DIRECTED LITHIATION OF SUBSTITUTED BENZYLAMINES

THIS THESIS IS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PhD)

By

AMANY SABER HEGAZY

B.Sc. (Chemistry) 1993
M.Phil (Organic Chemistry) 2006

CARDIFF UNIVERSITY

> PRIFYSGOL CAERDY

SCHOOL OF CHEMISTRY

CARDIFF UNIVERSITY
UNITED KINGDOM

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U585262
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

TO GAMAL, MAHMOUD AND NADA

DECLARATION

Declaration

DECLARATION

This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree.

Signed: Amany...Hegazy.............. (Candidate) Date: ...29..09...2009.

STATEMENT 1

This thesis is being submitted in partial fulfilment of the requirements for the degree of PhD .

Signed: Amany..Megazy............ (Candidate) Date: .29...9.9..2co9....

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise stated.

Other sources are acknowledged by explicit references.

Signed: Amen. Hegazz............. (Candidate) Date: ..99:. 0.9...2009....

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed:Amany .Hegazy. (Candidate) Date: ..29. .. $0.9 . .2009 . .$.

ABBREVIATIONS

ABBREVATIONS

$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
THF	Tetrahydrofuran
DCM	Dichloromethane
EtOAc	Ethyl acetate
DMF	N, N-Dimethylformamide
TEA	Triethylamine
DMA	Dimethylamine
MsCl	Methanesulfonyl chloride
TFAA	Trifluoroacetic anhydride
TFA	Trifluoroacetic acid
RLi	Alkyllithiums
n-BuLi	n-Butyllithium
t-BuLi	tert-Butyllithium
$s e c-B u L i$	sec-Butyllithium
MeLi	Methyl lithium
LDA	Lithium diisopropyl amide
LTMP	2,2,6,6-Tetramethylpiperidide
TMEDA	$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine
DMG	Directing metallation group
TLC	Thin layer chromatography
o -	ortho-
TMS	Tetramethylsilane
Boc	tert-Butoxycarbonyl
DMSO- d_{6}	Deuteriated dimethylsulfoxide
CDCl_{3}	Deuteriated chloroform
${ }^{1} \mathrm{H}$ NMR	Proton nuclear magnetic resonance
${ }^{13} \mathrm{C}$ NMR	Carbon nuclear magnetic resonance
DEPT	Distortionless Enhancement by Polarization Transfer
COSY	Correlation Spectroscopy
NOE	Nuclear Overhauser effect
J	Coupling constants

δ	Chemical shifts
EI-MS	Electron impact - mass spectra
CI-MS	Chemical ionization - mass spectra
APCI-MS	Atmospheric pressure chemical ionization - mass spectra
ES	Electrospray - mass spectra
IR	Infra red
Mp	Melting point
Calc.	Calculated
Anal.	Analysis
min	Minutes
h	Hour
s	Singlet
d	Doublet
dd	Double doublet
dt	Double triplet
dq	Double quartet
ddq	Double double quartet
app.	Apparent

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

First of all, 1 would like to express my deepest thanks to my supervisor Professor Keith Smith, for having me as a member in his group, excellent support, encouragement and guidance throughout my postgraduate studies.

I would like to sincerely thank Professor Gamal A. El-Hiti for his ultimate and enormous help he has given me through my postgraduate studies. He was always very encouraging, supportive and helpful.

1 also wish to thank all the members of Professor Keith Smith's group and in particular Mansour, Mohammad, Ahmed, Alaa, Ali and Rhys for their support and the nice environment they created in the laboratory.

I would like to thank Dr Rob Jenkins and Mr Robin Hicks, Cardiff School of Chemistry, for their help in running mass spectra and Dr Benson Kariuki, Cardiff School of Chemistry, for his assistance in the determination of the crystal structures. Thanks also go to Mr lan Matthews, Swansea University, for his assistance and help in running NMR spectra and Mrs Margret Goode, Swansea University, for her help and being very supportive.

Lastly and especially, thanks to my lovely family, my wonderful husband Gamal, my son Mahmoud, my daughter Nada and Dr Fawzi Osman for their unlimited support. I would like also to thank Mrs Fadilah for her love, encouragement and support.

SUMMARY

SUMMARY

CHAPTER ONE

Chapter one describes the practical consideration of lithiation reactions and preparation of organolithium reagents. It also provides reviews of directed lithiation of substituted aromatics and heterocycles.

CHAPTER TWO

Chapter two describes directed lithiation and substitution of various N-benzylpivalamides. Lithiation of N-benzylpivalamide with t-BuLi in THF at low temperature followed by reaction with benzophenone gave a mixture of ortho- and α-substitutions. Ring substitution could be achieved via bromine-lithium exchange of N-(2-bromobenzyl)pivalamide followed by reactions with electrophiles. Lithiation and substitution of 4 -methoxy and 4 -methyl derivatives with t-BuLi in THF gave ortho-substitution. By contrast, lithiation and substitution of the 2-methoxy derivative gave ring substitution, but next to the methoxy group rather than next to the pivaloylaminomethyl group. Under similar reaction conditions lithiation of N-(2-methylbenzyl)pivalamide followed by reactions with electrophiles, gave products substituted in the methyl group.

CHAPTER THREE

Chapter three describes lithiation and substitution of various substituted N^{\prime}-benzyl- N, N-dimethylureas. Lithiation of unsubstituted, 4 -methoxy and 4 -methyl derivatives with t - BuLi at $-78{ }^{\circ} \mathrm{C}$ in THF followed by reactions with electrophiles gave ortho-substitution. It was found that lithiation of the 2-methyl derivative under similar conditions gave products substituted in the methyl group. By contrast, lithiation and substitution of the 2-methoxy derivative with t - BuLi at $-20^{\circ} \mathrm{C}$ gave a mixture of o^{\prime} - and o-substitutions.

CHAPTER FOUR

Chapter four describes cyclization reactions of N-(2-substituted benzyl)pivalamides and N^{\prime}-(2-substituted benzyl)- N, N-dimethylureas with TFAA as a catalyst in DCM at RT, via dehydration from the OH and hydrogen from the NH, to give the corresponding isoindolines in excellent yields. The procedure has been proven to be simple, efficient and general.

CHAPTER FIVE

Chapter five describes cyclization reactions of N^{\prime}-(2-substituted benzyl)- $N, N-$ dimethylureas in DCM in the presence of TFAA to produce the corresponding dihydroisoquinolines in excellent yields. However, N-(2-(2-hydroxy-2arylalkyl)benzyl)pivalamides are not cyclised under similar conditions. Instead, esterification of the hydroxyl group with TFAA or dehydration from the OH and a hydrogen from the CH_{2} at position 2, takes place to give the corresponding derivatives in high yields.

CHAPTER SIX

Chapter six describes a lithiation procedure that allows the production of 3-substituted isoindolin-1-ones in high yields in only one step via lithiation of various substituted N^{\prime}-benzyl- N, N-dimethylureas with t-BuLi (3.3 mole equivalents) in THF at $0{ }^{\circ} \mathrm{C}$ followed by reactions with various electrophiles. The procedure has been proven to be simple, efficient and general.

CONTENTS

CONTENTS

Page
CHAPTER ONE
DIRECTED LITHIATION OF AROMATIC COMPOUNDS
1.1 Introduction 1
1.2 Practical considerations 1
1.2.1 Choice of solvent 1
1.2.2 Reactions at low temperatures 2
1.2.3 Inert atmospheres 3
1.2.4 Estimation of organolithium reagents 3
1.3 Preparation of organolithium compounds 3
1.3.1 By reaction with lithium metal 4
1.3.2 By reaction with lithium salts of radical anions 5
1.3.3 By halogen-lithium exchange 6
1.3.4 By lithiation 7
1.4 Directed lithiation of aromatic compounds 8
1.4.1 Directed lithiation of benzene derivatives 9
1.4.2 Directed lithiation of naphthalene derivatives 9
1.4.3 Directed lithiation of heterocycles 10
1.4.3.1 Directed lithiation of pyridines 10
1.4.3.2 Directed lithiation of quinolines 12
1.4.3.3 Directed lithiation of pyridazines 12
1.4.3.4 Directed lithiation of pyrimidines 13
1.4.3.5 Directed lithiation of pyrazines 13
1.4.3.6 Directed lithiation of cinnolines 14
1.4.3.7 Directed lithiation of quinazolines 15
1.4.3.8 Directed lithiation of quinoxalines 15
1.5 Conclusion 15
CHAPTER TWO
INVESTIGATION OF THE INFLUENCES OF SUBSTITUENTS ON THE LITHIATION SITES OF VARIOUS \boldsymbol{N}-BENZYLPIVALAMIDES
2.1 Introduction 16
2.2 Synthesis of N-benzylpivalamide (49) 18
2.3 Lithiation of N-benzylpivalamide (49) 18
2.4 Synthesis of N-(2-bromobenzyl)pivalamide (60) 24
2.5 Bromine lithium exchange of N-(2-bromobenzyl)pivalamide (60) 24
2.6 Synthesis of various N-benzylpivalamides 27
2.7 Directed lithiation of N-(4-methoxybenzyl)pivalamide (44) 28
2.8 Directed lithiation of N-(2-methoxybenzyl)pivalamide (46) 30
2.9 Directed lithiation of N-(4-methylbenzyl)pivalamide (68) 37
2.10 Lithiation of N-(2-methylbenzyl)pivalamide (65) 38
2.11 Conclusion 41
CHAPTER THREE
INVESTIGATION OF THE INFLUENCES OF SUBSTITUENTS ON THE LITHIATION SITES OF VARIOUS N^{\prime}-BENZYL- N, N-DIMETHYLUREAS
3.1 Introduction 42
3.2 Synthesis of N^{\prime}-benzyl- N, N-dimethylureas from reactions of 44 benzylamines with triphosgene followed by reactions with dimethylamine
3.3 Synthesis of N^{\prime}-benzyl- N, N-dimethylureas from reactions of 46benzylamines with dimethylcarbamoyl chloride
3.4 Directed lithiation of N^{\prime}-benzyl- N, N-dimethylureas 107,108 and 113 47
3.5 Directed lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) 51
3.6 Lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114) 57
3.7 Conclusion 58
CHAPTER FOUR
SYNTHESIS OF SUBSTITUTED ISOINDOLINES
4.1 Introduction 60
4.2 Synthesis of 1,1-diphenyl-2-pivaloylisoindoline (162) 61
4.3 Synthesis of substituted isoindolines 163-173 63
4.4 Synthesis of N-(2-cyclohexenylbenzyl)pivalamidess 174 and 175 65
4.5 Attempted synthesis of 1 -substituted isoindolines 66
4.6 Conclusion 67
CHAPTER FIVE
SYNTHESIS OF SUBSTITUTED TETRAHYDROISOQUINOLINES
5.1 Introduction 68
5.2 Attempted cyclizations of N-(2-(2-hydroxy-2-arylalkyl)benzyl)- 70 pivalamides
5.3 Synthesis of 3-(4-methoxyphenyl)-2-dimethylaminocarbonyl-1,2,3,4- 76
tetrahydroisoquinoline (198)
5.4 Synthesis of substituted tetrahydroisoquinolines 199 and 200 77
5.5 Synthesis of N^{\prime}-(2-(2,2-diphenylvinyl)benzyl)- N, N-dimethylurea (201) 78
5.6 Attempted synthesis of 2-unsubstituted 1,2,3,4-tetrahydroisoquinolines 80
5.7 Conclusion 81
CHAPTER SIX
SYNTHESIS OF SUBSTITUTED ISOINDOLIN-1-ONES
6.1 Introduction 82
6.2 Synthesis of $\left(R^{*}\right)$-3-(($\left.S^{*}\right)$-3-(hydroxy(4-methoxyphenyl)methyl)-4- 84
methoxyisoindolin-1-one (139)
6.3 Synthesis of 4-methoxyisoindolin-1 -one (216) 86
6.4 Synthesis of various 3-substituted 4-methoxyisoindolin-1-ones 216-224 87
6.5 Synthesis of various substituted isoindolin-1-ones 225-245 89
6.6 Attempted cyclization of N-benzylpivalamide (49) 91
6.7 Attempted synthesis of 1,2-dihydroisoquinolin-3(4H)-ones 92
6.8 Conclusion 93
CHAPTER SEVEN
EXPERIMENTAL
7.1 General experimental 94
7.2 Synthesis of N-benzylpivalamide (49) 94
7.3 Lithiation and substitution of N-benzylpivalamide (49) 95
7.4 Synthesis of N -(2-bromobenzyl)pivalamide (60) 97
7.5 Synthesis of N-(2-substituted benzyl)pivalamides 57 and 62-66 via 98 bromine-lithium exchange of N-(2-bromobenzyl)pivalamide (60)
7.6 Synthesis of N-(substituted benzyl)pivalamides 102
7.7 Synthesis of N-(2-substituted 4-methoxybenzyl)pivalamides 71-76 via 104
directed lithiation of N-(4-methoxybenzyl)pivalamide (44)
7.8 Synthesis of N-(4-methoxy-2-methylbenzyl)- N-methylpivalamide (77) 110
via directed lithiation of N-(4-methoxybenzyl)pivalamide (44)
7.9 Synthesis of N-(3-substituted 2-methoxybenzyl)pivalamides $\mathbf{8 0 - 8 4}$ via 110
directed lithiation of N -(2-methoxybenzyl)pivalamide (46)
7.10 Lithiation of 46 with $t-\mathrm{BuLi}$ at $0^{\circ} \mathrm{C}$ followed by reaction with 117
4-anisaldehyde
7.11 Lithiation of 46 with $t-\mathrm{BuLi}$ at $0^{\circ} \mathrm{C}$ followed by reaction with CO_{2} 118
7.12 Lithiation of 46 with $\sec -\mathrm{BuLi}$ at $-78^{\circ} \mathrm{C}$ followed by reaction with CO_{2} 119
7.13 Lithiation of 46 with $\sec -\mathrm{BuLi}$ at $0^{\circ} \mathrm{C}$ followed by reaction with CO_{2} 119
7.14 Lithiation of 46 with $n-\mathrm{BuLi}$ at $0^{\circ} \mathrm{C}$ followed by reaction with CO_{2} 119
7.15 Synthesis of N-(2-substituted 4-methylbenzyl)pivalamides $89-95$ via 120 directed lithiation of N -(4-methylbenzyl)pivalamide (68)
7.16 Synthesis of N-(2,4-dimethylbenzyl)- N-methylpivalamide (96) via 126 directed lithiation of N-(4-methylbenzyl)pivalamide (68)
7.17 Synthesis of N -(2-substituted methyl)benzylpivalamides $99-106$ via 126 lateral lithiation of N-(2-methylbenzyl) pivalamide (65)
7.18 Synthesis of N^{\prime}-benzyl- N, N-dimethylureas from reactions of 133 benzylamines with triphosgene followed by reactions with dimethylamine
7.19 Synthesis of N^{\prime}-benzyl- N, N-dimethylureas from reactions of 140 benzylamines with dimethylcarbamoyl chloride
7.20 Synthesis of N^{\prime}-(2-substituted benzyl)- N, N-dimethylureas 114 and 118 - 140131 via directed lithiation of N^{\prime}-benzyl- N, N-dimethylureas 107,108 and113
7.21 Synthesis of N^{\prime}-ethyl- N^{\prime}-(2-ethyl-4-methoxybenzyl)- N, N-dimethylurea 152 (132) via directed lithiation of 108
7.22 Synthesis of N^{\prime}-(2-(hydroxy(4-methoxyphenyl)methyl)-6- 153
methoxybenzyl)- N, N-dimethylurea (136) and N^{\prime}-(3-(hydroxy(4- methoxyphenyl)methyl)-2-methoxybenzyl)- N, N-dimethylurea (137) via lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) at $-20^{\circ} \mathrm{C}$
7.23 Lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) at $0^{\circ} \mathrm{C}$ 155 followed by reaction with 4-anisaldehyde
7.24 Synthesis of N^{\prime}-(2-(substituted-6-methoxybenzyl)- N, N-dimethylureas 157141, 143, 145 and 147 and N^{\prime}-(3-(substituted-2-methoxybenzyl)- N, N -dimethylureas $142,144,146$ and 148 via lithiation of N^{\prime}-(2-methoxy-benzyl)- N, N-dimethylurea (111) at $-20^{\circ} \mathrm{C}$
7.25 Synthesis of N^{\prime}-(2-substituted methylbenzyl)- N, N-dimethylureas 153- 163
158 via lateral lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114)
7.26 Synthesis of 1,1-diphenyl-2-pivaloylisoindoline (162) via cyclization of 168 N -(2-(hydroxydiphenylmethyl)benzyl)pivalamide (57)
7.27 Synthesis of substituted isoindolines 163-173 170
7.28 Synthesis of N-(2-(cyclohexenyl)pivalamides 174 and 175 179
7.29 Synthesis of N-(2-(2-phenyl-2-trifluoroacetoxyethyl)benzyl)pivalamide 181 (188) 1827.30 Synthesis of $(E)-N-(2-(4-m e t h o x y s t y r y l) b e n z y l)$ pivalamide (189)
7.31 Synthesis of (E)-N-(2-(2-phenylprop-1-enyl)benzyl)pivalamide (190) 183
7.32 Synthesis of 3-(4-methoxyphenyl)-2-dimethylaminocarbonyl-1,2,3,4- 184tetrahydroisoquinoline (198) via cyclization N^{\prime}-(2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)- N, N-dimethylurea (153)
7.33 Synthesis of substituted tetrahydroisoquinolines 199 and 200 186
7.34 Synthesis of N^{\prime}-(2-(2,2-diphenylvinyl)benzyl)- N, N-dimethylurea (201) 187
7.35 Synthesis of (R^{*})-3-(($\left.S^{*}\right)$-(hydroxy(4-methoxyphenyl)methyl)- 1894-methoxyisoindolin-1-one (139)
7.36 Synthesis of 4-methoxyisoindolin-1-one (216) 189
7.37 Synthesis of 3-substituted 4-methoxyisoindolin-1-ones 216-224 191
7.38 Synthesis of various substituted isoindolin-1-ones 225-245 197
FINAL CONCLUSION AND FUTURE WORK 212
REFERENCES 213

CHAPTER ONE

DIRECTED LITHIATION OF AROMATIC COMPOUNDS

CHAPTER ONE

DIRECTED LITHIATION OF AROMATIC COMPOUNDS

1.1 Introduction

Electrophilic aromatic substitution reactions are of great importance in the production of aromatic products, some of which are useful intermediates for the synthesis of valuable industrial, pharmaceutical, agrochemical and fine chemicals. However, most commercial applications still make use of methods developed many years ago, which commonly suffer serious disadvantages, including the requirement for mineral or Lewis acids as activators. ${ }^{\text {' }}$ Unfortunately, the use of such activators creates a number of environmental problems. The activators may be required in more than stoichiometric amounts and the work-up procedure may lead to hydrolysis of activators and generation of large quantities of corrosive and toxic waste by-products. Moreover, these reactions often lead to mixtures of regioisomers with low selectivity.

In recent years, many efforts have been made to develop clean and environmentally friendly processes for the regioselective production of specific products. It is well recognised that organolithium reagents can play an important role in such cases. Many aromatic compounds undergo lithiation ortho to a functional group. ${ }^{2-17}$ The organolithium reagents in such reactions are useful intermediates for the synthesis of ortho-disubstituted aromatics. Moreover, ortho-lithiation has been applied to more complicated heterocycles to produce derivatives that are difficult to prepare by other means. ${ }^{18-21}$ This review of organolithium chemistry is not intended to be comprehensive, but rather to summarise the state of the art and provide references to more detailed reviews and primary literature.

1.2 Practical considerations

1.2.1 Choice of solvent

Solvents used in lithiation reactions should be easily purified and free from water and peroxides. They usually have low-enough freezing points that enable them to be used at low temperature without freezing taking place. Also they should not themselves react with organolithium reagents. ${ }^{4}$

Aliphatic hydrocarbons are inert, and easily purified and dried. The isomeric butyllithiums are commercially available in these solvents. However, aryllithiums, methyllithium and reagents such as lithium diisopropylamide (LDA) are insoluble in
aliphatic hydrocarbons in the absence of electron-donating ligands. ${ }^{4}$ Aromatic hydrocarbons are also easily purified and dried, but toluene is relatively easily lithiated, and benzene is dangerously toxic and cannot be used at low temperatures because it has a high freezing point $\left(5.5^{\circ} \mathrm{C}\right)$. Therefore ethers are the most commonly used solvents for organolithium reactions. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ is probably the most commonly used solvent for lithiation reactions. It is easily purified and dried, it has an appropriate boiling point and a low enough freezing point. Moreover, most lithium reagents are soluble in diethyl ether and do not cleave the ether too rapidly.

When a more strongly Lewis-basic solvent is required, tetrahydrofuran (THF) is the most widely used alternative to diethyl ether. It does, however, suffer from some disadvantages. It is much more readily attacked by organolithium reagents than diethyl ether; its freezing point is only just above the temperature of evaporating solid carbon dioxide. It is much less easily dried, and more hygroscopic than diethyl ether.

Mixed solvents systems are also the key to working at very low temperatures where it is important not only that the reaction medium should remain liquid, but also its viscosity should remain low. A particularly useful combination is the "Trapp mixture", comprising $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O} /$ pentane (or hexane or light petroleum) in a $4 / 4 / 1$ ratio, which can be used at very low temperatures. ${ }^{4}$

1.2.2 Reactions at low temperatures

Reactions of organolithium reagents are often carried out at low temperatures. In particular it is often stated that a reaction is carried out at $-78^{\circ} \mathrm{C}$, the temperature of a solid carbon dioxide-acetone cooling bath. For alternative low temperatures, convenient cooling baths include solvents cooled to slush by stirring with liquid nitrogen. Some examples are listed in Table 1.1. ${ }^{4}$

Table 1.1: Solvents for cooling slush baths

Solvent	Temperature of slush bath $\left({ }^{\circ} \mathbf{C}\right)$
Tetrachloromethane	-23
Chlorobenzene	-45
Chloroform	-63
Ethyl acetate	-84
Hexane	-94
Methanol	-98
Methylcyclohexane	-126
Pentane	-131

1.2.3 Inert atmospheres

Organolithium reagents are sensitive to moisture in the air. For most preparative applications involving organolithium reagents, a sufficient degree of protection is achieved simply by maintaining a slight positive pressure of an inert gas (nitrogen or argon) over the reaction mixture.

1.2.4 Estimation of organolithium reagents

The best established methods for estimating organolithium reagents in the presence of lithium hydroxide or alkoxides are the Watson ${ }^{22}$ and Gilman ${ }^{23}$ double titration methods. In these methods, total base is first determined. An aliquot of the test solution is treated with an organic halide of sufficient reactivity to convert the organolithium compound into non-basic lithium halide while leaving any hydroxide or alkoxides unchanged for a second titration. Gilman originally used benzyl chloride, but 1,2 -dichloroethane and allyl bromide have been reported to be more generally satisfactory. ${ }^{23}$

1.3 Preparation of organolithium compounds

Several organolithium reagents are made commercially, some of them on a considerable scale. n-Butyllithium (n-BuLi), sec-butyllithium (sec-BuLi) and tert-butyllithium (t-BuLi) in hydrocarbon solvents, for example, are sold in tonnage quantities. Phenyllithium and methyllithium are highly stable in ethers at room temperature. A list of the most common commercially available organolithium reagents is showed in Table 1.2.

Table 1.2: \quad The most common commercially available organolithium reagents ${ }^{a}$

Organolithium reagent	Solvent	Concentration (M)
	Hexanes	$1.6,2.5$ and 10.0
n-Butyllithium	Cyclohexane	2.0
	Pentane	2.0
tert-Butyllithium	Pentane	1.5 and 1.7
sec-Butyllithium	Cyclohexane	1.3
Methyllithium	Diethyl ether	1.4
Phenyllithium	Cumene/tetrahydrofuran	1.0

[^0]Most organolithium compounds exist as clusters both in the solid state and in solution in most solvents. The tendency to aggregate is common for alkylithiums. The aggregates are held together by delocalised covalent bonds between lithium and the terminal carbon of the alkyl chain. ${ }^{17}$ In hydrocarbon solvents lithium reagents aggregate to stabilise the electron deficient lithium atom and exist as dimmers, tetramers and hexamers. The state of aggregation was found to be dependent on steric hindrance in organolithiums, so that increasing bulkiness of the organic group in organolithiums tends to decrease the aggregation state. ${ }^{4,17}$ Ether solvents such as diethyl ether or THF can provide an alternative electron density source for the lithium atoms. ${ }^{8}$ For example, t-BuLi is tetrameric in pentane, but becomes, at low temperature, dimeric in diethyl ether and monomeric in THF. Also, a coordinating solvent such as THF, 1,2-dimethoxyethane (DME) or $N, N, N^{\prime}, N^{\prime}-$ tetramethylethylenediamine (TMEDA) increases the reactivity of the organolithium reagents by lowing its aggregation state. The aggregation states for the most common organolithium reagents in different solvents are shown in Table 1.3. ${ }^{8}$

Table 1.3: Aggregation sates for the most common commercially available organolithium reagents

Aggregation state in hydrocarbons	Aggregation state in Et $\mathbf{t}_{2} \mathbf{O}$ or THF			
Hexameric	Tetrameric	Tetrameric	Dimeric	Monomeric
$n-\mathrm{BuLi}$	$s e c-\mathrm{BuLi}$	$n-\mathrm{BuLi}$	$s e c-\mathrm{BuLi}$	$t-\mathrm{BuLi}^{a}$
	$t-\mathrm{BuLi}$	MeLi	$t-\mathrm{BuLi}$	PhLi^{a}
			PhLi	

a At low temperatures (less than $-100^{\circ} \mathrm{C}$).

The majority of organolithiums are prepared by the reaction of organic halides with lithium metal, although halogen-lithium exchange and lithiation methods are also used.

1.3.1 By reaction with lithium metal

Commercially available organolithium reagents are usually produced by reductive lithiation of organic halides with lithium metal (Equation 1.1) at room temperature or above. ${ }^{4}$ However, such methods suffer serious disadvantages. For example, the organolithium produced (RLi) could react with alkyl halide (RX) to
produce a coupled product ($\mathrm{R}-\mathrm{R}$). Also, problems could arise from the use of lithium metal at the required temperatures.

Equation 1.1

Alkyl chlorides are the best among alkyl halides in reductive lithiation reactions; rate of coupling is fast in the case of alkyl iodides and bromides, but their reductions are also fast. ${ }^{8}$

It should be noted that to obtain a high yield of organolithium compound using this method the following points must be taken into consideration. ${ }^{4}$ Firstly, the lithium used should be finely divided and free from mineral oil. Secondly, the presence of $1-3 \%$ of sodium in lithium could increase its reactivity towards alkyl halide (RX) by aiding initiation without significantly affecting the yield or properties of the product (RLi). However, higher concentrations of sodium may lead to low product yields through formation of coupling products (R-R; via Wurtz coupling). Thirdly, the organic halide should be added slowly with efficient stirring to minimise the formation of coupling product. Table 1.4 shows examples of organolithiums that are routinely prepared using this approach. ${ }^{4}$

Table 1.4: Preparation of organolithiums from reaction of organic halides with lithium metal

Organolithium	Organic halide	Solvent	Yield (\%)
$n-\mathrm{BuLi}$	$n-\mathrm{BuCl}$	Pentane	$93-98$
\boldsymbol{t} - BuLi	$t-\mathrm{BuCl}$	Pentane	80
MeLi	MeCl	Diethyl ether	$70-89$
PhLi	MeI	Diethyl ether	82
	PhBr	Diethyl ether	$95-99$

1.3.2 By reaction with lithium salts of radical anions

The reactions of organic halides with lithium metal, leading to organolithium compounds, almost certainly involves electron transfer, ${ }^{24}$ so it is not unexpected that under appropriate conditions electron transfer from a radical anion to an organic halide, with lithium as a counter ion, may also give organolithium compounds. With lithium naphthalene yields are variable, but can be high with aryl chlorides. ${ }^{25}$ With
lithium 4,4'-di-tert-butylbiphenyl excellent yields are reported in several cases, ${ }^{26}$ and this reagent gives some organolithiums that are unobtainable by other methods. ${ }^{27}$

1.3.3 By halogen-lithium exchange

The general halogen-lithium exchange reaction (Equation 1.2) has features that make it extremely valuable for preparing organolithium compounds.

Equation 1.2

The equilibrium lies towards the side having the organolithium compound with the organic group better able to accommodate partial carbanionic character, and it is thus particularly useful for preparing aryllithium compounds by reaction of butyllithium with aryl halides. With iodo and bromo compounds the reaction is general and often proceeds remarkably rapidly even at low temperatures. ${ }^{4}$ The reaction is less satisfactory with chloro compounds and does not takes place at all with fluoro derivatives. The solvent used in such processes is normally an ether, though it does take place in hydrocarbon solvents, but more slowly. ${ }^{4}$

Because halogen-lithium exchange takes place rapidly under mild conditions, potential side-products such as alkylation of the organolithium by the organic halide are not usually troublesome. However, when the desired organolithium reagent is warmed for subsequent reaction it can couple with the alkyl halide, producing a coupled product ($R-R^{\prime}$). ${ }^{4}$ If alkylation is a problem, it can be minimised by use of two mole equivalents of t-BuLi. In this case, halogen-lithium exchange is achieved by the first mole equivalent and the second reacts with the t - BuX formed to produce isobutane and isobutene.

Halogen-metal exchange processes may involve single electron transfer processes and radical intermediates (Equation 1.3) or proceed through ate complex formation (Equation 1.2) via nucleophilic substitution at the halogen. ${ }^{8}$ It is believed that alkyl bromides react with alkyllithiums via the radical mechanism, while aryl bromides and aryl iodides react via ate complexes as intermediates. ${ }^{8,28}$ Also, primary
alkyl iodides react via a polar mechanism and secondary alkyl iodides react via both polar and radical mechanisms. ${ }^{8,28}$

Equation 1.3

Equation 1.4

1.3.4 By lithiation

The replacement of hydrogen by lithium in an organic compound (Equation 1.5) is perhaps the most versatile method for preparing organolithium compounds. ${ }^{4}$

Equation 1.5

The simplest lithiations (deprotonations) are those of relatively acidic hydrocarbons ($\mathrm{pKa} \leq c a .33$) such as 1 -alkynes and triarylmethanes. However, other compounds whose acidities are much lower are also readily lithiated. ${ }^{4}$ This happens when activation takes place by the presence of an α - or β-heteroatom that increases the thermodynamic and/or kinetic acidity of a particular hydrogen atom. This type of activation is very useful for the introduction of a substituent ortho to an existing functional group (directed ring lithiation) or on an ortho-methyl or methylene group (lateral lithiation). ${ }^{4,8}$ Directed lithiation of aromatic and heterocycles is discussed in detail in Section 1.4.

1.4 Directed lithiation of aromatic compounds

Regioselective synthesis of ortho-disubstituted aromatics is one of the classical problems in synthetic chemistry. Simple electrophilic substitution usually takes place under forcing conditions in the presence of a catalyst and often leads to various isomers and polysubstituted aromatics. A number of alternative approaches have therefore been developed for regioselective ortho-disubstitution, and orthometalation followed by electrophilic substitution is one of the most recognised and efficient.

Directed lithiation of aromatic compounds $\mathbf{1}$ comprises deprotonation of a site ortho to a substituent that possesses a heteroatom (oxygen, nitrogen or sulfur) by use of a base. Such a substituent is known as a directing metallation group (DMG). The base, normally an alkyllithium reagent, leads to an ortho-lithiated species 3 (Scheme 1.1). Treatment of $\mathbf{3}$ with electrophilic reagents produces ortho-disubstituted products 4. ${ }^{2-21}$ Apparently, complexation occurs between the substituent group (DMG) and the lithium reagent prior to lithiation to give $\mathbf{2}$, and this serves to bring the lithiating agent into closer proximity with the ortho proton, which is then selectively removed. ${ }^{29}$

Scheme 1.1

For a successful deprotonation to occur, the DMG must possess the somewhat contrary properties of being a good coordinating site for the lithium reagent and a poor electrophilic site for attack by the lithium reagent. The rate and regioselectivity of ortho-lithiation seems to be controlled not only by coordination between the lithium reagent and the heteroatom of the DMG but also by the acidity of the proton at the ortho-position. It is not clear which factor has the driving force in ortho-lithiation.

However, both of them could play a role for lithiation to be successful. For example, strong activators (DMG) tend to have a mixture of the basic requirements for good coordination to lithium reagent and the electron-withdrawing properties required to cause the ortho-protons to become acidic enough to encourage deprotonation efficiently and rapidly. ${ }^{8}$

Groups that encourage such ortho-lithiation include: strong activators, $\mathrm{SO}_{2} \mathrm{NR}_{2}, \mathrm{NHCOR}, \mathrm{CONR}_{2}, \mathrm{CSNHR}, \mathrm{CONHR}, \mathrm{OCONR}_{2}, \mathrm{CO}_{2} \mathrm{R}, \mathrm{CH}_{2} \mathrm{NHR}$, $\mathrm{OCH}_{2} \mathrm{OMe}$; moderate activators, $\mathrm{OR}, \mathrm{NR}_{2}, \mathrm{SR}, \mathrm{CF}_{3}, \mathrm{~F}$; and weak activators, $\mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{CH}(\mathrm{OR})_{2}$. The rapid expansion of the list of functionalities capable of directing lithiation has made this approach an important strategy for the synthesis of various regiospecifically substituted benzenes and heterocycles. ${ }^{30-36}$

1.4.1 Directed lithiation of benzene derivatives

Directed lithiation of benzene systems, containing a range of DMGs (e.g. $\mathrm{NHCOBu}^{\prime}, \mathrm{NHCO}_{2} \mathrm{Bu}^{\prime}$, $\mathrm{NHCONMe}_{2}, \mathrm{CONHR}, \mathrm{CONR}_{2}, \mathrm{OCONEt}_{2}, \mathrm{CH}_{2} \mathrm{NR}_{2}$, $\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}, \mathrm{CH}_{2} \mathrm{NHCO}_{2} \mathrm{Bu}^{t}, \mathrm{CH}_{2} \mathrm{NHCONMe}_{2}, \mathrm{OMe}, \mathrm{SH}, \mathrm{CF}_{3}, \mathrm{~F}, 1 H$-tetrazol-5yl, O-tetrahydropyranyl), with various lithium reagents to produce the corresponding disubstituted benzenes via lithium intermediates has been investigated. ${ }^{37-39}$ For example, N-pivaloylaniline (5) has been doubly lithiated, on nitrogen and on the carbon at position 2, with two equivalents of $n-\mathrm{BuLi}$ at 0 to $25^{\circ} \mathrm{C}$ in a $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}$ mixture for 20 h . The ortho-dilithiated intermediate 6 thus obtained has been reacted with electrophiles to give the corresponding 2 -substituted derivatives 7 (Scheme 1.2) in yields of $53-78 \%{ }^{37}$

Scheme 1.2

1.4.2 Directed lithiation of naphthalene derivatives

Directed lithiation of naphthalene containing DMGs has received limited attention compared to benzene derivatives. Most of the work reported involves
lithiation of N, N-diethyl-1-naphthamide and N, N-diethyl-2-naphthamide. ${ }^{40-43}$ For example, N, N-diethyl-1-naphthamide (8) has been lithiated with sec-BuLi in the presence of $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine (TMEDA) at $-78{ }^{\circ} \mathrm{C}$ in THF. The lithium intermediate 9 thus obtained has been reacted with oxygen to give 2 -hydroxyN, N-diethyl-1-naphthamides (10; Scheme 1.3). ${ }^{40}$

Scheme 1.3

1.4.3 Directed lithiation of heterocycles

The chemistry of heterocyclic compounds is extremely important for the synthesis of valuable bioorganic and pharmaceutical compounds. Lithiation is an important strategy for ortho-functionalization of pyridines, quinolines and diazines. ${ }^{44,45}$ Unfortunately, in some cases such lithiation reactions with alkyllithiums suffer from nucleophilic addition of the lithium reagent to the azomethine $(\mathrm{C}=\mathrm{N})$ bond of azines, even at low temperatures. However, most reactions become completely chemoselective for lithiation by use of less nucleophilic lithium reagents such as LDA and lithium 2,2,6,6-tetramethylpiperidide (LTMP).

1.4.3.1 Directed lithiation of pyridines

Directed lithiation of pyridines, containing various DMGs (e.g. NHCOBu^{t}, $\left.\mathrm{CONHPh}, \mathrm{CONR}_{2}, \mathrm{SOBu}^{\prime}, \mathrm{SOAr}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OEt}, \mathrm{OMe}, \mathrm{CF}_{3}, \mathrm{~F}, \mathrm{Cl}\right)$ at the $\mathrm{C}-2$ position, with various lithium reagents invariably takes place at $\mathrm{C}-3$ to give the corresponding 3 -substituted derivatives after reactions of the lithium reagents produced with electrophiles. ${ }^{46-49}$ For example, 2-(pivaloylamino)pyridine (11) has been lithiated, on nitrogen and on the carbon at position 3, with $n-\mathrm{BuLi}$ (2 equivalents) in THF at $0^{\circ} \mathrm{C}$. The dilithium reagent $\mathbf{1 2}$ thus obtained reacted with a range of electrophiles to give 3-substituted 2-(pivaloylamino)pyridines 13 (Scheme 1.4). ${ }^{46,47}$

Scheme 1.4

Directed lithiation of pyridines, containing a DMG (e.g. $\mathrm{SO}_{2} \mathrm{NHBu}^{t}$, $\left.\mathrm{NHCOBu}^{t}, \mathrm{NHCO}_{2} \mathrm{Bu}^{t}, \mathrm{CONR}_{2}, \mathrm{OCSNEt} 2, \mathrm{SOAr}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{OEt}, \mathrm{OMe}, \mathrm{F}, \mathrm{Cl}\right)$ at the $\mathrm{C}-3$ position, with various lithium reagents takes place predominately at C-4. ${ }^{50-54}$ For example, 3-(pivaloylamino)pyridine (14) has been lithiated, on nitrogen and on the carbon at position 4, with n - BuLi (2 equivalents) in THF at -70 to $-25^{\circ} \mathrm{C}$ and in the presence of TMEDA. The dilithium reagent 15 thus formed reacted with various electrophiles to give the corresponding 4-substituted 3-(pivaloylamino)pyridines 16 (Scheme 1.5). ${ }^{50-52}$

Scheme 1.5

Similarly, directed lithiation of pyridines, containing a DMG (e.g. NHCOBu^{\prime}, $\left.\mathrm{CONR}_{2}, \mathrm{CONHPh}, \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}(\mathrm{OEt})_{2}, \mathrm{OMe}, \mathrm{Cl}\right)$ at $\mathrm{C}-4$, takes place at $\mathrm{C}-3$ with various lithium reagents. ${ }^{46,55-57}$ For example, 4-(pivaloylamino)pyridine (17) has been lithiated, on nitrogen and on the carbon at position 3 , with $n-\mathrm{BuLi}$ in THF at $0^{\circ} \mathrm{C}$. The dilithium reagent 18 obtained reacted with various electrophiles to give the corresponding 3-substituted 4-(pivaloylamino)pyridines 19 (Scheme 1.6). ${ }^{46,55}$

Scheme 1.6

1.4.3.2 Directed lithiation of quinolines

Directed lithiation of quinolines, containing various DMGs (e.g. NHCOBu', OCONEt $, \mathrm{CO}_{2} \mathrm{H}, \mathrm{OR}, \mathrm{Cl}$) at the $\mathrm{C}-2$ position, has been achieved by the use of n-BuLi or less nucleophilic lithium reagents (e.g. LDA) at low temperatures. ${ }^{58-60}$ For example, ortho-lithiation of 2-pivaloylaminoquinoline (20) has been achieved by use of $n-\mathrm{BuLi}$ in dry $\mathrm{Et}_{2} \mathrm{O}$ at low temperature to give the lithium reagent 21. Reactions of 21 with various electrophiles afforded the corresponding 3 -substituted 2-pivaloylaminoquinolines 22 (Scheme 1.7) in moderate to very good yields. ${ }^{58}$

Scheme 1.7

1.4.3.3 Directed lithiation of pyridazines

Directed lithiation of pyridazines, containing various DMGs (e.g. $\mathrm{SO}_{2} \mathrm{NHBu}^{\prime}$, $\mathrm{NHCOBu}{ }^{t}, \mathrm{OMe}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}, \mathrm{Cl}$) at the $\mathrm{C}-3$ position, has been successfully achieved with less nucleophilic lithium reagents such as LDA and LTMP. ${ }^{61-63}$ For example 3-(pivaloylamino)pyridazine (23) has been doubly lithiated, on nitrogen and on the carbon at position 4, with LDA or LTMP in THF at $-70^{\circ} \mathrm{C}$. The dilithium reagent 24 obtained reacted with various electrophiles to give the corresponding 4-substituted 3-(pivaloylamino)pyridazines 25 (Scheme 1.8). ${ }^{61}$

Scheme 1.8

1.4.3.4 Directed lithiation of pyrimidines

Directed lithiation of pyrimidines, containing a DMG (e.g. OMe, F, CI) at the C-4 position, mainly takes place at C-5 to give the corresponding lithium intermediates, which on reactions with electrophiles produce 4,5-disubstituted pyrimidines. ${ }^{64-68}$ For example, lithiation of 4-methoxypyrimidine (26) with LDA or LTMP in THF or $\mathrm{Et}_{2} \mathrm{O}$ at 0 or $-78^{\circ} \mathrm{C}$ gave the 5 -lithio derivative 27 which reacted with electrophiles to give the corresponding 5-substituted 4-methoxypyrimidines 28 (Scheme 1.9). ${ }^{64-66}$

Scheme 1.9

1.4.3.5 Directed lithiation of pyrazines

Directed lithiation of pyrazines, containing a DMG (e.g. NHCOBu', $\mathrm{SO}_{2} \mathrm{Bu}^{\prime}$, $\left.\mathrm{SO}_{2} \mathrm{Ph}, \mathrm{OMe}, \mathrm{SR}, \mathrm{F}, \mathrm{Cl}, \mathrm{I}\right)$ at the $\mathrm{C}-2$ position, invariably takes place at $\mathrm{C}-3 .{ }^{69,70}$ For example, 2-(pivaloylamino)pyrazine (29) has been doubly lithiated by the use of alkyllithiums (n-BuLi or t - BuLi) in THF or $\mathrm{Et}_{2} \mathrm{O}$ at -70 to $20^{\circ} \mathrm{C}$. Reactions of the dilithium reagent 30 thus formed with electrophiles produced the corresponding 3-substituted 2-(pivaloylamino)pyrazines 31 (Scheme 1.10). ${ }^{69}$

Scheme 1.10

1.4.3.6 Directed lithiation of cinnolines

3-Substituted cinnolines have been lithiated with LTMP or LDA in THF at low temperature at C-4. For example, 3-methoxycinnoline (32) has been lithiated at C-4 by use of LTMP or LDA in THF at $-75^{\circ} \mathrm{C}$ to give the lithium reagent 33 which reacted with various electrophiles to give the corresponding 4 -substituted 3-methoxycinnolines 34 (Scheme 1.11). ${ }^{71}$

Scheme 1.11

Similarly, the 4 -substituted analogues have been lithiated at C-3. For example, 4-methoxycinnoline (35) has been lithiated at C-3 by use of LTMP or LDA in THF at $-75{ }^{\circ} \mathrm{C}$ to give the lithium reagent 36 which reacted with electrophiles to give the corresponding 3 -substituted 4 -methoxycinnolines 37 (Scheme 1.12). ${ }^{71}$

Scheme 1.12

1.4.3.7 Directed lithiation of quinazolines

Regioselective lithiation of various quinazoline derivatives has been investigated. ${ }^{72-81}$ For example, directed lithiation of 3-pivaloylamino-4(3 H)quinazolinone (38) was achieved by the use of LDA in THF at $-78^{\circ} \mathrm{C}$ to give the dilithium intermediate 39. Reactions of 39 with various electrophiles afforded the corresponding 2-substituted 3-pivaloylamino-4(3H)-quinazolinones 40 (Scheme 1.13) in very good yields. ${ }^{72}$

Scheme 1.13

1.4.3.8 Directed lithiation of quinoxalines

Lithiation of various quinoxaline derivatives has been investigated. ${ }^{82-84}$ For example, directed lithiation of 2-(pivaloylamino)quinoxaline (41) was achieved by the use of LTMP in THF at $-78{ }^{\circ} \mathrm{C}$ to produce the dilithium reagent $\mathbf{4 2}$. ${ }^{84}$ Reactions of the dilithium reagent 42 thus obtained with electrophiles produced the corresponding 3-substituted 2-(pivaloylamino)quinoxalines 43 (Scheme 1.14) in modest yields. ${ }^{84}$

Scheme 1.14

1.5. Conclusion

Directed lithiation offers approaches to ortho-disubstituted aromatic products. Directed lithiation of aromatic compounds by lithium reagents at low temperatures and reactions of the lithium reagents thus obtained with electrophiles is useful for the production of ortho-disubstituted derivatives. The process has been applied to various aromatics and heterocycles to produce the corresponding ortho-disubstituted derivatives that might be difficult to prepare by other means.

CHAPTER TWO

INVESTIGATION OF THE INFLUENCES OF
SUBSTITUENTS ON THE LITHIATION SITES OF VARIOUS \boldsymbol{N}-BENZYLPIVALAMIDES

CHAPTER TWO

INVESTIGATION OF THE INFLUENCES OF SUBSTITUENTS ON THE LITHIATION SITES OF VARIOUS \boldsymbol{N}-BENZYLPIVALAMIDES

2.1 Introduction

Regioselective synthesis of substituted aromatics is one of the classical problems in synthetic chemistry. Simple electrophilic substitution often leads to various isomers and polysubstituted aromatics and may take place under forcing conditions in the presence of a catalyst. Lithiation of aromatics followed by electrophilic substitution is one of the most efficient approaches for synthesis of substituted and/or modified derivatives. ${ }^{4-11}$

Schlosser has shown that N-(4-methoxybenzyl)pivalamide (44) undergoes selective lithiation ortho to the pivaloylaminomethyl group when treated with $n-\mathrm{BuLi}$ in anhydrous THF at $0{ }^{\circ} \mathrm{C} .{ }^{85}$ Reaction of the lithium reagent obtained with carbon dioxide produced the corresponding acid 45 in 64% yield (Scheme 2.1). ${ }^{85}$

Scheme 2.1

By contrast, N-(2-methoxybenzyl)pivalamide (46) under similar reaction conditions gave a mixture of two products, one of which involved carboxylation ortho- to the pivaloylaminomethyl group (47; isolated in 10% yield by fractional crystallization), and the other of which involved carboxylation at the side-chain (48; isolated in 14% yield as the methyl ester following treatment of the residue with diazomethane; Scheme 2.2). ${ }^{85}$

Scheme 2.2

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides

Similarly, treatment of N-benzylpivalamide (49) in the same way gave a mixture of two substituted products 50 (o-substitution; isolated in 36% yield by fractional crystallization), and 51 (α-substitution; isolated in 20% yield as the methyl ester following treatment of the residue with diazomethane; Scheme 2.3). ${ }^{85}$

Scheme 2.3

The poor regioselectivity and low yields achieved in the latter reactions render the process unattractive as a synthetic method. However, it was not clear whether the lithiation reaction would proceed in the same way under different reaction conditions (e.g. different lithium reagents, reaction temperatures or times) or using electrophiles other than carbon dioxide. These interesting changes in the directing effects of the substituents suggested that further studies on directed lithiation of N-(substituted benzyl)pivalamides would be worthwhile.

We therefore decided to investigate lithiation of various N -(substituted benzyl)pivalamides to see if the lack of selectivity in such lithiation reactions could be overcome and to examine their scope of applicability and generality. We have selected N-benzylpivalamides carrying bromo, methoxy and methyl substituents, as well as the unsubstituted case, as substrates. As shown by Schlosser, unsubstituted N-benzylpivalamide could be lithiated at the α-position (on the CH_{2}) and o-position (ortho to amidomethyl side chain). In the case of methoxy derivatives, three sites compete for lithiation: α-position (on the CH_{2}), the o-position (ortho to amidomethyl side chain) and o^{\prime}-position (ortho to methoxy group). In the case of methyl derivatives, four sites compete for lithiation: α-position (on the CH_{2}), the o-position (ortho to amidomethyl side chain), on the methyl group itself and o^{\prime}-position (ortho to the methyl group), although the last one is unlikely. Therefore, the aim of the work represented in this chapter was to synthesise N-(substituted benzyl)pivalamides and investigate their lithiation reactions, to enable convenient syntheses of the corresponding substituted derivatives.

The results, which we now report in this chapter, show consistency with the earlier results reported by Schlosser when n-BuLi was used as the lithium reagent at $0{ }^{\circ} \mathrm{C} .{ }^{85}$ However, variation in the site of lithiation was observed in the case of N-(2-methoxybenzyl)pivalamide (46) when t-BuLi was used at $-78^{\circ} \mathrm{C}$. As a result, we have been able to establish conditions for a high-yielding and general ringsubstitution, but at the position ortho- to the methoxy group rather than ortho- to the pivaloylaminomethyl group for this substrate. Lithiation at this site was not reported at all by Simig and Schlosser under their conditions. ${ }^{85}$ Also, we found that lithiation of N-(4-methylbenzyl)pivalamide takes place smoothly ortho- to the pivaloylaminomethyl group, while, lithiation of N -(2-methylbenzyl)pivalamide takes place on the methyl group at the 2 -position.

2.2 Synthesis of N-benzylpivalamide (49)

The first task was to synthesise N-benzylpivalamide (49) and investigate its lithiation reactions under various reaction conditions. N-Benzylpivalamide (49) was prepared according to a literature procedure. ${ }^{86}$ Reaction with pivaloyl chloride with benzylamine (52) in dichloromethane (DCM) and in the presence of triethylamine (TEA) at $0^{\circ} \mathrm{C}$ gave 49 in 92% yield after crystallization (Scheme 2.4). The structure of compound 49 was confirmed by various spectroscopic techniques (see Chapter 7; Section 7.2).

Scheme 2.4

2.3 Lithiation of \boldsymbol{N}-benzylpivalamide (49)

Double lithiation of N-benzylpivalamide (49) has been previously reported (Scheme 2.3). ${ }^{85}$ However, the lithiation was not selective, giving a mixture of o - and α-lithiation. Therefore, double lithiation of compound 49 was investigated under various reaction conditions in order to see the effect of those conditions on the reaction selectivity and yields of products.

Initially the reaction of 49 with $n-\operatorname{BuLi}$ (2.2 mole equivalents) was carried out in anhydrous THF under a nitrogen atmosphere at $-78^{\circ} \mathrm{C}$. Initial addition of $n-\mathrm{BuLi}$ provided a yellow solution, presumably because of formation of the monolithium reagent 53, until approximately one equivalent had been added, then gave a brownish solution as the remaining n-BuLi was added, presumably because of formation of the dilithium reagent. The mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$. Benzophenone (1.1 mole equivalents) was added as a solution in anhydrous THF and the mixture was stirred for another 2 h (Scheme 2.5) at $-78^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature and quenched by addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The product mixture was examined by TLC and showed the formation of two minor new products, along with the starting material 49 and benzophenone, which were isolated by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3). The starting material 49 was recovered in 81% yield. The two minor products (Scheme 2.5) were subsequently identified as N-(2-hydroxy-1,2,2-triphenylethyl)pivalamide (56; 4\% yield) and N-(2-(hydroxydiphenylmethyl)-benzyl)pivalamide (57; 7\% yield).

Scheme 2.5

Two mole equivalents of n-BuLi were necessary, the first mole to remove the NH proton and the second one to lithiate on the CH_{2} at the side-chain or on the ring at the 2-position to produce the dilithium reagents $\mathbf{5 4}$ or 55, respectively (Scheme 2.5).

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides

Compound 56 is the product expected from reaction of the dilithium intermediate 54 with benzophenone (α-substitution), while, compound 57 is the product expected product from the reaction of dilithium intermediate 55 with benzophenone (orthosubstitution).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 56 showed the absence of CH_{2} signals, indicating that lithiation took place at the CH_{2} of the $-\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$ group. The ${ }^{13} \mathrm{C}$ signals of the two phenyl groups originating in benzophenone appeared separately, verifying that they were diastereotopic. The diastereotopicity arises from creation of a stereogenic carbon during lithiation at the side-chain followed by reaction with benzophenone. Compound 56 would of course be present as a racemic mixture. The presence of CH_{2} signals in the NMR spectra of $\mathbf{5 7}$ indicated that lithiation took place on the ring.

The yields of $\mathbf{5 6}$ and $\mathbf{5 7}$ were low presumably because the lithiation reaction of 49 with n-BuLi at $-78{ }^{\circ} \mathrm{C}$ was slow. It seems likely that longer reaction time, higher temperature and/or other lithiating reagent might have an effect on the yield. Führer and Gschwend had reported that lithiation of N-phenylpivalamide, using n - BuLi at $25^{\circ} \mathrm{C}$, was slow and required 20 h as a reaction time to generate the ortho-lithiated species. ${ }^{37}$ Therefore, it seemed likely that the low yields of the products of lithiation of 49 and treatment with an electrophile observed under the low temperature conditions used here were the result of inefficient lithiation.

It was of interest to see if the reaction would proceed more rapidly with other lithium reagents, and we therefore attempted double lithiation of 49 using t-BuLi. It was found that lithiation of 49 with t - BuLi (2.2 mole equivalents) under similar reaction conditions to those used with $n-\mathrm{BuLi}$, followed by reaction with benzophenone, gave 56 and 57 in slightly better yields (6 and 10\%, respectively) after separation by column chromatography (Table 2.1 ; entry 1) along with 49 (69%). We also attempted double lithiation of 49 using sec-BuLi under similar conditions; however, the yields of $\mathbf{5 6}$ and $\mathbf{5 7}$ were very similar to those obtained using n-BuLi as reagent. Therefore, we undertook a more detailed lithiation study of 49 using t - BuLi as the lithium reagent.

A series of experiments was conducted to try to find conditions under which only one product would be obtained or to improve the yields of $\mathbf{5 6}$ and 57. Double lithiations of 49 with 2.2 mole equivalents of t-BuLi in THF for 2 or 4 h at $0^{\circ} \mathrm{C}$

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides

followed by reaction with benzophenone for 2 h at $0^{\circ} \mathrm{C}$ were attempted. Under such conditions the yields of 56 and 57 were in the range of $34-37$ and $30-34 \%$, respectively (Table 2.1 ; entries 2 and 3), while 49 was recovered in $20-28 \%$ yield. These results are consistent with Schlosser's findings. ${ }^{85}$

Table 2.1: \quad Yields of $\mathbf{5 6}$ and $\mathbf{5 7}$ formed by lithiation of $\mathbf{4 9}$ using t-BuLi (2.2 mole equivalents) and reaction with benzophenone, according to Scheme 2.5

Entry	$\mathbf{T}\left({ }^{\circ} \mathbf{C} \mathbf{C}\right.$	$\mathbf{t}(\mathbf{h})$	Yield (\%) $^{\boldsymbol{a}}$				
		$\mathbf{4 9}$	$\mathbf{5 6}$	$\mathbf{5 7}$	overall		
1	-78	4	$69(81)^{b}$	$6(4)^{b}$	$10(7)^{b}$	$16(11)^{b}$	
2	0	2	28	34	30	64	
3	0	4	20	37	34	71	
4	20	2	30	40	16	56	
5	20	4	30	42	17	59	

${ }^{a}$ Yield of isolated products after purification by column chromatography.
${ }^{h}$ Figures in parentheses are for similar reactions, but with n-BuLi or sec-BuLi as a lithium reagent (both reagents gave identical results).

The stability of $n-\mathrm{BuLi}$ in diethyl ether as a solvent is ten to fifty times greater than in THF at any given temperature. ${ }^{8}$ Generally, a temperature increase of $20^{\circ} \mathrm{C}$ could shorten the lifetime of BuLi by a factor of 10 . It is well recognised that $t-\mathrm{BuLi}$ decomposes THF more rapidly than n-BuLi to produce ethylene and the lithium enolate of acetaldehyde as the most abundant products. Therefore, it is always better to carry out lithiation reactions involving t-BuLi and THF below $0{ }^{\circ} \mathrm{C} .{ }^{8}$ Nevertheless, we decided to attempt double lithiation of 49 with t-BuLi in THF at $20^{\circ} \mathrm{C}$ to see what effect the temperature could have on both yield and selectivity of products. Lithiations of 49 with t-BuLi in THF for 2 or 4 h at $20^{\circ} \mathrm{C}$, followed by reaction with benzophenone for 2 h at $20^{\circ} \mathrm{C}$, were attempted. It was found that the yields of 56 and 57 were in the range of $40-42$ and $16-17 \%$, respectively (Table 2.1 ; entries 4 and 5), while 49 was recovered in 30% yield. It is clear that the overall yields of products formed via lithiation were indeed lower at $20^{\circ} \mathrm{C}$ than at $0^{\circ} \mathrm{C}$, as would be expected
on the basis of reaction of the t-BuLi with the solvent. However, the overall yields, at $56-59 \%$, were still respectable and since 49 and benzophenone were easily recovered the process could be repeated to provide a higher final conversion into products after even 2 cycles. Alternatively, use of a larger excess of t-BuLi might lead to an increase in overall yield of products.

More interestingly, the reaction was selective towards the side-chain lithiation product (56). At $-78^{\circ} \mathrm{C}$ the major product (albeit in very low yield) had been the ringsubstituted product (57), while at $0^{\circ} \mathrm{C}$ the two products were formed in more-or-less equal amounts (Table 2.1; entries 2 and 3), but at $20^{\circ} \mathrm{C} 56$ was favoured over 57 by around 2.5:1 (Table 2.1; entries 4 and 5). Indeed, the yield of 56 at $20^{\circ} \mathrm{C}$ was actually higher than at $0^{\circ} \mathrm{C}$, despite the likely reaction of the lithiating agent with THF, while the yield of 57 was substantially lower. There are several possible explanations for these observations.

Firstly, lithiation at the ortho-position might be slow at $20^{\circ} \mathrm{C}$. However, this explanation is unlikely, since lithiation occurs readily enough at $0^{\circ} \mathrm{C}$.

Secondly, ortho and α-lithiations might take place at $20^{\circ} \mathrm{C}$ as much as at $0^{\circ} \mathrm{C}$, but at the higher temperature the dilithium intermediate 58, produced in-situ from reaction of 55 and benzophenone, may be unstable, dissociating back to benzophenone and ortho-lithiated species 55 (Equation 2.1). The proportion of the adduct 58 present in the mixture when the reaction was quenched would be reflected in the yield of $\mathbf{5 7}$ obtained.

Equation 2.1

Since the forward reaction involves ordering, it will have a negative $\Delta \mathrm{S}$ (Equation 2.2). At higher temperature the $\mathrm{T} \Delta \mathrm{S}$ term (Equation 2.2) is greater and $-\mathrm{T} \Delta \mathrm{S}$ is therefore more positive, encouraging dissociation. At $0^{\circ} \mathrm{C}$ the equilibrium position may favour association, whereas at $20^{\circ} \mathrm{C}$ it may favour dissociation. This

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides

possibility was tested by treating 57 with t - BuLi (2 equivalents) in dry THF at $20^{\circ} \mathrm{C}$ for 2 h . However, following work up 57 was recovered quantitatively (97%), which make this possibility unlikely.

$\Delta \mathbf{G}=\Delta \mathbf{H}-\mathrm{T} \Delta \mathrm{S}$

Equation 2.2

Thirdly, at $20^{\circ} \mathrm{C}$ the ortho-lithiated species $\mathbf{5 5}$ might be reactive enough to deprotonate the solvent (THF), leading to starting material 49 that cannot react with benzophenone. However, if the lithium reagent 55 is still intact at $20^{\circ} \mathrm{C}$, but the problem is something to do with the way it reacts with the benzophenone at the higher temperature, cooling it down before addition of benzophenone would again lead to formation of 57. This possibility was tested by carrying out two experiments. The first (Experiment A) involved treatment of 49 with t - BuLi (2 equivalents) in dry THF at 20 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then cooled down to $0^{\circ} \mathrm{C}$ before benzophenone was added. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$, worked up and the product mixture was separated by column chromatography. Under such conditions the yields of 56 and 57 were 41 and 18%, respectively, while 49 was recovered in 30% yield along with benzophenone. These results were virtually identical to those obtained from reactions carried out entirely at $20{ }^{\circ} \mathrm{C}$. The second experiment (Experiment B) involved treatment of 49 with $t-\mathrm{BuLi}$ (2 equivalents) in dry THF at 0 ${ }^{\circ} \mathrm{C}$ for 2 h to give the mixture of lithium species that led to the products recorded in Entry 2 of Table 2.1. The reaction mixture was then warmed up to $20^{\circ} \mathrm{C}$ before benzophenone was added and the reaction mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$. Under such conditions the yields of $\mathbf{5 6}$ and 57 were 39 and 20%, respectively, while 49 was recovered in 31% yield along with benzophenone, i.e. quite similar to the results of Experiment A, but exhibiting a significantly lower yield of 57 than from reactions conducted entirely at $0{ }^{\circ} \mathrm{C}$ (Entries 2 and 3 of Table 2.1). These results clearly indicated that lithium reagent 55 is not very stable at $20^{\circ} \mathrm{C}$ and are consistent with its deprotonating the solvent to give back the starting material 49.

A fourth possibility is that the two lithium reagents $\mathbf{5 4}$ and $\mathbf{5 5}$ are capable of interconverting at $20{ }^{\circ} \mathrm{C}$, presumably through a series of deprotonations and
reprotonations, and that $\mathbf{5 4}$ is the thermodynamically more stable one. The lower overall yields would be a result of the loss of some t-BuLi by reaction with the THF, but the changed proportions of products would reflect the net conversion of $\mathbf{5 5}$ into 54.

Of all the possibilities considered, the third possibility seems the most likely in view of all the results.

Clearly, direct lithiation on the ring without lithiation on the CH_{2} of the $\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$ group was not a realistic hope with N -benzylpivalamide (49) as substrate. However, ring substitution could presumably be achieved via brominelithium exchange of N -(2-bromobenzyl)pivalamide. Therefore, we decided to synthesise N-(2-bromobenzyl)pivalamide.

