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Abstract

Proteins often depend on a-helices for binding to other biomacromolecules. Reversible 

control of a-helix stability was accomplished in previous studies by incorporating a 

photoisomerisable azobenzene cross-linker into peptides, subsequently enabling the 

optical control of DNA-protein interactions. This approach was extended in this study to 

include protein-protein and protein-RNA interactions.

One of the primary regulatory components in apoptosis signalling is the antiapoptotic 

protein Bcl-xL which interacts with the a-helical BH3 domain of the Bak protein. The 

Rev/RRE interaction is crucially involved in the life cycle of Human Immunodeficiency 

Virus. These interactions were targeted by designing peptides based on the BH3 domain 

of Bak and on the RNA-binding domain of Rev; these peptides are activated by external 

light pulses after the incorporation of the cross-linker. The ability to control cross-linker 

conformation and hence peptide secondary structure was demonstrated by CD and 

UV/Vis spectroscopy. The binding to the target structure and complex disruption was 

determined in the dark-adapted and irradiated states using fluorescence based assays. 

Structural studies using NMR spectroscopy demonstrated that the alkylated peptides 

bind to the same part of the target molecule as the wild-type peptide, regardless of their 

structure. Moreover, one of the BH3 domain-based peptides and the light-controllable 

transcription factor PhotoMyoD were modified with protein transduction domains to 

enable future in vivo studies. Overall, this work opens the possibility to interfere 

reversibly and specifically with protein-protein and protein-RNA interactions and to 

study and modulate cellular function by optical control.
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Chapter 1: Introduction

1.1 Preface

The modulation o f  biomolecular interactions using light has significant advantages over 

chemical methods, photons can be applied with excellent spatiotemporal resolution by 

using modem lasers (Renner et al. 2005). The incorporation o f photochromic 

compounds into molecular assemblies provides an attractive strategy for the rapid and 

reversible interference with biochemical pathways such as signal transduction or 

transcription. This technology may be utilised to probe and reengineer macromolecular 

function in biological systems, enabling the potential development o f novel medical 

technologies such as new light-activatable therapeutics or artificial photoreceptors 

(Gorostiza et a l  2008).

1.2 Biomacromolecular interactions

A variety o f specific macromolecular interactions such as protein-DNA, protein-RNA, 

protein-protein, protein-lipid and protein-carbohydrate interactions are important in 

biological systems. Since the specific interactions between the cellular macromolecules 

form the basis for all biological processes, the ability to manipulate the formation of 

these complexes will open up possibilities to selectively interfere with these processes. 

Understanding the physical basis for specificity in the different systems and mapping 

the various networks o f interactions is central to the subsequent reengineering of the 

processes (Cusick et al. 2005).
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Chapter 1: Introduction

1.2.1 Protein-protein interactions

The formation of specific protein complexes is fundamental to most biological 

processes such as cell proliferation, viral self-assembly, differentiation, apoptosis and 

signal transduction (Toogood 2002). Many proteins are able to interact with multiple 

partners depending on availability and environment, this forms the basis of network 

complexity. The human interactome is large and has been estimated recently to contain 

around 650,000 interactions (Stumpf et al. 2008). This was established based on partial 

interaction data obtained through various methods, such as tandem affinity purification 

and yeast-two-hybrid analysis (Fields et al. 1989).

Proteins interact with each other with varying affinities, ranging from millimolar down 

to femtomolar. Despite this very large range, most protein-protein interactions maintain 

a high degree o f specificity for their partners. The contact areas involved in these 

interactions are usually relatively large (700-1,500 A2 per protein) with a flat binding 

groove. This makes protein-protein interactions difficult to target with small molecules 

since a large number o f small energetic contributions are involved in the interaction 

(Nooren et al. 2003; Bahadur et al. 2004; Reichmann et al. 2005; Reichmann et al. 

2007). However, some residues located at the binding interface o f proteins have been 

demonstrated (in the last decade) to contribute substantially to recognition, whereas 

others only play a marginal role (Clackson et al. 1995). These so called “hot-spots” are 

clusters o f  amino acids that dominate binding free energy and specificity (Clackson et 

al. 1995; Dall'Acqua et al. 1996). This was observed in the case o f the GABPa-binding 

groove o f the ankyrin repeat protein GABPp, in which the binding free energy 

difference was determined for residues in the interface by characterising alanine 

mutants o f the protein using ITC. The differences in binding free energy (AAG)
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obtained from the calorimetric analysis were plotted onto the structural profile in order 

to identify the hotspot residues (Desrosiers et al. 2005) (Figure 1.1). This illustrates that 

even though the binding grooves involved in protein-protein complexes are large, it may 

still be possible to interfere with them using small molecules or peptides by focusing on 

targeting key residues implicated in the interaction.

Figure 1.1: Surface representation o f GABPfi 
(light grey) (lAWC.pdb). The interface 
residues are displayed according to their AAG 
values obtained from ITC measurements. The 
hot spot residues (AAG > 2.0 kcal mol'1) are 
coloured in red, moderately contributing 
residues (1.5 kcal mol'1 > AAG > 0.8 kcal 
mol'1) are coloured in yellow whilst residues 
with weak contributions (AAG < 0 .5  kcal 
mol'1) are coloured in green. AAG of residues 
shown in dark grey were not determined

1.2.2 Protein-DNA interactions

Recombination, replication and transcription of genetic material are all dependent on the 

formation of specific DNA-protein interactions. A common feature shared by all of 

these is the large interaction interface (on average 3,100 A2), which has a high degree of 

shape, polarity and electrostatic complementarity (Hard et al. 1996). Protein-DNA
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recognition is characterised mainly by a topological readout strategy. Defined secondary 

structural elements such as a-helices contact the major groove of double stranded DNA 

to distinguish cognate from non-cognate sequences (Jones et al. 1999; Pabo et al. 2000). 

Although most protein-DNA interactions rely on the major groove for recognition, there 

are also a number o f important factors that interact with the narrow minor groove, such 

as the TATA box binding protein (TBP), integration host factor (IHF) or the male sex 

determining factor (SRY) (Bewley et al. 1998). The binding mode of the two classes of 

DNA targeting proteins is compared in Figure 1.2.

Figure 1.2: DNA binding mode o f A) a major groove binding protein (GCN4, 
lYSA.pdb, (Ellenberger et al. 1992)) and B) a minor groove binder (TBP, lTGH.pdb, 
(Juo et al. 1996)). The protein is shown in red and the DNA in blue.

An induced fit mechanism for the binding of the protein component is frequently 

observed in DNA-protein interactions. In this case, the protein conformation changes 

substantially upon contact with the target DNA sequence in order to facilitate complex 

formation (Spolar et al. 1994). Protein binds to DNA by directly contacting the bases or 

the backbone with the amino acid side chains of certain secondary structural elements. 

These specific interactions are mediated by electrostatic contacts, van der Waals
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interactions and hydrogen bonds (Allemann 1999). Protein-DNA complex formation is 

also commonly assisted by contacts between water and both polymers, for example, this 

kind o f relationship is present in the basic helix loop helix (bHLH) domain of the 

transcriptional activator MyoD, where a nitrogen from the side chain o f A rg lll 

contacts the oxygen (6’) of a guanine in the binding region via a water molecule (Ma et 

al. 1994; Allemann 1999) (Figure 1.3).

Figure 1.3: Representation o f a water mediated contact between MyoD (red and 
blue ribbons) and the E-box DNA (see Chapter 5.3.1) (silver) (X-ray structure, 
IMDY.pdb) (Ma et al. 1994). A r g l l l  o f  MyoD and the oxygen o f G52 (6 )  o f the 
DNA are shown with atom colour code (C = green, N = blue, O = red, P = yellow).
The water molecule is depicted as a cyan sphere.

Small molecules such as echinomycin, which inhibits sequence specific binding of 

hypoxia-inducible factor-1 DNA-binding activity have been successfully used to target 

DNA-protein interactions and are of great therapeutic interest (Kong et al. 2005).

1.2.3 Protein-RNA interactions

Ribonucleic acids are major players in many important biochemical processes. The 

formation of specific complexes between RNA and protein molecules is therefore 

crucial to a variety of cellular processes such as information transfer and storage, 

transcriptional activation, catalysis, post-transcriptional regulation of gene expression or
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the assembly and function of ribonucleoprotein particles such as the splicesosome and 

the ribosome (Draper 1995; Moras et al. 1996; Lingel et al. 2005).

Single stranded RNA can adopt a much larger variety of conformations than double 

stranded DNA and is comparable to proteins in this respect. It structurally differs from 

B-DNA (right-handed form of double helix DNA that has 10.5 base pairs in each helical 

turn and two grooves on the external surface) in several significant ways. Bulges, 

hairpins and internal loops are found in between areas of Watson-Crick base pairing. 

Non-canonical base pairing and unstacked bases are also observed frequently (Heus et 

al. 1991; Varani et al. 1991). The helices are usually short (less than one turn) and 

A-form (similar to B-DNA but 11.0 bp per turn and the major groove is deep and 

narrow). Therefore the major groove is not very accessible for protein recognition 

(Weeks et al. 1993). Another common feature is that tertiary interactions between 

different parts of one molecule can create complex shapes such as the L-shape formed 

by tRNA hairpin loops (Shi et al. 2000) (Figure 1.4). Overall this gives rise to a lot 

more possibilities for indirect readout than in DNA recognition processes. Indirect 

readout is enabled by the unique flexibility and conformation such as the twist between 

base pairs or the width of the groove that is acquired by each nucleic acid sequence. It is 

not directly involved in the residue-base interaction, but is necessary as an overall 

facilitator of complex formation (Draper 1995). The phosphodiester group contributes 

less to the polar interactions than in DNA-complexes and the role of the sugar in DNA- 

and RNA-protein recognition is different. The deoxyribose plays no part in H-bonding 

to the protein moiety, unlike ribose (Lejeune et al. 2005). The 2’OH group of ribose 

comprises approximately 25% of the H-bonds to the protein while the 3 ’OH terminus 

contributes a further 6% to the protein. The bases account for a third of the H-bonds 

between protein and RNA (Lejeune et al. 2005). The contribution of guanine bases
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among these is significantly lower than the average for DNA-protein complexes, where 

base recognition more frequently targets G than other bases.

Figure 1.4: L-shaped tertiary
structure o f the yeast Phe tRNA 
( lEHZ.pdb ) (Shi et al. 2000).

The interfaces are highly hydrated in a similar manner to DNA-protein interactions and 

water-mediated protein-RNA H-bonds are common (Bahadur et al. 2008). The 

positively charged amino acids Arg and Lys play a key role in binding to RNA as they 

do in the DNA-protein complexes. The average buried surface area in RNA-protein 

complexes is smaller than in DNA-protein complexes (2,500 A2 versus 3,100 A2) 

(Bahadur et al. 2008). Induced fit can be observed upon binding in both the RNA 

moiety or protein component. Mutually induced fit has also been described frequently 

(Williamson 2000). Overall protein-RNA recognition shares common features with 

protein-DNA recognition such as electrostatic complementarity and base recognition 

but it also shows similarity to protein-protein recognition such as shape recognition 

(Bahadur et al. 2008).
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1.3 Stabilisation of a-helices

The a-helix is the most abundant structural element in proteins and is therefore an 

essential theme for modulating protein-nucleic acid and protein-protein interactions 

(about 30% of amino acid residues belong to this motif) (Barlow et al. 1988). However, 

isolated helical motifs and other small peptides are usually disordered in solution since 

the folding process is thermodynamically unfavourable (as a result, they seldom show 

optimal functional activity). Naturally occurring proteins typically depend on 

sophisticated folds to display a small number of functionally important amino acids. 

Many studies have therefore focused on pre-organising the structural elements such as 

a-helices to reduce the entropic penalty associated with folding.

In an a-helix motif, the hydrogen bonds between the amide NH group and the CO 

group o f the amide backbone stabilise the structure. Each CO group contacts the NH 

group four residues ahead in the sequence. Each turn consists o f 3.6 amino acids and the 

pitch per turn is 0.54 nm. The CO groups are parallel to the helical axis and the side 

chains point outwards from it. The amide groups o f the first four residues and the 

carbonyl groups o f the last four residues cannot participate in the hydrogen bonding o f  

the helix and must form other H-bonds with the solvent or within the protein (Figure 

1.5). Isolated helices are not stable since the entropically disfavoured process of folding 

of the polypeptide chain must be energetically compensated by stabilising interactions.
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Figure 1.5: A) Helical wheel representation from the N -terminal end o f the helix. The 
positions o f  the residues are indicated. B) Model o f an a-helix in a view perpendicular 
to the helix axis. Hydrogen bonds are shown as black dotted lines. Atoms are in 
standard colours (i.e. N  = blue, C = green, H = white and O = red)

The helix propensity of each amino acid was first estimated by observing the frequency 

of occurrence for each residue in different structural motifs (Davies 1964; Guzzo 1965; 

Chou et al. 1978). Subsequently, the helix propensity was investigated by studying the 

helical content of alanine based peptides in the absence of specific side chain 

interactions (Chakrabartty et al. 1994). The helix content of each peptide was 

determined by CD spectroscopy (222 nm) and the resulting data were fitted to the 

modified Lifson-Roig model (includes a parameter to account for the N-capping of 

amino acids since the original theory assumed that the AMerminal residue is always in a 

random coil state and therefore indifferent for helix formation). This theory was 

developed to describe the a-helix-random coil transition of polypeptides and describes 

each amino acid within a chain with three parameters: the statistical weight for helix 

nucleation, helix propagation and hydrogen bond formation (Doig et al. 1994). The 

helix propensity of each amino acid in Table 1.1 was defined as the calculated helix 

propagation parameter of the Lifson-Roig theory. Values greater than one indicate that 

helix formation is favored. Below one it is disfavoured. From the obtained values for 

the different amino acids, it was concluded that the helix propensities of most amino
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acids oppose folding. Arg and Leu are helix-indifferent and only Ala strongly aids helix 

formation (Chakrabartty et al. 1994) (Table 1.1).

Table 1.1: Helix propensity values 
at 273 K. The values were 
calculated by using the Lifson- 
Roig theory to describe the helix- 
coil transition o f model peptides 
(Chakrabartty et al. 1994).

Residue Helix propensity

Ala 1.54

Arg+ 1.04

Leu 0.92

Lys+ 0.78

Glu 0.63

Met 0.60

Gin 0.53

Glu 0.43

He 0.42

Tyr 0.37

His 0.36

Ser 0.36

Cys 0.33

Asn 0.29

Asp 0.29

Asp* 0.29
Tip 0.29

Phe 0.28

Val 0.22

Thr 0.13

His+ 0.06

Gly 0.05

Pro < 0.01
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For short peptide sequences containing fewer than 16 amino acids the helical 

conformation is thermodynamically unstable because the strength of the backbone 

hydrogen bond network of a single helix must outweigh the unfavourable entropic loss 

upon helix formation (Scholtz et al. 1992). The AH for helix-random coil transition is 

about 1 kcal mol'1 and is independent o f both the amino acid sequence and chain length 

(Scholtz et al. 1991; Lopez et al. 2002). A variety o f other factors contributing to 

a-helix stability have been identified, such as A-capping, hydrogen bonds, hydrophobic 

and electrostatic interactions between side chains or side chain-peptide backbone 

interactions (Marqusee et al. 1987; Lyu et a l  1991; Kallenbach et al. 1998). 

Succinylation or acylation o f the A-terminus stabilises a-helices (Presta et al. 1988; 

Richardson et al. 1988). The macrodipole created by the alignment o f the amide bonds 

can be compensated by positively charged amino acids on the A-terminus (A-capping) 

and negatively charged ones on the C-terminus, leading to enhanced helix propensity.

Helical templates can serve as nucleation points to propagate the structure. A large 

number of strategies have been employed for stabilisation, such as the formation of 

helical bundles (Creighton 1993), lactam bridging (Osapay et al. 1992), unnatural 

amino acids (Rajashankar et al. 1995), disulphide formation (Pease et al. 1990; Jackson 

et al. 1991), multiple salt bridges (Mayne et al. 1998) and hydrazone linkages (Cabezas 

et al. 1999) (Figure 1.6).
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Figure 1.6: The a-helical hydrogen bonding network and three different 
strategies fo r  supporting this structure. Hydrogen bonds are shown in pink 
and the amide backbone in green. A) unmodified a-helix, B) disulfide bond, 
C) lactam and D) hydrazone.

In nature, the coordination of amino acid residues to metal ions serves to stabilise 

helical sequences, examples of this include: haemoglobin, plastocyanin and zinc finger
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domains. This concept can be exploited in the design of artificial proteins or peptides. 

Cysteine or histidine residues are placed in an i, i+4 spacing so that the sidechains can 

interact with a transition metal ion such as Cu2+ and thereby promote the normally 

energetically unfavourable formation of the first helical turn (Ghadiri et al. 1990). Small 

peptides can also be stabilised in a helical conformation by the formation of a four-helix 

bundle or other aggregate (Eisenberg et al. 1986). Leucyl residues on one face of the 

helix drive the formation of aggregates in aqueous solution. The designed 14 amino acid 

long oxaloacetate decarboxylases, Oxaldie-1 and -2 for example utilise this principle 

(Johnsson et al. 1993). Small multi-disulfide proteins have often been used as scaffolds 

and as helical nucleation motifs e.g. the scorpion toxin Scyllatoxin. Scyllatoxin is a 

31-residue peptide which consists of a single helix and a short antiparallel P-sheet. It is 

stabilised by three disulfide bonds (Zhu et al. 2002). Small natural scaffolds can also be 

used to incorporate key residues or small helices and thereby stabilise them in the 

desired conformation. Vita et al. designed an inhibitor for the glycoprotein gpl20 

(Figure 4.1) belonging to human immunodeficiency virus type-1 (HIV-1) based on the 

helical scaffold of the scorpion toxin Scyllatoxin (Vita et al. 1999) (Figure 1.7).

Figure 1.7: NMR solution structure o f
Scyllatoxin (lSCY.pdb) (Martins et al. 1995). 
The helix is coloured red, the P-sheet is shown 
in blue and the disulfide bonds are yellow.
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Avian pancreatic polypeptide (aPP) consists of an amphiphatic a-helix which is 

hydrophobically packed with a type II poly-proline helix (Figure 1.8). Schepartz et al. 

have reported potent inhibitors o f proteins involved in apoptosis and cell cycle 

regulation (Bcl-2 and HDM2) based on small helical recognition motifs that were 

grafted onto this scaffold (Chin et al. 2001; Kritzer et al. 2006). Allemann et al. 

developed an oxaloacetate decarboxylase using the scaffold structure. Four lysine 

residues were incorporated on one site o f the a-helix to form the active site. The 

enzyme displayed Michaelis-Menten saturation kinetics and the rate was significantly 

increased compared to simple amine catalysts, however, Oxaldie-3 displayed a molten 

globule-like structure. To improve upon this, bovine pancreatic polypeptide was used as 

an alternative scaffold to produce Oxaldie-4 which displayed a well defined tertiary 

structure, better stability towards thermal and urea denaturation whilst also exhibiting 

similar kinetic parameters (Taylor et al. 2001; Taylor et al. 2002).

Figure 1.8: X-ray diffraction structure o f aPP 
(2BF9.pdb). The a-helix is shown as a red ribbon 
and the poly-proline type II helix as a blue tube 
(proline residues are displayed as sticks).

The framework o f C2 H2 -type zinc finger proteins (important class o f nucleic acid 

binding proteins in eukaryotes that incorporate zinc ions via two Cys and His residues)
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and a short sequence o f the Rev protein has been successfully used in a number of  

studies to produce peptides that bind tightly (nano- and picomolar range), to the Rev 

Response Element (RRE) o f HIV-1 in the presence of Zn2+ (McColl et al. 1999; Friesen 

et al. 2001; Mishra et al. 2006) (Figure 1.9).

Figure 1.9: NMR solution structure o f  
an engineered HIV RRE IIB RNA 
(Chapter 4.1.5) targeting zinc finger 
protein (Mishra et al. 2006) 
(2AB7.pdb). The helix is coloured red, 
the two p-sheet strands are blue, the 
Zn2 ion is green and the coordinating 
Cys and His sidechains are indicated 
in yellow.

Bee venom contains a neurotoxic polypeptide called apamin, this has been used to 

construct the artificial miniature p-keto acid decarboxylase Apoxaldie-1, which is a 

helical peptide stabilised by two disulfide linkages. It contains three lysine residues on 

one side o f the helix which are responsible for the catalytic activity (Weston et al. 2004) 

(Figure 1.10).
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Figure 1.10: Model o f  Apoxaldie-1 
(Cureton 2003). The disulfide 
bonds are indicated in yellow, the 
a-helix is coloured in blue and the 
catalytic Lys side chains are 
shown in red.

Another strategy involves conformationally constraining the peptide using cross-linkers. 

Para-substituted benzene rings and acetylenic cross-linking agents are important 

examples (Yu et al. 1999; Fujimoto et al. 2004; Fujimoto et al. 2007). Para-substituted 

amino acid derivatives of a benzene ring were utilised to link side chains of a model 

peptide in the i, i+7  spacing. A non-proteinogenic 2,3-diaminopropionic acid residue 

within a short model peptide was linked to an aspartic acid by a bridge consisting of 

p-(aminomethylphenyl)acetic acid. The resulting bridged peptide showed enhanced 

helix stability. Fujimoto et al. used acetylenic cross-linkers of different lengths with the 

right compromise between rigidity and flexibility to modify two lysines within a 

sequence in either the i, i+4  or /, i+7  spacing. The side chain amine group of the lysines 

attacks the keto group o f the succinimide part of the cross-linker, this results in ring 

opening and formation o f a new amide bond (Fujimoto et al. 2004) (Figure 1.11).
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O

O

Figure 1.11: Chemical structures o f  the acetylenic cross-linkers used to 
stabilise a-helices, where n corresponds to 1 or 2 (Fujimoto et al. 2004).

Other cross-linking reagents are based on methyl alkanethiosulfonate (MTS). These 

linkers are thiol reactive and can therefore be introduced using cysteine residues. They 

react rapidly and selectively with the sulfhydryl groups o f proteins via thiol-disulfide 

exchange, upon addition o f other thiols, the reaction is reversed (Kenyon et al. 1977; 

Dime 2002) (Figure 1.12).

O

O

O

II 4 o
O

Figure 1.12: General chemical structure 
o f  MTS cross-linkers.
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Verdine, Korsmeyer et al. have described the stabilisation o f a-helical structure by 

hydrocarbon-stapling o f the olefinic side chains o f non-canonical amino acids that can 

be introduced either in the i, i+4  or i, i+7  spacing (Figure 1.13) (Schafmeister et al. 

2000). The "staple” to constrain the peptide conformation is then formed through a ring 

closing metathesis reaction. This approach has been successfully applied to target 

protein-protein interactions such as Bcl-XL/Bid and p53/HDM2 in vitro and in vivo. The 

peptides demonstrated enhanced affinity towards their target, protease stability and cell 

permeability (Walensky et al. 2004; Bernal et al. 2007).

o o

Fmoc' OH

Me

H
N

OHFmoc

Me

Figure 1.13: Chemical structure o f  modified S- (left) 
and R-amino acids (right) with olefinic side chains 
o f variable length (Schafmeister et al. 2000).

1.4 Photocontrol of peptide/protein conformation

As mentioned previously, one strategy for secondary structure stabilisation involves the 

use o f a covalently bound cross-linker. An especially interesting case is the utilisation o f  

photochromic compounds. Such cross-linkers can facilitate the light pulse dependent 

regulation o f peptide or protein conformation. Examples o f this include a mutated MscL 

protein from E. coli that was modified with a spiropyran compound using an alkylating 

cysteine-reactive photoswitchable reagent (Kocer et al. 2005). Upon irradiation with
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UV light, charge separation occurs and the zwitterionic merocyanine state o f the 

molecule is obtained (Scheme 1.1). Hydrophilic changes inside the narrow protein pore 

cause hydration and weakening o f  the hydrophobic van der Waals forces responsible for 

maintaining the closed channel conformation, so that the pore opens. Exposure to 

visible light leads to a ‘ring closing’ reaction resulting in the uncharged starting 

material, allowing for reversible control o f  the channel conductivity upon an optical 

signal. However the proportion o f the merocyanine state o f the channel obtained 

dropped substantially after the first illumination and the isomerisation process was also 

shown to progress slowly (Kocer et a l  2005).

no2

Schem e 1.1: Structures o f  the spiropyran and merocyanine states o f  the 3 \ 3 '-dimethyl- 
1 ~(2~iodoacetyloxyethyl)-6-nitrospiro[2H-I-benzopyran-2,2 ’-indoline] photoswitch 
(R = iodine or MscL protein).

Stilbenes can be switched between the trans and the cis configuration using UV light. 

Cyclic p-hairpin peptidomimetic have been designed using this photoresponsive 

compound, p-hairpins are heavily involved in both protein-protein and protein-DNA 

interaction but difficult to characterise and structurally unstable. They consist o f two 

anti-parallel strands o f p-sheet that are linked by a small loop. The stilbene moiety 

(Figure 1.14) was incorporated during peptide synthesis. The p-hairpin mimetics were
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studied by CD spectroscopy and the backbone conformation determined by NMR 

spectroscopy, which confirmed that only the c/s-isomer had a p-hairpin structure.

HO

Figure 1.14: Structure o f the Fmoc protected  
stilbene amino acid used to generate the 
photoresponsive peptidomimetic.

Azobenzene is the most widely used compound for the generation o f photoresponsive 

systems (Renner et al. 2005). It can adopt the cis and the thermally stable trans 

conformation. In the dark there is greater 99% trans azobenzene. The trans 

conformation is about 50 kJ mol'1 lower in energy and the energy barrier to the photo­

exited state is approximately 200 kJ mol'1. The two isomers can be switched with light 

o f particular wavelength (in the UV- or visible spectrum). The n-n* leads to the trans- 

cis isomerisation and the n-7t* transition to the cis-trans isomerisation. The photo- 

isomerisation reactions occur rapidly at a picosecond timescale typically resulting in 

around 85-90% o f the cis isomer (Satzger et a l  2004). The cis to trans isomerisation 

can also occur thermally (Scheme 1.2). The rates for this vary between seconds and 

hours. The barrier for this step is around 90 kJ mol'1. Two mechanisms for the trans to 

cis isomerisation have been proposed: the rotation pathway involves an out o f plane 

rotation around the CNNC dihedral angle (<(>), the alternative inversion pathway 

proceeds via an in-plane inversion o f the NNC angle ((p) (Schulze et a l  1977; Crecca et
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al. 2006) (Scheme 1.2). Azobenzene has been frequently used to reversibly constrain 

and relax the peptide backbone by means o f its isomerisation due to its rapid 

isomerisation, high quantum yield, the reversibility o f the process and the strong change 

in geometry upon switching. The two isomers are 1.0 nm and 1.7 nm in length 

respectively. Azobenzene possesses high photostability so repeated switching does not 

lead to destruction o f the compound (Behrendt et al. 1999a; Cattani-Scholz et al. 2001; 

Schutt et al. 2003; Zhao et al. 2004; Renner et al. 2005; Liu et al. 2006; Aemissegger et 

al. 2007; Boulegue et al. 2007; Kusebauch et al. 2007).
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200 kJ mol- ’trans

CIS

50 kJ mol-1
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Scheme 1.2: A) Conformational change o f azobenzene and the two 
pathways o f  isomerisation and B) State model for the azobenzene 
chromophore. The rate o f  thermal relaxation is labelled k. 0  and e  
denote quantum yield and extinction coefficient, respectively.

