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Abstract
An intelligent radar sensor concept has been developed using a modelling approach 

for prediction of sensor performance, based on application of sensor and environment 

models. Land clutter significantly impacts on the operation of radar sensors operating 

at low-grazing angles. The clutter modelling technique developed in this thesis for the 

prediction of land clutter forms the clutter model for the intelligent radar sensor. 

Fusion of remote sensing data is integral to the clutter modelling approach and is 

addressed by considering fusion of radar remote sensing data, and mitigation of 

speckle noise and data transmission impairments. The advantages of the intelligent 

sensor approach for predicting radar performance are demonstrated for several 

applications using measured data.

The problem of predicting site-specific land radar performance is an important task 

which is complicated by the peculiarities and characteristics of the radar sensor, 

electromagnetic wave propagation, and the environment in which the radar is 

deployed. Airborne remote sensing data can provide information about the 

environment and terrain, which can be used to more accurately predict land radar 

performance.

This thesis investigates how fusion of remote sensing data can be used in conjunction 

with a sensor modelling approach to enable site-specific prediction of land radar 

performance. The application of a radar sensor model and a priori information about 

the environment, gives rise to the notion of an intelligent radar sensor which can 

adapt to dynamically changing environments through intelligent processing of this a 

priori knowledge.

This thesis advances the field of intelligent radar sensor design, through an approach 

based on fusion of a priori knowledge provided by remote sensing data, and 

application of a modelling approach to enable prediction of radar sensor performance. 

Original contributions are made in the areas of intelligent radar sensor development, 

improved estimation of land surface clutter intensity for site-specific low-grazing 

angle radar, and fusion and mitigation of sensor and data transmission impairments in 

radar remote sensing data.
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Chapter 1

Introduction

This introductory chapter starts with a discussion on the motivating factors for the 

development of a fusion-based intelligent radar sensor. Impairments which have a 

negative influence on radar performance are then discussed. A historical survey of 

intelligent radar systems follows, in which a number of unsolved problems are 

identified; and several are selected to form the basis of the research reported in this 

thesis.

1.1 Motivation

This Doctoral research program was part of a larger research project funded by the 

Data and Information Fusion Defence Technology Centre (DIF DTC) [1]. The 

objective of this research programme was to investigate impairments caused by 

sensors, radio channels, communication equipment and the environment. The aim of 

the project is to improve the reliability and effectiveness of data and information 

fusion algorithms by means of modelling, evaluating and mitigating errors appearing 

in sensors and their associated data communication systems. Therefore, the scope of 

this thesis is restricted only to problems that can be solved using a data fusion 

approach.

Data fusion can be applied for fusion of many different sources of information 

including but not limited to sensor outputs, sensor models, environment models and 

other data such as human observations, databases and knowledge-based data. Data 

fusion provides a method for combining information from multiple sources to produce 

an observation of a particular event with higher accuracy than that obtained from any 

individual source. In remote sensing applications data fusion is commonly used for 

fusing information from various modalities and sources [2, 3]. Within the data fusion

1



community the commonly accepted model for data fusion systems is the JDL-User 

model [4], although, this model has not been adopted in this thesis.

This thesis focuses on data fusion for radar applications. Radar sensor measurements 

are affected by impairments produced by the sensor itself, the environment and other 

sources such as data transmission errors when the radar sensor is networked over 

communication links. These impairments degrade the quality of the data which will 

be used as data sources for the fusion process. Therefore, to provide accurate 

information for data fusion it is necessary to mitigate these impairments prior to 

fusion. Modelling techniques provide the opportunity for efficient mitigation by 

modelling sensors, the environment and other sources of impairments, allowing 

suitable mitigation techniques to be applied.

Radar sensors that are deployed in hostile environments experience degradation of 

performance in detection of targets caused by the peculiarities of the environment 

itself. The major factors which influence radar performance under these hostile 

conditions are signal returns from land clutter, multipath propagation effects, and the 

characteristics of the radar sensor. The influence of land clutter and multipath 

propagation are dependent upon the type of environment in which that radar is 

deployed. Therefore, we require information about the terrain in order to predict radar 

performance within the environment. This information can be provided by other 

sensor modalities such as multi/hyperspectral, remote sensing radar, or obtained from 

geographical databases.

The idea of using additional information to predict radar performance gives rise to the 

notion of an Intelligent Radar Sensor (IRS) which is aware of its surroundings. 

Through intelligent processing of this a priori information the radar can more 

accurately predict its own performance based on this site-specific knowledge of the 

terrain. The prediction of site-specific radar performance is an important task which 

has many potential applications such as radar sensor deployment, radar network 

coverage optimisation, and mission planning of aircraft flight paths to avoid detection 

by hostile radar. The core idea of the IRS presented in this thesis is based on fusion of 

remote sensing data about the environment to improve prediction of radar sensor 

performance for site-specific applications.
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Remote sensing of a geographical region by application of different sensors for the 

monitoring of the same area presents the opportunity to fuse the information obtained 

by the sensors, providing a more information-rich view of the area. Sensors operating 

in the radiowave band are particularly suitable for this type of application; because 

they utilise different frequency sub-bands, polarisations, incidence angles and 

different observation times to provide additional information and improve the 

reliability of the data. In addition, the use of data fusion permits a degree of 

robustness in the system, and may also be used to resolve any discrepancies between 

the sensors. Synthetic Aperture Radar (SAR) can provide information complementary 

to optical and multi/hyperspectral images, all of which are widely used for joint 

monitoring of a region of the Earth’s surface. Additionally, Digital Terrain Elevation 

Data (DTED) can be utilised to construct 3D models of the terrain profile. Remote 

sensing data therefore, provides a wealth of information about the land surface and 

fusion of this data presents the opportunity for improved understanding of the 

environment.

The IRS approach presented in this thesis fuses information about the environment 

obtained from various remote sensing modalities to assist in prediction of site-specific 

radar performance. Therefore, an important component of this IRS approach is the 

ability to share information between heterogeneous sensors, which requires reliable 

communication channels and a suitable framework for the transmission and sharing of 

data. In Section 1.1.1 we discuss the recent technological advancements that enable 

sensor communication and data sharing between sensors. All of these play an 

important role in the intelligent radar sensor concept presented in this thesis and 

enable the acquisition of up-to-date information about the environment in which the 

radar is deployed.

1.1.1 Sensor Communication and Data Sharing

Technologies and frameworks are being developed to allow communication and data 

sharing for heterogeneous sensors in a structured and meaningful fashion. By 

‘meaningful’ it is meant that: data produced by sensors can be stored along with 

contextual information which will allow other sensors to use the data in a more
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efficient manner. One such approach characterised as net-centric [5], is based on 

semantic webs and ontologies. Semantic webs give meaning and context to data and 

information so that they can be understood by computers and used in a more efficient 

way. Ontologies provide an agreement on the vocabulary for more efficient 

communication between devices. This allows heterogeneous sensors to communicate, 

understand each other and share information. The US Department of Defense (DoD) 

adopted the net-centric model for the architectural design of the Global Information 

Grid (GIG) in order to support Network-Centric Warfare (NCW) [6]. The GIG is 

defined by the US DoD [7] as

“... a globally interconnected, end-to-end set o f information 
capabilities, associated processes, and personnel for collecting, 
processing, storing, disseminating, and managing information on 
demand to warfighters, policy makers, and support personnel.”

A similar initiative by the UK Ministry of Defence (MoD) related to the net-centric 

approach is known as Network Enabled Capability (NEC) [8]. This uses a Service- 

Oriented Architecture (SOA). NEC focuses on networking people and assets to enable 

information sharing in order to fulfil mission objectives. A new tactical 

communication system known as Bowman [9] has been developed to replace the 

current British Armed Forces communication system. Bowman is a fundamental 

component of NEC providing the capability for data transmission and 

communication. Current research in NEC focuses on development of metrics and 

measures for enhancing system dependability [10].

The GIG and NEC methodologies provide a structured approach for sharing data and 

information between heterogeneous sensors. These give rise to the opportunity for 

many new intelligent radar sensor applications that can benefit from the availability of 

high-quality information on-demand and in real-time. This combined with reliable 

transmission channels such as Bowman permits the acquisition of data from disparate 

sensors to provide up-to-date information about the terrain. The infrastructure is 

therefore already in place to support the IRS approach.

We have discussed the emerging technologies that will enable the development of 

intelligent sensor systems which rely on information from other sensors. Section 1.2
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discusses the relevant background material associated with radar performance and 

how the environment affects radar sensor performance.

1.2 Background

Firstly, it is important to identify the impairments produced by sensors, 

communication equipment, and the environment. For radars, environmental factors 

such as precipitation and illumination (low lighting conditions or night time 

operation) pose no problem due to the operating characteristics of radar, such as the 

ability to obtain measurements in complicated environment conditions due to the 

properties of electromagnetic wave propagation. However, land clutter and multipath 

propagation effects are major problems which limit the operation and performance of 

radar.

For surface-sited radar used for detection and tracking, one of the major sources of 

impairment is land clutter which severely impairs the sensor’s ability to detect signals 

of interest. Clutter refers to the unwanted radiowave echoes reflected by the Earth’s 

surface and other objects in the environment such as birds, fog and rain. Clutter falls 

under two broad categories, volume clutter and surface clutter. Volume clutter refers 

to unwanted signal returns caused by precipitation, birds and insects. Surface clutter 

arises from reflections from the sea and land. Although volume and sea clutter are 

important factors it was decided to restrict attention to land-based radars and only 

consider land clutter. Land clutter modelling is considered in detail in Chapter 5. 

Signals produced by clutter can often be much stronger than the signal reflected by 

the object of interest. Ground clutter in particular, can severely degrade the 

performance of ground-based low-grazing radar for tasks such as tracking and 

detection of low altitude aircraft or missiles [11]. Strong clutter can mask signal 

returns from weak targets and as a result can severely impair radar performance.

Atmospheric refraction and ducting caused by radiowave propagation through the 

atmosphere can lead to bias in the target elevation angle resulting in inaccurate 

measurement of target position [12]. Atmospheric refraction and ducting can be 

efficiently modelled using parabolic equations with suitable boundary conditions [12],
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however this is beyond the scope of this thesis. Instead, a simplification for 

atmospheric refraction is implemented in this thesis. This is based on the assumption 

of a linear change in the refractive index with altitude, and leads to the four-thirds 

Earth radius model [13, 14].

Multipath interference is one of the most important non-free-space effects, resulting in 

constructive and destructive interference at the receiver. Multipath effects due to 

radiowave reflections from the Earth’s surface result in interference lobes in radar 

coverage [12], with the shape and position of the lobes dependent on characteristics of 

the surface reflecting the radiowave. This leads to an increase or decrease in radar 

detection range.

Signal returns from land surface clutter and multipath propagation are major sources 

of impairment for surface-sited radar operating at low-grazing angles. The presence of 

such impairments can significantly reduce the performance of the radar in detecting 

and tracking targets at low altitude due to signal returns from the land surface which 

can mask the signal returned from targets. Remote sensing data can provide valuable 

information about the environment and therefore can be used for prediction of land 

surface clutter for radar and multipath radiowave propagation. Modelling the radar 

and the environment provides the opportunity to improve radar sensor performance 

through application of a priori information about both the environment and the radar 

sensor to predict radar sensor performance with higher accuracy. The a priori 

information required depends solely on the phenomena to be modelled; for example, 

if we wish to predict strong discrete scatterers from the clutter returns then we may 

use data derived from a Geographic Information System (GIS) to identify the spatial 

location of problematic sources such as radio masts, power masts, and roads with 

moving traffic. Incorporating this a priori information directly within the radar sensor 

leads to the concept of an Intelligent Radar Sensor (IRS) that is capable of adapting to 

changes within the environment to improve overall radar performance.

The idea of an IRS is to predict radar sensor performance by modelling the 

characteristics of the sensor, its environment and interferences; then incorporating this 

a priori knowledge within the sensor system to improve sensor performance. The 

sensor model will provide a mechanism for predicting the performance of the sensor,
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providing the opportunity to tune operating parameters for better performance. The 

system should contain information about factors which affect the performance of the 

sensor, such as, terrain elevation data and land surface type.

From this discussion it is apparent that the accuracy of sensor measurements are not 

only affected by the characteristics of the sensor itself but are also influenced by 

environmental factors. Therefore, accurate modelling of sensors, the environment and 

other impairments is necessary to improve the accuracy of the sensor measurements. 

Data fusion plays a central role in the IRS system presented in this thesis by 

combining data from the sensor models, remote sensing data, and internal models (of 

clutter and the environment) to improve prediction of radar sensor performance.

There are four inter-related main topics for research within this thesis:

• Modelling radar performance

• Modelling impairments due to the environment

• Improving the efficiency of data fusion and modelling

• Developing an intelligent radar sensor concept

Specific innovations in these areas are discussed in Section 1.4. The issues 

surrounding these topics have been discussed in this section and we will now focus on 

the advancement of intelligent radar sensors within the radar research community. 

Section 1.3 assesses the current state of intelligent radar systems design and 

development.

1.3 A Historical Survey of Intelligent Radar System Development

The following historical survey on intelligent radar systems begins with innovations 

made during the late 1980s and concludes with the most recent contributions made up 

until the date of this thesis. The radar systems discussed in this section can be 

regarded as intelligent because they use additional information provided by other 

sources to augment radar operation and improve radar system performance.
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In order to develop intelligent systems it is necessary to draw from the Artificial 

Intelligence (AI) domain of which two areas are most applicable: robotics and expert 

systems (ES) [15]. The aim of robotics is to develop autonomous systems that are able 

to adapt to dynamic environments in order to meet pre-determined goals without 

human intervention. Expert systems, on the other hand, try to embed the behaviour of 

an expert within the system to allow autonomous behaviour of the system in an expert 

fashion. Knowledge-Based (KB) systems [16] are a particular form of ES, in which 

heuristics and rules are developed to allow the system to react in an intelligent 

manner. The following discussion identifies recent developments in the area of 

intelligent radar sensor design and describes how AI techniques are currently being 

employed to promote intelligent behaviour in radar systems.

1.3.1 Knowledge-Based Systems

The task of improving radar performance through the use of a priori information has 

been the subject of substantial attention in the radar research and development 

community [16-23]. KB systems aim to modify the radar signal processing chain in 

response to changes in the environment and operation conditions, by using additional 

information about the environment provided by other sensors, prior knowledge and 

prediction techniques.

Pioneering research into the use of AI for enhancing radar signal processing 

considered the KB approach for improved surveillance radar performance in tracking 

and identification of targets [16]. A knowledge base consisting of constraints on target 

dynamics was implemented to improve target tracking, and KB target feature 

matching to facilitate in target identification. In [15] an ES was proposed for 

intelligent allocation of radar sensor resources using a KB resource allocator to assess 

environmental conditions to determine zones (critical locations representing threat 

conditions) and prioritise radar resources accordingly. Data from previous scans 

provided information about the electromagnetic interference, which was used by the 

knowledge-base to assign radar parameters, modes and processors based on 

constraints set by the user. The idea of an intelligent radar sensor capable of learning 

and developing cognition of the environment through continuous interaction with the
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environment over time (i.e. normal radar operation of obtaining measurements) was 

proposed in [17]. The proposed architecture employed a knowledge processor to 

incorporate prior knowledge into the system and a Neural Network (NN) classifier to 

enable learning and modelling of sea clutter for improved detection of weak targets in 

sea clutter.

Initial research [18] conducted by the US Air Force Research Laboratory’s Sensors 

Directorate demonstrated how the Constant False Alarm Rate (CFAR) process (an 

adaptive detection algorithm in which the threshold is varied to maintain a constant 

false alarm rate) can be modified to improve probability of detection and lower false 

alarm rates by performing cell averaging only on cells with the same type of clutter as 

the test cell. This is achieved by using direct measurements obtained by the sensor to 

categorise each cell based on the statistical nature of the clutter. Further work led to a 

patent for an Expert System (ES) CFAR processor consisting of both rule-based and 

data-based approaches: using direct measurements obtained by the radar to assess the 

interference environment and then rule-based selection of an appropriate CFAR 

algorithm from the internal database of CFAR algorithms [19].

The idea of using additional data sources to improve the detection process as in [18] 

was extended to include the filtering and tracking processes of surveillance radar. 

This approach is known as Knowledge-Based Space Time Adaptive Processing 

(KBSTAP). The initial concept of KBSTAP was proposed for airborne early warning 

radar to deal with non-homogeneous environments [20] demonstrating the use of map 

data to place antenna nulls at the position of interference. Here the KB is responsible 

for selection of STAP configuration, algorithms, parameters, and utilising map data to 

select secondary data cells not containing interference. Further research [21] 

considered the use of terrain data from the United States Geological Survey (USGS) 

to improve the performance of STAP by intelligent selection of range rings 

surrounding the test range ring. This approach is known as Knowledge-Based Map 

Space Time Adaptive Processing (KBMapSTAP).

The US Air Force developed the initial KBSTAP architecture for knowledge-based 

control of the radar signal processing chain [22] as shown in Figure 1.1.
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Figure 1.1 Initial KBSTAP Architecture (taken from [23])

The system can be considered as four main processes: the Knowledge Base Controller 

(KBC), filter processor, detection processor, and track processor. The KBC controls 

the entire signal processing chain, using terrain information from various sources such 

as Digital Terrain Elevation Data (DTED), Land Clutter Land Use (LCLU) maps, and 

multi/hyperspectral data to modify the processing chain by selection of appropriate 

algorithms and parameters. KBC consists of a knowledge base containing information 

about the specific problem domain and an inference engine to reason, draw 

conclusions and leam. The next section discusses how this KB approach has been 

applied for autonomous sensor operation identifying which processes of the radar 

signal processing chain are modified and the various sources of a priori data used for 

each approach.
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1.3.2 Autonomous Systems Applications

This early research in KB systems [18-21] prompted the US Defense Advanced 

Research Projects Agency (DARPA) to launch the Knowledge-Aided Sensor Signal 

Processing Expert Reasoning (KASSPER) program to investigate how Ground 

Moving Target Indicator (GMTI) radar performance can be improved by using 

additional data sources and a priori information to minimise the impact of 

heterogeneous clutter [24, 25]. A real-time Knowledge-Aided (KA) STAP (KASTAP) 

architecture was proposed using a priori information and look-ahead scheduling. In 

the context of intelligent sensors KA and KB essentially refer to the same concept of 

using prior information to improve sensor performance. However, they have different 

architectures. A KA detection architecture for GMTI is presented in [26] for 

modification of STAP to improve target detection by mitigating the effects of non- 

homogeneous clutter. A three-stage approach was adopted. Firstly, a partially 

adaptive KA pre-filter used metrology measurements to anticipate and remove 

predictable components of the clutter response. Then the data was pre-whitened by 

using Synthetic Aperture Radar (SAR) data to identify and predict large clutter 

returns, and filtered using a discrete matched filter. Finally, map data was used to 

identify road networks to remove target-like signals such as moving traffic from the 

training data. In [27] National Land Cover Data (NLCD) was used to support 

selection of homogeneous secondary cells for STAP demonstrating improved 

performance over standard STAP.

Design and analysis of a knowledge-based radar detector is considered in [28] using 

Geographic Information System (GIS) data to deal with non-homogeneous clutter and 

strong outliers. This approach demonstrated improved detection using topographic 

data first to eliminate static outliers from the secondary data, then a data adaptive 

secondary data selector which employs a statistical Maximum Likelihood (ML) 

criterion to select the most suitable homogenous training data. In [23] the authors 

adopted the KBSTAP architecture for an airborne Autonomous Intelligent Radar 

Sensor (AIRS), in which preloaded map data is used to estimate clutter statistics. 

They also extended the initial KBSTAP architecture shown in Figure 1.1 to include 

other sources of information as input to the KBC. Also in [23] the net-centric 

approach is applied for an AIRS system as shown in Figure 1.2 to allow data sharing.
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A KB detector for STAP in airborne radar is considered in [29]. This exploited 

knowledge of the clutter ridge (the locus in the Doppler-angle domain where the 

clutter Power Spectral Density (PSD) is different from zero). It is demonstrated that 

knowledge about the characteristics of the clutter ridge and a Generalised Likelihood 

Ratio Test (GLRT) can provide a capability for rejection of interference close to that 

of the optimum detector, based on perfect knowledge of the clutter covariance matrix. 

Another knowledge-based approach proposed in [30] explored the concept of 

cognitive radar, where the architecture was inspired by the echo-location system of a 

bat. In this approach prior knowledge of geographic and target kinematics data was 

used to improve radar performance for target detection in sea clutter. Learning was 

enabled through feedback from the receiver to the transmitter. A Bayesian approach 

was employed to detect and track targets in sea clutter, then through intelligent 

control, the radar illumination of the environment was adjusted to account for target 

size and range to improve the tracking and detection performance of the radar.

A full discussion on the advantages of KB approaches for improved radar 

performance can be found in [31, 32]. An overview of the KASSPER program can be 

found in [33], where the benefits of KA adaptive radar and a new radar scheduling 

approach are discussed. Attention is also paid to prior knowledge methods of space­

time adaptive beamforming for GMTI radar. The potential of KB approaches for
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solving the problems associated with STAP can be found in [34]. An overview of 

KASTAP applications is presented in [35], identifying the advantages of using SAR 

data for predicting clutter interference for airborne radar. A real-time architecture for 

KA adaptive radar is presented in [36]. This architecture extends the KASSPER 

architecture to include modification to both transmit (adaptive waveform 

optimisation) and receive (STAP processing) functions of the radar signal processing 

chain. A real-time environmental dynamic database provided sensor situation 

awareness, combined with a look-ahead scheduling scheme to determine an optimal 

transmit and receive strategy.

In this discussion we have identified recent progress in the development of intelligent 

radar sensors. Particular attention has been devoted to the architecture for an 

intelligent radar sensor, focusing on KB and KA approaches, and to the identification 

of the parts of the radar signal processing chain which have been modified to improve 

sensor performance. Current research in the radar community addresses the 

development of KB rules and heuristics, concentrating on modification of several 

processes of the radar processing chain including detection, tracking, and filtering. 

Most noteworthy in the context of this thesis is the AIRS approach [23] in which 

preloaded map data is used to estimate clutter statistics. However, it is desirable to 

predict clutter with high accuracy for optimal radar performance. Using map data and 

statistical estimations is not the optimal solution for predicting clutter because it does 

not account for site-specific factors which influence clutter intensity such as local 

grazing angle and multipath fading. Instead, backscattering intensity measurements 

and land backscattering models can be applied to predict clutter with higher accuracy 

and improve selection of platform trajectory. In [32] the authors state that

“In the future, a truly intelligent sensor system may even optimize
its flight path based on analysis o f real time and archival data

KB approaches have been the subject of considerable research and it can be seen that, 

generally, the radar research and development community has embraced the KB 

approach and that research is under way in the development of rules and heuristics for 

the KB. Additionally, considerable effort has been devoted to modification of the
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various processes of the radar signal processing chain to improve radar sensor 

operation.

Recent research has demonstrated die advantages of using a priori information to 

model the environment for mitigation of natural and man-made interference to 

improve radar sensor performance. In [17], an intelligent radar is proposed which 

developed cognition of the environment (in this case sea clutter) through direct 

sensing by the radar sensor itself. Other approaches considered application of map 

data [20, 26] and terrain data [21, 27] to augment modelling of the environment. 

Although these approaches employ a priori information to provide a model of the 

environment the advantages of fusing information about the environment provided by 

remote sensing data has not been considered. Therefore, the opportunity exists to 

improve environment modelling through fusion of remote sensing terrain data.

In response to the literature survey, the following problems have been identified and 

will be addressed in this thesis:

• How can we predict radar performance using a fusion and modelling 

approach?

• How can we improve the prediction of land clutter by fusing various sources 

of data about the environment?

• How can we improve the quality of remote sensing radar data through a 

modelling and data fusion approach?

In Section 1.4 we will now summarise the novel contributions made in each of these 

areas.

1.4 Summary of Novel Contributions

The major contribution presented in this thesis is an intelligent radar sensor which 

employs fusion of remote sensing data to more accurately predict impairments which 

influence radar performance. Combining this with a radar sensor model permits
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higher accuracy of site-specific radar performance prediction. With respect to the 

problem of how to improve the prediction of radar performance, the approach 

presented in this thesis proposes fusion of remote sensing data acquired by different 

sensors to combine information about the terrain, then using this information for more 

accurate prediction of land clutter and multipath modelling. By fusing terrain 

information obtained from multiple sources we can provide a more detailed 

description of the environment or terrain, which can then be used to predict site- 

specific radar sensor performance. The application of a fusion-based approach for an 

intelligent radar sensor has not been considered in the literature and therefore it is 

novel.

This approach to an intelligent radar sensor has the following advantages:

• Clutter prediction when direct radar measurements are not available (eg. 

before deployment).

• Knowledge of the environment through fusion of remote sensing data to 

improve the prediction of land clutter and multipath effects, hence, improving 

the prediction of radar sensor performance

• The ability to adapt to dynamic environments by real-time acquisition of up- 

to-date remote sensing data (using a net-centric approach as discussed in 

Section 1.3.2 and reliable data transmission channels such as Bowman)

• Improved site-specific prediction of radar sensor performance which can 

benefit the tasks of sensor placement, optimising radar parameters, and 

calculation of aircraft flight paths to avoid detection by hostile radar

When predicting site-specific radar sensor performance it is important to consider 

land clutter as it has a negative influence on radar performance. Land surface clutter is 

dependent on radar frequency, grazing angle, terrain type, and terrain elevation. 

Remote sensing data can provide terrain information such as terrain height and land 

surface type to estimate grazing angle and account for changes in clutter intensity due 

to changes in grazing angle. Additionally, radar remote sensing data such as SAR or 

Side Looking Aperture Radar (SLAR), describe electromagnetic wave backscattering 

from the Earth’s surface but for alternative radar positions, grazing angles, and
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possibly radar frequency and polarisation. Land backscattering models [37] can be 

applied to account for these differences between the surface-sited radar and the 

remote sensing radar. Therefore, through fusion of remote sensing terrain data, radar 

remote sensing data, and application of land backscattering models we can improve 

land clutter modelling and prediction of site-specific radar performance.

The novelty in this thesis is contained in Chapters 2, 5, and 6. Chapters 3 and 4 have 

been included to explain how standard modelling techniques can be applied to 

developing an intelligent radar sensor. The novel contributions are summarised as 

follows.

In Chapter 2 the concept of an intelligent radar sensor is developed and an 

architecture is proposed for an autonomous radar sensor which is capable of adapting 

to a dynamically changing environment. All aspects of the intelligent radar sensor are 

discussed, highlighting the importance of each component in the realisation of a radar 

sensor that can intelligently change some aspect of its operation to improve 

performance.

Chapter 5 contains three novel contributions:

• A new method for predicting ground clutter using radar remote sensing data

• A new method for mitigating impulse noise and fusing of SAR data

• A new multiresolution DCT-based method for fusing and denoising SAR data

In Chapter 5, a new method is proposed for predicting site-specific land clutter for 

low-grazing angle radar, with the advantage of fusing radar remote sensing data and 

application of empirical land backscattering models to improve the accuracy of clutter 

prediction. A journal paper [38] using remote sensing radar images has been 

submitted for this research to the Elsevier Journal on Information Fusion. In 

particular, radar remote sensing data is critical in the new clutter prediction technique, 

and mitigation of any impairment present in this data prior to further processing will 

improve the quality of the data and therefore improve the accuracy of clutter 

prediction.
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Modelling and fusion of SAR data with impairments is also considered in Chapter 5. 

There are comparisons between the Discrete Wavelet Transform (DWT) [39] and the 

Dual-Tree Complex Wavelet Transform (DTCWT) [40] in the literature, but none of 

them address fusion of SAR data. The novelty of this research lies in the improvement 

in fusion results when impairments in SAR data are mitigated prior to fusion. These 

results have been published in a conference paper [41] and a more complete analysis 

has been conducted in Appendix 1. All of the material pertaining to fusion of SAR 

data is both new, and as yet unpublished.

A new multiresolution Discrete Cosine Transform (MRDCT) based method [42] is 

also proposed in Chapter 5 for the task of simultaneously denoising and fusing SAR 

remote sensing images. Here sensor impairments, of which speckle noise is 

predominant, are considered and mitigated at the stage of fusion. The idea behind 

combining a DCT (which is not a multiresolution technique) and a Laplacian pyramid 

to form a hybrid multiresolution method is based on exploiting the strengths and 

advantages of each technique. The efficient noise suppression capabilities and good 

frequency localisation properties of the DCT combined with the good spatial 

localisation of the Laplacian pyramid result in the combination of these advantages to 

achieve good time adaptation and frequency flexibility simultaneously, coupled with 

the additional benefit of highly efficient noise suppression. This is achieved by 

incorporating the Laplacian pyramid [43] multiresolution analysis technique and a 

sliding window DCT for simultaneous denoising and fusion of the multiresolution 

coefficients. These results have also been published in a conference paper [42] and a 

more complete analysis has been conducted in Appendix 2. Most of this material is 

both new, and as yet unpublished.

Chapter 6 demonstrates how the intelligent radar sensor can be applied to several 

applications. Sensor placement for a single radar sensor, deployment of a radar sensor 

network, and a mobile radar scenario are considered. The advantages of the intelligent 

radar sensor for these applications are discussed. The applications in themselves are 

not novel, but direct application of the intelligent radar sensor to solve these problems 

is.
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1.5 Assumptions Made in this Thesis

The following assumptions have been made in this thesis. When fusing data it is 

important to note that there are uncertainties associated with each data source, such as 

the precision and confidence of the observed measurements. However, this thesis 

neglects the issue of uncertainty for all considered data fusion activities for the sake of 

tractability and due to time limiting restrictions.

