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A bstract

Electroencephalography (EEG) and magnetoencephalography (MEG), which are two 

of a number of neuroimaging techniques, are scalp recordings of the electrical activity 

of the brain. EEG and MEG (E/M EG) have excellent temporal resolution, they 

are easy to acquire, and have a wide range of applications in science, medicine and 

engineering. These valuable signals, however, suffer from poor spatial resolution and 

in many cases from very low signal to noise ratios. In this study, new computational 

methods for analyzing and improving the quality of E/M EG signals are presented. 

We mainly focus on single trial event-related potential (ERP) estimation and E/MEG 

dipole source localization. Several methods basically based on particle filtering (PF) 

are proposed.

First, a m ethod using P F  for single trial estimation of ERP signals is considered. 

In this method, the wavelet coefficients of each ERP are assumed to be a Markovian 

process and do not change extensively across trials. The wavelet coefficients are then 

estimated recursively using PF. The results both for simulations and real data  are 

compared with those of the well known Kalman Filtering (KF) approach. In the next 

method we move from single trial estimation to source localization of E/M EG  signals. 

The beamforming (BF) approach for dipole source localization is generalized based 

on prior information about the noise. BF is in fact a spatial filter th a t minimizes the 

power of all the signals a t the output of the filter except those th a t come from the 

locations of interest. In the proposed method, using two more constraints than in the 

classical BF formulation, the output noise powers are minimized and the interference 

activities are stopped.

x v i



x v ii

PF is also introduced for E/M EG dipole source localization. PF, which can deal 

with the nonlinearity of the inverse problem, is capable of localizing and tracking 

E/M EG sources. This method is also combined with the BF approach and the re­

sults are compared with those of BF and recursive applied and projected MUSIC 

(RAP-MUSIC) techniques, which are well-established methods in E/M EG  source lo­

calization. The final work is devoted to spatiotemporal separation and identification 

of ERP subcomponents. This method simultaneously estimates the single trial ERP 

signals and localizes the sources. Variational Bayes implies tha t the ERP subcom­

ponent parameters can be estim ated separately. Therefore, ERP source locations are 

estimated using PF , source amplitudes and noise covariance matrices are estimated 

using a maximum likelihood (ML) approach, and latency and width of ERP subcom­

ponents are estim ated using the Newton-Raphson technique. The method is verified 

via simulations and also applied to an oddball paradigm to show its potential use in 

practical applications.



A cknow ledgem ents

I would like to thank Dr. Sanei and Dr. Wilding, my supervisors, for their many sug­
gestions and constant support during this research. Also, I am thankful to Dr. Evans 
and Dr. M uthukumaraswamy in Cardiff University Brain Research Imaging Centre 
(CUBRIC) for collecting and providing the real EEG and MEG data.

Cardiff, Wales Hamid R Mohseni
October 2009

xv iii



S tatem en t o f Originality

Chapter 4-7 of this thesis represent my original works to my best knowledge unless it 

is referenced or stated. In brief, these novelties stem from the following contributions:

C hapter 4: S ta te  Sp ace A pproaches for Single Trial E stim ation  o f E R Ps

Single trial estim ation of ER P is formulated in state space and its recursive solution 

is given using particle filter.

C hapter 5: D efla tion  B eam form ing for E /M E G  D ip ole  Source Localization

The classical beamforming is modified by incorporating multiple constraints to its 

minimization criterion. The solution can be considered as a generalization of pseudo­

inverse, maximum likelihood, beamforming, and beamforming with loading factor, 

which are well established methods for dipole source localization in E/M EG.

C hapter 6: D ip o le  L ocalization  and Tracking o f E /M E G  Sources via  Joint 

B eam form ing - R ao-B lackw ellized  Particle F iltering

Dipole source localization is formulated in state space and its solution is given using 

Rao-Blackwellized Particle Filter. Very similar approach has been published in [12]. 

Our paper, which was published in Sensor, Array and Multichannel Signal Processing 

Conference (SAM), 2008 [77], however, shows that these two independent studies have 

taken place in parallel.

The most im portant novelty of this chapter is the use of joint beamforming and

x ix



XX

Rao-Blackwellized particle filtering for E/MEG source localization, which improves 

the performance of the method compared to the Rao-Blackwellized particle filtering 

method.

C hapter 7: V ariation al B ayes for Spatiotem poral Identification  o f ER P  

Subcom ponents

A new model for tracking ER P subcomponent parameters is proposed and the solution 

for estimating param eters are given using particle filter, maximum likelihood, and 

Newton-Raphson techniques. The proposed model is more comprehensive than the 

available models, since it considers not only variable amplitude, latency, and width 

but also variable locations for ERP subcomponents.
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C hapter 1 

Introduction

Functional brain imaging is a relatively new and multidisciplinary research field 

tha t encompasses techniques devoted to a better understanding of the human brain 

through noninvasive imaging of the electrophysiological, hemodynamic, metabolic, 

and neurochemical processes. These imaging techniques are powerful tools for study­

ing neural processes in the normal and pathological brain functions. Clinical appli­

cations include improved understanding and treatm ent of serious neurological and 

neuropsychological disorders such as intractable epilepsy, schizophrenia, depression, 

and Parkinson’s and Alzheimer’s diseases.

Images of dynamic changes in the spatial distribution of brain metabolism and 

neurochemistry can be formed using positron emission tomography (PET). These 

images have spatial resolutions as high as 2mm. Temporal resolution, however, is 

limited to several minutes because of the dynamics of the processes being studied and 

photon-counting noise. For more direct studies of neural activity, local hemodynamic 

changes may be investigated. As neurons become active, they induce very localized 

changes in blood flow and oxygenation levels tha t can be imaged as a correlate of 

neural activity. Hemodynamic changes can be detected using PET [16], functional

1
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magnetic resonance imaging (fMRI) [113], and transcranial optical imaging [44] meth­

ods. Of these, fMRI is currently the most widely used and can be readily performed 

using a 1.5-7T clinical MRI magnet. fMRI studies are capable of producing spatial 

resolutions as high as l-3mm, however, temporal resolution is limited by the relatively 

slow hemodynamic response, compared to electrical neural activity. In addition to 

limited temporal resolution, interpretation of fMRI data is hampered by the rather 

complex relationship between the blood oxygenation level dependent (BOLD) changes 

and the underlying neural activity. Regions of BOLD changes in fMRI images do not 

necessarily correspond one-to-one with regions of electrical neural activity.

Among the available functional imaging techniques, electroencephalogram (EEG) 

and magnetoencephalogram (MEG) uniquely have temporal resolutions below 1ms. 

This tem poral precision allows us to explore dynamics of neural networks or cell as­

semblies th a t occur at typical time scales in the order of tens of milliseconds [83]. EEG 

and MEG (E/M EG ) are two complementary techniques that measure, respectively, 

the scalp electric potentials and the magnetic induction outside the head produced 

by electrical activity in neural cell assemblies. They directly measure the electrical 

brain activity and offer the potential for superior temporal resolution when compared 

to P E T  or fMRI. Sampling of electromagnetic brain signals at millisecond intervals is 

readily achieved and is limited only by the multichannel analog-to-digital conversion 

ra te  of the measurements.

1.1 A im  an d  O b jectiv es

There are drawbacks, however, tha t limit the application of E/MEG. One of the 

main drawbacks is the low spatial resolution. This is because of the fact that the
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E/M EG resolution is limited by both the number of spatial measurements and their 

location over the scalp. The only way to localize the putative electric sources in the 

brain is through the solution of the inverse problem, a problem that can only be 

solved by introducing a priori assumptions on the generation of E/M EG signals. The 

more appropriate these assumptions are the more trustable are the source estima­

tions. During the last two decades different such assumptions have been formulated 

and implemented in inverse solution algorithms. They range from single equivalent 

current dipole estimations to the calculation of three-dimensional (3D) current den­

sity distributions. Each approach uses different mathematical, biophysical, statistical, 

anatomical or functional constraints.

The main shortcoming of the current source localization methods is that the signal 

should be stationary during the time of processing. Here, using particle filtering (PF) 

new methods th a t can be applied to the non-stationary signals are proposed. The 

conventional beamforming (BF) approach for source localization is also extended 

when the location and covariance matrix of the noise is known. Furthermore, a new 

model for analyzing event-related potentials (ERP) is given and its parameters are 

estimated separately using different methods. In fact, this method is a single trial 

estimation th a t can also localize the source activities.

Another main drawback of E/MEG is its low signal to noise ratio. Conventional 

methods to improve ERP signal quality involve averaging time-locked segments of the 

EEG signals over many trials. These methods assume that the statistical parameters 

of the ERP waves of a given kind remain the same over time and the background EEG 

is a random process th a t is attenuated by averaging over trials. There is evidence, 

nevertheless, th a t ERP waves may vary considerably over time. Hence, along with
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many approaches for estimation of single trials, novel methods to investigate the 

variability of ERPs across trials are proposed.

Several techniques are proposed in this study and in the following, a brief overview 

of them  is presented.

1.2 T h e s is  O u tlin e

The layout of the thesis is as follows. In Chapter 2, an introduction to EEG and its 

acquisition and specifications is presented followed by a brief introduction to ERP 

and its application focussing on the P300 component. This chapter ends with an 

overview of MEG and its comparison with the EEG signals.

Bayesian filtering and mathematical frameworks for Kalman filtering (KF) and 

PF, which are the main bases of different proposed approaches in this study, are 

presented in C hapter 3.

In C hapter 4, an approach for estimation of single trial event-related potentials 

(ST-ERPs) using PF  is presented. The method is based on recursive Bayesian mean 

square estim ation of ERP wavelet coefficients, which are estimated sequentially by 

their previous estimates as prior information. To enable a performance evaluation 

for this approach in the Gaussian and non-Gaussian distributed noise conditions, 

Gaussian white noise (GWN) and real electroencephalogram (EEG) signals is added 

to the simulated ER Ps and the results are compared to tha t of KF approaches.

In C hapter 5, a deflation scheme based on BF for multiple dipole source local­

ization of surface E/M EG  data is considered. Two more constraints are added to 

the conventional BF formulation and a closed-form solution is given. The first con­

straint minimizes the power of the noise at the output of the BF. The solution can
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be considered as a generalization of pseudo-inverse, maximum likelihood, and loading 

factor methods which have been applied effectively for E/M EG source localization. 

By adding another constraint to the BF formulation, the identified dipoles are de­

flated and, simultaneously, the location of the next dipole is identified. This method 

is called deflation BF and is capable of detecting highly correlated sources, as well as 

sources with small power that are dominated by other sources. An iterative deflation 

and localization method is also proposed to improve the accuracy of the method.

In addition, in Chapter 6, a method based on Rao-Blackwellized particle filtering 

(RBPF) and BF for E/M EG dipole source localization and tracking is presented. 

The localization problem is formulated in state space and PF is employed to pro­

vide a  recursive nonlinear and non-Gaussian Bayesian solution. The use of Rao- 

Blackwellization in combination with PF improves the performance and reduces the 

com putational costs. In this approach, the nonlinear part of the model (location) is 

estim ated by P F  and the linear part of the model (the moments) is marginalized out 

and estim ated using KF. Further performance improvement can be obtained via joint 

beamforming-RBPF (B-RBPF). In this approach, it is assumed that the data is sta­

tionary within a window around the current time sample. RBPF and B-RBPF were 

applied to different kinds of simulated data and the results were compared with those 

obtained by using RAP-MUSIC and BF algorithms, which are two well-established 

methods for dipole source localization.

Finally, in Chapter 7 a novel method for the detection and tracking of ERP sub­

components from trial to trial is proposed. The ERP subcomponent sources are 

assumed to be electric current dipoles (ECDs) and their locations and parameters
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(amplitude, latency, and width) are estimated and tracked from trial to trial. Vari­

ational Bayes implies that the parameters can be estimated separately using the 

likelihood function of each parameter. Estimations of dipole locations, which have 

nonlinear relation to the measurement, are given by PF, estimations of amplitude and 

noise covariance matrix of the measurement are optimally given by maximum likeli­

hood (ML) approach, and estimations of latency and width of the Gaussian functions 

are given by Newton-Raphson technique. New recursive methods are introduced for 

both ML and Newton-Raphson approaches to prevent the divergence of the filtering 

in the presence of very low signal to noise ratio (SNR). The main advantage of the 

method is the ability to track the varying dipole locations.



C hapter 2 

Introduction  to EEG and M EG

In this chapter, an introduction to EEG and its acquisition is given first and then 

a brief review of ERPs focusing on the P300 component is presented. In the final 

section, MEG is introduced and compared with EEG.

2.1 E le c tr  oen cep h a logh y

EEG is the recording of electrical activity from over the scalp produced by firing 

the neurons within the brain. These electrical activities can provide records of brain 

activity a t any reasonable scale of temporal resolution. In comparison with the other 

neuroimaging techniques, EEG can be acquired easily and inexpensively. Because of 

these advantages, it has been widely employed in human monitoring and research by 

workers from different fields. For instance, EEG has been used for clinical diagnosis 

of epilepsy. It has also attracted engineers to provide a method for interfacing brain 

and machine, which can improve the life style of disabled people. In addition to the 

medical applications, EEG has been recently employed in game industries and many 

commercial products based on EEG have been produced.

7



2.1 .1  EE G  A dvantages and L im itations

EEG has several advantages as a tool for investigation of the brain activities. For 

instance, EEG is non-invasive, convenient to acquire and inexpensive. EEG also 

has a high temporal resolution compared to other techniques such as fMRI and is 

capable of detecting changes in electrical activity in the brain in a millisecond time 

scale. Furthermore, EEG measures the brain’s electrical activity directly, while other 

m ethods record the changes in blood flow (e.g., SPECT, fMRI) or metabolic activity 

(e.g. PET), which are indirect markers of brain electrical activity.

EEG has several limitations. The most important one is its poor spatial resolution 

which is limited by the number and location of the electrodes. Another important 

lim itation is th a t some particular sets of neurons make more contribution to EEG 

signals (those which are located in the superficial layers of cortex and generate radial 

currents toward the skull) than the others (those which are located in deep structures 

such as the hippocampus and produce currents tangential to the skull).

2 .1 .2  E E G  A cquisition

In conventional scalp EEG, the recording is obtained by placing silver/silver chloride 

electrodes on the scalp using a conductive gel or paste, usually after preparing the 

scalp area by light abrasion to reduce the impedance. Electrode locations and names 

are specified by the international 10-20 system in most clinical and research applica­

tions. An example of the electrode locations and names in a two-dimensional map 

has been shown in Fig. 2.1.

E xtra electrodes are sometimes used for the measurement of EOG, ECG, and EMG 

of the eyelid and eye surrounding muscles. In the available recording, two electrodes
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were placed above and below the eye for vertical EOG (VEOG) and two others placed 

left and right of the eye for horizontal EOG (HEOG). VEOG and HEOG usually are 

used as a cue to remove eye blink and movement related artifacts from the signals.

Figure 2.1: Scalp electrode positions in a 10-20 system used for recording the available 
da ta  set.

As an example in epilepsy surgery, it may be necessary to insert electrodes near the 

surface of the brain. This is referred to as electrocorticography (ECoG), intracranial 

EEG (I-EEG) or subdural EEG (SD-EEG). The ECoG signal is processed in the 

same manner as digital scalp EEG, with a couple of caveats. ECoG is typically 

recorded a t higher sampling rates than scalp EEG because of the requirements of 

Nyquist theorem - the subdural signal is composed of a higher predominance of higher 

frequency components. Also, many of the artifacts which affect scalp EEG do not 

impact ECoG, and therefore the linear filtering in preprocessing stage is often not 

needed.
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2.1 .3  R eferencing

Electric potentials are defined only with respect to a reference, i.e., an arbitrarily 

chosen zero level. The choice of the reference may differ depending on the purpose of 

the recording and has to be selected in advance. In referential montage, each channel 

represents the difference between a certain electrode and a predefined reference elec­

trode. There is no standard position at which this reference is always placed. Midline 

positions are often used since they do not amplify the signal in one hemisphere versus 

the other. In this work, the Fz (midline frontal) site as the reference is used in on­

line recording. This referencing was changed (off-line) to another popular reference 

called linked mastoids - a mathematical average of electrodes attached to both left 

and right mastoids. With digital EEG, all signals are typically digitized and stored 

usually w .r.t a particular referential montage and the signals using other montages 

can be mathematically constructed.

Another type of montage is average reference montage, which is especially useful 

for localization of the sources. In this montage, the outputs of all of the channels are 

averaged, and the averaged signal is used as a common reference for each channel.

2 .1 .4  P rep rocessin g

A linear bandpass filter is usually used to remove the noise. Typical settings for the 

highpass and lowpass cut-off frequencies are 0.5-1 Hz and 35-70 Hz, respectively. The 

highpass part typically filters out the slow artifacts, such as electrogalvanic signals 

and movement-related artifact, whereas the lowpass part filters out the high-frequency 

artifacts, such as electromyogram signals. An additional notch filter is sometimes 

used to remove the artifact caused by electrical power lines (50Hz in Europe). In
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the available recording, the frequency bandwidth of the linear bandpass filter was 

0.03-40Hz and the sampling rate was set to 250Hz. The data are digitized using a 16 

bit analog to digital convertor with 250Hz sampling rate which satisfies the Nyquist 

theorem for an EEG with a bandwidth within 0.03-40Hz.

During the recording, EEG signals undergo slow shifts over time such that the 

zero level might differ considerably across channels. These signal shifts can be due 

to brain activity, but can also be caused by sweating (in the case of EEG), muscle 

tension, or other noise sources. It would be therefore desirable to have a time range 

where one can reasonably assume that the brain is not producing any stimulus related 

activity, and tha t any shift from the zero line is likely due to noise. In most studies, 

this baseline interval is defined as several tens or hundreds of milliseconds preceding 

the stimulus - in the available data set, a 0.15sec pre-stimulus interval was used for 

baseline correction. For each recorded channel, the mean signal over this interval 

is computed, and subtracted from the signal at all time points. This procedure is 

usually referred to as baseline correction.

Eye blink is one of the major artifacts in a laboratory environment. In many 

applications of ERP, the recorded trials are visually inspected and those containing 

eye blink are removed from analysis. Another useful and semi automatic method, 

which has been used in the available data set, is independent component analysis 

(ICA) [112]. In this method, after applying ICA, the component(s) including eye 

blink are set to zero and they are back projected to obtain a set of eye blink-free 

EEG signals.
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2.2 E v e n t-R e la te d  P o ten tia ls

ERP is any measured brain response that is directly the result of a thought or percep­

tion. More formally, it is any stereotyped electrophysiological response to an internal 

or external stimulus. ERP experiments usually involve a subject being provided a 

stimulus to which s/he reacts either overtly or covertly. There are often at least two 

conditions th a t vary in some manner of interest to the researcher. As this stimulus- 

response is going on, an EEG is being recorded from the subject. The ERP is obtained 

by segmenting and averaging the EEG signal for each of the trials within a certain 

condition; averages from one stimulus-response condition can then be compared with 

averages from the responses from other stimulus.

There is considerable interest in the EEG techniques concerned with ERP record­

ing and analysis since they deal with brain functional and mental abnormalities and 

can be used as indicators of cognitive processes and dysfunctions which are not ac­

cessible in behavioral testings.

2.2 .1  P 3 0 0

In this section P300 which is a well-known ERP component is explained. This com­

ponent is used to  validate the proposed methods in this thesis. P300 is a positive 

wave th a t occurs approximately 300ms after a rare or task-relevant stimulus, which 

can be auditory, visual, or somatosensory. P300 is the most widely used ERP because 

of the relatively large amplitude (5 — 20/xV) and easy acquisition.

The paradigm  used to elicit a P300 is the presentation of unexpected and infre­

quent stimuli randomly interspersed between frequent stimuli to an attentive sub­

ject [104]. In this paradigm, labeled as oddball, the subject usually has to classify the
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stimuli, i.e. to count the infrequent target, or to press a button whenever an infre­

quent stimulus occurs. An example of auditory oddball paradigm in which frequent 

and infrequent tones are presented to participants has been shown in Fig.2.2.

ODDBALL
P300

/
E asy  Stim ulus 
Discrim ination

rS

s

Figure 2.2: Oddball paradigm. Left: auditory sequences in which S refers to frequent 
tones and T refers to infrequent tones. Right: thick line is the result of averaging for 
the infrequent tones and thin line for the frequent tones.

The amplitude of P300 is inversely related to the stimulus occurrence probability 

and directly related to the task difficulty. The latency of P300 correlates to some 

extent with categorization or evaluation of the stimulus and consequently is related 

to the task difficulty. Concerning subject parameters, the latency of P300 shows 

a positive correlation with age and negative correlation with level of attention and 

vigilance. For more detailed information on P300 the reader may refer to a number 

of comprehensive reviews [18, 28, 50].

The topography of P300 recorded by surface electrodes shows a maximum over 

the midline of centro-parietal regions (Pz site). The generator sites of the P300 are 

not known with certainty, but the available data leads to the conclusion that several 

cortical and sub-cortical structures contribute to this positive wave [87].

In clinical studies a prolongation of the latency has been reported in dementia [36], 

Parkinson’s disease [105], Huntington’s disease [43] as well as in patients with chronic 

renal failures and head injuries. In addition, a diminution of amplitude has been
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reported in schizophrenics [93], in depressed patients, and in chronic alcoholics [17]. 

Note th a t many of these findings are restricted to the group of patients and they can 

not be used to detect individual dysfunctions.

P 300  subcom ponent

The origin and number of responsible sources of P300 are unknown, however, it 

is assumed P300 has two subcomponents: P3a and P3b. There is good evidence to 

believe tha t P300 subcomponents arise from interactions between frontal and parietal 

neural sources - P3a is in frontal and P3b is in parietal loci. There is also localization 

work which justifies this assumption that the P300 data can be modeled accurately 

by sources placed in anterior and in posterior-parietal cortex [42],

2.3  M a g n eto en cep h a lo g ra m  and  its  C om parison  w ith  

E E G

MEG is an imaging technique used to measure the magnetic fields produced by elec­

trical activity in the brain via extremely sensitive devices such as super conducting 

quantum interference devices (SQUIDs). These measurements are commonly used 

in both research and clinical settings. There are many uses for the MEG, including 

assisting surgeons in localizing a pathology, assisting researchers in determining the 

function of various parts of the brain, neuro-feedback, and many others.

Although EEG and MEG are generated by the same neurophysiologic processes, 

there are im portant differences concerning the neurogenesis of MEG and EEG [17].

In contrast to electric fields, magnetic fields are less distorted by the resistivity of
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the skull and scalp, which results in a better spatial resolution of the MEG. As 

electric and magnetic fields are oriented perpendicular to each other, the directions of 

highest sensitivity, usually the directions of the field maxima, are orthogonal to each 

other. Whereas scalp EEG is more sensitive to radial than tangential components of 

a current source in a spherical volume conductor, MEG detects only its tangential 

components. This shows that MEG selectively measures the activity in the sulci, 

whereas scalp EEG measures activity both in the sulci and at the top of the cortical 

gyri but appears to be dominated by radial sources.

