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Abstract

Building models of high-dimensional d a ta  in a low dimensional space has become 

extremely popular in recent years. Motion tracking, facial animation, stock mar

ket tracking, digital libraries and many other different models have been built and 

tuned to specific application domains. However, when the underlying structure of the 

original data  is unknown, the modelling of such da ta  is still an open question. The 

problem is of interest as capturing and storing large am ounts of high dimensional 

da ta  has become trivial, yet the capability to  process, interpret, and use this data is 

limited.

In this thesis, we introduce novel algorithms for modelling high dimensional data 

with an unknown structure, which allows us to  represent the data  with good accuracy 

and in a compact manner. This work presents a novel fully autom ated dynamic 

hierarchical algorithm, together with a novel autom atic d a ta  partitioning method to 

work alongside existing specific models (talking head, human motion). Our algorithm 

is applicable to hierarchical data visualisation and classification, meaningful pattern  

extraction and recognition, and new da ta  sequence generation. Also during our work 

we investigated problems related to low dimensional da ta  representation: autom atic 

optimal input param eter estimation, and robustness against noise and outliers. We 

show the potential of our modelling with many d a ta  domains: talking head, motion, 

audio, etc. and we believe tha t it has good potential in adapting to other domains.
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Chapter 1 

Introduction

1.1 M otivation

Digital multimedia data  has grown greatly in recent years along with the rapid de

velopment of attendant technologies. The growing complexity and insufficiency of 

existing tools for managing this da ta  expansion have highlighted the need for better 

tools and techniques, identifying and recognising meaningful content among the prin

cipal goals of multimedia analysis. This is however extremely difficult, given th a t it 

depends on many open issues in computer vision.

This thesis is dedicated to the study and development of methods involved in 

hierarchical modelling of high dimensional digital d a ta  in a low dimensional subspace. 

These include low dimensional subspace modelling, hierarchical da ta  representation, 

temporal dynamic framework and sub-parts da ta  decomposition.

In order to construct a dynamic model, we need sufficient training data  to learn 

computational representations for the d a ta  domain. The initial digital da ta  is typi

cally represented by either raw data  vectors in a multidimensional space or, alterna

tively, by some features th a t describe aspects of the data. Either way, the initial data 

required for processing typically is high dimensional. Many techniques have been

1
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developed to a ttem pt to represent the d a ta  in a lower dimensional subspace. Nev

ertheless, problems in the usually high non-linearity of the original da ta  mean th a t 

computing effective low dimensional representations is still a major research area.

A hierarchical approach to data  decomposition allows greater accuracy when rep

resenting non-linear data  from the real world. The hierarchy helps to locate the 

required data point among all the points, as a t each level of the tree one can discard 

large sets of clusters and only explore the more promising clusters. Many papers 

have been published on hierarchical da ta  decomposition [11, 23, 71, 87]. However, 

the current models are not built autom atically and require some param eters to be set 

manually.

A recent paradigm of dynamic da ta  modelling includes Hierarchical Hidden Markov 

Models (HHMMs). HHMMs are well suited to  handle uncertainty and sequential de

cision making with reasonable com putational efficiency [94]. As a result, the applica

tion of HHMMs to dynamic data  representation has gained great popularity which is 

rapidly growing, especially in semantic content identification. Given the high suitabil

ity of HHMM data  modelling, it is extremely desirable to  develop machine learning 

algorithms which can learn such models from train ing data  autom atically and effec

tively.

General models can process high dimensional d a ta  w ith good accuracy, but mod

elling data  with no a priori knowledge with a general algorithm can be insufficient in 

some applications. In such cases one can model the data  using existing model-based 

algorithms. To make this process autom ated, one needs an effective algorithm for 

autom atic data  partitioning.

In this thesis, we address the above problems and present novel techniques for
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accurate modelling of high dimensional da ta  with no a priori knowledge.

1.2 Applications

Because our methods are not using any a priori data  information, they have a broad 

application area.

In this thesis we demonstrate our m ethods’ ability to work with different formats 

of motion capture (mocap) data: angular and 3D coordinates, video frames. Mocap 

systems are extremely popular and widely applicable in film and game making, mili

tary, entertainm ent, sports, and medicine. In particular, applications include activity 

recognition, visual surveillance, anomaly detection and alarms. Using our model one 

can evaluate human motion w ithout special body suits or tracking devices.

In addition to the data  domains tested, the new m ethods presented here are appli

cable to  a much wider scope, including medical da ta  analysis, such as DNA or protein 

structure analysis; stock trading in financial analysis; biometric authentication.

Moreover, our model is flexible and it is possible to  use parts of our system as a 

part of other models.

1.3 Research Overview

The problem which we solve in this thesis is simply stated  as:

Given input data, devise efficient and robust algorithms that can automatically 

decompose the initially high dimensional space into a reduced dimension, hierarchical, 

non-linear subspace.

This problem is extremely hard to solve if we know nothing about the input data. 

We do not use any underlying data  information for the model construction, in contrast



4

to the models based on da ta  w ith a priori knowledge such as talking head or human 

motion models. We have to  assume th a t the training data fully represents the d a ta ’s 

intrinsic topology and convex, and our model is based on these assumptions.

In this thesis we introduce novel m ethods which were created to solve the problem 

stated above. Figure 1.1 shows an overview of the m ajor processes for our methods. 

There are two branches: the main one based on investigating the d a ta ’s intrinsic 

topology using Isomap [118], and the additional one for finding a partial decompo

sition of the da ta  using Nonnegative m atrix factorisation (NMF) [80]. In the main 

part of our model we create the hierarchical algorithm  which is useful for hierarchical 

data  visualisation and classification. Also in the case of several data  sets one can esti

m ate the corresponding data points having new unseen points with this model. Using 

the hierarchical algorithm, we develop a dynamic framework to  create the ability for 

da ta  pattern  extraction and recognition, and new d a ta  sequence generation. In the 

additional part of our algorithm we implement a novel autom atic da ta  partitioning 

m ethod to work alongside existing specific models (talking head, human motion). Ex

perim ental results demonstrate tha t the models produced using the above methods 

represent the original da ta  correctly and accurately.

1.4 Major Contributions

In summary, the m ajor contributions of this work are:

•  A novel algorithm for autom atic param eter setting for the Isomap algorithm;

• A novel method for construction of a hierarchical model using clustering and 

non-linear mapping;
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• A novel method for autom atic construction of a Hierarchical Hidden Markov 

Model structure for discovering semantic da ta  patterns;

•  A novel autom atic m ethod for learning a meaningful sub-part representation 

from real world data  with an unknown a priori structure.

1.5 Thesis Organisation

The structure of this thesis is as follows:

•  In Chapter 2 we give a review of relevant literature relating to dynamic data 

modelling. In particular the review covers work on dimensionality reduction 

problems, data  intrinsic dimensionality estim ation, hierarchical clustering and 

dynamic data  representation.

•  Chapter 3 describes the dimensionality reduction routine: the Isomap algorithm 

together with related problems and ways to  solve them , such as a new data 

sampling into embedded space and Isomap back projection. We present a new 

algorithm for automatically setting the Isomap param eter and show numerous 

experiments on synthetic and real da ta  sets to  evaluate the performance of our 

method.

•  In Chapter 4 we address how a param eterised da ta  set is used to construct a 

hierarchical model in the low-dimensional space, with descriptions of each of 

its major processes, and show examples of the model’s application to different 

data  obtained from various sources (video, audio, images, motion capture). We 

consider the case of having several joint d a ta  sets at the same time and having 

new unseen point estimation of the corresponding data  point with our model.
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•  Chapter 5 outlines developing a dynamic framework with the structure obtained 

using a static hierarchical model. Specifically it describes how to apply the 

hierarchy constructed in the previous chapter, to Hierarchical Hidden Markov 

Model (HHMM) structure definition. We present training and testing processes 

for the constructed hierarchial dynamic model which include representation of 

the HHMM as a Dynamic Bayesian Network (DBN) [94].

•  In Chapter 6 we present the applications of our autom atic model from the 

previous chapter to real world data. We perform data  pattern  classification, 

new data synthesis and reconstruction of the high-dimensional da ta  from the 

model.

•  Chapter 7 relates to  the autom atic partial d a ta  representation method, which 

one can use further to work with algorithms specifically created for certain 

applications. We demonstrate the effectiveness of our algorithm with several 

examples.

•  In C hapter 8 we give a conclusion and present our future work, particularly a 

modified Isomap algorithm to deal with noise and outliers.

1.6 Publications

The research described in this thesis is based on the following publications:

•  O.Samko, P.L.Rosin, D.Marshall “Robust autom atic data  decomposition using 

a modified sparse NMF” . Proc. of Mirage 2007: 225-234.

• O.Samko, D.Marshall, P.L.Rosin “Selection of the optimal param eter value for 

the Isomap algorithm” . P a ttern  Recognition Letters, 27(9):968-976, 2006.



O.Samko, D.Marshall, P.L.Rosin “Autom atic construction of Hierarchical Hid

den Markov Model structure for discovering semantic patterns in motion da ta” . 
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Chapter 2 

Literature R eview

The problem of hierarchical data  modelling closely relates to  research in several areas. 

In Section 2.1 we investigate dimensionality reduction methods, compare them  and 

give application examples. Section 2.2 is related to  Section 2.1 and describes the 

state  of the art in techniques for the estim ation of d a ta ’s intrinsic dimensionality. 

Section 2.3 includes an overview of the clustering techniques, which we applied in 

the hierarchy construction. In Section 2.4 we discuss research efforts in dynamic 

frameworks and Hierarchical Hidden Markov Models, which we use to  represent the 

dynamic variations in our model.

2.1 Reducing Dim ensionality o f the Data Space

2.1.1 R eview  of D im ensionality R eduction  Techniques

There are a number of dimensionality reduction techniques, th a t allow users to analyse 

and visualise complex da ta  sets better in comparison to the original high dimensional 

space. These techniques may be separated into two classes, linear and nonlinear. 

Examples of linear methods are Principal Component Analysis (PCA, [70]) or the

9
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original metric multidimensional scaling (MDS, [121]). Isomap [118], Locally Lin

ear Embedding (LLE) [109], Hessian LLE [39], Laplacian eigenmaps [4], Geodesic 

Nullspace Analysis (GNA) [15], Semidefinite Embedding (SDE) [127] and nonlinear 

PCA [72] are nonlinear examples. Nonlinear algorithms are used to reveal low dimen

sional manifolds tha t are not detected by classical and well known linear methods, 

thus they represent the original data  more accurately. In our work we investigated 

methods from both these classes to choose the optim al one. Here we present a short 

review of dimensionality reduction techniques, their comparison and related problems.

The classical techniques for dimensionality reduction, PCA and MDS, are simple 

to implement and efficiently computable. Geometrically, PCA rotates the data  so 

th a t its prim ary axes lie along the axes of the coordinate space and move it so tha t 

its centre of mass lies on the origin. Classical MDS aims to represent the data  points 

in a lower dimensional space while preserving as much of the pairwise similarities 

between the data  points as possible.

Recently, several new promising distance-preserving methods such as Isomap and 

LLE, have been proposed. The Isomap algorithm  of Tenenbaum et al. [118, 113] 

extends MDS by a sophisticated distance m easurement to  achieve nonlinear embed

ding. They build a graph on the data  th a t is only locally connected, and then measure 

pairwise distances by the length of the shortest p a th  on tha t graph. This length is 

an approximation to  the distance between its end points, as measured within the un

derlying manifold. Finally, MDS is used to  find a set of low-dimensional points with 

similar pairwise distances. Isomap is a global m ethod, i.e. it constructs an embedding 

derived from the geodesic distance between all pairs of points.
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The Isomap algorithm is well understood and produces reasonable mapping re

sults, so it has become very popular. There are theoretical studies supporting the 

use of Isomap, such as its convergence proof [8]. Also, in [38] Donoho and Grimes 

study which kinds of phenomena Isomap can truly recover the underlying structure 

of. Apart from the original Isomap, which is characterised by the free param eter 

K  or e (number of neighbours or neighbour region size), there exist several Isomap 

modifications for different data cases [78, 114].

The Locally Linear Embedding (LLE) algorithm  of Roweis and Saul [109] ([110] in 

more detail) computes a different local quantity. They calculate the best coefficients 

to approximate each point by a weighted linear combination of its neighbours, and 

then try  to find a set of low-dimensional points, which can be linearly approximated 

by its neighbours with the same coefficients th a t were determined from the high

dimensional points. LLE is a local m ethod, because its cost function only considers 

the placement of each point with respect to  its neighbors. As a local method, it tends 

to  characterize the local geometry of manifolds accurately, but breaks down at the 

global level, and therefore is not suitable for the global d a ta  analysis.

Belkin and Niyogi [4] proposed the Laplacian Eigenmaps technique. Again the 

neighbourhood graph is determined, then the graph Laplacian is computed (as an 

approximation to the manifold Laplacian). The embedded coordinates are then found 

as the eigenvectors of the null space of a quadratic form made up of the average of 

the Laplacian operator over the manifold. Similar to  LLE, it is a local method.

Donoho and Grimes [39] proposed Hessian Eigenmaps (hLLE). Here the Lapla

cian is replaced by the Hessian. For this m ethod the assumptions are relaxed from 

isometry of the mapping between the high-dimensional and embedded spaces and
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convexity of the param eter space, to local isometry of the mapping and connected

ness of the param eter space. A drawback of Hessian LLE versus the other methods 

is the Hessian approach requires estim ation of second derivatives, and this is known 

to be numerically noisy or difficult for very high-dimensional data samples.

Weinberger and Saul [127] proposed Semidefinite Embedding (SDE) - a new 

method based on semidefinite programming. After constructing the graph, they com

pute the Gram matrix of the maximum variance embedding tha t is centered on the 

origin and preserves the distances of all edges in the neighborhood graph. At the 

last step they extract a low dimensional embedding from the dominant eigenvectors 

of the Gram matrix learned by semidefinite programming. One m ajor drawback of 

SDE is tha t solving a semidefinite program requires huge com putational resources.

Comparing Isomap, LLE, Hessian LLE and Laplacian eigenmaps algorithms (see 

Figure 2.1), we find th a t each algorithm attem pts to  estim ate and preserve a differ

ent geometric signature of the manifold sampled by the inputs. Isomap estimates 

geodesic distances between inputs; LLE estim ates the coefficients of local linear re

constructions; hLLE and Laplacian eigenmaps estim ate the Hessian and Laplacian 

on the manifold, respectively; SDE estim ates local angles and distances. Of these 

algorithms, only Isomap, hLLE, and SDE attem pt to  learn isometric embeddings; 

they are therefore the easiest to compare.

Overall, the different algorithms for manifold learning in Figure 2.1 should be 

viewed as complementary; each has its own advantages and disadvantages. LLE, 

hLLE, and Laplacian eigenmaps construct sparse matrices, and as a result, they are 

easier to scale to large d a ta  sets. On the other hand, their eigenvalue spectra do not 

reliably reveal the underlying dimensionality of sampled manifolds, as Isomap and
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M ethod M atrix M apping Signature Manifold
Isomap dense isometric geodesic

distances
open, 

geodesically convex
SDE dense isometric local distances open, connected
LLE sparse conformal local angles manifold tha t can be 

conformally mapped
hLLE sparse isometric Hessian open, connected

Laplacian
eigenmaps

sparse proximity
preserving

discrete
Laplacian

open,
convex

Figure 2.1: Comparison of manifold learning algorithm s in terms of the matrices they 
compute, the mappings they learn, the geometric signatures they exploit, and types 
of manifolds for which the method works

SDE do. For the latest survey on manifold leaning techniques see [101].

In this thesis, we use Isomap as a dimensionality reduction technique, because its 

algorithm is based on the assumption th a t the input high-dimensional da ta  lies on 

an intrinsically smooth manifold in a low-dimensional space [8]. This assumption fits 

w ith the interframe correlation in the original d a ta  sequence, th a t help to  maintain 

the dynamic variations of the data. Moreover, Isomap also advantageous in the sense 

th a t it can be computed faster than  other manifold learning methods.

2.1.2 Applications of Nonlinear D im ensionality Reduction  
Techniques

Nonlinear dimensionality techniques, especially Isomap and LLE, are widely used for 

various applications. Lim et al. [84] applied Isomap for visualisation of large data 

sets. Kouropteva et al. [76] used modified LLE combined with a support vector 

machine to classify handw ritten digits. Tsai et al. [122] applied Isomap and LLE 

to pose estimation. After trying these techniques for pose estimation, the authors



14

conclude th a t Isomap has a higher accuracy ra te  than LLE.

In [100], image frames from videos of natural periodic motions were analysed using 

Isomap embedding. They find th a t the relationships between the Isomap embedded 

param eters accurately describe the relationships between the video frames, and th a t 

they can be used for intuitive video segmentation. In [69], a similar approach was 

used.

Isomap has been recently applied to  gesture and motion recognition. Li et al. 

employed Isomap to the CMU gait image database [82] to  classify types of walk (slow, 

fast, etc.). Blackburn and Rebeiro employed Isomap and Dynamic Time Warping 

(DTW) for motion recognition [10]. They used Isomap to  reduce the dimensionality 

of individual frames and then DTW  was employed to m atch embedded manifolds to 

test sequences.

2.1.3 Isomap Algorithm  Problem s and E xisting Solutions

There are a few problems with the original Isomap algorithm. Isomap is quite sensitive 

to  outliers, closed manifold, manifolds w ith holes, varying density manifolds and large 

manifolds. A review of the Isomap algorithm  modifications related to these problems 

is presented here.

Possible Topological Instability

Balasubramanian and Schwartz [3] accused Isomap of being topologically unstable 

by showing an example where e-Isomap succeeded without noise, but failed with 

added noise for constant e. Naturally, Tenenbaum et al. [119] showed th a t with 

added noise different branches of the manifold might get connected and hence a 

smaller neighbourhood size resolves the spurious problem. Thus they pointed out the
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importance of choosing the right Isomap param eter; in this thesis we propose a novel 

method for optimal Isomap param eter selection, see Section 3.5.

Large D ata Sets Problem  and O ut-of-Sam ple Projection

For a large data set of TV points the main bottleneck is the classical MDS stage, 

which reduces the task to an 0 ( T V 3 ) eigenvalue problem on a dense TV x TV matrix. 

Storage of the full distance m atrix is also an issue. Landmark Isomap [115] solves 

both problems, since it only requires an n  x TV, n  <  TV subm atrix of the full distance 

matrix, and the eigenvalue problem is 0 ( n 3 ) . Landm ark Isomap employs landmark 

MDS (LMDS) instead of classical MDS. In LMDS the idea is to choose q points, 

called landmarks, where q > r (where r is the rank of the distance m atrix), but 

q C n ,  and to perform MDS on the landm arks, m apping them  to Rd. The remaining 

points are then mapped to  Rd using only their distances to  the landmark points (so 

in LMDS, the only distances considered are those to  the set of landm ark points). As 

first pointed out in [7] and explained in more detail in [99], LMDS combines MDS 

with the Nystrom algorithm.

The same principle is used to project new points into the existing embedded space: 

the basic idea is to express the embedding coordinates of a point as a weighted sum 

of the coordinates of its nearest neighbors; see Section 3.3 fore more details.

Short-C ircuiting Problem

In the presence of noise or when the data  is sparsely sampled, short-circuit edges pose 

a threat to the Isomap algorithm [3]. Short-circuit edges occur when the folds in the 

manifolds come close, such tha t the distance between the folds of the manifolds is less 

than the distance from the neighbours.
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Locally Linear Isomaps (LL-Isomaps) [112], a hybrid of Isomap and LLE, based 

on the local linear properties of the manifolds, was proposed to increase Isomap’s 

robustness to short-circuiting. This algorithm  has an additional param eter which one 

needs to set manually, and was illustrated w ith artificial data  sets only.

