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SUMMARY

This thesis uses a combination of industrially acquired seismic reflection data, along 
with supplementary bathymetry and geotechnical borehole data, to investigate the 
architecture, structural elements and evolution of submarine mass wasting deposits. 
The primary study area is the mid-continental margin of Norway and the Levant 
margin, east-Mediterranean Sea serves as a secondary study area. The principal aim is 
to gain an improved understanding of the evolution of submarine mass wasting 
deposits and the processes involved. To this end this thesis consists of three core 
research chapters which present the results of investigations into the mechanism 
responsible for the formation of a non-typical example of a submarine mass wasting 
deposit, the spectrum of geological features that can be found associated with 
submarine mass wasting deposits, and an example of a frontally confined submarine 
mass wasting deposit.

In the first core chapter, an example of a non-typical submarine mass wasting 
deposit from the Norwegian continental margin was investigated using three- 
dimensional (3D) seismic data. The mass wasting deposit, informally named the 
‘South Voring Slide’ (SVS) was found to differ from previously documented 
examples in that it showed significant thinning and volume loss which could not be 
accounted for by the transfer of material downslope over a basal shear surface. 
Analysis of the deformation and geometry of the SVS suggests that it developed due 
to the mobilisation of an approximately 40 m thick interval at the lower part of the 
SVS, and its removal from beneath a thin overburden which subsequently underwent 
extensional fragmentation.

Submarine mass wasting deposits exhibit many different types of kinematic 
indicators from which information relating to the dynamic emplacement of the event 
can be deduced. The second core research chapter presents a classification scheme and 
comprehensive compilation of all of the various kinematic indicator types, fully 
illustrated using best examples taken from the 3D seismic database available from the 
Norwegian and Levant margins. For each kinematic indicator, a definition and seismic 
recognition criteria are presented along with discussion and worked examples of the 
kinematic information which they provide. It was shown that the application of 3D 
seismic data to the study of submarine mass wasting deposits can yield much 
information pertaining to the direction and magnitude of transport, mode of 
emplacement, dominant mass wasting process and rheology. In particular, it was 
shown that 3D seismic data allows swift and confident evaluation of the direction of 
translation, and in many cases also allows the degree of translation of the displaced 
material to be constrained.

The final core research chapter documents and describes an example of a large 
frontally confined submarine mass wasting deposit from the Norwegian margin. The 
mass wasting deposit, informally named the ‘Confined Storegga Slide (CSS)’, is 
unique in that it detaches along a deep-seated basal horizon at a depth of 640 m below 
the seabed and exhibits spectacular contractional deformation in its distal region.
Using a combination of 2D and 3D seismic data and bathymetry data, it has been 
possible to fully delimit the extent of the CSS, which has a section length of 135 km 
and involves some 1,227 km3 of material. The results of this study show that the CSS 
developed as part of the large, multi-phase Holocene Storegga Slide, and 
demonstrates how subsequent phases Storegga Slide development induced later 
deformation and volumetric changes which have not previously been recognised.



A NOTE ON THESIS STRUCTURE

Two of the principal research chapters of this thesis (chapters two and three) have 

been prepared as scientific papers for publication in two different international 

journals. The present status of each publication is summarized as follows:

• Chapter two is in press for Basin Research as: A subsurface evacuation model 

for submarine slope failure. Suzanne Bull, Joe Cartwright and Mads Huuse.

• Chapter three has been published as: A review o f kinematic indicators from  

mass transport complexes using 3D seismic data. Suzanne Bull, Joe 

Cartwright and Mads Huuse. Marine and Petroleum Geology 26 (2009), pp. 

1132-1157.

Although each article is jointly authored with the project supervisors they are the 

work of the lead author, Suzanne Bull. Project supervisors provided editorial 

support in accordance with a normal thesis chapter.
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Holocene Storegga Slide and compression zone, location of the distal turbidite 
deposits resulting from the Storegga Slide, and the data used.

4.7

Fig. 4.3 Bathymetry map of the Storegga Slide ‘compression zone’ and surrounding area 
showing seabed character and location o f various figures. The compression 
zone is characterised by NW-SE and N-S trending seabed lineations (labelled). 
Notice that the seabed lineations change in character to become less pronounced 
in the region up-dip o f the distal region (labelled). Note the positions o f the 
distal and lateral margins o f the compression zone which delineate the unusual 
downslope-narrowing planform geometry. Sediment ‘pathways’ and the 
planform extent o f a sheared zone are shaded in grey. Note the position and 
planform geometry o f ‘Headwall R’ o f the Storegga Slide which is linked to the 
compression by a detachment horizon, and by lateral margins delimiting the 
northern and southern extent o f the compression zone and related up-dip
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features. The low-relief character of the seabed in the proximal region is 
inferred to represent a thin-cover (i.e. 40 -  60 m) o f highly disaggregated mass 
wasted material. Three large slide bodies are identified from a combination of 
their seabed expression and seismic character in profile. ‘Slide Block R’ is 
interpreted as an intact and partially translated slide block, and T 1 and T2 are 
interpreted as rooted, untranslated remnant blocks o f pre-Storegga Slide 
stratigraphy which have preserved outliers o f Tampen Slide deposits. Within the 
PL251 3D survey area, a seabed dip-map has been overlaid to fully illustrate the 
seabed features associated with the southern lateral margin. SSC: Storegga Slide 
Complex. Location shown in Fig. 4.2.

Fig. 4.4 2D seismic dip-profile showing a central profile taken through the distal region 
o f the compression zone. A: Uninterpreted profile. B: Interpreted profile. Note 
the basal detachment horizon and the thickness of the sediments which overlie it 
(maximum thickness o f 640 m). Note the numerous thrust faults which occur in 
pairs of opposing dip and define upwardly displaced ‘pop-up blocks’, detaching 
into the detachment horizon. Also note the depositional unit resulting from the 
Tampen Slide (labelled), which form a chaotic interval bound by continuous, 
high amplitude top and basal surfaces and provide a sequence of stratigraphic 
markers. Location shown in Fig. 4.3.
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Fig. 4.5 2D seismic strike-profile through the distal region o f the compression zone, 
close to the distal margin. A: Uninterpreted profile. B: Interpreted profile. Note 
the steeply dipping, offset reflections which form the lateral margins of the 
compression zone, and repetition of the Tampen Slide deposit. LM: Lateral 
margin. Location shown in Fig. 4.3.
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Fig. 4.6 Composite seismic dip-profile taken through the study area showing the 
position and continuity o f the basal detachment horizon which links the 
headwall area o f the Storegga Slide to the distal margin o f the compression 
zone. The basal detachment horizon is recognised as the regional reflector INS2 
(Haflidason et al. 2004; Berg et al. 2005; Bryn et al. 2005a). Location shown in 
Fig. 4.2.
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Fig. 4.7 Contoured time structure map o f the horizon INS2, based on the interpretation 
o f 2D seismic lines, which forms the basal detachment horizon o f the 
compression zone. The map illustrates the extensive nature and high level of 
confidence in the interpretation of the reflector. Contours are every 50 ms.
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Fig. 4.8 A: 3D seismic dip-profile through Storegga Slide headwall R which is linked to 
the compression zone by the detachment horizon INS2 (location shown in B).
B: Seabed dipmap from within the 3D survey Ormen Lange (location shown in 
Fig. 4.2). Note the position and dip o f INS2, and the relatively thin, chaotic 
mass wasting deposits which overlie it basinward o f the headwall. The planform 
trend o f the headwall, distribution and highly disaggregated nature of the mass 
wasting deposits is evident from the seabed dipmap.
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Fig. 4.9 2D seismic dip-profile through the region o f less pronounced seabed lineations 
some 30 km up-dip of the distal margin. A: Uninterpreted profile. B: Interpreted 
profile. Note the progressive thinning o f the sediments overlying the basal 
detachment horizon in the landward direction, and succession of deformational 
features which shows upwardly displaced pop-up blocks imaged in the NW 
extreme o f the profile being succeeded by increasingly deformed fault blocks 
which have been displaced downwards by fault pairs which show normal 
offsets. The downward-displaced blocks are interpreted as graben blocks. H: 
Horst block. Location shown in Fig. 4.3.

4-22

Fig. 4.10 2D seismic dip-profile taken through the region some 40 km up-dip of the 
compression zone, where a further change in the character of the deformation is 
observed. A: Uninterpreted profile. B: Interpreted profile. Note the systematic 
offset and inclination o f marker horizons which in conjunction with similarly 
inclined and offset segments o f the seabed define landward-dipping extensional 
faults which in many cases affect the entire thickness o f the sediments above the 
detachment horizon. Seabed offsets are indicated by arrows. H: Horst block. 
Location shown in Fig. 4.3.
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Fig. 4.11 2D seismic dip-profile taken through a conspicuous zone o f high seabed relief 
some 30 km downslope of headwall R. Note the character o f the seabed and the
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position of the detachment horizon. Internally, many laterally discontinuous 
segments of high amplitude reflections are observed, often forming discrete 
packages. The packages are interpreted as deformed blocks o f material forming 
a larger translated and partially disaggregated block. Location shown in Fig. 
4.3.

Fig. 4.12 2D seismic strike-profile through a zone o f irregular seabed topography located 
c. 30 km up-dip of the distal margin of the compression zone. Notice the seabed 
character and basal detachment horizon. The underlying sediments are clearly 
divisible into two differing seismic facies, with low amplitude, continuous, 
layered reflections being succeeded by high amplitude, chaotic facies which are 
interpreted as Tampen Slide deposits. The feature as a whole is interpreted as an 
intact block o f pre-slide stratigraphy which is rooted to the underlying strata and 
has not been translated. Location shown in Fig. 4.3.
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Fig. 4.13 2D seismic strike-profile through the lateral margin of the compression zone 
and area of irregular seabed topography located c. 10 km up-dip of the distal 
margin. Note that the sediments underlying the area of irregular seabed 
topography shows a clear division o f seismic facies character, with the 
sediments immediately above the detachment horizon showing a low amplitude, 
continuous and layered character, and those closer to the seabed appearing high 
amplitude and chaotic. This feature is similarly interpreted as a remnant block 
which has preserved an outlier o f Tampen Slide deposits. In this area, the 
northern lateral margin o f the compression zone is represented by a steeply 
dipping fault across which the Tampen Slide deposit shows a marked change in 
thickness. Location shown in Fig. 4.3.
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Fig. 4.14 A: Annotated seabed dip-map from a the 3D survey PL251, which images a 
section of the southern lateral margin of the compression zone some 40 km up
dip o f the distal margin. Note the trend o f the lateral margin (indicated by bold 
dashed line), and presence o f further seabed features including two lobe-like 
depositional features immediately to the south, closely-spaced SSE-NNW 
trending lineations in the NW quadrant o f the survey area, and rough character 
o f the seabed basinward of the compression margin. Location o f the PL251 3D 
survey shown in Fig. 4.2. B: 3D seismic dip-profile through the compression 
zone lateral margin. Note the undeformed succession basinward of the lateral 
margin, which features the Tampen and More Slides and a continuation of the 
basal detachment horizon. The lateral margin is represented by a thrust fault and 
is succeeded in the proximal direction by a series of by further thrust faults, 
planar normal faults and finally listric normal faults, representing a mixture o f 
contractional and extensional deformation showing an increasing degree of 
deformation in the proximal direction. Note the presence of the shear zone in 
the SE extreme of the section. Location shown in A.
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Fig. 4.15 A: Dip-map o f the basal detachment horizon INS2. Note NW-SE trending 
lineations which mark detachment points of the fault pairs (labelled). Also note 
the sharply defined lateral margin o f the compression zone and dark-shaded 
area which represents highly disaggregated material within the shear zone (both 
labelled). B: Acoustic amplitude map o f the basal detachment horizon. Note 
lateral margin, fault detachments and shear zone which can all be delimited 
from the amplitude signature (all labelled). C: Time structure map of the Base 
More Slide horizon, showing planform characteristics o f the lateral margin, 
thrust faults, normal faults and fault-bound blocks. Tracking o f the marker 
horizon is difficult in the proximal direction as the intensity o f the deformation 
increases. Mapping of horizons within the shear zone was not possible.
Location shown in Fig. 4.14A.
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Fig. 4.16 Slices from a coherency volume generated from the 3D survey P1251. Areas of 
light shading represent a high degree of coherency (e.g. relatively little 
deformation), and areas of dark shading indicate where coherency is low (i.e. 
relatively high degree of deformation). The lateral margin, faults, fault bound 
blocks and shear zone can all be clearly determined at various levels within the 
area o f interest. A: Coherency slice taken at a depth of 2150 msTWT; B: 1850 
msTWT, and C: 1850 msTWT. Note presence o f small ESE-WNW orientated 
lineations which cross-cut the three most distal thrust fault bound blocks
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(labelled in B). Also note that slip-sense along the thrust and normal faults is 
predominantly dip-slip, with no evidence o f for strike slip deformation. 
Location shown in Fig. 4.14A.

Fig. 4.17 3D seismic dip-profiles to illustrate the character o f the deformational structures 
in detail. A: Uninterpreted profile showing the lateral margin and series of 
thrust fault pairs. B. Interpreted profile. Note the upward displacement o f the 
fault bound blocks and intervening ‘horst’ blocks (labelled ‘H’). C: 
Uninterpreted profile showing the series of planar normal fault pairs and graben 
blocks. D: Interpreted profile. Note increasing downward displacement o f the 
graben blocks and intervening horsts (labelled ‘H’). BT: Base Tampen Slide, 
BM: Base More Slide.
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Fig. 4.18 A: Base More Slide time structure map showing planform character of ESE- 
WNW trending planar normal faults (indicated by solid black lines) which 
cross-cut the thrust faults pairs. Location shown in Fig. 4.15C. B: Uninterpreted 
3D seismic traverse through the zone o f cross-cutting planar normal faults. C: 
Interpreted profile. Note undeformed succession basinward of the lateral margin 
and position basal detachment horizon. SB: Seabed; TT: Top Tampen Slide 
horizon; BT: Base Tampen Slide horizon; BM: Base More Slide horizon; D: 
Detachment horizon. Location shown in Fig. 4.15C.

4-40

Fig. 4.19 Map to show the full extent o f the Confined Storegga Slide, as constrained by 
the positions o f the distal margin, lateral margins and headwall R. These 
features can be used to infer the main direction of transport of the event, which 
is indicated by bold arrows. The directional information imparted by features 
representative o f the inferred later-stage deformation, i.e. sediment flow 
pathways and cross-cutting extensional faults, is indicated by grey arrows. DM: 
distal margin; LM: lateral margin.
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Fig. 4.20 Scaled, schematic dip-section through the CSS. Note that the proximal and up
dip regions are heavily depleted in relation to the distal region. This contradicts 
classical models for slope failure which predict that accumulation in the distal 
region is balanced by depletion in the proximal region (sensu Vames, 1978). 
Location shown in Fig. 4.2.
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Fig. 4.21 Scaled, schematic representation of various time-stages to illustrate 
development o f the CSS. A: T l: Pre-failure conditions. B: T2: CSS has 
developed, with downslope translation accommodated in the form of mild 
depletion (i.e. 4%) in the proximal region, balanced by mild accumulation in the 
distal region (also 4%). T3: Later modification of the CSS due to slope failure 
as part o f the multi-stage Storegga Slide. The volume of sediments removed by 
the inferred later-stage failure is shaded grey, to emphasize the contrast between 
the slope profile expected after development of the CSS, and the actual slope 
profile observed today. The volume o f removed sediments is shaded grey. 
Location shown in Fig. 4.2.
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Fig. 4.22 Series o f maps to show the interpreted development and sequence of the 
Storegga Slide phases. A: Outline o f the Storegga Slide Complex and main slide 
elements, including the lower headwall, main headwall, headwall R and slide 
block R (after Bryn et al., 2005a); B: Initial phase o f sliding occurred in the 
lower headwall region and retrogressed upslope; C: Sliding retrogressed further 
to eventually affect the northern main headwall region; D: Sliding then affected 
the central Ormen Lange area with deep detaching, blocky slide deposits, and 
westward movement o f Slide block R, initiating compression in the 
compression zone. This phase of sliding is linked to the Storegga Slide tsunami; 
E: The final phase of sliding affected the southern sections of the main headwall 
and headwall R.
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CHAPTER FIVE
Fig. 5.1 Protoslumps from the Levant margin seabed (after Frey Martinez et al. 2005).

A: Seabed dip-map showing clear evidence for the development o f upslope and 
lateral margins, represented by well developed slope-perpendicular lineations 
and less-well developed slope-parallel lineations respectively. B: 3D seismic 
dip-section through one of the protoslumps, showing a crown-crack which 
affects the seabed as well as the shallow subsurface succession, detaching into a 
horizon at c. 100 m below the seabed. The horizon features small scale
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disruption which is interpreted as early development o f a basal detachment 
surface and limited slip of material. The fact that a toe region has not developed 
(e.g. contractional deformation or accumulation of material) in the downslope 
position is taken as evidence for the immature stage o f slope failure 
development. Location shown in (A)._____________________________________
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GLOSSARY OF KEY TERMS

Classical retrogression -  a type of slope failure whereby downslope translation takes 
place above a discrete slip plane, with material above deforming as a coherent slab 
undergoing extension (Kvalstad et al. 2005). Failed blocks accelerate downslope, 
created an unsupported scarp which then itself fails, creating a further failed block 
which moves downslope. Failure thus progresses in a sequentially backwards, 
upslope-stepping sequence. This model has been used to explain the majority of mass 
wasting events from the primary study area.

Confined Storegga Slide -  the name given herein to the confined element of the 
Storegga Slide whose toe zone is comprised by the previously recognised 
‘compression zone’ of Haflidason et al., (2004).

Frontally confined -  a type of submarine mass wasting deposit which can be defined 
by a toe zone which is buttressed against its distal margin, and detaches along a deep- 
seated basal detachment horizon (Frey-Martinez et al. 2006)

Frontally emergent -  a type of submarine mass wasting deposit which can be defined 
by a toe zone comprised of a relatively thin, laterally extensive compressive zone 
which has ramped up from the original basal detachment horizon and translated freely 
across the sea floor (Frey-Martinez et al. 2006).

Horst -  (chapter four) a fault bound block from within the Confined Storegga Slide 
which has undergone relatively little deformation but may have experienced some 
displacement across the basal detachment surface.

Kinematic indicator - a geological structure or feature associated with a submarine 
mass wasting deposit, which records information related to the type and direction of 
motion at the time of emplacement, and as such they are of great use to our 
understanding of the initiation, dynamic evolution and cessation of slope failures.

Liquefaction -  a type of sediment mobilisation involving the total loss of strength of a 
sediment in which pore fluid pressures reach lithostatic values.

Mobilisation -  a term used to describe both the rendering of a sediment capable of 
motion, and the bulk movement that can occur as a result (Maltman and Bolton 2003).

MWD -  mass wasting deposit. This term has been chosen for use throughout this 
project to refer to the complex geological units which result from the failure of 
submarine slopes, without implying a dominant type of mass wasting process. 
Processes are discussed for individual examples within this project once analysis 
allowing identification of dominant types of mass wasting has been performed.

Pressure ridge -  a feature resulting from compressive stress, commonly observed 
from the toe zones of frontally emergent-type submarine mass wasting deposits. In 
this project, pressure ridges are distinguished from other compressive features 
observed from toe zones owing to their size, and are interpreted as the top-surface 
expression of thrusts and folds which are below the scale of seismic resolution.



Quick clay - a highly sensitive, high water content clay found in glaciated and uplifted 
regions such as Canada and Scandinavia, which can readily liquefy following 
mechanical disturbance (Bjerrum 1955).

South Voring Slide (SVS) -  the name given to the MWD identified and studies in 
chapter two of this project.

Spread -  a type of mass movement involving extension and downslope displacement 
of a sediment unit above a deforming mass of softer material (Vames, 1978).

Storegga Slide Complex (SSC) -  the term used to refer to the area affected by the 
mass wasting which occurred during the Holocene Storegga Slide, along with those 
mass wasting episodes which preceded it throughout the Late Pliocene (Evans et al. 
2005).



Chapter One Introduction

CHAPTER ONE 

1.0 Introduction

1.1 Rationale

Submarine mass wasting commonly occurs on the world’s continental margins, 

comprising one of the major processes through which sediments are transferred from 

the continental slope to the deep ocean (Masson et al. 2006), and play a major role in 

the morphology and stratigraphy of the margin (Pratson et al. 2001). In the submarine 

realm, mass wasting can involve large volumes of material, affect vast areas of the 

seafloor and transport material over huge distances: sediment volumes of c. 3500 km3 

are reported to have been involved in the Holocene Storegga Slide on the Norwegian 

continental margin, where a total area of 95,000 km2 is affected and a maximum run

out distance of some 800 km is recorded (Bryn et al. 2005a). Submarine mass wasting 

is also of relevance in a social and economic sense as seafloor instability can threaten 

offshore installations, and in several instances submarine mass wasting events have 

been associated with the generation of tsunamis (Hampton et al. 1996).

Once a submarine slope failure initiates, the event may progress by means of a 

number of the mass wasting processes (see Martinsen 1994). The various processes 

exist as part of a continuum, whereby one may evolve into or trigger another, and 

include translational sliding, rotational slumping, fluidal and plastic flows (Fig. 1.1; 

Martinsen 1994). Mass wasting deposits are therefore likely to be highly complex and 

may have involved a number of processes, possibly active at different stages of 

failure. Common to all of these processes however, is the translation of material
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Chapter One Introduction

downslope. Classical models suggest the formation of slope failure events depends 

critically on the necessary failure conditions being exceeded on a discrete basal shear 

surface (Bjerrum 1967; Martel 2004; Petley et al. 2005). This basal surface evolves 

morphologically during failure to become the base of the slope failure, over which the 

material is translated. The distribution and volume of the translated material overlying 

the basal shear surface is largely a function of its location within the slope failure, as it 

is generally expected that net depletion in the upslope realm of the slope failure 

occurs due to mobilisation and translation of the failed mass downslope. This is 

balanced at some point downslope in a zone of general accumulation due to arrest and 

deposition of the mass (sensu Vames 1978; Frey Martinez et al. 2006). These 

volumetric changes from the pre-failure slope template, based on the original 

thickness and morphology of the slope prior to failure, are reflected in the style of 

deformational features present within submarine mass wasting deposits (MWDs), 

with extension typically dominating the upslope region, and compression more 

prevalent downslope (Lewis 1971; Vames 1978; Farrell 1984; Martinsen 1994; Frey 

Martinez et al. 2006). However, it has been increasingly noted that the complexity of 

some examples cannot be accounted for by the classical model (Strachan 2002a).

Due to the complex nature of the MWDs, several important aspects of 

submarine slope failure development and occurrence remain poorly understood. For 

example: (1) the physical processes involved in the transition from failure to post

failure stages of development (Locat and Lee 2002); (2) the mechanisms responsible 

for generating exceptional mobility and long run out distances (Locat and Lee 2002); 

and (3) how to better predict the timing and location of future submarine slope failure 

events (Pratson et al. 2001).
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Continuum of m ass w asting  p ro cesses

A  CREEP

SLIDES Debris flows

SLUMPS Grain flows

FLOWS (with p l a s t i c ^  
behaviour) 

FLOWS (with fluidal
behaviour) 

V  FALLS - debris falls 
- rock falls

Liquefied flows

Snow-sediment flows 
Fluidised flows 
'Volcanic' flows 
Turbidity currents

CREEP
Slow intergranular frictional sliding

SLIDE
Translational (as shown) or rotational, coherent m ass with 
minor internal deformation

SLUMP
Coherent m ass with considerable internal deformation

FLOW (with plastic behaviour)
Remoulded mass. Non-turbulent but possibly with 
transient, large-scale turbulent churning

FLOW (with fluidal behaviour) 
Fully turbulent

FALL
Solitary grains or loose grain assem blages

Figure 1.1. Continuum of mass movement processes and classification of process 
types based on rheology. Modified after Nemec 1990.
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Chapter One Introduction

This PhD project uses commercial two-dimensional (2D) and three- 

dimensional (3D) seismic reflection data and limited other data (bathymetry and 

geotechnical borehole data) to investigate MWDs primarily from the Norwegian 

continental margin, with additional seismic data from the Levant margin, south-east 

Mediterranean Sea. Both areas are the sites of prolific mass wasting, along with 

significant accumulations of hydrocarbons. The result has been that large high quality 

datasets have been acquired in a bid to better understand the slope stability of the 

respective areas, with large-scale MWDs occurring on both the present day seabed, 

and throughout the subsurface succession.

For many years the analysis of the geological structures that form as a result of 

submarine mass wasting relied upon observations and measurements obtained from 

the study of ancient field outcrops, which have been of key importance in developing 

an understanding of the processes involved (e.g. Farrell 1984; Martinsen and Bakken 

1990; Trincardi and Argnani 1990; Strachan 2002a and b; Lucente and Pini 2003; 

Strachan 2006). In more recent times, the utilization of remotely-sensed geophysical 

data has become more common, particularly of relatively recent MWDs, i.e. those 

which still have some morphological expression on the seafloor. Such techniques 

include side-scan sonar and multibeam bathymetry, often used in combination with 

2D seismic lines and geotechnical or sedimentary core data. These data types allow 

primarily for the detailed morphological analysis of the top surfaces of relatively 

recent mass wasting deposits (i.e. those which affect the modem seafloor) and can be 

used to interpret the processes that control formation and morphology (e.g. Prior et al. 

1984; Masson et al. 1993; Urgeles et al. 2006).

The three-dimensional nature of modem seismic surveys enables the structure 

of MWDs to be assessed beyond what is apparent at the surface, with detailed
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mapping and imaging of the basal surface and internal areas made possible. 

Importantly, 3D seismic data affords complete analysis of the geometries of internal 

architectural units, which may not be inferred from the study of bounding surfaces 

alone. The geometry and internal deformation of MWDs are consequences of the 

mechanism of failure and the morphology of the slope over which translation occurs 

(Strachan 2002a; Lucente and Pini 2003). In addition, the mode of deformation will 

be influenced by the rheology of the rock; itself dependant on several factors 

including lithology and strain rate (Cosgrove 2007). It is therefore possible, through 

the characterisation and analysis of the external geometry and internal distribution of 

deformational structures, to unravel the strain history of individual mass wasting 

deposits and formulate a kinematic model of emplacement. The continued 

identification, mapping and characterisation of MWDs is therefore vital in order to 

yield further pertinent observations to help to resolve the existing complexities and 

unknowns, and ultimately, build an improved understanding of the evolution of 

submarine mass wasting events and their future prediction. The present chapter now 

introduces the aims of the project, the geographical and geological setting of the study 

areas, the project database and methodology of the investigation.

1.2 Aims of the project

The major aim of this project is concerned with improving the current understanding 

of the evolution of submarine mass wasting events and the processes involved. The 

large number and scale of the MWDs present in the study areas and the high quality 

of the data available presents the opportunity to carry out the detailed description of
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the external and internal architecture of the various deposits, and the related structural 

elements. As such, the specific objectives of this project are:

1) Describe and document the architecture and structural elements of submarine 

mass wasting deposits using 3D seismic data

la. Identify and map the mass wasting deposits imaged by the dataset, 

lb. Identify suitable examples for more focussed characterisation and analysis 

of internal architectures and structural elements, 

lc. Document previously un-described examples.

2) Utilise the described internal deformational characteristics to reconstruct the 

deformational history and evolution of selected examples.

2a. Compare selected examples to existing models for mass wasting.

2b. Suggest appropriate models for the formation of the selected examples 

based on the observed geometry and deformation.

3) Catalogue structural elements identified from the mass wasting deposits

3a. Compile the various types of features and devise a suitable classification 

scheme for their presentation.

3b. For each type of feature, establish a definition, recognition criteria and 

mode of formation.

3c. Analyse and discuss process understanding and kinematic information 

yielded by each feature and illustrate using representative examples taken 

from the study areas.
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1.3 Geographical and Geological Setting

1.3.1 The Norwegian continental margin

This is the primary study area for this project, where the investigation focuses on the 

sediments of the adjacent Voring and More Basins (Fig. 1.2). The basins dominate the 

study area and are flanked by palaeo-highs and platforms (Fig. 1.2). The platforms to 

the west are termed the More and Voring Marginal highs and the boundary between 

the marginal high and basinal area is formed by the Faeroe-Shetland escarpment in the 

south of the area and the Voring Escarpment in the north of the study area (Fig. 1.2). 

The dominant NE-SW structural grain is comprised by faults which probably 

originated in the Late Palaeozoic and remained active throughout the subsequent 

tectonic phases (Brekke 2000). An older structural grain, trending NW-SE, 

represented by the Jan-Mayen fracture zone (JMFZ) and the Bivrost Lineament (Fig.

1.2) is likely to reflect the Precambrian grain of the crystalline basement, and 

controlled the tectonic activity throughout the Cretaceous and Tertiary time (Brekke 

2000). The JMFZ separates the More Basin to the south from the Voring Basin to the 

north (Fig. 1.2), and also delimits the Trondelag Platform to the south. Initiation of 

basin development can be traced back to Devonian -  Early Carboniferous lithospheric 

stretching following the Caledonian Orogeny (Bukovies and Ziegler 1985). 

Intermittent rifting then began, starting in the Carboniferous and culminating in the 

Early Eocene with seafloor spreading in the Norway-Greenland Sea, and related 

thermal subsidence and volcanism (Brekke 2000). In-plate rifting in the 

Carboniferous was followed by a further phase in the late Mid-Jurassic to Early 

Cretaceous which saw the beginning of the evolution of the basins and their bounding 

features, with the base of the Cretaceous successions in both the More and Voring

1 -7



Chapter One Introduction

Basins strongly affected by block faulting (Bukovics and Zieger 1985). A final phase 

in the Late Cretaceous to Early Eocene is linked to relative motion along plate 

boundaries (Brekke 2000). Subsidence during the Cretaceous saw the basin flanks 

evolve by flexure as opposed to faulting, leading to the exceptionally thick basin fills 

of some 10 km (Bukovics and Ziegler 1985). Throughout this time in the Voring 

Basin, early thermal subsidence was followed by tectonically driven subsidence and 

intermittent normal faulting, compression and folding (Brekke 2000). Tectonic 

activity during the Tertiary in the Voring Basin was comprised of strike-slip 

compression coincident with the Alpine Orogeny in Late Eocene and Mid-Miocene 

times, leading to N-S trending dome structures (Fig. 1.2; Brekke 2000), which are 

known to be the sites of hydrocarbon accumulation (Biinz et al. 2005). There is 

evidence of the formation of a fossil Opal A-opal CT transition and extensive marine 

erosion in the Mid-Miocene and Late Pliocene times (Brekke 2000). The More Basin 

was generally tectonically quiet throughout the Cretaceous and Tertiary periods, 

experiencing mainly continuous subsidence (Brekke 2000).

The post-Cretaceous fill of the basins is made up of fine-grained hemipelagic 

oozes of the Palaeogene age Brygge Fm and Miocene -  Early Pliocene Kai Fm, and 

contourites, hemipelagites and glacigenic sediments of the Plio-Pleistocene Naust 

Formation (Evans et al. 2002). The Naust Formation is divided into subunits to reflect 

glacial episodes which affected the margin from the Late Pliocene onwards, with ice- 

sheets first reaching the shelf break at c. 1.2 Ma (Berg et al. 2005). In the Voring 

Basin in the north of the study area, the Naust Formation is subdivided into 8 units (A 

-  H; Evans et al. 2002), and the succession is largely intact (Fig. 1.3 A). In the More 

Basin in the south of the study area, the Naust Formation is subdivided into five main
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sequences (W, U, S, R and O) and is heavily dissected by mass wasting events (Bryn 

et al. 2005a; Fig. 1.3A&B).

Mass wasting

The Holocene age Storegga Slide is one of the largest known submarine mass wasting 

events (Bryn et al. 2005a), and perhaps the most intensely studied. The Ormen Lange 

gas discovery, located beneath the steep headscarp region of the Storegga Slide, is the 

second-largest gas field in Norway (Bryn et al. 2005a). Following its discovery in 

1997, an intensive phase of data acquisition and analysis began, to establish the 

reasons for the large scale mass wasting and assess the current conditions in order to 

safely develop the field. The Storegga Slide marked the end of repetitive large-scale 

mass wasting in the area beginning in Late Pliocene times (Evans et al. 2005), and 

occupies a large seabed depression, hereinafter referred to as the ‘Storegga Slide 

Complex’ (SSC) whose architecture reflects the historic instability of the area (Fig. 

1.4).

