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Abstract

The concept of polynomial matrices is introduced and the potential application of polynomial 
matrix decompositions is discussed within the general context of multi-channel digital signal 
processing. A recently developed technique, known as the second order sequential rotation al
gorithm (SBR2), for performing the eigenvalue decomposition of a para-Hermitian polynomial 
m atrix (PEVD) is presented. The potential benefit of using the SBR2 algorithm to impose 
strong decorrelation on the signals received by a broadband sensor array is demonstrated by 
means of a suitable numerical simulation. This demonstrates how the polynomial matrices 
produced as a result of the PEVD can be of unnecessarily high order. This is undesirable for 
many practical applications and slows down the iterative computational procedure.

An effective truncation technique for controlling the growth in order of these polynomial 
matrices is proposed. Depending on the choice of truncation parameters, it provides an 
excellent compromise between reduced order polynomial matrix factors and accuracy of the 
resulting decomposition. This is demonstrated by means of a set of numerical simulations 
performed by applying the modified SBR2 algorithm with a variety of truncation parameters 
to a representative set of test matrices.

Three new polynomial matrix decompositions are then introduced - one for implementing 
a polynomial m atrix QR decomposition (PQRD) and two for implementing a polynomial 
matrix singular value decomposition (PSVD). Several variants of the PQRD algorithm (in
cluding polynomial order reduction) are proposed and compared by numerical simulation 
using an appropriate set of test matrices. The most effective variant w.r.t. computational 
speed, order of the polynomial matrix factors and accuracy of the resulting decomposition is 
identified.

The PSVD can be computed using either the PEVD technique, based on the SBR2 
algorithm, or the new algorithm proposed for implementing the PQRD. These two approaches 
are also compared by means of computer simulations which demonstrate that the method 
based on the PQRD is numerically superior.

The potential application of the preferred PQRD and PSVD algorithms to multiple input 
multiple output (MIMO) communications for the purpose of counteracting both co-channel 
interference and inter-symbol interference (multi-channel equalisation) is demonstrated in 
terms of reduced bit error rate by means of representative computer simulations.
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Contributions

•  A n algorithm  for calculating the Q R decom position  o f a polynom ial m atrix.
The potential application of the decomposition is to MIMO communication systems, 
where it is often required to reconstruct data  sequences that have been distorted due to 
the effects of co-channel interference and mulitpath propagation leading to intersym
bol interference. If the polynomial channel matrix for the system is known, then this 
decomposition algorithm can be used to reduce the problem of MIMO channel equal
isation into an upper-triangular system of polynomial equations, which can be easily 
solved using back substitution and a standard equalisation scheme for a SISO problem. 
The capability of this application of the decomposition has been demonstrated with 
some simulated results.

•  A n algorithm  for calculating th e  singular value decom position  o f a polyno
m ial m atrix. Again, the capability of the decomposition to the potential application 
to MIMO communication systems is illustrated by some simulated results and has been 
shown to offer some advantages over an existing method for calculating this decompo
sition using the SBR2 algorithm.

• T he energy based truncation m ethod  for polynom ial m atrices. This method 
can be used within any of the polynomial matrix decomposition algorithms to reduce 
the orders of the polynomial matrices and consequently the computational time taken to 
implement the algorithms. This is particularly important for the potential application 
of any of the algorithms to MIMO communication problems, where the order of the 
matrices is directly proportional to the computational complexity of the application.
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Chapter 1 

Introduction

1.1 M otivation

Digital signal processing (DSP) became a major area of interest in the mid 1960s when high 

speed digital computers became readily available for research [1]. From the advances in 

technology built upon this research, many potential applications were realised and a greater 

need for the advancement of DSP techniques was identified over the ensuing decades. The 

emergence of the Internet and major developments in wireless technology and mobile telecom

munications have in particular been underpinned by DSP. As an example of the commercial 

return of research in DSP, wireless revenues are currently growing between 20% and 30% per 

year and are likely to continue this trend in the forseeable future [2].

Research in digital communications can be divided into many subsections, which include 

the detection and estimation of signals that have been transm itted over a channel. The main 

aim of these areas is to obtain an estimate of the transmitted signal from the received signals 

in an efficient and robust way. The term blind source separation (BSS) is used to describe 

the process of recovering a set of source signals from a collection of observed mixtures of 

these sources, when both the source signals and the mixing model are unknown. It may 

be desirable to recover all sources from the recorded mixtures or at the very least isolate a 

particular source. Alternatively, it can often be useful to establish information about how the 

source signals have been mixed and therefore gain some understanding about the physical 

mixing process observed.
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The solution of source separation problems has been the focus of much research over 

the last couple of decades and the problem can generally be divided into two categories, 

depending on whether the signals have been instantaneously or convolutively mixed. In the 

instantaneous case, the relative delay can be modelled as a simple phase shift. Therefore, 

the sensors receive the same time sample of the mixed source signals and so the mixing 

m atrix required to describe this scenario has complex scalar entries. In the more complicated 

yet more realistic convolutive case, the set of source signals are received at an array of 

sensors over multiple paths and with different time delays. The multiple paths arise from 

scattering, reflection and diffraction of the signals in the channel [2]. Furthermore, the finite 

propagation speed will also influence the signals over their transmission, which will also be 

typically corrupted by noise. This more complicating scenario is referred to as convolutive 

mixing and each element of the mixing m atrix required to describe this situation will be a 

finite impulse response (FIR) filter. This FIR filter will take the form of a polynomial in the 

indeterminate variable z-1 , which is used to represent a unit delay.

Initially, most of the research in the field of BSS [3,4] was concentrated on the simpler 

case of narrowband signals, where instantaneous mixing takes place. Many effective algo

rithms have been developed to solve the problem and have been applied to a wide range of 

useful applications. W ithin this problem elements of numerical linear algebra, such as matrix 

decomposition methods, have proven to be a useful tool for simplifying the problem [5]. For 

example, both the eigenvalue and singular value decompositions (EVD and SVD) can be used 

as a preprocessing step to many instantaneous BSS algorithms, where decorrelation of the 

received signals is required. These scalar matrix decompositions can also be used to simplify 

multivariate analytical problems and can therefore be applied to a diverse range of problems. 

Consequently, the EVD and SVD can be used to reduce the number of computations re

quired for many operations, thus allowing computational convenience, and ensure numerical 

robustness [6].

In the past decade much BSS research has been focused on the separation of convolutive 

mixtures, where each element of the mixing matrix is a polynomial with an associated set 

of coefficients. Most techniques to solve this problem transform the signals to the frequency
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domain, separating them into a number of narrowband problems, where an instantaneous but 

complex BSS algorithm can be applied. Other techniques operate entirely in the time domain, 

where as with the instantaneous methods, a preprocessing step would be of use. Most notably, 

an algorithm suitable for calculating the EVD of a para-Hermitian polynomial matrix has 

been developed in [7]. This algorithm is called the sequential best rotation algorithm (SBR2) 

and constitutes a direct extension of Jacobi’s EVD algorithm from scalar to polynomial 

matrices. The algorithm was developed as part of a two-stage convolutive BSS algorithm, 

as it has the capability of performing strong decorrelation on a set of convolutively mixed 

signals [8]. The algorithm has also been applied to problems concerning multichannel data 

compression [9,10] and more recently it has been used as a technique for designing orthogonal 

space-time channels for optimal data transmission [11-15]. This list does not include all 

applications of the algorithm to broadband signal processing, which will be as diverse as the 

applications of the conventional EVD for scalar matrices to narrowband signal processing.

The motivation behind this thesis is the development of other polynomial matrix decom

positions using the methodology introduced for the SBR2 algorithm. In particular, algorithms 

for calculating the QR decomposition and SVD of a polynomial m atrix are developed. These 

algorithms have been proven to converge at least as well as the SBR2 algorithm and are 

also numerically stable. Note that these decompositions of a polynomial m atrix cannot be 

calculated using the conventional techniques for formulating the same decomposition of a 

scalar matrix, as each element is now a polynomial with an associated set of coefficients. The 

applications of these decomposition techniques to broadband signal processing are analogous 

to the applications of the scalar m atrix equivalent decomposition to narrowband problems. In 

particular, the application of the decompositions to multi-input multi-output (MIMO) com

munication systems is examined and some results based on numerical simulations presented 

to support the potential applications. In this case, the polynomial matrix decomposition 

techniques can be used to simplify the problem and ease computation in a similar way to 

how scalar m atrix decompositions could be used to solve a set of linear equations.
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1.2 Problem  Statem ent and Aims of Thesis

The SBR2 algorithm is a technique that has been developed for calculating the eigenvalue 

decomposition of a para-Hermitian polynomial matrix [7]. It was developed as part of an 

algorithm for solving the convolutive BSS problem, and can be used to enforce strong decor

relation upon a set of convolutively mixed signals, by diagonalising the polynomial space-time 

covariance m atrix of the mixed signals. This algorithm provides the foundation for the re

search presented in this thesis. The main aims of this thesis are now described below:

1. To decrease the computational load within the SBR2 algorithm by introducing an effi

cient polynomial m atrix truncation method, which can be used to significantly reduce 

the order of the polynomial matrices within the algorithm, whilst not compromising 

the accuracy of the decomposition performed. W ithout implementing some type of 

truncation method the order of the polynomial matrices within the SBR2 algorithm 

can become unnecessarily large. A couple of techniques to tackle this problem are pro

posed and the level of decomposition is assessed when using each of these techniques. 

The large orders of the polynomial matrices is a particular problem for the application 

of this algorithm to MIMO channel equalisation problems, where it is used to calculate 

the SVD of a polynomial channel matrix. If the orders of the polynomial matrices 

obtained by the decomposition are too large then the method becomes computation

ally too complex to utilise. Extensive examples have shown that even for a channel 

m atrix of a relatively small order with coefficients having a constant power profile as 

observed in wireless communications, the orders of the generated polynomial matrices 

are too large to use easily for this application. Note that for this application, the SBR2 

algorithm does not directly operate on the polynomial channel matrix.

2 . Secondly, the thesis aims to introduce an efficient algorithm for calculating the QR 

decomposition of a polynomial matrix. The algorithm operates by applying the same 

elementary paraunitary operations as used in the SBR2 algorithm. The potential appli

cation of this decomposition is also to MIMO communication systems, where channel 

equalisation is required. This decomposition has the considerable numerical advantage
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that it operates on the polynomial channel m atrix directly and is found to generally 

yield polynomial matrices of a smaller order than those obtained by the SBR2 algo

rithm.

3. An algorithm for computing the SVD of a polynomial m atrix is introduced and a proof 

of convergence for this algorithm is also presented. This new algorithm operates by 

iteratively calculating the QR decomposition of a polynomial matrix. This algorithm 

can also be used within MIMO channel equalisation problems, as an alternative to the 

SBR2 algorithm. As this algorithm also directly operates on the polynomial channel 

matrix, it will also typically generate polynomial matrices of a smaller order than those 

obtained using the SBR2 algorithm to formulate the SVD of a polynomial matrix.

4. Finally, this thesis examines the potential applications of the two polynomial matrix de

compositions, i.e. the polynomial matrix QR decomposition (PQRD) and polynomial 

m atrix SVD (PSVD), which have been introduced in this thesis. Application moti

vated examples are given to illustrate their relevance and capabilities to the specified 

applications.

1.3 Organisation of Thesis

The second chapter introduces the concept of blind source separation and provides a review 

of current methods for solving this problem for both the instantaneous and convolutive cases. 

This chapter includes a discussion on the background of polynomial matrices and in particular 

describes how they arise in signal processing. Finally, at the end of this chapter, existing 

techniques for calculating polynomial matrix decompositions are reviewed.

The third chapter of this thesis introduces the SBR2 algorithm, which can be used to 

calculate the EVD of a para-Hermitian polynomial matrix and operates by applying a series 

of elementary paraunitary matrices. This algorithm can be used as a time-domain approach 

for achieving strong decorrelation of a set of convolutively mixed signals. This application 

of the algorithm is discussed and an example given to illustrate how the algorithm operates. 

This example illustrates the one problem with this algorithm, which is the growing orders of
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the polynomial matrices. This algorithm can also be used to obtain the SVD of a polynomial 

matrix, however this will not be discussed in detail until the seventh chapter.

The fourth chapter introduces two truncation methods which can be applied to the poly

nomial matrices within the SBR2 algorithm to ensure that the orders of these matrices do 

not grow unnecessarily large within the algorithm. The energy based truncation method can 

drastically decrease the the computational load of the algorithm, whilst allowing the algo

rithm  to obtain a highly accurate polynomial m atrix decomposition. Results are given to 

illustrate the advantages of truncating the orders of the polynomial matrices throughout the 

algorithm.

The fifth chapter introduces three algorithms for calculating the QR decomposition of a 

polynomial matrix, these are referred to as the PQRD-BS, the PQRD-BC and the PQRD- 

SBR algorithms. The three algorithms employ the same elementary polynomial transforma

tion matrices as used within the SBR2 algorithm to transform a polynomial matrix into an 

upper triangular polynomial matrix. Convergence of each of the three algorithms is discussed 

and their performance demonstrated by applying them to a simple numerical example.

The sixth chapter introduces a set of polynomial matrices, each with slightly different 

characteristics, which are then used for testing the three different PQRD algorithms dis

cussed in the previous chapter. The results found when applying the algorithms to the set of 

test matrices illustrate the different qualities of the algorithms and exemplify any problems 

or disadvantages of using them. In particular, this chapter confirms that the PQRD-BC 

algorithm typically offers the best performance, often requiring the least number of iterations 

and computational time to converge. Consequently, this algorithm will generally produce an 

upper triangular polynomial m atrix with the smallest order of the three algorithms and the 

decomposition performed will typically be more accurate. The polynomial m atrix truncation 

methods introduced in the fourth chapter can also be implemented within any of the PQRD 

algorithms.

It can be shown that the QR decomposition of a scalar matrix can be iteratively calculated 

and used to obtain the SVD of a scalar matrix. Extending this idea to polynomial matrices, 

the seventh chapter introduces an SVD algorithm suitable for polynomial matrices. This
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algorithm operates by iteratively applying the most efficient polynomial m atrix QR decom

position algorithm from the fifth chapter. The algorithm has been proven to converge and 

shown to offer some advantages over the existing technique of calculating the SVD of a poly

nomial matrix using the SBR2 algorithm. The main advantage is its ability to control how 

small the magnitude of the off-diagonal coefficients of the transformed diagonal matrix must 

be driven - something that cannot be achieved with the existing approach. Consequently, a 

more accurate polynomial matrix decomposition can be formulated. Furthermore, to obtain 

the same level of decomposition (in terms of ensuring the magnitude of all off-diagonal coeffi

cients is less than a specified value) using the two different approaches, the PQRD approach 

requires significantly less iterations and, as a consequence, the orders of the polynomial ma

trices generated by the decomposition are often shorter. The two methods are compared by 

means of a numerical example to demonstrate the advantages of the new PQRD approach.

The eighth chapter of the thesis briefly explains some of the potential applications of the 

three polynomial matrix decompositions, the polynomial m atrix EVD (PEVD), the PQRD 

and the PSVD. The applications of the two decomposition algorithms introduced in this 

thesis for calculating the PQRD and the PSVD, are illustrated by applying the algorithms to 

some simple application motivated examples. Note that it may be beneficial for some readers 

to look at this chapter before reading the detailed descriptions of the algorithms presented 

in the previous chapters.

The final chapter concludes the research presented in the thesis and outlines how this 

work could be continued in the future. Appendices are then included to provide some results 

that have been commented on, but are not included in the main body of the text.

1.4 N otation

Matrices are denoted as upper case bold characters and vectors by lower case bold charac

ters. The subscripts *, T and H denote complex conjugate, matrix transposition and matrix 

Hermitian conjugate respectively. A p x p  identity m atrix will be denoted as l p and a p x q 

matrix with zero entries will be referred to as 0pxq. Let C and R denote the field of complex
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numbers and the field of real numbers respectively.

The underline notation, used with a matrix, vector or scalar, is used to denote a poly

nomial to avoid confusion with the notation used for the 2-transform of a variable. For 

example, A (2) will denote a polynomial matrix in the indeterminate variable z ~ l . Let atJ(z) 

denote the (i , j ) th polynomial element of the matrix A (2). The coefficient associated with 

the (i , j ) th polynomial element of A (2), corresponding to a delay of z~l , will be denoted as 

dijit) or occasionally, if this notation is not suitable, it is denoted as [A(z)]jkt. Let the set 

of polynomial matrices, with complex coefficients, be denoted by C axb where a denotes the 

number of rows and b the number of columns of the polynomial matrix. If the order of the 

polynomial m atrix is also known, for example suppose it is c, then alternatively the set could 

be denoted by C axbxc. Similarly, if the polynomial m atrix has real coefficients then the set 

of polynomial matrices with a rows and b columns, but an unspecified order, is denoted as 

M.axb. If the order of the matrix is known and is c, then the set is denoted as Max6xc.

The tilde notation, (~ ), used above a polynomial m atrix is used to denote the paraconju- 

gate. Finally || ||F is used to denote the Frobenius norm of a matrix and will also be referred 

to as the F-norm.



Chapter 2

Background to Convolutive 
M ixtures and Polynom ial M atrices

2.1 Introduction

The problem of source separation can be considered in different ways depending on how the 

sources have been mixed. In the instantaneous case, a m atrix of complex scalars is sufficient to 

describe the mixing. Clearly, this model is not realistic for many applications, as signals can 

often take multiple paths with different time delays. In this situation a m atrix of polynomial 

elements is commonly required to describe the mixing process.

This chapter firstly discusses the simpler instantaneous mixing model. Methods for 

achieving instantaneous blind source separation are briefly discussed and, in particular, the 

role of scalar matrix decompositions to this problem and other potential applications of these 

decompositions is examined. The chapter then discusses the more complicated scenario where 

convolutive mixtures arise. In this situation, the channel m atrix required to express the mix

ing takes the form of a polynomial matrix, where each element is a finite impulse response 

(FIR) filter. Polynomial matrices have therefore been used extensively in recent years in 

the area of digital signal processing, but they can also be used to describe the multivari

able transfer function associated with a multi-input multi-output (MIMO) communication 

system. Other examples of their applications include broadband adaptive sensor array pro

cessing, broadband subspace decomposition and also digital filter banks for subband coding 

or data compression [10,16,17].
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The topic of this thesis is the development of algorithms for the computation of poly

nomial matrix decompositions. There are already existing decomposition techniques, which 

operate on polynomial matrices. These include routines such as the Smith-McMillan decom

position for transforming a polynomial matrix into a diagonal polynomial matrix [16,18,19] 

and a method introduced by Vaidyanathan for factorising a paraunitary polynomial ma

trix [16]. However, little research has focused on extending standard scalar matrix procedures 

for calculating decompositions such as the eigenvalue decomposition (EVD), singular value 

decomposition (SVD) or QR decomposition (QRD) to polynomial matrices. The first, of two 

existing techniques, is an EVD routine for polynomial matrices developed by Lambert [20]. 

However, this routine operates by converting the polynomial matrices into the frequency do

main and therefore offers only an approximate decomposition. A very different approach has 

been used to develop the SBR2 algorithm [7,8,21], which is an alternative EVD routine for 

polynomial matrices. This algorithm constitutes a natural generalisation of Jacobi’s algo

rithm from scalar matrices to polynomial matrices. The majority of these polynomial matrix 

decomposition techniques are discussed in more detail at the end of this chapter. However, 

the SBR2 algorithm is discussed in the following chapter, as this algorithm forms the basis 

of the work presented in this thesis. The potential applications of polynomial matrix de

compositions to broadband signal processing are examined in Chapter 8 and are often seen 

to analogous to the applications of the scalar matrix decompositions to narrowband signal 

processing.

2.2 Instantaneous M ixtures

2.2.1 The M ixing M odel

In the instantaneous (narrowband) case, the propagation of the q source signals, s (t) — 

[si(t), S2(0> • • • e  C9Xl where t G {0 ,... , T  — 1}, to an array of p sensors can be

expressed as

x(t) -  Cs(t) + n(t), (2.1)
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where x(t) = [aq(£), ^ ( t ) , . . .  , x p(t)]T € Cpxl denotes the set of p  received signals, which are 

each formulated as a sum of differently weighted source signals, and n(t)  e  (Cpxl denotes 

the additive noise observed at the receiver, which is assumed to have variance cr2 Ip. The 

m atrix C € Cpx<7 denotes the mixing or channel m atrix for the model and has complex scalar 

elements Cjk for j  = 1, . . .  ,p  and k = 1, . . . ,  q, which will represent the relative phase and 

amplitude of the k th signal at the j th sensor. It is generally assumed that there must be at 

least as many sensors as sources, i.e. p > q. Note that some work has been carried out on 

the underdetermined case where p < q [22], however, this is not the focus of this thesis and 

so this case is disregarded.

2.2.2 Source Separation

The term blind source separation (BSS) is used to describe the process of recovering a set of 

unobserved source signals from a collection of observed mixtures, such as those demonstrated 

by equation (2 .1), without explicit knowledge of the mixing m atrix or precise signal informa

tion. If the mixing matrix of the system is known, then classical linear algebra methods can 

be used to determine the source signals. Even in the case where the mixing matrix is rank 

deficient, then the pseudo-inverse of the matrix can be calculated [6]. However, if this matrix 

is unknown then the problem is much more difficult and without some prior knowledge, it is 

impossible to uniquely determine the source signals, but they can be determined up to cer

tain fundamental indeterminacies. Note that the solution to this problem has a diverse range 

of applications, for example it has been used to successfully understand biomedical signals, 

such as those obtained from Electrocardiogram (ECG) and Electroencephalography (EEG) 

readings [23,24], within financial market analysis and even used in the design of hearing 

aids [25,26].

2.2.3 A lgorithm s for Instantaneous BSS

One method of performing BSS, probably the most widely used, is to exploit the statistical 

properties of the signals and to assume that the source signals, the elements of s (t) in equation
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(2.1), are statistically independent at each time instant t. Note that this is not an unrealistic 

assumption and in practice this does not need to be completely true, as demonstrated in [27]. 

W ith this assumption, a method known as independent component analysis (ICA) can be used 

to estimate the elements of the mixing matrix and then, as a result of this, the source signals 

can be estimated. One clear advantage of using ICA is that it does not require any further 

knowledge of the different source signals or the positions of the sensors. It is also assumed 

when using this method that no more than one source signal is Gaussian, the sources have zero 

mean and that there are at least as many sensors as sources, i.e. in equation (2.1) p > q [27]. 

W ith these assumptions, it is possible to recover the source signals subject to a couple of 

indeterminacies. Firstly, the order of the independent components (i.e. the estimated sources) 

cannot be determined and secondly, it is not possible to determine their energies (variances) 

and so the reconstructed signals might be multiplied by some scalar quantity. The second 

ambiguity can be removed by adding the constraint that each source must have unit variance, 

which can be taken into account by the ICA solution. The first indeterminacy cannot be 

removed however, but this is not a problem in many of the applications of the technique. A 

detailed description of ICA can be found in [3,5,27].

The majority of instantaneous BSS techniques implement a two-stage approach, where 

initially second-order statistics (SOS) are exploited to decorrelate and normalise the received 

signals, before the solution is completed using higher-order statistics (HOS) to obtain esti

mates of the source signals [28]. Note that SOS by themselves are not generally sufficient to 

enforce independence and therefore separate the sources. It is beyond the scope of this thesis 

to give a detailed review of the different algorithms for solving the instantaneous BSS prob

lem. However, popular algorithms, which implement this two step approach, include Joint 

Approximation Diagonalisation of Eigenmatrices (JADE) [29], Second Order Blind Identifi

cation (SOBI) [30], Simultaneous Third Order Tensor Diagonalisation (STOTD) [31], BLInd 

Signal Separation (BLISS) [32], FastICA [33] and Comon’s ICA methods discussed in [5]; a 

detailed review of the literature surrounding this topic can be found in [34].

The first stage of these two-stage algorithms can be carried out by calculating either the 

EVD of the covariance matrix of the received signals x(t) or alternatively by calculating the
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SVD of a matrix containing all the time samples for the received data. Either decomposi

tion yields a matrix capable of linearly transforming the observed signals to obtain a set of 

uncorrelated signals. This point will be discussed in the next section of this chapter, where 

three different decompositions of a scalar matrix and their applications to narrowband signal 

processing are discussed. This section has highlighted the necessity and value of two of these 

scalar matrix decompositions (the EVD and SVD) to narrowband signal processing. This 

has been discussed as an introduction to the more complicated convolutive case, which will 

be the initial application area of the equivalent polynomial m atrix decompositions discussed 

in this thesis.

2.3 Decom position Techniques for Scalar M atrices

The decompositions techniques for scalar matrices are very useful tools in linear algebra, as 

they can be used to simplify many numerical equations [6,35-38]. The three decompositions 

examined in this thesis are the EVD, the SVD and the QRD and these are now discussed.

2.3.1 The QR D ecom position

The QRD aims to transform a matrix with complex scalar elements, into an upper triangular 

m atrix by applying a series of unitary matrices [6,36,37]. The QRD of a scalar matrix 

A G  C pxq is defined as

A = QR (2.2)

where the m atrix R  G  C px<7 is an upper triangular m atrix consisting of complex scalar entries 

and Q G  C pxp is a unitary matrix, which means it satisfies Q HQ  =  QQ^ = Ip. There are 

several different methods for calculating the decomposition, these include Givens rotations 

and Householder reflections. The details of how to formulate the decomposition using these 

methods are not discussed here, but an extensive description of each method can be found 

in [6]. Note that if A is non-singular, i.e. the matrix is square and of full rank, then the 

QRD of the matrix is unique, provided the diagonal elements are made to be both real
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2.3 Decomposition Techniques for Scalar Matrices

and positive [6]. Finally, as the transformation was performed by a unitary matrix, this 

decomposition is norm preserving, i.e. ||A ||^  =  ||R ||^-

A p p lic a tio n s  o f  th e  Q R  D e c o m p o sit io n

The main advantage of the QRD is that it can often be used to enable set of linear equations 

to be easily solved. For example, consider the instantaneous mixing model demonstrated 

by equation (2.1) without the additive noise term for simplicity. Then provided the mix

ing matrix C  is known, its QRD can be calculated such that C =  Q R , thus allowing the 

instantaneous mixing model to alternatively be expressed as

Q h x  =  R s (2.3)

The left hand-side of equation (2.3) can be calculated, transforming the system of equations 

x =  C s into a triangular systems of equations, which are easier to solve for s given C and x 

using back substitution. This method is often used as the computations involved in calculating 

the QRD and then performing back substitution are less expensive than calculating the inverse 

C -1 . However, this method of back substitution is not possible if the mixing matrix for the 

system is rank deficient, as this will lead to a number of diagonal elements of the upper 

triangular m atrix R  being equal to zero.

Another potential advantage of this decomposition is that it can also be used to calculate 

the eigenvalues of a square matrix. If the matrix C is square, then the diagonal elements of R  

are the eigenvalues of C. Furthermore, the algorithm can be used to formulate an algorithm 

for determining the eigenvalues of a matrix, this algorithm is known as the QR algorithm 

and is often used when the matrix is not Hermitian.

2.3.2 Eigenvalue D ecom position

The eigenvalue decomposition (EVD) of the Hermitian m atrix R  € Cpxp can be expressed as

R  -  H D H ^ (2.4)
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where H  € Cpxp is a unitary matrix with columns equal to the orthonormal eigenvectors 

of R , and D  e Cpxp is a diagonal matrix, whose diagonal elements are the corresponding 

eigenvalues of R . The EVD can only be calculated for Hermitian matrices, but it does not 

m atter if the entries of the matrix are real or complex. The unitary matrices perform simi

larity transformations, which means that the matrices R  and D  have the same eigenvalues. 

This decomposition is norm preserving and so ||R ||^  =  ||D ||^ . Note that to calculate the 

eigenvalues of a scalar matrix that is square, but not Hermitian, then the QRD can be used 

instead.

The EVD can be calculated using Jacobi’s algorithm, which operates by applying a series 

of Jacobi rotations [6]. This method is very popular as it is inherently parallel. However, 

for large matrices where p > 10, this algorithm is much slower than a QR method. The 

details of how the algorithm operates will not be discussed here, for a detailed explanation 

refer to [6 , 38]. Alternatively, the matrix R  can be first reduced to a tridiagonal matrix 

using either Givens rotations or Householder reflections. Both techniques are stable, but the 

Householder method is a factor of two more efficient [38]. Note that if the matrix is not of 

full rank then at least one eigenvalue is equal to zero.

A p p lic a tio n s  o f  th e  E V D

The EVD for scalar matrices is extensively used in DSR For example, the unitary matrix 

obtained by calculating the EVD is the Karhunen-Loeve transform used for optimal data 

compaction and is formulated by calculating the EVD of the covariance matrix of the set of 

data signals to be coded [7,16]. The most significant application for this thesis, is that the 

EVD can be used to decorrelate a set of instantaneously mixed signals. This will now be 

discussed.
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D e c o r r e la tio n  o f  In sta n ta n eo u sly  M ix ed  S ign a ls  U s in g  th e  E V D

The covariance matrix of the observed signals x(t)  from equation (2.1), which are assumed 

to be zero-mean jointly wide sense stationary (WSS), can be calculated as

E  [x(f)x(()"] (2.5)

E  [Cs(t)(Cs(t))H] + a \ (2 .6 )

C E  [s(t)s(t)H] C "  + cr% (2.7)

CR , „C h + <7% (2 .8 )

where R ss e Cgxq denotes the spatial covariance m atrix of the source signals [39]. As 

the source signals are assumed to be statistically independent, their cross-correlation terms 

will equal zero and, as a result, the covariance matrix R ss will be diagonal. Furthermore, 

if they have unit power then R ss =  Iq. However, the covariance m atrix of the observed 

signals R xx € Cpxp will generally not be diagonal, as the observed signals constitute a linear 

combination of the source signals and are therefore correlated with one another.

The process of whitening the observed signals transforms them so that they are uncorre

lated and therefore have a diagonal covariance matrix. This can be achieved by calculating 

the EVD of the covariance matrix of the mean-removed observed signals. To demonstrate 

this point, define the data matrix containing the observed samples x(t)  for £ =  0 ,1 , . . . ,  T  — 1, 

using the notation

X  =  [ x ( 0 ) ,x ( l ) , . . . ,x ( T - l ) ] .  (2.9)

Using this m atrix a sample estimate of the true covariance matrix R xx of the observed signals

can be calculated as
^  X X W
R x x  =  - j r - .  (2 .1 0 )

This matrix is Hermitian and so its EVD can be calculated such that

U R IXU " =  D , (2.11)
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where U  G  Cpxp is a unitary matrix and D  G  Cpxp is a diagonal matrix whose diagonal 

elements satisfy d\\  > . . .  > dqq. Note that these elements correspond to the estimated 

powers of the source signals.

Subsequently, the transformed data matrix

X ' =  U X  (2.12)

will now contain the series of signals x (0 ),. . . ,  x  (T — 1), with an estimated covariance matrix 

equal to the diagonal matrix D  and which are not correlated with one another. The signals 

are said to have been instantaneously decorrelated and the transformed signals placed in 

order of decreasing power. The application of the unitary matrix U  in equation (2 .12) will 

modify the phase and amplitude of the observed signals stored in the data matrix X  and 

the signal and noise subspaces will have been separated, which is very useful for adaptive 

beamforming and high resolution direction finding [7,25].

Note that second order statistics can only be used to decorrelate the signals and are 

not generally sufficient to enforce independence of the signals. Instead HOS are required to 

complete the solution and so an ICA algorithm must now be applied to the whitened data to 

reconstruct the independent source signals. However, if the received signals each have very 

different power levels, then the majority of the separating of the sources can be achieved by 

using either the EVD or SVD [7]. Note that this preprocessing step has reduced the problem 

from estimating p 2 parameters to one of p(p — l) /2  degrees of freedom [27] and has therefore 

significantly simplified the problem.

2.3.3 The Singular Value D ecom position

The singular value decomposition (SVD), unlike the EVD, can be applied to both square 

and rectangular matrices to transform a matrix of complex scalar entries into a diagonal 

matrix and the m atrix to be factorised need not be Hermitian [6,40]. The SVD of the matrix 

A  G  Cpxq, where the elements of the m atrix can be either real or complex scalars, is defined
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as

A  =  U E V h  (2.13)

where the matrices U  £ Cpxp and V  € Cqxq are both unitary and £  =  diag(cri , . . .  ,<tat) £ 

Rpxq. The diagonal entries of £  are referred to as the singular values of the matrix A and will 

satisfy o\ > <72 > . . .  > ctn > 0 , where N  =  min {p, q). The columns of the unitary scalar 

m atrix U  contain the left singular vectors of A and form an orthonormal basis. Similarly, 

the columns of V  define the right singular vectors. As with the previous two decomposition, 

this decomposition is norm preserving and so ||A ||^  =  | |£ | |^ .

R e la tio n sh ip  B e tw e e n  th e  E V D  and S V D

Suppose the SVD of the m atrix A £ Cpxq has been calculated according to equation (2.13). 

Then using this decomposition the matrices A A H and A H A  can be calculated as follows

A A h =  U E E ^ U ^  (2.14)

and

A H A  = V X HX V H, (2.15)

which are the EVDs of the matrices A A H and A HA  respectively. The matrices £ £ ^  = 

diag {crj, . . . ,  <7^} £ Cpxp and £ ^ £ =  diag {a^ , . . . ,  a^}  £ Cqxq. The unitary matrices U  and 

V  required for the singular value decomposition of the m atrix A could therefore have been 

obtained by calculating the EVD of the matrices A A H and A H A.

A p p lic a tio n s  o f  th e  S V D

The SVD can be used to diagonalise a scalar matrix as demonstrated by equation (2.13) and 

can accordingly be used to simplify a set of linear equations in a similar way to the QRD. 

Furthermore, the decomposition can also be used to determine the rank, range and null 

space of a matrix and is also used when calculating the pseudo-inverse of a matrix [6]. This 

decomposition therefore has a vast range of applications and has become a popular numerical
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tool in many areas of research, such as statistical data analysis, control system analysis, 

scientific computing, system identification and also signal processing [41]. For example, the 

SVD is the method of choice for solving the linear least squares problem, where it can be 

applied directly to the data matrix to obtain a robust solution [25] and can be applied to 

problems of image restoration and compression [42]. The SVD can also be used to decorrelate 

a set of instantaneously mixed signals, where it can be used as an alternative technique to 

the EVD. For this application, the SVD is preferred to the EVD as it is less computationally 

expensive. This will now be discussed further.

D e c o r r e la tio n  o f  In sta n ta n eo u sly  M ix ed  S ign a ls  U s in g  th e  S V D

It has previously been demonstrated that the unitary m atrix obtained from calculating the 

EVD of the covariance matrix of a set of instantaneously mixed signals can be used to 

decorrelate the set of received signals as demonstrated in equation (2.12). Note that the 

source signals are assumed to be uncorrelated and stationary. Alternatively, the SVD of the 

data m atrix X  G  Cpxq from equation (2.9) could be calculated directly such that

U X V H =  E  (2.16)

where U  G  Cpxp and V  G  Cqxq are unitary matrices and E  G  Cpxq is a diagonal matrix

whose diagonal coefficients satisfy <t\\ > . . .  > oqq > 0. The relationship between the EVD 

of the covariance matrix and SVD of the data matrix is easily seen as follows

(U X V H)(U X V W)H =  £ 2. (2.17)

Hence

U X X ^ U ^  =  E2 (2.18)

and so
~ £ 2

U R „ U fl =  —  =  D. (2.19)

This has demonstrated that the matrix U  obtained from calculating the SVD of the data
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m atrix X  is also sufficient to impose decorrelation upon the set of received signals. Note that

the SVD computation is preferable in terms of arithmetic precision [6]. Once again, the total
T —l

energy of the signals is preserved under the transformation, i.e. £  ||x (i) ||| =  trace(X X H) =
2 = 0

Q Q
tra c e (E E ") = £ < 4  =

2 = 1  2 = 1

2.4 Convolutive M ixtures

The instantaneous mixing model shown in equation (2 .1) is not suitable for many realistic 

situations where the propagation of the signals from the sources to the sensors can take 

multiple paths with different time delays. In this situation polynomial matrices are required to 

describe the mixing and so each element of the mixing matrix will be a finite impulse response 

(FIR) filter with an associated set of coefficients. Before discussing the convolutive mixing 

model, polynomial matrices and some properties associated with polynomial matrices are 

discussed. In this thesis, it is assumed that the term polynomial includes Laurent polynomials, 

which allow for negative powers of the interdeterminate variable of the polynomial.

2.4.1 Polynom ial M atrices

A polynomial m atrix is simply a matrix with polynomial elements. However, it can alter

natively be thought of as a polynomial with matrix coefficients and so a p x q polynomial 

matrix A(z) ,  where the indeterminate variable of the polynomial is z ~ l (used in the context 

of this thesis to represent a unit delay), can be expressed as

A(z) =  £  A =
T=tl

£ 11(2 ) “ 12 (2 ) ••• ai q ( z )  

Q2i(z)  :

— p l ( ^ )  ' ' '  ’ ’ ’ —p q { z )

(2 .20)

where r e  Z and t\ < £2- The o rd e r  of this polynomial matrix is calculated as (£2 — £1), 

where the values of the parameters £1 and £2 are not necessarily positive. The matrices
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A ( t \ ) , . . . ,  A(^2 ), which will generally have complex scalar entries, are referred to as the set 

of coefficient matrices for the polynomial matrix A (z). In particular, the coefficient matrix 

A(£) will be referred to as the coefficient matrix of order t. Note that the coefficient matrix 

of order zero, i.e. A(0), is particularly important for the discussion of the polynomial matrix 

decomposition algorithms within this thesis. Using the notation outlined in Section 1.4, the 

polynomial matrix A(z)  £ C pxq as all coefficients of the polynomial elements of the matrix 

are complex. Alternatively, A (z) £ C pxqx(t2~t^  if the order of the matrix is also known.

2.4.2 Properties of a Polynom ial M atrix

The paraconjugate of the polynomial matrix A(^) is defined to be

A W  =  A j( l /* )  (2 .21)

where * denotes the complex conjugation of the coefficients of each polynomial element and 

T denotes matrix transposition. The tilde notation as used in the above expression will be 

used throughout this thesis to denote paraconjugation of a polynomial matrix. A polynomial 

matrix A (z) is said to be paraunitary if the following is true

A (z)A (2) =  A( z )A( z )  — I. (2 .22)

Some definitions, for example in [16], define a paraunitary matrix if it satisfies A(-z)A(z) =

c21, however, this will not be used in this thesis and so instead it is assumed that a matrix

is paraunitary if it satisfies equation (2.22). Note that a paraunitary polynomial matrix 

represents a multi-channel all-pass filter and, accordingly, it preserves the total signal power 

at every frequency [7,16]. Furthermore, note that the product of paraunitary matrices will 

also be paraunitary and will satisfy

a 5 ) B ( z )  = B(z )A(z ) .  (2.23)

A polynomial matrix A(z)  € C pxp is para-H erm itian if it is equal to its paraconjugate,
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i.e. if

A (z) = A  (z) (2.24)

and so the individual coefficients associated with the polynomial elements satisfy ajk(t) = 

a k j ( ~ t ) Vt e Z  and for j , k  = 1 . . .  ,p.

The degree of a polynomial matrix is the minimum number of delays units required to 

implement the polynomial matrix. For example, the polynomial matrix

A (z) =
z - 1 0

0 z - 1

(2.25)

has degree two [16]. Note that this is not the same as the order of the polynomial matrix, 

which for this example is equal to one.

Finally, the Frobenius norm  of the polynomial m atrix A(z )  is defined to be

l|A(2)HiT —

\
t2 P Q

T—tl l=\ j=  1

(2.26)

This can also be expressed as

IA( )̂||f  = trace ( [a (z )A (2) J (2.27)

where [ ]|0 defines the coefficient matrix of z° in the polynomial matrix.

2.4.3 The M ixing M odel

For the simpler instantaneously mixing model demonstrated by equation (2.1), each of the 

received signals consists of a sum of differently weighted source signals, all sampled at the 

same instant in time. However, for convolutively mixed signals the model required to express 

the mixing is more complex as the received signals now consist of weighted and delayed 

versions of the source signals. This can be due to the sources arriving at the sensors over 

multiple paths and with different time delays, where the delays observed can either be due to 

finite propagation speed in the medium through which the sources are traveling or possibly
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reverberations from obstacles in its path, i.e. multipath propagation.

It is assumed that a set of source signals s (t) G  C9Xl where t G  { 0 ,. . . ,  T  — 1} are emitted 

from q independent sources through a convolutive channel, to be received at an array of p 

sensors, where it is assumed that there are at least as many sensors as sources, i.e. p > q. The 

relationship between the source signals and convolved received signals, x(<) G  Cpxl, where 

t G  { 0 ,. . . ,  T  — 1}, can be expressed by the convolutive mixing model

N

=  £  C{k)s(t  - k )  + n(t)  (2.28)
k=0

where n (t) G Cpxl denotes an additive Gaussian noise process with variance a 2 1 and C (k) G 

Cpxq for k G { 0 ,. . . ,  N }  denote the coefficient matrices of the polynomial mixing matrix. 

The polynomial mixing (or channel) matrix for the model can also be denoted as

N

C(z) =  ]T C (* )*~ * , (2.29)
k—0

where the order of this matrix will be N.  The mixing model of equation (2.28) can therefore 

also be written in the form

x(^) =  C (^)s(2) +  n(^), (2.30)

OC
where x(z), s(^) and n (z) each represent algebraic power series of the form x.(z) =

T— — OO
of the received signals, the source signals and the noise respectively. This is the more realistic 

of the two mixing scenarios and arises in many real-world situations. For example, convolu- 

tively mixed signals will be observed in a teleconferencing environment, where audio signals 

are produced in a reverberant room. They are also observed in a digital communication envi

ronment, where there are multiple transmit antennas operating at the same radio frequency 

and the transm itted signals are received at multiple receive antennas.

Note that if the number of sources in equation (2.28) exceeds the number of sensors and so 

p < q, then the problem is said to under-determined and linear methods of source separation

will generally not be able to recover the sources, even if there is perfect knowledge of the

mixing matrix. For this reason, this case is not considered in this thesis.
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2.4.4 Convolutive Source Separation

Deconvolution is the problem of ascertaining the source signals with full knowledge of the 

received signals and the linear time-invariant (LTI) system, i.e. the polynomial channel 

matrix. Blind deconvolution, or blind equalisation as it is also known, is the problem of 

finding the source signals without any specific prior knowledge of the source signals or the 

mixing matrix for the system.

The ability to deconvolve the received signals of equation (2.28) to obtain estimates of 

the source signals has many applications. Over the last decade, BSS of convolutive mixtures 

has been studied extensively, with many of the existing methods for solving the problem 

simply derived as extensions of existing algorithms designed for the instantaneous situation. 

The collection of methods for unmixing the convolved signals can be divided into two groups; 

those that operate in the frequency domain and those that are used in the time domain.

T im e  D o m a in  A p p roach

Most time domain convolutive BSS algorithms do not operate using a two-stage method using 

SOS and then HOS, as implemented with most instantaneous algorithms. Instead, popular 

methods are gradient descent [43] and neural networks [44]. Methods based on cost functions 

are frequently used, such as, for example, the stochastic gradient optimisation technique, 

which employs the use of SOS and HOS simultaneously [45]. Other existing methods for 

BSS of convolved signals include Bussgang, least squares lattice prediction and linear blind 

deconvolution filters [3,25].

Alternatively, other algorithms operating in the time domain, use SOS to strongly decor

relate the signals and then exploit HOS to identify and apply the hidden paraunitary matrix 

required to complete the source separation [8,22]. Decorrelation, using either the SVD or 

EVD, has been shown to be a useful preprocessing step for instantaneous blind source sep

aration. However, with convolutively mixed signals, they are not only correlated with each 

other at the same time instant, but possibly over a range of time delays as well. Instead a 

polynomial matrix is required to transform the received signals and impose strong decorre

lation. The EVD or SVD of a polynomial space-time covariance matrix is required to obtain
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this transformation matrix, which is capable of enforcing strong decorrelation upon the sig

nals. This decomposition cannot be formulated using the conventional scalar matrix EVD or 

SVD discussed in Section 2.3, instead a polynomial m atrix decomposition method is required. 

Subsequently, to complete the solution, some HOS cost function, typically based 011 fourth 

order statistics, is optimised. Methods for completing the second step are beyond the scope 

of this thesis, but a detailed review can be found in [45,46].

F req u en cy  D o m a in  A p p roach

One approach to frequency domain processing is to use the discrete Fourier transform (DFT) 

to split the convolutively mixed data into narrower frequency bands. For each frequency 

u  = 27r / ,  the convolutive mixing process demonstrated in equation (2.28) may be expressed 

in the form

X(w) -  C(u;)S(a;) +  N(w) (2.31)

where C(u;) G  Cpxq and has complex scalar entries, X(cj) G  Cpxl, N(u;) G  Cpxl and S(u;) G  

C9Xl. It can be demonstrated that each Fourier component of the received data is a complex 

scalar mixture of the corresponding Fourier components of the source signals [3,8,46,47]. 

Consequently, the broadband problem has been reduced to a series of narrowband problems, 

where an instantaneous BSS method can then be employed.

This method is particulary useful if the time domain filters are long, i.e. the order of the 

polynomial channel m atrix in equation (2.30) is large, as is often observed in acoustic problems 

[45]. However, this method does have its problems. Firstly, the problem of permutation that 

was observed with the instantaneous methods, will exist within the individual solutions for 

each frequency band and these permutations, typically, will not be the same in each band. 

Consequently, when the signals are converted back to the time domain, contributions from 

different sources can then be remixed into a single channel. There are methods for solving 

this problem, however they require further assumptions to be placed on either the signals or 

the mixing environment. Similarly, the scale problem associated with the instantaneous BSS 

techniques will again be present within each of the frequency band solutions, although this 

problem is more easily solved by normalisation. There are advantages and disadvantages of
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using both time and frequency domain approaches, which are detailed extensively in [45].

A set of convolutively mixed signals could be strongly decorrelated by reducing the prob

lem to narrowband form as demonstrated by equation (2.31) and then the SVD of each 

narrowband problem could be calculated. However, this technique will ignore any correla

tions that exist between different frequency bands. Furthermore, the SVD in each frequency 

band will order the output channels in terms of decreasing power, irrespective of the ordering 

of neighboring channels [7] and this can lead to incoherence between the different narrow

band problems. However, the method has had success in the context of space-time adaptive 

processing for phased array radar [48].

A p p lic a tio n  to  M IM O  C o m m u n ica tio n s

In communication applications, the system described by equation (2.28) is referred to as 

a Multi-Input M ulti-Output (MIMO) system. In this situation, data is transmitted from 

multiple transmit antennas, which for this example is equal to q. This data then passes 

through the propagation channel, which in a realistic scenario will take multiple paths and 

different time delays, before being received by multiple receive antennas, whose number is 

represented by p. These m ultipath systems arise due to scattering, reflection, refraction or 

diffraction of radiated energy off any objects that lie in the environment [2,49]. The use 

of this system offers the advantage of improved communication performance, by making use 

of the multiple transm itters and receivers to provide array, diversity and/or multiplexing 

gain(s) [2].

Equalisation is the process of recovering a signal that has been corrupted by a multipath 

environment from a single received signal. Multichannel equalisation is the same process, 

however, there are now multiple mixed signals to be equalised. The problem is termed blind, 

if the user only has access to the received (convolved) signals. The term blind is neglected, 

if the user also has access to the channel m atrix for the system.