Donoho and Grimes [37] pointed out the possibility of recovering non-convex man

ifolds by applying Isomap to a suitable decomposition of the manifold into overlapping 

geodesically convex pieces. However, a fully autom atic procedure based on a general 

principle would be preferable in solving this problem.

2.1.4 Partial D ata Representation: N M F

Among all dimensionality reduction methods, Non-negative M atrix Factorization 

(NMF) [80] is a promising tool for learning parts  of the objects and images. While 

methods like Isomap seek to represent relationships between the different data  points, 

NMF tries to represent relationships within the d a ta  features and therefore is useful 

in partial data  representation tasks.

NMF factorises the data set into two m atrix  factors whose entries are all non

negative and produces a parts-based representation of the data  because it allows only 

additive, not subtractive, combinations of basis components. For this reason, the non

negativity constraints are compatible w ith the intuitive notion of combining parts to 

form a whole. Because a parts-based representation can naturally deal with partial 

occlusion and some illumination problems, it has received much attention recently. 

NMF or its variations have been used in image classification [16, 50, 51, 53], face 

expression recognition [17], face detection [21], face and object recognition [85, 86, 

105]. Donoho and Stodden describe in [36] the conditions under which NMF finds 

relevant da ta  parts.
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The original NMF algorithm  produces global, not spatially localised, parts from 

the training set. To improve the NMF algorithm, Local NMF (LNMF) [83] was pro

posed for learning spatially localised, parts-based representations of visual patterns. 

It incorporates the following three constraints into the original NMF formulation.

•  LNMF attem pts to minimise the num ber of basis components required to repre

sent the initial data. This implies th a t a basis component should not be further 

decomposed into more components.

•  To minimise redundancy between different bases, LNMF attem pts to make dif

ferent bases as orthogonal as possible.

•  Only bases containing the most im portant information should be retained. 

LNMF attem pts to maximise the to ta l “activity” on each component, i.e. the 

to tal squared projection coefficients summed over all training images.

LNMF has some drawbacks: it does not produce oriented filters from natural 

image da ta  [62]. Further, there is no way to explicitly control the sparseness of the 

representation, should this be needed.

Hoyer in [61] extended the NMF framework to  include an adjustable sparseness 

param eter. Later in [62] he presented an extension of those ideas, sparse Non-negative 

M atrix Factorisation (sNMF). The main improvement was tha t sparseness is adjusted 

explicitly, rather than  implicitly. This allows it to discover parts-based representations 

tha t are qualitatively better than those given by basic NMF. Theis et al. in [120] 

proved tha t the employed projection step proposed by Hoyer in [62] has a unique 

solution, and th a t it indeed finds this solution.

Another NMF extension was presented by Wang and Jiar in [126]. The method,
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Fisher Non-negative M atrix Factorization (FNMF), adds both the non-negative con

straint and the Fisher constraint to  m atrix  factorisation. The authors showed th a t 

FNMF achieves better performance than  NMF and Local NMF. However one cannot 

in any way control the degree to which the representation is sparse.

Guillamet and V itria in [52] introduced the use of the Earth Movers Distance 

(EMD) as a relevant metric th a t takes into account the positive definition of the 

NMF bases. They showed th a t NMF w ith EMD is able to deal with occlusions and 

it gives the best recognition results.

Recently it has been suggested th a t NMF can play a useful role in speech and 

audio processing [111, 116]. An auditory “scene” , composed of overlapping acoustic 

sources, can be viewed as a complex object whose constituent parts are the individual 

sources.

2.2 Data Intrinsic D im ensionality

There is a consensus in the high-dimensional d a ta  analysis community th a t the only 

reason any methods work with very high-dimensional d a ta  is th a t, in fact, the data 

are not truly high-dimensional. Rather, they are embedded in a high-dimensional 

space, but can be efficiently summarised in a space of a much lower dimension, such 

as a nonlinear manifold. Then one can reduce the  dimensionality without losing much 

information for many types of real-life high-dimensional data, such as images, and 

avoid the curse of dimensionality [5]. Learning these data  manifolds can improve per

formance in classification and other applications, but if the data  structure is complex 

and nonlinear, dimensionality reduction can be a hard problem.

The dimensionality of the embedding is a key param eter for manifold projection
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methods: if the dimensionality is too small, im portant data features are collapsed onto 

the same dimension, and if the dimensionality is too large, the projections become 

noisy and, in some cases, unpredictable. There is no consensus, however, on how 

this dimensionality should be determined. LLE and its variants assume the manifold 

dimensionality is provided by the user. Polito and Perona proposed in their paper 

th a t this dimensionality should be known in advance [103]. They believe th a t the 

intrinsic dimensionality can be determ ined by using other dimensionality reduction 

methods. For example, Wang et al. [125] used Isomap to  get the value of the intrinsic 

dimensionality for LLE. Isomap provides error curves th a t can be “eyeballed” to 

estimate the dimensionality. The charting algorithm, a recent LLE variant [14], uses 

a heuristic estimate of dimensionality which is essentially equivalent to the regression 

estim ator of [98].

Also, other intrinsic dimensionality estim ation m ethods have been proposed: es

tim ating packing numbers of the manifold [73], or the k-NN method [29] where the 

dimensionality is estimated from the length of the minimal spanning tree on the 

geodesic NN (nearest neighbour) distances com puted by Isomap.

2.3 Subspace Clustering for High-Dimensional Data

Clustering is one of the most useful methods in the d a ta  mining process for discovering 

groups and identifying interesting distributions and patterns in the underlying data. 

Thus, the main concern in the clustering process is to  reveal the organisation of data 

patterns into sensible groups, which allow us to  discover similarities and differences, 

as well as to derive useful inferences about them. Clustering looks at the properties 

of whole clusters instead of individual objects - a simplification tha t might be useful
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when handling large am ounts of data.

A lot of work has been done in the area of clustering. Jain et al. published a 

survey of clustering techniques [66]. More recent da ta  mining texts include a chapter 

on clustering [47]. One of the more recent and comprehensive studies th a t dealt with 

the subject of subspace clustering was presented by Parsons et al. in [96]. Methods 

for evaluating and assessing the results of clustering algorithms were presented in 

[54, 55].

There are many different clustering algorithms, they can be grouped into two 

classes: hierarchical clustering and flat or non-hierarchical clustering. As a result 

of non-hierarchical clustering d a ta  points are divided into different groups, and the 

relations between groups are undeterm ined. These algorithms often have an iterative 

nature, they start with some initial s tate  and at each step of iteration they improve 

the clusters until convergence [40]. Hierarchical clustering, unlike non-hierarchical, 

provides a data structure th a t represents the relationships between all points in the 

da ta  set. Below we present a short review on both  clustering classes. In our work we 

combine hierarchical and flat methods to keep their best properties.

2.3.1 Flat Clustering Algorithm s

In general, flat clustering methods a ttem pt to minimise a cost function or an opti

mality criterion which associates a cost to each instance-cluster assignment. The goal 

of this kind of algorithm is to solve an optim isation problem to satisfy the optimality 

criterion imposed by the model, which often means minimising the cost function. Flat 

clustering algorithms include:
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1. K-means

K-means clustering is an elem entary but very popular approximate m ethod th a t 

can be used to simplify and accelerate convergence. Its goal is to find K mean 

vectors ( v i , v k ) which will be the K cluster centroids. It is traditional to  set 

number of clusters K manually, and to  let K samples randomly chosen from the 

data  set serve as initial cluster centers.

In general, K-means does not achieve a global minimum over the assignments. 

In fact, since the algorithm uses discrete assignment rather than  a set of con

tinuous parameters, the minimum it reaches cannot even be properly called 

a local minimum. In addition, results can greatly depend on initialisation. 

Non-globular clusters which have a chain-like shape are not detected with this 

method. Despite these limitations, the algorithm  is used fairly frequently as a 

result of its ease of implementation (see [40]).

2. Fuzzy K-means

Fuzzy K-means partitions a set of d a ta  into K clusters so th a t the distances 

within the cluster are minimised [49].

In every iteration of the classical K-means procedure, each data  point is as

sumed to be in exactly one cluster. This condition can be relaxed by assuming 

each sample Xi has some graded or fuzzy membership in a cluster u)k. These 

memberships correspond to the probabilities p(ujk\xi) th a t a given sample Xi 

belongs to class u

The incorporation of probabilities as graded memberships sometimes improves 

the convergence of fuzzy K-means over its classical counterpart [40].
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3. Gaussian M ixture Models and EM algorithm

A Gaussian m ixture model (GMM) is a kind of mixture density model, which 

assumes tha t each component of the probabilistic model is a Gaussian density 

[9]. The number of desired components has to  be specified prior to the clustering 

procedure.

Selection of an appropriate value for the num ber of GMM clusters k is impor

tan t, since it affects both the level of noise in the constructed model (i.e. its 

smoothness), and the model accuracy. Generally, the larger the value of k, the 

more accurate the GMM result. However, a large number of GMM clusters 

also contributes towards noise in the model. We present our method for an 

autom atic selection of this number in Section 4.3.

Learning a Gaussian mixture model is in essence an unsupervised clustering 

task. The Expectation-M aximisation (EM) algorithm  is used [34] to  determine 

the maximum likelihood param eters of a m ixture of k Gaussians in the feature 

space.

2.3.2 Hierarchical Clustering A lgorithm s

The advantage of hierarchical clustering is th a t it provides a structure for the whole 

data  set. Hierarchical clustering builds a hierarchy of clusters which can be repre

sented as a tree. The individual elements of the clustered data set form the leaves, 

while the root of the tree represents the whole d a ta  set.

Despite the fact th a t hierarchical clustering algorithms are computationally ex

pensive, they are usually preferred over the flat algorithms. The bottleneck of the 

efficiency problem lays in the calculation of distances between all the pairs in the
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data  set. The advantage of the hierarchical algorithms is tha t they provide more 

information about the da ta  set as a whole.

Hierarchical clustering algorithm s can be classified into agglomerative and divisive 

approaches [40]. Both methods are based in the measures of the dissimilarities among 

the current cluster set in each iteration. Agglomerative algorithms merge some of 

the clusters, depending on how similar they are, and divisive algorithms split them. 

We focus on the agglomerative algorithms, but all these ideas apply to the divisive 

algorithms as well. The tree (called dendogram if the tree is binary) shows which 

clusters were agglomerated in each step. It can be easily broken at selected links to 

obtain clusters or groups of desired cardinality or radius. This number of clusters or 

groups can also be determined as a function of some merging threshold. The idea is 

th a t with a threshold of zero, the num ber of clusters is equal of the number of data 

points, and with a high threshold the d a ta  is partitioned in just one single cluster. 

Another tree advantage is th a t its structural representation is easy to  generate and 

to  store.

2.3.3 Clustering Problems

In the literature (see [6, 42, 43, 90, 123]), a wide variety of algorithms has been 

proposed for different applications and sizes of da ta  sets, but still there are many 

unsolved problems in the general clustering theory. Most clustering benchmarks deal 

with low dimensional real world or synthetic d a ta  sets, not high dimensional data.

Often in high dimensional data, many dimensions are irrelevant and can mask 

existing clusters in noisy data. Feature selection removes irrelevant and redundant 

dimensions by analysing the entire d a ta  set. Subspace clustering algorithms localise 

the search for relevant dimensions allowing them  to find clusters th a t exist in multiple,
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possibly overlapping subspaces [96].

A frequent problem m any clustering algorithms encounter is the choice of the 

number of clusters [88]. Q uite different kinds of clusters may emerge when its value 

is changed. Most clustering m ethods require the user to specify a value, though some 

provide means to estim ate the num ber of clusters inherent within the data.

Handling strongly overlapping clusters or noise in the data  is often difficult. For 

instance, when clusters are not well separated and compact, the distance between 

clusters as the average distance between pairs of samples does not work well. Large 

data  sets or vectors with many components can be a serious computational burden.

2.3.4 Clustering Evaluation

Clustering is a difficult task, because normally there is no a-priori information about 

the structure of the data  or about the num ber of clusters. Hence, the accuracy of 

clustering entirely depends upon the d a ta  and the way the training algorithm is able 

to  capture the structure in the data.

A fundamental way to evaluate clustering is to  measure how “natural” the result

ing clusters are. Here naturalness implies a fitting m etric between the clusters and 

the d a ta  structure. If the resulting clusters make sense we expect th a t the assignment 

of the data  samples to each cluster will not violate the structure inherent in the data. 

This idea can be captured m athem atically using concepts from information theory. 

Entropy, first introduced by Shannon [30], measures how unexpected the informa

tion contained in a message is. The associated concept of relative entropy between 

probability density functions was defined by Kullback and Leibler [30], We can think 

tha t clustering should divide the d a ta  set into disjoint subsets C\  and C2 where some 

interclass distance is maximised. This is named the splitting method for clustering
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[57], and has been traditionally  formulated as the Euclidean distance

d =  T,jNj\\mj  — nr ||2 (2.3.1)

where rrij are the cluster centres (normally j= l,2 ) , Nj  is the number of samples in 

each cluster and m is the da ta  mean.

In Gokcay and Principe’s work [48], a new evaluation function based on a recently 

developed information theoretic measure defined from Renyi’s entropy was proposed. 

The function was tested on five synthetic d a ta  sets w ith two classes of data  and cluster 

distributions of varying geometric properties. Despite the simplicity of the test data, 

the minimum of the cluster evaluation function provided the correct clustering in all 

cases, which shows promising potential in th is methodology. However, the proposed 

function is already com putationally taxing for large d a ta  sets, and with the addition 

of dynamic adjustm ents of the kernel, it would not be a viable alternative for the 

evaluation of clusters from real images. Hence, for d a ta  sets of non-trivial sizes, a 

more robust and yet efficient method has to  be found.

2.4 Dynam ic Framework: HHM M s

This thesis focuses on use of Hierarchical Hidden Markov models (HHMMs) as a 

dynamic framework for hierarchical modelling of a high dimensional data. However 

there are several other interesting approaches th a t were considered during the devel

opment of this framework which are discussed in this section. By applying knowledge 

from the previous research, the HHMMs attem p t to  address the drawbacks of other 

models and to exploit the d a ta  structure in order to model this structure in a way th a t 

is more robust and offers deeper understanding of the data  for different applications.
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A dynamic framework for a d a ta  analysis may include various models such as 

Markov random fields (M RFs) [74], Bayesian networks (BNs) [97], Hidden Markov 

Models (HMMs) [104], Kalman F ilter Models (KFMs) [67], Stochastic Context Free 

Gram m ars (SCFGs) [65] and other neural network architectures [60]. Generally, dy

namic models represent variables as vertices in a graph structure and probabilistic 

interdependencies between variables as edges.

The use of HMMs in data  modelling has become more and more popular, because 

HMMs have proven to be a powerful probabilistic framework for modelling stochastic 

processes. Starner et al. [117] applied HMMs to hand movement and sign language 

recognition. In their work, hands are segmented and tracked by using skin color fea

ture. A high accuracy is achieved for the  application of American Sign Language 

recognition with a lexicon of forty words. Wilson and Bobick also reported similar 

results on gesture recognition [129]. Applications of HMMs include biosequence anal

ysis [41], speech recognition [28, 68], motion modelling [56, 71]. The main drawback 

of HMMs is th a t they do not take into account the structure of the underlying prob

lem. The elements in the data  sequence may be related by specific relationships and 

these relationships form the da ta  semantic pa ttern . Thus the flat model like HMMs 

can not provide information about the d a ta  intrinsic relationships.

Dynamic Bayesian Networks (DBNs) generalise HMMs by allowing the state  space 

to  be represented in factored form, instead of as a single discrete random  variable 

[94]. The network graph of a DBN represents d a ta  flow over time, where each variable 

within the model is assigned a tim e index as an extra  param eter. This index param eter 

allows the probability distribution to  be modified depending on the current time. 

Murphy in [94] describes different models th a t can be represented as DBNs, and how
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to approximate inference and learn DBN models from data  sequences. For example, 

Murphy considers HHMMs as a special kind of dynamic Bayesian network and derives 

a simpler inference algorithm. The complexity of such a DBN is linear in time, but 

exponential in relation to the depth  of the HHMM.

Although much progress in learning the dynamic models has been made in many 

applications, the dynamic modelling field is still in an early stage. There are few 

dynamic models tha t are able to  work w ith many different applications. They have 

drawbacks such as complexity, free param eters, accuracy, tim e complexity, etc. In this 

work, we construct a fully autom ated general dynamic framework using Hierarchical 

Hidden Markov Models (HHMMs) [44].

HHMMs generalise the standard  HMMs by making each of the hidden states an 

“autonomous” probabilistic model of its own, th a t is, each state  is an HHMM as well. 

An HHMM generates sequences by a recursive activation of one of the sub states of a 

state. This sub state might also be composed of sub states and would thus activate one 

of its sub states, etc. [44]. HHMM hidden sta te  inference and param eter estimation 

can be efficiently learned using the expectation-m axim isation (EM) algorithm.

Prior applications of HHMM falls into three categories:

•  Supervised learning where manually segmented training data  is available, hence 

each sub HMM is learned separately on the segmented sub-sequences, and cross

level transitions are learned on the transition statistics across the subsequences. 

For example, extron/in tron recognition in DNA sequences [63], action recogni

tion [65], and more examples summarised in [93] fall into this category.

• Unsupervised learning, where segmented da ta  is not available for training, and 

the param eters of different levels are jointly learned; existing instances of these
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HHMMs are [130, 131].

•  A mixture of the above, where alignment a t a higher level is given, yet param 

eters still need to be estim ated across several levels. Examples abound: the 

application of building a speech recognition system with word level annotation 

[135], text parsing and handw riting recognition [44].

Our work represents a unique approach for dynamic modelling of a high dimensional 

da ta  without a priori knowledge using HHMM w ith no supervision.

2.5 Summary

In the last decade, there was a large am ount of research in high dimensional data 

modelling. Significant progress has been made in exploring of the underlying low 

dimensional data subspace by applying the dimensionality reduction techniques. Non 

linear dimensionality reduction techniques became very popular for revealing a low 

dimensional data manifold, as they represent real world data  more accurately. As 

we noted in Section 2.1, each of them  has its own advantages and disadvantages. In 

our work we use Isomap to reduce the d a ta  dimensionality because of its property 

of preserving the d a ta ’s geodesic distances. We use this property for further data 

analysis. The quality of the Isomap low dimensional d a ta  projection depends on its 

param eter specifying neighbourhood size. We implemented a fully autom ated method 

to set this param eter, which we present in the next chapter.

Another related area in high dimensional d a ta  modelling is hierarchical clustering: 

the real world data  description usually is not “flat” . Many clustering algorithms for 

different applications have been proposed; however, the problem of effective, robust
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and autom atic hierarchical clustering of a high dimensional data with no a priori 

knowledge remains, in general, unsolved.

Recently, there has been great interest growing in the dynamic data modelling 

field. Although many techniques have been proposed for many applications, the field 

is still in an early stage. In this thesis we introduce a novel approach for dynamic 

modelling of high dimensional d a ta  w ithout a priori knowledge using HHMM with no 

supervision. For the model construction, we incorporate our novel fully autom ated 

hierarchical clustering algorithm described in C hapter 4.