A variety of structural motifs have been successfully modulated by azobenzene- 

containing agents. The conformation of cyclic peptides was controlled by incorporating 

an azobenzene moiety into the peptide backbone. The effect upon isomerisation of the
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cross-linker consisted of a change from a p-tum conformation (<cis) to an unfolded 

(trans) conformation (Behrendt et al. 1999a; Behrendt et al. 1999b; Renner et al. 2000a; 

Renner et a l  2000b; Renner et a l  2002; Renner et a l  2005). A photocontrol 1 able p- 

hairpin and a collagen triple helix have also been described recently (Dong et a l  2006; 

Kusebauch et a l  2007). The incorporation o f an azobenzene moiety enabled control 

over the formation or disruption o f the P-hairpin motif (Figure 1.15). This allowed CD 

folding studies to be undertaken upon reversion o f the azobenzene group from cis to 

trans. An azobenzene-containing amino acid has been described by Hilvert et a l  which 

can be incorporated into peptides by solid-phase synthesis enabling a reversible 

conformational change of the amide backbone (Aemissegger et a l  2007). An aPP based 

miniature protein in which the tertiary structure and thereby potentially function was 

controllable by switching the azobenzene amino acid between the two states was 

designed based on this as a proof of principle (Jurt et a l  2006).

3lu-T rp-Thr-T rp-Ser-H

Lys-T rp-Thr-Trp-Lys-N H2

Figure 1.15: A designed photocontrolled 
/3-hairpin structure (cis-isomer).

Light activatable ion channels have been developed which can aid in the study o f the 

nervous system. The ligand is tethered to the channel via the azobenzene moiety and its 

effective concentration and binding to the receptor is modulated (Banghart et a l  2004; 

Volgraf et a l  2006; Gorostiza et a l  2007). The enzymatic activity o f ribonuclease S
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was controlled by photoresponsive S-peptide analogues containing 

phenylazophenylalanine residues (Liu 1997). Caamano et al. first described the 

photomodulation o f DNA-binding affinity via an azobenzene cross-linker. Two basic 

leucine zipper (bZIP) domains were linked through the azobenzene moiety and so that 

their orientation became photoswitchable, enabling only the c/s-form to interact tightly 

with the DNA major groove (Caamano et al. 2000).

Woolley and Smart et al. developed a cross-linking strategy that can be used to both 

stabilise and destabilise a-helix formation and initially applied it to regulating the 

structure of a model peptide (Kumita et al. 2000). This cross-linker used iodoacetamide 

groups which were then substituted by chloroacetamide groups in order to improve the 

light stability of the compound. Additionally, sulfonate groups were attached to the 

meta position of the benzene rings to enhance the water solubility (Zhang et al. 2003) 

(Scheme 1.3).
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Scheme 1.3: Structure o f the azobenzene cross-linker designed 
and optimised by Zhang et al.

The azobenzene cross-linker is incorporated into peptides via Sn2 reaction with two 

cysteines. It was established with the aid of molecular modelling that stabilisation of a 

helical motif in the cis form requires cysteines in the /, /+4 or /, i+1, whereas for the 

trans isomer a spacing of i, i+11 is ideal. The light-induced state contains 70-90% cis 

isomer whereas the dark-adapted state comprises more than 99% trans (Zhang et a l  

2003). In the i, i+11 spacing, the cross-linker will be compatible with an a-helical 

peptide conformation in the trans form but the cis conformation it is too short to 

accommodate the structure. In the i, i+7  and i, i+4  spacing it is the other way round 

(Flint et a l  2002; Zhang et a l  2003) (Scheme 1.4).

Subsequent research into this strategy has shown that it is possible to regulate the DNA- 

binding specificity o f two peptides by light. The 18 amino acid peptide HDH-3 which 

was based on the DNA recognition helix o f the engrailed homeodomain was attached to
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the azobenzene moiety in the i, i+11 spacing (Figure 1.16). HDH-3 in the dark 

displayed the spectrum o f an a-helix whereas the uncrosslinked peptide and HDH-3 in 

the light-induced state were mainly unstructured. HDH-3 in the dark-adapted state 

bound to the target sequence with high affinity (Kd = 7.5 nM) whereas in the light- 

induced state the affinity was reduced by one order o f magnitude. Furthermore, dark- 

adapted HDH-3 displayed specificity similar to the full length protein. The i, i+7  

spacing, which allows helix-formation upon irradiation was tested using the bHLH 

domain o f the transcription factor MyoD. The photochemical regulation o f DNA 

binding specificity was achieved. PhotoMyoD displayed two orders o f magnitude 

enhanced specificity for the target DNA sequence. This represents the first time this 

photocontrol strategy was used to modulate the functional properties of proteins 

(Guerrero et al. 2005a; Guerrero et al. 2005b).
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r

h v ’ or A

hv or A

Scheme 1.4: A) Mechanism o f the cross-linking 
reaction between two sulfhydryl groups and the 
compound developed by Zhang et al. 
B) Conformational change upon isomerisation for  
the i, i+7 spacing. C) Conformational change 
upon isomerisation for the i, i+11 spacing.
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amino acid side chains have to be protected orthogonally so that they may be freed at a 

later point. A number of popular protecting groups are shown in Figure 1.17. 

Subsequently, the A-terminus of the peptide is deprotected again and can be therefore 

modified by acetylation or a fluorophore for example. The polymer is then cleaved from 

the solid support and the sidechain protection groups are removed (Scheme 1.5).

Deprotection

I
R

o
H

+  X C OH

R

Coupling

HoN

O

O
H II

C OH

R

Scheme 1.5: The solid phase peptide synthesis reaction scheme. The solid 
phase support is shown as a grey sphere (X = protecting group and 
R = amino acid side chain).

1 2

Figure 1.17: Popular N -terminal protecting groups, t-Butyl (t-Bu) (1), 
t-Butyloxycarbonyl (Boc) (2) and 9-Fluorenylmethoxycarbonyl (Fmoc) (3).

Deprotection 
and cleavage
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1.6 Aim of the work described in this thesis

At the commencement o f this study, protein-protein interactions and protein-RNA 

interactions had not been successfully photomodulated. The purpose o f this study is to 

extend this approach to these two important types o f biomacromolecular interactions. 

To test the feasibility o f interfering with protein-protein interactions in the same manner 

as described for DNA-protein interactions, apoptosis signalling was chosen as a suitable 

model system for the investigation o f this avenue due to the abundance o f functional 

and structural data available for this signalling pathway. Small photoresponsive peptides 

based on the BH3 domain o f the Bcl-2 family o f proteins were designed, synthesised 

and characterised For the research on protein-RNA interactions, the well studied 

Rev/RRE interaction involved in the HIV lifecycle was selected. The a-helical RNA 

binding domain o f Rev will be used to create the biophotonic nanoswitches for this 

system.

The interaction of the obtained biophotonic nanoswitches with the target molecules is to 

be determined using fluorescence based assays and the differences in the binding 

affinities of the uncross-linked, light-induced and dark-adapted states of the peptides 

will be analysed. To determine the specificity of these peptides, the binding to a 

non-target protein should also be evaluated. Structural information for the different 

states will be acquired from circular dichroism spectroscopy. The obtained cis/trans 

ratio will be determined and the half-life of the cis form investigated by UV/Vis 

spectroscopy. NMR studies or complex disruption assays should be carried out to 

determine if the biophotonic nanoswitches target the same interaction interface as the 

wild-type peptides.
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The controllable activation o f transcription by PhotoMyoD or any other peptide inside a 

cell has not been demonstrated to date. Therefore PhotoMyoD and a peptide developed 

during the studies described in Chapter 3 were modified with a peptide transduction 

domain, to enable their future in vivo application.
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2.1 Materials

All chemicals were purchased from Fisher, Merck, Sigma-Aldrich, NovaBiochem, 

AGTC, New England BioLabs, GE Healthcare, QIAGEN or Fluka. The 

oligonucleotides were purchased from Operon.

2.1.1 Culture media

2.1.1.1 Luria Bertani (LB) medium

Bacto tryptone (10 g I'1), yeast extract (5 g I 1) and NaCl (10 g I'1) were dissolved in 

deionised water. The pH was adjusted to 7.5 using 5 M NaOH, and the medium was 

autoclaved for 2 0  min at 15 lb sqin' on a liquid cycle.

2.1.1.2 2x YT medium

Bacto tryptone (16 g I 1), yeast extract (10 g I 1) and NaCl (5 g I 1) were dissolved in 

deionised water. The pH was adjusted to 7.0 using 5 M NaOH and the medium was 

autoclaved for 2 0  min at 15 lb sqin'2 on a liquid cycle.

2.1.1.3 SOB medium

Yeast extract (5 g I"1), tryptone (20 g I'1), NaCl (0.58 g I'1), KC1 (0.186 g I'1), MgCE 

(2.0 g I'1) and MgS0 4  (2.5 g I'1) were dissolved in deionised water and the medium was 

autoclaved for 20 min at 15 lb sqin' 1 on a liquid cycle.
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2.1.1.4 M9 minimal medium

To 900 ml of sterile water are added the following sterilised solutions:

100 ml o f  10 X M9 salt (60g I'1 Na2H P04,3 0 g  I'1 KH2P 0 4, 5g NaCl, pH 7.4)

10 ml o f 100 g r' NH4C1

2.0 ml o f 1.0M M gSO 4

12.5 ml o f 20% (w/v) D-Glucose 

0.2 ml o f 0.5 M CaCl2 

1 mg Biotin

0.5 ml 2 mg ml*1 Thiamine hydrochloride

1.0 ml 15 mg ml*1 FeCl2 in 1.0 M HCl

1.0 ml 15 mg ml*1 ZnCI2 in slightly acidic water 

(1 drop o f 12 M HC1 for 10 ml solution)

2 . 0  ml 1 0 % (w/v) yeast extract

2.1.2 Agar plates

Agar plates were prepared with autoclaved LB medium containing agar (40 g I*1) and 

the appropriate antibiotic concentration. The solution was poured into 90 mm Petri 

dishes under aseptic conditions. Once set, the agar plates were inverted and stored at 

4 °C. For cell growth, a solution of bacterial culture was spread over the plate with a 

sterile glass rod and incubated at 37 °C overnight.

2.1.3 E. coli strains

The E. coli strains used in this work were: BL21(DE3), BL21(DE3)pLysS and 

XLl-Blue.
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Table 2.1: Genotype o f the E. coli strains used in this work (Studier et al. 1986).

Strain Genotype

BL21(DE3) F  ompT hsdSn (re’ me ) gal dcm (DE3)

BL21 (DE3)pLysS F  ompT hsdSb (re’ me ) gal dcm (DE3) pLysS (CamR)

XLl-Blue endAl recA l gyrA96 thi-l h sd R ll supE44 relA i lac 
[F’ proAB lacPZAM15 TnlO (Tetr)]

The BL21 strains are designed for protein expression (Studier et al. 1986). The DE3 

designation denotes that the strain contains the >X>E3 lysogen carrying the gene for T7 

RNA polymerase under the control of the lac\JV5 promoter allowing induction of the 

expression of recombinant proteins with isopropyl-p-D-thiogalactopyranoside (IPTG). 

The pLysS plasmid produces T7 lysozyme to reduce basal levels of T7 RNA 

polymerase and thereby reducing the basal expression level of the gene of interest 

(Studier et al. 1986). This is essential in the cases where the protein produced is toxic to 

the cell. XLl-Blue strain (Table 2.1) is a host for optimal propagation of plasmids. This 

strain is used for cloning where high transformation efficiencies are required.

2.1.4 Preparation of antibiotic solutions

Stock solutions were prepared by dissolving each antibiotic in the appropriate solvent; 

filter sterilised using a 0.2 pm syringe filter, aliquoted and finally stored at -20 °C. 

Ampicillin stocks were prepared to a final concentration of 50 mg ml' 1 in deionised 

water and used at a concentration of 100 pg ml'1. Chloramphenicol stocks were diluted 

to a final concentration of 34 mg ml*1 in ethanol and used at a concentration of 

34 pg ml'1.
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Table 2.1: Genotype o f the E. coli strains used in this work (Studier et al. 1986).

Strain Genotype

BL21(DE3) F' ompT hsdS& (re' me ) gal dcm (DE3)

BL21(DE3)pLysS F' ompT hsdSs (re* me*) gal dcm (DE3) pLysS (CamR)

XLl-Blue endAl recA l gyrA96 thi-l h sd R ll supBAA relA l lac 
[F’ proAB lacPZAM15 TnlO (Tetr)]

The BL21 strains are designed for protein expression (Studier et al. 1986). The DE3 

designation denotes that the strain contains the XDE3 lysogen carrying the gene for T7 

RNA polymerase under the control of the lac\JV5 promoter allowing induction of the 

expression of recombinant proteins with isopropyl-P-D-thiogalactopyranoside (IPTG). 

The pLysS plasmid produces T7 lysozyme to reduce basal levels of T7 RNA 

polymerase and thereby reducing the basal expression level of the gene of interest 

(Studier et al. 1986). This is essential in the cases where the protein produced is toxic to 

the cell. XLl-Blue strain (Table 2.1) is a host for optimal propagation of plasmids. This 

strain is used for cloning where high transformation efficiencies are required.

2.1.4 Preparation of antibiotic solutions

Stock solutions were prepared by dissolving each antibiotic in the appropriate solvent; 

filter sterilised using a 0.2 pm syringe filter, aliquoted and finally stored at -20 °C. 

Ampicillin stocks were prepared to a final concentration of 50 mg ml' 1 in deionised 

water and used at a concentration of 100 pg ml'1. Chloramphenicol stocks were diluted 

to a final concentration of 34 mg m l 1 in ethanol and used at a concentration of 

34 pg ml'1.
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Kanamycin was prepared as a 35 mg ml' 1 stock solution in deionised water and used at 

a final concentration of 50 pg ml'1.

2.1.5 Preparation of reagents and buffers

All buffers were made as stock solutions according to Sambrook et al. (1989).

2.1.5.1 50x TAE (Tris-acetate/EDTA) electrophoresis buffer

Per litre,

242 g Tris base (pH 8.0)

27.1 ml glacial acetic acid

100 ml 0.5 M ethylene diamine tetraacetic acid (EDTA)

2.1.5.2 lOx SDS running buffer

Per litre,

30.3 g Tris base (pH 8.3)

144 g glycine

10 g sodium dodecyl sulfate (SDS)

2.1.5.3 SDS gel-loading buffer

Per 10 ml,

1.25 ml 0.5 M Tris-HCl (pH 6 .8 )

2 ml 10% SDS
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0.2 ml o f a 0.5% (w/v) bromophenol blue solution

2.5 ml glycerol

0.5 ml p-mercaptoethanol

3.55 ml deionised water

2.1.5.4 Staining buffer for SDS-PAGE

0.25% (w/v) Coomassie brillant blue 

45% (v/v) methanol: deionised water 

1 0 % (v/v) glacial acetic acid

2.1.5.5 Destaining buffer for SDS-PAGE

1 0 % (v/v) glacial acetic acid 

1 2 % (v/v) isopropanol 

in deionised water

2.1.5.6 Gel-loading buffer for agarose gel electrophoresis

0.25% (w/v) bromophenol blue 

15% glycerol (v/v)
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2.1.5.7 1MIPTG

2.383 g IPTG was dissolved in 10 ml deionised water and sterilised by filtration through 

a 0 . 2  pm syringe filter.

2.1.5.8 0.5 M phenylmethylsulfonylfluoride (PMSF)

87 mg PMSF was dissolved in 1 ml isopropanol and stored at 4 °C.

2.1.5.9 Phosphate buffered saline (PBS)

Per litre of deionised water

8.12 g NaCl 

0.75 g KC1

0.88 g Na2H P04 x 2 H20  

0.35 g KH2P 0 4

2.1.5.10 TB solution

To 100 ml water the following was added:

0.30 g Piperazine-l,4-bis(2-ethanesulfonic acid) (PIPES)

0 . 2 2  g CaCl2 

1.86 gKCl

The pH was adjusted to 6.7 and 1.08 g of MnCl2 dissolved.

The solution was filtered through a 0.22 pm filter for sterilisation.
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2.1.5.11 RNase free solutions

RNase free water and buffers were obtained by adding 0.1% diethylpyrocarbonate 

(DEPC) to the respective solution prior to incubation at 37 °C for 1 hour. The remaining 

DEPC was destroyed by autoclaving. Amine group containing compounds such as 

2-(4-(2-hydroxyethyl)-l-piperazinyl)-ethanesulfonic acid (HEPES) were added after 

this step.

2.1.5.12 FRET buffer

Per litre:

7.14 g HEPES (pH 7.5)

7.46 g KC1 

2.32 g NaCl 

0.77 g NH4AC

0.24 g guanidinium hydrochloride

0.19 g MgCl2

0.19 g EDTA

100 pi Triton X-100

2.2 Molecular biology methods

2.2.1 Preparation of competent cells

The desired E. coli strain was aseptically streaked out from a frozen glycerol stock onto 

an agar plate containing appropriate antibiotics. The plate was incubated overnight at

40



Chapter 2: Materials and methods

37 °C. Ten large colonies were picked and cultured with vigorous shaking in 250 ml 

SOB medium in a 1 litre flask at 20 °C. Upon reaching an OD60o of 0.5 (after 24 h to 

36 h), the flask was placed on ice for 10 min. The cells were pelleted by centrifugation 

at 4 °C and gently resuspended in ice-cold TB medium and stored on ice for 10 min. 

The cells were pelleted again and resuspended in 20 ml of TB and 1.4 ml of 

dimethylsulfoxide (DMSO). lOOpl aliquots were flash frozen and stored at -80 °C.

2.2.2 Transformation

A sample of plasmid DNA (lpl-lO pl) and 100 pi of competent cells were mixed in an 

Eppendorf tube and incubated on ice for 30 min. The cells were then subjected to heat 

shock (40 °C) for 45 s before being placed on ice for a further 2 min. The cells were 

incubated at 37 °C for 1 h with shaking at 180 rpm in 1 ml LB medium. The solution 

was then centrifuged for 1 minute at maximum speed (-16,000 g ) in a bench top 

microcentrifuge and the supernatant was discarded. The cells were resuspended in fresh 

LB medium (100 pi) and the solution was plated on a prewarmed at 37 °C agar plate 

containing the appropriate antibiotic(s). The plate was incubated at 37 °C overnight.

2.2.3 DNA isolation and purification

2.2.3.1 QIAprep Spin Miniprep Kit™

The QIAprep Spin Miniprep Kit™ was used for purification of up to 20 pg of high-copy 

plasmid DNA from 5 ml overnight cultures of E. coli in LB medium. The procedure 

was followed according to the manufacturer’s instructions.
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2.2.3.2 Agarose gel electrophoresis

Agarose gels were used for analysis and isolation of DNA fragments. Powdered agarose 

was dissolved in 50 ml lx  TAE buffer to a final concentration of 1% using a microwave 

oven to melt the agarose and the mixture was poured into the minigel kit (CBS 

Scientific) and left to set. Samples were mixed with the gel-loading buffer and loaded 

into the gel. Gels were run in lx  TAE buffer at 60 mA for 60 min after which the DNA 

was stained with ethidium bromide and visualised with a UV lamp at 254 nm. The DNA 

fragment of interest was excised from an agarose gel with a clean, sharp scalpel. The 

QIAquick Gel Extraction Kit was used according to the manufacturer’s instructions 

(QIAGEN).

2.2.4 Quantification of DNA and oligonucleotides in solution

The concentration of nucleic acids was determined spectrophotometrically using a 

Shimadzu BioSpec-mini spectrophotometer to determine the optical density (OD) of a 

solution of DNA or oligonucleotide at 260 nm. An OD260 reading of 1.0 corresponds to 

a concentration of approximately 50 pg ml'1 for double-stranded DNA and 20 pg ml'1 

single-stranded oligonucleotides. The ratio of the absorbencies measured at 260 and 

280 nm (OD260/OD280) gives an indication of the purity of the nucleic acid in the 

sample. A ratio of around 1.8 indicates a DNA sample is pure. If the sample is 

contaminated with proteins and/or lipids the ratio will be lower.
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2.2.5 Storage of plasmids

2.2.5.1 Ethanol precipitation of nucleic acids

To precipitate the purified DNA, 50 pi 7.5 M ammonium acetate and 2.5 volumes of 

absolute ethanol were mixed with the DNA solution and the mixture was left for 10 min 

at room temperature. The solution was then centrifuged for 15 min at maximum speed 

(-16,000 g) in a bench top microcentrifuge. The supernatant solution was discarded and 

the pellet was washed with 250 pi 80% ethanol. The solution was centrifuged for 

10 min as before and the supernatant discarded. The pellet was dried at 37 °C in an oven 

and stored at -20 °C.

2.2.5.2 Glycerol stocks

To prepare glycerol stocks a sample (0.8 ml) of cells from an overnight culture was 

aseptically mixed with 0.2 ml of sterile glycerol. Glycerol stocks were stored at -80 °C.

2.2.6 Digestion with restriction enzymes

Digestion reactions were performed with the desired volume of DNA (usually 10 pi) 

and the restriction endonucleases in their recommended buffers (New England Biolabs 

and Pharmacia). The total volume of the reactions was 20 pi. Reactions were incubated 

at 37 °C for 4 hours. For double digestions the buffer used was as per manufacturer’s 

instructions in order to provide the highest digestion efficiency for both enzymes. The 

DNA products from digestion were analysed by agarose gel electrophoresis.
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2.2.7 Dephosphorylation of DNA fragments

Following digestion with a single restriction enzyme, the vector should be 

dephosphorylated at the 5’-end with calf alkaline phosphatase (CAP) to avoid self­

ligation, to this end, the DNA (0.05 pg pi'1) was suspended in lx  NEBuffer (supplied by 

New England Biolabs). Next, 0.5 U pg' 1 of vector DNA of alkaline phosphatase (from 

calf intestinal mucosa) was added to the mixture. The solution was incubated at 37 °C 

for 60 min, followed by purification of the DNA using gel purification.

2.2.8 Phosphorylation of DNA fragments (kinase reaction)

Oligonucleotides were phosphorylated at the 5’-end with 0.5 pi T4 Polynucleotide 

Kinase in T4 ligase buffer (50 mM Tris-Cl (pH 7.5 at 25 °C), 10 mM MgCh, 10 mM 

dithiothreitol (DTT), 1 mM adenosine triphosphate (ATP), 25 pg ml' 1 bovine serum 

albumin (BSA)) and 2 mM MgCh. The solutions were incubated at 37 °C for 2 h. The 

success of the reaction was not analysed at this stage.

2.2.9 Annealing oligonucleotides

Equimolar quantities of oligonucleotides were mixed in an Eppendorf tube that was 

placed in a heat block at 95 °C. After 5 min at 95 °C, the heat block was switched off 

and the sample left to cool to RT. The annealed oligonucleotides were stored at -20 °C.

44



Chapter 2: Materials and methods

2.2.10 Ligation reaction

The desired gene was ligated into an appropriate expression vector. The digested 

plasmid and the insert were mixed together with 1 pi T4 DNA ligase (10 U pi'1) and 

lx  T4 DNA ligase buffer (400 mM Tris-HCl (pH 7.8 at 25 °C), 100 mM MgCl2, 

100 mM DTT, 5 mM ATP). The solution was then incubated at 16 °C for 4 h. Products 

were stored at -20 °C.

2.2.10.1 PCR Script ligation kit

The kit was used according to the manufacturer’s instructions.

2.2.11 Polymerase chain reaction (PCR)

Each reaction mixture was prepared in a 0.5 ml PCR tube and composed of 5 U Pfu 

Turbo DNA Polymerase, 0.2 ng DNA template, 0.5 mM of each primer, 10 mM dNTP 

mix (0.2 mM of each: dATP, dCTP, dGTP, dTTP), lx  PCR buffer (200 mM Tris-Cl 

(pH 8.4) and 500 mM KC1) and 2 mM MgCl2. Sterile deionised water was added to give 

a final volume of 50 pi. The temperatures were determined in each case considering the 

melting temperatures of the primers being used. The typical cycle implemented was as 

follows: 1 min at 95 °C (denaturation), 1 min at 55 °C (annealing) and 1 min/1,000 bps 

at 72 °C (extension). This thermal cycle was repeated 30 times. Amplification of the 

desired DNA fragment was confirmed by agarose gel electrophoresis and the products 

were stored at -20 °C.

45



Chapter 2: Materials and methods

2.2.12 Mutagenesis

The QuikChange™ Site-Directed Mutagenesis Kit was used to achieve single amino 

acid mutations. The procedure was followed according to the manufacturer’s 

instructions.

2.2.13 DNA sequencing

All sequencing reactions were carried out by Lark.

2.2.14 Reactions with modifying enzymes

Reactions with the modifying enzymes T7 polymerase and T4 polynucleotide kinase 

polymerase were carried out according to manufacturer’s procedures. Reaction volumes 

were 2 0  pi.

2.3 General methods for protein preparation and purification

2.3.1 Growth of bacterial cultures

Overnight cultures were grown in sterile conditions by inoculating a single colony from 

an agar plate into 5 ml LB medium containing the appropriate antibiotic(s). The cultures 

were incubated at 37 °C with constant shaking at 180 rpm.

2.3.2 Protein expression using the T7 system

The desired competent cells were transformed with plasmid DNA. For large scale 

expression, the colonies were grown overnight in 10 ml LB medium containing the
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appropriate antibiotic(s). The entire contents of each of the overnight cultures were 

transferred to separate 500 ml of fresh LB medium or 2x YT medium containing 

antibiotics in 2 litre conical flasks, and incubated until they reached an OD600 -0 .5 . The 

cells were then induced with IPTG to a final concentration of 0.8 mM and left to grow 

for 4 to 6 h. 1 ml samples were taken from each flask (including a sample prior to 

induction) and SDS-PAGE was used to analyse the extent of the expression of the target 

protein. The cells were then centrifuged at 6,800 g for 10 min at 4 °C and pellets were 

stored at -20 °C.

2.3.3 Lysis of cells

Pellets from a large-scale expression were thawed on ice and resuspended by vortexing 

in the appropriate lysis buffer. PMSF was added to a concentration of 0.5 mM and the 

suspension was sonicated for 10 min (5 s on, 20 s off) on ice using a Sonicator W-37 

(Heat Systems Ultrasonics Inc.). The resulting lysate was centrifuged at 40,000 g for 

20 min and the protein-containing supernatant decanted.

