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Abstract

Point distributions are used to sample surfaces for a wide variety of applications within the 
fields of graphics and computational geometry, such as point-based graphics, remeshing 
and area/volume measurement. The quality of such point distributions is important, and 
quality criteria are often application dependent. Common quality criteria include visual 
appearance, an even distribution whilst avoiding aliasing and other artifacts, and minimi­
sation of the number of points required to accurately sample a surface. Previous work 
suggests that discrepancy measures the uniformity of a point distribution and hence a 
point distribution of minimal discrepancy is expected to be of high quality. We investigate 
discrepancy as a measure of sampling quality, and present a novel approach for generating 
low-discrepancy point distributions on parameterised surfaces.

Our approach uses the idea of converting the 2D sampling problem into a ID problem 
by adaptively mapping a space-filling curve onto the surface. A ID sequence is then 
generated and used to sample the surface along the curve. The sampling process takes into 
account the parametric mapping, employing a corrective approach similar to histogram 
equalisation, to ensure that it gives a 2D low-discrepancy point distribution on the surface. 
The local sampling density can be controlled by a user-defined density function, e.g. to 
preserve local features, or to achieve desired data reduction rates.

Experiments show that our approach efficiently generates low-discrepancy distributions 
on arbitrary parametric surfaces, demonstrating nearly as good results as popular low- 
discrepancy sampling methods designed for particular surfaces like planes and spheres. 
We develop a generalised notion of the standard discrepancy measure, which considers 
a broader set of sample shapes used to compute the discrepancy. In this more thorough 
testing, our sampling approach produces results superior to popular distributions. We 
also demonstrate that the point distributions produced by our approach closely adhere to 
the blue noise criterion, compared to the popular low-discrepancy methods tested, which 
show high levels of structure, undesirable for visual representation.

Furthermore, we present novel sampling algorithms to generate low-discrepancy distri-
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butions on triangle meshes. To sample the mesh, it is cut into a disc topology, and a 
parameterisation is generated. Our sampling algorithm can then be used to sample the 
parameterised mesh, using robust methods for computing discrete differential properties 
of the surface. After these pre-processing steps, the sampling density can be adjusted in 
real-time. Experiments also show that our sampling approach can accurately resample 
existing meshes with low discrepancy, demonstrating error rates when reducing the mesh 
complexity as good as the best results in the literature.

We present three applications of our mesh sampling algorithm. We first describe a point- 
based graphics sampling approach, which includes a global hole-filling algorithm. We in­
vestigate the coverage of sample discs for this approach, demonstrating results superior to 
random sampling and a popular low-discrepancy method. Moreover, we develop levels of 
detail and view dependent rendering approaches, providing very fine-grained density con­
trol with distance and angle, and silhouette enhancement. We further discuss a triangle- 
based remeshing technique, producing high quality, topologically unaltered meshes. Fi­
nally, we describe a complete framework for sampling and painting engineering prototype 
models. This approach provides density control according to surface texture, and gives 
full dithering control of the point sample distribution. Results exhibit high quality point 
distributions for painting that are invariant to surface orientation or complexity.

The main contributions of this thesis are novel algorithms to generate high-quality density- 
controlled point distributions on parametric surfaces and triangular meshes. Qualitative 
assessment and discrepancy measures and blue noise criteria show their high sampling 
quality in general. We introduce generalised discrepancy measures which indicate that 
the sampling quality of our approach is superior to other low-discrepancy sampling tech­
niques. Moreover, we present novel approaches towards remeshing, point-based rendering 
and robotic painting of prototypes by adapting our sampling algorithms and demonstrate 
the overall good quality of the results for these specific applications.
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Chapter 1

Introduction

Generating a high quality point sampling on a manifold, such as a parametric or polygonal 
mesh, is an important requirement in many areas of computational geometry and graphics. 
The sampling should be appropriate for its application, such as for point-based rendering, 
finite element methods or remeshing. For example, we may have a polygonal mesh that 
we wish to render using a point-based approach. We can represent large flat areas with 
relatively few polygons in a mesh, and thus few points. However, we need a relatively 
dense sampling, even of flat areas, if we wish to render them using a point-based approach, 
and thus we must resample the surface to produce a useful set of points.

Whilst the application affects the type of point sampling required, more general quality 
criteria also exist for surface sampling, which are desirable for a wide range of appli­
cations. A high quality sampling of points should allow a surface to be sampled and 
represented to a given accuracy with as few points as possible. Control of the density is 
also important, and allows us to use points more efficiently, such as sampling more points 
in areas with greater detail or higher curvature. A sampling of points should also ideally 
not be structured in such a fashion that the sampling itself detracts from what is being 
sampled; a grid sampling, for example, has a clear, regular structure.

Producing high-quality distributions on arbitrary surfaces is, however, a complicated and 
generally unsolved problem. In this work, we describe algorithms to produce high-quality 
point samplings on parametric surfaces and polygonal meshes. Our approach allows 
density-controlled, evenly distributed, point samplings to be generated quickly. We also 
investigate and further develop numerical measures in order to assess the quality of such 
point samplings.

In Section 1.1 we begin with an overview of surface sampling, focusing on the problems 
involved and how they have been addressed. We then investigate sampling quality in 
Section 1.1.1, followed by an overview of various applications in Section 1.1.2, including 
those developed in this work. In Section 1.2 we describe our approach to surface sampling, 
followed by the contributions of our work in Section 1.3. In Section 1.4 we give an
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overview of the remainder of this thesis.

1.1 Sampling Two-dimensional Manifolds

Sampling is an essential process used in many areas of mathematics and engineering, and 
is intrinsically necessary in computer science. An example of its importance in computer 
science is the sampling of an unknown function to determine some of its properties in 
order to discretely represent it for further processing, such as visualisation. Sampling is 
a statistical method that is used to determine certain properties of a function in a domain. 
Given set A, choose a set of points B  C A to represent A. The way in which points B  
are distributed within A  has implications on the sampling quality, and thus how well A 
is represented by B, or which properties of A  may be estimated by B. There are many 
methods to sample a set A, for example, selecting sample points according to a uniform 
random probability distribution, or points on a regular grid, the output being a finite dis­
crete point set. In this work, we consider the generation of point sets on manifolds. An 
s-dimensional manifold is a set A with a topology T, such that for each x  e  A, there is 
an open neighbourhood K  e T  which is homeomoiphic to R5: locally, a manifold looks 
like Rs. In this work, we focus on Riemannian two-manifolds, embedded in R3 with a 
Euclidean metric, as these cover a large class of surfaces used in computational geometry, 
visualisation and graphics. If the set is parameterised via a function, or more generally, 
an atlas provided for the manifold, sampling can be performed in the parameter domain. 
The properties of the parameterisation, however, must be considered in order to achieve 
suitable sampling qualities.

Various errors can be introduced when sampling a function. A measurement error may 
occur when the value at the sample location varies from the actual value of the function at 
that location. A discretisation, or sampling, error may occur if a function with a contin­
uous domain (e.g. an s-dimensional manifold with s > 0) is sampled, and therefore not 
all values can be sampled. We address this discretisation error in this work. Aliasing is a 
particular effect of this sampling error, and can occur if the sampling density is not high 
enough (see Section 1.1.1). The distribution may be controlled by a density function, for 
example, sampling in places of high function variance. Whilst sampling has many applica­
tions in computer science, we are mainly concerned with surface sampling for point based 
graphics [103, 104, 106], remeshing [7, 119] and the painting of prototype models [83]. 
Other related applications that we only briefly discuss include improvement of render­
ing quality in computer graphics [32, 63], providing efficient sampling for probabilistic 
area/volume measurement techniques [36,76], and many others (see Section 1.1.2).
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The main concept of sampling theory is that of discretisation; a continuous signal or func­
tion must be sampled and represented in a discrete domain. Thus, an obvious result of 
this is that information is lost. The question is whether the original, continuous signal can 
be reconstructed from the sampling, or rather, how much of it. Significant work in this 
area was done by Nyquist [94] and Shannon [111], which led to the following thorem: 
to avoid information loss when sampling, i.e. for a signal to properly be reconstructed, 
the sampling rate (or density) must be twice that of the highest frequency in the data. If 
this sampling rate is not achieved, the resulting reconstruction will not contain all of the 
original data, and thus may be aliased. In computer graphics, the same problem exists. 
However, in this field, reconstruction of the continuous function is usually not important; 
the onus is that the discrete output looks smooth (or continuous) to the viewer. A com­
mon solution to this problem is to perform some variation of supersampling (taking more 
samples), then averaging (possibly weighted by a function such as a Gaussian) the values 
of the samples.

The quality of the output produced from the discretisation of a function is largely de­
pendent on the quality of the sampling. Whilst quality is something that we investigate 
throughout this work, we define a high quality sampling as a uniformly distributed set 
of points that are of low-discrepancy, are equally distributed, and have minimal visual 
structure. High quality sampling techniques are aimed at improving the discretisation re­
sults; fewer samples are required, providing a faster rate of error reduction, and can have 
a predictably bounded error. One measure that addresses this quality of sampling is dis­
crepancy, which essentially measures the equidistribution (or uniformity) [92] of a sample 
distribution. Zaremba [132] and Niederreiter [92] demonstrate numerous standard meth­
ods to measure the discrepancy of a set of samples. However, conceptually, discrepancy 
can be described as the deviation from a regular, rectangular sampling grid [92]; a low dis­
crepancy indicates a small deviation from such a grid. The property of low-discrepancy 
is generally advantageous [29], and achieving this without using a regular grid is ideal, 
in order to avoid aliasing problems [87]. Aliasing occurs when a continuous function is 
not sampled densely enough, and is very apparent with evenly-spaced samples because it 
produces a very obvious, regular, error. The number of samples required for a grid sam­
pling also scales poorly as the number of dimensions of the sample domain increases [92]; 
for an s-dimensional cube, there must be N s samples to achieve the same discretisation, 
where N  is the number of samples required to discretise the unit interval. Uniform ran­
dom sampling on the other hand does not suffer from aliasing problems, and the number of 
samples required does not increase exponentially as the number of dimensions increases. 
However, there is no guarantee of an even distribution (implying a relatively constant dis­
tance between neighbouring samples). Whilst low-discrepancy sampling methods do not
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suffer from the exponential growth rate associated with grid-sampling, it has been shown 
that in very high dimensional cases, random sampling actually produces better results [92].

Various different methods have been developed for the generation of low-discrepancy 
samples for use in Monte Carlo integration, including Hammersley [54], Halton [52], 
Sobol [116] and Niederreiter [91] sequences; the later two are generally considered the 
leading techniques in this particular field. It has been shown that using low-discrepancy 
sequences (quasi Monte Carlo [105]), numerical integral computations converge to a so­
lution much faster than with random distributions [126]. In fact, it is accepted that as the 
discrepancy of a set drops, so does the error of an integral evaluation of a function [29]. 
Discrepancy bounds have been determined for many distributions [92], and practically, 
can be approximated using numerical methods [38]. Whilst much of the original interest 
is related to very high dimensional integral problems, other fields have seen the benefit 
of low-discrepancy sampling. For example, Shirley [115] used discrepancy as a sam­
pling quality measure in computer graphics, and investigated a number of methods to 
produce such a sampling, also considering various approaches to measuring the discrep­
ancy discussed by Zaremba [132]. Other distributions which have commonly been used 
in computer graphics include jittered sampling, dart throwing, V-rooks sampling, and 
Poisson disc sampling among others, all of which are discussed by Shirley [115]. How­
ever, most work focuses on planar distributions, and does not consider the discrepancy of 
surface sampling. Producing high-quality low-discrepancy distributions on arbitrary sur­
faces, whilst maintaining good visual quality and density control is a complex problem, 
and has not been solved in the literature. Thus, in our work, we develop an approach to 
solve this problem.

The problem of low-discrepancy sampling of an arbitrary manifold is that inevitably, it 
either must be performed in a space it has been embedded in (typically Kd with d > s) or 
in a subset of Rs as the domain of a parameterisation R5 [43]. For example, a 2D surface 
embedded in R3 may be parameterised over a subset P  of the unit square in R2 via some 
function /  : P  c  [0, l]2 —> R3. P  is defined as a subset of [0, l]2 for normalisation. 
Various techniques consider manifold sampling in the embedding space [7, 106], though 
it can be a very computationally expensive problem (especially for complex manifolds or 
dimensions greater than R3), and the results supporting the quality of the final sampling 
are often weak. Thus, as mentioned, we parameterise the two-manifold and sample in the 
parameter domain, P, simplifying the problem. However, if we sample [0, l]2 with an 
equidistributed set of samples Sp, and use the parametrisation f(S p) to map these samples 
to the original manifold, the result is a set of samples Sm of the two-manifold which does 
not exhibit the same equidistribution in general. We refer to this as parametric distortion, 
as areas of the parameter domain are not mapped to equal-sized areas on the manifold, and
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angles may not be maintained. This problem is common for general surfaces, and finding 
a mapping that preserves both areas and angles is very difficult. A good example is that 
of cartography; to view a planar version of the Earth on a map, it must be parameterised, 
and thus stretched irregularly in some manner (a spherical object gets distorted to varying 
degrees depending on the parameterisation method chosen) [43]. Thus, choice of param- 
terisation is important, generally falling into two categories: equiareal (area preserving), 
or conformal (angle preserving) [43]. That is, locally, patches only maintain their area, or 
only their angles, the process of which is investigated in greater detail in Section 6.1.1.

1.1.1 Low-discrepancy Sampling

The discrepancy of a distribution can be investigated numerically, and also with regard 
to its theoretical error bounds for the approximate evaluation of multi-variate integrals. 
We now introduce the concept of numerical discrepancy, which is investigated in detail 
in Section 2.1.1. The star discrepancy [53] of a point set in the unit square [0, l]2, can be 
defined as the supremum, over all rectangles with one comer at the origin, of the error in 
estimating the area of the rectangle as the ratio of the points inside it to the total number of 
points in the unit square. Computing the discrepancy in this way demonstrates how well 
a sampling is equidistributed with respect to axis-aligned rectangles, and it demonstrates 
how quickly this error drops with increasing number of sample points.

An important consideration is that a single sampling method may not be the best solu­
tion for all problems, and that a distribution that is of low discrepancy does not guarantee 
its practicality for a particular application. For example, the Niederreiter sequence gen­
erally displays the fastest reduction in discrepancy as the sampling density is increased 
when using axis-aligned rectangular sampling areas for the discrepancy measure. The 
Niederreiter sequence (and others) use a construction method called (t,m, s)-nets [91], 
which produce axis-aligned lattice distributions (see Section 2.1.2). As a result, using 
different sample shapes when measuring the discrepancy produces less optimal results 
(see Section 5.1.3). This is very relevant, for example, when performing anti-aliasing on 
an image [39], as aliased lines are likely to be not axis-aligned. Another example is that 
of distributions produced by relaxation, which do not generally perform as well as other 
sampling methods in numerical discrepancy experiments [115], but are useful for the gen­
eration of regular, equilateral, triangle meshes [19] (which can simplify computational 
geometry problems and reduce the likelihood of numerical errors).

If the discrepancy for a spread of sample densities is calculated and plotted, the gradient 
can be used to assess how well the discrepancy scales with sample density. However,
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discrepancy is not the only measure that can be used to assess sample distributions. Blue 
noise is categorised by a noisy spectrum lacking any concentrated spikes, with a defi­
ciency of low-frequency energy [130], and was first formally applied in a graphics context 
in [86]. As described in [120], the advantages of blue noise in the context of dithering are 
that it does not clash with the image by adding its own structure, or degrade it by being 
too unstructured. Whether or not a distribution fulfils the Blue-noise criterion can be de­
cided by estimating and plotting the power spectrum of the distribution. The method of 
approximation using Bartlett’s method [10] is detailed in [120]. Blue noise has a specific 
power spectrum. Therefore, if a distribution displays a spectrum which correlates well 
with this known behaviour, it is said to fulfil the Blue-noise criterion. Blue noise and its 
measurement are discussed in more detail in Section 5.3.

A common testing method for the assessment of resampling (in particular for downsam­
pling) techniques, commonly used in the field of remeshing, is the Hausdorff distance [28] 
(or some simplified version of it). The Hausdorff distance is used to measure the approx­
imation error between a surface and a resampling of the same surface. This error may 
be measured in a variety of ways, although a popular method is to align the objects, lo­
cally sample patches with a scan-line or random distribution, then calculate the Hausdorff 
distance

dn(Si,S2) =  max(min(pi,p2)) 0-1)
P i€ S i  P2ES2

where Si is a surface, and S2 an approximation of Si. The symmetric Hausdorff distance 
is then defined as ds(Si, S2) = max(dH(Si, S2), dH(S2, Si)). Either distance, dH(Si, S2) 
or ds(Si, S2), may be used to quantify how similar two models are. Also, the measure can 
be used as a criterion for mesh decimation: to remove a vertex and hence simplify a model, 
the Hausdorff distance is calculated between the original surface and the surface with one 
vertex missing for each vertex that makes up the surface. The vertex that results in the 
smallest increase in distance is chosen (being the least significant), and removed from the 
mesh. The Hausdorff distance is conceptually simple, and in Section 8.3, we discuss work 
investigating a more significant assessment of surfaces, taking local differential properties 
such as curvature variance into account.

1.1.2 Applications

There are many practical applications of low-discrepancy sampling methods in a variety 
of fields. In this section, we briefly look at two popular uses of existing methods, includ­
ing measurement (area and volume computation) and rendering (radiosity, ray tracing and 
texture filtering). We then investigate the problem of surface sampling and representation



1.1 Sampling Two-dimensional Manifolds 1

(mesh generation, point-based graphics and prototype painting), looking at the applica­
tions developed using our algorithms (see Chapter 7).

Monte Carlo methods are a fast approach for the discrete evaluation of multivariate in­
tegrals using random sampling. As already discussed, quasi Monte Carlo methods are a 
deterministic alternative to random sampling, and have been shown to reduce the number 
of samples needed to converge upon a solution within a prescribed error bound, and main­
tain a consistently higher level of confidence in the evaluation [29] where high confidence 
implies low variation in the convergence quality of the function being evaluated. Apply­
ing the quasi Monte Carlo method to measurement of the area and volume of objects has 
been investigated in [75,76]. Results show that fewer points are required to measure these 
properties compared to using a random sampling.

In applications such as radiosity [63] and ray-tracing [32], important techniques in photo­
realistic rendering, low-discrepancy sampling helps in numerous ways. Distributed ray- 
tracing [32], for example, calculates the light intensity at a sub-pixel level and computes 
the average to calculate the overall intensity for a pixel. If the sampling rate is not high 
enough to capture the multivariable signal, then, according to the Nyquist-Shannon sam­
pling theorem, data will be lost, resulting in artifacts such as Moire effects and aliasing 
in the output. As explained in Section 1.1.1, the non-gridded patterns of low-discrepancy 
samples reduces the aliasing effect, although it also results in an increase in noise [32], 
and fewer samples are required when compared to a random distribution.

A further application of low-discrepancy distributions is surface sampling. Resampling 
is a technique used for downsampling (or decimation) [27], upsampling (generally us­
ing higher-order approximations), and redistribution of vertices on a model (which can 
be useful to convert it to another surface representation, as well as a primary focus of 
remeshing). Using low-discrepancy distributions to sample surfaces provides the same 
advantages as in the rendering applications described above; equidistribution is optimal, 
yielding a good approximation of the surface function, aliasing of the model is reduced, 
yet no grid-like patterns are present and no sampling artifacts are introduced (such as obvi­
ous strips of almost equilateral triangles on a resampled mesh). However, the field has not 
been particularly well investigated (see Section 3). Thus, in Chapter 7 a number of practi­
cal questions are investigated and addressed. Does low-discrepancy sampling accurately 
sample the features of the existing model, and, is the resulting low-discrepancy sampling 
a good method for then rendering the model? Also, can two distributions with a compara­
bly low discrepancy produce largely differing output when rendered? An example of use 
of low-discrepancy distributions for surface sampling is given by Rivora et al [106], who 
investigate using bundles of lines with a low-discrepancy distribution to resample meshes,
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in a similar way to sampling methods used for surface area computation [75].

In many applications of surface representation, it is not clear exactly what qualities as a 
good distribution. To complicate things, a certain distribution may sample geometry well, 
but may not prove particularly good for rendering. When sampling an existing manifold, 
during the discretisation or resampling stage, a distribution that is best at capturing the 
highest amount of information is generally desirable, whilst for rendering, a sampling 
that will give a more regular, and thus smoother output is often favoured. Two popular 
discrete surface representation methods, meshes and points, both rely on high-quality dis­
tributions for a visually appealing output and efficient use of samples. However, their 
requirements can be quite different. For example, in triangle meshing, one perceived ad­
vantageous quality is to have equilateral triangles [19], implying a degree of grid-like 
uniformity. The generally accepted reason for this is that computational geometry prob­
lems (such as containment and boundary computation) are less robust when performed on 
a set of thin or degenerate triangles. In point-based graphics, the topological structure of 
the mesh is not present, and thus such problems do not arise. However, other problems 
exist, such as coverage; because points are not connected to their neighbours, a ‘water­
tight’ representation of the surface does not exist in object-space. Pfister et al. suggest that 
points should be extended to give a disc representation [98], forming a hole-free rendering 
in image-space. Thus, equidistribution is often a desired quality for point-based rendering 
(equidistribution and coverage are investigated in detail in Section 7.1.1). It is clear that 
there is not a single ‘best’ solution to all sampling problems.

1.2 Our Sampling Approach

We now introduce the basic idea of our point sampling approach and the methods we use 
to test it. We seek to generate an equidistributed set of points with low discrepancy on 
manifold surfaces. Furthermore, we wish to control the sampling density, e.g. sample 
according to local differential properties such as surface curvature. The generated point 
distributions should be useful in a variety of applications, particularly for point-based 
graphics, remeshing, and prototype painting.

Our approach generates low-discrepancy point distributions on arbitrary surfaces by dis­
tributing points along a space-filling curve mapped onto the manifold. Given a parame­
terised two-manifold (referred to here as a surface), we map a space-filling curve from the 
parameter domain onto the manifold and distribute points along this curve, such that they 
give a density controlled low-discrepancy distribution on the manifold. By generating the 
space-filling curve, the problem of distributing points in 2D is reduced to sampling a curve
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appropriately in the parameter domain. Sample points are placed along the space-filling 
curve using an idea similar to histogram equalisation—if we interpret a histogram as a 
frequency function of the intensities of an image, histogram equalisation is a process by 
which a mapping is found between the original distribution of intensities, and a uniform 
distribution of intensities by spreading the samples evenly [59]. Adaptive generation of 
the space-filling curve allows us to handle parametric distortions where, for example, a 
small area in the parameter domain is mapped to a large area on the surface. The space­
filling curve not only converts the 2D problem to a ID problem, but also provides the 
additional benefit of very good spatial localisation of the points, although this is largely 
dependent on the curve used (see Section 5.4). Localisation, or spatial coherence, means 
that points close in Euclidean space are generally close along the curve, which is ad­
vantageous for problems which require, for example, route planning through a series of 
points [99] (see Section 7.3).

The primary method used in our work for evaluating the quality of sampling is the numer­
ical discrepancy measure. In Section 1.1.1, we introduced the star discrepancy measure 
and how we expand our experiments to include various sample shapes. We use vari­
ous sample shapes to give a better indication of the sampling quality of non-rectangular, 
axis-aligned, subsets—especially relevant as we investigate the sampling of meshes (see 
Section 6), and thus we are interested in the quality of a subset of sample points within, 
say, a triangle of the mesh.

Thus, when measuring the discrepancy of a sample distribution, as discussed in detail in 
Section 2.1.1, we also use non-axis aligned subset shapes, and measure the discrepancy of 
surface distributions. When measuring the numerical discrepancy with axis aligned rect­
angles, our approach produces comparable results to techniques developed specifically to 
have low discrepancy when measured in this way in a [0, l]n domain. For non-axis aligned 
shapes, well known low-discrepancy constructions demonstrate worse results, whereas 
our approach maintains almost exactly the same discrepancy for every shape subset and 
surface tested. Non-axis aligned shapes include semi-circles and triangles, and surfaces 
include a parametric sphere and arbitrary triangle meshes.

We also investigate the fulfilment of the blue noise criterion by analysing the radially 
averaged power spectrum of the point sampling. This measure allows us to investigate not 
only the uniformity and equidistribution of the points, but also the structural regularity. 
By fulfilling the blue noise criterion, we can ensure that undesirable structure, highly 
noticeable by the human visual system [120], is not being added by our point sampling.

In order to see how well this approach performs for mesh resampling, the Hausdorff dis­
tance is used to assess the accuracy of remeshed surfaces constructed from points sampled
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using our algorithm (see Section 6.2.2). Also, whilst assessment of the results is highly 
subjective, the output surfaces for the applications of point based rendering and remesh­
ing are also visualised (see Sections 7.1, 7.2), as this is still important for use in render­
ing. Finally, we investigate our sampling approach for the problem of prototype painting 
(see Section 7.3) by analysing the painted output. All of these results provide strong 
evidence that our novel approach is a fast and effective way to produce equidistdbuted 
low-discrepancy distributions on arbitrary manifolds, that are highly flexible for use in 
a variety of applications, and can, in certain environments, provide unmatched real-time 
performance.

1.3 Contribution

The novel contributions of this work are as follows:

• We demonstrate algorithms for density-controlled sampling using low-discrepancy 
points on parameterised surfaces, based on a novel adaptive space-filling curve sam­
pling approach and reparameterisation.

• We provide an analysis of solutions to the problem of low-discrepancy sampling of 
manifolds, and the methods used to approach the problem. The analysis includes a 
qualitative assessment of discrepancy and blue noise, space-filling curve clustering 
and localisation, the effect of ID deterministic and probabilistic sampling sequences 
on the output, and the use of different space-filling curves. We also demonstrate 
an expanded set of numerical measures for the star discrepancy, highlighting the 
limitations of testing using only the standard measure.

• We describe algorithms that build upon our space-filling curve sampling approach 
to allow for high-quality low-discrepancy sampling of triangle meshes. We de­
scribe methods to compute the discrepancy of these point distributions, and demon­
strate high quality results in line with the results for the parameterised surface 
sampling. We also compute an approximation error measurement for decimated 
meshes, showing that those produced using our approach demonstrate errors as 
small as those produced by the best methods in the literature.

• We demonstrate three applications built from our mesh sampling approach. Firstly, 
we describe a point-based graphics sampling application, with hole-filling improve­
ments, real-time level of detail, and view-dependent rendering control. We then in­
troduce a high-quality remeshing algorithm. Finally, we describe a novel framework
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for sampling and painting engineering prototypes, based on collaborative work, in­
cluding texture sampling and dithering control.

1.4 Overview

The structure of the rest of this thesis is as follows. Chapter 2 looks at related work on low- 
discrepancy sampling, space-filling curves, and differential geometry. Chapter 3 reviews 
the literature on point-based graphics, remeshing, measurement and painting. Chapter 4 
introduces the main algorithms for our sampling method, including space-filling curve 
generation and point sequence generation. Chapter 5 evaluates our approach, comparing 
it to existing approaches, looking at discrepancy, the blue noise criterion, and the clus­
tering properties of various space-filling curves. Chapter 6 describes our mesh-sampling 
algorithms and evaluates the output, including discrepancy and an approximation error 
measure. In Chapter 7, applications of the mesh-based sampling approach are introduced 
and evaluated, covering point-based graphics, remeshing and prototype painting. Finally, 
Chapter 8 summarises the results and contributions, and looks at the future work arising 
from this research.
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Chapter 2

Sampling and Related Mathematical 
Tools

This chapter explains the important mathematical concepts used in this thesis. First 
we consider sampling and discrepancy, and discuss how the latter can be defined and 
measured. The low-discrepancy distributions applied in this thesis are then defined and 
their generation techniques are briefly discussed. In Section 2.2, we define the concept 
of space-filling curves, and investigate various particular curves and their construction 
methods. Space-filling curves are utilised in our approach for the generation of low- 
discrepancy sequences, as introduced in Section 1.2. We then explain the differential 
geometry concepts that are applied in this work to calculate surface properties such as cur­
vature and area, allowing for density-controlled sampling. We then discuss the discrete 
differential geometry approximations used for computing surface properties of discrete 
mesh surfaces.

2.1 Low-discrepancy Sampling

This Section introduces and discusses the concept of discrepancy, along with its intended 
computational applications. A uniform distribution is one which, in the limit, results in 
a uniform probability distribution; i.e. that there is an equal likelihood for a single point 
being at any position. However, uniformity therefore only refers to the probability of each 
point individually, and hence, a uniform, random, point distribution is not correlated. 
Low-discrepancy sequences are correlated, and the probability of a point being at some 
position is dependent on its position in the sequence. This correlation means that the qual­
ity of a whole point set is considered, rather than a single, independent point, and this re­
sults in a more even coverage of a domain. This correlated coverage property is measured 
by discrepancy, which allows us to quantitatively assess how evenly distributed a sam­
pling is. Sequences with low discrepancy are desirable for this reason. In this section, we
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focus on discrepancy and low-discrepancy distributions in detail, including the principal 
reason for their development and how they can be constructed. We are interested primar­
ily in 2D distributions, and how the discrepancy of these distributions can be measured. 
The low-discrepancy methods that we consider fall into three main categories: proba­
bilistic methods, such as jittered sampling (Section 2.1.2), maximally-avoiding methods, 
such as the Halton sequence (see Section 2.1.2), and lattice-based approaches, such as the 
Niederreiter sequence (see Section 2.1.2).

2.1.1 Discrepancy

Discrepancy is a concept that became very important when it was demonstrated that as 
the discrepancy of a sequence decreased, so did the approximation error of a Monte 
Carlo evaluation of a multivariate integral [29]. Discrepancy is an important measure 
of the quality of a sequence for such methods, but has been employed in many different 
fields, such as computer graphics [115] and surface representation [106]. Discrepancy 
was founded on this relationship with Monte Carlo error bounds, thus we introduce it in 
this classical context. In this section, we define the integral of a simple continuous func­
tion, show two different ways that it can be discretely approximated, and then explore 
how the discrepancy of the point distribution used for one of these approximations can be 
measured. Firstly, we consider the integral of some function /  : [0, l)s —► E:

where s is the dimension of the domain of / .  We can simply numerically approximate 
this integral value using a discrete grid of points,

using a uniform grid spacing. There are various problems with this approach, such as 
poor-handling of highly oscillatory functions [29]—if the grid is spaced similarly to the 
oscillation frequency, a large amount of the signal can be missed—also, the number of 
points required to grid-sample the domain scales exponentially as the number of dimen­
sions increases. For example, if we sample N  evenly spaced points along a line in ID, 
to achieve the same rate of sampling in sD, we would require N s samples. The ap­
proximation error bound for an integral evaluation, or discrepancy of this method is of 
order 0(N ~2/S) [29], and thus scales very poorly as the dimension, s increases. Whilst 
not hugely limiting on 2-manifolds, this problem is often referred to as the curse of di­
mensionality [29], and makes this technique (or similar) impractical for the evaluation of 
high-dimensional integrals.

(2.1)

(2.2)
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The most common solution to this problem is the Monte Carlo method [55]. Using the 
Monte Carlo method, we can approximate the integral using:

where P  is a set of points in [0, l)s chosen according to a uniform probability distribu­
tion, and |P| is the cardinality of P. Because Mp(f) is so dependent on the set P, the 
properties of P  and its size |P| have a large effect on the accuracy. So the study of the 
quality of a particular sampling P  becomes very important. Whilst the classical Monte 
Carlo technique employs a random sampling P, we refer to the Monte Carlo method as a 
point based integral approximation method, which can then employ a variety of different 
point distributions. As mentioned, when the discrepancy of a set P  decreases, so does 
the approximation error for a Monte Carlo integral evaluation. Thus, the study of the 
discrepancy of P  is important, and provides a quantitative measure for the quality of P. 
We can think of the discrepancy of a set as the difference between the actual value of the 
integrand, and its approximation. Or more exactly [57]:

where D(P) is the discrepancy of the set, and var(/) the variance of the integrand, defined 
as:

o2 = f f(x)  (1(f) -  MP(f))2d \  (2.5)

where A is the Lebesgue measure of a set. Discrepancy is often thought of as the Monte 
Carlo approximation error as defined by Eq. 2.4, but can also be loosely considered as 
a sequence’s deviation from a uniform sampling of a domain [92]. As demonstrated in 
Eq. 2.4, by lowering the discrepancy D(P) of P, the approximation error, 11(f)—MP(/) |, 
is reduced. So by ensuring low discrepancy, we can minimise the difference between the 
continuous and approximated integral.

There are various techniques to measure the discrepancy of a sample set, though the star 
discrepancy, D*, is the most widely used [92]. We now introduce this star discrepancy. 
Let B(w) with w e  [0, l)s be an s-dimensional box with one point at the origin,

(2.3)

| / ( / ) - M P(/) |< D (P )v a r(/) (2.4)

B(w) =  [0,wo) x • • • x [0, tu5_i). (2.6)

We then define the cumulative distribution function c(P, w) associated with the sample 
set P  as

(2.7)
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where | - 1 is the cardinality of a set. We then define the s-dimensional volume vol(B(w)) 
in Euclidean space as:

f  5-1 f  8-1
vol(#(u;)) =  I 1 dV =  TT I 1 dx = TT^t (2-8)

Jb iJo t=0

Finally, we define the star discrepancy as the supremum of the magnitude of the difference 
between the cumulative distribution function and the volume:

D*(P) =  sup |c(P,w) — vol(B(w))\ (2.9)

Thus, D*(P) is the supremum of the difference between the exact value for a particular 
subset and its approximated measure, over all axis aligned hypercubes in [0, l)s with one 
comer at the origin. A low-discrepancy point set has a low discrepancy for a fixed |P|. 
So we define D*N as the optimally achievable value of D*(P) for all P  with |P | =  N , 
i.e. D*n =  infpC[o,i)3;|p|=Ar D*(P). To assess the quality of a particular point distribution 
generation method we are interested in the behaviour of the function D*(P) with respect 
to increasing |P | as this determines the convergence properties of integral approximation. 
Hence, we study the asymptotic behaviour of this curve using the Big Oh (Bachmann- 
Landau) notation, now simply referred to as its order.