2.4 Synthesis of N-(2-bromobenzyl)pivalamide (60)

N-(2-Bromobenzyl)pivalamide (60) was prepared in 88% yield from reaction of pivaloyl chloride with 2-bromobenzylamine hydrochloride (59) in the presence TEA in DCM (Scheme 2.6).

Scheme 2.6

With compound 60 in hand, attention was turned to investigate brominelithium exchange of $\mathbf{6 0}$ followed by reaction with various electrophiles in an attempt to produce the corresponding 2 -substituted derivatives.

2.5 Bromine-lithium exchange of \boldsymbol{N}-(2-bromobenzyl)pivalamide (60)

Halogen-lithium exchange of halogenated aromatic compounds is generally favoured over deprotonation (direct lithiation on the ring) at low temperatures. This rapid reaction allows the introduction of a lithium atom at a specific non-activated position on the ring. The rate of halogen-lithium exchange in aryl halides follows the order, ArI $>\mathrm{ArBr} \gg \mathrm{ArCl}>\mathrm{ArF}$. Aryl chlorides and fluorides usually undergo deprotonation at the position next to the halogen producing benzynes. ${ }^{8}$ The most

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides

common lithium reagents for halogen-lithium exchange are $t-\mathrm{BuLi}, n-\mathrm{BuLi}$ and sec-BuLi; however, t-BuLi is the most favourable one.

The bromine-lithium exchange in aromatic compounds is likely to proceed through nucleophilic substitution at the bromine via formation of ate complex as intermediate (Equation 2.3). ${ }^{8.87-89}$ Many examples of halogen-lithium exchange to produce the corresponding aryllithiums have been reported. ${ }^{8,89}$

Equation 2.3

In principle, bromine-lithium exchange of N-(2-bromobenzyl)pivalamide (60) could be achieved by use of three mole equivalents of t-BuLi. One mole would be to deprotonate the nitrogen, another to exchange the bromine and the third to eliminate the bromide ion from $t-\mathrm{BuBr}$ to produce isobutane and isobutene. However, Smith has found that bromine-lithium exchange of N^{\prime}-(2-bromoaryl)- N, N-dimethylureas was more successfully achieved by the sequential use of MeLi (1.1 equivalents - to remove the NH proton) and t - BuLi (2.2 equivalents) at $-78{ }^{\circ} \mathrm{C} .{ }^{90}$ Therefore, brominelithium exchange of compound $\mathbf{6 0}$ was attempted with MeLi and then t - BuLi at $-78^{\circ} \mathrm{C}$ in THF.

Compound 60 was treated with MeLi (1.1 equivalents) at $-78^{\circ} \mathrm{C}$ for 10 min to give the lithiated species 61 as a result of deprotonation at the nitrogen (Scheme 2.7). The mixture was then treated with $t-\operatorname{BuLi}(2.2$ mole equivalents) and the colourless mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ in an attempt to ensure complete formation of 55 . An electrophile (benzophenone, cyclohexanone, benzaldehyde, 4-anisaldehyde, or deuterium oxide) was added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ (Scheme 2.7). Following work-up, the crude products obtained were crystallized from EtOAc$\mathrm{Et}_{2} \mathrm{O}$ (1:3) to give the corresponding N-(2-substituted benzyl)pivalamides 57 and 6266 (Scheme 2.7) in high yields (Table 2.2). The products were all characterized by standard spectroscopic methods (see Chapter 7; Section 7.5).

Scheme 2.7

Table 2.2: \quad Synthesis of N-(2-substituted benzyl)pivalamides 57 and 62-66 according to Scheme 2.7

Product	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
57	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	90
62	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}=\mathrm{O}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	90
63	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	86
64	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	87
65	MeI	Me	85
$66^{\text {b }}$	$\mathrm{D}_{2} \mathrm{O}$	D	91
${ }^{a}$ Yield of isolated product after crystallization. ${ }^{b}$ Deuteration was almost 100% as indicated by NMR spectra.			

As can be seen from Table 2.2, the yields of products were high in all cases. The ${ }^{1}$ H NMR spectra of compounds $\mathbf{6 3}$ and $\mathbf{6 4}$ showed diastereotopicity for the two hydrogens of the CH_{2} group at position 1. The diastereotopicity arises from creation of a stereogenic carbon centre, on reaction of lithium intermediate 55 with aldehydes. Compounds 63 and 64 were of course present as racemic mixtures.

With a method for generating the ring-lithiated species essentially quantitatively now available, the opportunity presented itself to obtain further evidence about the stability of the lithiated species $\mathbf{5 5}$ at $20^{\circ} \mathrm{C}$ (compare Section 2.3). To understand the reason for the lower yield of 57 obtained from lithiation and substitution of 49 at $20^{\circ} \mathrm{C}$ even better two experiments were carried out. The first involved treatment of $\mathbf{6 0}$ with MeLi and then t - BuLi in THF at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was then warmed to $20^{\circ} \mathrm{C}$ and stirred for 30 min before benzophenone was added. The reaction mixture was stirred for 2 h at $20^{\circ} \mathrm{C}$ and then worked-up. Under

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides
such conditions the isolated yield obtained of 57 was 78%, while unbrominated starting material 49 was obtained in 15% yield along with some benzophenone. The second experiment involved treatment of $\mathbf{6 0}$ with MeLi and then t - BuLi in dry THF at $-78^{\circ} \mathrm{C}$ for 30 min . The mixture was warmed to $20^{\circ} \mathrm{C}$ and stirred for 30 min and then cooled down to $-78^{\circ} \mathrm{C}$ before benzophenone was added. The reaction mixture was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$. The yields obtained of 57 and 49 were 82 and 12%, respectively, along with some benzophenone. Again, these results clearly indicated that lithium reagent 55 is not very stable at $20^{\circ} \mathrm{C}$ and could be protonated back to 49 .

Attention was next turned to the synthesis of a series of N-(substituted benzyl)pivalamides and investigation of their lithiation reactions to see what effect the type and position of the substituent could have on the lithiation site.

2.6 Synthesis of various \boldsymbol{N}-benzylpivalamides

Various N-benzylpivalamides, namely N-(4-methoxybenzyl)pivalamide (44), N-(2-methoxybenzyl)pivalamide (46), N-(4-methylbenzyl)pivalamide (68) and N-(2-methylbenzyl)pivalamide (65) were prepared according to Scheme 2.8. The solids obtained after work-up were purified by crystallization to give pure products as white crystals in high yields (Table 2.3).

Scheme 2.8

Table 2.3: \quad Synthesis of N-(substituted benzyl)pivalamides 44, 46, 65 and 68 according to Scheme 2.8

Product	\mathbf{R}	Yield (\%) $^{\boldsymbol{a}}$
$\mathbf{4 4}$	4-OMe	87
$\mathbf{4 6}$	2-OMe	91
$\mathbf{6 5}$	2-Me	89
$\mathbf{6 8}$	4-Me	92
${ }^{a}$ Yield of isolated product after crystallization.		

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides

Our attention was next turned to investigate the directed lithiation of N-(4-methoxybenzyl)pivalamide (44) with t - BuLi at $-78{ }^{\circ} \mathrm{C}$ followed by reactions with a range of electrophiles.

2.7 Directed lithiation of \mathbf{N}-(4-methoxybenzyl)pivalamide (44)

Previous experience with N-benzylpivalamide (49) suggested that t - BuLi might provide higher yields that $n-\mathrm{BuLi}$ and sec- BuLi in reactions involving lithiation. Therefore, reactions similar to those of Schlosser ${ }^{85}$ (Scheme 2.1) were carried out with t - BuLi in THF at $-78{ }^{\circ} \mathrm{C}$. Directed lithiation of N -(4methoxybenzyl)pivalamide (44) took place smoothly with t-BuLi (2.2 mole equivalents) in THF at $-78{ }^{\circ} \mathrm{C}$. Initial addition of t - BuLi gave the monolithium reagent 69, as a yellow solution, then the solution turned brownish red as the remaining t-BuLi was added, presumably because of formation of the dilithium reagent 70. The mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$ and then an electrophile (1.1 mole equivalents) was added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ (Scheme 2.9). Following work-up of the reaction mixture the crude products were purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give the corresponding substituted products in high yields (Table 2.4). The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.7). It was difficult from simple ${ }^{1} \mathrm{H}$ NMR spectra of products to determine whether lithiation had taken place ortho to the $\mathrm{CH}_{2} \mathrm{NHCO}^{\prime} \mathrm{Bu}$ group or ortho to the methoxy group. However, the ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{7 1 - 7 6}$ showed two signals somewhat upfield in the region of 111-117 ppm, which could attributed to C-3 and C-5. Also, they showed a signal somewhat downfield in the $\delta=129-134 \mathrm{ppm}$ region, which could be attributed to C-6. These patterns indicated that electrophiles were introduced ortho- to the pivaloylaminomethyl group and that the products were N-(2 -substituted 4-methoxybenzyl)pivalamides 71-76 (Scheme 2.9). Moreover, lithiation next to the $-\mathrm{CH}_{2} \mathrm{NHCO}^{t} \mathrm{Bu}$ group was expected based on Schlosser's findings using $n-\mathrm{BuLi}$ at $0{ }^{\circ} \mathrm{C}$. ${ }^{85}$

Scheme 2.9

Table 2.4: \quad Synthesis of N-(2-substituted 4-methoxybenzyl)pivalamides 71-76 according to Scheme 2.9

Product	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
71	MeI	Me	$81^{\text {b }}$
72	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	80
73	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}=\mathrm{O}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	77
74	MeCOBu	$\mathrm{MeC}(\mathrm{OH}) \mathrm{Bu}$	78
75	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	82
$76{ }^{\text {c }}$	$\mathrm{D}_{2} \mathrm{O}$	D	88

" Yield of isolated product after purification by column chromatography.
${ }^{b} N$-(4-Methoxy-2-methylbenzyl)- N-methylpivalamide (77) was obtained in 5% yield as side-product due to methylation on the nitrogen. Compound 77 was obtained in 87% yield when the reaction was repeated with 2.2 equivalents of MeI.
${ }^{\text {c }}$ Deuteration \% was $c a .95 \%$ as indicated by NMR spectra.

The ${ }^{1} H$ NMR spectra of compounds 74 and 75 showed diastereotopicity for the two hydrogens of the CH_{2} group at position 1 and also for the two hydrogens of the CH_{2} group next to the newly created stereogenic carbon at position 2 in compound 74. Compounds $\mathbf{7 4}$ and $\mathbf{7 5}$ would, of course, be formed as racemic mixtures.

The results obtained clearly showed that reactions of the lithium reagent with electrophiles is general and substitution had taken place next to the $-\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$ group, which is consistent with Schlosser's findings with $n-\mathrm{BuLi}$ at $0{ }^{\circ} \mathrm{C} .{ }^{85} \mathrm{By}$ contrast, Führer and Gschwend had reported that lithiation of N-(4-methoxyphenyl)pivalamide, using n-BuLi at $25^{\circ} \mathrm{C}$, was not selective. ${ }^{37}$ In this case, reactions of the lithium intermediates obtained with an electrophile produced three substitution products, ortho- to the $-\mathrm{NHCOBu}^{t}$, ortho- to the methoxy group and
ortho- to both groups. ${ }^{37}$ The results of Führer and Gschwend suggest that the pivaloylamino group is slightly superior to a methoxy group in terms of its orthodirecting ability. ${ }^{37}$ However, our results and those of Schlosser suggest that the pivaloylaminomethyl group is substantially superior to a methoxy group at directing lithiation ortho to itself.

Our attention was next turned to investigate the directed lithiation of N-(2-methoxybenzyl)pivalamide (46).

2.8 Directed lithiation of \boldsymbol{N}-(2-methoxybenzyl)pivalamide (46)

N-(2-Methoxybenzyl)pivalamide (46) had been lithiated previously by Schlosser using $n-\mathrm{BuLi}$ at $0^{\circ} \mathrm{C}$ (Scheme 2.2). ${ }^{85}$ However, the reaction was not selective. Therefore, we decided to investigate the directed lithiation of 46 under the general conditions used to lithiate compound 44 (Section 2.7; Scheme 2.9).

Therefore, compound 46 was treated with t-BuLi (2.2 mole equivalents) at $-78^{\circ} \mathrm{C}$ in THF under nitrogen (Scheme 2.10). It was found that initial addition of t-BuLi provided the monolithium reagent 78 as a yellow solution then turned to the dilithium reagent 79 as a reddish brown solution (Scheme 2.10). The mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$ after which an electrophile (1.1 mole equivalents) was added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ (Scheme 2.10) and then allowed to warm to room temperature. Following work-up of the reaction mixture the crude products were purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) or direct crystallization from ethyl acetate to give the corresponding N-(3-substituted 2-methoxybenzyl)pivalamides 80-85 (Scheme 2.10) in high yields (Table 2.5).

Scheme 2.10

The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.9) and clearly indicated that lithiation and substitution took place ortho- to the OMe group rather than ortho- to the pivaloylaminomethyl group. In some cases, a low yield ($2-3 \%$) of a side-product was formed due to side-chain lithiation at the CH_{2} to produce dilithium reagent $\mathbf{8 6}$ (Figure 2.1). The structures of compounds 80 and 84 were confirmed by X-ray crystallography, as represented in Figures 2.2^{91} and 2.3, ${ }^{92}$ respectively.

Table 2.5: \quad Synthesis of N-(3-substituted 2-methoxybenzyl)pivalamides 80-84 according to Scheme 2.10

Product	Electrophile	E	Yield (\%) ${ }^{\boldsymbol{a}}$
80	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	76^{6}
81	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	75
82	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	73^{c}
83^{d}	$\mathrm{D}_{2} \mathrm{O}$	D	86
84^{e}	CO_{2}	$\mathrm{CO}_{2} \mathrm{H}$	80^{\prime}

${ }^{a}$ Yield of pure product after column chromatography unless otherwise indicated.
${ }^{b}$ Compound 85 (Figure 2.1) was obtained as a side product in 2% yield due to lithiation and substitution at the side-chain. Also, traces of 46 (3\%) were recovered.
c Compound 87 (Figure 2.1) was obtained in 3% yield as a side product due to lithiation and substitution at the side-chain.
${ }^{d}$ Deuteration \% was ca. 95% as indicated by NMR spectra.
${ }^{e}$ Compound 84 was purified by crystallization from ethyl acetate.
${ }^{f}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the mother liquor from crystallization showed the presence, in nearly equal proportions, of 46 , the expected product from side chain lithiation 48 (Scheme 2.2) and additional 84, which were not separated.

Figure 2.1

The ${ }^{1} H$ NMR spectra of $\mathbf{8 0}$ and $\mathbf{8 1}$ showed that the signals of the two hydrogens of their CH_{2} groups appeared separately, as two separated double doublets, verifying that they are diastereotopic. Compounds $\mathbf{8 0}$ and $\mathbf{8 1}$ would, of course, be

Chapter Two: Investigation of the influences of substituents on the lithiation sites of

 various N-benzylpivalamidesformed as racemic mixtures. Indeed, the X-ray crystallography of compound $\mathbf{8 0}$ (Figure 2.2) showed a single type of crystal containing both enantiomers in equal proportions, but the structure displayed (Figure 2.2) shows the structure as N-(($\left.S^{*}\right)$-3-(hydroxy(4-methoxyphenyl)methyl)-2-methoxybenzyl)pivalamide. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8 7}$ showed that signals of the two phenyl groups appeared separately, verifying that they are diastereotopic. The compound would, of course, be produced as a racemic mixture.

Figure 2.2 X-ray crystal structure of compound 80. Thermal ellipsoids are shown at the 50\% probability level.

Figure 2.3 X-ray crystal structure of compound 84. Thermal ellipsoids are shown at the 50\% probability level.

Compound 85 could potentially be formed as a pair of racemic diastereoisomers. However, its NMR spectra showed what appeared to be single sets of signals, indicating that the isolated product was probably a single diastereoisomer. However, since this side-product was isolated in only 2% yield, it is possible that a small amount of the other diastereoisomer was formed but not isolated. The X-ray crystallography of compound $\mathbf{8 5}$ showed a single type of crystal containing both enantiomers in equal proportions, but the structure displayed (Figure 2.4) ${ }^{92}$ shows only one part of the repeating unit, indicating the structure as $N-\left(\left(1 \mathrm{~S}^{*}, 2 \mathrm{~S}^{*}\right)-2-\right.$ hydroxy-1-(2-methoxyphenyl)-2-(4-methoxyphenyl)ethyl)pivalamide.

Figure 2.4 X-ray crystal structure of compound 85. Thermal ellipsoids are shown at the 50\% probability level.

Some of the aims of the experiments - obtaining a higher yield and better selectivity in the reaction - had been realised, but the major product was different than would have been expected based on either of the products obtained by Schlosser following lithiation of the same substrate (Scheme 2.2). ${ }^{85}$ In an attempt to use conditions closer to those used by Schlosser we attempted lithiation of compound 46 at $0{ }^{\circ} \mathrm{C}$. It was found that lithiation of 46 with t-BuLi (2.2 mole equiv.) at $0{ }^{\circ} \mathrm{C}$ followed by reaction with 4 -anisaldehyde gave a mixture of $\mathbf{8 0}$ and 85 , which were isolated in 41 and 39% yields, respectively. Both products could be kinetic, but $\mathbf{8 0}$ is formed quicker than $\mathbf{8 5}$ and at low temperature is the overwhelming product whereas at higher temperature the rates are more comparable. Although this produced two

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N -benzylpivalamides

products in comparable proportions, as found by Schlosser, the ring-substituted product was still not the one expected based on Schlosser's work. ${ }^{85}$

The results obtained from directed lithiation and substitution of 44 (Section 2.7) and $\mathbf{4 6}$ are interesting in that there is a big difference between the situation when the methoxy group is in the 4 -position and when it is in the 2-position. When the methoxy group was at the 4 -position lithiation took place at the 2-position which is consistent with the results obtained by Schlosser for this substrate. ${ }^{85}$ This indicates that the pivaloylaminomethyl group is intrinsically a better directing metallating group than methoxy. However, when the position of the substituent is changed (methoxy at the 2-position) the reaction selectivity is very different, and lithiation occurred selectively at the 3-position, next to the methoxy group rather than next to $-\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$. The reasons for the change are not known. However, in the case of the 2 -methoxy derivative 46 the two groups capable of coordinating the metallating agent (monolithiated $-\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$ and methoxy) are adjacent to each other and may possibly chelate the incoming metallating agent (structure 88; Figure 2.5). In this case the hydrogen at the 3-position may be closer to the basic alkyl group than that at the 6-position, making the hydrogen at the 3-position the site of choice for lithiation.

Figure 2.5

Clearly, lithiation of N-(2-methoxybenzyl)pivalamide (46) with t-BuLi in THF at $-78^{\circ} \mathrm{C}$, followed by reactions with electrophiles, gave ring substitution, but next to the methoxy group rather than next to the pivaloylaminomethyl group, which was unexpected based on earlier results reported by Schlosser when n-BuLi was used at $0{ }^{\circ} \mathrm{C} .{ }^{85}$ In order to clarify the situation we decided to use carbon dioxide as an electrophile under various reaction conditions.

The lithiation procedure for compound 46 described in Scheme 2.10 was varied by use of different lithium reagents ($t-\mathrm{BuLi}$, sec-BuLi and $n-\mathrm{BuLi}$) and different reaction temperatures (-78 and $0^{\circ} \mathrm{C}$). Compound 46 was treated with RLi (2.2 mole equivalents) at -78 or $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ or 4 h
at $-78^{\circ} \mathrm{C}$. Solid carbon dioxide was added and the reaction mixture was stirred for 30 minutes. The mixture was diluted with ethyl acetate and quenched with dilute HCl . The crude product was crystallized from ethyl acetate to give the pure product and the mother liquor from crystallization was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The results obtained are recorded in Table 2.6.

Table 2.6: Products from lithiation of 46, with different alkyllithiums (RLi) at different temperatures (T), followed by reaction with CO_{2}

Entry	RLi	T (${ }^{\circ} \mathrm{C}$)	Yields of isolated compounds (\%) ${ }^{a}$		Composition of mother liquor following crystallization (\%) ${ }^{b}$			
			47	84	46	47^{c}	$48^{\text {d }}$	84
1	t-BuLi	-78	-	80^{e}	2	-	7	7
2	t-BuLi	0	5	40	-	14	26	9
3	$s e c-B u L i$	-78	12	-	22	24	34	-
4	$s e c-B u L i$	0	25	-	9	23	38	-
5	n-BuLi	-78	-	-	97	-	-	-
6	n-BuLi	0	11^{f}	-	17	19	40	8

${ }^{a}$ Yield of pure product following fractional crystallization of the product mixture.
${ }^{b}$ The approximate $\%$ yield of each component in the mother liquor following crystallization, as calculated from ${ }^{1} \mathrm{H}$ NMR spectra and weight of residue.
" The structure of 47 was confirmed by X-ray crystallography (Figure 2.6). ${ }^{92}$
${ }^{a}$ No attempt was made to isolate a pure sample of 48.
${ }^{e}$ Yield obtained under the general conditions.
${ }^{f}$ Yield obtained under Schlosser's conditions. ${ }^{85}$

The ring-substituted product 47 (Figure 2.6), ${ }^{92}$ the one expected based on Schlosser's work (Scheme 2.2), ${ }^{85}$ was obtained, but in only low yield as a minor product using t - BuLi at $0^{\circ} \mathrm{C}$. When sec- BuLi was used as the lithium reagent, 47 was isolated in 12-25\% yield as white crystals. There was no evidence for the formation of 84 under the conditions tried using sec-BuLi. Repeating the same reaction but under Schlosser's conditions using n - BuLi at $0^{\circ} \mathrm{C}$ gave compound 47 in 11% yield following fractional crystallization of the crude product. Also, the ${ }^{1} \mathrm{H}$ NMR spectrum of the mother liquor from crystallization showed the presence of additional 47, 48 and

46 in the ratio of 1:1:2 along with traces with 84 . This result is very similar to the one produced by Schlosser and implies that difficulty in isolation of the products from the reaction mixture was the reason for the low yields reported rather than that lithiation was ineffective. ${ }^{85}$ Also, it was found that no products were obtained when n-BuLi was used at lower temperature $\left(-78^{\circ} \mathrm{C}\right)$, suggesting that lithiation with n - BuLi is very slow at low temperature.

It is not clear why lithiation of 46 with t-BuLi in THF at $-78{ }^{\circ} \mathrm{C}$ gives substitution ortho- to the methoxy group while a similar procedure with sec-BuLi, or use of n-BuLi at higher temperature, gives a mixture containing two different substitution products, one of which involves lithiation ortho- to the pivaloylaminomethyl group. It could have something to do with the way the lithium reagents aggregate, their ability to chelate the two substituents or the relative bulk of the alkyl groups, but without further information it is not easy to decide. However, whatever, the explanation, the procedure we introduced represents a simple, efficient and high yielding route for substitution of $\mathbf{4 6}$ and has practical significance.

Attention was next turned to investigate the directed lithiation of N-(4-methylbenzyl)pivalamide (68) with t - BuLi at $-78^{\circ} \mathrm{C}$.

2.9 Directed lithiation of \mathbf{N}-(4-methylbenzyl)pivalamide (68)

It was found that directed lithiation of N-(4-methylbenzyl)pivalamide (68), under the general conditions used to lithiate N-(4-methoxybenzyl)pivalamide (44; Section 2.7) and N-(2-methoxybenzyl)pivalamide (46; Section 2.8), using t-BuLi in THF at $-78^{\circ} \mathrm{C}$ was general and successful with a range of electrophiles (Scheme 2.11). Various N-(2-substituted 4-methylbenzyl)pivalamides $\mathbf{8 9 - 9 5}$ were obtained in high yields (Table 2.7).

Scheme 2.11

Table 2.7: Synthesis of N-(2-substituted 4-methylbenzyl)pivalamides $\mathbf{8 9 - 9 5}$ according to Scheme 2.11

Product	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
89	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH})$	79
90	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CHO}$	4-MeOC6 ${ }_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	81
91	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	81
92	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}=\mathrm{O}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	82
$93^{\text {b }}$	$\mathrm{D}_{2} \mathrm{O}$	D	88
94	MeI	Me	$80^{\text {c }}$
95	EtI	Et	81
${ }^{a}$ Yield of isolated product after purification by column chromatography. ${ }^{b}$ Deuteration \% was at least 95% as indicated by NMR spectra. ${ }^{\text {c }} N$-(2,4-Dimethylbenzyl)- N-methylpivalamide (96) was obtained as a side product in 2% yield. Compound 96 was obtained in 88% yield when the reaction was repeated under identical conditions with excess MeI (2.2 equivalents).			

The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.15) and clearly indicated that substitution had taken place ortho to the $-\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$ which is similar to the case where a methoxy group was present at position 4 (Compound 44; Section 2.7).

The ${ }^{1} \mathrm{H}$ NMR spectra of 89 and 90 showed that the signals of the two hydrogens of the CH_{2} group appeared separately, as two separated double doublets, verifying that they are diastereotopic. Both compounds would have been formed as racemic mixtures. Indeed, the X-ray crystallography of compound 89 showed a single

Chapter Two: Investigation of the influences of substituents on the lithiation sites of various N-benzylpivalamides
type of crystal containing both enantiomers in equal proportions, but the structure portrayed (Figure 2.7) ${ }^{92}$ shows just one enantiomeric form, $N-\left(\left(R^{*}\right)\right.$-2-(hydroxy(phenyl)methyl)-4-methylbenzyl)pivalamide. There is significant disorder of the carbons of the tert-butyl group.

Attention was next turned to investigate the lithiation of N-(2-methylbenzyl)pivalamide under the general conditions used for other substrates.

2.10 Lithiation of \mathbf{N}-(2-methylbenzyl)pivalamide (65)

In the case of N-(2-methylbenzyl)pivalamide (65) another possibility for lithiation exists that is not available for the other compounds studied so far. This involves lithiation at the methyl group (lateral lithiation). Lithiation of benzylic alkyl groups that are ortho-to a directing metallating group is an important methodology in organic synthesis. ${ }^{8,37}$ The organolithium intermediates from lateral lithiation usually have significantly greater thermodynamic stability than the corresponding ortholithiated species obtained by directed lithiation. ${ }^{8}$ Lateral lithiation of benzenoid aromatics requires a stabilising group capable of either delocalising negative charge or stabilising an organolithium by coordination. ${ }^{8}$ Nitrogen-based stabilising groups placed on the ortho-position have been used for a number of lateral lithiations. ${ }^{8,93-95}$

Lateral lithiation of N-(2-methylbenzyl)pivalamide (65) was attempted with t-BuLi (2.2 mole equivalents) at $-78{ }^{\circ} \mathrm{C}$ in THF under the general conditions used for
other substrates. Addition of the first mole of t - BuLi provided the monolithium reagent 97 as a yellow solution and the second mole produced a dilithium reagent (presumed to be 98) as a reddish brown solution (Scheme 2.12). The dilithium reagent was allowed to react with a range of electrophiles under identical conditions (Scheme 2.12). Following work-up the crude products were purified, by column chromatography, to give the corresponding substituted derivatives 99-106 (Scheme 2.12) in high yields (Table 2.8). The products were all characterised by standard spectroscopic methods (Chapter 7; Section 7.17). The NMR spectra of all compounds showed the presence of two different CH_{2} groups and indicated that lateral lithiation to give $\mathbf{9 8}$ had indeed taken place.

Scheme 2.12

Table 2.8: \quad Synthesis of N-(2-(substituted methyl)benzyl)pivalamides 99-106 according to Scheme 2.12

Product	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
99	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}(\mathrm{OH})$	84
100	4-MeOC66 $\mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	89
101	PhCOMe	$\mathrm{PhC}(\mathrm{OH}) \mathrm{Me}$	80
102	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	88
103	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}=\mathrm{O}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	76
104	MeI	Me	87
105	EtI	Et	88
$106{ }^{\text {b }}$	$\mathrm{D}_{2} \mathrm{O}$	D	85
${ }^{a}$ Yield of isolated product after purification by column chromatography. ${ }^{b}$ Deuteration was almost complete as indicated by NMR spectra.			

As can be seen from Table 2.8, the yields of pure products were high in all cases and the process was general to produce various 2 -substituted derivatives.

The ${ }^{1}$ H NMR spectra of compounds $\mathbf{9 9 - 1 0 1}$ showed diastereotopicity for the two hydrogens of the CH_{2} groups. They would of course be formed as racemic mixtures. However, the structure of 99 based on X-ray crystallography (Figure 2.8) ${ }^{92}$ showed the structure of the specific crystal analysed to be $N-\left(\left(S^{*}\right)\right.$-2-(2-hydroxy-2phenylethyl)benzyl)pivalamide.

The results obtained clearly indicated a big difference between the situation when the methyl group is in the 4 -position and when it is in the 2-position. It is presumably because the acidity of the methyl group at the 2-position is higher than that of the ring hydrogens, but when it is in the 4-position the advantage gained from the coordination of the lithium to the directing group encourages lithiation at the ring. Also, when the methyl group is in a position close to the coordination site (i.e. position 2), the geometry and/or the acidity of the methyl group made it the site of choice for metallation. The differences in lithiation sites could also arise from the fact that the lithium intermediates obtained from lateral lithiation of N-(2-methylbenzyl)pivalamide have greater thermodynamic stability than the corresponding ones produced from ortho-lithiation of N -(4-methylbenzyl)pivalamide.

Similar observation has been made previously with N-(2-methylphenyl)pivalamide with n-BuLi at $0{ }^{\circ} \mathrm{C} .{ }^{37}$

2.11 Conclusion

A simple, efficient and high yielding lithiation procedure that allows electrophilic substitution of various N-benzylpivalamides has been demonstrated to provide various substituted derivatives. Lithiation of unsubstituted N-benzylpivalamide with t-BuLi in THF at $-78-20^{\circ} \mathrm{C}$ followed by reactions with benzophenone as an electrophile gave a mixture of ring substitution at position 2 (ortho-substitution) and side-chain lithiation of the CH_{2} group (α-substitution). However, the yield of ortho-substitution product obtained from lithiation carried out at $20^{\circ} \mathrm{C}$ was lower than the corresponding reaction carried out at $0^{\circ} \mathrm{C}$, presumably because the lithium reagent is not very stable at $20^{\circ} \mathrm{C}$ and could be protonated back to the starting material. Ring substitution could be achieved via bromine-lithium exchange of N-(2-bromobenzyl)pivalamide followed by reactions with electrophiles. Lithiation of N-(4-methoxybenzyl)pivalamide and N-(4-methylbenzyl)pivalamide, in which a methoxy or methyl substituent was at position 4 , with t-BuLi in THF at $-78^{\circ} \mathrm{C}$ followed by reactions with a variety of electrophiles, gave only substitution at position 2 ortho to the pivaloylaminomethyl group, which therefore acted as a directed metallation group (DMG). By contrast, lithiation of N-(2-methoxybenzyl)pivalamide, with a methoxy group at position 2 , followed by reactions with electrophiles under similar reaction conditions, gave ring substitution, but next to the methoxy group rather than next to the pivaloylaminomethyl group, which was unexpected based on the earlier results reported by Schlosser. Also, lithiation of the 2 -methoxy derivative at $0{ }^{\circ} \mathrm{C}$ gave a mixture of ring substitution at position 3 (σ^{\prime}-substitution) and side-chain lithiation of the CH_{2} group (α-substitution), which again was not expected based on Schlosser's findings under similar conditions using n-BuLi. It was found that lithiation of N-(2-methylbenzyl)pivalamide, where the methyl group was at position 2, at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ followed by reactions with various electrophiles, gave products substituted in the methyl group.

CHAPTER THREE

INVESTIGATION OF THE INFLUENCES OF SUBSTITUENTS ON THE LITHIATION SITES OF VARIOUS N^{\prime}-BENZYL- N, N-DIMETHYLUREAS

CHAPTER THREE

INVESTIGATION OF THE INFLUENCES OF SUBSTITUENTS
 ON THE LITHIATION SITES OF VARIOUS

 N^{\prime}-BENZYL- N, N-DIMETHYLUREAS

 N^{\prime}-BENZYL- N, N-DIMETHYLUREAS}

3.1 Introduction

Lithiation of aromatic compounds ortho to a directed metallation group has become an invaluable route for the synthesis of various substituted aromatics. ${ }^{4-11}$ Various substituents were used as ortho directing groups, however, relatively little attention has been paid to ureas. For example, Clayden has shown that N, N^{\prime}-diaryl ureas undergo ortho- ${ }^{12}$ and lateral lithiations, ${ }^{13,95}$ Schlosser lithiated N^{\prime}-benzyl- $N, N-$ dimethylureas at the 2-position, ${ }^{96}$ Seebach lithiated N -allylurea by deprotonation of the methylene group, ${ }^{97}$ Beak lithiated N-benzyl- N, N^{\prime}-dimethylureas at the benzylic position, ${ }^{98}$ Joule has shown that six-membered cyclic ureas have some ortho directing ability, ${ }^{99}$ Quéguiner lithiated N, N-dimethyl- N^{\prime}-(quinolin-3-yl)urea at C-4 ${ }^{100}$ and Smith lithiated N^{\prime}-aryl- N, N-dimethylureas. ${ }^{101}$ The reports of Smith and Schlosser are the most relevant ones to the work presented in this chapter.

Smith showed that lithiation of N^{\prime}-aryl- N, N-dimethylureas was highly dependent on the nature of substituents on the aryl ring. In favourable cases, the lithium intermediates were generated in high yield via directed lithiation. ${ }^{101}$ In other cases, lithiation took place on the N-methyl groups of the urea moiety or elsewhere on the aryl ring. ${ }^{101}$ For example, lithiation of N^{\prime}-(4-chlorophenyl)- and N^{\prime}-(4-trifluoromethylphenyl)- N, N-dimethylureas took place ortho to the urea containing group, using $n-\mathrm{BuLi}$ at $0{ }^{\circ} \mathrm{C} .{ }^{101}$ However, n - BuLi failed to lithiate N^{\prime}-(4-fluorophenyl)- N, N-dimethylurea under similar conditions, but the use of $t-\mathrm{BuLi}$ did effect lithiation on the ring next to the urea unit. ${ }^{101} \mathrm{By}$ contrast, N^{\prime}-(4-methylphenyl)- N, N-dimethylurea was lithiated primarily on one of the N-methyl groups under similar conditions, while N^{\prime}-(4-methoxyphenyl)- N, N-dimethylurea was lithiated ortho- to the methoxy group. ${ }^{101}$

Schlosser has shown that N^{\prime}-benzyl- N, N-dimethylurea (107) and N^{\prime}-(4-methoxybenzyl)- N, N-dimethylurea (108) undergo selective lithiation ortho to the urea containing group when treated with sec-BuLi in THF at $-50^{\circ} \mathrm{C}$ to give the corresponding carboxylic acid derivatives 109 and 110, respectively, in high yields
(Scheme 3.1). ${ }^{96}$ However, the generality of the process has never been tested, carbon dioxide having been the only electrophile used.

Scheme 3.1

By contrast, directed lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) under similar reaction conditions was not selective, giving concomitant o - and o^{\prime}-lithiation, and no pure products were separated from the reaction mixture after reaction of the lithium reagents formed with carbon dioxide (Scheme 3.2). ${ }^{96}$

Scheme 3.2

In Chapter Two, a simple and convenient lithiation procedure for N -benzylpivalamides, followed by reactions of the lithium reagents obtained in-situ with various electrophiles, has been developed to produce various substituted products. We therefore decided to investigate the directed lithiation and substitution of various N^{\prime}-(substituted benzyl)- N, N-dimethylureas, under conditions similar to those used for directed lithiation of substituted N-benzylpivalamides (Chapter Two), in order to examine the products formed and the generality of the process. We have selected $\quad N^{\prime}$-benzyl- N, N-dimethylurea, $\quad N^{\prime}$-(4-methoxybenzyl)- N, N-dimethylurea, N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea, N^{\prime}-(4-methylbenzyl)- N, N-dimethylurea and N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea as substrates for this study.

Therefore, the aim of the work represented in this chapter was to synthesise various N^{\prime}-benzyl- N, N-dimethylureas and investigate their lithiation reactions. In this chapter, the successful syntheses of various N^{\prime}-benzyl- N, N-dimethylureas and their
lithiation reactions, with t - BuLi (2.2 equivalents) in dry THF, followed by reactions of the lithium intermediates generated in situ with various electrophiles to produce the corresponding substituted products in high yields are reported. The results, which we now report in this chapter using t - BuLi at low temperature $\left(-78\right.$ or $-20^{\circ} \mathrm{C}$), show consistency with the earlier results reported by Schlosser when sec-BuLi was used as the lithium reagent at $-50{ }^{\circ} \mathrm{C}$. ${ }^{96}$ Also, we found that lithiation of N^{\prime}-(4-methylbenzyl)N, N-dimethylurea using t - BuLi at $-78^{\circ} \mathrm{C}$ takes place on the ring ortho- to the urea unit, while, lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea t - BuLi at $-20^{\circ} \mathrm{C}$ takes place on the methyl group at the 2-position. Similar observations had been made on lithiation of N-(4-methylbenzyl)pivalamide and N-(2-methylbenzyl)pivalamide (Chapter Two; Sections 2.9 and 2.10).

3.2 Syntheses of N^{\prime}-benzyl- N, N-dimethylureas from the reactions of benzylamines with triphosgene followed by reactions with dimethylamine

N^{\prime}-(Substituted benzyl)- N, N-dimethylureas should be accessible by reactions of substituted benzyl isocyanates with dimethylamine. However, whilst this method can be quite efficient, it suffers from the poor availability and stability of appropriately substituted benzyl isocyanates. These shortcomings prompted us to investigate an approach in which benzyl isocyanates could be generated in situ from the corresponding substituted benzylamines, followed by reactions with dimethylamine. Triphosgene is an alternative to phosgene, ${ }^{102}$ with the advantages that it is solid, gives three equivalents of phosgene per mole in situ, is easy to handle and is much more pleasant to use than phosgene. Triphosgene has been used previously in our group for the synthesis of N^{\prime}-aryl- N, N-dimethylureas from the corresponding substituted anilines, followed by reaction with dimethylamine in the presence of triethylamine. ${ }^{90,101}$ We decided to use a similar approach for synthesis of N^{\prime}-(substituted benzyl)- N, N-dimethylureas directly from readily available substituted benzylamines in a 'one pot' reaction (Scheme 3.3).

Slow addition of a solution of the appropriate benzylamine 67 in DCM to a stirred solution of triphosgene in DCM at $0{ }^{\circ} \mathrm{C}$ produced the corresponding benzyl isocyanates 112 in situ (Scheme 3.3). A solution of dimethylamine in THF was slowly added to 112 at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for an extra 1 h . The reaction mixture was worked-up and the products were separated by extraction using
boiling $\mathrm{EtOAc}^{2} \mathrm{Et}_{2} \mathrm{O}$ (1:3), in which N^{\prime}-benzyl- N, N-dimethylureas 107, 108, 111, 113 and $\mathbf{1 1 4}$ dissolved and were obtained in 74-82\% yield after crystallizing nicely as colourless crystals from the $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}$ solution. The corresponding dibenzylureas 115 (Figure 3.1) were highly insoluble in hot $\mathrm{EtOAc}^{2} / \mathrm{Et}_{2} \mathrm{O}$ and were collected by filtration as white solids in $2-4 \%$ yield (based on 67). The nature of the products is illustrated in Table 3.1, which also gives the yields obtained. The products were characterized by standard spectroscopic methods (see Chapter 7; Section 7.18).

Scheme 3.3

Table 3.1: \quad Synthesis of N^{\prime}-(substituted benzyl)- N, N-dimethylureas 107, 108, 111, 113 and 114 according to Scheme 3.3

	Yield (\%)	
\mathbf{R}	$\mathbf{1 0 7}, \mathbf{1 0 8}, \mathbf{1 1 1 , 1 1 3}$ and 114	$\mathbf{1 1 5 a}^{\boldsymbol{a}} \mathrm{e}^{\boldsymbol{b}}$
H	81	4
4-OMe	82	3
2-OMe	79	2
4-Me	80	3
2-Me	74	4
${ }^{a}$ Yield of pure product.		
${ }^{b}$ Based on the amount of benzylamine 67.		

N, N^{\prime}-Bis(substituted benzyl)ureas 115a-e (Figure 3.1) were formed as byproducts, presumably as a result of reactions of benzylamines 67 with their corresponding benzyl isocyanates $\mathbf{1 1 2}$, which were generated in-situ. The formation of 115 ($2-4 \%$ yield) was not avoidable even when the addition of benzylamine 67 to a solution of triphosgene was very slow. Dibenzylurea 115a was obtained as the main product when the mode of addition was reversed, so that a solution of triphosgene was added to 67 .

Figure 3.1

As can be seen from Table 3.1, the yields of all compounds were good, proving that the procedure is general for a range of substituents, and this overcomes the poor availability and stability of appropriately substituted benzyl isocyanates. Therefore, it represents a useful one pot procedure for the synthesis of N^{\prime}-(substituted benzyl)- N, N-dimethylureas. However, the method always produced N, N^{\prime}-bis(substituted benzyl)ureas $\mathbf{1 1 5}$ as side-products. Therefore, our attention was next turned to the syntheses of N^{\prime}-(substituted benzyl)- N, N-dimethylureas from reactions of substituted benzylamines 67 with dimethylcarbamoyl chloride in order to compare the product yields from such a method with the ones obtained using the triphosgene method.

3.3 Syntheses of N^{\prime}-benzyl- N, N-dimethylureas from reactions of benzylamines with dimethylcarbamoyl chloride

A mixture of 67 and dimethylcarbamoyl chloride in DCM, in the presence of triethylamine as a base, was heated under reflux conditions for 1 h (Scheme 3.4). The reaction mixture was allowed to cool to room temperature and poured onto water. Following work-up the residue obtained was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$ or $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}$ mixture ($1 / 3$) to give the pure N^{\prime}-(substituted benzyl)- N, N-dimethylureas 107, 108, 111,113 and 114 as white crystals in high yields (Table 3.2). The products were found to be identical in all respects with the ones produced according to Scheme 3.3 using triphosgene.

Scheme 3.4

As can be seen from Table 3.2, the yields were high. Therefore, either of the two methods can be used for synthesis of such compounds. However, the method involving dimethylcarbamoyl chloride gave better yields with no side-products being obtained, but the hazards of the reagents involved in both methods should also be taken into consideration.

Table 3.2: \quad Synthesis of N^{\prime}-(substituted benzyl)- N, N-dimethylureas 107, 108, 111, $\mathbf{1 1 3}$ and 114 according to Scheme 3.4

Compound	\mathbf{R}	Yield (\%) $^{\boldsymbol{a}}$
$\mathbf{1 0 7}$	H	88
$\mathbf{1 0 8}$	4-OMe	89
$\mathbf{1 1 1}$	2-OMe	85
$\mathbf{1 1 3}$	4-Me	90
$\mathbf{1 1 4}$	2-Me	84
${ }^{a}$ Yield of isolated product after crystallization.		

Having successfully synthesized various $\quad N^{\prime}$-(substituted benzyl)- $N, N-$ dimethylureas, our attention was next turned to investigate their lithiation reactions, under the general conditions used for N-benzylpivalamides (Chapter Two) using t-BuLi at $-78{ }^{\circ} \mathrm{C}$, followed by reaction with a range of electrophiles to give the corresponding substituted derivatives.

3.4. Directed lithiation of N^{\prime}-benzyl- N, N-dimethylureas 107,108 and 113

Previous experience with N-benzylpivalamides (Chapter Two) suggested that t-BuLi might provide higher yields of lithiation products than sec- or n-BuLi. Therefore, double lithiation of N^{\prime}-benzyl- N, N-dimethylurea (107), N^{\prime}-(4-methoxybenzyl)- N, N-dimethylurea (108), and $\quad N^{\prime}$-(4-methylbenzyl)- N, N dimethylurea (113) were attempted under identical conditions using t-BuLi (2.2 mole equivalents) at $-78^{\circ} \mathrm{C}$ in anhydrous THF under nitrogen (Scheme 3.5). Two mole equivalents of t - BuLi were required, the first one to deprotonate the urea to form the monolithium reagents 116 as yellow solutions and the second to deprotonate at position 2 to give the dilithium reagents 117 as reddish orange solutions (Scheme 3.5). The mixtures were stirred for 4 h at $-78^{\circ} \mathrm{C}$ in an attempt to ensure complete formation of dilithium reagents $\mathbf{1 1 7}$. The general utility of 117 was demonstrated by their further reactions with a range of electrophiles (benzaldehyde, 4-anisaldehyde, benzophenone,
iodomethane, iodoethane, or deuterium oxide) for 2 h at $-78{ }^{\circ} \mathrm{C}$ under identical conditions (Scheme 3.5). The mixtures were allowed to warm to room temperature and quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Following work-up, the crude products were purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3)$ to give the corresponding pure products identified as N^{\prime}-(2-substituted benzyl)N, N-dimethylureas 114 and 118-131 (Scheme 3.5) in high yields (Table 3.3). The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.20).

Scheme 3.5

The NMR spectra of all compounds showed the presence of CH_{2} signals, indicating that lithiation took place on the ring. The ${ }^{1} \mathrm{H}$ NMR spectra of compound 118, 119, 122, 123, 127 and 128 showed that the signals of the two hydrogens of the CH_{2} group appeared separately, as two separated double doublets, which converted to two doublets after addition of $\mathrm{D}_{2} \mathrm{O}$, verifying that they are diastereotopic and coupling to NH. Such compounds would, of course, be formed as racemic mixtures. Indeed, the X-ray crystallography ${ }^{92}$ of compounds 122 (Figure 3.2) and $\mathbf{1 2 7}$ (Figure 3.3) showed a single type of crystal containing both enantiomers in equal proportions in each case, but the structure displayed shows the structure as $\left(S^{*}\right)$ - N^{\prime}-(2-(hydroxy (4-methoxyphenyl)methyl)-4-methoxybenzyl)- N, N-dimethylurea and $\quad\left(R^{*}\right)-N^{\prime}$-(2-(hydroxy(4-methoxyphenyl)methyl)-4-methylbenzyl)- N, N-dimethylurea, respectively.

Chapter Three: Investigation of the influences of substituents on the lithiation sites of various N^{\prime}-benzyl- N, N-dimethylureas

Table 3.3: \quad Synthesis of N^{\prime}-(2-substituted benzyl)- N, N-dimethylureas 114 and 118131 according to Scheme 3.5

Product	R	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
114	H	MeI	Me	80
118	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	86
119	H	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	82
120	H	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	84
$121{ }^{\text {b }}$	H	$\mathrm{D}_{2} \mathrm{O}$	D	89
122	OMe	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC} 6_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	85
123	OMe	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	89
124	OMe	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	84
$125{ }^{\text {b }}$	OMe	$\mathrm{D}_{2} \mathrm{O}$	D	86
126	OMe	EtI	Et	$88^{\text {c }}$
127	Me	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHOH}$	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	76
128	Me	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	70
129	Me	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	72
130	Me	EtI	Et	80
$131{ }^{\text {b }}$	Me	$\mathrm{D}_{2} \mathrm{O}$	D	86

${ }^{a}$ Yield of isolated product after purification by column chromatography.
${ }^{b}$ Deuteration was at least $c a .95 \%$ as indicated by NMR spectra.
${ }^{c} N^{\prime}$-Ethyl- N '-(2-ethyl-4-methoxybenzyl)- N, N-dimethylurea (132) was obtained as a side product in 3% yield due to substitution at nitrogen. Compound $\mathbf{1 3 2}$ was obtained in 90% yield after purification when the reaction was repeated with EtI (2.2 equiv.).

Figure 3.2 X-ray crystal structure of compound 122. Thermal ellipsoids are shown at the 50\% probability level.

From the results in Table 3.3 it is clear that ortho-lithiation of N^{\prime}-benzyl- N, N dimethylureas 107,108 and $\mathbf{1 1 3}$, ortho to urea containing group, is a general process that can be conducted using t - BuLi at $-78^{\circ} \mathrm{C}$ as well as sec-BuLi at $-50^{\circ} \mathrm{C}$ (as used by Schlosser ${ }^{96}$) and with a variety of different electrophiles. Similar observations had been previously made for directed lithiation of N-(4-methoxybenzyl)- and N-(4-methylbenzyl)pivalamides under similar conditions (Chapter Two; Sections 2.7 and 2.9 , respectively), whereas lithiation of N-benzylpivalamide was not selective and gave ring and side chain substitution (Chapter Two; Section 2.3). By contrast to the situation here, Smith showed that double lithiation of N^{\prime}-phenyl and N^{\prime}-(4-methylphenyl)- N, N-dimethylureas was achieved using t-BuLi at $-20^{\circ} \mathrm{C}$ and took place on one of the two methyl groups of the urea. ${ }^{101}$ On the other hand, lithiation of N^{\prime}-(4-methoxyphenyl)- N, N-dimethylurea using t - BuLi at 0 or $-20^{\circ} \mathrm{C}$ took place partially on carbon at the 3-position but primarily on a methyl group of the urea, leading to a mixture of ring substitution, methyl substitution and disubstitution (on the ring and on the methyl) on reaction with an electrophile. The disubstituted derivatives were obtained in high yields when 3 equivalents of $t-\mathrm{BuLi}$ and excess of the electrophile were used. ${ }^{101}$

Having successfully achieved directed lithiation and substitution of 107,108 and 113, attention was next turned to the directed lithiation of N^{\prime}-(2-methoxybenzyl)N, N-dimethylurea (111) with t-BuLi.

3.5 Directed lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111)

Schlosser has lithiated N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) with \sec-BuLi, at o - and o^{\prime}-positions, but no pure products were separated (Scheme 3.2). ${ }^{96}$

It was of interest to see if the reaction could be made selective and general. Therefore, compound 111 was treated with $t-\mathrm{BuLi}$ (2.2 mole equivalents) at $-78^{\circ} \mathrm{C}$ in anhydrous THF under nitrogen under identical conditions to those used for other substrates (Section 3.4). It was found that initial addition of t-BuLi provided a yellow solution, presumably because of formation of the monolithium reagent 133 (Scheme 3.6), until approximately one equivalent had been added, then a reddish orange solution was formed as the remaining t - BuLi was added, presumably because of formation of a dilithium reagents. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ in an attempt to ensure complete formation of the dilithium reagents. 4-Anisaldehyde was added and the mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$. The mixture was worked-up and the product mixture was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give two products subsequently identified as N^{\prime}-(2-(hydroxy (4-methoxyphenyl)methyl)-6-methoxybenzyl)- N, N-dimethylurea (136; 29\% yield) and N^{\prime}-(3-(hydroxy-(4-methoxyphenyl)methyl)-2-methoxybenzyl)- N, N-dimethylurea ($137 ; 26 \%$), along with the starting material 111 (39\%) and 4-anisaldehyde.

Compound 136, having the hydroxy(4-methoxyphenyl)methyl group ortho- to the $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$ group, is the expected product from the reaction of 4 -anisaldehyde with dilithium intermediate 134 (Scheme 3.6). Compound 137, having the hydroxy(4-methoxyphenyl)methyl group ortho- to the methoxy group, is the expected product from the reaction of dilithium intermediate 135 with 4 -anisaldehyde (Scheme 3.6). The sites of lithiations were the ones expected based on Schlosser's findings but in his case no pure products were separated from the reaction mixture. ${ }^{96}$

The ${ }^{1}$ H NMR spectra of $\mathbf{1 3 6}$ and $\mathbf{1 3 7}$ showed signals for the two hydrogens of a CH_{2} group appearing separately, as two separated double doublet, verifying that they were diastereotopic. Compounds 136 and 137 were of course present as racemic mixtures.

Scheme 3.6

It was of interest to see if the reaction would proceed in the same manner under different reaction conditions. Therefore, a more detailed lithiation study of 111 using t - BuLi as the lithium reagent was conducted in an attempt to find conditions under which only one product would be obtained or to improve the yields of $\mathbf{1 3 6}$ and/or 137. In this study the reaction time and temperature were varied. The results obtained are recorded in Table 3.4. It was found that double lithiation of 111 with t-BuLi at $-78^{\circ} \mathrm{C}$ for 4 h followed by reaction with 4 -anisaldehyde for 4 h , gave 136 and 137 in slightly better yields (31 and 27%, respectively) along with residual 111 (34%) after separation by column chromatography (Table 3.4 ; entry 2).

On lithiation of 111 at $-50{ }^{\circ} \mathrm{C}$ for 2 h followed by reaction with 4 -anisaldehyde for 2 h it was found that yields of 136 and 137 were increased further to 35 and 33%, respectively (Table 3.4 ; entry 3), while the residual quantity of 111 was less (13%). When the reaction time of the lithium reagents with 4 -anisaldehyde was increased to 4 h at $-50^{\circ} \mathrm{C}$ the yields of $\mathbf{1 3 6}$ and 137 were slightly increased to 36 and 34%, respectively (Table 3.4 , entry 4).

It was clear from these results that the temperature had a greater effect on the yields of products than the reaction time. It was found that double lithiation of 111 at $-20^{\circ} \mathrm{C}$ for 2 h followed by reaction with 4-anisaldehyde for 2 h , gave $\mathbf{1 3 6}$ and $\mathbf{1 3 7}$ in

49 and 40%, respectively, with no starting material 111 being recovered (Table 3.4, entry 5). This result clearly indicated that good overall yields can be achieved from such a reaction.

Table 3.4: Yields of $\mathbf{1 3 6}$ and $\mathbf{1 3 7}$ under various reaction conditions according to Scheme 3.6 under various reaction conditions

Entry	T ($\left.{ }^{\circ} \mathbf{C}\right)$	Time (h) Lithiation	$\mathbf{1 1 1}$	$\mathbf{y y y}$	Yield (\%) $^{\boldsymbol{a}}$		
			$\mathbf{1 3 6}$	$\mathbf{1 3 7}$			
	-78	2	39	29	26		
2	-78	4	34	31	27		
3	-50	2	13	35	33		
4	-50	4	13	36	34		
5	-20	2	-	49	40		
6	0^{b}	2	12	50	12		

${ }^{a}$ Yield of isolated products after purification.
${ }^{h}$ Compound $138(3 \%)$ and compound 139 (11\%) were also obtained (Figure 3.4).

Double lithiation of 111 with t - BuLi for 2 h at $0^{\circ} \mathrm{C}$ followed by reaction with 4 -anisaldehyde for 2 h at $0^{\circ} \mathrm{C}$ was attempted. Following work-up, the mixture was subjected to TLC, which showed that both products 136 and 137 were present, along with a small quantity of 111. The TLC also showed the formation of two other minor products, subsequently shown to be $\mathbf{1 3 8}$ and $\mathbf{1 3 9}$ (Figure 3.4).

Figure 3.4

All compounds were separated by column chromatography (Table 3.4; entry 6). Compounds 136 and 137 were obtained in 50% and 12% yields, respectively, and 111 was recovered in 12% yield after column chromatography, while 138 and 139 were obtained in yields of 3% and 11%, respectively.

Compound 138 was formed due to cleavage of the ether bond by t-BuLi. The formation of $\mathbf{1 3 8}$ was avoided in subsequent experiments by very slow addition of t-BuLi. Compound 139 could potentially be formed as a pair of racemic diastereoisomers; however, its NMR spectra showed what appeared to be a single set of signals, indicating that the isolated product was a single racemic diastereoisomer. However, since this compound 139 was isolated in only 11% yield, it is possible that a small amount of the other diastereoisomer was formed but not isolated. The X-ray crystallography of compound 139 showed a single type of crystal containing both enantiomers in equal proportions, but the structure displayed (Figure 3.5) ${ }^{92}$ shows only one part of the repeating unit, indicating the structure as $3-\left(R^{*}\right)-3-\left(\left(S^{*}\right)-\right.$ hydroxy(4-methoxyphenyl)methyl)-4-methoxyisoindolin-1-one. Compound 139 could arise from the reaction of the cyclic lithium intermediate $\mathbf{1 4 0}$ (Figure 3.4), generated in situ, with 4-anisaldehyde. Successful syntheses in higher yield of 139 and other related derivatives will be discussed in Chapter Six.

Figure 3.5 X-ray crystal structure of compound 139 Thermal ellipsoids are shown at the 50% probability level.

Chapter Three: Investigation of the influences of substituents on the lithiation sites of various N^{\prime}-benzyl- N, N-dimethylureas

Clearly, direct lithiation of $\mathbf{1 1 1}$ on the ring ortho to the urea containing group without lithiation ortho to the methoxy group was not a realistic hope. Both substitution sites were attacked competitively. It was nevertheless of interest to see if the reaction of the dilithium intermediates 134 and 135 with other electrophiles at $-20^{\circ} \mathrm{C}$ would be general to produce N^{\prime}-(2-substituted 6-methoxybenzyl)-N,Ndimethylureas and $\quad N^{\prime}$-(3-substituted 2 -methoxybenzyl)- N, N-dimethylureas. Consequently, reactions of the lithium reagents 134 and 135, prepared in-situ from compound 111, with a range of electrophiles (benzaldehyde, benzophenone, iodomethane, or iodoethane) were carried out at $-20^{\circ} \mathrm{C}$ (Scheme 3.7). Each reaction was conducted under identical conditions and then worked-up. The products were separated by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$), to give a mixture of the corresponding N^{\prime}-(2-substituted 6-methoxybenzyl)- N, N-dimethylureas 141, 143, 145 and 147 and N^{\prime}-(3-substituted 2-methoxybenzyl)- N, N-dimethylureas 142, 144, 146 and 148 (Scheme 3.7) in high overall yields (Table 3.5). The products were characterised by standard spectroscopic methods (see Chapter 7; Section 7.24).

Scheme 3.7

From the results recorded in Table 3.5 it was clear that lithiation of N^{\prime}-(2-methoxybenzyl- N, N-dimethylurea (111) followed by reaction with a variety of different electrophiles was a general process, producing a mixture of N^{\prime}-(2-substituted 6 -methoxybenzyl)- N, N-dimethylureas and N^{\prime}-(3-substituted 2 -methoxybenzyl)- N, N dimethylureas in high overall yields. The yields of the two major products from all of the reactions were remarkably consistent, suggesting that lithiation ortho to methoxy and ortho to the urea containing group took place under these conditions in a ratio of around 55:45.

Table 3.5: \quad Synthesis of N^{\prime}-(2-substituted 6-methoxybenzyl)- N, N-dimethylureas 141, 143, 145 and 147 and N^{\prime}-(3-substituted 2-methoxybenzyl)- N, N dimethylureas 142, 144, 146 and 148 according to Scheme 3.7

Electrophile	E	Yield (\%) ${ }^{\text {a }}$		
		141, ${ }^{b} 143,145$ and 147	142, ${ }^{b} 144,146$ and 148	
PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	51	38	
$\mathrm{Ph}_{2} \mathrm{CO}^{\text {c }}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	47	30	
Mel ${ }^{\text {d }}$	Me	51	40	
EtI	Et	51	38	
" Yield of isolated products after purification. ${ }^{b}$ The ${ }^{1} \mathrm{H}$ NMR spectra showed diastereotopicity for the two hydrogens of the CH_{2} groups. " Starting material 111 (4\%) was recovered. "Compounds 149 and 150 (Figure 3.6) were obtained in 5% combined yield, but as a mixture which was difficult to separate. Formation of $\mathbf{1 4 9}$ and $\mathbf{1 5 0}$ clearly indicated that methylation had taken place at both the ring ($0-/ o^{\prime}$-) and the nitrogen.				

Figure 3.6

The results obtained from directed lithiation and substitution of $\mathbf{1 0 8}$ (Section 3.4) and 111 are consistent with the results obtained by Schlosser for both substrates. ${ }^{96}$ When the methoxy group was at the 4 -position lithiation took place at the 2-position. This indicates that the urea containing group is intrinsically a better directing metallating group than methoxy. However, when the methoxy was at the 2-position lithiation occurred on the ring competitively at the 3-position, next to the methoxy group, and at the 6 -position, next to $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$. The reasons for the change are not known. However, in the case of the 2-methoxy derivative 111 the two groups capable of coordinating the metallating agent (monolithiated $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$ and methoxy) are adjacent to each other and may possibly chelate the incoming metallating agent.

Finally, attention was next turned to lateral lithiation of N^{\prime}-(2-methylbenzyl)N, N-dimethylurea (114) using t-BuLi at $-78^{\circ} \mathrm{C}$.

3.6 Lateral lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114)

An activating group with the ability to coordinate and to acidify is important in benzylic lithiation as well as ortho-lithiation. However, the acidifying groups in ortho-lithiation operate by inductive effects, since the C-Li bond is in the same plane as the aromatic ring, while, for lateral lithiation involving formation of a benzylic C-Li bond, the acidifying group works best by conjugation. ${ }^{8}$ Lateral lithiation of various aromatics containing nitrogen-based stabilising groups on the ortho-position has been reported previously. ${ }^{8,13,93-95}$ Also, we have shown that lateral lithiation of N-(2-methylbenzyl)pivalamide took place smoothly on the methyl group with $t-\mathrm{BuLi}$ at $-78^{\circ} \mathrm{C}$ (Chapter Two; Section 2.10). Therefore, it was of interest to test the possibility of lateral lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114) under similar conditions.

Indeed, treatment of $\mathbf{1 1 4}$ with t - $\mathrm{BuLi}\left(2.2\right.$ mole equivalents) at $-78^{\circ} \mathrm{C}$ in THF gave a yellow solution presumed to be the monolithium reagent 151 and then turned to a reddish orange solution presumed to be the dilithium reagent 152 (Scheme 3.8). The mixture was stirred for 4 h at $-78^{\circ} \mathrm{C}$ and then the dilithium reagent was allowed to react with a range of electrophiles (benzaldehyde, 4-anisaldehyde, benzophenone, acetophenone, iodoethane, or deuterium oxide). Each reaction was conducted under identical conditions and then worked-up. The crude products were purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3), to give the corresponding N^{\prime}-(2-(substituted methyl)benzyl)- N, N-dimethylureas 153-158 (Scheme 3.8) in good yields (Table 3.6). The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.25).