2.3.4 Dialysis and storage of pure protein

To remove undesired components, the samples were dialysed using Medicell 

International Ltd. dialysis membranes (12,500 and 3,500 molecular weight cut off 

(MWCO), respectively) into the appropriate buffer with stirring at 4 °C. The dialysis 

buffer was changed in 12 hour intervals until the desired dilution was obtained. Purified 

protein was either transferred into appropriate buffers, flash frozen and stored at -20 °C 

or lyophilised and stored at -20 °C.
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2.3.5 Measurement and calculation of protein concentration

2.3.5.1 Determination of the concentration of protein

The concentration of Bcl-xL and HDM2 was determined spectrophotometrically. 

Absorbance measurements were taken at 210 nm using a Shimadzu UV-2401PC 

UV/Vis Recording Spectrophotometer. A clean quartz cuvette was used to hold the 

samples.

Protein concentration was calculated using the equation:

C(mgml 1) = ———  Equation 2.1
d ^ -  2 \ 0

where A is the absorbance, d is the pathlength in cm and X210 = 20.

2.3.5.2 Determination of peptide concentration

The concentration of FAM-labelled peptide was determined using an extinction 

coefficient at 494 nm of 83,000 M'1cm'1. The concentration of TMR-labelled peptides 

was determined using an extinction coefficient at 550 nm of 96,900 M' 1 cm'1. Peptide 

concentrations for cross-linked peptides were calculated using an extinction coefficient 

at 363 nm of 24,000 M ' 1 cm ' 1 (Lucia Guerrero, PhD thesis 2005). The concentration of 

uncross-linked and unlabelled peptide was obtained from the absorbance at 2 1 0  nm after 

dialysis of the peptide.
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2.3.6 Sodium dodecyl sulfate polyacrylamide gel electrophoresis

A 10 ml volume of 15% resolving gel (2.4 ml deionised water, 5 ml 30% degassed 

acrylamide/bis-acrylamide, 2.5 ml 1.5 M Tris-Cl (pH 8 .8 ), 0.1 ml 10% w/v SDS) was 

mixed with 10% APS (100 pi) and TEMED (10 pi). The solution was immediately 

poured in between the assembled glass plates up to a height of 5 cm and left to 

polymerise at room temperature. A 3 ml aliquot of 5% stacking gel (5.7 ml deionised 

water, 1.7 ml 30% degassed acrylamide/bis acrylamide, 2.5 ml 0.5 M Tris-Cl (pH 6 .8 ), 

0.1 ml 10% w/v SDS) containing the same polymerising agents (10% APS (100 pi) and 

TEMED (10 pi)) was pipetted on top of the resolving gel. A comb possessing either 

10 or 15 teeth was immediately inserted between the plates and the stacking gel was left 

to polymerise at room temperature. The comb was then removed and the wells rinsed 

with lx  SDS running buffer. Samples, mixed with lx  SDS gel-loading buffer, were 

loaded into the gel (15 pi in the 10-well gels and 8  pi in the 15-well gels) and ran at 200 

volts for 50 min. After electrophoresis, the gel was stained then destained using the 

appropriate buffers, followed by visualisation of the protein bands on a light box.

2.3.7 Mass spectrometry

Matrix Assisted Laser Desorption Ionisation Time of Flight (MALDI-TOF) mass 

spectrometry was performed to identify the purified proteins and peptides. Either a 

sinapinic acid or an a-cyano-hydroxy-cinnamic acid matrix containing 0 . 1 % 

trifluoroacetic acid (TFA) were used for MALDI-TOF experiments. The peptides were 

ionised on a thin film of one part peptide solution to one part matrix, using a Waters 

Micro MX mass spectrometer.
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2.4 Purification of Bci-xL

The cells were lysed in 100 mM sodium phosphate buffer (pH 7.5) containing 100 mM 

p-mercaptoethanol. The clarified lysate was dialyzed against 100 mM sodium 

phosphate buffer (pH 7.5) containing 5 mM p-mercaptoethanol to allow purification on 

a Ni-Sepharose column. Following loading of the protein solution, the column was 

washed with 100 mM sodium phosphate buffer (pH 7.5) containing 500 mM NaCl, 

5 mM P-mercaptoethanol and 50 mM imidazole, and bound Bc1-xl was eluted using the 

same buffer containing 500 mM imidazole. The purity of the resulting protein was 

analyzed by SDS polyacrylamide gel electrophoresis and the correct mass was verified 

by MALDI-TOF mass spectrometry (measured: 25,922; calculated: 25,985 Da). The 

full protein sequence is given in the appendix section.

2.5 1SN-Labelling of Bcl-xL

For the 'H l5N HSQC NMR experiments l5N-labelled protein was produced. Due to the 

lower aggregation tendencies of the truncated loop protein this was used for these 

experiments. A pET vector coding for residues 1 to 212 (A45-84) of Bc1-xl and a 

C-terminal His-tag was obtained from Dr. Matt Crump (University of Bristol) and 

BL21(DE3) cells were transformed with the plasmid. These cells were grown at 37 °C 

in M9 minimal medium to an OD600 of 0.5 and induced at that point with IPTG 

(0.4 mM). After 4 hours of incubation, the cells were harvested and the purification 

protocol described for the non-truncated protein followed. The elution of the protein 

from the column was done in a step-wise manner (50 mM, 100 mM and 250 mM 

imidazole) to enhance the purity of the obtained protein.
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2.6 Purification of HDM2

The HDM2 (1-125) protein was obtained from Thomas Fricke. It was expressed and 

purified as described by Nicholas Taylor (PhD thesis 2009).

2.7 Purification of TAT Bid KSI protein

The cells were lysed in 100 mM sodium phosphate buffer (pH 7.5) containing 100 mM 

P-mercaptoethanol. The protein was either directly cleaved using cyanogen bromide at 

this step or extracted from the pellet with sodium phosphate buffer (pH 7.5) containing 

6  M guanidinium hydrochloride and 5 mM p-mercaptoethanol and the resulting protein 

solution applied to a Ni-sepharose column, depending on the obtained expression level. 

Following the loading of the protein solution, the column was washed with 100 mM 

sodium phosphate buffer (pH 7.5) containing 500 mM NaCl, 5 mM p-mercaptoethanol 

and 50 mM imidazole and 6  M guanidinium hydrochloride. The bound protein was 

eluted using the same buffer containing 500 mM imidazole. The protein was dialysed 

into water and the resulting precipitate used in the cyanogen bromide cleavage step. The 

full protein sequence is given in the appendix section.

2.8 Purification of PhotoMyoD penetratin

2.8.1 Cation exchange chromatography

The full protein sequence of PhotoMyoD penetratin is given in the appendix section. 

After expression, the cells were lysed in 50 mM potassium phosphate buffer (pH 8.0) 

containing 100 mM P-mercaptoethanol and dialysed against the same buffer. A CM
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cation exchange column was equilibrated with 50 mM potassium phosphate buffer 

(pH 8.0) containing 100 mM p-mercaptoethanol and the protein solution loaded directly 

onto the column with the help of a pump. Once all the protein solution was loaded and 

the spectrophotometer reached a steady 280 nm reading, the bound protein was eluted 

with a NaCl gradient from 0 to 1.5 M using a 50 mM potassium phosphate buffer 

(pH 8.0) containing 100 mM p-mercaptoethanol and 1.5 M NaCl with a flow rate of 

3 ml min'1. The fractions were collected and analysed by SDS-PAGE.

2.8.2 Size exclusion chromatography

The cells were lysed in 100 mM sodium phosphate buffer (pH 7.5) containing 100 mM 

p-mercaptoethanol and 100 mM sodium chloride and dialysed against the same buffer. 

The solution was concentrated using a Vivaspin centrifugal concentrator (MWCO

10.000 Da) and applied to an equilibrated Sephadex G-75 size exclusion column. The 

obtained protein was passed through a Vivaspin centrifugal concentrator (MWCO

30.000 Da) to remove remaining impurities.

2.9 Purification of His-tagged PhotoMyoD penetratin

The cells were lysed in 100 mM sodium phosphate buffer (pH 7.5) containing 100 mM 

p-mercaptoethanol. The protein was extracted from the pellet with sodium phosphate 

buffer (pH 7.5) containing 6  M guanidinium hydrochloride and 5 mM 

p-mercaptoethanol and the resulting protein solution applied to a Ni-sepharose column. 

Following loading of the protein solution, the column was washed with 100 mM sodium 

phosphate buffer (pH 7.5) containing 500 mM NaCl, 5 mM P-mercaptoethanol, 50 mM

52



Chapter 2: Materials and methods

imidazole and 6 M guanidinium hydrochloride. The bound protein was eluted using the 

same buffer containing 500 mM imidazole.

2.9.1 Enterokinase cleavage

The protein was dialysed into 50 mM Tris buffer (pH 8.0) containing 1 mM DTT and 

2 M urea. 50 units enterokinase were added to 3 ml of the protein solution and 

incubated at 20 °C for 20 hours. The success of the reaction was analysed by 

SDS-PAGE.

2.10 Peptide synthesis and purification

Bak72-87WI'd‘type, Rev33.5owlld'typeRev33_5ol+7and Bak72.87,+7 were synthesised on Rink amide 

resin using a CEM Liberty microwave synthesiser, solid phase peptide synthesis and 

standard Fmoc chemistry (0.1 mM scale). For the synthesis of Rev33.5owlld'type 

Rev33_5o<+//, Bak72-87,+// and Bid9 i-m'+4 peptides; Rink amide 4-methylbenzhydrylamine 

(MBHA) resin was used. The sidechains were protected by the following groups: Arg 

(Pbf), Asn (trt), Asp (OtBu), Cys (trt), His (trt), Gin (trt), Glu (tBu) and Trp (boc). 20% 

piperidine in DMF was used to deprotect the N-terminus after each coupling. 0.45 M 

2-(lH-benzotriazole-l-yl)-l,l,3,3-tetramethyluronium, 0.45 M hydroxybenzotriazole 

(HBTU/HOBt) in DMF and 2 M diisopropylethylamine (DIEA) served as the coupling 

mixture. The peptide was cleaved from the resin using 10 ml of a 95:2.5:2.5 mixture of 

TFA, water and tri isopropyl si lane (TIPS). After 2 hours incubation at room 

temperature, the resin was filtered off and 90% of the solvent was removed by rotary 

evaporation. 10 ml of cold diethyl ether was then added to precipitate the peptide. After 

one hour in the freezer (-20 °C) the peptide was isolated from the mixture by
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centrifugation at 16,000 g. Subsequent purification was accomplished by Reverse Phase 

HPLC using a Phenomenex Luna lOu C l8(2) 100 A column (250 x 10 mm). Either a 

0% to 60% or 0% to 100% acetonitrile linear gradient was run over 60 min. The flow 

rate was 5 ml min'1.

2.11 Fluorophore labelling of the peptides

For the fluorescence-based binding studies the peptides had to be modified with an 

appropriate fluorophore. Carboxyfluorescein (FAM) and carboxytetramethylrhodamine 

(TMR) were selected because their absorbance and emission wavelength region will not 

interfere with the absorbance of the cross-linker. FAM and TMR can also be used as a 

Fluorescence Resonance Energy Transfer (FRET) donor and acceptor pair since they 

possess favourable spectral overlap.

1 2

Figure 2.1: Structure o f 5 -Carboxyfluorescein (5-FAM) (1) and
5-Carboxytetramethylrhodamine (5-TMR) (2).
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2.11.1 FAM-labelling

50 mg of 5(6)-FAM, 20 mg of HOBt and 26 |il of diisopropylcarbodiimide (DIPCDI) 

were incubated in 1 ml dimethylformamide (DMF) for 10 min. This solution was then 

added to the peptide on the resin and left to react at room temperature for 2  hours with 

agitation. The resin was filtered off and washed with dichloromethane (DCM).

2.11.2 TMR-labelling

50 mg of 5(6)-TMR, 20 mg of HOBt and 26 pi of DIPCDI were incubated in 1 ml 

DMSO for 10 min. This solution was then added to the peptide on the resin and left to 

react on a shaker at room temperature for 6  hours. The resin was filtered off and washed 

with DCM.

2.12 Cyanogen bromide cleavage

The fusion protein pellet was dissolved in 6  ml of 80% formic acid and transferred to a 

50 ml round-bottomed flask. 0.2 g of cyanogen bromide was added and the solution 

bubbled with nitrogen. The flask was wrapped in aluminium foil and the reaction stirred 

for 18-22 h. The mixture was desiccated on a rotary evaporator and the resultant gel 

extracted and centrifuged repeatedly with small volumes of PBS. The peptide was then 

purified by HPLC using a 0-100% acetonitrile gradient over 60 min. To open the 

lactone ring, 0.2 N NaOH was added until a pH of 12.5 was reached. The solution was 

neutralised with dilute HC1 after this.
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2.13 Synthesis of the azobenzene cross-linker

The cross-linker (BSBCA) was synthesised and purified according to the procedure 

described previously (Zhang et al. 2003; Bums et al. 2007). Briefly, 

2,5-diaminobenzenesulfonic acid (1) was acetylated and compound (2) was isolated 

from the product mixture by repeated wash steps with acetic acid (-80  °C). The 

compound (2 ) is oxidised under basic conditions to give the azobenzene core 

structure (3). The acetyl groups are removed to give product (4) and the reaction with 

chloroacetic acid yields the final product (5) (Scheme 2.1). The intermediates and the 

end product were analysed by *H NMR spectroscopy. The end product was further 

characterised by ESI-MS (calculated (m/z) 522.95, observed (m/z) 522.96).

NMR (500 MHz, D20 )  5 4.42 (s, 2H, CH2), 7.95 (dd, 1H, Hb), 8.07 (d, 1H, Ha), 

8.27 (d, 1H, He).
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Scheme 2.1: Synthesis o f 3 ,3 ’-bis(sulfo)-4,4’-bis(chloroacetamido)- 
azobenzene (BSBCA): a) glacial acetic acid, acetic anhydride 
(1.2 eq.); b) i. H2 O, sodium carbonate ii. sodium hypochlorite; 
c) i. H2 O, HCl ii. NaOH and d) chloroacetic acid (24 eq.), 
chloroacetic anhydride (24 eq.).
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2.14 Cross-linking

2.14.1 Reaction at 4 °C

The peptides were incubated in Tris buffer (pH 8.3) containing 0.5 mM TCEP for 

15 min at 4 °C to ensure that the cysteine residues were in the reduced state. Then 1 ml 

of a 2 mM cross-linker solution in 50 mM Tris buffer (pH 8.3) was added in three 

portions in 20 min intervals. The reaction was allowed to proceed for 12 hours. The 

cross-linked peptides were purified by reverse phase HPLC using the same equipment 

and procedure as previously described for the uncross-linked peptides and the correct 

mass was verified by MALDI-TOF mass spectroscopy

2.14.2 Reaction at 50 °C

In the cases were the reaction at 4 °C failed the alkylation was performed at 50 °C with 

2 hours incubation after each addition of the azobenzene compound. Purification was 

performed immediately afterwards as described for the procedure above (2.14.1).

2.15 Photoisomerisation

Photoisomerisation of dark-adapted BPNs was achieved by irradiating a solution of the 

peptide with a 250 W metal halide UV Light Point Source (UV-P 280) coupled to a 

360 nm band pass filter (10 nm bandwidth). Photoisomerisation was complete in less 

than 5 min as judged by the absence of further changes in the UV/Vis spectra. The 

percentage of isomerisation was calculated by using the respective extinction 

coefficients for the pure cis from (e363nm = 1,100 M'1 cm'1) (Zhang et al. 2003) and the 

trans form to determine the ratio from the obtained absorbance values before and after
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irradiation (Adad and Am ).

trans

A n d  = JC Scis d  [BPN] + (1 - x )  etrans d  [BPN] (x = fraction of cis isomer)

A l,d ~ £ , r a n s d [ B P N ]
d ( £ as £ trans )

d ( £ a s  ~ £ trans)

Equation 2.2

2.16 UV/Visible absorption experiments

All spectra were recorded in 5 mM potassium phosphate buffer (pH 8.0) at 5 °C using a 

Shimadzu UV-2401PC UV/Vis spectrometer or a Jasco V-660 spectrophotometer, 

running a 5 mm or 1 mm path length cuvette. The concentration was typically 100 pM. 

First order kinetics for the thermal cis to trans reversion were assumed since the rate of 

reversion should only depend on the concentration of c/s-peptide (cis-P). The 

corresponding integrated first-order rate law is:

Since [c/s-P] is directly proportional to the percentage of non-reverted irradiated peptide 

( % i i d ) ,  the rate constant k for the thermal relaxation process could be calculated from a 

plot of In %hd (t) versus t. %ud (t) is defined as:

[cis-P] = [cis-P]o e'kt Equation 2.3

Equation 2.4

where A363 is the measured absorbance at 363 nm at time t and A363dark and A36lld are the

values for the absorbance immediately before and after irradiation.
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The activation energy for the isomerisation reactions was determined using the 

Arrhenius equations:

- i- :a

 ̂= A e W Equation 2.5

where Ea is the activation energy and A is the pre-exponential factor.

2.17 Circular dichroism (CD) spectroscopy

Chiral molecules, for instance sugars, amino acids and certain asymmetric elements of 

secondary or tertiary structure, interact specifically with certain types of circularly 

polarised light. The extent to which this occurs depends on the rotational direction of 

the polarised light as well as on the conformation of the compound. CD spectroscopy 

employs equal amounts of left and right handed circularly polarised light, which are 

absorbed differently depending on the structure. The remainder of the circularly 

polarised light combines to elliptically polarised light. This no longer possesses an 

oscillation along a straight line but along an ellipsoid path. The extent to which this 

occurs gives a value for the angle of ellipticity (0 ).

Each amino acid residue in a polyamide possesses two degrees of backbone rotational 

freedom. The angle denoted cp corresponds to the rotation of the Ca-N bond and the 

angle 4* to rotation of the bond linking the Ca and the carbonyl carbon. The CD signal 

of proteins and peptides is dependent upon the rotation of the cp and 'T dihedral angles 

along the amide backbone (Figure 2.2). This results in different structural motifs 

exhibiting specific patterns of ellipticity. The a-helix for instance causes a positive 

value for ellipticity at 192 nm and negative at 208 nm and 2 2 2  nm in the spectrum.
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Figure 2.2: The two degrees of 
backbone rotational freedom , ¥
and (p.

All spectra were recorded in 5 mM potassium phosphate buffer (pH 8.0) in a 1 mm path 

length cuvette using an Applied Photophysics Chirascan spectrometer. The peptide 

concentration was typically 100 pM. Spectra were also acquired in the presence of 20% 

2,2,2-trifluoroethanol, which promotes helix formation (Storrs et al. 1992). Mean 

residue ellipticities in deg cm'2 dmol'1 were calculated according to the equation: 

f t[0 ]̂  = ------- Equation 2.6
10 ncl

where © is the measured ellipticity in mdeg, n is the number of backbone amide bonds,

c is the concentration in M and 1 is the path length in cm.

The percentage of helical structure was calculated using the equation:

-  _ -100n[© ]r ,22
/o  helwity 4a000(n_ 4) Equation 2.7

where n is the number of amide bonds in the peptide.

61



Chapter 2: Materials and methods

2.18 Fluorescence anisotropy and FRET measurements

Fluorescence anisotropy assays are based on the detecting of the decorrelation of 

polarisation between the exciting and emitted state of photons. A fluorophore excited by 

polarised light will emit light with retained polarisation. However, if a molecule is 

moving during this time the emitted light will be depolarised. This "scrambling" effect 

is maximal with fluorophores that freely tumble in solution; it decreases as an inverse 

function of the tumbling rate. Hence, macromolecular interactions can be monitored 

using this approach if one of the interacting compounds is fused to a fluorophore. Upon 

binding to a partner molecule, a larger complex is formed which will tumble more 

slowly and therefore increase the polarisation of the emitted light (Figure 2.3). This 

technique is most sensitive if a smaller molecule is fused to a fluorophore and binds to a 

large partner (Heyduk et al. 1996).

Figure 2.3: Principle of a fluorescence
polarisation assay. A) unbound molecule 
B) ligand bound molecule. Red: Fluorophore, 
blue: target molecule and grey: binding partner. 
The orange arrows indicate the direction of the 
polarisation o f the light.

FRET is based on the non-radiative transfer of energy between a donor fluorophore and 

an acceptor. This occurs through dipole-dipole coupling if the two compounds are in a 

suitable distance which is usually between 1 and 10 nm. The emission spectrum of the

A B
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donor and the absorbance spectrum of the acceptor must have sufficient overlap for this 

to be possible. The change in emission of the donor or acceptor molecule can then be 

monitored to follow the molecular interactions. Figure 2.4 shows the pronounced 

change in the emission spectrum of FAM upon addition of a peptide-linked FRET 

acceptor TMR. The small amount of fluorescence emission still present at 525 nm upon 

addition of the acceptor molecule is most likely due to incomplete transfer of energy 

between the donor and the acceptor fluorophore. Another possible explanation is the 

presence of a different FAM-RNA isomer which does not bind tightly to the peptide. 

The IC50 values would not be influenced by this since only the concentration of peptide 

is used to derive them. There would also be no error on the Kd for Rev3 3 .5ow/ since this is 

derived from the concentration of peptide. Therefore there would be no additional error 

on the calculation of Kj.

5 0 1 
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Figure 2.4: Fluorescence emission spectra for FAM-RRE
(red) and the FAM-RRE/TMR-Rev^.sowt complex (green).

2.18.1 Bcl-xL/Bak-based BPN binding assay

Fluorescence anisotropy measurements were carried out on a Perkin-Elmer LS55 

luminescence spectrometer at 15 °C (excitation at 494 nm and emission at 525 nm; slit 

width 5 nm, integration time 5 s). All measurements were performed in a 1 ml 

fluorescence quartz cuvette using 10 nM FAM-labelled peptide. The assay was
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performed in 100 mM sodium phosphate buffer (pH 7.5) containing 10 mM NaCl. 

Defined volumes of a typically 4 pM or 40 pM B c 1-x l  solution were added to the FAM- 

labelled peptide and the change in fluorescence anisotropy measured. For experiments 

using light-induced peptides the solution in the cuvette was re-irradiated for 30 s every 

5 min to keep the maximum amount of azobenzene cross-linker in the cis form. The G 

factor (ratio of monochromator sensitivity for horizontally and vertically polarised light) 

was calculated for each measurement using the equation

where I|| and I i are the intensities of the fluorescence emission in parallel and 

perpendicular planes, respectively to the excitation plane. Values for fluorescence 

anisotropy (A) were then determined from the equation (Heyduk et al. 1996):

The fraction of bound peptide (O) was derived by normalizing the anisotropy data. The 

resultant O values were fit to the Langmuir equation (Neely et al. 1959) using the 

program Sigmaplot to obtain KD.

All binding curves were acquired independently four times and the resulting KD values 

averaged. Reported errors are standard errors of the mean at 2a.

Equation 2.8
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2.18.2 RRE/Rev-based BPN binding assay

The binding of Rev33.50wt to the RRE RNA was measured using a FRET based assay. 

lOnM of FAM-RNA was dissolved in FRET buffer and the decrease in fluorescence 

intensity upon addition of defined volumes of different TMR-labelled BPN stock 

solutions monitored. The excitation wavelength was 490 nm, the emission wavelength 

518 nm, the excitation slit width was 2.5 nm, the emission slit width was 2.5 nm and the 

integration time 5 s. The binding data were normalised and fit to Equation 2.8.

2.18.3 RRE/Rev-based BPN disruption assay

The IC50 values for the two BPNs were determined using a FRET-based disruption 

assay. 10 nM of FAM-RNA was dissolved in FRET buffer and 80 nM of 

TMR-Revss.so^ was added. The decrease in fluorescence intensity upon addition of 

defined volumes of different BPN stock solutions was monitored. The excitation 

wavelength was 494 nm, the emission wavelength 580 nm, the excitation slit width was 

2.5 nm, the emission slit width was 5.0 nm and the integration time 10 s. All 

experiments were performed at 15 °C using a Perkin-Elmer LS55 luminescence 

spectrometer. For experiments using light-induced peptides the stock solution was 

irradiated and kept on ice additionally the solution in the cuvette was re-irradiated for 

30 s every 5 min to keep the maximum amount of azobenzene cross-linker in the cis 

form.

The data were normalised and fit to the following equation to obtain values for IC50:

1
\ Hill slope

Equation 2.9
<D =

1 +
/  \ Hill slope

[BPN]
1CV ^ 5 0  y
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where O is the bound fraction and the Hill coefficient refers to the largest absolute value 

of the slope of the curve. It equals 1.0 for one ligand that binds with no cooperativity to 

one site. If it is greater than 1.0, the receptor or ligand has multiple binding sites with 

positive cooperativity. A Hill slope of less than 1.0 is observed if there are multiple 

binding sites with different affinities for the ligand or in the case of negative 

cooperativity. Alternatively, a mixture of ligands could also result in a Hill slope of less 

than 1.0.

In the case of a competitive inhibitor (Hill slope close to 1), the IC50 values can be 

precisely related to the inhibitory constant ( K j )  by applying the Cheng-Prusoff equation:

j f , -  / c »
, + [ReV33-5o J Equation 2.10

where Kd refers to the dissociation constant of TMR-labelled ligand.

2.19 NMR experiments

2.19.1 1H 1SN Heteronuclear single quantum correlation (HSQC) NMR 
spectroscopy

The HSQC NMR spectrum correlates the nitrogen atom of an NHX group with the 

directly attached proton. Therefore each signal corresponds to one proton that is bound 

to a nitrogen atom. Each amino acid (except Pro) will be represented by their backbone 

NH group. Additionally, the sidechains of Asn, Gin, His and Trp give rise to signals.

2.19.2 1H 1SN HSQC total correlation spectroscopy (HSQC TOCSY)
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In a TOCSY experiment the magnetisation is transferred over a complete spin system of 

an amino acid by consecutive scalar coupling therefore all protons of that spin system 

are correlated. The transfer is stopped by small or zero proton-proton couplings and 

heteroatoms that also disrupt the TOCSY transfer. Hence, a specific signal pattern can 

be observed for each residue and the amino acid can be identified. However, a few of 

the amino acids display identical spin systems and therefore yield the same patterns 

such as Glu, Gin and Met.
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Figure 2.5: Transfer of magnetisation in A) an HSQC NMR 
experiment and B) an HSQC TOCSY NMR experiment. Red: 
chemical shift of the atoms is observed and blue: transfer of 
magnetisation.

