
Algorithms and Techniques for Polynomial Matrix
Decompositions

Joanne A. Foster

A Thesis submitted for the degree of Doctor of Philosophy

School of Engineering

Cardiff University

May 2008

UMI Number: U585304

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U585304
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

The concept of polynomial matrices is introduced and the potential application of polynomial
matrix decompositions is discussed within the general context of multi-channel digital signal
processing. A recently developed technique, known as the second order sequential rotation al
gorithm (SBR2), for performing the eigenvalue decomposition of a para-Hermitian polynomial
m atrix (PEVD) is presented. The potential benefit of using the SBR2 algorithm to impose
strong decorrelation on the signals received by a broadband sensor array is demonstrated by
means of a suitable numerical simulation. This demonstrates how the polynomial matrices
produced as a result of the PEVD can be of unnecessarily high order. This is undesirable for
many practical applications and slows down the iterative computational procedure.

An effective truncation technique for controlling the growth in order of these polynomial
matrices is proposed. Depending on the choice of truncation parameters, it provides an
excellent compromise between reduced order polynomial matrix factors and accuracy of the
resulting decomposition. This is demonstrated by means of a set of numerical simulations
performed by applying the modified SBR2 algorithm with a variety of truncation parameters
to a representative set of test matrices.

Three new polynomial matrix decompositions are then introduced - one for implementing
a polynomial m atrix QR decomposition (PQRD) and two for implementing a polynomial
matrix singular value decomposition (PSVD). Several variants of the PQRD algorithm (in
cluding polynomial order reduction) are proposed and compared by numerical simulation
using an appropriate set of test matrices. The most effective variant w.r.t. computational
speed, order of the polynomial matrix factors and accuracy of the resulting decomposition is
identified.

The PSVD can be computed using either the PEVD technique, based on the SBR2
algorithm, or the new algorithm proposed for implementing the PQRD. These two approaches
are also compared by means of computer simulations which demonstrate that the method
based on the PQRD is numerically superior.

The potential application of the preferred PQRD and PSVD algorithms to multiple input
multiple output (MIMO) communications for the purpose of counteracting both co-channel
interference and inter-symbol interference (multi-channel equalisation) is demonstrated in
terms of reduced bit error rate by means of representative computer simulations.

Acknowledgements

I gratefully acknowledge the help, support and invaluable advice over the last three years

of both my supervisors, Prof. John McWhirter at Cardiff University and Prof. Jonathon

Chambers at Loughborough University. I would also like to thank Dr. Stephan Weiss and

Dr. Saeid Sanei for their constructive suggestions.

Publications

• J. Foster, J. G. McWhirter and J. Chambers, “Limiting the Order of Polynomial M atri

ces W ithin the SBR2 Algorithm,” IMA Conference Mathematics in Signal Processing,

Cirencester, 2006.

• J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif and J. Foster, “An EVD Algorithm

for Para-Hermitian Polynomial Matrices,” IEEE Transactions on Signal Processing,

Vol. 55(6), pp. 2158-2169, 2007.

• J. Foster, J. G. McWhirter and J. Chambers, “An Algorithm for Computing the QR

Decomposition of a Polynomial M atrix,” 15th International Conference on Digital Sig

nal Processing, Cardiff, 2007.

• J. Foster, J.G. McWhirter and J.Chambers, “A Polynomial Matrix QR Decomposition

with Application to MIMO Channel Equalisation,” Proc. 41s* Asilomar Conference on

Signals, Systems and Computers, Asilomar (Invited Talk), November, 2007.

• J. Foster, J.G. McWhirter and J.Chambers, “An Algorithm for Calculating the QR

Decomposition of a Polynomial Matrix,” Manuscript in preparation.

• J. Foster, J.G. McWhirter and J.Chambers, “An Algorithm for Calculating the Singular

Value Decomposition of a Polynomial M atrix,” Manuscript in preparation.

Contributions

• A n algorithm for calculating the Q R decom position o f a polynom ial m atrix.
The potential application of the decomposition is to MIMO communication systems,
where it is often required to reconstruct data sequences that have been distorted due to
the effects of co-channel interference and mulitpath propagation leading to intersym
bol interference. If the polynomial channel matrix for the system is known, then this
decomposition algorithm can be used to reduce the problem of MIMO channel equal
isation into an upper-triangular system of polynomial equations, which can be easily
solved using back substitution and a standard equalisation scheme for a SISO problem.
The capability of this application of the decomposition has been demonstrated with
some simulated results.

• A n algorithm for calculating th e singular value decom position o f a polyno
m ial m atrix. Again, the capability of the decomposition to the potential application
to MIMO communication systems is illustrated by some simulated results and has been
shown to offer some advantages over an existing method for calculating this decompo
sition using the SBR2 algorithm.

• T he energy based truncation m ethod for polynom ial m atrices. This method
can be used within any of the polynomial matrix decomposition algorithms to reduce
the orders of the polynomial matrices and consequently the computational time taken to
implement the algorithms. This is particularly important for the potential application
of any of the algorithms to MIMO communication problems, where the order of the
matrices is directly proportional to the computational complexity of the application.

v

Contents

List o f Figures x

List o f Tables xiv

List o f A bbreviations xvi

List o f N ota tion xix

1 Introduction 1
1.1 Motivation .. 1
1.2 Problem Statement and Aims of Thesis .. 4
1.3 Organisation of T h e s is ... 5
1.4 N o ta tio n ... 7

2 Background to C onvolutive M ixtures and Polynom ial M atrices 9
2.1 In troduction .. 9
2.2 Instantaneous Mixtures ... 10

2.2.1 The Mixing M o d e l ... 10
2.2.2 Source S e p a ra t io n ... 11
2.2.3 Algorithms for Instantaneous B S S .. 11

2.3 Decomposition Techniques for Scalar M atrices... 13
2.3.1 The QR D ecom position .. 13
2.3.2 Eigenvalue D ecom position.. 14
2.3.3 The Singular Value D ecom position.. 17

2.4 Convolutive Mixtures ... 20
2.4.1 Polynomial M a tr ic e s .. 20
2.4.2 Properties of a Polynomial M a t r ix .. 21
2.4.3 The Mixing M o d e l ... 22
2.4.4 Convolutive Source S e p a ra t io n ... 24

2.5 Existing Polynomial Matrix D ecom positions.. 27
2.5.1 FIR Lossless System D ecom position ... 27
2.5.2 Smith Decomposition ... 30
2.5.3 Smith-McMillan F o r m ... 31
2.5.4 Lam bert’s FIR Matrix E ig e n ro u tin e ... 31

2.6 C onclusions.. 32

vi

3 SBR2: A P olynom ial Eigenvalue D ecom position Technique 34
3.1 In troduction .. 34
3.2 The Eigenvalue Decomposition of a Polynomial M a tr ix 35
3.3 The Sequential Best Rotation A lgorithm .. 36

3.3.1 An Elementary Rotation M a t r i x .. 37
3.3.2 An Elementary Delay M a t r ix ... 38
3.3.3 The SBR2 Algorithm .. 38

3.4 Convergence of the SBR2 A lg o rith m ... 41
3.5 Implementation and Computational Complexity of the SBR2 Algorithm . . . 42
3.6 Applications of the SBR2 A lg o rith m ... 43

3.6.1 Strong D ecorrelation ... 43
3.6.2 Properties of the SBR2 A lg o r ith m ... 47
3.6.3 Power Spectrum of the S ig n a ls ... 47

3.7 Numerical Exam ple... 48
3.8 Uniqueness of S o lu tio n s ... 50
3.9 Limitations of the SBR2 A lgorithm .. 54
3.10 C onclusions.. 55

4 Polynom ial M atrix Truncation M ethods 56
4.1 In troduction .. 56

4.1.1 The P r o b le m .. 57
4.2 Truncation Method 1: Fixed B o u n d ... 60

4.2.1 For Para-Hermitian Polynomial Matrices .. 60
4.2.2 For Non-Para-Hermitian Polynomial M atrices .. 61

4.3 Truncation Method 2: Energy Based B o u n d .. 62
4.3.1 For Para-Hermitian Polynomial Matrices .. 62
4.3.2 For Non-Para-Hermitian Polynomial M atrices ... 63

4.4 Comparing the Truncation M e th o d s ... 64
4.4.1 Set of Test M a tr ic e s ... 64
4.4.2 Comments on the Polynomial Test M atrices ... 66

4.5 Truncation Method R e s u l ts ... 68
4.5.1 Accuracy of the D ecom position... 68
4.5.2 Case 1: No T runcation ... 69
4.5.3 Case 2: Fixed Bound Truncation M e th o d .. 72
4.5.4 Case 3: Energy Based Truncation M e th o d .. 75

4.6 Numerical Example 3.7 W ith T runcation .. 80
4.7 C onclusions.. 84

5 T he Q R D ecom position o f a Polynom ial M atrix 88
5.1 In troduction .. 88
5.2 An Elementary Polynomial Givens R o ta tio n ... 89
5.3 Complete Polynomial Givens R o ta tio n ... 92

5.3.1 Convergence of a C P G R .. 93
5.4 Algorithm 1: PQRD by S te p s ... 94

5.4.1 The PQRD by Steps A lgorithm ... 94
5.4.2 Multiple S w e e p s ... 97
5.4.3 Convergence of the PQRD by Steps A lg o r ith m .. 98

5.5 Algorithm 2: PQRD by C o lu m n s... 101

vii

5.5.1 The PQRD by Columns A lgorithm .. 102
5.5.2 Convergence of the PQRD by Columns A lg o r ith m 104

5.6 Algorithm 3: Sequential Best Rotation P Q R D .. 105
5.6.1 The PQRD Algorithm by Sequential Best R o ta tio n 105
5.6.2 Convergence of the PQRD Algorithm by Sequential Best Rotation . . 108

5.7 Non-Uniqueness of Solutions.. 110
5.7.1 Implementation of the PQRD A lg o rith m s... I l l

5.8 Numerical Exam ple... 112
5.9 C onclusions.. 121

6 D iscussion and Exam ples o f th e A lgorithm s for C alculating th e Q R D e
com position o f a Polynom ial M atrix 123
6.1 Importance of the Zero-Lag Coefficient Matrix ... 125
6.2 Worked Examples ... 126

6 .2.1 Example 1 ... 128
6.2.2 Example 2 ... 132
6.2.3 Zero-Lag Specification S t e p ... 138
6.2.4 Example 2 C o n tin u e d ... 140
6.2.5 Example 3 ... 143
6 .2.6 Example 4 ... 148
6.2.7 Other Zero-Lag O p tio n s .. 150

6.3 C onclusions... 151

7 The Singular Value D ecom position o f a Polynom ial M atrix 154
7.1 In troduction ... 154
7.2 Technique 1: PSVD by PQRD .. 156

7.2.1 The PSVD by PQRD A lg o r ith m .. 157
7.2.2 Implementation of the A lgorithm .. 159
7.2.3 Convergence of the A lgorithm .. 159

7.3 Technique 2: PSVD by PEVD .. 163
7.4 Uniqueness of S o lu tio n s ... 165
7.5 Requirements of the PSVD for A pplications... 166
7.6 Numerical Exam ple... 167

7.6.1 PSVD by P Q R D ... 167
7.6.2 PSVD by P E V D ... 168

7.7 Computational Complexity of the Polynomial SVD Methods 175
7.8 C onclusions.. 175

8 A pplications o f th e Polynom ial M atrix D ecom positions 177
8.1 In troduction ... 177
8.2 MIMO Communication Systems .. 178

8 .2.1 Channel Equalisation ... 180
8 .2.2 The Viterbi A lgorithm ... 181

8.3 Performance M easu res .. 182
8.3.1 Relative Error .. 182
8.3.2 Average Bit Error R a te s .. 183

8.4 Potential Application of the P Q R D ... 183
8.4.1 MIMO Channel E q u a lis a tio n .. 184

8.4.2 Filter At the T ra n s m itte r .. 187
8.4.3 Numerical E x am p les ... 188
8.4.4 Discussion of the Effect of Relative Error on Bit Error R a t e 194
8.4.5 C onclusions... 195

8.5 Potential Applications of the PSVD .. 196
8.5.1 MIMO Channel E x p lo ita tio n ... 197
8.5.2 Numerical E x am p les ... 200
8.5.3 C onclusions... 205
8.5.4 Paraunitary Filter Bank Design and Subband C o d in g 206

8.6 Potential Applications of the P E V D .. 206

9 Conclusions and Future Work 208
9.1 Suggestions for Further W o r k ... 210

R eferences 213

A ppendices 220

A H ouseholder Transform ations for Polynom ial M atrices 220
A.l Householder Reflections for Scalar M a tr ic e s ... 220

A. 1.1 Real Householder R eflec tio n s... 220
A. 1.2 Complex Householder Reflections... 222
A. 1.3 Computational C o m p lex ity .. 222

A.2 Householder Reflections for Polynomial M a tr ic e s ... 222
A.3 Calculation of the PQRD with Polynomial Householder R eflections............... 224

A.3.1 The PQRD-BC Algorithm with E P H R s .. 224
A.3.2 Numerical Example: The PQRD-BC Algorithm with Polynomial House

holder Reflections .. 225
A.4 C onclusions... 229

B Sum m ary o f th e D ecom position A lgorithm s 231
B.l Summary of the PSVD T echniques... 231

B.1.1 The PSVD by PEVD A lg o r ith m .. 231
B.1.2 The PSVD by PQRD A lg o rith m .. 232

B.2 Summary of the Algorithms for Calculating the P Q R D 233
B.2.1 The PQRD By Steps Algorithm .. 233
B.2.2 The PQRD By Columns Algorithm .. 234
B.2.3 The PQRD By Sequential Best Rotation A lg o r i th m 235

C C om putational C om plexity o f th e Polynom ial M atrix D ecom positions 236
C .l The SBR2 A lgorithm ... 236

C.1.1 Implementing a Truncation M e th o d .. 237
C.2 Algorithms for Calculating the P Q R D ... 238

C.2.1 The PQRD by Steps A lgorithm .. 238
C.2.2 The PQRD by Columns A lgorithm ... 239
C.2.3 The PQRD by SBR A lg o rith m .. 240

ix

D Illustrations for C hapter 8 241
D .l Polynomial Channel M a tr ic e s .. 241
D .2 P Q R D ... 243

D.2.1 Channel Matrix 1 243
D.2.2 Channel Matrix 2 244

D.3 P S V D ... 245
D.3.1 Channel Matrix 1 245
D.3.2 Channel Matrix 2 246

x

List of Figures

2.1 Block diagram to illustrate Vaidyanathan’s paraunitary polynomial matrix
factorisation.. 29

3.1 A stem plot representation of a para-Hermitian polynomial space-time covari
ance matrix to be used as input to the SBR2 algorithm....................................... 51

3.2 The dominant coefficient over the series of iterations required to diagonalise
the polynomial para-Hermitian m atrix demonstrated in Figure 3.1.................... 51

3.3 A stem plot representation of a para-Hermitian diagonalised polynomial ma
trix obtained from applying the SBR2 algorithm to the polynomial matrix
demonstrated in Figure 3.1... 52

3.4 A stem plot representation of a paraunitary polynomial m atrix obtained from
applying the SBR2 algorithm to the matrix demonstrated in Figure 3.1. . . . 52

3.5 Plot of the spectra of the convolutively mixed signals, whose polynomial space
time covariance m atrix is illustrated in Figure 3.1.. 53

3.6 Plot of the spectra of a set of convolutively mixed signals illustrated in Figure
3.5, which have been strongly decorrelated using the SBR2 algorithm.............. 53

3.7 Total spectra of the signals before and after strong decorrelation using the
SBR2 algorithm... 54

4.1 Simple example to demonstrate how the order of a polynomial m atrix grows
within the SBR2 algorithm... 59

4.2 The distribution of the squared Frobenius norm of the diagonal polynomial ma
trices obtained by applying the SBR2 algorithm to a range of para-Hermitian
test matrices... 70

4.3 The order of the transformed polynomial matrix following each iteration of
the SBR2 algorithm, when applied to a series of para-Hermitian test matrices,
using no truncation method.. 71

4.4 The relative error of the decomposition found when applying the fixed bound
truncation method as part of the SBR2 algorithm to a range of para-Hermitian
polynomial matrices and for a range of fixed bounds values................................. 73

4.5 The computational time taken for the SBR2 algorithm to be applied to a range
of different para-Hermitian polynomial matrices, when implementing the fixed
bound truncation m ethod... 75

4.6 The effects of the energy based truncation method upon the order of the di
agonal polynomial matrix obtained from the SBR2 algorithm............................. 77

xi

4.7 The minimum proportion of the squared Frobenius norm of the polynomial
input matrix to the SBR2 algorithm remaining following truncating the poly
nomial m atrix within the SBR2 algorithm using the energy based truncation
method, for various numbers of iterations... 79

4.8 The order of the transformed polynomial m atrix following each iteration of
the SBR2 algorithm when applied to the space-time covariance matrix from
Example 3.7, when (i) no truncation method is used, and then the energy based
truncation method is applied to the transformed polynomial m atrix with (ii)
H = 0, (iii) n = 10“ 10, (iv) fi = 5 x 10-5 and (v) /i = 3 x 10- 4 83

4.9 The diagonal polynomial matrix obtained from applying the SBR2 algorithm
to the polynomial space-time covariance m atrix from Example 3.7 using the
energy based truncation m ethod... 84

4.10 The paraunitary polynomial matrix obtained from applying the SBR2 algo
rithm to the polynomial space-time covariance m atrix from Example 3.7 using
the energy based truncation method.. 85

5.1 Diagram to illustrate the different orderings used in the PQRD-BS and the
PQRD-BC algorithms.. 101

5.2 The polynomial matrix to be used as input to each of the algorithms for cal
culating the QR decomposition of a polynomial m atrix... 113

5.3 The upper triangular polynomial matrix obtained by applying the PQRD-BS
algorithm to the polynomial m atrix illustrated in Figure 5.2..................... 114

5.4 The paraunitary polynomial m atrix obtained by applying the PQRD-BS algo
rithm to the polynomial m atrix illustrated in Figure 5.2 114

5.5 The upper triangular polynomial matrix obtained by applying the PQRD-BC
algorithm to the polynomial m atrix illustrated in Figure 5.2..................... 115

5.6 The paraunitary polynomial m atrix obtained by applying the PQRD-BC al
gorithm to the polynomial m atrix illustrated in Figure 5.2 115

5.7 The upper triangular polynomial m atrix obtained by applying the PQRD-SBR
algorithm to the polynomial matrix illustrated in Figure 5.2............................... 116

5.8 The paraunitary polynomial m atrix obtained by applying the PQRD-SBR al
gorithm to the polynomial m atrix illustrated in Figure 5.2.................................. 116

5.9 The Frobenius norm of the polynomial elements beneath the diagonal of the
transformed polynomial matrix at each iteration of each of the PQRD algo
rithms when applied to the polynomial matrix illustrated in Figure 5.2. . . . 119

5.10 The Frobenius norm of the polynomial elements beneath the diagonal of the
transformed polynomial m atrix at each iteration when applying the PQRD-
SBR algorithm with and without using the inverse delay step............................. 120

5.11 The polynomial m atrix obtained from calculating the inverse decomposition
compared to the input matrix to the PQRD-BS algorithm.................................. 121

6.1 The approximately upper triangular polynomial m atrix obtained from apply
ing the PQRD-BS algorithm to the first polynomial test m atrix............................. 130

6.2 The paraunitary polynomial m atrix obtained from applying the PQRD-BS
algorithm to the first polynomial test m atrix... 130

6.3 The Frobenius norm of the polynomial elements beneath the diagonal of the
transformed polynomial matrix at each iteration of each of the algorithms for
calculating the PQRD when applied to the first polynomial test matrix. . . . 132

xii

6.4 The polynomial m atrix A 2(z) € R 3x3x4 to be used as input to each of the
three algorithms for calculating the PQRD.. 133

6.5 The Frobenius norm of the polynomial elements beneath the diagonal of the
transformed polynomial m atrix at each iteration of each of the algorithms for
calculating the PQRD when applied to the polynomial matrix illustrated in
Figure 6.4.. 135

6.6 The upper triangular polynomial matrix obtained by applying the PQRD-BC
algorithm to the polynomial m atrix illustrated in Figure 6.4............................... 137

6.7 The paraunitary polynomial m atrix obtained by applying the PQRD-BC al
gorithm to the polynomial m atrix illustrated in Figure 6.4.................................. 137

6.8 The Frobenius norm of the polynomial elements beneath the diagonal of the
transformed polynomial matrix over the series of iterations for each of the
PQRD algorithms when applied to A 2 (z) for the cases (i) using the original
code as described in Chapter 5 and (ii) when implementing the algorithms
with the ZLSS.. 142

6.9 The coefficients of the polynomial elements of the polynomial m atrix A 3 (z) to
be used as input to each of the three algorithms for calculating the PQRD. . 143

6.10 The coefficients of the polynomial elements of the approximately upper trian
gular polynomial matrix obtained when the PQRD-BC algorithm was applied
to the polynomial matrix A 3(2:)... 145

6.11 The coefficients of the polynomial elements of the paraunitary transformation
m atrix obtained using the PQRD-BC algorithm with polynomial input matrix
A 3(*).. 145

6.12 The Frobenius norm of the polynomial elements beneath the diagonal of the
transformed polynomial matrix over the series of iterations for each of the
PQRD algorithms when applied to A 3(z) for the cases (i) using the original
code as described in Chapter 5 and (ii) when implementing the algorithms
with the ZLSS.. 147

6.13 The coefficients of the polynomial elements upper triangular polynomial matrix
obtained when the PQRD-BC algorithm was applied to the polynomial matrix
A 4(2) .. 149

6.14 The coefficients of the polynomial elements paraunitary transformation matrix
obtained using the PQRD-BC algorithm with polynomial input m atrix A 4 (2). 149

7.1 The first paraunitary polynomial m atrix obtained from applying the PSVD by
PQRD algorithm to the polynomial m atrix illustrated in Figure 5.2......................172

7.2 The second paraunitary polynomial matrix obtained from applying the PSVD
by PQRD algorithm to the polynomial m atrix illustrated in Figure 5.2. . . . 172

7.3 The diagonal polynomial matrix obtained from applying the PSVD by PQRD
algorithm to the polynomial m atrix illustrated in Figure 5.2............................... 173

7.4 The diagonal polynomial matrix obtained from applying the PSVD by PEVD
algorithm to the polynomial m atrix illustrated in Figure 5.2............................... 173

7.5 The first paraunitary polynomial m atrix obtained from applying the PSVD by
PEVD algorithm to the polynomial matrix illustrated in Figure 5.2...................... 174

7.6 The second paraunitary polynomial m atrix obtained from applying the PSVD
by PEVD algorithm to the polynomial m atrix illustrated in Figure 5.2............ 174

8.1 Block diagram for a basic noise free baseband communication system................... 178

xiii

8.2 Block diagram for a basic baseband communication system using the polyno
mial matrix QR decomposition.. 187

8.3 Block diagram for a basic baseband communication system using polynomial
matrix singular value decomposition.. 199

A.l The paraunitary polynomial matrix generated from applying the Householder
variation of algorithm for calculating the PQRD to the polynomial matrix
A 2{z) € R 3*3*4... 228

A.2 The upper-trinagular polynomial matrix generated from applying the House
holder variation of algorithm for calculating the PQRD to the polynomial
matrix A 2{z) <E R 3x3x4... 229

D .l A stem plot representation of the polynomial channel matrix C i (z) used to
demonstrate the application of the PSVD and PQ RD ... 241

D.2 A stem plot representation of the polynomial channel m atrix Q.2 (z) used to
demonstrate the application of the PSVD and PQ RD ..242

D.3 A stem plot representation of the upper-triangular polynomial matrix obtained
from applying the PQRD-BC algorithm to the polynomial channel m atrix in
Figure D .l... 243

D.4 A stem plot representation of the paraunitary polynomial matrix obtained
from applying the PQRD-BC algorithm to the polynomial channel matrix in
Figure D .l ... 243

D.5 A stem plot representation of the upper-triangular polynomial m atrix obtained
from applying the PQRD-BC algorithm to the polynomial channel matrix in
Figure D.2... 244

D .6 A stem plot representation of the paraunitary polynomial m atrix obtained
from applying the PQRD-BC algorithm to the polynomial channel matrix in
Figure D.2... 244

D.7 A stem plot representation of the diagonal polynomial m atrix obtained from
applying the PSVD- PQRD algorithm to the polynomial channel matrix in
Figure D .l ... 245

D .8 A stem plot representation of the first paraunitary polynomial matrix obtained
from applying the PSVD- PQRD algorithm to the polynomial channel matrix
in Figure D .l .. 245

D.9 A stem plot representation of the second paraunitary polynomial m atrix ob
tained from applying the PSVD- PQRD algorithm to the polynomial channel
m atrix in Figure D .l.. 246

D.10 A stem plot representation of the diagonal polynomial m atrix obtained from
applying the PSVD- PQRD algorithm to the polynomial channel m atrix in
Figure D.2... 246

D .ll A stem plot representation of the first paraunitary polynomial m atrix obtained
from applying the PSVD- PQRD algorithm to the polynomial channel matrix
in Figure D.2.. 247

D .12 A stem plot representation of the second paraunitary polynomial m atrix ob
tained from applying the PSVD- PQRD algorithm to the polynomial channel
m atrix in Figure D.2.. 247

xiv

List of Tables

4.1 Properties of each of the para-Hermitian polynomial test matrices used in the
fourth chapter.. 66

4.2 The number of iterations required for the SBR2 algorithm to converge when
applied to each of the test matrices used in the fourth chapter and the resulting
orders of the polynomial matrices generated by the decompositions................... 67

4.3 The minimum value of the fixed bound parameter L to obtain a particular
level of relative error for the polynomial matrix decomposition obtained by
the SBR2 algorithm when using the fixed bound truncation m ethod.................. 73

4.4 The effect of the energy based truncation method upon the order of the diago
nal polynomial m atrix obtained from applying the SBR2 algorithm to a range
of para-Hermitian polynomial matrices.. 76

4.5 The effects of implementing the energy based truncation method within the
SBR2 algorithm upon the computational time taken for the algorithm to con
verge... 78

4.6 The results from applying the SBR2 algorithm to Example 3.7 when (i) no
truncation method is used, and then the energy based truncation method is
applied to the transformed polynomial matrix with (ii) fi = 0 , (iii) // = 10-10,
(iv) // = 5 x 10~5 and (v) fi — 3 x 10- 4 ... 81

5.1 Results obtained from applying the three algorithms for calculating the QR
decomposition of a polynomial m atrix to the polynomial m atrix illustrated in
Figure 5.2.. 117

6.1 Results from applying each of the three PQRD algorithms to the first polyno
mial test m atrix... 129

6.2 Results obtained from applying each of the PQRD algorithms to the polyno
mial test m atrix illustrated in Figure 6.4.. 134

6.3 Results observed when applying each of the three algorithms for calculating
the PQRD to the polynomial test m atrix A^{z) E R.3x3x4 whist using the
zero-lag specification step.. 141

6.4 Results from applying each of the PQRD algorithms to the polynomial test
m atrix A 3(2) E C 5x3x4... 144

6.5 Results from applying each of the PQRD algorithms to the polynomial test
matrix A 3(2) E C 5x3x4, each implementing the ZLS step at each iteration of
the algorithm.. 147

6.6 The number of EPGRs required for each algorithm for calculating the PQRD
to converge, when the initial zero-lag coefficient matrix is specified using the
three different options.. 151

xv

7.1 Results obtained from applying the two methods for calculating the PSVD to
the polynomial matrix illustrated in Figure 5.2... 170

7.2 Observed results from the two decomposition techniques when both achieve
approximately the same level of PSVD, allowing a much fairer comparison of
the two algorithms.. 171

8.1 The potential applications of the different polynomial matrix decompositions
and the location of a discussion of this application within the thesis................. 178

8.2 Performance of the three algorithms for calculating the QR decomposition of
a polynomial m atrix when each is applied to a polynomial channel matrix of
order four representing the propagation of three source signals onto four sensors. 191

8.3 Average BER performance obtained using the PQRD-BC algorithm and a
MLSE to perform MIMO channel equalisation, for two different examples of
polynomial channel matrices with constant power profile..................................... 192

8.4 Performance of the three algorithms for calculating the QR decomposition of
a polynomial m atrix when each is applied to a polynomial channel m atrix of
order four representing the propagation of five source signals onto five sensors. 193

8.5 Performance of the two methods for calculating the singular value decompo
sition of a polynomial matrix when each is applied to a polynomial channel
matrix of order four representing the propagation of three source signals onto
four sensors... 202

8.6 Average BER performance obtained using the PSVD by PQRD algorithm and
a MLSE to perform MIMO channel equalisation, for two different examples of
polynomial channel matrices with constant power profile..204

8.7 Performance of the two methods for calculating the singular value decompo
sition of a polynomial m atrix when each is applied to a polynomial channel
m atrix of order four representing the propagation of five source signals onto
five sensors.. 205

A.l Results from applying the PQRD-BC algorithm using Givens rotations and
Householder reflections to the polynomial test m atrix A 2 (z) G R 3x3x4............ 228

C.l The computational complexity of the SBR2 algorithm for calculating the di
agonal polynomial matrix and comments on the storage requirements of this
algorithm...237

C.2 The computational complexity of the PQRD-BS algorithm for calculating the
upper-triangular polynomial m atrix and comments on the storage requirements
of this algorithm.. 238

C.3 The computational complexity of the PQRD-BC algorithm for calculating the
upper-triangular polynomial m atrix and comments on the storage requirements
of this algorithm.. 239

C.4 The computational complexity of the PQRD-SBR algorithm for calculating the
upper-triangular polynomial m atrix and comments on the storage requirements
of this algorithm.. 240

xvi

List of Abbreviations

BER Bit Error Rate
BPSK Binary Phase Shift Keying
BSS Blind Source Separation
CCI Co-Channel Interference
CPGR Complete Polynomial Givens Rotation
DFT Discrete Fourier Transform
DSP Digital Signal Processing
ECG Electrocardiogram
EEG Electroencephalography
EPGR Elementary Polynomial Givens Rotation
EPHR Elementary Polynomial Householder Reflection
EVD EigenValue Decomposition
FIR Finite Impulse Response
HOS Higer-Order Statistics
ICA Independent Component Analysis
HR Infinite Impulse Response
ISI Inter-Symbol Interference
LTI Linear Time Invariant
MAP Maximum a Posteriori Probability
MFD Matrix Fraction Description
MIMO Multi-Input M ulti-Output
MLSE Maximum Likelihood Sequence Esimator
OFDM Orthogonal Frequency-Division Mulitplexing
PEVD Polynomial matrix EigenValue Decomposition
PQRD Polynomial m atrix QR Decomposition
PQRD-BS PQRD By Steps algorithm
PQRD-BC PQRD By Columns algorithm
PQRD-SBR PQRD By Sequential Best Rotation algorithm
PSD Power Spectral Density
PSVD Polynomial matrix Singular Value Decomposition
QPSK Quadrature Phase Shift Keying
QRD QR Decomposition
RSNR Signal-to-Noise Ratio at the Receiver
SBR2 Sequential Best Rotation algorithm
SBR Sequential Best Rotation

xvii

SISO Single-Input Single-Output
SNR Signal-to-Noise Ratio
SOS Second-Order Statistics
SVD Singular Value Decomposition
WSS Wide Sense Stationary
ZLS Zero-Lag Specification
ZLSS Zero-Lag Specification Step

xviii

List of N otation

E[-] Expection operator

I n n x n identity matrix

O p x g P x Q matrix of zeros

A (z) Polynomial matrix

det(A) Determinant of A

||-||F Frobenius norm

p(‘) Probability densitiy

(•) Paraconjugation

[A{z)]jkt The coefficient of z ~ l in the (j , k) th element of A (z)

a,jk(t) The coefficient of z ~ l in the (j , k) th element of A (z)

C.axb The set of polynomial matrices with complex coefficients

with a rows and b columns

Caxbxc The set of polynomial matrices of order c with complex co

efficients with a rows and b columns

(•)* Complex conjugate

(■)H Hermitian conjugate of a m atrix or vector

(•)T Transposition of a matrix or vector

tr(A) Trace of the matrix A

xix

Chapter 1

Introduction

1.1 M otivation

Digital signal processing (DSP) became a major area of interest in the mid 1960s when high

speed digital computers became readily available for research [1]. From the advances in

technology built upon this research, many potential applications were realised and a greater

need for the advancement of DSP techniques was identified over the ensuing decades. The

emergence of the Internet and major developments in wireless technology and mobile telecom

munications have in particular been underpinned by DSP. As an example of the commercial

return of research in DSP, wireless revenues are currently growing between 20% and 30% per

year and are likely to continue this trend in the forseeable future [2].

Research in digital communications can be divided into many subsections, which include

the detection and estimation of signals that have been transm itted over a channel. The main

aim of these areas is to obtain an estimate of the transmitted signal from the received signals

in an efficient and robust way. The term blind source separation (BSS) is used to describe

the process of recovering a set of source signals from a collection of observed mixtures of

these sources, when both the source signals and the mixing model are unknown. It may

be desirable to recover all sources from the recorded mixtures or at the very least isolate a

particular source. Alternatively, it can often be useful to establish information about how the

source signals have been mixed and therefore gain some understanding about the physical

mixing process observed.

1

1.1 Motivation

The solution of source separation problems has been the focus of much research over

the last couple of decades and the problem can generally be divided into two categories,

depending on whether the signals have been instantaneously or convolutively mixed. In the

instantaneous case, the relative delay can be modelled as a simple phase shift. Therefore,

the sensors receive the same time sample of the mixed source signals and so the mixing

m atrix required to describe this scenario has complex scalar entries. In the more complicated

yet more realistic convolutive case, the set of source signals are received at an array of

sensors over multiple paths and with different time delays. The multiple paths arise from

scattering, reflection and diffraction of the signals in the channel [2]. Furthermore, the finite

propagation speed will also influence the signals over their transmission, which will also be

typically corrupted by noise. This more complicating scenario is referred to as convolutive

mixing and each element of the mixing m atrix required to describe this situation will be a

finite impulse response (FIR) filter. This FIR filter will take the form of a polynomial in the

indeterminate variable z-1 , which is used to represent a unit delay.

Initially, most of the research in the field of BSS [3,4] was concentrated on the simpler

case of narrowband signals, where instantaneous mixing takes place. Many effective algo

rithms have been developed to solve the problem and have been applied to a wide range of

useful applications. W ithin this problem elements of numerical linear algebra, such as matrix

decomposition methods, have proven to be a useful tool for simplifying the problem [5]. For

example, both the eigenvalue and singular value decompositions (EVD and SVD) can be used

as a preprocessing step to many instantaneous BSS algorithms, where decorrelation of the

received signals is required. These scalar matrix decompositions can also be used to simplify

multivariate analytical problems and can therefore be applied to a diverse range of problems.

Consequently, the EVD and SVD can be used to reduce the number of computations re

quired for many operations, thus allowing computational convenience, and ensure numerical

robustness [6].

In the past decade much BSS research has been focused on the separation of convolutive

mixtures, where each element of the mixing matrix is a polynomial with an associated set

of coefficients. Most techniques to solve this problem transform the signals to the frequency

2

1.1 Motivation

domain, separating them into a number of narrowband problems, where an instantaneous but

complex BSS algorithm can be applied. Other techniques operate entirely in the time domain,

where as with the instantaneous methods, a preprocessing step would be of use. Most notably,

an algorithm suitable for calculating the EVD of a para-Hermitian polynomial matrix has

been developed in [7]. This algorithm is called the sequential best rotation algorithm (SBR2)

and constitutes a direct extension of Jacobi’s EVD algorithm from scalar to polynomial

matrices. The algorithm was developed as part of a two-stage convolutive BSS algorithm,

as it has the capability of performing strong decorrelation on a set of convolutively mixed

signals [8]. The algorithm has also been applied to problems concerning multichannel data

compression [9,10] and more recently it has been used as a technique for designing orthogonal

space-time channels for optimal data transmission [11-15]. This list does not include all

applications of the algorithm to broadband signal processing, which will be as diverse as the

applications of the conventional EVD for scalar matrices to narrowband signal processing.

The motivation behind this thesis is the development of other polynomial matrix decom

positions using the methodology introduced for the SBR2 algorithm. In particular, algorithms

for calculating the QR decomposition and SVD of a polynomial m atrix are developed. These

algorithms have been proven to converge at least as well as the SBR2 algorithm and are

also numerically stable. Note that these decompositions of a polynomial m atrix cannot be

calculated using the conventional techniques for formulating the same decomposition of a

scalar matrix, as each element is now a polynomial with an associated set of coefficients. The

applications of these decomposition techniques to broadband signal processing are analogous

to the applications of the scalar m atrix equivalent decomposition to narrowband problems. In

particular, the application of the decompositions to multi-input multi-output (MIMO) com

munication systems is examined and some results based on numerical simulations presented

to support the potential applications. In this case, the polynomial matrix decomposition

techniques can be used to simplify the problem and ease computation in a similar way to

how scalar m atrix decompositions could be used to solve a set of linear equations.

3

1.2 Problem Statement and Aims of Thesis

1.2 Problem Statem ent and Aims of Thesis

The SBR2 algorithm is a technique that has been developed for calculating the eigenvalue

decomposition of a para-Hermitian polynomial matrix [7]. It was developed as part of an

algorithm for solving the convolutive BSS problem, and can be used to enforce strong decor

relation upon a set of convolutively mixed signals, by diagonalising the polynomial space-time

covariance m atrix of the mixed signals. This algorithm provides the foundation for the re

search presented in this thesis. The main aims of this thesis are now described below:

1. To decrease the computational load within the SBR2 algorithm by introducing an effi

cient polynomial m atrix truncation method, which can be used to significantly reduce

the order of the polynomial matrices within the algorithm, whilst not compromising

the accuracy of the decomposition performed. W ithout implementing some type of

truncation method the order of the polynomial matrices within the SBR2 algorithm

can become unnecessarily large. A couple of techniques to tackle this problem are pro

posed and the level of decomposition is assessed when using each of these techniques.

The large orders of the polynomial matrices is a particular problem for the application

of this algorithm to MIMO channel equalisation problems, where it is used to calculate

the SVD of a polynomial channel matrix. If the orders of the polynomial matrices

obtained by the decomposition are too large then the method becomes computation

ally too complex to utilise. Extensive examples have shown that even for a channel

m atrix of a relatively small order with coefficients having a constant power profile as

observed in wireless communications, the orders of the generated polynomial matrices

are too large to use easily for this application. Note that for this application, the SBR2

algorithm does not directly operate on the polynomial channel matrix.

2 . Secondly, the thesis aims to introduce an efficient algorithm for calculating the QR

decomposition of a polynomial matrix. The algorithm operates by applying the same

elementary paraunitary operations as used in the SBR2 algorithm. The potential appli

cation of this decomposition is also to MIMO communication systems, where channel

equalisation is required. This decomposition has the considerable numerical advantage

4

1.3 Organisation of Thesis

that it operates on the polynomial channel m atrix directly and is found to generally

yield polynomial matrices of a smaller order than those obtained by the SBR2 algo

rithm.

3. An algorithm for computing the SVD of a polynomial m atrix is introduced and a proof

of convergence for this algorithm is also presented. This new algorithm operates by

iteratively calculating the QR decomposition of a polynomial matrix. This algorithm

can also be used within MIMO channel equalisation problems, as an alternative to the

SBR2 algorithm. As this algorithm also directly operates on the polynomial channel

matrix, it will also typically generate polynomial matrices of a smaller order than those

obtained using the SBR2 algorithm to formulate the SVD of a polynomial matrix.

4. Finally, this thesis examines the potential applications of the two polynomial matrix de

compositions, i.e. the polynomial matrix QR decomposition (PQRD) and polynomial

m atrix SVD (PSVD), which have been introduced in this thesis. Application moti

vated examples are given to illustrate their relevance and capabilities to the specified

applications.

1.3 Organisation of Thesis

The second chapter introduces the concept of blind source separation and provides a review

of current methods for solving this problem for both the instantaneous and convolutive cases.

This chapter includes a discussion on the background of polynomial matrices and in particular

describes how they arise in signal processing. Finally, at the end of this chapter, existing

techniques for calculating polynomial matrix decompositions are reviewed.

The third chapter of this thesis introduces the SBR2 algorithm, which can be used to

calculate the EVD of a para-Hermitian polynomial matrix and operates by applying a series

of elementary paraunitary matrices. This algorithm can be used as a time-domain approach

for achieving strong decorrelation of a set of convolutively mixed signals. This application

of the algorithm is discussed and an example given to illustrate how the algorithm operates.

This example illustrates the one problem with this algorithm, which is the growing orders of

5

1.3 Organisation of Thesis

the polynomial matrices. This algorithm can also be used to obtain the SVD of a polynomial

matrix, however this will not be discussed in detail until the seventh chapter.

The fourth chapter introduces two truncation methods which can be applied to the poly

nomial matrices within the SBR2 algorithm to ensure that the orders of these matrices do

not grow unnecessarily large within the algorithm. The energy based truncation method can

drastically decrease the the computational load of the algorithm, whilst allowing the algo

rithm to obtain a highly accurate polynomial m atrix decomposition. Results are given to

illustrate the advantages of truncating the orders of the polynomial matrices throughout the

algorithm.

The fifth chapter introduces three algorithms for calculating the QR decomposition of a

polynomial matrix, these are referred to as the PQRD-BS, the PQRD-BC and the PQRD-

SBR algorithms. The three algorithms employ the same elementary polynomial transforma

tion matrices as used within the SBR2 algorithm to transform a polynomial matrix into an

upper triangular polynomial matrix. Convergence of each of the three algorithms is discussed

and their performance demonstrated by applying them to a simple numerical example.

The sixth chapter introduces a set of polynomial matrices, each with slightly different

characteristics, which are then used for testing the three different PQRD algorithms dis

cussed in the previous chapter. The results found when applying the algorithms to the set of

test matrices illustrate the different qualities of the algorithms and exemplify any problems

or disadvantages of using them. In particular, this chapter confirms that the PQRD-BC

algorithm typically offers the best performance, often requiring the least number of iterations

and computational time to converge. Consequently, this algorithm will generally produce an

upper triangular polynomial m atrix with the smallest order of the three algorithms and the

decomposition performed will typically be more accurate. The polynomial m atrix truncation

methods introduced in the fourth chapter can also be implemented within any of the PQRD

algorithms.

It can be shown that the QR decomposition of a scalar matrix can be iteratively calculated

and used to obtain the SVD of a scalar matrix. Extending this idea to polynomial matrices,

the seventh chapter introduces an SVD algorithm suitable for polynomial matrices. This

6

1.4 Notation

algorithm operates by iteratively applying the most efficient polynomial m atrix QR decom

position algorithm from the fifth chapter. The algorithm has been proven to converge and

shown to offer some advantages over the existing technique of calculating the SVD of a poly

nomial matrix using the SBR2 algorithm. The main advantage is its ability to control how

small the magnitude of the off-diagonal coefficients of the transformed diagonal matrix must

be driven - something that cannot be achieved with the existing approach. Consequently, a

more accurate polynomial matrix decomposition can be formulated. Furthermore, to obtain

the same level of decomposition (in terms of ensuring the magnitude of all off-diagonal coeffi

cients is less than a specified value) using the two different approaches, the PQRD approach

requires significantly less iterations and, as a consequence, the orders of the polynomial ma

trices generated by the decomposition are often shorter. The two methods are compared by

means of a numerical example to demonstrate the advantages of the new PQRD approach.

The eighth chapter of the thesis briefly explains some of the potential applications of the

three polynomial matrix decompositions, the polynomial m atrix EVD (PEVD), the PQRD

and the PSVD. The applications of the two decomposition algorithms introduced in this

thesis for calculating the PQRD and the PSVD, are illustrated by applying the algorithms to

some simple application motivated examples. Note that it may be beneficial for some readers

to look at this chapter before reading the detailed descriptions of the algorithms presented

in the previous chapters.

The final chapter concludes the research presented in the thesis and outlines how this

work could be continued in the future. Appendices are then included to provide some results

that have been commented on, but are not included in the main body of the text.

1.4 N otation

Matrices are denoted as upper case bold characters and vectors by lower case bold charac

ters. The subscripts *, T and H denote complex conjugate, matrix transposition and matrix

Hermitian conjugate respectively. A p x p identity m atrix will be denoted as l p and a p x q

matrix with zero entries will be referred to as 0pxq. Let C and R denote the field of complex

7

1.4 Notation

numbers and the field of real numbers respectively.

