively, during interactions (scale bar inappropriate).



Table 6.3: Analysis of mycelial extent in grazed and ungrazed systems. Data are presented for each interaction combination with comparisons 

carried out for each species in all interactions.

H. fasciculare grazed by 
F. Candida

H. fasciculare grazed by 
P. armata

P. impudicus grazed by 
F. Candida

P. velutina grazed by 
F. Candida

Species in Species in 
column row

Species in Species in 
column row

Species in Species in 
column row

Species in Species in 
column row

R. bicolor t22 — 1-08 t22 “  -6.14 t26 ~ 0.61 n to o o «■
+

to to
II o oo ti2— -3.61 t26= -1.32 t26= -3.07

P = 0.291 P < 0.001 P = 0.549 P = 0.9085 P = 0.291 P = 0.004 P = 0.1 P = 0.005

P. velutina W = 375 t4o= 2.16 _ - t36= 0.74 t36= -4.65
P = 0.351 P = 0.037 P = 0.463 P < 0.001

P. impudicus W = 442.5 t35 = 0.034 W = 85 ti6 -  0.61
P = 0.387 P = 0.734 P = 0.398 P = 0.55

Where data were not normal, a Mann Whitney U Test (W) was applied. The change in mycelial extent was measured from the time of 

collembola addition (to) to the point at which one at the interacting mycelia reached the woodblock of the opposing fungus ( treac h). Figures in 

bold are significant values at P < 0.05.



In the interaction between P. velutina and P. impudicus mycelial extension of P. 
velutina was significantly faster in ungrazed trays regardless of whether growing over 
the opposing mycelium or soil (Fig. 6.6 d, f). When mycelial extension over soil and 
over opponent were compared, P. velutina extended more rapidly over H. fasciculare 
mycelium than over soil when grazed but more rapidly over soil when ungrazed (Fig.
6.6 g, i). In contrast, with P. impudicus grazing had no effect with P. velutina 
mycelium extending more rapidly over soil in both grazed and ungrazed systems (Fig.
6.6 h, j).
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Fig. 6.5: Change in mycelial extent for R. bicolor based on all four (0°, 30°, 60°, 90°) 

extension measurements (a, c, e) and on 30° and 60° measurements (b, d, f). R. 

bicolor interacting with H. fasciculare (a) SRH y? = 0.999; P < 0.001, (b) Two-Way 

ANOVA on Ranked Data, F 3 88= 15.55, P < 0.001); R. bicolor interacting with P. 

impudicus (c) RM ANOVA F2.859,74.345 = 4.803; P = 0.005, (d) RM ANOVA F3 013,

% i5 4 = 6.461; P < 0.001); R bicolor interacting with P. velutina, (e) SRH X2 = 0.762; 

P = 0.238, (f) Two-Way ANOVA on Ranked Data, F 3,io4 = 2.14, P = 0.1); critical 
values are for time*treatment interaction. Error bars are standard error of the mean.
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Fig 6.6: Change in mycelial extent for P. velutina interacting with H. fasciculare (a, c, e, 
g, i) and P. impudicus (b, d, f, h, j). Measurements are: mycelial extent in grazed and 
ungrazed systems across all four extension measurements, (a) F2 .443,92.850 = 2.147; P =
0.112, (b) F2 .051, 151.7 8 5 = 24.451; P < 0.001; mycelial extent in grazed and ungrazed 
systems over opponent (c) F2.443,92.8 5 0 = 2.147; P = 0.112, (d) F2.125,84.981 = 5.611; P = 
0.004; mycelial extent in grazed and ungrazed systems over soil (e) ¥4,1 4 0  = 212.849; P < 
0.001, (f) F2 534 ,73 490 = 25.626; P < 0.001; mycelial extent over the soil and over the 
opposing mycelium within grazed systems, (g) RM ANOVA F2 .6 0 1 ,4 6 8 i9 = 22.264; P < 
0.001, (h) F3, 51 -  3.651; P = 0.018; mycelial extent over soil and over the opposing 
mycelium within ungrazed systems, (i) F3 .141, 56.541 = 32.797; P < 0.001, (j) Fi.751,26.262 = 
9.835; P < 0.001. Critical values are for RM ANOVA time*treatment interaction. Error 
bars are standard error of the mean.
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6.4 Discussion
6.4.1 Changes in growth and morphology of fungal mycelia 
Although many studies have considered collembola grazing on their own, there is a 

dearth of information on the combined effects of grazing and interspecific interactions 
on the fungal community. This is one of the first to investigate such a system. In 

brief, F. Candida grazing played an important role in both the outcome and 

progression of half of the fungal interactions studied in soil microcosms; the less 
active P. armata had almost no discemable effects on fungal interactions.

Previous studies of F. Candida grazing on individual P. velutina mycelia have shown 
a reduction in mycelial extension rate (Tordoff et al., 2006, 2008) although, at low 
densities, collembola often stimulate fungal growth (Bengtsson et al., 1993; 
Bretherton et al., 2006; Kampichler et al., 2004). When P. velutina was interacting 

with H. fasciculare, grazing by F. Candida accelerated P. velutina extension rate when 

the mycelium was growing over H. fasciculare, compared to growing over soil. A 
study of the fungus Mortierella isabellina revealed morphological changes and 

accelerated mycelial growth when grazed but, unlike in this present study, the 

accelerated growth occurred away from the region of grazing in areas where 
collembola (P. armata) were excluded (Hedlund et al., 1991). In the present study, 
however, the mycelium could not ‘escape’ grazing anywhere except within the wood 
blocks and there was evidence of collembola grazing at the interaction zone which 
was toward the region of accelerated growth (Hedlund et al, 1991). This contrasts, 

therefore, with studies of fungi growing alone as the fungal response appears not to be 
an attempt to escape grazing pressure (Hedlund et al., 1991; Kampichler et al., 2004). 
Interestingly the accelerated growth of mycelia across the opponent mycelium only 
occurred in P. velutina and only when interacting with H. fasciculare suggesting that 

the interacting fungi respond differentially to one another and that grazing is a further 
complicating factor.

P. velutina extension appears to be regulated by a combination of opponent species 

identity and grazer activity. One possible mechanistic explanation for this is the 
unpalatability of viable H. fasciculare mycelium. Previous studies of F. Candida 

grazing have revealed H. fasciculare mycelia to be unpalatable and, when grazing 
thereon, collembola populations perform poorly (Tordoff et al., 2006). The
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unpalatability, and subsequent avoidance, of H. fasciculare may have caused grazing 
to be concentrated on P. velutina which, already interacting with an aggressive fungal 

opponent, would be placed in a defensive position on two fronts. One response to this 
could be accelerated growth to enhance vigour and compensate for grazing loss.