2.19.3 Bcl-xL NMR experiments

All experiments were performed in 10 mM sodium phosphate buffer (pH 7.3) 

containing 5 mM p-mercaptoethanol. 15N-labelled Bcl-xL was concentrated to 300 mM 

and D20  (to 5% v/v) added. 'H i5N HSQC spectra of free Bc1-xl and its complexes with 

wild-type Bak and cross-linked, dark-adapted, Bak7 2-8 7 ,+ 7  and Bak7 2-8 7 ,+// (1:1.1 protein 

to peptide ratio) were acquired on a Varian INOVA 600 MHz NMR spectrometer. For

the complex with Bak7 2-8 7 ,+7/, a ‘H i5N HSQC TOCSY spectrum was also acquired
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(Kneissl et al. 2008). Spectra were processed using NMRPipe and analysed using the 

Analysis 1.0.15 software for Linux (Delaglio et al. 1995; Vranken et al. 2005). HSQC

assignments for the complex of B c 1-x l  with Bad, and assignment of residue types 

verified using the HSQC TOCSY spectrum. Peak movements were calculated by the 

following equation (Kneissl et al. 2008):

They were expressed as a fraction of the maximum peak movement. A significant 

change in chemical shift was defined as co > 0.4cOmax (comax refers to the strongest change 

observed) (Kneissl et al. 2008).

2.20 Molecular modelling

All models were generated from the NMR structure o f the complex o f B c 1-x l  and wild- 

type Bak72-87 (lBXL.pdb) (Sattler et al. 1997) and the Rev/RRE complex (Battiste et a l 

1996), respectively. The program used for this was the Molecular Operating 

Environment (MOE) software for Linux (Vilar et a l  2008). Following the necessary 

amino acid substitutions and incorporation o f the cross-linker, the forcefield MMFF94 

was used to energy minimise the peptide conformation and a 4.5 A region around it. 

The MMFF94 Force Field is a combined "organic/protein" force field so it is equally 

applicable to small molecules as well as proteins and other systems o f biological 

relevance (Halgren 1996).

The software Visual Molecular Dynamics (VMD) was used to create graphical 

representations from the respective pdb files (Humphrey et al. 1996).

peaks for the complex with Bak72-87 +;7 were assigned by comparison with the published

Equation 2.11
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3.1 Introduction

3.1.1 Apoptosis

3.1.1.1 Definition and physiological role of apoptosis

The term ‘programmed cell death’ was introduced to describe a specific form of cell 

death occurring during the development and homeostasis of multicellular organisms 

(Lockshin et al. 1965; Lockshin et al. 1974). Apoptosis is the primary mechanism of 

programmed cell death; it was initially recognised as a distinct morphological form of 

cell death by Kerr et al. in 1972. The term apoptosis is derived from the Greek word 

literally meaning “to drop o f f ’ in analogy to the falling o f leaves from trees (Kerr et a l  

1972). The process was first studied mechanistically in Caenorhabditis elegans. 

1,090 cells are generated during the development o f this nematode; exactly 131 o f these 

cells are eliminated at precise times during morphogenesis. Subsequently key genes 

involved in morphogenesis were identified and the orthologues o f these in higher 

mammals discovered (Horvitz 1999) (Figure 3.1).

E G L - 1  - - - - - - - - - - - 1 C E D - 9  1 C E D - 4  - --------   C E D - 3

BH3-only core Bcl-2 Apaf-1 caspase
family

Figure 3.1: Apoptotic pathway in C. elegans and 
mammalian gene orthologues.

Apoptosis is a highly regulated active (i.e. energy-dependent) process in which cells die 

in a defined way characterised by certain biochemical events and morphological
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features. It is distinct from necrotic death, which is an unregulated passive process 

caused by extreme changes in the cellular microenvironment, such as heat.

Programmed cell death is critical for tissue homeostasis to balance the number o f cells 

being created by proliferation (Renehan et al. 2001). It has a crucial role in 

development, morphogenesis and the immune system. The nervous and immune 

systems are formed through an initial overproduction o f cells followed by subsequent 

elimination o f members o f the population that do not form appropriate synaptic 

connections or generate antigen specificities, respectively (Nijhawan et al. 2000; 

Opferman et al. 2003). Apoptosis is also involved in processes such as wound healing 

as it plays a role in the conversion o f granulation tissue into scars and in the removal o f  

inflammatory cells (Greenhalgh 1998). Furthermore, this signalling cascade removes 

damaged or pathogen-invaded cells that could eventually endanger the organism. 

Apoptosis therefore requires tight control; otherwise it can have consequences such as 

autoimmune disease, neurodegenerative conditions or developmental defects. Some o f  

these pathologies are caused by insufficient apoptosis whereas others feature excessive 

apoptosis. The ability to modulate the life and death o f specific cells would have 

enormous therapeutic potential. Impaired apoptosis is now also recognised to be a key 

step in tumourigenesis (Cory et al. 2003).

3.1.1.2 Morphological features o f apoptosis

Unlike necrosis, apoptosis occurs without tissue inflammation and is usually confined to 

a small number o f cells. During the early stages of apoptosis, the cell will lose contact 

with its neighbours and shrink. This is followed by chromatin condensation and nuclear 

fragmentation (karyorrhexis). The plasma membrane starts “budding” and the cell falls
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apart into apoptotic bodies. These bodies are then phagocytosed resulting in the 

complete removal o f the cell (Figure 3.2) (Kerr et al. 1972) (Jiang et a l  2004) (Ziegler 

et al. 2004).

Necrosis on the other hand is characterised by cell swelling, ruptured organelles and 

finally the loss o f cell membrane integrity. Cellular contents then leak into the 

surrounding tissue eliciting an immune response and damaging neighbouring cells. 

Necrosis is caused mainly by problems with the energy supply of the cell or direct 

damage to the membrane, it normally affects larger areas of tissue than apoptosis 

(Majno et al. 1995; Trump et al. 1997) (Figure 3.2).

Cellular swelling

Necrosis

/
■/ V  O '

I . J k  O .
Normal cell

Apoptosis

Cell starts blebbing 
and becomes leaky

* \

\  -•>̂  • «H

Lysis and inflammation

•g>°
Cell shrinkage and 

chromatin condensation

Figure 3,2: Apoptosis and necrosis can be distinguished by their respective 
morphological changes.

Phagocytosis of
Apoptotic budding apoptotic bodies
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3.1.1.3 Apoptotic pathways

There are two main signalling pathways o f apoptotic cell death, the intrinsic or 

mitochondrial pathway and the extrinsic (death receptor) pathway. They can be 

distinguished by the type o f caspase (a protease) that is crucially involved in their 

activation and by the requirement for the proteins o f the Bcl-2 family (Figure 3.5). The 

pathways converge at the point o f the activation o f effector caspases; they modify a 

variety of structural and regulatory proteins such as lamins or cytokeratins and activate 

cytoplasmatic proteases and endonucleases. This ultimately leads to the biochemical 

and morphological changes observed during apoptosis (Youle et al. 2008).

The term ‘caspase’ is derived from cysteine-dependent aspartate protease (Salvesen et 

al. 2008). These aspartate proteases contain an important cysteine residue within a 

highly conserved active site. The substrate is recognised at a specific sequence and 

cysteine-catalysed cleavage of the substrate is carried out at the carbonyl site of a 

specific aspartic acid residue. Caspases are present as zymogens inside the non- 

apoptotic cell (30-50 kDa). These carry an ^-terminal prodomain and a large (20 kDa) 

and small (10 kDa) subunit (Bratton et al. 2000). The activation of the effector caspases 

is accomplished via the removal of the prodomain and cleavage of a linker between the 

large and the small subunit. This subsequently allows for the assembly of the dimeric 

active enzyme (Riedl et al. 2004; Riedl et al. 2007). Once the activation of an initiator 

caspase has occurred the processing of one caspase is followed by the activation of 

multiple others leading to signal amplification (Salvesen et al. 2008).
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3.1.1.3.1 Extrinsic pathway

The extrinsic pathway is, for instance, engaged in the deletion o f activated T-cells after 

an immune response (Andersen et al. 2006), it is triggered by extracellular ligands such 

as Fas and tumour necrosis factor-a (TNF-a) (Ashkenazi et al. 1998; Peter et al. 1998). 

The ligands bind to the corresponding transmembrane receptors that contain an 

intracellular death domain (DD). The death signal is transmitted to the cytosol by 

receptor oligomerisation and by recruitment o f cytosolic adaptor proteins. These then 

associate with procaspase 8 via dimerisation o f the death effector domains (DED). The 

death inducing signalling complex (DISC) is formed, leading to the assembly o f  

multiple procaspase 8 molecules and the subsequent autocatalytic cleavage to give 

caspase 8 (Kischkel et al. 1995). This initiator caspase then triggers a cascade o f  

activation o f downstream executioner caspases such as caspase 3, caspase 6 or caspase 7 

(Thomberry et al. 1998) (Figure 3.3) (Figure 3.5).

There are two cell types with different apoptotic potential. Type I cells are hallmarked 

by the presence of large amounts of active caspase 8 and 3 and have the ability to 

induce apoptosis via the extrinsic pathway. Type II cells have lower caspase 8 and 3 

levels and therefore reduced DISC formation. They cannot undergo apoptosis 

exclusively by induction through the death receptor pathway and signal amplification 

via the intrinsic pathway is required (Li et al. 1998; Scaffidi et al. 1999). In type II cells 

(e.g. hepatocytes), the extrinsic pathway can intersect the mitochondrial pathway by 

activating the BH3-only protein Bid. Caspase 8 cleaves the full-length protein and the 

truncated form (tBid) translocates to the mitochondrion and triggers further caspase 

activation through the intrinsic pathway (Yin et al. 1999; Kaufmann et al. 2007).

75



Chapter 3: Photocontrol o f protein-protein interactions

Ligand

Death
receptor

Cell membrane

Activated
caspase 8

Activation of the 
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Figure 3.3: The extrinsic pathway of apoptosis. Caspase 8 is autocatalytically 
activated at the DISC.

3.1.1.3.2 Intrinsic pathway

This pathway is triggered in response to a variety o f stimuli such as viral infection, 

growth factor deprivation, oxidative stress or DNA damage (Rich et al. 2000). 

Cytochrome C is released from the intermembrane space of the mitochondria upon 

activation from a death signal. This process is controlled by the pro- and anti-apoptotic 

members o f the Bcl-2 family (see Chapter 3.1.2 for details). The cytosolic protein 

Apafl senses the release o f cytochrome C which triggers oligomerisation upon binding 

providing that dATP is also present. Apafl will form a wheel-shaped signalling 

platform with seven-fold symmetry called the apoptosome. This is the key event in the 

activation of caspase 9. The caspase recruitment domain (CARD) of Apafl will recruit 

procaspase 9 and induce autocatalytic cleavage to yield the active caspase dimer
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(Figure 3.4). Caspase 9 then activates downstream caspases which ultimatively leads to 

cell death. Additionally, a protein called DIABLO or Smac (also released from the 

mitochondria) removes caspase-inhibitory factors (inhibitor of apoptosis proteins, 

IAP’s). DIABLO is therefore required for full activation of the effector caspases. Other 

important proteins that are released include EndoG (an endonuclease) and apoptosis 

inducing factor (AIF) (Figure 3.5). AIF is a 57 kDa flavoprotein, which can induce the 

caspase independent formation of large chromatin fragments (50 kb). In contrast, the 

caspase activated DNases yield oligosomal DNA fragments. Hence, AIF induced 

caspase-independent apoptosis is hallmarked by a lesser extent of chromatin compaction 

and nuclear fragmentation (Zamzami et al. 1996; Susin et al. 1999; Strasser et al. 2000). 

The intrinsic pathway additionally contributes to cell death via a third mechanism; the 

release o f cytochrome C, the only water-soluble compound in the electron transfer chain 

(occurring in the mitochondria), can therefore stop electron transfer and lead to failure 

in maintaining the mitochondrial membrane potential followed by ATP synthesis 

termination. Since cytochrome C functions in shuttling electrons from complex III to 

complex IV, by which oxygen is reduced to water, blocking this step generates reactive 

oxygen species (ROS), this leads to lipid peroxidation and damage to the cell 

(Hockenbery et al. 1993; Cai et al. 2000; Wang 2001).

The mechanism o f mitochondrial outer membrane permeabilisation (MOMP) is 

controversial. In the first theory, upon a stimulus, opening of the permeability transition 

(PT) pore increases the inner mitochondrial membrane permeability, allowing 

molecules smaller than 1.5 kDa to pass through. This leads to the influx of water into 

the mitochondrial intermembrane space increasing of the inner transmembrane potential 

(A'P), resulting in organelle swelling and finally rupture of the outer mitochondrial
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membrane and release of content from the mitochondrial intermembrane space into the 

cytoplasm. The second mechanism does not involve a major role for the mitochondrial 

inner membrane. Instead, members of the Bcl-2 family act directly on the outer 

mitochondrial membrane. The anti-apoptotic family members block MOMP, whereas 

the numerous pro-apoptotic members function to promote it (Green et al. 1998).

Release of 
cytochrome C

Pro-apoptotic
stimulus Mitochondrion • s - Y

T
Apafl + dATP

Caspase 9 
activation

Apoptosome
assembly

Figure 3.4: Apoptosome assembly in the intrinsic pathway of 
apoptosis. Cytochrome C: red circle, CARD: charcoal circle and 
WD40 domain: charcoal square. (The WD40 domain is an about 
40 amino acids long sequence which often terminates in Trp Asp. 
WD40 repeats form circular p-propeller structures that serve as 
scaffolds fo r  protein-protein interactions.)
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3.1.1.3.3 Perforin/granzyme pathway

There exists an additional pathway that involves perforin and granzyme mediated 

killing of tumours or virus infected cells. This signalling cascade is triggered by 

cytotoxic T-cells that exert their effect by secretion of a transmembrane pore forming 

substance, named perforin. Through this pore cytoplasmic granules are released which 

contain the serine proteases granzyme A and B. These proteins then activate caspases, 

either directly or by means of the mitochondrial pathway (Trapani et al. 2002; Pardo et 

al. 2004) (Figure 3.5).

Perforin

■  Granzyme

Fas-Ligand
MitochomApoptosome

BH3-OI
Caspase 9

■DIABLO 

I ■  EndoG.

DNA cleavage
\  Cleavage of 
caspase substrates

Survival signalsApoptosis

Figure 3.5: Schematic representation of important apoptosis signalling 
processes (the nucleus is shown in cyan)
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3.1.2 Structure and function of the Bcl-2 family of proteins

The bcl-2 gene was first cloned from the breakpoint of the t(14:18) chromosomal 

translocation often found in follicular lymphoma, where it was under the control of the 

immunoglobulin heavy chain promoter and enhancer. This leads to excessive expression 

of the gene and therefore to inhibition of apoptosis (Tsujimoto et a l  1984; Bakhshi et 

al. 1985; Tsujimoto et al. 1985; Cleary et al. 1986). Bcl-2 established a new type of 

oncogene that does not act by increasing cell proliferation similar to previously 

identified oncogenes, but by inhibiting programmed cell death. It has been demonstrated 

that many mutations leading to constitutive activation of cell proliferation require a 

second mutation that counteracts cell death to ultimately promote tumour development 

(Adams et al. 2007). In mammals, there is a minimum of twelve core members of the 

Bcl-2 family. Their biochemical function is either the inhibition or the activation of 

apoptosis. The proteins that show conserved sequence homology in four different 

regions (BH1-BH4) function as antiapoptotic proteins (Boise et al. 1993; Gibson et al. 

1996). Proapoptotic proteins like Bak or Bax only have the BH1-BH3 domains 

(Chittenden et al. 1995). A third class of proteins only share homology in the BH3 

domain region (Figure 3.6), they also show pro-apoptotic function and are likely to have 

arisen through convergent evolution (for example Bid, Bim and Bik) (Boyd et al. 1995; 

Wang et al. 1996). The BH3 domain motif is defined by the presence of the core amino 

acid sequence LXXXGD (X represents any amino acid) (Youle et al. 2008).
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Anti-apoptotic proteins e.g. Bcl-xL, Bcl-2, CED-9
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Pro-apoptotic proteins e.g. Bak, Bax, Bok
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BH3-only e.g. Bid, Bik, Bim

N C

Figure 3.6: Domain structure o f the Bcl-2 family 
o f proteins (Walensky 2006).

The pro- and antiapoptotic members of the Bcl-2 family can form homo- and hetero­

dimers. The relative concentration of these two groups determines the apoptotic 

potential of the cell. The proapoptotic members such as Bak are important for the 

induction of outer mitochondrial membrane permeabilisation and the following release 

of cytochrome C. The antiapoptotic members such as Bc1-xl inhibit this by binding to 

these proteins. Bak interacts with Bc1-xl via its BH3 domain. By using a peptide with 

the BH3 domain sequence it is possible to keep Bcl-xL from binding Bak and the cell 

can go into apoptosis (Finnegan et al. 2001) (Figure 3.7).

The BH3-only proteins are initial sensors of apoptotic stimuli that function downstream 

of various biochemical processes. Noxa and Puma production for instance is activated 

by the transcription factor and tumour suppressor protein p53 in response to DNA 

damage (Oda et al. 2000; Nakano et a l 2001; Chipuk et al. 2005). Bim expression is 

induced by the transcription factor forkhead box 03A  (FOX03A) upon the withdrawal 

of growth factors or through C/EBP homologous protein (CHOP) in the case of 

endoplasmic reticulum (ER) stress (Puthalakath et al. 2007). The activation of this 

protein class can also be regulated post-translationally. Bid, for example, is activated
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through proteolysis by caspase 8 (Li et al. 1998). Bad is dephosphorylated and thereby 

activated in response to growth-factor deprivation (Zha et a l  1996).

BH3

BH3

Mitochondrion Mitochondrion

BH3

Caspase
cascade

Cytochrome C 
releaseApoptosome formation

Figure 3.7: Regulation of apoptosis by the Bcl-2 family of proteins.

The induction of antiapoptotic protein expression is another means by which apoptotic 

modulation may occur. For example, B c1 -X l protein levels are upregulated in response 

to growth factors, via the JAK-STAT pathway (a signalling cascade involved in 

development and homeostasis) (Grad et al. 2000). The core pro-apoptotic proteins such 

as Bak or Bax are mainly controlled post-translationally by the other components of the 

Bcl-2 family and their expression levels are relatively constant (Youle et al. 2008).
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3.1.3 Controlling/mimicking the a-helical conformation of BH3 
peptides

Isolated BH3 peptides generally show less than 25% a-helicity in aqueous solution 

(Letai 2005). To increase this percentage, a variety of methods have been applied; the 

helix stabilising miniature protein aPP (Figure 1.8) was used as a scaffold and the Bak 

peptide sequence was grafted onto it and the sequence optimised using directed 

evolution. This resulted in helix-stabilised miniature proteins that were highly specific 

and potent ligands for Bcl-2 and Bcl-xL (Chin et al. 2001). The best ligand obtained by 

this strategy, PPBH3-1, showed a 100-fold enhanced affinity for Bcl-2 and a 7-fold 

improved affinity for Bcl-xL compared to Bak72-87Wt. A series of lactam-bridged peptides 

have been demonstrated to adopt highly helical structures (Yang et al. 2004). 

Hydrocarbon stapled peptides based on the BH3 domain of Bid (SAHBs) also showed 

increased helix content (87%), high affinity binding to B c 1-x l  ( K d  = 39 nM) and their 

cell permeability and protease stability were also enhanced. Good biological activity 

was demonstrated by the administration of S ABHs to Jurkat T cell leukemia cells and to 

human leukemia xenografts. It was shown with the help of HSQC NMR spectra that 

these peptides target the same cleft on Bcl-xL as the wild-type Bid peptide (Walensky et 

al. 2004). Foldamers are designed scaffolds that mimic the conformation of natural 

oligomers to fold into defined structural motifs. They are more proteolytically stable 

than a-helices and therefore of interest as antagonists for protein-protein interactions. A 

number of different foldamers using a- and p-amino acids have been designed. 

However, the actitvity of the exclusively p-amino acid peptide was low 

(IC50 > 500 pM). Foldamers based on a scaffold consisting of a- and p-amino acids in 

contrast showed a very high affinity for B c 1-xl  ( K d = 1 nM) and some of them were 

active in Cytochrome C release assays (Sadowsky et al. 2005). Non-peptide based
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scaffolds have also been developed as helix-mimetics. This is exemplified by: 

terephthalamide, terphenyl and oligoamide based compounds which are modified with 

appropriate functional groups to mimic key surface functionalities displayed on the 

a-helix (Kutzki et al. 2002; Ernst et al. 2003; Yin et al. 2004; Yin et al. 2005b; Yin et 

al. 2005c) (Figure 3.8). A number o f Bcl-XL/Bak antagonists, based on this scaffold, 

have been designed to mimic the a-helical BH3 region o f the Bak72-87Wt peptide and 

their binding mode was investigated by NMR spectroscopy. Some o f these molecules 

displayed activity in HEK-293 cells and Kj values in the high nanomolar range (Yin et 

al. 2005b; Yin et al. 2005c).
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.NH
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Figure 3.8: Non-peptidic a-helix mimetics: oligoamide (1), terphenyl (2) 
and terephthalamide (3). Rj.j = alkyl groups such as isopropyl or isobutyl.
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Small molecules avoid the problems associated with proteolysis observed in peptide 

based compounds and some of them are cell-permeable. Small molecules that mimic the 

BH3 motif such as (-)-gossypol, TW-37, ABT-737 and ABT-263 (an orally bioavailable 

analogue of ABT-737) have been discovered or developed recently (Figure 3.9). 

(-)-Gossypol is a natural product from the terpenoid family which is present in 

cottonseeds. It has been shown to execute proapoptotic activity in numerous cancer cell 

lines and acts by targeting B c 1-xl  and additionally by upregulation o f Puma and Noxa 

(Meng et al. 2008). A structure-based design strategy was employed to develop new 

potent small molecule inhibitors starting from the gossypol structure. The resulting 

compound, TW-37 targets Bcl-2 with nanomolar affinity and B c 1-x l  and M cll with 

micromolar affinity. It induces apoptosis in a dose-dependent manner. It has been 

successful in preclinical studies and could prove an effective therapeutic in the 

treatment of B-cell lymphoma (Wang et al. 2006; Mohammad et al. 2007; Wang et al. 

2008). The third molecule, ABT-737, is a Bad peptide mimetic that makes several key 

hydrophobic and electrostatic contacts with the binding groove of the protein (Figure 

3.10). It demonstrates subnanomolar affinity for B c 1-x l  and Bcl-2. Effective antitumour 

activity has been shown in cell culture and animal models (Kline et al. 2007) (Park et 

al. 2008). ABT-737 was developed by using structure-based design in combination with 

NMR screening (Oltersdorf et al. 2005).
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Figure 3.9: Structure o f  three potent small molecule antagonists o f the 
Bcl-2 protein family: (-)-gossypol (1), TW-37 (2) and ABT-737 (3)
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Figure 3.10: Comparison of the binding mode of a 
small molecule inhibitor to B cI-xl and the 
Bcl-xifBak72-87Wt complex. A) ABT-737 binds to the 
hydrophobic pocket of B cI-xl (2YXJ.pdb) 
(Oltersdorf et al. 2005) and B) The Bak peptide 
binds to B cI-xl (lBXL.pdb) (Sattler et al. 1997). 
Protein surface is shown in transparent grey. 
ABT-737 is shown as sticks (N = blue, C = green, 
O = red, P = yellow). The peptide is shown in red.

3.2 Aim of the project

While several potent small molecule and peptide-based inhibitors of the Bcl-xi/Bak 

complex or of other protein-protein interactions have been developed recently, none of 

these have the potential to program changes in discrete and critical intracellular protein- 

protein interactions through external stimuli and in a reversible manner.
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The aim of the project was to develop small photocontrollable peptides (termed 

‘biophotonic nanoswitches’) for the modulation of protein-protein interactions. The 

Bak/Bcl-xL complex, involved in apoptotic signalling, was selected as a model system 

because of the abundance of structural and functional data available for this interaction. 

The aim was to make BH3-domain derived peptides with an azobenzene cross-linker in 

different spacings and to characterise them structurally and functionally.

3.3 Results and discussion

3.3.1 Subcloning of bcl-xL

Human bcl-xL was obtained in a pcDNA3 vector (expression vector used in mammalian 

cell culture). For protein expression in E. coli it was first subcloned into a pET vector. 

Two primers were designed to introduce new restriction sites and to delete the 

C-terminal transmembrane domain of the protein and the PCR performed (Figure 3.6) 

(Table 3.1). The resulting PCR product was cloned into a PCR Script vector by blunt 

end ligation. The resulting plasmid was digested with BgBl and NdeI and the 640 bp 

fragment ligated into the pET19b expression vector, using the Nde I and the BamHl 

restriction sites. The pET19b vector codes for an A-terminal His-tag and enterokinase 

cleavage site. A Hindlll digest and DNA sequencing confirmed the presence of the 

bcl-XL insert (Figure 3.11).
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Table 3.1: Primer sequences for the b c l - X L  PCR reaction. The restriction 
sites are underlined.

Primer Sequences

bcl-xL fwd 5’-GTACGCATATGTCTCAGAGCAACCGGGAGC-3’

bcl-xL rev 5 ’ -CT AGT AGATCTTC AGCGTTCCTGGCCCTTTCG-3 *

1.0

0.5

1 2  3 4

Figure 3.11: A) Map of the pET19b b c l - X L  vector B) Agarose 
gel stained with ethidium bromide. Lane 1: Marker (fragment 
size is indicated in kbp), lane 2: bcl-xi PCR product, lane 3:
Nde//Bgl// digest o f  the PCRscript bcl-XL vector, lane 4:
HindIII d ig est o f  the pET19b bcl-XL vec to r  ( the presen ce o f  
tw o  fragm en ts on the gel indicates the success o f  the ligation  
reaction ).

3.3.2 Expression and purification of Bcl-xL

BL21(DE3) cells were transformed with the pET19b bcl-XL vector, the gene was 

expressed in LB medium and the obtained protein was purified using a Ni-Sepharose 

column and analysed by SDS-PAGE (Figure 3.12). The cleavage with enterokinase 

resulted in multiple bands. Therefore, the uncleaved protein was used in all subsequent 

experiments.

£ lf>̂ 11 (BamHI/Bglll) 

Hindlll

Ndel

6380 bp
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Figure 3.12: SDS polyacrylamide 
gel o f purified B cI-xl after staining 
with Coomassie blue. Lanes are 
1: purified B cI-xl; 2: crude B cI-xl; 
3: marker. The arrow indicates 
BcI-xl.

3.3.3 Design of BH3 domain peptides

Bak peptides were designed by looking at the NMR structure of the Bcl-XL/Bak 

complex (Sattler et al. 1997) (lBXL.pdb) (Figure 3.13) to identify positions for the 

cross-linker where it would not interfere with the binding. The importance of specific 

residues for the interaction with the target protein was judged using the data from an 

alanine scan (Sattler et al. 1997). A model of the BPNs in complex with BcI-xl was 

generated from the NMR structure of the complex of BcI-xL and wild-type Bak7 2 -8 7  

(lBXL.pdb) (Sattler et al. 1997) using the Molecular Operating Environment software 

for Linux. Following the necessary amino acid substitutions and incorporation of the 

cross-linker, the forcefield MMFF94 (Halgren 1996) was used to energy minimise the 

peptide conformation and a 4.5 A region around it (Figure 3.14). Two appropriately 

spaced residues on the solvent exposed face of the Bak helix, opposite the residues
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involved in Bcl-XL-binding, were replaced with cysteines to allow for the introduction of 

the photo-activatable cross-linker 3,3’-bis(sulfo)-4,4’-bis(chloroacetamido)azobenzene. 