Chapter 3 

Nonlinear D im ensionality  
R eduction U sing Isom ap

3.1 Introduction

Usually, data  from the real world is of a high dimensional nature, and so is very 

difficult to understand and analyse. Dimensionality reduction is an im portant and 

necessary preprocessing of such data. Non-linear dimensionality reduction techniques 

represent low dimensional nonlinear manifolds b e tte r than  the linear ones, as we 

surveyed in the previous Chapter. All nonlinear algorithms share the same basic 

approach, consisting of three steps:

1. Com puting neighbourhoods in the input space;

2. Constructing a square m atrix with as m any rows as elements in the input data 

set;

3. Calculating spectral embedding using the eigenvectors of this matrix.

One usually has to manually specify the number of neighbours used in the first 

step. There are a number of problems associated with the choice of the neighbourhood

30
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param eter. A large num ber of nearest neighbours causes smoothing or elimination of 

small-scale structures in the manifold. In contrast, too small a neighbourhood can 

falsely divide the continuous manifold into disjoint sub-manifolds.

Kouropteva et al. [75] presented an autom atic method used to detect the optimal 

value of the neighbourhood param eter for LLE. We have extended this idea to  choose 

the  optimal number of neighbours K  and the neighbour region e for Iso map.

Among all nonlinear dimensionality reduction techniques, we choose Isomap [118] 

to  represent the data in a low dimensional subspace, as discussed in Section 2.1. As 

a  geodesic method, Isomap reveals the underlying da ta  structure and preserves the 

d a ta  geometry.

We introduce the Isomap algorithm  in Section 3.2, also we present a function to 

embed a new point into the Isomap space in Section 3.3, and in Section 3.4 we give 

an autom ated Isomap inverse projection algorithm.

In Section 3.5 we introduce the new m ethod for choosing the neighbourhood size 

for Isomap and demonstrate how it works, providing examples in Section 3.6. We 

also compare the mapping produced by Isomap with the optimal param eter chosen 

by our algorithm  with mappings produced by PC  A, LLE and Isomap with different 

param eter values for the same data  set. We use the following approaches to compare 

the results:

•  Using various measures, such as residual variance, Spearman p, Pearson’s cor

relation coefficient, see [45, 95]. For example, Navarro and Lee [95] applied 

Isomap and MDS to the graphical depiction of a document set. They employed 

variance and spatial visualisation to  compare these techniques. Friedrich [45] 

compared Isomap, LLE and PCA m ethods on different data  sets, synthetic and
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real, using correlation coefficient and visualisation.

•  Using classification (i.e. comparing how well these methods recognise images 

from the test da ta  set). Since we cannot add new samples into LLE and Isomap 

spaces in a straightforward m anner, we use their extensions to classify images. 

Yang [132] has extended Isomap to  improve classification with a Fisher Linear 

Discriminant (FLD) phase. Ridder et al. [106, 107] presented Supervised LLE 

(SLLE). Kouropteva et al. [76] applied SLLE combined with support vector 

machines (SVM) for classifying handw ritten digits.

The purpose of these comparisons is to  dem onstrate th a t Isomap with the auto

matically selected optimal param eter (K  or e) performs be tter than  PC A and LLE 

with various data sets, see Section 3.6.

3.2 Isomap Algorithm

The Isomap technique is based on the idea of creating a high dimension to  low di

mension transform ation as a graph problem. The Isomap algorithm extends the clas

sical techniques of principal component analysis (PCA) and multidimensional scaling 

(MDS) to  a class of nonlinear manifolds.

On input, the Isomap algorithm requires the distances dx( i , j )  between all pairs 

i , j  from N  data  points in the high-dimensional input space Y , measured using either 

the standard Euclidean metric, or some application-specific metric.

The algorithm outputs coordinate vectors Yi in a (lower) d-dimensional Euclidean 

space Y  tha t best represents the intrinsic geometry of the data.

The complete isometric feature mapping, or Isomap, algorithm has three steps:
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1. The estim ation of the neighbourhood graph.

The first step determ ines which points are neighbours on the manifold M , based 

on the distances dx( i , j )  between pairs of input points 2 , j  in the input space X.  

Given the input points, we determ ine the set of neighbours for each point either 

by K  nearest neighbours ( K - Isomap) or all those within some fixed radius e (e- 

Isomap). These neighbourhood relations are represented as a weighted graph 

G over the data  points, w ith edges of weight dx( i , j )  between neighbouring 

points. Note, th a t in the case of AMsomap, vertices in the graph may have 

degree greater than  K  since the K  nearest neighbourhood relationship need 

not to be symmetric.

2. Computing the shortest pa th  graph given the neighbourhood graph.

In its second step, Isomap estim ates the geodesic distances dM{hj )  between all 

pairs of points on the manifold by com puting the shortest pa th  lengths dG(i , j )  

in the graph G.  First we set dG(i , j )  =  dx {i , j )  if i , j  are linked by an edge, and 

dG(i , j )  =  oo otherwise. Then for each value of k =  1,2, we replace all

entries dG(i , j )  by m in{dG{ i , j ) , dG(i ,k)  +  dG(k, j ) } .  The m atrix of final values 

D g =  {dG( i , j ) }  will contain lengths of the shortest paths between all pairs of 

points in G.

3. Construction of lower dimensional embedding.

The final step applies classical MDS to the m atrix  of graph distances D G =  

{dG(i, j)} , constructing an embedding of the data  in a d-dimensional Euclidean 

space th a t best preserves the manifold’s estim ated intrinsic geometry. The 

coordinate vectors for points in Y  are chosen to minimise the cost function
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E =  \ \ t ( D g ) - t ( D y ) \ \ l 2  (3.2.1)

where Dy  denotes the m atrix  of Euclidean distances {dy(i, j )  =  \\yi — yj\\} and 

P | | L 2 is the m atrix norm A 2ij. The r  operator converts distances to

inner products, which uniquely characterise the geometry of the data  in a form 

tha t supports efficient optim isation [118].

The only free param eter, K  or e, which is the neighbourhood factor, appears in 

the first step. Tenenbaum et al. [119] pointed out th a t the success of Isomap depends 

on being able to choose an appropriate neighbourhood size, th a t is neither so large 

th a t it introduces short-circuit edges into the  neighbourhood graph, nor so small th a t 

the graph becomes too sparse to approxim ate geodesic paths accurately. However, in 

the original Isomap paper [118] the param eter value was chosen manually.

3.3 Kernel Trick: N ew  D ata Sampling into Isomap 
Space

We project the new data  into Isomap space by using the “kernel trick” in the same 

manner as explained in [22]. Having the new d a ta  X new G with the elements 

we can compUte the corresponding Isomap coordinates Y new € M.d from 

the equation

1 N
[ Y r w]i =  - =  5 > ,] 3fc(*r", (3.3. i)

v  A* j=l

where [•]* represents the zth element of a vector, i =  l..d, A* is zth Isomap eigenvalue, 

i>i is zth Isomap eigevector, X  is the original d a ta  with N  points, and k is the kernel 

which is described by
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(3.3.2)

Djj denotes geodesic distance between points X \ lcw and Xj.  We show the example 

of new data projection for the randomly generated swissroll data in Figure 3.1. Here 

the Isomap parameter value is e =  3.4 (selected by our method).

Figure 3.1: A new data projection into Isomap space (1000 points, green) for the 
swissroll data, 1000 points (blue), 4% noise.

The same idea is shared in Landmark Isomap [115]. This method was created to 

handle large data sets and involves landmark points arid an out-of-sample extension 

of Isomap. The algorithm is similar except for the kernel from Equation (3.3.2), see 

[115] for details. In our work we use Landmark Isomap for large data and set the 

Landmark Isomap parameter using our method from Section 3.5.
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3.4 Isomap Inverse Projection

In Section 3.2 we built a m apping /  : X  —> Y  from the original high dimensional data  

X  C R d to its low dimensional representation Y  C l d, d <  D, Here we construct its 

back projection, / -1 : Y  —> X.  As Isomap is a non-linear method and /  is implicit 

function, we can not construct a straightforw ard inverse mapping, therefore we use a 

Generalised Radial Basis Functions (GRBFs) interpolation network [?].

At the first step of the GRBFs construction, we set the distances between Isomap 

manifold points. Reflecting the intrinsic geometry of the underlying data  manifold, 

GRBFs networks with the geodesic distance m etric have advantages over GRBFs net

works with the usual Euclidean distance. Thus a t the first step of GRBFs construction 

we apply the first two steps of the original Isomap algorithm.

The GRBF interpolation models functions w ith a linear equation of the form

D

f(y) = E  u khk(Y)  (3.4.1)
k=i

The linearity is with respect to the weights {cJfc}jP=1, not the input variable Y.  The 

basis functions {hk}^=l are the transfer functions of the hidden units in the network.

A radial basis function network is a representation of Equation (3.4.1) as a net

work with the input, the hidden layer and the outpu t nodes. Each hidden node is 

represented by a single GRBF, with an associated center position and weight. Each 

output node is defined by a weighted sum m ation of the hidden nodes, using the ujk 

as weights. We use Gaussian functions [124] for the network construction, but with 

the geodesic distance metric.

Let Ci G i — l..m  be a set of m  cluster centers in the embedding space 

obtained by using a K-Means clustering algorithm. These centers represent embedded
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manifold structure. We experim entally choose m  such tha t m =  |AT to get an accurate 

data  representation. W ith  this num ber our clusters are just large enough to  hold all 

significant data variations, and small enough to reach efficient computation times. 

Selecting less cluster centers resulted in a significant loss of data variations. Let

Vi £ Rd be a set corresponding to  the c{ radii. We set r* to be equal to  the maximal

geodesic distance within the cluster.

Given a network consisting of m  GRBFs with centres c* and radii r* and a train

ing set with N  patterns {(x;-, yj)}^=l the optim al network weights can be found by 

minimising the sum of squared errors

N

E  =  £ ( / ( % )  -  X j f  (3.4.2)
3 = 1

This leads to a set of N  linear equations in N c unknown weights and can be solved 

with the so-called normal equation

W  =  (.HTH) ~l H TX

where H  is the design matrix, its elements are Hji =  hi(yj) and X  

N  dimensional vector of training set output values.

The resulting projection can be w ritten  as

A =  H * W  (3.4.4)

The outline of our algorithm is shown in Table 3.1.

After training the GRBFs network, we can use the learned projection to  calcu

late the mapping of the new points from the Isomap space into the original high

dimensional space.

(3.4.3) 

[x i ...x n \ is the
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1. Calculate geodesic distances and shortest paths on Y using the first two steps 
of the Isomap algorithm.

2. Set GRBFs param eters m,  c, r.

3. Calculate GRBFs H.

4. Using Equation 3.4.3, calculate W.

5. Calculate the resulting G RBF projection from Equation 3.4.4._______________

Table 3.1: GRBFs construction algorithm

3.5 Optimal Neighbourhood Parameter Value for 
the Isomap A lgorithm

How does one correctly choose the optim al param eter value for the Isomap algorithm? 

In fact, neighbourhood selection can be quite critical. If the neighbourhood is too 

large, the local neighbourhoods will include the d a ta  points from other branches of the 

manifold, shortcutting them, and leading to  substantial errors in the final embedding. 

If it is too small, it will lead to discontinuities, causing the manifold to fragment into 

a large number of disconnected clusters.

Here, we present a method for determ ining the optim al neighbourhood size, in

spired by the approach of Kouropteva et al. [75] for LLE param eter selection. By 

“optim al” here we mean th a t with this param eter Isomap will solve the dimensionality 

reduction problem most accurately (finding meaningful low-dimensional structures of 

data hidden in their high-dimensional observations).

The scale-invariant K  param eter is typically easier to set than the neighbourhood 

radius e, but Tenenbaum et. al. [118] noted th a t when the local dimensionality 

varies across the da ta  set, the approach which uses K  nearest neighbours, may yield
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misleading results.

We note th a t most of the algorithm s for the autom atic selection of optimal values

of K  and e are similar, excluding the first step. We describe our algorithm relative to 

K , making notes about e if necessary. A utom atic selection of the optimal param eter 

value algorithm consists of four steps, which are detailed in Table 3.2.

1. Choose the interval of possible values of K , K opt € [Kmin, K max\.

•  Kmin is the minimal value of K , w ith which the neighbourhood graph 
(from the second step of Isomap) is connected.

•  Maximal values:
- choose K max according to  the equation

neighbourhood graph.
- choose eTnax as ma x ( d x ( i , j )), where dx (i , j )  is the Isomap input matrix.

2. Calculate the cost function E ( K ) (see Equation (4.3.1)) for each K  €

3. Compute all minima of E ( K)  and corresponding K  which compose the set Sk  
of initial candidates for the optim al value.

4. For each K  £ Sk  we run Isomap and determ ine K opt using the formulae

where D x and D y are the matrices of Euclidean distances between pairs of points 
in input an output spaces, respectively, and p is the standard linear correlation 
coefficient, taken over all entries of D x and D y._____________________________

(3.5.1)

where P  is the number of edges and N  is the number of nodes in the

\Ernin >E max]

Kopt =  a r g m in(l -  p2DxDy) (3.5.2)

Table 3.2: Algorithm for autom atic selection of the optimal param eter value 

During the first step, we choose the interval containing the possible optimal values
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of K  or e. The minimal values of K  and e are chosen using the same approach. We 

take the minimum possible K  or e such th a t the corresponding graph (produced by 

the second step of Isomap) is connected (with small param eter values this graph is 

disconnected).

The procedures we use to  choose the upper bound are different for K  and e. We 

take the upper bound for e to  be the diam eter of our input da ta  set (we define this 

diameter as the maximum distance between any two points in the input space). In the 

case of AT, after completing numerous experim ents and analysing the resulting data, 

we noticed tha t in all the considered cases, if the average node degree of the graph 

(computed with some value of K )  is greater than  K  +  2, one usually gets shortcuts 

which do not follow the surface of the manifold. Therefore we choose the upper bound 

of the optimal value of K  to be the m aximum value of K  for which (3.5.1) holds. 

Equation 3.5.1 was obtained heuristically, taking into account Euler’s formula for a 

connected planar graph [35], to  avoid ex tra  connectivity and to  reduce computational 

time. Our experiments demonstrate th a t this K max choice leads to  good results.

At the second step we calculate the values for the cost function E  (see (4.3.1)) 

for param eters from the chosen interval. E  is a function of the dimension of the 

embedding space, and we assume th a t the embedding dimension is known a priori. 

This dimension can be estim ated using one of the numerous methods for intrinsic 

dimension estimation [19, 29, 73]. Note th a t in practice in all our experiments the 

best low dimensional embedding always has the same dimension as the embedding 

with K rnin.

Equation (3.5.2) was used in [75] to  measure how well the high dimensional struc

ture is represented in the embedded space. Tenenbaum used the residual variance in



41

the original Isomap paper to  determ ine the dimension of the embedding space ( “el

bow” technique). The idea of the minima search in this equation is very similar to 

the Tenenbaum’s idea about the “elbow” .

3.6 Experimental R esults

In this section we present the results of experiments with seven different da ta  sets. 

Here we evaluate how the proposed algorithm  from the previous Section processes 

different da ta  types, artificial and real. The first considered data  set in Section 3.6.1 

consists of artificial images of a face rendered w ith different poses and lighting di

rections which can be described by a lim ited num ber of features. Sections 3.6.2 and 

3.6.3 utilise two synthetic two-dimensional manifolds -  Swissroll and S-curve, lying 

in a three-dimensional space. In these d a ta  sets the underlying structure is known 

and thus the quality of the embeddings, obtained by Isomap with different param 

eters and by PCA and LLE, can be measured by Pearson’s correlation coefficient 

and Spearm an’s p of their resulting lower-dimensional coordinates w ith the actual 

coordinates. The next Section further dem onstrates our algorithm ’s ability to work 

with real world da ta  set, which is the ear data. Section 3.6.5 utilises the Olivetti 

face database in which different faces vary slightly in pose as well as scale. The last 

Section 3.6.6 uses a set of handw ritten digits from the MNIST database. The Olivetti 

and MNIST databases were used for the classification experiments.

3.6.1 Sculpture Face D ata  Set

First, we tried to select the param eter for the sculpture face data set automatically. 

This data set was used by Tenenbaum et. al in the original Isomap paper [118]. The
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Figure 3.2: Cost function for sculpture d a ta  set

sculpture face data  set consists of 698 gray-scale images, 64 x 64 pixels each. We 

represent each image by a raster scan vector and form the Isomap input space X.

Following the first step of our algorithm, we choose the interval for K opt, which 

according to our algorithm is [4, 11]. Then we reduce the number of possible optimal 

param eter values. In Figure 3.2, one can see the plot of the cost function E( K) .  The 

optimal value of K  determined by our m ethod for th is d a ta  is 7.

Tenenbaum et. al in [118] used K  =  6. Indeed, the cost function values for K  =  6 

and K  =  7 are sufficiently close, as are the residual variance values a t these points. 

On the other hand, if we calculate the Spearm an p between the input and output 

data  with K  =  6 and K  =  7, then we get Pk=6 — 0.557 and Pk= 7  =  0.5645. This 

means tha t the m agnitude of the correlation between the input and output da ta  is 

greater with K  =  7.

Having applied Isomap to  the sculpture face set, we obtained a three-dimensional 

embedding of initial data. Each dimension of embedding represents one degree of 

freedom of the underlying original data: left-right pose, up-down pose, and lighting
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Figure 3.3: Two-dimensional Isomap embedding of sculpture data set with optimal 
parameter K  = 7
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Figure 3.4: Two-dimensional Isomap representation of sculpture data set with optimal 
parameter K  = 7
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Figure 3.5: Two-dimensional Isomap representation of sculpture data set with sub- 
optimal parameter K  = 15

direction. Figure 3.3 demonstrates the two-dimensional projection of the sculpture 

data set embedding, obtained by running Isomap with the optimal parameter value 

of K  =  7. To illustrate this embedding, we draw the original sculpture face images 

instead the points (with the space scaling to get more compact representation), as 

shown in Figure 3.4. Same as Tenenbaum in the original Isomap paper, we got 

the left-right pose changes on the horizontal axis, and up-down pose changes on the 

vertical axis. The third dimension, which is lighting direction, is less significant than 

the first two.

We include two more pictures of the Isomap embedding with suboptimal param

eters for this data set in Figure 3.5 and Figure 3.6 to illustrate the problem of the 

parameter optimality. Clearly, it is difficult to understand main features of the data 

hidden in these mappings.
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Figure 3.6: Two-dimensional Isomap representation of sculpture data set with sub- 
optimal parameter e =  1.2

3 .6 .2  S w issro ll

Next, we proceed applying different methods to the Swissroll data set, which is a 

synthetic example of a non-linear manifold. The Swissroll was used by Tenenbaum 

et. al in the original Isomap paper [118] to illustrate how the method works. Figure 

3.7 shows its shape as well as 2000 points sampled from the manifold.

We applied our algorithm to numerous Swissroll data sets, each containing from 

200 to 2500 randomly chosen points. For each set we ran 50 to 100 experiments with 

different values of Isomap param eter e. The cost function plot here is similar to those 

for Swissroll data sets with different numbers of points (see Figure 3.8), with minima 

in the same point e =  6.2. This e value was chosen as optimal for all the Swissroll 

data sets. With the next neighbour region size, e =  6.3, the neighbourhood graph 

becomes over connected, which leads to rapid growth of the cost function.
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To dem onstrate the optim ality of the chosen value of e we calculate the following 

measures: residual variance, correlation coefficients and Spearman’s p with angle and 

height. First, we calculate these measures for Isomap with different param eter values, 

e =  4? 5? 6.2. For each param eter value we use Swissroll da ta  sets which contain from 

200 to 2500 points. Our experim ents confirm th a t with small data  sets (less than 700 

points) the difference of measure values for different e is quite large, whereas with large 

data  sets this difference is small, see Figure 3.9. At the same time, the cost function 

in the interval e G [4,6.2] tends to  be sm oother as the number of points increases (see 

Figure 3.8). So, we can make the conclusion: when we have a small number of points 

(less than 700), we will only get the best result with e =  6.2. But when the number 

of points increases, we can select e from 4 to  6.2 w ithout any significant loss in the 

quality of result. For example, Figure 3.10 shows the Isomap embeddings for e =  4, 

e =  5 ,e  =  6 .2 -  they look quite similar and good in contrast to  the mapping obtained 

with e =  6.3 (Figure 3.11).