In this scenario, the polynomial channel matrix for the system is typically known as it has 

been previously been estimated. The problem requires that all channels and cross-channels in 

a problem are equalised to obtain an estimate of the transm itted signals. This application is

26



2.5 Existing Polynomial Matrix Decompositions

discussed extensively in Chapter 8 , where the polynomial matrix decomposition techniques, 

which are introduced in this thesis, have been applied to simplify the problem prior to the 

equalisation step. By using these decompositions there is no longer any need for the cross

channels to be equalised, leaving only a set of single channel equalisation problems to be 

solved.

2.5 Existing Polynomial M atrix Decom positions

Methods do exist for calculating decompositions or factorisations of polynomial matrices. For 

example, these methods include the Smith-McMillan decomposition [16,19] and a method 

developed by Vaidyanthan for factorising a paraunitary polynomial m atrix into a series of 

elementary rotations and delays [16]. However, little research has been done prior to the 

Sequential Best Rotation algorithm (SBR2) [7], surrounding the EVD generalisation for 

polynomial matrices in the time domain. In [20] Lambert reports extensive work on the 

separation of broadband signals and claims that he has developed an EVD routine suitable 

for polynomial matrices. He represents convolved signals in terms of DFT filter matrices and 

polynomial matrices. However, Lambert’s PEVD method entails the inversion of FIR filters 

in the frequency domain and is therefore very different from the SBR2 algorithm. To the best 

of our knowledge, there are currently no other existing methods for directly calculating the 

QRD of a polynomial matrix. The existing techniques for achieving some form of polynomial 

matrix decomposition are now discussed.

2.5.1 FIR  Lossless System  D ecom position

In [16] Vaidyanathan introduces a method for factorising any finite degree paraunitary poly

nomial matrix, such as the matrix describing a lossless FIR system, into a series of paraunitary 

matrices comprised of simple rotation and delay matrices. The process operates as a series 

of steps, where at each step a Givens rotation [6] and an elementary delay matrix can be 

factored out of the polynomial matrix representing the system i l N (z) of degree N,  resulting 

in a paraunitary m atrix where the degree of the system has been reduced by unity. The
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factorisation relies on the fact that the determinant of a paraunitary m atrix is equal to a 

single delay, i.e. is of the form az~k where a /  0 and k > 0 is an integer. At each stage 

of the process, the system is reduced by factoring out a Givens rotation and an elementary 

delay matrix, which are both paraunitary.

As a simple example, suppose the polynomial paraunitary matrix H ^ z )  describes a 

2 x 2  real coefficient FIR lossless system and has degree N.  The first step of Vaidyanathan’s 

factorisation routine is to formulate a Givens rotation matrix and a delay matrix A (z), 

which is a matrix of the form

A(*)
1 0

0 z - 1

(2.32)

and when applied to another polynomial m atrix it will impose a unit delay upon one channel, 

such that

H W(z) =
c o s ( 6 n )  s i n ( 0 N ) 1 0

H  *_!(*)
—sm (0;v) c o s ( 6 n ) 0 2 —1

(2.33)

=Qn  = A ( z )

where H Ar_ 1(2) is also an FIR lossless matrix, but the degree of the determinant of this 

transformed m atrix will have been reduced by unity and so the degree of the system has 

been reduced. Following this step it is said that a degree one block has been extracted. This 

process is repeated until a degree zero block is found. Therefore, the overall factorisation of 

Hjv(*) can be expressed as

S n (z ) =  Q n A { z) ■ • • A (2)Q 1A(2)Q 0^  (2.34)

where ^  is a diagonal matrix with unimodular elements and must be included to allow for 

the ambiguity in the problem due to a possible permutation and multiplication by ± 1. The 

overall process to decompose the 2 x 2  real coefficient FIR lossless system is illustrated in 

Figure 2.1, where a  is again required to account for this ambiguity. Note that the overall 

transformation will be paraunitary by construction, as the individual matrices Qm and A (z) 

are parauntiary, for m  — 1, . . . ,  N,  and so their product will also be paraunitary. After each 

stage, the determinant of the reduced system will be reduced by unity.
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• • •
±g

a=#l'X), cm=cos0m, sm=sin0m, 6m real, m-0,l,...,N

Figure 2.1: The factorisation of a 2 x 2 degree N  paraunitary polynomial matrix into 
a series of delay and rotation blocks, according to Vaidyanthan’s FIR lossless system 
decomposition method [16].

Vaidyanthan then generalises this statement and explains that any paraunitary polyno

mial matrix of any dimension, for example ~Hln(z ) £ Rpxp, can be decomposed as shown 

by equation (2.34) provided it is of fixed degree. Now Q m e Rpxp for m  = 0 , . . . ,  TV and 

A (z) € Rpxp is the identity matrix with the exception of the pth diagonal element, which will 

be 2_1. The process can also be easily extended to deal with a paraunitary matrix, whose 

polynomial coefficients are complex, by using complex Givens rotations.

The main problem with this decomposition technique is that it only ever implements a 

unit delay in one step, which is not practical when the paraunitary matrix to be calculated 

is quite simple, yet of a high order. For example, if the degree of the paraunitary polynomial 

matrix to be factorised is 5, but it has only two non-zero coefficient matrices (Hs(0) and 

Hs(5)) then this decomposition of the paraunitary matrix would require five stages. This is 

discussed further in [8]. Note that this would not be a problem with the SBR2 algorithm 

discussed in Chapter 3.

In [50] Regalia and Huang also derive a method for calculating a two-channel lossless FIR 

filter for optimal data compression using the fixed degree parameterisation scheme proposed 

by Vaidyanathan, which is discussed in Section 2.5.1. This technique can be used to determine 

the optimal paraunitary matrix required for computing the EVD of a 2 x 2 paraunitary 

polynomial matrix. The applications of this decomposition lie in subband coding and wavelet 

signal analysis and are briefly discussed towards the end of the thesis in the Section 8.5.4.
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2.5 Existing Polynomial M atrix Decompositions

2.5.2 Sm ith D ecom position

Given a polynomial matrix A(z) G  C pxq, it is possible to obtain simpler forms of this matrix, 

such as diagonal, upper or lower triangular polynomial matrix, by performing elementary 

operations upon this polynomial matrix [16,51]. The elementary operations are similar to 

those applicable to scalar matrices and come in both row and column forms [6]. For example, 

the elementary row operations are defined as

1. Interchange two rows of the polynomial matrix

2 . Scale one row of the polynomial matrix by a nonzero constant c

3. Add a polynomial multiple of one row to another.

The column operations are defined similarly and the matrices capable of implementing the 

three row operations are referred to as elementary matrices. Note that all three types of 

elementary matrices are known as unimodular matrices. A unimodular polynomial matrix 

is a square polynomial matrix with a constant nonzero determinant. It is easily deduced 

from this property that a polynomial matrix is only unimodular if and only if its inverse is a 

polynomial matrix, which will also be unimodular [16]. Note, however, that the elementary 

matrices are not generally paraunitary so the Smith decomposition is quite distinct from a 

polynomial matrix EVD or SVD.

By repeated application of a finite number of elementary operations (pre-multiplication to 

make row operations and post-multiplication to perform column operations) the polynomial 

matrix A (z) can be reduced to a diagonal polynomial m atrix T(z) G  C pxq as follows

W (z)A (z)V (z) =  T(z) (2.35)

where W (z) G  C pxp and V(z) G  C qxq both denote unimodular polynomial matrices. This is 

referred to as the Smith form decomposition. Note that the overall transformation matrix is 

unimodular as it consists of a series of unimodular matrices. In fact, one result presented in 

[16], is that any unimodular matrix can be formulated as the product of elementary matrices. 

Finally, the matrix A(z) does not need to be square, although both the unimodular matrices
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required to post- and pre-multiply the matrix to transform it to a diagonal matrix will be 

square.

The matrix £ (2) is called the Smith form of A(z)  and is unique. Furthermore the diagonal 

elements of this matrix are calculated as follows

Ci-(2) =  (2-36)

where 7  .(z) is the greatest common divisor or all the i x i minors of the polynomial matrix 

A (2) and 1_q{z) = 1.

The decomposition can be used to formulate an irreducible Matrix Fraction Description 

(MFD) of a polynomial transfer function, which can then be used for calculating the poles 

and zeros of this polynomial matrix [19]. This is of use in communications, where the Smith 

form of a transfer function of a MIMO system can be calculated and is used to understand 

the characteristics of the multivariable system.

2.5.3 Sm ith-M cM illan Form

Suppose H (2) G C pxq is the transfer function of a MIMO system with polynomial elements

h.jk(z) — ajk(z ) /d(z ) where j  = 1, . . .  ,p, k = 1, . . .  , q and d(z) is the least common multiple

of the individual rational transfer functions. Then if the polynomial m atrix A (2) has the 

Smith decomposition given by equation (2.35), it follows that

W (2)H (2)V (2) =  A (2) (2.37)

and this is called the Smith-McMillan decomposition of the polynomial m atrix H (2).

2.5.4 Lam bert’s FIR  M atrix Eigenroutine

In [20] Lambert introduces a numerical routine for calculating the eigenvalues and eigenvec

tors of an FIR polynomial matrix by generalising conventional linear algebra and control 

techniques from the complex number field to the field of rational functions. The routine
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is introduced to operate on a (2 x 2) polynomial matrix, but could easily be extended to 

operate on larger matrices, by applying the routine to a series of (2 x 2) sub-matrices of the 

matrix to obtain a diagonal matrix. The routine operates by transforming the elements of a 

polynomial matrix to the frequency domain using the DFT. Householder reflections are then 

used to obtain a upper triangular form of the matrix, where the eigenvalues of the matrix 

will be the diagonal elements of this matrix.

Lambert has demonstrated in his thesis [20] that his FIR matrix eigenroutine can be 

used as a whitening or preprocessing step to some least squares adaptation methods where 

multipath propagation of the signals has been observed. This whitening step will typically 

result in improved convergence of these algorithms. He states that it is always best to 

prewhiten the data, however, this is not always possible as it will require off-line computation 

[52,53]. Note that since Lambert’s PEVD routine entails the inversion of FIR filters in the 

frequency domain, it is very different from the SBR2 algorithm.

2.6 Conclusions

This chapter has given a brief overview of the background to polynomial matrix decompo

sitions, in particular explaining how polynomial matrices arise in signal processing when a 

set of signals are received at an array of sensors over multiple paths and with different time 

delays. This is referred to as convolutive mixing and the mixing matrix required to express 

this takes the form of a polynomial matrix, where each element is a finite impulse response 

(FIR) filter. Existing techniques and numerical procedures for obtaining polynomial matrix 

decompositions have been discussed. Note that there are no existing techniques for achieving 

the polynomial matrix decompositions proposed in this thesis. The next chapter discusses the 

SBR2 algorithm, whose methodology forms the basis of the research presented in this thesis. 

It also demonstrates how this algorithm can be used to achieve strong decorrelation of a 

set of convolutively mixed signals, demonstrating that the applications of polynomial matrix 

decompositions are often simple extensions of scalar m atrix decompositions from narrowband 

to broadband signal processing.
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This chapter has also given a detailed overview of some scalar matrix decompositions 

(the EVD, SVD and QRD) and discussed their potential applications. This thesis is con

cerned with extending these matrix decompositions to polynomial matrices. Although the 

research has been motivated by the potential applications of polynomial matrix decompo

sitions to signal processing, the overall objective is to demonstrate that other polynomial 

matrix decompositions can be formulated using the techniques proposed in developing the 

SBR2 algorithm.
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Chapter 3

SBR2: A Polynomial Eigenvalue 
Decom position Technique

3.1 Introduction

This chapter discusses an algorithm known as SBR2 for computing the Eigenvalue Decompo

sition (EVD) of a para-Hermitian polynomial matrix, [7]. The SBR2 algorithm was initially 

developed as the preliminary (second order) stage of a multistage blind signal separation 

(BSS) algorithm suitable for convolutive mixtures. The subsequent (higher order) stage 

takes the form of a sequential best rotation (SBR) algorithm, which exploits only fourth 

order statistics and is therefore referred to as SBR4 [8,54]. Just as many instantaneous BSS 

algorithms use the EVD or SVD as a second order preprocessing step, the SBR2 algorithm 

can be applied to broadband mixtures, where polynomial matrices are now observed, before 

applying a convolutive BSS algorithm requiring HOS. Note that the polynomial matrix EVD 

(PEVD) algorithm can also be used in its own right as a time-domain approach for strongly 

decorrelating a set of convolutively mixed signals and for identifying the different signal and 

noise subspaces, [21].

The PEVD algorithm is referred to as SBR2 since it adopts an SBR strategy, but only 

involves the manipulation of second order statistics. It operates by applying a series of 

paraunitary similarity1 transformation matrices to a para-Hermitian polynomial m atrix to 

transform it to a diagonal polynomial matrix and can therefore be thought of as an extension

^ o te  that a paraunitary similarity transformation matrix represents the polynomial equivalent to 
the unitary similarity transformations discussed in [6].
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3.2 The Eigenvalue Decomposition of a Polynomial Matrix

of the conventional Jacobi algorithm suitable for scalar Hermitian matrices [6]. In fact, if 

the algorithm is applied to a scalar Hermitian matrix, it simply reduces to diagonalising the 

matrix via Jacobi’s algorithm. Although polynomial matrices and the idea of polynomial 

matrix decompositions axe commonly established ideas in signal processing, as discussed 

in Chapter 2 and [16], the only previous attention to formulating a routine suitable for 

calculating an EVD or SVD of a polynomial matrix is that of Lambert [20,52,53]. However, 

the SBR2 algorithm operates entirely in the time-domain and is therefore very different from 

Lam bert’s EVD routine, which involves the approximate inversion of filters in the frequency 

domain.

This chapter firstly describes how the SBR2 algorithm operates. Convergence of the al

gorithm is proven and its application to strong decorrelation and subspace decomposition is 

highlighted by means of a simple numerical example. Other applications of the algorithm 

include broadband adaptive beamforming and the design of filterbanks for optimal data com

paction, [10]. The SBR2 algorithm has since been applied to other areas of signal processing, 

such as MIMO communications where it can be used to decouple a MIMO communication 

system into a set of independent subchannels, [13,14,55]. This along with other applications 

of the decomposition are discussed in the penultimate chapter of this thesis.

3.2 The Eigenvalue Decom position of a Polynomial 

M atrix

The eigenvalue decomposition of a para-Hermitian polynomial matrix, R(z) £ C pxp, is de

fined here as

S W = H ( 2 ) D ( ®  (3.1)

where the polynomial matrix H(z) £ C pxp is paraunitary and the resulting polynomial 

matrix D(z) £ C pxp is diagonal. Note that the matrix to be diagonalised R(z) must be 

para-Hermitian, which means all coefficients of the matrix must satisfy rj*.(r) =  r ^ ( —r) for 

j , k  — 1 , . . .  ,p and for all values of the lag parameter r  £ Z.
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The SBR2 algorithm can be used to calculate the paraunitary matrix H(z) suitable for 

transforming the para-Hermitian input matrix R(,z), into the diagonal matrix D(z) according 

to equation (3.1). As the matrix H(,z) is paraunitary, the transformation will be energy 

preserving, which means the Frobenius norm of the two matrices R(z) and D(z) are equal,

i.e.

IIBMIIF =  l|D(z)||f . (3.2)

3.3 The Sequential Best R otation Algorithm

Given the para-Hermitian polynomial matrix R(^) G C pxp, the objective of the SBR2 algo

rithm is to compute the paraunitary polynomial matrix H (2) G  C pxp such that

H (2)R (z)H (2 ) =  D  (*), (3.3)

where the polynomial matrix D(z) G  C pxp is diagonal. The algorithm operates as an iterative 

process, where at each iteration an elementary paraunitary transformation is applied to both

sides of the polynomial matrix R(^) designed to drive the two off-diagonal coefficients with

the largest magnitude to zero. The paraunitary polynomial transformation matrix H(z) is 

therefore formulated as a series of elementary paraunitary matrices, i.e.

H (2) = G j (2) . . . G 1(z), (3.4)

where i denotes the unspecified number of iterations required to diagonalise the matrix and 

G  j(z) is the elementary paraunitary matrix calculated at iteration i. Each of these ma

trices consists of a complex elementary scalar rotation matrix, Q ^ ’k\d,(f)), preceded by an 

elementary delay matrix, B (k,t\ z )  and is formulated as

G i(z) = Q W ( e , m (k't)(z) (3.5)

where at each iteration the parameters j , k , t ,  6  and 4> are appropriately chosen depending on
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3.3 The Sequential Best Rotation Algorithm

the coefficients within the matrix R(^) that the elementary paraunitary matrix is attempting 

to annihilate. The matrix from equation (3.4) will clearly be paraunitary as each term in 

equation (3.5) is paraunitary. The two types of elementary paraunitary matrices will now be 

discussed.

3.3.1 An Elem entary R otation M atrix

The elementary scalar rotation matrix Q^ ' k\d,<f>) takes the form of a p x p identity matrix 

with the exception of the four elements positioned at the intersection of rows j  and k with 

columns j  and k. These elements are given by the elements of the 2 x 2  submatrix Q ’ (6, 4>),

which is formulated as
c se"

Q ii,k) («,*) =
-se c

(3.6)

where c and s define respectively the cosine and sine of the angle 6  in radians. The angles 

6  and 4> are chosen, so that when the matrix Q i s  applied to a polynomial matrix 

A(z)  as follows

A'OO = Q0’*>(M)A(*) (3.7)

one coefficient from the polynomial element o.jk(z) is rotated to equal zero. This will of course 

affect all coefficients associated with polynomial elements in the j th and kth rows of the matrix 

to which it is applied. Similarly, post-multiplication of A(z) by the para-conjugate of Q ^ )  

will similarly rotate all coefficients in the j th and k th columns of the polynomial matrix. Again 

appropriate choices of the rotation angles 0  and (f) can result in driving a single coefficient in 

the (k , j ) th polynomial element of the matrix to zero. If the matrix A(z) is para-Hermitian, 

then this process can be implemented to drive two coefficients of an off-diagonal polynomial 

to zero, but will require two rotations, one from the left and one from the right, using the 

same angles.
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3.3.2 An Elem entary Delay M atrix

The second component of the elementary paraunitary transformation matrix is an elementary 

delay matrix, B (k,t\ z )  6  C pxp. This matrix takes the form of a p x p identity matrix with

which is 2 i.e.

Ifc-i 0 0

0 z~l 0 (3.8)

0 0 Ip—k

B {k'l){z) =

The objective of this matrix is to impose a delay of size t to all elements in the kth row of 

the polynomial matrix to which it is applied. All other rows of the matrix are unaffected by 

this transformation.

The SBR2 algorithm can now be broken down into a three-step iterative process using 

these two elementary matrices, which will now be described in detail. Note that the algorithm 

is also described in detail in [7].

3.3.3 The SBR2 A lgorithm

The algorithm begins each iteration by locating the coefficient associated with an off-diagonal 

polynomial element within R(.z) with the largest magnitude and so the objective is to find 

the coefficient r^ ( t) ,  where j  ^  k, such that

\rjk(t)\ > |n m(r)| (3.9)

holds for all coefficients r;m(r) in R(^) where l , m = 1, . . .  ,p with I ^  m  and r  6  Z. This

coefficient will be referred to as the dominant coefficient and its absolute value is defined as

9  = \rjk{t)\. (3.10)

Suppose the dominant coefficient is found to be Tjk(t), i.e. the coefficient of 2 1 in the (j , k)th 

polynomial element, then this coefficient will be repeated as the coefficient r^ -(—t ) due to
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the structure of the para-Hermitian matrix defined in Section 2.4.2. For this reason the 

search for the dominant coefficient can be restricted to only the elements above the diagonal 

of R(.z) and so we require j  < k and I < m  in equation (3.9). If the dominant coefficient 

is not unique then any of the dominant coefficients may be chosen. Note that the specific

parameters j, k and t define the position of the dominant coefficient within the polynomial

matrix and are now used to formulate the elementary paraunitary matrices required to drive 

the two dominant coefficients to zero.

Having found the dominant off-diagonal coefficient and its associated indices j, k and £, 

the second step of the algorithm is to apply the appropriate delay matrix to R(z) to obtain 

the transformed matrix

R  '(*) =  B ^ t){ z ) R( z ) B(k,t\ z ) .  (3.11)

Subsequently, all coefficients in the k th row and k th column of the matrix, excluding the 

diagonal coefficients, have been shifted such that the dominant coefficient pair are now the 

coefficients of 2°, i.e. r'jk(0) =  rjk(t) =  rkj ( —t)* = rj^(0)*. Note that to accommodate all of 

the shifted coefficients the order of the matrix will have grown by 2 \t\.

The third and final step of each iteration of the SBR2 algorithm is to apply the appropriate 

elementary rotation matrix to R /(2) to obtain

R  "(z) = Q U'k)(d,(f)) R ,( z ) ( Q ^ k){d,(P))H. (3.12)

The rotation angles 6  and 4> required to drive the dominant coefficient to zero are chosen 

such that

(3.13)
c sei(̂

g■'-I
NT

i 1
g

-S£
V

1 c —se1̂

oo

*

—se~i(̂  c

g

1 1

se~i(t> c o  r& ( 0 ) _

This condition is satisfied when the angles are calculated such that

(f) = arg(r'jk ( 0)) (3.14)
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and
2 < k(0)

(3JS>

Equation (3.15) has multiple solutions for 0, any of which can be used. If the basic inverse 

tangent function (arctangent) is used to calculate 6  it will produce a solution in the range 

(—7r /4 , 7r /4]. However, it is preferable to use the four quadrant inverse tangent function as it 

will produce a 9 e  (—7r /2 , 7r / 2], which typically leads to output channels that are ordered in 

terms of decreasing power.

The application of the rotation matrix, as shown in equation (3.13), will not only affect 

the two dominant coefficients, but will also change all coefficients in rows and columns j  and 

k of R/(;j). The application of the rotation matrix will clearly not alter the order of the 

matrix.

This completes the first iteration of the SBR2 algorithm, resulting in an overall transfor

mation of the form

G 1(« )E W G 1W = D 1(«), (3.16)

where G j (z) = Q U'k)(6 ,(f))B<*’*>(*) and D  i{z) is the polynomial matrix resulting from the 

transformation with coefficients djk{0) =  dkj{0) = 0 .

Each element of the matrix R(.z) involves a number of polynomial coefficients and so in 

practice it will not be possible to zero all coefficients of every off-diagonal polynomial element 

and achieve exact digaonalisation. Instead the algorithm continues until all off-diagonal 

coefficients of D(z) are sufficiently small and the magnitude of all off-diagonal coefficients 

satisfy

\rj k(t) | < e (3.17)

for j , k  — 1, . . .  ,p with j  /  fc, t £ Z and where e > 0 is a prespecified small value. Al

though exact diagonalisation is not feasible, a good approximation can be achieved and this

is exemplified by the numerical example in Section 3.7.

The algorithm repeats this three step process iteratively, replacing R(z) with R //(^) until 

the transformed polynomial matrix is sufficiently diagonal according to equation (3.17). Com
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pleting a number of iterations of the SBR2 algorithm, say N,  will result in a transformation 

of the form

H Af(2)R (Z)H w(2) =  D N(2), (3.18)

where Hjv(z) is the overall transformation matrix after N  iterations and consists of N  el

ementary paraunitary matrices of the form shown in equation (3.5). The matrix Dtv(2) is 

the output of the algorithm after N  iterations and converges to the diagonal matrix D(z) 

as the number of iterations increases. Note also that the m atrix Hjv(z) is paraunitary as it 

consists of the product of N  paraunitary matrices. Furthermore the transformation is norm 

preserving and so

Hn (z)R(2)Hw(2) = ||R (2)||f . (3.19)
F

3.4 Convergence of the SBR2 Algorithm

To discuss convergence of the algorithm, four measures are introduced; firstly Ni  the squared 

Frobenius norm of the diagonal elements on the coefficient m atrix of z°, i.e. R(0), N 2 the 

squared Frobenius norm of the coefficient matrix of z°, N 3  the squared Frobenius norm of 

the off-diagonal coefficients of z° and finally N 4  the squared Frobenius norm for the matrix 

R (z) [7]. These measures can be calculated as

^ i  =  I > « ( ° ) l 2 . (3.20)
j = 1

n 2  = tt M 0 ) |2 , (3.21)
j = 1 k - 1

n 3 = tt kjfc(0) |2 (3.22)
j  =  1 k - 1

and

^  =  E E E M t )I2 ' (3-23)
r  j - 1 k =  1

Note that the quantity Ni  is not affected by applying the elementary delay matrices and
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remains constant. However the quantities N 2 and N 3  will be affected whenever the parameter 

t in equation (3.11) does not equal zero. Following the rotation step at each iteration the 

quantity JV3 will decrease by the magnitude squared of the two dominant coefficients. Further

more the relationship between the first three quantities specified by equations (3.20)-(3.22) 

can be expressed as

N 2 = N l + N 3, (3.24)

which will remain constant through the rotation step and so the quantity N\  will increase 

relating to the decrease in N 3.

Therefore, at each iteration N\  will increase by twice the magnitude squared of the 

dominant coefficient, i.e. the quantity 2g2, and so will increase monotonically over the series 

of iterations. N 4  will not be affected by any application of a delay matrix or rotation matrix, 

as the transformation is norm preserving, and so will remain constant over all iterations of 

the algorithm. Since N\  increases monotonically and is bounded above by N 4  the total energy 

in the matrix, which is constant, it must have a supremum S.  As a result, there must be an 

iteration L  for which \S — N\  \ < e for any e > 0. Then at any subsequent stage the same 

quantity must satisfy 2g2  < |S — N\\  < e and so there must be an iteration by which the 

magnitude squared of the dominant coefficient at that iteration is bounded by e. Hence the 

stopping condition specified by equation (3.17) can be guaranteed and convergence of the 

SBR2 algorithm confirmed.

3.5 Implementation and Computational Complex

ity of the SBR2 Algorithm

The algorithm is designed to stop when either a set number of iterations is completed or 

when the stopping criterion specified by equation (3.17) is met. Currently, this condition is 

specified in terms of the smallness of the magnitude of the maximum off-diagonal coefficient, 

g, in relation to the quantity \ J N \ / p , which represents a lower bound for the maximum 

autocorrelation value at lag zero. The algorithm is therefore set to stop when the following
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condition is satisfied

g <  € =  S y /W J i,  (3.25)

where S > 0 is a prespecified small value and p denotes the number of number of rows in the 

para-Hermitian input matrix R(z), which for application purposes is equal to the number of 

received signals.

To reduce the computational time of SBR2, the paraunitary matrix H (2) is not stored 

or calculated within the algorithm. Instead the series of parameters j, k , t, 6  and 4> required 

for computing H(z) are stored and then the matrix can be computed, if required, once all 

iterations of the algorithm have been completed. Also the rotation or delay matrices are 

not applied to the entire polynomial matrix when implementing the algorithm as this would 

increase the computational complexity of the algorithm unnecessarily. Only two rows and 

columns are affected by the rotation and one row and column by the application of the 

delay matrix and so only these rows and columns are changed. The number of computations 

calculated at each iteration can be further reduced by exploiting the para-conjugate symmetry 

of the para-Hermitian matrix R(.z).

The computational complexity of the SBR2 algorithm is discussed in Appendix C. It is 

very much dependent upon the size and order of the updated polynomial matrix at iteration i, 

Dj(z). However, it is generally unnecessarily high due to the algorithm storing all coefficients 

of the polynomial matrix, even if coefficients associated with the outer time lags of the matrix 

are very small or equal to zero. This problem is highlighted in example 3.7 and Chapter 4 

discusses techniques of alleviating this problem.

3.6 Applications of the SBR2 Algorithm

3.6.1 Strong Decorrelation

Chapter 2 discussed the conventional EVD for scalar matrices as a technique for decorrelating 

a set of instantaneously mixed signals, where there are no time delays in the propagation of 

the signals from the sources to the sensors. In this case the signals received at the sensors
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can be decorrelated by applying a unitary matrix that modifies the signals in both phase and 

amplitude and this m atrix can be obtained by calculating the EVD of the sample covariance 

matrix of the received signals.

However, this method cannot be applied to a set of convolutively mixed signals, which will 

not only be correlated with each other at the same time instant, but possibly over a range of 

time delays as well. Instead a polynomial matrix of chosen filters will be required to transform 

the received signals and impose strong decorrelation, i.e. decorrelation of the signals at the 

same time instant and over any relative time delay. The matrix required to impose strong 

decorrelation must preserve the total energy in the signals through the transformation and 

can be found by calculating the EVD of the polynomial space-time covariance matrix for the 

convolutively mixed signals using the SBR2 algorithm.

Firstly the convolutive mixing model is defined, before discussing in detail how strong 

decorrelation of a set of convolutively mixed signals is achieved. It is assumed that a set of 

source signals s (t) £ C9Xl for t £ {0,1, . . . ,  T  — 1} are emitted from q independent sources 

through a convolutive channel, to be received at an array of p sensors, where it is assumed 

that p > q. The mixing model for the set of convolutively mixed signals, x(£) £ Cp where 

t € {0 ,1 ,... , T  — 1} can be expressed as

N

=  E  C{k)s(t  -  k) + n(t)  (3.26)
k—0

N

where C (z) =  C (k)z~k denotes the polynomial mixing matrix with coefficient matrices 
k=o

C(k) £ Cpxq for k = { 0 ,1 ,. . . ,  N }  and n (t) £ Cp denotes an additive zero-mean noise process

with variance <x2I. In the above expression N  defines the order of the mixing matrix. This

mixing model can alternatively be written as

x(z) -  C(z)s(z)  +  n(z), (3.27)
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3.6 Applications of the SBR2 Algorithm

where x(z), s(z) and 11(2) define algebraic power series of the form

OO

x(z) = £  x(t)*-' (3.28)
t= — OO

of the received signals, the source signals and the additive noise terms respectively.

Assuming that the received signals generated by mixing model (3.26) have zero mean 

then the space-time covariance matrix for the set of signals is defined as

OO
E m W =  £  R x* (r)z"T (3.29)

T= — OO

where R xx(r) = E [x(t)xH (t — r)j for r  E  Z. However, in practice the estimated space-time 

covariance matrix for the signals is calculated as

w
&,*(*) =  £  (3-30)

T =  - W

where

f U T )  =  E * ^ - r)  (3.31)
t= 0

and W  defines the correlation lag window parameter. This parameter can be chosen exper

imentally or, if appropriate knowledge of the mixing system is available, an informed choice

can be made. The space-time covariance matrix R xx(z) is unlikely to be diagonal as the

received signals will generally be correlated with one another. In calculating this matrix, the 

following three assumptions are made

1. T  »  W,

2. x(t) = 0 outside of the sample interval [0 ,1 ,.. . ,  T  — 1] and

3. R (r)  =  0 for |t |  >  W.

The order of this estimated space-time covariance matrix is 2W.  It is easily demonstrated 

that this matrix is para-Hermitian as the auto and cross-correlation sequences of the received
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3.6 Applications of the SBR2 Algorithm

signals, for example Xi(t) and X j ( t ) ,  will satisfy

^ { t ) =  r*XjX. ( - T )  (3.32)

for r  G  Z and so R(z) = £ ( 2 )  enabling the matrix to be a suitable input to the SBR2 algo

rithm. The SBR2 algorithm when applied to a space-time covariance matrix can be used to 

obtain a polynomial EVD (PEVD) of R(z) and therefore to find the polynomial paraunitary 

matrix required to enforce strong decorrelation upon the set of received signals. Applying 

SBR2 to the estimated space-time covariance matrix, R xx(z), produces the decomposition

H (z )R CI(z)fi(«) =  D (Z) (3.33)

where H(z) is the paraunitary transformation matrix and D(z) is approximately diagonal. 

The transformed signals can then be calculated as

y(z)  =  H (z)x(z), (3.34)

which, to a good approximation, are strongly decorrelated. The space-time covariance matrix 

for the signals can be estimated by

R yy(z) =  =  D  (z), (3.35)

which is an approximately diagonal polynomial matrix. The process of strongly decorrelating

a set of convolutively mixed signals by the SBR2 algorithm is demonstrated by a simple

numerical example in Section 3.7.

One clear advantage of diagonalising the polynomial m atrix by means of paraunitary

transformations, such as that obtained by the SBR2 algorithm, is that the transformation is
2  2

norm preserving, i.e. ||D (z)||F = R xx(z) , and so no information is lost over the series of
F

iterations of the algorithm. Also the transformation will not amplify any additive noise terms 

as the variance of the noise following the paraunitary transformation will remain constant.

46



3.6 Applications of the SBR2 Algorithm

3.6.2 Properties of the SBR2 A lgorithm

This section aims to briefly discuss the other properties or applications of the SBR2 algorithm.

2. Two signals are said to be spectrally majorised if the expected power in one signal is 

greater that the expected power of the other signal at every frequency. After applying 

the SBR2 algorithm to the space-time covariance matrix for a set of convolved signals, 

the output signals are ordered in decreasing magnitude of total energy such that

In addition, the SBR2 algorithm has a tendency to produce spectrally majorised out

puts, although this is not always a guaranteed property of the decomposition. This 

property will be demonstrated by the example in Section 3.7.

3. The signal and noise subspaces can be identified using the SBR2 algorithm. This is 

performed by inspection of the power spectral density (PSD) of the decorrelated signals, 

which can also be used for identifying if the signals are spectrally majorised. Section 

3.6.3 will now briefly discuss how the PSD of the received and decorrelated signal can 

be calculated.

3.6.3 Power Spectrum  of the Signals

The power spectrum of a signal describes the distribution of power with frequency, demon

strating which frequencies are present and how much power each frequency possesses. For a 

wide-sense stationary (WSS) process it is easily calculated, according to the Wiener-Khinchin 

Theorem, by taking the Fourier Transform of the autocorrelation sequence, rxx(n), for the 

signal as follows

1. As discussed previously the paraunitary transformation carried out by the SBR2 algo-
2 2rithm is norm preserving and so H (2 )R(z)H(2 ) = ||D(2 )||F.
F

dn(O) > ^22(0) > . . .  > dpp(0). (3.36)

OO
(3.37)

n——oc
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where uj represents normalised angular frequency [56]. The estimated autocorrelation se

quences for the set of received signals correspond to the diagonal elements of the space-time 

covariance matrix R xx(z). Alternatively, the expected sequences correspond to the diagonal 

elements of the matrix

Exx(2) =  C (2)R s>(Z)C (2) +  <r2Ip (3.38)

where a 2 defines the variance of the noise and R ss(z) defines the expected polynomial space

time covariance matrix of the source signals, which as the source signals are assumed to 

be statistically independent will be diagonal. Furthermore, if the source signals have unit 

variance, such as those used in example 3.7, R ss(z) = l q.

The estimated autocorrelation sequences of the output signals are the diagonal elements 

of the diagonalised spectral density matrix D(^) obtained by the SBR2 algorithm. Alterna

tively, the expected sequences could have been calculated, using the similarity transformation 

matrix, H(^), and the mixing matrix, C (2), by computing

E  y y ( z )  =  H (2)C (z)C (z)H (z) +  < T % .  (3.39)

Evaluating the diagonal entries of R yy(z) will yield the expected autocovariance functions of 

the decorrelated signals y (t).

The algorithm can also be used to identify the signal and noise subspaces. From inspect

ing plots of the PSD the noise signals can be identified as the channels with low spectra and 

therefore positioned at the bottom of the graph. The remaining signals, each with consider

ably larger spectra, correspond to the decorrelated signals.

3.7 Numerical Example

A simple example is given to demonstrate how the SBR2 algorithm operates and briefly 

illustrate a couple of applications to signal processing, specifically using the SBR2 algorithm 

as a technique for enforcing strong decorrelation upon a set of convolved signals and also as 

a tool for subspace decomposition. A polynomial mixing matrix C(z) G  C 4x3 was generated,
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3.7 Numerical Example

specifically designed to emulate the propagation of three signals onto four sensors. Each of 

the polynomial elements of the matrix was chosen to be a fifth order FIR filter, where the 

coefficients were drawn from a uniform distribution in the range [—1, 1].

Three independent BPSK source signals, each of length 1000, were then generated and 

convolutively mixed according to equation (3.26), where N  defines the order of the mixing 

matrix and is, in this case, equal to five. The variance of the noise process was chosen to 

give a signal-to-noise ratio (SNR) at the receiver of 5 dB. The space-time covariance matrix 

for the system could then be calculated according to equations (3.30) and (3.31) where the 

correlation window parameter was set as W  — 10. As each element of the mixing matrix 

C (z) is a fifth order FIR filter, the estimated auto and cross-correlation sequences for each 

of the received signals will be approximately zero for all lags |r | > 5 and any deviation in 

these areas will be due to sample estimation errors. For this reason the choice of our lag 

window parameter W  is more than sufficient, in fact W  =  5 would have been adequate. A 

graphical representation of the estimated polynomial space-time covariance matrix R(z) can 

be seen in Figure 3.1, where stem plots are used to illustrate the series of coefficients for each 

of the polynomial elements. The position of the stem plot in the figure corresponds to the 

position of the polynomial element, which it represents within the matrix. In this example, 

both the source signals and the polynomial elements of the mixing matrix were chosen to 

be real, resulting in the space-time covariance matrix also consisting of polynomial elements 

with real coefficients. The algorithm could have equally been applied to a polynomial matrix 

whose coefficients are complex.

The SBR2 algorithm when applied to this matrix, took 184 iterations to converge to a 

point where p, the off-diagonal coefficient with maximum magnitude in D(z), is less than 

x 10-2 . This is demonstrated in Figure 3.2, where the magnitude of the dominant 

coefficient at each iteration is plotted over the series of iterations.

The order of the matrices D (z) and H(z) following all 182 iterations of the algorithm are 

3486 and 1733 respectively. The input matrix R(z) has a squared Frobenius norm of 478.19, 

with 173.38 positioned in the diagonal elements. This accounts for 36.18% of the total squared 

Frobenius norm of the matrix. However, following the application of the SBR2 algorithm,
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3.7 Numerical Example

the squared Frobenius norm of the off-diagonal elements decreased to 1.32, amounting to

0.28% of the total squared Frobenius norm of the matrix. The diagonal matrix D(z) and 

the paraunitary transformation matrix H(^) can be seen in Figures 3.3 and 3.4 respectively. 

Upon inspection of the plots of these matrices the order of these matrices can be seen to 

be unnecessarily large, with the majority of the coefficients positioned in the outer lags 

amounting to a small proportion of the Frobenius norm of the polynomial matrix. This will 

be discussed further in Section 3.9. In fact the outer 3400 coefficient matrices of D (2) account 

for only 0.0065% of the total squared Frobenius norm of the matrix.

Figures 3.5 and 3.6 demonstrate the power spectral density (PSD) of the mixed signals and 

the decorrelated signals, following the application of the paraunitary transformation matrix 

obtained from the SBR2 algorithm, respectively. The PSDs were calculated according to 

Section 3.6.3. From Figure 3.6 it can be seen that approximate spectral majorisation has 

been achieved and the noise term can be identified as the signal with the lowest spectra, i.e. 

output four. The signal and noise subspaces have thus been identified.

A parunitary transformation, such as that carried out by the SBR2 algorithm, is norm 

preserving and therefore the total energy of all signals throughout the transformation remains 

constant. Furthermore, the transformation preserves the total energy at each frequency, 

[16,57,58], and this can be seen in Figure 3.7, where the total PSD in all signals is plotted 

before and after applying the SBR2 algorithm. Note that the transformation can redistribute 

the power between channels, but it cannot allow the total power to increase or decrease.
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Figure 3.1: A stem  plot representation of the  para-H erm itian polynomial space-time 
covariance m atrix  R(,z) to be used as input to  the  SBR2 algorithm.
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Figure 3.5: Plot of the spectra of the convolutively mixed signals, whose space-time 
covariance matrix R(^) was used as input to the SBR2 algorithm.
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Figure 3.6: Plot of the spectra of the decorrelated signals, after applying the similarity 
transformation matrix H (z) to the convolved signal x( t ).
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Figure 3.7: Plot of the total spectra of the expected signals, before and after applying 
the similarity transformation matrix H(z) obtained from the SBR2 algorithm.

3.8 U niqueness o f Solutions

Note that for this decomposition the polynomial transformation matrix H(z) is not unique. 

It is possible to have a diagonal paraunitary polynomial matrix A (z) 6  C pxp, with diagonal 

elements consisting entirely of time-shift and phase adjustment terms, such that

A(z)H (z)R(z)H (z)A (z) -  D(z) (3.40)

where the diagonal elements of the matrix are of the form \ j j ( t )  = etaz~t for j  =  1, . . .  ,p such

that = Xjj(—t)Xjj(t) — 1. However, as a result of the paraunitary condition,

the diagonal matrix D(z) will be unique since

A(z)D(z)A(z) =  D(z) (3.41)

provided D(z) is precisely diagonal. For the signal processing applications discussed in this
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chapter, only the polynomial matrix D(z) is generally of interest and so non-uniqueness of 

the paraunitary matrix H(z) does not present a problem.

3.9 Limitations of the SBR2 Algorithm

At each iteration of the SBR2 algorithm, the order of the matrix being diagonalised can 

increase due to the application of the elementary delay in equation (3.11). Often after a 

series of iterations, the order of R(z) becomes unnecessarily large. At each iteration new 

coefficient matrices are created at both ends of the polynomial matrix to accommodate the 

shifted coefficients, which now exceed the order of the initial polynomial matrix. These 

new coefficient matrices will consist entirely of zeros with the exception of the coefficients 

positioned in either the k th row or column of the matrix. Over a series of iterations, further 

delays are applied to the matrix according to equation (3.11) and this can result in outer 

coefficient matrices containing mostly zero elements with the remainder accounting for only 

a small proportion of the Frobenius norm of the input m atrix R(z). Many of these coefficient 

matrices can be discarded without seriously compromising the accuracy of the decomposition. 

A similar problem is encountered with the paraunitary transformation matrix H(z); the order 

of this matrix will also increase with the application of elementary delays, and can often 

become unnecessarily large.

W ith the orders of the polynomial matrices growing unnecessarily large, the computa

tional load of the algorithm increases, resulting in a computationally slow algorithm, even 

when the initial input matrix is of a small size and order. The following chapter addresses 

this problem by proposing two methods of truncating the polynomial matrices within the 

algorithm, allowing an increased computational speed whilst maintaining a chosen level of 

accuracy for the matrix decomposition.
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3.10 Conclusions

The SBR2 algorithm effectively transforms a para-Hermitian polynomial matrix to an ap

proximately diagonal matrix by means of a series of paraunitary transformations. This is 

confirmed by the simple numerical example in Section 3.7. However in this example, the 

orders of the polynomial matrices D(z) and H(^) are seen to become unnecessarily large 

with many of the coefficients positioned in the outer lags of both matrices being either equal 

to zero or are very small in comparison to those coefficients in the central lags. This makes 

the algorithm unnecessarily slow to implement. The next chapter examines methods for pre

venting the matrices growing unnecessarily large, and so decreasing the computational time 

required for the SBR2 algorithm to run.
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Chapter 4 

Polynom ial M atrix Truncation  
M ethods

4.1 Introduction

To recap from Chapter 3, at the end of the i th iteration of the SBR2 algorithm, the decom

position performed is of the form

H i(z)R (^ )H l (z) =  D i (2) (4.1)

where R(*) £ C pxp denotes the para-Hermitian polynomial input m atrix to the algorithm, 

S i(z ) £ C pxp is the paraunitary transformation matrix following i iterations and D j(2) £ 

C pxp is the resulting transformed polynomial matrix, which will be approximately diagonal, 

provided a sufficient number of iterations of the algorithm has been completed. The ability of 

the SBR2 algorithm to strongly decorrelate a set of convolutively mixed signals was demon

strated in the previous chapter by a simple numerical example. However, this example also 

highlighted a lim itation of the algorithm; the unnecessarily large orders of the polynomial 

matrices H i (z) and D t (z), which grow with each iteration of the algorithm.

This point is clearly illustrated in Example 3.7, where the SBR2 algorithm was applied 

to a simple para-Hermitian polynomial m atrix of a relatively small size and order, with only 

a few off-diagonal coefficients to drive to zero. However, even when applying the algorithm 

to this polynomial matrix, the order of the resulting diagonal m atrix D 182(2) grew to 3486,
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which, by inspection of Figure 3.3, is seen to be unnecessarily large with the majority of the 

non-zero coefficients positioned in the central few lags of the polynomial matrix. The same is 

true of the transform ation m atrix H 182(z) illustrated in Figure 3.4, whose order following the 

application of SBR2 was found to be 1733. These large and increasing orders of both polyno

mial matrices D t(z) and H j(z), made the SBR2 algorithm unnecessarily slow to implement 

due to the excessive computational load. However, they are also clearly unnecessary to obtain 

a sufficiently accurate polynomial m atrix decomposition for most realistic purposes. Further

more, for the potential application of the decomposition to MIMO communications1, where 

the SBR2 algorithm is used to transform a MIMO channel into a set of Single-Input Single- 

O utput (SISO) channels which are then equalised to obtain estimates of a set of transm itted 

signals, the order of the computed diagonal polynomial m atrix is of critical importance. The 

computational complexity of the equaliser will at best be proportional to the length of the 

channel. Indeed, if a Maximum Likelihood Sequence Estim ator (MLSE) based on the Viterbi 

algorithm is to be applied, as for the results used to illustrate this potential application in 

Chapter 8 , the complexity grows exponentially. Clearly, the SBR2 algorithm is not practical 

for this application without using some technique to reduce the orders of the polynomial 

matrices.

4.1.1 T he P rob lem

At each iteration of the SBR2 algorithm, the order of the polynomial matrices H j(z) and 

D i(z) of equation (4.1) increase, due to the application of elementary delay matrices. This 

point is easily illustrated by the following simple example. For ease of notation in this 

example, the (j , k ) th polynomial elements of the m atrix D t (z) are referred to as & (*)■

Suppose at the s ta rt of the ith iteration of the algorithm, the dominant coefficient of the 

polynomial m atrix P i_ i(z )  is found to be d^k ^( t ) .  The coefficient dkj ^ { —t) will then also 

be dominant due to the para-Hermitian structure of the polynomial matrix. As explained 

previously in C hapter 3, the objective of the i th iteration of the SBR2 algorithm is to drive 

these two dom inant coefficients to zero by firstly shifting the two coefficients so tha t they are

lA detailed description of this application can be found in Chapter 8 .
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positioned as the coefficient of z°, by means of elementary delay matrices, and then apply 

the appropriate rotation matrix, which will force these coefficients to zero. The application 

of the elementary delay matrices will cause the order of the m atrix D 2_ l (z) to increase by 

2 \t\ to accommodate all of the shifted coefficients.

This point can be illustrated by examining the series of coefficients for the polynomial 

elements d^k ^ (z) and d̂kj ^ (z) before and after the application of the elementary delay ma

trices. For a simple example, suppose the polynomial m atrix D(z_^ (z ) is of order four and 

the dom inant coefficients at iteration i are found to  be d^k l \ —2) and dk ~ l \ 2). Figure 4.1 

demonstrates the magnitude of the series of coefficients associated with the two polynomial el

ements before and after the application of the elementary delay matrix. Notice tha t the order 

of each polynomial element has grown by four to accommodate all of the shifted coefficients. 

New coefficient matrices must be created at either end of the array to accommodate the 

shifted coefficients tha t now exceed the order of the polynomial m atrix D j_ j(z). These new 

coefficient matrices will consist entirely of zeros except for the shifted coefficients positioned 

in either the k th row or column of the matrix. Note also tha t the elementary delay matrices 

are incorporated in the paraunitary transform ation m atrix and so each application of the 

elementary delay matrices, which are required to zero the dominant coefficients d^k X\ t )  and 

dkj also force the order of the polynomial paraunitary m atrix H j(z) to increase

by \t\.