Scalp EEG is sensitive to extracellular volume currents produced by postsynaptic 

potentials, MEG primarily detects intracellular currents associated with these synap­

tic potentials because the field components generated by volume currents tend to 

cancel out in a spherical volume conductor [7]. The decay of magnetic fields as a 

function of distance is more pronounced than for electric fields. MEG is therefore 

more sensitive to superficial cortical activity, which should be useful for the study of 

neocortical epilepsy. Finally, MEG is reference-free which is in contrast to scalp EEG 

where an active reference can lead to serious difficulties in the interpretation of the 

data.

Despite the above differences between EEG and MEG data, the mathematical 

formulation of both data  provided in this thesis is the same, and the proposed method 

can similarly be applied to both data. Throughout this thesis, therefore, E/MEG 

abbreviation which stands for both EEG and MEG data is used. Depending on the 

application, however, the proposed methods are applied either to the real EEG or 

MEG data.



C hapter 3 

Single Trial Estim ation and D ipole  

Source Localization for E /M E G : a 

L iterature Survey

This chapter is devoted to the literature survey of two major approaches for E/MEG 

signal processing. The first approach is single trial estimation and the next is dipole 

source localization. In addition, in Section 3.3 mathematical theory of KF and PF, 

as the foundations of proposed approaches in the following chapters, are presented. 

Throughout this thesis, plain italics indicate scalars, lowercase boldface italics indicate 

vectors, uppercase boldface indicates matrices and tiled uppercase boldface indicates 

higher order matrices.

16
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3.1 S in g le  T rial E stim a tio n  o f E R P s

Conventional methods for analyzing ERPs typically involve time-locked averaging 

over many trials. The assumption underlying this approach is that the background 

EEG as a random process is attenuated by averaging, if the results of averaging is to 

be an accurate reflection of the activity elicited on individual trials, the positive- and 

negative-going ERP modulations (components) for all the trials must have the same 

onset latencies, durations, and amplitudes. Recent studies have indicated that there is 

single-trial variability in ERPs due to environmental and cognitive factors that might 

include fatigue, habituation, and changes in levels of attention [51]. These factors are 

of course not mutually exclusive, but the key point here is that the ST-ERP enables 

capturing the changes in the signals of interest due to neurophysiological changes, 

which are lost when using conventionally averaged measures. Therefore, researchers 

in the signal processing community have proposed a number of mathematical meth­

ods to extract the ER P information as much as possible. The proposed approaches 

for detection of ERP parameters (basically amplitude and latency) can generally be 

categorized into single- and multi-channel based methods. In the following sections 

an overview of m ajor approaches in each category is presented.

3.1.1 S in g le-C h an n el Single Trial E stim ation

There are numerous studies reporting approaches in the past three decades for ERP 

detection and tracking using only one channel. Several of these approaches are cate­

gorized below based on the models used in their estimation.
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The simplest model for the ERP can be

y* =  sfc +  v fc (3.1)

where and Sfc are the measured EEG and the ERP at the A;th trial, respectively, 

and Vfc is the additive noise. If it is assumed that Sfc remains constant from trial 

to trial and the noise Vfc is Gaussian zero mean, the result of ensemble averaging of 

yfc over a number of trials is an optimum solution for Sfc and also can be considered 

as the ML estimation. However, in the laboratory environment, Vfc is generally the 

background EEG which is a non-stationary and non-Gaussian noise.

Pioneering studies such as [70] employed a time-invariant linear minimum mean 

squared error filter to estimate Sfc in equation (3.1) based on the auto- and cross­

covariance values of the background EEG (as noise) and ERPs (as signals of interest). 

Time-varying [122] and Wiener [13] filtering are the other approaches that have been 

widely utilized. The fundamental problem in these methods, however, is obtaining 

an estim ator for the cross-covariance matrix between the data Sfc and the noise Vfc. 

Another intensively studied technique for estimation of Sfc based on equation (3.1) 

is adaptive filtering. Most attention has been paid to the use of least mean square 

(LMS) algorithm  in the filtering problem (e.g. [14] and [106]).

The pitfall of such approaches, however, lies in considering the ERP signal as 

a stationary process: ERPs are superpositions of transient responses with changing 

temporal and spectral components.

The next model for ERP is

y k =  s(t + Tk) + v k (3.2)
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Here only the latency rk is varying and shape of ERPs are constant. Equation (3.2) 

is the most utilized model in analyzing ERPs after the model in equation (3.1).

Peak picking [9] is a straightforward method for finding the latency variability 

(jitter). This method simply looks for the largest positive peak in the ERP component 

time interval in the lowpass filtered trials. The latency of this peak is then considered 

to be the single-trial latency.

A well-known approach for ST-ERP estimation based on equation (3.2) has been 

proposed by Woody [118]. His approach was to cross correlate a predetermined tem­

plate against a sequence of samples of the response in order to estimate the signal 

latency. The individual responses were then corrected for their average latency varia­

tions and an average response computed. The Woody technique results in an average 

signal which is obtained by removing the estimated latency variation before aver­

aging. Although this method of analysis represents a significant step forward over 

conventional averaging, some information inherent in the signal, such as independent 

shifts in latency and am plitude in the components of the individual responses are still 

buried in the noise.

Similarly, in [86] the ML estim ator of the model in equation (3.2) in the frequency 

domain was formulated yielding estimators for latency variability.

In [48] the performances of the above three methods ([9, 118, 86]) as well as an 

extension of the la tter method were studied. Performance of all methods critically 

depended on the signal-to-noise ratio, however, there was some advantage for the 

more sophisticated methods (particularly [86] and its extension), when signal-to-noise 

ratios were in the realistic range.
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In the next model ERPs have invariant shapes, while their latencies and ampli­

tudes can vary across trials. These assumptions results

where ak is the amplitude of ERP component at the kth. trial. The ML estimation of 

this equation has been given in [47]. A restriction of this paper is tha t it is based on 

the assumption of uncorrelated background noise, whereas it is known for instance 

tha t the alpha rhythm  is both temporally and spatially correlated over channels (e.g. 

[80] and [81]). Moreover, in [107], Truccolo et al. demonstrate that neglecting trial- 

to-trial shape variations results in an estimate of the background noise of which the 

variance is non-stationary over the time interval of interest.

In the next model the ERP at each trial is assumed to be superimposed of several 

components:

where q is the number of components. Each component is assumed to have a trial- 

invariant waveform, but a trial-dependent amplitude scaling factors and latency shifts. 

A maximum a posteriori (MAP) solution of such a multi-component ERP model via 

an iterative algorithm is presented in [108]. The method is called differentially variable 

component analysis (dVCA). The dVCA method is implemented in the time domain 

and due to the matched-filtering operation in the method, the white noise assumption 

may affect the performance of the estimator.

The frequency-domain solution of the dVCA method has been carried out in [119]. 

The ongoing activity is herein assumed to be an autoregressive (AR) random process.

y k = aks(t -I- T*) +  v fc (3.3)

(3.4)
t=l
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This assumption reduces the number of unknowns significantly and in contrast to the 

dVCA solution, the resulting ML estimator provides a certain solution.

There are several other studies which consider a linear observation model for ERP

as:

y k =  U 0 k +  v fc (3.5)

This model connects the vector of sampled measurements y k with the parameters 9k 

and the measurement errors v. H  is a matrix that does not contain parameters to 

be estimated and should be selected a priori. W ith a linear observation model the 

choice of the observation matrix H  has a significant role in ST-ERP estimation. For 

instance, to consider accurately any nonlinear part of the model such as latency may 

considerably increase the size of H.

A Bayesian approach for realizing a robust estimator for parameters of equation

(3.5) has been carried out in [53]. In this approach, using subspace regularization, the 

second-order statistical information extracted from a set of measured potentials was 

used to represent a priori knowledge in the estimation procedure. It was shown that, 

using this approach, the latencies of some ERP peaks can be estimated accurately. 

This approach does not, however, yield reliable estimates of peak amplitudes, mainly 

due to unpredictable fluctuations of the background EEG.

KF has also been employed for estimation of the ERPs based on equation (3.5) 

in [34]. One of the main advantages of the proposed method is considering the non- 

stationarity  of ERPs from trial to trial. The method uses, however, a trivial model 

assuming th a t H  is an identity matrix. Furthermore, the method utilizes the entire 

trial as the input to the filter and this high dimensional input would impair the 

performance of the filter. Likewise, Kalman smoothing has been applied to ST-ERP
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and the results compared with those of the conventional averaging method in [76].

O ther techniques employed for ST-ERP estimation include parametric methods [59, 

60], clustering analysis [38], matching pursuit [121], matched filtering [19, 94], and 

wavelet transforms [8, 68, 90].

It is noteworthy tha t all these techniques focus solely on characterizing the tem­

poral trial to trial signal variability and ignore spatial information whereby inefficient 

and less accurate estimates are achieved.

3 .1 .2  M u ltich an nel S ingle Trial E stim ation

Some of the approaches explained in the previous section for single channel have been 

extended to multichannel measurements. For instance, a multichannel extension of 

ML estim ator [47] for the model in equation (3.3) was applied in [22], where the 

ongoing brain activity was modeled with a stationary autoregressive (AR) time series. 

The estim ator accounts for spatially and temporally correlated background noise that 

is superimposed on the brain responses.

Furthermore, a multichannel extension of the dVCA method for the multiple com­

ponent model (equation (3.4)) has recently appeared in [57]. Multichannel subspace 

regularization [53] given for equation (3.5) has also been carried out in [91].

Other multichannel estimation of ERP includes principal component analysis 

(PCA) methods [3, 15]. It is evident that the performances of these methods are 

somehow limited by some signal source properties such as stationarity and these 

methods are also unable to retain their performance when the SNR is low.

ICA based methods [52, 61, 94] have also been widely exploited in ERP extrac­

tion [95]. These approaches, however, assume that the EEG sources are independent,
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which can be well violated in presence of intrinsic correlated noise sources.

Another im portant approach for single trial estimation is considering the spa- 

tiotemporal information of ERP data. Several methods have been devoted to this 

idea by modeling the ER P sources using the ECD model:

<7

Y* =  H(pw )M fcii(ptjj) +  N* (3.6)
1 = 1

where p k i and are the location and moments of the zth ECD at the A;th trial, 

respectively. N*, is the spatiotemporal additive noise at the kth  trial. Moment is 

a m atrix th a t shows the strength and orientation of the ECD in three dimensional 

space for each trial.

In [23] and [97] spatiotem poral measurements are incorporated in a spherical head 

model using the ECD model in equation (3.6). The dipoles are assumed to have fixed 

locations and orientations, whereas their strengths are allowed to change in time 

according to either a  parametric [97] or nonparametric [23] model. In [98] only the 

dipole position is fixed, and the orientation and strength are allowed to vary in time 

according to a param etric model. A method is also presented in [27] for spatially 

correlated noise between the sensors with unknown spatial covariances. Similar to 

this approach, a m ethod was presented in [80], in which the noise covariance and the 

dipole param eters are estimated separately.

The main drawback of all of these spatiotemporal methods is that the dipole loca­

tions are assumed to remain the same during the course of recording. In Chapter 7, 

a method th a t can estim ate and track both the dipole moments and locations from 

trial to trial is proposed.
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3.2  E /M E G  D ip o le  Source L ocalization

Scalp-recorded E/M EGs suffer from relatively poor spatial resolution. The poor spa­

tial resolution motivates research into proposing methods that can localize accurately 

the E/M EG  sources. One strategy in source localization is distributed or tomo­

graphic source localization. In this method, the brain is divided into a number of 

small grid cells and the likely E/M EG activity for each grid cell is constructed. Since 

the number of unknown parameters is likely to be higher than the number of known 

measurements, the distributed source localization is generally an ill-posed and under­

determined problem. A popular strategy to overcome this problem is dipole source 

localization, which assumes th a t one or multiple current dipoles represent the sources. 

Physiologically, this assumption may not be strictly true, but this approach leads to 

an over-determined problem.

Dipole source localization is a difficult endeavor because of the nonlinear nature of 

the localization, (typically) a very low SNR for the E/MEG, and also the fact tha t the 

noise is spatially colored as well as temporally non-stationary. In the following, several 

approaches for the localization of scalp-recorded E/MEG are briefly reviewed and 

their strengths and weaknesses are highlighted. This review provides the background 

for key elements of the new approaches tha t are developed in the next chapters. Here, 

the methods proposed for tomographic source localization are ignored, and only the 

dipole source localization methods are reviewed. Readers may refer to reviews in [6] 

and [71] for details of several methods proposed for tomographic source localization.

In the presence of measurement errors, the forward model may be represented as 

y t =  ELi H(p«)mt(pJ +  v t , where y t is the multichannel measurement at time t , 

H  is the forward matrix, and v is the spatiotemporal noise. The goal is to estimate
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the current dipoles responsible for the scalp-recorded activity in terms of their three- 

dimensional locations p t and moments m ( at time sample t.

This problem is clearly a nonlinear minimization problem and the dipole locations 

(nonlinear part) can be found iteratively based on gradient descent algorithms. This 

technique, which is integrated in the brain electrical source analysis (BESA) [96] 

software, is the most commonly used method for localizing E/M EG sources [65]. A 

general risk of these methods is tha t they can be trapped in undesirable local minima, 

resulting in the algorithm accepting a certain wrong location. The complexity of the 

directed search algorithms and the problem of local minima both increase with the 

number of dipoles. Thus, the maximum number of independent sources which can 

be reliably localized for a given time point is lower than what would be in reality. 

To overcome this problem, the parameters of a multi dipole model can be reliably 

and conveniently estim ated using global optimization methods, which do not require 

initial estimates for the source locations. For instance, dipole fitting using simulated 

annealing has been presented in [35, 39], and using clustering and genetic algorithms 

has been carried out and compared in [109]. These techniques, however, do not 

necessarily obtain the global location maxima inside the head. The alternative grid 

based techniques described below avoid such problems and give dipole locations inside 

the head. In the grid based method, the brain is divided into sufficiently small grid 

cells and each grid cell is scanned to find the possible sources in a region of interest 

which can range from a small location to the whole brain volume.

A simple grid based method th a t has been described in [41] and [54] is least-squares 

fit, which computes the moments of each grid cell based on the Moore-Penrose pseudo­

inverse. The computed moment is used to construct a likelihood criterion based on the
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available measurements. These methods can either be applied to a single snapshot or a 

block of time samples. When applied sequentially to a set of individual time slices, the 

result can be used for moving and unconstrained dipole locations [117]. Alternatively, 

by using the entire block of data in the least-squares fit, the dipole locations can be 

fixed over the entire interval [97]. The fixed and moving dipole models have each 

proven useful in E/M EG and remain the most widely used approach to processing 

experimental and clinical data.

Another grid based technique which is well known in the E/MEG dipole source 

localization field is based on multiple signal classification (MUSIC) [79]. This tech­

nique provides suboptimal estimates using singular value decomposition (SVD) for 

multiple dipole locations by using a three-dimensional search. Recursively applied 

and projected MUSIC (RAP-MUSIC) [78] is an improvement to the MUSIC method. 

RAP-MUSIC deflates those sources tha t have already been identified by project­

ing the signal subspace away from the gain vectors corresponding to those sources1. 

RAP-MUSIC assumes, however, tha t the signal subspaces are completely indepen­

dent. This is the main drawback of the method. Fine principal vector (FINE) [120] 

is another extension of the MUSIC algorithm which employs projections onto a sub­

space tha t is spanned by a small set of particular vectors (the FINE vector set) in the 

estimated noise-only subspace (or the signal subspace) instead of the entire estimated 

signal subspace. The FINE vector set is identified as an intersection set between the 

signal subspace and the subspace th a t is spanned by the array manifold of a specific 

region surrounding the scanned point. The FINE approach is able to enhance spatial 

resolution and localization accuracy (relative to MUSIC and RAP-MUSIC) for closely 

*For more details reader may refer to Chapter 6.
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spaced neural sources [26].

It has been shown that a class of adaptive spatial filters known as beamformers 

has the best spatial resolution and performance amongst existing methods [21]. BF 

falls within array processing methods and has been used widely in communications 

and radar signal processing applications [110]. BF - its application for E/M EG dipole 

source localization is presented in [111] - provides an adaptive method which places 

nulls, using some linear constraints, a t positions corresponding to the noise sources2. 

The transient and often correlated nature of the neural activation in different parts 

of the brain often, however, limits the BF performance. Since E/M EG has variable 

sensitivity to source locations, the noise gain of the filter varies as a function of 

location. One strategy to account for this effect is to normalize the output power of 

BF with respect to the estimated power in the presence of noise only [92]. BF is robust 

to moderate source correlations, but sources that are strongly correlated are poorly 

resolved [6]. A modified beamformer method that circumvents these shortcomings by 

suppressing the activations from regions with interfering coherent sources has been 

proposed in [20, 46]. Modification of the source model has also been employed for 

reconstruction of correlated sources in [10]. Beamspace transformations for dimension 

reduction, which preserve source activity located within a given region of interest, 

have also been presented in [37].

A non-stationary Bayesian filtering method (particle filtering: PF) is a recent 

development in dipole source localization [101]. PF is an emerging methodology and 

is particularly useful for dealing with nonlinearity and non-stationarity of E/MEG 

data  [29]. The main disadvantage of PF  is the computational cost and the required

M athem atical details of this approach has been given in Chapter 5.
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memory which are exponentially related to the number of dipoles. In Chapter 6, 

a method based on the Rao-Blackwellized particle filter (RBPF), which effectively 

overcomes this problem, is introduced.

In several simulation and experimental studies, the importance of a priori knowl­

edge about the number and possible locations of the sources has been discussed [1, 31, 

72]. Thus, a key question tha t has to be answered is how to obtain a correct estimate 

of the number of sources. Often, this choice is based on the physiological knowl­

edge [11, 30]. Several other studies have proposed to define the number of dipoles 

based on other functional imaging data such as PET or fMRI [49, 33, 58]. However, 

this is not without risk given tha t the relationship between hemodynamic changes 

measured with fMRI and the electrophysiological changes measured with E/MEG 

is not yet well understood [25, 64]. A third alternative for defining the number of 

active sources is to use the available mathematical approaches that aim to identify 

the optimal number of dipoles over a given data period automatically [115, 116].

In the following sections, KF and PF as the cores of the approaches presented in 

the subsequent chapters are described in more detail.

3.3  F u n d a m en ta ls  o f  K F  and P F

Bayesian filtering methods, especially KF and PF, are fundamental approaches for 

several new directions in the current study. In this section an introduction to them 

is presented. First, a description of nonlinear tracking problem in state space is 

illustrated. The optimal solution to this problem is often intractable, and only when 

certain constraints are held, a solution can be given. The KF defined in Section 3.3.2 

is such a solution when the state  space is linear, and PF outlined in Section 3.3.3 is
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another solution when the state space is nonlinear.

3.3 .1  P rob lem  Form ulation in State Space

Suppose th a t the sequence y 1:t =  {yi,i  — 1 , . . . , £} is the observation of the system 

at time 1 ,2 , . . . , £ ,  and {x(, t G IN} is the state of the system at time t. The state x t 

is assumed to be Markovain process for which the new state is only subject to the 

previous state. Hence, the evolution of the state and the relation between the state 

and the observation are, respectively, given by:

where f t and ht are generally nonlinear functions of the state x t, and w*_! and v t are 

independent and identically distributed (i.i.d.) noise processes.

The aim of filtering is to estimate x t based on a set of all available observations 

y i:t =  {yo i =  1, . . . , £}  up to time t. By recursive calculation of the posteriori density 

function p (x t |y i:<) of state x t , the estimation of the state x* can be the expected value 

of posteriori density as:

-11 xt

Via Bayes theorem and assuming tha t the state x t and measurements y t are 

Markovain process, an available measurement y t at time t is used to recursively update

(3.7)

y t =  ht(xu v t) (3.8)

x tp{xt \yi:t)dxt 
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the posterior density of state [29]:

p(x t |yi:t) = ------7 -7 ------ v-----  (3.9)
p(y«|yi:t-i)

where p (x t | y i ) is computed in the prediction stage using the Chapman-Kolmogorov 

equation:

p(x t |y 1:*_i) =  /  p(xt |x t_1)p(xt_1|y 1:*_1)dxt_i (3.10)
J  all xt

and p(y*|yi:*-i) is a normalizing constant and depends only on the measurement 

model (3.8) and the statistics of the noise v t:

p(yt\yi-.t-i) = /  p(y*lxi:tMxt|yi:*-i)rfx*- (3.n)
J  all x f

Computing these expressions and recursions in many problems is intractable and it 

is not typically simple to compute the normalizing constant p(y t|y i:t-i), the marginal 

of posterior p(x t |y i:t_i) and in particular p(x*|yi:*) probabilities. This is because they 

require the evaluation of high-dimensional complex integrals. To solve this problem, 

a large number of papers and books have been devoted to obtaining approximations 

for these distributions [29]. Among different approaches, KF and PF are two major 

approaches to solve the recursive equations (3.9), (3.10) and (3.11). KF is especially 

useful for linear systems, and PF  has been widely reported as one of the best filters 

for nonlinear systems. In the following sections these algorithms are briefly reviewed.

3.3 .2  K alm an F ilter in g

In the KF, by making the following assumptions, the posteriori density becomes 

Gaussian, and only the mean and covariance matrices are calculated in each step.
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• f t and ht are assumed to be known and linear functions, so equations (3.7) and

(3.8), respectively, become:

(3.12)

y t = H*xt +  v t; (3.13)

• Random sequences w*_i and v f are assumed to be mutually independent zero 

mean white Gaussian noises with known covariances Qu, and Qv, respectively;

• Prior distribution p(x0) =  A7(xo; m 0, Po) (initial distribution) is considered to 

be Gaussian, where «A/"(x; m, P ) refers to a Gaussian distribution of x with mean 

m  and covariance P .

These assumptions cause the resulting distributions to be Gaussian as follows

where m jj and P a r e ,  respectively, the mean and covariance matrix of the con­

ditional pdf p(xi\yj). Using these assumptions, one can evaluate the optimal linear 

filtering equations in a closed-form. The above distribution parameters, therefore, 

can be calculated by the KF prediction and the update steps as:

p(x(-i|yi-i) = V(x(_i; 

p (x t |y t- i)  =  A/'(x(;m M_ i ,P 1,,_1) 

p (x t|y t) =  V (x t ; m I)t, P M)

(3.14)

(3.15)

(3.16)
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• Prediction step:

m M_i = (3.17)

P t.t-i =  Qiu +  (3.18)

• Update step:

mi,! =  m ,,,.] +  K ,(y, -  H ,m (jl_,) (3.19)

Pi,t = -  K tA , K j  (3.20)

where

A* =  H tP t^ -iH ^  +  Q v (3.21)

K , =  Pj,t_1H fH jS f1 (3.22)

are the covariance of the innovation term  y t — H tm t^-i and the Kalman gain, respec­

tively.

