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Abstract

The genus Aspergillus includes a diverse group of filamentous fungi that are widely 

distributed in nature, commonly found in soil. The Aspergilli include species that can be 

beneficial or detrimental to humans, so detection and accurate identification of these 

organisms can be very important. Morphology and genetic sequence analysis are well 

established methods for classifying and identifying fungi, but morphology remains a 

widely used technique that generally works well for Aspergilli. However, some 

organisms may be misidentified due to atypical morphology and some hidden (cryptic) 

species may not be recognized as different from named species based on readily 

observable traits. In this study, reference strains of different Aspergillus species, 

Penicillium chrysogenum, Candida albicans, and Cryptococcus neoformans were 

characterized using LC/MS and GC/MS biochemical profiling techniques in order to find 

specific small molecules, peptides or biochemical profiles that can be used in addition to 

established methods to detect and classify Aspergilli to the species level. Subsequently, 

analytical methods developed for characterizing the reference strains were applied, 

along with morphology and PCR, to characterize and identify several laboratory and field 

isolates. Some unique compounds and biochemical patterns did emerge from small 

molecule profiling that could be used for classifying Aspergilli, but protein profiling by 

LC/MS/MS was a much more effective approach. Tandem mass spectra from 

LC/MS/MS of tryptic peptides from fungal proteins were searched against protein 

databases and matched to theoretical spectra derived from those databases. Many of 

the amino acid sequences detected were taxonomically diagnostic for classifying 

Aspergillus species. Protein profiling also provided a great deal of additional biochemical 

information on the test organisms by identifying the predominant enzymes and structural 

proteins present under different experimental conditions and may find broader 

application for identifying and studying other organisms.
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Chapter 1: Biochemical Markers for Detection and
Identification of Aspergillus Species - 
Overview

Introduction

The genus Aspergillus includes a diverse group of filamentous fungi that are widely 

distributed in nature, commonly found in soil. The Aspergilli include species that can 

be beneficial or detrimental to humans, so accurate identification of these fungi can 

be extremely important. As with other fungi, Aspergilli historically have been 

classified and identified based on morphology along with supplementary 

physiological, biochemical, life cycle and ecological characteristics (Ainsworth et al. 

1965, Raper and Fennell 1965). Classification and identification based on 

morphology is still widely used and generally works well for Aspergilli, but some 

organisms may be misidentified due to atypical morphology and some hidden 

(cryptic) species may not recognized as different from named species based on 

readily observable traits. Increasingly, molecular techniques are being applied to 

identify unknown fungi and re-evaluate morphology-based classifications (Klich 2006, 

Sampson et al. 2006, Geiser et al. 2007). In this study, a number of Aspergillus 

reference species were characterized using LC/MS and GC/MS biochemical profiling 

techniques in order to find specific small molecules, peptides or biochemical profiles 

that might be used in addition to morphological and molecular techniques for the 

detection and identification of Aspergilli.
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Overview of the Aspergilli

The genus Aspergillus includes a diverse group of filamentous fungi that are widely 

distributed in nature, commonly found in soil. They have been studied extensively 

due to their importance in fermentation, food safety, plant pathology, and medicine. 

Although most species are generally considered saprophytic, some are capable of 

causing disease in insects, plants, and animals (Gugnani 2003, Hedayati et al. 2007). 

This study focused on Aspergillus flavus, a species that can impact human and 

animal health in two distinctly different ways -  as a producer of mycotoxins or as an 

opportunistic pathogen.

A number of Aspergillus species can contaminate plant products during production, 

processing, and storage. Aspergillus is one of the major genera of mycotoxigenic 

fungi (Aspergillus, Penicillium, Fusarium) and can produce an array of mycotoxins 

including aflatoxins, fumonisins, ochratoxins, tricothecenes, ergot alkaloids, 

sterigmatocystin, gliotoxin, cyclopiazonic acid, citrinin, and patulin (CAST 2002).

Aspergillus flavus is one of five Aspergillus species - A. flavus, A. parasiticus, A. 

nomius, A. pseudotamarii, and A. bombycis - that produces aflatoxins, fungal 

metabolites that are toxic and carcinogenic to humans and animals (CAST 2002, 

Scheidegger and Payne 2003). Closely related domesticated species, A. oryzae and 

A. sojae, are used in the fermentation industry and are non-aflatoxigenic. The 

aflatoxigenic species are frequently found in agricultural products such as maize, 

cotton and peanuts. Allowable concentrations for aflatoxins are regulated and 

commodities that exceed limits must be decontaminated or destroyed. The U.S. 

regulatory limits for aflatoxin are set at 0.5 ppb for milk, 20 ppb for food intended for 

human consumption, and 20-300 ppb for animal feed; regulatory limits in the E.U. are 

set much lower at 0.05 ppb for milk and 2-15 ppb for spices and food (Murphy et al.

2006).
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A. flavus is also one of several Aspergillus species that causes allergy or infection in 

humans. Common pathogenic species are A. fumigatus, A. flavus, A. niger, and 

A. terreus, with A. fumigatus the most prevalent. Aspergillus conidia, particularly 

those of A. fumigatus, are small enough to travel through the air and into the lungs. 

Normal, healthy individuals rarely develop aspergillosis because the immune system 

keeps the fungus in check. However, people weakened by other diseases, or 

individuals under immunosuppressive therapy for organ transplants or treatment of 

autoimmune diseases, are at greatly increased risk of developing aspergillosis 

(Denning 1998, Latge 1999, Yaguchi et al. 2007).

Historical Perspective

Fungi have a very long lineage based on a fossil record that extends back beyond 

500 million years and there are many references to fungi throughout human history 

(Ainsworth 1965, Lutzoni et al. 2004, Blackwell etal. 2009 [tolweb]). The first 

scientific descriptions of Aspergilli appeared after the introduction of the microscope 

and are attributed to Pietro Antonio Micheli in “Nova Genera Plantarum” published in 

1729 (Ainsworth 1965, Raper and Fennel 1965, Gugnani 2003). Using microscopy, 

Micheli was able to distinguish stalks and spore heads as well as the spore chains 

that radiated out from a central structure. He named these molds Aspergillus 

because these structures resembled an aspergillium (holy water sprinkler). Much of 

the early literature is based on this type of microscopic study of specimens on their 

natural substrates.

The study of Aspergilli grew through the 1800’s with the development of laboratory 

culture techniques by De Bary and others as well as the increasing use of these fungi 

in industrial fermentations. A series of monographs on the genus have been written
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over the years to summarize the collective information available for Aspergilli 

including Wehmer in 1901, Thom and Church in 1926, Thom and Raper in 1945, and 

Raper and Fennel in 1965 (Raper and Fennel 1965, Gugnani 2003). Raper and 

Fennel recognized 132 Aspergillus species; currently the total number of recognized 

species is on the order of 250 (Geiser et al. 2007)

Taxonomy and Species Concept in Aspergilli

A standard definition of species is “a fundamental taxonomic category ranking below 

a genus and consisting of a group of closely related individuals that can interbreed 

freely and produce fertile offspring” (Oxford Dictionary of Biochemistry and Molecular 

Biology, Smith 2000). The recognition of biological species based on mating tests is 

not possible with many Aspergilli because only about a third of Aspergillus species 

have a known sexual stage or teleomorph (Geiser 2008). Consequently, 

morphological and other phenotypic traits of the asexual or anamorphic forms, as 

described by Raper and Fennel (1965), have served as the basis of classifying many 

of the Aspergilli to the species level. This traditional approach to Aspergillus 

taxonomy has worked well and is still central to the defining the genus but the 

classifications have been refined and revised based on molecular techniques that 

derive phylogenetic relationships based on comparisons of DNA sequences (Samson 

et al. 2006, Geiser et al. 2007). The current taxonomic classification of the genus 

Aspergillus is summarized in Table 1.1.

Raper and Fennel subdivided the genus into 18 groups of one to several species 

based on probable relationships deduced from shared characteristics. The group 

concept was useful for classification, but the term had no formal taxonomic standing 

under the International Code of Botanical Nomenclature (ICBN) that governs fungal
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Rank Taxon Classification Features

Domain Eukaryota organisms with nuclear membranes

Kingdom Fungi osmotrophic heterotrophs with chitinous cell walls, 
generally filamentous

Subkingdom Dikarya unicellular or filamentous, often dikaryotic (binucleate) 
lacking flagella

Phylum Ascomycota ascospores (meiospores) inside sac-like cases (asci)

Subphylum Pezizomycotina predominantly filamentous, septate

Class Eurotiomycetes diverse ascoma types, molecular phylogeny

Subclass Eurotiomycetidae mostly enclosed ascomata and prototunicate asci 
contains most fungi previously in Plectomycetes

Order Eurotiales cleistothecial ascomata, classically green and blue molds, 
molecular phylogeny

Family Trichocomaceae 
(syn. Eurotiaceae)

cleistothecial characteristics, molecular phylogeny
selected anamorphic genera include Aspergillus, Paecilomyces, 
Penicillium

Genus Aspergillus aspergillum-like asexual reproductive structures, 
molecular phylogeny

Table 1.1. Current taxonomic classification of the genus Aspergillus. Table compiled 

from Sugiyama 1998, Guarro et al. 1999, Lumbsch 2000, Gugnani 2003, Lutzoni et 

al. 2004, Geiser et al. 2006, Spatafora 2006, Hibbett et al. 2007, Stchigel and Guarro 

2007, Geiser 2008, Humber 2008.

nomenclature (Samson 1992, Guarro 1999). Consequently, the groups were revised 

and given taxonomic status as sections and six subgenera were added (Gams et al. 

1985, Samson 1992, Geiser et al. 2007). Peterson, in 2000, proposed 15 sections in 

three subgenera based on rDNA sequences. In 2005, Frisvad et al. suggested 

adding a new section, Ochracerosei to accommodate A. ochraceoroseus and a new 

species A. rambellii. In 2008, Peterson revised his infrageneric taxa to 17 sections
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organized into 5 subgenera based on an expanded phylogenetic analysis of four loci 

-  beta tubulin, calmodulin, internal transcribed spacer (ITS) and large subunit rDNA, 

and RNA polymerase II. This classification scheme is presented in Table 1.2.

Subgenus Aspergillus
Section Aspergillus 
Section Restricti

Subgenus Circumdati 
Section Candidi 
Section Circumdati 
Section Cremei 
Section Flavi 
Section Flavipedes 
Section Nigri 
Section Terrei

Subgenus Fumigati
Section Cerv/n/
Section Clavati 
Section Fumigati

Subgenus Nidulantes
Section Nidulantes 
Section Ochraceorosei 
Section Sparsi 
Section Usti

Subgenus Ornati
Section Ornati

Table 1.2. Nomenclature of the infrageneric taxa of the genus Aspergillus according 

to Peterson (2008). Classification assessment is based on multilocus testing of 

approximately 460 Aspergillus isolates.
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Naming Conventions for Aspergilli

For an Aspergillus species to be formally recognized by taxonomists, it must be 

described appropriately and assigned a Latin binomial name in accordance with the 

bionomenclature rules of the ICBN (Samson 1992, Guarro 1999). Because Aspergilli 

have been observed and described based in teleomorph and/or anamorph forms, 

often separately and without knowledge of the relationship between the two forms, 

there is a history of dual nomenclature, with each form having its own genus name. 

Under the ICBN, if the teleomorph form is known, the teleomorph name takes 

precedence, but the use of the anamorph name is permitted, particularly when the 

organism is typically encountered and more widely known in the anamorph state 

(Cline 2005, Pitt and Samson 2007). The test organisms of the Aspergilli in this 

study are referred to as Aspergillus, the genus name of the asexual stage, 

throughout this text.

Current Methods for Detection and Identification

Although numerous immunological, molecular, and biochemical methods are now 

available, the morphological approach to identification of Aspergilli, based on their 

distinctive phenotypic characteristics in culture, remains a widely used technique 

(Samson et al. 2006, Klich 2006, Denning 1998). In fact, a 2003 survey of 

laboratories performing mycological testing reported that 89% use culture, 16% use 

serology, and fewer than 5% use molecular tests (McKlenny 2005).

Methods for detection, characterization, and identification of fungi, including 

Aspergillus, have been extensively reviewed elsewhere (Frisvad et al. 1998, Guarro 

et al. 1999, Raper and Fennel 1965, Rath 2001, Samson et al. 2006, Varga et al. 

2004, Peterson 2008) and will only be summarized here. Microscopy and culture
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were used in this study along with mycotoxin analysis to confirm the identity of 

species and strains, when cultured organisms produced asexual reproductive 

structures and presented species-typical morphology. Some reference strains 

produced only mycelia and lacked distinctive colours or other features that would aid 

identification, and so the identity could not be readily confirmed by culture phenotype.

Culture and Morphology. The genus Aspergillus is characterized by a distinctive 

asexual reproductive structure, the aspergillum, that resembles an aspergill brush or 

sprinkler, from which it gets its name. The aspergillum consists of a stipe terminating 

in a spore head or vesicle, on which spore forming cells and spores are borne, see 

Figure 1.1. Another feature characteristic of Aspergilli is the presence of foot cells, 

enlarged, thick-walled hyphal cells from which the stipe arises (Mackenzie 1988, 

Ratna 1973). Hyphae are hyaline (clear, glassy) and septate with acute branching 

(<90° angle) (Mackenzie 1988, McKlenny 2005).

Aspergilli are easily cultured on common laboratory media such as potato dextrose 

agar (PDA) and variants of Czapek (CZ) and malt extract agars (MEA). Many of the 

species, if grown on standardized media for specified lengths of time, can be 

classified macroscopically based on growth habit and colour and microscopically 

based on aspergillum and spore characteristics. Diagrams of typical condiophores 

and the general appearance of an A. flavus conidiophore is presented in Figure 1.2.
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Biseriate

Conidiophore —

Conidium

Vesicle

Phialide

Stalk

Stipe

\

A  Septum Foot cell

Figure 1.1. Typical conidial structures of Aspergillus. (A) Labelled cross-section of 

conidiophores and hyphae (redrawn/adapted from Deacon 1984 and Alexopoulos 

and Mims 1985). Note that the phialides, on which conidia form, may rest directly on 

the vesicle (uniseriate) or on another layer of cells that rest on the vesicle (biseriate). 

(B) general appearance of a typical A. flavus conidiophore under low magnification 

(Glassbrook).

Glassbrook

Figure 1.2. Condiophores and typical growth habit of Aspergillus flavus.

[Vesicle]

Metula
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Some useful guides for classifying aspergilli based on morphology are Christensen 

(1981), Murakami et al. (1982), Pitt and Hocking (1985), Gugnani (2003), and 

Hedayati et al. (2007).

The most common pathogenic species - A. fumigatus, A. flavus, A. niger, and 

A. terreus- are readily differentiated by culture and microscopy if the isolates grow 

and sporulate well and if the strains exhibit typical phenotypes of the species. The 

most striking differences are in colony colour (examples are presented in Figure 1.3). 

A. fumigatus cultures are blue-grey, A. flavus yellow-green, A. niger black, and 

A. terreus cinnamon brown. However, identification by morphology and spore colour 

can be complicated by slow growth, poor sporulation or atypical characteristics of 

some field or clinical isolates (Denning 1998). Also, the culture procedure can take 

several days to over a week for the fungus to grow out, sporulate, and develop 

characteristic colour. In addition, closely related species may have very similar gross 

morphologies, sometimes making positive identification to species difficult. The 

general characteristics of the fungi included in this study are presented in Table 1.3.
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Section Circumdati - biseriate, yellow to rust brown conidia, ochratoxins, ubiquinone CoQ-10(H2) 

A. ochraceous postharvest pathogen of agricultural products

Section Flavi- uniseriate and biseriate, pale yellow to olive green (typical) and brown conidia, +/- alflatoxins, kojic acid, ubiquinone CoQ-10(H2) 
A. flavus pathogenic; common contaminant of maize, peanuts, and tree nuts
A. oryzae used in fermentations, closely related to A. flavus, morphology and colour varies widely

A. parasiticus similar to A. flavus, not generally considered pathogen

A. sojae used in fermentations
A. tamarii used in fermentations

Section Fumigati- uniseriate, grey to blue green conidia, +/- gliotoxin, ubiquinone CoQ-10 

A. fumigatus most prevalent Aspergillus pathogen of humans

Section Nidulantes -  biseriate, blue green to deep green conidia, sterigmatocystin, ubiquinone CoQ-10(H2)
A. nidulans sometimes pathogenic, widely used for genetic studies

Section N igri- biseriate, dark brown to black conidia, large vesicles, +/-ochratoxin A, ubiquinone CoQ-9 

A. carbonarius contaminant of coffee, grapes, and tree nuts
A. niger rot pathogen of plants, sometimes mammalian pathogen, used in fermentations

Section Terrei - biseriate, tan to cinnamon brown, patulin, ubiquinones CoQ-10 and CoQ-10(H2)

A. terreus emerging pathogen, capable of forming adventitious conidia (aleurioconidia)

Table 1.3. General classification and characteristics of Aspergillus species included in this study (Matsuda et al. 1992, Seifert and 

Levesque 2004, Varga et al. 2003). General morphological characteristics and some characteristic metabolites are listed for each 

section within the genus Aspergillus; individual species are listed within their respective sections.
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Glassbrook

Figure 1.3. Examples of distinctive Aspergillus spore colours on a minimal medium. 

Top row, left to right: A. fumigatus NRRL163, A. terreus NRRL 255, A. flavus 

NRRL 3357. Bottom row, left to right: A. ochraceous NRRL 398, A. niger NRRL 326, 

A. tamari NRRL 425.

Immunological assays. Immunological techniques have been applied to detection 

and speciation of Aspergilli, but find more use in clinical settings as part of diagnosis 

for aspergillosis than as a routine tool for taxonomy. Assays are typically directed at 

components of the fungal cell wall or secreted proteins or, in immunocompetent 

individuals, at antibodies to fungal antigens (Latge 1999, Pasqualotto and Denning 

2005).
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Immunodiffusion and counterimmunoelectrophoresis are the most common 

serological methods used in the clinical laboratory for detecting an\\-Aspergillus 

antibodies. The methods are relatively simple, cheap, and easy to perform, but are 

not particularly sensitive and not quantitative (Latge 1999).

Two other common clinical assays involve direct detection of polysaccharide 

components of the fungal cell wall circulating in the blood. The first is an enzyme 

immunoassay that uses monoclonal antibodies directed at the Aspergillus 

galactomannan antigen and the second measures levels of (1-3)-|3-D-glucan in 

serum (Latge 1999, Klont et al. 2004, Hope et al. 2005, Pickering et al. 2005). These 

assays are reasonably sensitive, but in some cases may cross react with cell wall 

components of other common fungi (Hamilton and Gomez 1998).

Nucleic acid based techniques. As a group, Aspergilli are genetically well 

characterised compared to other fungi. Aspergilli have eight chromosomes and the 

genome sizes range from approximately 28 Mb to 38 Mb. A number of Aspergillus 

species have sequenced genomes, including A. clavatus, A. flavus, A. oryzae,

A. fumigatus, A. nidulans, A. niger, and A. terreus (Galagan et al. 2005, Jones 2007, 

Kobayashi et al. 2007, Rokas et al. 2007, Hedayati et al. 2007). The availability of 

sequence data across Aspergillus species facilitates species-to-species comparisons 

at the DNA and protein levels.

Molecular techniques based on comparing DNA are emerging as a very powerful tool 

for classifying organisms which is much less subjective than the classical phenotypic 

approach. The analyses involve comparing the electrophoretic migration of entire 

chromosomes (karyotyping) or defined sections of DNA, hybridization, or directly 

comparing sequences (Clutterbuck 1994, McDonald 1997, Gil-Lamaignere et al. 

2003). Examples of taxonomically differentiated genes often used for detection and 

identification, as well as determining phylogenetic relationships of Aspergilli and other
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fungi are (3-tubulin, calmodulin, cytochrome b, actin, hydrophobin, and ribosomal 

DNA (Frisvad et al. 1998, Lutzoni et al. 2004, Samson et al. 2006, Yaguchi et al. 

2007). These genes have been selected because as a rule they are universally 

present in these organisms and the contain stretches of highly conserved sequences 

that can be targeted with primers for amplification by polymerase chain reaction 

(PCR). The amplified sequences useful for taxonomy contain non-coding regions 

that tend to show more genetic variation than coding regions (Webster and Weber

2007). Examples of coding and non-coding regions in 3-tubulin and ribosomal DNA 

are illustrated in Figure 1.4

p-tubulin —| -

ribosomal DNA

Figure 1.4. Examples of gene structures for 3-tubulin and rDNA from A. oryzae. 

Coding regions are depicted as thick blank lines; non-coding regions are depicted as 

thinner grey lines. The internal transcribed spacers (ITS) flank the coding region for 

the 5.8 S RNA. Adapted from A. oryzae RIB40 sequences displayed in NCBI 

Sequence Viewer (http://www.ncbi.nlm.nih.gov/projects/sviewer/).

Ribosomal DNA (rDNA) is the most commonly used for taxonomic and phylogenetic 

studies because ribosomes are present in all cellular organisms, the sequences 

contain both variable and conserved regions, and primers are readily available for the 

different regions (Kurtzman 1994, Hillis and Dixon 1991). In addition, multiple copies 

of the ribosomal genes are present as tandem repeats in the genome and each 

haploid fungal genome has about 50-250 copies of the repeat that can be targeted 

for PCR (Webster and Weber 2007).
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PCR provides a means to greatly amplify targeted sets of nucleic acid sequences. 

Nucleic acid methodologies based on PCR have the advantage of requiring very little 

starting material for analyses and thus can eliminate the time and sometimes 

difficulty required to culture the organism.

Protein profiling. Although not used extensively, protein profiles are an additional set 

of diagnostic features that can supplement other diagnostic approaches. The 

different protein patterns observed by electrophoretic techniques are directly related 

to the diversity of the coding genes and may indicate specific differences or 

similarities between species (Hennebert and Vancanneyt 1998, Mitterdorfer et al. 

2002). One-dimensional polyacrylamide gel electrophoresis (PAGE) of proteins has 

been used to compare different species of Aspergillus (Rath 2001, Sorenson et al. 

1971). Although different banding patterns show some similarities related to species, 

the technique, at this stage appears to be more useful for confirming identity or 

demonstrating similarities or differences rather than for directly identifying an 

organism. The electrophoretic patterns of isozymes (enzymes that catalyze the 

same reaction, but differ in amino acid sequence) have been used in some 

taxonomic studies with Aspergillus (Rinyu et al. 1995), and may provide additional 

features to support classification of an organism.

Chemical profiling. Aspergilli have a number of biochemical characteristics that, from 

a complete blind chemical profile, would immediately classify them as eukaryotic and 

as Eumycota or true fungi -  they have cell walls containing chitin and glucan; they 

have sterols in their membranes, primarily ergosterol; the C16 and C18 chain lengths 

dominate the fatty acid profile; they produce trehalose and polyols (Wessels 2005).
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Analysis of other chemical markers or patterns of metabolites are required for further 

classification.

Secondary metabolite profiles have been used to recognize individual species in 

conjunction with other approaches such as morphology and physiology (Guarro et al. 

1999). The profiles of mycotoxins, particularly aflatoxins, are very important for 

classification of Aspergillus species (Klich et al. 2000, Frisvad et al. 1998, Seifert and 

Levesque 2004, Varga et al. 2004). A good overview of mycotoxins is presented by 

Bennett and Klich (2003).

Fatty acid profiles have been used extensively for chemotaxonomy of bacteria and 

the characterization of microbial communities (Kirk et al. 2004, Zelles 1999). Most 

methods involve preparing fatty acid methyl esters (FAME) and analyzing the FAME 

profile by GC or GC/MS. Fatty acid and lipid profiles have shown some promise in 

yeast taxonomy and identification (El Menyawi etal. 2000, Botha and Kock 1993). 

Although not extensively used, these techniques have been applied to identification 

of Aspergillus and Penicillium species (Nemec 1997, da Silva 1998).

Ubiquinone (coenzyme Q) is a lipid component of the mitochondrial electron 

transport chain and has been used to help classify a number of yeast and 

filamentous fungi (Paterson in Frisvad et al. 1998, Ahearn 1978). The number of 

isoprene units attached to the benzoquinone and the percentage of the reduced form 

present can support taxonomic grouping. Matsuda et al. (1992) report that three 

major ubiquinone systems (Q-9, Q-10, and Q-10(H2) were present in the Aspergillus 

species they studied and the ubiquinones were useful indicators for classification.

As with morphological techniques, most chemical profiling techniques require 

isolation and culturing of the organism under standardized conditions to be valid and 

may not be suitable for time sensitive identifications. They also typically require more
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sample mass than molecular techniques based on PCR that can generate usable 

sequence from very tiny amounts of material. However, the common molecular 

markers used for identifying Aspergilli, such as p-tubulin and rDNA, may not 

adequately resolve the identification of an organism to the species level. 

Consequently, morphological and biochemical characterization is still often required 

to correctly identify an organism.

Mass Spectrometry Approach

In contrast to the targeted analyses that monitor specific compounds or groups of 

compounds as described above, biochemical profiling techniques based on mass 

spectrometry employ a few core methods to survey a wide variety of compounds 

simultaneously and the methods can be scaled to accommodate relatively small 

quantities of test material (Fiehn 2002, Glassbrook and Ryals 2001, Halket et al. 

2005). This analytical approach was applied in this project to survey small molecule 

and protein compositions of different species of Aspergilli using gas or liquid 

chromatography coupled with mass spectrometry (GC/MS and LC/MS, respectively).

In GC/MS and LC/MS, chromatography is used to separate the components of 

sample extracts prior to detection by mass spectrometry. Chromatographic 

separation in the GC takes place as volatile components of the sample differentially 

partition between a carrier gas flowing through the chromatography column and a 

stationary liquid or polymer lining the column. Separations in the LC occur as the 

components of the sample partition between a liquid mobile phase and a stationary 

solid phase packing material in the column. In the mass spectrometer, molecules are 

ionized and then separated in electromagnetic fields based on their mass-to-charge 

ratio (/77/z). The chromatographic retention, mass of a compound and the distinctive
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masses of fragments from the compound (the spectrum) can be used to derive its 

identity. Profiling by GC/MS and LC/MS was recently reviewed by Halket et al. 

(2005).

GC/MS is well suited to the analysis of a wide range of biologically important 

compounds. However, because many of those compounds are not sufficiently 

volatile or chromatograph poorly by GC in their native states, they must be undergo 

chemical derivatization prior to analysis. In this study, crude extracts were treated to 

produce trimethylsilyl (TMS) derivatives of compounds with amine, hydroxyl, acid, or 

phosphate functional groups. This yields a very complex solvent extract suitable for 

GC/MS that contains a broad cross section of biologically important compounds, 

including TMS-derivatized alcohols, sugars, small organic acids, fatty acids, amino 

acids, and sterols. Many of these compounds are readily identified by matching 

electron impact (El) spectra of the chromatographic peaks with spectra in the mass 

spectral library available from the National Institute of Standards and Technology 

(NIST). In many cases, the NIST library also lists calculated and/or experimentally 

measured retention indices to aid compound identification.