Given a Monte Carlo approach, using a uniform random sequence, the discrepancy is 
of order 0 (N ~ 1/2) [92], and not dependent on the dimension s. Anything smaller than 
this will improve the convergence behaviour of the Monte Carlo method. Achieving low- 
discrepancy is difficult, but improving on a random distribution in general is desirable. 
The term low-discrepancy is often used vaguely to simply indicate an improved rather 
than optimal discrepancy behaviour. A bound for the discrepancy of any AT-element point 
set has been proven [110]: for s =  1, 2, the star discrepancy satisfies the sharp inequality

D'n  > B3N~1(\ogN)‘~1 (2.10)

where the leading term Bs > 0, and is only dependent on s. This is also believed to be true 
for s > 2, but has not been proven. Thus we know the order of D*N which is the optimal
star discrepancy achievable. The order of the star discrepancy D*(P) for particular point 
sets is discussed in the following section. Another measure, the mean square discrepancy, 
or L2 discrepancy [132], is the mean square distance between the sample points and a 
grid set of points. Shirley [115] demonstrates the use of this measure, but results are not 
significantly different than those using the D* measure.
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2.1.2 Low-discrepancy Distributions

In this section, we overview the construction methods for the Hammersley and Halton 
sequences, the Niederreiter and Sobol sequences, and a jittered sampling method. The 
theoretical discrepancy bounds of these sequences are considered here, and experimen­
tally assessed in Section 5.1. The Niederreiter and Sobol sequences are believed to be op­
timal [92] for axis-aligned rectangular subsets, and use a lattice structure to enforce point 
distribution uniformity 2.1.2. Use of them is avoided for other situations, where sampling 
with non-axis-aligned shapes is required [39]. The Hammersley and Halton sequences use 
the van der Corput sequence [33] as a construction method, and are commonly used in the 
literature. Finally, unlike the other distributions, the jittered approach has a probabilistic 
construction, and the advantages and disadvantages of this are discussed 2.1.2.

Hammersley and Halton Sequences

The Hammersley [54] and Halton [50] sampling methods are both low-discrepancy se­
quences, achieving the lowest possible order of magnitude of discrepancy [92]. This prop­
erty makes them useful as a basis for comparison with our approach to low-discrepancy 
sampling; in Section 5.1.3 we compare results from these distributions on the plane and 
the sphere to our work. The van der Coiput sequence, ipb, is a method to partition or sam­
ple the unit interval by maximising the distance between sample points, resulting in a uni­
form distribution on that interval. The premise is that a positive integer k can be expanded
in a base 6, expressed as a unique sequence of digits k = clq 4- a\b-\------1- ar_i&r_1. Using
the radical inverse of this expansion, the positive integer k is converted to a floating 
point number in [0,1) by reflecting the digits around the decimal point. The k-th element 
of the sequence can be calculated using;

=  (2 .11)
1=1

This defines a Hammersley point p = (/c/TV, ipbl (k), . . .  x/bs (fc)), where s is the dimension, 
and where 6, are chosen pairwise co-prime. Both the Hammersley and Halton sequences 
are deterministic, but because the first co-ordinate, k/N, depends on the size of the point 
set N , changing N  will change the output distribution. By adding a single point, the entire 
distribution is altered, and thus N  cannot be increased incrementally: it must be defined 
prior to construction.

Replacing the first co-ordinate k /N  with a new van der Corput sequence with a different 
prime, as the first co-ordinate, results in the Halton sequence [125]. Because the first
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co-ordinate is no-longer dependent on TV, the Halton sequence allows for an incremental 
construction.

These two sequences are often used to signify the lower-bound in the classification of 
low-discrepancy sequences, in terms of their scaling with respect to N  [92]. The leading 
term, Bs of Eq. 2.10, is used to differentiate between such low-discrepancy sequences. 
For the Hammersley and Halton sequences, the minimum discrepancy is achieved using:

where 6i, . . . ,  bs are the first s primes, for N  > 2 [92]. Niederreiter [92], however, shows 
that, the value of Bs for the Halton and Hammersley sequences grows super-exponentially 
with s. Thus, the bound in Eq. 2.10 with the value of Bs shown in Eq. 2.12 becomes 
far less useful as s grows. However, work such as [26], demonstrates specific prime 
number choices that can hugely increase the quality of the Halton sequence in such higher 
dimensions.

Niederreiter and Sobol Sequences

Let P  be a set of points in [0, l]s, where |P | =  bm, for some integer base b. If, for every 
subset interval J , \P c  [0, l) s| =  b*, then P  is a (£, m, s)-net, where ra, £ G Z, and t is a 
quality parameter (usually small for low-discrepancy sets [69]), and 0 < t < m. This is 
defined by Niederreiter [92], and is simplified greatly in [21]. The subset intervals J  are 
defined as

for integers di > 0 and 0 < a* < bfi for 1 < i < s and A( J) =  6<_m, where A (J) is 
the Lebesgue measure of J. Note that whilst in practice, |P | may be any integer value, an 
exact division of points among the subset intervals is only achieved when |P | =  bm. Con­
struction methods for (t,m, s)-nets may differ, so long as each J  contains the right number 
of points. This construction approach results in a lattice, enforcing a geometrically even 
distribution. The Niederreiter and Sobol sequences are both examples of (£, m, s)-nets, 
which are sets of equidistributed points that satisfy Eq. 2.10 [91]. The value for the lead­
ing term Bs also scales far better in practice than that of the Hammersley and Halton 
sequences [92].

We point the reader towards [93] and [116], for a detailed description of how to generate 
the Niederreiter and Sobol sequences; such detail is beyond this work as we only use 
these sequences as a comparison to our own work. As pointed out by [22], in dimensions

Bs = B {b i,. . . ,b3) (2 .12)

(2.13)
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s < 7 the Sobol sequence maintains a discrepancy similar to the Niederreiter sequence. 
In higher dimensions, however, this is not the case, where it performs worse. In this 
work, both the Niederreiter and Sobol sequences are used as comparisons to our results 
to demonstrate the best-case results for the discrepancy of axis-aligned rectangles in low 
dimensions.

Jittered Sampling

Monte Carlo methods use a uniform random sampling, which provides a solution to the 
curse of dimensionality (see Section 2.1.1), but suffers from the problem of having a high 
variance cr2, and no correlated uniformity between the samples in the sequence can be 
guaranteed.

Niederreiter [92] shows that for a random point distribution P, the absolute error of M (f)  
(see Eq.2.3) is y/o2(f)N ~ 1̂ 2, with variance cr2 given by Eq. 2.5. In other words, the mean 
square error of random sampling is of the order a2/N, which demonstrates the relation 
between the sampling’s variance to its discrepancy bound.

One method to reduce the sampling’s variance, and thus improve the error bound is jitter­
ing points inside strata. Stratified, or jittered, sampling is a reduced variance probabilistic 
sampling technique. [0, l]s is divided into k regular sub-sets Si, i = 1, . . . ,  k partitioning 
the space, then within these strata Sit points are placed at random, possibly with a 
weighting towards the centre of the strata, resulting in a numerical integral estimate [92]

/ (2.i4)
J[0,Ds Z t Ni n̂ l

where xln is a random sample within Sif and A is the Lebesgue measure of the set, which 
must be simple to compute. Often, Nt = 1, although regardless of this fact, to achieve a 
uniform density of samples, TV, must be constant. This sampling results in a mean-square 
error that satisfies the inequality [92]

This shows that the variance of stratified sampling will never be worse than random sam­
pling. Beck and Chen [11] provide an error bound for stratified sampling, where TV* = 1, 
for any rotated subset, showing a discrepancy of 0 (N 1̂A y/\og(N)).

It is important to note the distinction between this measure and those given for the sam­
pling methods discussed earlier in this section (Niederreiter, Sobol, Hammersley and Hal­
ton sequences): for those techniques, the subset used to describe the star discrepancy
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bound is an axis-aligned rectangle, whereas the jittered bound is defined for any rotated 
rectangular subset (i.e. not just axis-aligned rectangles). When an axis-aligned rectangular 
box B(w) is used as the sampling subset of [0, l]5 for star-discrepancy calculations, both 
in theory and experimentally (see Section 5.1.3), lattice-based sampling methods such as 
the Niederreiter sequence perform better than jittered sampling. However, as pointed out 
by [39], the discrepancy of such techniques becomes far worse when measured using non­
axis-aligned rectangles or arbitrary shapes. Thus, for applications such as super-sampling 
in computer graphics, where non-axis aligned shapes and lines must be sampled, such 
techniques are less useful. In fact, results in [39] showed that jittered sampling performs 
second to the deterministic low-discrepancy method (described in [124]) for axis-aligned 
rectangles, and produced the best results in a measure of the discrepancy of subsets de­
fined by arbitrary edges in [0, l]2, performing considerably better than the Poisson disc 
and dart throwing algorithms tested. In Section 5.1.3, we show a similar outcome for 
generalised star discrepancy measures, demonstrating considerably worse results for the 
deterministic low-discrepancy methods when a variety of rotated sample shapes are used, 
but very consistently good results for the jittered sampling approach.

Our approach generates space-filling curves, which are then sampled, reducing the com­
plexity of the sampling problem, and producing high quality sample distributions (see 
Section 1.2). Steigleder and McCool [117] define the Hilbert Curve as a linear series of 
irregularly shaped, but area-constant strata (which are then sampled). Thus, instead of 
sampling regular, rectangular strata, the irregular strata defined by sections of the space­
filling curve are sampled, the observation being that the technique produces the same 
output as jittered sampling (hence being referred to as generalised stratified sampling). It 
is worth noting that this parity is only true at the limit of the curve (see Section 2.2.1), as 
the discrete approximation of the curve only actually passes within a certain maximally- 
bounded distance from every location in the continuous domain. However, as shown in 
Section 5.1.3, this does not have a practical effect on the results in the experiments in­
vestigated. The uses and effects of applying space-filling curves in the generation of high 
quality sample distributions is discussed further in Section 2.2.

2.2 Space-filling Curves

Space-filling curves are a continuous mapping from the unit interval onto a higher dimen­
sional domain, such as the unit square. Our method uses space-filling curves to reduce 
complex higher-dimensional sampling problems to a more simple problem of sampling a 
ID interval. In this section we define and investigate the properties of space-filling curves.
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Peano first defined space-filling curves in 1890, and shortly after, Hilbert described them 
geometrically (cited by [108]) along with visualisations considerably increasing their ac­
ceptance. Publications in a variety of fields make use of space-filling curves, ranging 
from their construction [25, 103], to applications taking advantage of their unique prop­
erties: their construction provides a linearisation of a domain and a mapping between 
a one-dimensional interval and higher dimensional spaces, allowing some problems to 
be reduced in their dimensional complexity. These two properties make them a popular 
approach for half-toning [121], spatial indexing (applied to the travelling salesman prob­
lem) [99], vertex caching [16], compression [15], and triangulation [107]. The Hilbert 
curve is one of the best known space-filling curves in the context of these problems, and 
provides near-optimal spatial coherency in 2D [44] (i.e. points close on the curve are close 
in the straight line distance in Euclidean space). In this section, we first define the general 
case and construction of a space-filling curve, followed by a discussion of the space-filling 
curves used in this work and applications of curves in the literature. Finally, we introduce 
the Holder measure which considers the spatial-coherency of space-filling curves.

2.2.1 Definition

In this section, we provide the definition of space-filling curves. For a much more thor­
ough analysis of space-filling curves and their construction, we direct the reader to the 
excellent survey of the field by Sagan [108].

Space-filling curves provide a continuous mapping from the unit interval, [0,1], onto 
[0, l]s, though we will focus on the common case of mapping to the unit square, [0, l]2. 
Space-filling curves are are a suijective, self-intersecting, mapping between [0,1] and 
[0, l]2, and cannot be injective or, therefore, bijective. We now briefly define a space­
filling curve: Let C be a bounded sub-space of Es, where Es is the s-dimensional Eu­
clidean space with s > 2, and let /  : [0,1] C be continuous, where the notation 
represents a suijective mapping, and let Js(/([0,1])) > 0 where Js is the s-dimensional 
Jordan volume. Note that f(A)  where A is a set is defined as f(A) = UxeAf(x). Then /  
is a space-filling curve in Ea [108].

Space-filling curve approximations often use a geometric construction (cited by [108]). 
Such constructions approximate the continuous curve, and converge, in the limit, to the 
actual space-filling curve. Such approximations, for example, as used for the Hilbert 
curve, are often in-fact self-avoiding. Whilst this property of self avoidance may be ir­
relevant for applications relying just on a spatial ordering of the discrete elements of the 
curve, it is an important property to ensure that points close along the length of the curve
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are close in their straight line distance in E5 (i.e. the curve has good spatial coherence). 
For simplicity, we refer to both die approximation and its limit as space-filling curves in 
the following.

2.2.2 Common Space-Filling Curves

In this section, we describe two popular space-filling curves, the Hilbert and Peano curves. 
These curves are used for various reasons. Primarily, they fill the unit hypercube, rather 
than some other shape. They can also be defined by simple recursive constructs. Finally, 
they have, to varying degrees, good spatial coherence—points close in E s are close along 
the path of the curve. Two other curves were initially considered, the zig-zag curve (see 
Figure 2.1) and the Z curve (see Figure 2.2). Both curves can be described with simple 
recursive constructs and fill the unit hypercube. However, both curves suffer from poor 
spatial coherency, and are thus not used in this work.

Figure 2.1: A zig-zag curve.

Figure 2.2: The first three stages of the Z curve.



2.2 Space-filling Curves 23

Hilbert Curve

The Hilbert curve is by far the most widely used space-filling curve due to its construction 
simplicity and good spatial coherence [44], and most of the work detailed at the beginning 
of this section makes use of it. Hilbert discovered a space-filling curve which he described 
with a simple geometric construction (see Figure 2.3). The first order approximation of 
the Hilbert curve Ch, can be constructed by dividing [0, l]2 into four congruent squares, 
with the curve following a self-avoiding path through the centre of each square, starting 
and ending in the centre of a square. These square centres we refer to as Hilbert curve 
vertices. Each higher order approximation is constructed by splitting each existing square 
into four, repeating the same process, and permuting the path through the new squares so 
that a contiguous curve is maintained resulting in 22d subsets where d is the approximation 
order. The first three stages of the Hilbert curve are shown in Figure 2.3. This converges 
in the limit to the Hilbert curve Ch : [0,1] [0, l]2. It has been demonstrated that the
Hilbert curve has the best theoretical [44] and experimental [70] spatial coherency. That 
is, points close in E2 are close on Ch-

Figure 2.3: The first 3 stages of the Hilbert curve.

Many methods have been proposed to construct the Hilbert curve, including recursive 
approaches [23], direct computation of the desired approximation using bitwise opera­
tions [25,117] and adaptive methods [103]. The bitwise approach described by Butz [25] 
provides the fastest computation for a standard Hilbert curve. However, using the adaptive 
approach (see Section 4.2.1) allows us to generate a Hilbert curve that is approximated 
to different depths locally. This is useful to compensate for parametric stretch when the 
curve is mapped to a surface using a non-uniform parameterisation (see Section 4.5), or if 
the sampling density of the curve is non-uniform.
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Peano Curves

Giuseppe Peano was the first to define space-filling curves (cited by [108]), resulting in 
their alternative name, Peano curves. However, he did not describe them geometrically, 
but rather, as a series of digit permutations defined by a unique operator [108]. Since then, 
Peano’s curve has been described geometrically with varying interpretations, though it has 
been proven that these produce exactly the same curve as Peano’s original technique [108]. 
To simplify, we consider the geometric interpretation, focusing on two of the most com­
mon representations, referred to here as the Peano curve (see Figure 2.4) and the Peano II 
curve (see Figure 2.5).

Figure 2.4: The first three stages of the Peano curve. Corners have been smoothed 
to clarify the curve path.

The general geometric interpretation of the Peano curve has been extrapolated in the lit­
erature, and is summarised in [108]. The construction of the Peano curve is in fact very 
similar to the Hilbert curve. Instead of dividing [0, l]2 into four sub-squares, [0, l]2 is 
divided into nine congruent squares. Sections are subdivided and permuted as with the 
Hilbert curve, with 32d subsets, resulting in a curve Cp : [0,1] [0, l]2. Alternative
paths through these sub-squares have then been defined; the first three construction stages 
of the two popular representations, the Peano curve and the Peano II curve are shown in 
Figures 2.4 and 2.5. The Peano curve in various forms has also been used extensively for 
applications similar to the Hilbert curve, although many authors have applied the Hilbert 
curve due to its better spatial coherence. Note also that the Peano II curve visits the same 
vertices more than once, which is not ideal for our sampling application.

2.2.3 Spatial Coherency of Space-filling Curves

We primarily look at the Hilbert and Peano curves due to their good spatial coherence, and 
also their self avoiding-nature. Other curves, such as the Z curve [88], have been applied
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Figure 2.5: The first three stages of the Peano n  curve.

to a variety of problems in a similar manner to the Hilbert curve. It has the advantage 
of being very simple to generate [62], though it has the disadvantage that points close 
on the curve are sometimes very distant in Euclidean space (as the curve makes a ‘jump’ 
between blocks; see Figure 2.2). The set of vertices making up the Z curve (see Figure 2.2) 
is arranged in a uniformly spaced grid, with a horizontal and vertical Euclidean distance 
of e between vertices, where e depends on the recursion level of the curve. However, 
the distance between every second vertex along the path of the curve is actually \/2e, 
due to the fact that every second vertex is connected along the diagonal of the grid of 
points. This problem of spatial coherence is investigated by Faloutsos and Roseman [41], 
who experimentally demonstrate that the Hilbert curve has better spatial coherency, or 
‘clustering’, than the Z curve. Another curve, the zig-zag, is generally used for tasks 
where spatial coherency does not matter, such as for robot path generation [9]. In this case, 
the curve is appropriate because it changes direction very infrequently which introduces 
less vibration to the robot, meaning that less time is required for the robot to pause and 
settle before performing its task at points along the curve. Whilst there are no ‘jumps’ in 
the curve, the curve’s poor spatial coherency is undesirable. For these reasons, we now 
look more closely at the Hilbert and Peano curves.

To investigate the distances between points on the unit interval compared to the distances 
between them in the unit square under the mapping of a space-filling curve C, we consider 
Holder continuity. The principle is to compute the Holder constant cc that defines the 
upper bound of the difference between distances on [0,1] and [0, l]s e  Es. For a space­
filling curve, the mapping C : [0,1] [0, l]2 is Holder continuous of order 1/k if, for
all s , t e  [0,1] [24]:

l |C(«)-C(f) | |<c*|a- f |*  (2.16)

For k = 1 this is the same as Lipschitz continuity. An exact value for the Holder constant 
cc for the Hilbert curve, Ch E [0, l]2, of y/6 is known [24]. Both Peano curves demon­
strate a larger upper bound of 3y/b for the Holder constant. This shows that the Peano
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curve maps distances in [0,1] onto less equal distances in [0, l]2 than the Hilbert curve, 
indicating a poorer spatial coherence for the Peano curve.

2.2.4 Sampling Space-filling Curves

Our sampling approach uses a space-filling curve to generate a set of points in the [0, l]2 
parameter domain. When sampling points with space-filling curves (see Chapter 4), we 
build up a density histogram along the curve, and distribute the points according to this, 
essentially equalising the histogram. Each vertex that forms part of the Hilbert curve 
approximation is assigned a density, and due to the histogram equalisation, a vertex with 
a very high density would increase the chances of a point being placed not just at that 
vertex, but also at surrounding vertices. If the space-filling curve jumps large distances in 
Euclidean space (i.e. it has poor spatial coherence), a vertex with a high density before the 
jump may cause a local increase in samples after the jump, even if the density there is low. 
This would result in an incorrect distribution of sample points, and is the primary reason 
for not employing the Z curve (see Section 2.2.3). We effectively aim to approximate 
an integral over the density along the curve to estimate the local sampling density. The 
approximated integral is more likely to be more accurate for a given number of samples 
if those samples are evenly spaced.

2.3 Geometry of Curves and Surfaces

Differential geometry considers the differential and integral properties of shapes. In this 
section, we only consider the properties of smooth curves and surfaces in 3D Euclidean 
Space. For an introduction to this topic, see [82], and for further details, see [81]. In 
particular, we focus on the definition of the first and second fundamental forms of surfaces, 
and the geometric properties derived from them, such as tangent spaces, area, normals and 
curvature. These properties are later used to compute point distributions for our algorithm 
(see Section 4.3).

We now consider the analysis of curves on surfaces, passing through a given point, in 
order to define the first and second fundamental forms. The first fundamental form defines 
metric properties on a surface such as angles and distances, whilst the second fundamental 
form (with the first fundamental form) allows us to compute curvature properties. We 
consider these forms in Euclidean space with a Euclidean metric (and any sub-space gets 
the canonically induced metric from the Euclidean metric).
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Let M  be a surface with parameterisation X(u, v) e E3 and let c(t), t £ [a, 6] be a curve 
on M. We can then write c(t) = X(u(t), v(t)) and

.. .  dXdu dX dv , ,
d(t) = — —  +  - — 77 =  ti'X* + v'Xv. (2.17)

du dt dv dt

Let s(t) be the arc-length along c with s(a) = 0, i.e. s(t) = f* Hc ŝJHds. Therefore,

( § )  =  =  { u ' ) 2 E + 2 u ' v ' F + { v ' ) 2 G  (2,18)

with
E = (XU,X U), F = (XU,X V), G = (XV,X V) (2.19)

where (•, •) denotes the Euclidean scalar product. Then the first fundamental form can be 
expressed as

To explain this, define a tangent space of a point p on M: Take all curves through p 
(differentiable at p). The set of all tangent vectors of these curves at p gives the tangent 
space TPM, which is a 2D vector space with X u and X v (at p) as basis. Now E3 induces 
onto TPM  the scalar product given by the first fundamental form, which means the matrix 
of the first fundamental form T  is

E F  
F G

(2.21)

The area of a surface is defined via the first fundamental form as area(M) = f f MdA with 
the area element

dA — ||2fu x X„|| du dv =
E F  
F G

du dv = (EG — F2) du dv. (2.22)

We now consider the second fundamental form, and how it can be used to compute the 
curvature at a point on M. Considering d'(t) as the acceleration of a point along the curve, 
we can break this down into two components with respect to M: c" = cj' + d'n where c" 
is tangent and d'n normal to M. Assume c is parameterised with respect to arc-length s, 
c(s) = X(w(s),?;(s)). Then, withEq. 2.17,

c" =  u”X u +  v"Xv + u'X'u + v'X'v (2.23)

(where' means d/ds), which expands to

d' — u" X u + v" X v +  u' u X uu + 2 vlv' X uv -1- v v X vv. (2.24)
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To decompose this into a tangent and normal component, let N  =  X u x X V/\\XU x 
be the unit normal of M. X u and X v are already tangent to the surface, but X y / U i  X y y ,  X . y y

still need to be decomposed. Their decomposition yields the Gauss formulae:

xuu =  ruuuxu +  TvuuX v +  LUUN, (2.25)

=  TUUVX U +  r vuvX v +  LUVN, (2.26)

xw = Tuvvxu + r vvvX v +  LVVN. (2.27)

The T are not necessarily similar for X u, X v as X u and X v are not orthonormal in general. 
However, we can compute the normal components L  as projections:

Luu — {XUU: iV), Luv = Lvu = {Xuv, N ) , Lvv =  {Xvv, N ) . (2.28)

These give the matrix of the second fundamental form XX:

It describes the extrinsic geometry of M, i.e. how it is embedded into E3, and can be 
written as the differential form,

XX = Luu du2 +  2Luv du dv +  dv2. (2.30)

Given a curve c through a point p = c(s) on M  with normal N(c(s)) we consider the 
normal component of its curvature, called normal curvature, to study the curvature of 
M. By construction we have (c"(s), N(c(s))) = XX(cf(s),cf(s)). By differentiating the 
equation (c'(s), N(c(s))) = 0 with respect to s, we get

(c"(s),N(c(s))) = -(c'(s),DN(c'(s))) = XJ(c'(s), c'(s)). (2.31)

This motivates the definition of the shape operator 5  as the negative derivative of the 
normal map TV : M  —> §2, i.e. S  =  — DiV, where §2 is the unit sphere. It also follows 
that S  is self-adjont with respect to the first fundamental form as a scalar product, and so 
it has orthonormal eigenvectors ei, e2 with corresponding eigenvalues k \t k2. As ei, e2 
are orthonormal we may write d  (s) =  e\ cos 6 +  e2 sin 6. Here, 9 is the angle between 
the curve’s tangent in the tangent plane, and the eigenvector associated with k\, and hence 
with Eq.2.31 we get Euler’s Theorem

(d'(s), N(c(s))) =  ki cos2 9 +  k2 sin2 9. (2.32)

We call the maximal and minimal normal curvatures arising from this formula the prin­
cipal curvatures. They are given by the eigenvalues ku k2 of S  and have corresponding
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principal curvature directions ei, e2 . Conveniently in matrix representations these result 
from the eigenvalue analysis of the shape matrix

-l
S  = Luu Luv

1----
6s

1

Luv L yu F G
(2.33)

Furthermore, the Gaussian curvature is defined as K  = k\k2 and the mean curvature is 
#  = (*! + k2) /2.

2.4 Summary

This chapter has presented the main mathematical concepts applied in this work. Related 
work and applications are discussed in Chapter 7. We have introduced the concept of 
discrepancy and discussed its relevance to our work when sampling surfaces. We have 
defined the sampling methods used in this work, and explained how we use them to both 
construct and numerically assess sample distributions. We have also identified a need for 
a low-discrepancy sampling approach for arbitrary surfaces that performs well for a more 
general discrepancy measure. In Section 4.3 we detail our use of the point sequences 
discussed in this chapter to sample points on surfaces and in Section 5.1 we apply and 
expand the definition of the star discrepancy to numerically assess the quality of sample 
distributions. We have also defined and investigated a small selection of relevant space­
filling curves. In Section 4.2, we discuss their construction in far greater detail, and in 
Section 5.4 we present experiments demonstrating the spatial coherence of the curves 
investigated. Finally, we have introduced the important differential geometry concepts 
used to calculate metric surface properties, such as area and curvature, that are applied in 
this work.
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Chapter 3

Related Work on Sampling Applications 
in Visual Computing

This chapter investigates work relating to the applications of our sampling method. We 
consider the applications of point-based graphics (see Section 3.1), remeshing (see Sec­
tion 3.2), and prototype painting (see Section 3.4).

We first consider point-based graphics, and whilst our emphasis is on surface sampling, 
it is also important to consider the field in general to understand the requirements for 
the sample distribution. We provide a brief survey of the field of point-based graphics 
(see Section 3.1.1). We then consider existing sampling methods (see Section 3.1.2). 
We also look at point primitive representation, and how a lack of explicit connectivity is 
solved in the literature (see Section 3.1.3). In our point-based graphics sampling work (see 
Section 7.1.3) we consider Levels of Detail (LoD) and View Dependent Rendering (VDR) 
to reduce scene complexity and improve rendering quality. In this section therefore, we 
consider existing popular LoD and VDR techniques (see Section 3.1.4).

We investigate the field of remeshing, considering its application in complexity reduc­
tion and local density control. We discuss standard mesh decimation techniques, and the 
relation to remeshing (see Section 3.2.1). In Section 3.2.2, we review existing remesh­
ing techniques. We then consider mesh cutting and parameterisation, looking at when 
cutting is required, and how the parameterisation affects the sampling of the mesh (see 
Section 3.2.3), and discussing which methods we employ. Finally, we consider the trian­
gulation of sample points, which is required once a point sampling has been generated on 
the surface (see Section 3.2.4).

In Section 3.3, we consider existing methods to evaluate the sampling produced for point 
and mesh based surfaces, and the approaches we use in our work. We then investigate the 
field of robotic prototype painting, looking at existing approaches and their limitations 
due to sampling issues (see Section 3.4). Finally, we summarise this chapter, highlighting 
how existing methods relate to our own work, and discuss our contributions to these fields 
(see Section 3.5).
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3.1 Point-based Graphics

In this section, we investigate work related to point sampling in the field of point-based 
graphics. Point-based graphics is the name given to the approach of representing and 
rendering shapes using unconnected point primitives. Triangle meshes are the most com­
monly used rendering primitive, yet recent advances in technology make them less ideal: 
when the number of visible triangles in a scene becomes the same as the number of pixels 
in the display, then the average area of each triangle is reduced to only a single pixel, and 
thus triangles become an inefficient way to represent the scene. Points are a viable alterna­
tive to using triangle primitives, and have both advantages and disadvantages. Points are 
generally represented using discs (often referred to as surfels [98] or splats [135]) that are 
oriented to the surface normal. The disc gives them a measurable area and if the disc ra­
dius is controlled by surface curvature, makes them more suited to represent flat surfaces, 
as flat areas can be covered by fewer, larger discs. An alternative to splatting is direct 
rendering in image space [80], which uses a different approach to address the problem of 
rendering artefacts from hidden surfaces, and uses a multi-resolution filter to achieve a 
continuous appearance. Lacking an explicit topology and connectivity makes them useful 
for the representation of deformable or freeform surfaces [65], as the topology of a model 
may be completely changed, and no complex tessellation (such as a triangulation) has to 
be updated. Model acquisition techniques (such as laser scanners) natively sample with 
points, and allow for fine and organic models to be easily represented [98]; generating a 
mesh from these points is a time-consuming and error-prone process [98].

However, as meshes have been a popular method of surface representation for such a long 
time, a considerable number of models are available. To represent these models using a 
point-based method, simply removing the connectivity and increasing the sample density 
may result in a poor distribution of samples. Thus, resampling existing meshes with high- 
quality point samples is an important area of research.

An overview of point-based graphics is given in [4]. This includes work on acquisition, 
surface representation, rendering (including LoD and VDR), neighbourhood computa­
tion, surface simplification (especially iterative methods and particle simulation) and er­
ror metrics such as the Hausdorff distance. Kobbelt and Botsch [65] give a broad review 
of point-based techniques, with a concise introduction to different rendering techniques 
and LoD methods. They also look at the approaches for purely point-based and surfel 
based representations, briefly considering the sampling requirements for these methods. 
Both surveys also highlight the need for fast, robust, fc-nearest neighbour operations for 
point-based approaches to provide fast neighbour look-up. A spatial-partionining data- 
stucture is recommend as a solution to this neighbourhood problem [65]. Zwicker [133]
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also surveys the field thoroughly; he briefly looks at methods to avoid aliasing problems in 
sampling, such as the blue noise criterion, also discussed with regard to remeshing in [7], 
and non-spectral properties, namely discrepancy.

3.1.1 Sampling Requirements

Usually, points sampled for a specific application require certain characteristics. When 
rendering surfels, an important characteristic is that samples are generally equidistant 
(relative to sampling density) from each other in all directions. Achieving equidistance 
from neighbours in this way results in a uniform amount of overlap of the surfels (for 
a constant surfel size assuming a uniform density), ensuring a complete coverage of the 
surface. If points are not regularly spaced in this way, a higher density will be required 
to ensure complete coverage. The radius of the surfels could be increased up to a certain 
point, but detail may be lost. However, as the distances between points becomes more 
regular, the distribution becomes more and more grid-like, which may cause sampling ar­
tifacts. As discussed in Section 1.1.2, low-discrepancy distributions have been employed 
to avoid such artifacts. However, the sampling pattern for such distributions also matters: 
Dobkin et al [39], demonstrate that for distributed ray-tracing, sampling patterns that have 
a very low discrepancy when measured with rectangular subsets (such as the Niederreiter 
sequence [92]) generally result in rendering artifacts. We investigate this property of sur­
face coverage in Section 7.1.2, with results demonstrating much better coverage with our 
novel jittered sampling method (see Section 4.1) when compared to the other determin­
istic low-discrepancy distributions (see Section 2.1.2). Finally, for point-based graphics 
it is also important to be able to control the sampling density, for example, to make it 
proportional to the mean curvature; the inverse of which is generally used to control the 
radius of the splats, so that smaller surfels reside in areas of higher curvature with higher 
sampling density. By controlling the density in this way, many points can be used to rep­
resent complex areas of the surface, and fewer points to represent less complex, or flat, 
areas.

3.1.2 Sampling Approaches

Wu et al [128] suggest a point sampling technique generalised for LoD splatting [129], 
employing a progressive error-based decimation of the original set of input points, used 
to resample models, whilst taking into account splat geometry. They demonstrate good 
results, with low errors, taking about 30 seconds to generate a single model for a large 
mesh (tens of thousands of triangles). They cannot, however, control the density of the
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distribution, and only consider the quality of the distribution in terms of the surface ap­
proximation error. Also, whilst the time required to generate a single level of detail is 
similar to our technique, after this processing time, our approach allows interactive-rate 
control of the level of detail with arbitrary granularity, according to a specified density, 
with a guaranteed sampling quality.

Proenga et al. [100] demonstrate a method of point sampling implicit surfaces. They first 
define the surface as a set of multi-level partition of unity impicits [95] (MPU implicits), 
which also yields an octree spatial partitioning. The octree is defined and created accord­
ing to surface curvature. In each octree cell on the surface, they then place a constant 
number of particles, achieving a good initialisation for the following particle relaxation 
process. Their sampling algorithm is faster than other surface relaxation methods, mainly 
due to the accuracy of the initial particle placement because of the octree structure. The 
point set they generate has a very uniform structure, prevalent in most relaxation ap­
proaches. However, the most significant problem with this approach is the presence of 
artifacts in the output; large white gaps are clearly visible in areas of high curvature.

Rovira et al. [106] describe how to sample an input mesh by generating a set of uniformly 
distributed lines within a bounding box, computed from pairs of sample points generated 
on tangent planes of the bounding box. The lines are intersected with the model, and 
a set of point samples is generated at the points of intersection on the model’s surface. 
They numerically assess their technique by sampling a unit square polygon divided into 
two triangles, and measure the star discrepancy of the distribution. They show results 
that are two orders of magnitude worse than sampling points directly on the polygon with 
known low-discrepancy distributions (such as Hammersley and Sobol). They also do not 
consider the discrepancy of the sampling over the whole mesh, and cannot control sam­
pling density. Our approach, however, provides a low-discrepancy distribution over the 
whole mesh, whilst also having full control over the sampling density. The distributions 
generated by our algorithm are also superior to common low-discrepancy distributions for 
point-based graphics applications (see Section 7.1.2).

Kalaiah and Varshney [61] describe a method for rendering and storing points with dif­
ferential point geometry; each sample is stored as a ‘differential point’, providing discrete 
differential surface properties such as principal curvatures and the surface normal. Whilst 
computing such properties for surface rendering is not a novel idea in principal, it focuses 
on a reduction of points by describing and rendering each point with a lot of information, 
providing a compact approach to representing point-based models. The focus of this pa­
per is not on the sampling quality, but rather on making the best use of a m inim al number 
of samples to render the surface. As described in Section 4.3, we utilise this point rep­
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resentation model to compute surface integrals and to provide high quality rendering of 
surfaces.