Scheme 3.8

Chapter Three: Investigation of the influences of substituents on the lithiation sites of various N^{\prime}-benzyl- N, N-dimethylureas

Table 3.6: \quad Synthesis of N^{\prime}-(2-(substituted methyl)benzyl)- N, N-dimethylureas 153158 according to Scheme 3.8

Product	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
153	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CHO}$	4-MeOC66 $\mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	79
154	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	77
155	PhCOMe	$\mathrm{PhCH}(\mathrm{OH}) \mathrm{Me}$	74
156	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	76
157	EtI	Et	82
$158{ }^{\text {b }}$	$\mathrm{D}_{2} \mathrm{O}$	D	83
" Yield of isolated product after purification by column chromatography. ${ }^{b}$ Deuteration was over ca. 90% as indicated by NMR spectra.			

The NMR spectra of all compounds showed the presence of two different CH_{2} groups. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 5 3 - 1 5 5}$ showed that the signals of the two protons of the two CH_{2} groups, $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$ and the CH_{2} group at the 2-position, appeared separately, verifying that they are diastereotopic. Such compounds were of course present as racemic mixtures.

As can be seen from Table 3.6, it is clear that lateral lithiation of $\mathbf{1 1 4}$ is a general process that can be conducted using t - BuLi and with a variety of different electrophiles. The difference in lithiation site in the case of N^{\prime}-(4-methylbenzyl)- $N, N-$ dimethylurea and N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea is presumably because the acidity of the 2-methyl group is higher than that of the ring hydrogens, but when it is in the 4 -position the advantage gained from the coordination of the lithium to the directing group encourages lithiation at the ring. Also, when the methyl group is in a position close to the coordination site (i.e. position 2), the geometry and/or the acidity of the methyl group made it the site of choice for metallation.

3.7 Conclusion

Various substituted N^{\prime}-benzyl- N, N-dimethylurea derivatives have been synthesized in high yield via simple and efficient lithiation procedures of N^{\prime}-benzylN, N-dimethylureas followed by reactions with a range of electrophiles. Lithiation of unsubstituted N^{\prime}-benzyl- N, N-dimethylurea, N^{\prime}-(4-methoxybenzyl)- N, N-dimethylurea and N^{\prime}-(4-methylbenzyl)- N, N-dimethylurea with t-BuLi at $-78^{\circ} \mathrm{C}$ in THF followed by reactions with various electrophiles gave ring substitution at position 2 ortho to the urea containing group, which therefore acted as a directed metallating group (DMG). By contrast, lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea with t-BuLi at

Chapter Three: Investigation of the influences of substituents on the lithiation sites of various N^{\prime}-benzyl- N, N-dimethylureas
$-20^{\circ} \mathrm{C}$ in THF, with a methoxy group at position 2 , followed by reactions with a range of electrophiles gave mixtures of ring substitution next to the methoxy group (o^{\prime}-substitution) and next to the urea containing group (o-substitution). The yields of the two products from all of the reactions were remarkably consistent, suggesting that lithiation ortho to methoxy and ortho to the urea containing group took place under these conditions in a ratio of around 55:45. It was found that lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea, where the methyl group was at position 2 , with t - BuLi at $-78^{\circ} \mathrm{C}$ in THF, followed by reactions with various electrophiles, gave products substituted in the methyl group, with no evidence for ring or side-chain substitution.

CHAPTER FOUR

SYNTHESIS OF SUBSTITUTED ISOINDOLINES

CHAPTER FOUR

SYNTHESIS OF SUBSTITUTED ISOINDOLINES

4.1 Introduction

Isoindoles show significant applications and useful properties since this ring system can be found in a number of valuable compounds including alkaloids and drugs. ${ }^{103-105}$ Isoindoles are commercially less important than indoles, at least partly because of a lack of good synthetic methods. Simple isoindoles can be prepared from the cyclization of 1,2-bis(bromomethyl)benzene, phthalaldehyde or 2-cyanobenzyl chloride with amines or alkoxides or by condensation reactions of carbonyl compounds with amines. ${ }^{106,107}$ However, these are particularly applicable to produce isoindole compounds with no substituents on the benzenoid ring. Moreover, such synthetic methods involve various steps and/or provide low yields. However, Clayden has developed a very useful approach to dihydroisoindolones with particular substitution patterns using dearomatising cyclization of lithiated N-benzylbenzamides and demonstrated its utility for synthesis of natural products such as kainic acid. ${ }^{\text {108-112 }}$

Other substitution patterns would be potentially available from reactions studied by Schlosser, ${ }^{85,96}$ but the reported reactions were not always highly regioselective and their generality has never been tested. Therefore, we became interested to develop a new approach for the synthesis of various dihydroisoindole derivatives, whereby highly selective processes for ortho-lithiation would allow production of specifically substituted isoindolines.

In Chapters 2 and 3, we have reported convenient procedures for the directed lithiation of compounds of the general formula 159 (Figure 4.1) using t - BuLi in anhydrous THF at $-78^{\circ} \mathrm{C}$ followed by reactions with carbonyl compounds (aldehydes and ketones) to give the corresponding ortho-disubstituted products $\mathbf{1 6 0}$ (Figure 4.1) in high yields. The general utility of compounds $\mathbf{1 6 0}$ would be demonstrated by their cyclization to the corresponding dihydroisoindoles (or isoindolines) 161 (Figure 4.1). Therefore, the aim of the work presented in this chapter was to investigate if cyclization of $\mathbf{1 6 0}$ could be achieved and would be general. In this chapter, the successful cyclizations of $\mathbf{1 6 0}$ with trifluoroacetic anhydride (TFAA) in DCM at room temperature to give the corresponding isoindolines 161 in excellent yields are reported.

Figure 4.1

4.2 Synthesis of 1,1-diphenyl-2-pivaloylisoindoline (162)

It was hoped that cyclization of N-(2-(hydroxydiphenylmethyl)benzyl)pivalamide (57) could be achieved via dehydration. Therefore, an initial reaction was carried out between compound 57 and few drops of TFAA at room temperature in DCM (Scheme 4.1). TLC was used to monitor the progress of the reaction, and indicated the formation of a new product, the formation of which was complete within 5 minutes. The mixture was quenched by the addition of water and worked-up. The residue obtained was subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}-$ hexane, $1: 3$) to give the pure product, identified as compound 162 , in 85% yield.

Scheme 4.1

The chemical ionization (CI) mass spectrum showed a very high intensity (100%) pseudo molecular ion $\left(\mathrm{MH}^{+}\right)$at $m / z=356$. The accurate mass of the pseudo molecular ion confirmed the formula as $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$, indicating the loss of 18 from the molecular weight of the starting material 57 . Moreover the microanalysis confirmed the formula of compound 162 as $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}$. The IR spectrum of compound 162 showed no absorption band corresponding to the stretching vibrations of the NH or OH group. Also, in the ${ }^{1} \mathrm{H}$ NMR spectrum there were no exchangeable hydrogens. Clearly, cyclization of 57 via dehydration had taken place and the structure of $\mathbf{1 6 2}$ was further confirmed by X-ray crystallography (Figure 4.2). ${ }^{92}$

The cyclization would be consistent with Baldwin's rules as 5 -exo-tet, ${ }^{\text {113,114 }}$ but it is far more likely that it occurs by an $\mathrm{S}_{\mathrm{N}} 1$ mechanism (Scheme 4.2).

Scheme 4.2

4.3 Synthesis of substituted isoindolines 163-173

Having found that reaction of compound 57 with TFAA occurred smoothly and rapidly at room temperature in DCM, it was of interest to see if the cyclization reaction of other compounds of the general formula 160 would be useful and general. Consequently, reactions of various 160 with TFAA were carried out at room temperature in DCM for 5 minutes (Scheme 4.3). Each reaction was conducted under identical conditions, examined by TLC and then quenched by the addition of water. The reactions proceeded smoothly in all cases and the crude products were subjected to flash column chromatography (silica $\mathrm{gel} ; \mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$), to give the corresponding isoindolines 163-173 (Scheme 4.3) in excellent yields (Table 4.1). The products were all characterised by standard spectroscopic methods (See Chapter 7; Section 7.27). The nature of the products is illustrated in Table 4.1, which also gives the yields obtained.

Scheme 4.3

Table 4.1: \quad Synthesis of substituted isoindolines 163-173 according to Scheme 4.3

Product	R	R^{1}	\mathbf{R}^{2}	\mathbf{R}^{3}	Yield (\%) ${ }^{\text {a }}$
163	H	${ }^{\text {t }} \mathrm{Bu}$	H	4-MeOC66 H_{4}	89
164	H	${ }^{\text {b }} \mathrm{Bu}$	H	Ph	87
165	OMe	${ }^{\text {b }} \mathrm{Bu}$	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	90
166	OMe	${ }^{\text {'Bu}}$	Ph	Ph	98
167	Me	${ }^{\text {B }}$ '	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	88
168	H	NMe_{2}	H	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	89
169	H	NMe_{2}	Ph	Ph	91
170	OMe	NMe_{2}	H	4-MeOC ${ }_{6} \mathrm{H}_{4}$	91
171	OMe	NMe_{2}	Ph	Ph	88
172	Me	NMe_{2}	H	4-MeOC66 ${ }_{4}$	91
173	Me	NMe_{2}	Ph	Ph	88
" Yield of isolated product after purification by column chromatography.					

The ${ }^{1} H$ NMR spectra of compounds $163-165,167,168,170$ and 172 showed diastereotopicity for the two hydrogens of the CH_{2} group at position 3 of the isoindoline ring. Such compounds would have been formed as racemic mixtures. However, the X-ray crystallography of compound $\mathbf{1 6 5}$ (Figure 4.3) ${ }^{92}$ showed that the structure of the specific crystal looked at was $\left(S^{*}\right)$-6-methoxy-1-(4-methoxyphenyl)-2-pivaloylisoindoline. By contrast, the X-ray crystallography of compound 170 showed a single type of crystal containing both enantiomers in equal proportions, but the structure displayed (Figure 4.4) ${ }^{92}$ shows only one part of the repeating unit, indicating the structure as $\left(R^{*}\right)$-2-dimethylaminocarbonyl-6-methoxy-1-(4methoxyphenyl)isoindoline.

The two-dimensional NMR correlation spectroscopy (COSY) for compound 170 showed that one of the hydrogens at the 3-position was also coupled to $\mathrm{H}-1$. It also showed that there was no coupling between H-4 and either of the hydrogens at position 3 or between $\mathrm{H}-1$ and $\mathrm{H}-7$.

4.4 Synthesis of \boldsymbol{N}-(2-cyclohexenylbenzyl)pivalamides 174 and 175

It was found that reactions of N -(2-(1-hydroxycyclohexyl)benzyl)pivalamide (62) and N-(2-(1-hydroxycyclohexyl)-4-methoxybenzyl)pivalamide (73), where the substituent at position 2 was a hydroxycyclohexyl group, with TFAA in DCM at room temperature proceeded in a different manner (Scheme 4.4). Both reactions were conducted under conditions identical to those described in Schemes 4.1 and 4.3. The reaction mixtures were worked-up and the crude products were subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$), to give pure products, subsequently identified as 174 (82% yield) and 175 (83% yield), respectively (Scheme 4.4).

Scheme 4.4

The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 7 4}$ and $\mathbf{1 7 5}$ showed the presence of only nine proton signals of the expected 10 for the cyclohexyl ring. One was a multiplet at relatively very low field suggestive of a vinylic hydrogen. Also, the ${ }^{13} \mathrm{C}$ NMR spectra showed signals resonating at very low field suggestive of $\mathrm{C}-1$ and $\mathrm{C}-2$ of a cyclohexenyl ring. The ${ }^{13} \mathrm{C}$ NMR spectra of 174 and 175 also showed the presence of five different CH_{2} carbon signals. One CH_{2} signal was due the $-\mathrm{CH}_{2} \mathrm{NHCO}^{t} \mathrm{Bu}$, while the other four CH_{2} signals should be due to the cyclohexenyl group. Clearly, these patterns indicated that dehydration from the side chain at position 2, from the OH and a hydrogen at position 2 of the cyclohexyl ring, had taken place. The reaction presumably proceeds via a cation similar to that shown in Scheme 4.2, but loss of a proton from the adjacent position, impossible when the attached groups were aromatic, is easier, leading to an E1 elimination process. The failure of compounds $\mathbf{6 2}$ and 73 to cyclise was presumably because the carbenium ions formed by loss of water from the protonated species could easily eliminate a proton from the α-position of the cyclohexyl group to produce $\mathbf{1 7 4}$ and $\mathbf{1 7 5}$, respectively, which is impossible in the case of aryl substituents.

In an attempt to convert compounds $\mathbf{6 2}$ and $\mathbf{7 3}$ to the corresponding cyclic products, we have attempted reactions of $\mathbf{6 2}$ and $\mathbf{7 3}$ with TFAA at room temperature but for longer reaction times up to 24 h . However, products 174 and 175 were obtained, respectively, in yields comparable to those obtained from reactions shown in Scheme 4.4. No further attempts were made to try to find conditions under which cyclization of 62 and 73 to the corresponding substituted isoindolines could be effective.

4.5. Attempted synthesis of $\mathbf{1}$-substituted isoindolines

In order to render the synthetic approach described in Sections 4.2 and 4.3 even more valuable, it would be useful if the pivaloyl or dimethylaminocarbonyl group in compounds of the general formula 161 (Figure 4.1) could be removed to reveal a free NH without the isoindole ring system itself being damaged. We therefore decided to attempt to remove such groups in compounds $\mathbf{1 6 1}$ to provide products of the general formula 176 (Figure 4.5) that would have even greater utility.

Figure 4.5

Using compounds 162 and 168 as models, these compounds were treated with a few drops of TFA at room temperature in DCM for 2 h . However, the quantitative recovery of starting materials indicated that no reactions took place under the conditions tried. Therefore, compounds 162 and 168 were treated with TFA, in the presence or absence of water, in DCM under reflux conditions for 20 minutes, at which time TLC indicated the presence of a complex mixture of products. Purification of the product mixtures by column chromatography on silica gel proved to be difficult and no pure products were separated. We have also attempted removal of the pivaloyl or dimethylaminocarbonyl group by the use of dilute hydrochloric acid but again there was no product obtained. No further attempts were made to try to find conditions under which removal of the pivaloyl group from 162 or the dimethylaminocarbonyl group from 168 could be effective.

4.6 Conclusion

Cyclization via dehydration of N-(2-substituted benzyl)pivalamides and N^{\prime}-(2-substituted benzyl)- N, N-dimethylureas with trifluoroacetic anhydride as a catalyst in dichloromethane at room temperature takes place to give the corresponding isoindolines. The process is general, simple and convenient for compounds having aromatic groups attached to the carbinol carbon atom to produce various derivatives in excellent yields. However, when a hydroxycyclohexyl group is present at position 2, cyclization is not successful and dehydration from the OH group and the hydrogen at position 2 of the cyclohexyl ring takes place to produce cyclohexenyl derivatives in high yield. Attempts to remove the pivaloyl or dimethylaminocarbonyl group from position 1 of the isoindoline ring using trifluoroacetic acid were not successful.

CHAPTER FIVE

SYNTHESIS OF SUBSTITUTED

TETRAHYDROISOQUINOLINES

CHAPTER FIVE

SYNTHESIS OF SUBSTITUTED TETRAHYDROISOQUINOLINES

5.1 Introduction

Dihydroisoquinoline is an important and useful skeleton in organic synthesis. ${ }^{115}$ A number of approaches to the synthesis of dihydroisoquinolines has been developed. ${ }^{116-118}$ However, most of the reported syntheses require multiple steps. Considerable effort has been directed toward the development of efficient syntheses of these compounds using a wide range of transition-metal catalysts. Recently, transition-metal-catalyzed cyclizations of 2-(1-alkynyl)arylaldimines were used as tools for the syntheses of isoquinolines, ${ }^{119,120}$ and they were also successfully applied to the total synthesis of natural products. ${ }^{121}$ Unfortunately, some of the syntheses would create a number of environmental disadvantages, such as the production of large quantities of toxic or corrosive waste, if used on a large scale.

Two useful approaches to the synthesis of 1,2,3,4-tetrahydroisoquinolines, involving lithiation procedures, have been reported (Schemes 5.1 and 5.2). ${ }^{122,123}$ One method simply involves lithiation of N -(tert-butoxycarbonyl)-2-methylbenzylamine (177) with sec-BuLi at $-60^{\circ} \mathrm{C}$ to give the lithium intermediate 178 which on reaction with veratraldehyde produces 179 in 66% yield. Treatment of $\mathbf{1 7 9}$ with TFA gives the corresponding tetrahydroisoquinoline 180 in 87% yield (Scheme 5.1). ${ }^{122}$

Scheme 5.1

However, the cyclization appears to require the presence of the 4-methoxy group in the electrophile, presumably through stabilization of the intermediate carbenium ion, as the corresponding unsubstituted phenyl compound (when benzaldehyde was used as the electrophile) failed to cyclise under similar, or more strongly acidic, conditions. Also, no cyclization took place when other carbonyl compounds were used, e.g. benzophenone and cyclohexanone. ${ }^{122}$

The other approach, reported by Schlosser, involved lithiation of 2-(3-methoxyphenyl)- N-pivaloylethylamine (181) at room temperature with BuLi at the aromatic position flanked by the two substituents (OMe and $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCO}^{\prime} \mathrm{Bu}$) and the lithium reagent thus formed was reacted with N, N-dimethylformamide (DMF) to produce the corresponding aldehyde 182 in 55% yield (Scheme 5.2). ${ }^{123}$ Acid catalysed cyclization of $\mathbf{1 8 2}$ gave 8 -methoxy-3,4-dihydroisoquinoline hydrochloride (183) in 79% yield, which on treatment with sodium hydroxide and sodium borohydride afforded 8-methoxy-1,2,3,4-tetrahydroisoquinoline (184) in 69% yield (Scheme 5.2). ${ }^{123}$ However, the generality of the reaction has never been tested. Therefore, we became interested in developing a new approach for the synthesis of tetrahydroisoquinoline derivatives, whereby regioselective lithiation would allow production of specifically substituted tetrahydroisoquinolines.

Scheme 5.2

In Chapters 2 and 3, we have reported convenient procedures for the lateral lithiation of compounds of the general formula 185 (Figure 5.1) using t - BuLi in anhydrous THF at $-78^{\circ} \mathrm{C}$ followed by reactions with carbonyl compounds (aldehydes
and ketones) to give the corresponding ortho-disubstituted products 186 (Figure 5.1) in high yields. The general utility of $\mathbf{1 8 6}$ would be demonstrated by their cyclization to the corresponding 1,2,3,4-tetrahydroisoquinolines 187 (Figure 5.1). It was of interest to see if cyclization of $\mathbf{1 8 6}$ could be achieved and would be general. Therefore, reactions of $\mathbf{1 8 6}$ were carried out with trifluoroacetic anhydride (TFAA) in DCM at room temperature. In this chapter, we report on the attempts to cyclise 186 under mild conditions to produce the corresponding tetrahydroisoquinolines 187.

Figure 5.1

5.2 Attempted cyclizations of \boldsymbol{N}-(2-(2-hydroxy-2-arylalkyl)benzyl)pivalamides

It was hoped that cyclization of N-(2-(2-hydroxy-2-arylalkyl)benzyl)pivalamides could be achieved via dehydration. Three compounds were tested, namely compounds 99-101 (Figure 5.2)

Figure 5.2

The first reaction was carried out between N-(2-(2-hydroxy-2phenylethyl)benzyl)pivalamide (99) and TFAA at room temperature in DCM (Scheme 5.3). TLC indicated the formation of a new product, the formation of which was
complete within 5 minutes. The mixture was quenched by the addition of water and worked-up. The residue obtained was purified by flash column chromatography to give the pure product, identified as N-(2-(2-phenyl-2-trifluoroacetoxyethyl)benzyl)pivalamide (188), obtained in 97\% yield.

Scheme 5.3

The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8 8}$ showed that the carbonyl carbon atom of the $\mathrm{CF}_{3} \mathrm{C}=\mathrm{O}$ group resonated as a quartet $(J=42 \mathrm{~Hz})$ at $\delta=156.9 \mathrm{ppm}$, while the CF_{3} carbon resonated as a quartet $(J=284 \mathrm{~Hz})$ at $\delta=114.8 \mathrm{ppm}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed that the signals of the two protons of the two CH_{2} groups, the $\mathrm{CH}_{2} \mathrm{NHCO}^{t} \mathrm{Bu}$ and the CH_{2} at position 2 group, appeared separately, as two separated double doublets, indicating that they are diastereotopic. Compound $\mathbf{1 8 8}$ was of course present as a racemic mixture.

Compound 99 had evidently failed to cyclise and instead 188, which seemed to be stable, was produced. The stability of 188 could be due to the fact that the carbenium ion that could be formed if the trifluoroacetate anion was lost would not be highly stabilized.

Attempted cyclization of N -(2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)pivalamide (100) under conditions similar to those used in Scheme 5.3 gave a new product, identified as compound 189 (Scheme 5.4), which was obtained in 97% yield after purification by flash column chromatography.

Scheme 5.4

The ${ }^{1} H$ NMR spectrum of $\mathbf{1 8 9}$ showed the presence of two doublets at 7.06 and 6.88 ppm with a high coupling constant (each with $J=16 \mathrm{~Hz}$), indicating a transdisubstituted double bond. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8 9}$ showed unsaturated carbon signals resonating downfield at 126.2 and 123.5 ppm . Clearly dehydration, from the OH and hydrogen of the CH_{2} group at position 2, had taken place. The structure of 189 was confirmed further by X-ray crystallography (Figure 5.3) ${ }^{92}$ and was identified as (E)-N-(2-(4-methoxystyryl)benzyl)pivalamide.

It is interesting that different types of products were produced when compounds $\mathbf{9 9}$ and 100 were treated with TFAA. It is clear that the 4 -methoxy group, in the case of compound $\mathbf{1 0 0}$, would stabilize the carbenium ion produced in -situ due to elimination of trifluoroacetate anion from the ester initially formed from 100, compared to the corresponding compound lacking the methoxy group. Loss of a proton from the α-position of the carbenium ion would produce 189.

Similarly, treatment of N -(2-(2-(hydroxy-2-phenylpropyl)benzyl)pivalamide (101) with TFAA at room temperature in DCM (Scheme 5.5) for 5 minutes gave compound 190 but in only 14% yield, along with 79% of starting material 101 . We attempted to improve the yield of $\mathbf{1 9 0}$ under various reaction conditions and indeed, the yield was improved to 72% when the reaction time was 1 h .

Scheme 5.5

Product 190 was characterised by standard spectroscopic methods (see Chapter 7; Section 7.31). The Nuclear Overhauser Effect (NOE) experiment clearly showed that when the methyl protons signal ($\delta=2.05 \mathrm{ppm}$) was irradiated the signal corresponding to $\mathrm{H}-3$ ($\delta=7.46 \mathrm{ppm}$) was enhanced. Also, by analogy with the structure of compound 189 (which was verified by X-ray crystal structure determination), it was expected that compound 190 would be present in the E-form, (E)- N -(2-(2-phenylprop-1-enyl)benzyl)pivalamide.

In this case it seems likely that the formation of the trifluoroacetate is somewhat slower due to steric hindrance around the tertiary alcohol group in 101, but that once formed the additional methyl group tends to help elimination of trifluoroacetate anion due to stabilization of the carbenium ion produced, which on loss of a proton produces 190.

Clearly, cyclization reactions of compounds 99-101, having a pivaloylaminomethyl group at position 1, with TFAA were not successful under the conditions tried. In such compounds the tert-butyl of the $-\mathrm{CH}_{2} \mathrm{NHCOBu}^{t}$ group only weakly donates electron density to the carbonyl group, while the carbonyl group pulls electron density from the NH and therefore leaves the NH less nucleophilic, which tends to make the cyclization process less likely. However, such compounds might still cyclise under more forcing conditions.

Esterification or dehydration was observed when compounds 99-101 were treated with TFAA to produce the corresponding trifluoroacetate ester $\mathbf{1 8 7}$ or alkenes 189 and 190, respectively. Dehydration from compounds 100 and 101 probably occurs via the relatively stable cations 191 (Scheme 5.6). Such cations are secondary $\left(R^{1}=H, R^{2}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ or tertiary $\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ph}\right)$ and at least one of the groups is aromatic so the cations also receive benzylic stabilisation. Therefore, elimination (E1) to produce an alkene, as seen with compounds 189 and 190, is not surprising. On the other hand, compound $188\left(R^{1}=H, R^{2}=P h\right)$, which will give a
somewhat less stable cation, produces the trifluoroacetate ester rather than the alkene. In the light of the results obtained the following general reaction mechanism is suggested (Scheme 5.6).

Scheme 5.6

In principle it is quite likely that given more time for the reaction of $\mathbf{9 9}$ with TFAA that the trifluoroacetate group $\left(\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}\right)$could be eliminated from $\mathbf{1 8 8}$ to give the corresponding cation 192 (Figure 5.4), which would either eliminate a hydrogen to form the corresponding alkene 193 or cyclise to produce the corresponding tetraisoquinoline 194.

Figure 5.4

However, increasing the reaction time (up to 24 h) and the reaction temperature (reflux conditions) still gave mostly the trifluoroacetate ester 188 with little evidence for the formation of the corresponding alkene 193 (via elimination of a
proton) or the cyclization product 194 (Figure 5.4). Also, when 188 was treated with TFA for 4 h under reflux conditions there was little evidence for formation of either 193 or 194 and 91% of $\mathbf{1 8 8}$ was recovered.

In the cases when elimination occurred (i.e. production of 189 and 190 from reactions of TFAA with $\mathbf{1 0 0}$ and 101, respectively), it is possible that re-protonation by trifluoroacetic acid (TFA) produced in the reaction would have given cation 191 in equilibrium (Scheme 5.7), along with cation 195. In principle, cations 191 and 195 could undergo cyclization to produce 196 and 197, respectively (Scheme 5.7).

Scheme 5.7

However, treatment of compounds 189 and 190 with TFA under various reaction conditions (various reaction times and temperatures) gave no cyclised products. The quantitative recovery of $\mathbf{1 8 9}$ and 190 indicated that no reactions had taken place under the conditions tried.

No further attempts were made to try to find conditions under which cyclization could be effective. However, it was of interest to see if the cyclization reactions of related compounds, with a $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$ group at position 1 instead of a pivaloylaminomethyl group, could be possible. Consequently, our attention was next turned to possible cyclization of N^{\prime}-(2-(2-hydroxy-2-arylalkyl)benzyl)- N, N dimethylureas.

5.3 Synthesis of 3-(4-methoxyphenyl)-2-dimethylaminocarbonyl-1,2,3,4tetrahydroisoquinoline (198)

Initially, a cyclization reaction of N^{\prime}-(2-(2-hydroxy-2-(4-methoxyphenyl)-ethyl)benzyl)- N, N-dimethylurea (153) was attempted under conditions similar to those described in Scheme 5.3. It was hoped that cyclization of $\mathbf{1 5 3}$ could be achieved via elimination of water, from the OH and NH hydrogen. Therefore, reaction between compound $\mathbf{1 5 3}$ and TFAA at room temperature in DCM for 5 minutes was carried out (Scheme 5.8). The mixture was quenched by the addition of water and worked-up. The residue obtained was purified by flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}-$ hexane, $1: 3$) to give the pure product, subsequently identified as compound 198 , obtained in 95% yield.

Scheme 5.8

The ${ }^{1} H$ NMR spectrum of $\mathbf{1 9 8}$ showed that the signals of the two hydrogens of the CH_{2} groups, at positions 1 and 4 of the isoquinoline ring, appear separately, as two separated doublets, verifying that they are diastereotopic. Compound 198 would, of course, be formed as a racemic mixture. Indeed, the X-ray crystallography of compound 198 showed a single type of crystal containing both enantiomers in equal proportions, but the structure displayed (Figure 5.5$)^{92}$ shows the structure as (S^{*})-3-(4-methoxyphenyl)-2-dimethylaminocarbonyl-1,2,3,4-tetrahydroisoquinoline. Clearly, cyclization of $\mathbf{1 5 3}$ via dehydration, from OH and the NH hydrogen, had taken place.

5.4 Synthesis of substituted tetrahydroisoquinolines 199 and 200

Having found that reaction of compound 153 with TFAA occurred smoothly and rapidly at room temperature in DCM, it was of interest to see if the cyclization reaction of other compounds related to 153 would be successful. Consequently, reactions of compounds 154 and 155 with TFAA were carried out at room temperature in DCM for 5 minutes (Scheme 5.9). The reactions proceeded smoothly in both cases and the crude products were subjected to flash column chromatography, to give the pure products, identified as 3-phenyl-2-dimethylaminocarbonyl-1,2,3,4tetrahydroisoquinoline $(199 ; 94 \%$ yield) and 3-methyl-3-phenyl-2-dimethylaminocarbonyl-1,2,3,4-tetrahydroisoquinoline (200; 91\% yield).

Scheme 5.9

The ${ }^{1} H$ NMR spectra of compounds 199 and 200 showed diastereotopicity for the two pairs of hydrogens at positions 1 and 4 of the isoquinoline rings. Both compounds would, of course, be formed as racemic mixtures.

Having found that reaction of compounds 153-155 with TFAA occurred smoothly and rapidly, it was of interest to see if the cyclization reactions of compounds containing bulky groups would be possible. Therefore, cyclization of N^{\prime}-(2-(2-hydroxy-2,2-diphenylethyl)benzyl)- N, N-dimethylurea (156) was attempted.

5.5 Synthesis of N^{\prime}-(2-(2,2-diphenylvinyl)benzyl)- N, N-dimethylurea (201)

It was found that reaction of N^{\prime}-(2-(2-hydroxy-2,2-diphenylethyl)benzyl)- N, N dimethylurea (156) with TFAA in DCM at room temperature proceeded in a different manner (Scheme 5.10). Following work-up, the crude product was purified by flash column chromatography to give pure product, subsequently identified as $N^{\prime}-(2-(2,2-$ diphenylvinyl)benzyl)- N, N-dimethylurea (201), which was obtained 95% yield.

Scheme 5.10

Product 201 was characterised by standard spectroscopic methods and X-ray crystallography (Figure 5.6). ${ }^{92}$ Clearly, dehydration from the OH and a hydrogen from the CH_{2} group had taken place.

Figure 5.6 X-ray crystal structure of compound 201. Thermal ellipsoids are shown at the 50\% probability level.

Clearly, cyclization reactions of compounds having a $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$ group at position 1 (compounds $\mathbf{1 5 3 - 1 5 5}$) with TFAA were successful to produce the corresponding tetrahydroisoquinolines $\mathbf{1 9 8} \mathbf{2 0 0}$, respectively. In the case of such compounds the dimethylamino part of the $-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}$ group donates electron density to the carbonyl group. Therefore, the carbonyl group does not pull electron density to the same extent from the NH and leaves the NH more nucleophilic than in the pivaloylamino case, and therefore more likely to cyclise, as observed. However, in the case when the hydroxydiphenylethyl group is present at position 2 (compound 156), cyclization is not successful and elimination of water takes place to produce the corresponding alkene 201.

Dehydration, either with cyclization or to form an alkene, probably goes via the relatively stable cations 202 (Scheme 5.11). Such cations are at least secondary and sometimes tertiary (if neither R^{1} nor R^{2} is hydrogen) and in all cases at least one of the groups is aromatic so the cation also has benzylic stabilisation. Cyclization via substitution $\left(\mathrm{S}_{\mathrm{N}} 1\right)$ is more likely to take place than in the pivaloylamino case because of the greater nucleophilicity of the N atom and is observed in the cases of products 198-200. However, in the most stable case $\left(R^{1}=R^{2}=P h\right.$; compound 156) the cation formed is tertiary, doubly benzylic and very hindered so that cyclization is not so likely to occur and elimination (E1) takes place to produce the corresponding alkene
201. In the light of these results the following general reaction mechanism is suggested (Scheme 5.11).

Scheme 5.11

5.6 Attempted synthesis of 2-unsubstituted 1,2,3,4-tetrahydroisoquinolines

In order to render the synthetic approach described in Sections 5.3 and 5.4 even more valuable, it would be useful if the dimethylamino group in compounds of the general formula 203 (Figure 5.7) could be removed to reveal a free NH without the isoquinoline ring system itself being damaged. We therefore decided to attempt to remove the dimethylamino group in compounds 203 to provide products of the general formula 204 (Figure 5.7).

203

204

Figure 5.7

Using compound 198 as the model, we attempted removal of the dimethylaminocarbonyl group at position 2 by treatment with a few drops of TFA in DCM at room temperature or under reflux conditions for 2 h . However, TLC and NMR indicated the presence of mainly starting material in the reaction mixture. We also attempted to use TFA under reflux conditions for 1 h with no DCM. The reaction mixture turned deep red but no pure products were separated from the reaction mixture by column chromatography on silica gel. Finally, reactions of 198 with dilute HCl were attempted at room temperature and under reflux conditions for up to 24 h . However, the quantitative recovery of 198 indicated that hydrolysis was not successful under the conditions tried. No further attempts were made to try to find conditions under which removal of the dimethylaminocarbonyl group from compound 198 could be successful.

5.7 Conclusion

N-(2-(2-Hydroxy-2-arylalkyl)benzyl)pivalamides are not cyclised on reaction with trifluoroacetic anhydride in DCM at room temperature. Instead, esterification of the hydroxyl group with TFAA or dehydration from the OH and a hydrogen from the CH_{2} at position 2, takes place to give the corresponding derivatives in high yields. In contrast, reactions of TFAA with N^{\prime}-(2-substituted benzyl)- N, N-dimethylureas in DCM under identical conditions produced the corresponding tetrahydroisoquinolines in excellent yields ($91-95 \%$) for the derivatives tried. However, when a bulky group, such as hydroxydiphenylethyl, is present at position 2, cyclization is not successful and dehydration, from OH and a hydrogen from the CH_{2} group at position 2, takes place to produce an unsaturated derivative in high yield. Attempts to remove the dimethylaminocarbonyl group at position 1 of the isoquinoline ring using trifluoroacetic acid or dilute HCl were not successful.

CHAPTER SIX

SYNTHESIS OF SUBSTITUTED

ISOINDOLIN-1-ONES

CHAPTER SIX

SYNTHESIS OF SUBSTITUTED ISOINDOLIN-1-ONES

6.1 Introduction

Although the isoindolinone (2,3-dihydro-1 H -isoindol-l-one) skeleton was not commonly encountered in the past, in recent years there has been a great deal of interest in such compounds since they represent the core unit of numerous naturally occurring substances. ${ }^{103-105}$ Also, several members belonging to this family are new nonpeptidic low molecular weight broad-spectrum inhibitors of Human Rhinovirus (HRV). ${ }^{124}$

Several traditional methods are available for the synthesis of isoindolinones. ${ }^{125.126}$ However, such methods generally require multiple reaction steps, and are unsatisfactory, both in yield and generality. In recent years a number of new approaches have been developed for the synthesis of substituted isoindolines, of which the most generally useful involve palladium-catalysed reactions ${ }^{127}$ and lithiation procedures. ${ }^{108-112,128-130}$

In particular, among the methods involving lithiation two useful approaches to the synthesis of 2,3-dihydroisoindolin-1-ones have been reported (Schemes 6.1 and 6.2). ${ }^{108,128}$ One method simply involves lithiation of a preformed 2,3-dihydroisoindol-1-one ring system, 205, at the 3-position using one equivalent of LDA at $-78^{\circ} \mathrm{C}$, to produce the lithium intermediate 206, which on treatment with an electrophile gives the corresponding 207 (Scheme 6.1). ${ }^{128}$ Clearly, the general utility of this approach depends on the availability of appropriately substituted analogues of the dihydroisoindolin-1-one ring system 205.

Scheme 6.1

The other, potentially more useful, approach reported by Clayden involves generation of the isoindolin-1-one ring system during the lithiation step. For example, lithiation of N-tert-butyl- N-benzylbenzamides 208 with LDA gives intermediates 209 that cyclise to form a dearomatised species 210. Oxidation to re-aromatise the system gives the corresponding 2,3-dihydroisoindolin-1-ones 211 (Scheme 6.2; cyclization rearomatisation). ${ }^{108}$ Treatment of $211(\mathrm{R}=5-\mathrm{OMe}$; Scheme 6.2$)$ with trifluoroacetic acid (TFA) to remove the tert-butyl group gives the corresponding 2,3-dihydroisoindolin-1-one 212 in 66% yield. ${ }^{108}$ However, this approach gives more modest yields, requires the additional step to remove the Bu^{t} group, and also involves incorporating the eventual C-3 substituent into the starting material, which limits the generality.

Scheme 6.2

Clayden has improved the yield of 2,3-dihydroisoindolin-1-ones such as 211 using 2-methoxy amides 213 as the starting materials; in this case the methoxy group acts as a leaving group, avoiding the need for an oxidation step. ${ }^{108}$ Thus, lithiation of 213 with LDA gave lithium intermedaies 214 which cyclised to produce 211 in good to excellent yields (Scheme 6.3; cyclization - substitution). ${ }^{108}$ However, this approach still requires an additional step to remove the Bu^{t} group.

Scheme 6.3

Therefore, with the aim of developing a methodology for the synthesis of 3 -substituted isoindolin-1-ones, N^{\prime}-benzyl- N, N-dimethylureas were subjected to lithiation reactions with $t-\mathrm{BuLi}$, and subsequently with electrophiles. In this chapter, we describe a novel and efficient synthetic approach to 3 -substituted isoindolin1 -ones that involves both cyclization to give the ring system and incorporation of a C-3 substituent in a single synthetic step via lithiation of N^{\prime}-benzyl- N, N-dimethylureas with t-BuLi in THF at $0^{\circ} \mathrm{C}$ followed by reactions of the cyclic dilithium intermediates thus formed with various electrophiles.

6.2 Synthesis of ($\left.R^{*}\right)$-3-(($\left.S^{*}\right)$-hydroxy(4-methoxyphenyl)methyl)-4-methoxy-

isoindolin-1-one (139)

In Chapter 3 (Section 3.5), we have shown that lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) with two equivalents of t - BuLi at $-20^{\circ} \mathrm{C}$ followed by reaction with 4 -anisaldehyde gave a mixture of ring substitution products; o-substitution (next to the dimethylaminocarbonylaminomethyl group, 49\% yield) and o^{\prime}-substitution (next to the methoxy group, 40\% yield). The o-substitution product was obtained from reaction of dilithium reagent 134, produced in-situ from 133 (Figure 6.1), with 4-anisaldehyde, while the o^{\prime}-substitution product was produced from reaction of $\mathbf{1 3 5}$ (Figure 6.1) with 4 -anisaldehyde.

133

134

Figure 6.1

However, when the reaction was carried out at $0^{\circ} \mathrm{C}$ rather than at $-20^{\circ} \mathrm{C}$ it produced o-substitution product (50% yield), o^{\prime}-substitution product (12% yield) and an isoindolin-1-one derivative (139; Figure 6.2, 11% yield). Also, some of the starting material 111 (12%) was recovered under the conditions tried. Compound 139 would arise by cyclization of 134 , produced in-situ from 133 (Figure 6.1), to give 215, followed by further lithiation to give 140 (Figure 6.2), which on reaction with 4 -anisaldehyde gives $\mathbf{1 3 9}$ (Figure 6.2). Therefore, it appeared likely that the yield of 139 could be increased by use of a larger quantity of $t-\mathrm{BuLi}$ (three equivalents).

Figure 6.2

It was of interest to see if the production of 139 in high yield could be achieved. Therefore, compound 111 was treated with t - BuLi (3.3 mole equivalents) at $0{ }^{\circ} \mathrm{C}$ in anhydrous THF under nitrogen (Scheme 6.4). Initial addition of $t-\mathrm{BuLi}$ provided a yellow solution, presumably because of formation of the monolithium reagent 133, until approximately one equivalent had been added, then a reddish orange solution was formed as the second t-BuLi was added, presumably because of formation of the dilithium reagent 134, which could cyclize to produce lithium intermediate 215. Reaction of the third mole of t-BuLi with 215 could produce the corresponding cyclic dilithium reagent $\mathbf{1 4 0}$. The mixture was stirred for 6 h at $0^{\circ} \mathrm{C}$ in an attempt to ensure complete formation of the 140. 4-Anisaldehyde (1.1 mole equivalents) was added (Scheme 6.4) and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The mixture was allowed to warm to room temperature and quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The solid obtained following work-up was washed with diethyl ether to give pure product identified as $\mathbf{1 3 9}$ which was isolated in 81% yield. Compound 139 was found to be identical in all respects with the one produced previously (Chapter 3; Section 3.5).

Scheme 6.4

Compound 139 could potentially be formed as a pair of racemic diastereoisomers; however, its NMR spectra showed what appeared to be a single set of signals, indicating that the isolated product was a single diastereoisomer. However, although this compound was isolated in high yield (81\%), it is possible that a small amount of the other diastereoisomer was formed but washed out during the purification process. The X-ray crystallography of compound $\mathbf{1 3 9}$ confirmed the crystal structure as $\left(R^{*}\right)$-3-(($\left.S^{*}\right)$-hydroxy(4-methoxyphenyl)methyl)-4-methoxy-isoindolin-1-one (Figure 3.5: Chapter 3, Section 3.5). ${ }^{92}$

Clearly, lithiation of $\mathbf{1 1 1}$ with t - BuLi (3.3 mole equivalents) in anhydrous THF at $0{ }^{\circ} \mathrm{C}$ for 6 h , followed by treatment with 4 -anisaldehyde (1.1 mole equivalents) gave 139 in high yield. While an increased yield of 139 was expected, the disappearance of o^{\prime}-substitution product was a surprise. It would appear that at $0^{\circ} \mathrm{C}$, not only does $\mathbf{1 3 4}$ cyclise to give 215, but $\mathbf{1 3 5}$ (Figure 6.1) is also in equilibrium with 134, allowing its eventual conversion into 215 and then 140 (Scheme 6.4).

6.3 Synthesis of 4-methoxyisoindolin-1-one (216)

It was of interest to prove that cyclic lithium reagent 215 was formed as an intermediate during the reaction described in Scheme 6.4. Therefore, compound 111 was treated with t - BuLi (2.2 mole equivalents) at $0{ }^{\circ} \mathrm{C}$ in anhydrous THF under nitrogen for 6 h (Scheme 6.5). The mixture was allowed to warm to room temperature and quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Following work-up, the solid obtained was washed with diethyl ether to give the pure product, identified as 4-methoxyisoindolin-1-one (216) and was obtained in 76% yield. Clearly, reaction of

111 with t-BuLi (2.2 equivalents) produced the dilithium reagent 134 which could cyclize to produce lithium intermediate 215 and on protonation gave 216 (Scheme 6.5).

Scheme 6.5

Compound 216 was characterised by standard spectroscopic methods and X-ray crystallography (Figure 6.3). ${ }^{92}$

6.4 Synthesis of various 3-substituted 4-methoxyisoindolin-1-ones 216-224

It was of interest to see if the reaction of the cyclic dilithium intermediate 140 with other electrophiles would be useful and general. Consequently, reactions of the
cyclic dilithium intermediate 140, prepared in-situ from compound 111, with a range of electrophiles $\left(\mathrm{H}_{2} \mathrm{O}\right.$, iodomethane, iodoethane, bromobutane, cyclohexanone, benzophenone, acetophenone, 2-hexanone, or benzaldehyde) were carried out (Scheme 6.6). Each reaction was conducted under identical conditions and then quenched by the addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$. Afterwards, the crude products were washed with diethyl ether to give the pure products that were identified as 3 -substituted 4-methoxyisoindolin-1-ones 216-224 (Scheme 6.6) and were obtained in high yields (Table 6.1). The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.37). The nature of the products is illustrated in Table 6.1.

Scheme 6.6

Table 6.1: Synthesis of various 3-substituted 4-methoxyisoindolin-1-ones 216224 according to Scheme 6.6

Product	Electrophile	E	Yield (\%) a
$\mathbf{2 1 6}$	$\mathrm{H}_{2} \mathrm{O}$	H	82
$\mathbf{2 1 7}$	MeI	Me	79
$\mathbf{2 1 8}$	EtI	Et	84
$\mathbf{2 1 9}$	BuBr	Bu	72
$\mathbf{2 2 0}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	78
$\mathbf{2 2 1}$	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	81
$\mathbf{2 2 2}$	PhCOMe	$\mathrm{PhC}(\mathrm{OH}) \mathrm{Me}$	81
$\mathbf{2 2 3}$	BuCOMe	$\mathrm{BuC}(\mathrm{OH}) \mathrm{Me}$	78
$\mathbf{2 2 4}$	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	80
${ }^{a}$ Yield of isolated pure product.			

The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 218, 219 and 223 showed diastereotopicity for the two hydrogens of the CH_{2} group attached to position 3 (218 and 219) or to the $\mathrm{C}(\mathrm{OH}) \mathrm{Me}$ carbon attached to position 3 (223) of the isoindolone ring. In the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 220 the two sides of the cyclohexane ring appeared as separated signals, and for compound 221 the two phenyl groups appeared as separated signals in the ${ }^{13} \mathrm{C}$ NMR spectrum, verifying that they are
diastereotopic. Compounds 217-221 would of course be formed as racemic mixtures. Compounds 222-224 could potentially be formed as pair of racemic diastereoisomers; however, their NMR spectra showed what appeared to be one set of signals, indicating that the isolated product in each case was a single diastereoisomer. However, although these compounds were isolated in high yields ($72-84 \%$), it is possible that small amounts of the other diastereoisomers were formed but washed out during purification of the crude products by washing with diethyl ether. We have not determined the stereochemistry of compounds 222-224, however, by analogy with the structure of compound 139 (which was verified by x-ray crystal structure determination as $\left(R^{*}\right)$-3((S^{*})-hydroxy(4-methoxyphenyl)methyl)-4-methoxy-isoindolin-1-one; Figure 3.5, Chapter 3), it was expected that such compounds would be present as $\left(R^{*}\right)-3-\left(S^{*}\right)$ diastereoisomers.

From the results recorded in Table 6.1 it was clear that lithiation of N^{\prime}-(2-methoxybenzyl- N, N-dimethylurea (111) with t - BuLi (3.3 mole equivalents) at $0^{\circ} \mathrm{C}$ followed by reaction with a variety of different electrophiles was a general process, producing 3-substituted 4-methoxyisoindolin-1-ones 216-224 in high yields.

6.5 Synthesis of various substituted isoindolin-1-ones 225-245

The generality of the process was tested further using other ring-substituted N^{\prime}-benzyl- N, N-dimethylureas 107, 108 and 113. Each substrate was lithiated according to the standard procedure shown in Schemes 6.4 and 6.6, and then treated with various electrophiles. The crude products were washed with diethyl ether to give the pure products that were identified as substituted isoindolin-1-ones 225-245 (Scheme 6.7) and were obtained in high yields (Table 6.2). The products were all characterised by standard spectroscopic methods (see Chapter 7; Section 7.38). The nature of the products is illustrated in Table 6.2.

Scheme 6.7

Table 6.2: \quad Synthesis of various substituted isoindolin-1-ones 225-245 according to Scheme 6.7

Product	R	Electrophile	E	Yield (\%) ${ }^{\text {a }}$
225	H	$\mathrm{H}_{2} \mathrm{O}$	H	71
226	H	MeI	Me	75
227	H	EtI	Et	77
228	H	BuBr	Bu	$76^{\text {b }}$
229	H	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	74
230	H	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	73
231	H	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	78
232	OMe	$\mathrm{H}_{2} \mathrm{O}$	H	70
233	OMe	MeI	Me	76
234	OMe	EtI	Et	78
235	OMe	BuBr	Bu	77
236	OMe	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	72
237	OMe	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	75
238	Me	$\mathrm{H}_{2} \mathrm{O}$	H	75
239	Me	MeI	Me	78
240	Me	EtI	Et	75
241	Me	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}=\mathrm{O}$	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C}(\mathrm{OH})$	72
242	Me	$\mathrm{Ph}_{2} \mathrm{CO}$	$\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH})$	85
243	Me	MeCOBu	$\mathrm{MeC}(\mathrm{OH}) \mathrm{Bu}$	77
244	Me	PhCHO	$\mathrm{PhCH}(\mathrm{OH})$	79
245	Me	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CHO}$	$4-\mathrm{MeOC} 6 \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})$	83
${ }^{a}$ Yield of isolated pure product. ${ }^{b}$ Compound 246 (Figure 6.4) was obtained in 5\% yield.				

The ${ }^{1} \mathrm{H}$ NMR spectra of compounds 227, 228, 234, 235 and 240 showed diastereotopicity for the two hydrogens of the CH_{2} group attached to position 3 of the isoindolinone ring, while the spectrum of $\mathbf{2 4 3}$ showed it for the CH_{2} group next to the $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})$ group, verifying that all are diastereotopic. For compounds 229, 236 and 242 the two phenyl groups appeared as separated signals in their ${ }^{13} \mathrm{C}$ NMR spectra, verifying that they are diastereotopic. The two sides of the cyclohexane ring in compound 241 should appear as separated signals; however, we were unable to record its ${ }^{13} \mathrm{C}$ NMR spectrum due to its poor solubility. Compounds 226-229, 233-236 and 239-242 would of course be formed as racemic mixtures. Compounds 230, 231, 237, 243-245 could potentially be formed as pairs of racemic diastereoisomers. Indeed, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 231 showed the expected presence of two diastereoisomers in the ratio of $6: 1$ according to the ${ }^{1} \mathrm{H}$ NMR spectrum. The isomers were not separated but based on the structure of compound 139, it is believed that the major diastereoisomer would be present as $\left(R^{*}\right)$-3-($\left.S^{*}\right)$ - and the minor one as $\left(R^{*}\right)$-3-
$\left(R^{*}\right)$. However, the NMR spectra of 230, 237, 243-245 showed what appeared to be one set of signals, indicating that the isolated product in each case was probably a single diastereoisomer, and we have not determined which one. However, although these compounds were isolated in high yields ($70-85 \%$), it is possible that small amounts of the other diastereoisomers were formed but washed out during the purification process. Again, we have not determined the stereochemistry of such compounds, however, it seems likely that they would be present as $\left(R^{*}\right)$-3-(S^{*})diastereoisomers by analogy with the structure of compound 139.

Compound 246 (Figure 6.4) was obtained as a side product in 5% yield when 1-bromobutane was used as the electrophile. It was characterised by standard spectroscopic methods (see Chapter 7; Section 7.38). Compound 246 could be obtained due to further lithiation of 247, produced in situ from 248, at position 3, to produce cyclic lithium intermediate 249 (Figure 6.4) followed by reaction with a further equivalent of 1-bromobutane.

Figure 6.4

From the results recorded in Table 6.2 it was clear that lithiation of N^{\prime}-benzyl)N, N-dimethylureas 107,108 and 113 with t - BuLi (3.3 mole equivalents) at $0{ }^{\circ} \mathrm{C}$ followed by cyclization and reactions with a variety of electrophiles was a general process, producing various substituted isoindolin-1-ones 225-245 in high yields (7086\%).

6.6 Attempted cyclization of N-benzylpivalamide (49)

Having successfully synthesized various isoindolin-1-ones via lithiation and substitution of N^{\prime}-benzyl- N, N-dimethylureas (Sections 6.2-6.5), attention was next turned to investigate whether the corresponding N^{\prime}-benzylpivalamides could be cyclized in the same manner. Therefore, N^{\prime}-benzylpivalamide (49; Figure 6.5) was treated with t - BuLi (2.2 mole equivalents) at $0{ }^{\circ} \mathrm{C}$ in anhydrous THF under nitrogen
and the mixture was stirred for 6 h , in an attempt to produce compound 250 (Figure 6.5). The mixture was allowed to warm to room temperature and quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The product mixture was examined by TLC and showed that no new product was formed; instead, only starting material was recovered (98\%).

Figure 6.5
We attempted to vary the length of reaction time with t - BuLi (up to 24 h) but no cyclic product was formed indicating that no cyclization took place under the conditions tried. No further attempts were made to try to find conditions under which cyclization of N^{\prime}-benzylpivalamide could be successful.

6.7 Attempted synthesis of 1,2-dihydroisoquinolin-3(4H)-ones

Having successfully synthesized various isoindolin-1-ones from N^{\prime}-benzylN, N-dimethylureas (Sections 6.2-6.5), attention was next turned to investigate whether N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114) could be lithiated and cyclised in the same manner under similar conditions to produce 1,2 -dihydroisoquinolin- $3(4 \mathrm{H})$-one (251; Figure 6.6). Therefore, 114 was treated with t - BuLi (2.2 mole equivalents) at $0^{\circ} \mathrm{C}$ in anhydrous THF under nitrogen and the mixture was stirred for 6 h . The mixture was allowed to warm to room temperature and quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The product mixture was examined by TLC and showed the presence of only starting material. Compound 114 was recovered quantitatively, which is an indication that no cyclization took place under these conditions. We attempted to vary the length of reaction time of 114 with t-BuLi (up to 18 h) at $0^{\circ} \mathrm{C}$ but no cyclic product was formed.

Figure 6.6

Compound 65 was also treated with t - BuLi (2.2 mole equivalents) in THF at $0{ }^{\circ} \mathrm{C}$ for 24 h . The product mixture was examined by TLC and showed the presence of only 65 . The quantitative recovery of starting material indicated that no cyclization took place under these conditions. This result was expected since N^{\prime}-benzylpivalamide (49; Figure 6.5) had also proved to be difficult to cyclize.

No further attempts were made to try to find conditions under which cyclization of $\mathbf{1 1 4}$ or $\mathbf{6 5}$ could be successful. It seems that the formation of sixmembered rings is relatively difficult compared to the corresponding five-membered rings.

6.8 Conclusion

A lithiation procedure has been developed that allows the production of 3-substituted isoindolin-1-ones in high yields in only one step via lithiation of various substituted N^{\prime}-benzyl- N, N-dimethylureas with t - BuLi (3.3 mole equivalents) in THF at $0^{\circ} \mathrm{C}$ followed by reactions with various electrophiles. The procedure has been proven to be simple, efficient and general. However, N-(substituted benzyl)pivalamides on treatment with t-BuLi for a longer reaction time failed to produce the corresponding cyclic products. Also, lithiation of N^{\prime}-(2-methylbenzyl)N, N-dimethylurea and N -(2-methylbenzyl)pivalamide followed by reaction with an electrophile under similar conditions failed to produce the corresponding cyclized sixmembered ring compounds and instead simple lithiation and substitution took place on the methyl group at position 2 .

CHAPTER SEVEN

EXPERIMENTAL

CHAPTER SEVEN
 EXPERIMENTAL

7.1 General experimental

Melting point determinations were performed by the open capillary method using a Gallenkamp melting point apparatus and are reported uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV400 (Swansea University) or Bruker AV500 (Cardiff University) spectrometer operating at 400 or 500 MHz for ${ }^{1} \mathrm{H}$ and 100 or 125 MHz for ${ }^{13} \mathrm{C}$ measurements, respectively. Chemical shifts δ are reported in parts per million (ppm) relative to TMS and coupling constants J are in Hz and have been rounded to the nearest whole number. ${ }^{13} \mathrm{C}$ multiplicities are based on DEPT signals and are reported $\mathrm{s}(\mathrm{C}), \mathrm{d}(\mathrm{CH}), \mathrm{t}\left(\mathrm{CH}_{2}\right)$ and $\mathrm{q}\left(\mathrm{CH}_{3}\right)$. Assignments of signals are based on coupling patterns and expected chemical shift values and have not been rigorously confirmed. Signals with similar characteristics might be interchanged. Low-resolution mass spectra were recorded on a Quattro II spectrometer, electron impact (EI) at 70 eV and chemical ionization (CI) at 50 eV by the use of NH_{3} as ionization gas. Accurate mass data were obtained on a MAT900 instrument. Electrospray (ES) analyses were performed on a ZQ4000 spectrometer in positive and negative ionisation modes. IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrometer. Microanalyses were performed by Warwick analytical service at the University of Warwick. X-ray analyses were obtained from the EPSRC National Crystallography Service, Department of Chemistry, Southampton University, Southampton and the X-Ray Crystallography Service, School of Chemistry, Cardiff University, Cardiff, UK. In all the figures, the thermal ellipsoids are displayed at 50\% probability. Column chromatography was carried out using Fischer Scientific silica 60A (35-70 micron). Alkyllithiums were obtained from Aldrich Chemical Company and were estimated prior to use by the method of Watson and Eastham. ${ }^{22}$ Other chemicals were obtained from Aldrich Chemical Company and used without further purification. THF was distilled from sodium benzophenone ketyl. Other solvents were purified by standard procedures. ${ }^{131,132}$

7.2 Synthesis of N-benzylpivalamide (49)

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of benzylamine ($\left.52 ; 4.28 \mathrm{~g}, 40.0 \mathrm{mmol}\right)$ and triethylamine $(8.0 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ pivaloyl chloride $(5.3 \mathrm{~g}, 44.3 \mathrm{mmol})$ was
slowly added in a drop-wise manner over 30 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for an extra 1 h . The mixture was poured onto $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was then removed under reduced pressure. The solid obtained was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane (2:1) to give N -benzylpivalamide (49; $7.03 \mathrm{~g}, 36.8$ mmol; 92\%) as white crystals.

Mp: $79-80^{\circ} \mathrm{C}$ (lit. ${ }^{86} 76-78^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.16(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.98$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.34\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 139.1 ($\mathrm{s}, \mathrm{C}-1$), 129.1 (d, $\mathrm{C}-3 / \mathrm{C}-5$), $128.0(\mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6), 127.8(\mathrm{~d}, \mathrm{C}-4), 43.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. EI-MS: $m / z(\%)=191\left(\mathrm{M}^{+}, 7\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 88\right), 77\left(\mathrm{Ph}^{+}, 19\right), 57\left({ }^{t} \mathrm{Bu}^{+}, 100\right)$.
CI-MS: $m / z(\%)=209\left(M+\mathrm{NH}_{4}{ }^{+}, 27\right), 192\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 192.1383$; found, 192.1385 .
FT-IR: $v_{\max }=3303(\mathrm{NH}), 2961(\mathrm{CH}), 1636(\mathrm{C}=\mathrm{O}), 1544$ (aromatic $\mathrm{C}=\mathrm{C}$), 1217, 1000 cm^{-1}.

7.3 Lithiation and substitution of \boldsymbol{N}-benzylpivalamide (49)

A solution of $t-\mathrm{BuLi}$ in pentane ($2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol}$) was added to a stirred solution of $49(0.38 \mathrm{~g}, 2.0 \mathrm{mmol})$ at the appropriate temperature $(-78,0$ or 20 ${ }^{\circ} \mathrm{C}$) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 53 was observed as a yellow solution and the dilithium reagents were observed as brownish solution. The mixture was stirred at the appropriate temperature for $2-4 \mathrm{~h}$ and a solution of benzophenone ($0.40 \mathrm{~g}, 2.2 \mathrm{mmol}$) in anhydrous THF (8 mL) was added. The reaction mixture was stirred for 2 h at the appropriate temperature, and then allowed to warm to r.t. if the reaction was carried out at low temperature. It was then diluted with EtOAc (20 mL) and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give the pure products 56 and 57.

The yields obtained were in the range of $6-42 \%$ for 56 and $10-34 \%$ for 57 . A significant quantity of the starting material 49 (20-69\%) was also recovered. The yields obtained under various reaction conditions are recorded in Table 2.1.

N-(2-Hydroxy-1,2,2-triphenylethyl)pivalamide (56)

Yield: $44 \mathrm{mg}-0.31 \mathrm{~g}(0.12-0.83 \mathrm{mmol}, 6-42 \%)$; see Table 2.1.
Mp: $229-230{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.58(\mathrm{~d}, J=9 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 7.55-7.02$ (m, $15 \mathrm{H}, 3 \mathrm{Ph}$), 6.21 (br, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.88 (d, $J=9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 0.92[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=177.0$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 147.5 ($\mathrm{s}, \mathrm{C}-1 \mathrm{of} \mathrm{Ph}$), 145.9 (s , C-1 of Ph), 140.6 ($\mathrm{s}, \mathrm{C}-1$), 129.9 (d, C-3/C-5), 128.6, 128.2 ($2 \mathrm{~d}, \mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph), 127.6 (d, C-2/C-6), 127.4 (d, C-4), 127.1, 126.7 ($2 \mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of 2 Ph), 127.0, 126.9 (2 d, C-4 of 2 Ph), 80.7 (s, $\mathrm{C}-\mathrm{OH}$), $59.9(\mathrm{~d}, \mathrm{CH}), 38.8\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$. EI-MS: $m / z(\%)=355\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 8\right), 330(35), 312(18), 296\left(\mathrm{M}^{+}-\mathrm{Ph}, 11\right), 270$ (48), 256 ($\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}-\mathrm{OH}, 32$), 252 (100), 239 (81), 226 (34), 215 (35).

CI-MS: $m / z(\%)=374\left(\mathrm{MH}^{+}, 42\right), 356\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 374.2115$; found, 374.2114 .
FT-IR: $v_{\max }=3329(\mathrm{NH}$ and OH$), 2922(\mathrm{CH}), 1614(\mathrm{C}=\mathrm{O})$, 1562 (aromatic $\mathrm{C}=\mathrm{C}$), 1514, $1470,1240 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}$: C, 80.40; H, 7.29; N, 3.75. Found: C, $80.41 ; \mathrm{H}, 7.27$; N, 3.76.

N-(2-(Hydroxydiphenylmethyl)benzyl)pivalamide (57)

Yield: $74 \mathrm{mg}-0.25 \mathrm{~g}(0.20-0.67 \mathrm{mmol}, 10-34 \%)$; see Table 2.1 .
Mp: 218-219 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.85(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.35-7.32 (m, $5 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-3 / \mathrm{H}-5$ of 2 Ph), $7.28-7.23$ (m, $7 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{H}-2 / \mathrm{H}-6 / \mathrm{H}-4$ of 2 Ph), $7.08-7.04(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and OH$), 6.53(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.02(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.08\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=178.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 148.5(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph$), 145.3$ (s, C-1), 140.2 (s, C-2), 129.7 (d, C-3), 129.4 (d, C-6), 128.6 (d, C-3/C-5 of 2 Ph), 128.4 (d, C-4), 128.3 (d, C-2/C-6 of 2 Ph), 127.6 (d, C-4 of 2 Ph), 126.4 (d, C-5), 82.3 (s , $\mathrm{C}-\mathrm{OH}), 41.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.8\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.2\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=373\left(\mathrm{M}^{+}, 31\right), 355\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 47\right), 330(11), 313(25), 312(100)$.
CI-MS: $m / z(\%)=374\left(\mathrm{MH}^{+}, 4\right), 358\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 71\right), 356\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 296$ (12), 243 (22), $200(25), 192\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{CO}, 48\right), 183\left(\mathrm{Ph}_{2} \mathrm{COH}^{+}, 22\right), 119(46), 102$ (35).