LC/MS is better suited for the analysis of heat labile compounds, high-molecular 

weight compounds, and non-volatile compounds in their natural form. In this study, 

LC/MS with electrospray ionisation (ESI) was used for analysis of small molecules 

and peptides from culture media and fungal homogenates. The term LC/MS is used 

as a generic term to describe analyse conducted with an HPLC coupled to a mass 

spectrometer. It may also be used, in context, to specifically describe analysis of 

ions as they are generated in the ion source and passed to the detector without 

fragmentation. The term LC/MS/MS is used to describe the process of isolating 

selected ions and fragmenting them to generate characteristic spectra. These 

spectra are used for selectively monitoring compounds or for further characterization
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of a parent ion based on the fragmentation pattern, in a manner similar to the 

spectral matching used for the El spectra generated in GC/MS. As with GC/MS the 

NIST spectral library includes some entries relevant to LC/MS/MS and may be used 

to prepare custom user libraries for storing MS/MS spectra of selected fungal 

metabolites such as mycotoxins. LC/MS/MS spectra of peptides may be matched to 

theoretical spectra generated from amino acid sequences in order to identify proteins 

contained in test samples.

Aspergillus, as a test organism, is particularly well suited for a biochemical profiling 

approach using GC/MS and LC/MS. Culture conditions and molecular biology 

techniques are well established. Some of the biochemical pathways have been 

extensively studied. Genomes of a good section of Aspergillus species have been 

sequenced and are publicly available. Differences between organisms observed in 

metabolic profiles, give clues to underlying differences in metabolism that may be 

traced back to changes in specific proteins, expression profiles, and specific genes.

In addition, the availability of genomic data allows LC/MS identification of proteins 

based on the specific amino acid sequences encoded in an organism’s genes. As 

with nucleic acid based techniques, there may be detectable amino acid sequences 

that are specific enough to a given species to allow identification based on those 

sequences. The ability to identify organisms based on sequence data will improve as 

the costs of genetic sequencing continues to decrease and more sequence data for 

more organisms become publicly available.
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Objectives

The overall goal of this study was to characterise a cross section of Aspergillus 

species using LC/MS and GC/MS biochemical profiling techniques in order to find 

specific small molecules, peptides or biochemical profiles that differentiate the 

species. The initial focus was to catalogue small molecules and proteins from a 

number of reference strains with the expectation that clear patterns in chemical 

composition or unique peptide sequences would emerge that could be used to 

classify Aspergilli. Subsequently, techniques developed for characterizing the 

reference strains were applied in case studies to characterizing and identifying field 

isolates and to detecting the presence of fungi in host material. An additional 

objective of the case studies was to gather additional biochemical information on the 

organism in the context of the test systems studied by identifying the predominant 

enzymes and structural proteins present under different experimental conditions. In 

some cases, protein profiles of the fungus and the host material were obtained 

concurrently. The techniques developed and information gained from these 

biochemical profiles may serve as the basis for further studies on host pathogen 

interactions.
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Chapter 2: Materials and Methods

General approach. Reference strains of different Aspergillus species, Penicillium 

chrysogenum, Candida albicans and Cryptococcus neoformans were grown under 

standardized growth conditions and then analyzed using GC/MS and LC/MS 

biochemical profiling techniques in order to find specific small molecules, peptides or 

biochemical profiles that differentiate the species. Subsequently, culture and 

morphology, biochemical profiling, and PCR were applied to characterize and identify 

several laboratory and field isolates. Protein profiling was also applied to detect the 

presence of fungi in host material (maize).

Chemicals and reagents. General laboratory chemicals were reagent grade or better 

and were purchased from various vendors, including Sigma-Aldrich (St. Louis, MO, 

USA), Fisher Scientific (Pittsburgh, PA, USA) and VWR International (West Chester, 

PA, USA). Basal Medium Eagle vitamins 100X stock solution and Basal Medium 

Eagle essential amino acids 50X stock solution were purchased from Sigma (St. 

Louis, MO, USA). Acetonitrile, isopropanol and methanol were chromatography 

grade, suitable for spectrophotometry, HPLC and GC analysis, and pesticide residue 

analysis (Honeywell Burdick & Jackson®, B&J Brand®). Deionized water (18 Mohm- 

cm) was purified with a NANOpure® Diamond™ ultrapure water system (Barnstead, 

Dubuque, IA, USA).

Fungal reference strains. Isolates of Aspergillus species, Candida albicans, and 

Cryptococcus neoformans used in this study are listed in Table 2.1. Most of the 

Aspergillus cultures were obtained from the United States Department of Agriculture 

(USDA) Northern Regional Research Laboratory (NRRL), now the National Center 

for Agricultural Utilization Research (NCAUR); Peoria, Illinois, USA), with the
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Genus species Strain Notes
Aspergillus carbonarius (Bainier) Thom NRRL 369* Neotype strain of A. carbonarius

Aspergillus carbonarius (Bainier) Thom NRRL 67

Aspergillus carbonarius (Bainier) Thom NRRL 346

Aspergillus clavatus Desmazieres NRRL 1* Lectotype, sequenced strain

Aspergillus clavatus Desmazieres NRRL 3638* Military specification culture

Aspergillus flavus Link NRRL 3357* F.A. Hodges strain M52, SRRC 167, sequenced 
strain

Aspergillus flavus Link NRRL 1957* Neotype strain

Aspergillus flavus Link NRRL 485* isolated from insect

Aspergillus flavus Link NRRL 3646 Military specification culture

Aspergillus flavus Link Papa 827 white spores, nor mutant

Aspergillus fumigatus Fresenius Af293* Denning; sequenced strain

Aspergillus fumigatus Fresenius NRRL 163* Neotype strain A. fumigatus

Aspergillus nidulans(E\dam) G. Winter FGSC A4* Glasgow wild type
Aspergillus nidulans(E\6am) G. Winter NRRL 187* Neotype strain of Emericella nidulans, 

anamorphic state
Aspergillus niger van Tieghem NRRL 326* Neotype strain
Aspergillus niger van Tieghem NRRL 3
Aspergillus niger van Tieghem NRRL 363

Aspergillus ochraceous Wilhelm NRRL 398 Ex-type strain

Aspergillus oryzae (Ahlburg) Cohn NRRL 447 Neotype strain
Aspergillus oryzae var. oryzae NRRL 1988 From soy sauce, syn. A sojae
Aspergillus flavus Link NRRL 4823 Type strain A. oryzae wehmeri
Aspergillus oryzae (Ahlburg) Cohn var. brunneus NRRL 5590* syn. RIB 40; sequenced
Aspergillus oryzae (Ahlburg) Cohn var. oryzae RIB128 National Research Institute of Brewing (Japan)
Aspergillus oryzae (Ahlburg) Cohn RIB430 National Research Institute of Brewing (Japan)

Aspergillus parasiticus Speare NRRL 424 Lectotype strain of A. terricola var. americana, 
naturally occurring brown mutant

Aspergillus parasiticus Speare NRRL 502 Lectotype strain of A. parasiticus
Aspergillus parasiticus Speare SU-1 Obtained from SRRC along w/sec- derived from 

SRRC 143A
Aspergillus tamarii Kita NRRL 425 syn. A. terricola

Aspergillus terreus Thom NRRL 255* Lectotype strain

Aspergillus terreus Thom NRRL 274* Clinical isolate from human ear
Aspergillus terreus Thom NRRL 1913* Isolated from mouse lung

Aspergillus westerdijkiae Frisvad & Samson NRRL3174 syn. A. ochraceous Wilhelm
Aspergillus westerdijkiae Frisvad & Samson NRRL5175 syn. A. ochraceous Wilhelm

Cryptococcus neoformans (Sanfelice) Vuillemin (1901) H99*

Candida albicans (Robin) Berkhout (1923) SC5314* DUMC 115.01

Paecilomyces lilacinus NRRL 895

Penicillium chrysogenum NRRL 807 Neotype strain of P. chrysogenum
Penicillium chrysogenum NRRL 824 Fleming's penicillin producing strain

Petromyces alliaceous NRRL 4181 Neotype strain of P. alliaceus
Petromyces alliaceous NRRL 315

Table 2.1. Fungal reference strains used in the study. All strains listed, except 

A. tamarii were analyzed by LC/MS/MS for protein; strains analyzed by GC/MS and 

LC/MS are marked with an asterisk. Note that project data for A. tamarii is 

referenced only in Figure 1.3 (spore colours).
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following exceptions - Aspergillus nidulans A4 obtained from the Fungal Genetics 

Stock Center (FGSC; Kansas City, Missouri, USA), Aspergillus fumigatus Af293 

obtained from Duke University Medical Center (Durham, North Carolina, USA), 

Aspergillus flavus Papa 827 obtained from Dr. Gary Payne (NC State University, 

Raleigh, North Carolina, USA), Aspergillus parasiticus SU-1 obtained from the USDA 

Southern Regional Research Center (SRRC; New Orleans, Louisiana, USA) and 

Aspergillus oryzae RIB128 and RIB430 were obtained from National Research 

Institute of Brewing (NRIB) in Japan. Candida albicans SC5314 and Cryptococcus 

neoformans H99 also were obtained from Duke University Medical Center (DUMC).

Fungal isolates for case studies. Field isolates were cultured from maize samples 

obtained at three different research stations in North Carolina (collected by Magen 

Starr Eller in James Holland’s laboratory at NC State) and taken through an 

identification process based on morphological characteristics, mass spectrometry, 

and molecular techniques. Dried maize seeds, selected for discoloration 

characteristic of fungal infection, were obtained for the 2007 growth season at the 

Central Crops Research Station (Clayton, NC, USA), the Sandhills Research Station 

(Jackson Springs, NC, USA) and the Tidewater Research Station (Plymouth, NC, 

USA). Dry maize kernels were ground to a powder in a laboratory ball mill, then 

streaked onto agar-solidified BCP minimal medium (BCPmin, described below) as a 

powder and allowed to grow until mycelial growth was evident and Aspergillus-like 

reproductive structures were present. Colonies with the characteristic conidiophores 

bearing yellow to green conidia were subcultured to generate single conidia or hyphal 

tip isolates. Two non-Aspergillus fungi, one field isolate from maize and one lab 

contaminant from PDA were isolated to serve as an out group for comparison with 

Aspergillus strains. Isolates presumed to be Aspergillus flavus based on morphology 

were obtained and designated Clayton 270, Sandhills 174, and Plymouth 98 based 

on the source of the maize sample (research station and plot). Non-Aspergill us
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isolates were designated as P98b (isolated from the same maize sample as the 

Aspergillus strain Plymouth 98) and GAPLAB_RH (lab contaminant from Rob Holmes 

in Gary Payne’s laboratory at NC State). Summary information for the field isolates 

is presented in Table 2.2.

Designation Tentative identification Source

Clayton 270 Aspergillus flavus maize kernels; Clayton NC, USA

Sandhills 174 Aspergillus flavus maize kernels; Jackson Springs NC, USA

Plymouth 98 Aspergillus flavus maize kernels; Clayton NC, USA

P98b Fusarium maize kernels; Clayton NC, USA

GAPLAB_RH Penicillium culture contaminant; Raleigh NC, USA

Table 2.2. Fungal isolates used in the case studies.

Growth Conditions. Fungi were grown in a chemically-defined minimal medium 

consisting of a balanced salt solution and trace vitamins with 1 % w/v sucrose or 1 % 

w/v glucose as the sole carbon source and 0 .1 %w/v ammonium chloride as the sole 

nitrogen source. The composition of the medium, designated BCPmin, is listed in 

Table 2.3. This composition of this defined medium was loosely based on various 

balanced salt solutions used for mammalian and insect tissue culture. Micronutrients 

were added, bicarbonate removed, and the phosphate concentration was adjusted to 

yield an unadjusted pH of 7.2+/-0.2 and to limit acidification of the medium by the 

fungus over three days of shake flask culture. The level of nitrogen (ammonium 

chloride) in the medium was set based on experiments with Aspergillus flavus and 

Candida albicans to optimize growth (fresh weight) at three days in shake flask 

culture at 28°C with various combinations of glucose and ammonium chloride. In 

these experiments, glucose ranged from 2 to 10 g/L and ammonium chloride ranged 

from 200 mg to 2 g/L in the balanced salt solution.
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Inaredient Formula Amount Concentration

Sucrose

O
CMCM

X
CM

(J

1 0 g/L 29.2 mM

Ammonium chloride NH4 CI 1 g/L 18.7 mM

Sodium chloride NaCI 7.5 g/L 128 mM

Potassium chloride KCI 300 mg/L 4.02 mM

Magnesium sulfate heptahydrate MgS04 .7H20 280 mg/L 1.14 mM

Calcium chloride dihydrate CaCI2 .2H20 75 mg/L 510 |jM

Sodium phosphate, dibasic, anhydrous Na2 HP04 2.3 g/L 16.2 mM

Potassium phosphate, monobasic, anhydrous kh 2 po 4 500 mg/L 3.67 mM

Ethylenediaminetetraacetic acid, disodium salt, dihydrate Ci0 H1 4 N2 O8 Na2 .2H2O 8 mg/L 21.5 pM

Ferrous sulfate, heptahydrate FeS04 .7H20 1.5 mg/L 5.40 pM

Zinc sulfate, heptahydrate ZnS04 .7H20 1 . 8 mg/L 6.26 pM

Copper sulfate, pentahydrate CuS04 .5H20 400 Mg/L 1.60 pM

Manganese sulfate, monohydrate MnS04 .H20 2 0 0 Mg/L 1.18 pM

Cobalt chloride, hexahydrate CoCI2 .6H20 150 Mg/L 0.63 pM

Boric acid H3 BO3 300 Mg/L 4.85 pM

Sodium molybdate, dihydrate Na2 Mo04 .2H20 300 Mg/L 1.24 pM

Potassium iodide Kl 150 Mg/L 0.90 pM

Agar for solidified medium 15 g/L

Basal Medium Eagle vitamins 100X stock 1 mL/L

Basal Medium Eagle essential amino acids 50X stock .optional 2 mUL

Table 2.3. Composition of defined culture medium for culture of fungi for biochemical profiling studies (BCPmin).
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The culture media were typically sterilized by autoclaving for 20 minutes at 121°C. 

Small volumes of media prepared for isotopic labelling experiments were sterilized by 

passing the medium through 0.22 pm nylon membrane filters (25 mm syringe or 

50 mm vacuum type, sterile, Nalgene).

Shake flask cultures typically were incubated for three days in the dark at either 28°C 

or 37°C in a rotary shaker (100 rpm, New Brunswick G-25) using 500 mL baffled 

culture flasks containing 100 mL of medium at 1 x 106 conidia/mL. Cultures on agar- 

solidified BCPmin medium typically were incubated for 7-10 days on the bench top 

(approximately 22°C, ambient light) in 60 mm or 100 mm disposable culture plates or 

in 175 mL glass culture vessels (baby food jars) with Magenta® B-caps as closures.

Isolation of conidia and mycelia. Conidia harvested for fungal stocks were dislodged 

from cultures on solid medium with a stream of 0.05% v/v Triton X-100 in water by 

forcefully discharging the detergent solution against the culture surface. Conidia 

were left in this solution at 5°C for short term storage (up to a week). For long term 

storage (months to years), conidia were pelleted by centrifugation and re-suspended 

in 10% v/v glycerol in water for storage at 5°C or in 50% v/v glycerol in water for 

storage at -80°C. Conidia harvested for analysis were dislodged from cultures on 

solid medium with a stream of room temperature isopropanol; the conidial 

suspension was centrifuged to produce a pellet and the solvent decanted off; the 

conidial pellet was then gently air dried before processing.

Mycelia were harvested from liquid cultures by vacuum filtration through Miracloth 

(Calbiochem) backed with cotton gauze. Mycelia were pressed with laboratory 

wipers to remove residual liquid and then weighed in polypropylene scintillation vials 

and stored at -20°C or -80°C. Frozen mycelia were homogenized in a ball mill
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(MiniBeadbeater-8 ™, BioSpec Products, Inc.) with ice cold 60% v/v methanol in 

water, typically for one minute with a mixture of beads ranging from 0.5 mm to 

2.3 mm, to obtain 200-250 mg/mL of ground mycelia in homogenate. This 

homogenate was used as the starting material for small molecule analysis and 

protein extraction. Methanol/water homogenates were used as a common starting 

point for analyses because the homogenates remained fluid at -20°C and multiple 

aliquots could be removed for different types of analyses without introducing a 

freeze/thaw steps that might compromise sample integrity over time.

Test samples for case studies. Isolates were cultured on agar-solidified minimal 

medium in 60 mm disposable culture dishes for four days to produce biomass for 

analysis by mass spectrometry or for DNA isolation and sequencing of the ITS region 

of rDNA. Biomass was harvested by flooding the cultures with 5 mL of ethanol and 

scraping fungal material from the plate into the alcohol, and then the biomass was 

collected by briefly centrifuging the sample and discarding the supernatant. 

LC/MS/MS analyses for aflatoxin production were conducted on liquid minimal 

medium, methanol/water extracts of agar-solidified potato dextrose, or 

methanol/water extracts of infected maize kernels and compared to aflatoxin 

production by the reference strain Aspergillus flavus NRRL 3357. Solid samples 

were homogenized in cold 60% aqueous methanol (-20°C) with a laboratory ball mill 

(MiniBeadbeater-8 ™, BioSpec Products, Inc.) prior to extraction of protein, extraction 

DNA, or analysis of aflatoxin.

Apoplastic wash fluids (AWF) were isolated from uninfected control and Aspergillus 

flavus-infected corn kernels based on vacuum infiltration and centrifugation 

techniques described by Rohringer et al. (1983) and Lohaus et al. (2001). The 

procedures yielded approximately 50 jiL of apoplastic washing fluid (AWF) from
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4 maize kernels (samples kindly provided by Andrea Dolezal and Crystal Phelps in 

Gary Payne’s laboratory).

GC/MS analysis. 100 pL subsamples of fungal homogenate, each equivalent to 

20 mg fresh weight of biomass, were transferred into 2 mL instrument vials with 

500 pL of isopropanol and a small volume of Teflon powder (a chemically inert 

support that aids with resuspending residue after drying). The homogenates were 

then reduced to dryness by vacuum centrifugation (Savant SpeedVac, SVC200H). 

The residue was resuspended in 100 pL of acetonitrile and 25 pL of a derivatizing 

reagent composed of 90% N,N-dimethyltrimethylsilylamine (TMS-DMA) and 10% 

hexamethyldisilazane (HMDS) then incubated at approximately 60°C for an hour.

The solvent contained 50 mM trifluoroacetic acid and 100 mM N-methylmorpholine 

(aids derivatization of some organic acids and limits rearrangement of sugars) along 

with 9pg/mL dibutylpyridine, 6 pg/mL 4-butylphenol and 3 pg/mL octyl-p-D-glucoside 

as internal standards (Glassbrook and Deighton, unpublished). The resulting 

extracts were centrifuged, transferred to small volume glass inserts in 2-mL glass 

instrument vials and analyzed by GC/MS without further cleanup.

GC/MS was performed with a Thermo Trace GC Plus gas chromatograph coupled to 

a Thermo DSQII mass spectrometer equipped with an electron impact ion source. 

Chromatographic separations were achieved with a Restek Rtx®5Sil MS (5% phenyl 

polysiloxane) column (30 m; 0.25 mm I.D.; 0.25 pm film thickness). Helium, the 

carrier gas, was set at a constant flow of 1 mL/min (linear velocity of ~40 cm/s). One 

microliter of extract was injected into a PTV injector operated in splitless mode at 

160°C which was raised immediately at 5 °C/s to 360°C, held at 360°C for 3 min, 

lowered at 2 °C/s to 240°C, then held at 240°C. The column oven temperature was
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programmed for a 60°C initial temperature with an 8 °C/min ramp to a final 

temperature of 360°C (Glassbrook and Deighton, unpublished).

A retention standard containing 10 pg/mL each of even numbered n-alkanes ranging 

in length from C10 to C40 for calculating retention indices was prepared by diluting a 

Florida TRPH reference standard (Restek) in a solvent mixture of three parts 

isooctane, one part tetrahydrofuran, and one part benzene. A composite sample was 

prepared by combining equal aliquots of homogenates from all the samples in a 

sample set. The composite sample was used as a reference sample to verify 

linearity for sample analytes and to generate a list of target compounds for sample 

analysis. In a manner similar to external calibration with reference standards, 

aliquots of the composite equivalent to fresh weights of 5 mg to 30 mg biomass were 

analyzed concurrently with the test samples. Sample components that yielded 

reproducible detector responses with positive linear correlation (r £ 0.9) with sample 

loading were considered valid for relative quantitation and sample to sample 

comparisons.

Chromatographic peaks were catalogued based on retention index (Kovats) and 

spectra. The retention indices were calculated by linear interpolation from 

chromatographic retention times relative to those of the reference alkanes. Relative 

quantitation was conducted by comparing peak areas in the fungal samples with to 

those of a composite reference sample at different sample loadings analyzed 

concurrently with the fungal extracts. The chromatographic data were processed 

using Xcalibur® 1.4 software (Thermo) and AnalyzerPro™ 1.1 from Spectral Works 

then exported to Microsoft® Office 2003 Excel® for sorting, basic calculations and 

graphing. An Excel® add-in, statistiXL Version 1.8, was used for statistical functions 

such as discriminant analysis.
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LC/MS analysis. For small molecule analysis, aliquots of the homogenates were 

centrifuged and the supernatants submitted for LC/MS analysis; liquid samples 

(culture medium) were centrifuged to remove particulate and submitted for analysis. 

LC/MS analyses were performed with a Thermo Surveyor liquid chromatograph 

coupled to a Thermo LTQ linear ion trap mass spectrometer. Chromatographic 

separations were achieved with a C18 HPLC column (typically Thermo Hypersil 

Gold: 150mm x 2 .1 mm I.D., 5pm particle size, 175A pore size). The mobile phase 

composition was programmed with a solvent gradient, initial conditions of 250 pL/min 

with a mixture of 90% acidified water (50mM acetic acid) and 10% acetonitrile 

programmed with a linear ramp to a final mixture of 10% acetonitrile and 90% 

isopropanol over the course of 18 minutes (Glassbrook and Deighton, unpublished). 

Although most LC/MS methodologies employ acetonitrile as the solvent, isopropanol 

was selected for this study in order to ensure that the water/solvent mixture was 

sufficiently non-polar to elute the bulk of lipids from the C18 column during the 

chromatographic run. Acetonitrile, present at a constant 10%, limits the pressure 

build up as the proportion of isopropanol increases throughout the gradient.

Derivatives of morpholine and hydroxyethylpyrrolidone were evaluated as retention 

standards for LC/MS. The retention standards were prepared by reacting morpholine 

and hydroxyethyl pyrrolidone with acid chlorides (acetyl chloride to palmitoyl chloride) 

in the presence of sodium carbonate or an organic base. A small volume of the 

reaction mixture was reduced to dryness and dissolved in mobile phase without 

further cleanup prior to analysis.

Chromatographic peaks were catalogued based on retention time, retention indices 

and spectra. Relative quantitation was conducted by comparing peak areas in the 

fungal samples with to those of a composite reference sample at different sample
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loadings analyzed concurrently with the fungal extracts. The chromatographic data 

were processed using Xcalibur® 2.0 software (Thermo).

Aflatoxin analysis, Liquid samples (culture medium) or homogenates of solid samples 

( 2 0 0  mg fresh weight per millilitre in 60% methanol by volume in water) were 

centrifuged to remove particulate and submitted for analysis. Chromatographic 

separations were achieved with a C18 HPLC column (typically Thermo Hypersil 

Gold: 150mm x 2.1mm I.D., 5um particle size, 175A pore size) running isocratically at 

250uL/min with a mixture of 75% acidified water (50mM acetic acid), 10% acetonitrile, 

and 15%isopropanol. The mass spectrometer was operated in positive mode with 

an electrospray ionization source and collecting MS/MS spectra for m/z 313 [M*H ] +1 

(aflatoxin B1) and m/z 315 [M+H] +1 (aflatoxin B2).

Quantitation of aflatoxin was conducted by comparing peak areas obtained for the 

MS/MS product ions of aflatoxin B1 and B2 (m/z 285 and 287 respectively) with 

those of a series of reference standards analyzed concurrently with the samples.

The chromatographic data were processed using Xcalibur® 2.0 software (Thermo).

Protein extraction. Extracts of reference strains were prepared based on a 

diethylamine extraction described by Nolan and Teller (2006) and adapted for direct 

extraction of proteins from the methanol/water homogenates (Glassbrook, 

unpublished). N-methylpyrrolidone and N-octylpyrrolidone were added to enhance 

extraction of the protein and aid re-dissolution of the dried residue. 

Hydroxyethyldisulfide was used as a cysteine blocking reagent. All components 

were chosen for compatibility with downstream Bradford protein assay, LC/MS and 

SDS-PAGE.
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For protein extractions of reference strains, 200 pL of mycelial or spore homogenates 

were transferred to a 1.5 mL microcentrifuge tube and precipitated with 500 pL of 

cold isopropanol. After centrifugation for 2 minutes at 10,000 x g (Eppendorf 

Microcentrifuge, Model 5415D), the supernatant was removed and discarded. The 

pellet was then resuspended in 100 pL of 60:40 methanol:water and precipitated 

again with 200 pL of isopropanol. After centrifugation for 2 minutes at 10,000 x g, the 

supernatant was removed and discarded. The pellet was allowed to air dry briefly 

before resuspending the pellet in 100 pL of a protein extraction solution (2% v/v 

diethylamine, 5% v/v N-methylpyrrolidone, 0.1% v/v N-octylpyrrolidone, and 50 mM 

hydroxyethyldisulfide; referred to as CxP/DEA/HED) and heating the sample for at 

least 15 minutes at 60°C. After incubation, the sample was centrifuged for 2 minutes 

at 10,000 x g and a 10 pL aliquot of the supernatant was mixed with 500 pL of 

Bradford reagent to assay for protein content. An aliquot of the protein extract 

containing 50-1 OOug of protein was reduced to near dryness by vacuum 

centrifugation. The protein residue was redissolved in loading buffer for SDS-PAGE 

or digested with trypsin prior to LC/MS analysis. Trypsin digests were prepared by 

resuspending 50-100 pg of protein in 100 pL of buffer containing 100 mM N- 

methylmorpholine and 50 mM acetic acid (pH 7.4) and adding 1 pg of trypsin 

(proteomics sequencing grade, Sigma) in 25 pL of 50 mM acetic acid. The proteins 

were digested for at least two hours at 37°C before analysis by LC/MS/MS.