Next, we compare Isomap (with selected optim al param eter) with other tech

niques: PC A and LLE. Analogously, we measure residual variance, correlation co

efficients and Spearm an’s p w ith angle and height. Our results show th a t Isomap 

performs much better than PCA and LLE, see Figure 3.12. Note, th a t because of its 

local nature, LLE can outperform Isomap for small d a ta  sets in some measurements 

(see correlation with height plot, top right of Figure 3.12).

Finally, proceeding with our experiments we added Gaussian noise to the Swissroll. 

Again, we consider Swissroll d a ta  sets consisting from 200 to 2500 randomly chosen 

points, and run Isomap 50 to 100 times. However, finding the optimal param eter for 

data with noise is a difficult task  -  a t a given noise level our experiments failed to
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Figure 3.9: Residual variance, correlation coefficients and Spearman’s p with height 
and angle (left to right) for the Swissroll data. At each plot these values are shown 
for 6 =  4,5, 6.2
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Figure 3.10: Two-dimensional Isomap representation of Swissroll. Left to right: e =  4, 
6 =  5, 6 =  6.2 (the optimal), 1000 points

Figure 3.11: Two-dimensional Isomap representation of Swissroll with e =  6.3, 1000 
points
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Figure 3.13: Cost functions for Swissroll with 4% and 5% noise levels, 2000 points

find a general optimal param eter value when the noise ratio was more than  5%. The 

problem is in the choice of the interval of the possible values -  the lower bound of 

the interval is already too big ( “short-circuit” problem). So, for each Swissroll set 

with the same number of points one needs to  find its own optimal param eter value. 

Figure 3.13 shows the cost function for Swissroll w ith 4% noise added. Here we did 70 

experiments with Swissroll data  sets containing 2000 points. The optimal param eter 

values selected by our method are e =  3.3 for 4% noise, and e =  2.7 for 5% noise. 

If we compare the last graph from Figure 3.8 and Figure 3.13 we can see th a t the 

optimal param eter value decreases as the noise increases.

3.6.3 S-Curve

The S-Curve is a synthetic example, an S-shaped two-dimensional manifold lying in 

a three-dimensional space, see Figure 3.14. Analogously to the Swissroll example, we 

run our algorithm 50 to 100 times w ith different S-Curve data  sets, containing from 

50 to 2500 randomly chosen points.
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Figure 3.14: S-Curve data set

S-Curve cost function plots are all similar (see Figure 3.15) for the data sets with 

different number of points, but the location of the minima decreases as the number 

of points increases. As seen in Figure 3.15, ernin = 1 when number of points is equal 

to 200, 6min = 0.8 with 1000 points, and emin = 0.4 with 2000 points.

To compare Isomap with other techniques (PCA and LLE) we used the same 

measures as in the case of Swissroll (see Figure 3.16). It turned out that the optimal 

parameter value for Isomap depends on the number of points sampled from the S- 

Curve. Again, on average, Isomap results are better than both PCA and LLE results.

Figure 3.17 shows the Isomap mapping of the S-Curve, obtained with the opti

mal parameter. Here the horizontal axis corresponds to angle, and the vertical axis 

corresponds to height.



53

’i s 3

Figure 3.15: S-Curve cost function a t 200, 1000 and 2000 points

Figure 3.16: Residual variance, correlation coefficients with angle and height (left to 
right) with PCA, LLE (K  =  18) and Isomap for the S-Curve data

ap
t



Figure 3.17: Two-dimensional Isomap representation of S-Curve with e =  0.8, 1000 
points

3 .6 .4  E a r  D a ta b a s e

The database was created by David Hurley (Southampton University) and consists 

of 70 grey-scaled ear images of size 201 x 281, cropped from 5 samples for each of 

14 subjects, see [64] for more details. First, we transform each image into a column 

vector (N = 56481). Then we concatenate all vectors to form the input matrix of size 

70 x 56481. Figure 3.18 shows the cost function E (K )  plot with the chosen interval 

K  € [6,10]. There are two minima of this function: with K  = 7 and K  = 10, and we 

choose the K  value with minimal residual variance, which is 7.

Figure 3.19 shows the 2-dimensional projection of discovered Isomap embedding, 

with neighbourhood value K  =  7, where the axes represent the ear shape. The shape 

of an ear tends to be dominated by the helix, and also by the shape of the lobe 

[18]. Therefore these are the most important features for ear biometrics. With our
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Figure 3.18: Cost function for Ear Database

embedding, we got variations from small to  large helix a t the horizontal axis, and the 

ear angular position (from strictly  vertical a t the top of the figure, to  diagonal at the 

bottom ). The result shows the potential of using Isomap instead of the widespread 

use of PCA in ear biometrics.

3.6.5 Classification Experim ents: O livetti Face D atabase

The Olivetti face database is a widely used set of images, consisting of 400 images of 40 

subjects, which can be found at h ttp ://w w w .uk.research.att.com / facedatabase.html. 

For some of the subjects, the images were taken a t different times. There are varia

tions in facial expression (open/closed eyes, smiling/non-smiling), and facial details 

(glasses/no glasses). All the images were taken against a dark homogeneous back

ground with the subjects in an up-right, frontal position, with tolerance for some 

sideways movements. The images are greyscale w ith a resolution of 92 x 112.

We divide this set into two subsets, a training set (200 images) and a test set (200 

images). The basic Isomap m ethod is not optim al from the classification viewpoint, so

http://www.uk.research.att.com/
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we will use its extended version, Discriminant Isometric Mapping [132, 134]. Applying 

our algorithm to find optim al param eter for Discriminant Isometric Mapping, we 

obtain the interval of param eter K  values: [6,7], and choose Kopt =  6. Figure 3.20 

shows a two-dimensional representation of the Olivetti data  set with the optimal 

param eter value. It can be seen th a t the illumination varies along the horizontal axis, 

and people’s facial features change (from m an w ith beard and without hair in the top 

to girl with long hair w ithout beard in the bottom ) on the vertical axis.

The experimental results of classification are shown in Figure 3.21. Among all the 

methods, Discriminant Isometric M apping w ith the optimal param eter value achieves 

the lowest error rate. Similar results were obtained by Yang in the original Extended 

Isomap paper [133].

Overall, the extended Isomap w ith the optim al param eter outperformed PCA and 

LLE. It provided more accurate classification, and also resulted in better embeddings.

3.6.6 Classification Experim ents: H andw ritten D igits, M NIST  
D ata

The MNIST database of handw ritten  digits was used for this classification experiment 

(h ttp ://yann .lecun .com /exdb/m nist/index .h tm l). It consists of ten different classes 

of images from ‘O’ to  ‘9’, 28 x 28 pixels each. In our experiments we used a MNIST 

database subset, which contains 5000 images, where the training set contains 2000 

images and the test set contains 3000 images. The optimal neighbourhood region 

value for the extended Isomap, which was obtained using our algorithm, is e =  9.6. 

The embedded space formed by the two main dimensions is presented in Figure 3.22. 

Here the horizontal axis represents the digit shape, and the vertical axis - bottom

http://yann.lecun.com/exdb/mnist/index.html
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Figure 3.20: Two-dimensional Discriminant Isometric Mapping mapping (K  = 6) of 
Olivetti data set
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M ethod Error rate (%)
PCA 2.4
best LLE, K  =  14 2
best Ext. Isomap, K  =  6 1.6
Ext. Isomap, K  =  7 2

Figure 3.21: Classification results w ith the Olivetti database

loop.

The results of classification experim ents are shown in Figure 3.23. It is easily seen 

tha t the extended Isomap w ith the optim al param eter outperformed PCA and LLE 

on this set. Note, th a t w ith th is d a ta  set Isomap was less sensitive to the chosen e 

param eter, when comparing th is experim ent w ith using other da ta  sets.

3.7 Summary

Here we presented the dimensionality reduction process using Isomap and considered 

related problems. The main contribution of this C hapter is a novel m ethod for auto

matic selection of the optim al neighbourhood param eter value for Isomap. Our idea 

is based on minimising the Isomap cost function estim ation in a chosen param eter 

interval. We tested the algorithm  on various d a ta  sets. Results obtained from our 

experiments suggest a num ber of conclusions:

• Our method can be used for a  wide class of input data, both  real and synthetic.

•  When a data  set is too sparse (for example swissroll built on 50 points), it is 

difficult to choose the optim al param eter. W ith K  =  K min (e =  emin), i.e. 

when the neighbourhood graph becomes connected, the graph already contains 

shortcuts and we obtain Kjnax — A*min max — In this case it will
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Figure 3.22: Two-dimensional Discriminant Isometric M apping mapping (e =  9.6) of 
MNIST data  subset

M ethod Error rate (%)
PCA 3
best LLE, K  =  18 2.7
best Ext. Isomap, e =  9.6 1.65
Ext. Isomap, e =  10 1.7

Figure 3.23: Classification results w ith the MNIST database
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be better to choose another dimensionality reduction technique, for example 

Hessian LLE.

•  Isomap performs b e tte r than  PCA and LLE for non-linear data  sets.

•  The optimal param eter for modified Isomap version, Discriminant Isometric 

Mapping, can be chosen using our method, in the same manner as for Isomap.

In future work we hope to  extend our m ethod to  choose the optimal param eter 

values for other param etric m ethods for dimensionality reduction of non-linear data, 

like Hessian LLE.



Chapter 4 

Hierarchical M odelling of High  
Dim ensional D ata

4.1 Introduction

In the previous C hapter we constructed the low dimensional representation of high di

mensional data in the Isomap space. For further da ta  analysis, we need a manageable 

meaningful structure to  see relationships between the d a ta  elements.

A hierarchical approach to  d a ta  structuring  allows greater accuracy when repre

senting non-linear d a ta  from the real world. Hierarchical clustering builds a hierarchy 

of clusters which can be represented as a tree. The individual elements of the clus

tered data set form the leaves, whilst the root of the tree represents the whole data 

set. One of the hierarchy types is a binary tree, where the tree is represented by a 

dendrogram. A dendrogram  provides a view of the da ta  a t different levels of abstrac

tion. The consistency of the dendrogram  at different levels allows flat partitions of 

different granularity to be extracted during the d a ta  analysis, making them  ideal for 

interactive exploration and visualisation.

Many papers have been published on hierarchical clustering of data [11, 23, 71, 87].

62
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In the above research the logical hierarchical decomposition of subspaces was known 

a priori and thus construction of the  hierarchical models was relatively simple. In 

addition, many existing hierarchical clustering algorithms require some input param 

eters. Incorrect estim ation of these param eters leads to poor clustering accuracy, a 

similar problem to the  Isomap param eter estim ation from Chapter 3. Furthermore, 

many clustering algorithm s cannot handle different da ta  types a t the same time.

The weakness of the existing clustering m ethods forms the goal of this Chapter: 

to provide an efficient, computationally inexpensive hierarchical clustering algorithm 

for high dimensional data with no a priori knowledge of underlying structure of the 

data.

The proposed algorithm  can be used in several ways, for d a ta  partitioning (as a 

tree-based classifier) or for d a ta  visualisation purposes. Also, having two d a ta  sets 

as a joint input, we can estim ate the corresponding da ta  element given a new unseen 

element using our model. For instance, if we have already built a hierarchial model 

for talking head data  and we are given new audio da ta  which was not used in the 

construction of this model, we can synthesise new video data, corresponding to  the 

new input audio.

This algorithm is also fully automated, easy to implement and does not require 

additional parameters. It can be applied to any number of data sets and any kind of 

data features (video, audio, motion, physical features, etc.). In the case when we have 

several data  sets it is im portant to scale the d a ta  spaces. Otherwise we can end up 

with a model where only the dom inating d a ta  features are represented.

We consider the construction of our hierarchical model in Sections 4.2, 4.3, 4.4, 

4.5. We explain finding the joint d a ta  w ith our model in Section 4.6 and dem onstrate



64

the effectiveness of our algorithm  applying it to  the different data types: talking head, 

articulated human motion, MIDI and handw ritten digits data sets in Section 4.7. The 

conclusion is given in Section 4.8.

4.2 Hierarchical C lustering Algorithm Overview

The main drawback of hierarchical clustering is th a t it is a computationally expensive 

procedure. Therefore we apply Isomap to  the da ta  first, it improves the com puta

tional efficiency and is semantically relevant a t the same time, since the new reduced 

dimensions represent the most highly discrim inating features of the original data. 

Then we construct a Gaussian M ixture Model (GMM) [9] in this low dimensional 

space to group the data. Finally we build the hierarchy using means of the GMM 

clusters. These means represent the main features in the initial data. Thus a t the 

final step of the algorithm  we have a lim ited set of variables which represent the 

model.

Suppose we have two sets of d a ta  features, denote them  as c and m. The outline 

of our algorithm is shown in Table 4.1.

First of all, we apply the Isomap algorithm  to  the data  features, as explained in 

Chapter 3. The success of Isomap in d a ta  representation and model accuracy depends 

on being able to  choose an appropriate neighborhood size. We use the m ethod for 

autom atic selection of this param eter described in the previous Chapter. As a result of 

applying dimensionality reduction, we have the new param eter a , which corresponds 

to the initial da ta  features embedded into the low dimensional space. This param eter 

contains the knowledge of the whole da ta  set and controls the data  variations.

In the following Sections we consider hierarchy construction in more detail.
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Input: Two joint d a ta  features c =  { q } ^ 1 and m =  { } =̂1 
Output: Hierarchical d a ta  model, dendrogram

1. Find lsomap param eters using algorithm  3.2.

2. Apply Isomap to  c € MDc and m € RDm:

get Ic e  Rdc, Im €  Mdm, where dc D c and dm <§; Dm.

3. Combine Ic and Irn param eters as 

a =  [Ic Im] =  {a»}£Li-

4. Find the optimal num ber of clusters k for a , using the Characteristic Cost Graph 
approach.

5. Separate a into k clusters, using GMM and EM algorithm: a'l5 ...,a'k.

6. Calculate the mean for each cluster, a [ , ..., a'k.

7. Apply agglomerative hierarchical algorithm , use the clusters means a'1? ...,a'k as 
initial nodes.

8. Plot dendrogram.______________________________________________

Table 4.1: Hierarchical modelling algorithm

4.3 Selecting an Appropriate Num ber o f Clusters

Finding the correct num ber of clusters is a difficult general problem even when select

ing manually. If the d a ta  is labelled, then  common information between cluster and 

class labels can be used to  determ ine the num ber of clusters. However, more often, 

little is known about the nature of the d a ta  and a m ethod of estimating the number 

of clusters is required.

Bowden in [12] proposed a simple but effective m ethod for estim ating the number 

of clusters k for unlabelled data. According to  this method, we estim ate the cost



66

function
1 N 1 N 

D — — ^   ̂dmin(di) = — m in Zi<=z(d(ai, Zj ) )  , (4.3.1)
i =1 i=l

where 2  =  {2i}f=1 is a set of cluster centers, and d(ai,Zj) is the squared Euclidean 

distance between the param eter a* and the cluster center Zj.

We use this cost function to produce the Characteristic Cost Graph shown in 

Figure 4.1. Bowden defines the optimal number of clusters by locating a point where 

increasing the number of clusters does not lead to a significant decrease in the re

sulting cost. We perform a more accurate and reliable estimation of that point using 

the procedure for determining thresholds, described in [108]. The threshold point is 

selected as the number of clusters k' tha t maximises the perpendicular distance be

tween the line and the point (A;, D(k)),  where D(k) is the cost function for k clusters, 

see Figure 4.1.

Figure 4.1: Characteristic Cost Graph with the selected threshold

4.4  D ata  M o d ellin g  as a G aussian  M ixture M odel

Gaussian Mixture Modelling is a flexible and powerful method for unsupervised data 

grouping [89]. In addition to grouping, it gives us parameters which we will use
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further to initialise our dynamic model in the next Chapter.

A /^-component GMM may be defined in terms of the distribution of the initial 

parameters in the low dimensional space as

where p(a) is the probability th a t a point in the low dimensional space is generated 

by the model, a* is the prior probability and constitutes the mixture coefficients, and 

N ( p 7, Si) describes each Gaussian distribution with mean p7 and covariance matrix Si. 

GMM parameters //* and are estimated from the low dimensional embedded 

space a through traditional Expectation Maximisation (EM) approaches [9]. An 

example of a GMM in the embedded Isomap space for the talking head data is shown 

in Figure 4.2, also see Section 4.7.1.

k
(4.4.1)
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Figure 4.2: GMM in the reduced dimensionality eigenspace (three highest modes of 
variation) modelling talking head data
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4.5 H ierarch ical A gg lom erative  C lustering

To construct a hierarchy over the obtained clusters, we employ the standard agglomer

ative clustering algorithm [40] because it is a simple, effective, fast and non-parametric 

method. We use the means of the k clusters a[ , ..., a'k as input data for the agglomer

ative algorithm. This approach attem pts to place the input elements in a hierarchy 

in which the distance within the tree reflects similarity between the elements. The 

result of the hierarchical clustering is represented as a dendrogram tree, see Figure 

4.3 for the example of the talking head data  dendrogram.

Dendrogram
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8  ----------
1  400 - _______ _______
a

300 - -------- --------

200 ' I—,
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0 .»-------------- bL [L 11-------------- 11--------------^  j |-------------- (I--------------r i--------------n --------------« i >
Data index ’’

Figure 4.3: Dendrogram for the talking head data

4.6 A p p lication : Jo in t D a ta  E stim ation

Here we give an example of our algorithm ’s application: given a new unseen data 

element from one set of the joint data  sets m new, we estimate a corresponding data 

element from the second set cncw. The algorithm is presented in Table 4.2.
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Input: New element m new;
Isomap projections of the train ing d a ta  a — [Ic 7m], labelled with the cluster numbers; 
the dendrogram constructed using algorithm  4.1 with node values equal to  the  cluster 
means I'm.
Output: Estim ated cnew.

1. Project m new into Irn using kernel function, get Irn.

2. S tart from the dendrogram  root, find the closest to Irn bottom  node value {I'rn}i.

3. Among the param eters Im labelled w ith /, find the closest to  Irn param eter, 7^.

4. Choose Ic equal to  /" , where I" corresponds to  the 7^ param eter.

5. Set cnMl, to be a back projection of Ir.______________________________________

Table 4.2: A lgorithm  for join t d a ta  estim ation

We project the new d a ta  into the embedding space and using the dendrogram 

constructed over the cluster means, we find the closest dendrogram node value. We 

then search for the closest d a ta  element w ithin the chosen cluster (step 3 in Table 

4.2), which is significantly faster th an  a straightforw ard search. Note th a t we use 

part of the cluster means vector I'rn w ithout / '  which increases the speed. We employ 

param eters related to  c in the last two steps only.

Although we can get an estim ation of new elements using this general algorithm, 

there are several issues regarding the quality of the final result. Let us consider the 

talking head example w ith two d a ta  features: speech and images. In the case of a 

single speech element we get a  single image as an output, which is the corresponding 

image of the closest speech element from the training set. But for the same speech 

element there may exist several images w ith opened or closed mouth, blinking, etc. 