During the subsequent step of the iteration, the elementary rotation m atrix is applied 

to  this m atrix to  drive the two dominant coefficients to zero. This rotation step will not 

alter the order of the m atrix, but it will have an affect upon all polynomial coefficients in 

the j th and k th rows and columns of the matrix. The newly created coefficients from the 

application of the elementary delay matrix, which were equal zero, will have been affected by 

the rotation and will generally have increased in m agnitude squared. Note th a t the Frobenius 

norm of each coefficient m atrix D ;(t), Vt 6 Z, is invariant to the application of the elementary 

rotation, but it will redistribute the Frobenius norm of the coefficients within each coefficient 

matrix.

Typically, after a series of such iterations, the repeated application of elementary delay
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Figure 4.1: Stein plots of the series of coefficients of the polynomial elements dfck ^(z)
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of the elementary delay matrices. The dominant coefficient in each of the polynomial 
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matrices can force the order of both polynomial matrices within the algorithm to become 

unnecessarily large, with many of the polynomial coefficients positioned in the outer lags 

of the matrix equal to zero or, at most accounting for a small proportion of the Frobenius 

norm of the entire matrix. Clearly, these outer lags, which often contain little information, 

are not necessary to obtain an accurate polynomial matrix decomposition. However, storing 

them will typically make the algorithm computationally very slow to implement due to the 

increased computational load, and generally this will happen even if the input matrix R(z) 

is of a relatively small size and order.

This chapter introduces two possible truncation methods which can be incorporated 

within the SBR2 algorithm to ensure that the order of the polynomial matrices do not grow 

unnecessarily large, thus reducing the computational load of the algorithm and decreasing 

the computational time taken for the algorithm to run. In the second part of this chapter, 

the two proposed truncation techniques are assessed by applying the SBR2 algorithm using 

each method in turn, to a series of para-Hermitian polynomial matrices of varying size and 

orders. In particular, the quality of the polynomial matrix decomposition when applying
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each of the truncation techniques is examined, since truncating the order of the polynomial 

matrices will have some effect on the accuracy of the decomposition performed and it is im

portant to ensure that the methods are used appropriately. A substantial amount of error in 

the decomposition would clearly have a detrimental effect on the capability of the algorithm 

for most applications. The chapter concludes with an overall recommendation as to which is 

the most appropriate truncation method to use and how it should be implemented as part 

of the SBR2 algorithm to effectively reduce the computational load of the algorithm, whilst 

m aintaining an accurate polynomial m atrix decomposition.

4.2 Truncation M ethod 1: Fixed Bound

The first method for truncating the polynomial matrices within the SBR2 algorithm is to 

place a fixed bound on the order of the polynomial matrices to ensure tha t they do not exceed 

this specified fixed limit. The truncation method is introduced for two cases, firstly a method 

suitable for a para-Hermitian polynomial matrix, such as the transformed polynomial matrix 

D j(z), and then a more general technique tha t can be applied to any polynomial matrix, such 

as the paraunitary transform ation m atrix H j(z). In either case, the polynomial m atrix to be 

truncated will be denotes as A (z).

4.2.1 For P ara-H erm itian  P olynom ial M atrices

Suppose the polynomial m atrix A (z) € C pxpxT is para-Hermitian and therefore has coef

ficient matrices A (t) for t = — T / 2 , . . . ,  T /2 . To apply a fixed bound to this polynomial 

m atrix, a limit L > 0 must be chosen and a suitable choice for this param eter must be an 

even number to ensure th a t the truncated polynomial m atrix remains para-Hermitian. Any 

coefficient matrices A (f) for \t\ > L / 2  are truncated from the m atrix and so the resulting 

truncated polynomial m atrix can be expressed as

L/2

A (r(z) =  £  A ( t)z - ‘. (4.2)
t= — L/ 2
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Note that, as the polynomial matrix A (z) is para-Hermitian, then the same number of co

efficient matrices must be removed from both ends of the m atrix to ensure that the matrix 

remains para-Hermitian. If the m atrix is not para-Hermitian then a fixed bound could still 

be implemented, but there is now the option of setting both an upper and lower limit upon 

the lag variable t ; this will now be discussed.

4.2 .2  For N on-P ara-H erm itian  P olynom ial M atrices

For a non-para-Hermitian polynomial m atrix A(z) € C pxqxT, with coefficient matrices A (t) 

where t = £ j , . . .  ,<2> the order of the m atrix can be calculated as T  — f a  — t\). This is 

now not necessarily an even number and the coefficient matrices are not generally centred 

about the coefficient m atrix associated with z°. It is therefore far more difficult to apply a 

fixed bound truncation method to a non para-Hermitian polynomial matrix, as there is now 

the additional difficulty of determining in advance how many coefficient matrices should be 

truncated from either end of the polynomial matrix.

If this m ethod is to be applied to the paraunitary polynomial m atrix obtained within the 

SBR2 algorithm H j(z), then by inspection of Figure 3.4 it would appear tha t this matrix 

is also centred about the zero-lag coefficient m atrix and so the same number of coefficient 

matrices can be removed from either end of the matrix. This is not guaranteed, but is 

generally found to be the case. If the fixed bound, for this instance, is L,  then set m  = 

and the truncated polynomial m atrix can be calculated as

t'2-m
A ir( z ) =  Y .  A W *~ l (4-3>

t=t i +m

where the order of this m atrix will be either L  or L + 1, depending on whether the initial 

order of A (z), prior to  truncating, and the value L  are even or odd.

Alternatively, if it is not suitable to remove the same number of coefficient matrices from 

both ends, a lower limit L\ and an upper limit L 2  can be chosen, so tha t any coefficient 

matrices A (t) for t > L 2  and t < L\ are truncated from the polynomial matrix, resulting in
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4.3 Truncation M ethod 2: Energy Based Bound

the truncated polynomial matrix

Li
A tT(z) = A ( t ) z - \  (4.4)

t =L\

which is of the fixed order (L 2  — L \ ). It is more appropriate to impose a lower and upper bound 

011 the order of a general polynomial m atrix as demonstrated by equation (4.4). However, 

it is difficult to determine the choice of the bounds in advance as a suitable choice will be 

related to the distribution of the Frobenius norm of the polynomial m atrix over the series 

of lags. Ideally, the two separate bounds should be chosen from inspection of this measure, 

which is possible if a m atrix is to be truncated just once. However, if this technique is to 

be implemented as part of an iterative routine, such as the SBR2 algorithm, where the order 

of the polynomial matrices can grow, it is not so appropriate as it will be impossible to 

determine appropriate values for these measures in advance.

4.3 Truncation M ethod 2: Energy Based Bound

The second m ethod for restricting the growing orders of the polynomial matrices is based 

entirely upon the proportion of the Frobenius norm of the polynomial m atrix being truncated 

which is perm itted to be lost. Again, as with the previous truncation method, this technique 

is introduced for two cases, firstly a m ethod suitable for para-Hermitian polynomial matrices 

and then a more general technique tha t can be applied to any polynomial matrix.

4.3.1 For Para-H erm itian  P olynom ial M atrices

For a polynomial para-Herm itian matrix A (z) € <CpxpxT, with coefficient matrices A (t) for 

t = —T /2 , . . .  , T /2 , the truncation method finds the smallest value for the lag parameter 

tiim > 0 such tha t
T / 2  p  p

2 £  E E
^—tl im  j —  1 k — 1

2----------  < V (4-5)
W A { z j \ \ f

where Ujfc(t) denotes the (j, k) th element of the coefficient m atrix A (t) and fi defines the
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4.3 Truncation M ethod 2: Energy Based Bound

proportion of the Frobenius norm of the untruncated polynomial m atrix which is perm itted 

to be lost due to the truncation. Once a value for tnm has been found, the truncated matrix, 

A tr(z), can be calculated as
^Urn ~  1

A ,r(z) =  A  ( t )z-K (4.6)

There are two ways in which this technique can be used to truncate the transformed polyno

mial m atrix D j(z) resulting from the ith iteration of the SBR2 algorithm. Firstly, it can be 

perm itted to allow a proportion of the Frobenius norm of the original input m atrix R(.z) to 

be lost at each iteration. Or, alternatively, to allow a proportion of the Frobenius norm of 

D  the m atrix being truncated, to be lost at the end of the i th iteration. The first method 

was adopted for the results presented in this chapter and so the denominator of equation 

(4.5) is set equal to ||R (2) ||^  and (ijk(t) denotes the (j , k ) th element of D* ('t )•

An additional constraint can be placed on the truncated polynomial m atrix D \r (z) when 

applying this truncation m ethod within the SBR2 algorithm to ensure tha t at most, only an 

acceptably small proportion of the Frobenius norm of R (2 ) is lost over all iterations of the 

SBR2 algorithm. This type of constraint is implemented by requiring

||D ‘r (2)||* > ( l - a ) | |R ( z ) | |£ .  (4.7)

where a  is the total proportion of ||R (2)||^  perm itted to be lost over all iterations of the 

algorithm. This additional constraint can be used if it is ever essential to limit the propor

tion of the Frobenius norm of R(-z) which can be truncated over all iterations of the SBR2 

algorithm. Although this type of constraint can be useful, it will not be used to obtain any 

of the results presented in this thesis.

4.3 .2  For N on-P ara-H erm itian  P olynom ial M atrices

A suitable truncation m ethod for a polynomial m atrix A (z) € C pxq, which is not necessarily 

para-Hermitian and has coefficient matrices A (t) for t = T j , . .. ,72  can be implemented as
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4.4 Comparing the Truncation Methods

follows. Find a maximum value for t\ and a minimum value for ^  such that

E E E  l«b»(r) i2
r=Tj  /=1 m =  1 fl

MA, , 1,-2 (4-8)I I A ( « ) I I f  2

and
T‘2 p q

E E E la'-»M|2
r= t2 | = 1  m=  1_______________  / I

I I A W l f c  "  2  (  '  '
where again p  defines the proportion of energy perm itted to be truncated from the polynomial 

m atrix A(z) with one implementation of the truncation method. Then the coefficient matrices 

A (r) for r  =  T \ , . . . ,  t\ and r  =  t2 , . . . ,  T2  can be truncated from the m atrix and the truncated 

polynomial m atrix calculated as

< 2 - 1

A tr{z) = A (4.10) 
<1 +  1

This truncation m ethod can be applied to the paraunitary polynomial m atrix obtained

at the end of the i th iteration of the SBR2 algorithm, H j(^). If the polynomial m atrix A(z)

in equations (4.8) and (4.9) is para-Hermitian then this truncation m ethod simply reduces 

to the one dem onstrated by equation (4.5).

4.4 Com paring the Truncation M ethods

To assess the different truncation methods and further illustrate the SBR2 algorithm, a set 

of polynomial para-Hermitian test matrices was generated.

4.4.1 Set o f  T est M atrices

The first polynomial m atrix of the set R i (z) € C 3x3x4 was generated by randomly drawing 

both the real and imaginary parts of the complex coefficients for each of the polynomial 

elements from a Gaussian distribution with mean zero and unit variance. Care must be 

taken to ensure th a t the polynomial matrix is para-Hermitian by ensuring the coefficients
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4.4 Comparing the Truncation Methods

associated with the polynomial elements satisfy

rjk(t) = r*kj ( - t )  (4.11)

Vt E Z and for j , k  =  1, 2,3.

The second polynomial para-Herinitian m atrix R 2(2 ) E R 4x4x4 was chosen to be a fairly 

sparse polynomial m atrix, where the non-zero coefficients associated with each of the poly

nomial elements were drawn randomly from a uniform distribution in the range [0,1]. This 

m atrix has a total of 38 non-zero coefficients, all of which are real.

For a more practically motivated example R ^ z )  G R 5x5x30 is the estimated space-time 

covariance m atrix for a set of five convolved signals, where, without loss of generality, the 

mixing m atrix for the system was chosen to dem onstrate the propagation of three signals 

onto five sensors. The source signals were chosen to be independent binary phase-shift keying 

(BPSK) sequences, which means each sample can take the value ± 1  with equal probability 

of a half. These signals were mixed according to the mixing model demonstrated in Section

3.6.1, where the coefficients associated with the polynomial elements of the channel matrix 

C (z) E R 5x3x4, required for equation (3.26), were drawn from a uniform distribution in 

the range [ — 1 ,1]. The variance of the additive noise was chosen to be unity, which meant 

an SNR value of 5.4dB. This was specifically chosen, as a point where the SBR2 algorithm 

can effectively separate the signal and noise subspaces. The estimated space-time covariance 

m atrix was calculated according to equation (3.30), where the correlation lag window was set 

as W  = 15.

The fourth polynomial m atrix R ^ z )  G R 5x5x10 was chosen to be the expected or ideal 

space-time covariance m atrix corresponding to the signals used to calculate the estimated 

space-time covariances matrices R ^ z ) . This m atrix was therefore calculated as

B i(z ) =  C ( z )R M(z) C(z) +  <t2I 5 (4.12)

=  13

where R ^ z )  denotes the space-time covariance for the source signals, which for the example 

presented here, is given by the identity matrix, C (z) denotes the appropriate channel m atrix
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and a 2  denotes the variance of the noise process n(£).

Similarly, the para-Hermitian polynomial m atrix R s(z) £ C 5x5x20 is also an estimated 

space-time covariance m atrix for a set of convolved signals. The coefficients associated with 

the polynomial elements of the mixing m atrix C(z) £ (£5*3x4 are complex, with both the real 

and imaginary parts drawn from a uniform distribution in the range [—1,1]. The three source 

signals in this case were chosen to be independent quaternary phase-shift keying (QPSK) 

sequences of length 1000. The correlation window length for this matrix was set as W  =  10. 

It would have been sufficient for both examples to set W  equal to the order of the polynomial 

mixing matrix, due to the statistics of the data, but in most instances, no knowledge about 

the mixing is known and so this param eter must be estimated.

The final test m atrix R ^ z )  £ C 5x5x10 was chosen to be the expected space-time covari

ance m atrix for the signals used to calculate the estimated space-time covariances matrix 

R 5(z). This m atrix was therefore calculated in a similar way to the polynomial m atrix R ^ z )  

demonstrated in equation (4.12). A summary of the properties of each of the polynomial 

para-Hermitian test matrices can be found in Table 4.1 and will now be discussed.

M atrix Order
N um ber o f Non- 

Zero Off-Diagonal 
Elem ents

i ie w ii2f

Proportion o f ||R (z)||^  

Positioned in the Off- 
D iagonal E lem ents

B i(z ) 4 30 66.05 0.8115

1^2(2) 4 38 29.72 0.8244

30 620 516.36 0.4972

* 4  ( Z) 10 220 455.96 0.4658

E sW 20 420 2020.31 0.4781

(2) 10 220 2054.77 0.4362

Table 4.1: Properties of each of the para-Hermitian polynomial test matrices.

4.4 .2  C om m ents on the P olynom ial Test M atrices

Firstly, before testing the truncation methods, the SBR2 algorithm was applied to each of the 

test matrices, using the same type of stopping condition as the numerical example in Chapter
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3, where the algorithm was set to stop when the magnitude of the dominant coefficient, g, 

was deemed sufficiently small compared to the diagonal zero-lag coefficients. For the test 

matrices defined in Section 4.4.1, the SBR2 algorithm was stopped once

g < 10~ 2  y /Ni / p ,  (4.13)

where the measure Ni  has been defined in equation (3.20) and p  defines the number of rows 

of the para-Hermitian test matrix.

Table 4.2 contains the number of iterations required for each of the polynomial test 

matrices to converge according to the stopping condition demonstrated by equation (4.13). 

Upon inspection of this and the results contained in Table 4.1, it is evident tha t there is 

a relationship between the number of non-zero off-diagonal coefficients and the number of 

iterations required for the SBR2 algorithm to converge according to equation (4.13). Clearly, 

the more off-diagonal non-zero coefficients, the more iterations required to diagonalise the 

matrix. However, there appears to be no relationship between the initial order of the poly

nomial m atrix or the number of iterations required to converge and the final order of the 

diagonal m atrix following the decomposition.

M atrix Num ber o f Iterations 9 Order o f D(z)

B i M 91 0.0449 1088

& (* ) 123 0.0268 1294

££3 (2 ) 271 0.0975 6242

1*4(2 ) 198 0.0939 2394

E s(2) 330 0.1915 6052

&,(*) 351 0.1958 6666

Table 4.2: For each of the test matrices, the number of iterations required to satisfy 
the stopping condition expressed in equation (4.13), the resulting order of the approx
imately diagonal polynomial matrix and the final value of the dominant coefficient, g , 
once the stopping condition has been satisfied.
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4.5 Truncation M ethod Results

4.5 Truncation M ethod R esults

This section dem onstrates how the two truncation methods can affect the performance of 

the SBR2 algorithm and, in particular, the accuracy of the resulting polynomial m atrix 

decomposition. The SBR2 algorithm was applied to each of the polynomial para-Hermitian 

test matrices detailed in Section 4.4.1, for the following three cases,

1. when no truncation method is used,

2 . using Truncation M ethod 1 (the fixed bound) and

3. using Truncation Method 2 (the energy based bound).

For each case, no stopping condition was used within the SBR2 algorithm, allowing each 

implementation of the algorithm to complete 200 iterations. For the cases where a trunca

tion method is used, it was applied at the end of each iteration i to truncate the resulting 

transformed polynomial m atrix D j(z) and this was carried out for varying levels of trunca

tion. The paraunitary transform ation m atrix H j(z) can also be truncated using either of the 

truncation methods suitable for non-para-Hermitian polynomial matrices. However, this is 

not done for the results presented here as this m atrix is not calculated as part of the main 

iterative process of the SBR2 algorithm and we want to make enable a fair comparison be

tween the truncation methods. Note tha t implementing either of the two truncation methods 

within the SBR2 algorithm will not affect the proof of convergence detailed in Section 3.4, as 

the quantity N\  will still increase monotonically and it remains bounded from above by the 

initial value of N 4 . Therefore, when using either of the truncation methods, the polynomial 

m atrix D j(z) is guaranteed to converge to a diagonal polynomial matrix.

4.5.1 A ccuracy o f th e D ecom position

To assess the quality of the decomposition performed by the SBR2 algorithm, whilst im

plementing one of the two truncation methods, the relative error between the input matrix, 

R (z), and the m atrix  obtained from the inverse decomposition, R  (z) — H (z)D (z)H (z), was 

calculated, where H (z) and D(z) denote the paraunitary polynomial m atrix and the approx-
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imately diagonal polynomial matrix obtained using the SBR2 algorithm. The relative error2 

for the decomposition is therefore defined to be

R re l  —

R ( 2 )  - R ' ( z )

I I E ( * ) I L (4.14)

4.5 .2  Case 1: N o  Truncation

The SBR2 algorithm was applied in turn  to each of the polynomial test matrices from Section

4.4.1. As demonstrated by Example 3.7 of the previous chapter, the order of each resulting 

diagonal polynomial m atrix was found to be unnecessarily large. Furthermore, for each case, 

the m ajority of the Frobenius norm of the resulting approximately diagonal polynomial matrix 

is positioned in the couple of hundred lags centred about the zero lag coefficient matrix, with 

higher order terms negligibly small or equal to zero. This is clearly illustrated by Figure 4.2, 

which demonstrates the measure

|D£o(0)|If + 2EIID20oW
C(t)  =  ---------------------- ^ ---------------  (4.15)

iiek(*)Hf

over the lags t = 1, . . . , 201 , where D ^ ^ r )  denotes the coefficient m atrix of z~T in the 

transformed polynomial m atrix obtained from the SBR2 algorithm when applied to each 

of the polynomial test matrices R /f(z) for K  — 1 , . . .  , 6 . In fact, for each of the observed 

transformed matrices over 95% of the Frobenius norm of each m atrix is positioned in the 

central three lags of the m atrix and more than 99% in the central 21.

Figure 4.3 shows how the order of each of the six test matrices increases when the SBR2 

algorithm is applied to each in turn  for a series of 200 iterations using no truncation method. 

The order of the final diagonalised m atrix following all iterations of the algorithm can be found 

in Table 4.4. Note th a t there appears to be no relationship between either the order of the 

para-Hermitian input m atrix or the number of off-diagonal non-zero coefficients in the matrix,

2In this chapter, this is used to measure only the effect of the polynomial matrix truncation methods 
on the accuracy of the decomposition performed and does not account for the level of error encountered 
by only calculating an approximately diagonal polynomial matrix. For the application of the SBR2 
algorithm, a more appropriate relative error can be defined to take into account both of these factors.
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t

Figure 4.2: The cumulative squared Frobenius norm of the matrix D 200(^) (C{ t )) over 
all lags (t ) when no truncation method is used, calculated from the centre outwards, 
for all test matrices.

both contained in Table 4.1, and the order of the resulting transformed polynomial matrix 

following 200 iterations of the SBR2 algorithm. Furthermore, the magnitude or distribution 

of the off-diagonal coefficients over the series of coefficient matrices is also of no relevance in 

predicting the order of the final matrix.

Conclusions: N o Truncation M ethod

These results confirm the clear requirement for a polynomial matrix truncation method within 

the SBR2 algorithm. For each example, the order of the resulting diagonal polynomial matrix 

was found to be unnecessarily large, with many of the coefficients associated with outer lags of 

the matrix accounting for a very small proportion of the Frobenius norm of the matrix. This 

point is particularly important for the application of the decomposition to communication 

systems, where the SBR2 algorithm, or other algorithms to be derived later in this thesis, can 

be used to separate a MIMO communication channel into a set of independent subchannels, 

which are then equalised using an existing SISO equalisation technique. For this application
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Figure 4.3: The order of the transformed polynomial matrix at each of the 200 iterations 
of the SBR2 algorithm when applied to each of the para-Hermitian test matrices using 
no truncation method.

of the algorithm, the order of the resulting diagonal matrix obtained by the algorithm must 

be sufficiently small to enable equalisation of the set of SISO channels. For example, if 

a maximum likelihood sequence esimator (MLSE) based on the Viterbi algorithm is to be 

implemented, then the computational complexity of the scheme is exponentially proportional 

to the order of this matrix.

Furthermore, without a truncation routine the SBR2 algorithm is unnecessarily slow to 

implement , with the order of both the paraunitary matrix and the transformed polynomial 

matrices H,(.z) and increasing at each iteration and often resulting in many of the

outer coefficient matrices consisting entirely of zeros. Table 4.5 contains the computational 

time taken for the SBR2 algorithm to complete 200 iterations when applied to each of the 

polynomial test matrices using no truncation method.
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4.5 .3  Case 2: F ixed  Bound Truncation M ethod

The SBR2 algorithm was again applied to each of the para-Hermitian polynomial test matrices 

detailed in Section 4.4.1, however, this time applying the fixed bound truncation method 

described in Section 4.2.1 to truncate the order of the polynomial m atrix from equation

(4.1) at the end of each iteration i. The main problem with this truncation method is that 

it is difficult to know in advance what value to use for the fixed bound param eter L  and to 

find an appropriate value for this parameter, which will not compromise the accuracy of the 

decomposition significantly, will involve a considerable amount of trial and error. If the value 

is too large, then the algorithm will be unnecessarily slow to implement, whilst if L is set too 

small then the Frobenius norm of the polynomial input m atrix to the SBR2 algorithm R(z) 

has been unnecessarily compromised, leading to inaccurate results.

From inspection of Figure 4.2, it can be seen tha t the majority of the polynomial coeffi

cients of the resulting six approximately diagonal polynomial matrices following 200 iterations 

of the SBR2 algorithm are positioned in the couple of hundred coefficient matrices centred 

about the zero lag. Therefore, the fixed bound parameter L  was chosen to take all even 

integers in the range [1,200]. Figure 4.4 demonstrates the relative error of the decomposition 

E rei obtained from applying the SBR2 algorithm to each of the test matrices for this range 

of values of L. From this figure a suitable choice for L  can be made for each of the test 

matrices, depending on the required accuracy of the decomposition. A suitable choice of L  to 

obtain a very accurate decomposition can be seen to be somewhere between 100 and 150 for 

all examples, which is considerably smaller than  the order obtained if no truncation method 

is used. The exact value L  required to obtain various values of E rei can be seen in Table 4.3. 

The total com putational time to implement 200 iterations of the SBR2 algorithm using this 

truncation m ethod for the range of values for L  and for each of the test matrices can be seen 

in Figure 4.5. Even when using a fixed bound of L = 200 the computational time has been 

vastly reduced from the time taken when no truncation method is used, as shown in Table 

4.5. These results dem onstrate that the computational time can be vastly reduced, whilst 

still calculating a reasonably accurate decomposition.

Finally, it might be expected that a suitable choice of L  could be determined by either
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Figure 4.4: The relative error of the decomposition, Erei, obtained for each value of 
the fixed bound parameter L , for each of the six test matrices.

M atrix M inim um  value o f  L to  ob ta in  E rei =

10-4 10'3 10-2

rH1OrH 2 x l 0 _1

E ,M 146 132 62 24 18

Ba(*) 104 90 70 20 12

B*(*) 210 180 144 50 20

B j z ) 114 96 72 24 16

B .W 152 126 102 48 26

B eO ) 146 124 96 44 26

Table 4.3: The minimum value of the fixed bound parameter L to obtain a particular 
level of relative error for the polynomial matrix decomposition obtained by the SBR2 
algorithm when using the fixed bound truncation method.
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the number of non-zero off-diagonal polynomial coefficients, the number of coefficients whose 

magnitude is larger th a t the stopping criterion e or the order of the input m atrix to the 

algorithm. However, upon inspection of the results there appears to be 110 relationship 

present between any of these quantities. From Figure 4.4, the relative error for the two test 

matrices of order four, R i(z )  and appears to be quite similar for each of the fixed

bound values. However, from this figure the two polynomial matrices R 4(2) and R 6(^), which 

are both of order 10 and also have the same number of off-diagonal elements, can be seen to 

have very different behavior to the various fixed bounds. Furthermore, polynomial matrices 

R 3(z) and R ^ z )  are the estimated and expected space-time covariance matrices for the same 

set of convolutively mixed BPSK signals respectively. However, although these matrices are 

very similar in structure, with any deviations due to estimation errors, there appears to be 

no relationship between how the order of each of the polynomial test matrices increases over 

the series of iterations. The same is true of the polynomial matrices R s(z) and R ^ z ) ,  which 

also have a similar relationship.

For the test matrices here, L — 200 would certainly give an accurate level of matrix 

decomposition and also drastically reduce the computational time. For the majority of the 

matrices, L  =  100 would be more than  suitable. Note tha t when using this truncation method, 

it is im portant to always calculate the relative error of the decomposition to  ensure tha t the 

chosen fixed bound value L  is large enough to ensure a sufficiently accurate decomposition.

Conclusions: F ixed  Bound Truncation M ethod

The results have dem onstrated tha t applying an appropriate limit on the order of the polyno

mial m atrix D j(z) within the SBR2 algorithm can work well and, if used appropriately, can 

vastly reduce the com putational time taken to implement the algorithm, whilst also ensuring 

tha t an accurate polynomial m atrix decomposition is calculated. However, when using this 

truncation m ethod it is difficult to predetermine the choice of the fixed bound param eter L 

suitable for a particular input matrix to optimise both the speed of the algorithm and ac

curacy of the decomposition performed. Furthermore, finding an appropriate value for each 

m atrix will involve a process of trial and error. W hen using this truncation method, it is
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Figure 4.5: Computational time (in seconds) taken by the SBR2 algorithm when ap
plied to each of the six test matrices for varying values of the fixed bound L.

important to always calculate the relative error of the decomposition performed, to ensure 

that it is sufficiently accurate for the required application. Other measures that are useful 

to calculate are the proportion of the Frobenius norm of the input matrix that is lost and 

also, if truncating the paraunitary matrix H 2(z), the Frobenius norm of this matrix that 

is lost. It is important to look at both, to ensure that one of the matrices has not been 

unreasonably truncated. One advantage of using this method, is that it is possible to specify 

the dimensions of the polynomial matrices in advance, which can be advantageous in terms 

of the computational time to implement the algorithm.

4 . 5 . 4  C a s e  3 :  E n e r g y  B a s e d  T r u n c a t i o n  M e t h o d

For the third and final case, the SBR2 algorithm was applied to the set of test matrices from 

Section 4.4.1, this time implementing the energy based truncation method detailed in Section

4.3.1. Again, only the transformed para-Hermitian polynomial matrix D ,(z) from equation

(4 .1) was truncated, by applying the truncation method at the end of each iteration of the 

algorithm.
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Firstly, setting the truncation parameter (j, equal to zero3 for each implementation of the 

SBR2 algorithm vastly reduced the order of the resulting polynomial m atrix D 20o(2). This 

can be seen in Table 4.4, which contains the orders of this polynomial m atrix obtained from 

calculating the decomposition of each of the polynomial test matrices when no truncation 

m ethod is used and then for the cases /z =  0 and /z = 10-8 . It can be seen from this table 

th a t increasing the value of /z will further reduce the order of the final polynomial matrix 

Ehoo(2) f°r each case.

Order o f D 2 0 0 M
M atrix N o Truncation  

M ethod

R em ove Zeros Only

(m =  0 )

M ethod 2

(m =  1 0 - 8)

B iW 3238 1720 74

B:2 ( *'0 2684 1316 68

E aW 4130 1872 182

B*( z ) 2420 1210 110

B*(Z) 2898 1498 138

2880 1334 114

Table 4.4: Order of the diagonalised polynomial matrix Dj(^) obtained from applying 
the SBR2 algorithm to each of the test matrices, when using no truncation method, 
using the energy based truncation method with (i — 0 and /z =  10~8.

These results dem onstrate th a t when using the second polynomial m atrix truncation 

m ethod, it is possible to remove only coefficient matrices at the outer edges of the polynomial 

m atrix th a t consist entirely of zeros (to computational precision) by setting fi =  0 . The 

resulting relative error of the inverse decomposition for this case will always be equal to zero. 

Figure 4.6 illustrates how the order of the transformed m atrix will grow throughout the SBR2 

algorithm, when applied to each of the polynomial test matrices, for the case /z — 0 . The 

order of the m atrices can be seen to be vastly reduced for this choice of /z, when compared 

to the results where no truncation method is used, shown in Figure 4.3 and Table 4.4. The 

order is approxim ately halved for each of the test matrices. Accordingly, the computational

3This is numerical zero and not 10-16.
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time taken to run the SBR2 algorithm for each matrix is also greatly reduced, as confirmed 

in Table 4.5.

Furthermore, if the truncation parameter n  is set larger than zero, then both the order of 

the matrix and the time taken to implement the decomposition can be again reduced. This is 

illustrated by the results obtained for the case /i =  10-8 , recorded in Tables 4.4 and 4.5. The 

relative error of the decomposition has also not been significantly compromised using this 

value of ft and for each of the test matrices is found to be less than 10-3 . Clearly, it is not 

necessary to store all of these outer coefficient matrices to still obtain an accurate polynomial 

matrix decomposition.
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Figure 4.6: The order of each of the polynomial test m atrices a t each iteration of the 
algorithm  when outer coefficient m atrices consisting entirely of zeros are truncated.
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4.5 Truncation M ethod Results

M atrix

C om putational T im e (Seconds)

N o Truncation  

M ethod

R em ove Zeros Only

(m =  0 )

M ethod 2

( n  =  1 0 - 8)

B ,(* ) 47.76 18.71 0.14

B ,(* ) 20.82 7.22 0.13

97.12 16.93 1.01

«*(*) 25.80 8.41 0.32

& (* ) 77.20 20.84 1.76

E eW 73.07 17.26 1.97

Table 4.5: Computational time taken to apply the SBR2 algorithm to each of the 
polynomial para-Hermitian test matrices for the varying truncation methods.

M axim um  Energy Loss

Applying the energy based truncation m ethod at the end of each iteration of the SBR2 

algorithm to truncate the polynomial m atrix D^(z) to allow at most the proportion f.i of the 

Frobenius norm of the initial polynomial m atrix to be lost, the maximum amount of energy 

lost following N  iterations of the algorithm can be calculated as

N

Loas ( N)  = 5 > ( 1 - # 0 * ~ ‘ | I B ( * ) I I f  (4-16)
k= 1

=  P  — (1 — p )NJ IIB(z)IIf  (4.17)

where fi € [0 , 1], ||R (z ) ||^  defines the squared Frobenius norm of the input m atrix to the 

algorithm R (z) and is consistent with the notation used previously in Chapter 3. There

fore, the minimum possible amount of energy remaining in the resulting m atrix following N  

iterations, D N(z), is

R e m  ( N )  =  (1 — f i )N IIE(2)IIf - (448)

Figure 4.7 illustrates the  minimum proportion of ||H (2) |If remaining w ith the associated 

choice of the truncation  parameter (i to guarantee this, if the algorithm is to complete a 

range of different num ber of iterations. For most implementations of the SBR2 algorithm
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4.5 Truncation Method Results

when truncating the transformed polynomial matrix Dj(z), it. is unlikely that the maximum 

amount of energy will be lost at each iteration. However, the quantity shown by equation 

(4.18) represents a lower bound on the proportion of ||R (z)||^  remaining for a particular 

value of fi over a specified number of iterations.
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—  250 iterations
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Minimum proportion of the F-norm of R(z) remaining following all iterations

0.9

Figure 4.7: The m inimum proportion of ||R (z)||J . rem aining following truncating  the 
polynom ial m atrix  w ithin the SBR2 algorithm , for various num bers of iterations.

If an estimate of the number of iterations that the algorithm will complete can be gener

ated, then using equation (4.18), a value for the truncation parameter fj, can be calculated, 

given the proportion of energy required to remain within the polynomial matrix. This mea

sure can be calculated before applying the SBR2 algorithm to the polynomial matrix and 

can therefore be used in advance to help choose a value for the truncation parameter /u when 

using the energy based truncation method. However, this would require knowledge of how 

many iterations the algorithm is going to run for, and this cannot be determined precisely in 

advance. However, note that this measure is related to the number of non-zero off-diagonal 

coefficients contained in the para-Hermitian polynomial input matrix to the algorithm; this 

point has been mentioned previously in Section 4.4.1.
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4.6 Numerical Example 3.7 W ith Truncation

Conclusions: E nergy Based Truncation M ethod

The energy based truncation method is clearly the most appropriate of the two truncation 

m ethods as it allows some control over how much of the Frobenius norm of the polynomial 

m atrix E (*) is lost at each iteration of the decomposition algorithm, and this determines 

the accuracy of the decomposition. The results presented above demonstrate that setting 

p = 0, which will only remove coefficient matrices positioned in the outer lags consisting 

entirely of zeros, can generally drastically reduce the order of the diagonal polynomial matrix 

obtained from the decomposition and, as a consequence, can reduce the computational time 

taken to  implement the SBR2 algorithm. Typically, using this value of p  will approximately 

half the order of the diagonal polynomial m atrix obtained from the decomposition and the 

computational time will be at least halved, although often it is reduced considerably more 

than this. If the truncation param eter is set greater than zero, then the order of the m atrix 

can be further reduced, although care must be taken to ensure tha t the accuracy of the 

decomposition performed is not significantly compromised.

4.6 N um erical Exam ple 3.7 W ith  Truncation

In the numerical example from Chapter 3, the SBR2 algorithm was applied to the polynomial 

space-time covariance m atrix for a set of convolutively mixed BPSK signals R (z) 6 C 4x4x2°. 

This simple example dem onstrated the ability of the SBR2 algorithm to calculate the EVD 

of this para-Herm itian polynomial m atrix and consequently strongly decorrelate the set of 

received signals. However, this example also illustrated the unnecessarily large orders of 

the two polynomial matrices generated by the algorithm. By inspection of these matrices, 

B i 82(2) (°f orcler 3486) and H 182(2) (of order 1733), which are illustrated in Figures 3.3 

and 3.4 respectively, their orders are seen to be unnecessarily large, with many of the coeffi

cients associated with the outer lags of both polynomial matrices accounting for a very small 

proportion of their Frobenius norm.

The SBR2 algorithm  was again applied to this example, however, this time implementing 

the energy based truncation method at the end of each iteration of the algorithm to truncate
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4.6 Numerical Example 3.7 W ith Truncation

the updated polynomial m atrix D j(z) as defined in equation (4.1). This procedure was carried 

out for the following four specific values of p: (i) p  =  0, (ii) p = 10~10, (iii) p = 5 x 10-5  

and (iv) p = 3 x  10~4. In each case, the stopping condition used in Example 3.7 was 

adopted thus allowing the SBR2 algorithm to continue until all coefficients associated with 

the off-diagonal polynomial elements of the transformed polynomial matrix D j(z) are less 

than  x 10“ 2 in magnitude. The results observed for the four cases are presented in

Table 4.6, alongside the results obtained when no truncation method is used. The measures 

used to assess the performance of this truncation method, which are included in the table, 

are the order of the resulting approximately diagonal polynomial matrix, the relative error 

of the inverse decomposition denoted as Ere[, which will reflect the error encountered due to 

truncating the transformed polynomial matrix, and also the computational time4 taken for 

the SBR2 algorithm to converge. Also recorded in this table are the number of iterations 

required for the SBR2 algorithm to satisfy the stopping condition for each of the cases. This 

will often change as a result of truncating the polynomial matrix. Note tha t the paraunitary 

transform ation m atrix H j(z) is not truncated for these results since it is not necessary to 

compute this m atrix within the iterative routine of the SBR2 algorithm.

N o

T ru n ca tio n
P  =  0 P  =  1 0 ~ 10 p  =  5 x l 0 ~ 5 p  =  3 x l 0 -4

O rd er  o f  D ^ z ) 3486 1782 170 42 20

Erel 0 0 7.87 x 10~5 0.0491 0.1153

N u m b e r  o f  I te r a t io n s 182 184 184 166 125

C o m p u ta t io n a l  

T im e 2 (S e c o n d s )
39.93 11.99 0.55 0.20 0.12

Table 4.6: Measures to demonstrate the performance of the SBR2 algorithm when 
applied to the polynomial space-time covariance matrix R (z) from Example 3.7, im
plementing the energy based truncation method for different values of p.

The results presented here demonstrate the two main advantages of truncating the polyno

4Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.
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4.6 Numerical Example 3.7 W ith Truncation

mial m atrix D j(z) using the energy based truncation method; firstly the order of the diagonal 

m atrix obtained by the SBR2 algorithm can be drastically reduced, whilst still maintaining 

an accurate polynomial m atrix decomposition. Even removing only the coefficient matrices 

positioned in the outer lags with all entires equal to zero (to computational precision) by 

setting the truncation param eter p  equal to zero, significantly reduces the order of the diag- 

onalised m atrix from 3486 to 1782 without compromising the accuracy of the decomposition 

performed. Furtherm ore, if p  is set larger than zero, then the order of the m atrix can be 

further reduced, although the transformation performed is no longer norm preserving and will 

therefore result in some error. Secondly, as a consequence of the reduced order of the poly

nomial matrix, the computational load and memory storage requirements of the algorithm 

are reduced and so the computational speed increases. This is clearly dem onstrated by the 

results presented in Table 4.6, illustrating tha t a suitable choice of p  can be made to optimise 

the speed and therefore efficiency of the algorithm, whilst also minimising the relative error 

obtained from the decomposition and the order of the polynomial m atrix D j(z).

It is difficult to know in advance what value to choose for the truncation param eter p 

and a suitable choice will depend entirely upon the requirements of the decomposition for the 

specified application. Clearly, if computational time is not the most im portant factor when 

applying the SBR2 algorithm, it is better to set the truncation param eter to a very small 

value, for example p  = 10” 10, or equal to zero, as this will minimise the relative error of 

the decomposition. If the order of the resulting diagonal polynomial m atrix is then too large 

for the application of the decomposition, the fixed bound truncation method can be applied 

to reduce the order to the required value. This particular problem is often encountered 

when applying the algorithm in applications relating to MIMO communication systems as 

discussed further in the penultim ate chapter of this thesis. For example, if the polynomial 

m atrix D 184(z) € C 4x4xl7° obtained using p  =  10“ 10 is truncated to be of order 20, the 

relative error of the decomposition is found to be 0.0542. This is nearly half of the value 

obtained when truncating the order of the polynomial m atrix throughout each iteration of 

the algorithm with a larger value of p , but obtaining the same final order. This can be seen 

in Table 4.6 for the case p = 3 x 10-4 .
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4.6 Numerical Example 3.7 With Truncation

Figure 4.8 shows how the order of the transformed polynomial matrix £>,(2) increases at 

each iteration i of the SBR2 algorithm, for each of the five cases of truncation recorded in 

Table 4.6. This figure clearly illustrates the steady increase in the order of the polynomial 

matrix when no truncation method is used, leading to a matrix of a very large order. Fur

thermore, by comparing the individual plots for each truncation value with the relative errors 

obtained for each case, it is clear that the order can be vastly reduced whilst still maintaining 

an accurate level of decomposition.
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Figure 4.8: The order of the  polynomial m atrix  D t(z)  a t the  end of each iteration i of 
the  SBR2 algorithm  for the  cases when (i) no truncation  m ethod is used, and then the 
energy based truncation  m ethod is applied to  the  transform ed m atrix  D j(z) w ith (ii) 
p  =  0, (iii) p  =  10-10, (iv) p  =  5 x 10-5  and (v) p  =  3 x 10-4 .

Finally, the paraunitary transformation matrix, which can also grow to an excessive order 

as illustrated in Figure 3.4, was also truncated using the method suitable for non para- 

Hermitian polynomial matrices described in Section 4.3.2, with the truncation parameter 

p  set as 5 x 10“ 5. Truncating both the polynomial transformation matrix H ^(z) and the 

transformed polynomial matrix D 2(z) at the end of each iteration of the algorithm using this 

value of p  (although they can be set differently), the relative error of the polynomial matrix 

decomposition increased from 0.0491 to 0.0495. Figures 4.9 and 4.10 illustrate the resulting
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4.7 Conclusions

diagonal m atrix T){z) and paraunitary transform ation matrix H (2) obtained for this instance.

0)

c
o>
cd
2

Figure 4.9: The diagonal matrix D(«2) produced by applying the SBR2 algorithm to 
the polynomial space-time covariance matrix R(2) from Example 3.7, implementing 
the energy based truncation method with /1 =  5 x 10-5 .

4.7 Conclusions

This chapter has presented two polynomial m atrix truncation methods, both of which can 

be used within the SBR2 algorithm to stop the order of both the paraunitary transformation 

m atrix and the resulting diagonal polynomial m atrix becoming unnecessarily large. The 

results have clearly dem onstrated that the energy based truncation m ethod is the best method 

to use, provided a suitable choice of the truncation param eter /z has been made, as it allows 

some control over the  accuracy of the overall m atrix decomposition. The truncation method 

can be applied to  bo th  of the polynomial matrices H j(z) and D ,(^) from equation (4.1) at 

the end of each iteration of the algorithm, which will consequently reduce the computational 

load, enabling the computational time of the SBR2 algorithm to be drastically reduced. 

Using the truncation m ethod does not affect the proof of convergence of the SBR2 algorithm.
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Figure 4.10: The paraunitary matrix H (2 ) produced by applying the SBR2 algorithm 
to the polynomial space-time covariance matrix R(2:) from Example 3.7, using the 
energy based truncation method for non para-Hermitian matrices with fi — 5 x 10-5 .

Furthermore, using a suitable value of the truncation param eter fi will also result in a diagonal 

polynomial m atrix of a much smaller order, as is often required in practice, e.g. when 

applying the decomposition to MIMO communications. This application is discussed further, 

together with a brief description of how the relative error affects the overall performance in 

the penultim ate chapter of this thesis.

The three main objectives of the truncation method are

1. To reduce the order of the output matrices D (z) and H (2) obtained by the SBR2 

algorithm, which were previously unnecessarily large,

2 . to reduce the computational time taken to calculate the decomposition, whilst

3. not compromising the accuracy of the decomposition performed significantly.

Unfortunately, finding the appropriate value of fi involves a process of trial and error, trying 

different values of fj, until one is found, which leads to a sufficiently accurate polynomial 

m atrix decomposition, whilst optimising the computational speed and producing matrices of
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a sufficiently small order. At the very least, the energy based truncation method should be 

applied to both the paraunitary transformation m atrix H^(z) and the transformed matrix 

D ^ z ), at the end of each iteration of the algorithm with the truncation param eter /.i set equal 

to zero. As dem onstrated by the results in this chapter, this can often drastically reduce the 

order of the two matrices, thereby allowing the computational load of the algorithm to be 

reduced and the computational speed to increase. Furthermore, using this value of ft will not 

compromise the accuracy of the decomposition performed and the transformation matrix will 

still be paraunitary. If a particular order is required for the resulting polynomial matrices 

and the computational time is not the main concern of the algorithm, then it is better to set 

//, equal to zero and then truncate the orders of the resulting polynomial matrices obtained 

from this decomposition again using the fixed bound m ethod to obtain the appropriate orders. 

This will ensure a more accurate level of polynomial m atrix decomposition than  tha t obtained 

when truncating at each iteration with fi > 0. The observation is made here as this technique 

is used for results presented in the remaining chapters of this thesis.

The order of the matrices can be reduced further by setting // >  0, but then this will 

affect the accuracy of the decomposition as the transformation will no longer be norm (or 

energy) preserving. Moreover, if it is used to truncate the transform ation m atrix H t (z), then 

this m atrix will no longer be exactly paraunitary. For this reason, when setting fi > 0 it is 

im portant to always check the relative error of the decomposition and also the proportion of 

the Frobenius norm of both the polynomial matrices R(.z) and H (2 ) tha t has been lost due to 

truncation. If the truncation param eter is suitably chosen the technique can be implemented 

to optimise the speed of the algorithm, without significantly compromising the accuracy of the 

decomposition. The appropriate choice for the truncation param eter // for each application 

of the decomposition, in terms of optimising the speed and minimising the relative error 

of the decomposition will have to found experimentally for each m atrix to which the SBR2 

algorithm is to  be applied.

Finally, the truncation methods presented here, can also be applied to  any polynomial 

matrices, not just those calculated within the SBR2 algorithm. The energy based bound is 

also used with the other polynomial m atrix decompositions to be presented in this thesis.
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The computational complexity of the SBR2 algorithm is presented in Appendix C. Note that 

the polynomial m atrix truncation method has been discussed in [59], where the energy based 

truncation method is used within the SBR2 algorithm to obtain an accurate PEVD.



Chapter 5

The QR D ecom position  of a 
Polynom ial M atrix

5.1 Introduction

The Polynomial m atrix QR Decomposition (PQRD) is a technique for factorising a poly

nomial m atrix into an upper triangular and a paraunitary polynomial m atrix and can be 

applied to either a square or rectangular polynomial matrix, where the coefficients of each 

polynomial element can be either real or complex. For a polynomial m atrix A (z) € C pXq, 

the objective of the PQRD is to calculate a paraunitary polynomial m atrix Q (z) € C pxp 

such tha t

Q(2)A(2:) — R(2) (5-1)

where m * )  G C pxq is an upper triangular polynomial matrix. This clearly constitutes a 

generalisation of the QR decomposition (QRD) from matrices with scalar elements to those 

with polynomial elements, each with an associated set of coefficients. Note tha t unlike the 

PEVD, which requires the input m atrix to be a para-Hermitian polynomial matrix, there is 

no special structure or requirements of the polynomial m atrix A (2 ) for the QRD.

Calculating the QRD of a polynomial m atrix is clearly a more complex problem than 

formulating the same decomposition of a scalar matrix, as each element of the m atrix A(z )  

now consists of a series of polynomial coefficients. In order to drive one element of the 

m atrix to  zero, all coefficients of this element must be driven to zero and this can no longer 

be achieved using only Givens rotations [6]. Instead, a similar approach is implemented 

to tha t used when generating the paraunitary transform ation m atrix required within the
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5.2 An Elementary Polynomial Givens Rotation

SBR2 algorithm and so the paraunitary polynomial m atrix Q(z) is formulated as a series of 

elementary rotation matrices interspersed with delay matrices.