The effect of grazing by F. Candida on R. bicolor contrasts strongly with that of P. 

velutina. In this case grazing has a consistently negative impact on R bicolor 

mycelial extensioa The frequent severing of R  bicolor cords by F. Candida in all 

interactions, suggests that R  bicolor was easily consumed. How R  bicolor survives 
in the field when it is so heavily damaged by F. Candida in microcosm studies 
remains an unanswered question. R  bicolor may grow only short distances as 
exposed, extra-resource cords in the soil using litter, twigs and larger woody items as 
refuges for intra-resource growth. The fungus would, however, remain exposed at 
certain locations and be open to grazing activity severing links in the network. The 

growth strategy of R  bicolor also implies that it is a long range forager (Boddy, 1993) 
and this increases the likelihood of grazer contact. Cords may be less palatable in the 

field. R  bicolor is commonly found in coniferous forest (Kirby et al, 1990; Woods 
et al, 2006) where compounds found in coniferous species, such as polyphenols and 
terpenes (Bardgett, 2005; Rayner & Boddy, 1988), may be extracted and utilised by 
R bicolor as it extends from a resource. Although wood decay fungi can be inhibited 

by these compounds those found on conifer woodlands are often capable of growing 
in the presence of such allelopaths (Rayner & Boddy, 1988). Beech, the wood 

resource used in these microcosm experiments, may not contain metabolites which 
could be utilised by R  bicolor in this way potentially weakening its protection from 
grazing. Although studies suggesting that fungi utilise resource-derived feeding 
deterrents are scarce, changes in substrate can lead to substantial alteration in fungal 

volatile organic compound emissions (Bruce et al., 2000). This does, however, 
suggest that wood substrate may play a role in enabling fungi to withstand grazing. 

The microcosms lacked the presence of collembola predators but, in the field high 
population densities of F. Candida may attract predators such as Acari, Staphylinidae 
and Carabidae, thus limiting mycelial damage through grazer population control 

(Hopkin, 1997).
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6.4.2 Resilience to fungal grazing and the role of the interaction
P. impudicus and H. fasciculare generally exhibited a high level of resilience to 
grazing with few, if any, morphological differences between the mycelia of grazed 

and ungrazed interactions. The major exception to this was the total removal of the H. 
fasciculare mycelium when interacting with P. velutina and grazed by F. Candida 
(discussed below). The lack of effect of F. Candida on H. fasciculare extension does, 

however, contrast with studies where it was not interacting with another fungus where 
reduced extension rate (Harold et al., 2005; Tordoff et al, 2006) and regions of 

accelerated grazing have been shown (Kampichler et al, 2004). Provision of food 
choice may have minimised the impact of collembola on H. fasciculare except when 
interacting with P. velutina. Complete removal of H. fasciculare mycelium through 
grazing when growing alone has not been recorded (Harold et al, 2005; Kampichler 
et al, 2004) suggesting that the interaction with P. velutina may have altered the 
palatability of H. fasciculare. That grazing of H. fasciculare was initially observed as 

fenestration in areas where P. velutina had already overgrown, suggests that 
interacting with P. velutina increased the palatability of H. fasciculare. As grazing 

took place through P. velutina mycelium further suggests an active searching for H. 
fasciculare mycelium by the collembola.

When loosing against P. velutina, H. fasciculare may have translocated chemicals 

away from the interaction zone and towards the wood block refuge. In doing so, 
chemicals that make the mycelium unpalatable may have also been removed from the 
mycelium. Collembola have been shown to prefer cords of low vitality, over healthy 
cords (Kaneda & Kaneko, 2004), although caution must be taken in drawing firm 
conclusions as a preference for actively growing hyphae has also been reported in 
other species (Moore et al, 1985). In addition cord-forming fungi are known to 

move nutrients around the mycelial network and such movements can be 
bidirectional; such translocation may also be driven by a need to conserve nutrients 

(Wells et al, 1998a, b).

6.4.3 The effect of grazing on combative ability
Some species are able to overgrow the mycelium of opponents but fail to replace the 
opponent within the woody resource. Overgrowth of another mycelia is, therefore, 
not necessarily indicative of combative ability for resources. For example, P. velutina
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did not replace P. impudicus in either grazed or ungrazed systems, despite reaching 
the opponent wood block in all replicates. A similar result was seen when P. velutina 

interacted with R. bicolor, with P. velutina failing to replace R. bicolor in all grazed 
and 60 % of ungrazed systems.

Negative grazing impacts on mycelia could be expected to reduce fungal combative 

ability. This was not the case with R. bicolor. The heavy grazing of R. bicolor by F. 
Candida led to the severing of cords and the entire network being undermined in all 
interactions (Fig. 6.4 a). Despite such extra-resource mycelial damage, R. bicolor 

retained possession of the wood block resource. Indeed, R. bicolor retained the wood 
block in more replicates when grazed than when ungrazed during interactions with 
both H. fasciculare and P. velutina. The reduced degree of replacement of R. bicolor 

in wood when grazed may, however, reflect reduced combativeness of the opponent 
when grazed rather than a directly positive effect of grazing on R. bicolor.

Grazing on one interacting species may also have an indirect effect on the 

combativeness of the opponent fungus. For example, the accelerated growth of P. 
velutina when grazed had a direct and negative impact on the fitness of H. fasciculare, 
limiting the ability of H. fasciculare to overgrow the P. velutina mycelium. Unlike 
other species, H. fasciculare was generally poor at defending its wood resource from 
P. velutina attack but, in 30% of ungrazed microcosms, when successfully attacking 
P. velutina, H. fasciculare was able to retain its own wood block. Whether this was 
due to P. velutina diverting resources away from its attack of H. fasciculare in these 
circumstances remains unanswered. With the exception of the interaction with P. 
velutina, H. fasciculare showed a generally high tolerance for F. Candida grazing. 
This may provide a niche advantage, allowing H. fasciculare to proliferate in areas of 
high mycophagy, where more palatable species would be unable to compete. 
Collembola densities in soil can be very high (Hopkin, 1997) but H. fasciculare is 
ubiquitous in forest soils (Rayner & Boddy, 1988). Whether the abundance of H. 
fasciculare can be attributed, even in part, to grazing tolerance is yet to be confirmed.

6.4.4 Localised grazing

Whilst there was some evidence of grazing at the interaction zone it was not the 
highly concentrated grazing expected from such potentially nutrient rich areas (Wells
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& Boddy, 2002). The one exception to this was grazing by F. Candida in interactions 
involving P. impudicus. The grazing in the interaction zone, albeit intense, did not, 

however, alter the outcome of any interaction involving P. impudicus. The apparent 
increased density of hyphae and networking at the mycelial margin in grazed trays, 
does however, indicate that the mycelium was not entirely unaffected. The resilience 

of P. impudicus to F. Candida grazing when growing alone has been established 

(Tordoff et al., 2006) although, unlike H. fasciculare, P. impudicus always remained 
resilient when interacting with other mycelia. Deadlock within the wood block in all 

interactions indicates that, relative to the species against which it was paired, P. 
impudicus, was effective in defence but not in attack. This contrasts with a previous 
study (Dowson et al., 1988a) where P. impudicus was found to be a poor competitor 
against a similar range of species. The species used in this present study were, 
however, different, the microcosms larger and the experimental period shorter.

