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ABSTRACT

ccess to energy is fundamental to civilisation, both as economic and social
ﬂ development. This is fuelling a growing demand for reliable, affordable and
clean energies. The current problems related to climate change have made imperative
the search of technologies that can produce higher amounts of energy at lower
emission rates. Therefore, technologies such as swirling flows with premixed lean

injection have been characterized as one of the most reliable to achieve this objective.

However, the use of this technology implicates the appearance of phenomena that
have been barely studied such as the manifestation of coherent structures that are
crucial for the stability and high efficiency of the combustion process, and which have
been assumed from indirect measurements. Moreover, these structures have been
recognised as major players in the generation of instabilities such as pressure and heat
transfer variations, internal vibrations and flashback into the mixing chambers.
Therefore, a better understanding of these structures will allow the design of better

burners and a greater control over the former, permitting a more efficient process.

This project is intended to reveal some of the characteristics of these structures,
showing their high 3 dimensionality and high dependence on geometrical parameters,

equivalence ratio, Swirl and Reynolds numbers, amongst other factors.

It is recognised how under isothermal conditions the system produces strong
Precessing Vortices that are fundamental in the final shape of the flow field, while the
Central Recirculation Zones are dependent on the pressure decay ratio inside of the
combustion chamber. Combustion conditions showed the high dependence on the
method of fuel injection used, with the appearance of stronger structures at lower
equivalence ratios when high amounts of premixed gas were pumped into the system
and the change in shape of the recirculation zones by using different injectors.
Flashback demonstrated to be a factor highly related to the strength of the Central
Recirculation Zone for those cases where a Combustion Induced Vortex Breakdown
was allowed to enter the swirl chamber, whilst cases where a bluff body impeded its
passage showed a considerable improvement to the resistance of the phenomenon.
The use of nozzle constrictions also reduced flashback at high Re. All these results

were aimed to contribute to better designs of future combustors.












































































































































































































































































































































































































































































































































































































































































































































































































































































