This chapter introduces three different algorithms for calculating a QR decomposition of 

a polynomial m atrix, where each of the algorithms adopts a slightly different technique for 

formulating the paraunitary  transformation m atrix Q (2 ). The three algorithms are defined 

as

1. PQRD By Steps (PQRD-BS)

2. PQRD By Columns (PQRD-BC)

3. PQRD by Sequential Best Rotation (PQRD-SBR)

As with the SBR2 algorithm for calculating the PEVD, the QR decomposition of a polynomial 

m atrix is not unique and so the three decomposition algorithms above will not necessarily gen

erate exactly the same paraunitary or upper triangular polynomial matrices when given the 

same input m atrix A(z); this point is considered in Section 5.7 of this chapter. Convergence 

of each of the algorithms is then discussed, before each technique is demonstrated by applying 

the algorithm to a simple polynomial matrix. A possible application of the decomposition 

is in MIMO communications, where it is often required to reconstruct data  sequences that 

have been distorted due to the effects of m ultipath propagation, leading to intersymbol inter

ference (ISI) and co-channel interference (CCI). This application of the PQRD is discussed 

towards the end of this thesis in Chapter 8 . Before discussing each of the three algorithms 

for calculating the PQRD, the concept of a polynomial Givens rotation is introduced.

5.2 A n Elem entary Polynom ial G ivens R otation

An elementary polynomial Givens rotation (EPGR) is a  polynomial m atrix tha t can be ap

plied to either a polynomial vector or m atrix to selectively zero one coefficient of a polynomial 

element. Firstly, we discuss how this m atrix can be applied, in the simplest case, to a polyno

mial vector a (z) e  C 2xl and then subsequently discuss how it can be applied to a polynomial 

matrix.
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5.2 An Elementary Polynomial Givens Rotation

An EPG R  takes the form of a Givens rotation preceded by an elementary time shift 

matrix. For example, a 2 x 2 EPG R is formulated as follows

\
ceta

- s e ~ i4>

se

ce:, — lOt

(
1 0

0 z l
(5.2)

ce s e ^ z 1

—se ^  ce lClz l
(5.3)

where c and s define the cosine and sine of the angle 0 respectively. The aim of this matrix, 

when applied to a polynomial vector a(z) G  C 2xl as demonstrated

ce

—se'

se ^z

ce~iQz t

ai(z)

a'2(z)
(5.4)

is to drive a specified coefficient from the polynomial vector a (z) to zero. For example, to 

zero the coefficient o,2 {t),  the lag param eter in the EPG R is set as t = t  and the rotation 

angles are chosen such tha t

tan (0 ) = | a2(f)|

and

l«i(0 ) | ’ 

<j) = - arg(a2 (t))

a = - arg(a i { 0 ))

(5.5)

(5.6)

(5.7)

thus resulting in 0^(0 ) =  0. Furthermore, following the application of the EPG R  the coeffi

cient 0^(0 ) is real and |<ẑ (0) |2 =  |a i(0 )|2 +  |a2(f)|2. Note tha t if | =  0 in equation (5.5),

then set 6  = n / 2. The rotation angles 4> and a  could have alternatively been chosen as

(f) = arg(ai( 0 )) and a  = arg(a,2 (t)), (5.8)
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5.2 An Elementary Polynomial Givens Rotation

however this choice of angles will not ensure the resulting coefficient a[ (0 ) is a positive 

real scalar, which is required for uniqueness in the scalar m atrix QRD. Note that unlike 

the rotation angles required for the SBR2 algorithm, equation (5.5) will not have multiple 

solutions and so it does not m atter whether the basic or four quadrant arctangent function 

is used for its calculation.

This technique can now easily be extended to formulate an EPGR, which can be applied to 

a polynomial matrix, A (z) E E C pxg, to drive a particular coefficient of one of the polynomial 

elements of this m atrix to zero. For example, the EPG R required to zero the coefficient ajk(r) 

of the polynomial element Qjk(z) takes the form of a p  x p  identity m atrix with the exception 

of the four elements situated at the intersection of rows j  and k with columns j  and k. These 

elements are given by the 2 x 2  EPG R m atrix G^Q’̂ ’̂ (z) described by equation (5.3), where 

the lag param eter is set as t = t  and the coefficients required for calculating the rotation 

angles in equations (5.5) - (5.7) are now

a 2 (r) = aj k (r)  and ai(0) =  akk(0). (5.9)

This p x p  EPG R m atrix will be defined as G  (z) where the superscripts j  and k  have

been added to denote the position of the polynomial coefficient that the EPG R  is designed 

to zero and can be applied to A(z) to obtain the transformed m atrix

A'(2 ) = (5-io)

where as a result of the application of the EPG R «;*<<» =  0 , a'kk(0 ) is real and la fcfc( ° ) |2 ~  

|afcfc(0) |2 +  lajfc(r ) |2- The effect of this transform ation is to shift the coefficient ajk( r ) so that 

it becomes the coefficient of z° in the same polynomial element, i.e. it becomes the coefficient 

a,jk (0), and then apply the appropriate rotation so tha t the coefficient is forced to equal to 

zero.

Note th a t an E PG R  m atrix is paraunitary by construction as each component of the 

matrix, i.e. the Givens rotation and the elementary time shift matrix, are both paraunitary.
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5.3 Complete Polynomial Givens Rotation

As a consequence of this, the transformation is norm preserving and so

G O.*.».«.0.OW A W  =  ||A W ||p
r

(5.11)

5.3 C om plete Polynom ial G ivens R otation

The objective of a complete polynomial Givens rotation (CPGR) is to zero an entire poly

nomial element of a polynomial vector or m atrix by driving each coefficient of a polynomial 

element to zero in turn. In practice, as with the SBR2 algorithm, it is often not feasible to 

zero all coefficients of a polynomial element and so it is only required tha t each coefficient 

of the polynomial element becomes sufficiently small. A CPG R will firstly be introduced in 

its simplest case as a 2 x 2 m atrix applicable to a polynomial vector a(z) E <C2xl, before 

extending the concept so it can be applied to a polynomial m atrix of any dimension.

A series of EPG Rs can be applied iteratively to the polynomial vector a (z) € C 2xl, as 

demonstrated by equation (5.4), to  drive all coefficients of a specified polynomial element 

arbitrarily close to zero. For example to drive the polynomial element a2 (z) to zero, at 

each iteration the rotation angles 0 , (f> and a  and the lag param eter t are chosen to zero 

the coefficient within a2 (z) with maximum magnitude, this coefficient will be referred to 

as the dominant coefficient. If this coefficient is not unique, then any of the dominant 

coefficients from the polynomial element may be chosen. The complete series of EPGRs 

required, constitutes a CPGR, which will be denoted by the m atrix G^2,1)(z), where the 

superscripts denote the row and column position of the polynomial element tha t the matrix 

is attem pting to  annihilate. A matrix of this form can be applied to a polynomial vector 

a (z) e  <C2xl such th a t

fii (z) a'i(z )

a2(z ) 0
(5.12)

where all coefficients of the polynomial element a2 ( z ) have been driven arbitrarily close to 

zero over a series of EPGRs. In practice it is often not feasible to zero all coefficients of a 

polynomial element, hence the approximate equality in equation (5.12). Instead the coef
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5.3 Complete Polynomial Givens Rotation

ficients are driven to  zero until the magnitude of all coefficients of the polynomial element 

a2(z ) are sufficiently small and the following stopping condition is satisfied

|a2(<)l < « (5-13)

Vt E Z and where e > 0 is some pre-specified small value.

Again as with the EPGR, this idea is easily extended to a general CPGR that can be 

applied to a polynomial m atrix A(z) € C pxq to drive all coefficients of one of the polynomial 

elements sufficiently small. At each iteration a p x p  EPG R m atrix is applied to the polynomial 

m atrix to zero the dominant coefficient of a specified polynomial element and this process 

is repeated until all coefficients of the polynomial element are suitably small and satisfy a 

similar stopping condition to that demonstrated in equation (5.13). For example, to zero the 

polynomial element aj k (z), the required CPG R m atrix is calculated as the series of EPGRs

(5.14)

where i is the number of EPGRs required to drive all coefficients of the polynomial element

sufficiently close to zero and the variables a*, 6 i, (j>i and ti denote the rotation and lag

param eters required to zero the ith dominant coefficient respectively. Note tha t each of

the EPGRs is paraunitary and so the complete polynomial Givens rotation will also be

paraunitary. Furthermore, this paraunitary transformation is also norm preserving and so
2

||A (2 )||p  =  G U'k)(z)A{z)  . A proof of convergence for a complete polynomial Givens
F

rotation step can now be easily deduced.

5.3.1 C onvergence o f a C P G R

W ith every application of an EPGR, to zero the dominant coefficient ajk(t), the quantity 

laA;A;(0) |2 wM increase monotonically by the magnitude squared of the largest coefficient within 

the element, i.e. by the quantity \ajk{t)\2. Furthermore, this quantity is bounded above by the
p

squared Frobenius norm of the k th column of A (z), i.e. the quantity |2  ̂ which
r  i =  1
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will remain constant throughout all iterations of the CPGR. As |afcfc(0) |2 is monotonically 

increasing and bounded above, over a series of EPGRs the stopping condition similar to that 

dem onstrated in equation (5.13) is guaranteed and the complete polynomial Givens rotation 

converges in this respect.

5.4 A lgorithm  1: PQ R D  by Steps

This section describes the first of the three algorithms for calculating the PQRD and directly 

extends the QR decomposition from matrices with complex scalar elements to polynomial 

matrices, where each element is now a polynomial with an associated set of complex coeffi

cients. The algorithm proceeds to perform the decomposition by following the same strategy 

in eliminating the entries of the m atrix as is used in the Givens method for achieving the 

QRD of a scalar m atrix, i.e. by driving the elements beneath the diagonal to zero in a 

specified order. There are several different orderings that can be implemented to obtain the 

scalar m atrix QRD, but for the purposes of this thesis, it is assumed that the elements are 

eliminated starting with the uppermost left element beneath the diagonal of the m atrix and 

then proceed through all elements beneath the diagonal in each row from left to right, before 

moving to the next row down and so on. However, as each element of the m atrix is now 

a polynomial, all coefficients of the polynomial element must be eliminated to ensure that 

each polynomial element is approximately equal to zero. This can no longer be achieved by 

applying a scalar Givens rotation matrix; instead a CPGR is required.

5.4.1 T he P Q R D  by Steps A lgorithm

The PQRD by Steps algorithm aims to transform a polynomial m atrix A (z) G C pxq into an 

approximately upper triangular polynomial m atrix R (z) € C pxq by means of a paraunitary 

transform ation m atrix  Q(z) G C pxp, as demonstrated

Q(*)A(z) =  R (z). (5.15)
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The paraunitary m atrix is calculated within the algorithm as a series of ordered steps, where 

at each step all coefficients associated with one polynomial element situated beneath the diag

onal of the polynomial m atrix A(z) are driven sufficiently small by applying the appropriate 

CPGR. For example, the transformation observed at one step, say the ith step, to drive all 

coefficients of the polynomial element Qjk(z) sufficiently small, is therefore of the form

A i( * ) = f i w'*)(* )A i-1W  (5.16)

where G (j' ^( z )  is the complete polynomial Givens rotation designed to drive all coefficients 

of the polynomial element ajk(z) sufficiently small.

Each step of the algorithm, however, operates as an iterative process, where at each 

iteration an EPG R  m atrix is applied to the polynomial m atrix A( z )  to  zero the dominant 

coefficient of the (j, k) th polynomial element. For example, if the dominant coefficient is 

found to be ajk(t), the transform ation is of the form

A  (z) = G ^ ' k'a'e,^'t\ z ) A ( z ) ,  (5.17)

where G  (z) defines the EPG R formulated according to Section 5.2 to zero the

dominant coefficient ajk(t). Note th a t if the dominant coefficient is not unique then any of 

the dominant coefficients from the polynomial element may be chosen. The effect of this 

transform ation is to firstly shift the dominant coefficient onto the coefficient m atrix of order 

zero, A(0), and then apply the appropriate rotation so tha t the coefficient becomes equal to 

zero, i.e. a ' fc(0) =  0. Furthermore, the transform ation performed by the EPG R  to drive the 

dominant coefficient ajk(r)  to zero, will result in Kjfc( ° ) |2 =  \aj k ( r ) \ 2  +  |a**(0 ) |2 and a'kk(0 ) 

will be real. Note th a t also as a result of the transform ation all coefficients in the k th row 

of the polynomial m atrix  A(z) have been shifted, which is caused by the application of the 

elementary delay m atrix  incorporated in the EPGR. In addition all coefficients in the j tfl and 

k th rows of the m atrix A(z) have changed due to the rotation. Elements in all other rows of 

the matrix, excluding rows j  and k, are unaffected by the application of the EPGR.

This iterative process is repeated until all coefficients from the polynomial element Qjk (z)
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are sufficiently small and satisfy the stopping condition

\ a j k ( r ) \  <  e (5.18)

Vr G Z where e > 0 is a pre-specified small value. As explained previously, in practice it 

is often not feasible to drive all coefficients of a polynomial element to zero by application 

of a CPGR and so instead it is only ever required that a stopping condition such as that 

demonstrated by (5.18) is satisfied.

This completes one step of the PQRD-BS algorithm. To begin the subsequent step, A(z )  

is replaced with A  (z) and the indices j  and k  are amended appropriately, moving to the next 

polynomial element in the ordering. The ordering begins with the uppermost left element 

beneath the diagonal, a2i ( 2), and then moves across all elements beneath the diagonal in 

each row, before moving to the next row down and repeating the process. This continues 

until the algorithm has visited all elements beneath the diagonal of the polynomial matrix 

A  (z). Once all elements beneath the diagonal have been visited, one sweep of the algorithm 

has been completed. Each sweep of the PQRD-BS algorithm operates in a finite number of 

steps, equal to  the cardinality of the set of elements beneath the diagonal of the polynomial 

m atrix A {z). However, each step operates as an iterative process and the number of iterations 

required in a single step cannot be predetermined. Note th a t multiple sweeps of the algorithm 

may be required and this point is discussed further in Section 5.4.2.

Finally, following i steps of the algorithm, the transform ation performed is of the form

A((2) =  Qi(2)A(2) (5.19)

where Q ^ z )  is the product of i CPGR matrices and will be paraunitary by construction.

Furthermore, following all steps of the first sweep of the algorithm, the m atrix decomposition

performed can be expressed as

A t (z) =  G {p'N\ z ) . . . G i2 ’1)(z) A{z)  (5.20)
 ..........   y  *

= Q
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where T  defines the number of elements beneath the diagonal of A (z), G ^ ,k\ z ) ,  for j  — 

2, . . .  ,p and k = 1, . . .  , N ,  denotes the CPGR designed to drive all coefficients of the polyno

mial element Qjk{z) sufficiently small and where

N  =
q if p > q

(5.21)
p — 1 if p < q

Note tha t in the degenerate case, where the order of the polynomial matrix A (z) is zero, 

this algorithm simply reduces to computing the QR decomposition of a scalar m atrix by 

applying an ordered series of Givens rotations. Of the three algorithms presented in this 

chapter this is the most similar to the conventional technique for computing the QRD of a 

scalar matrix. A concise description of the PQRD-BS algorithm can be found in Appendix 

B.

5.4.2 M ultip le Sw eeps

The various techniques for calculating the QRD of a scalar matrix, in particular the Givens 

method, will ensure th a t all elements beneath the diagonal of the m atrix are driven to zero 

and once an element is equal to zero it remain so through future applications of Givens 

rotations, due to the order in which elements are eliminated. However, this is not possible 

when formulating the QRD of a polynomial matrix. Although the PQRD-BS algorithm 

drives the dominant coefficient at each iteration of each step to zero, it only ensures tha t all 

coefficients of a polynomial element are suitably small, according to the stopping condition 

demonstrated by equation (5.18), before beginning the subsequent step and moving to the 

next polynomial element in the ordering. Through future steps and therefore rotations of 

the algorithm, these small coefficients could be rotated with other suitably small coefficients, 

causing them  to increase in magnitude and possibly violate the stopping criterion e. For 

this reason, multiple sweeps of the algorithm may be required to ensure tha t all coefficients 

relating to polynomial elements beneath the diagonal of A  (z) are less than e in magnitude.

Note th a t when completing the step to drive all coefficients of the polynomial element
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p
a j k ( z )  sufficiently small, the quantity | a m n ( t ) | 2  will remain constant for all values of

t 771 =  71 +  1
n = 1, . . .  , k — 1 and for all future steps in that particular sweep of the algorithm. Therefore, 

any coefficients positioned in columns to  the left of the polynomial element a j k (z ) ,  which are 

affected by the rotations and as a result have increased in magnitude to be larger than e, will 

be bounded above by the Frobenius norm of the elements beneath the diagonal in the same 

column of the matrix.

5.4.3 C onvergence o f th e  P Q R D  by S teps A lgorithm

Completion of the scalar m atrix QRD is easily deduced as the Givens m ethod will zero all 

elements of the m atrix beneath the diagonal of the m atrix exactly and once an element is equal 

to zero it remains so through future steps of the algorithm. However, this cannot be achieved 

with the method for calculating the QR decomposition of a polynomial m atrix discussed 

here. Although the dominant coefficient of a polynomial element is driven to zero at each 

iteration, the algorithm only ensures that all coefficients of an element are suitably small 

before moving to the next polynomial element in the ordering. Therefore, through future 

rotations of the algorithm, these small coefficients could be rotated with other suitably small 

coefficients, causing them  to increase in magnitude and perhaps exceed the stopping criterion 

e. For this reason a proof of convergence for the algorithm does not simply follow from the 

proof of convergence given for one polynomial element, detailed in Section 5.3.1.

Before discussing the convergence of the algorithm, three measures on the polynomial 

m atrix A(*) 6  C pxq must be introduced which will be used within the proof of convergence 

for the PQRD-BS algorithm. The measures are defined as follows

Ei j  — \a i j ( T )\ ? (5.22)
r

ELj = E E Mt>i2 <5-23)
r  i - j + l
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and
3-1

E u j  = \aij (r )l • (5-24)
r i=l

These measures define the squared Frobenius norm of the polynomial element Qij(z),  the 

squared Frobenius norm of all elements beneath the diagonal in the j th column of A ( z )  and 

the squared Frobenius norm of all elements above the diagonal in the j th column of A ( z )  

respectively. As discussed previously, the squared Frobenius norm of a polynomial element 

will also be referred to  as the energy of tha t element. If any of the three expressions above 

are followed by the further notation (0 ), e.g. Ei j (0 ) ,  this denotes the appropriate expression 

evaluated only on the coefficient plane of order zero (i.e. set r  =  0). These measures will also 

be required within the proofs of convergence of the two subsequent PQRD algorithms to be 

discussed later in this chapter.

W hatever the size or dimension of the polynomial m atrix A (z), the first polynomial 

element to be driven to zero in the ordering will always be a,21(z).  In driving all coefficients 

of this polynomial element sufficiently small, the quantity £ n ( 0 ) will increase monotonically. 

It will increase at each iteration of this step by the magnitude squared of the dominant 

coefficient of the polynomial element a2i(z) ,  until the magnitude of the dominant coefficient 

falls less than  a pre-specified small value e > 0 according to the stopping condition (5.18). 

Let the dominant coefficient at each iteration be denoted as g, then at each iteration £n(0 ) 

will increase by g2. Subsequent steps of the algorithm, which aim to drive other polynomial 

elements situated anywhere beneath the diagonal of the m atrix A (z) to zero, can never allow 

this quantity to decrease, even if a subsequent step requires a CPGR to be applied to a column 

positioned to the right. However, future rotations can affect coefficients beneath the diagonal, 

allowing previously sufficiently small coefficients to increase in magnitude and possibly exceed 

e. Furthermore, any steps to drive any polynomial element in the first column to zero, will lead 

to a further increase in the quantity £ n (0 ) and as a consequence, this quantity will increase 

montonically throughout all steps of the algorithm. This quantity is also bounded above by 

the total energy in the first column, which will be denoted as E\  = E n  + E l i  +Ej j i  , and so it 

must have a suprem um  si. It follows that for any S > 0 there must be an iteration L \ , beyond 

which |«i — £ n ( 0 )| <  S. Any subsequent step must then satisfy g 2  <  |si — £ n ( 0 )| <  S and
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so there exists an iteration at which the m agnitude squared of the maximum coefficient in 

g,2 i(z) is bounded by S.

Similarly when the ordering reaches the polynomial element ajk(z), the series of EPGRs 

required to drive this element sufficiently close to zero, will cause the quantity E kk(0 ) to 

increase monotonically. At each iteration this quantity will increase by the magnitude squared 

of the dominant coefficient within the polynomial element aj k (z). Subsequent iterations of the 

algorithm will never allow this quantity to decrease due to the order in which the polynomial 

elements are driven sufficiently small. The proof of convergence follows directly from the 

proof of convergence given for the polynomial element a 2 i (z) and so there exists an iteration 

by which the m agnitude squared of every coefficient in the element is less than  a certain 

value.

During the first sweep of the algorithm coefficients previously guaranteed to converge can 

be rotated at a later step, possibly causing them to increase in m agnitude and become larger 

than e. If this happens then a second sweep of the algorithm is undertaken. Note that the 

quantity £ n ( 0 ) has only ever increased and has not been affected by any rotations or delays 

applied to elements positioned in columns to the right of it. Every step involving elements 

beneath the diagonal of this column will further force £11 (0 ) to  increase, which can clearly 

not continue indefinitely. W hatever happens to elements in columns to the right, there will 

come a point where no further rotations are required in the first column. Once this point has 

been reached, the quantity £ 22(0 ) will increase monotonically through all future steps until 

a point is acheived where this quantity can no longer increase and further rotations are not 

required in this column. This will continue to  happen to all diagonal elements situated on 

the coefficient plane of order zero working from left to  right through the matrix. The final 

quantity to increase monotonically will be E qq(0) if p > q, otherwise Epp(0) if p < q, and 

once no further rotations can be applied, the algorithm has converged.

As with the proof of convergence for the SBR2 algorithm, using the truncation method 

does not affect this proof of convergence.
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5.5 A lgorithm  2: PQ R D  by Colum ns

The second algorithm for calculating the PQRD of a polynomial m atrix A (z) G C pxq ac

cording to equation (5.15) is now introduced. This algorithm operates in a similar way to 

the PQRD-BS algorithm, by calculating the paraunitary polynomial m atrix Q(z) G <Cpxp 

as a series of ordered steps. However, each step of this algorithm consists of an iterative 

process to drive the coefficients associated with all polynomial elements situated beneath the 

diagonal of a particular column of the polynomial m atrix A (z) sufficiently small, which is 

achieved by applying a series of EPGRs. The PQRD By Columns (PQRD-BC) algorithm is a 

natural progression from the PQRD-BS algorithm discussed in Section 5.4 and the difference 

between the process of steps for the two algorithms operate is illustrated in Figure 5.1. Before 

discussing the possible advantages of this method, a detailed description of the algorithm is 

firstly discussed.

START STEP 1 STEP 2 STEP 3

0

x X

X X X

X X X X

0

0 X

X X X

X X X X

0

0 0

X X X

X X X X

.. etc.

START STEP 1 STEP 2 STEP 3

X

X X

X X X

X X X x l

J

0

0 X

0 X X

0 X X X

0

0 0

0 0 X

0 0 X X

0

0 0

0 0 0

0 0 0 X

. . .  etc.

Figure 5.1: Diagram to illustrate the different orders in which the PQRD-BS (top) and 
the PQRD-BC (bottom) algorithms zero polynomial elements of an 5 x 5 polynomial 
matrix.
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5.5.1 T he P Q R D  by C olum ns A lgorithm

The algorithm operates as a series of steps, where at each step all coefficients associated with 

the polynomial elements positioned beneath the diagonal of one column of the polynomial 

m atrix A  (z) € C pxq are driven sufficiently small. The algorithm begins the first step with 

the first column of the matrix.

The first step begins by locating the dominant coefficient positioned beneath the diagonal 

of the first column of the input m atrix A(z). As with the PQRD-BS algorithm, if the 

dominant coefficient is not unique then any of the dominant coefficients may be chosen. 

Assume that this coefficient is found to be Oji(r), which denotes the coefficient of z ~ T in the 

polynomial element a.j\(z),  where clearly the row index j  > 1-

The appropriate EPG R matrix, G ^ ’ ’ is then formulated according to Section

5.2, where the lag param eter is set as t = r and the rotation param eters a,  0 are 0 are 

calculated according to equations (5.5) - (5.7), where the coefficients required for these cal

culations now correspond to 02 (f) =  Oji(f) and ai(0) =  an (0 ). The EPG R is then applied 

to the polynomial m atrix A ( z )  to obtain the transformed polynomial m atrix

A  \ z )  = G ij,1'Q'e,<t>,T){z )A{z )  (5.25)

where as a result of this transformation o '^O ) =  0. Furthermore, |a'n (0)|2 = |aji(r)|2 +

|a n  (0 ) |2 and a'n (0 ) is real.

This two-stage iterative process is repeated, replacing A ( z )  with A ' (z)  until all coefficients 

beneath the diagonal of the first column of the polynomial m atrix A (2) are sufficiently small. 

As with the PQRD-BS algorithm, it is not always feasible to zero all coefficients beneath the 

diagonal of A (z) and so instead only an approximately upper triangular polynomial m atrix

is required. Therefore, the iterative routine is repeated until all coefficients beneath the

diagonal in the first column satisfy

0-1 ( t)  < c, (5.26)

Vr € Z and i — 2, . . . , p ,  where e > 0 is some pre-specified small value. This completes 

the first step of the PQRD-BC algorithm. To begin the subsequent step, A (z) is replaced
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with A' ( z)  and the process is repeated moving to the second column in the matrix. Once all 

coefficients of the polynomial elements beneath the diagonal of the column are sufficiently 

small, the algorithm moves to the next column, positioned to the right of the column it has 

just completed (provided it contains polynomial elements beneath the diagonal) and repeats 

the process driving all coefficients beneath the diagonal to zero until a suitable stopping 

condition similar to th a t of (5.26) is satisfied. The algorithm continues this process until 

all columns with polynomial elements beneath the diagonal have been been visited. Once 

all steps have been completed, this defines one sweep of the PQRD-BC algorithm. Again, 

as with the PQRD-BS algorithm, multiple sweeps of this algorithm can be implemented if 

required.

Assuming k steps of the algorithm, the polynomial m atrix decomposition performed is of 

the form

A k (z) = Q k(z)A(z)  (5.27)

where Q A.(^) G C pxq is a paraunitary polynomial matrix, which is calculated as a series of 

EPG R matrices, and A k(z) is the transformed polynomial matrix, which is guaranteed to 

converge to an upper triangular matrix. Note that the number of steps in one sweep of the 

algorithm can be determined in advance, but the number of sweeps in the decomposition 

and the number of EPGRs required to drive all coefficients sufficiently small in each sweep 

cannot. The proof of convergence for the algorithm is detailed in Section 5.5.2 and a concise 

description of the algorithm is contained in the Appendix B.

If both the PQRD-BS and PQRD-BC algorithms are applied to  the same scalar matrix, 

they will generate the same unitary and upper triangular matrices. Furthermore, the two 

algorithms will also require the same number of Givens rotations to obtain an exactly upper 

triangular m atrix and this will be obtained, in both cases, from only one sweep of the algo

rithm. The num ber of Givens rotations required can also be specified in advance. However, 

computationally the PQRD-BC algorithm will be slightly more expensive than  the PQRD- 

BS algorithm, due to  the computations required to locate the dominant coefficient within a 

given column of the matrix. This is obviously not required within the PQRD-BS algorithm. 

Furthermore, when calculating the QRD of a polynomial m atrix using either of these PQRD
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algorithms, the number of EPGRs required to transform the polynomial m atrix into an upper 

triangular polynomial m atrix cannot be determined in advance and an approximately upper 

triangular m atrix is only ever formulated from the decomposition. It might be expected that 

the PQRD-BC algorithm will require fewer sweeps and consequently less overall iterations 

of the algorithm, due to the stopping criterion considering all elements beneath the diagonal 

of a given column of the m atrix at each step. For this reason, the PQRD-BC algorithm is 

a sensible progression from the previous PQRD-BS algorithm as it will always require fewer 

steps per sweep.

5.5.2 C onvergence o f th e  P Q R D  by C olum ns A lgorithm

Convergence of each step of the algorithm can easily be deduced in a similar way to the proof 

of convergence given for the PQRD-BS algorithm. At each step, to drive the coefficients 

beneath the diagonal of column k  sufficiently small, the quantity E^ki0 ) will increase at each 

iteration by the m agnitude squared of the dominant coefficient. This quantity will be bounded 

from above by the squared Frobenius norm of the k th column and so convergence can easily 

be proved for each step. Note tha t once the k th column has had all of its coefficients beneath 

the diagonal driven sufficiently small, the diagonal coefficients from this column will not be 

rotated in any future steps and so the quantity -E^O ) will then remain constant throughout 

future steps of th a t particular sweep of the algorithm.

A proof of convergence for the algorithm does not simply follow from the proof of con

vergence for each step. Once again, not driving all coefficients associated with polynomial 

elements beneath the diagonal to be zero, can lead to small coefficients being rotated with 

each other and possibly increasing in magnitude. If these coefficients do increase above the 

threshold value of e, then a second sweep of the algorithm is required. The proof of conver

gence now follows directly from the proof for the PQRD-BS algorithm.

The quantity E \ \ (0) can only ever increase in future sweeps and so a point will be reached 

where no further rotations are required within the first column. Once this point has been 

reached, the quantity  £ 22(0 ) will increase monotonically through all future steps until a point 

is reached where this quantity can no longer increase. As a result no further rotations are
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required in this column. This will continue to happen to all diagonal elements situated on 

the coefficient plane of order zero working from left to right through the matrix.

5.6 A lgorithm  3: Sequential B est R otation  PQ R D

The motivation behind the third and final PQRD algorithm was to use an entirely Sequential 

Best Rotation (SBR) approach, as used within the PEVD algorithm SBR2. As a result, this 

algorithm will not need to operate as a series of steps, each requiring their own convergence 

criterion to  be m et before the algorithm can continue, and multiple sweeps of the algorithm 

will never be required.

The QRD of a  scalar m atrix could also be obtained using this algorithm, although for this 

case it is preferable to use an ordered technique such as the PQRD-BS algorithm. Convergence 

of the SBR approach is guaranteed, but this algorithm will typically require more Givens 

rotations to obtain an upper triangular matrix, due to the possibility of the series of rotations 

forcing elements th a t have previously been driven to zero to increase in magnitude.

5.6.1 T he P Q R D  A lgorithm  by Sequential B est R otation

The PQRD-SBR algorithm operates as an iterative process, where at each iteration the 

polynomial coefficient beneath the diagonal with maximum magnitude, termed the dominant 

coefficient, is driven to zero by applying an appropriate EPGR. Once the dominant coefficient 

has been driven to zero, an inverse time shift m atrix is applied to the resulting m atrix to ensure 

tha t the dominant coefficient is returned to  its original position in the polynomial element. 

As a consequence, the paraunitary transformation m atrix Q(z) is not simply generated as a 

series of EPGRs, as for the previous two decomposition algorithms, bu t instead formulated 

as a series of EPG Rs interspersed with inverse time shift matrices. The motivation behind 

this step, is explained within the description of the iterative process of the algorithm. The 

three-step routine carried out at each iteration, to find the dominant coefficient and drive it 

to zero is now discussed in detail.

The algorithm begins by locating the dominant polynomial coefficient situated beneath
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the diagonal of the polynomial m atrix A(z), i.e. it finds the coefficient ajk(t ), for j  > k, such 

that

Kfc(f)| > \amn(r)\ (5.28)

holds for all coefficients amn(r), where m  = 2 , . . .  ,p, n  =  1, . . . ,  m  — 1 and for all values of 

the lag param eter r e  Z. Unlike the previous two algorithms, if the dominant coefficient 

is not unique then it is better to choose the coefficient associated with the uppermost left 

polynomial element of the matrix as this will achieve a faster rate of convergence.

Subsequently, the dominant coefficient now needs to be driven to zero; this is achieved 

by applying an appropriate EPG R to the polynomial m atrix A (z) as follows

A  {z) = G {z)A(z) (5.29)

where the indices j ,  k  and t define the position of the dominant polynomial coefficient, which 

is to be eliminated. The structure of this matrix, and formulae for calculating the necessary 

rotation angles, is the same as the previous two algorithms and is described in detail in 

Section 5.2. Following the application of the EPG R the dominant coefficient has been driven 

to zero and so a ' fc(0 ) =  0 , the diagonal coefficient afkk(0 ) is real and will have increased in 

magnitude squared such tha t K * (o )l2 =  l<W o)l2 +  b * ( o ) |2.

An elementary inverse time-shift m atrix B t a k e s  the form of an identity matrix 

with the exception of the j th diagonal element which is z~l , i.e.

(5.30)

i o o

b M ) ( z ) = 0 z~l 0

0 0 lp- j

This m atrix is applied to A '{z) to generate the transformed matrix

A"( z )  = B (j’t}(z)A' (z) , (5.31)

where consequently all polynomial elements on the j ih row of A' (z)  have had a f-fold delay
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applied to them. In particular this is done to move the diagonal coefficient associated with the 

lag t back to its original position on the coefficient plane of order zero, i.e. a'jj(0 ) =  •(—£).

More specifically, following the application of the matrix, the elements on the j th row of the 

m atrix are shifted accordingly

ajm(T) — ajm(T ~ t) f°r m = 1, and Vr e Z. (5.32)

All other rows of the polynomial m atrix are not affected by this transformation. Note that 

the m atrix dem onstrated by equation (5.30) is the inverse of the time-shift m atrix that is 

incorporated in the EPG R applied in the second step of the iterative process. This final step 

is implemented to ensure tha t the original zero-lag diagonal elements are brought back onto 

the zero-lag plane following the application of every EPGR, to minimise the disruptive effects 

of the initial time shifts incorporated in the EPGR. At each iteration the zero lag diagonal 

coefficient in the same column of the m atrix as the dominant coefficient, for this example 

the coefficient afc/t(0), will increase in magnitude squared. For convergence of the algorithm, 

it is better to keep these diagonal coefficients positioned on the coefficient m atrix of order 

zero, as much as possible. However, by applying the elementary m atrix delay incorporated 

in the EPG R the coefficient a,jj(0) will be shifted and so this is not possible. In the SBR2 

algorithm, this is not an issue, as the elementary delay matrices are applied on both sides of 

the polynomial m atrix and so the set of zero lag diagonal coefficients will never be affected 

by the delay matrices. This cannot be done here, where it is required tha t the paraunitary 

transform ation matrices are only applied on the left hand-side of the polynomial matrix. Note 

also tha t this point is not an issue with the two previous PQRD algorithms as convergence 

is guaranteed by using two ordered approaches.

At the end of the first iteration of the PQRD-SBR algorithm the following p  x p  parau

nitary m atrix has been calculated

Q,(*) = (5.33)

The three-stage routine is now repeated replacing A (z) with A "(z), until the magnitudes of
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5.6 Algorithm 3: Sequential Best Rotation PQRD

all coefficients situated beneath the diagonal are sufficiently small and the following stopping 

condition is satisfied

IM r) | < 6 (5.34)

Vr € Z, for j  = 1, . . . ,  p, k  =  1 , . . . ,  q where j  > k and e > 0 is a pre-specified small value.

Following i iterations of the algorithm, the m atrix decomposition performed can be ex

pressed as

a W - - - Q 2WQ,(*)A(*) = A.(2), (5.35)

where Q ^ )  € C pxp is a paraunitary polynomial m atrix of the form Q ^ )  =  B ^ ,t\ z ) G ^ ' k'a'e'(̂ 't\ z )  

and Ai (z )  is the transformed polynomial m atrix resulting from i iterations of the algorithm.

The algorithm is guaranteed to converge and so this m atrix will converge to an upper trian

gular matrix.

Once the algorithm has converged, a diagonal m atrix of final phase adjustment terms can 

be applied to  resulting upper triangular polynomial matrix, to ensure tha t the diagonal zero 

lag coefficients are all real and positive. This will then ensure uniqueness of the decomposition 

in the scalar m atrix case, provided the m atrix is non-singular. The same must also be done 

to the coefficient associated with the zero lag of the final diagonal element of the upper 

triangular matrices obtained from the first two algorithms, for the same reason.

5.6.2 C onvergence o f the P Q R D  A lgorithm  by Sequential B est  

R otation

This algorithm operates as a series of iterations, each one designed to zero the dominant 

coefficient from anywhere beneath the diagonal of the matrix. At each iteration of the

algorithm, to zero the dominant coefficient ajk(t),  the quantity |a^fc(0 ) |2 will increase by the

m agnitude squared of the dominant coefficient, i.e. |a ^ ( 0 ) |2 =  K * (° ) |2 =  |a u ( 0 ) |2+ b * « | 2. 

However, at the same time it is possible tha t energy can move between any other coefficients 

on the k th row and j th row of the m atrix over all possible lags. Note that the quantity 

is not guaranteed to  increase monotonically over subsequent iterations if it involves rotating
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5.6 Algorithm 3: Sequential Best Rotation PQRD

coefficients in the same row (row k) positioned to the left of column k, i.e. EPGRs applied 

to any coefficients associated with polynomial elements akl (z ) , . . .  , ak(k-i)(z ) can f°rce the 

quantity |ajtfc(0) |2 to decrease. In fact, there are three possible ways in which this quantity 

can be affected,

1. This quantity will increase if the dominant coefficient is beneath the diagonal of the 

k ih column of the matrix.

2. The quantity will be unaffected by any rotations to zero a dominant coefficient posi

tioned in a  column to the right of the k th column, i.e. if the dominant coefficient is 

in columns k  -I- 1, . . . ,  q. Both the EPG R  and the inverse time shift will not affect any 

polynomial elements in the k th row of the m atrix and so the quantity is guaranteed to 

not decrease. Furthermore, if the dominant coefficient is in a column positioned to the 

left of column k , but in any row beneath row k , it is also unaffected.

3. If the dominant coefficient at a future iteration is positioned in row k, but in a column 

to the left of column k , then it is possible for this quantity to decrease as it will be 

affected by both the application of the EPG R and the inverse time shift matrix.

However, any EPGRs applied to polynomial coefficients in the first column of A (z) will 

lead to an increase in the quantity la'/^O)!2 and this will continue through all iterations of 

the algorithm. This quantity will remain unaffected over all future iterations of the algo

rithm, even if they involve applying rotations to polynomial coefficients tha t are positioned 

in columns to the right of the first column. Furthermore, this quantity will never be affected 

by the application of elementary delay matrices in either the first or third stages of each 

iteration of the algorithm. Therefore, over all iterations of the algorithm, this quantity will 

be monotonically increasing and, as the paraunitary transformations are norm preserving in 

the columns of the m atrix, the quantity is bounded above by the squared Frobenius norm 

of all elements in the first column of A (z). In a similar way to the previous two algorithms, 

this quantity will have a supremum and so there exists an iteration by which the magnitude 

squared of the dom inant coefficient in the first column is bounded by e.
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As with the previous algorithms, once this has been achieved, future rotations can cause 

the squared Frobenius norm of elements beneath the diagonal in the first column to be 

redistributed, forcing coefficients to possibly increase in magnitude and become larger than 

e. If this happens, then future EPGRs will need to be applied to coefficients in the first 

column. However, this process cannot continue indefinitely. There will be a point, as with 

the previous two algorithms, where no future rotations are required to be applied to any 

coefficients beneath the diagonal of the first column. Subsequently, the quantity |a'2'2(0 ) |2 

will increase monotonically, until a point is reached where the stopping condition is satisfied 

and no further rotations are required in the second column of the polynomial matrix. This 

process continues through all columns of the m atrix working from left to right.

5.7 N on-U niqueness of Solutions

The scalar m atrix QRD is unique provided the input m atrix is non-singular and the diagonal 

elements of the resulting upper triangular m atrix are positive and real. Similarly, for a non

singular polynomial m atrix A(z) e  C pxp, provided it is of full column rank and assuming 

two PQRDs exist for this matrix, such that

A(z) -  and A( z )  = Q 2 ( z ) R 2 (z) (5.36)

then

Q ,(* )Q .(* )= fi2(*)E r1(*)- (5-37)
S y. I. . ✓ S " V ....... .

G(z)  T (z)

The polynomial m atrix G(z) will be paraunitary by construction and T (z) will be an upper

triangular polynomial m atrix as it is formulated as the product of two upper triangular

polynomial matrices. Furthermore, according to equation (5.37) the polynomial m atrix T(z) 

must also be paraunitary  and therefore satisfy

T( z )T( z )  = T ( z ) T ( z )  = I. (5.38)
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5.7 Non-Uniqueness of Solutions

By equating both  side of equation (5.38) it can be demonstrated th a t an upper triangular

polynomial m atrix can only be paraunitary if it is a diagonal m atrix where the diagonal 

polynomial elements satisfy =  1 for j  = I , . . . , p .  The diagonal element t j j (z)

could be calculated as

d e t (Ri ( z ) )  A  E i  M U *

'33
P

E iM]

k^3

(5.39)
33

where for uniqueness, it is required tha t this quantity is equal to  unity for j  = 1, . . .  ,p, but 

as t j j ( z)  is a polynomial for each value of j , this cannot be imposed. If the input m atrix is 

a scalar, then uniqueness of the solutions is easily enforced by requiring tha t the diagonal 

elements of the upper triangular m atrix obtained by the QRD are real and positive. However, 

for a polynomial m atrix it is not so simple and the only thing known about the diagonal 

elements of the polynomial m atrix T ( z )  is tha t | |fjj(2 ) ||^  =  1 for j  — 1 , . . .  ,p. Therefore, it 

is possible to have a diagonal paraunitary m atrix T (z),  whose diagonal elements will consist 

of time-shift and phase adjustment terms of the form t j j{r)  =  etQz ~ T for j  =  1, . . .  ,p and 

all time lags r ,  such th a t T (2)R 1(z) =  R ^ z ) , where both Ri(.z) and R ^ z )  are both upper 

triangular. The same is true of the paraunitary m atrix obtained from the PQRD. Note 

tha t for the application of the PQRD to MIMO communication problems, uniqueness of the 

solutions is not required and therefore is of no direct relevance.

5.7.1 Im plem entation  of th e P Q R D  A lgorithm s

The truncation m ethod suitable for non para-Hermitian polynomial matrices detailed in 

Section 4.3.2, is used within the PQRD algorithm to ensure tha t the order of the polynomial 

m atrix A  (z) does not grow unnecessarily large. The same truncation method can also be 

applied to  the paraunitary  transformation m atrix Q(z), as the order of this m atrix can also 

become unnecessarily large.
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As with the SBR2 algorithm, it is not necessary to apply the polynomial Givens rotation 

to the entire polynomial matrix A(^) at each iteration of the algorithm. Only two rows of 

the m atrix are affected at each iteration and so only these two rows need to be updated. 

Similarly, the transform ation matrix Q(^) is not computed within the iterative routine of 

the algorithm. Instead the parameters j ,  k, 8 , a, 0  and t are stored and so the resulting 

transformation m atrix can be calculated afterwards, when required. As a result, this will 

often help reduce the computational load of the algorithm enabling whichever of the PQRD 

algorithms has been used, to run faster.

5.8 N um erical Exam ple

The objective of this example is to illustrate the results of the three different PQRD algo

rithms when each is applied to a fairly simple polynomial m atrix of a relatively small size 

and order. A polynomial m atrix A (z) € C 4x3 of order 4 was generated, where the real and 

imaginary parts of the coefficients of each of the polynomial elements were randomly drawn 

from a normal distribution with mean zero and unit variance. A graphical representation for 

this polynomial m atrix can be seen in Figure 5.2, where a stem plot is used to demonstrate 

the magnitude of the series of coefficients for each of the polynomial elements. The position 

of the stem plot in the figure relates to the position of the polynomial element, which it 

represents within the matrix.

The three PQRD algorithms were applied to the polynomial m atrix A (z) in turn, each 

time using the energy based truncation m ethod suitable for non para-Hermitian polynomial 

matrices with the truncation param eter set as p = 10~6. The stopping condition for each 

of the three PQRD algorithms was appropriately set to ensure that the magnitude of each 

polynomial coefficient beneath the diagonal of the resulting polynomial m atrix R (2 ) was less 

than 10~3, allowing multiple sweeps of the PQRD-BS and PQRD-BC algorithms to be im

plemented if required. The upper triangular and paraunitary polynomial matrices obtained 

when the PQRD-BS algorithm was applied to A (z) are given in Figures 5.3 and 5.4 respec

tively. Figures 5.5 and 5.6 illustrate the matrices obtained from the PQRD-BC algorithm
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5.8 Numerical Example

and Figures 5.7 and 5.8 the results from the PQRD-SBR algorithm. It is clearly visible from 

these figures th a t neither the paraunitary transformation matrix Q (z) nor the upper triangu

lar polynomial m atrix R(z)  obtained from any of three decomposition algorithms is unique, 

although similarities between the matrices can be seen.
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F igure 5.2: A stem  plot representation  of th e  series of coefficients of th e  polynom ial 
m atrix  A (z ) ,  to  be used as inpu t to  each of the  th ree  algorithm s for calculating the 
PQ R D .
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Figure 5.3: The upper triangular polynomial matrix R (z), obtained when the PQRD- 
BS algorithm was applied to the polynomial matrix A (z).
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Figure 5.5: The upper triangular polynomial matrix R (2 ), obtained when the PQRD- 
BC algorithm was applied to the polynomial matrix A(,s).
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Figure 5.6: The paraunitary transformation matrix Q(^) obtained using the PQRD-BC
algorithm with input matrix A(z).
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Figure 5.7: The upper triangular polynomial matrix R (z), obtained when the PQRD- 
SBR algorithm was applied to the polynomial matrix A (z).
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Figure 5.8: The paraunitary transformation matrix Q(^) obtained using the PQRD-
SBR algorithm with input matrix A (z).
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The relative error for the decomposition performed is defined as

E rel — (5.40)

where R  (z) is equal to the approximately upper triangular polynomial m atrix R(z)  with all 

coefficients beneath the diagonal set to zero. This measure is calculated to ensure that the 

accuracy of the decomposition obtained is not compromised by either using the truncation 

m ethod or by setting all non-zero coefficients beneath the diagonal to zero, as required for 

the application of the PQRD to MIMO communications, discussed further in Chapter 8 . The 

results of the three decompositions are presented in Table 5.1, where the measure L defines 

the Frobenius norm of the elements beneath the diagonal of the transformed polynomial 

m atrix following each iteration, i.e. the quantity

L =
p j - i

r j =2 k= 1
(5.41)

where A  (z) is the transformed polynomial m atrix following the application of an EPG R and 

p  defines the number of rows of the polynomial m atrix A  {z) and, for this example, is equal 

to four.

P Q R D -B S P Q R D -B C P Q R D -S B R

Number of EPGRs 547 556 1315

Number of Sweeps 1 1 -

Final Order of R (z) 37 48 56

Final Order of Q(z) 54 81 71

Brel 8.44 x 1CT3 8.66 x 10~3 1.34 x 10~2

Final value of g 9.99 x 10~4 9.79 x 10"4 9.99 x lO”4

Final value of L 5.60 x 10"3 5.33 x 10"3 9.30 x 10"3

Computational Time 

(Seconds)1

0. 52 0.65 4.13

Table 5.1: Results obtained from applying the three algorithms for computing the
PQRD to A (z).
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Prom Table 5.1, it can be seen that the PQRD-BS algorithm converged in the fewest 

number of EPG Rs over all steps of the algorithm, although the performance was similar to 

the PQRD-BC algorithm. The PQRD-SBR algorithm required over double the number of 

EPGRs compared to the other two algorithms and therefore took considerably more time to 

calculate. Note th a t both the PQRD-BS and PQRD-BC algorithms required only a single 

sweep to converge.