HRMS: m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right), 373.2036$; found, 373.2043.
FT-IR: $v_{\max }=3359(\mathrm{NH}$ and OH$), 2967(\mathrm{CH}), 1599(\mathrm{C}=\mathrm{O}), 1526$ (aromatic $\mathrm{C}=\mathrm{C}$), $1364,1210,1027 \mathrm{~cm}^{-1}$.

7.4 Synthesis of \boldsymbol{N}-(2-bromobenzyl)pivalamide (60)

The procedure was identical with that described for the synthesis of N-benzylpivalamide (49; Section 7.2) except that 2-bromobenzylamine hydrochloride ($59 ; 8.86 \mathrm{~g}, 40.0 \mathrm{mmol}$) was used instead of benzylamine (52). The reaction mixture was worked-up and the solid obtained was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}-$ hexane (2:1) to give $\mathbf{6 0}(9.47 \mathrm{~g}, 35.2 \mathrm{mmol}, 88 \%)$ as white crystals.

Mp: $101-102{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56$ (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.33 (dd, $J=2,8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.28 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.14 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 6.22 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.47\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.22\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7$ (s, $\mathrm{C}=\mathrm{O}$), $138.0(\mathrm{~s}, \mathrm{C}-1), 133.2(\mathrm{~d}, \mathrm{C}-3)$, 130.7 (d, C-6), 129.5 (d, C-4), 128.1 (d, C-5), 124.1 (s, C-2), 44.3 (t, CH2), 39.2 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.

EI-MS: $m / z(\%)=190\left[\mathrm{M}^{+}-\mathrm{Br}\right.$ or $\left.\mathrm{PhCH}_{2} \mathrm{NHCO}^{\prime} \mathrm{Bu}^{+}, 73\right], 171\left[\mathrm{M}^{+}\left({ }^{81} \mathrm{Br}\right)-\right.$ NHCO $\left.{ }^{\prime} \mathrm{Bu}, 70\right], 169\left[\mathrm{M}^{+}\left({ }^{79} \mathrm{Br}\right)-\mathrm{NHCO}^{t} \mathrm{Bu}, 71\right], 107$ (50), 90 (79), 89 (85), 77 (72), 57 (${ }^{t} \mathrm{Bu}^{+}, 100$).
CI-MS: $m / z(\%)=289\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{NH}_{4}{ }^{+}, 71\right], 287\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{NH}_{4}{ }^{+}, 73\right], 272\left[\mathrm{MH}^{+}\right.$ $\left.\left({ }^{81} \mathrm{Br}\right), 100\right], 270\left[\mathrm{MH}^{+}\left({ }^{79} \mathrm{Br}\right), 99\right], 209(68), 192$ (48), 190 (18).

HRMS: m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrNO}\left(\mathrm{MH}^{+}\left({ }^{79} \mathrm{Br}\right)\right.$), 270.0488; found, 270.0488.
FT-IR: $v_{\max }=3334(\mathrm{NH}), 2935(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1532$ (aromatic $\mathrm{C}=\mathrm{C}$), 1228, $1020,701 \mathrm{~cm}^{-1}$.

7.5 Synthesis of N-(2-substituted benzyl)pivalamides 57 and 62-66 via bromine-lithium exchange of \mathbf{N}-(2-bromobenzyl)pivalamide (60)

To a cooled solution $\left(-78{ }^{\circ} \mathrm{C}\right)$ of N-(2-bromobenzyl)pivalamide ($60 ; 0.54 \mathrm{~g}$, 2.0 mmol) in anhydrous THF (20 mL) under a nitrogen atmosphere was added a solution of MeLi in $\mathrm{Et}_{2} \mathrm{O}(2.2 \mathrm{~mL}, 1.0 \mathrm{M}, 2.2 \mathrm{mmol})$, in order to deprotonate the nitrogen to form the monolithium reagent 61. The mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$. Bromine-lithium exchange was then effected by the addition of t-BuLi in heptane ($2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol}$). The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , to ensure the complete formation of the dilithium reagent 55 , after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. The mixture was diluted with EtOAc $(10 \mathrm{~mL})$ and then quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL). The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The crude product obtained was purified by crystallization from $\mathrm{EtOAc}-\mathrm{Et}_{2} \mathrm{O}$ (1:3) to give pure N-(2-substituted benzyl)pivalamides 57 and $\mathbf{6 2 - 6 6}$ as white crystals. The yields obtained are recorded in Table 2.2.

\boldsymbol{N}-(2-(Hydroxydiphenylmethyl)benzyl)pivalamide (57)

Yield: 0.67 g ($1.80 \mathrm{mmol}, 90 \%$).
$\mathrm{Mp}: 218-219^{\circ} \mathrm{C}$.

Compound 57 was found to be identical in all respects with the one produced from ring lithiation of N-benzylpivalamide (49) followed by reaction with benzophenone at low temperature (0 or $-78{ }^{\circ} \mathrm{C}$; Section 7.3). See Section 7.3 for spectral data.

N -(2-(1-Hydroxycyclohexyl)benzyl)pivalamide (62)

Yield: 0.52 g ($1.80 \mathrm{mmol}, 90 \%$).
$\mathrm{Mp}: 127-128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38-7.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-5$), $7.28-7.19(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4$ and H-6), 6.67 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.73 (d, $J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.89 (s, exch., $1 \mathrm{H}, \mathrm{OH}), 2.00-1.68\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.16\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5$ (s, $\mathrm{C}=\mathrm{O}$), 146.7 ($\mathrm{s}, \mathrm{C}-2$), 137.7 ($\mathrm{s}, \mathrm{C}-1$), 132.5 (d, C-6), 127.7 (d, C-3), 127.6 (d, C-4), 126.0 (d, C-5), 75.0 (s, C-1 of cyclohexyl), 43.2 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}$), 39.2 ($\mathrm{t}, \mathrm{C}-2 / \mathrm{C}-6$ of cyclohexyl), 38.9 [s, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 27.9 [$\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 25.7 (t, C-4 of cyclohexyl), 22.4 ($\mathrm{t}, \mathrm{C}-3 / \mathrm{C}-5$ of cyclohexyl).
EI-MS: $m / z(\%)=289\left(\mathrm{M}^{+}, 11\right), 246(22), 204(25), 170(46), 145(43), 129(23), 115$ (20), 91 (21), 57 (${ }^{t} \mathrm{Bu}^{+}, 100$).

CI-MS: $m / z(\%)=290\left(\mathrm{MH}^{+}, 22\right), 272\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 192(4)$.
HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 290.2115$; found, 290.2116.
FT-IR: $v_{\max }=3329(\mathrm{NH}$ and OH$), 2923(\mathrm{CH}), 1613(\mathrm{C}=\mathrm{O})$, 1520 (aromatic $\mathrm{C}=\mathrm{C}$), 1239, $1023 \mathrm{~cm}^{-1}$.

N-(2-(Hydroxyphenylmethyl)benzyl)pivalamide (63)

Yield: 0.51 g ($1.72 \mathrm{mmol}, 86 \%)$.
Mp: $138-139{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.90$ (app. t, $J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.45 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $7.33-7.14$ (m, $8 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and Ph), 5.95 (d, $J=5 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}), 5.91(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.34(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.17\left(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 1.13\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=178.1$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 145.2 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 143.1 (s , C-1), 137.4 (s, C-2), 128.9 (d, C-3/C-5 of Ph), 127.8 (d, C-2/C-6 of Ph), 127.7 (d, C-4 of Ph), 127.6 (d, C-3), 127.5 (d, C-4), 127.4 (d, C-5), 127.3 (d, C-6), 71.7 (d, CH), $40.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.9\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.3\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=297\left(\mathrm{M}^{+}, 8\right), 280\left(\mathrm{M}^{+}+1-\mathrm{H}_{2} \mathrm{O}, 22\right), 279\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 17\right), 236$ (12), $222\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{t} \mathrm{Bu}, 23\right), 197\left(\mathrm{M}^{+}-\mathrm{NHCO}^{t} \mathrm{Bu}, 41\right), 196(50), 195$ (85), 180 (52), 178 (82), 165 (79), 152 (55), 119 (62), 115 (81), 102 (79), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 80\right), 77$ $\left(\mathrm{Ph}^{+}, 88\right), 65(46), 57\left({ }^{t} \mathrm{Bu}^{+}, 100\right)$.
CI-MS: $m / z(\%)=315\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 4\right), 298\left(\mathrm{MH}^{+}, 26\right), 280\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 119$ (6).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 298.1802$; found, 298.1805 .
FT-IR: $v_{\max }=3305(\mathrm{NH}$ and OH$), 2956(\mathrm{CH}), 1628(\mathrm{C}=\mathrm{O}), 1543$ (aromatic $\mathrm{C}=\mathrm{C}$), 1453, 1299, 1207, $1020 \mathrm{~cm}^{-1}$.

N-(2-(Hydroxy-(4-methoxyphenyl)methyl)benzyl)pivalamide (64)

Yield: $0.57 \mathrm{~g}(1.74 \mathrm{mmol}, 87 \%)$.
Mp: $164-166^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.87$ (app. t, $J=5 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.48 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.27-7.20(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.13 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 5.88 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.79 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.33\left(\mathrm{dd}, J=5,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 4.10\left(\mathrm{dd}, J=5,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$, $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.13\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=177.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.5 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 142.8 (s, C-1), 142.7 (s, C-2), 136.7 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 128.6 (d, C-2/C-6 of 4-methoxyphenyl), 127.0 (d, C-3), 126.9 (d, C-6), 126.8 (d, C-4), 126.7 (d, C-5), 114.1 (d, C-3/C-5 of 4-methoxyphenyl), $70.8(\mathrm{~d}, \mathrm{CH}), 55.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$, $39.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.4\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=327\left(\mathrm{M}^{+}, 7\right), 309\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 81\right), 294\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 13\right), 278$ (38), $252\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{\dagger} \mathrm{Bu}, 100\right), 240(51)$.

CI-MS: $m / z(\%)=328\left(\mathrm{MH}^{+}, 6\right), 326\left(\mathrm{M}^{+}-1,18\right), 311\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 45\right), 310\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}, 100$), 220 (14), 192 (20), 119 (46), 102 (34).
HRMS: m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 328.1907$; found, 328.1908 .
FT-IR: $v_{\max }=3316(\mathrm{NH}$ and OH$), 2932(\mathrm{CH}), 1636(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), 1462, 1226, $1020 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 73.37; $\mathrm{H}, 7.71$; $\mathrm{N}, 4.22$. Found: $\mathrm{C}, 73.37 ; \mathrm{H}, 7.70 ; \mathrm{N}$, 4.28 .

N -(2-Methylbenzyl)pivalamide (65)

Yield: 0.35 g ($1.70 \mathrm{mmol}, 85 \%$).
Mp: $108-109^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07-7.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 5.65 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.29\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.09[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 136.9(\mathrm{~s}, \mathrm{C}-1), 136.6(\mathrm{~s}, \mathrm{C}-2)$, 130.9 (d, C-3), 128.8 (d, C-6), 128.1 (d, C-4), 126.6 (d, C-5), 42.3 (t, CH_{2}), 39.2 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=205\left(\mathrm{M}^{+}, 17\right), 105\left(\mathrm{M}^{+}-\mathrm{NHCO}^{t} \mathrm{Bu}, 78\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 23\right), 77(30)$, 57 (${ }^{\prime} \mathrm{Bu}^{+}, 100$).
CI-MS: $m / z(\%)=411\left(2 \mathrm{M}^{+}+1,16\right), 223\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 24\right), 206\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 206.1539$; found, 206.1542.
FT-IR: $v_{\max }=3316(\mathrm{NH}), 2959(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O}), 1538$ (aromatic $\mathrm{C}=\mathrm{C}$), 1221, 1005 cm^{-1}.

\boldsymbol{N}-(2-Deuteriobenzyl)pivalamaide (66)

Yield: 0.35 g ($1.82 \mathrm{mmol}, 91 \%)$.
$\mathrm{Mp}: 79-80^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue $\left.76-78^{\circ} \mathrm{C}^{86}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-5), 7.21-7.17(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-4$ and H-6), 5.92 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.35 (d, $J=4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 1.15 [s, 9 $\mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6$ (s, $\mathrm{C}=\mathrm{O}$), $139.0(\mathrm{~s}, \mathrm{C}-1)$, 129.1 (d, C-4), 129.0 (d, C-6), 128.0 (d, C-3), 127.8 (d, C-5), 127.5 (seen as three lines, 1:1:1, because of coupling to $\mathrm{D}, \mathrm{C}-2), 43.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=192\left(\mathrm{M}^{+}, 19\right), 92\left(\mathrm{M}^{+}-\mathrm{NHCO}^{t} \mathrm{Bu}, 96\right), 57\left({ }^{t} \mathrm{Bu}^{+}, 100\right)$.
CI-MS: $m / z(\%)=210\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 32\right), 193\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{DNO}\left(\mathrm{MH}^{+}\right), 193.1446$; found, 193.1445 .
FT-IR: $v_{\max }=3305(\mathrm{NH}), 2967(\mathrm{CH}), 1620(\mathrm{C}=\mathrm{O}), 1525$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1439,1225$ cm^{-1}.

7.6 Synthesis of \boldsymbol{N}-(substituted benzyl)pivalamides

The procedure was identical with that described for the synthesis of N-benzylpivalamide (49; Section 7.2) except that the appropriate substituted benzylamine ($67 ; 40.0 \mathrm{mmol}$) was used. The reaction mixture was worked-up and the solid obtained was purified by crystallization from $\mathrm{Et}_{2} \mathrm{O}$-hexane (2:1) to give the pure N-(substituted benzyl)pivalamides 44, 46, 65 and 68 as white crystals. The yields obtained are reported in Table 2.3.

N -(4-Methoxybenzyl)pivalamide (44)

Yield: 7.69 g ($34.8 \mathrm{mmol}, 87 \%$).
Mp: $90-91^{\circ} \mathrm{C}$ (lit. $.^{133,134} 88-90^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-5), 6.86(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2$ and H-6), 5.97 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.36 (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.79 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.21\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6$ (s, $\mathrm{C}=\mathrm{O}$), 159.3 (s, C-4), 131.2 (s, $\mathrm{C}-1$), 129.4 (d, C-2/C-6), 114.5 (d, C-3/C-5), 55.7 (q, OCH_{3}), 43.4 (t, CH_{2}), 39.1 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=221\left(\mathrm{M}^{+}, 47\right), 136\left(\mathrm{M}^{+}-\mathrm{CO}^{\prime} \mathrm{Bu}, 28\right), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 100\right)$, $91\left(\mathrm{PhCH}_{2}{ }^{+}, 35\right), 77(65), 57\left({ }^{t} \mathrm{Bu}^{+}, 96\right)$.
CI-MS: $m / z(\%)=239\left(M+\mathrm{NH}_{4}{ }^{+}, 8\right), 222\left(\mathrm{MH}^{+}, 100\right), 121(11)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 222.1489$; found, 222.1487.
FT-IR: $v_{\max }=3332(\mathrm{NH}), 2965(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1539$ (aromatic $\mathrm{C}=\mathrm{C}$), 1517, $1254,1218,1031 \mathrm{~cm}^{-1}$.

N -(2-Methoxybenzyl)pivalamide (46)

Yield: 8.04 g ($36.4 \mathrm{mmol}, 91 \%$).
Mp: 103-104 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.24$ (m, $2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-5$), 6.94-6.88 (m, $2 \mathrm{H}, \mathrm{H}-4$ and H-6), 6.25 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.42\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 3.86 ($\mathrm{s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 1.20\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.0(\mathrm{~s}, \mathrm{C}-2), 130.0(\mathrm{~d}, \mathrm{C}-6)$, 129.1 (d, C-4), 126.9 ($\mathrm{s}, \mathrm{C}-1$), 121.1 (d, C-5), 110.7 (d, C-3), 55.7 (q, OCH_{3}), 40.0 (t, $\left.\mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=221\left(\mathrm{M}^{+}, 19\right), 136\left(\mathrm{M}^{+}-\mathrm{CO}^{\prime} \mathrm{Bu}, 43\right), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 78\right), 91$ $\left(\mathrm{PhCH}_{2}{ }^{+}, 70\right), 77(21), 57\left({ }^{\prime} \mathrm{Bu}^{+}, 100\right), 41(80)$.
CI-MS: $m / z(\%)=222\left(\mathrm{MH}^{+}, 100\right), 119(9)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 222.1489$; found, 222.1490 .
FT-IR: $v_{\max }=3338(\mathrm{NH}), 2964(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O})$, 1532 (aromatic $\mathrm{C}=\mathrm{C}$), 1517, 1242, 1113, $1026 \mathrm{~cm}^{-1}$.

\boldsymbol{N}-(2-Methylbenzyl)pivalamide (65)

Yield: 7.30 g ($35.6 \mathrm{mmol}, 89 \%$).
Mp: $108-109{ }^{\circ} \mathrm{C}$.
Compound 65 was found to be identical in all respects with the one produced via bromine-lithium exchange of N -(2-bromobenzyl)pivalamide (60) followed by reaction with iodomethane as an electrophile (Section 7.5). See Section 7.5 for spectral data.

N-(4-Methylbenzyl)pivalamide (68)

Yield: 7.54 g ($36.8 \mathrm{mmol}, 92 \%$).
Mp: 96-97 ${ }^{\circ} \mathrm{C}$ (lit. $.^{134} 94-96^{\circ} \mathrm{C}$).
${ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.16$ (br, $4 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3, \mathrm{H}-5$ and $\mathrm{H}-6$), 6.00 (br, exch., $1 \mathrm{H}, \mathrm{NH}), 4.40\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=178.6(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 137.5(\mathrm{~s}, \mathrm{C}-1), 136.1$ (s, C-4), 129.8 (d, C-3/C-5), 128.1 (d, C-2/C-6), 43.7 (t, CH2), 39.1 [s, $C\left(\mathrm{CH}_{3}\right)_{3}$], 28.0 [q, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=205\left(\mathrm{M}^{+}, 15\right), 105\left(\mathrm{M}^{+}-\mathrm{NHCO}^{t} \mathrm{Bu}, 95\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 46\right), 77(49)$, 57 (${ }^{t} \mathrm{Bu}^{+}, 100$).

CI-MS: $m / z(\%)=223\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 12\right), 206\left(\mathrm{MH}^{+}, 100\right), 122(5)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 206.1539$; found, 206.1541.
FT-IR: $v_{\text {max }}=3318(\mathrm{NH}), 2958(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O}), 1537$ (aromatic $\mathrm{C}=\mathrm{C}$), 1220, 1005 cm^{-1}.

7.7 Synthesis of \boldsymbol{N}-(2-substituted 4-methoxybenzyl)pivalamides 71-76 via directed lithiation of \boldsymbol{N}-(4-methoxybenzyl)pivalamide (44)

A solution of $t-\mathrm{BuLi}$ in heptane $(2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol})$ was added to a cold $\left(-78^{\circ} \mathrm{C}\right)$, stirred solution of N -(4-methoxybenzyl)pivalamide ($44 ; 0.44 \mathrm{~g}, 2.0$ mmol) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 69 was observed as a yellow solution and the dilithium reagent 70 was observed as a brownish solution. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h , to ensure the complete
formation of the dilithium reagent 70, after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give pure products. The yields obtained are reported in Table 2.4.

N-(4-Methoxy-2-methylbenzyl)pivalamide (71)

Yield: 0.38 g ($1.62 \mathrm{mmol}, 81 \%$).
Mp: $93-94{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.04(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.66(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 6.62$ (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.64$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.27 (d, $J=5 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.5 (s, C-4), 138.5 (s, C-2), 130.4 (d, C-6), 128.7 ($\mathrm{s}, \mathrm{C}-1$), 116.7 (d, C-3), 115.5 (d, C-5), 55.6 ($\mathrm{q}, \mathrm{OCH}_{3}$), 41.9 (t, CH_{2}), 39.1 [s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=235\left(\mathrm{M}^{+}, 8\right), 135\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 67\right), 134(52), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 33\right)$, 77 (12), 57 (${ }^{t} \mathrm{Bu}^{+}, 100$).
CI-MS: $m / z(\%)=253\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 3\right), 236\left(\mathrm{MH}^{+}, 100\right), 135\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 21\right)$, 119 (12), 102 (15), 52 (47).

HRMS: m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 236.1645$; found, 236.1646.
FT-IR: $v_{\max }=3306(\mathrm{NH}), 2959(\mathrm{CH}), 1627(\mathrm{C}=\mathrm{O}), 1532$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right)$, 1493, 1244, $1024 \mathrm{~cm}^{-1}$.

N-(2-(Hydroxydiphenylmethyl)-4-methoxybenzyl)pivalamide (72)

Yield: 0.64 g ($1.60 \mathrm{mmol}, 80 \%$).
Mp: 205-207 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.25(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-6$ and 2 Ph$), 6.79(\mathrm{dd}, J=2$, $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.41(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 6.26(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.22$ (s, exch., $1 \mathrm{H}, \mathrm{OH}), 4.08\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.05[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.1 ($\mathrm{s}, \mathrm{C}-4$), 147.7 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 146.7 ($\mathrm{s}, \mathrm{C}-2$), 132.8 (d, C-6), 131.1 ($\mathrm{s}, \mathrm{C}-1$), 128.4 (d, C-3/C-5 of 2 Ph), 128.2 ($\mathrm{d}, \mathrm{C}-2 / \mathrm{C}-6$ of 2 Ph), 127.6 ($\mathrm{d}, \mathrm{C}-4$ of 2 Ph), 117.1 ($\mathrm{d}, \mathrm{C}-3$), 112.8 ($\mathrm{d}, \mathrm{C}-5$), 82.9 (s , $\mathrm{C}-\mathrm{OH}), 55.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 41.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.8\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=385\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 43\right), 328\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{\dagger} \mathrm{Bu}, 33\right), 300\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{CO}^{\prime} \mathrm{Bu}, 100$).
CI-MS: $m / z(\%)=402\left(\mathrm{M}^{+}-1,2\right), 388\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 46\right), 386\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 42\right), 273$ (12), 222 (84), 200 (27), $183\left(\mathrm{Ph}_{2} \mathrm{COH}^{+}, 40\right), 119$ (63), 102 (100).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=426\left(\mathrm{M}+\mathrm{Na}^{+}, 25\right), 386\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 62\right), 285(100)$.
ES - MS: $m / z(\%)=403\left(\mathrm{M}^{-}, 10\right), 402\left(\mathrm{M}^{-}-1,24\right), 220(100)$.
HRMS: m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right), 426.2040$; found, 426.2041.
FT-IR: $v_{\max }=3323(\mathrm{NH}$ and OH$), 2964(\mathrm{CH}), 1623(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), 1493, 1242, $1034 \mathrm{~cm}^{-1}$.

N-(2-(1-Hydroxycyclohexyl)-4-methoxybenzyl)pivalamide (73)

Yield: $0.49 \mathrm{~g}(1.54 \mathrm{mmol}, 77 \%)$.
Mp: $109-110^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.83(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, H-3), 6.64 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.56 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.55 (d, $J=6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.72$ (s, exch., $\left.1 \mathrm{H}, \mathrm{OH}\right), 1.89-1.61[\mathrm{~m}, 10 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)_{5}\right], 1.06\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.9(\mathrm{~s}, \mathrm{C}-4), 148.4(\mathrm{~s}, \mathrm{C}-2)$, 133.8 (d, C-6), 129.8 (s, C-1), 113.1 (d, C-3), 111.5 (d, C-5), 74.9 ($\mathrm{s}, \mathrm{C}-1$ of
cyclohexyl), 55.6 ($\mathrm{q}, \mathrm{OCH}_{3}$), 42.7 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}$), 39.1 (t, C-2/C-6 of cyclohexyl), 38.9 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.7$ (t, C-4 of cyclohexyl), 22.4 (t, C-3/C-5 of cyclohexyl).
EI-MS: $m / z(\%)=319\left(\mathrm{M}^{+}, 13\right), 301\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 18\right), 276(10), 234(30), 216(100)$.
CI-MS: $m / z(\%)=320\left(\mathrm{MH}^{+}, 17\right), 302\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 53\right), 222(52), 201$ (22), 189 (19), 116 (68), 102 (100), 52 (74).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 320.2220$; found, 320.2225 .
FT-IR: $v_{\max }=3330(\mathrm{NH}$ and OH$), 2924(\mathrm{CH}), 1612(\mathrm{C}=\mathrm{O}), 1530$ (aromatic $\mathrm{C}=\mathrm{C}$), $1238,1025 \mathrm{~cm}^{-1}$.

N -(2-(2-Hydroxyhexan-2-yl)-4-methoxybenzyl)pivalamide (74)

Yield: 0.50 g ($1.56 \mathrm{mmol}, 78 \%$).
Mp: $102-103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.72(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, H-3), 6.68 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 6.64 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.54 (dd, $J=6,14$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right) .4 .50\left(\mathrm{dd}, J=5,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 2.83 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $1.85\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{COH}\right), 1.74(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{COH}$), $1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COH}\right), 1.25-1.11\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.78\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.3$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.7 ($\mathrm{s}, \mathrm{C}-4$), 146.9 ($\mathrm{s}, \mathrm{C}-2$), 134.1 (d, C-6), 129.5 ($\mathrm{s}, \mathrm{C}-1$), 114.1 (d, C-3), 111.3 (d, C-5), 77.0 ($\mathrm{s}, \mathrm{C}-\mathrm{OH}$), 55.6 (q, OCH_{3}), 44.7 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $42.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 38.9\left[\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 31.5(\mathrm{q}$, $\left.C H_{3} \mathrm{COH}\right), 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.4(\mathrm{q}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).
EI-MS: $m / z(\%)=321\left(\mathrm{M}^{+}, 6\right), 303\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 41\right), 264\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}, 100\right), 246\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}-{ }^{\prime} \mathrm{Bu}, 36$).
CI-MS: $m / z(\%)=322\left(\mathrm{MH}^{+}, 53\right), 304\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 264\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}, 9\right), 222$ (12), 219 (33), 119 (36), 102 (23).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 322.2377$; found, 322.2379 .

FT-IR: $v_{\max }=3315(\mathrm{NH}$ and OH$), 2933(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), $1462,1352,1227,1020,1000 \mathrm{~cm}^{-1}$.

N-(2-(Hydroxy-(4-methoxyphenyl)methyl)-4-methoxybenzyl)pivalamide (75)

Yield: 0.58 g ($1.64 \mathrm{mmol}, 82 \%$).
Mp: $130-132{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.76$ (app. t, $J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.22 (d, J $=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), $7.08(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.07(\mathrm{~d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.88$ (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 6.80 (dd, $J=$ $2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.86$ (s, 1 H, CH), 5.81 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.26 (dd, $J=6,15 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 3.98\left(\mathrm{dd}, J=6,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $1.11\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=177.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.5(\mathrm{~s}, \mathrm{C}-4), 158.4(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 144.3 (s, C-2), 136.6 (s, C-1 of 4-methoxyphenyl), 136.5 (s, C-1), 128.7 (d, C-6), 128.6 (d, C-2/C-6 of 4-methoxyphenyl), 113.8 (d, C-3/C-5 of 4-methoxyphenyl), 112.8 (d, C-3), 111.9 (d, C-5), 70.8 (d, CH), 55.4 (q, OCH_{3}), 55.3 $\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 39.2\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.

EI-MS: $m / z(\%)=357\left(\mathrm{M}^{+}, 17\right), 339\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 324$ (15), 308 (12), 296 (13).
CI-MS: $m / z(\%)=358\left(\mathrm{MH}^{+}, 1\right), 356\left(\mathrm{M}^{+}-1,9\right), 340\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 250(12)$, 222 (28), 154 (11), 137 (8), 119 (15), 102 (23).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=380\left(\mathrm{M}+\mathrm{Na}^{+}, 25\right), 340\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 67\right), 239\left(\mathrm{MH}^{+}-\mathrm{CO}^{t} \mathrm{Bu}-\right.$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 100$).
ES -MS: $m / z(\%)=357\left(\mathrm{M}^{-}, 9\right), 356\left(\mathrm{M}^{-}-1,39\right), 220(100)$.
HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 380.1832; found, 380.1832.
FT-IR: $v_{\max }=3313(\mathrm{NH}$ and OH$), 2933(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), 1462, 1352, 1227, $1020 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 70.56; $\mathrm{H}, 7.61 ; \mathrm{N}, 3.92$. Found: C, 70.63; H, 7.64; N, 3.89\%.
N-(2-Deuterio-4-methoxybenzyl)pivalamide (76)

Yield: 0.39 g ($1.76 \mathrm{mmol}, 88 \%$).
$\mathrm{Mp}: 90-91{ }^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue $\left.88-90^{\circ} \mathrm{C}^{133,134}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.88-6.76 (m, $2 \mathrm{H}, \mathrm{H}-3$ and H-5), 5.96 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.34\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.21\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.3 ($\mathrm{s}, \mathrm{C}-4$), 131.1 ($\mathrm{s}, \mathrm{C}-1$), 129.4 (d, C-6), 129.1 (seen as three lines, 1:1:1, because of coupling to D, C-2), 114.5 (d, C-3), 114.4 (d, C-5), $55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 43.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0$ [q, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
EI-MS: $m / z(\%)=222\left(\mathrm{M}^{+}, 11\right), 122\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 100\right), 79(21), 57\left({ }^{(} \mathrm{Bu}^{+}, 88\right)$.
CI-MS: $m / z(\%)=240\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 7\right), 223\left(\mathrm{MH}^{+}, 100\right), 122\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 12\right)$, 102 (10), 52 (6).
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{DNO}_{2}\left(\mathrm{MH}^{+}\right), 223.1551$; found, 223.1553 .
FT-IR: $v_{\max }=3332(\mathrm{NH}), 2932(\mathrm{CH}), 1633(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), 1494, 1238, $1033 \mathrm{~cm}^{-1}$.

N-(4-Methoxy-2-methylbenzyl)- N-methylpivalamide (77)

Yield: 25 mg ($0.10 \mathrm{mmol}, 5 \%$).
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.87(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.61-6.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-5$), $4.47\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.14(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.21\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.9$ (s, $\mathrm{C}=\mathrm{O}$), 159.0 ($\mathrm{s}, \mathrm{C}-4$), 137.8 ($\mathrm{s}, \mathrm{C}-2$), 128.8 ($\mathrm{s}, \mathrm{C}-1$), 127.6 (d, C-6), 116.6 (d, C-3), 111.4 (d, C-5), 55.6 ($\mathrm{q}, \mathrm{OCH}_{3}$), 50.7 (t , $\left.\mathrm{CH}_{2}\right), 39.5\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 36.4\left(\mathrm{q}, \mathrm{NCH}_{3}\right), 28.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$. EI-MS: $m / z(\%)=249\left(\mathrm{M}^{+}, 4\right), 135\left(\mathrm{M}^{+}-\mathrm{NMeCO}^{\prime} \mathrm{Bu}, 100\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 34\right), 77$ (12), $57\left({ }^{t} \mathrm{Bu}^{+}, 90\right)$.

CI-MS: $m / z(\%)=250\left(\mathrm{MH}^{+}, 100\right), 135\left(\mathrm{M}^{+}-\mathrm{NHCO}^{t} \mathrm{Bu}, 27\right), 116(22)$.
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 250.1802$; found, 250.1804 .
FT-IR: $v_{\max }=2956(\mathrm{CH}), 1633(\mathrm{C}=\mathrm{O}), 1536($ aromatic $\mathrm{C}=\mathrm{C}), 1490,1240,1011 \mathrm{~cm}^{-1}$.

7.8 Synthesis of N-(4-methoxy-2-methylbenzyl)- N-methylpivalamide (77) via directed lithiation of \boldsymbol{N}-(4-methoxybenzyl)pivalamide (44)

The procedure was identical with that described in Section 7.7 except that excess iodomethane ($0.63 \mathrm{~g}, 4.4 \mathrm{mmol}$) was used. The reaction mixture was workedup and purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give 77 $(0.43 \mathrm{~g}, 1.74 \mathrm{mmol}, 87 \%)$ as a colourless oil. Compound 77 was found to be identical in all respects with the one produced as a side product from reaction of dilithium reagent of compound 44 with 1.1 equivalents of iodomethane (Section 7.7).

7.9 Synthesis of N-(3-substituted 2-methoxybenzyl)pivalamides 80-84 via directed lithiation of \boldsymbol{N}-(2-methoxybenzyl)pivalamide (46)

A solution of t-BuLi in heptane ($2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol}$) was added to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$, stirred solution of N -(2-methoxybenzyl)pivalamide (46; $0.44 \mathrm{~g}, 2.0$ mmol) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 78 was observed as a yellow solution and the dilithium reagent 79 was observed as a brownish solution. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h , to ensure the complete formation of the dilithium reagent, after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $-78{ }^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give pure products $\mathbf{8 0 - 8 4}$. In the case of carbon dioxide as electrophile the cooling bath was
removed before solid carbon dioxide was added and the mixture was stirred for 30 minutes while the temperature rose, and then quenched with $\mathrm{HCl}(2 \mathrm{M} ; 5 \mathrm{~mL})$. The crude product was crystallised from ethyl acetate to give pure $\mathbf{8 4}$. The yields obtained are recorded in Table 2.5.

N-(3-(Hydroxy-(4-methoxyphenyl)methyl)-2-methoxybenzyl)pivalamide (80)

Yield: 0.54 g ($1.52 \mathrm{mmol} ; 76 \%)$.
Mp: $144-145{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.04$ (app. $\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.39 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.28(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.13 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.08 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.89(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, H-3/H-5 of 4-methoxyphenyl), 5.98 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.72 (d, $J=4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 4.40\left(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 4.28(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.19\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=178.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.9(\mathrm{~s}, \mathrm{C}-2), 154.9(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 139.4 (s, C-1 of 4-methoxyphenyl), 138.3 (s, C-1), 133.5 (s, C-3), 128.5 (d, C-2/C-6 of 4-methoxyphenyl), 127.0 (d, C-4), 126.8 (d, C-6), 124.7 (d, C-5) 114.1 (d, C-3/C-5 of 4-methoxyphenyl), 68.7 (d, CH), $61.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.9(\mathrm{q}$, $\left.\mathrm{OCH}_{3}\right), 38.9\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 28.3\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=357\left(\mathrm{M}^{+}, 2\right), 339\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 29\right), 324\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 38\right), 254$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O},-\mathrm{CO}^{\prime} \mathrm{Bu}, 51\right), 240\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}-\mathrm{OH}, 63\right), 238\left(\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{C}^{+}\right.$, 100), 225 (30), 211 ($\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{Ph}^{+}, 25$), 195 (30), 181 (29), 165 (56), 152 (62), 146 (82).

CI-MS: $m / z(\%)=375\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 11\right), 358\left(\mathrm{MH}^{+}, 14\right), 340\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 222$ (57), 154 (30), 119 (72), 102 (37).

HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right), 358.2013$; found, 358.2014.
FT-IR: $v_{\max }=3329(\mathrm{NH}$ and OH$), 2923(\mathrm{CH}), 1614(\mathrm{C}=\mathrm{O}), 1562$ (aromatic $\mathrm{C}=\mathrm{C}$), 1469, 1241, 1037, $1001 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 70.56; $\mathrm{H}, 7.61$; $\mathrm{N}, 3.92$. Found: $\mathrm{C}, 70.56 ; \mathrm{H}, 7.64 ; \mathrm{N}$, 4.09\%.

Selected crystallographic data: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}, \mathrm{FW}=357.44, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$
\AA, Monoclinic, $\mathrm{P} 2 / / \mathrm{a}, \mathrm{a}=12.6540(3) \AA, \mathrm{b}=10.5000(2) \AA, \mathrm{c}=14.5990(4) \AA, \alpha=90^{\circ}$, $\beta=92.0180(10)^{\circ}, \gamma=90^{\circ}, V=1938.52(8) \AA^{3}, Z=4, \rho_{\text {calc. }}=1.225 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.40 \times 0.40 \times 0.10 \mathrm{~mm}^{3}, \mathrm{~m}=0.084 \mathrm{~mm}^{-1}$, reflections collected $=7167$, independent reflections $=4407, \mathrm{R}_{\text {int }}=0.07314$, parameters $=239$, final $\mathrm{R}_{1}=0.0530, \mathrm{wR}_{2}=0.1239$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.0759, \mathrm{wR}_{2}=0.1364$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 736587, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

N -(3-(Hydroxyphenylmethyl)-2-methoxybenzyl)pivalamide (81)

Yield: 0.49 g ($1.50 \mathrm{mmol}, 75 \%)$.
Mp: $133-135{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41$ (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of Ph), $7.36-7.32$ (m, $3 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-4 / \mathrm{H}-6$ of Ph), 7.27 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.19 (dd, $J=2,8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$), 7.13 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.12 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 6.10 (s, 1 H , CH), 4.51 (dd, $J=6,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 4.44 (dd, $J=5,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.97(\mathrm{br}$, exch., $1 \mathrm{H}, \mathrm{OH}), 1.21\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.9(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 156.1(\mathrm{~s}, \mathrm{C}-2), 144.1(\mathrm{~s}, \mathrm{C}-1 \mathrm{of} \mathrm{Ph})$, 137.8 (s, C-1), 132.0 ($\mathrm{s}, \mathrm{C}-3$), 129.2 (s, C-4), 128.8 (d, C-3/C-5 of Ph), 128.1 (d, C-4 of Ph), 127.8 (d, C-6), 126.9 (d, C-2/C-6 of Ph), 125.2 (d, C-5), 71.8 (d, CH), 62.1 (q, $\left.\mathrm{OCH}_{3}\right), 39.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.0\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=357\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right), 328\left(\mathrm{MH}^{+}, 16\right), 311\left(\mathrm{MH}^{+}-\mathrm{OH}, 15\right), 310$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 68\right), 281$ (12).
ES-MS: $m / z(\%)=327\left(M^{-}, 8\right), 326\left(M^{-}-1,22\right), 220(100), 188(13), 131(30)$.

HRMS: m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$, 328.1907; found, 328.1905 .
FT-IR: $v_{\max }=3319(\mathrm{NH}$ and OH$), 2929(\mathrm{CH}), 1639(\mathrm{C}=\mathrm{O}), 1528$ (aromatic $\mathrm{C}=\mathrm{C}$), 1492, 1344, 1234, $1006 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 73.37; H, 7.70; $\mathrm{N}, 4.28$. Found: C, 73.39; H, 7.72; N , 4.26\%.

N-(3-(Hydroxydiphenylmethyl)-2-methoxybenzyl)pivalamide (82)

Yield: 0.59 g ($1.46 \mathrm{mmol}, 73 \%$).
Mp: $173-174{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=7.80(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 7.10-7.01(\mathrm{~m}$, $10 \mathrm{H}, 2 \mathrm{Ph}$), 6.90 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.76 (app. $\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.48 (dd, J $=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.74$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $4.04\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.12(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{OCH}_{3}\right), 0.92\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=178.5$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 156.4 ($\mathrm{s}, \mathrm{C}-2$), 147.9 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 141.2 ($\mathrm{s}, \mathrm{C}-1$), 134.5 ($\mathrm{s}, \mathrm{C}-3$), 128.4 (d, C-2/C-6 and C-3/C-5 of 2 Ph), 128.4 (d, C-4), 128.3 (d, C-6), 127.7 (d, C-4 of 2 Ph), 123.7 ($\mathrm{d}, \mathrm{C}-5$), 81.5 ($\mathrm{s}, \mathrm{C}-\mathrm{OH}$), 61.2 $\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 40.0\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 28.3\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=385\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 370\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 35\right)$.
CI-MS: $m / z(\%)=421\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 5\right), 405\left(\mathrm{MH}^{+}+1,12\right), 404\left(\mathrm{MH}^{+}, 3\right), 388\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{3}, 48\right), 386\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 343$ (11), 273 (13), 222 (34), 200 (24), 183 $\left(\mathrm{Ph}_{2} \mathrm{COH}^{+}, 14\right), 119(100), 102(45)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=426\left(\mathrm{M}+\mathrm{Na}^{+}, 38\right), 421\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100\right), 404\left(\mathrm{MH}^{+}, 13\right), 386$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 88\right)$.
$\mathrm{ES}^{-}-\mathrm{MS}: m / z(\%)=403\left(\mathrm{M}^{-}, 32\right), 402\left(\mathrm{M}^{-}-1,100\right), 388\left(\mathrm{M}^{-}-\mathrm{CH}_{3}, 40\right), 241$ (18), 206 (22).
HRMS: m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 404.2220$; found, 404.2219.
FT-IR: $v_{\max }=3334(\mathrm{NH}$ and OH$), 2938(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1533$ (aromatic $\mathrm{C}=\mathrm{C}$), $1462,1238,1019 \mathrm{~cm}^{-1}$.

N-(3-Deuterio-2-methoxybenzyl)pivalamide (83)

Yield: $0.38 \mathrm{~g}(1.72 \mathrm{mmol}, 86 \%)$.
$\mathrm{Mp}: 103-104{ }^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue $103-104^{\circ} \mathrm{C}$; 46, Section 7.6).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21-7.15(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6$), $6.83(\mathrm{~m}, 1 \mathrm{H}$, H-4), 6.14 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.36 (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.78 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $1.11\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.0(\mathrm{~s}, \mathrm{C}-2), 130.1(\mathrm{~d}, \mathrm{C}-6)$, 129.1 (d, C-4), 129.0 ($\mathrm{s}, \mathrm{C}-1$), 121.1 (d, C-5), 110.5 (seen as three lines, 1:1:1, because of coupling to D, C-3), $55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 40.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0$ [q, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
EI-MS: $m / z(\%)=222\left(\mathrm{M}^{+}, 12\right), 137\left(\mathrm{M}^{+}-\mathrm{CO}^{\prime} \mathrm{Bu}, 28\right), 122\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 71\right), 92$ $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{+}, 91\right), 79(22), 77(17), 57\left({ }^{\prime} \mathrm{Bu}^{+}, 100\right)$.

CI-MS: $m / z(\%)=223\left(\mathrm{MH}^{+}, 100\right), 137\left(\mathrm{M}^{+}-\mathrm{CO}^{\prime} \mathrm{Bu}, 4\right), 119(5), 102(3)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{DNO}_{2}\left(\mathrm{MH}^{+}\right), 223.1551$; found, 223.1550 .
FT-IR: $v_{\max }=3340(\mathrm{NH}), 2969(\mathrm{CH}), 1626(\mathrm{C}=\mathrm{O}), 1538$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1481$, $1418,1224 \mathrm{~cm}^{-1}$.

2-Methoxy-3-(pivalamidomethyl)benzoic acid (84)

Yield: $0.42 \mathrm{~g}(1.58 \mathrm{mmol}, 80 \%)$.
Mp: $156-157^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.03(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.57(\mathrm{dd}, J=$ $2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.32 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.16 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $4.32\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.15\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=178.1$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $167.8\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right), 157.1(\mathrm{~s}, \mathrm{C}-2)$, 134.6 ($\mathrm{s}, \mathrm{C}-3$), 131.5 (d, C-4), 129.6 (d, C-6), 126.1 ($\mathrm{s}, \mathrm{C}-1$), 123.9 (d, C-5), 62.1 (q , $\left.\mathrm{OCH}_{3}\right), 38.6\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 37.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=569\left(2 \mathrm{M}+\mathrm{K}^{+}, 12\right), 553\left(2 \mathrm{M}+\mathrm{Na}^{+}, 100\right), 548\left(2 \mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 32\right)$, $329\left(\mathrm{M}+\mathrm{MeCNNa}^{+}, 25\right), 304\left(\mathrm{M}+\mathrm{K}^{+}, 27\right), 288\left(\mathrm{M}+\mathrm{Na}^{+}, 70\right), 266\left(\mathrm{MH}^{+}, 71\right)$.

HRMS: m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right), 266.1392$; found, 266.1386.
FT-IR: $v_{\max }=3377(\mathrm{NH}$ and OH$), 2972(\mathrm{CH}), 1698\left(\mathrm{CO}_{2}\right), 1610(\mathrm{C}=\mathrm{O}), 1540$ (aromatic $\mathrm{C}=\mathrm{C}$), 1427, $1368,1247 \mathrm{~cm}^{-1}$.
Selected crystallographic data: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}, \mathrm{FW}=265.30, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Monoclinic, $\mathrm{P} 2{ }_{1} / \mathrm{c}, \mathrm{a}=13.9970(5) \AA, \mathrm{b}=13.9230(5)(2) \AA, \mathrm{c}=15.0940(8) \AA, \alpha=$ $90^{\circ}, \beta=106.480(2)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=2820.7(2) \AA^{3}, \mathrm{Z}=8, \rho_{\text {calc. }}=1.249 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.40 \times 0.30 \times 0.06 \mathrm{~mm}^{3}, \mathrm{~m}=0.091 \mathrm{~mm}^{-1}$, reflections collected $=10912$, independent reflections $=6430, \mathrm{R}_{\mathrm{int}}=0.0712$, parameters $=353$, final $\mathrm{R}_{1}=0.0750$, $w R_{2}=0.1406$ for $I>2 \sigma(I)$ and $R_{1}=0.1497, w R_{2}=0.1673$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 736584, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.
N-((1S*,2S*)-2-hydroxy-1-(2-methoxyphenyl)-2-(4-methoxyphenyl)ethyl)pivalamide (85)

Yield: $14 \mathrm{mg}(0.04 \mathrm{mmol}, 2 \%)$.

Mp: 203-205 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=7.25(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.23-7.19 (m, $3 \mathrm{H}, \mathrm{NH}, \mathrm{H}-4$ and H-6), 6.96 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-3), 6.91 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $6.86(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 5.52 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.24 (dd, $J=3,6 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 4.78(\mathrm{dd}, J=4,3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $1.05\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=176.5(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $158.4(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 156.5 ($\mathrm{s}, \mathrm{C}-2$), 136.2 (s, C-1 of 4-methoxyphenyl), 130.3 (s, C-1), 128.1 (d, C-6), 127.6 (d, C-4), 127.2 (d, C-2/C-6 of 4-methoxyphenyl), 120.3 (d, C-5), 113.3 (d, C-3/C-5 of 4-methoxyphenyl), 110.9 (d, C-3), 73.1 (d, CHOH), 55.8 (q, $\left.\mathrm{OCH}_{3}\right), 55.3\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 53.8(\mathrm{~d}, \mathrm{CH}), 38.5\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.6\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=339\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 3\right), 254\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}^{\dagger} \mathrm{Bu}, 4\right), 222\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}, 10\right), 221\left[\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}\right.$ or $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{Ph}^{+}, 81\right], 220\left[\mathrm{M}^{+}\right.$ $-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHOH}$ or $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{OH}) \mathrm{Ph}^{+}, 22\right], 203$ (8), 137 (29), 136 (72), 121 (48), 109 (18), 94 (28), 91 (22), 77 (47), 57 ($\mathrm{Bu}^{+}, 100$).
CI-MS: $m / z(\%)=358\left(\mathrm{MH}^{+}, 8\right), 340\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 56\right), 222\left(\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}\right.$, 100), 154 (61), 137 (63), 119 (75), 102 (90), 86 (15).

HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right), 358.2013$; found, 358.20124 .
FT-IR: $v_{\max }=3451(\mathrm{NH}$ and OH$), 3258(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1560$ (aromatic $\mathrm{C}=\mathrm{C}$), 1513, 1252, $1027 \mathrm{~cm}^{-1}$.
Selected crystallographic data: $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}, \mathrm{FW}=357.44, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Triclinic, $\mathrm{P} 1, \mathrm{a}=7.403(2) \AA, \mathrm{b}=16.774(3) \AA, \mathrm{c}=18.372(4) \AA, \alpha=62.537(7)^{\circ}, \beta$ $=77.658(10)^{\circ}, \gamma=76.021(15)^{\circ}, V=1950.4(8) \AA^{3}, Z=4, \rho_{\text {calc. }}=1.214 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.25 \times 0.06 \times 0.06 \mathrm{~mm}^{3}, \mathrm{~m}=0.084 \mathrm{~mm}^{-1}$, reflections collected $=5162$, independent reflections $=3239, \mathrm{R}_{\text {int }}=0.1707$, parameters $=270$, final $\mathrm{R}_{1}=0.2028$, $w R_{2}=0.4072$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.2559, \mathrm{wR}_{2}=0.4390$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 736588, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

N-(2-Hydroxy-1-(2-methoxyphenyl)-2,2-diphenylethyl)pivalamide (87)

Yield: 24 mg ($0.06 \mathrm{mmol}, 3 \%$).
Mp: 203-204 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.54-6.99$ (m, $13 \mathrm{H}, 2 \mathrm{Ph}, \mathrm{H}-4, \mathrm{H}-6$ and NH), 6.86 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.54 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.34 (d, $J=9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 6.15$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $3.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 0.91\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=176.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 157.0 ($\mathrm{s}, \mathrm{C}-2$), 147.5, 145.3 ($2 \mathrm{~s}, \mathrm{C}-1$ of Ph), 130.8 (d, C-6), 128.9 ($\mathrm{s}, \mathrm{C}-1$), 128.52, 128.49 ($2 \mathrm{~d}, \mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph), 127.51, 127.41 ($2 \mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of 2 Ph), 127.4, 127.1 ($2 \mathrm{~d}, \mathrm{C}-4$ of 2 Ph), 126.6 (d, C-4), 120.1 (d, C-5), 110.4 (d, C-3), 80.9 (s, C-OH), 55.4 (q, OCH_{3}), 52.1 (d, CH), 38.7 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=386\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 10\right), 360(13), 300(24), 286$ (34), 270 (90), 252 (41), 241 (62), 239 (100).

CI-MS: $m / z(\%)=405\left(\mathrm{MH}^{+}+1,4\right), 404\left(\mathrm{MH}^{+}, 8\right), 386\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 10\right), 222(100)$, $220\left(\mathrm{M}^{+}-\mathrm{Ph}_{2} \mathrm{COH}, 41\right), 183\left(\mathrm{Ph}_{2} \mathrm{COH}^{+}, 43\right), 136$ (27), 119 (22), 102 (11).
HRMS: m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 404.2220$; found, 404.2221 .
FT-IR: $v_{\max }=3338(\mathrm{NH}$ and OH$), 2932(\mathrm{CH}), 1631(\mathrm{C}=\mathrm{O}), 1528$ (aromatic $\mathrm{C}=\mathrm{C}$), 1242, 1172, $1022 \mathrm{~cm}^{-1}$.

7.10 Lithiation of 46 with \boldsymbol{t}-BuLi at $0^{\circ} \mathrm{C}$ followed by reaction with 4-anisaldehyde

The procedure was identical with that described in Section 7.9 except that the reaction was carried out at $0^{\circ} \mathrm{C}$ and 4 -anisaldehyde was the electrophile. The reaction mixture was worked-up and purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$ hexane, $1: 3$) to give $\mathbf{8 0}(0.28 \mathrm{~g}, 0.78 \mathrm{mmol}, 39 \%)$ and $\mathbf{8 5}(0.29 \mathrm{~g}, 0.81 \mathrm{mmol}, 41 \%)$. Compounds 80 and 85 were identical in all respects with the ones produced from reaction of the dilithium reagents of compound 46 with 4 -anisaldehyde (Section 7.9).

7.11 Lithiation of 46 with t - BuLi at $0^{\circ} \mathrm{C}$ followed by reaction with CO_{2}

The procedure was identical with that described in Section 7.9 except that the reaction was carried out at $0^{\circ} \mathrm{C}$ and solid carbon dioxide was the electrophile. The reaction mixture was worked-up and the product mixture was purified by fractional crystallization using ethyl acetate to give $\mathbf{4 7}(26 \mathrm{mg}, 0.098 \mathrm{mmol}, 5 \%)$ and $84(0.21 \mathrm{~g}$, $0.79 \mathrm{mmol}, 40 \%$) as white crystals. No attempts were made to isolate 48.

3-Methoxy-2-(pivalamidomethyl)benzoic acid (47)

Mp: $170-171{ }^{\circ} \mathrm{C}$ (lit. ${ }^{85} 168-169{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=7.43(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.34 (app. t, J $=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.27(\mathrm{dd}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.19(\mathrm{dd}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4)$, $4.47\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.05\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=177.5\left(\mathrm{~s}, \mathrm{C}=\mathrm{O}\right.$), $169.7\left(\mathrm{~s}, \mathrm{CO}_{2} \mathrm{H}\right), 158.4(\mathrm{~s}, \mathrm{C}-3)$, 134.3 ($\mathrm{s}, \mathrm{C}-2$), 128.7 ($\mathrm{d}, \mathrm{C}-5$), 126.7 ($\mathrm{s}, \mathrm{C}-1$), 121.6 (d, C-6), 114.6 (d, C-4), 56.5 (q , $\left.\mathrm{OCH}_{3}\right), 38.4\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 35.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=553\left(2 \mathrm{M}+\mathrm{Na}^{+}, 34\right), 531\left(2 \mathrm{M}+\mathrm{H}^{+}, 42\right), 329\left(\mathrm{M}+\mathrm{MeCNNa}^{+}\right.$, 32), $304\left(\mathrm{M}+\mathrm{K}^{+}, 3\right), 266\left(\mathrm{MH}^{+}, 100\right)$.

HRMS: m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$, 266.1392; found, 266.1392.
FT-IR: $v_{\max }=3401(\mathrm{NH}$ and OH$), 2965(\mathrm{CH}), 1698\left(\mathrm{CO}_{2}\right), 1611(\mathrm{C}=\mathrm{O}), 1539$ (aromatic $\mathrm{C}=\mathrm{C}$), 1467, $1385,1219 \mathrm{~cm}^{-1}$.
Selected crystallographic data: $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{4}, \mathrm{FW}=265.30, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Triclinic, P1, $\mathrm{a}=7.6270(4) \AA, \mathrm{b}=8.3440(5) \AA, \mathrm{c}=11.1510(6) \AA, \alpha=98.759(3)^{\circ}$, $\beta=95.311(4)^{\circ}, \gamma=92.118(2)^{\circ}, V=697.42(7) \AA^{3}, Z=2, \rho_{\text {calc. }}=1.263 \mathrm{Mg} / \mathrm{m}^{3}$, crystal
size $=0.40 \times 0.16 \times 0.11 \mathrm{~mm}^{3}, \mathrm{~m}=0.092 \mathrm{~mm}^{-1}$, reflections collected $=4551$, independent reflections $=3160, \mathrm{R}_{\text {int }}=0.0347$, parameters $=177$, final $\mathrm{R}_{1}=0.0534$, $w R_{2}=0.1177$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.0797, \mathrm{wR}_{2}=0.1316$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 736585, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

2-Methoxy-3-(pivalamidomethyl)benzoic acid (84)

$\mathrm{Mp}: 156-157^{\circ} \mathrm{C}$.
Compound 84 was found to be identical in all respects with the one produced in Section 7.9. See Section 7.9 for spectral data.

7.12 Lithiation of $\mathbf{4 6}$ with $\sec -\mathrm{BuLi}$ at $-78^{\circ} \mathbf{C}$ followed by reaction with $\mathbf{C O}_{\mathbf{2}}$

The procedure was identical with that described in Section 7.9 except that sec-BuLi in cyclohexane ($3.2 \mathrm{~mL}, 1.4 \mathrm{M}, 4.4 \mathrm{mmol}$) was used instead of $t-\mathrm{BuLi}$ and solid carbon dioxide was the electrophile. The residue obtained was treated with diethyl ether and on standing overnight gave 47 ($63 \mathrm{mg}, 0.24 \mathrm{mmol}, 12 \%$) as white crystals. No attempt was made to isolate 48.

7.13 Lithiation of 46 with sec-BuLi at $0^{\circ} \mathbf{C}$ followed by reaction with $\mathrm{CO}_{\mathbf{2}}$

The procedure was identical with that described in Section 7.9 except that
 the reaction was carried out at $0{ }^{\circ} \mathrm{C}$ instead of $-78{ }^{\circ} \mathrm{C}$ in which solid carbon dioxide was the electrophile. The residue obtained was treated with diethyl ether and on standing overnight gave 47 ($0.13 \mathrm{~g}, 0.49 \mathrm{mmol}, 25 \%$) as white crystals. No attempt was made to isolate 48.

7.14 Lithiation of $\mathbf{4 6}$ with \boldsymbol{n}-BuLi at $\mathbf{0}^{\circ} \mathbf{C}$ followed by reaction with $\mathbf{C O}_{\mathbf{2}}$

The procedure was identical with that described in Section 7.9 except that n-BuLi in hexanes ($2.8 \mathrm{~mL}, 1.6 \mathrm{M}, 4.5 \mathrm{mmol}$) was used instead of $t-\mathrm{BuLi}$ and the reaction was carried out at $0^{\circ} \mathrm{C}$ instead of $-78{ }^{\circ} \mathrm{C}$ in which solid carbon dioxide was the electrophile. The residue obtained was treated with diethyl ether to give 47 ($58 \mathrm{mg}, 0.22 \mathrm{mmol}, 11 \%$) as white crystals. No attempts were made to isolate 48 or 84.

7.15 Synthesis of N-(2-substituted 4-methylbenzyl)pivalamides 89-95 via directed lithiation of \mathbf{N}-(4-methylbenzyl)pivalamide (68)

A solution of $t-\mathrm{BuLi}$ in heptane ($2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol}$) was added to a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$, stirred solution of $\mathbf{6 8}(0.41 \mathrm{~g}, 2.0 \mathrm{mmol})$ in anhydrous THF (20 mL) under N_{2}. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h , after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and then worked-up as usual. The crude product obtained was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give pure products as white solids. The yields obtained are recorded in Table 2.7.

N -(2-(Hydroxyphenymethyl)-4-methylbenzyl)pivalamide (89)

Yield: $0.49 \mathrm{~g}(1.58 \mathrm{mmol}, 79 \%)$.
Mp: $150-151^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.06(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}, \mathrm{H}-3$ and $\mathrm{H}-6), 7.00(\mathrm{dd}, J=$ $2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.99 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 5.92 (br, $1 \mathrm{H}, \mathrm{CH}$), 4.29 (dd, $J=5,14$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 4.16 (dd, $J=5,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 3.40 (br, exch., 1 H , $\mathrm{OH}), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 143.9 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 141.8 ($\mathrm{s}, \mathrm{C}-2$), 137.9 ($\mathrm{s}, \mathrm{C}-1$), 133.7 ($\mathrm{s}, \mathrm{C}-4$), 130.7 (d, C-3), 129.4 (d, C-6), 129.3 (d, C-5), 128.9 (d, C-3/C-5 of Ph), 127.8 (d, C-4 of Ph), 127.1 (d, C-2/C-6 of Ph), 74.1 (d, CH), 41.1 (t, $\left.\mathrm{CH}_{2}\right), 38.9\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=334\left(\mathrm{M}+\mathrm{Na}^{+}, 89\right), 312\left(\mathrm{MH}^{+}, 8\right), 295\left(\mathrm{MH}^{+}-\mathrm{OH}, 21\right), 294$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 208$ (12), 193 (78), 102 (27), 57 (${ }^{t} \mathrm{Bu}^{+}, 81$).
$\mathrm{ES}^{-}-\mathrm{MS}: m / z(\%)=311\left(\mathrm{M}^{-}, 2\right), 310(\mathrm{M}-1,23), 204\left[\mathrm{M}^{-}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}), 100\right]$.

HRMS: m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 312.1958$; found, 312.1960 .
FT-IR: $v_{\max }=3339(\mathrm{NH}$ and OH$), 2906(\mathrm{CH}), 1630(\mathrm{C}=\mathrm{O}), 1549$ (aromatic $\mathrm{C}=\mathrm{C}$), 1495, 1356, 1235, $1020 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, $77.14 ; \mathrm{H}, 8.09$; $\mathrm{N}, 4.50$. Found: C, $77.23 ; \mathrm{H}, 8.14 ; \mathrm{N}$, 4.45\%.

Selected crystallographic data: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}, \mathrm{FW}=311.410, \mathrm{~T}=296(2) \mathrm{K}, \lambda=0.71073$ \AA, Monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}, \mathrm{a}=10.7160(7) \AA, \mathrm{b}=15.0800(7) \AA, \mathrm{c}=11.2900(11) \AA, \alpha=$ $90^{\circ}, \beta=94.234(3)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=1819.5(2) \AA^{3}, \mathrm{Z}=4, \rho_{\text {calc. }}=1.137 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.32 \times 0.32 \times 0.12 \mathrm{~mm}^{3}, \mathrm{~m}=0.073 \mathrm{~mm}^{-1}$, reflections collected $=9766$, independent reflections $=3353, \mathrm{R}_{\text {int }}=0.0728$, parameters $=214$, final $\mathrm{R}_{1}=0.0751$, $\mathrm{wR}_{2}=0.1741$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1621, \mathrm{wR}_{2}=0.2090$ for all data. Full crystallographic data for this compound have been deposited with the CCDC , reference number 736920 , and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

N-(2-(Hydroxy-(4-methoxyphenyl)methyl)-4-methylbenzyl)pivalamide (90)

Yield: 0.55 g ($1.61 \mathrm{mmol}, 81 \%$).
Mp: 184-186 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.55$ (app. $\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.05 (s , $1 \mathrm{H}, \mathrm{H}-3$), 6.96 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 6.78 (br, $2 \mathrm{H}, \mathrm{H}-5$ and H-6), 6.62 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), $5.60(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 5.51(\mathrm{~d}, J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}), 4.02(\mathrm{dd}, J=6,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), $3.79\left(\mathrm{dd}, J=6,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.03(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.86\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=178.0$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.9 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 143.2 (s, C-2), 137.3 ($\mathrm{s}, \mathrm{C}-1$), 136.1 ($\mathrm{s}, \mathrm{C}-4$), 134.2 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 129.0 (d, C-2/C-6 of 4-methoxyphenyl), 128.1 (d, C-3), 128.0 (d,

C-6), 127.7 (d, C-5), 114.2 (d, C-3/C-5 of 4-methoxyphenyl), 71.3 (d, CH), 55.9 (q, $\left.\mathrm{OCH}_{3}\right), 40.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.9\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.3\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=323\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 17\right), 266\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{t} \mathrm{Bu}, 62\right), 238\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{CO}^{t} \mathrm{Bu}, 33\right), 209\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{NHCO}^{t} \mathrm{Bu}, 50\right), 165$ (55), 130 (44), 92 (46), 77 (100).