6.4.5 Grazer identity
All the changes in morphology and extension of the fungi occurred in interactions 

grazed by F. Candida. P. armata had limited impact on fungal growth and interaction 
progression. A less active species than F. Candida, P. armata also has a longer 

generation time, at least in culture. P. armata is frequently the most abundant 
collembola species under natural conditions (Petersen & Luxton, 1982) and it is 

possible that, in this experiment, whilst an equivalent biomass of collembola species 
was used, the extent of grazer activity was lower in P. armata grazed interactions. In 
other fungal species P. armata grazing can affect mycelial morphology, triggering, for 
example, a switch in morphology and accelerated growth in Mortierella isabellina 
when growing on agar (Hedlund et al., 1991).

6.4.6 Some limitations of the experimental design
Microcosm studies are always limiting in that there are restricted to arena size. In the 

present study the limitation was compounded by the fact that the fungi were interacted 
based on the radial extension of the mycelium instead of total biomass. As a 
consequence, the relatively sparse outgrowth of R. bicolor resulted in the total extra­
resource R. bicolor mycelium at the commencement of the interaction being much 

lower than that of the others (Tordoff et al, 2006). Quantitatively comparable 
mycelial damage would, therefore, be much greater as a proportion of total mycelium
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in R bicolor. Although comparisons between mycelia of equal hyphal coverage, and 
therefore differing diameter, will improve equality (Tordoff et al, 2006), the resultant 

varying distances between wood blocks would unbalance the design. H. fasciculare, 
which grows as a diffuse mycelium with broad ‘exploitative’ growth search front, will 

encounter all in its path and employs a strategy ideal for colonising homogenously 
distributed resources such as leaves and small woody debris (Boddy, 1999). R  

bicolor on the other hand exhibits ‘exploratative’ growth, in which a less dense 
narrower search front allows searching for non-homogeneously distributed resources 
such as fallen branches (Boddy, 1999). While these two strategies are adapted to 
growth and development in the field, in the microcosm the relative advantages may be 
lost due to the lack of additional uncolonised resources.

6.4.7 Conclusions

Mycophagous collembola are dependent on fungi to make recalcitrant nutrients 
accessible, and invertebrate grazing of the microbial community (including fungi) can 
enhance the rate of carbon mineralisation (Bardgett et al, 1993a; Cole et al., 2000). 

Collembola may also play a role in determining species combativeness during 
interactions with potential knock-on effects for species assemblages. According to 
the work presented here, the fungal response to collembola grazing during 
interspecific interactions appears to result from a combination grazer species and the 
identity of interacting fungi. This adds another variable in affecting fungal 
interactions as outcomes are already known to alter with changes in abiotic conditions 
(Boddy, 2000), inoculum size (Holmer & Stenlid, 1993, 1997) and species 
composition (Boddy, 2000; Holmer & Stenlid, 1993; Wald et al., 2004a). Fungal 
grazers may be important in determining interaction outcome, acting as a further 
variable to maintain the diversity of fungal species on the forest floor.
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7.0 Changes in the network architecture of P h a n e r o c h a e te  v e lu t in a  

when interacting with H y p h o lo m a  f a s c i c u l a t e  in collembola grazed 
and ungrazed systems.

7.1 Introduction
Cord-forming saprotrophic basidiomycete fungi form extensive networks across the 
forest floor linking discrete resources (Boddy, 1993). These cord networks are 
dynamic, constantly searching for new resources and capable of translocating water 
and nutrients to sites of need or storage (Watkinson et al, 2005). In addition to 
exploration, such network-forming fungi employ a sit-and-wait strategy in which 
resources such as branches which fall onto the existing network can be rapidly 

colonised in advance of other competitors (Boddy, 1999; Boddy & Jones, 2007). As 
well as extending into new territory, regions of the network also regress and 

disappear. Such patterns are particularly evident in the fairy ring fungus (Clitocybe 
nebularis) which extends out from a point as a ring with mycelium at the trailing edge 
of the ring regressing (Dowson et al, 1989). Interestingly, this mycelial regression 
does not reflect a depletion of resources or an accumulation of toxins (Dowson et al, 
1989).

In wood-decay fimgi, initial growth from a resource is often dense, filling much of the 
space over which it grows (Tlalka et al, 2008b). Over time, however, the fine hyphae 
regress leaving a predominance of thicker cords. Microcosm studies of wood-decay 
fimgi encountering new uncolonised resources show a gradual regression of hyphae 
between the original and the newly colonised resource following initial colonisation 

leaving a thick cord linking the two resources (Donnelly & Boddy, 1997b). The 
fungus then grows out from the second resource to continue foraging for new 
resources and the link between the two wood blocks can serve as a major transport 
connection allowing bidirectional movement of nutrients as required (Harris &

Boddy, 2005, Wells et al, 1998b). Similarly, during aggressive interactions, changes 
in mycelial organisation are also seen with reallocation of fungal biomass to the site 
of interaction, and regression of hyphae and cords in other regions of the mycelium 

(Boddy, 2000; Donnelly & Boddy, 2001; see Section 2.2.4).
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Another factor affecting mycelial morphology and network architecture is 
invertebrate grazing. This is generally selective with fine hyphae being preferentially 

consumed often leaving only thick cords. Mycelial extension (Tordoff et al, 2006) 
and colony uniformity (Hedlund et al., 1991) can be dramatically altered through 
grazing activity. Fungal grazers also affect mycelial morphology; for example, the 
hyphal tips of P. velutina become highly fanned when grazed by F. Candida (Tordoff 

et al., 2006; Chapter 6). The effects on network architecture may include, for 
example, the removal by grazing of small links connecting two or more larger cords 
which may lead to a loss of efficiency in moving nutrients around the network.

Studies of cord-forming decay fungi using compressed soil microcosms with a 
precolonised wood block inoculum oblige the fungus to grow across the soil surface 
in two dimensions. Such a system reflects, to some degree, natural fungal growth as 
cord-forming saprotrophs tend to grow at the soil-litter interface. Microcosms are 

useful as changes in fungal morphology through resource encounter, interactions and 
grazing are easily visualised. Quantitative changes such as extension rate (Chapter 6) 
and an estimate of biomass, measured by calculating the number of pixels comprising 
a digital image of the mycelium, are also possible (Boddy, 1999). In more detailed 
assessments fractal dimensions of a mycelium can be estimated. Fungal mycelia 
exhibit a fractal structure; with smaller subsections of the mycelium mirroring larger- 
scale patterns albeit over limited scales. Fractal analysis of mycelial images provide 
information about how a mycelium permeates space and such studies have revealed 
subtle changes in mycelial architecture not exposed by radial extension, biomass 
measurements and qualitative observations (Boddy et al, 1999).

Both biomass and fractal analysis require a sharp contrast between the mycelium and 
the substrate over which the mycelium is growing. During fungal interactions, 
however, contact with, or overgrowth of, opposing mycelia removes the contrast 

against the soil. Whilst possible (Donnelly & Boddy, 2001), separating out images 
manually can be inaccurate as images, necessarily magnified to distinguish between 
species, loose resolution. It is also a very time consuming process especially with 

highly intricate mycelia such as P. impudicus. This difficulty can, however, be 
overcome by adopting recent developments in network architecture analysis through 
creating a digitised representation of the mycelial network as a graph (Albert &
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Barabasi, 2002). In brief, this involves plotting a series of connected nodes at 
branches and interconnections (anastomoses) in the mycelium (Fricker et al, 2007).
By mapping the network over time changes in architecture, such as the formation of 

cross-linkages which increase resilience to damage, and regression of mycelia can be 
examined. In addition, by correlating the brightness of the mycelial cords in digital 

images with actual measurements of cord diameter and length, an estimate of both the 
transport value and cost of production of cords within the mycelium can be 
established (Fricker et al., 2007). Such data, can provide precise quantitative analysis 
on the dynamics of interacting mycelia.