Due to the computational complexity, modelling of multipath effects is restricted to a 

two-path model. Here, only the direct backscattered signals from the target are 

considered; therefore, ignoring multipath signals which would arrive at the radar from 

signals scattering in directions other than the direct backwards path.

For the sake of tractability, a simplified model for atmospheric propagation modelling 

has been assumed which neglects the effects of changes in the refractivity profile of 

the atmosphere and ducting effects.

The modelling of clutter is restricted to land clutter, therefore, ignoring volume clutter 

such as weather for the sake of tractability. However, it is noted that an environment 

model could be implemented to assist in modelling atmospheric propagation and 

volume clutter but time restrictions exclude this from consideration in this thesis.

The structure of the thesis is now discussed in Section 1.6.

1.6 Structure of Thesis

In Chapter 2, a new intelligent radar sensor architecture is proposed, which uses 

terrain data and sensor models to predict and improve radar sensor performance.

In Chapter 3, the radar model is developed and described in the context of an 

intelligent radar sensor. The limitations and impairments which affect the operation 

and performance of radar sensor are discussed, highlighting the need for mitigation of 

impairments prior to further processing.
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Chapter 4 addresses the issue of multipath effects for radiowave propagation.

A new fusion-based technique for predicting site-specific ground clutter with high 

accuracy is described in Chapter 5.

Chapter 6 considers several scenarios for the application of an intelligent radar sensor. 

Here the advantages of employing an intelligent radar sensor to solve the problems in 

the chosen scenarios are demonstrated. Thus the novel intelligent radar sensor 

architecture described in Chapter 2 is evaluated in Chapter 6.

Conclusions are drawn in Chapter 7 and several novel suggestions for future work are 

proposed.

An extensive reference list of relevant publications follows the main body of text.

Finally, five appendices are presented which discuss topics that are not appropriate for 

detailed discussion within the main chapters, but are none the less still important 

topics.

19



Chapter 2

An Intelligent Radar Sensor Architecture

This chapter starts with a discussion on the concept of intelligence. Then a new 

architecture is proposed for an intelligent radar sensor based on fusion of remote 

sensing data and combination of modelling techniques. Critical components of the 

design are identified and the importance of each component within the proposed 

architecture is highlighted.

2.1 Discussion on Intelligent Radar Sensor Design

When designing an intelligent system it is important to clearly define what is meant 

by the term “intelligence” so that models can be developed to achieve the desired 

specification. The notion of “intelligence” is complex and often has various 

definitions depending on the context in which it is being defined. The US DoD define 

intelligence as [44]

“The product resulting from the collection, processing, integration, 
evaluation, analysis, and interpretation o f available information...”

From the viewpoint of intelligent sensor design the following description is 

appropriate. It is generally accepted that the ability to learn is taken to be a sign of 

intelligence; however, if learning is not possible then intelligence will be limited by 

what is currently known. Based on this assumption intelligence can be described as a 

combination of the following three characteristics:

• Ability to learn from training and past experience

• Ability to pose and recognise problems

• Ability to solve problems by application of knowledge

20



In summary, intelligence allows application of prior knowledge gained from learning 

to be applied for recognising, understanding and solving problems.

The rest of this chapter addresses the idea of an intelligent radar sensor (IRS) capable 

of intelligently adapting to the environment or autonomously reacting to new goals 

and objectives. In this sense the IRS can minimise the impact of impairments due to 

ground clutter and multipath propagation by appropriate modification of radar 

operation or location within the environment. For detection and tracking radar one of 

the parameters to be optimised is probability of detection. This depends on the radar 

system characteristics, the nature of the environment in which it is deployed, land 

clutter, and multipath propagation effects, all of which have complex negative 

influences on radar performance. In the next section we will discuss the architecture 

and design of the intelligent radar sensor considered in this thesis.

2.2 Intelligent Radar Sensor Architecture and Design

The architecture for KBSTAP shown in Figure 1.1 has been proposed for KB 

systems. The initial architecture proposed in this thesis is shown in Figure 2.1, which 

differs from the KBSTAP architecture in the following ways:

• The KBSTAP approach is specifically for STAP radar and identifies sources 

of interference using a priori information in order to modify the radar signal 

processing chain to improve radar performance.

• The approach adopted in this thesis is more general and can be applied for a 

wide range of radar systems. The main idea of this approach is using radar and 

environmental interference models to predict radar performance in advance in 

order to optimise radar operation, such as probability of detection.
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Figure 2.1 Initial Intelligent Radar Sensor Architecture

Here the radar sensor is represented as a block which encompasses all aspects of the 

radar system. The links between the intelligent processing and individual radar signal 

processes are not shown as they are unnecessary for the purpose of this thesis. The 

knowledge base controller is expanded under the intelligent processing block to 

identify the individual processes of KB, learning and optimisation involved in the 

intelligent processing chain. All of these are implied under the KBC (shown in Figure

1.1 on page 10), but it is necessary to separate these concepts to identify the necessary 

components for the intelligent radar sensor in this thesis.
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The radar sensor, once deployed, can obtain a clutter map for its current location 

directly by scanning the region; however, the intelligent radar sensor approach is 

based on the assumption of predicting radar performance in advance and before 

deployment of a radar sensor to a new location. Therefore, obtaining clutter maps by 

direct measurements is not applicable for this situation. The clutter model provides 

the ability to predict a clutter map for any position within the environment using the 

clutter prediction technique proposed in Chapter 5. The clutter model here is 

analogous with the ‘clutter map’ process in the KBSTAP architecture in which clutter 

statistics are predicted using preloaded map data [23].

The terrain model contains information about the environment represented by Digital 

Elevation Model (DEM), topographic data, optical data, radar remote sensing data and 

terrain classification data. The terrain model provides information to aid in prediction 

of clutter map data and multipath propagation effects to allow the intelligent radar 

sensor to adapt to the dynamically changing environment. Other factors that can 

influence the performance of the radar, such as atmospheric conditions, weather state 

and volume clutter (birds, insects, etc) can be accounted for by application of an 

environment model. However, these aspects are not considered in this thesis and are a 

topic for future research.

The radar model can be compared with the ‘configuration information’ in the 

KBSTAP architecture which contains the radar specifications, but it is much more in 

following sense. The major aspects of the radar are considered including a model of 

the antenna pattern, allowing for prediction of radar performance such as probability 

of detection by applying the radar model to the predicted clutter map data. This 

provides the opportunity for assessment and optimisation of radar sensor operation. 

Additionally, if the radar sensor has more than one mode of operation such as 

alternative waveforms (whereby, the sensor has a number of transmit waveforms at its 

disposal) then all operating modes can be simulated to permit optimal configuration of 

radar parameters to meet pre-determined objectives. The multipath model predicts the 

variation of signal strength at the receiver due to multipath propagation of radiowaves 

reflected by the target. Multipath propagation of radiowaves is considered in detail in 

Chapter 4.
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Learning is a specific topic within the domain of AI. It is beyond the scope of this 

thesis but the learning component is included in the architecture as a reminder of the 

importance of learning to increase intelligence. The topic of learning could form the 

basis for future research.

Optimisation is essential in a fully autonomous sensor, to enable the sensor to react in 

the most appropriate manner. For the IRS optimisation is required to decide on the 

best solution out of all possible solutions generated by the IRS itself. However, 

optimisation is a very specific field in its own right, and it is not considered in this 

thesis. Nevertheless it is a critical component in the IRS design.

The IRS can acquire new data and information about the terrain or environment as 

and when it becomes available. Inevitably, this data will be corrupted by impairments 

caused by various sources including sensors, the environment, storage devices, 

communication channels and equipment. A truly intelligent sensor should be able to 

analyse the data to identify the presence of any impairments and apply mitigation 

strategies to improve the quality of the data for further processing. The IRS should 

contain a knowledge base of all relevant types of impairments and appropriate 

techniques for mitigating each of them. Accurate prediction of clutter map data relies 

on up-to-date remote sensing data about the current state of the environment and is 

necessary for the sensor to adapt to changes occurring within the environment. The 

environment is dynamic in that trees are cut down, buildings are erected, and land 

surface and crops change with seasonal variations. All these factors influence the 

accuracy of clutter map prediction, requiring up-to-date data about the environment. 

With the recent advances in web technologies and net-centric approaches which 

permit sensor communication and data sharing, this approach for clutter modelling 

which relies on up-to-date information is now feasible.

For the purpose of this thesis it is necessary to focus on certain aspects of the IRS 

with the most important components of this model being the radar model, terrain 

model, multipath model and clutter model. The architecture can then be further 

simplified as shown in Figure 2.2.
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Figure 2.2 Simplified Intelligent Radar Sensor Architecture

Figure 2.2 is similar to Figure 2.1, except that now the details of the intelligent 

processing block have been suppressed to concentrate on the specific aspects of the 

intelligent radar sensor that are addressed in this thesis. In particular, the cognitive 

aspect of the Intelligent Radar Sensor is addressed and the ability of the radar to 

process information about its environment is investigated. For the remainder of this 

thesis this simplified architecture for Intelligent Radar Sensor is assumed. The internal 

models are now discussed; the terrain model is discussed in Section 2.2.1, the radar 

sensor model in Section 2.2.2, the multipath model in Section 2.2.3, and the clutter 

model in Section 2.2.4. A description of the software for the intelligent radar sensor

25



approach described here can be found in Appendix 3, and the software 

implementation can be found on the Digital Versatile Disc (DVD) included in 

Appendix 4.

2.2.1 Terrain Model

Information about the terrain provided by other sensors and sources is contained in 

the terrain model, including but not limited to, digital elevation model (DEM), optical, 

topographic, SAR, SLAR, and terrain classification data. Terrain classification data 

refers to information about the type of land surface, such as roads, trees, water and 

grass. Terrain information can be provided by databases or can be inferred by 

classification of remote sensing data including optical images, SAR/SLAR and 

multispectral data. Classification of the data into terrain types can be achieved using 

techniques based on radial basis neural networks (RBNN) and support vector 

machines (SVM) developed in [45]. The intensities of radar signal returns are highly 

sensitive to the relief of the surface and therefore offer efficient representation of land 

shapes and the topography of the surface being monitored [46]. Optical sensors are 

not affected by land clutter and multipath propagation effects but are sensitive to other 

environmental factors such as fog, rain and cloud cover, and an illumination source is 

required for sensor operation, all of which limit the performance of the sensor [47]. 

Clearly, each source of data offers an alternative perspective on the environment: 

DEM provides elevation profiles; remote sensing radar provides direct radar cross 

section (RCS) measurements of the land surface; and terrain classification data 

provide information about the land surface type. Therefore, the more types of data we 

have available the more can be deduced about the environment.

DEM data are required for calculation of radar local grazing angles, target grazing 

angle, and terrain shadowing effects based on EM wave propagation modelling, all of 

which are required for sensor error assessment and for site-specific clutter modelling 

as discussed in Chapter 5. For prediction of multipath radiowave propagation which is 

discussed in detail in Chapter 4, information about terrain slope is provided by DEM; 

whilst surface type can be determined by classification of topographic and optical 

remote sensing data, required for predicting the intensity of the reflected multipath
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signals. Remote sensing radar data provides direct radar measurements of the 

environment but for different grazing angles, and possibly different polarisation or 

frequency compared with the low-grazing surface-sited radar. Remote sensing data 

and data fusion techniques can be employed to predict clutter for ground-based radar 

operating at low-grazing angles.

2.2.2 Radar Sensor Model

The central idea behind the IRS is that if we can model the sensor and factors that 

affect the operation of the sensor, then we can predict sensor performance for a given 

scenario and use this information to improve sensor performance. For the IRS we 

need to model the radar sensor and the environment, in particular, land clutter. 

Another important influence on radar performance is multipath fading caused by 

specular reflections from the Earth’s surface due to scattering of the EM signal 

emitted from the radar and reflected back by the target. In order to accurately predict 

radar performance it is necessary to model all aspects of radar operation and 

environmental interferences including land clutter, multipath propagation 

interferences, and clutter attenuation due to terrain topography.

Application of this approach to radar modelling can also be useful for benchmarking 

new radar systems during the development stages and can provide a suitable tool for 

assisting in efficient radar system design. In [48] Skolnik identifies the importance of 

the radar equation and probability of detection, discussing how they can provide 

valuable tools for the following three applications:

(a) Prediction and assessment of radar performance

(b) Radar system design and assessment of system trade-offs

(c) Assisting in development of the technical requirements for new radar systems

The importance of the radar model and probability of detection for case (a) is the 

basis of the intelligent sensor in this thesis, highlighting the advantages of the 

modelling approach for predicting performance (a) and optimising radar system 

parameters (b).
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2.2.3 Multipath Model

It is important to predict multipath effects because they result in fluctuations in the 

received signal power due to constructive and destructive interference at the receiver. 

This interference will either increase or decrease the received signal power, increasing 

or decreasing the radar detection range. Therefore, to accurately predict radar 

performance multipath effects must be considered. Modelling multipath propagation 

effects requires modification of the free-space assumption to account for reflections 

from the land surface, in addition to direct reflections from the target.

In order to model multipath effects detailed information about the Earth’s surface is 

required; height, slope, moisture, and roughness can be obtained from high resolution 

remote sensing data; while land surface type can be determined from remote sensing 

data or geographical databases, as discussed in Section 2.3.1. Multipath propagation 

of radio waves is considered in detail in Chapter 4.

2.2.4 Clutter Model

For radars operating at low grazing angles signal returns from ground clutter severely 

impair the performance of the radar and its ability to detect targets. To predict these 

impairments for the particular scenario the clutter model is computed using the land 

clutter prediction method proposed in Chapter 5, by fusion of remote sensing data and 

application of land backscattering models. This approach provides the opportunity for 

prediction of radar performance for any position within the operation region, provided 

suitable information about the environment is available.

The advantage of this approach for optimal sensor deployment and sensor placement 

has already been discussed in Chapter 1. However, if we can incorporate this 

knowledge within the radar sensor then we can introduce a degree of intelligence and 

promote intelligent behaviour for the radar sensor. Predicting clutter in advance is an 

advantage for mobile radar sensing platforms. It can provide the opportunity for 

optimisation of sensor performance through intelligent selection of sensor position 

within the environment. Examples of mobile radar which can benefit from such an
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approach are land-based, ship-based and airborne radars all of which have the ability 

to change position in order to improve current sensor performance or move to another 

location to meet new goals and objectives. Another application is a network of mobile 

radar sensors in which they all need to cooperate and perform joint optimisation to 

achieve a common goal.

2.3 Summary

The concept of an intelligent radar sensor is “in the air” at present and is currently 

receiving significant attention from the radar research community, as discussed in 

Chapter 1. However, this thesis adopts a fusion-based approach which is an 

alternative approach compared to those discussed in Chapter 1. An intelligent radar 

sensor concept has been developed where the innovation lies in application of a 

modelling approach, which is based on incorporation of sensor and environment 

models for prediction of sensor performance. For radar sensors operating at low- 

grazing angles land clutter causes significant impact on the operation of the sensor. 

Application of a radar model to the clutter map data permits prediction of sensor 

operation and performance, while intelligent processing of this information provides 

the opportunity for self-optimisation of sensor operation to improve the performance 

of the radar sensor.

For application of the IRS, we consider three scenarios: (a) a mobile radar capable of 

changing its position in order to improve radar sensor performance, or moving to 

another location to observe a region of the territory that is not visible from the original 

radar position; (b) radar sensor deployment; (c) and a radar sensor network.

The radar model and target detection are discussed in detail in Chapter 3. Multipath 

propagation is discussed in Chapter 4. Clutter modelling is addressed in Chapter 5, in 

which mitigation of SAR remote sensing impairments are also considered. 

Applications for IRS are considered in Chapter 6.
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Chapter 3

Radar Modelling in the Context of an Intelligent 

Radar Sensor

This chapter identifies the collection of elements required to understand the radar 

model and its operation within the intelligent radar sensor. The components of the 

radar sensor model and its role within the intelligent radar sensor are discussed in the 

context of predicting radar sensor performance and accounting for environmental 

interference. Nothing in this and the following chapter are new, but it is necessary to 

present the material in order to properly explain the research reported in Chapters 5 

and 6.

3.1 Prediction of Radar Sensor Performance

Radar system performance can be evaluated by the following criteria:

• Maximum detection range

• Ability to resolve multiple targets -  this depends on radar resolution and target 

ambiguity

• Ability to detect targets and reject unwanted interference

• Accuracy of measured target position

These criteria are the most important factors for assessing radar performance; 

however, the performance of radar for these criteria can not be determined by radar 

sensor characteristics alone. The performance of a radar depends strongly on the 

environment in which it is deployed; therefore, to predict radar sensor performance 

environmental factors must also be considered.
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This chapter considers a model of a single-pulse radar where sensor performance is 

evaluated based on probability of detecting targets. The important components of the 

radar sensor model are identified, and the implications of environmental interference 

are considered. Degradation of radar sensor performance is discussed in Section 3.2. 

All components of the radar model are described in Section 3.3, including the 

standard radar equation, radar geometry, target detection, and radar model parameters. 

A discussion on the application of the radar model within the intelligent radar sensor 

to predict radar sensor performance is detailed in Section 3.4. Conclusions are drawn 

in Section 3.5.

3.2 Factors which Affect Radar Performance

The emitted radar signals are propagated through the atmosphere and are therefore 

affected by atmospheric conditions such as rain, snow, fog, atmospheric absorption, 

refraction and ducting. Additionally, the radar signals are subject to interference from 

noise produced by natural sources such as the Sun and galactic noise, and from EM 

interference from radio or power masts, other sensors and even intentionally 

generated interference (jamming). The radar is also subject to internal system 

impairments due to equipment noise, equipment errors, and distortion introduced by 

signal processing.

The target area illuminated by the radar antenna pattern will return signals from the 

target of interest and other objects in the target background, such as buildings, trees, 

and the terrain. These unwanted signal returns received by the radar from objects 

other than the target are referred to as clutter. Clutter impairs the ability of the radar to 

detect signals of interest (targets) because the received signals from the targets are 

often smaller than the signals returned by clutter. Additionally, the antenna pattern of 

the radar also compounds the problem of multipath effects especially at low-grazing 

angles. It is not only the main beam (central lobe) of the antenna pattern that is of 

concern, but the presence of sidelobes also affects radar performance.

One aspect of radar performance is the probability of the radar detecting a target. An 

efficient radar will maintain a high probability of detection and a low probability of
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false alarms. The detection of targets is determined by radar characteristics, but 

detection performance is degraded by natural and artificial interference, both 

accidental and intentional. All these contribute to deterioration of radar performance 

and all must be taken into account in predicting radar performance. Although there are 

other measures of radar performance such as, weight, size, cost, power consumption, 

and others; it was determined that the most appropriate measure of performance for 

the scenarios considered in this thesis, in which target detection is of primary 

importance, is the probability of detection measure. The radar model is now discussed 

in detail in Section 3.3.

3.3 Radar Sensor Modelling

The main components of the radar model considered in this thesis are shown in Figure 

3.1, together with the section within which the component is discussed.

Target model 
(3.3.5)

Figure 3.1 Components of the radar model.

The radar equation, discussed in Section 3.3.1, is used to determine the received 

signal power from both target and clutter returns, and calculate signal-to-noise ratio 

(SNR) and clutter-to-noise ratio (CNR) respectively. Radar sensor geometry is 

discussed in Section 3.3.2. The antenna model, discussed in Section 3.3.3, accounts 

for antenna pattern characteristics including gain, antenna pattern sidelobes, antenna 

azimuth and elevation beamwidths. The detection model, discussed in Section 3.3.4, 

describes the detection stage of the radar receiver and ultimately describes the

Radar Sensor
equation geometry model
(3.3.1) (3.3.2)

Detection Radar
model configuration
(3.3.4) (3.3.5)
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(3.3.3)

Radar model

32



performance of the radar under the conditions considered. The detection model 

describes the detection law which can be modelled by Marcum’s ^-function for a 

constant RCS target model [49], or Swerling’s models for fluctuating targets [48]. 

Additionally, there is an allowance for atmospheric refraction, which contributes to 

bias error in measured target elevation angle. The four-thirds Earth radius model is 

based on the valid assumption that for low-grazing angles the refractive index is 

almost constant [50]. Radar configuration parameters are discussed in Section 3.3.5. 

The radar configuration contains information about the characteristics of the radar 

sensor, including but not limited to, radar operating frequency, waveform, radar 

resolution and range limits, antenna pattern, transmit and receive gains, radar position, 

height, and orientation. The target model also discussed in Section 3.3.5, includes 

information about the characteristics of targets, including position, height, radar cross 

section (RCS) and target type. It is now necessary to discuss the radar equation which 

is an integral component of the radar model.

3.3.1 Radar Equation

The relationship between the characteristics of the radar, the target, transmitted and 

the received signal can be described by the radar equation. The radar equation 

required for calculating received power from a point target when a single antenna is 

used for both transmit and receive can be defined as

SNR = - - ^ -  'i-a ‘ F 4 (3.1)
{4nfkTeBFnLR4

where Pt is peak transmitted power in W, G is antenna gain and accounts for when

the target is not at beam maximum, X is radar wavelength in metres, <rt is target RCS

m m , k is Boltzmann’s constant in J/deg, Te is the effective noise temperature in °K ,

B is receiver bandwidth in Hz, and R is range in metres. Fn is the noise figure which

represents SNR losses due to thermal noise in the radar amplifier. F4 is the fourth- 

power propagation factor and can be used to account for propagation losses and gains 

such as atmospheric absorption and diffraction losses. In this thesis, however, F4 only
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concerns multipath effects. Atmospheric losses are not directly modelled but are 

accounted for in the loss factor L which can be defined as

L = L,LaLpL, (3.2)

Here Lt is transmission loss, La is atmospheric loss, Lp is antenna pattern 

beamshape loss, and Lx is signal processing loss. La =10<u*“*, where ka is the 

attenuation coefficient in dB/km [50].

The target usually occupies a small fraction of the area illuminated by the radar beam 

and therefore can be hard to detect. The clutter-to-noise ratio (OMR) is defined by

[51]

CNR =  f  ^  F 4 (3.3)
(4 x f kTeBFnLR

where the cross section for clutter oc is the product of the reflectivity cr° and the 

illuminated area as follows

<tc=<70Ac (3.4)

A simple constant y model [13] can be applied in which surface reflectivity is 

modelled as cr° = ysmy/ , where <r° is reflectivity (cross section per unit area m2/m2), 

y/ is grazing angle in radians, and y is a dimensionless parameter describing the 

scattering effectiveness of the surface. However, this model is limited because here 

cr0 is only a function of grazing angle and does not account for surface type or 

roughness. In this thesis cr° is determined by the clutter model described in Chapter 

5.

The signal-to-clutter-plus-noise ratio (SCNR), also known as signal-to-interference 

ratio (SIR), is defined by [51]
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SCNR = — — !— (3.5)
+

SNR SCR

where the Signal-to-Clutter ratio (SCR) is obtained by dividing Equation (3.1) by 

Equation (3.3).

To calculate the cross section for clutter <rc it is necessary to first calculate the 

illuminated area Ac, which can be achieved by considering radar sensor geometry as 

discussed now in Section 3.3.2.

3.3.2 Sensor Geometry

The geometry for the calculation of clutter area Ac is shown in Figure 3.2 which is a

reproduction of the illustration in [51]. Here hr is radar height, ht is target height in

degrees, 0t is target elevation angle in radians, 6r is the clutter region depression

angle in radians, R is slant range in km, Rg is ground range in km, AR is range

resolution, ARg is the ground projection of AR , and 0E and 0A are the antenna 3-dB

elevation and azimuth beamwidths in degrees, respectively. The area for mainbeam 

clutter, Amc, and area for sidelobe clutter, ASLc, can be calculated as follows

Ambc ~ (3.6)

A S L c = A R g ^ g (3.7)

The main beam clutter RCS and sidelobe clutter RCS can then be defined as

(3.8)

^ = ^ ° AsLC(SLrms)2 (3.9)
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where G is antenna gain and S L ^  is the root-mean-square (rms) value of the antenna 

sidelobe levels. Then ac can be defined as

a c =  ° M B c  + ° S U  (3.10)

As can be seen in (3.8) and (3.9) in order to calculate the cross section for clutter <j c

we need to account for antenna pattern gain. Antenna pattern characteristics are now 

considered in Section 3.3.3.

side view

antenna
boresight

Earth surface

AR
top view

sidelobe 
clutter region

main beam 
clutter region

sidelobe _
clutter region

Figure 3.2 Clutter geometry (taken from [51])
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3.3.3 Radar Antenna Pattern

Antenna gain G can be described by the following relationship.

4 71A
G = ~ t  ( 3 1 1 )

where Ae = uA, and u is aperture efficiency (0 < v  < 1). Gain can also be expressed 

in terms of antenna elevation and azimuth beamwidth as follows

G = k -^ L .  (3.12)
G A

where 0E is elevation beamwidth in radians, 0A is azimuth beamwidth, and k < 1 is a 

shape factor depending on the geometry of the physical aperture.

A Gaussian antenna pattern is assumed, which although unrealistic has been selected 

to keep this intelligent radar sensor approach generic. The Gaussian antenna main 

lobe can be defined as [51]

G(0) = exp
(  2.7766>2 -' 

0\ , (3.13)

The antenna pattern has a constant sidelobe level at -35dB. This Gaussian antenna 

pattern in dB is shown in Figure 3.3(a) in polar form and Figure 3.3(b) in rectangular 

form. The elevation beamwidth in this case is 0E =11°, and is shown later in Table

3.1 on page 43. The azimuth beamwidth is much smaller, 1.33 , and this is shown in 

Figure 3.3.
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Figure 3.3 Gaussian antenna patterns in: 

(a) polar form; (b) rectangular form.

In order to halve the computation for convolution the range of the side lobe pattern 

was truncated to ± n l 2. Now that we can calculate the SNR, CNR, and SCNR we 

must next consider the detection process which determines the ability of the radar to 

detect targets. This is discussed in detail in Section 3.3.4.

3.3.4 Target Detection Modelling

The detection of targets in radar is based on threshold detection, where a threshold is 

established at the output of the receiver. A target is determined to be present if the 

receiver output exceeds the threshold; otherwise it is assumed that only noise is 

present in the received signal. Random fluctuations in the received signal due to noise 

(radar thermal noise) and interference (from the environment and other RF sources) 

can have significant impact on detection [48]. If the received noise and interference 

signals are sufficiently high then the threshold may be exceeded in the absence of a 

target. This is known as a false alarm. Setting a higher threshold reduces the 

probability of false alarms (Pfa), but at the expense of a lower probability of detection 

(PJ), where signals returned from weak targets may not be high enough to exceed the 

threshold. The challenge therefore is to maximise Pd whilst minimising Pfa- Various 

techniques exist for doing this, including adaptive threshold constant false alarm rate 

(CFAR) [50].

38



The process of threshold detection is shown in Figure 3.4 for a simplified system 

consisting of an envelope detector and threshold detector, and is taken from [51].

From antenna
and low noise 
amplifier v(0

display
devices

Envelope
Detector

Bandpass 
Filter (IF)

Threshold
Detector

Lowpass
Filter

Threshold VT

Figure 3.4 Simplified envelope detector and threshold receiver

The receiver input signal is composed of the radar echo signal s(t) and additive white 

Gaussian noise n{t) with variance y/ 1, where it is assumed that the input noise is 

uncorrelated with the signal.

The signal v(7) is the output of the bandpass IF filter and can be written as 

v(0 = Vj (t) cos Q)0t + vQ (t) sin coQt = m(t) cos (a>0t -  <p(t))

Vj = m(t) cos <p(t)

vQ = m{t) sin (p{t) (3.14)

Here v7 and vQ are the in-phase and quadrature components, m(t) is the envelope of 

v(/), the phase is (p{t) = tan-1 (vQ / v7), and co0 = 27fQ, where f 0 is the radar operating 

frequency.

A target is determined to be present when m(t) exceeds the threshold VT. The 

decision scheme is:
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s(t) + n(t) > VT Detection

n{t) > VT False alarm

The Marcum 0-Function is an established method for predicting the probability of 

detection for non-fluctuating targets in pulsed radar [49]. Swerling extended this 

model for probability of detecting targets with fluctuating RCS [48], For the purposes 

of this thesis we consider Marcum’s constant RCS model which can easily be 

substituted for application of the Swerling models. It is necessary now to discuss the 

particulars of probability of false alarm and probability of detection.

Probability of False Alarm

The probability of false alarm Pfa is the probability that a sample M  of m(t) will

exceed the threshold voltage VT when only noise is present in the radar signal [48]. 

This is

oo 2
’ m_ _  cm

p» = J ^ r exP TV  ,
dr = exp

(  v 2 ^r  T

2W:v Z,T y
(3.15)

Inverting this relationship gives the voltage threshold VT as

VT = 2*F In p
V  f a J

(3.16)

The probability of false alarm can be expressed in terms of false alarm time Tfa 

which is the time between false alarms. This is then defined as

T =1 fa (3.17)
fa
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where tM is the radar integration time. Given that the radar operating bandwidth B is 

the inverse of /int, then substituting (3.16) into (3.17) Tfa can be rewritten as

(3.18)

It can be seen that Tfa can be reduced by increasing the threshold VT, however this

results in decreasing the maximum detection range. We can now address probability 

of detection.