Blinking, a most evident change in the upper pa rt of the face, is a recurrent phe

nomenon and does not depend on the speech. There are a number of research papers
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dedicated to  this problem, see [24, 28]. The problem of blinking can be solved using 

a priori data, which we do not consider in this thesis. Cosker in [27] created a robust 

algorithm for modelling the  talking head. He manually divided the face into regions: 

mouth, eyes, cheeks, etc. and modelled each face part individually. We propose an 

autom atic algorithm for d a ta  segm entation w ith no a priori knowledge in C hapter 

7 of this thesis, which can be used as a preprocessing step for talking head analysis 

with the Cosker algorithm  to  make the process autom ated.

4.7 Experim ents w ith  a Real World Data

Here we evaluate how the proposed algorithm  processes different d a ta  types obtained 

from the real world. The first d a ta  considered, in Section 4.7.1, is the talking head. In 

this example we show how our algorithm  works w ith large data  with several param 

eter sets. Section 4.7.2 describes the model visualisation ability w ith 3D coordinates 

of a walking person. Next, a hierarchical model is built for a MIDI music collection, 

representing the melodies according to  their style. And finally, a model is constructed 

for the handw ritten digits from the MNIST collection. The last two examples, MIDI 

and handw ritten digits, are naturally  labelled therefore we use them  to test the clas

sification ability of our m ethod. The classification results are compared to  the results 

achieved by other researchers for this data.

4.7.1 Talking H ead D ata  Set

We test the algorithm  described above on the d a ta  from [28]. Initially, it was 8500 

frames video of a speaker reading a text, recorded at 25fps with mono audio sampled at
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32KHz. The subject was recorded front-on with as little out of plane head movement 

as possible. An Appearance Model [25] was built to represent image shape and 

texture variation. Mel-Cepstral analysis was applied to the corresponding audio data 

associated with each video frame. Figure 4.4 shows examples of the input data. Thus, 

we have the normalised set of appearance parameters and associated Mel-Cepstral 

coefficients to build the hierarchy.

Figure 4.4: Examples of the texture, shape and Mel-Cepstral coefficients for the 
talking head data
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-8 0  -6 0  -4 0  -2 0  0 20 4 0  60

c1

Figure 4.5: Distribution of appearance param eters 

From Figure 4.5 it is seen th a t our param eter distribution is highly nonlinear.
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First, the Isomap method is applied to extract major features from the parameter 

sets, and we obtain a 22-dimensional embedding of the video data with the main 

variations corresponding to m outh shape changes. Figure 4.6 shows the face changes 

in the first two dimensions of the embedding obtained from Isomap. It can be seen 

that the first embedding coordinate corresponds to open-close mouth changes on the 

horizontal axis, and mouth shape changes on the vertical axis.

Figure 4.6: Two-dimensional Isomap mapping of the appearance parameters
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We embed the  speech coefficients into a three dimensional Isomap space. The 

first embedded audio feature represents the changes from voiced vowels (a, o, i) to 

unvoiced consonants (p, k, t). For the second feature we have changes from voiced to 

unvoiced vowels, and changes from unvoiced vowel (e, u) to voiced consonant (b, m, 

v) for the th ird  feature. Figure 4.7 shows Mel-Cepstral coefficients (represented as a 

bars) mapped into the  first two Isomap embedding coordinates. So far, a t this stage 

we have two sets of param eters, each of them  represents the most im portant features, 

extracted from the initial data.
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Figure 4.7: Two-dimensional Isomap m apping of the Mel-Cepstral coefficients

During the next step we split the merged Isomap embeddings into clusters. Ac

cording to our algorithm , we choose the num ber of clusters using the characteristic 

graph produced for the model. A value is calculated by analysing the plot of the 

resulting overall cost of a converged solution against the number of clusters k. The 

optimal number of clusters for the talking head model is 12.

Using this optim al value of k , a Gaussian m ixture model is built for the param eter 

a in a low dimensional manifold. Figure 4.2 illustrates the mixture of Gaussians in
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Figure 4.8: Hierarchical model representation of the talking head data

the embedded space. The highest jo in t modes of variation for th is example are the 

first audio feature (voiced vowels - unvoiced consonants), and the first two appearance 

param eters features (from Figure 4.6). Each of the obtained clusters represents initial 

data features: m outh shapes, speech variations; the  largest clusters are silence, or 

“Q uiet” (yellow stars), consonants “b, m, p ” (red circles), “a” (blue squares), “o” 

(blue dots), “e” (green circles), and “oo" (cyan circles). Generally, we got the audio 

feature domination in the clustering result.

For each of the 12 clusters obtained in the  previous step we take the mean and use 

it as the input for the agglom erative algorithm . This produces the hierarchical model 

shown in Figures 4.3 and 4.8. In Figure 4.8 each face a t the bottom  level represents 

one cluster mean.

This hierarchical model has relatively good accuracy. The bottom  level of the 

model presents main phonemes, which are grouped according of their similarity. The 

images are the corresponding visemes. The bottom  nodes change from the Quiet node
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(the biggest node in the model) w ith a closed mouth, to the node with voiced vowel 

a and an open m outh. It can be seen th a t the automatically constructed hierarchy 

captures the im portant features of the talking head.

Using the model, one can estim ate the corresponding video param eter for the 

new audio by m apping the new param eter into the low dimensional space, finding 

the  closest cluster and the low dimensional coordinates of the required param eter as 

explained in Section 4.6.

4.7.2 Human M otion

This data  represents motion of a walking person, consisting of two steps, a right swing 

and one step. The initial feature param eters represent the coordinates of the human 

(arms, legs, torso) in 3D space. Each pose is characterised by 17 points. There are 

218 poses contained in th is d a ta  set.

We reduce the dimensionality of the  initial d a ta  space to  3, and perform clustering. 

Figure 4.9 illustrates the m ixture of Gaussians in the embedded Isomap space. As one 

can see from the Figure, the d a ta  hierarchy should have 10 clusters a t the bottom . 

Figures 4.10 and 4.11 dem onstrate the visual representation of the data  in the Isomap 

space. According to  these figures, our first dimension corresponds to  the motion 

direction: go left - go right. The second dimension is the leg position: left leg in front 

- right leg in front. Finally, the th ird  dimension shows the step stages: from the left 

to  the right heel strike (Figure 4.11, vertical axis).

The hierarchical model is shown in Figures 4.12, 4.13 (the visual representation), 

and Figure 5.2 (the dendrogram ). The small pictures in Figures 4.12 and 4.13 repre

sent the cluster means. Let us consider the model in more details below.



Figure 4.9: GMM in the Isomap space. Different colours correspond to  different 
clusters.
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Figure 4.10: Walking d a ta  projection into Isomap space (first two dimensions), visual 
representation.



Figure 4.11: Walking data projection into Isomap space (second and third dimen
sions), visual representation.
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Figure 4.12: Hierarchical model representation of the human motion, 3D view
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Figure 4.13: Hierarchical model representation of the human motion, side view

Clusters 2, 10, 3, 7, 5, 4, 6 lie in one branch of the hierarchy and represent the 

first two steps. Clusters 1, 8 and 9 are in another branch. Clusters 1 and 8 represent 

the last step, and cluster 9 corresponds to  the swing and the last step beginning.

Cluster 1 corresponds to  the left leg moving down and the right leg lifting up 

motions, and cluster 8 represents the right leg moving down and the left leg bending 

motions. Clusters 2 and 10 are similar in meaning to  clusters 1 and 8 respectively, 

but before the swing, and the m otion of legs are opposite.

Clusters 3, 7, 5, 4, 6 correspond to  the case when the left leg is performing the 

main motion. C luster 6 represents the right heel strike, and at the cluster 4 the left 

leg is beginning to lift up. C luster 3 represents the motion when the left leg replaces 

the right one in the front. C luster 7 is the smallest cluster, here the left leg is starting 

to swing. And finally, cluster 5 consists of two parts. Here the person’s left leg is 

lifting up. One part of the cluster corresponds to  the case when the right leg is in the 

front, and another p a rt corresponds to  the left leg in the front.

This model is a good example of the hierarchical d a ta  decomposition. The clusters 

are disposed logically, one tree branch represents the human moving to the camera,
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another branch represents the hum an moving away from the camera. The bottom  

nodes introduce phases of a single step. These nodes are merged to  represent the 

movement in a more general way, right leg movement, left leg movement, etc. Each 

motion is represented quite well, and it will be easy to classify a new motion with 

such a hierarchy.

4.7.3 M IDI D ata

For this experiment we downloaded 178 separate MIDI files selected from a range of 

classical composers, folk music and some popular music. There are Chopin, Haydn, 

Beethoven, Bach and M ozart compositions in the first group, Irish and Chinese folk 

in the second group, and Beatles, Abba, Queen and Jean Michel Jarre in the third 

group.

To make these MIDI files more uniform, we use the preprocessing procedure de

scribed in [23]. The preprocessor only keeps the basic M IDI-track decomposition as 

well as note timing and duration events. The preprocessed MIDI files are then used 

as the input for our algorithm.

After applying our algorithm  to the input d a ta  we obtain the hierarchy shown in 

Figures 4.14 and 4.15. There are two main branches in the tree. The first branch 

combines the classical composers and the folk music, another branch represents the 

popular music. Indeed, there are much greater differences between the classical and 

popular music than  between the classical and folk or between folk and popular. The 

mixture of classical and folk music a t the first branch can be explained by the character 

of the selected Bach and M ozart pieces. The bottom  nodes of the hierarchy represent 

the composers. Using the name of the composer as a natural class label we perform
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classification with the MIDI data.
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Figure 4.14: Dendrogram for the MIDI data

Chopin Haydn Beethoven Irish Bach Mozart C hinese Beatles Abba Queen Jean-m-Jarre

Figure 4.15: Hierarchical model representation of MIDI data

To test the effectiveness of our hierarchical model we classify new pieces of music. 

The test set consists of 110 MIDI melodies, with 10 melodies in each category. After 

the preprocessing we project them  into the embedded Isomap space as explained in 

Chapter 3.4. Then we use these projections to find the closest cluster. Starting 

from the tree root, represented by the training data mean, we descend down the tree 

and find the closest cluster at the bottom  level. The achieved accuracy is 92.73% (8
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music pieces are misclassified). The obtained result is similar to the best performance 

reported by Li and Sleep in their melody classification paper [91].

4 .7 .4  H a n d w r i t t e n  D ig i t s

We constructed a hierarchical model for the MNIST database of handwritten digits 

subset, which we used for the Isomap experiments in Chapter 3.6.7. W ith our algo

rithm we get 10 clusters, Figure 4.16 shows the automatically constructed hierarchical 

model of the handwritten digits.
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Figure 4.16: Hierarchical model representation of MNIST data (digits from 0 to 9 in 
the bottom line)

We use a new set of 1000 images for the classification test. In this experiment the 

recognition rate was 93.5% (65 images were misclassified). The resulting error rates 

on this data set vary from 0.7% to 12% as reported in [79]. This shows tha t although 

we use a generic algorithm, we achieve quite a low error rate.

Dendrogram
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4.8 Su m m ary

We presented a novel method for the autom atic construction of a hierarchical model 

using clustering and non-linear mapping outlined in Figure 4.17. During the first 

step of our algorithm we reduce the high dimensional data parameter space into a low 

dimension manifold using Isomap. Then we construct a GMM in this manifold. Next, 

agglomerative clustering is applied to the set of Gaussian means and the clustering 

structure is represented as a dendrogram.

Extracted data features 
(speech, im ages ,...) 

in a high-dimensional space

Isomap Data features
in a low-dimensional space

v  v  v Agglomerative 
clustering 
using cluster 
means

GMM clustering

Hierarchical 
data representation

Set of clusters 
of data features

Figure 4.17: Hierarchical data modelling algorithm

We now summarise our main contributions:

• A new method for hierarchy construction which can be used with a wide range 

of high dimensional data.

• The initial data can be represented as several corresponding data  sets.

• Our algorithm is fully autom ated and is easy to implement. There are no 

additional configuration parameters required.

• The data representation as a small set of Gaussian means allows efficient use 

of the clustering algorithm to divide the prototypes into groups. The reduction
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of the com putational cost is especially im portant for hierarchical algorithms 

allowing clusters of arb itra ry  size.

•  The algorithm is useful for different purposes: data  visualisation, as a data 

classifier and for generation of new data.



Chapter 5

D eveloping a D ynam ic Framework 
for the A utom atic Hierarchy 
Construction A lgorithm

5.1 Introduction

In Chapter 4 we constructed a hierarchical model of the high dimensional non-linear 

data with an unknown structure. The constructed model is a static model, i.e. it does 

not contain any explicit information on the tem poral relationship between the data  

points. Understanding the tem poral struc tu re  of the initial da ta  sequence is im portant 

for recognising and representing dynamic d a ta  reliably. In this chapter we introduce 

a new two-stage algorithm for dynam ic d a ta  modelling. We use the hierarchical 

model obtained from C hapter 4 as the first stage of the proposed algorithm , and at 

the second stage of the algorithm  we introduce dynamics by involving a Hierarchical 

Hidden Markov Model (HHMM).

In our work, we employ a HHMM as a technique for d a ta  analysis th a t can work 

across a range of applications. The ability to  autom atically learn structures and 

models from many kinds of input d a ta  feature sequences using a single algorithm

84
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gives great advantage for use in m any applications.

The HHMM is a generalisation of the widely used Hidden Markov Model (HMM), 

where HMMs form a hierarchy. The hidden sta te  of an HHMM can emit a single 

observation like an HMM, or a string of observations by entering lower level HMMs. 

The main problem with HHMMs is their topology definition, i.e. how to set the num

ber of HMMs, the number of states in each HMM, the allowable horizontal transitions 

within each HMM, and the allowable vertical transitions between levels. Usually, the 

hierarchical structures (topology) of HHMM is defined manually to be used only for 

particular data. Here we present an au tom ated  HHMM topology definition algorithm, 

which is independent from the initial data .

We consider our algorithm  as blind content processing, in which the first stage 

is unsupervised data  content characterisation, and the second stage is ‘supervised’ 

pattern  discovery based on characterisation from the first stage. We find th a t this is 

more effective than using a purely unsupervised approach for the pa tte rn  discovery 

problem. The intention is th a t unsupervised learning provides a b e tte r initialization 

for supervised learning, and hence a b e tte r final local minimum. Our model is fully 

automated and does not require additional parameters. To the best of our knowledge, 

no significant work has been reported for our problem  of interest which is able to 

work as quickly and effectively.

The algorithm is based on Isom ap’s ability to  preserve d a ta  geom etry a t all scales 

[114]. Using this property, we find the d a ta  tra jecto ry  in the embedded space. We 

also employ the assumption of d a ta  tra jecto ry  sm oothness during analysis of the 

space. Under these conditions we propose th a t utilising hierarchical clustering we 

can construct a HHMM topological structure, and the obtained HHMM is efficient in
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exploring semantic pa tterns in the input data. We build a HHMM using our algorithm 

from the test d a ta  and learn the model w ith Dynamic Bayesian Networks (DBN) [33]. 

After training the model we can explore observed patterns from the new unseen data.

In the following Sections we sum m arise briefly the theory of HHMM’s and build a 

HHMM with the structure determ ined from our hierarchical algorithm. The follow

ing Chapter 6 will dem onstrate the  effectiveness of our algorithm  by applying it to 

different motion data  types.

5.2 HHMM: D efinition and Representation as a 
D B N

Here we give a formal definition of HHMM, explain the meaning of each HHMM 

param eter and discuss its analysis and estim ation. Since HHMM consists of HMMs 

and contains all HMM param eters, we s ta rt by considering the basics of HMMs.

5.2.1 Hidden Markov M odel

A Hidden Markov model consists of a  Markov chain w ith a finite num ber of states, 

a state  transition probability m atrix  and an initial s ta te  probability distribution. 

Although the states are hidden (not directly observable), each sta te  generates obser

vations th a t are drawn according to  some probability  distribution (either discrete or 

continuous) [104]. A HMM is characterised by the following elements:

•  The number of states m  in the model. The states are hidden, and may be rep

resented by Gaussian mixtures for the continuous data. The states are defined 

Q =  Q i,Q 2, Qm, and the state  a t tim e t is Q t .
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• The state  transition probability  distribution A =  {a^}, where

<kj =  P(Qt + 1 =  j \Qt  =  i), 1 < i j  < m  (5.2.1)

•  The observation probability  distribution in state  j ,  B =  {^ (O )} , where

6,(0) =  P(Ot \Qt =  j) , 1 < j  < m  (5.2.2)

•  The initial state  distribution n  =  {7r»}, where

7Ti =  P(Qi  =  2), 1 < i < m  (5.2.3)

Using a shorthand notation, a HMM is defined as the triplet

A =  ( .4 ,B ,n )  (5.2.4)

5.2.2 Hierarchical H idden M arkov M odels

A Hierarchical Hidden Markov Model (HHMM) was first introduced by Fine in [44] as 

a natural generalisation of HMM w ith a hierarchical control structure. The difference 

between a standard HMM and a HHMM is th a t states in the hierarchical model 

can produce a sequence of observations, whereas each state  in the standard  model 

produces a single observation.

Figure 5.1 shows an example of a HHMM state  transition  diagram. Basically, it 

consists of two HMMs with three and two states a t the bottom  level respectively, 

and one two-state HMM at the top level. We s ta rt from the top level HMM, which 

calls its sub-HMM from the bottom  level, th is em its observations and re tu rns control 

to the top-level HMM again. Now, according to  the transition m atrix, we can go to 

the another state of the top level HMM or enter the end state, which term inates the 

process.
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q ; - q ; ^ q ;

Figure 5.1: A two-level HHMM w ith observations a t the bottom . Black edges denote 
vertical and horizontal transitions between states and observations. Dashed edges 
denote returns from the  end state  of each level to  the level’s parent state.

There are two types of hidden states: “production states” , which emit single 

observations { Q \ ,Q l ,Q l  in Figure 5.1 are production states), and “abstract states” , 

which contain production states or o ther abstrac t states (represented in Figure 5.1 

as Q\  and Q \ ). Each production s ta te  is associated w ith an observation vector, 

which maintains distribution functions for each observation defined for the model 

(denoted by O in Figure 5.1). Each abstract s ta te  is associated w ith a horizontal 

transition matrix, and a vertical transition vector. The horizontal transition m atrix  of 

an abstract state defines the transition  probabilities among its children. The vertical 

transition vectors define the probability of an abstrac t s ta te  to  activate any of its 

children. Each abstract state is also associated w ith a child called an end state  

which returns control to its parent. The end states (e in Figure 5.1) do not produce 

observations and cannot be activated through a vertical transition from their parent.

Let us give the formal HHMM definition.

• States. The difference between a standard  HMM and a hierarchical HMM is 

th a t individual states in the hierarchical model can contain sequences of nested
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states or observations, whereas each state  in the standard HMM can contain 

only linear sequences of observations, due to  its linear nature. Therefore in the 

formal HHMM description instead of hidden states sequence Q =  Q i, Q 2 , ..., Qm 

we have a vector Q =  (Qd, Q d, ..., Qfn), where d =  1,..., D  is a hierarchy level.