In the linear Gaussian environment where the state distribution is Gaussian, KF 

is an optimal solution. Also, considering any other distribution for states, the KF is 

the best linear estim ator in the presence of Gaussian white noise.

3.3 .3  P artic le  F ilters

PF is an emerging and powerful technique for sequential signal processing with a wide 

range of applications in array processing, target tracking and video processing. In PF,
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the posterior distributions are approximated by discrete random measures defined by 

particles {x(n),n  =  1, . . .  ,N ]  and their associated weights {w^n\ n  = 1, . . .  , iV}. The 

distribution based on these samples and weights at time t is approximated as:

N
p(x) S3 Y ,  ^ n)S(x -  x (n)) (3.23)

71=1

where 6 is the Dirac delta function. With this approximation, the expectation of 

function p(x) is
N

£{x}  R5 Y  “'<n)p(x(n)). (3.24)
71=1

If the particles are generated according to the distribution p(x), the weights are 

the same and equal to 1 /N .  W hen generation of the particles by direct sampling from 

unknown distribution p(x) is impossible, the particles are generated from a known 

distribution 7r(x) called importance density. This concept known as importance sam­

pling results in the following weights [4]:

»«“> «  ^  (3.25)7r(xfid) v ’

Suppose at time t the approximation of the posteriori distribution .p(x*|yi:*) sub­

ject to having p(xf_ i |y i:«_i) is desired. In other words, given the discrete random 

measure {xj” j, n  =  1, - - -, ^V} and the observation y t , particles and weights 

{x[n\  n =  1 , . . . ,  N }  should be estimated. If the importance density is chosen 

such that it can be factorized to

7r(xt |y i:t) =  7r(xt |x t_!, y i:*)7r(xt_ i|y i:t_i) (3.26)
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the new samples can then be generated according to the importance density 

7r(x*|xi”\ ,  y t) which depends on the old samples and the new measurements.

To update the new weights based on old weights, Bayes’ rule (3.9) is used to 

decompose the posterior density:

(3.27)

/ , x _  p(yt|xt)p(xt|yi:t-i)
p(x« yi:t) — ------ /---i-------\-----

=  p ( y d x t M x tlx t - i M x *-ilyi : t - i )  
p(y«|yi:t-i)

and equation (3.25) can be written as

<», a  Mxi--)ly l!, ) 28

|yi:()

By replacing (3.27) into (3.28) and using (3.26) the new formulation for estimation 

of weights are shown to be

(n)w) OC p(ytlxln))p(xin)lxi-i) 
pfytlyirt-O^^I^-i.yi:*) ,3 29x

x p(x t-ilyi=t-i)
7r(x i - l | y i : t - l )

Using equation (3.29) and considering the fact th a t p (y t|y i:t- i)  is a normalizing con­

stant, the new weights are updated as follows:

^  - a p ( y f  ; : ; y  x r 17T(X! Ixi-l,yi:t)



35

and thus, the filtered posterior density p(xt \yi:t) can be approximated as:

P(xt |yi:t) «  wtn)s(* ~  x |n)) (3-31)
n=l

where the weights are defined in (3.30). It can be shown that as TV —> oo, the 

approximation (3.31) approaches to the true posterior density p(x*|yi:*).

Resampling-. The importance sampling weights indicate the level of importance of 

the corresponding particles. A relatively small weight implies that the sample is drawn 

far from the main body of the posterior distribution and has a small contribution in 

the final estimation. Such a particle is said to be ineffective. If the number of 

ineffective particles is increased, the number of particles contributing to the estimation 

of states is decreased, so the performance of the filtering procedure deteriorates. This 

problem can be avoided by a resampling procedure. Resampling is a scheme that 

eliminates the particles with small weights and replicates those with large weights. 

Therefore, at the end of resampling, all weights are equal to 1/AT and the number of 

each particle denotes the importance of th a t particle.

A direct implementation of resampling would consist of generating N s i.i.d. vari­

ables from the uniform distribution, computing the normalized cumulative sum of 

them, and comparing them with the cumulative sum of normalized weights. In each 

step, if the cumulative sum of normalized weights is bigger than the cumulative sum 

of N s i.i.d. variables, a particle is produced.

Resampling can be involved in every fixed number of iterations (e.g. at each or 

every five steps of iterations) or it can be conducted dynamically [63]. In the dynamic 

method, an effective sample size is used to  monitor the variation of the importance 

weights of the particles, and consequently the need for resampling.
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In the following sections, sampling importance resampling PF (SIR-PF), which is

an im portant version of PF, is explained. SIR has been used throughout this thesis

and for convenience, PF  is used instead of SIR-PF.

SIR  particle filter

The choice of importance density is one of the most crucial issues in the design of 

PF  and plays a significant role in its performance. This function must have the same 

support as the probability distribution to be approximated. In general, the closer the 

importance density to the actual density, the better the approximation is. The most 

popular choice of the importance density is given by

^ (x tlx ^ j, y 1:*) =  p(x* |xK ) (3.32)

This choice results in SIR-PF which implies sampling from p(xt |x j"\). A sample 

can be obtained by generating a noise sample ~  AA(0, Q^) and setting x ^  =  

/t_ i(x [” j, w^” j). This choice of importance density implies that the particle weights 

in equation (3.30) can be updated by:

w*(n) oc wt("iP(y«|xJn)) (3.33)

where p(y t \x.[n )̂ is the likelihood function and depends on the measurement noise 

distribution.

In PF sampling from p (x f|x ^ \ )  is needed and a sample can be obtained by gen­

erating the noise sample ~  Af(0, Q,„) and setting x jr° =  wj"*,). Here,

V (0 ,Q „ )  is £t zero mc&n Gcrussi&n distribution with covcin&nce m&tnx .
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The importance density in PF is independent of the measurement and the state 

space is explored without any knowledge of the observations. This filter, therefore, 

can be inefficient and sensitive to outliers. However, PF does have the advantage that 

the weights are easily evaluated and the importance density can be easily sampled.



C hapter 4

S tate  Space Approaches for Single 

Trial E stim ation  of ERPs

4.1  In tr o d u c tio n

The objective in this chapter is to develop a reliable ST-ERP estimation method to 

detect and illustrate ERP amplitude and latency variability during the course of a 

recording session. The proposed method is based on PF whereby the approximate 

wavelet coefficients of ERPS are estimated recursively. The results of the proposed 

method in the same framework is compared to that of the method in which KF 

is employed as an estimator. Empirically, as will be discussed later, if a sufficient 

number of particles is chosen, P F  outperforms KF. PF also is a sequential method 

and can track variability of trials (as can KF), which represents an advantage over 

some other methods, in particular ML, ICA and DWT. However, in comparison with 

other methods, such as ICA, PF  does not use the spatial information, and compared 

to MAP estimation, PF does not use any prior knowledge about the measurements

38
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and may be sensitive to the outliers.

This chapter is organized as follows. First, the ST-ERP estimation in the state 

space is formulated. KF and PF, which were explained in Chapter 3, are recursive so­

lutions to this problem. In Section 4.3, the results are presented and the performance 

of the PF and KF methods are compared. Section 4.4 concludes the chapter.

4.2  P ro b lem  F orm u lation  in S ta te  Space

The performance of estim ators (PF and KF) in the state space is highly influenced 

by the dimension of the hidden state  vector x. In order to reduce this dimension, 

one could use DWT, which decomposes the signal into high (detail) and low (ap­

proximation) frequency contained coefficients by incorporating a set of predefined 

wavelets [69]. Considering th a t ERPs have relatively low frequency spectral compo­

nents with different temporal localizations, DWT has been recommended for denoising 

and dimension reduction in [67]. Therefore, let m  approximation wavelet coefficients 

of time locked measured ERPs in the kth  (k £ IN) trial be

y* =  [ y*(l) Vk(2) . . .  yk(m) ]T (4.1)

where [.]T denotes the transpose operation. By modeling the wavelet coefficients in 

the state space, the evolution of the state  x*. and the relations between the states and 

the measurements (wavelet coefficients of the measurement) are respectively given by

(4.2)
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y k = hk{xk, v k) (4.3)

where f k and hk are general functions, and v k are assumed to be zero mean GWN 

with known covariance matrices and Qv, respectively.

A widely used model for ERP estimation is the linear additive noise model. The

measurement equation (4.3) is then assumed to be of the form

Yfc =  x fc +  v fc (4.4)

where the state x k corresponds to the approximation of the wavelet coefficients of the 

activity tha t is related to the measured ERPs. The noise v k can be either assumed 

as GWN or the background EEG independently distributed from the ERPs. The 

purpose is to estim ate x k based on a set of available measurements y i :k =  {yi,f =  

1 , . . . ,  A:}, up to /cth trial. Thus, one can estimate the posteriori density function 

p(x.k |y i:fc) of state  x k, and the estimation of state x k will be the expected value of 

the posteriori density. Via the Bayes rule, the available measurements y^ are used to 

update the posterior density as

, , x p(y*|xib)/?(xjb|x*_i) / I x , .
p(Xfc|yi:fc) =  ---------  j------r-----p(Xk-l\yi:k-l)- (4.5)

p{yk\yi:k-i)

Therefore the approximate wavelet coefficients of ERPs, which have been smoothed 

by zeroing the detail coefficients, are sequentially estimated. ERPs are then recon­

structed by taking the inverse wavelet transform of the estimated approximate wavelet 

coefficients.

Since the transition from p (x fc- i |y i ;A:-i) to p (xk\y1:k) is often analytically in­

tractable, as mentioned in Chapter 3, KF and PF  are two major approaches to solve
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equation (4.5) recursively.

A lgorithm  1 Pseudocode for particle filtering

Set  k =  0 and generate random numbers according to a random uniform 
distribution.
f o r  k =  1 to T  do {T  is the number of trials}

- Generate  random numbers wjj.7̂  ~  Af{0, Qw) and set x j^  =  /(x £ l \ ,  w£^).
- Update new weights w^  =  Af(y*:|xj^, Qv).
- Norm alize  the weights E n = i wk ̂  ~  1-
- Resample  new N  particles x j^  from the x j^  with replacement

according to the importance weights w ( s e e  text).
- Set  win) = 

end f o r

In Algorithm 1, the pseudo-code of the PF for ST-ERP estimation is presented. 

Note th a t due to the resampling involved in each step of filtering, equation 3.33 is 

reduced to = p(yjfc|xJ^). Since the measurement noise v fc is zero mean GWN, the 

weights can be updated readily as Q*,), where A/"(a|/x, Q) denotes

the Gaussian density function with mean vector /z and covariance matrix Q, evaluated 

at a.

4 .3  E x p er im en ts  an d  R e su lts

In this section, comparisons between PF  and KF for simulated ERPs are given first. 

Then the results of applying both algorithms to real EEG measurements obtained in 

an odd-ball paradigm are reported.
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4.3.1 S im ulation  R esu lts

To generate a set of synthetic EEG data an approach similar to tha t introduced in [34] 

is employed. The simulated EEGs contained ERP components in the interval between 

0.2sec and 0.5sec post-stimulus. The sampling frequency and the number of trials were 

respectively set to 250 Hz and 60. These values were chosen in order to match those 

for the real EEG data  set to which the approach was applied subsequently. Two 

Gaussian functions (one positive and one negative) were used to simulate the ERPs. 

The amplitude, mean and variance of Gaussian functions represent the amplitude, 

latency, and width of the ERP components, respectively. The amplitude and latency 

of the positive peak were modeled to respectively decrease and increase linearly during 

the course of recording from trial to trial. GWN with different levels was added to 

both the amplitudes and the latencies. The amplitude and latency of the negative 

peak were assumed to vary according to a uniform random distribution which causes 

to have independent fluctuations from trial to trial. The widths of both positive and 

negative peaks were constant from trial to trial, however some normally distributed 

random variations were added to them.

For better assessment of the proposed algorithms, the GWN and real background 

EEG activities were considered as two different types of random noise. Hence, the 

signal-to-noise ratio (SNR) and the signal-to-background ratio (SBR) is defined as 

follows:

SNR = 1 0  log (4.6)
P g w n

SBR =  10 log (4.7)
-* background

where P  denotes the power of its subscript argument. The SNR represents the ratio
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of the strength of the simulated ERPs to that of the added GWN. The SBR is the 

ratio of the strength of the desired signal to the added background EEG. Due to the 

non-Gaussian nature and non-stationarity of the EEGs, SBR is expected to serve as 

a realistic criterion. The performance of the algorithms in the presence of each source 

of noise separately will be discussed later.

The Daubechies-5 wavelet was chosen for its simplicity and general purpose ap­

plicability in a variety of time frequency representation problems [88]. Three wavelet 

decomposition levels empirically are found to be appropriate for synthetic and real 

da ta  sets. In both algorithms, the covariance matrices for w*;_i and in the KF 

were as Qw = awI and =  avI, and in the PF were as =  qwI and Q v =  qvI, 

respectively (I is the identity matrix). crw, av, qw, qv are free parameters which are 

adjusted experimentally. These parameters determine the performance of the estima­

tor by a trade-off between the estim ator’s sensitivity and stability or by a trade-off 

between noise suppression and signal tracking. In the KF, only the ovfo w ratio is 

important, thus aw =  0.1 was chosen for computational convenience. In the PF qv 

and qw play different roles and their appropriate combinations can further reduce 

the error. The error is defined as the mean square error between the simulated and 

estimated ERPs. In this study, qw was fixed to 5 and only qv was adjusted. qw also 

was fixed to simplify the search for the best set of values tha t optimizes the criterion. 

Note that the performance of the method is better when both qv and qw are tuned 

than when qw is fixed.

The number of particles in the PF  approach was set to 10000. Decreasing the 

number of particles deteriorates the performance of the PF, and increasing the number 

of particles causes the computational cost to increase. The computational complexity
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of the PF is dependant on the number of particles, the number of trials and the 

number of samples in each trial. In contrast, the computational complexity of the 

KF is an order of the number of trials, and the number of samples in each trial. 

Therefore, the degree to which PF is slower than KF is approximately proportional 

to the number of particles. Both methods, however, can be applied successfully in 

real time processing (online) applications.

Fig. 4.1 shows a typical example for the simulated ERPs and their estimations 

using KF and PF methods. Fig. 4.1(a) depicts the superposition of noiseless ERPs 

in which the amplitude of the first peak increases while its latency decreases linearly. 

Fig. 4.1(b) shows the noisy ERPs (simulated EEG) when GWN and background EEG 

are added to the noiseless ERPs with SNR =  -5dB and SBR = -lOdB. Fig. 4.1(c) and 

Fig. 4.1 (d) show the ERPs extracted from the noisy data using KF and PF methods, 

respectively. The morphological features extracted by the PF were closer to the 

original noise-free ERPs than  those extracted by the KF. For instance, notice the 

increase in signal fluctuations in the KF method around 0.25sec. In Fig. 4.2, three 

ST estimations for trial numbers 5, 35 and 55 are shown. Figures 4.2(a), (c) and 

(e) demonstrate three different noiseless (thick line) and noisy (solid line) simulated 

ERPs. The figures show th a t the ERPs are highly contaminated by the two sources 

of noise (SNR =  -5dB and SBR =  - lOdB). Figures 4.2(b), (d) and (f) show the results 

of ST estimation of the noisy ERPs using the PF (solid line) and the KF (dashed 

line) methods. The PF  presents more accurate estimates for the peaks and troughs 

of the noiseless ERP patterns (thick line) than the KF.

Since neurophysiologists are primarily interested in peak parameters (amplitude 

and latency) here these features are carefully modeled in the synthetic ERP data.
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Figure 4.1: Superposition of simulated ERPs and their ST estimations SNR =  -5dB 
and SBR =  -lOdB; (a) simulated ERPs, (b) noisy ERPs (average in thick black line), 
(c) extracted ERPs using the KF method, and (d) extracted ERPs using the PF 
method. Notice that the PF estimates the ERPs very closely with respect to the 
original ERPs shown in (a).

The results shown in Fig. 4.3 and Fig. 4.4 have been obtained by analysis of a set 

of synthetic data. Other simulations attained comparable or better results. Fig. 4.3 

demonstrates the true and estimated values of amplitude and latency on a trial-by­

trial basis. Fig. 4.3(a) shows the amplitude of the positive peak for the simulated 

(thick line) and the estimated amplitudes using the PF and KF methods (solid and 

dashed lines respectively). The errors, which are the absolute value of the difference 

between noiseless and estimated amplitudes in each trial are plotted in Fig. 4.3(c). 

The mean and variance of errors are plotted in a bar graph in Fig. 4.3(d), which
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Figure 4.2: Three examples for ST estimation SNR = -5dB and SBR =  -lOdB; (a) 
simulated EEG and ERP for trial number 5, (b) simulated and estimated ERPs using 
PF and KF methods for trial number 5, (c) and (d) show the results for trial number 
35, while (e) and (f) demonstrate the estimates for trial number 55.

shows that the PF has statistically better performance (p < 0.001). Figs. 4.3(b) and 

(e) depict the estimated amplitude and the estimated errors for the negative peak. 

Fig. 4.3(f) shows that the PF has also extracted the second peak amplitudes with 

statistically smaller error values than the KF (p < 0.01).

Fig. 4.4 shows the results of the latency estimation for the positive and negative 

peaks. The PF reveals the latencies more accurately for both peaks except for the 

positive peaks in the last few trials. Both algorithms, however, give reasonable and
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Figure 4.3: Amplitudes of the first and second peaks from trial to trial and their 
estimations SNR =  -5dB and SBR =  -lOdB; (a) simulated (thick line), estimated 
using PF (solid line) and estimated amplitudes using KF (dashed line) for the positive 
peak, (b) estimated values for the negative peak, (c) the error between the simulated 
and estimated amplitudes for PF (black bar) and KF methods (white bar) for the 
first peak, (d) mean and standard deviation of errors for each method (e) the error 
between simulated and estimated amplitudes for PF (black bar) and KF methods 
(white bar) for the second peak, and (f) mean and standard deviation of errors for 
each method.
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indeed similar estimates and there is no significant difference between their perfor­

mances.

To further quantify the performance of the methods, they were compared numer­

ically by root mean square error for different levels of SNRs and SBRs. Fig. 4.5(a) 

shows the output SNR vs. input SNR in dB for the Kalman and particle filters. The 

output SNRs were obtained by finding the best aw and qw parameters in each SNR 

and executing the algorithms for 100 Monte Carlo independent runs. Using the DWT 

jointly with either PF or KF as a two-stage denoising process results in an acceptable 

performance in high input SNR. Both algorithms, especially the PF, are robust to 

GWN and their results are consistent for input SNRs as low as -lOdB.

Fig. 4.5(b) shows the output SBR versus input SBR for the above methods. The 

output SBRs were obtained by executing 100 Monte Carlo independent runs (as for 

the SNR). The PF outperforms the KF for all input SBRs and both algorithms are 

more sensitive to background EEG noise than GWN. The output SBR also decreases 

rapidly in comparison with the output SNR. When the amount of background EEG 

increases and the noise becomes more non-Gaussian, the performance of the PF im­

proves accordingly. Indeed, if the added noise is not GWN, which is the case in real 

EEG data, the PF  is more robust than the KF to this violation. It is also noteworthy 

that, in the PF, any kind of noise with known distribution can be handled. This 

contrasts with the KF, where the noise should be GWN with a known covariance 

matrix.
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Figure 4.4: Latencies of the first and second peaks from trial to trial and their estima­
tions for SNR =  -5dB and SBR =  -lOdB; (a) simulated (thick line), estimated using 
PF (solid line), and estimated latencies using KF (dashed line) for the positive peak, 
(b) simulated (thick line), estimated using PF (solid line) and estimated latencies 
using KF (dashed line) results for the negative peak, (c) the error between simulated 
and estimated latencies for PF (black bar) and KF methods (white bar) for the first 
peak, (d) the error between simulated and estimated latencies for PF (black bar) and 
KF methods (white bar) for the second peak, (e) the error between simulated and 
estimated latencies for PF (black bar) and KF methods (white bar) for the second 
peak, and (f) mean and standard deviation of errors for each method.
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Figure 4.5: Performance of KF and PF methods as indexed by mean square error for 
100 Monte Carlo trials (a) input SNR versus output SNR. Both methods, especially 
PF, are robust to high input SNR, and (b) input SBR versus output SBR. This 
decreases rapidly in comparison with SNR.
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4.3 .2  R eal D ata  R esu lts

Real data was obtained in an oddball paradigm. Four right-handed healthy individ­

uals participated in the experiment. The experiment was run in a quiet, normally 

illuminated room. The participants were seated comfortably in an armchair. All gave 

informed consent.

Each participant heard in total 300 tones, 240 (80%) of which were at one pitch 

(the frequent tones) and 60 (20%) of which were at a different pitch (the infrequent 

tones). In this paradigm, ERPs elicited by infrequent tones are associated with a large 

positive-going wave - the P300 - which peaks approximately 0.3sec post-stimulus. 

Accordingly, epochs from 0.2sec to 0.5sec time-locked to stimulus onset for infrequent 

trials were extracted for analysis.

By dividing the power of the averaged signal to the mean of power of all trials, 

an input SBR of approximately -lOdB was obtained. By using this SBR and the 

results obtained from the simulations, the values around qw =  5 and qv — 40 were 

deemed appropriate. The initial state of the filter was set to zero and, in order to 

accommodate the convergence of the filter, the first ten trials were excluded. The 

information contents of those ten first trials can be extracted by running the PF in 

the reversed trial order. Particle smoothers may also be used as an alternative [56].

Fig. 4.6 provides the results of the proposed algorithms for real data. The Cz site, 

at which the P300 component amplitude in the oddball paradigm is prominent, was 

chosen for analysis. Fig. 4.6(a) shows a superposition of all original trials and their 

average signal (solid line). Original trials are also presented in Fig. 4.6(b) in the form 

of ERP images, in which the ERPs are plotted vertically with time on the horizontal 

axis. Color represents the amplitudes of the trials, from blue to red corresponding to



52

transition from maximum negative to maximum positive. The second row of Fig. 4.6 

shows the results of the PF approach for all of the trials (c), the ERP image (d), and 

the estimated amplitudes from trial to trial (e). Both the signal and the ERP images 

show that the P300 has been extracted from noisy ERP data. An increase in the 

latency and decrease in the amplitude of the P300 over successive trials is evident in 

Fig. 4.6(d) and Fig. 4.6(e), respectively. The results of the KF method are shown in 

Fig. 4.6(f), (g) and (h). The KF method does not show structural variation of the 

amplitude and latency across trials that was identified by the PF.