Large-scale sliding in the region has been related to climatic variability 

following onset of regular shelf glaciations at 0.5 Ma (Bryn et al. 2005a). During peak 

glacial conditions, glacially-derived debris flows were deposited on the continental 

slope (Berg et al. 2005). Throughout comparatively longer periods of reduced ice 

cover, normal marine to distal glaciomarine sedimentation prevailed with contourites 

developing on the slope (Berg et al. 2005). Laterally extensive, sheet-like contourites 

form deposits up to 150 m thick throughout the Naust succession (Bryn et al. 2005b), 

and consist of clays with silty and sandy laminae (Berg et al. 2005). Contourite 

sediments are characterised by high water contents and the tendency to develop 

excess pore pressures when rapidly loaded by glacial debris flow deposits (Bryn et al. 

2005b). Laterally continuous layers of increased sensitivity within contourite drifts
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are thought to have served as the main glide planes for slope failures in the area, 

including the Storegga Slide (Bryn et al. 2005a). The Storegga Slide, dated at 8150 

B.P. (Berg et al. 2005) removed some 3500 km of material, affecting an area of c.

95,000 km (Bryn et al. 2005a). A number of older mass wasting events have been 

identified within the SSC, with the greatest concentration occurring in the Mid- 

Pleistocene (Naust S and R; Evans et al. 2002).

The southern margin of the SSC juxtaposes deformed and dissected sediments with 

relatively undeformed strata preserved in the thick prograding sediment wedge 

overlying the More Basin, known as North Sea Fan (King et al. 1996). The North Sea 

Fan consists of massive glacigenic debris lobes, gravity flows and hemipelagic 

sediments (King et al. 1996; Nygard et al. 2005). The large volume of sediment is the 

result of deposition during the glacial cycles and input from the Norwegian channel, a 

deep trough skirting the whole of the south and west Norwegian coast, during the late 

Cenozoic (Evans et al. 1996; King et al. 1996; Nygard et al. 2005). Although 

predominantly depositional, the North Sea Fan succession records its own mass 

wasting which includes the well documented More and Tampen slides (Fig. 1.4), all 

of which pre-date the first Storegga Slide event (Evans et al. 1996; King et al. 1996; 

Evans et al. 2005). The More and Tampen slides cover significant areas (> 15,000km2) 

and displaced sediment volumes of greater than 3000 km (Evans et al. 1996). The 

mid-Pleistocene Tampen Slide is disrupted and truncated to the east by Storegga Slide 

events (Fig. 1.4; Evans et al. 1996). A number of other pre-Holocene large-scale mass 

wasting events have been identified in and around the study area (Fig. 1.4; Evans et 

al. 1996; King et al. 1996; Evans et al. 2002).
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Figure. 1.2. Simplified structural map of the mid-Norwegian continental margin 
showing location of primary study area. Modified from Brekke 2000.
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Figure. 1.3. A: Plio-Pleistocene seismostratigraphic framework established for the 
area, showing the time range of the Naust Formation and the differing subdivisions in 
the north and south. Redrawn after Evans et al. (2002). B: 2D seismic profile taken 
from the dataset available for this project, showing a regional transect across the 
Storegga area and main stratigraphic subdivisions of the Miocene-Pleistocene 
succession. Location shown in Fig. 1.2.
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Figure. 1.4. Location and outlines of the Storegga Slide Complex, More Slide, 
Tampen Slide, Sklinnadjupet Slide, and Vigrid Slide. For further information on the 
Sklinnadjupet and Vigrid Slides, the reader is referred to Hjelstuen et al. 2007.
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1.3.2 The Levant margin

One 3D seismic survey is available from Levant margin, which forms a secondary 

study area. As such, the geographical and geological setting is not discussed in as 

much detail as the Norwegian margin.

This non-glaciated margin is located within a tectonically active zone of 

interaction between the Anatolian, African and Arabian plates (Frey Martinez et al. 

2005; Fig. 1.5). Early development is linked to a series of rifting events from the early 

Permian to the middle Jurassic (Garfunkel 1998), followed by continental break-up 

and initiation of spreading in the eastern Mediterranean (Garfunkel and Derin 1984). 

Establishment of a passive margin in the Mid-Jurassic was followed by the 

development of shallow-water carbonate platforms bordered by deepwater basins 

during the Late Cretaceous (Garfunkel 1998). During this time, a compressional stress 

regime was induced by a change in the motion of the African plate relative to the 

Eurasian plate, leading to the formation of the Syrian Arc system (Ben-Avraham 

1989; Tibor and Ben-Avraham 1992; Eyal 1996). Opening of the Red Sea and 

initiation of the Dead Sea Transform began in the Miocene resulting in localised 

tectonic uplift and intermittent emergence of the shelf. The onset of the Messinian 

Salinity Crisis in the mid-Miocene interrupted normal marine sedimentation leading 

to the deposition of thick evaporates in deep basinal areas (Bertoni and Cartwright 

2006). Major Pliocene transgression followed, leading to increased clastic input into 

rapidly increasing accommodation space (Buchbinder and Zilberman 1997), resulting 

in a strongly aggradational configuration with sigmoidal clinoforms linking shelf to 

slope (Frey Martinez et al. 2006). Beginning in the late Pliocene, large-scale slope 

instability and gravitational tectonics, detaching above or within the evaporites 

(Bertoni and Cartwright 2006) alternated with hemipelagic deposition, and has led to
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Figure. 1.5. Geological sketch of the Eastern Mediterranean area showing major 
structural elements. The box shows the location of the Levant margin study area and 
Figure. 1.9. Redrawn from Frey Martinez et al. 2005.
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a succession featuring tens of MWDs with several complexes affecting the present 

day seabed (Fig. 1.6; Frey Martinez et al. 2005). The MWDs imaged by the available 

data occur in the Plio-Pleistocene Yafo Formation, consisting of early Pliocene 

submarine fans and turbiditic sands (Yafo Sand Member), and middle Pliocene- 

Pleistocene thinly interbedded clay-rich marls, sands and clays (Frey Martinez et al. 

2006). Although the size of such events is not comparable to that of the Storegga 

Slide, Frey Martinez et al. (2005) identified that the top 100-200 m of the post- 

Messinian succession features at least 25 separate mass wasting deposits. Several 

triggering mechanisms have been implicated, including seismic activity, biogenic gas 

and slope oversteepening, either alone or in combination (Frey Martinez et al. 2005).

1.4 Dataset

A total of six commercially acquired 3D surveys covering a total area of 

approximately 11,000 km were available from the Norwegian continental margin 

(Fig. 1.7), along with a regional grid of 2D seismic data comprising of 157 separate 

profiles (Fig. 1.8). One 3D survey, imaging an area of approximately 2000 km was 

available from the Levant margin (Fig. 1.9). All of the 3D surveys are time-migrated 

and have been processed to near zero phase characteristics, meaning that the 

geophysical interface that has produced the reflection is located at the positive 

amplitude peak or negative amplitude trough of the wavelet (Fig. 1.10; Simm and 

White 2002). The zero phase nature of these data was determined by studying the 

geophysical response of the seabed in the various surveys (Fig. 1.10). The principal 

attributes of the data are shown in Table 1.1. The dominant frequency of the seismic 

data varies from survey to survey and with depth as P and S wave velocity tends to
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Figure. 1.7. Map showing the outline of the Storegga Slide Complex (SSC) and 
location of 3D seismic surveys, denoted by black rectangles.
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20 seismic line /  SSC outline

Figure. 1.8. Bathymetry data over the primary study area, showing outline of the 
Storegga Slide Complex and location of 2D seismic profiles.
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Figure 1.9. Location map for the Levant margin study area showing location of the 
Levant 3D seismic survey and Figure 1.6.
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increase with depth due to compaction and diagenesis (Brown 2003). When 

calculating the resolution of the data (shown in Table 1.1) an assumed average 

seismic velocity of 2000-2100 ms'1 is used for the interval of interest. Maximum 

vertical resolution is calculated using the dominant frequency for the interval of 

interest (maximum vertical resolution = A/4; Sheriff and Geldart 1983), and the 

horizontal resolution is taken to approximate to the dominant seismic wavelength. The 

bin size (inline/ crossline spacing) of the interpreted data was 12.5 x 12.5 for all of the 

3D surveys used. Bathymetry data in the form of a geo-referenced TIFF file was 

available for this project, covering a large area of the mid-Norwegian continental 

margin from the shoreline to water depths of 3400 m (Fig. 1.8).

1.5 Methodology

Central to the recognition of MWDs in seismic data is the identification of a disrupted 

or chaotic seismic facies unit representing the failed mass, underlain by a basal shear 

surface and overlain by a surface at the upper limit of the disrupted facies (Fig. 1.11; 

Embley and Jacobi 1977; Moore et al. 1976; Woodcock 1979; Trincardi and Normark 

1989; O’Leary 1993; Martinsen 1994; Hampton et al. 1996; Frey-Martinez et al. 

2005). Failed material is translated over the basal shear surface, which is usually 

conspicuous in seismic data, forming a laterally continuous, often bed-parallel 

undeformed reflection occurring beneath the deformed translated material (Frey- 

Martinez et al. 2005). The limit of the upslope occurrence of the MWD is marked by a 

headwall scarp, which occurs where the basal shear surface steepens and cuts through 

increasingly shallower stratigraphy to intersect the surface (Williams and Chapman 

1983; Farrell 1984; Trincardi and Argnani 1990; Martinsen 1994). This occurs due to
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Figure 1.10. 3D seismic data phase. A: Variable area; and B: variable intensity 
seismic section through the seabed from PL251 survey showing the near zero-phase 
character of the seabed reflection. An individual trace is shown in white on both parts 
to emphasize waveform of the seabed and deeper reflections.
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Survey
name

Location* 2D/3D Dominant
frequency
(Hz)

Polarity (SEG 
convention)

Resolution
Ver/Lat
(m)

Mgs2002 NCM 3D 55 Normal 9/36
Havsule NCM 3D 44 Normal 11/45
Big 1 NCM 3D 50 Reverse 12.5/50
Ormen
Lange

NCM 3D 46 Reverse 10/40

Solsikke NCM 3D 50 Normal 12.5/50
PL251 NCM 3D 50 Normal 12.5/50
E2d NCM 2D 44 Normal 11/45
Levant 3D LM 3D 50 Normal 10/40
*NCM: Norwegian continental margin; LM: Levant margin

Table 1.1. Summary table showing some principal attributes of seismic reflection 
data used in this project.
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lithological, strength or pore pressure contrasts (Martinsen 1994), and often at roughly 

the point of maximum slope inclination (Lastras et al. 2006). Downslope, MWDs 

terminate at the toe, where compressional structures such as thrusts may occur 

(Hampton et al. 1996).

Following the identification and initial mapping of discrete MWDs in vertical 

seismic sections, time structure maps were generated for the upper and lower surfaces. 

Following this, various attributes, such as dip, coherency and amplitude, were 

extracted from representative areas where required. It is through utilising a 

combination of time structure maps, vertical seismic sections and attributes, that the 

various aspects of the investigations of this project were conducted.

Dip is calculated from the interpreted time structure map of the chosen 

horizon, and is useful for enhancing the appearance of laterally continuous geological 

features, such as faults, that may otherwise be overlooked (Dailey et al. 1989). A 

coherency volume may be generated for a specified time interval and area, and so is 

free from interpretation bias. Like the 3D seismic volume itself, it can be horizontally 

or stratigraphically sliced to enable the areal extent and lateral continuity of features 

to be examined. This technique allocates a degree of coherency to a region based on 

comparison of waveforms across adjacent traces, and gives apparent continuity to 

discontinuous features, such as faults and edges, irrespective of their orientation (Hart 

1999).

Seismic amplitude can vary due to a number of factors including porosity, 

fluid content, bed thickness and geometry (Hart 1999). The presence of structures, 

sedimentological features and lithological changes may therefore cause organised 

amplitude patterns, such as linear or areal trends or polarity changes (Enachescu 

1993). Following the mapping of a particular horizon, amplitude can be extracted

1-25



Chapter One Introduction

along it and displayed as a continuous horizon map. Amplitude can also be extracted 

from a specified time interval or window above, below or around a particular horizon. 

Amplitudes are added, regardless of their polarity, and a cumulative amplitude for the 

whole window is arrived at (Brown 1999), providing more information for the 

specified interval which can be interpreted in a morphological sense. To illustrate the 

use of each attribute, examples of each are shown along with a time structure map 

over the same area in Figure 1.12.
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Figure. 1.12. Comparison of examples of 3D seismic interpretation techniques. Each 
figure part shows the same sub area of the top surface of a buried MWD from the 
PL251 survey area which reveals an intact slide block and apparent flow lines: A: 
Time structure map; B: Dip attribute map; C: Seismic amplitude map; and D: Slice 
through a coherency volume generated for the same area.
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1.6 A note on thesis structure

The core of this thesis consists of three chapters (chapters two, three and four) 

addressing three main topics: chapters two and four describe specific examples of 

mass wasting deposits and attempt, using the observed architectures and deformation, 

to formulate models for their development. Chapter three presents a compilation of all 

of the deformational features identified throughout the duration of the study, and 

describes how they may be identified, defined and utilised in the study of further mass 

wasting deposits. Chapters five and six discuss and conclude, respectively, the main 

scientific results of this project.

1-28
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CHAPTER TWO

2.0 A subsurface evacuation model for submarine mass wasting

2.1 Summary

Analysis of three-dimensional (3D) seismic data from the Norwegian continental 

margin provides an insight into an unusual, buried submarine mass wasting deposit 

(MWD) which occurred adjacent to the later Holocene-age Storegga slide. The 

identified MWD, informally named the ‘South Voring Slide’, occurs in fine-grained 

hemipelagic and contourite sediments on a slope of 0.5°, and is characterised by a 

deformed seismic facies unit consisting of closely spaced pyramidal blocks and ridges 

bound by small normal faults striking perpendicular to the slope. The South Voring 

Slide contrasts with other previously described submarine MWDs in that it cannot be 

explained by a retrogressive model. The defining characteristic is the high relative 

volume loss, with the area affected by sliding having thinned by some 40%, seen in 

combination with very modest extension in the translation direction, with line length 

balancing yielding an extension value of only 4.5%. The volume loss is explained by 

the mobilisation of an approximately 40 m thick interval at the lower part of the unit 

and its removal from beneath a thin overburden, which subsequently underwent 

extensional fragmentation. Evidence for the mobilisation of a thick fine-grained 

interval in the development of a submarine MWD from a continental margin setting 

may have implications for the origins of other large-scale MWDs on the Norwegian 

margin and other glacially influenced margins worldwide.
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2.1 Rationale

One of the points highlighted in chapter one, section 1.1, was the need to better 

understand the processes involved in the early evolution of submarine mass wasting 

events. Since further characterisation studies have been identified as a way to progress 

our understanding, one of the initial stages of this project was to undertake regional 

mapping in the primary study area, the Norwegian continental margin. Many 

submarine MWDs were identified and mapped as a result (a list of seismic horizons 

and a compilation of maps generated for the bounding surfaces of the various MWDs 

are presented in Appendix I and II). Of particular use in the continued investigation of 

MWDs is the examination of examples which deviate from typical models, as they 

may provide potential end-member models to fully define the spectrum of 

deformation possible in such deposits. Initial reconnaissance mapping identified such 

a non-typical example from the Norwegian continental margin, which on first 

inspection did not appear to conform to the typical model previously invoked to 

explain many of the MWDs in the area. Further investigation was therefore deemed 

appropriate as it may help to establish the more uncommon aspects of submarine mass 

wasting formation and evolution.

The aim of this chapter therefore, is to use 3D seismic reflection data to 

describe a submarine MWD from the Norwegian continental slope that contrasts 

markedly with previously described examples in both gross morphology and process 

of origin. The MWD described in this chapter differs from the classical models in a 

number of critical features. Firstly, it is characterised by extension throughout the 

body with no evidence of compressional strain towards the downslope limits. 

Secondly, a significant fraction of the initial pre-failure slope sediments have been
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almost completely removed from the succession, resulting in significant volume loss 

that is not balanced by a zone of accumulation that can be correlated with the main 

body of the MWD. Finally, the base of the MWD is not defined by a discrete surface 

that developed due to progressive shear failure. Further sections within this chapter 

will firstly characterise and describe the MWD, and propose a mechanism for its 

development.

2.3 Specific study area and dataset

This study focuses on a deformed unit situated on the northern flank of the Storegga 

Slide (Fig. 2.1). The primary source of data for this study is the 3D survey Mgs2002 

(Fig. 2.2), which images an area measuring 2670 km . The main focus of the chapter 

is the detailed mapping and analysis of a sub-area of a deformed unit where it is 

imaged by the 3D survey, with supplementary data taken from the regional 2D grid 

(Fig. 1.8) and a geotechnical borehole (6404/5-GB1; Fig. 2.1). Further information 

regarding the characteristics of the seismic data can be found in chapter one, section 

1.4.

2.4 3D seismic interpretation

The deformed unit on which this study focuses (labelled in Fig. 2.2) occurs within 

Naust subdivision B on the southern outer slope of the Voring Plateau (Figs. 2.1 and 

2.2). Naust B, deposited between 330-200 ka, is composed of thin, well stratified 

interglacial hemipelagites and contourites on the outer slope (Fig. 2.2; Berg et al. 

2005). The sediments are characterised by low amplitude, continuous seismic facies
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developed in parallel reflection configurations (Fig. 2.2), which define downslope- 

thinning packages when mapped in 3D. Upslope on the plateau itself, Naust B is 

comprised of seismically massive, lens-shaped bodies interpreted as glacial debris 

flow deposits (GDFs of Hjelstuen et al. 2004), which interfinger with the 

hemipelagites and contourites on the outer slope (Fig. 2.2). The predominant lithology 

of Naust B is silt-rich clay, with a high water content, and decreasing silt content 

towards the top of the unit (Berg et al. 2005; Hjelstuen et al. 2005).

The deformed unit is buried at a depth of approx 200 m below the seabed 

(based on an assumed seismic velocity of 2000 ms'1 for the shallow succession) by 

Naust subdivision A, which represents the last 250 ka of sedimentation (Hjelstuen et 

al. 2004). A laterally continuous bottom simulating reflector (BSR; labelled in Fig. 

2.2, 2.3 A and 3.3C) underlies a large portion of the northern margin of the Storegga 

Slide (Bunz et al. 2005), and is present below the upslope region of the deformed unit 

(Fig. 2.2). It has been shown by previous studies that the BSR is due to the presence 

of gas hydrates (Bemdt et al. 2004), which may have played a minor role in the more 

recent large-scale sliding on the margin (Bryn et al. 2005a).

The top and base of the deformed unit are both defined by high amplitude 

positive reflections (coloured red and labelled ‘Horizon X’ and ‘Horizon Y’ 

respectively on Fig. 2.3B). Horizon X is distinctive in that it exhibits a highly 

disrupted, ‘crinkled’ character (Fig. 2.3B). Detailed study of this horizon reveals that 

its appearance is due to the presence of numerous, laterally equivalent inclined 

segments, separated by abrupt terminations. The inclined segments dip at up to 30°, 

and form positive relief of up to 12 m. Inclined segments often share a common sense 

and magnitude of dip as individual ‘rafts’ of reflections within the interior of the Unit

2 - 4



Chapter Two Subsurface evacuation
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Figure 2.1. Location map showing the specific study area, extent of the South Voring 
Slide (SVS), and locations of the 3D survey Mgs2002, geotechnical borehole 6404/5- 
GB1, and figures. SSC: Storegga Slide complex.
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Figure 2.2. 2D seismic line showing a SW-NE transect across the study area, illustrating the character and geometry of the Naust A 
and Naust B sediments. Note the seismically massive and transparent character of the Naust B sediments on the Voring plateau, 
where they are comprised of glacial debris flow (GDF) deposits, and the transition to laterally continuous, parallel and well bedded 
contourite sheet deposits on the outer plateau slope. Also note the presence of a bottom simulating reflector (BSR, labelled) 
underlying Naust B. Location shown in Fig. 2.1.
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Upslope
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Figure 2.3. A: Dip line showing the up- and downslope margins of the deformed unit. 
Note that both margins are infilled by Naust A sediments. Location shown in Fig. 2.2. 
B: Dip line through upslope region of the deformed unit showing upslope margin and 
high amplitude, deformed character of the top and basal reflections, labelled ‘Horizon 
X’ and ‘Horizon Y’ respectively. Note the thickness change across the upslope 
margin, and how Horizon X is readily correlated from the upslope deformed region 
updip into the undeformed slope sediments.
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(Fig. 2.3B). Time structure mapping and extraction of the dip attribute for Horizon X 

has allowed examination of the top Unit surface morphology in detail (Fig. 2.4A).

The inclined segments and intervening terminations form an unusual pattern of 

interconnected ‘troughs’ separating ‘peaks’ and sometimes more laterally continuous, 

narrow structural highs to give an unusual ribbed or ‘fingerprint’ morphology. The 

base Unit reflection, Horizon Y, (Fig. 2.3B) also shows evidence of deformation, 

exhibiting an undulatory character similar to that seen on Horizon X (Fig. 2.4B). The 

planform morphology of Horizon Y is therefore remarkably similar to that of Horizon 

X, although Horizon Y is not affected by faults and the deformation it exhibits 

appears closer to ductile folding than brittle fracture (Fig. 2.4B).

Correlation of Horizon X and Y reveals that the Unit forms a downslope 

tapering wedge across a slope of 0.5° inclination, characterised internally by inclined, 

discontinuous ‘rafts’ of reflections (Fig. 2.3A). Regional 2D seismic lines were used 

to establish the position of the edges of the Unit and show it to exhibit an almost 

elliptical planform geometry covering an area measuring approximately 850 km2 (Fig. 

2.1). The Unit has a maximum thickness in its upslope region of 65 m, and thins to 

approximately 35 m downslope (Fig. 2.3A). At its upslope margin, deformed slope 

sediments are juxtaposed against updip undeformed slope sediments (Fig. 2.3 A and 

3B), and a key observation is that it is possible to correlate Horizon X updip into the 

undeformed slope section (Fig. 2.3B). At this point a marked thickness change occurs, 

with Horizon X being observed to ramp up through the interval at an angle of c. 18° in 

the landward direction, by c. 40 m. Landward of this feature, Horizon X is continuous 

and parallel to the dip of the slope (Fig. 2.3B). A sharp topographic break with onlap 

is observed directly above this position in Naust A (right hand margin of Fig. 2.3B).
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Figure 2.4. Dip-attribute map of Horizon X showing the morphology which 
characterises the top of the deformed unit. The pattern is comprised by laterally 
continuous ‘troughs’ (continuous troughs linked by black continuous lines), shown on 
the dip-map by areas of lighter shading, which separated less continuous ‘highs’, 
shown on the dip-map by the darker areas (both labelled). Similar features are 
described by Micallef et al. (2007) from the north-eastern headwall area of the 
Storegga Slide. B: Dip-attribute map of Horizon Y showing similar ribbed 
morphology. Location shown in Fig. 2.1.
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Downslope, the Unit terminates above the updip margin of a further seismic facies 

unit characterized by contorted and disrupted reflections, with discrete blocks 

of intact and rotated, but laterally discontinuous reflections (Fig. 2.5). The base of this 

downslope unit (Fig. 2.5A) occurs at a stratigraphically lower level than the base of 

the deformed Unit, by some 200 m. The Unit is overlain and infilled by younger 

Naust B sediments, which are in turn succeeded by those of Naust A (Fig. 2.3 A). 

Downslope correlation of these packages shows that the downslope unit is also 

overlain and infilled by lateral and therefore age-equivalent Naust B sediments (Fig. 

2.3A).

2.5 Interpretation

Using established recognition criteria (Embley and Jacobi 1977; Moore et al. 1976; 

Woodcock 1979; Trincardi andNormark 1989; O’Leary 1993; Martinsen 1994; 

Hampton et al. 1996; Frey Martinez et al. 2005), the deformed unit is interpreted as a 

submarine MWD which we name the ‘South Voring Slide’ (SVS) from its location on 

the outer slope of the Voring Plateau (Fig. 2.1). It should be noted however, that use 

of the term ‘slide’ is for ease of reference and should not be taken to imply a dominant 

mass wasting process. This interpretation is based on: (1) the correlation of distinctive 

top and basal surfaces (Horizons X and Y) bounding a chaotic seismic facies unit 

which contrasts significantly with the more continuous, undisrupted reflections 

characteristic of the sedimentary units above and below; (2) the abrupt transition from 

undeformed sediments updip, to downdip deformed sediments; (3) the abrupt 

thickness change at the steep ramp which forms the upslope margin is interpreted as a 

headscarp, and upslope of which is preserved the intact, pre-failure stratigraphy
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(undeformed slope template, labelled on Fig. 2.6A); (4) the alignment of rotated 

faults blocks orthogonal to the direction of slope; (5) its planform geometry, and (6 ) 

its context and location in close vicinity to other slope failures (see chapter one, 

section 1.3.1 of this thesis for information on the mass wasting in the study area). This 

interpretation is summarised in Figure 2.6A.

Within the SVS, the abrupt reflection terminations and offsets bounding each 

of the inclined segments which make up the remarkable ‘crenulate’ character of 

Horizon X are interpreted as normal faults (Fig. 2.3A, 2.7A & 2.7B). These tip out at 

the base of the SVS, and delimit inclined horizon segments that define individual fault 

blocks (Fig. 2.5A). Examination of seismic sections from both the upslope and 

downslope limits of the SVS (Fig. 2.7A & B) reveal that the entire SVS is affected by 

these extensional faults, with fault density only slightly decreasing towards the 

downslope termination. Strain analysis of the faults was based on line balancing of 4 

representative dip-lines taken across the SVS (summation of heaves assuming no 

volume change or ductile deformation of the fault blocks), along with over 40 

measurements of strike, dip and throw. The predominant strike of the faults is NW -  

SE, normal to the local slope direction (Fig. 2.7D). Maximum fault throws and dips 

were used to calculate an extension value of 4.5 %, and a net extension of 1.25 km in 

the downdip cumulative slip direction measured from average heave vectors 

(assuming dip slip on individual fault planes).

To quantify the degree of thinning observed in the extended region of the 

SVS, comparisons were made between the SVS and the c. 90 m thick undeformed 

slope sediments preserved updip of the headscarp (Fig. 2.6A). From measurements 

made on isopach maps of the deformed interval, and by comparing the thickness 

change observed across the headscarp into the undeformed upslope template with

2-11



Chapter Two Subsurface evacuation

Horizon Y Horizon X
Downslope deformed unitNaust A

Downslope margin

Top downslope deformed unit

Downslope margin

Figure 2.5. A: Seismic section showing the downslope margin of the deformed unit, 
where it terminates above an abrupt change from undeformed slope sediments to a 
further, downslope deformed seismic facies unit (labelled), characterised by contorted 
and disrupted reflections with discrete blocks of intact and rotated, but laterally 
discontinuous reflections. Note the positions of Horizons X and Y. Location shown in 
Fig. 2.1. B: Zoomed in section showing in more detail the relationship between the 
deformed unit and the downslope deformed unit. It is possible to correlate Horizons Y 
(coloured purple) into the downslope deformed unit. Location shown in (A), and Fig. 
2.3A for context.
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HeadscarpHorizon X

Horizon Y

Undeformed 
slope template

Transparent interval

Figure 2.6. A: Unintepreted seismic section showing the upslope region and 
headscarp of the SVS. B: Summary interpretation diagram for the SVS. Note the 
undeformed slope template landward of the headscarp, the degree of thinning 
observable in the deformed region, and the transparent interval removed during 
development of the SVS.
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Figure 2.7. A: Zoomed in seismic section from near the updip margin of the SVS, showing closely spaced normal faults and 
fault-bound blocks. Note how Horizons X and Y exhibit parallelism, with ‘highs’ in Horizon X underlain by a high in Horizon 
Y, and vice versa. Location shown on Fig. 2.1. B: Zoomed in seismic section from near the downdip margin of the SVS, 
showing that normal faults are also present in the downslope region. Location shown in Fig. 2.1. C: 3D visualisation illustrating 
the ribbed and extended morphology of the slide due to the fault graben and fault-bound ridges and blocks. Location shown in 
Fig. 2.4A. D: Rose plot showing the dominant orientation of the faults. The arrow indicates the local slope direction.
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the thickness of the SVS, it is estimated that a mean thinning of 40 % has occurred. A 

total volume loss of 25 km3 is estimated for the SVS when compared to the likely pre

failure configuration. Uncertainties in the pre-failure configuration are estimated as < 

10%, because the 3D seismic data allows for excellent correlation along the strike of 

the slope into a stratigraphically equivalent position.

A critical observation based on stratal correlation updip into the undeformed 

slope sediments is that while Horizon X and Y can be tracked directly updip into the 

undeformed slope sediments landward of the headscarp (Fig. 2.3B and 2.6A), an 

approximately 40 m thick seismically transparent and laterally homogeneous unit 

present in the undeformed slope template is almost completely missing within the 

deformed region of the SVS (Fig. 2.6). This critical missing interval is labelled 

‘transparent interval’ on Figure 2.6B, and can be seen from the 3D seismic data to 

consist almost entirely of this low amplitude seismic facies unit. Importantly, we 

consider the most likely cause of the apparent volume loss to be due to its 

remobilisation and removal during failure. This interpretation of the wholesale 

evacuation or depletion of a specific stratigraphic interval is central to the genetic 

model presented below. From correlation with a geotechnical borehole 2 km north of 

the headscarp (Fig. 2.1), the transparent unit is most probably composed of a high 

water content, clay-rich interval deposited as part of a regionally extensive contourite 

system (Berg et al. 2005, Forsberg and Locat 2005).

An interesting observation concerning the basal reflection, Horizon Y, is the 

distinct lack of shear observable (Fig. 2.4B). Recent studies using 3D seismic data 

have facilitated the imaging of large tracts of the basal surfaces of submarine 

landslides and led to the identification of various associated features (Frey Martinez et 

al. 2005; Gee et al. 2005; Moscardelli et al. 2006). Basal surfaces are dominated by
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shear deformation, often recordng information related to the dynamic emplacement of 

MWDs (Gee et al. 2005), such as the passage of intact blocks which disintegrate and 

erode the substrate (i.e. the basal surface), forming erosive features such as striations 

or grooves which are typically orientated downslope and record directly the 

movement of slide material downslope (Posamentier and Kolia 2003; Gee et al.

2005). Horizon Y does not show evidence of the translation of material downslope, 

and is instead dominated by ductile fold-type features (Fig. 2.3 A and 2.4B) which 

when mapped in 3D, appear elongate perpendicular to the slope direction, forming a 

system of ridges which closely resembles the pattern of ridges and troughs exhibited 

by Horizon X.

The SVS is associated with a further downslope failure unit (Fig. 2.5), above 

which it terminates abruptly (Fig. 2.3A & B), which is also interpreted as a MWD, 

hereinafter referred to as ‘Slide D’. Slide D exhibits features typical of those 

associated with large-scale, retrogressive sliding in the region (e.g. Evans et al. 1996; 

King et al. 1996), such as a well defined, steep headscarp with rotated and translated 

blocks of failed material separated by normal faults in the close vicinity, and 

progressive disaggregation of material with increasing distance downslope from the 

headscarp (Evans et al. 1996).

The close proximity of Slide D to the SVS offers the opportunity to compare 

the morphological characteristics of the SVS with those more commonly observed in 

submarine MWDs on the Norwegian margin. In some places at the downslope margin 

of the SVS, it is possible to correlate reflections from the SVS across the headscarp of 

Slide D, suggesting that SVS material infills Slide D (Fig. 2.5B). This interpretation is 

taken as evidence for Slide D occurring first, before being partially infilled by the 

SVS material. This relationship is not visible everywhere however, due to the
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resolution limitations of the 3D data. Both the SVS and Slide D are overlain and 

infilled by the same seismic facies unit, interpreted as Naust A sediments (Fig. 2.3 A). 

Therefore, it is likely that the two MWDs occurred in close temporal succession, with 

Slide D occurring in a downslope position before the subsequent development of the 

SVS. Deposition of Naust A sediments, which infill the SVD and Slide D scarps 

began at 250 ka (Hjelstuen et al. 2004), providing a minimum age constraint.

2.6 Discussion: A subsurface evacuation mechanism for submarine mass wasting

The defining characteristic of the SVS which sets it apart from other previously 

described MWDs, is the anomalous volumetric depletion of the lower part of the SVS 

with respect to the modest concomitant extension of the deformed body in the 

downslope direction. The c. 40% thinning of the SVS combined with the observation 

of the missing transparent interval is consistent with a failure mechanism that involves 

the wholesale depletion of a substantial volume of the lower part of the original slope 

template, combined with only mild extension and limited downslope translation of 

material (maximum of 1.25 km). The top SVS reflection, Horizon X, can be 

correlated directly across the SVS headscarp (Fig. 2.3B and 2.6A) where it shows a 

distinct downward shift in stratigraphic level in the downslope direction consistent 

with the degree of thinning caused by the removal of the transparent interval. Based 

on these main characteristics, it is clear that the SVS is strikingly different from the 

classical models of MWDs described from continental margin settings (c.f. Vames 

1978; Frey Martinez et al. 2006).