Gln73 was changed to cysteine in Bak7 2 -8 7  +7/ and to alanine in Bak7 2 -8 7*+7 Asp84 was 

substituted by cysteine in Bak72-8 7 ,+7 and by alanine in Bak7 2 -8 7 ,+77« In addition, Ile80 

was changed to alanine in Bak7 2 -8 7<+77 to prevent a possible steric clash with the cross­

linker. Ile81 was replaced with phenylalanine in both peptides because of the higher 

hydrophobicity of phenylalanine, which has been shown to increase the affinity of 

Bak7 2 -8 7  for B c I - x l  (Chin et a l  2001). Similarly, a peptide based on another pro- 

apoptotic protein (Bid) was designed to allow introduction of the azobenzene cross­

linker in an i, i+4 spacing of the cysteines to generate Bid9 i-in'+4. Bid has previously 

been successfully stabilised by a conformational restraint in the i, i+4  position and is 

therefore a good starting point for the design (Walensky et al. 2004). One methionine 

residue was substituted with isoleucine because of its similar hydrophobicity and 

structure but higher stability towards oxidation (Figure 3.14). To produce the three 

peptide-based biophotonic nanoswitches (BPNs), Bak72 -8 7 ,+7/, Bak7 2-8 7 ,+7 and Bid9 i-m,+4 

were alkylated with 3,3’-bis(sulfo)-4,4’-bis(chloroacetamido)-azobenzene (Figure 3.14) 

(Table 3.2 and Table 3.3) (Kneissl et a l  2008).
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Figure 3.13: NMR structure o f the
Bcl-Xi/Bak72-87Vt complex (lBXL.pdb) (Sattler 
et a l 1997). The peptide is shown in red and 
the protein in grey. The important residues for  
binding affinity are shown as sticks.

Table 3.2: Sequences of the Bak peptides. 
Changed residues are shown in blue.

___________72_________________ 87
Bak7 2 -8 7 wt GQVGRQLAIIGDDINR 
Bak7 2 -8 7 ,+7 GAVGRCLAIFGDCINR 
Bak72-87/+// GCVGRALAAFGDCINR

Table 3.3: Sequences of the Bid peptides. 
Changed residues are shown in blue.

____________91______________________ HI
Bid9 i-mwt DIIRNIARHLAQVGDSMDRSI 
Bid91.n 11'** PI IRNIARHLACVGDCIDRSI
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Figure 3.14: A) Model o f Bak,72-8 7+U 
complexed with Bcl-xi (based on lBXL.pdb) 
(Sattler et al. 1997) B) Helical wheel 
representation o f Bak72-87 +// and Bak72-8 7+1, 
C) Helical wheel representation o f  
Bid9i-m'+4- Red: residues shown to result in 
> 10-fold loss o f binding affinity upon 
replacement to an alanine. Yellow: cysteine 
residues and cyan: residues replaced by 
alanine to avoid steric clash (Kneissl et al. 
2008).
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3.3.4 Synthesis, purification and cross-linking of the BH3-domain 
peptides

Peptides were synthesised by using Fmoc SPPS chemistry and the pure compounds 

obtained after HPLC purification (Figure 3.15). The ^-terminal modification with 

carboxyfluorescein (FAM) was carried out while the peptide was attached to the resin, 

using N,N-diisopropylcarbodiimide (DIPCDI) as the coupling reagent. The reaction 

mechanism corresponding to this is depicted in Scheme 3.1.

O

u

O NH^

H2N

r2

Scheme 3.1: The mechanism of the
carbodiimide mediated coupling o f a 
fluorophore (Rj) to the N-terminus o f a 
peptide (R2).

The cross-linking reaction with 3,3’-bis(sulfo)-4,4’-bis(chloroacetamido)azobenzene 

was performed by treating a solution of the peptide with 4 equivalents of the thiol-
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reactive cross-linker, added in three consecutive aliquots, followed by stirring the 

mixture at 4 °C for 12 hours. The reaction was carried out under reducing conditions 

(TCEP) to avoid the formation of disulfide bonds. For Bid9 i-m<+4, the reaction was 

carried out at 50 °C over a period of 6 hours because the other method failed probably 

due to steric difficulties which are less pronounced at higher temperature. The cross- 

linked peptides were purified by HPLC and analysed by mass spectroscopy. A typical 

HPLC trace and mass spectrum for the purified peptides is shown in Figure 3.15. The 

retention times and molecular weight of all peptides can be found in Table 3.4.

10
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Figure 3.15: Typical HPLC trace (A) and typical 
mass spectrum (B) of a purified BPN (Bak72-87Wt)-
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Table 3.4: Molecular weight of the BH3 peptides (X = alkylated with the 
azobenzene cross-linker). Major MS peak corresponds to the species 
observed in the mass spectrum. The molecular weight calculated from that 
is given in the column to the right. Theoretical average MW corresponds to 
the anticipated mass o f each molecule.

Peptide Ion Major 
MS peak

MW 
(g m o l1)

Theoretical 
average 
MW (g m o l1)

Bak72-87wt [M+H]+ 1,767 1,766 1,766
Bak72-87,+7 [M+H]+ 1,708 1,707 1,706
Bak72.87i+7X [M+H]+ 2,158 2,157 2,156
FAM Bak72-87l+7 [M+H]+ 2,024 2,023 2,023
FAM Bak72.87i+7X [M-Hf 2,472 2,473 2,473
Bak72.87,+” [M+H]+ 1,664 1,663 1,663
Bak72.87'+" X [M+Na]+ 2,139 2,116 2,114
FAM Bak72.87'+" [M+H]+ 1,983 1,982 1,980
FAM Bak72_87'+" X [M+H]+ 2,430 2,429 2,430
B i d 9 i . i n ' +4 [M+H]+ 2,395 2,394 2,394
B i d 9 M l , /+ < ,X [M+H]+ 2,846 2,845 2,844
FA M Bid^.ni'^ [M+H]+ 2,711 2,710 2,704
FAM Bid9i-in'+''X [M+H]+ 3,149 3,148 3,154

3.3.5 UV/Vis and CD spectroscopic study of the BH3 domain BPNs

3.3.5.1 UV/Vis spectroscopic study

The isomerisation of the cross-linker was followed by UV/Vis spectroscopy at different 

temperatures. This was used to characterise the thermal isomerisation o f irradiated 

Bak7 2-8 7 ,+7, Bak7 2 -8 7 /+//, and Bidgi-m'^. The absorption spectrum of dark-adapted 

Bak7 2 -8 7 /+//, where the azobenzene cross-linker is in the thermally stable trans- 

configuration, was characterised by a strong maximum at 363 nm (Kneissl et a l  2008). 

This is typical o f the n-n* transitions in amide-substituted /ra>?s-azobenzenes (Rau 

1990; Guerrero et al. 2005a; Guerrero et al. 2005b). Irradiation with 360 nm light led to 

the disappearance o f this maximum and appearance o f a new maximum at 262 nm 

(Figure 3.16). Irradiated Bak7 2 -8 7'+// reverted to the dark-adapted state in a non­
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photochemical process that was characterised by isosbestic points at 250, 317 and 

434 nm with a half-life o f 30 min at 15 °C. This was similar to the half-life o f a 

previously reported model peptide FK-11 (developed to test the helix stabilisation and 

destabilisation via an azobenzene cross-linker) (Zhang et al. 2003), when alkylated with 

3,3’-bis(sulfo)-4,4’-bis(chloroacetamido)azobenzene, but significantly shorter than the 

150 min observed for the thermal reversion from the irradiated state o f HDH-3, an 

18-residue peptide derived from the homeobox protein engrailed, linked to the 

azobenzene cross-linker in an i, i+11 configuration (Kneissl et al. 2008). In all systems, 

the presence of more than one isosbestic point was observed, suggesting that the 

reversion follows first order kinetics. The isomerisation rates were therefore determined 

from a plot o f In (%iid) versus time (Figure 3.17). A high a-helical content o f the 

stabilised peptide form probably leads to very high relaxation rates in the case o f the 

i, i+11 spacing and to slower reversion rates in the other spacings. For example, the 

shortest half-lives are displayed by the helical peptides Bak33-5o'+// and the model 

peptide FK-11. HDH-3 and Rev33-50,+/' (Table 4.5) are less helical and possess 

significantly longer half-lives. In agreement with this hypothesis, a modified non-helical 

Bak72-87/+// peptide, which contained an A80I substitution showed a half-life that was 

one order of magnitude longer than the one of Bak72-87,+// (522 min versus 44 min at 

5 °C). The UV/Vis spectra o f dark-adapted and light-induced Bak72-87/+7 were similar to 

those observed for Bak72-87/+//, but the thermal reversion from the irradiated state o f 

Bak72-87,+7 and BidQi-m'^ occurred with a significantly longer half-life o f 174 min and 

190 min at 15 °C suggesting that the spacing of the cysteines influences this rate. 

Comparison o f the reversion rates o f Bak72-87/+7 with those measured for PhotoMyoD 

(t>/2 = 193 min at 15 °C) (Guerrero et al. 2005a) and Rev33.5o,+7 (ty2 = 154 min at 15 °C) 

(Table 4.5), where the cross-linker was also in i, i+7  spacings, indicated that the rates o f

97



Chapter 3: Photocontrol o f  protein-protein interactions

thermal reversion are relatively similar for the i, i+7  spacing. This could be explained 

by the smaller conformational constraint and therefore structural change that the cross­

linker imposes in this spacing. This relatively small variance in structural change might 

lead to a less pronounced effect o f the studied amino acid sequences on the rate.

The extent o f the light-induced isomerisation was determined from the absorbance at 

363 nm (Figure 3.16), using the difference between the extinction coefficients for the 

cis and trans azobenzene cross-linker (Zhang et a l  2003). 76%, 69% and 80% of the 

irradiated material was found to be in the c/'s-configuration for alkylated Bak72-87,+7, 

Bak72-87/+;/, and Bid^-n1̂  respectively (Kneissl et al. 2008), values typically observed 

in the photoisomerisation o f azobenzenes (Guerrero et al. 2005b; Renner et al. 2006) 

(Table 3.5).

Table 3.5: Obtained percentage o f 
cis isomer upon irradiation for  
different BH3-derived peptides.

Peptide
Oof-----^77Bak72-87
Bak72-87,+7
t j  • j  i+4

%cis isomer

Bid9i-m

69
76
80
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Figure 3.16: UV/Vis spectra in the dark (dark 
blue), immediately after irradiation (pink) and 
at different times after irradiation. A) Bakj2- 
87+ } 1 B) Bak72-87X+1 C) Bidgi .///l+4 (Kneissl et al. 
2008).

99



Chapter 3: Photocontrol o f  protein-protein interactions

1 0 0 In (%lkj) = -0.0017 t + 4.6636

.357 t + 4.34974.5
80 -

p
60 -

3.5"O

20 - 2.5

—i
15050 100 0 1000 1500500

B
t (min)

t (min)

t (min)

In (%lid) = -0.0158 t + 4.5527
In (%lid) = -0.02371 + 4.5780

100

4.5 -

60 -

40 -

20 - 2.5 -

1500 0 50 100 150500 1000
t (min)

In (%lid) = -0.0039 t + 4.5856

In (%lid) = -0.0175 t + 4.6499
100

80 -

40

20 -

0 100 200 300 400 500100 200 300 500400
t (mini t (mini

Figure 3.17: Relaxation of different BH3-based peptides as a function of time in the 
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15 °C and blue: 5 °C. The absorbance versus time plot is shown on the left and the 
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3.3.5.2 CD spectroscopic studies of the BH3 domain BPNs

CD spectroscopy indicated significant differences in the conformation of uncross-linked 

Bak7 2 -8 7<+7/ and its alkylated dark-adapted form (Figure 3.18) (Table 3.6). The
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unalkylated peptide displayed the characteristic spectrum of a mostly unstructured 

peptide with a minimum at 203 nm and a mean residue ellipticity at 222 nm [0 ]r, 222 of 

-4,752 deg cm2 drool"1 (Figure 3.18). For the trans-configuration of the cross-linker, the 

CD spectrum revealed almost complete helix formation with a [0 ]r, 222 of 

-30,600 deg cm2 dmol"1. This value is significantly higher than had been observed 

previously for both HDH-3 and FK-11 (Zhang et al. 2003; Guerrero et at. 2005b). 

Interestingly, the mean residue ellipticity at 208 nm was higher 

(-22,250 deg cm2 dm oll) suggesting contributions to the CD spectrum from the cross­

linker as previously described (Flint et al. 2002). Irradiation with 360 nm light led to a 

significant increase in [0 ]r, 222 to -13,458 deg cm2 dmol'1, indicating a reduction in the 

amount of the peptide that adopts an a-helical structure as would have been predicted 

based on previous studies (Kumita et al. 2000; Kumita et al. 2003; Zhang et al. 2003; 

Guerrero et al. 2005a; Guerrero et al. 2005b; Woolley et al. 2006). However, even in 

this state, the amount of a-helical character was approximately 44%, which is, to some 

degree due to the presence in the irradiated state of Bak72-87,+ /7  of approximately 31% of 

the /raws-configured peptide (Figure 3.16). In contrast, the CD spectra of alkylated 

Bak72-87,+7 and Bid9i_n'+4 (Figure 3.18) were only slightly different in the dark-adapted 

and irradiated states. Both irradiated and dark-adapted Bak72-87/+7 displayed only small 

amounts of a-helicity with [0 ]r,222-values of -8,808 and -6,056 deg cm2 dmol"1, 

respectively. This is similar to the behavior previously reported for PhotoMyoD, where 

DNA binding affinity could be modulated via an azobenzene linker introduced into the 

DNA recognition helix of MyoD by way of two cysteines in an i, i+7  spacing. 

Irradiated PhotoMyoD showed only a modest increase in a-helicity compared to its 

dark-adapted and unalkylated forms (Guerrero et al. 2005a). However, upon addition of 

the DNA target sequence, the full conformational change was induced. Addition of
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B c 1-x l to irradiated Bak72-87,+7 and Bid^-n'"^ may have a similar helix-inducing effect. 

The dominant contribution from the elements of secondary structure of B c 1-xl  

precluded studying this effect by CD spectroscopy. Hence, 2,2,2-trifluoroethanol (TFE) 

was used as a co-solvent to probe the a-helical potential of the different peptides 

(Figure 3.18). This led to the typical CD spectra of predominantly a-helical peptides 

([© k 222 of -24,100 and -17,100 deg cm2 dmol'1 for irradiated Bak72-87i+7 and Bid9 i-n,+4 

respectively). As anticipated, addition of TFE to solutions of either dark-adapted 

Bak72-87,+7 or Bid9 i-n,+4 resulted in only a marginal reduction in mean residue ellipticity. 

These observations suggest that while irradiation of Bak72-87/+7 did not lead to a 

predominantly a-helical peptide as originally expected, it nevertheless generated a 

form that, upon addition of a helix-inducing co-solvent, was able to form the a-helical 

structure required for tight binding to Bcl-xL, while dark-adapted Bak72-87,+7  did not 

exhibit this potential (Kneissl et al. 2008).
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Figure 3.18: CD spectra of the peptides at 
5 °C (concentration was typically around 
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Table 3.6: Mean residue ellipticity and helical content o f the BPNs at 5 °C.

BPN
[®]r, 222
(deg cm2

0% TFE 

dm ol1)
Helicity
(%)

20% TFE
[®]r, 222
(deg cm2 dm ol1)

Helicity
m

B a k W * -4,752 16 -14,800 48
Bak72-87 +// -1,466 5 n.d. n.d.
Bak72-87,+77 dad -30,600 100 n.d. n.d.
Bak72-87/+77 lid -13,458 44 n.d. n.d.
Bak72.87,+7 -1,926 5 n.d. n.d.
Bak72_87'+7dad -6,056 20 -10,100 33
Bak72.87'+7lid -8,808 29 -24,100 79
Bid91.m '+4 -1,667 5 n.d. n.d.
Bid9i-m,+'dad -5,281 16 -10,600 32
Bid91-,i,'+* lid -4,918 15 -17,100 52

3.3.5.3 CD study of a Bid fragment

Bid9 i.m ,+,# showed a stronger CD signal at 222 nm than the light-induced peptide. Since 

this conformer is unlikely to be more helical, the CD effect at this wavelength might 

instead be caused by the presence o f the /ra«s-cross-linker in this spacing. To 

investigate this, a seven amino acid peptide containing only the cross-linked region and 

two flanking residues was tested in the dark where it cannot be helical and the results 

compared to the light-induced measurement. The CD spectrum shows a strong signal at 

222 nm, similar to the one for the full length peptide even in the definite absence of 

helical structure (Figure 3.19). The distance between the two cysteine residues in an 

a-helical conformation is around 5.4 A (Figure 1.5). The trans cross-linker is not able to 

accommodate that distance because it spans approximately 17 A. This indicates that the 

same is true for the full length Bid9i.m ,+* peptide. IR spectroscopy could be utilised in 

future experiments to measure the helix content without the interference o f the cross­

linker in order to verify these results.
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Figure 3.19: CD spectra o f Bid fragment at 
5 °C. The dark-adapted form is shown in blue 
and the light-induced form in orange (the 
concentration was approximately 100 pM).

3.3.5.4 Temperature dependence of the relaxation rate

To determine the effect of the Bc1-xl protein on the relaxation rate, four different 

conditions were selected and the temperature dependence of the rates compared in an 

Arrhenius plot (In k versus 1/T) (Equation 2.5) (see page 60). The isomerisation was 

followed by UV spectroscopy (363 nm) in the presence and in the absence of protein. 

Additionally, CD spectroscopy (222 nm) was used (in the absence of the protein) to 

compare the relaxation rate of the azobenzene moiety to the rate of structural change of 

the peptide. The observed structural change of the peptide is only pronounced enough 

for Bak7 2-8 7 ,+7/ and therefore the rate could not be determined accurately in the other 

cases (Figure 3.18). The presence o f Bc1-xl did not have a significant effect on the 

relaxation rate and the obtained activation energy (Ea) and pre-exponential factor (A) 

values were similar in all cases (Table 3.7). The isomerisation is therefore also fully 

reversible in the presence o f protein and not significantly slowed or speeded by its 

presence (Figure 3.20). This is in contrast to the findings for HDH-3, where the addition
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of the DNA target sequence resulted in an increase in the isomerisation rate 

(Guerrero et al. PhD thesis 2005).

The obtained values for the activation energy are similar to what has been described for 

the free azobenzene cross-linker (32 kJ/mol, N. Taylor, PhD thesis). As anticipated, the 

values for Bak72-87,+7 were higher then this due to the stabilizing effect of the peptide 

secondary structure in for the c/s-isomer. The values obtained for the other spacing were 

lower since the cis-conformation is probably sterically less favourable resulting in lower 

activation energy for the reaction. The pre-exponential factor for the peptides was 

significantly lower then for the free cross-linker in all cases. This suggests that the main 

effect of constraining the cross-linker conformationally is on the number of molecules 

that are in a reactive conformation and not on the activation energy.

The comparison o f the CD- and UV spectroscopic results showed a significant 

difference in half-life at low temperature depending on the method used (more than one 

order o f magnitude at 5 C) which disappears at higher temperatures (Figure 3.20). 

Errors in the experimental setup are very unlikely the cause for the difference in rate of 

more then one order o f magnitude. Similar results have also been described previously 

by Guerrero et al. for the HDH-3 peptide (Guerrero et a l 2005b). This suggests the 

presence o f  more than two distinctive states o f the peptide in the solution since the 

cross-linker isomerisation is not concerted with the isomerisation o f the peptide. The 

cross-linker seems to isomerise first and the change in peptide secondary structure 

follows more slowly since the activation energy for this process is much higher 

(Table 3.7). The unusually low pre-exponential factor values obtained for Bak72-87,+/; 

suggests that only a small number of peptides are in a reactive conformation. This is
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probably due to the very strong conformational constraints that the peptide secondary 

structure causes on the cross-linker in this spacing.

Table 3.7: Arrhenius parameters for the relaxation of different 
peptides.

BPN Method A (s'1) Ea (kJ m ol1)
Cross-linker UV (363 nm) 3.25 108 32.4
Bak72-87 +7 UV (363 nm) 1.28 106 56.0
Bak72-87,+7+ B c 1-xl UV (363 nm) 7.76 105 56.9
Bak72-87,+// UV (363 nm) 0.02 13.7
Bak72-87,+y/ + Bcl-xL UV (363 nm) 0.27 19.4
Bak72-87,+/7 CD (222 nm) 1.14 109 76.2
Bak72-87i+7 CD (222 nm) n. d. n. d.

Table 3.8: Half-life o f  the light-induced state for different peptides.

BPN Method t  ̂at 5 °C 
(min)

t*/2at 15 °C 
(min)

t  ̂at 25 °C 
(min)

ty2 at 37 °C 
(min)

Bak72-87,+7 UV (363 nm) 448 174 89 34
Bak72-87 + 7 +  B c 1-xl UV (363 nm) 498 221 80 44
Bak72-87,+;/ UV (363 nm) 44 30 32 22
Bak72-87,+" + Bcl-xL UV (363 nm) 36 28 22 15
Bid9i-iii<+4 UV (363 nm) 178 40 n. d. n. d.
Bak72-87,+// CD (222 nm) 503 82 50 14
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3.3.6 Fluorescence anisotropy measurements of the peptides

Fluorescence anisotropy measurements (Heyduk et al. 1996) were carried out to 

determine the affinities of Bak72-87/+77, Bak72-87*+7 and B id 9 i - m ,+4 for B c 1 - x l  in their 

uncross-linked, dark-adapted and light-induced states. The addition of Bcl-xL to a 

solution of fluorescently labelled peptide resulted in a ‘saturatable’ increase in the 

fluorescence anisotropy in all cases (Figure 3.21). Titration curves were fit to the 

Langmuir isotherm (Equation 2.8) (see page 64). For all complexes, the best fits were 

obtained for 1:1 binding (n = 1) as was expected from previous results with the 

wild-type peptide (Ernst et al. 2003; Gemperli et al. 2005) (Sattler et al. 1997; 

Walensky et al. 2004), these fits yielded the apparent dissociation constants in 

Table 3.9. The fits for Bid9 i.m ,+4 in the two states were less accurate probably due to 

some degree of unspecific binding of this peptide to the protein.

The dissociation constant for the complex of Bcl-xL and dark-adapted Bak72-87,+7/ 

( K d = 21 ± 1 nM) was ~ 16-fold lower than that with the corresponding unalkylated 

peptide (Table 3.9). The Kd of 328 ± 1 9  nM obtained for the unalkylated peptide is 

similar to values previously reported for wild-type Bak peptide (Gemperli et al. 2005) 

(Sattler et al. 1997). The stability of the Bcl-xL complex of irradiated Bak72- 87 +77 was 

only decreased 2-fold relative to the complex with dark-adapted Bak72-87/+77. This high 

stability is most likely due to the incomplete cis to trans conversion of azobenzenes 

(Zhang et al. 2003) and hence the presence of 31% tightly binding trans-configured 

peptide in the irradiated state (vide supra).
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Figure 3.21: Typical binding curves for 
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In contrast, Bak72-87,+7 and Bid9 i-ml+4 showed significantly different complex stabilities 

in their dark-adapted and irradiated forms. For these two peptides, the trans- 

configuration of the cross-linker clearly prevented Bak72-87 +7 (Kd = 825 ± 1 5 7  nM) and 

Bid9 Mn'+4 (Kd = 1275 ± 139 nM) from forming high affinity complexes (Table 3.9). 

These values were significantly higher than those measured for the unalkylated parent 

peptides of Bak72-87,+7 and Bid9 i-m,+4 (Kd = 134 ± 16 nM and 117 ± 4 8  nM, 

respectively). After irradiation, the stabilities of the complexes formed between Bcl-xL 

and the irradiated forms of Bak72-87 +7 and Bid9 i-m'+4 were increased approximately 

20-fold, resulting in dissociation constants of 42 ± 9 and 55 ± 4 nM for the two peptides 

with the cross-linker in the helix-stabilizing cfs-configuration. The presence of a 

significant amount of /ra«s-peptide in the irradiated state does not seem to have the 

same effect as in the /, i+11 case; this may be attributable to the low binding affinity of 

the trans-isomer in this instance.

Table 3.9: Dissociation constants for BcI-xl and BPNs 
in different states.

Peptide form Bak72-87,+7
Kd (nM)

Bak72-87,+;7 Bid9i.in'+4
Parent 134 ± 16 328 ± 19 117 ± 48
Dark-adapted 825 ± 157 21 ± 1 1275 ± 139
Light-induced 42 ± 9 48 ± 10 55 ± 4

The helix-stabilised forms of the BPNs bound to Bcl-xL with much increased affinities 

when compared to the wild-type peptides or helical peptide mimetics, (Sattler et al. 

1997; Petros et al. 2000; Yin et al. 2004; 2005a; Yin et al. 2005b) while the stabilities 

of the complexes of these BPNs rivalled those of the best designed Bcl-XL-targeting 

miniature proteins reported so far (Chin et al. 2001; Walensky et al. 2004; Gemperli et 

al. 2005). However, unlike peptides in which the a-helical conformation is stapled
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either through ruthenium-catalysed olefin metathesis of tethered amino acids (Walensky 

et al. 2004; Bernal et al. 2007) or through their introduction into a larger stable 

polypeptide fold such as pancreatic polypeptide (Gemperli et a l  2005), the activities of 

the biophotonic nanoswitches described here can be switched between high and low 

B c 1-x l affinity states with external light pulses.

A key issue for a potential use of biophotonic switches to regulate cellular events is 

whether they demonstrate selectivity among different helix-binding proteins. We 

therefore determined the ability of alkylated Bak72.87Z+//, Bak72.87'+7 and Bid9 i-m'+4 to 

bind to HDM2, a target of the tumour suppressor p53 (Joerger et al. 2007). The stability 

of the complex between HDM2 and p53 is the consequence of an a-helix of p53 

binding to a deep cleft of the surface of HDM2 (Kussie et al. 1996). However, no 

binding activity for HDM2 was detected here in fluorescence anisotropy measurements 

for dark-adapted and irradiated Bak72.87'+//, Bak72.87'+7 and Bid9 i-m'+4 for

concentrations up to 10 pM, indicating that the selectivity was more than 100-fold in 

their helical state (Kneissl et al. 2008) (Figure 3.22) (Table 3.10).
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Figure 3.22: Typical titration curve fo r BH3 
domain BPNs and HDM2.