CI-MS: $m / z(\%)=341\left(\mathrm{M}^{+}, 6\right), 340\left(\mathrm{M}^{+}-1,17\right), 326\left(\mathrm{M}^{+}-\mathrm{Me}, 48\right), 324\left(\mathrm{MH}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}, 100\right), 206(66), 154(22), 137\left[\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})^{+}, 17\right], 119\left(\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{NH}^{+}\right.$, 37), 102 [${ }^{t} \mathrm{BuCOH}\left(\mathrm{NH}_{2}\right)^{+}$, 22].
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=364\left(\mathrm{M}+\mathrm{Na}^{+}, 82\right), 325\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 22\right), 324\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 79\right)$, $223\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 100\right)$.
ES $-\mathrm{MS}: m / z(\%)=341\left(\mathrm{M}^{-}, 12\right), 340\left(\mathrm{M}^{-}-1,52\right), 204\left[\mathrm{M}^{-}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH})\right.$, 100].
HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{M}^{-}-1\right), 340.1918$; found, 340.1908.
FT-IR: $v_{\max }=3328(\mathrm{NH}$ and OH$), 2923(\mathrm{CH}), 1613(\mathrm{C}=\mathrm{O}), 1563$ (aromatic $\mathrm{C}=\mathrm{C}$), 1469, 1242, $1026 \mathrm{~cm}^{-1}$.

N-(2-(Hydroxydiphenylmethyl)-4-methylbenzyl)pivalamide (91)

Yield: 0.63 g ($1.63 \mathrm{mmol}, 81 \%$).
Mp: 244-246 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.81$ (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.34-7.24$ ($\mathrm{m}, 10 \mathrm{H}$, 2 Ph), 7.17 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3)$, 6.36 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $3.93\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.07[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=178.4$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 148.6 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 145.3 (s, C-2), 137.1 ($\mathrm{s}, \mathrm{C}-1$), 135.2 ($\mathrm{s}, \mathrm{C}-4$), 130.4 (d, C-3), 129.7 (d, C-6), 129.0 (d, C-5), $128.6(\mathrm{~d}, \mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph$), 128.3(\mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of 2 Ph$), 127.5(\mathrm{~d}, \mathrm{C}-4$ of 2 Ph$), 82.2(\mathrm{~s}$, $\mathrm{C}-\mathrm{OH}), 41.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 38.7\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.2\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=370\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 8\right), 369\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 28\right), 368\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{H}, 9\right)$, $312\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{\prime} \mathrm{Bu}, 51\right), 310(48), 285\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}^{t} \mathrm{Bu}, 83\right), 284\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{CO}^{\prime} \mathrm{Bu}, 100$).

CI-MS: $m / z(\%)=388\left(\mathrm{MH}^{+}, 21\right), 370\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 40\right), 206(72), 200\left(\mathrm{M}^{+}-2 \mathrm{Ph}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 22\right), 183\left(\mathrm{Ph}_{2} \mathrm{COH}^{+}, 35\right), 119\left(\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{NH}^{+}, 81\right), 102$ [$\left.{ }^{\prime} \mathrm{BuCOH}\left(\mathrm{NH}_{2}\right)^{+}, 100\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=410\left(\mathrm{M}+\mathrm{Na}^{+}, 22\right), 370\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 270\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{NHCO}^{t} \mathrm{Bu}, 7\right), 269\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 37\right)$.

ES ${ }^{-}-\mathrm{MS}: ~ m / z(\%)=432(100), 387\left(\mathrm{M}^{-}, 20\right), 386\left(\mathrm{M}^{-}-1,72\right)$.
HRMS: m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 388.2271$; found, 388.2266 .
FT-IR: $v_{\max }=3334(\mathrm{NH}$ and OH$), 2941(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O})$, 1532 (aromatic $\mathrm{C}=\mathrm{C}$), $1461,13377,1237,1020 \mathrm{~cm}^{-1}$.

N-(2-(1-Hydroxycyclohexyl)-4-methylbenzyl)pivalamide (92)

Yield: 0.50 g ($1.65 \mathrm{mmol}, 82 \%$).
Mp: $127-129^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 6.93$
(d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.57 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.59\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.85$ (br s, exch., $1 \mathrm{H}, \mathrm{OH}$), $2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89-1.59\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.06[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4$ (s, $\mathrm{C}=\mathrm{O}$), 146.6 ($\mathrm{s}, \mathrm{C}-2$), 137.1 ($\mathrm{s}, \mathrm{C}-1$), 134.6 ($\mathrm{s}, \mathrm{C}-4$), 132.6 (d, C-3), 128.3 (d, C-6), 126.8 (d, C-5), 75.0 (s, C-1 of cyclohexyl), $43.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 39.2\left(\mathrm{t}, \mathrm{C}-2 / \mathrm{C}-6\right.$ of cyclohexyl), $38.9\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9$ [q, C(CH3 $)_{3}$], 25.8 ($\mathrm{t}, \mathrm{C}-4$ of cyclohexyl), 22.4 (t, C-3/C-5 of cyclohexyl), 21.7 (q, CH_{3}).
EI-MS: $m / z(\%)=303\left(\mathrm{M}^{+}, 3\right), 184(8), 159(10), 105(12), 91(13), 57\left({ }^{\prime} \mathrm{Bu}^{+}, 100\right)$.
CI-MS: $m / z(\%)=304\left(\mathrm{MH}^{+}, 18\right), 286\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 206(9)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 304.2271$; found, 304.2275 .
FT-IR: $v_{\max }=3329(\mathrm{NH}$ and OH$), 2925(\mathrm{CH}), 1611(\mathrm{C}=\mathrm{O}), 1564$ (aromatic $\mathrm{C}=\mathrm{C}$), 1514, $1241,1028 \mathrm{~cm}^{-1}$.

N-(2-Deuterio-4-methylbenzyl)pivalamide (93)

Yield: 0.39 g ($1.76 \mathrm{mmol}, 88 \%)$.
Mp: $96-97^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue $94-96^{\circ} \mathrm{C}^{133,134}$).
${ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18-7.05$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ and H-6), 5.84 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.03\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 137.5(\mathrm{~s}, \mathrm{C}-1), 135.9(\mathrm{~s}, \mathrm{C}-4)$, 129.8 (d, C-3), 129.7 (d, C-5), 128.1 (d, C-6), 127.8 (seen as three lines, 1:1:1, because of coupling to $\mathrm{D}, \mathrm{C}-2), 43.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$, $21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=206\left(\mathrm{M}^{+}, 17\right), 106\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}, 100\right), 92\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{2} \mathrm{NHCO}^{t} \mathrm{Bu}, 18$), 78 (19), 77 (17), 57 (${ }^{t} \mathrm{Bu}^{+}, 92$).
CI-MS: $m / z(\%)=224\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 12\right), 207\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{DNO}\left(\mathrm{MH}^{+}\right)$, 207.1602; found, 207.1598.
FT-IR: $v_{\max }=3332(\mathrm{NH}), 2970(\mathrm{CH}), 1625(\mathrm{C}=\mathrm{O}), 1538$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1482$, 1417, $1219 \mathrm{~cm}^{-1}$.
N-(2,4-Dimethylbenzyl)pivalamide (94)

Yield: 0.35 g ($1.60 \mathrm{mmol}, 80 \%$).
Mp: $95-97{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.01$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.93 (s, 1 H, H-3), 6.90 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.63 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.30\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.23$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 137.8 (s, C-1), 136.9 (s, C-2), 133.5 ($\mathrm{s}, \mathrm{C}-4$), 131.8 (d, C-3), 129.1 (d, C-6), 127.2 (d, C-5), 42.2 (t, CH_{2}), 39.1 [s, $C\left(\mathrm{CH}_{3}\right)_{3}$], 28.1 [$\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], $21.4\left(\mathrm{q}, \mathrm{CH}_{3}\right), 19.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

CI-MS: $m / z(\%)=237\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 12\right), 220\left(\mathrm{MH}^{+}, 100\right), 119(10), 102(5)$.
HRMS: m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 220.1696$; found, 220.1693.
FT-IR: $\mathrm{V}_{\max }=3329(\mathrm{NH}), 2969(\mathrm{CH}), 1638(\mathrm{C}=\mathrm{O}), 1533$ (aromatic $\mathrm{C}=\mathrm{C}$), 1362, 1302, 1220, $1006 \mathrm{~cm}^{-1}$.

N-(2-Ethyl-4-methylbenzyl)pivalamide (95)

Yield: 0.38 g ($1.63 \mathrm{mmol}, 81 \%$).
Mp: $88-89{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.03$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.97 (s, 1 H, H-3), 6.92 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.60(\mathrm{br}$, exch., $1 \mathrm{H}, \mathrm{NH}), 4.33\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}\right)$, $2.54\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.13\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.11(\mathrm{t}, J$ $=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 143.0(\mathrm{~s}, \mathrm{C}-1), 138.1(\mathrm{~s}, \mathrm{C}-2)$, 132.8 ($\mathrm{s}, \mathrm{C}-4$), 130.1 (d, C-3), 129.5 (d, C-6), 126.8 (d, C-5), 41.6 (t, $\mathrm{CH}_{2} \mathrm{NH}$), 39.1 [s, $C\left(\mathrm{CH}_{3}\right)_{3}$], $28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.0\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$. CI-MS: $m / z(\%)=251\left(M+\mathrm{NH}_{4}{ }^{+}, 8\right), 234\left(\mathrm{MH}^{+}, 100\right), 218(6), 206(12), 132(9)$, 119 (10), 116 (11), 52 (40).
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 234.1852$; found, 234.1854.
FT-IR: $v_{\max }=3326(\mathrm{NH}), 2963(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1534$ (aromatic $\mathrm{C}=\mathrm{C}$), 1266, $1220,1009 \mathrm{~cm}^{-1}$.
N-(2,4-Dimethylbenzyl)- N-methylpivalamide (96)

Yield: 9.5 mg ($0.04 \mathrm{mmol}, 2 \%)$.
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.04-6.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ and $\mathrm{H}-6), 4.49(\mathrm{~s}, 2 \mathrm{H}$, CH_{2}), $2.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.0$ (s, $\mathrm{C}=\mathrm{O}$), 137.0 (s, C-2), 136.2 (s, C-4), 133.5 (s, C-1), 131.6 (d, C-3), 129.7 (d, C-6), 127.1 (d, C-5), 51.1 (t, CH_{2}), 39.4 (q, $\left.\mathrm{NCH}_{3}\right), 36.6\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.8\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 19.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=233\left(\mathrm{M}^{+}, 9\right), 119\left(\mathrm{M}^{+}-\mathrm{NMeCO}^{t} \mathrm{Bu}\right.$ or $\left.\mathrm{MeC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{NH}^{+}, 93\right), 105$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{CO}^{t} \mathrm{Bu}, 15\right), 91\left(\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{+}, 33\right), 77(21), 57\left(\mathrm{Bu}^{+}, 100\right)$.
CI-MS: $m / z(\%)=234\left(\mathrm{MH}^{+}, 100\right), 220\left(\mathrm{MH}^{+}-\mathrm{CH}_{2}, 17\right)$.
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 234.1852$; found, 234.1853.
FT-IR: $v_{\max }=2970(\mathrm{CH}), 1626(\mathrm{C}=\mathrm{O}), 1504$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1479,1401,1364$, $1188,1023 \mathrm{~cm}^{-1}$.

7.16 Synthesis of N-(2,4-dimethylbenzyl)- N-methylpivalamide (96) via directed

 lithiation of \boldsymbol{N}-(4-methylbenzyl)pivalamide (68)The procedure was identical with that described in Section 7.15 except that excess iodomethane ($0.63 \mathrm{~g}, 4.4 \mathrm{mmol}$) was used. The reaction mixture was workedup and purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give 96 $(0.41 \mathrm{~g}, 1.76 \mathrm{mmol}, 88 \%)$ as a colourless oil. Compound 96 was identical in all respects with the one produced as a side product from reaction of the dilithium reagent of compound $\mathbf{6 8}$ with 1.1 equivalents of iodomethane (Section 7.15).

7.17 Synthesis of \boldsymbol{N}-(2-substituted methyl)benzylpivalamides 99-106 via lateral lithiation of \boldsymbol{N}-(2-methylbenzyl)pivalamide (65)

A solution of $t-\mathrm{BuLi}$ in heptane ($2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol}$) was added to a cold $\left(-78^{\circ} \mathrm{C}\right)$, stirred solution of N-(2-methylbenzyl)pivalamide ($65 ; 0.41 \mathrm{~g}, 2.0$ mmol) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 97 was observed as a yellow solution and the dilithium reagent 98 was observed as a brownish solution. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h , to ensure the complete formation of the dilithium reagent $\mathbf{9 8}$, after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. The reaction mixture was worked-up as usual and purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give the pure products as white solids. The yields obtained are recorded in Table 2.8.

N-(2-(2-Hydroxy-2-phenyethyl)benzyl)pivalamide (99)

Yield: $0.52 \mathrm{~g}(1.67 \mathrm{mmol}, 84 \%)$.
Mp: $133-134{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.21(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ph}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 6.69 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.94 (dd, $1 \mathrm{H}, J=9,4 \mathrm{~Hz}, \mathrm{CH}), 4.53(\mathrm{dd}, J=6,14 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 4.33\left(\mathrm{dd}, J=2,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 3.10(\mathrm{dd}, J=9,14$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 3.01 (dd, $J=4,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 2.78 (br, exch., 1 H , $\mathrm{OH}), 1.19\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 144.6(\mathrm{~s}, \mathrm{C}-1), 137.7(\mathrm{~s}, \mathrm{C}-1$ of Ph$)$, 137.6 ($\mathrm{s}, \mathrm{C}-2$), 130.8 (d, C-3), 130.3 (d, C-6), 128.9 (d, C-3/C-5 of Ph), 128.3 (d, C-4 of Ph), 128.1 (d, C-4), 127.4 (d, C-5), 126.2 (d, C-2/C-6 of Ph), 76.2 (d, CH), 42.5 (t, $\left.\mathrm{CH}_{2}\right), 41.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=311\left(\mathrm{M}^{+}, 6\right), 295\left(\mathrm{MH}^{+}-\mathrm{OH}, 31\right), 294\left(\mathrm{M}^{+}-\mathrm{OH}, 100\right), 278\left(\mathrm{M}^{+}-\right.$ $\mathrm{OH}-\mathrm{Me}, 8$).
CI-MS: $m / z(\%)=329\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 9\right), 313\left(\mathrm{MH}^{+}+1,13\right), 312\left(\mathrm{MH}^{+}, 78\right), 294\left(\mathrm{MH}^{+}\right.$
$-\mathrm{H}_{2} \mathrm{O}$ or $\left.\mathrm{M}^{+}-\mathrm{OH}, 100\right), 234\left(\mathrm{M}^{+}-\mathrm{Ph}, 8\right), 206\left[\mathrm{M}^{+}-\mathrm{PhCH}(\mathrm{OH}), 12\right], 205\left(\mathrm{M}^{+}-\right.$ PhCHO, 17), 192 (7), 119 (10), 102 (9).
HRMS: m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 312.1958$; found, 312.1955.
FT-IR: $v_{\max }=3314(\mathrm{NH}$ and OH$), 2971(\mathrm{CH}), 1627(\mathrm{C}=\mathrm{O}), 1542$ (aromatic $\mathrm{C}=\mathrm{C}$), 1367, 1216, $1055 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 77.14; H, 8.09; N, 4.50. Found: C, $77.21 ; \mathrm{H}, 8.14 ; \mathrm{N}$, 4.54\%.

Selected crystallographic data: $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}, \mathrm{FW}=311.41, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$
\AA, Orthorhombic, $\mathrm{Pca} 2_{1}, \mathrm{a}=10.4480(3) \AA, \mathrm{b}=11.3910(3) \AA, \mathrm{c}=29.4400(9) \AA, \alpha=$ $90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, \mathrm{V}=3503.75(17) \AA^{3}, \mathrm{Z}=8, \rho_{\text {calc. }}=1.181 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=$ $0.50 \times 0.08 \times 0.06 \mathrm{~mm}^{3}, \mathrm{~m}=0.075 \mathrm{~mm}^{-1}$, reflections collected $=20758$, independent reflections $=7296, \mathrm{R}_{\text {int }}=0.1196$, parameters $=423$, final $\mathrm{R}_{1}=0.0598, \mathrm{wR}_{2}=0.1025$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1544, \mathrm{wR}_{2}=0.1288$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737412, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

N-(2-(2-Hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)pivalamide (100)

Yield: 0.61 g ($1.79 \mathrm{mmol}, 89 \%$).
Mp: $124-126^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), $7.28-7.20$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6$), 6.88 (d, $J=9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 6.83 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.87 (dd, $J=4,9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 4.49\left(\mathrm{dd}, J=6,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 4.30(\mathrm{dd}, J=4,14 \mathrm{~Hz}, 1 \mathrm{H}$, 1 H of $\mathrm{CH}_{2} \mathrm{NH}$), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.22$ (br, exch., $1 \mathrm{H}, \mathrm{OH}$), 3.07 (dd, $J=9,14$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), $2.94\left(\mathrm{dd}, J=4,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of CH_{2}), 1.17 [s, 9 H , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.4 (s, C-4 of 4-methoxyphenyl), 137.9 (s, C-1), 137.5 (s, C-2), 137.0 (s, C-1 of 4-methoxyphenyl), 130.8 (d, C-3), 130.2 (d, C-6), 128.2 (d, C-4), 127.6 (d, C-2/C-6 of 4-methoxyphenyl), 127.3 (d, C-5), 114.2 (d, C-3/C-5 of 4-methoxyphenyl), $75.7(\mathrm{~d}, \mathrm{CH}), 55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 42.5\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $41.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.01\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=341\left(\mathrm{M}^{+}, 5\right), 324\left(\mathrm{M}^{+}-\mathrm{OH}, 63\right), 323\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 79\right), 308(5), 266$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{\prime} \mathrm{Bu}, 21\right), 254$ (13), $238\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}^{t} \mathrm{Bu}, 100\right)$.
CI-MS: $m / z(\%)=357\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 4\right), 342\left(\mathrm{MH}^{+}, 8\right), 341\left(\mathrm{M}^{+}, 20\right), 325\left(\mathrm{MH}^{+}-\mathrm{OH}\right.$, 24), 324 ($\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100$), 251 (4), 234 (6), 205 (7), 154 (8), 119 (15), 102 (7), 52 (10).

ES ${ }^{+}-\mathrm{MS}: m / z(\%)=364\left(\mathrm{M}+\mathrm{Na}^{+}, 19\right), 324\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 33\right), 223\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{NHCO}^{\prime} \mathrm{Bu}, 100$).

ES - MS: $m / z(\%)=340\left(\mathrm{M}^{-}-1,12\right), 205\left(\mathrm{M}^{-}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}, 12\right), 204\left[\mathrm{M}^{-}-\right.$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}), 100\right], 100(28)$.

HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 342.2064$; found, 342.2065 .
FT-IR: $v_{\max }=3321(\mathrm{NH}$ and OH$), 2954(\mathrm{CH}), 1629(\mathrm{C}=\mathrm{O}), 1555$ (aromatic $\mathrm{C}=\mathrm{C}$), 1463, 1370, 1220, $1035 \mathrm{~cm}^{-1}$.

N-(2-(2-Hydroxy-2-phenylpropyl)benzyl)pivalamide (101)

Yield: 0.52 g ($1.60 \mathrm{mmol}, 80 \%$).
Mp: $135-137^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of Ph$), 7.35(\mathrm{t}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of Ph), $7.30-7.26$ (m, $2 \mathrm{H}, \mathrm{H}-4$ of Ph and $\mathrm{H}-6$), 7.20 (app. dt, $J=2$, $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.12$ (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.87(\mathrm{dd}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 6.55 (br app. t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.44 (dd, $J=5,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{NH}$), 4.37 (dd, $J=5,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{NH}$), $3.17\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of CH_{2}), $3.12(\mathrm{~d}$, $J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), $2.42(\mathrm{~s}$, exch., $1 \mathrm{H}, \mathrm{OH}), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.21[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 149.2(\mathrm{~s}, \mathrm{C}-1$ of Ph$), 138.7(\mathrm{~s}, \mathrm{C}-1)$, 135.8 ($\mathrm{s}, \mathrm{C}-2$), 132.4 ($\mathrm{d}, \mathrm{C}-3$), 130.0 (d, C-6), 128.5 (d, C-3/C-5 of Ph), 127.5 (d, $\mathrm{C}-4$), 127.3 ($\mathrm{d}, \mathrm{C}-4$ of Ph), 127.2 (d, C-2/C-6 of Ph), 125.4 (d, C-5), 75.5 (s, C-OH), $46.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 29.5\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=325\left(\mathrm{M}^{+}, 1\right), 308\left(\mathrm{M}^{+}-\mathrm{OH}, 77\right), 307\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 34\right), 292(12)$, 282 (23), 264 (31), 248 (19), 229 (60), $222\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}^{t} \mathrm{Bu}, 100\right)$.
CI-MS: $m / z(\%)=343\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 2\right), 326\left(\mathrm{MH}^{+}, 34\right), 309\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ or $\mathrm{M}^{+}-\mathrm{OH}$, 36), $308\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 248(5), 306\left(\mathrm{MH}^{+}-\mathrm{PhCOMe}, 17\right), 205\left(\mathrm{MH}^{+}-\right.$ $\mathrm{PhC}(\mathrm{OH}) \mathrm{Me}, 22), 138$ (7), 119 (9), 102 (9), 52 (7).

HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 326.2115$; found, 326.2115 .
FT-IR: $v_{\max }=3324(\mathrm{NH}$ and OH$), 2964(\mathrm{CH}), 1623(\mathrm{C}=\mathrm{O}), 1493$ (aromatic $\mathrm{C}=\mathrm{C}$), $1242,1025 \mathrm{~cm}^{-1}$.

N-(2-(2-Hydroxy-2,2-diphenylethyl)benzyl)pivalamide (102)

Yield: 0.68 g ($1.76 \mathrm{mmol}, 88 \%$).
$\mathrm{Mp}: 94-95{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.42-7.23(\mathrm{~m}, 11 \mathrm{H}, 2 \mathrm{Ph}$ and H-6), 7.17 (app. dt, J $=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.97 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.56$ (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), 6.38 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.36 (d, $J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $3.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.72 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 1.18 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.6(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 147.1(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph$), 139.0(\mathrm{~s}$, C-1), 134.8 (s, C-2), 132.3 (d, C-3), 129.7 (d, C-6), 128.5 (d, C-4), 128.3 (d, C-3/C-5 of 2 Ph), 127.6 (d, C-4 of 2 Ph), 127.2 (d, C-5), 126.8 (d, C-2/C-6 of 2 Ph), 79.0 (s , $\mathrm{C}-\mathrm{OH}), 43.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 29.5\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=370\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 7\right), 284\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CO}^{t} \mathrm{Bu}, 12\right), 269\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ $\left.-\mathrm{NHCO}^{t} \mathrm{Bu}, 39\right), 268\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{NCO}^{\prime} \mathrm{Bu}, 100\right), 252$ (13).
$\mathrm{CI}-\mathrm{MS}: m / z(\%)=405\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 5\right), 388\left(\mathrm{MH}^{+}, 18\right), 387\left(\mathrm{M}^{+}, 33\right), 370\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$ or $\left.\mathrm{M}^{+}-\mathrm{OH}, 100\right), 310\left(\mathrm{M}^{+}-\mathrm{Ph}, 11\right), 285(5), 257(7), 223(12), 206\left(\mathrm{MH}^{+}-\mathrm{Ph}_{2} \mathrm{CO}\right.$, 41), $200\left(\mathrm{M}^{+}-2 \mathrm{Ph}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 52\right), 183\left(\mathrm{Ph}_{2} \mathrm{CHO}^{+}, 17\right), 119\left(\mathrm{PhCH}_{2} \mathrm{CO}^{+}, 29\right), 102$ [$\left.{ }^{t} \mathrm{BuCOH}\left(\mathrm{NH}_{2}\right)^{+}, 12\right], 52$ (16).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=410\left(\mathrm{M}+\mathrm{Na}^{+}, 23\right), 370\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 72\right), 270\left(\mathrm{M}^{+}-\mathrm{OH}-\right.$ $\left.\mathrm{NHCO}^{t} \mathrm{Bu}, 22\right), 269\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCO}^{t} \mathrm{Bu}, 100\right), 191$ (47), 102 (49), 91 (47).

ES - MS: $m / z(\%)=388\left(\mathrm{MH}^{-}, 3\right), 387\left(\mathrm{M}^{-}, 21\right), 386\left(\mathrm{M}^{-}-1,100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right), 405.2537$; found, 405.2534.
FT-IR: $v_{\max }=3310(\mathrm{NH}$ and OH$), 2933(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), $1449,1227,1020 \mathrm{~cm}^{-1}$.

N-(2-((1-Hydroxycyclohexyl)methyl)benzyl)pivalamide (103)

Yield: 0.46 g ($1.52 \mathrm{mmol}, 76 \%)$.
Mp: $93-96{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.09(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6$), 6.77 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.41 (br d, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 2.75 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 1.86 (br s, exch., 1 H , $\mathrm{OH}), 1.51-1.43\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right], 1.10\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 138.6(\mathrm{~s}, \mathrm{C}-1), 136.3(\mathrm{~s}, \mathrm{C}-2)$, 132.3 (d, C-3), 130.3 (d, C-6), 127.4 (d, C-4), 127.3 (d, C-5), 72.2 ($\mathrm{s}, \mathrm{C}-1$ of cyclohexyl), $45.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 42.2\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 39.1\left[\mathrm{~s}, C\left(\mathrm{CH}_{3}\right)_{3}\right], 38.3(\mathrm{t}, \mathrm{C}-2 / \mathrm{C}-6$ of cyclohexyl), 28.0 [$\left.\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 26.1$ ($\mathrm{t}, \mathrm{C}-4$ of cyclohexyl), 22.4 ($\mathrm{t}, \mathrm{C}-3 / \mathrm{C}-5$ of cyclohexyl).

EI-MS: $m / z(\%)=303\left(\mathrm{M}^{+}, 7\right), 286\left(\mathrm{M}^{+}-\mathrm{OH}, 39\right), 285\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 87\right), 270\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}, 12\right), 260\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{C}_{2} \mathrm{H}_{4}, 100\right), 242(40), 228\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-{ }^{\dagger} \mathrm{Bu}, 77\right), 218$ $\left(\mathrm{M}^{+}-\mathrm{CO}^{\prime} \mathrm{Bu}, 71\right)$.
CI-MS: $m / z(\%)=321\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 3\right), 304\left(\mathrm{MH}^{+}, 100\right), 286\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 58\right), 205$ (9), 119 (5), 52 (11).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 304.2271; found, 304.2272.
FT-IR: $v_{\max }=3341(\mathrm{NH}$ and OH$), 2929(\mathrm{CH}), 1634(\mathrm{C}=\mathrm{O}), 1529$ (aromatic $\mathrm{C}=\mathrm{C}$), $1449,1208 \mathrm{~cm}^{-1}$.

N -(2-Ethylbenzyl)pivalamide (104)

Yield: 0.38 g ($1.74 \mathrm{mmol}, 87 \%$).
$\mathrm{Mp}: 64-65{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18-7.08$ (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6$), 5.69 (br t , exch., $1 \mathrm{H}, \mathrm{NH}$), $4.37\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}\right), 2.58\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.14\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5$ (s, $\mathrm{C}=\mathrm{O}$), $143.0(\mathrm{~s}, \mathrm{C}-1), 135.9(\mathrm{~s}, \mathrm{C}-2)$, 129.3 (d, C-3), 129.2 (d, C-6), 128.4 (d, C-4), 126.6 (d, C-5), 41.8 (t, CH2NH), 39.1 [s, $\left.C\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.8\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=237\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 15\right), 220\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 220.1696$; found, 220.1694.

FT-IR: $v_{\max }=3331(\mathrm{NH}), 2963(\mathrm{CH}), 1632(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1217$, 1008 cm^{-1}.

N-(2-Propylbenzyl)pivalamide (105)

Yield: 0.41 g ($1.76 \mathrm{mmol}, 88 \%$).
Mp: $66-67^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18-7.08(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 5.68 (br t , exch., $1 \mathrm{H}, \mathrm{NH}$), $4.37\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.52(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.53 (app. sextet, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.14\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 0.98$ ($\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 141.5(\mathrm{~s}, \mathrm{C}-1), 136.1(\mathrm{~s}, \mathrm{C}-2)$, 130.1 (d, C-3), 129.2 (d, C-6), 128.1 (d, C-4), 126.6 (d, C-5), 41.8 (t, $\mathrm{CH}_{2} \mathrm{NH}$), 39.1 [s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.0$ [q, C(CH3$\left.)_{3}\right], 24.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.8(\mathrm{q}$, CH_{3}).

EI-MS: $m / z(\%)=233\left(\mathrm{M}^{+}, 9\right), 204\left(\mathrm{M}^{+}-\mathrm{Et}, 5\right), 190\left(\mathrm{M}^{+}-\mathrm{Pr}, 4\right), 133\left(\mathrm{M}^{+}-\mathrm{Pr}-\right.$ $\left.{ }^{\dagger} \mathrm{Bu}, 14\right), 132\left(\mathrm{M}^{+}-\mathrm{Pr}-{ }^{\dagger} \mathrm{BuH}, 97\right), 117\left(\mathrm{M}^{+}-\mathrm{NHCO}^{\prime} \mathrm{Bu}-\mathrm{CH}_{4}, 100\right), 105\left(\mathrm{PhCH}_{2} \mathrm{~N}^{+}\right.$, 81), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 24\right), 57\left({ }^{(} \mathrm{Bu}, 49\right)$.

CI-MS: $m / z(\%)=251\left(\mathrm{M}+\mathrm{NH}_{4}^{+}, 45\right), 334\left(\mathrm{MH}^{+}, 100\right), 206(18), 132\left(\mathrm{M}^{+}-\mathrm{CO}^{\prime} \mathrm{Bu}-\right.$ $\mathrm{CH}_{4}, 20$), 119 (8), 102 (6).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=251\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 7\right), 234\left(\mathrm{MH}^{+}, 42\right), 133(17), 114(18), 106$ $\left(\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 32\right), 105\left(\mathrm{PhCH}_{2} \mathrm{~N}^{+}, 100\right), 104\left(\mathrm{PhCHN}^{+}, 95\right)$.
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right)$, 234.1852; found, 234.1852.
FT-IR: $v_{\max }=3331(\mathrm{NH}), 2963(\mathrm{CH}), 1633(\mathrm{C}=\mathrm{O}), 1530$ (aromatic $\mathrm{C}=\mathrm{C}$), 1363, $1218,1008 \mathrm{~cm}^{-1}$.

N-(2-(Deuteriomethyl)benzyl)pivalamide (106)

Yield: 0.35 g ($1.70 \mathrm{mmol}, 85 \%$).
$\mathrm{Mp}: 108-109^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue $108-109{ }^{\circ} \mathrm{C} ; \mathbf{6 5}$, Section 7.5).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13-7.09(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), $5.70(\mathrm{br}$ t , exch., $1 \mathrm{H}, \mathrm{NH}), 4.34\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.21[(1: 1: 1) \mathrm{t}, J=2 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{D}\right], 1.14\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.5$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 136.9 ($\mathrm{s}, \mathrm{C}-1$), 136.5 ($\mathrm{s}, \mathrm{C}-2$), 131.0 (d, C-3), 128.8 (d, C-6), 128.1 (d, C-4), 126.6 (d, C-5), 42.3 (t, CH2NH), 39.2 [s, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.1\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 19.1$ (seen as three lines, 1:1:1, because of coupling to $\mathrm{D}, \mathrm{CH}_{2} \mathrm{D}$).

EI-MS: $m / z(\%)=207\left(\mathrm{M}^{+}+1,4\right), 206\left(\mathrm{M}^{+}, 13\right), 109\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{D}, 2\right), 107$ $\left(\mathrm{PhCH}_{2} \mathrm{NH}_{2}{ }^{+}, 20\right), 106\left(\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 60\right), 105\left(\mathrm{PhCH}_{2} \mathrm{~N}^{+}, 37\right), 92$ (10), 78 (12), 57 (${ }^{t} \mathrm{Bu}^{+}, 92$).
CI-MS: $m / z(\%)=224\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 12\right), 208\left(\mathrm{MH}^{+}+1,32\right), 207\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{DNO}\left(\mathrm{MH}^{+}\right)$, 207.1602; found, 207.1602.
FT-IR: $v_{\max }=3328(\mathrm{NH}), 2924(\mathrm{CH}), 1612(\mathrm{C}=\mathrm{O}), 1532$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1238,1024$ cm^{-1}.

7.18 Synthesis of N^{\prime}-benzyl- N, N-dimethylureas from reactions of benzylamines with triphosgene followed by reactions with dimethylamine

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ stirred solution of triphosgene ($4.72 \mathrm{~g}, 16.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ a solution of the appropriate substituted benzylamine (67, 40.0 $\mathrm{mmol})$ and triethylamine $(8.88 \mathrm{~g}, 88.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was slowly added in a drop-wise manner over 30 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , after which a solution of dimethylamine in THF ($24.0 \mathrm{~mL}, 2.0 \mathrm{M}, 48.0 \mathrm{mmol}$) was added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for an extra 1 h . The mixture was poured onto $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x}$ 25 mL), and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was then removed under reduced pressure. The products were separated by extraction using boiling $\mathrm{EtOAc}^{\mathrm{Et}} \mathrm{E}_{2} \mathrm{O}$ (1:3), from which N^{\prime}-benzyl- N, N-dimethylureas crystallized nicely as white crystals on cooling. The white solids that were highly insoluble in hot $\mathrm{EtOAc}^{2} \mathrm{Et}_{2} \mathrm{O}$ were collected by filtration and identified as N, N^{\prime}-dibenzylureas 115 . The yields obtained are reported in Table 3.1.

N^{\prime}-Benzyl- N, N-dimethylurea (107)

Yield: 5.77 g ($32.4 \mathrm{mmol}, 81 \%$).
Mp: $76-77^{\circ} \mathrm{C}$ (lit. ${ }^{135} 77^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.15(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 4.75$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.33\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.83\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$ (s, $\mathrm{C}=\mathrm{O}$), 140.2 ($\mathrm{s}, \mathrm{C}-1$), 129.0 (d, C-3/C-5), 128.1 (d, C-2/C-6), 127.6 (d, C-4), $45.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

EI-MS: $m / z(\%)=178\left(\mathrm{M}^{+}, 22\right), 106\left(\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 21\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 78\right), 77\left(\mathrm{Ph}^{+}, 51\right)$, $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 75\right), 65(31), 56(19), 51(26), 44\left(\mathrm{Me}_{2} \mathrm{~N}^{+}, 93\right), 42\left(\mathrm{CON}^{+}, 100\right)$.
CI-MS: $m / z(\%)=196\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 6\right), 179\left(\mathrm{MH}^{+}, 100\right), 106\left(\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 8\right), 46(29)$, 44 (18).
HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 179.1179$; found, 179.1181.
FT-IR: $v_{\max }=3319(\mathrm{NH}), 2924(\mathrm{CH}), 1621(\mathrm{C}=\mathrm{O}), 1538$ (aromatic $\mathrm{C}=\mathrm{C}$), 1343, 1216 cm^{-1}.

N^{\prime}-(4-Methoxybenzyl)- N, N-dimethylurea (108)

Yield: 6.82 g ($32.8 \mathrm{mmol}, 82 \%$).
$\mathrm{Mp}: 81-82{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6), 6.71(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$), 4.54 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.19 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $2.76\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.7 ($\mathrm{s}, \mathrm{C}-4$), 132.2 ($\mathrm{s}, \mathrm{C}-1$), 129.5 (d, C-2/C-6), 114.4 (d, C-3/C-5), 55.7 ($\mathrm{q}, \mathrm{OCH}_{3}$), 44.9 (t, CH2), 36.6 [q, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
EI-MS: $m / z(\%)=208\left(\mathrm{M}^{+}, 23\right), 136\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 25\right), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}\right.$, 87), 109 (9), 78 (34), 77 (37), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 65$ (17), 51 (21), 46 (44), 44 (69), 42 (52).

CI-MS: $m / z(\%)=226\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 3\right), 209\left(\mathrm{MH}^{+}, 100\right), 136\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 4\right)$, $121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 5\right)$.
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 209.1285$; found, 209.1283.
FT-IR: $v_{\max }=3318(\mathrm{NH}), 2927(\mathrm{CH}), 1622(\mathrm{C}=\mathrm{O}), 1537$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1378$, $1351,1229,1027 \mathrm{~cm}^{-1}$.
N^{\prime}-(2-Methoxybenzyl)- N, N-dimethylurea (111)

Yield: 6.57 g ($31.6 \mathrm{mmol}, 79 \%$).
$\mathrm{Mp}: 97-98^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=7.20(\mathrm{dt}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.14(\mathrm{~d}, J=8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.94(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.90(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.60(\mathrm{t}, J=6$ Hz , exch., $1 \mathrm{H}, \mathrm{NH}$), $4.21\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.84[\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=159.1$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 157.1 ($\mathrm{s}, \mathrm{C}-2$), 129.4 ($\mathrm{s}, \mathrm{C}-1$), 128.2 (d, C-6), 127.7 (d, C-4), 120.8 (d, C-5), 111.0 (d, C-3), 56.0 (q, OCH_{3}), 39.2 (t, $\left.\mathrm{CH}_{2}\right), 36.8\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=208\left(\mathrm{M}^{+}, 43\right), 136\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 84\right), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}\right.$, 56), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 90\right), 109(12), 107(12), 78$ (30), $77(36), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 65$ (35), 51 (24), 46 (48), 44 (77), 42 (46).

CI-MS: $m / z(\%)=209\left(\mathrm{MH}^{+}, 100\right), 52(7)$.
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$, 209.1285; found, 209.1284 .
FT-IR: $v_{\max }=3327(\mathrm{NH}), 2924(\mathrm{CH}), 1622(\mathrm{C}=\mathrm{O})$, 1534 (aromatic $\mathrm{C}=\mathrm{C}$), 1376, 1241, 1228, $10267 \mathrm{~cm}^{-1}$.

N^{\prime}-(4-Methylbenzyl)- N, N-dimethylurea (113)

Yield: 6.14 g ($32.0 \mathrm{mmol}, 80 \%$).
Mp: 94-95 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{136} 93{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.14$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$), 7.09 (d, $J=8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6), 6.82(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 4.18\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.81\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.1$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 139.1 ($\mathrm{s}, \mathrm{C}-1$), 136.1 ($\mathrm{s}, \mathrm{C}-4$), 129.4 (d, C-3/C-5), 127.8 (d, C-2/C-6), 44.1 (t, CH_{2}), 36.8 [q, N($\left.\mathrm{CH}_{3}\right)_{2}$], 21.5 (q, CH_{3}).

EI-MS: $m / z(\%)=192\left(\mathrm{M}^{+}, 36\right), 120\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 38\right), 105\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 68\right)$, $91\left(\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{+}, 68\right), 77(40), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 65(23), 51$ (17), 46 (33), 44 (88), 42 (55).

CI-MS: $m / z(\%)=385\left(2 \mathrm{M}^{+}+1,3\right), 210\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 5\right), 193\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$, 193.1335; found, 193.1338 .
FT-IR: $v_{\max }=3318(\mathrm{NH}), 2923(\mathrm{CH}), 1618(\mathrm{C}=\mathrm{O}), 1534$ (aromatic $\mathrm{C}=\mathrm{C}$), 1372, 1227, $1025 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Methylbenzyl)- N, N-dimethylurea (114)

Yield: 5.68 g ($29.6 \mathrm{mmol}, 74 \%$).
Mp: $82-83{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19-7.01$ (m, $4 \mathrm{H}, \mathrm{Ar}$), 4.48 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.31 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.82 [s, $6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], $2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7$ (s, $\mathrm{C}=\mathrm{O}$), 137.5 (s, C-1), 136.8 (s, C-2), 130.8 ($\mathrm{s}, \mathrm{C}-3$), 128.8 (d, C-6), 127.9 (d, C-4), 126.5 (d, C-5), 43.6 (t, CH_{2}), 36.7 [q, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 19.45\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=192\left(\mathrm{M}^{+}, 35\right), 177\left(\mathrm{M}^{+}-\mathrm{Me}, 5\right), 148(7), 120\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}\right.$, 49), $105\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 88\right), 104\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 94\right) 91\left(\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{+}, 40\right), 77(40), 72$ $\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 65$ (17), 46 (16), 44 (46), 42 (16).

CI-MS: $m / z(\%)=210\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 4\right), 193\left(\mathrm{MH}^{+}, 100\right), 122(14), 120$ ($\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 20$), 103 (15), 89 (12), 52 (27), 46 (39), 44 (16).
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 193.1335$; found, 193.1335 .
FT-IR: $v_{\text {max }}=3317(\mathrm{NH}), 2925(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1533$ (aromatic $\mathrm{C}=\mathrm{C}$), 1353, 1231 cm^{-1}.

N, N^{\prime}-Dibenzylurea (115a)

Yield: 0.38 g ($1.58 \mathrm{mmol}, 4 \%)$.
Mp: $175-176^{\circ} \mathrm{C}$ (lit. ${ }^{137} 175-176^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.34-7.23(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 6.47(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $2 \mathrm{H}, 2 \mathrm{NH}$), $4.25\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.0(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 141.8$ (s, C-1), 129.1 (d, C-3/C-5), 127.9 (d, C-2/C-6), 127.4 (d, C-4), $43.9\left(\mathrm{t}, \mathrm{CH}_{2}\right.$).
EI-MS: $m / z(\%)=240\left(\mathrm{M}^{+}, 16\right), 149\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2}, 20\right), 106\left(\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 53\right), 91$ $\left(\mathrm{PhCH}_{2}{ }^{+}, 100\right), 77\left(\mathrm{Ph}^{+}, 34\right), 65(32), 51$ (27).
CI-MS: $m / z(\%)=258\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 2\right), 241\left(\mathrm{MH}^{+}, 36\right), 108\left(\mathrm{PhCH}_{2} \mathrm{NH}_{3}{ }^{+}, 82\right), 106$ ($\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 100$), 78 (13), 52 (47).
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 241.1335$; found, 241.1340 .
FT-IR: $v_{\max }=3330(\mathrm{NH}), 2922(\mathrm{CH}), 1614(\mathrm{C}=\mathrm{O}), 1563$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1514$, $1470,1240 \mathrm{~cm}^{-1}$.

N, N^{\prime}-Bis(4-methoxybenzyl)urea (115b)

Yield: 0.36 g ($1.2 \mathrm{mmol}, 3 \%$).
Mp: $173-174{ }^{\circ} \mathrm{C}$ (lit. ${ }^{138} 171-173{ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.17(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6), 6.87(\mathrm{~d}, J=8$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5), 6.32(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $2 \mathrm{H}, 2 \mathrm{NH}), 4.15(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}, 2$ CH_{2}), 3.73 (s, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.9$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.9 ($\mathrm{s}, \mathrm{C}-4$), 133.7 ($\mathrm{s}, \mathrm{C}-1$), 129.2 (d, C-2/C-6), 114.5 (d, C-3/C-5), $55.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 43.3\left(\mathrm{t}, \mathrm{CH}_{2}\right)$.

EI-MS: $m / z(\%)=300\left(\mathrm{M}^{+}, 10\right), 179\left(\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 27\right), 136$ $\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 86\right), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 100\right), 109$ (26), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 18\right), 77$ (42), 65 (17), 51 (14).

CI-MS: $m / z(\%)=318\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 4\right), 301\left(\mathrm{MH}^{+}, 100\right), 198(11), 181(17), 179\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 7\right), 138\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, 22\right), 136\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 56\right), 121$ ($\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 50$), 52 (23).
HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 301.1547$; found, 301.1547 .
FT-IR: $v_{\max }=3327(\mathrm{NH}), 2922(\mathrm{CH}), 1624(\mathrm{C}=\mathrm{O}), 1562$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1509$, $1236,1029 \mathrm{~cm}^{-1}$.

N, N^{\prime}-Bis(2-methoxybenzyl)urea (115c)

Yield: 0.24 g ($0.8 \mathrm{mmol}, 2 \%$).
Mp: 202-204 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.22(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 7.19(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-6), 6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3), 6.89(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5), 6.30(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $2 \mathrm{H}, 2 \mathrm{NH}$), $4.18\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=158.4$ (s, C=O), 157.1 (s, C-4), 128.6 (s, C-1), 128.3 (d, C-6), 128.1 (d, C-4), 120.4 (d, C-5), 110.7 (d, C-3), 55.6 (q, OCH $)_{3}$), 38.6 (t, CH_{2}).
EI-MS: $m / z(\%)=300\left(\mathrm{M}^{+}, 11\right), 179\left(\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 21\right), 163(28), 136$ $\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 100\right), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 52\right), 104$ (20), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 76\right), 77$ (32), 65 (31), 51 (17).

CI-MS: $m / z(\%)=301\left(\mathrm{MH}^{+}, 42\right), 151(4), 138\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, 41\right), 136$ $\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 23\right), 122(36), 121\left(\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 18\right), 108\left(\mathrm{MeOC}_{6} \mathrm{H}_{5}^{+}, 100\right)$ 106 (35), 94 (28).
HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 301.1547$; found, 301.1546 .
FT-IR: $v_{\max }=3318(\mathrm{NH}), 2922(\mathrm{CH}), 1617(\mathrm{C}=\mathrm{O}), 1584$ (aromatic $\mathrm{C}=\mathrm{C}$), 1464, $1235,1021 \mathrm{~cm}^{-1}$.

N, N^{\prime}-Bis(4-methylbenzyl)urea (115d)

Yield: 0.32 g ($1.2 \mathrm{mmol}, 3 \%)$.
Mp: 226-227 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.15-7.01(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{Ar}), 6.37(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $2 \mathrm{H}, 2 \mathrm{NH}$), $4.18\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$), $2.28\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=158.9$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 138.7 ($\mathrm{s}, \mathrm{C}-1$), 136.4 ($\mathrm{s}, \mathrm{C}-4$), 130.0 (d, C-3/C-5), 127.9 (d, C-2/C-6), $43.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

EI-MS: $m / z(\%)=268\left(\mathrm{M}^{+}, 14\right), 163\left(\mathrm{M}^{+}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 12\right), 120\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}\right.$, 63), $105\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 100\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 61\right), 77$ (52), 65 (22), 51 (13).

CI-MS: $m / z(\%)=286\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 4\right), 269\left(\mathrm{MH}^{+}, 57\right), 179(13), 165$ (17), 139 (16), $122\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, 95\right), 120\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 100\right), 105\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 15\right), 78$ (14), 52 (79).

HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 269.1648$; found, 269.1650.
FT-IR: $v_{\max }=3326(\mathrm{NH}), 2921(\mathrm{CH}), 1611(\mathrm{C}=\mathrm{O}), 1558$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right)$, 1512, 1468, 1237, $1066 \mathrm{~cm}^{-1}$.

N, N^{\prime}-Bis(2-methylbenzyl)urea (115e)

Yield: 0.43 g ($1.6 \mathrm{mmol}, 4 \%$).
Mp: 223-225 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (MHz, DMSO- d_{6}): $\delta=7.25-7.12(\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{Ar}), 6.32(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $2 \mathrm{H}, 2 \mathrm{NH}$), $4.23\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=158.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 139.3 (s, C-1), 136.2 (s, C-2), 130.7 (d, C-3), 128.1 (d, C-6), 127.5 (d, C-4), 126.6 (d, C-5), 42.0 (t, CH ${ }_{2}$), 19.4 (q, CH_{3}).

EI-MS: $m / z(\%)=268\left(\mathrm{M}^{+}, 26\right), 163\left(\mathrm{M}^{+}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}, 33\right), 120\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}\right.$, 77), $105\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}{ }^{+}, 100\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 78\right), 77$ (84), 65 (38), 51 (14).

CI-MS: $m / z(\%)=286\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 7\right), 269\left(\mathrm{MH}^{+}, 100\right), 182(12), 179(33), 165(21)$, $122\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}, 47\right), 120\left(\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}^{+}, 43\right), 52$ (53).

HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 269.1648$; found, 269.1647.
FT-IR: $v_{\max }=3316(\mathrm{NH}), 2933(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O})$, 1531 (aromatic $\mathrm{C}=\mathrm{C}$), 1462, 1227, $1020 \mathrm{~cm}^{-1}$.

7.19 Synthesis of N^{\prime}-benzyl- N, N-dimethylureas from reactions of substituted benzylamines with dimethylcarbamoyl chloride

A stirred mixture of $67(40.0 \mathrm{mmol})$, dimethylcarbamoyl chloride $(4.83 \mathrm{~g}, 45$ mmol) and triethylamine ($5.05 \mathrm{~g}, 55.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was heated under reflux for 1 h . The mixture was poured onto $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was then removed under reduced pressure. The solid obtained was purified by crystallization from $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}(1 / 3)$ to give pure N^{\prime}-(substituted benzyl)- N, N-dimethylureas as white crystalline solids. The yields obtained are reported in Table 3.2. The products were found to be consistent in all respects with the ones produced using triphosgene method (Sections 7.18). See Section 7.18 for spectral data.

7.20 Synthesis of N^{\prime}-(2-substituted benzyl)- N, N-dimethylureas 114 and 118-131 via directed lithiation of N^{\prime}-benzyl- N, N-dimethylureas 107,108 and 113

A solution of t - BuLi in heptane $(2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol})$ was added to a cold $\left(-78^{\circ} \mathrm{C}\right)$, stirred solution of the appropriate N^{\prime}-benzyl- N, N-dimethylurea ($\mathbf{1 0 7}$, 108 or $113 ; 2.0 \mathrm{mmol}$) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 116 was observed as a yellow solution and the dilithium reagent 117 was observed as a brownish solution. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h , to ensure the complete formation of the dilithium reagent 117, after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ (10 mL) and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give the corresponding N^{\prime}-(2-substituted benzyl)-N,Ndimethylureas 114 and 118-131. The yields obtained are recorded in Table 3.3.

N^{\prime}-(2-Methylbenzyl)- N, N-dimethylurea (114)

Yield: 0.31 g ($1.61 \mathrm{mmol}, 80 \%$).
Mp: $82-83^{\circ} \mathrm{C}$.
Compound 114 was found to be identical in all respects with the one produced either from reaction of 2-methylbenzylamine (67e) with triphosgene followed by reaction with dimethylamine (Section 7.18) or with dimethylcarbamoyl chloride in the presence of triethylamine as a base (Section 7.19). See Section 7.18 for spectral data.

N^{\prime}-(2-(Hydroxy-(4-methoxyphenyl)methyl)benzyl)- N, N-dimethylurea (118)

Yield: 0.54 g ($1.72 \mathrm{mmol}, 86 \%$).
Mp: $185-186^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.44$ (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.27-7.21 (m, $5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-6$ and H-2/H-6 of 4-methoxyphenyl), 6.87 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$, H-3/H-5 of 4-methoxyphenyl), $6.66(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 5.92(\mathrm{~d}, J=4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 5.80(\mathrm{~d}, J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}), 4.30(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.09\left(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.79[\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \quad$ DMSO- d_{6}): $\delta=159.0(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, 158.9 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 143.3 ($\mathrm{s}, \mathrm{C}-1$), 138.3 (s, C-2), 137.4 (s, C-1 of 4-methoxyphenyl), 129.0 (d, C-2/C-6 of 4-methoxyphenyl), 128.1 (d, C-3), 127.4 (d, C-6), 127.3 (d, C-4), 127.1 (d, C-5) 114.2 (d, C-3/C-5 of 4-methoxyphenyl), 71.2 (d, CH), 55.9 (q, OCH_{3}), $44.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=337\left(\mathrm{M}+\mathrm{Na}^{+}, 62\right), 315\left(\mathrm{MH}^{+}, 7\right), 297\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 58\right), 209\left(\mathrm{M}^{+}\right.$ $-\mathrm{H}_{2} \mathrm{O}$ - NHCONMe 2,100), 89 (84), 72 (78).

HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 315.1703$; found, 315.1700.
FT-IR: $v_{\max }=3331(\mathrm{NH}$ and OH$), 2924(\mathrm{CH}), 1616(\mathrm{C}=\mathrm{O}), 1563$ (aromatic $\mathrm{C}=\mathrm{C}$), $1510,1238,1023 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 68.77; H, 7.05; $\mathrm{N}, 8.91$. Found: C, 68.55; H, 7.14; N, 8.84\%.

N^{\prime}-(2-(Hydroxyphenylmethyl)benzyl)- N, N-dimethylurea (119)

Yield: 0.47 g ($1.65 \mathrm{mmol}, 82 \%$).
Mp: $138-140{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.23(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 6.05(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 5.00(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.71 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.38 (dd, J $=6,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.27\left(\mathrm{dd}, J=6,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 2.71[\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 144.1(\mathrm{~s}, \mathrm{C}-1$ of Ph$), 142.2(\mathrm{~s}, \mathrm{C}-1)$, 137.8 (s, C-2), 130.6 (d, C-3), 128.9 (d, C-6), 128.7 (d, C-3/C-5 of Ph), 128.4 (d, C-4), 128.0 (d, C-5), 127.6 (d, C-4 of Ph), 127.1 (d, C-2/C-6 of Ph), 73.8 (d, CH), $42.6\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.4\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=285\left(\mathrm{MH}^{+}, 44\right), 268\left(\mathrm{MH}^{+}-\mathrm{OH}, 18\right), 267\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$, 179 (4), 60 (8).
HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 285.1598$; found, 285.1600.
FT-IR: $v_{\max }=3289(\mathrm{NH}$ and OH$), 2925(\mathrm{CH}), 1645(\mathrm{C}=\mathrm{O}), 1545$ (aromatic $\mathrm{C}=\mathrm{C}$), 1352, 1231, $1019 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-(Hydroxydiphenylmethyl)benzyl)- N, N-dimethylurea (120)

Yield: 0.61 g ($1.69 \mathrm{mmol}, 84 \%$).
Mp: 235-236 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.43-7.23(\mathrm{~m}, 13 \mathrm{H}, 2 \mathrm{Ph}, \mathrm{H}-4, \mathrm{H}-6$ and OH), $7.04(\mathrm{dt}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.80(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 6.49 (dd, $J=2,8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.86\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.3$ (s, C=O), $149.0(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph$), 145.3$ (s, C-1), 141.2 (s, C-2), 130.5 (d, C-3), 129.5 (d, C-6), 128.9 (d, C-3/C-5 of 2 Ph), 128.6 (d, C-5), 128.4 (d, C-2/C-6 of 2 Ph), 127.4 (d, C-4 of 2 Ph), 126.3 (d, C-4), 82.0 (s, $\mathrm{C}-\mathrm{OH}), 43.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=383\left(\mathrm{M}+\mathrm{Na}^{+}, 48\right), 343\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 27\right), 255(100), 89(84)$.
ES - MS: $m / z(\%)=360\left(\mathrm{M}^{-}, 5\right), 359\left(\mathrm{M}^{-}-1,41\right), 177\left[\mathrm{M}^{-}-\mathrm{Ph}_{2} \mathrm{C}(\mathrm{OH}), 100\right], 132$ (20), 104 (40).

HRMS: m / z calc. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 383.1730; found, 383.1731.
FT-IR: $v_{\max }=3329(\mathrm{NH}$ and OH$), 2928(\mathrm{CH}), 1621(\mathrm{C}=\mathrm{O}), 1530$ (aromatic $\mathrm{C}=\mathrm{C}$), $1264,1029 \mathrm{~cm}^{-1}$.
N^{\prime}-(2-Deuteriobenzyl)- N, N-dimethylurea (121)

Yield: 0.32 g ($1.79 \mathrm{mmol}, 89 \%)$.
$\mathrm{Mp}: 76-77^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue lit..$^{135} 77^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35-7.24$ (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 4.84 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.41 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.91\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 140.2$ (s, $\mathrm{C}-1$), 128.9 (d, C-3), 128.8 (seen as three lines, $1: 1: 1$, because of coupling to $\mathrm{D}, \mathrm{C}-2$), 128.1 (d, C-5), 127.8 (d, C-6), 127.6 (d, C-4), $45.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=179\left(\mathrm{M}^{+}, 25\right), 106(36), 92\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}^{+}, 48\right), 91\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}^{+}, 57\right), 77(41)$, 72 (92), 44 (100).
CI-MS: $m / z(\%)=197\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 23\right), 180\left(\mathrm{MH}^{+}, 100\right), 179\left(\mathrm{M}^{+}, 88\right), 106$ ($\mathrm{PhCH}_{2} \mathrm{NH}^{+}, 25$), 52 (30), 46 (31).
HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{DN}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 180.1242$; found, 180.1243.
FT-IR: $v_{\max }=3320(\mathrm{NH}), 2925(\mathrm{CH}), 1622(\mathrm{C}=\mathrm{O}), 1533$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1512$, 1375, 1232, $1035 \mathrm{~cm}^{-1}$.
N^{\prime}-(2-(Hydroxy-(4-methoxyphenyl)methyl)-4-methoxybenzyl)- N, N-dimethylurea (122)

Yield: 0.59 g ($1.71 \mathrm{mmol} ; 85 \%$).
Mp: $137-138^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.21(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.14 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.03 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.86$ (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), $6.78(\mathrm{dd}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.53$ (app. t, $J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), $5.88(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.81(\mathrm{~d}, J=5 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), $4.21\left(\mathrm{dd}, J=6,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.96(\mathrm{dd}, J=6,14 \mathrm{~Hz}, 1 \mathrm{H}$, 1 H of $\left.\mathrm{CH}_{2}\right), 3.73\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 2.77\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.0(\mathrm{~s}, \mathrm{C}=\mathrm{O})$, $158.9(\mathrm{~s}, \mathrm{C}-4), 158.8(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 144.8 (s, C-2), 137.3 (s, C-1 of 4-methoxyphenyl), 130.3 (s, C-1), 129.9 (d, C-6), 129.0 (d, C-2/C-6 of 4-methoxyphenyl), 114.2 (d, C-3/C-5 of 4-methoxyphenyl), 113.2 (d, C-3), 112.4 (d, C-5), $71.2(\mathrm{~d}, \mathrm{CH}), 55.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.8$ (q, OCH_{3}), $41.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=344\left(\mathrm{M}^{+}, 7\right), 326\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 11\right), 282\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 21\right), 254$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 66\right), 243$ (96), 239 (75), 225 (92), 210 (12), 195 (13), 181 (10), 165 (20), 152 (31), 135 (100), 121 (82), 102 (80), 89 (78).

CI-MS: $m / z(\%)=345\left(\mathrm{MH}^{+}, 1\right), 343\left(\mathrm{M}^{+}-1,6\right), 327\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 51\right), 260(8), 246$ (11), 209 (22), 154 (31), 137 (22), 121 (25), 106 (65), 103 (98), 91 (51), 89 (100), 74 (24), 63 (87).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=367\left(\mathrm{M}+\mathrm{Na}^{+}, 71\right), 345\left(\mathrm{MH}^{+}, 6\right), 327\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 66\right), 239$ (100), 89 (22), 72 (27).

ES-MS: $m / z(\%)=344\left(\mathrm{M}^{-}, 15\right), 343\left(\mathrm{M}^{-}-1,70\right), 298(31), 207 \mathrm{M}^{-}-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}), 100\right], 190$ (12), 162 (15), 120 (20).
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right), 345.1809$; found, 345.1811 .
FT-IR: $v_{\max }=3328(\mathrm{NH}$ and OH$), 2923(\mathrm{CH}), 1633(\mathrm{C}=\mathrm{O}), 1563$ (aromatic $\mathrm{C}=\mathrm{C}$), 1511, $1239,1023 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 66.26; H, 7.02; $\mathrm{N}, 8.13$. Found: C, $66.23 ; \mathrm{H}, 7.04 ; \mathrm{N}$, 8.05\%.

Selected crystallographic data: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{FW}=344.40, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Monoclinic, $\mathrm{P} 2_{\mathrm{I}} / \mathrm{c}, \mathrm{a}=10.9920(4) \AA, \mathrm{b}=15.3230(5) \AA, \mathrm{c}=11.1540(5) \AA, \alpha=90^{\circ}$, $\beta=108.7900(10)^{\circ}, \gamma=90^{\circ}, V=1778.55(12) \AA^{3}, Z=4, \rho_{\text {calc. }}=1.286 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.38 \times 0.30 \times 0.06 \mathrm{~mm}^{3}, \mathrm{~m}=0.091 \mathrm{~mm}^{-1}$, reflections collected $=7298$, independent reflections $=4046, \mathrm{R}_{\text {int }}=0.0483$, parameters $=231$, final $R_{1}=0.0599$, $\mathrm{wR}_{2}=0.1267$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1008, \mathrm{wR}_{2}=0.0 .1444$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 736581, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.
N^{\prime}-(2-(Hydroxyphenylmethyl)-4-methoxybenzyl)- N, N-dimethylurea (123)

Yield: 0.56 g ($1.78 \mathrm{mmol}, 89 \%$).
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.12(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}$ and $\mathrm{H}-6), 6.81(\mathrm{~d}, J=2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3$), 6.66 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.89 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.80 (app. t, J $=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 4.68(\mathrm{~d}, J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}), 4.21(\mathrm{dd}, J=6,14 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.08\left(\mathrm{dd}, J=6,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.58$ [$\mathrm{s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.7(\mathrm{~s}, \mathrm{C}-4), 144.0(\mathrm{~s}, \mathrm{C}-1 \mathrm{of} \mathrm{Ph})$, 143.8 (s, C-2), 132.1 (d, C-6), 129.8 ($\mathrm{s}, \mathrm{C}-1$), 128.7 (d, C-3/C-5 of Ph), 127.6 (d, C-4 of Ph), 127.2 (d, C-2/C-6 of Ph), 114.6 (d, C-5), 113.3 (d, C-3), 73.7 (d, CH), 55.6 (q, $\left.\mathrm{OCH}_{3}\right), 42.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.4\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

EI-MS: $m / z(\%)=314\left(\mathrm{M}^{+}, 5\right), 297\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 12\right), 252\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 11\right)$, 225 (71), $224\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 82\right), 208\left[\mathrm{MH}^{+}-\mathrm{PhCH}(\mathrm{OH}), 100\right], 180$ (22), $165(36), 148(24), 121(40), 102(77), 89(67), 77\left(\mathrm{Ph}^{+}, 85\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 92\right), 44$ (70).