For protein analysis of case study samples, the homogenates from fungal cultures 

that remained after DNA extraction, described below, were processed in a manner 

similar to that described for the reference strains, except that proteins were extracted 

directly from homogenates on methanol/water without a precipitation step. The 

remaining homogenates (-400 pL) were mixed with 45 pL of a 10X stock of 

CxP/DEA/HED (50% v/v N-methylpyrrolidone, 1% v/v N-octylpyrrolidone, 20% v/v 

diethylamine, and 500 mM hydroxyethyl disulfide in water). The samples were then
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incubated at 60°C for one hour, reduced to dryness before trypsin digestion by 

redissolving the residue in 100 pL NMMA buffer, pH 7.4, along with 1 pg of trypsin in 

25 pL of 50 mM acetic acid and then incubating the samples overnight at 37°C. 

LC/MS/MS analysis was as previously described for analysis of the reference strains.

The AWF protein samples were prepared for protein analysis by adding 

approximately 6  pL of a 10X stock of CxP/DEA/HED. The samples were then 

incubated at 60°C for one hour, reduced to dryness before trypsin digestion by 

redissolving the residue in 75 pL NMMA buffer, pH 7.4, along with 1 pg of trypsin in 

25 pL of 50 mM acetic acid and then incubating the samples overnight at 37°C. 

LC/MS/MS analysis was as previously described for analysis of the reference strains.

LC/MS/MS analyses. Peptide analyses, were performed with a Thermo Surveyor 

liquid chromatograph coupled to a Thermo LTQ linear ion trap mass spectrometer. 

Chromatographic separations were achieved with a C18 HPLC column (typically 

Thermo Hypersil Gold: 150 mm x 1 mm I.D., 5 pm particle size, 175A pore size). The 

mobile phase composition was programmed with a solvent gradient, initial conditions 

of 50 pL/min with a mixture of 95% acidified water (50 mM acetic acid) and 5% 

acetonitrile programmed with a linear ramp to a final mixture of 40% acidified water 

and 60% acetonitrile over the course of 55 minutes. The mass spectrometer was 

operated in data dependent MS/MS scan mode scanning from m/z 420-2000 and 

collecting MS/MS spectra on the four most abundant ions in each scan. Instrumental 

conditions for peptide analysis were developed in the Metabolomics and Proteomics 

Laboratory (now the Genomic Sciences Laboratory) at NC State University 

(Glassbrook and Deighton, unpublished).

Identification of proteins in the extract was performed by searching tandem mass 

spectra against protein databases in FASTA format using Bioworks™ Browser
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software (version 3.3, Thermo). Result files from BioWorks™ were exported to 

Scaffold™ (version 2.02.01, Proteome Software Inc., Portland, OR) and tandem 

mass spectra were processed using an additional algorithm, XITandem 

(www.thegpm.org; version 2007.01.01.1). Cysteine mercaptoethanol of cysteine 

(+76) was specified in Sequest and XITandem as a fixed modification.

Scaffold™ was used to validate MS/MS based peptide and protein identifications in 

the compiled results. Peptide identifications were accepted if they could be 

established at greater than 95.0% probability as specified by the Peptide Prophet 

algorithm (Keller et al. 2002). Protein identifications were accepted if they could be 

established at greater than 99.0% probability and contained at least 2 identified 

peptides. Protein probabilities were assigned by the Protein Prophet algorithm 

(Nesvizhskii 2003). FASTA databases were compiled locally from subsets of protein 

databases downloaded from the National Center for Biotechnology Information 

(NCBI) or UniProt Knowledgebase (UniProtKB, Universal Protein Resource). Amino 

acid sequence alignments were prepared with ClustalX, version2.0.10 (described in 

Larkin et al. 2007) or with various online versions of Clustal. Clustal dendrograms 

were viewed and formatted with TreeView, version 1.6.6.

DNA extraction, PCR and sequencing. ITS sequencing was conducted on genomic 

DNA extracted with a CTAB methodology adapted from He et al. (2007). In brief, the 

fungal material from 4 day old cultures was homogenized with 25 mg 

polyvinylpolypyrrolidone (PVPP) in 500 pL of cold 60% v/v methanol/water (-20°C), 

and then a 100 pL aliquot of the homogenate was mixed with 400 pL of CTAB buffer 

and 10 pL of |3-mercaptoethanol, incubated for 15 minutes at 60°C, partitioned 

against 500 pL chloroform and a 250 pL aliquot of the upper aqueous layer 

transferred to a clean microcentrifuge tube for precipitation with ammonium acetate 

and isopropanol. The resulting DNA pellet was rinsed with two, 200 pL volumes of
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cold 70% ethanol and dried briefly (less than ten minutes) by vacuum centrifugation 

before redissolving the DNA in 50 pL of Tris/EDTA buffer, pH 8 .

A 5 pL aliquot of the DNA solution was used as a template for PCR amplification 

using fungal ITS region primers (ITS1: 5’-TCC GTA GGT GAA CCT GCG G-3’; ITS4: 

5’-TCC TCC GCT TAT TGA TAT GC-3’) described by White et al. (1990) supplied by 

Integrated DNA Technologies (Coralville, IA, USA) in a 50 pL reaction volume 

(reagents from Takara Bio USA). Thermocycler conditions were as follows: initial 

denaturation 95°C for 5 minutes followed by 38 cycles of denaturation at 95°C for 30 

seconds, annealing at 55°C for 30 seconds, and extension at 72°C for 1 minute, 

followed by a final extension at 72°C for 5 minutes and a hold temperature of 4°C 

after the final extension. PCR products were separated on 0.8% agarose gels and 

visualized with ethidium bromide by UV illumination to verify the presence and size of 

the products prior to sequencing. PCR products were purified and taken to a 50 pL 

final volume using QIAquick PCR Purification Kit (QIAGEN Inc., Valencia, CA, USA) 

in accordance with the manufacturer’s instructions. DNA was sequenced at a 

commercial facility (GENEWIZ, Inc., South Plainfield, NJ, USA) using ITS1 and ITS4 

primers. Multiple sequence alignments of ITS regions were performed with Clustal 

version 2 .
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Chapter 3: Results of GC/MS Analyses

Gas chromatography coupled with mass spectrometry (GC/MS) was used in this 

study to conduct small molecule profiling of fungal samples to look for compounds 

unique to different species of Aspergilli and to evaluate clustering as a tool for 

speciation. Chemical components were catalogued by chromatographic retention 

(retention time and retention index) and mass spectra. Profiling of biological samples 

by GC/MS yields a wide cross section of small molecules including TMS-derivatized 

alcohols, sugars, small organic acids, fatty acids, amino acids, and sterols. Typical 

profiling analyses of biological samples produce semi-quantitative data for hundreds 

of compounds. However, fungal cultures produced on common defined laboratory 

media, particularly media used specifically for aflatoxin production, are atypical in that 

a few polyols dominate the resulting profiles and the number of components detected 

in each sample is on the order of one hundred, not several hundred. In addition to 

GC/MS profiling, some targeted analyses (directed at specific compounds or groups 

of compounds) were attempted in this study to collect data on a different cross 

section of components, not dominated by polyols. Analyses targeted on lipids 

yielded data on hydrophobic compounds such as fats, fatty acids, and sterols.

Profiling of TMS-Derviatized Samples. In this study, the analytical conditions 

produced chromatographic peaks with Kovat retention indices in the range of 1000 

(C10) to greater than 4000 (C40). Of approximately 100 peaks detected, 23 

chromatographic peaks, representing 2 1  compounds, passed basic reproducibility 

and linearity checks (Table 3.1). An example of sample matrix loading (composite 

equivalent fresh weight) versus detector response (area ratio of analyte to internal 

standard) for erythritol is presented in Figure 3.1.
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Compound Retention time Retention index m/z Abundance

Valine 9.60 1226 144, 218 0.13

Glycerol 10.60 1279 205, 218 11.8

iloleucine 10.96 1306 158, 213 0.07

Proline 11.14 1316 142 0.09

Succinic acid 11.45 1335 147, 247 0.15

Serine 12.04 1369 204, 218 0.30

Threonine 12.43 1392 117, 218, 291 0.22

Malic acid 14.14 1501 233, 245 0.12

Erythritol 14.26 1509 103, 205, 217, 307 10.2

Methionine 14.78 1543 128, 176 0.02

Pyroglutamic acid 14.92 1552 156 0.22

Arabitol 17.30 1716 103, 205, 307, 319 43.7

Fructose 1 18.44 1797 217, 437 2.29

Fructose2 18.55 1806 217, 437 2.23

Glucosel 19.65 1892 191, 204, 217 3.30

Mannitol 20.04 1923 103, 205, 319 100

Glucose2 20.73 1978 191, 204, 217 5.79

Inositol 22.00 2085 305, 318 0.05

Linoleic acid 23.85 2249 337 0.11

Stearic acid 24.20 2282 117, 341 0.18

Trehalose 28.56 2724 191, 361 2.06

Squalene 29.90 2876 69, 81 0.04

Ergosterol 33.45 3322 337.5, 363.5, 468.5 0.33

Table 3.1. A subset of analytes evaluated for use in classification of fungi. The 

retention indices are for GC/MS analyses conducted with a 5% phenyl polysiloxane 

phase and programmed oven temperature. Abundances are reported for the 

composite sample and are normalized to total area counts for mannitol.
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Figure 3.1. Example of a matrix loading plot for erythritol in fungal tissue analyzed 

by GC/MS profiling. The linear regression line is presented as a dashed line. Area 

ratio is the area counts for the analyte divided by the area counts for the internal 

standard, octyl-(3-D-glucoside. Note that the range for matrix loadings evaluated for 

the composite sample brackets the 20 mg fresh weight (fw) loading of the test 

samples.

As expected in fungal samples (mycelia and cells), the major fatty acids were palmitic 

acid (C16:0) and a mixture of stearic acid (C18:0) and unsaturated fatty acids; 

ergosterol was the major sterol detected. Glycerol, erythritol, arabitol, and mannitol 

were the major polyols; trehalose was the major storage carbohydrate; succinate and 

malate were the major small organic acids; valine, isoleucine, proline, serine, 

threonine, methionine and glutamic acid (as pyroglutamic acid) were the major 

detected amino acids. Typical chromatograms of the paraffin mix retention standard 

and a TMS-derivatized composite sample are presented in Figure 3.2.
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Figure 3.2. Typical chromatograms of a paraffin mix retention standard (top) and a TMS-derivatized fungal composite sample (bottom). 

Note the retention time and retention index scales on the horizontal axes. Chromatographic components were catalogued by retention index 

and spectra and maintained in a user library under the NIST Mass Spectral Search Program.

3-4



Hierarchical clustering analysis was applied to the subset of analytes presented in 

Figure 3.1 as an exploratory technique to determine if general patterns in the 

chemical profiles would group unclassified samples into taxonomically meaningful 

clusters. This unsupervised classification approach yielded mixed results as shown 

in Figure 3.3. The composite samples grouped together, as they should, regardless 

of the matrix loading, which indicates that, within the range of sample matrix loadings 

used in this experiment, the absolute amount of sample material analyzed does not 

have a large impact on grouping.

A  niger 326  

A.fumigatus 163 

A.carbonarius 369 

composite Sb 

composite Sa 

composite Sc 

composite 10a 

composite 10b -  !

composite 30a 

composite 20a  

composite 10c 

composite 20b 

composite 30b — | 

composite 20c J 

AHavus 485 

A orytae  5590 

AHavus 1957 — 

Aclavatus 1 

A.terreus 1913 

A clavatus 3538 

AHavus 3357 —  

A.nidulans M  

A.terreus 255 —

A.nidulans 187 -------

A.fumigatus 293 -  

A.terreus 21A —

C.albicans S C 5 3 1 4 -----

C neofbrmans H99

Distance/Similarity Measure = Euclidean Distance 

Cluster Method = Nearest Neighbour

Figure 3.3. Hierarchical clustering analysis of the GC/MS profiling data set for 17 

reference strains and replicates of a composite sample at four different matrix 

loading levels. The composite samples group together and the yeast (C. albicans 

and C. neoformans) fall in a branch separate from the Aspergilli, but the Aspergillus 

reference strains are not adequately grouped to species.
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Discriminant function analysis, with samples labelled as species or as composite, 

was performed on the profiling subset with tolerances set to reject variables with 

tolerance <0.001. This yielded classifications with replicates of species in relatively 

tight groups with good separation from other species (Figure 3.4). Species from 

Section Flavi (A oryzae and A. flavus) and Section Nigri (A. carbonarius and A. 

niger) are closely related genetically and did group together, but A. fumigatus and A. 

clavatus are also closely related and were well separated.

The tolerance setting allowed malic acid, erythritol, methionine, pyroglutamic, 

arabitol, fructose, glucose, mannitol, inositol, linoleic, stearic, trehalose, and squalene 

in the model, but excluded valine, glycerol, isoleucine, proline, succinic acid, serine, 

ergosterol, and threonine. Neither the inclusion/exclusion lists nor the coefficients of 

the included variables, not shown, indicated that a specific chemical class was the 

major contribution to discriminating between the species. Manually segregating the 

data based on general chemical classes (amino acid, organic acid, free fatty acid, 

lipid, sugar, polyols) and reprocessing with discriminant function analysis generally 

produced less satisfactory groupings, but did yield a subset of data that may be of 

value for classifying these fungi -  polyols and trehalose. Discriminant function 

analysis (discriminant analysis or DA) of the data for polyols and trehalose yielded 

functions that grouped the fungi by species, with A. clavatus clearly segregated from 

the other Aspergilli (Figure 3.5). Glycerol was not a good predictor for classifying the 

fungi. Data for erythritol, arabitol, mannitol and trehalose had significantly different 

means across the different species (groups), so these data were used as the 

weighted variables to derive functions that allowed discrimination between the 

different species.

3-6



Discriminant Plot

200

180

160

140

120

100

80

20

0

-20

-40

-60

•  A. clavatus

• C. albicans

*  A. fumigatus

A. nidulans

qfto °° A. terreus 
composite

A. oryzaea 0 flavus 
A. niger 0(6

• A. carbonarius

-50 -25 25 50

Funct 1 (88.6%)

75 125

Figure 3.4. Discrimant function analysis of the GC/MS profiling data set (21 compounds) for 17 reference strains and 

composite samples. Supervised classification yielded clear species groupings of reference strains. A. flavus, A. oryzae, A. 

niger and A. carbonarius are closely related genetically and group together, but A. clavatus and A. fumigatus, also closely 

related, do not. Note that C. neoformans is off scale left (-744, -11.7).
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Figure 3.5. Discriminant function analysis based on GC/MS analysis of polyols and trehalose relative ratios in fungal biomass. Fungi can be 

grouped appropriately based on polyol-trehaolse profiles and A. clavatus (labelled) clearly segregates from the other fungi.
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In a follow up analysis of the polyol-trehalose profiles, the relative proportions of the 

dominant polyols along with the disaccharide trehalose were somewhat diagnostic for 

classification (Figure 3.6).

Relative Proportions of Polyols and Trehalose
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Figure 3.6. Normalized levels of polyol and trehalose in fungal samples 

expressed as the percentage each compound contributes to the total abundance 

(area ratio of analyte to internal standard) in each sample, one replicate per strain. 

Data is sorted based on species.

Mannitol was generally the most abundant polyol detected in the Aspergilli and in 

Cryptococcus neoformans. Arabitol was the dominant polyol in Candida albicans. 

There were some patterns evident in the relative ratios of polyols and trehalose that 

tended to group species. For example, A. clavatus tended to yield mannitol at the 

highest relative percentage followed by arabitol and trehalose, but little glycerol or 

erythritol. A. carbonarius and A. niger yielded mannitol at the highest relative
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percentage followed by glycerol, with little very little arabitol. The other Aspergilli 

produced mannitol at the highest relative percentage along with various levels of the 

other polyols and trehalose.

Within the group of A. terreus, strain NRRL 274 yielded ratios that were clearly 

different than the other fungi. In fact, if NRRL 274 is removed from the A. terreus 

group for discriminant analysis of the polyol-trehalose profile, it segregates from all the 

other fungi analysed (Figure 3.7). In contrast, if A. oryzae NRRL 5590 is removed 

from the A. flavus group for discriminant analysis of the polyol-trehalose profile, it 

remains grouped with A. flavus (data not shown). In addition, if NRRL 274 is removed 

from the A. terreus group for discriminant analysis of the larger subset of GC/MS 

profile data (Table 3.1), it segregates from the other A. terreus reference strains as 

well as the other Aspergilli (Figure 3.8). It was unclear, based on GC/MS analysis, 

whether this strain was misidentified based on morphology or was simply an A. terreus 

strain with an atypical biochemical profile. This warranted re-evaluating the identity of 

NRRL 274 strain as A. terreus by additional techniques based on sequence analysis 

(NRRL 274 is a clinical isolate identified by phenotype). Consequently, the ITS 

sequence of NRRL 255, 1913, and 274 were amplified by PCR and sequenced to 

confirm the identity of NRRL 274 as A. terreus. The ITS sequences of all three strains 

were consistent with A. terreus sequences in the NCBI database (Figure 3.9).
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Figure 3.7. Discriminant function analysis based on GC/MS analysis of polyols and trehalose in fungal biomass (NRRL 274 removed from 

A. terreus group). A. terreus strain NRRL 274 (data point marked with an arrow) has an unusual polyol-trehalose profile that segregates the 

strain from the other reference strains analysed. Discrimination between all species improves with removal of NRRL 274 from the A. terreus 

group.
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NRRL 274 removed from the A. terreus group. A. terreus NRRL 274 has a polyol distribution that would cause it to segregate from other 
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CLUSTAL 2.0.10 multiple sequence alignment

1913 ITS consensus CTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGCGGGTCTTTATGGCCCAACCT 60
255 ITS consensus -TTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGCGGGTCTTTATGGCCCAACCT 59
274 ITS consensus -TTCCGTAGGTGAACCTGCGGAAGGNTCATTACCGAGTGCGGGTCTTTATGGNCCAACCT 59
giI 152212189 --------------------------------------CGAGTGCGGGTCTTTATGGCCCAACCT 27

1913 ITS consensus CCCACCCGTGACTATTGTACCTTGTTGCTTCGGCGGGCCCGCCAGCGTTGCTGGCCGCCG 120
255 ITS consensus CCCACCCGTGACTATTGTACCTTGTTGCTTCGGCGGGCCCGCCAGCGTTGCTGGCCGCCG 119
274 ITS consensus CCCACCCGTGACTATTGTACCTTGTTGCTTCGGCGGGCCCGCCAGCGTTGCTGGCCGCCG 119
gi|152212189 CCCACCCGTGACTATTGTACCTNGTTGCTTCGGCGGGCCCGCCAGCGTTGCTGGCCGCCG 87

1913 ITS consensus GGGGGCGACTCGCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACATGAACCCTGTTCTGA 180
255 ITS consensus GGGGGCGACTCGCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACATGAACCCTGTTCTGA 179
274 ITS consensus GGGGGCGACTCGCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACATGAACCCTGTTCTGA 179
gi|152212189 GGGGGCGACTCGCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACATGAACCCTGTTCTGA 147

1913 ITS consensus AAGCTTGCAGTCTGAGTGTGATTCTTTGCAATCAGTTAAAACTTTCAACAATGGATCTCT 240
255 ITS consensus AAGCTTGCAGTCTGAGTGTGATTCTTTGCAATCAGTTAAAACTTTCAACAATGGATCTCT 239
274 ITS consensus AAGCTTGCAGTCTGAGTGTGATTCTTTGCAATCAGTTAAAACTTTCAACAATGGATCTCT 239
gi|152212189 AAGCTTGCAGTCTGAGTGTGATTCTTTGCAATCAGTTAAAACTTTCAACAATGGATCTCT 207

1913 ITS consensus TGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATT 300
255 ITS consensus TGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATT 299
274 ITS consensus TGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATT 299
gi 1152212189 TGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATT 267

1913 ITS consensus CAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCC 360
255 ITS consensus CAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCC 359
274 ITS consensus CAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCC 359
gi|152212189 CAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCC 

★ + + + + ★ + ★ +
327

1913 ITS consensus TGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCTCGTCCCCCGNN 420
255 ITS consensus TGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCTCGTCCCCCGGC 419
274 ITS consensus TGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCTCGTCCCCCGGC 419
giI 152212189 TGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGCCCTCGTCCCCCGGC 387

1913 ITS consensus TCCCGNGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGG 480
255 ITS consensus TCCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGG 479
274 ITS consensus TCCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGG 479
giI 152212189 TCCCGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGGTCCTCGAGCGTATGGG 447

1913 ITS consensus GCTTCGTCTTCCGCTCCGTAGGCCCGGCCGGCGCCCGCCGACGCATTTATTTGCAACTTG 540
255 ITS consensus GCTTCGTCTTCCGCTCCGTAGGCCCGGCCGGCGCCCGCCGACGCATTTATTTGCAACTTG 539
274 ITS consensus GCTTCGTCTTCCGCTCCGTAGGCCCGGCCGGCGCCCGCCGACGCATTTGTTTGCAACTTG 539
gi|152212189 GCTTCGTCTTCCGCTCCGTAGGCCCGGCCGGCGCCCGCCGACGCATTTATTTGCAACTTG

★ •k’k'k-ieie-ie-ie-k-k-k-k 507

1913 ITS consensus TTNNNNNCAGG— TGACCT CGGAT CAGGNNNNNNNNNNNNNNN------------------- 581
255 ITS consensus TTTTTTTCCAGGTTGACCTCGGATCAGGTANGGATACCNGCTGANNNTAAGCATATNNNN 599
274 ITS consensus TTTTTTNCNNGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAANCATATCAAT 599
gi|152212189 TTTTTTTCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAAT 567

Figure 3.9. Multiple sequence alignment of ITS regions from A. terreus reference

strains NRRL 255, NRRL 1913 and NRRL 274 along with the ITS sequence of 

NRRL 255 from the NCBI database (Gl number 152212189). The ITS sequence of 

A. terreus NRRL 274 is consistent with the ITS sequences of the other two reference 

strains and ITS sequences for A. terreus on file at NCBI.
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Polyols are abundant in fungal samples and the detection and quantitation of these 

compounds is relatively simple. Because polyols are at such high levels, they may 

be of value for the general detection of fungi in sample matrices that do not contain 

significant background levels of polyols. However, identification based on this limited 

set of compounds (glycerol, erythritol, arabitol, and mannitol) probably would not be 

sufficient to reliably identify a fungus to species level because these compounds are 

widely distributed in fungi and a much wider sampling of different species and strains 

would be required to determine if polyols would be of value as a primary technique 

for classification of an unknown organism to the Aspergilli. Polyols may be of value 

as supporting data for speciation when other data, such as morphology and 

sequence, are available.

The preliminary data from this exploratory study indicated that clustering and 

discriminant analysis of TMS-derivatized small molecules by GC/MS may be of some 

use for classifying or characterizing unknown species in larger taxonomic studies, but 

to confirm the utility of this approach, the experiment would need to be replicated with 

the same reference set and additional sets of test samples. Also, this approach 

would be impractical for routine detection or identification of specific fungi, because it 

requires concurrent analysis of a large set of reference samples because although 

the profiles obtained should be similar under controlled culture conditions, the 

biochemical profiles will be influenced by small variations in experimental conditions. 

Biochemical profiling requires relatively expensive equipment as well as skilled 

operators and the resulting data files are quite large and require considerable 

computer resources and human input for processing. Consequently, the time and 

resources required to identify fungi with this approach are excessive when compared 

to other more commonly used techniques.
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Fatty Acid Methyl Ester and Neutral Lipid Analyses. Solvent extracts of mycelial 

homogenates were analyzed by GC/MS to determine fatty acid methyl ester (FAME) 

and neutral lipid profiles for the test samples. The analyses produced data on a very 

limited number of C16 and C18 fatty acids, ergosterol and related sterols, along with 

some minor unidentified components. Even under controlled culture conditions, the 

fatty acid profiles were relatively uninformative and exhibited a great deal of variation 

within species and were of little practical use for classifying the fungi. No unique 

compounds were detected that would allow speciation of pure cultures or detection of 

a specific genus of fungus within a complex biological sample. As with polyols, the 

presence of ergosterol in a lipid extract may be of some value for general detection of 

fungi in sample matrices that do not contain significant background levels of 

ergosterol.

During method development, significant levels farnesol, methyl farnesoate, and 

related isoprenoid compounds were readily detected in lipid extracts of two strains of 

A. nidulans (A4 and NRRL 187). These were not detected in other species, despite 

concentrating samples to an equivalent of 400 mg fresh weight mycelium per milliliter 

of final extract (Figure 3.10). Farnesol and methyl farnesoate are of interest because 

there is a growing body of evidence that these compounds have important roles in
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Figure 3.10. GC/MS chromatograms of lipid extracts from Aspergillus nidulans and Aspergillus flavus (top) showing series of chromatographic 

peaks for methyl farnesoate and related compounds in A. nidulans. Chromatograms for A. nidulans and A. flavus are on same scale and are 

equivalent to the same amount of starting material. Methyl farnesoate and related compounds are absent from the A. flavus extract. Electron 

impact (El) spectrum of methyl farnesoate is shown (bottom).
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the growth and development of a number of different organisms. Insect juvenile 

hormones are derivatives of farnesoic acid (Holstein and Hohl 2004). Farnesol and 

related compounds can trigger a wide range of effects in fungi. Farnesol 

accumulation can induce a shift from filamentous to yeast form in C. albicans 

(Nickerson et al. 2006) and may increase the virulence of the fungus (Shea and Del 

Poeta 2006). Farnesol inhibits growth and development of Aspergillus nidulans and 

Fusarium graminarium and triggers changes in morphology consistent with apoptosis 

(Semighini et al. 2006, Semighini et al. 2008). The detection of these isoprenoid 

compounds in A. nidulans may be of interest in follow up studies on metabolism, but 

there are insufficient data at this time to indicate that these compounds would be of 

value in a blind test for speciation.

Target Compound Analyses in Other Test Systems. The analytical methodology 

developed in this project for GC/MS profiling of small molecules has been 

successfully adapted for quantitative target compound analyses in other fungal and 

plant test systems. In one such application (in collaboration with Heriberto Velez in 

Margaret Daub’s laboratory), culture conditions and analytical techniques developed 

during studies on Aspergilli were employed to support studies of mannitol synthesis 

in the fungus Alternaria alternata (Velez et al. 2007 and 2008). Targeted gene 

disruption was to create mutants deficient in mannitol 1-phosphate 5-dehydrogenase, 

mannitol dehydrogenase, or both. Wild-type and mutant fungi grown in an early 

version of minimal medium were analyzed by GC/MS to verify that mannitol levels 

were reduced or effectively eliminated in the mutants. GC/MS also revealed that 

levels of the disaccharide trehalose tended to increase as the mannitol levels 

decreased in the different mutants. As in the Aspergillus study, mannitol was a major 

component detected in the wild-type Alternaria (approximately 11 % of the mycelial 

dry weight) and the high level of mannitol impaired our ability to determine pleiotropic 

effects of the mutations on the biochemical phenotype because other components of
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potential interest were at such low levels relative to the mannitol in the samples. 