3.1.3 Neighbourhood Computation

Point-based representations do not store connectivity between the discrete points, and 
thus there is no explicit topological information about the underlying manifold. How­
ever, for many computations, such as rendering (e.g. not rendering hidden surfaces), LoD, 
deformation and boolean operations, knowledge of the neighbourhood for a point is nec­
essary [65]. Thus, various techniques have been suggested to address this problem of 
neighbourhood computation. For isotropic, i.e. direction invariant, density distributions, 
computing the fc-nearest neighbours using a spatial data-structure provides a solution of 
linear time complexity with respect to the number of samples [4] (after pre-computation 
of the data-structure). Pointshop3D [134] is a point based surface editing package that 
employs spatial data structures to facilitate much of the basic editing functionality pro­
vided, such as boolean operations and freeform deformation. Both fcD-trees and dynamic 
grids [56] are used in Pointshop3D; fcD-trees provide the fastest neighbourhood look-up, 
whilst dynamic grids are used when new points need to be inserted. Bhakar et al. [13] use 
an octree data structure, which partitions the data set, allowing for occlusion-based view- 
dependent computation. In our work, we utilise a quad-tree data-structure to generate the 
space-filling curve (see Section 4.2.1), which is used to compute fc-nearest neighbours 
efficiently. Whilst this solution computes the nearest neighbours on the surface in R3, if 
less accuracy is required, adjacent points along the curve can simply be used directly as 
neighbours. All of the approaches described here rely on a point set having an isotropic 
density. To compute the correct neighbourhood for a set of points with an anisotropic 
density, however, other methods must be used, for example, tangent plane Delaunay tri­
angulation [4].

3.1.4 Levels of Detail

Levels of Detail (LoD) are employed within computer graphics to provide a solution to the 
problem of overly complicated (and thus slow to render) scenes by reducing the geometric 
complexity of objects as their distance from the camera increases. LoD are important 
in various applications, including real-time rendering and visualisation, and progressive 
display and transmission of models. Luebke et al [77] give a thorough introduction of this 
field, with described techniques falling into three categories:
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• Discrete LoD, where a set of objects of varying complexity are pre-computed (multi­
resolution objects), and used to describe an object depending on the distance from 
the camera [30]. Kobbelt et al. [66] describe an interesting discrete technique that 
reduces the amount of data needed to be stored by implicitly defining the geomet­
ric differences between detail levels instead of maintaining a global hierarchy. Due 
to meshes being dependent on connectivity, the paper focuses on dynamic mesh 
connectivity, modifying edge lengths, vertex valencies and removing thin triangles;

• Continuous LoD, where a data structure allows for the level of detail of an object to 
be changed at runtime, with varying degrees of granularity;

• View dependent LoD, whereby the complexity of a geometric object is dependent 
on its position with respect to the camera, not just its distance from it. This last 
approach also allows for geometric silhouette enhancement.

Point-based graphics represent an interesting approach towards LoD, as the process is 
simplified greatly by the lack of a need to maintain a persistent connectivity between 
samples, and is thus one of its advantages over mesh based approaches (removing a point, 
unlike for meshes, does not require topology modification). In [65], LoD is discussed, and 
several data structures for rendering are considered. In Section 7.1.3, we demonstrate the 
speed at which we can resample a surface; once pre-processing is complete, the surface 
can be resampled in real-time as the distance between the model and the camera changes. 
We can represent an object with an arbitrarily fine-grained level of detail after initial pre­
processing. This results in a continuous and view dependent LoD method that allows for 
real-time rendering.

Bhakar et al. [13] describe a stochastically sampled octree approach to generate a view- 
dependent LoD point sampling of a two-manifold, but no timing information is given and 
there is no evidence of any analysis of distribution quality. Similar to this technique, we do 
not consider image space culling or occlusion, but an object space analysis of the scene. 
Thus, we consider what part of the scene is visible from the camera, and then sample this 
part at the desired density. This is also useful in situations where the application requires 
a fixed scene complexity regardless of viewing angle.

Our approach can also increase the sampling density around silhouettes in real-time (see 
Section 7.1.3). This is useful, for example, in real-time graphics, where a high quality tex­
ture may mostly hide the lack of detail of a low-complexity model, but the low-complexity 
is still highly visible along the silhouette. In Section 7.1.3, we discuss a modification to 
the algorithm, utilising the quad-tree structure of the Hilbert curve to accelerate the pro­
cess of our continuous, view dependent LoD approach.
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Popping, is the name given to visual artifacts introduced by a change in geometry between 
two levels of detail [77]. A situation where this is most obvious is along the silhouette 
of the object. Continuous LoD approaches reduce this problem as there is no significant 
’jump’ in object complexity. Hoppe [58] describes an approach to progressive, view de­
pendent refinement of meshes, where the mesh is refined at run-time based on a set of 
criteria. One approach to solving this problem with LoD meshes is to maintain the tessel­
lated topology [18], and ensure that each coarser mesh is built from a subset of vertices 
of the mesh with higher level of detail. However, view dependent LoD provides a better 
solution for hiding the popping effect by maintaining high complexity around the object’s 
silhouette. Our approach achieves both continuous and view dependent LoD in order to 
minimise the popping effect. However, in our approach, lower levels of detail are not a 
subset of the higher levels. Instead, new, jittered, point sets are generated on the surface at 
run time (see Section 6.2.3). This jittering, however, is not only probabilistic, but points 
cannot be incrementally added. An evenly distributed set of points is deterministic, but 
a uniform distribution cannot be created using an incremental construction. By instead 
using an incremental, deterministic ID construction, such as the Niederreiter sequence, 
we can ensure that lower levels of detail are a subset of higher levels, further reducing the 
popping effect. This is discussed in Section 7.1.3.

3.2 Remeshlng

This section reviews and introduces related work in the field of remeshing. Remeshing is 
the process of sampling an existing mesh, and tesselating this sampling to produce a new 
mesh, generally with (more) desirable characteristics, such as more regular polygons, or 
a different, or non-uniform, density of vertices.

As an introduction to recent remeshing techniques, Alliez et al. [6] give a review of various 
requirements and approaches in the field. An important criterion highlighted is that of 
fidelity: at a given resolution, a newly generated mesh should approximate the original 
mesh accurately with as few triangles as possible. Previous work [75] indicates that a 
low-discrepancy sampling of a surface may fulfil this requirement very well for a set of 
points. However, we note that it is not so obvious that a triangulated set of such points has 
similar desirable characteristics. Least number of triangles may not always be the most 
important requirement—for example, in finite element methods, having a regular mesh of 
equally sized, almost equilateral triangles is more important.

In the following we first discuss conventional decimation techniques. We then investigate 
remeshing techniques with varying emphasis on desirable properties of the output mesh,
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and feature-preserving remeshing techniques. We also consider related mesh parameteri- 
sation and triangulation techniques.

3.2.1 Mesh Decimation

Decimation is the reduction of the number of polygons and vertices in a mesh, where the 
vertices of the output mesh are a subset of the vertices of the original mesh. Kobbelt et 
al. [67] describe a general framework for mesh decimation using greedy optimisation of a 
Hausdorff distance error metric. Other work by Wu and Kobbelt [127], provides a signifi­
cant performance advantage over this earlier work by using a probabilistic multiple-choice 
approach for vertex selection and removal, while providing a similar surface approxima­
tion error. The vertex preservation property of decimation can be important in certain 
applications such as generating multi-resolution models, as previously discussed with re­
gard to point-based rendering in Section 3.1.4.

Reducing the complexity of a mesh in this way may be a prime motivation for remeshing, 
although it may not be the only concern. Remeshing approaches, such as our approach, 
allow for a much greater flexibility and control of, e.g., sample density of the output, as 
the output vertices are not constrained to a subset of those in the original mesh. With our 
approach, we sample the mesh with a low-discrepancy vertex set, with the intention of 
capturing the original shape with the best accuracy possible given a predefined number of 
points.

3.2.2 Remeshing Techniques

Alliez et al. [5] describe a remeshing method that performs all computation on the surface 
without the need to compute a parameterisation, using intersections of principal curvature 
tensor fields to construct polygons that are aligned and shaped according to the curva­
ture, thus creating ‘anisotropic’ polygons. Visual results are demonstrated, showing that 
remeshed surfaces which consider the local shape of the object are better than those pro­
duced using isotropic sampling. Timings in the region of a minute are typical, although 
mesh complexities are not explicitly listed. Although the quality of the output is high, 
control over point and triangle placement is somewhat limited due to the nature of the 
approach. Nevertheless, considering the curvature tensor field improves the output mesh, 
and also helps to preserve features [17].

Gu et al. [46] define an approach to the storing and rendering of objects as geometry 
images, using a computationally intensive parameterisation preprocessing stage (taking
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about an hour). They have devised a remeshing technique which relies on this very good 
parameterisation, so that the parameter domain can be regularly sampled, and thus the ge­
ometry can be stored as a set of images. The use of geometry images produces very regu­
larly remeshed surfaces, and inherently facilitates geometry compression. Our remeshing 
approach allows for much greater control over the sample distribution, requires far less 
preprocessing time, and allows the user to modify the sample density at interactive rates.

Alliez et al. [7] also describe a remeshing framework using a mesh parameterisation ap­
proach, that, after some pre-processing, allows for density controlled triangle distributions 
to be produced at interactive rates. Dithering and relaxation techniques are used to sample 
the surface regularly, and graphics hardware operations are used to perform these compu­
tations quickly. Results are good, though testing only considers the blue-noise criterion 
and visual assessment. Overall timing for the process is difficult to discern, but after the 
parameterisation step, a few seconds are needed for preprocessing, then an interactive rate 
is achieved for remeshing. Our technique allows a similar speed of interactive remesh­
ing after a similar time for pre-processing, and provides experimental evidence of the high 
quality of the point sampling. Qu et al. [102] extend Alliez et al’s [7] technique to remesh­
ing based on surface patterns, such as textures and bump mapping. They reduce the mesh 
complexity intelligently such that no loss in quality is apparent. Voronoi tessellation and 
Lloyd relaxation are used to produce a sampling of the parameter domain, again resulting 
in a very regular mesh.

Surazhsky and Gotsman [119] describe a remeshing scheme with an emphasis on regular­
ity and mesh connectivity, using an area based smoothing technique, and a dynamic patch- 
based parameterisation method—they do not attempt to parameterise the entire mesh, but 
work explicitly on patches of the mesh, allowing the technique to be easily applied to 
arbitrary genus models. They demonstrate low remeshing errors, very similar to results 
produced by our approach, with an overall remeshing time of 74 seconds for a complex, 
50,000 vertex model. They also consider refinement of certain mesh areas before remesh­
ing but do not consider the quality of point sample placement.

Feature preservation is also important in remeshing, especially with regard to engineering 
applications [123], where the preservation of sharp edges and other features is essential. 
Important information may otherwise be lost due to approximation of the original mesh 
by the remeshing technique. Vorsatz et al. [123] describe a method primarily aimed at 
addressing the problem of feature-loss due to aliasing. A technique is described whereby 
the surface is sampled, followed by a global relaxation and feature snapping method. Vi­
sual results are provided, demonstrating remeshed surfaces which preserve sharp edges. 
Though we do not specifically address the preservation of sharp, manufactured edges, we



40 3.2 Remeshing

approach the problem of feature loss using density functions, such as curvature. This 
approach means that the placement of a point at a very specific location cannot be guaran­
teed and so exact, sharp, edges are unlikely to be reproduced well. However, such features 
will still be sampled more densely, and features other than sharp edges will be preserved 
well.

3.23 Mesh Cutting and Parameterisation

Several remeshing approaches are based on cutting arbitrary-genus meshes into one or 
more topological discs, parameterising these patches, remeshing them, and then stitch­
ing them back together. Care has to be taken to stitch the mesh back together along the 
cuts to produce smooth boundaries, which has been largely solved [40, 49]. The ap­
proach described in [46] cuts the mesh into a single topological disc, and performs an 
iterative cut-parameterisation process, improving the cut at each step. Whilst the output 
of this approach is a stretch-minimising parameterisation, processing time is very high. 
We therefore apply the simple cutting approach used in [107] before parameterising the 
mesh, correcting for stretch using our adaptive sampling approach.

Our remeshing approach requires construction of a mesh parametrisation. We thus briefly 
consider some relevant approaches. An isometric parameterisation, i.e. a mapping that 
uniformly preserves all distances (thus also preserving angles), is ideal, but one that in 
practice is almost impossible to find. As a result, most approaches attempt to preserve 
either area (distances) or angles, referred to as equiareal and conformal respectively. An 
equiareal parameterisation results in area elements in the parameter domain mapping to 
similarly sized area elements on the mesh, but they are generally subjected to a large 
non-uniform stretch due to the lack of angle preservation.

One useful method is the technique described in [48], which minimises geometric stretch 
and iteratively optimises the parameterisation until no further improvement can be achieved, 
While this technique has a high computational cost, it ensures that the parameter domain 
is sampled uniformly. Floater et al. [42] describe a fast technique to generate shape- 
preserving (i.e. angle preserving, or conformal) parameterisations of triangle meshes. 
Yoshizawa et al. [131] give a fast and simple stretch-minimising technique based on using 
Floater’s approach with progressive refinement steps. It provides quite good results with 
a run-time in the range of tens of seconds for models with about a hundred thousand ver­
tices. In order to avoid artifacts that may result from such a non-uniform stretch, in our 
approach, we desire a conformal parameterisation, / ,  of the mesh Ms. The non-uniform 
areas can be handled by the adaptive space-filling curve produced.
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Floater and Hormann [43] provide an excellent survey and tutorial of surface parame­
terisation, in which they define a conformal parameterisation as one that preserves all 
angles of intersection between arcs defined on the surface. A continuous function, g ^  0, 
mapping a surface S' to a parameterisation of this surface, 5*, is only conformal if the 
coefficients of the first fundamental form on 5, J  (see Equation 2.20), and on S* with first 
fundamental form J* are proportional,

l  = g - \u ,v )T .  (3.1)

We utilise Floater’s [42] conformal parameterisation method, as we desire triangle shape 
preservation in order to avoid anisotropic stretch. Such unwanted anisotropic stretch 
would reduce the quality of the output point distribution. Because we can adaptively 
sample the parameterised mesh, a relatively large difference between the area of a trian­
gle on the surface and a triangle in the parameter domain does not affect the final quality 
of our results (although it may have a minor impact on speed). Floater’s technique is also 
very fast. If we were to alternatively use the technique described in [48], we could use a 
uniform (non-adaptive) Hilbert curve to sample the mesh, which would increase the speed 
of the pre-processing step of our algorithm, but at the expense of the total time taken in­
cluding the parameterisation step; the adaptive curve generation is far faster than their 
parameterisation.

3.2.4 Triangulation

Triangulation is an essential step in remeshing; by performing a triangular tessellation of 
samples, a mesh can be produced. Bern and Eppstein [12] provide a survey of mesh gen­
eration for finite element methods. They consider the production of optimal triangulations 
with respect to specific parameters (minimum angle size and area), in the context of a fixed 
point set, and one with additional (Steiner) points. Shewchuk [113] demonstrates efficient 
implementations of popular Delaunay triangulation algorithms, demonstrating that an op­
timised divide-and-conquer approach [71] is the fastest (0(n log n) for n sample points) 
and most robust approach. It may be possible to construct a triangulation by basing the 
neighbourhood relations on the original triangulation of the input mesh. However, the step 
of triangulation in our remeshing algorithm is not our main concern, and thus we simply 
apply the algorithm of [71], treating the problem as the planar triangulation of an arbitrary 
point set in the parameter domain.
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3.3 Point and Mesh Sampling Evaluation

We now briefly discuss methods to evaluate point resampling methods. There is no uni­
versally applicable method to assess the quality of a resampled surface, and the quality 
desired may be dependent on the application. Various assessment criteria are employed 
in the literature, e.g. discrepancy [106], minimum angle statistics [119], the blue-noise 
criterion [7]; the Hausdorff distance is used for measuring the accuracy of remeshed sur­
faces [28] and point sampled surfaces [129]. We compare the quality of meshes produced 
by our remeshing implementation to other competitive techniques by measuring the geo­
metric distance between the input and output meshes using Metro [28], showing results 
competitive with one of the most popular remeshing techniques. We use Metro specif­
ically due to its common usage in the literature, allowing comparison of results. Even 
visual assessment can be useful, especially if the final application is rendering. However, 
it is largely subjective.

For (quasi) Monte Carlo integration, it has been demonstrated that estimates of the area or 
volume of an object using low-discrepancy samples converges far faster than when using 
random sampling [75]. An experimental technique, used by [106] to approximate the dis­
crepancy of their point sets, involves sampling a unit square polygon using their method, 
divided into two triangles, and calculating the star discrepancy for a varying number of 
points. The technique demonstrates the discrepancy in this special case, but does not 
address the discrepancy of a more complex surface. In Section 6.2.1, we employ an ap­
proximate discrepancy measure on the entire mesh to demonstrate that the discrepancy in 
point sets produced by our approach drops as we increase the number of points in a similar 
fashion to low-discrepancy sequences tested on parametric surfaces (see Section 5.1.4). 
This verifies that the mesh sample distributions exhibit low-discrepancy properties, i.e. 
they cover the surface area well yet do not suffer from aliasing problems associated with 
regular sampling. We also assess the coverage of points in the unit square, comparing 
low-discrepancy and random distributions to our technique.

3.4 Robotic Painting

Continuing reduction in product development lead-time has caused a huge increase in the 
development of rapid prototyping and manufacturing processes, also resulting in a greater 
focus on secondary processes, such as painting, finishing and assembly [118]. Whether 
for a one-off prototype, or for a production batch, hand painting of objects, such as toys 
or ornaments, is a labour intensive and expensive task which introduces a large, manual
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bottleneck into the rapid manufacturing process. Bi and Lang [14] note the dependence 
on manual painting and provide motivation for robotic automation, citing as an example 
the ship building industry, which employs a large proportion of its workforce in this task.

Sung et al. [118] provide a solution to the problem of robotic prototype painting, using 
a tri-colour laser to expose points on photosensitive paint. The laser unit is mounted 
on a four-axis robot with an additional two-axis rotary tilt-table (incorporating the ob­
ject holder). The system has produced grey scale images up to 300dpi from textured 3D 
meshes. Robot end effector positions and laser intensity values are then generated from 
the mesh by extracting surface data (such as the position, normal vector, colour) for in­
dividual sample points on the models surface. This data is used to generate a path for 
the robot (and the laser it carries), and so paint the image (i.e. expose the photosensitive 
paint). The painting process requires no physical contact, so potentially images could be 
exposed on any surface as long as there is no occlusion [60].

The above work uses a laminar slicing of the input mesh, producing a fixed number of 
samples around the perimeter of the models. However, this approach results in a raster 
scanned image on the model, the regularity of which can be easily detected by the human 
eye (see Section 7.3.2). A surface orthogonal to its slicing plane can be uniformly sam­
pled using this raster scan method. However, if the surface is not orthogonal to the slicing 
plane, the resulting sampling density will not be even. Unless the surface very closely re­
sembles a cylinder, this can produce artifacts in the resulting image (see Section 7.3.2). To 
overcome these sampling issues, in Section 7.3, we apply our mesh sampling approach to 
this problem. We demonstrate high quality surface samplings that are equi-distributed on 
the object surface, with the ability to produce dithered output. This application provides a 
very practical example of our sampling approach, demonstrating considerable advantages 
over the original approach.

3.5 Summary

In this chapter, we have reviewed the literature for three applications of our sampling ap­
proach considered in Chapter 7. We introduced the field of point-based graphics, and the 
requirements involved for producing a high quality point sampling for rendering. Existing 
sampling approaches were then discussed, covering quality issues, and solutions to ren­
dering artifacts and coverage. We discussed the importance of fast neighbourhood com­
putation in point-based graphics, and provided an overview of how our space-filling curve 
sampling approach addresses this problem. We then looked at levels-of-detail techniques,



44 3.5 Summary

the advantages which point-based methods have in this field, and how our approach pro­
vides a real-time fine grain solution. We then gave an overview of remeshing, followed 
by an analysis of standard mesh decimation techniques. We considered current remeshing 
approaches, followed by a look at the importance of feature preservation, discussing how 
we address this problem using density functions. We further discussed cutting, parame­
terisation and triangulation methods and their evaluation, considering sample distribution 
and surface approximation. Finally, we considered prototype painting, existing techniques 
and how our sampling method solves the existing problems of poor sample distribution 
and visible artifacts.



Chapter 4

Sampling with Space-filling Curves

This chapter describes our novel main sampling algorithm. Our approach provides a 
solution to the problem of generating high quality density-controlled point distributions 
on surfaces in K3. The definition of quality varies between applications (see Chapter 7, 
where we discuss specific qualities required for point-based graphics and remeshing). 
However, for the general case of sampling, it has been demonstrated that the property 
of low-discrepancy is broadly advantageous [115] (see Section 2.1). Thus, to ensure we 
get a uniform distribution, we require point distributions on surfaces with a low discrep­
ancy. We may also require that the local point density of the surface distributions can be 
controlled, so that, for example, more points can be sampled in areas of greater detail or 
higher surface curvature. Both criteria describe high quality point distributions for many 
applications. The problem of sampling 2D arbitrary surfaces with a density-controlled 
low-discrepancy distribution is not trivial. Our solution to this problem is to decrease 
the complexity of the sampling problem by distributing points along a space-filling curve 
that has been mapped to the surface. We can then sample the curve, which reduces the 
sampling problem to a simpler ID problem. We sample points on the curve in a manner 
similar to histogram equalisation [59].

In this chapter, we first provide an overview of our sampling algorithm (see Section 4.1). 
We introduce space-filling curve generation, describing the space-filling curves consid­
ered and our adaptive Hilbert curve algorithm (see Section 4.2). We then describe our ap­
proach to the computation of integrals for space-filling curve sampling (see Section 4.3), 
followed by a description of the ID sequences investigated as a basis for this sampling 
(see Section 4.4). We consider approaches to the problem of stretch introduced by a pa­
rameterisation, and evaluate the solutions of adaptive curve generation and surface repa- 
rameterisation (see Section 4.5). Finally, we summarise this chapter (see Section 4.6). 
Our approach, and the accompanying results, were originally published in [103].
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4.1 Algorithm Overview

We first briefly overview our approach. Our algorithm takes a parametric surface, X , 
which is assumed to be a regular, two-dimensional Riemannian manifold in 3D Euclidean 
space, a user-defined density function 8 : X  -> Mq", and the number, TV, of required 
sample points as input, and computes a set of N  points sampling X . 8 is a user-defined, 
non-negative function indicating the desired sampling density for the construction of the 
new distribution; 8 may be constant, or proportional to surface curvature, for example. 
This is a relative density, specifying the relative number of sample points required per 
unit area with respect to the overall number of points N. For simplicity we assume that 
X  is parameterised over the unit square [0, l]2 by /  : [0, l]2 —*• X , but note that it can 
easily be changed to a more general parameter domain. We sample X  using a space-filling 
curve: we generate an adaptive space-filling curve in [0, l]2 which is mapped onto X  by / .  
The space-filling curve is created adaptively to different recursion depths in the parameter 
domain to account for the stretch between the area element in the parameter domain and on 
the surface such that the surface is covered by the adaptive curve according to the density 
<5. Then sample points {pi : I =  1, . . . ,  N }  are placed along the curve on X  based on 
how the integral f  8dA increases along the curve, using an approach similar to histogram 
equalisation. While this is an integral along a curve, we interpret it as a surface integral 
over the area ‘belonging to’ the section of the adaptive approximation to the space-filling 
at the given level of refinement. This is justified as the adaptive curve approximates the 
space-filling curve that covers the whole surface in the limit, and in practice, lines of the 
curve are very close in the approximation (see Section 4.3). As demonstrated in detail in 
Chapter 5, this results in a low-discrepancy point distribution in the sense that for each 
subset U of X  (in particular subsets of the type used for discrepancy computation), the 
ratio of the number of sample points lying inside A  to the overall number of points N  
approximates the surface integral ratio f v 8 dA / f x  8 dA.

We now give an overview of the steps of the algorithm. Pseudocode for the overall point 
distribution algorithm is given in Figure 4.1.

First, the adaptive space-filling curve C is generated, (see Figure 4.1, lines 1-3) with re­
spect to the surface X  (via the parameterisation /) , according to a minimum area coverage 
parameter a, a density 8, and a maximum recursion depth r. The depth r is unlikely to be 
reached, and is set only as a maximum limit on memory usage. As shown in Section 2.2.2, 
a space-filling curve can be generated to different approximation levels, with the number 
of vertices in the curve increasing with the approximation level. We generate an adaptive 
curve so that we can control the number of vertices locally. This process of adaptive gen­
eration is referred to as curve subdivision, and each local section of the curve may have its
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Algorithm D istributePoints ( /, 8, r, a, TV, C)
Input: / —parametrisation /  : [0, l]2 —► R3 for surface X

8—density function 8 : X  —► Rq
r—maximum recursion depth for space-filing curve approximation 
a—parameter for the minimum required area associated with a curve vertex hi 
N —number of points that should be distributed on X  
C—type of space-filling curve 

Output: A  low-discrepancy point distribution on X  according to 8, given as a list
of parameter values for /

1. n <— GenerateRootNode(C)

2. T  <— POPULATECURVETREE (n, r, a, 0, / ,  o)

3. [ h i , , hM] <- Output(T)

4.

5. So «- 0

6. for Z <— 1, . . . ,  M  do

7. 5/ <- i+Density ( /,  £, HO

8. [gi,. . . , ât] Create 1 DPoints(TV)

9. [pi, . . .  ,pN] <- EQUALlSE([qi,. . . ,  qN], [Hu . . . ,  HM], [Si,. ..,  5M])

10. return [pi,.. - ,pN]

Figure 4.1: Point Distribution Algorithm.

own approximation level. The curve is subdivided using a quad-tree (or similar) structure 
until the desired density is achieved. The minimum area parameter, a, defines a minimum 
lower bound for the size of a space-filling curve quad on the surface. This ensures that 
even for an area of the surface that is highly stretched, the tree must be subdivided enough, 
such that even when highly stretched, the quad’s area is smaller than a. A suitable value 
for a can be chosen as half the required maximum Euclidean distance between vertices 
of the space-filling curve on the surface (see Section 4.2.1). The initial permutation of 
the space-filling curve is also passed as a parameter (see Figure 4.2). The path through 
these quads is returned by as a set of ordered space-filling curve vertices hi, I = 1, . . . ,  M, 
which make up a piecewise linear space-filling curve in [0, l]2 (see Figure 4.1, line 3).

The parameterisation /  is then applied to die set of vertices hi, resulting in a set of vertices 
on the surface Hi (see Figure 4.1, line 4). Surface area elements for each vertex are then
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n
Figure 4.2: Left: sampling at any position along the curve; right: sampling only at 
the vertices.

calculated, and a cumulative surface integral along the curve is computed using the area, 
and density function 6 (see Figure 4.1, lines 5-7). The cumulative surface area integral, 
computed along the curve and weighted by the density function, is used in the equalisation 
step of the algorithm to evenly distribute points on the surface.

A ID sequence of real numbers in the unit interval [0,1], qi, I = 1, . . . ,  N, is then gen­
erated (see Figure 4.1, line 8). The ID sequence provides the intended distribution of 
points that is used to sample the space-filling curve. This sequence is mapped to the curve 
according to the cumulative surface integral and the local level of recursion of the space­
filling curve (see Figure 4.1, line 9). This equalisation step adjusts the position of the ID 
sequence of points according to the surface integral. By distributing the points according 
to the local surface area and density in this manner, we correct for the stretch introduced 
by the parameterisation, and output a set of high quality points pi, I — 1 , . . . ,  N, with 
respect to S (see Figure 4.1, line 10).

4.2 Space-filling Curve Generation

In Section 2.2, a space-filling curve definition was given, along with a brief discussion of 
the various curves used in this work. We now look at their construction and generation. 
Interpreted as a mapping: C : [0,1] -on*°> [0, l]2, space-filling curves are a special kind of 
fractal curve [79], which may be constructed using an L-system algorithm [101], where 
a piecewise linear constructor curve is recursively refined by replacing each of its line 
segments with a transformed (usually scaled, rotated and translated) version of the initial 
constructor. This is repeated recursively until a certain depth has been reached. The
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result is an approximation of the limit curve. As discussed in Section 2.2.2, the main 
requirement for this algorithm is that the curve fills [0, l]2 and is not self-intersecting. 
Various traditional space-filling curves can be used, including the Peano, Peano II, and 
Hilbert curves (see Figures 2.4, 2.5, 2.3). Various other curves also exist, such as the Z 
curve [88] and a zig-zag curve (see Section 2.2.2).

If we treat an approximation of a space-filling curve as a set of connected vertices, to 
sample a set of points on this curve, we must first decide to sample points only at the ver­
tices, or anywhere along the curve (see Figure 4.2). The answer to this is not immediately 
obvious. From a purely implementational point of view, it makes sense to sample points 
at the vertices, as we can pre-compute their locations, and simply flag a vertex as a sample 
point, or not. This means resampling (see Section 7.1.3) is much more feasible, and the 
memory overhead is reduced. However, ignoring the computational cost (as we are more 
concerned with the quality of the distribution), we must investigate what effect it has on 
the output distribution. At the limit of what may be represented using floating point num­
bers, the output sample distribution for both techniques would be almost identical. At a 
very low curve iteration, due to the coarse discretisation, neither method could be used 
to produce a high quality sampling. However, allowing points to be placed on the curve, 
between vertices, may in fact introduce more error into the distribution, as the position 
of each sample point will be dictated by the local shape of the curve, not just the local 
density. So, assuming a high ratio of vertices to sample points, if we sample points only at 
the curve vertices, we are simply discretising [0,1] further, and therefore discretising the 
histogram; sampling at the curve vertices will simply ‘snap’ a sample to the nearest unoc­
cupied vertex. It also means that sample points will always be minimally separated by the 
uniform distance between curve vertices. By adaptively generating the curve, we can lo­
cally go to a recursion level at which the exact placement is sufficiently close to the vertex 
position to make no real difference, thus removing the problem of coarse placement.

We now look at the construction of the space-filling curves used in this work. Distances 
between consecutive, connected vertices in the Z curve (see Figure 2.2) are variable, and 
the problem that this poses to our sampling application (see Section 2.2.2) makes it un­
desirable for use in this work. The Peano curve (see Figure 2.4) shares a very similar 
construction method with the Peano II curve(see Figure 2.5), but vertices are visited more 
than once (see Section 2.2.2), meaning that sampled points could overlap. Comparatively, 
the advantages of the Hilbert curve are the low rate at which the number of vertices that 
it is composed of increases with respect to the recursion depth, its quad-tree structure and 
simple geometric construction, and its good spatial coherency (see Section 2.2.2). Whilst 
the rate at which the number of vertices composing the Peano II curve increases is faster 
than the Hilbert curve, and its spatial coherency is worse, it is still a viable space-filling
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Vertex (i)
Permutation state (j) 1 2 3 4

A B A A D
B A B B C
C D C C B
D C D D A

Table 4.1: Permutation rules for the Hilbert curve.

[ 4 < --------------------------------- 1
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Figure 4.3: Construction permutations of the Hilbert curve.

curve for our application, and thus its construction is described in this section, and the 
discrepancy of points sampled using it in the plane is investigated experimentally (see 
Section 5.1.2). The construction principles of these two curves are:

Hilbert Curve

The generation of the Hilbert curve approximation uses a recursive construction, as 
seen in Figure 2.3). A permutation state j  describes an ordering of four quads (A, 
B, C, D), defined in Figure 4.3. The centre point of a quad is a vertex, and the four 
quads make a set of vertices {ej : Z =  1 , . . . ,  4}. If a quad needs to be subdivided, 
we store its index i and the permutation j  of the four quads that make up e*. It is 
then subdivided into four new quads, and a vertex is placed in the centre of each new 
quad. These vertices are ordered according to element (i,j)  in Table. 4.1, giving a 
new set of vertices (ej : Z =  1, . . . ,  4}. Vertex e[ is then connected to e,_i, if i > 1, 
and vertex e'4 is connected to ej+i, if i < 3. The set of vertices resulting from this 
subdivision forms a properly connected piecewise-linear curve.

Peano H Curve

The approximate geometric interpretation of the the Peano II curve is a ternary 
recursive construction (see Figure 2.5). The unit square is divided into nine regular 
squares, which are recursively subdivided until the required level of approximation 
is reached. Each cell contains a vertex, and like the Hilbert curve, the path of the 
Peano II curve can be described by four permutations (see Figure 4.4). Table 4.2
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Vertex (i)
Permutation state (j) 1 2 3 4 5 6 7 8 9

A A C A D B D A C A
B B D B C A C B D B
C C A C B D B C A C
D D B D A C A D B D

Table 4.2: Permutation rules for the Peano II curve.
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Figure 4.4: Construction permutations of the Peano II curve.

shows these permutations. The curve is otherwise constructed in the same manner 
as the Hilbert curve.

4.2.1 Adaptive Hilbert Curve

In this section, we describe our algorithm for computing an adaptive Hilbert curve for sur­
face sampling. Whilst there are various space-filling curves that could be employed in our 
sampling algorithm, the Hilbert curve demonstrates the best spatial coherence (see Sec­
tion 2.2.3), is straight forward to generate geometrically using a quad-tree structure, and 
its complexity scales slowly with respect to the recursive depth. Point distributions pro­
duced using our algorithm and the Hilbert curve also demonstrate the lowest discrepancy 
when compared to distributions on other curves (see Section 5.1.2). For these reasons, 
whilst our approach is generally applicable to many space-filling curves, we focus on the 
Hilbert curve.

If a space-filling curve with a uniform recursive depth is generated in the parameter do­
main [0, l]2, and mapped via the parameterisation /  onto the surface X , the local scaling 
between area elements in the parameter domain and the surface will cause the uniform 
depth curve to not be distributed uniformly on the surface, introducing parametric stretch
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to the curve. To correct for this problem, an adaptive space-filling curve is generated that is 

locally refined based on the scaling o f the area elem ents, resulting in a curve that demon­

strates a constant minimum density o f  vertices on X  (see Figure 4.5). This minimum  

could be reached simply by generating a uniform space-filling curve with a high enough 

recursion depth. However, that solution, especially for extreme local stretch in the param­

eterisation, would be highly computationally and memory intensive. Local refinement 

can further be controlled by the density function <5, allow ing the generation process o f the 

curve to not only take into account the area scaling, but also the final required distribution 

o f sample points.