•  The state transition  probability  d istribution . For each abstract state 

Qd, d € 1,..., 1 — D, the probability  of making a horizontal transition  from the 

«th state to the j th, where bo th  are siblings of Qd, is defined by the state 

transition probability m atrix  Ad =  {adj }, where

4  =  P ( Q dj +1\Qf+1), 1 <  i,3 <  m  (5.2.5)

•  The observation probability d istribution . The production states are pa- 

rameterised solely by the ou tpu t probability  vector B D =  bD(k), which is the 

probability tha t the production sta te  Q D will ou tpu t the observation Ok- Here 

we have

bd{k) =  P(Ok\QD) (5.2.6)

•  The initial sta te  d istribution . The probability  th a t s ta te  Qd will initially

activate the state Qd+1 Ud =  nd(Qf+1), where

Kd(Qf+1) =  P tQ f ^ lQ '') ,  1 <  i <  m  (5.2.7)

The entire set of HHMM param eters, by analogy w ith Equation 5.2.4, is denoted

by

A =  {Ad}{rfsl =  ( { A d } { d € h ...,D - l h  { B D } ,  { n d}{<iel,...,D_ 1}) (5.2.8)



90

To define a HHMM fully, we should also set a topological structure £ and an 

observation alphabet E. The topology £ specifies the number of levels D, the state  

space a t each level, and the parent-children relationship between levels d and d +  1. 

The observation alphabet E consists of all possible finite observation strings O =  

0 i , 0 2, A full HHMM is defined as a  3-tuple

H = (  A,C,E)  (5.2.9)

5.2.3 Analysis and Estim ation o f H H M M

There are several key issues in the analysis and estim ation of the HHMM param eters 

in Equation 5.2.9. First, we should solve three classical problems of the Hidden 

Markov Models analysis for A from Equation 5.2.8:

• The evaluation problem: given the HHMM param eter set A and the obser

vation sequence O =  Oi, 0 2, O r , how can we efficiently com pute P { 0 1A), the 

probability of the observation sequence given the model?

•  The decoding problem: given the HHMM param eter set A and the  observa

tion sequence O =  Oi, 0 2, ..., O r, how can we find the state  activation sequence, 

th a t is most likely to  generate the observation sequence?

•  The estim ation problem: given the structure  of an HHMM f  and the ob

servation sequence O =  Oi, 0 2, ..., O t , how can the HHMM param eter set A be 

found which optimise P (0 |A )?

Solutions for the above HHMM problems are more complicated than  for the  stan

dard HMM because of the HHMM’s hierarchical structure. For the original HHMM
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the solutions are given by using the well-known forward-backward, Baum-Welch and 

Viterbi algorithm s [44]. The overall complexity of the original algorithm is 0 (Q T 3), 

where Q  is the to ta l num ber of states and T  is the length of observation sequence.

M urphy in [92] proposed to  convert the HHMM into a DBN, and apply general 

DBN inference to  the model to  estim ate the param eter set A and to achieve the overall 

complexity 0 ( T D 2Q 2), where T  is the length of the observation sequence, D  is the 

depth of the hierarchy and Q  is the to ta l number of states. We use the efficient 

M urphy solution briefly described in Section 5.5, full details of which can be found in

[94].

We assume th a t observation a lphabet E from Equation 5.2.9 is represented by the 

input data. To define the HHMM param eters in Equation 5.2.9 entirely, we need to 

specify another HHMM param eter, £. Commonly, th is param eter is specified manu

ally to  be used only for a particu lar d a ta  set. In th is thesis we consider algorithms 

for data  w ith no a priori knowledge, therefore we create a general solution, which is 

able to  work with m any kinds of d a ta  autom atically. We present this solution in the 

following Section.

5.3 A utom atic D iscovery o f HHM M  Hierarchical 
Structure

The autom atic discovery of a HHMM ’s hierarchical structure f  from initial da ta  is 

an im portant yet com plicated problem. Some work in this area has been done by 

Xie et al. [130], and Youngblood and Cook [136]. The structure discovery algorithm 

by Xie et al. [130] employs the Markov Chain Monte Carlo (MCMC) m ethod to 

determ ine the structure  param eters for a HHMM in an unsupervised manner. This
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approach is used to discover pa tterns in video, namely play and break, and is based 

on a bespoke procedure to  select features from the video. Youngblood and Cook 

[136] exam ine the  problem  of autom atic learning of a human inhabitant behavioral 

model. They extract sequential pa tterns from inhab itan t’s activities using the Episode 

Discovery (ED) sequence m ining algorithm. A HHMM is created using low-level state 

inform ation and high-level sequential patterns. This is used to learn an action policy 

for the  environment. This model, as w ith [130], was created to represent specific 

features inherent in the data.

Using the hierarchical clustering algorithm  from C hapter 4 as a basis, we now 

aim to  construct a two-level HHMM which shows different parts of the initial data  as 

separate submodels. The top HHMM level corresponds to  the da ta  patterns, and at 

the bo ttom  we have the initial d a ta  sequence divided into subsequences according to 

the pa tte rn s they represent.

The choice of the num ber of levels is natural: every data  sequence has patterns. 

It is difficult to  say which patterns are contained in da ta  with an unknown struc

ture, and how we can define them . Even manually, for a known structure, this can 

be done in several ways for the same data, depending on the application. We can 

construct HHMM using more dendrogram  levels, bu t this can be unnecessary in most 

applications and it also increases the com putation time.

In a HHMM, every higher-level sta te  corresponds to  a stream  produced by lower- 

level sub-states, a transition  a t the top level is invoked only when the lower-level 

HMM enters an exit state. Therefore it is natural to  construct a Hierarchical Hidden 

Markov Model in a “bottom -up” manner.

After the hierarchical clustering algorithm  is applied to the initial data, we get
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the da ta  dendrogram  representation as in Figure 5.2. We use this representation 

to construct the  HHMM structure. The outline of the proposed HHMM structure 

construction algorithm  is presented in Table 5.1.
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Figure 5.2: A dendrogram for the walking data. The red line indicates the cut-off 
level. Four clusters are formed in this example

We apply a heuristic approach to the construction of the HHMM structure. We 

cut the dendrogram  using the most popular measure from the clustering theory, mean 

distance, and use the clustering specified by the dendrogram at that cut-off level. The 

purpose of th is is to provide clusters that are similar enough to be grouped together, 

and the sizes of these groups are large enough to construct a regular HMM with 

them. Figure 5.3 illustrates the hierarchy for the motion data, obtained from the 

dendrogram shown in Figure 5.2. Here the cut-off level clusters are denoted by their 

own numbers. Using this representation we can set the number of states for each 

HMM (for th is particular example these numbers are 4 for the top-HMM, and 3, 2, 3 

and 2 for the  bottom  level HMMs).

Figure 5.4 shows the resulting HHMM structure, as a state transition diagram.



94

Input: D ata  w ith an unknown structure, hierarchically clustered in a dendrogram 
using algorithm  4.1.
O utput: HHMM param eter £.

1. Find the dendrogram  cut-off level using the mean distance between clusters. 
Remove all dendrogram  levels above the cut-off and intermediate levels between 
th is level and  the  bo ttom  dendrogram  level. Label nodes.

2. Set the  num ber of sta tes for the top-HM M  and number of bottom-HMMs 
equal to  num ber of clusters a t the cut-off level. Set the bottom-HMM s num
ber of states equal to  the num ber of clusters in the corresponding dendrogram 
branches.

3. Identify transitions between the states using the GMM labels. Set a transition 
between the  sta tes Qi and Qj  if there exist successive points from the data 
sequence yu y t+Y such th a t yt € Q j  and yt+1 e  Q, .___________________________

Table 5.1: An autom atic  HHMM structure  construction algorithm 

11 12 13 14

A\A~A\'h
1 8 9 2  10 3 7 5 4 6

Figure 5.3: A hierarchical representation for the motion data

Black arrows denote s ta te  transitions, and do tted  arrows denote returns to  the parents 

states. Our HHMM does not have a fully connected topology because we limited 

the transitions by using the  GMM labels obtained at the first stage. This reduces 

the number of non-zero transition  m atrix  elements and simplifies calculation of the 

HHMM param eters.

7 2 10 6 4 9 1 835

Figure 5.4: A HHMM state  transition  diagram for the motion d a ta
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5.4 R epresenting th e HHM M  as a D B N

A HHMM is a special case of Dynamic Bayesian Networks (DBN) [92]. It is common 

to convert an HHMM to  a DBN, because the time complexity of com putation can be 

greatly reduced.

We represent the obtained HHMM as a DBN as shown in Figure 5.5. Our HHMM 

has two sta te  levels, and the  production states are a t the bottom  of the hierarchy. 

The state  of the HHMM at level d and tim e t  we represent as Qf  and observed state  a t 

tim e t as Ot . The s ta te  of the whole HHMM we encode by the vector Qt =  (Ql ,Qf) .  

This vector represents the contents of the stack, which specifies the full pa th  from 

the root to  the leaf state. Ff  is an indicator which is “on” if the HMM at level d and 

tim e t has ju st finished (i.e. is about to  enter an end state), otherwise it is “off’.

There are two transition  types in a  DBN: in tra  and inter. States w ithin one time 

step are connected by in tra  transitions (Qf  —> Qf +1, Qf  —► Ot Qf  —► Ff,  F f+1 —► Ff),  

between the tim e steps they  are connected by inter transitions (Qf  —► Qf+1 and 

Ff  —► Qf+i). The vertical arrow between Q variables represents a transition from a 

state  to its sub-state. The arrows between the F  variables enforce the fact th a t a 

higher level HMM can only change state  when the lower-level HMM is finished.

We now define the  Conditional Probability D istribution (CPD) for each of the 

node types from param eters of the original HHMM, which will complete the definition 

of the model. We review the first, middle and last time slices, as well as the top 

and bottom  layers of the hierarchical structure  separately, since they have different 

topology.
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Figure 5.5: An HHMM represented as a DBN. Qf  is the state at time t , level d;
F f  = 1 if the HHM at level d has finished (entered its exit state), otherwise Ff  = 0.
Shaded nodes are observed; the remaining nodes are hidden.

5.4 .1  D e f in i t io n  o f  t h e  C P D s

• B o t to m  level: d = 2, t =  2.. .T — 1.

Define CPDs for Qf  and Ff.  The equation for Ff  is

P {F f  = 1|Qf = i, Qf = k) = A 2k{i,end) (5.4.1)

where Af( i , end)  is the termination probability for sub-model of the original

HHMM. We assumed i , j  ^  end. Definition of Qf  CPD is

P( Q2i = j \ Q l i  = h F l i  = f ’Ql = k )  = {  =,°  (5.4.2)
{ n b ) , f  =  i
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where A l  is rescaled version of the original HHMM transition m atrix A2, and 

is the initial d istribution for level 2 given th a t the parent variables are in 

s ta te  k.

Top level: d =  1 , £ =  2...T  — 1.

The difference here is th a t we now also get a signal from below, Ff2, which 

specifies w hether the sub-model has finished or not. If it is finished, we change 

state; otherwise we remain in the same state. The equations for these cases are

o i A\(i , end), f  =  1
P{F}  =  1|Q j = i , F ?  =  f )  =  { U ^  Q (5-4.3)

P ( Q l  = j \ Q h  =  i, P i i = b, =  f ) = {

b( i , j ) , b =  0 

A } ( i , j ) , b = l , f  =  0 (5.4.4)

, n } ( j ) , b =  l , f  =  1

• Initial slice: t =  l ,d  =  1,2.

The CPDs for the nodes in the first slice are: P(Q \  =  j )  =  1( j ) for the top

level and P(Q \  =  j \Q \  =  k) =  irl(j) for the bottom  level.

• Final slice: t  =  T , d =  1,2.

To ensure th a t all sub HMMs reached their end states by the end of the sequence, 

we set =  1 for the all d.

5.4.2 D B N : Inference and Learning

To estim ate the DBN param eters, we use the maximum-likelihood (ML) criterion. 

Let us denote the DBN param eters using A by analogy with A from Equation 5.2.8. 

Then the goal of learning is to  compute
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A* =  argm ax .P(0|A) =  argm ax log P(0\ X)  (5.4.5)
A A

where lo g P (0 |A ) is the log-likelihood of the training data. We use the  Expectation ' 

M aximisation (EM) technique to learn the param eters. Note th a t EM uses inference 

as a subroutine, and hence efficient inference is essential for efficient learning.

There are several kinds of inference in DBNs, which include filtering, prediction, 

and smoothing. Filtering is used to  estim ate the current state based on all observa

tions to date. Prediction is com puting the posterior distribution over future states 

given all observations. Smoothing is com puting a posterior distribution over a past 

sta te  given all observations. We use the junction tree algorithm to perform inference.

The junction tree algorithm  works by performing a forwards-backwards sweep 

through a chain of junction trees (jtrees). Each jtree is formed from a  “1.5 slice 

DBN” , which is a DBN th a t contains all the nodes in slice 1 but only inter nodes 

from slice 2. We perform inference in each tree separately, and then pass param eters 

between them  via the inter nodes, first forwards and then backwards, using the frontier 

algorithm , see [94] for the full details.

5.5 Dynam ic Framework Construction Summary

5.5.1 D ynam ic Framework: Training Process

The goal of the HHMM training process is to form a model th a t is capable of exploit

ing hierarchical structure  (in contrast to  HMMs) and to  estimate param eters from 

Equation 5.2.9 for th a t model. The steps involved are shown in Table 5.2.



99

1. Model Initialisation: already pre-processed training data  (e.g. some motion 
features such as the angular coordinates).

2. Perform Hierarchical Clustering as described in the algorithm from Table 4.1, 
C hapter 4.

3. Using the obtained result, find HHMM structure by applying the algorithm 
shown in Table 5.1.

4. Convert HHMM into DBN and find param eter A from Equation 5.2.9.________

Table 5.2: Dynamic framework: training process

5.5.2 D ynam ic Framework: Testing Processes

Testing the HHMM includes assigning labels to  the new unseen da ta  (a classification 

task) and sampling from the model.

To perform classification of new data, we follow steps from Table 5.3.

1. Em bed the test data  into the Isomap space using the kernel function given in 
C hapter 3.

2. Given HHMM structure £, find new param eter A' from Equation 5.2.9.

3. Using A', allocate the new data  to  HHMM states (i.e. label them).___________

Table 5.3: Dynamic framework: testing processes

To verify how well the obtained HHMM describes the data, we generate random 

samples using the HHMM parameters. Markov Chain Monte Carlo (MCMC) methods 

[2] produce a stream  of samples from the posterior distribution of the hidden variables 

given the observations. To generate samples from the model, we apply the Gibbs 

sam pler [46], most common case of MCMC methods, which can be thought of as a 

stochastic version of EM [94]. We reconstruct the original data features for these
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samples from the Isomap space using GRBF to compare them  with the training 

sequence.

We give a general conclusion and discuss the results in the following Chapter, 

where we dem onstrate the applications of our dynamic model.



C hapter 6 

D ynam ic Framework: Applications

6.1 Introduction

In this C hapter we dem onstrate th a t the autom atic dynamic modelling algorithm de

scribed in the previous C hapter is able to  perform  with various data  features obtained 

from a variety of video sources. We evaluate how the proposed algorithm processes 

different types of motion data , represented by 3D coordinates, angular coordinates 

and silhouettes extracted from video sequences. The d a ta  we use here contains a wide 

range of variation in bo th  upper and lower body parts, and sequences from several 

hundreds to several thousands of frames. We are not linked to  the fact th a t this data 

is human motion and are not using this inform ation during the model’s construction. 

First we extract semantic pa tterns and evaluate the model for a variety of actions: the 

swordplay d a ta  (Section 6.2.1), the soccer ball kicking da ta  (Section 6.2.2), the gym

nastic exercises d a ta  (Section 6.2.3), and dance d a ta  (Section 6.2.4). These examples 

are taken from the CMU m otion capture database [31] where motion is represented 

by angular coordinates. In Section 6.3 we address the dynamic model construction 

and its classification ability w ith 3D coordinates of a walking person. And finally, 

a model is constructed w ith silhouette sequences from the IXMAS motion database

1 0 1
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[32]. To evaluate the obtained models, we perform data  classification and synthesis 

experiments. In each experim ent we compare our classification results to the results 

achieved by applying an unsupervised HHMM and a standard HMM.

6.2 CM U M oCap data

We have tested our algorithm  on a num ber of motion capture sequences from the 

CMU motion capture database. The algorithm  input da ta  here is represented by 32 

angular coordinates (the video preprocessing and feature extraction details can be 

found on the CMU website [31]). The motion sequences we used comprise of 573- 

5357 frames and show swordplay, soccer ball kicking, gymnastic exercises and dancing 

sequence examples. Each example is described in more details below.

6.2.1 Swordplay D ata

The swordplay da ta  sequence contains 1500 frames, and consists of two stabbing 

movement from the standing position, another two stabs from the half bent knees 

position, and finally the sword lowering movement.

We reduce the dim ensionality of the original space to  3 using our autom atic 

method described in Section 3.5, and perform  clustering. Figure 6.1 shows the ob

tained clustering in the embedded space.

In our experiments we assume th a t d a ta  has smooth transform ations between 

points in the embedded space and therefore clusters include chains of neighbouring 

elements from the original d a ta  sequence, i.e. da ta  subsequences. Also note tha t 

in the Isomap space similar clusters are in close proximity to  each other - we use 

this property in constructing our model. Figure 6.1 clearly illustrates our idea: the
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embedded data forms a trajectory according to the original sequence. There are 

two loops in tire Figure, patterns “3-7” and “4-10-2-6” , which represent stabs from 

the straight position and stabs from half bend the knees position respectively. The 

first stabbing is represented mainly by two clusters: the stub and the sweep. The 

second one is more complicated because of the knees bending movement and greater 

stub amplitude, and presented by double the number of states. Clusters “8” and 

“9” illustrate the start of the first stabbing motion and the end of the last stabbing 

motion, and clusters “1” and “5” represent the final motion, the sword lowering.

Figure 6.1: GMM clustering of the swordplay data in the Isomap space

After applying the agglomerative clustering algorithm (Section 4.5) to the ob

tained cluster means we get the dendrogram shown in Figure 6.2. The visual repre

sentation of this dendrogram is shown in Figure 6.3. Each image represents the mean 

pose of the cluster. There are ten levels in the dendrogram, with GMM cluster means
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Figure 6.2: A dendrogram for the swordplay data with the cut-off level (red line)

at the bottom which are grouped according of their similarity. It can be seen that 

there are three main branches in the tree.

We apply our automatic HHMM structure construction algorithm described in 

Section 5.3, find the mean distance measure (shown as the red line in the Figure 6.2), 

and set the HHMM states and transitions. Figure 6.4 shows a schematic representa

tion of the HHMM structure obtained by our algorithm. Each hidden state here is 

illustrated by the mean pose for that state. This Figure shows that we were able to 

extract the above mentioned three main patterns from the unlabelled data. We get 

different numbers of states for each of these patterns: the first stabbing is represented 

by three states, the second stabbing consists of five states as it is a more complicated 

movement, and the sword lowering pattern is represented by just two states.

First of all we verify that our model is reasonable: we draw samples from the 

obtained model using Gibbs’ sampling technique [46]. Figure 6.5 demonstrates the

Data index
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Figure 6.3: Visual dendrogram representation for the swordplay data

Figure 6.4: A HHMM state transition diagram for the swordplay data



Figure 6.5: The original training data  cluster means (blue) and the synthetic data 
cluster means (red) for the swordplay data

original and the reconstructed mean poses for each cluster which are very close to 

each other. This confirms th a t we get good results with the sampling experiment. 

To get back projection from the Isomap embedding to the original space we used the 

GRBF algorithm presented in Section 3.4.

To further test the model we perform data classification experiments. We take 

another unused fragment of swordplay motion, which includes similar data, but with 

more motion variations such as putting the sword in the other hand, and stabbing 

with the other hand. We project the test data  into Isomap space using the kernel 

function given in Section 3.3 and classify it with our model.

Figure 6.6 shows the algorithm’s ability to recognise learned patterns from the 

new data containing unknown variations (i.e. model’s observation probability). The 

Figure indicates that most probably at the beginning of the motion there are stabbing 

movements from the standing position (blue line). In the second part of the test 

sequence the highest probability is for stabbing from half bend knees position (green
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Figure 6.6: Probabilistic classification of new swordplay data sequence into patterns: 
stabs from the straight position (blue line), stabs from the half bent knees position 
(green line), sword lowering (red line)

line). The regions where the probabilities get closer indicate the stab’s start and 

finish.