Targeted analyses of other compounds using alternative methods on replicate 

samples was precluded because some of the mutants grew very slowly and only very 

limited amounts were available for some samples.

Summary. In this study, the objective was to find compounds that may be unique to 

certain species of Aspergillus or to find patterns in the small molecule phenotypes for 

a cross section of Aspergillus species that would allow classification of unknown 

strains. Small molecule profiling by GC/MS was useful as a survey of the overall 

composition of test systems and the methodology provided a good basis for 

developing targeted analyses. Profiling data provided by GC/MS analyses of fungal 

biomass can be used to classify Aspergilli, but no clear patterns emerged from 

specific classes of chemicals that would allow routine classification of unknown 

organisms without the analysis of a relatively large number of reference samples to 

verify accurate groupings.
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Chapter 4: Results of LC/MS Analyses

Liquid chromatography coupled with mass spectrometry (LC/MS) was used in this 

study to conduct targeted analyses, as well as small molecule and protein profiling of 

fungal samples to look for compounds or peptide sequences unique to different 

species of Aspergilli. Targeted analyses were directed at mycotoxins, such as 

aflatoxins and cyclopiazonic acid, that are produced by a relatively small group of 

Aspergilli. Detection of these compounds can confirm the identity of an organism as 

one of the aflatoxin producing species or exclude classification as one of the 

non-aflatoxin producers. Small molecule profiling by LC/MS, as with GC/MS, was 

conducted to catalogue a cross section of small molecules produced by Aspergilli and 

look for specific compounds or patterns within groups of compounds that might be 

used to classify the test strains to species level. Protein analysis was initially 

conducted in an attempt to identify a macromolecule detected during small molecule 

profiling, but developed into a profiling technique that permitted identification of 

organisms directly from the characteristic amino acid sequences of peptides from 

tryptic digests of total protein extracts.

Mycotoxin analysis. LC/MS performed well for the quantitative targeted analysis of 

aflatoxins in the range of approximately 10ng on column down to 10pg on column. A 

representative chromatogram and example spectra of a mixed standard is presented in 

Figure 4.1. Aflatoxin analysis can be used as an aid to identification of some 

Aspergillus species, but only as confirmation because aflatoxins are best produced on 

specialized media and are not consistently produced by all isolates of the species 

known to produce aflatoxins - A. flavus, A. parasiticus, A. nomius, A. pseudotamarii, 

and A. bombycis (Scheidegger and Payne, 2003). When grown in liquid culture with 

BCP minimal medium, aflatoxin production was relatively low (several hundred ng/mL) 

and variable for strains known to produce aflatoxins and consequently was of little use
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as a primary characteristic for classification of Aspergilli. Some target compound 

analyses (cyclopiazonic acid, norsolorinic acid, versacolorin A) required reconfiguring 

the LC/MS system with an alkaline mobile phase that interfered with other ongoing 

analyses and these analyses were not pursued further for this project.
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Figure 4.1. Typical LC/MS/MS chromatogram of a mixed aflatoxin reference standard, 

300ng/mL (A-E) and spectra for aflatoxins (F-l). Chromatographic traces - (A) Total 

ion chromatogram (TIC); (B) extracted ion chromatogram (XIC) aflatoxin B1, m/z 313; 

(C) XIC aflatoxin B2, m/z 315; (D) XIC aflatoxin G1, m/z 329; (E) XIC aflatoxin G2, m/z 

331. LC/MS/MS spectra - (F) aflatoxin B1, (G) aflatoxin B2, (H) aflatoxin G1, and (I) 

aflatoxin G2.
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Small Molecule Profiling by LC/MS. Profiling of small molecules yielded much more 

complex chromatograms than those for GC/MS profiling. An example of a 

chromatogram for a composite sample is presented in Figure 4.2. The separation for 

LC/MS profiling employed reverse phase chromatography, so highly polar compounds 

such as amino acids were relatively unretained on the C18 column and eluted at or 

near the solvent front, common secondary metabolites such as aflatoxins were 

moderately retained, and lipids eluted toward the end of the solvent gradient, if at all.

In typical chromatograms of mycelial extracts, several hundred chromatographic 

components could be detected.

Although the LC/MS chromatograms were much more complex and offered the 

potential of a much richer data set for classification than GC/MS, the preliminary data 

for LC/MS data of composite samples was also much less tractable for quantitative 

comparisons than GC/MS data. High levels of sample matrix contributed to build up of 

non-volatile material in the ion source and limited the number of injections possible in 

an automated sample sequence. Reproducibility (retention and response) and linearity 

was not as good as GC/MS for the complex extracts, probably due to matrix effects 

(components influencing ionization or transfer to gas phase in the source). Issues 

with ion suppression and reproducibility have been reported by a number of 

researchers attempting to use LC/MS for metabolomics or small molecule profiling 

studies (Fernie et al. 2004, Kell 2004, Dunn and Ellis 2005). Also, unlike GC/MS 

analysis, there are no large spectral databases produced under standard conditions for 

identification of small molecules from LC/MS or LC/MS/MS spectra, so identification of 

the chromatographic peaks of interest was very difficult. Consequently, the 

methodology for LC/MS profiling would have required significantly more development 

to refine the technique for quantitative comparisons. This method development, in 

part, would have involved the use of smaller bore columns and longer solvent
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gradients to achieve greater sensitivity and better chromatographic resolution while 

loading a smaller amount of matrix in each injection. If improvements in 

chromatography did not sufficiently address ion suppression and reproducibility, 

additional sample preparation steps to pre-fractionate or clean up extracts prior to 

LC/MS analysis would have been evaluated. Instrument time for this development was 

not available and consequently the LC/MS data was evaluated qualitatively by 

manually looking for compounds that were unique to the different species.

One small molecule detected in culture medium of Aspergillus flavus initially appeared 

to be diagnostic for A. flavus, but was later determined to be more specifically 

produced by A. flavus strain NRRL 3357. This compound, formula weight 326, was 

reliably produced and detected in liquid or agar-solidified culture medium of this strain 

and only sporadically in other strains of A. flavus. It was not detected in other 

Aspergillus species.

The unknown compound in A. flavus strain NRRL 3357 was an early eluting compound 

characterized as having formula weight 326 based on its characteristic ion m/z 327 

[M+H]+1 by electrospray ionization. The MS/MS spectrum did not yield identification by 

matching of spectra with those in common spectral libraries, but did indicate that the 

compound had a ring structure (Figure 4.3). With a formula weight of 326 and 

assuming an elemental composition of CHNOS, there are three possible formulae -  

C2 0 H2 6 N2 O2 , C2 0 H1 0 N2 O3 , and C2 oH1 0 N2 OS. These formulae are consistent with the 

presence of twenty carbons and two nitrogens as determined by a labelling experiment 

in which cultures were grown on isotopically-labelled 13C glucose or 15N ammonia. 

Ajmaline (CAS 4360-12-7) is a naturally occurring alkaloid found in plants that matched 

the general description and formula of the unknown compound, but analysis of an 

ajmaline reference standard did not produce a match with the unknown. Identification 

may have been possible by NMR analysis of purified material from HPLC fractionation,
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Figure 4.3. Typical LC/MS/MS chromatogram and spectrum of an unknown small molecule from A. flavus medium - (A) Total ion 

chromatogram (TIC), 3D plot, chromatographic peak of unknown marked with arrow; (B) extracted ion chromatogram (XIC) unknown 

compound, m/z 327 [M+H]+1; (C) MS/MS spectrum of unknown compound.
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but due to the limited value of this compound for speciation of Aspergillus cultures, 

identification of this compound was not pursued further.

Another compound detected only in section Flavi (A. flavus, A. oryzae, and 

A. parasiticus) had an estimated molecular weight of approximately 6 kDa and was 

detected in aqueous and alcohol washes of conidia. The compound was reliably 

detected in conidial washes of A. flavus, A. oryzae, and A. parasiticus using ESI in 

positive mode. In complex extracts of A. flavus, the compound sometimes formed 

adducts, but typically presented itself as multiply charged ions m/z 1212 and m/z 1515 

and in A. parasiticus yielded m/z 1218 and m/z 1522. For A. flavus, assuming that 

both ions are from the same compound with formula weight M, the compound is 

multiply charged and that m/z 1212 has one more proton than m/z 1515, the charge 

state for m/z 1212 is +5, the charge state for m/z 1515 is +4 and the formula weight of 

the uncharged compound is 6056.

An example chromatogram and spectrum is presented in Figure 4.4. Although this 

unknown material initially appeared to be a peptide based on size, charge, and 

chromatographic characteristics, it did not digest in trypsin, chymotrypsin, Glu C (V8), 

or heated 2% formic acid. Digestions with trypsin of horse myoglobin and BSA 

proceeded normally in the presence of the 6 kDa compound, so the unknown did not 

appear to be a protease inhibitor. The MS/MS spectra did not yield useful information 

for identification of the compound because the material fragmented poorly and retained 

+5 and +4 charge state. This identification of this compound was not pursued further 

for this study, but is the subject of ongoing studies of fungi in section Flavi because it 

may be of use as a marker for discriminating A. flavus from A. parasiticus. The carbon 

and nitrogen composition will be determined by culturing organisms with isotopically- 

labelled 13C glucose or 15N ammonia, in the same manner as the unknown compound
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Figure 4.4. Typical LC/MS/MS chromatogram and spectrum of unknown 6kDa compound from A. flavus conidial washes after trypsin digest - 

(A) Total ion chromatogram (TIC), 3D plot, chromatographic peak of unknown marked with oval; (B) LC/MS spectrum of unknown compound, 

multiply charged ions m/z 1212 [M+H]+5 and m/z 1515 [M+4H]+4 shown. Unknown compound is present before and after trypsin digestion.
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of molecular weight 326 from A. flavus strain NRRL 3357. In addition, the compound 

will be characterized by LC/MS/MS equipped with different types of mass 

spectrometers with greater mass accuracy and different types of ion fragmentation, 

such as electron-transfer dissociation (ETD) and high-energy collisional dissociation 

(HCD) that may yield more useful MS/MS spectra than were obtained in this study by 

collision-induced dissociation (CID).

Protein Profiling by LC/MS/MS. Failure of the unknown 6 kDa compound from conidia 

to digest with proteases and formic acid did lead to investigating whether proteins may 

be present in conidia or mycelia that could be readily identified and be useful for 

identification of fungi. Although identification of fungi by gel electrophoresis of proteins 

has been attempted (Rinyu et al. 1995, Sorenson et al. 1971, Rath 2001), there are 

few reports of identification based on an LC/MS/MS approach. In this study, total 

protein extracts with minimal cleanup were subjected to trypsin digestion and analyzed 

by LC/MS/MS. The resulting MS/MS spectra were matched to theoretical spectra 

generated from known amino acid sequences of proteins in FASTA databases as 

described in Materials and Methods.

In theory, the amino acid sequences of peptides should be useful for identification in 

the same manner that nucleic acid sequences have been. Protein profiling in some 

ways should be more versatile, because a large number of amino acid sequences can 

be obtained for a wide variety of proteins in a relatively simple fast procedure. There 

are, however, some very important limitations to the methodology employed in this 

study. The LC/MS/MS analysis requires that proteins larger than approximately 6 kDa 

are broken into smaller peptide fragments, typically with an enzyme such as trypsin 

that cleaves proteins at the carboxylic acid side of arginine and lysine residues. In 

order to yield peptides useful for identification, the proteins must contain arginine and 

lysine residues in positions such that the resulting peptides are in the range of 5-60
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amino acid residues and molecular weights in the range of 400-6000 Da. In the mass 

spectrometer, the resulting peptides must yield positive ions with charge states of 1-3 

and fragment by MS/MS to produce spectra suitable for matching with theoretical 

spectra generated from a FASTA database. Proteins useful for classifying fungi would 

have taxonomically unique tryptic peptide sequences that may be predicted by multiple 

sequence alignment software and can be readily detected by the profiling 

methodology.

A typical LC/MS/MS analysis of a trypsin digest yields over 1000 spectra and 50-150 

identified proteins in a single chromatographic run. Example chromatograms for 

trypsin digests of A. flavus conidia and mycelia are presented in Figures 4.5 and 4.6, 

respectively. An example of a SEQUEST® search through BioWorks™, matching 

LC/MS/MS spectra to proteins, is presented in Figure 4.7. In this example, one of the 

top proteins detected is enolase and the entry has been expanded to show the tryptic 

peptides from enolase detected in the LC/MS/MS analysis. Also shown, are the 

calculated probabilities for correct matches to individual peptides and the specific 

protein. An example of how the MS/MS spectrum is matched to an amino acid 

sequence of a peptide from enolase is presented in Figure 4.8. A table summarizing 

the nomenclature for amino acids in proteins and the masses of residues used for 

interpreting MS/MS spectra of peptides is presented in Table 4.1.
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amino acid abbrev letter
-NH-CHR-CO-

residue
amino acid 

formula
amino acid 

ave fw notes
glycine Gly G 57.02 C2H5NO2 75.07 Nonpolar

alaninine Ala A 71.04 c 3h 7n o 2 89.09 Nonpolar
serine Ser S 87.03 c 3h 7n o 3 105.09 Polar
proline Pro P 97.05 c 5h 9n o 2 115.13 Nonpolar
valine Val V 99.07 CsHnNOa 117.15 Nonpolar

threonine Thr T 101.05 c 4h 9n o 3 119.12 Polar
cysteine Cys C 103.01 c 3h 7n o 2s 121.16 Polar

isoleucine lie 1 113.08 C6Hi3N 0 2 131.17 Nonpolar
leucine Leu L 113.08 C6Hi3N 0 2 131.17 Nonpolar

asparagine Asn N 114.04 C4H8N2O3 132.12 Polar
aspartic acid Asp D 115.03 c 4h 7n o 4 133.10 Polar, neg

lysine Lys K 128.09 c 6h 14n2o 2 146.19 Polar, pos
glutamine Gin Q 128.06 c 5h 10n 2o 3 146.15 Polar

glutamic acid Glu E 129.04 c 5h 9n o 4 147.13 Polar, neg
methionine Met M 131.04 CgH^NOzS 149.21 Nonpolar

histidine His H 137.06 c 6h 9n 3o 2 155.16 Polar, pos
phenylalanine Phe F 147.07 CgH-n NOz 165.19 Nonpolar

arginine Arg R 156.10 C6H14N40 2 174.20 Polar, pos
tyrosine Tyr Y 163.06 CbHu NOs 181.19 Polar

tryptophan Trp W 183.08 C iiH 12N20 2 204.23 Nonpolar

Table 4.1. Useful amino acid reference information for reading sequences and 

interpreting spectra. The mass listed under ‘-NH-CHR-CO- residue’ is the formula 

weight of the free amino acid minus the water loss from forming peptide bonds.
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Figure 4.5. Typical LC/MS/MS chromatogram and spectra of trypsin digest of an A. flavus conidial protein extract - (A) Total ion chromatogram 

(TIC), 3D plot; (B) MS/MS spectra of four most intense ions in MS scan, 3D plot; (C) example MS/MS spectrum.
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Figure 4.6. Typical LC/MS/MS chromatogram and spectra of trypsin digest of an A. flavus mycelial protein extract - (A) Total ion 

chromatogram (TIC), 3D plot; (B) MS/MS spectra of four most intense ions in MS scan, 3D plot; (C) example MS/MS spectrum.
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Database., indexed-Aspeigilli_NCBL22Feb2008b.fasta.hdi (3/7/2008) FJtei(s)... xc(± 1.2-3.41-1.50.2.00.2.50,0.00; peptide probabiSly<=5e-002; protein prabability<=1e-002
Mods; (C‘ +75.99828) C-17900748

Reference
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1 P Inenl I Cf
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x r

Coverage I
A fn  I

Accession | Peptide IHitst
PS n 1 inns I Count 1

1
2

[“  ♦  ATP synthase beta chain, mitochondrial precursor |Aspergillus te rreu s  IMH2624] 
[~ ♦  AF320304_1 glyceraldehyde-3-phosphate dehydrogenase [Aspergillus oryzae]

1 1 AJ. ■ype 1 1 1P*P> J 
1.3e 011 
1.4e 011

51 _ L
0.70
0.02

___— __ I.
110.2
110.3

A Veil 1 — -----1.
53040.0
30210.5

__ _____ 1__ !SBa__ 1__— 1
115401204 12(12 0 0 0 0)
12802607 12(12 0 0 0 0)

3 [~ I*  Glyceraldehyde 3-phosphate dehydrogenase [Aspergillus oryzae] 1.4e-011 0.02 110.3 36150.4 03760244 12 (12 0 0 0 0)
4 P  4  gtyceraldehyde-3-phosphate dehydrogenase [Aspergillus oryzae] 1.4e-011 0.02 1105 36200.5 9955069 12(12 0 8 0 0)
S p  ♦  ATP synthase H ,  beta subunit [Aspergillus fiim igatus Af?93] 1.3e-011 0.00 100J 55516.1 70907705 1 1 (1 1 0  0 0 0)
6 P  unnamed protein product [Aspergillus iriger] 1.2e-00l 0.55 100.3 47320.3 134004672 11 (110  0 6 0)
7 P  ♦  hypothetical protein An18g06250 [Aspergillus niger] U e -0 0 0 0.55 100.3 47320.3 145255754 11 (11 0  0 0 0)

8 P  F I  enolase [Aspergillus oryzae] 1.3e-009 0.05 00.3 47377.4 03767152 10(10 0 0 0 0)

J 1172 R.EEELOIMNAIYAGEK.F 1649.80 0.56 2 CO 2.0e-007 0.98 5.237 0.502 2109.5 1 24/28 4
J  1342 K TIAPAVEENLDVKDQSK .V 197084 0.75 2 CD 1 3e-009 0.98 5.060 0.606 1444.0 1 25/34 4
4  1305 R EEELGNNAIY AGEKFR T 195297 064 2 CO 4.6e-008 0.96 4 608 0369 1306.7 1 23732 4

2055 K.TLASKYRVSEDPFAEDCWEAWSYFYK.T 3370 58 0.83 3 CO 1.0e-002 0.94 4.225 0.500 1262.8 1 31/108 4
J 1323 KJAMDVASSEFYKA 1360.65 0.58 2 CO 5 3e-006 0.96 3.785 0.479 1384.5 1 18/22 10
4  1842 R1AFQEFMVPSAAPSFSEALR.Q 2311.18 057 2 CO 7.8e-007 0.92 3.631 0566 549.0 1 20/40 4
4$ 1603 K.TTAPAVEENLDVKDOSKVDeT-KK 2701.43 0.36 3 CO 9 Se-005 0.82 3.496 0.447 455.5 1 26/92 4

1297 RJEEELGNNAIYAGEKFR T 195297 1.16 3 CO 2.96-003 0.79 3.357 0.224 736.1 1 25/64 4
1204 K.ACNALLLK.V 921.49 0.07 2 CD 1.9e-002 0.90 2 306 0.326 813.8 1 13/14 4
922 K.VDEFLK.K 750.40 0.15 1 CO 4.76-002 0.59 1.651 0.000 360.8 1 8/10 4

9 P  *  enolase allergen Asp F 22 [A spergflus (um igatus Af?93] U e -0 0 0 7.05 90.3 47276.4 70991443 9 (0  0 0 0 0)
10 P  ♦  enolase/allergen Asp F 22 [Aspergillus fum igatus A IJ H ) 1 Je -00* 7.05 90.3 47276.4 66048203 9 (0  0 0 0 0)

11 P  ♦  Peroxiredoxin (PRX) family [Aspergillus oryzae) 9.7e-01# 7.87 K J 18606.5 83772610 10 (8 2 0 0 0)

12 p  f  F I ATP synthase beta [Aspergillus oryzae] 6.4e-011 7.82 90.2 55360.0 03776214 10(10 0 0 6 0)

13 r  *  G3P_ASPOR GtyceraMehyde 3 phosphate dehydrogenase (GAPDH) 1.4e 011 7.71 00.3 36206.5
14 P  *  TPP enzym e fam ily [Aspergillus oryzae] 1.9e 008 7.51 00.3 62007.0 83767672 9 (9 0 0 0 0)

Figure 4.7. An example of a BioWorks™ results table from a SEQUESV9 search of LC/MS/MS spectra from analysis of tryptic digests of 

A. flavus 1957 mycelia. Protein entry number 8 for enolase has been expanded to show peptides matched to tryptic peptides of enolase. 

Listed below the protein entry for enolase, highlighted in yellow, are 10 spectral matches to 7 theoretical spectra of tryptic peptides from 

enolase. Of particular note in the peptide listings are the scan numbers of the MS/MS spectra matched to the peptides, the amino acid 

sequences of the peptides (tryptic peptides should end with K or R), the probability scores for matches (P), the cross correlation score (XC, 

another measure of the match quality), and the number of ions of the matched MS/MS spectra relative to the number of possible ions in the 

theoretical spectrum (Peptide (Hits), Ions column).
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Figure 4.8. An example of how spectra are matched to a theoretical tryptic peptide from enolase (graphic generated by Scaffold™).

Differences observed in the m/z of the ions of the MS/MS spectrum correspond to individual amino acids in the peptide chain.

Ions of the y and b series, from breaks between the carbon and nitrogen of the peptide bond, predominate MS/MS spectra. Mass differences in 

the b series of ions, shown in red, correlate with the amino acid sequence ‘-N-A-L-L-L-K-’. A cysteine residue modified by hydroxyethyldisulfide 

(HED) in the protein extraction solution is shown in the theoretical sequence (both b and y series) as ‘C+76’.
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Results from 61 LC/MS/MS analyses of mycelia and spores from 29 reference strains 

were compiled into a single dataset and reprocessed using an additional matching 

algorithm, XITandem, using Scaffold™. Biomass from eleven Aspergillus species, 

along with one strain of Candida albicans and one strain of Cryptococcus neoformans 

as an out group were processed to compile a database with over 400,000 spectra and 

over 1300 identified proteins as a reference dataset to determine which proteins may 

be useful for identification of fungi. The result of the initial processing was a large list 

of proteins and peptides detected along with probabilities for correct matches. In the 

processing, MS/MS spectra were matched to peptides and those peptides were linked 

to specific proteins in the FASTA database along with annotation for those proteins 

(typically includes gene identification number, protein identification and source 

organism).

To search for proteins useful for identification and eliminate those that are not, the 

compiled protein listings were sorted by species and the number of spectra assigned to 

unique peptides from the identified proteins. Proteins with a greater number of 

assigned spectra were generally detected more frequently than those with fewer 

assigned spectra and had greater sequence coverage (percentage of amino acid 

sequence detected relative to the theoretical complete sequence) for the identified 

proteins. Although there is no absolute rule, detection of greater than 20% of the 

protein sequence by mass spectrometry is generally considered good coverage for 

identification of a protein (Baldwin 2004 and Biron et al. 2006). The relatively abundant 

proteins in each species were further screened based on the matching of the protein to 

correct species and the presence of unique tryptic peptides within the proteins that 

were unique to species. These differences in amino acid sequences were readily 

detected for many proteins because they impact not only the relative masses and
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spectra of the peptides, but also cleavage sites within the proteins. As a general rule, 

tryptic peptides of proteins with sequences unique to species correctly identified fungi 

to the species or section level if four or more unique peptides were detected for a given 

protein and protein coverage was greater than 15%.

Identification by protein profiling is presented here largely from the perspective of 

A. flavus and A. oryzae, but a selection of proteins and peptides that may be useful for 

identifying Aspergilli in general are summarized with the A. flavus/oryzae examples 

presented below. An example view of the compiled dataset in Scaffold™, sorted on 

Aspergillus flavus and the number of unique peptides detected, is presented in Figure 

4.9. In the example Scaffold™ table, note that some of the abundant proteins 

indentified for A. flavus are uniquely assigned to species in section Flavi (enolase, 

glyceraldehyde-3-phosphate dehydrogenase, pyruvate decarboxylase) and are 

candidate proteins for classifying Aspergilli. Other proteins, such as ATP synthase and 

molecular chaperone Hsp70, share enough sequence across species that they yield 

matches to multiple species within the genus and consequently cannot be used to 

classify Aspergilli to the species level.

Proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase, ATP 

synthase, ribosomal proteins, and chaperonins dominated the profiles of the tryptic 

digests from Aspergilli. Other proteins, such as pyruvate decarboxylase, 

phosphoglycerate kinase, alcohol dehydrogenase, superoxide dismutase (Cu-Zn and 

Mn), catalyse, 14-3-3 family proteins, cobalamine-independent methionine synthase, 

translationally-controlled tumour protein (TCTP), triosephosphate isomerise (TPI), 

malate dehydrogenase, actin, tubulin, calmodulin, and Woronin body proteins along 

with various proteases, translation elongation and initiation factors, and polysaccharide 

degrading enzymes were frequently identified. Evaluations of specific detected 

proteins for classifying Aspergilli by protein profiling are summarized below.
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16 kDa A 5 m am 4 M K  3 M M 2 M M e l M I  2 0 0
35 kDa A  I 5 1  m m 2 0 0 2 - 0  " M M 7 1 1 0 0
46 kDa A S 7 M M 0 m m 8 0 M M 0 0 0 0
29 kDa A  i 5 mmm 1 M M 1 mm S 1 4 1 0 0 0
38 kDa A i S 0 5 0 0 m m 0 0 0 0 0 0 0
12kDa 5 & a m 0_ 0 0 1 MR 0 0 0 0 0 0 0

Figure 4.9. An example view of a Scaffold™ results table compiled from LC/MS/MS analyses of different species of Aspergillus, as well as 

C. albicans and C. neoformans. Results have been sorted on A. flavus and the number of unique peptides detected. The numbers represent 

the number of spectra matched to unique peptides in the protein and those in green indicate high probability of correct identification (p<0.05).
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ATP synthase. ATP synthase was a frequently detected protein and protein coverage 

was typically very good with coverage for protein identified as ATP synthase F1, beta 

subunit, ranging from approximately 10-50%. However, ATP synthase did not match 

samples to the correct species. In the example Scaffold™ table, spectra for a number 

of species matched to the listing for ATP synthase from A. fumigatus (Figures 4.9, row 

4 and 4.10). Although frequently detected with good sequence coverage, tryptic 

peptides from ATP synthase were not useful for classification because there is 

considerable sequence similarity across Aspergillus species (>90% identity between 

A. fumigatus, A. flavus, A. oryzae, A. clavatus, A. terreus, and A. clavatus).
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Figure 4.10. An example view 

(Scaffold™) of sequence coverage for 

spectra from individual samples 

matched to peptides of ATP synthase 

F1, beta subunit, from Aspergillus 

fumigatus. The first column shows the 

regions of matched peptides, in 

yellow, superimposed over the total 

theoretical amino acid sequence. 

Areas that did not have matching 

spectra are white. Sequence layout, 

left to right, is from N-terminus to C- 

terminus. Column two lists the 

individual samples that yielded the 

peptides and column three lists the 

number of peptides in the sample that 

matched peptides in A. fumigatus. 