Probability of Detection

The probability of detection Pd is the probability that a sample M  of m(t) will exceed 

the threshold voltage VT when noise plus signal is present in the radar signal, defined 

as [51]

where A is amplitude and 70 is the modified Bessel function of order zero. The 

integrand is the probability density function (pdf) of a Rician distribution, which 

becomes the Raleigh pdf when A/'l*2 = 0 . When A / ^ 2 is very large it becomes the 

Gaussian pdf with mean A and variance VF2. Assuming the input at the receiver is a 

sinusoidal signal with amplitude A and power A2 / 2, then for a single pulse 

SNR = A2 / 2W2 and Fr2 / 2'F2 = ln(l / Pfa), and Equation (3.19) can be written as [51]

(3.19)
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where Q[a,fi]= f^70(a^)e~(C +a )nd (
P

(3.21)

Here Q is Marcum’s ^-Function. The Marcum ^-Function is a definite integral 

whose integrand involves a modified Bessel function, and no analytical solution 

exists. Many good approximations for the Marcum ^-Function have been proposed in 

the literature [52, 53]. A very accurate approximation proposed in [54] is

Pd »0.5xerfc(^-InP/a - -JSNR + 0.5) (3.22)

where the complementary error function erfc(-) is defined as

erfc(z) = 1 — i=  \e~v dv (3.23)
d x  o

We have now developed the radar model required for the intelligent radar. The 

parameters required for the radar model are detailed in section 3.3.5.

3.3.5 Radar Model Parameters

The parameters in the radar configuration component of the radar model are shown in 

Table 3.1. The values for these parameters are representative of typical X-band radar 

and therefore are not an implementation of a specific radar system. Radar position, 

antenna orientation, and antenna pattern characteristics are also accounted for but are 

not listed in Table 3.1.

The target model is not an internal component of the radar model but it is included in 

this chapter as it is the most natural place to discuss this component. The target model 

for a fighter jet with 6dBsm RCS is shown in Table 3.2.
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Table 3.1 Radar Model Parameters

Symbol Parameter Value

p, peak transmitted power 75 kw

T pulse width 0.1 psecs

G antenna gain 34.5 dB

Te effective noise temperature 290 °K

X Wavelength 3.75 cm

f o radar operating frequency 8 GHz

F noise figure 5 dB

B receiver bandwidth 6 MHz

L radar losses 6 dB

oE elevation 3dB angle (degrees) 11°

oA azimuth 3dB angle (degrees) 1.33°

minimum detection range 500 m

D
max maximum detection range 12 km

k Boltzmann’s constant 1.38 xlO-23 J/°K

ER Earth’s radius 6378 km

Pf. probability of false alarm 9.25 xlO-11

K height of radar 25 m

Table 3.2 Constant RCS Target Model

Symbol Parameter Value

target RCS 6 dBsm

K target height 250 m

This is a constant RCS model which does not account for RCS fluctuations due to 

complex target shapes with multiple scatterers or changes in target orientation with 

respect to radar position and aspect angle. However, this model can be modified to 

account for more complex target types. The models in Tables 3.1 and 3.2 are
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implemented for the scenarios considered in Chapter 6. We will now discuss how all 

these components for the radar model can be applied to predict radar performance.

3.4 Radar Model Operation within the Intelligent Radar Sensor

The processes and models involved in predicting radar sensor performance are shown 

in Figure 3.5.
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Target
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of Detection 
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Figure 3.5 Radar model application and operation

The radar configuration describes radar characteristics and properties required for 

application of the radar equation. The radar configuration provides antenna
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characteristics which enables the antenna pattern model to be constructed. The target 

model, radar position and terrain elevation data are required for calculating the target 

visibility map which depicts whether the target is visible from the radar position or 

obscured by terrain shadowing. To determine multipath effects, information about the 

radar position, antenna pattern, polarisation, target position, target visibility map are 

required in addition to terrain elevation data and surface type. The SNR can then be 

calculated by application of Equation (3.1) as shown in Figure 3.6(a).

(a) (b)

(c) (d)

Figure 3.6 Performance measures:

(a) SNR in dB; (b) CNR in dB; (c) SCNR in dB;

(d) Probability of Detection Map (without multipath effects).

The antenna pattern model is applied to the predicted clutter map produced by the 

clutter model to account for antenna pattern effects. The CNR can then be calculated 

by application of Equation (3.3) as shown in Figure 3.6(b). The ability of the radar to
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detect target signals in interference determined by SCNR Equation (3.5) as shown in 

Figure 3.6(c), is used by the detection model Equation (3.22) to predict probability of 

detection map as shown in Figure 3.6(d) which in this case does not account for 

multipath effects. Multipath effects will be discussed in Chapter 4 and will be 

accounted for in the three scenarios in Chapter 6. The probability of detection map 

describes probability of the radar detecting a target accounting for radar 

characteristics and environmental factors. The probability of detection map is 

accordingly, an important measure for radar performance.

3.5 Summary

This chapter has discussed the factors which affect radar performance in the detection 

of targets. The components of the radar sensor model and its role within the intelligent 

radar sensor have been discussed, showing how modelling of the radar sensor and 

accounting for the environmental interferences can be utilised to predict radar 

performance, which in this thesis is ultimately determined by the probability of 

detecting targets. The output of the radar model is the probability of detection map 

which in this case illustrates the radar’s ability to detect the target while accounting 

for multipath propagation effects, land clutter, and radar parameters.

The material in this chapter leads into the next chapters. In order to apply the radar 

model for site-specific prediction of radar performance we need to predict multipath 

propagation effects and account for land backscattering from the local terrain. The 

multipath model is now considered in detail in Chapter 4, and the land clutter model 

discussed in Chapter 5.
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Chapter 4

Modelling Multipath Radiowave Propagation

In this chapter, after a review of radiowave propagation modelling, the components 

required for multipath modelling are discussed. It is necessary to model multipath 

propagation to account for the increase or decrease in radar target detection due to the 

constructive and destructive interference which this phenomenon causes. The 

geometry for multipath surface reflections is considered in Section 4.3, the multipath 

propagation factor F  is discussed in Section 4.4, and surface characteristics which 

determine the intensity of the reflected signal are considered in Section 4.5.

4.1 Multipath Modelling

When a radar signal is intercepted by an object the signal is scattered in various 

directions. How the signal is scattered is determined by the wavelength of the radar 

signal, polarisation of the signal, incidence angle, and underlying surface. The 

roughness of the surface determines whether the signal is specular or diffusely 

scattered. Only specular reflections contribute to multipath propagation effects. The 

wavelength of the signal is also an important factor in specular reflections due to the 

relative dimensions of surface roughness and wavelength. Additionally, surface type 

affects signal backscattering, depending on the dielectric constant of the material and 

also on wavelength of the signal. The wavelength of the signal is important as it 

determines the penetration properties of the radiowaves, allowing the signals of 

certain frequencies to penetrate through trees, vegetation and even soil. In general, 

short wavelengths will produce backscattering from the overlying vegetation such as 

leaves, twigs and branches; while long wavelengths will penetrate the overlying 

vegetation to produce backscattering from tree trunks and soil [55].

Modelling multipath effects entails modification of the free-space assumption to 

account for the reflection of waves from the surface in addition to the direct path

47



signal [50]. Multipath occurs when the signal propagates to the object and returns to 

the radar receiver via more than one path. This results in a set of received signals with 

different amplitudes and different phases. The problem with this is that the receiver 

will sum the received signals and, depending on the phase differences, this could lead 

to either an increase or decrease in the magnitude of the vector sum of the received 

signals. A single multipath reflection is shown in Figure 4.1.

TARGET

ANTENNA

SURFACE

REFLECTION POINT

TARGET MIRROR 
IMAGE

Figure 4.1 Multipath reflection

An additional effect of multipath reflection is that the reflection from the surface 

appears to the radar as an image below the surface (mirror image), which leads to 

errors in the estimation of target height.

In Section 4.2 we will now consider multipath effects and discuss various methods 

applicable for modelling them.
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4.2 Review of Multipath Propagation Modelling

Environmental factors such as atmospheric conditions and terrain features affect 

radiowave propagation causing refraction, diffraction and reflection; resulting in 

attenuation of the radiowave energy. For low-grazing radar, the most important non- 

free-space effect is multipath fading which results in constructive and destructive 

interference at the receiver. Multipath fading effects are due to interference between 

the direct and ground reflected signals; and strongly depend on the geometry of the 

terrain and terrain type. Multipath effects cause interference lobes in radar coverage 

with the shape and position of the lobes and nulls determined by surface 

characteristics. These lobes and nulls are due to the phase difference of the reflected 

multipath signal and depending on whether the signal is in or out of phase with 

directly reflected signal, results in either an increase or decrease in target detection 

range. It is important to predict the electromagnetic fields due to the effect of the 

environment on radiowave propagation, to account for the fluctuations in signal 

power at the receiver as a result of multipath effects. To model multipath surface 

reflections we need detailed information about the characteristics of Earth’s surface 

such as height, slope, surface roughness and surface type. Terrain elevation data can 

be obtained from a variety of sources such as stereo imaging satellites, or SAR 

interferometers; or constructed from topographic contour lines. Terrain type can be 

determined through geographical databases such as MODIS and GLC2000 [56], or 

can be extracted from topographic map data.

There are generally three approaches to modelling radiowave propagation effects; 

parabolic equations (PE), wave theory which uses physical optics (PO), and ray 

tracing methods also known as geometric optics (GO) [57]. Solutions to the Partial 

Differential Equations (PDE) arising from Maxwell’s equations [58] can be obtained 

by PE which comprises one approach to modelling radiowave propagation. PE are 

particularly useful for modelling changes in the refractive index of the atmosphere. 

They have difficulty, however, in dealing with rough surfaces. PE were first proposed 

for radiowave propagation in 1946 [59], but limited processing power of computers in 

1946 restricted practical application. Developments in the sonar community led to the 

split step solution (SSS) which uses the FFT to advance the solution over small range 

steps and allowed application of PE [60]. The radar community then adopted PE for
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prediction of tropospheric propagation [61], propagation over irregular terrain [62], 

and tropospheric ducting and multipath fading over irregular terrain [63].

The PO approach uses EM wave theory to study the reflection and propagation of 

waves accounting for diffraction and propagation loss, while GO makes the 

assumption of short wavelengths in order to simplify the reflection problem. 

Geometric models are approximations of physical models and are only suitable when 

the wavelength is relatively small compared with surface roughness. However, GO 

does not account for variations in the refractive index of the atmosphere to predict the 

effects of ducting and the resulting enhanced range detection. Hybrid methods have 

been developed to combine the advantages of PE which works well for low angles 

and ray optics which works well for higher angles [64].

In this thesis, modelling of radiowave propagation is restricted to multipath effects 

and tropospheric effects. For modelling tropospheric effects the four-thirds Earth 

radius model for standard atmospheric conditions is used. Ray tracing methods are 

only applicable for the interference region and are not valid for modelling pattern 

propagation factors in the diffraction region [65]; however, multipath effects do not 

occur in the diffraction region. For modelling propagation factors when the target is in 

the diffraction region methods based on EM wave theory such as Maxwell’s equations 

provide a relatively simple solution [58]. As we are only concerned with modelling 

multipath effects in this thesis, the approach taken is based on ray tracing using a GO 

approach which allows relatively simple calculation of radar geometry parameters, 

and the interference propagation factor for predicting multipath interference. The 

geometry for surface reflections is now considered in Section 4.3.

4.3 Surface Reflection Geometry

Radar sensor and surface reflection geometry are shown in Figure 4.2, which is a 

modification of the illustration in [66].
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Figure 4.2 Radar geometry with multipath

Here hr is radar height in metres, ht is target height in metres, 0t is target elevation 

angle in radians, 6r is the reflection point depression angle in radians. A two-path 

multipath is shown where R is the direct pathlength, Rx and R2 are the reflected 

pathlengths, y/r is the radar grazing angle in radians and y/t the target grazing angle 

in radians. Specular reflection occurs when y/r ^y /t . It can be shown that [50]

(4.1)

(4.2)

(4.3)

(4.4)

These equations provide the parameters required to calculate the propagation factor, 

which is discussed now in Section 4.4. However, these equations do not account for

Target elevation 6t = sin 1 h,~ K
R

Grazing angle \f/ = sin ' K + K '
R j

h , + K
R

Pathlength difference S„=R r cos 0 > 
^cos^>

2 hrht 
R

„ r, • • K RhrRange to reflection pomt x0 = — — = ----- —
tan^ hr +ht
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the terrain local slope in 3D; therefore, in this thesis the parameters required for 

calculating the propagation factor are determined using 3D Digital Terrain Elevation 

Data (DTED). This approach is extremely computationally expensive, but is 

necessary to provide a more accurate and realistic multipath model.

4.4 Propagation Factor

The pattern propagation factor F  can be described [66] as

“the magnitude o f the ratio o f the electric-fleld strength at that point to 
the field strength that would exist at the same range in free space and in 
the antenna beam maximum.”

It follows that

where E  is the electric field intensity of the received signal over the path of interest, 

and E0 is the free-space field intensity. The fourth-power propagation factor F4

describes the two-way power ratio with the inverse square law operating on both the 

forward and return paths. As discussed in Section 1.5 page 18, only a two-path model 

is considered. The general formula for two-path interference pattern propagation 

factor is [50]

Here /(•) is the antenna pattern factor, 0t is the target elevation, y/ is grazing angle, 

p  is the magnitude of the surface reflection coefficient, D is the divergence factor to 

account for a spherical Earth, and a  is the phase difference between the direct and 

reflected waves, given by [50]

(4.5)

(4.6)

(4.7)
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where S0 is the extra pathlength for the reflected wave, and $ is the phase angle of 

the reflection coefficient. As will be seen later, ^ can be assumed to be -180° for 

small grazing angles. The interference region corresponds to 8Q > 1 /6 . To model 

propagation effects without considering a specific antenna pattern the following 

formula can be applied [50]

where p  is the surface reflection coefficient which we will now discuss in section 

4.5.

4.5 Surface Reflection Coefficient

The surface reflection coefficient accounts for the influence of the land surface on the 

reflected signal, and is usually considered as the product of three factors:

Here p Q is the Fresnel reflection coefficient (the fraction of the intensity of the

incident ray that is specularly reflected from the perfectly smooth surface), p s is the

specular scattering coefficient to account for surface roughness, and p v is the

vegetation absorption coefficient. The reflection coefficient is complex valued and for 

horizontal polarisation can be written as [50]

where sc is the complex dielectric constant, s c = s r -  j 60Acte [50, 67, 68], s r is the 

relative dielectric constant and <Je is the conductivity of the surface material. 

Similarly, the reflection coefficient for vertical polarisation can be written as [50]

(4.8)

P  =  P o P s P v (4.9)

(4.10)
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r  ( -a\ £c siDV ' - J e c -  cos2y/r„ = p„ exp(- ]</>) = --------------------
£c sin y/ + y s c -  cos y/

Typical values for er and a e are given in Table 4.1 [50].

Table 4.1 Electrical Properties of Typical Surface Types

Surface type

Good soil (wet) 25 0.02

Average soil 15 0.005

Poor soil (dry) 3 0.001

Snow, ice 3 0.001

Fresh water (A,=lm) 81 0.7

Fresh water (X=0.03m) 65 15

Salt water (A,=1 m) 75 5

Salt water (A,=0.03m) 60 15

For low grazing angles for both polarisations the phase angle is near 180°. However, 

there is a sudden change in phase near the Brewster angle y/B (the angle of incidence 

at which the ray can not be reflected) for vertical polarisation as defined by Equation 

(4.12), where angles greater than y/B have a phase close to zero [50].

Vb = sin-1 -7= = =  (4.12)
V ^ - i

Table 4.1 does not consider all terrain types, therefore, the assumption p0 = -1  and

(j) = -180° is valid for small grazing angles where y/ <2° for water and y/ < 10° for 

other surface types [50]. It is now necessary to determine the surface roughness to 

calculate the specular scattering coefficient p s and vegetation absorption coefficient

/V
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4.5.1 Specular Scattering Coefficient and Vegetation Absorption Coefficient

The specular scattering coefficient p s is a function of surface roughness crh, 

wavelength and grazing angle defined as [50].

Ps = exP
1 f  4 noh . \ 2

smy/ (4.13)

Typical values for o h and pv are shown in Table 4.2 for various surface types [69].

Table 4.2 Surface Roughness and Vegetation Factor

Surface type P v

Concrete 0.5-2 1

Arable land 10-15 1

Snow 0.5-10 1

Coniferous forest >100 0

Deciduous forest >100 0

Grass < 0.5m 10-20 0.8-0.5

Grass > 0.5m 10-30 0.5-0.1

Urban >300 0

Water (as concrete) 0.5-2 1

Finally, we must address the impact of a spherical Earth on the geometry of 

radiowave propagation; this is discussed in section 4.6.

4.6 Accounting for Spherical Earth and Terrain Local Slopes

The effect of a spherical Earth leads to bias in height estimation of both target and the 

Earth surface. This effect and terrain local slopes influence the grazing angle and 

therefore need to be considered. In Figure 4.2 the dip of the spherical Earth below the 

surface tangent can be calculated by [50].

55



where Ee is four-thirds the Earth radius and G is ground range. To model the dip of 

the Earth surface it is necessary to reduce the terrain elevation height by 8h.

The local slope of the terrain must also be accounted for when calculating grazing 

angles as shown in Figure 4.3.

Figure 4.3 Geometry of specular reflection accounting for local slope tangent

Here y/r is radar grazing angle, y/t is target grazing angle, h'r is radar height with 

respect to the tangent specular point, and tit is target height with respect to the 

tangent. The following condition determines whether the reflection is specular: 

y/r ~y/t , where \y/r - y / t\<g  and g = 0.03° is the threshold. The pathlength 

difference can then be defined as [50].

Antenna

Earth’s
surface

(4.15)

The results for multipath modelling using measured data are presented in Section 4.7.



4.7 Site-specific Modelling of Multipath Propagation and Discussion

The data required for predicting multipath propagation effects are terrain elevation 

data and terrain type data. The terrain elevation data is required for calculating local 

grazing angles and in our experiments it is provided by SAR interferometer 

measurements obtained by the Spacebome Imaging Radar (SIR-C) sensor [70]. Land 

surface type is required for determining the intensity of the multipath reflected signal 

and is provided by RBFC classification [45] into appropriate terrain classes of the 

multispectral data obtained by the Landsat TM Mapper sensor [71]. Classification 

using the RBFC is considered in detail in Chapter 5.

The processes involved in predicting multipath effects and determining the 

propagation factor F  are shown in Figure 4.4.
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Calculate p s 
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Calculate p 0 
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reflection
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Figure 4.4 Process for calculating propagation factor F
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The parameters for the radar and the target are taken from Table 3.1 and Table 3.2, 

respectively. The first stage is to calculate radar and target geometry parameters, 

including the specular reflection point (if one exists), grazing angle of the specular 

point for both the radar and the target, and the pathlength difference of the multipath 

signal. If it is determined that no specular point exists, \y/r - ^ f|>0.03°, then the 

propagation factor F  equals unity (OdB), and multipath interference is absent for the 

considered surface position. If \y/r < 0.03°, then multipath interference is

present and the propagation factor F  is calculated using Equation (4.8). In order to 

calculate F  it is necessary to first calculate the surface reflection coefficient which is 

the product of the Fresnel reflection coefficient p Q given by Equation (4.11), specular

scattering coefficient p s given by Equation (4.13), and the vegetation absorption

coefficient p v obtained from Table 4.2.

An example of propagation factor F  experimental calculation for the considered radar 

coverage region is shown in Figure 4.5.

Figure 4.5 Propagation factor F
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We have discussed the multipath model for the intelligent radar sensor, identifying the 

remote sensing data sources and propagation modelling techniques required for 

predicting the intensity of multipath interferences. This multipath model can now be 

applied to Equation (3.1) to allow the intelligent radar sensor to predict radar 

performance, while accounting for fluctuations in the received signal power due to 

multipath surface reflections.

4.8 Conclusions

In this chapter we have reviewed standard approaches for predicting multipath 

propagation effects and identified the most appropriate approach for modelling these 

effects for the purposes of this thesis. The influence on target detection due to the 

constructive and destructive interference caused by multipath effects have been 

considered, highlighting the importance of modelling multipath propagation when 

predicting radar performance. The components required for modelling multipath 

propagation effects have been discussed in sufficient detail including radar and target 

geometry, the propagation factor F, and the dependency of the reflected signal 

intensity on the characteristics of the land surface. The land surface characteristics 

which have the most significant influence on multipath propagation are surface 

roughness and terrain type. Surface roughness influences specular scattering while 

terrain type determines signal reflectivity and absorption. Surface roughness can be 

estimated using remote sensing data which provides information about the terrain 

elevation, such as SAR interferometer measurements. Land surface type can be 

obtained through geographical databases, extracted from topographic data, or through 

classification of remote sensing multispectral data.

We will now consider the impact of land surface clutter on radar performance in 

Chapter 5, in which a new method for predicting of land clutter intensity is proposed.
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Chapter 5

Land Clutter Modelling for Radar Operating at 

Low-Grazing Angles

In this chapter, after a review of land clutter modelling methods, a new approach for 

predicting land clutter intensity for surface-sited low-grazing angle radar is presented. 

Fusion of remote sensing data and application of a land backscattering model provides 

the basis for site-specific prediction of up-to-date land clutter models. The 

methodology of this approach is described identifying the necessary remote sensing 

data required for land clutter modelling, and the method of data fusion. Results are 

then presented using measured remote sensing data.

5.1 Review of Standard Methods for Clutter modelling

Land clutter presents significant problems for low-angle radar in the detection of 

targets, primarily because signal returns from land surface clutter are generally 

stronger than returns from targets. Low-altitude or terrain-following targets can be 

masked by clutter and hidden or shadowed by terrain features making detection 

extremely difficult [72]. In strong clutter environments poor performance is attained 

for detection of weak targets [73].

Land clutter dynamically changes over time due to varying environmental conditions, 

and strongly depends on terrain and environmental parameters, such as terrain slope, 

terrain type, surface roughness, and moisture [73]. Site specific clutter modelling 

provides the opportunity for developing tools for testing and developing radar in 

realistic simulated environments prior to deployment, and for optimising radar 

parameters [13]. Characterisation of clutter and terrain modelling also provide the 

opportunity for optimisation of radar parameters.
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Clutter prediction is an important task to be solved because clutter degrades radar 

performance. There are many practical uses for clutter modelling such as planning of 

sensor deployment and Constant False Alarm Rate (CFAR). With respect to sensor 

deployment, prediction of clutter and multipath propagation for a region will provide 

the opportunity for placement of radar sensors to provide optimal coverage of the 

region and minimisation of the impact of clutter. For moving radar applications this 

information can be utilised to continuously predict clutter maps for the next positions 

on the moving radar path and therefore allow dynamic route calculation to provide 

maximum radar coverage whilst the radar is moving between positions. Also, the 

information provided by clutter maps can be used as an effective tool for mission 

planning applications [72] to determine the best route for an aircraft to avoid detection 

by enemy radar and ensure maximum survivability by masking the aircraft in clutter 

to remain undetected. In addition to clutter map data, multipath effects must also be 

considered when predicting radar performance, as discussed in Chapter 4.

Land clutter is a function of radar frequency, polarisation, grazing angle, terrain type, 

and terrain elevation [73]. Experimental results of clutter modelling [73] have shown 

that radar resolution changes the clutter amplitude distribution spread but the clutter 

mean level of the distribution remains unaffected. There are typically two approaches 

for modelling land clutter, generalised and site-specific. Generalised models usually 

take the statistical approach aiming to identify the underlying trends of clutter 

intensity for basic terrain types. Site-specific approaches must consider clutter and 

terrain visibility, both of which depend critically on terrain topography.

Statistical models serve well for general clutter models providing realistic clutter 

maps, but do not account for site-specific characteristics of the radar environment due 

to the local terrain. Statistical modelling methods have been applied for site-specific 

clutter modelling by application of GIS data to provide information about the 

environment. The site-specific approach in [13] uses DTED for estimation of local 

grazing angle and terrain shadowing effects. Additionally, direct measurements of 

atmospheric temperature, pressure and humidity are used to create refractivity profiles 

to account for electromagnetic wave propagation. This approach combined with 

Parabolic Equations [59-64] and GO [57] have shown to provide high accuracy clutter 

maps, however, a relatively simple constant-gamma model has been used for
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estimation of land surface reflectivity which does not account for terrain type or the 

relief of the terrain. As discussed, land clutter intensity changes with terrain type and 

terrain local slope which produces terrain shadowing effects, and therefore it is 

important to account for these factors.

This limitation has been addressed in [74] by application of the MIT Lincoln 

Laboratory empirical clutter models [73] to estimate land surface reflectivity based on 

terrain surface type, showing improved accuracy of clutter modelling. Digital Feature 

Analysis Data (DFAD) and DTED have been utilised to estimate land surface 

parameters in order to apply the relevant clutter model based on terrain 

characteristics. In this case DFAD provides information about dominant scatterers 

which contributes to strong reflectivity such as buildings, radio masts and power 

transmission masts. This approach has been adopted in [75] in combination with 

flying obstacle register data which provides information on radio masts and other high 

objects, for knowledge-aided analysis of the impact of clutter on the performance of 

air surveillance radar.

Clutter temporal and spatial variability due to geographical features and man-made 

sources surrounding the radar reinforce the need for site-specific land clutter models 

over more general statistical approaches. To date, site-specific approaches use GIS 

data which may be out-of-date and therefore do not reflect the current state of 

environmental conditions; and more importantly do not account for direct 

measurements of clutter which can be provided by remote sensing radar. Remote 

sensing radar is an important source of information as it provides direct measurements 

of normalised RCS but for alternative grazing angles. Generally, grazing angles are 

much higher for remote sensing radar compared with land-based low-grazing angle 

radar, and this difference in grazing angle accounts for the difference between the 

clutter maps for remote sensing and land-based radar. The remainder of this chapter 

investigates the opportunity for fusing radar remote sensing data, information about 

terrain characteristics, and application of empirical land backscattering models for 

land clutter prediction.
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5.2 Input Data for Clutter Modelling

The most important parameters for clutter modelling are radar frequency, polarisation, 

grazing angle, terrain type, and terrain elevation. Site-specific clutter modelling 

requires information about the land surface and the use of additional information 

about the land surface has been shown to improve the accuracy of clutter map 

prediction [74]. Remote sensing imaging data can provide valuable information about 

the terrain and can supplement terrain classification [45], and estimation of bare soil 

parameters such as roughness and moisture [76]. SAR and SLAR images describe 

electromagnetic wave backscattering from the Earth’s surface, where the image pixel 

brightness represents the intensity of the backscattering coefficient <y°. It has been 

demonstrated [73] that measurements of clutter for ground-based and airborne radars 

at adjacent grazing angles are highly correlated, illustrating the suitability of 

SAR/SLAR remote sensing data for aiding site-specific clutter map prediction. When 

considering the surface reflectivity dependence on grazing angle for remote sensing 

radar, the grazing angle is in the plateau region resulting in a relatively weak angular 

dependence on the land backscattering coefficient due to diffuse scattering of 

electromagnetic waves. Surface-sited surveillance radar for detection of low altitude 

targets usually operate in the near-grazing region where clutter returns are generally 

produced by a small number of strong isolated scatterers [66].

In order to apply remote sensing radar data for prediction of clutter maps it is 

important to account for the difference in backscattering mechanisms for land-based 

and airborne radar by considering the following factors:

• Dependency of the backscattering coefficient on grazing angle and land 

surface type.

• Dependency of the backscattering coefficient on radar frequency and 

polarisation.

• Local slope of the land surface.

• Terrain shadowing effects due to terrain elevation.

• Height and position of antenna for land-based and remote sensing radars.

• Electromagnetic wave propagation in the troposphere.
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The land backscattering model can be applied to account for these factors. 

Application of the land backscattering model also permits correction of angular 

dependencies and estimation of the difference in the backscattering coefficient for 

land-based and remote sensing radars. The remote sensing data required for clutter 

modelling are shown in Figure 5.1.

Topographic maps

Land
backscattering

model

Fusion

H
Site-specific 
land clutter 

model

Radar remote sensing image

Terrain elevation data Landsat TM Mapper image

Figure 5.1 Fusion of remote sensing images and topographic data.

This data is for a region near Kharkov in the Ukraine and was used for clutter 

modelling experiments. The topographic map scale is 1:100000 and the radar image 

pixel resolution is about 12m. The terrain elevation data has 90m pixel resolution and 

lm elevation resolution. Terrain elevation data is required for estimation of local 

grazing angles to account for changes in clutter intensity with change of grazing 

angle, and also for calculation of the terrain visibility map to estimate visible clutter 

regions. Terrain elevation data can be provided by stereo satellite images, 

reconstructed from topographic contour lines [77], or produced by spacebome SAR 

interferometers [78]. For the purpose of clutter modelling in this thesis, Spacebome 

Imaging Radar (SIR-C) terrain elevation data is used to provide up-to-date 

measurements and because it can operate in complicated weather conditions, such as 

cloud, rain, and at night. It can also provide measurements of the backscattering 

coefficient for the land surface and can be obtained from [70].
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Information about the terrain type can be extracted from the topographic map; 

however, this could be out-of-date due to changes in the environment. A more 

convenient method is classification of multispectral remote sensing images or using 

information provided by global land cover maps such as MODIS and GLC2000 [56]. 

We use direct classification of multispectral Landsat TM Mapper images because it 

provides the opportunity for deciding appropriate terrain classes and features most 

applicable for clutter modelling. The topographic map is used for geometric 

registration of the remote sensing data to a common coordinate system and also for 

supporting terrain classification. However, the registration process is problematic due 

to the fact that data sources have differing resolutions, additive quantisation noise, and 

uncertainties in the precision and confidence of the data. With the exception of 

resolution, these issues are ignored for the sake of tractability as discussed in Section

1.5 on page 18.