CI-MS: $m / z(\%)=315\left(\mathrm{MH}^{+}, 13\right), 299(100), 297\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 82\right), 241(23), 226$ (31).

HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 315.3869$; found, 315.3866 .
FT-IR: $v_{\max }=3321(\mathrm{NH}$ and OH$), 2836(\mathrm{CH}), 1627(\mathrm{C}=\mathrm{O}), 1525$ (aromatic $\mathrm{C}=\mathrm{C}$), 1494, 1229, $1033 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-(Hydroxydiphenylmethyl)-4-methoxybenzyl)- N, N-dimethylurea (124)

Yield: 0.66 g ($1.69 \mathrm{mmol}, 84 \%$).
Mp: 223-224 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=7.48$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 7.36-7.18 (m, 11 H , $\mathrm{H}-6$ and 2 Ph), 6.78 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.64(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), $6.01(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.75\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.76$ [s, $6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.3$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 157.6 (s, C-4), 148.9 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 146.9 ($\mathrm{s}, \mathrm{C}-2$), 132.8 ($\mathrm{s}, \mathrm{C}-1$), 132.4 (d, C-6), 128.3 (d, C-3/C-5 of 2 Ph), 128.1 (d, C-2/C-6 of 2 Ph), 127.2 ($\mathrm{d}, \mathrm{C}-4$ of 2 Ph), 116.8 ($\mathrm{d}, \mathrm{C}-3$), 112.3 (d, C-5), 81.8 (s, $\mathrm{C}-\mathrm{OH}), 55.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 42.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=413\left(\mathrm{M}+\mathrm{Na}^{+}, 12\right), 391\left(\mathrm{MH}^{+}, 8\right), 372\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 285$ (22), 209 (10), 101 (11), 89 (12).

ES $-\mathrm{MS}: m / z(\%)=390\left(\mathrm{M}^{-}, 14\right), 389\left(\mathrm{M}^{-}-1,61\right), 157(13), 115(15), 101(13), 62$ (100).

HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, 413.1836; found, 413.1837.
FT-IR: $v_{\max }=3322(\mathrm{NH}$ and OH$), 2964(\mathrm{CH}), 1622(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), 1446, 1243, $1025 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Deuterio-4-methoxybenzyl)- N, N-dimethylurea (125)

Yield: 0.36 g ($1.72 \mathrm{mmol}, 86 \%)$.
$\mathrm{Mp}: 81-82^{\circ} \mathrm{C}$ (Mp of undeuteriated analogue $81-82^{\circ} \mathrm{C}$; 108, Section 7.18).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.80-6.77$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$ and H-5), 4.30 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.28 (d, $J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.83\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.7 ($\mathrm{s}, \mathrm{C}-4$), $132.0(\mathrm{~s}, \mathrm{C}-1), 29.5$ (d, C-6), 129.2 (seen as three lines, 1:1:1, because of coupling to D, C-2), 114.4 (d, $\mathrm{C}-3), 114.3(\mathrm{~d}, \mathrm{C}-5), 55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 44.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{~s}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=209\left(\mathrm{M}^{+}, 23\right), 163\left(\mathrm{M}^{+}-\mathrm{OMe}-\mathrm{Me}, 6\right), 137\left(\mathrm{M}^{+}-\mathrm{CONMe}_{2}, 32\right)$, $122\left(\mathrm{M}^{+}-\mathrm{NHCONMe}_{2}, 100\right), 110(9), 92(12), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 96\right), 52(28), 44$ (100). CI-MS: $m / z(\%)=227\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 6\right), 210\left(\mathrm{MH}^{+}, 100\right), 122\left(\mathrm{M}^{+}-\mathrm{NHCONMe}_{2}, 2\right)$, 52 (6).

HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{DN}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 210.1347$; found, 210.1349 .
FT-IR: $v_{\max }=3317(\mathrm{NH}), 2926(\mathrm{CH}), 1618(\mathrm{C}=\mathrm{O})$, 1532 (aromatic $\mathrm{C}=\mathrm{C}$), 1495, $1377,1226,1031 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Ethyl-4-methoxybenzyl)- N, N-dimethylurea (126)

Yield: 0.42 g ($1.78 \mathrm{mmol}, 89 \%$).
Mp: 90-91 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.78(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 6.73(\mathrm{dd}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.38\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and NH$), 3.81(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $2.91\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.68\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.24(\mathrm{t}, J=7 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.6 (s, C-4), 144.7 ($\mathrm{s}, \mathrm{C}-2$), 130.9 (d, C-6), 129.0 ($\mathrm{s}, \mathrm{C}-1$), 115.0 (d, C-3), 111.3 (d, C-5), $55.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 42.7$ (t, $\left.\mathrm{NCH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 26.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.8\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

EI-MS: $m / z(\%)=236\left(\mathrm{M}^{+}, 6\right), 164\left(\mathrm{M}^{+}-\mathrm{CONMe}_{2}, 8\right), 162(10), 149\left(\mathrm{M}^{+}-\right.$ $\mathrm{HNCONMe}_{2}, 32$), $148\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}\right.$, 21), 134 (12), 117 (21), 101 (16), 90 (30), 72 ($\mathrm{Me}_{2} \mathrm{NCO}^{+}, 74$), 44 (18).

CI-MS: $m / z(\%)=237\left(\mathrm{MH}^{+}, 66\right), 179(8), 149\left(\mathrm{M}^{+}-\mathrm{HNCONMe}_{2}, 21\right), 89(51), 46$ (100), 44 (10).

HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 237.1598$; found, 237.1599.
FT-IR: $v_{\max }=3320(\mathrm{NH}), 2932(\mathrm{CH}), 1627(\mathrm{C}=\mathrm{O}), 1533$ (aromatic $\mathrm{C}=\mathrm{C}$), 1502, 1371, 1240, 1193, $1029 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-(Hydroxy-(4-methoxyphenyl)methyl)-4-methylbenzyl)- N, N-dimethylurea

 (127)

Yield: $0.50 \mathrm{~g}(1.52 \mathrm{mmol}, 76 \%)$.
$\mathrm{Mp}: 174-175{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 7.21(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, H-2/H-6 of 4-methoxyphenyl), 7.11 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.01 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-5), 6.86(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), $6.58(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 5.89 (d, $J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.78$ (d, $J=5 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.25 (dd, J $=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.03(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH 2$), 3.72(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.78\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.0(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.9$ ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 143.2 ($\mathrm{s}, \mathrm{C}-2$), 137.5 ($\mathrm{s}, \mathrm{C}-1$), 136.0 ($\mathrm{s}, \mathrm{C}-4$), 135.3 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 128.9 (d, C-2/C-6 of 4-methoxyphenyl), 128.5 (d, C-3), 128.0 (d, C-6), 127.8 (d, C-5) 114.2 (d, C-3/C-5 of 4-methoxyphenyl), 71.2 (d, CH), 55.9 (q, $\left.\mathrm{OCH}_{3}\right), 41.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

EI-MS: $m / z(\%)=328\left(\mathrm{M}^{+}, 1\right), 310\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 14\right), 266\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 57\right), 239$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 49\right), 227(47), 209\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{NHCONMe}_{2}, 79\right), 178$ (22), 165 (58), 152 (35), 130 (28), 109 (48), $92\left(\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}, 100\right), 90$ (85).

CI-MS: $m / z(\%)=329\left(\mathrm{MH}^{+}, 3\right), 328\left(\mathrm{M}^{+}, 6\right), 327\left(\mathrm{M}^{+}-1,16\right), 311\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$, 100), $240\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 22\right), 203(14), 193\left(\mathrm{MH}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}, 47\right), 154$ (18), 137 (10), 118 (11), 106 (30), 89 (33), 72 (5), 63 (22).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=351\left(\mathrm{M}+\mathrm{Na}^{+}, 30\right), 329\left(\mathrm{MH}^{+}, 12\right), 312\left(\mathrm{MH}^{+}-\mathrm{OH}, 17\right), 311$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$.
ES -MS: $m / z(\%)=328\left(\mathrm{M}^{-}, 19\right), 327\left(\mathrm{M}^{-}-1,100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 329.1860$; found, 329.1852.
FT-IR: $v_{\max }=3318(\mathrm{NH}$ and OH$), 2962(\mathrm{CH}), 1627(\mathrm{C}=\mathrm{O}), 1606$ (aromatic $\mathrm{C}=\mathrm{C}$), 1533, 1239, 1171, $1010 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.49; H, 7.37; N, 8.53. Found: C, 69.44; H, 7.40; N, 8.58\%.

Selected crystallographic data: $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{FW}=328.40, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Monoclinic, $\mathrm{P} 2{ }_{1} / \mathrm{n}, \mathrm{a}=10.3320(5) \AA, \mathrm{b}=14.8650(7) \AA, \mathrm{c}=12.1720(7) \AA, \alpha=90^{\circ}$, $\beta=112.812(2)^{\circ}, \gamma=90^{\circ}, V=1723.21(15) \AA^{3}, Z=4, \rho_{\text {calc. }}=1.266 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.22 \times 0.20 \times 0.08 \mathrm{~mm}^{3}, \mathrm{~m}=0.086 \mathrm{~mm}^{-1}$, reflections collected $=7279$, independent reflections $=3943, \mathrm{R}_{\mathrm{int}}=0.0795$, parameters $=222$, final $\mathrm{R}_{1}=0.0698, \mathrm{wR}_{2}=0.1335$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1574, \mathrm{wR}_{2}=0.1653$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 736583, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.
N^{\prime}-(2-(Hydroxyphenylmethyl)-4-methylbenzyl)- N, N-dimethylurea (128)

Yield: 0.41 g ($1.39 \mathrm{mmol}, 70 \%$).
Mp: $135-136{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.13(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}, \mathrm{NH}$ and OH$), 5.97(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{CH}), 4.27\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 4.17\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right)$, $2.64\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 144.2(\mathrm{~s}, \mathrm{C}-1 \mathrm{of} \mathrm{Ph}), 142.2(\mathrm{~s}, \mathrm{C}-2)$, 138.5 ($\mathrm{s}, \mathrm{C}-1$), 134.7 ($\mathrm{s}, \mathrm{C}-4$), 130.8 (d, C-3), 129.6 (d, C-6), $129.1(\mathrm{~d}, \mathrm{C}-5), 128.9$ (d, C-3/C-5 of Ph), 127.7 (d, C-4 of Ph), 127.1 (d, C-2/C-6 of Ph), 73.9 (d, CH), 42.4 (t, $\left.\mathrm{CH}_{2}\right), 36.5\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=298\left(\mathrm{M}^{+}, 11\right), 281\left(\mathrm{M}^{+}-\mathrm{OH}\right.$ or $\left.\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 42\right), 280\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$, 32), $236\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 100\right), 235\left(\mathrm{M}^{+}-\mathrm{OH}-\mathrm{NMe}_{2}, 83\right), 220(48)$.

CI-MS: $m / z(\%)=299\left(\mathrm{MH}^{+}, 24\right), 282\left(\mathrm{MH}^{+}-\mathrm{OH}, 43\right), 281\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 221$ (M^{+}- Ph, 7), 210 (10), 193 (14), 106 (11), 89 (27), 52 (75), 46 (40).
HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 299.1754$; found, 299.1753.
FT-IR: $v_{\max }=3218(\mathrm{NH}$ and OH$), 2934(\mathrm{CH}), 1630(\mathrm{C}=\mathrm{O}), 1606$ (aromatic $\mathrm{C}=\mathrm{C}$), 1533, 1234, 1171, $1010 \mathrm{~cm}^{-1}$.
N^{\prime}-(2-(Hydroxydiphenylmethyl)-4-methylbenzyl)- N, N-dimethylurea (129)

Yield: 0.54 g ($1.44 \mathrm{mmol}, 72 \%$).
Mp: 225-227 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.40$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 7.34-7.22 (m, 11 H , 2 Ph and H-6), 7.09 (dd, $J=1,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.76 (t, $J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), $6.31(\mathrm{~d}, J=1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.79\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.08$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.3$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 149.1 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 145.3 (s, $\mathrm{C}-2$), 138.2 ($\mathrm{s}, \mathrm{C}-1$), 135.1 ($\mathrm{s}, \mathrm{C}-4$), 130.7 (d, C-3), 130.2 (d, C-6), 129.4 (d, C-5), 128.9 (d, C-3/C-5 of 2 Ph), 128.5 (d, C-2/C-6 of 2 Ph), 127.4 (d, C-4 of 2 Ph), 81.9 (s , $\mathrm{C}-\mathrm{OH}), 42.8\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=374\left(\mathrm{M}^{+}, 6\right), 357\left(\mathrm{M}^{+}-\mathrm{OH}, 12\right), 356\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 46\right), 312\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 13\right), 311\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHMe}_{2}, 22\right), 297$ (33), $285\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{CONMe}_{2}, 73\right), 284\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 100\right)$.
CI-MS: $m / z(\%)=374\left(\mathrm{M}^{+}, 1\right), 373\left(\mathrm{M}^{+}-1,6\right), 359(24), 357\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$, $286\left(\mathrm{MH}^{+}-\mathrm{OH}-\mathrm{CONMe} 2,46\right), 284\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 22\right), 257\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ CHNHCONMe 2,20).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=397\left(\mathrm{M}+\mathrm{Na}^{+}, 12\right), 375\left(\mathrm{MH}^{+}, 8\right), 358\left(\mathrm{MH}^{+}-\mathrm{OH}, 32\right), 357$
$\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 169$ (20), 193 (12), 89 (23).
ES ${ }^{-}-\mathrm{MS}: m / z(\%)=374\left(\mathrm{M}^{-}, 27\right), 373\left(\mathrm{M}^{-}-1,100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 375.2067$; found, 375.2072 .
FT-IR: $v_{\max }=3323(\mathrm{NH}$ and OH$), 2959(\mathrm{CH}), 1636(\mathrm{C}=\mathrm{O}), 1530$ (aromatic $\mathrm{C}=\mathrm{C}$), 1243, $1024 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Ethyl-4-methylbenzyl)- N, N-dimethylurea (130)

Yield: 0.35 g ($1.59 \mathrm{mmol}, 80 \%$).
$\mathrm{Mp}: 60-62^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 6.91$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.38 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.31 (br, $2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}$), $2.58(\mathrm{q}, J=$ $\left.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.25\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14(\mathrm{t}, J=7 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 142.9 ($\mathrm{s}, \mathrm{C}-1$), 137.8 (s, $\mathrm{C}-2$), 133.7 (s, C-4), 130.0 (d, C-3), 129.5 (d, C-6), 127.2 (d, C-5), 42.9 (t, CH ${ }_{2} \mathrm{NH}$), 36.6 [$\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], $25.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right), 16.0\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=220\left(\mathrm{M}^{+}, 7\right), 191\left(\mathrm{M}^{+}-\mathrm{Et}, 5\right), 133\left(\mathrm{M}^{+}-\mathrm{NHCONMe}_{2}, 12\right), 132$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 33\right), 117\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 25\right), 91\left(\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{+}, 22\right), 77$ (13), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 65(8), 46$ (16), 44 (62), 42 (34).

CI-MS: $m / z(\%)=238\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 8\right), 221\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 221.1648$; found, 221.1649.
FT-IR: $v_{\max }=3317(\mathrm{NH}), 2964(\mathrm{CH}), 1634(\mathrm{C}=\mathrm{O}), 1606$ (aromatic $\mathrm{C}=\mathrm{C}$), 1532, 1239, $1010 \mathrm{~cm}^{-1}$.
N^{\prime}-(2-Deuterio-4-methylbenzyl)- N, N-dimethylurea (131)

Yield: 0.33 g ($1.71 \mathrm{mmol}, 86 \%$).
$\mathrm{Mp}: 94-95^{\circ} \mathrm{C}$ (Mp of undeuteriated analogue lit. ${ }^{136} 93^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.14$ (m, $3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ and H-6), 4.73 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.38 (br, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.92\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 137.3 (s, C-1), 137.0 (s, C-4), 129.6 (d, C-3), 129.5 (d, C-5), 128.2 (d, C-6), 127.9 (seen as three lines, 1:1:1, because of coupling to $\mathrm{D}, \mathrm{C}-2), 45.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=193\left(\mathrm{M}^{+}, 63\right), 192\left(\mathrm{M}^{+}-1,33\right), 121\left(\mathrm{M}^{+}-\mathrm{CONMe}_{2}, 36\right), 120\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{H}-\mathrm{CONMe}_{2}, 28\right), 106\left(\mathrm{M}^{+}-\mathrm{NHCONMe}_{2}, 50\right), 105\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 37\right), 92$ $\left(\mathrm{MeC}_{6} \mathrm{H}_{5}{ }^{+}, 18\right), 91\left(\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{+}, 16\right), 77(25), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 46(46), 44$ (91), 42 (23).

CI-MS: $m / z(\%)=211\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 21\right), 194\left(\mathrm{MH}^{+}, 100\right), 179\left(\mathrm{M}^{+}, 61\right)$.
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{DN}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 194.1398$; found, 194.1398 .
FT-IR: $v_{\max }=3331(\mathrm{NH}), 2952(\mathrm{CH}), 1612(\mathrm{C}=\mathrm{O}), 1563$ (aromatic $\mathrm{C}=\mathrm{C}$), 1510, $1239,1024 \mathrm{~cm}^{-1}$.
7.21 Synthesis of N^{\prime}-ethyl- N^{\prime}-(2-ethyl-4-methoxybenzyl)- N, N-dimethylurea (132) via directed lithiation of 108

A solution of t - BuLi in heptane $(2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol})$ was added to a cold $\left(-78^{\circ} \mathrm{C}\right.$), stirred solution of N^{\prime}-(4-methoxybenzyl)- N, N-dimethylurea (108; $0.42 \mathrm{~g}, 2.0$ mmol) in anhydrous THF (20 mL) under N_{2}. The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 4 h , after which iodoethane ($0.69 \mathrm{~g}, 4.4 \mathrm{mmol}$) was added. The mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. The reaction mixture was worked-up as described in Section 3.10.5. The product was purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3)$ to give $132(0.48 \mathrm{~g}, 1.81 \mathrm{mmol}, 90 \%)$ as a colourless oil.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 6.68(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 6.63$ (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.24\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.04$ $\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.74\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.52(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.31\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.02\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.2 (s, C-4), 144.0 (s, C-2), 129.4 (d, C-6), 127.9 ($\mathrm{s}, \mathrm{C}-1$), 114.9 (d, C-3), 110.9 (d, C-5), 55.6 ($\mathrm{q}, \mathrm{OCH}_{3}$), 48.6 (t, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 42.8\left(\mathrm{t}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 39.1\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 25.7\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 15.0\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $13.0\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=264\left(\mathrm{M}^{+}, 8\right), 235\left(\mathrm{M}^{+}-\mathrm{Et}, 7\right), 190(20), 162(39), 149\left[\mathrm{M}^{+}-\right.$ $\mathrm{N}(\mathrm{Et}) \mathrm{CONMe} 2,100], 148\left[\mathrm{M}^{+}-\mathrm{NH}(\mathrm{Et}) \mathrm{CONMe}_{2}, 54\right], 129$ (33), 121 (20), 91 (35), 72 (71).

CI-MS: $m / z(\%)=265\left(\mathrm{MH}^{+}, 100\right), 149\left[\mathrm{M}^{+}-\mathrm{N}\left(\mathrm{Et}^{2}\right) \mathrm{CONMe}_{2}, 50\right], 129(34), 117$ (68), 72 ($\mathrm{Me}_{2} \mathrm{NCO}^{+}, 25$), 46 (47), 44 (40).

HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 265.3713$; found, 265.3713.
FT-IR: $v_{\text {max }}=2964(\mathrm{CH}), 1639(\mathrm{C}=\mathrm{O}), 1578$ (aromatic $\mathrm{C}=\mathrm{C}$), 1492, 1394, 1238, $1121,1029 \mathrm{~cm}^{-1}$.
7.22 Synthesis of N^{\prime}-(2-(hydroxy(4-methoxyphenyl)methyl)-6-methoxybenzyl)N, N-dimethylurea (136) and N^{\prime}-(3-(hydroxy(4-methoxyphenyl)methyl)-2-methoxybenzyl)- N, N-dimethylurea (137) via lithiation of N^{\prime}-(2-methoxy-benzyl)- N, N-dimethylurea (111) at $-20{ }^{\circ} \mathrm{C}$
A solution of t - BuLi in heptane $(2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol})$ was added to a cold $\left(-20^{\circ} \mathrm{C}\right)$, stirred solution of N^{\prime} (2-methoxybenzyl)- N, N-dimethylurea (111; 0.42 $\mathrm{g}, 2.0 \mathrm{mmol}$) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 133 was observed as a yellow solution and the dilithium reagents 134 and 135 were observed as a reddish orange solution. The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 2 h , to ensure the complete formation of the dilithium reagents, after which 4-anisaldehyde $(0.30 \mathrm{~g}, 2.2 \mathrm{mmol})$ was added. The mixture was stirred for 2 h at $-20^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The product mixture was separated by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give 136 ($0.34 \mathrm{~g}, 0.99 \mathrm{mmol}, 49 \%$) and 137 ($0.28 \mathrm{~g}, 0.81 \mathrm{mmol}, 40 \%$) as white solids.
N^{\prime}-(2-(Hydroxy-(4-methoxyphenyl)methyl)-6-methoxybenzyl)- N, N-dimethylurea (136)

Yield: 0.34 g ($0.99 \mathrm{mmol}, 49 \%$).
Mp: $139-140^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.10 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.78-6.72 (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5$ and H-3/H-5 of 4-methoxyphenyl), $6.12(\mathrm{~d}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}), 6.02(\mathrm{~d}, J=6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}), 5.23$ (app. $\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.30(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.22\left(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.72\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.9 (s, C-6), 158.7 (s, C-4 of 4-methoxyphenyl), 144.6 ($\mathrm{s}, \mathrm{C}-2$), 137.1 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 128.8 (d, C-4), 127.8 (d, C-2/C-6 of 4-methoxyphenyl), 126.1 ($\mathrm{s}, \mathrm{C}-1$), 122.4 (d, C-3), 113.8 (d, C-3/C-5 of 4-methoxyphenyl), 110.2 (d, C-5), $73.3(\mathrm{~d}, \mathrm{CH}), 56.0\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.6(\mathrm{q}$, $\left.\mathrm{OCH}_{3}\right), 37.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.5\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=689\left(2 \mathrm{M}^{+}+1,12\right), 345\left(\mathrm{MH}^{+}, 47\right), 327\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 239$ (6), 219 (5).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right), 345.1809$; found, 345.1807 .
FT-IR: $v_{\max }=3308(\mathrm{NH}$ and OH$), 2934(\mathrm{CH}), 1630(\mathrm{C}=\mathrm{O}), 1611$ (aromatic $\mathrm{C}=\mathrm{C}$), 1509, 1242, $1029 \mathrm{~cm}^{-1}$.
N^{\prime}-(3-(Hydroxy-(4-methoxyphenyl)methyl)-2-methoxybenzyl)- N, N-dimethylurea (137)

Yield: 0.28 g ($0.81 \mathrm{mmol}, 40 \%$).

Mp: $140-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.24$ (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.19 (d, $J=9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.16 (br d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.01 (app. t, $J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.75(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), $5.96(\mathrm{~s}, 1 \mathrm{H}$, CH), 5.44 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.81 (app. $\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.36 (dd, $J=6$, $16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.32\left(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 3.69(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.78\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.9 (s, C-2), 156.0 (s, C-4 of 4-methoxyphenyl), 137.8 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 136.4 (s, C-1), 133.0 (s, C-3), 129.3 (d, C-4), 128.3 (d, C-2/C-6 of 4-methoxyphenyl), 127.6 (d, C-6), 125.0 (d, C-5), 114.1 (d, C-3/C-5 of 4-methoxyphenyl), $71.2(\mathrm{~d}, \mathrm{CH}), 62.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.6(\mathrm{q}$, $\left.\mathrm{OCH}_{3}\right), 40.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
CI-MS: $m / z(\%)=345\left(\mathrm{MH}^{+}, 6\right), 344\left(\mathrm{M}^{+}, 2\right), 343\left(\mathrm{M}^{+}-1,5\right), 329\left(\mathrm{M}^{+}-\mathrm{Me}, 82\right)$, $327\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 56\right), 301\left(\mathrm{MH}^{+}-\mathrm{NMe}_{2}, 12\right), 282\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 16\right), 256$ (8), 237 (7), 209 (10), 137 (53), 121 (16), 101 (11), 89 (58), 72 ($\mathrm{Me}_{2} \mathrm{NCO}^{+}, 25$), 46 (100). HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{MH}^{+}\right)$, 345.1809; found, 345.1813. FT-IR: $v_{\max }=3344(\mathrm{NH}$ and OH$), 2935(\mathrm{CH}), 1625(\mathrm{C}=\mathrm{O}), 1611$ (aromatic $\mathrm{C}=\mathrm{C}$), $1509,1461,1242,1170,1031 \mathrm{~cm}^{-1}$.

7.23 Lithiation of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111) at $0{ }^{\circ} \mathrm{C}$

 followed by reaction with 4-anisaldehydeThe procedure was identical to that described in Section 7.22 except that the reaction was carried out at $0{ }^{\circ} \mathrm{C}$ for 2 h followed by reaction with 4 -anisaldehye at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was worked-up and the product mixture was examined by TLC to show a mixture of four products, 136, 137, 138, 139, and starting material 111. A white solid was obtained from treatment of the product mixture with diethyl ether $(20 \mathrm{~mL})$ which was filtered and washed with diethyl ether $(2 \times 15 \mathrm{~mL})$ to give 139 ($66 \mathrm{mg}, 0.22 \mathrm{mmol}, 11 \%$). The filtrate was concentrated and subjected to column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give $136(0.35 \mathrm{~g}, 1.02$ $\mathrm{mmol}, 50 \%$), 137 ($0.08 \mathrm{~g}, 0.24 \mathrm{mmol}, 12 \%$), 138 ($12 \mathrm{mg}, 0.06 \mathrm{mmol}, 3 \%$) and 111 ($50 \mathrm{mg}, 0.24 \mathrm{mmol}, 12 \%$). Compounds 136 and 137 were found to be identical in all respects with the ones produced from similar reactions carried out at low temperatures $\left(-78\right.$ to $\left.-20^{\circ} \mathrm{C}\right)$.

N^{\prime}-(2-Hydroxybenzyl)- N, N-dimethylurea (138)

Yield: $12 \mathrm{mg}(0.06 \mathrm{mmol}, 3 \%)$.
Mp: $152-153^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.44$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 7.23 (dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 7.06 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.94 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.80 (app. dt, J $=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.29$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.34\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91$ [s, $6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.3$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 156.7 ($\mathrm{s}, \mathrm{C}-2$), 131.1 (d, C-6), 130.2 (d, C-4), 126.2 ($\mathrm{s}, \mathrm{C}-1$), 119.8 (d, C-5), 118.2 (d, C-3), 42.1 (t, CH_{2}), 36.7 [q, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
EI-MS: $m / z(\%)=194\left(\mathrm{M}^{+}, 22\right), 149(8), 122\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 20\right), 107\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Me}_{2} \mathrm{NCONH}, 24\right), 106\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO} \mathrm{NH} 2,31\right), 78$ (30), 77 (32), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}\right.$, 100), 46 (24), 44 (47).

CI-MS: $m / z(\%)=195\left(\mathrm{MH}^{+}, 22\right), 106\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO} \mathrm{NH}_{2}, 33\right), 89\left(\mathrm{Me}_{2} \mathrm{NCONH}_{3}{ }^{+}\right.$, 100).

HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$, 195.1128 ; found, 195.1127 .
FT-IR: $v_{\max }=3393(\mathrm{NH}$ and OH$), 2763(\mathrm{CH}), 1682(\mathrm{C}=\mathrm{O}), 1583$ (aromatic $\mathrm{C}=\mathrm{C}$), 1534, 1387, $1226 \mathrm{~cm}^{-1}$.
$\left(R^{*}\right)$-3-(($\left.S^{*}\right)$-Hydroxy(4-methoxyphenyl)methyl)-4-methoxyisoindolin-1-one (139)

Yield: $66 \mathrm{mg}(0.22 \mathrm{mmol}, 11 \%)$.

Mp: 199-201 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=8.77$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.31 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 7.16$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.93 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.89 (d, $J=9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl group), $6.58(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl group), 5.73 (d, $J=3 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.39 (app. t, $J=3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 4.89(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=169.7(\mathrm{~s}, \mathrm{C}-1), 158.4(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 155.0 (s, C-4), 134.9 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 131.6 (s, C-7a), 131.5 (s, C-3a), 130.1 (d, C-6), 128.3 (d, C-2/C-6 of 4-methoxyphenyl), 114.9 (d, C-7), 113.6 (d, C-5), 112.5 (d, C-3/C-5 of 4-methoxyphenyl), 71.6 (d, CHOH), $61.5(\mathrm{~d}, \mathrm{C}-3), 56.0\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.
EI-MS: $m / z(\%)=163(46), 136\left(\mathrm{M}^{+}-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{CHN}, 54\right), 135\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}(\mathrm{OH}) \mathrm{CHNH}, 100\right), 119$ (8), 107 (10), 92 (11), 77 (15).
CI-MS: $m / z(\%)=300\left(\mathrm{MH}^{+}, 100\right), 284\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 8\right), 237(24)$.
HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right), 300.1230$; found, 300.1231 .
FT-IR: $v_{\max }=3304(\mathrm{NH}$ and OH$), 2872(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O}), 1604$ (aromatic $\mathrm{C}=\mathrm{C}$), 1512, 1273, $1048 \mathrm{~cm}^{-1}$.

Selected crystallographic data: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4}, \mathrm{FW}=299.32, \mathrm{~T}=293(2) \mathrm{K}, \lambda=0.71073$ \AA, Triclinic, $\mathrm{P} 1, \mathrm{a}=7.5240(3) \AA, \mathrm{b}=9.4100(3) \AA, \mathrm{c}=11.9960(5) \AA, \alpha=83.877(2)^{\circ}$, $\beta=77.311(2)^{\circ}, \gamma=68.559(2)^{\circ}, V=770.92(5) \AA^{3}, Z=2, \rho_{\text {calc. }}=1.289 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.20 \times 0.15 \times 0.15 \mathrm{~mm}^{3}, \mathrm{~m}=0.092 \mathrm{~mm}^{-1}$, reflections collected $=5071$, independent reflections $=3513, \mathrm{R}_{\mathrm{int}}=0.0334$, parameters $=202$, final $\mathrm{R}_{1}=0.0570$, $w R_{2}=0.1277$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.0855, \mathrm{wR}_{2}=0.1433$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737415, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.
7.24 Synthesis of N^{\prime}-(2-(substituted-6-methoxybenzyl)- N, N-dimethylureas 141, 143, 145 and 147 and N^{\prime}-(3-(substituted-2-methoxybenzyl)- N, N dimethylureas $142,144,146$ and 148 via lithiation of N^{\prime}-(2-methoxy-benzyl)- N, N-dimethylurea (111) at $-20{ }^{\circ} \mathrm{C}$

The procedure was identical to that described for the synthesis of $\mathbf{1 3 6}$ and 137 (Section 7.22) except that an electrophile (2.2 mmol), in anhydrous THF (8 mL) if
solid, otherwise neat, was used instead of 4 -anisaldehyde. The reaction mixture was worked-up and the product mixture was separated by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give pure products. The yields of products $\mathbf{1 4 1 - 1 4 8}$ are recorded in Table 3.5.

N^{\prime}-(2-(Hydroxyphenylmethyl)-6-methoxybenzyl)- N, N-dimethylurea (141)

Yield: 0.32 g ($1.02 \mathrm{mmol}, 51 \%)$.
Mp: $126-127^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.45$ (d, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of Ph), 7.34 (app. t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of Ph), 7.32-7.20 (m, $2 \mathrm{H}, \mathrm{H}-4$ and H-4 of Ph), 6.86 (dd, $J=$ $1,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 6.82(\mathrm{dd}, J=1,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.41(\mathrm{~d}, J=6 \mathrm{~Hz}$, exch., 1 H , $\mathrm{OH}), 6.18(\mathrm{~d}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 5.36$ (app. $\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.41 (dd, $J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 4.32(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH 2$), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.85\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.2$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.0 ($\mathrm{s}, \mathrm{C}-6$), 144.9 (s, $\mathrm{C}-1 \mathrm{of} \mathrm{Ph}$), 144.5 ($\mathrm{s}, \mathrm{C}-2$), 128.8 (d, C-4), 128.4 (d, C-3/C-5 of Ph), 126.9 (d, C-4 of Ph), 126.7 (d, C-2/C-6 of Ph), 126.3 (s, C-1), 122.8 (d, C-3), 110.3 (d, C-5), 73.7 (d, CH), 56.0 $\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 37.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.5\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=314\left(\mathrm{M}^{+}, 2\right), 296\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 61\right), 252\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 5\right), 224$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 33\right), 209\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCONMe}_{2}, 13\right), 208\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\left.\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 23\right), 180$ (9), 165 (12), 148 (19), 89 (17), $77\left(\mathrm{Ph}^{+}, 24\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}\right.$, 100), 44 (33).

CI-MS: $m / z(\%)=315\left(\mathrm{MH}^{+}, 42\right), 299\left(\mathrm{M}^{+}-\mathrm{Me}, 22\right), 297\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 226$ (12), $225\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 11\right), 224\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 10\right), 209\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCONMe}_{2}, 82$), 197 (12), 103 (15), 89 (85), 72 ($\mathrm{Me}_{2} \mathrm{NCO}^{+}, 38$), 46 (45), 44 (26).

HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 315.1703$; found, 315.1702.
FT-IR: $v_{\max }=3311(\mathrm{NH}$ and OH$), 2851(\mathrm{CH}), 1622(\mathrm{C}=\mathrm{O})$, 1550 (aromatic $\mathrm{C}=\mathrm{C}$), $1460,1381,1235,1041 \mathrm{~cm}^{-1}$.

N^{\prime}-(3-Hydroxyphenylmethyl)-2-methoxybenzyl)- N, N-dimethylurea (142)

Yield: 0.24 g ($0.76 \mathrm{mmol}, 38 \%)$.
Mp: 146-147 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of Ph), 7.26 (app. t, $J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of Ph), $7.21-7.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ and OH), 7.01 (t, $J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ of Ph), $6.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.75$ (app. t, $J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.37 (dd, $J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), $4.34\left(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of CH_{2}), $3.51(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.80\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 156.1(\mathrm{~s}, \mathrm{C}-2), 144.2(\mathrm{~s}, \mathrm{C}-1$ of Ph$)$, 137.6 ($\mathrm{s}, \mathrm{C}-1$), 133.1 ($\mathrm{s}, \mathrm{C}-3$), 129.5 (d, C-4), 128.7 (d, C-3/C-5 of Ph), 127.9 (d, C-4 of Ph), 127.8 ($\mathrm{d}, \mathrm{C}-6$), 127.0 ($\mathrm{d}, \mathrm{C}-2 / \mathrm{C}-6$ of Ph), 125.1 (d, C-5), 71.8 (d, CH), 62.2 (q, $\left.\mathrm{OCH}_{3}\right), 40.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=314\left(\mathrm{M}^{+}, 1\right), 297\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 4\right), 296\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 8\right), 252\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{NMe}_{2}, 6\right), 236(8), 226(12), 209\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCONMe}_{2}, 14\right), 208\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 32$), 181 (8), 165 (18), 152 (13), 133 (16), $105\left(\mathrm{PhCH}_{2} \mathrm{~N}^{+}, 29\right)$, $91\left(\mathrm{PhCH}_{2}{ }^{+}, 62\right), 77\left(\mathrm{Ph}^{+}, 60\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44(69)$.
CI-MS: $m / z(\%)=315\left(\mathrm{MH}^{+}, 6\right), 299\left(\mathrm{M}^{+}-\mathrm{Me}, 23\right), 297\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 7\right), 237$ (12), $209\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCONMe}_{2}, 82\right), 197$ (8), 103 (15), 89 (85), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 23\right), 46$ (100), 44 (43).

HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 315.1703$; found, 315.1700 .
FT-IR: $v_{\max }=3303(\mathrm{NH}$ and OH$), 2835(\mathrm{CH}), 1607(\mathrm{C}=\mathrm{O}), 1552$ (aromatic $\mathrm{C}=\mathrm{C}$), 1461, 1378, 1233, $1023 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 68.77; H, 7.05; $\mathrm{N}, 8.91$. Found: C, 68.74; H, 7.06; N , 8.90\%.

N^{\prime}-(2-(Hydroxydiphenylmethyl)-6-methoxybenzyl)- N, N-dimethylurea (143)

Yield: 0.37 g ($0.95 \mathrm{mmol}, 47 \%)$.
Mp: 218-219 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.98$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $7.64(\mathrm{~d}, J=8 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{H}-2 / \mathrm{H}-6$ of 2 Ph$), 7.31(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 2 Ph$), 7.21(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4$ of 2 Ph), 7.07 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.88 (br d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.31 (dd, J $=3,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 5.48 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.04\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.85\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=159.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 159.4$ (s, C-6), 149.2 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 147.9 ($\mathrm{s}, \mathrm{C}-2$), 128.2 ($\mathrm{d}, \mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph), 128.0 (d, C-2/C-6 of 2 Ph), 127.7 (d, C-4), 126.9 ($\mathrm{s}, \mathrm{C}-1$), 126.8 ($\mathrm{d}, \mathrm{C}-4$ of 2 Ph), 123.5 (d, C-3), 110.6 (d, C-5), 81.4 (s , $\mathrm{C}-\mathrm{OH}), 56.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 39.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.5\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=390\left(\mathrm{M}^{+}, 4\right), 372\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 9\right), 313\left(\mathrm{M}^{+}-\mathrm{Ph}, 8\right), 284(18), 224$ (15), 178 (12), 161 (16), $105(45), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 25\right), 77\left(\mathrm{Ph}^{+}, 46\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}\right.$, 100), 44 (22).

CI-MS: $m / z(\%)=391\left(\mathrm{MH}^{+}, 7\right), 373\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 306(22), 292(30), 273$ (42), 235 (15).

HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 391.2016$; found, 391.2013.
FT-IR: $v_{\max }=3399(\mathrm{NH}$ and OH$), 3025(\mathrm{CH}), 1630(\mathrm{C}=\mathrm{O}), 1569$ (aromatic $\mathrm{C}=\mathrm{C}$), $1500,1443,1243,1025 \mathrm{~cm}^{-1}$.
N^{\prime}-(3-(Hydroxydiphenylmethyl)-2-methoxybenzyl)- N, N-dimethylurea (144)

Yield: 0.24 g ($0.61 \mathrm{mmol}, 30 \%)$.
Mp: 207-209 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-6.81(\mathrm{~m}, 13 \mathrm{H}, 2 \mathrm{Ph}, \mathrm{OH}, \mathrm{H}-4$ and $\mathrm{H}-5), 6.42$ (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 4.88 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.40\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.86\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.0(\mathrm{~s}, \mathrm{C}-2), 147.0(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph), 133.5 ($\mathrm{s}, \mathrm{C}-1$), 128.7 ($\mathrm{s}, \mathrm{C}-3$), 128.4 (d, C-3/C-5 of 2 Ph), 128.3 (d, C-2/C-6 of 2 Ph), 128.2 (d, C-4), 128.1 (d, C-4 of 2 Ph), 127.7 (d, C-6), 124.0 (d, C-5), 82.6 (s, $\mathrm{C}-\mathrm{OH}), 61.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 40.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

CI-MS: $m / z(\%)=391\left(\mathrm{MH}^{+}, 100\right), 373\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 47\right), 292(46), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}\right.$, 76), 44 (46).

HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 391.2016$; found, 391.2015.
FT-IR: $v_{\max }=3368(\mathrm{NH}$ and OH$), 2998(\mathrm{CH}), 1632(\mathrm{C}=\mathrm{O}), 1559$ (aromatic $\mathrm{C}=\mathrm{C}$), 14980, 1445, 1246, $1029 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Methoxy-6-methylbenzyl)- N, N-dimethylurea (145)

Yield: 0.23 g ($1.03 \mathrm{mmol}, 51 \%$).
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07$ (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.72 (d, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 6.66(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.81$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.38(\mathrm{~d}, J=6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.78\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.7 (s, C-2), 138.9 (s, C-6), 128.4 (d, C-4), 126.4 ($\mathrm{s}, \mathrm{C}-1$), 124.8 (d, C-5), 108.5 (d, C-3), 55.9 (q, OCH_{3}), 37.3 (t, $\left.\mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 20.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=222\left(\mathrm{M}^{+}, 12\right), 207\left(\mathrm{M}^{+}-\mathrm{Me}, 3\right), 150\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 40\right), 135\left(\mathrm{M}^{+}\right.$
$\left.-\mathrm{Me}_{2} \mathrm{NCONH}, 35\right), 105(21), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 20\right), 77(12), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44$ (72).
CI-MS: $m / z(\%)=445\left(2 \mathrm{M}^{+}+1,2\right), 223\left(\mathrm{MH}^{+}, 100\right), 222\left(\mathrm{M}^{+}, 13\right), 150\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Me}_{2} \mathrm{NCO}, 12\right), 135\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}, 11\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 12\right), 46$ (9).
HRMS: m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 223.1441$; found, 223.1441.
FT-IR: $v_{\max }=3341(\mathrm{NH}), 2932(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O})$, 1540 (aromatic $\mathrm{C}=\mathrm{C}$), 1471, 1264, $1090 \mathrm{~cm}^{-1}$.
N^{\prime}-(2-Methoxy-3-methylbenzyl)- N, N-dimethylurea (146)

Yield: 0.18 g ($0.81 \mathrm{mmol}, 40 \%$).
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09(\mathrm{dd}, J=1,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.02(\mathrm{br} \mathrm{d}, J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 6.91 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.84 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.37 (d, $\left.J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.82\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$ (s, $\mathrm{C}=\mathrm{O}$), 157.2 (s, C-2), 132.7 (s, C-1), 131.5 (s, C-3), 131.0 (d, C-4), 127.8 (d, C-6), 124.7 (d, C-5), $60.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 40.9(\mathrm{t}$, $\left.\mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 16.4\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=222\left(\mathrm{M}^{+}, 12\right), 191(6), 150\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 31\right), 135\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Me}_{2} \mathrm{NCONH}, 16\right), 105$ (12), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 18\right), 77$ (11), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44$ (54).
CI-MS: $m / z(\%)=223\left(\mathrm{MH}^{+}, 100\right), 209(8), 150\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 6\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}\right.$, 7), 46 (9).

HRMS: m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right)$, 223.1441; found, 223.1443.
FT-IR: $v_{\max }=3341(\mathrm{NH}), 2928(\mathrm{CH}), 1633(\mathrm{C}=\mathrm{O}), 1528$ (aromatic $\mathrm{C}=\mathrm{C}$), 1469, 1372, 1206, $1007 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Ethyl-6-methoxybenzyl)- N, N-dimethylurea (147)

Yield: 0.24 g ($1.02 \mathrm{mmol}, 51 \%$).
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19-7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and NH$), 6.86(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 6.68(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.30\left(\mathrm{br}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.07\left(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.72\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.06\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.5$ (s, $\mathrm{C}=\mathrm{O}$), 156.3 (s, C-6), 126.9 (d, C-4), 126.8 ($\mathrm{s}, \mathrm{C}-2$), 125.4 ($\mathrm{s}, \mathrm{C}-1$), 119.4 (d, C-3), $109.0(\mathrm{~d}, \mathrm{C}-5), 54.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 45.4(\mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 41.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 37.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 11.8\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

EI-MS: $m / z(\%)=236\left(\mathrm{M}^{+}, 13\right), 207\left(\mathrm{M}^{+}-\mathrm{Et}, 7\right), 164\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 52\right), 134\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{Me}_{2} \mathrm{NCONH}-\mathrm{Me}, 51\right), 121\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}-\mathrm{Et}, 87\right), 115(17), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 51\right)$, 72 ($\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100$), 44 (30).
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 237.1598$; found, 237.1598.
FT-IR: $v_{\max }=3340(\mathrm{NH}), 2937(\mathrm{CH}), 1632(\mathrm{C}=\mathrm{O}), 1490$ (aromatic $\mathrm{C}=\mathrm{C}$), 1397, $1239,1028 \mathrm{~cm}^{-1}$.
N^{\prime}-(3-Ethyl-2-methoxybenzyl)- N, N-dimethylurea (148)

Yield: 0.18 g ($0.76 \mathrm{mmol}, 38 \%)$.
Colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.11$ (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $6.75(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 6.67$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.84 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 3.89 (d, $J=6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.77$ [s, $\left.6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.73(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.12\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.7 (s, $\mathrm{C}-2$), 130.7 ($\mathrm{s}, \mathrm{C}-1$), 130.7 (d, C-4), 127.7 ($\mathrm{s}, \mathrm{C}-3$), 124.7 (d, C-6), 121.9 (d, C-5), 55.9 (q, OCH_{3}), 36.9 (t, $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 26.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.5\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=236\left(\mathrm{M}^{+}, 12\right), 207\left(\mathrm{M}^{+}-\mathrm{Et}, 9\right), 164\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 32\right), 149\left(\mathrm{M}^{+}\right.$ $\left.-\mathrm{Me}_{2} \mathrm{NCO}-\mathrm{Me}, 51\right), 148\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 95\right), 135$ (15), 117 (34), 101 (24), 91 $\left(\mathrm{PhCH}_{2}{ }^{+}, 56\right), 77(25), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44$ (67).
CI-MS: $m / z(\%)=237\left(\mathrm{MH}^{+}, 100\right), 164\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 5\right), 148\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 11\right), 89$ (13), 72 ($\mathrm{Me}_{2} \mathrm{NCO}^{+}, 10$), 46 (19), 44 (12).
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 237.1598$; found, 237.1599.
FT-IR: $v_{\max }=3329(\mathrm{NH}), 2965(\mathrm{CH}), 1636(\mathrm{C}=\mathrm{O}), 1520$ (aromatic $\mathrm{C}=\mathrm{C}$), 1470, $1270,1095 \mathrm{~cm}^{-1}$.
7.25 Synthesis of N^{\prime}-(2-substituted methylbenzyl)- N, N-dimethylureas 153-158 via directed lithiation of N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114)
The procedure was identical with that described in Section 7.20 except that N^{\prime}-(2-methylbenzyl)- N, N-dimethylurea (114) was used instead of compound 107, 108
or 113. The reaction mixture was worked-up and purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give pure products as white solids. The yields obtained are recorded in Table 3.6.

N^{\prime}-(2-(2-(Hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)- N, N-dimethylurea (153)

Yield: 0.52 g ($1.58 \mathrm{mmol}, 79 \%$).
Mp: 108-109 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.29-7.22 (m, $5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ and NH), 6.89 (d, $J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 5.32 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.88 (dd, $J=4$, $9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.44\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 4.35(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{NH}$), $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.12\left(\mathrm{dd}, J=9,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of CH_{2}), 2.94 (dd, $J=4,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 2.85\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.4$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 158.9 (s, C-4 of 4-methoxyphenyl), 138.4 ($\mathrm{s}, \mathrm{C}-1$), 137.8 ($\mathrm{s}, \mathrm{C}-2$), 137.0 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 130.7 (d, C-3), 130.4 (d, C-6), 128.1 (d, C-4), 127.4 (d, C-2/C-6 of 4-methoxyphenyl), 127.3 (d, C-5), 114.2 (d, C-3/C-5 of 4-methoxyphenyl), $75.7(\mathrm{~d}, \mathrm{CH}), 55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 43.3\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, $42.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=328\left(\mathrm{M}^{+}, 2\right), 311\left(\mathrm{M}^{+}-\mathrm{OH}, 100\right), 310\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 51\right), 308(20)$, 265 (63).
CI-MS: $m / z(\%)=328\left(\mathrm{M}^{+}, 3\right), 327\left(\mathrm{M}^{+}-1,3\right), 312\left(\mathrm{MH}^{+}-\mathrm{OH}, 17\right), 311\left(\mathrm{MH}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}, 100\right), 240\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 11\right), 193$ (28), 179 (14), 154 (28), 137 (22), 135 (17), 106 (58), 89 (81), 63 (20).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=351\left(\mathrm{M}+\mathrm{Na}^{+}, 58\right), 329\left(\mathrm{MH}^{+}, 2\right), 312\left(\mathrm{MH}^{+}-\mathrm{OH}, 22\right), 311$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right)$.
ES - -MS: $m / z(\%)=328\left(\mathrm{M}^{-}, 14\right), 327\left(\mathrm{M}^{-}-1,100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 329.1860$; found, 329.1864.
FT-IR: $v_{\max }=3314(\mathrm{NH}$ and OH$), 2933(\mathrm{CH}), 1632(\mathrm{C}=\mathrm{O})$, 1530 (aromatic $\mathrm{C}=\mathrm{C}$), $1510,1243,1024 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-(2-Hydroxy-2-phenylethyl)benzyl)- N, N-dimethylurea (154)

Yield: 0.46 g ($1.54 \mathrm{mmol}, 77 \%$).
Mp: $116-117{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.12(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ and NH), 5.44 (br s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.82 (dd, $J=4,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 4.33$ (d, $J=14 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{NH}$), $4.25\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{NH}$), 3.02 (dd, $J=9,14 \mathrm{~Hz}$, $1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2}\right), 2.88\left(\mathrm{dd}, J=4,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 2.75\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 144.8(\mathrm{~s}, \mathrm{C}-1), 138.5(\mathrm{~s}, \mathrm{C}-1 \mathrm{of} \mathrm{Ph})$, 137.7 (s, C-2), 130.7 (d, C-3), 130.4 (d, C-6), 128.9 (d, C-3/C-5 of Ph), 128.1 (d, C-4), 128.0 (d, C-5), 127.3 (d, C-4 of Ph), 126.2 (d, C-2/C-6 of Ph), 76.1 (d, CH), $43.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.6\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=299\left(\mathrm{M}^{+}+1,6\right), 298\left(\mathrm{M}^{+}, 1\right), 281\left(\mathrm{M}^{+}-\mathrm{OH}^{2}\right.$ or $\left.\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 51\right)$, $280\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 14\right), 209$ (33), 208 (100).
CI-MS: $m / z(\%)=316\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 3\right), 299\left(\mathrm{MH}^{+}, 100\right), 282\left(\mathrm{MH}^{+}-\mathrm{OH}, 26\right), 281$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 193$ (44), 179 (12), 106 (41), 89 (64), 52 (68), 46 (78).
HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 299.1754$; found, 299.1755.
FT-IR: $v_{\max }=3230(\mathrm{NH}$ and OH$), 2938(\mathrm{CH}), 16310(\mathrm{C}=\mathrm{O}), 1586$ (aromatic $\mathrm{C}=\mathrm{C}$), 1530, 1212, $1018 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.46; H, 7.43; N, 9.39. Found: C, 72.50; H, 7.47; N, 9.40%.
N^{\prime}-(2-(2-Hydroxy-2-phenylpropyl)benzyl)- N, N-dimethylurea (155)

Yield: 0.45 g ($1.47 \mathrm{mmol}, 74 \%$).

Mp: $82-83{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of Ph), $7.26-7.22$ (m, $3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$ and H-5 of Ph), 7.17 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 7.14 (br, exch., 1 H , NH), 7.08 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.99 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.74 (d, $J=$ $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 5.35$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.31 (d, $J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH2NH), $4.23\left(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{NH}\right), 3.09(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH 2$), 3.04$ (d, $J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), $2.78\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.9(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 148.5(\mathrm{~s}, \mathrm{C}-1$ of Ph$), 139.6(\mathrm{~s}, \mathrm{C}-1)$, 135.8 (s, C-2), 132.3 (d, C-3), 130.2 (d, C-6), 128.5 (d, C-3/C-5 of Ph), 127.4 (d, C-4 of Ph), 127.1 (d, C-5), 126.5 (d, C-4), 125.4 (d, C-2/C-6 of Ph), 75.4 (s, C-OH), 46.6 $\left(\mathrm{t}, \mathrm{CH}_{2}\right), 43.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 30.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=312\left(\mathrm{M}^{+}, 1\right), 295\left(\mathrm{M}^{+}-\mathrm{OH}, 12\right), 294\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 10\right), 222\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{CONMe}_{2}, 25\right), 207\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCONMe}_{2}, 32\right), 206\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{NCONMe}_{2}, 100$).
CI-MS: $m / z(\%)=313\left(\mathrm{MH}^{+}, 33\right), 297(24), 296\left(\mathrm{MH}^{+}-\mathrm{OH}, 20\right), 295\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}\right.$, 100), 235 ($\mathrm{M}^{+}-\mathrm{Ph}, 13$), 193 (78), 179 (9), 138 (39), 106 ($\mathrm{PhCHO}^{+}, 42$), 89 (78), 52 (58), 46 (67), 44 (24).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 313.1911$; found, 313.1912.
FT-IR: $v_{\max }=3329(\mathrm{NH}$ and OH$)$, $2928(\mathrm{CH}), 1611(\mathrm{C}=\mathrm{O})$, 1531 (aromatic $\mathrm{C}=\mathrm{C}$), $1246,1026 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-(2-Hydroxy-2,2-diphenylethyl)benzyl)- N, N-dimethylurea (156)

Yield: 0.57 g ($1.52 \mathrm{mmol}, 76 \%)$.
Mp: $119-120{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta=7.41$ (d, $J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 2 Ph), 7.27 (app. t, $J=8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 2 Ph$), 7.19-6.86(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ and $\mathrm{H}-4$ of 2 Ph), $6.66(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 5.83(\mathrm{~s}$, exch., $1 \mathrm{H}, \mathrm{OH}), 3.99(\mathrm{~d}, J=$ $\left.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.79\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta=158.5(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 148.5(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph$), 140.9(\mathrm{~s}$, C-1), 135.4 (s, C-2), 131.8 (d, C-3), 128.0 (d, C-6), 127.9 (d, C-3/C-5 of 2 Ph), 126.8 (d, C-2/C-6 of 2 Ph), 126.6 (d, C-4 of 2 Ph), 126.0 (d, C-4), 125.4 (d, C-5), 77.8 (s , $\mathrm{C}-\mathrm{OH}), 42.9\left(\mathrm{t}, \mathrm{CH}_{2}\right), 41.3\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.3\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=374\left(\mathrm{M}^{+}, 2\right), 357\left(\mathrm{M}^{+}-\mathrm{OH}, 11\right), 268\left(\mathrm{MH}^{+}-\mathrm{OH}-\mathrm{CONMe}_{2}\right.$, 100), 252 (16), 239 (12), 206 (25).

CI-MS: $m / z(\%)=375\left(\mathrm{MH}^{+}, 12\right), 374\left(\mathrm{M}^{+}, 6\right), 373\left(\mathrm{M}^{+}-1,5\right), 359(33), 357\left(\mathrm{MH}^{+}\right.$ $\left.-\mathrm{H}_{2} \mathrm{O}, 89\right), 286\left(\mathrm{MH}^{+}-\mathrm{OH}-\mathrm{CONMe}_{2}, 10\right), 257\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CHNHCONMe}_{2}\right.$, 12), $200(81), 193(100), 183\left(\mathrm{Ph}_{2} \mathrm{COH}^{+}, 71\right), 179$ (17), 118 (24), 106 (55), 89 (87), 63 (15).

ES ${ }^{+}-\mathrm{MS}: m / z(\%)=397\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right), 375\left(\mathrm{MH}^{+}, 4\right), 358\left(\mathrm{MH}^{+}-\mathrm{OH}, 13\right), 357$ $\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 69\right), 270\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}-\mathrm{NHCONMe} 2,14\right), 269\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}-\right.$ $\mathrm{NHCONMe}_{2}, 52$), 191(34), 89 (78).
ES-MS: $m / z(\%)=374\left(\mathrm{M}^{-}, 2\right), 373\left(\mathrm{M}^{-}-1,8\right), 191(100), 146(9), 118(21), 87$ (25).

HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right)$, 392.2333; found, 392.2330.
FT-IR: $v_{\max }=3331(\mathrm{NH}$ and OH$), 2927(\mathrm{CH}), 1621(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\mathrm{C}=\mathrm{C}$), $1246,1026 \mathrm{~cm}^{-1}$.

N^{\prime}-(2-Propylbenzyl)- N, N-dimethylurea (157)

Yield: 0.36 g ($1.64 \mathrm{mmol}, 82 \%$).
$\mathrm{Mp}: 59-61^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.20-7.05(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 4.58 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.33 (br, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $2.80\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.54$ (t, $J=7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.53 (app. sextet, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.89 (t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}$, CH_{3}).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.6$ (s, $\mathrm{C}=\mathrm{O}$), 141.3 (s, C-1), 137.1 (s, C-2), 129.9 (d, C-3), 129.1 (d, C-6), 127.8 (d, C-4), 126.5 (d, C-5), 42.9 (t, $\mathrm{CH}_{2} \mathrm{NH}$), 36.6 [q, $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], $34.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

EI-MS: $m / z(\%)=220\left(\mathrm{M}^{+}, 31\right), 177\left(\mathrm{M}^{+}-\mathrm{Pr}, 13\right), 148\left(\mathrm{M}^{+}-\mathrm{CONMe}_{2}, 10\right), 132$ $\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 47\right), 117\left(\mathrm{M}^{+}-\mathrm{Me}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 82\right), 105\left(\mathrm{M}^{+}-\mathrm{CONMe}_{2}-\right.$ $\operatorname{Pr}, 53), 91\left(\mathrm{MeC}_{6} \mathrm{H}_{4}{ }^{+}, 22\right), 89(34), 77(24), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 65(15), 46(23), 44$ (69), 42 (33).

CI-MS: $m / z(\%)=441\left(2 \mathrm{M}^{+}+1,12\right), 238\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 13\right), 221\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$, 221.1648; found, 221.1648.
FT-IR: $v_{\max }=3325(\mathrm{NH}), 2957(\mathrm{CH}), 1631(\mathrm{C}=\mathrm{O}), 1529$ (aromatic $\mathrm{C}=\mathrm{C}$), 1375, 1227 cm^{-1}.
N^{\prime}-(2-Deuteriomethylbenzyl)- N, N-dimethylurea (158)

Yield: 0.32 g ($1.66 \mathrm{mmol}, 83 \%$).
$\mathrm{Mp}: 73-75^{\circ} \mathrm{C}\left(\mathrm{Mp}\right.$ of undeuteriated analogue $73-75^{\circ} \mathrm{C}$; 114, Section 7.18).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26-7.12(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 4.61 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.42 (br, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $2.91\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 2.31 [(1:1:1) t, $\left.J=2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{D}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.7$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $137.5(\mathrm{~s}, \mathrm{C}-1), 136.8(\mathrm{~s}, \mathrm{C}-2)$, 130.8 (d, C-6), 128.7 (d, C-3), 127.8 (d, C-5), 126.5 (d, C-4), 43.6 (t, CH2NH), 36.6
[$\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], 19.4 (seen as three lines, 1:1:1, because of coupling to $\mathrm{D}, \mathrm{CH}_{2} \mathrm{D}$).
EI-MS: $m / z(\%)=194\left(\mathrm{M}^{+}+1,15\right), 193\left(\mathrm{M}^{+}, 43\right), 149\left(\mathrm{M}^{+}-\mathrm{NMe}_{2}, 11\right), 121\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CONMe}_{2}, 37\right), 106\left(\mathrm{M}^{+}-\mathrm{NHCONMe}_{2}, 71\right), 105\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{NCONMe}_{2}, 66\right), 92$ $\left(\mathrm{MeC}_{6} \mathrm{H}_{5}{ }^{+}, 21\right), 78(24), 77\left(\mathrm{Ph}^{+}, 21\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 46(32), 44$ (79), 42 (27).
CI-MS: $m / z(\%)=211\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 17\right), 195(23), 194\left(\mathrm{MH}^{+}, 100\right), 52(20)$.
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{DN}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 194.1398$; found, 194.1398 .
FT-IR: $v_{\max }=3315(\mathrm{NH}), 2926(\mathrm{CH}), 1622(\mathrm{C}=\mathrm{O}), 1537$ (aromatic $\mathrm{C}=\mathrm{C}$), 1512, 1376, 12.35, $1027 \mathrm{~cm}^{-1}$.
7.26 Synthesis of 1,1-diphenyl-2-pivaloylisoindoline (162) via cyclization of \boldsymbol{N}-(2-(hydroxydiphenylmethyl)benzyl)pivalamide (57)
Trifluoroacetic anhydride (0.5 mL) was added to a stirred solution of N-(2-(hydroxydiphenylmethyl)benzyl)pivalamide (57; $0.50 \mathrm{~g}, 1.34 \mathrm{mmol}$) in DCM
$(10 \mathrm{~mL})$ at room temperature. The mixture was stirred for 5 min at room temperature, after which TLC showed the formation of a single product. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, washed with aq. sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give pure $162(0.40 \mathrm{~g}, 1.14 \mathrm{mmol}, 85 \%)$ as a white solid.