The preliminary study, described in this chapter, seeks to investigate the use of digital 
networks for the mapping and analysis of the effects of both fungal interaction and 
collembola grazing on mycelial organisation. As well as applying a relatively new 
methodology, it is hypothesised that in interaction with H. fasciculare, P. velutina will 

reinforce its mycelial network structure towards the interaction area while away from 
the interaction site, mycelial regression will be observed. Systems with collembola 

grazing are predicted to show a reduced the transport efficiency in P. velutina when 

compared to ungrazed systems due the damage to cords caused by collembola 
grazing. The biomass (or cost) of the network, is hypothesised to be greater in 
ungrazed systems than in grazed ones as collembola grazing removes mycelium.

7.2 Materials and Methods
7.2.1 Network digitisation
Details of the experimental set-up and data recording are given in Chapter 6 and 
images from that experiment were used in this study. Three replicates each of grazed 
and un-grazed systems were selected using randomly generated numbers from 10 

available. Six images for each replicate were selected at t = 0, 4, 8, 12, 20 and 34 d 
after collembola addition. Each image was cropped to remove background, resized to 

1773 x 1773 pixels, and saved as 8-bit greyscale .tif images. Image series were 
imported into a custom MatLab (The Mathworks Inc., Natick, USA) program and 
aligned with respect to one another. Alignment was achieved by selecting consistent 

landmarks on successive images, and calculating a linear spatial transformation to 
correct for translation, rotation and scaling. The network was extracted as a series of 
N  nodes, each representing a branch or anastomosis, joined by a set of K links
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representing the intervening cords. Node positions were stored as a list of their 
Cartesian (x,y) coordinates, whilst links were stored as a weighted N x TV adjacency 
matrix, where each entry represents the diameter of the link between node / and node j  
(Djj). As the structure of the network within the wood blocks cannot be characterised, 
the inoculum was represented as a single central node with multiple links leading to 
the cords emanating from the edge of the block (Fig7.1). At each time point new 
growth was added as new nodes (with associated links), and complete regression was 
identified by disconnecting the relevant nodes. At this stage it is not possible to 
discriminate a genuine cord-fusion event from cords that are growing over each other. 
This will cause an over-estimate of anastomoses, particularly early in development 
before proper junctions have had time to become established. Nevertheless, manual 
dissection of fully networked systems shows that more established overlying cords are 
almost invariably linked in P. velutina. Nodes connected to only two other nodes 
(termed k2 nodes), representing a bend in a cord were removed from the adjacency 
matrix during analysis and the weight of the resultant link between the junctions at 
either end adjusted to take into account the length and thickness of the intervening 
links.

Fig. 7.1: Magnified image (scale bar 2 cm) of the network from central inoculum at 
20 d. The central (red) node represents the inoculum attached to points of cord 
outgrowth (green).
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7.2.2 Estimation of link weights
As cords differ in thickness, the links in the adjacency matrix were weighted by an 

estimate of the cord diameter between node / and node j  (Ay)- The pixel resolution of 
the images was not sufficient to obtain direct measurements of diameter, so an 
average value of the local reflectance intensity was used as a proxy for cord thickness. 
Samples were taken 12 pixels away from each node along each cord to ensure that 

only intensities of the cord of interest were included. The local neighbourhood was 
averaged using a Gaussian smoothing filter with a radius of 5 pixels and the 

maximum intensity recorded. The values from both ends of each cord were averaged 
to give the intensity for that cord. Intensities were converted to diameter using a 
calibration based on the measured relationship between the reflected intensity of P. 
velutina cords with actual diameter (Bebber et al 2007). The cost of each link was 
estimated from its length (/,7) times the cross-sectional area (a,j = ji(D,/2)2), whilst the 
predicted resistance to transport was calculated as 1,/j,/1, making the simplistic 

assumption that a cord comprises a circular bundle of equally sized hyphae. The link 
weight was colour-coded across the network according to a rainbow scale, with red 

representing thick cords. Development or regression of links was measured as the sum 

of the differences in cord diameter for successive time points, AD,, = Dy(t+i) - D,y(t), 
over the interval 8 to 34 d, normalised to the maximum range of the difference,

j ]  ADtj {ptJ mix -  DIJ mm ). This gives a value of 1 for consistently growing cords, a
/ = *  /

value of -1 for cords that shrink and 0 for cords that essentially remain constant 
through the time interval. Results for the link evolution were expressed as a rainbow 
scale, with red representing growth.

The weighted adjacency matrices, node positions and node identities were exported to 
R 1.9.0 (R Development Core Team, 2007) to evaluate network structure and 
performance (Bebber et al. 2007; Fricker et al. 2007). The area covered by the 
mycelium was determined from the convex hull encompassing all the outermost 

nodes. The total cost or biomass was estimated from the sum of the costs for each
N

link, ^lijdij . The predicted transport capability of the network was based on the path
»=i

of least resistance between each node in the functional network, calculated using a 

shortest path algorithm (Gross & Yellen 2005; Carey & Long 2008), with the
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assumption that low node-to-node resistance indicated better connection and more 
efficient nutrient distribution. The transport performance of the network was 

summarised as the root or local network efficiency (£ioc), defined as the mean of the 
reciprocal of shortest path lengths from the inoculum to all other nodes (Latora & 
Marchiori 2001, 2003). To examine the effectiveness of the way in which the fungus 

allocates biomass by differentially weighting cords, these measures were also 

calculated for networks with the same topology, but with uniform allocation of 
biomass to all areas of the network creating cords of equal weight (Bebber et al. 2007; 
Fricker et al. 2008).

7.2.3 Statistical analysis

Network development in grazed and un-grazed systems was compared using analysis 
of covariance. The analysis was performed for convex hull against root efficiency 
and convex hull against cost. For the root efficiency against convex hull data, 
comparisons were made between actual data and between model data assuming 
uniform distribution of biomass across all links. In all cases the model contained 

convex hull (area), treatment status (grazed or un-grazed) and an interaction between 

convex hull and treatment: the latter was of primary interest, testing for a difference in 
root efficiency-area or cost-area relationship in the presence of grazing. Because of 
pseudo-replication (inherent in time series on the same replicate), the linear 
regressions were fitted using generalised estimating equations (GEE), which adjust 
the regression model to allow for the potential correlations within trays, to permit 

valid statistical inference (Liang & Zeger, 1986). As observations were taken over 
time, the correlation was modelled with a first order autoregressive structure (Liang & 
Zeger, 1986). Models were fitted using the GEE generalised linear model (GLM) 
function in the geepack library in R. This form of analysis has been proposed as a 
suitable method for analysing datasets containing individual data points which are not 
statistically independent of one another, a phenomenon that is common in ecological 

research (Vaughan et al. 2007).