Figure 5.9 illustrates the quantity L  demonstrated by equation (5.41) over the complete 

series of iterations of each of the three PQRD algorithms. If the decomposition algorithm 

uses a process of steps, such as the PQRD-BS and PQRD-BC algorithms, this is easily visible 

from this figure. Initially, the PQRD-SBR algorithm appears to perform considerably better 

than the other two algorithms, as at each iteration the largest coefficient from anywhere 

beneath the diagonal of the matrix will be driven to zero. This will not happen with either 

the PQRD-BS or PQRD-BC algorithms, unless the largest coefficient is positioned in either 

the polynomial element a2\{z)  (if using the PQRD-BS algorithm) or is situated beneath the 

diagonal of the first column of the matrix (if using the PQRD-BC algorithm). However, 

although the PQRD-SBR algorithm does not require any steps or sweeps, it takes far more 

EPGRs to reach a similar level of convergence as the other two PQRD algorithms. This is 

due to the proof of convergence for each of the algorithms, operating through the columns 

of the m atrix from left to right. An algorithm that operates using a series of steps, working 

through the m atrix from left to right, will typically converge quicker.

Finally, Figure 5.10 demonstrates the same measure L, this time for the PQRD-SBR 

algorithm with and without applying the inverse time-shift m atrix in the third step of each 

iteration of the algorithm. At each iteration, for example, to zero the polynomial coefficient 

ajkiT) there are three possible ways the quantity 10 ^ ( 0))2 can be affected. These are listed in 

the proof of convergence of the PQRD-SBR algorithm. However, by applying the appropriate 

EPG R to zero Oj/t(r), the coefficient a,jj(0) will have a delay of size r  applied to it and so will 

no longer be positioned on the coefficient matrix of order zero. If the inverse delay step is not 

applied to move it back to its original position following the rotation, then at a subsequent 

Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.
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iteration to zero a coefficient associated with elements situated beneath the diagonal of the 

j th column of the matrix, a different coefficient will be increasing in magnitude squared and 

it is not guaranteed that this coefficient will continue to increase (in magnitude squared) over 

future iterations to zero coefficients beneath the diagonal of the j th column. Allowing the 

zero-lag diagonal coefficients to move over a series of iterations, will mean that the algorithm 

is not consistently forcing the same coefficients on the zero-lag coefficient matrix to increase in 

magnitude squared by application of each EPGR. Therefore the PQRD-SBR algorithm when 

not using the inverse tiine-shift will result in erratic behaviour as demonstrated by Figure 

5.10, clearly demonstrating why the inverse time shift is required within the PQRD-SBR 

algorithm.

 PQRD-BS
- - -  PQRD-BC 

PQRD-SBR

_!

"  * i

1200 1400600 800 1000200 400
Iterations

Figure 5.9: The Frobenius norm of the  polynomial elements beneath  the diagonal of 
the transform ed polynom ial m atrix  a t each iteration of each of the PQ R D  algorithms.
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Figure 5.10: The Frobenius norm of the  polynomial elements beneath  the diagonal of 
the  transform ed polynomial m atrix  a t each iteration when applying the PQ RD -SB R 
algorithm  with and w ithout using the inverse delay step.

Finally, Figure 5.11 demonstrates the polynomial matrix obtained from calculating the 

inverse decomposition A(z)  = Q(z)R(z)  and compares this m atrix to the input matrix. 

For this example, the polynomial matrices Q(^) and R(^) were found using the PQRD- 

BS algorithm. Note that only the five lags A (0 ) , . . . ,  A(4) are demonstrated in this figure. 

By inspection of this figure, it can be observed that a very accurate polynomial matrix 

decomposition can be obtained using the PQRD-BS algorithm. Note that the coefficients 

matrices not included in this figure, i.e. those outside the five lags A(0) , . . . ,  A(4), account 

for 0.0071% of A M  |
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Figure 5.11: A stem  plot representation of the series of coefficients of the  polynomial 
input m atrix  A ( z )  in green, and the m atrix  obtained from calculating the inverse 
decom position Q (,s)R (z) when the decomposition was form ulated using the PQRD-BS 
algorithm  dem onstrated  in blue.

5.9 C onclusions

This chapter has introduced three algorithms for calculating the QR decomposition of a 

polynomial matrix. Each of the algorithms can be applied to a polynomial matrix of any size 

and order, where the coefficients of the elements can be either real or complex, and has been 

proven to converge. The computational complexity of each of the algorithms is formulated 

in Appendix C. The polynomial matrices obtained from the PQRD are not unique, however, 

this is not a problem for the potential application of the decomposition discussed in Chapter 

8 . If any of the algorithms are applied to a non-singular matrix of scalars, then uniqueness 

can be guaranteed by ensuring that the diagonal elements of the upper triangular matrix 

are positive and real. However, this cannot be done with the PQRD, where each diagonal 

element of this m atrix is a polynomial with an associated set of coefficients. Each of the 

three algorithms operate using Givens rotations interspersed with elementary delay matrices. 

Appendix A contains an example where Householder reflections have been adapted to enable
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the calculation of the QRD of a polynomial matrix. W ith this method, the orders of the 

polynomial matrices can grow even larger than those obtained with the Givens method, due 

the requirement of even more delay stages within the algorithm.

The next chapter explores the three algorithms for calculating the PQRD further by 

detailing several insightful examples. These examples clearly demonstrate which of the three 

algorithms is the most appropriate to use. This chapter has assumed that when calculating 

the PQRD of the polynomial matrix A(z), the position of the zero lag coefficient m atrix 

within the polynomial matrix is known as this is required in each of the three decomposition 

algorithms when applying an EPGR. However, this is not always the case. The significance 

of the zero lag coefficient m atrix and how it can be manipulated to decrease the number of 

EPGRs required to reach convergence are also discussed in the following chapter. Finally, 

the potential application of the PQRD to MIMO communications is discussed in Chapter 8 

of this thesis.
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Chapter 6

D iscussion and Exam ples o f the  
A lgorithm s for Calculating the QR  
D ecom position of a Polynom ial 
M atrix

The objective of this chapter is to illustrate how each of the three algorithms for calculating 

the QRD of a polynomial matrix, which were previously introduced in Chapter 5, operate 

through several insightful examples. In particular, the set of examples demonstrate that the 

PQRD-BC algorithm is generally the best algorithm to use, as it typically requires the fewest 

number of EPGRs to converge and therefore requires the least amount of computational 

time. Note th a t this is not the case if the three algorithms are applied to a scalar matrix. 

For this case, the PQRD-BS algorithm will be computationally the least expensive, as it will 

not require any search routine to locate the dominant element at each iteration. However, 

with polynomial matrices there is an added dimension to the problem as each element of 

the m atrix is a polynomial with an associated set of coefficients, which must all be driven 

sufficiently small in m agnitude to achieve a PQRD. Furthermore, the order of the polynomial 

m atrix grows at each iteration of each of the algorithms and so the best choice of algorithm 

for calculating the QRD of a scalar matrix, is not necessarily the best technique of achieving 

the same decomposition of a polynomial matrix. Note tha t throughout this thesis an iteration 

of any of the PQ RD algorithms, will refer to the process taken zero a single coefficient of the 

polynomial m atrix. In the PQRD-BS and PQRD-BC algorithms this will involve a single
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EPGR. However, with the PQRD-SBR algorithm an iteration will consist of an EPGR and 

an inverse time-shift matrix.

For some polynomial matrices, the performance of the PQRD-BS algorithm may be com

parable to the PQRD-BC algorithm, as demonstrated by the example given in the previous 

chapter, but this is not consistently the case. Furthermore, the set of examples presented in 

this chapter demonstrates the PQRD-SBR algorithm to have the worst performance of the 

three algorithms, as it typically requires significantly more iterations to converge, where each 

iteration of this algorithm is generally computationally more expensive than a single iteration 

of either the PQRD-BS or PQRD-BC algorithms.

Before detailing the set of numerical examples, this chapter firstly discusses the signifi

cance of the coefficient m atrix containing all coefficients associated with the zero-lag, i.e. the 

set of coefficients of z°, of each of the polynomial elements of the m atrix to be decomposed. 

For the numerical example in Chapter 5, the location of this coefficient matrix within the 

polynomial input m atrix A(z) was specified as an input parameter to the algorithm. However, 

as the zero-lag coefficient matrix is a fundamental element of the proofs of convergence for 

each of the algorithms1, the set of examples aims to determine if the position of this matrix 

can be chosen to reduce the number of iterations required for each algorithm to converge. In 

particular, a specification step for the zero-lag coefficient m atrix is introduced; this can be 

implemented within all three of the PQRD algorithms at the outset of each iteration. This 

additional step generally increases the computational load of the algorithm and is therefore 

only an advantage in any of the three algorithms, if it significantly reduces the number of 

iterations required to reach convergence. The set of worked examples in this chapter indicate 

that this additional step can be effective at reducing the computational time of the PQRD- 

SBR algorithm by considerably reducing the number of iterations required for the algorithm 

to converge. However, this additional step does not guarantee improved performance of all 

of the PQRD algorithms and this is demonstrated by the set of examples, particularly when 

it is used within the PQRD-BS and PQRD-BC algorithms.

JFor more information refer to the individual proofs of convergence for each of the PQRD algorithms 
detailed in Chapter 5.
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6.1 Im portance of the Zero-Lag Coefficient M atrix

The zero-lag coefficient m atrix of the polynomial m atrix A (z) £ C pxq is defined to be the 

m atrix containing the coefficients of z° from each of the polynomial elements, i.e. the coeffi

cient m atrix A (0 ) € Cpxq. Alternatively, this m atrix can also be referred to as the coefficient 

m atrix of order zero. This matrix has been mentioned numerous times in the previous chap

ter, most significantly when discussing the process implemented within all three algorithms 

to drive a dominant coefficient to zero by applying an EPGR. Incorporated within this EPG R 

m atrix is an elementary delay matrix, which is applied to the polynomial m atrix with the 

objective of moving the dominant coefficient so tha t it becomes the coefficient of z°, before 

applying the appropriate Givens rotation. Currently, in each of the algorithms for calculating 

the PQRD, the user must specify the position of the zero-lag coefficient m atrix as an input 

param eter to the algorithm, as was done for the numerical example of Chapter 5.

Alternatively, the EPG R could have been designed to always move the dominant co

efficient onto a different coefficient m atrix of the polynomial matrix. However, whichever 

coefficient m atrix is chosen it is im portant for the convergence of whichever of the three al

gorithms has been used, to keep the choice consistent throughout all iterations. The zero-lag 

coefficient m atrix is the most appropriate choice, so that if the algorithm is applied to a 

m atrix with scalar elements then it will generate an upper triangular m atrix also with scalar 

entries. If a different coefficient m atrix is chosen, then a polynomial upper triangular ma

trix would be generated, which is clearly unnecessary. Furthermore, the choice of a zero-lag 

coefficient m atrix is irrelevant for the potential application of this decomposition detailed in 

Chapter 8 , where the polynomial channel m atrix is representative of an LTI system and is 

therefore invariant to  time-shifts. However, the choice of this coefficient m atrix will affect the 

decomposition performed due to the non-uniqueness of the PQRD. In particular, specifying 

different coefficient matrices of the polynomial input m atrix to be the zero-lag coefficient 

matrix, will affect both  the number of iterations required for the algorithm to converge and 

also the orders of the two polynomial matrices generated by the decomposition.
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6.2 W orked Examples

The comparative performance of the three algorithms introduced in Chapter 5 for calculating 

the PQRD is now illustrated by applying each algorithm to the same representative set of 

polynomial matrices. This set of examples has been chosen to include matrices of varying 

dimensions, some with complex and some with real polynomial element coefficients. The set 

of examples also includes one polynomial input matrix, which not of full generic2 column 

rank.

There are two param eters that can affect the performance of the three algorithms for each 

example, these are the stopping criterion e and the truncation parameter p, which must both 

be chosen in a similar manner to the SBR2 algorithm, to optimise the speed and accuracy of 

the m atrix decomposition performed. Note tha t for the potential application of the PQRD 

to MIMO communications, an exactly upper triangular polynomial m atrix is required and 

so any approximations made beneath the diagonal, which are determined by the choice of 

e, will affect the accuracy of the decomposition performed. For the set of worked examples 

in this chapter, the same values for these two parameters are used, which have been chosen 

to enable each of the algorithms to calculate a fairly accurate PQRD without resulting in 

polynomial matrices of unnecessarily large orders. However, if a quicker computational time 

is required this can easily be resolved by setting the values of e and p  higher, although this will 

compromise the accuracy of the decomposition performed. Alternatively, if a more accurate 

decomposition is required, then the values of these parameters can be reduced.

Finally, the QRD of a polynomial m atrix is not unique and so the upper triangular 

and paraunitary matrices obtained by each of the three algorithms when given the same 

polynomial input matrix, will not be the same. However, these examples do not aim to 

compare the output matrices, but to demonstrate, which algorithm typically requires the 

fewest EPGRs to converge to approximately the same level of accuracy in the decomposition.

2This means the matrix is rank deficient for all values of the indeterminate variable 2 .
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C om putational C om plexity

It is difficult to compare the computational complexity of the three algorithms, as this is en

tirely dependent upon the order of the two polynomial matrices at each iteration and cannot 

be determined in advance. Furthermore, the observed orders at each iteration will be differ

ent for each of the three algorithms and so no direct comparison can be made. However, if it 

assumed that each algorithm is applied to the same polynomial matrix for only a single iter

ation, then the PQRD-BS algorithm will be computationally the least expensive of the three 

PQRD algorithms. All three algorithms implement the same routine to apply an EPGR, 

however, each differs in the search routine to locate the dominant coefficient. The PQRD- 

BS algorithm searches for the dominant coefficient in only one polynomial element at each 

iteration. The PQRD-BC algorithm searches through all polynomial elements beneath the 

diagonal of one column of the matrix and the PQRD-SBR algorithm through all polynomial 

elements beneath the diagonal of the polynomial matrix. W ith respect to a single iteration, 

each algorithm is therefore computationally more expensive than the previous. Furthermore, 

the PQRD-SBR algorithm has an additional undelay step, where at each iteration an ele

mentary inverse time-shift m atrix must be applied, and as this algorithm also requires the 

most complex of the three search functions for locating the dominant coefficient, it is over

all the most expensive per iteration. Due to the difficulty in comparing the computational 

complexity of the three algorithms, the computational time3 to calculate the PQRD using 

each algorithm is recorded for each example and used to compare the three algorithms. The 

computational complexity of each algorithm is formulated in Appendix C.

3Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.
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6.2.1 E xam ple 1

For the first example, each of the three algorithms for calculating the PQRD was applied to 

the polynomial m atrix

A i ( z )  =

1 +  2z -1  2 2 + z ~ l

3 z ~ l 2 +  z~2 1 +  z ~ l

2 l + 2z~2 2z~l

(6 . 1)

For each algorithm the energy based truncation method, with p  =  10-6 , was applied to both 

the paraunitary and the transformed polynomial matrices at the end of each iteration. For 

each implementation, the stopping condition was set so that each algorithm will stop once 

the magnitude of every coefficient associated with a polynomial element beneath the diagonal 

of the m atrix is less than 10~3. The results from applying each of the three algorithms to 

the polynomial test m atrix A ^ z )  can be seen in Table 6 .1.

This m atrix initially has only four non-zero coefficients associated with polynomial ele

ments positioned beneath the diagonal to drive to zero. However, each of the three algo

rithms will require more iterations and therefore also EPGRs than  four to converge, as each 

element has an associated set of coefficients all of which will be affected by each application 

of an EPGR. For example, when applying the PQRD-BS algorithm to this polynomial ma

trix, the first two steps of the algorithm to drive all coefficients of the polynomial elements 

021(2) =  3z-1  and a 31(z) =  2, to be sufficiently small, requires ten EPGRs. This is due to the 

non-zero lag coefficient of the polynomial element au (z) = 1 +  2z-1 , which will also change 

under application of the EPG R forcing new coefficients to emerge in polynomial elements be

neath the diagonal, but in the same column of the matrix. Note that the magnitude squared 

of the zero-lag coefficient of this polynomial element, i.e. the quantity | a n ( 0 )|2, will increase 

monotonically throughout all iterations of the algorithm and so convergence is guaranteed.

Of the three algorithms, the PQRD-BS algorithm required the least number of EPGRs 

to converge, taking only 71 iterations and only one sweep of the algorithm to reach a point 

where all coefficients associated with polynomial elements beneath the diagonal of the trans

formed upper triangular polynomial matrix are less than 10~ 3 in magnitude. The Frobenius
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PQ R D -B S P Q R D -B C PQRD-SBR

N um ber o f E P G R s 71 74 125
N um ber o f Sweeps 1 1 -

Final order o f R(z) 30 35 28
Final order o f Q(z) 37 39 33

E r e l 3.53 x 10-3 2.85 x 10"3 2.62 x 10'3

Final value o f g 8.93 x 10“4 8.66 x 10~4 9.66 x 10"4
Final value o f L 2.46 x 10~3 2.01 x 10~3 3.54 x 10'3
C om putational T im e (Seconds) 0.055 0.061 0.109

Table 6.1: Results from applying each of the three PQRD algorithms to the polynomial 
test matrix € R 3x3x2.

norm of the polynomial elements beneath the diagonal of the approximately upper triangu

lar polynomial m atrix obtained from this algorithm was found to be 2.46 x 10-3 , which is 

clearly very small when compared to the initial Frobenius norm of the polynomial m atrix  

IIAjCOII^ = 6.56. Figures 6.1 and 6.2 illustrate the approximately upper triangular polyno

mial matrix (of order 30) and the paraunitary transformation m atrix (of order 37) obtained 

using this algorithm. From inspection of these figures, it can be observed that the series of 

coefficients for each polynomial element of the two matrices is approximately centred about 

the zero-lag coefficient. Furthermore, although the algorithms for calculating the PQRD only 

formulate an approximate decomposition, Figure 6.1 shows th a t the coefficients associated 

with polynomial elements beneath the diagonal are very small and so a good approximation 

has been calculated. The relative error of the decomposition was calculated according to 

equation (5.40) and was found to be 3.53 x 10-3 , which accounts for both the error observed 

from truncating the orders of both polynomial matrices and the fact that the algorithm only 

generates an approximately upper triangular polynomial matrix. Note tha t the order of both 

polynomial matrices generated by the algorithm could be further reduced if required for the 

application of the PQRD to MIMO communications by setting a higher value for the trun

cation param eter g,  but this will affect the accuracy of the decomposition performed and 

therefore also the relative error.

The performance of the PQRD-BC algorithm was similar to tha t of the PQRD-BS algo-
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Figure 6.1: The coefficients of the polynomial elements of the approximately upper tri
angular polynomial matrix R(^), obtained when the PQRD-BS algorithm was applied 
to the polynomial matrix A ^ z).
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Figure 6.2: The coefficients of the polynomial elements of the paraunitary transfor
mation matrix Q (*) obtained using the PQRD-BS algorithm with polynomial input
matrix Aj(^).
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rithm, although it did require a further three EPGRs to converge, therefore requiring more 

computational time. From Table 6.1, the orders of the two matrices obtained from this al

gorithm are seen to be slightly larger than those obtained using the PQRD-BS algorithm, 

although the relative error of this decomposition is smaller. The PQRD-SBR algorithm re

quired the most EPGRs of the three algorithms, taking a total of 126 iterations to reach 

approximately the same level of convergence. Furthermore, in general each iteration of this 

algorithm is computationally more expensive than the other two algorithms, due to the addi

tional inverse-time shift step and the more complicated search routine to locate the dominant 

coefficient. The computational time4 for each of the three algorithms is contained in Table 

6.1 and broadly reflects the varying number of EPGRs required for the different algorithms 

to converge.

Finally, Figure 6.3 demonstrates the Frobenius norm of all polynomial elements beneath 

the diagonal of the transformed polynomial matrix, at the end of each iteration, of each of 

the three algorithms. This measure, referred to as L , was previously defined in equation 

(5.41) of Chapter 5 and is a good measure to demonstrate the convergence of each of the 

three algorithms. In this figure, both the PQRD-BS and PQRD-BC algorithms can clearly 

be seen to converge in a process of steps, each requiring their own stopping criterion to be 

met before a subsequent step can begin. For this reason, the PQRD-SBR algorithm appears 

to initially converge faster, although if the stopping criterion e is set smaller, this will no 

longer be the case. From this figure, it is also apparent tha t the measure L  does not decrease 

monotonically, but this does not contradict the proofs of convergence detailed in Chapter 5.

Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.
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Figure 6.3: The Frobenius norm of the polynomial elements beneath the diagonal 
of the transformed polynomial matrix at each iteration of each of the algorithms for 
calculating the PQRD when applied to the first polynomial test matrix.

6 .2 .2  E x a m p le  2

For the second example, each of the three algorithms for calculating the PQRD was applied 

to the polynomial m atrix A 2(2) E IR3x3x4, whose entries were fourth order FIR filters with 

real coefficients drawn independently from a normal distribution with mean zero and unit 

variance. This polynomial m atrix has coefficient matrices A (0 ),. . . ,  A(4) and is illustrated 

in Figure 6.4. The polynomial m atrix has 15 non-zero coefficients beneath the diagonal of 

the matrix, accounting for approximately 56% of the total Frobenius norm of the matrix.

Again each algorithm was applied to this polynomial matrix, using the same stopping 

condition and truncation parameter as used in the first example (i.e. c =  10-3  and p  =  10-6 ). 

This time the PQRD-BC algorithm required the least amount of EPGRs (356) to converge 

to a point where all coefficients associated with the polynomial elements positioned beneath 

the diagonal of the approximately upper triangular polynomial matrix are less than 10-3  in 

magnitude. However, as with the previous example its performance was found to be similar 

to that of the PQRD-BS algorithm, which required only five additional EPGRs to reach
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three algorithms for c alculating the PQRD.

approximately the same level of decomposition. Once again, the PQRD-SBR approach can 

be seen to  recpiire considerably more EPGRs, requiring a total of 901 iterations to converge. 

The com putational tim e for this algorithm is also approximately 10 times greater than that for 

the other two algorithms due to these additional iterations. The results from applying each of 

the three algorithms to  the polynomial m atrix A 2 (z) can be seen in Table 6.2, dem onstrating 

that the PQ RD-BC algorithm  is clearly the best to use in this case. The PQRD-BC algorithm 

required the least tim e to  converge and the orders of the resulting polynomial matrices Q(z) 

and R (2) are both  less than  those obtained from the other two algorithms. The relative error 

for this decomposition was slightly larger than  th a t observed from the other algorithms, but 

not by a significant amount. This measure has dem onstrated th a t a very good approximate 

decomposition has been achieved with each of the PQRD algorithms.

The Frobenius norm  of all polynomial elements beneath the diagonal of the polynomial 

t ransformed m at rix a t each iteration of each of the three decomposition algorithms can be seen 

in Figure 6.5. This measure, previously defined as L in equation (5.41) of Chapter 5, confirms 

the convergence of each of the three PQRD algorithms. Notice th a t this quantity does not
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P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 361 356 901

N um ber o f Sw eeps 2 3 -

Final order o f R(z) 111 66 128

Final order o f Q(.z) 113 77 135

Elrel 8.06 x 1()-3 9.13 x 10"3 8.77 x 10“3

Final value o f y 9.87 x 10~4 8.85 x 10~4 9.92 x 10~4

Final value o f L 5.09 x 10"3 4.08 x 10“3 9.08 x 10~3

C om putational T im e (Seconds) 0.425 0.411 4.565

Table G.2: Results from applying each of the PQRD algorithms to the polynomial test 
matrix A 2(z) £ fl£3x3x4.

decrease monotonieally for any of the algorithms and can be seen to abruptly increase by a 

considerable amount in the second sweep of both the PQRD-BS and PQRD-BC algorithms. 

Despite this, convergence of both algorithms is guaranteed and so at a future iteration of the 

algorithm, the quantity will be reduced again. This behaviour is due to the application of 

EPG Rs allowing the Frobenius norm of the polynomial elements above the diagonal to be 

redistributed below the diagonal in columns positioned to the right of the coefficient th a t it is 

driving to zero. In fact, to  zero the coefficient ajk(r) (where 3 > k  and r e  Z denotes the lag 

index), any coefficients associated with the polynomial elements aj^k+l( z ) , . . .  can

increase in m agnitude squared, with the increase due to a decrease in the relevant elements 

above the diagonal. The quantity L  can therefore increase at any stage (i.e. at any step 

of any sweep) of the algorithm, however, the most notable changes, such as the behaviour 

dem onstrated in Figure 6.5, will only ever occur when multiple sweeps of either the PQRD-BS 

or PQRD-BC algorithm s are required. The initial Frobenius norm of the m atrix was found to 

be ||A 2(z ) ||F =  6.39, w ith the Frobenius norm of the elements beneath the diagonal equal to 

3.58. Note th a t the  measure L increases nearly to this value in the second sweeps of both the 

algorithms; the PQ RD -BC algorithm to 2.83 and PQRD-BS algorithm suddenly increases to 

3.33. However, ra ther than  being distributed over all coefficients beneath the diagonal as in 

the input m atrix  A 2(z), now the majority of this measure is contained in only one element 

and typically in only one of the associated coefficients, which can then be driven to zero by
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application of a single EPGR.
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Figure 6.5: The Frobenius norm of the polynomial elements beneath the diagonal 
of the transformed polynomial matrix at each iteration of each of the algorithms for 
calculating the PQRD when applied to the polynomial matrix A 2(z).

Figures 6.6 and 6.7 illustrate the approximately upper triangular and the paraunitary 

transformation polynomial matrices obtained using the fastest of the three algorithms to 

converge, the PQRD-BC algorithm. Notice that, unlike all other polynomial elements of 

the approximately upper triangular polynomial matrix R (z), the set of non-zero coefficients 

associated with the third diagonal polynomial element £33(2 ) is not centred about the zero-lag 

coefficient. The same observation can also be made about the coefficients associated with the 

polynomial elements of the paraunitary transformation matrix Q(z).  Although this is not 

necessarily a problem, if all of the polynomial elements are forced to be centred about the 

same lag by applying an elementary delay matrix, then the order of both polynomial matrices 

can generally be reduced further by applying the energy based truncation method once more. 

Furthermore, this final step will generally not reduce the accuracy of the decomposition any 

further and the overall transformation will remain paraunitary.

The polynomial elements of the matrix become out of alignment due to multiple applica
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tions of elem entary delay matrices, which are applied over a series of EPGRs. For example, to 

drive any of the coefficients associated with the polynomial element j (2 ) sufficiently small, 

all polynomial elements of the m atrix in the same row as this element will he affected by the 

elementary delay m atrix  incorporated within the required EPGR. Over many iterations of 

the algorithm these operations will lead to polynomial (dements in the third row, which are 

not all centred over the same series of lags as all other elements of the polynomial matrix. 

However, the non-zero coefficients associated with all elements in each row of the m atrix, will 

generally be positioned over the same series of lags. However, if there are polynomial ele

ments positioned beneath the elements that are not aligned in the matrix, i.e. if there was a 

fourth row to the polynomial m atrix used in this example, then over future iterations to zero 

polynomial elements positioned beneath these non-aligned elements, the appropriate EPGRs 

will result in the polynomial elements in the third row being realigned to be centred about the 

zero-lag. Therefore, the only possible polynomial elements, where this realignment cannot 

happen, will be positioned in the bottom  row containing a diagonal polynomial element of 

the m atrix and this is therefore generally only ever an issue with input matrices that are 

either square or fat, i.e. for matrices tha t have at least as many columns as rows. The same 

problem can also be seen in the paraunitary transform ation m atrix Q (z), whose elements will 

also not be aligned, in accordance to the elements of the upper triangular polynomial m atrix 

R  (2 ).

The polynomial elements of the resulting approximately upper triangular polynomial 

m atrix R(z)  obtained from the PQRD-BC algorithm, depicted in Figure 6 .6 , can easily be 

realigned by applying a series of elementary delay matrices to this m atrix, such tha t the 

coefficient with the largest m agnitude in each diagonal polynomial element becomes the 

coefficient of z°.  Note th a t if using a final alignment, the delay matrices must also be applied 

to the paraunitary  polynomial m atrix Q (z). For this example, aligning the associated series 

of coefficients, of the polynomial elements of both matrices obtained using the PQRD-BC 

algorithm, to be over the same series of lags and then implementing a final truncation of 

these matrices using the same value of the truncation param eter, i.e. p = 10~6, the order of 

R(z)  was reduced from 66  to 51 and the order of Q(z) from 77 to 60, with 110 additional cost
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Figure G.6: The coefficients of the polynomial elements of the upper triangular poly
nomial matrix R(;r), obtained when the PQRD-BC algorithm was applied to the poly
nomial matrix A 2(z).
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Figure 6.7: The coefficients of the polynomial elements of the paraunitary transfor
mation matrix Q(z) obtained using the PQRD-BC algorithm with polynomial input
matrix A 2(z).

138



6.2 Worked Examples

to  the relative error.

Moreover, if this additional step is undertaken at regular intervals in each algorithm it will 

also ensure that it is not possible to truncate a significant number of coefficients associated 

with ju st one of the polynomial elements from the m atrix, such as r [i3 (z) in this example. 

It could even be possible1 to truncate an entire polynomial element from the m atrix if this 

additional step is not undertaken, although it would probably also require a inappropriate 

value of p. Note th a t this was not an issue within the SBR2 algorithm, as the elementary delay 

matrices are applied on both the left and right hand-side of the polynomial para-Hermitian 

input m atrix, which ensures th a t the diagonal elements are not affected by the application of 

elementary delay m atrices and so the polynomial transformed m atrix remains centred about 

the zero-lag coefficient m atrix at all times. Furthermore, note th a t this point is rarely an 

issue with the PQRD-SBR algorithm, due to the elementary inverse time-shift, step following 

the application of the EPG R, which will help keep all polynomial elements centred about 

the zero-lag coefficient matrix. If this step is undertaken throughout the algorithm it will be 

referred to as the Zero-Lag Specification Step (ZLSS), which will now be defined.

6.2 .3  Zero-Lag Specification  Step

The significance of the zero-lag coefficient m atrix has been discussed in Section 6 .1. This 

coefficient m atrix plays a  pivotal role in the proof of convergence for each of the three algo

rithm s, as each algorithm  converges through the columns of the polynomial m atrix from left 

to right, even in the SBR approach where there is no specified order in which the EPGRs 

are applied. Each column converges as a result of the coefficient associated with the zero-lag 

of the diagonal element in the column increasing in m agnitude squared to account for the 

decrease in the Frobenius norm of the elements beneath the diagonal, i.e. the k th column 

converges as a result of the quantity |a*;fc(0) |2 increasing. During this process, the application 

of EPG Rs will affect all other coefficients associated with the diagonal element in the column 

and these coefficients can decrease in m agnitude squared, which will then also mean the ap

propriate coefficients beneath the diagonal increasing in magnitude squared. It is therefore 

reasonable to insist on the diagonal zero-lag coefficient being the largest possible coefficient,
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which is easily enforced by applying an elementary delay m atrix of the form dem onstrated in 

equation (3.8), where k  defines the row and column index of the diagonal element and t the 

lag index of the coefficient with maximum m agnitude in this element .

This step will be referred to as the Zero-Lag Specification (ZLS) step and aims to realign 

the series of coefficients associated with each diagonal element of the transformed polyno

mial m atrix A( z )  £ C px<i, to ensure that the zero-lag coefficient is the largest coefficient in 

m agnitude squared. This is achieved by applying a series of elementary delay matrices, for

mulated according to Section 3.3.2 and can be implemented at the beginning of each iteration 

(including the first) w ithin any of the three algorithms for calculating the PQRD. Suppose 

the set of coefficients with largest m agnitude in the diagonal polynomial elements of A(z) 

is found to be {aji ( t \ ), (1 2 2 (6 2 ), ■ • •, a/v/v(f/v)}> where N  =  mill(p, </). Then the appropriate 

delay matrices are applied to A (z) to obtain the transformed polynomial m atrix

A' ( z )  = B (JV’t" > ( z ) . . . B ( u , ) ( z)A(z) .  (6 -2 )

Following this transform ation, all coefficients of the polynomial m atrix will be centred about 

the zero-lag coefficient m atrix. Note th a t this additional step will increase the computational 

load of the algorithm and so it is im portant to see if the additional computational cost 

is more or less than  the com putational cost observed if the number of iterations of any 

of the algorithms is reduced. As this is not easily assessed, due to the dependence of the 

com putational cost upon the order of the two matrices within the algorithm at each iteration, 

the com putational times for the two implementations of each algorithm are compared. Note 

th a t if the ZLS step is implemented within the PQRD-SBR algorithm, then the third step 

(referred to as the un-delay or inverse tiine-shift step in the description of the algorithm 

in Section 5.6) is no longer necessary. In this case, the ZLS step is sufficient to  remove 

the behaviour dem onstrated by Figure 5.10 and is therefore unnecessarily adding to the 

com putational tim e if it is used.

The two possible advantages of applying this ZLS step are: the orders of the polynomial 

matrices can be truncated with barely any deterioration in the relative error of the decompo
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sition, which is extrem ely useful for the application of the PQRD to MIMO communications 

where the order of the matrices is of critical importance; secondly, if the ZLS step is per

formed between every iteration in each of the algorithms it could ensure tha t a more accurate 

polynomial m atrix decomposition is obtained, although this is not guaranteed. The drawback 

with implementing this technique at each iteration is th a t it will add to the computational 

cost of the associated algorithm. This additional realignment of the polynomial elements at 

the beginning of each iteration of the algorithm is now assessed in the context of the previous 

example.

6 .2 .4  E xam ple 2 C ontinued

The three algorithms for calculating the PQRD were again applied to A 2(2), this time im

plementing the ZLS step at the s tart of each iteration of each of the algorithms and the 

results obtained are contained in Table 6.3. Prom these results, the relative error observed 

has improved for each of the three decompositions, whist the order of the resulting polynomial 

matrices B(*) and Q (z) are, in each case, considerably shorter. Furthermore, the number 

of EPG Rs required, and therefore also the computational time, in both the PQRD-BS and 

the PQRD-SBR algorithm  have been reduced despite the additional computations required 

to implement the ZLS step. In fact, the PQRD-SBR algorithms required an impressive 528 

fewer iterations, reducing the computational time from 4.57 to 1.19 seconds. The PQRD-BS 

algorithm also required fewer iterations, although the com putational time increased. Simi

larly, the PQRD-BC algorithm did not improve by implementing the ZLS step, requiring a 

further 40 EPGRs. In this case, the performance of the decomposition algorithm has im

proved in term s of the relative error and the order of the matrices. Note however, th a t the 

original PQ RD-BC algorithm  as detailed in C hapter 5 was the fastest of the three algorithms 

to converge.

Finally, Figure 6.8  illustrates the Frobenius norm of all polynomial elements beneath 

the diagonal of the transform ed polynomial m atrix at the end of each iteration, for each of 

the three decomposition algorithms. This figure displays the same measure for each of the 

algorithms, with and without the ZLS step, and shows th a t the erratic behaviour observed in
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P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 330 402 373

N um ber o f Sw eeps 1 2 -

Final order o f  R(.z) 50 46 69

Final order o f  Q(^) 59 43 43

E r e l 6.23 x 10"3 8.05 x 10~3 7.72 x 10~3

C om putational T im e (Seconds) 0.52 1.61 1.19

Table 6.3: Results from applying each of the algorithms for calculating the PQRD to 
the polynomial test matrix A 2(z) £ K 3x3x4 whilst using the zero-lag specification step.

the second sweeps of the original PQRD-BS and the PQRD-BC algorithms can be removed 

by implementing the ZLS step at the start of each iteration.

Alternatively, the jum py behaviour of the measure L observed in Figure 6.5 when applying 

the PQRD-BS and the PQRD-BC algorithms could have been removed by applying an inverse 

time-shift m atrix as dem onstrated by equation (5.30) to the transformed polynomial m atrix 

after every application of an EPGR. This was also implemented at the end of each iteration 

of the PQRD-SBR algorithm; however, in the two algorithms that proceed as a series of steps 

this will only need to be applied in any iterations undertaken following the first sweep of either 

of these algorithms. Note tha t for this example, implementing the undelay step, the PQRD- 

BS algorithm required 376 EPG Rs and took 1.71 seconds, whilst the PQRD-BC algorithm 

required 398 iterations and 1.57 seconds to converge. For this example, the best algorithm to 

use is the PQRD-BS with the ZLS step. The computational time for this algorithm was not 

as small as th a t of the PQRD-BC algorithm without the ZLS step, but the erratic behaviour 

in the convergence was not observed.
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Figure 6 .8 : The Frobenius norm of the polynomial elements beneath  the  diagonal of 
the  transform ed polynom ial m atrix  over the series of iterations for each of the  PQ RD  
algorithm s when applied to  A 2 (z) for the  cases (i) using the  original code as described 
in C hap ter 5 and (ii) when implem enting the algorithm s w ith the  ZLSS.
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6.2 .5  E xam p le 3

For the th ird  example, the polynomial m atrix A ^ z )  E C 5x3x4 illustrated in Figure 6.9, was 

chosen to he complex, where both the real and imaginary parts of each polynomial element 

were independently drawn from a normal distribution with mean zero and unit variance. This 

polynomial m atrix has complex coefficient matrices A (0 ) ,. . .  , A(4). The Frobenius norm of 

this m atrix was found to  be 11.42, with 79% of this positioned beneath the diagonal of the 

matrix.
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Figure 6.9: The magnitude of the coefficients of the polynomial elements of the poly
nomial matrix A 3(z) to be used as input to each of the three algorithms for calculating 
the PQRD.

Each of the three original algorithms for calculating the PQRD (as described in Chapter 

5) were applied to  the polynomial m atrix A 3 (2 ). The energy based truncation method 

was again used w ithin each algorithm with p = 10-6  and the stopping criterion set as 

e = 10-3 . The results from applying each of the three algorithms to this polynomial matrix 

are contained in Table 6.4. The results confirm th a t the  PQRD-BC algorithm  was again 

significantly faster than  the two other algorithms to implement, requiring only 589 EPGRs 

to converge to  an approxim ately upper triangular polynomial m atrix, where the m agnitude
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of each coefficient associated with any of the polynomial elements positioned beneath the 

diagonal is less than  10~3. Furthermore, this algorithm required the least time to converge and 

the orders of the resulting matrices from this algorithm are smaller than  those obtained from 

the other two decomposition algorithms. The relative error of the decomposition obtained 

using this algorithm was found to be 9.53 x 10-3 , illustrating th a t a very good approximate 

decomposition can be achieved. Figures 6.10  and 0.11 illustrate the polynomial matrices 

Q(;r) (of order 43) and R (z) (of order 43) obtained using the PQRD-BC algorithm. From 

inspection of the series of coefficients of the polynomial elements of the polynomial m atrix 

R ( 2 ) in Figure 6 .10 , it clear th a t a good approximation to an upper triangular polynomial 

m atrix has been made by the decomposition algorithm.

The PQRD-BS algorithm required considerably more EPG Rs (762) than  the PQRD-BC 

algorithm and as a result slightly more computational time. As with the previous two exam

ples, the PQRD-SBR algorithm was the slowest to converge, requiring over twice as many 

EPG Rs than  either the PQRD-BS or PQRD-BC algorithms. As a result, the computational 

time was much slower, taking over four times longer than either of the other two algorithms 

to converge.

P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 762 583 1607

N um ber o f Sw eeps 2 2 -

Final order o f  R(^) 34 33 43

Final order o f Q(^) 50 43 48

E rel 7.65 x 10~3 9.53 x 10"3 5.94 x 10"3

Final value o f g 9.28 x 10~4 9.42 x 10~4 9.96 x 10~4

Final value o f L 6.26 x 10"3 5.58 x 10“3 1.03 x 10~2

C om pu tational T im e (Seconds) 0.87 0.69 4.07

Table 6.4: Results from applying each of the PQRD algorithms to the polynomial test 
matrix A 3(^) G C 5x3x4.

The results were again repeated, applying each algorithm to the polynomial m atrix A 3 (z). 

However, th is tim e the ZLS step was applied at the s ta rt of each iteration of each of the three 

algorithms. The results obtained when using the ZLS step can be seen in Table 6.5. As
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Figure 6.10: The coefficients of the polynomial elements of the approximately upper tri
angular polynomial matrix R(.z), obtained when the PQRD-BC algorithm was applied 
to the polynomial matrix A 3(z).
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Figure 6.11: The coefficients of the polynomial elements of the paraunitary transfor
mation matrix Q(z) obtained using the PQRD-BC algorithm with polynomial input
matrix A 3(z).
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with the previous example, the most notable improvement can be seen in the PQRD-SBR 

algorithm, which required 454 fewer iterations to converge. However, the computational time 

required to calculate this decomposition has increased, dem onstrating th a t implementing 

the additional step was computationally more expensive th a t the extra iterations required 

if the ZLS step is not used. The number of EPG Rs have also decreased for the PQRD-BS 

algorithm, however, the computational time has again increased. Finally, for the PQRD- 

BC algorithm the num ber of EPGRs required for the algorithm to converge has increased. 

Figure 6.12 illustrates the Frobenius norm of all polynomial elements beneath the diagonal 

of the transform ed polynomial m atrix a t the end of each iteration, for each of the three 

decomposition algorithms. This figure displays the same measure for each of the algorithms, 

with and without the ZLS step. From this figure, it can be seen tha t there was no erratic 

behaviour observed in the second sweep of either the PQRD-BS or the PQRD-BC algorithms 

and so in this respect the ZLS step offers no advantage over the original algorithms.

Although the ZLS step dem onstrated some potential advantages when it was applied 

as part of the three algorithms for calculating the PQRD of A 2{z), for this example the 

additional step offers no advantage to any of the PQRD algorithms. The number of iterations 

required for the PQRD-BS and the PQRD-BC algorithms to converge was reduced, but 

the additional step forced the computational time for each of these algorithms to increase. 

Furthermore, for this example the ZLS step did not reduce the orders of the two polynomial 

matrices generated by any of the algorithms or help reduce the relative error. For this 

example, the PQ RD-BC algorithm as detailed in Chapter 5 requires the least number of 

EPG Rs and com putational time to converge. This algorithm is therefore the most efficient 

for this example.
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P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 650 602 1153
N um ber o f Sw eeps 2 2 -

Final order o f  R(2) 30 47 45

Final order o f  Q(<z) 45 43 51

Erel 7.71 x 10"3 8.96 x 10"3 7.69 x 10"3

C om putational T im e (Seconds) 0.95 1.36 4.36

Table 6.5: R esults from applying each of the  PQ R D  algorithm s to  the  polynomial 
test m atrix  A 3(z) €  C 5x3x4, each implem enting the ZLS step  a t each iteration  of the 
algorithm .
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Figure 6.12: T he Frobenius norm of the  polynomial elem ents beneath  the  diagonal of 
the  transform ed polynom ial m atrix  over the  series of iterations for each of the  PQ R D  
algorithm s when applied to  for the  cases (i) using the  original code as described
in C hapter 5 and  (ii) when implementing the algorithm s w ith the ZLSS.
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6.2 .6  E xam p le 4

For the final example, the three algorithms for calculating the PQRD were applied to the 

polynomial m atrix  A 4(z) G C 5x3x4. This m atrix is the same as the polynomial m atrix 

A 3(z), except th a t the th ird  column of the m atrix has been set equal to the second, resulting 

in a polynomial m atrix  th a t does not have full column rank. As the PQRD-BC algorithm 

converged in the least number of iterations when applied to A 3(z), this algorithm was again 

used to calculate the PQ RD  of A 4(z). This algorithm required 387 iterations and only one 

sweep of the algorithm  to converge to a point where g < 10-3 . The upper triangular m atrix 

obtained by the algorithm  is illustrated in Figure 6.13, where the th ird  diagonal polynomial 

element of the m atrix  2133(2 ) is approximately equal to zero. In fact,the Frobenius norm of 

this polynomial element is found to be 2.66 x 10~6. The paraunitary transform ation m atrix 

Q(z)  obtained from the decomposition is dem onstrated in Figure 6.14.

Note tha t the PQ RD  of any polynomial m atrix A(z) G  C pxq exists even if the m atrix is 

not of full rank. However, in this case, a number of the diagonal elements of the polynomial 

m atrix B (*) will be equal to zero. For the scalar m atrix case, this will mean tha t if the 

decomposition is to be used to solve a set of linear equations of the form A x  =  b (for x, 

given A  and b) by back substitution, then it will not be possible to calculate every element 

of x. Depending on the position of the zero(s) it may still be possible to obtain estimates 

of some of the elements. The same will be true if this problem is extended to polynomial 

matrices.
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Figure 6.13: The coefficients of the polynomial elements upper triangular polynomial 
matrix EM, obtained when the PQRD-BC algorithm was applied to the polynomial 
matrix A 4(z).
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Figure 6.14: The coefficients of the polynomial elements paraunitary transformation
matrix Q( z) obtained using the PQRD-BC algorithm with polynomial input matrix
A A(z).
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6 .2 .7  O ther Zero-Lag O ptions

In Section 6.1 the im portance of the zero-lag coefficient m atrix was discussed. W ithin each of 

the PQ RD algorithms, the zero-lag coefficient m atrix can be chosen from any of the coefficient 

matrices of the polynomial matrices. However, due to the non-uniqueness of the polynomial 

decomposition, the choice will affect the decomposition performed. In particular, the choice 

will result in the different algorithms requiring a different number of EPGRs to converge. 

Furtherm ore, it will also result in polynomial matrices of different orders. The choice of the 

zero-lag coefficient m atrix  is im portant for convergence of each of the algorithms. For this 

reason, three m ethods for choosing the zero-lag coefficient m atrix from the polynomial input 

m atrix a t the beginning of each iteration of the algorithms has been developed. The three 

techniques are

1. M e th o d  1: The zero-lag coefficient m atrix is specified to  be the first coefficient m atrix 
within each example. (This has been used for all examples in this chapter)

2. M eth o d  2: The zero-lag coefficient m atrix is chosen to be the coefficient m atrix 
associated w ith the coefficient of a n (z) with largest magnitude.

3. M eth o d  3: The zero-lag coefficient m atrix is chosen to  be the coefficient m atrix with 
the largest Frobenius norm.

Each of the three PQ RD  algorithms (as detailed in Chapter 5) was again applied to the first 

three examples from this chapter, using each of the three options discussed above. The num

ber of EPG R s required for each implementation of each of the three algorithms to converge 

are contained in Table 6 .6 . In this table, for each algorithm and each example, the option 

th a t required the least num ber of EPG Rs is highlighted in red.

The results suggest th a t for both the PQRD-BS and PQRD-BC algorithms, there is 

no relationship between either the initial choice of the zero-lag coefficient m atrix and the 

number of EPG R s required for the algorithm to converge. However, w ith the PQRD-SBR 

algorithm choosing the zero-lag coefficient m atrix to be the coefficient m atrix containing the 

largest coefficient of the polynomial element a n (z), i.e. using the second m ethod, will reduce 

the num ber of EPG R s required significantly for each of the three examples. For the second 

example, the PQ RD-SBR algorithm using the second m ethod requires fewer EPG Rs than  the
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P Q R D -B S P Q R D -B C P Q R D -S B R

M .l M .2 M .3 M .l M .2 M .3 M .l M .2 M .3

E xam p le  1 71 85 85 74 59 59 125 104 104

E xam p le  2 361 333 324 356 414 350 901 294 479

E xam p le  3 762 792 788 583 627 585 1607 1318 1367

Table 6.0: The number of EPGRs required for each algorithm for calculating the 
PQRD to converge, when the initial zero-lag coefficient matrix is specified using the 
three different options method 1 (denoted as M .l in the table), method 2 (M.2) or 
method 3 (M.3). For each example, the method requiring the least number of EPGRs 
for each algorithm is highlighted in red.