Figure 4.5: Uniform (left) and adaptive (right) Hilbert curve.

We compute an adaptive approximation o f  the Hilbert curve, Ch : [0,1] [0, l ] 2, using

a quad-tree approach, where each vertex o f  the curve represents a quad (square) in [0, l ] 2. 

This can be done rapidly to provide a set o f  Hilbert curve vertices {/ij:J =  l , . . . , A / } c  
[0, l ]2 expressed by 2D co-ordinates, which uniquely correspond to ID  co-ordinates via 

the inverse o f Ch- Note that although a change in curve vertex density w ill affect the final 

positioning o f the sample points, it does not affect the quality o f  the sampling, so long 

as the minimum density o f  curve vertices is reached. In Section 4.5, w e discuss how the 

surface parameterisation may affect this minimum lower bound.

An approximate lower bound o f the recursive depth o f  the Hilbert curve is som e constant 

uj times the ratio f v 6 dA /  Jx  S dA,  for each subset U o f  X , in order to provide sufficient 

sampling accuracy. In practice, due to experimental testing, w e find that lo>  10 is suffi­

cient to provide the required density o f Hilbert curve vertices with respect to the density



4.2 Space-filling Curve Generation 53

function 6, regardless of parametric stretch or distortion. The Hilbert curve vertices are 
later used to compute the integrals needed to determine the final sample points. Locally 
on the surface, each surface patch must have a certain minimum number of Hilbert curve 
vertices so that the final point distribution can be sampled with sufficient accuracy. In 
practice, a can be set according to the number of points, N, specified by the user, and the 
approximate ratio of vertices to required points, u;, in one axis of [0, l]2, with respect to 
the density function 6,a ^  (y/uN/2)S.

We list the pseudocode for the adaptive Hilbert curve algorithm in Figure 4.6. We be­
gin by detailing how the required recursion depth of the Hilbert curve is computed, fol­
lowed by a detailed description of the adaptive Hilbert curve algorithm. The function 
discussed in this section, PopulateCurveTree, is called from the D isributePoints  
algorithm (see Figure 4.1). PopulateCurveTree is used to generate an approximation 
of a Hilbert curve in the unit square. A quad-tree is generated using this method accord­
ing to the geometric description of the Hilbert curve Ch- We use a tree to facilitate the 
recursive subdivision of the unit square, and after all subdivision, the final curve vertices 
are generated and stored in the leaf nodes. The unit square is subdivided into four quads 
centred around each curve vertex

Algorithm PopulateCurveTree (n, r, a, g, / ,  o)
Input: n—root node for the specified curve

r—max space-filling curve recursion depth
a—parameter for the minimum required area associated with a curve vertex h 
g—current depth of recursion 
/ —parametrisation /  : [0, l]2 —► M3 for surface X
o—permutation state defining the local shape of the curve 

Output: A space filling curve defined by n, in a tree structure

1. if g ^ 7* and AsSESSSUBDIVlSION(a, ti)—tr u 6

2. [ci, . . . , c4] «- G enerateC hildren(n, o)

3. o' <— ApplyPermutation(c, o)

4. for c £ [ci,. . .  ,c4] do

5. c «- PopulateCurveTree(c, r, a, g + 1, o')

6. n <- ADDCHILD(n, c)

7. return n

Figure 4.6: Curve generation algorithm.
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The inputs to the method PopulateC urveT ree are a root node n, the maximum recur­
sive depth of the curve, r, a, describing the minimum lower bound of the area of a Hilbert 
quad on the surface X , the current recursive depth g, the surface parameterisation / ,  and 
the current permutation of the Hilbert curve o. A  node in this quad tree stores the centre 
point of the quad and its index with respect to its siblings.

First, the current depth g is compared to the maximum recursion depth cap r  (see Fig­
ure 4.6, line 1). If g < r, the method A ssessS u b d iv ision  is called, which applies the 
supplied parameterisation /  to the node n, and calculates the straight-line distances from 
the centre point to the comers and half-way points along each side. This measurement 
provides enough accuracy for the initial subdivisions, and the distance approximation has 
good asymptotic behaviour due to the subdivision of the cells. The maximum distance 
is taken, and compared to the minimum cell area a. If the value is greater than a, a true 
result is returned, and G en erateC h ild ren  is called on the node n (see Figure 4.6, line 
2). G en erateC h ildren  subdivides n, and returns four new nodes c\, . . . , c4, with the 
correct permutation according to o and the index of the parent node n (see Figure 4.1). A 
new permutation o' is then computed (see Figure 4.6, line 3). The method P o p u la te­
C urveTree is then recursively called on each node c (see Figure 4.6, lines 4-5). r may 
be set as a limit on the maximum memory requirements of the process (see Section 4.5). 
The output of P opulateC urveT ree is a subdivided node c, which is then added to its 
parent node n (see Figure 4.6, lines 5-6). Finally, the node is returned (see Figure 4.6, 
line 7). If the node is a leaf node (Figure 4.6, line 1 returns t r u e ) ,  then n with no added 
children is returned.

As demonstrated in Figure 4.6, line 3, we use the quad-tree structure to generated a list 
of ordered Hilbert curve vertices. If the quad-tree is desired to facilitate neighbourhood 
operations and further subdivision, we must store the tree (see Section 7.1.3).

4.3 Computing Integrals for Curve Sampling

Generating the adaptive curve results in an ordered set of vertices ht (see Figure 4.1, lines
1-3). These must be mapped onto the surface X  via parameterisation / ,  resulting in an 
ordered set of vertices on the surface: Ht = f(h i), I =  1, . . . ,  M. The Ht give the surface 
space-filling curve Cs. In order to compute the final point sampling of X  along Cs, we 
must compute cumulative densities Si along the curve, representing the surface integral 
f S[ 6 dA where Si is the subset of X  covered by the surface space-filling curve from vertex 
Hi to Hm (see Figure 4.1, lines 6-7). Then we are able to sample a sequence of points 
Pi along the surface space-filling curve in a similar way to histogram equalisation (see
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Figure 4.1, lines 8-9). To compute Si, we compute the density sk at each surface vertex 
Hk, and then accumulate the values to approximate the surface integral,

i

=  =  (4.1)
fc=l

Note that SM is the approximation of the total integral of S over X. To calculate the local 
density sk for each Hk, each of the vertices is associated with a small surface patch Ak of 
the surface X  for which we approximate sk = JAk 8 dA (Figure 4.1, line 7). Note that the 
overall surface integral of 5 over X  can be ignored as it is simply a scaling factor if we fix 
the desired number N  of sample points.

We have considered several different methods to approximate sk — f Ak 8 dA (see Sec­
tion 5.1.4):

(a) Compute the area of the triangle Hk- U Hk, Hk+i, and use the value of the density 
function at its centroid;

(b) Use a small square centred at Hk instead of a triangle, constructed from extra ver­
tices generated in the parameter domain with a size equal to a line segment of the 
curve, and use the value of the density function at its centroid;

(c) Use 5(Hk)y/detlHk where XHk is the first fundamental form of X  at Hk, as dA = 
y/detXdudv (see Eq. 2.22).

Also note, that for approach (c), we have to scale the results by w9max~9cumn\  where gmax 
is the maximum and (foment the current depth of the space filling curve recursion and w is 
the number of vertices in a curve quad. This is necessary to account for integrating over 
the area element dA over the adaptive curve where the curve vertices do not correspond to 
areas of the same size (otherwise, in the non-adaptive case, this is just a constant scaling 
factor for each element and could hence be ignored). However, it is not required for 
approaches (a) and (b) as the computed area of a patch is of similar size to the surface 
patch represented by each Hk vertex.

We then generate a set of ID samples {<#:/ = 1, . . . ,  N} in [0,1], where N  is the user- 
defined number of points in the sampling (see Section 4.4). Once we have calculated the 
cumulative densities Si, we move along the curve, and whenever Si becomes larger than 
the threshold described by the ID sequence qi (multiplied by Sm ), we sample a point 
Pi at a surface space-filling curve vertex on X  (Figure 4.1, line 9), producing the output 
distribution.
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4.4 ID Sequence Generation

We now describe various methods for generating the ID point sequences (Figure 4.1, line 
8) in the unit interval [0,1], to be mapped onto the space-filling curve based on fractional 
arc-lengths. We considered four different point sequences:

•  Randomly spaced points. This is mainly intended to be a control under the as­
sumption that a random ID sequence would create a 2D point distribution with 
similar properties to a random 2D distribution. A pseudo-random number genera­
tor was used to produce the sequence. Sampling with a random sequence of points 
demonstrates poor equidistribution, and poor results with respect to discrepancy. 
The main reason for this is that samples are placed independently of each other, 
so a good coverage is harder to ensure. We have chosen this sequence to experi­
mentally investigate whether the mapping process alone has any influence on the 
discrepancy behaviour. Results demonstrate, as expected, that the discrepancy of 
this set behaved in a similar way to a 2D random distribution (see Section 5.1.2).

•  Evenly-spaced points. The interval is simply divided by the number of required 
samples, giving a uniform distance between the points. Initially this was intended 
to be a control, but as shown in Section 5.1.2, it has unexpectedly good properties, 
which motivated the following jittered sequence. A drawback to placing evenly 
spaced points on the curve is that, if the number of points is commensurate with the 
number of vertices on the curve, the points are regularly placed with respect to the 
grid of vertices, resulting in highly visible aliasing artefacts.

•  Jittered evenly-spaced points. Jittered sampling was discussed in Section 2.1.2 as 
a method to reduce the variance of random sampling by splitting the domain into a 
number of equally sized strata, then randomly placing a point within each stratum, 
giving a certain uniformity to the distribution. Jittering is performed by comput­
ing an evenly-spaced distribution of samples, and shifting each point by a random 
amount up to half-way toward the next or previous point. Jittering the points re­
moves the effect that the curve structure has on the point set because of the random 
element, and removes the possibility of aliasing when the number of points and 
vertices is commensurate.

•  Low-discrepancy points. The use of low-discrepancy sequences is based on the ar­
gument that having ID low discrepancy may lead to 2D low discrepancy on the 
surface. All of the four low-discrepancy sequences introduced in Section 2.1.2 are 
tested: the Niederreiter, Sobol, Hammersley and Halton sequences. To generate the
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samples, Java versions of the four construction algorithms are employed based on 
standard implementations of these sequences. The Niederreiter sequence construc­
tion algorithm is based on the Collected Algorithms from the ACM: Algorithm 738 
[22]. The Sobol sequence is based on the Collected Algorithms from the ACM: 
Algorithm 659 [20]. The first 100 numbers in both the Niederreiter and Sobol 
sequences are discarded to avoid the leading zeros phenomenon [21]. The Ham- 
mersley and Halton sequence construction algorithms are based on the algorithms 
described in [125].

Results of experiments computing the star discrepancy for all of these ID sequences sam­
pled on the Hilbert and Peano II curves are shown for point distributions in the unit 
square in Section 5.1.2. They indicate that the jittered sampling method produces the 
most consistent results, and, also, samples can be more quickly generated than for the 
low-discrepancy sequences. Also, the jittered approach cannot cause aliasing problems 
like the evenly spaced sampling approach. For these reasons, we recommend the use of a 
ID jittered sampling approach as it gives the best general performance for our sampling 
algorithm. However, it is worth noting that this produces a probabilistic distribution. For 
some approaches, where repeatable results are required, a robust deterministic sampling 
method should be used, such as a low-discrepancy or evenly-spaced sequence.

4.5 Reparameterisation

In this section, we discuss the effect that the surface parameterisation has on our sampling 
approach. Surface parameterisation is the process of mapping from a parameter space 
onto a surface embedded in some space (here always M3). If a parameterisation is not 
given, finding a suitable set of u,v  parameters for a known surface in 3D is a difficult 
problem, typically putting constraints on shape or area in the process (see Section 3.2.3).

In our algorithm, we take, as an input, a parametric surface over the parameter space 
[0, l]2, which we then sample with a space-filling curve. This allows us to map a space­
filling curve onto the surface. However, in general the parameter space is not mapped onto 
the surface in a distance preserving manner, meaning the distance between two points in 
parameter space and image space can differ by a large amount; thus areas of regions 
in parameter and image space are also not preserved. The stretch is determined by the 
properties of the parametrisation.

Algorithmically, we generate an adaptive space-filling curve (see Section 4.2.1) to counter 
this parametric stretch introduced by the parametrisation; more space-filling curve vertices
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Figure 4.7: Superquadric.

are generated in areas which are stretched to a greater degree. Thus whilst the resulting 

space-filling curve verices are not necesarily uniformly distributed on the surface, there is 

a global minimal local density o f curve vertices everywhere on the surface. This ensures 

that there are sufficient vertices on the surface to compute the integrals and produce a final 

point sampling accurately. Figure 4.7 shows the Hilbert space-filling curve mapped onto 

the surface o f  a super-ellipsoid, where [0, l ] 2:

x(u,v)  =  co s1/ 3 ?/ co s1/ 3 ?;, (4.2)

y(u,v)  =  cos1/3?z s in 1/ 3 ?;, (4 .3)

z(u, v) =  s in 1/ 3 u (4 .4)

with and without adaptive curve generation. This surface has a very high degree o f  para­

metric stretch. The non-adaptive curve consists o f  approximately 2 6 2 ,0 0 0  vertices, whilst 

the adaptive curve consists o f  only 91 ,000 . It is clear that although there are still gaps be­

tween curve vertices when using the adaptive technique, they are far smaller than when 

using a non-adaptively generated curve.

However, this example also shows that there is a maximum density that can be reached 

for a given parametrisation due to machine precision limits. When generating the Hilbert 

curve we map ID  points to 2D points using the algorithm in Figure 4.6. The coordinates 

for a point in ID  are limited by machine precision. Mapping this point via a function 

into 2D results in in a coordinate with two components generated from the single ID  

component. Thus, a ID  point represented by b bits is mapped onto a 2D point with 

each co-ordinate having only 6 /2  bits. Thus, two distinct points in ID  differ in the 2D  

parameter domain by at least e =  l / ( 2 fe/2 -  1) in one coordinate. Otherwise they will
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correspond to only one point in the ID point sequence when a point sampling is being 
generated. Hence, to reach a minimum density of 1 point per surface area a, squares of 
the size e2 in the parameter domain should be mapped to areas on the surface of at most 
size a. We can compute the area element dA = y/det(l) du dv from the first fundamental 
form, J ,  for a point on the surface. We can further compute the surface area covered by 
any e2 sized parameter area E, using Ae — f E \/det(J) du dv (for simplicity we ignore 
the density 8 here). E  can then at most be covered by one point on the surface. Or, A E/e2 
gives the local surface stretch and with that a local point density limit achievable with 
a given machine precision. This depends on the parametrisation, and not just the first 
fundamental form, due to the E  in parameter space. Note that here we only consider the 
numerical resolution limit and not any other numerical problem arising from evaluating 
the parametrisation, etc.

In practice, in our algorithm we set a maximum recursion level and the parameter a giving 
the minimum lower bound on area associated with a surface space-filling curve vertex. 
In combination, these parameters determine the numerical resolution and with that limit 
the achievable point density given a certain parametric stretch. As the scaling factors 
between the surface and the parameterisation become extreme, the desired density may 
not be achievable as illustrated by the super-ellipsoid example above (Figure 4.7).

One solution to this problem is to use multi-precision arithmetic. However, whilst this 
would provide a solution to bypass machine precision limits, it is computationally expen­
sive, and is still fundamentally memory-limited due to the recursive depth of the curve 
that might be required.

An alternative to a multi-precision approach is to find a different parameterisation for the 
surface, enforcing a limit (or a lower limit), on the first order partial derivatives of the 
parametrisation (effectively limiting the norm of its Jacobian). In practice, one approach 
to the reparameterisation of a surface is to distort the parameter space by another function 
that stretches it: the mapping /  between the parameter domain [0, l]2 and the surface in 
K3 becomes f o g  where g : [0, l]2 —► [0, l]2. E.g. for the superquadric above, we can 
reparameterise it piecewise with a simple power law. In the interval [0,7r/2] we could use 
u = u * 3t t /2  to replace sin1/3(u) with sin1/3(u*37r/2) for u* G [0,1] and so on.

Figure 4.8 shows one comer of the super-ellipsoid shown in Figure 4.7, with three curves 
mapped onto the surface: the image on the left shows a uniform Hilbert curve of depth 7, 
the middle image shows an adaptive Hilbert curve with a depth betwen 6 and 14, and the 
image on the right shows a uniform Hilbert curve of depth 7 after employing the above 
reparameterisation. The adaptive approach results in a considerably better coverage than 
the constant Hilbert curve recursive depth. In turn, whilst the reparameterisation in this
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case is straightforward, it produces a better, more uniform, coverage than the constant and 

adaptive approaches.

Figure 4.8: Superquadric sampled with Hilbert curve: left, uniform curve; middle, 
adaptive curve; right, reparameterised uniform curve.

Generating the space-filling curve adaptively allows us to achieve localised higher den­

sities on surfaces for a similar or lower memory requirement. The approach also allows 

us to correct for extreme parameterisations. However, Figure 4.8 shows the limitations 

o f this for an extreme parameterisation. To improve this situation for specific parameter­

isations, we suggest one solution o f a reparameterisation o f the surface, either locally or 

globally. We have demonstrated that in the case o f  the superquadric, we can reparame- 

terise it using a global power law (a simple polynomial fitted to part o f  the parameter to 

alter the distribution to better adapt to the sine or cosine terms). Computing a local repa­

rameterisation o f  the surface for each quad o f the adaptive Hilbert curve would allow for 

localised reparameterisation that could also take advantage o f  the adaptive curve genera­

tion approach. Reparameterisation in this way also has problems however, as it may be 

difficult to compute a suitable reparameterisation for more com plex functions, especially  

when a surface is stretched anisotropically (see Section 8.3). We have not further investi­

gated reparameterisation however, as this problem is outside the scope o f  this work, and 

has many solutions in the area o f  mesh parameterisation.

4.6 Summary

This chapter introduced our novel sampling algorithm. This sampling approach produces 

high-quality low-discrepancy point samples on arbitrary surfaces that are uniformly dis­

tributed with respect to the local surface area (see Sections 5.1.3, 5.1.4). The density o f  

the sampling can also be controlled, allowing, for exam ple, higher densities o f  points in
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areas of high curvature. The parametric stretch introduced by the scaling of local area 
elements between the parameter domain and the surface has also been investigated. Solu­
tions to this problem were discussed, whereby adaptive space-filling curves constructed to 
machine precision limits and surface reparameterisaiton were used to correct for extreme 
parametric stretch. In the next chapter, we empirically investigate the quality of the point 
sample distributions generated using this novel algorithm, using discrepancy, blue noise 
and visual assessment as measurements.
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Chapter 5

Evaluation of Space-filling Curve Point 
Sampling

In this chapter, we experimentally evaluate the effectiveness of our point sampling al­
gorithm. We consider the discrepancy of point sets (see Section 5.1), the visual quality 
of the distributions (see Section 5.2), and how they fulfil the blue noise criterion (see 
Section 5.3). Finally, we briefly test the spatial coherence of space-filling curves (see Sec­
tion 5.4). We first explain how we measure numerical discrepancy, then present results 
comparing the distributions produced by our algorithm to other, popular low-discrepancy 
distributions. We then employ the blue noise criterion, computing the radially averaged 
power spectrum of point distributions, to determine their visual properties with respect to 
frequencies of noise. To numerically investigate the spatial coherence of various space­
filling curves we compare distances between points along the curve, and distances be­
tween the same points in Euclidean space (see Section 2.2.3). Poor spatial coherence 
decreases the accuracy of our sampling approach (see Section 2.2.2).

5.1 Discrepancy

In order to quantify the quality of point distributions generated by our algorithm, we ap­
proximate their discrepancy. Discrepancy measures the uniformity of a point distribution 
in a set X  by measuring the difference between the expected number of points and the 
actual number of points in a selected subset of X  (see Section 2.1.1). The expected num­
ber of points is given by the ratio between the area of the subsets and the area of X . 
The discrepancy can be plotted for point sequences as a scalar series with increasing se­
quence size. This observed experimental behaviour compared to the theoretical limits of 
discrepancy and also compared to other sequences allows us to evaluate our novel sam­
pling algorihtm. The aim is to achieve a discrepancy that scales as well as possible as the 
number of points increases.



64 5.1 Discrepancy

In Section 5.1.1, we introduce the numerical measures used to compute the discrepancy 
of a point set on the plane and on the surface of a sphere, and describe our experimental 
methodology. We then experimentally evaluate our point distributions according to dis­
crepancy considering three aspects. Firstly, the best combination of space-filling curve 
and ID sequence are identified (see Section 5.1.2). As the number of curves tested has 
been reduced to the Hilbert curve and Peano II curve based on their advantageous prop­
erties (see Section 2.2.2), the criteria for choosing the best combination is based on the 
discrepancy behaviour of the output point sequences for each combination of curve and 
ID sequence. This behaviour refers not only to the scaling of the discrepancy as the output 
point sequences increase in size, but also how robustly the discrepancy scales for various 
sample shapes used for the discrepancy measure. Secondly, the results for our approach 
using the best combination of curve and ID sequence are compared to results for the 
well-known low-discrepancy point sequences in the plane (see Section 5.1.3). Thirdly, 
we compare our results to results for well-known point sequences on the surface of a 
sphere (see Section 5.1.4).

5.1.1 Numerically Measuring Discrepancy

In this section, we describe how the discrepancy of a sequence of points within a unit 
square is computed, demonstrating how we have generalised these methods to use various 
sampling shapes. When approximating the star discrepancy of a sequence, an axis aligned 
rectangle, with one point at the origin, is used as the sample shape. In our experiments, 
we expand on this to include a quarter circle and a triangle as additional sample shapes, in 
order to better show how the distribution behaves in more general situations. For render­
ing, the discrepancy should ideally be independent of any underlying shape. For example, 
the rectilinearity of the surface being rendered may be unknown, thus sampling it with 
a point distribution that demonstrates low discrepancy when measured with rectilinear 
shapes may be a poor approach. The advantages of point sets whose discrepancy is in­
variant to the sampling shape has been demonstrated for super-sampling patterns used in 
antialiasing [39]. We also introduce a discrepancy measure on the surface of a sphere, and 
finally discuss the numerical computation of our discrepancy measures.

Planar Discrepancy

We now introduce planar discrepancy measures. As introduced in section 2.1.1, a com­
monly used discrepancy measure is the star discrepancy D* (see Eq 2.9). The sampling 
domain is defined as a set X , chosen to be a unit square, with rectangular, quarter-circle
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and triangular test shapes T  C X . The expected ratio of points found in each subset 
is the ratio of the area of the test shape to the area of X  which is 1. The discrepancy, 
i.e. the supremum of the error, is approximated by computing the maximum error for a 
finite number of test shapes. As the number of sample points increases, the discrepancy 
of any sensible sampling method should decrease. The rate of decrease should be high 
for a low-discrepancy sample distribution; in particular, it should be faster than the rate 
observed for a random point set. Generally speaking, the faster the discrepancy drops with 
the number of sample points, the higher quality a point distribution is, at least in the limit. 
The star discrepancy is also simple to estimate in practice [132]. In our experiments, to 
numerically estimate the star discrepancy, from the set of all axis-aligned rectangles in 
the unit square 93 in X , we select a subset 93q(L) of L rectangles, with L  = 1000, with 
one comer at the origin and the diagonally opposite comer at a random position vQ in the 
unit square. The value of L was found by observing the convergence behaviour of the 
discrepancy measurement, and set slightly above the value where no further change was 
typically observed. The random positions were computed using a pseudo-random number 
generator. We then used a standard approach to estimate the star discrepancy:

|.Pn T|D*(P) ~  max 
T€9*o(L) \p\

where | P  fl T  | is the number of points in the rectangle T.

— area (T) (5.1)

Here we generalise the usual star discrepancy measure to better show how each point se­
quence behaves by using triangles, quarter-circles, and rectangles as test shapes. These 
test shapes were chosen as the triangle highlights the discrepancy of shapes with arbitrary 
edge directions, and the quarter circle for curves. While theoretical results for these dis­
crepancy measures are not widely available (see [132]), we can compute numerical results 
in the same way as for the rectangles, allowing us to investigate how different point dis­
tributions perform with different test shapes (see Figure 5.1). Triangles were chosen with 
one point at the origin and the other two points, v0,vi e X , chosen randomly. Random 
quarter-circles were generated by placing the centre of a quarter-circle at a comer of X  
and computing a random radius 0 < r < 1 such that the whole quarter-circle is confined 
within X . Whilst this means that a section of X  cannot be sampled by a particular sub­
set shape, the comer for the centre is chosen at random for each T  to ensure all of X  is 
sampled.

Surface Discrepancy

We now discuss discrepancy measures on surfaces. Low-discrepancy sampling methods 
have become a popular method to compute surface areas of 3D models [28, 75, 76]. Ap-
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Figure 5.1: Rectangle, triangle and quarter-circle test shapes for the star discrepancy 
measures.

plying the Cauchy-Crofton formula [109], these methods compute a bounding surface 

o f the model, through which they generate lines, computing intersections between the 

lines and the original surface. The lines are constructed through pairs o f  low-discrepancy 

points, thus the properties, such as uniformity, o f  these points is very important. However, 

approaches such as these rely on the accuracy o f  the application output, surface area com ­

putation, as a method o f  testing. Our algorithm also relies on good uniformity o f  points 

for surface sampling, and thus w e try to generalise the experimental approach already 

used on the plane to a surface in M3. We generalise the star discrepancy on the plane to 

the surface o f a sphere. Generalising the star discrepancy like this provides a good method 

to evaluate the quality o f  a surface distribution, as the test is not dependent on the output 

o f an application, and is simpler compared to the various techniques described in [34], 

which also only provide results for very small numbers o f points.

We measure the discrepancy on a parameterised unit sphere rather than an arbitrary sur­

face, for two reasons. Firstly, well known low-discrepancy distributions on the sphere 

exist as a basis for comparison. Secondly, a simple generalisation o f  the star discrepancy 

can be readily defined by

D S{P)  =  sup
| P n T |  area(T)

1̂1 47T
(5.2)

where T is the set o f all spherical triangles lying on the surface o f  the unit sphere, and 

|P  Pi T\ is the number o f points in P  inside T  €  X.

To numerically estimate this discrepancy w e generate random spherical triangles defined 

by three points .4, B, C  on the unit square. For this we select points (ut,vi) e  [0, l ] 2,
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/ =  1,2,3, at random and map them onto the sphere using the following parametrisation:

xi = cos(27ru/)sin(cos_1(2v/— 1)), 

yi = sm(2Trui)sm(cos~1(2vi — 1)),

zi = cos(cos_1(2 vi — 1)). (5.3)

This sampling results in a uniformly distributed set of points on the sphere, avoiding a 
non-uniform concentration at the poles.

The area of a spherical triangle T  is given by

area(T) =  A + B +  C - tt (5.4)

where A, B  and C are the external angles of the spherical triangle, which can be found 
using the cosine rule, i.e.

A = c o s - '(  (5.5)
\  sin(c) sin(o) /

where a, b and c are the internal angles of the triangle given by, e.g., a = cos-1 (B • C). A
point p on the sphere lies inside such a triangle if p- (X x Y )  is positive for X  =  A, Y  = B
and X  =  B ,Y  = C and X  =  C ,Y  = A. B  and C are computed similarly.

Numerical Approach

In this section we discuss how to compute the numerical discrepancy in the following ex­
periments (see Sections 5.1.2,5.1.3, 5.1.4). We first investigate in detail the discrepancy
properties of 2D point distributions on the plane generated by our implementation using
the Hilbert and Peano II curves, sampled using random, evenly-spaced, jittered and low- 
discrepancy ID point sequences. We then compare results from our algorithm to other 
distributions on the plane. Finally, we compare our approach to other distributions on 
the sphere. To improve clarity of the graphs, when comparing the distributions produced 
using our algorithm to those produced by other sampling methods, we only compare the 
other sampling distributions with the space-filling curve distribution that demonstrates the 
lowest discrepancy: the Hilbert curve with a ID jittered sampling method. The distribu­
tions that we compare our approach to are detailed in Section 5.1.3.

All of the tests were performed for sample sets sizes of N  = 2l and N  = 2l +  2Z_1, for I = 
1, . . . ,  m. We set m to 20 and so test 40 distribution sizes varying from 2 points to 1572864 
points, resulting in a range of data that matches the logarithmic scale the experiments are 
plotted on which makes it simple to compare the curves’ scaling behaviour with the known
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theoretical limits. Note that to avoid aliasing problems with evenly-spaced sampling, the 
number of vertices on the curve generated from the recursive approximation depth g (see 
Section 4.2.1) and the sizes N  were non-commensurate (see Section 4.4).

The adaptive Hilbert curve generation algorithm (see Section 4.2.1) is used to generate the 
Hilbert curve for the discrepancy experiments described in this chapter. A high ratio of 
curve vertices to sample points ensures a good output distribution of points. The adaptive 
Hilbert curve for the planar discrepancy is in fact generated at a constant recursion depth 
due to the plane’s constant area and density. Thus, a large minimum recursion depth for 
the adaptive curve generation, g =  12, is used (resulting in 412 vertices). When tested 
against the Peano II curve, a recursion depth of g =  8 for the Peano II curve (resulting 
in 9s vertices). These high recursion depths are used to ensure that the ratio of vertices 
to sample points does not affect the results. The Hilbert curve on the spherical surface is 
generated to ensure the same number of curve vertices as on the plane. We generate a high 
depth adaptive Hilbert curve on the sphere, resulting in minimum local density of curve 
vertices on the surface relative to the surface area (resulting in > 412 vertices). Note that 
the Peano n  curve is not tested on the sphere surface because of conclusions drawn from 
experimental results in Section 5.1.2.

Star discrepancy results are shown using graphs displaying the logarithm of the discrep­
ancy versus the logarithm of the number of points (see Sections 5.1.3, 5.1.4). Although 
theoretical discrepancy results are characterised by a power law times a logarithmic factor 
(see Section 2.1.1), the logarithmic factor is hard to determine experimentally due to its 
minor numerical effect. As can be seen in our graphs, on a log-log graph, the experimen­
tally determined discrepancy can be well approximated by a straight line. Thus, comput­
ing the slope of this line gives us an adequate way of comparing the scaling behaviour of 
the different approaches.

For a random sequence the expected slope of a least-squares fitting line is —1/2 [92]. 
Clearly, we hope our point distributions scale better than a random distribution. For N  
points in the unit square, the expected best relative error in area which can be achieved 
is 0 (N ~ 1 log2 N) [92], giving a lower bound of approximately —1 for the slope of the 
best-fit straight line.

5.1.2 Evaluating the Influence of Space-filling Curve Choice on Dis­
crepancy

Our algorithm allows various space-filling curves to be used in the sampling process. The 
space-filling curves can then be sampled with any ID sequence to produce the final output
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sample distribution. In Sections 2.2.2 and 4.2 we considered various space-filling curves 
to be employed in our sampling algorithm, and chose the Hilbert and Peano II curves as 
their geometric characteristics are well suited to our algorithm. In order to find the best 
combination of curves and the ID sequences discussed in Section 4.4, we now evaluate 
their discrepancy.

In this section the discrepancy for both the Hilbert and Peano II curves, sampled with 
random, evenly spaced, jittered and low-discrepancy points is measured. In order to give 
a more thorough analysis of the point distributions, we measure the discrepancy using 
rectangles, quarter-circles and triangles as described in Section 5.1.1.

From now on, we will refer to the Hilbert curve sampled using a jittered ID sequence as 
Hilbert-jittered, with a random sampling as Hilbert-random, an even sampling as Hilbert- 
even, and a low-discrepancy sequence sampling as Hilbert-low. Similarly, we refer to the 
Peano II curve sampled using a jittered ID sequence as Peano-jittered, and so on.

Figures 5.2-5.4 show the discrepancy using Hilbert-random, Hilbert-even, Hilbert-low 
and Hilbert-jittered, measured using rectangles, quarter circles and triangles respectively. 
Figures 5.5-5.7 similarly show corresponding discrepancies using the Peano II curve, 
again for rectangular, circular and triangular test shapes. Tables 5.1 and 5.2 summarise 
the gradients of the least-square lines fitted to the results of these experiments.

ID Sequence Rectangular Circular Triangular
Random

Evenly-spaced
Low-discrepancy

Jittered

-0.51
-0.51
-0.51
-0.73

-0.49
-0.70
-0.71
-0.73

-0.51
-0.57
-0.57
-0.72

Table 5.1: Gradient of least squares fit line for distributions on the Hilbert curve.

ID Sequence Rectangular Circular Triangular
Random

Evenly-spaced
Low-discrepancy

Jittered

-0.50
-0.71
-0.72
-0.70

-0.49
-0.71
-0.70
-0.70

-0.50
-0.70
-0.69
-0.70

Table 5.2: Gradient of least squares fit line for distributions on the Peano H curve.

As we can see in Figure 5.2, using rectangle test shapes, Hilbert-random, Hilbert-even 
and Hilbert-low perform almost identically. Hilbert-jittered performs significantly better. 
Figure 5.3 shows the case of quarter-circles test shapes. When compared to the rectan­
gular test shapes, a vastly improved performance is seen for Hilbert-even and Hilbert-
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Figure 5.2: The log of the discrepancy of distributions produced using the Hilbert 
curve, measured using rectangles versus number of points on a logarithmic scale.

low, showing almost as good results as the jittered version; Hilbert-random performance 

did not improve. Figure 5.4 shows that using triangles as test shapes gives similar re­

sults to the rectangle case, although both the Hilbert-even and Hilbert-low distributions 

slightly outperform Hilbert-random. Hilbert-jittered, however, performs consistently well 

throughout.

Looking at Figures 5 .5 -5 .7 , whereas the Hilbert curve demonstrated varying results for 

differing discrepancy test shapes, the Peano II curve shows consistent results for all three; 

Peano-random performs as badly as Hilbert-random, but Peano-even and Peano-low per­

form consistently throughout, compared to inconsistent results for the Hilbert-even and 

Hilbert-low. Peano-jittered again performs well throughout.