Table 3.10: Dissociation constants for the HDM2 and 
BPNs in different states.

Peptide form Bak72-87,+7
Kd (nM)
Bak72-87,+y/ Bid9i.m'+4

Parent n.d. n.d. n.d.
Dark-adapted > 10 pM > 10pM > 10 pM
Light-induced > 10 pM > 10 pM > 10 pM

3.3.7 Chemical shift perturbation NMR experiments

3.3.7.1 Expression of truncated B c 1-x l  in M9 minimal medium

To carry out NMR experiments, a loop deletion mutant (A45-84) of the protein was 

expressed since this resulted in less aggregation tendency. Expression was carried out in 

M9 minimal medium using l5NH4Cl, the purification was accomplished using a 

Ni-Sepharose column and step-wise elution of 50 mM, 100 mM and 250 mM imidazole. 

Pure fractions were combined and analysed on an SDS gel (Figure 3.23).
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Figure 3.23: SDS polyacrylamide 
gel electrophoresis o f purified B cI-xl 
after staining with Coomassie blue. 
Lanes are 1: marker and 2: purified 
BcI-xl. The arrow indicates the band 
corresponding to B cI-xl.

3.3.7.2 *H 1SN HSQC NMR experiments

*H 15N HSQC NMR measurements were carried out for the B c I - x l  protein alone and in 

complex with the Bak.7 2-8 7i+//, Bak7 2 -87*+ 7  and Bak.7 2 -8 7 Wt peptides. The assignments for 

the uncomplexed protein were obtained from Dr. Matt Crump (University of Bristol). A 

titration series was carried out so that the change in chemical shift could be monitored. 

Unfortunately, the dissociation of the complex was in slow exchange resulting in the 

formation of two sets of peaks instead of the expected gradual change in chemical shift 

(one set corresponding to the free protein and one to the complex). Comparison of the 

data for the different complexes strongly indicates that all peptides targeted the same 

binding cleft since the observed changes possess a high degree of similarity (Figure 

3.24).
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3.3.7.3 'H 1SN HSQC TOCSY NMR experiments

A combination of 'H l5N HSQC TOCSY and the published assignments for the Bel- 

XL/Bad complex was used as guidance to determine which peaks are homologous in the 

two spectra. If two peaks in the spectra of Bcl-xi/Bad complex and Bcl-xL /Bak72-87/+77 

overlapped and the TOCSY spectrum confirmed that both amino acids are of a similar 

type then they were assumed to be identical. If no clear “assignment” could be made for 

a residue, it was assumed that the smallest change in chemical shift had occurred 

(Figure 3.25). This analysis was done together with my colleagues Dr. Joel Loveridge 

and Piotr Wysoczanski. Chemical shift changes were defined as stated in Equation 2.11 

(see page 68). Significant changes were defined as co >  0 .4 cd max (® max is the largest 

measured change in chemical shift) and all values plotted onto the model of the 

complex. The resulting footprint was compared to the published data for BH3 peptides 

in complex with B c I -x l  (Feng et al. 2007). The strongest change observed corresponded 

to Phe 91 at the binding site. The other strong changes identified were also almost 

exclusively around the binding site (Figure 3.26). In particular, Phe 65, which has been 

shown to flip outwards of the hydrophobic pocket upon binding, shows a very strong 

change in chemical shift (co =  0.94cOmax)- A102, F57, Q85 and E58 also show strong 

changes in chemical shoft and are located at the binding site of the peptide. F106, T69, 

G 9 4  and T132 showed strong changes in chemical but were located a bit further away 

from the interaction site. The moderate changes were mainly located in the a2, a3, a2- 

a3 loop and a 4  regions as previously described for the binding of B c I -xl  to various 

peptides (Feng et a l  2007) (Table Al).  Overall, these results strongly indicate that 

Bak72-87,+77 targets the same cleft in B c I-x l  as the wild-type peptide (Kneissl et al. 

2008).
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i

Y
— 5H------------------

Figure 3.25: Principle o f the
methods used to identify
homologous peaks in the BcI-xl 
spectra. Green: Peak in the
spectrum of free Bcl-x^ blue: peak 
in the spectrum of Bcl-xi/Bad and 
red: peaks in the B cI-xl /Bakj2^ 7 +X 1 
spectrum. X  and Y correspond to 
different types o f  amino acids 
identified from the TOCSY
spectrum. If two peaks in the spectra 
of Bcl-xi/Bad complex and 
Bcl-Xi/Bak72-87+'1 overlapped and 
the TOCSY spectrum confirmed that 
both amino acids are of a similar 
type then they were assumed to be 
identical. If no clear “assignment” 
could be made for a residue, it was 
assumed that the smallest change in 
chemical shift had occured.
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A102 s

6H (ppm)

Figure 3.26: A) Surface representation o f Bcl-xi showing residues that undergo 
changes in NH chemical shift upon binding to Bak.72-8 7 +U- Minimum chemical shift 
changes were mapped onto the model o f the Bcl-xi/Bak.72-8 7^ ' complex. Red: co > 
0.4comax, yellow: 0.4 cOmax > co > 0.15comax, green: co < 0.15comax. The modeled Bak72S 7l+U 
peptide is shown as white sticks (Kneissl et al. 2008). B) HSQC spectrum o f free Bcl-xi 
(green) and the Bcl-Xi/Bak72^7l+U complex (red). Identified strong changes in chemical 
shift are indicated.

3.4 Conclusion

In summary, a family of biophotonic nanoswitches that could act as antagonists of 

B c I - x l  were developed using an azobenzene-derived photo-activatable cross-linker to 

regulate the conformation of short peptides based on the BH3 regions of the 

Bcl-xL-binding proteins Bak (Sattler et al. 1997) and Bid (Walensky et al. 2004). The 

binding mode of the biophotonic nanoswitches was determined by CD and NMR 

spectroscopy, which revealed that these peptides bind to the same cleft of B c I - x l  

identified as the target site of wild-type Bak and Bid. However, helix-stabilised peptides 

showed significantly greater affinities for Bcl-xL than the unalkylated and wild-type 

peptides, whereas the helix-destabilised forms generally showed reduced affinity. The 

combined features of high affinity and high specificity together with their stable peptide
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fold suggest that these and similar peptides might be used to probe and modulate a large 

variety of specific protein functions within the context of the cellular proteome. While 

other peptide-based and small molecule reagents have been developed to target specific 

protein-protein interactions, the biophotonic switches are unique in that their activity 

can be controlled externally by irradiation with light opening the possibility of 

interfering rapidly, reversibly and specifically with such interactions to study and 

modulate cellular function.
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4.1 Introduction

The human immunodeficiency virus (HIV) belongs to a retrovirus subfamily, the 

lentivirii. It targets CD4-bearing cells such as T-helper cells and is the cause of the 

acquired immunodeficiency syndrome (AIDS) (Vaishnav et al. 1991).

4.1.1 Structure of the virus particle

The HI virus is spherical and about 100 nm in size, it has two copies of a single stranded 

RNA genome, the particle is surrounded by a membrane (envelope), underneath the 

envelope lies the p i7 structural protein matrix. Projecting from the envelope is the viral 

glycoprotein (gpl20) which is connected via the gp41 protein (Gelderblom et al. 1987; 

Ozel et a l  1988; Gelderblom et al. 1989). The proximal bullet-shaped viral capsid is 

comprised o f the structural protein p24 and encloses the RNA and the viral enzymes 

(integrase, reverse transcriptase and a protease) (Vaishnav et al. 1991) (Figure 4.1).

4.1.2 Genome organisation

The HIV genome consists of a 9 kb long single stranded RNA molecule. It efficiently 

utilises this relatively short sequence by making extensive use o f overlapping reading 

frames, alternative splicing and translation of mRNAs with retained introns (Hope 

1999). HIV has several major genes coding for structural proteins that are found in all 

retroviruses and several accessory genes that are HIV specific. The gag  (group-specific 

antigen) gene encodes the protein that forms the basic virus structure (for example p i7 

and p24). The pol gene codes for a number of important viral enzymes such as reverse 

transcriptase, integrase and protease (PR). This protease is used to cleave the protein
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products derived from pol and gag to give a number of important functional proteins. 

The envelope gene (env) codes for the precursor of gpl20 and gp41. Those proteins are 

part of the viral envelope and necessary for attachment and fusion with target cells 

(Vaishnav et al. 1991). The other six HIV gene products have regulatory functions; for 

example, the 16 kDa protein TAT is crucial for the transcactivation of long terminal 

repeat (contains the promoter region) directed gene expression, rendering it essential for 

the production of further virions (Arya et a l 1985).

mem brane

enzyme

ssRNA

100 nm

Figure 4.1: Schematic representation of the HIV structure. Grey: viral 
envelope, red: coat proteins, blue: structural proteins, black: RNA and 
green: the viral enzymes integrase, reverse transcriptase and protease.

vpr rev-------------
LTR H '-M m I H I  " ' vif -------M  f-nv —  LTR

pol ---------------tat-------------- nef
vpu

Figure 4.2: Schematic representation of the HIV-1 genome organisation. Red: genes 
coding for coat proteins, blue: genes coding for structural proteins, yellow: genes 
coding for regulatory proteins and green: genes coding for viral enzymes.
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4.1.3 The HIV infection cycle

HIV initially interacts with the CD4 cellular receptors on the surface o f a target cells via 

the envelope glycoproteins. Mediated by gp41, the lipid membranes fuse and the 

nucleocapsid goes into the cytoplasm. The viral genome is then transcribed into double­

stranded DNA with the aid o f the enzyme reverse transcriptase. This transcript enters 

the nucleus and is integrated into the cellular genome catalysed by the viral enzyme 

integrase. The resulting ‘provirus’ functions as a transcriptional template with the 

synthesised RNA undergoing further process followed by transportation to the cytosol 

and translation. Next the core proteins and two copies o f full length HIV RNA assemble 

into immature nucleocapsids. These particles bud through the cell membrane and 

become surrounded by a membranous layer, a viral protease cleaves the core proteins 

and the matured virus can begin the next round of infection (Pollard et al. 1998).

4.1.4 Viral RNA shuttling

The long terminal repeats (LTRs) are several hundred nucleotides long and found at 

either end the proviral DNA or transposons. They are formed by reverse transcription of 

retroviral RNA. In pro viruses, the 5’-LTR acts as a promoter sequence and the 

downstream long terminal repeat as a polyadenylation site. The transcription o f HIV 

occurs from a single promoter within the 5’-LTR. The resulting transcript functions as 

genomic RNA and as mRNA for the expression of a number of HIV genes. However, 

extensive splicing is required in the expression o f the majority o f the genes; this results 

in a mixture o f unspliced, single spliced and multiple spliced RNA products in the 

nucleus (Figure 4.3). Intron-containing pre-mRNAs are usually retained in the nucleus 

by the interaction o f splicing factors. The incompletely spliced viral mRNAs therefore
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contain a specific sequence known as the Rev response element. The Rev protein binds 

to the corresponding response element and activates the nuclear export o f unspliced 

viral mRNA to the cytoplasm. The Rev protein, which is expressed in the early phase 

from the fully spliced mRNA, contains a nuclear localisation sequence (NLS) (Figure

4.5). This sequence overlaps with the RRE binding region therefore masking it upon 

binding. For the successful export of the Rev/RRE complex, a nuclear export sequence 

(NES) is required which is located at the C-terminal end o f the protein. Rev levels rise 

in the late phase o f the infection making binding and subsequent multimerisation a 

frequent event, this then leads to effective export o f the longer mRNAs (Pollard et al. 

1998).

4.1.5 The structure of the rev response element

The RRE is a 234 nucleotide structure that is found within the env intron within the 

unspliced HIV mRNAs. It consists o f five stem regions (Figure 4.4). The specific 

sequence within the RRE that determines Rev responsiveness is very small compared to 

the size of the structure. Recognition is facilitated by a single high-affinity binding site. 

A combination o f RRE mutagenesis experiments (Heaphy et a l  1990; Holland et al. 

1990; Malim et al. 1990; Dayton et al. 1993), in vitro binding studies (Cook et al. 

1991), chemical modification interference (Kjems et al. 1992; Tiley et al. 1992), and 

iterative in vitro genetic selection assays (Bartel et al. 1991) have mapped the 

interaction site to stems IIB and IID. NMR studies have subsequently elucidated the 

structure o f a short Rev-based peptide bound to the stem IIB/IID region and identified 

important contacts between Rev and the RRE (Battiste et a l  1996).

Even though the RRE has only a single high-affinity site, a number o f studies with full- 

length Rev and larger RRE fragments have shown that multiple Rev proteins bind to
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one RNA molecule. The large size of the structure is probably necessary for the 

formation of the appropriate secondary structure and presentation o f the high affinity 

binding site. Furthermore, the remaining stem loops serve as secondary Rev binding 

sites (Kjems et al. 1991; Pollard et al. 1998).

full length HIV transcript

Gag, Pol, 

Vif, Vpr, 

Vpu, Env

early phase
-Rev

late phase
+Rev

RRE
RRE

Tat, Ref, Nev
■fat, Rev, Nef

Figure 4.3: Viral RNA shuttling. Red: mRNA, yellow: RRE and blue: nuclear pore 
complex (Pollard et al. 1998).
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Figure 4.4: The RRE 234 nucleotide domain structure. The primary Rev binding site is 
surrounded by a box and shown in greater detail in the inset. The standard Watson- 
Crick base pairs are represented with the bases drawn in close proximity. The two non- 
canonical base pairs (G47-A73 and G48'G71) are represented with blue lines between 
them. The red bases were invariant in iterative in vitro genetic selection experiments. 
The chemical modification o f the purines marked with green arrows resulted in severely 
reduced Rev binding in vitro as did modification o f the sugar-phosphate backbone at 
the positions indicated with yellow arrows (Pollard et al. 1998).
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4.1.6 The Rev protein domain structure

The 18 kDa phosphoprotein can be imported into the nucleus, where it binds 

specifically to the RRE, forms multimers and activates the nuclear export o f RRE 

containing ribonucleoprotein complexes. Rev has been demonstrated using 

heterokaryon experiments to rapidly shuttle between the nucleus and the cytoplasm. 

Human cells expressing the rev gene were fused with mouse cells not containing the 

protein. After a couple o f minutes Rev was then also detectable in the mouse nuclei 

(Meyer et al. 1994). The protein can be divided into two core domains; the N- 

terminal/middle domain contains an arginine-rich sequence, it has two functions; it acts 

as the nuclear localisation signal (NLS) (Malim et a l  1989; Perkins et a l  1989; 

Bohnlein et a l  1991) and also serves as the RNA-binding domain (Daly et a l  1989; 

Zapp et a l 1989; Bohnlein et a l  1991). This sequence is flanked by sequences that are 

involved in multimerisation (Zapp et a l 1989; Olsen et a l  1990). The C-terminal 

domain contains a leucine-rich region, called the activation domain (Hope et a l  1991; 

Malim et a l  1991b). It functions as the nuclear export signal (Figure 4.5). Both the NLS 

and NES work by accessing pathways for nuclear import or export. The Rev protein 

first binds monomerically to the high affinity site on the RRE (Cook et a l  1991; Malim 

et a l  1991a). This leads to localised melting o f the RNA conformation (Tan et a l 1994; 

Renwick et a l  1995) and more Rev molecules can then multimerise and contact the 

RNA via a number o f cooperative protein-protein and protein-RNA interactions (Daly 

et a l  1993). In total, eight or more Rev molecules can interact with one RRE sequence 

(Mann et a l  1994). The resulting complex is targeted for nuclear export by the 

activation domain (Pollard et a l  1998).
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multimerisation NLS & activation

i RRE domain

binding & NES

TR Q A R R N R R R R W R E R Q R

Figure 4.5: The Rev protein domain structure 
(Pollard et al. 1998).

4.1.7 The Rev/RRE interaction

The Rev peptide binds to the RNA major groove in an a-helical conformation. The 

A-form RNA major grove is normally deep and too narrow to accommodate an a-helix, 

however, it may be widened by non-Watson-Crick interactions. The G48-G71 pair 

bends the RNA backbone into an S-shape conformation and facilitates the local opening 

of the major groove (Figure 4.6). The protein-RNA interaction interface is extensive, 

approximately four helix turns long (Battiste et a l  1996). The short Rev peptide is able 

to make numerous backbone and base-specific contacts without any additional protein 

contacts. This is in contrast to typical DNA-protein interactions where accessory protein 

structures contribute to high affinity binding by contacting the phosphate backbone 

(Grate et al. 1997). A number of arginine residues form base-specific contacts and the 

asparagine residue interacts with a G A basepair. Arg35 and Arg39 make base-specific 

contacts on one side of the groove and Asn40 and Arg44 on the opposite side. Thr34 

and several arginines (Arg38, Arg41, Arg42, Arg43, Arg46 and Arg48) contact the 

backbone (Figure 4.7). The Rev helix penetrates more deeply than most nucleic acid 

binding proteins as evident by the comparison to the GCN4 binding to the major groove 

which is typical for most DNA binding helices (Figure 4.6). It is situated about 0.3 nm 

deeper inside the groove than for example the GCN4 helix (Battiste et al. 1996; Grate et 

al. 1997).
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Figure 4.6: Comparison of the major groove 
depth and width. The Rev peptide is buried 
much deeper within the A-form RNA major 
groove then most other peptides. A) Standard A- 
form RNA duplex. B) View perpendicular to the 
helix-axes o f GCN4 (lYSA.pdb) (Ellenberger et 
al. 1992) and C) View down the helix axes of 
Rev (lETF.pdb) (Battiste et al. 1996). The G48- 
G71 base pair is displayed in yellow.
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R50

Figure 4.7: NMR structure of the Rev/RRE 
interaction (lETF.pdb) (Battiste et al. 1996). 
Sidechains o f amino acids that contribute to 
binding (greater than 3-fold loss of affinity upon 
mutation) are displayed in red and the bases 
that are contacted in the RNA are shown in 
blue.

4.1.8 Compounds that target the Rev/RRE interaction

The Rev/RRE interaction is of great therapeutic interest due to its crucial involvement 

in the HIV life cycle. A number of strategies have been employed to target this 

complex. Cyclic P-hairpin mimetics that successfully mimic the helical conformation of 

the Rev peptide have been described recently. The measured Kd values were in the 

micro- to low nanomolar range. The best designed ligand R-27 bound with higher 

affinity to RRE than the Rev peptide and discriminated by approximately 50-fold 

between RRE and the related RNA sequence TAR. The binding mode o f the mimetics 

was investigated by NMR spectroscopy and it was confirmed that they bind to the same 

position on the RRE as the Rev peptide (Moehle et al. 2007; Robinson 2008). A
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macrolactam-bridged 14 residue peptidomimetic based on the sequence R6QR7, has 

been reported that binds with nanomolar affinity and high specificity to the Rev 

recognition element. This degree o f specificity is obtained through the conformational 

restraint and the Gin residue in the right position (Mills et al. 2006). Pico- and 

nanomolar binding affinity Zn-finger proteins have been reported. They were either 

developed using a structure-based design strategy or by phage display (McColl et al. 

1999; Friesen et a l  2001) (Figure 1.9). Peptide nucleic acid (PNA) modified peptides 

and nucleobase-conjugated peptides have been described which bind to the target 

sequence with similar affinity as the wild-type peptide (Kumagai et al. 2000; 2001; 

Takahashi et al. 2001). Attempts to target the Rev/RRE interaction with small 

molecules such as unfused aromatic cations have resulted in inhibitors with IC5 0  values 

in the high nanomolar or low micromolar range and good specificity (Xiao et al. 2001) 

(Figure 4.8). The design was established using a lead compound identified by an initial 

screen. The structure of this molecule was systematically varied using different 

proximal heterocycles and substituents. The contribution of each unit to activity could 

be determined from gel-shift assays in this way. The fact that DB340 binds close to the 

internal loop region of RRE and competes for binding with Rev was established by 

NMR spectroscopy.
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Figure 4.8: Structure of DB340, a small molecule inhibitor o f the 
Rev/RRE interaction.

4.2 Aim of the project

While several potent small molecule and peptide-based inhibitors of the Rev/RRE 

complex have been developed recently, none of these have the potential to program 

changes in discrete and critical intracellular protein-RNA interactions through external 

stimuli and in a reversible manner. This could enable the development of novel tools for 

the study of cellular pathways involved in RNA metabolism or the generation of light- 

activatable therapeutics.

The aim of the project was therefore the development of photocontrollable peptides that 

target RNA-protein interactions. The Rev/RRE interaction of HIV-1 was selected as a 

model system since it is well characterised and an important therapeutic target. The plan 

was to develop Rev-based peptides with an azobenzene cross-linker in different 

spacings and to characterise these functionally by using UV/Vis spectroscopy and 

fluorescence-based binding assays and disruption assays and to characterise the 

structural change upon irradiation by CD spectroscopy.
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4.3 Results and discussion

4.3.1 Design of the Rev peptides

The 18 amino acid peptide design was based on the NMR structure of the Rev/RRE 

complex (Battiste et al. 1996). The program MOE was used to create models of the 

cross-linked peptides in complex with the RNA so that the suitability of different 

designs could be evaluated (Figure 4.9). Since the Rev peptide is surrounded to 270° by 

RNA the right spacing of the cysteines was especially important (Battiste et al. 1996). 

Amino acids that can be replaced without significant loss of affinity were used 

preferentially for incorporating the cysteine residues. Residues on the same face as the 

cross-linker that could potentially interfere with it were changed to alanine, i, i+7  and 

i, i+11 designs were established in this way so that either inactivation or activation of 

the complex disruption could be accomplished by irradiation. The sequences of the two 

BPNs are shown in Table 4.1

Table 4.1: Rev peptide sequences. Amino 
acid substitutions are given in blue.

Peptide_____ 33____________________50
R e v ^ o " *  D T R Q A R R N R R R R W R E R Q R

R e v 33.5o'+77 D T R Q A C R N R A R R A R E R C R  

Rev33-5Q/+7 D T R Q A C R N A A R R C R E R Q R
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A

R50
R39
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N40

A42 D33

C38 i I A37I, 1+11 £  
spacing R48
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spacing

Figure 4.9: Model of an activated BPN in 
complex with RRE (based on lETF.pdb 
(Battiste et al. 1996)). A) Rev33.so+1 and 
B) Helical wheel representation of both BPN s. 
Red: residues shown to result in > 10-fold loss 
o f binding affinity upon replacement to an 
alanine, yellow: cysteine residues and cyan: 
residues replaced by alanine to avoid steric 
clash.
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4.3.2 Synthesis and cross-linking of the BPNs

Peptides were synthesised by Fmoc chemistry and SPPS; purification was achieved 

using HPLC (gradient: 0-60% over 60 min) (Figure 4.10). A-terminal modification with 

carboxytetramethylrhodamine (TMR) was carried out while the peptide was bound to 

the resin using DIPCDI as the coupling reagent. The cross-linking reaction with 

3,3’-bis(sulfo)-4,4’-bis(chloroacetamido)azobenzene was performed as described in

Chapter 3.

A variety of conditions were tested to alkylate the TMR-labelled peptides. However, in 

all cases rapid precipitation upon addition of cross-linker was observed. Buffer 

parameters such as pH, temperature, DMSO content and the concentration of cross­

linker in each aliquot were varied but no product could be obtained. Figure 4.10 shows a 

typical chromatogram and a typical spectrum for the purified peptides. The retention 

times and molecular weight of all peptides can be found in Table 4.2.
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Figure 4.10: A) Typical HPLC trace and 
B) typical mass spectrum of a purified BPN
(Rev33.50wt).

Table 4.2: Molecular weight o f the Rev peptides (X = alkylated with 
the azobenzene cross-linker). Major MS peak corresponds to the 
species observed in the mass spectrum. The molecular weight 
calculated from that is given in the column to the right. Theoretical 
average MW corresponds to the anticipated mass o f each molecule.

Peptide Ion Major MW Theoretical MW
__________________________ MS peak (g mol'1) (g m ol1)_______
Rev33-50wt [M+H]+ 2,552 2,251 2,552
TMR-Rev33-50Wt [M +H f 2,970 2,969 2,966
ReV33_50/+7 [M+H]+ 2,245 2,244 2,245
Rev33-50/+7X [M+H]+ 2,698 2,697 2,696
TMR-Rev33-5o'+7 [M+H]+ 2,663 2,662 2,658
ReV33-50/+// [M+H]+ 2,274 2,273 2,274
Rev33-5 0 /+7/X [M+H]+ 2,725 2,724 2,724
TMR-Rev33-5oi+// [M+H]+ 2,690 2,689 2,688
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4.3.3 UV/Vis characterisation

The isomerisation of the peptides was followed by UV/Vis spectroscopy at different 

temperatures as previously reported for the BH3 domain BPNs. This was used to 

characterise the thermal isomerisation of irradiated Rev33-5o'+7and Rev33_5o/+77. The 

absorption spectrum o f the dark-adapted BPNs (with the azobenzene cross-linker in the 

thermally stable /raws-configuration) was characterised by the same maximum as 

described in Chapter 3.3.5.1 (Figure 4.11). Since the presence of more than one 

isosbestic point was observed in the spectrum, the rate was determined by assuming 

first order kinetics for the reaction (Figure 4.12). Irradiated Rev33_5o'+77 reverted to the 

dark-adapted state in a non-photochemical process with a half-life o f 118 min (Table

4.5) (Figure 4.12). This was similar to the half-life o f the previously reported HDH-3 

(150 min) (Guerrero et al. 2005b) but significantly longer than for Bak78-87,+77. The 

UV/Vis spectra o f dark-adapted and light-induced Rev33-5o' 7 was similar to those 

observed for Rev33-5o'+7/ and the thermal reversion from the irradiated state occurred 

with a similar half-life of 154 min at 15 °C so the spacing did not strongly influence the 

reversion rate in this system (Table 4.5) (Figure 4.12). Comparison of this reversion rate 

to the data for Bak72-87,+7 (t/2 = 174 min) (Table 3.8) and PhotoMyoD (t>/2 = 193 min at 

15 °C) (Guerrero et al. 2005a) where the cross-linkers were also in the i, i+7 

configuration indicated that the rate of thermal reversion is relatively sequence 

independent for this spacing.
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Figure 4.11: UV/Vis spectra in the dark (top dark blue 
line), immediately after irradiation (pink) and at different 
times after irradiation A) Rev33_5Q+] 1 andB) Rev33_5o+1.

138



Chapter 4: Photocontrol o f protein-RNA interactions

5.0 -I100 In (%lid) = -0.0020 t + 4.6500
In (%lid) = -0.0059 t + 4.56924.5

80
4.0 •

C40 -

2.5 -

20 ■
2.0 ■

1.5
1000

t (m in)
In (%lid) = -0.0017 t + 4.6360
In (%lid) = -0.0045 t + 4.4953

15000 500500 1000 1500
t (min)

5.0
100

4.5
80

4.0 ■

■o
=  3.5 -

20  - 2 5

20
0 400 800 1200400 1200800

t (min) t (m in)

Figure 4.12: The isomerisation rate for the Rev-based BPNs. A) Rev33.5 0^  and 
B) Rev33.so*1; blue: 5 °C and red: 15 °C. The absorbance versus time plot is shown on 
the left and the corresponding linearised plot on the right.