Historically, a retrogressive slide model has been invoked to explain observed 

zones of failure in the Storegga Slide complex, including areas near to the SVS in the
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Storegga Slide headwall region which display a similar morphology (Gauer et al. 

2005; Kvalstad et al. 2005). In classical retrogressive models, downslope translation 

takes place above a discrete slip plane, with material above deforming as a coherent 

slab undergoing extension (Kvalstad et al. 2005). The resulting morphology typically 

consists of ridge and graben structures, with ridges resulting from the deposition of 

intact triangular ridges of slab material, and grabens formed by acceleration of 

material downslope. Actual extension is typically limited to around 10% (Micallef et 

al. 2007), and lowering of the seabed topography is achieved through the gravity or 

lateral spreading of the slide material, with no actual loss of material. In the case of 

the SVS however, a number of key features differ significantly from the classical 

retrogressive slide model

(1) it is not possible to observe the entire sequence preserved in the 

undeformed slope template in the area affected by the SVS. Stratal correlation 

indicates that a significantly thick transparent interval is missing in the SVS area (Fig. 

2.6A), suggesting that the material above the basal surface of the SVS did not behave 

as a coherent slab;

(2) lowering of the (palaeo)seabed topography in the SVS area (with resultant 

later onlap of the headscarp) is more likely to have occurred due to the loss of the 

transparent interval material (Fig. 2.6A), rather than through gravitational spreading. 

The top SVS reflection, Horizon X, can be correlated directly across the SVS 

headscarp (Fig. 2.3B & 2.6A) where it shows a distinct downward shift in 

stratigraphic level in the downslope direction consistent with the degree of thinning 

caused by the removal of the transparent interval,

(3) the lack of downslope accumulation to balance the upslope depletion, as it 

does not thicken downslope from a depletion zone to an accumulation zone (Vames,
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1978). Rather, it thins uniformly in a downslope direction and terminates above a 

deeper-cutting scarp (Fig. 2.3A). It is quite possible that the evacuated material, 

behaving in a highly mobile manner, travelled for a significant distance downslope 

and was eventually deposited some distance away from the study area and therefore 

outside of the area covered by our data.

Based on these critical differences, the classical retrogressive model is not 

considered a viable mechanism for the development of the SVS. What process then, 

can account for the detailed morphology, internal structure, and critically, the loss of 

volume from the lower part of the original undeformed slope template? In answer to 

this question, we suggest that an analogy can be drawn with a process which is well 

known to occur onshore in Norway, and in other glaciated regions. Landslides 

onshore in these glaciated regions can occur as a result of liquefaction-remobilisation 

of deposits of quick clay.

Quick clay is a highly sensitive, high water content clay found in glaciated and 

uplifted regions such as Canada and Scandinavia. Such ‘quick clay’ slides are known 

for their rapid and destructive nature and occur when quick clay deposits, which 

commonly occur shallowly buried beneath a relatively thin overburden, readily 

liquefy following mechanical disturbance (Bjerrum 1955; Rosenqvist 1966; Carson 

1977). Critically, the liquefied layer then flows out from beneath the immobile 

overburden, with enlargement by retrogression through expansion of the liquefaction 

front (Carson 1977; Fig. 2.8). Evacuation of the mobilised clay layer results in 

subsidence, collapse, and break-up of the immobile crust, often leaving ridges and 

rafts stranded on the residuum (Odenstad 1951; Mollard and Hughes 1973). The base 

of this landslide is not a discrete shear plane, but rather a contact between the 

residuum of the mobilised layer and the substrate.
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Sand and gravel

Stiff day

Sensitive day

Extruded day

Figure 2.8. Diagram to illustrate the progression of a quick clay landslide. Note the 
remobilisation of the sensitive (quick) clay and its extrusion from beneath the more 
competent overburden, which then breaks up, with individual blocks undergoing 
subsidence or even being rafted by the mobile clay. Modified from Abbott 1996.
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This sequence of events results in a final geometry that strongly resembles the 3D 

seismic interpretation of the SVS (e.g. Carson 1977) in that the SVS also exhibits 

unambiguous evidence for mobilisation and evacuation of almost a complete layer, 

with an extended immobile unit left juxtaposed on the undeformed substrate. Based 

on this striking geometrical similarity, subsurface evacuation is suggested as the 

likeliest process to result in the development of the SVS.

Using the sequence of deformation reported for quick clay failures, we suggest 

a model for the development of the SVS based on subsurface sediment mobilisation 

and evacuation (Fig. 2.9). The model is summarised below: (1) A shallowly buried 

high water content, fine-grained interval (the transparent interval) is overpressured 

during burial and becomes susceptible to mobilisation (Fig. 2.9A); (2) Downflank 

failure (Slide D) releases lateral confining pressure at the toe of the susceptible unit 

(Undermining; Fig. 2.9B) and initiates mobilisation; (3) the mobilised material is 

squeezed out from beneath the relatively competent overburden and extruded onto the 

seabed, and may have moved downslope for a considerable distance. The rigid 

overburden begins to extend, fracture, and subside due to the volumetric depletion of 

the underlying unit (Fig. 2.9C), which continues until all of the mobilised material is 

extruded, forming the collapsed, extended crust observed today (Fig. 2.9D).

This model assumes highly fluid-like behaviour of the mobilised material, 

such that extrusion continued as the first fragments of the extended crust (in a 

downslope position) began to subside. Aomplete subsidence or grounding of 

downslope fragments is not considered to have occurred prior to subsidence of 

sequential upslope fragments. Mechanical modelling studies based on onshore 

occurrences of quick clay slides, such as Carson (1977), discuss the concept of 

‘backward propagating liquefaction fronts’, such that liquefaction progresses in a
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sequentially backward, upslope-stepping manor, fuelled by juxtaposition of solid, 

mechanically stable portions of sediment with identical sediments which have 

suddenly liquefied. It is quite possible that the evacuated material, behaving in a 

highly mobile manner, travelled for a significant distance downslope and was 

eventually deposited some distance away from the study area and therefore outside of 

the area covered by the data. The depletion of the transparent interval from beneath a 

more competent, deformed overburden is the key diagnostic evidence arguing for the 

near complete subterranean evacuation of the remobilized sediments.

Such a model requires a plausible mechanism for the remobilisation of the 

material within the transparent interval (Fig. 2.6B). From correlation with a nearby 

borehole (Fig. 2.1), the transparent interval is interpreted to constitute part of the 

widespread sheet-like contourite drift system widely present on the southern Voring 

Plateau (Berg et al. 2005; Bryn et al. 2005b; Hjelstuen et al. 2005), which is known to 

have a high clay content and water content. Contourites are known to form 

substantially thick, high water content sediment bodies which readily develop 

overpressure and sensitivity due to their fine-grained lithology and rapid 

accumulation, and are thought to have hosted glide planes of MWDs which occurred 

in the adjacent Storegga Slide area (Haflidason et al. 2004; Bryn et al. 2005b).

Micallef et al. (2007) presented a detailed analysis of an area from within the 

Storegga Slide main headwall, to the SE of the SVS, which is characterised by a ridge 

and trough morphology similar to that observed from the SVS. The morphology was 

attributed to the process of spreading, a type of mass movement involving extension 

and downslope displacement of a sediment unit above a deforming mass of softer 

material (Vames, 1978). Micallef et al. (2007) showed how the movements of 

displaced blocks increased exponentially with distance downslope, and had to assume
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Overpressure develops in 
transparent interval

Deposition of fine-grained 
contourite units v

Fluid expulsion from underlying 
Fm and gas hydrate  —

BSR

Initiation of mobilisationDownflank undermining 
(Slide D) removes lateral 
confining pressure 
at toe ---------

BSR

Tensile fracture of overburden 
and extrusion related subsidence

Extrusion of mobilised
material into ^ __
water column

BSR

Fig. 2.9E

BSR

Post-slide
infill Slope

template “
Mobile
intervalExtended

crust

BSR

Figure 2.9: Schematic diagram showing the development of the SVS. A: Deposition 
of fine-grained, high water content transparent interval part of regionally extensive 
sheet-drift contourite system, and rapid burial beneath a thin cover of more competent 
sediment. B: Downflank undermining by Slide D removes the downslope confining 
pressure suffice to initiate mobilisation of the transparent interval. C: Mobilised 
material is extruded from beneath the more competent overburden, which undergoes 
extension, fracture and subsidence. D: Process continues until mobilised material is 
almost completely evacuated. E: Renewed interpretation, showing the ‘transparent 
interval’ present within the undeformed ‘slope template’. In the deformed region, an 
‘extended crust’ forms the top surface of the SVS following the mobilisation and 
evacuation of the transparent interval.
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a pre-slide template which thinned downslope, in order to explain the observed 

thinning of the present day units. It is highly probable that the process responsible for 

the SVS also caused the morphologies observed from parts of the Storegga Slide 

headwall. This mechanism was discussed by Micallef et al. (2007) but was not 

pursued in the absence of evidence for the wholesale depletion of the required ‘soft 

spread layer’, as has been presented in the present chapter (D. Masson pers comm.).

Mobilisation in the shallow subsurface can occur as a result of many different 

processes but is commonly linked to the development of overpressure, where 

additional load is borne by the pore fluid which is unable to de-water adequately 

(Maltman and Bolton 2003). Overpressure can develop in near surface sediments as a 

result of initially high porosity and water content being maintained because the 

sediment has too low a permeability to de-water efficiently (Collinson 1994). This 

effect is particularly common in clay-rich sediments, which have a high proportion of 

platy or acicular particles, leading to a loosely packed structure and a high water 

content.

Davies and Clark (2006) described an example of a buried submarine MWD 

which occurred on the north-east Atlantic margin, which resulted from overpressure 

generated by fluid expulsion along a silica chemical reaction front (Volpi et al., 2003). 

Similarly, the failure involved mobilization of a lower unit above which a rigid, 

coherent unit was translated and broken up. The failure described by Davies and Clark 

(2006) differs from the SVS in that no significant volume loss occurred, with the 

exception of localised venting of material which escaped upwards along faults in the 

overburden. The failure developed in a confined manner (sensu Frey Martinez et al. 

2006), with both the lower mobilized unit and overlying coherent material buttressed 

against downslope undeformed sediments.
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To account for the almost complete depletion of the lower part of the SVS, we suggest 

that mobilisation must have involved a substantial degree of liquefaction of all or part 

of the material. Liquefaction involves the total loss of strength of a sediment in which 

pore fluid pressures reached lithostatic values. Although clay rich sediments are 

generally thought of as being less prone to liquefaction than coarser-grade sediments 

due to their cohesive nature, the liquefaction of clayey deposits has been observed in 

number of instances (Gratchev et al. 2006), including in the case of quick clay 

failures, and has been implicated in the submarine environment by Bugge (1981).

The susceptibility to liquefaction depends on the content and mineralogy of 

clays within the sediment (Gratchev et al. 2006). Given the large proportional volume 

of material removed from the South Voring Slide and the efficiency with which is has 

been evacuated, we favour the involvement of a true liquefaction mechanism as 

opposed to failure due to overpressure build-up and resulting hydroplastic 

deformation of the failed interval. The lack of evidence for shear along the base of the 

South Voring Slide (Fig. 2.3B) supports this, as MWDs which occur due to 

overpressure build up often result in shear failure along a discrete layer (the basal 

shear surface).

Invoking a liquefaction-remobilisation process to account for the depletion 

evident in the SVS is considered here the most likely explanation of the observed 

geometry, but can we infer anything about the specifics of the liquefaction process 

from what we know of the depositional context? Liquefaction is the mechanism 

responsible for mobilisation of clays in geometrically similar onshore quick clay 

slides, where it is attributed to a number of possible processes linked to pore fluids. 

These include groundwater invasion, where the saline pore fluid of the clay is 

partially replaced by fresher water. Changes in the pore water chemistry result in
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catastrophic loss of strength, and liquefaction (Rosenqvist 1966). Although 

groundwater invasion is unlikely as a mechanism in the slope setting of the 

Norwegian margin, there are several mechanisms that could be viable in a marine 

setting. For example, low salinity fluids may have interacted with shallowly buried 

sediments through diagenetic processes.

The contourite drifts of the Naust Fm in this area are underlain by the 

polygonally faulted Kai Fm (Fig. 2.1), where fluid flow indicators suggest fluid 

expulsion has been occurring since Miocene times (Bemdt et al. 2004). It is thought 

that such fluid flow may contribute to increased pore pressure (and therefore 

overpressure) in the overlying sediments and contribute to instability in the Naust Fm 

sediments (Bryn et al. 2005b). Another possible fluid interaction could occur as a 

result of hydrate dissociation. Gas hydrates are known to be present in the study area 

(Bemdt et al. 2004; Brown et al. 2006), as seen from the base hydrate reflection 

(BSR; Fig. 2.2, 2.3A & 2.3C). Dissociation of hydrates in the past would have 

released significant quantities of fresh water (Trehu et al. 2003), and dilution of 

salinity might have initiated liquefaction.

In addition to the pore fluid chemical mechanisms for liquefaction, are a group 

of mechanisms that can be regarded as purely mechanical. Triggering of mass wasting 

events in the Storegga area has been linked to seismicity due to isostatic rebound 

(Evans et al. 2002). In particular, cyclic loading due to the oscillatory transmission of 

seismic waves has been heavily implicated in submarine MWDs due its ability to 

induce elevated pore fluid pressures which often fail to be completely dissipated 

before the next pore fluid response (Maltman 1994). The rapidity of such loading can 

therefore have the affect of reducing the effective stress to zero, and liquefaction can 

occur (Maltman 1994). Notwithstanding the likely occurrence of small magnitude
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earthquakes in the study area at the time of the SVS, we suggest a mechanical trigger 

for liquefaction that develops during undermining of a layer (Carson 1977).

Undermining by failure of lateral support is a common precursor to onshore 

quick clay slides, with the removal of lateral confining pressure at the toe of the 

susceptible unit often proving sufficient to initiate remobilisation (Carson 1977). In 

the SVS area, the development of Slide D downflank from what would become the 

SVS would have created a steep, unsupported scarp of c. 120 m which extends along 

a significant proportion of the SVS distal margin. Correlation of key horizons from 

within the SVS into the Slide D area suggests that Slide D preceded the SVS. 

Unloading at such a substantial and laterally extensive headwall may well have 

removed sufficient lateral support such that liquefaction initiated, and so we favour a 

triggering mechanism due to undermining as the most likely cause for the SVS.

2.7 Conclusions

1. A submarine MWD, the South Voring Slide, which underlies the northern margin 

of the Storegga slide on the Norwegian margin, has been identified and mapped using 

3D seismic data.

2. In contrast to the many other submarine MWDs in the area, the SVS exhibits a 

departure from typical retrogressive models of MWD development, and is instead 

better explained by a subsurface sediment mobilisation and extrusion mechanism.

3. A fine-grained unit of approximately 40 m thickness which makes up part of a 

regionally extensive contourite system has undergone mobilisation and been extruded 

onto the seabed, forming a heavily depleted, 850 km2 unit.
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4. Based on infilling by Naust subdivision A, the South Voring Slide occurred before 

250 ka, coincident with the initiation of sliding in the adjacent Storegga slide complex 

(Evans et al. 2002).

5. The recognition of a MWD which developed due to the mobilisation of a 

significantly thick subsurface unit in a region of such prolific large-scale mass 

wasting raises implications for its role in the development of other mass wasting 

events, both on the Norwegian margin and other glaciated margins worldwide. If the 

conditions for remobilisation are met, it maybe that such units are widespread, but are 

yet to be identified.
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CHAPTER THREE

3.0 Kinematic indicators from submarine mass wasted deposits using 3D seismic 

data

3.1 Summary

Kinematic indicators are geological structures or features which may be analysed to 

allow the direction, magnitude and mode of transport of submarine mass wasting 

deposits (MWDs) to be constrained. This chapter presents a compilation of all of the 

various indicator types, which have been classified according to where they may 

typically be found within the MWD body -  the headwall domain, translational 

domain and toe domain. Aspects of their formation, identification using seismic data 

and their kinematic value are discussed, and illustrated using worked examples taken 

from 3D seismic data from the continental margin of Norway and the Levant margin, 

east Mediterranean Sea both of which have been influenced by repetitive large-scale 

slope failure in the recent past. 3D seismic data are proven to be an excellent tool for 

the imaging of kinematic indicators, as they provide large areal coverage which 

allows swift and confident evaluation of the direction of translation, and in many 

cases also allow the degree of translation of the displaced slide material to be 

constrained. Imaging of the basal shear surface, analysis of internal architectures and 

determination of transport direction are areas which are of particular benefit from the 

analysis of 3D seismic. The descriptions and applications of the various kinematic 

indicators detailed in this study should find broad applicability for seismic interpreters 

working on MWDs in many different settings and locations.
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3.2 Introduction

Kinematic indicators

We define a kinematic indicator as a geological structure or feature which records 

information related to the type and direction of motion at the time of emplacement, 

and as such they are of great use to our understanding of the initiation, dynamic 

evolution and cessation of slope failures. To date, many studies of submarine slope 

failures have identified various kinematic indicators, using both geophysical methods 

(Prior et al. 1984; Masson et al. 1993; Boe et al. 2000; Laberg et al. 2000; Laberg and 

Vorren 2000; Haflidason et al. 2004; Wilson et al. 2004; Frey Martinez et al. 2005; 

Gee et al. 2005; Schnellmann et al. 2005; Frey Martinez et al. 2006; Lastras et al.

2006) and the study of ancient outcrops (Farrell 1984; Martinsen and Bakken 1990; 

Trincardi and Argnani 1990; Strachan 2002a and b; Lucente and Pini 2003).

However, it came to our attention that there is currently no catalogue or compilation 

of all of the various deformational features, no guide as to how to recognise them 

using seismic data, how they may be analysed, or what they may tell us about the 

mass wasting deposits. The aim of this chapter is therefore to identify all of the 

various types of deformation structures and features associated with mass wasting 

deposits and present them using a suitable classification scheme and with illustrated 

worked examples taken from the data available for this study. A further aim is to 

develop a recognition criteria for each feature using seismic data, and a workflow for 

their analysis in terms of kinematic information. The examples of kinematic indicators 

illustrated here are sourced primarily from the mid-Norwegian continental margin, 

with additional kinematic indicator examples taken from the Levant margin. Although 

the examples illustrated here are specific to the study areas, the ideas and results
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should find broad applicability, and prove useful to seismic interpreters working on 

MWDs from other areas.

3.3 Data used

Four 3D seismic surveys (Fig. 3.1 A) from the mid-Norwegian continental margin 

were used in this study along with one 3D survey from the Levant margin (Fig. 3.IB). 

In addition, relevant 2D seismic lines from a regional grid available from the 

Norwegian margin were utilised (Fig. 1.7). When calculating the resolution of the 

data, an assumed average seismic velocity of 2000-2100  ms- 1 is used for the interval 

of interest. Characteristics of the data used can be found in chapter one, section 1.4.

3.4 Methodology

Extensive mapping of 3D seismic horizons was conducted across the Norwegian 

margin study area using the named 3D surveys in order to a) identify and delimit the 

various MWDs; and b) identify any kinematic indicators present within. Focussed 

mapping of the seabed horizon was carried out in the Levant 3D survey from the 

Levant margin. Initially, time structure maps were generated in order to examine the 

various surfaces, after which more focussed attribute analysis was performed, as 

explained in chapter 1, section 1.5, in order to define kinematic indicator examples. 

Once identified, kinematic indicators were catalogued using the classification scheme 

developed as part of this study and analysed to deduce any information pertaining to 

the direction and magnitude of transport, mode of emplacement, dominant mass 

wasting process or rheology. The best examples resulting from this process were then
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chosen to illustrate each individual kinematic indicator type presented in this 

compilation, along with a brief discussion of the results of their analysis.

3.5 Kinematic indicators

Lewis (1971) proposed an idealised model for units resulting from slope failure, 

showing that typically a systematic distribution of strain is exhibited; with extensional 

structures characterising the upslope region, and compressional structures 

characterising the downslope region. Many described MWDs do not fit the upslope 

extension-downslope compression model however, as it does not account for the huge 

variety and association of structures observed (Woodcock 1979; Farrell 1984; Elliott 

and Williams 1998; Martinsen 1989; Martinsen and Bakken 1990; Trincardi and 

Argnani 1990; O’Leary 1991; Strachan 2002a and b; Lucente and Pini 2003; Canals 

et al. 2004; Frey Martinez et al. 2005). Such structures typically include folds, 

boudins and normal and reverse faults, with extensional deformation sometimes 

juxtaposed with, or even overprinted by, compression and vice-versa (Farrell 1984; 

Martinsen and Bakken 1990; Strachan 2002a). For the purposes of the present study 

we have grouped the various kinematic indicators according to the domain in which 

they are most likely to occur within a MWD exhibiting a typical ‘tripartite’ anatomy 

(Martinsen 1994; Lastras et al. 2002): the headwall domain, translational domain and 

the toe domain (Fig. 3.2). Although there may be some overlap, a clearly defined 

classification scheme is vital for the practical application of the presented work. All 

examples are illustrated with reference to a summary diagram (Fig. 3.2), and key 

geometrical and geological criteria are summarised in Fig. 3.3.
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Vering
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Mare 
64° Basin

Tampan
Slide \

Israel

Norway

Figure 3.1. Location of figures. (A) Norwegian continental margin study area, 
showing outlines of major MWDs, 3D surveys and figure locations. 3D surveys 
(PL251, Solsikke, Havsule and Big 1) are outlined by solid black rectangles. The 
outlines of the More and Tampen Slides are after Solheim et al. (2005). SSC -  
Storegga Slide complex. (B) Levant margin study area and location of figures. Outline 
of the 3D survey (Levant 3D) is shown by a solid black rectangle. GSC: Gaza slump 
complex (after Frey Martinez et al. 2005); (C) Zoom in of 3D survey PL251 and 
location of various figures.
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blocks. (10) Folds. (11) Longitudinal shears/ first order flow fabric. (12) Second order flow fabric. (13) Pressure ridges. (14) Fold 
and thrust systems.
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3.5.1 Headwall domain

This area encompasses the upslope, extension-dominated region of the MWD. Two 

important kinematic indicators found in this domain are headwall scarps and 

extensional ridges and blocks.

3.5.1a Headwall scarps

Headwall scarps are defined as a boundary or scarp marking the upslope margin of a 

MWD, where the basal shear surface ramps up to cut stratigraphically higher, younger 

strata and intersect the surface. These are often conspicuous features that can be easily 

identified in both seismic section, and in planform using horizon maps. In plan-view, 

headwall scarps appear as continuous scarps that may comprise one or more salients 

and are typified by an arcuate geometry (Prior et al. 1984; Boe et al. 2000; Imbo et al. 

2003; Frey Martinez et al. 2005; Fig. 3.4A), which can help to distinguish them from 

tectonic normal faults. Some scarps may appear fragmented, as if made of several 

shorter scarp sections (Lastras et al. 2006). Headwall scarps may also be highly 

sinuous (Lastras et al. 2004), as is the case for the Gela Slide (Sicily channel) 

described by Trincardi and Argnani (1990), who attributed the phenomenon to 

localised retrogressive erosion of the scarp. Many MWDs, for example the Storegga 

Slide, develop in a retrogressive fashion, with sequential failure back-stepping 

upslope and creating a series of headwall scarps (Gauer et al. 2005). Scarp heights and 

lengths vary, from < 10 m in height and tens of meters across, to examples like that of 

the Storegga Slide; with its 300 km long headwall (Bryn et al. 2005), and the 

Hinlopen Slide on the Svalbard margin, Arctic Ocean, which exhibits scarp heights of 

up to 1600 m (Vanneste et al. 2006; Winkelmann et al. 2008).

A headwall scarp essentially represents an extensional failure surface, and 

therefore forms in the same way as extensional faults. The headwall propagates along-
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strike perpendicular to the direction of the minimum compressive stress (03; Anderson 

1936), which will generally be oriented parallel to the slope due to the effect of 

gravity acting on the sediment mass. In this sense, the orientation of the headwall 

scarp can yield kinematic information as it reveals the initial direction of bulk material 

movement. Figure 3.4A shows an example of several headwall scarps from the Levant 

margin, all of which trend roughly NE-SW. This suggests initial translation to the 

NW, consistent with the local slope direction. The planimetric morphology of the 

headwall scarp can also be used to gain insight into the initial slope failure 

mechanism. For example, O’Leary (1991) attributed the polygonal, stepped salients of 

so-called ‘slab slide’ headwalls to the successive removal of ‘slabs’ of material due to 

brittle failure at varying stratigraphic levels.

Headwall scarps are steeply dipping, with typical inclinations of 15 -  35°

(Imbo et al. 2003; Bryn et al. 2005; Frey Martinez et al. 2005; Vanneste et al. 2006; 

Winkelmann et al. 2008), and the sense of slip is predominantly dip-slip, with 

material being transported directly downslope and away from the scarp. With a 

defining feature of headwall scarps being the presence of some degree of curvature in 

planform however, it is likely that some obliquity of slip vector occurs towards the 

lateral extremes. The specific controlling factors in the angles and development of 

curvature in headwall scarps are not clearly understood. A further feature often 

associated with or found in the landward vicinity of headwall scarps are crown- 

cracks; subtle, elongate depressions or linear features in plan-form which in seismic 

section are shown to be small-scale faults or fractures (Fig. 3.2; Frey Martinez et al. 

2005). Crown-cracks occur in otherwise undeformed and undisplaced strata in the 

vicinity of the headwall and form as a result of extensional stresses related to the 

upslope propagation of retrogressive failure (Vames 1978; Frey Martinez et al. 2005).
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In cases where examples of MWDs have occurred relatively recently, and so their 

morphological expression on the seafloor, including the headwall scarp, has not yet 

been infilled (Prior et al. 1984; Boe et al. 2000; Laberg et al. 2000; Laberg and Vorren 

2000; Canals et al. 2004; Haflidason et al. 2004; Wilson et al. 2004; Frey Martinez et 

al. 2005; Schnellmann et al. 2005; Lastras et al. 2004; 2006; Fig. 3.4A & B), 

identification of headwall scarps in seismic sections and map views can be relatively 

straightforward, with the headwall being defined by a seabed scarp which abruptly 

truncates the undeformed upslope stratigraphy (Fig. 3.4B & C). Where the MWD 

under study is older, infilling, burial and compaction can complicate recognition of 

the scarp (Fig. 3.4C). Thickness changes across identified scarps, indicative of 

missing strata (Gee et al. 2006), and the juxtaposition of undeformed strata upslope of 

the scarp with deformed material downslope aids the interpretation (Frey Martinez et 

al. 2005).

The identification of older headwall scarps in seismic section may be 

complicated by it being immediately overlain by a later MWD (Fig. 3.4C); and also 

by complete evacuation and later infilling of the headwall region. In the former, it 

may be possible to distinguish between individual events by the presence of a basal 

shear surface separating the two, or by differing seismic facies characters of 

individual MWDs. If total evacuation of the headwall and proximal area has occurred, 

the truncation of sediments in the headwall scarp may be difficult to identify if 

infilling by background sedimentation of similar dip and/ or seismic facies character 

has occurred. The best way to proceed if such uncertainty exists is to identify the 

basal shear surface at some point below the main body of the MWD and attempt to 

trace it upslope to the headwall region, or utilize coherence or amplitude slices 

flattened on the basal shear surface.
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Head scarp

| Additional MWD»| Headwall scarp

Slide Seabed
material \

Lateral
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margin

Storegga slide BSS

MWD 1 headwall

Figure 3.4. Examples of headwall scarps from the headwall domain. (A) Perspective 
view of an area of the seabed in the Levant margin study area (location shown in Fig. 
3. IB) featuring a number of MWDs. Note arcuate geometry of the headscarps and 
presence of an array of MWDs (labelled) which can be separated into 3 separate 
events, labelled 1-3. (B) Seismic section through headwall scarp of a Levant margin 
MWD (location shown in A). (C) Seismic section from the headwall domain of the 
Storegga Slide showing Storegga Slide deposits and older MWDs (labelled 1 and 2, 
respectively) lower in the succession. Note infilling of the earlier headscarp (labelled 
‘MWD 1 headscarp’) by the subsequent MWD 2. Location shown in Fig. 3.1 A). BSS 
-  Basal shear surface. The arrows represent the gross transport direction of MWD 
material.
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3.5.1b Extensional ridges and blocks

Depending on the nature of the MWD under consideration, the headwall may be 

completely evacuated, with the basal shear plane exposed, as is the case in parts of the 

Storegga Slide main headwall (Haflidason et al. 2004); or barely depleted, with 

material having undergone limited translation (Solheim et al. 2005). In most cases, 

headwall domains represent an intermediate between the above scenarios, with many 

studies describing examples where headwall regions are characterised by extensional 

features, typically deformed and translated, roughly square to rectangular ‘blocks’ or 

more laterally continuous ‘ridges’ separated by normal or listric fault grabens (Boe et 

al. 2000; Frey Martinez et al. 2005; Solheim et al. 2005; Lastras et al. 2006). These 

represent discrete, detached units of translated material which have retained a high 

degree of internal coherency (Homza 2004; Lastras et al. 2006). The blocks may 

occur on a variety of scales and may undergo varying degrees of translation, with 

spacing, deformation and disintegration tending to increase with distance away from 

the headwall scarp (Laberg and Vorren 2000; Gee et al. 2006). Such blocks can be 

identified in planform from top MWD surface or in the case of relatively recent 

events, seabed time-structure, amplitude or dip maps. Time, stratal or coherency slices 

flattened on the basal shear surface are also of use.

The blocks are typically elongate in the along-strike direction, due to their 

association with extensional faults which propagate along strike orthogonal to the 

direction of the minimum confining stress (03), and oriented parallel-to-subparallel to 

the headwall scarp (Vames 1978; Boe et al. 2000; Laberg and Vorren 2000; Frey 

Martinez et al. 2005; Lastras et al. 2006). Examples of blocks that are continuous 

across the entire headwall region have been described (Lastras et al. 2006). In 

addition, a step-like, or ‘stair-case’ pattern may be observed in dip-section (e.g.
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Kvalstad et al. 2005; Lastras et al. 2006), which is often taken to be indicative of a 

retrogressive or ‘back-stepping’ pattern of failure development (Kvalstad et al. 2005; 

Solheim et al. 2005; Lastras et al. 2006; Micallef et al. 2007).

Initially, blocks, ridges and intervening grabens share a common orientation 

with the section of the headwall scarp from which they originated (Fig. 3.5). This 

situation can be complicated where the headwall scarp is irregular or composed of 

more than one salient, and the orientation of the various segments can vary widely, to 

the point of being parallel downslope. Figure 3.5 shows an example of extensional 

ridges and blocks from the northern edge of the Storegga Slide headwall scarp. Many 

ridges and blocks are identified in planview (Fig. 3.5A), and those in close vicinity to 

the headwall scarp share with it a common orientation. Blocks and ridges show 

evidence for both disaggregation and reorientation with increasing distance 

downslope from the headwall scarp, with decreasing size and continuity and a change 

from original orientation parallel to the headwall scarp to become parallel to the 

general transport direction.

In seismic sections, detached blocks can be identified as localised packages of 

undisrupted, continuous reflections bounded by normal-listric faults, and which may 

be separated from the headwall scarp or other blocks by considerable gaps depending 

on the degree of translation (Fig. 3.5B). Intervening grabens may be filled with a 

contemporaneous matrix (Huvenne et al. 2002), or by subsequent sedimentation. The 

blocks imaged in the northern Storegga Slide headwall have a maximum height of 60 

m and measure up to 120 m across (Fig. 3.5B).
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Figure 3.5. Example of extensional ridges and blocks. (A) Seabed dipmap from the 
northern Storegga Slide headwall scarp (see Fig. 3.1 A for location). Note that blocks 
and ridges in close vicinity to the headwall scarp share its orientation, and with 
increasing translation downslope, they realign to become orientated perpendicular to 
the transport direction. Slope direction indicated by bold arrow. (B) Seismic section 
through part of headwall scarp showing a series of blocks and intervening grabens.
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3.5.2 Translational domain

This domain comprises the main translated body of the MWD, between the up- and 

down-slope extremes (Fig. 3.2). The movement of the failed material downslope 

across the basal shear surface can lead to intense deformation (Martinsen 1994), and 

the formation of a variety of features which can provide kinematic information 

(Martinsen 1994; Strachan 2002a). The following section is subdivided to 

individually consider kinematic indicators that typically occur in association with the 

lateral margins, basal shear surface, internal body and top surface of a MWD.