Tryptic digests of all Aspergillus 

species tested yielded matches to 

A. fumigatus ATP synthase and few 

unique sequences from ATP synthase 

were detected that would uniquely 

identify the organisms to the correct 

species. Samples are from mycelia; 

samples marked with '*’ are from 

conidia.

Sequence Coverage Sample #Pep % Cov

J Aspergillus carbonarius 369 8 3 0%
| Aspergillus carbonarius 369* 11 3 5%
| Aspergillus clavatus 3538 ...9 2 8 %
| Aspergillus clavatus 1 8 ~Z4%
J Aspergillus clavatus 1* 7 2 1%
| Aspergillus clavatus 1 10 2 8%
1 Aspergillus clavatus 3538 9 2 5%
1 Aspergillus clavatus 3538' 
| Aspergillus flavus 3357

10
8

2 8%
2 4 %

1 Aspergillus flavus 1967 
| Aspergillus flavus 3357

9
10

3 3 %
2 8 %

1 Aspergillus flavus 485 
1 Asperaillus flavus 3646*

12
7
a

4 2 %
2 6 %

1 Aspergillus flavus 827*
I Aspergillus flavus 1957 9

Jure

2 5 %
I I Aspergillus fumigatus Af293  

__] Aspergillus fumigatus 163
13
14

5 3 %
4 2 %

1 Asperaillus fumiaatus 163* 9 29%
I Aspergillus fumigatus Af293* 11 3 1%
| Aspergillus fumigatus Af293 14 42%
] Aspergillus nidulans A4* 14 39%

I ] Aspergillus nidulans 187 8 2 3%
| Aspergillus nidulans 187 14 3 8%
| Aspergillus nidulans 187* 15 4 7%

” 1 Aspergillus nidulans A4 10 3 2%
1 Aspergillus nidulans 326  

I ] Aspergillus nidulans 326
11
12

3 3 %
3 5 %

]  Aspergillus nidulans 326* 9 3 2 %
1 Asperaillus ochraceous 398* 9 2 3 %

[ ] Aspergillus oryzae 5590* ..... 11 3 6 %
1 I Aspergillus orvzae 1988* 6 2 0 %

] Aspergillus oryzae RIB40 6 19%
J Aspergillus orvzae 4823* 7 2 4%
]  Aspergillus oryzae 5590 9 3 0%
I Aspergillus oryzae RIB128* 6 

i n
2 4%
A7C71 Aspergillus oryzae 447  

I Aspergillus oryzae 5590
IU

3
dfTB
8 .1 %

1 Asperaillus parasiticus 502* 9 2 9 %
1 Asperaillus parasiticus SU1 3 2 4 %

_] Aspergillus parasiticus 502 5 15%
I Asperaillus parasiticus 502 3 9 .8 %
I Asperaillus terreus 274* 3 11%

__ | Aspergillus terreus 274 4 12%
| Aspergillus terreus 255*
I Asperaillus terreus 1913

2
11

6 .7 %
3 4%

J Aspergillus terreus 255 3 7 .3 %
| Aspergillus terreus 274 4 12%
I Asperaillus terreus 1913* ........4 16%
I Aspergillus terreus 255 8 2 2 %
I Aspergillus terreus 1913 11 3 4 %

1  Aspergillus westerdjkiae 5175* ' ......4 11%
1 Aspergillus westerdjkiae 3134* 3 7 ,9 %

I I Clayton 270 8 2 3 %
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Tubulin and actin. Tubulin and actin were not major proteins detected in the extracts, 

often with 3 peptides or fewer detected in samples, and the sequence coverages 

obtained were often less than 20%. p-Tubulin was detected only in three A. clavatus 

samples, but peptides from tubulin alpha-1 subunit were detected in several samples. 

An example of the peptide coverage for tubulin alpha-1 subunit for A. fumigatus and 

the shared sequences of the A. fumigatus peptides with other Aspergilli are presented 

in Figure 4.11. Note that a tryptic peptide from tubulin alpha-1 subunit of A. fumigatus 

with amino acid sequence ‘TIYCDLEPNWDEVR’ is shared with A. clavatus and 

A. terreus and may also share peptides ‘YMATCLLYR’ and ‘TIQFVDWCPTGFK’ with 

A. clavatus. Similarly, relatively few peptides from actin were detected by profiling and 

some of those were shared across species, such as ‘YPIEHGWTNWDDMEK’, and 

‘SYELPDGQVITIGNER’ as indicated in Figure 4.12.
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Sequence Coverage Sample #Pep %Cov

I / ^jAspergillus clavatus 1 1 3.3%
I T ; ^A sperg illus  clavatus 3538 2 6.2%

I I i ............... Aspergillus davatus  1 £ 21 %

I I LI -.......i Aspergillus clavatus 3538 3  10%

I li n ~]Aspergillus fumijjatus 163 3  10%

r? • "^Aspergillus fumigatus 293 5 17%

r t i a \ Aspergillus terreus 255 1 3.3%

i \ ^ A s p e rg illu s  terreus 1913 2 5.6%

t
gi| 159130485 (100%), 50,025.1 Da
tubulin alpha-1 subunit [Aspergillus fumigatus A1163]
5 unique peptides, 5 unique spectra, 5 total spectra, 74/448 amino acids (17% coverage)

M R E V I  S L N V G Q A G C Q I A N S C W E L Y C L  E H G  I Q P D G Y L T E E R K K A D P D H G F S T F F S E T G Q G K Y V P R T 1 y B d L
E P N V V D E V R T G T Y R S L F H P E N M I T G K E D A S N N Y A R G H Y T V G K E M 1 D Q V L D K V R R V A D N C A G L Q G F L V F H S
F G G G T G S G F G A L L M E R L S V D Y G K K S K L  E F C V Y P A P Q N A T S V V E P Y N S I L T T H T T L E H S D C S F M V D N E A 1 Y
D I C R R N L G I E R P S Y E N L N R L I A Q V V S S I T A S L R F D G S L N V D L N E F Q T N L V P Y P R 1 H F P L V A Y A P V 1 S A A K
A S H E A N S V N E I T S A C F E P N N Q M V K C D P R N G K Y M A T C L L Y R G D V V P K E T H A A V A T L K T K R T 1 Q F V D W S P  T G
F K  I 6  I C Y Q P P  
A R E D L A A L E R

Q Q V P G G D L
D Y E E V A A D

A K 
S M

L D R A V C M L
D E E V E A E Y

S N T T A I A E A W S A L D H K F D L M Y S K R A F V H WY  V G E G M E E G E F S E

Figure 4.11. An example of the peptide coverage for tubulin alpha-1 subunit for A. fumigatus and the shared sequences across other 

Aspergillus species. Relatively few peptides from tubulin were detected and a number of those were shared across A. fumigatus, A. terreus 

and A. clavatus (top). Peptides detected in A. fumigatus sample, shown in yellow, superimposed on the amino acid sequence of tubulin; 

modified cysteine residues shown in green (bottom). Shared sequences indicated on the sequence coverage plot are shown matched to the 

corresponding amino acid sequence of tubulin alpha-1 subunit from A. fumigatus.

4-22



Sequence Coverage Sample
J  Aspergillus carbonarius 369 
3 Aspergillus clavatus 3538 
J Aspergillus clavatus 1 
3 Aspergillus flavus 3357 
JAspergillus flavus 1957 
3 Aspergillus flavus 485 
3 Aspergillus flavus 1957 
3 Aspergillus fumigatus 293
JAspergillus fumigatus 293 
3 Aspergillus nidulans 187 
3 Aspergillus nidulans 187 
3 Aspergillus nidulans A4 
] Aspergillus niger 326 conidia 

3 Aspergillus niger 326 
3 Aspergillus niger 326 
JAspergillus oryzae RIB40 
3 Aspergillus oryzae 5590 
]  Aspergillus oryzae 447

#Pep %Cov
2 16%

4 25%
18%

2 9,4%
1 8.1%
3 18%"
1 15%

11%
1 8.1%
2 14%
1 8.1%
1 11%

17%
21%

JAspergillus parasiticus SU1 
JAspergillus parasiticus 502 
JAspergillus terreus 274 
J Aspergillus terreus 255 
JAspergillus terreus 1913 
JAspergillus westerdijkiae 3134 conidia 1

6,9%,

4.1%

gi|159122390 (100%}, 43,893.8 Da 
actin Act1 [Aspergillus fumigatus A1163]
3 unique peptides, 3 unique spectra, 3 total spectra, 43/393 atqino acids (11% coverage)

M S L C R L S P G E C V N R C P C V R L D N P N ?  G G F L S L N H H A R Q L N L D N E T L T C E i A S 1 V  G R P R H H G 1 M 1 G M G Q K D S Y V G D E A Q S K R
G I L T L R Y P I E H G V V T N W D D M E K I W  H' -IA T F Y N E L R V A P E E H P V L L T E A P 1 N P K S N R E K M T Q 1 V  F E T F N A P A F Y V S 1 Q A V L S L
Y A S G R T T G I V L D S G D G V T H V V P  I Y E * kF A L P H A 1 S R V D M A G R D L T D Y L M K 1 L A E R G Y T F S T T A E R E 1 V R D 1 K E K L C Y V A L D
F E Q E I Q T A S Q S S S L E K S Y E L P D G Q V 1 T 1 G N E R F R A P E A L F Q P S V L G L E S G G 1 H V T T F N S 1 M K C D V D V R K D L Y G N 1 V M S G G
T T H Y P G I S D R M Q K E I T A L A P S S M K V K M A P P E R K Y s V W  1 G G S 1 L A S L S T F Q Q M W 1 S K Q E Y D E S G P S 1 V H R K C F

Figure 4.12. An example of the peptide coverage for matches across Aspergillus species to actin from A. fumigatus. Relatively few peptides 

from actin were detected and a number of those were shared across many of the Aspergillus species (top). Shared sequences indicated on the 

sequence coverage plot are shown matched to the corresponding amino acid sequence of actin from A. fumigatus. (bottom).
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amino acid sequences within GAPDH, but the amino acid sequence is specific to section 

Flavi (Table 4.2). The alignment of complete GAPDH sequences from the test species 

and the region with tryptic peptides diagnostic for species is presented in Figure 4.14.

Genus species tryptic peptides
Aspergillus clavatus G ILG Y TE D A IV S S D V N G D E R S S V FD A A A G IS LN P N FV K
Aspergillus flavus/oryzae G IL G Y T E D D IV S T D L IG D A H S S IF D A K A G IA L N E H F IK
Aspergillus fumigatus N ILG Y TE D D V V S S D LN G D E R S S IFD A K A G IS LN P N FV K
Aspergillus nidulans G IL G Y T E D D IV S T D L N G D T R S S IF D A K A G IA L N S N F IK
Aspergillus niger G ILG Y TE D D IV S S D LN G D D H S S IF D A K A G IA LN S N F V K
Aspergillus terreus G ILG Y TE D E V V S TD LN G D D R S S IFD A K A G IA LN E H FV K

Table 4.2. Region within GAPDH that spans tryptic peptides diagnostic for identification 

of Aspergilli. Cleavage sites at arginine and lysine residues are in BOLD. Note that in 

this region the sequence for A. flavus/oryzae differs from other species by a few amino 

acids and an arginine cleavage site (highlighted in red).

A_o ryzae ; MATg
A_terreus : MSL®
A_fumigatu :: MATg
A_clavatus :: MAlH
A_niger -MAy
A_nidulans : -maH
C_n©oforma :: -MWj
C_albicans :: -MAI |

A_oryzae 
A_te rreua 
A_fumigatu 
A_clavatus 
A_niger 
A_nidulans 
C_neofo 
C albicans

t S SSPSPAVLLLLLLSLFLSPIILSSSAF PIKLTSS

-AVALDCIIAPVKYLLLCLQVG

SSSBSTV

a ;

80
115

80
102
79
79

iNgfgr6g r6V rnafi g 6 WAVNDPFIa hYaaYMlRYD3tHG SkG 6*tyd gL 61gkk6 f

160 180 2 00 220

A terreus
A_fumigatu

A n id u la n sneoformaC albicans Ga Y66ESTGVFTt EkA H6kgGAKKV6I3APSADAPMFV GVN 66SNA9CTTNCLAPLAKV6nD Fg6 EGLMTTVHsyTATQK VD PS KDDPa IpH

•: 308
1 308

1 308
HRGGRtAa Nil PSSTGAAKAVGKVIP IiNGKLTGM RVPT lVSWDbtCR eK 3Y Ik 6K ASE elKg6LGYTED 6VS3D Gd SS6FDakAGI Ln F6K .

A_oryzae 
A_terreus 
A_f umigatu 
A_clavatus 
A_niger 
A_nidulans 
C_neofo rma 
C albicans

338
372
338 
359 
3 3 6  
3 3 6
339 
335

L6sS»YDNE5GYSr;RVvDL6 y 6  kV d  q

Figure 4.14. Multiple alignment of the complete amino acid sequences from GAPDH 

(NCBI database) showing conserved and variable regions between test species. 

Regions with tryptic peptides diagnostic for classifying Aspergilli to species (Table 4.2) 

are outlined in green.
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Although complete sequence coverage is not achieved by profiling, the amino acid 

sequence of GAPDH has a number of variable regions that are differential for species 

and may be a suitable genetic character for classifying fungi as illustrated in Figure 4.15.

A. flavus/oryzae 

-----------------  A. terreus

[
A. nidulans 

A. niger

| A. fumigatus

' ....... A. clavatus

(— — —  C. neoformans

„ „ I— —— — C. albicans  QJ____

Figure 4.15. Cladogram illustrating relatedness based on multiple sequence alignment 

of the complete amino acid sequences of GAPDH of the test species that have sequence 

data in the NCBI database (tree prepared using neighbour joining method).

Based on the relative abundance of GAPDH, the good sequence coverage obtained for it 

in total protein digests and the frequent detection of peptides from GAPDH that are 

diagnostic for species identification, GAPDH is a good indicator protein for identification 

of Aspergilli by protein profiling.

Enolase. Enolase (47 kDa) was an abundant protein with good sequence coverage 

(Figure 14.16) and was generally good for classifying the test samples correctly to 

section or species, but a protein identified as enolase/allergen Asp F 22 from 

A. fumigatus sometimes matched peptides across several other species, particularly
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A. clavatus. Consequently, classification of Aspergilli by identification of peptides from 

enolase should only be used as supporting evidence unless a unique peptide such as 

IEEELGNNAIYAGEK’ is detected with high confidence, Table 4.3. There are other 

tryptic peptides that may differentiate species, but many of the variable regions within 

enolase are rich in lysine which results in very short peptides, less valuable for 

identification by MS/MS. The alignment of complete enolase amino acid sequences from 

the test species and the region with tryptic peptides diagnostic for species is presented in 

Figure 4.17.

Sequence Coverage Sample #  Peptides %C overage

01AflavusNRRL1957 19 67%
09AflavusNRRL3357 16 60%

.......'........  ; ........... 09AflavusNRRL3357 7 24%
22AflavusNRRL3646 (conidia) 6 21%
15AflavusNRRL1957 16 58%
20AflavusPapa827 (conidia) 8 29%
10AoryzaeNRRL447 10 41%
05AoryzaeRIB128 (conidia) 6 20%

i 06AoryzaeNRRL5590 3 9.4%
, i 13AoryzaeNRRL5590 17 66%

13AoryzaeNRRL1988 (conidia) 5 18%
11AoryzaeNRRL5590 (conidia) 12 41%
01 AoryzaeNR RL4823 (conidia) 6 21%
A parasiticus myc01 NRRL502 7 31%
17AparasiticusNRRL424 6 22%
12AparasiticusN RRL502 6 20%

11 . 13AparasiticusSU1 11 39%
18AparasiticusNRRL502 (conidia) 7 27%

23 67%

Figure 4.16. LC/MS/MS peptide coverage for enolase from A. oryzae across test 

strains. In this example, only species from section Flavi {A. flavus, A. oryzae and 

A. parasiticus) are matched to enolase from A. oryzae. Coverage is generally very good 

with sequence coverage as high as 67%.
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Genus species tryptic peptides
Aspergillus clavatus TGAPARSERLAKLNQILRIEEELGDNAVYAGDKFRTAVNL
Aspergillus flavus/oryzae TGAPARSERLAKLNQILRIEEELGNNAIYAGEKFRTSVNL
Aspergillus fumigatus TGAPCRSERLAKLNQILRIEEELGENAVYAGSKFRTAVNL
Aspergillus nidulans TGAPARSERLAKLNQILRIEEELGENAVYAGQNFRKSVNL
Aspergillus niger TGAPARSERLAKLNQILRIEEELGDNAVYAGEKFRTAVNL
Aspergillus terreus TGAPARSERLAKLNQILRIEEELGDNAVYAGEKFRTAVNL

Table 4.3. Region within enolase that spans tryptic peptides diagnostic for identification 

of Aspergilli. Cleavage sites at arginine and lysine residues are in BOLD.

A_terreus 
A_o ryzae 
A_nige r 
A_clavatus 
A_fumigatu 
A_nidulans 
C_albicans 
C neoforma

A_terreus 
A_oryzae 
A_niger 
A_clavatus 
A_f umigatu 
A_nidulans 
c_albicans 
C neoforma

A_terreus 
A_o ryzae 
A_nige r 
A_clavatus 
A_fumigatu 
A_nidulans 
C_albicans 
C neoforma

A—terreus 
A_o ryzae 
A_nigar 
A_clavatus 
A_fumigatu 
A_nidulans 
C_albicans 
c neoforma

* 80 * 100 *

"r vTl'tl Tv . ■ i/kLD N K s n L G A N A I L G V S

200 220 *

115
115
115
115
115
115
116 
115

6A akAgAAekG6PLYah6s 6agtkkp SVLPVPfqNV6NGGSHAGgrLAEQEFM6 p a 3F3Ea64qG EvY kLK 6akKKYGqsAgNVGDB GGvAP16qtaeEaLDL6 e 

240 * 260 * 280 * 300 * 320 * 340

lEOglSSl 
|HGYCi

a!eqAGYtGk6 Ia6DVASSEF5K kKYDLDFKHP SD SKHL3ye2LADLYk la kYpIvSIEDPFaEDD5eAWsy5 kts dfQIVGDDLtVTNP RIKkAIE K cNAL

438
438
438
438
438
438
440
444

344
344
344
344
344
344
346
342

4*40...........

I SQ
I  Q N p K S S _
I  r d B q k S s c

;lsI0gt?»8e
LLK6NQIGT63ESIQAakdsya WGVMvSHRSGETEdvtIAD6aVgLR G2IltTGAPaRSER6AKlNQ6LRIEE2Lg na65AG kfrtavnL

Figure 4.17. Multiple alignment of complete enolase amino acid sequences (NCBI) from 

test species showing variable regions between species. A region with tryptic peptides 

diagnostic for classifying Aspergilli to species (Table 4.3) is outlined in green.

Pyruvate decarboxylase. Pyruvate decarboxylase (63 kDa) was not an abundant 

protein, but in those samples with reasonable coverage (Figure 4.18) there were several 

variable regions within tryptic peptides that were useful for classifying organisms to the 

correct section or species. Peptides ‘YIHGWEAVYNDIQPWDFLNIPVAFGAK’

(Table 4.4), ‘ELFANEEFASAPCLQLVELHMPR’, ‘MGNLNVGPVSPPSNLLPDNEK’, and
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‘PVYISLPTDMVTK’ from A. flavus and A. oryzae as well as peptides from the 

corresponding regions of other fungi tested are very diagnostic for classification by 

LC/MS/MS. Tryptic peptides of pyruvate decarboxylase performed well for classification 

across Aspergillus species and were suitable for identification C. albicans as well.

Based on these results, pyruvate decarboxylase is a good candidate for follow-up 

targeted protein analysis and DNA sequencing for other species of interest that do not 

currently have gene or EST sequence available. The multiple sequence alignment of 

complete pyruvate decaroxylase amino acid sequences from the test species and the 

region with tryptic peptides diagnostic for species is presented in Figure 4.19.

Sequence Coverage Sample # Peptides %Coverage
I I I1 01AflavusNRRL1957 10 26%
H i ! I 09AflavusNRRL3357 16 48%
r  ....................  iI 09AflavusNRRL3357 1 1.9%

| 15AflavusNRRL1957 14 38%
L.......... II 04AflavusNRRL485 7 17%
I I' 1 I 13AoryzaeNRRL5590 17 54%

I 14AterreusNRRL274 1 4.7%
I----------------------------------------- 1| 01Clayton270myc 12 33%

Figure 4.18. LC/MS/MS peptide coverage for pyruvate decarboxylase from A. oryzae 

across several test strains. In this example, spectra from A. flavus and A. oryzae strains 

were matched to pyruvate decarboxylase from A. oryzae, but one spectrum from an 

A. terreus strain was matched to a single tryptic peptide from A. oryzae.

Genus species tryptic peptides
Aspergillus clavatus YIHG W DAG YNDIQ EW DNKNIPTVFG G G DFYK
Aspergillus flavus/oryzae Y IH G W E A V Y N D IQ P W D FLN IP V A FG A K
Aspergillus fumigatus YIHG W EASYNDIQQW DYKSLPVAFG AGK
Aspergillus nidulans FIH G W D ESYN D IQ TW D IKG LPVAFG G K
Aspergillus niger YIH G W D ESYN D IQ PW D IEG LPR VFG AK
Aspergillus terreus FIH G W D EAYN D IQ PW D IKG LPVVFG AK

Table 4.4. Region within pyruvate decarboxylase that spans tryptic peptides diagnostic 

for identification of Aspergilli. Cleavage sites at arginine and lysine residues are in 

BOLD. In this region, pyruvate decarboxylate differs from other species at several 

amino acids and one lysine cleavage site (marked in red).
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A_oryzae A_terreus A__niger A_fumigatu A_clavatus A_rxidul ana C_albicans C neoforma

■LLHHT I.GNGE
| t.:.’ ih t t , I n s e  
I l l h h t l I n s e  
I l l h h t i .g nge 
I l l h h t j  ONGE

: 130

ae5 frRL 2 g6 6hG6PGD5 NX a aLDy6pkc 6 WvGNcNELNAgYAaDGYAR6n g6 a663TPGVGEL3a nalAG y3EfVp66h6VGqP 3 sQ dg LLHHTLgngd
Aoryzae A__ter reus A_niger A_fumigatu A_clavatus A_nidulans C_albicans C neoforma t

A_oryzae t A_tecreua t A_niger i A_fumigatu : A_clavatus t A_tudulans : C_albicans t C neoforma :

DIN3APA1- f l i  WJ:
1 jA >0 NIE P K.TPT 3WT E A :• £ V : ™  •. 7LE1 |SMGT SL SNT SASAASRGAAQVSL 3TAPTNVPSAP 3 3DD VT.atliDna64ec sRPvY6 6P31 6 kk6eg rL p6dlslp ndPEk

PV ILV D AC  
PVX1VDAC 
PV ILV D AC  
P V I L  VC*AC 
PVILV D AC

Ak P6lLVDACAiRh 1 EVh 16e g ptFvaPMGKga61E 5GGvYaG g3n gV e VEssDl6Ls6GA6k3DPN3 gP3y igqlnt6dfH8tyv 6ryee5P

: 219: 219
: 219

t 258dyV6dv61Ky ha

i 347
: 347
: 34 6: 342LL 2PAP| RG i 391

A_oryzae ; A_terreue t A_niger :A_fumigatu : A_clavatus s A_nidulans : -p(_ C~albic«ns : INpJy1 C neoforma : KQ3EGQ

A_oryzae A_terreus A_niger A_fumigatu A_clavatus A_nidulans C_albicans C neoforma

vPETKyiN-TPAAP3 TQKVEDK3VDSPVVPDPKGD

473474 474 474 474 473 471 5236 h 5 Wp 6gqWl e D66lTETGTanFG6w rfP vtaIsQ6LWGaIG53VGAcqGAA6AAkE gn RRt6L VGDG3 QLT6QE6aTM 4n n pi6F
* 640

idSc S I  s s a S e EEk s l

PPRXK3RLRRLPPGT 3g---
!E |JHS9A3KLaflEAAg a S jjK —

[R—JK— : 585 1KL3EKTJAEQ : 567 !kLt2ea5dri : 623
lit hy l si:-.:; fs

V6cN GYtlER. IHGw YNDIQ 51 e6 6p

Figure 4.19. Multiple alignment of pyruvate decarboxylase sequences showing 

conserved and variable regions between test species. A region with tryptic peptides 

diagnostic for classifying Aspergilli to species (Table 4.4) is outlined in green.

Phosphoglycerate kinase. Phosphoglycerate kinase (44 kDa), though not as widely 

detected as pyruvate decarboxylase, yielded a number of peptides that could be used to 

classify Aspergilli. Sequence coverage across test samples for phosphoglycerate kinase 

from A. oryzae is presented in Figure 14.20. There are several regions of variability 

within pyruvate decarboxylate that are differential for species or section, but a number of 

these are lysine rich and yield small peptides with 6 or fewer amino acid residues.

Tryptic peptides ‘TILWNGPPGVFELEPFANATK’ and ‘TGYATDADGIPDGYMGLDVGEK’ 

from section Flavi and the peptides from corresponding regions of other Aspergilli are 

often detected and are diagnostic for classification of the fungi (Table 4.5). A multiple 

sequence alignment of complete phosphoglycerate kinase amino acid sequences from
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the test species and the region with tryptic peptides diagnostic for species is presented in

Figure 4.21.

Sequence Coverage Sample # Peptides %Coverage
I 20AflavusPapa827 (conidia) 2 5.3%

r . .........  i1 11AoryzaeNRRL5590 (conidia) 5 13%
r ................... - ................... iI 18AparasiticusNRRL502 (conidia) 0 0%

I 13AoryzaeNRRL5590 9 31%
I 09AflavusNRRL3357 1 2.9%
| 17AparasiticusNRRL424 (conidia) 2 5.3%

i—  i i| 15AflavusNRRL1957 7 22%
! 1 1I 09AflavusNRRL3357 9 32%
1..................... "".....".................1| 01AflavusNRRL1957 4 14%

04AflavusNRRL485 5 18%
I 01Clayton270myc 9 30%

Figure 4.20. LC/MS/MS peptide coverage for phosphoglycerate kinase from A. oryzae 

across several test strains. In this example, only spectra from species in section Flavi 

were matched to phosphoglycerate kinase from A. oryzae.