73  Results
7.3.1 Network development
P. velutina mycelia were more extensive by 34 d in ungrazed than in grazed systems, 
although the amount of new growth between 8 d and 34 d was greater in grazed
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systems (Fig. 7.2). When grazed the mycelial growth of P. velutina was substantially 
greater over the mycelium and inoculum of H. fasciculare than when ungrazed (Fig.

7.2). In the grazed systems, the P. velutina mycelium enveloped the H fasciculare 

inoculum with cords turning in toward the inoculum from both sides (Fig 7.2 d-f). 

There was a marked regression of P. velutina mycelium in all ungrazed systems 
between 8 d and 34 d and this was predominantly in areas away from the interaction. 

There was far less regression in the grazed systems although one replicate did show 
more regression than the other two and this too, was in areas away from the 

interaction (Fig. 7.2 e). New cross-links connecting radial cords away from the 
inoculum formed in grazed systems and was especially pronounced in two replicates 
(Fig. 7.2 d, f). Whilst there were cross-links in ungrazed systems there were fewer 
and many of them were cross-links that existed prior to 8 d (Fig. 7.2 a-c).

7.3.2 Changes in cord thickness

In general there were more, thick P. velutina cords (defined by link weight) in grazed 
systems than in ungrazed systems. These were particularly pronounced over the 

opponent H. fasciculare mycelium (Figs. 7.3, 7.4). As the P. velutina network 

developed in ungrazed systems (0 d -  8 d) about 12-15 major cords developed and 
these were connected through the network of narrower cords (Fig. 7.3 a-c). By 8 d, 
link weight development was polarised, with wider links developing towards the 
opposing mycelium (Fig. 7.3 c). Initial development in grazed systems was similar 
(Fig. 7.3 a, b) but polarised growth in the direction of the interactions was 
substantially more pronounced and was clear by 4 d (Fig. 7.3 b). The development of 
P. velutina during later stages of the interaction (12 d -  34 d) in ungrazed systems 
showed marked regression of mycelia from 12 d onwards (Fig. 7.3 d-f). Whilst this 
regression of links was most pronounced away from the interaction, it occurred across 
the entire mycelium including toward the opponent with both cross-links and major 
cords regressing by 34 d (Fig. 7.3 f). In contrast the P. velutina mycelium in grazed 

systems continued to develop over and toward the opponent mycelium with 
substantial regression occurring only in small cross-links away from the interaction 

zone (Fig. 7.4 d-f).
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Fig. 7.2: Link evolution of P. velutina when interacting with H. fasciculare in ungrazed (a-c) and grazed (d-f) between 8 d and 34 d (White scale 

bar 6 cm). Rainbow scale bar values range from +1 for new growth, zero for no change to -1 for complete disappearance of a given link.
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Fig. 7.3: Development of link weight in P. velutina mycelium when interacting with H fasciculare and ungrazed. Red indicates thickest 

cords. Images are from (a) 0 d (b) 4 d, (c) 8 d, (d) 12 d, (e) 20 d and (f) 34 d (black scale bar is 4 cm). Rainbow scale bar indicates 

relative cord thickness.



Fig. 7.4: Development of link weight in P. velutina mycelium when interacting with H. fasciculare and grazed by F. Candida. Red indicates 

thickest cords. Images are from (a) 0 d (b) 4 d, (c) 8 d, (d) 12 d, (e) 20 d and (f) 34 d (black scale bar is 4 cm). Rainbow scale bar indicates 

relative cord thickness.



7.3.3 Network transport efficiency
~D
Network efficiency fell with increasing mycelial area (convex hull) in both the model 
and actual network systems although the overall efficiency of the actual networks on a 
like-for-like comparison, was significantly greater than those of the model systems 
(Fig. 7.5, Table 7.1 c, d). The regression line for the actual grazed network indicated 
the greatest efficiency in relation to area covered although this was not significantly 
greater than the ungrazed system (Table 7.1 a). There was no significant difference 
between the slopes of grazed and ungrazed interactions in either the actual or model 
networks (Table 7.1 a, b).
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Fig 7.5 : Scatter plot and regression lines for root efficiency against convex hull 
(mycelial area) for P. velutina in grazed and ungrazed systems and for both actual and 
uniform biomass model network data. Symbols are; actual network ungrazed ♦  , 
actual network grazed a , model network ungrazed ■ , model network grazed •  .

There was a significant positive correlation between mycelial area (convex hull) and 
network cost in both grazed and ungrazed treatments (Table 7.1; Fig.7.6). With 
increasing area the cost of the network grew faster in grazed than ungrazed systems 
(Fig 7.6).
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Table 7.1: ANCOVA results for the five regression comparisons made
Descriptor Coefficient Standard error Critical value 

(df = 1,32)
P-value

a Y intercept (a) 0.0025 0 .0 0 0 2 112.2588 <0 .0 0 0 1

X and Y correlation (P0 <0 .0 0 0 1 <0 .0 0 0 1 7.8056 0.0052
Y intercept difference (P2) 0.0007 0.0006 1.3886 0.2386
Regression line gradient comparison (P3) <0 .0 0 0 1 <0 .0 0 0 1 1.0843 0.2977

b Y intercept (a) 0.0017 0 .0 0 0 2 73.8352 <0 .0 0 0 1

X and Y correlation (P0 <0 .0 0 0 1 <0 .0 0 0 1 31.4800 <0 .0 0 0 1

Y intercept difference (P2) 0 .0 0 0 1 0.0004 0.0835 0.7727
Regression line gradient comparison (P3) <0 .0 0 0 1 <0 .0 0 0 1 0.0699 0.7914

c Y intercept (a) 0.0018 0.0004 21.6787 <0 .0 0 0 1

X and Y correlation (P,) <0 .0 0 0 1 <0 .0 0 0 1 14.3782 <0 .0 0 0 1

Y intercept difference (P2) 0.0014 0.0007 4.6354 0.0313
Regression line gradient comparison (P3) <0 .0 0 0 1 <0 .0 0 0 1 0.8708 0.3507

d Y intercept (a) 0.0017 0 .0 0 0 2 69.2373 <0 .0 0 0 1

X and Y correlation (Pi) <0 .0 0 0 1 <0 .0 0 0 1 29.6107 <0 .0 0 0 1

Y intercept difference (P2) 0.0008 0.0003 7.2344 0.0072
Regression line gradient comparison (P3) <0 .0 0 0 1 <0 .0 0 0 1 0.0980 0.7543

e Y intercept (a) 86.4358 13.9927 38.1579 <0 .0 0 0 1

X and Y correlation (P̂ ) 0.0137 0 .0 0 1 1 143.5756 <0 .0 0 0 1

Y intercept difference (P2) -58.4274 67.1661 0.7567 0.3844
Regression line gradient comparison (P3) 0 .0 1 1 1 0.0043 6.5733 0.0104

The results are for comparisons between regression lines examining the correlation 
between: (a) convex hull (mycelia area) and root efficiency of actual networks in
grazed and ungrazed systems, (b) convex hull and root efficiency of model networks 
grazed and ungrazed systems, (c) convex hull and root efficiency of actual and model 
networks in grazed systems, (d) convex hull and root efficiency of actual and model 
networks in ungrazed systems, and (e) convex hull and network cost of actual 
networks in grazed and ungrazed systems. For each ANCOVA: Y intercept is the 
estimate and standard error for the grazed (a,b,e) or actual (c,d,e) system and 
significance indicates a difference from zero; X and Y correlation shows whether both 
regression lines are correlated, Y intercept difference indicates any significant 

difference between the Y intercepts of the two regression lines is indicated, and the 
gradient comparison shows whether the two regression lines have a different gradient. 