The underline notation, used with a matrix, vector or scalar, is used to denote a poly

nomial to avoid confusion with the notation used for the 2-transform of a variable. For

example, A (2) will denote a polynomial matrix in the indeterminate variable z ~ l . Let atJ(z)

denote the (i , j) th polynomial element of the matrix A (2). The coefficient associated with

the (i , j) th polynomial element of A (2), corresponding to a delay of z~l , will be denoted as

dijit) or occasionally, if this notation is not suitable, it is denoted as [A(z)]jkt. Let the set

of polynomial matrices, with complex coefficients, be denoted by C axb where a denotes the

number of rows and b the number of columns of the polynomial matrix. If the order of the

polynomial m atrix is also known, for example suppose it is c, then alternatively the set could

be denoted by C axbxc. Similarly, if the polynomial m atrix has real coefficients then the set

of polynomial matrices with a rows and b columns, but an unspecified order, is denoted as

M.axb. If the order of the matrix is known and is c, then the set is denoted as Max6xc.

The tilde notation, (~), used above a polynomial m atrix is used to denote the paraconju-

gate. Finally || ||F is used to denote the Frobenius norm of a matrix and will also be referred

to as the F-norm.

Chapter 2

Background to Convolutive
M ixtures and Polynom ial M atrices

2.1 Introduction

The problem of source separation can be considered in different ways depending on how the

sources have been mixed. In the instantaneous case, a m atrix of complex scalars is sufficient to

describe the mixing. Clearly, this model is not realistic for many applications, as signals can

often take multiple paths with different time delays. In this situation a m atrix of polynomial

elements is commonly required to describe the mixing process.

This chapter firstly discusses the simpler instantaneous mixing model. Methods for

achieving instantaneous blind source separation are briefly discussed and, in particular, the

role of scalar matrix decompositions to this problem and other potential applications of these

decompositions is examined. The chapter then discusses the more complicated scenario where

convolutive mixtures arise. In this situation, the channel m atrix required to express the mix

ing takes the form of a polynomial matrix, where each element is a finite impulse response

(FIR) filter. Polynomial matrices have therefore been used extensively in recent years in

the area of digital signal processing, but they can also be used to describe the multivari

able transfer function associated with a multi-input multi-output (MIMO) communication

system. Other examples of their applications include broadband adaptive sensor array pro

cessing, broadband subspace decomposition and also digital filter banks for subband coding

or data compression [10,16,17].

9

2.2 Instantaneous Mixtures

The topic of this thesis is the development of algorithms for the computation of poly

nomial matrix decompositions. There are already existing decomposition techniques, which

operate on polynomial matrices. These include routines such as the Smith-McMillan decom

position for transforming a polynomial matrix into a diagonal polynomial matrix [16,18,19]

and a method introduced by Vaidyanathan for factorising a paraunitary polynomial ma

trix [16]. However, little research has focused on extending standard scalar matrix procedures

for calculating decompositions such as the eigenvalue decomposition (EVD), singular value

decomposition (SVD) or QR decomposition (QRD) to polynomial matrices. The first, of two

existing techniques, is an EVD routine for polynomial matrices developed by Lambert [20].

However, this routine operates by converting the polynomial matrices into the frequency do

main and therefore offers only an approximate decomposition. A very different approach has

been used to develop the SBR2 algorithm [7,8,21], which is an alternative EVD routine for

polynomial matrices. This algorithm constitutes a natural generalisation of Jacobi’s algo

rithm from scalar matrices to polynomial matrices. The majority of these polynomial matrix

decomposition techniques are discussed in more detail at the end of this chapter. However,

the SBR2 algorithm is discussed in the following chapter, as this algorithm forms the basis

of the work presented in this thesis. The potential applications of polynomial matrix de

compositions to broadband signal processing are examined in Chapter 8 and are often seen

to analogous to the applications of the scalar matrix decompositions to narrowband signal

processing.

2.2 Instantaneous M ixtures

2.2.1 The M ixing M odel

In the instantaneous (narrowband) case, the propagation of the q source signals, s (t) —

[si(t), S2(0> • • • e C9Xl where t G {0 ,... , T — 1}, to an array of p sensors can be

expressed as

x(t) - Cs(t) + n(t), (2.1)

10

2.2 Instantaneous Mixtures

where x(t) = [aq(£), ^ (t) , . . . , x p(t)]T € Cpxl denotes the set of p received signals, which are

each formulated as a sum of differently weighted source signals, and n(t) e (Cpxl denotes

the additive noise observed at the receiver, which is assumed to have variance cr2 Ip. The

m atrix C € Cpx<7 denotes the mixing or channel m atrix for the model and has complex scalar

elements Cjk for j = 1, . . . ,p and k = 1, . . . , q, which will represent the relative phase and

amplitude of the k th signal at the j th sensor. It is generally assumed that there must be at

least as many sensors as sources, i.e. p > q. Note that some work has been carried out on

the underdetermined case where p < q [22], however, this is not the focus of this thesis and

so this case is disregarded.

2.2.2 Source Separation

The term blind source separation (BSS) is used to describe the process of recovering a set of

unobserved source signals from a collection of observed mixtures, such as those demonstrated

by equation (2 .1), without explicit knowledge of the mixing m atrix or precise signal informa

tion. If the mixing matrix of the system is known, then classical linear algebra methods can

be used to determine the source signals. Even in the case where the mixing matrix is rank

deficient, then the pseudo-inverse of the matrix can be calculated [6]. However, if this matrix

is unknown then the problem is much more difficult and without some prior knowledge, it is

impossible to uniquely determine the source signals, but they can be determined up to cer

tain fundamental indeterminacies. Note that the solution to this problem has a diverse range

of applications, for example it has been used to successfully understand biomedical signals,

such as those obtained from Electrocardiogram (ECG) and Electroencephalography (EEG)

readings [23,24], within financial market analysis and even used in the design of hearing

aids [25,26].

2.2.3 A lgorithm s for Instantaneous BSS

One method of performing BSS, probably the most widely used, is to exploit the statistical

properties of the signals and to assume that the source signals, the elements of s (t) in equation

11

2.2 Instantaneous Mixtures

(2.1), are statistically independent at each time instant t. Note that this is not an unrealistic

assumption and in practice this does not need to be completely true, as demonstrated in [27].

W ith this assumption, a method known as independent component analysis (ICA) can be used

to estimate the elements of the mixing matrix and then, as a result of this, the source signals

can be estimated. One clear advantage of using ICA is that it does not require any further

knowledge of the different source signals or the positions of the sensors. It is also assumed

when using this method that no more than one source signal is Gaussian, the sources have zero

mean and that there are at least as many sensors as sources, i.e. in equation (2.1) p > q [27].

W ith these assumptions, it is possible to recover the source signals subject to a couple of

indeterminacies. Firstly, the order of the independent components (i.e. the estimated sources)

cannot be determined and secondly, it is not possible to determine their energies (variances)

and so the reconstructed signals might be multiplied by some scalar quantity. The second

ambiguity can be removed by adding the constraint that each source must have unit variance,

which can be taken into account by the ICA solution. The first indeterminacy cannot be

removed however, but this is not a problem in many of the applications of the technique. A

detailed description of ICA can be found in [3,5,27].

The majority of instantaneous BSS techniques implement a two-stage approach, where

initially second-order statistics (SOS) are exploited to decorrelate and normalise the received

signals, before the solution is completed using higher-order statistics (HOS) to obtain esti

mates of the source signals [28]. Note that SOS by themselves are not generally sufficient to

enforce independence and therefore separate the sources. It is beyond the scope of this thesis

to give a detailed review of the different algorithms for solving the instantaneous BSS prob

lem. However, popular algorithms, which implement this two step approach, include Joint

Approximation Diagonalisation of Eigenmatrices (JADE) [29], Second Order Blind Identifi

cation (SOBI) [30], Simultaneous Third Order Tensor Diagonalisation (STOTD) [31], BLInd

Signal Separation (BLISS) [32], FastICA [33] and Comon’s ICA methods discussed in [5]; a

detailed review of the literature surrounding this topic can be found in [34].

The first stage of these two-stage algorithms can be carried out by calculating either the

EVD of the covariance matrix of the received signals x(t) or alternatively by calculating the

12

2.3 Decomposition Techniques for Scalar Matrices

SVD of a matrix containing all the time samples for the received data. Either decomposi

tion yields a matrix capable of linearly transforming the observed signals to obtain a set of

uncorrelated signals. This point will be discussed in the next section of this chapter, where

three different decompositions of a scalar matrix and their applications to narrowband signal

processing are discussed. This section has highlighted the necessity and value of two of these

scalar matrix decompositions (the EVD and SVD) to narrowband signal processing. This

has been discussed as an introduction to the more complicated convolutive case, which will

be the initial application area of the equivalent polynomial m atrix decompositions discussed

in this thesis.

2.3 Decom position Techniques for Scalar M atrices

The decompositions techniques for scalar matrices are very useful tools in linear algebra, as

they can be used to simplify many numerical equations [6,35-38]. The three decompositions

examined in this thesis are the EVD, the SVD and the QRD and these are now discussed.

2.3.1 The QR D ecom position

The QRD aims to transform a matrix with complex scalar elements, into an upper triangular

m atrix by applying a series of unitary matrices [6,36,37]. The QRD of a scalar matrix

A G C pxq is defined as

A = QR (2.2)

where the m atrix R G C px<7 is an upper triangular m atrix consisting of complex scalar entries

and Q G C pxp is a unitary matrix, which means it satisfies Q HQ = QQ^ = Ip. There are

several different methods for calculating the decomposition, these include Givens rotations

and Householder reflections. The details of how to formulate the decomposition using these

methods are not discussed here, but an extensive description of each method can be found

in [6]. Note that if A is non-singular, i.e. the matrix is square and of full rank, then the

QRD of the matrix is unique, provided the diagonal elements are made to be both real

13

2.3 Decomposition Techniques for Scalar Matrices

and positive [6]. Finally, as the transformation was performed by a unitary matrix, this

decomposition is norm preserving, i.e. ||A ||^ = ||R ||^-

A p p lic a tio n s o f th e Q R D e c o m p o sit io n

The main advantage of the QRD is that it can often be used to enable set of linear equations

to be easily solved. For example, consider the instantaneous mixing model demonstrated

by equation (2.1) without the additive noise term for simplicity. Then provided the mix

ing matrix C is known, its QRD can be calculated such that C = Q R , thus allowing the

instantaneous mixing model to alternatively be expressed as

Q h x = R s (2.3)

The left hand-side of equation (2.3) can be calculated, transforming the system of equations

x = C s into a triangular systems of equations, which are easier to solve for s given C and x

using back substitution. This method is often used as the computations involved in calculating

the QRD and then performing back substitution are less expensive than calculating the inverse

C -1 . However, this method of back substitution is not possible if the mixing matrix for the

system is rank deficient, as this will lead to a number of diagonal elements of the upper

triangular m atrix R being equal to zero.

Another potential advantage of this decomposition is that it can also be used to calculate

the eigenvalues of a square matrix. If the matrix C is square, then the diagonal elements of R

are the eigenvalues of C. Furthermore, the algorithm can be used to formulate an algorithm

for determining the eigenvalues of a matrix, this algorithm is known as the QR algorithm

and is often used when the matrix is not Hermitian.

2.3.2 Eigenvalue D ecom position

The eigenvalue decomposition (EVD) of the Hermitian m atrix R € Cpxp can be expressed as

R - H D H ^ (2.4)

14

2.3 Decomposition Techniques for Scalar Matrices

where H € Cpxp is a unitary matrix with columns equal to the orthonormal eigenvectors

of R , and D e Cpxp is a diagonal matrix, whose diagonal elements are the corresponding

eigenvalues of R . The EVD can only be calculated for Hermitian matrices, but it does not

m atter if the entries of the matrix are real or complex. The unitary matrices perform simi

larity transformations, which means that the matrices R and D have the same eigenvalues.

This decomposition is norm preserving and so ||R ||^ = ||D ||^ . Note that to calculate the

eigenvalues of a scalar matrix that is square, but not Hermitian, then the QRD can be used

instead.

The EVD can be calculated using Jacobi’s algorithm, which operates by applying a series

of Jacobi rotations [6]. This method is very popular as it is inherently parallel. However,

for large matrices where p > 10, this algorithm is much slower than a QR method. The

details of how the algorithm operates will not be discussed here, for a detailed explanation

refer to [6 , 38]. Alternatively, the matrix R can be first reduced to a tridiagonal matrix

using either Givens rotations or Householder reflections. Both techniques are stable, but the

Householder method is a factor of two more efficient [38]. Note that if the matrix is not of

full rank then at least one eigenvalue is equal to zero.

A p p lic a tio n s o f th e E V D

The EVD for scalar matrices is extensively used in DSR For example, the unitary matrix

obtained by calculating the EVD is the Karhunen-Loeve transform used for optimal data

compaction and is formulated by calculating the EVD of the covariance matrix of the set of

data signals to be coded [7,16]. The most significant application for this thesis, is that the

EVD can be used to decorrelate a set of instantaneously mixed signals. This will now be

discussed.

15

2.3 Decomposition Techniques for Scalar Matrices

D e c o r r e la tio n o f In sta n ta n eo u sly M ix ed S ign a ls U s in g th e E V D

The covariance matrix of the observed signals x(t) from equation (2.1), which are assumed

to be zero-mean jointly wide sense stationary (WSS), can be calculated as

E [x(f)x(()"] (2.5)

E [Cs(t)(Cs(t))H] + a \ (2 .6)

C E [s(t)s(t)H] C " + cr% (2.7)

CR , „C h + <7% (2 .8)

where R ss e Cgxq denotes the spatial covariance m atrix of the source signals [39]. As

the source signals are assumed to be statistically independent, their cross-correlation terms

will equal zero and, as a result, the covariance matrix R ss will be diagonal. Furthermore,

if they have unit power then R ss = Iq. However, the covariance m atrix of the observed

signals R xx € Cpxp will generally not be diagonal, as the observed signals constitute a linear

combination of the source signals and are therefore correlated with one another.

The process of whitening the observed signals transforms them so that they are uncorre

lated and therefore have a diagonal covariance matrix. This can be achieved by calculating

the EVD of the covariance matrix of the mean-removed observed signals. To demonstrate

this point, define the data matrix containing the observed samples x(t) for £ = 0 ,1 , . . . , T — 1,

using the notation

X = [x (0) ,x (l) , . . . ,x (T - l)] . (2.9)

Using this m atrix a sample estimate of the true covariance matrix R xx of the observed signals

can be calculated as
^ X X W
R x x = - j r - . (2 .1 0)

This matrix is Hermitian and so its EVD can be calculated such that

U R IXU " = D , (2.11)

16

2.3 Decomposition Techniques for Scalar Matrices

where U G Cpxp is a unitary matrix and D G Cpxp is a diagonal matrix whose diagonal

elements satisfy d\\ > . . . > dqq. Note that these elements correspond to the estimated

powers of the source signals.

Subsequently, the transformed data matrix

X ' = U X (2.12)

will now contain the series of signals x (0),. . . , x (T — 1), with an estimated covariance matrix

equal to the diagonal matrix D and which are not correlated with one another. The signals

are said to have been instantaneously decorrelated and the transformed signals placed in

order of decreasing power. The application of the unitary matrix U in equation (2 .12) will

modify the phase and amplitude of the observed signals stored in the data matrix X and

the signal and noise subspaces will have been separated, which is very useful for adaptive

beamforming and high resolution direction finding [7,25].

Note that second order statistics can only be used to decorrelate the signals and are

not generally sufficient to enforce independence of the signals. Instead HOS are required to

complete the solution and so an ICA algorithm must now be applied to the whitened data to

reconstruct the independent source signals. However, if the received signals each have very

different power levels, then the majority of the separating of the sources can be achieved by

using either the EVD or SVD [7]. Note that this preprocessing step has reduced the problem

from estimating p 2 parameters to one of p(p — l) /2 degrees of freedom [27] and has therefore

significantly simplified the problem.

2.3.3 The Singular Value D ecom position

The singular value decomposition (SVD), unlike the EVD, can be applied to both square

and rectangular matrices to transform a matrix of complex scalar entries into a diagonal

matrix and the m atrix to be factorised need not be Hermitian [6,40]. The SVD of the matrix

A G Cpxq, where the elements of the m atrix can be either real or complex scalars, is defined

17

2.3 Decomposition Techniques for Scalar Matrices

as

A = U E V h (2.13)

where the matrices U £ Cpxp and V € Cqxq are both unitary and £ = diag(cri , . . . ,<tat) £

Rpxq. The diagonal entries of £ are referred to as the singular values of the matrix A and will

satisfy o\ > <72 > . . . > ctn > 0 , where N = min {p, q). The columns of the unitary scalar

m atrix U contain the left singular vectors of A and form an orthonormal basis. Similarly,

the columns of V define the right singular vectors. As with the previous two decomposition,

this decomposition is norm preserving and so ||A ||^ = | |£ | |^ .

R e la tio n sh ip B e tw e e n th e E V D and S V D

Suppose the SVD of the m atrix A £ Cpxq has been calculated according to equation (2.13).

Then using this decomposition the matrices A A H and A H A can be calculated as follows

A A h = U E E ^ U ^ (2.14)

and

A H A = V X HX V H, (2.15)

which are the EVDs of the matrices A A H and A HA respectively. The matrices £ £ ^ =

diag {crj, . . . , <7^} £ Cpxp and £ ^ £ = diag {a^ , . . . , a^} £ Cqxq. The unitary matrices U and

V required for the singular value decomposition of the m atrix A could therefore have been

obtained by calculating the EVD of the matrices A A H and A H A.

A p p lic a tio n s o f th e S V D

The SVD can be used to diagonalise a scalar matrix as demonstrated by equation (2.13) and

can accordingly be used to simplify a set of linear equations in a similar way to the QRD.

Furthermore, the decomposition can also be used to determine the rank, range and null

space of a matrix and is also used when calculating the pseudo-inverse of a matrix [6]. This

decomposition therefore has a vast range of applications and has become a popular numerical

18

2.3 Decomposition Techniques for Scalar Matrices

tool in many areas of research, such as statistical data analysis, control system analysis,

scientific computing, system identification and also signal processing [41]. For example, the

SVD is the method of choice for solving the linear least squares problem, where it can be

applied directly to the data matrix to obtain a robust solution [25] and can be applied to

problems of image restoration and compression [42]. The SVD can also be used to decorrelate

a set of instantaneously mixed signals, where it can be used as an alternative technique to

the EVD. For this application, the SVD is preferred to the EVD as it is less computationally

expensive. This will now be discussed further.

D e c o r r e la tio n o f In sta n ta n eo u sly M ix ed S ign a ls U s in g th e S V D

It has previously been demonstrated that the unitary m atrix obtained from calculating the

EVD of the covariance matrix of a set of instantaneously mixed signals can be used to

decorrelate the set of received signals as demonstrated in equation (2.12). Note that the

source signals are assumed to be uncorrelated and stationary. Alternatively, the SVD of the

data m atrix X G Cpxq from equation (2.9) could be calculated directly such that

U X V H = E (2.16)

where U G Cpxp and V G Cqxq are unitary matrices and E G Cpxq is a diagonal matrix

whose diagonal coefficients satisfy <t\\ > . . . > oqq > 0. The relationship between the EVD

of the covariance matrix and SVD of the data matrix is easily seen as follows

(U X V H)(U X V W)H = £ 2. (2.17)

Hence

U X X ^ U ^ = E2 (2.18)

and so
~ £ 2

U R „ U fl = — = D. (2.19)

This has demonstrated that the matrix U obtained from calculating the SVD of the data

19

2.4 Convolutive Mixtures

m atrix X is also sufficient to impose decorrelation upon the set of received signals. Note that

the SVD computation is preferable in terms of arithmetic precision [6]. Once again, the total
T —l

energy of the signals is preserved under the transformation, i.e. £ ||x (i) ||| = trace(X X H) =
2 = 0

Q Q
tra c e (E E ") = £ < 4 =

2 = 1 2 = 1

2.4 Convolutive M ixtures

The instantaneous mixing model shown in equation (2 .1) is not suitable for many realistic

situations where the propagation of the signals from the sources to the sensors can take

multiple paths with different time delays. In this situation polynomial matrices are required to

describe the mixing and so each element of the mixing matrix will be a finite impulse response

(FIR) filter with an associated set of coefficients. Before discussing the convolutive mixing

model, polynomial matrices and some properties associated with polynomial matrices are

discussed. In this thesis, it is assumed that the term polynomial includes Laurent polynomials,

which allow for negative powers of the interdeterminate variable of the polynomial.

2.4.1 Polynom ial M atrices

A polynomial m atrix is simply a matrix with polynomial elements. However, it can alter

natively be thought of as a polynomial with matrix coefficients and so a p x q polynomial

matrix A(z) , where the indeterminate variable of the polynomial is z ~ l (used in the context

of this thesis to represent a unit delay), can be expressed as

A(z) = £ A =
T=tl

£ 11(2) “ 12 (2) ••• ai q (z)

Q2i(z) :

— p l (^) ' ' ' ’ ’ ’ —p q { z)

(2 .20)

where r e Z and t\ < £2- The o rd e r of this polynomial matrix is calculated as (£2 — £1),

where the values of the parameters £1 and £2 are not necessarily positive. The matrices

20

2.4 Convolutive Mixtures

A (t \) , . . . , A(^2), which will generally have complex scalar entries, are referred to as the set

of coefficient matrices for the polynomial matrix A (z). In particular, the coefficient matrix

A(£) will be referred to as the coefficient matrix of order t. Note that the coefficient matrix

of order zero, i.e. A(0), is particularly important for the discussion of the polynomial matrix

decomposition algorithms within this thesis. Using the notation outlined in Section 1.4, the

polynomial matrix A(z) £ C pxq as all coefficients of the polynomial elements of the matrix

are complex. Alternatively, A (z) £ C pxqx(t2~t^ if the order of the matrix is also known.

2.4.2 Properties of a Polynom ial M atrix

The paraconjugate of the polynomial matrix A(^) is defined to be

A W = A j(l /*) (2 .21)

where * denotes the complex conjugation of the coefficients of each polynomial element and

T denotes matrix transposition. The tilde notation as used in the above expression will be

used throughout this thesis to denote paraconjugation of a polynomial matrix. A polynomial

matrix A (z) is said to be paraunitary if the following is true

A (z)A (2) = A(z)A(z) — I. (2 .22)

Some definitions, for example in [16], define a paraunitary matrix if it satisfies A(-z)A(z) =

c21, however, this will not be used in this thesis and so instead it is assumed that a matrix

is paraunitary if it satisfies equation (2.22). Note that a paraunitary polynomial matrix

represents a multi-channel all-pass filter and, accordingly, it preserves the total signal power

at every frequency [7,16]. Furthermore, note that the product of paraunitary matrices will

also be paraunitary and will satisfy

a 5) B (z) = B(z)A(z) . (2.23)

A polynomial matrix A(z) € C pxp is para-H erm itian if it is equal to its paraconjugate,

21

2.4 Convolutive Mixtures

i.e. if

A (z) = A (z) (2.24)

and so the individual coefficients associated with the polynomial elements satisfy ajk(t) =

a k j (~ t) Vt e Z and for j , k = 1 . . . ,p.

The degree of a polynomial matrix is the minimum number of delays units required to

implement the polynomial matrix. For example, the polynomial matrix

A (z) =
z - 1 0

0 z - 1

(2.25)

has degree two [16]. Note that this is not the same as the order of the polynomial matrix,

which for this example is equal to one.

Finally, the Frobenius norm of the polynomial m atrix A(z) is defined to be

l|A(2)HiT —

\
t2 P Q

T—tl l=\ j= 1

(2.26)

This can also be expressed as

IA()̂||f = trace ([a (z)A (2) J (2.27)

where []|0 defines the coefficient matrix of z° in the polynomial matrix.

2.4.3 The M ixing M odel

For the simpler instantaneously mixing model demonstrated by equation (2.1), each of the

received signals consists of a sum of differently weighted source signals, all sampled at the

same instant in time. However, for convolutively mixed signals the model required to express

the mixing is more complex as the received signals now consist of weighted and delayed

versions of the source signals. This can be due to the sources arriving at the sensors over

multiple paths and with different time delays, where the delays observed can either be due to

finite propagation speed in the medium through which the sources are traveling or possibly

22

2.4 Convolutive Mixtures

reverberations from obstacles in its path, i.e. multipath propagation.

It is assumed that a set of source signals s (t) G C9Xl where t G { 0 ,. . . , T — 1} are emitted

from q independent sources through a convolutive channel, to be received at an array of p

sensors, where it is assumed that there are at least as many sensors as sources, i.e. p > q. The

relationship between the source signals and convolved received signals, x(<) G Cpxl, where

t G { 0 ,. . . , T — 1}, can be expressed by the convolutive mixing model

N

= £ C{k)s(t - k) + n(t) (2.28)
k=0

where n (t) G Cpxl denotes an additive Gaussian noise process with variance a 2 1 and C (k) G

Cpxq for k G { 0 ,. . . , N } denote the coefficient matrices of the polynomial mixing matrix.

The polynomial mixing (or channel) matrix for the model can also be denoted as

N

C(z) =]T C (*)*~ * , (2.29)
k—0

where the order of this matrix will be N. The mixing model of equation (2.28) can therefore

also be written in the form

x(^) = C (^)s(2) + n(^), (2.30)

OC
where x(z), s(^) and n (z) each represent algebraic power series of the form x.(z) =

T— — OO
of the received signals, the source signals and the noise respectively. This is the more realistic

of the two mixing scenarios and arises in many real-world situations. For example, convolu-

tively mixed signals will be observed in a teleconferencing environment, where audio signals

are produced in a reverberant room. They are also observed in a digital communication envi

ronment, where there are multiple transmit antennas operating at the same radio frequency

and the transm itted signals are received at multiple receive antennas.

Note that if the number of sources in equation (2.28) exceeds the number of sensors and so

p < q, then the problem is said to under-determined and linear methods of source separation

will generally not be able to recover the sources, even if there is perfect knowledge of the

mixing matrix. For this reason, this case is not considered in this thesis.

23

2.4 Convolutive Mixtures

2.4.4 Convolutive Source Separation

Deconvolution is the problem of ascertaining the source signals with full knowledge of the

received signals and the linear time-invariant (LTI) system, i.e. the polynomial channel

matrix. Blind deconvolution, or blind equalisation as it is also known, is the problem of

finding the source signals without any specific prior knowledge of the source signals or the

mixing matrix for the system.

The ability to deconvolve the received signals of equation (2.28) to obtain estimates of

the source signals has many applications. Over the last decade, BSS of convolutive mixtures

has been studied extensively, with many of the existing methods for solving the problem

simply derived as extensions of existing algorithms designed for the instantaneous situation.

The collection of methods for unmixing the convolved signals can be divided into two groups;

those that operate in the frequency domain and those that are used in the time domain.

T im e D o m a in A p p roach

Most time domain convolutive BSS algorithms do not operate using a two-stage method using

SOS and then HOS, as implemented with most instantaneous algorithms. Instead, popular

methods are gradient descent [43] and neural networks [44]. Methods based on cost functions

are frequently used, such as, for example, the stochastic gradient optimisation technique,

which employs the use of SOS and HOS simultaneously [45]. Other existing methods for

BSS of convolved signals include Bussgang, least squares lattice prediction and linear blind

deconvolution filters [3,25].

Alternatively, other algorithms operating in the time domain, use SOS to strongly decor

relate the signals and then exploit HOS to identify and apply the hidden paraunitary matrix

required to complete the source separation [8,22]. Decorrelation, using either the SVD or

EVD, has been shown to be a useful preprocessing step for instantaneous blind source sep

aration. However, with convolutively mixed signals, they are not only correlated with each

other at the same time instant, but possibly over a range of time delays as well. Instead a

polynomial matrix is required to transform the received signals and impose strong decorre

lation. The EVD or SVD of a polynomial space-time covariance matrix is required to obtain

24

2.4 Convolutive Mixtures

this transformation matrix, which is capable of enforcing strong decorrelation upon the sig

nals. This decomposition cannot be formulated using the conventional scalar matrix EVD or

SVD discussed in Section 2.3, instead a polynomial m atrix decomposition method is required.

Subsequently, to complete the solution, some HOS cost function, typically based 011 fourth

order statistics, is optimised. Methods for completing the second step are beyond the scope

of this thesis, but a detailed review can be found in [45,46].

F req u en cy D o m a in A p p roach

One approach to frequency domain processing is to use the discrete Fourier transform (DFT)

to split the convolutively mixed data into narrower frequency bands. For each frequency

u = 27r / , the convolutive mixing process demonstrated in equation (2.28) may be expressed

in the form

X(w) - C(u;)S(a;) + N(w) (2.31)

where C(u;) G Cpxq and has complex scalar entries, X(cj) G Cpxl, N(u;) G Cpxl and S(u;) G

C9Xl. It can be demonstrated that each Fourier component of the received data is a complex

scalar mixture of the corresponding Fourier components of the source signals [3,8,46,47].

Consequently, the broadband problem has been reduced to a series of narrowband problems,

where an instantaneous BSS method can then be employed.

This method is particulary useful if the time domain filters are long, i.e. the order of the

polynomial channel m atrix in equation (2.30) is large, as is often observed in acoustic problems

[45]. However, this method does have its problems. Firstly, the problem of permutation that

was observed with the instantaneous methods, will exist within the individual solutions for

each frequency band and these permutations, typically, will not be the same in each band.

Consequently, when the signals are converted back to the time domain, contributions from

different sources can then be remixed into a single channel. There are methods for solving

this problem, however they require further assumptions to be placed on either the signals or

the mixing environment. Similarly, the scale problem associated with the instantaneous BSS

techniques will again be present within each of the frequency band solutions, although this

problem is more easily solved by normalisation. There are advantages and disadvantages of

25

2.4 Convolutive Mixtures

using both time and frequency domain approaches, which are detailed extensively in [45].

A set of convolutively mixed signals could be strongly decorrelated by reducing the prob

lem to narrowband form as demonstrated by equation (2.31) and then the SVD of each

narrowband problem could be calculated. However, this technique will ignore any correla

tions that exist between different frequency bands. Furthermore, the SVD in each frequency

band will order the output channels in terms of decreasing power, irrespective of the ordering

of neighboring channels [7] and this can lead to incoherence between the different narrow

band problems. However, the method has had success in the context of space-time adaptive

processing for phased array radar [48].

A p p lic a tio n to M IM O C o m m u n ica tio n s

In communication applications, the system described by equation (2.28) is referred to as

a Multi-Input M ulti-Output (MIMO) system. In this situation, data is transmitted from

multiple transmit antennas, which for this example is equal to q. This data then passes

through the propagation channel, which in a realistic scenario will take multiple paths and

different time delays, before being received by multiple receive antennas, whose number is

represented by p. These m ultipath systems arise due to scattering, reflection, refraction or

diffraction of radiated energy off any objects that lie in the environment [2,49]. The use

of this system offers the advantage of improved communication performance, by making use

of the multiple transm itters and receivers to provide array, diversity and/or multiplexing

gain(s) [2].

Equalisation is the process of recovering a signal that has been corrupted by a multipath

environment from a single received signal. Multichannel equalisation is the same process,

however, there are now multiple mixed signals to be equalised. The problem is termed blind,

if the user only has access to the received (convolved) signals. The term blind is neglected,

if the user also has access to the channel m atrix for the system.

In this scenario, the polynomial channel matrix for the system is typically known as it has

been previously been estimated. The problem requires that all channels and cross-channels in

a problem are equalised to obtain an estimate of the transm itted signals. This application is

26

2.5 Existing Polynomial Matrix Decompositions

discussed extensively in Chapter 8 , where the polynomial matrix decomposition techniques,

which are introduced in this thesis, have been applied to simplify the problem prior to the

equalisation step. By using these decompositions there is no longer any need for the cross

channels to be equalised, leaving only a set of single channel equalisation problems to be

solved.

2.5 Existing Polynomial M atrix Decom positions

Methods do exist for calculating decompositions or factorisations of polynomial matrices. For

example, these methods include the Smith-McMillan decomposition [16,19] and a method

developed by Vaidyanthan for factorising a paraunitary polynomial m atrix into a series of

elementary rotations and delays [16]. However, little research has been done prior to the

Sequential Best Rotation algorithm (SBR2) [7], surrounding the EVD generalisation for

polynomial matrices in the time domain. In [20] Lambert reports extensive work on the

separation of broadband signals and claims that he has developed an EVD routine suitable

for polynomial matrices. He represents convolved signals in terms of DFT filter matrices and

polynomial matrices. However, Lambert’s PEVD method entails the inversion of FIR filters

in the frequency domain and is therefore very different from the SBR2 algorithm. To the best

of our knowledge, there are currently no other existing methods for directly calculating the

QRD of a polynomial matrix. The existing techniques for achieving some form of polynomial

matrix decomposition are now discussed.

2.5.1 FIR Lossless System D ecom position

In [16] Vaidyanathan introduces a method for factorising any finite degree paraunitary poly

nomial matrix, such as the matrix describing a lossless FIR system, into a series of paraunitary

matrices comprised of simple rotation and delay matrices. The process operates as a series

of steps, where at each step a Givens rotation [6] and an elementary delay matrix can be

factored out of the polynomial matrix representing the system i l N (z) of degree N, resulting

in a paraunitary m atrix where the degree of the system has been reduced by unity. The

27

2.5 Existing Polynomial M atrix Decompositions

factorisation relies on the fact that the determinant of a paraunitary m atrix is equal to a

single delay, i.e. is of the form az~k where a / 0 and k > 0 is an integer. At each stage

of the process, the system is reduced by factoring out a Givens rotation and an elementary

delay matrix, which are both paraunitary.

As a simple example, suppose the polynomial paraunitary matrix H ^ z) describes a

2 x 2 real coefficient FIR lossless system and has degree N. The first step of Vaidyanathan’s

factorisation routine is to formulate a Givens rotation matrix and a delay matrix A (z),

which is a matrix of the form

A(*)
1 0

0 z - 1

(2.32)

and when applied to another polynomial m atrix it will impose a unit delay upon one channel,

such that

H W(z) =
c o s (6 n) s i n (0 N) 1 0

H *_!(*)
—sm (0;v) c o s (6 n) 0 2 —1

(2.33)

=Qn = A (z)

where H Ar_ 1(2) is also an FIR lossless matrix, but the degree of the determinant of this

transformed m atrix will have been reduced by unity and so the degree of the system has

been reduced. Following this step it is said that a degree one block has been extracted. This

process is repeated until a degree zero block is found. Therefore, the overall factorisation of

Hjv(*) can be expressed as

S n (z) = Q n A { z) ■ • • A (2)Q 1A(2)Q 0^ (2.34)

where ^ is a diagonal matrix with unimodular elements and must be included to allow for

the ambiguity in the problem due to a possible permutation and multiplication by ± 1. The

overall process to decompose the 2 x 2 real coefficient FIR lossless system is illustrated in

Figure 2.1, where a is again required to account for this ambiguity. Note that the overall

transformation will be paraunitary by construction, as the individual matrices Qm and A (z)

are parauntiary, for m — 1, . . . , N, and so their product will also be paraunitary. After each

stage, the determinant of the reduced system will be reduced by unity.

28

2.5 Existing Polynomial Matrix Decompositions

• • •
±g

a=#l'X), cm=cos0m, sm=sin0m, 6m real, m-0,l,...,N

Figure 2.1: The factorisation of a 2 x 2 degree N paraunitary polynomial matrix into
a series of delay and rotation blocks, according to Vaidyanthan’s FIR lossless system
decomposition method [16].

Vaidyanthan then generalises this statement and explains that any paraunitary polyno

mial matrix of any dimension, for example ~Hln(z) £ Rpxp, can be decomposed as shown

by equation (2.34) provided it is of fixed degree. Now Q m e Rpxp for m = 0 , . . . , TV and

A (z) € Rpxp is the identity matrix with the exception of the pth diagonal element, which will

be 2_1. The process can also be easily extended to deal with a paraunitary matrix, whose

polynomial coefficients are complex, by using complex Givens rotations.

The main problem with this decomposition technique is that it only ever implements a

unit delay in one step, which is not practical when the paraunitary matrix to be calculated

is quite simple, yet of a high order. For example, if the degree of the paraunitary polynomial

matrix to be factorised is 5, but it has only two non-zero coefficient matrices (Hs(0) and

Hs(5)) then this decomposition of the paraunitary matrix would require five stages. This is

discussed further in [8]. Note that this would not be a problem with the SBR2 algorithm

discussed in Chapter 3.

In [50] Regalia and Huang also derive a method for calculating a two-channel lossless FIR

filter for optimal data compression using the fixed degree parameterisation scheme proposed

by Vaidyanathan, which is discussed in Section 2.5.1. This technique can be used to determine

the optimal paraunitary matrix required for computing the EVD of a 2 x 2 paraunitary

polynomial matrix. The applications of this decomposition lie in subband coding and wavelet

signal analysis and are briefly discussed towards the end of the thesis in the Section 8.5.4.

29

2.5 Existing Polynomial M atrix Decompositions

2.5.2 Sm ith D ecom position

Given a polynomial matrix A(z) G C pxq, it is possible to obtain simpler forms of this matrix,

such as diagonal, upper or lower triangular polynomial matrix, by performing elementary

operations upon this polynomial matrix [16,51]. The elementary operations are similar to

those applicable to scalar matrices and come in both row and column forms [6]. For example,

the elementary row operations are defined as

1. Interchange two rows of the polynomial matrix

2 . Scale one row of the polynomial matrix by a nonzero constant c

3. Add a polynomial multiple of one row to another.

The column operations are defined similarly and the matrices capable of implementing the

three row operations are referred to as elementary matrices. Note that all three types of

elementary matrices are known as unimodular matrices. A unimodular polynomial matrix

is a square polynomial matrix with a constant nonzero determinant. It is easily deduced

from this property that a polynomial matrix is only unimodular if and only if its inverse is a

polynomial matrix, which will also be unimodular [16]. Note, however, that the elementary

matrices are not generally paraunitary so the Smith decomposition is quite distinct from a

polynomial matrix EVD or SVD.

By repeated application of a finite number of elementary operations (pre-multiplication to

make row operations and post-multiplication to perform column operations) the polynomial

matrix A (z) can be reduced to a diagonal polynomial m atrix T(z) G C pxq as follows

W (z)A (z)V (z) = T(z) (2.35)

where W (z) G C pxp and V(z) G C qxq both denote unimodular polynomial matrices. This is

referred to as the Smith form decomposition. Note that the overall transformation matrix is

unimodular as it consists of a series of unimodular matrices. In fact, one result presented in

[16], is that any unimodular matrix can be formulated as the product of elementary matrices.

Finally, the matrix A(z) does not need to be square, although both the unimodular matrices

30

2.5 Existing Polynomial Matrix Decompositions

required to post- and pre-multiply the matrix to transform it to a diagonal matrix will be

square.

The matrix £ (2) is called the Smith form of A(z) and is unique. Furthermore the diagonal

elements of this matrix are calculated as follows

Ci-(2) = (2-36)

where 7 .(z) is the greatest common divisor or all the i x i minors of the polynomial matrix

A (2) and 1_q{z) = 1.

The decomposition can be used to formulate an irreducible Matrix Fraction Description

(MFD) of a polynomial transfer function, which can then be used for calculating the poles

and zeros of this polynomial matrix [19]. This is of use in communications, where the Smith

form of a transfer function of a MIMO system can be calculated and is used to understand

the characteristics of the multivariable system.

2.5.3 Sm ith-M cM illan Form

Suppose H (2) G C pxq is the transfer function of a MIMO system with polynomial elements

h.jk(z) — ajk(z) /d(z) where j = 1, . . . ,p, k = 1, . . . , q and d(z) is the least common multiple

of the individual rational transfer functions. Then if the polynomial m atrix A (2) has the

Smith decomposition given by equation (2.35), it follows that

W (2)H (2)V (2) = A (2) (2.37)

and this is called the Smith-McMillan decomposition of the polynomial m atrix H (2).

2.5.4 Lam bert’s FIR M atrix Eigenroutine

In [20] Lambert introduces a numerical routine for calculating the eigenvalues and eigenvec

tors of an FIR polynomial matrix by generalising conventional linear algebra and control

techniques from the complex number field to the field of rational functions. The routine

31

2.6 Conclusions

is introduced to operate on a (2 x 2) polynomial matrix, but could easily be extended to

operate on larger matrices, by applying the routine to a series of (2 x 2) sub-matrices of the

matrix to obtain a diagonal matrix. The routine operates by transforming the elements of a

polynomial matrix to the frequency domain using the DFT. Householder reflections are then

used to obtain a upper triangular form of the matrix, where the eigenvalues of the matrix

will be the diagonal elements of this matrix.

Lambert has demonstrated in his thesis [20] that his FIR matrix eigenroutine can be

used as a whitening or preprocessing step to some least squares adaptation methods where

multipath propagation of the signals has been observed. This whitening step will typically

result in improved convergence of these algorithms. He states that it is always best to

prewhiten the data, however, this is not always possible as it will require off-line computation

[52,53]. Note that since Lambert’s PEVD routine entails the inversion of FIR filters in the

frequency domain, it is very different from the SBR2 algorithm.

2.6 Conclusions

This chapter has given a brief overview of the background to polynomial matrix decompo

sitions, in particular explaining how polynomial matrices arise in signal processing when a

set of signals are received at an array of sensors over multiple paths and with different time

delays. This is referred to as convolutive mixing and the mixing matrix required to express

this takes the form of a polynomial matrix, where each element is a finite impulse response

(FIR) filter. Existing techniques and numerical procedures for obtaining polynomial matrix

decompositions have been discussed. Note that there are no existing techniques for achieving

the polynomial matrix decompositions proposed in this thesis. The next chapter discusses the

SBR2 algorithm, whose methodology forms the basis of the research presented in this thesis.

It also demonstrates how this algorithm can be used to achieve strong decorrelation of a

set of convolutively mixed signals, demonstrating that the applications of polynomial matrix

decompositions are often simple extensions of scalar m atrix decompositions from narrowband

to broadband signal processing.

32

2.6 Conclusions

This chapter has also given a detailed overview of some scalar matrix decompositions

(the EVD, SVD and QRD) and discussed their potential applications. This thesis is con

cerned with extending these matrix decompositions to polynomial matrices. Although the

research has been motivated by the potential applications of polynomial matrix decompo

sitions to signal processing, the overall objective is to demonstrate that other polynomial

matrix decompositions can be formulated using the techniques proposed in developing the

SBR2 algorithm.

33

Chapter 3

SBR2: A Polynomial Eigenvalue
Decom position Technique

3.1 Introduction

This chapter discusses an algorithm known as SBR2 for computing the Eigenvalue Decompo

sition (EVD) of a para-Hermitian polynomial matrix, [7]. The SBR2 algorithm was initially

developed as the preliminary (second order) stage of a multistage blind signal separation

(BSS) algorithm suitable for convolutive mixtures. The subsequent (higher order) stage

takes the form of a sequential best rotation (SBR) algorithm, which exploits only fourth

order statistics and is therefore referred to as SBR4 [8,54]. Just as many instantaneous BSS

algorithms use the EVD or SVD as a second order preprocessing step, the SBR2 algorithm

can be applied to broadband mixtures, where polynomial matrices are now observed, before

applying a convolutive BSS algorithm requiring HOS. Note that the polynomial matrix EVD

(PEVD) algorithm can also be used in its own right as a time-domain approach for strongly

decorrelating a set of convolutively mixed signals and for identifying the different signal and

noise subspaces, [21].

The PEVD algorithm is referred to as SBR2 since it adopts an SBR strategy, but only

involves the manipulation of second order statistics. It operates by applying a series of

paraunitary similarity1 transformation matrices to a para-Hermitian polynomial m atrix to

transform it to a diagonal polynomial matrix and can therefore be thought of as an extension

^ o te that a paraunitary similarity transformation matrix represents the polynomial equivalent to
the unitary similarity transformations discussed in [6].

34

3.2 The Eigenvalue Decomposition of a Polynomial Matrix

of the conventional Jacobi algorithm suitable for scalar Hermitian matrices [6]. In fact, if

the algorithm is applied to a scalar Hermitian matrix, it simply reduces to diagonalising the

matrix via Jacobi’s algorithm. Although polynomial matrices and the idea of polynomial

matrix decompositions axe commonly established ideas in signal processing, as discussed

in Chapter 2 and [16], the only previous attention to formulating a routine suitable for

calculating an EVD or SVD of a polynomial matrix is that of Lambert [20,52,53]. However,

the SBR2 algorithm operates entirely in the time-domain and is therefore very different from

Lam bert’s EVD routine, which involves the approximate inversion of filters in the frequency

domain.