If we now consider the gradients o f  the best fit lines for these distributions, listed in Ta-
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Figure 5.3: The log of the discrepancy of distributions produced using the Hilbert 
curve, measured using quarter-circles versus number of points on a logarithmic 
scale.

bles 5.1 and 5.2, we can see that when points are placed randomly along either space 

filling curve, for any discrepancy measure, the gradient o f the best fit line is very close to 

—0.5, corresponding to the expected result for a random distribution. In the case o f the 

Hilbert curve the gradients confirm our observations o f the graphs; only Hilbert-jittered 

provides consistently good results. For the Peano II curve, Peano-even, Peano-low and 

Peano-jittered, all show a significant improvement over random sequences, for each dis­

crepancy measure, with a slope o f about —0.7 in each case. This is clearly better behaviour 

when compared to random points, but not as good as can theoretically be provided by a 

2D low-discrepancy point sequence, 0 ( N ~ l (log N ) 2), corresponding to gradient —1.
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Figure 5.4: The log of the discrepancy of distributions produced using the Hilbert 
curve, measured using triangles versus number of points on a logarithmic scale.

Discussion

The Hilbert-jittered, Peano-jittered, Peano-even and Peano-low distributions are consis­

tently superior to using either random distribution. It is also clear from the results that 

there is no need to use a ID  low-discrepancy sequence to generate a low-discrepancy 

distribution in the plane as Peano-even performs just as well.

Results in this section, specifically Tables 5.1 and 5.2, show that pairing different curves 

and sequences together results in point sets with significantly different geometric discrep­

ancies. More specifically, for a given ID  sequence, changing the type o f  space-filling 

curve can have a very significant impact on the discrepancy o f  the point set, which further 

varies based on the geometric sampling shape. For exam ple, sampling the Hilbert curve
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Figure 5.5: The log of the discrepancy of distributions produced using the Peano II 
curve, measured using rectangles versus number of points on a logarithmic scale.

with an evenly-spaced or low-discrepancy sequence yields a discrepancy very similar to 

that o f random sampling. This observation, that the space-filling curve used can signifi­

cantly affect the sampling quality, implies that either the number o f vertices in a curve, or 

the underlying structure o f a curve causes this variation in point set discrepancy. As a fur­

ther observation, the random and jittered sequences, which both have a non-deterministic 

element, demonstrate very consistent results for each geometric test shape. We believe 

that these observations warrant further investigation.

A possible explanation for the inconsistent behaviour o f point distributions on Hilbert 

curve, is that if the size o f N  is commensurate with the number o f vertices in the curve, 

aliasing effects can appear if an evenly-spaced distribution is used; points become aligned 

with the repeated geometric constructs that make up the curve, the effect becoming very
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Figure 5.6: The log of the discrepancy of distributions produced using the Peano 
II curve, measured using quarter-circles versus number of points on a logarithmic 
scale.

visible to the human eye (see Figure 5.8). By using jittered sampling rather than using 

evenly spaced points, we we avoid such aliasing problems.

Overall, using a jittered ID  sequence appears to provide the best and most robust, dis­

crepancy scaling behaviour out o f  all the ID  sequences tested. Furthermore, whilst not 

producing consistently good results for each ID  sequence, the Hilbert-jittered approach 

produced the lowest discrepancy results overall. In addition, the Hilbert curve benefits 

from a better spatial coherence than the Peano II curve (see Section 2.2.3), and the num­

ber o f vertices increases much more slow ly with each recursive step o f  the Hilbert curve’s 

generation (see Section 4.2). We therefore use the Hilbert-jittered approach for further 

testing and comparison with other distributions and through the rest o f this work.
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Figure 5.7: The log of the discrepancy of distributions produced using the Peano II 
curve, measured using triangles versus number of points on a logarithmic scale.

5 . 1 . 3  C o m p a r i s o n  w i t h  L o w - d i s c r e p a n c y  D i s t r i b u t i o n s  i n  t h e  P l a n e

In this section, in order to compare our technique to existing methods, we evaluate the 

quality o f  the point distributions generated in the plane, comparing the best results pro­

duced by our algorithm, using the Hilbert curve with a jittered ID sequence, to those gen­

erated by other well-known sampling techniques for the unit square (see Section 2.1.2): 

2D base-2 Niederreiter [90] and Sobol [116] sequences , 2D base-2 Hammersley and Hal- 
ton sequences [\ 25], jittered sampling (often called stratified sampling) [115] and random 
sampling:

Niederreiter and Sobol Sampling: Base-2 Niederreiter distributions in the unit square 

were generated using ACM TOMS Algorithm 738 [22]. Base-2 Sobol distributions
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Figure 5.8: Sampling illustrating problems with evenly-spaced samples, demon­
strated with the HUbert curve.

were generated using ACM TOMS Algorithm 659 [20]. The first 100 numbers in 
both the Niederreiter and Sobol sequences were discarded to avoid the leading zeros 
phenomenon [21].

Hammersley and Halton Sampling: Base-2 Hammersley and Halton distributions in the 
unit square were generated using the algorithms described in [125]. These were 
chosen over other base configurations described in the paper because of their con­
sistently better performance.

Jittered Sampling: Jittered distributions were generated by subdividing the unit square 
into ceil(y/N) x ceil(y/N) square cells, and placing a point randomly within each 
cell. The number of cells, and therefore the number of points actually distributed, 
is not necessarily the same as the requested number of points, as clearly the number 
of points must be a perfect square.

Random Sampling: Points are generated in the unit square simply by generating inde­
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pendent pairs of random numbers. This gives a random distribution in the unit 
square [51]. The theoretical discrepancy of a 2D random point set is: 0(N ~l//2) 
as shown in [68]. Practically, points were generated with the Java pseudo-random 
number generator.

We now demonstrate results for the planar discrepancy, measured using rectangles, quarter- 
circles and triangles, comparing our Hilbert-jittered approach to the above sampling meth­
ods.

Figure 5.9 shows variation in rectangular discrepancy for the 2D random, Niederreiter, 
Sobol, Hammersley, Halton, 2D jittered and Hilbert-jittered distributions. It is clear that 
the slopes for the Niederreiter, Sobol, Hammersley and Halton sequences are the steepest, 
outperforming the other sequences. The Hilbert-jittered and two-dimensional jittered dis­
tributions performed very similarly; not as well as the Niederreiter and Sobol sequences, 
but better than the random sequences.

Figure 5.10 makes a similar comparison using the circular discrepancy measure. The 
Niederreiter, Sobol, Hammersley, Halton, Hilbert-jittered and 2D Jittered sequences per­
form similarly. Figure 5.11 makes a similar comparison using the triangular discrepancy 
measure. In this case, the 2D jittered and Hilbert-jittered sequences outperform the other 
low-discrepancy sequences, which perform closer to the random sequence. The random 
sequence performs poorly, as expected, throughout all three tests.

Least-squares fit lines were computed for each distribution as before, in order to compare 
the various methods; their slopes are listed in Table 5.3. We see that the Niederreiter, 
Sobol, Hammersley and Halton sequences perform the closest to the theoretical limits 
when measuring the discrepancy using rectangles, outperforming the other sequences. 
However, when measuring discrepancy using quarter circles and triangles, they perform 
considerably worse. Our Hilbert-jittered and the 2D Jittered methods perform consistently 
well for all discrepancy measures.

Discussion

When considering rectangular discrepancy on the plane, the Niederreiter, Sobol, Ham­
mersley and Halton sequences perform better than the Hilbert-jittered approach. We also 
note that the distribution generated by Hilbert-jittered performs similar to the 2D jitter­
ing technique as might be expected, probably due to the grid-like structure of the curves. 
When considering circular and triangular discrepancy, however, the picture is quite dif­
ferent. The Niederreiter, Sobol, Hammersley and Halton sequences perform worse in
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Figure 5.9: Graph of logarithm of discrepancy for various distributions verses loga­
rithm of the number of points measured using rectangular test shapes.

ID Sequence Rectangular Circular Triangular

2D Random - 0 .4 9 - 0 .5 0 - 0 .4 9

Sobol - 0 .9 0 - 0 .7 0 - 0 .5 8

Niederreiter - 0 .9 0 - 0 .6 9 - 0 .5 7

Hammersley - 0 .8 9 -0 .7 1 -0 .5 7

Halton - 0 .8 9 - 0 .7 2 - 0 .5 9
2D Jittered - 0 .7 5 - 0 .7 4 -0 .7 2

Hilbert Jittered - 0 .7 3 - 0 .7 3 -0 .7 2

Table 5.3: Gradient of least squares fit discrepancy line for various distributions.

the quarter-circle tests, showing a gradient just below our approach and the 2D jittered
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Figure 5.10: Graph of the logairthm of discrepancy for various distributions versus 
logarithm of the number of points measured using quarter-circle test shapes.

approach, and considerably worse in the triangle tests, where they perform only slightly 

better than the random sequence, suggesting little robustness. The two best performing 

distributions for these two tests were the jittered 2D and Hilbert-jittered curve distribu­

tions. It appears that the Niederreiter, Sobol, Hammersley and Halton methods are too 
specialised to rectangular discrepancy, and the jittered methods are better for all-round 

usage. Whilst we make no conjecture as to the reason for the inconsistent performance 

of some o f the methods, from these results, it is our conclusion that for general purposes 

in 2D, the usual measure o f star discrepancy using axis-aligned rectangles may be m is­

leading, and that certain methods only produce good results for axis-aligned rectangular 

boxes. Further to this, in order to better understand the more general case o f geometric 

discrepancy, there is significant scope for further work looking at how the discrepancy of 

a point set varies with non-convex shapes.
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Figure 5.11: Graph of the logarithm of discrepancy for various distributions versus 
logarithm of the number of points measured using triangular test shapes.

W hilst the point distribution produced by our approach demonstrates a discrepancy very 

similar to the 2D jittered approach, our approach is far more generally applicable. Using 

our technique, the number o f  samples need not be a perfect square (to achieve the current 

number o f cells and density for a square parameter domain), providing full density control 

over the point distribution, and allowing the same low-discrepancy distributions to be 

produced on arbitrary surfaces; i.e. the 2D jittered approach is a very special case o f our 

method. The discrepancy o f  point distributions on the surface o f a sphere is discussed in 

the following section.

Our method is also consistently superior to using a random distribution. In [117] the star 

discrepancy o f the Hilbert curve based sampling approach is briefly investigated. Ex­

panding on these initial results, our experiments strongly suggest that the space-filling
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curve approach gives distributions in the plane with a low-discrepancy behaviour. We also 
demonstrate the robustness of the technique when testing the star-discrepancy with differ­
ent geometric subsets. While we do not have a rigourous theoretical proof for this, [117] 
suggests that the approach is very similar to regular stratified sampling, only with irregu­
larly shaped strata and, hence, has the same discrepancy.

5.1.4 Comparison with Low-discrepancy Distributions on the Sphere

In this section we investigate the discrepancy of point sets on the surface of a unit sphere, 
comparing results of our algorithm to other distributions.

In order to produce an evenly distributed point distribution on the sphere, we must dis­
tribute the points according to local surface area (see Section 4.3). Three techniques are 
given to compute the local surface area at each vertex of the Hilbert curve, based on tri­
angles, rectangles and infinitesimal area elements using the first fundamental form of the 
surface: dA = y/EG — F2 du dv. In this section, we show results of the change in dis­
crepancy as the number of points increases. We demonstrate two sets of results for the 
Hilbert curve: Firstly, using the triangular discrete area element constructed using the 
current, previous and next Hilbert vertices along the curve, and secondly, an infinitesimal 
area element calculated using the first fundamental form. These two distributions are de­
noted by Hilbert-jittered-triangle and Hilbert-jittered-fff, and demonstrate the difference 
in quality of distribution between the least and most exact area approximation methods.

We now demonstrate results for discrepancy on the unit sphere, measured using spheri­
cal triangles, comparing our Hilbert-jittered approach to the Niederreiter and Hammers­
ley sequences, and a random distribution (the generation of distributions is explained in 
Section 5.1.3). Due to the parameterisation of the sphere, sampling uniformly in the pa­
rameter domain and then mapping to the sphere surface produces a higher concentration 
of points at the poles of the sphere, resulting in an overall non-uniform sampling. Using 
a reparameterisation approach (see Section 4.5), each of the point distributions that are 
compared to our approach have their polar concentration corrected in order to generate a 
uniform sampling (see Eq 5.3). Note that the Sobol sequence is not considered here, as 
the Niederreiter sequence produced consistently better or comparable results on the plane, 
and it shares a similar construction method. The same applies for the Halton distribution, 
being represented by the Hammersley distribution on the sphere.

Figure 5.12 shows the variation of discrepancy with point set sizes. The spherical Ham­
mersley sequence, spherical Niederreiter sequence, Hilbert-jittered-fff and Hilbert-jittered- 
triangle methods all perform similarly well, while the random distribution performs con-
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Figure 5.12: Graph of logarithm of spherical discrepancy of various distributions 
versus the logarithm of the number of points measured using spherical triangles.

siderably worse than the other methods. The gradients o f the best fit lines o f the various 

distributions are given in Table 5.4, where we can see that the Hammersley and Nieder­

reiter sequences perform similarly to how the low-discrepancy sequences performed in 

the plane when measuring discrepancy using quarter-circles. The gradient for the Hilbert- 

jittered-fff approach is similar to that o f  these sequences, closely followed by the Hilbert- 

jittered-triangle approach. The random sequence on the sphere, however, performs poorly.

From the results, we can see that the best fit lines for the spherical Hammersley and 

Niederreiter point set have very slightly better slopes than our approach. The random 

distribution on the sphere performed considerably worse than the other three approaches; 

similar to the 2D random distribution. Hence, using the Hilbert-jittered distribution with 

our algorithm (see Section 4.3), we can produce a low-discrepancy distribution on the
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Sequence Spherical
Spherical Random 

Spherical Niederreiter 
Spherical Hammersley 

Hilbert-jittered-fff 
Hilbert-jittered-triangle

-0.49
-0.74
-0.75
-0.73
-0.71

Table 5.4: Gradient of least squares fit line to discrepancy of distributions on the 
sphere.

unit sphere comparable to other low-discrepancy sequences that have been specifically 
designed to work with a sphere.

Discussion

From the spherical discrepancy results, we can see that the discrepancy for the spherical 
Hammersley and Niederreiter points scales slightly better than our approach. The ran­
dom distribution on the sphere, however, performed considerably worse than the other 
three approaches; similar to the 2D random distribution. The Hilbert-jittered-fff approach 
produces slightly better results than the Hilbert-jittered-triangle approach: as expected, a 
more accurate computation of the surface integrals improves the discrepancy of the output 
point distribution. The advantage of the first fundamental form area computation (used 
in the Hilbert-jittered-fff approach) is also likely to increase with more complex surfaces 
when compared to the more inaccurate measurement given using the triangle area (used 
in the Hilbert-jittered-triangle approach). So, using the Hilbert-jittered distribution, we 
can produce a low-discrepancy distribution on the unit sphere comparable to other low- 
discrepancy sequences that have been specifically designed to work on a sphere. We ex­
pect our algorithm, however, to work well for general surfaces (i.e. the sampling approach 
is independent of the surface), as qualitatively demonstrated in Section 5.2, and can cor­
rect, to a certain degree, for severe stretching of the parameter domain (see Section 4.5). 
In addition it allows the user to adjust the point distributions with a density-function and 
maintains a a spatially-coherent ordering of points. Throughout the rest of this work, 
when we refer to our Hilbert-jittered distribution, we use the first fundamental form to 
compute the surface integral for parametric surfaces.
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5.2 Visual Evaluation

In this section, we provide visual results to assess the quality of the point distributions 
generated by our algorithm. We demonstrate point samplings of various surfaces, using 
both constant and chosen densities. Whilst not as easily comparable as numerical results, 
we demonstrate visual results to validate the output of our approach, especially with re­
spect to density control, and also to verify that the good results generalise to arbitrary 
surfaces. We show points distributed on the unit square, on a Monkey Saddle, an Eight 
Surface and a Whitney Umbrella, as listed in Table 5.5.

Surface Parameterisation Parameter Domain

Monkey Saddle
x(u, v) =  u 
y(u , v) =  v 
z(u , v) =  u3 — 3 uv2

u ,v €  [-1,1]

Eight Surface
x(u , v) =  cos u sin 2v 
y(u , v) =  sin u sin 2v 
z(u , v) = sin v

u € [0,27r], 
v € [—7r/2, 7t/2]

Whitney Umbrella
x(u , v) =  uv 
y(u , v) =  u 
z(u , v) =  v2

u ,v e  [-1,1]

Table 5.5: Various surface parameterisations used for visual evaluation.

Figure 5.13 shows three images of 3,000 points distributed in the unit square. The image 
on the left shows a uniform unit density 6, the middle image shows the results with density 
5(u, v) = it, and the image on the right with S(u, v) = it+v, where u and v are coordinates 
in the unit square.

Figure 5.13: Distribution in the unit square: uniform density; density =  u; density
=  u + v.
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Figures 5.14, 5.15 and 5.16 show im ages o f  the M onkey Saddle, the Eight Surface and 

half o f  the Whitney Umbrella respectively. Each figure shows a regular grid tessellated 

with quads, in the parameter domain, mapped onto the surface, the adaptive Hilbert curve 

mapped onto the surface, and two im ages demonstrating point distributions generated us­

ing our approach. The two point sampled im ages in each figure show points with uniform 

density and with density proportional to the Gaussian curvature o f  the respective surface. 

The Monkey Saddle is sampled with 3,000 points, the Eight surface with 10,000 points 

and the Whitney Umbrella with 6,000 points.

Figure 5.14: The Monkey Saddle: parametric mesh; adaptive Hilbert curve accord­
ing to curvature; uniform density (3,000 points); curvature controlled density (3,000 

points).

Note that even on the images with uniform density, som e areas appear darker than others. 

This is a visualisation problem, rather than a fault in the distributions, depending on the 

angle o f  viewing o f the surface. Due to the severity o f this problem on the Whitney 

Umbrella near the central singularity, only half o f  the surface has been drawn. A lso note 

that the images o f  the adaptive curves are not shown to full recursive depth in order to 

make it easier to see the curve.
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Figure 5.15: The Eight Surface: parametric mesh; adaptive Hilbert curve according 
to curvature; uniform density (10,000 points); curvature controlled density (10,000 
points).

Our Java implementation on a 3Ghz Intel Pentium 4 with 1GB RAM takes about one 

second to generate the images shown above, with the curve generated adaptively accord­

ing to surface curvature. For each exam ple shown, the recursive curve depth used was 

8 <  k <  15. In this context, where the ratio o f areas between the parameter domain, 

[0, l ] 2, and the surface does not vary much, using the adaptive curve generation technique 

simply allows us to have far fewer curve vertices in order to sample at the required den­

sity. The extra computation involved in deciding whether to subdivide the curve at every 

branch in the tree, however, increases the algorithm complexity, and thus runtime. H ow­

ever, if  we have a non-uniform density (as in the examples shown in this section), runtime 

actually scales much better using the adaptive method as far less curve has to be generated 

in areas with a low density. The adaptive method also requires considerably less memory
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Figure 5.16: Half of the Whitney Umbrella: parametric mesh; adaptive Hilbert 
curve according to curvature; uniform density (6,000 points); curvature controlled 
density (6,000 points).

in this type o f situation. Showing that the approach given produces the same quality o f  

distribution on any parametrically described surface is hard, but the visual results obtained 

above are plausible.

In this section, we have demonstrated visual results showing high-quality point distribu­

tions on a selection o f complicated parametric surfaces. Our novel approach, unlike ear­

lier surface point distribution algorithms, allows for the high quality sampling o f  arbitrary 

parametric surfaces, whilst providing direct sampling density control.

5.3 Blue Noise

In this section, we investigate the property o f  blue noise for the distributions investigated 

in Section 5.1.3. W hilst discrepancy gives us a good measure as to the uniform cover­

age o f  a distribution, it does not quantify the possible problems caused by the uniform 

structuring (underlying regular pattern) o f  the distribution. It is generally accepted that 

for applications such as surface sampling for visualisation [89] and dithering [120], it is 

undesirable for a sample distribution to have a structure o f its own, interfering with the ex­

isting structure or pattern o f the surface that is being sampled [120]. Distributions can be 

constructed, however, that are neither random (resulting in large clumps or holes between
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points), nor present an unwanted structure, such as a jittered, or Poisson disc sampling.

Types of noise can be classified by their power spectrum. The frequency power spectrum, 
listing the intensities of each frequency present, has certain properties. White noise for 
instance has a uniform power spectrum distribution, while blue noise, defined in the field 
of visual computing, has minimal spikes, and minimal low-frequency components. The 
absence of low-frequences means that there is no global density variation. Thus, a sample 
distribution with blue noise characteristics has a high visual quality.

Regular grid sampling on the other hand does not demonstrate the characteristics of a 
blue noise distribution, and presents large, regular peaks. Random sampling results in 
a distribution whose power spectrum has many small spikes, but otherwise a constant 
energy through all frequencies, resulting in white noise. White noise has a constant en­
ergy, even at low frequencies, resulting in an undesirable non-uniform graininess in the 
distribution [120].

The algorithm described in [120] was used to compute the Radially Averaged Power Spec­
trum Density (RAPSD) of each sample distribution. The method builds upon Bartlett’s 
approach [10] of computing the Fourier transform of a distribution, and averaging peri- 
odograms, which represent the spectral density of a signal. Averaging is done to reduce 
the variance of the plot, and is performed by computing the Fourier transform of subsets 
of the sample distribution, squaring their magnitudes, and dividing the total by the sample 
size. Ulichney [120] builds upon this in order to highlight the degree of radial symmetry in 
a distribution, by segmenting the distribution into concentric uniform-width rings, which 
are then averaged in a similar manner to Bartlett’s original approach. The assumption 
made is that the distribution looks the same everywhere, justifying the averaging.

53.1 Results

In this section, the RAPSD is plotted as the power spectrum against the radial frequency, 
and is shown for random, Hilbert-Jittered, Niederreiter and Hammersley sample distribu­
tions. The Niederreiter distribution is again used as a proxy for the Sobol distribution, and 
the Hammersley sequence for the Halton sequence. For each distribution tested, we com­
pute 50,000 sample points in the unit square. For the probabilistic random and Hilbert- 
jittered sampling methods, the graph is averaged for 10 distributions. For the Niederreiter 
and Hammersley deterministic methods, results are shown for just a single sample distri­
bution, as the distribution produced for 50,000 points will always be identical.

Figure 5.17 shows the RAPSD for a 2D random distribution. The graph shows that 
it is ‘white noise’, with a slight peak at a very low radial-frequency—possibly due to
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the pseudo-randomness o f the generated points. Figure 5.18 shows the RAPSD for the 

Hilbert-jittered distribution. The distribution performs well with respect to the blue noise 

criterion, the graph showing minimal low  radial-frequency noise, and a constant medium  

and high radial-frequency noise. Figure 5.19 and 5.20 show the RAPSD for the Niederre­

iter and Hammersley point distributions. Both distributions perform poorly with respect to 

the blue noise criterion; whilst showing minimal low  radial-frequency noise (no random­

ness), the large peaks show a large amount o f regular structure, consistent with a regular 

grid distribution. Note that in the Hammersley distribution graph, the signal at the radial 

frequency o f 0.23 actually peaks at a power o f 12, o ff the scale o f the graph.
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Figure 5.17: The Radially Averaged Power Spectrum Density of a random sampling 

of the unit square.

5 . 3 . 2  D i s c u s s i o n

From the results, w e can see that the Hilbert-jittered distribution demonstrates a power 

spectrum close to the ideal blue noise power spectrum defined for visual computing.
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Figure 5.18: The Radially Averaged Power Spectrum Density of a Hilbert-Jittered 
sampling of the unit square.

Whilst it does not demonstrate the peak before the flat medium to high frequency shown 

in [120], this is not defined specifically as being important in ensuring quality o f the distri­

bution. The Hilbert-jittered distribution performed much better than the tw o deterministic 

low-discrepancy distributions, which showed high spikes in the medium to high frequen­

cies, indicating a highly structured regularity, and an underlying grid.

Whilst fulfilling the blue noise criterion was not one o f  the core aims o f  our work, it is 

useful as an additional measure as it allows us to numerically assess the visual quality o f  

a distribution, and has been used in the literature to verify dithering qualities and surface 

samplings. Combined with the discrepancy measure, we now have information not only 

on how well the points are distributed with respect to area coverage, but also on how  

visually appealing they are for the representation o f  surfaces and patterns.
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Figure 5.19: The Radially Averaged Power Spectrum Density of a Niederreiter sam­
pling of the unit square.

5.4 Spatial Coherence of Space-filling Curves

In this section, we investigate how accurately distances between points on a space-filling 

curve correspond to straight-line distances between the same points in E 2. In Section 2.2.3, 

we looked at the Holder continuity for a space-filling curve, whereby a constant, repre­

senting the upper bound o f the maximum difference between distances on a space-filling 

curve and in Euclidean space in the unit square, is sought. The Hilbert curve has been 

proven to have the smallest known Holder constant, smaller than that for the Peano II 

curve [24].

In this section, we investigate this property o f distance similarity, or spatial coherence, 

experimentally, using discrete approximations o f  the space-filling curves. Practically, we 

wish to validate the theoretical properties o f Holder continuity (see Section 2.2.3) on the 

discrete curves. In this work, good spatial coherence improves the accuracy o f fast, ap-
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Figure 5.20: The Radially Averaged Power Spectrum Density of a Hammersley sam­
pling of the unit square.

proximate, neighbourhood computation (see Section 7.1.1), and ensures that the structure 

o f the curve does not cause problems with the histogram equalisation step o f our sampling 

algorithm (see Section 2.2.2). For broader application, a good spatial coherence is useful 

improving compression rates [35] and for vertex caching [16].

For a fixed recursion depth, we generate a space-filling curve, and choose two vertices at 

random from this curve. We then compute the distance between the two vertices along 

the curve. For a space-filling curve with L vertices, and a pair o f vertices C, and Cj,  
the distance along the curve is therefore computed simply using ||Cj — Cj\\/L.  We then 

compute the straight-line distance between the two points. This is done for 1 ,000  pairs o f  

points, and plotted as a scatter graph to investigate how well the two different distances 

correlate.

We test only the Hilbert and Peano II curves in this section, as they are the only space­

filling curves used in our algorithm due to the reasons explained in Section 2.2.2. The 

Hilbert curve was generated to a depth o f  12, resulting in 1.6 x  107 vertices. The Peano II
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curve generated used a depth o f 9, resulting in 107 vertices.

Figure 5.21 shows results for spatial coherence o f the Hilbert curve. The results show a 

fairly high correlation; as the Euclidean distance between points increases, so does the 

distance along the Hilbert curve. Figure 5.22 shows results for the Peano II curve. The 

Peano II curve shows less o f an overall correlation when compared to the Hilbert curve 

coherence.
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Figure 5.21: Hilbert curve distance shown against Euclidean distance, plotted for 

random pairs of points in the plane.
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Figure 5.22: Peano II curve distance shown against Euclidean distance, plotted for 
random pairs of points in the plane.

5 . 4 . 1  D i s c u s s i o n

The Hilbert curve shows a good correlation between the straight-line distance and the 

distance along the curve as the straight-line distance increases. The same can be said for 

the correlation as the distance along the Hilbert curve increases. We note that for most 

distances (see Figure 5.21, circled in green), up to about 0.65 o f the length o f the curve, 

we have a constant gradient o f approximately 0.7. However, the more extreme distances 

along the Hilbert curve (circled in red), from about 0.65 o f the length o f the curve upwards, 

we have a lack o f correlation between the space-filling curve distance and the straight-line 

distance. This problem occurs when the winding course o f the curve inevitably ends up 

almost looping back on itself to cover the whole square, meaning that some points that
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are very close in Euclidean space are not close on the curve. In Figure 5.23, we demon­
strate spatial coherence on the Hilbert curve. The top row of images shows examples of 
good spatial coherence. The bottom image shows poor spatial coherence, highlighting the 
problems that can occur with the Hilbert curve (see Figure 5.21, circled in red).

The Peano II curve demonstrates quite different behaviour. Unlike the Hilbert curve, 
small distances and large distances (see Figure 5.22, circled in green) along the curve, 
independently, correlate well to straight-line distances, with a gradient of about 0.5. This 
is due to the fact that for the approximation of the Peano II curve, the maximum inaccuracy 
between the Peano II curve distance and Euclidean distance is smaller because of the 
particular winding of the curve. However, it is clear from the graph that for medium curve 
lengths (see Figure 5.22, circled in red), especially around 0.5 of the length of the curve, 
we have an extremely poor correlation between distances along the Peano II curve and 
straight-line distances.

Whilst it is difficult to draw any strong conclusions from this, the Hilbert curve shows 
an overall better correlation between Euclidean and space-filling curve distances than the 
Peano II curve, corroborating with the theoretical analysis provided by the Holder Conti­
nuity measure (see Section 2.2.3).

5.5 Summary

In this chapter, we have given quantitative numerical results, and qualitative visual results 
for the concerning distributions produced using our algorithm, and compared them to 
results from well known low-discrepancy distributions. We first introduced our approach 
to numerically computing the discrepancy of our point distributions on the plane and on a 
surface. We generalised the star discrepancy measure to include different sample shapes, 
and measurement on the surface of a sphere. We then assessed various options for the 
generation of point distributions using our algorithm, computing the discrepancy for the 
Hilbert curve and the Peano II curve sampled with various ID sequences. Whilst the well 
known low-discrepancy methods perform well for the planar rectangular sampling shape, 
they performed worse for the quarter circle and triangle shapes, and the on the sphere. This 
lack of consistency makes them less useful for rendering applications [39]. Our Hilbert 
curve sampling method however, showed consistently good results throughout all of the 
discrepancy tests. These results indicate that the star discrepancy alone is not sufficient 
as an overall measure to determine the uniformity of sampling in 2D. Providing a more 
thorough analysis of discrepancy on general surfaces is a more complex problem, however 
(see Section 5.1.1). In addition to this, it is also desirable to have more metrics to compare
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Figure 5.23: Relative straight-line (dashed red line) and space-filling curve path 
(thick black line) distances for pairs of points on the Hilbert curve. Top two images 
show good spatial coherence. Bottom image shows poor spatial coherence.

results for various distributions, both generic, and tailored specifically for rendering and 

engineering applications. Our conclusions from these discrepancy experiments are that 

the Hilbert-jittered-fff sampling is the best choice for our own method, and performs well 

throughout when compared to other sampling methods.

We further analysed the visual results produced by our algorithm, demonstrating high 

quality, density-controlled results on the plane and on various parametric surfaces. In 

particular, this testing provides evidence that our approach works on general surfaces 

where other methods would have problems.
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We then investigated whether the sample distributions produced by our algorithm fulfilled 
the the blue noise criterion. We analysed the radially averaged power spectrum density 
of distributions produced using our algorithm and the comparison distributions already 
introduced. Fulfilling this criteria indicates that a distribution is uniformly sampled but 
does not add its own structure to what is being sampled. The Hilbert-jittered-fff distri­
bution showed good results, indicating that it fulfilled the blue noise criteria. The well 
known low-discrepancy distributions tested demonstrated a very highly structured sam­
pling, showing a power spectrum very different to that of blue noise. The fulfilment of the 
blue noise criterion indicates that distributions produced by our method have no global 
density variation, and no grid like structure, making them good for visual representation.

Finally, we investigated the spatial coherence of the two space-filling curves used in this 
chapter, the Hilbert and Peano II curves. The Hilbert curve showed a better overall cor­
relation between distances along the space-filling curve and straight-line distances, useful 
for vertex indexing, compression and fast neighbourhood look-ups.
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Chapter 6

Mesh Sampling

Polygonal meshes have become a common and simple shape representation for storing, 
manipulating and rendering 3D models. In order to utilise this representation for sam­
pling, we propose a technique, based on the parametric surface point-sampling algorithm 
described in Chapter 4, to resample arbitrary polygonal meshes. The emphasis is on the 
sampling quality of the new point distribution, with the ability to control and adjust the 
sampling density at interactive rates. We generate a point distribution on the mesh surface 
that has low discrepancy with respect to a user-specified density function, and demon­
strates a visually appealing ‘blue noise’ behaviour.

Our mesh sampling technique is described in Section 6.1. Taking a triangle mesh as 
input, we first cut it (if necessary) such that the result has the topology of a disk. Then 
we parameterise it over [0, l]2. We adaptively generate a finite approximation to a Hilbert 
curve in this parameter domain, such that when its vertices are mapped back to the surface 
mesh, the mesh is covered with a correlated uniformly distributed set of points according 
to a user-specified density (see Section 2.1). We then sample points along the curve taking 
into account the local geometry of the mesh.

The pre-processing steps of cutting and parameterising the mesh, and the generation of the 
Hilbert curve in [0, l]2 are time-consuming (taking a few seconds). However, after these 
pre-processing steps, generating a new set of point samples on the mesh is extremely fast 
(less than 10 milliseconds for all meshes tested, see Table 6.2), allowing us to resample 
the surface at interactive rates in response to user required changes of the density, e.g. as 
a virtual camera zooms in or out. If the density changes significantly, we must subdivide 
the curve locally (see Sect. 6.2.4) in a background process. For larger density changes 
everywhere, it may be cheaper to increase the recursion depth of the Hilbert curve glob­
ally, requiring about a tenth of the time taken to compute the initial curve as no area 
measurements are required (see Section 7.1.3).

Experimental results are given to demonstrate the distributions produced using our tech­
nique in Section 6.2, and to compare them to other approaches. We first investigate a

I:
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mesh discrepancy measure in order to validate the distribution that is being generated on 
the mesh. We show that point distributions produced by our algorithm have low discrep­
ancy consistent with results for parametric surfaces (see Section 5.1.4). We then compare 
the quality of meshes produced by our remeshing implementation to other competitive 
techniques by measuring the Hausdorff distance using Metro [28], showing results com­
petitive with one of the most popular remeshing techniques.

In Chapter 7, we apply our mesh sampling algorithm in three ways: as a sample generation 
method for point-based graphics, remeshing and engineering prototype painting. We also 
demonstrate the flexibility of our technique and the advantages of using the Hilbert curve 
as the underlying technique for resampling, demonstrating real-time resampling for levels 
of detail (LoD) and view dependent rendering (VDR) (see Section 7.1.3).