Mp: $149-150{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.23(\mathrm{~m}, 13 \mathrm{H}, 2 \mathrm{Ph}, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6), 7.04$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 5.30(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3), 1.35\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 146.5(\mathrm{~s}, \mathrm{C}-7 \mathrm{a}), 143.1(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph), 135.7 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 128.8 (d, C-2/C-6 of 2 Ph), 128.5 (d, C-4), 128.0 (d, C-7), 127.9 (d, C-3/C-5 of 2 Ph), 127.0 (d, C-4 of 2 Ph), 125.1 (d, C-6), 122.2 (d, C-5), 80.9 (s , $\mathrm{C}-1), 53.9(\mathrm{t}, \mathrm{C}-3), 40.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=355\left(\mathrm{M}^{+}, 22\right), 298\left(\mathrm{M}^{+}-{ }^{\prime} \mathrm{Bu}, 55\right), 278\left(\mathrm{M}^{+}-\mathrm{Ph}, 20\right), 255\left(\mathrm{M}^{+}-\right.$ 'BuCONH, 42), 239 (21), 220 (19), 206 (12), 194 (40), 178 (28), 165 (32), 116 (11), $105\left(\mathrm{PhCH}_{2} \mathrm{~N}^{+}, 23\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 9\right), 77\left(\mathrm{Ph}^{+}, 20\right), 57\left({ }^{t} \mathrm{Bu}^{+}, 100\right), 41(27)$.
CI-MS: $m / z(\%)=356\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 356.2009$; found, 356.2010.
FT-IR: $v_{\max }=2957(\mathrm{CH}), 1618(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\mathrm{C}=\mathrm{C}$), 1371, 1348, 1242, 1173, $1030 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 84.47 ; \mathrm{H}, 7.09$; N, 3.94. Found: C, $84.35 ; \mathrm{H}, 7.03$; N, 3.83%.

Selected crystallographic data: $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}, \mathrm{FW}=355.46, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$
\AA, Orthorhombic, $\operatorname{Pna}_{1}, \mathrm{a}=19.5940(2) \AA, \mathrm{b}=10.8450(2) \AA, \mathrm{c}=9.2270(5) \AA, \alpha=$ $90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, \mathrm{V}=1960.71(11) \AA^{3}, \mathrm{Z}=4, \rho_{\text {calc. }}=1.204 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=$ $0.40 \times 0.34 \times 0.30 \mathrm{~mm}^{3}, \mathrm{~m}=0.072 \mathrm{~mm}^{-1}$, reflections collected $=4301$, independent reflections $=3656, \mathrm{R}_{\text {int }}=0.0300$, parameters $=247$, final $\mathrm{R}_{1}=0.0481, \mathrm{wR}_{2}=0.1016$ for $I>2 \sigma(I)$ and $R_{1}=0.0616, \mathrm{wR}_{2}=0.1085$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737413, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

7.27 Synthesis of substituted isoindolines 163-173

The procedure was identical to that described in Section 7.26 except that compounds of the general formula $160(0.50 \mathrm{~g})$ were used as starting materials instead of 57 . The reaction mixtures were worked-up as described in Section 7.26 and the residues obtained subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3)$ to give the pure products $\mathbf{1 6 3 - 1 7 3}$ as white solids.

1-(4-Methoxyphenyl)-2-pivaloylisoindoline (163)

Yield: 0.42 g ($1.36 \mathrm{mmol}, 89 \%)$.
Mp: $112-114{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32$ (app. $\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $7.29(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-4$), 7.25 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.19 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.09 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.83 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 6.32 (s, $1 \mathrm{H}, \mathrm{H}-1$), $5.26-5.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $1.24\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.8$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.0 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 141.4 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 136.3 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 128.3 (d, C-4 and C-7), 128.1 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 128.0 (d, C-2/C-6 of 4-methoxyphenyl), 123.9 (d, C-6), 122.7 (d, C-5), 114.3 (d, C-3/C-5 of 4-methoxyphenyl), $69.0(\mathrm{~d}, \mathrm{C}-1), 55.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 54.0(\mathrm{t}$, $\mathrm{C}-3), 39.7\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.

EI-MS: $m / z(\%)=309\left(\mathrm{M}^{+}, 12\right), 294\left(\mathrm{M}^{+}-\mathrm{Me}, 3\right), 278\left(\mathrm{M}^{+}-\mathrm{OMe}, 7\right), 252\left(\mathrm{M}^{+}-\right.$ $\left.{ }^{t} \mathrm{Bu}, 15\right), 224\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCO}, 12\right), 209\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCO}-\mathrm{Me}, 23\right), 194$ (8), 165 (9), 135 (7), 116 (6), 57 ($\left.{ }^{t} \mathrm{Bu}^{+}, 100\right), 41$ (73).

CI-MS: $m / z(\%)=310\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 310.1802$; found, 310.1802.
FT-IR: $v_{\text {max }}=2958(\mathrm{CH}), 1616(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\mathrm{C}=\mathrm{C}$), 1371, 1357, 1242, $1117 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 77.64; $\mathrm{H}, 7.49$; $\mathrm{N}, 4.53$. Found: C, $77.65 ; \mathrm{H}, 7.54 ; \mathrm{N}$, 4.52\%.

1-Phenyl-2-pivaloylisoindoline (164)

Yield: 0.41 g ($1.47 \mathrm{mmol}, 87 \%$).
Mp: $110-11{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23-7.11$ (m, $8 \mathrm{H}, \mathrm{Ph}, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 7.00 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3), 1.24[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.2$ (s, $\mathrm{C}=\mathrm{O}$), 143.9 (s, $\mathrm{C}-1$ of Ph), 141.0 (s , C-7a), 136.2 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 129.0 (d, C-3/C-5 of Ph), 128.4 (d, C-4), 128.1 (d, C-2/C-6 of Ph), 127.6 (d, C-4 of Ph), 126.7 (d, C-7), 123.9 (d, C-6), 122.7 (d, C-5), 69.7 (d, C-1), 54.2 (t, C-3), $39.8\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.

EI-MS: $m / z(\%)=279\left(\mathrm{M}^{+}, 11\right), 222\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}, 10\right), 194\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCO}, 11\right), 179\left(\mathrm{M}^{+}\right.$ - 'BuCONH, 32 $^{\prime}$, $178\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCONH}_{2}, 29\right), 165\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCONHCH}_{2}, 16\right), 116$ (12), $105\left(\mathrm{PhCH}_{2} \mathrm{~N}^{+}, 6\right), 91\left(\mathrm{PhCH}_{2}^{+}, 9\right), 89(15), 77\left(\mathrm{Ph}^{+}, 18\right), 57\left({ }^{t} \mathrm{Bu}^{+}, 100\right), 41(95)$.

CI-MS: $m / z(\%)=297\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 2\right), 280\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 280.1696$; found, 280.1694.
FT-IR: $v_{\max }=2962(\mathrm{CH}), 1616(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\mathrm{C}=\mathrm{C}$), 1410, 1369, 1357, $1209,1093 \mathrm{~cm}^{-1}$.

6-Methoxy-1-(4-methoxyphenyl)-2-pivaloylisoindoline (165)

Yield: 0.43 g ($1.26 \mathrm{mmol}, 90 \%$).
Mp: $133-134^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.21(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.18(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, H-2/H-6 of 4-methoxyphenyl), 6.85 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.83 (d, $J=9 \mathrm{~Hz}, 2$ H, H-3/H-5 of 4-methoxyphenyl), 6.58 ($\mathrm{d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $6.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-1)$, 5.20-5.09 (m, 2 H, H-3), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.32$ [s, 9 H , $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.7$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 160.2 ($\mathrm{s}, \mathrm{C}-6$), 159.0 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 142.8 (s, C-7a), 136.2 (s, C-1 of 4-methoxyphenyl and C-3a), 128.2 (d, C-4), 123.5 (d, C-7), 114.9 (d, C-5), 114.3 (d, C-2/C-6 of 4-methoxyphenyl), 108.5 (d, C-3/C-5 of 4-methoxyphenyl), 69.1 (d, C-1), $55.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.6$ (q, $\left.\mathrm{OCH}_{3}\right), 53.5(\mathrm{t}, \mathrm{C}-3), 39.7\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=339\left(\mathrm{M}^{+}, 8\right), 282\left(\mathrm{M}^{+}-{ }^{\prime} \mathrm{Bu}, 41\right), 254\left(\mathrm{M}^{+}-\mathrm{BuCO}, 12\right), 239\left(\mathrm{M}^{+}-\right.$ $\left.{ }^{\prime} \mathrm{BuCONH}, 16\right), 238\left(\mathrm{M}^{+}-{ }^{\prime} \mathrm{BuCONH}_{2}, 20\right), 224$ (7), 208 (6), 195 (5), 165 (8), 152 (8), 139 (7), 104 (8), 92 (5), 77 (14), 57 (${ }^{\prime} \mathrm{Bu}^{+}, 100$), 41 (73).
CI-MS: $m / z(\%)=340\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 340.1907$; found, 340.1913.
FT-IR: $v_{\max }=2959(\mathrm{CH}), 1615(\mathrm{C}=\mathrm{O}), 1511$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1477,1400,1358$, 1243, 1171, $1023 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, $74.31 ; \mathrm{H}, 7.42$; $\mathrm{N}, 4.13$. Found: C, $74.42 ; \mathrm{H}, 7.46 ; \mathrm{N}$, 4.08\%.

Selected crystallographic data: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}, \mathrm{FW}=339.42, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$
\AA, Orthorhombic, $\mathrm{P} 2_{1} 2_{1} 2_{1}, \mathrm{a}=5.85700(10) \AA, \mathrm{b}=16.4960(4) \AA, \mathrm{c}=18.6450(6) \AA, \alpha$ $=90^{\circ}, \beta=90^{\circ}, \gamma=90^{\circ}, \mathrm{V}=1801.43(8) \AA^{3}, \mathrm{Z}=4, \rho_{\text {calc. }}=1.251 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=$ $0.25 \times 0.25 \times 0.20 \mathrm{~mm}^{3}, \mathrm{~m}=0.083 \mathrm{~mm}^{-1}$, reflections collected $=4120$, independent reflections $=3365, \mathrm{R}_{\text {int }}=0.0606$, parameters $=231$, final $\mathrm{R}_{1}=0.0504, \mathrm{wR}_{2}=0.1003$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.0699, \mathrm{wR}_{2}=0.1090$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737410, and can be obtained free of charge $v i a \mathrm{http}: / / \mathrm{www} . c c d c . a c . u k /$ data_request/cif.

6-Methoxy-1,1-diphenyl-2-pivaloylisoindoline (166)

Yield: 0.47 g ($1.22 \mathrm{mmol}, 98 \%)$.
Mp: 119-121 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26-7.10(\mathrm{~m}, 11 \mathrm{H}, 2 \mathrm{Ph}$ and $\mathrm{H}-4), 6.73(\mathrm{dd}, J=2$, $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.37$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $5.11(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $1.20\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.2(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 160.2(\mathrm{~s}, \mathrm{C}-6), 147.6$ ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 142.7 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 128.7 (d, C-3/C-5 of 2 Ph), 128.4 (s, C-3a), 127.9 (d, C-2/C-6 of 2 Ph), 127.15 (d, C-4 of 2 Ph), 123.0 (d, C-4), 114.8 (d, C-7), 110.0 (d, C-5), 81.2 ($\mathrm{s}, \mathrm{C}-1), 55.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 53.5(\mathrm{t}, \mathrm{C}-3), 40.2\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.88\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=386\left(\mathrm{M}^{+}+1,22\right), 385\left(\mathrm{M}^{+}, 81\right), 328\left(\mathrm{M}^{+}-\mathrm{Bu}, 100\right), 308(42), 300$ ($\mathrm{M}^{+}{ }^{t} \mathrm{BuCO}, 38$), 292 (21), 220 (16).
CI-MS: $m / z(\%)=386\left(\mathrm{MH}^{+}, 100\right), 328\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}, 3\right), 303(19), 284(5)$.
HRMS: m / z calc. for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 386.2115$; found, 386.2113 .
FT-IR: $v_{\max }=2957(\mathrm{CH}), 1638(\mathrm{C}=\mathrm{O}), 1599$ (aromatic $\mathrm{C}=\mathrm{C}$), 1490, 1444, 1351, $1210,1172 \mathrm{~cm}^{-1}$.

1-(4-Methoxyphenyl)-6-methyl-2-pivaloylisoindoline (167)

Yield: 0.42 g ($1.29 \mathrm{mmol}, 88 \%$).
Mp: 148-149 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.18 \mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, H-2/H-6 of 4-methoxyphenyl), 7.10 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.90 (s, $1 \mathrm{H}, \mathrm{H}-7$), 6.84 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 6.26 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1$), 5.21-5.11 (m, $2 \mathrm{H}, \mathrm{H}-3), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.33\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.7$ (s, $\mathrm{C}=\mathrm{O}$), 159.0 (s, C-4 of 4-methoxyphenyl), 141.5 (s, C-7a), 138.1 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 136.5 (s, C-6), 133.4 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 128.9 (d, C-2/C-6 of 4-methoxyphenyl), 128.1 (d, C-7), 124.3 (d, C-4), 122.4 (d, C-5), 114.3 (d, C-3/C-5 of 4-methoxyphenyl), $70.0(\mathrm{~d}, \mathrm{C}-1), 55.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 53.8(\mathrm{t}, \mathrm{C}-3)$, 39.7 [s, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$], 28.0 [$\left.\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 21.7\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.

EI-MS: $m / z(\%)=323\left(\mathrm{M}^{+}, 4\right), 266\left(\mathrm{M}^{+}-{ }^{t} \mathrm{Bu}, 3\right), 238\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCO}, 8\right), 223\left(\mathrm{M}^{+}-\right.$ 'BuCONH, 13), 208 (9), 194 (6), 165 (8), 130 (7), 77 (14), 57 (${ }^{\left(t \mathrm{Bu}^{+}, 100\right), ~} 41$ (77).
CI-MS: $m / z(\%)=324\left(\mathrm{MH}^{+}, 100\right), 266(3), 216(5)$.
HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 324.1958; found, 324.1953.
FT-IR: $v_{\max }=2958(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O}), 1535$ (aromatic $\mathrm{C}=\mathrm{C}$), $1357,1231 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 77.98; H, 7.79; N, 4.33. Found: C, 77.84; H, 7.83; N, 4.41\%.

1-(4-Methoxyphenyl)-2-dimethylaminocarbonylisoindoline (168)

Yield: 0.42 g ($1.42 \mathrm{mmol}, 89 \%$).
Mp: 111-112 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.21(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ and $\mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.03 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.83 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 6.37 (d, $J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.10 (dd, $J=3,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-3), 4.66(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-3), 3.78(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 2.90\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.4$ (s, C=O), 159.2 (s, C-4 of 4-methoxyphenyl), 142.2 (s, C-7a), 136.6 (s, C-3a), 136.3 (s, C-1 of 4-methoxyphenyl), 128.8 (d, C-2/C-6 of 4-methoxyphenyl), 128.0 (d, C-4), 127.8 (d, C-7), 123.9 (d, C-6), 122.4 (d, C-5), 114.3 (d, C-3/C-5 of 4-methoxyphenyl), 67.8 (d, C-1), 55.6 (q, OMe), 55.5 (t, C-3), 38.7 [$\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].

EI-MS: $m / z(\%)=296\left(\mathrm{M}^{+}, 7\right), 252\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{~N}, 11\right), 224\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 23\right), 208$ (13), 194 (4), 180 (5), 165 (7), 135 (5), 116 (8), 87 ($\mathrm{Me}_{2} \mathrm{NCONH}^{+}, 12$), 72 $\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44$ (22).
CI-MS: $m / z(\%)=297\left(\mathrm{MH}^{+}, 100\right), 91(14)$.
HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 297.1598$; found, 297.1598.
FT-IR: $v_{\max }=2959(\mathrm{CH}), 1613(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1371,1357,1243$, $1028 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $72.95 ; \mathrm{H}, 6.80 ; \mathrm{N}, 9.45$. Found: C, 72.80; H, 6.78; N , 9.30\%.

2-Dimethylaminocarbonyl-1,1-diphenylisoindoline (169)

Yield: 0.43 g ($1.26 \mathrm{mmol}, 91 \%$).
Mp: $161-163{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.09(\mathrm{~m}, 13 \mathrm{H}, 2 \mathrm{Ph}, \mathrm{H}-4, \mathrm{H}-5$ and $\mathrm{H}-6$), 6.90 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), $4.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3), 2.61\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.7$ (s, C=O), 146.1 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 142.3 (s, C-1 of 2 Ph), 134.7 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 127.6 (d, C-2/C-6 of 2 Ph), 126.7 (d, C-4), 126.5 (d, C-3/C-5 of 2 Ph), 126.3 (d, C-7), 125.7 (d, C-4 of 2 Ph), 123.4 (d, C-6), 120.9 (d, C-5), 80.0 (s, $\mathrm{C}-1), 52.5(\mathrm{t}, \mathrm{C}-3), 38.0\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.

EI-MS: $m / z(\%)=342\left(\mathrm{M}^{+}, 10\right), 265\left(\mathrm{M}^{+}-\mathrm{Ph}, 22\right), 254\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 24\right)$, 239 (9), $193\left(\mathrm{M}^{+}-\mathrm{Ph}-\mathrm{Me}_{2} \mathrm{NCO}, 7\right), 178\left(\mathrm{M}^{+}-\mathrm{Ph}-\mathrm{Me}_{2} \mathrm{NCONH}, 15\right), 165\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{Ph}-\mathrm{Me}_{2} \mathrm{NCONCH}_{2}, 20\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 42(10)$.
CI-MS: $m / z(\%)=343\left(\mathrm{MH}^{+}, 100\right), 272(10), 106(12), 89(16), 63$ (17), 52 (89), 46 $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}, 47\right)$.
HRMS: m / z calc. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 343.1805$; found, 343.1809.
FT-IR: $v_{\max }=2957(\mathrm{CH}), 1617(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\mathrm{C}=\mathrm{C}$), 1371, 1358, 1242, 1173, $1037 \mathrm{~cm}^{-1}$.

2-Dimethylaminocarbonyl-6-methoxy-1-(4-methoxyphenyl)isoindoline (170)

Yield: $0.43 \mathrm{~g}(1.32 \mathrm{mmol}, 91 \%)$.
$\mathrm{Mp}: 98-100^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.12(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.05 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $6.74-6.71$ (m, $3 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), $6.42(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 6.23(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.90$ (dd, $J=3,13 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-3), 4.46(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-3), 3.67(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.77\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 160.0(\mathrm{~s}, \mathrm{C}-6), 159.3(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 143.6 (s, C-7a), 136.2 (s, C-1 of 4-methoxyphenyl), 129.7 (d, C-2/C-6 of 4-methoxyphenyl), 129.1 (s, C-3a), 123.5 (d, C-4), 115.0 (d, C-7), 114.7 (d, C-3/C-5 of 4-methoxyphenyl), 108.9 (d, C-5), 67.9 (d, C-1), 55.8 (q, OCH_{3}), 55.7 $\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.0(\mathrm{t}, \mathrm{C}-3), 38.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=326\left(\mathrm{M}^{+}, 3\right), 282\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{~N}, 5\right), 254\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 10\right), 238$ $\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 16\right), 218(5), 146(4), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44$ (10).

CI-MS: $m / z(\%)=327\left(\mathrm{MH}^{+}, 100\right), 105(5), 91(6), 52(8), 46\left(\mathrm{Me}_{2} \mathrm{NH}_{2}{ }^{+}, 13\right)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right), 327.1703$; found, 327.1702.
FT-IR: $v_{\max }=2931(\mathrm{CH}), 1616(\mathrm{C}=\mathrm{O}), 1511$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1400,1370,1251$, $1023 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}: \mathrm{C}, 69.92 ; \mathrm{H}, 6.79 ; \mathrm{N}, 8.58$. Found: C, $69.97 ; \mathrm{H}, 6.73 ; \mathrm{N}$, 5.42\%.

Selected crystallographic data: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{FW}=326.39, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Monoclinic, $\mathrm{P} 2{ }_{1} / \mathrm{c}, \mathrm{a}=13.9310(5) \AA, \mathrm{b}=6.0890(2) \AA, \mathrm{c}=20.0590(8) \AA, \alpha=90^{\circ}$, $\beta=91.349(2)^{\circ}, \gamma=90^{\circ}, V=1701.05(11) \AA^{3}, Z=4, \rho_{\text {calc. }}=1.274 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.40 \times 0.20 \times 0.10 \mathrm{~mm}^{3}, \mathrm{~m}=0.087 \mathrm{~mm}^{-1}$, reflections collected $=6476$, independent reflections $=3877, \mathrm{R}_{\text {int }}=0.0534$, parameters $=222$, final $\mathrm{R}_{1}=0.0571, \mathrm{wR}_{2}=0.1237$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1098, \mathrm{wR}_{2}=0.1460$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737418, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

2-Dimethylaminocarbonyl-1,1-diphenyl-6-methoxyisoindoline (171)

Yield: 0.42 g ($1.13 \mathrm{mmol}, 88 \%$).
Mp: $157-158{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.29-7.11(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 6.70 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 6.42 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 4.85 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-3$), $3.58\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.61\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=162.0$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.9 (s, C-6), 148.9 (s, C-7a), 143.6 (s, C-1 of 2 Ph), 129.3 (d, C-3/C-5 of 2 Ph), 128.2 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 128.0 (d, C-2/C-6 of 2 Ph), 127.2 (d, C-4 of 2 Ph), 123.1 (d, C-4), 114.3 (d, C-5), 109.9 (d, C-7), 79.5 (s, $\mathrm{C}-1), 55.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 53.6(\mathrm{t}, \mathrm{C}-3), 39.5\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=372\left(\mathrm{M}^{+}, 20\right), 295\left(\mathrm{M}^{+}-\mathrm{Ph}, 6\right), 284\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 41\right), 165$ (7), 91 (8), 88 (19), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 42$ (22).

CI-MS: $m / z(\%)=373\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 373.1911$; found, 373.1911 .

FT-IR: $v_{\max }=2997(\mathrm{CH}), 1617(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1371,1242,1172$, $1029 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 77.39; H, 6.49; $\mathrm{N}, 7.52$. Found: C, 77.37; H, 6.51; N , 7.47%.

2-Dimethylaminocarbonyl-1-(4-methoxyphenyl)-6-methylisoindoline (172)

Yield: 0.43 g ($1.39 \mathrm{mmol}, 91 \%$).
Mp: $125-126^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.13(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 7.05 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 6.97 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $6.75-$ 6.73 (m, 3 H, H-7 and H-3/H-5 of 4-methoxyphenyl), 6.22 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.94(\mathrm{dd}, J=2,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-3), $4.50(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-3), $3.68(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.78\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.4$ (s, C=O), 159.2 (s, C-4 of 4-methoxyphenyl), 142.3 (s, C-7a), 137.7 ($\mathrm{s}, \mathrm{C}-6$), 136.4 ($\mathrm{s}, \mathrm{C}-1$ of 4-methoxyphenyl), 133.6 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 128.5 (d, C-2/C-6 of 4-methoxyphenyl), 128.2 (d, C-7), 124.3 (d, C-4), 122.2 (d, C-5), 114.3 (d, C-3/C-5 of 4-methoxyphenyl), 67.8 (d, C-1), 55.6 (q, OCH_{3}), 55.3 (t, C-3), $38.7\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 15.7\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=310\left(\mathrm{M}^{+}, 5\right), 266\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{~N}, 14\right), 238\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 22\right), 222$ $\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 19\right), 165$ (13), 130 (12), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 44$ (15), 42 (23).
CI-MS: $m / z(\%)=311\left(\mathrm{MH}^{+}, 100\right), 52(22)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 311.1754$; found, 311.1749 .
FT-IR: $v_{\max }=2958(\mathrm{CH}), 1616(\mathrm{C}=\mathrm{O}), 1511$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1371,1358,1243$, $1029 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.52; H, 7.14; $\mathrm{N}, 9.03$. Found: C, 73.50; H, 7.15; N , 9.01\%.

2-Dimethylaminocarbonyl-1,1-diphenyl-6-methylisoindoline (173)

Yield: 0.42 g ($1.18 \mathrm{mmol}, 88 \%$).
Mp: $158-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.13(\mathrm{~m}, 10 \mathrm{H}, 2 \mathrm{Ph}), 7.07(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 6.95(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 3.25(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3), 2.61[\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.9$ (s, $\mathrm{C}=\mathrm{O}$), 147.6 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 143.8 ($\mathrm{s}, \mathrm{C}-1$ of 2 Ph), 137.9 (s, C-6), 133.1 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 129.0 (d, C-3/C-5 of 2 Ph), 128.8 (d, C-7), 127.9 (d, C-2/C-6 of 2 Ph), 127.1 (d, C-4 of 2 Ph), 125.2 (d, C-4), 122.1 (d, C-5), 79.4 ($\mathrm{s}, \mathrm{C}-1$), $53.8(\mathrm{t}, \mathrm{C}-3), 39.5\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 21.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=356\left(\mathrm{M}^{+}, 7\right), 279\left(\mathrm{M}^{+}-\mathrm{Ph}, 13\right), 268\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 31\right), 253$ $\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONHCH}_{2}, 7\right), 165(13), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 100\right), 42(15)$.
CI-MS: $m / z(\%)=357\left(\mathrm{MH}^{+}, 100\right), 193(12), 106(14), 89(16), 46\left(\mathrm{CONH}_{2}{ }^{+}, 30\right)$.
HRMS: m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 357.1961$; found, 357.1960 .
FT-IR: $v_{\max }=2852(\mathrm{CH}), 1619(\mathrm{C}=\mathrm{O}), 1520($ aromatic $\mathrm{C}=\mathrm{C}), 1363,1340,1218 \mathrm{~cm}^{-1}$.

7.28 Synthesis of N-(2-(cyclohexenyl)pivalamides 174 and 175

The procedure was identical with that described in Section 7.26 except that compounds 62 and $73(0.50 \mathrm{~g})$ were used as starting materials instead of 57. The reaction mixtures were worked-up and the residues obtained were subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give the pure products 174 and $\mathbf{1 7 5}$ as white solids.

N-(2-Cyclohexen-1-ylbenzyl)pivalamide (174)

Yield: 0.38 g ($1.42 \mathrm{mmol}, 82 \%)$.
Mp: $118-119^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.19-7.03$ (m, $4 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$ and H-6), 5.78 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 5.52 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2$ of cyclohexenyl), 4.34 (d, $J=5 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}), 2.15-2.07 (m, 4 H, H-3 and H-6 of cyclohexenyl), 1.71-1.58 (m, $4 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5$ of cyclohexenyl), 1.13 [s, $9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 144.8 ($\mathrm{s}, \mathrm{C}-1$ of cyclohexenyl), 138.4 ($\mathrm{s}, \mathrm{C}-1$), 135.5 ($\mathrm{s}, \mathrm{C}-2$), 129.3 (d, C-5), 128.9 (d, C-6), 127.7 (d, C-3), 127.4 (d, C-4), 127.2 (d, C-2 of cyclohexenyl), $42.2\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 31.0(\mathrm{t}, \mathrm{C}-6$ of cyclohexenyl), $28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$], 25.8 ($\mathrm{t}, \mathrm{C}-3$ of cyclohexenyl), 23.4 (t, C-5 of cyclohexenyl), 22.4 (t, C-4 of cyclohexenyl).
EI-MS: $m / z(\%)=271\left(\mathrm{M}^{+}, 4\right), 186\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCO}, 8\right), 171\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCONH}, 17\right), 170$ $\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCONH}_{2}, 56\right), 157\left(\mathrm{M}^{+}-{ }^{\dagger} \mathrm{BuCONHCH}_{2}, 11\right), 142$ (50), 128 (32), 115 (26), 102 (12), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 11\right), 77$ (5), $57\left({ }^{(} \mathrm{Bu}^{+}, 100\right), 41$ (71).
CI-MS: $m / z(\%)=543\left(2 \mathrm{M}^{+}+1,4\right), 289\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 6\right), 272\left(\mathrm{MH}^{+}, 100\right), 170(15)$, 119 (17), 102 (9), 52 (24).
HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 272.2009$; found, 272.2012.
FT-IR: $v_{\max }=3328(\mathrm{NH}), 2921(\mathrm{CH}), 1638(\mathrm{C}=\mathrm{O})$, 1512 (aromatic $\mathrm{C}=\mathrm{C}$), 1540, 1368, 1210, $1003 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}: \mathrm{C}, 79.66 ; \mathrm{H}, 9.28$; N, 5.16. Found: C, 79.73; H, 9.33; N, 5.09\%.

N-(2-Cyclohexen-1-yl-4-methoxybenzyl)pivalamide (175)

Yield: $0.39 \mathrm{~g}(1.30 \mathrm{mmol}, 83 \%)$.
$\mathrm{Mp}: 99-100{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.09$ (d, $\left.J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.68(\mathrm{dd}, J=2,8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 6.58$ (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.70 (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 5.52 (m, $1 \mathrm{H}, \mathrm{H}-2$ of cyclohexenyl), $4.26\left(\mathrm{~d}, J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.15-2.06(\mathrm{~m}$, $4 \mathrm{H}, \mathrm{H}-3$ and H-6 of cyclohexenyl), 1.71-1.58 (m, $4 \mathrm{H}, \mathrm{H}-4$ and H-5 of cyclohexenyl), $1.11\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.2$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 159.1 ($\mathrm{s}, \mathrm{C}-4$), 146.2 ($\mathrm{s}, \mathrm{C}-1$ of cyclohexenyl), 138.5 (s, C-2), 130.5 (d, C-6), 127.7 ($\mathrm{s}, \mathrm{C}-1$), 127.1 (d, C-2 of cyclohexenyl), 114.7 (d, C-5), 112.7 (d, C-3), 55.7 ($\mathrm{q}, \mathrm{OCH}_{3}$), $41.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 39.0$ [s, C($\left.\left.\mathrm{CH}_{3}\right)_{3}\right], 30.9$ ($\mathrm{t}, \mathrm{C}-6$ of cyclohexenyl), 28.0 [q, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 25.7$ ($\mathrm{t}, \mathrm{C}-3$ of cyclohexenyl), 23.4 (t , C-5 of cyclohexenyl), 21.9 ($\mathrm{t}, \mathrm{C}-4$ of cyclohexenyl).
EI-MS: $m / z(\%)=301\left(\mathrm{M}^{+}, 2\right), 200(22), 172$ (13), 159 (9), 128 (6), 115 (8), 77 (5), 57 (${ }^{(} \mathrm{Bu}^{+}, 100$), 41 (93).
CI-MS: $m / z(\%)=319\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 3\right), 302\left(\mathrm{MH}^{+}, 100\right), 200(11), 119(17), 102(12)$, 52 (15).

HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 302.2115$; found, 302.2115 .
FT-IR: $v_{\max }=3347(\mathrm{NH}), 2940(\mathrm{CH}), 1647(\mathrm{C}=\mathrm{O}), 1505$ (aromatic $\mathrm{C}=\mathrm{C}$), 1492, 1330, 1207, $1029 \mathrm{~cm}^{-1}$.

7.29 Synthesis of N-(2-(2-phenyl-2-trifluoroacetoxyethyl)benzyl)pivalamide

 (188)Trifluoroacetic anhydride (0.5 mL) was added to a stirred solution of N-(2-(2-hydroxy-2-phenylethyl)benzyl)pivalamide ($99 ; 0.50 \mathrm{~g}, 1.61 \mathrm{mmol}$) in DCM (10 mL) at room temperature. The mixture was stirred for 5 min at room temperature, at which time TLC showed the formation of a pure product. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, washed with aq. sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x} 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give pure $188(0.63 \mathrm{~g}, 1.55 \mathrm{mmol}$, 97%) as a white solid.

Mp: $127-128^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.32-7.07(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6$ and Ph), 6.01 (dd, $J=6,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 5.80 (br app. t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.38 (dd, $J=6,15$ $\mathrm{Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{NH}$), $4.29\left(\mathrm{dd}, J=6,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\mathrm{CH}_{2} \mathrm{NH}$), $3.24(\mathrm{dd}, J=8$,
$15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 3.19\left(\mathrm{dd}, J=6,15 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 1.13[\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.7$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 156.9 ($\mathrm{q}, J=42 \mathrm{~Hz}, \mathrm{CF}_{3} \mathrm{C}=\mathrm{O}$), 137. 8 ($\mathrm{s}, \mathrm{C}-1$), 137.1 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 134.5 ($\mathrm{s}, \mathrm{C}-2$), 131.6 (d, C-3), 129.9 (d, C-4), 129.5 (d, C-5), 129.4 (d, C-6), 129.3 (d, C-3/C-5 of Ph), 128.3 (d, C-4 of Ph), 126.7 (d, C-2/C-6 of Ph), $114.8\left(\mathrm{q}, J=284 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 80.9(\mathrm{~d}, \mathrm{CH}), 41.5\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{NH}\right), 39.9(\mathrm{t}$, $\left.\mathrm{CH}_{2} \mathrm{CH}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=407\left(\mathrm{M}^{+}, 4\right), 310\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{CO}, 4\right), 294\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{CO}_{2}, 85\right), 293$ $\left(\mathrm{M}^{+}-\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 100\right), 278$ (3).
CI-MS: $m / z(\%)=425\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 6\right), 408\left(\mathrm{MH}^{+}, 5\right), 329(11), 312(42), 294\left(\mathrm{M}^{+}-\right.$ $\mathrm{CF}_{3} \mathrm{CO}_{2}, 100$), 192 (10), 119 (19), 52 (16).
HRMS: m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 408.1781$; found, 408.1789 .
FT-IR: $v_{\max }=3313(\mathrm{NH}), 2933(\mathrm{CH}), 1635(\mathrm{C}=\mathrm{O}), 1531$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right)$, 1462, 1227, 1030, 1020, $1000 \mathrm{~cm}^{-1}$.

7.30 Synthesis of (E)-N-(2-(4-methoxystyryl)benzyl)pivalamide (189)

The procedure was identical with that described in Section 7.29 except that N-(2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)pivalamide (100; $0.50 \mathrm{~g}, 1.47$ mmol) was used as starting material instead of 99 . The reaction mixture was workedup and the residue obtained subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give the pure product $100(0.46 \mathrm{~g}, 1.35 \mathrm{mmol}, 97 \%)$ as a white solid.

Mp: $113-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.37(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, H-2/H-6 of 4-methoxyphenyl), 7.24 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $7.18-7.12$ (m,
$2 \mathrm{H}, \mathrm{H}-5$ and H-6), 7.06 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.88(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.80$ (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 5.67 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), $4.50(\mathrm{~d}$, $\left.J=5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.05\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.1$ (s, C=O), 159.9 (s, C-4 of 4-methoxyphenyl), 137.4 (s, C-1), 135.6 (s, C-2), 130.9 (d, C-5), 130.4 (s, C-1 of 4-methoxyphenyl), 130.2 (d, C-6), 128.7 (d, C-4), 128.4 (d, C-2/C-6 of 4-methoxyphenyl), 127.7 (d, C-3), 126.2 (d, CH), 123.5 (d, CH), 114.5 (d, C-3/C-5 of 4-methoxyphenyl), 55.7 (q, $\left.\mathrm{OCH}_{3}\right), 42.7\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 27.9\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
EI-MS: $m / z(\%)=323\left(\mathrm{M}^{+}, 10\right), 222\left(\mathrm{M}^{+}-{ }^{\prime} \mathrm{BuCONH}_{2}, 88\right), 207\left(\mathrm{M}^{+}-{ }^{\prime} \mathrm{BuCONH}_{2}-\right.$ $\mathrm{Me}, 21), 191\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCONH}_{2}-\mathrm{OMe}, 22\right), 165(15), 115(13), 57\left({ }^{t} \mathrm{Bu}^{+}, 100\right)$.
CI-MS: $m / z(\%)=341\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 12\right), 324\left(\mathrm{MH}^{+}, 100\right), 222\left(\mathrm{M}^{+}-{ }^{\prime} \mathrm{BuCONH}_{2}, 7\right)$, 119 (18), 52 (17).

HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right), 341.2224$; found, 341.2225 .
FT-IR: $v_{\max }=2961(\mathrm{CH}), 1628(\mathrm{C}=\mathrm{O}), 1512$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1453,1225,1037 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 77.98; H, 7.79; N, 4.33. Found: C, 77.89; H, 7.81; N, 4.30\%.

Selected crystallographic data: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$, $\mathrm{FW}=323.42$, $\mathrm{T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Triclinic, $\mathrm{P} 1, \mathrm{a}=5.4050(5) \AA, \mathrm{b}=10.0960(9) \AA, \mathrm{c}=16.5930(18) \AA, \alpha=$ $91.891(4)^{\circ}, \beta=98.280(4)^{\circ}, \gamma=95.537(5)^{\circ}, V=890.83(15) \AA^{3}, Z=2, \rho_{\text {calc. }}=1.206$ $\mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.36 \times 0.20 \times 0.20 \mathrm{~mm}^{3}, \mathrm{~m}=0.077 \mathrm{~mm}^{-1}$, reflections collected $=5471$, independent reflections $=3957, R_{\text {int }}=0.0471$, parameters $=221$, final $R_{1}=$ $0.0847, \mathrm{wR}_{2}=0.1573$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1734, \mathrm{wR}_{2}=0.1886$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737414, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

7.31 Synthesis of (\boldsymbol{E})- N -(2-(2-phenylprop-1-enyl)benzyl)pivalamide (190)

Trifluoroacetic anhydride (0.5 mL) was added to a stirred solution of N-(2-(2-(hydroxy-2-phenylpropyl)benzyl)pivalamide (101; $0.50 \mathrm{~g}, 1.54 \mathrm{mmol}$) in DCM (10 mL) at room temperature. The mixture was stirred for 1 h before being worked-up and the residue obtained was then purified by column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give the pure product $190(0.34 \mathrm{~g}, 1.11 \mathrm{mmol}, 72 \%$) as a white solid.

Mp: $85-86{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 7.31-7.18(\mathrm{~m}, 8 \mathrm{H}$, H-4, H-5, H-6 and Ph), 6.79 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$), 5.76 (br t, exch., $1 \mathrm{H}, \mathrm{NH}$), 4.38 (d, $J=6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.06\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=178.4$ (s, $\mathrm{C}=\mathrm{O}$), 143.2 ($\mathrm{s}, \mathrm{C}-1$), 139.0 ($\mathrm{s}, \mathrm{C}-2$), 137.7 (s, C-1 of Ph), 136.9 (s, $C-\mathrm{CH}_{3}$), 130.5 (d, C-5), 129.0 (d, C-6), 128.8 (d, C-3/C-5 of Ph), 128.5 (d, C-4), 128.3 (d, C-3), 128.2 (d, C-4 of Ph), 127.4 (d, C-2/C-6 of Ph$), 126.3(\mathrm{~d}, \mathrm{CH}), 42.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 39.1\left[\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 28.0\left[\mathrm{q}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 17.6(\mathrm{q}$, CH_{3}).
EI-MS: $m / z(\%)=307\left(\mathrm{M}^{+}, 7\right), 222\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCO}, 4\right), 206\left(\mathrm{M}^{+}-{ }^{t} \mathrm{BuCONH}_{2}, 38\right), 191$ $\left(\mathrm{M}^{+}-{ }^{\dagger} \mathrm{BuCONH}-\mathrm{Me}, 18\right), 178$ (8), 165 (6), 128 (15), 115 (8), 91 (22), 77 ($\mathrm{Ph}^{+}, 8$), 57 (${ }^{\prime} \mathrm{Bu}^{+}, 100$), 41 (58).

CI-MS: $m / z(\%)=325\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 23\right), 308\left(\mathrm{MH}^{+}, 100\right), 206(6), 119(32), 102(22)$, 52 (60).

HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 308.2009$; found, 308.2006 .
FT-IR: $v_{\max }=3329(\mathrm{NH}), 2921(\mathrm{CH}), 1638(\mathrm{C}=\mathrm{O}), 1539$ (aromatic $\mathrm{C}=\mathrm{C}$), 1357, 1210 cm^{-1}.

7.32 Synthesis of 3-(4-methoxyphenyl)-2-dimethylaminocarbonyl-1,2,3,4tetrahydroisoquinoline (198) via cyclization N^{\prime}-(2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)- N, N-dimethylurea (153)

Trifluoroacetic anhydride (0.5 mL) was added to a stirred solution of N^{\prime}-(2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)benzyl)- N, N-dimethylurea (153; 0.50 g , $1.52 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ at room temperature. The mixture was stirred for 5 min at room temperature, by which time TLC showed the formation of a pure product. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic layer was separated, washed with aq. sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was subjected to flash
column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, $1: 3$) to give pure $198(0.45 \mathrm{~g}, 1.45$ $\mathrm{mmol}, 95 \%$) as a white solid.

Mp: $102-103{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18-7.07(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-8), 7.04(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), $6.90(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.69(\mathrm{~d}, J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), 5.18 (dd, $J=3,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.34 (d, $J=16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-1), $4.00(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-1), $3.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.36(\mathrm{dd}, J=6,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-4), $3.13(\mathrm{dd}, J=3,16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-4), 2.80\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=165.2(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 158.9$ (s, C-4 of 4-methoxyphenyl), 134.3 (s, C-4a), 133.1 (s, C-8a), 129.1 (s, C-1 of 4-methoxyphenyl), 128.7 (d, C-8), 128.4 (d, C-2/C-6 of 4-methoxyphenyl), 127.2 (d, C-5), 126.4 (d, C-6), 126.2 (d, C-7), 114.1 (d, C-3/C-5 of 4-methoxyphenyl), $55.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 54.0(\mathrm{~d}, \mathrm{C}-3), 46.3$ (t, C-1), $39.0\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 32.2$ ($\left.\mathrm{t}, \mathrm{C}-4\right)$.
EI-MS: $m / z(\%)=310\left(\mathrm{M}^{+}, 12\right), 266\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{~N}, 9\right), 238\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 32\right), 222$ $\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 62\right), 202$ (15), 189 (23), 178 (11), 165 (13), 121 (31), 104 $\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{~N}^{+}, 100\right), 91\left(\mathrm{PhCH}_{2}{ }^{+}, 17\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 93\right), 44$ (17).
CI-MS: $m / z(\%)=311\left(\mathrm{MH}^{+}, 100\right), 89(17), 52(33), 46(28)$.
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{MH}^{+}\right), 311.1754$; found, 311.1751 .
FT-IR: $v_{\max }=2958(\mathrm{CH}), 1618(\mathrm{C}=\mathrm{O}), 1510$ (aromatic $\mathrm{C}=\mathrm{C}$), 1399, 1370, 1348, 1242, 1173, $1033 \mathrm{~cm}^{-1}$.
Selected crystallographic data: $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}, \mathrm{FW}=310.39, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073$ \AA, Monoclinic, $\mathrm{P} 2 / / \mathrm{n}, \mathrm{a}=13.0240(9) \AA, \mathrm{b}=8.9900(7) \AA, \mathrm{c}=15.2990(13) \AA, \alpha=90$ ${ }^{\circ}, \beta=112.974(3)^{\circ}, \gamma=90^{\circ}, \mathrm{V}=1649.2(2) \AA^{3}, \mathrm{Z}=4, \rho_{\text {calc. }}=1.250 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size
$=0.40 \times 0.20 \times 0.16 \mathrm{~mm}^{3}, \mathrm{~m}=0.082 \mathrm{~mm}^{-1}$, reflections collected $=6302$, independent reflections $=3737, \mathrm{R}_{\text {int }}=0.0516$, parameters $=211$, final $\mathrm{R}_{1}=0.0658, \mathrm{wR}_{2}=0.1379$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1237, \mathrm{wR}_{2}=0.1613$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737417, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

7.33 Synthesis of substituted tetrahydroisoquinolines 199 and 200

The procedure was identical with that described in Section 7.32 except that compounds 154 and 155 were used as starting materials instead of $\mathbf{1 5 3}$. The reaction mixtures were worked-up and the residues obtained subjected to flash column chromatography (silica gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give the pure products 199 and 200 as white solids.

3-Phenyl-2-dimethylaminocarbonyl-1,2,3,4-tetrahydroisoquinoline (199)

Yield: 0.44 g ($1.57 \mathrm{mmol}, 94 \%$).
Mp: $96-98^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.08(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8$ and Ph), $4.78(\mathrm{dd}, J=4,9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.31(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-1), $4.21(\mathrm{~d}, J=$ $14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-1), 2.96(\mathrm{dd}, J=9,14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-4), 2.83(\mathrm{dd}, J=4$, $14 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-4), 2.72$ [s, $6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$].
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.8$ (s, $\mathrm{C}=\mathrm{O}$), 144.5 (s, C-4a), 137.9 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 137.2 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 130.0 (d, C-8), 129.6 (d, C-4 of Ph), 129.3 (d, C-3/C-5 of Ph), 128.9 (d, C-5), 128.2 (d, C-6), 127.5 (d, C-7), 126.9 (d, C-2/C-6 of Ph), 76.3 (d, C-3), 43.5 (t, C-1), 42.6 ($\mathrm{t}, \mathrm{C}-4$), $38.1\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$].

EI-MS: $m / z(\%)=280\left(\mathrm{M}^{+}, 2\right), 208\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 4\right), 192(44), 177$ (6), 148 (7), $120(18), 104\left(\mathrm{PhCHN}^{+}, 100\right), 91\left(\mathrm{PhCH}_{2}^{+}, 25\right), 77\left(\mathrm{Ph}^{+}, 61\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 66\right), 44$ (26).

CI-MS: $m / z(\%)=299\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 62\right), 281\left(\mathrm{MH}^{+}, 72\right), 271(9), 193(22), 179(15)$, 118 (16), 106 (32), 89 (36), $72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 7\right), 63$ (12), 46 (100).

HRMS: m / z calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 281.1648$; found, 281.1647.
FT-IR: $v_{\max }=2935(\mathrm{CH}), 1636(\mathrm{C}=\mathrm{O})$, 1523 (aromatic $\mathrm{C}=\mathrm{C}$), 1512, 1455, 1203, $1174,1037 \mathrm{~cm}^{-1}$.

3-Methyl-3-phenyl-2-dimethylaminocarbonyl-1,2,3,4-tetrahydroisoquinoline (200)

Yield: 0.43 g ($1.46 \mathrm{mmol}, 91 \%)$.
Mp: 122-124 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.30-7.04$ (m, $8 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-7, \mathrm{H}-8$ and Ph), $6.89(\mathrm{~d}$, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.28(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-1), 4.14(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-1), $3.42(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of H-4), $3.23(\mathrm{~d}, J=16 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{H}-4)$, $2.82\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.59\left(\mathrm{~s}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=164.6$ ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 147.7 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 135.6 (s , C-4a), 134.1 ($\mathrm{s}, \mathrm{C}-8 \mathrm{a}$), 129.4 (d, C-5), 128.8 (d, C-3/C-5 of Ph), 127.9 (d, C-6), 127.1 (d, C-7), 126.5 (d, C-4 of Ph), 125.6 (d, C-8), 125.5 (d, C-2/C-6 of Ph), 59.4 (s, C-3), $49.8(\mathrm{t}, \mathrm{C}-4), 43.6(\mathrm{t}, \mathrm{C}-1), 39.8\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 28.1\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=294\left(\mathrm{M}^{+}, 22\right), 279\left(\mathrm{M}^{+}-\mathrm{Me}, 24\right), 222\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 52\right), 206$ $\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCONH}_{2}, 100\right)$.
CI-MS: $m / z(\%)=295\left(\mathrm{MH}^{+}, 100\right), 222\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{NCO}, 7\right), 193(8), 89(12), 52(28)$, 46 (52).
HRMS: m / z calc. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right)$, 295.1805; found, 295.1807.
FT-IR: $v_{\max }=2973(\mathrm{CH}), 1645(\mathrm{C}=\mathrm{O}), 1522$ (aromatic $\mathrm{C}=\mathrm{C}$), 1492, 1381, 1361, $1174,1107 \mathrm{~cm}^{-1}$.

7.34 Synthesis of N^{\prime}-(2-(2,2-diphenylvinyl)benzyl)- N, N-dimethylurea (201)

The procedure was identical with that described in Section 7.32 except that compound 156 was used as starting material instead of 153 . The reaction mixture was worked-up and the residue obtained subjected to flash column chromatography (silica
gel; $\mathrm{Et}_{2} \mathrm{O}$-hexane, 1:3) to give the pure product $201(0.45 \mathrm{~g}, 1.26 \mathrm{mmol}, 95 \%)$ as a white solid.

Mp: $106-108^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.05(\mathrm{~m}, 13 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6, \mathrm{CH}$ and 2 Ph$), 6.87$ (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.83(\mathrm{t}, J=6 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{NH}), 6.71$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 4.31\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.77\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=158.4(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 143.0(\mathrm{~s}, \mathrm{C}-1$ of 2 Ph$), 142.9(\mathrm{~s}$, $C-\mathrm{CH}), 140.0(\mathrm{~s}, \mathrm{C}-1), 136.0(\mathrm{~s}, \mathrm{C}-2), 130.7(\mathrm{~d}, \mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph$), 129.7$ (d, C-3), 128.7 (d, C-4 of 2 Ph), 128.6 (d, C-4), 127.9 (d, C-2/C-6 of 2 Ph), 127.6 (d, C-5), $127.0(\mathrm{~d}, \mathrm{C}-6), 126.1(\mathrm{~d}, \mathrm{CH}), 42.2\left(\mathrm{t}, \mathrm{CH}_{2}\right), 36.2\left[\mathrm{q}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]$.
EI-MS: $m / z(\%)=356\left(\mathrm{M}^{+}, 12\right), 312\left(\mathrm{M}^{+}-\mathrm{Me}_{2} \mathrm{~N}, 7\right), 284(10), 268(100), 252(8)$, 206 (12), 178 (13), 167 (33), 152 (18), $91\left(\mathrm{PhCH}_{2}{ }^{+}, 13\right), 72\left(\mathrm{Me}_{2} \mathrm{NCO}^{+}, 71\right), 44$ (22).
CI-MS: $m / z(\%)=374\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100\right), 357\left(\mathrm{MH}^{+}, 81\right), 331$ (6), 301 (5), 276 (7), 167 (15), 118 (19), 106 (25), 89 (33), 46 (100).
HRMS: m/z calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{MH}^{+}\right), 357.1961$; found, 357.1960.
FT-IR: $v_{\max }=3316(\mathrm{NH}), 2958(\mathrm{CH}), 1637(\mathrm{C}=\mathrm{O}), 1538$ (aromatic $\left.\mathrm{C}=\mathrm{C}\right), 1352,1230$ cm^{-1}.
Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$: C, $80.87 ; \mathrm{H}, 6.79 ; \mathrm{N}, 7.86$. Found: C, $80.90 ; \mathrm{H}, 6.89 ; \mathrm{N}$, 7.63\%.

Selected crystallographic data: $\mathrm{C}_{72} \mathrm{H}_{76} \mathrm{~N}_{6} \mathrm{O}_{5}, \mathrm{FW}=1105.39, \mathrm{~T}=150(2) \mathrm{K}, \lambda=$ $0.71073 \AA$, Monoclinic, $\mathrm{P} 2_{1} / \mathrm{n}, \mathrm{a}=19.0960(3) \AA, \mathrm{b}=10.8300(2) \AA, \mathrm{c}=30.7660(5) \AA$, $\alpha=90^{\circ}, \beta=107.7660(10)^{\circ}, \gamma=90^{\circ}, V=6059.27(18) \AA^{3}, Z=4, \rho_{\text {calc. }}=1.212 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.32 \times 0.20 \times 0.06 \mathrm{~mm}^{3}, \mathrm{~m}=0.076 \mathrm{~mm}^{-1}$, reflections collected $=26316$, independent reflections $=8712, \mathrm{R}_{\text {int }}=0.0683$, parameters $=770$, final $\mathrm{R}_{1}=0.0836$, $w R_{2}=0.2243$ for $\mathrm{I}>2 \sigma(\mathrm{I})$ and $\mathrm{R}_{1}=0.1130, w R_{2}=0.2492$ for all data. Full
crystallographic data for this compound have been deposited with the CCDC, reference number 737416, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

7.35 Synthesis of (R^{*})-3-(S^{*})-hydroxy(4-methoxyphenyl)methyl)-4-methoxyisoindolin-1-one (139)

A solution of t - BuLi in heptane $(3.9 \mathrm{~mL}, 1.7 \mathrm{M}, 6.6 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea ($111 ; 0.42 \mathrm{~g}$, 2.0 mmol) in anhydrous THF (20 mL) under N_{2}. Formation of the monolithium reagent 133 was observed as a yellow solution and the dilithium reagent 134 was observed as a reddish orange solution, after which the colour changed to deep red. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h after which 4 -anisaldehyde ($0.30 \mathrm{~g}, 2.2 \mathrm{mmol}$) was added. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}\left(2 \mathrm{x} 10 \mathrm{~mL}\right.$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was treated with diethyl ether $(20 \mathrm{ml})$ and gave a white solid which was filtered and then washed with diethyl ether. The pure product was identified as 139 ($0.49 \mathrm{~g}, 1.63 \mathrm{mmol}, 81 \%$).
Compound 139 was found to be identical in all respects with the one produced previously in Chapter 3; Section 3.5. See Section 7.23 for spectral data.

7.36 Synthesis of 4-methoxyisoindolin-1-one (216)

A solution of $t-\mathrm{BuLi}$ in heptane $(2.6 \mathrm{~mL}, 1.7 \mathrm{M}, 4.4 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of N^{\prime}-(2-methoxybenzyl)- N, N-dimethylurea (111; 0.42 g , $2.0 \mathrm{mmol})$ in anhydrous THF (20 mL) under N_{2}. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h then the cooling bath was removed and the mixture allowed to warm to room temperature. The mixture was stirred at room temperature overnight. The reaction mixture was worked-up and purified as described in Section 7.35 to give $216(0.25 \mathrm{~g}$, $1.53 \mathrm{mmol}, 76 \%$) as a white solid.

Mp: $190-192{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.60$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.46 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 7.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.19(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.29(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{H}-3), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=170.3$ ($\mathrm{s}, \mathrm{C}-1$), 154.9 ($\mathrm{s}, \mathrm{C}-4$), 134.6 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 131.8 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 129.9 (d, C-6), 115.2 (d, C-7), 113.5 (d, C-5), $55.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 43.0(\mathrm{t}$, C-3).
EI-MS: $m / z(\%)=163\left(\mathrm{M}^{+}, 100\right), 162\left(\mathrm{M}^{+}-1,42\right), 135\left(\mathrm{M}^{+}-\mathrm{CO}, 12\right), 134\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{2} \mathrm{NH}, 22$), 132 (44), 119 (22), 104 (18), 92 (15), 77 (26).
CI-MS: $m / z(\%)=327\left(2 \mathrm{M}^{+}+1,6\right), 181\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 14\right), 164\left(\mathrm{MH}^{+}, 100\right), 134\left(\mathrm{M}^{+}\right.$ $-\mathrm{CH}_{2} \mathrm{NH}, 10$).
HRMS: m / z calc. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 164.0706$; found, 164.0707 .
FT-IR: $v_{\max }=3286(\mathrm{NH}$ and OH$), 2870(\mathrm{CH}), 1682(\mathrm{C}=\mathrm{O}), 1585$ (aromatic $\mathrm{C}=\mathrm{C}$), 1440, 1266, $1052 \mathrm{~cm}^{-1}$.
Selected crystallographic data: $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}_{2}, \mathrm{FW}=163.17, \mathrm{~T}=150(2) \mathrm{K}, \lambda=0.71073 \AA$, Triclinic, $\mathrm{P} 1, \mathrm{a}=7.2640(5) \AA, \mathrm{b}=7.8940(6) \AA, \mathrm{c}=8.3280(8) \AA, \alpha=104.845(3)^{\circ}, \beta=$ $114.462(4)^{\circ}, \gamma=103.622(5)^{\circ}, \mathrm{V}=387.21(5) \AA^{3}, \mathrm{Z}=2, \rho_{\text {calc. }}=1.400 \mathrm{Mg} / \mathrm{m}^{3}$, crystal size $=0.25 \times 0.24 \times 0.18 \mathrm{~mm}^{3}, \mathrm{~m}=0.0301 \mathrm{~mm}^{-1}$, reflections collected $=2379$, independent reflections $=1714, \mathrm{R}_{\mathrm{int}}=0.0301$, parameters $=110$, final $\mathrm{R}_{1}=0.0512$, $w R_{2}=0.1220$ for $I>2 \sigma(I)$ and $R_{1}=0.0735, w R_{2}=0.1361$ for all data. Full crystallographic data for this compound have been deposited with the CCDC, reference number 737411, and can be obtained free of charge via http://www.ccdc.ac.uk/data_request/cif.

7.37 Synthesis of 3-substituted 4-methoxyisoindolin-1-ones 216-224

The procedure was identical to that described for the synthesis of $\mathbf{1 3 9}$ (Section 7.35) except that an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was used instead of 4 -anisaldehye. The reaction mixtures were worked-up and purified as described in Section 7.35 to give pure products as white solids. The yields of products 216-224 are recorded in Table 6.1.

4-Methoxyisoindolin-1-one (216)

Yield: 0.27 g ($1.65 \mathrm{mmol}, 82 \%$).
Mp: 190-192 ${ }^{\circ} \mathrm{C}$.
Compound 216 produced using the general procedure was found to be identical in all respects with the one produced previously using 2.2 mole equivalents of t - BuLi (Section 7.36). See Section 7.36 for spectral data.

4-Methoxy-3-methylisoindolin-1-one (217)

Yield: 0.28 g ($1.58 \mathrm{mmol}, 79 \%)$.
Mp: $153-154{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.26$ (br s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.47 (t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 7.24 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.15 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.73 (q, $J=7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.55\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2$ ($\mathrm{s}, \mathrm{C}-1$), 155.3 ($\mathrm{s}, \mathrm{C}-4$), 136.8 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 133.9 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 130.1 (d, C-6), 116.0 (d, C-7), 113.6 (d, C-5), $55.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 52.0$ (d, C-3), $19.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=177\left(\mathrm{M}^{+}, 24\right), 162\left(\mathrm{M}^{+}-\mathrm{Me}, 100\right), 146(10), 119(8), 105(9), 91$ (11), 84 (8), 49 (15).

CI-MS: $m / z(\%)=195\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 30\right), 178\left(\mathrm{MH}^{+}, 100\right), 162\left(\mathrm{M}^{+}-\mathrm{Me}, 8\right), 94(11)$, 52 (50), 44 (41).

HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 178.0863$; found, 178.0864.
FT-IR: $v_{\max }=3071(\mathrm{NH}$ and OH$), 2971(\mathrm{CH}), 1680(\mathrm{C}=\mathrm{O}), 1602$ (aromatic $\mathrm{C}=\mathrm{C}$), 1493, 1267, $1057 \mathrm{~cm}^{-1}$.

3-Ethyl-4-methoxyisoindolin-1-one (218)

Yield: 0.32 g ($1.68 \mathrm{mmol}, 84 \%$).
Mp: $150-152{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=7.72$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.44 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$), 7.23 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.18 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.57 (dd, $J=3,7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.08\left(\mathrm{ddq}, J=3,14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2}\right), 1.59$ (app. d quintet, $J=14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 0.73 (app. $\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=169.7$ ($\mathrm{s}, \mathrm{C}-1$), 155.1 ($\mathrm{s}, \mathrm{C}-4$), 134.8 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 134.4 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 130.1 (d, C-6), 115.0 (d, C-7), 113.8 (d, C-5), 56.1 (d, C-3), 55.9 (q, $\left.\mathrm{OCH}_{3}\right), 25.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 9.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=191\left(\mathrm{M}^{+}, 7\right), 162\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right), 149(5), 132(6)$.
CI-MS: $m / z(\%)=209\left(\mathrm{M}^{2}+\mathrm{NH}_{4}{ }^{+}, 9\right), 192\left(\mathrm{MH}^{+}, 100\right), 176\left(\mathrm{M}^{+}-\mathrm{Me}, 12\right), 162\left(\mathrm{M}^{+}\right.$ - Et, 28), 94 (11), 59 (33), 44 (40).

HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 192.1019; found, 192.1018 .
FT-IR: $v_{\max }=3303(\mathrm{NH}$ and OH$), 2922(\mathrm{CH}), 1679(\mathrm{C}=\mathrm{O}), 1602$ (aromatic $\mathrm{C}=\mathrm{C}$), 1493, 1271, $1049 \mathrm{~cm}^{-1}$.

3-Butyl-4-methoxyisoindolin-1-one (219)

Yield: 0.32 g ($1.45 \mathrm{mmol}, 72 \%$).
Mp: $130-131^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.57$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.47-7.41$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6$ and H-7), 7.22 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $4.69(\mathrm{dd}, J=3,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.91$ (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.20\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.65(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.39-1.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.5$ (s, C-1), 155.3 ($\mathrm{s}, \mathrm{C}-4$), 135.6 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 134.2 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 130.0 (d, C-6), 116.1 (d, C-7), 113.5 (d, C-5), 56.4 (d, C-3), 55.8 (q, OCH_{3}), $32.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 27.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.0\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3(\mathrm{q}$, CH_{3}).
EI-MS: $m / z(\%)=219\left(\mathrm{M}^{+}, 4\right), 188\left(\mathrm{M}^{+}-\mathrm{Me}, 3\right), 162\left(\mathrm{M}^{+}-\mathrm{Bu}, 100\right), 148(4), 132$ (5), 119 (4), 91 (4), 77 (6).

CI-MS: $m / z(\%)=237\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 8\right), 220\left(\mathrm{MH}^{+}, 100\right), 204(9), 190(11), 164$ (18), $162\left(\mathrm{M}^{+}-\mathrm{Bu}, 17\right), 86(17), 72(38), 58(41), 44$ (39).
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 220.1332; found, 220.1332 .
FT-IR: $v_{\max }=3314(\mathrm{NH}$ and OH$), 2955(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1600$ (aromatic $\mathrm{C}=\mathrm{C}$), 1490, 1276, $1053 \mathrm{~cm}^{-1}$.

3-(1-Hydroxycyclohexyl)-4-methoxyisoindolin-1-one (220)

Yield: 0.41 g ($1.57 \mathrm{mmol}, 78 \%$).
Mp: 206-207 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.45$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.43 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 7.25(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.22(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.46$ (s, 1 H , $\mathrm{H}-3), 4.32$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.54-0.96(\mathrm{~m}, 10 \mathrm{H}$, cyclohexyl group).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=169.8$ ($\mathrm{s}, \mathrm{C}-1$), 155.0 (s, C-4), 135.9 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 132.0 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 130.2 (d, C-6), 115.5 (d, C-7), 114.6 (d, C-5), 73.5 ($\mathrm{s}, \mathrm{C}-1$ of cyclohexyl group), 65.5 (d, C-3), $56.1\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 38.8,33.7$ ($2 \mathrm{t}, \mathrm{C}-2 / \mathrm{C}-6$ of
cyclohexyl group), 25.8 (t, C-4 of cyclohexyl group), 21.5, 21.4 ($2 \mathrm{t}, \mathrm{C}-3 / \mathrm{C}-5$ of cyclohexyl group).