This chapter firstly describes how the SBR2 algorithm operates. Convergence of the al

gorithm is proven and its application to strong decorrelation and subspace decomposition is

highlighted by means of a simple numerical example. Other applications of the algorithm

include broadband adaptive beamforming and the design of filterbanks for optimal data com

paction, [10]. The SBR2 algorithm has since been applied to other areas of signal processing,

such as MIMO communications where it can be used to decouple a MIMO communication

system into a set of independent subchannels, [13,14,55]. This along with other applications

of the decomposition are discussed in the penultimate chapter of this thesis.

3.2 The Eigenvalue Decom position of a Polynomial

M atrix

The eigenvalue decomposition of a para-Hermitian polynomial matrix, R(z) £ C pxp, is de

fined here as

S W = H (2) D (® (3.1)

where the polynomial matrix H(z) £ C pxp is paraunitary and the resulting polynomial

matrix D(z) £ C pxp is diagonal. Note that the matrix to be diagonalised R(z) must be

para-Hermitian, which means all coefficients of the matrix must satisfy rj*.(r) = r ^ (—r) for

j , k — 1 , . . . ,p and for all values of the lag parameter r £ Z.

35

3.3 The Sequential Best Rotation Algorithm

The SBR2 algorithm can be used to calculate the paraunitary matrix H(z) suitable for

transforming the para-Hermitian input matrix R(,z), into the diagonal matrix D(z) according

to equation (3.1). As the matrix H(,z) is paraunitary, the transformation will be energy

preserving, which means the Frobenius norm of the two matrices R(z) and D(z) are equal,

i.e.

IIBMIIF = l|D(z)||f . (3.2)

3.3 The Sequential Best R otation Algorithm

Given the para-Hermitian polynomial matrix R(^) G C pxp, the objective of the SBR2 algo

rithm is to compute the paraunitary polynomial matrix H (2) G C pxp such that

H (2)R (z)H (2) = D (*), (3.3)

where the polynomial matrix D(z) G C pxp is diagonal. The algorithm operates as an iterative

process, where at each iteration an elementary paraunitary transformation is applied to both

sides of the polynomial matrix R(^) designed to drive the two off-diagonal coefficients with

the largest magnitude to zero. The paraunitary polynomial transformation matrix H(z) is

therefore formulated as a series of elementary paraunitary matrices, i.e.

H (2) = G j (2) . . . G 1(z), (3.4)

where i denotes the unspecified number of iterations required to diagonalise the matrix and

G j(z) is the elementary paraunitary matrix calculated at iteration i. Each of these ma

trices consists of a complex elementary scalar rotation matrix, Q ^ ’k\d,(f)), preceded by an

elementary delay matrix, B (k,t\ z) and is formulated as

G i(z) = Q W (e , m (k't)(z) (3.5)

where at each iteration the parameters j , k , t , 6 and 4> are appropriately chosen depending on

36

3.3 The Sequential Best Rotation Algorithm

the coefficients within the matrix R(^) that the elementary paraunitary matrix is attempting

to annihilate. The matrix from equation (3.4) will clearly be paraunitary as each term in

equation (3.5) is paraunitary. The two types of elementary paraunitary matrices will now be

discussed.

3.3.1 An Elem entary R otation M atrix

The elementary scalar rotation matrix Q^ ' k\d,<f>) takes the form of a p x p identity matrix

with the exception of the four elements positioned at the intersection of rows j and k with

columns j and k. These elements are given by the elements of the 2 x 2 submatrix Q ’ (6, 4>),

which is formulated as
c se"

Q ii,k) («,*) =
-se c

(3.6)

where c and s define respectively the cosine and sine of the angle 6 in radians. The angles

6 and 4> are chosen, so that when the matrix Q i s applied to a polynomial matrix

A(z) as follows

A'OO = Q0’*>(M)A(*) (3.7)

one coefficient from the polynomial element o.jk(z) is rotated to equal zero. This will of course

affect all coefficients associated with polynomial elements in the j th and kth rows of the matrix

to which it is applied. Similarly, post-multiplication of A(z) by the para-conjugate of Q ^)

will similarly rotate all coefficients in the j th and k th columns of the polynomial matrix. Again

appropriate choices of the rotation angles 0 and (f) can result in driving a single coefficient in

the (k , j) th polynomial element of the matrix to zero. If the matrix A(z) is para-Hermitian,

then this process can be implemented to drive two coefficients of an off-diagonal polynomial

to zero, but will require two rotations, one from the left and one from the right, using the

same angles.

37

3.3 The Sequential Best Rotation Algorithm

3.3.2 An Elem entary Delay M atrix

The second component of the elementary paraunitary transformation matrix is an elementary

delay matrix, B (k,t\ z) 6 C pxp. This matrix takes the form of a p x p identity matrix with

which is 2 i.e.

Ifc-i 0 0

0 z~l 0 (3.8)

0 0 Ip—k

B {k'l){z) =

The objective of this matrix is to impose a delay of size t to all elements in the kth row of

the polynomial matrix to which it is applied. All other rows of the matrix are unaffected by

this transformation.

The SBR2 algorithm can now be broken down into a three-step iterative process using

these two elementary matrices, which will now be described in detail. Note that the algorithm

is also described in detail in [7].

3.3.3 The SBR2 A lgorithm

The algorithm begins each iteration by locating the coefficient associated with an off-diagonal

polynomial element within R(.z) with the largest magnitude and so the objective is to find

the coefficient r^ (t) , where j ^ k, such that

\rjk(t)\ > |n m(r)| (3.9)

holds for all coefficients r;m(r) in R(^) where l , m = 1, . . . ,p with I ^ m and r 6 Z. This

coefficient will be referred to as the dominant coefficient and its absolute value is defined as

9 = \rjk{t)\. (3.10)

Suppose the dominant coefficient is found to be Tjk(t), i.e. the coefficient of 2 1 in the (j , k)th

polynomial element, then this coefficient will be repeated as the coefficient r^ -(—t) due to

3.3 The Sequential Best Rotation Algorithm

the structure of the para-Hermitian matrix defined in Section 2.4.2. For this reason the

search for the dominant coefficient can be restricted to only the elements above the diagonal

of R(.z) and so we require j < k and I < m in equation (3.9). If the dominant coefficient

is not unique then any of the dominant coefficients may be chosen. Note that the specific

parameters j, k and t define the position of the dominant coefficient within the polynomial

matrix and are now used to formulate the elementary paraunitary matrices required to drive

the two dominant coefficients to zero.

Having found the dominant off-diagonal coefficient and its associated indices j, k and £,

the second step of the algorithm is to apply the appropriate delay matrix to R(z) to obtain

the transformed matrix

R '(*) = B ^ t){ z) R(z) B(k,t\ z) . (3.11)

Subsequently, all coefficients in the k th row and k th column of the matrix, excluding the

diagonal coefficients, have been shifted such that the dominant coefficient pair are now the

coefficients of 2°, i.e. r'jk(0) = rjk(t) = rkj (—t)* = rj^(0)*. Note that to accommodate all of

the shifted coefficients the order of the matrix will have grown by 2 \t\.

The third and final step of each iteration of the SBR2 algorithm is to apply the appropriate

elementary rotation matrix to R /(2) to obtain

R "(z) = Q U'k)(d,(f)) R ,(z) (Q ^ k){d,(P))H. (3.12)

The rotation angles 6 and 4> required to drive the dominant coefficient to zero are chosen

such that

(3.13)
c sei(̂

g■'-I
NT

i 1
g

-S£
V

1 c —se1̂

oo

*

—se~i(̂ c

g

1 1

se~i(t> c o r& (0) _

This condition is satisfied when the angles are calculated such that

(f) = arg(r'jk (0)) (3.14)

39

3.3 The Sequential Best Rotation Algorithm

and
2 < k(0)

(3JS>

Equation (3.15) has multiple solutions for 0, any of which can be used. If the basic inverse

tangent function (arctangent) is used to calculate 6 it will produce a solution in the range

(—7r /4 , 7r /4]. However, it is preferable to use the four quadrant inverse tangent function as it

will produce a 9 e (—7r /2 , 7r / 2], which typically leads to output channels that are ordered in

terms of decreasing power.

The application of the rotation matrix, as shown in equation (3.13), will not only affect

the two dominant coefficients, but will also change all coefficients in rows and columns j and

k of R/(;j). The application of the rotation matrix will clearly not alter the order of the

matrix.

This completes the first iteration of the SBR2 algorithm, resulting in an overall transfor

mation of the form

G 1(«)E W G 1W = D 1(«), (3.16)

where G j (z) = Q U'k)(6 ,(f))B<*’*>(*) and D i{z) is the polynomial matrix resulting from the

transformation with coefficients djk{0) = dkj{0) = 0 .

Each element of the matrix R(.z) involves a number of polynomial coefficients and so in

practice it will not be possible to zero all coefficients of every off-diagonal polynomial element

and achieve exact digaonalisation. Instead the algorithm continues until all off-diagonal

coefficients of D(z) are sufficiently small and the magnitude of all off-diagonal coefficients

satisfy

\rj k(t) | < e (3.17)

for j , k — 1, . . . ,p with j / fc, t £ Z and where e > 0 is a prespecified small value. Al

though exact diagonalisation is not feasible, a good approximation can be achieved and this

is exemplified by the numerical example in Section 3.7.

The algorithm repeats this three step process iteratively, replacing R(z) with R //(^) until

the transformed polynomial matrix is sufficiently diagonal according to equation (3.17). Com

40

3.4 Convergence of the SBR2 Algorithm

pleting a number of iterations of the SBR2 algorithm, say N, will result in a transformation

of the form

H Af(2)R (Z)H w(2) = D N(2), (3.18)

where Hjv(z) is the overall transformation matrix after N iterations and consists of N el

ementary paraunitary matrices of the form shown in equation (3.5). The matrix Dtv(2) is

the output of the algorithm after N iterations and converges to the diagonal matrix D(z)

as the number of iterations increases. Note also that the m atrix Hjv(z) is paraunitary as it

consists of the product of N paraunitary matrices. Furthermore the transformation is norm

preserving and so

Hn (z)R(2)Hw(2) = ||R (2)||f . (3.19)
F

3.4 Convergence of the SBR2 Algorithm

To discuss convergence of the algorithm, four measures are introduced; firstly Ni the squared

Frobenius norm of the diagonal elements on the coefficient m atrix of z°, i.e. R(0), N 2 the

squared Frobenius norm of the coefficient matrix of z°, N 3 the squared Frobenius norm of

the off-diagonal coefficients of z° and finally N 4 the squared Frobenius norm for the matrix

R (z) [7]. These measures can be calculated as

^ i = I > « (°) l 2 . (3.20)
j = 1

n 2 = tt M 0) |2 , (3.21)
j = 1 k - 1

n 3 = tt kjfc(0) |2 (3.22)
j = 1 k - 1

and

^ = E E E M t)I2 ' (3-23)
r j - 1 k = 1

Note that the quantity Ni is not affected by applying the elementary delay matrices and

41

3.5 Implementation and Computational Complexity of the SBR2 Algorithm

remains constant. However the quantities N 2 and N 3 will be affected whenever the parameter

t in equation (3.11) does not equal zero. Following the rotation step at each iteration the

quantity JV3 will decrease by the magnitude squared of the two dominant coefficients. Further

more the relationship between the first three quantities specified by equations (3.20)-(3.22)

can be expressed as

N 2 = N l + N 3, (3.24)

which will remain constant through the rotation step and so the quantity N\ will increase

relating to the decrease in N 3.

Therefore, at each iteration N\ will increase by twice the magnitude squared of the

dominant coefficient, i.e. the quantity 2g2, and so will increase monotonically over the series

of iterations. N 4 will not be affected by any application of a delay matrix or rotation matrix,

as the transformation is norm preserving, and so will remain constant over all iterations of

the algorithm. Since N\ increases monotonically and is bounded above by N 4 the total energy

in the matrix, which is constant, it must have a supremum S. As a result, there must be an

iteration L for which \S — N\ \ < e for any e > 0. Then at any subsequent stage the same

quantity must satisfy 2g2 < |S — N\\ < e and so there must be an iteration by which the

magnitude squared of the dominant coefficient at that iteration is bounded by e. Hence the

stopping condition specified by equation (3.17) can be guaranteed and convergence of the

SBR2 algorithm confirmed.

3.5 Implementation and Computational Complex

ity of the SBR2 Algorithm

The algorithm is designed to stop when either a set number of iterations is completed or

when the stopping criterion specified by equation (3.17) is met. Currently, this condition is

specified in terms of the smallness of the magnitude of the maximum off-diagonal coefficient,

g, in relation to the quantity \ J N \ / p , which represents a lower bound for the maximum

autocorrelation value at lag zero. The algorithm is therefore set to stop when the following

42

3.6 Applications of the SBR2 Algorithm

condition is satisfied

g < € = S y /W J i, (3.25)

where S > 0 is a prespecified small value and p denotes the number of number of rows in the

para-Hermitian input matrix R(z), which for application purposes is equal to the number of

received signals.

To reduce the computational time of SBR2, the paraunitary matrix H (2) is not stored

or calculated within the algorithm. Instead the series of parameters j, k , t, 6 and 4> required

for computing H(z) are stored and then the matrix can be computed, if required, once all

iterations of the algorithm have been completed. Also the rotation or delay matrices are

not applied to the entire polynomial matrix when implementing the algorithm as this would

increase the computational complexity of the algorithm unnecessarily. Only two rows and

columns are affected by the rotation and one row and column by the application of the

delay matrix and so only these rows and columns are changed. The number of computations

calculated at each iteration can be further reduced by exploiting the para-conjugate symmetry

of the para-Hermitian matrix R(.z).

The computational complexity of the SBR2 algorithm is discussed in Appendix C. It is

very much dependent upon the size and order of the updated polynomial matrix at iteration i,

Dj(z). However, it is generally unnecessarily high due to the algorithm storing all coefficients

of the polynomial matrix, even if coefficients associated with the outer time lags of the matrix

are very small or equal to zero. This problem is highlighted in example 3.7 and Chapter 4

discusses techniques of alleviating this problem.

3.6 Applications of the SBR2 Algorithm

3.6.1 Strong Decorrelation

Chapter 2 discussed the conventional EVD for scalar matrices as a technique for decorrelating

a set of instantaneously mixed signals, where there are no time delays in the propagation of

the signals from the sources to the sensors. In this case the signals received at the sensors

43

3.6 Applications of the SBR2 Algorithm

can be decorrelated by applying a unitary matrix that modifies the signals in both phase and

amplitude and this m atrix can be obtained by calculating the EVD of the sample covariance

matrix of the received signals.

However, this method cannot be applied to a set of convolutively mixed signals, which will

not only be correlated with each other at the same time instant, but possibly over a range of

time delays as well. Instead a polynomial matrix of chosen filters will be required to transform

the received signals and impose strong decorrelation, i.e. decorrelation of the signals at the

same time instant and over any relative time delay. The matrix required to impose strong

decorrelation must preserve the total energy in the signals through the transformation and

can be found by calculating the EVD of the polynomial space-time covariance matrix for the

convolutively mixed signals using the SBR2 algorithm.

Firstly the convolutive mixing model is defined, before discussing in detail how strong

decorrelation of a set of convolutively mixed signals is achieved. It is assumed that a set of

source signals s (t) £ C9Xl for t £ {0,1, . . . , T — 1} are emitted from q independent sources

through a convolutive channel, to be received at an array of p sensors, where it is assumed

that p > q. The mixing model for the set of convolutively mixed signals, x(£) £ Cp where

t € {0 ,1 ,... , T — 1} can be expressed as

N

= E C{k)s(t - k) + n(t) (3.26)
k—0

N

where C (z) = C (k)z~k denotes the polynomial mixing matrix with coefficient matrices
k=o

C(k) £ Cpxq for k = { 0 ,1 ,. . . , N } and n (t) £ Cp denotes an additive zero-mean noise process

with variance <x2I. In the above expression N defines the order of the mixing matrix. This

mixing model can alternatively be written as

x(z) - C(z)s(z) + n(z), (3.27)

44

3.6 Applications of the SBR2 Algorithm

where x(z), s(z) and 11(2) define algebraic power series of the form

OO

x(z) = £ x(t)*-' (3.28)
t= — OO

of the received signals, the source signals and the additive noise terms respectively.

Assuming that the received signals generated by mixing model (3.26) have zero mean

then the space-time covariance matrix for the set of signals is defined as

OO
E m W = £ R x* (r)z"T (3.29)

T= — OO

where R xx(r) = E [x(t)xH (t — r)j for r E Z. However, in practice the estimated space-time

covariance matrix for the signals is calculated as

w
&,*(*) = £ (3-30)

T = - W

where

f U T) = E * ^ - r) (3.31)
t= 0

and W defines the correlation lag window parameter. This parameter can be chosen exper

imentally or, if appropriate knowledge of the mixing system is available, an informed choice

can be made. The space-time covariance matrix R xx(z) is unlikely to be diagonal as the

received signals will generally be correlated with one another. In calculating this matrix, the

following three assumptions are made

1. T » W,

2. x(t) = 0 outside of the sample interval [0 ,1 ,.. . , T — 1] and

3. R (r) = 0 for |t | > W.

The order of this estimated space-time covariance matrix is 2W. It is easily demonstrated

that this matrix is para-Hermitian as the auto and cross-correlation sequences of the received

45

3.6 Applications of the SBR2 Algorithm

signals, for example Xi(t) and X j (t) , will satisfy

^ { t) = r*XjX. (- T) (3.32)

for r G Z and so R(z) = £ (2) enabling the matrix to be a suitable input to the SBR2 algo

rithm. The SBR2 algorithm when applied to a space-time covariance matrix can be used to

obtain a polynomial EVD (PEVD) of R(z) and therefore to find the polynomial paraunitary

matrix required to enforce strong decorrelation upon the set of received signals. Applying

SBR2 to the estimated space-time covariance matrix, R xx(z), produces the decomposition

H (z)R CI(z)fi(«) = D (Z) (3.33)

where H(z) is the paraunitary transformation matrix and D(z) is approximately diagonal.

The transformed signals can then be calculated as

y(z) = H (z)x(z), (3.34)

which, to a good approximation, are strongly decorrelated. The space-time covariance matrix

for the signals can be estimated by

R yy(z) = = D (z), (3.35)

which is an approximately diagonal polynomial matrix. The process of strongly decorrelating

a set of convolutively mixed signals by the SBR2 algorithm is demonstrated by a simple

numerical example in Section 3.7.

One clear advantage of diagonalising the polynomial m atrix by means of paraunitary

transformations, such as that obtained by the SBR2 algorithm, is that the transformation is
2 2

norm preserving, i.e. ||D (z)||F = R xx(z) , and so no information is lost over the series of
F

iterations of the algorithm. Also the transformation will not amplify any additive noise terms

as the variance of the noise following the paraunitary transformation will remain constant.

46

3.6 Applications of the SBR2 Algorithm

3.6.2 Properties of the SBR2 A lgorithm

This section aims to briefly discuss the other properties or applications of the SBR2 algorithm.

2. Two signals are said to be spectrally majorised if the expected power in one signal is

greater that the expected power of the other signal at every frequency. After applying

the SBR2 algorithm to the space-time covariance matrix for a set of convolved signals,

the output signals are ordered in decreasing magnitude of total energy such that

In addition, the SBR2 algorithm has a tendency to produce spectrally majorised out

puts, although this is not always a guaranteed property of the decomposition. This

property will be demonstrated by the example in Section 3.7.

3. The signal and noise subspaces can be identified using the SBR2 algorithm. This is

performed by inspection of the power spectral density (PSD) of the decorrelated signals,

which can also be used for identifying if the signals are spectrally majorised. Section

3.6.3 will now briefly discuss how the PSD of the received and decorrelated signal can

be calculated.

3.6.3 Power Spectrum of the Signals

The power spectrum of a signal describes the distribution of power with frequency, demon

strating which frequencies are present and how much power each frequency possesses. For a

wide-sense stationary (WSS) process it is easily calculated, according to the Wiener-Khinchin

Theorem, by taking the Fourier Transform of the autocorrelation sequence, rxx(n), for the

signal as follows

1. As discussed previously the paraunitary transformation carried out by the SBR2 algo-
2 2rithm is norm preserving and so H (2)R(z)H(2) = ||D(2)||F.
F

dn(O) > ^22(0) > . . . > dpp(0). (3.36)

OO
(3.37)

n——oc

47

3.7 Numerical Example

where uj represents normalised angular frequency [56]. The estimated autocorrelation se

quences for the set of received signals correspond to the diagonal elements of the space-time

covariance matrix R xx(z). Alternatively, the expected sequences correspond to the diagonal

elements of the matrix

Exx(2) = C (2)R s>(Z)C (2) + <r2Ip (3.38)

where a 2 defines the variance of the noise and R ss(z) defines the expected polynomial space

time covariance matrix of the source signals, which as the source signals are assumed to

be statistically independent will be diagonal. Furthermore, if the source signals have unit

variance, such as those used in example 3.7, R ss(z) = l q.

The estimated autocorrelation sequences of the output signals are the diagonal elements

of the diagonalised spectral density matrix D(^) obtained by the SBR2 algorithm. Alterna

tively, the expected sequences could have been calculated, using the similarity transformation

matrix, H(^), and the mixing matrix, C (2), by computing

E y y (z) = H (2)C (z)C (z)H (z) + < T % . (3.39)

Evaluating the diagonal entries of R yy(z) will yield the expected autocovariance functions of

the decorrelated signals y (t).

The algorithm can also be used to identify the signal and noise subspaces. From inspect

ing plots of the PSD the noise signals can be identified as the channels with low spectra and

therefore positioned at the bottom of the graph. The remaining signals, each with consider

ably larger spectra, correspond to the decorrelated signals.

3.7 Numerical Example

A simple example is given to demonstrate how the SBR2 algorithm operates and briefly

illustrate a couple of applications to signal processing, specifically using the SBR2 algorithm

as a technique for enforcing strong decorrelation upon a set of convolved signals and also as

a tool for subspace decomposition. A polynomial mixing matrix C(z) G C 4x3 was generated,

48

3.7 Numerical Example

specifically designed to emulate the propagation of three signals onto four sensors. Each of

the polynomial elements of the matrix was chosen to be a fifth order FIR filter, where the

coefficients were drawn from a uniform distribution in the range [—1, 1].

Three independent BPSK source signals, each of length 1000, were then generated and

convolutively mixed according to equation (3.26), where N defines the order of the mixing

matrix and is, in this case, equal to five. The variance of the noise process was chosen to

give a signal-to-noise ratio (SNR) at the receiver of 5 dB. The space-time covariance matrix

for the system could then be calculated according to equations (3.30) and (3.31) where the

correlation window parameter was set as W — 10. As each element of the mixing matrix

C (z) is a fifth order FIR filter, the estimated auto and cross-correlation sequences for each

of the received signals will be approximately zero for all lags |r | > 5 and any deviation in

these areas will be due to sample estimation errors. For this reason the choice of our lag

window parameter W is more than sufficient, in fact W = 5 would have been adequate. A

graphical representation of the estimated polynomial space-time covariance matrix R(z) can

be seen in Figure 3.1, where stem plots are used to illustrate the series of coefficients for each

of the polynomial elements. The position of the stem plot in the figure corresponds to the

position of the polynomial element, which it represents within the matrix. In this example,

both the source signals and the polynomial elements of the mixing matrix were chosen to

be real, resulting in the space-time covariance matrix also consisting of polynomial elements

with real coefficients. The algorithm could have equally been applied to a polynomial matrix

whose coefficients are complex.

The SBR2 algorithm when applied to this matrix, took 184 iterations to converge to a

point where p, the off-diagonal coefficient with maximum magnitude in D(z), is less than

x 10-2 . This is demonstrated in Figure 3.2, where the magnitude of the dominant

coefficient at each iteration is plotted over the series of iterations.

The order of the matrices D (z) and H(z) following all 182 iterations of the algorithm are

3486 and 1733 respectively. The input matrix R(z) has a squared Frobenius norm of 478.19,

with 173.38 positioned in the diagonal elements. This accounts for 36.18% of the total squared

Frobenius norm of the matrix. However, following the application of the SBR2 algorithm,

49

3.7 Numerical Example

the squared Frobenius norm of the off-diagonal elements decreased to 1.32, amounting to

0.28% of the total squared Frobenius norm of the matrix. The diagonal matrix D(z) and

the paraunitary transformation matrix H(^) can be seen in Figures 3.3 and 3.4 respectively.

Upon inspection of the plots of these matrices the order of these matrices can be seen to

be unnecessarily large, with the majority of the coefficients positioned in the outer lags

amounting to a small proportion of the Frobenius norm of the polynomial matrix. This will

be discussed further in Section 3.9. In fact the outer 3400 coefficient matrices of D (2) account

for only 0.0065% of the total squared Frobenius norm of the matrix.

Figures 3.5 and 3.6 demonstrate the power spectral density (PSD) of the mixed signals and

the decorrelated signals, following the application of the paraunitary transformation matrix

obtained from the SBR2 algorithm, respectively. The PSDs were calculated according to

Section 3.6.3. From Figure 3.6 it can be seen that approximate spectral majorisation has

been achieved and the noise term can be identified as the signal with the lowest spectra, i.e.

output four. The signal and noise subspaces have thus been identified.

A parunitary transformation, such as that carried out by the SBR2 algorithm, is norm

preserving and therefore the total energy of all signals throughout the transformation remains

constant. Furthermore, the transformation preserves the total energy at each frequency,

[16,57,58], and this can be seen in Figure 3.7, where the total PSD in all signals is plotted

before and after applying the SBR2 algorithm. Note that the transformation can redistribute

the power between channels, but it cannot allow the total power to increase or decrease.

50

3.7 Numerical Example

-o
3

'

9Q 9 9 99 ^

aA° W
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0

I) '

jomoeftof ?9Wrnoffo eoooaQ..p 11 swo0000011m s
-10 -5 0 5 10 -10 0 5 10 -10 -5 0 3 10 -10 -5 0 3 10

Oq99o q I KpQOOmyO ■ ■ 0 . ■ 1BQOeQflOflQO

0
1

s

_..uvT

1

?9o

-10 -3 0 5 10 -10 -3 0 5 10 -10 -5 0 5 10 -10 -3 0 5 10-10 -3 () 3 11

10 - ""

’ . . . J L . . .

-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Lag

Figure 3.1: A stem plot representation of the para-H erm itian polynomial space-time
covariance m atrix R(,z) to be used as input to the SBR2 algorithm.

0.5

100 120 140 160 180
Iterations

Figure 3.2: The m agnitude of the dom inant coefficient, g , over the series of iterations.

51

3.7 Numerical Example

<L>T33
*£
$
s

15 15 15 15
10 10 10 10
5 5 5 5

-1000 1000 -1000 0 1000 -1000 0 1000 -1000 0 1000

15 15 15 15
10 10 10 10
5 5 j 5 5

-1000 0 1000 -1000 0 1000 -1000 0 1000 -1000 0 1000

15 15 15 15
10 10 10 10
5 5 5

. . .
5

-1000 0 1000 -1000 0 1000 -1000 0 1000 -1000 0 1000

15 15 15 15
10 10 10 10
5 5 5 5

-1000 0 1000 -1000 0 1000

Lag
-1000 0 1000 -1000 0 1000

Figure 3.3: A stem plot representation of the diagonalised polynomial matrix D(z)
obtained when the SBR2 algorithm is applied to the polynomial matrix R(z) demon
strated in Figure 3.1.

0.5

-0.5

0.5

O
T3
3 -0.5
C
td)

0.5

s

-0.5

0.5

-0.5

-500 0 500

-500 0 500

-500 0 500

-500 0 500

0.5

0

-0.5

0.5

0

-0.5

0.5

0

-0.5

0.5

0

-0.5

-500 0 500

-500 0 500

-500 0 500

-500 0 500

0.5

0

-0.5

0.5

a
-0.5

0.5

0

-0.5

0.5

' 9

-0.5

Lag

-500 0 500

-500 0 500

-500 0 500

-500 0 500

0.5

0i
-0.5

0.5

0i
-0.5

0.5

01

-0.5

0.5

9

-0.5

-500 0 500

-500 0 500

-500 0 500

-500 0 500

Figure 3.4: A stem plot representation of the paraunitary polynomial matrix H(z)
obtained when the SBR2 algorithm is applied to the matrix R(z) demonstrated in
Figure 3.1.

52

3.7 Numerical Example

— — Output 1
Output 2

- - - Output 3
— Output 4

Frequency (Radians)

Figure 3.5: Plot of the spectra of the convolutively mixed signals, whose space-time
covariance matrix R(^) was used as input to the SBR2 algorithm.

— Output I
Output 2

- - Output 3
- Output 4

Q
00
Cu

Frequency (Radians)

Figure 3.6: Plot of the spectra of the decorrelated signals, after applying the similarity
transformation matrix H (z) to the convolved signal x(t).

53

3.8 Uniqueness of Solutions

O 25

 Before SBR2

+ After SBR2

Frequency (Radians)

Figure 3.7: Plot of the total spectra of the expected signals, before and after applying
the similarity transformation matrix H(z) obtained from the SBR2 algorithm.

3.8 U niqueness o f Solutions

Note that for this decomposition the polynomial transformation matrix H(z) is not unique.

It is possible to have a diagonal paraunitary polynomial matrix A (z) 6 C pxp, with diagonal

elements consisting entirely of time-shift and phase adjustment terms, such that

A(z)H (z)R(z)H (z)A (z) - D(z) (3.40)

where the diagonal elements of the matrix are of the form \ j j (t) = etaz~t for j = 1, . . . ,p such

that = Xjj(—t)Xjj(t) — 1. However, as a result of the paraunitary condition,

the diagonal matrix D(z) will be unique since

A(z)D(z)A(z) = D(z) (3.41)

provided D(z) is precisely diagonal. For the signal processing applications discussed in this

54

3.9 Limitations of the SBR2 Algorithm

chapter, only the polynomial matrix D(z) is generally of interest and so non-uniqueness of

the paraunitary matrix H(z) does not present a problem.

3.9 Limitations of the SBR2 Algorithm

At each iteration of the SBR2 algorithm, the order of the matrix being diagonalised can

increase due to the application of the elementary delay in equation (3.11). Often after a

series of iterations, the order of R(z) becomes unnecessarily large. At each iteration new

coefficient matrices are created at both ends of the polynomial matrix to accommodate the

shifted coefficients, which now exceed the order of the initial polynomial matrix. These

new coefficient matrices will consist entirely of zeros with the exception of the coefficients

positioned in either the k th row or column of the matrix. Over a series of iterations, further

delays are applied to the matrix according to equation (3.11) and this can result in outer

coefficient matrices containing mostly zero elements with the remainder accounting for only

a small proportion of the Frobenius norm of the input m atrix R(z). Many of these coefficient

matrices can be discarded without seriously compromising the accuracy of the decomposition.

A similar problem is encountered with the paraunitary transformation matrix H(z); the order

of this matrix will also increase with the application of elementary delays, and can often

become unnecessarily large.

W ith the orders of the polynomial matrices growing unnecessarily large, the computa

tional load of the algorithm increases, resulting in a computationally slow algorithm, even

when the initial input matrix is of a small size and order. The following chapter addresses

this problem by proposing two methods of truncating the polynomial matrices within the

algorithm, allowing an increased computational speed whilst maintaining a chosen level of

accuracy for the matrix decomposition.

55

3.10 Conclusions

3.10 Conclusions

The SBR2 algorithm effectively transforms a para-Hermitian polynomial matrix to an ap

proximately diagonal matrix by means of a series of paraunitary transformations. This is

confirmed by the simple numerical example in Section 3.7. However in this example, the

orders of the polynomial matrices D(z) and H(^) are seen to become unnecessarily large

with many of the coefficients positioned in the outer lags of both matrices being either equal

to zero or are very small in comparison to those coefficients in the central lags. This makes

the algorithm unnecessarily slow to implement. The next chapter examines methods for pre

venting the matrices growing unnecessarily large, and so decreasing the computational time

required for the SBR2 algorithm to run.

56

Chapter 4

Polynom ial M atrix Truncation
M ethods

4.1 Introduction

To recap from Chapter 3, at the end of the i th iteration of the SBR2 algorithm, the decom

position performed is of the form

H i(z)R (^)H l (z) = D i (2) (4.1)

where R(*) £ C pxp denotes the para-Hermitian polynomial input m atrix to the algorithm,

S i(z) £ C pxp is the paraunitary transformation matrix following i iterations and D j(2) £

C pxp is the resulting transformed polynomial matrix, which will be approximately diagonal,

provided a sufficient number of iterations of the algorithm has been completed. The ability of

the SBR2 algorithm to strongly decorrelate a set of convolutively mixed signals was demon

strated in the previous chapter by a simple numerical example. However, this example also

highlighted a lim itation of the algorithm; the unnecessarily large orders of the polynomial

matrices H i (z) and D t (z), which grow with each iteration of the algorithm.

This point is clearly illustrated in Example 3.7, where the SBR2 algorithm was applied

to a simple para-Hermitian polynomial m atrix of a relatively small size and order, with only

a few off-diagonal coefficients to drive to zero. However, even when applying the algorithm

to this polynomial matrix, the order of the resulting diagonal m atrix D 182(2) grew to 3486,

57

4.1 Introduction

which, by inspection of Figure 3.3, is seen to be unnecessarily large with the majority of the

non-zero coefficients positioned in the central few lags of the polynomial matrix. The same is

true of the transform ation m atrix H 182(z) illustrated in Figure 3.4, whose order following the

application of SBR2 was found to be 1733. These large and increasing orders of both polyno

mial matrices D t(z) and H j(z), made the SBR2 algorithm unnecessarily slow to implement

due to the excessive computational load. However, they are also clearly unnecessary to obtain

a sufficiently accurate polynomial m atrix decomposition for most realistic purposes. Further

more, for the potential application of the decomposition to MIMO communications1, where

the SBR2 algorithm is used to transform a MIMO channel into a set of Single-Input Single-

O utput (SISO) channels which are then equalised to obtain estimates of a set of transm itted

signals, the order of the computed diagonal polynomial m atrix is of critical importance. The

computational complexity of the equaliser will at best be proportional to the length of the

channel. Indeed, if a Maximum Likelihood Sequence Estim ator (MLSE) based on the Viterbi

algorithm is to be applied, as for the results used to illustrate this potential application in

Chapter 8 , the complexity grows exponentially. Clearly, the SBR2 algorithm is not practical

for this application without using some technique to reduce the orders of the polynomial

matrices.

4.1.1 T he P rob lem

At each iteration of the SBR2 algorithm, the order of the polynomial matrices H j(z) and

D i(z) of equation (4.1) increase, due to the application of elementary delay matrices. This

point is easily illustrated by the following simple example. For ease of notation in this

example, the (j , k) th polynomial elements of the m atrix D t (z) are referred to as & (*)■

Suppose at the s ta rt of the ith iteration of the algorithm, the dominant coefficient of the

polynomial m atrix P i_ i(z) is found to be d^k ^(t) . The coefficient dkj ^ { —t) will then also

be dominant due to the para-Hermitian structure of the polynomial matrix. As explained

previously in C hapter 3, the objective of the i th iteration of the SBR2 algorithm is to drive

these two dom inant coefficients to zero by firstly shifting the two coefficients so tha t they are

lA detailed description of this application can be found in Chapter 8 .

58

4.1 Introduction

positioned as the coefficient of z°, by means of elementary delay matrices, and then apply

the appropriate rotation matrix, which will force these coefficients to zero. The application

of the elementary delay matrices will cause the order of the m atrix D 2_ l (z) to increase by

2 \t\ to accommodate all of the shifted coefficients.

This point can be illustrated by examining the series of coefficients for the polynomial

elements d^k ^ (z) and d̂kj ^ (z) before and after the application of the elementary delay ma

trices. For a simple example, suppose the polynomial m atrix D(z_^ (z) is of order four and

the dom inant coefficients at iteration i are found to be d^k l \ —2) and dk ~ l \ 2). Figure 4.1

demonstrates the magnitude of the series of coefficients associated with the two polynomial el

ements before and after the application of the elementary delay matrix. Notice tha t the order

of each polynomial element has grown by four to accommodate all of the shifted coefficients.

New coefficient matrices must be created at either end of the array to accommodate the

shifted coefficients tha t now exceed the order of the polynomial m atrix D j_ j(z). These new

coefficient matrices will consist entirely of zeros except for the shifted coefficients positioned

in either the k th row or column of the matrix. Note also tha t the elementary delay matrices

are incorporated in the paraunitary transform ation m atrix and so each application of the

elementary delay matrices, which are required to zero the dominant coefficients d^k X\ t) and

dkj also force the order of the polynomial paraunitary m atrix H j(z) to increase

by \t\.

During the subsequent step of the iteration, the elementary rotation m atrix is applied

to this m atrix to drive the two dominant coefficients to zero. This rotation step will not

alter the order of the m atrix, but it will have an affect upon all polynomial coefficients in

the j th and k th rows and columns of the matrix. The newly created coefficients from the

application of the elementary delay matrix, which were equal zero, will have been affected by

the rotation and will generally have increased in m agnitude squared. Note th a t the Frobenius

norm of each coefficient m atrix D ;(t), Vt 6 Z, is invariant to the application of the elementary

rotation, but it will redistribute the Frobenius norm of the coefficients within each coefficient

matrix.

Typically, after a series of such iterations, the repeated application of elementary delay

59

4.1 Introduction

2.5

® 2■O
■2 1.5
c

a* 1
2 0.5

2.5

0) 2
-o
£ 1-5c
» 1
5 0.5

Before

I I
0

Lag

11
Lag

2.5

CD 2 •O
2 1.5
c
£ 1
^ 0.5

2.5

CD 2
T3
•2 1.5
c
S* 1
2 0.5

5 '
1 1

After

o
Lag

o
Lag

n

Figure 4.1: Stein plots of the series of coefficients of the polynomial elements dfck ^(z)
(top) and d \ (bottom) before (on the left) and after (on the right) the application
of the elementary delay matrices. The dominant coefficient in each of the polynomial
elements, before and after the appliacation of the delay matrix, is marked with a red
dot.

matrices can force the order of both polynomial matrices within the algorithm to become

unnecessarily large, with many of the polynomial coefficients positioned in the outer lags

of the matrix equal to zero or, at most accounting for a small proportion of the Frobenius

norm of the entire matrix. Clearly, these outer lags, which often contain little information,

are not necessary to obtain an accurate polynomial matrix decomposition. However, storing

them will typically make the algorithm computationally very slow to implement due to the

increased computational load, and generally this will happen even if the input matrix R(z)

is of a relatively small size and order.

This chapter introduces two possible truncation methods which can be incorporated

within the SBR2 algorithm to ensure that the order of the polynomial matrices do not grow

unnecessarily large, thus reducing the computational load of the algorithm and decreasing

the computational time taken for the algorithm to run. In the second part of this chapter,

the two proposed truncation techniques are assessed by applying the SBR2 algorithm using

each method in turn, to a series of para-Hermitian polynomial matrices of varying size and

orders. In particular, the quality of the polynomial matrix decomposition when applying

60

4.2 Truncation M ethod 1: Fixed Bound

each of the truncation techniques is examined, since truncating the order of the polynomial

matrices will have some effect on the accuracy of the decomposition performed and it is im

portant to ensure that the methods are used appropriately. A substantial amount of error in

the decomposition would clearly have a detrimental effect on the capability of the algorithm

for most applications. The chapter concludes with an overall recommendation as to which is

the most appropriate truncation method to use and how it should be implemented as part

of the SBR2 algorithm to effectively reduce the computational load of the algorithm, whilst

m aintaining an accurate polynomial m atrix decomposition.

4.2 Truncation M ethod 1: Fixed Bound

The first method for truncating the polynomial matrices within the SBR2 algorithm is to

place a fixed bound on the order of the polynomial matrices to ensure tha t they do not exceed

this specified fixed limit. The truncation method is introduced for two cases, firstly a method

suitable for a para-Hermitian polynomial matrix, such as the transformed polynomial matrix

D j(z), and then a more general technique tha t can be applied to any polynomial matrix, such

as the paraunitary transform ation m atrix H j(z). In either case, the polynomial m atrix to be

truncated will be denotes as A (z).

4.2.1 For P ara-H erm itian P olynom ial M atrices

Suppose the polynomial m atrix A (z) € C pxpxT is para-Hermitian and therefore has coef

ficient matrices A (t) for t = — T / 2 , . . . , T /2 . To apply a fixed bound to this polynomial

m atrix, a limit L > 0 must be chosen and a suitable choice for this param eter must be an

even number to ensure th a t the truncated polynomial m atrix remains para-Hermitian. Any

coefficient matrices A (f) for \t\ > L / 2 are truncated from the m atrix and so the resulting

truncated polynomial m atrix can be expressed as

L/2

A (r(z) = £ A (t)z - ‘. (4.2)
t= — L/ 2

61

4.2 Truncation M ethod 1: Fixed Bound

Note that, as the polynomial matrix A (z) is para-Hermitian, then the same number of co

efficient matrices must be removed from both ends of the m atrix to ensure that the matrix

remains para-Hermitian. If the m atrix is not para-Hermitian then a fixed bound could still

be implemented, but there is now the option of setting both an upper and lower limit upon

the lag variable t ; this will now be discussed.

4.2 .2 For N on-P ara-H erm itian P olynom ial M atrices

For a non-para-Hermitian polynomial m atrix A(z) € C pxqxT, with coefficient matrices A (t)

where t = £ j , . . . ,<2> the order of the m atrix can be calculated as T — f a — t\). This is

now not necessarily an even number and the coefficient matrices are not generally centred

about the coefficient m atrix associated with z°. It is therefore far more difficult to apply a

fixed bound truncation method to a non para-Hermitian polynomial matrix, as there is now

the additional difficulty of determining in advance how many coefficient matrices should be

truncated from either end of the polynomial matrix.

If this m ethod is to be applied to the paraunitary polynomial m atrix obtained within the

SBR2 algorithm H j(z), then by inspection of Figure 3.4 it would appear tha t this matrix

is also centred about the zero-lag coefficient m atrix and so the same number of coefficient

matrices can be removed from either end of the matrix. This is not guaranteed, but is

generally found to be the case. If the fixed bound, for this instance, is L, then set m =

and the truncated polynomial m atrix can be calculated as

t'2-m
A ir(z) = Y . A W *~ l (4-3>

t=t i +m

where the order of this m atrix will be either L or L + 1, depending on whether the initial

order of A (z), prior to truncating, and the value L are even or odd.

Alternatively, if it is not suitable to remove the same number of coefficient matrices from

both ends, a lower limit L\ and an upper limit L 2 can be chosen, so tha t any coefficient

matrices A (t) for t > L 2 and t < L\ are truncated from the polynomial matrix, resulting in

62

4.3 Truncation M ethod 2: Energy Based Bound

the truncated polynomial matrix

Li
A tT(z) = A (t) z - \ (4.4)

t =L\

which is of the fixed order (L 2 — L \). It is more appropriate to impose a lower and upper bound

011 the order of a general polynomial m atrix as demonstrated by equation (4.4). However,

it is difficult to determine the choice of the bounds in advance as a suitable choice will be

related to the distribution of the Frobenius norm of the polynomial m atrix over the series

of lags. Ideally, the two separate bounds should be chosen from inspection of this measure,

which is possible if a m atrix is to be truncated just once. However, if this technique is to

be implemented as part of an iterative routine, such as the SBR2 algorithm, where the order

of the polynomial matrices can grow, it is not so appropriate as it will be impossible to

determine appropriate values for these measures in advance.

4.3 Truncation M ethod 2: Energy Based Bound

The second m ethod for restricting the growing orders of the polynomial matrices is based

entirely upon the proportion of the Frobenius norm of the polynomial m atrix being truncated

which is perm itted to be lost. Again, as with the previous truncation method, this technique

is introduced for two cases, firstly a m ethod suitable for para-Hermitian polynomial matrices

and then a more general technique tha t can be applied to any polynomial matrix.