3.5.2a Lateral margins

Lateral margins are the dip-parallel side boundaries of a MWD. They form parallel to 

the gross flow direction, and offer a primary constraint on the gross general transport 

direction. Depending on the nature of the MWD and data coverage, it may be possible 

to trace the lateral margins between the headwall and the toe (Gawthorpe and 

Clemmey 1985). Lateral margins are associated with strike-slip movement (Martinsen 

and Bakken 1990; Martinsen 1994; Frey Martinez et al. 2005), although 

transpressional or transtensional deformation may occur if the MWD scar widens or 

narrows (Martinsen 1994). Detection of such deformation may be important in 

distinguishing the lateral margins from the headwall or toe domains (Martinsen 1994), 

and the situation is further complicated by the possibility of localised dip-slip collapse 

of high, steep lateral scarps inwards, towards the centre of the MWD body (Vames 

1978). The actual formation and propagation of lateral margins is a complex topic and 

is further discussed in section 3.6.1 of this chapter.

Lateral scarps may be difficult to trace downslope due to the tendency for 

scarp relief to diminish rapidly away from the headwall scarp, and the possibility of 

the deformed mass ramping up from the initial basal shear surface and cutting up-
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section to translate across the seafloor at the toe domain (O’Leary 1991; Frey 

Martinez et al. 2006). In planform, a lateral margin may appear as a scarp or linear 

feature roughly parallel to the slope direction which separates a smooth, undeformed 

region of the seabed or top MWD age-equivalent horizon from the adjacent region 

that has been affected by failure (Fig. 3.6A & B).

Conversely, they can also be expressed as raised, positive features due to 

localised or net accumulation of material in the translational or toe domain of the 

MWD (Prior et al. 1984; Trincardi and Normark 1989). A seismic section across a 

lateral margin may show a scarp of positive or negative relief, or in the case of a 

lateral margin with no discemable relief, a change in seismic facies from undeformed 

strata outside of the area affected by slope failure processes, to that of the disrupted 

facies symptomatic of MWDs (Fig. 3.6A & B). In this respect, the identification of 

lateral margins becomes difficult where the translational domain does not exhibit a 

high degree of disruption. The example shown in Fig. 3.6 is taken from the southern 

margin of the Storegga Slide where material affected by instability in the Storegga 

zone is juxtaposed with undeformed strata to the south.

The identification of lateral margins can be of great value to the kinematic 

study of MWDs, as they offer a primary constraint on the flow direction of the MWD. 

Where entire MWDs are imaged, the geometry and local slope direction can be used 

to determine the overall translation direction (Masson et al. 1993). Figure 3.4A shows 

an image of the Levant margin, which features a number of MWDs at the seabed 

(Frey Martinez et al. 2006). A MWD array (labelled on Fig. 3.4A) features lateral 

margins that are conspicuous features in planform; generally dip-parallel, continuous 

and linear, but they do exhibit discontinuities and localised changes in trend. The 

lateral margins trend N-S, indicating that gross general transport also took place in

3-16



Chanter Three________________________________________________ Kinematic indicators

this direction. Closer examination of the array reveals that it comprises three separate 

MWDs (labelled 1 to 3 on Fig. 3.4A), each delimited by separate headwall scarps and 

lateral margins. Analysis of the cross-cutting relationships of the lateral margins is 

very potent in revealing the relative chronology of the MWDs, and in this case it is 

apparent that MWD 1 (Fig. 3.4A) occurred first, and is cross-cut and partially 

obliterated by MWD 2, which in turn is cross cut by MWD 3. These relationships are 

confirmed by examination of a seismic cross section through the seabed. Part of the 

eastern lateral margin of a further MWD from the Levant margin (Fig. 3.6C) shows a 

number of small, closely spaced en echelon scarps where the lateral margin is 

segmented (Fig. 3.6C). Some of the segments are sigmoidal due to rotation of the 

central portion of the fracture (Twiss and Moores 1992), and are evidence of strike- 

slip deformation.

3.5.2b Basal shear surface

Recognition of a detachment surface -  a requirement of all sliding (Vames 1978; 

Martinsen 1994) invariably yields important kinematic information about the dynamic 

emplacement of such events (Gee et al. 2005). The basal shear surface is often 

continuous and concordant to bedding, but may be affected by faults, bedding plane or 

material variations (Vames 1978). In addition, variations in the basal shear surface 

may be caused by the movement and nature of the material overlying it, and so may 

reveal several features which provide important kinematic information.

Ramps and flats

Several studies have described ‘ramps’ -  whereby the basal shear surface cuts up or 

down to a new stratigraphic level, and intervening ‘flats’, both from offshore, 

geophysically imaged examples (Trincardi and Argnani 1990; Lucente and Pini,

2003; Frey Martinez et al. 2005), and from ancient field outcrops (Gawthorpe and
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Clemmey 1985; Strachan 2002a). A ramp is defined as a segment of the basal shear 

surface that cuts discordantly across bedding, whereas the ‘flat’ sections are bedding- 

parallel segments of the basal shear surface. The ramps therefore connect ‘flat’ 

segments of the basal shear surface at differing stratigraphic levels (Trincardi and 

Argnani 1990). Lucente and Pini (2003) likened the ramp and flat geometry to 

shallow level deformation in accretionary wedges, and Gawthorpe and Clemmey 

(1985) assigned the terms ‘contractional’ if the basal shear surface cuts up section, 

and ‘extensional’ if it cuts down.

In seismic section, ramps are easily identifiable in a similar way to faults or 

the headwall scarp (Frey Martinez et al. 2005), by first tracking the basal shear 

surface and identifying where it ramps up or down to truncate bed-parallel strata 

below. In planform, the ramps can be seen as scarps or linear features that mark sharp 

topographical variations of the basal shear horizon (Fig. 3.7A). Trincardi and Argnani 

(1990) and Gawthorpe and Clemmey (1985) report that most ramps trend 

perpendicular to the main flow or movement direction.

Good examples of basal shear surface ramps from the More Slide (Evans et al. 

1996), which deforms mid-Pleistocene age sediments south of the Storegga Slide, 

(Evans et al. 2002; Fig. 3.1) are shown in Figure 3.7. A number of previous studies 

have established that the head and side walls trend WSW-ENE and SSE-NNW 

respectively (Evans et al. 1996; Nygard et al. 2005; Hjelstuen et al. 2007; see More 

Slide outline on Fig. 1.3), from which it can be inferred that the gross transport 

direction was downslope to the NW and perpendicular to the basal shear surface 

ramps.

Figure 3.7A illustrates the planimetric morphology of two of these ramps. 

Within the limits of the 3D survey used to map the slide (Fig. 3.1), two main ramps
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Figure 3.6. Examples of lateral margins. (A) Seabed dip map from the PL251 3D 
survey (location shown in Fig. 3.1C), showing the seabed expression of deformed 
material from the Storegga Slide. (B) Seismic section through lateral margin of 
Storegga Slide material and adjacent undeformed strata (location shown in A). Note 
dramatic change in seismic character from undisrupted strata in the south, to highly 
disaggregated immediately to the north. (C) Zoom in of a section of a lateral margin 
from a MWD affecting the Levant margin seabed (location shown in Fig. 3.IB), 
showing evidence for strike-slip deformation. Arrows indicate translation direction.
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Figure 3.7. Examples of basal shear surface ramps. (A) Time structure map of the 
basal shear surface of the More slide taken from the PL251 3D survey (location 
shown in Fig. 3.1C). Arrow indicates translation direction. (B) Seabed dip map from 
the Storegga Slide headwall domain showing ‘slots’. Location shown in 3.1 A. (C) 
Seismic section through More slide basal shear surface (location shown in A), note 
steep, discordant nature of ramps. Arrow indicates translation direction. (D) Seismic 
section through slots (location shown in B), note common detachment level.
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exist, in the south-east of the survey area (labelled ‘Ramp 1 ’ on Fig. 3.7A), and 

another in the north-western survey area (labelled ‘Ramp 2’ on Fig. 3.7A). Ramp 1 is 

relatively linear in trend (NE -  SW), but on a smaller scale exhibits an irregular 

planform geometry. Ramp 2 has a more complex planimetric morphology (Fig. 3.7A), 

and weaves a sinuous path comprising of several inlets and a peninsula-like protrusion 

(labelled ‘promontory’ on Fig. 3.7A). The main scarp is elongate in a NE-SW 

direction, roughly parallel to the main ramp (Fig. 3.7A).

A seismic section taken perpendicular to the ramps (Fig. 3.7C) shows that 

when tracking along the profile in the transport direction, the basal shear surface can 

be seen to cut up across the main scarp of Ramp 1. Ramp 2 represents a means of 

lowering the basal shear surface back to its original stratigraphic level south of Ramp 

1 and then cuts up onto the near-side of the promontory, and down once again at the 

north-western ramp forming the other side of the promontory. The basal shear surface 

returns to its original stratigraphic level at Ramp 2, but cuts down to a deeper 

stratigraphic level, by some 40 m on the north-western side of the promontory. These 

types of relationships are relatively common in major slides, where switching between 

two or more preferred stratigraphic levels for the flat segments of the basal shear 

surface possibly reflects the availability of more than a single surface of low shear 

strength. In this case of the More Slide, the cyclic stratigraphy of low strength 

contourite sediments alternating with higher strength glacial deposits (Bryn et al.

2005) could be the main factor predisposing the failure surface to adopt the ramp and 

flat morphology.

Ramps have been directly linked to deformational features within the main 

body of some MWDs, with previous studies reporting the presence of slump folds 

above upward stepping ramps, to accommodate the change in gradient (Trincardi and
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Argnani 1990; Frey Martinez et al. 2005). It has not been established why such ramp 

and flat geometries develop, although Rupke (1967) reported that basal incision may 

be due to localised zones of high intensity shear, while Frey Martinez et al. (2005) 

postulated that changes in the mechanical properties of the basal shear surface, or the 

failed mass, or possible a combination of the two are responsible. This topic is given 

further consideration in section 3.6.2 of this chapter.

Although most previous descriptions of ramps have focused on features that 

are orthogonal to the transport direction, ramps may also occur trending parallel to the 

main transport direction. When they do, they frequently form in closely spaced pairs, 

and thereby delimit narrow, ‘slot’-like zones (Fig. 3.7B & D), elongated parallel to 

the transport direction, which we refer to simply as ‘slots’. These are readily 

identifiable on seismic profiles and on maps of the basal shear surface, and are 

excellent kinematic indicators.

Slots have not been widely recognised or described. Perhaps the first 

description of these extraordinary features can be ascribed to O’Leary (1986, 1993) 

who described the development of a narrow, steep-sided ‘axial trough’ at the base the 

Munson-Nygren Slide from the Georges Bank, and who showed it to cut down below 

the level of the initial basal shear surface. One of the clearest examples of a slot that 

we have mapped using 3D seismic data is from the Storegga Slide (Fig. 3.7B & D). A 

dip map of the seabed from the area (Fig. 3.7B) taken from the Bigl 3D survey (Fig.

3.1) shows three downslope-elongate, narrow features delimited by steep ramps which 

cut discordantly down section to some 80 m below the level of the original basal shear 

surface (Fig. 3.7D). In this case, intervening ‘flat’ sections form the floor of the slots, 

which are approximately 3-4 km wide, and from correlation with overlapping 2D lines 

are up to 30 km long trending NW (Fig. 3.7). All of the slots detach at the same level.
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Slot 3 appears to be infilled with the same material that is found at the seabed in the 

area, and is presumably highly disaggregated material from the Storegga Slide. Slots 1 

and 2 differ somewhat in that the material contained within is thinner at the up-dip 

extreme, and thicker downslope, where the termination of the slots coincide with a 

compressive bulge of material. They occur in an area where the seabed MWD 

material cover is thinner (or absent) than in the vicinity of slot 3, and appear to 

overlap slightly (labelled on Fig. 3.7D). Based on the infilling of slot 3 by MWD 

material, it is likely it developed during the progression of Storegga Slide by down- 

cutting of the basal shear surface. Further examination of the infill material of slots 2 

and 3 would be required to reach a conclusion on the possible timing of their 

formation.

Whilst slots clearly provide a direct indicator of transport direction, at present 

there is no obvious mechanism explaining their genesis, or why they develop in 

particular positions within larger MWDs. We have only identified them positively on 

the basal shear surfaces of a few large slides, but this does not mean they do not occur 

on smaller slides, and might simply reflect resolution limits. Further research is 

certainly needed to strengthen their use as kinematic indicators and to set them in a 

process framework.

Grooves and striations 

The term ‘grooves' here defines long, linear or sinuous features that are V  shaped in 

cross section (Posamentier and Kolia 2003), and are equivalent to the ‘furrows’ 

described by Gee et al. (2006). Such features may be continuous over many 

kilometres and are generally orientated downslope, and may diverge seawards 

(Posamentier and Kolia 2003; Gee et al. 2006; Gee et al. 2008). These features are 

interpreted to be the result of the erosional action of coherent blocks of translated
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material being transported at the base of a debris-like flow (Posamentier and Kolia 

2003; Gee et al. 2008). Grooves are most obvious from attribute maps of the basal 

shear surface of a MWD, such as dip or amplitude. Figure 3.8A shows an amplitude 

map of a small area of the base of the Storegga Slide from the Norwegian margin, 

imaged by the 3D seismic survey Solsikke (Fig. 3.1). Several linear grooves, spaced 

an average of 700 m apart are seen, trending SE-NW to SSE-NNW. Grooves maybe 

difficult to identify in seismic section without reference to a base MWD map as they 

are typically narrow (Fig. 3.8C). The grooves shown here, with their distinctive V -  

shaped cross sections, have typically eroded to a depth of c.7 m.

In a separate example, Figure 3.8B shows sinuous grooves which affect the 

basal shear surface of a MWD imaged from the area south of the Storegga Slide (Fig.

3.1). These grooves are V  shaped in cross section (Fig. 3.8D), and can be traced for 

30 km across the 3D seismic survey, and probably extend further. The identification 

of grooves is useful as they directly record the translation of the MWD body across 

the basal shear surface, revealing both the transport direction, and given their 

association with debris flows, an indication of the dominant process active at that 

point in the development of the MWD. In addition, continuous grooves can provide 

some direct constraint on the minimum distance travelled by individual fragments of 

material within a MWD. The trend of the examples shown in Figures 3.8 A & B, when 

combined with a local slope direction to the NW, suggest a transport direction to the 

NW for both MWDs. Moscardelli et al. (2006) interpreted similar erosive scouring 

affecting the base of a MWD from the eastern Trinidad margin as being indicative of 

transport direction and domination of debris flow processes, and further used them to 

infer flow transformation from frictionally attached (erosive) to hydroplaning (non- 

erosive).
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‘Striations ’ are defined as continuous, linear features affecting the basal shear 

surface of MWDs, but can be differentiated from grooves due to their wider, flat- 

bottomed cross section and the absence of downslope divergence (Gee et al. 2005; 

Gee et al. 2006). Although covered in the same section here, striations are different 

from grooves both in their character and the way in which they are formed. In 

kinematic terms however, they provide similar information.

Like grooves, striations are also associated with the translation of intact blocks 

of coherent material that ‘plough’ the basal shear surface (Gee et al. 2005), but in this 

case the striations represent ‘glide-tracks’ left behind by intact blocks which detach 

from the leading edge of the MWD and move downslope ahead of it and beyond it. 

Nissen et al. (1999) described flat-based, linear ‘glide-tracks’ with downslope 

terminations associated with intact ‘outrunner’ blocks which came to rest downslope 

of the toe of a MWD from the Nigerian continental margin. Striations up to 9km long, 

200 m across and 15 m deep have been described (Nissen et al. 1999; Gee et al.

2005).

As with grooves, identification and recognition of these features is easiest 

when viewing attribute maps of base MWD horizons (Nissen et al. 1999; Gee et al. 

2005). In the same way as grooves, striations provide directional information related 

to the translation of intact rafts of material, either within or in front of the main body 

of the MWD , and therefore indicate a general translation direction. Striations have 

not been identified from the dataset available for this study, and the reader is referred 

to Nissen et al. (1999), Gee et al. (2005; 2006) and Moscardelli et al. (2006) for 

excellent examples.
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Other basal shear surface features 

Attribute maps of basal shear surfaces often reveal many remarkable features not 

obvious from seismic section or time-structure maps. Examples of amplitude maps are 

shown in Figure 3.9, taken from the basal shear surfaces of two MWDs imaged by 3D 

seismic survey PL251 (see Fig. 3.1 for location). Figure 3.9A shows an acoustic 

amplitude map taken from the same horizon used to illustrate sinuous grooves in Fig. 

3.8B.

In addition to the sinuous grooves identified from the dip-attribute map, a 

series of sinuous streaks and bands are revealed, mirroring the paths taken by the 

grooves discussed in the previous section. Streaks and bands that show up on basal 

shear surface amplitude maps are taken to be indicative of basal erosion (Gee et al. 

2005), which in this case is confirmed by the presence of resolvable grooves (Fig.

3.8C & D). The exact mechanism of erosion or reason for the amplitude expression is 

unclear, but the broad extent indicates erosion by a body that is broader and smoother 

than that involved in the formation of the grooves and striations. The streaks and 

bands provide the same kinematic information as grooves and striations, and so 

amplitude maps can provide important kinematic and process information in the 

absence of conspicuous or resolvable erosional features.

A further example of an amplitude map from the base of a MWD is shown in 

Figure 3.9B. The amplitude map, from the base of the Tampen Slide (Fig. 3.1; Evans 

et al. 1996; Solheim et al. 2005), shows a remarkable pattern of deformation as 

delimited by the distribution of high and low amplitudes. A remarkable ‘blocky’ 

amplitude signature that can be related in seismic section to the discontinuous nature 

of the disaggregated remnants of blocks of material within the MWD body (Fig. 3.9C) 

is revealed. In planform, the blocky pattern is similar to that shown by Huvenne et al.
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Figure 3.9. Examples of other kinematic indicators from basal shear surfaces. (A). 
Dip map of the basal shear surface of a MWD from the PL251 3D survey area 
(location shown in Fig. 3.1C). (B) Acoustic amplitude map of the basal shear surface 
of the Tampen slide (location shown in Fig. 3.1C), note remarkable ‘blocky’ 
signature. (C) Seismic section through small area of the Tampen slide basal shear 
surface (location shown in B). Note presence of partially coherent blocks of material 
above basal surface. Arrows indicate translation direction.
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(2002), from a MWD in the Porcupine basin, offshore SW Ireland, to be related to 

extensional fracturing and the break up of material into blocks. The presence of 

relatively small extensional faults which are both parallel and perpendicular to 

presumed direction of maximum stress (i.e. downslope) is likely to indicate the 

presence of relatively consolidated material (Prior et al. 1984), and therefore provides 

some degree of process understanding.

3.5.2c Internal translational domain

Several techniques including time slicing, coherency slicing, and iso-slicing on 

amplitude and coherency volumes allow us to examine features which form internally 

within the translated MWD body, and may have no expression on the top or bounding 

basal surfaces.

Translated, outrunner and remnant blocks 

Translated blocks, also called ‘rafted’ or ‘intact’ blocks (Masson et al. 1993; Boe et al. 

2000; Laberg & Vorren 2000; Lastras et al. 2002; Homza 2004; Frey Martinez et al. 

2005; Gee et al. 2008), are coherent blocks of sediment that have been transported 

within or in front of the failed mass and are often deposited within the translational 

domain. Lastras et al. (2005) demonstrated that relatively coherent blocks from the 

BIG’95 debris flow on the Ebro margin, Mediterranean Sea, were pushed, sheared and 

accelerated by the more mobile coarse-grained matrix, resulting in the translation of 

the block over some 15 km. Translated blocks are recognised through the 

identification of areas of laterally concordant and continuous seismic facies, often in 

significant contrast to the chaotic facies of the MWD body, from which they may be 

separated by steeply outward dipping flanks (Frey Martinez et al. 2005; Gee et al. 

2005). Although the blocks represent relatively competent pieces of MWD material, 

they may exhibit increasing deformation with increasing translation or duration of
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sliding (Laberg and Vorren 2000, Huvenne et al. 2002; Gee et al. 2005; Lastras et al. 

2005). The blocks shown in Figure 3.10A & B exhibit deformation in the form of 

upward-tapering cross sectional geometries, rotation and subtle disruption of internal 

reflections. In contrast, ‘out-runner’ blocks are those which detach from the leading 

edge of the deforming MWD body and move downslope beyond it (Nissen et al.

1999; section 3.2.2). These are often associated with ‘glide tracks’ or ‘striations’ (Gee 

et al. 2005; section 3.5.2b) which can be used to reconstruct the pathway of the blocks 

(Nissen et al. 1999). Moscardelli et al. (2006) reported similar glide tracks (referred to 

as ‘secondary scours’), linked to outrunner blocks, from the base of a buried MWD 

from the deep marine margin of eastern Trinidad.

The size of translated blocks can vary, from those which may be below the 

resolution of the data (<8  m high), to examples such as those from the Hinlopen Slide 

on the Svalbard margin, Arctic Ocean, from which blocks of up to 5 km across and 

450 m high have been observed (Vanneste et al. 2006; Winkelmann et al. 2008). 

Translated and outrunner blocks, irrespective of their location in relation to the main 

body of the MWD, can be used as directional indicators. Blocks which have been 

transported in the main body for a sufficient distance tend to become aligned with 

their long axis parallel to the direction of flow, and the same is generally true for out

runner blocks (Nissen et al. 1999). Where translated blocks are subject to localised 

compression or deposited in the toe domains of MWDs, they may become orientated 

with long axes perpendicular to the transport direction (Huvenne et al. 2002).

Blocks of undisturbed and continuous reflections may remain as undeformed 

‘islands’ surrounded by the deformed translated mass (Frey Martinez et al. 2005).

Like translated blocks, they exhibit laterally concordant and continuous seismic facies 

but are clearly coupled to the undeformed sedimentary succession below with no
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visible detachment surface (Frey Martinez et al. 2005; Fig. 3.10D). These ‘remnant 

blocks’ are interpreted to represent isolated blocks of material that have not 

experienced failure. Frey Martinez et al. (2005) used these remnant blocks to place 

significant constraints on the kinematics of the surrounding MWD body by excluding 

the possibility that large scale translation could have occurred in the vicinity of the 

remnant block. Both translated and remnant blocks may be associated with flow lines 

recorded within, and on the top surface of the deformed mass (Masson et al. 1993;

Fig. 3.10C). These may represent faster flow of the main deformed mass around 

slower moving translated blocks (Masson et al. 1993; Lastras et al. 2005) or the 

passage of material around stationary remnant blocks.

An example of a remnant block is shown in Figures 3.10C and D. The remnant 

block measures 3 km across its long axis and c. 75 m high. A seismic section across 

the block (Fig. 3.10D), shows no basal detachment or shear induced deformation 

visible beneath the block, although the top surface and edges appear to have been 

deformed and denuded. The block is clearly visible in a coherency slice as an area of 

smoother texture and higher coherence compared to the surrounding area (Fig.

3.10C). NE-SW trending lineations are defined in the coherency volume in the 

downslope wake of the remnant block (Fig. 3.10C), and are seen to converge slightly 

before diverging to the SW. The trend of the lineations suggests a localised transport 

of material to the SW. The lineations are discussed further in section 3.2.4.

Folds

A variety of fold styles have been observed from MWDs, and have been previously 

described from field outcrops, where they are traditionally used in the determination 

of palaeoslope direction (Farrell 1984; Farrell and Eaton 1988; Webb and Cooper 

1988; Eva and Maltman 1994; Bradley and Hanson 1998; Strachan 2002a and b;
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Strachan 2006). Farrell and Eaton (1987, 1988) proposed that MWDs which have 

undergone relatively little translation will feature upright folds developed by 

buckling, and progressively more deformed (i.e. more translated) MWDs will be 

characterised by tight to isoclinal, and recumbent folds. Such features develop due to 

simple shear (Escher and Waterson 1974), which through time will rotate fold axial 

surfaces towards parallelism with the upper and lower MWD surfaces, and fold hinges 

towards the downslope direction (Farrell and Eaton, 1988). Folds in the translated 

body of a MWD can therefore be useful in identifying the transport and palaeoslope 

direction, and possibly in determining the degree of translation.

An example of upright folding is shown in Figure 3.11, taken from a large, 

buried MWD south of the Storegga Slide (Fig. 3.1). Two large mounded structures 

have been observed from this interval, occurring within the MWD body, delimited by 

a convex upward and discontinuous upper boundary, correlated with a continuous, 

undeformed lower reflection which also forms the basal shear surface (Fig. 3.11A & 

B). Internally, continuous seismic reflections have been deformed into a series of 

convex upward, disharmonic folds which also appear to be affected by brittle 

discontinuities. The structures (labelled 1 and 2 respectively in Fig. 3.11) are elongate 

in planform, with the fold hinges corresponding to the long axis, and measure up to 

1.75 km in length, 1 km across and c. 250 m thick. Structure 1 is orientated NE-SW 

whilst structure 2 is orientated N-S (Fig. 3.11C). The axis of folds in MWDs originate 

parallel to sub-parallel to the strike of the slope (Bradley and Hanson 1998), thus 

indicating both the palaeoslope direction and gross transport direction (Farrell and 

Eaton 1987). On this basis, the folds shown here indicate a transport direction roughly 

to the W - NW (Fig. 3.11C). The presence of these features provides a small degree of
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Figure 3.10. Examples of translated and remnant blocks. (A) Seabed dip map of an 
area within the Havsule 3D survey (location shown on Fig. 3.1 A), showing a number 
of closely spaced translational blocks. Arrow indicates translation direction of MWD. 
(B) Seismic section through area of translated blocks. Note upward tapering cross 
sectional block geometries, rotation and disruption of internal reflectors (location 
shown in A). (C) Slice taken from a coherency volume generated for a small area 
within the PL251 3D survey area (location shown in Fig. 3.1C), showing remnant 
block in the More slide (D) Seismic section though remnant block (location shown in 
Fig. 3.1C). Note degraded top surface of block. Bold white arrow indicates direction 
of movement of MWD matrix.
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Figure 3.11. Example of slump folds. (A) Seismic section through part of a buried 
MWD from within the PL251 3D survey (location shown in Fig. 3.1C). (B) Zoomed 
in area of seismic section (location shown in A). (C) Top fold horizon structure map 
showing planform geometry of the slump folds (location shown in Fig. 3.1C).
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process understanding of the deforming MWD body, with material deforming ductily 

and retaining a high degree of continuity. The fact that these features are upright, 

would suggest that deformation and therefore, translation had not progressed to an 

advanced stage (Farrell and Eaton 1987; 1988).

3.5.2d Top MWD surface

The top surface of a MWD is a complex one, intimately shaped by the processes 

involved in the progression of the MWD and the resultant deformation within. 

Kinematic indicators previously discussed in the current translational domain section 

all have the potential to affect the top MWD surface in some manner, but in the 

following section we consider those indicators that are best observed from this 

surface. It was noted by Masson et al. (1993) and Gee et al. (2006) that the upper 

bounding surfaces of MWDs tend to preserve information related to the deposition 

and cessation of events. Two types of kinematic indicators can be considered; 

longitudinal shear lines (primary flow fabric); and secondary flow fabrics.

Longitudinal shear zones 

Continuous, distinct downslope trending lineaments, often marked by a low scarp are 

commonly observed from the top surface of MWDs (Prior et al. 1984; Masson et al. 

1993). The lineaments are likely to occur in pairs and crosscut finer-scale or more 

superficial banding or lineations (‘secondary flow fabrics’, this study; Masson et al. 

1993). These are interpreted as longitudinal shear zones, which separate zones of 

material moving at different speeds or at different times (Masson et al. 1993; Gee et 

al. 2005). Although the shear zones extend through the thickness of the MWD body, 

their subtle nature means that their presence is often only detected from examination 

of attribute maps of the top-MWD surface. Longitudinal shears indicate a complex 

system in which material within the bands is being transported at a different speed to
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material outside of them, or that material within the bands was in motion at a different 

time than that outside. This attests to more than one process being active at once, or 

different phases of MWD activity being temporally separated. Prior et al. (1984) 

described longitudinal shears arranged in pairs, forming the edges of chute-like 

sediment movement zones. In seismic sections, longitudinal shear zones are visible as 

small scarps affecting the top MWD horizon, which may correspond to zones of 

visibly different facies within, and outside of the shear zones.

The kinematic information afforded here is primarily directional. Longitudinal 

shears are attributed to the differential downslope movement of MWD material, and 

reveal the direction of motion. In many cases the subtle scarps are below the vertical 

resolution of the seismic data, and may not be observable. Figure 3.12 shows an 

example of longitudinal shears taken from an area of the seabed within the Storegga 

Slide. A pair of longitudinal shears is seen trending NNW-SSE across the seafloor, 

crosscutting smaller scale fabrics. Combined with local slope direction from 

stratigraphic interpretation of the underlying sedimentary units, the trend indicates 

that the material within the pair of shears was being transported to the NNW. A 

seismic section taken across the features (Fig. 3.12B) shows that subtle seabed scarps, 

of only a few meters in height correspond with the striking lineations on the seafloor, 

but does not show any significant difference in the seismic character of the material 

inside of the bands, versus that outside. This could be due to the highly disaggregated 

and homogenised nature of the MWD material, or reflect the fact that only limited 

translation of the material inside the bands has occurred relative to the material 

outside of them.
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Figure 3.12. Example of primary (longitudinal shear) and secondary flow fabrics. (A) 
Seabed dip map taken from the area within the Havsule 3D survey (location shown in 
Fig. 3.1 A), showing primary and secondary flow fabrics from the top surface of the 
Storegga Slide. Bold arrow indicates transport direction. Striped effect is an 
acquisition artefact (B) Seismic section through seabed (location shown in A). 
Downward-pointing arrows indicate location of longitudinal shear lines.
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Second order flow fabrics 

Because longitudinal shear bands are able to cross cut and even destroy preceding or 

smaller scale flow banding (Masson et al. 1993), we refer to them as a ‘primary flow 

fabric’. This section discusses lineations or banding which are not primary, i.e. that 

which is not laterally continuous or cross-cutting, and occurs at a relatively finer- 

scale. Smaller scale flow banding has very limited topographical relief (estimated at 

<lm by Masson et al. 1993) and so is not likely to be visible in a seismic cross-section 

through the seafloor or top-MWD horizons. However, they can be seen in horizon 

map view, especially when seismic attributes are exploited (Fig. 3.12). Second order 

banding is typically localised, highly sinuous, and often occurs in association with 

topographical or basal shear surface texture variation, or obstacles to flow (Masson et 

al. 1993). Such obstacles include translated and remnant blocks (see section 3.2.3; 

Masson et al. 1993). An example of this association is shown in Figure 3.10D, where 

flow banding, revealed by horizontal slicing of a coherency volume, appears in the lee 

of a remnant block. The lineations converge slightly before diverging seaward in the 

direction of transport.

3.5.3 Toe domain

The toe domain represents the downslope region of the MWD unit, including the 

downslope termination point, or ‘toe’ (Fig. 3.2). MWD toes often have an overall 

convex-downslope morphology (Prior et al. 1984; Frey Martinez et al. 2005), and the 

main kinematic indicators contained within them are pressure ridges and thrust and 

fold systems. Frey Martinez et al. (2006) subdivided the toe domain into those which 

are ‘frontally confined’, whereby the translated mass is buttressed downslope against 

stratigraphically equivalent undisturbed strata; and ‘frontally emergent’ occurring
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when the translated mass is able to ramp up from the original level of the basal shear 

surface and move freely across the seafloor. The present study has found that this 

classification holds true for all of the MWDs described in the examples taken from the 

available datasets from Norway and the Levant, and also for those described by 

previous studies. Frontally confined MWDs are characterised by the development of 

large-scale thrust and fold systems (Huvenne et al. 2002; Frey Martinez et al. 2006; 

Gafeira et al. 2007), whilst those which are frontally emergent typically exhibit 

pressure ridges (e.g. Prior at al. 1984).

There is overlap between the two extremes, with some frontally emergent 

MWDs developing impressive fold and thrust systems when the translating material 

becomes buttressed against a seabed obstacle of positive topography (Lewis 1971; 

Moscardelli et al. 2006). Pressure ridges and fold and thrust systems are discussed 

separately in the following section. Both features form due to compression at the toe 

of MWDs, but there is often a marked difference in scale, and because of resolution 

limitations, only larger structures such as thrusts and folds on a scale of >10’s m in 

height and spacing are likely to be well imaged on our data. Pressure ridges are 

interpreted as the surface expression of thrusts that are below the resolving power of 

the data, and so in the following section, we consider examples that occur on a scale 

of 10’s of meters, and which are not fully resolved by the data in seismic section. 