PQRD-BC algorithm, which currently offers the best performance. However, each iteration of 

the  PQRD-SBR algorithm  is typically computationally more expensive than  a single iteration 

of the PQRD-BC algorithm and so the computational time required for the decomposition is 

still larger than  th a t observed with the PQRD-BC algorithm.

6.3  C o n c lu s io n s

This chapter has dem onstrated the performance of the three algorithms for calculating the 

QRD of a polynomial m atrix through several examples. The results have shown that the 

PQRD-BS and PQ RD-BC algorithms generally require considerably fewer EPGRs than  the 

PQRD-SBR algorithm. The SBR approach, although an extremely efficient technique for 

achieving the EVD of a polynomial matrix, is not the most appropriate for calculating the 

PQRD. In hindsight, this could be expected due to the polynomial input m atrix converging 

to an upper triangular m atrix  through the columns of the m atrix from left to right and 

so a process of steps, which will transform the m atrix by annihilating the elements of the 

m atrix from left to  right, would be more appropriate for convergence. Furthermore, typically 

the PQRD-BC algorithm  required the least number of EPG Rs and for the single example 

where this is not the  case (Example 1), this algorithm only required a few more iterations 

to  converge th an  the PQRD-BS algorithm. Note that if both these algorithms are applied 

to a scalar m atrix  they will require the same number of Givens rotations, bu t the PQRD-
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BC algorithm will be computationally slightly more expensive, due to the routine required 

to find the dom inant coefficient in each step. However, when applying the algorithms to a 

polynomial m atrix it becomes more difficult to compare the algorithms, due to the additional 

dimension to the problem resulting from each polynomial element of the m atrix having an 

associated set of coefficients, which must all be driven to zero to achieve the decomposition. 

Furtherm ore, the com putational cost of each algorithm is entirely dependent on the order of 

the polynomial matrices throughout the algorithm and the orders of both matrices, which 

will grow at each iteration, cannot be specified in advance.

The significance of the zero-lag coefficient m atrix within the PQRD has been discussed 

within this chapter. This coefficient m atrix is fundam ental for convergence of each of the 

algorithms and whichever coefficient m atrix is chosen to be the zero-lag coefficient m atrix 

from the polynomial input m atrix to the algorithm, the choice will affect the decomposition 

performed. In particular, the choice of this coefficient m atrix will affect the numbers of 

iterations required for the algorithm to converge and will also produce a different paraunitary 

transform ation and approximately upper triangular polynomial matrices of different orders. 

The ou tpu t polynomial matrices from the algorithm are not unique, but this is not an issue 

for the potential application of the algorithm discussed in Chapter 8 .

Several m ethods for choosing the zero-lag coefficient m atrix from the polynomial input 

m atrix have been discussed in this chapter. However, the basic PQRD-BC algorithm as 

detailed in C hapter 5, w ithout any additional step, appears to  be the best choice of algorithm 

to calculate a QRD of a polynomial matrix. The results have dem onstrated th a t the choice 

of zero-lag coefficient m atrix  can significantly improve the performance of the PQRD-SBR 

algorithm and can drastically reduce the number of iterations required for this algorithm to 

converge. A process of realigning the zero-lag coefficient m atrix of the input m atrix has been 

presented in Section 6.2.3 and for some examples, using this technique, can reduce the number 

of iterations required for each algorithm. However, using this technique requires additional 

com putations and so it does not always provide improved performance, even if the number 

of EPG Rs has been vastly reduced. This step also removes any erratic behaviour observed 

in the m easure of the Frobenius norm of the polynomial elements beneath the diagonal of
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the m atrix over the series of iterations (i.e. EPG Rs) of the PQRD-BS and the PQRD-BC 

algorithms th a t is often observed if multiple sweeps of either of these algorithms are required. 

This behaviour can be seen in Figure 6.5. The choice of the zero-lag coefficient m atrix adds 

another param eter to each of the algorithms, which is not present for the scalar m atrix 

decomposition. Finally, note th a t this point was never an issue in the SBR2 algorithm as the 

input m atrix was para-Herm itian and must remain so through all iterations of the algorithm.
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C hapter 7

T he Singular Value D ecom position  
o f a Polynom ial M atrix

7.1 Introduction

The singular value decomposition of a scalar m atrix is one of the most useful developments 

in linear algebra. It can be used to determine the rank, range and null space of a  matrix, 

but can also be used for calculating the pseudo-inverse of a m atrix and for solving a set 

of homogeneous linear equations. Consequently, the decomposition has a wide range of 

applications in areas such as autom atic control, scientific computing and narrowband adaptive 

sensor array processing [25]. In the context of signal processing, it can be used to decorrelate 

a set of instantaneously mixed signals and often as a result can be used to identify and then 

separate the signal and noise subspaces. The SVD is also the m ethod of choice for solving most 

linear least-squares problems as it offers a numerically robust solution, which can be calculated 

by directly applying the SVD to the da ta  m atrix [25,38]. There exist several techniques for 

calculating the decomposition, which are discussed along with a detailed description of the 

decomposition and its properties in Chapter 2 .

However, in broadband signal processing where polynomial matrices are generally part of 

the generative model for the observations, the SVD can no longer be applied as each element 

of the m atrix now consists of a polynomial with an associated set of coefficients. Instead, 

a  polynomial m atrix  singular value decomposition (PSVD) has been developed. For the 

polynomial m atrix  A (z) € C px<7, the objective of the PSVD is to calculate the paraunitary
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matrices U (z) 6  C pxp and V (z) € C qxq such tha t

U (z)A (z)V (z) = S(z) (7.1)

where S(z) € C pxq denotes a diagonal polynomial m atrix and (•) the paraconjligation of 

the polynomial m atrix. The coefficients of the polynomial elements of A (z) can be either 

real or complex, however, the advantage of this decomposition over the polynomial m atrix 

eigenvalue decomposition (PEVD) is th a t it can be applied to polynomial matrices of any 

dimension, i.e. where it is not required that p = q for the polynomial matrices in equation

(7.1). As a consequence of using paraunitary matrices the transform ation will be energy (or

norm) preserving and so

IIA(Z)||2f = ||S(Z)||2f . (7.2)

This chapter discusses two methods of obtaining a singular value decomposition of a poly

nomial m atrix (PSVD). Firstly, the PSVD by polynomial m atrix QR decomposition (PQRD) 

algorithm is introduced. This algorithm operates by iteratively applying two PQRDs to the 

polynomial m atrix A (z) to transform  it into a diagonal polynomial m atrix S(z). Secondly, 

an already existing generalisation of the SVD to polynomial matrices is briefly discussed for 

comparison purposes. This m ethod was introduced in [21] and operates by calculating two 

PEVDs, each form ulated using the SBR2 algorithm, to calculate the parauntiary matrices 

U (z) and V (z). A potential application of the decomposition lies in the area of MIMO com

munications, where it can be used to transform a MIMO system into a set of independent 

subchannels. Recent research, which is discussed further in the penultim ate chapter of this 

thesis, has shown the PSVD by PEVD approach for this application obtains a good average 

bit error rate  (BER) performance for transmission over frequency selective quasi-static chan

nels [11-14]. The necessary qualities of the decomposition, and in particular the properties 

of the resulting diagonal m atrix S(z), which are required for this application, are then briefly 

discussed. A simple example is then given to illustrate how both of the m ethods perform 

as decomposition techniques, demonstrating a clear advantage of using the PSVD by PQRD 

algorithm over the previously proposed SBR2 approach. Most significantly, the PSVD by
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PQ RD algorithm enables the user to specify how small the coefficients associated with the 

off-diagonal polynomial elements must be driven for convergence. This is something that 

cannot be achieved when the PSVD is calculated using the SBR2 algorithm. Furthermore, 

the relative error of the decomposition, the computational time taken to calculate the decom

position and the orders of the final matrices are generally smaller when the decomposition is 

formulated using the PSVD by PQRD algorithm.

7.2 Technique 1: P SV D  by P Q R D

Given the polynomial m atrix A( z )  £ C pxq, the objective of the PSVD by PQRD algorithm 

is to compute the polynomial paraunitary matrices U (2 ) £ C pxp and V (z) £ C qxq such that

U (2 )A (2 )V (z) ~  S(*) (7.3)

where S(z)  denotes a diagonal polynomial matrix. As with the SBR2 algorithm and the 

PQ RD techniques, it is often not possible to achieve exact diagonalisation of the polynomial 

m atrix A  (*), as each element is now a polynomial with an associated set of coefficients, 

hence the reason for the approximate equality in equation (7.3). However, as this chapter 

will confirm a good approxim ation can be achieved. Note tha t the m atrix to  be decomposed, 

A  (z), need not be square, bu t it is assumed th a t it has at least as many rows as columns, i.e. 

p > q, and hence is generally referred to as a tall polynomial matrix. This algorithm could 

operate on a m atrix  w ith fewer rows than  columns, but this would present an underdeterm ined 

problem, which is not the focus of this thesis.

The PSVD by PQ RD  algorithm operates as an iterative process where a t each iteration 

two paraunitary  m atrices are formulated using one of the PQRD algorithms discussed in 

C hapter 5. Any of the PQ RD  algorithms can be used to  compute the decomposition. Of 

course it is preferable to  use the algorithm, which generally takes fewer iterations to  converge 

to  an upper triangular m atrix and the one th a t obtains an upper triangular polynomial 

m atrix w ith the smallest order. Note th a t these two properties of the decomposition are 

generally related. Over a  series of iterations, the PSVD by PQRD algorithm transforms
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the polynomial m atrix A (z) into an approximately diagonal m atrix by applying a series of 

paraunitary  matrices obtained using the PQRD.

7.2.1 T h e P S V D  by P Q R D  A lgorithm

The algorithm begins by calculating the paraunitary m atrix U ^ z )  G C pxp. This m atrix is 

calculated iteratively by formulating the PQRD of the polynomial m atrix A(z) G C px<? such 

tha t

(7.4)

where A  (z) G C pxq is an approximately upper triangular polynomial m atrix, such tha t the 

coefficients of the polynomial elements beneath the diagonal satisfy

aj k (t) < € (7.5)

for j  = 2 , . . .  ,p, k = 1 , . . . ,  mill {j  — 1 ,q} and Vt G Z, where e > 0 is a prespecified small 

value. Once A (z) satisfies this stopping condition, set

A"(z) = A ( z). (7.6)

This polynomial m atrix  will be approximately lower triangular and will form the input to 

the subsequent step of the algorithm. Note th a t the diagonal polynomial elements of the 

m atrix A (z) will rem ain on the diagonal following the transform ation and, in particular, the 

zero-lag diagonal coefficients will satisfy ))* for j  =  1, . . . ,  q and Vt € Z where

(•)* denotes the  operation of complex conjugation of the polynomial coefficient. Note th a t in 

particular the diagonal zero-lag coefficient a ^ { 0 ) will remain in the same position following 

the transform ation. This point is im portant for convergence of the algorithm.

Subsequently, the PQ RD  of the lower triangular polynomial m atrix A (z) G C qxp is 

computed and so the paraunitary  polynomial m atrix Vj ( z )  G C qxq is calculated such that

V1(*)A"(*) = a "'(2) (7-7)
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7.2 Technique 1: PSVD  by PQRD

where the polynomial m atrix  A  ( z ) G C 9Xpis approximately upper triangular and all coef

ficients of the polynomial elements beneath the diagonal are sufficiently small and therefore 

less than  e in m agnitude, as in equation (7.5). This completes the first iteration of the PSVD 

by PQRD algorithm  and the complete decomposition performed following this iteration is of 

the form

U 1(z )A (z )V 1(z) =  A  (z) (7.8)

where both of the paraunitary  matrices U j (z) and V j (z) have been calculated as a series 

of elementary delay matrices interspersed by elementary rotation matrices using one of the

algorithms for calculating the PQRD. This iterative process is repeated replacing A(z) with
nt

A  (z) until all coefficients of the off-diagonal polynomial elements of the m atrix are suffi

ciently small, which is achieved when the following stopping condition is satisfied

\aj k {t)| <  e (7.9)

for j  =  l , . . . , p ,  k = 1 where j  ^  k  and V£ E Z. The value of the convergence

param eter e will be the same as th a t used for the stopping condition of both of the PQRDs

calculated within each iteration of the decomposition to enable convergence of the algorithm. 

The algorithm is guaranteed to  converge in this respect and the proof of convergence can be 

found in Section 7.2.3. Furthermore, a concise description of the PSVD by PQRD algorithm 

can be found in Appendix B.

Assuming the algorithm has converged following N  iterations, the decomposition per

formed is of the form

U (z)A(2)V(*) = § „ (* )  (7.10)

where

U (2) = 1 1 ^ ( 2 ) . . .  U ! ( 2 ) ,  (7.11)

Y (2 ) = V 1(2 ) . . . V w(2 ) (7.12)

and S N {z) is the  approximately diagonal polynomial m atrix  resulting from N  iterations of the 

PSVD by PQ R D  algorithm. The matrices Uj(z)  and V 2(z) in the above expression denote
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7.2 Technique 1: PSVD  by PQRD

the pair of paraunitary  matrices computed in the i th iteration of the algorithm. The matrices 

U (2 ) € <Cpxp and V (z) € C gxg will therefore be paraunitary by construction.

Note th a t in the degenerate case where the input m atrix is of order zero, i.e. the input is 

a m atrix with scalar entries, then the decomposition will simply reduce to the conventional 

SVD of a m atrix where the paraunitary matrices U (z) and V (z) will reduce to unitary 

matrices. Although the SVD of a scalar m atrix can be calculated using this algorithm, it 

would be computationally more expensive than  other techniques and as a consequence slower 

to implement.

7.2 .2  Im plem en tation  o f th e  A lgorithm

The polynomial m atrix truncation m ethod suitable for non para-Herm itian polynomial ma

trices from Section 4.3.2, can also be used within the algorithm for calculating the PQRD. 

This ensures th a t the orders of the polynomial matrices do not grow unnecessarily large and 

as a result helps to minimise the computational load of the algorithm.

The stopping criterion of the algorithm, dem onstrated in equation (7.9), could alterna

tively have been specified in term s of the proportion of the squared Frobenius norm of the 

m atrix positioned in the off-diagonal elements, i.e. stop the algorithm when

where again e >  0 is a  prespecified small value. This approach may be useful for some appli

cations of the decomposition, bu t for the results dem onstrated in this chapter the stopping 

condition of equation (7.9) is sufficient.

7.2 .3  C onvergence o f th e  A lgorithm

The proof of convergence is outlined assuming the PQRD-BC algorithm is used to calculate 

the PQ RD  at each step of the PSVD by PQRD algorithm, as this algorithm is often the fastest 

to converge for the examples used in this thesis. Note th a t this proof can easily be adapted

V Q

< e (7.13)
I I A ( z ) | | 2

F
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7.2 Technique 1: PSVD by PQ RD

to apply to  either the PQRD-BS or PQRD-SBR algorithms. To dem onstrate convergence of 

the algorithm, the following measures are defined

^  = E E E b * M i 2 . (7-14)
r  j = 1 k = l

£ ™ =  E £ l M T)|2 > (745)
r  j =  1

^ — L E K m-m i 2 (7-16>
t k= 1

and

Eij(T)  =  |ai_j(r)|2 , (7.17)

which define the squared Frobenius norm of the m atrix A (z) G C pxq, the squared Frobe- 

nius norm of the k th column of A (z), the squared Frobenius norm of the j ih row of A(z) 

and the m agnitude squared of the polynomial coefficient ajk{r)  respectively. Similarly, de

fine the measures E'c k , E'Rj , 22^(t)^ for A \ z ) ,  ( n 4  , E"c k , E"Rj, E'-j(r)) for A^'(z)  and 

(^N4  , E ( ’.k, E Rj, E' - j(r)j  for A T h e  proof of convergence will initially be outlined as

suming no truncation m ethod is used and so the quantity N 4  will remain constant throughout 

all iterations of the decomposition.

The first step of the algorithm is to calculate the PQ RD of the polynomial m atrix A(z). 

The resulting polynomial m atrix from this decomposition, A ' (z), is guaranteed to converge to 

an upper triangular polynomial matrix, according to the stopping condition dem onstrated in 

equation (7.5), by the proof for convergence of the appropriate PQ RD algorithm. Note that 

the measure E c k  is invariant to the application of the PQRD-BC algorithm over all columns 

of the m atrix  and so E Ck =  Eck  for /c =  I , . . .  ,q. This is due to  rotation matrices applied 

from the left of a  m atrix  can only ever redistribute the squared Frobenius norm between 

elements in a column. Furthermore, the delay m atrix will also keep energy constant within 

columns throughout the  calculation of the PQRD.

Subsequently, the  paraconjugate of this m atrix is calculated to form A  (2 ), which will be 

an approxim ately lower triangular polynomial m atrix, where the m agnitude of each coefficient
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7.2 Technique 1: PSVD by PQRD

of each of the polynomial elements above the diagonal will be less than  e. The relationship 

between the coefficients of the two matrices can be expressed as a'jk(t) =  ( a ^ ( —t)^ for 

j  =  1 , . . .  , q, k = 1 , . . .  ,p  and Vt € Z, where (•)* denotes the complex conjugation of each of 

the polynomial coefficients. In particular, note the following observations about this trans

formation:

L E c k  =  E Rk for k =

2 . All coefficients of the polynomial elements beneath the diagonal of a column will move 

into a column positioned to the right of its initial position and will be positioned above 

the diagonal.

3. All coefficients of each polynomial element on the diagonal of A ' (z) will remain in the 

same diagonal element following the transform ation, but may have changed lag index.

4. All coefficients of the polynomial elements above the diagonal will move into a col

um n positioned to the left of its initial position and will now be situated beneath the 

diagonal.

This final point is im portant for convergence, bu t first the final step of each iteration of the 

algorithm must be discussed.

The final step of the algorithm is to calculate the PQ RD of the lower triangular poly

nomial m atrix A " (z) to obtain the upper triangular polynomial m atrix A  "(z).  Following 

this transform ation the m agnitude of each coefficient of each polynomial element beneath the 

diagonal of A " (z) will be driven less than  e by applying the appropriate elementary delay and 

rotation matrices within the PQRD-BC algorithm. During this transform ation, the squared 

Frobenius norm  of all of the coefficients of the polynomial elements positioned beneath the 

diagonal of A  "(z) will have been redistributed, as a result of driving these coefficients suffi

ciently small. Furtherm ore, the squared Frobenius norm of each column of the m atrix will 

be invariant to  the transform ation performed, i.e. E ck —  E Ck for k = 1, . . .  ,q, and so the 

squared Frobenius norm  of the coefficients on and above the diagonal in each column will 

increase to  account for the reduction below the diagonal.
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7.2 Technique 1: PSVD by PQRD

Over this first iteration of the PSVD by PQRD algorithm, the coefficients of the poly

nomial elements, which were positioned above the diagonal of the k th column, say, of A ' (z) 

and had m agnitude greater than  e, will have firstly been moved into the k th row of A " (z). 

These coefficients will now be positioned in one of the columns to the left of A; (i.e. in one of 

the columns 1 , . . . ,  k  — 1) of the k th row depending on their initial row index in A/\ z ) .  When 

these coefficients are driven sufficiently small, such th a t each has m agnitude less than  e, their 

excess energy will end up in either the diagonal element or any of the elements positioned 

above the diagonal within the same column of A (z). This process is repeated, resulting 

in the squared m agnitude of any coefficients larger than  e in polynomial elements above the 

diagonal of the m atrix at the s tart of one iteration of the algorithm, being positioned on 

or above the diagonal of a column positioned to the left of its initial position at the end of 

the iteration. This process will continue through all iterations of the algorithm and so there 

will always be a movement of energy leftwards through the columns of the m atrix until all 

coefficients are sufficiently small, i.e. less than  e.

Furthermore, the quantity E\  i (0) will increase monotonically throughout all iterations of 

the algorithm. It will increase as a consequence of driving any coefficient of any polynomial 

element beneath the diagonal of the first column to zero and is never affected by any rotations 

applied to zero coefficients in columns positioned to the right of it. In addition, this quantity 

will never be affected by the application of elementary delay matrices throughout any part 

of the decomposition as the coefficient o n ( 0 ) will remain in the same position throughout all 

iterations of the PSVD by PQRD algorithm. Now, this cannot continue indefinitely as the 

energy in the m atrix  is bounded from above by the initial value of N 4 . Therefore, a point 

must be reached whereby all coefficients beneath the diagonal are less than e by analogy with 

the proof of convergence of the SBR2 algorithm [7].

Finally, note th a t it will be possible for energy to  move rightwards through the m atrix as 

the coefficients beneath the diagonal of the m atrix have only been driven sufficiently small 

according to a stopping condition and are not exactly equal to zero. Obviously, coefficients 

previously driven sufficiently small, which are now positioned in the area above the diagonal of 

the m atrix, could increase in magnitude through a subsequent application of any of the PQRD
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algorithms. However, at the next step of the algorithm any coefficients of any polynomial 

elements positioned above the diagonal will be moved into columns positioned to the left of 

their initial position, where they will then be systematically driven to zero according to the 

ordering within the PQRD-BC algorithm.

If the polynomial matrices are not truncated throughout the algorithm, then the quan

tity  N 4  will remain constant throughout all iterations of the decomposition. However, tins 

is not practical for most applications of the algorithm and so a truncation method will be 

implemented forcing the measure N 4  to decrease according to the truncation method de

scribed in Section 4.3.2. However, although this quantity can decrease it will still constitute 

an upper bound on .E'ii(O) and so convergence of the algorithm is guaranteed. This proof of 

convergence is also easily extended for the two remaining algorithms for calculating the QR 

decomposition of a polynomial m atrix discussed in Chapter 5.

7.3 Technique 2: P S V D  by P E V D

This m ethod is an already existing technique for calculating the SVD of a polynomial m atrix 

and operates by using the SBR2 algorithm to calculate the PEVD of two polynomial matrices. 

Suppose we wish to  calculate the PSVD of the polynomial m atrix A [z] G C pxq such that

A ( z )  = U( z ) S ( z ) V ( z )  (7.18)

where U (z) G C pxp and V (z) G C qxq are both paraunitary matrices and S(z) G C pxq 

denotes a diagonal m atrix. Then using the polynomial m atrix, A (z), two para-Hermitian 

polynomial matrices, A (z)A (z) G C pxp and A (^)A (z) G C 9*9, can be generated. These 

matrices could alternatively be expressed in term s of the PSVD shown in equation (7.18) as

A (z)A (z) = U ( z ) S ( z ) Y ^ Y X ^ ( z ) l l ( z )  (7.19)

=  U (z)S (z )S (z )U (2) (7.20)
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and

A ( z ) A ( z )  = Y ( z ) S { z ) U ^ S ^ S { z ) Y { z )  (7.21)

=  V (*)S(z)S(z)V (z) (7.22)

where the matrices S(z)S(z) € C pxp and S(z)S(z) € C qxq are both diagonal. Equations

(7.20) and (7.22) both  constitute the PEVD of the matrices A (z)A (z) and A (z)A (z). The

paraunitary  matrices U (z) and V (z) can therefore be calculated by applying the SBR2 algo

rithm  to the para-Herm itian matrices A (z)A (z) and A (z)A (z) in turn. As each element of a 

polynomial m atrix represents an FIR  filter, exact diagonalisation is not always possible, but 

as C hapter 3 has dem onstrated a good approximation is achievable. Therefore, the SBR2 

algorithm when applied to  the para-Hermitian matrices will generate the approximations of 

the diagonal matrices S(z)S(z) and S(z)S(z) according to a stopping condition, such as that 

dem onstrated by equation (3.25).

Finally, once the two PEVDs have been calculated to obtain the paraunitary matrices 

U  (*) and V (z), the diagonalised m atrix S(z)  is calculated according to equation (7.1). Note 

tha t if a truncation m ethod is used when formulating the two decompositions in equations

(7.20) and (7.22), then the decomposition will not be exactly energy preserving and so equa

tion (7.2) will not hold precisely. However, with a suitable choice of the truncation param eter 

(i, a good level of decomposition can be achieved.

The PSVD of the polynomial m atrix A(z) has then been obtained allowing the m atrix to 

be decomposed as dem onstrated by equation (7.1). Note th a t the two PEVDs demonstrated 

by equations (7.20) and (7.22) are both guaranteed to converge to an approximately diagonal 

m atrix, by the proof of convergence for the SBR2 algorithm outlined in Section 3.4.

As with the previous PSVD technique, if the m atrix A(z) is of order zero and so each 

element is a scalar, this decomposition technique will reduce to the conventional SVD, where 

U (z) and V (z) are unitary  matrices. However, this technique would not be the m ethod of 

choice for the  decomposition as computationally it is more expensive.

There is a problem with using this technique to form the PSVD; it is impossible to have
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any direct control over how small the off-diagonal coefficients of the m atrix S(-s) will be fol

lowing the decomposition. Although the maximum magnitude of the off-diagonal coefficients 

of the diagonal matrices obtained by the SBR2 algorithm, i.e. S (2 )S (2 ) and S (z)S (2), can be 

specified, this will not allow strict control over the maximum m agnitude of the off-diagonal 

coefficients of £>(2 ). For example, applying the SBR2 algorithm to A ( z ) A( z ) ,  the coefficients 

of the off-diagonal polynomial elements of the resulting diagonalised m atrix S (z)S(z) must 

be less than  a prespecified small value e > 0 and so the coefficients must satisfy

[s (* )I(* )‘ jkt E E  E
1=1 11 t2t2 -ti=t

< e (7.23)

where j , k  = l , . . . , p  for j  ^  k  and V£ € Z. However, this does not give any insight to 

the m agnitude of the coefficients of the off-diagonal polynomial elements of S(z).  Therefore 

the maximum possible size of the coefficients of the off-diagonal polynomial elements of the 

diagonalised m atrix S(z) cannot be specified in advance, resulting in little control over how 

diagonal the resulting m atrix will be. Clearly, for the application of the decomposition, where 

a strictly diagonal m atrix may be required for channel equalisation, this could affect the error 

rate performance. This is discussed further in Chapter 8 of this thesis. Note that this is not 

a problem in the degenerate case where the decomposition of a scalar m atrix is required, as 

exact diagonalisation of the matrices A ( z ) A ( z )  and A (z )A (2 ) is possible.

7.4 U niqueness o f Solutions

Following from Section 3.8, it can be seen th a t the two paraunitary matrices U (2 ) and V( z )  

obtained from form ulating the PSVD of a polynomial m atrix are not unique. Note th a t the 

PSVD algorithm s presented in this thesis generate only an approximate PSVD and so the 

solutions of the  two techniques will not be the same. For the potential applications of the 

decomposition discussed in Chapter 8 , non-uniqueness of the paraunitary matrices does not 

present any problem. Before demonstrating the two decomposition methods, it is im portant 

to briefly highlight the application of the decomposition in signal processing and in particular
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stress the properties and qualities required of the decomposition for this application. A full 

discussion of the application of the decomposition can be found in Chapter 8 .

7.5 R equirem ents o f the P SV D  for A pplications

The polynomial singular value decomposition can be used in multiple antenna channel de

composition problems to transform a MIMO channel into a set of orthogonal SISO channels, 

where a maximum likelihood decoder can then be applied to each SISO channel to obtain an 

estim ate of one of the source signals. However, if the order of the diagonalised m atrix S(z) 

is too large then equalisation of the channel becomes difficult. Generally, filters of length 

greater than  20 may be considered too large. For this reason, the order of the resulting 

diagonalised channel m atrix S(z) is very im portant.

Obviously, it may also be preferable to use the m ethod of decomposition which is less 

computationally expensive and therefore quicker to run and so this is another factor of the 

decomposition th a t must be examined.

Finally, it is im portant to look at the relative error of the decomposition to ensure that 

the accuracy of the decomposition has not been compromised when implementing either of 

the PSVD techniques. Unlike the relative error used for the previous decompositions, two 

different relative errors are proposed for the PSVD. The first relative error is defined as

 S B C  ‘

and will dem onstrate the amount of error due to truncating the polynomial matrices through

out all iterations or steps of the decomposition methods. However, for application purposes of 

the decomposition, a strictly diagonal polynomial m atrix S(z) is required, i.e. all off-diagonal 

elements m ust equal zero. The two PSVD techniques proposed in this chapter only generate 

an approxim ately diagonal polynomial m atrix and so the second relative error measure is 

defined as

A ( z )  -  U (z)S (z)V (z)
F

Eroel =
A ( z )  -  U (z)S (z)V (z)

l|A (z )|| p
(7.25)
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where S(z)  is equal to  the diagonal m atrix S(z) with all off-diagonal coefficients set equal 

to zero. This measure is a  much superior measure of how well the decomposition technique 

has performed, as it will not only account for the error due to truncating the polynomial 

matrices, but will also assess how well the algorithm has diagonalised the polynomial matrix.

7.6 N um erical Exam ple

To illustrate the two different methods for calculating the PSVD, each is applied in tu rn  to 

the polynomial m atrix  A (z) € C4x3x5, which was previously used for the example in Section 

5.8. The polynomial elements of this m atrix had complex coefficients, where both  the real 

and imaginary parts were drawn randomly from a standardised Gaussian probability density 

function. A graphical representation for this polynomial m atrix was given in Figure 5.2.

7.6.1 P S V D  by P Q R D

For this example, the PQRD-BS algorithm is used within the PSVD by PQRD algorithm, 

as it required the least number of iterations to converge. The truncation method suitable 

for non para-Herm itian polynomial matrices from Section 4.3.2 was implemented, with the 

truncation param eter set as p = 10~4. The PSVD by PQ RD algorithm ran for 10 iterations, 

until the m agnitude of each off-diagonal coefficient of S(z) was less than  10~2. This required 

a total of 984 PQ RD  iterations (i.e. EPGRs) over all 10 iterations of the PSVD by PQRD 

algorithm. Note th a t the number of PQRD iterations per iteration of the PSVD by PQRD 

algorithm decreases as the algorithm progresses. In fact, the m ajority of the 984 EPGRs 

were applied in the  first few iterations of the PSVD by PQRD algorithm, with the tenth 

consisting of only six EPG Rs. The paraunitary matrices U (z) and V (z) obtained from the 

decomposition are illustrated in Figures 7.1 and 7.2 respectively. The diagonal m atrix S(z) 

found using the PSVD by PQRD algorithm can be seen in Figures 7.3.

The m agnitude of the largest off-diagonal coefficient of S(z) was found to be 9.3 x 10-3 . 

The Frobenius norm  of the coefficients of the off-diagonal polynomial elements of this ap

proximately diagonal m atrix  was calculated as 0.04, which accounts for 0.37% of the total
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Frobenius norm of the m atrix. The Frobenius norm of S(z) did decrease from 9.86 to 9.83 

from truncating the polynomial matrices, giving a relative error of E \el — 0.1084. Further

more, assuming all the coefficients of the off-diagonal polynomial elements of the m atrix are 

equal zero gave a second relative error of E ™ '1 = 0.1086, showing th a t a good level of m atrix 

diagonalisation has been achieved.

From inspection of the diagonal m atrix S(z) dem onstrated in Figure 7.3, the diagonal 

polynomial elements are not all centred about the same lags in each element. However, a 

series of elementary delay matrices can be applied to the polynomial m atrix S(z) to realign the 

series of coefficients of each diagonal element to  be centred about the same lag. For example, 

the coefficient with maximum m agnitude in each diagonal polynomial element could have a 

shift applied to  it so th a t it becomes the coefficient of z°. Note th a t one of the paraunitary 

matrices from the decomposition must also be altered accordingly. This procedure will help 

concentrate the m ajority of the Frobenius norm of the m atrix into a smaller number of 

lags, whilst m aintaining the paraunitary transformation. As a result of this realignment 

it is possible to further reduce the order of the diagonal m atrix by applying the truncation 

function once more to the realigned m atrix, using the same value of the truncation param eter 

p. Applying a final series of elementary delay matrices to the diagonal m atrix S(z) shown in 

Figure 7.3, the order of this m atrix was reduced from 22 to  17 whilst m aintaining the same 

value of relative error. The results obtained from applying the PSVD by PQRD method to 

the polynomial m atrix  A (z) can be seen in Table 7.1.

7.6 .2  P S V D  by P E V D

To obtain the PSVD of A (z) using the second method, the SBR2 algorithm was applied to 

the polynomial m atrices A(-z)A(2) and A ( z ) A ( z )  in tu rn  to  obtain the paraunitary matrices 

U (z) and V (z). Each implementation of the SBR2 algorithm ran until the m agnitude of 

each off-diagonal coefficient of the resulting diagonalised polynomial matrices S(z)S(z) and 

S(z)S(z) fell below 10~2, which required a to tal of 362 iterations over both applications of 

the SBR2 algorithm . Note th a t the two truncation functions from Sections 4.3.1 and 4.3.2 

were used throughout bo th  implementations of the SBR2 algorithm with p  =  10~4, which
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allowed at most, this proportion of the squared Frobenius norm of the m atrix to be lost each 

time a m atrix is truncated. This stopped the order of the polynomial matrices within the 

algorithm growing unnecessarily large and as a results also prevented the algorithm from 

being excessively slow to implement.

The approximately diagonal polynomial m atrix S(z), is then calculated using the two 

parauntiary matrices U(z) and V(z) according to equation (7.1). This m atrix is illustrated 

in Figure 7.4 and is order of 41, considerably larger than  the order of the diagonal m atrix 

found using the PSVD by PQRD algorithm. Furthermore, the m agnitude of the largest 

coefficient associated w ith an off-diagonal polynomial element of S(z) was found to be 0.29. 

Again considerably larger than  the same measure found using the PSVD by PQRD algorithm, 

which was found to  be 9.3 x 10- 3 . The two paraunitary polynomial matrices U(z) and V(z) 

generated from this m ethod are dem onstrated graphically in Figures 7.5 and 7.6.

The Frobenius norm of the resulting diagonal polynomial matrix, S(z), obtained from 

the PSVD by PEVD routine was found to be 9.85, which means only 0.16% of the Frobenius 

norm of the input m atrix  A (z) has been lost through truncating the polynomial matrices. 

The relative error E \el was found to be 0.0684, which is less than  tha t observed with the 

decomposition performed by the PSVD by PQRD algorithm, however this did not take into 

account th a t the m atrix  S (z) is only approximately diagonal. The Frobenius norm of the 

coefficients of the off-diagonal polynomial elements of this m atrix was found to be 1.52 ac

counting for 1.57% of the to tal Frobenius norm of the m atrix S(z). The to tal relative error for 

the decomposition was found to be E%el = 0.1670 and this measure is considerably larger than 

th a t found using the PQ R D  approach. From inspection of the diagonal m atrix S(z) in Figure 

7.4, the diagonal polynomial elements are not all centred around the same lag. As with the 

results from the PSV D by PQ RD method, aligning the diagonal elements of S(z) so tha t the 

coefficient w ith maximum  magnitude for each polynomial is realigned as the coefficient of z° 

and then truncating  the m atrix once more using the same value for the truncation param eter 

/i, the order of the  m atrix  can be reduced to 36. However, this is still considerably larger 

than  the order of the  diagonal m atrix obtained using the PSVD by PQRD algorithm. The 

results obtained from applying this decomposition technique to  the polynomial m atrix A(z)
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are contained in Table 7.1. This table dem onstrate th a t the PQRD m ethod outperforms the 

SBR2 approach for a  num ber of reasons; it obtains a lower relative error, the resulting m atrix 

S(z) is also more diagonal and the order of this m atrix is typically shorter.

P S  V

S B R 2

D B y
P Q R D

Magnitude of largest off- 
diagonal polynomial coeffi
cient

0.2871 9.3 x lO"3

Frobenius norm of off- 
diagonal polynomial 
elements of S(z)

1.5244 0.0363

Order of S(z) 41 22

Order of U (2) 36 47

Order of V (z) 24 36
E rd 0.0684 0.1084

E ? 1 0.1670 0.1086

A fter F inal D elay

Order of S (z) 36 17

Order of U(z:) 27 47
E rei 0.0687 0.1084

E r2el 0.1670 0.1086

Table 7.1: Results obtained from applying the two methods for calculating the PSVD  
to the polynomial matrix A (z) where the truncation parameter is set as p  — 10-4 and 
the stopping criterion as f =  10-2 in both methods.

For the results dem onstrated so far it has not been entirely fair to compare the two 

techniques as they did not achieve the same level of decomposition. For example, it would 

be better if bo th  decompositions had obtained similar values for the Frobenius norm of the 

off-diagonal elements or a  similar magnitude of the largest off-diagonal coefficient. The off- 

diagonal elements of the diagonal matrix S(z) could have been driven smaller by setting a 

tighter convergence bound when applying the SBR2 algorithm to the polynomial matrices 

A (z)A (z) and A (z)A (z). For example, if the coefficients of these matrices were required to 

be less th an  10“ 7, the  m agnitude of the largest off-diagonal coefficient of S(z) is now found
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to be 1.7 x 10-2 , bu t this took 5708 SBR2 iterations and the order of the diagonal m atrix is 

now 163 (although this can be reduced to 150 if the diagonal elements are aligned around the 

zero lag of the m atrix). Note that to achieve the tighter convergence bound, the truncation 

param eter must also be reduced and so, for the results above, p = 10-8 . The order of the 

diagonal m atrix could be further reduced to 19 by truncating the final realigned diagonal 

m atrix again setting p  = 0.01. The relative error of the decomposition is now E ™ 1 = 0 .11.

The m agnitude of the largest coefficient of an off-diagonal polynomial element is still 

considerably larger than  the 9.3 x 10~3 found using the PSVD by PQRD algorithm. More

over, the order of the resulting diagonal m atrix, which was found to be 17 using the PQRD 

approach, is also slightly larger using the SBR2 method. The relative error for the decompo

sition, which was found to be E ™ 1 =  0.11 using the PQ RD m ethod, is the same, although the 

PSVD by PQ RD algorithm was also considerably faster to run for these results, taking only

0.44 seconds. The SBR2 approach took 22.57 seconds1. The comparative results for the two 

algorithms are contained in Table 7.2.

P S V
S B R 2

D  B y

P Q R D

Magnitude of largest off- 
diagonal polynomial coeffi
cient

1.7 x 10~2 9.3 x 10"3

Order of S(z) 19 17

E f 0.11 0.11

Value of e i o - 7 10~2

Value of p 10“8 10"4

Computational Time 

(Seconds)
22.57 0.44

Number of Iterations 5708 984

Table 7.2: Observed results from the two decomposition techniques when both achieve 
approximately the same level of PSVD, allowing a much fairer comparison of the two 
algorithms.

1 Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.
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Figure 7.1: A stem plot representation of the paraunitary matrix U(^) obtained from 
the PSVD by PQRD algorithm.
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Figure 7.2: A stem plot representation of the paraunitary matrix V(^) obtained from
the PSVD by PQRD algorithm.
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Figure 7.3: A stem plot representation of the diagonal matrix S(z)  obtained when the 
PSVD by PQRD algorithm is applied to the polynomial matrix A (z) shown in Figure
5.2.
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Figure 7.4: A stem plot representation of the diagonal matrix S(z) obtained when the 
PSVD by SBR2 technique is applied to the polynomial matrix A (2 ) shown in Figure
5.2.

174



7.6 Numerical Example

0.5 0.5

0.5

•8 
3
5) nsc3 0.5

-10  0 10 -10  0 10 '  -10  0 10 

0.5

0.5

-1 0  0  10 -1 0  0 10 -1 0  0 10 

0.5 0.5

0.5
-10 0 10 -10  0 10 -1 0  0 10 

0.51 0.51 T~

-1 0

0.5

-10
0.5

- 1 0  0 10 - 1 0  0  10 -1 0  0 10 - 1 0  0 10

Lag

Figure 7.5: A stem plot representation of the paraunitary matrix U(^) obtained from 
the PSVD by SBR2 technique.
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Figure 7.6: A stem plot representation of the paraunitary matrix W_(z ) obtained from
the PSVD by SBR2 technique.
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7.7 C om putational C om plexity  of th e  Polynom ial 

SV D  M ethods

It is difficult to compare the two decomposition techniques in terms of their computational 

complexity, as the com putational complexity of one iteration of either the SBR2 or PQRD 

algorithm is entirely dependent on the dimension and order of the polynomial m atrix at 

th a t iteration. If the SBR2 and the PQRD-BS algorithms are both applied to a polynomial 

m atrix of the same dimensions, then the SBR2 algorithm will be slightly less computationally 

expensive to run, despite the fact th a t the SBR2 algorithm will apply the elementary delay 

and rotation matrices from both the left and the right, whereas with the PQ RD they are 

only applied from the left. This is due to the SBR2 algorithm exploiting the para-Hermitian 

structure of the polynomial m atrix A (z) and only storing just over half of the polynomial 

elements of the m atrix. However, to  calculate the PSVD of a m atrix the two algorithms are 

not applied to  the same polynomial m atrix and so the com putational load at each step is 

difficult to  compare. In the example of the previous section, the PQRD algorithm is applied 

to the polynomial m atrix A (z) G C 4x3x4, whereas the SBR2 algorithm is applied to the 

polynomial matrices A (z)A (z) G C 4x4x8 and A (z)A (z) G C 3x3x8. The SBR2 algorithm is 

applied to  polynomial matrices with more off-diagonal polynomial coefficients.

7.8 C onclusions

A new m ethod for calculating the singular value decomposition of a polynomial m atrix A(z) 

has been presented. The technique operates by iteratively calculating the PQ RD of a polyno

mial m atrix  to  transform  it into a diagonal polynomial m atrix and is therefore referred to as 

the PSVD by PQ R D  algorithm. The algorithm has been compared to a previously proposed 

m ethod for calculating the PSVD, which operates using the SBR2 algorithm to calculate the 

PEVD of the m atrices A ( z ) A ( z )  and A ( z ) A ( z )  to  generate the left and right hand singular 

vectors respectively. The PSVD by PQRD algorithm has a  couple of clear advantages over 

the PSVD by PEV D  m ethod and for the simple numerical example presented in this chapter,
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it clearly outperform s the PSVD by PEVD technique.

The main advantage of using the PQRD m ethod over the SBR2 approach is that the user 

can specify how small the coefficients of the off-diagonal polynomial elements of the m atrix 

are to be driven before starting  the algorithm. It is impossible to do this using the existing 

PSVD m ethod, as the SBR2 algorithm is not directly applied to the polynomial m atrix whose 

PSVD is being calculated. The only way this can be achieved, is with a considerable amount 

of trial and error to find the appropriate values of (i and f, required to drive the off-diagonal 

coefficients sufficiently small.

Secondly, the PQ RD approach was found to  be computationally much faster (approxi

m ately 50 times faster) to obtain a  similar level of decomposition, when both  techniques were 

applied to the same polynomial m atrix A( z )  € C 4x3x4. Note th a t the time taken by the 

SBR2 approach did not even include the time taken to find the appropriate choice of the 

truncation param eter /z and stopping criterion e.

Finally, the order of the diagonal m atrix obtained using the PSVD by PQRD algorithm is 

generally considerably less than  th a t found with using the SBR2 approach. This is an impor

tan t advantage of the decomposition when it is applied to MIMO communication problems 

as discussed in C hapter 8 .

W hen using either of the two methods, it is im portant to align the diagonal polynomial 

elements of the resulting diagonal m atrix, so th a t the m ajority of the Frobenius norm of 

the m atrix is centred around the same lags of the matrix. As the example in this chapter 

has shown, this can help reduce the order of the diagonal m atrix, at hardly any additional 

com putational cost or gain in the error of the decomposition.

Note when using the truncation functions within the PSVD by PEVD method, it is 

be tter to be cautious and set a very small value of the truncation param eter throughout, for 

example /z =  10- 8 , and then truncate the final m atrix at the very end of the decomposition to 

reduce the order to  a  suitable value for the application purposes of the decomposition. More 

examples of this decomposition technique can be found in Chapter 8 , where the potential 

applications of the decomposition are examined.
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C hapter 8

A pplications o f th e  Polynom ial 
M atrix D ecom positions

8.1 Introduction

C hapter two described how polynomial matrices are widely used in the context of DSP and, in 

particular, to communication systems, where they are used to describe a convolutive channel 

and therefore describe a MIMO system. This chapter examines the potential applications 

of each of the three polynomial m atrix decompositions discussed in this thesis (the PEVD, 

the PQ RD and the PSVD) in this context. Table 8.1 details the possible applications of 

the decompositions and refers the reader to the appropriate section in the thesis where the 

application is discussed.

Finally, some sim ulated results are presented to  further dem onstrate the capabilities, but 

also the potential applications, of the two algorithms introduced in this thesis (i.e. the algo

rithm s for calculating the PQ RD  and the PSVD) to MIMO channel equalisation problems. 

However, before detailing these applications some background to MIMO communication sys

tems m ust be given.
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A pplication D ecom position Section

Strong Decorrelation PEVD 3.6.1
MIMO Channel Equalisation PQRD 8.4.1
MIMO Channel Exploitation PSVD 8.5.1

Optimal Paraunitary Filter Bank Design PSVD 8.5.4

Table 8.1: The potential applications of the different polynomial matrix decompositions 
and the location of a discussion of this application within the thesis.

8.2 M IM O C om m unication System s

Both the PQ RD and the PSVD algorithms introduced in this thesis have potential applica

tions to MIMO communication systems. A brief description of this type of communication 

system can be found in Section 2.4.3 and a basic noise free baseband digital communication 

system [25] can be seen in Figure 8.2, where s(z) denotes the signals to be transm itted, x(z) 

the received signals and s(z) the estim ated source signals.

Channel ReceiverTransmitter

Figure 8.1: Block diagram for a basic noise free baseband communication system.

It is assumed th a t the channel will be convolutive for the results in this thesis and so 

m athem atically the  mixing process of sending the d a ta  from q antennas to  be received at p 

sensors can be expressed by means of the convolutive mixing model given in equation (2.28). 

The complete process, from transm itter to receiver, is known as a MIMO communication 

system [49,60,61].

The aim of the  transm itter is to ensure the message is in a suitable form for transmission,
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whilst the receiver aims to operate on the received signal to obtain an estim ate of the original 

message. However, this is not a simple task due a number of factors th a t can affect the 

transmission of d a ta  through a channel and hence lead to distorted signals. These factors are

1. In tersym b ol interference (ISI) caused by the dispersion in the channel.

2. T herm al noise, which is present at the receiver.

3. W ith MIMO channels, there is also the problem of co-channel in terference (C C I).

The task of removing the effect of these factors from the received signal has been the subject 

of much research in the field of DSP. There are now several methods for achieving this, such as 

using a process of orthogonal frequency-division mulitplexing (OFDM) with a cyclic prefix [2] 

or linear or non-linear interference cancellers [62]. There is currently a lot of interest and 

research being undertaken in these fields, especially with the recent advancements in wireless 

technology [2,62]. Problems in this field include the limited availability of radio frequency 

spectrum  and a complex time-varying wireless environment [2]. Also, there is now a demand 

for higher d a ta  rates, higher network capacity and matching wireline link reliability.

For the discussion and results presented in this chapter, only a simple communication 

system is considered. The received signals from the MIMO system will be distorted due to 

the effects of ISI, CCI and the noise present at the receiver. It is assumed th a t the polynomial 

channel m atrix C (z) from equation (2.30) has been previously estim ated by passing a training 

sequence through the channel. Some algorithms exist th a t directly equalise the channels 

given only the received signals; this is known as blind channel equalisation. However, these 

algorithms can be slow to converge, are subject to local minima and are generally unsuitable 

for wireless channels [63]. As a result, it has been suggested th a t it is better to first identify the 

channel and then  perform  the equalisation. The two new polynomial m atrix decompositions 

proposed in this thesis, the PQRD and the PSVD, can be used to  help solve this problem. 