4.3.1 For Para-H erm itian P olynom ial M atrices

For a polynomial para-Herm itian matrix A (z) € <CpxpxT, with coefficient matrices A (t) for

t = —T /2 , . . . , T /2 , the truncation method finds the smallest value for the lag parameter

tiim > 0 such tha t
T / 2 p p

2 £ E E
^—tl im j — 1 k — 1

2---------- < V (4-5)
W A { z j \ \ f

where Ujfc(t) denotes the (j, k) th element of the coefficient m atrix A (t) and fi defines the

63

4.3 Truncation M ethod 2: Energy Based Bound

proportion of the Frobenius norm of the untruncated polynomial m atrix which is perm itted

to be lost due to the truncation. Once a value for tnm has been found, the truncated matrix,

A tr(z), can be calculated as
^Urn ~ 1

A ,r(z) = A (t)z-K (4.6)

There are two ways in which this technique can be used to truncate the transformed polyno

mial m atrix D j(z) resulting from the ith iteration of the SBR2 algorithm. Firstly, it can be

perm itted to allow a proportion of the Frobenius norm of the original input m atrix R(.z) to

be lost at each iteration. Or, alternatively, to allow a proportion of the Frobenius norm of

D the m atrix being truncated, to be lost at the end of the i th iteration. The first method

was adopted for the results presented in this chapter and so the denominator of equation

(4.5) is set equal to ||R (2) ||^ and (ijk(t) denotes the (j , k) th element of D* ('t)•

An additional constraint can be placed on the truncated polynomial m atrix D \r (z) when

applying this truncation m ethod within the SBR2 algorithm to ensure tha t at most, only an

acceptably small proportion of the Frobenius norm of R (2) is lost over all iterations of the

SBR2 algorithm. This type of constraint is implemented by requiring

||D ‘r (2)||* > (l - a) | |R (z) | |£ . (4.7)

where a is the total proportion of ||R (2)||^ perm itted to be lost over all iterations of the

algorithm. This additional constraint can be used if it is ever essential to limit the propor

tion of the Frobenius norm of R(-z) which can be truncated over all iterations of the SBR2

algorithm. Although this type of constraint can be useful, it will not be used to obtain any

of the results presented in this thesis.

4.3 .2 For N on-P ara-H erm itian P olynom ial M atrices

A suitable truncation m ethod for a polynomial m atrix A (z) € C pxq, which is not necessarily

para-Hermitian and has coefficient matrices A (t) for t = T j , . .. ,72 can be implemented as

64

4.4 Comparing the Truncation Methods

follows. Find a maximum value for t\ and a minimum value for ^ such that

E E E l«b»(r) i2
r=Tj /=1 m = 1 fl

MA, , 1,-2 (4-8)I I A («) I I f 2

and
T‘2 p q

E E E la'-»M|2
r= t2 | = 1 m= 1_______________ / I

I I A W l f c " 2 (' '
where again p defines the proportion of energy perm itted to be truncated from the polynomial

m atrix A(z) with one implementation of the truncation method. Then the coefficient matrices

A (r) for r = T \ , . . . , t\ and r = t2 , . . . , T2 can be truncated from the m atrix and the truncated

polynomial m atrix calculated as

< 2 - 1

A tr{z) = A (4.10)
<1 + 1

This truncation m ethod can be applied to the paraunitary polynomial m atrix obtained

at the end of the i th iteration of the SBR2 algorithm, H j(^). If the polynomial m atrix A(z)

in equations (4.8) and (4.9) is para-Hermitian then this truncation m ethod simply reduces

to the one dem onstrated by equation (4.5).

4.4 Com paring the Truncation M ethods

To assess the different truncation methods and further illustrate the SBR2 algorithm, a set

of polynomial para-Hermitian test matrices was generated.

4.4.1 Set o f T est M atrices

The first polynomial m atrix of the set R i (z) € C 3x3x4 was generated by randomly drawing

both the real and imaginary parts of the complex coefficients for each of the polynomial

elements from a Gaussian distribution with mean zero and unit variance. Care must be

taken to ensure th a t the polynomial matrix is para-Hermitian by ensuring the coefficients

65

4.4 Comparing the Truncation Methods

associated with the polynomial elements satisfy

rjk(t) = r*kj (- t) (4.11)

Vt E Z and for j , k = 1, 2,3.

The second polynomial para-Herinitian m atrix R 2(2) E R 4x4x4 was chosen to be a fairly

sparse polynomial m atrix, where the non-zero coefficients associated with each of the poly

nomial elements were drawn randomly from a uniform distribution in the range [0,1]. This

m atrix has a total of 38 non-zero coefficients, all of which are real.

For a more practically motivated example R ^ z) G R 5x5x30 is the estimated space-time

covariance m atrix for a set of five convolved signals, where, without loss of generality, the

mixing m atrix for the system was chosen to dem onstrate the propagation of three signals

onto five sensors. The source signals were chosen to be independent binary phase-shift keying

(BPSK) sequences, which means each sample can take the value ± 1 with equal probability

of a half. These signals were mixed according to the mixing model demonstrated in Section

3.6.1, where the coefficients associated with the polynomial elements of the channel matrix

C (z) E R 5x3x4, required for equation (3.26), were drawn from a uniform distribution in

the range [— 1 ,1]. The variance of the additive noise was chosen to be unity, which meant

an SNR value of 5.4dB. This was specifically chosen, as a point where the SBR2 algorithm

can effectively separate the signal and noise subspaces. The estimated space-time covariance

m atrix was calculated according to equation (3.30), where the correlation lag window was set

as W = 15.

The fourth polynomial m atrix R ^ z) G R 5x5x10 was chosen to be the expected or ideal

space-time covariance m atrix corresponding to the signals used to calculate the estimated

space-time covariances matrices R ^ z) . This m atrix was therefore calculated as

B i(z) = C (z)R M(z) C(z) + <t2I 5 (4.12)

= 13

where R ^ z) denotes the space-time covariance for the source signals, which for the example

presented here, is given by the identity matrix, C (z) denotes the appropriate channel m atrix

66

4.4 Comparing the Truncation M ethods

and a 2 denotes the variance of the noise process n(£).

Similarly, the para-Hermitian polynomial m atrix R s(z) £ C 5x5x20 is also an estimated

space-time covariance m atrix for a set of convolved signals. The coefficients associated with

the polynomial elements of the mixing m atrix C(z) £ (£5*3x4 are complex, with both the real

and imaginary parts drawn from a uniform distribution in the range [—1,1]. The three source

signals in this case were chosen to be independent quaternary phase-shift keying (QPSK)

sequences of length 1000. The correlation window length for this matrix was set as W = 10.

It would have been sufficient for both examples to set W equal to the order of the polynomial

mixing matrix, due to the statistics of the data, but in most instances, no knowledge about

the mixing is known and so this param eter must be estimated.

The final test m atrix R ^ z) £ C 5x5x10 was chosen to be the expected space-time covari

ance m atrix for the signals used to calculate the estimated space-time covariances matrix

R 5(z). This m atrix was therefore calculated in a similar way to the polynomial m atrix R ^ z)

demonstrated in equation (4.12). A summary of the properties of each of the polynomial

para-Hermitian test matrices can be found in Table 4.1 and will now be discussed.

M atrix Order
N um ber o f Non-

Zero Off-Diagonal
Elem ents

i ie w ii2f

Proportion o f ||R (z)||^

Positioned in the Off-
D iagonal E lem ents

B i(z) 4 30 66.05 0.8115

1^2(2) 4 38 29.72 0.8244

30 620 516.36 0.4972

* 4 (Z) 10 220 455.96 0.4658

E sW 20 420 2020.31 0.4781

(2) 10 220 2054.77 0.4362

Table 4.1: Properties of each of the para-Hermitian polynomial test matrices.

4.4 .2 C om m ents on the P olynom ial Test M atrices

Firstly, before testing the truncation methods, the SBR2 algorithm was applied to each of the

test matrices, using the same type of stopping condition as the numerical example in Chapter

67

4.4 Comparing the Truncation Methods

3, where the algorithm was set to stop when the magnitude of the dominant coefficient, g,

was deemed sufficiently small compared to the diagonal zero-lag coefficients. For the test

matrices defined in Section 4.4.1, the SBR2 algorithm was stopped once

g < 10~ 2 y /Ni / p , (4.13)

where the measure Ni has been defined in equation (3.20) and p defines the number of rows

of the para-Hermitian test matrix.

Table 4.2 contains the number of iterations required for each of the polynomial test

matrices to converge according to the stopping condition demonstrated by equation (4.13).

Upon inspection of this and the results contained in Table 4.1, it is evident tha t there is

a relationship between the number of non-zero off-diagonal coefficients and the number of

iterations required for the SBR2 algorithm to converge according to equation (4.13). Clearly,

the more off-diagonal non-zero coefficients, the more iterations required to diagonalise the

matrix. However, there appears to be no relationship between the initial order of the poly

nomial m atrix or the number of iterations required to converge and the final order of the

diagonal m atrix following the decomposition.

M atrix Num ber o f Iterations 9 Order o f D(z)

B i M 91 0.0449 1088

& (*) 123 0.0268 1294

££3 (2) 271 0.0975 6242

1*4(2) 198 0.0939 2394

E s(2) 330 0.1915 6052

&,(*) 351 0.1958 6666

Table 4.2: For each of the test matrices, the number of iterations required to satisfy
the stopping condition expressed in equation (4.13), the resulting order of the approx
imately diagonal polynomial matrix and the final value of the dominant coefficient, g ,
once the stopping condition has been satisfied.

68

4.5 Truncation M ethod Results

4.5 Truncation M ethod R esults

This section dem onstrates how the two truncation methods can affect the performance of

the SBR2 algorithm and, in particular, the accuracy of the resulting polynomial m atrix

decomposition. The SBR2 algorithm was applied to each of the polynomial para-Hermitian

test matrices detailed in Section 4.4.1, for the following three cases,

1. when no truncation method is used,

2 . using Truncation M ethod 1 (the fixed bound) and

3. using Truncation Method 2 (the energy based bound).

For each case, no stopping condition was used within the SBR2 algorithm, allowing each

implementation of the algorithm to complete 200 iterations. For the cases where a trunca

tion method is used, it was applied at the end of each iteration i to truncate the resulting

transformed polynomial m atrix D j(z) and this was carried out for varying levels of trunca

tion. The paraunitary transform ation m atrix H j(z) can also be truncated using either of the

truncation methods suitable for non-para-Hermitian polynomial matrices. However, this is

not done for the results presented here as this m atrix is not calculated as part of the main

iterative process of the SBR2 algorithm and we want to make enable a fair comparison be

tween the truncation methods. Note tha t implementing either of the two truncation methods

within the SBR2 algorithm will not affect the proof of convergence detailed in Section 3.4, as

the quantity N\ will still increase monotonically and it remains bounded from above by the

initial value of N 4 . Therefore, when using either of the truncation methods, the polynomial

m atrix D j(z) is guaranteed to converge to a diagonal polynomial matrix.

4.5.1 A ccuracy o f th e D ecom position

To assess the quality of the decomposition performed by the SBR2 algorithm, whilst im

plementing one of the two truncation methods, the relative error between the input matrix,

R (z), and the m atrix obtained from the inverse decomposition, R (z) — H (z)D (z)H (z), was

calculated, where H (z) and D(z) denote the paraunitary polynomial m atrix and the approx-

69

4.5 Truncation M ethod Results

imately diagonal polynomial matrix obtained using the SBR2 algorithm. The relative error2

for the decomposition is therefore defined to be

R re l —

R (2) - R ' (z)

I I E (*) I L (4.14)

4.5 .2 Case 1: N o Truncation

The SBR2 algorithm was applied in turn to each of the polynomial test matrices from Section

4.4.1. As demonstrated by Example 3.7 of the previous chapter, the order of each resulting

diagonal polynomial m atrix was found to be unnecessarily large. Furthermore, for each case,

the m ajority of the Frobenius norm of the resulting approximately diagonal polynomial matrix

is positioned in the couple of hundred lags centred about the zero lag coefficient matrix, with

higher order terms negligibly small or equal to zero. This is clearly illustrated by Figure 4.2,

which demonstrates the measure

|D£o(0)|If + 2EIID20oW
C(t) = ---------------------- ^ --------------- (4.15)

iiek(*)Hf

over the lags t = 1, . . . , 201 , where D ^ ^ r) denotes the coefficient m atrix of z~T in the

transformed polynomial m atrix obtained from the SBR2 algorithm when applied to each

of the polynomial test matrices R /f(z) for K — 1 , . . . , 6 . In fact, for each of the observed

transformed matrices over 95% of the Frobenius norm of each m atrix is positioned in the

central three lags of the m atrix and more than 99% in the central 21.

Figure 4.3 shows how the order of each of the six test matrices increases when the SBR2

algorithm is applied to each in turn for a series of 200 iterations using no truncation method.

The order of the final diagonalised m atrix following all iterations of the algorithm can be found

in Table 4.4. Note th a t there appears to be no relationship between either the order of the

para-Hermitian input m atrix or the number of off-diagonal non-zero coefficients in the matrix,

2In this chapter, this is used to measure only the effect of the polynomial matrix truncation methods
on the accuracy of the decomposition performed and does not account for the level of error encountered
by only calculating an approximately diagonal polynomial matrix. For the application of the SBR2
algorithm, a more appropriate relative error can be defined to take into account both of these factors.

70

4.5 Truncation Method Results

t

Figure 4.2: The cumulative squared Frobenius norm of the matrix D 200(^) (C{ t)) over
all lags (t) when no truncation method is used, calculated from the centre outwards,
for all test matrices.

both contained in Table 4.1, and the order of the resulting transformed polynomial matrix

following 200 iterations of the SBR2 algorithm. Furthermore, the magnitude or distribution

of the off-diagonal coefficients over the series of coefficient matrices is also of no relevance in

predicting the order of the final matrix.

Conclusions: N o Truncation M ethod

These results confirm the clear requirement for a polynomial matrix truncation method within

the SBR2 algorithm. For each example, the order of the resulting diagonal polynomial matrix

was found to be unnecessarily large, with many of the coefficients associated with outer lags of

the matrix accounting for a very small proportion of the Frobenius norm of the matrix. This

point is particularly important for the application of the decomposition to communication

systems, where the SBR2 algorithm, or other algorithms to be derived later in this thesis, can

be used to separate a MIMO communication channel into a set of independent subchannels,

which are then equalised using an existing SISO equalisation technique. For this application

71

4.5 Truncation Method Results

4500

— R.W4000

3500

3000

3
E

2500

o 2000

1500

1000

500

100

Iterations
120 160 180 200140

Figure 4.3: The order of the transformed polynomial matrix at each of the 200 iterations
of the SBR2 algorithm when applied to each of the para-Hermitian test matrices using
no truncation method.

of the algorithm, the order of the resulting diagonal matrix obtained by the algorithm must

be sufficiently small to enable equalisation of the set of SISO channels. For example, if

a maximum likelihood sequence esimator (MLSE) based on the Viterbi algorithm is to be

implemented, then the computational complexity of the scheme is exponentially proportional

to the order of this matrix.

Furthermore, without a truncation routine the SBR2 algorithm is unnecessarily slow to

implement , with the order of both the paraunitary matrix and the transformed polynomial

matrices H,(.z) and increasing at each iteration and often resulting in many of the

outer coefficient matrices consisting entirely of zeros. Table 4.5 contains the computational

time taken for the SBR2 algorithm to complete 200 iterations when applied to each of the

polynomial test matrices using no truncation method.

72

4.5 Truncation M ethod Results

4.5 .3 Case 2: F ixed Bound Truncation M ethod

The SBR2 algorithm was again applied to each of the para-Hermitian polynomial test matrices

detailed in Section 4.4.1, however, this time applying the fixed bound truncation method

described in Section 4.2.1 to truncate the order of the polynomial m atrix from equation

(4.1) at the end of each iteration i. The main problem with this truncation method is that

it is difficult to know in advance what value to use for the fixed bound param eter L and to

find an appropriate value for this parameter, which will not compromise the accuracy of the

decomposition significantly, will involve a considerable amount of trial and error. If the value

is too large, then the algorithm will be unnecessarily slow to implement, whilst if L is set too

small then the Frobenius norm of the polynomial input m atrix to the SBR2 algorithm R(z)

has been unnecessarily compromised, leading to inaccurate results.

From inspection of Figure 4.2, it can be seen tha t the majority of the polynomial coeffi

cients of the resulting six approximately diagonal polynomial matrices following 200 iterations

of the SBR2 algorithm are positioned in the couple of hundred coefficient matrices centred

about the zero lag. Therefore, the fixed bound parameter L was chosen to take all even

integers in the range [1,200]. Figure 4.4 demonstrates the relative error of the decomposition

E rei obtained from applying the SBR2 algorithm to each of the test matrices for this range

of values of L. From this figure a suitable choice for L can be made for each of the test

matrices, depending on the required accuracy of the decomposition. A suitable choice of L to

obtain a very accurate decomposition can be seen to be somewhere between 100 and 150 for

all examples, which is considerably smaller than the order obtained if no truncation method

is used. The exact value L required to obtain various values of E rei can be seen in Table 4.3.

The total com putational time to implement 200 iterations of the SBR2 algorithm using this

truncation m ethod for the range of values for L and for each of the test matrices can be seen

in Figure 4.5. Even when using a fixed bound of L = 200 the computational time has been

vastly reduced from the time taken when no truncation method is used, as shown in Table

4.5. These results dem onstrate that the computational time can be vastly reduced, whilst

still calculating a reasonably accurate decomposition.

Finally, it might be expected that a suitable choice of L could be determined by either

73

4.5 Truncation M ethod Results

0.9

0.8

0.7

0 6

£
HI 0.5

0.4

0.3

0.2

80 100 120
Fixed Bound (L)

140 160 180 200

Figure 4.4: The relative error of the decomposition, Erei, obtained for each value of
the fixed bound parameter L , for each of the six test matrices.

M atrix M inim um value o f L to ob ta in E rei =

10-4 10'3 10-2

rH1OrH 2 x l 0 _1

E ,M 146 132 62 24 18

Ba(*) 104 90 70 20 12

B*(*) 210 180 144 50 20

B j z) 114 96 72 24 16

B .W 152 126 102 48 26

B eO) 146 124 96 44 26

Table 4.3: The minimum value of the fixed bound parameter L to obtain a particular
level of relative error for the polynomial matrix decomposition obtained by the SBR2
algorithm when using the fixed bound truncation method.

74

4.5 Truncation M ethod Results

the number of non-zero off-diagonal polynomial coefficients, the number of coefficients whose

magnitude is larger th a t the stopping criterion e or the order of the input m atrix to the

algorithm. However, upon inspection of the results there appears to be 110 relationship

present between any of these quantities. From Figure 4.4, the relative error for the two test

matrices of order four, R i(z) and appears to be quite similar for each of the fixed

bound values. However, from this figure the two polynomial matrices R 4(2) and R 6(^), which

are both of order 10 and also have the same number of off-diagonal elements, can be seen to

have very different behavior to the various fixed bounds. Furthermore, polynomial matrices

R 3(z) and R ^ z) are the estimated and expected space-time covariance matrices for the same

set of convolutively mixed BPSK signals respectively. However, although these matrices are

very similar in structure, with any deviations due to estimation errors, there appears to be

no relationship between how the order of each of the polynomial test matrices increases over

the series of iterations. The same is true of the polynomial matrices R s(z) and R ^ z) , which

also have a similar relationship.

For the test matrices here, L — 200 would certainly give an accurate level of matrix

decomposition and also drastically reduce the computational time. For the majority of the

matrices, L = 100 would be more than suitable. Note tha t when using this truncation method,

it is im portant to always calculate the relative error of the decomposition to ensure tha t the

chosen fixed bound value L is large enough to ensure a sufficiently accurate decomposition.

Conclusions: F ixed Bound Truncation M ethod

The results have dem onstrated tha t applying an appropriate limit on the order of the polyno

mial m atrix D j(z) within the SBR2 algorithm can work well and, if used appropriately, can

vastly reduce the com putational time taken to implement the algorithm, whilst also ensuring

tha t an accurate polynomial m atrix decomposition is calculated. However, when using this

truncation m ethod it is difficult to predetermine the choice of the fixed bound param eter L

suitable for a particular input matrix to optimise both the speed of the algorithm and ac

curacy of the decomposition performed. Furthermore, finding an appropriate value for each

m atrix will involve a process of trial and error. W hen using this truncation method, it is

75

4.5 Truncation Method Results

2.5

co
"O
Cou
0)
(f)
0)
E
i-
05
C
o
CO
3a
Eo
O

0.5

JO 100 120
Fixed Bound (L)

140 160 180 200

Figure 4.5: Computational time (in seconds) taken by the SBR2 algorithm when ap
plied to each of the six test matrices for varying values of the fixed bound L.

important to always calculate the relative error of the decomposition performed, to ensure

that it is sufficiently accurate for the required application. Other measures that are useful

to calculate are the proportion of the Frobenius norm of the input matrix that is lost and

also, if truncating the paraunitary matrix H 2(z), the Frobenius norm of this matrix that

is lost. It is important to look at both, to ensure that one of the matrices has not been

unreasonably truncated. One advantage of using this method, is that it is possible to specify

the dimensions of the polynomial matrices in advance, which can be advantageous in terms

of the computational time to implement the algorithm.

4 . 5 . 4 C a s e 3 : E n e r g y B a s e d T r u n c a t i o n M e t h o d

For the third and final case, the SBR2 algorithm was applied to the set of test matrices from

Section 4.4.1, this time implementing the energy based truncation method detailed in Section

4.3.1. Again, only the transformed para-Hermitian polynomial matrix D ,(z) from equation

(4 .1) was truncated, by applying the truncation method at the end of each iteration of the

algorithm.

76

4.5 Truncation M ethod Results

Firstly, setting the truncation parameter (j, equal to zero3 for each implementation of the

SBR2 algorithm vastly reduced the order of the resulting polynomial m atrix D 20o(2). This

can be seen in Table 4.4, which contains the orders of this polynomial m atrix obtained from

calculating the decomposition of each of the polynomial test matrices when no truncation

m ethod is used and then for the cases /z = 0 and /z = 10-8 . It can be seen from this table

th a t increasing the value of /z will further reduce the order of the final polynomial matrix

Ehoo(2) f°r each case.

Order o f D 2 0 0 M
M atrix N o Truncation

M ethod

R em ove Zeros Only

(m = 0)

M ethod 2

(m = 1 0 - 8)

B iW 3238 1720 74

B:2 (*'0 2684 1316 68

E aW 4130 1872 182

B*(z) 2420 1210 110

B*(Z) 2898 1498 138

2880 1334 114

Table 4.4: Order of the diagonalised polynomial matrix Dj(^) obtained from applying
the SBR2 algorithm to each of the test matrices, when using no truncation method,
using the energy based truncation method with (i — 0 and /z = 10~8.

These results dem onstrate th a t when using the second polynomial m atrix truncation

m ethod, it is possible to remove only coefficient matrices at the outer edges of the polynomial

m atrix th a t consist entirely of zeros (to computational precision) by setting fi = 0 . The

resulting relative error of the inverse decomposition for this case will always be equal to zero.

Figure 4.6 illustrates how the order of the transformed m atrix will grow throughout the SBR2

algorithm, when applied to each of the polynomial test matrices, for the case /z — 0 . The

order of the m atrices can be seen to be vastly reduced for this choice of /z, when compared

to the results where no truncation method is used, shown in Figure 4.3 and Table 4.4. The

order is approxim ately halved for each of the test matrices. Accordingly, the computational

3This is numerical zero and not 10-16.

77

4.5 Truncation Method Results

time taken to run the SBR2 algorithm for each matrix is also greatly reduced, as confirmed

in Table 4.5.

Furthermore, if the truncation parameter n is set larger than zero, then both the order of

the matrix and the time taken to implement the decomposition can be again reduced. This is

illustrated by the results obtained for the case /i = 10-8 , recorded in Tables 4.4 and 4.5. The

relative error of the decomposition has also not been significantly compromised using this

value of ft and for each of the test matrices is found to be less than 10-3 . Clearly, it is not

necessary to store all of these outer coefficient matrices to still obtain an accurate polynomial

matrix decomposition.

2000

1800

1600

1400

1200

q 1000

800

600

400

200

100
Iterations

120 140 160 180 200

Figure 4.6: The order of each of the polynomial test m atrices a t each iteration of the
algorithm when outer coefficient m atrices consisting entirely of zeros are truncated.

78

4.5 Truncation M ethod Results

M atrix

C om putational T im e (Seconds)

N o Truncation

M ethod

R em ove Zeros Only

(m = 0)

M ethod 2

(n = 1 0 - 8)

B ,(*) 47.76 18.71 0.14

B ,(*) 20.82 7.22 0.13

97.12 16.93 1.01

«*(*) 25.80 8.41 0.32

& (*) 77.20 20.84 1.76

E eW 73.07 17.26 1.97

Table 4.5: Computational time taken to apply the SBR2 algorithm to each of the
polynomial para-Hermitian test matrices for the varying truncation methods.

M axim um Energy Loss

Applying the energy based truncation m ethod at the end of each iteration of the SBR2

algorithm to truncate the polynomial m atrix D^(z) to allow at most the proportion f.i of the

Frobenius norm of the initial polynomial m atrix to be lost, the maximum amount of energy

lost following N iterations of the algorithm can be calculated as

N

Loas (N) = 5 > (1 - # 0 * ~ ‘ | I B (*) I I f (4-16)
k= 1

= P — (1 — p)NJ IIB(z)IIf (4.17)

where fi € [0 , 1], ||R (z) ||^ defines the squared Frobenius norm of the input m atrix to the

algorithm R (z) and is consistent with the notation used previously in Chapter 3. There

fore, the minimum possible amount of energy remaining in the resulting m atrix following N

iterations, D N(z), is

R e m (N) = (1 — f i)N IIE(2)IIf - (448)

Figure 4.7 illustrates the minimum proportion of ||H (2) |If remaining w ith the associated

choice of the truncation parameter (i to guarantee this, if the algorithm is to complete a

range of different num ber of iterations. For most implementations of the SBR2 algorithm

79

4.5 Truncation Method Results

when truncating the transformed polynomial matrix Dj(z), it. is unlikely that the maximum

amount of energy will be lost at each iteration. However, the quantity shown by equation

(4.18) represents a lower bound on the proportion of ||R (z)||^ remaining for a particular

value of fi over a specified number of iterations.

0.05

0.045 — 100 iterations
150 iterations

 200 iterations
— 250 iterations

0.04

A 0.035

?■ 0.025

0.02

•- 0.015

0.01

0.005

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Minimum proportion of the F-norm of R(z) remaining following all iterations

0.9

Figure 4.7: The m inimum proportion of ||R (z)||J . rem aining following truncating the
polynom ial m atrix w ithin the SBR2 algorithm , for various num bers of iterations.

If an estimate of the number of iterations that the algorithm will complete can be gener

ated, then using equation (4.18), a value for the truncation parameter fj, can be calculated,

given the proportion of energy required to remain within the polynomial matrix. This mea

sure can be calculated before applying the SBR2 algorithm to the polynomial matrix and

can therefore be used in advance to help choose a value for the truncation parameter /u when

using the energy based truncation method. However, this would require knowledge of how

many iterations the algorithm is going to run for, and this cannot be determined precisely in

advance. However, note that this measure is related to the number of non-zero off-diagonal

coefficients contained in the para-Hermitian polynomial input matrix to the algorithm; this

point has been mentioned previously in Section 4.4.1.

80

4.6 Numerical Example 3.7 W ith Truncation

Conclusions: E nergy Based Truncation M ethod

The energy based truncation method is clearly the most appropriate of the two truncation

m ethods as it allows some control over how much of the Frobenius norm of the polynomial

m atrix E (*) is lost at each iteration of the decomposition algorithm, and this determines

the accuracy of the decomposition. The results presented above demonstrate that setting

p = 0, which will only remove coefficient matrices positioned in the outer lags consisting

entirely of zeros, can generally drastically reduce the order of the diagonal polynomial matrix

obtained from the decomposition and, as a consequence, can reduce the computational time

taken to implement the SBR2 algorithm. Typically, using this value of p will approximately

half the order of the diagonal polynomial m atrix obtained from the decomposition and the

computational time will be at least halved, although often it is reduced considerably more

than this. If the truncation param eter is set greater than zero, then the order of the m atrix

can be further reduced, although care must be taken to ensure tha t the accuracy of the

decomposition performed is not significantly compromised.

4.6 N um erical Exam ple 3.7 W ith Truncation

In the numerical example from Chapter 3, the SBR2 algorithm was applied to the polynomial

space-time covariance m atrix for a set of convolutively mixed BPSK signals R (z) 6 C 4x4x2°.

This simple example dem onstrated the ability of the SBR2 algorithm to calculate the EVD

of this para-Herm itian polynomial m atrix and consequently strongly decorrelate the set of

received signals. However, this example also illustrated the unnecessarily large orders of

the two polynomial matrices generated by the algorithm. By inspection of these matrices,

B i 82(2) (°f orcler 3486) and H 182(2) (of order 1733), which are illustrated in Figures 3.3

and 3.4 respectively, their orders are seen to be unnecessarily large, with many of the coeffi

cients associated with the outer lags of both polynomial matrices accounting for a very small

proportion of their Frobenius norm.

The SBR2 algorithm was again applied to this example, however, this time implementing

the energy based truncation method at the end of each iteration of the algorithm to truncate

81

4.6 Numerical Example 3.7 W ith Truncation

the updated polynomial m atrix D j(z) as defined in equation (4.1). This procedure was carried

out for the following four specific values of p: (i) p = 0, (ii) p = 10~10, (iii) p = 5 x 10-5

and (iv) p = 3 x 10~4. In each case, the stopping condition used in Example 3.7 was

adopted thus allowing the SBR2 algorithm to continue until all coefficients associated with

the off-diagonal polynomial elements of the transformed polynomial matrix D j(z) are less

than x 10“ 2 in magnitude. The results observed for the four cases are presented in

Table 4.6, alongside the results obtained when no truncation method is used. The measures

used to assess the performance of this truncation method, which are included in the table,

are the order of the resulting approximately diagonal polynomial matrix, the relative error

of the inverse decomposition denoted as Ere[, which will reflect the error encountered due to

truncating the transformed polynomial matrix, and also the computational time4 taken for

the SBR2 algorithm to converge. Also recorded in this table are the number of iterations

required for the SBR2 algorithm to satisfy the stopping condition for each of the cases. This

will often change as a result of truncating the polynomial matrix. Note tha t the paraunitary

transform ation m atrix H j(z) is not truncated for these results since it is not necessary to

compute this m atrix within the iterative routine of the SBR2 algorithm.

N o

T ru n ca tio n
P = 0 P = 1 0 ~ 10 p = 5 x l 0 ~ 5 p = 3 x l 0 -4

O rd er o f D ^ z) 3486 1782 170 42 20

Erel 0 0 7.87 x 10~5 0.0491 0.1153

N u m b e r o f I te r a t io n s 182 184 184 166 125

C o m p u ta t io n a l

T im e 2 (S e c o n d s)
39.93 11.99 0.55 0.20 0.12

Table 4.6: Measures to demonstrate the performance of the SBR2 algorithm when
applied to the polynomial space-time covariance matrix R (z) from Example 3.7, im
plementing the energy based truncation method for different values of p.

The results presented here demonstrate the two main advantages of truncating the polyno

4Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.

82

4.6 Numerical Example 3.7 W ith Truncation

mial m atrix D j(z) using the energy based truncation method; firstly the order of the diagonal

m atrix obtained by the SBR2 algorithm can be drastically reduced, whilst still maintaining

an accurate polynomial m atrix decomposition. Even removing only the coefficient matrices

positioned in the outer lags with all entires equal to zero (to computational precision) by

setting the truncation param eter p equal to zero, significantly reduces the order of the diag-

onalised m atrix from 3486 to 1782 without compromising the accuracy of the decomposition

performed. Furtherm ore, if p is set larger than zero, then the order of the m atrix can be

further reduced, although the transformation performed is no longer norm preserving and will

therefore result in some error. Secondly, as a consequence of the reduced order of the poly

nomial matrix, the computational load and memory storage requirements of the algorithm

are reduced and so the computational speed increases. This is clearly dem onstrated by the

results presented in Table 4.6, illustrating tha t a suitable choice of p can be made to optimise

the speed and therefore efficiency of the algorithm, whilst also minimising the relative error

obtained from the decomposition and the order of the polynomial m atrix D j(z).

It is difficult to know in advance what value to choose for the truncation param eter p

and a suitable choice will depend entirely upon the requirements of the decomposition for the

specified application. Clearly, if computational time is not the most im portant factor when

applying the SBR2 algorithm, it is better to set the truncation param eter to a very small

value, for example p = 10” 10, or equal to zero, as this will minimise the relative error of

the decomposition. If the order of the resulting diagonal polynomial m atrix is then too large

for the application of the decomposition, the fixed bound truncation method can be applied

to reduce the order to the required value. This particular problem is often encountered

when applying the algorithm in applications relating to MIMO communication systems as

discussed further in the penultim ate chapter of this thesis. For example, if the polynomial

m atrix D 184(z) € C 4x4xl7° obtained using p = 10“ 10 is truncated to be of order 20, the

relative error of the decomposition is found to be 0.0542. This is nearly half of the value

obtained when truncating the order of the polynomial m atrix throughout each iteration of

the algorithm with a larger value of p , but obtaining the same final order. This can be seen

in Table 4.6 for the case p = 3 x 10-4 .

83

4.6 Numerical Example 3.7 With Truncation

Figure 4.8 shows how the order of the transformed polynomial matrix £>,(2) increases at

each iteration i of the SBR2 algorithm, for each of the five cases of truncation recorded in

Table 4.6. This figure clearly illustrates the steady increase in the order of the polynomial

matrix when no truncation method is used, leading to a matrix of a very large order. Fur

thermore, by comparing the individual plots for each truncation value with the relative errors

obtained for each case, it is clear that the order can be vastly reduced whilst still maintaining

an accurate level of decomposition.

3500

* No Truncation
3000

i_10
2500

u .
0
T3
i_

2000

O
1500

1000

500

0 100

Iteration
120 140 160 180 200

Figure 4.8: The order of the polynomial m atrix D t(z) a t the end of each iteration i of
the SBR2 algorithm for the cases when (i) no truncation m ethod is used, and then the
energy based truncation m ethod is applied to the transform ed m atrix D j(z) w ith (ii)
p = 0, (iii) p = 10-10, (iv) p = 5 x 10-5 and (v) p = 3 x 10-4 .

Finally, the paraunitary transformation matrix, which can also grow to an excessive order

as illustrated in Figure 3.4, was also truncated using the method suitable for non para-

Hermitian polynomial matrices described in Section 4.3.2, with the truncation parameter

p set as 5 x 10“ 5. Truncating both the polynomial transformation matrix H ^(z) and the

transformed polynomial matrix D 2(z) at the end of each iteration of the algorithm using this

value of p (although they can be set differently), the relative error of the polynomial matrix

decomposition increased from 0.0491 to 0.0495. Figures 4.9 and 4.10 illustrate the resulting

84

4.7 Conclusions

diagonal m atrix T){z) and paraunitary transform ation matrix H (2) obtained for this instance.

0)

c
o>
cd
2

Figure 4.9: The diagonal matrix D(«2) produced by applying the SBR2 algorithm to
the polynomial space-time covariance matrix R(2) from Example 3.7, implementing
the energy based truncation method with /1 = 5 x 10-5 .

4.7 Conclusions

This chapter has presented two polynomial m atrix truncation methods, both of which can

be used within the SBR2 algorithm to stop the order of both the paraunitary transformation

m atrix and the resulting diagonal polynomial m atrix becoming unnecessarily large. The

results have clearly dem onstrated that the energy based truncation m ethod is the best method

to use, provided a suitable choice of the truncation param eter /z has been made, as it allows

some control over the accuracy of the overall m atrix decomposition. The truncation method

can be applied to bo th of the polynomial matrices H j(z) and D ,(^) from equation (4.1) at

the end of each iteration of the algorithm, which will consequently reduce the computational

load, enabling the computational time of the SBR2 algorithm to be drastically reduced.

Using the truncation m ethod does not affect the proof of convergence of the SBR2 algorithm.

85

4.7 Conclusions

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20
0.5

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20
Lag

Figure 4.10: The paraunitary matrix H (2) produced by applying the SBR2 algorithm
to the polynomial space-time covariance matrix R(2:) from Example 3.7, using the
energy based truncation method for non para-Hermitian matrices with fi — 5 x 10-5 .

Furthermore, using a suitable value of the truncation param eter fi will also result in a diagonal

polynomial m atrix of a much smaller order, as is often required in practice, e.g. when

applying the decomposition to MIMO communications. This application is discussed further,

together with a brief description of how the relative error affects the overall performance in

the penultim ate chapter of this thesis.

The three main objectives of the truncation method are

1. To reduce the order of the output matrices D (z) and H (2) obtained by the SBR2

algorithm, which were previously unnecessarily large,

2 . to reduce the computational time taken to calculate the decomposition, whilst

3. not compromising the accuracy of the decomposition performed significantly.

Unfortunately, finding the appropriate value of fi involves a process of trial and error, trying

different values of fj, until one is found, which leads to a sufficiently accurate polynomial

m atrix decomposition, whilst optimising the computational speed and producing matrices of

86

4.7 Conclusions

a sufficiently small order. At the very least, the energy based truncation method should be

applied to both the paraunitary transformation m atrix H^(z) and the transformed matrix

D ^ z), at the end of each iteration of the algorithm with the truncation param eter /.i set equal

to zero. As dem onstrated by the results in this chapter, this can often drastically reduce the

order of the two matrices, thereby allowing the computational load of the algorithm to be

reduced and the computational speed to increase. Furthermore, using this value of ft will not

compromise the accuracy of the decomposition performed and the transformation matrix will

still be paraunitary. If a particular order is required for the resulting polynomial matrices

and the computational time is not the main concern of the algorithm, then it is better to set

//, equal to zero and then truncate the orders of the resulting polynomial matrices obtained

from this decomposition again using the fixed bound m ethod to obtain the appropriate orders.

This will ensure a more accurate level of polynomial m atrix decomposition than tha t obtained

when truncating at each iteration with fi > 0. The observation is made here as this technique

is used for results presented in the remaining chapters of this thesis.

The order of the matrices can be reduced further by setting // > 0, but then this will

affect the accuracy of the decomposition as the transformation will no longer be norm (or

energy) preserving. Moreover, if it is used to truncate the transform ation m atrix H t (z), then

this m atrix will no longer be exactly paraunitary. For this reason, when setting fi > 0 it is

im portant to always check the relative error of the decomposition and also the proportion of

the Frobenius norm of both the polynomial matrices R(.z) and H (2) tha t has been lost due to

truncation. If the truncation param eter is suitably chosen the technique can be implemented

to optimise the speed of the algorithm, without significantly compromising the accuracy of the

decomposition. The appropriate choice for the truncation param eter // for each application

of the decomposition, in terms of optimising the speed and minimising the relative error

of the decomposition will have to found experimentally for each m atrix to which the SBR2

algorithm is to be applied.

Finally, the truncation methods presented here, can also be applied to any polynomial

matrices, not just those calculated within the SBR2 algorithm. The energy based bound is

also used with the other polynomial m atrix decompositions to be presented in this thesis.

87

4.7 Conclusions

The computational complexity of the SBR2 algorithm is presented in Appendix C. Note that

the polynomial m atrix truncation method has been discussed in [59], where the energy based

truncation method is used within the SBR2 algorithm to obtain an accurate PEVD.

Chapter 5

The QR D ecom position of a
Polynom ial M atrix

5.1 Introduction

The Polynomial m atrix QR Decomposition (PQRD) is a technique for factorising a poly

nomial m atrix into an upper triangular and a paraunitary polynomial m atrix and can be

applied to either a square or rectangular polynomial matrix, where the coefficients of each

polynomial element can be either real or complex. For a polynomial m atrix A (z) € C pXq,

the objective of the PQRD is to calculate a paraunitary polynomial m atrix Q (z) € C pxp

such tha t

Q(2)A(2:) — R(2) (5-1)

where m *) G C pxq is an upper triangular polynomial matrix. This clearly constitutes a

generalisation of the QR decomposition (QRD) from matrices with scalar elements to those

with polynomial elements, each with an associated set of coefficients. Note tha t unlike the

PEVD, which requires the input m atrix to be a para-Hermitian polynomial matrix, there is

no special structure or requirements of the polynomial m atrix A (2) for the QRD.

Calculating the QRD of a polynomial m atrix is clearly a more complex problem than

formulating the same decomposition of a scalar matrix, as each element of the m atrix A(z)

now consists of a series of polynomial coefficients. In order to drive one element of the

m atrix to zero, all coefficients of this element must be driven to zero and this can no longer

be achieved using only Givens rotations [6]. Instead, a similar approach is implemented

to tha t used when generating the paraunitary transform ation m atrix required within the

89

5.2 An Elementary Polynomial Givens Rotation

SBR2 algorithm and so the paraunitary polynomial m atrix Q(z) is formulated as a series of

elementary rotation matrices interspersed with delay matrices.

This chapter introduces three different algorithms for calculating a QR decomposition of

a polynomial m atrix, where each of the algorithms adopts a slightly different technique for

formulating the paraunitary transformation m atrix Q (2). The three algorithms are defined

as

1. PQRD By Steps (PQRD-BS)

2. PQRD By Columns (PQRD-BC)

3. PQRD by Sequential Best Rotation (PQRD-SBR)

As with the SBR2 algorithm for calculating the PEVD, the QR decomposition of a polynomial

m atrix is not unique and so the three decomposition algorithms above will not necessarily gen

erate exactly the same paraunitary or upper triangular polynomial matrices when given the

same input m atrix A(z); this point is considered in Section 5.7 of this chapter. Convergence

of each of the algorithms is then discussed, before each technique is demonstrated by applying

the algorithm to a simple polynomial matrix. A possible application of the decomposition

is in MIMO communications, where it is often required to reconstruct data sequences that

have been distorted due to the effects of m ultipath propagation, leading to intersymbol inter

ference (ISI) and co-channel interference (CCI). This application of the PQRD is discussed

towards the end of this thesis in Chapter 8 . Before discussing each of the three algorithms

for calculating the PQRD, the concept of a polynomial Givens rotation is introduced.

5.2 A n Elem entary Polynom ial G ivens R otation

An elementary polynomial Givens rotation (EPGR) is a polynomial m atrix tha t can be ap

plied to either a polynomial vector or m atrix to selectively zero one coefficient of a polynomial

element. Firstly, we discuss how this m atrix can be applied, in the simplest case, to a polyno

mial vector a (z) e C 2xl and then subsequently discuss how it can be applied to a polynomial

matrix.

90

5.2 An Elementary Polynomial Givens Rotation

An EPG R takes the form of a Givens rotation preceded by an elementary time shift

matrix. For example, a 2 x 2 EPG R is formulated as follows

\
ceta

- s e ~ i4>

se

ce:, — lOt

(
1 0

0 z l
(5.2)

ce s e ^ z 1

—se ^ ce lClz l
(5.3)

where c and s define the cosine and sine of the angle 0 respectively. The aim of this matrix,

when applied to a polynomial vector a(z) G C 2xl as demonstrated

ce

—se'

se ^z

ce~iQz t

ai(z)

a'2(z)
(5.4)

is to drive a specified coefficient from the polynomial vector a (z) to zero. For example, to

zero the coefficient o,2 {t), the lag param eter in the EPG R is set as t = t and the rotation

angles are chosen such tha t

tan (0) = | a2(f)|

and

l«i(0) | ’

<j) = - arg(a2 (t))

a = - arg(a i { 0))

(5.5)

(5.6)

(5.7)

thus resulting in 0^(0) = 0. Furthermore, following the application of the EPG R the coeffi

cient 0^(0) is real and |<ẑ (0) |2 = |a i(0)|2 + |a2(f)|2. Note tha t if | = 0 in equation (5.5),

then set 6 = n / 2. The rotation angles 4> and a could have alternatively been chosen as

(f) = arg(ai(0)) and a = arg(a,2 (t)), (5.8)

91

20

5.2 An Elementary Polynomial Givens Rotation

however this choice of angles will not ensure the resulting coefficient a[(0) is a positive

real scalar, which is required for uniqueness in the scalar m atrix QRD. Note that unlike

the rotation angles required for the SBR2 algorithm, equation (5.5) will not have multiple

solutions and so it does not m atter whether the basic or four quadrant arctangent function

is used for its calculation.

This technique can now easily be extended to formulate an EPGR, which can be applied to

a polynomial matrix, A (z) E E C pxg, to drive a particular coefficient of one of the polynomial

elements of this m atrix to zero. For example, the EPG R required to zero the coefficient ajk(r)

of the polynomial element Qjk(z) takes the form of a p x p identity m atrix with the exception

of the four elements situated at the intersection of rows j and k with columns j and k. These

elements are given by the 2 x 2 EPG R m atrix G^Q’̂ ’̂ (z) described by equation (5.3), where

the lag param eter is set as t = t and the coefficients required for calculating the rotation

angles in equations (5.5) - (5.7) are now

a 2 (r) = aj k (r) and ai(0) = akk(0). (5.9)

This p x p EPG R m atrix will be defined as G (z) where the superscripts j and k have

been added to denote the position of the polynomial coefficient that the EPG R is designed

to zero and can be applied to A(z) to obtain the transformed m atrix

A'(2) = (5-io)

where as a result of the application of the EPG R «;*<<» = 0 , a'kk(0) is real and la fcfc(°) |2 ~

|afcfc(0) |2 + lajfc(r) |2- The effect of this transform ation is to shift the coefficient ajk(r) so that

it becomes the coefficient of z° in the same polynomial element, i.e. it becomes the coefficient

a,jk (0), and then apply the appropriate rotation so tha t the coefficient is forced to equal to

zero.