A primary application of such a single-trial ERP extraction approach can be an 

investigation of the likely induced correlates of the amplitude and latency of ERP 

components. Fig. 4.7 shows the estimated correlation between ERP amplitudes and 

latencies using PF (black dots) and KF (red dots) methods for the four subjects. 

The linear regression has been shown in all figures using black (for the PF) and red 

(for the KF) lines. There is a significant negative correlation between latency and 

amplitude of each of the four subjects obtained by the PF (r =  —0.357 and p < 0.01, 

two tailed) but not by the KF (r =  —0.0986, not significant (n.s.)).

These observations dem onstrate the accuracy of the approach and its potential 

use in ST-ERP analysis, especially when trial to trial variation in ERPs is of major 

interest. Recently, such ERP estimation has also been proved to be very useful 

in single-trial correlation analysis between EEGs and functional magnetic resonance 

imaging signals [5].



53

0 25 0 3 0 35 0 4 0 45 0 5
Time [sec]

(a)
10 20 30 40 50 60

Time [sec

Time (sec)

Time (sec )

Time (sec )

Time (sec )

6

3
Trial

(e)

01
I

Trial

(h)

Figure 4.6: Estimation of P300 in real data using the proposed method (a) superpo­
sition of original trials with their average, (b) ERP image of original signals - there is 
no evident ERP signature in this image, (c) superposition of estimated ERPs using 
the PF method, (d) ERP image of estimated ERPs (P300 in red color) using the PF 
method, (e) estimated P300 filtered peak amplitude versus trials using PF. There is 
a decreasing trend across trials, (f) superposition of estimated ERPs using the KF 
method, (g) ERP image of estimated ERPs with (P300 in red) using the KF method, 
and (h) estimated P300 filtered peak amplitude versus trials using KF. Unlike PF 
(see (e) above) there is no directional trend across trials.
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Figure 4.7: Latency vs. amplitude in four subjects with their linear regression ob­
tained by PF shown by black and KF shown by red. A significant negative correlation 
between amplitude and latency with average r  =  —0.357 (p < 0.01, two tailed) for 
four subjects can be seen only for the PF method (r =  —0.0986, n.s.), (a) subject 
number one (PF: r  =  —0.472, p < 0.001) (KF: r =  —0.2864, p < 0.05), (b) subject 
number two (PF: r =  -0.400, p < 0.005) (KF: r = 0.0185, n.s.), (c) subject number 
three (PF: r =  —0.227, p < 0.05) (KF: r = —0.1182, n.s.), and (d) subject number 
four (PF: r  =  -0.327, p < 0.05) (KF: r  =  -0.0102, n.s.).



55

4 .4  C o n c lu s io n s

A new approach for ST-ERP estimation based on particle filtering of discrete wavelet 

transformed ERPs is proposed. The main merits of the proposed method are in 

exploitation of the sequential importance sampling as well as the use of Bayesian 

theory, which promises high performance for non-Gaussian and non-stationary data 

like ERPs. This method uses only one EEG channel for ST-ERP extraction and, 

therefore, ignores spatial information contained in the EEG data. In addition, as no 

prior knowledge about the measurement has been considered, it may be more sensitive 

to the outliers than other methods such as MAP estimator.

The method was tested for simulated and real data. The simulation results demon­

strate the improved accuracy of estimations by PF in comparison with KF, especially 

when the assumption about GWN is violated (background EEG is considered as 

noise). Application of the method to real data recorded in an oddball paradigm 

shows that the amplitude of the P300 decreases and its latency increases over trials 

during the task. These demonstrations emphasis the potential for this approach in 

ST analysis of ERP data.

The ability to extract reliably single trial ERP data  would be of great benefit 

in several contexts. For example, for ERP researchers interested in using ERPs to 

isolate cognitive processes, the reliance on averaging introduces an inevitable degree 

of caution when making inferences about the onset times of processes. Caution is 

also necessary when inferring whether peak amplitude differences between averaged 

ERPs for different conditions do in fact reflect consistent peak amplitude differences 

a t the level of individual trials. The alternative is tha t the amplitude differences 

emerge because of greater inter-trial variability in peak latencies for one condition in
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comparison to the other.

Finally, in the next two chapters, we move from single trial estimation to dipole 

source localization and in Chapter 7 a robust framework is developed for single-trial 

dipole source localization based on PF. Preliminary results are reported in [75, 74] 

whereby considering the dipole locations as having a nonlinear relation with the mea­

surements, the variational Bayes and maximum likelihood based methods estimate 

the amplitude, latency, and width of the ERPs after they have been localized.



C hapter 5

D eflation Beam form ing for 

E /M E G  D ip o le  Source Localization

5.1 In tr o d u c tio n

As it was mentioned in C hapter 2, scalp-recorded E/MEG with excellent temporal 

resolution suffers from relatively poor spatial resolution. The poor spatial resolution 

motivates research into methods th a t can accurately localize E/MEG sources.

In this study, the BF approach is generalized by adding two more terms to its 

formulation. The first term  additionally reduces the noise power at the output of 

the BF. This method assumes the covariance matrix of the noise is known a priori. 

The second term places nulls a t known locations to improve the detection of the 

unidentified dipoles. In this approach, a dipole is located by finding the grid cell 

which has the maximum power, while deflating the power of any dipoles that have 

already been identified. Using Lagrange multiplier method, the multiple constraint 

problem is converted to an unconstrained problem and solved via an optimization

57
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process. At the same time the power of each location is estimated and normalized 

with respect to the power in the presence of noise only. The deflation BF method helps 

to overcome two main problems of multiple dipole source localization using the BF: 

restriction of dipole localization to the dominant sources, and inaccurate performance 

in the presence of highly correlated sources. In addition, to improve the performance 

of the method further, an iterative approach for deflation and localization of dipoles 

is proposed.

This chapter is organized as follows. The dipole source localization framework is 

given in the following section, and then the BF approach for dipole source localization 

is reviewed. The new method is presented in Section 5.2.3. Performance analysis of 

the method is presented in Section 5.2.4. Simulated results for two dipoles with 

Gaussian sequences are presented in 5.3.1, and then the results for the simulated 

MEG are presented. Section 5.4 is devoted to the assessment of the method in a real 

auditory ERF experiment.

5.2 M e th o d s

5.2.1 P rob lem  F orm ulation

Let y be a vector composed of the potentials measured from L  electrodes. Each dipole 

is specified by its three dimensional location p  and its three dimensional moment m. 

The medium between the sources and the electrodes is assumed to be homogeneous, 

and the potential at the scalp y  to be a superposition of the potentials from q dipoles.
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These assumptions result in

Q
y  = Y l H ( ^ ) m (Pt) +  v (5-1)

t=i

Here, v  represents the noise which is uncorrelated with the source activities. H  is the 

gain or lead field matrix, which is a nonlinear function of the dipole’s location, and 

can be calculated in a spherical head model or can be obtained using a realistic head 

model. In the latter case, the head is divided into a number of grid cells and for each 

grid cell the gain or lead field m atrix H  is obtained according to the geometry of the 

head using imaging systems such as MRI. The aim is to estimate the dipole locations 

and moments based on the measurements and the prior knowledge about the number 

of dipoles. The source moments are assumed to vary but the locations are assumed 

to remain the same during the measurements. In addition, the zth dipole moment is 

assumed to be a random quantity and its behavior is described in terms of mean m* 

and covariance m atrix C;.

Equation (5.1) can be written in a m atrix form as y  =  H M , where H  =  [H(pj) . . .  H (p9)] 

is the matrix of all lead field matrices and M  =  [ m ^ )  . . .  m (p q)]T is the matrix 

of all moments. If the dipole locations are known, then the moments are obtained 

accordingly in an optimum way as M  =  where IT  is the pseudoinverse of H.

In the following, therefore, only estimation of the dipole locations is desired.

5.2.2 B eam form ing

BF is a spatial filter which minimizes the output power of the filter while passing 

activity from a location of interest. Assuming each grid cell as a potential source of
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interest, such a spatial filtering scheme provides a metric of source activity. Let W T 

denote the beamspace spatial linear filter weights for location p. The spatial filter is 

obtained by solving [111]:

m in ^ { |W Ty |2} s.t. W TH (p) =  I (5.2)
w r

where I € R 3x3 is the identity matrix and |.|2 denotes Frobenius norm. Using the 

Lagrange multipliers method, the above constrained problem is converted to an un­

constrained problem. By solving this problem, the variance or power at the beamspace 

spatial filter output at location p  is expressed as [111]:

P (p ) =  tr{ (H r ( p ) C ;IH (p ) ) -1} (5.3)

Here C y is the covariance m atrix of y  and tr{.} and (.)_1 are trace and inverse 

operators, respectively.

The MEG lead field matrix varies as a function of location and has variable sensi­

tivity to the noise gain of the filter. In order to overcome this problem, equation (5.3) 

is normalized and divided by the power of the corresponding noise spatial spectrum 

in the absence of the signal [92]:

" (P) ir{ (H T(p )C -> H (p ))- '}

where C y is an estimate of the signal covariance and C v is an estimate of the noise- 

only covariance. The localization of sources is performed by finding p  tha t maximizes 

(5.4).
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For the case of unknown C y,a consistent estimate of this covariance matrix can 

be obtained as

to the same underlying spatial spectrum. That is, the data needs to be wide sense 

stationary.

5.2 .3  D efla tion  B eam form in g

In the absence of noise, the source powers are estimated perfectly and then the source 

locations are simply found as the global maximizers of (5.4). However, in a noisy 

environment, nonlinear search techniques may miss shallow or adjacent peaks and 

return to peaks with larger power. The best peaks also should be located rather 

than any local maxima. One technique to overcome this problem is to deflate the 

identified dipoles and perform another search to find the next dipole. This problem is 

formulated by adding another constraint to equation (5.2) to stop the activity from 

the known locations. Furthermore, the power of the noise at the output of the BF 

is minimized to improve the estimation. First, the number of dipoles is assumed 

to be two and then the solution for q dipoles is generalized. Based on the above 

assumptions, the following optimization problem is resulted:

t=l

where y = j j  YltL\ Yt is the sample mean and y t ,t  =  1 , . . . ,  M  are observations of 

the phenomena to be localized. Note that these observations must all correspond

m in .E { |W Ty |2} +  A E { |W Tv |2}
W T

s.t. W TH (p j) =  0, and WTH(p2) = I
( 5.6)
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where A is a penalty factor, pj is the location of the first estimated dipole and p2 is 

the location of the second dipole. The extra term A£,{ |W Tv |2} minimizes the power 

of the noise a t the output of the BF and the extra term W TH (p j) =  0 deflates the 

first source. In the following, to simplify the notation, H* is used instead of H(pi).

The solution to (5.6) can be given as follow. By defining IJ  =  [ 0 I ] and 

H  =  [ H i H 2 ], the constraints in the second line of equation (5.6) can be written 

in matrix form as W TH T =  i j .  Using the method of Lagrange multipliers the closed- 

form solution for W T is:

w T = i j  ( h t (c„  + A a r ' S ) ’ 1 HT( a  + A a r 1- (5.7)

If the deflation term  of equation (5.7) is ignored (dropping and matrix tilde) and 

C y and C v are assumed to be unknown, the optimal solution will be (H TH )-1H T, 

which is the pseudoinverse of matrix H  and has been effectively applied to E/MEG 

dipole source localization [54, 41]. Moreover, if there is no knowledge about C y, 

and C v is known a priori, the optimal solution is (H t C ~1H) 1H t C ~1. This is 

the maximum likelihood estimation and has also been employed in E/MEG source 

localization (see [66, 27]). If there is no knowledge about C v, and C y is a priori known, 

the optimal solution is (H TC y 1H ) 1H TC J/1 which is the BF, and as mentioned 

before, it has been used for E/M EG  source localization in [111]. In addition, if the 

noise covariance m atrix is assumed to be Gaussian white noise (GWN) (i.e. C„ = AI), 

the result is the BF with loading factor (H T(C y -f AI)-1H )-1H r (Cy +  AI)-1. This is 

also a well-established method for E/M EG source localization [92].

Considering the deflation terms of equation (5.7) and ignoring C„, similar for­

mulation in the eigenspace has been given in [20] for MEG source localization. In



63

summary, equation (5.7) is a generalized solution to the BF when the location and 

covariance matrix of the noise is known a priori.

We continue by expressing the output power of the deflation BF at location p2 as:

P ( p 2) = £ { |W Ty |2} +  A £ { |W t v |2} =  tr{ W r (C# +  AC„)W} (5.8)

substituting W r  from equation (5.7) into equation (5.8) and after some algebra, the 

following equation is obtained:

P ( p 2) = t r { h  (H T(C y +  AC„)-1h ) - * I j}  (5.9)

The location of the second dipole is found by searching all grid cells which maximizes

(5.9).

In practice the measurement y  is signal plus noise and minimizing £ '{ |W Ty |2} 

also minimizes the extra term  £ '{ |W Tv |2}. It may therefore seems tha t this term in 

equation 5.6 is unnecessarily. However, since the solution classical BF is not perfect, 

by choosing a proper value for A in the noise power is more minimized and the result 

will be improved. As another clarification consider a special case when the noise 

is Gaussian white whereas the solution of the above problem is converted to the 

beamforming with diagonal loading (as described above). This beamformer improved 

the results and has been widely employed for E/M EG source localization.

Generalizing the above solution for q poles is straightforward. Assume the q — 

1 dipole locations have been found and the location of the qth dipole should be 

estimated. The location of the gth dipole is estimated as the location which maximizes
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(5.9) using the following new definitions

(5.10)

Similar to Section 5.2.2, equation (5.9) is normalized and divided by the power of 

the corresponding noise spatial spectrum in the absence of the signal as

t r { l Td (H T(C y +  ACv)_1h ) _1 l d}
Pn(pq) =  -------- ----------------------- — f   (5.11)

t r { l Td \ l d}

Therefore, the location of the qth dipole is obtained as p q which maximizes (5.11). 

The neural activity index in (5.11) requires knowledge about the noise covariance 

matrix. C„ can be estim ated from the data tha t is known to be source free, such 

as pre-stimulus d a ta  in an event-related field (ERF) experiment. The noise of the 

channels is also can be assumed to be GWN (i.e. C v =  AI), where the noise power A 

can be chosen empirically and according to the available data  set.

Equation (5.11) also needs a true estimation of q — 1 first source locations. In 

the general case, the q — 1 first source locations may not be known or correctly 

estimated, which negatively influence the performance of deflation BF. In Section 

5.2.5, an iterative localization and deflation approach to cope with this problem is 

proposed.

H i H„ 1—
II

n-
S 0 _ ^ _ 0  I

- 9-1
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5.2 .4  P erform an ce A nalysis

In this section, the performances of BF and deflation BF are analytically evaluated. 

Performance of the methods for uncorrelated sources is discussed first, followed by 

discussion about the correlated sources.

For investigation of deflation BF, by ignoring the covariance matrix of the noise 

C w, equation (5.9) is expanded for two sources as

p (p2) = tr{ [ 0 I (

=  tr{ J 0 I

Using block m atrix inversion the above expression is simplified to

P(p2) =  t r { ( H £ < V H 2 -  (H 2 C “1H 1)(H fC “1H 1)~1(H^C“1H 2))~1} (5.13)

The first term  in the right hand side of above equation is the output power of BF at

location p 2 (see equation (5.3)). It is well known th a t BF is ideal if the noise power

tends to zero (e.g. [45])1. This means th a t as the noise power tends to zero, if the

BF points to the source location, (H ^ C ^ E U )-1 tends to the identity matrix and

otherwise tends to a m atrix of zeros.

Following a similar method, in the presence of small added noise, if the column

vectors of H 2 are linearly independent from the column vectors of H 2, both H 2 C ^ H i

and H ^ C “ 1H 2 are matrices of zeros. Thus, the second expression in the right hand

^ e r e  the covariance matrix has been expanded as C y =  crlH- where a i are scalars
representing power of the ith source and a is the noise power.

H?
. - 1 Hi H, r1

HJ C'1H2 
H rc-’H, HTC-'Hs

(5.12)
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side of the above equation will be zero. Moreover, if H ^H 2 =  0 (i.e. the column 

vectors of H i are perpendicular to column vectors of H2) and noise and sources are 

spatially uncorrelated and identically distributed, the second expression on the right 

hand side of equation (5.13) is zero again (regardless of the noise power). Under these 

assumptions, therefore, the deflation BF is also ideal and exactly behaves like BF.

In most cases, however, the above strong assumptions do not hold and deflating 

any location will reduce the output power of deflation BF according to the available 

noise power. Therefore, the number of deflated sources should be kept as small as 

possible.

In general, the BF has m oderate sensitivity to correlated sources [6]. However, if 

a correct estimation of the previous q — 1 source locations be known, the correlation 

between the dipoles has no impact on the output power of the deflation BF for the qth. 

dipole. Letting =  ^ {[m fp j — m fpJUmfp-) — m (pJ)]T} be the cross covariance 

between the sources a t locations p { and pj} the output power at location p q is given 

by

tr  {w Tcyvv} =

W TH*CMH fW  +  J2 (W r H ,C tJH jW  +  W THJC3,H fW ) +  W TC„W
i —  1 *J=1

= t r {  C ,., + W TC„W }

tr <

(5.14)

Note tha t W THj =  0 for i ^  q and W THj =  I for i — q are used to simplify

(5.14), which can be justified by multiplying equation (5.7) by H. Note tha t in BF 

without deflation, the other terms in equation (5.14) are not necessarily zero since



67

W r Hi ^  0 for i ^  q. When this is the case, the estimated power of the source 

at location p q can be less than its true value. Therefore, the output power of the 

deflation BF unlike the BF depends only on the power of the desired source and 

power of the noise. In practice, however, due to existence of the uncorrelated noise, 

as well as inaccurate estimation of the data covariance matrix and dependent lead 

field matrices, the output power of deflation BF may depend to some degree on the 

correlation between sources. The performance of the deflation BF method in the 

presence of correlated source activities is explored further in Section 5.3.1.

5 .2 .5  I te r a t iv e  L o c a liz a t io n  a n d  D e fla t io n

In many practical cases, no prior knowledge about the true source locations is known. 

Under these circumstances, if the first source is incorrectly located, localization of 

other sources may also fail. To circumvent this problem, the sources are found via 

a number of iterations such tha t in each iteration the other sources are deflated 

while searching for the current source location. For example, suppose the number 

of dipoles is two. In the first iteration, the location of the first dipole is found 

and then whilst deflating the first dipole the location of the second dipole is found. 

In the next iteration, the first dipole is localized while deflating the second dipole. 

These iterations are performed until the dipole locations remain the same in each 

iteration. This algorithm can be generalized similarly for q dipoles. The pseudocode 

of the method for q dipoles is presented in Algorithm 2. In this pseudocode, pj is 

the location of the ith  source in the j th  iteration and K  represents the number of 

iterations. Based on our experience, in most cases the algorithm converges in less 

than 5 iterations, and K  was set to 5. As it will be discussed in the numerical
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results section, in the presence of moderate noise power this technique helps to find 

accurately the locations of all sources, even when the sources are highly correlated.

A lg o rith m  2 Pseudocode for the proposed deflation and localization method
find p\ using equation (5.4)

deflate p\ and find p\  using equation (5.11)

deflate p} , . . . ,  p^_1 and find p j using equation (5.11) 

for j  — 2 to K  do

deflate p 2~ \ . . .  , p j -1  and find pj using equation (5.11) 

deflate p { ~ \ p { ~ \ . . . ,  and find p£ using equation (5.11)

deflate p j-1 , • • •, p j l j  and find p j using equation (5.11) 

end  for

5.3 N u m e r ica l R e su lts

Two different simulations are presented in order to show both the performance and 

the utility of the proposed deflation BF. In the first simulation, different effects of 

simulation on the performance of the methods are considered for the two dipoles 

whose moments are zero-mean Gaussian sequences. The second simulation is a MEG 

example, localizing three dipoles in a three-dimensional space.

A spherical head model was used to compute the forward model. The values of 

estimators were scanned within a discrete cubic grid with more than 6510 grid points 

and an inter-grid distance of 0.5cm. A sensor alignment of the 275-sensor array from
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the Omega (VSM MedTech, Canada) neuromagnetometer was used. The data was 

sampled at the rate of lOOOhz. The covariance matrix Cy was estimated from 500 

data samples (0.5sec), and the covariance matrix of noise Cv was estimated from 200 

samples of data free segments. The locations of the simulated sources are shown in 

Fig. 5.1 in axial and coronal views.

I S3
XS43

-10

-15 -10
x axis [cm]

XS4

S2

-1 0

-15
axis [cm]

(a) (b)

Figure 5.1: Location of sources used for different simulations; (a) axial view and (b) 
coronal view.

5 .3 .1  T w o  D ip o le s  E x a m p le

In this simulation, two sources were used to numerically evaluate the methods. Their 

moments were Gaussian sequences as follows

m (p i) =  Af(0,I)
(5.15)

m(p2) = am(pi) + (1 -  a)Ĵ f (0,1)

where A^(0,1) is a zero mean Gaussian sequence with covariance matrix I. In equation

(5.15), a  is a scalar representing the correlation between sources, a  =  0 means the 

sources are uncorrelated, while a  =  1 means the sources are completely correlated.
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After applying the lead field matrix to the simulated moments, GWN was added to 

the generated MEG. The available noise power in the simulated MEG is measured 

by SNR in dB units which is defined as

S N R  = lO lo g ( ^ ^ i )  (5.16)
* noise

where PSignai denotes the power of signal (simulated MEG), and Pnoise denotes the 

power of added noise to the simulated MEG. In the following simulations, SNR =  

5dB except in Section 5.3.1 and a = 0.5 except in Section 5.3.1. The localization 

error for the major index to evaluate the performances is used. The error is defined 

as the Euclidean distance between the original and estimated source locations. The 

following results were obtained by running 200 Monte Carlo trials for each input.
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Figure 5.2: Output error vs. SNR when the sources are Si and S2. The deflation 
BF (red lines) has considerably better performance compared to BF approach (blue 
lines) in the face of different value of SNRs.

Effects of D ifferent S N R

Fig. 5.2 compares the effects of SNR on the performance of BF and deflation BF in 

terms of averaged localization error for the two sources. The source locations (SI and



71

S2) are shown in Fig. 5.1. The deflation BF technique shows acceptable performance 

for high input SNRs and has perfect performance for SNR>2dB with an error close 

to zero. The BF approach failed to detect the dipoles, even in high input SNRs, 

due to the partial correlation between the sources. In high input SNRs, BF located 

both dipoles near to one dipole and in lower SNRs, it located the dipoles somewhere 

between the actual locations.