3.5.3a Pressure ridges

These features are defined here as positive, parallel to sub-parallel, linear to arcuate 

ridges orientated perpendicular to flow direction, (Prior et al. 1984; Masson et al.

1993; Martinsen 1994; Boe et al. 2000; Laberg and Vorren 2000; Posamentier and 

Kolia 2003; Frey Martinez et al. 2006; Lastras et al. 2006; Moscardelli et al. 2006). 

Pressure ridges are commonly observed in both submarine and subaerial MWDs, and
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are usually confined to the toe domain. They can however, occur elsewhere due to 

localised topographical variations in the basal shear surface, or obstacles to flow 

(Masson et al. 1993). Pressure ridges are best viewed on top MWD surface maps. The 

use of seismic attribute maps, such as dip and amplitude, and further 3D seismic 

techniques such as the generation of coherency volumes are often useful in the 

identification and characterisation of these features. Due to their scale relative to the 

seismic resolution, they may not be obvious in attribute slices whilst not being 

detectable in seismic cross sections.

An excellent example of pressure ridges can be seen from a MWD from 

offshore Norway (Fig. 3.13). Pressure ridges are present in the form of continuous 

arcuate ridges which are convex in the downslope direction (Fig. 3.13A). In seismic 

profile (Fig. 3.13B) it is possible to identify localised areas where there is sufficient 

continuity of reflections to define packages of parallel, steeply landward (upslope) 

dipping reflections which are separated by offsets and which appear to affect the top- 

MWD surface, showing relief of up to 15 m. These packages of reflections are 

interpreted as thrusts which are slightly below the resolving power of the data.

Pressure ridges have been associated with debris flow deposits (Posamentier 

and Kolia 2003), and occur where MWDs are free to spread-out in an unconfined 

manner to form convex downslope, lobe like morphologies (‘frontally emergent’, 

after Frey Martinez et al. 2006; Prior et al. 1984; Lucente and Pini 2003). 

Kinematically, pressure ridges are important because of the directional information 

they provide. Assuming a simple gravitationally induced compressional regime, they 

develop perpendicular to the main flow direction to which the maximum compressive 

stress will become orientated (Frey Martinez et al. 2006; Lastras et al. 2006). Towards 

the lateral flanks of MWD toe however, the situation may be complicated by a change
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in orientation of the pressure ridges, presumable due to a realignment of the maximum 

compressive stress, causing different rates of displacement across the width of the 

MWD toe (Frey Martinez et al. 2006). Prior et al. (1984) suggested that the 

development of pressure ridges may progress through a combination of ‘stopping’ 

forces and resistance of the undeformed sediments underlying the MWD unit.

Episodic flow has also been implicated in their development (Prior et al. 1984;

Lucente and Pini 2003). In this sense, it is prudent to measure only the orientation of 

pressure ridges along the line in which the downslope-most points of successive 

ridges align, as this will be the only point at which the maximum compressive stress is 

due to the downslope translation of material alone, and not interference from drag or 

‘stopping’ forces. When performed for the example shown in Fig. 3.13A, the local 

direction of transport of the MWD material took place to the NW.

3.5.3b Thrust and fold systems

Impressive thrust and fold systems are commonly described from the toe domains of 

MWDs (e.g. Lewis 1971; Trincardi and Argnani 1990; Martinsen 1989, Frey 

Martinez et al. 2006), where they may affect sections as thick as 500 m (Gafeira et al. 

2007), placing them on a similar scale to some tectonic thrusting. The distal limit of a 

frontally confined MWD is typically demarcated by an abrupt frontal ramp (Frey 

Martinez et al. 2006). Thrusts typically affect the entire thickness of the MWD body 

in the vicinity of the ramp above the basal shear surface, into which they detach. In 

seismic sections, the presence of thrusts may be identified by the presence of 

sufficiently continuous reflections, offset along potentially steep, landward dipping 

surfaces (Fig. 3.14A). Measurements of thrust dimensions from the type example of a 

frontally confined MWD from the Levant margin yielded heights of 167 - 236 m, 

lengths (perpendicular to strike) of 550 - 1200 m, thrust plane angles of 9 -  22°, and
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displacements of up to 60 m (Frey Martinez et al. 2006). Huvenne et al. (2002) 

describes a frontally confined submarine MWD from the Porcupine Basin, offshore 

SW Ireland that similarly failed to overthrust the undeformed downslope strata. The 

MWD is up to 85 m thick and comprised of large blocks of coherent material, up to 

500 m across in a chaotic ‘matrix’. Blocks in the toe are folded and thrusted, and lack 

the internal stratification that defines them within the translated domain of the MWD 

(Huvenne et al. 2002).

A remarkable example of a MWD fold and thrust system is taken from the 

compressional zone of the Storegga Slide (Bryn et al. 2005), shown in Figure 3.14.

The complex has developed along the mid-southern margin of the Storegga Slide 

(Fig. 3.1), a considerable distance from the true toe zone. However, the deformation 

has occurred above a basal detachment layer which can be traced directly into a 

section of the headwall which is associated with a distinct phase of failure in the 

multi-phase Storegga event, with material from other phases being deposited in the 

distal toe area (Bryn et al. 2005). This complex is interpreted to be the result of a 

compressional regime induced by the downslope displacement of a material from the 

Storegga Slide headwall region (Haflidason et al. 2004; Gafeira et al. 2007), and is 

therefore considered to be equivalent to a frontally confined MWD. The frontal thrust 

fault (Fig. 3.14A) dips at 22° and ramps up through c.500 m of sediments, separating 

completely deformed strata landward of the thrust and undeformed strata downslope. 

Landward of the thrust, are a series of regularly spaced thrust-bounded blocks. The 

thrust faults occur in pairs of opposite verging dip up to 40°, and define regularly 

spaced (average 1.43 km) pop-up structures with maximum displacements of up to
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TWT(ms)

1-2625

I Thrusts

Basal shear surface

Figure 3.13. Example of pressure ridges. (A) Time structure map of the top surface of 
a buried MWD from within the PL251 3D survey area (location shown in Fig. 3.1C). 
Note steeply dipping parallel reflection separated by offsets within the MWD body. 
These are interpreted as small-scale thrusts which form the ridges seen in planform. 
Arrow indicates transport direction. (B) Seismic section through pressure ridges 
(location shown in A). Arrow indicates general transport direction (NW).
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[Coherency slice (Fig. 3.14B)pi

Frontal ramp

Pop-up
blocks

Detachment horizon

Frontal thrust fault

Pop-up
blocks

|  Lateral margin |

Figure 3.14. Example of fold and thrust systems. (A) Seismic section through part of 
the ‘compression zone’ on the southern Storegga Slide margin. Note the thrust faults 
which occur in pairs of opposite verging dip up to 40°, and define regularly spaced 
(average 1.43 km) pop-up structures with maximum displacements of up to c.65 m 
detaching into a common horizon. Location shown in B. (B) Slice through a 
coherency volume (Position of slice shown in A). Note the N-trending lineaments 
which define fault detachments.
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c.65 m detaching into a common horizon (Fig. 3.14A). A slice through a coherency 

volume reveals a remarkable pattern of sub-parallel NNE-trending lineations which 

correspond to the detachments of the frontal ramp and successive faults (Fig. 3.14B). 

The maximum thrust height is c.650 m. Correlation on 2D seismic lines suggests that 

some thrust faults continue along strike for some 28 km. The thrust faults define a 

shortening of the MWD material in the direction of the maximum compressive stress, 

which, as with pressure ridges, will be orientated in the direction of primary MWD 

movement. The most likely transport direction is perpendicular to the strike of the 

thrust faults (Ramsey and Lisle 2000). Therefore, from the central area of the complex 

shown in Fig. 3.14, it is likely that translation took place to the NW, which is 

compatible with other kinematic indicators taken from further upslope in the MWD, 

such as the alignment of the headwall scarp (Fig. 3.4).

3.6 Discussion

The broad applicability of 3D seismic reflection data to the study of many aspects of 

structural geology and basin analysis has been highlighted in a number of recent 

reviews (Cartwright and Huuse 2005; Cartwright 2007; Posamentier et al. 2007). 

Commercial interest in deep water settings and the resultant increasing availability of 

industrially acquired 3D seismic surveys has been a major factor in our increased 

understanding of deep-water geological processes (Posamentier and Kolia 2003; 

Cartwright and Huuse 2005). In recent years the interpretation of sidescan sonar and 

multibeam bathymetry data, often used in combination with 2D seismic lines and 

geotechnical or sedimentary data have yielded much new information on the 

geomorphology, internal architecture and causative processes associated with MWDs
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(e.g. Prior et al. 1984; Urgeles et al. 2006). These data types allow for the detailed 

morphological analysis of the top surfaces of relatively recent MWDs (i.e. those 

which affect the modem seafloor) and can be used to interpret the processes that 

control the formation and morphology of MWDs (e.g. Masson et al. 1993).

Whilst significant advances have been made using a ‘top surface’ 

morphological approach, 3D seismic data now affords an opportunity to adopt a truly 

volumetric approach to the interpretation and analysis of MWDs. The three- 

dimensional nature of modem seismic surveys enables the structure of MWDs to be 

assessed beyond what is apparent at the surface, with detailed mapping and imaging 

of the basal surface and internal stmcture made possible. Importantly, 3D seismic data 

affords complete analysis of the geometries of internal architectural units within the 

MWD body, which may not be inferred from the study of bounding surfaces alone. 

Furthermore as demonstrated in this study, attribute maps such as dip, amplitude and 

coherency enable the detection and analysis of subsurface geological details that are 

too small or subtle to be described using other data types (Cartwright and Huuse, 

2005), and can yield information related to transport direction, process and the 

rheology of the displaced MWD material.

Attribute analysis of the internal elements also potentially opens the way to 

recognising the lateral variability of the strain characteristics, and then relating these 

to physical properties through acoustic inversion. Correlation and mapping of the 

bounding horizons of buried MWDs can be used to identify discrete MWD events in 

the subsurface, facilitating morphological interpretations in a similar fashion to those 

MWDs present on the modem seafloor, and allowing the role played by slope 

instability in the development of a particular basin or margin to be more thoroughly
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evaluated. The seismic approach thus opens a route to investigation of repeated slope 

failures in specific basins, and to studies of the spatial distribution of MWDs.

The focus of this study has been to draw attention to the variety of kinematic 

indicators that can be gleaned from MWDs when studied using 3D seismic data. One 

of the major strengths of 3D seismic data that is evident from the examples presented 

above is the relative ease and confidence with which both gross and localised 

transport directional regimes can be identified from MWDs. Most of the kinematic 

indicators considered in the present study provide some degree of transport direction 

information, which can be taken from the top MWD surface, internal characteristics 

of the MWD and its basal shear surface, and these indicators are to be found in all 

three MWD domains. Transport direction can in turn be used to give the orientation of 

the slope over which the MWD translated, an interpretation that from traditional 

outcrop studies requires great care in both the initial recognition of the MWD, and 

accurate measurement of the axes and vergence of many individual folds (Bradley and 

Hanson 1998). An ultimate goal of compiling kinematic indicators from 3D seismic 

data must surely be to gain greater insights into failure propagation mechanisms (e.g. 

Martel 2004; Petley et al. 2005), and to provide better constraints on the volumetric 

strains involved in the different end members of the spectrum of MWDs.

It is therefore clear that there is much to gain from the exploitation of 3D 

seismic data in the wider study of MWDs, and continued research in this field will 

undoubtedly lead to further advances in our understanding of mechanisms and 

process. It is also apparent however, that the study of kinematics based on 3D seismic 

data is at an early stage, and major questions regarding the formation and significance 

of various MWD features remain to be answered. In the following section, we 

highlight the potential for further research in this field by discussing selected
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examples of kinematic indicators from MWDs whose genetic mechanisms are 

amongst the most poorly understood, and suggest how 3D seismic data could 

potentially be used to resolve the open questions.

3.6.1 Lateral margins

The propagation of headscarps and the toe have been considered in some recent 

studies (e.g. Gauer et al. 2005; Frey Martinez et al. 2006), but almost no consideration 

has been given to the development of the lateral margins of submarine MWDs. The 

lateral margin has been considered to essentially represent a strike-slip fault 

(Martinsen 1994) as it is associated with horizontal shear, and by analogy with 

tectonic strike-slip faults, could be expected to develop as steep, planar surfaces 

perpendicular or subparallel to the direction of gross displacement (Twiss and Moores 

1992). Owing to gross depletion in the headwall domain (Vames 1978), the nature of 

the lateral margin will be transtensional in this area, and transpressional in the vicinity 

of the toe, where bulk accumulation occurs (Vames 1978). By comparison with 

onshore analogues, it is likely that lateral margins bounding slope failures propagate 

from the basal detachment at depth upwards to the surface, and will develop only after 

displacement of material downslope has begun (Fleming and Johnson 1989).

Furthermore, Fleming and Johnson (1989) highlighted the potential of 

structures found on lateral margins for indicating material rheology, displacement 

magnitude and the stage of lateral margin development. Lateral margins develop by 

way of an evolving sequence of structures, and in examples formed in relatively 

brittle material, en echelon tension cracks, orientated 45° to the trend of the 

propagating strike slip fault, were observed as the first formed structures (Fleming 

and Johnson 1989). En echelon cracks are ephemeral and as downslope displacement
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continues they may link to form a through going fracture (Fleming and Johnson 

1989). In more ductile material, the first-formed structure was a simple through-going 

strike-slip fault (Fleming and Johnson 1989).

This study has documented the presence of both en echelon tensile failures and 

simple through-going strike slip faults on the lateral margins of MWDs from the 

Levant margin. By comparing these features to those documented onshore, it is 

possible to gain insights into the material rheology and stage of development of the 

MWD in the submarine realm in the absence of core or geotechnical data. For 

example, the lateral margin of a MWD from the Levant margin shown in Fig. 3.6A is 

characterised by both en echelon tensile failures and through-going strike slip faults. 

Considering the influence of rheology on structural development, this division of 

structural style could be used to differentiate areas of contrasting rheology. 

Alternatively, the differing structural styles may be a consequence of varying 

displacement along the lateral margin, with en echelon tensile failures indicating areas 

of relatively low displacement.

3.6.2 Basal ramps and flats

The enigmatic stratigraphic ‘jumping’ of the basal shear surface by way of ramps and 

intervening flat sections has been recognised from several studies (Trincardi and 

Argnani 1990; Strachan 2002a; Frey Martinez et al. 2005). Down-cutting or up- 

stepping ramps represent shear surfaces that depart from the bedding-parallel 

configuration of the larger part of the basal shear surface, and must therefore reflect 

localised variations in the stress conditions for shear failure. However, no studies have 

been undertaken to specifically analyse the position of ramps in a broader context, nor 

to quantify their dimensions and dip. These quantitative descriptions would be easy to
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obtain using good quality 3D seismic data, and could yield useful constraints to input 

into a mechanical model.

One key question is what factors control the development of ramps. One factor 

could be related to the mechanical properties of the basal shear plane (e.g. lateral 

variations in friction). Another may relate to stresses generated as the failed material 

moves over the basal shear surface, or indeed, a combination of these two factors may 

be critical (Strachan 2002a; Frey Martinez et al. 2005). Strachan (2002a) postulated 

that pre-existing weaknesses in the basal shear surface, caused by original deposition 

of the sediments, may be exploited by localised erosion by the translating failed mass, 

and that localised down-cutting may indicate a change from easy-slip along the basal 

shear surface to reduced slip.

The formation of upward cutting ramps can be compared to the development 

of thrust faults, which typically propagate up through the stratigraphy in steps, 

alternating between following flat bedding planes or easily deformed layers, then 

cutting up section in the direction of displacement (Twiss and Moores 1992). The 

steepening of the basal shear surface to form up-stepping ramps possibly indicates the 

influence of mechanical asperity due to localised variation in the mechanical 

properties of the material overlying the basal shear surface (Frey Martinez et al.

2005), i.e. relatively higher strength, such that it did not undergo failure, and the basal 

shear surface was forced to deflect its path to a higher stratigraphic level.

There are two different ways in which down-cutting ramps may occur. Steeply 

dipping ramps which truncate significant thicknesses of strata underlying the original 

basal shear surface and give rise to a step-wise geometry are often observed from near 

the headwall regions of MWDs (Solheim et al. 2005; Fig. 3.7A & C), or where 

translation of material across the basal shear surface is limited (Frey Martinez et al.
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2005). In this context, the basal shear surface propagates downwards to link with a 

deeper weak layer. The basal shear surface will often ramp up and down to a 

particular horizon more than once and return to its original stratigraphic level by way 

of an up-stepping ramp (Fig. 3.7A & C; Frey Martinez et al. 2005; Solheim et al. 

2005). The specific and selective nature of the localisation of the basal shear surface 

ramps strongly suggests that some degree of control is exerted by the horizons 

exploited by flat sections. In the case of the More Slide example discussed earlier, the 

availability of more than one weak surface predisposed the basal shear surface to 

ramp downwards to a number of different flats. Since the basal shear surface 

represents a weak layer capable of allowing slip across its surface, it can be assumed 

that when ramps cut down to a new stratigraphic level, they do so to a similarly weak 

layer which will also accommodate slip and translation. Seismic based evidence for 

this concept was provided by Solheim et al. (2005), who noted that the jumps in basal 

shear surfaces from the Norwegian MWDs all did so in sedimentary units 

characterised by similar stratified seismic signatures.

It is interesting to note that down-cutting ramps share several characteristics 

with headwall scarps: they truncate strata underlying the original basal shear surface, 

and often develop striking perpendicular to the translation direction and dipping 

steeply downslope (Gawthorpe and Clemmey 1985; Trincardi and Argnani 1990; Frey 

Martinez et al. 2005). This similarity means it may be appropriate to consider their 

formation using the mechanical framework that is widely applied to headscarp 

development. Solheim et al. (2005) implicated failed retrogressive phases in the 

formation of such ramps from Norwegian margin MWDs.

Down-cutting of the basal shear surface also occurs where the failed mass 

actively erodes into the substrate to cut down to a deeper stratigraphic level by way of
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a more shallow ramp (Strachan 2002a). Such ramps are likely to develop where the 

failed mass initially steps upward beyond the datum of the basal shear surface and 

translates freely across the seafloor. The development of down-cutting ramps in this 

context is linked to the erosion by the failed translating mass of pre-existing weakness 

or perturbations in the surface over which translation is occurring (i.e. the seafloor), 

such as zones of relatively weak or mobile sediment generated during deposition 

(Strachan 2002a), faults or fractures, or variations in slope. The presence of erosive 

features such as grooves and striations at the base of MWDs is evidence that MWDs 

are capable of cutting down into the substrate. Moscardelli et al (2006) was able to 

determine areas where a buried MWD from offshore Trinidad was eroding the basal 

shear surface from areas where there was a high degree of frictional shear resulting in 

large scale erosional scouring. Ramps formed in this manner therefore reflect the 

ability of a MWD to locally cut down and entrain material from below the basal shear 

surface (Strachan 2002a), and represent the maximum depth to which the MWD can 

erode.

In conclusion, much further research is required to clarify the exact origins and 

mechanical significance of some of the kinematic indicators discussed in this paper. 

However, the full potential of 3D seismic data to capture the subtleties of geometry 

and acoustic variation evident in all MWDs is only now starting to be realised, and 

there is considerable scope for much more quantitative analyses in the future.

3.7 Conclusions

This study has shown that 3D seismic analysis is an excellent tool for the study of 

MWDs and its application yields many pertinent observations that allow for insights
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into mechanisms and processes. One of the major advantages of the use of 3D seismic 

data in this capacity is the speed and confidence with which the general transport 

direction can be constrained. Furthermore, exploration of key aspects of MWD 

analysis which have been poorly understood, such as the development of large-scale 

toe zones and ramp and flat basal shear surface geometries has been facilitated. With 

the continued acquisition of, and improvements in the technology used to acquire, 

process and manipulate such data, it will be possible to continue to study new and 

previously undescribed examples of MWDs which will contribute further to our 

understanding.

3-53



Chapter Four The Confined Store22a Slide

CHAPTER FOUR

4.0 A ‘frontally confined’ submarine mass wasting deposit recognised from the 

Holocene Storegga Slide

4.1 Summary

The area of the Storegga Slide historically referred to as the ‘compression zone’ has 

been mapped and characterised using a combination of 2D and 3D seismic data and 

bathymetry data. The compression zone has previously been interpreted as a zone of 

contractional deformation resulting from the downslope and west-wards movement of 

a large intact slide block as part of one of the intermediate phases of Storegga Slide 

development. The present study shows that the compressional features can be linked 

laterally and up-dip with a number of other features diagnostic of submarine mass 

wasting deposits, across an extensive basal detachment horizon. The identification of 

a headwall, lateral margins, zone of extensional deformation, translated and remnant 

slide blocks which can be linked genetically with the compression zone shows that the 

latter represents the distal region of a frontally confined-type submarine mass wasting 

deposit, first identified by Frey Martinez et al. (2006). Furthermore, it can be 

demonstrated that extensional deformation in the up-dip region represents a later, 

separate stage of deformation which involved the removal of a significant volume of 

material as part of the final stages of Storegga Slide development, instead of the minor 

volumes reported in previous studies.
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4.2 Introduction

The compressional structures formed within the toe zones of large-scale submarine 

MWDs can yield valuable kinematic information relating to the magnitude and 

direction of translation, and for ancient examples, can be used to determine 

palaeoslope direction (Frey Martinez et al. 2006). Recently, a detailed study based on 

3D seismic data has resulted in the identification of two end members of submarine 

MWDs based on their mode of frontal emplacement (Frey-Martinez et al. 2006). 

Frontally emergent types occur where the translated mass is able to ramp up from the 

original level of the basal shear surface and move freely across the seafloor (Frey 

Martinez et al. 2006; Fig. 4.1 A). This typically leads to a relatively thin deposit which 

has spread-out in an unconfined manor, and which typically exhibits pressure ridges 

(e.g. Prior et al. 1984; Frey Martinez et al. 2006). Pressure ridges are interpreted as 

the surface expression of relatively small-scale thrusts (i.e. fault heights in the range 

of 10’s of meters) which are not fully resolved by modem seismic data in cross- 

section (chapter three, section 3.5.3a). Frontally confined types occur when the 

translated mass is buttressed downslope against stratigraphically equivalent 

undisturbed strata, involving a deep-seated detachment surface and typically 

developing a toe zone characterised by large-scale thrust and fold systems (e.g. 

Huvenne et al. 2002; Frey Martinez et al. 2006; Fig. 4.IB).

The mechanisms governing the development of toe zones from large-scale 

submarine MWDs are still the topic of debate however, with several studies proposing 

various models: Farrell (1984) likened the development of a MWD to that of a 

theoretical dislocation loop. In this model, the fault tip line spreads out radially from a
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Figure 4.1. Schematic representation of the two main types of submarine mass 
wasting deposits according to their style of frontal emplacement. A: Frontally 
emergent; the basal shear plane ramps up to the seabed to allow the free translation of 
failed material to move in an unrestrained fashion across the seafloor. Typical 
characteristics of such examples include broad, relatively thin lobes with convex 
downslope terminal margins and pressure ridges (chapter two, section 3.5.3a). B: 
Frontally confined. The failed mass is buttressed against the frontal ramp which is 
formed by the deeply-seated basal shear surface ramping up steeply to intersect the 
seabed. The failed mass does not abandon the original basal shear surface and 
typically large-scale slump and fold systems develop landward of the distal margin 
(chapter two, section 3.5.3b). Modified after Frey Martinez et al. 2006.

4 - 3



Chapter Four_________________________________________ The Confined Storegga Slide

point of initial failure, within which material has slipped and outside of which 

material is unslipped. Extensional strain in the MWD would therefore develop where 

the dislocation propagates in the opposite direction to the slip direction, and 

contractional strain would be evident where the dislocation propagates in the same 

direction as the slip direction (Farrell 1984). It follows therefore, that the contractional 

strain will develop downslope of the initial failure (Farrell 1984). It was further 

suggested that cessation of the slope failure event occurs due to the failed mass 

regaining cohesion with the underlying failure surface, with the failed mass halting at 

its distal edge first, followed by propagation of a compressional strain wave towards 

the proximal region (Farrell 1984).

Martel (2004) carried out a study based on a 3D elastic model for the 

development of a basal shear surface of an onshore slope failure, in which the basal 

surface was considered to be a shear fracture. The study found that the observed 

surficial deformation would initiate at the upslope head of the MWD and propagate 

downslope in an ‘unzipping’ fashion, as deformation propagated across and upward 

from the underlying failure surface. Frey Martinez et al. (2006) postulated that the 

large-scale contractional deformation which develops in frontally-confined type 

submarine MWD’s does so due to the deep-seated nature of the basal failure surface 

which causes the translating mass to become ‘locked’ within the original (pre-failure) 

stratigraphic template. Progressive displacement of the failed mass is accommodated 

in the development of the large-scale structures, with downslope propagation of the 

MWD most likely occurring through bulldozing of the foreland, based on the 

geometrical similarity between the distal region of the type example of a frontally 

confined MWD, and that of imbricate thrust fans (Frey Martinez et al. 2006).
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The following chapter focuses on the ‘compression zone’ of the Storegga Slide 

(Haflidason et al. 2004; Bryn et al. 2005a), which defines an area along its mid- 

southern margin characterised by spectacular, large-scale compressional deformation 

linked to failure in the main headwall area (Fig. 4.2). The true ‘toe zone’ of the 

Storegga Slide, which developed by way of several major phases of failure (Bugge 

1983; Haflidason et al. 2004), is located in the deep waters of the Norway Basin some 

800 km from the main Storegga Slide headwall scarp (Fig. 4.2; Haflidason et al.

2004). Some 250 km3 of material is estimated to have been deposited in this region in 

the form of turbiditic flows (Haflidason et al. 2004), superficially giving the Storegga 

Slide the requisites of a classical ‘frontally emergent’ mass wasting deposit.

In contrast with this, the deformation in the ‘compression zone’ has occurred 

above a basal detachment surface which can be traced directly into a section of the 

headwall associated with a distinct phase of failure in the multi-phase Storegga event 

(Haflidason et al., 2004; Bryn et al., 2005a; Btinz et al. 2005), with material from 

other slide phases being deposited in the ‘true’ distal toe area (Fig. 4.2; Bryn et al. 

2005a). The ‘compression zone’ is interpreted to be the result of a compressional 

regime induced by the downslope displacement of material from the Storegga Slide 

headwall region (Haflidason et al. 2004; Bryn et al. 2005a; Gafeira et al. 2007;

Faerseth and Saetersmoen 2008). For the purposes of this study, the compression zone 

is inferred to be the buttressed toe zone representing a discrete, frontally confined type 

submarine MWD that occurred as part of the multi-phase Storegga Slide.

This chapter aims to fully define, document and characterize the compression 

zone using the broad data coverage afforded by 2D seismic data and bathymetry data 

(Fig. 1.8), and test the Frey Martinez model by attempting to identify and correlate a 

detachment surface updip to determine the full extent of the slope failure event of
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which the compression zone represents a part. Further considerations of this study 

involve an evaluation of the strain history and volumetric changes which have 

occurred, and the effect of subsequent phases of failure during the Storegga Slide. 

Further detailed insight is provided by two 3D surveys located on the southern lateral 

margin, and in the central headwall region of the Storegga Slide, respectively (Fig.

4.2). Previous work on the compression zone (Haflidason et al. 2004: Bryn et al. 

2005; Gafeira et al. 2007; Faerseth and Saetersmoen 2008) have provided some 

description of the structures and made estimates of shortening and displacements, but 

have not shown explicitly how the compression zone is genetically linked to the main 

headwall area, nor considered volumetric balancing.

4.3 Specific study area

This chapter focuses on the deformed Plio-Pleistocene sediments of the More Basin 

(Fig. 4.2). The distal margin of the compression zone event is located almost 140 km 

downslope of the main headwall of the Storegga Slide, where sediments deformed 

and dissected by Storegga area events are juxtaposed with relatively undeformed 

strata preserved in the thick progradational sediment wedge known as North Sea Fan 

(Fig. 4.2; King et al. 1996). The North Sea Fan succession is comprised of massive 

glacigenic debris lobes, gravity flows and hemipelagic sediments (Fig. 1.3; King et al. 

1996; Nygard et al. 2005). The large volume of sediment is the result of deposition 

during the glacial cycles (see chapter 1, section 1.3.1) and input from the Norwegian 

channel, a deep trough skirting the whole of the south and west Norwegian coast, 

during the late Cenozoic (Evans et al. 1996; King et al. 1996; Nygard et al. 2005).
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Although predominantly depositional, the North Sea Fan succession records its own 

mass wasting, including the Vigra, More and Tampen slides, all of which pre-date the 

Storegga Slide (Evans et al. 1996; King et al. 1996; Evans et al. 2005; Hjelstuen et al.

2005). The More and Tampen slides cover significant areas (>15,000 km2) and 

displaced sediment volumes of greater than 3000 km3 (Evans et al. 1996). The mid- 

Pleistocene Tampen Slide is disrupted and truncated to the east by Storegga Slide 

events (Figs. 4.2; Evans et al. 1996), and is exposed at the seabed in several small 

areas within the Storegga Slide Complex.

4.4 Dataset and methodology

The data available for this study consist of a regional grid of 2D seismic profiles and 

bathymetry data which covers a large area of the mid-Norwegian margin (Fig. 1.8). In 

addition, two 3D surveys which image parts of the Storegga Slide main headwall, and 

an area of the southern margin of the compression zone (Ormen Lange and P1251, 

labelled in Fig. 4.2) have been utilised. Further details regarding the characteristics of 

the data available for this study are presented in chapter one, section 1.4. The 

bathymetry data allow the detailed mapping of seafloor textures which have been 

proven to be an extremely useful approach to the understanding of submarine MWDs 

(e.g. Masson et al. 1993; Laberg and Vorren 2000; Lastras et al. 2004). The 

identification of morphological features such as pronounced relief or roughness, 

lateral ridges or arcuate banding in tandem with terminal features such as lobe 

terminations, pressure ridges or oblique or cross cutting elements can be used to 

characterise the mass wasting deposits and draw attention to deformational structures 

associated with its dynamic emplacement (Masson et al. 1993; chapter three, this
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study). The Storegga Slide is a good candidate for such an approach as it is a 

relatively recent event (c. 8200 yr B.P.; Bryn et al. 2005a) which has subsequently 

experienced low rates of sedimentation (Haflidason et al. 2004). Hence, the seabed 

expression is well preserved (Haflidason et al. 2004). The 2D and 3D seismic data 

available for this study facilitates imaging of subsurface elements which in 

combination with bathymetry data allow for a holistic characterisation of the 

compression zone and associated deformation.

4.5 Characterising and constraining the compression zone

The large volume of sediments mobilised and displaced during the Storegga Slide has 

resulted in variety of morphological signatures at the seabed, which have been used as 

primary factors in determining the provenance and sequence of the various slide 

phases (Haflidason et al. 2004). The compression zone is best defined by the 

geomorphological signature of the seabed, which is characterised by laterally 

continuous, downslope-convex, subparallel lineations which are orientated between 

NW -  SE and N -  S (Fig. 4.3). The lineations define a downslope tapering area of the 

seabed, and are continuous along-slope for distances of between 7 and 28 km.

A representative 2D seismic dip-profile taken through the distal region of the 

compression zone is shown in Figure 4.4. Sediments in close proximity to the distal 

margin appear substantially thickened (maximum thickness of 640 m above the 

detachment horizon) and it is found that seabed lineations correspond to broad ridges 

exhibiting positive topography of up to 30 m (Fig. 4.4A). The ridges are the seabed 

expression of upwardly displaced, laterally continuous blocks bound by pairs of thrust 

faults exhibiting opposing dip, and detaching into a common basal detachment
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horizon. The basal detachment is defined as a continuous horizon which clearly 

separates the deformed sediments above from undeformed sediments of differing 

seismic facies characteristics below (Fig. 4.4A). The upwardly displaced blocks are 

therefore interpreted as ‘pop-up’ blocks, and measurements of key parameters taken 

from the thrust faults are summarised in Table 4.1.

A package of deformed slope sediments that are generally assigned to the 

Tampen Slide are contained within the slope units that were subsequently to be 

remobilised during the latest slide succession. These comprise a chaotic seismic facies 

unit bound by high amplitude top and basal surfaces (Fig. 4.4). As such, this earlier 

slide unit provides an excellent marker interval within the compression zone, along 

with the Base More Slide horizon to a lesser degree, and both can be traced well into 

the Storegga Slide complex (Fig. 4.2 & 4.4).