Note th a t an E PG R m atrix is paraunitary by construction as each component of the

matrix, i.e. the Givens rotation and the elementary time shift matrix, are both paraunitary.

92

5.3 Complete Polynomial Givens Rotation

As a consequence of this, the transformation is norm preserving and so

G O.*.».«.0.OW A W = ||A W ||p
r

(5.11)

5.3 C om plete Polynom ial G ivens R otation

The objective of a complete polynomial Givens rotation (CPGR) is to zero an entire poly

nomial element of a polynomial vector or m atrix by driving each coefficient of a polynomial

element to zero in turn. In practice, as with the SBR2 algorithm, it is often not feasible to

zero all coefficients of a polynomial element and so it is only required tha t each coefficient

of the polynomial element becomes sufficiently small. A CPG R will firstly be introduced in

its simplest case as a 2 x 2 m atrix applicable to a polynomial vector a(z) E <C2xl, before

extending the concept so it can be applied to a polynomial m atrix of any dimension.

A series of EPG Rs can be applied iteratively to the polynomial vector a (z) € C 2xl, as

demonstrated by equation (5.4), to drive all coefficients of a specified polynomial element

arbitrarily close to zero. For example to drive the polynomial element a2 (z) to zero, at

each iteration the rotation angles 0 , (f> and a and the lag param eter t are chosen to zero

the coefficient within a2 (z) with maximum magnitude, this coefficient will be referred to

as the dominant coefficient. If this coefficient is not unique, then any of the dominant

coefficients from the polynomial element may be chosen. The complete series of EPGRs

required, constitutes a CPGR, which will be denoted by the m atrix G^2,1)(z), where the

superscripts denote the row and column position of the polynomial element tha t the matrix

is attem pting to annihilate. A matrix of this form can be applied to a polynomial vector

a (z) e <C2xl such th a t

fii (z) a'i(z)

a2(z) 0
(5.12)

where all coefficients of the polynomial element a2 (z) have been driven arbitrarily close to

zero over a series of EPGRs. In practice it is often not feasible to zero all coefficients of a

polynomial element, hence the approximate equality in equation (5.12). Instead the coef

93

5.3 Complete Polynomial Givens Rotation

ficients are driven to zero until the magnitude of all coefficients of the polynomial element

a2(z) are sufficiently small and the following stopping condition is satisfied

|a2(<)l < « (5-13)

Vt E Z and where e > 0 is some pre-specified small value.

Again as with the EPGR, this idea is easily extended to a general CPGR that can be

applied to a polynomial m atrix A(z) € C pxq to drive all coefficients of one of the polynomial

elements sufficiently small. At each iteration a p x p EPG R m atrix is applied to the polynomial

m atrix to zero the dominant coefficient of a specified polynomial element and this process

is repeated until all coefficients of the polynomial element are suitably small and satisfy a

similar stopping condition to that demonstrated in equation (5.13). For example, to zero the

polynomial element aj k (z), the required CPG R m atrix is calculated as the series of EPGRs

(5.14)

where i is the number of EPGRs required to drive all coefficients of the polynomial element

sufficiently close to zero and the variables a*, 6 i, (j>i and ti denote the rotation and lag

param eters required to zero the ith dominant coefficient respectively. Note tha t each of

the EPGRs is paraunitary and so the complete polynomial Givens rotation will also be

paraunitary. Furthermore, this paraunitary transformation is also norm preserving and so
2

||A (2)||p = G U'k)(z)A{z) . A proof of convergence for a complete polynomial Givens
F

rotation step can now be easily deduced.

5.3.1 C onvergence o f a C P G R

W ith every application of an EPGR, to zero the dominant coefficient ajk(t), the quantity

laA;A;(0) |2 wM increase monotonically by the magnitude squared of the largest coefficient within

the element, i.e. by the quantity \ajk{t)\2. Furthermore, this quantity is bounded above by the
p

squared Frobenius norm of the k th column of A (z), i.e. the quantity |2 ̂ which
r i = 1

94

5.4 Algorithm 1: PQRD by Steps

will remain constant throughout all iterations of the CPGR. As |afcfc(0) |2 is monotonically

increasing and bounded above, over a series of EPGRs the stopping condition similar to that

dem onstrated in equation (5.13) is guaranteed and the complete polynomial Givens rotation

converges in this respect.

5.4 A lgorithm 1: PQ R D by Steps

This section describes the first of the three algorithms for calculating the PQRD and directly

extends the QR decomposition from matrices with complex scalar elements to polynomial

matrices, where each element is now a polynomial with an associated set of complex coeffi

cients. The algorithm proceeds to perform the decomposition by following the same strategy

in eliminating the entries of the m atrix as is used in the Givens method for achieving the

QRD of a scalar m atrix, i.e. by driving the elements beneath the diagonal to zero in a

specified order. There are several different orderings that can be implemented to obtain the

scalar m atrix QRD, but for the purposes of this thesis, it is assumed that the elements are

eliminated starting with the uppermost left element beneath the diagonal of the m atrix and

then proceed through all elements beneath the diagonal in each row from left to right, before

moving to the next row down and so on. However, as each element of the m atrix is now

a polynomial, all coefficients of the polynomial element must be eliminated to ensure that

each polynomial element is approximately equal to zero. This can no longer be achieved by

applying a scalar Givens rotation matrix; instead a CPGR is required.

5.4.1 T he P Q R D by Steps A lgorithm

The PQRD by Steps algorithm aims to transform a polynomial m atrix A (z) G C pxq into an

approximately upper triangular polynomial m atrix R (z) € C pxq by means of a paraunitary

transform ation m atrix Q(z) G C pxp, as demonstrated

Q(*)A(z) = R (z). (5.15)

95

5.4 Algorithm 1: PQ RD by Steps

The paraunitary m atrix is calculated within the algorithm as a series of ordered steps, where

at each step all coefficients associated with one polynomial element situated beneath the diag

onal of the polynomial m atrix A(z) are driven sufficiently small by applying the appropriate

CPGR. For example, the transformation observed at one step, say the ith step, to drive all

coefficients of the polynomial element Qjk(z) sufficiently small, is therefore of the form

A i(*) = f i w'*)(*)A i-1W (5.16)

where G (j' ^(z) is the complete polynomial Givens rotation designed to drive all coefficients

of the polynomial element ajk(z) sufficiently small.

Each step of the algorithm, however, operates as an iterative process, where at each

iteration an EPG R m atrix is applied to the polynomial m atrix A(z) to zero the dominant

coefficient of the (j, k) th polynomial element. For example, if the dominant coefficient is

found to be ajk(t), the transform ation is of the form

A (z) = G ^ ' k'a'e,^'t\ z) A (z) , (5.17)

where G (z) defines the EPG R formulated according to Section 5.2 to zero the

dominant coefficient ajk(t). Note th a t if the dominant coefficient is not unique then any of

the dominant coefficients from the polynomial element may be chosen. The effect of this

transform ation is to firstly shift the dominant coefficient onto the coefficient m atrix of order

zero, A(0), and then apply the appropriate rotation so tha t the coefficient becomes equal to

zero, i.e. a ' fc(0) = 0. Furthermore, the transform ation performed by the EPG R to drive the

dominant coefficient ajk(r) to zero, will result in Kjfc(°) |2 = \aj k (r) \ 2 + |a**(0) |2 and a'kk(0)

will be real. Note th a t also as a result of the transform ation all coefficients in the k th row

of the polynomial m atrix A(z) have been shifted, which is caused by the application of the

elementary delay m atrix incorporated in the EPGR. In addition all coefficients in the j tfl and

k th rows of the m atrix A(z) have changed due to the rotation. Elements in all other rows of

the matrix, excluding rows j and k, are unaffected by the application of the EPGR.

This iterative process is repeated until all coefficients from the polynomial element Qjk (z)

96

5.4 Algorithm 1: PQ RD by Steps

are sufficiently small and satisfy the stopping condition

\ a j k (r) \ < e (5.18)

Vr G Z where e > 0 is a pre-specified small value. As explained previously, in practice it

is often not feasible to drive all coefficients of a polynomial element to zero by application

of a CPGR and so instead it is only ever required that a stopping condition such as that

demonstrated by (5.18) is satisfied.

This completes one step of the PQRD-BS algorithm. To begin the subsequent step, A(z)

is replaced with A (z) and the indices j and k are amended appropriately, moving to the next

polynomial element in the ordering. The ordering begins with the uppermost left element

beneath the diagonal, a2i (2), and then moves across all elements beneath the diagonal in

each row, before moving to the next row down and repeating the process. This continues

until the algorithm has visited all elements beneath the diagonal of the polynomial matrix

A (z). Once all elements beneath the diagonal have been visited, one sweep of the algorithm

has been completed. Each sweep of the PQRD-BS algorithm operates in a finite number of

steps, equal to the cardinality of the set of elements beneath the diagonal of the polynomial

m atrix A {z). However, each step operates as an iterative process and the number of iterations

required in a single step cannot be predetermined. Note th a t multiple sweeps of the algorithm

may be required and this point is discussed further in Section 5.4.2.

Finally, following i steps of the algorithm, the transform ation performed is of the form

A((2) = Qi(2)A(2) (5.19)

where Q ^ z) is the product of i CPGR matrices and will be paraunitary by construction.

Furthermore, following all steps of the first sweep of the algorithm, the m atrix decomposition

performed can be expressed as

A t (z) = G {p'N\ z) . . . G i2 ’1)(z) A{z) (5.20)
 y *

= Q

97

5.4 Algorithm 1: PQ RD by Steps

where T defines the number of elements beneath the diagonal of A (z), G ^ ,k\ z) , for j —

2, . . . ,p and k = 1, . . . , N , denotes the CPGR designed to drive all coefficients of the polyno

mial element Qjk{z) sufficiently small and where

N =
q if p > q

(5.21)
p — 1 if p < q

Note tha t in the degenerate case, where the order of the polynomial matrix A (z) is zero,

this algorithm simply reduces to computing the QR decomposition of a scalar m atrix by

applying an ordered series of Givens rotations. Of the three algorithms presented in this

chapter this is the most similar to the conventional technique for computing the QRD of a

scalar matrix. A concise description of the PQRD-BS algorithm can be found in Appendix

B.

5.4.2 M ultip le Sw eeps

The various techniques for calculating the QRD of a scalar matrix, in particular the Givens

method, will ensure th a t all elements beneath the diagonal of the m atrix are driven to zero

and once an element is equal to zero it remain so through future applications of Givens

rotations, due to the order in which elements are eliminated. However, this is not possible

when formulating the QRD of a polynomial matrix. Although the PQRD-BS algorithm

drives the dominant coefficient at each iteration of each step to zero, it only ensures tha t all

coefficients of a polynomial element are suitably small, according to the stopping condition

demonstrated by equation (5.18), before beginning the subsequent step and moving to the

next polynomial element in the ordering. Through future steps and therefore rotations of

the algorithm, these small coefficients could be rotated with other suitably small coefficients,

causing them to increase in magnitude and possibly violate the stopping criterion e. For

this reason, multiple sweeps of the algorithm may be required to ensure tha t all coefficients

relating to polynomial elements beneath the diagonal of A (z) are less than e in magnitude.

Note th a t when completing the step to drive all coefficients of the polynomial element

98

5.4 Algorithm 1: PQRD by Steps

p
a j k (z) sufficiently small, the quantity | a m n (t) | 2 will remain constant for all values of

t 771 = 71 + 1
n = 1, . . . , k — 1 and for all future steps in that particular sweep of the algorithm. Therefore,

any coefficients positioned in columns to the left of the polynomial element a j k (z) , which are

affected by the rotations and as a result have increased in magnitude to be larger than e, will

be bounded above by the Frobenius norm of the elements beneath the diagonal in the same

column of the matrix.

5.4.3 C onvergence o f th e P Q R D by S teps A lgorithm

Completion of the scalar m atrix QRD is easily deduced as the Givens m ethod will zero all

elements of the m atrix beneath the diagonal of the m atrix exactly and once an element is equal

to zero it remains so through future steps of the algorithm. However, this cannot be achieved

with the method for calculating the QR decomposition of a polynomial m atrix discussed

here. Although the dominant coefficient of a polynomial element is driven to zero at each

iteration, the algorithm only ensures that all coefficients of an element are suitably small

before moving to the next polynomial element in the ordering. Therefore, through future

rotations of the algorithm, these small coefficients could be rotated with other suitably small

coefficients, causing them to increase in magnitude and perhaps exceed the stopping criterion

e. For this reason a proof of convergence for the algorithm does not simply follow from the

proof of convergence given for one polynomial element, detailed in Section 5.3.1.

Before discussing the convergence of the algorithm, three measures on the polynomial

m atrix A(*) 6 C pxq must be introduced which will be used within the proof of convergence

for the PQRD-BS algorithm. The measures are defined as follows

Ei j — \a i j (T)\ ? (5.22)
r

ELj = E E Mt>i2 <5-23)
r i - j + l

99

5.4 Algorithm 1: PQ RD by Steps

and
3-1

E u j = \aij (r)l • (5-24)
r i=l

These measures define the squared Frobenius norm of the polynomial element Qij(z), the

squared Frobenius norm of all elements beneath the diagonal in the j th column of A (z) and

the squared Frobenius norm of all elements above the diagonal in the j th column of A (z)

respectively. As discussed previously, the squared Frobenius norm of a polynomial element

will also be referred to as the energy of tha t element. If any of the three expressions above

are followed by the further notation (0), e.g. Ei j (0) , this denotes the appropriate expression

evaluated only on the coefficient plane of order zero (i.e. set r = 0). These measures will also

be required within the proofs of convergence of the two subsequent PQRD algorithms to be

discussed later in this chapter.

W hatever the size or dimension of the polynomial m atrix A (z), the first polynomial

element to be driven to zero in the ordering will always be a,21(z). In driving all coefficients

of this polynomial element sufficiently small, the quantity £ n (0) will increase monotonically.

It will increase at each iteration of this step by the magnitude squared of the dominant

coefficient of the polynomial element a2i(z) , until the magnitude of the dominant coefficient

falls less than a pre-specified small value e > 0 according to the stopping condition (5.18).

Let the dominant coefficient at each iteration be denoted as g, then at each iteration £n(0)

will increase by g2. Subsequent steps of the algorithm, which aim to drive other polynomial

elements situated anywhere beneath the diagonal of the m atrix A (z) to zero, can never allow

this quantity to decrease, even if a subsequent step requires a CPGR to be applied to a column

positioned to the right. However, future rotations can affect coefficients beneath the diagonal,

allowing previously sufficiently small coefficients to increase in magnitude and possibly exceed

e. Furthermore, any steps to drive any polynomial element in the first column to zero, will lead

to a further increase in the quantity £ n (0) and as a consequence, this quantity will increase

montonically throughout all steps of the algorithm. This quantity is also bounded above by

the total energy in the first column, which will be denoted as E\ = E n + E l i +Ej j i , and so it

must have a suprem um si. It follows that for any S > 0 there must be an iteration L \ , beyond

which |«i — £ n (0)| < S. Any subsequent step must then satisfy g 2 < |si — £ n (0)| < S and

100

5.4 Algorithm 1: PQRD by Steps

so there exists an iteration at which the m agnitude squared of the maximum coefficient in

g,2 i(z) is bounded by S.

Similarly when the ordering reaches the polynomial element ajk(z), the series of EPGRs

required to drive this element sufficiently close to zero, will cause the quantity E kk(0) to

increase monotonically. At each iteration this quantity will increase by the magnitude squared

of the dominant coefficient within the polynomial element aj k (z). Subsequent iterations of the

algorithm will never allow this quantity to decrease due to the order in which the polynomial

elements are driven sufficiently small. The proof of convergence follows directly from the

proof of convergence given for the polynomial element a 2 i (z) and so there exists an iteration

by which the m agnitude squared of every coefficient in the element is less than a certain

value.

During the first sweep of the algorithm coefficients previously guaranteed to converge can

be rotated at a later step, possibly causing them to increase in m agnitude and become larger

than e. If this happens then a second sweep of the algorithm is undertaken. Note that the

quantity £ n (0) has only ever increased and has not been affected by any rotations or delays

applied to elements positioned in columns to the right of it. Every step involving elements

beneath the diagonal of this column will further force £11 (0) to increase, which can clearly

not continue indefinitely. W hatever happens to elements in columns to the right, there will

come a point where no further rotations are required in the first column. Once this point has

been reached, the quantity £ 22(0) will increase monotonically through all future steps until

a point is acheived where this quantity can no longer increase and further rotations are not

required in this column. This will continue to happen to all diagonal elements situated on

the coefficient plane of order zero working from left to right through the matrix. The final

quantity to increase monotonically will be E qq(0) if p > q, otherwise Epp(0) if p < q, and

once no further rotations can be applied, the algorithm has converged.

As with the proof of convergence for the SBR2 algorithm, using the truncation method

does not affect this proof of convergence.

101

5.5 Algorithm 2: PQ RD by Columns

5.5 A lgorithm 2: PQ R D by Colum ns

The second algorithm for calculating the PQRD of a polynomial m atrix A (z) G C pxq ac

cording to equation (5.15) is now introduced. This algorithm operates in a similar way to

the PQRD-BS algorithm, by calculating the paraunitary polynomial m atrix Q(z) G <Cpxp

as a series of ordered steps. However, each step of this algorithm consists of an iterative

process to drive the coefficients associated with all polynomial elements situated beneath the

diagonal of a particular column of the polynomial m atrix A (z) sufficiently small, which is

achieved by applying a series of EPGRs. The PQRD By Columns (PQRD-BC) algorithm is a

natural progression from the PQRD-BS algorithm discussed in Section 5.4 and the difference

between the process of steps for the two algorithms operate is illustrated in Figure 5.1. Before

discussing the possible advantages of this method, a detailed description of the algorithm is

firstly discussed.

START STEP 1 STEP 2 STEP 3

0

x X

X X X

X X X X

0

0 X

X X X

X X X X

0

0 0

X X X

X X X X

.. etc.

START STEP 1 STEP 2 STEP 3

X

X X

X X X

X X X x l

J

0

0 X

0 X X

0 X X X

0

0 0

0 0 X

0 0 X X

0

0 0

0 0 0

0 0 0 X

. . . etc.

Figure 5.1: Diagram to illustrate the different orders in which the PQRD-BS (top) and
the PQRD-BC (bottom) algorithms zero polynomial elements of an 5 x 5 polynomial
matrix.

102

5.5 Algorithm 2: PQ RD by Columns

5.5.1 T he P Q R D by C olum ns A lgorithm

The algorithm operates as a series of steps, where at each step all coefficients associated with

the polynomial elements positioned beneath the diagonal of one column of the polynomial

m atrix A (z) € C pxq are driven sufficiently small. The algorithm begins the first step with

the first column of the matrix.

The first step begins by locating the dominant coefficient positioned beneath the diagonal

of the first column of the input m atrix A(z). As with the PQRD-BS algorithm, if the

dominant coefficient is not unique then any of the dominant coefficients may be chosen.

Assume that this coefficient is found to be Oji(r), which denotes the coefficient of z ~ T in the

polynomial element a.j\(z), where clearly the row index j > 1-

The appropriate EPG R matrix, G ^ ’ ’ is then formulated according to Section

5.2, where the lag param eter is set as t = r and the rotation param eters a, 0 are 0 are

calculated according to equations (5.5) - (5.7), where the coefficients required for these cal

culations now correspond to 02 (f) = Oji(f) and ai(0) = an (0). The EPG R is then applied

to the polynomial m atrix A (z) to obtain the transformed polynomial m atrix

A \ z) = G ij,1'Q'e,<t>,T){z)A{z) (5.25)

where as a result of this transformation o '^O) = 0. Furthermore, |a'n (0)|2 = |aji(r)|2 +

|a n (0) |2 and a'n (0) is real.

This two-stage iterative process is repeated, replacing A (z) with A ' (z) until all coefficients

beneath the diagonal of the first column of the polynomial m atrix A (2) are sufficiently small.

As with the PQRD-BS algorithm, it is not always feasible to zero all coefficients beneath the

diagonal of A (z) and so instead only an approximately upper triangular polynomial m atrix

is required. Therefore, the iterative routine is repeated until all coefficients beneath the

diagonal in the first column satisfy

0-1 (t) < c, (5.26)

Vr € Z and i — 2, . . . , p , where e > 0 is some pre-specified small value. This completes

the first step of the PQRD-BC algorithm. To begin the subsequent step, A (z) is replaced

103

5.5 Algorithm 2: PQ RD by Columns

with A' (z) and the process is repeated moving to the second column in the matrix. Once all

coefficients of the polynomial elements beneath the diagonal of the column are sufficiently

small, the algorithm moves to the next column, positioned to the right of the column it has

just completed (provided it contains polynomial elements beneath the diagonal) and repeats

the process driving all coefficients beneath the diagonal to zero until a suitable stopping

condition similar to th a t of (5.26) is satisfied. The algorithm continues this process until

all columns with polynomial elements beneath the diagonal have been been visited. Once

all steps have been completed, this defines one sweep of the PQRD-BC algorithm. Again,

as with the PQRD-BS algorithm, multiple sweeps of this algorithm can be implemented if

required.

Assuming k steps of the algorithm, the polynomial m atrix decomposition performed is of

the form

A k (z) = Q k(z)A(z) (5.27)

where Q A.(^) G C pxq is a paraunitary polynomial matrix, which is calculated as a series of

EPG R matrices, and A k(z) is the transformed polynomial matrix, which is guaranteed to

converge to an upper triangular matrix. Note that the number of steps in one sweep of the

algorithm can be determined in advance, but the number of sweeps in the decomposition

and the number of EPGRs required to drive all coefficients sufficiently small in each sweep

cannot. The proof of convergence for the algorithm is detailed in Section 5.5.2 and a concise

description of the algorithm is contained in the Appendix B.

If both the PQRD-BS and PQRD-BC algorithms are applied to the same scalar matrix,

they will generate the same unitary and upper triangular matrices. Furthermore, the two

algorithms will also require the same number of Givens rotations to obtain an exactly upper

triangular m atrix and this will be obtained, in both cases, from only one sweep of the algo

rithm. The num ber of Givens rotations required can also be specified in advance. However,

computationally the PQRD-BC algorithm will be slightly more expensive than the PQRD-

BS algorithm, due to the computations required to locate the dominant coefficient within a

given column of the matrix. This is obviously not required within the PQRD-BS algorithm.

Furthermore, when calculating the QRD of a polynomial m atrix using either of these PQRD

104

5.5 Algorithm 2: PQ RD by Columns

algorithms, the number of EPGRs required to transform the polynomial m atrix into an upper

triangular polynomial m atrix cannot be determined in advance and an approximately upper

triangular m atrix is only ever formulated from the decomposition. It might be expected that

the PQRD-BC algorithm will require fewer sweeps and consequently less overall iterations

of the algorithm, due to the stopping criterion considering all elements beneath the diagonal

of a given column of the m atrix at each step. For this reason, the PQRD-BC algorithm is

a sensible progression from the previous PQRD-BS algorithm as it will always require fewer

steps per sweep.

5.5.2 C onvergence o f th e P Q R D by C olum ns A lgorithm

Convergence of each step of the algorithm can easily be deduced in a similar way to the proof

of convergence given for the PQRD-BS algorithm. At each step, to drive the coefficients

beneath the diagonal of column k sufficiently small, the quantity E^ki0) will increase at each

iteration by the m agnitude squared of the dominant coefficient. This quantity will be bounded

from above by the squared Frobenius norm of the k th column and so convergence can easily

be proved for each step. Note tha t once the k th column has had all of its coefficients beneath

the diagonal driven sufficiently small, the diagonal coefficients from this column will not be

rotated in any future steps and so the quantity -E^O) will then remain constant throughout

future steps of th a t particular sweep of the algorithm.

A proof of convergence for the algorithm does not simply follow from the proof of con

vergence for each step. Once again, not driving all coefficients associated with polynomial

elements beneath the diagonal to be zero, can lead to small coefficients being rotated with

each other and possibly increasing in magnitude. If these coefficients do increase above the

threshold value of e, then a second sweep of the algorithm is required. The proof of conver

gence now follows directly from the proof for the PQRD-BS algorithm.

The quantity E \ \ (0) can only ever increase in future sweeps and so a point will be reached

where no further rotations are required within the first column. Once this point has been

reached, the quantity £ 22(0) will increase monotonically through all future steps until a point

is reached where this quantity can no longer increase. As a result no further rotations are

105

5.6 Algorithm 3: Sequential Best Rotation PQRD

required in this column. This will continue to happen to all diagonal elements situated on

the coefficient plane of order zero working from left to right through the matrix.

5.6 A lgorithm 3: Sequential B est R otation PQ R D

The motivation behind the third and final PQRD algorithm was to use an entirely Sequential

Best Rotation (SBR) approach, as used within the PEVD algorithm SBR2. As a result, this

algorithm will not need to operate as a series of steps, each requiring their own convergence

criterion to be m et before the algorithm can continue, and multiple sweeps of the algorithm

will never be required.

The QRD of a scalar m atrix could also be obtained using this algorithm, although for this

case it is preferable to use an ordered technique such as the PQRD-BS algorithm. Convergence

of the SBR approach is guaranteed, but this algorithm will typically require more Givens

rotations to obtain an upper triangular matrix, due to the possibility of the series of rotations

forcing elements th a t have previously been driven to zero to increase in magnitude.

5.6.1 T he P Q R D A lgorithm by Sequential B est R otation

The PQRD-SBR algorithm operates as an iterative process, where at each iteration the

polynomial coefficient beneath the diagonal with maximum magnitude, termed the dominant

coefficient, is driven to zero by applying an appropriate EPGR. Once the dominant coefficient

has been driven to zero, an inverse time shift m atrix is applied to the resulting m atrix to ensure

tha t the dominant coefficient is returned to its original position in the polynomial element.

As a consequence, the paraunitary transformation m atrix Q(z) is not simply generated as a

series of EPGRs, as for the previous two decomposition algorithms, bu t instead formulated

as a series of EPG Rs interspersed with inverse time shift matrices. The motivation behind

this step, is explained within the description of the iterative process of the algorithm. The

three-step routine carried out at each iteration, to find the dominant coefficient and drive it

to zero is now discussed in detail.

The algorithm begins by locating the dominant polynomial coefficient situated beneath

106

5.6 Algorithm 3: Sequential Best Rotation PQRD

the diagonal of the polynomial m atrix A(z), i.e. it finds the coefficient ajk(t), for j > k, such

that

Kfc(f)| > \amn(r)\ (5.28)

holds for all coefficients amn(r), where m = 2 , . . . ,p, n = 1, . . . , m — 1 and for all values of

the lag param eter r e Z. Unlike the previous two algorithms, if the dominant coefficient

is not unique then it is better to choose the coefficient associated with the uppermost left

polynomial element of the matrix as this will achieve a faster rate of convergence.

Subsequently, the dominant coefficient now needs to be driven to zero; this is achieved

by applying an appropriate EPG R to the polynomial m atrix A (z) as follows

A {z) = G {z)A(z) (5.29)

where the indices j , k and t define the position of the dominant polynomial coefficient, which

is to be eliminated. The structure of this matrix, and formulae for calculating the necessary

rotation angles, is the same as the previous two algorithms and is described in detail in

Section 5.2. Following the application of the EPG R the dominant coefficient has been driven

to zero and so a ' fc(0) = 0 , the diagonal coefficient afkk(0) is real and will have increased in

magnitude squared such tha t K * (o)l2 = l<W o)l2 + b * (o) |2.

An elementary inverse time-shift m atrix B t a k e s the form of an identity matrix

with the exception of the j th diagonal element which is z~l , i.e.

(5.30)

i o o

b M) (z) = 0 z~l 0

0 0 lp- j

This m atrix is applied to A '{z) to generate the transformed matrix

A"(z) = B (j’t}(z)A' (z) , (5.31)

where consequently all polynomial elements on the j ih row of A' (z) have had a f-fold delay

107

5.6 Algorithm 3: Sequential Best Rotation PQRD

applied to them. In particular this is done to move the diagonal coefficient associated with the

lag t back to its original position on the coefficient plane of order zero, i.e. a'jj(0) = •(—£).

More specifically, following the application of the matrix, the elements on the j th row of the

m atrix are shifted accordingly

ajm(T) — ajm(T ~ t) f°r m = 1, and Vr e Z. (5.32)

All other rows of the polynomial m atrix are not affected by this transformation. Note that

the m atrix dem onstrated by equation (5.30) is the inverse of the time-shift m atrix that is

incorporated in the EPG R applied in the second step of the iterative process. This final step

is implemented to ensure tha t the original zero-lag diagonal elements are brought back onto

the zero-lag plane following the application of every EPGR, to minimise the disruptive effects

of the initial time shifts incorporated in the EPGR. At each iteration the zero lag diagonal

coefficient in the same column of the m atrix as the dominant coefficient, for this example

the coefficient afc/t(0), will increase in magnitude squared. For convergence of the algorithm,

it is better to keep these diagonal coefficients positioned on the coefficient m atrix of order

zero, as much as possible. However, by applying the elementary m atrix delay incorporated

in the EPG R the coefficient a,jj(0) will be shifted and so this is not possible. In the SBR2

algorithm, this is not an issue, as the elementary delay matrices are applied on both sides of

the polynomial m atrix and so the set of zero lag diagonal coefficients will never be affected

by the delay matrices. This cannot be done here, where it is required tha t the paraunitary

transform ation matrices are only applied on the left hand-side of the polynomial matrix. Note

also tha t this point is not an issue with the two previous PQRD algorithms as convergence

is guaranteed by using two ordered approaches.

At the end of the first iteration of the PQRD-SBR algorithm the following p x p parau

nitary m atrix has been calculated

Q,(*) = (5.33)

The three-stage routine is now repeated replacing A (z) with A "(z), until the magnitudes of

108

5.6 Algorithm 3: Sequential Best Rotation PQRD

all coefficients situated beneath the diagonal are sufficiently small and the following stopping

condition is satisfied

IM r) | < 6 (5.34)

Vr € Z, for j = 1, . . . , p, k = 1 , . . . , q where j > k and e > 0 is a pre-specified small value.

Following i iterations of the algorithm, the m atrix decomposition performed can be ex

pressed as

a W - - - Q 2WQ,(*)A(*) = A.(2), (5.35)

where Q ^) € C pxp is a paraunitary polynomial m atrix of the form Q ^) = B ^ ,t\ z) G ^ ' k'a'e'(̂ 't\ z)

and Ai (z) is the transformed polynomial m atrix resulting from i iterations of the algorithm.

The algorithm is guaranteed to converge and so this m atrix will converge to an upper trian

gular matrix.

Once the algorithm has converged, a diagonal m atrix of final phase adjustment terms can

be applied to resulting upper triangular polynomial matrix, to ensure tha t the diagonal zero

lag coefficients are all real and positive. This will then ensure uniqueness of the decomposition

in the scalar m atrix case, provided the m atrix is non-singular. The same must also be done

to the coefficient associated with the zero lag of the final diagonal element of the upper

triangular matrices obtained from the first two algorithms, for the same reason.

5.6.2 C onvergence o f the P Q R D A lgorithm by Sequential B est

R otation

This algorithm operates as a series of iterations, each one designed to zero the dominant

coefficient from anywhere beneath the diagonal of the matrix. At each iteration of the

algorithm, to zero the dominant coefficient ajk(t), the quantity |a^fc(0) |2 will increase by the

m agnitude squared of the dominant coefficient, i.e. |a ^ (0) |2 = K * (°) |2 = |a u (0) |2+ b * « | 2.

However, at the same time it is possible tha t energy can move between any other coefficients

on the k th row and j th row of the m atrix over all possible lags. Note that the quantity

is not guaranteed to increase monotonically over subsequent iterations if it involves rotating

109

5.6 Algorithm 3: Sequential Best Rotation PQRD

coefficients in the same row (row k) positioned to the left of column k, i.e. EPGRs applied

to any coefficients associated with polynomial elements akl (z) , . . . , ak(k-i)(z) can f°rce the

quantity |ajtfc(0) |2 to decrease. In fact, there are three possible ways in which this quantity

can be affected,

1. This quantity will increase if the dominant coefficient is beneath the diagonal of the

k ih column of the matrix.

2. The quantity will be unaffected by any rotations to zero a dominant coefficient posi

tioned in a column to the right of the k th column, i.e. if the dominant coefficient is

in columns k -I- 1, . . . , q. Both the EPG R and the inverse time shift will not affect any

polynomial elements in the k th row of the m atrix and so the quantity is guaranteed to

not decrease. Furthermore, if the dominant coefficient is in a column positioned to the

left of column k , but in any row beneath row k , it is also unaffected.

3. If the dominant coefficient at a future iteration is positioned in row k, but in a column

to the left of column k , then it is possible for this quantity to decrease as it will be

affected by both the application of the EPG R and the inverse time shift matrix.

However, any EPGRs applied to polynomial coefficients in the first column of A (z) will

lead to an increase in the quantity la'/^O)!2 and this will continue through all iterations of

the algorithm. This quantity will remain unaffected over all future iterations of the algo

rithm, even if they involve applying rotations to polynomial coefficients tha t are positioned

in columns to the right of the first column. Furthermore, this quantity will never be affected

by the application of elementary delay matrices in either the first or third stages of each

iteration of the algorithm. Therefore, over all iterations of the algorithm, this quantity will

be monotonically increasing and, as the paraunitary transformations are norm preserving in

the columns of the m atrix, the quantity is bounded above by the squared Frobenius norm

of all elements in the first column of A (z). In a similar way to the previous two algorithms,

this quantity will have a supremum and so there exists an iteration by which the magnitude

squared of the dom inant coefficient in the first column is bounded by e.

110

5.7 Non-Uniqueness of Solutions

As with the previous algorithms, once this has been achieved, future rotations can cause

the squared Frobenius norm of elements beneath the diagonal in the first column to be

redistributed, forcing coefficients to possibly increase in magnitude and become larger than

e. If this happens, then future EPGRs will need to be applied to coefficients in the first

column. However, this process cannot continue indefinitely. There will be a point, as with

the previous two algorithms, where no future rotations are required to be applied to any

coefficients beneath the diagonal of the first column. Subsequently, the quantity |a'2'2(0) |2

will increase monotonically, until a point is reached where the stopping condition is satisfied

and no further rotations are required in the second column of the polynomial matrix. This

process continues through all columns of the m atrix working from left to right.

5.7 N on-U niqueness of Solutions

The scalar m atrix QRD is unique provided the input m atrix is non-singular and the diagonal

elements of the resulting upper triangular m atrix are positive and real. Similarly, for a non

singular polynomial m atrix A(z) e C pxp, provided it is of full column rank and assuming

two PQRDs exist for this matrix, such that

A(z) - and A(z) = Q 2 (z) R 2 (z) (5.36)

then

Q ,(*)Q .(*)= fi2(*)E r1(*)- (5-37)
S y. I. . ✓ S " V

G(z) T (z)

The polynomial m atrix G(z) will be paraunitary by construction and T (z) will be an upper

triangular polynomial m atrix as it is formulated as the product of two upper triangular

polynomial matrices. Furthermore, according to equation (5.37) the polynomial m atrix T(z)

must also be paraunitary and therefore satisfy

T(z)T(z) = T (z) T (z) = I. (5.38)

111

5.7 Non-Uniqueness of Solutions

By equating both side of equation (5.38) it can be demonstrated th a t an upper triangular

polynomial m atrix can only be paraunitary if it is a diagonal m atrix where the diagonal

polynomial elements satisfy = 1 for j = I , . . . , p . The diagonal element t j j (z)

could be calculated as

d e t (Ri (z)) A E i M U *

'33
P

E iM]

k^3

(5.39)
33

where for uniqueness, it is required tha t this quantity is equal to unity for j = 1, . . . ,p, but

as t j j (z) is a polynomial for each value of j , this cannot be imposed. If the input m atrix is

a scalar, then uniqueness of the solutions is easily enforced by requiring tha t the diagonal

elements of the upper triangular m atrix obtained by the QRD are real and positive. However,

for a polynomial m atrix it is not so simple and the only thing known about the diagonal

elements of the polynomial m atrix T (z) is tha t | |fjj(2) ||^ = 1 for j — 1 , . . . ,p. Therefore, it

is possible to have a diagonal paraunitary m atrix T (z), whose diagonal elements will consist

of time-shift and phase adjustment terms of the form t j j{r) = etQz ~ T for j = 1, . . . ,p and

all time lags r , such th a t T (2)R 1(z) = R ^ z) , where both Ri(.z) and R ^ z) are both upper

triangular. The same is true of the paraunitary m atrix obtained from the PQRD. Note

tha t for the application of the PQRD to MIMO communication problems, uniqueness of the

solutions is not required and therefore is of no direct relevance.

5.7.1 Im plem entation of th e P Q R D A lgorithm s

The truncation m ethod suitable for non para-Hermitian polynomial matrices detailed in

Section 4.3.2, is used within the PQRD algorithm to ensure tha t the order of the polynomial

m atrix A (z) does not grow unnecessarily large. The same truncation method can also be

applied to the paraunitary transformation m atrix Q(z), as the order of this m atrix can also

become unnecessarily large.

112

5.8 Numerical Example

As with the SBR2 algorithm, it is not necessary to apply the polynomial Givens rotation

to the entire polynomial matrix A(^) at each iteration of the algorithm. Only two rows of

the m atrix are affected at each iteration and so only these two rows need to be updated.

Similarly, the transform ation matrix Q(^) is not computed within the iterative routine of

the algorithm. Instead the parameters j , k, 8 , a, 0 and t are stored and so the resulting

transformation m atrix can be calculated afterwards, when required. As a result, this will

often help reduce the computational load of the algorithm enabling whichever of the PQRD

algorithms has been used, to run faster.

5.8 N um erical Exam ple

The objective of this example is to illustrate the results of the three different PQRD algo

rithms when each is applied to a fairly simple polynomial m atrix of a relatively small size

and order. A polynomial m atrix A (z) € C 4x3 of order 4 was generated, where the real and

imaginary parts of the coefficients of each of the polynomial elements were randomly drawn

from a normal distribution with mean zero and unit variance. A graphical representation for

this polynomial m atrix can be seen in Figure 5.2, where a stem plot is used to demonstrate

the magnitude of the series of coefficients for each of the polynomial elements. The position

of the stem plot in the figure relates to the position of the polynomial element, which it

represents within the matrix.

The three PQRD algorithms were applied to the polynomial m atrix A (z) in turn, each

time using the energy based truncation m ethod suitable for non para-Hermitian polynomial

matrices with the truncation param eter set as p = 10~6. The stopping condition for each

of the three PQRD algorithms was appropriately set to ensure that the magnitude of each

polynomial coefficient beneath the diagonal of the resulting polynomial m atrix R (2) was less

than 10~3, allowing multiple sweeps of the PQRD-BS and PQRD-BC algorithms to be im

plemented if required. The upper triangular and paraunitary polynomial matrices obtained

when the PQRD-BS algorithm was applied to A (z) are given in Figures 5.3 and 5.4 respec

tively. Figures 5.5 and 5.6 illustrate the matrices obtained from the PQRD-BC algorithm

113

5.8 Numerical Example

and Figures 5.7 and 5.8 the results from the PQRD-SBR algorithm. It is clearly visible from

these figures th a t neither the paraunitary transformation matrix Q (z) nor the upper triangu

lar polynomial m atrix R(z) obtained from any of three decomposition algorithms is unique,

although similarities between the matrices can be seen.

0)
■o
3

a
E<

2 (I 2
1" 1 , 1' (1

o'----- 1 0

L i

2

Lag

2 . i

. I 1
1

1

r» I '

2
1

. T T t '
4) 2 4

2 }
1'

?
4 °(4

,i 2 ii
1(

f

*

4 °(4

2 (>
1
ri

F igure 5.2: A stem plot representation of th e series of coefficients of th e polynom ial
m atrix A (z) , to be used as inpu t to each of the th ree algorithm s for calculating the
PQ R D .

114

5.8 Numerical Example

1►

-10 o 10 20

d)
T5

a
E
<

5 5

< 1 o o 10 20 0 -10) 10 20

5 5

i ft

-10 0 10 20 -10 0 10 20

5

ISiflEteagg
-10 0 10 20

-10 0 10 20 -10 0 10 20 -10 0 10 20

-10 0 10 20 -10 0 10 20 -10 0 10 20

Lag

Figure 5.3: The upper triangular polynomial matrix R (z), obtained when the PQRD-
BS algorithm was applied to the polynomial matrix A (z).

0.4 0.4

0.2 0.2

-20 -20
0.4 0.4

<D 0.2

1 ft
0.2

-20 20 -20a
£ 0.4
<̂

 0.2

0.4

0.2

-20 20 -20
0.4 0.4

0.2 0.2

-20 -20

Figure 5.4: The paraunitary transformation
algorithm with polynomial input matrix A(

0.4

0.2

-20

0.4 0.4

0.2 0.2

-20 20 -20
0.4 0.4

0.2 0.2

-20 20 -20

0.4 0.4

0.2 0.2

-20 20 -20

matrix Q(z) obtained using the PQRD-BS

115

5.8 Numerical Example

Figure 5.5: The upper triangular polynomial matrix R (2), obtained when the PQRD-
BC algorithm was applied to the polynomial matrix A(,s).

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20

0 0.2

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20

-40 -20 0 20 -40 -20 0 20 -40 -20 0 20 -40 -20 0 20

Figure 5.6: The paraunitary transformation matrix Q(^) obtained using the PQRD-BC
algorithm with input matrix A(z).

116

5.8 Numerical Example

<D
■o3

-20 -20 -20

-20 -20 -20

-20 -20 -20

Lag

Figure 5.7: The upper triangular polynomial matrix R (z), obtained when the PQRD-
SBR algorithm was applied to the polynomial matrix A (z).

0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2

-20 -20 -20 -20
0.4 0.4 0.4 0.4

<D 0.2

=? n
0.2 0.2 0.2

-20 -20 20 -20 -20
£ 0.4

^ 0.2

0.4 0.4 0.4

0.2 0.2 0.2

-20 20 -20 -20 -20
0.4 0.4 0.4 0.4

0.2 0.2 0.2 0.2

-20 -20 -20 -20
Lag

Figure 5.8: The paraunitary transformation matrix Q(^) obtained using the PQRD-
SBR algorithm with input matrix A (z).

117

5.8 Numerical Example

The relative error for the decomposition performed is defined as

E rel — (5.40)

where R (z) is equal to the approximately upper triangular polynomial m atrix R(z) with all

coefficients beneath the diagonal set to zero. This measure is calculated to ensure that the

accuracy of the decomposition obtained is not compromised by either using the truncation

m ethod or by setting all non-zero coefficients beneath the diagonal to zero, as required for

the application of the PQRD to MIMO communications, discussed further in Chapter 8 . The

results of the three decompositions are presented in Table 5.1, where the measure L defines

the Frobenius norm of the elements beneath the diagonal of the transformed polynomial

m atrix following each iteration, i.e. the quantity

L =
p j - i

r j =2 k= 1
(5.41)

where A (z) is the transformed polynomial m atrix following the application of an EPG R and

p defines the number of rows of the polynomial m atrix A {z) and, for this example, is equal

to four.

P Q R D -B S P Q R D -B C P Q R D -S B R

Number of EPGRs 547 556 1315

Number of Sweeps 1 1 -

Final Order of R (z) 37 48 56

Final Order of Q(z) 54 81 71

Brel 8.44 x 1CT3 8.66 x 10~3 1.34 x 10~2

Final value of g 9.99 x 10~4 9.79 x 10"4 9.99 x lO”4

Final value of L 5.60 x 10"3 5.33 x 10"3 9.30 x 10"3

Computational Time

(Seconds)1

0. 52 0.65 4.13

Table 5.1: Results obtained from applying the three algorithms for computing the
PQRD to A (z).

118

5.8 Numerical Example

Prom Table 5.1, it can be seen that the PQRD-BS algorithm converged in the fewest

number of EPG Rs over all steps of the algorithm, although the performance was similar to

the PQRD-BC algorithm. The PQRD-SBR algorithm required over double the number of

EPGRs compared to the other two algorithms and therefore took considerably more time to

calculate. Note th a t both the PQRD-BS and PQRD-BC algorithms required only a single

sweep to converge.