Values in bold are significant at P<0.05. To calculate the regression lines for any 
comparison the formula Y= a + (Pi*Area) +( P2*Treatment) +(p3*Area*Treatment) is 
employed where the treatment value is 0 for ungrazed (or model in actual vs. model 
comparisons) and 1 for grazed or actual systems. (3-values are tabulated coefficients.
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Fig 7.6 : Scatter plot and regression lines for estimated cost of network construction 

against convex hull (mycelial area) for P. velutina in grazed a  and ungrazed ♦  

systems.

7.4 Discussion
7.4.1 Network architecture and growth strategy

The change in biomass allocation over time in both grazed and ungrazed trays was 

clearly highlighted by the methodology employed. This was mycelial regression in 

both ungrazed and grazed systems away from the mycelial interaction zone. The 

regression in ungrazed trays was more substantial than the grazed ones suggesting 

that, during interactions with other fungi, more links are retained when under grazing 

attack. This is somewhat surprising as collembola grazing may be expected to 

remove hyphae and any moribund cords (Wood et al, 2006). The combination of the 

interaction with H. fasciculare and grazing pressure not only reduces P. velutina 

radial extent over soil (Ch. 6) but also appears to reduce the reallocation of mycelial 

biomass. The formation of substantial cross-links towards the edge of the mycelium 

indicates the production of a more integrated network across which nutrients may be 

moved without the need to pass via the inoculum. Maintenance of the entire 

mycelium coupled with the formation of cross-links may improve the ability of the 

mycelium to move nutrients to the interaction zone, a site of rapid extension.

A
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The consequence of mycelial maintenance and extension over the opponent mycelium 
with thick cords was to increase the cost of mycelium per unit area more rapidly in 

grazed than ungrazed systems. The presence of grazers may, therefore, cause P. 
velutina to produce more mycelium and, since new growth is achieved by consuming 
the wood resource, grazers may have accelerated the rate of resource consumption.

The results of Chapter 6 indicated that the ability of P. velutina to wrest the wood 

resource from H. fasciculare was enhanced when grazed and it may be that the cost 
associated with this is the increased rate of use of its own resource. It is important to 
note, however, that although the use of convex hull as a measurement for area is 
useful it is not without limitation. It provides an accurate reflection of area for densely 
packed mycelia but provides a poor measurement of space covered by sparse mycelia. 
The calculation for the area of P. velutina when ungrazed, where it is less dense but 
more extensive than in grazed systems, may result in an over estimate of mycelial 
area compared to grazed systems. This has implications of the correlations performed 
in this study. There is, however, one advantage in using convex hull over using pixel 
counts as a measure of mycelial area in small microcosm systems. Litter falling onto 

a network only needs to be in contact with one small part of the network for it to be 
colonised by the fungus and, therefore, provided that litter falling onto a network is 
larger than the space between two cords, it is available for colonisation. The convex 
hull measurement gives a good estimation of the soil occupied by a mycelium and 

therefore the area over which that mycelium would probably be one of the first to 
arrive at the new resource providing it with an advantage over competitors. Convex 
hull may best be considered as an indicator of the ability of a mycelium to employ a 
sit-and wait strategy rather than as an estimate for hyphal coverage.

7.4.2 Network efficiency and biomass allocation

The decline in network transport efficiency (measured as root efficiency) with 
increasing area (convex hull) is to be expected as the distance over which nutrients are 

transported growth with increasing mycelial extent. Less predictable, however, was 
the lack of significant difference between the grazed and ungrazed systems. This 
suggests that collembola grazing does not reduce the ability of the network to 
transport nutrients either to or from the inoculum. This result demonstrates resilience 
in the P. velutina network as it successfully maintained efficient transport pathways 
despite substantial morphological alteration by grazing. Previous studies of P.
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velutina growing alone have suggested that F. Candida grazing activity is 
concentrated on the fine mycelium and that substantial cords are largely unaffected 

(Tordoff et al., 2006). That P. velutina exhibits the same resilience during an 
interaction is particularly important due to the likely need for nutrient transport to the 
interaction site as it is an area of heightened metabolic activity (Baldrian, 2004).

In addition to not reducing transport efficiency, grazing did not alter the rate of 
efficiency change with increasing area (no significant difference in the slopes of the 

two regression lines). This contrasts with the effect of grazing on mycelial cost 
(discussed above) and further highlights the resilience of the network to grazing even 
as mycelial coverage became larger.

The comparison of the actual network to a model network with uniform allocation of 
biomass across all links demonstrated the effectiveness of P. velutina to ‘invest’ in 

cords in an optimal manner. This comparison has a potential use in experimental 
setups to test the effects of different disturbances on the network and its resilience. It 

would also allow comparison between species to determine whether some are better 

able to allocate biomass to optimise transport efficiency.

7.4.3 Methodology and future possibilities

The mapping and examination of fungal networks provides highly informative 
qualitative and quantitative information on mycelial development. Variables such as 
transport efficiency and resilience can be modelled (Fricker et al, 2007) more simply 
than they can be tested experimentally. The methodology employed here is most 
effective when empirical data for real systems can be added to models to examine 
mycelial systems. For example, knowing that cords of P. velutina are formed from 

bundles of aligned hyphae (Bebber et al., 2007) reduces the risk of an overestimation 
of transport rates which would occur if cord volume was calculated to be related to 

the quadratic of the cord radius (r4) as opposed to the square (r2; Fricker et al., 2007). 
Further work is, however, required to improve modelling techniques. For example, 
transport efficiency modelling is limited by the current understanding of transport 

within cords. The current transport model assumes bidirectional transport at a fixed 
rate based on cord volume estimates. It is unlikely that all nutrients travel at an
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equitable rate and that movement on one direction is the same as movement in the 
reverse.

Current quantitative analysis of the cord network is limited to the entire system but, as 
the results of this and other studies show, fungal development is often polarised 
particularly when another variable such as a resource (Bebber et al, 2007), opposing 

fungus (Donnelly & Boddy, 1997b) or grazer (Kampichler et al, 2004) is present. An 
useful extension of this analysis would be, therefore, to permit comparisons within 

regions of the network Potentially useful comparisons within the network include 
network connectivity and relationships between mycelial regression and extension or 
reinforcement. Continued development of the method along with more supporting 
empirical evidence with which the models used can be improved may result in an 
analysis tool of greater power for studying the development of fungal mycelia and 
their responses to a wide variety of variables.
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8.0 Synthesis
8.1 Experimental studies
8.1.1 The effect of collembola on fiingal morphology
Whilst both collembola grazing on fungi and combative fungal interactions have been 
investigated, there is little, if any, published work on the effects of collembola grazing 

on fungal interactions. In addition, the effects of such fungal interactions on 
collembola behaviour also appear not to have been reported. The experiments in this 
study are believed to be the first to investigate the effects of collembola grazing on 
fungal interactions.