G e n u s  s p e c i e s tryptic p ep tides
A s p e r g i l lu s  c la v a tu s VG YA TD EQ G IPDG LM G LDVG Q KSVA LYK ETIAEA KTILW N G PPG VFELEPFA NG TK

A s p e r g i l lu s  f la v u s / o r y z a e TG YA TD A D G IPD G YM G LD VG EK SVE LYK K TIA E A K TILW N G PPG VFELEPFA N A TK
A s p e r g i l lu s  fu m ig a t u s TG YA TD EEG IPDG YM G LD VG D KSVK LYK ETIAEA KTILW N G PP G VFEM EPFANG TK
A s p e r g i l lu s  n id u la n s TG YA TD EQ G IPDG YM G LDVG EKSVESYKQ TIAESK TILW N G PPG VFEM EPFA KATK
A s p e r g i l lu s  n ig e r TG TA TD A EG IPD G YM G LD VG EK SVELYK Q TIA EA K TILW N G PPG VFELE PFA N G TK
A s p e r g i l lu s  t e r r e u s TG YA TD ADG IPDG FM G LDVG EKSVELYKQ TIAEA KTILW NG PCG VFEM EPFAN G TK

Table 4.5. Region within phosphoglycerate kinase with tryptic peptides diagnostic for 

identification of Aspergilli. Cleavage sites at lysine residues are in BOLD.
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Figure 4.21. Multiple sequence alignment of phospoglycerate kinase sequences 

showing conserved and variable regions between test species. A region spanning tryptic 

peptides diagnostic for classifying Aspergilli to species (Table 4.5) is outlined in green.

Alcohol dehydrogenase. Zinc-binding alcohol dehydrogenase (37 kDa) yielded multiple 

tryptic peptides that were readily detected by LC/MS/MS profiling and matched with high 

confidence to alcohol dehydrogenase. Sequence coverage across test samples for zinc- 

binding alcohol dehydrogenase from A. oryzae is presented in Figure 14.22. Few were 

highly diagnostic for speciation, but one variable region yielded a relatively long tryptic 

peptide that if detected was specific to section or species -

‘QADEPLCPNASLSGYTVDGTFQQYAIGK’, Table 4.6. On review by multiple sequence 

alignment, alternate variable regions diagnostic for species would be generated by 

digesting alcohol dehydrogenase with 2% formic acid in water (cleaves at the carboxylic 

acid side of aspartic acid residues). This has not yet been confirmed experimentally.

The multiple sequence alignment of complete alcohol dehydrogenase amino acid
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sequences from the test species and the region with tryptic peptides diagnostic for

species is presented in Figure 4.23.

Sequence Coverage Sample # Peptides %Coverage
...... 11AoryzaeNRRL5590 (conidia) 3 15%

13AoryzaeNRRL5590 8 52%
09AlfavusNRRL3357 3 28%

--- ------- ---- ----------------- 15AflavusNRRL1957 6 42%. . . . .  _
09AflavusNRRL3357 7 48%

... ........................ . ' 01 AflavusNRRLI 957 3 21%
i i  i 04AflavusNRRL485 6 35%

06AcarbonariusNRRL369 1 12%
01Clayton270myc 8 44%

Figure 4.22. LC/MS/MS peptide coverage for zinc-binding alcohol dehydrogenase from 

A. oryzae across several test strains. In this example, most of the spectra matched to 

A. oryzae alcohol dehydrogenase were from samples of A. flavus and A. oryzae, with a 

single match to a spectrum from an A. carbonarius sample.

G e n u s  s p e c i e s tryptic peptides
A s p e r g i l lu s  c la v a tu s W LNGSCLACEFCKQAEDPLCPHALLSGYTVDGTFQQYAIAK
A s p e r g i l lu s  f la v u s / o r y z a e W LNGSCLACEFCKQADEPLCPNASLSGYTVDGTFQQYAIGK

A s p e r g i l lu s  f u m ig a t u s W LNGSCLACEFCKQADEPLCQNALLSGYTVDGTFQQYTIGK

A s p e r g i l lu s  n id u la n s W LNGSCGECEFCRQSDDPLCARAQLSGYTVDGTFQQYALGK
A s p e r g i l lu s  n ig e r W LNGSCLACEFCKQAEEPLCPHALLSGYTVDGTFQQYAIAK

A s p e r g i l lu s  te r r e u s W LNGSCLSCEFCQQAQEPLCPNAQLSGYTVDGTFQQYAIGK

Table 4.6. Region within Zn-binding alcohol dehydrogenase with tryptic peptides 

diagnostic for speciation of Aspergilli. Cleavage sites at arginine and lysine residues are 

in BOLD. Note that A. nidulans and A. terreus have amino acid substitutions and altered 

cleavage sites in this region (marked in red).
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Figure 4.23. Multiple alignment of alcohol dehydrogenase sequences showing 

conserved and variable regions between test species. A region spanning tryptic 

peptides diagnostic for classifying Aspergilli to species (Table 4.6) is outlined in green.

Catalase. Catalase (44 kDa), was not an abundant protein, based on the number of 

peptides detected and the low sequence coverage (Figure 4.24), but was detected in a 

number of samples and yielded peptides that could be used to classify Aspergilli. Tryptic 

peptides ‘VGFLASVETPASIEAASELSKQLSEDGVDWWAER’ from section Flavi and 

the peptides from corresponding regions of other Aspergilli are often detected and are 

diagnostic for classification of the fungi, Table 4.7. The multiple sequence alignment of 

complete catalase amino acid sequences from the test species and the region with 

tryptic peptides diagnostic for species is presented in Figure 4.25.
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Sequence coverage Sample # Peptides %Coverage
I 01AflavusNRRL1957 6 13%

 —  ____,____ 713. 13AparasiticusSU1 2 3.2%
— — J  02AparasiticusSU1 (conidia) 3 5.4%
1 7  ' I 15AflavusNRRL1957 4 7.4%

  7_______ ~ ~ l  12AparasiticusNRRL502 7 15%
~1 A_parasiticus_myc01 10 20%

"   ........I 13AoyzaeNRRL5590 3 4.8%
' '  ~  ~ l 09AflavusNRRL3357 7 14%

 " .............. 1 03AterreusNRRL255 6 11%

Figure 4.24. LC/MS/MS peptide coverage for catalase from A. oryzae across several 

test strains. In this example, most of the spectra matched to A. oryzae catalase were 

from species in section Flavi, with some matches from spectra of an A. terreus sample.

Genus species tryptic peptides
A s p e r g i l lu s  c la v a tu s KLKKLDGLKVGFFASVQHASSLDAASALRASLSKAGVDVVVVAER
A s p e r g i l lu s  f la v u s / o r y z a e KLKKLDGLKVGFLASVETPASIEAASELSKQLSEDGVDVVVVAER
A s p e r g i l lu s  f u m ig a t u s KLKKLDGLKVGVLGSVQHPGSVEGASTLRDRLKDDGVDVVLVAER
A s p e r g i l lu s  n id u la n s RLQSLAGLKIAVLASVDAEESFSAATALKAELSNDNLDVIVVAER
A s p e r g i l lu s  n ig e r KLKKLSNLRVGFLASVQTPSSITAAQDLATELKDDEVDVWVAER
A s p e r g i l lu s  te r r e u s KLLRLDGLKVAVLGSVDVPDSLAARQTIASQLAGENVDVVTVAER

Table 4.7. Region within catalase with tryptic peptides diagnostic for identification of 

Aspergilli. Cleavage sites at arginine and lysine residues are in BOLD. In this region, 

there are a number of differences in amino acids and an altered cleavage site (marked in 

red).
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Figure 4.25. Multiple sequence alignment of catalase sequences showing conserved 

and variable regions between species. A region spanning tryptic peptides diagnostic for 

classifying Aspergilli to species (Table 4.7) is outlined in green.
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Less abundant proteins. Aspartic endopeptidase (~43 kDa), translationally-controlled 

tumor protein (TCTP, 20kDa), and cobalamine-independent methionine synthase 

(ClMS, -86  kDa, also referred to as 5-methyltetrahydropteroyltriglutamate- 

homocysteine S-methyltransferase) were additional proteins that, while not always 

abundant or even detected in some samples, may be of value for speciation. Tryptic 

peptides ‘EGDDSVATFGGVDKDHYTGELVK’ of aspartic endopeptidase (Table 4.8), 

‘DILTGDEIISDAFNLKEVDNILWEVDCR’ of TCTP (Table 4.9), and 

‘GQTVDPITKINDLLPVYVELLQK’ (Table 4.10) of CIMS from section Flavi and the 

peptides from corresponding regions of other Aspergilli are often detected and are 

diagnostic for classification of the fungi.

Genus species tryptic peptides
Aspergillus clavatus EGDSSVATFGGIDKDHFTGELTK
Aspergillus flavus/oryzae EGDDSVATFGGVDKDHYTGELVK
Aspergillus fumigatus EGDNSEASFGGVDKNHYTGELTK
Aspergillus nidulans DGDSSVATFGGIDKDHYEGELIK
Aspergillus niger EGDESVATFGGVDKDHYTGELIK
Aspergillus terreus EGDESVATFGGVDKSHYTGELIK

Table 4.8. Region within aspartic endopeptidase with tryptic peptides diagnostic for 

identification of Aspergilli. Cleavage sites at lysine residues are in BOLD.

Genus species tryptic peptides
Aspergillus clavatus M IIYKDIISGDEVLADTFNIKTVDGVLYECDCR

Aspergillus flavus/oryzae M IIYKDILTG DEIISDAFNLKEVDNILW EVDCR

Aspergillus fumigatus M IIYKDIISGDEVLSDNFKIKEVDGVLYECDCR

Aspergillus nidulans MIIYKDIISGDEVLSDTYNIKTVDGVLYECDCR

Aspergillus niger MIIYTDIVSGDEVLSDTFKIQEDSDSKLLWTCDCR

Aspergillus terreus M IIYKDIISGDEVLSDTFNIKTVDNVFYECDCR

Table 4.9. Region within translationally-controlled tumour protein with tryptic peptides 

diagnostic for identification of Aspergilli. Cleavage sites at arginine and lysine residues 

are in BOLD.
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Genus species tryptic peptides
Aspergillus clavatus GQTVDPIDKINDLLPLYVDLLAKLK
Aspergillus flavus/oryzae GQTVDPITKINDLLPVYVELLQKLK
Aspergillus fumigatus GQKIDPIDKINDLVPVYVDLLAQLK
Aspergillus nidulans GQTLDPISKIDELLPLYVELLTKLK
Aspergillus niger GQSVDPITKIEELLPVYVELLQKLK
Aspergillus terreus GQTLDPIDKINELLPVYVELLTKLK

Table 4.10. Region within cobalamine-independent methionine synthase with tryptic 

peptides diagnostic for speciation of Aspergilli. Cleavage sites at lysine residues are in 

BOLD.

Summary. The objectives of this phase of the study was to characterise a cross 

section of reference strains using LC/MS and LC/MS/MS profiling techniques in order 

to find specific small molecules, peptides or biochemical profiles that can be used to 

classify the species. A targeted analytical method was developed for mycotoxin 

analysis and may be useful for confirmation of identity, but was of little use as a 

primary characteristic for classification of Aspergilli. The methodology employed for 

small molecule profiling by LC/MS yielded much richer data sets than GC/MS.

However, the LC/MS data was less reproducible and would have required significantly 

more development to refine the technique for quantitative comparisons. Qualitative 

review of the profiling data yielded a small molecule and a peptide-like compound that 

may be of use for discriminating between species or strains within section Flavi, but 

these compounds have yet to be identified. A method was developed for preparing 

protein extracts of fungal biomass and analyzing peptides from tryptic digests of those 

extracts by LC/MS/MS. Protein profiling by LC/MS/MS yielded matches to a large 

number of fungal proteins and was very effective for identifying many of the Aspergillus 

reference strains from pure lab cultures. Additional method development was required 

to adapt the methods employed for the reference strains to allow identification of field 

isolates and Aspergillus associated with host tissue and this is presented with the case 

studies in Chapter 5.
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Chapter 5: Results of Case Studies for Detection and
Identification of Aspergillus

Aspergillus species can be readily isolated from soil or biological samples and are 

most often identified by their distinctive morphological characteristics. In Chapter 4, 

biochemical profiling analyses of Aspergillus reference strains demonstrated that, 

under carefully controlled culture conditions, protein profiling was effective for 

classifying many Aspergilli to the species level. In this phase of the study, protein 

profiling was applied to detecting and identifying Aspergillus flavus under a wider 

range of conditions, in scenarios typically encountered with laboratory and field 

studies of Aspergillus. Specifically, protein profiling was applied to identification of 

laboratory and field isolates of fungi and to detecting the presence of Aspergillus 

flavus in maize kernels. Also, supplemental analyses were conducted on additional 

reference strains from the USDA that include two strains of Penicillium chrysogenum 

along with strains of Aspergillus carbonarius, Aspergillus niger, Petromyces 

alliaceous and Paecilomyces lilacinus. These supplementary analyses were 

conducted to complement the previous protein profiling analyses with additional 

closely related species and add replicate reference strains of P. chrysogenum,

A. carbonarius and A. niger (previously A. carbonarius and A. niger were each 

represented by only one reference strain).

Culture and morphology of isolates. Clayton 270, Sandhills 174, and Plymouth 98 

were isolated and tentatively identified as Aspergillus flavus based on macroscopic 

characteristics of growth habit and colour and microscopic characteristics of the
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conidiophores and conidia. All have Aspergillus-Wke conidiophores with 

characteristic golden yellow to olive green conidia (Figures 5.1).

Figure 5.1. Colour and growth habit on BCP minimal medium, day 4 (left), and 

conidiophores (right) of presumed Aspergillus flavus isolates Clayton 270 (A), 

Sandhills 174 (B), and Plymouth 98 (C).
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Isolate P98b had white, finely branched structures close to the surface of the growth 

medium that gained a pink cast with age and was tentatively identified as a Fusarium 

species (Figure 5.2), most likely Fusarium verticilliodes (syn. F. moniliforme), but 

possibly Fusarium graminearum. Although this isolate lacked distinctive reproductive 

structures, Fusarium is a fungus commonly isolated from maize (F. verticilliodes is 

the predominant species) and the presence of pink or red mold is very characteristic 

for Fusarium infection (Munkvold 2003).

Figure 5.2. Colour and growth habit (left) and microscopic characteristics (right) of 

r\or\-Aspergillus fungal isolate P98b, presumed to be a Fusarium, on BCP minimal 

medium, day 4.

The GAPLAB_RH isolate had a general growth habit and grey/green colour that was 

similar to some Aspergilli, such as Aspergillus fumigatus or Aspergillus nidulans, but 

had branched, broom-like conidiophores of a Penicilllium rather than defined vesicles 

typical of an Aspergillus (Figure 5.3).
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Figure 5.3. Colour and growth habit (left) and microscopic characteristics (right) of 

non-Aspergillus fungal isolate GAPLAB_RH, presumed to be a Penicillium, on BCP 

minimal medium, day 4.

Aflatoxin. Analysis of growth media and infected maize kernels by LC/MS/MS 

revealed that the reference strain of Aspergillus flavus, NRRL 3357, consistently 

produced aflatoxin under laboratory conditions when grown on minimal medium or 

PDA. One of the three Aspergillus isolates, Clayton 270, did not produce aflatoxins 

under any of the conditions tested, and so aflatoxin analysis neither supported nor 

contraindicated the preliminary identification of this isolate as Aspergillus flavus. The 

Sandhill 174 and Plymouth 98 isolates did not produce significant amounts of 

aflatoxins in laboratory culture, but did yield aflatoxins B1 and B2 in infected maize 

kernels (data not shown), which supports the preliminary identification of these 

isolates as Aspergillus flavus. As expected, no aflatoxins were detected in growth 

medium of the non-Aspergillus isolates (not tested in maize kernels).

Protein profiling o f isolates. Profiling of proteins from biomass scraped off 

agar-solidified medium yielded approximately 10,000 MS/MS spectra per sample 

from, on average, 27 mg of starting material. When searched versus a fungal subset 

of UniProt Knowledgebase (UniProtKB, Universal Protein Resource), a total of 183
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proteins were identified from the fungal isolates (Figure 5.4). Although a fungal 

subset of the National Center for Biotechnology Information (NCBI) protein database 

was used with the reference strains, UniProt was selected as the reference database 

for this set because it is a more compact database (speeds processing) and tends to 

have more complete annotation which reduces the need for manual annotation.

Protein profiling supported the initial morphological identification of the Aspergillus 

field isolates as Aspergillus flavus (Figure 5.4). The predominant protein 

identifications for the Aspergillus flavus field isolates were to Aspergillus flavus or 

Aspergillus oryzae database entries and the types of proteins identified were 

consistent with the reference strains of Aspergillus flavus analyzed concurrently with 

the isolates. There were only a few low quality matches of spectra from P98b 

(Fusarium) and GAPLAB__RH (Penicillium) to Aspergillus proteins. The modified 

sampling (scraping fungal material from agar) and the simplified protein preparation 

yielded a different cross section of proteins than in the previous experiments with the 

reference strains (Chapter 4) in that many of the major proteins, such as enolase, 

GAPDH, ribosomal proteins and chaperonins, are still detected and have good 

sequence coverage, but their relative abundances have changed. Also, some of the 

proteins useful for classification, such as alcohol dehydrogenase and pyruvate 

decarboxylase, are less abundant in this data set and lack the coverage required for 

use in identification. However, identifications could be made based on selected 

proteins/peptides as previously determined along with examination of additional 

proteins/peptides detected in this study.
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Voltage gated shaker Bke K+ channel OS =  Aspergillus oryzae G N =A 0090038000402 PE = 4  SV=1 Q 2U2M 0JISP 0R
NAD dependent m a late  dehydrogenase OS=Aspergillus oryzae G N = A 0090701000013 PE=4 S V = I Q 2U9I9 JtSPOR  

Predicted protein OS= Aspergillus oryzae G N = A 0090020000207 PE=4 SV=1 (G ly c o J iy d ro J B , C h itin ... Q2U4T9ASPOR  
Predicted protein OS=Aspergilus oryzae G N =A 0090701000867 PE = 4  SV=1 (TPR, tetratricopep tide r _  Q2U7E8_ASP0R 
Gkican l r3-beta-glucosidase OS= Aspergillus oryzae G N =exgl P E =l S V = l EXG_ASP0R
Elongation factor l  b e ta /d e lta  chain OS=Aspergillus oryzae G N =A 00900380002e7 PE=3 S ¥ = l Q2U2W9_ASPOR
Aldehyde dehydrogenase OS-Aspergillus oryzae G N =A 0090023000467 PE = 3  SV=1 Q2UHF6 JtSPOR
Peroxiredoxin OS= Aspergillus oryzae G N =A 0090120000112 PE = 4  SV=1 Q2U6S7_ASPOR
Peptidyl-prolyl cis-trans isomerase OS= Aspergillus oryzae G N =A 0090103000136 PE=3 SV=1 Q2TYR8_ASPOR
Predicted protein OS= Aspergillus oryzae G N =A 0 09 00 0 I00 01 89  PE = 4  SV=1 (Fungal J e c tin )  Q21INX8ASPOR
Predicted protein OS-Aspergillus oryzae G N =A 0090026000003 PE = 4  5V =1 (FAD dependent oxidored..Q 2U G l 1 _ASPOR 
R IB40 genomic DNA, SC023 OS= Aspergillus oryzae G N =A 0090023000837 PE = 3  SV=1 (C IM S ) Q2UGH7_ASPOR
Calmodulin OS=Ajeffomyces capsulata GN=CAM1 PE=2 SV=2 CAEMAJECA
Pept idyl-prolyl cis-trans isomerase OS=Aspergflus oryzae G N =A 0090003001047 PE = 3  S V -1  Q2UJW4 ASPOR
Translationally-controlled tum or protein homolog OS =  Aspergillus oryzae GN =  A 00 90005000996 P £ = _  TCTP_ASPOR 
ER chaperone BiP (Molecular chaperones GR P78/BV/K AR 2) OS=Aspergillus oryzae GN-bipA PE- 3  SV_ Q9UWE3_ASP0R 
Transaldolase OS =  Aspergillus oryzae GN A 0090020000520 PE=3 SV=1 Q2U426 ASPOR
Predicted protein OS =  Aspergillus oryzae G N =A009Q012000670 PE = 4  SV=1 (unk f)  Q2UCA8 ASPOR
Glyceraldehyde-3-phosphate dehydrogenase OS^Aspergdhls oryzae GN-gpdA PE = 2  S V = I G3P_ASPOR
Hydrophobin (Predicted protein ) OS= Aspergillus oryzae GN=hypB PE= 4  SV=1 Q7ZA34_ASPOR
Predicted protein OS =  Aspergillus oryzae GN =A009001200012S PE = 4  SV=1 (CyanoVirin-N Homology ... Q2UDE7_ASPOR 
Predicted protein OS= Aspergillus oryzae G N =A 0090113000132 PE=4 SV=1 (CipC-Hte) 020513 ASPOR
Nascent polypeptide-associated complex subunit beta  OS=Aspergi«us niger (strain  CBS 513.88 /  FGS... NACB_ASPNC 
Putative Woromn body protein A oH exl (Predicted p rotein ) OS = Aspergillus oryzae GN =Aohexl PE= 4 .. . Q6L658_ASPOR 
Predicted protein OS=Aspergillus oryzae G N =A 0090020000500 PE = 4  SV=1 (unk I )  0 2 0 4 4 4  ASPOR
Superoxide dismutase [Cu-Zn] 0S=Aspergillus flavus GN=sodC PE = 3  SV=3 SODC_ASPFL
Nucleoside [fiphosphate kinase 05=Aspergillus oryzae G N =A 0090102000558 PE=3 SV=1 Q20A38 ASPOR
Tripeptidyl peptidase A (Predicted protein ) (Tripepttdyl am inopeptidase) OS = Aspergillus oryzae GN=_Q878Z9_ASPOR  
Function: tropom yosin OS =  Aspergillus niger G N =A nl3g00760 PE =4 S V = I A2R1C7_ASPNG
Predicted protein OS=Aspergillus oryzae G N =A 0090701000238 PE=4 S V = t Q2U8Z1 JtSPOR
RIB40 genomic DNA, SC 0I2 OS= Aspergillus oryzae G N JU W 90 012000613 PE = 4  SV=1 (Ribosomal L5e) Q2UCF4_ASPOR 
Serine carboxypeptidases OS -  Aspergillus oryzae GN = A 0 0 9 0 103000332 PE=4 SV=1 Q2TYA1 ASPOR
Mitochondrial F1F0-ATP synthase OS=AspergiBus oryzae G N -A 0 09 07 01 00 01 68 PE =4 S V -1  Q2U954_ASPOR
Predicted protein OS= Aspergillus oryzae G N =A 0090038000279 PE=3 SV=1 (Exo-faeta-l,3-glucanase) D2U2X7_ASPOR 
Protein dHuTide-isomerase OS-Aspergillus oryzae GN=pdiA PE=3 SV=1 PDI_ASP0R
40S rtbosomal protein S6 OS = Aspergillus terreus (strain  NIH 26 24 ) GN=ATEG_03989 PE = 4  S V -1  Q0CQP5_ASPTN
60S ribosomal protein L8 OS=Botryotinia fuckeliana (strain  B05.10) GN=BCIG _06570 PE = 4  SV=1 A6SI73_BOTF6
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Figure 5.4. An example view of a Scaffold™ results table compiled from LC/MS/MS analyses of two Aspergillus flavus reference strains and 

five fungal isolates. Results have been sorted on type strain A. flavus NRRL1957 (column B) and the number of unique peptides detected. 

Note that major proteins identified for A. flavus isolates match A. flavus/oryzae entries, but Fusarium and Penicillium do not.
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Clayton 270 grouped with A. flavus based on the large number of good quality 

A. flavus/oryzae protein matches and to a high quality match with the tryptic peptide 

‘IEEELGNNAIYAGEK’ specific to enolase from A. flavus and A. oryzae. The 

coverage for enolase is presented in Figure 5.5.

ENO.ASPOR (100%), 47,407.6 Da
Enolase OS=Aspergillus oryzae GN=enoA PE=2 SV=1
10 unique peptides, 11 unique spectra, 11 total spectra, 194/438 amino acids (44% coverage)

M P I T K I H A R S  V Y D S R G N P T V  E V D V V T E T G L

Q N V L N G G S H A  G G R L A F Q E F M  I V P S A A P S F S
Y G Q S A G N V G D  E G G V A P D  I Q T  A E E A L D L I T E
E F Y K A D V K K Y  D L D F K N P D S D  S S K W L T Y E Q L
A E D D W E A W S Y  F Y K T S D F Q I  V G D D L T V T N P L
I G T L T E S I  Q A  A K D S Y  A .D N W G  V M  V S H ft-G -e -E -T "
A P A R S E R L A K  L N Q I  L R: I E E E  L G N N A I  Y A G E

H R A 1 V P S G A S T G Q H E A H E L R
N L D V K D Q S K V D E F L K K L D G S
Y A H 1 S D L A G T K K P Y V L P V P F
E A L R Q G A E V Y Q K L K T L A K K K
A 1 E Q A G Y T G K M K 1 A M D V A S S
A D L Y K T L A S K Y P 1 V S 1 E D P F
R 1 K K A 1 E T K A C N A L L L K V N Q
€•£> V T 1 A D 1 A V G L R S G Q 1 K T G
K 3= R T S V N L

Figure 5.5. Peptide coverage for matching of LC/MS/MS spectra from Clayton 270 

to enolase from A. oryzae. Peptides detected in the Clayton 270 sample, shown in 

yellow, are superimposed on the amino acid sequence of enolase. A tryptic peptide 

specific to enolase from A. flavus and A. oryzae is outlined in green.

Many of the diagnostic proteins detected during analysis of the reference strains 

were not detected in Clayton 270, but other unique peptides were present to support 

classifying the isolate as A. flavus, such as peptide ‘ISGTVTFEQADANAPTTVSW 

NITGHDANAER’ from superoxide dismutase [Cu-Zn]. Corresponding amino acid 

sequences across selected Aspergilli and Penicillium marneffei are presented in 

Table 5.1.
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Genus species tryptic peptides
Aspergillus clavatus GDSKVSGTVTFEQADENSLTTVSWNITGHDANAK
Aspergillus flavus/oryzae GDSKISGTVTFEQADANAPTTVSWNITGHDANAER
Aspergillus fumigatus GDSKITGTVTFEQADENSPTTVSWNIKGNDPNAK
Aspergillus nidulans GDSKVSGTVTFEQADENSNTTVSWNITGNDPNAER
Aspergillus niger GDSKVSGTVTFEQANENTPTTISWNITGHDANAER
Aspergillus terreus GDSKWSGTVTFEQADANSLTTISWNITGNDPNAER
Penicillium marneffei GDSNIKGTVTFEQADENSPTTISWNITGHDANAER

Table 5.1. Region within superoxide dismutase [Cu-Zn] that spans tryptic peptides 

diagnostic for speciation of Aspergilli. Cleavage sites at arginine and lysine residues 

are in BOLD.