Figure 5.9 illustrates the quantity L demonstrated by equation (5.41) over the complete

series of iterations of each of the three PQRD algorithms. If the decomposition algorithm

uses a process of steps, such as the PQRD-BS and PQRD-BC algorithms, this is easily visible

from this figure. Initially, the PQRD-SBR algorithm appears to perform considerably better

than the other two algorithms, as at each iteration the largest coefficient from anywhere

beneath the diagonal of the matrix will be driven to zero. This will not happen with either

the PQRD-BS or PQRD-BC algorithms, unless the largest coefficient is positioned in either

the polynomial element a2\{z) (if using the PQRD-BS algorithm) or is situated beneath the

diagonal of the first column of the matrix (if using the PQRD-BC algorithm). However,

although the PQRD-SBR algorithm does not require any steps or sweeps, it takes far more

EPGRs to reach a similar level of convergence as the other two PQRD algorithms. This is

due to the proof of convergence for each of the algorithms, operating through the columns

of the m atrix from left to right. An algorithm that operates using a series of steps, working

through the m atrix from left to right, will typically converge quicker.

Finally, Figure 5.10 demonstrates the same measure L, this time for the PQRD-SBR

algorithm with and without applying the inverse time-shift m atrix in the third step of each

iteration of the algorithm. At each iteration, for example, to zero the polynomial coefficient

ajkiT) there are three possible ways the quantity 10 ^ (0))2 can be affected. These are listed in

the proof of convergence of the PQRD-SBR algorithm. However, by applying the appropriate

EPG R to zero Oj/t(r), the coefficient a,jj(0) will have a delay of size r applied to it and so will

no longer be positioned on the coefficient matrix of order zero. If the inverse delay step is not

applied to move it back to its original position following the rotation, then at a subsequent

Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.

119

5.8 Numerical Example

iteration to zero a coefficient associated with elements situated beneath the diagonal of the

j th column of the matrix, a different coefficient will be increasing in magnitude squared and

it is not guaranteed that this coefficient will continue to increase (in magnitude squared) over

future iterations to zero coefficients beneath the diagonal of the j th column. Allowing the

zero-lag diagonal coefficients to move over a series of iterations, will mean that the algorithm

is not consistently forcing the same coefficients on the zero-lag coefficient matrix to increase in

magnitude squared by application of each EPGR. Therefore the PQRD-SBR algorithm when

not using the inverse tiine-shift will result in erratic behaviour as demonstrated by Figure

5.10, clearly demonstrating why the inverse time shift is required within the PQRD-SBR

algorithm.

 PQRD-BS
- - - PQRD-BC

PQRD-SBR

_!

" * i

1200 1400600 800 1000200 400
Iterations

Figure 5.9: The Frobenius norm of the polynomial elements beneath the diagonal of
the transform ed polynom ial m atrix a t each iteration of each of the PQ R D algorithms.

120

5.8 Numerical Example

7
PQRD-SBR without inverse delay
PQRD-SBR algorithm6

5

4
-I

3

2

1

0,
200 400 600 800 1000 1200 1400 1600 1800

Iterations

Figure 5.10: The Frobenius norm of the polynomial elements beneath the diagonal of
the transform ed polynomial m atrix a t each iteration when applying the PQ RD -SB R
algorithm with and w ithout using the inverse delay step.

Finally, Figure 5.11 demonstrates the polynomial matrix obtained from calculating the

inverse decomposition A(z) = Q(z)R(z) and compares this m atrix to the input matrix.

For this example, the polynomial matrices Q(^) and R(^) were found using the PQRD-

BS algorithm. Note that only the five lags A (0) , . . . , A(4) are demonstrated in this figure.

By inspection of this figure, it can be observed that a very accurate polynomial matrix

decomposition can be obtained using the PQRD-BS algorithm. Note that the coefficients

matrices not included in this figure, i.e. those outside the five lags A(0) , . . . , A(4), account

for 0.0071% of A M |

121

5.9 Conclusions

2 3 4 5

J
1 2 3 4 5

1 2 3 4 5

2
1
0

0
1 2 3 4 5

2

1

0

Figure 5.11: A stem plot representation of the series of coefficients of the polynomial
input m atrix A (z) in green, and the m atrix obtained from calculating the inverse
decom position Q (,s)R (z) when the decomposition was form ulated using the PQRD-BS
algorithm dem onstrated in blue.

5.9 C onclusions

This chapter has introduced three algorithms for calculating the QR decomposition of a

polynomial matrix. Each of the algorithms can be applied to a polynomial matrix of any size

and order, where the coefficients of the elements can be either real or complex, and has been

proven to converge. The computational complexity of each of the algorithms is formulated

in Appendix C. The polynomial matrices obtained from the PQRD are not unique, however,

this is not a problem for the potential application of the decomposition discussed in Chapter

8 . If any of the algorithms are applied to a non-singular matrix of scalars, then uniqueness

can be guaranteed by ensuring that the diagonal elements of the upper triangular matrix

are positive and real. However, this cannot be done with the PQRD, where each diagonal

element of this m atrix is a polynomial with an associated set of coefficients. Each of the

three algorithms operate using Givens rotations interspersed with elementary delay matrices.

Appendix A contains an example where Householder reflections have been adapted to enable

122

5.9 Conclusions

the calculation of the QRD of a polynomial matrix. W ith this method, the orders of the

polynomial matrices can grow even larger than those obtained with the Givens method, due

the requirement of even more delay stages within the algorithm.

The next chapter explores the three algorithms for calculating the PQRD further by

detailing several insightful examples. These examples clearly demonstrate which of the three

algorithms is the most appropriate to use. This chapter has assumed that when calculating

the PQRD of the polynomial matrix A(z), the position of the zero lag coefficient m atrix

within the polynomial matrix is known as this is required in each of the three decomposition

algorithms when applying an EPGR. However, this is not always the case. The significance

of the zero lag coefficient m atrix and how it can be manipulated to decrease the number of

EPGRs required to reach convergence are also discussed in the following chapter. Finally,

the potential application of the PQRD to MIMO communications is discussed in Chapter 8

of this thesis.

123

Chapter 6

D iscussion and Exam ples o f the
A lgorithm s for Calculating the QR
D ecom position of a Polynom ial
M atrix

The objective of this chapter is to illustrate how each of the three algorithms for calculating

the QRD of a polynomial matrix, which were previously introduced in Chapter 5, operate

through several insightful examples. In particular, the set of examples demonstrate that the

PQRD-BC algorithm is generally the best algorithm to use, as it typically requires the fewest

number of EPGRs to converge and therefore requires the least amount of computational

time. Note th a t this is not the case if the three algorithms are applied to a scalar matrix.

For this case, the PQRD-BS algorithm will be computationally the least expensive, as it will

not require any search routine to locate the dominant element at each iteration. However,

with polynomial matrices there is an added dimension to the problem as each element of

the m atrix is a polynomial with an associated set of coefficients, which must all be driven

sufficiently small in m agnitude to achieve a PQRD. Furthermore, the order of the polynomial

m atrix grows at each iteration of each of the algorithms and so the best choice of algorithm

for calculating the QRD of a scalar matrix, is not necessarily the best technique of achieving

the same decomposition of a polynomial matrix. Note tha t throughout this thesis an iteration

of any of the PQ RD algorithms, will refer to the process taken zero a single coefficient of the

polynomial m atrix. In the PQRD-BS and PQRD-BC algorithms this will involve a single

124

EPGR. However, with the PQRD-SBR algorithm an iteration will consist of an EPGR and

an inverse time-shift matrix.

For some polynomial matrices, the performance of the PQRD-BS algorithm may be com

parable to the PQRD-BC algorithm, as demonstrated by the example given in the previous

chapter, but this is not consistently the case. Furthermore, the set of examples presented in

this chapter demonstrates the PQRD-SBR algorithm to have the worst performance of the

three algorithms, as it typically requires significantly more iterations to converge, where each

iteration of this algorithm is generally computationally more expensive than a single iteration

of either the PQRD-BS or PQRD-BC algorithms.

Before detailing the set of numerical examples, this chapter firstly discusses the signifi

cance of the coefficient m atrix containing all coefficients associated with the zero-lag, i.e. the

set of coefficients of z°, of each of the polynomial elements of the m atrix to be decomposed.

For the numerical example in Chapter 5, the location of this coefficient matrix within the

polynomial input m atrix A(z) was specified as an input parameter to the algorithm. However,

as the zero-lag coefficient matrix is a fundamental element of the proofs of convergence for

each of the algorithms1, the set of examples aims to determine if the position of this matrix

can be chosen to reduce the number of iterations required for each algorithm to converge. In

particular, a specification step for the zero-lag coefficient m atrix is introduced; this can be

implemented within all three of the PQRD algorithms at the outset of each iteration. This

additional step generally increases the computational load of the algorithm and is therefore

only an advantage in any of the three algorithms, if it significantly reduces the number of

iterations required to reach convergence. The set of worked examples in this chapter indicate

that this additional step can be effective at reducing the computational time of the PQRD-

SBR algorithm by considerably reducing the number of iterations required for the algorithm

to converge. However, this additional step does not guarantee improved performance of all

of the PQRD algorithms and this is demonstrated by the set of examples, particularly when

it is used within the PQRD-BS and PQRD-BC algorithms.

JFor more information refer to the individual proofs of convergence for each of the PQRD algorithms
detailed in Chapter 5.

125

6.1 Importance of the Zero-Lag Coefficient Matrix

6.1 Im portance of the Zero-Lag Coefficient M atrix

The zero-lag coefficient m atrix of the polynomial m atrix A (z) £ C pxq is defined to be the

m atrix containing the coefficients of z° from each of the polynomial elements, i.e. the coeffi

cient m atrix A (0) € Cpxq. Alternatively, this m atrix can also be referred to as the coefficient

m atrix of order zero. This matrix has been mentioned numerous times in the previous chap

ter, most significantly when discussing the process implemented within all three algorithms

to drive a dominant coefficient to zero by applying an EPGR. Incorporated within this EPG R

m atrix is an elementary delay matrix, which is applied to the polynomial m atrix with the

objective of moving the dominant coefficient so tha t it becomes the coefficient of z°, before

applying the appropriate Givens rotation. Currently, in each of the algorithms for calculating

the PQRD, the user must specify the position of the zero-lag coefficient m atrix as an input

param eter to the algorithm, as was done for the numerical example of Chapter 5.

Alternatively, the EPG R could have been designed to always move the dominant co

efficient onto a different coefficient m atrix of the polynomial matrix. However, whichever

coefficient m atrix is chosen it is im portant for the convergence of whichever of the three al

gorithms has been used, to keep the choice consistent throughout all iterations. The zero-lag

coefficient m atrix is the most appropriate choice, so that if the algorithm is applied to a

m atrix with scalar elements then it will generate an upper triangular m atrix also with scalar

entries. If a different coefficient m atrix is chosen, then a polynomial upper triangular ma

trix would be generated, which is clearly unnecessary. Furthermore, the choice of a zero-lag

coefficient m atrix is irrelevant for the potential application of this decomposition detailed in

Chapter 8 , where the polynomial channel m atrix is representative of an LTI system and is

therefore invariant to time-shifts. However, the choice of this coefficient m atrix will affect the

decomposition performed due to the non-uniqueness of the PQRD. In particular, specifying

different coefficient matrices of the polynomial input m atrix to be the zero-lag coefficient

matrix, will affect both the number of iterations required for the algorithm to converge and

also the orders of the two polynomial matrices generated by the decomposition.

126

6.2 Worked Examples

6.2 W orked Examples

The comparative performance of the three algorithms introduced in Chapter 5 for calculating

the PQRD is now illustrated by applying each algorithm to the same representative set of

polynomial matrices. This set of examples has been chosen to include matrices of varying

dimensions, some with complex and some with real polynomial element coefficients. The set

of examples also includes one polynomial input matrix, which not of full generic2 column

rank.

There are two param eters that can affect the performance of the three algorithms for each

example, these are the stopping criterion e and the truncation parameter p, which must both

be chosen in a similar manner to the SBR2 algorithm, to optimise the speed and accuracy of

the m atrix decomposition performed. Note tha t for the potential application of the PQRD

to MIMO communications, an exactly upper triangular polynomial m atrix is required and

so any approximations made beneath the diagonal, which are determined by the choice of

e, will affect the accuracy of the decomposition performed. For the set of worked examples

in this chapter, the same values for these two parameters are used, which have been chosen

to enable each of the algorithms to calculate a fairly accurate PQRD without resulting in

polynomial matrices of unnecessarily large orders. However, if a quicker computational time

is required this can easily be resolved by setting the values of e and p higher, although this will

compromise the accuracy of the decomposition performed. Alternatively, if a more accurate

decomposition is required, then the values of these parameters can be reduced.

Finally, the QRD of a polynomial m atrix is not unique and so the upper triangular

and paraunitary matrices obtained by each of the three algorithms when given the same

polynomial input matrix, will not be the same. However, these examples do not aim to

compare the output matrices, but to demonstrate, which algorithm typically requires the

fewest EPGRs to converge to approximately the same level of accuracy in the decomposition.

2This means the matrix is rank deficient for all values of the indeterminate variable 2 .

127

6.2 Worked Examples

C om putational C om plexity

It is difficult to compare the computational complexity of the three algorithms, as this is en

tirely dependent upon the order of the two polynomial matrices at each iteration and cannot

be determined in advance. Furthermore, the observed orders at each iteration will be differ

ent for each of the three algorithms and so no direct comparison can be made. However, if it

assumed that each algorithm is applied to the same polynomial matrix for only a single iter

ation, then the PQRD-BS algorithm will be computationally the least expensive of the three

PQRD algorithms. All three algorithms implement the same routine to apply an EPGR,

however, each differs in the search routine to locate the dominant coefficient. The PQRD-

BS algorithm searches for the dominant coefficient in only one polynomial element at each

iteration. The PQRD-BC algorithm searches through all polynomial elements beneath the

diagonal of one column of the matrix and the PQRD-SBR algorithm through all polynomial

elements beneath the diagonal of the polynomial matrix. W ith respect to a single iteration,

each algorithm is therefore computationally more expensive than the previous. Furthermore,

the PQRD-SBR algorithm has an additional undelay step, where at each iteration an ele

mentary inverse time-shift m atrix must be applied, and as this algorithm also requires the

most complex of the three search functions for locating the dominant coefficient, it is over

all the most expensive per iteration. Due to the difficulty in comparing the computational

complexity of the three algorithms, the computational time3 to calculate the PQRD using

each algorithm is recorded for each example and used to compare the three algorithms. The

computational complexity of each algorithm is formulated in Appendix C.

3Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.

128

6.2 Worked Examples

6.2.1 E xam ple 1

For the first example, each of the three algorithms for calculating the PQRD was applied to

the polynomial m atrix

A i (z) =

1 + 2z -1 2 2 + z ~ l

3 z ~ l 2 + z~2 1 + z ~ l

2 l + 2z~2 2z~l

(6 . 1)

For each algorithm the energy based truncation method, with p = 10-6 , was applied to both

the paraunitary and the transformed polynomial matrices at the end of each iteration. For

each implementation, the stopping condition was set so that each algorithm will stop once

the magnitude of every coefficient associated with a polynomial element beneath the diagonal

of the m atrix is less than 10~3. The results from applying each of the three algorithms to

the polynomial test m atrix A ^ z) can be seen in Table 6 .1.

This m atrix initially has only four non-zero coefficients associated with polynomial ele

ments positioned beneath the diagonal to drive to zero. However, each of the three algo

rithms will require more iterations and therefore also EPGRs than four to converge, as each

element has an associated set of coefficients all of which will be affected by each application

of an EPGR. For example, when applying the PQRD-BS algorithm to this polynomial ma

trix, the first two steps of the algorithm to drive all coefficients of the polynomial elements

021(2) = 3z-1 and a 31(z) = 2, to be sufficiently small, requires ten EPGRs. This is due to the

non-zero lag coefficient of the polynomial element au (z) = 1 + 2z-1 , which will also change

under application of the EPG R forcing new coefficients to emerge in polynomial elements be

neath the diagonal, but in the same column of the matrix. Note that the magnitude squared

of the zero-lag coefficient of this polynomial element, i.e. the quantity | a n (0)|2, will increase

monotonically throughout all iterations of the algorithm and so convergence is guaranteed.

Of the three algorithms, the PQRD-BS algorithm required the least number of EPGRs

to converge, taking only 71 iterations and only one sweep of the algorithm to reach a point

where all coefficients associated with polynomial elements beneath the diagonal of the trans

formed upper triangular polynomial matrix are less than 10~ 3 in magnitude. The Frobenius

129

6.2 Worked Examples

PQ R D -B S P Q R D -B C PQRD-SBR

N um ber o f E P G R s 71 74 125
N um ber o f Sweeps 1 1 -

Final order o f R(z) 30 35 28
Final order o f Q(z) 37 39 33

E r e l 3.53 x 10-3 2.85 x 10"3 2.62 x 10'3

Final value o f g 8.93 x 10“4 8.66 x 10~4 9.66 x 10"4
Final value o f L 2.46 x 10~3 2.01 x 10~3 3.54 x 10'3
C om putational T im e (Seconds) 0.055 0.061 0.109

Table 6.1: Results from applying each of the three PQRD algorithms to the polynomial
test matrix € R 3x3x2.

norm of the polynomial elements beneath the diagonal of the approximately upper triangu

lar polynomial m atrix obtained from this algorithm was found to be 2.46 x 10-3 , which is

clearly very small when compared to the initial Frobenius norm of the polynomial m atrix

IIAjCOII^ = 6.56. Figures 6.1 and 6.2 illustrate the approximately upper triangular polyno

mial matrix (of order 30) and the paraunitary transformation m atrix (of order 37) obtained

using this algorithm. From inspection of these figures, it can be observed that the series of

coefficients for each polynomial element of the two matrices is approximately centred about

the zero-lag coefficient. Furthermore, although the algorithms for calculating the PQRD only

formulate an approximate decomposition, Figure 6.1 shows th a t the coefficients associated

with polynomial elements beneath the diagonal are very small and so a good approximation

has been calculated. The relative error of the decomposition was calculated according to

equation (5.40) and was found to be 3.53 x 10-3 , which accounts for both the error observed

from truncating the orders of both polynomial matrices and the fact that the algorithm only

generates an approximately upper triangular polynomial matrix. Note tha t the order of both

polynomial matrices generated by the algorithm could be further reduced if required for the

application of the PQRD to MIMO communications by setting a higher value for the trun

cation param eter g, but this will affect the accuracy of the decomposition performed and

therefore also the relative error.

The performance of the PQRD-BC algorithm was similar to tha t of the PQRD-BS algo-

130

6.2 Worked Examples

■mNweeeaM 0 aewMeeoQei | iyt|ePgef\jeneo9a

9 T0 BBesaaBflŵBB ĵ /wwoooo

Figure 6.1: The coefficients of the polynomial elements of the approximately upper tri
angular polynomial matrix R(^), obtained when the PQRD-BS algorithm was applied
to the polynomial matrix A ^ z).

0.5 0.5

-0.5 -0.5
-10 0 10 -10 0 10

0.5
_______ T . . .

0.5

-0.5 -0.5

n- r _ r r

-10 0 10 -10 0 10

0.5 0.5 iu

-0.5

- ° 6

-0.5
-10 o 10 -10 o 10

Lag

-0.5

0.5

-0.5

-10 0 10

-10 0 10

-0.5
-10 0 10

Figure 6.2: The coefficients of the polynomial elements of the paraunitary transfor
mation matrix Q (*) obtained using the PQRD-BS algorithm with polynomial input
matrix Aj(^).

131

6.2 Worked Examples

rithm, although it did require a further three EPGRs to converge, therefore requiring more

computational time. From Table 6.1, the orders of the two matrices obtained from this al

gorithm are seen to be slightly larger than those obtained using the PQRD-BS algorithm,

although the relative error of this decomposition is smaller. The PQRD-SBR algorithm re

quired the most EPGRs of the three algorithms, taking a total of 126 iterations to reach

approximately the same level of convergence. Furthermore, in general each iteration of this

algorithm is computationally more expensive than the other two algorithms, due to the addi

tional inverse-time shift step and the more complicated search routine to locate the dominant

coefficient. The computational time4 for each of the three algorithms is contained in Table

6.1 and broadly reflects the varying number of EPGRs required for the different algorithms

to converge.

Finally, Figure 6.3 demonstrates the Frobenius norm of all polynomial elements beneath

the diagonal of the transformed polynomial matrix, at the end of each iteration, of each of

the three algorithms. This measure, referred to as L , was previously defined in equation

(5.41) of Chapter 5 and is a good measure to demonstrate the convergence of each of the

three algorithms. In this figure, both the PQRD-BS and PQRD-BC algorithms can clearly

be seen to converge in a process of steps, each requiring their own stopping criterion to be

met before a subsequent step can begin. For this reason, the PQRD-SBR algorithm appears

to initially converge faster, although if the stopping criterion e is set smaller, this will no

longer be the case. From this figure, it is also apparent tha t the measure L does not decrease

monotonically, but this does not contradict the proofs of convergence detailed in Chapter 5.

Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.

132

6.2 Worked Examples

4.5

 PQRD-BS
--■PQRD-BC

PQRD-SBR3.5

2.5
_i

0.5

100 120
Iterations

Figure 6.3: The Frobenius norm of the polynomial elements beneath the diagonal
of the transformed polynomial matrix at each iteration of each of the algorithms for
calculating the PQRD when applied to the first polynomial test matrix.

6 .2 .2 E x a m p le 2

For the second example, each of the three algorithms for calculating the PQRD was applied

to the polynomial m atrix A 2(2) E IR3x3x4, whose entries were fourth order FIR filters with

real coefficients drawn independently from a normal distribution with mean zero and unit

variance. This polynomial m atrix has coefficient matrices A (0),. . . , A(4) and is illustrated

in Figure 6.4. The polynomial m atrix has 15 non-zero coefficients beneath the diagonal of

the matrix, accounting for approximately 56% of the total Frobenius norm of the matrix.

Again each algorithm was applied to this polynomial matrix, using the same stopping

condition and truncation parameter as used in the first example (i.e. c = 10-3 and p = 10-6).

This time the PQRD-BC algorithm required the least amount of EPGRs (356) to converge

to a point where all coefficients associated with the polynomial elements positioned beneath

the diagonal of the approximately upper triangular polynomial matrix are less than 10-3 in

magnitude. However, as with the previous example its performance was found to be similar

to that of the PQRD-BS algorithm, which required only five additional EPGRs to reach

133

6.2 Worked Examples

2
1
A 0

2
' 1

o'
-1

2
1(
0

-1

?

1 4 1 *
J

0 2 2 2 4

2 2 2
1
A

1
T ?

1
T T !u o

1 ^
II i 1

u
, -1l

0
-1

0 2 2 2 4

2 2 2

L T , t
I

I t .
1

, . ! T1 u u
1 -1 -1

0 2 4 0 2 4 0 2 4
Lag

Figure (i.4: The polynomial matrix A 2(j) 6]R3x3x4 t() |)(, us(1(| ^ jnpllt to e(u.j, c)f t i1(,
three algorithms for c alculating the PQRD.

approximately the same level of decomposition. Once again, the PQRD-SBR approach can

be seen to recpiire considerably more EPGRs, requiring a total of 901 iterations to converge.

The com putational tim e for this algorithm is also approximately 10 times greater than that for

the other two algorithms due to these additional iterations. The results from applying each of

the three algorithms to the polynomial m atrix A 2 (z) can be seen in Table 6.2, dem onstrating

that the PQ RD-BC algorithm is clearly the best to use in this case. The PQRD-BC algorithm

required the least tim e to converge and the orders of the resulting polynomial matrices Q(z)

and R (2) are both less than those obtained from the other two algorithms. The relative error

for this decomposition was slightly larger than th a t observed from the other algorithms, but

not by a significant amount. This measure has dem onstrated th a t a very good approximate

decomposition has been achieved with each of the PQRD algorithms.

The Frobenius norm of all polynomial elements beneath the diagonal of the polynomial

t ransformed m at rix a t each iteration of each of the three decomposition algorithms can be seen

in Figure 6.5. This measure, previously defined as L in equation (5.41) of Chapter 5, confirms

the convergence of each of the three PQRD algorithms. Notice th a t this quantity does not

134

6.2 Worked Examples

P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 361 356 901

N um ber o f Sw eeps 2 3 -

Final order o f R(z) 111 66 128

Final order o f Q(.z) 113 77 135

Elrel 8.06 x 1()-3 9.13 x 10"3 8.77 x 10“3

Final value o f y 9.87 x 10~4 8.85 x 10~4 9.92 x 10~4

Final value o f L 5.09 x 10"3 4.08 x 10“3 9.08 x 10~3

C om putational T im e (Seconds) 0.425 0.411 4.565

Table G.2: Results from applying each of the PQRD algorithms to the polynomial test
matrix A 2(z) £ fl£3x3x4.

decrease monotonieally for any of the algorithms and can be seen to abruptly increase by a

considerable amount in the second sweep of both the PQRD-BS and PQRD-BC algorithms.

Despite this, convergence of both algorithms is guaranteed and so at a future iteration of the

algorithm, the quantity will be reduced again. This behaviour is due to the application of

EPG Rs allowing the Frobenius norm of the polynomial elements above the diagonal to be

redistributed below the diagonal in columns positioned to the right of the coefficient th a t it is

driving to zero. In fact, to zero the coefficient ajk(r) (where 3 > k and r e Z denotes the lag

index), any coefficients associated with the polynomial elements aj^k+l(z) , . . . can

increase in m agnitude squared, with the increase due to a decrease in the relevant elements

above the diagonal. The quantity L can therefore increase at any stage (i.e. at any step

of any sweep) of the algorithm, however, the most notable changes, such as the behaviour

dem onstrated in Figure 6.5, will only ever occur when multiple sweeps of either the PQRD-BS

or PQRD-BC algorithm s are required. The initial Frobenius norm of the m atrix was found to

be ||A 2(z) ||F = 6.39, w ith the Frobenius norm of the elements beneath the diagonal equal to

3.58. Note th a t the measure L increases nearly to this value in the second sweeps of both the

algorithms; the PQ RD -BC algorithm to 2.83 and PQRD-BS algorithm suddenly increases to

3.33. However, ra ther than being distributed over all coefficients beneath the diagonal as in

the input m atrix A 2(z), now the majority of this measure is contained in only one element

and typically in only one of the associated coefficients, which can then be driven to zero by

135

6.2 Worked Examples

application of a single EPGR.

— PQRD-BS
--P Q R D -B C

PQRD-SBR

3.5

2.5

_l

1.5-

0.5

700 800 900100 200 300 400
Iterations

500 600

Figure 6.5: The Frobenius norm of the polynomial elements beneath the diagonal
of the transformed polynomial matrix at each iteration of each of the algorithms for
calculating the PQRD when applied to the polynomial matrix A 2(z).

Figures 6.6 and 6.7 illustrate the approximately upper triangular and the paraunitary

transformation polynomial matrices obtained using the fastest of the three algorithms to

converge, the PQRD-BC algorithm. Notice that, unlike all other polynomial elements of

the approximately upper triangular polynomial matrix R (z), the set of non-zero coefficients

associated with the third diagonal polynomial element £33(2) is not centred about the zero-lag

coefficient. The same observation can also be made about the coefficients associated with the

polynomial elements of the paraunitary transformation matrix Q(z). Although this is not

necessarily a problem, if all of the polynomial elements are forced to be centred about the

same lag by applying an elementary delay matrix, then the order of both polynomial matrices

can generally be reduced further by applying the energy based truncation method once more.

Furthermore, this final step will generally not reduce the accuracy of the decomposition any

further and the overall transformation will remain paraunitary.

The polynomial elements of the matrix become out of alignment due to multiple applica

136

6.2 Worked Examples

tions of elem entary delay matrices, which are applied over a series of EPGRs. For example, to

drive any of the coefficients associated with the polynomial element j (2) sufficiently small,

all polynomial elements of the m atrix in the same row as this element will he affected by the

elementary delay m atrix incorporated within the required EPGR. Over many iterations of

the algorithm these operations will lead to polynomial (dements in the third row, which are

not all centred over the same series of lags as all other elements of the polynomial matrix.

However, the non-zero coefficients associated with all elements in each row of the m atrix, will

generally be positioned over the same series of lags. However, if there are polynomial ele

ments positioned beneath the elements that are not aligned in the matrix, i.e. if there was a

fourth row to the polynomial m atrix used in this example, then over future iterations to zero

polynomial elements positioned beneath these non-aligned elements, the appropriate EPGRs

will result in the polynomial elements in the third row being realigned to be centred about the

zero-lag. Therefore, the only possible polynomial elements, where this realignment cannot

happen, will be positioned in the bottom row containing a diagonal polynomial element of

the m atrix and this is therefore generally only ever an issue with input matrices that are

either square or fat, i.e. for matrices tha t have at least as many columns as rows. The same

problem can also be seen in the paraunitary transform ation m atrix Q (z), whose elements will

also not be aligned, in accordance to the elements of the upper triangular polynomial m atrix

R (2).

The polynomial elements of the resulting approximately upper triangular polynomial

m atrix R(z) obtained from the PQRD-BC algorithm, depicted in Figure 6 .6 , can easily be

realigned by applying a series of elementary delay matrices to this m atrix, such tha t the

coefficient with the largest m agnitude in each diagonal polynomial element becomes the

coefficient of z°. Note th a t if using a final alignment, the delay matrices must also be applied

to the paraunitary polynomial m atrix Q (z). For this example, aligning the associated series

of coefficients, of the polynomial elements of both matrices obtained using the PQRD-BC

algorithm, to be over the same series of lags and then implementing a final truncation of

these matrices using the same value of the truncation param eter, i.e. p = 10~6, the order of

R(z) was reduced from 66 to 51 and the order of Q(z) from 77 to 60, with 110 additional cost

137

6.2 Worked Examples

3
2

1
-40 -20 0 20 -40 -20 0 20 -40 -20 200

-40 -20 0 20

-40 -20

-40 -20

Figure G.6: The coefficients of the polynomial elements of the upper triangular poly
nomial matrix R(;r), obtained when the PQRD-BC algorithm was applied to the poly
nomial matrix A 2(z).

0.5

-0.5
-40 -20 0 20

0.5

O'

-0.5
-40 -20 0 20

0.5

-0.5
-40 -20 0 20

0.5

O'

-0.5
-40 -20 0 20

0.5

-0.5
20-40 -20 0

0.5

0<

-0.5
-40 -20 0 20

Lag

0.5

-0.5
20-40 -20 0

------------------]

- J

5
-40 -20 0 20

0.5

-0.5
-40 -20 200

Figure 6.7: The coefficients of the polynomial elements of the paraunitary transfor
mation matrix Q(z) obtained using the PQRD-BC algorithm with polynomial input
matrix A 2(z).

138

6.2 Worked Examples

to the relative error.

Moreover, if this additional step is undertaken at regular intervals in each algorithm it will

also ensure that it is not possible to truncate a significant number of coefficients associated

with ju st one of the polynomial elements from the m atrix, such as r [i3 (z) in this example.

It could even be possible1 to truncate an entire polynomial element from the m atrix if this

additional step is not undertaken, although it would probably also require a inappropriate

value of p. Note th a t this was not an issue within the SBR2 algorithm, as the elementary delay

matrices are applied on both the left and right hand-side of the polynomial para-Hermitian

input m atrix, which ensures th a t the diagonal elements are not affected by the application of

elementary delay m atrices and so the polynomial transformed m atrix remains centred about

the zero-lag coefficient m atrix at all times. Furthermore, note th a t this point is rarely an

issue with the PQRD-SBR algorithm, due to the elementary inverse time-shift, step following

the application of the EPG R, which will help keep all polynomial elements centred about

the zero-lag coefficient matrix. If this step is undertaken throughout the algorithm it will be

referred to as the Zero-Lag Specification Step (ZLSS), which will now be defined.

6.2 .3 Zero-Lag Specification Step

The significance of the zero-lag coefficient m atrix has been discussed in Section 6 .1. This

coefficient m atrix plays a pivotal role in the proof of convergence for each of the three algo

rithm s, as each algorithm converges through the columns of the polynomial m atrix from left

to right, even in the SBR approach where there is no specified order in which the EPGRs

are applied. Each column converges as a result of the coefficient associated with the zero-lag

of the diagonal element in the column increasing in m agnitude squared to account for the

decrease in the Frobenius norm of the elements beneath the diagonal, i.e. the k th column

converges as a result of the quantity |a*;fc(0) |2 increasing. During this process, the application

of EPG Rs will affect all other coefficients associated with the diagonal element in the column

and these coefficients can decrease in m agnitude squared, which will then also mean the ap

propriate coefficients beneath the diagonal increasing in magnitude squared. It is therefore

reasonable to insist on the diagonal zero-lag coefficient being the largest possible coefficient,

139

6.2 Worked Examples

which is easily enforced by applying an elementary delay m atrix of the form dem onstrated in

equation (3.8), where k defines the row and column index of the diagonal element and t the

lag index of the coefficient with maximum m agnitude in this element .

This step will be referred to as the Zero-Lag Specification (ZLS) step and aims to realign

the series of coefficients associated with each diagonal element of the transformed polyno

mial m atrix A(z) £ C px<i, to ensure that the zero-lag coefficient is the largest coefficient in

m agnitude squared. This is achieved by applying a series of elementary delay matrices, for

mulated according to Section 3.3.2 and can be implemented at the beginning of each iteration

(including the first) w ithin any of the three algorithms for calculating the PQRD. Suppose

the set of coefficients with largest m agnitude in the diagonal polynomial elements of A(z)

is found to be {aji (t \), (1 2 2 (6 2), ■ • •, a/v/v(f/v)}> where N = mill(p, </). Then the appropriate

delay matrices are applied to A (z) to obtain the transformed polynomial m atrix

A' (z) = B (JV’t" > (z) . . . B (u ,) (z)A(z) . (6 -2)

Following this transform ation, all coefficients of the polynomial m atrix will be centred about

the zero-lag coefficient m atrix. Note th a t this additional step will increase the computational

load of the algorithm and so it is im portant to see if the additional computational cost

is more or less than the com putational cost observed if the number of iterations of any

of the algorithms is reduced. As this is not easily assessed, due to the dependence of the

com putational cost upon the order of the two matrices within the algorithm at each iteration,

the com putational times for the two implementations of each algorithm are compared. Note

th a t if the ZLS step is implemented within the PQRD-SBR algorithm, then the third step

(referred to as the un-delay or inverse tiine-shift step in the description of the algorithm

in Section 5.6) is no longer necessary. In this case, the ZLS step is sufficient to remove

the behaviour dem onstrated by Figure 5.10 and is therefore unnecessarily adding to the

com putational tim e if it is used.

The two possible advantages of applying this ZLS step are: the orders of the polynomial

matrices can be truncated with barely any deterioration in the relative error of the decompo

140

6.2 Worked Examples

sition, which is extrem ely useful for the application of the PQRD to MIMO communications

where the order of the matrices is of critical importance; secondly, if the ZLS step is per

formed between every iteration in each of the algorithms it could ensure tha t a more accurate

polynomial m atrix decomposition is obtained, although this is not guaranteed. The drawback

with implementing this technique at each iteration is th a t it will add to the computational

cost of the associated algorithm. This additional realignment of the polynomial elements at

the beginning of each iteration of the algorithm is now assessed in the context of the previous

example.

6 .2 .4 E xam ple 2 C ontinued

The three algorithms for calculating the PQRD were again applied to A 2(2), this time im

plementing the ZLS step at the s tart of each iteration of each of the algorithms and the

results obtained are contained in Table 6.3. Prom these results, the relative error observed

has improved for each of the three decompositions, whist the order of the resulting polynomial

matrices B(*) and Q (z) are, in each case, considerably shorter. Furthermore, the number

of EPG Rs required, and therefore also the computational time, in both the PQRD-BS and

the PQRD-SBR algorithm have been reduced despite the additional computations required

to implement the ZLS step. In fact, the PQRD-SBR algorithms required an impressive 528

fewer iterations, reducing the computational time from 4.57 to 1.19 seconds. The PQRD-BS

algorithm also required fewer iterations, although the com putational time increased. Simi

larly, the PQRD-BC algorithm did not improve by implementing the ZLS step, requiring a

further 40 EPGRs. In this case, the performance of the decomposition algorithm has im

proved in term s of the relative error and the order of the matrices. Note however, th a t the

original PQ RD-BC algorithm as detailed in C hapter 5 was the fastest of the three algorithms

to converge.

Finally, Figure 6.8 illustrates the Frobenius norm of all polynomial elements beneath

the diagonal of the transform ed polynomial m atrix at the end of each iteration, for each of

the three decomposition algorithms. This figure displays the same measure for each of the

algorithms, with and without the ZLS step, and shows th a t the erratic behaviour observed in

141

6.2 Worked Examples

P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 330 402 373

N um ber o f Sw eeps 1 2 -

Final order o f R(.z) 50 46 69

Final order o f Q(^) 59 43 43

E r e l 6.23 x 10"3 8.05 x 10~3 7.72 x 10~3

C om putational T im e (Seconds) 0.52 1.61 1.19

Table 6.3: Results from applying each of the algorithms for calculating the PQRD to
the polynomial test matrix A 2(z) £ K 3x3x4 whilst using the zero-lag specification step.

the second sweeps of the original PQRD-BS and the PQRD-BC algorithms can be removed

by implementing the ZLS step at the start of each iteration.

Alternatively, the jum py behaviour of the measure L observed in Figure 6.5 when applying

the PQRD-BS and the PQRD-BC algorithms could have been removed by applying an inverse

time-shift m atrix as dem onstrated by equation (5.30) to the transformed polynomial m atrix

after every application of an EPGR. This was also implemented at the end of each iteration

of the PQRD-SBR algorithm; however, in the two algorithms that proceed as a series of steps

this will only need to be applied in any iterations undertaken following the first sweep of either

of these algorithms. Note tha t for this example, implementing the undelay step, the PQRD-

BS algorithm required 376 EPG Rs and took 1.71 seconds, whilst the PQRD-BC algorithm

required 398 iterations and 1.57 seconds to converge. For this example, the best algorithm to

use is the PQRD-BS with the ZLS step. The computational time for this algorithm was not

as small as th a t of the PQRD-BC algorithm without the ZLS step, but the erratic behaviour

in the convergence was not observed.

142

6.2 Worked Examples

1 1 1 1 1 r ~r i

1_ _ _ _ _ _ _ _ _ _ * _ _ _ _ _
i:
V
i \ :

i I v V . u a _ . . . i i

PQRD-BS algorithm

- - PQRD-BS with ZLSS
-

i i i
100 200 300 400 500

Iterations
600 700 800

I
i •
A •.
I

•"P Q R D -B C algorithm

— PQRD-BC with ZLSS

900

0 100 200 300 400 500 600
Iterations

700 800 900

 PQRD-SBR algorithm

— PQRD-SBR with ZLSS and without inverse delay

0 100 200 300 400 500 600 700 800 900
Iterations

Figure 6 .8 : The Frobenius norm of the polynomial elements beneath the diagonal of
the transform ed polynom ial m atrix over the series of iterations for each of the PQ RD
algorithm s when applied to A 2 (z) for the cases (i) using the original code as described
in C hap ter 5 and (ii) when implem enting the algorithm s w ith the ZLSS.

143

6.2 Worked Examples

6.2 .5 E xam p le 3

For the th ird example, the polynomial m atrix A ^ z) E C 5x3x4 illustrated in Figure 6.9, was

chosen to he complex, where both the real and imaginary parts of each polynomial element

were independently drawn from a normal distribution with mean zero and unit variance. This

polynomial m atrix has complex coefficient matrices A (0) ,. . . , A(4). The Frobenius norm of

this m atrix was found to be 11.42, with 79% of this positioned beneath the diagonal of the

matrix.

2

o" * 1 T

2

' I T

2

‘i
T T

°0 2 °c 2 2 4

r M

2

' I t ,

1 2

■ ! t I ,
wo 2 °c 2 °(2 4

2

0" T I T

•
t T ■

2 1 (

T
°0 2 °(2 °(2 4

: 1 r , ' . I t ' 1 1 t t
wo 2 °(2 °(2 4

2

t T

2

1 I T 1

1 2

t i l .
0 2 °() 2 °() 2 4

Lag

Figure 6.9: The magnitude of the coefficients of the polynomial elements of the poly
nomial matrix A 3(z) to be used as input to each of the three algorithms for calculating
the PQRD.

Each of the three original algorithms for calculating the PQRD (as described in Chapter

5) were applied to the polynomial m atrix A 3 (2). The energy based truncation method

was again used w ithin each algorithm with p = 10-6 and the stopping criterion set as

e = 10-3 . The results from applying each of the three algorithms to this polynomial matrix

are contained in Table 6.4. The results confirm th a t the PQRD-BC algorithm was again

significantly faster than the two other algorithms to implement, requiring only 589 EPGRs

to converge to an approxim ately upper triangular polynomial m atrix, where the m agnitude

144

6.2 Worked Examples

of each coefficient associated with any of the polynomial elements positioned beneath the

diagonal is less than 10~3. Furthermore, this algorithm required the least time to converge and

the orders of the resulting matrices from this algorithm are smaller than those obtained from

the other two decomposition algorithms. The relative error of the decomposition obtained

using this algorithm was found to be 9.53 x 10-3 , illustrating th a t a very good approximate

decomposition can be achieved. Figures 6.10 and 0.11 illustrate the polynomial matrices

Q(;r) (of order 43) and R (z) (of order 43) obtained using the PQRD-BC algorithm. From

inspection of the series of coefficients of the polynomial elements of the polynomial m atrix

R (2) in Figure 6 .10 , it clear th a t a good approximation to an upper triangular polynomial

m atrix has been made by the decomposition algorithm.

The PQRD-BS algorithm required considerably more EPG Rs (762) than the PQRD-BC

algorithm and as a result slightly more computational time. As with the previous two exam

ples, the PQRD-SBR algorithm was the slowest to converge, requiring over twice as many

EPG Rs than either the PQRD-BS or PQRD-BC algorithms. As a result, the computational

time was much slower, taking over four times longer than either of the other two algorithms

to converge.

P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 762 583 1607

N um ber o f Sw eeps 2 2 -

Final order o f R(^) 34 33 43

Final order o f Q(^) 50 43 48

E rel 7.65 x 10~3 9.53 x 10"3 5.94 x 10"3

Final value o f g 9.28 x 10~4 9.42 x 10~4 9.96 x 10~4

Final value o f L 6.26 x 10"3 5.58 x 10“3 1.03 x 10~2

C om pu tational T im e (Seconds) 0.87 0.69 4.07

Table 6.4: Results from applying each of the PQRD algorithms to the polynomial test
matrix A 3(^) G C 5x3x4.

The results were again repeated, applying each algorithm to the polynomial m atrix A 3 (z).

However, th is tim e the ZLS step was applied at the s ta rt of each iteration of each of the three

algorithms. The results obtained when using the ZLS step can be seen in Table 6.5. As

145

6.2 Worked Examples

<D
■o3+->
C
O)
(0
5

OaaeemmaueeefSkoaaeeaemnme t OnaaaaeeaeeasJJjlkQageeeaaaeeaa
-10

-10

-10

-10

-10

10

10

10

10

10

-10 10

farffcSalfecfiaeae
-10 10

Ohmmmmmmmm
-10 0 10

-10 10

-10 0
Lag

10

5

Qoeaa
-10 10

-10
oMBaBBemeeew

10

oUiwr iirnmrornl tfrftnaaoa
-10 10

-10 10

Onaaeaaaaaaaaaaeaaaeaeaaeea
-10 10

Figure 6.10: The coefficients of the polynomial elements of the approximately upper tri
angular polynomial matrix R(.z), obtained when the PQRD-BC algorithm was applied
to the polynomial matrix A 3(z).

- 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10

- 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10

- 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10

- 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10 - 20-10 0 10

Lag

Figure 6.11: The coefficients of the polynomial elements of the paraunitary transfor
mation matrix Q(z) obtained using the PQRD-BC algorithm with polynomial input
matrix A 3(z).

146

6.2 Worked Examples

with the previous example, the most notable improvement can be seen in the PQRD-SBR

algorithm, which required 454 fewer iterations to converge. However, the computational time

required to calculate this decomposition has increased, dem onstrating th a t implementing

the additional step was computationally more expensive th a t the extra iterations required

if the ZLS step is not used. The number of EPG Rs have also decreased for the PQRD-BS

algorithm, however, the computational time has again increased. Finally, for the PQRD-

BC algorithm the num ber of EPGRs required for the algorithm to converge has increased.

Figure 6.12 illustrates the Frobenius norm of all polynomial elements beneath the diagonal

of the transform ed polynomial m atrix a t the end of each iteration, for each of the three

decomposition algorithms. This figure displays the same measure for each of the algorithms,

with and without the ZLS step. From this figure, it can be seen tha t there was no erratic

behaviour observed in the second sweep of either the PQRD-BS or the PQRD-BC algorithms

and so in this respect the ZLS step offers no advantage over the original algorithms.