6.1 Sampling Meshes at Interactive Rates

In this section, we describe our approach for sampling polygonal meshes (see Figure 6.1). 
It is fundamentally the same as the algorithm described in Chapter 4, although we also 
need methods to cut and parameterise an input mesh surface, and compute discrete area 
and curvature properties of the surface and produce mappings between the parameter 
domain and R3. The algorithm takes, as input, an arbitrary polygonal mesh Ma along with 
a user-defined density function, S : Ms —> R^. The mesh is first cut in order to turn it into 
a topological disk as a prerequisite for parameterisation over [0, l]2 (see Section 6.1.1). 
In order to compute the output point distribution P  efficiently, we generate an adaptive 
Hilbert space-filling curve in the parameter domain, [0, l]2, and map it onto the mesh Ms 
(see Section 6.1.2). The curve simplifies placement of sample points on the surface, and 
is generated adaptively to compensate for distortion introduced by the parameteri sation of 
the surface, and its pre-computation allows for resampling at interactive rates. Integrals 
to allow the accurate sampling of the Hilbert curve are then computed (see Section 6.1.3). 
The curve is sampled, the output of which is a set of high-quality uniformly distributed 
points P  on the mesh Ms.

6.1.1 Mesh Cutting and Parameterisation

We now discuss how we approach the problem of sampling an arbitrary genus mesh. Our 
sampling algorithm relies on a unit square parameterisation, to which our Hilbert curve 
sampling algorithm is applied. Therefore, we must first compute a planar parameterisation 
for the input mesh f  : Mp c  [0, l]2 —► Ms c  R3. However, a [0, l]2 parameter domain
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Figure 6.1: Mesh sampling pipline: (a) The input mesh is first cut into a topological 
disk and (b) parameterised over the unit square. The parameterised mesh is (c) 
sampled with an adaptive Hilbert curve, which is (d) mapped onto the original mesh 
surface, and (e) sampled, giving density-controlled low-discrepancy distribution.

cannot, homeomorphically, be mapped onto a surface that is not a topological disk. Yet, in 

order to make our algorithm as broad as possible in its application, we allow that the input 

mesh Ms be o f arbitrary genus. Therefore, in order to compute /  for an arbitrary genus 

mesh, the mesh Ms must either be cut into a disk topology (i.e. have a single, definite, 

boundary), or must be cut into a set o f  patches which can then be independently param­

eterised. Due to the adaptive nature o f  our Hilbert curve generation com pensating for 

the area differential between the surface and the plane, w e are predominantly concerned  

with maintaining angle conformity during the mapping / ,  which w e can achieve without 

local patch parameterisation. Thus, w e em ploy the approach o f cutting the mesh into a 

topological disk followed by a global parameterisation.

A cutting method, em ployed in [112], creates a topological disk by cutting toward ex­

tremities o f the mesh using a curvature-based local extremity detection. However, this 

approach does not necessarily find global extremities. Gu [46] em ploys a more advanced 

approach, which uses an iterative cut-parameterisation approach. A cut is made, and the 

mesh is parameterised. Global extrem ities are then found by measuring stretch across 

the parameterised mesh. The surface cut is then directed into the high-stretch extremity 

areas o f  the mesh. This process is iterated until a global minimum stretch cut is found. 

This allows for a stretch-m inimising global parameterisation, but is computationally very 

expensive. A s stretch minimisation is not required due to the adaptive sampling nature 

o f  our Hilbert curve, w e em ploy the naive cutting approach described in [107], which
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simply cuts the mesh into disk topology, and is computationally much faster, not requir­
ing an iterative optimisation. Note however, that this naive method may suffer from the 
same problems noted with parametric surfaces if an extreme stretch is involved in the pa­
rameterisation (see Section 4.5). The output of this algorithm is a genus-zero mesh with 
duplicated vertices along its border (or seam); a necessary result in order to avoid a gap 
in the mesh that would prevent sampling.

Once the mesh has been cut into a topological disk, it must then be parameterised over 
[0, l]2. As discussed in Section 3.2.3, there are two main approaches to surface parameter­
isation, equiareal (area preserving), and conformal (angle preserving). To avoid artifacts 
caused by angle distortion, we desire a conformal parameterisation of the surface; area 
distortion can be corrected using our adaptive Hilbert curve (see Section 6.1.2). In the 
discrete case of a mesh Ms, ensuring that the angles between edges are consistent when 
mapped between Ms and Mp for all polygons in the mesh ensures a conformal mapping. 
The conformal mesh parametrisation algorithm described in [42] is used to generate such 
a mapping /  : Mp c  [0, l]2 —> R3 from a parameter mesh Mp E [0, l]2 to the surface 
mesh Ms. The output of the mesh cutting and parameterisation stages of this algorithm is 
a genus-zero mesh that fills [0, l]2 (i.e. it has a square boundary).

6.1.2 Mapping the Hilbert Curve onto the Surface

Once the mesh Ms has been cut and parameterised, producing a planar disk-topology 
mesh Mp, we generate an adaptive Hilbert curve in [0, l]2, filling the area covered by 
Mp. The Hilbert curve is used to reduce the complexity of surface sampling in R3 as 
before. It is generated using the quad-tree algorithm described in 4.2, the output of 
which is a discrete, adaptive Hilbert curve, represented using a set of vertices {hi : I =  
1 , . . . ,  L} C [0, l]2. The adaptive construction of the curve is important as the parame­
terisation does not guarantee local area preservation with respect to the surface mesh Ms. 
Figure 4.5 demonstrates the advantages of using an adaptive Hilbert curve over a uniform 
Hilbert curve when using the global parameterisation approach on a squirrel mesh (see 
Section 6.1.1).

When adaptively generating the Hilbert curve, locally, the number of curve vertices re­
quired is some constant uj  times the ratio f v 8 dA / JMg 8 dA , for every subset U of the 
mesh Ms. As discussed in Section 4.2.1, in practice, u j  > 10 provides a sufficient density 
of curve vertices with respect to the density 8. In order to calculate how many Hilbert 
curve vertices hi are required locally, using the bijective mapping between triangles in 
Mp and Ms, we cannot simply increase the depth of the Hilbert curve solely based on
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the area of each triangle in Ms (a small triangle in Mp may map to a very large triangle 
on Ms). Hence, first we define the number of point samples we need in a given surface 
triangle T  in Ms as N t = f T 6 dA/ f M SdA. We thus require O t Hilbert vertices inside 
a surface triangle with O t > ujNt- Given an initial construction of our Hilbert curve to 
some preset recursion depth, we then approximate the required number of vertices that 
should be contained within a quad of the Hilbert curve at any given level. In practice, 
we require that O q  > O r/(area(/_1(T))/ area(Q)), where O q  is the number of vertices 
a quad Q of the quad tree, and f~ l {T) is the triangle T  mapped to the parameter mesh 
Op (where f~ l is the inverse of the parameterisation). Note that here we generalise /  to 
operate on sets in the sense that f(Q ) =  {f(x )  : x  £ Q}.

Once we have generated the Hilbert curve, we must then map it to the surface using the 
parameterisation / .  If Mp =  {tt : I =  1 , . . . ,  n} and Ms =  {7} : I = 1 , . . . ,  n}, where 
ti is a triangle in R2, and 7} a triangle in R3, there is a bijective mapping /  : Mp <-► Ms 
which can be used to map of the curve from R2 to R3. Note therefore that /  : ti 7*. 
Thus, the function to map a Hilbert vertex from Mp to Ms simply becomes f(hi) = Hi 
for hi £ ti, Hi £ 7J. In order to compute this mapping between the parameterised mesh 
Mp and and the surface mesh Ms, we must convert the (u, v) co-ordinates of the vertex hi 
in Mp, to local barycentric co-ordinates within a triangle ti. Knowing that ti maps directly 
to a single surface triangle 7], due to the bijective mapping between the sets of triangles, 
we then use the same barycentric co-ordinates in 7] for Hi. These must then be converted 
into (x, y, z) co-ordinates on Ms, giving us the final vertex position. In order to do this, 
however, we must first find the triangle on the plane that contains the vertex hi.

To find the triangle containing a particular vertex, the algorithm must potentially deal with 
millions of vertices, and tens or hundreds of thousands of triangles (see Section 6.2.3). 
Thus, a fast approach must be employed to find these containing triangles. However, even 
a spatial data structure such as a /cD-tree (or some other BSP tree variant), quad-tree or R- 
tree, will not provide fast results for data sets of this size. Instead, we solve this problem 
by using a simple GPU method. We first rasterise the planar triangulated mesh Mp as a 
high resolution square texture in the frame-buffer. Due to the adaptive nature of the curve, 
ideally, the texture resolution should be a square of 49 pixels, where g is the upper bound 
of the recursive depth of the generated Hilbert curve. If the frame buffer is not large 
enough, then the maximum size should be assigned, dependent on the GPU, providing 
the best resolution possible. When rasterising A7P, each triangle U is uniquely coloured, 
with the colour being a hash key for the triangle index I. If both the width and height of 
the square texture is d = y/49, for a vertex hi we then sample the colour at the frame­
buffer location ( [ud\ , \ vd\). The triangle index is then retrieved using the hash-table. 
Optionally, the algorithm can then perform a containment check on the found triangle to
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ensure the accuracy of the process (in particular if the frame buffer is not large enough). 
If the point is not contained within the triangle, the algorithm will then check all of its 
one-ring neighbours, and so on outwards until the correct triangle is found. A possible 
improvement to this approach would be to divide the Hilbert curve up into patches based 
on the local recursion level and apply the GPU method to each patch. This GPU process 
is extremely fast, as demonstrated in Table 6.2.

Once we have found the containing triangle ti for a Hilbert vertex hi, we must then convert 
the (u, v) parameters for the vertex to a local co-ordinate system for the triangle. Barycen­
tric co-ordinates are a method of describing a point hi within a triangle A B C  using a local 
co-ordinate system for that triangle, giving us a barycentric point p (see Figure 6.2). To 
compute p, we simply compute the intersection of the line that passes through A  and hi 
with the line BC, giving a point A'. The distance \\A' — h/|| gives a mass, or weight, m A 
for the vertex A. The distance ||f? — A'\\ then gives the mass m e for the triangle vertex 
C , and || C — A'\\ the mass m s  for the triangle vertex B.

A mA

B C m,

Figure 6.2: Barycentric co-ordinates in a triangle.

We now have a point p, described by three masses at A , B  and C: m Ay m B and me, the 
ratio between which defines the point p. The position of p can be thought of as being 
relative to the gravitational effect of the three masses on the point. This gives us a trilinear 
co-ordinate representation which is invariant to the embedding space of ABC. To convert 
p back to Cartesian (it, v) or (x, y, z) co-ordinates, assuming a normalised total weight of 
mA +  m B -I- m e — 1, we must first compute the point Af, which lies on the line segment 
BC. A  can be calculated by
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We then calculate the new vertex Hi € R3, where A* and A'* represent the respective 
triangle vertices on the mesh Ms in R3, using:

Here, ttia =  m B+m c• This can be done for any initial point (i.e. we must not necessarily 
first compute A'). We perform this mapping process for every Hilbert vertex hi, and end 
up with the Hilbert curve vertices Hi, I = 1 , . . . ,  M  on the mesh Ms.

6.13 Sampling and Density Computation

vertex Hi along the curve in order to produce density controlled sample distributions.

Once the Hilbert curve has been generated in the parameter domain and mapped onto the 
original surface mesh using the parameterisation / ,  the curve is then sampled with a ID 
distribution to produce a low-discrepancy distribution on the mesh Ms. To distribute the 
ID points uniformly on the surface, along the Hilbert curve, we approximate the surface 
integral f M S dA with a discrete (at each Hi), cumulative, surface sampling density Si, 
and then sample points according to this density. When working with smooth, explicit 
or implicit surfaces, differential surface properties (e.g. area and curvature) can be easily 
calculated using the fundamental forms of the surface obtained from the exact parametri- 
sation formula. However, computing similar properties on a mesh approximating the 
continuous shape must be done carefully in order to get accurate results.

Meyer et al. [84] describe a robust set of methods for computing differential properties on 
triangulated two-manifolds. Their methods avoid the use of polynomial reconstruction of 
the surface, reasoning that this may introduce unexpected surface behaviour, and in fact 
may often overestimate properties. They demonstrate competitive, or better, error rates 
when approximating Gaussian and mean curvatures on regularly and irregularly sampled 
meshes. In order to calculate the local density at a Hilbert vertex Hi on the mesh Ms, we 
therefore compute the differential properties using their approach. The points must first 
be triangulated for this process. However, this is simple, as a local triangulation is simply 
constructed for each vertex using the eight neighbours of each Hilbert vertex.

In order to distribute a set of points with low discrepancy on the mesh, we must first 
compute the local area Ai associated with each Hilbert vertex Hi. Let Mi be the triangles 
forming the one-ring neighbourhood of Hi by linking Hi to its neighbouring Hilbert ver­
tices. For each triangle T  6 Mi, we compute the fractional area 21 (T) of T  that is assigned

(6.2)

In this section we explain how discrete properties are computed at each surface Hilbert
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to Hi (the remaining fractional area is assigned to T *s other vertices). The sum o f  these 

areas is then an approximation o f the area Ai for the region o f  Hg

A,=  2 2  a(T). (6.3)
T&A/i

There are two cases when computing the fractional triangle area 21 (T)  belonging to Hi, 
distinguished by the type o f the triangle T.  The first case is formed for non-obtuse tri­

angles, for which w e can compute the Voronoi area. The Voronoi area gives the most 

accurate discrete approximation for the fractional area o f the triangle which belongs to 

Hi [84]. Given a triangle A QHiR,  with Q  and R  two consecutive one-ring neighbours 

o f Hi, then the area 21 (T ), based on the Voronoi region, is (for simplicity we refer to the 

angles in the triangle as Z t Q  for the internal angle at point Q  and similar for R ):

2l(T ) =  i ( | | i / / i ? | |2 cot Z TQ +  \\HiQ\\2 cot Z TR ) (non-obtuse case). (6.4)
o

0

Figure 6.3: Voronoi area 2l(T ) for a triangle T.

In the second case, if  the triangle A Q HtR  is obtuse, w e approximate the area by comput­

ing the barycenter instead o f  the Voronoi centre, taking the mid-point o f the side opposite 

to Hi, and scaling the resulting area depending on whether the angle Z t Hi is the obtuse 

angle or not [84]. Thus compute the scaled area 2 l(T ) o f an obtuse triangle is

91 m  I  area{AQH,R)/2if ZTH, tt/2,
) =  < (obtuse case)

area(AQHiR)/3  otherwise,

where area(QH[R) is the area for that triangle.
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This approach for calculating Ai relies on the mesh having no boundary. In our approach, 
we cut the mesh to allow a parameterisation over [0, l]2. Thus, we must consider how to 
compute differential properties for vertices lying on the boundary. If the vertex Hi does 
not have a complete one-ring neighbourhood, the area Ai of the region for a vertex that 
lies on the boundary of a mesh can simply be approximated by

This allows us to better approximate the area element for the vertex Hi, preventing a lower 
sampling density at the boundary. Note that if the original mesh had no boundary and was 
cut to a disc topology, we can instead simply compute the differential properties on the 
original mesh Ms before cutting, thus eliminating the boundary problem.

A higher density is generally desirable in areas of high curvature in order to preserve 
features. In order to compute curvatures for each Hi, we must first compute the normals. 
Building on the methods described in [84], we compute the normal nz for a vertex Hi, 
where cqm and fiim are the angles opposite the edge HiHm in the two triangles containing 
that edge (see Figure 6.4),

This gives an accurate estimate of n/. If the value of ni before normalisation is zero due to 
zero-curvature at Hi, we instead compute a normal for each triangle T  e Mi of which Hi is 
a member and take the average of these normals. This computation, unlike Equation 6.4, 
results in a vector not a scalar quantity, as we are no longer computing distances between 
Hi and its one-ring neighbours, but vectors.

In order to provide curvature-based density control of sampled points, we first compute 
the principal curvatures, k\ and k>2 for each point on the mesh. We compute the principal 
curvatures in this way first in order to provide more flexibility in choice of scalar curvature 
to use. We use the technique described in [85]: determine the one-ring neighbourhood for 
a point, project these points onto the tangent plane of the current vertex, fit a quadric 
polynomial to this set of points and calculate the principal directions and curvatures from 
the shape of the polynomial at the original point. However, to ensure accuracy, instead of 
computing the curvature for the mesh Ms, and interpolating this for each Hilbert vertex Hi, 
we instead calculate it independently for each Hilbert vertex. Thus, we instead compute 
the curvature using a one-ring neighbourhood of each Hilbert vertex using the quad-tree 
structure of the Hilbert curve. We then compute the Gaussian curvature K  =  h k 2 or 
mean curvature H  =  {k\ +  k^)!*! (depending on which is needed for the density).

(6.5)

Surface curvature is commonly used to control the density of a distribution of points.

ni = 2 A j X̂ me/Vj OLlm C°^ @lrn) Hm) (6.6)
2Aj 53mGA/i &lm ^Ot film) (Hi Hm)
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H,m

Figure 6.4: Angles used to compute the surface normal n* at vertex Hi.

Once we have calculated the area, and density (e.g. based on curvature above), we then 
compute a cumulative density function, where the discrete density ipi for each vertex may 
represent any desired density:

We then generate a set of ID jittered samples {qk : A; =  1 , . . . ,  TV} in [0,1]: we take an 
evenly spaced set of samples, which are moved a uniform random amount up to half the 
distance towards the next or previous sample. Once we have calculated the cumulative 
density Si over if/, I =  1 , . . . ,  L, we move along the Hilbert curve, and whenever Si 
becomes larger than the threshold described by the ID sequence qk (multiplied by Sl), 
we sample a point pk at a vertex along the surface Hilbert curve, producing a distribution 
of jittered points lying on the surface of the input mesh Ms.

In this section, we evaluate the sample distributions produced using the algorithm de­
scribed in Section 6.1. We first discuss a mesh discrepancy measure, assessing how well 
the new point samples are distributed on the original mesh (see Section 6.2.1). We then 
investigate the geometric distance between the input mesh and the new sampled surface 
using the Hausdorff distance (see Section 6.2.2). Finally, we discuss timing results for our 
sampling algorithm (see Section 6.2.3).

(6-7)

6.2 Evaluation of Mesh Sampling Technique
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6.2.1 Discrepancy of Point Distributions on Meshes

First we assess the quality of resampled distributions on several example meshes by mea­
suring their discrepancy. Then we consider how different distributions can have an impact 
on the number of samples required to cover a surface in particular for point-based graph­
ics, comparing our technique to other popular methods.

For distribution quality assessment we consider the star discrepancy measure [132]. For 
a given number of points N, the lower the discrepancy the better. In the following tests, 
generalising those introduced in Section 5.1.1, we demonstrate that the point distributions 
produced by our algorithm behave as expected for a low-discrepancy distribution.

In this section, we generalise the numerical discrepancy experiments introduced in Sec­
tion 5.1 to arbitrary triangle meshes. We compute the discrepancy of point distributions 
sampled on triangles meshes using contiguous sets of triangles as sample areas. We gen­
eralise the triangle-mesh star discrepancy to

D"'m‘(P) =  sup
Q C Q (M S)

0  -  area(Q)1̂1 (6.8)

where 0 (M S) is the set of all contiguous triangle sets in the mesh Ms, \P n  Q\ is the 
number of points in P  inside some contiguous subset of mesh triangles Q, and area( Q) is 
the total area of all triangles in the subset Q.

In order to get uniformly distributed triangle subset areas, we first compute the total area 
AMs of Ms. We then compute a random number in [0,1] that represents a fraction of the 
total area AMs and choose a vertex at random from Ms. Then, one triangle at a time, 
we grow the selection in rings around the initial vertex. Every time a triangle is added 
to the selection, we add the area of that triangle, to the total selection area Aotai- When 
Aotai > AMs, we stop growing the selection, the output being a contiguous set of triangles 
Q. When the discrepancy is measured using Eq. 6.8, the area of the contiguous subset of 
triangles area(Q) =  Atotal.

We use this discrepancy measure to compare the points generated by our algorithm to 
random point distributions generated by the following method: for each triangle, given a 
sample set size N, we approximate the number of points n that should lie in that triangle 
by calculating the ratio A&/AMs, where A  a  is the triangle’s area. We then generate each 
point by randomly bi-linearly interpolating the three vertices of that triangle. Note that 
this is a locally uniform, un-correlated distribution within each triangle, but there is a 
correlation when considering all triangles, actually improving the distribution compared 
to a purely random distribution.
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We compute the discrepancy for point distributions o f  size N  =  2l and N  =  2l +  2/_1 for 

/ =  1 , . . . ,  20, resulting in 40 sets ranging from 2 (clearly useless in practice) to 1572864  

samples. We plot a graph o f the logarithm o f  discrepancy versus log N,  to which we fit 

a least squares line, allowing us to easily compare the gradients. For testing, we used 

an adaptive Hilbert curve where the Hilbert vertices Hi on the the mesh surface A/s are 

uniformly distributed, and \{Hi}\ >  1 6 ,0 0 0 ,0 0 0 , thus ensuring the ratio uj >  10 (see  

Section 4,2.1). We sample N  points on this curve for each test using a constant density o f  

S =  1 to give an even distribution o f  points on the surface.

0 1 2  3  4 5  6
0
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Figure 6.5: The discrepancy o f our resam pling approach on various m eshes and a 

random  control distribution.

Figure 6.5 shows the results for the Julius Caesar, Squirrel, Igea and Chinese Lion tri­

angle meshes, all o f which are from the Aim  @ Shape repository *. All graphs are on a 

logarithmic scale. In each case, our approach demonstrates discrepancy which scales bet­

ter with N  than the random distribution (which gave very similar results for each mesh, 

so is only shown once). Gradients for the slopes shown in Table 6.1 back up this consis­

tency, demonstrating a mean gradient o f  about - 0 .7 2  compared to - 0 .5  for the random 

sequence. These results mirror those shown in Section 5.1 using low-discrepancy point 

samples generated on a parameterised sphere; they also correspond very closely to the

1 http://www.aimatshape.net/

http://www.aimatshape.net/
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known Hammersley distribution on the sphere [34]. This indicates that our approach gen­
erates low-discrepancy point distributions on meshes.

Mesh Discrepancy
Gradient

Metro
75% 50% 25%

J Caesar 
Squirrel 

Igea 
Lion

-0.70
-0.74
-0.73
-0.73

0.009
0.008

0.0032
0.009

0.014
0.010
0.013
0.016

0.020
0.018
0.017
0.022

Table 6.1: Gradients of Discrepancy Tests, and Hausdorff Distances for Test Meshes.

6.2.2 Hausdorff Distance

In this section, we consider a measure that determines the distance between two surfaces. 
Measuring the discrepancy of a set of points gives us a good indicator of the quality 
of the distribution, and ensures that we have sampled the surface uniformly and non- 
regularly. However, practically, it does not give us any information regarding how well 
the distribution of generated points preserves the shape of the original mesh. Thus, in 
order to investigate how well a resampled surface approximates the original, we compute 
the geometric distance between the original surface and a triangulation of the resampled 
point set, using the symmetric Hausdorff distance [28].

As explained in Section 1.1.1, a measurement based on the Hausdorff distance between 
two surfaces Sa, and Sb, has been defined using the average distance from a surface Sa to 
a surface Sb [28]. This average can be defined by the average of the distance between all 
points pa on the surface Sa, and their closest point pb on Sb:

Dmg{Sa, Sb) —
L  inf d(pa,pb)dA

J b a  P b € S b

area(S'a)
(6.9)

where area(Sa) is the surface area of mesh Sa. In practice this is approximated by dis­
cretely sampling Sa with points pa, and computing the closest point on Sb, Pb using 
an efficient data structure. This distance is then averaged to approximate the Haus­
dorff distance from one surface to another. Given two surfaces Si and S2 , computing 
max(Davg(S'i, S2), Dmg(S2, Si) gives us the symmetric average Hausdorff distance be­
tween the two surfaces.

A popular algorithm, Metro [28], first computes the bounding box of the target mesh, and 
partitions it into a regular arrangement of cubes. It then performs a scan-line sampling
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of the target mesh in order to simplify area computation. For each uniform sampled 
point pi on the surface, the nearest mesh triangle Ti is found by first searching in cube c 
(containing pi), then in adjacent cubes c -̂, increasing in distance from point pi. Once the 
nearest triangle 7} has been found, rays are cast from pi onto 7], computing the distance 
di. The smallest distance is then recorded.

In order to generate a surface mesh for this measure, we simply generate a set of sample 
points on the surface Ms, and triangulate them in the parameter domain using conformal 
Delaunay triangulation in 0 (n  log n) time [113]. Whilst Steiner points can be inserted 
to improve the shape of triangles, we do not insert them, as these would affect the pre­
scribed density, and we do not alter the triangulation in any way. We discuss further mesh 
adjustment when discussing the remeshing application (see Section 7.2).

For each test mesh, we generated three remeshed surfaces with 75%, 50% and 25% of the 
original number of triangles, with user-defined density 6 proportional to Gaussian curva­
ture. In each case, we computed the Hausdorff distance as a percentage of the bounding 
box diagonal to normalise the error. Table 6.1 demonstrates the results, showing a Haus­
dorff distance of at worst, 0.009% for 75% of the points, 0.016% for 50% of the points, 
and 0.022% for 25% of the points. A popular remeshing technique by Surazhsky and 
Gotsman [119] shows results for the Igea mesh, demonstrating an error of 0.003% for a 
105% remesh. Remeshed to the same number of points, our technique demonstrates an 
error of just under 0.004%.

There is another approach to computing this measure of distance. We could simply take 
the input mesh, and compute the distance between the sampled points and the mesh, thus 
avoiding the process of triangulating the samples [129]. Whilst a Delaunay triangulation 
is fairly standard, triangulating the point set also changes the surface somewhat as a dif­
ferent triangulation of the same point results in a different surface, and a different distance 
measure. However, the advantage of triangulating the generated point set is that we can 
then also therefore compute the distance from the input mesh to the new surface (as well 
as the distance from the sampled points to the input mesh), giving us the symmetric dis­
tance measure. By computing both distances like this, we can take the larger of the values 
(whether locally or globally), which gives us the maximum difference between the two 
surfaces and thus a more accurate overall error.

6.23 Runtimes

In this section we consider the run-times for the stages of our mesh sampling algorithm. 
Table 6.2 gives run-times for each stage of our algorithm. Parameterisation using Floater’s



6.2 Evaluation o f Mesh Sampling Technique 113

method [42] takes 70 seconds for the 268K triangle Igea. Complex mesh cuts, however, 
can result in longer parameterisation times, e.g. for the Chinese Lion. Generating the 
adaptive Hilbert curve depends solely on the maximum number of points required in the 
resampled surface. It typically takes less time than parametrisation: e.g. for the Igea, 
generating the space-filling curve to a precision necessary to generate 64K points takes 
about 10 seconds. The mapping stage of the algorithm takes about 1 second. After this 
pre-processing has been done, the mesh can be resampled in a fraction of a second regard­
less of the number of samples required (see Section 6.1 for what happens if the density 
becomes too high to be correctly represented on the Hilbert curve). After pre-processing, 
even large models with over 100K triangles can be resampled in less than 10 millisec­
onds. The main bottlenecks are parameterisation and adaptive Hilbert curve generation. 
The generation of this curve, however, has not been optimised, and could be further sped 
up, using either a GPU or multi-core CPU approach. Note that triangulation time is con­
sidered in Section 7.2.

Mesh J  Caesar Squirrel Igea Lion
No. of faces 

No. of vertices 
Parameterisation 

Curve Generation 
Mapping 

Surface Sampling

49K
24K
5.3s

7s
Is

0.001s

20K
10K
1.3s

4s
0.8s

0.001s

268K
134K

70s
10s

1.1s
0.0015s

40K
20K
152s

5s
Is

0.001s

Total 13.3s 6.1s 81.1s 158.1s

Table 6.2: Timing for different stages of our sampling approach for some meshes. 

6.2.4 Discussion

We now discuss the overall properties of our approach based on the above examples and 
results. The timing results show that, after pre-processing (including parameterisation), 
which takes about 80 seconds for a large mesh (268K triangles), we can perform density- 
controlled resampling of a mesh with hundreds of thousands of points at video frame rates 
or better. Note that during pre-processing, we generate a Hilbert curve taking into account 
the density function S, so we generate a higher density curve where we plan to place more 
points on the surface. However, when resampling interactively, if the user changes S or the 
number of samples N  so much that the Hilbert curve vertices are no longer dense enough 
in some places, we must further subdivide the curve locally to compensate, requiring 
extra computation time. For small changes, the distribution is initially approximated on
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the existing curve, whilst a background thread subdivides the curve and then redistributes 
the points.

The numerical discrepancy of the resampled points behaves similarly to points generated 
on parametric surfaces using space-filling curve methods 5.1.4, demonstrating gradients 
of the discrepancy’s logarithm of < —0.7. All models tested demonstrated similar results 
which are consistently better than for random sampling. Whilst not investigated due to the 
unavailability of their implementations, the output from popular remeshing approaches 
such as [119], results in a Poisson disc distribution, which demonstrates a discrepancy 
that is consistently worse than the jittered output from our approach [115].

When measuring the average symmetric Hausdorff distance of the triangulated resampled 
(remeshed) surfaces, we obtain a low distance error between the surfaces for all meshes, 
which scales well with decreasing sample points. The average Hausdorff distance approx­
imated with by Metro gives an indication of how well our remeshing technique preserves 
the overall shape. However, it does not necessarily tell us how well the shape of a mesh 
has been preserved locally, e.g. near sharp edges.

The approach discussed in this chapter looks at mesh resampling, where all output sam­
ples lie on the surface of the original mesh. A higher-order surface approximation could 
easily be used if felt desirable or appropriate, e.g. if the output were a super-sampling of 
the input mesh. When the Hilbert curve vertices Hi are mapped back to the mesh using 
the barycentric co-ordinate approach (see Section 6.1.2), a local cubic Bezier approxima­
tion could be computed [122] for the containing triangle and its neighbours. The Hilbert 
vertices could then be projected along their normals onto this local Bezier surface, giving 
a new set of vertices H[. This would be a computationally simple approach, though has 
the drawback of ignoring sharp edges if done naively.

6-3 Summary

In this chapter, we have demonstrated a novel mesh sampling algorithm that is adapted 
from the algorithm introduced in Chapter 4, taking as input an arbitrary genus polygonal 
mesh, and outputting a high-quality set of sample points. The output points approximate 
the original surface, with similar accuracy when measured using Metro to the best results 
in the literature. Experimentally they exhibit good discrepancy behaviour suggesting the 
distributions are of low discrepancy. We have also demonstrated quick generation times 
for the initial distribution of points, including parameterisation and space-filling curve 
generation. The sampling can then be completely adjusted in about a millisecond (see
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Section 7.1 for further details), though if the density becomes significantly greater, then 
the Hilbert curve must be further subdivided. In the next chapter we build on the sampling 
method introduced in this chapter, tailoring it for the applications of point-based graphics, 
remeshing and prototype painting.
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Chapter 7

Mesh Sampling Applications

In this chapter we employ the algorithms described in Chapter 6 to demonstrate their 
usefulness in a selection of applications and compare them to existing approaches. The 
algorithms are used to generate low-discrepancy point distributions that accurately ap­
proximate the input mesh geometry, and are used as a basis for point-based graphics (see 
Section 7.1), remeshing (see Section 7.2) and robotic painting of prototype models (see 
Section 7.3). All three applications require similar algorithms for handling and sampling 
an input mesh, though their outputs and uses are quite different. Our point-based graphics 
approach considers point coverage for sample density and demonstrates real-time levels 
of detail and silhouette-enhancing view-dependent rendering. The remeshing approach 
generates high-quality triangulated meshes and considers triangle quality. Finally, our 
robotic painting method samples textures to produce high-quality dithered point samples 
for painting. In this chapter, due to the nature of the applications, the quality of the out­
put is assessed visually in the context of the application (see Section 6.2 for quantitative 
analysis results).

7.1 Point-based Graphics

Whilst meshes are the most widely used method for rendering and storing models, point- 
based representations of surfaces have become a viable alternative, especially for com­
plex, smooth or dynamic surfaces [65] as explicit topological information does not have 
to be computed (see Section 3.1). However, simply rendering the vertices of a mesh as 
a set of points is problematic, as they are often irregularly spaced due to limitations of 
the capture process, and due to the fact that large flat areas can be described using a small 
number of large polygons. Also, the vertices describe polygons that are the main rendering 
element, so the sampling requirements are different; a good representation of the surface 
shape by the triangles is desired, but not necessarily a good point coverage. Vertices of 
such meshes are thus not necessarily suitable for use as primitives for point-based render­
ing. There is, therefore, a need to resample meshes to produce point sets that are more
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suitable for point-based rendering with properties such as good equidistribution and good 
shape preservation. A secondary objective may be to adjust the sampling density to meet 
user criteria, e.g. the local point sampling density is proportional to surface curvature, or 
possibly to impose a limit on the number of points used.

Surface splatting is a popular method to render point-based surfaces using oriented disc­
like shapes; purely point-based methods, rendering a point using one or more camera- 
oriented pixels, run into problems due to their poor image-space representation (see Sec­
tion 3.1). As the camera moves closer to a model, the sample density must increase 
considerably to maintain the surface coverage without holes when using only points. An 
alternative is to represent a point by a disc-like shape, orthogonal to the surface normal, 
which has a shape in image space (a splat) referring to object space properties, simplifying 
surface rendering considerably. However, continuity must be considered (see [37]), and 
generating a surface distribution that leaves no holes is still difficult to achieve.

Whilst we do not devise a new rendering technique, in order to provide a good surface 
coverage for point-based rendering, the sampling must take into account surface cover­
age. The criteria that we employ are as follows: the points should be spaced evenly, 
usually with respect to some function of curvature. By distributing the points according 
to curvature, and varying the size of the splat, we can make efficient use of the points: 
fewer, larger splats in areas of low curvature, and more, smaller splats in areas of high 
curvature. The points must not, however, be arranged in a regular pattern, in order to 
avoid artifacts and aliasing problems [133], and to prevent structure being added to the 
existing surface (see Section 5.3). The point sampling must be invariant to direction, that 
is, given a uniform, isotropic density, the distance between points should be consistent in 
all directions relative to the splat size used to represent the point. A distribution of points 
with a low discrepancy is a good indicator of the quality of the sampling method, with 
respect to how accurately we might represent the input surface. However, a distribution 
having low discrepancy does not guarantee that neighbouring points will be equidistant in 
all directions, a practical requirement when rendering a surface with points. In this sec­
tion, we describe our approach for generating point distributions for point-based graphics 
(see Section 7.1.1), demonstrate visual results (see Section 7.1.2), and describe levels of 
detail (LoD) and view dependent rendering applications (see Section 7.1.3).

7.1.1 Sampling Approach for Point-based Rendering

In this section, we discuss the adaptations made to our standard mesh sampling algorithm 
for use in point-based graphics (see Section 6.1). We first look at improving the uniform
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distance between sample points on a surface, followed by our fast neighbourhood look-up 
approach.