Sandhills 174 grouped with A. flavus based on the large number of good quality 

A. flavus/oryzae protein matches and the diagnostic peptides ‘GILGYTEDDIVSTD 

LIGDAHSSIFDAKAGIALNEHFIK’ of GAPDH described in Chapter 4. The peptide 

‘ISGTVTFEQADANAPTTVSWNITGHDANAER’ from A. flavus superoxide dismutase 

[Cu-Zn] was also detected in the Sandhills 174 sample. Although enolase was an 

abundant protein in the Sandhills sample, the species-diagnostic peptide 

‘IEEELGNNAIYAGEK’ from enolase was not detected. However, other tryptic 

peptides from enolase grouped Sandhills 174 with Aspergilli and a small tryptic 

peptide ‘ACNALLLK’ from enolase narrowed the identification to enolase from 

A. flavus/oryzae. The sequence coverage for enolase is presented in Figure 5.6.
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ENO_ASPOR (100%), 47,407.6 Oa
Enolase OS=Aspergilus oryzae G N*enoA PE=2 SV=1
10 unique peptides, 12 unique spectra, 12 total spectra, 186/438 amino acids (42% coverage)

M P I T K I H A R S  V Y D S R G N P T V  E V D V V T E T G L  H R A I V P S G A S  T G Q H E A H E L R  D G D K T H W G G K
G V L K A V E N V N  K T I A P A V I E E  N L D V K D Q S K V  D E F L K K L D G S  A N K S N L G A N A  I L G V S L A I  A K
A G A A E K G V P L  Y A H I  S D L A G T  K K P Y V L P V P F  Q N V L N G G S H A  G G R L A F Q E F M  I V P S A A P S F S
E A L R Q G A E V Y  Q K L K T L A K K K  Y G Q S A G N V G D  E G G V A P D I  Q T  A E E A L D L  I T E  A I E Q A G Y T G K
M K I A M D V A S S  E F Y K A D V K K Y  D L D F K N P D S D  S S K W L T Y E G l  A O C ¥  K T b S K Y P I V S I E D P F
A E D D W E A W S Y  F Y K T S D F Q I  V G D O L T V T N P L  R I K K A I  E T i! A C N A L L L K V N Q  I G T L T E S I  Q A
A K D S Y  A D N W G  V M V S H R S G E T  E D V T I A D I A V  G L R S G Q I K f  "(S'' A K L N Q I L R I E E E
L G N N A I Y A G E  K F R T S V N L

Figure 5.6. Peptide coverage for matching of LC/MS/MS spectra from Sandhills 174 

to enolase from A. oryzae. Peptides detected in the Sandhills 174, shown in yellow, 

are superimposed on the amino acid sequence of enolase. Many spectra of enolase 

grouped Sandhills 174 with the Aspergilli and a match to the small peptide outlined in 

green, within the Aspergilli, was unique to A. flavus/oryzae.

Plymouth 98, like the other A. flavus isolates, grouped with A. flavus based on the 

large number of quality matches with A. flavus/oryzae protein matches, but many of 

the previously described diagnostic peptides were not detected. However, peptide 

‘VPTANVSWDLTCR’ from GAPDH does support classification as A. flavus. In 

addition, tryptic peptides ‘IPIGYWALGPLEGDPYVDGQLEYLDKAVEWAGAAGLK’ 

from glucan 1,3-beta-glucosidase are diagnostic for speciation of Aspergilli and were 

detected in Plymouth 98, as well as Clayton 270, Sandhills 174, and the type strain 

A. flavus NRRL 1957. This protein was notably absent from A. flavus NRRL 3357. 

Corresponding amino acid sequences of glucan 1,3-beta-glucosidase across 

selected Aspergilli are presented in Table 5.2. Tryptic peptides from this region, 

when detected, are particularly discriminative because there are a number of amino 

acid substitutions and some of those impact the cleavage sites for the trypsin 

digestion.
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Genus species tryptic peptides
Aspergillus clavatus IPVGYWAVSAPDEPYVDGQLEFLDNAISWARAAGLK
Aspergillus flavus/oryzae IPIGYWALGPLEGDPYVDGQLEYLDKAVEWAGAAGLK
Aspergillus fumigatus IPIGYWAVSSLPDEPYVDGQLEYLDNAISWAREAGLK
Aspergillus nidulans IPIGYWAAAPLDGEPYVSGQLEHLDNAVAWARAHNLK
Aspergillus niger IPIGYWAVAPIDGEPYVSGQIDYLDQAVTWARAAGLK
Aspergillus terreus IPIGYWAVEALPGDPYVDGQLEYLDRAIEWAGAAGLK

Table 5.2. Region of glucan 1,3-beta-glucosidase that spans tryptic peptides 

diagnostic for speciation of Aspergilli. Cleavage sites at arginine and lysine residues 

are in BOLD. Note that the sequence of A. flavus/oryzae differs from other species 

by several amino acids and a cleavage site (marked in red).

P98b grouped with Fusarium based on several good quality matches to proteins from 

that genus, particularly GAPDH (Figure 5.7), but protein profiling did not classify the 

isolate to the species level because the major proteins matched to both Fusarium 

verticilliodes and Fusarium graminearum. Searching versus a custom Fusarium 

protein database generated by merging protein databases from NCBI, the Broad 

Institute, and UniProtKB did not resolve ambiguous matching. This may be due to 

incomplete protein data for Fusarium in the databases or because F. verticilliodes 

and F. graminearum do not exhibit the same level of variation in amino acid 

sequences as Aspergilli. GAPDH is an example of a protein with a sequence that is 

useful for classifying Aspergilli, but may not work well for Fusarium because the 

sequences are so similar between Fusarium verticillioides and Fusarium 

graminearum (Figure 5.8). A protein profiling experiment with Fusarium reference 

strains would be required to determine which proteins may be useful for speciation of 

Fusarium isolates, but was beyond the scope of this study.
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Calmodulin OS=AjeHomyces capsulata GN=CAM1 PE =2  SV=2 CALM_AJECA 17 kDa
Glyceraldehyde 3-phosphate dehydrogenase (Fragm ent) OS=Gibberella moniliformis PE=3 SV=1 Q6TMG3_GIBMO 23 kDa
Beta-1,3-ghicanosyltransferase OS=Gibberella moniliformis GN=GLT1 PE=4 SV=1 A2CIZ5_GIBMO 58 kDa
Nascent polypeptide-associated complex subunit beta  OS^Gibberella zeae GN=EGD1 PE=3 SV=1 NACBGIBZE 18 kDa
Serine carboxipeptidase (Serine carboxypeptidase) OS=Gibberella fujikuroi GN=scp PE = 2  SV=1 A4UVR3GIBFU 65 kDa
Mannose-binding lectin OS=Gibberella moniliformis PE=4SV=1 Q45NP6_GIBMO 13 kDa
Mannitol dehydrogenase OS=Gibberella zeae PE=2SV=1 Q86ZP3_GIBZE 28 kDa
Inorganic pyrophosphatase O S=Magnaporthe grisea GN=MGG_01598 PE=4 SV=1 A4RK63_MAGGR 33 kDa
P utative uncharacterized protein OS=Gibberella fujikuroi PE=4 SV=1 Q53IN5_GIBFU 19 kDa
Putative uncharacterized protein O S=Magnaporthe grisea GN=MGG_03900 PE=3 SV=1 A4R4F3_MAGGR 54 kDa
SCF complex subunit S kp l OS=Fusarium oxysporum  f. sp. lycopersici GN=SKP1 PE =4  SV=1 Q6B956JTJSOX 20 kDa
Dehydrogenase OS=GibbereUa fujikuroi G N =b ik4P E =4S V = l B0B3T7_GIBFU 36 kDa
Non-hist one chromosomal protein 6  OS =Gibberella zeae GN=NHP6 PE = 3  SV=1 NHP6_GIBZE 11 kDa
40S ribosomal protein S I5  O S=Botryotinia fuckeliana (stra in  B05.10) GN=BC1G_08015 PE = 3  SV=1 A6S4S8_BOTFB 18 kDa
60S ribosomal protein LZ7a OS=Botryotinia fuckeliana (stra in  B05.10) GN=BC1G_08129 PE=3 SV=1 A6S7S5_BOTFB 17 kDa
Hydrophobin 2  OS=Gibberella moniliformis G N=HYD2PE=4SV=1 Q 6VF31GrBM O 12 kDa
Peptidyl-prolyl c is-trans isom erase OS=Gibberella fujikuroi G N =fprl PE=3 SV=1 Q05GS8_GIBFU 12 kDa
Enolase OS=Cryphonectria parasitica GN=ENOt PE=3SV=1 ENOCRYPA 47 kDa
Histone H2A-alpha OS=Schizosaccharomyces pombe G N =htal PE=1 SV=3 H2A1_SCHP0 14 kDa
GTP-binding protein y p tl  OS=Neurospora crassa G N =y p t-l P t= 3  SV=1 YPT1NEUCR 22 kDa
Flydrophobin 1 OS=Gibberella moniliformis GN=HVD1 PE = 4  SV=1 Q6YF32_GIBMO 13 kDa
Superoxide dismutase [Cu-Zn] OS=Claviceps purpurea GN=SODl PE = 3  SV=3 SODCCLAPU 16 kDa
M alate dehydrogenase OS=Botryotinia fuckeliana (strain B05.10) GN=BC1G_10724 PE=3 SV=1 A6SD82_BOTFB 34 kDa
Elongation factor 1 -be ta -like  protein (Putative  uncharacterized protein) OS =M agnaporthe grisea _  Q5EN21 MAGGR 25 kDa
Nascent polypeptide-associated complex subunit alpha OS=Chaetomium globosum GN=EGD2 P E=_ NACA_CHAGB 22 kDa
Nascent polypeptide-associated complex subunit alpha OS=Aspergi!tus clavatus GN=egd2 PE = 3  SV-NACA ASPCL 22 kDa
Histone H2B OS=Ajellomyces capsulata GN=HTB1 PE=3S V =3 H2BA3ECA 15 kDa
GTP-binding nuclear protein G SP l/R an  OS ̂  Ashby a gossypii GN=GSP1 PE=3 SV=1 GSPl_ASHGO 24 kDa
Cytochrome c oxidase subunit Va, putative OS=Aspergillus clavatus GN=ACLA_002410 PE = 4  SV=1 A1C562_ASPCL 18 kDa
Serine/threonine-protein  phosphatase PP1-1 OS=Schizosaccharomyces pombe GN=dis2 P £ = l SV=1PP1 l_SCHPO 38 kDa
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Figure 5.7. An example view of a Scaffold™ results table compiled from LC/MS/MS analyses of two Aspergillus flavus reference strains and 

five fungal isolates. Results have been sorted on Fusarium isolate P98b (column F) and the number of unique peptides detected. Note that 

many of the major proteins identified match Fusarium or Gibberella proteins, but protein matching does not resolve organism classification to 

species.
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jCLUSTAL 2.0.10 multiple sequence alignment

G_moniliformis 
G zea

ISAPSADAPMYWGVNENKYDGSADIISNASCTTNCLAPLAKVINDKFGIVEGLMTTVHS 83 
I3APSADAPMYWGVNENKYDGSADII3NASCTTOCLAPLAKVINDKFGIVEGLHTTVH3 180

G_moniliformis 
G zea

YT ATQKTVD GP S AKD VRGGRGA AQfJ IIPSSTGAAKAVGKVIPELNGKLTGH3MRVPTAMV 143 
YTATQKTVDGPSSKDWRGGRGAAQNIIPSSTGAAKAVGKVIPELNGKLTGHSMRVPTANV 240 
* * * * * * * * * * * *  • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

G_moniliformis 
G zea

SWDLTVRLEKGASYDQIKKVIKEASEGDLKGVLAYTEDDW3SDLNGNTNSSIFDAKAG 203 
SWDLTVRLEKGASYDQIKQVIKEASEGDLKGVLAYTEDDWSSDLNGNTNSSIFDAKAG 300

G_moniliformis 
G zea

IS LNDNFVKLVSWYDNE Iff ■ 221
ISLNDNFVKLV3UYDNEtfGYS RRVLDLL AHVAKVDA3 K 338

Figure 5.8. Multiple sequence alignment of GAPDH (trimmed)from Gibberella 

moniliformis (anamorph Fusarium verticillioides) and Gibberella zea (anamorph 

Fusarium graminearum). The blue region corresponds to the tryptic peptide useful 

for classification of Aspergilli.

In the initial data processing of protein profiling data, GAPLAB_RH did not group 

clearly with any genus and although many good LC/MS/MS spectra were generated 

from the GAPLAB_RH sample, searching versus UniProt and NCBI yielded very few 

matches. This was due to the lack of publicly available sequence data for Penicillium 

in the databases that would be required for spectral matching. Subsequently, the 

Penicillium chrysogenum genome was published (van den Berg et al. 2008) and 

additional reference strains were obtained from the USDA including two strains of 

Penicillium chrysogenum along with strains of Aspergillus carbonarius, Aspergillus 

niger, Petromyces alliaceous and Paecilomyces lilacinus. This allowed previously 

obtained spectra for GAPLAB_RH, the Penicillium isolate of the case studies, to be 

searched versus a more complete reference FASTA database that includes amino 

acid sequences from Penicillium chrysogenum along with tryptic digests of reference 

strains of P. chrysogenum.
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Profiling of proteins from fungal biomass from the new reference strains yielded 

approximately 10,000 MS/MS spectra per sample and when searched versus a 

fungal subset of the National Center for Biotechnology Information (NCBI) protein 

database, the spectra from this dataset yielded matches to over 400 proteins. 

Reprocessing the previously collected MS/MS spectra for GAPLAB_RH (>9000 

spectra) yielded matches to over 100 proteins almost exclusively to P. chrysogenum. 

In addition, the protein matches were consistent with the number and type of 

matches found for profiles of the two P. chrysogenum reference strains (Figure 5.9).

Of particular note, a tryptic peptide of GAPDH was detected in the P. chrysogenum 

type strain and in GAPLAB_RH that is comparable to a peptide diagnostic for 

classifying Aspergilli, ‘GILGYTEDDIVSTDLIGDAHSSIFDAK’ in A. flavus (Table 5.3). 

The tryptic peptide from P. chrysogenum, ‘GILGYTEDQIVSTDLNGDER’ differs from 

that of Aspergilli by just a few amino acids and, as with A. clavatus, the amino acid 

sequence that follows this peptide lacks one of the cleavage sites present in a 

number of the Aspergillus species due to substitution of alanine for an arginine in the 

sequence.
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MS,"MS View:\ Identified Proteins (450)
molecular chaperone Hsp70 P c 22g ll240 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211592088
sfcnlw tofructosyltransferase (6ly<o hydro 43, Glyco_32) Pc i6g10900 [Penicillium chrysogenum—gi1211586019 
giycosyl hydrolase family 43 protein P c l2g l0800 [Penicillium chrysogenum Wisconsin 54-1255] g i|2 1 1582519
translation elongation factor 1-alpha (EFl_alpha)Pcl3g02940 [Penicillium chrysogenum Wisconsi— gi 1211583352 
flavin containing polyamine oxidase Pcl2g08750 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211582324 
tyrosinase Pc21g22040 [Penicillium chrysogenum Wisconsin 54-1255] g i|211590886
thioredoxin family (POL TRX) Pc21gl 1280 [Penicillium chrysogenum Wisconsin 54-1255] gi |2 1 1589871
anicyrin repeat protein (ANT) Pc22gl 7420 [Pem cttum chrysogenum Wisconsin 54-1255] gl 1211592672
ATP synthase beta subunit, nucleotide binding domain Pc21gl0070[P en ic*um  chrysogenum W isc_gi|211589753 
chitinase (G ift chitinase. Glyco_18) Pcl3g09520 [Penicttum chrysogenum Wisconsin 54-1255] gi|211S83995
Eukaryotic aspartyl protease (Asp) Pc 13g09680 [Penicillium chrysogenum Wisconsin 5 4-1255] gi 1211584011 
m alate dehydrogenase (MDH_glycosomal_mitochondHal/<AOB_Rossman) Pcl2g04750 [PenkiKu... gi 1211581963 
chitinase (GH18_chitinase) Pc20g02250 [Penicillium chrysogenum Wisconsin 54-1255] gi|21158751B
exo-beta-1,3-glucanase (giycosyl hydrolase family 5 ) PclBg02600 [Penicillium chrysogenum Wise— gi 1211586835 
Thioredoxin reductase (TrxB) Pc22g22810 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211593192
glyceraldehyde-3-phosphate dehydrogenase Pc21gl4560 [Penicillium chrysogenum Wisconsin 5 4 -_ g i|2 1 1590181 
Hyp-type peroxidase family protein Pc22gl7410 [Penicillium chrysogenum Wisconsin 54-1255] gi|211592671
enolase/allergen Asp F 22 [Penicillium mameffei ATCC 18224] gi|212537S63
nascent polypeptide-associated complex (MAC) subunit, putative Pc22g23300 [Penicillium chrysog- gi 1211593238 
detected protein unk function 93_kDa Pc22g04470 [Penicillium chrysogenum Wisconsin 54-1255] g i|2 U 59 15 02
2n-dependent alcohol dehydrogenase Pcl6g08460 [Penicillium chrysogenum Wisconsin 54-1255] gi|211S85789
chaperonin (Hsp70) Pcl2gl0670 [Penicillium chrysogenum Wisconsin 54-1255] g i|2 1 1582507
detected protein Hemerythrin HHE cation binding domain 25_k0a Pc21g01390 [PenidMum chrysog-gi 1211588920 
c e l w a lin tegrity  signaling protein Is p l/P i ll Pcl8g06150 [Penicltum  chrysogenum Wisconsin 5 4 -l_ g i|2 U S 8 7 1 7 5  
detected protein unk function 19_kDaPc21g04520 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211589209 
detected protein unk function 20 kDa [Penicillium chrysogenum Wisconsin 54-1255] gi|211581800
eukaryotic translation elongation Factor 1 subunit Eefl-beta Pcl3g08810 [PenfdHum chrysogenu— gi 1211583926 
chaperonin (Hsp90) Pcl2g05640 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211582027
detected protein unk function 28_kDa Pc20gl0220 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211588250 
1,3-beta-gkicanosykransferase Pcl5g01030 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211584950
detected protein unk function 15_k0a Pcl2gl4960[P enic llium  chrysogenum Wisconsin 54-1255] gi|21158Z918
hydrophobinPc21gl8350 [PenidMum chrysogenum Wisconsin 54-1255] g i|211590540
cobalamin-independent methionine synthase (CIMS) Pc22gl8630 [Penicillium chrysogenum W isco- g i|2 1 1592785 
inorganic pyrophosphatase Pc20g07230 [Penic Hlium chrysogenum Wisconsin 54-1255] gi 1211587983
Cytochrome c oxidase subunk Vb Pcl8g04080 [Penkiilium chrysogenum Wisconsin 54-1255] gi 1211586977
60S ribosomal protein L5 P c l3 g l 1570 [PenkBBum chrysogenum Wisconsin 54-1255] g i|2 1 1584194
hydrophobm Pc22gl4290 [Penicillium chrysogenum Wisconsin 54-1255] gi|211592370
Shwachman Bodian-Diamond syndrome (SBDS) protein Pc22g01230 [Penkittum chrysogenum W is_ g i|2 11591184 
outer mitochondrial membrane protein porin Pc22gl7958 [Penicillium chrysogenum Wisconsin 54-—g i|2 1 1592721 
smBar to conxliation-specific proteins Pc20g06270 [Penicillium chrysogenum Wisconsin 54-1255] gi 1211587891 
molecular chaperone NSP70 Pc22gl0220 [Penicillium chrysogenum Wisconsin 54-1255] gi|211592047
animal haem peroxidase family protein Pcl8g00240 [Penicillium chrysogenum Wisconsin 54-1255] g | 211586604 
calmodulin [PenMMum mameffei ATCC 18224] __________  gi 1212538221

P. chrysogenum GAPLAB_RH P. Madnus A. carbonarius
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Figure 5.9. An example view of a Scaffold™ results table compiled from LC/MS/MS analyses of eight fungal reference strains and the 

GAPLAB_RH isolate. Results have been sorted on type strain P. chrysogenum NRRL 807 (column 4, category B) and the number of unique 

spectra detected. Note that major proteins identified for the GAPLAB_RH isolate match Penicillium chrysogenum, but other fungi do not.
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Genus species tryptic peptides
Aspergillus clavatus G IL G Y T E D A IV S S D V N G D E R S S V F D A A A G IS L N P N F V K
Aspergillus flavus/oryzae G IL G Y T E D D IV S T D L IG D A H S S IF D A K A G IA L N E H F IK
Aspergillus fumigatus N IL G Y T E D D W S S D L N G D E R S S IF D A K A G IS L N P N F V K
Aspergillus nidulans G IL G Y T E D D IV S T D L N G D T R S S IF D A K A G IA L N S N F IK
Aspergillus niger G IL G Y T E D D IV S S D L N G D D H S S IF D A K A G IA L N S N F V K
Aspergillus terreus G IL G Y T E D E W S T D L N G D D R S S IF D A K A G IA L N E H F V K
Penicillium chrysogenum G IL G Y T E D Q IV S T D L N G D E R S S V F D A A A G IA L N A N F IK

Table 5.3. Region within glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that 

spans peptides diagnostic for identification of Aspergilli along with the comparable 

sequence from Penicillium chrysogenum. Cleavage sites at arginine and lysine 

residues are in BOLD.

As expected, protein profiles of the Aspergillus niger strains yielded many good 

quality matches to proteins from A. niger, including GAPDH, aspartic endopeptidase, 

cobalamine-independent methionine synthase, and enolase that were described in 

Chapter 4 as useful for classifying Aspergilli (Figure 5.10). Also, as previously 

observed, spectra from ATP synthase and calmodulin did not match samples to the 

correct species (Figure 5.10, rows 16 and 17) due to its considerable sequence 

similarity across the test organisms. Although Aspergillus carbonarius is 

taxonomically related to A. niger, A. carbonarius NRRL 67 spectra did not yield many 

good quality matches to A. niger protein sequences (Figure 5.10, column 7 category 

D). In fact, A. carbonarius NRRL 67 did not clearly group with any fungal species 

based on existing entries in the database, but did have a number of peptide matches 

from different species of Aspergillus and Penicillium. This is consistent with the 

previous profiles of A. carbonarius and A. niger and implies that A. carbonarius is not 

as closely related to A. niger as indicated by Peterson’s analysis based on DNA 

sequences from four loci (2008). An additional strain of A. carbonarius, NRRL 346, 

did not grow readily on minimal medium and was excluded from these analyses.



As with A. carbonarius, protein profiling of Petromyces alliaceous did not clearly 

group with any fungal species based on existing entries in the database, but did have 

a number of peptide matches from different species of Aspergillus and Penicillium. 

Paecilomyces lilacinus did yield matches to a cross section of peptides from a 

number of fungi, but did not clearly group with any organism in the database (data 

not shown). This supports earlier observations that tryptic digests of organisms that 

lack substantial amino acid sequence data in the reference database yield few 

erroneous matches to proteins from other organisms. Also, as previously observed, 

ATP synthase appears to be a poor candidate protein for identifying fungi because 

there is enough shared sequence across species that spectra are often matched to 

ATP synthase from the wrong organism (Figure 5.10, line 16, ATP synthase from 

P. chrysogenum).
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t«ed Proteins (450)

GPI anchored protein, putative An04g07530 [Aspergillus niger] 
beta-glucosidase [Aspergillus niger]
Cobalamine-independent methonine synthase (CINtS) An04g01750 [Aspergillus niger] 
Thioredoxin;Protein disulfide-isomerase (PDI) [Aspergillus niger]
GkNAc-PI de N-acetylase fam *y (P IG -i) An07g00510 [Aspergillus niger] 
detected protein unk function 27_kDa An08g06730 [Aspergillus niger] 
Aspergillopepsin A; Eukaryotic aspartyl protease (Asp) [Aspergittus amawori]

ATP synthase beta subunit, nucleotide-binding domain Pc21gl0070 [Pen 
caknodubn [PenkJkum m am effei ATCE 18224]

detected protein unk function 19_kDa An02g08300 [Aspergillus niger] 
detected protein unk function 55_kDa An07g05660 [Aspergillus niger] 
similar to  ce l w a l galactomannoprotein An08g09420 [Aspergillus niger]
Aldehyde dehydrogenase; AIDH [Aspergillus niger]
detected lys ine nch protein 56_kOa An01g07870 [Aspergillus niger]
Eukaryotic translation In itia tion Factor 5A (elFSA) An01g02900 [Aspergillus niger] 
molecular chaperone Hsp70 An07g09990 [Aspergillus niger] 
cydophftn-Uce pept idyl pro lyl cis-trans isomerase cypA [Aspergillus niger] 
enolase AnI8g06250 [Aspergtlus niger]
detected protein unk function 20_kDa Anl2g02680 [Aspergillus niger] 
transaklolase An07g03850 [Aspergillus niger] 
transketolase (TPP.TK) An08g06570 [Aspergillus niger]
A ry l CoA binding protein fam ily An02g02960 [Aspergillus niger]_________________

gi 1145258806 
gi 1209962175 
gi 1145256869 
gi 12501202 
g i| 145236994 
gi 1145240283 
gi 1129789

Glucoamytase; Glucan 1,4-alpha-glucosidase; 1,4-alpha D glucan ghicohydrolase (C3yco_hydro_l5~ gi 159799160 
detected protein unk function 39_kDa Anl5g02350 [Aspergillus niger] gi 1145250521
similar to  conidiation-specific proteins AnO 1 g 10790 [ Aspergilus niger] gi 1145230375
m alate dehydrogenase (MOH_glycosomal_mitochondrial,f,iADB_Rossman) An07g02160 [AspergdL. gi 1145237310 
Glyceraldehyde-3-phosphate dehydrogenase; GAPDH (NADB.Rossman, Gp.dh) [Aspergilus niger] gi 12494634 
th ioredoxin fam ily protein (TRX.family) An01g02500 [Aspergillus niger] gi 1145228757
detected protein unk function 15_kDa An08g06620 [Aspergillus niger] gi 1145240261
Nascent polypeptide-associated complex subunit beta; Beta-HAC [Aspergillus niger] gi 1143355005

nW tsc~gi| 211589753 
gi 1212538221

malate dehydrogenase (MDH_glycosornal_nHtochondriaU'lADB_Rossman) Anl5g00070 [AspergAu~gi | 145250065 
eukaryotic elongation factor 1 beta (Ef IB ) guanine nucleotide exchange domain An08g03490 [A sp -g r| 145239637 
ce l waH protein Anl4g02100 [Aspergillus niger] g i| 145248994
aspartic protease pepE [Aspergillus niger] gi 1145232965
detected protein with Ran-binding domain 28_kDa (RanBD) Anl8g02140 [Aspergillus niger) g i| 145254588
Catalase-peroxidase An0lg01830 [Aspergillus niger] g i| 145228627
Nascent polypeptide-associated complex subunit alpha; NAC-alpha; Alpha NAC [Neosartorya fis c h e -g i| 143354992 
detected protein unk function 21_kDa An09g00840 [Aspergillus niger] g i| 145241516
detected protein unk function 13_kDa Anl8g04120 [Aspergillus niger] g i| 145255128
conidial pigment biosynthesis oxidase (multicopper oxidases) Anl4g05370 [Aspergillus niger] gi 1145249642
alpha glucosidase (G lyco_hy*o_31) An01gl0930 [Aspergillus niger] g i| 145230403
60S ackfic ribosomal protein P2 Anl6g04930 [Aspergiflus niger] g i| 145252576
similar to  secreted (ftpeptidyi peptidase (Pep«dase_S9,DAP2, Esterase .lipase superfamily) A n l2 g _ g i| 145246582

g i| 145233179 
gi 1145237996 
g i| 145240813 
g i| 1169291 
gi 1145229807 
gi 1145228831 
gt 1145238854 
gi 1145238516 
gi 1145255754 
gi 1145246196 
gi 1145237640 
gi 1145240251 
gi 1145231936
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Figure 5.10. An example view of a Scaffold™ results table compiled from LC/MS/MS analyses of eight fungal reference strains and the 