The extent of the light-induced isomerisation was determined from the absorbance at 

363 nm, using the difference between the extinction coefficients for the cis and trans 

azobenzene cross-linker (Zhang et al. 2003). 48% and 61% of the irradiated material 

was found to be in the czs-configuration for alkylated Rev3 3 .5o'+// and Rev3 3_5o'+7 

respectively (Table 4.3). The value for Rev3 3 .5o'+// is significantly lower than typically 

observed in the photoisomerisation of azobenzenes (Guerrero et al. 2005b; Renner et al. 

2006). The model peptide FK-11 for example gives 85% cis isomer upon irradiation 

(Zhang et al. 2003). After 4 min of irradiation there was no further change in the 

spectrum. A possible cause for this deviation could be a blue-shift of the n-71* transition 

absorbance maximum of the c/s-isomer (usually around 440 nm for the azobenzene
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cross-linker) (hypsochromic shift), resulting in greater spectral overlap o f the 71-71* 

transition of the trans-isomer with the n-71* transition of the c/s-isomer. The calculated 

cis spectrum did not allow an accurate determination of the absorbance maximum due 

to the large amount o f trans-isomer present in the sample combined with the relatively 

low intensity o f the peak at 440 nm. The utilisation o f a laser, which has a narrower 

band-width than the UV lamp, might slightly improve the isomerisation yield in this 

case.

Table 4.3: Isomerisation percentages fo r the Rev-based 
BPNs and the model peptide FK-11.

FK-11 Rev33-50 Rev33-5o
%cis isomer 85 61 48

4.3.4 Structural characterisation by CD spectroscopy

CD spectroscopy indicated that there are no significant differences in the conformation 

of Rev33.5owt and the uncross-linked Rev33.so peptides. All of them show a spectrum of a 

mostly random coil conformation with minima around 200 nm. However, Rev33_5o'+77 is 

slightly more structured than the other two peptides with a mean residue ellipticity at 

222 nm [0 ]r, 222 of -6,455 deg cm2 dm of1 (20% helix content) (Figure 4.11) (Table 4.4). 

For the rra/zs-configuration of this peptide in the cross-linked form, the CD spectrum 

revealed very substantial helix formation with a [0]r, 222 of -19,627 deg cm2 drool'1 

(Figure 4.13). This value is lower than that found for dad Bak72-87 +77 (Table 3.6), but 

similar to the previous observations regarding HDH-3 (Guerrero et al. 2005b). The 

mean residue ellipticity at 208 nm was lower than at 222 nm, suggesting contributions
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to the CD spectrum from the cross-linker as previously described (Flint et a l  2002) and 

as mentioned in Chapter 3.3.5.2 Irradiation with 360 nm light led to a significant 

increase in [@]r, 2 2 2  to -9,583 deg cm2 dmol'1, indicating a reduction in the amount of the 

peptide that adopts an a-helical structure as expected from the literature (Kumita et al. 

2000; Kumita et a l  2003; Zhang et a l  2003; Guerrero et a l  2005a; Guerrero et a l  

2005b; Woolley et a l  2006). However, even in this state, the amount of a-helical 

character was 31%, which is probably due to the presence in the irradiated state of 

Rev33-5 0 ,+/7 of approximately 52% of the rrans-configured peptide (Table 4.3). Since the 

isomerisation yield was relatively low for this peptide, the spectrum of the ds-form was 

calculated to fully evaluate the structural change upon irradiation (Figure 4.13). The 

spectrum of the ds-form shows almost no structure indicating that the helical 

conformation is fully destabilised in this isomer. As expected, the spectrum of 

Rev33-5o'+7 in the dark displays little helical character with [0 ]r,222-values of 

-1,203 deg cm2 dm ol1. Upon irradiation, this value decreased 4-fold to 

-4,404 deg cm2 dm ol1. Since the percentage of ds-isomer obtained in this case is only 

61% (Table 4.3), the full ds-spectrum was calculated from the data, giving a curve with 

minima at 222 nm, 208 nm and 195 nm as typical for or-helices (Figure 4.13). The cis- 

trans isomerisation rate for the cross-linked peptides was determined from the change in 

mean residue ellipticity at 222 nm and the obtained data compared to the results for the 

rate determined from the UV studies. The previously observed deviation for the 

isomerisation of i, i+11 peptides (Chapter 3 and Guerrero et a l, PhD thesis 2005) at 

low temperature was also observed in this case but to a lesser extent (about 2-fold at 

5 °C) (Table 4.5). The small difference at 15 °C for Rev33.50'+7 is unlikely to be 

significant since the structural change at this temperature is less pronounced and the 

calculation therefore of lower accuracy (Figure 4.14).
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Figure 4.13: CD spectra of the peptides at 
5 °C. A) Unalkylated peptides, B) Rev33.50 +11 

and C) Rev33.50l+7; black: Rev33.50wt, light 
green: uncross-linked Rev33.5ol+n, dark green: 
uncross-linked Rev33.so+1, blue: dark-adapted, 
orange: irradiated and red: 1 0 0 % cis form 
(calculated from the spectra of the two states 
and the cis/trans ratio of the light-induced 
state which was determined from UV 
measurements).
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Figure 4.14: CD spectra of the peptides at 
15 °C .A) Rev33-5 0 + 1 and B) Rev33.5 0 ^; blue: 
dark-adapted and orange: irradiated.
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Table 4.4: Mean residue ellipticities and helical 
content for lid and dad Rev-based BPNs.

[® ]r, 222
(deg cm2 dm ol1)

Helicity
(%)

R e v 33-50wt - 4 ,3 2 1 14

R e v 33-50,+ // - 6 ,4 5 5 2 0

R e v 33-5o'+77 dad - 1 9 ,6 2 7 6 3

Rev33-5o'+// lid - 9 ,5 8 3 31

ReV33_50/+7 - 3 ,3 7 9 11

R e v 33-50,+7 dad -1 ,2 0 3 4

ReV33-50*+7 lid - 4 ,4 0 4 15

Table 4.5: Half-life for the
relaxation of different BPNs.

Half-life (min)
ReV33_5o‘ +1 u v CD
5 °C 418 413
15 °C 154 274
R e V 33_501+H UV CD
5 °C 339 629
15 °C 118 132

4.3.5 Binding assays

Fluorescence anisotropy measurements (Heyduk et al. 1996) were performed to 

determine the affinities of Rev33.50'+/7 and Rev33.50'+7 in their uncross-linked, dark- 

adapted and light-induced states. Neither addition of dad Rev33.50,+/7 nor addition of 

wild-type peptide to a solution of fluorescently labelled RRE RNA resulted in an 

increase in the fluorescence anisotropy. This is probably due to the small size of the 

ligand compared to the larger RRE RNA, making this assay unsuitable for the 

application.
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A  FRET-based binding assay was optimised instead; TMR-labelled peptide was titrated 

into a solution of FAM-labelled RNA leading to a saturatable decrease in FAM 

fluorescence intensity. The data obtained was fitted to the Langmuir isotherm (Equation 

2.8 on page 64). For both the wild-type peptide complex and the unalkylated 

Rev33_5o'+77, the best fits were obtained for 1:1 binding (n = 1) as was expected from 

previous results with the wild-type peptide (Mills et al. 2006). These fits yielded the 

dissociation constants in Table 4.6. The obtained K D value for the wild-type peptide was 

7 ± 2 nM which is in agreement with previously reported data ( K d values between 2 nM 

and 70 nM) (Tan et al. 1993; Takahashi et a l  1999; Kumagai et a l  2000; Takahashi et 

a l  2001; Mills et a l  2006). The dissociation constant for the R38C substituted peptide 

was reduced by one order of magnitude (69 ± 27 nM) as expected from previous 

mutagenesis experiments (Battiste et a l  1996) (Figure 4.7). Since the other BPN 

displayed a very similar CD spectrum (Figure 4.13) and contained the same R38C 

substitution, it was decided not to determine the affinity in this case. The affinities of 

the cross-linked peptides could not be determined due to the problems with alkylating 

the TMR-derivatives.

146



Chapter 4: Photocontrol o f protein-RNA interactions

0.0  T--------------------- T-------------------- T---------------------- T--------------------- T--------------------- ,

0 250 500 750 1000 1250 1500
[ R e v ]  ( n M )

Figure 4.15: Typical binding curves for 
Rev33_5owt(blue) andRev33.3o+U(red).

Table 4.6: Dissociation constants for the 
wild-type peptide and one of the uncross­
linked peptides.

Peptide Kd

R e v 33-50wt 1 ± 2
Rev3 3 .5 o! +11 (unalkylated) 69 ±27

4.3.6 Rev/RRE disruption assay

The ability of the BPNs to disrupt the Rev/RRE interaction in vitro was analysed using 

a FRET based assay. The cross-linked BPNs (with no attached fluorophore) were 

titrated into a solution of TMR-wild-type peptide and FAM-labelled RNA, leading to a 

saturatable decrease in fluorescence intensity of the TMR-fluorophore (the assay 

conditions having been optimised using the wild-type peptide (Kj = 3 ± 1 nM and Hill 

slope = 1.1 ± 0.2). IC5 0  values and Kj values were determined from the curves using 

Equation 2.9 and Equation 2.10 (see page 65), respectively. The Kj value for the dark- 

adapted state of Rev33 .5 o,+/7 was 0.7 ± 0.2 nM (Hill slope 0.87 ± 0.02). This is two 

orders of magnitude lower than the Kd value obtained for the unalkylated peptide and 

one order of magnitude lower than the wild-type KD value (Table 4.6). The apparent Kj

147



Chapter 4: Photocontrol o f  protein-RNA interactions

for the light-induced state was very similar to the data obtained for the dark-adapted 

form (0.9 ± 0.3 nM, Hill slope 0.53 ± 0.04) (Table 4.7) (Figure 4.16). This is probably 

due to the presence o f around 52% of the tightly binding isomer in the mixture, since 

the structural characterisation suggests that the peptide does not adopt the required 

helical conformation. Furthermore the half-life and isomerisation yield for the c/s-form 

have only been obtained in the absence o f nucleic acid. Previous studies have shown 

that the presence o f nucleic acid target sequence can have a significant influence on the 

reversion rate and therefore in this case a reduction o f the amount of c/s-isomer present 

is likely (Guerrero et a l).

The inhibitory constant for light-induced Rev33.5o'+7 was in the picomomolar range 

(Ki = 0.3 ± 0.3 nM, Hill slope 0.65 ± 0.03), indicating that this BPN binds one order o f  

magnitude more tightly to the target sequence than the wild-type peptide and that the 

pre-organisation of the peptide conformation for binding was successful. In the dark- 

adapted state, there is significant loss of activity resulting in a Kj value o f 61 ± 2 9  nM. 

The Hill slope in this case was only 0.41 ± 0.03 (for one site competitive binding it is 

around 1.0) suggesting that the mechanism of inhibition is not competitive and this 

peptide conformer has a different mode o f action than the lid-form.

The inhibition constants of the complexes of these BPNs rivalled these of the best RRE- 

targeting peptides and small molecules reported so far (Friesen et a l  2001; Xiao et a l  

2001). However, unlike compounds in which the a-helical conformation is fixed, the 

activity of the Rev33.5o'+7 biophotonic nanoswitch described here can be switched 

between high and low affinity RRE binding states with external light pulses. It has been 

demonstrated that the binding specificity of the Rev peptide depends on helix content
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therefore Rev33.5oi+// might have the potential to very accurately discriminate between 

related RNA sequences due to its extensive conformational pre-organisation (Tan et a l  

1993).
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Figure 4.16: Typical disruption curves for 
A) Rev33.5o+Uand B) Rev33.5o+7. The blue line 
corresponds to the dark-adapted state and the 
red line to the irradiated state.
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Table 4.7: IC50 and Ki values obtained from competition 
experiments for the Rev-based BPNs.

IC5 0  (nM) Hill slope Kj (nM)
R e v 33-50,+1 'd a d  

R ev33-5o'+"  lid  

R ev33-5o'+7 d a d
T 3  i  +7 1 • 1R6V33-5Q1+ lid

717 ±345 0.41 ±0.03 61 ± 2 9
3 ± 3 0.65 ± 0.03 0.3 ± 0.3

8 ± 2 0.87 ± 0.02 0.7 ± 0.2
11 ± 4  0.53± 0.04 0.9 ±0 .3

4.4 Conclusion

In summary, two biophotonic nanoswitches that disrupt the Rev/RRE interaction were 

developed using an azobenzene-derived photo-activatable cross-linker to regulate the 

conformation of short peptides based on an 18 amino acid regions of the RRE-binding 

protein Rev. The binding mode of the biophotonic nanoswitches in the activated state is 

competitive, as established by the disruption assay. The helix-destabilised form of 

Rev33-50,+7 showed a reduced Kj value compared to the activated state. The high affinity 

together with the stable fold suggest that these and similar peptides might be used to 

probe and modulate a large variety of specific protein RNA interactions within the 

cellular context. While other peptide-based and small molecule reagents have been 

developed to target specific protein-RNA interactions, the biophotonic nanoswitches are 

unique in that their activity can be controlled externally by irradiation with light, 

opening the possibility of interfering rapidly, reversibly and specifically with such 

interactions to study and modulate cellular function.
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5.1 Introduction

The plasma membrane is a lipid bilayer containing proteins and glycoproteins. 

Hydrophilic compounds cannot cross the lipid membrane unless specific mechanisms 

are in place to facilitate their transport, small ions can cross via specific channels, and 

other hydrophilic compounds are transported through shuttle proteins. For larger 

proteins uptake is endocytotic and the cargo is initially retained in vesicles. Subsequent 

steps are required in this case to release the compounds into the cytoplasm (Joliot et al. 

2004).

A series of small domains termed protein transduction domains (PTDs) have been 

demonstrated to efficiently cross biological membranes and reach compartments such as 

the cytoplasm and the nucleus. This was initially described for HIV TAT and the 

homeodomain of the Drosophila melanogaster transcription factor Antennapedia but 

has since expanded to include other natural and non-natural peptides (Frankel et a l  

1988; Joliot et a l  1991; Derossi et a l  1994; Oehlke et a l  1998; Morris et a l  2001; 

Sawada et a l  2003). In biological context, these proteins have a messenger function 

since they regulate the transcription of specific genes in the target cells. For example, 

the homeoprotein expression differs regionally so it probably conveys positional 

information between cells (Levine et a l  1983). It has been demonstrated by mutation 

and deletion analysis that in fact small domains within the full-length protein are 

responsible for the activity.
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Subsequently, a short 11 amino acid domain of the TAT protein has been shown to 

deliver biologically active 120 kDa p-galactosidase into various tissues (Schwarze et al. 

1999). The 18 amino acid peptide Penetratin (derived form helix 3 of Antennapedia) has 

been used to target anti-apoptotic proteins to the brain. This has been shown to protect 

the cells from ischemic injury (caused by a restriction of blood flow to certain areas of 

tissue) (Cao et a l  2002). This transduction strategy is not limited to unmodified proteins 

and peptides but also enables the internalisation of other compounds, such as nucleic 

acids, peptide nucleic acid or modified proteins (Hall et a l  1996; Pooga et a l  1998; 

Joliot et a l  2004).

Three different models for the transduction mechanism have been proposed and studies 

have suggested that the individually followed uptake pathway depends on the peptide, 

cell-type as well as on the cargo (Derossi et a l  1996; Dom et a l  2003; Vives 2003; 

Joliot et a l  2004). The first mechanism starts with endocytotic uptake of the peptide 

followed by vesicle disruption and passage of the peptide and cargo into the cytoplasm. 

The second model involves the perpendicular insertion of the amphiphatic peptide 

domains into the lipid bilayer. The hydrophobic residues orient towards the lipids and 

the hydrophilic helix faces multimerise and form a channel. This would then allow the 

cargo to pass through. Thirdly, the peptides can interact electrostatically with the polar 

groups of lipids in the membrane. This leads to the formation of inverted micelles, 

engulfing the peptide and the cargo. The reopening of the micelle on the other side 

results in the transfer to the cytoplasm (Futaki 2002; Joliot et a l  2004; Futaki et a l  

2007).
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5.2 Aim of the project

The optical control of DNA binding by PhotoMyoD and the Bcl-xL binding of the 

BH3-domain BPNs has been shown in vitro. But neither the light activation of 

transcription (by PhotoMyoD or an artificial transcription factor based on HDH-3) nor 

the photocontrol of apoptotic processes by the BH3-domain BPNs has been 

demonstrated yet (Guerrero et al. 2005a; Kneissl et al. 2008). Although the strategy for 

stabilising peptide secondary structure with an azobenzene cross-linker has proven 

useful in vitro, the in vivo application is limited by the inherent cell impermeability of 

most large peptides (> 600 Da) (Egleton et al. 1997; van de Waterbeemd et al. 1998). 

While microinjection can be useful for the analysis of a small number of cells, it is 

unsuitable for most applications using larger areas of tissue. Therefore, cell and nuclear 

membrane impermeability is a major obstacle for the use of this system in vivo. The aim 

of this project was the development of a membrane penetrative version of the 

photocontrollable transcriptional activator PhotoMyoD and of the BH3-domain BPNs, 

this could then enable future in vivo experiments and applications such as tools for 

tissue engineering or photocontrollable cancer therapeutics.

5.3 Development of a membrane penetrating PhotoMyoD

5.3.1 Previous work on PhotoMyoD

As mentioned in Chapter 1, the regulation of specific DNA-protein complex formation 

is important for processes such as transcription. MyoD is a basic helix loop helix 

transcription factor. These proteins bind DNA as homo- or heterodimers. The bHLH 

domain is a 68 amino acid residue motif. It can be divided into two parts, the HLH
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motif and an N-terminal a-helix. The HLH element is responsible for dimerisation and 

the N-terminal basic a-helix binds to the major groove o f the DNA (Lassar et al. 1989; 

Murre et al. 1989a).

MyoD is expressed in numerous cell types such as fibroblasts and myoblasts. It 

activates the transcription of myogenesis inducing genes (Olson 1990). MyoD 

recognises the E-box sequence (CANNTG), it forms heterodimers with the ubiquitous 

factors E l2 and E47 to perform its function in vivo (Murre et al. 1989a; Murre et al. 

1989b; Tapscott et al. 1993; Maleki et al. 1997). E l2 and E47 alone can bind the E-box 

site but are unable to induce myogenesis. PhotoMyoD was designed in accordance with 

examinations of the crystal structure of MyoD in complex with its cognate DNA  

(MDYl.pdb) (Ma et al. 1994) and by analysing the sequence conservation between 

MyoD and related proteins. One double cysteine mutant was selected in which the 

cross-linker could be introduced on the opposite side of the basic helix without mutating 

any crucial residues (Guerrero et al. 2005a).

The introduction of an azobenzene cross-linker into the DNA recognition helix o f the 

transcription factor MyoD resulted in a DNA binding protein, the activity o f which 

could be photocontrolled (Figure 5.1). The light-induced form demonstrated significant 

stability o f the recognition helix relative to the dark-adapted state as demonstrated by 

CD spectroscopy. Light activation resulted in an increase of the DNA binding 

specificity o f more than two orders of magnitude. Such photo-activatable DNA binding 

proteins could be important building blocks for reagents to control developmental 

processes and lead to new therapeutics (Guerrero et al. 2005a). However, PhotoMyoD 

has not been shown yet to function as a transcriptional activator.
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Figure 5.1: Model o f the DNA complex o f the 
alkylated PhotoMyoD with the azobenzene-based 
cross-linker in its cis-configuration (Figure taken 
from Guerrero et alj, based on the crystal 
structure o f MyoD-bHLH in complex with DNA 
(Ma et al. 1994).

5.3.2 Design and cloning of different PhotoMyoD constructs

Two different designs were established using either the TAT or the penetratin domain 

on the N- or C-terminus. A His-tagged version was also generated to compare different 

purification options.

5.3.2.1 Design and cloning of TAT PhotoMyoD

The previously established design for PhotoMyoD (Guerrero et al. 2005a) was modified 

with an TV-terminal TAT-domain (Figure 5.2). The construction of the appropriate DNA 

sequence was accomplished in three steps; a pET19b vector was modified by excising 

the region between the Ncol and Ndel restriction sites, which codes for the His-tag and 

replacing it with a sequence coding for TAT (Table 5.1). This plasmid (pET TAT) and 

the photoMyoD pJGetita construct were cut with Ndel and BamHl and the resulting two
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fragments ligated. The clones were analysed using a Pstl diagnostic digest. The new 

plasmid was mutated at the BamYR site to introduce a stop codon in the right frame and 

the success of the modification judged by a BamHl restriction digest and DNA 

sequencing (Figure 5.3) (Table 5.2).

Figure 5.2: Model of the TAT PhotomyoD 
protein. The bHLH domains are shown in 
red/blue and the N-terminal TAT domain in 
orange.

Table 5.1: Oligonucleotides used to create the pET TAT vector.

Oligonucleotide Sequence

TAT fwd 5 * -C ATGGCGT ATGGCCGT A A A A A ACGTCGTC AGCGTCGT
CGTGGCCA-3’

TAT rev 5 ’ -T ATGGCC ACG ACG ACGCTG ACG ACGTTTTTT ACGGCC
ATACG C-3’
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(BamHI/STOP) 
Ndel 

Ncol

1 2  3 4

Figure 5.3: Cloning of TAT PhotoMyoD. A) Vector map of 
TAT PhotoMyoD. The TAT PhotoMyoD open reading frame is 
shown in red. B) Ethidium bromide stained agarose gel of TAT 
PhotoMyoD. Lane 1: marker (fragment size is displayed in 
kbps), lane 2: Nde/ and Bam HI MyoD pJGetita vector digest, 
lane 3: PstI digest of the TAT PhotoMyoD vector and lane 4: 
Bam/// digest after site directed mutagenesis (the plasmid has 
remained uncut).

Table 5.2: Primer sequences for site directed mutagenesis. The two mismatching 
nucleotides are underlined.

Oligonucleotide Sequence

TAT PhotoMyoD 
fwd
TAT PhotoMyoD 
rev

5 ’ -C AGGCTCTGCTGCGG1A ACCGGCTGCTA AC A A AG-3 ’ 

5 ’ -CTTTGTT AGC AGCCGGTT ACCGC AGC AG AGCCTG-3 ’
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5.3.2.2 Design and cloning of PhotoMyoD penetratin

PhotoMyoD penetratin was constructed by digesting the photoMyoD pJGetita vector 

(Guerrero et al. 2005a) with Pstl and BamHl followed by the assembly of the new 

C-terminal region from two synthetic oligonucleotides (Table 5.3). The correct size of 

the resulting gene was analysed by an NdeVBamHl restriction digest and DNA 

sequencing (Figure 5.4).

An alternative construct encoding for an additional A-terminal His-tag was obtained by 

subcloning photoMyoD penetratin into a pET19b vector using the Ndel and BamHl 

restriction sites, verified by restriction digest and DNA sequencing (Figure 5.5).

Table 5.3: Oligonucleotide sequences used in the construction of the penetratin insert. 

Oligonucleotide Sequence

penetratin fwd 5 ’ GGCTCTGCTGCGGGGCCGTC AG ATTA A A ATTTGGTTT
C AG A ACCGTCGT ATG A A ATGG A A A A A AT A AT A AG-3 ’ 

penetratin rev 5 ’ G ATCCTT ATT ATTTTTTCC ATTTC AT ACG ACGGTTCTG
AAACCAATTTTAATCTGACGGCCCCGCAGCAGAGCCTG 
CA-3’
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BamHl

<4000 bp

---------------------------------   1 2 3

Figure 5.4: Cloning of photoMyoD penetratin. A) Plasmid 
map of photoMyoD penetratin in a pJGetita vector. 
B) Ethidium bromide stained agarose gel o f photoMyoD 
penetratin. Lane 1: Marker (fragment size is displayed in 
kbp), lane 2: Bam////Pst/ digest of photoMyoD/pJGetita 
and lane 3: Nde//Bam/// digest of photoMyoD
penetratin/pJGetita.

Figure 5.5: Cloning of His-tagged
PhotoMyoD penetratin. A) Vector map. 
Shown in red is the His-PhotoMyoD 
penetratin open reading frame. B) Ethidium 
bromide stained agarose gel of the 
Nde//Bam/// digested plasmid. Lane 1: 
marker (fragment size is annotated in kbp) 
and lane 2: digested vector.
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5.3.3 Expression and purification of modified PhotoMyoD

The TAT PhotoMyoD gene showed no expression in 2x YT medium. Different 

incubation temperatures (37 °C and 20 °C) and cells were tested (BL21(DE3) and 

BL21(DE3)pLysS) but attempts to obtain protein were unsuccessful (Figure 5.6). This 

could be due to the mRNA instability of the transcript or degradation of the protein 

itself; subsequent work was focused on PhotoMyoD penetratin.

175 kDa

83 kDa 
62 kDa

48 kDa

32 kDa

25 kDa1 

16 kDa

9 kDa

Figure 5.6: Coomassie blue
stained SDS gel of the TAT 
PhotoMyoD test expression at 
37 °C in BL21(DE3)pLysS cells. 
Lane 1: Marker, lane 2: before 
induction and lane 3: 6 hours 
after induction. The arrow 
indicates the absence of the band 
that would correspond to the size 
of TAT PhotoMyoD.

The expression of the gene coding for PhotoMyoD penetratin in 2x YT medium was 

successful. Purification by CM cation exchange chromatography, as previously 

described (Guerrero et al. 2005a), resulted in substantial loss of protein since most of 

the desired protein was in the flow-through of the column (Figure 5.7). Therefore size 

exclusion chromatography was used instead and resulted in almost pure protein. The
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remaining impurities were removed by passing the solution through a 30,000 Da cut off 

membrane (Figure 5.8). The pure protein was then analysed by mass spectrometry. The 

obtained value (m/z = 9,153) was in agreement with the expected mass of 9,085 g mol'1 

for the protein without the initiating methionine (Figure 5.9).

175 kDa 

83 kDa 

62 kDa 

48 kDa

32 kDa

25 kDa

1 2  3 4

Figure 5.7: Coomassie blue stained 
SDS gel of the expression and 
purification of PhotoMyoD penetratin. 
Lane 1: molecular weight marker, 
lane 2: crude PhotoMyoD penetratin, 
lane 3: flow through of the CM 
column chromatography and 
lane 4: eluted protein from the CM 
column. The arrow indicates 
PhotoMyoD penetratin.
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Figure 5.8: Coomassie blue stained SDS 
gel of the expression and purification of 
PhotoMyoD penetratin. Lane 1: marker, 
lane 2: crude, lane 3: after size exclusion 
chromatography and lane 4: pure
protein. The arrow indicates PhotoMyoD 
penetratin.