When rendering a point set, either using splats or simple point primitives, achieving com­
plete surface coverage, so that no gaps between points exist, is very important. Thus, for 
the application of point-based rendering, we are interested in keeping the distances be­
tween points as constant as possible, minimising the gaps in the distribution. By keeping 
the distance constant, fewer points are required to fill holes, and fewer points become 
redundant at the rendering stage. As introduced in Section 7.1, the density, and thus 
the distance between points, should be determined by the surface curvature, such that 
the splat size increases with the spacing between the points. Alexa et al. [3] describe a 
moving-least-squares approach to computing a regular point set from a point cloud: a least 
squares surface is iteratively matched to the point set, which is then regularly sampled to 
the desired density. Whilst they do not focus on the quality of the sample distribution, 
they suggest an approach to removing holes between samples using Voronoi diagrams. 
A Voronoi diagram, the dual of a Delaunay triangulation, is a planar tessellation, with 
a cell belonging to each centre-point, where, for a given centre-point, the cell is defined 
as every possible point in the metric space that lies closest to this centre-point. Where 
more than two such cells meet at a point gives a Voronoi vertex. Due to the complexity 
of building a Voronoi diagram of the whole surface in their approach, they project local 
neighbourhoods of a point into its tangent plane and compute a local Voronoi diagram of 
these points. For each Voronoi vertex, the circle, centred on the vertex, and defined by the 
closest three neighbouring sample points is computed. If the radius of this circle is larger 
than a user defined parameter, then a point is sampled at the Voronoi vertex, essentially 
filling the hole.

After the Hilbert curve has been generated, mapped to the surface, and sampled (see Sec­
tion 6.1), we adopt a similar approach to fill gaps in the distribution. By filling gaps in 
the coverage, we can ensure a hole-free sampling. However, we build a global Voronoi 
diagram in [0, l]2 as we already maintain the (u, v) co-ordinates of the points in [0, l]2 
as a result of our parametric approach. The global Voronoi diagram is faster to compute 
than a set of local approximations, and as a point is added, the Voronoi diagram can then 
be incrementally updated. Thus, in our approach, the diagram need only be computed 
once, rather than iteratively computing local diagrams. Following Alexa et al. [3], we 
then consider the radius of each circle used to construct the Voronoi diagram, and place 
a point at its vertex if it is larger than a specific (user-defined) parameter. Due to para­
metric stretch introduced by parameterising the input mesh to [0, l]2, the distances in the 
parameter domain are not consistent with distances on the mesh: a large circle radius in 
the parameter domain (one that would otherwise be sampled at the vertex), may not be
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large on the surface. To compensate for this, we compute each radius by considering the 
position of the three points in R3 rather than in [0, l]2. This results in a circle radius that 
is accurate with respect to the gap between the points on the mesh in R3. We then use this 
radius value to decide whether to add a point at the vertex. If a point is to be added, it is 
sampled at the nearest Hilbert vertex, and is then added to the existing Voronoi diagram. 
This process continues until there are no Voronoi circles that have a radius larger than the 
average or user-defined value.

Point neighbourhoods are used in many algorithms in geometry and graphics, and are 
given explicitly in mesh-based surface representations. Due to the lack of this explicit 
connectivity between points in a point-based surface representation, local neighbourhoods 
must be computed, often dynamically, when they are required. As discussed in [65], two 
main approaches to neighbourhood computation in point-based graphics exist: Euclidian 
neighbourhoods, and ^-nearest neighbours. The A:-nearest neighbours approach works re­
gardless of local density and feature size if the point distribution is sampled with respect 
to these properties [8], and scales with a linear complexity with respect to the number of 
points. The adaptive Hilbert curve, constructed using the algorithm given in Section 4.2, 
is built using a quad-tree. This quad-tree functions as a partition of 2D space on the mesh 
surface, providing a fast, implicit, fc-nearest neighbours computation method. Whilst this 
is already a fast approach, neighbours can then be cached per vertex by storing the ID 
Hilbert curve index of each neighbouring point. Alternatively, if an approximate neigh­
bourhood is required, for example, for the fast computation of surface normals, the previ­
ous and next k neighbours along the curve can be chosen due to the Hilbert curve’s good 
spatial coherence.

7.1.2 Visual Results

We now demonstrate the results visually for some meshes converted into point represen­
tations using our sampling approach. Our research does not aim to improve the rendering 
process of point based models, thus we render the point representations using a simple 
technique described in [1], which produces an output similar to Gourad shading.

Figs. 7.1-7.3, show uniform splatting, splatting according to density given by Gaussian 
curvature, and rendering using simple splats according to Gaussian curvature for the 
Squirrel (1.5K, 1.5K and 15K points respectively), Chinese Lion, and Igea meshes (both 
2K, 2K and 25K points respectively). The distribution of splats for the uniform sampling 

of all meshes appears regularly spaced for all models. The curvature controlled sample 
distributions for each mesh show higher densities of points in high curvature areas, and
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Figure 7.1: Uniform, curvature-controlled and rendered curvature-controlled re­
sampling of the Squirrel model.

lower densities in low curvature areas. The rendered Squirrel model shows very good sil­

houettes, although slight inconsistencies in shading between splats is clearly visible. This 

is due to the the quality o f the rendering, similar to that achieved using Gouraud shading. 

The Igea and Chinese Lion meshes, sampled more densely, show similarly good silhou­

ettes, especially highlighted by the straight edge on the base o f the Chinese Lion mesh. 

Inconsistencies in the shading are not obvious due to the higher sampling density.

Figure 7.2: Uniform, curvature-controlled and rendered curvature-controlled re­

sampling of the Igea model.
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Figure 7.3: Uniform, curvature-controlled and rendered curvature-controlled re­
sampling of the Chinese Lion model.

Low-discrepancy and stratified distributions have been w idely used in computer graphics, 

e.g. for applications such as radiosity [63] and ray tracing [31]. In [106], low-discrepancy 

and pseudo-random distributions were sampled from triangle meshes, though no inves­

tigation was done to assess the quality with respect to the final application: point-based 

graphics. Most techniques employ splatting or surfel rendering techniques [65] or perform 

direct rendering (see Section 3.1) to provide a contiguous surface coverage.

In Figure 7.4, we have sampled 3000 points in the unit square, drawn using solid cir­

cles, first using a random distribution, then the Niederreiter distribution, follow ed by our 

technique. Finally, we show our technique with Voronoi hole-filling using 2000 samples, 

and holes were filled that were larger than the splat radius used for rendering. The fi­

nal number o f points generated using this approach was 2290. Our distribution without 

the Voronoi technique already visibly produces a considerably better surface coverage for 

this application. The boundary for the Voronoi hole-filled distribution is rougher due to 

the reduced number o f samples. However, it improves our method further, resulting in a 

completely hole-free distribution, using 700 fewer points.

As discussed in [117], sampling a Hilbert curve with a jittered ID  sampling is actually 

a generalised form o f stratified sampling. Thus, dividing the plane up into cells and ran­

domly placing a point within each cell would produce similar results. However, the ad­

vantages o f our technique are: (i) to achieve a uniform density in a square parameter 

domain, the number o f samples need not be a perfect square, (ii) we can maintain an 

evenly stratified distribution on an arbitrary surface, (iii) parametric distortion does not 

affect the neighbourhood and connectivity o f  the samples.
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(a) (b)

(c) (d)
Figure 7.4: Splatted points in [0, l ] 2: (a) 3K random, (b) 3K Niederreiter, (c) 
3K Hilbert curve sampling method, (d) 2.3K Hilbert curve sampling method with 
Voronoi hole filling.

7 . 1 . 3  L e v e l s  o f  D e t a i l  a n d  V i e w p o i n t  D e p e n d e n t  R e n d e r i n g

In this section, w e look at two more specific ways o f  using our sampling approach for 

point-based rendering, for levels o f  detail (LoD ) and viewpoint dependent rendering (VDR)

Our sampling approach provides a real-time solution to continuous LoD, as points can 

be resampled quickly, as long as the density does not increase beyond limits imposed 

by the initially generated Hilbert curve (see Section 6.2.3). This is not a problem as
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in LoD the maximum density is usually known. We first discuss LoD representation o f  

surfaces with our approach. We compute the distance d between each vertex on the surface 

Hilbert curve, and the camera. Some simple function (linear or non-linear) o f  d is used 

to determine the number o f points N  to represent the surface as d changes. We initially 

pre-process the model, and then execute the equalisation step o f  the sampling process as d 
changes (see Section 6 .1.3). This step typically takes less than 10 m illiseconds, depending 

on the depth o f the curve, allowing for interactive frame rates.

Figure 7.5 shows local LoD control for the cow model (from the Aim ©Shape reposi­

tory !), where the arrow indicates the user’s viewing direction, but we present the points 

from the side to show the variation o f density with depth. Normally in LoD approaches, 

an average o f d is computed for the whole object, and as d changes, the whole object 

is resampled. Using our approach, the model is sampled according to local distances, 

resulting in a fine grain, continuous LoD. To reduce computational overhead, due to the 

good spatial coherency o f  the curve, d  may be computed for a subset o f the curve vertices 

and interpolated the the remaining vertices. The computation o f d can also efficiently be 

divided between multiple CPU cores as each calculation is independent.

Figure 7.5: 4K points with localised LoD where the arrow represents the viewing 
direction from the scene camera.

We also apply our approach to the problem o f  VDR, such that we can increase the density 

locally at the silhouette o f  the object, whilst maintaining a lower density over the rest 

o f the object. A low-density for the non-silhouetted parts o f an object are often hidden 

by a surface texture. However, low-density silhouettes are, visually, very obvious, and 

thus increasing the density at the silhouette in this manner can greatly improve the visual 

1 http://www.aimatshape.net/

http://www.aimatshape.net/
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quality o f the rendered object. For VDR o f a given surface, we compute the angle 0/ 

between the vector from the camera to a Hilbert vertex Hi and the surface normal at Hf.

discrete densities si, which are later accumulated into the cumulative densities Si (see 

Section 4.3), according to Op.

where o  is a constant used to specify the minimum density. As the vectors C  — Ht and 

Ni become orthogonal, approaches 0 , and the density increases, allowing us to increase 

the density around silhouette regions o f  the surface (see Figure 7.6). Note that this density 

function is only used to demonstrate the effect. To do this, w e need to calculate si for each 

Hi, and then perform the equalisation step o f  the sampling process to produce a viewpoint 

dependent surface sampling. Figure 7.6 demonstrates this result for a sphere shown from  

different angles relative to the camera direction to make the effect clearer to see. Our VDR  

implementation can recompute 50K sample points on an arbitrary surface approximately 

40 times per second, and could be further optimised.

Figure 7.6: Silhouette enhancement with viewpoint dependent rendering: The left­
most image shows a sphere from the rendered viewpoint. The remaining three im­
ages show the sphere from different angles, whilst fixing the view dependent render­
ing direction to that of the first image (in order to demonstrate the varying point 

density).

(7.1)

where C  is the camera position and Ni is the surface normal at Ht. We adjust the local

1 — cos(fy) +  o  i f  6i >  0 ,

0  otherwise,

Once the Hilbert curve has been generated, and the quad-tree stored in memory, our ap­

proach allows for fast resampling o f  a surface. However, for both the LoD and VDR appli­

cations, i f  the local density changes significantly there may be insufficient pre-computed
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curve vertices to sample the curve accurately, thus it may be necessary to subdivide the 
curve in real-time. If the maximum density is known in advance, then such subdivision is 
not necessary.

To achieve a high sampling fidelity, we require a local density l j  fv S dA /  JM S dA, for 
each subset U of the mesh Ms, where u  «  10 (see Section 6.1.2). If a large change in 
density occurs, and the curve does not adequately achieve the required local density, then 
the sample distribution is initially approximated using the existing curve. We then create 
a new thread to update the tree, which subdivides the curve locally as required, and resam­
ples the distribution. The time it takes to subdivide the curve is difficult to meaningfully 
quantify. For small changes, the quad-tree can be locally subdivided. In this case, the local 
densities can be derived from the surface, the surface integral updated, and the cumulative 
integral re-computed. For larger changes, each leaf node can be subdivided, globally in­
creasing the depth. In this case, the surface integrals must be completely updated. Finally, 
the updated curve is resampled to the required density with the correct accuracy. Note 
that this approach can be easily applied to our parametric surface sampling approach (see 
Section 4.2.1).

7.1.4 Discussion

In this section, we discuss the results of our mesh resampling method for point-based 
graphics applications. We have demonstrated that the stratified sampling output produced 
by our approach, when drawn with circular discs on the plane, provides better coverage 
with fewer points than other well known low-discrepancy distributions, perhaps due to the 
directional invariance of our distributions. Examples of the variance exhibited by some 
sampling methods are shown in Section 5.1.3, where the discrepancy of some distributions 
varies with respect to the sampling shape used to approximate the star discrepancy; an 
undesirable quality for an arbitrary surface. We also show that we can further reduce the 
holes in the distribution using the parameterised Voronoi method, further improving the 
equidistribution of points, and ultimately improving the point-based rendered output.

Our approach to LoD representations allows the rendered surfaces shown in Section 7.1.2 
to be resampled in less than 10 milliseconds, whilst maintaining the qualities of the sam­
pling, such as the discrepancy. We have also demonstrated a simple viewpoint dependent 
rendering scheme, showing reasonable ffame-rates for fixed-complexity scenes. To fur­
ther speed up these approaches, we suggest utilising the hierarchal structure of the Hilbert 
curve to spatially divide the points on the surface, and reduce the amount of directional 
(VDR) and distance (LoD) computation.
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Different levels of of the quad-tree can be used to provide different levels of coarseness 
and speed. For example, at the second level of the tree, the distance towards the centre of 
four quads would be computed, rather than all points. For the LoD approach, the distance 
towards the centre of each quad provides the vertices within each quad with a constant 
density. This greatly reduces the number of necessary distance computations, yet still 
allows for local levels of detail control on a surface. For VDR, an initial coarse angle 
computation could be first employed. This initial computation can then be recursively 
expanded down the Hilbert-curve quad-tree, allowing for fast pruning of nodes that are 
either too far away or out of sight of the camera. By utilising the data-structure for these 
methods, the computational cost can be significantly reduced. Further enhancement to the 
VDR approach could be done by adopting fast look-up computation for visibility, such 
as the method described in [45]. These examples of LoD and VDR show that the ability 
to chose an arbitrary density, in our sampling technique, allows the user to define various 
different sample distributions, dependent on the requirements of the application.

7.2 Remeshing

Remeshing is an important area of research, given the ease of producing high resolution 
meshes using 3D scanners and modelling software [74]. Often the original meshes are 
too dense to handle easily, render quickly, transmit over a network efficiently, or perform 
computations on; they may also be highly irregular due to limitations of the capture pro­
cess. There is a need for remeshing such high-resolution models to a more manageable 
size, whilst producing a more regular sampling which also preserves shape well. A sec­
ondary objective may be to adjust the mesh density so that it meets some user criterion, 
e.g., that the mesh has triangles of approximately uniform size, or that the points on the 
surface have a locally specified density, e.g., proportional to surface curvature.

Remeshing is important in many fields such as computer graphics, modelling and simu­
lation. For these applications, requirements of the output mesh vary considerably. En­
gineering applications such as finite element analysis and computational fluid dynamics 
often desire regularly connected almost equilateral triangles. In real-time visualisation, 
we may simply want the simplest construction that results in few noticeable artifacts as 
the scene changes. In modelling, we might require the most accurate representation of the 
original surface within specified storage requirements or processing time limits. However, 
as discussed in Section 3.2, an important requirement for all methods is that the original 
mesh is sampled in a way that preserves shape, and provides control over the distribution 
of either triangles or vertices. Our approach, when used with a constant density, attempts
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to evenly (but not regularly) sample the surface, by utilising a low-discrepancy point dis­
tribution on the surface, which allows us to capture the original shape well, but at the same 
time, avoids any aliasing effects of regular-grid sampling.

Remeshing involves resampling points on the existing surface and connecting them to 
generate a new mesh. As shown in Section 6.2, low-discrepancy distributions are very 
good for capturing features accurately when sampling geometry. In this section, we inves­
tigate the use of low-discrepancy distributions to generate two-manifold simplicial meshes 
with respect to a density function.

We now describe the process of generating a remeshed surface with our approach. A 
set of points lying on the surface of the original mesh in R3 is first computed using the 
algorithm described in Section 6.1. Using the algorithm described in [113] for speed, we 
then compute a conformal Delaunay triangulation of the (u, v ) co-ordinates of the points 
in [0, l]2. This triangulation is used for the (x , y, z) co-ordinates in R3.

If the mesh does not already have a disc topology, a cut is defined on the mesh (see Sec­
tion 6.1.1). The cut is defined by a set of vertices connected by a sequence of edges, 
resulting in a poly-line on the mesh, Ve. This set of connected vertices is duplicated, re­
sulting in a second, identical, poly-line VJ. These two poly-lines are joined at the first 
vertex of each poly-line and the last vertex of each poly-line, resulting in a single loop. 
This loop is treated as a zero-area hole in the mesh. The mesh is then parameterised to 
[0, l]2, with the poly-line loop used as a boundary. A Hilbert curve is then generated 
in [0, l]2, covering the parameterised mesh (see Section 6.1). The Hilbert curve is then 
sampled, resulting in a set of low-discrepancy points. The boundary vertices of the pa­
rameterised mesh, Ve and VJ, are then added to this set of low-discrepancy points, and all 
the points are triangulated into a new mesh in [0, l]2. This mesh is then mapped back to 
R3. The duplicate vertex poly-line V'e is then removed from the new mesh, and any edges 
in the mesh referring to these vertices are instead referred to their equivalent vertices in 
Ve. This process closes the hole in the mesh, and results in triangle mesh with the same 
topology as the input mesh. Note, however, that this is not an optimal solution, as the 
sampling rate and quality of the poly-line vertices Ve is unlikely to be consistent with the 
low-discrepancy samples, and thus the triangles in the mesh connected to this poly-line 
may vary in size and shape considerably compared to the rest of the mesh. Thus, whilst a 
topologically consistent remesh is produced, quality issues may exist along the poly-line 
where the original cut was made. In practice, a better solution would be required.

Parameterising patches independently may result in much better parameterised planar 
meshes (better in this case meaning less distance or angle distortion inferred by the 
parametrisation). For the application of remeshing, where new samples produced as an
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output must be triangulated, the problem of stitching the patches back together to achieve 
a globally smooth and uniform triangulation becomes a complex issue. This stitching 
problem occurs because the triangulation of sampled points is generally performed in 
the parameter domain. Triangulating the point set in R2 like this simplifies the compu­
tation greatly (see Section 7.2), and ensures an accurate construction of the surface (a 
triangulation of a surface in R3 is considerably slower, and may not give consistent or 
robust results [8]). A potential problem with a planar triangulation, is that in extreme 
circumstances it can lead to a self-intersecting triangulation. Distributing points on the 
surface according to the local curvature generally avoids this problem. Potentially, how­
ever, a triangulation of the surface in R3 could be employed, circumventing this problem, 
and the issue of global surface reconstruction (see Section 7.1.4). Gu and Yau [47], and 
Khodaskovsky et al. [64] demonstrate solutions to this problem of global surface recon­
struction, locally parameterising the surface in order to minimse both distance and angle 
distortion.

7.2.1 Results

We now consider the visual results from the remeshing process. We first look at a trian­
gulation of the samples produced by the algorithm described in Section 6.1. Figs. 7.7- 
7.9 show a uniform remesh, a remesh according to Gaussian curvature and a rendering 
of a remesh according to Gaussian curvature for the Squirrel (4.5K vertices, originally 
20K), Julius Caesar head (15K vertices, originally 49K), and Igea (15K vertices, orig­
inally 286K) meshes. Computation times for these models are given in Table 6.2, and 
triangulation times for the Squirrel, Julius Caesar head and Igea meshes were 0.1s, 0.3s, 
and 0.6s respectively.

Visually, especially for the curvature based remesh, the features of the meshes are well 
preserved. As we further discuss in Section 7.2.2, the focus of our method is on the quality 
of the point distribution, not on the quality of the triangles. As a result of this, long and 
thin triangles may result, and the valence of the vertices in the mesh is not considered.

7.2.2 Discussion

We now discuss the remeshing results. We can produce visually high-quality remeshed 
surfaces that maintain the original topology of the input mesh, with an error when com­
pared to the original surface, measured with the Hausdorff distance, competitive with the 
best in the literature (see Section 6.2.2). The discrepancy results for the point distribution
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Figure 7.7: Uniform, curvature-controlled and rendered remesh of the Squirrel 
mesh.

Figure 7.8: Uniform, curvature-controlled and rendered remesh of the Julius Caesar 
mesh.

from which the output mesh is constructed in our approach (see Section 6.2 .1) indicate 

low discrepancy. However, the discrepancy results do not specifically indicate the quality 

o f the triangle mesh, or indeed, how well the new set o f  triangles approximates the original 

mesh. We note that a low-discrepancy mesh may not always be the best or even desirable 

solution when remeshing, and that in some situations, nearly equilateral triangles may be 

more desirable, e.g. for finite element analysis. Yet a mesh based on low-discrepancy 

samples does allow us to sample the surface o f the original input mesh very evenly, and 

provide consistent and predictable errors according to the Hausdorff distance. In Sec-



7.3 Robotic Prototype Painting 131

Figure 7.9: Uniform, curvature-controlled and rendered remesh of the Igea mesh.

tion 8.3 we discuss further measures that might be investigated, looking at triangle and 

surface distribution quality.

7.3 Robotic Prototype Painting

In this section, we introduce a prototype for robotic painting developed with Jonathan 

Comey and Finlay McPherson, using our high-quality sampling algorithm. Our contri­

bution is a mesh sampling method, utilising surface textures, to generated high-quality 

dithered point distributions. Motivated by the need for a rapid, automated painting system  

for prototyping models, a non-contact optical painting system  has been developed, which  

uses photosensitive paint, exposed by a tri-coloured laser [83, 118]. A laser is used to 

reduce scattering. Intensity-controllable red, green and blue laser beams are combined  

into a single beam. As the system  is still a prototype, the colour o f the laser cannot be 

changed during the painting process, and its intensity is limited in terms o f the variation 

in colour that it can reproduce. This beam is transmitted via a multi-modal optical fibre 

through a focusing lens, mounted on the end o f a robot arm, to expose a single point on 

the m odel’s surface. The focusing lens is mounted on a four-axis robot with an additional 

two-axis rotary tilting table which holds the work piece (see Figure 7.10). The robot thus 

has the ability to position itself such that the laser beam can be positioned orthogonal to 

the tangent plane o f a point on the surface, and thus expose points along their normal. The 

robot may also be positioned up to ± 4 5 °  from the normal in order to expose a point that 

may otherwise be occluded (rotation limited by the robot). The aim o f the positioning is
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to align the laser beam as close to the normal as possible, so that the point o f  exposure 

on the model is as close to a circle as possible; increasing the angle o f incidence results 

in a more elliptical point. The system can currently apply only single colour images with 

varying intensity, o f  up to 300dpi resolution to work pieces, using as input VRML models 

that define both the surface and surface colour (i.e. a texture map) o f  the object being 

painted.

Robot

Robot-Mounted Light 
Source

Object

Rotary Tilt 
Table

Figure 7.10: Layout of robotic cell (courtesy o f Heriot Watt University).

A surface sampling, including point co-ordinates, surface normal and colour, describing 

a set o f  splats is first computed using our sampling approach. A s input to the robotic 

painting system, the sampling is used to compute a series o f  robot end-effector positions, 

and laser intensities. From this data, a path for the robot to follow is generated so that 

the laser transfers the texture onto the model by exposing the light sensitive paint. The 

planning stage attempts to minimise the amount o f sequential robot movement between 

positions in order to reduce the settle-time before each exposure. The robot must be 

allowed to settle after movement in order to achieve a sharp point o f  exposure on the 

object, and (up to a limit) the greater the movement, the more time must be allowed. 

Reducing settle time between exposure reduces overall painting time (see [83] for more 

details). This painting process requires no physical contact, so images can be applied to 

any shape limited only by acessibility, i.e. the ability o f the robot to position and orient 

the laser suitably to expose each part o f  the surface. The robot has six degrees o f  freedom  

to facilitate exposure o f overhanging and re-entrant areas.
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Splats can be generated based on a laminar (layered) approach similar to that used in 

additive manufacture [78]. In this approach, the robot works from top to bottom o f  the 

object in small vertical increments, and for each height, a fixed number o f steps is taken 

around the model, exposing each point to a burst o f  light. This layered approach to splat 

generation has the following shortcomings:

•  Raster artifacts: the laminar approach creates a scan-line im age on the model, the 

regularity o f which the human eye can easily detect.

•  Distortion: if  a part o f  the surface being sliced is orthogonal to the axis used for 

laminar sampling (the 2 -axis), a sampling o f  even density is produced. However, if  

the surface is not orthogonal, the resulting sampling density w ill not be even, which  

can produce artifacts in the resulting im age (see Figure 7.11).

Figure 7.11: Splats using laminar slicing (left) and our low-discrepancy sampling 
(right).

Various solutions to these problems exist, such as varying the exposure tim e to increase 

the intensity o f  oblique exposed splats. Nevertheless, whilst com plete coverage may be 

achieved in this manner, sampling fidelity is sacrificed. The importance o f  high quality 

sampling for the application o f  painting prototypes is two-fold. An even sampling o f the 

input mesh (see Figure 7.11) is desirable to produce a high quality output image on the 

object. Parts o f  the surface that are alm ost parallel to the slicing planes are sampled very 

poorly (see Figure 7 .11), making it difficult to produce a high quality surface exposure 

o f a high resolution im age. The equidistant laminar sampling therefore only works well 

on cylinder-like objects. Our approach solves this by sampling the input mesh uniformly 

with a low-discrepancy distribution.

The second advantage o f  our sampling method is the avoidance o f aliasing problems in 

the output. Grid sampling covers a domain very evenly, but when sampling a continuous
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signal, suffers from aliasing problems [87]. Aliasing occurs when a continuous function is 
not sampled densely enough, which is very apparent with evenly-spaced samples because 
of their regular, visible pattern. Sampling with non-gridded patterns of low-discrepancy 
samples greatly reduces the aliasing effect, as demonstrated for the application of texture 
filtering in [115]. Thus, we apply our approach to high-quality mesh sampling to produce 
a set of evenly distributed, low-discrepancy point samples, that are independent of the 
surface shape, to improve the output quality of the prototype painting technique. In Sec­
tion 7.3.1 we describe the changes introduced into our mesh sampling approach, followed 
by a demonstration (see Section 7.3.2) and discussion (see Section 7.3.3) of the results.

73.1 Sampling Approach for Robotic Painting

In this section we expand on the mesh sampling algorithm described in Section 6.1, the 
output of which is used for the prototype painting solution described by McPherson et 
al. [83], in order to provide a robust and integrated approach to high-quality model paint­
ing. Our method extends our mesh sampling approach, allowing for texture sampling, 
texture-based adaptive curve subdivision, and density-controlled sampling based on tex­
ture and surface detail, and surface point dithering. Figure 7.12 demonstrates the pipeline 
of our sampling method, the output of which is then sent to the robot and path planning 
algorithms, before the model is finally painted. The figure shows the input object, which 
is then scanned to produce a triangle mesh. Two parameterisations are produced from this, 
a partial parameterisation where the texture is to be painted, and a full parameterisation 
for the mesh. The two parameterisations are then used to generate a Hilbert curve that is 
adaptive according to both. This Hilbert curve is mapped to the surface, and sampled ac­
cording to the image texture provided in order to produce the input for the robotic painting 
process.

Colour Sampling

As an input to our algorithm, we take the input mesh Ms, and either (i) a user generated 
texture with texture parameterisation Mty or (ii) colours provided in the input VRML file 
per triangle vertex. In case (ii) the colours can simply be linearly interpolated to compute 
a colour value for each vertex of the Hilbert curve Hi on the surface. In case (i), the texture 
is supplied explicitly via the texture parameterisation Mu which indicates how the texture 
image is mapped onto the surface. Mt is a full or partial parameterisation of Ms, providing 
a mapping for the supplied texture onto Ms. Note that the texture parameterisation Mt is 
used in addition to the computed mesh parameterisation Mp (see Section 6.1.1) in order
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Figure 7.12: Generating point samples for the robotic painting process, in order, 
starting from the top left: the input model, scanned mesh, texture parameterisation 
(upper), mesh parameterisation (lower), adaptive Hilbert curve in the parameter do­
main, adaptive Hilbert curve mapped onto the original mesh, point based resampling 

with per-point colours and normals.

to give the user o f the system  more flexibility in the positioning and stretch o f  the texture. 

Colour data is extracted from the the texture image, which is then used to determine 

colour values for the vertices hi o f  the Hilbert curve during its generation in the parameter 

domain o f  the mesh. We calculate a mapping g(H{) =  U €  [0, s] x  [0, t], so that we can 

sample the parameterised texture, where s and t represent the dimensions o f the texture.
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We use the same barycentric co-ordinates from the mapping of the Hilbert vertices via the 
parameterisation /  (see Section 6.1.2), but then convert them to Cartesian co-ordinates in 
the texture parameterisation supplied with the surface, Mt C [0, s] x [0, t], where Mt is the 
triangulated set of texture co-ordinates. A square area is assumed for each Hilbert vertex 
Hi, defined by the quad-tree structure of the curve, resulting in a contiguous coverage. 
For each vertex Hi, if the area lies within a pixel, then the vertex is assigned the pixel’s 
colour. If multiple pixels lie within a vertex’s area, the weighted average of those pixels 
is computed based on their coverage of the area.

Dithering

Dithering, or half-toning, is a technique used to represent a continuous tone image or 
graphic with a reduced palette of colours. The colour of the laser cannot be changed, 
and its intensity is limited in the variation in colour that it can reproduce. Dithering is 
therefore important due to the limited colour pallet, and also gives us control over the 
output quality and total painting time. To be able to reproduce an image on the surface 
of the prototype, we produce a spatially dithered reconstruction of the input image. The 
process of dithering can be considered simply as a quantisation of the colour or intensity 
depth of an input image. Thus, techniques generally attempt to minimise the quantisation 
error by assessing the local neighbourhood of a point, and alter the intensity of that point 
to minimise a local error [121]. Doing this for every point results in a minimised global 
error. In [121], a method is described to perform binary dithering using space-filling 
curves. Firstly, an image-covering Hilbert curve is generated in [0, l]2, and in an initial 
pass along the curve, a cumulative sum of intensities is calculated from the pixel values 
of the original image. A second pass along the curve is executed, and pixels are coloured 
black based on the accumulated intensity computed on the first path. The advantage of 
this approach is that the quantisation error is intrinsically accounted for by the first pass 
intensity accumulation. We use a similar approach, generating a dithered sampling of 
points on the output mesh to improve the image quality for our painting approach.

Our approach uses a tri-colour laser to expose a single colour point on the surface with 
limited intensity control. In order to provide flexibility in the output and total painting 
time and to improve image quality, dithering can be performed to give the appearance of 
a larger range of shades when painting a texture on the model. Our algorithm provides 
a simple solution to this: The local colour sampled from the texture stored at a Hilbert 
vertex Hi is converted to greyscale, which is used as an intensity. The inverse of this 
intensity is then used as the discrete density <p, so that more points are sampled in dark 
areas, and fewer in brighter areas. The result can be seen in Figure 7.13.
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U M i

Figure 7.13: Dithering example using the Hilbert curve; a slight grey gradient 
(darker on the left, lighter on the right), and a central texture (the high density at 
the silhouette is due to projection).

As described in Section 6.1.2, when generating the adaptive Hilbert curve, at each level 

of adaptive expansion o f the quad tree, w e compute the number o f vertices required in a 

particular quad, O q ,  based on that quad’s coverage o f  the surface M s. However, we must 

also consider the density functional, 8, for the surface. We compute the discrete density 

ip for a point on the surface o f  the mesh, which determines the level o f  subdivision o f  

the Hilbert curve, p  is computed as the variance, <r2, o f  the pixel intensity in a specified  

neighbourhood o f a point. We now describe how w e compute this discrete density, and 

how this is then used to determine the adaptive subdivision o f the Hilbert curve.

For each quad in the Hilbert curve quad-tree, w e compute its centre point r)Q, and the 

polygon defined by the four com ers o f  the quad, 7 q. Using the mesh parameterisation 

/ ,  and the texture parameterisation g , w e apply the compound functions g(f{rjo)) =  rjt 
and # ( / ( 7 q)) =  7 , mapping the centre point and the quad polygon from the parameter 

domain Mp o f  the mesh, to the texture space M t. A polygon 7  is used to ensure that the 

proper area on Mt is represented by the Hilbert quad. is then rasterised, resulting in 

the set o f  pixels R t =  { rk : k =  1 , . . . ,  L}  around r]t , determined by 7 Q. The pixels
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ri form a neighbourhood for the central pixel sampled at rfc. A pixel r* has n colour 
components for the pixel (e.g. greyscale colour model, n = 1), dependent on the colour 
model of the texture. However, in this simplified case, we have already converted the 
texture to greyscale. In order to compute the difference in intensity between two pixels in 
the neighbourhood, we first define the following function for two pixels a =  (ai, . . . ,  On) 
and 6 =  . ,6„),

f c = i

The colour difference is calculated in this way to ensure that the maximum difference is 
taken. The variance o2 of the intensity in the set of pixels Ri is then approximated by

where Ri is the arithmetic mean value of the pixels in Ri. The variance cr2 of the pixels 
for the quad gives the discrete density approximation (p. Thus, for a quad Q, we ap­
proximate fq S d A / f Ma (pdA with O q  > (p(OT/(srea(f~1(T ) ) /area(Q)) vertices (see 
Section 6.1.2). To generalise this method to a colour, e.g. RGB, system, an approach such 
as that described in [96] could be employed.

7 3J2 Results

In this section, we demonstrate early results from the prototype painting system. Our 
sampling process is complete, but the process of getting the robot painting system fully 
working requires further work by the project partners. Figure 7.14 shows the output from 
our Hilbert curve sampling approach on an eggcup model, compared to the laminar slicing 
approach. The laminar slicing approach shows a clear and regular structure which the 
Hilbert curve approach does not The laminar slicing sampled eggcup also displays an 
inconsistent vertical spacing between points, (vertical gaps can be seen between points 
on the base, whereas point overlap is visible near the top of the eggcup). This problem 
of inconsistent spacing for the laminar slicing approach highlights the advantages of our 
method, which can sample surfaces uniformly.