E ffects o f D ep th

To investigate the effects of dipole depth, one source is assumed to be fixed on S3 

and another source is assumed to move from start point S4 away from superficial 

location. The locations of S3 and S4 are shown in Fig. 5.1. The x  and y coordinates 

of the second source are fixed and the same as those of S4, while its z coordinate 

decreases. Fig. 5.3 shows the output error versus the depth of the second dipole. 

The depth of the second dipole is defined as its distance from S4. Both BF and 

deflation BF techniques show sensitivity to the depth of the dipole. This is because 

by dividing the output power of the BF or deflation BF by the output power of 

the noise (i.e. £r{(Hr H )-1 }), the output power of deep sources, which have larger 

£r{(HTH )-1}, is attenuated more than the output power of the superficial sources. 

Therefore, deep sources show larger ou tput error compared to the superficial sources. 

In E/M EG source localization this may be acceptable, since the observed data are 

mostly generated from the cortex (outer layer of the brain) rather than deep sources 

(this is especially true for MEG). Furthermore, Fig. 5.3 shows tha t the deflation BF 

method outperforms the BF method regardless of the depth of the source.
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Figure 5.3: Investigation of depth of the source. The first source is fixed at S3. The 
second source has the same x  and y coordinates as those of S4, while its z coordinate 
is decreasing. The horizontal axis is the distance between second source and S4. Both 
BF and deflation BF are sensitive to the depth of the source, however, deflation BF 
shows better performance.

Effects of Source C o rre la tio n

In Fig. 5.4, the effect of different levels of source correlation on localization accuracy 

for deflation BF and BF is shown. The source locations are SI and S2 (see Fig. 5.1) 

and the SNR value was fixed to 5dB. The a  value was varied from 0 to 1, which means 

the sources are uncorrelated first and then become completely correlated. Deflation 

BF has much lower sensitivity to the correlation between the sources and its error 

increases monotonically for both sources as the correlation increases.

When 0 < a  < 0.5 the first source is accurately localized by the BF while the 

estimated location of the second source moves away from actual location and more 

towards the first source, as a result of which the error increases. When 0.5 < a < 1 

the BF located the two sources between the original locations, and the error of the 

first source increases while the error of the second source decreases. This phenomenon 

is seen mainely because of the available noise in the data. In noise free data and for
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a  < 1, we expect both methods to perfectly localize the sources. When a  = 1, the two 

sources have the same moments and they were localized exactly between the original 

source locations.

Figure 5.4: Output error vs. a  for investigation of correlation between sources, a = 0 
means two sources are uncorrelated and a = 1 means two sources have exactly the 
same moments (i.e. completely correlated). Deflation BF (red lines) has much less 
sensitivity to the correlation between sources in comparison with the BF (blue lines), 
and its error is monotonically increasing.

Effects of D istance  B etw een  Sources

Fig. 5.5 presents the localization errors of BF and deflation BF while the distance 

between the two simulated sources varies. The SNR level was 5dB and cn was set 

to 0.3. The location of the first dipole is fixed at S3 and the location of the second 

dipole was moving in the y axis direction, whilst its x  and z coordinates were fixed 

to those of S3. When the distance between dipoles is more than 4cm the deflation 

BF has better performance than BF. When the sources are closely spaced, however, 

BF outperforms deflation BF.

A possible reason for poorer performance of the deflation BF compared to BF in
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this simulation would be amplifying the noise power at the output of deflation BF. 

As the sources are moved closer to each other, their lead field matrices also become 

closer in a linear algebraic sense. Therefore, W T takes weights with large norms to 

salsify both constraints (i.e. to achieve W t H i =  I and W TH 2 =  0 ). Larger W T 

leads to a noise with a larger power at the output of deflation BF, since the noise 

power at the output of deflation BF is W TQ W  (see equation (5.14)). As a result of 

amplifying the noise power, the performance of deflation BF deteriorates compared 

to BF. As the number of sources increase, the number of constraint increases and 

H  =  [Hi . . .  H J  is more likely to be nearly rank deficient and raising the possibility 

tha t W T takes weights with larger norms and consequently the poorer performance 

of the deflation BF. On the other hand, when the two dipoles are very close, they may 

behave as one dipole and the BF locates both dipoles near to the actual locations. In 

this case, the BF shows more precise localization than when the dipoles are far from 

each other. We may conclude here th a t the BF method outperforms the deflation BF 

method only when the sources are closely spaced.

Effects o f R eal N oise

The behavior of the algorithms in the presence of additive non-Gaussian noise was 

investigated. To study the effect of real noise, background MEG signals were added 

to the simulated data. The locations of dipoles are S i and S2 as shown in Fig. 5.1. 

The results as a function of signal to  background ratio (SBR) are displayed in Fig. 5.6. 

The SBR is defined as the ratio of power of the simulated data to the power of added 

background MEG in dB units. Both algorithms are robust for the first source in the 

face of real noise. For SBR>-4dB the deflation BF outperforms the BF method: the
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Figure 5.5: Investigation of distance between sources. The first source is fixed at S3 
and the second source has the same x  and z coordinates as those of S3, while its 
y coordinate is increasing. The horizontal axis is the distance between two sources. 
When the distance between sources is more than 4cm, deflation BF (red lines) has 
better performance than BF (blue lines), however, when the sources have distance 
less than 3cm the BF outperforms deflation BF.

BF again failed to detect the second dipole, while the deflation BF detected both 

dipoles successfully.

5.3.2 Sim ulated M EG Localization

To simulate MEG signals, three dipoles were used. Their locations are shown in 

Fig. 5.7. All sources have the same z coordinate, and this enables us to illustrate 

the output powers of BF and deflation BF on a two-dimensional graph. Here, two 

examples which have different moments are given. In the first example, three sources 

are correlated and a large peak between the three sources in the BF power profile is 

seen. In the next example, one source has larger power and a peak near the location 

of the strongest source in the BF power profile is seen. In both examples, however, the 

deflation BF could successfully localize the three sources with less than four iterations
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Figure 5.6: Output error vs. SBR for investigation of effect of real noise. Real 
background MEG has been added to the simulated data. Deflation BF (red lines) 
outperforms BF method (blue lines), and indeed is robust to the non-Gaussian noise.
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Figure 5.7: Location of three dipoles used for MEG simulation in (a) axial view and
(b) coronal view.

In the first example, the dipole components are defined as rrif(pi) =  [O.4771, 772, t?3]t , 

m t(p2) =  b72,?73, 0 .4 t7i]t  and m t(p3) =  [773, 0 .4 t7i, 772]t  where the magnitudes of 771,
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772 and 773 are allowed to change in time according to

1  ( t - 0 . 3 ) 2

772 =  cos(47r£) (5-17)

773 =  sin(47r£)

The time unit t is in sec and the length of the signal is 0.5sec. Again, the added 

noise was assumed to be GWN and uncorrelated with the signal with SNR =  5dB. 

The standard BF metric (5.4) for each grid point was computed and the result is 

shown in Fig. 5.8(a). Note th a t since the sources are correlated, one peak (which 

is the cumulative result of all dipoles) represents all of the sources. Hence, the BF 

approach locates the three dipoles between the three actual dipole locations. The 

iterative localization and deflation BF metric (5.11), which correctly extracted the 

three sources, is then applied. The power profiles of deflation BF while deflating p 2 

and p 3 is shown in Fig. 5.8(b), while deflating p x and p 3 is shown in Fig. 5.8(c), and 

while deflating p x and p 2 is shown in Fig. 5.8(d). These figures emphasize tha t all 

sources can be found correctly.

Fig. 5.9 shows the simulated and estimated time courses (moments) in three di­

rections for the first dipole. To save the space, only the result for the first dipole 

is shown. Fig. 5.9(a) shows the result obtained by the BF method and Fig. 5.9(b) 

shows the result for the deflation BF method. The simulated and estimated moments 

are depicted by dotted and solid lines, respectively. Since the BF method was unsuc­

cessful in localizing the sources, the estim ated moments do not correspond with the 

simulated moments. However, the deflation BF shows accurate albeit noisy variation 

of the moments over time.
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In the next example, the dipole components were defined as m ^ p j)  =  [0, 0.37/1, 0.77/3]T, 

m t(P2 ) =  [0, 0.3//2, 0]T and m t(p3) =  [0, 773, 0.37/i]t , where t/i , 7/2 and t/3 are given 

in equation (5.17). SNR and a  values were set to 5dB and 0.5, respectively. The 

standard BF metric (5.4) for each grid point was computed and the result is shown in 

Fig. 5.10(a). In this figure, only one peak was allocated to which has the largest 

power. Thus, the BF approach misallocates the two other dipole locations to the 

dominant dipole location. The iterative localization and deflation BF metric (5.11) 

is also applied to da ta  and could extract the three sources successfully. The power 

profiles of deflation BF while deflating all possible pairing of p l5 p2 and p 3 is shown 

in Figs. 5.10(b), (c) and (d). In these figures, the power profiles for the three sources 

show perfect peaks for localization.

Fig. 5.11 (similar to  Fig. 5.9) shows the simulated and estimated moments in three 

directions for the first dipole. The BF method again was unsuccessful in revealing 

correct variation of moments in all directions. In contrast, the deflation BF accurately 

tracks the variation in the moments over time.

These examples were included to demonstrate the high potential of deflation BF 

in higher dimensional source localization problems, and to emphasize tha t the method 

can cope when there are correlated sources, as well as when one source dominates the 

others.

5.4  A p p lic a tio n  to  A u d ito r y  E R F

In order to assess the proposed technique for real data, event-related fields (ERFs) 

were recorded in an auditory paradigm. 1500 auditory stimuli were delivered every 

0.5sec bilaterally to the subject. The stimulus was a broadband noise lasting O.lsec.
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This d a ta  set was selected because the stimulus train generates activity in the left 

and right primary auditory cortices. The data was acquired from a 28 year old 

male subject. Whole head MEG recordings were made using a 275-channel radial 

gradiometer system (VSM MedTech, Canada). An additional 29 reference channels 

were recorded for noise cancellation purposes and the primary sensors were analyzed 

as synthetic third order gradiometers [114]. The sampling rate was 1000Hz and 

recordings were filtered off-line with a bandpass of 0.03 to 40Hz. Intra-individual 

head movement was kept to a minimum, and head position was localized at the start 

and finish of the study. ERFs were epoched off-line with a O.lsec pre-stimulus baseline 

correction. After visual rejection of trials containing eyeblink and movement artifacts, 

the remaining trials were averaged and the result is shown in Fig 5.12. The estimated 

noise covariance m atrix C w, which was used in both the BF and the deflation BF 

approaches, was calculated from the O.lsec pre-stimulus segments.

In this experiment, the number of dipoles was assumed to be two (one in the 

right and one in the left hemisphere of the brain). Figs. 5.13(a) and (b) show the 

power profile of the BF and the estimated locations in axial and coronal views. The 

estimated locations are shown with cross markers. The estimated power profile and 

the estimated locations using the deflation BF method are shown in Figs. 5.13(c)-(f). 

Figs. 5.13(c) and (d) show the location of the first dipole while deflating the second 

dipole, and Figs. 5.13(e) and (f) show the location of the second dipole while deflating 

the first dipole. The deflation BF method converged after three iterations (K  =  3).

For BF, Figs. 5.13(a) and (b) show th a t the sources are bleeding towards the 

center of the head due to the partial correlation between the sources. On the other 

hand, the deflation BF places the sources a t biologically plausible locations in the
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primary auditory cortices in the left and right hemisphere. The power obtained 

using the deflation BF is also more focal than the power obtained using the BF 

approach. Furthermore, no spurious activations near the center of the sphere model 

were observed implementing the deflation BF method.

Fig. 5.14 depicts the estimated moments in three directions for both dipoles. The 

results using BF and deflation BF are denoted by dotted and solid lines, respectively. 

Since the BF method mis-localizes the sources between the actual source locations, 

its moments have bigger amplitudes compared to those obtained by deflation BF.

These observations verify superior performance for the deflation BF method over 

the BF method, emphasizing tha t the deflation BF is likely to be a better choice than 

BF in practical applications.

5.5 C o n c lu sio n s

A new approach for multiple dipole E/M EG source localization based on the BF 

approach was developed. A new constraint, which minimizes the noise power at the 

output of the filter, was included within the BF formulation. Another constraint 

was also added to the BF formulation as a  result of which identified locations are 

deflated and other sources are, as a  consequence, located more precisely. The multiple 

constrained problem was solved using the Lagrange multiplier method and the results 

were normalized to the power profile of noise only. Furthermore, an iterative deflation 

and localization method was proposed to improve the performance of the method. 

It was shown tha t the proposed deflation BF method has no dependency on the 

correlation between the sources. The method is also useful when the classical BF 

identifies all the locations around the dominant source. Several metrics affected by
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SNR, correlation, depths of dipoles, distance between dipoles, and finally real noise, 

were discussed to show the superior performance of the proposed deflation BF over 

BF. Only when the sources are very close does the BF outperform the deflation BF. 

Unfortunately, both BF and deflation BF are still sensitive to the depth of sources.

In the next chapter a new method for dipole source localization is also proposed. 

The method is based on PF and in contrast to the current method, it can deal with 

non-stationarity of the E/M EG  data.
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Figure 5.8: Power profile of the simulated MEG, when sources are strongly correlated 
using (a) BF method, (b) deflation BF method while deflating the second and third 
dipoles, (c) deflation BF method while deflating the first and third dipoles, and (d) 
deflation BF method while deflating the first and second dipoles. Due to correlation 
between the sources, BF method shows activation between three actual sources. Three 
power profiles obtained by deflation BF show that deflation BF has been successful 
to identify the three sources.
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Figure 5.9: Estimated moments for the localized sources in Fig. 5.8 by (a) BF method, 
and (b) deflation BF. Dotted lines are the simulated moments and solid lines are the 
estimated moments. In contrast to the BF, the deflation BF shows true variation of 
the moments.
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Figure 5.10: Power profile of the simulated MEG, when one source dominates others 
using (a) BF method, (b) deflation BF method while deflating the second and third 
dipoles, (c) deflation BF method while deflating the first and third dipoles, and 
(d) deflation BF method while deflating the first and second dipoles. In the BF 
approach one source dominates others and other sources are not reconstructed. The 
deflation BF method, however, reconstructs all the sources in three power profile 
images successfully.
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Figure 5.11: Estimated moments for localized sources in Fig. 5.10 by (a) BF method 
and, (b) deflation BF. Dotted lines are simulated moments and solid lines are esti­
mated moments. In contrast to the BF, the deflation BF shows true variation of the 
moments.
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Figure 5.12: The averaged auditory ERFs over 1500 trials. A O.lsec pre-stimulus was 
used for baseline corrections.
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(e) (f)

Figure 5.13: Power profile of real data obtained using (a) BF method in axial view, 
(b) BF method in coronal view, (c) deflation BF while deflating the second source 
in axial view, (d) deflation BF while deflating the second source in coronal view, (e) 
deflation BF while deflating the first source in axial view, and (f) deflation BF while 
deflating the first source in coronal view. The estimated source locations are shown 
by cross markers. Due to partial correlation between the sources, the BF method 
shows that the location of dipoles are bleeding towards the center of the head. The 
deflation BF, however, shows the true location of dipoles on the primary auditory 
cortex.
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Figure 5.14: Estimated moments of the real data sources obtained by BF (dotted 
lines) and deflation BF (solid lines); (a) first dipole moments and (b) second dipole 
moments. Since BF method localizes the sources closer to the center of the brain, its 
moments have bigger amplitudes compared to those of deflation BF.



C hapter 6

D ipole L ocalization and Tracking 

of E /M E G  Sources via Joint 

B eam form ing - Rao-Blackwellized  

P article F iltering

6.1 In tr o d u c t io n

In the previous chapter the BF method for dipole source localization was generalized. 

In this chapter it is intended to present a method based on Rao-Blackwellized par­

ticle filtering (RBPF) for E/M EG  dipole source localization. The RBPF improves 

the performance of P F  by marginalizing out and estimating the linear part (the mo­

ments) using KF and estim ating the nonlinear part (locations) using PF. As long as
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the moments have a linear relation to the measurements, KF is an optimum solu­

tion. Therefore Rao-Blackwellization is an improvement to PF not only in terms of 

accuracy, but also in term s of computational time and memory usage. Utilization of 

RBPF for E /M E G  dipole source localization can be found in [12, 75].

In addition, a linear BF (similar to the LCMV-BF) tha t can be employed in 

combination with R B PF is proposed. The BF is a linear spatial filter which passes 

the activity a t a desired location while stopping the activity a t other locations at each 

time sample. The combined BF and RBPF method, which is called beamforming 

RBPF (B-RBPF) is particularly useful for coping with the main deficiency of RBPF, 

which is its sensitivity to the assumed number of dipoles.

The methods are grid based methods which can be applied to spherical as well as 

geometrically realistic head models. The grid based methods can decrease consider­

ably the com putational time and memory usage in comparison with non grid based 

methods. The grid based methods can also be applied to a realistic head model for 

which a closed-form solution for forward problem does not exist.

In the following sections the inverse problem is first formulated in state space and 

then the R BPF is established for multiple dipole localization. In Section 6.2.2 the 

proposed joint P F  and BF method based on subspace denoising and BF is explained. 

Various simulations are presented in Section 6.3.2 and the results for B-RBPF, RBPF, 

RAP-MUSIC and BF m ethods are given. This section also contains same simulated 

examples for tracking of moving dipoles using the RBPF and B-RBPF methods.
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6.2  M e th o d s

6.2.1 P ro b lem  Form ulation  in S ta te  Space

Let y* be a L  x 1 vector composed of the electric potentials measured from L  electrodes 

at time t. The measured potential a t the scalp y t is assumed to be a superposition 

of potentials from q source dipoles. Let the medium between the dipoles and the 

electrodes be homogeneous. Therefore y t can be modeled as:

<7

y t = +  v t . (6.1)
t=i

where p t{i) is the three-dimensional location and m t (i) is the three-dimensional mo­

ment of the zth dipole a t time t. Here, v* represents the additive noise, which is 

uncorrelated with the source activities and H  is the gain or lead field matrix, which 

is a nonlinear function of dipole locations. The gain matrix H  can be calculated in a 

spherical head model with three skull, scalp and skin layers, or can be obtained using 

a realistic head model. The aim is to estimate the dipole locations and moments 

based on the measurements and upon prior knowledge about the number of dipoles.

For the sake of convenience, a 3 x q m atrix of locations R* =  [ p t( l ) . . .  p t{q) ], a 

3q x 1 vector of moments rnt =  [mt(l)  . . .  m t{q)]T and an L  x 3q matrix of gain 

matrices H (R f) =  [H (pf(l) )  . . .  H (p t (q))] are defined. Equation (6.1), therefore, 

can be reformulated in m atrix form as

y t =  H ( R t )m* +  v t . (6.2)

The aim is to find filtered estimations of dipole locations and dipole moments.
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Thus, the state  x* is defined as x f =  [ R t m t ]T and since the location part is 

nonlinear, the distribution of the state  variables x t can be estimated by PF. However, 

by increasing the number of dipoles q, the number of parameters to be estimated is 

increased (six param eters for each dipole) and therefore, the estimation using only 

PF can be inefficient since a  large number of particles are needed to represent the 

posteriori distribution. A standard technique to increase the efficiency of the PF, 

which is called Rao-Blackwellization [29], reduces the state space by marginalizing out 

some of the variables. The idea of RBPF is to estimate some of the state’s variables 

using PF and to estim ate the rest using other estimators such as KF. Therefore, in

RBPF the state  x t is partitioned into R* and m* subspaces. By assuming that the

moments and locations are independent, using the chain rule of probability it can be 

written

p(xt|yi:t) =  p(m t|Rt, y i :t)p (R t|y i:t) (6-3)

Since the moments are linearly related to the measurements (see equation (6.2)) only 

the distribution of the nonlinear part p (R f|y i:t) needs to be estimated using standard 

PF, and the distribution of the linear part p(m f [R/, Vw) is updated analytically and 

efficiently using KF.

For estimating the locations, using equation (6.2), the state space formulations 

for dipole locations R t have the forms

R , =  R (_! +  wf_, (6.4)

y, =  H (R ,)m , +  vf (6.5)
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where w f and v f are zero mean GWN location noises with empirically known covari­

ance matrices Q£, and Q£, respectively. In equation (6.4), the transition of the state 

is assumed to be a  random walk process. This means th a t the estimation of current 

dipole location depends on those estimated from the previous samples. This is an 

acceptable assum ption, since the state of the brain does not have extensive variability 

from one time sample to another.

For estim ating the moments, the state space equations for subspace nit are giyen

as

where and v™ are zero mean GWN moment noises with empirically known

covariance matrices Q™ and Q™, respectively. To simplify the notation, H  is used 

instead of H (R t) and in the rest of the chapter the same notation is employed. 

Again the transition of the moments is assumed to be a random walk process. Given 

the dipole location R t_ i (hence, H ) and measurement y t , the mean vector /z™ and 

the covariance m atrix  P™ of moments m* are updated using Kalman updates [40]. 

Rewriting the Kalm an equation for state space (6 .6 ) and (6.7) results:

m t = m*_i +  w t_j (6 .6 )

y, =  H  m ( +  v?* (6.7)

Pm    -pm . f \ m
t \ t - \  ~~ r i - l

K , =  P p t_1H r (H P p (_ ,H T +  Q P ) - 1

A‘r  = M™i + K((yt - H Mp l)

P ;n =  P f t - j  -  K !H P p (_1

(6 .8)

(6.9)

(6 .10)

(6 .11)
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where P ^ _ j  is the covariance matrix of the conditional pdf p(m t |R t_ i,y t_i), and K t 

is called Kalman gain.

In R BPF, each particle maintains not only a sample from p(R*|y1;t), which is de­

noted by R jn\  but also a param etric representation of the distribution p(m f )R/, Vw), 

which is denoted by mean vector and covariance matrix of the moments.

The proposed method is a grid based method, which means the brain is divided 

into sufficiently small three-dimensional grid cells and the location of each dipole is 

restricted to one of these cells. Therefore, before updating the weights, the locations 

indicated by each particle may not be one of those grid cells and they are replaced 

by the nearest cells. The grid based method helps the use of real head model and 

any form of forward solution. Moreover, depending on the number of grid cells, 

the computational complexity decreases considerably compared to non grid based 

methods. The pseudo-code for this algorithm is presented in Algorithm 3. In this 

algorithm, generating random  vectors according to the uniform distribution means 

producing or drawing random  vectors th a t have the same distribution as the uniform 

distribution.

6.2 .2  A  B eam form in g  - R B P F  in T im e and Space D om ains 

(B -R B P F )

In this section a method to  improve the RBPF approach in time and space domains 

is established. In the tim e domain the measurement is denoised using SVD and in the 

space domain the LCMV-BF is reformulated to spatially denoise the measurement at 

each time sample.