Collembola had a limited impact on fungal morphology in agar microcosms (Ch. 3) 
but, when extending out across soil, the morphology of two of the fungal species, R. 
bicolor and P. velutina, was substantially altered. Removal of entire cords was 
observed in the former, and the production of fanned mycelia and reduced extension 
over soil in the latter. Substrate type is known to be an important factor in 

determining the combativeness of fungi (Dowson et al, 1988a) but these experiments 
suggest that substrate identity also effects the foraging behaviour of the grazers that 
feed upon them. Despite the differences between the two substrates, there was one 
interesting similarity, the accelerated growth of P. velutina over H. fasciculare 
mycelium when grazed. The behaviour was consistent across replicates and only 
occurred in this particular interaction. Of all the responses to grazing this is the most 
enigmatic, with no clear explanation as to why it may occur. The analysis of the 
network architecture of P. velutina when interacting with H. fasciculare suggested 
that grazing pressure increased the cost of production of new mycelium with 
increasing mycelial area (Ch. 7). It would be interesting to explore this interaction in 
greater detail to determine what causes this change in P. velutina and why it only 
occurred when interacting with one of the three opponents against which it was pitted.

8.1.2 The effect of grazing on fungal combative ability during interactions 

Eventual interaction outcomes were generally not markedly altered by invertebrate 
grazing in either agar or soil microcosms. This is surprising given the dramatic 

changes in fungal morphology caused by collembola grazing, particularly in soil 

systems. One possible explanation is that the collembola had very limited, if any,
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access to the mycelia within the resource (agar or wood). If so, grazing could not take 
place, and the competition within the resource would have occurred in the absence of 

grazing. This is, however, not inappropriate as invertebrates cannot gain access to the 
wood interior until substantial decay has occurred (Rayner & Boddy, 1988). Another 

possibility is that the experiments were run for too short a time period for combat 

differences to manifest themselves under grazed or ungrazed conditions. In addition, 
the experimental design involved the addition of collembola once the fungi had met. 
Given the reduction of radial extension of the study species when growing alone 
(Harold et al., 2005; Tordoff et al, 2006), invertebrate grazing, which is active before 
fungi have met in the field, may have effects on the mycelium before the fungi meet 
resulting in a change in their combative status. It would be appropriate to repeat the 
experiment adding collembola at different times to determine their effect in this 
respect.

8.1.3 Fungal genetic isolate
Studying multiple genetic isolates of the fungi revealed genetic identity to be 

important factor in determining both fungal and collembola responses during 
aggressive fungal interactions (Chs. 3,4). Both collembola preference and mortality 
were strongly influenced by genetic isolate. For example, collembola mortality was 
low when P. velutina interacted with one isolate of R. bicolor but high when 

interacting with another R. bicolor isolate (Ch. 4). Interspecific fungal interactions 
were also highly dependent on fungal isolate with a range of combative abilities being 
shown among the four H. fasciculare isolates (Ch. 3). Studies of fungal interactions 
and of collembola grazing on mycelia have tended to be restricted to a single genetic 

isolate for each study species (e.g. Harold et al., 2005; Hedlund et al., 1991; 
Kampichler et al., 2004; Tordoff et al., 2008), but such results may not provide a 

complete picture of what occurs in field conditions. Extrapolation of results must, 

therefore, be done with caution.

8.2 Collembola behaviour
8.2.1 Collembola grazing preference
Grazing by F. Candida in soil microcosms was discriminating, with fungal species 
such as R  bicolor being very heavily grazed, and others such as P. impudicus 

apparently little affected. Collembola grazed more heavily on particular regions of
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the mycelium. For example, despite the mycelium as a whole being substantially 
affected by collembola grazing, the major cords of P. velutina remained intact 
maintaining the major transport links across the network (Ch. 7). The mycelium of H. 
fasciculare was totally removed by collembola when interacting with P. velutina.
This result was surprising as, when grown alone, H. fasciculare is resilient to grazing 
and the thick, often yellow pigmented, cords are not grazed by F. Candida even when 

at high densities (Harold et al, 2005). The increased palatability of the H. fasciculare 

mycelium to the collembola may be due to a weakening of the mycelium as the wood 
block resource, from which it was supported, was overtaken by P. velutina. Such a 
dramatic change from resilience under grazing when growing alone to complete 
removal through the introduction of a competitor fungus highlights the importance of 
fungal interactions and the need to consider their effects when investigating fungal 
grazing. That complete removal of the H. fasciculare mycelium occurred in only one 
of the three combinations studied evidences the importance of fungal species identity 
in interactions. In addition, as collembola species identity is known to affect fungal 
extension and morphology (Tordoff et al., 2008) it would be valuable to study the 

effect of different collembola species on this or other interactions.

8.2.2 Collembola attraction to the interaction zone

One of the aims of this thesis was to examine whether collembola are attracted to the 
zone where two interacting fungi contact one another. The combination of anecdotal 
evidence for attraction of fungus gnats (Mycetophilidae) to fungal interactions (Boddy 
et al., 1983), the probable leakage of nutrients at the interaction zone (Wells &
Boddy, 2002) and the ability of collembola to discriminate between fungal odours 
(Bengtsson et al., 1991; Hedlund et al., 1995) provided reasons for believing that such 

behaviour may be seen in collembola. There was clear evidence of preferential 
grazing at the interaction zone in both agar and soil microcosms (Ch. 3 and 6, 
respectively), but the experiment specifically aimed at looking at the effects of the 
volatile organic compounds (VOCs) released by interacting fimgi (Ch. 5) failed to 
provide conclusive evidence of collembola arrestment at, or attraction to, the area.
The lack of conclusive results from the collembola tracking study, in contradiction to 
repeated anecdotal reports, suggests that either the VOCs alone were insufficient to 
attract collembola or that the experimental design was not sensitive enough to detect a
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behavioural response. There are few, if any, studies employing video-tracking 
investigating collembola movement, and its feasibility suggests continuation of this 

area of study. The experimental design employed was informed by work on 
parasitoid responses to infochemicals (e.g. Waage, 1978) but this may be 
inappropriate for collembola. One study investigating the responses of collembola to 

different mycelia only detected an expression of preference between a choice of two 
mycelia after about 5 h (Kaneda & Kaneko, 2004). As with the use of genetically 
distinct fungal isolates, the use of a variety of collembola would help provide a more 

accurate representation of the role of these arthropods in soil processes.