The novelty of this approach to clutter modelling is the application of remote sensing 

radar images to provide direct measurements of the backscattering coefficient for the 

radar coverage region. It has already been noted that clutter measurements at adjacent 

grazing angles are correlated; therefore, it is possible to take advantage of this 

correlation to improve clutter modelling. The remote sensing radar images must be 

preprocessed to remove the influence of radar system imperfections such as speckle, 

geometric distortions, and radiometric calibration on the measured data. Radiometric 

calibration of the remote sensing radar image is necessary to convert the signal 

intensities into absolute RCS values. Additionally, impairments in the data need to be 

reduced to minimise the effects on clutter modelling. Analysis of the SLAR data has 

shown that only speckle noise is present; but should any other impairment be present 

then they should be mitigated prior to further processing. SAR impairment mitigation 

and fusion are considered in Sections 5.2.1-5.2.3. Fusion and mitigation of 

impairments in satellite optical remote sensing imagery to improve terrain 

classification in the presence of various types of impairments, has been considered in 

our publication [79]. Here, several different types of image impairments were 

considered: narrowband high-frequency interferences, sensor noise, and geometric 

distortions due to communication system synchronisation errors. A two-stage 

approach was adopted so that standard (unmodified algorithms) can be applied for 

mitigation and fusion with the advantage of not having to modify the algorithms. At
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the first stage impairments were mitigated. A technique based on the mean absolute 

difference similarity measure was used for correction of communication system 

synchronisation errors. Narrowband high-frequency interferences were removed by 

preliminary spectral analysis and frequency-domain adaptive linear filtering 

techniques. Image mean level correction techniques together with linear and nonlinear 

adaptive filtering were applied to eliminate periodic variation of image mean 

intensity. We also used nonlinear adaptive filtering in a sliding window approach to 

suppress additive and impulsive noise. Then at the second stage, image fusion and 

classification algorithms based on artificial neural networks and support vector 

machines were applied to classify the terrain into a limited number of terrain types. 

The specific details of the fusion and classification algorithms used will be provided 

later in Section 5.5.3 on page 95.

5.2.1 Fusion of Radar Remote Sensing Data and Mitigation of Impairments

It is preferred now to digress slightly from the topic of clutter modelling in order to 

discuss the importance of removing any impairments present in remote sensing radar 

data to improve the accuracy of clutter prediction. This digression is fairly lengthy 

and we considered moving this discussion to an Appendix, but decided that this was 

the most appropriate place for this topic; however, a more detailed analysis can be 

found in Appendix 1 and Appendix 2. The discussion on clutter modelling will then 

continue in Section 5.3 on page 87.

Information provided by sensors is often incomplete or inaccurate due to sensor 

imperfections and other contributing factors such as, sensor operating conditions, 

environmental conditions and errors in the data caused by the medium used to store or 

transmit the data. By modelling the sensor, communication channel and the errors 

produced by these sources, suitable mitigation techniques can be developed to 

mitigate the impairments in the data, prior to fusion [41, 79]. This is the motivation 

for the approaches applied for fusion and mitigation of radar remote sensing 

impairments, as discussed in Sections 5.2.2 and 5.2.3. For SAR/SLAR data we are 

presented with three types of noise impairments. Additive noise due to equipment 

errors is small and therefore not considered; but we do consider impulse noise caused
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by data transmission errors and multiplicative noise (speckle) which is inherent due to 

the nature of SAR.

Data fusion can help reduce impairments, improve accuracy of measurements and 

provide enhanced information. Additionally, fusing multiple SAR/SLAR data from 

different sensor platform trajectories can improve the estimate of backscattering 

coefficient due to non-isotropic (anisotropic) scatterers within the terrain, such as 

ploughed troughs in bare soil and rows of planted crops [80]. Therefore, by improving 

the estimated backscattering coefficient we provide the opportunity to improve 

prediction of land clutter in environments where non-isotropic scattering is present, 

such as, ploughed troughs and rows of plated crops. Fusion of SAR/SLAR data can be 

realised through Multiresolution (MR) approaches.

MR schemes based on image pyramids and the wavelet transform have grown in 

popularity over the past decade, and have been shown to provide an appropriate tool 

for fusion of remote sensing data. Fusion of remote sensing image data has been 

shown to provide advantages for various practical applications including classification 

[81], target identification [82] and improved object detection [83]. Different source 

images usually contain both common and complementary information, which can be 

exploited by appropriate fusion techniques that have been developed to efficiently 

extract the salient information [84, 85]. A considerable amount of research has been 

conducted in MR fusion and many comparisons exist between MR image fusion 

techniques for various applications [85-87]. Additionally, MR signal analysis 

techniques such as DWT and DTCWT have also shown to be effective tools for image 

denoising for applications such as edge detection [88], image enhancement [89], 

improved classification [90] and object detection [91]. A discussion on the filter bank 

implementations of the DWT and DTCWT can be found in Appendix 5. The Dual 

Tree Complex Wavelet Transform (DTCWT) [40] has been proposed as an 

approximate shift invariant alternative and has been shown to offer improved 

directional selectivity over the DWT [40]. The DTCWT produces six bandpass sub­

images with complex coefficients at each level. These bandpass sub-images are 

strongly oriented at angles of ±15°, ±45°, ±75°. This directional sensitivity results 

from the complex filters’ ability to distinguish negative and positive frequencies both 

horizontally and vertically. A more complete explanation of DTCWT and the filters
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which are suitable for use with DTCWT is given in [40, 92]. Mitigation of 

transmission errors is considered in Section 5.2.2, and a new multiresolution approach 

based on DCT for speckle suppression is presented in Section 5.2.3.

5.2.2 Mitigation of Transmission Errors in SAR Data

The work detailed in this section has been published in [41] and is intended only as a 

summary of the techniques and outcomes of the simulations. A detailed discussion 

and analysis of the results can be found in Appendix 1. If the data are transmitted 

from the sensor platform via a communication channel then the data may be corrupted 

by transmission errors and errors produced by the communication equipment. This 

form of error modelling applies not only to SAR/SLAR sensors but any remote sensor 

that transmits the sensor data via a communication channel; however, alternative 

mitigation techniques may be required for different sensor modalities depending on 

the nature of the data and on the nature of the errors.

Consider the scenario shown in Figure 5.2 for multi-channel radar image fusion and 

impairment mitigation. Several radar sensors are installed on a single platform, which 

could be airborne or spacebome, with all the sensors monitoring the same region and 

having different operating configurations to provide additional information content.

Platfo;

G roun d  Station

Hardware HardwareCom m unication channel

Sensor

Sensor

Sensor

Data
Fusion

Im pairm ent
Mitigation

Im pairm ent
Mitigation

Im pairm ent
Mitigation

Data transmission 
impairments

Data transmission 
impairments

Data transmission 
impairments

im pairm ents im pairm ents im pairm ents

Figure 5.2 Scenario for multi-channel radar image fusion and impairment 

mitigation
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The data acquired by the sensors are then coded and transmitted via a communication 

channel back to the ground station for processing. During the stages of acquisition and 

transmission the data are subjected to various impairments which can significantly 

distort the data and therefore degrade the data fusion process. Sources of these 

impairments can be attributed to hardware at both the sensor and the ground station, 

including coding/decoding errors, synchronisation issues and hardware failure. 

Additionally, the data will contain impairments due to the characteristics of the 

communication channel used to transmit the data.

For modelling impairments the i.i.d uniform noise model is used; this is the worst case 

scenario for when there is no a priori knowledge of the data transmission channel 

characteristics. The raw SAR hologram data are corrupted by data transmission errors, 

then mitigation techniques are applied to remove the impairments at the stage of SAR 

image synthesis, and finally, unmodified fusion algorithms are implemented to fuse 

the mitigated images. For mitigation of these impairments the robust non-linear a- 

trimmed estimate [41] is implemented, which has been shown to provide superior 

performance for the mitigation of impulse noise in SAR images. Other robust 

alternatives include the M-estimate which is a Maximum Likelihood estimate based 

on robust estimation theory, and the Marginal Median estimate, both of which are also 

detailed in [41] where robustness studies and comparisons are made between all three 

techniques.

The complex hologram data represents the amplitudes and phases for the sum of 

signals reflected from the Earths’ surface within the antenna azimuth pattern. To 

achieve focused synthesis for SAR images the real and imaginary components of the 

complex data are processed in the azimuth direction by combining the returns from a 

number of spatial positions to synthesise the image. To provide this complex estimate 

we adjust the phases of the raw signals then multiply each signal by a weighting 

factor and take the data vector sum. This procedure can be efficiently implemented 

with a matched filter and is applied for each image element for focused SAR aperture 

synthesis. Each pixel or image element represents the intensity of the backscattered 

signal reflected from a point of the Earths’ surface.
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Assuming that the hologram rows correspond to the azimuth direction, the standard 

linear algorithm for focused SAR image synthesis can be expressed as follows [93]:

i  N / 2

J(r,c) = —  £  h(r,c + n ) - fw(r,n)* ,
N n=r^,2

I{r,c) = \j(r,c)\  (5.1)

where the complex amplitude estimates of the reflected signal are denoted by J(r,c), 

SAR image samples generated by taking the absolute value correspond to I(r,c), and 

| • | denotes the complex modulus, r and c correspond to row and column indices, N  is

the length of the synthetic aperture in samples of the SAR hologram data, and h(r,c) 

are complex samples from the SAR hologram. f w(r,n)*= f  (r,n)* ■ w(n) is the

complex conjugate of the point target response function J[r,n), multiplied by a 

weighting function w(n). The purpose of the weighting function w(n) in Equation 

(5.1) is to decrease the level of sidelobes of the SAR response [66, 93]. A Hamming 

window was implemented as the weighting function w for the sake of simplicity.

a-trimmed L-estimate for Robust Mitigation of Data Transmission Errors

The standard linear algorithm for SAR image synthesis [66, 93] is optimal when 

components of the complex signal are corrupted with Additive White Gaussian Noise 

(AWGN), however, this is not true when data are coded and transmitted via a 

communication channel. Under these conditions the matched filter is no longer 

optimal as the data may also be corrupted by impulse noise which substantially 

degrades the quality of the synthesised image. To provide estimates of complex 

parameters that are robust to impulse noise and insensitive to deviations from the 

Gaussian noise distribution, the a-trimmed estimate [41] is considered. This has been 

shown to offer improved robustness when estimating complex signals amplitude in 

the presence of impulse noise. The a-trimmed estimate trims the samples to remove 

impulses before producing an estimate of the signal. The a  parameter can be selected 

according to the intensity of noise present in the signal allowing for a more robust
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estimate. The a parameter can be selected automatically but this is not the place to 

discuss this. The method is described in Appendix 1 Section 1.2 and will form the 

topic for a future publication.

Considering the task of robust SAR image synthesis the marginal a-trimmed mean 

estimate algorithm can be written as

I(r,c) =
N / 2

n = - N / 2

(5.2)

N / 2

where ^ a n = 1, and rs(ri) and is(n) are values of the sets {Rs(n), Is{n),
n = - N / 2

n = - N / 2 ,...,N /2 }, sorted into ascending order: rs( - N / 2 )<...<rs( N / 2 ) ,

is ( - N / 2) <... < i (N / 2). Coefficients Rs(n) and Is(n) are defined as

Rs («) = Re[/*(r, c + n) • f*  (r, n)]

I s(n) = Im [h(r,c + n) • f*(r,n )]

where n = - N / 2,...,N /2. The coefficients an for oddN are calculated as

an = \/{N -2T ), T = l ( l -a )N /2 ]  (5.4)

when « e [ T-\_N / 2_|, \_N/ 2 ] - T ] and an = 0 otherwise. |_xj denotes the largest 

integer less than or equal to x. The number of samples of rs(ri) and is(ri) used for the 

mean value estimation are determined by the a  parameter, while the remaining 

smallest and largest samples are trimmed. The a  parameter in the a-trimmed mean 

estimate can be varied in the range 0 < a  < 1 to tune the robustness and noise 

suppression properties of the estimate. For a  = 0 it is straightforward to prove that 

the estimate (5.3, 5.4) becomes the marginal median, while a - 1 results in a mean 

estimate. The a  parameter determines the number of trimmed samples which 

determines the estimate’s ability to eliminate impulse noise.
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Mitigation Results

The original horizontally transmitted horizontally received (HH) polarised 

image without impulse noise impairments is shown in Figure 5.3.

SAR

Figure 5.3 SAR image HH polarisation without impairments.

The images in Figure 5.4 demonstrate the effectiveness of a-trimmed estimate in 

mitigating i.i.d impulse noise for 0.1<F* < 0 .5 , where Pimp is the probability of

occurrence of a full amplitude impulse in the raw hologram data.

Impulse noise impairments Results of mitigation

Figure 5.4 a-trimmed mitigation results for impulse noise model.
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Visual analysis confirms substantial improvements in image quality of mitigated 

images for all intensities of impulse noise. Even for SAR images corrupt with high 

intensities of impulse noise where Pimp > 0.3 some potentially useful information can

be recovered using the a-trimmed estimate. Clearly, the a-trimmed estimate offers 

considerable improvements in image quality. Figure 5.5 illustrates the SNR for 

mitigation of impulse noise for the considered noise model.

-e-A verage Estimate 
a-trimmed Estimate

O'z
CO 0

-5 —

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5Pimp

Figure 5.5 SNR for SAR a-trimmed estimate impulse noise mitigation.

Figure 5.5 shows the SNR with and without mitigation of impairments, demonstrating 

performance gains greater than 8dB. Clearly, the a-trimmed estimate offers 

considerable improvements in image quality. The MSE shown in Figure 5.6 confirms 

the same trends as SNR shown in Figure 5.5.

120
-e-Average Estimate 

a-trimmed Estimate
100

UJ

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5Ptmp

Figure 5.6 MSE for SAR a-trimmed estimate impulse noise mitigation.
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The standard linear algorithm given by Equation (5.1) demonstrates complete 

intolerance to impulse noise as expressed by both SNR and MSE, with high Pimp 

resulting in extreme degradation in performance. However, the average estimate 

presents superior results in the absence of impulse noise because it is the matched 

filter in this case. Clearly, the a-trimmed estimate is robust, providing desirable 

characteristics, efficiently suppressing noise while adequately preserving image 

content such as bright point objects and edge details.

Mitigation and Fusion of SAR imagery

To assess the impact of impulse noise mitigation on the fusion process, the fusion 

schemes using DWT and DTCWT to provide MR analysis and Maximum Selection 

(MS), Weighted Average (WA) and Window Based Verification (WBV) [94] to fuse 

the MR coefficients were implemented. A more detailed explanation of these fusion 

mles can be found in Section A5.2 in Appendix 5. Combining the MR techniques and 

fusion rules six fusion and denoising schemes are obtained, as shown in Table 5.1.

Table 5.1 Fusion/denoising Schemes

Scheme Description

DWT-MS DWT with maximum selection

DWT-WA DWT with weighted average

DWT-WBV DWT with window based verification

DTCWT-MS DTCWT with maximum selection

DTCWT-WA DTCWT with weighted average

DTCWT-WBV DTCWT with window based verification

Considering the SAR images obtained from two polarisations horizontally transmitted 

horizontally received (HH) and vertically transmitted vertically received (W ) as 

shown in Figure 5.7, simulated impulse noise was added to the raw hologram data. 

The images were fused without performing mitigation of impulse noise, and also 

fused after attempting to mitigate the impulse noise in the images. Finally the results 

of each approach were compared.
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(b)
Figure 5.7 original SAR images:

(a) HH polarisation; (b) W  polarization.

Figure 5.8 shows the results for fusion of SAR images using the DWT-MS and 

DTCWT-MS fusion schemes with simulated impulse noise Pimp ={0, 0.1, 0.3}, with 

and without mitigation of impairments.

DWT-MS fusion no noise DTCW T-MS fusion no noise

DWT-MS fusion P. =0.1 no mitigation DTCW T-MS fusion P. =0.1 no mitigation

DWT-MS fusion Pimp =0.1 with mitigation DTCW T-M S fusion Pimp =0.1 with mitigation

0.3 no mitigationDTCW T-M S fusion P

DWT-MS fusion Pimp =0.3 with mitigation DTCW T-M S fusion Pimp =0.3 with mitigation 

Figure 5.8 Fusion results with and without mitigation

DWT-MS fusion Pimp =0.3 no mitigation
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The presence of impulse noise in the images used for fusion severely impairs the 

fused images, while images corrupt with noise P imp > 0.3 result in almost total

degradation of information content. However, fused images are obtained containing 

potentially useful information using a-trimmed estimate to mitigate impairments prior 

to fusion, and for low probabilities of impulse noise P imp <0.1 it is possible to recover

the majority of important information. Visually DWT and DTCWT offer comparable 

performance with only minor differences, however, the DTCWT is more robust in the 

presence of impulse noise.

Quanitative results are presented in Table 5.2 for all fusion schemes in the absence of 

simulated impulse noise. The quantitative measures MI [102], Q ab f  and Q w  [103] are 

discussed in greater detail in Appendix 5 Section A5.3.2. For all three measures larger 

values indicate better results.

Table 5.2 Quality Measures for Fusion schemes without impulse noise

DWT-MS DWT-WA DWT-WBV CWT-MS CWT-WA CWT-WBV

Q abf 0.68 0.62 0.61 0.72 0.7 0.66

Q w 0.74 0.72 0.71 0.78 0.78 0.75

M I 0.42 0.43 0.42 0.45 0.47 0.46

Comparing the Discrete Wavelet Transform and Dual-Tree Complex Wavelet 

Transform it is obvious that the Dual-Tree Complex Wavelet Transform offers an 

improvement over Discrete Wavelet Transform for all fusion rules with the maximum 

selection fusion rule outperforming the weighted average and window-based 

verification. Generally, Q abf  and Q w  tend to agree showing CWT-MS to offer superior 

performance. However, MI identifies CWT-WA as the best overall. For the untrained 

eye it is difficult to discriminate between the fused SAR images for Discrete Wavelet 

Transform and Dual-Tree Complex Wavelet Transform, but extensive visual analysis 

confirms that Dual-Tree Complex Wavelet Transform provides better quality for 

some edge details and textured areas.
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In summary, the a-trimmed estimate is an appropriate alternative to the standard 

linear algorithm for fusing hologram components and synthesising SAR images, 

providing robust estimation in an impulse noise and Gaussian noise environment. It 

has been shown in [41], that the a-trimmed estimate offers superior performance to 

that of the average estimate in suppressing even severe impulse noise, with the 

robustness of the a-trimmed algorithm depending on the number of trimmed samples.

The a-trimmed estimate has been shown to exhibit impressive mitigation properties in 

the presence of impulse noise. More importantly, it has been shown that SAR fusion 

results can be improved by mitigation of data transmission errors prior to fusion. This 

two stage approach of using standard algorithms for mitigating impairments and 

image fusion has shown that it is possible to improve fusion results, with the 

additional advantage of not having to modify fusion algorithms to cope with 

impairments present in the source data.

5.2.3 A New Method for Filtering Speckle Noise and Fusing Remote Sensing 

Radar Data

The work described in this section has been published in [42] and is intended only as 

a summary of the technique and experimental results. A more detailed analysis can be 

found in Appendix 2. Speckle noise is common to all coherent imaging systems 

resulting in ‘grainy’ texture in SAR/SLAR images. It is due to the random phases of 

the backscattered signals. Speckle is also due to the fact that often there is more than 

one discrete point scatterer in each resolution element; therefore, it also depends on 

the resolution of the radar. The characteristics of speckle are well modelled [93, 95] 

and therefore, these generally accepted models are used in this thesis.

Details are important in SAR/SLAR images but speckle degrades image quality. 

Therefore, it is important to reduce speckle prior to any further analysis. Additionally, 

we also need to suppress speckle to improve the estimate of the backscattering 

coefficient which is required for clutter modelling in this thesis. However, there exists 

a trade-off between speckle reduction and preservation of image details. Speckle 

filtering techniques based on local statistics such as those described by Lee [96], Kuan
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[97] and Frost [98], use estimates of expectation and variance within some 

neighbourhood. The importance of these filters is their ability to work well for 

multiplicative noise with different pdfs not just Gaussian, including non-symmetric 

distributions, and their ability to adapt to the characteristics of the noise. Comparative 

studies have shown that although these methods based on local statistics offer good 

speckle reduction and detail preservation, they do not perform as well for 

homogenous regions. An alternative approach is to transform the multiplicative noise 

to additive noise using the logarithmic transform [95], allowing standard techniques 

for additive noise removal to be directly applied.

By combining DCT with a MR approach a technique is obtained that is suitable for 

both denoising and fusion. This technique has good signal localisation properties in 

both the spatial and frequency domains. Based on this approach a new MR DCT- 

based method is proposed for simultaneous fusion of SAR images and denoising of 

speckle noise. The MR Laplacian pyramid transform [43] and orthogonal DCT 

transform are combined to achieve the advantages of the two individual approaches 

[89, 99, 100], good time adaptation, and frequency flexibility. It has been 

demonstrated that using this new approach, simultaneous denoising and fusion is now 

possible in the DCT transform domain for radar images of the land surface.

Denoising is achieved by thresholding the MR transform coefficients to suppress the 

effects of noise. Two common approaches for thresholding transform coefficients are 

hard thresholding and soft thresholding. Hard thresholding reduces all coefficients 

below the threshold value to zero. Soft thresholding reduces all coefficients by the 

magnitude of the threshold. Thresholding when applied to wavelet denoising is 

referred to as wavelet shrinkage because when thresholding is applied we effectively 

shrink the wavelet coefficients. Hard and soft thresholding techniques can not be 

directly applied to the multiplicative noisy SLAR data because they are specifically 

designed to filter AWGN but radar images contain speckle noise which can be 

considered as multiplicative noise. Instead, we transform the multiplicative noise 

model to additive noise model by applying the logarithmic homomorphic transform to 

the SLAR data, allowing soft and hard thresholding techniques to be applied [95, 

101].
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For the SLAR remote sensing image speckle can be modelled as multiplicative i.i.d 

Gaussian noise as [95]

g, = » (5.5)

where g. is the observed noisy signal, f  is the original signal and ni is noise with

unity mean and variance determined by the properties of radar imaging system. The 

absence of an additive noise component is a common assumption which is commonly 

adopted. Assuming ni is independent of f ., multiplicative noise can be transformed to 

additive noise by applying the logarithmic homomorphic transform as

S i  = / , + " ,

and

g, = Mj&l). 7, = ln(j/|). ", = Mj»,|) (5.6)

Here g. is the logarithmically transformed signal, f .  is the logarithmic transform of

the original signal and «. is the signal-independent noise component. It is assumed

that the Gaussian distribution of ni is not significantly modified by the logarithmic

transformation. This issue has been explained in [95], where justification is provided. 

For simultaneous denoising and fusion the proposed Laplacian pyramid MR-DCT 

approach is shown in Figure 5.9.
Laplacian
domain

Reconstructed
image

Original image Sliding window
DCT

Figure 5.9 MR-DCT scheme for denoising and fusion
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The Laplacian decomposition of the noisy signal can be obtained by

G = L g , (5.7)

where G are the Laplacian transform coefficients, L7 is an /-stage Laplacian transform

and g is the noisy signal to be analysed. The sliding window DCT can be regarded as

a time-ffequency representation which can be expressed as

d M = t g M ,  (5.8)

where T is the DCT transform, are the DCT coefficients of the 7th

decomposition level of the Laplacian transform coefficients G ^ ’"̂ . G ^  is an M*N 

frame from the 7th level Laplacian decomposition matrix including the coefficients

Thresholding of the DCT coefficients within a window can 

be efficiently implemented as

H \ ^ = WijD ^ n\  (5.9)

where is the i f  spectral coefficient of the signal in the window, wy. are the

weighting coefficients of the scalar filter and is the denoised estimate. Soft

thresholding [101] to suppress contaminated coefficients is implemented as

[sgn(D,)||z>,|-r)

* 1° N  < T
(5.10)

where T is the threshold. The denoised estimate of the Laplacian pyramid transform 

coefficients are then obtained by applying the inverse DCT transform as

£(".») = T- ' g H  (5.H)
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The central value of is the estimate of the denoised coefficient (m+M/2, n+N/2) 

of the Laplacian transform. The inverse Laplacian pyramid transform can then be 

defined as

f  = (LT fi> (5-12)

where f is the denoised estimate of the noisy signal g, and (l/) 1 is the inverse 

Laplacian pyramid transform.

The DWT and state-of-the-art DTCWT methods have been implemented for 

simultaneous denoising and fusion of SAR images from sensors with different 

operating characteristics, and compared to the new technique described above. The 

fusion and denoising schemes in Table 5.1 are implemented for DWT and DTCWT, 

while the fusion and denoising schemes in Table 5.3 are implemented for MRDCT.

Table 5.3 MRDCT Fusion/denoising Schemes

Scheme Description

MRDCT-MS MRDCT with maximum selection

MRDCT-WA MRDCT with weighted average

MRDCT-WBV MRDCT with window based verification

The denoising and fusion results were assessed using quantitative metrics to 

determine the effectiveness of each technique. The techniques were assessed using the 

mutual information (MI) [102] between the two source images and the fused image, 

and the qualitative measures proposed by Wang and Bovik, namely Qabf and Qw [103]. 

This not the place to discuss these measures but results can be found in [42].

A qualitative visual analysis was also performed to confirm the validity and 

plausibility of the quantitative measures. Simulations have shown [42] that the 

multiresolution DCT-based approach can outperform the DTCWT for simultaneous 

denoising and fusion, demonstrating superior results for textured regions of the test 

images which were specifically selected to most resemble the textured characteristics 

of SAR images.
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Simultaneous Fusion and Denoising of Test Image

First, simultaneous denoising and fusion is considered for noisy test images. 

Denoising and fusion is considered for the noisy “Barbara” test images as shown in 

Figure 5.10. The “Barbara” test image was selected because it is representative of 

typical SAR imagery as it contains a substantial amount of homogenous regions such 

as the face and arm, as well as texture detail particularly in the headscarf regions.

(left intentionally blank)

(d)

I

(f) (g) (h)

Figure 5.10 Denoising and fusion images:

(a) original test image Barbara; (b) test image 1 blurred on left hand side; (c) test 

image 2 blurred on right hand side; (d) test image 1 blurred on left hand side 

and simulated noise; (e) test image 2 blurred on right hand side and simulated 

noise; (f) DWT-WA; (g) DTCWT-WBV; (h) MRDCT-WBV (9x9).
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The original noiseless Barbara test image as shown in Figure 5.10(a) is used for the 

ground-truth data required for image quality estimation. The blurred Barbara test 

images are shown in Figures 5.10(b)-(c), where the right and left hand sides of the 

images have been blurred, respectively. The images were blurred so that each image 

contained important information not present in the other image. This is required so 

that the performance of the fusion algorithms can be assessed. The blurred Barbara 

test images with noise added are shown in Figures 5.10(d)-(e). The best fusion and 

denoising results obtained for DWT, DTCWT and MRDCT are shown in Figures 

5.10(f)-(h) respectively. For simultaneous denoising and fusion the DWT-WA shown 

in Figure 5.10(f) provides the worst results visually, failing to efficiently suppress 

noise. The DTCWT-WBV Figure 5.10(g) and MRDCT-WBV Figure 5.10(h) provide 

much better results, but each scheme is better for different reasons. Both schemes 

provide efficient noise suppression, but the MRDCT offers better texture preservation 

most noticeable in the headscarf regions. However, the DTCWT suppresses noise to a 

greater degree in homogenous regions such as the face and hand, while the MRDCT 

appears to have more artefacts in these areas. There also seems to be a loss in 

definition of the left side of the face and texture artefacts near the mouth region for 

the MRDCT scheme. Regardless of this, the texture information is clearly superior for 

the MRDCT. These observations are supported by the quanitative measures in Table 

5.4.

Table 5.4 Denoising and Fusion Results for Barbara test image

Scheme SNR, dB MSE
DWT-MS 15.96 472.78

CWT-MS 19.09 229.7

MRDCT-MS (9x9) 18.66 253.69

DWT-WA 16.27 439.82

CWT-WA 18.96 237

MRDCT-WA (9x9) 19.01 234.34

DWT-WBV 16.19 448.55

CWT-WBV 19.09 229.62

MRDCT-WBV (9x9) 19.1 229.48
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The visually poor results produced by the DWT are confirmed by lower SNR and 

MSE estimates. MRDCT and DTCWT achieve comparable results with the MRDCT 

marginally outperforming the DTCWT. Although the MRDCT attains better texture 

preservation and the DTCWT performs best for homogenous regions, they still 

achieve similar values for SNR and MSE. Therefore, each is suitable for different 

applications depending on the most important criterion, texture or homogenous 

information.

The test images are perfectly registered; therefore, the shift-invariance properties of 

the MRDCT and the DTCWT have no real advantage here. For DTCWT fusion and 

denoising the phase information is not considered by the fusion rules. This would 

imply that the results achieved for the DTCWT are due to its increased directional 

sensitivity, having six directional subbands, whereas the MRDCT and DWT only 

have three directional subbands. The results obtained by the MRDCT must therefore 

be attributed to its good signal localisation in both the spatial and frequency domains, 

permitting suitable selection of coefficients for both fusion and denoising.

Fusion and Denoising of SAR imagery

Now two real SAR amplitude images are considered in HH and W  polarisations as 

shown previously in Figure 5.7. These contain speckle noise with estimated noise 

variance cr2n = 0.05. SAR image fusion quality is assessed by estimating how much

important information is transferred to the fused image from the input images, using 

the quantitative measures MI [102], Q abf  and Q w  [103]. Visual analysis of the fused 

results without denoising are shown in Figure 5.11 indicates that the proposed 

MRDCT provides better quality for some edge details and textured areas.
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(d)

Figure 5.11 SAR fusion results:

(a) DTCWT-MS without denoising; (b) MRDCT-MS (3x3) without denoising; 

(c) DTCWT-MS with denoising; (d) MRDCT-MS (9x9) with denoising.