The pattern with the maximum probability is used to label the data. To verify the 

result and make a comparison with other methods, we manually label train data with 

these patterns. We consider this labelling as a ground truth, and perform classification 

evaluation with our semi-supervised model, an unsupervised HHMM and a flat HMM 

over the test data, We use the same structure for the unsupervised HHMM obtained 

from our hierarchical algorithm, and the HMM based on the bottom level of our 

model. The classification results are shown in the first column of Table 6.1. Using 

our semi-supervised algorithm, we get better accuracy than the other methods.
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Figure 6.7: GMM clustering of the soccer data in the Isomap space 

6 .2 .2  S o c c e r  B a l l  K ic k in g  D a t a

For this experiment we use a 590-frame motion sequence which consists of two steps, 

ball kicking, turn and step after the turn. We project the data into the three di

mensional Isomap space (see Figure 6.7), and perform clustering using the automatic 

method from Chapter 4. Figure 6.8 demonstrates the visual dendrogram representa

tion obtained from this m ethod.

We construct a dynamic model with our algorithm, and find that we are able to 

extract three main patterns: two first steps, a kick, and movement after the kick. 

Figure 6.9 shows the resulting HHMM structure for the soccer data, where the HMM 

of states “1-3-8-2-11-12” represents the first pattern  (steps), the HMM of states “5-9” 

represents kicking and the HMM of states “7-10-4-6” relates to the movement after 

kicking.

Now we recover the original data from the obtained model in the same way as for 

the previous example. Figure 6.10 illustrates the original and the reconstructed cluster 

means. For this data, the main data  variations correspond to the leg movement, and



Figure 6.8: Visual dendrogram  representation for the soccer d a ta

/

Figure 6.9: A HHMM state transition diagram for the soccer data
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Figure 6.10: The original training data cluster means (blue) and the synthetic data 
cluster means (red) for the soccer data

therefore the reconstructed means differ from the original ones mainly in the leg area. 

But still, the original and the reconstructed means look similar.

To test the effectiveness of our model we perform classification of new soccer data 

with similar patterns. Figure 6.11 demonstrates our algorithm’s ability to identify 

the mentioned patterns from the new data. First there are steps in the test data 

(blue line), ball kicking (red line), and turning (green line) shown in the Figure as 

regions with the highest probability. The classification results are presented in the 

second column of Table 6.1. Again, our method produces the best recognition rate 

in comparison to other methods.

6 .2 .3  E x e r c is e  D a t a

This motion data  sequence consists of 5357 frames, and contains 8 exercises: jumps, 

jogging, squats, side twists, lateral bending, side stretch, forward-backward stretch 

and forward stretch. In this example we demonstrate that our method is able to work 

with a variety of movements, as well as with long data sequences.

The size of this data  set is quite large to use with the original Isomap, therefore
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Figure 6.11: Probabilistic classification of the new soccer data sequence into patterns: 
steps (blue line), kicking (red line), turning (green line)

here we apply landmark Isomap instead as we pointed out in Section 3.3. We take 

every fifth frame of the data sequence as the Isomap landmark, automatically choose 

landmark Isomap’s parameter by performing our method described in Section 3.5, and 

get a two-dimensional projection of the original data into the Isomap space. Figures 

6.12 and 6.13 show the obtained circle-shaped projection. The blobs at the circle 

represent the exercise repetition. In Figure 6.12 we manually labelled the projection 

sections according to a consistent exercise number to explain the embedding. There 

are jump exercise first (red line), the second exercise is jogging (green line), the next 

one is squats (yellow line), and so on as above. The horizontal changes in poses are 

from constriction to side stretch, and vertical changes are from squat to up stretch 

poses, see Figure 6.13.

After the clustering algorithm is applied to the obtained Isomap coordinates we 

get 26 gaussian clusters shown in Figure 6.14. Figure 6.15 demonstrates the same 

embedded space, with the clusters mean poses. The dendrogram with the cut-off level 

for the HHMM structure construction is presented in Figure 6.16.
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Figure 6.12: Exercise data projection into Isomap space

The resulting HHMM structure obtained by our algorithm is shown in Figure 6.17. 

There are six states in the top level HMM, which represent jumps, jogging, squats, 

side twists, lateral bending and stretches (states 27, 28, 29, 30, 31, 32 respectively). At 

the bottom level we get six HMM’s with numbers of states ranging from two (squats 

HMM: down and up states) to seven (lateral bending). The stretches sub-HMM 

consists of six states and represents three exercises together: side, forward-backward 

and forward stretches.

To verify the model we synthesize the original data sequence from the constructed 

model. Figure 6.18 demonstrates the original and the reconstructed cluster means 

similarity. Since here we have lots of different motions and the data variations are 

spread across all the data, we see tha t the obtained reconstructed means are more 

different from the original ones in comparison to the previous two examples.

To further test the obtained model we take a new exercise sequence which consists 

of 2300 frames and includes jumps, jogging, squats and side twists exercises. We



Figure 6.13: Exercise data projection into Isomap space, visual representation
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Figure 6.14: Exercise data clustering

Figure 6.15: Exercise data, cluster mean poses
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Figure 6.17: A HHMM state transition diagram for the exercise data
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Figure 6.18: The original training data  cluster means (blue) and the synthetic data 
cluster means (red) for the exercise data
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Figure 6.19: The exercise testing da ta  (black circles) embedded into the Isomap space

project the test data into Isomap space, see Figure 6.19, and automatically segment 

and classify poses from this new sequence using the model.

Figure 6.20 shows the pattern  probabilities for the test data. As can be seen from 

this Figure, we have a jum p exercise first (yellow line), then jogging (red line), squats 

(green line), and side twist (blue line). To make further evaluations, we perform 

classification experiments using our algorithm, unsupervised HHMM and HMM. The 

results are shown in the fourth column of Table 6.1.

6 .2 .4  D a n c e  D a t a

The training data contains 1536 frames and represents the “chicken dance” . With 

this example we show the algorithm ’s ability to work with periodic data. Figure 6.21 

illustrates dendrogram constructed for the dance data by our hierarchical clustering 

algorithm. We construct the dynamic model of the dance data by taking this den

drogram as a base. We allow all transitions at the top level HMM, see Figure 6.22.
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Figure 6.20: Probabilistic classification of new exercise data sequence into patterns: 
jumping (yellow line), jogging (red line), squats (green line), side twist (blue line), 
lateral bending (cyan line), stretches (magenta line)

There are two patterns (two HMMs at the bottom  level) for this data: one which 

deals with the legs movement with five states, and another one which deals with the 

hands.

To verify the model we synthesize the original data sequence and perform the 

classification experiments. Figure 6.23 shows tha t the difference between the original 

and synthesised data is small and we can say that the data generated by our dynamic 

model is close to the original data. Figure 6.24 demonstrates the pattern probabilities 

for the new data. This Figure shows oscillation of probability for the test subsequence 

where the person is standing up and performing the hand movement at the same time, 

but the general classification result is sufficient. The classification results for the test 

data using labelling obtained from the training data are shown in the third column 

of Table 6.1.
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Figure 6.21: Dendrogram for the dance data
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Figure 6.22: An HHMM state transition diagram for the dance data
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Figure 6.23: The original training data cluster means (blue) and the synthetic data 
cluster means (red) for the dance data
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Figure 6.24: Probabilistic classification of new dance data sequence into patterns: 
hand movements (green line), leg movements (blue line)
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Figure 6.25: An HHMM sta te  transition  diagram  for the walking d a ta

6.3 W alking D ata

In this Section we continue to  consider the m otion d a ta  example from Section 4.7.2. 

The hierarchical model visualisation, a dendrogram , for this da ta  is dem onstrated in 

Figure 5.2. The HHMM structu re  for th is d a ta  obtained by our algorithm is shown 

in Figure 5.4 and Figure 6.25. We get one top  level HMM, which includes four sub- 

HMMs. the HMM of s tates “5-3-7” corresponds to  the patte rn  which represents the 

motion beginning and s ta rt of the turn . The HMM of states “2-10” corresponds to 

the sequence pattern  w ith the left leg moving down and the right leg lifting up. The 

“6-4”-state HMM movement is the opposite of the previous pattern: the right leg 

moving down and the left leg lifting up. Finally, the “9-1-8” HMM represents the 

tu rn  and the step after the tu rn . We can say th a t the autom atically constructed 

HHMM extracts “na tu ra l” units from the original data.

We recover the original d a ta  from the obtained model to verify the result. Fig

ure 6.26 dem onstrates the  original and the reconstructed cluster means. The recon

structed mean poses here correctly repeat the original ones with some small variations.

In order to  test the perform ance of the model, we autom atically segment and 

classify poses from another walking d a ta  sequence of 131 frames, consisting of two 

steps. We project the new d a ta  into Isomap space using the kernel function given in
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F'igure 6.26: The original training data  cluster means (black) and the synthetic data 
cluster means (red) for the walking data

Section 3.3. The result is shown in Figure 6.27. The new data projections are close 

to the original ones in the embedded space. As expected, it is concentrated at the 

bottom and the middle of the Isomap space, which corresponds to the first two steps 

in the original data.

Figure 6.28 shows the HHMM’s ability to automatically recognise motion segments 

(find semantic patterns) “5-3-7” , “2-10” , “6-4” and “9-1-8” from the new data. Here 

the horizontal axis corresponds to the frame number, and the vertical axis corresponds 

to the probability distribution of each pattern. There is a high probability for the 

“5-3-7” pattern at the beginning of the new data  sequence (blue line), then we have 

the “2-10” pattern in the data (red line), followed by the “6-4” pattern (green line), 

and probably some bits from the “5-3-7” pattern  again. The probability for “9-1- 

8” pattern is small everywhere (yellow line), thus we consider that there is no such 

pattern (step after turn) in the test data. The comparison of the classification results 

is shown in the fifth column of Table 6.1. We can say that our semi-supervised HHMM 

is able to correctly identify the semantic patterns in the test data and classify new 

motion patterns better than other methods.
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Figure 6.27: New walking data  projection in the embedded space (black circles)
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Figure 6.28: Probabilistic classification of new walking data sequence into patterns: 
“5-3-7” (blue line), “2-10” (red line), “6-4” (green line), “9-1-8” (yellow line)
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Figure 6.29: GMM clustering of the IXMAS data in embedded space

6.4 IX M A S  D a ta

The lnria Xmas Motion Acquisition (IXMAS) sequence we used here contains 11 

actions: check watch, cross arms, scratch head, yoga, turn around, walk, wave, punch, 

kick, point and throw away. The silhouettes were extracted from the video using a 

standard background subtraction technique, modelling each pixel as a Gaussian in 

RGB space.

Although raw silhouette pixels are not the optimal feature for motion analysis, we 

use it to show the algorithm’s ability to work with such difficult input data. For the 

Isomap algorithm, it is much harder to extract main motion features from silhouettes, 

to embed them into the low dimensional space, and to produce useful trajectories for 

further analysis. The Isomap space for the silhouette data is more knotted than for 

the coordinate data, which makes clustering and pattern extraction more difficult. 

Figure 6.29 illustrates the embedded space for this example.

To test the algorithm we take the sequence of 1076 frames from the IXMAS 

database. It shows the front view silhouettes of the person performing the above
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actions in the above order.

Figure 6.30 shows the  HHMM structure obtained by our algorithm. In comparison 

to the coordinate da ta , we get more transitions between the states (because of the 

space knotting). As shown in this Figure, the algorithm recognised five patterns in 

this data. The first p a tte rn  represents hand movements from a standing position and 

includes check watch, cross arm s, scratch head and wave actions. The second pattern  

is the yoga action. The next recognised p a tte rn  is leg movements and includes turn  

around, walk and kick actions. The fourth pa tte rn  is hand movements with legs 

apart, this contains punch and  point actions. And the last pa ttern  is the throw away 

action.

We synthesize the original d a ta  from the obtained model to  verify the result. 

Figure 6.31 shows the original and reconstructed clusters mean poses. Although the 

error here is larger th an  for the previous examples, because of the d a ta ’s spatial 

properties, we can clearly see the  sim ilarity of the mean poses.

We use another sequence of similar length to  test the model. The classification 

results are shown in Figure 6.32. There are lots of transitions between the first 

pa tte rn  (magenta line), th ird  p a tte rn  (yellow line) and the fourth pattern  (red line). 

The second (blue line) and the last (green line) pa tte rn s are each represented by single 

occurrences. Comparison of the classification accuracy is presented at the last column 

of Table 6.1. The accuracy is lower compared w ith earlier experiments because of the 

increased complexity of its tra jecto ry  in the Isomap space, but it can be seen th a t 

our algorithm  is able to  find the meaningful pa tterns even from such data.



Figure 6.30: An HHMM state  transition diagram for the IXMAS data
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Figure 6.31: The original training data cluster means (top) and the synthetic data cluster means (bottom) for the 
IXMAS action data
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Figure 6.32: Probabilistic classification of new IXMAS data sequence into patterns

M e th o d S w ord S occer E x erc ise D ance W alk IX M A S
Semi-supervised HHMM 89.85% 96.34% 93.57% 91.86% 96.95% 71.63%
Unsupervised HHMM 83.69% 93.19% 91.13% 89.97% 93.13% 65.43%
Flat HMM 85.78% 90.4% 90.65% 88.28% 92.37% 65.43%

Table 6.1: Classification results (rate of correct classification)
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6.5 Summ ary

We have presented a novel m ethod for autom atic dynamic framework construction. 

First we build a hierarchy for the initial da ta  using Isomap, Gaussian M ixture Mod

elling and hierarchical agglomerative clustering as described in Chapter 4. From this 

we obtain a hierarchical d a ta  representation which is used to  construct the HHMM. 

Experim ental results on different m otion features (3D and angular pose coordinates, 

silhouettes extracted from a video sequence) dem onstrate the approach is effective at 

autom atically constructing efficient HHMMs w ith a structure th a t naturally repre

sents the underlying motion and th a t allows for accurate modelling of the da ta  for 

applications such as tracking and m otion resynthesis.

We now summarise our m ain contributions:

•  We have presented a new dynam ic framework m ethod which is useful for the 

extraction of semantic p a tte rn s from high dimensional data.

•  Since the algorithm is not linked w ith any a priori information from the data, it 

can be used with various d a ta  types (for example, in DNA sequence analysis).

• Our algorithm is fully au tom ated  w ith no additional configuration param eters 

required.

•  We have shown th a t pa tte rns extracted by our algorithm  have a semantic mean

ing.

•  In pattern  classifications experiments our m ethod performs better than  other 

methods.
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In order to  develop a more detailed knowledge of the strengths and robustness of our 

algorithm, a more thorough experim ental evaluation of our system will be carried 

out in future work. We plan to  make the algorithm  more effective against noise by 

modifying the Isomap algorithm , see Section 8.2.1. Also we hope to  improve the 

robustness and com pactness of our model by using alternative clustering algorithms, 

and we plan to  involve probability  estim ation in the cut-off level detection.



Chapter 7 

A utom atic P art-B ased  D ata  
D ecom position

7.1 Introduction

In the previous C hapter we presented prom ising results of applying a novel dynamic 

model described in C hapter 5, to  real world data. This model is general and does 

not require any a priori knowledge of the input data. But it is well known th a t to 

get maximal accuracy in d a ta  modelling we can use an algorithm  which is specifically 

created to analyse a particu lar d a ta  set, i.e. an algorithm  based on a priori data  

knowledge. In this case we can keep as many d a ta  features as we want for an appli

cation, even if they are not generally significant. For example, in the talking head 

application, the hierarchy developed there may utilise sets of features in a variety 

of combinations, depending on the  user’s purposes. The top level of the hierarchy 

may seek to capture the m ain modes of variation of the complete data. O ther levels 

may be used to  model specific relationships between certain features, such as specific 

interactions of speech w ith facial regions (e.g. lower face, lips, eyebrows). Such a 

model has proven to  be robust in tracking facial features and also resynthesising new
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video-realistic faces [28].

T h e  principal difficulty in creating such models is in determining which parts 

should be used, and identifying examples of these parts in the training data. The 

task  of finding p a tte rn s em bedded in d a ta  is a popular research field in computer 

science [13, 59, 83].

N onnegative m atrix  factorization (NMF) [80] is a promising tool in learning the 

parts  of objects and images. NMF imposes non-negativity constraints in its bases 

and coefficients. These constraints lead to  a parts  based representation because they 

allow only additive, not subtractive, combinations. Later in [62] Hoyer presented 

Sparse non-negative m atrix  factorisation (sparse NMF) with an adjustable sparse

ness param eter. This allows the  discovery of parts-based representations th a t are 

qualitatively  better th an  those given by the basic NMF. Because of its parts-based 

representation property, NM F and its variations have been used in image classifica

tion [16, 50, 51, 53], face expression recognition [17], face detection [21], face and 

object recognition [85, 86, 105].

In  all of the above papers the  num ber of d a ta  parts  was quite large and was 

chosen manually. Here we propose using intrinsic dimensionality estim ation (see 

Section 2.3 for more details) to  find the correct num ber of parts. Thus we catch the 

most im portan t intrinsic features in order to  model them  further as da ta  parts in our 

m ethod.

T h e  novelty of the proposed m ethod is th a t we use NMF for autom atic da ta  mask 

construction to  separate the  d a ta  into the most significant parts. Our m ethod is fast, 

efficient, autom atic and does not require any additional parameters. We do not use 

any a  priori information about the data. We consider the construction of our model in
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Sections 7.2, 7.3, 7.4 and dem onstrate the effectiveness of our algorithm by applying 

it to  different d a ta  types: talking head data, emotional head data  and articulated 

hum an motion d a ta  in Section 7.5. Finally, the conclusions are given in Section 7.6.

7.2 D ata Preprocessing and Parameter Setting

Initial d a ta  for our partia l d a ta  representation algorithm  can be represented by raw 

d a ta  vectors (images as an example), or by a param eterised data  model. The output 

generated is a mask identifying different d a ta  parts: the data  elements labelled with 

p a rt numbers.

This algorithm works best w ith aligned d a ta  obtained from a sequence of obser

vations. As we explored in our experim ents, the m ethod is not very suitable for 

separation of images of highly articu lated  objects or objects viewed from significantly 

different viewpoints into parts  because such issues can badly distort the resulting 

mask.

A normalisation step is needed to  make the patterns of interest more evident. D ata 

norm alisation is provided as a preprocessing step before NMF, in the same manner 

as in Li et al. [83]. Basically, we perform a standard  d a ta  normalisation procedure 

w ith additional constraints to  avoid having any exact zeros and excessively large data 

values.

At the first step of our algorithm  we estim ate the number of data  parts. We choose 

th is num ber to be the same as the intrinsic dimensionality of the da ta  manifold. 

We use the k-NN (k nearest neighbours) m ethod described in [29] to estim ate the 

intrinsic dimensionality. In th is m ethod the dimension is estim ated from the length 

of the  minimal spanning tree on the  geodesic NN distances computed by the Isomap
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algorithm  [118]. To au tom ate  the k-NN method we choose the number of nearest 

neighbours using our algorithm  described in Section 3.5.

7.3 C onstructing M odified Sparse NM F

Classical NMF is a m ethod to  obtain a representation of data  using non-negativity 

constraints. These constraints lead to  a  part-based representation because they only 

allow additive, not subtractive, combinations of the original d a ta  [80]. Given initial 

da ta  expressed by an n x m  m atrix  X , where each column is an n-dimensional non

negative vector of the original d a ta  (m  vectors), it is possible to  find two new matrices 

( W  and H)  in order to  approxim ate the original matrix:

Xij  «  (7.3.1)

The dimensions of the factorised m atrices W  and H  are n x r  and r x m  respectively. 