Within the pop-up blocks, evidence of folding is observed in the form of 

upward-convex deflections of individual reflections (Fig. 4.4B). The thrust faults 

pairs are spaced an average of 0.6 km apart and fault angles range from 33° to 65°. A 

total of 32 thrust fault pairs and associated pop-up blocks have been identified within 

the compression zone from key 2D seismic dip-profiles. Correlation with the linear 

features observed from the bathymetry data show that they are laterally continuous 

across the breadth of the compression zone (Fig. 4.3).

Throw values were measured for all of the thrust faults which are sufficiently 

well imaged, and show a wide range of values from 14 m to 100 m. Heave 

measurements taken from sufficiently well imaged faults (based on high-confidence 

correlation of the Base Tampen Slide horizon) were used to estimate the amount of 

shortening undergone by the sediments in the compression zone. From 30 well 

imaged offsets, a total thrust-related shortening of 2.05 km was calculated assuming
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Figure 4.3. Bathymetry map of the Storegga Slide ‘compression zone’ and 
surrounding area showing seabed character and location of various figures. The 
compression zone is characterised by NW-SE and N-S trending seabed lineations 
(labelled). Notice that the seabed lineations change in character to become less 
pronounced in the region up-dip of the distal region (labelled). Note the positions of 
the distal and lateral margins of the compression zone which delineate the unusual 
downslope-narrowing planform geometry. Sediment ‘pathways’ and the planform 
extent of a sheared zone are shaded in grey. Note the position and planform geometry 
of ‘Headwall R’ of the Storegga Slide which is linked to the compression by a 
detachment horizon, and by lateral margins delimiting the northern and southern 
extent of the compression zone and related up-dip features. The low-relief character of 
the seabed in the proximal region is inferred to represent a thin-cover (i.e. 40 -  60 m) 
of highly disaggregated mass wasted material. Three large slide bodies are identified 
from a combination of their seabed expression and seismic character in profile. ‘Slide 
Block R’ is interpreted as an intact and partially translated slide block, and T1 and T2 
are interpreted as rooted, untranslated remnant blocks of pre-Storegga Slide 
stratigraphy which have preserved outliers of Tampen Slide deposits. Within the 
PL251 3D survey area, a seabed dip-map has been overlaid to fully illustrate the 
seabed features associated with the southern lateral margin. SSC: Storegga Slide 
Complex. Location shown in Fig. 4.2.
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Fault Fault dip (°) Height (m) Maximum throw (m)
1 42.8 599 84
2 73.3 543 59
3 78.8 363 68
4 83.1 523 67
5 39.5 876 59
6 65.4 570 76
7 46.4 701 76
8 86.6 524 48
9 87.5 336 14
10 64.3 560 24
11 50 604 62
12 60.4 505 26
13 34.1 808 69
14 82.7 487 43
15 33.1 833 40
16 78.2 470 48
17 38.5 780 75
18 55.9 594 73
19 45.5 561 34
20 66.8 557 40
21 41.6 729 65
22 71.1 608 50
23 39.2 918 57
24 71.9 551 65
25 37.5 850 100
26 87.9 634 63
27 45 779 62
28 62.3 634 56
29 38.9 910 61
30 61.4 674 64
31 35.4 1076 58
32 67.4 643 52
33 37.2 1043 30
34 77.2 588 24
35 50.3 709 32
36 56.5 661 41

Table 4.1. Thrust fault parameters based on 2D dip-lines across the distal region.
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purely dip-slip kinematics. If this shortening is representative for the total number of 

thrust faults which have been identified (62), the total shortening for the central area 

of the compression zone is estimated as 4.24 km. It is noted that minor additional 

shortening is accommodated in the fold component of the many contractional 

structures as for example is evident from the buckled geometry of the Top and Base 

Tampen Slide horizons within some of the pop-up blocks (Fig. 4.4B). Measurement 

of bed length in the folded zones shows that this is responsible for an additional 400 -  

600 m of shortening in the distal region, yielding a total shortening (line length 

change due to folding plus heave of thrusts) of the order of 5 km.

The planform geometry of the compression zone exhibits a pronounced 

narrowing in the downslope direction, terminating in a distal margin which is just 7 

km across (Fig. 4.3). This downslope-narrowing shape is in marked contrast to 

classical examples of toe zones from submarine MWDs, which typically exhibit a 

broad, downslope-convex morphology (Prior et al. 1984; Frey Martinez et al. 2005; 

chapter three, section 3.5.3). A strike-section through the distal region illustrates its 

laterally confined nature (Fig. 4.5). In the vicinity of the distal margin, the lateral 

margins are represented by broad (up to 1 km across) inward-dipping zones of 

deformation across which reflections are disrupted and offset, and define an area of 

raised seabed topography that equates to the thickened succession (Fig. 4.5 A). 

Horizons are offset by up to 200 m in a reverse sense across the disrupted zones, 

which are interpreted as lateral margins and feature thrust faults with associated 

folding that is indicative of an element of compression orientated parallel to the lateral 

margins (Fig. 4.5B).

Within the compression zone, there is some repetition of the succession across 

individual thrusts, with the Tampen Slide appearing substantially thickened (Fig.
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Figure 4.5. 2D seismic strike-profile through the distal region of the compression 
zone, close to the distal margin. A: Uninterpreted profile. B: Interpreted profile. Note 
the steeply dipping, offset reflections which form the lateral margins of the 
compression zone, and repetition of the Tampen Slide deposit. LM: Lateral margin. 
Location shown in Fig. 4.3.
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4.5B). Internally, the thickened, structureless Tampen Slide interval features a high 

amplitude, undeformed reflection identical to those which represent the bounding 

surfaces of the Tampen Slide, which is continuous across the entire strike section 

(Fig. 4.5B). This reflection is interpreted as a repetition of the Top Tampen Slide 

horizon as a result of the upward and basinward displacement of sediments affected 

by compressional deformation.

The distal margin is not fully imaged by the seismic data available for this 

study (position indicated in Fig. 4.4), but it was reported by Fasrseth and Sastersmoen 

(2008) that the distal margin as defined from the bathymetry data (labelled on Fig.

4.3) corresponds to a ramping up of the detachment surface through 250 m at an angle 

of 30° to follow the Base Tampen Slide horizon for a further 15 km in the downslope 

direction. The ramp is associated with fault-bend folding affecting the seabed which 

has subsequently been partially eroded (Faerseth and Saetersmoen 2008).

4.5.1 Up-dip correlation

Having delimited and characterised the compression zone, is it possible to correlate 

the observed deformation up-dip and link it genetically with further, more proximal 

slope failure features in order to fully define a discrete mass wasting unit? All of the 

previously described deformational features detach into a common horizon, clearly 

identified from the various 2D profiles (e.g. Fig. 4.4). From correlation across the 2D 

grid this detachment horizon is continuous across the study area (Figures 4.6 & 4.7). 

This horizon is identified as INS2, a reflection that occurs in Naust subunit S, 

deposited between 420 -  380 ka (Haflidason et al. 2004; Berg et al. 2005; Bryn et al. 

2005a). INS2 is reportedly a regional reflection which can be confidently tracked into
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Figure 4.6. Composite seismic dip-profile taken through the study area showing the position and continuity of the basal detachment 
horizon which links the headwall area of the Storegga Slide to the distal margin of the compression zone. The basal detachment 
horizon is recognised as the regional reflector INS2 (indicated by continuous black line; Haflidason et al. 2004; Berg et al. 2005; Bryn 
et al. 2005a). Location shown in Fig. 4.2.
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Figure 4.7. Contoured time structure map of the horizon INS2, based on the 
interpretation of 2D seismic lines, which forms the basal detachment horizon of the 
compression zone. The map illustrates the extensive nature and high level of 
confidence in the interpretation of the reflector. Contours are every 50 ms. The 3D 
seismic survey PL251 is shown by the black rectangle and the approximate outline of 
the compression zone is indicated by the continuous black line.
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the area covered by the 2D data, and east, towards the Storegga Slide main headwall 

(Fig. 4.6; Haflidason et al. 2004; Berg et al. 2005; Bryn et al. 2005a). The dip of INS2 

shallows basinwards, from a maximum dip of 13° in the vicinity of the headwall 

scarp, to just 0.3° in the distal region of the compression zone, although localised 

variations are observed (Fig. 4.6). Figure 4.7 shows a time structure map of the INS2 

reflector which has been interpreted across part of the 2D seismic grid. The figure 

illustrates the high degree of continuity and broad extent of the horizon. In the 

headwall region, it can be seen on a 3D dip-profile to be a high amplitude, continuous 

and undeformed reflection underlying proximal mass wasting deposits in the main 

headwall area (Fig. 4.8A).

The sediments overlying the basal detachment surface show a change in 

character up-dip of the compression zone, at a distance of c. 30 km upslope of the 

distal margin. This transition is defined by a marked change in the character of the 

seabed lineations which characterise the compression zone. Up-dip, they exhibit 

relatively lower relief, as can be seen from the bathymetry data (Fig. 4.3) and 

representative 2D seismic dip-profiles shown in Figures 4.9 and 4.10. The cross- 

sectional character of the seabed in this region along with the change in character of 

the underlying sediments show a progressive increase in the degree of deformation, 

and decreasing thickness above the basal detachment horizon in the landward 

direction (Fig. 4.3, 4.9 and 4.10).

Deformational features in the subsurface are identified from offsets and 

geometries of sufficiently well-imaged horizons, along with the characteristics of the 

seabed. The deformational feature to be identified from the 2D profile shown in 

Figure 4.9 is a thrust fault pair and pop-up block, which corresponds to a broad, 

upward convex (positive) seabed feature (Fig. 4.9A). The next deformational feature
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along in the proximal direction is interpreted as a pair of normal faults and associated 

graben block, with horizons exhibiting normal offsets within a zone which 

corresponds to a locally depressed, relatively flat area of the seabed (Fig. 4.9A & B). 

Increasingly in the proximal direction, further graben blocks are identified, most 

tellingly from a sequence of strong, continuous reflections close to the detachment 

surface, which show several sharply defined structureless zones (labelled on Fig. 

4.9B). Correlation of the boundaries of such zones to corresponding sections of the 

seabed reflection which are depressed and flat-lying define inward-dipping geometries 

within which some reflections can be seen to be displaced downwards (Fig. 4.9B). 

With increasing distance in the proximal direction, the interpreted graben blocks show 

increasing distance between the individual detachment points of the faults within each 

pair (Fig. 4.9B). The average spacing of the fault pair detachments in this region is 2.3 

km. Horst blocks are interpreted from the presence of intervening zones of relatively 

undeformed, bed-parallel reflections bound by outward dipping flanks (Fig. 4.9B).

Continuing in the landward direction, a further change in the character of 

deformation is noted (Fig. 4.10A). The sediments here show a similar degree of 

deformation as seen in the previous profile (Fig. 4.9). Where horizons are imaged 

with a sufficient degree of coherence and continuity, a series of ridges and occasional 

offsets are observed, associated with inclined segments of the seabed, the majority of 

which dip landward (labelled in Fig. 4.1 OB). In planview, this configuration 

corresponds to the broad, low relief seabed lineations which characterise the area up- 

dip of the distal region (Fig. 4.3). Laterally discontinuous, inclined and deformed 

reflections define systematic inclinations and offsets of reflections throughout the 

succession above the detachment horizon (Fig. 4.1 OB), which in combination with
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Figure 4.8. A: 3D seismic dip-profile through Storegga Slide headwall R which is 
linked to the compression zone by the detachment horizon INS2 (location shown in 
B). B: Seabed dipmap from within the 3D survey Ormen Lange (location shown in 
Fig. 4.2). Note the position and dip of INS2, and the relatively thin, chaotic mass 
wasting deposits which overlie it basinward of the headwall. The planform trend of 
the headwall, distribution and highly disaggregated nature of the mass wasting 
deposits is evident from the seabed dipmap.
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Figure 4.9. 2D seismic dip-profile through the region of less pronounced seabed 
lineations some 30 km up-dip of the distal margin. A: Uninterpreted profile. B: 
Interpreted profile. Note the progressive thinning of the sediments overlying the basal 
detachment horizon in the landward direction, and succession of deformational 
features which shows upwardly displaced pop-up blocks imaged in the NW extreme 
of the profile being succeeded by increasingly deformed fault blocks which have been 
displaced downwards by fault pairs which show normal offsets. The downward- 
displaced blocks are interpreted as graben blocks. H: Horst block. Location shown in 
Fig. 4.3.
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Figure 4.10. 2D seismic dip-profile taken through the region 40 km up-dip of the distal margin, where a further change in the 
character of the deformation is observed. A: Uninterpreted profile. B: Interpreted profile. Note the systematic offset and inclination of 
marker horizons which in conjunction with similarly inclined and offset segments of the seabed define landward-dipping extensional 
faults which in many cases affect the entire thickness of the sediments above the detachment horizon. Seabed offsets are indicated by 
arrows. H: Horst block. Location shown in Fig. 4.3.
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corresponding segments of the seabed reflection have been used to interpret the 

position of extensional faults which affect the full thickness of the succession above 

the detachment horizon (Fig.4.10B).

Measurements of fault heights and angles have been taken from selected 

examples, which recorded values of 30 -  40°. An upward-tapering, discrete zone of 

relatively coherent material featuring relatively undeformed, sub-horizontal 

reflections separated from surrounding material by outward-dipping margins at angles 

39° - 41° is interpreted as an intact block of material (labelled ‘H’ on Fig 4.1 OB). The 

geometry of this feature appears incompatible with typical translated slide blocks 

which are generally elongate along their downslope axis and show evidence of shear 

deformation at the base (chapter three, section 3.5.3c). Rather, the geometry of this 

feature is reminiscent of the horst blocks described from the previous profile (Fig. 

4.9B), and is therefore interpreted as such. The horst block is flanked both up- and 

downslope by oppositely-inclined fault blocks bound by normal faults, which may 

represent partial failure of the horst block itself (Fig. 4.1 OB).

Furthermore in the up-dip region, two N- S trending laterally confined zones 

of relatively low relief seabed are identified, and found to correspond to zones of 

structureless, low amplitude facies in seismic section (Fig. 4.3). These are interpreted 

as sediment ‘pathways’ along which highly disaggregated material may have passed 

(evidenced by seismically structureless character) as further failure material was 

released downslope during the same phase of deformation as the compression zone, or 

by subsequent phases which originated from the southern section of the Storegga 

Slide main headwall area.
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4.5.2 Headwall region

The basal detachment horizon can be correlated up-dip from the compression zone 

into the headwall area of the Storegga Slide (Fig. 4.6). It can be seen that the 

detachment horizon is associated with a seabed scarp of c. 200 m height (Fig. 4.6, 4.4 

& 4.8B). The scarp is a laterally continuous feature previously named ‘headwall R’ of 

the Storegga Slide (Fig. 4.3; Bryn et al., 2005a). In planview, the headwall exhibits a 

general trend from NNE -  SSW and comprises two arcuate salients (Fig. 4.3). In the 

immediate vicinity of the headscarp, the mass wasting deposits above the detachment 

horizon are thin and highly disaggregated in character (Fig. 4.8A). These deposits are 

partially imaged by the 3D survey Ormen Lange (Fig. 4.2), from which a dip-profile 

is shown in Figure 4.8A. On the dip-line, the proximal deposits are characterised by a 

40 - 60 m thick, low amplitude, structureless seismic facies unit underlain by the basal 

detachment horizon. A seabed dip-attribute map taken from the 3D survey area 

illustrates the corresponding small-scale irregularity of the seabed (Fig. 4.8B). The 

broader scale presence of similar mass wasting deposits in the headwall region is 

inferred from the bathymetry data which exhibits a low relief signature in the 3D 

survey area, and out-with to the south (Fig. 4.3).

4.5.3 Slide blocks 

4.5.3a Translated slide block

Thirty kilometers downslope from headwall R, a large elliptical body defined by a 

distinctly rough seabed character from the bathymetry data (Fig. 4.3) corresponds in 

seismic section to a conspicuous high amplitude zone (Fig. 4.6 & 4.11). Areas of 

relatively higher amplitude and reflectivity in seismic profile may be used to indicate 

a higher degree of intact material, and therefore are likely to represent areas which
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Figure 4.11. 2D seismic dip-profile taken through a conspicuous zone of high seabed relief some 30 km 
downslope of headwall R. Note the character of the seabed and the position of the detachment horizon. 
Internally, many laterally discontinuous segments of high amplitude reflections are observed, often forming 
discrete packages. The packages are interpreted as deformed blocks of material forming a larger translated and 
partially disaggregated block. Location shown in Fig. 4.3.
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have experienced a lesser degree of deformation and disaggregation compared to 

relatively low amplitude, structureless areas (Brown 1999). Internally, the body 

features numerous coherent, continuous and inclined high amplitude segments of 

reflections (Fig. 4.11) including discrete packages of laterally continuous and 

concordant, stacked reflections. These packages are interpreted as relatively intact 

blocks of slide material which have not undergone extensive disaggregation (chapter 

three, section 3.5.3c). The high amplitude zone as a whole is interpreted as a large, 

partially disaggregated intact slide block, which has experienced locally varying 

degrees of internal deformation as a result of downslope translation. This agrees with 

the interpretation of Bryn et al., (2005a), who labelled it ‘slide block R’, which we 

adopt here. Slide block R measures some 50 km in breadth, and 28 km along its 

downslope axis, comprising an area of c. 795 km (Fig. 4.3).

4.5.3b Remnant slide bodies

Two further distinctive seabed features occur in close proximity to the compression 

zone, situated along its northern lateral margin (labelled ‘T l’ and ‘T2’ on Figure 4.3). 

The most proximal feature is seen from the bathymetry data to be defined by an area 

of notably irregular seabed topography (Fig. 4.3), forming a down-slope elongate, 

downslope-tapering feature 31 km long and 11 km wide. In 2D seismic profiles the 

irregularity of the seabed is apparent, exhibiting up to 30 m of positive relief (Fig. 

4.12). Internally, the succession above the detachment horizon is clearly divisible into 

two units based on the seismic facies characteristics (Fig. 4.12). Immediately above 

the detachment horizon, a 230 m thick low amplitude package of coherent, relatively 

undeformed reflections is observed. The unit is succeeded by a 180 m thick relatively 

high amplitude chaotic unit defined at its base by a continuous horizon (indicated on 

Fig. 4.12). The upper unit includes many discontinuous, high amplitude segments of
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Figure 4.12. 2D seismic strike-profile through a zone of irregular seabed topography 
located c. 30 km up-dip of the distal margin of the compression zone. Notice the 
seabed character and basal detachment horizon. The intervening sediments are clearly 
divisible into two differing seismic facies, with low amplitude, continuous, layered 
reflections being succeeded by high amplitude, chaotic facies which are interpreted as 
Tampen Slide deposits. The feature as a whole is interpreted as an intact block of pre
slide stratigraphy which is rooted to the underlying strata and has not been translated. 
Location shown in Fig. 4.3.
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reflections (Fig. 4.12). Whilst the upper unit has many characteristics typical of mass 

wasting deposits (chapter one, section 1.4), the underlying sequence of relatively 

intact reflections suggests the presence of a localised intact block of material which 

has been unaffected by mass-wasting. Further 2D profiles show that the block appears 

to be rooted into underlying stratigraphy with no evidence of shear deformation at its 

base, and as such it is interpreted to be a remnant block of intact, pre-failure 

stratigraphy as opposed to a block of translated mass wasted material. The mass 

wasted unit forming the upper part of this feature has been interpreted as a remnant 

outlier of Tampen Slide deposits by previous studies (Haflidason et al. 2004; Bryn et 

al. 2005a), and is hereinafter referred to as ‘T1 ’ (Fig. 4.3).

The second, more distal seabed feature occurs in close proximity to the 

downslope termination of the compression zone (Fig. 4.3). This feature is also defined 

by an area of raised, irregular seabed topography identified from the bathymetry data, 

and is circular in planform, measuring 17 km across in the downslope direction and 

15 km along slope. 2D seismic lines taken through this feature illustrate the highly 

irregular character of the seabed which exhibits up to 50 m of relief (Fig. 4.13 A). Like 

Tl, the underlying sediments can be divided into two distinct units based on seismic 

facies characteristics, with a relatively low amplitude, 360 m thick lower unit which in 

dip-profile can be seen to be characterised by laterally continuous, relatively coherent 

reflections overlying the detachment horizon (Fig. 4.13 A). In profiles of differing 

orientation however, the low amplitude nature of this unit renders its appearance 

structureless. The upper unit is 230 m thick and defined at its base by a high 

amplitude, continuous but deformed reflection (Fig. 4.13 A). Internally, it is 

characterised by numerous high amplitude, deformed and discontinuous reflections, 

indicative of a high content of disaggregated material. Such characteristics are
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diagnostic of a mass wasted deposit, and the continuous underlying horizon is 

interpreted as the basal detachment horizon (Fig. 4.13B). This feature is therefore 

similarly interpreted as an outlier of intact pre-failure stratigraphy overlain by Tampen 

Slide deposits, and is herein referred to as ‘T2’ (Fig. 4.3). T2 is closely juxtaposed 

with the northern margin of the compression zone, which is locally represented by a 

fault which dips at approximately 56° (Fig. 4.13A). The Tampen Slide shows a 

dramatic thickness change across the margin of the compression zone (Fig. 4.13B), 

within which it is notably thinner than in the T2 area. At the seabed, T2 is affected by 

along-slope continuations of the seabed lineations which characterise the distal region 

of the compression zone (Fig. 4.3). Whilst T2 is interpreted as a rooted, remnant slide 

block, the Tampen Slide deposit, which comprises its upper section, has clearly been 

affected by contractional deformation.

4.5.4 Lateral margins

The lateral margins delimit the slope-parallel boundaries of a MWD (chapter three, 

section 3.5.2a), extending between the headwall and distal margin. The southern 

lateral margin of the compression zone marks a change from the relatively smooth, 

undeformed seabed of the North Sea Fan to the south, to the area affected by 

deformation within the compression zone event to the north (Fig. 4.3). Further up-dip, 

where the seabed shows a change in character from pronounced to more subtle 

lineations, the southern lateral boundary of the deformed sediments updip of the 

compression zone can similarly be delimited by the juxtaposition of deformed seabed 

character to the north versus undeformed seabed character to the south (Fig. 4.3). In 

this area, the sediments above the detachment horizon become increasingly deformed
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Figure 4.13. 2D seismic strike-profile through the lateral margin of the compression 
zone and area of irregular seabed topography located c. 10 km up-dip of the distal 
margin. Note that the sediments underlying the area of irregular seabed topography 
shows a clear division of seismic facies character, with the sediments immediately 
above the detachment horizon showing a low amplitude, continuous and layered 
character, and those closer to the seabed appearing high amplitude and chaotic. This 
feature is similarly interpreted as a remnant block which has preserved an outlier of 
Tampen Slide deposits. In this area, the northern lateral margin of the compression 
zone is represented by a steeply dipping fault across which the Tampen Slide deposit 
shows a marked change in thickness. Location shown in Fig. 4.3.
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until they are characterised by an almost structureless seismic facies, and a low relief 

seabed signature, which has been interpreted as a shear zone (Fig. 4.3).

The lateral margin delimiting the compression zone to the north is interpreted 

to correspond to the limit of the seabed lineations and encompasses T2, which is 

affected by along-slope continuations of the seabed lineations which characterise the 

distal region (Fig. 4.3). Further updip, the location of northern lateral margin is 

similarly identified from the limit of the seabed lineations and the southern boundary 

of T1 (Fig. 4.3). In the proximal region the southern lateral margin is delimited from 

the bathymetry data which shows a conspicuous linear feature interpreted to represent 

a break in seabed topography (i.e. a scarp) and can be linked between the southern 

lateral margin in the distal region of the compression zone and the headwall (Fig. 4.3). 

The northern lateral margin is less distinct in the proximal region and in the present 

study has been interpreted to encompass the large translated slide block R (Fig. 4.3), 

and is tentatively correlated across a broad region of low relief seabed to the southern 

salient of the headwall (Fig. 4.3).

4.6 3D seismic interpretation

Detailed insight into the deformational structures within the compression zone event 

can be gained from the 3D survey PL251 which images an area along the southern 

lateral margin (Fig. 4.2). The lateral margin is represented by the boundary of a 

seabed depression characterised by irregular seabed lineations which trend NW -  SE, 

interpreted as along-slope continuations of the diagnostic seabed lineations associated 

with the compression zone (Fig. 4.14A). The section of the lateral margin imaged by 

the 3D data exhibits a general NW-SE trend which is convex to the SW (Fig. 4.14A).
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Figure 4.14. A: Annotated seabed dip-map from a the 3D survey PL251, which images a section of the southern lateral margin of the 
compression zone some 40 km up-dip of the distal margin. Note the trend of the lateral margin (indicated by bold dashed line), and presence 
of further seabed features including two lobe-like depositional features immediately to the south, closely-spaced SSE-NNW trending 
lineations in the NW quadrant of the survey area, and rough character of the seabed basinward of the compression margin. Location of the 
PL251 3D survey shown in Fig. 4.2. B: 3D seismic dip-profile through the compression zone lateral margin. Note the undeformed 
succession basinward of the lateral margin, which features the Tampen and More Slides and a continuation of the basal detachment horizon. 
The lateral margin is represented by a thrust fault and is succeeded in the proximal direction by a series of further thrust faults, planar 
normal faults and finally listric normal faults, representing a mixture of contractional and extensional deformation showing an increasing 
degree of deformation in the proximal direction. Note the presence of the shear zone in the SE extreme of the section. Location shown in A.
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A 3D seismic dip-line, shown in Figure 4.14B, reveals that in seismic section, the 

margin corresponds to a clear change from undeformed strata downslope, to 

disrupted seismic facies units upslope. At its most distal extent within the 3D survey 

area, the lateral margin is represented by a thrust fault (Fig. 4.14B), across which 

marker horizons are offset in a reverse sense by up to 140 m. Landward of the 

marginal thrust, a series of deformational styles are observed, whereby thrust faults in 

the vicinity of the margin are succeeded by normal faults, followed by a zone of 

increased deformation in which it is possible to identify several large listric normal 

faults representing a zone of more disorganised extension (Fig. 4.14B).

As this is exactly the sequence of deformation recorded from the central 

region of the compression zone imaged by the 2D data, a brief exploration of the 

analogous features imaged by the higher resolution 3D data follows. 3D mapping of 

key horizons such as the basal detachment and stratigraphic marker horizons allows 

the internal details of the structures to be examined across a continuous area as 

opposed to intermittent cross sections as is the case with areas covered only by 2D 

data. The following section is described with reference to time structure and attribute 

maps shown in Figure 4.15, and images taken from a coherency volume generated for 

the compression zone area, shown in Figure 4.16.

4.6.1 Thrust faults

Landward of the marginal thrust are a series of faults which are identified from 

systematic offsets observed throughout the succession (Fig. 4.17 A), all detaching into 

the same horizon previously identified as the basal detachment associated with the 

broader compression zone. In the vicinity of the marginal thrust, a series of seven 

thrust faults are observed, occurring in pairs of opposite verging dip which
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Figure 4.15. A: Dip-map of the basal detachment horizon INS2. Note NW-SE 
trending lineations which mark detachment points of the fault pairs (labelled). Also 
note the sharply defined lateral margin of the compression zone and dark-shaded area 
which represents highly disaggregated material within the shear zone (both labelled). 
B: Acoustic amplitude map of the basal detachment horizon. Note lateral margin, fault 
detachments and shear zone which can all be delimited from the amplitude signature 
(all labelled). C: Time structure map of the Base More Slide horizon, showing 
planform characteristics of the lateral margin, thrust faults, normal faults and fault- 
bound blocks. Tracking of the marker horizon is difficult in the proximal direction as 
the intensity of the deformation increases. Mapping of horizons within the shear zone 
was not possible. Location shown in Fig. 4.14A.
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Figure 4.16. Slices from a coherency volume generated from the 3D survey P1251. 
Areas of light shading represent a high degree of coherency (e.g. relatively little 
deformation), and areas of dark shading indicate where coherency is low (i.e. 
relatively high degree of deformation). The lateral margin, faults, fault bound blocks 
and shear zone can all be clearly determined at various levels within the area of 
interest. A: Coherency slice taken at a depth of 2150 msTWT; B: 1850 msTWT, and 
C: 1850 msTWT. Note presence of small ESE-WNW orientated lineations which 
cross-cut the three most distal thrust fault bound blocks (labelled in B). Also note that 
slip-sense along the thrust and normal faults is predominantly dip-slip, with no 
evidence of for strike slip deformation. Location shown in Fig. 4.14A.
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varies from 30° to 60° (Fig. 4.17A). In cross section perpendicular to fault strike, the 

fault pairs detach at a common point (Fig. 4.17A), and define laterally continuous 

upwardly-displaced fault blocks which taper downwards towards the detachment 

surface and are interpreted as ‘pop-up’ blocks. The fault pair detachments are 

regularly spaced (average 1.43 km), and show a range of orientations from 158° -  

178°. Proximal faults were observed to be slightly steeper (by 12° on average) and 

have greater throw values (by 4 m on average) than the distal bounding faults. Fault 

heights range from 690 -  1139 m, with distal faults on average more than 200 m 

greater in height than their proximal partners. Within some examples of the pop-up 

blocks, reflections exhibit convex-upward geometries interpreted as evidence of 

folding (Fig. 4.17A). The presence of intervening ‘horst blocks’ is interpreted from 

zones between the pop-up blocks which show much less evidence of deformation and 

displacement (labelled in Fig. 4.17B). The horst blocks are in the range of 1550 -  

1650 m wide across the base (i.e. at the detachment horizon level).

Closer examination of the Base More horizon time structure map (Fig. 4.15C) 

and coherency data taken from the zone of thrust fault pairs (Fig. 4.16) reveals a 

subtle series of narrow, linear features trending ESE-WNW, which cross cut the zone 

of thrust faults and pop-up blocks. A representative seismic profile taken parallel to 

the strike of the thrust faults shows the planview features to correspond to a series of 

normal faults which detach into the same horizon as the thrust faults and affect the 

entire succession up to and including the seabed (Fig. 4.18). Eleven such faults are 

observed to cross cut the zone of thrust fault pairs, bisecting both footwall and 

hanging wall of the three pairs of thrust faults which follow the frontal thrust (Fig. 

4.18A). The cross-cutting faults can be traced for a lateral distance of up to 6.5 km 

and trend between 118° and 125°. They are spaced an average of 0.53 km apart, dip at
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Figure 4.17 (above). 3D seismic dip-profiles to illustrate the character of the 
deformational structures in detail. A: Uninterpreted profile showing the lateral margin 
and series of thrust fault pairs. B. Interpreted profile. Note the upward displacement of 
the fault bound blocks and intervening ‘horst’ blocks (labelled ‘H’). C: Uninterpreted 
profile showing the series of planar normal fault pairs and graben blocks. D: 
Interpreted profile. Note increasing downward displacement of the graben blocks and 
intervening horsts (labelled ‘H’). BT: Base Tampen Slide, BM: Base More Slide.
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Thrust fault pairs

Lateral margin

Lateral margin

Figure 4.18. A: Base More Slide time structure map showing planform character of 
ESE-WNW trending planar normal faults (indicated by solid black lines) which cross
cut the thrust faults pairs. Location shown in Fig. 4.15C. B: Uninterpreted 3D seismic 
traverse through the zone of cross-cutting planar normal faults. C: Interpreted profile. 
Note undeformed succession basinward of the lateral margin and position basal 
detachment horizon. SB: Seabed; TT: Top Tampen Slide horizon; BT: Base Tampen 
Slide horizon; BM: Base More Slide horizon; D: Detachment horizon. Location 
shown in Fig. 4.15C.
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between 45° and 56°, exhibit throw values which vary between 20 and 100 m, and 

fault heights varying from 937 m to 1108 m (Fig. 4.18C).

4.6.2 Planar normal faults

Landward of the thrust faults a series of six further fault pairs, which in this case 

exhibit normal offsets, are interpreted as planar normal faults (Fig. 4.17C & D). The 

fault pairs initially detach at a common point on cross sections taken perpendicular to 

strike, but increasingly proximal fault pairs show an increasing degree of separation 

between the position of their individual detachment points (Figs. 4.15 A, 4.15B, 4.17C 

& 4.17D). The fault pairs show opposing dip sense and range in inclination from 26° 

to 63° and a range of throw values from 0 to 140 m. Proximal faults are less-steep 

than their distal partners and show lower throw values (average differences of 3° and 

9 m, respectively).