SAR image fusion quality is assessed by estimating how much important information 

is transferred to the fused image from the input images, using the quality measures 

Qabf> Qw and Ml. Quantitative analysis of the results shown in Table 5.5 and are 

discussed in greater detail in Appendix 2.
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Table 5.5 Fusion results for SAR image

Scheme Qabf MI

DWT-MS 0.7 0.796 0.391

CWT-MS 0.745 0.831 0.433

MRDCT-MS (3x3) 0.747 0.824 0.435

DWT-WA 0.665 0.776 0.4

CWT-WA 0.733 0.821 0.456

MRDCT-WA (3x3) 0.725 0.808 0.463

DWT-WBV 0.659 0.774 0.393

CWT-WBV 0.728 0.806 0.426

MRDCT-WBV (3x3) 0.73 0.813 0.455

Generally, all three measures agree that the Multiresolution DCT and Dual Tree 

Complex Wavelet Transform offer comparable performance for all fusion schemes, 

with the maximum selection fusion rule attaining best performance. Qahf  identifies 

MRDCT-MS with a (3x3) DCT window as the best fusion scheme, Qw identifies 

CWT-MS as the best, and MI identifies MRDCT-WA with a (3x3) DCT window as 

the best.

In summary, different fusion schemes have proven to be more efficient than others 

depending on the nature of the data and the presence of noise within the data. Results 

obtained from the simulations conducted on the test images suggest that the MRDCT 

is good for fusion but it is degraded by noise. However, results obtained for fusion 

and denoising of the test images suggest that MRDCT provides better noise 

suppression and texture preservation than the DTCWT, but it is not as efficient for 

homogenous regions. Additionally, the size of the sliding window used for the DCT 

affects the results of fusion; a smaller window is desirable for fusion but efficient 

denoising requires a larger window. Clearly, the tasks of fusion and denoising have 

conflicting requirements with respect to DCT window size. It is noted that the 

opportunity exists for improving denoising and fusion results by applying of an
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adaptive window size, where the window size is dependent on the image content 

(texture or homogenous) and the presence of noise within the data. An adaptive 

window size was not considered in this thesis due to time constraints.

Fusion of multiple sources of SAR data can provide the opportunity for improved 

estimation of the RCS of the underlying scene, therefore providing better source data 

for further processing or direct use for an application. The MRDCT has been shown 

to be a suitable method for efficiently fusing and denoising SAR data. We now return 

to the task of clutter modelling in Section 5.3 where the new method for predicting 

land clutter is discussed in detail.

5.3 New Method for Predicting Land Clutter

Predicting land clutter is important for analysing the performance of ground-based 

radar in detection of low-angle targets. This section describes the methodology for 

predicting clutter maps using remote sensing data. The novelty lies in application of 

remote sensing radar data to provide direct RCS measurements of the land surface and 

fusion for clutter modelling. A clutter map describes how the intensity of clutter is 

spatially distributed. A site-specific approach to predicting clutter is necessary to 

account for radar position, radar parameters, terrain topography, and local propagation 

effects. The clutter model in this thesis accounts for the following most important 

factors:

• Atmospheric refraction and the Earth’s curvature.

• Terrain elevation model.

• Terrain classification model.

• Terrain visibility model.

• Direct measurements of RCS, provided by remote sensing radar.

• Land backscattering model for correcting angular and frequency dependencies.

The main stages of data processing and fusion for clutter map generation are shown in 

Figure 5.12.
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Figure 5.12 Main stages of clutter map generation.

The three data sources required as input are: radar remote sensing image, DTED 

provided by SAR interferometer, and Landsat TM Mapper image [71]. All of these 

have been discussed in Section 5.2. The system can then be considered as a 3 stage 

process:

Stage 1: Pre-processing remote sensing data (yellow)

Stage 2: Estimating and Extracting terrain characteristics (green)

Stage 3: Fusion of terrain data and backscattering model (blue)

Stage 1 involves pre-processing the data including geometric registration of data to a 

common reference grid, radiometric calibration to compensate radiometric distortions, 

geometric correction to compensate geometric distortions, and impairment mitigation 

of radar remote sensing data to suppress noise. Stage 2 involves estimation and 

extraction of terrain characteristics including local grazing angles, terrain visibility



and terrain surface parameters, which with the exception of the terrain visibility map, 

are required as input for the backscattering model. Finally, stage 3 generates the site- 

specific clutter map through fusion of radar remote sensing data, terrain visibility map 

and application of the land backscattering model for correction of angular and 

frequency dependencies. The individual processes involved in stages 1, 2 and 3 are 

considered in Sections 5.4, 5.5 and 5.6, respectively.

5.4 Stage 1: Pre-processing Remote Sensing Data

Although it is typical for radar to present clutter maps in range-azimuth coordinates, 

we have chose to use a rectangular system because it has the following advantages:

• Resolution cells are uniformly spaced and have the same cell dimensions.

• Calculation of target trajectory is less complicated in rectangular coordinates.

• Data redundancy is introduced when transforming from rectangular to polar 

coordinates.

• In a polar coordinate system there is a singularity at the position of the radar.

The first stage as shown in Figure 5.12, involves pre-processing the remote sensing 

data to correct for geometric distortions and sensor impairments. Radiometric 

calibration of the radar remote sensing data is considered in Section 5.4.1, filtering the 

radar remote sensing data to remove speckle noise is discussed in Section 5.4.2, and 

geometric correction and registration of all the remote sensing data to a common 

coordinate system is detailed in Section 5.4.3.

5.4.1 Radiometric Calibration

Radiometric calibration of the remote sensing radar measurements is essential to 

reduce the influence of radar characteristics on the measurements of surface 

reflectivity by converting image pixel brightness into absolute values of the 

backscatter coefficient. When presented in absolute values, the backscattering
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coefficient can be corrected to account for angular and frequency dependencies in 

order to predict clutter maps. Therefore, calibration errors need to be minimised to 

improve the accuracy of clutter modelling.

The dynamic range of the signal returns across an image is large because of variations 

in the antenna pattern, distance, and backscattering coefficient. For propagation in 

free-space the received power is inversely proportional to the fourth power of slant 

range R4, resulting in weak signal returns at far range. To compensate for the l/R 4 

law, antenna gain may be higher at upper elevation angles than at lower elevation 

angles. Additionally, the reflectivity of the surface is a function of antenna beam 

incidence angle. These effects cause variations of intensities in the radar image across 

the range swath. Radiometric calibration corrects for these effects reducing the 

dynamic range of the data and ensuring average image brightness and contrast are 

more uniformly distributed.

The calibration method in [104] was used to calibrate the remote sensing SLAR 

image acquired by an X-band airborne SLAR sensor onboard the MARS platform 

[105]. The method combines external and internal calibration methods to compensate 

variations in antenna and receiver gain with range, achieving a calibration accuracy of 

about 2dB [104]. Internal calibration measures critical radar parameters such as 

receiver gain and transmitter power, to achieve continuous control over radar 

parameters. Internal calibration for the SLAR radar is achieved by directional 

couplers on both transmitter and receiver circuits to directly connect them together 

[104]. The connection between the couplers has a known attenuation, and is used to 

feed the transmitted signal to the receiver to allow relative calibration. The delayed 

and attenuated radar signal is recorded synchronously with the received radar image. 

The power of the recorded calibration signal is

P T
Pk = ^  (5.13)

r c

where Pe is the power of the transmitted signal, L is the gain of the receiver and 

signal processing circuits, and yc is the calibration channel attenuation. Using the
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radar equation, the absolute values of backscattering coefficient is then estimated 

from the ratio of the received and calibration signals as

.. M 3* 4 pr
G ^ 2rA>F P„

°  (5-14)

where Pr is received signal power, \  is the illuminated area, R is slant range, and F

is the propagation factor to account for tropospheric propagation. External calibration 

is achieved by using comer reflectors and active devices [80], which permit accurate 

estimation of the G and yc parameters.

5.4.2 Speckle Filtering

The properties of speckle and the importance of removing speckle have already been 

discussed in Section 5.2.3. The approach adopted for speckle suppression shown in 

Figure 5.10 follows from previous results in Section 5.2.3 and uses the DTCWT, 

logarithmic transform to convert speckle to additive, and soft thresholding [101]. For 

experimental purposes the Antonini 9,7 tap filters and Quarter Sample Shift 

Orthogonal (Q-Shift) 10,10 tap filters [92] were selected, which were determined 

through simulations to produce the best results for this particular application.

Thresholding the DTCWT coefficients is achieved through a global threshold, which 

is defined as T = ccrn, where c is a single constant used for all directions and

decomposition levels, and <j2n is the noise variance of the speckle. Analysis of the

uniform regions of the radar image is used to evaluate <x̂ , while c is determined

through simulation. Until an automatic method to determine c is available the 

application of this thresholding method for real data is limited. The threshold is 

applied to the magnitude of the DTCWT complex coefficients in each directional 

subband, excluding the approximation subband.
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5.4.3 Geometric Correction and Registration of Remote Sensing Data

To apply remote sensing data for clutter modelling it is necessary to correct the data 

for geometric distortions due to different sensor geometry and spatial resolution from 

the ground based radar. Additionally, all the data need to be transformed to a common 

coordinate system so that corresponding image pixels represent the same spatial 

location.

For the remote sensing radar the data are presented in slant-range spatial coordinates 

and therefore must first be converted to ground-range coordinates. Random geometric 

distortions may also be present due to variations in sensor platform trajectory 

resulting in image shift, rotation and non-linear distortions. Another source of 

geometric distortions in remote sensing images result from the curvature of the Earth, 

however these effects are minimal for low-altitude airborne radar and also for Landsat 

because of a narrow swath [106].

Geometric correction is applied in two stages. First, slant-to-ground range conversion 

is applied for the right looking radar, that can be obtained by

P ,= 1 ,  (5-15)

where (px,p y) and (qx,qy) are the point coordinates for the ground and slant ranges

respectively, is the minimum slant range, and h is the height of the radar 

platform.

At the next stage, registration of the ground-range radar image to the topographic map 

is applied to correct for geometric distortions. This is achieved by selecting ground 

control points (GCPs) representing identical features in both the radar image and 

topographic map, such as road junctions, buildings, and curves of rivers. To transform 

the radar to topographic coordinates an affine transformation is applied to rotate, scale 

and shift the radar image to match corresponding GCPs in the topographic map. The 

affine transformation requires six parameters which are estimated automatically by 

minimising the discrepancy between corresponding GCPs of the topographic map and
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radar image. After registration the radar image is now transformed to new coordinates 

and resampled to be the same format as the topographic map.

For the terrain elevation data obtained from the SIR-C Imaging Radar sensor [70] and 

Landsat TM data [71], visual analysis confirms that there are no impairments present 

which may affect the modelling results. Therefore only registration to the topographic 

map coordinate system is necessary. This is achieved through the same process as for 

the radar image. For registration of the terrain elevation data the selected GCPs 

included valleys, steep hills, and buildings, all of which can be identified in the 

topographic map which is selected as the base image for registration.

The impairments in the remote sensing data have been mitigated, and the data 

corrected for geometric distortions, and transformed to a common coordinate system. 

The next stage is to extract from the remote sensing data the necessary terrain 

information required for clutter modelling. This is considered in Section 5.5.

5.5 Stage 2: Estimating and Extracting Terrain Characteristics from Remote 

Sensing Data

The experimental land backscattering model uses grazing angle, radar frequency, 

polarisation, and terrain type for prediction of land clutter intensity at low-grazing 

angles. Additionally, attention must be paid to terrain visibility due to obstructions 

caused by elevated terrain. Grazing angle and terrain visibility are essential in 

determining terrain reflectivity. Both can be calculated using the terrain elevation 

model and a ray tracing approach such as GO [57] discussed in Section 4.3 and 4.6.

Calculation of local grazing angles is discussed in Section 5.5.1, generation of terrain 

visibility maps are detailed in Section 5.5.2, and classification of remote sensing data 

to obtain terrain type is discussed in Section 5.5.3.
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5.5.1 Grazing Angle Calculation

For calculation of the local grazing angle it is necessary to account for land surface 

local slope with respect to radar position, antenna height, the curvature of the Earth 

and electromagnetic wave propagation in the troposphere. Grazing angle is defined 

here as the angle between the ray and the terrain slope, where terrain slope is the 

complement of the surface normal. A flat Earth surface assumption permits simple 

geometric calculations, and then corrections for the Earth’s curvature and 

electromagnetic wave propagation in the troposphere can be applied to calculate 

grazing angle.

Grazing angle for a perfectly flat Earth surface can be defined as

where h is the surface normal, and hr is the unit vector from the surface position 

pointing towards the radar. The normal vector n accounting for slope of the surface 

can be defined as

where x , y ,  z are unit vectors along the Cartesian coordinates, and %x, ^  , are the

local slopes along the x and y  coordinates. The reduction in grazing angle for a 

spherical Earth model is defined as

where r is the ground range and ER is the Earth’s radius. A four-thirds Earth model is 

used to account for propagation effects in the troposphere which assumes standard 

atmospheric refraction, whereby the ER is increased 4/3 times [13].

„ - x & - y § ,  + i
n = — (5.17)
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5.5.2 Terrain Visibility Map and Shadowing Effects

Terrain shadowing occurs when free-space wave propagation is interrupted by hills 

and other obstacles, resulting in clutter attenuation due to some regions not being 

visible from the radar position. For radar in the microwave band, the wavelength is 

considerably smaller than the dimensions of the surface macro-relief. Therefore, only 

directly illuminated areas contribute to land clutter returns. Additionally, diffraction 

effects are minimal [65], and clutter returns are non-existent for shadowed regions. 

Based on these assumptions, the GO method for ray tracing provides a suitable 

method for modelling clutter attenuation due to shadowing effects [13, 57].

Shadowed regions and visible regions are described by the terrain visibility map 

which is determined by calculating the straight line ray trajectory between the radar 

antenna position, antenna height, and all other terrain points. A point of the land 

surface is determined to be in shadow if the ray trajectory intersects the land surface 

profile. To account for standard tropospheric propagation the four-thirds Earth model 

is applied to decrease the terrain elevation height with increasing distance from the 

radar. Using this approach ensures the validity of straight line ray trajectories as used 

in GO. The effective decrease in terrain height with range can be calculated as

Earth’s radius.

5.5.3 Terrain Classification

As discussed in Section 5.1, the terrain type is one of the factors which influence the 

intensity of the clutter signal returned from the land surface. The terrain type of the 

land surface can be determined from topographic maps, GIS and land cover maps 

[56]; however, these are limited by low spatial resolution and long periods between

(5.19)

where r is range, E Er is the effective Earth’s radius, and ER is the actual
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updates. Accurate prediction of clutter maps require up-to-date information to account 

for changes within the environment and seasonal variations. Therefore, it is more 

convenient to use higher resolution remote sensing data and classify this data into 

terrain classes of interest. The region under consideration (near Kharkov city, 

Ukraine) consists of six terrain classes: roads; urban areas; water; bare soil; forest; 

and grass. These terrain classes correspond with the terrain classes required by the 

land backscattering model to predict clutter intensity [37]. A Radial Basis Function 

Classifier (RBFC) and Support Vector Machine (SVM) have been shown to be 

effective tools for classification of terrain type in optical satellite remote sensing 

images providing accurate classification results [79].

Landsat TM Mapper images and topographic data contain the necessary information 

to classify the region into specific terrain classes. Initially, ground truth data was used 

to train the RBFC on four terrain classes: water; bare soil; forest; and grass, as shown 

in Figure 5.13(a). The RBFC was used to classify the Landsat TM Mapper data but 

was not trained to classify urban areas and roads for the following two reasons. 

Firstly, urban areas and bare soil are difficult to discriminate between in the Landsat 

TM Mapper image and therefore lead to incorrect classification of these two classes in 

many regions. Excluding urban classes from the classification process resulted in 

correct classification of all bare soil areas; however, all urban areas are now classified 

as bare soil. Secondly, roads are extremely difficult to detect in the Landsat TM 

Mapper image. Therefore, to obtain accurate classification of roads and urban areas, 

manual classification was necessary; however, it is acknowledged that automatic 

methods for extraction of roads exist. Topographic data was considered unsuitable for 

automatic classification using RBFC because it contains symbolic data, grid lines and 

contour lines; all of which result in misclassification errors. However, topographic 

data provides the information required for identification of roads, due to the road 

network being easily detectable. When used in conjunction with Landsat TM Mapper 

data urban regions can also be easily identified. The RBFC classified image was then 

fused with the manually classified road and urban classes as shown in Figure 5.13(b)- 

(c), to provide the final classified data containing all six terrain classes as shown in 

Figure 5.13(d).
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Figure 5.13 Terrain Classification of test site: (a) RBFC for four classes;

(b) road class; (c) urban class; (d) final classified image.

Now that we have extracted the necessary terrain information from the remote sensing 

data, we consider in Section 5.6, the details of the land backscattering model and how 

fusion of radar remote sensing data can reduce the land backscattering model errors.
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5.6 Stage 3: Fusion of Radar Remote Sensing Data, Terrain Data and 

Application of the Land Backscattering Model

The final stage involved in generating of site-specific clutter maps is fusion of remote 

sensing data and application of land backscattering models. The empirical land 

backscatter model is considered in Section 5.6.1, and application of this model for 

remote sensing data fusion for prediction of site-specific clutter map is discussed in 

Section 5.6.2.

5.6.1 Land Backscattering Model

In order to generate a site-specific land clutter map it is necessary to determine the 

backscattering coefficient cr° for every position in the clutter map. There are 

generally two approaches for predicting <r°: theoretical, and experimental.

The theoretical approach for modelling signal scattering by the land surface is 

appropriate, providing constraints on the properties of the land surface are met. 

Backscattering models based on the Kirchhoff and small perturbation methods are 

applicable in the microwave band for quasi-smooth surfaces without vegetation, such 

as concrete and asphalt [107, 108]. The Kirchhoff model assumes that the surface is 

sufficiently smooth and the spatial correlation radius (the averaged width of the 

irregularities of a rough surface) is significantly smaller than the wavelength of the 

incident signal. Additionally, boundary conditions for the plane facets of the surface 

are expressed in terms of parameters that characterise the surface profile. The small 

perturbation model is valid for quasi-smooth surfaces [107], providing constraints on 

surface parameters are satisfied. In this case, the standard deviation of surface height 

should be much smaller than the wavelength. The integral equation method [109] is 

an extension of these theoretical models and can be used to describe signal scattering 

from bare soil surfaces, which have higher surface roughness than can be modelled 

using the Kirchhoff or small perturbation models.
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The theoretical models discussed here have demonstrated results consistent with 

experimental data for particular types of surface without vegetation, such as concrete 

and bare soil [65]. However, the application of these theoretical models for describing 

signal scattering from the surface is limited by the following factors:

• They are only applicable for a limited range of surface types and do not 

provide accurate results for very rough surfaces.

• They can only be applied for spatially homogenous surfaces which can be 

expressed by a single roughness parameter; therefore they are not applicable 

for surfaces with complicated geometry.

• They assume that the backscatter coefficient for quasi-smooth surfaces is a 

function only of surface roughness and the dielectric constant of the surface.

The experimental approach uses empirical models which are based on the analysis of 

experimental measurements of the backscattering coefficient, and are valid for a wider 

range of radar parameters and land surface types. This advantage of empirical models 

justifies application of the experimental approach for our purposes, rather than the 

theoretical models for determining <r° which are only valid for the limited surface 

types as discussed above. The clutter modelling approach in this thesis uses the 

empirical backscattering model developed in [37, 65] which classifies the land surface 

into basic terrain types that correspond well to the terrain types present in the radar 

deployment region considered in this thesis. The experimental backscattering model 

accounts for radar parameters and local terrain characteristics. This empirical model is 

valid for millimetre-wave radar frequencies from 3-100 GHz, and maximum grazing 

angle <30°, which is within the range of radars considered in this thesis. For 

horizontally transmitted and received polarisation (HH) the backscattering coefficient 

can be obtained by

« £ > , / )  = A  + 4  log,0(^ /2 0 )+ 4  log10(//1 0 ), dB (5.20)

where is the backscattering coefficient in d B ,/is  the radar frequency in

GHz, and y/ is the grazing angle in degrees. The coefficients A\ - A 3 are determined 

by terrain type, as listed in Table 5.6 [65 p.161].
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Table 5.6 The Coefficients^! -A s  for the Land Clutter Model

Terrain type At a 2 A3

Concrete -49 32 20
Arable land -37 18 15
Snow -34 25 15
Deciduous and coniferous 
forests, summer

-20 10 6

Deciduous forest, winter -40 10 6
Grass with height > 0.5 m -21 10 6
Grass with height < 0.5 m -(25-30) 10 6
Urban territories (town and 
country buildings)

-8.5 5 3

The empirical model (5.20) and Table 5.6 categorise the land surface into a limited 

number of terrain classes commonly found in radar coverage regions. The 

backscattering coefficient for W  polarisation can then be defined as [65]

w —

Subsequently, the cross-polarised component of the normalised RCS is determined as

o L .  = < = < “ < - 1 0 ,  dB (5.22)

Equation (5.22) is valid for all of the surface types considered except for quasi­

smooth surfaces; in which case, the cross-polarised component of the backscattering 

coefficient is equal to zero (-00 in dB).

Equations (5.20)-(5.22) have been determined by solving the radar equation for the 

returned clutter power obtained through experimental measurements [66]. For these 

measurements clutter power is defined as oFA (because it is difficult to separate the 

backscatter coefficient from propagation effects and because of the small influence of 

the propagation factor F  for microwave band measurements). Measurements obtained

o

.0
HH

0

+ 10

HH

f  f Y 2— dB, for quasi - smooth surfaces
v10j

dB, for other surfaces

(5.21)
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for the terrain backscatter coefficient (including propagation factor F) for X-band and 

higher radar frequencies, is relatively small compared with measurements obtained at 

lower frequency bands. Therefore, we can assume F 4 = 1 for X-band and shorter 

wavelength land clutter modelling.

Then, using the empirical backscattering model (5.20) the backscattering coefficient 

<j°LB for the land-based radar, which has a different position and operating frequency 

compared with the remote sensing radar, can be predicted for HH polarisation as

= & R S  ^2 l° S lO  LB / VR S  ) "*" ^3 ^°8l0 C/LB /  f R S  ) > 1̂3 (5.23)

where cr^ is the backscattering coefficient measured by the remote sensing radar, 

fas is the remote sensing radar operating frequency, and y/^  is grazing angle for the 

remote sensing radar. The land-based radar operation frequency is f LB, y/LB is the 

local grazing angle for the position of the land-based radar, and coefficients A2, A3 are 

given in Table 5.4. An interesting point to note is that the coefficient Ai has been 

replaced by cr^ implying that errors introduced by the empirical model are reduced. 

Additionally, if the same operating frequency is selected for both land-based and 

remote sensing radar, then the term A3 log10( / i5/ / ^ )  disappears from the equation.

The result of this observation is that now the accuracy of the clutter model is 

dependent on the accuracy of the following factors: the remote sensing radar data, 

coefficient A2 from the empirical model, the terrain classification data, and terrain 

elevation data used for calculating the local grazing angles for both land-based and 

remote sensing radar. The expressions for estimating the backscatter coefficients for 

W  and cross-polarisation follow from Equations (5.21)-(5.22).

5.6.2 Fusion of Remote Sensing Radar Data, Terrain Data, and Application of 

the Backscattering Model

The final stage in generating the clutter map involves fusion of radar remote sensing 

data, terrain classification data, and local grazing angle data to calculate the
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backscattering coefficient for every image pixel. The clutter map is presented in a 

rectangular coordinate system with uniform spacing, where the grid cell size is 

determined by the spatial resolution of the remote sensing data. The pre-processing 

stage ensures all data are co-registered in the same coordinate system so that 

corresponding pixels represent the same spatial position. The backscattering 

coefficient is predicted for each pixel position by applying the backscattering model 

to the remote sensing data as

°lb ('>j )  = Somefunctionoflals(i,j\T ( i,j) ,y /LB( i , (5.24)

Terrain shadowing effects are minimal for remote sensing radar where terrain height 

variations are moderate, but have a significant impact on land-based radar clutter 

modelling [110]. Terrain shadowing effects are not accounted for in Equation (5.24); 

therefore, the terrain visibility map must be applied to account for clutter attenuation 

in shadowed regions as follows

V cJi,j) = c ? J ‘,j ) s O,J) (5.25)

Here cr°m(i,j) are the site-specific backscattering coefficients and S(i,j) is the terrain

visibility map. This is a binary map where one corresponds to visible terrain and zero 

represents shadowed terrain, where backscattering does not occur.

5.7 Experimental Site-specific Modelling of Land Clutter

Experimental results are now presented using measured remote sensing data for 

generation of site-specific land clutter map for land-based radar. The site selected can 

be classified by the terrain types listed in Table 5.6, including forest, agricultural land, 

grassland, urban regions and roads, where most of the territory can be categorised as 

rural low-relief according to the classification in [73]. The topographic map of the site 

near Kharkov in the Ukraine is shown in Figure 5.14.
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Figure 5.14 Topographic map of test site.

The land-based radar is located 25 metres above the land surface. Its position is 

indicated by the red symbol. For prediction of the land clutter map two approaches are 

adopted, and a comparison made between the two methods. Firstly, the land 

backscattering model (5.20) is applied to the terrain classification map and grazing 

angle data to predict clutter intensity. Secondly, the method (5.24) is applied based on 

fusion of remote sensing radar image, terrain classification map, grazing angle data, 

and application of the land backscattering model to predict clutter intensity. We will 

now discuss the results of the various stages involved in the prediction of clutter 

intensity.

The remote sensing radar image was obtained by the multipurpose airborne platform 

“MARS” [105], which is equipped with two SLAR sensors that operate independently
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in Ka band and X band. The remote sensing radar image shown in Figure 5.15(a) was 

acquired by an X band SLAR sensor operating at 3 cm wavelength, VV polarisation, 

and slant-range resolution of about 30 metres.

(a) (b)

Figure 5.15 X-band SLAR image of test site: 

(a) original image; (b) after calibration.

Visual analysis of the SLAR image in Figure 5.15a) identifies a non-uniform 

distribution of image brightness observed along the radar range (horizontal) direction, 

and also the presence of speckle noise in the image. The SLAR image was obtained 

from a left-look direction resulting in the right side of the image being brighter due to 

the fact that these positions are spatially closer to the SLAR sensor. The radiometric 

calibration method was applied to compensate for antenna gain variations, radar 

system influences on measurements, and to convert the backscattering coefficients to 

absolute values. The calibrated SLAR image with uniform image mean brightness in 

the range direction is shown in Figure 5.15(b). Correction for geometric distortions is 

achieved using an affine transformation to scale, shift and rotate the data in order to 

co-register the image to topographic coordinates. The geometrically corrected and co­

registered SLAR image presented in dB is shown in Figure 5.16(a).
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(a) (b)

Figure 5.16 Different stages of SLAR image processing:

(a) geometric registration; (b) speckle noise suppression.

24 GCPs were selected in both topographic map and SLAR achieving a discrepancy 

of about 3 pixels between corresponding GCPs after the transformation. Speckle 

reduction was achieved by application of the DTCWT with soft thresholding as 

discussed in Section 5.4.2, and the filtered image is shown in Figure 5.16(b). Clearly, 

the appearance of the processed radar image in Figure 5.16(b) has been significantly 

improved and geometric distortions have been removed in comparison with the 

original radar image in Figure 5.15(a).

The digital terrain elevation model of the test region is generated by a radar 

interferometer, providing an elevation measurement accuracy of about 12 metres over 

the whole site. The interferometer measurements can be obtained from [70], and were 

acquired by the SIR-C Imaging Radar in 2000. The affine transformation was applied 

using 45 GCPs for geometric registration of the terrain elevation map to the 

coordinate system of the topographic map, achieving an estimated 2 pixel discrepancy 

between corresponding GCPs after registration. After geometric registration of the 

terrain elevation map local grazing angles for the land-based and remote sensing 

radars can be estimated as shown in Figure 5.17(a) and (b), respectively.
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(a) (b)

Figure 5.17 Predicted local grazing angles for: (a) the land-based radar;

(b) the remote sensing radar.

Note the clear differences in grazing angles due to different elevation and positions of 

the sensors. For calculation of the terrain visibility map for the land-based radar 

shown in Figure 5.18, terrain elevation data and the GO ray tracing method was 

applied to determine which regions of the terrain are visible from the radar position.

Figure 5.18 Visible and shadowed regions for the test site.
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The position of the radar is denoted by the red symbol, shadowed regions are shown 

in black, and directly illuminated regions are shown in white. The terrain visibility 

map has been estimated for the radar with an antenna height of 25 metres above the 

land surface at the radar position. Approximately 73% of the site is shadowed by the 

relief of the terrain. The visible clutter regions can be further reduced by lowering the 

height of the radar antenna; however, this will also reduce the visibility of low-angle 

targets.

The results of terrain classification by the Radial Basis Function Classifier (RJBFC) 

artificial neural network, fused with the manually classified data, are shown in Figure 

5.19.

Urban

Water

Roads

Forest

Figure 5.19 Terrain classification map.

The RBFC was trained using fragments of the terrain manually classified as grass, 

water, forest, and arable land as described in section 5.5.3. The number of training 

samples was 1.7% of the whole classified image. The cascade-correlation algorithm 

[111] was implemented at the training stage to determine the number of nonlinear 

elements in the RJBFC artificial neural network hidden layer. The number of nonlinear
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elements was automatically selected as 4. For the training samples, a classification 

accuracy of 96% was achieved.

Terrain classified as water corresponds to rivers and lakes; however, these do not 

appear in Table 5.6. Therefore, a constant value of -30dB is assigned for the water 

class backscattering coefficient, which is valid for W  polarised X-band radar 

operating in moderate wind conditions. The final stage is generation of site-specific 

clutter maps. The proposed method (5.24-5.25) is shown in Figure 5.20(a), for 

prediction of a site-specific clutter map by fusion of remote sensing radar data and 

application of the backscattering model. For comparison purposes Figure 5.20(b) 

shows the clutter map generated by the land backscattering model, terrain elevation, 

and terrain classification data only.