8.2.3 The importance of collembola species identity
The use of F. Candida as a model collembola is widespread. This arises from the ease 
with which it is cultured, its relative abundance and short generation time. Whilst 
using model organisms is useful it is important to examine other organisms within the 
same or similar guilds. The difference between F. Candida and P. armata in the soil 
tray microcosm study of Chapter 6 was pronounced with P. armata having no 

discemable effect on fungal morphology. This work corroborates other work which 
suggest that F. Candida generally has a more pronounced effect than other collembola 
species when grazing on cord forming fungi growing alone (Tordoff et al., 2008). In 
reality, however, F. Candida may not be the most appropriate species for a given 
study. If a species other than F. Candida were to be substantially more abundant in a 
given habitat, experiments on fungi within that habitat employing F. Candida may 
attribute collembola a more substantial role than is justified. In addition, not all 
collembola are necessarily fungal feeders (Berg et al., 2004) hence selecting the 
appropriate species, or range of species, is necessary if ecological conclusions are to 
be reliably drawn from the results.

8.3 The microcosm system
8.3.1 Benefits and limitations of the microcosm approach
Agar and soil microcosms have been widely used to study both fungi and invertebrate 
grazers (e.g. Dowson et al., 1988a; Hedlund et al., 1991; Bretherton et al., 2006). 
Their appeal lies in their simplicity offering the capability to control a wide variety of 
variables such as abiotic conditions, growth substrates and flora and fauna. Such
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precise control allows the manipulation of one variable (e.g. inoculum size) whilst 
keeping other factors, to a greater or lesser degree, constant or regulated. The 
principal advantage of the microcosm approach is, therefore, elucidating the role of 

individual variables. Microcosm experiments are also valuable when investigating 
areas of limited previous study where so little is known about a system that a 
mesocosm or field-scale experiment may yield results of limited value as explanations 

for the results cannot be given (this can also occur in microcosms as discussed above).

In reality, however, variables are often correlated and microcosm experiments 
generally fail to account for this. As seen in the present studies, substrate, fungal 
isolate identity and collembola species are all important factors in determining fungal 
interaction outcome. In these cases temperature, water potential and other fauna were 
controlled! To devise a microcosm experiment in which all variables are considered 
and varied relative to one another is logistically difficult, if not impractical. Whilst a 

useful tool, microcosms can simply form a part of research in a given area of ecology 
and can not be relied upon as a method for investigating all aspects of a system.

8.3.2 Future work -  developing a mesocosm
There is now a growing body of research into collembola-fungal interactions and a 
logical next step would be to develop larger, less uniform and more representative 
systems (mesocosms) in which a range of fungal species and invertebrate grazers are 
employed. The soil microcosms employed in Chapters 6 and 7 are useful for 
examining changes in mycelial morphology but three dimensional systems with 
multiple fungal species and resources of varying size and status (colonised and 
uncolonised) may be more realistic. In the compressed soil microcosm used in this 
study, neither fungi nor collembola can avoid contact. In a three dimensional 
mesocosm, however, with a stratified soil structure and refiigia, as occurs naturally, a 
range of behaviours employed by both fungi and invertebrates more representative of 

natural conditions and not evidenced in the microcosms may be observed. In such a 
system, fungal morphological change is not easily examined and will involve 
disturbance of the system. The continued exploration and development of imaging 
techniques such as the use of radiotracers and the techniques investigated in Chapter 7 
may provide solutions to non-destructive study of mycelial change (Tlalka et al, 
2008a, b).
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Collembola populations can increase dramatically in soil microcosms, particularly 
when R. bicolor is present (Tordoff et al., 2008; T. Harward unpublished data). As 

with many soil arthropods, collembola aggregate (Hopkin, 1997) and the combination 
of high populations and aggregative behaviour may attract predators. A possible 
future path for research would be to introduce predators of fungal grazers to 

determine whether they are attracted to fungal grazer populations. If this were the 
case it may reveal a mechanism for controlling collembola populations that, when 

unchecked, can destroy an entire mycelium (Tordoff et al, 2008). Of particular 
interest would be to determine whether fungi recruit predators of grazers following 
attack as has been seen in maize roots {Zea mays) when attacked by larvae of the 
western com rootworm (Diabrotica virgi/era virgifera; Rasmann et al., 2005). Whilst 

soil fungi are known to emit volatile chemicals (e.g. Hynes et al., 2007) it remains 
unknown whether these serve a functional role regarding invertebrates and their 

predators.

8.4 Conclusions
Fungal interactions can be substantially altered through collembola grazing activity 
although the substrate on which the mycelia grow plays an important role in 
determining the strength of that effect.

1. Fungal genetic isolate is an important variable in determining the outcome of 
fungal interactions and also affects both collembola preference and mortality.

2. Collembola grazing can dramatically alter the morphology of interacting fungi 
when growing across soil but appears to have limited effects in agar 

microcosms.

3. Collembola do appear to show increased grazing at the fungal interaction zone 
although it has not yet been possible to demonstrate attraction to fungal 

interaction volatiles.

4. Fungal combativeness can be affected by collembola grazing. Collembola 
species, and the identity of the interacting fungi and the substrate upon which
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they are interacting, however, all play a role in determining the magnitude of 
that effect.

5. Collembola grazing is not random. It is directed at finer mycelium and is 
heavier on some species than on others.

6. The fungus with which another fungus is interacting can determine the level to 
which fungal grazing has an effect.

7. The network architecture of P. velutina is substantially altered by F. Candida 

grazing when interacting with H. fasciculare but transport efficiency remains 
high.

Overall, these studies, have shown that collembola have a substantial impact on 

fungal interaction progression and outcome. In return, fungal interactions can also 
have an effect on collembola preference and survival. As the major agents of wood 
decay, saprotrophic fungi are central to woodland decomposer processes with 
different species operating different growth strategies and decomposing wood at 
varying rates (Rayner & Boddy, 1988). The possible impacts on fungi by collembola 
through preferential grazing altering fungal combativeness and morphology may have 

substantial implications for fungal species assemblage. The diversity of fungi present 
is likely, therefore, to have impacts on the rate of wood decay (Rayner & Boddy, 
1988; Tordoff et al, 2008), and the cycling and translocation of nutrients within 
woodland (Boddy & Watkinson, 1995). The possible role of collembola in 
maintaining fungal diversity on the woodland floor with potential implications for 
other organisms found in the soil food-web and even above-ground processes merits 

greater exploration.
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Appendix I Source and authority for study organisms.
Species and Authority Isolate Reference in thesis Source
Fungi
Hypholoma fasciculare (Huds.: Fr) Kummer DD2 Hf 1 Cardiff University Culture Collection

WV2 Hf 2 Cardiff University Culture Collection
Isolated from fruit body August 2003
Trelleck Common (UK National Grid Reference S0517619)

DD3 Hf 3 Cardiff University Culture Collection

JHC002065 Hf 4 Cardiff University Culture Collection

Phallus impudlcus (L.) Pers. JHY4 Pi Cardiff University Culture Collection
Isolated from cord at fruit body base August 2003
Trelleck Common (UK National Grid Reference S0517619)

Phanerochaete velutina (DC.: Pers.) Parmasto KC1685 Pv Cardiff University Culture Collection

Resinicium bicolor (Abertini & Schwein.:Fr.) Parmasto Rb1 Rb 1 University of Aberdeen UK

RbM6A Rb 2 Cardiff University Culture Collection

Collembola
Folsomia Candida Willem - - CEH Lancaster, UK

Protaphorura armata Tullberg - - National Environment Research Institute, Silkeborg, Denmark
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