Each column of W  contains a basis vector while each column of H  contains the weight 

needed to  approximate the  corresponding column in X  using the bases from W.

Given a data  m atrix  X , the optim al choice of m atrices W  and H  is defined to 

be those nonnegative m atrices th a t minimise the reconstruction error between X  and 

WH.  Various error functions have been proposed [81], the most widely used one is 

the squared error (Euclidean distance) function

E(W,  H ) =  ||X  -  W H f  =  (7.3.2)

However, the additive parts  learned by NMF are not necessarily localised, as was 

pointed out by Li et al. in [83]. To obtain a meaningful partial representation we 

want to restrict the energy of each NMF basis to the most significant components
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only. Therefore we use sparse NMF [62] which proves to be more appropriate in 

part-based object decom position th an  original NMF.

In sparse NMF the objective (7.3.2) is minimised under the constraints th a t all 

columns of W  and rows of H  have common sparseness aw  and crH respectively. The 

sparseness ct(x ) is defined by the relation between the Euclidean norm ||. ||2 and 1-norm 

||a:||i :=  £* | xt \ as follows

rz: _  IMIi

CT(I) := (7-3-3>
if x £ Rn \  0. Since l | |x | | i  <  | | ^ | | 2  <  \\x \\i equation (7.3.3) is bounded 0 <  a(x) <  1. 

In particular, cr(x) =  0 for minimal sparse vectors w ith equal non-zero components, 

and a(x) =  1 for maximally sparse vectors w ith all bu t one vanishing components.

7.3.1 Sparse N M F M odification: R andom  Acol initialisation

It is well known th a t good initialisation can improve the speed and the accuracy of 

the solutions of many NMF algorithm s [128]. Langville et al. [77] proposed random 

Acol initialisation as an inexpensive and effective initialisation technique. Random 

Acol forms an initialisation of each column of the basis m atrix W  by averaging p 

random columns of X .  We use the random  Acol technique for our modified sparse 

NMF instead of a random  initialisation.

So far, we have three unspecified param eters in our method: initialisation pa

ram eter p  and sparseness param eters %  and cr#. To autom ate the algorithm we 

set p =  [—]. We learn useful features from basis W  and leave the sparseness of H  

unconstrained. For all our experiments we set crw  to 0.78 for simplicity. For more 

accurate estim ation of the sparseness one can use the method described in [58].
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Figure 7.1: Features learned from the ORL database using sparse NMF

7 .3 .2  S p a r s e  N M F  M o d if ic a t io n :  E a r t h  M o v e r ’s D is ta n c e .

Figure 7.1 shows the exam ple of sparse NM F basis from the Hoyer paper [62]. It 

can  be seen th a t there are significant sim ilarities among the learned bases. Guillamet 

and  Vitria proposed th a t the E a rth  m over’s distance (EMD) is be tter suited to this 

problem  because one can explicitly define a distance which will depend on the basis 

correlation [52].

EMD can be s ta ted  as follows: let I be a set of suppliers, J  a set of consumers 

and  dtJ the cost to ship a unit of supply from i €  I  to  j  €  J . We define dij as the 

Euclidean distance. We want to find a set of f tj th a t minimises the overall cost:

dis t (x , y)  =  minEiziHjejdi j  f a  (7.3.4)

subject the following constraints:
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fij  >  0 ,X i>  0, yj >  0 ,i  €  / ,  j  £ J  

^   ̂fij — Vj> J ^  <7
i€l

^   ̂fij ^  3Ciii £ 7 
j £ J

H i ^ j t j d i j f i j  — Tni7i(Yji£]Xi ,

where ir* is the  to ta l supply of supplier i and yj is the to ta l capacity of consumer j .

We use EM D as the  distance m etric instead the Euclidean distance to  avoid sim

ilarities between bases.

7.4 D ata Postprocessing: M ask Construction

After getting th e  modified sparse NM F basis we need to  analyse the  results. At this 

step we produce a m ask of the  d a ta  by construction of boundaries between the basis 

vectors.

We consider the  m ask construction for the images as it dem onstrates the result 

most clearly. However, our algorithm  can be used on a wide range of data. In the 

next section we describe postprocessing example for 3D human motion data.

Exam ples of the  modified sparse NMF basis are shown in Figures 7.3 and 7.6. 

Each of the  basis vectors represents a p a rt of the original image. There is substantial 

noise in each vector, and some vectors contain several separated parts.
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To a ttem pt to  rem edy th is we introduce the following procedure. First we consider 

each vector of the basis separately to  reduce the noise. We define a vector element as 

noise if a 7 x 7 pixel square centered at this element has any other pixels w ith zero 

values. After deleting such com ponents we label each nonzero basis vector component 

according to  its vector num ber and merge the vectors.

Next we use a region growing technique which is a basic yet effective method. 

Region growing [1] is a technique which begins w ith a seed location and attem pts 

to merge neighboring pixels until no more pixels can be added to it. Because of 

basis sparseness, we have a considerable am ount of pixels th a t were not assigned 

a label and now need one to  be allocated. These errors have to  be removed in a 

second postprocessing step. T he most dom inant regions, i.e. the regions w ith largest 

component values, are selected as seed regions for a region growing process. Region 

growing is implemented as a  morphological operation. A 3 x 3 square is moved over 

the merged basis. W hen a neighbor to  the point of interest (the center of the square) 

has a label assigned, the point of interest is checked for com patibility to  th a t region. 

In the case where it is found to  be com patible (i.e. all point neighbors belong to  the 

same basis label), it is assigned the label of the corresponding region. If there are 

conflicting regions, i.e. there  are different regions adjacent to  the point of interest, the 

largest region is preferred. This is also the case if the center pixel is already labeled.

W hen this process is completed, every pixel is assigned one of the possible basis 

labels, this completes our d a ta  partitioning algorithm.
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7.5 Experim ental R esults

In this section we evaluate how the  proposed algorithm processes several real world 

d a ta  sets w ith different characteristics. The first da ta  considered in Section 7.5.1 is the 

talk ing head. In this exam ple we show how our algorithm works with large images 

where d a ta  variation is concentrated mainly on a small region (mouth). Next we 

consider facial expression d a ta  w ith the d a ta  variation across the whole image. Section 

7.5.3 describes the m odel’s partitioning ability w ith 3D coordinates of a walking 

person.

7.5.1 Talking H ead D ata

T he algorithm described in the  previous section was tested on the da ta  from [28]. 

Initially, it was the video of a  speaker reading a tex t, recorded a t 25fps. The subject 

was recorded front-on w ith as little  out of plane head movement as possible.

We extract the tex ture  from each frame of the video as described in [28]. Figure 

7.2 shows examples of the texture. We perform  d a ta  norm alisation [83] to  improve 

th e  algorithm ’s convergence and to  make the patterns of interest more evident. The 

intrinsic dimensionality of the  d a ta  is chosen by the autom ated k-NN m ethod is eight. 

Setting the number of basis vectors to  8, we perform the second step of our algorithm. 

T he result of this step is shown in Figure 7.3. One can see parts  of the face there: 

eyes, cheeks, chin.

We use the postprocessing algorithm  described in Section 7.4 for autom atic basis 

analysis. Figure 7.4 shows the mask generated by our algorithm. It can be seen th a t 

the  autom atically constructed partitioning extracts the most im portant features of 

th e  face. We have an eyes region, three m outh regions (upper lip, lower lip, inside
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Figure 7.2: Talking head data: examples

Figure 7.3: Talking head data: modified NMF basis

part of the mouth), cheeks, chin, cheek bones and eyebrow regions. Such partitioning 

could be very useful for further data  analysis offering us a trade-off between keeping 

fine detail in the data and the large data  dimensionality.

7 .5 .2  F ac ia l E x p re s s io n  D a ta

For our next experiment we use data  sets from two different people. Each person 

performed several different facial expressions: happiness, sadness and disgust, see 

Figure 7.5 for the examples.

■
W

Figure 7.4: Talking head data: mask
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Figure 7.5: Facial expression data one (top) and two (bottom)

Unlike the talking head data, the facial expression data has lots of variation across 

the whole face. In order to see how our algorithm can deal with expressions, we 

apply it to each data set. As expected, both sets have the same estimated intrinsic 

dimensionality, equal to 6. Thus we obtain 6 modified sparse NMF basis vectors 

which are shown in Figure 7.6. The basis vectors for the facial expression data look 

similar to the vectors from the previous example. Because the mouth variation is not 

significant for this example, a vector representing this variation is missed here, while 

we had 3 mouth variation vectors for the talking head. Instead we have more vectors 

to represent other face parts which displayed greater variation in these data sets.

To analyse the modified sparse NMF basis we perform data postprocessing, as 

described in Section 7.4. The results are shown in Figure 7.7. Again, the results are 

natural and similar to the talking head mask, but with more attention paid to the 

general face details. For example, we extract a vector which represents a nose. Our 

algorithm extracts features which are significant for each particular data set.
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Figure 7.6: Facial expression data  one (top) and two (bottom): modified NMF bases

■ .

si
Figure 7.7: Facial expression data one (left) and two (right): masks
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7.5.3 M otion  D ata

Here we test our algorithm  w ith  two motion data  sets where the data  is represented 

by 3D coordinates. The first set consists of the motion of a walking person: two 

steps, tu rn  and one step  (249 fram es). The second set represents a two step motion 

w ithout tu rn  (179 frames). The initial feature param eters represent the coordinates 

of human body p a rts  (arm s, legs, torso) in 3D space. Each pose is characterised by 

17 points.

Following the preprocessing step  of our algorithm , we choose the intrinsic dimen

sionality [29], which is 2 for each set. After running modified NMF we get sparse 

basis sets for analysis.

We cannot apply the  postprocessing step from Section 7.4 because of the data 

type. Therefore we perform  postprocessing in a  different way.

We define th a t a 3D pose junc tion  point belongs to  the  basis in which this point 

has maximum summed basis coefficients. Figure 7.8 illustrates the  bases for bo th  sets. 

On the left hand side of Figure 7.8 one can see d a ta  partition ing  for the walking with 

turn. The first basis vector here is represented by the  torso and forearms, and the 

second is represented by legs and  shoulders. On the  right hand side of Figure 7.8 we 

show data  partitioning for the  stra ight walking. Here we have a different partitioning, 

which consists of two pieces as well. The first basis vector represents a motion of the 

right arm  and the left leg, while the  second basis vector represents the left arm, the 

torso and the right leg. Such partition ing  isolates variation in subregions from the 

rest of the body and provides a high degree of control over different body parts. For 

example, it is straightforw ard to  find out which part is responsible for moving the 

legs (the first case), or describes relationships between legs and arms movements (the
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second case).

700

Figure 7.8: 3D m otion d a ta  partition ing  - different bases are represented by different 
line drawing styles

7.6 Summ ary

We have described a new algorithm  for au tom atic  d a ta  decomposition using a modified 

sparse NMF basis analysis, in which the  num ber of basis vectors is selected to be the 

same as the  estim ated intrinsic dim ensionality of the data. Segmentation is then 

perform ed by applying region growing to  the set of basis vectors.

We dem onstrate  the algorithm ’s ability to  produce good partitioning of real data 

sets. In these exam ples we show th a t our algorithm  extracts the most im portant 

features for the particu la r d a ta  set. Such partitioning provides a powerful tool for 

autom ating  construction of parts  based d a ta  models.

In fu ture work we hope to  extend our algorithm  to more complex cases, such 

as highly a rticu la ted  objects. We also plan to  improve the postprocessing step by 

perform ing more advanced segmentation.



C hapter 8 

C onclusions and Future Work

This thesis investigates low dim ensional hierarchical modelling of high dimensional 

data. Here we give conclusions about our work, along w ith a discussion of future 

directions in related research fields.

8.1 Conclusions

The research presented in th is thesis was m otivated by the desire to  develop methods 

to  handle hierarchical modelling of high dimensional d a ta  w ith an unknown structure 

embedded in a low dim ensional subspace. We did not assume any a priori information 

from the data, so due to  the  complexity of the task  we suggested th a t the input high 

dimensional d a ta  fully represents its intrinsic topology.

We introduced a num ber of novel m ethods, which allow accurate modelling of 

the high dimensional da ta . The hierarchical model described here may be used for 

hierarchical d a ta  visualisation and classification, and the dynamic framework allows 

meaningful p a tte rn  ex traction  and recognition, as well as new d a ta  sequence genera

tion. Additionally, we developed a novel d a ta  partitioning m ethod to  work alongside 

existing specific models. All of these m ethods were tested on a variety of da ta  sets.
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We began C hap ter 3 by describing a non linear low dimensional subspace rep

resentation of the high dim ensional data. We addressed issues of the optim al input 

param eter setting for the  Isom ap algorithm , its back projection and new d a ta  sam

pling in the em bedded space.

In C hapter 4 we proposed a hierarchical d a ta  modelling m ethod for high dimen

sional da ta  w ith no a priori knowledge of the  underlying structure of the data. For 

the data  representation we employed the  m ethods presented in the previous Chapter.

In C hapter 5 we developed a dynam ic framework for the autom atic hierarchy 

construction algorithm . The m ethod utilised the model presented in C hapter 4 at 

the first stage and its construction did not involve any information from the input 

data. At the second stage of th e  proposed algorithm  we introduced dynamics by 

involving a HHMM which gives us the  possibility of extracting semantic patterns 

(i.e. subsequences) from the  d a ta  sequence and generating a new d a ta  sequence. 

Experim ental results presented in C hapter 6 dem onstrate the  approach is effective a t 

autom atically constructing efficient dynam ic models w ith a structure th a t naturally 

represents the underlying data. This allowed for more accurate modelling of the data 

for applications such as tracking and resynthesis.

In C hapter 7 we presented an additional p a rt to  our main methods, where we 

address the problem  of finding pa tte rn s  embedded in d a ta  w ith an unknown a priori 

structure. W ith  th is representation we can extract d a ta  pa tterns to  fit them  in 

the model based m ethods to  make these m ethods autom atic. This algorithm  has a 

broad range of a poten tia l applications, we illustrated this versatility by applying the 

algorithm to several dissim ilar d a ta  sets.
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In summary, our m ajor contributions are reiterated with respect to their appear

ance in the m ain body of the thesis:

•  The m ethod for the  au tom atic  selection of an optim al param eter value for the 

Isomap algorithm , presented in C hapter 3, which can be used w ith a wide class of 

input data, bo th  real and  synthetic. The optim al param eter for modified Isomap 

and Discriminant Isom etric M apping, can also be chosen using our method, in 

the same m anner as for Isomap. Also we can autom ate the k-NN m ethod for 

da ta  intrinsic dim ensionality estim ation [29] using our m ethod.

•  A new m ethod for hierarchy construction from C hapter 4, which can be applied 

to  several corresponding param eter sets of various high dimensional data. This 

method is fully au tom ated  and is easy to  implement, there are no additional 

configuration param eters required. The d a ta  representation as a  small set of 

Gaussians means allows efficient use of the clustering algorithm  to  divide data  

into groups. In itself the  algorithm  is useful for different purposes: for da ta  

visualisation, as a  d a ta  classifier and for generation of a new data.

•  In C hapter 5 we have presented a new autom atic m ethod for extraction of 

semantic pa tte rn s from a d a ta  sequence. We have shown th a t the patterns 

extracted by our algorithm  have a semantic meaning, and in p a tte rn  classifica

tion experim ents our m ethod perform s b e tte r than  other methods. Also we can 

synthesise a new d a ta  sequence using th is m ethod, as we have dem onstrated in 

C hapter 6.

•  In C hapter 7 we introduced a new autom atic m ethod for learning a meaningful 

sub-part representation from real world d a ta  w ith an unknown a priori structure.
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Such partition ing  provides a  powerful tool for autom ating construction of parts 

based d a ta  models.

Generally, we consider th is  research as a first a ttem pt to  autom atically learn 

hierarchical dynam ic precesses in high dimensional d a ta  with an unknown structure 

through fully au tom atic  HHMM. R ather th an  using hand crafted approaches to define 

the hierarchy, we used the  d a ta  processed through the hierarchical algorithm  to set 

the param eters of the  HHMM. We then  optim ised the model learning routine by 

introducing DBN w ith its inference procedures which allowed us to  estim ate the model 

param eters more effectively. Additionally, we created the d a ta  partial decomposition 

algorithm, which we plan to  incorporate w ith our m ain model in future work, see the 

following Section.

8.2 Future Work

Autom atic modelling of d a ta  w ith unknown structu re  is a challenging task. W hilst 

this thesis has presented solutions to  its im portan t aspects, there are necessarily gaps 

to be found in the framework th a t can be addressed in the  future. In this section we 

try  to spell out a few extensions th a t we are interested in pursuing in the near future.

8.2.1 R obust Isom ap A lgorithm  M odification

We constructed our model based on the assum ption th a t the input da ta  is well rep

resented in the high dim ensional space. However, in the case of some critical outliers 

on very noisy d a ta  manifolds the  results of our algorithm  may be unpredictable. In 

order to  overcome this problem , we created a new robust Isomap algorithm  modifi

cation prelim inarily presented in Table 8.1. By applying the network flow we hope to
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improve the a lgorithm ’s topological stability. At the same time, we improve Isomap’s 

ability to  recover the  d a ta  tra jec to ry  by dividing the distances between da ta  points 

into two categories: local and  transitive. This idea was inspired by the ST-Isomap 

modification reported  in [69], the  difference is th a t we introduce a network flow. Thus 

we try  to  improve the  two above issues w ith a single algorithm. Also we want to  make 

this algorithm  fully au tom atic  and  instead of tem poral blocks as in [69] we divide the 

general distance m atrix  into two: local and transitive. Currently, we choose Perturbed 

Minimum Spanning Trees (PM STs) [20] to  represent the local distances d/oca/, and 

work is carried out on choosing robust transitive distance d transitive to make distances 

between forthcoming clusters more obvious.

Input: N data  points in the  high-dim ensional input space X
Output: Coordinate vectors Yi in a  d-dim ensional space Y th a t best represent the 
intrinsic geometry of the  data.

1. Construct neighborhood graph, G (connect each d a ta  point to  all points within 
some fixed radius e, or to  all of its K nearest neighbors).
Compute m atrix D q =  d x { i , j )

i /• -\   /  dxiocal{}i j') ^  dxiocal(ij j }  ^  T fS 9 11
\  dx transit ive(^,J ) otherwise

dxiocai(hj) - Dissim ilarity m atrix  (i.e. diocai ( i , j ) =  m ax weight on the p a th  from
tO X j )

threshold r  =  yjxjj,0.975

2. Network flow

I  =  arg min Y D cix iiX j)

3. Apply MDS to / ,  construct d-dim ensional coordinate vectors, Yj.

Table 8.1: Robust Isomap algorithm
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8.2.2 D ynam ic M odelling of M ulti-Source D ata

There are m any m ulti-source d a ta  applications, like the talking head d a ta  w ith both 

video and speech, where several d a ta  types co-exist in time. In our future work we 

plan to  apply the m ethods presented in th is thesis to  dynamic algorithms for dual 

input data. Cosker in [26] constructed a D ual-Input HMM for talking head data, 

where he used HMM param eters, obtained after the video da ta  training, to  estimate 

new speech param eters. Since our statistical models are suitable for multi-source data, 

we can use this idea and apply  our algorithm s based on HHMM dynamic modelling 

to  estim ate a hidden d a ta  sequence from a new concurrent observation string.
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