The normal faults pairs are regularly spaced (average 1.48 km), and define 

laterally continuous, downward-tapering blocks which have been displaced 

downwards, and are hence interpreted as grabens (Fig. 4.17D). The grabens are 

laterally continuous and strike between 160° -  170° (Fig. 4.15C). Fault heights vary 

from 512 to 1183 m, with distal faults on average 185 m greater in height than their 

proximal equivalents. Examination of coherency data reveals that there is no element 

of strike-slip displacement along the normal faults and there is no planform evidence 

of strike-slip deformation such as splays, pull-aparts or reidel structures (Price and 

Cosgrove 1990; Fig. 4.16). The degree of general deformation exhibited by the 

sediments increases landwards, reflected in the grabens by increasing displacements 

and the distance between the detachments of the individual faults within each pair 

(Fig. 4.9). The sheared zone (Fig. 4.3) encroaches upon the normal faults and the
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grabens increasingly in the landward direction (Fig. 4.15A, 4.15B & 4.16). The 

intervening ‘horsts’, which show no evidence of internal deformation or shear 

deformation at the detachment horizon become increasingly narrow upslope, with 

basal widths of between 1450 and 1500 m (Fig. 4.17D).

4.6.3 Zone of increased deformation

Landward of the most proximal planar normal fault pair, the sediments within the 

compression zone become noticeably more deformed (Fig. 4.14B). Combining the 

configuration of sufficiently coherent and continuous reflections, systematic zones of 

disruption throughout the succession, seabed character and time structure and attribute 

maps, it is possible to interpret further ‘horsts’, and normal faults (Fig. 4.14B). The 

faults in this region exhibit both planar and listric geometries in dip-section and occur 

individually (as opposed to in pairs). Remaining horst blocks appear narrower than 

more distal examples, and exhibit internal deformation (Fig. 4.14B). Seven irregularly 

spaced listric normal faults have been identified from the 3D data, with dips ranging 

from 30° to 39°, and have throw values ranging from 80 to 280 m. Two horst blocks 

are interpreted, and along with faults strike between 150° -  158° (Fig. 4.15C). It is 

possible that further faults and horsts are present in this area, but are difficult to 

identify due to the increasing disaggregation of the sediments which they affect.

Deformation and remoulding of the sediments becomes increasingly intense 

upslope, and in the most proximal (SW) end of the profile shown in Figure 4.14B, the 

material above the detachment surface is almost completely structureless and is 

interpreted as a continuation of the shear zone identified updip of the southern margin 

of the compression zone using the 2D and bathymetry data (this chapter; section 

4.5.4). The extent of the shear zone within the area covered by the 3D survey PL251
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can be clearly delineated from the coherency data, where it is represented by dark- 

shaded, textured areas representative of the highly disaggregated nature of the 

material (labelled on Fig. 4.16). Less disrupted material appears lighter and smoother 

(labelled in Fig. 4.16A). Further details on the origin and application of coherency 

data can be found in (chapter 1, section 1.4).

4.7 Summary of interpretations

4.7.1 Identification of a frontally confined submarine mass wasting deposit

It has been shown that the area of the Storegga Slide complex historically referred to 

as the ‘compression zone’ can be linked updip to a number of other geological 

features across a basal detachment horizon. Deformed sediments up to 640 m thick lie 

above the basal horizon which can be correlated continuously updip over a distance of 

some 135 km to the headwall area of the Storegga Slide where it is associated with the 

headwall historically referred to as ‘headwall R’. In the present study the compression 

zone is therefore interpreted as a confined distal region of a large submarine MWD, 

and therefore constitutes a frontally confined element of the pre-dominantly frontally 

emergent Storegga Slide. This interpretation has been made on the basis of: 1) the 

extreme thickness of the distal region, which is considered a major controlling factor 

in the eventual development of frontally confined event as opposed to a frontally 

emergent example (Frey Martinez et al. 2006); 2) the configuration of the distal 

region which is organised into a series of regularly spaced, large scale compressional 

faults and folds; and 3) the relatively limited translation (i.e. 4%) inferred by the 

degree of shortening calculated from the distal region, and close proximity of
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remnant, untranslated slide bodies (Frey Martinez et al. 2005, 2006). For simplicity, 

this confined MWD is hereinafter referred to as the ‘Confined Storegga Slide’ (CSS).

Identification of primary constraining features including the headwall, distal 

margin and lateral margins, all linked across a continuous basal detachment horizon 

has allowed the full extent of the CSS to be constrained, and it is outlined as such in 

Figure 4.19. The total section length of the CSS is 135 km, with a thickness which 

varies between 40 m in the vicinity of the headwall scarp and 640 m in the vicinity of 

the distal margin. The total area defined in the present study is 3510 km2, which 

corresponds to a volume of approximately 1,227 km , reflective of the great thickness 

of the sediments in the distal region. To provide some context, the total area affected 

by the Storegga Slide (including areas of erosion and deposition), and total volume of 

material removed have been estimated as 95,000 km2 and 2500-3500 km3 

respectively (Bryn et al. 2005a). Slide bodies T1 and T2 are interpreted as ‘remnant’ 

slide blocks (i.e. unfailed and untranslated) on the basis of their lack of internal 

deformation and clear rooting into the underlying strata (Frey Martinez et al. 2005; 

chapter three, section 3.5.3c). Slide block R is interpreted as an intact block of failed 

material which has been translated within the CSS, based on the degree of observable 

disaggregation and lack of rooting (Fig. 4.11).

4.7.2 Distribution of deformation and kinematic indicators

A clear succession of deformational styles is observed from the distal and updip 

regions of the CSS, with thrusts in the distal region being succeeded by normal faults 

and grabens, then further, more disorganised extension in the form of degraded horsts, 

planar normal faults and listric normal faults with increasing proximity (Figs. 4.4,
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4.11 & 4.12). The distribution of these deformational styles is summarised on Figure 

4.19.

Along the southern margin of the Storegga Slide, up-dip of the distal region, a 

shear zone has developed within which material is highly deformed and disaggregated 

to the point of being structureless in seismic section (Fig. 4.14B). The broad extent of 

the shear zone can be confidently mapped north of the southern lateral margin based 

on the 2D seismic profiles, but to the east can only be inferred from the character of 

the seabed using the bathymetry data (Fig. 4.3). The outline of the shear zone as it has 

been interpreted in the present study is shown in Figure 4.19.

In the area covered by the 3D survey PL251 (Fig. 4.2), a series of normal 

faults which cross cut the thrust faults associated with the compression zone were 

identified (Fig. 4.18). The crosscutting nature of the faults suggest that they post-date 

the formation of thrust faults and therefore represent a second phase of deformation 

which resulted in extension to the NE (Fig. 4.19).

The gross general transport direction of the CSS can be constrained given the 

presence of primary kinematic indicators which are the headwall, distal margin and 

lateral margins (chapter two). Kinematic indicators are summarised in Figure 4.19, 

with primary kinematic indicators represented by bold arrows which point in the 

general transport direction suggested by their orientation. The combination of the 

primary elements suggests a general transport direction to the NW. In the distal region 

of the CSS, the transport direction can be further evaluated using the orientation of the 

distal margin and thrust faults, with the transport direction assumed to be 

perpendicular to the observed orientations (Farrell 1984; Ramsey and Lisle 2000; 

chapter two, section 3.5.3). In this case, the thrust faults in close proximity to the 

distal margin also suggest a transport direction to the NW (Fig. 4.19). Updip of the

4-45



Chapter Four The Confined Storessa Slide

Slide block R

Headwall R

Main headwall

□  Compression 

\  Thrust faults

□  Extension

□  Depleted proximal zone 

Extensional faults

PALAEO-SLOPE
DIRECTION

Later-stage
failure

Cross-cutting normal 
faults

Figure 4.19. Map to show the full extent of the Confined Storegga Slide, as 
constrained by the positions of the distal margin, lateral margins and headwall R. 
These features can be used to infer the main direction of transport of the event, which 
is indicated by bold arrows. The directional information imparted by features 
representative of the inferred later-stage deformation, i.e. sediment flow pathways and 
cross-cutting extensional faults, is indicated by grey arrows. DM: distal margin; LM: 
lateral margin.
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distal region, where the thrust faults are evidenced by broad seabed lineations, they 

exhibit a slightly different orientation, and suggest a transport direction to the W (Fig. 

4.19). This minor change in orientation is interpreted to be due to the ‘anchoring’ 

effect of the remnant body T2, which caused deviation of flow vectors towards the 

NW (Fig. 4.19).

Also indicated on Figure 4.19 are the positions and likely transport directions 

of ‘flow pathways’ which have been interpreted based on narrow zones of smooth 

seabed character and associated seismic profiles (Fig. 4.3). The pathways are 

represented by grey arrows which point in the inferred transport direction, and all 

identified pathways involve transport of material to the N - NW (Fig. 4.19). Given the 

superimposition of these pathways on the deformation described from the CSS (i.e. 

the seabed lineations), the pathways are interpreted as post-dating the formation of the 

broad NNW-SSE thrust faults which the seabed lineations represent, and therefore 

represent a later stage of slope failure as part of the Storegga Slide development. The 

pathways may have formed as part of the same later stage of deformation interpreted 

from the presence of the cross-cutting normal faults which affect the thrust faults 

associated with the distal region of the CSS, imaged by 3D survey PL251 (Fig. 4.19). 

The direction of material transport suggested by both the cross-cutting faults and the 

sediment flow pathways (i.e. to the N - NE) is broadly complimentary (Fig. 4.19).

4.7.3 Magnitude of translation

The amount of translation undergone by sediments within a frontally confined mass 

wasting unit can be constrained by the degree of shortening exhibited by the 

compressional deformation of sediments within the distal region (Frey Martinez et al. 

2006). In the CSS, it has been shown how numerous thrust faults deform the
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succession into a series of popped-up blocks and intervening horsts. Based on line- 

length balancing and bed-length measurement using the best positioned 2D profiles, 

the total amount of shortening has been calculated as c. 5 km, or 4% of the total 

undeformed length (this chapter, section 4.5). Other features can further be used to 

indicate the general degree of translation, including the presence of remnant slide 

blocks T1 and T2 which have not fully failed and undergone translation. The presence 

of such ‘rooted’ blocks was interpreted by Frey Martinez et al. (2005) to rule out 

extensive translation of sediments within a MWD.

4.7.4 Strain history

The remarkable succession of deformational styles recorded from the CSS associated 

with the compression zone is interpreted to be the result of two different phases of 

deformation: 1) compression as a result of the downslope translation of sediments 

within and updip of the compression zone, resulting in regularly spaced, well- 

preserved thrust pair-bound pop-up blocks and intervening undeformed horsts, and 2) 

the later development of extensional deformation as a result of removal of material 

originally involved in the formation of the compression zone during a subsequent 

phase of slope failure as part of the multi-phase Storegga Slide event.

Evidence for this is manifested as irregular extension observed throughout the 

sediments updip of the distal region of the CSS, sediment flow pathways indicating 

the removal of material to the north, and cross-cutting extensional faults along the 

southern lateral margin which indicate extension to the NE (Fig. 4.19). The effect of 

the later stages of slope failure and removal of material has resulted in increasing 

deformation in the landward direction manifested in the increasing ‘degradation’ of 

grabens and intervening horsts updip of the distal region (Figs. 4.9 & 4.10).
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Increasingly deformed grabens are succeeded upslope by a zone of increased sediment 

disaggregation and more disorganised extension, in the form of irregularly spaced 

planar and listric normal faults (Fig. 4.10). Direct evidence of later removal of 

material following development of the CSS is interpreted from the presence of 

sediment ‘pathways’ which cross cut the mid- and proximal regions (Fig. 4.3 & 4.19). 

The series of planar normal faults which were identified from the 3D data to affect the 

zone of thrust faults (Fig. 4.18), clearly cross cut the faults and associated fault 

blocks, evidencing a later phase of extension following the formation of the 

compressional deformation. The orientation of the cross cutting normal faults (NW - 

SE) and dip direction (NE), suggest an extensional regime orientated NE - SW with 

slip of material to the NE.

4.8 Discussion

4.8.1 Previous interpretations

The compression zone has been interpreted as the distal zone of a frontally confined 

submarine MWD, the Confined Storegga Slide, located in the mid-slope region of the 

predominantly frontally emergent Storegga Slide. Previous works on the compression 

zone are few in number, and begin with the efforts of Haflidason et al. (2004) and 

Bryn et al. (2005a) who identified and briefly considered the large-scale contractional 

deformation of the compression zone as part of a broad-scale characterisation study of 

the Storegga Slide complex seabed, aimed at determining the sequence of failure 

phases during the Storegga Slide.

Gafeira et al. (2007) provided the first detailed insight into the slope failure 

process of the southern flank of the Storegga Slide and applied the results of a
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morphological analysis of seabed elements based on the 3D survey PL251 to the 

broader-scale sequence of sliding in the area. The marginal area of the compression 

zone was briefly considered and the sequence of thrust and normal fault pairs was 

attributed speculatively to initial compression followed by extension and related 

extensional reactivation of some thrusts (Gafeira et al. 2007). The most recent and 

detailed study of the compression zone was conducted by Faerseth and Saetersmoen 

(2008), who like the present study, interpreted an ‘intact slump’ on the basis that the 

failed mass has moved along an upwards-concave rupture surface and showed a wide 

range of internal deformation.

The major difference in the interpretation of Faerseth and Saetersmoen (2008) 

and the present study is that the former concluded that the compression zone as it is 

observed today was formed by a single phase of slope failure with concurrent 

development of contractional and extensional domains. This was attributed to frontal 

buttressing against the distal margin, and changes in the velocity of dislocation and 

translation relating to the geometry of the basal detachment surface, respectively 

(Faerseth and Saetersmoen, 2008). Post-failure modification by subsequent slide 

phases was not considered. The outline of the slump interpreted by Faerseth and 

Saetersmoen, (2008) narrows upslope to suggest that the headwall occupies a laterally 

restricted zone downslope of the southern region of headwall ‘R’ and does not include 

the slide bodies T2 or slide block R.

Faerseth and Saetersmoen (2008) calculated that 14% shortening has occurred 

in the distal region of the compression zone by lateral compaction, based on a 

thickness comparison between the thrusted region versus the ‘original thickness of 

sediments in the westernmost part of the proximal segment’. In addition, ptygmatic 

folding interpreted to affect some 30 km of the up-dip region was concluded to
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contribute a further shortening of 14 km, resulting in a total shortening of 30 -  35 km 

according to Faerseth and Saetersmoen (2008). Evidence for compressional 

deformation up-dip of the compression zone was not identified in the present study, 

and as a result the latter has arrived at comparatively lower values of shortening (e.g. 

lower-end result of 5 km).

4.8.2 Frontally confined model

Considering the observations and interpretation made in previous sections, we can 

now present a model for the formation of the CSS, which also constitutes a revised 

interpretation for the compression zone, in the form of a scaled, schematic dip section 

from headscarp to distal margin (Fig. 4.20).

In frontally confined submarine mass wasting deposits, it is expected that the 

net accumulation observed from the distal region in the form of compressional 

deformation balances with depletion in the upslope realm of the failure which has 

occurred due to mobilisation and translation of the failed mass downslope (sensu 

Vames 1978; Frey Martinez et al. 2006). Evidence for the later-stage modification of 

the compression zone by subsequent phases of the Storegga Slide has been presented 

in the present study in the form of two separate stages of deformation. This 

interpretation can be further illustrated by Figure 4.20, where in the proximal region, 

overlying the basal shear surface is a relatively thin veil of structureless mass wasting 

deposits that is overly depleted in comparison to the distal region.

It is possible to reconstruct the likely sequence of events and volumetric 

changes by considering a number of time stages, summarised by Figure 4.21:

Step 1 (Fig. 4.21 A): Pre-failure conditions. The pre-failure slope template can 

be reconstructed based on the thickness, dip and configuration of intact sediments
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from landward of Storegga Slide main headwall, and basinward of the distal margin 

(Fig. 4.6).

Step 2 (Fig. 4.2 IB): Development of the CSS. Compressional strain as a result 

of the downslope displacement of the failed sediments would have been concentrated 

in the distal region. The well-preserved compressional deformation found within the 

distal zone yields shortening values of approximately 5 km, or 4%, which translates 

directly into the actual distance over which the failed sediments were displaced (sensu 

Vames 1978; Frey Martinez et al. 2006). It is expected that sediments in the proximal 

region of mass wasting deposits experience extension approximating to the amount of 

shortening observed from the distal region (i.e. 4%; Fig. 4.2IB). Slide block R, a large 

partially deformed slide block, is interpreted as having been translated as a large, 

intact element (Fig. 4.2IB) and it reasonable to assume that it has been translated over 

a distance of c. 5 km consistent with that calculated for the CSS as a whole.

Step 3 (Fig. 4.21C): Post-event modification. Restoration of the likely slope 

profile and distribution of deformation illustrated in the previous stage (Fig. 4.2IB) 

allow a comparison to that observed from the present day (Fig. 4.21C). A large 

volume of sediments have been eroded and removed by later phases of failure, most 

likely from the southern area of the Storegga Slide main headwall (Fig. 4.19). This is 

evidenced by intense and irregular extension in the up-dip region of the CSS, and 

sediment flow pathways superimposed upon it.

4.8.3 Relative timing

Establishing the exact timing of the thrust propagation within the compression zone 

relative to the Storegga Slide ‘phases’ is confused by the provenance attributed to the 

compression zone in the previous Storegga Slide studies. The first attempt to evaluate
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Figure 4.21. Scaled, schematic representation of various time-stages to illustrate 
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developed, with downslope translation accommodated in the form of mild depletion 
(i.e. 4%) in the proximal region, balanced by mild accumulation in the distal region 
(also 4%). Step 3: Later modification of the CSS due to slope failure as part of the 
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stage failure is shaded grey, to emphasize the contrast between the slope profile 
expected after development of the CSS, and the actual slope profile observed today. 
The volume of removed sediments is shaded grey. Location shown in Fig. 4.2.
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the various elements of the Storegga Slide was made using limited data by Bugge 

(1983), who recognised its composite nature and identified three individual events.

Halfidason et al. (2004) conducted the first detailed analysis of the 

morphological elements of the Storegga Slide seabed based on a multidisciplinary 

dataset, and concluded that five major slide lobes and almost 60 smaller slide debris 

lobe events attest to several key phases of failure, beginning with initiation of the 

Storegga Slide in the Brygge Formation oozes in the ‘lower headwall’ area and 

retrogressive upslope development (Figs 4.22A & 4.22B; Haflidason et al., 2004;

Bryn et al. 2005a). Failure later affected the central area of the present day Storegga 

Slide complex, with deep-seated failure affecting material in the Ormen Lange area 

(Fig. 4.22C), and leading to the deposition of blocky slide material (Haflidason et al. 

2004; Bryn et al. 2005a). This phase has since been referred to as ‘Lobe II’

(Haflidason et al. 2004; Bryn et al. 2005a), the extent of which is not dissimilar from 

the second or ‘central’ failure event of Bugge (1983). The compression zone is 

included in Lobe II, which is thought to represent the phase of failure which generated 

the Storegga Slide tsunami (Haflidason et al. 2004; Bryn et al. 2005a).

The large-scale deformation of the compression zone and correlation of the 

basal detachment horizon with a deep-seated failure plane in the headwall area were 

taken to be indicative of the ‘enormous momentum and energy released during this 

phase of the Storegga Slide’ by Haflidason et al. (2004), who assigned various 

parameters to Lobe II including an area of 20,278 km2, maximum volume of 780 km3 

and a run out distance of 410 km (Haflidason et al. 2004). The outline of Lobe II from 

a summary figure presented by Halfidason et al. (2004) clearly indicates its 

continuous downslope extent throughout the mid-slope region of the Storegga Slide
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(Fig. 4.22C). It is clear then, that along with the sediments involved in the CSS, Lobe 

II is further comprised by a frontally emergent element which would justify its further 

description as ‘erosive’, and as the ‘strongest single candidate to create the Storegga 

tsunami’ (Haflidason et al. 2004). These attributes clearly do not relate to the 

confined, relatively ‘in place’ deformation of the CSS. However, Haflidason et al.

(2004) did conclude that ‘Lobe II’ was later affected by ‘failed and disintegrated 

sediments’ during a subsequent phase of failure. In the later summary of the failure 

sequence by Bryn et al. (2005a), ‘deep erosion’ in the Ormen Lange area is charged 

with the development of further retrogressive failure sourced from an area of the main 

headwall in the south (Fig. 4.22E).

According to Bryn et al. (2005a), the collapse of further sediments from the 

central main headwall area resulted in the stage of failure attributed to Lobe II, and 

also initiated westward movement of slide block R which is deemed responsible for 

the compression observed from the distal region of the CSS. Doubt was shed on the 

established chronology by Gafeira et al. (2007), who identified that the lateral margin 

of the compression zone cross-cuts, and therefore post-dates minor compressional 

features to the south of the compression zone, previously interpreted as 

contemporaneous or later (Haflidason et al. 2004). The results of the present study are 

in general agreement with the sequence of slide phases in the southern area of the 

Storegga Slide, as laid out in Figure 4.22. The present study suggests that formation 

of the CSS (equivalent to ‘Lobe II’ of Haflidason et al. 2004, and the inferred west

wards movement of ‘Slide Block R’ of Bryn et al. 2005a) occurred prior to further 

failure from the southern main headwall. However, the findings of the present study 

suggest that a large volume of material was involved in the latter (Fig. 4.21C), in
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contrast to the previously interpreted minor volumes (Haflidason et al. 2004; Bryn et 

al. 2005a).

4.8.4 Timescale and tsunamigenic potential of the Confined Storegga Slide

A significant question which is often left open from the study of submarine MWDs is 

the actual time duration of the event, and the speed at which the failed sediments 

move downslope. An intuitive way of back-calculating the velocity of downslope 

translation is to look at studies based on the modelling of tsunamis’ generated by the 

specific MWD in question, since the structure and height of water waves generated by 

submarine slope movements are strongly dependant on the time-displacement history 

of the latter (Harbitz 1992). Previous studies which have modelled the tsunami 

apparently generated by the Storegga Slide have suggested velocities in the range of 

10-35 m/s (Harbitz 1992; De Blasio et al. 2003; Bondevik et al. 2005; Bryn et al. 

2005a). These estimates are based on a pseudo-simultaneous event however, 

considering the effect of several phases of retrogressive failure inline with the 

reconstructed ‘phases’ of the Storegga Slide.

Faerseth and Saetersmoen (2008) agreed with Schwarz (1982), who concluded 

that submarine MWDs are likely to translate downslope at speeds of 5 m/s or less. 

Faerseth and Saetersmoen (2008) further postulated that the cumulative total duration 

of translation and development of the associated deformation is likely to have been 1 

hour, and invoke two-stage model of progression involving a period of initial 

acceleration at the leading edge, followed by a more gradual slowing down. Given the 

absence of detailed real-time measurements from suitable analogues, high-resolution 

seismic stratigraphic or core-based dating, it difficult to ascertain whether or not such 

a short time scale for the formation of such large-scale and extensive deformation is
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accurate. Based on the deep-seated failure surface, limited downslope translation and 

‘anchoring’ effect of remnant slide bodies, the present study favours a model which 

involves slow and gradual acceleration followed by gradual deceleration. We 

speculate that given the extremely limited downslope translation of the failed mass 

involved in the Confined Storegga Slide, it was not possible for significant velocities 

(i.e. in the order of 35 m/s) to be obtained, and agree with Fasrseth and Saetersmoen 

(2008) that a figure of 5 m/s or less is more appropriate.

The main factors affecting the tsumigenic potential of a submarine mass 

wasting deposit are the volume and/ or thickness of the failed mass, and the initial 

acceleration (Haugen et al. 2005). Given the emphasis placed throughout this study on 

the notable thickness and volume of material involved in the Confined Storegga Slide, 

and indeed confined MWDs in general, such events could be considered to have high 

tsuamigenic potential. Conversely, the confined model suggest that with high 

thickness/ volume of failed material comes limited translation, as with the case of the 

Confined Storegga Slide and the interpretation of limited velocity and low initial 

acceleration. It is thought unlikely therefore that very large confined MWDs can ever 

overcome the inertial constraints to displace at speeds needed for significant tsunami 

generation.

4.9 Conclusions

• Using a combination of 2D and 3D seismic reflection data and bathymetry data, the 

area of the Storegga Slide historically referred to as the ‘compression zone’, has 

been shown to represent the downslope region of a discrete submarine MWD, 

informally named the ‘Confined Storegga Slide’.
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• Based on the deep-seated failure surface, steep frontal ramp, close association with 

‘pinned’ blocks of remnant pre-failure stratigraphy, and limited downslope 

translation, the Confined Storegga Slide has been interpreted as a ‘frontally 

confined’ submarine MWD, first identified by Frey Martinez et al. 2006.

• The Confined Storegga Slide has a section length of c. 135 km and varies in 

thickness from c. 40 m in the headwall region to 640 m in the vicinity of the 

downslope margin. A total area of 3,510 km2 is affected, corresponding to a
# o

sediment volume of approximately 1,227 km .

• Fault displacement analysis of over 30 pairs of thrust faults evident over 30 km of 

the seabed, based on 2D seismic lines, has shown that a total shortening of c. 5 km 

has occurred in the downslope region, which equates to the distance of downslope 

translation of the failed sediments.

• Analysis of up-dip 2D seismic data and 3D seismic has revealed the presence of 

later-stage extensional deformation and translation of sediments in a direction 

orthogonal to the Confined Storegga Slide, interpreted as the result of later stage 

failure as part of the multi-phase Holocene Storegga Slide.

• Comparison of scaled, schematic models of the likely pre-failure slope 

configuration and the present day conditions shows that a significant volume of 

material has been removed following the development of the Confined Storegga 

Slide.
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CHAPTER FIVE 

5.0 Summary and Discussion

5.1 Introduction

This project has used industrially acquired 2D and 3D seismic reflection data, with 

supplementary bathymetry data to conduct a detailed analysis of the architecture and 

structural elements of submarine mass wasting deposits from the Norwegian 

continental margin, with additional examples from the Levant margin. The integration 

of 3D seismic interpretation with a combination of other data types has allowed for 

thorough coverage of different examples of both recently formed, exposed mass 

wasting deposits, and older, buried examples. Following sections of this chapter will 

firstly aim to summarise the key scientific results of each core research chapter, and 

then assess the significance of the project results for various aspects of submarine 

mass wasting deposits and related topics. The previous chapters have been structured 

in three semi-independent units as a result of focussed investigation into the various 

questions that this research has attempted to address. The main aim of this chapter is 

to draw together the scientific results presented in the preceding chapters and revisit 

the objectives of this project in order to evaluate the contribution of the research 

presented. This chapter will then conclude with a discussion of the implications of this 

work for the economic and engineering geology of the areas affected by submarine 

mass wasting processes, and consider avenues of potential further work.
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5.2 Summary of results

5.2.1 Results from the development of a subsurface evacuation model for a 

submarine slope failure (chapter two).

Chapter two presented a focussed study of a discrete submarine MWD, buried 

beneath c. 200  m of overburden, which developed on the northern margin of the later 

Storegga Slide. The MWD in question, informally named the ‘South Voring Slide’ 

(SVS), was initially identified during regional mapping using the 2D and 3D seismic 

datasets, and identified as being non-typical based on aspects of its geometry and 

morphology.

The principal objective of chapter two was to conduct further geometrical and 

quantitative analysis on the SVS in order to explain its deviation from other examples 

of MWD’s found within the study area, and present a model for its development. An 

integrated 3D seismic approach was used to characterise the SVS and show that it 

could not be explained by a classical retrogressive model, often invoked to account 

for the development of mass wasting in fine-grained deposits from continental 

margins. The research presented in chapter two showed that the defining 

characteristic of the SVS is the high relative volume loss evidenced by a thinning of 

some 40%, seen with only modest extension in the downslope direction of only 4.5%.

In order to explain the volume loss and development of the SVS, a model 

involving the mobilisation of an approximately 40 m thick interval at the lower part of 

the SVS, and its removal from beneath a thin overburden which subsequently 

underwent extensional fragmentation was invoked. This implicated the liquefaction of 

a substantially thick fine-grained unit in the development of a submarine MWD for 

the first time. Chapter two highlighted a novel mechanism for the development of a
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MWD, and given its locality in a setting of prolific slope instability, it raises the 

possibility that liquefaction could have played a role in the development of further 

mass wasting events in the area. Furthermore, the findings of chapter two showed the 

power of 3D seismic data as a tool for the investigation of submarine MWDs, and 

very much supports the notion that 3D seismic data can be used to gain an improved 

understanding of the processes involved.

5.2.2 Results from a study of the kinematic indicators from submarine mass 

wasting deposits (chapter three).

Chapter three provided the first comprehensive compilation of all of the kinematic 

indicators which may be found from submarine MWDs. The aim of chapter three 

was to identify all of the various types of deformation structures and features 

associated with MWDs, and present them using a suitable classification scheme and 

illustrated, worked examples taken from the 3D dataset available for this project. A 

further aim was to develop recognition criteria for each feature using seismic data, 

and a workflow for their analysis in terms of kinematic information, so that the end 

results might find broad applicability for seismic interpreters working on MWDs in 

various settings and locations.

A classification scheme based on context within the MWD body was devised 

and used to catalogue the various kinematic indicators identified during initial 

reconnaissance mapping. The best examples resulting from this process were then 

chosen to illustrate each kinematic indicator type and presented in chapter three 

along with the results of further analysis conducted in order to deduce information 

pertaining to the direction and magnitude of transport, mode of emplacement, 

dominant mass wasting process or rheology.
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The results of chapter three further highlighted the use of 3D seismic data in 

the investigation of submarine MWDs, specifically as they provide large areal 

coverage which allows swift and confident evaluation of the direction of translation, 

and in many cases also allow the degree of translation of the displaced slide material 

to be constrained. Imaging of the basal shear surface, analysis of internal architectures 

and determination of transport direction are areas which have been shown to be of 

particular benefit.

5.2.3 Results from the identification of a frontally confined submarine slope 

failure in the Storegga Slide (chapter four).

Chapter four presented the results of a study which focuses on a large, 

contractionally-deformed marginal region of the Holocene-age Storegga Slide 

historically referred to as the ‘compression zone’. Following the recent identification 

of two end-member types of MWD toe zones, ‘frontally confined’ and ‘frontally 

emergent’, it was noted during reconnaissance mapping of the study area that the 

deformation style observed from the compression zone shares many common 

characteristics with the distal zones of submarine MWDs which are ‘frontally 

confined’. In order to test the frontally confined model, chapter four uses a 

composite dataset including 3D seismic, 2D seismic and bathymetry data to conduct a 

multi-scale interpretation of the compression zone and surrounding area.

Focussed interpretation within the traditionally delineated ‘compression zone’ 

was first of all carried out to characterise the deformation before the regional 2D 

seismic and bathymetry data were used to conduct a broad-scale correlation, with 

focus on the upslope (landward) direction. Several key features associated with 

MWD’s, including a distal margin, lateral margins, varying zones of deformation and
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a headscarp were identified and genetically linked across a laterally extensive basal 

detachment horizon, enabling a revised interpretation of the compression zone as a 

frontally confined submarine MWD, informally named the ‘Confined Storegga Slide’ 

(CSS), from within the predominantly frontally emergent Storegga Slide. 

Identification of primary constraining features has allowed an accurate estimation of 

the area, volume and degree of translation of the CSS. Focussed interpretation of the 

3D seismic data led to the identification of multi-stages of deformation, and 

construction of a scaled model to illustrate the formation of the CSS and a later stage 

of deformation and volumetric change.

5.3 Implications of research

Based on the summary of results from the core research chapters, three topics will be 

discussed further to develop themes which have arisen throughout the course of this 

project: development of the basal shear surface; the role of liquefaction in the 

development of submarine mass wasting events; and 3D seismic data and submarine 

mass wasting deposits: Quo Vardis?

5.3.1 The role of liquefaction in submarine mass wasting events

An interesting theme raised in this project (chapter two) is the role of liquefaction in 

the development of submarine slope failures. It appears that there are two ways in 

which the liquefaction of sediments is associated with slope failures: 1) the small 

scale liquefaction of relatively thin units (> 10 m) associated with the basal failure 

surface; and 2) liquefaction of relatively thick units (10’s of metres) which comprise a 

large portion of the failed mass. In the case of the former, features which form due to 

liquefaction including clastic dykes, sand volcanoes, loads structures and dewatering
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structures, have been reported from outcrop examples of submarine MWDs (e.g. 

Farrell 1984; Strachan 2002a & b). Such features, generally considered to represent 

‘in place’ deformation (Collinson 1994; Maltman 1994) are attributed to the 

liquefaction of sandy units which closely underlie the basal failure surface due to the 

imposition of unidirectional shear and/ or rapid loading during the emplacement of the 

MWD (Strachan 2002b).