I 4 k m  I I 4 k m  I

(a) (b)

Figure 5.20 Land clutter model:

(a) based on radar, TED, and optical remote sensing data;

(b) based on only TED.

Analysis of the predicted clutter models in Figure 5.20 identifies that the new method 

proposed in this thesis, Figure 5.20(a), predicts higher clutter intensity for various 

areas, most noticeable at far ranges, and that information content has been improved 

particularly for bare soil regions. A similar effect has been observed in [74] where the 

clutter modelling approach fuses Defence Mapping Agency Data with TED,
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indicating that accurate information about the environment is required or else clutter 

impact may be underestimated. The new method addresses this issue by incorporating 

additional radar remote sensing data to provide additional information about the land 

surface, in the form of direct RCS measurements. Clearly, the more information we 

have about the environment, then the more accurately we can predict land clutter.

An obviously important question is that of the accuracy of the clutter model. An 

examination of this issue was undertaken by a colleague, Dr Andrey Kurekin, and is 

reported in the journal paper submitted to the Elsevier Journal on Information Fusion 

[38]. Clutter modelling accuracy was assessed by using two remote sensing images 

obtained from different trajectories (looking at the considered region from opposite 

directions). The proposed method (5.24-5.25) was applied to radar remote sensing 

data acquired from one trajectory in order to predict the clutter map for the airborne 

sensor at the other trajectory. This approach allows the predicted clutter maps to be 

compared to real radar measurements for assessment of clutter map prediction 

accuracy. For the clutter model (5.20) which only applies TED a greater than 8dB 

error was achieved for more than 50% of the region, with a minimum error of 5dB. 

For the proposed method (5.24-5.25), an error of less than 4dB was achieved for more 

than 90% of the region, this agrees with a 2dB calibration error for each remote 

sensing image. A greater than 4dB error was achieved for the remaining 10% of the 

region, with errors greater than 8dB for bare soil and vegetation surfaces. We attribute 

the higher errors for bare soil and vegetation to non-isotropic scattering from 

ploughed troughs and rows of planted crops. It is the authors’ point of view that this 

situation may be improved by fusion of multiple remote sensing trajectories to 

account for non-isotropic scattering from certain surface or object types.

5.8 Conclusions

This chapter has demonstrated the advantages of using up-to-date remote sensing data 

to improve the accuracy of site-specific land clutter prediction for surface-sited low- 

grazing angle radar. The novelty of this approach is application of radar remote 

sensing images provided by SAR/SLAR for estimation of the land backscattering
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coefficient, and implementation of the empirical land backscattering model only to 

correct for angular and frequency dependencies of measured clutter intensity.

The new technique for clutter modelling proposed in this chapter has been illustrated 

using measured data which was acquired from a variety of sources. It has been shown 

that fusion of radar remote sensing data, information about the terrain and application 

of an empirical model of the land backscattering process can provide additional 

information about the clutter intensity. The advantage of using radar remote sensing 

data to provide the required information for clutter modelling is that direct 

measurements of RCS provides the opportunity for more accurate clutter prediction.

The clutter modelling technique presented in this chapter is an integral component 

within the intelligent radar sensor, as it allows environmental influences to be 

accounted for by using up-to-date information provided by remote sensing data. The 

accuracy of predicting radar performance is improved by prediction of up-to-date 

clutter maps for the deployed region because it can account for the dynamically 

changing nature of environmental clutter and benefits from direct RCS measurements.

Potential applications for the intelligent radar sensor will be discussed in Chapter 6 to 

illustrate the advantages of predicting radar sensor performance for the scenarios 

considered.
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Chapter 6

Improved Radar Sensor Performance

In this chapter, three scenarios are identified for application of the intelligent radar 

sensor architecture. This is followed by a discussion of how the intelligent radar 

sensor can be implemented to solve the problems considered. Finally, measured data 

is used to implement the scenarios identified. The advantages of the intelligent radar 

sensor approach for predicting radar sensor performance in order to optimise radar 

operation are assessed.

6.1 Scenarios for Application of the Intelligent Radar Sensor

We now consider a few possible scenarios which could benefit from the intelligent 

radar sensor (IRS) approach. For ship-based radar where the radar needs to observe a 

specific region of the land on the coast, a possible solution is to sail along the 

coastline taking sequential measurements until the required data is obtained. 

However, it is more desirable to predict at what locations the sensor will be able to 

meet its objectives (observe the required region), then intelligently select the most 

appropriate location and move directly to this position to take the necessary 

measurements. This will minimise exposure time to hostile radar and weaponry.

The data set used in this thesis which had been described in Chapter 5, is specifically 

suitable for ground-based radar applications; therefore, the following three scenarios 

are selected for experimentation: radar deployment; radar sensor network; and mobile 

radar. We will now consider these three scenarios in greater detail.

6.1.1 Radar Deployment Scenario

For the task of radar deployment in a new region or territory, the IRS can be used as a 

planning tool to predict radar performance prior to deployment and optimally position 

the radar sensor. The benefit of this approach is reducing the possibility of selecting
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inappropriate positions for the radar sensor, therefore avoiding the burden (in terms of 

time, resources, and cost) of having to relocate the radar after deployment.

6.1.2 Radar Sensor Network Deployment Scenario

Another important task is deployment of a network of radar sensors, either for optimal 

coverage of the deployment region, or alternatively, for use in a radar sensor network 

fusion scenario where sensor measurements are fused for improved joint probability 

of detecting targets. For the fusion scenario, performance of the radar sensors is 

assessed when measurements are fused to improve detection probability to minimise 

the effects of clutter and multipath. Considering this scenario, the IRS can be 

employed to predict radar performance for every location, and then an optimisation 

task performed to determine the most appropriate spatial configuration for the radar 

sensors to achieve the desired objective. Depending on whether the purpose of 

network deployment is optimal coverage of the region or a sensor fusion-based 

scenario a slightly different approach is required.

6.1.3 Mobile Radar Scenario

For mobile ground-based radars or airborne radars that need to change location to 

observe some part of the territory that is not visible from the current position, 

prediction of radar sensor performance can assist in intelligent selection of both 

position and optimal route to that position or flight route. In this case the objective is 

to achieve or maintain a specified probability of detection for targets and improve 

radar sensor performance.

Experimental results for each of the three scenarios are presented in Section 6.3. In 

Section 6.2 we will now discuss how the intelligent radar sensor can be applied to 

solve the problems posed by each scenario.

6.2 Application of the Intelligent Radar Model for the Three Scenarios

Although the three scenarios considered are different, in principle they can be broken 

down into one of two tasks.
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• The IRS may need to change position in order to maintain current sensor 

performance and meet current objectives.

• The IRS may be tasked with new objectives and therefore may need to change 

position in order to meet the new objectives.

Essentially, both tasks are similar, in that the goal is to change the current position of 

the radar sensor in order to meet its objectives. The IRS can be implemented to solve 

these tasks as shown in Figure 6.1.

Intelligent Radar Sensor

Clutter
model

Multipath
model

New
objective

Radar
performance

prediction

Application 
of radar 
model

Optimisation

Process data 
for 

impairment 
prediction

Acquire 
up-to-date 

remote 
sensing data

Figure 6.1 Intelligent Radar Sensor Application
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Upon recognition that the sensor is failing to meet its current objective or in response 

to new objectives being issued, the IRS will react in the following way. New remote 

sensing data is requested and acquired by the sensor. This data is then processed to 

identify and mitigate any impairment present, using the techniques presented in 

Chapter 5. The IRS then predicts all applicable clutter maps and multipath effects by 

using the techniques presented in Chapters 4 and 5, for all the relevant positions 

within the environment. The radar model discussed in Chapter 3 is then applied to the 

clutter map data and multipath model to predict probability of detection maps. These 

are considered as the measure of radar performance for the IRS. Finally, an 

optimisation task is performed to select the best solution that meets the goals and 

objectives of the IRS. The task of optimisation is not considered in this thesis because 

it is a complex issue which requires further investigation; however, it is an important 

component of the IRS which is required for intelligent operation.

We will now discuss the advantages of implementing the intelligent radar sensor 

approach to solve the problems posed by the scenarios outlined in section 6.1.

6.3 Application of Measured Data for the Scenarios Considered and Discussion

The intelligent radar sensor is now applied using measured data for the three scenarios 

discussed in Section 6.1. The benefits of this approach for deployment of a radar 

sensor are demonstrated in Section 6.3.1. Deployment of a radar sensor network and 

fusion of radar data is illustrated in Section 6.3.2, and mobile radar route prediction is 

discussed in Section 6.3.3. The radar parameters for these scenarios are detailed in 

Chapter 3 and can be found in Table 3.1 and Table 3.2.

6.3.1 Radar Sensor Deployment

In this scenario the idea is to select the best position for deployment of a radar sensor 

in a new region. To demonstrate the advantages of applying the IRS for this scenario 

we will consider two radar positions, one good and one bad, as shown by the red 

symbols in Figures 6.2(a) and (b). We will then discuss the factors which need to be
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considered to determine what constitutes a good or bad position. To illustrate how the 

IRS can be applied to help solve this task we will consider the clutter map which 

accounts for terrain shadowing effects, target visibility due to terrain shadowing 

effects, and probability of detection. The clutter maps for the two radar positions are 

shown in Figure 6.2.

(a)

Figure 6.2 Clutter Map for the whole region: 

(a) for radar position 1; (b) for radar position 2.

The radar position in Figure 6.2(a) is considered bad because much of the region is in 

shadow (93.13%) meaning that low-altitude terrain following targets may be hidden 

from the radar, however, higher altitude targets will be easier to detect due to the 

reduced clutter levels. The radar position in Figure 6.2(b) is considered a better 

position because only 53.95% of the terrain is in shadow, meaning that the probability 

of low-altitude targets being shadowed by terrain is reduced, albeit at the expense of 

higher clutter intensity in non-shadowed regions. To illustrate the problem of target 

shadowing consider the target visibility maps for both radar positions as shown in 

Figure 6.3.
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(a)

Figure 6.3 Target Visibility Map for Target Height of 250m:

(a) for radar position 1; (b) for radar position 2.

The target visibility maps are calculated for a target height of 250m above the flat 

Earth surface, where white corresponds to visible target and black corresponds to 

target shadowed by the terrain. For this target height above the land surface, the target 

visibility map for position 1, Figure 6.3(a), shows that the target is only in shadow for 

a small percentage of the whole region; while for radar position 2 the target is visible 

completely for the whole region. If we now consider a target with height of 150m, we 

can begin to understand the importance of target shadowing and the implications it 

has on radar performance, as shown in Figure 6.4, where, as before white represents 

visible terrain and black represents shadowed terrain.

(a) (b)

Figure 6.4 Target Visibility Map for Target Height of 150m: 

(a) for radar position 1; (b) for radar position 2.
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The target visibility map for radar position 1, Figure 6.4(a), indicates that for more 

than 63% of the region the target is shadowed by the terrain, therefore reducing the 

probability of detection for these shadowed positions. However, for radar position 2, 

Figure 6.4(b), the target visibility map indicates that the target is shadowed for only 

7% of the region. This observation highlights the significance of the terrain relief and 

target height on the performance of the radar, as well as the importance of a site- 

specific approach to radar performance modelling.

For this scenario, radar performance is ultimately assessed using the probability of 

detecting a target with 6dBsm constant RCS (meaning that the echo from the target 

does not fluctuate). The probability of detection maps for both radar positions are 

shown in Figure 6.5. Note the circular boundaries indicating the limited coverage 

range of the radar. Here the probability of detection maps have been truncated to the 

radar maximum detection range.
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(a) (b)

Figure 6.5 Probability of Detection Map for Target Height of 250m: 

(a) for radar position 1; (b) for radar position 2.

Here we can see that maximum detection range is limited only by radar sensor 

characteristics and multipath effects are clearly evident as fluctuations in the 

Probability of Detection Pd- T o examine the effects of target shadowing, it is 

necessary to compare the probability of detection maps for a target at lower altitude. 

The probability of detection maps for a target height of 150m, for both radar positions 

is shown in Figures 6.6(a) and (b).
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Figure 6.6 Probability of Detection Map for Target Height of 150m:

(a) for radar position 1; (b) for radar position 2.

Here we can observe the impact of target shadowing due to the relief of the terrain on 

the probability of detecting low altitude targets. For radar position 1 as shown in 

Figure 6.6(a), the probability of detection is greatly reduced for a considerable 

percentage of the radar coverage region also resulting in reduced maximum detection 

range. For radar position 2 as shown in Figure 6.6(b), target shadowing effects are 

small in comparison. We have demonstrated how the IRS can be used to predict radar 

performance and discriminate between good and bad solutions. An optimisation task 

is now necessary to determine the optimal location: but this is beyond the scope of 

this thesis.

6.3.2 Radar Sensor Network Deployment and Configuration

For the task of deploying a radar sensor network and joint sensor operation we 

consider the placement of three radar sensors to achieve optimal coverage of a 

surveillance region. To illustrate the advantages for this scenario we will consider the 

terrain visibility map, the clutter map, and the probability of detection maps for each 

radar position. The locations of the three radars are shown in Figure 6.7.
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Figure 6.7 Topographic Map Showing Radar Positions

Radar position 1 is shown by the magenta symbol, radar position 2 is shown by the 

red symbol, and radar position 3 is shown by the blue symbol. Let us first consider the 

terrain visibility maps calculated as proposed in Chapter 5 for each radar position, as 

shown in Figure 6.8.

(a) (b)

(c) (d)

Figure 6.8 Terrain Visibility Map for the whole region: (a) for radar position 1;

(b) for radar position 2; (c) for radar position 3; (d) for radar sensor network.
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The terrain visibility maps for radar positions 1-3 are shown in Figures 6.8(a)-(c), 

respectively, where white represents visible terrain and black represents shadowed 

terrain. For radar position 1, 82.04% of the terrain is shadowed, 54.92% is shadowed 

for radar position 2, and 70.71% is in shadow for radar position 3. Note that although 

radar positions 1 and 3 have a fairly high proportion of the terrain in shadow, they 

have the advantage of having different areas of visible terrain which are in shadow for 

radar position 2. This is illustrated in Figure 6.8(d) which shows the combined terrain 

visibility map for all three radar positions. For the fused visibility map only 35.12% of 

the terrain is shadowed, resulting in better radar coverage of the region by fusion of 

the radar measurements from all three radars.

The clutter maps for the three radars are shown in Figure 6.9.

(c)
Figure 6.9 Clutter Map accounting for Antenna Pattern Characteristics: 

(a) for radar position 1; (b) for radar position 2; (c) for radar position 3.

The clutter maps accounting for radar system parameters such as antenna pattern and 

maximum detection range are shown for radar positions 1-3 in Figures 6.9(a)-(c),
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respectively. These clutter maps demonstrate how clutter intensity changes 

significantly with radar position, different areas are cluttered for different radars. 

Therefore the benefit of sensor measurement fusion is that the impact of clutter can be 

reduced for some areas through joint sensor operation. There is no benefit in fusing 

the clutter maps for these three radar positions. Instead it is more appropriate to 

consider fusion of the probability of detection maps as this is the measure of 

performance for the IRS.

To assess radar performance we must now consider the radar’s ability to detect 

targets. The probability of detection maps for the three radars and the combined 

probability of detection map are shown in Figure 6.10. The combined probability of 

detection map illustrates the case of sensor fusion where the maximum probability of 

detection is selected.

(c) (d)

Figure 6.10 Probability of Detection Map:

(a) for radar position 1; (b) for radar position 2; (c) for radar position 3;

(d) for radar sensor network.
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The probability of detection maps in Figures 6.10(a)-(c) illustrate the dependence of 

target detection on radar position, clutter intensity, terrain relief, and multipath 

propagation effects. For radar position 1, the probability of detection is reduced for 

many target positions due to multipath propagation effects resulting in the textured 

image. For radar positions 2 and 3, multipath effects are less prominent but they are 

still present and result in the speckle-like images. Fusion of the three probability of 

detection maps for the three radar positions result in the combined probability of 

detection map shown in Figure 6.10(d). It illustrates the benefits of radar data fusion, 

application of several radars, and the opportunity to apply the IRS for performance 

prediction of radar fusion systems.

We have shown how the IRS can be used as a planning tool to assist in deployment 

and fusion of radar sensor networks by predicting radar performance for all positions 

in the deployment region in advance. An optimisation task can then be performed to 

configure the radar network to achieve a predetermined joint probability of detection 

for the radar coverage region, or any other measure of fusion performance.

6.3.3 Mobile Radar Position and Route Prediction

For mobile radars which have the opportunity to change location, there are two issues 

which need to be addressed. The first is which location to move to, and the second is 

which route to take to get there whilst maintaining efficient operation during 

measurements. For this scenario we assume that we know the start and end positions 

of the radar. The task is to determine which route to take and how the IRS can help to 

decide. Figure 6.11 shows the clutter maps for the radar start and end positions.

It has been predetermined that the radar will move from the position indicated by the 

blue symbol in Figure 6.11(a), to the position indicated by the blue symbol in Figure 

6.11(b). The next step is to predict radar performance for any possible route and 

determine the optimal route between these positions. However, this is an optimisation 

task and it is beyond the scope of this thesis: only the task of predicting sensor 

performance for any position of the route is considered. Therefore, we consider the 

simple radar route shown by the red line in Figures 6.11(a) and (b), to demonstrate
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how the IRS approach can be applied. Note that in Figure 6.11(a) the track has been 

obscured by the base of the radar symbol.

We need to calculate the clutter map variations when the radar is moving. The clutter 

map is predicted for each position along the radar path. The measure of performance 

for the IRS is gauged by the probability of detection map. However, for this scenario 

we will concentrate on the clutter map because it better demonstrates the advantages 

of the considered approach, and more clearly illustrates terrain shadowing effects 

which reduce the visibility of the radar for low-angle targets.

An animation has been produced, showing the clutter map for each position as the 

radar moves between the start and end positions along the red track in Figures 6.11(a) 

and 6.11(b). This animation is included in Appendix 4 on a DVD (Digital Versatile 

Disc) in AVI (Audio Video Interleave), MP4 and WMV (Windows Media Video) file 

format for playback on any standard software which supports AVI, MP4, or WMV 

video files.

Examination of the radar route animation illustrates how significantly clutter and 

terrain visibility can vary as the radar position changes. Total shadowed areas for the 

positions in the radar route range from a minimum of 53.65% to a maximum of 

96.07%. Improper selection of radar position could render the radar blind to low- 

altitude targets which may be shadowed by terrain. This observation highlights the

(a) (b)

Figure 6.11 Clutter Map:

(a) for radar start position; (b) for radar end position.
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necessity for intelligent selection of the radar route to maximise radar performance 

whilst manoeuvring between positions due to significant variation of clutter intensity 

between time intervals. Therefore, the advantage of the IRS has been demonstrated 

not only for selection of radar position, but also for improved prediction of radar 

route, which enables on-the-fly prediction of radar performance for the next time 

steps. Using this approach, it is feasible to improve the selection of radar positioning 

and determine an optimised radar route.

6.4 Conclusions

In this chapter three scenarios have been identified for which the IRS approach can be 

implemented to provide some advantages. The scenario considered in 6.3.1 has 

demonstrated the necessity for site-specific clutter prediction and shown how the IRS 

can be used to deploy a radar sensor. The scenario considered in 6.3.2 has shown how 

the IRS can be used to configure a radar sensor network and demonstrated the 

advantages of radar data fusion by fusing probability of detection maps for three radar 

positions. The scenario considered in 6.3.3 has shown how IRS can be used to plan a 

route for a mobile radar sensor.

These three scenarios illustrate the problematic nature of radar deployment and 

placement. The difficulty in optimal positioning of radar sensors is compounded by 

the fact that it is not only probability of detection that needs to be maximised, but also 

consideration must be given to other factors such as terrain shadowing, minimum 

target detection height, and minimum detectable target RCS (due to clutter intensity 

and multipath effects). This observation indicates the complexity of the optimisation 

task which requires optimisation of several cost functions each involving many 

variables.

All three scenarios identified the following effect on radar performance. Terrain 

shadowing reduces clutter impact, meaning that higher altitude targets (targets not 

shadowed by terrain) are easier to detect. However, low-altitude targets may be 

shadowed by terrain and would be harder to detect. Therefore, these factors must be 

considered when assessing radar performance.
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There is still a considerable amount of work left to be done until fully autonomous 

sensors that can react to dynamic environments in an intelligent manner can be 

realised. The IRS approach adopted in this thesis has shown how modelling 

techniques can be applied to predict radar sensor performance. However, for truly 

intelligent systems optimisation is an essential ingredient to enable autonomous 

sensor operation. The problems associated with optimisation for the scenarios 

considered have been identified and are a topic for fixture research. Some suggestions 

for future work are now discussed in the next chapter.
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Chapter 7

Conclusions and Future Work

This thesis advances the field of intelligent radar sensor design by using a new 

modelling approach to predict radar sensor performance. Through unification of 

established modelling techniques for radar sensor modelling and multipath 

propagation modelling, combined with the development of a new technique for 

modelling land clutter, a new approach for predicting radar sensor performance has 

been developed which has advanced knowledge in the intelligent radar sensor domain. 

Particular attention has been paid to applications that can achieve some advantages 

from this intelligent sensor approach. Original contributions have been made in the 

proposal of the intelligent radar sensor architecture, and development of a new 

method for predicting land clutter based on fusion of remote sensing data and 

application of empirical land backscattering models. Additionally, methods have been 

proposed for mitigating impairments in remote sensing data. A new multiresolution 

method based on the Discrete Cosine Transform (DCT) and Laplacian pyramid 

transform has been proposed for simultaneously reducing speckle noise and fusing 

Synthetic Aperture Radar (SAR) and Side Looking Aperture Radar (SLAR) images. 

Robustness studies have also been conducted for several non-linear algorithms which 

have been proposed as alternatives to the standard linear algorithm used for SAR 

image synthesis, to remove impulse noise caused by data transmission errors.

We will now summarise the contributions and observations made in each chapter in 

Section 7.1. This will be followed by a discussion which identifies topics for future 

work in Section 7.2.

7.1 Summary and Conclusions

In Chapter 1, we discussed the motivating factors for developing an intelligent radar 

sensor, identifying the various impairments for surface-sited low-grazing angle radar
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and discussing the importance of mitigating these impairments. One of the motivating 

factors concerned the development of sensor communication and data sharing 

frameworks such as the Global Information Grid (GIG) and Network Enabled 

Capability (NEC) which enable real-time on-demand sharing and communication 

between heterogeneous sensors. This is an important issue because the availability 

and acquisition of up-to-date remote sensing data is a vital component of the 

intelligent radar sensor approach presented in this thesis, which permits adaptation to 

changes in the environment. In the background section we discussed various 

impairments of surface-sited radar, paying particular attention to effects of land clutter 

and radiowave propagation on radar performance. This discussion was then followed 

by a literature survey which concentrated on the development of intelligent radar 

systems, concentrating particularly on Space-Time Adaptive Processing (STAP) 

applications and how a priori information about the environment is incorporated to 

predict various sources of impairments and then remove them by modifying the signal 

processing chain in order to improve radar sensor performance. The reason for 

concentrating on these STAP applications is the fact that the radar research 

community has primarily focused on utilising terrain information in this area. Two 

approaches have been discussed; Knowledge-Based (KB) systems and Knowledge- 

Aided (KA) systems. Although both use terrain information to improve radar sensor 

performance, they differ in their architectures. This review highlighted a number of 

opportunities for researching problems which can be solved using a data fusion

approach. We then indicated how data fusion and modelling approaches might be

utilised to solve these problems. The novel contributions developed in this thesis can 

be summarised as follows:

• A new Intelligent Radar Sensor architecture

• A new method for modelling land clutter for surface-sited radar

• Impairment mitigation and fusion of SAR/SLAR data

• A new multiresolution method based on DCT and Laplacian pyramid 

transform for denoising and fusion of SAR/SLAR data

The Intelligent Radar Sensor architecture was presented in Chapter 2, while the other 

three novel contributions were considered in Chapter 5.
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Chapter 2 proposed the new architecture for the Intelligent Radar Sensor which uses a 

priori knowledge and a modelling approach to predict radar performance. A brief 

discussion concerning what constitutes intelligence with respect to intelligent sensor 

systems preceded the discussion on the intelligent radar sensor architecture. Initially, 

a new architecture for the Intelligent Radar Sensor was proposed which included 

elements of learning, optimisation, and a KB. This architecture was then simplified to 

concentrate on the specific components relevant for the scenarios considered in this 

thesis. The main components are the radar model, the terrain model, the clutter model, 

and the multipath propagation model. The terrain model utilises information provided 

by other sensors and sources which is required for predicting radar performance. The 

radar model is necessary to model all aspects of the radar sensor and predict radar 

performance. The clutter model and multipath propagation model are required for 

modelling and predicting site-specific factors which degrade radar sensor 

performance. Implementation of these model components was discussed in sufficient 

detail to enable assessment of radar performance.

Chapter 3 addressed the issue of modelling the radar sensor and the operation of the 

radar model within the intelligent radar sensor to predict the radar’s own performance. 

The impact of multipath propagation and land clutter factors on radar performance 

were discussed. These effect the detection of targets and cause deterioration of radar 

performance. Measures of performance were discussed and it was decided that the 

probability of detecting targets was the most appropriate measure for the intelligent 

radar sensor proposed in this thesis because the objective was to predict the 

performance of the radar in detecting targets. The components of the radar model 

were identified and elaborated in detail including the radar configuration, radar 

equation (which describes the relationship between radar characteristics, the target, 

and the received signal), radar antenna model, and the detection model. The chapter 

concluded with a demonstration of how the radar model and clutter model can be 

combined to predict radar performance. At this point multipath effects were ignored 

for simplification purposes. Using measured data the probability of detection map was 

then produced.

In Chapter 4, the impact of multipath propagation of radiowaves on radar 

performance and target detection was considered. Multipath propagation is one of the
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most important non-free-space effects for low-grazing angle radar. The problem with 

multipath propagation is that it leads to constructive and destructive interference at the 

radar receiver. This has the effect of either increasing or decreasing the vector sum 

signal, respectively. This has both advantages and disadvantages. For the case where 

the vector sum of the signal is increased, this leads to an increase in the probability of 

detection and also an increase in the maximum detection range. However, when the 

vector sum of the signal is decreased, the probability of detection is reduced. 

Multipath effects depend strongly on terrain characteristics such as the electrical 

properties of the surface (dielectric constant and conductivity of the reflecting 

surface), surface roughness, terrain type, and the geometry. These observations 

highlight the necessity for modelling multipath effects when predicting radar 

performance.

Chapter 5 contains three novel contributions: site-specific land clutter prediction for 

low-grazing radar; modelling, fusion and mitigation of SAR remote sensing data; and 

a new method for fusing and denoising of SAR/SLAR remote sensing data. This 

chapter primarily focuses on modelling land clutter through fusion of remote sensing 

data and application of an empirical land backscattering model. Standard methods for 

modelling land clutter which adopt a statistical or experimental approach were 

reviewed. The advantages and limitations of each method were discussed. 

Additionally, attention was paid to how site-specific prior knowledge can be 

incorporated into these methods to improve the accuracy of predicting land clutter. 

The new method for predicting land clutter proposed in this chapter employs remote 

sensing data to estimate land surface parameters such as local grazing angle, and land 

surface type. The major contribution lies, however, in the application of radar remote 

sensing data to provide direct Radar Cross Section (RCS) measurements of the land 

surface - but for grazing angles very different from those associated with the surface- 

sited radar. The remote sensing radar data is used to estimate the intensity of land 

clutter while the backscattering model is applied to correct only for angular and 

frequency dependencies.

The new method for predicting land clutter can be considered as a three stage 

approach. The first stage involves pre-processing of the remote sensing data to 

remove impairments, correct for geometric distortions, and geometrically register all
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data to a common coordinate system. Additionally, for the radar remote sensing data, 

calibration was required to convert the measurements to absolute values of the direct 

backscattering coefficient cr° and remove radar sensor dependencies from the 

measurements. The second stage involves estimation and extraction of terrain 

characteristics from the remote sensing data including local grazing angle, land 

surface type, and terrain shadowing effects. Finally, the third stage is fusion of the 

terrain data provided by the remote sensing system, and then application of the 

empirical land backscattering model to predict land clutter intensity.

Measured data was used to illustrate this new approach for predicting land clutter. The 

results obtained were then compared to those obtained when using only the land 

backscattering model (without application of the radar remote sensing data). The 

comparison indicated that the new method predicts higher intensity for some regions, 

and also that fluctuations are present for bare soil and urban regions, that are not 

observed when the backscattering model is applied on its own. Therefore, it has been 

shown that lack of information about the environment can produce underestimation of 

land clutter intensity in some cases. The advantage of this new approach is that 

application of remote sensing data can provide up-to-date information about the 

environment and improve clutter prediction accuracy by accounting for variations and 

changes in the environment. Remote sensing data may contain impairments which 

destroy valuable information and if they are not removed they will reduce the 

accuracy of clutter prediction. Therefore, it is important to mitigate any impairments 

in the data prior to use for clutter modelling. This is true for all data sources including 

DEM, topographic map, and optical data. However, the datasets used for these 

sources of information were considered to not contain significant errors. Radar remote 

sensing data is a major source of information for clutter modelling as it provides 

measurements of the direct backscattering coefficient <r° . Mitigation of impairments 

in radar remote sensing data was considered in this chapter, concentrating on SAR 

and SLAR.

The second novel contribution in Chapter 5 is the evaluation of techniques for 

mitigating impulse noise impairments from SAR data and assessing the impact on 

fusion results. The impulse noise present in the SAR data is a result of data
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transmission errors, and was removed at the stage of image synthesis. The non-linear 

a-trimmed estimate was considered as an alternative to the standard linear algorithm 

(which is optimal for the case of additive Gaussian noise but not for non-Gaussian 

impulse noise). This part of the work has shown how fusion results can be improved 

by mitigating impairments at the first stage, then applying standard fusion algorithms. 