GAPLAB_RH isolate. Results have been sorted on Aspergillus niger NRRL 363 (column 8, category E) and the number of unique spectra 

detected. A. niger strains have many high quality matches to protein sequences in NCBI for A. niger, other species do not. Although 

A. carbonarius is closely related to A. niger, relatively few spectra from A. carbonarius were matched to peptides from A. niger proteins.
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Sequencing of the ITS region of ribosomal DNA (rDNA). The products of the PCR 

amplification of genomic DNA with fungal ITS region primers were approximately 

600 bp, as expected for Aspergillus species (Henry et al., 2000), based on agarose 

gel separation of the reaction products. Sequencing of the ITS region confirmed the 

identity of the Aspergillus isolates as Aspergillus flavus. The multiple sequence 

alignment of the Aspergillus reference strains and field isolates is presented in 

Figure 5.11. The sequence of the ITS region of isolate P98b matched U34555 

Fusarium verticillioides with identities 462/464 (99%), using NCBI-BLAST2 to query 

EMBL Fungi, but also matched entries for other Fusarium species, such as 

F. napiform, F. sacchari, F. bulbicola, and F. proliferatum, with identical matching 

scores. Similarly, the sequence of the ITS region of isolate GAPI_AB_RH matched 

EU861295 Penicillium chrysogenum with identities 394/396 (99%), but also matched 

entries of other Penicillium species, such as P. citrinum, P. vinaceum, and 

P. oxalicum, with identical matching scores.
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CLUSTAL 2.0.8 multiple sequence alignment
1957_ITS_consensus 
C1ayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
P lymouth_ITS 4

AACCTCCCACCCGTGTTTACTGTACCTTAGTTGCTTCGGCGGGCC C GCCATTCATGGCCG 62
--------------------------------- TCGGCGGGCCCGCCATTCATGGCCG 25
AACCTCCCACCC GTGTTTACTGTAC CTTAGTTGCTTC GGCGGGC C C GC C ATTCATGGC C G 119 
AACCTCCCACCCGTGTTTACTGTACCTTAGTTGCTTCGGCGGGCCCGCCATTCATGGCCG 74 
AACCTCCCACCC GTGTTTACTGTAC CTTAGTTGCTTCGGC GGGC C C GC CATTCATGGC C G 120

* * * * * * * * * * * * * * * * * * * * * * * * *

1957_ITS_cons ensus 
C1ayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
Plymouth_ITS 4

C C GGGGGCTCTC AGC C C C GGGC CCGCGCCCGCC GGAGACAC C AC GAACTCTGTCTGATCT 122 
CCGGGGGCTCTCAGCCCCGGGCCCGCGCCCGCCGGAGACACCACGAACTCTGTCTGATCT 85 
CCGGGGGCTCTCAGCCCCGGGCCCGCGCCCGCCGGAGACACCACGAACTCTGTCTGATCT 179 
C C GGGGGCTCTC AGC CCCGGGCCCGCGCCCGCC GGAGAC AC C AC GAACTCTGTCTGATCT 134 
C C GGGGGCTCTC AGC CCCGGGCCCGCGCCCGCC GGAGACAC C AC GAACTCTGTCTGATCT 180

1957_ITS_consensus 
Clayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
Plymouth_ITS4

AGTGAAGTCTGAGTTGATTGTATCGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGG 182 
AGTGAAGTCTGAGTTGATTGTATCGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGG 145 
AGTGAAGTCTGAGTTGATTGTATCGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGG 239 
AGTGAAGTCTGAGTTGATTGTATC GCAATCAGTTAAAACTTTCAACAATGGATCTCTTGG 194 
AGTGAAGTCTGAGTTGATTGTATCGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGG 240

1957_ITS_consensus 
C1ayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
Plymouth_ITS4

TTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAGTGTGAATTGCAGAATTCCG 242 
TTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAGTGTGAATTGCAGAATTCCG 205 
TTC C GGC ATC GATGAAGAAC GCAGC GAAATGC GATAACTAGTGTGAATTGCAGAATTC C G 299 
TTC C GGCATC GATGAAGAAC GCAGC GAAATGC GATAACTAGTGTGAATTGCAGAATTC C G 254 
TTC C GGC ATC GATGAAGAAC GCAGC GAAATGC GATAACTAGTGTGAATTGCAGAATTC C G 300 
* * * * * * * * * * * * * * * ■ » * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ' # * * * * * * *

1957_ITS_consensus 
C1ayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
P1ymouth_ITS4

TGAATC ATC GAGTCTTTGAAC GC AC ATTGC GC C C C CTGGTATTC C GGGGGGC ATGC CTGT 302 
TGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGT 265 
TGAATC ATC GAGTCTTTGAAC GC ACATTGC GC C C C CTGGTATTC C GGGGGGCATGC CTGT 359 
TGAATC ATC GAGTCTTTGAAC GCACATTGC GC C C C CTGGTATTC C GGGGGGCATGC CTGT 314 
TGAATCATC GAGTCTTTGAAC GCACATTGC GC C C C CTGGTATTC C GGGGGGCATGC CTGT 360

1957_ITS_consensus 
C1ayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
Plymouth_ITS 4

CCGAGCGTCATTGCTGCCCATCAAGCACGGCTrGTGTGTTGGGTCGTCGTCCCCTCTCCG 362 
CCGAGCGTCATTGCTGCCCATCAAGCACGGCTTGTGTGTTGGGTCGTCGTCCCCTCTCCG 325 
C C GAGC GTC ATTGCTGC C CATC AAGCAC GGCTTGTGTGTTGGGTC GTC GTC C C CTCTC C G 419 
C C GAGC GTCATTGCTGC C CATCAAGCAC GGCTTGTGTGTTGGGTC GTC GTC C C CTCTC C G 374 
C C GAGC GTCATTGCTGC C CATCAAGCAC GGCTTGTGTGTTGGGTC GTC GTC C C CTCTC C G 420
* *  i f * * * * * * * * * * * * * * * ' * * * * * * * * * * ' * * * * * * * ' * * * * * ' * * * * * * * * * * * * * * * * * * * *

1957_ITS_consensus 
C1ayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
Plymouth_ITS4

GGGGGGAC GGGC C C C AAAGGC AGC GGC GGC AC C GC GTC C GATC CTC GAGC GTATGGGGCT 422 
GGGGGGAC GGGC C C C AAAGGC AGC GGC GGC AC C GC GTC C GATC CTC GAGC GTATGGGGCT 385 
GGGGGGAC GGGC C C C AAAGGC AGC GGC GGC AC C GC GTC C GATC CTC GAGC GTATGGGGCT 479 
GGGGGGAC GGGC C C C AAAGGC AGC GGC GGC AC C GC GTC C GATC CTC GAGC GTATGGGGCT 434 
GGGGGGACGGGCCC CAAAGGCAGC GGC GGCAC C GC GTC C GATC CTC GAGC GTATGGGGCT 480

1957_ITS_consensus 
C1ayton270_ITS 
3357_ITS4-ITS4. abl 
Sandhills_ITS 
Plymouth_ITS4

TTGTCACCCGCTCTGTAGGC CCGGCCGGCGCTTGCCGAACGCAAATCAATCTTTTTCCAG 482 
TTGTCAC C C GCTCTGTAGGC C C GGC C GGC GCTTGC C GAAC GCAAATCAATCTHTTTC CAG 445 
TTGTC AC C C GCTCTGTAGGC C C GGC C GGC GCTTGC C GAAC GCAAATCAATCTTTTTC CAG 539 
TTGTC AC C C GCTCTGTAGGC C C GGC C GGC GCTTGC C GAAC GC AAATCAATCTTTT- C C AG 493 
TTGTC AC C C GCTCTGTAGGC C C GGC C GGC GCTTGC C GAAC GC AAATCAATCTTTT- C CAG 539

1957_ITS_consensus 
Clayton270_ITS 
3357_ITS4-ITS4.abl 
Sandhills_ITS 
Plymouth_ITS4

GNTGAC CTC GNATC AGG------- 499
GHTGACCTCG-------------- 455
GT-GACCTCGATCAGGAGGANCNA 562
GTHGAC CTCNGATCAGG------- 510
GTGA—  C CTC GATCAGGAGATCNA 561

Figure 5.11. Multiple sequence alignment of ITS regions from the Aspergillus flavus 

type strain NRRL 1957, the sequenced strain NRRL3357, and the Aspergillus field 

isolates.
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Protein profiling of Apoplastic Wash Fluid from maize kernels. Profiling of proteins 

from AWF was conducted to determine if there was sufficient fungal protein in the 

AWF to detect and identify the fungal pathogen in host tissue. The analysis yielded 

10,000 MS/MS spectra per sample from 50 pL of apoplastic fluid recovered from four 

maize kernels. When searched versus a fungal subset of UniProt/Swiss-Prot, a total 

of 51 proteins, from maize and Aspergillus) were identified in the AWF samples 

(Figure 5.12). Not only were Aspergillus proteins detected, but the types of peptides 

found were sufficient to classify the organism as A. flavus. For example, a 

subtilisin-like protease called oryzin was detected and yielded a tryptic peptide 

specific to A. flavus/oryzae (Table 5.4). In addition, the maize proteins detected are 

different between control and inoculated, as if in response to infection (note 

chitinase), and many of the fungal proteins detected are enzymes involved in 

digesting protein and polysaccharide from the host.

Genus species tryptic peptides
Aspergillus clavatus GQASTNYVYDTSAGAGTYAYVVDSGINVDHIEFQGR
Aspergillus flavus/oryzae GQQSTDYIYDTSAGEGTYAYVVDSGVNVDHEEFEGR
Aspergillus fumigatus GQASTDYIYDTSAGAGTYAYVVDSGINVNHVEFESR
Aspergillus nidulans G EASTTYVYDTSAG EGTYAYVVDTGINADH EE FGGR
Aspergillus niger GG S STDYIYDD SAG EGTYAYVVDTGILATHN E FGGR
Aspergillus terreus GQPSTDYIYDTNGGEGTYAYVVDTGINVDHEEFEGR

Table 5.4. Tryptic peptide of oryzin diagnostic for identification of Aspergilli. 

Cleavage sites at arginine residues are in BOLD.
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M a la te  dehydrogenase, m itochondrial (F ra g m e n ts ) O S = Im p e ra ta  cylindrica PE=1 SV=1
1 4 -3 -3 -lik e  prote in  G F14-6 0 S = Z e a  m ays GN=GRF1 PE=3 SV=1
A lpha-am ylase A ty p e -1 /2  OS =  Aspergillus o ryzae  G N = a m y l PE=1 SV=1
Enolase 2  0 S = Z e a  m ays GN=EN02 PE - 2  SV=1
Glucoam ylase O S-Aspergillus o ryzae  GN=glaA PE= 2  S V=2
Superoxide dism utase [C u-Zn] 4AP O S=Zea m ays GN=SODCC.2 PE = 2  SV=2
UTP—glucose-1 -phosphate  u ridyly ltran sferase  O S=Hordeum  vu lg are  PE = 2  SV=1
Lactoylg lutath ione lyase O S=O ryza sativa  subsp. japonica GN=GLX-I PE=1 S V=2
Alanine am inotransferase  2  OS=Panicum  m iliaceum  PE=1 SV=1
2,3 -b isphosphoglycerate-independent phosphogiycerate m utase  O S=Zea m ays PE=1 SV=1  
17.5 kDa class I I  h e a t shock prote in  O S=Zea m ays  PE = 2  SV=1
Alpha galactosidase O S=O ryza sativa  subsp. japonica G N =O slO g0493600 PE=1 SV=1  

Phosphogiycerate kinase, cytosolic O S=Triticum  aes tivum  PE = 2  S V = l  
Non-specific lip id -transfer pro te in  O S=Zea m ays PE "1  SV=1  

Trypsin /facto r X IIA  inhibitor O S=Zea m ays  PE=1 S V=2
1 4 -3  3 -lik e  prote in  GF14-C O S=O ryza s ativa  subsp. japonica GN=GF14C PE=1 SV=1
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Figure 5.12. An example view of a Scaffold™ results table compiled from LC/MS/MS analyses of two replicates each of AWF from control 

(uninfected) and infected (inoculated with Aspergillus flavus) maize kernels. Left two columns are control samples; right two columns infected. 

Note differences in proteins detected between control and infected maize, such as endochitinase (line 4) in infected maize.
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Conclusions

The identities of field isolates tentatively identified as A. flavus were confirmed based 

on the large number of high quality matches to A. flavus entries in the reference 

database and the identifications were further supported by sequencing of the ITS 

regions of the isolates. Protein profiling supported the identification of the Penicillium 

isolate, GAPLAB_RH, as Penicillium chrysogenum, based on the large number of 

high quality matches to P. chrysogenum entries in the NCBI database, but does not 

definitively classify the organism due to lack of sequence data for other Penicillium 

species for comparison. The results of profiling the additional fungal strains from 

USDA support the conclusion that protein profiling is useful for the classification of 

Aspergilli. However, these results also highlight the requirement for specific 

sequence data for organisms of interest to support identification of unknown 

organisms by LC/MS/MS protein profiling and the need for information from other 

identification methods, such as morphology and nucleic acid sequencing, for 

definitive identifications, particularly if the test organism may not be closely related to 

available reference organisms.

Protein profiling performed well in this set of experiments as a technique for detection 

and identification of Aspergilli. In those species with sequenced genomes, protein 

profiling is a means of classifying an organism based on multiple genetic characters 

in a single, simple analysis. Also, the protein analysis method was capable of 

detecting proteins in relatively small samples with sufficient sensitivity to allow 

detection and speciation of Aspergillus flavus and did not yield false positive 

identifications for non-Aspergillus isolates. The technique appears to be useful as an 

aid for classifying other fungi, at least to the genus level, but so far it is unclear 

whether the technique can resolve other genera to the species level. In addition to
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its value for detection and identification, protein profiling also provides additional 

biochemical information on the organism in the context of the test systems studied by 

identifying the predominant enzymes and structural proteins present under different 

experimental conditions.
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Chapter 6: Discussion and Implications for Future
Research

Discussion

Morphology and genetic sequence analysis are well established methods for 

classifying and identifying fungi. In this study, reference strains of different 

Aspergillus species, Penicillium chrysogenum, Candida albicans, and Cryptococcus 

neoformans were characterized using LC/MS and GC/MS biochemical profiling 

techniques in order to find specific small molecules, peptides or biochemical profiles 

that can be used in addition to established methods to detect and classify Aspergilli 

to the species level. Subsequently, analytical methods developed for characterizing 

the reference strains were applied, along with morphology and PCR, to characterize 

and identify several laboratory and field isolates.

GC/MS profiling did yield preliminary data that suggested that clustering and 

discriminant analysis of TMS-derivatized small molecules may be of some use for 

classifying or characterizing Aspergilli. However, it was clear that the technique was 

impractical for rapid, routine identification of these fungi, because classification by 

GC/MS profiling would require concurrent analysis of a large set of reference 

organisms to verify accurate groupings. Also, as with identification by morphology, 

identification by GC/MS profiling can be confounded by organisms with atypical 

phenotypes as was the case with classification of A. terreus NRRL 274 by GC/MS. 

This organism grouped correctly with other reference strains of A. terreus based on 

discriminant function analysis of the complete GC/MS profiling data set, but when a 

smaller data set based on polyols and trehalose was selected, the test sample of 

NRRL 274 appeared to have an unusual profile that segregated the strain from other
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reference strains. GC/MS profiling was a useful technique for surveying the overall 

small molecule composition of the biomass and exploring biochemical differences 

between organisms, but was not suitable as a primary technique for identifying 

Aspergilli.

Targeted LC/MS/MS analyses of secondary metabolites, such as mycotoxins, was 

useful for confirming species identity in some cases, but mycotoxin production was 

not a reliable indicator because mycotoxins often require specialised media to 

optimize production and there were mycotoxigenic and non-mycotoxigenic strains 

within the same species. Small molecule profiling of the reference strains by LC/MS 

yielded a much richer data set than GC/MS profiling, but was less reproducible and 

quantitative. The resulting data was evaluated for qualitative comparisons. Small 

molecule analysis provided some supporting data for classifying Aspergilli, but these 

data were not suitable as primary indicators of genus or species. One peptide-like 

compound detected in spore washes appeared to be unique to A. flavus and 

A. parasiticus. Attempts to identify this compound by LC/MS/MS lead to 

development of method for analysis of protein the evaluation of protein profiling as a 

technique for identifying Aspergillus species.

Protein profiling by analysis of tryptic digests of fungal biomass produced high quality 

matches to a large number of fungal proteins and many of these proteins were 

correctly identified to the species of the reference strains. Although different 

organisms, tissue types, and growth conditions may produce different cross sections 

of proteins, many proteins yield tryptic peptides that are unique and can be used for 

classification to the species level. In effect, protein profiling matched the organisms 

to genus or species based on a large number of genetic characters without directly 

sequencing the DNA of the test organisms or limiting the evaluation to a few specific 

genetic characters as with PCR. However, because the technique relies on matching
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spectra to existing sequences in a database, identification by protein profiling is 

limited to those fungi whose genomes have been sequenced or for which there are 

adequate nucleotide sequences available from ESTs. The utility of the technique will 

improve as sequencing is becoming much cheaper and more routine and more 

sequence data is becoming available in the public domain for a wider range of 

organisms. In fact, a recent review by Demirev and Fenselau (2008) describes the 

use of protein analysis by mass spectrometry for the rapid identification of Bacilli. 

Protein profiling should work well for organisms that have high quality sequence 

available and exhibit sufficient variability at the amino acid level. This was 

demonstrated in the case studies with the analysis of the Fusarium and Penicillium 

isolates. Protein profiling readily verified the genus of the Fusarium isolate, but 

identification of Penicillium chrysogenum was not possible until the sequence was 

published (van den Berg et al. 2008)for the organism and a FASTAfile of the amino 

acid sequences of the proteins were available.

Identification by protein profiling is similar to identification by molecular techniques 

because differences in genetic sequences between organisms are the basis for 

classification. However, some of the target genes routinely used for classification by 

analysis of nucleic acid sequences can’t be used for identification by amino acid 

sequence. Nucleotide sequences for a number of major proteins detected, such as 

actin, tubulin, Hsp70, GAPDH, enolase, and superoxide dismutase have been used 

for a number of phylogenetic studies (Gouy and Li 1989, Frisvad 1998, Samson et al. 

2006, Yaguchi et al. 2007). Amino acid sequences of peptides from GAPDH, 

enolase, pyruvate decarboxylase, phosphogiycerate kinase, and alcohol 

dehydrogenase, along with a number of other proteins, provided high probability 

matches of fungi to correct genus and species. While these proteins did share 

peptide amino acid sequences across the species tested, these proteins were
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present at sufficiently high levels that the peptide coverages were often greater than 

20% and there were enough differences in the sequences that protein profiling of 

these proteins by LC/MS/MS could be used to correctly identify the test organisms to 

the species or at least section level. However, ATP synthases, ribosomal proteins, 

and chaperonins, as a rule, were relatively abundant and often had good sequence 

coverage, but the amino acid sequences of these proteins were relatively conserved. 

These sequences could be used to classify a fungus to the genus level, but not to the 

species level. Actin and tubulin were not major proteins detected in the total protein 

extract and the peptide coverages obtained for these proteins were often less than 

20%. Also, protein profiling can only classify fungi based on transcribed sequences 

that code for proteins. The amplified sequences useful for taxonomy, such as actin 

and tubulin, contain non-coding regions that tend to show more variation than coding 

regions (Webster and Webster 2007). Similarly, the internal transcribed spacers 

(ITS) are transcribed, but do not code for proteins.

A disadvantage of classifying organisms by protein profiling compared to PCR is that 

protein profiling does not generate ‘de novo sequence from peptide MS/MS spectra 

unless the software package(s) used for processing peptide MS/MS data employ 

special algorithms, such as SPIDER (Han et al. 2004) in PEAKS (Bioinformatics 

Solutions Inc.), that are capable of doing so. Commonly used software packages, 

such as Bioworks™ and Scaffold™ that were used in this study, rely on matching 

MS/MS spectra to theoretical spectra generated based on amino acid sequences in 

FASTA databases and do not generate high quality ‘de novo’ sequence based solely 

on interpretation of MS/MS spectra. Consequently, if only spectral matching is 

employed for data processing and a test organism has small genetic differences 

relative to sequenced strains, the resulting changes in amino acid sequences would 

generate mismatches between spectra for the test organism and the corresponding 

sequences in the reference database. For example, A. parasiticus is closely related
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to A. flavus and A. oryzae, both sequenced, and many peptides and proteins match 

very well with those of the sequenced species, but in some cases the number of 

peptides identified and the confidences for protein and peptide identifications may be 

somewhat lower than for sequenced species. Likewise, A. carbonarius is closely 

related to A. niger and tends to group with A. niger based on GAPDH, pyruvate 

decarboxylase, and alcohol dehyrogenase peptides, but the overall matching was 

much more ambiguous than for test samples from sequenced species. A. 

ochraceous and A. westerdijkiae could not be classified by LC/MS/MS because 

nucleotide sequences specific to these organisms were not readily available and 

MS/MS spectra yielded lower confidence matches to peptides from other organisms 

in the database.

Other factors can influence the speed and quality of classification by protein profiling. 

Different matching algorithms (SEQUEST® in BioWorks™, XITandem in Scaffold™) 

generally yielded very similar protein matches, but specific peptide matches tended 

to vary between programs and the parameters used for processing. The reference 

FASTA database had a major influence on the quality of matches. A subset of NCBI 

sequences selected for fungi was the primary reference FASTA used for searches, 

but this large public database is not particularly well annotated and some errors in 

NCBI entries were noted during review. For example, in preparing multiple 

alignments, a large gap was noted in the NCBI entry for ATP synthase from A. niger. 

This required the manual addition of an ATP synthase sequence from the A. niger 

database of the U.S. Department of Energy Joint Genome Institute (JGI). In some 

cases, more effective searches may require searching versus FASTA databases 

specific to the target organism from alternate sources, such as the UniProt 

Knowledgebase, the Broad Insitute, EMBL-EBI, JGI, or The Institute for Genomic 

Research (TIGR), now part of the J. Craig Venter Institute (JCVI).
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Although protein profiling proved to be a very powerful tool for identification of 

Aspergillus, identification of fungi is an iterative process and other factors were 

considered for final identification. Morphology was a primary factor in the preliminary 

identification of fungal isolates from the case study. There will be many fungi that do 

not present distinctive colours or structures, but when present, unique morphological 

characteristics can quickly narrow the list of possible matches. The source material 

is also a consideration in deciding which organism is a likely match, in the case 

study, both Aspergillus flavus and Fusarium verticilioides are commonly isolated from 

maize, so good preliminary identifications could be made based on which organisms 

were expected in the source material and the observed morphologies in culture. 

Protein profiling and ITS sequencing provided more definitive identification of the 

isolates.

Protein profiling is relatively fast (analysis can be accomplished in one day) and 

accurate for identification of Aspergillus and the simple processing method uses 

inexpensive reagents, but requires analysis on rather expensive mass 

spectrometers. PCR of the ITS region requires some expensive reagents and 

equipment, but inexpensive sequencing services are generally available in 

commercial and academic facilities. One of the major advantages of protein profiling 

over ITS sequencing, is that protein profiling provides a great deal of additional 

biochemical information on the organism by identifying the predominant enzymes 

and structural proteins present under different experimental conditions. This aspect 

of protein profiling will be exploited in ongoing studies with Aspergillus and other 

organisms.
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Future Research

The CxP/DEA/HED protein extraction method developed for this study had been 

implemented as a standard method for protein analysis in the Genomic Sciences 

Laboratory at NC State University and has been effective in extracting proteins from 

a variety of other biological matrices, including bacteria, nematodes, daphnids, fish, 

plant leaves and fruit, mammalian and avian tissue, and for extracting proteins from 

agarose and acrylamide gels. The resulting protein samples can be used to prepare 

tryptic digests for LC/MS/MS analysis, as in this study, or with further processing, can 

be separated by SDS-PAGE. Additional method development is in progress to adapt 

the procedure for preparing samples suitable for two-dimensional gel electrophoresis.

In other studies that will be reported elsewhere, the extraction procedure has been 

shown to be compatible with protein analyses that use amine-reactive isobaric mass 

tags, such as iTRAQ® (Invitrogen) or Tandem Mass Tags (TMT®, Proteome 

Sciences) for relative quantitation. Isobaric tagging produces peptides with chemical 

labels such that identical peptides from differentially labelled samples have the same 

mass and chromatographic properties, but on MS/MS fragmentation yield different 

reporter ions (Thompson et al. 2003, Domon and Aebersold 2006, Aggarwal et al. 

2006, Wiese et al. 2007). In the labelling process, the tryptic digest of each sample 

for comparison is labelled with its own unique tag, then all the samples are mixed 

and analysed in the same chromatographic run. The ratios of the reporter ions (a 

unique ion contributed by each labelled sample) are used to determine the relative 

abundances of peptides and the associated proteins in the samples. This will be 

particularly valuable for sample to sample comparisons of protein concentrations in 

time courses, induction/inhibition experiments, and studies of host-pathogen 

interactions.
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Several follow up studies on Aspergillus are in progress to apply protein profiling to 

examine additional species in collaboration with the United States Department of 

Agriculture (USDA) National Center for Agricultural Utilization Research (NCAUR; 

Peoria, Illinois, USA) and the Centers for Disease Control and Prevention (CDC; 

Atlanta Georgia, USA). These studies may involve genomic sequencing, generating 

cDNA libraries, or cloning and sequencing specific genes because adequate 

sequence data may not be available for some of the organisms. Other studies are 

focused on further characterising host/pathogen interactions between Aspergillus 

flavus and maize using expression analysis (microarrays), targeted analyses, small 

molecule profiling and protein profiling, including the use of isobaric mass tags.

Conclusion

Biochemical profiling techniques based on GC/MS and LC/MS were successfully 

applied to survey the small molecule and protein composition of Aspergillus. While 

small molecule profiling generated a large volume of data and some interesting 

leads, small molecule profiling did not generate reliable biochemical patterns for 

definitively identifying Aspergilli, a major objective of the study. Protein profiling was 

a very effective technique for identifying Aspergillus species that have publicly 

available sequence data and the protein analysis methodology developed for this 

study has found wider applications for biochemical studies of Aspergillus and other 

organisms.
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