Assuming th a t the polynomial channel m atrix for the system is known, then either the PQRD 

or the PSVD can be used as part of this system to m itigate the CCI and transform  the 

problem into a set of SISO problems, i.e. a set of problems involving only one transm itter 

and one receiver. The ISI from each of the single channel problems can then be removed by
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equalisation. Several m ethods of equalising a SISO communication channel are now discussed. 

Note th a t problems will be encountered with this method if the channel m atrix for the system 

is rank deficient and this aspect will be discussed individually for each application.

8.2 .1  C hannel E qualisation

Channel equalisation is the process used to remove the effect of ISI by modelling the channel 

inverse [62] and is used in many communication devices such as modems and digital televi

sions. If the channel is minimum phase, then it has a linear inverse model and so a linear 

equalisation solution exists. The various techniques for performing channel equalisation can 

be split into the following four classes.

1. L inear Equalisers (L E ). These equalisers use an inverse filter to compensate for the 

variation in the frequency response. This method is simple, bu t is not very effective 

with channels th a t have deep fades.

2. Decision Feedback Equalisers (D F E ). These attem pt to reconstruct ISI from past 

symbol decisions. Again this m ethod is simple, but unlike LEs this m ethod will have 

the potential for error propagation.

3. M ax im u m  Likelihood Sequence Estim ation (M L S E ). These methods find the 

most likely sequence of symbols given the received signal and the possible options. 

These techniques are robust, but can be computationally complex. The Viterbi algo

rithm , which is discussed in Section 8.2.2, can be used for MLSE equalisation.

4. Turbo  Equalisers (T E ) This is an iterative code based on the maximum a posteriori 

probability (MAP) criterion. This type of equaliser can significantly reduce the SNR 

penalty caused by ISI [64], but its com putational complexity is higher than  the MLSE 

scheme and it introduces a delay (latency) in processing.

The main problem s with the different techniques for equalisation are th a t they are compu

tationally expensive, have problems tracking time-varying channels and can only produce
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sequences of outputs w ith a significant time delay. For the results presented in this chap

ter, an MLSE based on the Viterbi algorithm is implemented to dem onstrate the potential 

applications of the polynomial m atrix decompositions.

8.2 .2  T h e V iterb i A lgorithm

The Viterbi algorithm is a noil-sequential decoding algorithm, motivated by the work under

taken by A. J. Viterbi in the 1960’s on behalf of NASA to improve the efficiency of their space 

communication system. The algorithm was first proposed in [65] as a maximum likelihood 

decision device, which can be applied to any sequence of symbols th a t can be modelled as a 

Markov chain, [66,67]. As many observed phenomena can be modelled as Markov processes, 

the algorithm has a  vast range of applications. For example the algorithm is currently used in 

all mobile telephone systems and is incorporated in satellite digital TV receivers and mobile 

phone handsets. The prim ary application of the Viterbi algorithm is the maximum likelihood 

decoding of convolutionally coded digital signals transm itted over noisy channels, making the 

algorithm applicable to  channel equalisation problems. However, the algorithm now has a 

much broader range of applications and can be applied to problems in areas such as speech 

recognition [68] and DNA sequence analysis [69].

The Viterbi algorithm  operates by attem pting to determine the most likely sequence of 

symbols, given all the possible options, i.e. it a ttem pts to calculate the most probable path  

through a Markov graph [66]. The Viterbi algorithm is therefore a computationally efficient 

m ethod for removing ISI present from the received signal of a SISO communication system. 

The solution to the  MLSE problem will generally be close to optimal, however, there is 

a  problem using this technique. The complexity of the MLSE will increase exponentially 

w ith channel order and so is not a  suitable technique to use if the environment has a  large 

delay spread [2]. For example, if M  defines the size of the symbol alphabet and N  defines 

the num ber of interfering symbols contributing to the ISI, then the Viterbi algorithm must 

calculate M N + 1  metrics for each new received signal [62]. For this reason, the resulting order 

of the transform ed polynomial m atrix when using either the PQRD or PSVD algorithms 

as a preprocessing step to  channel equalisation, is very im portant. However, for the results

182



8.3 Performance Measures

presented in this chapter, the maximum order of the transform ed channel m atrix (following 

the polynomial m atrix  decomposition) is limited to  ensure th a t this equalisation scheme can 

be used. Note th a t th is is acceptable for the results presented in this chapter, as limiting 

the orders of the m atrices did not significantly compromise the relative error. This point is 

discussed further for each of the worked examples. Furtherm ore, the aim of this chapter is to 

illustrate the ability of the polynomial m atrix decompositions as a m ethod for transform ing a 

polynomial MIMO channel m atrix into a set of SISO channels and so the m ethod of channel 

equalisation is not the  focus of the research. For practical applications, a suboptim al channel 

equalisation m ethod, which is computationally less expensive, could be used if required.

8.3 Perform ance M easures

8.3.1 R e la tiv e  Error

As with the previous chapters, the two relative errors for the polynomial m atrix decomposi

tions can be calculated as

grel _
A (*) -  A ( z )

IIA(2 )IIf

where if the m easure is calculated for the PQ RD then

( 8 . 1)

A (z) = Q ( z ) R ( z )  (8 .2 )

where R (z )  is equal to  the upper triangular polynomial m atrix  R ( 2) w ith all coefficients 

beneath the diagonal set equal to zero. If calculating the relative error of the PSVD, then 

this m atrix  is given by

A  (z) =  f i(* )S M Y (* )  (8.3)

where S(^) is equal to the  diagonal m atrix S(^) w ith all off-diagonal coefficients set equal 

to zero. This m easure signifies how much information is lost in the associated polynomial 

m atrix decom positions either by truncating the polynomial matrices or from the require

m ent of a  strictly  diagonal or upper triangular polynomial m atrix for the applications of the
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decomposition.

8 .3 .2  A v era g e  B it  Error R ates

The average bit error rate  (BER) of a sequence defines the ratio of the number of characters 

incorrectly received to  the total number transm itted  during a specified time interval. Firstly, 

define the error m etric /
0  if s (t) — s (t)

et = (8.4) 
1 if s (t) ^ s (t)

where s(£) defines the  true source signal at time t and s (t) the estim ated, where t = 0 , . . . ,  T

1. The average BER is then calculated as

T — 1

b e r  =  Y . % -  <8'5>
<=()

This measure can be used to describe the functionality of a digital communications system 

and therefore has been calculated for both the PQ RD  and PSVD applications described in 

this chapter.

8.4 P o ten tia l A pplication  o f th e  P Q R D

One possible application of the PQRD is in MIMO communications where it is often nec

essary to  reconstruct a set of signals, which have been transm itted  through a convolutive 

channel, using only the  received signals and an estim ate of the polynomial channel matrix. 

In this situation, the  d a ta  will have been distorted due to  both  the effects of co-channel 

interference (CCI) and m ulti-path propagation of the transm itted  signals, which can then 

result in inter-sym bol interference (ISI). The problem of reconstructing the d a ta  sequence 

from the convolutively mixed received da ta  is term ed as MIMO channel equalisation. For 

this application, it is assumed th a t the channel m atrix  has previously been estimated. This 

can be achieved by passing a training sequence through the system, however, it is beyond the 

scope of th is thesis to  discuss methods for estim ating the channel m atrix.
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8.4 .1  M IM O  C hannel E qualisation

This potential application of the decomposition is first discussed for the simpler narrowband 

case, where scalar m atrices are observed and so the conventional m ethods of calculating the 

QRD of a scalar m atrix  can be used [2,6].

N arrow band (Scalar M atrix) Case

If a set of signals is instantaneously mixed, then  tin* relative delay between signals can be 

modelled as a  phase shift and so a m atrix of complex scalar entries is sufficient to  describe 

the mixing. This will mean th a t there is no ISI present, however, there is still CCI and the 

conventional QRD for scalar matrices can be used to remove this. In this situation, if the 

channel m atrix  C  € Cpxq has been previously estim ated, its QRD can be formulated, using 

a conventional technique such as Givens rotations or Householder reflections [6]. Once this 

decomposition has been calculated, the upper triangular structure of the transform ed m atrix 

can be exploited, allowing the set of source signals to  be easily determined from the received 

signals, using back substitution.

For this application, it is required tha t p > q and th a t the channel m atrix for the system 

is of full column rank to  enable the complete set of source signals to be determined. If the 

channel m atrix  is rank deficient, then a num ber of diagonal elements of the upper triangular 

m atrix  will equal zero. Unfortunately, this will m ean th a t it is impossible to  obtain estimates 

of the source signal w ith the same row index as the zero element(s) in the  diagonal matrix. 

Furtherm ore, it will not be possible to estim ate the rem aining sources w ith row indices less 

than  this value. This point has been discussed in Exam ple 6.2.6, where the  PQ R D  of a rank 

deficient polynomial m atrix  has been calculated.

B roadband (P o lyn om ia l M atrix) Case

This technique is easily extended to  broadband signal processing, where polynomial channel 

m atrices are now observed. However, for this case the conventional techniques for calculating 

the QRD of a scalar m atrix  cannot be used to determ ine this decomposition, as each element of 

the channel m atrix  will now be a polynomial with an associated set of coefficients. However,
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provided the channel m atrix  has been estim ated, its QRD can be calculated according to 

one of the PQ R D  algorithm s detailed in C hapter 5, thus allowing the channel m atrix to 

be transform ed into an approxim ately upper triangular polynomial m atrix by means of a 

paraunitary  transform ation. This then enables the MIMO channel equalisation problem to 

be transform ed, using back substitution, into a  set of SISO channel equalisation problems, 

which can each be solved using a MLSE based on the Viterbi algorithm [62,66,67]. This 

process will now be* explained.

It is assumed th a t a set of source signals s(f) G  Cqxl , where t G  {0, . . . , T — 1}, are 

em itted from q independent sources through a convolutive channel to be received at an array 

of p  sensors, where it is assumed th a t p > q. The mixing model for the set of convolutively 

mixed received signals x(£) G  Cpxl can be expressed as

x(z)  =  C ( 2 ) s ( z )  + n ( 2) (8 .6 )

where C ( c )  G  C pxq denotes the polynomial mixing (or channel) m atrix and x(^), s ( ^ )  and
OG

11(2 ) denote algebraic power series, i.e. a series of the form x (2 ) = x ( t ) z ~ f , of the
t —  — OG

received signals, the  source signals and the noise process, which has variance cr2 Ip. In digital 

communications, the source signals a(t) are generally drawn from a finite constellation, such 

arise in binary or quaternary  phase-shift keying (B PSK /Q PSK ).

The first step to  achieve MIMO channel equalisation is to  calculate the QR decomposition 

of the polynomial channel m atrix  C (z) using any of the three algorithms detailed in Chapter 

5, such th a t

C(z)  = Q( z ) R ( z ) ,  (8.7)

where Q(z) G  C pxp denotes the polynomial paraun itary  transform ation m atrix  and R (z) G  

C pxq is an approxim ately upper triangular polynomial m atrix. The convolutive mixing model 

of equation (8.7) can then  be rew ritten as

7k{z) =  B ^ M z ) + n {z) (8.8)
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where x '(z )  =  Q (z )x (z ) and n '(z ) =  Q (z)n (z). As the polynomial m atrix  Q (z) is parau

nitary  and its applic ation is a linear transform ation, n ( z )  is also a Gaussian noise process 

w ith an identical norm. Note tha t to enable the set of p equations dem onstrated in vector 

form by equation (8 .8 ) to  become a set of q single channel equalisation problems, all elements 

beneath the diagonal of R (z ), which are approxim ately equal to zero, are assumed to be 

equal to zero. This will affect the accuracy of the  decomposition and possibly the error rate 

performance of the  m ethod for MIMO channel equalisation, however no numerical problems 

have been encountered when applying the algorithm  to a wide range of polynomial matrices. 

Furtherm ore, if the  relative error of the decomposition is too large, it can be reduced by 

decreasing the value of the stopping criterion e.

Now provided the channel m atrix is of full column rank, the MIMO channel equalisa

tion problem  can be transform ed into a set of q single channel equalisation problems using 

back substitu tion . Beginning with the qth element of x  (z) from equation (8 .8 ), this can be 

expressed as

which is a single channel equalisation problem. This can now be solved, to obtain an estim ate 

of the qth source signal, sq(t), using an MLSE based on the Viterbi decoder [62,66,67]. Once 

this estim ate has been attained , it can now be used to  formulate a  single channel equalisation 

problem involving &q-\{z) as follows

* i - l U )  -  L(q- \ ) q{z)Sq{z) = L(q- l )(q-l){z)Sq_i (z) +  7l^_i(z), (8.10)

which can again be solved using an MLSE. Furtherm ore, once the estim ates Sj+i(£), . . . ,  sq(t) 

have been calculated, the  ith single channel equalisation problem can be form ulated as

£<(*) “  Uj(zhj(z) = L iM zM  + r±M- (8 .11)
j=i+ 1

Provided the  set of signals are estim ated according to  the ordering i = q, q — 1 , . . . , 1 ,  

each equation then  reduces to  a single channel equalisation problem. Each SISO equalisation
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problem can be solved to  obtain an estim ate of the ith source signal, using the previously 

estim ated source's »j(t)  for j  = i + 1 , . . .  ,q. However, as with the narrowband or scalar 

m atrix  case*, if the  channel m atrix of the system is not of full column rank the system will 

be unelerele»termine*d and there will be fewer equations than  unknowns. The PQRD of the 

channel m atrix  could still be calculated, but it will not be possible to perform the process of 

back substitu tion  followed by equalisation to obtain an estim ate of every source signal.

T he role of the  back substitution, which is m ade possible by calculating the PQRD, is 

to  remove CCI. T he second step of applying the MLSE, enables the ISI observed in each 

single channel equalisation problem to be eliminated. However, this second step can only be 

achieved once the  transm itted  signal, which is to  be estim ated, is expressed in term s of a SISO 

system  and so the two steps m ust operate together, w ith back substitu tion enabling another 

SISO problem  to be solved. The m itigation of CCI will enable better frequency reuse within 

a com m unications system  and as a result will improve the network spectrum  efficiency [2]. 

A block diagram  of the  proposed baseband communication system using the PQ RD  can be 

seen in Figure 8.2.

s(z) Channel
C ( z )

Equalisation 
and baek 

propagation

Figure 8.2: Block diagram for a basic baseband communication system using the 
PQRD.

8 .4 .2  F ilter  A t th e  T ransm itter

Alternatively, the  PQ R D  of the  paraconjugate of the channel m atrix  C (z) E C pxq could have 

been calculated such th a t

C(z)  = Q ( z ) R ( z )  (8.12)

where Q (z) E C qxq is the polynomial paraunitary transformation matrix and R(2) E C qxp
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denotes the upper triangular polynomial m atrix. The convolutive mixing model of equation 

(8 .(i) could then  have been rew ritten as

x(z)  = R ( 2 )s ' ( z ) + n(z)  (8.13)

where s (z ) = Q(^)s(^) and R(.z) € C pxq is now a lower triangular polynomial m atrix. Again 

a two step  process of back substitution and the application of a MLSE can be used to estim ate 

the  set of source signals. Using this decomposition, which for the scalar m atrix case is often 

referred to  as an RQ or LQ decomposition, allows the signals to be filtered at the transm itter 

ra ther th an  the receiver, which was dem onstrated previously in Section 8.4.1. This will mean 

th a t the channel s ta te  inform ation (CSI) is only required at either the receiver or transm itter. 

If this was to  be used in mobile communications, for example, it would require no MIMO 

processing in the  mobile, bu t only a t the transm itter and could therefore be advantageous.

8 .4 .3  N u m erica l E xam p les

To illustrate  this proposed application of the PQ RD  to MIMO communications, two channel 

m atrices, C\ { z )  € C 4x3x4 and C 2(z) € C 5x5x4 are generated. Both of the channel matrices 

are of full rank  and have been chosen for their varying properties and different structures. 

However, before discussing these matrices, some issues about the im plem entation of the 

algorithm s for calculating the PQ R D  are discussed.

C om m en ts on  Im p lem en tation

For proposed application of the PQ RD  to  MIMO communications, any of the three algo

rithm s in troduced in C hapter 5 could be used to  calculate the decomposition. However, it 

is obviously preferable to  use the fastest and m ost accurate of the  three algorithms. From 

the  examples of C hap ter 6 , the  PQRD-BC algorithm  has consistently dem onstrated the best 

perform ance, typically requiring the least num ber of E PG R s and com putational time to  con

verge. Furtherm ore, the  orders of the resulting m atrices were often shorter and the relative 

error of the  decom position less. However, these potential advantages of the algorithm are not
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guaranttKKl for every polynomial matrix. Therefore, for the worked examples of this chapter, 

the decomposition has been formulated using each of the three algorithms and then the re

sulting matrices R(^) and Q(c) obtained from the algorithm providing the best performance 

have bt*en used to perform the MIMO channel equalisation.

The order of the resulting polynomial matrix R(z) is critical for this application due to 

the computational complexity of the equalisation step being directly proportional to the final 

order of this matrix. In particular, if a MLSE method based on the Viterbi algorithm is 

used to perform the equalisation, then the computational complexity of each step will be 

exponentially proportional to the order of R(^). The worked examples in this chapter use 

this method and so the order of the upper triangular polynomial matrix formulated by the 

decomposition for each example has been restricted to 14.

For each implementation of each of the algorithms for calculating the PQRD, the trun

cation method suitable for non para-Hermitian polynomial matrices from Section 4.3.2 was 

applied to both of the polynomial matrices at the end of each iteration of each of the al

gorithms, with the truncation parameter /i set equal to 10~6. This will optimise the speed 

of the algorithm, whilst ensuring that a fairly accurate polynomial matrix decomposition is 

formulated. However, if the order of the resulting upper triangular polynomial matrix R (2 ) 

following the decomposition is larger than 14, then the matrix has been truncated using 

the fixed bound truncation method. Whenever truncating the order of any of the polynomial 

matrices, it is important to recalculate the relative error of the final polynomial matrix decom

position, to ensure that the accuracy has not been substantially compromised. Furthermore, 

the value of the stopping criterion e, from equation (5.13), can also affect the relative error of 

the decomposition and if it is not sufficiently small then this will be reflected in the measure 

E rel . For each example of this chapter the parameter was set equal to 1 0 “3.

It can also be beneficial to realign the zero-lag coefficients of the polynomial elements of 

the upper triangular polynomial matrix resulting from the PQRD as discussed in Chapter 

6 . This will help to concentrate the series of coefficients associated with each polynomial 

element around the set of zero-lag coefficients of the polynomial matrix. This will often allow 

the polynomial matrices to be further truncated at little, or often no, additional cost to the
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accuracy of the decomposition performed.

Example 1

The first polynomial mixing matrix C 1 (2 ) € C 4 x 3  was generated to describe the propagation 

of three source signals on to five sensors. Each of the polynomial elements of the matrix 

was chosen to be a fourth order FIR filter, where both the real and imaginary parts were 

drawn from a uniform distribution in the range [—1 , 1 ]. The matrix was also normalised so 

that ||£ j (* ) ||f  =  1. A graphical representation of this polynomial matrix can be found in 

Appendix D.

Firstly, each of the three algorithms for calculating the PQRD introduced in Chapter 5 was 

applied to this polynomial channel matrix and the results obtained from each decomposition 

can be seen in Table 8.2, where g  defines the magnitude of the dominant coefficient of the 

resulting approximately upper triangular polynomial matrix R (z). The PQRD-BC algorithm 

demonstrated the best performance of the three algorithms, requiring only two sweeps of the 

algorithm and a total of 291 iterations over twelve steps of the algorithm to converge to a 

point where g  =  9.59 x 10- 4 . This algorithm required significantly fewer iterations that either 

the PQRD-BS or the PQRD-SBR algorithms to converge to a point where the magnitude of 

every coefficient associated with the polynomial elements positioned beneath the diagonal of 

R  ( z )  is less than 1 0  3. Furthermore, the orders of the resulting polynomial matrices Q(^) 

and R ( 2 ) are smaller than those obtained using the other two algorithms and this algorithm 

also obtained the least relative error. This decomposition was therefore used to perform 

the MIMO channel equalisation of this channel matrix. Figures illustrating the series of 

coefficients for the two polynomial matrices Q (2 ) and R (2 ) obtained using this algorithm 

can be seen in Appendix D.

Subsequently, three independent BPSK source signals, each of length 1000, were gener

ated and convolutively mixed using the channel matrix Q i { z )  following the mixing model 

demonstrated by equation (2.28), where N  defines the order of the polynomial channel ma

trix and for this example is equal to four. Gaussian noise representative of thermal noise, 

with spatial covariance o 21 4 , was then added to each of the receive sensors to give a desired
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PQRD-BS PQRD-BC PQRD-SBR

Number of Iterations 567 291 620
Order of R(^) 89 42 54
Order of Q(^) 98 46 61

9 9.97 x 10"4 9.59 x 10~4 9.83 x 10~4
E rel 1.52 x 10~2 9.26 x 10"3 1.11 x 10~2

Computational Time 
(Seconds)

0.81 0.30 1.60

Table 8.2: The results obtained from applying the three algorithms for calculating the 
PQRD to the polynomial channel matrix C ^ z).

signal-to-noise ratio at the receiver (RSNR). For this experiment the RSNR can be calculated

&S

/ t v {c ,(*)C1(*)}| \
RSNR =  101og10 I ----- ------ — 2-----1 (814)

where p  defines the number of receivers, which for this example is equal four, and | t _ 0 denotes 

the scalar matrix containing the coefficients of z °  of the polynomial matrix. Through the 

two step process of back substitution and applying the MLSE described in 8.4.1, an estimate 

for each of the source signals was obtained. The average bit error rate (BER) for each of 

the estimated source signals was calculated, where the variance of the additive noise was 

chosen to give varying levels of SNR. This was carried out for 100 independent Monte-Carlo 

realisations, using the same channel matrix Q i ( z ) ,  but generating new source signals and 

noise terms for each realisation. The average of these results can be seen in Table 8.3, where 

for RSNR levels 10 — 20 dB the technique offers excellent error rate performance.

For these results, the order of the upper triangular polynomial matrix R(z) was trun

cated using the fixed bound truncation method, reducing the order of the matrix from 42 to 

14, which then enabled the MLSE to be implemented. As a result, the relative error of the 

decomposition increased from 9.26 x 10-3 as observed in Table 8.2 to 0.0493. Similar results 

have been presented in [70], however, these results were calculated using the PQRD-BS al

gorithm to formulate the PQRD of the polynomial channel matrix C^-z). For these results 

a larger value for the truncation parameter was used ( p  =  1 0 - 3 ) throughout the decompo-
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sition, and as a result, the relative error of the decomposition was found to be considerably 

larger with E rtl — 0.168. For this reason, the error rate performance was slightly worse, 

demonstrating that it is better to truncate the orders of the polynomial matrices using the 

energy based truncation method throughout the algorithm using a very small value for the 

truncation parameter // and then truncate the final order of the upper triangular polynomial 

matrix R (2 ) to be sufficiently small for the channel to be equalised.

Average BER

C .to c * w
SNR Source Source Source Source Source Source Source Source
(dB) 1 2 3 1 2 3 4 5

- 5 0.1906 0.1893 0.2589 0.2362 0.2644 0.2965 0.2607 0.3604

0 0.0619 0.0639 0.1239 0.1287 0.1471 0.1942 0.1430 0.2696

5 0.0025 0.0033 0.0177 0.0319 0.0422 0.0744 0.0344 0.1532

10 0 0 0.0001 0.0012 0.0014 0.0051 0.0013 0.0389
15 0 0 0 0 0 0.0001 0 0.0014

20 0 0 0 0 0 0 0 0

Table 8.3: Average BERs for the estimated BPSK sources for the MIMO channel 
equalisation problem. The results are demonstrated for the two channel matrices 
Cj ( z )  (E C 4x3x4 and C 2(^) € C 5x5x4, and for varying levels of RSNR.

Example 2

For the second example, the polynomial channel matrix C 2 (z) € C 5 x 5 x 4  was generated such 

that each coefficient associated with each of the polynomial elements of the matrix is of the 

form 5  (a +  ib) ,  where both a and b are drawn randomly from a Gaussian distribution with 

mean zero and unit variance. This matrix will correspond to a quasi-static block of a Rayleigh 

frequency selective channel. The matrix was normalised so that ||C 2 (2 )||F =  1. As with the 

first example, each of the three algorithms for calculating the PQRD was applied to this 

polynomial matrix, to assess their performance and therefore choose the most appropriate 

algorithm to formulate the PQRD of the channel matrix. The results from applying each of 

the three algorithms to this polynomial matrix are contained in Table 8.4.
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Once again, the PQRD-BC algorithm demonstrated the best performance of the three 

algorithms, requiring significantly less iterations and therefore EPGRs to converge. This 

algorithm required only two sweeps of the algorithm and a total of 536 iterations to converge 

to a point where the magnitude of each coefficient associated with a polynomial element 

positioned beneath the diagonal of the polynomial matrix R (z) is less than 1 0 -3 . Note 

that the orders of the polynomial matrices generated by the algorithm are larger than those 

obtained using the other two algorithms. However, this is not an issue for this application of 

the decomposition, as the orders of the upper triangular polynomial matrices obtained from 

each of the three algorithms are too large for the equalisation step and must therefore be 

truncated further. Note that the relative error observed when using the PQRD-BC algorithm 

is slightly larger than that obtained using the PQRD-SBR algorithm, but the SBR approach 

required considerably more time to converge and has therefore not been used to perform the 

decomposition. Graphical representations of the polynomial channel matrix C 2( z ) ^ d  the 

two polynomial matrices obtained when applying the PQRD-BC algorithm to this matrix 

can be seen in Appendix D.

PQRD-BS PQRD-BC PQRD-SBR

Number of Iterations 750 536 856
Order o f R(z) 64 74 63

Order of Q (z) 69 82 68

9 9.84 x 10"4 9.99 x 10~4 9.96 x lO"4
E r el 0.0161 0.0148 0.0129

Computational Time 
(Seconds)

1.25 0.86 3.50

Table 8.4: Results obtained from applying the three algorithms for calculating the 
PQRD to the polynomial matrix C 2(z).

To enable equalisation of the channel using an MLSE based on the Viterbi algorithm, the 

order of the resulting approximately upper triangular polynomial matrix must be sufficiently 

small. For this reason, the order of the polynomial matrix R(.z) must be truncated to have 

an order of 14. However, to ensure that enforcing this will not compromise the accuracy 

of the decomposition unnecessarily, the series of coefficients associated with the polynomial
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elements of the polynomial matrices obtained using the PQRD-BC algorithms are realigned 

by applying a series of final elementary delay matrices as discussed in Chapter 6 . Applying 

a final alignment to this example, the order of R(^) was reduced from 7 4  to 63 and the 

order of Q(z) from 82 to 73, at no additional cost to the relative error of the decomposition. 

Furthermore, once the order of R (2 ) has been reduced to 14 to enable the equalisation of the 

polynomial channel matrix, the relative error of the decomposition was calculated as 0.1168.

A set of five BPSK source signals, each of length 1 0 0 0 , was generated and then convo- 

lutively mixed according to equation (2.28), where N  is again equal to four. Noise is then 

added to the convolutively mixed signals, where the variance of the noise has been chosen to 

give a desired RSNR value, which is calculated according to equation (8.14) where p  — 5 and 

er2 defines the variance of the noise. Estimates of the five source signals are then calculated 

using the process of back substitution and equalisation detailed in Section 8.4.1 and their 

BER calculated. The RSNR for the experiment was allowed to vary from —5 to 20 dB in 

increments of five. The results, for each RSNR value were then averaged over 100 realisa

tions. The same channel matrix was used throughout, however, the signals and noise terms 

were generated afresh for each realisation. The average BER results are contained in Table 

8.3, which demonstrate this technique has shown excellent error-rate performance for all five 

sources for RSNR values in the range 10 to 20 dB.

8 .4 .4  D iscu ss io n  o f  th e  E ffect o f  R ela tiv e  Error on B it  Error 

R a te

The performance of the equaliser during this process, will be affected by the relative error of 

the decomposition performed. However, the order of the polynomial matrix R(^) must be 

sufficiently small to enable the equaliser to be applied and so, for most polynomial channel 

matrices, there will be some level of relative error encountered by truncating the order of this 

matrix. Other factors that will affect the relative error of the decomposition are the choice 

of the stopping criterion e and the truncation parameter p .  Also the final truncation and 

realignment, if it is used, will affect this measure. Note that it is better to use a small value
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of ft when calculating the decomposition and then truncate the order of the final polynomial 

matrix R (z), if its order is still too large to implement the equalisation step. This will help 

minimise the relative error encountered. For the worked examples in this thesis, the choice 

of both parameters has always been determined to optimise the speed and accuracy of the 

algorithm used to calculate the PQRD.

Note that the transformation performed by the PQRD is norm-preserving in the columns 

of the polynomial matrix. However, truncating the polynomial matrices throughout the 

decomposition will mean that this is no longer true (although it will be approximately true 

using a suitable value for the truncation parameter (i) and each column of the resulting upper 

triangular matrix is affected by truncation by varying amounts. Due to the matrix being 

transformed into the upper triangular polynomial matrix R (z), truncation of this matrix 

throughout the PQRD algorithm will generally result in a more upper triangular polynomial 

matrix and hence, over the whole transformation, the most energy will typically be lost in 

the far right column of the matrix. The least energy will be lost in the first column, with all 

columns in between the first and last having increasing amounts of energy lost (due to the 

columns of the input matrix having more non-zero elements in them).

8 .4 .5  C on clu sion s

The numerical examples presented in this section have demonstrated that the algorithms for 

calculating the PQRD, introduced in this thesis, can be used successfully as a preprocessing 

step in MIMO communication systems to transform a problem of MIMO channel equalisation 

into a series of SISO channel problems, which can be solved using an equalisation scheme such 

as MLSE. Furthermore, the decomposition has shown to yield good error rate performance 

when applied to a quasi static channel with a constant power profile, which is the typical 

structure of a wireless channel. Future work could assess the performance of this method 

when using other equalisation techniques. Furthermore, pre- and post-processing techniques, 

such as interleaving and error correction coding can be used to improve the average BER 

performance performance of the system [71]. Similar results have been found using QPSK 

source signal, but are not presented in this thesis.
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Note that it is better to set the value of the truncation parameter /i as small as possible, 

as this will mean a more accurate decomposition. If possible, it is obviously best to obtain the 

decomposition without truncating the polynomial matrices by setting (j, =  0 , however, com

putationally the algorithm becomes very slow to implement. Instead, the polynomial matrices 

can be truncated throughout the algorithm using a very small value for n  at each iteration 

and then truncate the final polynomial matrices using the fixed bound truncation method 

described in Section 4.2 to ensure that they are of appropriate orders for the application.

Tests have demonstrated, but are not included in this thesis, that the relative error of the 

decomposition can be allowed to increase to approximately 0 .1  for these examples without 

compromising the average BER results. Further research could be carried out to determine 

the amount of error that can be allowed within the decomposition without significantly af

fecting the error rate performance with this equalisation scheme. Note that the order of the 

approximately upper triangular polynomial matrix R (2 ) is critical to this application of the 

decomposition as the computational complexity of the MLSE is exponentially proportional 

to this measure. Error could also be encountered when estimating the polynomial channel 

matrix and this will also affect the error rate performance of the system. Future work could 

be undertaken to fully investigate the affect of all errors, such as channel matrix estima

tion error and the error obtained from truncating the polynomial matrices, on the error rate 

performance of the system.

8.5 P o ten tia l A pp lications o f th e  P S V D

One possible application of the PSVD is in MIMO communication systems, where it can 

be applied to a previously estimated channel matrix to split it into a set of independent 

subchannels. Again, as with the application of the PQRD, the received data that has passed 

through the convolutive channel will be distorted due to both the effects CCI and ISI and both 

of these must be removed to estimate the transmitted data. By calculating the SVD of the 

polynomial channel matrix, provided it is of full column rank, the MIMO channel equalisation 

problem can be transformed into a set of single channel equalisation problems and this process
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removes the CCI. The ISI present in each of the subchannels is then eliminated by applying an 

equaliser. For the results presented in this chapter the equalisation step has been performed 

using an MLSE, which operates using the Viterbi algorithm [62,66,67]. This scheme will not 

suffer from reduced sensitivity to frequency offset errors and has no problems with peak-to- 

average-power ratio, which are both problems observed when using the alternative OFDM 

approach.

Note that the application of the PSVD discussed here, is similar to the application of 

the PQRD previously discussed in 8.4.1. However, with the PQRD it is only necessary to 

filter either the received signals or alternatively if preferred the transmitted signals. When 

performing MIMO channel equalisation using the PSVD, it is necessary to filter both the 

received and the transmitted signals. The process of achieving broadband MIMO channel 

equalisation using the PSVD is now discussed.

8 .5 .1  M IM O  C han n el E xp lo ita tion

The PSVD of a polynomial channel matrix C (2) € C pxq, can be calculated using either the 

SBR2 or the PSVD by PQRD algorithm, which have both been discussed in Chapter 7, to 

obtain the paraunitary matrices U (z) G  C pxp  and V (z) € C qxq such that

C (z) =  U (z )D (z)V (z) (8.15)

w h e r e  D (z) G  C pxq i s  a n  a p p r o x i m a t e l y  d i a g o n a l  p o l y n o m i a l  m a t r i x .

For this application, the signals s(z) demonstrated in the convolutive mixing model in 

equation (8.6) do not represent the source signals, but the transmitted signals, which must 

first be filtered at the transmitter to enable the MIMO channel equalisation problem to be 

transformed into a set of SISO equalisation problems. Suppose the source signals, which are 

generally drawn from a finite constellation such as BPSK or QPSK, are denoted by s (z) G  

<Cqx 1. Before transmitting these signals through the convolutive channel, they are passed 

through a transmit filter bank, where they are multiplied by the paraunitary polynomial 

matrix V (z ) obtained from calculating the PSVD of the polynomial channel matrix C(z)

198



8.5 Potential Applications o f the PSVD

ax-cording to equation (8.15). The filtered source signals, which are to be transmitted through 

the convolutive channel can therefore be expressed as

1 (2 ) =  ¥ . { z ) f k \ z ) .  (8.16)

As the polynomial matrix V (2) is paraunitary, it will act as a multichannel all-pass filter

and will therefore preserve the combined power of the signals at every frequency [16]. The

filtered source signals §(2 ) from equation (8.16) are then transmitted through the convolutive 

channel to obtain the received signals

x ( z )  = C(z)s(2) + n(z), (8.17)

where n(z) G C pxl denotes a multivariate Gaussian noise process with covariance cr2l p and is 

representative of thermal noise at the receiver. The received signal x(^) are then filtered by 

the paraunitary polynomial matrix U (z), obtained from calculating the PSVD of the channel 

matrix C(2) according to equation (8.15), to obtain the filtered received signals

x ( z )  =  U ( z ) C ( z ) V ( z ) s  ( z )  +  n  ( z )  (8.18)

= D(z)s'(2) +  n'(2) (8.19)

where x  ( z )  =  U ( z ) x ( z )  and n ( z )  =  V { z ) n ( z ) .  Furthermore, as the polynomial matrix 

U(2) is paraunitary, n (2) is also a Gaussian noise process with identical spectral properties. 

Equations (8.18) and (8.19) have demonstrated that passing the source signals through the 

paraunitary polynomial matrix V ( z ) ,  then through the convolutive channel C(2) and finally 

through the paraunitary polynomial matrix U(2) is equivalent passing the signals through the 

approximately diagonal polynomial matrix D(2). In particular, due to the diagonal structure 

of D(2), the i th received signal, where i =  1 , . . . ,  q,  can be written as

di{z) = di i^s ' i iz)  +  n'(2 ), (8.20)
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which is a single channel equalisation problem and can be solved using an MLSE to obtain 

an estimate of the ith source signal s t {t). Note that when using the PQRD to simplify the 

MIMO channel equalisation problem, due to the structure of the upper triangular polynomial 

matrix R(z), the source signals must be estimated in a particular order and the SISO equation 

relating to a particular source, will require knowledge of all sources that have been previously 

estimated. However, when using the PSVD this is no longer the case. The estimated sources 

can be determined in any order and all of the SISO problems are independent of the other 

source signals. A block diagram of the proposed baseband communication system using the 

PSVD can be seen in Figure 8.3.

EqualiserChannel
C ( z )

Figure 8.3: Block diagram for a basic baseband communication system using the PSVD 
(schematic of the multi-channel exploitation scheme).

If the channel matrix C { z )  € C pxq  is rank deficient, then it will still be possible to 

successfully transmit and obtain an estimate over a number of the subchannels. In this 

situation, the PSVD will generate a diagonal polynomial matrix where a number of the 

diagonal elements are equal to zero. Consequently, the signals transmitted over these channels 

cannot be estimated using this method. However, unlike the method of channel equalisation 

using the PQRD discussed in the previous section, it is still possible to transmit and receive 

over all of the other subchannels, which are associated with the non-zero diagonal elements.

A considerable amount of research has already been undertaken in this area [11-14]. 

However, all research so far has focused on calculating the PSVD using the PEVD routine 

SBR2. Furthermore, the results are often demonstrated for exponentially decaying profile 

channels, which will generally result is a diagonal polynomial matrix D(^) of low order, but 

these channel matrices are not representative of a typical wireless channel. The following
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numerical examples to  illustrate this application, will calculate the PSVD using both this 

existing SBR2 m ethod and also the new PQ R D  technique introduced in C hapter 7. In this 

chapter, the PSV D by PQ R D  algorithm has dem onstrated better performance when applied 

to  a single polynom ial m atrix. The main advantage of this algorithm  is tha t it is possible to 

specify how small the  coefficients associated w ith the off-diagonal polynomial elements must 

be driven, which is som ething th a t it is not possible to  do when using the SBR2 method. As 

a result, the  PSV D  by PQ R D  algorithm typically requires a smaller amount of com putational 

tim e to  reach the sam e level of decomposition as the  PSVD by PEVD method. Furthermore, 

the  orders of the  polynomial matrices and the relative error of the decomposition are generally 

less when using th is m ethod. The channel m atrices for these examples are also chosen to have 

constant power profile, as th is is representative of a  typical wireless channel. The following 

two exam ples com pare the  two decomposition techniques, illustrating the advantages of the 

PQ R D  over the  PEV D  m ethod. For both  examples MIMO channel equalisation, as discussed 

here, is then  carried out using the results obtained from the PSVD by PQ RD  algorithm.

8 .5 .2  N u m er ica l E xam p les

T he two examples used in Section 8.4.3, which have previously been used to  dem onstrate the 

potential application of the  PQ RD , are now used to  dem onstrate the possible application of 

the  PSV D to  M IM O com m unication systems. However, the two polynomial channel matrices 

are first used as fu rther examples of the  PSVD by PQ RD  algorithm discussed in C hapter 

7. These examples serve to  illustrate the improved performance of this algorithm over the 

PSV D by PE V D  m ethod, which was previously used for this application [11-14,72,73].

Note th a t  it is hard  to  compare the two algorithm s based on their com putational com

plexity due to  the  growing orders of the polynomial m atrices, which can not be determined in 

advance. Therefore, the  best measure available is the com putational tim e taken to  form the 

decom position using each algorithm. Furtherm ore, it is also difficult to  achieve the same level 

of decom position using the two different techniques, as each algorithm will only formulate an 

approxim ation and it is impossible to specify in advance how small the off-diagonal elements 

should be driven when using the SBR2 m ethod. This is due to  the PSVD by PEV D m ethod
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not directly calculating the PSVD of A (z ), but instead formulating the PSVD by calculating 

the P EV D  of the two para-Hermitian polynomial matrices A ( z ) A ( z )  and A ( z ) A ( z )  to obtain 

the left and right hand polynomial singular vectors respectively. Instead, a process of trial 

and error must be undertaken. This w ill then reflect in the relative error of the decompo

sition and also the final value of g,  which defines the magnitude of the dominant coefficient 

of the approximately diagonal polynomial m atrix £>(2) obtained from the PSVD. The size 

of the relative error w ill influence the transmission symbol BER for the system. This is not 

a problem when using the PSVD by PQRD method, where the stopping condition directly 

specifies the accuracy of the polynomial m atrix decomposition. This point was discussed in 

more detail in Chapter 7.

For each example, the elements of the diagonal polynomial m atrix, obtained using each 

method, are aligned to ensure that they are over the same series of lags. This was previously 

done for the worked example in Chapter 7. Note that to realign the diagonal elements a 

series of delay matrices can be either applied from the left or right hand side of the poly

nomial m atrix. This w ill be determined by which rows or columns of the the paraunitary 

transformation consists of elements that must also be realigned. This step w ill therefore not 

only enable the possibility of reducing the order of the diagonal m atrix, but also the orders 

of one or possibly both of the paraunitary transformation matrices U (z ) and V (z ).

Example 1

Firstly, the two methods for calculating the PSVD are applied to the polynomial channel 

m atrix C ^ z ) € C 4x3x4. The details of how this polynomial m atrix was generated can be 

found in Section 8.4.3, where it was previously used to demonstrate the potential application 

of the PQ RD. The PQRD-BC algorithm was used to calculated the PSVD as it required 

the least number of iterations when compared to the PSVD using either the PQRD-BS or 

the PQ RD-SBR variations of the algorithm. Consequently, it required the least amount 

of computational time. Note that this method was also the best algorithm to use when 

calculating the PQ R D  of the same channel m atrix. The results from applying the PSVD by 

P EV D  and the PSVD by PQRD-BC algorithms, w ith the truncation and stopping parameters
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set as € =  10"2 and /z =  10“ 6, can be seen in Table 8.5. For these results a final alignment 

step, as discussed in Chapter 7, was applied to the polynomial matrices, if required, to further 

reduce the orders of the polynomial matrices.

PSV
SBR2

D By
PQRD

Number of Iterations 109 456

9 5.65 x 10"2 9.82 x lO'3
Order of 2(«) 56 57
Order of H(z) 47 61
Order o f V(z) 29 52

JET®1 0.2180 0.0862
Computational Time 

(Seconds)
0.25 0.60

Table 8.5: Results obtained from applying the two methods for calculating the PSVD 
to the polynomial matrix Qi(z).

The results presented in this table demonstrate that the PSVD by PQRD algorithm 

took more iterations and time to converge than the PEVD  method, furthermore, the order 

of the resulting polynomial matrices D (z ), H (z ) and V (z ) obtained by the decomposition 

were also larger. However, the PSVD by PQRD algorithm obtained a far more accurate 

decomposition due to the off-diagonal coefficients being driven significantly smaller according 

to the stopping criterion e. The magnitude of the largest coefficient associated with an off- 

diagonal polynomial element of D (z ) was found to be g  =  9.82 x 10-3 . The same level of 

decomposition was not obtained using the PSVD by PEVD  algorithm, where g — 5.65 x 10~2. 

Furthermore, an upper bound on this value could not be determined in advance using this 

method and so the same problems observed in the numerical example in Chapter 7 were again 

present.

To obtain a similar level of decomposition as obtained by the PSVD by PQRD algorithm 

required the truncation and stopping parameters to be set as /z =  10“ 7 and e =  10-3 . The 

algorithm now required 0.91 seconds to converge to a point where g — 6.72 x 10-3 , which 

did not take into account the time taken to find the appropriate values of /z and c to obtain
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this level of decomposition. Furthermore, the order of the approxim ately diagonal m atrix is 

now 67. Com paring these results with those obtained using the PSVD by PQ RD  algorithm 

as presented in Table 8.5  confirmed th a t the PSVD by PQ RD  algorithm is faster to obtain 

the decomposition and the orders of the polynomial matrices obtained for this decomposition 

are shorter. For th is reason PSVD by PQ RD  algorithm  has been used to perform the MIMO 

channel equalisation.

Subsequently, a set of three BPSK source signals each of length 1000 were generated 

and then  filtered by the paraunitary  polynomial m atrix V (z) obtained from calculating the 

PSV D of the  channel m atrix  C i(z ). The filtered source signals are then convolutively mixed 

using the channel m atrix  C j(z )  according to equation (2.28), where N  defines the order 

of the  polynomial channel m atrix  and for this example is equal to four. Gaussian noise 

representative of therm al noise, w ith spatial covariance <72l 4, was then  added to  each of 

the  receive sensors to  give a desired RSNR, which is again calculated according to equation 

(8.14). The received signals are then filtered by the paraunitary  polynomial m atrix U (z), 

which was also obtained from calculating the PSVD of the channel m atrix  C ^ z ) ,  and the 

process of equalisation of each filtered received signal was performed to  obtain estimates of 

each of the  three source signals. The average BER for each of the estim ated source signals 

was calculated, where the variance of the additive noise was chosen to give varying levels of 

RSNR, ranging from —5 to 20dB. This was carried out for 100 independent realisations, using 

the same channel m atrix  C : (z), bu t generating new source signals and noise term s for each 

realisation. The average of these results can be seen in Table 8 .6 , where for RSNR levels 10 

to  20 dB the  technique offers excellent error rate  performance for the first source. The error 

perform ance of the  rem aining two sources is not so good, especially for the th ird  source.

Example 2

Both techniques for calculating the PSVD were applied to  the polynomial m atrix  C 2(z) G 

(£<5x5x4 Again, the  PQ RD-BC algorithm was used for the PSVD by PQ RD algorithm as it 

provided the best perform ance for this example. The PQ RD-BC algorithm required less time 

to  converge, the  relative error was less than  th a t obtained using the other algorithms and
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A verage B E R

C |W C , ( z )
S N R Source Source Source Source Source Source Source Source
(d B ) 1 2 3 1 2 3 4 5

- 5 0.1979 0.2501 0.3804 0.1867 0.2490 0.3142 0.3735 0.4391
0 0.0638 0.1201 0.3003 0.0578 0.1167 0.1943 0.2871 0.3885
5 0.0032 0.0175 0.1801 0.0026 0.0166 0.0647 0.1673 0.3100
10 0 0.0001 0.0512 0 0.0001 0.0035 0.0422 0.1932
15 0 0 0.0022 0 0 0 0.0011 0.0684

20 0 0 0 0 0 0 0 0.0062

Table 8.6: Average BERs for a set of estimated BPSK sources for the MIMO channel 
equalisation problem calculated using the PSVD by PQRD-BC algorithm to split the 
problem into a set of SISO problems, which can then equalised using a MLSE based 
on the Viterbi algorithm. The results are demonstrated for the two channel matrices 
C \ ( z )  G C 4x3x4 and C 2(z)  G C 5x5x4, and for different levels of RSNR ranging from 
—5dB to 20dB.

the  orders of the polynomial matrices obtained by the algorithm were also shorter. A final 

alignment step was applied to  the results obtained using both  PSVD techniques, reducing 

the  orders of the  polynomial m atrices at no additional cost to  the relative error. The results 

can be seen in Table 8.7.

These results dem onstrate th a t the PQ RD  technique obtains a  far more accurate decom

position, w ith E rel = 0.1261. The same measure found using the PEV D m ethod was found to 

be 0.4146. However, the  PQ R D  m ethod did require considerably more time to converge, but 

once again the  m agnitude of the largest coefficient associated w ith an off-diagonal polynomial 

element of D (z) was found to  be g = 9.93 x 10- 3 , much smaller th a t th a t obtained using the 

PEV D  m ethod.