Figure 7.15 demonstrates graduated levels of gray on a piece of white card orthogonal to 
the laser, using varying exposure times rather than varying colour of the samples at 50dpi. 
Note that a low dpi is used here to demonstrate the point distributions more clearly. In a 
normal painting process, the sampling density used would be 300-500dpi. The laminar

n

(7.3)

(7.4)
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Figure 7.14: Sample point generation using laminar slices (left) and our low- 
discrepancy sampling (right).

slicing approach demonstrates fewer holes in the distribution due to the raster-scan ap­

proach. However, an undesirable structure is also far more apparent in the laminar slicing  

approach. Another problem which this image illustrates are the additional visual artifacts 

introduced by inaccuracies in the robot arm positioning; a vertical offset is apparent across 

the strip. This problem is not visible with the space-filling curve sampling approach.

1 Inch

Figure 7.15: Painting of graduated gray levels using Laminar sampling (top) and 

our space-filling curve sampling (bottom) at 50dpi.

One main objective is to generate an even covering o f the surface regardless o f its orien-
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tation. To test this a texture map consisting o f a series o f  evenly spaced, horizontal strips 

was applied to the eggcup model mesh. Figure 7.16 shows the eggcup model, sampled 

at 50dpi and 100dpi for the laminar slicing, and Hilbert curve sampling approaches. The 

sampling generated by the laminar slicing approach can be clearly seen to produce an un­

even separation towards the bottom o f  the egg cup (i.e. the lines get closer together as the 

curvature increases). However, the same texture reproduced using the Hilbert curve sam­

pling method results in an even separation o f bands regardless o f the surface curvature.

(a) (b) (c) (d)

Figure 7.16: 2D test strips using (a) laminar slice 50dpi, (b) laminar slice 100dpi, (c) 
Hilbert curve 50dpi, (d) Hilbert curve 100dpi sampling.

7 . 3 . 3  D i s c u s s i o n

We now discuss the results obtained from our prototype painting method. The adap­

tive Hilbert curve sampling approach offers several advantages over the laminar slicing  

algorithm. For perfectly vertical surfaces and axis aligned textures, the laminar slicing  

approach produces better coverage (i.e. fewer holes in the distribution), though at the ex­

pense o f structured rendering artifacts. Whilst requiring more samples in this case, our 

high-quality Hilbert curve sampling method does not introduce structure into the painted 

image, reducing artifacts in the output. It also demonstrated far better, even coverage with 

respect to varying curvature in a model, indicating that for more com plex surfaces, our 

sampling approach is far more practical. We have also demonstrated the algorithm’s abil­

ity to dither images, giving the user o f the system far better control o f  image quality and



7.4 Summary 141

painting time.

7.4 Summary

We now summarise the results presented in this chapter. We have demonstrated that 
our sampling algorithm has advantages for point-based graphics, remeshing and proto­
type painting when compared to other sampling approaches. The point distributions pro­
duced for our point-based graphics application show high-quality surface representations, 
with efficient surface coverage, improved further with our parametric Voronoi hole-filling 
method, yielding better rendering results. We also demonstrate that after an initial pre­
processing step, we can provide real-time levels of detail and view dependent rendering 
methods. These methods allow for fine-grain continuous LoD, and silhouette enhance­
ment. We also demonstrated a remeshing approach, maintaining the topology of the orig­
inal mesh, with a surface error as good as the leading approaches in the field. However, 
improvements in triangle quality of the output mesh may be required for some applica­
tions. Finally, we have demonstrated an approach to providing high-quality point distri­
butions, that sample and represent a surface texture well, as part of a practical, robotic 
prototype painting process.
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Chapter 8

Conclusions

The goal of two-manifold sampling, whilst often dependent on the application, is to pro­
duce a high quality distribution that samples the function or geometry with a correlated 
even distribution, whilst capturing and preserving features. Practically, this is governed 
by computational cost and complexity and often visual appearance. In this thesis, we have 
described an approach for fast generation of high-quality low-discrepancy point sample 
distributions for parametric surfaces and polygonal meshes. The underlying idea of our 
approach relies on a surface parameterisation, with considerable computation being done 
in the parameter domain. Due to our parameterisation approach, we reduce the compu­
tational complexity of the sampling problem, which allows us to very quickly generate 
high-quality density-controlled surface distributions. We further simplify the sampling 
problem by generating a space-filling curve to induce an ordering on the parameter do­
main. The space-filling curve is then mapped onto the surface, and is sampled to produce 
the point distribution. Differential properties of the parametric surfaces are computed to 
ensure accurate distribution of points, accounting for parametric stretch and density. In 
order to employ the same approach for polygonal meshes, robust discrete properties have 
been used. Overall, a robust framework has been developed for generating high quality 
distributions of points. The usefulness of this framework has been demonstrated for a 
selection of concrete applications.

Discrepancy is used throughout the thesis to assess the sampling quality of the distribu­
tions produced using our approach and compare them to alternative well known sampling 
methods. Visual quality is also assessed, both numerically using the blue noise crite­
rion, and through the representation and rendering of various surfaces. A popular use of 
mesh sampling methods is to adjust the sampling density, often to reduce the number of 
samples on the surface. We therefore also assess the down-sampling error of our mesh 
point-sampling method relative to the original surface.

In Section 8.1 we discuss our contributions to the field of surface sampling. In Section 8.2 
we discuss the problems involved in surface sampling and our approach to solving them, 
both in terms of generation of sample distributions and the subsequent evaluation. Finally,
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in Section 8.3 we discuss our plans and suggestions for further development of this work.

8.1 Contributions

(I) We have introduced a high-quality low-discrepancy parametric surface sampling al­
gorithm (see Chapter 4). Our novel sampling approach generates low-discrepancy se­
quences on parametric surfaces by sampling points along a space-filling curve. We are 
able to control the local sampling density, which gives greater flexibility in generating 
sample distributions for various applications. To devise this approach, and investigate its 
sampling properties, we first investigate the properties of various unit-squaie space-filling 
curves, choosing the Hilbert curve due to both construction advantages (see Section 4.2) 
and geometric properties (see Section 2.2.2), as shown experimentally (see Section 5.4). 
We then describe an algorithm to adaptively generate the Hilbert curve in order to gener­
ate a uniform coverage of the final surface (correcting for parametric stretch), with respect 
to the density function (see Section 4.2.1). We describe the computation of surface inte­
grals (see Section 4.3), and employ a method similar to histogram equalisation in order to 
sample the curve according to area and a user-defined density function. We investigate the 
ID sequences used to sample the curve (see Section 4.4). We also investigate the effects 
of precision loss due to the use of the Hilbert curve to map a ID sequence to 2D, and the 
problems resulting from severe and non-conformal parameterisations (see Section 4.5). 
To address these problems, we consider a polynomial reparameterisation method and ap­
ply it as an example to a super-quadric surface that suffers from very high parametric 
stretch.

(H) To experimentally assess die quality of the point distributions produced using our 
parametric surface sampling algorithm, we compute the discrepancy of the distributions 
(see Chapter 5). We have extended the standard star discrepancy measure to include vari­
ous non-rectangular geometric subsets in order to more thoroughly assess the distribution 
of points (see Section 5.1.1). We assess the discrepancy, using this extended measure, 
of the Hilbert and Peano curves along with different options for the ID sequences (see 
Section 5.1.2). The overall best performing method, the Hilbert curve with a ID jittered 
sequence is then compared to various well known low-di screpancy distributions (see Sec­
tion 5.1.3). In the unit square, we show that the popular low-discrepancy distributions 
perform very inconsistently as the sample shapes change, highlighting the need for a 
wider range of shapes in discrepancy measures. We also show that our approach produces 
consistent results throughout all tests. We further present a discrepancy measure on a 
sphere, and again show the consistent low-discrepancy behaviour of our approach (see
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Section 5.1.4).

(HI) Moreover, we introduce a mesh sampling algorithm using adaptive Hilbert curves, 
extending our sampling algorithms to arbitrary genus polygonal meshes (see Chapter 6). 
In order to evenly distribute points on a mesh using our histogram-equalisation approach, 
we utilise a robust method for computing discrete approximations of surface integrals for 
the curve path on a triangle mesh (see Section 6.1.3). Our method builds upon accurate 
Voronoi area computation methods described in the literature, and further adds ways to 
compute the area of points with obtuse triangle neighbours, and points on the edges of 
the Hilbert curve. The result is a robust method for computing differential properties 
along the space-filling curve for arbitrary meshes, which are then used to distribute points 
along the curve on the mesh, to produce low-discrepancy and density controlled point 
distributions. In order to experimentally evaluate our method, we devise a numerical 
triangle mesh discrepancy measure (see Section 6.2.1), derived from the star discrepancy. 
We show that our method of mesh sampling generally produces point distribtuions with 
low-discrepancy behaviour, considerably better than a random distribution, across all of 
the meshes investigated (see Section 6.2.1). Discrepancy for our jittered sampling is also 
consistently lower than that of Poisson disc sampling, which is the output of many mesh 
sampling methods in the literature. We also demonstrate that our remeshing approach, 
when used to decimate a mesh, shows errors in line with the best remeshing methods in 
the literature (see Section 6.2.2). We do not, however, investigate the quality of triangles 
in the remeshed surface, important in, for example, finite element methods.

(IV) We demonstrate our mesh sampling method for the applications of point-based 
graphics, remeshing and robotic prototype painting (see Chapter 7), to show that it is also 
practically useful in various contexts. For our point-based graphics sampling method (see 
Section 7.1), we introduce a fast, global hole-filling algorithm to improve surface cover­
age (see Section 7.1.1). We show that the point distributions produced using our approach 
are very evenly spaced, providing a vastly better coverage when compared to a random 
distribution and the Niederreiter sequence (see Section 7.1.2). We also demonstrate ren­
dered examples of point distributions produced using our approach, which demonstrate 
well-defined edges, and no rendering artifacts. We describe a real-time method for high 
granularity local levels of detail, such that the density of points can be modified locally 
on the model depending on the distance from the viewer in real-time (see Section 7.1.3). 
We also demonstrate an approach to view dependent rendering, allowing for higher detail 
along generalised silhouettes, and allowing for view-independent fixed model complexity 
(see Section 7.1.3). We discuss an algorithm that utilises the quad-tree structure of the 
Hilbert curve to provide a hierarchical surface decomposition in order to greatly speed up 
angle and distance computation for these methods. Further to this, we describe a remesh­
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ing method using our low-discrepancy sampling method. Our approach maintains the 
original mesh topology (see Section 7.2), and results in high quality, density-controlled 
output meshes that have a very low error with respect to the original meshes, demonstrate 
no artifacts when rendered, and show no visible regular patterns. Finally, we describe a 
prototype painting method, utilising our mesh sampling algorithm, that demonstrates large 
improvements over the existing laminar slice sampling approach, providing an evenly dis­
tributed set of points, invariant of surface shape, capturing surface texture and colour (see 
Section 7.3). Our approach, due to its blue noise waveform, also avoids the highly-regular 
output of the laminar approach, resulting in point distributions that do not have their own 
underlying visible structure. We also demonstrate a density controlled dithering method 
that allows for improved output quality based on the limited control of the painting process 
(see Section 7.3.1).

8.2 Evaluation

The main focus of this work is to produce high quality point distributions on surfaces for 
visual applications in graphics and geometry. In Chapter 2, we discuss what we mean 
by high quality, focusing mainly on the property of discrepancy, the theoretical results of 
what can be achieved, and the distributions that minimise it. Such low-discrepancy distri­
butions tend to be very well distributed. We therefore conjectured that a low-discrepancy 
point distribution would be advantageous for surface sampling and representation. How­
ever, a grid is a low-discrepancy sequence, so the goal is to find a distribution that has 
these properties that is not a grid, and does not therefore also suffer from aliasing effects 
and visual artifacts.

However, low-discrepancy distributions with these properties are not that easy to find. We 
therefore investigate the key construction methods of a selection of such distributions that 
are popular in the literature. Whilst these distributions have a low discrepancy, and do not 
form a regular grid, we have demonstrated, through several experiments, the shortcomings 
of such sampling methods: Firstly, the generalised star-discrepancy of the popular distri­
butions investigated varied significantly as the sample shape was changed. Secondly, the 
popular distributions showed a power spectrum very different to that of blue noise, and a 
very high level of structure. Finally, the coverage of these distributions when rendered as 
discs in the plane was not good. These properties demonstrate the unsuitability of such 
point distributions for our goal of high quality sampling for visual computing. In addition 
to this, our review of existing applications in Chapter 3 demonstrates the importance of 
high quality sampling in various applications. For these reasons, and the lack of an exist­
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ing ideal solution in the literature, we therefore investigated and developed an approach 
to produce high-quality point distributions on surfaces, applying it in the fields of point 
based graphics, remeshing and robotic prototype painting.

In Chapter 2 we also build up a definition of the star discrepancy, a popular numerical dis­
crepancy analysis method. This measure is defined only for axis aligned rectangles with 
one point at the origin, which are somewhat limited in that they inherently favour point 
sequences that are based on a lattice structure. For this reason, in Chapter 5, we gener­
alise this measure, including other sample shapes, in order to get a better understanding 
of the distribution of sample points. Whilst low-discrepancy point sequences generally 
do not alias as badly as a grid structure, it is not strictly a measure of this property, and 
thus we also investigate the fulfilment of the blue noise criterion by the distributions (see 
Section 5.3). By analysing the fulfilment of the blue noise criteria, and through visual 
assessment, we were able to measure the quality of point distributions for rendering and 
surface representation applications.

In Chapter 4, we describe our novel approach to high quality parametric surface sampling 
using space-filling curves. Sampling an arbitrary surface uniformly is a complex problem. 
Our solution provides a method of reducing the complexity of surface sampling by reduc­
ing the dimension of the domain that needs sampling to ID. Whilst many space-filling 
curves exist, we use the Hilbert curve due to its better spatial-coherency, both theoreti­
cally and experimentally, its simplistic generation and low rate of subdivision (22d), and 
its superior discrepancy results. We do, however, also investigate the Peano curve in 
experiments to assess the distribution quality as point of comparison, and to verify the 
theoretical considerations leading to choosing the Peano curve experimentally as well. 
Our adaptive algorithm description focuses on the Hilbert curve, although it is widely ap­
plicable to other space-filling curves that fill the unit square. In Chapter 5 we compute 
the discrepancy of samples produced using the Hilbert and Peano curves on the plane, 
sampled with with various ID sequences. We found that random ID samplings, as ex­
pected, produced random samplings on the plane, and that the jittered ID sampling of 
the Hilbert curve (Hilbert-jittered) produced the best results. However, a deterministic 
approach, such as the Niederreiter sequence might be more desirable for certain applica­
tions, such as a watermarking process for example, where the same distribution of points 
need to be computed every time.

We compare our best results, using the Hilbert-jittered sampling method, to existing ap­
proaches. Results indicate strongly that the distributions produced using our algorithm 
when measured using standard, axis-aligned rectangular subsets, whilst not performing 
quite as well as the well known methods, have a low discrepancy, and perform signifi­
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cantly better than a random distribution. When measuring the discrepancy, we expanded 
the standard star discrepancy measure, using not only axis aligned rectangles as sub­
sets, but also triangles and quarter circles. These experiments demonstrate interesting 
results, indicating that the well known distributions tested have low discrepancy when 
measured using axis-aligned rectangular test shapes, but do not behave as well using 
other test shapes. When measured with quarter-circles and triangles, the distributions 
performed equal to or worse than our method, with our method producing very similar 
results throughout each test. The test shapes are there to determine whether there is any 
significant gap in the sampling, roughly relating to the actual test shape used, i.e. to verify 
whether there are larger holes in the sampling with respect to these shapes. Our results 
indicate, primarily, that for general sampling applications, using only a single test shape 
does not give a clear picture of the overall distribution of the samples. This further sug­
gests that our sampling method, which produces consistently good results across a range 
of test shapes, is more suitable for applications that are not specifically dependent on 
rectangular shapes.

In order to test this further, we devise a definition for spherical triangle discrepancy on the 
surface of a sphere in 3D with a fixed parameterisation. This allows us to investigate the 
quality of distributions on a surface that, whilst having no irregular features, does have 
significant parametric stretch. Results show that point distributions produced using our 
approach, show a discrepancy very similar to distributions that have been specifically de­
signed for the sphere parameterisation. Testing on the sphere was useful, however, it is 
a simple surface, and with that, easy to deal with. A more general definition of discrep­
ancy that not only allows us to robustly define discrepancy with a non-uniform density 
on arbitrary surfaces, but also to numerically evaluate such a distribution using varied 
density functions may be very useful. This would enable us to investigate the effect of 
complex density functions on the local discrepancy of the points, on a variety of surfaces. 
In Section 6.2.1, we investigate a mesh discrepancy measure (a linear generalisation of 
this approach), providing some indication for these results, although only for a uniform 
density. The sample shapes used may also need to be investigated, as the holes in the 
distributions may be of quite a different nature.

There are various ways for us to compute surface area along the curve to correctly dis­
tribute point samples using our approach. In Chapter 5, the discrepancy of distributions 
generated using both the most (first fundamental form) and least (triangular area) accurate 
area measurement methods are shown. Results showed that the accuracy of this measure­
ment had a direct effect on the discrepancy of the point set, highlighting the importance 
of computing these values as precisely as possible. The lower accuracy method may be 
appropriate if a minimisation of pre-computation time is desired. Whilst using the first



8.2 Evaluation 149

fundamental form of the surfaces gives us the most accurate measurement, its automated 
symbolic computation is not the focus of this work. However, a good approximation of 
these computations on meshes is discussed in Section 6.1.3.

The similarity of our approach with the standard jittered sampling method is quite clear. 
A standard 2D jittered approach splits the domain into a series of squares, in each of 
which a random point is placed. Our approach in this simplified case of the plane uses 
a similar principle, only that the shape of the strata is a contiguous section of curve, 
not necessarily a square, and the degree of freedom when placing a point within such 
strata is more limited. Whilst a proof of the upper bound for the discrepancy of the 
jittered distribution is known, we do not have a proof of an upper bound for our curve 
sampling approach. Experimental discrepancy measured on the plane and on surfaces 
using our approach indicates that our sampling method is very robust, and produces a 
low-discrepancy distribution regardless of sample shape. Our approach is also superior 
to standard 2D jittering, as it does not require a perfect square sample distribution size, 
allows for full density control over the points, and works for arbitrary surfaces.

One drawback of sampling a 2D surface along a ID curve is that for each original ID 
co-ordinate, the fixed precision is halved when it is mapped onto the curve in 2D. This 
means that sampling in higher-dimensions directly is advantageous with respect to pre­
cision. This problem is somewhat inherent to this dimensional reduction approach. For 
3D or higher dimensional space-filling curve this problem only gets worse. Whilst funda­
mentally this problem cannot be solved due to the precision limit on the discrete represen­
tations, multi-precision methods can provide a solution to this problem, but are inherently 
slow. We present the adaptive Hilbert curve as a partial solution to this, and demonstrate 
that it still relies on a sensible parameterisation. We also demonstrate a solution for poly­
nomial reparameterisation for more severe cases. However, these solutions really only 
touch on the problems of angle and area stretch, in parameterised surface sampling, which 
we highlight as a limitation of our approach. In Section 8.3 we look into this problem fur­
ther, suggesting approaches that address some of the problems with parameterisation in 
our work.

To assess the quality of our point distributions for rendering, we measure the radially 
averaged power spectrum density, and assess the fulfilment of the blue-noise criterion. 
The blue noise criterion essentially highlights how visually appealing a distribution is, and 
how much structure the distribution itself adds to what is being rendered. We found that 
our distribution did closely match that of blue noise. However, the other low-discrepancy 
sequences tested do not fulfil the criterion, showing a very different power spectrum, 
indicating a large amount of structure. This structure is undesirable for rendering, as it
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detracts from the original structure or texture of the image. Hence, our approach reduces 
visible patterns in the distribution more than other low-discrepancy sampling approaches.

Our mesh sampling approach relies on a parameterisation of the input surface to the unit 
square. A unit-square parameterisation requires the mesh to have a disc topology, often 
requiring a cutting process. In our work we use a simplistic cutting method; by selecting 
a more appropriate cut, we could reduce the stretch of the mesh when parameterised, 
resulting in a more uniform-density adaptive curve. Whilst the output would not change, 
this would certainly reduce the computational cost of generating the Hilbert curve and 
avoid issues with extreme parametrisations. The adaptive Hilbert curve can correct for 
area-scaling stretch well. Angle-stretch, resulting from non-conformal parameterisations 
however, may have an undesirable effect on the Hilbert curve. In our mesh sampling 
algorithm, we therefore use a conformal, or angle preserving, parameterisation. Using 
local parameterisations, or parameterising the mesh to a different domain, may provide a 
better solution to this problem, and may simplify local-reparameterisation of the surface 
(see Section 8.3). However, our approach can deal with normal cases, even with these 
simple adaptations. Also, our work does not focus on mesh cutting and parameterisation, 
and as demonstrated, our approach works well with such algorithms. The output of which 
does not depend greatly on the particular algorithms used.

In order to sample the mesh with high-quality point distributions, robust methods are 
employed to compute the area, per-vertex, covered by the space-filling curve. Our method 
for calculating mesh curvature, however, relies on the construction of local polynomials, 
which are then used to calculate the local curvature. More recent literature recommends 
avoidance of methods such as this, due to errors that can be introduced [84], however, 
visual results may only be marginally improved using their approach.

We compute the discrepancy of our point distribution on various meshes using random, 
contiguous selections of triangles as the area subset. The distributions produced using 
our method demonstrate a discrepancy that behave far better than the random distribution 
tested, and very similarly to results for our method on the plane and the sphere. This test 
demonstrates that the point distributions produced by our method on a variety of triangle 
meshes behave with a low discrepancy. It would be useful to compare the performance of 
our method to competing approaches, but the poor availablity of implementations for such 
sampling methods makes this very difficult. However, as discussed in Section 8.1, alter­
native methods in the literature tend to produce a Poisson disc output, which demonstrates 
a worse discrepancy than the jittered output of our method.

We also measure the approximation error, based on the Hausdorff distance, between the 
resampled meshes that we generate using our sampling approach, and the original meshes.
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Results from these experiments show that the error for the triangulated output from our 
point sampling approach when reducing the complexity of the model was very low; per­
forming very similarly to the best remeshing methods in the literature. Whilst this measure 
provides useful insights, it would, however, be more useful to measure the approximation 
error with respect to fundamental surface properties, such as area, normal direction, sur­
face curvature, and possibly salient surface features. These properties would give a better 
indication as to how much the shape of the surface has changed in the remeshing process. 
In Section 8.3 we discuss a possible extension of the Hausdorff distance to consider these 
properties.

We build upon our sampling method to produce a high-quality distribution with good 
surface coverage for point-based rendering. As discussed in Chapter 2, our sampling ap­
proach splits the domain into a series of strata, randomly placing a point within each, and 
thus reducing the variance of the distribution when compared to an uncorrelated random 
distribution. Whilst this method enforces good uniformity in the distribution, by nature it 
is still probabalistic, and thus, whilst an upper-bound of the maximum distance betweeen 
points may be computed, each distribution will be different. For the application of point 
based rendering, it is important to generate a distribution of points that are uniformly 
spaced (without, however, being sampled on a grid). Thus we describe an approach to fill 
the holes in the distribution that may appear between points that are highly spaced apart: 
a global Voronoi hole-filling algorithm that is able to ensure a maximum hole size.

Experimentally, we investigate splat coverage for our sampling method in the plane, with 
and without the hole-filling algorithm, comparing the results to the Niederreiter sequence 
and a random distribution. Results show that our standard sampling approach achieves 
a much better coverage than the Niederreiter and random sampling methods. Our algo­
rithm with Voronoi hole-filling produces even better results, with no visible holes in the 
coverage. However, other than comparing our approach to a broader selection of compet­
itive methods, there are various other properties that would be interesting to investigate. 
Firstly, we currently scale splat sizes using the inverse of the surface curvature. I.e. on 
the plane, every splat has the same diameter. In order to take into account some variation 
in the distance between splats, it may be appropriate to scale the splat size based on the 
Voronoi radius to the neighbouring points, not just on the inverse of the surface curvature.

In Chapter 7, we also demonstrate real-time LoD and VDR techniques. Our approach to 
LoD provides fine granularity continuous LoD that can vary locally over an individual 
model. Our VDR approach provides real-time point reduction and silhouette enhance­
ment. After an initial pre-processing stage, we demonstrate real-time frame rates for 
these applications. We also discuss an approach to utilise the quad-tree structure of the
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space-filling curve to provide a heirarchical decomposition of the point distribution, al­
lowing us to considerably reduce the number of distance and angle computations required 
in this approach. These results, along with the high-quality rendered examples indicate 
that point-based rendering and surface representation is a very practical and natural appli­
cation of our sampling approach.

We also consider remeshing, whereby we triangulate the point distribution generated us­
ing our mesh sampling algorithm. We produce a point distribution on a mesh surface using 
our mesh sampling algorithm, that is then triangulated to produce a remeshed surface.

We present a remeshing approach based upon our mesh sampling algorithm. As the mesh 
may require cutting to a disc topology, in order to insure that the output mesh has the same 
topology as the original mesh, we use a basic stitiching approach that requires little com­
putation, but does result in an insertion of additional points—supplemental to the set of 
points generated using our algorithm. One possible approach to avoid this stitching solu­
tion (and thus avoid the modification of the distribution) would be to locally parameterise 
the mesh, and produce a global map of the parameterisations. Whilst introducing more 
joins between the patches, it would simplify each joint significantly. However, generating 
a high-quality distribution of points that is not disrupted along the cut lines may not be a 
trivial problem.

One problem not addressed algorithmically in this work is that of triangle quality. Many 
approaches exist to improve the quality of a triangulation, including removal of undesir­
able triangles, flipping of triangle edges, and the addition of extra vertices in the trian­
gulation. Whilst these modifications can certainly improve the quality of the mesh with 
respect to different application requirements (such as finite element analysis methods), 
they are not within the scope of this work. However, our results demonstrate that the 
remeshed surfaces produced by our algorithm very accurately approximates the original 
mesh, and produce very high quality renders.

Finally, in Chapter 7, we introduce our application of robotic prototype painting. The full 
sampling approach, based upon on our algorithm used for the robotic painting process, 
is not yet finished in terms of finalising the robot, and thus we have only demonstrated a 
limited number of painted objects using the original laminar slicing approach as well as 
our method. However, our sampling method is completed, and the quality of the output 
from renders and some initial tests with the robot can already be assessed. These early 
results show that the point distributions generated using our mesh sampling algorithm pro­
duces high-quality output. Due to its raster-scan like distribution, resulting in very evenly 
spaced samples (and therefore little overlap), the laminar slicing sampling approach em­
ployed previously has an advantage in terms of the DPI required. However, as the exposed



8.3 Future Work 153

points are circular, not square, the raster-scan like output of the laminar slicing approach 
results in a regular grid of holes between the points. Thus, with the same DPI, whilst the 
laminar slicing approach will result in fewer holes, the regularity of these holes is highly 
structured, and thus clearly visible to the human eye. Structured distributions have been 
shown to result in high spatial-frequency patterns, detracting from the original texture, and 
are thus undesirable in this situation. Unlike the laminar slicing approach, our approach 
creates a uniform, correlated, sampling density across the entire model. The original lam­
inar slice approach can only produce a uniform sampling on a cylinder. Our approach, 
however, considerably improves on the existing technique in terms of the complexity of 
surfaces that can be uniformly painted, allowing for high-quality sampling on arbitrary 
surfaces. The sequential path produced for the robot is optimised to reduce the amount of 
settle-time required after the arm moves, before painting. Both the laminar slice and our 
point sampling distributions require similar settle-time, however, due to alignment incon­
sistencies and the poor handling of high-curvature features by the laminar slice approach.

An improvement to the current approach would be to have better control over the size of 
each point, via the focus of the lasers and the exposure time of each individual point in 
order to provide better surface coverage. Further to this, applying the Voronoi hole-filling 
algorithm developed for the point based graphics application may provide better surface 
coverage, and thus higher quality output. In terms of assessment, it would be useful to 
be able to numerically evaluate the quality of the textured output on the final surface. 
However, due to the nature of the output, human reviewing of the output may actually 
provide the most appropriate feedback.

83 Future Work

In this section, we discuss the issues and questions arising from the results of this thesis to 
be addressed in future work. We have described algorithms to generate density controlled 
point distributions on surfaces. When we refer to density, we have thus far only considered 
it as an arbitrary scalar property on the surface. However, to achieve the most efficient 
placement of points, or to describe certain features, such as sharp edges, it is advantageous 
to have anisotropic control over the point distribution.

The anisotropy of a surface property such as density is described by certain properties of 
its second derivative; typically limited to surface properties given by a quadratic form (as 
otherwise the second derivative may be more complicated). Controlling the anisotropy di­
rectly by prescribing a Hessian (the matrix of all partial second derivatives) for the surface 
may be very useful for some applications, e.g. to sample more densly along the direction
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of a sharp edge. However, one issue is how well the anisotropy and direction dependency 
of the distribution is actually preserved by our discrete sampling. The square structure of 
the Hilbert curve is likely to impose a limit upon this. Thus, instead of solving a partial 
differential equation to compute a density for our sampling approach from a prescribed 
Hessian, we propose an alternative approach to density adjustment. In particular, this may 
be useful for more exact control over where the points are placed, for example, in order to 
avoid overlapping ellipses for point-based rendering. We suggest a solution to this prob­
lem, by means of computing an 'anisotropic* curve for sampling; the properties of the 
curve explicitly enforcing the local, anisotropic, density of the point distribution.

The approach would still be based on the Hilbert curve, generating an adaptive quad-tree 
based on the local area on the surface and according to surface curvature. Every quad on 
the surface is therefore approximately the same size. A set of particles should be gen­
erated within each leaf node based on the local density. For each particle, its principal 
curvatures are computed to determine anisotropic repulsion radii, which are then scaled 
relative to the local area of the parametric quad on the surface. Particles are then locally 
anisotropically relaxed within each quad, in a similar manner to that described by [114] 
and [73]. Relaxation forces between particles from neighbouring quads are computed, and 
inter-quad particle transition and scaling of the forces of each particle based on their new 
local area must take place. This process of particle relaxation would then be iterated until 
a certain minimal amount of relaxation occurred during an iteration. Particle transitions 
between quads must be considered. Once the particle simulation is complete, a Hilbert 
curve ordering of the quads may be used globally, and a local path within each cell com­
puted to yield a spatially coherent global ordering of the particles. This curve would then 
be sampled as described in Section 4.3. This approach may then be accelerated with pre­
processing and resampling methods. Further to this, this approach lends itself to GPGPU 
methods to accelerate the independent local relaxation force computations. The relaxation 
within each quad may be computed on an individual GPU processing element, with the 
set of all quads being divided up among the available processing elements.

We are also interested in further methods to numerically investigate the quality of the point 
distributions produced by our methods. Metro gives us an indication of how well a mesh, 
produced using a triangulation of points from our mesh sampling algorithm, preserves 
the overall shape of an input surface. However, it does not necessarily tell us how well 
the shape of a mesh has been preserved locally. Other information, such as normals, 
and in particular, curvature tensors which define the local shape of the surface, might 
provide useful information for assessing the resampled surface. In [72], a depth weighted 
Hausdorff distance is proposed, using local surface curvature variance as weight. We 
expect that such a measure could provide useful numerical results for the assessment of
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surface resampling, and may better highlight feature loss due to grid sampling. Another 
approach to analysing the distribution of points would be to assess the distribution of 
errors when resampling the surface, in terms of the variance, arithmetic mean and the 
type of distribution (e.g. Gaussian).

The numerical discrepancy measurements discussed in this work will not provide any 
useful results as to the quality of an anisotropic distribution of points. The general issue 
is how to assess how well an arbitrary density (which may be isotropic or anisotropic) has 
been discretised, assessing the size of holes in the sampling (measured by some sampling 
shape). This is a complex problem, even in the plane when using simple shapes. As a 
simplified solution to experimentally investigate the quality of distributions generated by 
an anisotropic sampling approach (such as that introduced in this section), we suggest 
the consideration of a local, elliptical neighbourhood of each point in the distribution. 
A Gabriel graph is constructed as a set of edges, whereby an edge is added between 
two vertices if the circle with the diameter of the length of that edge contains no other 
vertices. Park et al. [97] describe an approach for computing elliptical Gabriel graphs, 
whereby the circle is replaced with an ellipse, the radii of which are governed by the 
local anisotropy. We suggest utilising elliptical Gabriel graphs as a method to analyse the 
anisotropy of a point distribution based on surface curvature, though further development 
of this approach would be required to provide numerical results. An approach such as this 
may help to assess how well the directions and the two densities in these directions are 
realised in the discretised distribution of points. However, this does not provide a solution 
to a more generalised discrepancy for non-constant densities. A further, related, issue is 
the selection of a suitable density for a given set of requirements (e.g. to preserve salient 
features where saliency is not clear).

In our approach, we rely on a unit-square parameterisation of the input surface that we 
wish to resample. Using this parameter domain allows us to generate, and sample, a 
global unit square space-filling curve. Whilst this solution allows us to use a global sam­
pling approach, it becomes a problem for high genus mesh surfaces; the mesh must be 
cut into a disc topology. The cutting process itself must be considered, varying greatly 
in computation based on the quality of the cut required. It also introduces seams into the 
sampling, where the cut-lines of the global parameterisation meet. If a remeshing output 
is required, complex or distribution-altering methods must be employed to remove the 
seams. The global parameterisation itself is then a computationally expensive process, 
highlighted in Section 6.2.3, where the run-time of the parameterisation is often orders of 
magnitude slower than the rest of the sampling process. Sampling a global parameterisa­
tion may also require extreme local density control to achieve a uniform point distribution 
on the final surface, or reparameterisation. A possible solution to this problem would
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be to locally parameterise patches of the surface, generating space-filling curves for each 
patch, and simply linking the patches together. A method of defining surfaces locally us­
ing moving least square polynomials is described by Alexa et al. [2]. In this approach, the 
polynomials are sampled with evenly spaced points. We suggest using this approach to 
define local polynomials, which we would then sample using local space-hilling curves 
to provide density controlled low-discrepancy distributions. This approach would avoid 
the global parameterisation, and if the output required is a mesh, the process of stitching 
local patches together has been largely solved [64]. A further solution may be to avoid 
parameterisation all together, sampling in higher dimensions, and thus also avoiding the 
problem of precision loss.
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