EI-MS: $m / z(\%)=262\left(\mathrm{MH}^{+}, 11\right), 262\left(\mathrm{M}^{+}, 2\right), 244\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 32\right), 243\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{H}_{2} \mathrm{O}, 100\right), 214$ (33), 212 (21), $188\left(\mathrm{M}^{+}-\mathrm{NCO}-\mathrm{OMe}, 48\right), 177$ (19), 176 (34), 175 (55).

CI-MS: $m / z(\%)=279\left(M+\mathrm{NH}_{4}{ }^{+}, 2\right), 262\left(\mathrm{MH}^{+}, 29\right), 244\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 4\right), 181(35)$, $164\left(\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{OH}, 100\right), 134$ (12), 116 (88), 98 (12), 55 (13).
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 262.1438$; found, 262.1435 .
FT-IR: $v_{\max }=3301(\mathrm{NH}$ and OH$), 2952(\mathrm{CH}), 1690(\mathrm{C}=\mathrm{O}), 1590$ (aromatic $\mathrm{C}=\mathrm{C}$), 1470, 1240, $1047 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 68.94 ; \mathrm{H}, 7.33 ; \mathrm{N}, 5.36$. Found: C, 69.13; H, 7.34; N, 5.48\%.

3-(Hydroxydiphenylmethyl)-4-methoxyisoindolin-1-one (221)

Yield: 0.56 g ($1.62 \mathrm{mmol}, 81 \%$).
$\mathrm{Mp}: 206-208^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=7.89$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.52-7.18 (m, 11 H , H-6 and 2 Ph), 7.10 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.94 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.84$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), $5.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 3.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=169.7(\mathrm{~s}, \mathrm{C}-1), 155.0(\mathrm{~s}, \mathrm{C}-4), 145.8,144.4$ (2 s , $\mathrm{C}-1$ of 2 Ph), 136.2 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.9 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 130.2 ($\mathrm{s}, \mathrm{C}-6$), 128.0, 127.4 (2 d , C-3/C-5 of 2 Ph), 127.1, 126.9 ($2 \mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of 2 Ph), $127.0,126.8$ ($2 \mathrm{~d}, \mathrm{C}-4$ of 2 Ph), 115.0 (d, C-7), 113.9 (d, C-5), 79.7 ($\mathrm{s}, \mathrm{C}-\mathrm{OH}), 64.3$ (d, C-3), $55.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.

EI-MS: $m / z(\%)=182\left(\mathrm{PhCO}^{+}, 22\right), 163(12), 105(100), 77\left(\mathrm{Ph}^{+}, 89\right), 51(33)$.
CI-MS: $m / z(\%)=346\left(\mathrm{MH}^{+}, 100\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=691\left(2 \mathrm{MH}^{+}+1,12\right), 346\left(\mathrm{MH}^{+}, 31\right), 164(100)$.
HRMS: m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 346.1438$; found, 346.1440 .
FT-IR: $v_{\max }=3301(\mathrm{NH}$ and OH$), 2981(\mathrm{CH}), 1690(\mathrm{C}=\mathrm{O}), 1599$ (aromatic $\mathrm{C}=\mathrm{C}$), 1491, 1267, $1038 \mathrm{~cm}^{-1}$.

3-(1-Hydroxy-1-phenylethyl)-4-methoxyisoindolin-1-one (222)

Yield: 0.43 g ($1.62 \mathrm{mmol}, 81 \%)$.
Mp: 235-236 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.61$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.32 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$), 7.26 (d, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of Ph), 7.15 (app. t, $J=7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of Ph), 7.11-7.05 (m, $3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-7$ and H-4 of Ph), 5.42 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.83 (s, $1 \mathrm{H}, \mathrm{H}-3), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=169.8(\mathrm{~s}, \mathrm{C}-1), 154.7$ (s, C-4), 154.2 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 135.5 (s, C-7a), 131.9 (s, C-3a), 130.2 (d, C-6), 127.5 (d, C-3/C-5 of Ph), 126.8 (d, C-4 of Ph), 115.3 (d, C-7), 114.2 (d, C-5), 76.0 ($\mathrm{d}, \mathrm{C}-\mathrm{OH}$), 65.7 (d, C-3), 56.1 (q , $\left.\mathrm{OCH}_{3}\right), 26.6\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=265\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 238(22), 187(35)$.
CI-MS: $m / z(\%)=301\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 3\right), 284\left(\mathrm{MH}^{+}, 100\right), 268(12)$.
HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right)$, 284.1281; found, 284.1281.
FT-IR: $v_{\max }=3373(\mathrm{NH}$ and OH$), 3010(\mathrm{CH}), 1687(\mathrm{C}=\mathrm{O}), 1594$ (aromatic $\mathrm{C}=\mathrm{C}$), 1488, 1367, 1263, $1044 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$: C, 72.07; H, 6.05; $\mathrm{N}, 4.94$. Found: C, 71.98; H, 6.03; N , 4.94\%.

3-(2-Hydroxyhexyl)-4-methoxyisoindolin-1-one (223)

Yield: 0.41 g ($1.56 \mathrm{mmol}, 78 \%$).
Mp: 186-187 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.83$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.54 (dd, $J=1,8 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.49 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.12 (dd, $J=1,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.72 (s, exch.,
$1 \mathrm{H}, \mathrm{OH}), 4.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.39-1.33(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.29-0.94\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.79(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.1$ ($\mathrm{s}, \mathrm{C}-1$), 154.3 ($\mathrm{s}, \mathrm{C}-4$), 135.5 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 132.5 (s, C-3a), 130.6 (d, C-6), 117.5 (d, C-7), 114.2 (d, C-5), 74.7 ($\mathrm{s}, \mathrm{C}-\mathrm{OH}), 66.9$ (d, $\mathrm{C}-3), 56.5\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 36.8\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 25.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$, $23.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.4\left(\mathrm{q}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=163\left(\mathrm{M}^{+}-\mathrm{BuCOMe}, 100\right), 148(10), 132(13), 119(11), 58$ (15), 43 (18).

CI-MS: $m / z(\%)=264\left(\mathrm{MH}^{+}, 30\right), 181(7), 164\left(\mathrm{MH}^{+}-\mathrm{BuCOMe}, 18\right), 118(100)$.
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 264.1600$; found, 264.1596.
FT-IR: $v_{\max }=3490(\mathrm{NH}$ and OH$), 3073(\mathrm{CH}), 1682(\mathrm{C}=\mathrm{O}), 1593$ (aromatic $\mathrm{C}=\mathrm{C}$), 1263, $1046 \mathrm{~cm}^{-1}$.

3-(Hydroxy(phenyl)methyl)-4-methoxyisoindolin-1-one (224)

Yield: $0.43 \mathrm{~g}(1.60 \mathrm{mmol}, 80 \%)$.
Mp: 213-214 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.79$ (s, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.31 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6), 7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7), 7.03-6.97(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.91(\mathrm{~d}, J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$), 5.82 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.43 (app. t, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.92 (d, $J=3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=175.0$ (s, C-1), 160.3 (s, C-4), 144.8 ($\mathrm{s}, \mathrm{C}-1 \mathrm{of}$ Ph), 140.1 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 136.8 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 135.4 (d, C-6), 132.6 (d, C-4 of Ph), 132.5 (d, C-2/C-6 of Ph), 132.4 (d, C-3/C-5 of Ph), 120.1 (d, C-7), 118.8 (d, C-5), 77.2 (d, $\mathrm{CHOH}), 66.6(\mathrm{~d}, \mathrm{C}-3), 61.2\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.
EI-MS: $m / z(\%)=163\left(\mathrm{M}^{+}-\mathrm{PhCHO}, 22\right), 132(5), 116(15), 105(14), 86(24), 84$ (30), 51 (56), 49 (100).

CI-MS: $m / z(\%)=270\left(\mathrm{MH}^{+}, 15\right), 181(7), 164\left(\mathrm{MH}^{+}-\mathrm{PhCHO}, 100\right), 148(8), 134$ (7), 124 (14), 105 (23), 94 (13), 78 (12), 58 (28), 44 (27).

HRMS: m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right), 270.1125$; found, 270.1125 .
FT-IR: $v_{\max }=3201(\mathrm{NH}$ and OH$), 3070(\mathrm{CH}), 1672(\mathrm{C}=\mathrm{O}), 1603$ (aromatic $\mathrm{C}=\mathrm{C}$), $1492,1269,1053 \mathrm{~cm}^{-1}$.

7.38 Synthesis of various substituted isoindolin-1-ones 225-245

A solution of t-BuLi in heptane ($3.9 \mathrm{~mL}, 1.7 \mathrm{M}, 6.6 \mathrm{mmol}$) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of the appropriate substituted N^{\prime}-benzyl- N, N dimethylureas 107, 108 and $113(2.0 \mathrm{mmol})$ in anhydrous THF (20 mL) under N_{2}. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h after which an electrophile (2.2 mmol), in anhydrous THF (8 mL) if solid, otherwise neat, was added. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ then the cooling bath was removed and the mixture allowed to warm to room temperature. It was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. The residue obtained was treated with diethyl ether $(20 \mathrm{ml})$ to give a white solid which was filtered and washed with diethyl ether. The pure products were identified as substituted isoindolin-1-ones $\mathbf{2 2 5 - 2 4 5}$. The yields of products are recorded in Table 6.2.

Isoindolin-1-one (225)

Yield: 0.19 g ($1.43 \mathrm{mmol}, 71 \%$).
Mp: $153-154{ }^{\circ} \mathrm{C}$ (lit. ${ }^{139} 149-151^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.82$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.66 (br, exch., 1 H , NH), 7.49 (dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.43-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and H-6), 4.41 (s, 2 H , H-3).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0(\mathrm{~s}, \mathrm{C}-1), 143.7(\mathrm{~s}, \mathrm{C}-3 \mathrm{a}), 132.2$ ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.8 (d, C-5), 128.0 (d, C-4), 123.8 (d, C-7), 123.2 (d, C-6), 45.7 (d, C-3).

APCI-MS: $m / z(\%)=134\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 134.0606$; found, 134.0604.

FT-IR: $v_{\max }=3288(\mathrm{NH}$ and OH$), 2964(\mathrm{CH}), 1676(\mathrm{C}=\mathrm{O}), 1570$ (aromatic $\mathrm{C}=\mathrm{C}$), $1458,1272,1052 \mathrm{~cm}^{-1}$.

3-Methylisoindolin-1-one (226)

Yield: 0.22 g ($1.50 \mathrm{mmol}, 75 \%$).
$\mathrm{Mp}: 117-118{ }^{\circ} \mathrm{C}$ (lit. $.^{140} 115-116^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.35$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.49 (dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.38-7.34$ (m, $2 \mathrm{H}, \mathrm{H}-4$ and H-6), 4.63 (q, $J=$ $7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.43\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3$ (s, C-1), 149.0 (s, C-3a), 131.8 (s, C-7a), 131.7 (d, C-5), 128.0 (d, C-4), 123.6 (d, C-7), 122.2 (d, C-6), 52.8 (d, C-3), 20.2 (q, CH_{3}).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=295\left(2 \mathrm{M}^{+}, 9\right), 189\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 100\right), 148\left(\mathrm{MH}^{+}, 34\right)$.
HRMS: m / z calc. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 148.0762$; found, 148.0762 .
FT-IR: $v_{\max }=3176(\mathrm{NH}$ and OH$), 2934(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1602$ (aromatic $\mathrm{C}=\mathrm{C}$), 1457, $1265,1043 \mathrm{~cm}^{-1}$.

3-Ethylisoindolin-1-one (227)

Yield: 0.25 g ($1.55 \mathrm{mmol}, 77 \%$).
Mp: $103-105^{\circ} \mathrm{C}$ (lit. $.^{140} 104-105^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.46$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.76(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.46 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.35 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.21 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.52(\mathrm{dd}, J=5,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.94(\mathrm{ddq}, J=5,14,7 \mathrm{~Hz}, 1 \mathrm{H}$, 1 H of CH_{2}), 1.62 (app. d quintet, $J=14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 0.87 (app. $\mathrm{t}, J=$ $7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6$ (s, C-1), 147.6 (s, C-3a), 132.3 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.7 (d, C-5), 128.5 (d, C-4), 123.6 (d, C-7), 122.4 (d, C-6), 58.2 (d, C-3), 27.3 (t, CH_{2}), $9.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
APCI-MS: $m / z(\%)=203\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 37\right), 162\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\left(\mathrm{M}^{+}\right), 162.0913$; found, 162.0919.
FT-IR: $v_{\max }=3312(\mathrm{NH}$ and OH$), 2945(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O}), 1589$ (aromatic $\mathrm{C}=\mathrm{C}$), 1472, 1267, $1043 \mathrm{~cm}^{-1}$.

3-Butylisoindolin-1-one (228)

Yield: 0.29 g ($1.53 \mathrm{mmol}, 76 \%)$.
Mp: $88-89^{\circ} \mathrm{C}$ (lit. $.^{140} 88-89^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.77(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.66 (br, exch., 1 H , NH), 7.49 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.40-7.36$ (m, $2 \mathrm{H}, \mathrm{H}-4$ and H-6), 4.55 (dd, $J=4,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 1.88\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.59(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.30-1.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.82\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2$ ($\mathrm{s}, \mathrm{C}-1$), 147.8 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 132.0 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.7 (d, C-5), 128.0 (d, C-4), 123.7 (d, C-7), 122.4 (d, C-6), 57.0 (d, C-3), 34.3 (t, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $27.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.9\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
ES ${ }^{+}$-MS: $m / z(\%)=189\left(\mathrm{M}^{+}, 25\right), 177(56), 132\left(\mathrm{M}^{+}-\mathrm{Bu}, 100\right), 104(23), 72(32)$.
HRMS: m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}\left(\mathrm{M}^{+}\right)$, 189.1154; found, 189.1154.
FT-IR: $v_{\max }=3312(\mathrm{NH}$ and OH$), 2960(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O}), 1596$ (aromatic $\mathrm{C}=\mathrm{C}$), 1475, 1272, $1045 \mathrm{~cm}^{-1}$.

3-(Hydroxydiphenylmethyl)isoindolin-1-one (229)

Yield: 0.47 g ($1.49 \mathrm{mmol}, 74 \%$).

Mp: $189-191{ }^{\circ} \mathrm{C}$.
${ }^{1} H$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.20$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.60(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.52 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.35 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), $7.30-7.00$ (m, $11 \mathrm{H}, \mathrm{H}-6$ and 2 Ph), 6.44 (d, $J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 6.19 (s, exch., $1 \mathrm{H}, \mathrm{OH}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=170.3$ (s, C-1), 145.2, 145.1 ($2 \mathrm{~s}, \mathrm{C}-1$ of 2 Ph), 141.2 (s, C-3a), 134.2 (s, C-7a), 130.9 (d, C-5), 129.6 (d, C-4), 128.3, 128.2 (2 d, $\mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph), $127.4,127.3$ ($2 \mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of Ph), $126.4,126.3$ ($2 \mathrm{~d}, \mathrm{C}-4$ of 2 Ph), 124.6 (d, C-7), 122.8 (d, C-6), 79.1 ($\mathrm{s}, \mathrm{C}-\mathrm{OH}), 67.5$ (d, C-3).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=316\left(\mathrm{MH}^{+}, 3\right), 315\left(\mathrm{M}^{+}, 2\right), 297\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 37\right), 268(10), 182$ $\left(\mathrm{Ph}_{2} \mathrm{CO}^{+}, 100\right), 133$ (95), 105 (97).
HRMS: m / z calc. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 316.1338; found, 316.1338.
FT-IR: $v_{\max }=3202(\mathrm{NH}$ and OH$), 2990(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1590$ (aromatic $\mathrm{C}=\mathrm{C}$), 1491, 1252, $1025 \mathrm{~cm}^{-1}$.

3-(Hydroxyphenylmethyl)isoindolin-1-one (230)

Yield: 0.35 g ($1.46 \mathrm{mmol}, 73 \%$).
Mp: 174-175 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.69$ (br, exch., $\left.1 \mathrm{H}, \mathrm{NH}\right), 7.48(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.31 (app. dt, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.37 (app. t, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.21 (br, $5 \mathrm{H}, \mathrm{Ph}), 7.07$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.92$ (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), $4.81(\mathrm{~d}, J=$ $6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.73 (dd, $J=4,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.5(\mathrm{~s}, \mathrm{C}-1), 144.5(\mathrm{~s}, \mathrm{C}-1$ of Ph$), 141.1(\mathrm{~s}, \mathrm{C}-3 \mathrm{a})$, 133.6 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.0 (d, C-5), 128.3 (d, C-4), 127.8 (d, C-3/C-5 of Ph), 127.7 (d, C-2/C-6 of Ph), 127.6 ($\mathrm{d}, \mathrm{C}-4$ of Ph), 124.7 (d, C-7), 122.8 (d, C-6), 74.8 (d, CHOH), 61.9 (d, C-3).

EI-MS: $m / z(\%)=239\left(\mathrm{M}^{+}, 4\right), 221\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 220(51), 193(33), 165(89)$, 149 (86).
CI-MS: $m / z(\%)=257\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 12\right), 240\left(\mathrm{MH}^{+}, 100\right), 224(24)$.
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 240.1019$; found, 240.1018.

FT-IR: $v_{\max }=3237(\mathrm{NH}$ and OH$), 2957(\mathrm{CH}), 1669(\mathrm{C}=\mathrm{O}), 1599$ (aromatic $\mathrm{C}=\mathrm{C}$), $1512,1050 \mathrm{~cm}^{-1}$.

3-(Hydroxy(4-methoxyphenyl)methyl)isoindolin-1-one (231)

Yield: 0.42 g ($1.56 \mathrm{mmol}, 78 \%$).
Mp: 196-198 ${ }^{\circ} \mathrm{C}$.
Compound 231 was a mixture of diastereoisomers, which were not separated; however, many individual NMR signals could be identified; 231a:231b $=6: 1\left(\right.$ by ${ }^{1} \mathrm{H}$ NMR).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=561\left(2 \mathrm{M}+\mathrm{Na}^{+}, 12\right), 539\left(2 \mathrm{M}^{+}+1,100\right), 311\left(\mathrm{M}+\mathrm{MeCNNa}^{+}\right.$, 17), $270\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 17\right), 270\left(\mathrm{MH}^{+}, 100\right), 252\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 58\right), 175(6)$.

HRMS: m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 270.1130$; found, 270.1121 .
FT-IR: $v_{\max }=3301(\mathrm{NH}$ and OH$), 2886(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1602$ (aromatic $\mathrm{C}=\mathrm{C}$), 1510, 1271, $1042 \mathrm{~cm}^{-1}$.

Compound 231a:

${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.55$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.51-7.37$ (m, 4 H , H-4, H-5, H-6 and H-7), 7.13 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl group), 6.77 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl group), 5.69 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.95 (app. t, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.83 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 3.70(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=170.0$ ($\mathrm{s}, \mathrm{C}-1$), 158.8 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 145.1 (s, C-3a), 133.6 (s, C-1 of 4-methoxyphenyl), 133.1 (s, C-7a), 131.2 (d, C-5), 128.6 (d, C-2/C-6 of 4-methoxyphenyl), 128.3 (d, C-7), 124.5 (d, C-4), 122.9 (d, C-6), 113.3 (d, C-3/C-5 of 4-methoxyphenyl), 73.9 (d, CHOH), $62.5(\mathrm{~d}, \mathrm{C}-3), 55.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.

Compound 231b:

${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}): $\delta=8.67$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.51-7.38(\mathrm{~m}, 4 \mathrm{H}$, H-4, H-5, H-6 and H-7), 7.06 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl group),
6.79 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl group), 5.82 (d, $J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.77 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 4.66$ (app. t, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.68 (s, 3 $\mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=170.3$ ($\mathrm{s}, \mathrm{C}-1$), 159.3 ($\mathrm{s}, \mathrm{C}-4$ of 4-methoxyphenyl), 145.0 (s, C-3a), 133.7 (s, C-1 of 4-methoxyphenyl), 133.4 (s, C-7a), 131.1 (d, C-5), 128.9 (d, C-2/C-6 of 4-methoxyphenyl), 128.4 (d, C-7), 124.8 (d, C-4), 122.9 (d, C-6), 113.4 (d, C-3/C-5 of 4-methoxyphenyl), 74.7 (d, CHOH), $62.1(\mathrm{~d}, \mathrm{C}-3), 55.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.

6-Methoxyisoindolin-1-one (232)

Yield: 0.23 g ($1.41 \mathrm{mmol}, 70 \%$).
Mp: 189-190 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.38(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.35 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.14 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 4.42 (s, $2 \mathrm{H}, \mathrm{H}-3$), 3.87 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2$ (s, C-1), 160.0 ($\mathrm{s}, \mathrm{C}-6$), 135.9 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 133.5 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 124.0 (d, C-4), 120.3 (d, C-5), 106.3 (d, C-7), 55.7 ($\mathrm{q}, \mathrm{OCH}_{3}$), 45.4 (d, C-3).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=205\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 100\right), 164\left(\mathrm{MH}^{+}, 68\right)$.
HRMS: m / z calc. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 164.0706$; found, 164.0709.
FT-IR: $v_{\max }=3294(\mathrm{NH}$ and OH$), 2976(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1577$ (aromatic $\mathrm{C}=\mathrm{C}$), 1472, 1265, $1049 \mathrm{~cm}^{-1}$.

6-Methoxy-3-methylisoindolin-1-one (233)

Yield: 0.27 g ($1.52 \mathrm{mmol}, 76 \%$).
Mp: $160-161^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.21$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.33 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.31 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 7.13(\mathrm{dd}, J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.66(\mathrm{q}, J=7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.48\left(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2$ (s, C-1), $160.0(\mathrm{~s}, \mathrm{C}-6), 141.3(\mathrm{~s}, \mathrm{C}-3 \mathrm{a})$, 133.0 (s, C-7a), 123.1 (d, C-4), 120.2 (d, C-7), 106.3 (d, C-5), 55.7 (q, OCH_{3}), 52.4 (d, C-3), $20.4\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=219\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 96\right), 178\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 178.0863$; found, 178.0862.
FT-IR: $v_{\max }=3165(\mathrm{NH}$ and OH$), 2979(\mathrm{CH}), 1679(\mathrm{C}=\mathrm{O}), 1600$ (aromatic $\mathrm{C}=\mathrm{C}$), 1487, 1261, $1046 \mathrm{~cm}^{-1}$.

3-Ethyl-6-methoxyisoindolin-1-one (234)

Yield: 0.30 g ($1.57 \mathrm{mmol}, 78 \%$).
Mp: $137-138^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.16$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 7.31 (s, $1 \mathrm{H}, \mathrm{H}-7$), 7.12 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.56(\mathrm{dd}, J=5,7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 1.96 (ddq, $J=5,14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 1.70 (app. d quintet, $J=14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 0.97 (app. t, $J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4$ (s, C-1), 160.0 (s, C-6), 139.8 (s, C-3a), 133.6 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 123.2 (d, C-4), 120.1 (d, C-5), 106.3 (d, C-7), 57.8 (d, C-3), 55.7 (q, $\left.\mathrm{OCH}_{3}\right), 27.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 9.5\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
EI-MS: $m / z(\%)=191\left(\mathrm{M}^{+}, 21\right), 162\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right), 147\left(\mathrm{M}^{+}-\mathrm{Et}-\mathrm{Me}, 13\right), 134$ (15), 119 (16).

HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right), 191.0946$; found, 191.0943.
FT-IR: $v_{\max }=3300(\mathrm{NH}$ and OH$), 2942(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1598$ (aromatic $\mathrm{C}=\mathrm{C}$), 1475, 1270, $1045 \mathrm{~cm}^{-1}$.

3-Butyl-6-methoxyisoindolin-1-one (235)

Yield: 0.34 g ($1.55 \mathrm{mmol}, 77 \%$).
Mp: $145-147^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.71$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.44 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 7.15-7.03 (m, 2 H, H-5 and H-7), 4.48 (dd, $J=3,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.81(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 1.84\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}\right.$ of $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.48(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}$ of $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.31-1.21($\mathrm{m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.84\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=169.6$ ($\mathrm{s}, \mathrm{C}-1$), 159.5 (s, C-6), 140.4 (s, C-3a), 134.3 (s, C-7a), 124.3 (d, C-4), 119.4 (d, C-5), 106.5 (d, C-7), 56.0 (d, C-3), 55.9 (q, OCH_{3}), $34.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 27.3 ($\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $22.6\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3$ (q, CH_{3}).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=261\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 100\right), 220\left(\mathrm{MH}^{+}, 46\right), 204(9), 164(21)$
HRMS: m / z calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 220.1338$; found, 220.1347.
FT-IR: $v_{\max }=3305(\mathrm{NH}$ and OH$), 2967(\mathrm{CH}), 1680(\mathrm{C}=\mathrm{O}), 1597$ (aromatic $\mathrm{C}=\mathrm{C}$), 1477, 1277, $1051 \mathrm{~cm}^{-1}$.

3-(Hydroxydiphenylmethyl)-6-methoxyisoindolin-1-one (236)

Yield: 0.50 g ($1.45 \mathrm{mmol}, 72 \%$).
Mp: $159-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.12$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.71-7.16(\mathrm{~m}, 10 \mathrm{H}$, 2 Ph), 6.93 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 6.75 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 6.69 (dd, $J=2,8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5), 5.78(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0$ ($\mathrm{s}, \mathrm{C}-1$), 160.0 (s, C-6), $146.5,144.7$ (2 s , C-1 of 2 Ph), 136.4 (s, C-3a), 135.1 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 128.6, 128.5 ($2 \mathrm{~d}, \mathrm{C}-3 / \mathrm{C}-5$ of 2 Ph),
127.4, 127.4 ($2 \mathrm{~d}, \mathrm{C}-4$ of 2 Ph), 126.3, 126.2 ($2 \mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of Ph), 124.6 (d, C-4), 119.2 (d, C-5), 106.6 (d, C-7), 78.4 ($\mathrm{s}, \mathrm{C}-\mathrm{OH}), 64.4(\mathrm{~d}, \mathrm{C}-3), 55.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.

EI-MS: $m / z(\%)=346\left(\mathrm{M}^{+}+1,33\right), 345\left(\mathrm{M}^{+}, 10\right), 328\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 45\right), 327\left(\mathrm{M}^{+}-\right.$ $\mathrm{H}_{2} \mathrm{O}, 100$).
CI-MS: $m / z(\%)=346\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 346.1438$; found, 346.1443.
FT-IR: $v_{\max }=3205(\mathrm{NH}$ and OH$), 2994(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O}), 1594$ (aromatic $\mathrm{C}=\mathrm{C}$), 1493, 1255, $1027 \mathrm{~cm}^{-1}$.

3-(Hydroxyphenylmethyl)-6-methoxyisoindolin-1-one (237)

Yield: 0.45 g ($1.50 \mathrm{mmol}, 75 \%$).
Mp: 164-165 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.86$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.32-7.23$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{Ph}$ and H-7), $7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 6.91(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 5.82(\mathrm{~d}, J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.43 (app. t, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 4.33 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0(\mathrm{~s}, \mathrm{C}-1), 160.2(\mathrm{~s}, \mathrm{C}-6), 140.8(\mathrm{~s}, \mathrm{C}-1 \mathrm{of} \mathrm{Ph})$, 135.4 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 133.7 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 128.7 (d, C-3/C-5 of Ph), 128.4 (d, C-4 of Ph), 127.5 (d, C-2/C-6 of Ph), 124.9 (d, C-4), 119.6 (d, C-5), 114.0 (d, C-7), 78.6 (d, CHOH), 62.8 (d, C-3), $55.6\left(\mathrm{q}, \mathrm{OCH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=561\left(2 \mathrm{M}+\mathrm{Na}^{+}, 23\right), 539\left(2 \mathrm{M}^{+}+1,62\right), 333\left(\mathrm{M}+\mathrm{MeCNNa}^{+}\right.$, 51), $311\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 100\right), 270\left(\mathrm{MH}^{+}, 74\right), 252\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 71\right), 209$ (27).

HRMS: m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right), 270.1130$; found, 270.1133.
FT-IR: $v_{\max }=3300(\mathrm{NH}$ and OH$), 2923(\mathrm{CH}), 1679(\mathrm{C}=\mathrm{O}), 1600$ (aromatic $\mathrm{C}=\mathrm{C}$), 1504, 1270, $1052 \mathrm{~cm}^{-1}$.

6-Methylisoindolin-1-one (238)

Yield: 0.22 g ($1.50 \mathrm{mmol}, 75 \%$).
$\mathrm{Mp}: 211-213^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.51$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.48 (s, $1 \mathrm{H}, \mathrm{H}-7$), $7.44(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.39(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.32(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}-3), 2.39(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=170.5$ (s, C-1), 141.7 (s, C-3a), 137.6 (s, C-6), 133.2 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 132.6 (d, C-5), 123.8 (d, C-7), 123.4 (d, C-4), 45.1 (t, C-3), 21.3 (q, CH_{3}).
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=295\left(2 \mathrm{M}^{+}+1,41\right), 189\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 92\right), 148\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 148.0755$; found, 148.0762.
FT-IR: $v_{\max }=3286(\mathrm{NH}$ and OH$), 2972(\mathrm{CH}), 1676(\mathrm{C}=\mathrm{O}), 1570$ (aromatic $\mathrm{C}=\mathrm{C}$), 1467, 1261, $1047 \mathrm{~cm}^{-1}$.
Anal. calc. for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{NO}$: C, 73.45 ; H, 6.16; N, 9.52. Found: C, 73.32; H, 6.14; N, 9.41%.

3,6-Dimethylisoindolin-1-one (239)

Yield: 0.25 g ($1.55 \mathrm{mmol}, 78 \%$).
Mp: $161-162^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.59$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.45 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-7$), 7.44 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), $7.39(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.56(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 2.38$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$) , $1.33\left(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.4$ (s, C-1), 146.9 (s, C-3a), 137.7 (s, C-6), 132.8 (d, C-5), 132.7 (s, C-7a), 123.3 (d, C-7), 122.9 (d, C-4), 51.9 (d, C-3), 21.3 (q, CH_{3}), $20.8\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=323\left(2 \mathrm{M}^{+}+1,22\right), 203\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 96\right), 162\left(\mathrm{MH}^{+}, 100\right)$.
HRMS: m / z calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 162.0925$; found, 162.0925 .
FT-IR: $v_{\max }=3187(\mathrm{NH}$ and OH$), 2986(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O}), 1598$ (aromatic $\mathrm{C}=\mathrm{C}$), 1478, 1266, $1042 \mathrm{~cm}^{-1}$.

3-Ethyl-6-methylisoindolin-1-one (240)

Yield: 0.26 g ($1.49 \mathrm{mmol}, 75 \%$).
Mp: $165-166^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.27$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.58 (s, $1 \mathrm{H}, \mathrm{H}-7$), 7.28 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 7.23(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.49(\mathrm{dd}, J=5,7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91$ (ddq, $J=5,14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 1.62 (app. d quintet, $J=14,7 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}$ of CH_{2}), 0.89 (app. $\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7(\mathrm{~s}, \mathrm{C}-1), 144.8(\mathrm{~s}, \mathrm{C}-3 \mathrm{a}), 137.9(\mathrm{~s}, \mathrm{C}-6)$, 132.7 (d, C-5), 132.4 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 123.8 (d, C-4), 122.1 (d, C-7), 58.0 (d, C-3), 27.4 (t, CH_{2}), $21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 9.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$.
APCI-MS: $m / z(\%)=175\left(\mathrm{M}^{+}, 11\right), 146\left(\mathrm{M}^{+}-\mathrm{Et}, 100\right), 118(12)$.
HRMS: m / z calc. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}\left(\mathrm{M}^{+}\right), 175.0997$; found, 175.1000.
FT-IR: $v_{\max }=3307(\mathrm{NH}$ and OH$), 2949(\mathrm{CH}), 1679(\mathrm{C}=\mathrm{O}), 1597$ (aromatic $\mathrm{C}=\mathrm{C}$), $1470,1272,1049 \mathrm{~cm}^{-1}$.

3-(1-Hydroxycyclohexyl)-6-methylisoindolin-1-one (241)

Yield: 0.35 g ($1.43 \mathrm{mmol}, 72 \%$).
Mp: 235-237 ${ }^{\circ} \mathrm{C}$.
${ }^{\prime} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=7.72$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $6.56(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 6.53 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-7$), 6.42 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.00 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 3.42 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$) , $2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.65-0.33(\mathrm{~m}, 10 \mathrm{H}$, cyclohexyl).
Compound 34 was highly insoluble in DMSO so that its ${ }^{13} \mathrm{C}$ NMR spectrum was not recorded.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=491\left(2 \mathrm{M}^{+}+1,10\right), 287\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 79\right), 246\left(\mathrm{MH}^{+}, 100\right)$, $228\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 18\right)$.
HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 264.1494$; found, 246.1498.
FT-IR: $v_{\max }=3307(\mathrm{NH}$ and OH$), 2943(\mathrm{CH}), 1681(\mathrm{C}=\mathrm{O}), 1596$ (aromatic $\mathrm{C}=\mathrm{C}$), 1472, $1246,1043 \mathrm{~cm}^{-1}$.

Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2}$: C, 73.44; H, 7.81; N, 5.71. Found: C, 73.81; H, 7.85; N, 5.80\%.

3-(Hydroxydiphenylmethyl)-6-methylisoindolin-1-one (242)

Yield: 0.56 g ($1.70 \mathrm{mmol}, 85 \%$).
Mp: 236-264 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.12$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.61-7.19(\mathrm{~m}, 11 \mathrm{H}$, 2 Ph and H-7), 7.11 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.26(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.81$ (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 5.72 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=172.40(\mathrm{~s}, \mathrm{C}-1), 145.5,145.2(2 \mathrm{~s}, \mathrm{C}-1$ of 2 Ph$)$, 142.4 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 137.6 ($\mathrm{s}, \mathrm{C}-6$), 134.4 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.8 ($\mathrm{d}, \mathrm{C}-5$), 128.3, 128.2 (2 d , C-3/C-5 of 2 Ph), 127.3, 127.2 ($2 \mathrm{~d}, \mathrm{C}-4$ of 2 Ph), 127.1, $127.0(2 \mathrm{~d}, \mathrm{C}-2 / \mathrm{C}-6$ of 2 Ph), 124.3 (d, C-4), 123.0 (d, C-7), $79.0(\mathrm{~s}, \mathrm{C}-\mathrm{OH}), 63.4(\mathrm{~d}, \mathrm{C}-3), 21.2\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=659\left(2 \mathrm{M}^{+}+1,12\right), 371\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 71\right), 330\left(\mathrm{MH}^{+}, 100\right)$, $312\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 36\right), 189$ (8).
HRMS: m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 330.1494$; found, 330.1487 .
FT-IR: $v_{\max }=3278(\mathrm{NH}$ and OH$), 3000(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1591$ (aromatic $\mathrm{C}=\mathrm{C}$), 1493, 1251, $1040 \mathrm{~cm}^{-1}$.

3-(2-Hydroxyhexyl)-4-methylisoindolin-1-one (243)

Yield: 0.38 g ($1.54 \mathrm{mmol}, 77 \%$).
Mp: $88-89^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.47$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.53 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-5), 7.42 (s, $1 \mathrm{H}, \mathrm{H}-7$), 7.35 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.79 (s, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.39 (br, $1 \mathrm{H}, \mathrm{H}-3$), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.33-1.09 (m, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.06 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}-\mathrm{OH}\right), 0.79\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): $\delta=170.3$ ($\mathrm{s}, \mathrm{C}-1$), 142.8 ($\mathrm{s}, \mathrm{C}-3 \mathrm{a}$), 137.7 ($\mathrm{s}, \mathrm{C}-6$), 133.9 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 132.4 (d, C-5), 125.0 (d, C-4), 123.1 (d, C-7), 73.6 (s, C-OH), 65.5 (d, $\mathrm{C}-3$), 36.3 (t, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $25.4\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 24.6\left(\mathrm{q}, \mathrm{CH}_{3}\right), 23.3$ (t, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right), 14.5\left(\mathrm{q}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=517\left(2 \mathrm{M}+\mathrm{Na}^{+}, 9\right), 495\left(2 \mathrm{M}^{+}+1,44\right), 289\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 32\right)$, $248\left(\mathrm{MH}^{+}, 100\right), 230\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 41\right), 148$ (9), 100 (8).

HRMS: m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right), 248.1651$; found, 248.1646 .
FT-IR: $v_{\max }=3467(\mathrm{NH}$ and OH$), 3042(\mathrm{CH}), 1680(\mathrm{C}=\mathrm{O})$, 1590 (aromatic $\mathrm{C}=\mathrm{C}$), $1269,1041 \mathrm{~cm}^{-1}$.

3-(Hydroxyphenylmethyl)-6-methylisoindolin-1-one (244)

Yield: 0.40 g ($1.58 \mathrm{mmol}, 79 \%$).
$\mathrm{Mp}: 228-229{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.01$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), 7.41 (d, $J=2 \mathrm{~Hz}, 1 \mathrm{H}$, H-7), 7.31-7.22 (m, 5 H, Ph), 7.03 (dd, $J=2,8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 6.33(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 5.62 (d, $J=3 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}$), 4.67 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.39 (dd, $J=3$, $8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.3$ (s, C-1), 141.1 (s, C-3a), 140.9 ($\mathrm{s}, \mathrm{C}-1$ of Ph), 137.9 ($\mathrm{s}, \mathrm{C}-6$), 133.3 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 131.9 (d, C-5), 128.2 (d, C-7), 128.1 (d, C-3/C-5 of $\mathrm{Ph}), 127.7$ (d, C-2/C-6 of Ph), 124.1 (d, C-4 of Ph), 123.2 (d, C-4), 76.9 (d, CHOH), $62.7(\mathrm{~d}, \mathrm{C}-3), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
APCI-MS: $m / z(\%)=529\left(2 \mathrm{M}+\mathrm{Na}^{+}, 61\right), 507\left(2 \mathrm{M}^{+}+1,93\right), 317\left(\mathrm{M}+\mathrm{MeCNNa}^{+}\right.$, 15), $295\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 22\right), 254\left(\mathrm{MH}^{+}, 89\right), 236\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100\right), 100(22)$.

HRMS: m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$, 254.1181 ; found, 254.1182.
FT-IR: $v_{\max }=3312(\mathrm{NH}$ and OH$), 2943(\mathrm{CH}), 1678(\mathrm{C}=\mathrm{O}), 1602$ (aromatic $\mathrm{C}=\mathrm{C}$), $1500,1272,1045 \mathrm{~cm}^{-1}$.

3-(Hydroxy(4-methoxyphenyl)methyl)-6-methylisoindolin-1-one (245)

Yield: $0.47 \mathrm{~g}(1.66 \mathrm{mmol}, 83 \%)$.
Mp: $211-213{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}): $\delta=8.47$ (br, exch., $1 \mathrm{H}, \mathrm{NH}$), $7.31-7.29(\mathrm{~m}, 3 \mathrm{H}$, H-4, H-5 and H-7), 7.12 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 / \mathrm{H}-6$ of 4-methoxyphenyl), 6.76 (d, $J=$ $9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 / \mathrm{H}-5$ of 4-methoxyphenyl), $5.65(\mathrm{~d}, J=4 \mathrm{~Hz}$, exch., $1 \mathrm{H}, \mathrm{OH}), 4.92$ (app. t, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}), 4.77(\mathrm{~d}, J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.33$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \quad$ DMSO- d_{6}): $\delta=170.1(\mathrm{~s}, \mathrm{C}-1), 158.8(\mathrm{~s}, \mathrm{C}-4$ of 4-methoxyphenyl), 142.3 (s, C-3a), 137.7 (s, C-6), 133.8 ($\mathrm{s}, \mathrm{C}-7 \mathrm{a}$), 133.2 (s, C-1 of 4-methoxyphenyl), 132.1 (d, C-5), 128.6 (d, C-2/C-6 of 4-methoxyphenyl), 124.2 (d, C-7), 123.1 (d, C-4), 113.3 (d, C-3/C-5 of 4-methoxyphenyl), 73.9 (d, CHOH), 62.3 (d, C-3), $55.4\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 21.3\left(\mathrm{q}, \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=589\left(2 \mathrm{M}+\mathrm{Na}^{+}, 37\right), 567\left(2 \mathrm{M}^{+}+1,64\right), 325\left(\mathrm{M}+\mathrm{MeCNH}^{+}\right.$, 65), $284\left(\mathrm{MH}^{+}, 100\right), 266\left(\mathrm{MH}^{+}-\mathrm{H}_{2} \mathrm{O}, 46\right)$.

HRMS: m / z calc. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{MH}^{+}\right), 284.1287$; found, 284.1290.
FT-IR: $v_{\max }=3301(\mathrm{NH}$ and OH$), 2896(\mathrm{CH}), 1677(\mathrm{C}=\mathrm{O}), 1601$ (aromatic $\mathrm{C}=\mathrm{C}$), 1519, 1271, $1042 \mathrm{~cm}^{-1}$.

3,3-Dibutylisoindolin-1-one (246)

Yield: 25 mg ($0.10 \mathrm{mmol}, 5 \%$).
$\mathrm{Mp}: 88-89^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74(\mathrm{~d}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7$), 7.47 (app. t, $J=8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-5$), 7.36 (app. $\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 7.23 (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 7.16 (br s, exch., $1 \mathrm{H}, \mathrm{NH}$), $1.85-1.72\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.18-1.09(\mathrm{~m}, 8 \mathrm{H}$, $\left.2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.74\left(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.6(\mathrm{~s}, \mathrm{C}-1), 150.8(\mathrm{~s}, \mathrm{C}-3 \mathrm{a}), 133.3(\mathrm{~s}, \mathrm{C}-7 \mathrm{a})$, 131.8 (d, C-5), 127.8 (d, C-4), 123.7 (d, C-7), 121.2 (d, C-6), 65.1 ($\mathrm{s}, \mathrm{C}-3$), 39.0 (t, $2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $25.6\left(\mathrm{t}, 2 \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.8\left(\mathrm{t}, 2 \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 13.8\left(\mathrm{q}, 2 \mathrm{CH}_{3}\right)$.
$\mathrm{ES}^{+}-\mathrm{MS}: m / z(\%)=513\left(2 \mathrm{M}+\mathrm{Na}^{+}, 12\right), 491\left(2 \mathrm{M}^{+}+1,3\right), 309\left(\mathrm{M}+\mathrm{MeCNNa}^{+}\right.$, 24), $287\left(\mathrm{M}+\mathrm{MeCNH}^{+}, 97\right), 246\left(\mathrm{MH}^{+}, 100\right)$.

HRMS: m / z calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}\left(\mathrm{MH}^{+}\right), 246.1858$; found, 246.1858.
FT-IR: $v_{\max }=3300(\mathrm{NH}$ and OH$), 2960(\mathrm{CH}), 1681(\mathrm{C}=\mathrm{O}), 1591$ (aromatic $\mathrm{C}=\mathrm{C}$), 1473, 1273, $1046 \mathrm{~cm}^{-1}$.

FINAL CONCLUSION AND FUTURE WORK

FINAL CONCLUSION AND FUTURE WORK

A simple, efficient and high yielding lithiation procedure that allows electrophilic substitution of various N-benzylpivalamides and N^{\prime}-benzyl- N, N dimethylureas has been demonstrated to provide various substituted derivatives. Catalytic cyclization reactions of some of the products with TFAA, via dehydration from the OH and hydrogen from the NH , takes place to give the corresponding isoindolines and tetrahydroisoquinolines in excellent yields.

Also, a lithiation procedure has been developed that allows the production of 3-substituted isoindolin-1-ones in high yields in only one step via lithiation of various substituted N^{\prime}-benzyl- N, N-dimethylureas with t - BuLi (3.3 mole equivalents) in THF at $0^{\circ} \mathrm{C}$ followed by reactions with various electrophiles. The procedure has been proven to be simple, efficient and general.

However, N-(2-(2-hydroxy-2-arylalkyl)benzyl)pivalamides are not cyclised to produce the corresponding tetrahydroisoquinolines on reaction with TFAA under the conditions tried. Therefore, future work could aim for the production of such compounds via lithiation procedures as shown in the Scheme below. It is hoped that lithiation of N -substituted 2-arylethylamines 252 would give the corresponding dilithium reagents 253 which on reaction with carbonyl compounds would give the corresponding ortho-substituted derivatives 354 (Route a). Catalytic cyclization of 254 with TFAA could produce 255 which on reaction with TFA could give the corresponding 256 (Route a). Also, isoquinolin-1-ones 257 and 258 could be synthesized via Routes b and c.

REFERENCES

REFERENCES

1. Chemistry of Waste Minimisation; Clark, J. H., Ed.; Chapman and Hall: London, 1995.
2. Beak, P.; Snieckus, V. Acc. Chem. Res., 1982, 15, 306.
3. Beak, P.; Zajdel, W. J.; Reitz, D. B. Chem. Rev., 1984, 84, 471.
4. Wakefield, B. J.; In Organolithium Methods; Katritzky, A. R.; Meth-Cohn, O.; Rees, C. W., Ed.; Academic Press: London, 1988.
5. Snieckus, V. Chem. Rev., 1990, 90, 879.
6. El-Hiti, G. A. Heterocycles, 2000, 53, 1839.
7. Schlosser, M. Organometallics in Synthesis, 2nd ed.; Wiley: Chichester, 2002.
8. Clayden, J. Organolithiums: Selectivity for Synthesis, Pergamon: Oxford, 2002.
9. Smith, K.; El-Hiti, G. A. Curr. Org. Synth., 2004, 1, 253.
10. Chinchilla, R.; Nájera, C.; Yus, M. Chem. Rev., 2004, 104, 2667.
11. Foubelo, F.; Yus, M. Curr. Org. Chem., 2005, 9, 459.
12. Clayden, J.; Turner, H.; Pickworth, M.; Adler, T. Org. Lett., 2005, 7, 3147.
13. Clayden, J.; Dufour, J. Tetrahedron Lett., 2006, 47, 6945.
14. Clayden, J.; Turner, H.; Helliwell, M.; Moir, E. J. Org. Chem., 2008, 73, 4415.
15. Lee, W. K.; Park, Y. S.; Beak, P. Acc. Chem. Res., 2009, 42, 224.
16. Rathman, T. L.; Bailey, W. F. Org. Process Res. Dev., 2009, 13, 144.
17. Elschenbroich, C. Organometallics, Wiley-VCH: Weinheim, 2006.
18. Ruiz, J.; Lete, E.; Sotomayor, N. Tetrahedron, 2006, 62, 6182.
19. Clayden, J.; Hennecke, U. Org. Lett., 2008, 10, 3567.
20. McLaughlin, M.; Marcantonio, K.; Chen, C.; Davies, I. W. J. Org. Chem., 2008, 73, 4309.
21. Capriati, V.; Florio, S.; Luisi, R.; Mazzanti, A.; Musio, B. J. Org. Chem., 2008, 73, 3197.
22. Watson, S. C.; Eastham, J. F. J. Organomet. Chem., 1967, 9, 165.
23. Gilman, H.; Cartledge, F. K. J. Organomet. Chem., 1964, 2, 447.
24. Dubois, J. E.; Bauer, P.; Kaddani, B. Tetrahedron Lett., 1985, $26,57$.
25. Barluenga, J.; Florez, J.; Yus, M. J. Chem. Soc., Perkin Trans. 1, 1983, 3019.
26. Freeman, P. K.; Hutchinson, L. L. J. Org. Chem., 1980, 45, 1924.
27. Stapersma, J.; Kuipers, P.; Klummp, G. W. Tetrahedron, 1981, 37, 187.
28. Adcock, W.; Clark, C. I.; Trout, N. A. J. Org. Chem., 2001, 66, 3362.
29. Quéguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J. Adv. Heterocycl. Chem., 1991, 52, 187.
30. Clayden, J.; Hamilton, S. D.; Mohammed, R. T. Org. Lett., 2005, 7, 3673.
31. Sánchez, J. D.; Cledera, P.; Perumal, S.; Avendaño, C.; Menéndez, J. C. Synlett, 2007, 2805.
32. Chau, N. T. T.; Nguyen, T. H.; Castanet, A.-S.; Nguyen, K. P. P.; Mortier, J. Tetrahedron, 2008, 64, 10552.
33. Sahin, A.; Cakmak, O.; Demirtas, I.; Okten, S.; Tutar, A. Tetrahedron, 2008, 64, 10068.
34. Ruiz-Gómez, G.; Francesch, A.; Iglesias, M. J.; López-Ortiz, F.; Cuevas, C.;

Serrano-Ruiz, M. Org. Lett., 2008, 10, 3981.
35. Luliński, S.; Zajac K. J. Org. Chem., 2008, 73, 7785.
36. Shibasaki, T.; Ooishi, T.; Yamanouchi, N.; Murafuji, T.; Kurotobi, K.; Sugihara, Y. J. Org. Chem., 2008, 73, 7971.
37. Führer, W.; Gschwend, H. W. J. Org. Chem., 1979, 44, 1133.
38. Geneste, H.; Schäfer, B. Synthesis, 2001, 2259.
39. Schlosser, M.; Mongin, F.; Porwisiak, J.; Damowski, W.; Büker, H. H.; Nibbering, N. M. M. Chem. Eur. J., 1998, 4, 1281.
40. Parker, K. A.; Koziski, K. A. J. Org. Chem., 1987, 52, 674.
41. Xiao, D.; Lavey, B. J.; Palani, A.; Wang, C.; Aslanian, R. G.; Kozlowski, J. A.; Shih, N.-Y.; McPhail, A. T.; Randolph, G. P.; Lachowicz, J. E.; Ruth A. Duffy, R. A. Tetrahedron Lett., 2005, 46, 7653.
42. Clayden, J.; Pink, J. H.; Yasin, S. A. Tetrahedron Lett., 1998, 39, 105.
43. Bowles, P.; Clayden, J.; Helliwell, M.; McCarthy, C.; Tomkinson, M.; Westlund, N. J. Chem. Soc., Perkin Trans. I, 1997, 2607.
44. Turck, A.; Plé, N.; Mongin, F.; Quéguiner, G. Tetrahedron, 2001, 57, 4489.
45. Gros, P.; Fort, Y. Eur. J. Org. Chem., 2002, 3375.
46. Turner, J. A. J. Org. Chem., 1983, 48, 3401.
47. Smith, K.; Anderson, D.; Matthews, I. Sulfur Lett., 1995, 18, 79.
48. Gros, P.; Choppin, S.; Mathieu, J.; Fort, Y. J. Org. Chem., 2002, 67, 234.
49. Lazaar, J.; Rebstock, A.-S.; Mongin, F.; Godard, A.; Trécourt, F.; Marsais, F. Quéguiner, G. Tetrahedron, 2002, 58, 6723.
50. Güngör, T.; Marsais, F.; Quéguiner, G. Synthesis, 1982, 499.
51. Pomel, V.; Rovera, J.-C.; Godard, A.; Marsais, F.; Quéguiner, G. J. Heterocycl. Chem., 1996, 33, 1995.
52. Godard, A.; Rocca, P.; Pomel, V.; Thomas-dit-Dumont, L.; Rovera, J.-C.; Thaburet, J.-F.; Marsais, F.; Quéguiner, G. J. Organomet. Chem., 1996, 517, 25.
53. Pollet, P.; Turck, A.; Plé, N.; Quéguiner, G. J. Org. Chem., 1999, 64, 4512.
54. Choppin, S.; Gros, P.; Fort, Y. Eur. J. Org. Chem., 2001, 603.
55. Smith, K.; Lindsay, C. M.; Morris, I. K.; Matthews, I.; Pritchard, G. J. Sulfur Lett., 1994, 17, 197.
56. Watson, S. E.; Markovich, A. Heterocycles, 1998, 48, 2149.
57. Numata, A.; Kondo, Y.; Sakamoto, T. Synthesis, 1999, 306.
58. Jacquelin, J. M.; Marsais, F.; Godard, A.; Quéguiner, G. Synthesis, 1986, 670.
59. Arzel, E.; Rocca, P.; Marsais, F.; Godard, A.; Quéguiner, G. Tetrahedron Lett., 1998, 39, 6465.
60. Arzel, E.; Rocca, P.; Marsais, F.; Godard, A.; Quéguiner, G. Tetrahedron, 1999, 55, 12149.
61. Turck, A.; Plé, N.; Ndzi, B.; Quéguiner, G.; Haider, N.; Schuller, H.; Heinisch, G. Tetrahedron, 1993, 49, 599.
62. Turck, A.; Plé, N.; Pollet, P.; Quéguiner, G. J. Heterocycl. Chem., 1998, 35, 429.
63. Mojovic, L.; Turck, A.; Plé, N.; Dorsy, M.; Ndzi, B.; Quéguiner, G. Tetrahedron, 1996, 52, 10417.
64. Plé, N.; Turck, A.; Fiquet, E.; Quéguiner, G. J. Heterocycl. Chem., 1991, 28, 283.
65. Plé, N.; Turck, A.; Bardin, F.; Quéguiner, G. J. Heterocycl. Chem., 1992, 29, 467.
66. Plé, N.; Turck, A.; Heynderickx, A.; Quéguiner, G. Tetrahedron, 1998, 54, 4899.
67. Plé, N.; Turck, A.; Martin, P.; Barbey, S.; Quéguiner, G. Tetrahedron Lett., 1993, 34, 1605.
68. Turck, A.; Plé, N.; Leprêtre-Gaquère, A.; Quéguiner, G. Heterocycles, 1998, 49, 205.
69. Turck, A.; Plé, N.; Trohay, D.; Ndzi, B.; Quéguiner, G. J. Heterocycl. Chem., 1992, 29, 699.
70. Toudic, F.; Plé, N.; Turck, A.; Quéguiner, G. Tetrahedron, 2002, 58, 283.
71. Turck, A.; Plé, N.; Tallon, V.; Quéguiner, G. Tetrahedron, 1995, 51, 13045.
72. Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F.; Abdo, M. A. J. Org. Chem., 1996, 61, 647.
73. Smith, K.; El-Hiti, G. A.; Abdo, M. A.; Abdel-Megeed, M. F. J. Chem. Soc., Perkin Trans. 1, 1995, 1029.
74. Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M.F.; Abdo, M. A. J. Org. Chem., 1996, 61, 656.
75. Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F.; Abdo, M. A. Collect. Czech. Chem. Commun., 1999, 64, 515.
76. Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F. Russ. J. Org. Chem., 2003, 39, 430.
77. Smith, K.; El-Hiti, G. A.; Abdel-Megeed, M. F. Synthesis, 2004, 2121.
78. El-Hiti, G. A. Synthesis, 2004, 363.
79. El-Hiti, G. A. Monatsh. Chem., 2004, 135, 323.
80. Smith, K.; El-Hiti, G. A.; Hegazy, A. S. Synthesis, 2005, 2951.
81. Smith, K.; El-Hiti, G. A.; Hegazy, A. S. J. Sulfur Chem., 2005, 26, 121
82. Smith, K.; El-Hiti, G. A.; Mahgoub, S. A. Synthesis, 2003, 2345.
83. El-Hiti, G. A. Synthesis, 2003, 2799.
84. Turck, A.; Plé, N.; Tallon, V.; Quéguiner, G. J. Heterocycl. Chem., 1993, 30, 1491.
85. Simig, G.; Schlosser, M. Tetrahedron Lett., 1988, 29, 4277.
86. Martínez, A. G.; Alvarez, R. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L.R. Tetraderron Lett., 1989, 30, 581.
87. Gallagher, D. J.; Beak, P. J. Am. Chem. Soc., 1991, 113, 7984.
88. Beak, P.; Musick, T. J.; Chen, C.-W. J. Am. Chem. Soc., 1988, 110, 3538.
89. Nájera, C.; Sansano, J. M.; Yus, M. Tetrahedron, 2003, 59, 9255.
90. Smith, K.; El-Hiti, G. A.; Hawes, A. C. Synthesis, 2003, 2047.
91. The EPSRC National Crystallography Service, Department of Chemistry, Southampton University, Southampton, UK.
92. The X-Ray Crystallography Service, School of Chemistry, Cardiff University, Cardiff, UK.
93. Burgos, P. O.; Fernández, I.; Iglesias, M. J.; García-Granda, S.; Ortiz, F. L. Org. Lett., 2008, 10, 537.
94. Uchida, K.; Fukuda, T.; Iwao, M. Tetrahedron, 2007, 63, 7178 and references cited therein.
95. Clayden, J.; Dufour, J.; Grainger, D. M.; Helliwell, M. J. Am. Chem. Soc., 2007, 129, 7488.
96. Katsoulos, K.; Schlosser, M. Tetrahedron Lett., 1993, 34, 6263.
97. Hassel, T.; Seebach, D. Angew. Chem., Int. Ed. Engl., 1979, 18, 399.
98. Anderson, D. R.; Faibish, N. C.; Beak, P. J. Am. Chem. Soc., 1999, 121, 7553.
99. Meigh, J. P.; Álvarez, M.; Joule, J. A. J. Chem. Soc., Perkin Trans. 1, 2001, 2012.
100. Godard, A.; Jaquelin, J.-M.; Quéguiner, G. J. Organometal. Chem., 1988, 354, 273.
101. Smith, K.; El-Hiti, G. A.; Shukla, A. P. J. Chem. Soc., Perkin Trans. 1, 1999, 2305.
102. Eckert, H.; Forster, B. Angew. Chem., Int. Ed. Engl., 1987, 26, 894.
103. Lawrence, N. J.; Liddle, J.; Bushell, S. M.; Page, M. I.; Slawin, A. M. Z. J. Org. Chem., 2002, 67, 457.
104. Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau, C.; Rys, V. Tetrahedron Lett., 2002, 43, 2207.
105. Fuchs, J. R.; Funk, R. L. Org. Lett., 2001, 3, 3923.
106. Stajer, G.; Csende, F. Curr. Org. Chem., 2005, 9, 1277 and references cited therein.
107. Marinicheva, G. E.; Gubina, T. I. Chemistry of Heterocyclic Compounds, 2004, 40, 1517 and references cited therein.
108. Clayden, J.; Menet, C. J. Tetrahedron Lett., 2003, 44, 3059.
109. Clayden, J.; Menet, C. J.; Mansfield, D. J. Org. Lett., 2000, 2, 4229.
110. Clayden, J.; Tchabanenko, K. Chem. Commun., 2000, 317.
111. Ahmed, A.; Clayden, J.; Yasin, S. A. Chem. Commun., 1999, 231.
112. Clayden, J.; Knowles, F. E.; Baldwin, I. R. J. Am. Chem. Soc., 2005, 127, 2412.
113. Baldwin, J. E. J. Chem. Soc., Chem. Commun., 1976, 734.
114. Baldwin, J. E.; Thomas, R. C.; Kruse, L. I.; Silberman, L. J. Org. Chem., 1977, 42, 3846.
115. Scott, J. D.; Williams, R. M. Chem. Rev., 2002, 102, 1669.
116. Taylor, M. S.; Tokunaga, N.; Jacobsen, E. N. Angew. Chem., Int. Ed., 2005, 44, 6700.
117. Lu, S.; Wang, Y.; Han, X.; Zhau, Y. Angew. Chem., Int. Ed., 2006, 45, 2260.
118. Kadzimirsz, D.; Hildebrandt, D.; Merz, K.; Dyker, G. Chem. Commun., 2006, 661.
119. Yanada, R.; Obika, S.; Kono, H.; Takemoto, Y. Angew. Chem., Int. Ed., 2006, 45, 3906.
120. Obika, S.; Kono, H.; Yasui, Y.; Yanada, R.; Takemoto, Y. J. Org. Chem., 2007, 72, 4462.
121. Asao, N.; Yudha, S.; Nogami, T.; Yamamoto, Y. Angew. Chem., Int. Ed., 2005, 44, 5526.
122. Clark, R. D.; Jahangir; Langston, J. A. Can. J. Chem., 1994, 72, 23.
123. Schlosser, M.; Simig, G. Tetrahedron Lett., 1991, 32, 1965.
124. Maugeri, C.; Alisi, M. A.; Apicella, C.; Cellai, L.; Dragone, P.; Fioravanzo, E.; Florio, S.; Furlotti, G.; Mangano, G.; Ombrato, R.; Luisi, R.; Pompei, R.; Rincicotti, V.; Russo, V.; Vitiello, M.; Cazzolla, N. Bioorg. Med. Chem., 2008, 16, 3091.
125. Marcos, C. F.; Marcaccini, S.; Menchi G.; Pepino, R.; Torroba, T. Tetrahedron Lett., 2008, 49, 149.
126. Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron, 2007, 63, 2664.
127. Sun, C.; Xu, B. J. Org. Chem., 2008, 73, 7361 and references therein.
128. Couture, A.; Deniau, E.; lonescu, D.; Grandclaudon, P. Tetrahedron Lett., 1998, 39, 2319.
129. Epsztajn, J.; Jóźwiak, A.; P. Kołuda, I. Sadokierska, I. D. Wilkowska, Tetrahedron, 2000, 56, 4837.
130. Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Tetrahedron: Asymmetry, 2008, 19, 111.
131. Vogel's Textbook of Practical Organic Chemistry, 5th ed.; Longman: Harlow, 1989.
132. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: Oxford, 1988.
133. Darbeau, R. W.; Pease, R. S.; Gibble, R. E. J. Org. Chem., 2001, 66, 5027.
134. Darbeau, R. W.; Pease, R. S.; Perez, E. V. J. Org. Chem., 2002, 67, 2942.
135. Anastassiou, A. G.; Hammer, R. B. J. Am. Chem. Soc., 1972, 94, 303.
136. Borgna, P.; Vicarini, L.; Calderara, G. Farmco Sci., 1977, 32, 813.
137. Liu, O.; Luedtke, N. W.; Tor, Y. Tetrahedron Lett., 2001, 42, 1445.
138. Tsopmo, A.; Ngnokam, D.; Ngamga, D.; Ayafor, J. F.; Sterner, O. J. Nat. Prod., 1999, 62, 1435.
139. Broadus, K. M.; Kass, S. R. J. Org. Chem., 2000, 65, 6566.
140. Deniau, E.; Enders, D. Tetrahedron, 2001, 57, 2581.

[^0]: ${ }^{\text {a }}$ Available from Sigma-Aldrich Chemical Company. Also, some of such reagents are available from Fluka and Alfa Aesar.