Although the ZLS step dem onstrated some potential advantages when it was applied

as part of the three algorithms for calculating the PQRD of A 2{z), for this example the

additional step offers no advantage to any of the PQRD algorithms. The number of iterations

required for the PQRD-BS and the PQRD-BC algorithms to converge was reduced, but

the additional step forced the computational time for each of these algorithms to increase.

Furthermore, for this example the ZLS step did not reduce the orders of the two polynomial

matrices generated by any of the algorithms or help reduce the relative error. For this

example, the PQ RD-BC algorithm as detailed in Chapter 5 requires the least number of

EPG Rs and com putational time to converge. This algorithm is therefore the most efficient

for this example.

147

6.2 Worked Examples

P Q R D -B S P Q R D -B C P Q R D -S B R

N um ber o f E P G R s 650 602 1153
N um ber o f Sw eeps 2 2 -

Final order o f R(2) 30 47 45

Final order o f Q(<z) 45 43 51

Erel 7.71 x 10"3 8.96 x 10"3 7.69 x 10"3

C om putational T im e (Seconds) 0.95 1.36 4.36

Table 6.5: R esults from applying each of the PQ R D algorithm s to the polynomial
test m atrix A 3(z) € C 5x3x4, each implem enting the ZLS step a t each iteration of the
algorithm .

10

— PQRD-BS algorithm
- - PQRD-BS with ZLSSJ 5

800 1000 1200 1400 1600200 400 600
Iterations

10

— PQRD-BC algorithm
- - PQRD-BC with ZLSSJ 5

0.
16001000 1200 1400400

- 1 5 -

400

Iterations

— PQRD-SBR algorithm
- - PQRD-SBR with ZLSS and without inverse delay

600 800
Iterations

1000 1200 1400 1600

Figure 6.12: T he Frobenius norm of the polynomial elem ents beneath the diagonal of
the transform ed polynom ial m atrix over the series of iterations for each of the PQ R D
algorithm s when applied to for the cases (i) using the original code as described
in C hapter 5 and (ii) when implementing the algorithm s w ith the ZLSS.

148

6.2 Worked Examples

6.2 .6 E xam p le 4

For the final example, the three algorithms for calculating the PQRD were applied to the

polynomial m atrix A 4(z) G C 5x3x4. This m atrix is the same as the polynomial m atrix

A 3(z), except th a t the th ird column of the m atrix has been set equal to the second, resulting

in a polynomial m atrix th a t does not have full column rank. As the PQRD-BC algorithm

converged in the least number of iterations when applied to A 3(z), this algorithm was again

used to calculate the PQ RD of A 4(z). This algorithm required 387 iterations and only one

sweep of the algorithm to converge to a point where g < 10-3 . The upper triangular m atrix

obtained by the algorithm is illustrated in Figure 6.13, where the th ird diagonal polynomial

element of the m atrix 2133(2) is approximately equal to zero. In fact,the Frobenius norm of

this polynomial element is found to be 2.66 x 10~6. The paraunitary transform ation m atrix

Q(z) obtained from the decomposition is dem onstrated in Figure 6.14.

Note tha t the PQ RD of any polynomial m atrix A(z) G C pxq exists even if the m atrix is

not of full rank. However, in this case, a number of the diagonal elements of the polynomial

m atrix B (*) will be equal to zero. For the scalar m atrix case, this will mean tha t if the

decomposition is to be used to solve a set of linear equations of the form A x = b (for x,

given A and b) by back substitution, then it will not be possible to calculate every element

of x. Depending on the position of the zero(s) it may still be possible to obtain estimates

of some of the elements. The same will be true if this problem is extended to polynomial

matrices.

149

6.2 Worked Examples

Q99999999999QO?
-10

WMWIQMIII I
10

<D 0
T3D
c 5
O)
(0
5

-10 10

Q 9999999999999999999999999999
-10 10

-10 10

Q 999999999999999999999999999II
-10 10

09999999990^9
-10

M e
10

5

-10 10

Q 999999999999999999999999999
-10 10

0999999999999999999999999999
-10 10

0*99999999999999999999999999
-10 0

Lag
10

Q99999090090QI1' T1flQ0Q>9990«e
-10 10

099999999OQflnftl
-10

ftMftiWI9999999
10

Q999999999999999999999 9999999
-10 10

0999999999999999999999999999
-10 10

Q 999999999999999999999999999I
-10 10

Figure 6.13: The coefficients of the polynomial elements upper triangular polynomial
matrix EM, obtained when the PQRD-BC algorithm was applied to the polynomial
matrix A 4(z).

-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 o 10

-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 o 10

5 -10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10

-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10

-10 0 10 -10 0 10 -10 0 10 -10 0 10 -10 0 10
Lag

Figure 6.14: The coefficients of the polynomial elements paraunitary transformation
matrix Q(z) obtained using the PQRD-BC algorithm with polynomial input matrix
A A(z).

150

6.2 Worked Examples

6 .2 .7 O ther Zero-Lag O ptions

In Section 6.1 the im portance of the zero-lag coefficient m atrix was discussed. W ithin each of

the PQ RD algorithms, the zero-lag coefficient m atrix can be chosen from any of the coefficient

matrices of the polynomial matrices. However, due to the non-uniqueness of the polynomial

decomposition, the choice will affect the decomposition performed. In particular, the choice

will result in the different algorithms requiring a different number of EPGRs to converge.

Furtherm ore, it will also result in polynomial matrices of different orders. The choice of the

zero-lag coefficient m atrix is im portant for convergence of each of the algorithms. For this

reason, three m ethods for choosing the zero-lag coefficient m atrix from the polynomial input

m atrix a t the beginning of each iteration of the algorithms has been developed. The three

techniques are

1. M e th o d 1: The zero-lag coefficient m atrix is specified to be the first coefficient m atrix
within each example. (This has been used for all examples in this chapter)

2. M eth o d 2: The zero-lag coefficient m atrix is chosen to be the coefficient m atrix
associated w ith the coefficient of a n (z) with largest magnitude.

3. M eth o d 3: The zero-lag coefficient m atrix is chosen to be the coefficient m atrix with
the largest Frobenius norm.

Each of the three PQ RD algorithms (as detailed in Chapter 5) was again applied to the first

three examples from this chapter, using each of the three options discussed above. The num

ber of EPG R s required for each implementation of each of the three algorithms to converge

are contained in Table 6 .6 . In this table, for each algorithm and each example, the option

th a t required the least num ber of EPG Rs is highlighted in red.

The results suggest th a t for both the PQRD-BS and PQRD-BC algorithms, there is

no relationship between either the initial choice of the zero-lag coefficient m atrix and the

number of EPG R s required for the algorithm to converge. However, w ith the PQRD-SBR

algorithm choosing the zero-lag coefficient m atrix to be the coefficient m atrix containing the

largest coefficient of the polynomial element a n (z), i.e. using the second m ethod, will reduce

the num ber of EPG R s required significantly for each of the three examples. For the second

example, the PQ RD-SBR algorithm using the second m ethod requires fewer EPG Rs than the

151

6.3 Conclusions

P Q R D -B S P Q R D -B C P Q R D -S B R

M .l M .2 M .3 M .l M .2 M .3 M .l M .2 M .3

E xam p le 1 71 85 85 74 59 59 125 104 104

E xam p le 2 361 333 324 356 414 350 901 294 479

E xam p le 3 762 792 788 583 627 585 1607 1318 1367

Table 6.0: The number of EPGRs required for each algorithm for calculating the
PQRD to converge, when the initial zero-lag coefficient matrix is specified using the
three different options method 1 (denoted as M .l in the table), method 2 (M.2) or
method 3 (M.3). For each example, the method requiring the least number of EPGRs
for each algorithm is highlighted in red.

PQRD-BC algorithm, which currently offers the best performance. However, each iteration of

the PQRD-SBR algorithm is typically computationally more expensive than a single iteration

of the PQRD-BC algorithm and so the computational time required for the decomposition is

still larger than th a t observed with the PQRD-BC algorithm.

6.3 C o n c lu s io n s

This chapter has dem onstrated the performance of the three algorithms for calculating the

QRD of a polynomial m atrix through several examples. The results have shown that the

PQRD-BS and PQ RD-BC algorithms generally require considerably fewer EPGRs than the

PQRD-SBR algorithm. The SBR approach, although an extremely efficient technique for

achieving the EVD of a polynomial matrix, is not the most appropriate for calculating the

PQRD. In hindsight, this could be expected due to the polynomial input m atrix converging

to an upper triangular m atrix through the columns of the m atrix from left to right and

so a process of steps, which will transform the m atrix by annihilating the elements of the

m atrix from left to right, would be more appropriate for convergence. Furthermore, typically

the PQRD-BC algorithm required the least number of EPG Rs and for the single example

where this is not the case (Example 1), this algorithm only required a few more iterations

to converge th an the PQRD-BS algorithm. Note that if both these algorithms are applied

to a scalar m atrix they will require the same number of Givens rotations, bu t the PQRD-

152

6.3 Conclusions

BC algorithm will be computationally slightly more expensive, due to the routine required

to find the dom inant coefficient in each step. However, when applying the algorithms to a

polynomial m atrix it becomes more difficult to compare the algorithms, due to the additional

dimension to the problem resulting from each polynomial element of the m atrix having an

associated set of coefficients, which must all be driven to zero to achieve the decomposition.

Furtherm ore, the com putational cost of each algorithm is entirely dependent on the order of

the polynomial matrices throughout the algorithm and the orders of both matrices, which

will grow at each iteration, cannot be specified in advance.

The significance of the zero-lag coefficient m atrix within the PQRD has been discussed

within this chapter. This coefficient m atrix is fundam ental for convergence of each of the

algorithms and whichever coefficient m atrix is chosen to be the zero-lag coefficient m atrix

from the polynomial input m atrix to the algorithm, the choice will affect the decomposition

performed. In particular, the choice of this coefficient m atrix will affect the numbers of

iterations required for the algorithm to converge and will also produce a different paraunitary

transform ation and approximately upper triangular polynomial matrices of different orders.

The ou tpu t polynomial matrices from the algorithm are not unique, but this is not an issue

for the potential application of the algorithm discussed in Chapter 8 .

Several m ethods for choosing the zero-lag coefficient m atrix from the polynomial input

m atrix have been discussed in this chapter. However, the basic PQRD-BC algorithm as

detailed in C hapter 5, w ithout any additional step, appears to be the best choice of algorithm

to calculate a QRD of a polynomial matrix. The results have dem onstrated th a t the choice

of zero-lag coefficient m atrix can significantly improve the performance of the PQRD-SBR

algorithm and can drastically reduce the number of iterations required for this algorithm to

converge. A process of realigning the zero-lag coefficient m atrix of the input m atrix has been

presented in Section 6.2.3 and for some examples, using this technique, can reduce the number

of iterations required for each algorithm. However, using this technique requires additional

com putations and so it does not always provide improved performance, even if the number

of EPG Rs has been vastly reduced. This step also removes any erratic behaviour observed

in the m easure of the Frobenius norm of the polynomial elements beneath the diagonal of

153

6.3 Conclusions

the m atrix over the series of iterations (i.e. EPG Rs) of the PQRD-BS and the PQRD-BC

algorithms th a t is often observed if multiple sweeps of either of these algorithms are required.

This behaviour can be seen in Figure 6.5. The choice of the zero-lag coefficient m atrix adds

another param eter to each of the algorithms, which is not present for the scalar m atrix

decomposition. Finally, note th a t this point was never an issue in the SBR2 algorithm as the

input m atrix was para-Herm itian and must remain so through all iterations of the algorithm.

154

C hapter 7

T he Singular Value D ecom position
o f a Polynom ial M atrix

7.1 Introduction

The singular value decomposition of a scalar m atrix is one of the most useful developments

in linear algebra. It can be used to determine the rank, range and null space of a matrix,

but can also be used for calculating the pseudo-inverse of a m atrix and for solving a set

of homogeneous linear equations. Consequently, the decomposition has a wide range of

applications in areas such as autom atic control, scientific computing and narrowband adaptive

sensor array processing [25]. In the context of signal processing, it can be used to decorrelate

a set of instantaneously mixed signals and often as a result can be used to identify and then

separate the signal and noise subspaces. The SVD is also the m ethod of choice for solving most

linear least-squares problems as it offers a numerically robust solution, which can be calculated

by directly applying the SVD to the da ta m atrix [25,38]. There exist several techniques for

calculating the decomposition, which are discussed along with a detailed description of the

decomposition and its properties in Chapter 2 .

However, in broadband signal processing where polynomial matrices are generally part of

the generative model for the observations, the SVD can no longer be applied as each element

of the m atrix now consists of a polynomial with an associated set of coefficients. Instead,

a polynomial m atrix singular value decomposition (PSVD) has been developed. For the

polynomial m atrix A (z) € C px<7, the objective of the PSVD is to calculate the paraunitary

155

7.1 Introduction

matrices U (z) 6 C pxp and V (z) € C qxq such tha t

U (z)A (z)V (z) = S(z) (7.1)

where S(z) € C pxq denotes a diagonal polynomial m atrix and (•) the paraconjligation of

the polynomial m atrix. The coefficients of the polynomial elements of A (z) can be either

real or complex, however, the advantage of this decomposition over the polynomial m atrix

eigenvalue decomposition (PEVD) is th a t it can be applied to polynomial matrices of any

dimension, i.e. where it is not required that p = q for the polynomial matrices in equation

(7.1). As a consequence of using paraunitary matrices the transform ation will be energy (or

norm) preserving and so

IIA(Z)||2f = ||S(Z)||2f . (7.2)

This chapter discusses two methods of obtaining a singular value decomposition of a poly

nomial m atrix (PSVD). Firstly, the PSVD by polynomial m atrix QR decomposition (PQRD)

algorithm is introduced. This algorithm operates by iteratively applying two PQRDs to the

polynomial m atrix A (z) to transform it into a diagonal polynomial m atrix S(z). Secondly,

an already existing generalisation of the SVD to polynomial matrices is briefly discussed for

comparison purposes. This m ethod was introduced in [21] and operates by calculating two

PEVDs, each form ulated using the SBR2 algorithm, to calculate the parauntiary matrices

U (z) and V (z). A potential application of the decomposition lies in the area of MIMO com

munications, where it can be used to transform a MIMO system into a set of independent

subchannels. Recent research, which is discussed further in the penultim ate chapter of this

thesis, has shown the PSVD by PEVD approach for this application obtains a good average

bit error rate (BER) performance for transmission over frequency selective quasi-static chan

nels [11-14]. The necessary qualities of the decomposition, and in particular the properties

of the resulting diagonal m atrix S(z), which are required for this application, are then briefly

discussed. A simple example is then given to illustrate how both of the m ethods perform

as decomposition techniques, demonstrating a clear advantage of using the PSVD by PQRD

algorithm over the previously proposed SBR2 approach. Most significantly, the PSVD by

156

7.2 Technique 1: PSVD by PQRD

PQ RD algorithm enables the user to specify how small the coefficients associated with the

off-diagonal polynomial elements must be driven for convergence. This is something that

cannot be achieved when the PSVD is calculated using the SBR2 algorithm. Furthermore,

the relative error of the decomposition, the computational time taken to calculate the decom

position and the orders of the final matrices are generally smaller when the decomposition is

formulated using the PSVD by PQRD algorithm.

7.2 Technique 1: P SV D by P Q R D

Given the polynomial m atrix A(z) £ C pxq, the objective of the PSVD by PQRD algorithm

is to compute the polynomial paraunitary matrices U (2) £ C pxp and V (z) £ C qxq such that

U (2)A (2)V (z) ~ S(*) (7.3)

where S(z) denotes a diagonal polynomial matrix. As with the SBR2 algorithm and the

PQ RD techniques, it is often not possible to achieve exact diagonalisation of the polynomial

m atrix A (*), as each element is now a polynomial with an associated set of coefficients,

hence the reason for the approximate equality in equation (7.3). However, as this chapter

will confirm a good approxim ation can be achieved. Note tha t the m atrix to be decomposed,

A (z), need not be square, bu t it is assumed th a t it has at least as many rows as columns, i.e.

p > q, and hence is generally referred to as a tall polynomial matrix. This algorithm could

operate on a m atrix w ith fewer rows than columns, but this would present an underdeterm ined

problem, which is not the focus of this thesis.

The PSVD by PQ RD algorithm operates as an iterative process where a t each iteration

two paraunitary m atrices are formulated using one of the PQRD algorithms discussed in

C hapter 5. Any of the PQ RD algorithms can be used to compute the decomposition. Of

course it is preferable to use the algorithm, which generally takes fewer iterations to converge

to an upper triangular m atrix and the one th a t obtains an upper triangular polynomial

m atrix w ith the smallest order. Note th a t these two properties of the decomposition are

generally related. Over a series of iterations, the PSVD by PQRD algorithm transforms

157

7.2 Technique 1: PSVD by PQRD

the polynomial m atrix A (z) into an approximately diagonal m atrix by applying a series of

paraunitary matrices obtained using the PQRD.

7.2.1 T h e P S V D by P Q R D A lgorithm

The algorithm begins by calculating the paraunitary m atrix U ^ z) G C pxp. This m atrix is

calculated iteratively by formulating the PQRD of the polynomial m atrix A(z) G C px<? such

tha t

(7.4)

where A (z) G C pxq is an approximately upper triangular polynomial m atrix, such tha t the

coefficients of the polynomial elements beneath the diagonal satisfy

aj k (t) < € (7.5)

for j = 2 , . . . ,p, k = 1 , . . . , mill {j — 1 ,q} and Vt G Z, where e > 0 is a prespecified small

value. Once A (z) satisfies this stopping condition, set

A"(z) = A (z). (7.6)

This polynomial m atrix will be approximately lower triangular and will form the input to

the subsequent step of the algorithm. Note th a t the diagonal polynomial elements of the

m atrix A (z) will rem ain on the diagonal following the transform ation and, in particular, the

zero-lag diagonal coefficients will satisfy))* for j = 1, . . . , q and Vt € Z where

(•)* denotes the operation of complex conjugation of the polynomial coefficient. Note th a t in

particular the diagonal zero-lag coefficient a ^ { 0) will remain in the same position following

the transform ation. This point is im portant for convergence of the algorithm.

Subsequently, the PQ RD of the lower triangular polynomial m atrix A (z) G C qxp is

computed and so the paraunitary polynomial m atrix Vj (z) G C qxq is calculated such that

V1(*)A"(*) = a "'(2) (7-7)

158

7.2 Technique 1: PSVD by PQRD

where the polynomial m atrix A (z) G C 9Xpis approximately upper triangular and all coef

ficients of the polynomial elements beneath the diagonal are sufficiently small and therefore

less than e in m agnitude, as in equation (7.5). This completes the first iteration of the PSVD

by PQRD algorithm and the complete decomposition performed following this iteration is of

the form

U 1(z)A (z)V 1(z) = A (z) (7.8)

where both of the paraunitary matrices U j (z) and V j (z) have been calculated as a series

of elementary delay matrices interspersed by elementary rotation matrices using one of the

algorithms for calculating the PQRD. This iterative process is repeated replacing A(z) with
nt

A (z) until all coefficients of the off-diagonal polynomial elements of the m atrix are suffi

ciently small, which is achieved when the following stopping condition is satisfied

\aj k {t)| < e (7.9)

for j = l , . . . , p , k = 1 where j ^ k and V£ E Z. The value of the convergence

param eter e will be the same as th a t used for the stopping condition of both of the PQRDs

calculated within each iteration of the decomposition to enable convergence of the algorithm.

The algorithm is guaranteed to converge in this respect and the proof of convergence can be

found in Section 7.2.3. Furthermore, a concise description of the PSVD by PQRD algorithm

can be found in Appendix B.

Assuming the algorithm has converged following N iterations, the decomposition per

formed is of the form

U (z)A(2)V(*) = § „ (*) (7.10)

where

U (2) = 1 1 ^ (2) . . . U ! (2) , (7.11)

Y (2) = V 1(2) . . . V w(2) (7.12)

and S N {z) is the approximately diagonal polynomial m atrix resulting from N iterations of the

PSVD by PQ R D algorithm. The matrices Uj(z) and V 2(z) in the above expression denote

159

7.2 Technique 1: PSVD by PQRD

the pair of paraunitary matrices computed in the i th iteration of the algorithm. The matrices

U (2) € <Cpxp and V (z) € C gxg will therefore be paraunitary by construction.

Note th a t in the degenerate case where the input m atrix is of order zero, i.e. the input is

a m atrix with scalar entries, then the decomposition will simply reduce to the conventional

SVD of a m atrix where the paraunitary matrices U (z) and V (z) will reduce to unitary

matrices. Although the SVD of a scalar m atrix can be calculated using this algorithm, it

would be computationally more expensive than other techniques and as a consequence slower

to implement.

7.2 .2 Im plem en tation o f th e A lgorithm

The polynomial m atrix truncation m ethod suitable for non para-Herm itian polynomial ma

trices from Section 4.3.2, can also be used within the algorithm for calculating the PQRD.

This ensures th a t the orders of the polynomial matrices do not grow unnecessarily large and

as a result helps to minimise the computational load of the algorithm.

The stopping criterion of the algorithm, dem onstrated in equation (7.9), could alterna

tively have been specified in term s of the proportion of the squared Frobenius norm of the

m atrix positioned in the off-diagonal elements, i.e. stop the algorithm when

where again e > 0 is a prespecified small value. This approach may be useful for some appli

cations of the decomposition, bu t for the results dem onstrated in this chapter the stopping

condition of equation (7.9) is sufficient.

7.2 .3 C onvergence o f th e A lgorithm

The proof of convergence is outlined assuming the PQRD-BC algorithm is used to calculate

the PQ RD at each step of the PSVD by PQRD algorithm, as this algorithm is often the fastest

to converge for the examples used in this thesis. Note th a t this proof can easily be adapted

V Q

< e (7.13)
I I A (z) | | 2

F

160

7.2 Technique 1: PSVD by PQ RD

to apply to either the PQRD-BS or PQRD-SBR algorithms. To dem onstrate convergence of

the algorithm, the following measures are defined

^ = E E E b * M i 2 . (7-14)
r j = 1 k = l

£ ™ = E £ l M T)|2 > (745)
r j = 1

^ — L E K m-m i 2 (7-16>
t k= 1

and

Eij(T) = |ai_j(r)|2 , (7.17)

which define the squared Frobenius norm of the m atrix A (z) G C pxq, the squared Frobe-

nius norm of the k th column of A (z), the squared Frobenius norm of the j ih row of A(z)

and the m agnitude squared of the polynomial coefficient ajk{r) respectively. Similarly, de

fine the measures E'c k , E'Rj , 22^(t)^ for A \ z) , (n 4 , E"c k , E"Rj, E'-j(r)) for A^'(z) and

(^N4 , E (’.k, E Rj, E' - j(r)j for A T h e proof of convergence will initially be outlined as

suming no truncation m ethod is used and so the quantity N 4 will remain constant throughout

all iterations of the decomposition.

The first step of the algorithm is to calculate the PQ RD of the polynomial m atrix A(z).

The resulting polynomial m atrix from this decomposition, A ' (z), is guaranteed to converge to

an upper triangular polynomial matrix, according to the stopping condition dem onstrated in

equation (7.5), by the proof for convergence of the appropriate PQ RD algorithm. Note that

the measure E c k is invariant to the application of the PQRD-BC algorithm over all columns

of the m atrix and so E Ck = Eck for /c = I , . . . ,q. This is due to rotation matrices applied

from the left of a m atrix can only ever redistribute the squared Frobenius norm between

elements in a column. Furthermore, the delay m atrix will also keep energy constant within

columns throughout the calculation of the PQRD.

Subsequently, the paraconjugate of this m atrix is calculated to form A (2), which will be

an approxim ately lower triangular polynomial m atrix, where the m agnitude of each coefficient

161

7.2 Technique 1: PSVD by PQRD

of each of the polynomial elements above the diagonal will be less than e. The relationship

between the coefficients of the two matrices can be expressed as a'jk(t) = (a ^ (—t)^ for

j = 1 , . . . , q, k = 1 , . . . ,p and Vt € Z, where (•)* denotes the complex conjugation of each of

the polynomial coefficients. In particular, note the following observations about this trans

formation:

L E c k = E Rk for k =

2 . All coefficients of the polynomial elements beneath the diagonal of a column will move

into a column positioned to the right of its initial position and will be positioned above

the diagonal.

3. All coefficients of each polynomial element on the diagonal of A ' (z) will remain in the

same diagonal element following the transform ation, but may have changed lag index.

4. All coefficients of the polynomial elements above the diagonal will move into a col

um n positioned to the left of its initial position and will now be situated beneath the

diagonal.

This final point is im portant for convergence, bu t first the final step of each iteration of the

algorithm must be discussed.

The final step of the algorithm is to calculate the PQ RD of the lower triangular poly

nomial m atrix A " (z) to obtain the upper triangular polynomial m atrix A "(z). Following

this transform ation the m agnitude of each coefficient of each polynomial element beneath the

diagonal of A " (z) will be driven less than e by applying the appropriate elementary delay and

rotation matrices within the PQRD-BC algorithm. During this transform ation, the squared

Frobenius norm of all of the coefficients of the polynomial elements positioned beneath the

diagonal of A "(z) will have been redistributed, as a result of driving these coefficients suffi

ciently small. Furtherm ore, the squared Frobenius norm of each column of the m atrix will

be invariant to the transform ation performed, i.e. E ck — E Ck for k = 1, . . . ,q, and so the

squared Frobenius norm of the coefficients on and above the diagonal in each column will

increase to account for the reduction below the diagonal.

162

7.2 Technique 1: PSVD by PQRD

Over this first iteration of the PSVD by PQRD algorithm, the coefficients of the poly

nomial elements, which were positioned above the diagonal of the k th column, say, of A ' (z)

and had m agnitude greater than e, will have firstly been moved into the k th row of A " (z).

These coefficients will now be positioned in one of the columns to the left of A; (i.e. in one of

the columns 1 , . . . , k — 1) of the k th row depending on their initial row index in A/\ z) . When

these coefficients are driven sufficiently small, such th a t each has m agnitude less than e, their

excess energy will end up in either the diagonal element or any of the elements positioned

above the diagonal within the same column of A (z). This process is repeated, resulting

in the squared m agnitude of any coefficients larger than e in polynomial elements above the

diagonal of the m atrix at the s tart of one iteration of the algorithm, being positioned on

or above the diagonal of a column positioned to the left of its initial position at the end of

the iteration. This process will continue through all iterations of the algorithm and so there

will always be a movement of energy leftwards through the columns of the m atrix until all

coefficients are sufficiently small, i.e. less than e.

Furthermore, the quantity E\ i (0) will increase monotonically throughout all iterations of

the algorithm. It will increase as a consequence of driving any coefficient of any polynomial

element beneath the diagonal of the first column to zero and is never affected by any rotations

applied to zero coefficients in columns positioned to the right of it. In addition, this quantity

will never be affected by the application of elementary delay matrices throughout any part

of the decomposition as the coefficient o n (0) will remain in the same position throughout all

iterations of the PSVD by PQRD algorithm. Now, this cannot continue indefinitely as the

energy in the m atrix is bounded from above by the initial value of N 4 . Therefore, a point

must be reached whereby all coefficients beneath the diagonal are less than e by analogy with

the proof of convergence of the SBR2 algorithm [7].

Finally, note th a t it will be possible for energy to move rightwards through the m atrix as

the coefficients beneath the diagonal of the m atrix have only been driven sufficiently small

according to a stopping condition and are not exactly equal to zero. Obviously, coefficients

previously driven sufficiently small, which are now positioned in the area above the diagonal of

the m atrix, could increase in magnitude through a subsequent application of any of the PQRD

163

7.3 Technique 2: PSVD by PEVD

algorithms. However, at the next step of the algorithm any coefficients of any polynomial

elements positioned above the diagonal will be moved into columns positioned to the left of

their initial position, where they will then be systematically driven to zero according to the

ordering within the PQRD-BC algorithm.

If the polynomial matrices are not truncated throughout the algorithm, then the quan

tity N 4 will remain constant throughout all iterations of the decomposition. However, tins

is not practical for most applications of the algorithm and so a truncation method will be

implemented forcing the measure N 4 to decrease according to the truncation method de

scribed in Section 4.3.2. However, although this quantity can decrease it will still constitute

an upper bound on .E'ii(O) and so convergence of the algorithm is guaranteed. This proof of

convergence is also easily extended for the two remaining algorithms for calculating the QR

decomposition of a polynomial m atrix discussed in Chapter 5.

7.3 Technique 2: P S V D by P E V D

This m ethod is an already existing technique for calculating the SVD of a polynomial m atrix

and operates by using the SBR2 algorithm to calculate the PEVD of two polynomial matrices.

Suppose we wish to calculate the PSVD of the polynomial m atrix A [z] G C pxq such that

A (z) = U(z) S (z) V (z) (7.18)

where U (z) G C pxp and V (z) G C qxq are both paraunitary matrices and S(z) G C pxq

denotes a diagonal m atrix. Then using the polynomial m atrix, A (z), two para-Hermitian

polynomial matrices, A (z)A (z) G C pxp and A (^)A (z) G C 9*9, can be generated. These

matrices could alternatively be expressed in term s of the PSVD shown in equation (7.18) as

A (z)A (z) = U (z) S (z) Y ^ Y X ^ (z) l l (z) (7.19)

= U (z)S (z)S (z)U (2) (7.20)

164

7.3 Technique 2: PSVD by PEVD

and

A (z) A (z) = Y (z) S { z) U ^ S ^ S { z) Y { z) (7.21)

= V (*)S(z)S(z)V (z) (7.22)

where the matrices S(z)S(z) € C pxp and S(z)S(z) € C qxq are both diagonal. Equations

(7.20) and (7.22) both constitute the PEVD of the matrices A (z)A (z) and A (z)A (z). The

paraunitary matrices U (z) and V (z) can therefore be calculated by applying the SBR2 algo

rithm to the para-Herm itian matrices A (z)A (z) and A (z)A (z) in turn. As each element of a

polynomial m atrix represents an FIR filter, exact diagonalisation is not always possible, but

as C hapter 3 has dem onstrated a good approximation is achievable. Therefore, the SBR2

algorithm when applied to the para-Hermitian matrices will generate the approximations of

the diagonal matrices S(z)S(z) and S(z)S(z) according to a stopping condition, such as that

dem onstrated by equation (3.25).

Finally, once the two PEVDs have been calculated to obtain the paraunitary matrices

U (*) and V (z), the diagonalised m atrix S(z) is calculated according to equation (7.1). Note

tha t if a truncation m ethod is used when formulating the two decompositions in equations

(7.20) and (7.22), then the decomposition will not be exactly energy preserving and so equa

tion (7.2) will not hold precisely. However, with a suitable choice of the truncation param eter

(i, a good level of decomposition can be achieved.

The PSVD of the polynomial m atrix A(z) has then been obtained allowing the m atrix to

be decomposed as dem onstrated by equation (7.1). Note th a t the two PEVDs demonstrated

by equations (7.20) and (7.22) are both guaranteed to converge to an approximately diagonal

m atrix, by the proof of convergence for the SBR2 algorithm outlined in Section 3.4.

As with the previous PSVD technique, if the m atrix A(z) is of order zero and so each

element is a scalar, this decomposition technique will reduce to the conventional SVD, where

U (z) and V (z) are unitary matrices. However, this technique would not be the m ethod of

choice for the decomposition as computationally it is more expensive.

There is a problem with using this technique to form the PSVD; it is impossible to have

165

7.4 Uniqueness of Solutions

any direct control over how small the off-diagonal coefficients of the m atrix S(-s) will be fol

lowing the decomposition. Although the maximum magnitude of the off-diagonal coefficients

of the diagonal matrices obtained by the SBR2 algorithm, i.e. S (2)S (2) and S (z)S (2), can be

specified, this will not allow strict control over the maximum m agnitude of the off-diagonal

coefficients of £>(2). For example, applying the SBR2 algorithm to A (z) A(z) , the coefficients

of the off-diagonal polynomial elements of the resulting diagonalised m atrix S (z)S(z) must

be less than a prespecified small value e > 0 and so the coefficients must satisfy

[s (*)I(*)‘ jkt E E E
1=1 11 t2t2 -ti=t

< e (7.23)

where j , k = l , . . . , p for j ^ k and V£ € Z. However, this does not give any insight to

the m agnitude of the coefficients of the off-diagonal polynomial elements of S(z). Therefore

the maximum possible size of the coefficients of the off-diagonal polynomial elements of the

diagonalised m atrix S(z) cannot be specified in advance, resulting in little control over how

diagonal the resulting m atrix will be. Clearly, for the application of the decomposition, where

a strictly diagonal m atrix may be required for channel equalisation, this could affect the error

rate performance. This is discussed further in Chapter 8 of this thesis. Note that this is not

a problem in the degenerate case where the decomposition of a scalar m atrix is required, as

exact diagonalisation of the matrices A (z) A (z) and A (z)A (2) is possible.

7.4 U niqueness o f Solutions

Following from Section 3.8, it can be seen th a t the two paraunitary matrices U (2) and V(z)

obtained from form ulating the PSVD of a polynomial m atrix are not unique. Note th a t the

PSVD algorithm s presented in this thesis generate only an approximate PSVD and so the

solutions of the two techniques will not be the same. For the potential applications of the

decomposition discussed in Chapter 8 , non-uniqueness of the paraunitary matrices does not

present any problem. Before demonstrating the two decomposition methods, it is im portant

to briefly highlight the application of the decomposition in signal processing and in particular

166

7.5 Requirements of the PSVD for Applications

stress the properties and qualities required of the decomposition for this application. A full

discussion of the application of the decomposition can be found in Chapter 8 .

7.5 R equirem ents o f the P SV D for A pplications

The polynomial singular value decomposition can be used in multiple antenna channel de

composition problems to transform a MIMO channel into a set of orthogonal SISO channels,

where a maximum likelihood decoder can then be applied to each SISO channel to obtain an

estim ate of one of the source signals. However, if the order of the diagonalised m atrix S(z)

is too large then equalisation of the channel becomes difficult. Generally, filters of length

greater than 20 may be considered too large. For this reason, the order of the resulting

diagonalised channel m atrix S(z) is very im portant.

Obviously, it may also be preferable to use the m ethod of decomposition which is less

computationally expensive and therefore quicker to run and so this is another factor of the

decomposition th a t must be examined.

Finally, it is im portant to look at the relative error of the decomposition to ensure that

the accuracy of the decomposition has not been compromised when implementing either of

the PSVD techniques. Unlike the relative error used for the previous decompositions, two

different relative errors are proposed for the PSVD. The first relative error is defined as

 S B C ‘

and will dem onstrate the amount of error due to truncating the polynomial matrices through

out all iterations or steps of the decomposition methods. However, for application purposes of

the decomposition, a strictly diagonal polynomial m atrix S(z) is required, i.e. all off-diagonal

elements m ust equal zero. The two PSVD techniques proposed in this chapter only generate

an approxim ately diagonal polynomial m atrix and so the second relative error measure is

defined as

A (z) - U (z)S (z)V (z)
F

Eroel =
A (z) - U (z)S (z)V (z)

l|A (z)|| p
(7.25)

167

7.6 Numerical Example

where S(z) is equal to the diagonal m atrix S(z) with all off-diagonal coefficients set equal

to zero. This measure is a much superior measure of how well the decomposition technique

has performed, as it will not only account for the error due to truncating the polynomial

matrices, but will also assess how well the algorithm has diagonalised the polynomial matrix.

7.6 N um erical Exam ple

To illustrate the two different methods for calculating the PSVD, each is applied in tu rn to

the polynomial m atrix A (z) € C4x3x5, which was previously used for the example in Section

5.8. The polynomial elements of this m atrix had complex coefficients, where both the real

and imaginary parts were drawn randomly from a standardised Gaussian probability density

function. A graphical representation for this polynomial m atrix was given in Figure 5.2.

7.6.1 P S V D by P Q R D

For this example, the PQRD-BS algorithm is used within the PSVD by PQRD algorithm,

as it required the least number of iterations to converge. The truncation method suitable

for non para-Herm itian polynomial matrices from Section 4.3.2 was implemented, with the

truncation param eter set as p = 10~4. The PSVD by PQ RD algorithm ran for 10 iterations,

until the m agnitude of each off-diagonal coefficient of S(z) was less than 10~2. This required

a total of 984 PQ RD iterations (i.e. EPGRs) over all 10 iterations of the PSVD by PQRD

algorithm. Note th a t the number of PQRD iterations per iteration of the PSVD by PQRD

algorithm decreases as the algorithm progresses. In fact, the m ajority of the 984 EPGRs

were applied in the first few iterations of the PSVD by PQRD algorithm, with the tenth

consisting of only six EPG Rs. The paraunitary matrices U (z) and V (z) obtained from the

decomposition are illustrated in Figures 7.1 and 7.2 respectively. The diagonal m atrix S(z)

found using the PSVD by PQRD algorithm can be seen in Figures 7.3.

The m agnitude of the largest off-diagonal coefficient of S(z) was found to be 9.3 x 10-3 .

The Frobenius norm of the coefficients of the off-diagonal polynomial elements of this ap

proximately diagonal m atrix was calculated as 0.04, which accounts for 0.37% of the total

168

7.6 Numerical Example

Frobenius norm of the m atrix. The Frobenius norm of S(z) did decrease from 9.86 to 9.83

from truncating the polynomial matrices, giving a relative error of E \el — 0.1084. Further

more, assuming all the coefficients of the off-diagonal polynomial elements of the m atrix are

equal zero gave a second relative error of E ™ '1 = 0.1086, showing th a t a good level of m atrix

diagonalisation has been achieved.

From inspection of the diagonal m atrix S(z) dem onstrated in Figure 7.3, the diagonal

polynomial elements are not all centred about the same lags in each element. However, a

series of elementary delay matrices can be applied to the polynomial m atrix S(z) to realign the

series of coefficients of each diagonal element to be centred about the same lag. For example,

the coefficient with maximum m agnitude in each diagonal polynomial element could have a

shift applied to it so th a t it becomes the coefficient of z°. Note th a t one of the paraunitary

matrices from the decomposition must also be altered accordingly. This procedure will help

concentrate the m ajority of the Frobenius norm of the m atrix into a smaller number of

lags, whilst m aintaining the paraunitary transformation. As a result of this realignment

it is possible to further reduce the order of the diagonal m atrix by applying the truncation

function once more to the realigned m atrix, using the same value of the truncation param eter

p. Applying a final series of elementary delay matrices to the diagonal m atrix S(z) shown in

Figure 7.3, the order of this m atrix was reduced from 22 to 17 whilst m aintaining the same

value of relative error. The results obtained from applying the PSVD by PQRD method to

the polynomial m atrix A (z) can be seen in Table 7.1.

7.6 .2 P S V D by P E V D

To obtain the PSVD of A (z) using the second method, the SBR2 algorithm was applied to

the polynomial m atrices A(-z)A(2) and A (z) A (z) in tu rn to obtain the paraunitary matrices

U (z) and V (z). Each implementation of the SBR2 algorithm ran until the m agnitude of

each off-diagonal coefficient of the resulting diagonalised polynomial matrices S(z)S(z) and

S(z)S(z) fell below 10~2, which required a to tal of 362 iterations over both applications of

the SBR2 algorithm . Note th a t the two truncation functions from Sections 4.3.1 and 4.3.2

were used throughout bo th implementations of the SBR2 algorithm with p = 10~4, which

169

7.6 Numerical Example

allowed at most, this proportion of the squared Frobenius norm of the m atrix to be lost each

time a m atrix is truncated. This stopped the order of the polynomial matrices within the

algorithm growing unnecessarily large and as a results also prevented the algorithm from

being excessively slow to implement.

The approximately diagonal polynomial m atrix S(z), is then calculated using the two

parauntiary matrices U(z) and V(z) according to equation (7.1). This m atrix is illustrated

in Figure 7.4 and is order of 41, considerably larger than the order of the diagonal m atrix

found using the PSVD by PQRD algorithm. Furthermore, the m agnitude of the largest

coefficient associated w ith an off-diagonal polynomial element of S(z) was found to be 0.29.

Again considerably larger than the same measure found using the PSVD by PQRD algorithm,

which was found to be 9.3 x 10- 3 . The two paraunitary polynomial matrices U(z) and V(z)

generated from this m ethod are dem onstrated graphically in Figures 7.5 and 7.6.

The Frobenius norm of the resulting diagonal polynomial matrix, S(z), obtained from

the PSVD by PEVD routine was found to be 9.85, which means only 0.16% of the Frobenius

norm of the input m atrix A (z) has been lost through truncating the polynomial matrices.

The relative error E \el was found to be 0.0684, which is less than tha t observed with the

decomposition performed by the PSVD by PQRD algorithm, however this did not take into

account th a t the m atrix S (z) is only approximately diagonal. The Frobenius norm of the

coefficients of the off-diagonal polynomial elements of this m atrix was found to be 1.52 ac

counting for 1.57% of the to tal Frobenius norm of the m atrix S(z). The to tal relative error for

the decomposition was found to be E%el = 0.1670 and this measure is considerably larger than

th a t found using the PQ R D approach. From inspection of the diagonal m atrix S(z) in Figure

7.4, the diagonal polynomial elements are not all centred around the same lag. As with the

results from the PSV D by PQ RD method, aligning the diagonal elements of S(z) so tha t the

coefficient w ith maximum magnitude for each polynomial is realigned as the coefficient of z°

and then truncating the m atrix once more using the same value for the truncation param eter

/i, the order of the m atrix can be reduced to 36. However, this is still considerably larger

than the order of the diagonal m atrix obtained using the PSVD by PQRD algorithm. The

results obtained from applying this decomposition technique to the polynomial m atrix A(z)

170

7.6 Numerical Example

are contained in Table 7.1. This table dem onstrate th a t the PQRD m ethod outperforms the

SBR2 approach for a num ber of reasons; it obtains a lower relative error, the resulting m atrix

S(z) is also more diagonal and the order of this m atrix is typically shorter.

P S V

S B R 2

D B y
P Q R D

Magnitude of largest off-
diagonal polynomial coeffi
cient

0.2871 9.3 x lO"3

Frobenius norm of off-
diagonal polynomial
elements of S(z)

1.5244 0.0363

Order of S(z) 41 22

Order of U (2) 36 47

Order of V (z) 24 36
E rd 0.0684 0.1084

E ? 1 0.1670 0.1086

A fter F inal D elay

Order of S (z) 36 17

Order of U(z:) 27 47
E rei 0.0687 0.1084

E r2el 0.1670 0.1086

Table 7.1: Results obtained from applying the two methods for calculating the PSVD
to the polynomial matrix A (z) where the truncation parameter is set as p — 10-4 and
the stopping criterion as f = 10-2 in both methods.

For the results dem onstrated so far it has not been entirely fair to compare the two

techniques as they did not achieve the same level of decomposition. For example, it would

be better if bo th decompositions had obtained similar values for the Frobenius norm of the

off-diagonal elements or a similar magnitude of the largest off-diagonal coefficient. The off-

diagonal elements of the diagonal matrix S(z) could have been driven smaller by setting a

tighter convergence bound when applying the SBR2 algorithm to the polynomial matrices

A (z)A (z) and A (z)A (z). For example, if the coefficients of these matrices were required to

be less th an 10“ 7, the m agnitude of the largest off-diagonal coefficient of S(z) is now found

171

7.6 Numerical Example

to be 1.7 x 10-2 , bu t this took 5708 SBR2 iterations and the order of the diagonal m atrix is

now 163 (although this can be reduced to 150 if the diagonal elements are aligned around the

zero lag of the m atrix). Note that to achieve the tighter convergence bound, the truncation

param eter must also be reduced and so, for the results above, p = 10-8 . The order of the

diagonal m atrix could be further reduced to 19 by truncating the final realigned diagonal

m atrix again setting p = 0.01. The relative error of the decomposition is now E ™ 1 = 0 .11.

The m agnitude of the largest coefficient of an off-diagonal polynomial element is still

considerably larger than the 9.3 x 10~3 found using the PSVD by PQRD algorithm. More

over, the order of the resulting diagonal m atrix, which was found to be 17 using the PQRD

approach, is also slightly larger using the SBR2 method. The relative error for the decompo

sition, which was found to be E ™ 1 = 0.11 using the PQ RD m ethod, is the same, although the

PSVD by PQ RD algorithm was also considerably faster to run for these results, taking only

0.44 seconds. The SBR2 approach took 22.57 seconds1. The comparative results for the two

algorithms are contained in Table 7.2.