The algorithm is implemented as follows. First, the data is windowed around time
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A lg o rith m  3 Pseudo-code of RBPF for localizing multiple dipoles
(ti!se t t — 0 and generate random vectors Rq according to random uniform distribu­

tion.
se t  =  o and =  I. {o is a vector of zeros and I is the identity matrix}
fo r  t — 1 to T  do  {T  is the length of the signals}

- g e n e ra te  random numbers ~  J\f(0 , Q£,) and s e t  =  R[”\  +
- rep lace  column o f R j7̂  with the coordinate of nearest grid cell.
- u p d a te  new weights w ( y t \Il[n\  Q£).
- n o r m a liz e  the weights /  Y2n=i ■
- u p d a te  and given R ^  and y t for each particle using equation

- re sa m p le  new N  particles R ^  from the R j7̂  with replacement according to 
their importance weights w^ .

en d  f o r

t using a window of length M  which results in an M  x L  m atrix Y*. The mth row of 

Y t is given by hmy t_M±i+m, where hm = 0.54 — 0 .4 6 c o s ( |^ ;)  is the m th point of a 

Hamming window. To stabilize and denoise the measurements, y t is replaced by

y f =  Y tTu max (6.12)

where umax is the M  x 1 left singular vector corresponding to the maximum singular 

value obtained by SVD. This m ethod is similar to subspace methods in which the 

signal subspaces are chosen according to the largest singular values. The length of 

the window M  can be chosen according to the data  as long as it is stationary. In 

most cases, E /M E G  can be assumed to be stationary during a small window length 

since the state of the brain does not vary extensively.

Another improvement is made by applying a narrowband BF to the RBPF and so 

the method is called beamformer R BPF (B-RBPF). BF is a spatial filter that passes
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signals originating from a small passband volume while attenuating those originating 

from other locations.

Consider the signals coming from locations p  =  {p t{i)\i = 1 , . . .  ,<7} as the signal 

of interest and the rest as noise. In addition, suppose the recorded windowed E/MEG 

can be decomposed as:

y ? =  H (P«W)m t(*)+  H (PtM )m tW- (6-13)
Pt(0 €p Ptfi)£P

We are looking for a n L x  L  linear spatial filter W  p which passes signals coming from 

p  and suppresses the rest. Therefore, the filter W p should have the following ideal 

response:

w £y? =  Z  W £ H (p t(i))m ((i) +  Y  W jH (p ,( i) )m t(i) =  ] T  H (p f(i))m t(i)
pt(i)Gp Pt(*)2p Pt(*)€p

(6.14)

equation (6.14) results in

f H (p t(i)) p t(i) e  p  
W p H ( p , ( z ) ) = {  (6.15)

[ o  p tW ^ p

where O is a L  x 3g null matrix. The linear filter W p cannot exactly satisfy both 

conditions simultaneously unless M  +  3q < N . One solution, therefore, could be 

finding a th a t satisfies a  linear response constraint W T H (pt(z)) =  H (p t(i)) 

based on the first condition and minimizes the power at the filter output || W Ty f  || 

based on the second condition. The constraint ensures that the signals of interest are 

passed through the filter. Minimization of the output power of the filter optimally

/

/
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allocates the stop band response of the filter to minimize the contribution of sources 

from other locations. The solution is given in Appendix A and the result is

W ?  =  H  [Ht C - 1H ] “ 1 H TC t; '  (6.16)

where C y is the covariance m atrix of the data which may be obtained using matrix 

Y t at each sample tim e t. By applying this filter to the measured E/MEG, the 

spatial noise is reduced and as a result a better estimations of the dipole locations and 

moments is obtained. Since P F  is a Monte Carlo method, it employs any combination 

of the sources with large likelihood to  compute the posteriori distribution. Therefore, 

in multiple source localization the H TC ~1H  may not be full rank for some locations 

and then will not be invertible. Thus, H TC “ 1H  -1- AI, where A is a small scalar, 

can be used to compute the inverse. If the subspace spanned by the original gain 

matrices of sources can be spanned by th a t of other source combinations, there will 

be an ambiguity and the sources can not be distinguished.

After applying the BF to the measurements, the available noise may not be GWN. 

Fortunately, the PF  has the ability to employ any kind of noise with known distribu­

tion. However, for estim ation of the moments using KF, the noise should be consid­

ered as GWN with a known covariance matrix. In this case if the noise distribution 

is known or estim ated, the P F  could be employed instead of KF.

The fundamental objective of the B-RBPF is to use the spatially filtered data 

instead of the original m easurements to  estimate the moment vector m t using Kalman 

updates. The m atrix W j  in equation (6.16) is constructed for each particle using the 

locations indicated by particles provided from the previous step. The pseudo-code 

for this algorithm is presented in Algorithm 4.
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A lg o rith m  4 Pseudo-code of B-RBPF for localizing multiple dipoles

s e t  t — 0 and generate random numbers Rq^ according to the random uniform 
distribution.
s e t  fJL™  ̂ =  o and P™(n) =  I.
f o r  t =  1 to T  do  { T  is the length of the signals}

- g e n e ra te  random vectors ~  Af(0, Q£,) and s e t  =  R j”\ 4- wjn .̂
- rep lace  column Of Ri" ̂  with the coordinate of nearest grid cell.
- ca lcu la te  y f  using equation (6.12).
- c o m p u te  W T using equation (6.16) for each particle.
- u p d a te  and denoised measurements given R[n  ̂ and W T y f for
each particle using equation (14)-(17).
- u p d a te  new weights w =  w \^ N ( y f \ f l { n\  Q£).
- n o r m a liz e  the weights = w ^ /  Yln=i wt ■
- re sa m p le  new N  particles R ^  from the R ^  with replacement according to 
their importance weights w jn^.

e n d  f o r

The proposed filter has a similar formulation to the LCMV-BF. In the LCMV-BF 

the search is for a  filter th a t estimates the power of the source at each location, thus 

W t H  =  I is used as the constraint (see equation (6.19)). In the proposed method, 

a filter th a t denoises the da ta  without changing its dimension is desired. Only after 

applying this filter can KF be used subsequently. Therefore, W TH  =  H  is employed 

as the constraint.

6.3 S im u la t io n  R e s u lt s

In this section, the results of the proposed methods are compared with those ob­

tained using RAP-MUSIC and BF algorithms. These are well established methods 

in dipole source localization and often used as benchmarks. Both of them use sec­

ond order statistics of the d a ta  which assume tha t the E/M EG data is temporally
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and spatially stationary. There is, however, evidence tha t E/MEG is not generally 

stationary [95]. In the following sections, a brief review of the RAP-MUSIC and 

beamforming approaches is given prior to description of the comparisons carried out 

for several different simulations.

6.3.1 M U S IC , R A P -M U S IC , and B F

In the MUSIC m ethod, the measured E/M EG is partitioned into noise-only and signal 

subspaces using SVD. The MUSIC algorithm [79] defines the source locations as those 

for which the corresponding gain vector a (P i)  =  H (p i)rrii is nearly orthogonal to the 

noise-only subspace or, equivalently, projects almost entirely into the signal subspace. 

The implementation of the algorithm is straightforward, and the first dipole location 

with Schmidt’s metric is obtained as follows [79]:

p 1 = argm ax subcorr(H (p), $ s) =  (6.17)

where subcorr(A , B ) refers to the largest correlation between the subspaces spanned 

by the columns of A  and B . contains the q eigenvectors corresponding to the 

largest eigenvalues, U H(P) contains the left singular vectors of H (p), and Amax(.) is 

the maximum eigenvalue of the enclosed expression.

Identification of the remaining local maxima becomes more difficult since MUSIC 

scanning may miss shallow or adjacent peaks and provide solutions tha t are restricted 

to dominant peaks. In RAP-MUSIC the component of the signal subspace that is 

spanned by the first source is removed and then another search is performed to find 

the next source over this modified subspace. The modified subspace is obtained by
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applying the orthogonal projector to the gain vector and signal subspace [78]. The 

second source is then found as the global maximizer:

p 2 =  argm ax su 6c o rr(I li(pi)H (p), n £ (/>i)$ a) (6.18)

where  ̂ is the orthogonal projector to the gain vector a { p l ).

The BF approach localizes the source based on minimizing the output power of 

the filter while passing activity from a location of interest. The location of interest 

is scanned on all of the grid cells to produce a metric of source activity. Let W (p) 

denote the beamspace spatial linear filter weights for location p. The spatial filter is 

obtained by solving:

min J5 '{ |W (p)y |2} subject to W (p )H (p ) — I (6.19)

By using Lagrange m ultipliers the above constrained problem is solved and the solu­

tion is then normalized and divided by the power of the corresponding noise spatial 

spectrum in the absence of the signal [92]:

„  , , tr { H T(p )C ; 'H (p )}  
n[p) tr{ H T(p)C ~1H (p)} ( ' ]

where C y is an estim ate of the measured signal covariance and C n is an estimate of 

the noise-only covariance. C n may be estimated from data  tha t is known to be noise 

only, such as pre-stimulus d a ta  in an ERP experiment. In the following section the 

noise is assumed to be GWN and temporally and spatially uncorrelated (i.e. C„ =  I). 

The localization of sources is then performed by finding p  tha t maximizes (6.20).
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6.3 .2  C om p arison  S tud ies

Various com puter simulations were conducted to show the performances of the meth­

ods under different assumptions. A three-shell spherical head model is employed. 

The conductivity ratio used for forward solution computation was 1 , 0.0125, and 1 

for scalp, skull and brain respectively. The values of estimators were scanned on a 

discrete cubic grid with more than 6510 grid cells and an inter-grid distance of 5mm. 

There were 25 electrodes placed on the scalp using the standard 10-20 system [84]. 

W ithout loss of generality a  larger number of electrodes can be selected to improve 

the performance of the m ethod while the computational complexity increases only 

slightly. These signals were sampled every 4ms, thus obtaining 250 samples for each 

second in the com puter simulation.

The localization error, which is defined as the three-dimensional geometrical dis­

tance between the estim ated and simulated locations, is used as the major criterion 

for the assessment of the methods. The results were obtained by averaging over 100 

Monte Carlo trials for each noise level. The available noise power is measured by 

SNR in dB units which is defined as

S N R =  X 0 \ o g ( ^ ^ L )  (6.21)
-* noise

where P Signai and P n0ise  denote respectively the powers of signal and noise. In the 

RBPF and B-RBPF approaches, the noise covariance matrices Q£ and Q£ (C denotes 

location p or moment m ) are simply assumed to be in the forms of <j£I and cr->I. 

Different values of cr £, and cr$ were empirically used to obtain the best results. The 

and cr£ parameters determ ine the performance of the estimators by a trade-off between
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the estimators’ sensitivity and stability or by a trade off between noise suppression 

and signal tracking. The number of particles N  was set to 3000 during all experiments. 

The length of the Hamming window M  was set to 25 during the B-RBPF run. In 

practice, M  should be chosen according to the data as long as it is stationary or at 

least if the location of the dipole remains the same.

Fig. 6.1 shows the locations of six different dipoles used for the following simu­

lation studies. They are located in different parts of the brain to better assess the 

performance of the methods. SI and S2 are in superficial (cortical) regions, from 

which most elements of scalp-recorded E/MEG are generated. S3 and S4 are in the 

temporal lobe in the regions of left- and right-auditory cortices. S5 and S6 are deep 

sources located near the thalamus.

(a) (b)

Figure 6.1: Dipole locations used in simulation studies for (a) locations in axial view, 
and (b) the same locations in coronal view.

The moments of dipoles used for simulations were assumed to be constant, sinu­

soidal and Gaussian functions of time. An example of moments, noiseless and noisy 

simulated E/MEG is shown in Fig. 6.2. The length of the signals was assumed to be
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0.65s. The frequency of the sine wave was set to 1.54Hz and the mean and standard 

deviation of the Gaussian wave were set to 0.37s and 0.13s, respectively. GWN was 

added to the moments and to the simulated E/MEG after multiplying the forward 

matrix by the moments. The values of SNR were controlled only by the power of the 

GWN that was added to the simulated E/MEG. The same functions and procedures 

were used for all other simulations that are described below.

0 0.1 0 2  0 3  0 4  0 5  0 8
Time [sec]

(a)

(b)

' 40 0.1 0.2 0.3 0.4 0.5 0.6
Time [sec]

(c)

Figure 6.2: Examples of simulated data: (a) noiseless moments in x, y and z di­
rections, (b) simulated noiseless E/MEG for 25 electrodes, and (c) simulated noisy 
E/MEG with SNR=-5dB. The GWN was added to the moments and the signals 
obtained after applying the forward matrix.
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Effects o f S N R

In this simulation, one stationary dipole located in a superficial region of the brain 

is considered. The location of the dipole is SI in Fig. 6 .1 , where axial and coronal 

views are provided. The errors of the estimated dipole locations for different SNR 

values are shown in Fig. 6.3. For such a single dipole system, the MUSIC algorithm 

has considerably better performance over the BF approach for different values of 

SNR. The RBPF also outperforms both MUSIC and BF, however, it has poorer 

performance compared to B-RBPF. This figure demonstrates promising performances 

for both RBPF and B-RBPF across different values of SNR.

0 .07 .
— *— B -R B P F  
— b —  R B P F  
-  $  -  R A P -M U S IC0 .0 6

0 .0 5

0 .0 4

«  0 .0 3

o.o;

0.01 o

- 6  - 4  - 2
S N R  [dB]

Figure 6.3: O utput error vs. input SNR for one stationary dipole.

Effects of D ipo le  L o ca tion

In the next simulation, two spatially stationary dipoles were used to simulate the 

data. The moments of the first dipole were sinusoidal, constant, and Gaussian func­

tions of time in x, y  and z directions, respectively, and the moments of the second



104

dipole were constant, Gaussian, and sinusoidal functions of time in the x, y, and z 

directions, respectively. These two sources can be considered as partially temporally 

correlated sources (the mean correlation coefficient over each direction is 0.0423). To 

investigate the effect of dipole location on the performance of the methods three ex­

amples are considered; first, for two superficial dipoles with a large distance between 

them, second, for two close superficial dipoles, and third, for two deep sources.

The locations of the two superficial sources at a reasonable distance from each 

other are Si and S2 shown in Fig. 6.1. The estimation error for the first dipole is 

depicted in Fig. 6.4(a) and the estimation error for the second dipole is shown in 

Fig. 6.4(b). In general, when the number of dipoles increases the performances of all 

the algorithms deteriorate. This is because with the same number of known parame­

ters (the number of electrodes) more unknown parameters should be estimated. The 

BF is superior to the RAP-MUSIC algorithm in terms of locating the first dipole. 

However, it fails to detect accurately the location of the second dipole and gives a 

location near the first dipole. Adding dipoles can also result in poorer performance 

of the RAP-MUSIC algorithm. The reason for this is tha t the method assumes all 

of the projected subspaces for noise and sources are independent, which means that 

the sources need to be uncorrelated. Both the B-RBPF and RBPF outperformed the 

RAP-MUSIC and BF algorithms and they were successful at detecting both sources 

accurately.

Fig. 6.5 shows the performances of the methods for the two simulated closely 

spaced sources. The locations of sources are S3 and S4 as depicted in Fig. 7.1 in axial 

and coronal views. Fig. 6.5(a) shows the localization error versus SNR for the first 

dipole (S3). RAP-MUSIC has better performance than the BF approach for the first
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Figure 6.4: Output SNR vs. input SNR for two distal sources for (a) the first source 
(SI) and (b) the second source (S2 ).

source. The RBPF outperforms RAP-MUSIC and BF, however it remains inferior 

to the B-RBPF algorithm, independent of which SNR value is employed. RBPF 

and B-RBPF have acceptable performances even in SNRs as low as -5dB. Fig. 6.5(b) 

displays the localization error for the second dipole (S4). RAP-MUSIC locates the 

second source between the two original source locations and shows approximately 

constant error. The correlation between the sources has less impact on localization 

using the BF method compared to the RAP-MUSIC approach and it shows a roughly 

monotonic increasing error as SNR decreases. Although the RBPF localizes the first 

source precisely, its performance is poorer than those of the other methods for the 

second dipole. This occurs because close sources have similar gain matrices and the 

RBPF approach localizes the sources simultaneously, so it localizes one of the dipoles 

and localizes another source with a different gain matrix. B-RBPF, however, still has 

superior performance in comparison to the other methods.

The next simulation uses one source in the middle of the brain and one deep
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Figure 6.5: O utput error vs. input SNR for two proximal sources for (a) the first 
source (S3), and (b) the second source (S4).

source (locations S5 and S6  in Fig. 6 .1). The results are shown in Fig. 6.6  for both 

sources. The BF performance deteriorates markedly for deep sources and is likely to 

localize the sources in superficial locations. This comes about because, by dividing 

the output power of BF to the corresponding noise power only, the power of deep 

sources (which have smaller gain matrix power tr{H T(p)H(p)}) is attenuated more 

than the power of superficial sources. RAP-MUSIC is a subspace method and only 

uses the eigenvectors and consequently has no sensitivity to the gain matrix power 

(i.e. deep sources). Both RBPF and B-RBPF have robust results in the case of deep 

sources and better performance than the other methods. B-RBPF again outperforms 

all other methods regardless of the dipole locations.

Effects o f C o rre la tio n s  B etw een Sources

To investigate the effects of correlations between sources, two sources with locations 

SI and S2 in Fig. 6.1  are considered. The moment of the first source in all directions
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is assumed to be a sine signal as sin(27r£) and the moment of the second dipole in all 

directions is assumed to be a cosine signal as cos(27rt +  a), where a  is a parameter 

which indicates the correlation between the sources. When a  =  0 the sources are 

completely uncorrelated and when a = \  the sources are strongly correlated. SNR 

was fixed at 15dB to investigate only the effect of correlation between the sources. The 

output error for different values of ot has been shown in Fig. 6.7. This example shows 

that BF has moderate sensitivity to the correlation between sources and RAP-MUSIC 

is more sensitive than the other approaches to the correlation between the sources. 

Fig. 6.7 also indicates that RBPF and B-RBPF have no sensitivity to correlations 

between the sources, and they can find the sources using only gain matrices (i.e. 

locations) regardless of their moments.
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Figure 6.7: Effect of correlation between sources on the output location error for (a) 
the first source, and (b) the second source.

Effects o f C olored  N oise

There are different ways of generating colored noise and they may have different 

effects on the performance of the algorithms. For the current study, a similar model 

of the noise to tha t used in [2] was employed. The noise is zero mean additive colored 

Gaussian noise with covariance matrix Q£ whose element at its zth row and j th 

column is given by Q £(i,j) = r]2r ^ ~ ^ 2, where rj and r are the variance of total noise 

per sensor and the spatial covariance factor of noise, respectively.

Two sources at locations Si and S2 as shown in Fig. 6.1 with SNR =  15 are 

considered. Fig. 6 .8  displays the localization error as a function of the noise spatial 

covariance factor r while r) =  1. RAP-MUSIC and RBPF as well as B-RBPF assume 

that the noise is additive and GWN, and as Fig. 6.8  shows only the RAP-MUSIC 

approach is sensitive to the spatially colored noise and theoretically requires a per­

fect knowledge of the noise covariance [99]. The other algorithms are insensitive to 

Gaussian spatial colored noise regardless of its color and they all localized the sources
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Figure 6 .8 : Effect of colored noise on the output location error for (a) the first source, 
and (b) the second source.

Effects of R eal Noise

The behavior of the algorithms in the presence of additive non-Gaussian noise was 

studied. For this purpose, background E/MEG signals were added to the simulated 

data. The results as a function of SBR are displayed in Fig. 6.9. The SBR is defined 

as the ratio of the power of the simulated data to the power of the added background 

E/MEG in dB units. Similar to spatially colored noise, RAP-MUSIC is more sensi­

tive to the real noise than other algorithms. Both RBPF and B-RBPF have better 

performance across different values of SBR than those of for SNRs, while the B-RBPF 

is superior to the RBPF.
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Figure 6.9: Effect of real noise on the output location error for (a) the first source, 
and (b) the second source.

Effect of A ssum ptions A b o u t th e  N u m b er of D ipoles q

Assumptions about the number of sources have no impact on the performance of the 

RAP-MUSIC and BF approaches, since they localize the sources sequentially. These 

assumptions can, however, have a major effect on the performance of the RBPF. 

The RBPF finds sources by maximizing the likelihood and finding the location of the 

source which produces results tha t are most similar to the observation. Therefore, to 

localize the activity originating from two sources using only one source, it is likely to 

identify a location between the two original sources that can maximize the likelihood 

to a greater degree than one of the original sources. To explain this phenomenon 

further, consider the data obtained by the mixture of two dipoles located in Si and 

S2 in Fig. 6.1. All approaches are employed to localize the two dipoles by assuming 

the number of dipoles was one. The output error for different SNRs is shown in 

Fig. 6.10. The output error is defined as the three dimensional geometrical distance 

between the estimated dipole location and the simulated strongest dipole location. In
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this case, because the BF is based on minimizing the power from other locations, it 

has superior performance in comparison to the RAP-MUSIC and RBPF approaches. 

The RAP-MUSIC approach again located the dipole between the expected locations 

of the two sources. The RBPF also located the source in an incorrect position between 

two sources. This example justifies the claim that RBPF needs an accurate estimate 

of the number of dipoles, otherwise the results will not be physiologically meaningful. 

The B-RBPF, which inherits the spatial filtering concept, outperformed all other 

algorithms and localized the sources successfully.
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Figure 6.10: Output location error vs. SNR for two simulated sources. In this example 
it is assumed that only one source is generating the the data.
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E xecution  T im e

The single run execution times for BF, RAP-MUSIC, RBPF and B-RBPF were 0.052, 

0.065, 67.115 and 96.782 sec, respectively. Simulations were performed on a 2.4-GHz 

Intel Pentium IV processor using MATLAB software. As expected, the execution 

times for RBPF and B-RBPF are considerably longer than the execution time for 

the other algorithms. The execution time is related to the number of particles and 

number of grid cells. These times indicate those obtained on a serial computer and 

a marked reduction in computation times can be expected for the RBPF and B- 

RBPF approaches when implemented in parallel. Moreover, in the vast majority of 

implementations of localization, off-line processing is acceptable.

D ipole Tracking

Here, an example to show the capability of RBPF and B-RBPF for tracking two 

moving dipoles is provided. Sequential estimation of dipole locations enables use 

of the proposed methods for stationary as well as non-stationary signals. Since the 

RAP-MUSIC and BF methods use second order statistics associated with the signals, 

they cannot be applied to the estimation of time-varying dipole locations.

In this simulation, two moving dipoles (the first one located in the right and the 

second in the left hemisphere) are considered. The SNR was set to 5dB. The initial 

states of the filters were set to zero for the moments and set to the center of the brain 

space for locations. The original and estim ated locations are shown in Fig. 6.11. The 

original tracking of the movements is displayed by black solid lines and the estimated 

locations using RBPF and B-RBPF are shown by the blue and red lines, respectively. 