This approach has the advantage of not having to modify or complicate fusion 

algorithms. Robustness studies have shown that improvements of up to 8dB in the 

SNR can be obtained using the a-trimmed method for removal of impulse noise 

impairments in SAR data.

The third novel contribution in Chapter 5 is a new DCT-based multiresolution method 

for simultaneously reducing speckle noise and fusing of SAR/SLAR data. Standard 

filtering techniques based on the local statistics of noise for speckle noise reduction 

were briefly discussed. The discussion identified techniques which performed well for 

noise suppression and texture preservation, but not so well for homogenous regions. 

Combining the Laplacian pyramid transform and a sliding window DCT results in a 

multiresolution technique that has good signal localisation properties in both the 

spatial and frequency domain. This technique is then suitable for both fusion and 

denoising. Comparisons were made to the Discrete Wavelet Transform (DWT) and 

the Dual-Tree Complex Wavelet (DTCWT), and the new technique has been shown 

to outperform both methods for textured regions in particular. It was also observed 

that for fusion better results were obtained when using smaller DCT window sizes, 

but for denoising better results were obtained for larger DCT windows. Thus, this 

technique offers the opportunity for optimising the window size for the particular 

situation; but this aspect of the work was not pursued.

In conclusion, Chapter 5 demonstrated how remote sensing data can provide 

information about the terrain to allow improved prediction of land clutter intensity for 

site-specific clutter modelling. Additionally, the importance of removing impairments 

in remote sensing data, in particular, radar data, was also discussed and demonstrated 

using measured data.

Chapter 6 developed the intelligent radar sensor architecture proposed in Chapter 2 

for three scenarios. The three scenarios considered were deployment of a single radar
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sensor, deployment of a network of radar sensors, and a single mobile radar sensor. 

After a discussion on how the intelligent radar sensor can be applied to solve the 

problems encountered in each individual scenario, measured data was used to explore 

the performance of the intelligent radar sensor for these three scenarios. The scenarios 

identified problems associated with various aspects of predicting radar performance. 

For the task of radar sensor deployment it was noted that the difference between a 

‘good’ and ‘bad’ radar position not only depends on the probability of detecting 

targets, but also on additional factors such as target visibility due to terrain shadowing 

effects. For the radar sensor network scenario we have shown how the intelligent 

radar sensor can be applied to predict radar performance, and consequently, how this 

information could be used to position networks of radar sensors for optimal radar 

coverage of the region and fusion of radar measurements. The third scenario 

addressed the problem of route planning for mobile radar applications. For this 

scenario we concentrated on the clutter map which illustrated how clutter intensity 

and terrain visibility varied significantly with changing radar position. This 

observation reinforced the advantages of applying the intelligent radar sensor 

approach to improve selection of radar positioning and determining optimal radar 

routes.

7.2 Lessons Learned

In this section we will briefly review the lessons that have been learned about 

intelligent radar sensor modelling.

This thesis has proposed an architecture for an intelligent radar and has concentrated 

on the cognitive aspects of such a system. The cognitive functions of the intelligent 

radar sensor are very important and underpin the foundations of an intelligent system. 

The author now acknowledges that the difficulty of the cognitive aspects of the 

Intelligent Radar Sensor was initially severely underestimated. Therefore, the next 

logical step is to extend and enhance cognition by considering environmental effects 

in greater depth, such as, atmospheric ducting and volume clutter both of which have 

been ignored in this thesis for the sake of tractability.
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Radiowave propagation modelling proved to be extremely computationally expensive 

even when using only a simplified two-path model for multipath. This issue could 

affect the real-time application of the Intelligent Radar Sensor which would be further 

compounded by the tasks of optimisation and learning. We could have compromised 

on the fidelity of the model but this would have reduced the accuracy of the model. 

However, even though this may be undesirable, it may be justified to utilise lower 

fidelity models to ensure real-time application if some benefits are still attainable.

Optimisation was not considered in this thesis due to the complexity of this task and 

time limitations. However, a fairly straightforward optimisation task could be 

considered such as the scenario in Chapter 6 Section 6.3.2. Here three radar positions 

were manually selected; however, an optimisation task could be to automatically 

determine the three radar positions by optimising terrain visibility and the average 

clutter intensity for those visible regions. It is the authors’ view that this is probably 

the next logical step in the progression of the Intelligent Radar Sensor.

The Intelligent Radar Sensor system may not be realisable using current hardware due 

to the computational complexity of just the cognitive aspects of such a system. 

However, the cognitive radar may be attainable, and therefore, maybe cognition 

should be aimed for in the first respect as this underpins the intelligent system. The 

author would like to point out, however, that the truly intelligent radar requires the 

capability of self-optimisation and the ability to learn from previous experiences.

7.3 Future Work

In this final section a few suggestions for future work are given. There are many 

minor possibilities for future work but they do not warrant attention. Instead, we will 

concentrate on the more interesting topics that are either new directions for the 

research conducted in this thesis, or areas of the research which time did not permit to 

be explored.

Let us first consider topics of future work for the intelligent radar sensor as a whole.
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Throughout this thesis we have been concerned with predicting radar performance 

based on the probability of detection. The scenarios we considered focused on 

positioning of radar sensors either for deployment of single sensors, networks or radar 

sensors, or for moving radar applications. Either way, the goal has been to employ the 

intelligent radar sensor approach to determine the most appropriate position to 

position the radar.

Another approach is to optimise radar parameters such as radar height, selection of 

radar waveform, frequency or transmitter power, to name just a few possibilities. For 

the case when a radar sensor has the ability to change these parameters, the intelligent 

radar sensor approach can be applied to predict radar performance for each mode of 

operation, in order to optimise radar system parameters. Additionally, this approach 

could be combined with the tasks considered in this thesis, to optimise both radar 

position and configuration. Therefore, future work could consider the task of applying 

the intelligent radar sensor approach for total configuration of all applicable radar 

parameters to achieve optimal radar performance. This would provide a valuable tool 

for planning, deployment, and configuring radar sensors.

Two important components of the intelligent radar sensor have not been addressed in 

this thesis. These are optimisation and learning. As discussed in the earlier chapters, 

these concepts are essential ingredients for truly intelligent sensors. Each of these 

tasks requires considerable attention and each task has significant problems to be 

solved.

Let us first consider optimisation. In this thesis we have shown how the intelligent 

radar sensor approach can be applied to predict radar sensor performance for any 

position within the radar deployment region. Now that we can achieve this, the next 

problem is how to select the optimal solution from the set of all possible solutions. 

This task is problematic in that we have two issues which need to be addressed. 

Firstly, we need to define measures to describe what constitutes the optimal solution. 

We have used the probability of detection in this thesis, but the discussion in Chapter 

6 has highlighted various problems associated with radar performance assessment; 

such as terrain shadowing effects, which if not considered could render the radar blind 

to low-altitude terrain-following targets. Therefore, research must be conducted to
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determine the additional measures which must be considered when attempting to 

assess radar performance. These measures could well be very specific to the mission 

that the radar is being deployed to support. The second issue is how we can develop 

optimisation algorithms based on these measures of performance to determine the 

optimal solution from all possible solutions. This is likely to involve large 

computational resources and it is important not to underestimate the complexity of 

this task.

The learning component of the intelligent radar is another opportunity for future 

work. To illustrate the importance of this task, let us consider the mobile radar 

scenario discussed in Chapter 6. Learning could enhance the prediction of radar 

performance in the following way. The intelligent radar sensor would predict the 

clutter map accounting for radar characteristics for the next radar position. Then when 

the radar moves to this position, it would take direct measurements. The measured 

clutter map could then be compared to the predicted clutter map to assess errors and 

differences between the predicted results and the measured results. The intelligent 

radar can then use this acquired knowledge to leam and improve future predictions. 

Using this approach could allow the radar to improve the prediction of clutter maps 

over time. Additionally, the clutter map acquired in this way could be used to assist in 

prediction of clutter maps for near positions (positions spatially close to the current 

radar position). It is not immediately clear how to implement learning for this purpose 

and this is where the research problem lies.

Another aspect that this thesis has ignored is the assessment of model errors due to 

impairments or inaccuracies in the remote sensing data used for the intelligent sensor. 

These errors obviously impact on the results of modelling. For example, errors in the 

DEM data lead to inaccurate grazing angle estimation; errors in the 

optical/multispectral data used for terrain classification lead to misclassification 

errors; remote sensing radar data errors or impairments lead to errors in the estimation 

of RCS, and also we have errors in the land backscattering model. It is important to 

consider the impairments in each of these sources and the effects they have on the 

estimation of vital parameters. Additionally, these errors are propagated through to 

the clutter model, multipath model, and radar model, which are used to assess radar 

performance. Therefore, the impact of these errors must be considered here also. If we
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can model, measure, and predict these errors then we can mitigate and correct them, 

to improve the prediction of radar performance.

Another important unanswered question is how viable is it to implement the 

intelligent radar sensor approach in hardware, software, or a combination of both, 

given the current limitations imposed by hardware speed, memory capacity, and 

storage capacity? Two opportunities naturally arise from this. The first opportunity 

exists in implementation of the intelligent radar sensor using Digital Signal Processor 

(DSP) [112] or Field Programmable Gate Array (FPGA) devices [113], for real-time 

or near real-time operation. The problem becomes: can the intelligent radar sensor be 

implemented on either of these platforms given state-of-the-art memory and storage 

restrictions, and also can it work in real-time?

The second opportunity which warrants investigation is how we can take advantage of 

high powered graphics processing units (GPU) [114] which have been extensively 

developed in terms of both speed and memory, for high-end gaming applications. 

These GPU architectures benefit from dedicated hardware for 3D manipulation of 

data, which could support geometric calculations for the intelligent radar sensor and 

greatly reduce the complexity of implementation.

Clearly, these two avenues need to be explored to assess hardware implementation of 

an intelligent radar sensor using current technology, and to evaluate how far away we 

actually are from hardware realisation of intelligent sensor systems.

The clutter model is an essential component of the intelligent radar sensor, and 

opportunities exist here also. Let us now consider possible directions for future work 

in this domain.

The accuracy of clutter map prediction in this thesis depends on the accuracy of the 

remote sensing data and the land backscattering model. The most important source of 

information for predicting the clutter map in this thesis is the remote sensing radar 

which provides an estimate of the RCS of the land surface clutter (the backscattering 

model and other remote sensing data are only used to correct for angular and 

frequency dependencies). Certain scatterers within the environment exhibit an
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anisotropic nature. Examples are rows of planted crops, bare soil furrows, and 

irregular buildings. Therefore, the opportunity exists to improve estimation of RCS 

for non-isotropic scatterers by fusion of remote sensing radar data -  but to do this 

multiple sensor trajectories are required.

Another task which needs to be addressed is assessment of clutter map accuracy by 

comparison against actual radar measurements. This can only be achieved by 

obtaining ground truth data measured across various sites to validate this approach. 

This issue has not been addressed in this thesis as it requires access to actual radar 

facilities which are not available to our research group. It also depends on obtaining 

remote sensing data for each deployment site.

In this thesis we have also considered fusion and mitigation of impairments for 

SAR/SLAR data. Based on the results of the Multiresolution Discrete Cosine 

Transform (MRDCT) experiments, we have another possibility for future research; 

however, it is less significant than the previous suggestions. An observation was made 

during the development of the MRDCT which revealed that for fusion only (fusion 

without denoising) better results were obtained using smaller sized DCT sliding 

windows, but for denoising better results were obtained for larger sized DCT 

windows. This naturally gives rise to the opportunity for further optimisation of this 

MRDCT technique by using a variable DCT window size. This then presents the 

problem of how to determine the optimal window size. Future work could involve 

analysis of the data to determine which window sizes are most appropriate for various 

data types such as textured and homogenous regions, and to examine the influence of 

impairments of varying intensity.
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APPENDIX 1

Quantitative Analysis of Impulse Noise 

Mitigation and Fusion Results

This appendix investigates the impact of data transmission errors with respect to 

fusion of Synthetic Aperture Radar (SAR) remote sensing data. The motivation 

behind this approach is based on the assumption that mitigation of impairments prior 

to fusion should improve the quality of data for the fusion process, therefore, 

improving the results of fusion. Simulations are conducted comprising of various 

intensities of data transmission errors to ascertain the robustness of the a-trimmed 

estimate as discussed in Section 5.2.2 in Chapter 5 and published in [41]. A method 

for automatic selection of the a tuning parameter which determines the robustness of 

the a-trimmed estimate is also proposed.

A l.l Simulation Models for Robust Impulse Noise Mitigation and Fusion

The results presented in this chapter follow directly from Section 5.2.2, therefore, it is 

recommended that Section 5.2.2 be read prior to this appendix. The a-trimmed 

estimate and noise model used for experimental purposes are described in detail in 

Section 5.2.2 and [41].

The simulations are conducted as follows:

• Assessment of the method for automatic selection of a parameter (Section 

Al.2.1)

• Assessment of multiresolution fusion (Section A l .5)
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Al.1.1 Data Transmission Error Models

For transmission of the complex SAR hologram data the assumption is made that a 

digital RF communication system is employed, where the data are corrupted by 

impulse noise caused by bit errors and coding/decoding errors. To demonstrate the 

robustness of the a-trimmed estimate for mitigation of impulse noise when no a priori 

knowledge of the communication channel is known, then the worst case scenario 

should be considered, for which the i.i.d. uniform impulse noise model can be 

implemented, as discussed in Section 5.2.2 in Chapter 5. Simulations were conducted 

by simulating impulse noise according to the noise model and then mitigated using a- 

trimmed estimate. Firstly, the performance of the automatic method for selection of 

the a parameter is assessed to determine its suitability for this purpose in Section 

A 1.2. The fusion schemes are discussed in Section A 1.3. Finally, SAR image fusion 

quality is assessed by estimating how much important information is transferred to the 

fused image from the input images in Section A 1.4.

A1.2 A Method for Automatic Selection of a Parameter for the a-trimmed 

Estimate

For automatic selection of the a parameter for the a-trimmed estimate a method may 

be employed based on estimation of a by minimising the estimated residual error for 

various values of a. To determine the most suitable value for the a parameter, the a 

value which produces the minimum mean squared value of /  is selected, as shown in 

(Al.l).

min { M s(a) ,0 < a  < 1}

where

K ( a )  = X 'O -.c)2 ~ K  + + Mda (A l.l)
r,c

where Ms is the component of the signal without noise, Mimp is the component for 

impulse noise, and Mdist is the component for distortions due to the nonlinearity of the
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a-trimmed estimate. The transform with different a  that produces the minimal 

y ^ /(r ,c )2 is close to the transform which results in the minimal mean squared error
r,c

(USE).

Al.2.1 Assessment of Method for Automatic Selection of a Parameter for a- 

trimmed Estimate

The method given in Equation (A l.l) in Section A 1.2 automatically determines the a 

parameter. Simulations were conducted by manually selecting values for a to 

determine the optimal value of a for 0.1 < Pimp < 0.5. These are then compared with

the results for automatic selection of a to ascertain the effectiveness of this method in 

selecting appropriate values for a parameter. The graph presented in Figure A l.l 

demonstrate the ability of the proposed method to select near-optimal a parameter for 

all intensities of noise.

-©-Optimal a  
—♦—Automatic a

z
CO

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
^imp

Figure A l.l SNR for automatic a selection

The ability of Equation (A l.l) to select the a parameter close to the optimum value is 

further confirmed through MSE as shown in Figure A 1.2 for the considered noise 

model.
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Figure A1.2 MSE for automatic a selection 

A1.3 Multiresolution Fusion Schemes

The objective is to examine the effect of performing impairment mitigation 

techniques on the SAR data prior to fusion, with the aim of improving fusion results. 

To provide multiresolution analysis of the data both the Discrete Wavelet Transform 

(DWT) and the state-of-the-art shift-invariant Dual-Tree Complex Wavelet Transform 

(DT-CWT) are implemented. Combination and selection of the coefficients is 

achieved through application of three standard fusion rules. Coefficients with large 

values usually represent the salient features so a simple but a sensible fusion rule 

would be to choose the maximum of the absolute values. This is known as maximum 

selection (MS). However, more sophisticated approaches have been developed based 

the importance of pixels within a neighbourhood, such as weighted average (WA) and 

window-based verification (WBV) [94], as discussed in Section A5.2 in Appendix 5. 

The weighted average measure estimates the evidence of a pattern within a 

neighbourhood and the importance of the coefficient under consideration in that 

pattern. Window-based verification, on the other hand, selects the maximum of the 

absolute values of the coefficients and then performs a consistency check within a 

neighbourhood to determine how many of the neighbouring coefficients in the fused 

result come from the same input image as the coefficient under consideration. If the 

majority of neighbours come from the other image then the coefficient under
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consideration is re-selected from that image. Combining these multiresolution 

analysis techniques and fusion rules the six fusion schemes shown in Table A 1.1 are 

obtained.

Table A l.l  Fusion schemes.

Scheme Description

DWT-MS Discrete Wavelet Transform with maximum selection fusion rule

DWT-WA Discrete Wavelet Transform with weighted average fusion rule

DWT-WBV Discrete Wavelet Transform with window based verification fusion rule

CWT-MS (Dual Tree) Complex Wavelet Transform with maximum selection fusion rule

CWT-WA (Dual Tree) Complex Wavelet Transform with weighted average fusion rule

CWT-WBV (Dual Tree) Complex Wavelet Transform with window based verification 
fusion rule

Analysis of the results of these fusion schemes in the presence and absence of the 

mitigation process will determine the validity of this approach and will be used to 

evaluate the effectiveness of this methodology. To assess the performance of the 

fusion algorithms both quantitative and qualitative measures are applied.

A1.4 Assessment of Multiresolution Fusion Results

To assess the impact of impulse noise mitigation on the fusion process, the fusion 

schemes detailed in Table A l.l comprising of the Discrete Wavelet Transform and 

Dual-Tree Complex Wavelet Transform to provide multiresolution analysis and the 

maximum selection, weighted average and window-based verification fusion rules for 

selection of the multiresolution coefficients were implemented. The SAR images 

obtained from two polarisations HH and W  are shown in Figure A 1.3. Simulated 

impulse noise was added to the images. Finally, the images were fused without 

performing mitigation of impulse noise, and also fused after attempting to mitigate the 

impulse noise. The images presented in Figures A1.3 and A1.4 are repeated (Figures 

5.7 and 5.8) from Section 5.2.2 on page 75, this is for the convenience of the reader.
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Figure A1.3 SAR images: (a) HH polarisation; (b) VV polarization.

Figure A 1.4 shows the results for fusion of SAR images using the DWT-MS and 

CWT-MS fusion schemes with simulated impulse noise Pimp ={0, 0.1, 0.3}, with and 

without mitigation of impairments.

DWT-MS fusion no noise

DWT-MS fusion P. = 0.1imp

no mitigation

DWT-MS fusion Pimp =0.1 

with mitigation

DTCWT-MS fusion no noise

DTCWT-MS fusion Pimp = 0.1 

no mitigation

DTCWT-MS fusion Pimp =0.1

with mitigation

DTCWT-MS fusion P.DWT-MS fusion P.

no mitigationno mitigation

DWT-MS fusion = 0.3 DTCWT-MS fusion Pimp = 0.3imp

with mitigation with mitigation

Figure A1.4 Fusion results with and without mitigation
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Fusion results are improved for all intensities of impulse noise. Generally Qabf and Qw 

tend to agree showing CWT-MS to offer superior performance. However, MI 

identifies CWT-WA as the best overall. Both the Discrete Wavelet Transform and 

Dual-Tree Complex Wavelet Transform exhibit similar visual results for fusion, 

showing an improvement over the fused results for SAR images without impulse 

noise mitigation as confirmed by the images in Figure A 1.4. Impulse noise has been 

substantially diminished in the images whilst maintaining edges and bright point 

objects within an acceptable level for Pimp < 0.1. Fusion quality results with varying

Pimp are presented in Figure A 1.5 for the Dual-Tree Complex Wavelet Transform 

using the window-based verification fusion rule CWT-WBV, with and without 

mitigation of impairments.
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Figure A1.5. Quality measures for CWT-WBV: (a) MI impulse noise model;

(b) Qabf impulse noise model; (c) Qw impulse noise model.
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Clearly, fusion results are considerably improved when mitigation of impulse noise 

impairments for SAR images is performed prior to the fusion process. All three 

quality estimates demonstrate consistent improvement in image quality for varying 

intensities of impulse noise. Trends displayed in Figures A1.5(a)-(c) are observed for 

all fusion schemes considered, confirming the validity of mitigating impulse noise 

impairments for SAR images to improve fusion results.

A1.5 Conclusion

A new method for automatic selection of the a parameter for the a-trimmed estimate 

has been presented and has been shown to select near-optimal values of a for the 

considered intensities of impulse noise. Additionally, the a-trimmed estimate has 

demonstrated efficient mitigation of impulse noise impairments in SAR images.

More importantly, it has been shown that SAR fusion results can be improved by 

using a two stage approach; mitigating impairments at the first stage, followed by 

image fusion at the second stage. An additional advantage of this two stage approach 

is that fusion algorithms do not have to be modified in order to cope with impairments 

present in the source data.
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APPENDIX 2

Quantitative Analysis of the Multiresolution 
DCT for Simultaneous Denoising and Fusion

In this appendix, a quantitative analysis is presented for the Multiresolution DCT 

method discussed in Section 5.2.3 and published in [42]. Results are presented for test 

data. The results presented in this appendix follow directly from Section 5.2.2 in 

Chapter 5, therefore, it is recommended to read this prior to the current appendix.

A2.1 A Discussion on Test Data and Fusion Schemes

To assess the ability of the proposed Multiresolution DCT (MR-DCT) technique for 

noise suppression and fusion, simulations are conducted on test images. The results of 

the Multiresolution DCT are compared and contrasted with the Discrete Wavelet 

Transform (DWT) and Dual Tree Complex Wavelet Transform (DTCWT) for the 

tasks of denoising and fusion. Firstly, the considered fusion schemes are applied for 

the selected test images. The test images are required so that ground-truth data is 

available to quantitatively assess the denoising and fusion results. The two test images 

selected are shown in Figure A2.1. The image in Figure A2.1 has been repeated 

(Figure 5.10(a) on page 82) from Section 5.2.3 for the convenience of the reader.

(a) (b)

Figure A2.1 Original test images; (a) Barbara; (b) Lena.
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The Barbara test image, Figure A2.1(a), was specifically selected because it contains 

a substantial amount of texture information as well as some homogenous regions. 

This type of information content is representative of real SAR data image content. 

The Lena test image, Figure A2.1(b), was selected in contrast to the Barbara image, as 

it contains substantial homogenous regions and only a small amount of texture 

information. The motivation behind selecting two distinctly different test images is to 

allow the performance of each fusion scheme to be evaluated for different types of 

source data. Using this approach will provide the opportunity to identify the strengths 

and weaknesses of each fusion scheme. The fusion and denoising schemes considered 

are shown in Table A2.1.

Table A2.1 Fusion/denoising schemes

Scheme Description

DWT-MS DWT with maximum selection
DWT-WA DWT with weighted average
DWT-WBV DWT with window based verification
CWT-MS DT-CWT with maximum selection
CWT-WA DT-CWT with weighted average
CWT-WBV DT-CWT with window based verification
MRDCT-MS MR-DCT with maximum selection
MRDCT-WA MR-DCT with weighted average
MRDCT-WBV MR-DCT with window based verification

SNR and MSE are used to assess the quality of image fusion and denoising for the test 

images.

The simulations are conducted as follows:

• Fusion only of test images (Barbara and Lena). (Section A2.2)

• Fusion only of noisy test images (Barbara and Lena). (Section A2.3)

• Fusion and denoising of test images (Lena). (Section A2.4)

• Fusion and denoising of real SAR data. (Section A2.5)
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A2.2 Fusion of Blurred Test Images

Fusion is applied for test images to assess the fusion characteristics of each fusion 

scheme. The Barbara test images are shown in Figure A2.2. (note that Figures A2.2(a- 

c) have been repeated from Figures 5.10(a-c) in Section 5.2.3 on page 82)

i f t

r
m1' W

(a) (b) (c)

(d) (e) (f)

Figure A2.2 Fusion images:

(a) original test image Barbara; (b) test image 1 blurred on left;

(c) test image 2 blurred on right; (d) DWT-WA;

(e) CWT-MS; (f) MRDCT-WBV (3x3).

The original Barbara test image shown in Figure A2.2(a) is used as ground-truth data 

to assess the fusion results. Two images of Barbara are used for fusion source images; 

one image is median filtered with 7x7 window on the left side of the image as shown 

in Figure A2.2(b), and the other image is median filtered with 7x7 window on the 

right side of the image as shown in Figure A2.2(c). Creating two test images in this 

manner we obtain two completely different images where each image has important 

detail information in only 50% of the image. This will illustrate how effective each

mm
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fusion scheme is in selecting the important information. The best fusion results 

obtained for the Discrete Wavelet Transform, Dual Tree Complex Wavelet Transform 

and Multiresolution DCT are shown in Figures A2.2(d)-(f) respectively. Visually, it is 

difficult to discriminate between the fused images and identify any differences; 

however, quantitative quality measures shown in Table A2.2 clearly indicate that 

there are differences.

Table A2.2 Fusion results for Barbara test image

Scheme SNR dB MSE
DWT-MS 32.37 10.8
CWT-MS 37.51 3.3
MRDCT-MS (3x3) 34.51 6.59
MRDCT-MS (5x5) 34.07 7.3
MRDCT-MS (7x7) 30.88 15.22

MRDCT-MS (9x9) 30.6 16.22
DWT-WA 34.69 6.33
CWT-WA 35.7 5.01
MRDCT-WA (3x3) 36.9 3.8
MRDCT-WA (5x5) 36.22 4.38
MRDCT-WA (7x7) 34.88 6.05
MRDCT-WA (9x9) 34.55 6.53
DWT-WBV 34.31 6.91
CWT-WBV 36.96 3.75
MRDCT-WBV (3x3) 38.02 2.93
MRDCT-WBV (5x5) 37.07 3.65
MRDCT-WBV (7x7) 36.05 4.63
MRDCT-WBV (9x9) 35.58 5.15

Lower values for SNR and higher values of MSE indicate improper selection of the 

detail components by the fusion scheme. It can be seen that MRDCT-WBV with a 

3x3 DCT window offers the best results for fusion of the Barbara test image. The 

Dual Tree Complex Wavelet Transform offers comparable results to the 

Multiresolution DCT while the Discrete Wavelet Transform performs substantially 

worse than both methods. This procedure is then applied for the Lena test image as 

shown in Figure A2.3.
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(a) (b)

(d) (e) (f)

Figure A2.3 Fusion images:

(a) original test image Lena; (b) test image 1 blurred on left;

(c) test image 2 blurred on right; (d) DWT-WA;

(e) CWT-WBV; (f) MRDCT-WA (3x3).

The original Lena test image shown in Figure A2.3(a) is used for ground-truth data. 

Two test images are used for fusion source images; one image is median filtered with 

7x7 window on the left side of the image as shown in Figure A2.3(b), and the other 

image is median filtered with 7x7 window on the right side of the image as shown in 

Figure A2.3(c). The best fusion results obtained for the Discrete Wavelet Transform, 

Dual Tree Complex Wavelet Transform and Multiresolution DCT are shown in 

Figures A4.6(d)-(f) respectively. Close examination of the fused images reveal very 

subtle differences which are hardly noticeable to the naked eye. However, the quality 

estimates provided by SNR and MSE as shown in Table A2.3, indicate that 

differences are present.
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Table A2.3 Fusion results for Lena test image

Scheme SNR dB MSE
DWT-MS 30.32 16.415
CWT-MS 34.88 5.75
MRDCT-MS (3x3) 32.34 10.31
MRDCT-MS (5x5) 31.59 12.26
MRDCT-MS (7x7) 26.75 37.35
MRDCT-MS (9x9) 29.19 21.27
DWT-WA 33.98 7.07
CWT-WA 34.19 6.73
MRDCT-WA (3x3) 36.11 4.32

MRDCT-WA (5x5) 35.16 5.39

MRDCT-WA (7x7) 32.87 9.12

MRDCT-WA (9x9) 33.94 7.13
DWT-WBV 33.94 7.12
CWT-WBV 36.65 3.82
MRDCT-WBV (3x3) 36.1 4.34

MRDCT-WBV (5x5) 36.11 4.33
MRDCT-WBV (7x7) 34.91 5.7
MRDCT-WBV (9x9) 33.91 7.19

For fusion of the Lena test image, different fusion schemes provide the best quality 

estimates in comparison with the Barbara test image. For the Lena test image fusion 

the CWT-WBV fusion scheme provides the best overall result, however, the 

MRDCT-WA with a 3x3 DCT window offers comparable results, with both schemes 

achieving SNR estimates 2dB greater than the best result provided by any Discrete 

Wavelet Transform scheme. Considering the results from both test images, it seems 

that different fusion schemes provide better results for fusion depending on the image 

content of the source data. Generally, the Multiresolution DCT and Dual Tree 

Complex Wavelet Transform offer similar performance for fusion, efficiently 

selecting the detail components whilst rejecting non-detail components. The lower 

quality estimates achieved by the Discrete Wavelet Transform schemes suggest that 

the Discrete Wavelet Transform is not as efficient in rejecting non-detail components

165



while fusing. For the Multiresolution DCT it has been demonstrated that the size of 

the DCT window affects the fusion results, with the best performance obtained for 

smaller window sizes.

A2.3 Fusion of Noisy Test Images

The previous section addressed fusion of test images containing different information. 