On a larger scale, the results of chapter two show that liquefaction can play a 

more significant role in the development of slope failures. Where substantially thick 

or laterally continuous layers undergo liquefaction, they can constitute either a large 

proportion of the failed mass, or form an extensive basal lubrication layer. As 

discussed in chapter two, section 2 .6 , a type of onshore slope failure which occurs due 

to liquefaction is that of quick clay slides. These large-scale, destructive slope failures 

involve the liquefaction of substantially thick units of clay which flow rapidly and 

involve heavy depletion of the source areas (Bjerrum 1955; Rosenqvist 1966; Carson 

1977). The liquefied clay commonly constitutes the entire failed and translated mass, 

with only minor incorporation of the underlying substrate or overlying units 

(Rosenqvist 1966; Carson 1977).

The liquefaction of subaqueous sedimentary units was implicated by Wilson et 

al. (2004), who cited the liquefaction of a laterally extensive fine-sand contourite 

layer as being critical in the development of the 12 km long Afen Slide from the 

Faeroe-Shetland Channel. Whilst it has traditionally been thought that clay-rich 

sediments are not prone to liquefaction due to the high cohesion and platy nature of 

the minerals, there has been growing acknowledgement of its occurrence and the 

many factors involved following its recent implication in a number of onshore slope 

failures (Gratchev et al. 2006). The widespread occurrence of quick clay deposits and
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slope failures in glaciated onshore regions is testament to this. The liquefaction of 

clay-rich sediments in the submarine realm has been hinted at previously. Kerr (1962) 

and Edgers & Karlskrud (1983) noted that subaqueous slope failures have several 

characteristics in common with onshore quick clay slides, including the high mobility 

and long run out of fine-grained subaqueous units and ability to translate across 

extremely shallow slopes. The role of liquefaction in the Storegga Slide, along with 

the unexplained collapse of a borehole at a depth of 600 -  800 m below the seafloor, 

was discussed by Bugge (1981).

The present study has presented geometric and volumetric evidence for the 

large-scale liquefaction of a fine-grained unit in a subaqueous setting (the South 

Voring Slide (SVS); chapter two). The near complete removal of the liquefied interval 

has resulted in a heavily depleted and deformed slope failure unit remarkably 

reminiscent of the sites of onshore quick clay landslides. There are several key 

characteristics which set the SVS firmly apart from classical examples of submarine 

slope failures which involve the translation or transfer of material downslope over a 

basal shear surface. Such classical models involve large extensional offsets at the 

headscarp and high values of extension in the upslope region, which are balanced by a 

contractionally strained zone at the downslope margin. Thus, depletion in the upslope 

region is balanced volumetrically by accumulation in the downslope region, with 

minimal volume loss (c. 10%) due to porosity changes, dewatering and compaction, 

etc). This ‘end-member’ style of slope failure due to shear failure can be illustrated by 

the Israel Slump Complex (ISC) from the Levant margin, described by Frey Martinez 

et al. (2006).

The SVS represents a type of slope failure which differs markedly; the base of 

the SVS is defined by a horizon which lacks evidence of shear failure, and which,
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aside from a thin residuum of the mobilised material, is directly overlain by the 

fractured and extended overburden which forms the top surface. As such, the base of 

the SVS can be likened to a ‘weld’, whereby mobile material has been removed 

between two interfaces which are now juxtaposed (Jackson et al. 1994). As opposed 

to minimal volume loss and maximal translation observed from classical models of 

submarine slope failures, volume loss in the case of the SVS is maximal, with an 

estimated 50% of the undeformed, pre-failure slope template removed during its 

development (chapter two). Despite the high volume loss which suggests a high 

degree of material transfer, the actual values of extension which would attest to this 

transfer are minimal. The SVS can therefore be placed at the opposite end of the 

spectrum of slope failure styles from classical shear failure types.

Interestingly, an example of a slope failure which can be placed between the 

two end member types, is that described by Davies and Clarke (2006) from the NE 

Atlantic margin. This particular slope failure, attributed to overpressure generation 

from the underlying silica diagenetic front, resulted in mobilisation of a basal unit and 

translation of the overlying coherent unit (Davies and Clark 2006). Although shear 

failure due to overpressure build up is the primary failure mechanism, liquefaction 

occurred locally where a sediment fluid mixture was expelled onto the contemporary 

seabed via faults in the rigid overburden, leading to minor volume loss and moderate 

downslope translation of the collective mass (Davies and Clark 2006).

The identification of a submarine slope failure due to the liquefaction of a 

substantially thick fine-grained unit leads to consideration of where else such slope 

failures may occur. An obvious consideration is that further slope failure units due to 

this mechanism may have occurred in the study area, but may have yet gone 

undetected due to a lack of 3D seismic data, or have been modified by later sliding.
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Other glaciated continental margins elsewhere, such as that of Canada or Antarctica, 

which may have also developed fine-grained units could also be at risk. Likely 

triggering mechanisms for the liquefaction of fine-grained units are discussed in 

chapter two, section 2.6. Although in the case of the SVS, an undermining triggering 

mechanism was deemed to be the most likely scenario for the onset of liquefaction, 

earthquakes are a plausible and widely-cited triggering mechanism (e.g. seismicity 

due to isostatic rebound is thought to have been a major trigger in the Storegga area; 

Evans et al. 2002). This is because cyclic loading due to the oscillatory transmission 

of seismic waves induces elevated pore fluid pressures which often fail to be 

completely dissipated before the next pore fluid response (Maltman 1994), 

particularly in the case of fine-grained units.

There are several key questions raised by the study presented in chapter two, 

and much further work is required to fully define the likelihood of further slope 

failures developing due to the liquefaction of thick fine-grained units. Certainly more 

studies using 3D seismic data must be performed as a way of identifying possible 

further examples. In order to fully define the failure conditions necessary to result in 

the development of such slope failures, incorporation of borehole studies would be 

required to examine the lithologies and geotechnical conditions in detail.

5.3.2 Development of the basal failure surface

One of the major powers of 3D seismic data highlighted by the present study is its use 

as a tool to image and study the basal shear surface of submarine MWDs over large 

areas. Previously this has not been possible using other remotely sensed geophysical 

techniques or the study of field outcrops.

A key question which remains open pertains to the initiation and evolution of 

the basal failure surface. Prior consideration has been based on the study of onshore
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analogies, numerical models and outcrop examples of submarine slope failures 

(Farrell 1984; Fleming and Johnson 1989; Martel 2004; Petley et al. 2005). This 

surface is often described as a shear fracture, which develops progressively during the 

slope failure event, with failure dependant on its prior formation (Bjerrum 1967). The 

knowledge of the basal shear surface has been furthered in this study in two ways: 1) 

it provides a 3D map of basal shear surface and documents and accounts for the 

typical geological structures found in and associated with it. 2) It highlights the 

importance of other seismically mappable geological interfaces that occupy a similar 

position to the basal shear surfaces but that do not form as a shear fracture (see 

chapter two, section 2.6). Here, any specific evidence relating to the propagation and 

development of this surface is considered further.

Farrell (1984) attempted to relate the deformation observed from ancient 

outcrop examples of submarine MWDs to the development of the basal failure surface 

by likening the upslope extension -  downslope compression model for classical slope 

failures {sensu Vames 1978; Frey Martinez et al. 2005, 2006) to the theoretical cross 

section of a dislocation loop. In this model, the fault tip line spreads out radially from 

a point of initial failure, within which material has slipped and outside of which 

material is unslipped, and it is assumed that slip on the fault is maximal at the initial 

failure point and nil at the tip line (Williams and Chapman 1983). Extensional strain 

in the MWD would therefore develop where the dislocation propagates in the opposite 

direction to the slip direction, and contractional strain would be evident where the 

dislocation propagates in the same direction as the slip direction (Farrell 1984). It 

follows therefore, that the extensional slip zone will be upslope of the initial failure 

point, and contractional strain will develop downslope of the initial failure (Farrell 

1984). It was further suggested that cessation of the slope failure event occurs due to
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the failed mass regaining cohesion with the underlying failure surface, with the failed 

mass halting at its distal edge first, followed by propagation of a compressional strain 

wave towards the proximal region (Farrell 1984). In the present study, although it has 

been possible to examine complete slope failure units (e.g. in chapters two and four), 

no evidence has been found to support the theory of Farrell (1984). This is because 

unlike conventional extensional or compressional faults the low angle of the basal 

shear surface and highly disrupted internal architecture of MWDs means that detailed 

3D displacement plots for the basal shear surface cannot be made. A limitation of the 

3D seismic, is therefore that even though useful for determining position, morphology 

and depth of the basal shear surface, it is less useful in determining the point of initial 

failure.

Martel (2004) carried out a study based on a 3D elastic model for the 

development of a basal shear surface of an onshore slope failure, in which the basal 

surface was considered to be a shear fracture. The study found that such a model was 

able to account for the observed distribution of deformation commonly associated 

with onshore slope failures, and that the failure surface did not initiate simultaneously 

beneath the entire failure area, with deformation preceding large displacements 

(Martel 2004). Displacements at the ground surface were found to evolve in line with 

the propagation of the slip surface at depth, and stress concentrations were found to be 

higher around the perimeter of the slip surface than near the ground surface, leading to 

the conclusion that cracks at the upslope head and side flanks of the failure would 

open at depth and propagate upwards (Martel 2004). This agrees with the 

interpretation of Fleming and Johnson (1989), who considered failure surfaces to 

nucleate at depth and propagate up based on observations of the progressive 

development of en echelon fractures which appeared along the side flanks of an
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onshore slope failure (chapter three, section 3.6.1). Martel (2004) concluded that the 

representation of this process at the surface would initiate at the upslope head and 

propagate downslope in an ‘unzipping’ fashion, and citied the presence of arcuate 

zones of en echelon fractures to be indicative of a ‘substantially progressed’ slope 

failure with significant development and propagation of a slip surface at depth.

The results of chapter three, section 3.6.1, were found to support the findings 

of Fleming and Johnson (1989), relating to development of the lateral margins of 

onshore slope failures, and so the results therefore support the idea that submarine 

slope failures also develop by upward propagation of deep-seated failure planes. 

Further support for this idea comes from the Levant margin, where two ‘early-stage’ 

slope failures, first described by Frey Martinez et al. (2005) can be used to apply the 

findings of Martel (2004), which are based on numerical modelling of onshore slope 

failures, to submarine examples. Figure 5.1 A shows a seabed dip-attribute map of the 

area affected by the early-stage slope failures, labelled ‘protoslumps’ by Frey 

Martinez et al. (2005). The protoslumps are defined by lineations which are parallel 

and perpendicular to the slope direction, delimiting downslope-elongate chute-like 

features (Fig. 5.1 A; Frey Martinez et al. 2005). On the surface, the slope- 

perpendicular lineations define the upslope margins of the slope failures, and are the 

most well-developed, conspicuous feature (Fig. 5.1 A). The slope-perpendicular 

lineations define the lateral margins and are less-well developed than the upslope 

margins (Fig. 5.1 A).

In a representative seismic dip-section through one of the protoslumps, it can 

be seen that no internal chaotic facies is observed, although there is evidence of 

deformation in the form of small-scale disruption which is concentrated along a 

horizon approximately 100 m below the seabed (Fig. 5.IB). At the upslope margin of
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the protoslump, offsets corresponding to a seabed depression are interpreted as a 

crown-crack (Frey Martinez et al. 2005). This feature detaches into the deformed 

horizon which is interpreted to represent the early stage development of a failure 

surface for this protoslump (Fig. 5.IB). There does not appear to be any substantial 

development of a distal margin or contractionally strained region downslope, and no 

indication of the loss, gain, or transfer of material (Fig. 5. IB). Frey Martinez et al.

(2005) took this to be representative of a lack of translation and further proof of 

immature development.

Based on its more pronounced seabed expression, the laterally continuous 

crown-crack seen on the seabed dip-map (Fig. 5.1 A) appears to be better developed 

that the lateral margins of the protoslumps, which are more subtle in appearance. This 

supports the model of Martel (2004), which predicts that at the surface, fracturing 

initiates at the upslope margin, and is followed by the development of fractures along 

the lateral margins. Martel (2004) further predicts that development of such features 

can only occur once the failure surface itself is substantially developed, and there is 

evidence for this in the Levant margin protoslump, in the presence of the deformed 

basal horizon into which the crown-crack detaches. The observable development of a 

basal shear surface and upslope margin, with less well developed lateral margins and 

no translation or transfer of the material conforms precisely to the predictions of 

Martel (2004) and supports the notion that the basal failure surface must first develop 

before full failure can occur (Bjerrum 1967; Martel 2004; Petley et al. 2005).

5.3.3 3D seismic data and submarine mass wasting deposits: Quo Vadis?

As highlighted in chapter three, section 3.6, there is much scope for further 

investigation of submarine MWDs, and indeed, deep water processes as a whole
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Proto-slump 2 [

Slope-parallel lineations 
(upslope margins)
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No evidence of downslope 
material transfer
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Figure 5.1. Protoslumps from the Levant margin seabed (after Frey Martinez et al. 
2005). A: Seabed dip-map showing clear evidence for the development of upslope and 
lateral margins, represented by well developed slope-perpendicular lineations and 
less-well developed slope-parallel lineations respectively. B: 3D seismic dip-section 
through one of the protoslumps, showing a crown-crack which affects the seabed as 
well as the shallow subsurface succession, detaching into a horizon at c. 100 m below 
the seabed. The horizon features small scale disruption which is interpreted as early 
development of a basal detachment surface and limited slip of material. The fact that a 
toe region has not developed (e.g. contractional deformation or accumulation of 
material) in the downslope position is taken as evidence for the immature stage of 
slope failure development. Location shown in (A).
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(Posamentier and Kolia 2003), using 3D seismic data techniques. Such potential lies 

in the three dimensional nature of data, which allows a combined morphological, 

volumetric and quantitative approach to the analysis of depositional units and large 

areal coverage, with further geological data yielded by analysis of various attributes 

(chapter three, Section 3.6). In order to evaluate where the future may lie for the study 

of submarine MWDs using 3D seismic data however, we must first consider the major 

motivating factors behind the study of such phenomena, and the main outstanding 

questions.

Large advances in our understanding of MWDs have been made over the past 

twenty years or so, due largely to a number of wide-ranging projects which have 

focussed on marine slope stability, for example, STRATAGEM (2000-2003; Stoker 

and Shannon 2005), COSTA (Continental Slope Stability, 2000-2002; Canals et al.

2004), and the Ormen Lange project which sought to develop a geological model for 

the Storegga Slide motivated primarily by the safe development of the giant gas 

discovery beneath the headwall region (See Bryn et al. 2005a for executive summary). 

Advances in our knowledge and the various techniques that we may use to study 

submarine slope failures as a result of these efforts have led to the emergence of 

remotely sensed geophysical techniques, such as 3D seismic data analysis and multi

beam surveys as major avenues of research (e.g. Urgeles et al.1997; Frey Martinez et 

al. 2005). The amount of data acquired by the industry in the ongoing search for oil 

and gas is becoming increasingly available to academia, which along with adoption of 

data manipulation techniques, has facilitated research to a broader end, i.e. application 

to more than just the search for natural resources. Broadly speaking, there are two 

major interlinking areas of ongoing concern and activity: hazard analysis, and the 

development of natural resources.
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5.3.3a Hazard analysis

Submarine slope failures are of interest and concern in a social sense because of the 

hazard that they pose, mainly to coastal populations and offshore installations. One of 

the greatest risk factors is the potential for large slope failures to generate tsunamis 

(Lee et al. 1991). Seafloor stability must also be considered when developing coastal 

regions and considering reliable corridors for communication installations (Locat and 

Lee 2002). The study of slope failures in the submarine environment is challenging 

compared to onshore examples, due to the inaccessibility, the differing nature of the 

slope sediments, and other factors not associated with subaerial slopes such as the 

effect of wave-action, and high level of saturation. Although we have the ability to 

identify areas which are generally at risk of future submarine slope failure, we are 

unable to accurately predict where or when a future event might occur, particularly 

when the triggering mechanism is unpredictable (as with the commonly implicated 

occurrence of earthquakes). Monitoring programmes employed in high-risk areas 

onshore are not applicable to the submarine realm (Locat and Lee 2002) and so 

alternative methods must be sought to help estimate the potential losses and risk to 

human life and infrastructure due to submarine slope failures, that in turn can be used 

to construct mitigation strategies.

The main avenues of research currently being pursued in order to further our 

forecasting abilities are the continued study of pre-existing examples of slope failure 

(back analysis approach); testing and characterisation of as yet un-failed slopes, and 

numerical modelling. As far as the characterisation of existing examples of submarine 

slope failures is concerned, 3D seismic data clearly has a large and important role to 

play, for reasons which have been touched upon at various stages throughout this 

project. In the first instance, seafloor mapping using 3D seismic surveys can be used
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to identify recent slope failures on previously unexplored submarine slopes, in a 

similar way to multi-beam data which image the seafloor, due to the large areal 

coverage combined with high resolving power (Cartwright and Huuse 2005). In areas 

of historic instability, the availability of 3D seismic data presents the opportunity to 

examine many other examples of MWD’s buried in the subsurface succession (e.g. 

chapter two). Whilst the study of existing submarine slope failures essentially 

involves the study of such events at their final stage (Locat and Lee 2002), this 

approach is nonetheless revealing and effective in that final geometries of the 

depositional units can be used to interpret the dynamic evolution and failure processes 

involved (see chapter one, section 1.1). As is the basic premise of this project, further 

characterisation studies will continue to grow the catalogue of observed features, 

parameters and architectures to ultimately define the full spectrum of slope failure 

types and in doing so, fully define the range of processes and failure mechanisms 

involved. 3D seismic data is particularly useful in this sense due to the quantitative 

and volumetric analysis afforded.

Stability analysis of submarine slopes

A major technique in analysis of submarine slopes stability is the measurement of 

various geotechnical parameters. However, there are inherent problems with the 

collection of such parameters, particularly regarding the accurate measurement of in 

situ parameters such as pore pressure (Strout and Tjelta 2005). The incorporation of 

geotechnical information is no doubt essential, but equally as important is the insight 

into the subsurface provided by 3D seismic data. In areas of historic instability, 3D 

seismic data play a valuable role in the full definition of the geological model for 

slope failure in a particular region. Important factors in the predisposition of a slope to
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failure include the geometry and distribution of sedimentary packages and potential 

glide planes, possible sources of overpressure generation and triggering mechanisms.

An excellent example of this is the analysis of the Storegga Slide, for which 

3D seismic data was used to help characterise the geometry and distribution of 

ubiquitous contourites deposits, implicated in the sliding due to their tendency to 

cause slope oversteepening and host laterally continuous ‘weak layers’ (Bryn et al. 

2005b). In addition, 3D seismic data were further used to map gas hydrates 

throughout the region and provide input parameters for modelling of the evolution of 

the stability zone through time (Btinz et al. 2005). Large areas affected by polygonal 

faulting have been identified and studies using 3D seismic data, and implicated in 

fluid flow and overpressure generation in the northern-Storegga Slide area (Bemdt et 

al. 2004).

The imaging and detailed analysis of silica diagenetic fronts, which have been 

associated with overpressure generation and resultant slope failure (Volpi et al. 2003; 

Davis and Clark 2006 see chapter two, section 2.6) has also been facilitated by 3D 

seismic data. This same technique can be applied to areas considered at risk of failure, 

through identification of the various pre-conditioning or triggering factors discussed 

above. Combination with geotechnical or sedimentological data would facilitate the 

broad scale prediction of unstable sedimentary packages, weak layers and presence or 

focus of overpressure generation.

Furthermore using a seabed mapping approach, 3D seismic data can identify 

possible areas of future failure, as features diagnostic of incipient failure such as 

crown cracks and partially formed lateral margins can be clearly identified from 

seabed horizon maps. Frey Martinez et al. (2005) used 3D seismic data from the 

Levant Margin, Mediterranean Sea, to identify two elongate chute-like features
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defined by slope-parallel and perpendicular lineations interpreted as lateral margins 

and crown cracks. Advanced deformation or displacement of the sediments was 

absent, and the features where labelled ‘protoslumps’, interpreted to be the product of 

failed or immature slope failures (Frey Martinez et al. 2005).

Numerical modelling 

Numerical modelling is considered to be of great importance in the ongoing study of 

submarine slope failure given the difficulty involved in direct observation (Locat and 

Lee 2002), and provides a further way of understanding existing slope failures and 

predicting their future occurrence. Modelling based on existing submarine MWDs 

allows reconstruction of conditions prevalent at the time of failure, the results of 

which can be further input into the testing of various scenarios applicable to areas 

which have been identified as at risk of potential future failure. 3D seismic data once 

again has an important role to play in the provision of dimensional constraints for 

geomechanical models which serve as a static framework for the various parameters. 

Numerical modelling is similarly an important tool for the study and prediction of 

related hazards including tsunami generation. Key variables which effect the scale of 

slope failure-generated tsunamis which can be derived directly from 3D seismic data 

include the volume, length and thickness of the causative slope failure.

5.3.3b Production of natural resources

Submarine slope failures are relevant to the ever-expanding search for oil and gas 

reserves for two main reasons: engineering implications posed by the necessity of 

drilling through MWDs and the safety and stability of offshore installations (seabed 

and shallow hazards); and the development of reservoirs in submarine MWDs.
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Inherently unstable continental margins are being increasingly explored for 

hydrocarbon reserves and the difficulties of safety developing and producing from 

such fields, which are situated beneath submarine slopes which may be unstable, or 

have historically been unstable, can be complex. The obvious concern is the stability 

of the present day seafloor onto which offshore installations must be affixed, and prior 

to this it must be ensured that there is little or no risk of slope failure in the vicinity of 

any installations, or indeed upslope of them, should they be impacted by failure 

originating from a more proximal position. Further consideration must be given to the 

impact of drilling operations on the stability of the slope. The discovery of Ormen 

Lange beneath the steep headwall region of the Storegga Slide is a prime example of 

just this scenario, and has been made famous by the huge effort in data acquisition 

and analysis that has been undertaken to understand, asses and mitigate the risk and 

potential of future slope instability (the reader is referred to the special publication on 

the Ormen Lange project, issues 1-2 of Marine and Petroleum Geology, volume 22;

2005).

Submarine MWDs at or near the seabed can pose as significant shallow 

drilling hazards to exploration and development well drilling operations. Units or 

lithologies which possess excessively low strength, as can be the case with 

homogenised, rapidly deposited MWDs are hazardous because of the unpredictable 

nature of the strength, rock and fluid properties within such units. Such 

unpredictability leaves drilling operations exposed to hazards such as loss of drilling 

fluids and borehole collapse, with the additional economic implication of increased 

drilling times (Frey Martinez et al. 2005). Accurately mapping and predicting the 

occurrence of such units within the shallow succession is therefore imperative to the 

safety of drilling operations. Frey Martinez et al. (2005) used 3D seismic data from
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offshore Israel to identify many MWDs throughout the subsurface succession, 

illustrating how 3D seismic data has an important ongoing role to play in the 

diagnosis and mitigation against shallow drilling hazards.

An altogether different concern is the development of reservoirs which occur 

in submarine MWDs, which form an increasing part of the exploration and production 

portfolio of oil companies, particularly in deep water passive margins, rifts and 

collisional belts (Welbon et al. 2007). Examples include the Statfjord Field and Halten 

Terrace area, offshore Norway (Hesthammer and Fossen 1999; Welbon et al. 2007). 

As with all reservoir types, the major challenge for successful exploitation is the 

accurate prediction of geometrical and petrophysical characteristics. Specific 

challenges in the case of MWDs relate to the scale and complexity of such reservoirs, 

and constraining the impact of factors such as the range distribution and effect of 

deformation, thickness variation, geometry and impact of lithological mixing. While a 

combination of predictive tools can be used, including seismic data, well data and 

outcrop studies, 3D seismic data is recognised as being of prime importance as a 

result of the geomorphological understanding and empirical observations they provide 

(Welbon et al. 2007).

5.4 Project limitations and recommendations for further work

The combination of more than one type of data, and the varying scales of 

investigation have allowed a thorough investigation of the mass wasting deposits in 

the study areas. While many new observations and some advances in our 

understanding have been made by this project, certain limitations have been imposed, 

by limited data availability, data quality, data gaps and the limited amount of other 

data types aside from seismic and bathymetry. The remainder of this section now
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provides a discussion of the project limitations together with a number of suggestions 

as to how further work may be of use in overcoming them.

This project has focussed on the use of 3D seismic data to better constrain the 

structures and evolutional mechanisms of large-scale submarine mass wasting 

deposits. Only in recent years has 3D seismic data been used to study submarine 

MWDs, and the power of this data type in the use of submarine MWD investigations 

has been demonstrated by the results of this project. Despite the large volume of 3D 

seismic data available for this project, some of the MWDs imaged are very large, and 

so detailed interpretation has been possible only for relatively small subareas in some 

cases. Whilst analysis of these samples have proven to be successful, the inclusion of 

more 3D seismic data would allow for a more complete and informed comparison of 

MWDs from the study areas. As the use of 3D seismic data in the study of MWDs is 

still relatively new, new observations and information relating to their architecture 

and evolution is of high value to our understanding.

The most significant limitation imposed on this project has been the lack of 

well data to establish sedimentary character and absolute ages of the various MWDs 

in the study area. In chapter two, the age of the South Voring Slide was loosely 

constrained by identifying overlying sedimentary packages and assigning their age 

using published data. The timing of the Confined Storegga Slide investigated in 

chapter four is referenced to relative time in relation to the other slide phases 

alongside it. Exactly how long it took for the Confined Storegga Slide to develop is 

unknown and the timing of large-scale submarine slope failure remains an open 

question. The establishment of absolute ages and timescales for the development of 

submarine MWDs such as those described in this project may help further the
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understanding of why they occurred and when and where they may occur in the 

future.

Outside the scope of this study there are major aspects of submarine MWDs 

which are poorly understood, for example the high flow mobility of long run-out 

examples, transformation of slides and slumps into debris flows and/ or turbidites, and 

the development of the basal shear surface. Aspects such as these have been 

commented on or discussed where possible throughout this project, although for 

greater insight, the integration of other data types, particularly geotechnical data 

would be required. A further major source of high-quality data on submarine MWDs 

comes from ancient examples studied at field-outcrops. The many excellent and 

vigorous studies based on such examples has provided a wealth of information and in 

particular allows the small scale detail, which cannot be obtained from seismic data, 

to be examined. As such, the study of submarine MWDs can surely benefit from the 

integration of both outcrop data with seismic data, as the two provide opposing levels 

of stratigraphic fidelity.
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CHAPTER SIX 

6.0 Conclusions

The investigations undertaken during the course of this research have provided a 

wealth of information relating to diverse aspects of submarine mass wasting deposits, 

primarily from the Norwegian continental margin, with other examples from the 

Levant margin of the east Mediterranean Sea. Observations and resultant conclusions 

have led to insights into the dynamic evolution and emplacement of large submarine 

mass wasting deposits and the range of deformational features associated with them. 

Although this study has focussed primarily on submarine mass wasting deposits from 

one geographical region, it is expected that the results will find broad applicability to 

other examples of submarine mass wasting deposits in other setting and locations 

worldwide. The following sections list a number of statements with the aim of 

summarizing the conclusions of this project.

6.1 General conclusions

• The interpretation and analysis of seismic reflection data is a powerful tool in 

the investigation of submarine mass wasting deposits.

• Geometric and volumetric analysis of 3D seismic data can be used to 

determine the likely mechanisms responsible for the development and 

emplacement of submarine mass wasting deposits.

• 3D seismic data can be used to identify and analyse the full spectrum of 

kinematic indicators which occur in association with submarine mass wasting 

deposits.

• The 3D nature of such data allows the imaging and analysis of the basal failure 

surfaces of submarine mass wasting deposits, which is not possible by any 

other means, and which yields much pertinent information relating to the 

dynamic emplacement of such events.
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6.2 A subsurface evacuation model for the development of a non-typical 

submarine mass wasting deposit from the Norwegian continental margin

• 3D and 2D seismic reflection data from the Norwegian continental margin 

have allowed the identification and mapping of a discrete submarine mass 

wasting deposit, informally named the ‘South Voring Slide’ (SVS), from the 

Norwegian continental margin.

• Detailed mapping of the 3D data has allowed the characterisation and analysis 

of the deformation associated with SVS. Line-length balancing performed on 

representative dip-sections from the 3D data was used to determine that failed 

material which remains in the SVS area has undergone a very limited amount 

of downslope translation.

• Detailed mapping using a combination of 3D and 2D data has allowed for an 

estimation of the volume of material removed during the development of the 

SVS, which was concluded to be too high to be explained by the 

straightforward transfer of material downslope over a basal failure surface as 

with typical examples of submarine mass wasting deposits in the area.

• Based on the 3D architecture of the SVS, geometrical and volumetric analysis 

and comparisons with an analogous onshore slope failure mechanism, it was 

determined that the SVS is likely to have developed due to the mobilisation of 

a substantially thick, fine grained unit which was evacuated from beneath a 

thin overburden, which subsequently underwent extensional fragmentation.

• The proposed model for the development of the SVS highlights the potential 

role of the liquefaction of fine grained units in submarine slope failures.

6.3 Kinematic indicators from submarine mass wasting deposits

• An integrated 3D seismic interpretation approach of time-structure mapping, 

attribute extraction and 3D-visualisation has revealed a wide range of 

deformation features associated with mass wasting deposits, which record 

kinematic information pertaining to the direction and magnitude of transport, 

mode of emplacement, dominant process and rheology of the mass wasting 

event.
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• Compilation and cataloguing of the many examples of kinematic indicators 

identified from the study areas has allowed for the first comprehensive 

overview of kinematic indicators from submarine mass wasting deposits.

• Kinematic indicator types have been defined, assigned seismic recognition 

criteria, illustrated using best examples from the study areas, and the kinematic 

information they impart has been discussed and presented alongside a worked 

example to demonstrate their use in the analysis of mass wasting events.

• Kinematic indicators can be used in the swift and confident analysis of the 

direction of translation and in many cases also allows the degree of translation 

of displaced material to be constrained.

• The ability to image large features associated with basal failure surfaces, such 

as ramp and flat geometries, allows for new insights into their development 

and propagation, and the development of the mass wasting event as a whole.

6.4 A ‘frontally confined9 submarine mass wasting deposit recognised from the 

Holocene Storegga Slide

• Using a combination of 2D and 3D seismic reflection data and bathymetry 

data, the area of the Holocene Storegga Slide historically referred to as the 

‘compression zone’ has been interpreted as the downslope region of a discrete 

submarine mass wasting deposit based on up-dip correlation with other 

diagnostic features, including translated and rooted slide blocks, lateral 

margins and a headwall scarp, across an extensive basal detachment surface.

• The mass wasting deposit has been interpreted as an example of a ‘frontally 

confined’ submarine mass wasting deposit of Frey Martinez et al. 2006, based 

on the deep-seated nature of the detachment surface; frontal buttressing of the 

failed sediments against a steep frontal ramp at the downslope margin; the 

close association with rooted blocks of pre-failure stratigraphy; and limited 

downslope translation. The newly defined mass wasting deposit has been 

informally named the ‘Confined Storegga Slide’ (CSS).

• The distal region of is characterised by well preserved contractional 

deformation in the form of over 30 pairs of oppositely-dipping thrust faults, 

detaching above a deep-seated basal failure horizon which occurs some 640 m
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below the seabed. A total shortening (i.e. downslope translation) of 4.24 km 

has been measured based on fault-displacement analysis and line-length 

balancing of thrust faults imaged on 2D seismic lines.

• The total area affected by the CSS is 3,510 km2, which corresponds to a 

volume of approximately 1,227 km .

• Up-dip of the distal region, a large area of the CSS is characterised by 

extensional deformation which is interpreted to have developed during a later 

stage of deformation based on cross-cutting fault relationships and the 

superimposition of sediment transport pathways identified from the 

bathymetry data, which are orientated orthogonal to the transport direction of 

the CSS.

• Comparison of the likely pre-failure slope configuration with that of the likely 

post-CSS and present day conditions shows that a significant volume of 

material has been removed at some point following the development of the 

CSS.

6.5 Implications for economic and engineering geology

• Seabed or near-surface submarine mass wasting deposits constitute a 

significant hazard for seafloor engineering and hydrocarbon drilling operations 

due to their excessively low strength.

• The observations and subsequent results of this project have shown that 3D 

seismic data is an excellent tool for the identification and constraint of the 

extent of submarine mass wasting deposits, which can be used to optimise the 

planning of specific site surveys.

• Reconstruction of the development and movement directions of submarine 

mass wasting events, as described by this project, is a useful tool in 

determining the present day hazard posed by slope instability for future seabed 

engineering and drilling operations.

• Historical submarine slope failure has implications for the organisation of 

basin sediments and must therefore be taken into account when undertaking 

biostratigraphic or sequence stratigraphic analysis of the study areas.
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