The methods located the dipoles with a tim e delay, which is related to the covariance
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Table 6.1: Errors of two moving dipoles’ locations and moments using the RBPF and 
B-RBPF methods. The error of locations and moments are in meter and /xV units, 
respectively.______________________________________________________________

first location second location first moment second moment

RBPF 0.0303 0.0273 0.0028 0.0023
B-RBPF 0.0138 0.0192 0.0017 0.0026

matrices of the noise (i.e. proportional to the cr£ and a£ parameters). Therefore, the 

first segments of movement tracking before the convergence of the filters (before 0.01 

sec) are eliminated. In these highly noisy signals, both RBPF and B-RBPF detect 

and track dipole locations with an acceptable degree of accuracy. The original (solid 

lines), noisy (dotted lines) and estimated moments using RBPF (blue lines) and B- 

RBPF (red lines) are shown in Fig. 6.12 for two dipoles in x, y and 2 directions. 

Both methods, and especially RBPF, have some inconsistency in moment estimation 

before 0.01 sec, due to the convergence of the filters in this period. In general, B-RBPF 

has slightly better performance over all others. Finally, in order to better highlight 

the differences between performances for the RBPF and the B-RBPF approaches, 

the mean errors over all time samples for the locations and moments are presented 

in Table 6.1. Except for the second dipole moments, the B-RBPF outperforms the 

RBPF. This example demonstrates the use of RBPF and especially B-RBPF in dipole 

tracking in practical applications.

6.4 C on clu sion s

In this chapter, an E/M EG dipole source localization method based on RBPF and 

BF was presented. The LCMV-BF was reformulated to be used jointly with RBPF.
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Figure 6.11: Original and estimated dipole trajectories using the RBPF and B-RBPF 
methods in (a) axial view and (b) coronal view.

The results were compared with those obtained using RBPF, RAP-MUSIC and BF 

approaches, and they are discussed below.

RAP-MUSIC is a method that is robust in the face of GWN. It is, however, very 

sensitive to other kinds of noise, including Gaussian colored noise and real E/MEG 

background noise. The approach also needs an accurate estimation of the covariance 

matrix of the data. RAP-MUSIC is also more sensitive than the other approaches to 

the correlation between sources.

BF is a powerful source localization method in a number of different situations. 

In the simulation studies, BF showed consistency to different kinds of noise and 

was robust with respect to the number of dipoles that were used in the simulations. 

BF also has the ability to operate in distributed or tomographic source localization 

methods. Its limitations compared to the other algorithms are: (i) sensitivity to the 

power of noise, (ii) moderate sensitivity to correlations between sources, and (iii) its
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Figure 6.12: Original and estimated moments using RBPF and B-RBPF: (a) moment 
of the first dipole in x direction, (b) moment of the first dipole in y direction, (c) 
moment of the first dipole in 2 direction, (d) moment of the second dipole in x 
direction, (e) moment of the second dipole in y direction, and (f) moment of the 
second dipole in z direction.

failure to detect deep sources in noisy data.

RBPF shows robustness to noise power and is suitable when different kinds of noise 

such as spatially colored noise and real E/MEG background noise. RBPF performed 

consistently for superficial as well as deep sources and had superb performance when 

the sources were correlated. Unlike BF and RAP-MUSIC, the RBPF is capable of 

dipole tracking and can be applied to stationary as well as non-stationary data. The 

major drawbacks of the RBPF are its sensitivity to the assumed number of dipoles and 

its poor performance when the sources are close to each other. In addition, choosing 

appropriate noise covariance matrices for the state and measurement equations for 

both location and moments is crucial for the approach. The noise covariance matrices

0015
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should be obtained empirically and according to the available database. Although the 

m ethod is not very sensitive to these values, choosing appropriate values nevertheless 

requires some trial and error. Another limitation of the RBPF in some circumstances 

is its high execution time and memory usage.

The B-RBPF is a method that is robust in the face of different kinds of noise 

and different values of SNR. B-RBPF, in comparison to RBPF, is more consistent 

across different locations and in the presence of correlations between sources. B- 

R BPF is particularly useful when the number of sources is unknown. In addition, the 

simulated results show that the B-RBPF has superior performance to other methods 

when the sources are close to each other. The major drawbacks of the method are 

its execution time and memory usage, which are considerably more than those of 

the other approaches. This is especially true in comparison to RAP-MUSIC and BF. 

Furthermore, for B-RBPF, along with choosing appropriate noise covariance matrices, 

we need to choose a proper window length M . The data in this window should be 

stationary to  have a true estimation for the covariance matrix of the data. For real 

E/M EG  d a ta  in many cases it can be assumed tha t the data around a short window 

is stationary, since the brain state does not change substantially over short periods. 

Note, moreover, th a t this assumption is much weaker than that required by the BF 

and RAP-MUSIC approaches, which need the signal to be stationary over the whole 

data  length.

In conclusion, these observations demonstrate significant potential for the deploy­

ment of the B-RBPF approach for source localization of real-time measures of neural 

activity th a t are recorded at the scalp. In subsequent work we will extend the as­

sessments and comparisons across the methods described here to real data obtained
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in paradigms where the likely sources of scalp-recorded real-time measures of neural 

activity (both EEG and MEG signals) are well-known. Moving on from these assess­

ments based upon real data, satisfactory endpoints for the development of these ap­

proaches would include (but certainly not restricted to) their use in applications such 

as brain computer interfacing (BCI), localizing seizure activities, and characterizing 

neural dysfunction associated with conditions such as dementia and schizophrenia.

A p p e n d ix  

A  D e r iv a tio n  o f  S o lu tion  for E q u ation  (6 .15)

The first part of equation (6.15) can be written in a matrix form as W TH  =  H  and 

the second part can be satisfied by minimizing the output power of the filter, so the 

following optimization problem is obtained:

m in £ { |W Ty |2} subject to : W TH  =  H  (Al)

A closed-form solution to the above constrained problem can be given as follows. 

Using the method of Lagrange multipliers, the following unconstrained problem is 

resulted:

min /  =  tr {W Ty y TW  + (WTH -  H)r) (A2)
WT

The minimum can be found by finding zero of the gradient equation =  0 , there­

fore:

=  2W r y y 7’ +  r TH T =  0 (A3)
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which means:

W T =  - i r TH TC " 1 (A4)

Substituting W T from (A4) into the right-hand side of equation (A l) and after some 

algebra:

r = - 2H (H t C “ 1H ) -1  (A5)

using equations (A4) and (A5), W T is obtained as:

W r  =  H [Ht C “’H ] _1 n f C - \  (A6 )

which is equivalent to equation (6.16).



C hapter 7

V ariational Bayes for 

Spatiotem poral Identification of 

E R P  Subcom ponents

7.1 In tr o d u c tio n

In the previous chapters, a method for single trial estimation and dipole source local­

ization was proposed. Here, the principal interest is in developing a spatiotemporal 

method to reliably both localize and estimate the single trial variability of ERP sub­

component param eters during the course of a recording session. In other words, a 

novel method for tracking of ERP subcomponent parameters including location, am­

plitude, latency and width is proposed. In this approach, the location of dipoles can 

vary from trial to trial in a realistic head model. ERPs are assumed to be the super­

position of a number of ECDs whereas their temporal bases are modeled by Gaussian

119
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waves. The amplitudes, means, and variances of the Gaussian waves can be inter­

preted as the amplitudes, latencies, and widths of ERP subcomponents, respectively. 

Variational Bayes shows tha t when the prior distribution is unknown, maximizing the 

likelihood of each parameter (via separate estimation of each parameter) is equiva­

lent to minimizing the Kullback-Liebler distance between the estimated and the true 

posterior distributions [100].

The locations are estimated using PF. Many studies have shown that PF is one of 

the best methods when the relation between the desired parameter (states) and the 

measurement is nonlinear [29]. A closed-form solution for the amplitude is also given 

using the ML approach. The solutions to the latency and width are given recursively 

by the Newton-Raphson technique which has a rapid convergence. One challenge for 

this approach is th a t a very low SNR on some trials can result in the divergence of 

filtering for the estimation of amplitudes, latencies, and widths of Gaussian functions. 

To compensate for this failure and obtain a robust solution recursive methods are 

introduced, which guarantee the stability of the filtering from trial to trial.

The rest of the chapter is organized as follows. In Section 7.2.1, the spatio- 

tem poral ERP modeling is presented. Section 7.2.2 contains a new approach based on 

variational Bayes for estimation of the ERP model parameters. PF, ML and Newton- 

Raphson methods to estimate the ECD locations and parameters are also given in 

Section 7.2.2. Simulations for tracking of the ERP subcomponents are provided in 

Section 7.3.1 and the effectiveness of the method in a simple oddball paradigm is 

dem onstrated in Section 7.3.2. Finally, a detailed discussion of the proposed method 

is presented.
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7.2  M e th o d s

7.2.1 P rob lem  Form ulation

Let the measured ERP data Y k G RLxM be a matrix composed of the potentials 

acquired from L  electrodes and M  time samples at the A;th trial. Also, suppose that 

the ERP is generated from q ECDs whose three dimensional locations are specified by 

{ pk i 'i i = 1 , . . . ,  q}. The potential at the scalp is assumed to be the superposition 

of the potentials from q dipoles. Based on these assumptions, it may be written

where H  G R Lx3 is the forward matrix and is a nonlinear function of the ECD 

location. ~Nk represents additive Gaussian zero mean noise with unknown positive 

definite spatial covariance and known temporal covariance matrix I which is an 

identity m atrix. Hence, the covariance matrix of the noise can be written as I ® Q*,,

the source activities and identically distributed across time (temporally), but not

simple estim ation of the noise covariance matrix from trial to trial. In equation

(7.1), a k,i G R 3xl is the amplitude of the ECD moment in x, y and z directions and 

ijyki — .. .ipk i (M)\ G R lxM represents the temporal basis of the zth ECD

moment. Each ipkti(t) is given by a Gaussian wave as:

(7.1)
i= 1

where <S> represents the Kronecker product. Noise is assumed to be independent of

necessarily across the sensors (spatially). These assumptions provide a quick and

(7.2)
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Note th a t the dipole amplitudes are different in x, y and z directions, but have 

the same tem poral bases in all three directions (i.e. same ok,i and pk,i in three 

directions). For simplicity, and without loss of generality, the normalizing factor 

is ignored and it is assumed that it has been embedded in the amplitude 

vector a k,i- Modeling the temporal bases of ERP subcomponents using parametric 

functions has been exploited in many studies (e.g. see [97, 27]) and across them the 

Gaussian waveform modeling is the most common approach [103]. Although real ERP 

subcomponents do not have the exact shape of Gaussian waveforms, this modeling 

allows a robust and quick estimation of the peak parameters (latency and amplitude) 

with which neurophysiologists and cognitive scientists are primarily concerned.

The primary aim is to recursively estimate the model parameters 0k,i = {pk i,a-k,h 

Qfc, Pk,i, based on their previous estimations Ok-\,i and the available measure­

ments Yfc. Therefore, the evolution of the model parameters 0 k,i is assumed to be a 

Marokovian process and does not vary extensively across trials. This assumption has 

been exploited in many ERP analyses (e.g. [51, 102, 34, 62]). It can be explicitly jus­

tified by Mocks et al. observation [73] that consecutive responses to repeated stimuli 

vary slowly since brain states change gradually over time in this context, although 

responses throughout the experiment can differ significantly. This assumption, how­

ever, may limit the deployment of the method in some applications where there is 

extensive electrophysiological variability from trial to trial. In this case, as it will be 

shown in the simulation results section, the method may at least reveal some trend 

of param eters changing during the course of a recording session. For instance, it can 

observed whether ERP parameters increase or decrease with time on task.
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7.2 .2  P aram eter E stim ation  by Variational Bayes

Instead of estimating 0, the posteriori distribution p(6 |Y), which fully describes 

the knowledge regarding the model parameters 0 1, is estimated. Estimation of the 

posteriori distribution is the central quantity of interest in Bayesian estimation and 

is typically expanded using Bayes rule as:

where the dependence upon the model is implicitly assumed. p(Y |0) is calculated

their variabilities. In nonlinear models, however, the posteriori distribution is often 

difficult to analytically estimate using equation (7.3). In this case, it might be ap­

proximated in a simpler form r(0), which can be determined using the variational 

method.

A criterion to determine the goodness of fit of r(9 ) to the true posterior distribu­

tion p{9) is given via free energy which defined as [100]:

Derivation of the posterior distribution p(9 |Y) depends on correct estimation of r(9), 

which is achieved by maximizing the free energy over r{6). By such maximization, the 

best approximation to the true posterior is found. This also establishes the tightest 

lower bound on the true marginal likelihood. Moreover, the maximization of F  is 

equivalent to minimizing the Kullback-Liebler distance between r(6) and the true

1For the sake of convenience in this section the variable indices are omitted.

p(0 |Y ) <x p(Y|fl)p(0) (7.3)

from the model and p(0) incorporates prior knowledge of the parameter values and

(7.4)
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posterior [100].

In variational Bayes, it is also assumed that [100]

r(0) =  n > ( 0 i )  (7-5)
i

where the parameters in 0 have been factorized into different independent groups 

Oi, each with their own approximate posterior distribution r(0i) .  This is the key 

restriction in the variational Bayes method. The groupings are performed logically 

according to their appearance in the model. For example, in the proposed model the 

locations are grouped in one group and the latencies and the widths in another group. 

Using calculus of variations, r(0i) is obtained by maximization of (7.4) as

log r (0 i)  oc f  r(6/ i )  log \p(Y\0)p(6)}  d,0/i (7.6)
Jai l  0 / i

where 0/i  refer to all the parameters except the zth group. If the prior is assumed to 

be known, equation (7.6) implies MAP estimation: r(0i)  is the likelihood function:

r(0i)  oc p{0 i )p (Y \0 i )  (7.7)

If the prior is assumed to be unknown, equation (7.6) implies tha t r(6i) is the likeli­

hood function:

p(0») oc p ( Y \0 i )  (7.8)

The prior is assumed to be unknown and so equation (7.8) is the central key in

estimation of the param eters in the rest of the chapter. 6 is partitioned into p, a, Q, p,

and cr and different methods can be employed for estimation of posteriori distribution
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of each sub-param eter r(0*) according to (7.8).

7 .2 .2 .1  E s tim a tio n  o f D ipole  L ocations

To estim ate the dipole locations, all the ECD locations for trial k are augmented in 

a m atrix R*. =  [pkl . . .  pkq] £ R3x<7. The dipole locations Rfc have a nonlinear 

relation through forward matrix H  to the measurements, and if the real head model 

is used, no exact closed-form solution for H  exists. Therefore, nonlinear filtering is 

required to estimate the locations. Similar to the previous proposed method, PF 

for estim ating p(R*;|Yi;fc) is used. In PF, the posteriori distribution is approximated 

by discrete random measures defined by particles { R j^ ;n  =  1 , . . . , iV}  and their 

associated weights {w n  = 1, , N} .  The posteriori distribution based on these 

particles and weights is approximated as:

N

p(R * |Y 1;(fc) »  ^  «>in)5(R* -  R i")) (7.9)
71— 1

where £(.) is the Dirac delta function. Suppose at trial k the approximation of the 

posteriori distribution p(Rfc|Yi:fc) subject to having p(R fc_1|Y 1:fc_1) is desired. This 

means tha t, given the discrete random measure { R j^ ,  n =  1 , . . . ,  N }  and the 

observation Y fc, the weights { w ^ ; n  =  1 , . . . ,  N }  should be approximated. By using 

SIR-PF the weights are simply updated as

«;<"> oc w ^ lP( Y k\ K ^ )  (7-10)

In this method, the state space is explored without any knowledge of the observations.

Hence, this filter can be inefficient and sensitive to any outliers. This choice, however,
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does have the advantage that the weights are easily evaluated. In equation (7.10), 

p (Y fc|Rj. ) is the likelihood function and has an equivalent distribution to the noise 

distribution p(Nfc), which has already been assumed to be zero mean Gaussian with 

unknown covariance matrix Q^.

The resampling, which eliminates particles with small weights and replicates those 

with large weights is conducted in each iteration - please see Section 3.3.3 for resam­

pling procedure.

7.2 .2 .2  E stim ation  o f D ipole A m plitudes and N oise Covariance

Here, an ML estim ator for the ECD amplitudes a ^  and noise covariance matrix Qk 

are derived. It follows from (7.1) that the negative log-likelihood function of the 

observed d a ta  samples is

f(d-  Y*) =  t r \  [Y* - 5 Z H (Pfc1.)at,.'l/>t,,]TQ t'[Y t -  H (pw )at,iV’w] 1
I fc r  t r  J (7.11)

+  M  In | Qfc | +  constant

By equating the gradient of / (# ;  Y/t) with respect to the parameter of interest a k,i, 

to zero, the estim ation of amplitude is given by (see Appendix A)

at,i =  (HT(pM)Q i1H (pM))“1HT(p)tii)Qfc1[Y/i:-  H(plM)a*J«/’kj]V>£i/ II V’t.i 111 

(7.12)

where || . ||2 denotes the Frobenius norm. The noise covariance matrix is also esti­

mated by minimizing the negative log-likelihood function (7.11) with respect to Q*,
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which yields (see Appendix B)

Q* = ^ [ Y *  -  (7.13)
i=i i=i

If all other parameters are estimated correctly, the likelihood monotonically increases 

a t each iteration and, therefore, convergence of the above algorithm to a local max­

imum is guaranteed. However, due to inaccurate estimation of the other parameters 

and the presence of large noise power in individual trials, and noise covariance 

m atrix may not be truly estimated, or the filtering may diverge. To prevent these 

possibilities, the evolution of the parameters is assumed to be Markovian and then it 

can be written

&k,i =  l,t d" Aa(afci &k-l,i)
(7 -14)

Qfc = Qfc-1 T  A q ( Q / ;  Qfc—l )

where 0  < Aa, Xq <  1 are constant forgetting factors, and a*^ and Qfc are final estima­

tions which are updated by a*^ and Q^. It is noteworthy tha t in the above equations, 

it is implicitly assumed that p(s.k,i\&k-i,i) and p{Qk\Qk-i) are Gaussian zero mean 

distributions. These recursive equations prevent sudden changes of amplitude and 

noise covariance because of some highly noisy individual trials, and guarantee the 

stability of the filtering for sufficiently small values of Aa and Aq.

7.2 .2 .3  E stim ation  o f Tem poral Basis Param eters

Dipole tem poral basis parameters are the mean (ik,i and the variance crk,i of Gaussian 

waveforms. They have nonlinear relations to the measurements. In general, the 

optimization problem in (7.11) does not appear to provide a closed-form solution
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for fiki and ak i . Iterative methods, therefore, may be employed to estimate the 

temporal basis parameters. Newton-Raphson technique is a well established method 

th a t can be used to solve this problem approximately [55]. The main benefit of 

Newton-Raphson’s method is its fast convergence, especially if the iteration begins 

sufficiently near to the minimum point. Hence, this method is suitable to be coupled 

with the other methods for simultaneous estimation of parameters.

In the Newton-Raphson technique, the following formulation is used to estimate 

the temporal basis parameters 0 k based on 0k-\  at each iteration [55]:

0k — 0k- 1 — Ae
a 2/ (0 ;  Y*)

d e l

-1

For the same reason mentioned in the previous section, a forgetting factor 0 < \o  < 1 

to the original Newton-Raphson equation was added. This guarantees the stability of 

the filtering in the case of very low SNRs. Equation (7.15) needs the first and second 

order gradients of log-likelihood function /(0 ;  Y k) with respect to iik,i and ak,i- By 

defining £(t) =  y k(t) -  H (Pjfe,t)a *.^M W  and a fcji =  H (p fci)aM, the gradients 

with respect to fik,i can be calculated and simplified as (see Appendix C)

<9/(0, Y fc) =  _2_ Q k 16)
o^k,i 0kti “

M

ak,i t=1 ak,i ak,i
(7.17)

Similarly, the first and second order gradients of the likelihood function with respect
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to ak}i are as follows:

d°k,i Ok - t= 1

°  ^ ( 3- ^ ( / iM -i)4)^M(i)Q:MQA:1̂ (0+4-(Mfc)i-^)Vfc)iW2o:fc,tQjfc1
^®k,i ^k,i £=i u k,i u k,i

M
t  , fX4x ( /fX r p  1 ,  , xd , / . \ 9 T

otk,i.

(7.19)

It is evident tha t to model the ERP waveforms, any other parametric function 

tha t has first and second order continuous derivations can be employed instead of a 

Gaussian function.

The temporal basis parameters of ERP subcomponents estimated by the above 

formulation may not be the optimum values related to the global minimum of the 

algorithm, and they depend on the initial points. Due to nonlinearity of the latency 

and width, the Newton-Raphson method is more sensitive to the initialization than 

the PF and ML methods (both PF and ML can be considered as global minimizers).

As a result, equation (7.15) needs an accurate estimate of the initial points, which 

can be chosen according to the latency and width of the fitted Gaussian waveforms 

to the ensemble average over all trials. The procedure of selecting initial points will 

be explained further in the real data section.

Although PF  can again be employed to estimate the nonlinear parameters /ifcii 

and it requires extensive memory and computational time, which limits its ap­

plication. Especially in the presence of multiple ECDs, it may be intractable to use 

PF for estimation of all of the parameters.
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7 .2 .2 .4  O verall A lgorithm

The aim of the overall algorithm is to update the parameters recursively based on the 

available measurements. The pseudo-code of the method is presented in Algorithm 5. 

In this method, each particle not only holds a parameter for location p j^ , but holds 

parameters for amplitude a j^ , width crj^, and latency of the ERP subcompo­

nents. Note that, in this algorithm the estimated noise covariance matrix Q *. is used 

to update the weights using the likelihood function in equation (7.10).

In this method, the evolution of the locations (i.e. states in PF) is assumed to be 

a first order Markovian process as

Rfc =  R fc- i  +  W fc (7.20)

where is GWN with known covariance matrix API. Here, I is the identity ma­

trix and Ap is a scalar that represents the noise power. Hence, the distribution 

p(Rfc|R^n_1\  Yjt) in Algorithm 5 has Gaussian zero mean distribution with covari­

ance m atrix ApI.