Now fusion of noisy source data is considered. The Barbara test images are shown in 

Figure A2.4.

(a) (b) (c)

(d) (e) (f)

Figure A2.4 Noisy image fusion: (a) noisy test image Barbara;

(b) test image 1 blurred on left and simulated noise;

(c) test image 2 blurred on right and simulated noise; ; (d) DWT-WBV;

(e) CWT-WA; (f) MRDCT-WA (3x3).

The original test image of Barbara as shown in Figure A2.4(a) is used as ground-truth 

data for image quality estimation. Simulated multiplicative Gaussian noise with 

coefficient of noise variation a \ = 0.05 was added to the blurred Barbara test images
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shown in Figures A2.4(b)-(c) to obtain the noisy blurred Barbara test images shown in 

Figures A2.4(b)-(c). The noisy test images are then fused using the fusion schemes, 

but no attempt is made to remove the noise. This approach is adopted to assess the 

characteristics of each fusion scheme for image fusion in a noisy environment. The 

best fusion results obtained for the Discrete Wavelet Transform, Dual Tree Complex 

Wavelet Transform and Multiresolution DCT are shown in Figures A2.4(d)-(f) 

respectively. Discrete Wavelet Transform schemes tend to be most susceptible to the 

influence of noise, with the Multiresolution DCT offering slightly better performance 

particularly for some textured regions of the headscarf, but the Dual Tree Complex 

Wavelet Transform appears less noisy than both the Discrete Wavelet Transform and 

Multiresolution DCT. The quality estimates for noisy test image fusion without 

denoising are shown in Table A2.4.

Table A2A Fusion results for noisy Barbara test image

Scheme SNR dB MSE
DWT-MS 10.32 1729.7
CWT-MS 11.94 1193.5
MRDCT-MS (3x3) 10.66 1599.6
MRDCT-MS (5x5) 10.54 1644.4

MRDCT-MS (7x7) 10.5 1662.7
MRDCT-MS (9x9) 10.52 1654.8
DWT-WA 11.53 1311.3
CWT-WA 13.46 839.48
MRDCT-WA (3x3) 12.22 1118.5
MRDCT-WA (5x5) 11.98 1180.9
MRDCT-WA (7x7) 11.91 1201.2
MRDCT-WA (9x9) 11.81 1228

DWT-WBV 11.58 1294.5
CWT-WBV 13.06 921.1

MRDCT-WBV (3x3) 11.83 1222.3

MRDCT-WBV (5x5) 11.72 1255

MRDCT-WBV (7x7) 11.74 1248.5

MRDCT-WBV (9x9) 11.74 1247.6
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These results tend to agree with the observations made above, showing that the 

DTCWT-WA clearly outperforms all other schemes achieving gains in SNR estimate 

of at least ldB in comparison with the Discrete Wavelet Transform and 

Multiresolution DCT schemes. Here, the Multiresolution DCT and Discrete Wavelet 

Transform offer comparable performance in the presence of noise. The same 

procedure for noisy image fusion is followed for the Lena test image as shown in 

Figure A2.5.

(d) (e) (f)

Figure A2.5 Noisy image fusion:

(a) noisy test image Lena; (b) test image 1 blurred on left and simulated noise;

(c) test image 2 blurred on right and simulated noise; (d) DWT-WBV;

(e) CWT-WA; (f) MRDCT-WA (3x3).

The original test image of Lena as shown in Figure A2.5(a) is used as ground-truth 

data for image quality estimation. Simulated multiplicative Gaussian noise with 

coefficient of noise variation c r  = 0.05 was added to the blurred Lena test images

shown in Figures A2.5(b)-(c) to obtain the noisy blurred Lena test images shown in 

Figures A2.5(b)-(c). The best fusion results obtained for the Discrete Wavelet
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Transform, Dual Tree Complex Wavelet Transform and Multiresolution DCT are 

shown in Figures A2.5(d)-(f) respectively. Visual analysis confirms similar results as 

the Barbara test images in Figure A2.4, again the Multiresolution DCT and Discrete 

Wavelet Transform appear slightly more noisy than the Dual Tree Complex Wavelet 

Transform suggesting that the Dual Tree Complex Wavelet Transform is more robust 

in a noisy environment. The quality estimates shown in Table A2.5 support this 

observation.

Table A2.5 Fusion results for noisy Lena test image

Scheme SNR dB MSE

DWT-MS 10.33 1639.6

CWT-MS 11.94 1130.8

MRDCT-MS (3x3) 10.64 1526.1

MRDCT-MS (5x5) 10.53 1563

MRDCT-MS (7x7) 10.44 1599

MRDCT-MS (9x9) 10.51 1573.2

DWT-WA 11.56 1233.5

CWT-WA 13.44 799.77

MRDCT-WA (3x3) 12.28 1046.8

MRDCT-WA (5x5) 12.01 1112.5

MRDCT-WA (7x7) 11.87 1149.1

MRDCT-WA (9x9) 11.85 1155.5

DWT-WBV 11.57 1232.3

CWT-WBV 13.03 880.04

MRDCT-WBV (3x3) 11.86 1150.8

MRDCT-WBV (5x5) 11.75 1182.1

MRDCT-WBV (7x7) 11.74 1184.9

MRDCT-WBV (9x9) 11.70 1194.3

Again, the Discrete Wavelet Transform and Multiresolution DCT achieve comparable 

quality estimates but are clearly outperformed by the Dual Tree Complex Wavelet 

Transform. The best results for the Multiresolution DCT are obtained for smaller 

DCT window sizes. In general, the Dual Tree Complex Wavelet Transform clearly 

performs best for fusion of noisy data, while the Discrete Wavelet Transform and
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Multiresolution DCT offer worse but comparable results to each other. Smaller DCT 

window sizes provide the best results for noisy data fusion using the Multiresolution 

DCT. Overall the results indicate that the Dual Tree Complex Wavelet Transform is 

more robust for fusion of noisy data. Also, different fusion schemes are identified as 

producing the best quality results for different test images.

A2.4 Simultaneous Fusion and Denoising of Test Images

Now simultaneous denoising and fusion is considered for noisy test images. The 

original Lena test image as shown in Figure A2.6(a) is used for the ground-truth data. 

The noisy Lena test images in Figures A2.6(b)-(c) are the exact same noisy test 

images as Figures A2.5(b)-(c). The best fusion and denoising results obtained for the 

Discrete Wavelet Transform, Dual Tree Complex Wavelet Transform and 

Multiresolution DCT are shown in Figures A2.6(d)-(f), respectively.

(d) (e) (f)

Figure A2.6 Denoising and fusion images:(a) original test image Lena; (b) test 

image 1 blurred on left and simulated noise; (c) test image 2 blurred on right and 

simulated noise; (d) DWT-MS; (e) CWT-MS; (f) MRDCT-WA (9x9).
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Poorest noise suppression is exhibited by DWT-MS. MRDCT-WA suppresses noise 

marginally better than CWT-MS, but this is at the expense of introducing greater 

artefacts into the image. CWT-MS seems to have slightly better definition in the facial 

region with the exception of the mouth area which is better defined in the MRDCT- 

WA. Comparison of these results suggest that the Multiresolution DCT provides 

better noise suppression than the Dual Tree Complex Wavelet Transform but achieves 

lower quality estimates due to the artefacts introduced into homogenous regions. The 

quality estimates for all fusion schemes are shown in Table A2.6.

Table A2.6 Denoising and Fusion Results for Lena test image

Scheme SNR dB MSE
DWT-MS 17.8 293.67
CWT-MS 19.95 178.93
MRDCT-MS (3x3) 18.45 252.69
MRDCT-MS (5x5) 19.33 206.39
MRDCT-MS (7x7) 19.13 215.83
MRDCT-MS (9x9) 19.63 192.29
DWT-WA 17.45 318.16
CWT-WA 19.63 192.36
MRDCT-WA (3x3) 18.47 251.37
MRDCT-WA (5x5) 19.34 205.68
MRDCT-WA (7x7) 19.49 198.61
MRDCT-WA (9x9) 19.64 192.04
DWT-WBV 17.49 315.33
CWT-WBV 19.79 185.38
MRDCT-WBV (3x3) 18.54 247.61
MRDCTWBV (5x5) 19.28 208.46
MRDCT-WBV (7x7) 19.58 194.69
MRDCT-WBV (9x9) 19.60 193.76

It can be seen that CWT-MS achieves the highest quality estimates. Additionally, the 

best results for the Multiresolution DCT are achieved with larger window sizes, again 

suggesting that large window sizes are required for efficient noise suppression in the 

DCT domain.
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The test images are perfectly registered; therefore, the shift-invariance properties of 

the Multiresolution DCT and Dual Tree Complex Wavelet Transform have no real 

advantage here. For the Dual Tree Complex Wavelet Transform fusion and denoising 

the phase information is not considered by the fusion rules. This would imply that the 

results achieved for the Dual Tree Complex Wavelet Transform are due to its 

increased directional sensitivity, having six directional subbands, whereas the 

Multiresolution DCT and Discrete Wavelet Transform only have three directional 

subbands. The results obtained by the Multiresolution DCT must therefore be 

attributed to its good signal localisation in both the spatial and frequency domains, 

permitting suitable selection of coefficients for both fusion and denoising.

A2.5 Conclusion

Common techniques and state-of-the-art methods have been implemented for 

simultaneous denoising and fusion of test images, and compared to the new technique 

described in Section 5.2.3 and [42]. The denoising and fusion results were assessed 

using quantitative metrics to determine the effectiveness of each technique. A 

qualitative visual analysis was also performed to confirm the validity and plausibility 

of the quantitative measures. Simulations have shown that the Multiresolution DCT- 

based approach can outperform the Dual Tree Complex Wavelet Transform (DT- 

CWT) for simultaneous denoising and fusion, demonstrating superior results for 

textured regions of the test images which were specifically selected to most resemble 

the textured characteristics of SAR images.

The difficulty of estimating image quality has been shown, where it is not sufficient to 

rely only on quality estimates to gauge image quality. Instead, attention needs to be 

paid to image content and ultimately image quality depends on the most important 

criteria for the application to which the data will be applied. The Multiresolution DCT 

has proven to be a suitable method for efficiently fusing and denoising.
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APPENDIX 3

Software Model Description

The models for simulation of the Intelligent Radar Sensor (IRS) are implemented in

MATLAB software code. All software is available in Appendix V on the DVD within

the ‘SOFTWARE’ folder. The software tools are organised in five separate packages

which implement the following methods and algorithms proposed in this thesis:

1. The Intelligent Radar Sensor model is implemented in MATLAB;

2. The algorithm for prediction of land surface multipath effects is implemented in 

MATLAB;

3. The algorithm for prediction of ground clutter for surface-sited low-grazing radar 

using remote sensing data is implemented in MATLAB;

4. SAR data processing algorithms for hologram impairment mitigation, multi-look 

and single-look image synthesis, impulse noise and bit-error noise impairment 

simulation are implemented in MATLAB code. SAR image fusion and fusion 

quality estimation algorithms are written in MATLAB. The DTCWT propriety 

library written in MATLAB has been partly used for implementation of SAR 

images fusion algorithm based on dual tree complex wavelet transform;

5. The algorithm for Multiresolution DCT-based technique for fusion and denoising 

simulation is implemented in MATLAB code. SAR image fusion, denoising and 

quality estimation algorithms are written in MATLAB. The DTCWT propriety 

library written in MATLAB has been partly used for implementation of SAR 

image fusion and denoising algorithm based on dual tree complex wavelet 

transform.

A description of these software components are shown in Table A3.1.
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Table A3.1 Software Description for the Intelligent Radar Sensor Model

Propriety Software Uses Description

DTCWT Dual Tree Complex 

Wavelet Transform 

software package

RBFCLASS RBF classification of 

satellite images

Deliverable Software

IRSMOD Intelligent Radar Sensor 

package

IR Stestm Implementation of 

Intelligent Radar Sensor 

model

calcshadowtarget.m Calculate shadow 

regions for target line of 

sight from radar position

snr.m Calculate signal-to-noise 

ratio

cnr.m Calculate clutter-to-noise 

ratio

calcgaintgt.m Calculate antenna gain 

for target position

calcgaincorr.m Calculate antenna gain 

for land surface clutter 

position

fusionscenario.m Implementation of radar 

fusion (scenario 3 -  

Chapter 6)

MULTIPATHMOD Multipath modelling 

package
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multipathtest.m Implementation of 

Multipath model

voltage_pattem.m Antenna voltage pattern

calcangletarget.m Calculate grazing angle 

for target

specularreflectionstest.m Calculate specular 

reflections

findspecularreflec.m Find specular reflection 

positions on land surface

specshadow.m Calculate which specular 

reflections are invalid 

due to line of sight 

restrictions

plotspec.m Plot specular reflection 

positions

CLUTTER MOD Clutter modelling for 

surface-sited low- 

grazing radar package

addshadow.m Superimpose shadow 

map on clutter map

calcangle.m Calculate grazing angles 

for surface-sited radar

calc_flight_path.m Calculate flight path for 

airboume SAR

calcgrazing.m Calculate grazing angles 

for airboume SAR

calcshadow.m Calculate shadow 

regions for surface-sited 

radar

cluttertestm Example of clutter map 

simulation
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filterspeckle.m Filter speckle noise from 

SAR data

findline.m Calculate direct path 

from surface-sited radar 

to any point on map

geomcorr.m Perform geometric 

correction for SAR data

RBNNtest.m Classify image into 

specified class types

image2class.m Extract classes from 

classified image

SARMTG SAR impairment 

mitigation and image 

fusion package

addbitnoisecgilbert.m Simulate Gilbert noise

add imp noise Simulate i.i.d impulse 

noise

alpha_est.m Estimate intensity of 

noise for selection of a 

parameter

hologramtest.m Example of mitigation.

imageerrestim ate.m Calculate quality 

parameters

syn tho lm u ltilookm odva

r.m

Synthesise SAR image 

using multi-look 

synthesis.

syntholsinglelookvar.m Synthesise SAR image 

using single-look 

synthesis
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errestimate.m Calculate quality 

parameters

fusiontest.m Example of fusion

laP_Pyramid_compose.m Compose image from 

Laplacian pyramid 

decomposition

lap_pyramid_decompose.m Decompose image into 

Laplacian pyramid 

multiresolution 

representation

medjpyramidcompose.m Compose image from 

Median pyramid 

decomposition

med_pyramid_decompose.m Decompose image into 

Median pyramid 

multiresolution 

representation

selb.m Fusion mles for selection 

of approximate image 

coefficients

selc.m Fusion rules for selection 

of detail image 

coefficients

waveletcompose.m Compose image from 

Wavelet decomposition

waveletdecompose.m Decompose image using 

discrete wavelet 

transform
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MRDCT Multiresolution DCT 

technique for SAR 

speckle mitigation and 

image fusion package

DTCWTanal.m Dual-tree complex 

wavelet analysis of an 

image

errestimate.m Calculate quality 

parameters

estimatethr.m Estimate threshold for 

image denoising

filterdctm lnoise .m Filter DCT coefficients 

for multiplicative noise

filtermlnoise.m Filter multiresolution 

coefficients for 

multiplicative noise

fuse.m Fuse multiresolution 

images

FusedenoiseSIM .m Example of denoisnig 

and fusion

imageerrestim ate.m Calculate quality 

parameters

MRDCTanal.m Multiresolution analysis 

of an image using 

Laplacian pyramid and 

sliding window DCT

selb.m Fusion rules for selection 

of approximate image 

coefficients

selc.m Fusion rules for selection 

of detail image 

coefficients
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The diagram in Figure A3.1 describes the software structure of the Intelligent Radar 

Sensor model illustrating how the software components described above fit together 

to form a complete system.

SAR MTG

IRS MOD

MRDCT

CLUTTER MOD

Radar remote 
sensing data 

mitigation and 
fusion

MULTIPATH MOD

Figure A3.1 Structure of the Intelligent Radar Sensor Software Model
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APPENDIX 4

DVD Containing Software Models and 
Animation Files

(see attached DVD)
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APPENDIX 5

A Discussion on Multiresolution Methods and 

Quality Assessment Metrics

The following appendix addresses methods for multiresolution image fusion and 

considers quantitative metrics for evaluation of fusion and impairment mitigation 

techniques. Multiresolution analysis of 2D signals is discussed in Section A5.1, 

Multiresolution fusion techniques and combination rules are discussed in Section 

A5.2, and Section A5.3 concludes with a discussion on quantitative analysis measures 

for mitigation of impairments and image fusion. The material in this appendix 

discusses in greater detail topics which were mentioned in earlier chapters, but at that 

time it was not the appropriate place to these topics; therefore, they are being 

discussed here.

AS.l Multiresolution Analysis of 2D signals

For successful image fusion it is important that images depicting the same scene be 

co-registered so that corresponding pixels in each image relate to the same location. 

For simplicity it is assumed that the images are co-registered prior to fusion. For 

image fusion a multiresolution approach may be adopted, which decomposes the 

signal into several components, each representing information at a given scale. This 

approach lends itself well to real world applications as many real world objects 

consist of structures at different scales. Multiresolution analysis allows for more 

convenient analysis of the signal, although it is important that the multiresolution 

technique allows for perfect reconstruction of the original signal so that no important 

information is lost during the process. The two MR fusion approaches considered are 

the Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform 

(DT-CWT).
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The Discrete Wavelet Transform is a signal analysis which results in a non-redundant 

image representation. The Discrete Wavelet Transform can be thought of as a 

bandpass representation which can be constructed from highpass and lowpass filters, 

where the highpass coefficients represent the details and the lowpass coefficients 

represent the image at lower resolution levels. The 2-D Discrete Wavelet Transform 

shown in Figure A5.1 is computed by the recursive application of lowpass and 

highpass filters in each direction of the input image followed by the downsampling 

operation, downsampling by a factor of 2.

Columns
Rows

.(*+i)

Figure A5.1 The 2D Discrete Wavelet Transform (DWT).

For each level k, the input jcw is decomposed into a coarse approximation jc(*+1) and 

three signals 1), y*+1)(~2), y(*+1)(~3)}, corresponding to the horizontal,

vertical and diagonal directions. The lowpass hk and highpass gk filters are based on 

the biorthogonal Daubechies wavelet family (DBSS 2,2) [115]. Reconstruction is 

achieved through application of the inverse of Figure A5.1, known as the composition 

tree. One major drawback of the Discrete Wavelet Transform when applied to image 

fusion is its shift and rotation dependancy, resulting in deterioration of performance if 

the images are not perfectly registered or when there is slight object movement or 

rotation. This shift-variance is due to the downsampling operation required for the 

necessary decimation. A solution to this is to use undecimated filter banks. However, 

this method leads to a redundant multiresolution representation. A more convenient
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alternative from the point of view of both computational complexity and reduced 

redundancy is the Dual-Tree Complex Wavelet Transform, as shown in Figure A5.2.

* —

Tree a

hh

.(*)x'

Tree b

Figure A5.2 The Dual-Tree Complex Wavelet Transform (DT-CWT).

The Dual-Tree Complex Wavelet Transform uses two separate Discrete Wavelet 

Transform decompositions (Tree a and Tree b) to calculate the complex transform of 

a signal. If appropriate filters are selected for each tree it is possible for one Discrete 

Wavelet Transform to produce the real coefficients and the other the imaginary 

coefficients. Using two Discrete Wavelet Transforms results in a redundancy of two, 

but this provides extra information for analysis and the input signal can be 

reconstructed exactly from either tree. By averaging both of the tree outputs 

approximate shift-invariance can be obtained. The property of shift-invariance is 

desirable as it ensures robust subband fusion by permitting effective comparison 

between the magnitudes of the coefficients. The standard Discrete Wavelet Transform 

produces three bandpass signals at each level while the 2D Dual-Tree Complex 

Wavelet Transform produces six bandpass subimages with complex coefficients at 

each level. These bandpass subimages are strongly oriented at angles of ±15°, ±45°, 

±75°. This directional sensitivity results from the complex filters ability to distinguish 

negative and positive frequencies both horizontally and vertically. A more complete 

explanation of Discrete Wavelet Transform can be found in [39, 115]. Reference 

[116] discusses the Dual-Tree Complex Wavelet Transform and the filters which are 

suitable for use with Dual-Tree Complex Wavelet Transform. The software provided 

by Professor Kingsbury through the DIF DTC contains a large number of filter types.
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But it falls to the user to optimise the choice of filter. For experimental purposes we 

selected the Antonini 9,7 tap filters and Quarter Sample Shift Orthogonal (Q-Shift) 

10,10 tap filters [92], which were determined by the author through simulations to 

produce the best results for the particular applications.

A5.2 Multiresolution Fusion Techniques and Combination Rules

Coefficients in the detail images having large absolute values are considered to 

represent the salient features in the image such as lines, edges and region boundaries. 

Based on this assumption fusion strategies can be applied. However, the coefficients 

in the approximate image at the lowest level may not represent details as they are 

coarse approximations of the original image; therefore, a different fusion strategy is 

required. For fusion of the approximate coefficients averaging can be implemented 

based on the assumption that the approximate coefficients contain additive Gaussian 

noise, thus averaging reduces the variance whilst maintaining an appropriate mean 

value. For fusion of detail coefficients the salient features in the image should be 

identified and fused.

How important a feature is can be measured by its “salience”. High values of salience 

represent patterns that play a role in representing important information within a 

scene, while low values are assigned to unimportant or corrupt information. The 

measure of salience can be governed by the application, i.e. for image analysis 

applications prominent features are represented by high amplitude coefficients. 

Saliency can also be regarded as energy; therefore, variance within a neighbourhood 

can also be used as the criterion for judging saliency. The human visual system is 

sensitive to local contrast changes, so a sensible fusion rule would be to select the 

maximum of the absolute values as these should represent the edges and changes in 

contrast. This approach is known as choose-max or the maximum selection (MS) rule 

[94]. However, this method assumes that important features are only contained in one 

image at each pixel location. It would be more desirable to include information from 

both sources based on a weighted average according to the importance of each
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coefficient within the considered scene. Burt et al. [117] propose such a weighted 

average (WA) scheme also known as the Match and Selection rule, which uses an 

activity measure and the similarity between each coefficient as the criteria for fusion. 

The selection process ensures that all important information is retained whilst artifacts 

due to opposite contrast are reduced, whereas averaging the coefficients when the 

source images contain similar information reduces noise. The match process 

determines the measure of similarity between corresponding transform coefficients 

and can be achieved through a correlation measure. The combination rule can be 

implemented by a weighted average where the weights depend on the match and 

selection measures. Firstly, if the corresponding transform coefficients are distinctly 

different then the most salient feature is selected (selection), otherwise, the 

coefficients should be averaged. The match operation decides whether to use selection 

or averaging, via a weighted average. The local variance is used for the local activity 

measure. The match computes the similarity between transform coefficients, which 

can be defined as the normalised correlation averaged over a neighbourhood of 

samples.

Spatially close samples are likely to be related to the same feature in the image, and 

therefore they should be treated in the same manner. A method proposed by Li et al.

[118] is a window based verification (WBV) scheme also known as consistency 

checking. First a binary decision map is created containing the decision of the 

selection process based on the local activity indicator. In this case the maximum 

selection rule is implemented as the measure for local activity indicator. Then the 

window based verification is performed where the verification process is achieved 

through a majority filter, with window sizes typically 3><3 or 5x5. Window based 

verification involves considering a window around the sample in the decision map, 

and if the central sample in the window is selected from image a but the majority of 

surrounding coefficients are selected from image b, then the decision is changed so 

that the central coefficient is now selected from image b to be consistent with its 

neighbouring samples.
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These fusion rules can be directly applied to the Discrete Wavelet Transform 

coefficients. For the Dual-Tree Complex Wavelet Transform fusion when using the 

maximum selection rule a combined coefficient map (containing the indexes of the 

selected coefficients) should be created which is then used to select the appropriate 

coefficients, followed by application of the inverse Dual-Tree Complex Wavelet 

Transform to produce the fused image. The weighted average and window based 

verification rules should be applied directly to the magnitude of the complex values 

also creating a combined coefficient map which should then be used to select the 

appropriate coefficients, followed by the inverse Dual-Tree Complex Wavelet 

Transform to produce the fused image.

A5.3 Quantitative Analysis Measures for Assessment of Impairment Mitigation 

and Fusion Algorithms

The performance of impairment mitigation and fusion algorithms can be estimated by 

comparing the ground truth data with the results of image fusion for the mitigated 

images. Image quality assessment is a very difficult task and it is not currently 

possible for any single measure to definitely determine the best quality image. 

Instead, several measures are required each of which is applicable for estimating 

quality with respect to specific features or characteristics of the image. Estimation of 

fused images pose an additional problem, where the difficulty lies in the fact that 

generally ideally fused images are not available for use as ground truth data, except 

for cases where contrived experimental data are used. Additionally, the ideally fused 

image is often dependent on the application that will use the data, for example, the 

data most suitable for object detection may not necessarily be appropriate for 

estimation of soil moisture content of a region. Therefore, several measures have been 

proposed which attempt to identify important information in the source images and 

determine how much of this is transferred into the fused image.

With this in mind it is die author’s point of view that the only way to absolutely 

determine image quality whether fused or not fused, is by applying the data to a
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specific task, therefore, giving an indication of best image quality with respect to that 

task. It is acknowledged that this approach is task specific and for cases where this is 

not possible general quality estimates are an acceptable alternative, providing 

appropriate attention is given to the specifics of the quality estimate and the 

limitations of the estimate are understood.

Quality estimates for evaluating the effectiveness of impairment mitigation techniques 

are discussed in Section A5.3.1. Methods for quantitative analysis of fusion 

techniques in transferring only relevant information to the fused image are discussed 

in Section A5.3.2.

A5.3.1 Quality Measures for Assessment of Data Transmission Errors 

Impairment Mitigation

The improvement in image quality can be evaluated using the signal-to-noise ratio 

(SNR) and the mean squared error (MSE) to assess the effectiveness of mitigation of 

impairments. SNR can be defined as

SNR = 101ogl0(]T /(r ,c )2 / £ [ / ( r , c ) - ! ( r , c ) f )  (A5.1)
r , c  r ,c

where I(r,c) are the original image samples when impairments are absent, I(r,c)  is 

the image at the output of the mitigation algorithm, and (r,c) are the row and column 

coordinates, respectively.

The MSE is the mean of the square of error, defined as

m E  = -  h r , c ) f  (A5.2)Nx ’  r r
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Here N  is the number of image samples, I(r, c) are the original image samples when

impulse noise is absent and I(r,c) is the image at the output of the mitigation 

algorithm.

A5.3.2 Quality Measures for Estimating Image Fusion Performance

For assessing the quality of fused images three evaluation criteria are selected: mutual 

information (MI) [102] between the two source images and the fused image, and the 

qualitative measures Qabf and Qw [103]. MI for the fused image can be obtained by 

taking the sum of the MI between the composite and each source image, then to 

normalise the measure in the range [0, 1] this is divided by the sum of the entropy of 

each source image. This can be defined as

m a , b j )  = + ^ : f )  (A5.3)H(a) + H(b)

where MI(aJ) is the MI between source image a and fused image f  and H(a) is the 

entropy of source image a; and similarly for MI(b,f) and H(b). However, this measure 

does not take into account whether the important details in the source images are 

contained in the fused image. Wang and Bovik propose an image quality index Q0

[119] to quantify the structural distortions between two images which can be defined 

as

f t =  ----- -  (A5.4)
(a2 + b1)(a l+ a l)

where a denotes the mean of a, b denotes the mean of b, <y2a the variance of a, a l  

the variance of b, and <J2ab the covariance of a and b. Q0 is a measure of similarity
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between image a and image b producing values between -1 and 1, with the maximum 

of 1 given when the two images are identical. To account for the non-stationary 

characteristic of the image signal, local regions should be independently analysed 

using Q0 and then combined to produce a single measure. Wang and Bovik therefore 

propose a sliding window approach

Qo 0> b) = ]^T XQo (a>b I w) (A5.5)yV\ w e ff

where W is the set of all windows and | W\ is the cardinality of W. For each window w 

the local quality index Q0(a,b \ w) is computed for all pixels within window w. To 

produce the quality estimate for the whole image all local quality indexes are 

averaged. In [103] Piella proposes the quality measure Q ab /  for image fusion to show 

the quality of the composite image given the input images a and b. This measure can 

be defined as

Q a b f  = 'Z,(*A*i)Qo(a>f IW) + M W)Qo(b’f  Iw)) (A5.6)
1 ^ 1  weW

where Q (af \ w) is the local quality measure between image a and the fused image /

within window w a; and similarly for Q (b f | w). Aa(w) and Xh (w) are the local

weights calculated on the local saliency within window w of image a and b 

respectively. These weights can be defined as

U w )  = ---------------   (A5.7)
s(a | w) + s(b | w)

where s(a \ w) is the local saliency of image a in window w, and s(b \ w) is the local 

saliency of image b in window w . Saliency can be selected to be based on contrast,
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variance or entropy. The higher the value of Aa(w) the more important image a is 

with respect to image b. For this case Xh can be calculated as \ { w )  = l-A a(w). For 

simulation purposes the local variance is selected as the criterion for s(a| w).

The measure Qabf weights all windows equally, which may not be appropriate because 

some features may be more important than others. Piella proposes a weighted quality 

measure Qw [103], based on the assumption that some areas of the image are more 

important than others due to the human visual system placing more importance on 

salient regions within an image. Therefore, Qw allocates higher weights to windows 

which have a higher saliency, as these areas should correspond to perceptually 

important regions within the image. Qw is defined as

2w = T^J £c(w)(Aa(w )f t(a ,/  I w) + A O )2o(*> / I w)) (A5.8)
I" I weW

where c(w) = C (w )/(^C (w ')) and C(w) = max(s(<2 | | w)) denotes the overall
w'eW

saliency within a window w.
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