To ob tain  a  similar level of decomposition to  th a t obtained by the PSVD by PQRD 

algorithm , required a considerable amount of trial and error to  find an appropriate choice 

of the  param eters p  and e to  obtain a similar value of g. If e =  5 x 10-4  and p = 10-7 , 

then the m agnitude of the dom inant off-diagonal coefficient of D (^) was now found to be 

g =  9.04 x 10~3. However, this required 1239 iterations, taking 5.93 seconds to converge and
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PSV
SBR2

D By
PQRD

Number of Iterations 168 869

9 6.72 x 10~2 9.93 x 10-3

Order of D(z) 47 78
Order of U(z) 38 77
Order of V(z) 32 54

E rel 0.4146 0.1261

Computational Time 
(Seconds)

0.50 1.37

Table 8.7: Results obtained from applying the two methods for calculating the PSVD 
to the polynomial matrix C 2(z).

the  order of the approxim ately diagonal polynomial m atrix D (z) was 132. Therefore, the 

PSV D by PQ R D  clearly outperform s the PSVD by PEV D algorithm. For this reason this 

algorithm  was used to  perform  the MIMO channel equalisation.

T he process of equalisation is exactly the same for the previous example and so will not 

be discussed again. For this example, there are five sources signals, which were chosen to 

be BPSK sequences of length 1000. The average error rate  results were averaged over 100 

independent realisations, using the same channel m atrix C2(z), but generating new source 

signals and noise term s for each realisation. The average of these results can be seen in Table 

8 .6 , where for RSNR levels 10 to  20 dB the technique offers excellent error rate  performance 

for the  first source. As w ith the previous example, the error rate  performance will degrade 

moving downwards through the sources. In particular, the error performance of the fifth 

source was poor for all levels of RSNR.

8 .5 .3  C on clu sion s

The num erical examples have dem onstrated the ability of the PSVD by PQ RD algorithm 

as a preprocessing step in MIMO communication system s to transform  a problem of MIMO 

channel equalisation into a series of SISO channel problems, which can be solved using an 

equalisation scheme such as MLSE. The polynomial channel matrices used for these results
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were chosen to have constant power profile to represent a typical wireless channel and the 

scheme has demonstrated good average error rate performance for these channels.

The results have also illustrated the improved performance of using the PSVD by PQRD 

algorithm over the existing technique of using the SBR2 algorithm to calculate the PSVD of 

a polynomial matrix. Again as with the simulated results to demonstrate the application of 

the PQRD, only a very simple baseband communication system has been demonstrated and 

so the average error rate could potentially be improved by using an interleaver, a different 

method of equalisation and possibly also by implementing error correction coding [62,71].

8.5 .4  Paraunitary Filter Bank D esign and Subband C oding

The PSVD can also be used with subband coding, which is extensively described in [9,10]. 

The idea of subband coding is to split a signal into a number of different subbands, which can 

then each be individually decimated, with the allocation of bits per subband being determined 

by the energy content of each subband signal [16,57,58]. It is used extensively for the data 

compression of audio signals - for example to generate MPEG audio files. Consequently, 

this will conserve signal bandwidth, by eradicating any information concerning frequencies 

that won’t noticeably change the reconstructed signals. In [9,10] the SBR2 algorithm has 

been used to calculate the PSVD. In [10] a slightly modified version of the SBR2 algorithm 

is used, referred to as the SBR2 coder, to obtain the paraunitary m atrix filter bank. The 

PSVD calculated the optimal FIR paraunitary filterbank.

8.6 Potential Applications of the PEV D

The application of the PEVD to strong decorrelation has been discussed extensively in Section 

3.6.1. This was the primary application of the decomposition, when it was developed to form 

the first step of a two-step BSS algorithm suitable for convolved signals. Since then other 

applications of the decomposition have been realised, including the potential application to 

MIMO communications discussed in 8.5.1, where the PEVD can be used to formulate the 

PSVD.
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C hapter 9 

Conclusions and Future Work

The main lim itation of the SBR2 algorithm was the unnecessarily large orders of the result

ing polynomial matrices generated by the algorithm. The first contribution discussed in this 

thesis, was the development of an energy based truncation method, which can allow the order 

of these polynomial matrices to be vastly reduced whilst, if used appropriately, still main

taining an accurate polynomial matrix decomposition. This then enabled the computational 

load of the SBR2 algorithm to be reduced, which consequently meant tha t the algorithm 

was typically faster to run. This is illustrated by the examples detailed in the fourth chap

ter, demonstrating the orders of the resulting polynomial matrices and the computational 

time taken to  run the SBR2 algorithm can be vastly reduced when this truncation m ethod 

is included. This result is therefore useful for the potential applications of the algorithm, 

where the resulting orders of the matrices is critical. In particular, this can be used to  great 

advantage for the application of the decomposition to MIMO communication problems where 

the computational complexity required to solve the problem is directly proportional to the 

order of the diagonal polynomial matrix generated by the SBR2 algorithm.

Subsequently, three algorithms for calculating the QR decomposition of a polynomial ma

trix have been introduced, all of which are guaranteed to transform a polynomial m atrix into 

an approximately upper triangular polynomial m atrix by means of polynomial paraunitary 

matrices. Results have demonstrated the most efficient of these algorithms to generally be 

the PQRD by Columns (PQRD-BC) algorithm, although for some examples the PQRD by 

Steps (PQRD-BS) algorithm does outperform this method. All three algorithms introduced
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for calculating this decomposition have been proven to converge. The potential application 

of this decomposition is to MIMO communication problems, where it is often required to 

reconstruct d a ta  sequences that have been distorted due to  the effects of co-channel inter

ference and m ultipath propagation, leading to intersymbol interference. If the polynomial 

channel m atrix for the system is known, its QR decomposition can be calculated using one 

of these algorithms and this can then be used to transform the linear system of polynomial 

equations into triangular form, which can then be solved using back substitution and a stan

dard equalisation technique suitable for single channel problems. This process is extensively 

discussed in the penultim ate chapter, where some simulated average bit error rate  results are 

presented to support this potential application. The energy based truncation method can 

again be used to great advantage to this application of the decomposition algorithm. Note 

tha t the possible applications of this decomposition to broadband signal processing will be 

as diverse as the applications of the scalar m atrix QRD to narrowband signal processing.

An algorithm for calculating the SVD of a polynomial m atrix has also been presented. 

The algorithm operates by iteratively applying the most efficient of the PQRD algorithms 

and is therefore referred to as the PSVD by PQRD algorithm. A proof of convergence for 

the algorithm has been presented in this thesis. This algorithm has been compared to an 

already existing technique for calculating the SVD of a polynomial matrix, which operates by 

applying the SBR2 algorithm (referred to as the PSVD by PEVD algorithm), and numerical 

results have dem onstrated the PSVD by PQRD algorithm offers better performance. The 

main advantage of the PSVD by PQRD algorithm, is tha t it is computationally considerably 

faster to  obtain approximately the same level of decomposition. Secondly, the PSVD by 

PQRD algorithm also allows the user control over how small the off-diagonal elements of the 

m atrix must be driven before convergence has been reached, which is something tha t cannot 

be achieved using the SBR2 approach without a considerable amount of trial and error. The 

resulting orders of the polynomial matrices obtained using the PSVD by PQ RD m ethod are 

typically shorter than  those obtained with the PSVD by PEVD approach, with less relative 

error. This final point can be an advantage for the potential application of the decomposition 

to MIMO communications and has been discussed in detail in chapter eight. Note th a t the
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polynomial m atrix  truncation methods can also be used within these new decompositions 

algorithms.

The m ain contributions of the thesis are the algorithms for calculating the QR and singular 

value decomposition of a polynomial matrix. They have all been proven to converge and 

are also numerically robust. The thesis has outlined the potential applications of these 

decompositions and provided some average error rate  result to support the applications. The 

energy based truncation method, which can be used to reduce the computational requirements 

within any of the polynomial m atrix decomposition algorithms is also a contribution of the 

thesis.

9.1 Suggestions for Further Work

This section has been subdivided into the potential areas of research for the three decompo

sition discussed in this thesis.

The PEVD

The classical Jacobi algorithm for calculating the EVD of a scalar m atrix A  6  Cnxn involves 

0 (n2) operations to search for the dominant element in the m atrix at each iteration and 

other aspects of the iteration require 0 (n )  operations [6]. Alternatively, a cyclic by rows 

Jacobi algorithm can be used to reduce the number of computations, by visiting the off- 

diagonal elements in the m atrix using an ordering, implementing multiple sweeps if required 

for convergence. This algorithm is considerably faster as it does not require a search routine 

to locate the dominant element at each iteration. It would be interesting to see if a similar 

approach could be used with the SBR2 algorithm and how this would affect convergence of 

the algorithm. Furthermore, it would be interesting to  see if parallel computations could 

be used within the SBR2 algorithm, by implementing non-conflicting Givens rotations in 

parallel. For example, the rotations required to  zero coefficients in the polynomial elements 

(1,2) and (3,4) are non-conflicting and can therefore be carried out in parallel. However, 

with polynomial matrices this will require multiple applications of delay matrices, which may
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cause problems for the same reason that Householder refections axe not a suitable type of 

transform ation for polynomial matrices1.

T h e  P Q R D

For scalar matrices, the LU decomposition is generally preferable to the QR decomposition 

when solving a set of linear equations, as it requires approximately half the number of oper

ations to calculate [38]. In fact for the scalar m atrix case, there are a few exceptions where 

the QRD is the best m ethod to use. Could an algorithm for calculating the LU decompo

sition of a polynomial m atrix be developed using similar methods and techniques to those 

discussed in this thesis? Furthermore, if this decomposition is possible, would it provide 

a less computationally expensive algorithm for polynomial matrices than the PQRD? It is 

difficult to determine this in advance due to the orders of the polynomial matrices growing 

at each iteration due to the application of elementary delay matrices, which are a necessity 

for convergence of the polynomial m atrix decompositions.

The QR algorithm of a scalar m atrix is often used to calculate the eigenvalues of a 

matrix, where the EVD can not be used as the matrix is not Hermitian. Parallel Givens 

rotations could be applied, which may affect both the order of the polynomial matrices and 

the computational time. Furthermore, there exist variations formulating the Givens m ethod 

for scalar m atrix QRD, such as the Fast Givens QRD and techniques using column pivoting. 

The focus of future research could investigate these possibilities, to see if they are feasible.

The application of the PQRD to MIMO communication systems, discussed in chapter 

eight, was presented for a very simple baseband communication systems, yet the technique 

still demonstrated good average error rate performance. The use of interleavers and error 

correction codes could be used to potentially improve these results. Furthermore, different 

methods of equalisation could also be applied to  the problem.

1 Householder reflections suitable for polynomial matrix decompositions are discussed in Appendix
A.
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T h e  P S V D

W ith scalar m atrix decompositions, the SVD can be used to calculate the pseudo-inverse of a 

matrix. Could an algorithm be developed for calculating the pseudo-inverse of a polynomial 

m atrix using the PSVD? This would be useful for problems where the polynomial matrix is 

rank deficient and so the PQRD can not be used to solve a set of polynomial linear equations 

as discussed in chapter eight. Finally, as with the PQRD future work, the numerical results 

discussed in chapter eight could potentially be improved by using a different method of 

equalisation, interleavers or possibly error correction coding could be used to potentially 

improve these results.
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A ppendix A  

H ouseholder Transformations for 
Polynom ial M atrices

W hen calculating the QRD of a scalar matrix, Householder transformations (also referred 

to as Householder reflections or elementary reflectors) are often used as an alternative to 

Givens rotations, as they allow zeros to be introduced to a m atrix on a grand scale rather 

than the very selective procedure observed when using Givens rotations [6]. Furthermore, 

Householder reflections are typically computationally less expensive when calculating the 

QRD of a scalar matrix. Givens rotations are still useful for scalar m atrix decompositions, for 

example they are more appropriate when calculating the decomposition of a sparse m atrix and 

it is also easier to run parallel computations with Givens rotations. This appendix examines 

the concept of applying Householder reflections as an alternative to Givens rotations as a 

technique for achieving a polynomial m atrix QRD. Firstly, the conventional Householder 

reflections applicable to scalar matrices are discussed.

A .l  Householder Reflections for Scalar M atrices 

A. 1.1 R eal H ouseholder R eflections

Suppose for a vector of scalars x  e  Rpxl, where x  =  [aq,. . .  , x p]T ±  0, we wish to zero all 

elements beneath the first element x \ . This could be achieved by applying a series of Givens 

rotations to drive each element in turn  to zero, or alternatively could be accomplished by 

applying one Householder reflection which will drive all of the elements beneath the first
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A .l Householder Reflections for Scalar Matrices

element x\  to zero directly. A Householder reflection is a m atrix of the form

TVV
H  = (A-l)

where

v =  x ± | | x | | 2ei (A.2)

and e i =  [1 ,0 ,... ,0]T € <Cpxl, i.e. the first canonical vector [6]. This m atrix can be applied 

to the vector x  resulting in the transformation

H x =  T | |x | |2ei (A.3)

and so all elements of the transformed vector beneath the first element x\  are now equal to

zero. Furthermore, as with Givens rotations, the transform ation m atrix H is unitary and so

the transformation is norm-preserving, i.e. 11H x|)2 =  ||x||2.

Householder reflections can similarly be applied to a m atrix A G Rpx<?, whose elements are 

real scalars. The required Householder reflection to zero all elements beneath the diagonal of 

the k th column takes the form of a p x p  identity matrix with the exception of the (p —k ) x (p —k ) 

subm atrix formulated as
^ vv^
Hfc =  I(p—/c) -  2- (A.4)

where

v =  a * ±  ||a*||2ei, (A.5)

a* =  . . .  ,apk]T and ei =  [1,0, . . . ,0 ] T e  R (P~k)x l . The entire Householder

reflection m atrix will be denoted as where k  indicates the column index of the elements 

to be driven to zero.
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A .2 Householder Reflections for Polynomial Matrices

A . 1.2 C om plex H ouseholder R eflections

Similarly, a Householder reflection can be adapted to be applicable to a vector x  E Cpxl with 

complex scalar elements by changing equations (A .l) and (A.2) such that

H =  I - 2 — (A.6 )
I M I 2

where

v =  x ± e iarg(;ri)||x ||2 e i. (A.7)

and i =  y/— 1. This can easily be extended in the same way as the case for matrices with real 

elements, to be applicable to matrices with complex scalar entries.

A. 1.3 C om putational C om plexity

For the scalar m atrix QRD, implementing a Givens rotation approach to the matrix A E M.pxq 

requires 3p2(q — p/3) flops, whilst the Householder approach requires 2p2(q — p/3) and is 

therefore com putationally less expensive [6]. Note that the computational complexity of 

the Givens rotations approach can be reduced by implementing multiple rotations at once. 

However, this approach has not yet been considered for polynomial matrices and is therefore 

of no relevance here.

A .2 H ouseholder R eflections for Polynom ial M atrices

The approach discussed in the previous section can easily be extended to be applicable to 

polynomial matrices in a very similar way to  how Givens rotations were extended to formu

late an E P G R 1 in Chapter 5. In order to zero the largest coefficient associated with each 

element beneath the diagonal of the k th column of the polynomial matrix A (2) E C px<7, 

firstly the dom inant coefficient in each of the (p — k ) polynomial elements beneath the di

agonal m ust be located. Again, as with the polynomial m atrix decompositions previously 

discussed in this thesis, the dominant coefficient refers to the coefficient with the largest 

^ P G R  denotes an Elementary Polynomial Givens rotation, which was introduced in Section 5.2.
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A.2 Householder Reflections for Polynomial Matrices

m agnitude within the polynomial element and, if for any polynomial element it is not unique, 

then any of the dom inant coefficients within the element may be chosen. Suppose the set 

of dom inant coefficients beneath the diagonal of the kth column of the matrix are found to 

be {cijk(tj) ' j  =  k + 1 , . . .  ,p}. Once the series of dominant coefficients has been located, a 

series of elem entary delay matrices, previously explained in Section 3.3.2, is then applied to 

A  (z) to obtain the transformed polynomial m atrix

A \ z )  =  B (p’- ^ \ z ) . . .  B (fc+2’~tk+2 )(<z ) B {k+l ~tk+l)(z)A{z),  (A.8)

where the { j , k ) th polynomial element of this m atrix is defined as a!-k{z). The objective 

of this set of elem entary delay matrices is to shift each of the dominant coefficients in each 

polynomial element, beneath the diagonal of the m atrix of the k th column, onto the coefficient 

m atrix of order zero, i.e. so th a t they are positioned on the coefficient matrix A(0). Then

once this has been completed, a Householder reflection m atrix is formulated according to
r n HSection A .l where for equation (A.5) ak =  K fc(0)’ a(k+l)k This m atrix is

then applied to  A  (z) to generate the transformed m atrix

A  \ z )  =  H*A \ z )  (A.9)

where all coefficients beneath the diagonal in the kth column of the zero-lag coefficient matrix
v

will now equal zero. Furtherm ore K * (° ) i2 =  £  I ajA;(0)|2 (=  llafcllf’)-  The overall polyno-
j —k

mial Householder reflection m atrix takes the form

H k (z) =  H(fc)B{p' - tp\ z ) . . .  B {k+2- tk+2\ z ) B {k+l~tk+l)(z),  (A.10)

where the subscript k  defines the column in which coefficients associated with polynomial 

elements beneath  the diagonal will be driven to  zero under application of the polynomial 

Householder reflection. This polynomial m atrix will be referred to as an elementary polyno

mial Householder reflection (EPHR) and a series of matrices of this form can be applied to 

a polynomial m atrix  to transform it to an upper-triangular polynomial matrix.
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A .3 Calculation of the PQ RD with Polynomial Householder Reflections

A .3 C alculation of the PQ R D  w ith  Polynom ial House

holder Reflections

Two of the Givens rotation based algorithms, the PQRD-BC and the PQRD-SBR algorithms 

introduced in C hapter 5, can be modified to apply a series of EPHRs, replacing the EPGRs, 

to transform  a polynomial m atrix into an approximately upper-triangular polynomial matrix.

The most adaptable of the current PQRD algorithms is the PQRD-BC algorithm for two rea

sons. Firstly, the PQRD-BC algorithm has been shown, in Chapter 6 , to be computationally 

the most efficient of the three algorithms, typically requiring the least number of iterations 

to converge. Secondly, the algorithm operates by driving all coefficients associated with poly

nomial elements beneath the diagonal sufficiently small in each column of the polynomial 

m atrix in tu rn  and so has the appropriate structure to be adapted for EPHRs, which also 

operate on only a single column of the m atrix at any one time. Note that the PQRD-SBR al

gorithm could also be modified to include EPHRs. However, this algorithm generally requires 

considerably more iterations to converge tha t the PQRD-BC algorithm when using EPGRs, 

due to the polynomial m atrix converging to an upper-triangular polynomial matrix through 

the columns of the m atrix  from left to right. For this reason, this idea has not been explored 

further as it would be expected th a t the same behaviour would be observed. Clearly, if the 

PQRD-BS algorithm is adapted to  include EPHRs, then it will be the same as the modified 

PQRD-BC algorithm.

A .3.1 T h e P Q R D -B C  A lgorithm  w ith  E P H R s

To adapt the PQRD-BC algorithm to use EPHRs rather than  EPGRs, the algorithm will 

still operate as a series of ordered steps to obtain the decomposition of the polynomial matrix

A (z) <E C pxq

Q( z )A( z )  = R ( z )  (A.11)

where Q(*) denotes a paraunitary polynomial m atrix and R (z) an approximately upper- 

triangular polynomial matrix.
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At  each step of the algorithm all coefficients associated with all polynomial elements 

beneath the diagonal of one column of the polynomial m atrix A(z) are driven sufficiently 

small through an iterative process. At each iteration the dominant coefficient is located within 

each polynomial element beneath the diagonal in the appropriate column of the matrix. The 

appropriate E PH R  is then calculated according to Section A.2 and applied to the polynomial 

matrix, resulting in the series of dominant coefficients beneath the diagonal of one column 

of the polynomial m atrix having been driven to zero. This process is repeated until all 

coefficients associated with polynomial elements beneath the diagonal of the specified column 

of the polynomial m atrix are sufficiently small, i.e. \ajk(t)\ < e where k defines the column 

index, j  = k  +  1, . . .  ,p  and e > 0 is some prespecified small value. Once this has been 

achieved, the  algorithm increments the column index by one and therefore repeats the process 

on the column positioned to the right of the kth column. All other aspects of the PQRD- 

BC algorithm are the same as those described in Chapter 5 and so multiple sweeps of the 

algorithm may be required for the algorithm to converge.

The algorithm  will generate an approximately upper-triangular polynomial matrix and a 

proof of convergence for this EPH R variation of the PQRD-BC algorithm will be a very simple 

modification of the proof of convergence detailed in 5.5.2. The truncation methods discussed 

in Chapter 4 can again be applied within each iteration of the algorithm to optimise the 

speed of the algorithm and reduce the orders of the two polynomial matrices Q(z) and R(z). 

However, care must be taken when truncating the polynomial matrices as the transformation 

performed will no longer be norm-preserving and can therefore result in some error.

A .3.2 N um erica l Exam ple: T he P Q R D -B C  A lgorithm  w ith  

P olyn om ia l H ouseholder R eflections

For this example, the modified PQRD-BC algorithm, which implements EPHRs rather than 

EPGRs, was applied to  the fairly simple polynomial m atrix A 2(z) previously discussed in 

Section 6.2.2 of C hapter 6 . In Chapter 6 the PQRD-BC algorithm with EPGRs has previously 

dem onstrated good performance when it has been applied to this polynomial matrix and
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required 356 iterations to converge to a point where all coefficients associated with polynomial 

elements beneath the diagonal of the polynomial m atrix are less than 10~3 in magnitude. For 

this example, both variations of the PQRD-BC algorithm, i.e. with EPGRs and EPHRs, are 

again applied to  this polynomial matrix. The stopping criterion for these results was set 

such th a t each algorithm will stop once all coefficients associated with polynomial elements 

beneath the diagonal of the polynomial m atrix are less than  10~ 2 in magnitude. The energy 

based truncation method for non para-Hermitian matrices, detailed in Section 4.3.2, was 

applied to  both  R(.z) and Q(z) for these results with =  10-6 .

The results from applying the PQRD-BC algorithm using both EPHRs and EPGRs are 

contained in Table A .I. From these results, the EPG R routine can clearly be seen to out

perform the Householder approach and this is mainly due to the multiple application of 

elementary delay matrices before the application of the Householder reflection matrix at each 

iteration of each step of the algorithm. Initially, it would be expected that this approach 

will be quite effective. However, once the polynomial m atrix becomes more sparse applying 

multiple delays will make the algorithm computationally slow to implement with many of the 

coefficients th a t are now being driven to zero already being sufficiently small, i.e. they are 

less than the stopping criterion 10~ 2 in magnitude. At this stage a Givens approach would 

be more appropriate to  selectively zero the coefficients tha t are still larger than this value.

The EPH R  approach required considerably more iterations, where each iteration will 

typically be computationally more expensive than a single iteration of the EPG R variation 

of the PQRD-BC algorithm. This point is also illustrated by the computational time2 taken 

by the two variations of the algorithm to converge, which are also contained in Table A .l and 

show the E PG R  approach was over six times faster to converge for this example. The EPHR 

algorithm also produces a paraunitary transform ation and an upper-triangular polynomial 

m atrix of very large orders (order of Q(-z) is 716 and order of R (^) is 659), which can be seen 

in Figures A .l and A .2 respectively. The orders of the polynomial matrices are considerably 

larger than  those obtained using the Givens rotation approach (order of Q(^) is 56 and order 

of R ( 2 ) is 58). Note th a t the order of both the paraunitary transformation and the upper-

2C om putations undertaken on a Intel Centrino Duo processor with 1GB of RAM.
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triangular polynomial matrices could be reduced further by aligning all sets of polynomial 

coefficients and then truncating again, however, the resulting orders are still found to be 

considerably larger (order of R(z) reduced to 481 and the order of Q(z) to 538) than those 

obtained using the EPG R variation of the PQRD-BC algorithm (order of R (2) is 58 and the 

order of Q(^) to 56). Finally, the Frobenius norm of all elements beneath the diagonal of the 

final approximately upper-triangular m atrix obtained using the EPH R approach was found to 

be 1.10 x 10“ 1, whereas this same measure calculated for the resulting approximately upper- 

triangular m atrix using the EPG R approach was found to be 4.86 x 10-2 . Furthermore, if the 

stopping condition is reduced so that e =  10-3  and the results are comparable to the results 

from Section 6.2.2, the PQRD-BC algorithm using EPHRs requires 3231 iterations, taking 

approximately four minutes to compute the decomposition. The same level of decomposition 

using the E PG R  variation of the algorithm required 362 iterations and took only 0.42 seconds.

To conclude, the EPG R  variation of the PQRD-BC algorithm required considerably fewer 

iterations, and therefore also less time, to converge to an approximately upper-triangular 

polynomial m atrix than  the EPH R variation of the algorithm. The resulting matrix from the 

EPG R  variation of the algorithm can also be considered more upper-triangular, as the F- 

norm of all elements beneath the diagonal of the m atrix was considerably smaller. The order 

of the two matrices obtained by the decomposition was also considerably shorter than those 

generated by the EPH R  modification of the PQRD-BC algorithm, which is an advantage for 

the potential application of the decomposition to MIMO communication systems discussed 

in Chapter 8 . Finally, the EPG R  variation of the algorithm also produced more accurate 

results with less relative error for this example, due to this variation of algorithm requiring 

significantly fewer iterations.
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T h e  P Q R D -B C  A lg o rith m  using

H ouseholder R elections G ivens R o ta tio n s

Number of iterations 658 190

Number of Sweeps 2 2

Final order of R (^) 659 58

Final order of Q( z ) 716 56

Prel 2.58 x 10~ 2 9.92 x 10“ 3

Final value of g 9.81 x 10~ 3 9.67 x 10“ 3

Final value of L 1 . 1 0  x 1 0 - 1 4.86 x 10“ 2

Computational Time (Seconds) 6.63 0.18

Table A .l: Results from applying the PQRD-BC algorithm using Givens rotations and 
Householder reflections to the polynomial test matrix A 2(z)  € R 3x3x4.
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Figure A .l: The coefficients of the polynomial elements of the paraunitary polynomial
transformation matrix Q(^) obtained using the PQRD-BC algorithm with polynomial
Householder reflections when applied to the polynomial matrix A 2(z).
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Figure A. 2: The coefficients of the polynomial elements of the upper-triangular poly
nomial matrix R(<z) obtained using the PQRD-BC algorithm with polynomial House
holder reflections when applied to the polynomial matrix A 2(z).

A .4 Conclusions

This appendix has demonstrated that Householder reflections can be used in conjunction with 

elementary delay matrices to achieve a polynomial m atrix QRD. It has been shown that the 

PQRD-BC algorithm, detailed in Chapter 5, can easily be modified to  include Householder 

reflections as an alternative to Givens rotations. However, Example A.3.2 confirms th a t this 

Householder approach is not as successful as the Givens approach and will require significantly 

more computational time to converge. Furthermore, the polynomial matrices produced by the 

Householder approach also have significantly larger orders, which is a considerable disadvan

tage if the technique is to be used within MIMO communication systems. For this potential 

application of the decomposition, the order of the polynomial upper-triangular m atrix ob

tained is of critical importance and must be no larger than  a certain size for the application 

to be possible. This point is discussed at length in Chapter 8 .

For a scalar m atrix decomposition, Householder reflections are extremely useful for driving 

elements of a m atrix to zero on a grand scale. However, Givens rotations are also very useful,
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as they provide a much better method for dealing with sparse matrices, where it only required 

to selectively zero elements of a matrix. However, with polynomial matrices there is an extra 

dimension to the problem, as each element is now a polynomial and therefore has an associated 

set of polynomial coefficients, which must all be driven to zero to  achieve the decomposition. 

Unlike the scalar m atrix case, the number of Householder transformations required to achieve 

this cannot be determined in advance. To effectively use polynomial Householder reflections 

involves multiple applications of elementary delay matrices in succession and, from the results 

presented here, this appears to cause the coefficients to disperse over an unnecessarily large 

numbers of coefficient lags of the matrix. Following a small number of iterations this will 

create a sparse polynomial matrix of a very large order, where the Givens method is a far 

more suitable technique of achieving the decomposition. The result is an algorithm that is 

computationally slow to implement due to the unnecessarily large orders of the polynomial 

matrices. This is not a problem in the original PQRD-BC algorithm, which operates by 

applying EPGRs.

Further research could be undertaken to investigate the concept of using EPHRs as an 

alternative to  EPG R s and a more comprehensive study of the different variations of the 

algorithm for a range of polynomial input matrices would be beneficial. In particular, it 

would be interesting to see if there is any advantage of implementing an algorithm combining 

both approaches, i.e. initially implement the EPHR variation of the algorithm for the first few 

iterations of each step, (whilst the matrix is still not sparse) and then implement the original 

PQRD-BC algorithm  using EPGRs once a significant number of the coefficients associated 

with the polynomial elements in the particular column are less than the specified stopping 

criterion.
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A ppendix  B

Sum m ary of the D ecom position  
A lgorithm s

A sum m ary of each of the algorithms used within this thesis for calculating the PQRD and 

PSVD are given here. A summary of the SBR2 algorithm has not been included, as a detailed 

summary can be found in [7].

B .l  Sum m ary of the P SV D  Techniques

B .1.1  T he P S V D  by P E V D  A lgorithm

T h e  P S V D  by P E V D  A lg o r ith m  

1 : In p u t  polynom ial matrix A (z ) E C pxq to be factorised
2: S p ec ify  th e  convergence param eter e, the  tru n ca tio n  param eter /i and the  m axi

m um  num ber of ite ra tions of the  algorithm  M axlter 
3: C a lcu la te  th e  m atrix  A ( 2 )A (2 ).
4: A pply the SBR2 algorithm to this matrix to calculate the paraunitary matrix U(,z). 
5: Calculate the matrix A (z )A (z ) .
6 : Apply the SBR2 algorithm to this matrix to calculate the paraunitary matrix V ( z ) .  

7: Calculate the diagonal matrix D (z ) =  U (z )A (,2 ) y (z ) .
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B .1 .2  T he P S V D  by P Q R D  A lgorithm

T h e  P S V D  b y  P Q R D  A lg o r i th m  

1: I n p u t  polynom ial m atrix  A (2 ) E C pxq to  be factorised
2 : S p e c ify  th e  convergence param eter e, th e  trunca tion  param eter /i and the maxi

m um  num ber of iterations of the  a lgorithm  M axlter 
3: Set U (z )  =  Ip and V( z )  =  Iq
4: Set ite r  =  0 and  g =  1 +  e 
5: w h ile  ite r <  M axlter and g >  e d o
6 : Find indices j ,  k  and t where j  ^  k  such that \a,jk(t)\ > |amnM| holds for

m  =  1 , . . . ,  p, n =  1, . . . , <7 such that m  ^  n and W  E Z
7: Set g =  \aj k (t)\
8 : i f  g > e t h e n
9: ite r 4= ite r 4- 1

10: A pply any of the  th ree  a lgorithm s for calculating the PQ R D  to  A (z) to  obtain
th e  decom position U i( ^ ) A ( 2:) = A  (z),  where A  (z) is an approxim ately upper
trian g u la r polynom ial m atrix .^  /

11: Set A' (z ) = A  (z)
12 :

13: A pply any of the  th ree  a lgorithm s for calculating the PQ R D  to  A  (z) to  obtain
th e  decom position V j( z ) A  (z) =  A  (z), where A  (z) is an  approxim ately 
up p er trian g u la r polynom ial m atrix .

14: V( z )  4= V  1(z )V(z )
,n

15: Set A (z) = A  (z).
16: A pply  th e  energy based tru n ca tio n  m ethod  detailed in Section 4.3 to  the  poly

nom ial m atrices A (2 ), U (z) and  V (z)
17: e n d  if
18: e n d  w h i le
19: Set S (z ) =  A ( 2 ).
20: T he  overall decom position perform ed is U ( 2 )A (z )V (z )  =  S(^).

233



B.2 Summary of the Algorithms for Calculating the PQRD

B.2 Sum m ary of the A lgorithm s for Calculating 

the PQ R D

B.2.1 T he P Q R D  B y  Steps A lgorithm

T h e  P Q R D -B S  A lg o r ith m  

1 : In p u t polynom ial matrix A (z ) € C pxq to be factorised
2: Specify th e  convergence param eter e , th e  tru n ca tio n  pa ram ete r /x and the maxi

m um  num ber of ite ra tions  per step  of the  algorithm  M axlter 
3 :  Set Q ( z )  =  I p  
4 :  for j  — 2 , . . .  ,p do  
5: for k — 1 , . . . ,  m in { j — l , q }  do
6: Set ite r =  0 and  g  =  1 +  e
7 :  w h ile  ite r <  M axlte r and g  >  e do
8 : Find lag index t  such that \ci.jk(t)\ >  |«jjt(r)| holds Vr G  Z
9: Set g  =  \aj k ( t ) \

10: i f  g  >  e th e n
1 1 : iter <= iter +  1

1 2 : Calculate the rotation angles 6 , a  and 0  according to equations (5.5),
(5.6) and (5.7)

1 3 :  Calculate the EPG R  G  (z) according to Section 5.2

14:
15: Q(«) 4= G0’fe'“'e''#’t)(z)Q(2)
1 6 :  Apply the energy based truncation method detailed in Section 4.3 to the

polynom ial matrices A (z ) and Q(^)
1 7 :  end i f
1 8 :  end w h ile
1 9 :  end fo r
20: end for
2 1 : If the coefficient with largest magnitude associated with any of the elements be

neath the diagonal is >  e then a second sweep of the algorithm is required and so 
the process is repeated from step 4.

2 2 : Once all sweeps have been completed, set R (z ) =  A (z). The decomposition per
formed is of the form Q (z )A (z ) =  R(z:).
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B.2 Summary of the Algorithms for Calculating the PQRD

B .2 .2 T he P Q R D  B y  C olum ns A lgorithm

T h e  P Q R D -B C  A lg o r ith m  

1: In p u t polynom ial m a trix  A (z)  €  <Cpxq to  be factorised
2: Specify  th e  convergence pa ram ete r e, th e  tru n ca tio n  param eter g, and the m axi

m um  num ber of ite ra tio n s  per step  of the  a lgorithm  M axlter 
3: Set Q (z)  =  Ip
4: for k  =  1 , . . . ,  m in {p  — 1, q)  do 
5: Set ite r  =  0 and  g — 1 +  e
6 : w h ile  ite r  <  M ax lte r  and  g > e do
7: F in d  indices j  and  t such th a t  \a,jk{t)\ > \amk(r)\  holds for m  = (k +  1) , . . .  , p

and  V r €  Z  
8 : Set g — \a,jk(t)\
9: i f  g >  e th e n

10: ite r 4= ite r -(- 1
11: C a lcu la te  th e  ro ta tio n  angles 6 , a  and  0  according to  equations (5.5), (5.6)

and  (5.7)
^  (j ,k,a,0,<fr, t )

12: C alcu la te  th e  E P G R  G  (z)  according to  Section 5.2

13: A (z)  <̂ = G  (^ )A (z )

14: Q (2) ^  G  (^ )Q (2)
15: A pply th e  energy based tru n ca tio n  m ethod  detailed  in Section 4.3 to  the

polynom ial m atrices A (z)  and  Q (^)
16: end i f
17. end w h ile  
18: end fo r
19: If th e  coefficient w ith  largest m agn itude  associated  w ith  any of the  elem ents be

nea th  th e  d iagonal is >  e th en  a  second sweep of the  a lgorithm  is required and so 
the  process is rep ea ted  from  step  4.
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B.2 Summary of the Algorithms for Calculating the PQRD

B .2 .3 T he P Q R D  B y  Sequential B est R otation  A lgorithm

T h e  P Q R D -S B R  A lg o rith m  

1: In p u t  polynom ial m atrix  A (^ ) E C pxq to  be factorised
2: S p ec ify  th e  convergence param eter e, th e  tru n ca tio n  param eter fi and the m axi

m um  num ber of ite ra tions of the  algorithm  M axlter 
3: Set Q (z ) =  Ip, ite r =  0 and  g — 1 +  e 
4: w h ile  ite r  <  M ax lte r  and  g > e do
5: F in d  indices j ,  k  and  t where j  > k  such th a t  |ajfc(£)| >  |a mn( r) | holds for

m  — 2 , . . . ,  p, n  — 1 , . . . ,  q such th a t  m  > n  and  V r E Z
6 : Set g = \a,jk(t)\
7: i f  g c t h e n
8 : ite r  <£= ite r  -I- 1
9: C a lcu la te  th e  ro ta tio n  angles 6 , a  and  4> required  to  drive g to  zero according

to  equa tions (5.5), (5.6) and  (5.7)

10: C a lcu la te  th e  E P G R  G  (z ) according to  Section 5.2

11: A ( z )  <= G  ( z ) A ( z )

12: Q (z ) <= G  ( z ) Q( z )
13: C alcu la te  th e  inverse tim e-shift m atrix  B k̂,t\ z )  according to  equation 5.30.
14: A ( z )  ^ B ik'l\ z ) A ( z )
15: Q (z) <= B {k't\ z ) Q ( z )
16: A pply  th e  energy based tru n ca tio n  m ethod  detailed  in Section 4.3 to  the  poly

nom ial m atrices A (z)  and  Q (z)
17: e n d  i f
18: e n d  w h i le  ____________________
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A ppendix  C 

C om putational C om plexity of the  
Polynom ial M atrix D ecom positions

The com putational complexity of each of the polynomial m atrix decomposition algorithm 

is calculated by counting the number of multiplication, division, addition and subtraction 

operations throughout each iteration. The results are demonstrated in the series of tables 

given below.

C .l T he SBR 2 A lgorithm

Suppose the input to the SBR2 algorithm is the polynomial m atrix R (z) € C pxpxT. The 

application of the elementary delay matrices at each iteration of the algorithm will affect 

the order of the m atrix. Suppose at the end of the ith iteration of the algorithm, the para- 

Hermitian polynomial updated m atrix is of order Tj. W ithout any operations to

truncate the orders of the polynomial matrices within the algorithm, the value of this pa

ram eter will increase at each iteration by 2 |t|, where t defines the lag index of the dominant 

coefficient which has been driven to zero at tha t iteration. However, it is not so simple when 

a truncation m ethod is used.

Table C .l gives a  detailed break down of the computational complexity and storage re

quirements within one iteration of the SBR2 algorithm when in its most simplistic form, 

before the addition of any functions to limit the growing order of the polynomial matrices or 

stopping criterion.
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C .l The SBR2 Algorithm

C o m p le x ity Storage
O th er
Com m ents

Find dominant co
efficient P2 ( 7 U  +  1) -

p2Ti — 1 compar
isons

Increment iteration 1 - -
Calculate the Shift 
Parameter 3 - -

Apply left and right 
delay to R(.z) -

Increase order of
by 2 N

-

Calculate R otation  
Angles 4 -

1 trigonometric 
function

Apply left rotate  
and right rotations 
to R ( 2 )

4(3p(T< +  l)  +  l) -
2 trigonometric 
functions are used

Table C .l: Com putational Complexity of the SBR2 Algorithm - This does not include 
com putation of the paraunitary transformation matrix H (z ) or allow for any truncation 
methods.

The com putational complexity demonstrated in Table C .l could be reduced further if 

the para-Herm itian nature of the polynomial m atrix was exploited. For example,

the complexity for the rotations could be reduced to 3 (p (Ti +  1) +  1) +  4. The amount of 

elements to be stored at each iteration could also be reduced by exploiting this property. 

Rather than  storing p2Ti elements, only |  (Tj +  p  +  1) need to be stored. Accordingly the 

amount of operations and comparisons required to find the dominant coefficient will also be 

reduced.

C.1.1 Im plem en tin g  a Truncation M eth od

It is difficult to comment on how the truncation m ethod has reduced the computational 

complexity of the SBR2 algorithm as it is entirely dependent on the order of the transformed 

m atrix at each iterations, which can no longer be predetermined. However, in general the 

com putational complexity is significantly reduced using a truncation method, despite the fact 

tha t further com putations are required to implement the methods at each iteration.
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C.2 Algorithms for Calculating the PQRD

C.2 A lgorithm s for Calculating the PQRD

C .2.1 T he P Q R D  by Steps A lgorithm

Suppose at the s ta rt of iteration i, the m atrix A M  has dimenions p x q and is of order T\. 

Furtherm ore, suppose tha t the dominant coefficient a t this iterations is found to be aj^ t ) .  

The com putational compexity, of the first algorithm, over this iteration is summarised below 

in Table C .2 .1. This table does not include any computations for updating the paraunitary 

m atrix Q M , as this is need not be calculated within the main iterative routine of the algo

rithm. It has been assumed that the zerolag plane has been specified prior to beginning each 

iteration.

C o m p le x ity Storage
O th e r
Com m ents

C alcu la ting  th e  in
dices 1 - 1 com parison

F ind  d o m in an t 
coefficient in (and  
find lag index)
—7 fc(^)

Tj 4-1 “ T  — 1 comparisons

Increm ent ite ra tio n 1 - -
A pply Left D elay to
A M

“ Increase order of

A M  by 1*1
-

K eeping tra c k  of 
the  zerolag p lane  of
A M

1 - -

C alcu la te  R o ta tio n  
Angles

2
- 1 trigonom etric 

function
A pply left ro ta te  to
A(*)

3q (Xi 4- |t |)  4- 4 - 2 trig  functions

T ru n ca tin g  A M pT\  (2q -  1) +  
0cL + cr ) (2pq — p) 4- 4

Reduces th e  or
der of A M  ^  
it is unnecessar
ily large

Table C .2 : T able dem o n stra tin g  the  com pu ta tiona l com plexity of the  PQ RD -BS algo
rith m  for ca lcu la ting  th e  upper-triangu lar m a trix  R (z ) and  com m ents on the  storage 
requ irem en ts of th is  algorithm .
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C.2 Algorithms for Calculating the PQRD

C .2 .2 T he P Q R D  by C olum ns A lgorithm

Again assume at the start of iteration i, the matrix A ( z )  has dimenions p x  q and is of order 

Xi, with the dominant coefficient at this iterations found to be djk( t ) .  The computational 

complexity over this iteration for updating the polynomial matrices A(z) can be seen in Table 

C.2.2.

C o m p le x ity S to r a g e
O th er
C o m m en ts

Calculate indices 1 - -
Find dom inant co
efficient (and find 
indices) in a i k ( z )

2pTi +  1 -
p q T  — 1 compar
isons

Increment iteration 1 - -
Apply Left Delay to
A M

-
Increase order of
A M  by 1*1

-

Keeping track of 
the zerolag plane of
A(*)

1 - -

Calculate R otation  
Angles 2 -

1 trigonometric 
function

Apply left rotate to
A M

3? (71 + | *| )+ 4 -
2 trigonometric 
functions

Truncating A ( z ) p T i (2q -  1) +  
(c l  +  c R ) ( 2 p q - p ) + 4

Reduces the or
der of A M  ^  
it is unnecessar
ily large

Table C.3: Table dem onstrating the computational complexity of this algorithm for cal
culating the upper-triangular matrix R M  and comments on the storage requirements 
of the algorithm.
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C.2 Algorithms for Calculating the PQRD

C .2 .3 T he P Q R D  by SB R  A lgorithm

Assume again th a t the polynomial matrices A(,z) at the start of iteration i is of order T\.  

Furthermore, assume that the dominant coefficient at this iteration is found to be a,jk(t). The 

com putational complexity over a single iteration of the PQRD-SBR algorithm can be found 

in Table C.4.

C o m p le x ity Storage
O th e r
Com m ents

Find  d o m inan t co
efficient (and  find 
indices)

2 p q T  +  1 -
pq T  — 1 com par
isons

Increm ent ite ra tio n 1 - -
A pply Left D elay to
A W

“ Increase order of 
A (* )  by \t\

-

K eeping tra c k  of 
the  zerolag p lane  of
A W

1 - -

C alcu late  R o ta tio n  
Angles 2 -

1 trigonom etric 
function

A pply left ro ta te  to
AW

{T  +  \t\) +  4 -
2 trigonom etric 
functions

A pply undelay
1

O rder again  in
creases by \t\

-

T runcating  A { z ) p T a (2q — 1) +  
(■cL +  cR) (2pq — p) +  4

Reduces th e  or
der of A (z ) if 
it is unnecessar
ily large

“

Table C.4: Table d em o n stra tin g  th e  com puta tional com plexity of th is algorithm  for cal
cu lating  th e  u p p e r-trian g u la r m atrix  R (^ )  and  com m ents on th e  storage requirem ents 
of the  a lgo rithm .
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A ppendix  D  

Illustrations for Chapter 8

D .l  Polynom ial Channel M atrices
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Figure D .l :  A stem  plo t represen tation  of th e  polynom ial channel m atrix  C 1 (z).
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D .l Polynomial Channel Matrices
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Figure D.2: A stem  plo t represen ta tion  of th e  polynom ial channel m atrix  C 2 (z).
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D.2 PQRD

D .2 PQ R D

D .2.1  C hannel M atrix 1

Lag

Figure D.3: T he  coefficients of th e  polynom ial elem ents of the  approxim ately upper- 
trian g u la r po lynom ial m a trix  R ( z )  ob tained  by applying th e  PQ R D -B C  algorithm  to  
the  polynom ial channel m a trix  C ^ z ) .
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Figure D .4: T he  coefficients of th e  polynom ial elem ents of th e  p a rau n ita ry  polynom ial 
m atrix  Q (z )  o b ta in ed  by applying the  PQ R D -B C  algorithm  to  th e  polynom ial channel 
m atrix  Cj ( z ) .
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D.2 PQRD

D .2 .2 C hannel M atrix 2

Lag

Figure D.5: T he coefficients of the  polynom ial elem ents of th e  approxim ately  upper- 
triangu lar polynom ial m atrix  R (^ ) ob tained  by applying th e  PQ R D -B C  algorithm  to  
the  polynom ial channel m atrix  C 2 (z).
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Figure D .6 : The coefficients of th e  polynom ial elem ents of th e  p a ra u n ita ry  polynom ial 
m atrix  Q (^) ob tained  by apply ing  the  P Q R D -B C  algorithm  to  th e  polynom ial channel 
m atrix  C 2 (z).
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D.3 PSVD

D .3 P SV D

D .3.1  C hannel M atrix  1
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Figure D.7: T he  coefficients of the  polynom ial elem ents of th e  approxim ately diagonal 
polynom ial m a tr ix  S (z)  ob ta ined  by applying the  PSV D  by PQ R D -B C  algorithm  to  
the  polynom ial channel m a trix  C ^ z ) .
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Figure D .8 : T he  coefficients of the  polynom ial elem ents of the  p a raun ita ry  polyno
m ial m a tr ix  U(<2) ob ta in ed  by applying th e  PSV D  by PQ R D -B C  algorithm  to  the  
polynom ial channel m a tr ix  C ^ ) .
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D.3 PSVD
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Figure D.9: T he coefficients of the  polynom ial elem ents of the  p a rau n ita ry  polyno
m ial m atrix  V (z ) obtained by applying the  PSV D  by PQ R D -B C  algorithm  to  the  
polynom ial channel m atrix  C ^ z ) .

D .3 .2 Channel M atrix 2
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Figure D.10: T he coefficients of the  polynom ial elem ents of th e  approx im ate ly  diagonal 
polynom ial m atrix  S (z) ob tained  by applying th e  PSV D  by P Q R D -B C  algorithm  to 
the  polynom ial channel m atrix  C 2 (z).
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D.3 PSVD
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Figure D. l l :  T he coefficients of the  polynom ial elem ents of the  p a rau n ita ry  polyno
m ial m atrix  U(;z) obtained by applying the  PSV D  by P Q R D -B C  algorithm  to  the  
polynom ial channel m atrix  0 2{z).
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Figure D.12: T he coefficients of the  polynom ial elem ents of th e  p a ra u n ita ry  polyno
mial m atrix  "V(z) ob tained  by applying the  PSV D  by P Q R D -B C  algorithm  to  the  
polynom ial channel m atrix  0 2(z).