The proposed method is a grid based method by which the brain is divided into 

sufficiently small three-dimensional grid cells and the location of each ECD is re­

stricted to one of these cells. Therefore, before updating the weights, if the location 

indicated by each particle is not one of those grid cells, it is replaced by the nearest 

cell. The grid based method helps the use of the real head model and any form of 

forward solution. Moreover, depending on the number of grid cells, the computational 

complexity considerably decreases compared to non grid based methods.
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A lg o rith m  5 Pseudo-code for the proposed method used for identifying ERP sub­
components

se t  k =  0 and generate random matrices Rq^ according to Gaussian distribution 
with mean in the initial ECD locations.
se t  p q7̂  and equal to the parameters of Gaussian waveforms fitted to the average
of ERPs over all trials.
f o r  k =  1 to K  do {K  is the number of trials}

- draw according to p(R*;|R^n-1\  Y^).
-  replace each column of R ^  with the nearest grid cell.
-  update new weights according to equation (7.10).
- norm alize  the weights w ^  /YLn=\wt ? •
- update 3l^I for each particle and Q k given pff\, , p ^ j  a n d Y k  using equa­
tions (7.12) - (7.14).
-  update and p^f] given a j^ , p^} and Y *  for each particle using equations 
(7.15) - (7.19).
- resam ple N  particles R ^  with replacement according to their importance 
weights .

end f o r

7.3  R e su lts

In this section, the proposed method is applied to synthetic and real EEG data to 

validate the approach and demonstrate its application in an empirical setting.

7 .3 .1  S im u la te d  D a ta  R e s u lt s

A set of EEG da ta  is generated containing ERP waves in the interval between 200ms 

and 500ms post-stimulus which contains a P300 component. The sampling frequency 

was set to 250Hz and the number of trials to 60. These characteristics were chosen 

in order to match those for the real EEG data set to which the approach was applied 

subsequently. Two moving sources, one in frontal and one in parietal loci, were used 

for simulating the ERP subcomponents. Gaussian waves, for which their amplitudes,
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latencies, and widths were varied across trials, were employed. The amplitude profile 

of the frontal source (first source) was assumed to decrease linearly, but its latency and 

width were assumed to be approximately constant across trials. The amplitude profile 

of the parietal source (second source) was assumed to be approximately constant, but 

its latency and width to decrease linearly across trials. GWN with different levels was 

added to the amplitudes, latencies, and widths of both sources. Spatially correlated 

Gaussian noise is added to the simulated EEG signal to achieve a realistic SNR. The 

available noise power in the simulated multichannel EEG is measured by SNR in dB 

unit, which is defined as

S N R =  1 0 1 o g ( ^ ^ )  (7.1)
noise

where PSi9nai and Pnoise denote, respectively, the power of the simulated EEG and 

noise.

Fig. 7.1 shows a typical example of the noiseless and noisy simulated ERPs. Noise­

less trial numbers 5 and 55 are shown in Fig. 7.1(a) and (b), and the noisy trials are 

shown in Fig. 7.1(c) and (d), respectively (for SNR =  -5dB). Note tha t the signal 

waveform is not visible in the noisy single trial data.

Fig. 7.2 shows the simulated and estimated amplitude, latency, and width of the • 

frontal (red lines) and the parietal (blue lines) sources for the data with SNR =  5dB. 

Fig. 7.3 depicts the simulated and estimated locations in axial and sagittal views 

for the same data. Because of the small amount of noise, Xp = 0.001, Aa =  1,Aq =  

1 ,AM =  1 and Xa = 1 was chosen. These values preserve the Markovian assumption 

for the parameters. The number of particles N  was set to 1000 during all experiments. 

Figs. 7.2 and 7.3 imply th a t in the presence of moderate noise power, the proposed 

method can detect the ERP subcomponent parameters and track their variability
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Figure 7.1: An example of simulated EEG data with SNR =  -5dB, (a) original number 
5 trial for multichannel EEG, (b) original number 55 trial, (c) noisy number 5 trial, 
and (d) noisy number 55 trial.

accurately.

Similar results for the simulated data with SNR =  -5dB are shown in Figs. 7.4 

and 7.5. The forgetting factors were set as \ p =  0.001, Aa =  0.9, Aq =  0.9, AM =  0.8 

and Act =  0.8. If these values are chosen to be the same as those employed for the 

previous simulation, the algorithm will diverge on some of the trials. In practice, these 

values should be chosen empirically and according to the SNR of the available data 

set. Note Figs. 7.4 and 7.5 imply that although the errors for some of the individual 

trials are large, the proposed approach at least reveals the trends for the temporal
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Figure 7.2: An example of estimated amplitude, latency, and width of two ERP 
subcomponents from simulated data with SNR =  5dB, (a) amplitude, (b) mean, and 
(c) variance.
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Figure 7.3: Estimated locations using the proposed method for Fig. 7.2 in (a) axial 
and (b) sagittal views.

basis parameters and locations.

The proposed method for identification and separation of ERP subcomponent is 

fundamentally different from the other approaches for ERP analysis (see equation

(7 .1)), and to the best of our knowledge, there is no method that can simultaneously 

estimate all ERP subcomponent parameters and localize and track their locations as 

this method does. Therefore, the above simulation results were not compared with 

those of the other methods.
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Figure 7.4: An example of the estimated amplitude, latency, and width of two ERP 
subcomponents in simulated data with SNR =  -5dB, (a) amplitude, (b) latency, and 
(c) width.
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Figure 7.5: Estimated locations using the proposed method for Fig. 7.4 in (a) axial 
and (b) sagittal views.

7.3.2 R eal D ata  R esults

Real data was obtained in an oddball paradigm. The subject was a female, right- 

handed undergraduate student. She heard in total 300 tones, 240 (80%) of which were 

frequent and 60 (20%) of which were infrequent. During acquisition, the frequency 

bandwidth of the linear bandpass filter was 0.03-40Hz and the sampling rate was 

250Hz.

The data were re-referenced off-line to the algebraic mean of the signals at the left
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and right mastoids. A 150ms pre-stimulus interval was used for baseline correction. 

Eye blinks were rejected using independent component analysis (ICA) [24]. In this 

method after applying ICA, components which are related to the eye blinks are set 

to zero and then back projection is applied which results eye blink free signals. The 

ensemble average over 60 trials in response to infrequent tones for 25 channels is 

shown in Fig. 7.6. The signal waveform was visible in the filtered and averaged data 

but not in the single-trial data. Fig. 7.6 shows two dominant peaks, one negative 

peak approximately 100ms post-stimulus and one positive peak approximately 300ms 

after stimulus onset (P300). The number of sources included in the model has a 

major impact on the performance of the method. An increment in the number of 

sources increases exponentially the number of particles in the PF that is needed 

for estimation of the posteriori distribution. Therefore, for the sake of convenience, 

assume th a t only two ECDs are responsible for the P300 generated by infrequent 

stimuli in the two-stimulus oddball paradigm.

Choosing the initial points is a crucial step tha t influences the behavior and con­

vergence of the filtering procedure. To determine the initial points for the amplitude, 

latency, and width of each subcomponent the data is average referenced and seg­

mented around the P300 component. Also, the initial location is assumed to be 

frontal site for P3a and parietal site for P3b. Epochs from 200ms to 500ms time- 

locked to stimulus onset for infrequent trials only were extracted. By assuming that 

the location is fixed, Gaussian waves were fitted to the data. Since the average data 

benefits from less noise compared to single trial data, all the forgetting factors were 

set to 1. The algorithm was executed until the results remained the same. The real
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Figure 7.6: Average ERP over 60 trials of real data for a female subject. The lower 
diagram represents the amplitude and time scales for all the plots. P300 amplitude 
can be seen better in the central sensors.

and fitted d a ta  for 25 channels are shown in Fig. 7.7 by red and blue lines, respec­

tively. The amplitude, latency, and width of the fitted data were used to initialize 

the algorithm.

During the running of the algorithm, \ p =  0.001, Aa =  0.9, Aq =  0.9, AM =  0.8 

and \ a — 0.8 was chosen. Setting all forgetting factors to 1 causes divergence of 

the filtering progress for this subject. The estimated amplitude, latency, and width 

of the P3a and P3b subcomponents are shown in Fig. 7.8. The amplitudes are the 

absolute values of the three dimensional ECD amplitude moments. The figure shows
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~%M 300 400  500  ms

Figure 7.7: Average re-referenced and segmented data around P300 (200ms-500ms) 
shown with red lines and fitted data shown with blue lines. The lower diagram 
represents the amplitude and time scales for all the plots. The parameters of the 
fitted waveforms were used for initializing the algorithm.

that the amplitude of P3b is more stationary than that of P3a on most trials. P3a 

amplitude diminishes from trial to trial while P3b is approximately constant. The 

latency of P3a is shorter than that of P3b (P3a occurs earlier than P3b: [87]), and 

in addition, P3b latency is less variable than P3a latency. Also, the width of P3b 

is larger and more stable than that of P3a, as would be expected given previous 

empirical findings. Fig. 7.9 depicts the estimated locations of P3a and P3b in axial 

and sagittal views. The red markers (frontal) denote the location of P3a while the
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blue markers (parietal) denote the location of P3b. The location of P3b in this subject 

is again more consistent than that of P3a.

Trial number

(a) (b)

s

Figure 7.8: Estimated amplitude, latency, and width in real data for P3a (red marker) 
and P3b (blue marker) in (a) axial and (b) sagittal views.

(a) (b)

Figure 7.9: Estimated locations of P3a (red marker) and P3b (blue marker).

7.4 D iscu ssion

The proposed approach has the ability to both localize and track ECD locations. 

Localizing and tracking ECDs can have many benefits in the application of ERP
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analysis in circumstances where the locations of dipoles may change during the course 

of recording [89].

The proposed method, which falls within the variational Bayes framework, can 

be considered as an expectation maximization (EM) algorithm [123]. The EM is 

an iterative method th a t alternates between performing an expectation (E) step, 

which computes an expectation of the likelihood with respect to the current estimate 

of the parameters, and a maximization (M) step, which computes the parameters 

by maximizing the expected likelihood. At the kth. iteration of the EM algorithm, 

the distribution of interest for the E-step is p(Rfc|Yfc, 0kR), where 0kR represents all 

the parameters except the location. In the proposed model it is nonlinear and this 

distribution is intractable. Instead, an approximation to this distribution, which is 

propagated from trial to trial by PF, is used. By substituting the posterior distri­

bution of the locations Rfc obtained in the E-step, the required optimization for the 

M-step can be found by maximizing equation (7.11) with respect to 0kR.

The method can also be considered as Rao-Blackwellized PF, which is a well 

established method in different applications of PF [29]. Using Rao-Blackwellization, 

the variables may be marginalized out as

p(B-jfc5 3-ki Qfc) M/o ^fcl^fc) =  p(R fc |Y fc, afc, Qfc, //fc, crfc)p(afc, Qfc|Yfc, fik(7k)p(iik, crfc|Yfc)

(7.1)

The above equation implies tha t each distribution can be estimated using different 

methods. Here, assume th a t the parameters are independent. Equation (7.1), which 

is the product of H , ak, and ^fc) entails tha t the parameters are indeed independent. 

H is a function of p k and 'ipk is a function of ok and pk.
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In this study it is assumed that the evolution of the parameters is a first order 

Markov model and the transition probabilities are known. Hence, the method trades 

off between reducing the noise power and following any sudden changes. In other 

words, if the signal has moderate noise power, or the variability across trials is smooth, 

the method can be applied successfully. On the other hand, if the signal is very 

noisy and has sudden changes in parameter values, this method may not estimate the 

parameters accurately. In this case, it may give us a trend for parameters from trial to 

trial, which can be used effectively in circumstances where it is reasonable to assume 

that the components or subcomponents of interest will either decrease or increase (in 

either amplitude or latency) over time. Studies of the effects of habituation, learning 

and fatigue are good examples of this kind. It is also notable tha t this approach relies 

on weaker assumptions than those in other methods (e.g. ensemble averaging and 

ML), which assume th a t the temporal basis or the locations of the sources remain 

the same across trials.

When the noise temporally is independent and identically distributed the signal 

quality is improved. Different results are likely if the noise is strongly correlated with 

time, such as when it is due to large amplitude alpha rhythms. Unknown temporal 

noise correlations can thus adversely affect the result of the method. The method 

is most suitable for scenarios in which the noise is strongly correlated in the spatial 

dimension and offers significant advantages relative to the methods which assume the 

statistics of the noise remain the same during the course of recording [62].

In the real d a ta  results (oddball paradigm), a complete and accurate localization 

of all sources contributing to P300 is not likely to be possible at the present time [82]. 

It is widely accepted, however, th a t fronto-parietal interactions are one of the main
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contributors and as a result, the current work emphasizes the potential for being able 

to  compare how frontal and partial contributions vary with time across groups [32]. 

For example, the method can be applied to compare variation of P3a and P3b in young 

and old participants, or between controls and individuals with organic or psychiatric 

disorders.

Finally, although PF  has the ability to converge to the global minimum, the 

initial locations are assumed to be known a priori. This is because the number of 

trials was limited (converging to a local minimum needs some iterations) and the 

signal was contaminated with a high level of noise. The initial locations were chosen 

according to widely documented knowledge (e.g. [32]) about the ERP components 

tha t are observed in odd-ball experiments. Initial points could be assigned on the 

basis of other kinds of information, for example the outcomes of studies in which 

haemodynamic measures of neural activity are acquired in the same tasks for which 

ERPs are then analyzed subsequently.

7.5 C o n c lu s io n s

In this chapter, a novel method for identifying ERP subcomponents was introduced. 

The ERP subcomponent sources were modeled by ECDs and their moments were 

modeled by Gaussian waves. The unknown parameters of the model were estimated 

using PF, ML and the Newton-Raphson technique from trial to trial, and the evolution 

of the parameters was assumed to be a first order Markovian process. The results 

obtained from simulation and real da ta  showed the potential use of the method in 

real applications.
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Reliably extracting the ERP subcomponents in each trial would be of great bene­

fit in contrasting ERPs across different patient groups. In this context, the existence 

of a reliable means of extracting ERP subcomponents offers a means of assessing 

whether factors such as habituation and fatigue influence ERPs differently according 

to variables such as the disease state or severity, or the location of focal brain dam­

age. Assessment of the performance of the approach described here in populations 

other than healthy young adults is one way in which this work will be taken forward 

subsequently.

A p p e n d ix

A  M L E stim a tio n  o f  a ^

(Al)

derivative of (7.11) with respect to at time t becomes:

(A2)
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where y k(t) is the tth  column of Y k. Accumulating equation (A2 ) for t = 1 to M  

and making it equal to zero results:

M

m ,  (A3)

t =  1 j = i j ^ i

Using the above equation and the following facts:

M

II *l>k,i lli= (A4)
t=i

M  q

'Yjl>k,i{t)(yk(t) -  H(pkJ)akdxl;kj(t))  =

Q
([y*(i) ••• yk (M )\-  ] T  H (Pfcj)ajfej[^j(i) ••• ••• ^ M M )]T =

j = i , j &
<?

(Yfc- H (Pfcj)afcj^A;J)^r)i

(A5)

equation (7.12) is obtained.

B  M L E stim a tio n  o f  Q,

Using the following equations [85]

d W
= — (W  B A  W  ) (Bl)



the derivative of (7.11) with respect to Q* becomes 

d
dQk

1
~  M

f ( 0 ; Y k)

^  ( Crk l \Y k -  £  H (p M)afciiV.t ,i][Yt  -  £  H (pM)afcij,/,fc J Q , - 1)  +  Q kT =  0
\ 1=1 i=l J

(B3)

Post multiplication of equation (B3) by Q f and recognizing that Qk =  Q j  results:

- J j Q k '(Y* -  ^  H (p <. i)a(;iiV’fc,i][Y/c -  J 2  K{Pk,i)*k,0l>kt f  +  1 =  0 (B4)
1 = 1  1 = 1

Equation (B4) simply results in:

1 9 9

Qfc =  J 7 iY k  -  U (Pk,i)a^ k , i \ [ Y k  -  U (Pk,i)ak,i^k,i]T- (B5)
M  • i1 = 1  1 = 1

C D er iv a tio n  o f  E q u a tio n s (7 .16 ) and (7 .17)

Equation (7.16) can be obtained similar to the calculations in Appendix A. Using 

equation (A l), the derivative of negative log-likelihood with respect to jik  ̂ at time t 

can be written as:

d f ( 6 ; Y k)

t = t  1=1
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again y k(t) is the tth  column of Y^. By accumulating the above equation for t =  1 to 

M  and using the fact th a t after some algebra equation (7.16)

follows.

The second order derivative of the negative log-likelihood with respect to Hk,i is 

equal to the derivative of equation (7.16):

o2m  y *) 2 ^ d(vk, i - t ) ,
— a ? ------ = jL. du„. MteksQk  « ‘)+utl k,i a k,i t=i u^k,i

which after some algebra results in equation (7.17).



C hapter 8

Summary, Conclusions, and Future 

Works

8.1 S u m m a ry  an d  C on clu sion s

In the past, communication between the neuroscience and signal processing commu­

nities has been limited. However, because of the realization of mutual requirements 

and interests by researchers from both areas, the two communities are working to­

gether more frequently. This means increased opportunities for the investigation of 

normal brain functions and the diagnosis of abnormalities. Two main problems for 

the neuroscience community may be addressed by signal processing experts. The first 

is single trial estimation and the second is source localization of E/MEG data. During 

the past three decades, many approaches to both problems have been developed.

This study proposed a new method for single trial estimation, two new methods 

for source localization, plus a novel method for simultaneous single trial estimation
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and source localization. These methods have many possible applications in neuro­

science, engineering and medicine. For instance, ERP analysis can be used to identify 

and classify individual ERP responses that are not accompanied by overt behavioral 

responses. Due to the consistency of the P300 response to novel stimuli, a brain- 

computer interface might also be constructed relying on the proposed ST-ERP es­

timation or E /M EG  source localization methods described here. Furthermore, the 

methods can be used as assessment tools for patients who are only able to provide 

minimal cooperation an d /o r few behavioral responses. They also may have benefits 

for localization of epileptic foci. In the following paragraphs the proposed approaches 

are summarized.

As was emphasized in the introductory chapter, one of the main problems in ERP 

research is the destructive effect of artifacts which can mask the signal of interest. 

A desirable development, therefore, is accurate single-trial estimation of ERPs. In 

chapter 4, a method developed to mitigate the effect of noise in each single trial 

based on PF  and discrete wavelet transformation of ERPs was reported. The main 

advantages of the proposed method are in employing sequential importance sampling 

and Bayesian theory combined with DWT, which promises a high performance in the 

presence of non-Gaussian and non-stationary noise. This method uses only one EEG 

channel for ST-ERP extraction and, therefore, ignores spatial information contained 

in E/MEG data. Moreover, it may be more sensitive to outliers than other methods 

such as the MAP estimator, since no prior information about the measurement has 

been employed. The method was tested for simulated and real data. The simulation 

results demonstrated the improved accuracy of estimations by PF in comparison with 

KF, especially when the assumption about GWN was violated.
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Another main problem in E/M EG research is the inverse problem (source localiza­

tion). The Inverse problem can be solved only by introducing restrictive assumptions 

about the head and signal propagation models. Among the existing solutions for the 

inverse problem, BF has the best spatial resolution. The BF approach described in 

Chapter 5 was generalized by including two more constraints within its formulation. 

One constraint minimizes the noise power at the output of the filter and the other 

deflates the location of the already identified sources. The multiply constrained prob­

lem was solved using the Lagrange multiplier method and the results were normalized 

to the power profile of noise only. Furthermore, an iterative deflation and localization 

method was introduced to improve the performance of the method. It was shown 

that the proposed deflation BF method has no dependence on the correlation be­

tween sources. The method is also useful when the classical BF identifies all the 

locations around the dominant source. Only when the sources are very close does the 

BF outperform the deflation BF. Unfortunately, both BF and deflation BF are still 

sensitive to the depth of sources.

In addition to the above method, RBPF and B-RBPF approaches were introduced 

in Chapter 6 for E/M EG  dipole source localization. RBPF is a method that estimates 

source locations (the nonlinear part of the states) using PF and marginalizes out 

and estimate dipole moments (the linear part of the states) using KF. RBPF is 

robust in the face of different levels of noise power including spatially colored and 

real EEG background noise. RBPF performed consistently for superficial as well as 

deep sources, and had superb performance when the sources were correlated. The B- 

RBPF, which is a combination of RBPF and BF, is also robust in the face of different 

kinds and levels of noises. B-RBPF, in comparison to RBPF, is more consistent across
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different locations and in the presence of correlations between sources. B-RBPF is 

particularly useful when the number of sources is unknown. In addition, B-RBPF has 

superior performance to other methods when the sources are close to each other. The 

major drawbacks of the method are the execution time and memory usage, which 

are considerably more than those of other approaches. Furthermore, for B-RBPF, 

along with choosing appropriate noise covariance matrices, a proper window length 

M should be chosen. The data  in this window needs be stationary. In many cases 

it can be assumed th a t the real data  around a short window is stationary, since the 

brain state does not change substantially over short periods of time (0.05-0.lsec). 

This assumption is much weaker than tha t required by the BF and RAP-MUSIC 

approaches, where the signal should be stationary over the whole data length.

In Chapter 7, a novel method for identifying ERP subcomponents was proposed. 

This method can be considered as one tha t can estimate both single trial parameters 

and source locations. In this method, the ERP subcomponent sources were modeled 

by ECDs and their moments were modeled by Gaussian waves. The un known param­

eters of the model were estim ated using PF, ML, and the Newton-Raphson technique 

from trial to trial while the evolution of the parameters was assumed to be a first 

order Markovian process. The results obtained using simulated and real data showed 

the potential use of the method in real applications.

8.2 F u tu re W ork

PF is a recent and powerful method with many applications in engineering and sci­

ence. To the best of our knowledge, however, this method has not been widely applied
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to biomedical signals, especially E/MEG data. The method has considerable poten­

tial for solving problems in the growing biomedical signal processing area.

One application of PF  would be establishing a new BCI technique, whereby the 

EEG signals are classified using spatial information. Currently, most BCI methods 

are based on time and frequency information.

Throughout this study dipole source localization was considered. Another ap­

proach - called distributed or tomographic source localization - has also been widely 

employed for analyzing E/M EG  signals. An objective in forthcoming work is to extend 

the newly developed methods to tomographic source localization, under conditions 

where the locations of the sources are unknown. For example, in the deflation BF 

method proposed in Chapter 5, one approach would be starting the process by finding 

the tomograph image of each source separately, while deflating the others. By adding 

all tomograph images together, the end result should be a more accurate tomograph 

image than can be obtained without the deflation procedure.

With the available technology, achieving excellent spatial and temporal resolu­

tion is not possible unless neuroimaging techniques such as fMRI and E/MEG data 

are combined. Several methods for fusion of these modality have been proposed. 

New techniques based on PF  may be helpful in this regard: likely source locations 

of E/MEG data  can be constrained by fMRI data, and the time course data can 

contribute to an understanding of the temporal relationships between activity in re­

gions identified via fMRI. The current work offers many opportunities for significant 

advances in medical image registration and data fusion.
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