9153

5000 7000 0000 11000 13000 15000

Figure 5.9: MALDI-TOF mass spectrum of 
PhotoMyoD penetratin.

Expression of the His-tagged protein resulted in the formation of inclusion bodies. The 

protein was extracted from the pellet with 6 M guanidinium hydrochloride, purified by 

Ni-sepharose chromatography and dialysed into 2 M urea containing buffer; it was then 

digested with enterokinase under the same conditions to remove the tag. The digest
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resulted in the formation of side product. Since the alternative purification by size, 

exclusion chromatography was successful, this strategy was not followed further 

(Figure 5.10).

175 kDa ,

83 kDa 

62 kDa 

48 kDa

32 kDa

25 kDa 

16 kDa

9 kDa

1

Figure 5.10: Coomassie blue stained SDS gel of 
the expression, purification and cleavage of His- 
tagged PhotoMyoD penetratin. Lane 1: marker, 
lane 2: crude, lane 3: pellet, lane 4: after 
Ni-Sepharose column and lane 5: cleaved 
protein. The arrows indicate the cleaved and 
uncleaved protein.

5.4 Development of cell permeable BH3-domain BPN

5.4.1 Design of TAT Bid

Development of the BH3-domain based BPNs is discussed in detail in Chapter 3. For 

future in vivo experiments it was decided that the addition of a cell membrane 

penetrating domain to the Bid9 i-m,+* peptide since it shows a strong difference between 

the Kd values in the two states and a similarly constrained stapled Bid peptide has 

already been applied successfully in in vivo experiments (Walensky et al. 2004). The
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11-amino acid protein transduction domain from the human immunodeficiency virus 

TAT protein was chosen since it has been proven to successfully deliver peptides and 

even biologically active proteins, up to 120 kDa into mammalian cells (Frankel et a l  

1988; Schwarze et al. 1999; Becker-Hapak et al. 2001; Joliot et al. 2004). An additional 

glycine residue was introduced to act as a spacer between the two domains.

Solid phase synthesis of the peptide repeatedly failed because of the length of the 

peptide (33 amino acids) so expression in E. coli was employed as an alternative 

strategy. Due to the small size, this peptide had to be expressed as a fusion protein and 

cleaved off subsequently with cyanogen bromide, since small peptides are prone to 

degradation inside the bacterial cell. Ketosteroid isomerase (KSI) was used as the fusion 

partner because it forms inclusion bodies inside the bacterial cell from which the desired 

protein can be easily obtained. The cleavage resulted in an additional homoserine 

lactone at the C-terminus. The mechanism of the CnBr mediated cleavage is depicted in 

Scheme 5.1.
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BrO
N

N
-B r

j
HN '0

- CN-S-CH3

+ h 2o HN

+  +h 3n

0

Scheme 5.1: Mechanism of the cyanogen bromide mediated Met-X 
cleavage.

The designed TAT Bid peptide has the following sequence (TAT is shown in red and 

Bid9 i-m'+4 in blue):

5.4.2 Cloning of TAT Bid

The unique ,4/wNI restriction site of the pET31b vector was utilised to introduce the 

DNA sequence encoding for TAT Bid by means of phosphorylating, annealing and 

ligating four overlapping oligonucleotides into the vector (Figure 5.11) (Table 5.4). The 

presence of the insert was confirmed by NdeVXhol restriction digest and DNA 

sequencing (Figure 5.12).

YGRKKRRQRRRGDIIRNIARHLACVGDCIDRSIZ Z = Homoserine
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5’

3’-

Figure 5.11: Four oligonucleotides were 
annealed to form the TAT Bid insert.

Table 5.4: Sequences of oligonucleotides that were used to construct the TAT Bid insert.

Oligonucleotide Sequence

TAT Bid A 5 ’ -T ATGGCCGT A A A A A ACGTCGCC AGCGTCGGCGTGGC
GAT ATT ATCCGT A AC ATTGCGCG-3 ’

TAT Bid B 5 ’ -CC ATCTGGCGTGCGTGGGCG ATTGC ATCG ATCGT AG
CATTATG-3’

TAT Bid C 5 ’ - A ATGCT ACG ATCG ATGC A ATCGCCC ACGC ACGCC A
G ATGGCGCGC A ATGTT ACGG AT A A-3 ’

TAT Bid D 5 ’ -T ATCGCC ACGGCC ACGCTGGCG ACGTTTTTT ACGGC
CATACAT-3’

1 2

Figure 5.12: A) Map of the pET31b TAT Bid 
vector B) Restriction digest of the pET31b TAT 
Bid vector. Lane 1: DNA ladder (fragment size is 
indicated in kilobasepairs), lane 2: Nde//Xho/ 
digest of the vector (the small 500bp fragment is 
indicated by an arrow).
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5.4.3 Expression and purification of TAT Bid KSI fusion protein

After expression in BL21(DE3)pLysS cells and 2x YT medium, the insoluble protein 

was obtained in the pellet (Figure 5.13). The pure fusion protein was cleaved with 

cyanogen bromide (Figure 5.13) and the solvent removed by evaporation. The free 

peptide was extracted from the pellet with PBS buffer. Subsequent purification by 

reverse phase HPLC yielded pure product. Analysis by MALDI-TOF mass 

spectroscopy confirmed that the peptide was of the expected mass. The addition of base 

resulted in opening of the lactone ring and the peptide was cross-linked and purified by 

HPLC (Figure 5.14).

Figure 5.13: SDS polyacrylamide gel 
of TAT Bid KSI after staining with 
Coomassie blue. Lanes are 1: crude 
TAT Bid KSI; 2: pellet; 3: after 
cyanogen bromide cleavage. The 
arrows indicate the protein before and 
after cleavage.
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2 7  m in18 m in

35 t (min) 5 40 t  (min)
4 4914 0 3 2100 100)

m/zm/z

1500 2000 2500 3000 3500 4000 4500 5000 5500 2000 3000 4000 5000 6000 7000 8000 9000

Figure 5.14: A) HPLC trace o f purified TAT Bid (Gradient: 0-100% over 60min),
B) HPLC trace o f purified cross-linked TAT Bid (Gradient: 0-60% over 60 min)
C) Mass spectrum o f purified TAT Bid (lactone form, expected molecular weight is 
4,036 g mol'1) D) Mass spectrum of cross-linked TAT Bid (homoserine form, expected 
molecular weight is 4,486 g/mol).

5.5 Conclusion

A BPN based on Bid9 i.m'+i# with an additional TAT domain to promote cell 

permeability was expressed, purified and cross-linked. It could be utilised to establish 

whether the BH3-domain based BPNs can induce apoptotic processes inside a cell upon 

an optical signal. A number of different DNA constructs have been generated, tested 

and an expression and purification strategy to obtain a modified PhotoMyoD protein 

with a C-terminal penetratin domain has been established. This is likely to facilitate 

future in vivo experiments and applications, such as demonstrating the light-activated 

induction of myogenesis by PhotoMyoD.
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Biomolecular interactions are crucial to all living processes. Interference with these 

interactions in a specific and reversible manner is therefore of great scientific and 

therapeutic interest. The work described in this thesis demonstrates the utilisation of a 

photochromic compound bound to two cysteine residues within an a-helix motif to 

control protein-protein and protein-RNA interactions. Three sets of cysteine spacings, 

i, i+4, i, i+7  and i, i+11, for which helix stabilisation is possible, were investigated. 

Isomerisation of the azobenzene moiety from the trans- to the cw-configuration was 

accomplished by irradiating the samples with 360 nm light. UV/Vis absorption 

spectroscopy was used to follow the thermal relaxation. Structural characterisation of 

cis and trans isomers of the BPNs was carried out using CD spectroscopy. As 

anticipated, either induced helicity or helix disruption was observed upon irradiation 

depending on the cysteine spacing (although in some cases the effect was only 

pronounced in the presence of TFE as a cosolvent). Furthermore, the helix-destabilised 

conformations resembled those of their uncross-linked counterparts or showed less 

helical content. This indicates that these photoswitches can be employed to activate the 

stable conformation upon a signal. In order to investigate the effect of photocontrol on 

the RNA- and protein-binding properties of the BPNs, fluorescence based assays were 

performed. Protein binding experiments with Bcl-xL and BH3-based peptides, revealed 

a difference in affinity of up to one order of magnitude for the lid and dad states. The 

interaction in the stabilised states was highly specific as determined from binding 

experiments with HDM2. The Rev-based peptides successfully disrupted the target 

interaction in the activated state by competitive inhibition, as determined from the 

disruption assays. NMR spectroscopic experiments demonstrated that Bak72-87*+7/ in the 

dark-adapted form targets the same cleft on Bcl-xL as the wild-type Bak peptide.
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Bidgi-iii'^ and PhotoMyoD were modified with a peptide transduction motif since the 

cell membrane impermeability of these compounds is a major obstacle for application of 

these photoresponsive systems in vivo. The new, potentially membrane crossing, 

peptides could serve as therapeutic agents and be employed to investigate whether these 

photoresponsive miniature proteins can actually induce apoptosis and activate 

transcription respectively. Furthermore, they could be developed into useful tools for 

cell biology. An in vitro cytochrome C release assay would also be a good initial 

experiment to prove that the BH3-derived peptides in their activated states induce 

apoptotic processes.

The Rev-based BPNs can be characterised further, it would be of interest to obtain the 

Kd values for the different states by using a gel-shift assay. The specificity for the RRE 

target could be investigated and the effect of the RNA target sequence on the 

conformation of the BPNs and the half-life of the cis-state determined. Additional 

studies to complement this work and gain a deeper understanding of the photoregulation 

of protein-protein and protein-nucleic acid binding would be beneficial. Since the trans 

to cis isomerisation obtained for this azobenzene system was never close to 100%, it 

would be interesting to test alternative strategies to increase the quantum yield of 

isomerisation, for example, by using lasers for the switching reactions. Alternatively, 

isosteric derivatives could be characterised to obtain data which would be similar to the 

expected data for the c/s-form of azobenzene cross-linked peptides. A c/s-stilbene 

version of the linker is currently being synthesised in our laboratory for this purpose. 

Lasers could also be used in overcoming a major obstacle related to these azobenzene- 

based systems by avoiding the use of harmful UV radiation and using red light instead 

in a two-photon excitation approach. Furthermore, it would be interesting to obtain a
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crystal or NMR solution structure of one of these systems to study the accurate 

conformation and binding mode of the biophotonic nanoswitches, giving new insights 

into the understanding of biomolecular interactions and to the development of other 

BPNs. The NMR structure of the Bak72-87'+77/Bcl-xL complex is therefore being solved 

at the moment. Since the CD spectrum has been demonstrated to be strongly influenced, 

at least in some cases, by the azobenzene moiety, alternative strategies such as IR or 

NMR spectroscopy could be used to determine the helical content in future studies to 

obtain more accurate results. The deviation of the reversion rates observed for UV and 

CD measurements should be studied in more detail; this could be accomplished by 

monitoring both processes simultaneously by NMR spectroscopy. Bcl-xL contains a 

deep binding pocket relative to most protein binding interfaces. It would therefore be 

useful to apply the approach described here to more challenging protein-protein 

interaction interfaces such as the interaction between CBP KIX and the kinase-inducible 

activation domain of CREB in order to underpin the general applicability of this 

strategy. Since only a fraction of biomolecular interactions rely on a-helices, a similar 

approach could be applied to control other elements of secondary structure such as 

3 10-helices. Finally, it would be interesting to extent the approach described in this work 

for protein-protein and protein-nucleic acid interactions to the photocontrol of other 

functions such as the modulation of the catalytic activity of enzymes.
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Amino acid sequence of B c 1-x l  (1-212)

M G H H H H H H H H H H S S G H I D D D D K H M S Q S N R E
L V V D F L S Y K L S Q K G Y S W S Q F S D V E E N R T E A
P E G T E S E M E T P S A I N G N P S W H L A D S P A V N G
A T G H S S S L D A R E V I P M A A V K Q A L R E A G D E F
E L R Y R R A F S D L T S Q L H I T P G T A Y Q S F E Q V V
N E L F R D G V N W G R I V A F F S F G G A L C V E S V D K
E M Q V L V S R I A A W M A T Y L N D H L E P W I Q E N G G
W D T F V E L Y G N N

Amino acid sequence of B c 1-x l  (A45-84)

M S Q S N R E L V V D F L S Y K L S Q K G Y S W S Q F S D V
E E N R T E A P E G T E S E A V K Q A L R E A G D E F E L R
Y R R A F S D L T S Q L H I T P G T A Y Q S F E Q V V N E L
F R D G V N W G R I V A F F S F G G A L C V E S V D K E M Q
V L V S R I A A W M A T Y L N D H L E P W I Q E N G G W D T
F V E L Y G N N A A A E S R K G Q E R L E H H H H H H L E H
H H H H H

Amino acid sequence of PhotoMyoD penetratin

M A D R R K A A T C R E R R R L C K V N E A F E T L K R S T
S S N P N Q R L P K V E I L R N A T R Y I E G L Q A L L R G
R Q I K I W F Q N R R M K W K K

Amino acid sequence of His-tagged PhotoMyoD penetratin

M G H H H H H P H H H S S G H I  D D D D K H M A D R R K A A  
T C R E R R R L C K V N E A F E T L K R S T S S N P N Q R L  
P K V E I L R N A T R Y  I  E G L Q A L L R G R Q I K I W F Q  
N R R M K W K K

Amino acid sequence of the TAT Bid KSI fusion protein

M H T P E H I T A V V Q R F V A A L N A G D L D G I V A L F  
A D D A T V E D P V G S E P R S G T A A I R E F Y A N S L K  
L P L A V E L T Q E V R A V A N E A A F A F T V S  F E Y Q G  
R K T V V A P I  D H F R F N G A G K V V S I R A L F G E K N  
I H A C Q M Y G R K K R R Q R R R G D I I R N I A R H L A C  
V G D C I  D R S  I M L L E H H H H H H
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Table A l: Isotope-weighted chemical shift changes (co) in 
the HSQC spectrum of Bel-xl on addition of dark-adapted 
Bak72-8 7 +U (Kneissl et al. 2008) correspond to the 
strongest change in chemical shift observed in the 
spectra).

Residue 8 (ppm)

Free Bcl-xL Bcl-xL/Bak72.87/+n

(0 G)/ ©max

3Gln 8.42 8.44 0.056 0.059

121.56 121.82

5Asn 8.66 8.70 0.131 0.140

120.92 121.55

6Arg 8.06 8.07 0.205 0.218

121.00 119.98

7Glu 7.97 7.99 0.052 0.056

117.17 117.42

8Leu 7.80 7.87 0.116 0.124

119.58 120.03

9Val 7.75 7.62 0.139 0.148

117.14 117.28

10Val 8.34 8.40 0.114 0.121

116.67 117.14

11 Asp 8.06 8.07 0.152 0.162

121.00 120.24

12Phe 8.32 8.23 0.166 0.177

119.61 120.29

13Leu 8.90 8.91 0.016 0.017

116.22 116.27

14Ser 8.51 8.55 0.051 0.054

113.62 113.74

15Tyr 8.26 8.31 0.082 0.087

124.36 124.70

17Leu 8.74 8.76 0.024 0.026

117.94 117.85

18Ser 8.39 8.43 0.041 0.043

117.15 117.12

19Gln 7.68 7.64 0.044 0.047

122.24 122.17
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Residue 5 (ppm)

Free Bcl-xL Bcl-xL/Bak72-87/+”

CO (0  /  © m a x

20Lys 7.26 7.26 0.052 0.056

115.84 116.10

21Gly 7.61 7.58 0.040 0.043

104.97 104.84

22Tyr 7.89 7.83 0.065 0.069

119.23 119.07

23Ser 8.57 8.62 0.088 0.094

114.76 114.44

24Trp 9.03 9.08 0.077 0.082

126.90 127.18

24Trp(Ne) 10.07 10.10 0.029 0.031

128.32 128.32

25Ser 8.24 8.29 0.210 0.224

111.53 110.51

26Gln 7.47 7.47 0.043 0.046

118.86 118.65

27Phe 7.34 7.21 0.196 0.210

115.91 115.14

28Ser 7.32 7.15 0.199 0.212

113.45 112.99

29Asp 8.37 8.27 0.111 0.119

122.11 122.39

30Val 7.96 7.96 0.030 0.032

118.68 118.53

31Glu 8.51 8.54 0.062 0.067

123.91 124.18

32Glu 8.44 8.46 0.103 0.110

121.56 122.07

33Asn 8.50 8.52 0.039 0.042

119.03 119.20

34Arg 8.33 8.35 0.028 0.030

121.48 121.56

35Thr 8.28 8.29 0.023 0.025

115.32 115.42

36Glu 8.40 8.41 0.021 0.022

122.52 122.61
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Residue 8 (ppm)

Free Bcl-xL Bcl-xL/Bak72-87/+”

t o t o / t D m a x

37 Ala 8.31 8.31 0.004 0.004

125.62 125.63

39Glu 8.63 8.64 0.028 0.030

120.51 120.65

40Gly 8.52 8.53 0.004 0.004

109.70 109.72

41Thr 8.25 8.21 0.043 0.045

112.51 112.40

42Glu 8.87 8.88 0.016 0.017

122.61 122.66

43Ser 8.49 8.46 0.040 0.043

114.88 114.77

44Glu 8.31 8.19 0.124 0.132

122.47 122.57

45Ala 8.22 8.18 0.068 0.073

118.21 118.51

46Val 7.55 7.50 0.073 0.078

120.28 120.53

47Lys 7.46 7.45 0.011 0.012

117.36 117.32

48Gln 8.17 8.17 0.020 0.021

115.82 115.72

49Ala 8.06 7.87 0.209 0.223

121.00 121.42

50Leu 8.51 8.48 0.052 0.056

120.04 119.81

51Arg 8.18 8.21 0.124 0.132

118.28 117.67

52Glu 7.91 8.00 0.108 0.115

115.87 116.15

53Ala 8.91 8.91 0.128 0.136

122.68 123.32

54Gly 9.19 9.23 0.252 0.269

108.04 106.79

55Asp 8.23 8.34 0.119 0.127

122.21 122.24
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Residue 8 (ppm) 0) © / C0max

Free Bcl-xL Bcl-xL/Bak72-87/+̂

56Glu 8.27 8.27 0.068 0.073

120.30 119.96

57Phe 8.65 9.07 0.660 0.704

120.73 123.27

58Glu 8.15 8.40 0.517 0.551

116.19 113.92

59Leu 7.53 7.58 0.221 0.236

116.69 117.76

60Arg 8.04 8.06 0.037 0.039

117.00 117.16

61Tyr 7.96 7.96 0.051 0.055

118.68 118.42

62Arg 7.42 7.11 0.334 0.356

119.33 119.95

63Arg 8.55 8.69 0.239 0.255

118.61 117.62

64Ala 7.80 7.79 0.034 0.036

119.83 119.68

65Phe 8.56 7.70 0.885 0.944

115.49 114.47

66Ser 8.04 8.24 0.297 0.317

117.56 116.46

67Asp 8.38 8.47 0.140 0.150

120.47 120.99

68Leu 8.06 7.88 0.216 0.231

121.00 120.43

69Thr 8.45 9.00 0.551 0.588

109.51 109.97

70Ser 7.80 7.76 0.092 0.098

116.33 115.92

71 Gin 7.92 7.75 0.177 0.189

118.67 118.42

72Leu 7.75 7.58 0.253 0.269

119.23 118.29

73His 8.26 8.22 0.064 0.068

119.14 119.38
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Residue 5 (ppm) 0) 6)/COmax

Free Bcl-xL Bcl-xL/Bak72-87,+"

74lle 8.39 8.72 0.334 0.356

121.70 122.11

79 Ala 7.91 7.84 0.077 0.082

125.13 124.92

80Tyr 8.56 8.84 0.320 0.341

119.80 120.53

81Gln 8.17 8.51 0.333 0.355

114.75 114.68

82Ser 7.63 7.38 0.401 0.427

112.35 113.91

84Glu 8.56 8.65 0.143 0.152

119.80 119.25

85Gln 7.59 7.62 0.295 0.315

114.46 115.93

86Val 7.15 7.17 0.027 0.029

118.01 117.89

87Val 7.96 7.97 0.099 0.106

118.68 119.17

88Asn 8.45 8.22 0.349 0.372

116.88 115.60

89Glu 7.37 7.36 0.053 0.057

118.26 118.00

90Leu 7.61 7.63 0.046 0.050

120.42 120.21

91Phe 7.03 6.86 0.938 1.000

112.65 108.03

92Arg 7.24 7.31 0.115 0.122

123.35 122.90

93Asp 8.44 8.71 0.460 0.491

118.13 116.27

94Gly 7.58 7.22 0.412 0.440

108.25 107.25

95Val 8.27 8.27 0.003 0.003

120.30 120.31

96Asn 6.39 6.25 0.250 0.267

115.49 114.45

179



Appendix

Residue 8 (ppm) CO CO /  c o m a x

Free Bcl-xL Bcl-xL/Bak72-87,+™

97Trp 8.56 8.62 0.383 0.409

118.03 116.13

97Trp(Ns) 10.27 10.37 0.095 0.102

128.16 128.30

98Gly 8.61 8.64 0.090 0.096

105.98 106.39

99Arg 8.23 8.12 0.132 0.141

121.11 121.49

10Olle 7.61 7.81 0.202 0.215

120.42 120.68

101Val 8.38 8.35 0.060 0.064

120.47 120.73

102Ala 7.71 7.72 0.151 0.161

121.13 120.38

103Phe 8.11 8.23 0.145 0.154

119.09 119.53

104Phe 8.06 8.06 0.192 0.204

121.00 120.04

105Ser 8.51 8.41 0.283 0.301

114.16 112.84

106Phe 9.14 8.67 0.482 0.514

123.93 123.48

107Gly 8.06 8.05 0.029 0.031

105.86 106.01

108Gly 8.90 8.91 0.121 0.129

107.14 106.54

109Ala 8.34 8.20 0.157 0.167

124.30 123.94

110Leu 8.31 8.38 0.133 0.142

118.68 118.12

111Cys 8.22 8.22 0.027 0.029

118.81 118.68

112Val 8.22 8.10 0.130 0.139

118.18 118.43

113Glu 8.18 8.25 0.122 0.130

118.82 118.32
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Residue 8 (ppm) CO G)/C0max

Free Bcl-xL Bcl-xL/Bak72.87+n

114Ser 7.77 7.84 0.077 0.082

113.28 113.24

115Val 7.42 7.25 0.167 0.178

120.57 120.53

116Asp 8.39 8.36 0.156 0.166

121.70 122.46

117Lys 7.69 7.84 0.175 0.186

115.57 115.17

118GIU 7.96 7.85 0.180 0.192

113.64 112.92

119Met 8.53 8.68 0.178 0.190

118.71 118.25

120Gln 8.80 8.92 0.138 0.147

119.09 118.79

121Val 7.96 7.94 0.200 0.213

116.68 117.67

122Leu 7.89 8.00 0.303 0.324

116.86 115.46

123Val 7.61 7.45 0.257 0.275

120.42 119.41

124Ser 8.40 8.57 0.212 0.226

110.51 109.91

125Arg 6.69 6.54 0.328 0.350

122.80 121.34

1261 le 8.12 8.12 0.091 0.098

118.12 117.66

127Ala 7.75 7.69 0.080 0.085

119.23 118.98

128Ala 7.61 7.34 0.281 0.300

120.42 120.16

129Trp 9.07 8.92 0.143 0.152

121.08 121.06

129Trp(Ne) 10.12 9.90 0.332 0.354

126.02 127.27

130M et 9.01 9.04 0.093 0.099

116.88 117.32
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Residue 8 (ppm) 0) 0 / (Omax

Free Bcl-xL Bcl-xL/Bak72-87/+”

131Ala 8.27 8.28 0.031 0.034

120.30 120.16

132Thr 8.63 8.74 0.377 0.402

116.37 114.56

133Tyr 8.50 8.90 0.410 0.437

123.38 122.96

134Leu 8.83 8.71 0.124 0.133

118.92 118.71

135Asn 8.43 8.48 0.221 0.236

116.96 115.88

136Asp 8.56 8.55 0.048 0.051

115.27 115.03

137His 8.12 7.92 0.316 0.337

111.82 113.04

138Leu 7.29 7.22 0.106 0.113

116.75 117.16

139Glu 8.72 8.68 0.056 0.060

121.36 121.18

141Trp 7.19 7.12 0.089 0.095

117.69 117.40

141Trp(Ne) 9.52 9.54 0.040 0.043

128.84 129.00

142lle 8.52 8.56 0.044 0.047

122.08 122.18

144Glu 7.62 7.54 0.131 0.140

118.82 118.29

145Asn 7.20 7.15 0.082 0.087

116.36 116.71

146Gly 7.45 7.46 0.020 0.021

104.61 104.65

147Gly 8.58 8.58 0.009 0.010

108.16 108.21

148Trp 8.71 8.70 0.016 0.017

117.95 118.01

148Trp(Ne) 10.60 10.61 0.010 0.011

128.67 128.63
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Appendix

Residue 5 (ppm) CO G )/ COmax

Free Bcl-xL Bcl-xL/Bak72-87

149Asp 8.90 8.87 0.043 0.046

117.59 117.41

150Thr 7.62 7.58 0.055 0.059

116.58 116.43

151Phe 6.63 6.60 0.055 0.059

121.96 121.76

152Val 7.89 7.78 0.162 0.173

117.03 116.40

153GIU 7.51 7.43 0.098 0.105

119.68 119.38

154Leu 7.68 7.65 0.180 0.192

116.88 117.77

155Tyr 8.17 8.20 0.103 0.110

114.75 115.25

156Gly 8.13 8.28 0.183 0.195

108.04 108.53

157Asn 8.45 8.58 0.180 0.192

117.99 117.36

158Asn 8.45 8.61 0.160 0.171

118.68 118.73

159Ala 8.22 8.15 0.068 0.073

122.96 122.97

160Ala 8.16 8.27 0.118 0.126

121.24 121.09

161Ala 8.05 8.00 0.053 0.057

121.93 121.84

162Glu 8.33 8.31 0.032 0.035

118.02 118.12

163Ser 8.12 8.14 0.031 0.033

114.73 114.85

164Arg 8.05 8.04 0.046 0.049

121.37 121.59

165Lys 8.11 8.14 0.053 0.057

120.51 120.71

166Gly 8.44 8.45 0.021 0.022

108.85 108.92
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Appendix

Residue 5 (ppm) CO CO /  © m a x

Free Bcl-xL Bcl-xL/Bak72-87/+f*

167Gln 8.14 8.14 0.010 0.010

119.14 119.19

168Glu 8.53 8.55 0.030 0.032

121.03 121.15

169Arg 8.28 8.29 0.053 0.056

120.56 120.82

170Leu 8.19 8.10 0.126 0.134

122.27 122.67
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