P S V
S B R 2

D B y

P Q R D

Magnitude of largest off-
diagonal polynomial coeffi
cient

1.7 x 10~2 9.3 x 10"3

Order of S(z) 19 17

E f 0.11 0.11

Value of e i o - 7 10~2

Value of p 10“8 10"4

Computational Time

(Seconds)
22.57 0.44

Number of Iterations 5708 984

Table 7.2: Observed results from the two decomposition techniques when both achieve
approximately the same level of PSVD, allowing a much fairer comparison of the two
algorithms.

1 Computations undertaken on a Intel Centrino Duo processor with 1GB of RAM.

172

7.6 Numerical Example

-30 -20 -10 0 -30 -20 -10 0
0.4

30 -20 -10 0 -30 -20 -10 0
0.4—

O 0.2

30 -20 -10 0 30 -20 -10 0 -30 -20 -10 0 -30 -20 -10 0
0.4

30 -20 -10 0 -30 -20 -10 0 -30 -20 -10 0 -30 -20 -10 0

-30 -20 -10 0 -30 -20 -10 0
Lag

-30 -20 -10 0 -30 -20 -10 0

Figure 7.1: A stem plot representation of the paraunitary matrix U(^) obtained from
the PSVD by PQRD algorithm.

-20 -10 0

-20 -1 0 0

0.6

0.4

0.2

-20 -10 0

aCQ

'

-20 -10 0 1

ii

(M(((—
-20 -10 0 1

10 -20 -10 0

Lag

0.6 0.6 i

0.4 ii 0.4

0.2
SatJ#

0.2

10

-20 -10 0

0.6

0.4

0.2

QBBnwn
-20 -1 0 0

I
10

B^nonesan
-20 -10 0 10

Figure 7.2: A stem plot representation of the paraunitary matrix V(^) obtained from
the PSVD by PQRD algorithm.

173

7.6 Numerical Example

Q&»Q0»009fl
-5 0 5 10

-5 0 5 10

-5 0 5 10

0>M«»a»o«a9wflT >oa»«a»4 qm
-5 0 5 10

-5 0 5 10

-5 0 5 10

-5 0 5 10

Figure 7.3: A stem plot representation of the diagonal matrix S(z) obtained when the
PSVD by PQRD algorithm is applied to the polynomial matrix A (z) shown in Figure
5.2.

- J L - J
-20 -1 0 0 10

20 -1 0 0 10

-20 -10 0 10

-20 -10 0 10

-20 -1 0 0 10

Lag

5

-20 -10

-20 -1 0 0 10

-20 -10 0 10

-20 -1 0 0 10

-20 -10 0 10

Figure 7.4: A stem plot representation of the diagonal matrix S(z) obtained when the
PSVD by SBR2 technique is applied to the polynomial matrix A (2) shown in Figure
5.2.

174

7.6 Numerical Example

0.5 0.5

0.5

•8
3
5) nsc3 0.5

-10 0 10 -10 0 10 ' -10 0 10

0.5

0.5

-1 0 0 10 -1 0 0 10 -1 0 0 10

0.5 0.5

0.5
-10 0 10 -10 0 10 -1 0 0 10

0.51 0.51 T~

-1 0

0.5

-10
0.5

- 1 0 0 10 - 1 0 0 10 -1 0 0 10 - 1 0 0 10

Lag

Figure 7.5: A stem plot representation of the paraunitary matrix U(^) obtained from
the PSVD by SBR2 technique.

•3 0.6
3*-> 0.4
C
6003 0.2

0

6

4 1

9a?Tl?z»oooo/w*-----
"~-5 0 5 10 75”

6

4

----- ooOa99q9? 1

i

'"-5” 0 5 10 15’

6
94

2 |

0.6

0.4

0.2 T
• 0

-5 0 5 10 15

-5 0 5 10 15

10 15

10 15

6

4 i

c 1 UA o t-rt o

6

4 i

??Tl999a^
-5 0 5 10 15

0.6

0.4

0.2

ii

T?« 9 « _

-5 0 5 10 15

Figure 7.6: A stem plot representation of the paraunitary matrix W_(z) obtained from
the PSVD by SBR2 technique.

175

7.7 Computational Com plexity of the Polynomial SVD Methods

7.7 C om putational C om plexity of th e Polynom ial

SV D M ethods

It is difficult to compare the two decomposition techniques in terms of their computational

complexity, as the com putational complexity of one iteration of either the SBR2 or PQRD

algorithm is entirely dependent on the dimension and order of the polynomial m atrix at

th a t iteration. If the SBR2 and the PQRD-BS algorithms are both applied to a polynomial

m atrix of the same dimensions, then the SBR2 algorithm will be slightly less computationally

expensive to run, despite the fact th a t the SBR2 algorithm will apply the elementary delay

and rotation matrices from both the left and the right, whereas with the PQ RD they are

only applied from the left. This is due to the SBR2 algorithm exploiting the para-Hermitian

structure of the polynomial m atrix A (z) and only storing just over half of the polynomial

elements of the m atrix. However, to calculate the PSVD of a m atrix the two algorithms are

not applied to the same polynomial m atrix and so the com putational load at each step is

difficult to compare. In the example of the previous section, the PQRD algorithm is applied

to the polynomial m atrix A (z) G C 4x3x4, whereas the SBR2 algorithm is applied to the

polynomial matrices A (z)A (z) G C 4x4x8 and A (z)A (z) G C 3x3x8. The SBR2 algorithm is

applied to polynomial matrices with more off-diagonal polynomial coefficients.

7.8 C onclusions

A new m ethod for calculating the singular value decomposition of a polynomial m atrix A(z)

has been presented. The technique operates by iteratively calculating the PQ RD of a polyno

mial m atrix to transform it into a diagonal polynomial m atrix and is therefore referred to as

the PSVD by PQ R D algorithm. The algorithm has been compared to a previously proposed

m ethod for calculating the PSVD, which operates using the SBR2 algorithm to calculate the

PEVD of the m atrices A (z) A (z) and A (z) A (z) to generate the left and right hand singular

vectors respectively. The PSVD by PQRD algorithm has a couple of clear advantages over

the PSVD by PEV D m ethod and for the simple numerical example presented in this chapter,

176

7.8 Conclusions

it clearly outperform s the PSVD by PEVD technique.

The main advantage of using the PQRD m ethod over the SBR2 approach is that the user

can specify how small the coefficients of the off-diagonal polynomial elements of the m atrix

are to be driven before starting the algorithm. It is impossible to do this using the existing

PSVD m ethod, as the SBR2 algorithm is not directly applied to the polynomial m atrix whose

PSVD is being calculated. The only way this can be achieved, is with a considerable amount

of trial and error to find the appropriate values of (i and f, required to drive the off-diagonal

coefficients sufficiently small.

Secondly, the PQ RD approach was found to be computationally much faster (approxi

m ately 50 times faster) to obtain a similar level of decomposition, when both techniques were

applied to the same polynomial m atrix A(z) € C 4x3x4. Note th a t the time taken by the

SBR2 approach did not even include the time taken to find the appropriate choice of the

truncation param eter /z and stopping criterion e.

Finally, the order of the diagonal m atrix obtained using the PSVD by PQRD algorithm is

generally considerably less than th a t found with using the SBR2 approach. This is an impor

tan t advantage of the decomposition when it is applied to MIMO communication problems

as discussed in C hapter 8 .

W hen using either of the two methods, it is im portant to align the diagonal polynomial

elements of the resulting diagonal m atrix, so th a t the m ajority of the Frobenius norm of

the m atrix is centred around the same lags of the matrix. As the example in this chapter

has shown, this can help reduce the order of the diagonal m atrix, at hardly any additional

com putational cost or gain in the error of the decomposition.

Note when using the truncation functions within the PSVD by PEVD method, it is

be tter to be cautious and set a very small value of the truncation param eter throughout, for

example /z = 10- 8 , and then truncate the final m atrix at the very end of the decomposition to

reduce the order to a suitable value for the application purposes of the decomposition. More

examples of this decomposition technique can be found in Chapter 8 , where the potential

applications of the decomposition are examined.

177

C hapter 8

A pplications o f th e Polynom ial
M atrix D ecom positions

8.1 Introduction

C hapter two described how polynomial matrices are widely used in the context of DSP and, in

particular, to communication systems, where they are used to describe a convolutive channel

and therefore describe a MIMO system. This chapter examines the potential applications

of each of the three polynomial m atrix decompositions discussed in this thesis (the PEVD,

the PQ RD and the PSVD) in this context. Table 8.1 details the possible applications of

the decompositions and refers the reader to the appropriate section in the thesis where the

application is discussed.

Finally, some sim ulated results are presented to further dem onstrate the capabilities, but

also the potential applications, of the two algorithms introduced in this thesis (i.e. the algo

rithm s for calculating the PQ RD and the PSVD) to MIMO channel equalisation problems.

However, before detailing these applications some background to MIMO communication sys

tems m ust be given.

178

8.2 MIMO Communication Systems

A pplication D ecom position Section

Strong Decorrelation PEVD 3.6.1
MIMO Channel Equalisation PQRD 8.4.1
MIMO Channel Exploitation PSVD 8.5.1

Optimal Paraunitary Filter Bank Design PSVD 8.5.4

Table 8.1: The potential applications of the different polynomial matrix decompositions
and the location of a discussion of this application within the thesis.

8.2 M IM O C om m unication System s

Both the PQ RD and the PSVD algorithms introduced in this thesis have potential applica

tions to MIMO communication systems. A brief description of this type of communication

system can be found in Section 2.4.3 and a basic noise free baseband digital communication

system [25] can be seen in Figure 8.2, where s(z) denotes the signals to be transm itted, x(z)

the received signals and s(z) the estim ated source signals.

Channel ReceiverTransmitter

Figure 8.1: Block diagram for a basic noise free baseband communication system.

It is assumed th a t the channel will be convolutive for the results in this thesis and so

m athem atically the mixing process of sending the d a ta from q antennas to be received at p

sensors can be expressed by means of the convolutive mixing model given in equation (2.28).

The complete process, from transm itter to receiver, is known as a MIMO communication

system [49,60,61].

The aim of the transm itter is to ensure the message is in a suitable form for transmission,

179

8.2 MIMO Communication Systems

whilst the receiver aims to operate on the received signal to obtain an estim ate of the original

message. However, this is not a simple task due a number of factors th a t can affect the

transmission of d a ta through a channel and hence lead to distorted signals. These factors are

1. In tersym b ol interference (ISI) caused by the dispersion in the channel.

2. T herm al noise, which is present at the receiver.

3. W ith MIMO channels, there is also the problem of co-channel in terference (C C I).

The task of removing the effect of these factors from the received signal has been the subject

of much research in the field of DSP. There are now several methods for achieving this, such as

using a process of orthogonal frequency-division mulitplexing (OFDM) with a cyclic prefix [2]

or linear or non-linear interference cancellers [62]. There is currently a lot of interest and

research being undertaken in these fields, especially with the recent advancements in wireless

technology [2,62]. Problems in this field include the limited availability of radio frequency

spectrum and a complex time-varying wireless environment [2]. Also, there is now a demand

for higher d a ta rates, higher network capacity and matching wireline link reliability.

For the discussion and results presented in this chapter, only a simple communication

system is considered. The received signals from the MIMO system will be distorted due to

the effects of ISI, CCI and the noise present at the receiver. It is assumed th a t the polynomial

channel m atrix C (z) from equation (2.30) has been previously estim ated by passing a training

sequence through the channel. Some algorithms exist th a t directly equalise the channels

given only the received signals; this is known as blind channel equalisation. However, these

algorithms can be slow to converge, are subject to local minima and are generally unsuitable

for wireless channels [63]. As a result, it has been suggested th a t it is better to first identify the

channel and then perform the equalisation. The two new polynomial m atrix decompositions

proposed in this thesis, the PQRD and the PSVD, can be used to help solve this problem.

Assuming th a t the polynomial channel m atrix for the system is known, then either the PQRD

or the PSVD can be used as part of this system to m itigate the CCI and transform the

problem into a set of SISO problems, i.e. a set of problems involving only one transm itter

and one receiver. The ISI from each of the single channel problems can then be removed by

180

8.2 MIMO Communication Systems

equalisation. Several m ethods of equalising a SISO communication channel are now discussed.

Note th a t problems will be encountered with this method if the channel m atrix for the system

is rank deficient and this aspect will be discussed individually for each application.

8.2 .1 C hannel E qualisation

Channel equalisation is the process used to remove the effect of ISI by modelling the channel

inverse [62] and is used in many communication devices such as modems and digital televi

sions. If the channel is minimum phase, then it has a linear inverse model and so a linear

equalisation solution exists. The various techniques for performing channel equalisation can

be split into the following four classes.

1. L inear Equalisers (L E). These equalisers use an inverse filter to compensate for the

variation in the frequency response. This method is simple, bu t is not very effective

with channels th a t have deep fades.

2. Decision Feedback Equalisers (D F E). These attem pt to reconstruct ISI from past

symbol decisions. Again this m ethod is simple, but unlike LEs this m ethod will have

the potential for error propagation.

3. M ax im u m Likelihood Sequence Estim ation (M L S E). These methods find the

most likely sequence of symbols given the received signal and the possible options.

These techniques are robust, but can be computationally complex. The Viterbi algo

rithm , which is discussed in Section 8.2.2, can be used for MLSE equalisation.

4. Turbo Equalisers (T E) This is an iterative code based on the maximum a posteriori

probability (MAP) criterion. This type of equaliser can significantly reduce the SNR

penalty caused by ISI [64], but its com putational complexity is higher than the MLSE

scheme and it introduces a delay (latency) in processing.

The main problem s with the different techniques for equalisation are th a t they are compu

tationally expensive, have problems tracking time-varying channels and can only produce

181

8.2 MIMO Communication Systems

sequences of outputs w ith a significant time delay. For the results presented in this chap

ter, an MLSE based on the Viterbi algorithm is implemented to dem onstrate the potential

applications of the polynomial m atrix decompositions.

8.2 .2 T h e V iterb i A lgorithm

The Viterbi algorithm is a noil-sequential decoding algorithm, motivated by the work under

taken by A. J. Viterbi in the 1960’s on behalf of NASA to improve the efficiency of their space

communication system. The algorithm was first proposed in [65] as a maximum likelihood

decision device, which can be applied to any sequence of symbols th a t can be modelled as a

Markov chain, [66,67]. As many observed phenomena can be modelled as Markov processes,

the algorithm has a vast range of applications. For example the algorithm is currently used in

all mobile telephone systems and is incorporated in satellite digital TV receivers and mobile

phone handsets. The prim ary application of the Viterbi algorithm is the maximum likelihood

decoding of convolutionally coded digital signals transm itted over noisy channels, making the

algorithm applicable to channel equalisation problems. However, the algorithm now has a

much broader range of applications and can be applied to problems in areas such as speech

recognition [68] and DNA sequence analysis [69].

The Viterbi algorithm operates by attem pting to determine the most likely sequence of

symbols, given all the possible options, i.e. it a ttem pts to calculate the most probable path

through a Markov graph [66]. The Viterbi algorithm is therefore a computationally efficient

m ethod for removing ISI present from the received signal of a SISO communication system.

The solution to the MLSE problem will generally be close to optimal, however, there is

a problem using this technique. The complexity of the MLSE will increase exponentially

w ith channel order and so is not a suitable technique to use if the environment has a large

delay spread [2]. For example, if M defines the size of the symbol alphabet and N defines

the num ber of interfering symbols contributing to the ISI, then the Viterbi algorithm must

calculate M N + 1 metrics for each new received signal [62]. For this reason, the resulting order

of the transform ed polynomial m atrix when using either the PQRD or PSVD algorithms

as a preprocessing step to channel equalisation, is very im portant. However, for the results

182

8.3 Performance Measures

presented in this chapter, the maximum order of the transform ed channel m atrix (following

the polynomial m atrix decomposition) is limited to ensure th a t this equalisation scheme can

be used. Note th a t th is is acceptable for the results presented in this chapter, as limiting

the orders of the m atrices did not significantly compromise the relative error. This point is

discussed further for each of the worked examples. Furtherm ore, the aim of this chapter is to

illustrate the ability of the polynomial m atrix decompositions as a m ethod for transform ing a

polynomial MIMO channel m atrix into a set of SISO channels and so the m ethod of channel

equalisation is not the focus of the research. For practical applications, a suboptim al channel

equalisation m ethod, which is computationally less expensive, could be used if required.

8.3 Perform ance M easures

8.3.1 R e la tiv e Error

As with the previous chapters, the two relative errors for the polynomial m atrix decomposi

tions can be calculated as

grel _
A (*) - A (z)

IIA(2)IIf

where if the m easure is calculated for the PQ RD then

(8 . 1)

A (z) = Q (z) R (z) (8 .2)

where R (z) is equal to the upper triangular polynomial m atrix R (2) w ith all coefficients

beneath the diagonal set equal to zero. If calculating the relative error of the PSVD, then

this m atrix is given by

A (z) = f i(*)S M Y (*) (8.3)

where S(^) is equal to the diagonal m atrix S(^) w ith all off-diagonal coefficients set equal

to zero. This m easure signifies how much information is lost in the associated polynomial

m atrix decom positions either by truncating the polynomial matrices or from the require

m ent of a strictly diagonal or upper triangular polynomial m atrix for the applications of the

183

8.4 Potential Application o f the PQ RD

decomposition.

8 .3 .2 A v era g e B it Error R ates

The average bit error rate (BER) of a sequence defines the ratio of the number of characters

incorrectly received to the total number transm itted during a specified time interval. Firstly,

define the error m etric /
0 if s (t) — s (t)

et = (8.4)
1 if s (t) ^ s (t)

where s(£) defines the true source signal at time t and s (t) the estim ated, where t = 0 , . . . , T

1. The average BER is then calculated as

T — 1

b e r = Y . % - <8'5>
<=()

This measure can be used to describe the functionality of a digital communications system

and therefore has been calculated for both the PQ RD and PSVD applications described in

this chapter.

8.4 P o ten tia l A pplication o f th e P Q R D

One possible application of the PQRD is in MIMO communications where it is often nec

essary to reconstruct a set of signals, which have been transm itted through a convolutive

channel, using only the received signals and an estim ate of the polynomial channel matrix.

In this situation, the d a ta will have been distorted due to both the effects of co-channel

interference (CCI) and m ulti-path propagation of the transm itted signals, which can then

result in inter-sym bol interference (ISI). The problem of reconstructing the d a ta sequence

from the convolutively mixed received da ta is term ed as MIMO channel equalisation. For

this application, it is assumed th a t the channel m atrix has previously been estimated. This

can be achieved by passing a training sequence through the system, however, it is beyond the

scope of th is thesis to discuss methods for estim ating the channel m atrix.

184

8.4 Potential Application of the PQ RD

8.4 .1 M IM O C hannel E qualisation

This potential application of the decomposition is first discussed for the simpler narrowband

case, where scalar m atrices are observed and so the conventional m ethods of calculating the

QRD of a scalar m atrix can be used [2,6].

N arrow band (Scalar M atrix) Case

If a set of signals is instantaneously mixed, then tin* relative delay between signals can be

modelled as a phase shift and so a m atrix of complex scalar entries is sufficient to describe

the mixing. This will mean th a t there is no ISI present, however, there is still CCI and the

conventional QRD for scalar matrices can be used to remove this. In this situation, if the

channel m atrix C € Cpxq has been previously estim ated, its QRD can be formulated, using

a conventional technique such as Givens rotations or Householder reflections [6]. Once this

decomposition has been calculated, the upper triangular structure of the transform ed m atrix

can be exploited, allowing the set of source signals to be easily determined from the received

signals, using back substitution.

For this application, it is required tha t p > q and th a t the channel m atrix for the system

is of full column rank to enable the complete set of source signals to be determined. If the

channel m atrix is rank deficient, then a num ber of diagonal elements of the upper triangular

m atrix will equal zero. Unfortunately, this will m ean th a t it is impossible to obtain estimates

of the source signal w ith the same row index as the zero element(s) in the diagonal matrix.

Furtherm ore, it will not be possible to estim ate the rem aining sources w ith row indices less

than this value. This point has been discussed in Exam ple 6.2.6, where the PQ R D of a rank

deficient polynomial m atrix has been calculated.

B roadband (P o lyn om ia l M atrix) Case

This technique is easily extended to broadband signal processing, where polynomial channel

m atrices are now observed. However, for this case the conventional techniques for calculating

the QRD of a scalar m atrix cannot be used to determ ine this decomposition, as each element of

the channel m atrix will now be a polynomial with an associated set of coefficients. However,

185

8.4 Potential Application o f the PQ RD

provided the channel m atrix has been estim ated, its QRD can be calculated according to

one of the PQ R D algorithm s detailed in C hapter 5, thus allowing the channel m atrix to

be transform ed into an approxim ately upper triangular polynomial m atrix by means of a

paraunitary transform ation. This then enables the MIMO channel equalisation problem to

be transform ed, using back substitution, into a set of SISO channel equalisation problems,

which can each be solved using a MLSE based on the Viterbi algorithm [62,66,67]. This

process will now be* explained.

It is assumed th a t a set of source signals s(f) G Cqxl , where t G {0, . . . , T — 1}, are

em itted from q independent sources through a convolutive channel to be received at an array

of p sensors, where it is assumed th a t p > q. The mixing model for the set of convolutively

mixed received signals x(£) G Cpxl can be expressed as

x(z) = C (2) s (z) + n (2) (8 .6)

where C (c) G C pxq denotes the polynomial mixing (or channel) m atrix and x(^), s (^) and
OG

11(2) denote algebraic power series, i.e. a series of the form x (2) = x (t) z ~ f , of the
t — — OG

received signals, the source signals and the noise process, which has variance cr2 Ip. In digital

communications, the source signals a(t) are generally drawn from a finite constellation, such

arise in binary or quaternary phase-shift keying (B PSK /Q PSK).

The first step to achieve MIMO channel equalisation is to calculate the QR decomposition

of the polynomial channel m atrix C (z) using any of the three algorithms detailed in Chapter

5, such th a t

C(z) = Q(z) R (z) , (8.7)

where Q(z) G C pxp denotes the polynomial paraun itary transform ation m atrix and R (z) G

C pxq is an approxim ately upper triangular polynomial m atrix. The convolutive mixing model

of equation (8.7) can then be rew ritten as

7k{z) = B ^ M z) + n {z) (8.8)

186

8.4 Potential Application o f the PQ RD

where x '(z) = Q (z)x (z) and n '(z) = Q (z)n (z). As the polynomial m atrix Q (z) is parau

nitary and its applic ation is a linear transform ation, n (z) is also a Gaussian noise process

w ith an identical norm. Note tha t to enable the set of p equations dem onstrated in vector

form by equation (8 .8) to become a set of q single channel equalisation problems, all elements

beneath the diagonal of R (z), which are approxim ately equal to zero, are assumed to be

equal to zero. This will affect the accuracy of the decomposition and possibly the error rate

performance of the m ethod for MIMO channel equalisation, however no numerical problems

have been encountered when applying the algorithm to a wide range of polynomial matrices.

Furtherm ore, if the relative error of the decomposition is too large, it can be reduced by

decreasing the value of the stopping criterion e.

Now provided the channel m atrix is of full column rank, the MIMO channel equalisa

tion problem can be transform ed into a set of q single channel equalisation problems using

back substitu tion . Beginning with the qth element of x (z) from equation (8 .8), this can be

expressed as

which is a single channel equalisation problem. This can now be solved, to obtain an estim ate

of the qth source signal, sq(t), using an MLSE based on the Viterbi decoder [62,66,67]. Once

this estim ate has been attained , it can now be used to formulate a single channel equalisation

problem involving &q-\{z) as follows

* i - l U) - L(q- \) q{z)Sq{z) = L(q- l)(q-l){z)Sq_i (z) + 7l^_i(z), (8.10)

which can again be solved using an MLSE. Furtherm ore, once the estim ates Sj+i(£), . . . , sq(t)

have been calculated, the ith single channel equalisation problem can be form ulated as

£<(*) “ Uj(zhj(z) = L iM zM + r±M- (8 .11)
j=i+ 1

Provided the set of signals are estim ated according to the ordering i = q, q — 1 , . . . , 1 ,

each equation then reduces to a single channel equalisation problem. Each SISO equalisation

187

8.4 Potential Application o f the PQ RD

problem can be solved to obtain an estim ate of the ith source signal, using the previously

estim ated source's »j(t) for j = i + 1 , . . . ,q. However, as with the narrowband or scalar

m atrix case*, if the channel m atrix of the system is not of full column rank the system will

be unelerele»termine*d and there will be fewer equations than unknowns. The PQRD of the

channel m atrix could still be calculated, but it will not be possible to perform the process of

back substitu tion followed by equalisation to obtain an estim ate of every source signal.

T he role of the back substitution, which is m ade possible by calculating the PQRD, is

to remove CCI. T he second step of applying the MLSE, enables the ISI observed in each

single channel equalisation problem to be eliminated. However, this second step can only be

achieved once the transm itted signal, which is to be estim ated, is expressed in term s of a SISO

system and so the two steps m ust operate together, w ith back substitu tion enabling another

SISO problem to be solved. The m itigation of CCI will enable better frequency reuse within

a com m unications system and as a result will improve the network spectrum efficiency [2].

A block diagram of the proposed baseband communication system using the PQ RD can be

seen in Figure 8.2.

s(z) Channel
C (z)

Equalisation
and baek

propagation

Figure 8.2: Block diagram for a basic baseband communication system using the
PQRD.

8 .4 .2 F ilter A t th e T ransm itter

Alternatively, the PQ R D of the paraconjugate of the channel m atrix C (z) E C pxq could have

been calculated such th a t

C(z) = Q (z) R (z) (8.12)

where Q (z) E C qxq is the polynomial paraunitary transformation matrix and R(2) E C qxp

188

8.4 Potential Application o f the PQ RD

denotes the upper triangular polynomial m atrix. The convolutive mixing model of equation

(8 .(i) could then have been rew ritten as

x(z) = R (2)s ' (z) + n(z) (8.13)

where s (z) = Q(^)s(^) and R(.z) € C pxq is now a lower triangular polynomial m atrix. Again

a two step process of back substitution and the application of a MLSE can be used to estim ate

the set of source signals. Using this decomposition, which for the scalar m atrix case is often

referred to as an RQ or LQ decomposition, allows the signals to be filtered at the transm itter

ra ther th an the receiver, which was dem onstrated previously in Section 8.4.1. This will mean

th a t the channel s ta te inform ation (CSI) is only required at either the receiver or transm itter.

If this was to be used in mobile communications, for example, it would require no MIMO

processing in the mobile, bu t only a t the transm itter and could therefore be advantageous.

8 .4 .3 N u m erica l E xam p les

To illustrate this proposed application of the PQ RD to MIMO communications, two channel

m atrices, C\ { z) € C 4x3x4 and C 2(z) € C 5x5x4 are generated. Both of the channel matrices

are of full rank and have been chosen for their varying properties and different structures.

However, before discussing these matrices, some issues about the im plem entation of the

algorithm s for calculating the PQ R D are discussed.

C om m en ts on Im p lem en tation

For proposed application of the PQ RD to MIMO communications, any of the three algo

rithm s in troduced in C hapter 5 could be used to calculate the decomposition. However, it

is obviously preferable to use the fastest and m ost accurate of the three algorithms. From

the examples of C hap ter 6 , the PQRD-BC algorithm has consistently dem onstrated the best

perform ance, typically requiring the least num ber of E PG R s and com putational time to con

verge. Furtherm ore, the orders of the resulting m atrices were often shorter and the relative

error of the decom position less. However, these potential advantages of the algorithm are not

189

8.4 Potential Application o f the PQ RD

guaranttKKl for every polynomial matrix. Therefore, for the worked examples of this chapter,

the decomposition has been formulated using each of the three algorithms and then the re

sulting matrices R(^) and Q(c) obtained from the algorithm providing the best performance

have bt*en used to perform the MIMO channel equalisation.

The order of the resulting polynomial matrix R(z) is critical for this application due to

the computational complexity of the equalisation step being directly proportional to the final

order of this matrix. In particular, if a MLSE method based on the Viterbi algorithm is

used to perform the equalisation, then the computational complexity of each step will be

exponentially proportional to the order of R(^). The worked examples in this chapter use

this method and so the order of the upper triangular polynomial matrix formulated by the

decomposition for each example has been restricted to 14.

For each implementation of each of the algorithms for calculating the PQRD, the trun

cation method suitable for non para-Hermitian polynomial matrices from Section 4.3.2 was

applied to both of the polynomial matrices at the end of each iteration of each of the al

gorithms, with the truncation parameter /i set equal to 10~6. This will optimise the speed

of the algorithm, whilst ensuring that a fairly accurate polynomial matrix decomposition is

formulated. However, if the order of the resulting upper triangular polynomial matrix R (2)

following the decomposition is larger than 14, then the matrix has been truncated using

the fixed bound truncation method. Whenever truncating the order of any of the polynomial

matrices, it is important to recalculate the relative error of the final polynomial matrix decom

position, to ensure that the accuracy has not been substantially compromised. Furthermore,

the value of the stopping criterion e, from equation (5.13), can also affect the relative error of

the decomposition and if it is not sufficiently small then this will be reflected in the measure

E rel . For each example of this chapter the parameter was set equal to 1 0 “3.

It can also be beneficial to realign the zero-lag coefficients of the polynomial elements of

the upper triangular polynomial matrix resulting from the PQRD as discussed in Chapter

6 . This will help to concentrate the series of coefficients associated with each polynomial

element around the set of zero-lag coefficients of the polynomial matrix. This will often allow

the polynomial matrices to be further truncated at little, or often no, additional cost to the

190

8.4 Potential Application o f the PQ RD

accuracy of the decomposition performed.

Example 1

The first polynomial mixing matrix C 1 (2) € C 4 x 3 was generated to describe the propagation

of three source signals on to five sensors. Each of the polynomial elements of the matrix

was chosen to be a fourth order FIR filter, where both the real and imaginary parts were

drawn from a uniform distribution in the range [—1 , 1]. The matrix was also normalised so

that ||£ j (*) ||f = 1. A graphical representation of this polynomial matrix can be found in

Appendix D.

Firstly, each of the three algorithms for calculating the PQRD introduced in Chapter 5 was

applied to this polynomial channel matrix and the results obtained from each decomposition

can be seen in Table 8.2, where g defines the magnitude of the dominant coefficient of the

resulting approximately upper triangular polynomial matrix R (z). The PQRD-BC algorithm

demonstrated the best performance of the three algorithms, requiring only two sweeps of the

algorithm and a total of 291 iterations over twelve steps of the algorithm to converge to a

point where g = 9.59 x 10- 4 . This algorithm required significantly fewer iterations that either

the PQRD-BS or the PQRD-SBR algorithms to converge to a point where the magnitude of

every coefficient associated with the polynomial elements positioned beneath the diagonal of

R (z) is less than 1 0 3. Furthermore, the orders of the resulting polynomial matrices Q(^)

and R (2) are smaller than those obtained using the other two algorithms and this algorithm

also obtained the least relative error. This decomposition was therefore used to perform

the MIMO channel equalisation of this channel matrix. Figures illustrating the series of

coefficients for the two polynomial matrices Q (2) and R (2) obtained using this algorithm

can be seen in Appendix D.

Subsequently, three independent BPSK source signals, each of length 1000, were gener

ated and convolutively mixed using the channel matrix Q i { z) following the mixing model

demonstrated by equation (2.28), where N defines the order of the polynomial channel ma

trix and for this example is equal to four. Gaussian noise representative of thermal noise,

with spatial covariance o 21 4 , was then added to each of the receive sensors to give a desired

191

8.4 Potential Application of the PQ RD

PQRD-BS PQRD-BC PQRD-SBR

Number of Iterations 567 291 620
Order of R(^) 89 42 54
Order of Q(^) 98 46 61

9 9.97 x 10"4 9.59 x 10~4 9.83 x 10~4
E rel 1.52 x 10~2 9.26 x 10"3 1.11 x 10~2

Computational Time
(Seconds)

0.81 0.30 1.60

Table 8.2: The results obtained from applying the three algorithms for calculating the
PQRD to the polynomial channel matrix C ^ z).

signal-to-noise ratio at the receiver (RSNR). For this experiment the RSNR can be calculated

&S

/ t v {c ,(*)C1(*)}| \
RSNR = 101og10 I ----- ------ — 2-----1 (814)

where p defines the number of receivers, which for this example is equal four, and | t _ 0 denotes

the scalar matrix containing the coefficients of z ° of the polynomial matrix. Through the

two step process of back substitution and applying the MLSE described in 8.4.1, an estimate

for each of the source signals was obtained. The average bit error rate (BER) for each of

the estimated source signals was calculated, where the variance of the additive noise was

chosen to give varying levels of SNR. This was carried out for 100 independent Monte-Carlo

realisations, using the same channel matrix Q i (z) , but generating new source signals and

noise terms for each realisation. The average of these results can be seen in Table 8.3, where

for RSNR levels 10 — 20 dB the technique offers excellent error rate performance.

For these results, the order of the upper triangular polynomial matrix R(z) was trun

cated using the fixed bound truncation method, reducing the order of the matrix from 42 to

14, which then enabled the MLSE to be implemented. As a result, the relative error of the

decomposition increased from 9.26 x 10-3 as observed in Table 8.2 to 0.0493. Similar results

have been presented in [70], however, these results were calculated using the PQRD-BS al

gorithm to formulate the PQRD of the polynomial channel matrix C^-z). For these results

a larger value for the truncation parameter was used (p = 1 0 - 3) throughout the decompo-

192

8.4 Potential Application o f the PQ RD

sition, and as a result, the relative error of the decomposition was found to be considerably

larger with E rtl — 0.168. For this reason, the error rate performance was slightly worse,

demonstrating that it is better to truncate the orders of the polynomial matrices using the

energy based truncation method throughout the algorithm using a very small value for the

truncation parameter // and then truncate the final order of the upper triangular polynomial

matrix R (2) to be sufficiently small for the channel to be equalised.

Average BER

C .to c * w
SNR Source Source Source Source Source Source Source Source
(dB) 1 2 3 1 2 3 4 5

- 5 0.1906 0.1893 0.2589 0.2362 0.2644 0.2965 0.2607 0.3604

0 0.0619 0.0639 0.1239 0.1287 0.1471 0.1942 0.1430 0.2696

5 0.0025 0.0033 0.0177 0.0319 0.0422 0.0744 0.0344 0.1532

10 0 0 0.0001 0.0012 0.0014 0.0051 0.0013 0.0389
15 0 0 0 0 0 0.0001 0 0.0014

20 0 0 0 0 0 0 0 0

Table 8.3: Average BERs for the estimated BPSK sources for the MIMO channel
equalisation problem. The results are demonstrated for the two channel matrices
Cj (z) (E C 4x3x4 and C 2(^) € C 5x5x4, and for varying levels of RSNR.

Example 2

For the second example, the polynomial channel matrix C 2 (z) € C 5 x 5 x 4 was generated such

that each coefficient associated with each of the polynomial elements of the matrix is of the

form 5 (a + ib) , where both a and b are drawn randomly from a Gaussian distribution with

mean zero and unit variance. This matrix will correspond to a quasi-static block of a Rayleigh

frequency selective channel. The matrix was normalised so that ||C 2 (2)||F = 1. As with the

first example, each of the three algorithms for calculating the PQRD was applied to this

polynomial matrix, to assess their performance and therefore choose the most appropriate

algorithm to formulate the PQRD of the channel matrix. The results from applying each of

the three algorithms to this polynomial matrix are contained in Table 8.4.

193

8.4 Potential Application o f the PQ RD

Once again, the PQRD-BC algorithm demonstrated the best performance of the three

algorithms, requiring significantly less iterations and therefore EPGRs to converge. This

algorithm required only two sweeps of the algorithm and a total of 536 iterations to converge

to a point where the magnitude of each coefficient associated with a polynomial element

positioned beneath the diagonal of the polynomial matrix R (z) is less than 1 0 -3 . Note

that the orders of the polynomial matrices generated by the algorithm are larger than those

obtained using the other two algorithms. However, this is not an issue for this application of

the decomposition, as the orders of the upper triangular polynomial matrices obtained from

each of the three algorithms are too large for the equalisation step and must therefore be

truncated further. Note that the relative error observed when using the PQRD-BC algorithm

is slightly larger than that obtained using the PQRD-SBR algorithm, but the SBR approach

required considerably more time to converge and has therefore not been used to perform the

decomposition. Graphical representations of the polynomial channel matrix C 2(z) ^ d the

two polynomial matrices obtained when applying the PQRD-BC algorithm to this matrix

can be seen in Appendix D.

PQRD-BS PQRD-BC PQRD-SBR

Number of Iterations 750 536 856
Order o f R(z) 64 74 63

Order of Q (z) 69 82 68

9 9.84 x 10"4 9.99 x 10~4 9.96 x lO"4
E r el 0.0161 0.0148 0.0129

Computational Time
(Seconds)

1.25 0.86 3.50

Table 8.4: Results obtained from applying the three algorithms for calculating the
PQRD to the polynomial matrix C 2(z).

To enable equalisation of the channel using an MLSE based on the Viterbi algorithm, the

order of the resulting approximately upper triangular polynomial matrix must be sufficiently

small. For this reason, the order of the polynomial matrix R(.z) must be truncated to have

an order of 14. However, to ensure that enforcing this will not compromise the accuracy

of the decomposition unnecessarily, the series of coefficients associated with the polynomial

194

8.4 Potential Application o f the PQ RD

elements of the polynomial matrices obtained using the PQRD-BC algorithms are realigned

by applying a series of final elementary delay matrices as discussed in Chapter 6 . Applying

a final alignment to this example, the order of R(^) was reduced from 7 4 to 63 and the

order of Q(z) from 82 to 73, at no additional cost to the relative error of the decomposition.

Furthermore, once the order of R (2) has been reduced to 14 to enable the equalisation of the

polynomial channel matrix, the relative error of the decomposition was calculated as 0.1168.

A set of five BPSK source signals, each of length 1 0 0 0 , was generated and then convo-

lutively mixed according to equation (2.28), where N is again equal to four. Noise is then

added to the convolutively mixed signals, where the variance of the noise has been chosen to

give a desired RSNR value, which is calculated according to equation (8.14) where p — 5 and

er2 defines the variance of the noise. Estimates of the five source signals are then calculated

using the process of back substitution and equalisation detailed in Section 8.4.1 and their

BER calculated. The RSNR for the experiment was allowed to vary from —5 to 20 dB in

increments of five. The results, for each RSNR value were then averaged over 100 realisa

tions. The same channel matrix was used throughout, however, the signals and noise terms

were generated afresh for each realisation. The average BER results are contained in Table

8.3, which demonstrate this technique has shown excellent error-rate performance for all five

sources for RSNR values in the range 10 to 20 dB.

8 .4 .4 D iscu ss io n o f th e E ffect o f R ela tiv e Error on B it Error

R a te

The performance of the equaliser during this process, will be affected by the relative error of

the decomposition performed. However, the order of the polynomial matrix R(^) must be

sufficiently small to enable the equaliser to be applied and so, for most polynomial channel

matrices, there will be some level of relative error encountered by truncating the order of this

matrix. Other factors that will affect the relative error of the decomposition are the choice

of the stopping criterion e and the truncation parameter p . Also the final truncation and

realignment, if it is used, will affect this measure. Note that it is better to use a small value

195

8.4 Potential Application o f the PQ RD

of ft when calculating the decomposition and then truncate the order of the final polynomial

matrix R (z), if its order is still too large to implement the equalisation step. This will help

minimise the relative error encountered. For the worked examples in this thesis, the choice

of both parameters has always been determined to optimise the speed and accuracy of the

algorithm used to calculate the PQRD.

Note that the transformation performed by the PQRD is norm-preserving in the columns

of the polynomial matrix. However, truncating the polynomial matrices throughout the

decomposition will mean that this is no longer true (although it will be approximately true

using a suitable value for the truncation parameter (i) and each column of the resulting upper

triangular matrix is affected by truncation by varying amounts. Due to the matrix being

transformed into the upper triangular polynomial matrix R (z), truncation of this matrix

throughout the PQRD algorithm will generally result in a more upper triangular polynomial

matrix and hence, over the whole transformation, the most energy will typically be lost in

the far right column of the matrix. The least energy will be lost in the first column, with all

columns in between the first and last having increasing amounts of energy lost (due to the

columns of the input matrix having more non-zero elements in them).

8 .4 .5 C on clu sion s

The numerical examples presented in this section have demonstrated that the algorithms for

calculating the PQRD, introduced in this thesis, can be used successfully as a preprocessing

step in MIMO communication systems to transform a problem of MIMO channel equalisation

into a series of SISO channel problems, which can be solved using an equalisation scheme such

as MLSE. Furthermore, the decomposition has shown to yield good error rate performance

when applied to a quasi static channel with a constant power profile, which is the typical

structure of a wireless channel. Future work could assess the performance of this method

when using other equalisation techniques. Furthermore, pre- and post-processing techniques,

such as interleaving and error correction coding can be used to improve the average BER

performance performance of the system [71]. Similar results have been found using QPSK

source signal, but are not presented in this thesis.

196

8.5 Potential Applications of the PSVD

Note that it is better to set the value of the truncation parameter /i as small as possible,

as this will mean a more accurate decomposition. If possible, it is obviously best to obtain the

decomposition without truncating the polynomial matrices by setting (j, = 0 , however, com

putationally the algorithm becomes very slow to implement. Instead, the polynomial matrices

can be truncated throughout the algorithm using a very small value for n at each iteration

and then truncate the final polynomial matrices using the fixed bound truncation method

described in Section 4.2 to ensure that they are of appropriate orders for the application.

Tests have demonstrated, but are not included in this thesis, that the relative error of the

decomposition can be allowed to increase to approximately 0 .1 for these examples without

compromising the average BER results. Further research could be carried out to determine

the amount of error that can be allowed within the decomposition without significantly af

fecting the error rate performance with this equalisation scheme. Note that the order of the

approximately upper triangular polynomial matrix R (2) is critical to this application of the

decomposition as the computational complexity of the MLSE is exponentially proportional

to this measure. Error could also be encountered when estimating the polynomial channel

matrix and this will also affect the error rate performance of the system. Future work could

be undertaken to fully investigate the affect of all errors, such as channel matrix estima

tion error and the error obtained from truncating the polynomial matrices, on the error rate

performance of the system.

8.5 P o ten tia l A pp lications o f th e P S V D

One possible application of the PSVD is in MIMO communication systems, where it can

be applied to a previously estimated channel matrix to split it into a set of independent

subchannels. Again, as with the application of the PQRD, the received data that has passed

through the convolutive channel will be distorted due to both the effects CCI and ISI and both

of these must be removed to estimate the transmitted data. By calculating the SVD of the

polynomial channel matrix, provided it is of full column rank, the MIMO channel equalisation

problem can be transformed into a set of single channel equalisation problems and this process

197

8.5 Potential Applications o f the PSVD

removes the CCI. The ISI present in each of the subchannels is then eliminated by applying an

equaliser. For the results presented in this chapter the equalisation step has been performed

using an MLSE, which operates using the Viterbi algorithm [62,66,67]. This scheme will not

suffer from reduced sensitivity to frequency offset errors and has no problems with peak-to-

average-power ratio, which are both problems observed when using the alternative OFDM

approach.

Note that the application of the PSVD discussed here, is similar to the application of

the PQRD previously discussed in 8.4.1. However, with the PQRD it is only necessary to

filter either the received signals or alternatively if preferred the transmitted signals. When

performing MIMO channel equalisation using the PSVD, it is necessary to filter both the

received and the transmitted signals. The process of achieving broadband MIMO channel

equalisation using the PSVD is now discussed.

8 .5 .1 M IM O C han n el E xp lo ita tion

The PSVD of a polynomial channel matrix C (2) € C pxq, can be calculated using either the

SBR2 or the PSVD by PQRD algorithm, which have both been discussed in Chapter 7, to

obtain the paraunitary matrices U (z) G C pxp and V (z) € C qxq such that

C (z) = U (z)D (z)V (z) (8.15)

w h e r e D (z) G C pxq i s a n a p p r o x i m a t e l y d i a g o n a l p o l y n o m i a l m a t r i x .

For this application, the signals s(z) demonstrated in the convolutive mixing model in

equation (8.6) do not represent the source signals, but the transmitted signals, which must

first be filtered at the transmitter to enable the MIMO channel equalisation problem to be

transformed into a set of SISO equalisation problems. Suppose the source signals, which are

generally drawn from a finite constellation such as BPSK or QPSK, are denoted by s (z) G

<Cqx 1. Before transmitting these signals through the convolutive channel, they are passed

through a transmit filter bank, where they are multiplied by the paraunitary polynomial

matrix V (z) obtained from calculating the PSVD of the polynomial channel matrix C(z)

198

8.5 Potential Applications o f the PSVD

ax-cording to equation (8.15). The filtered source signals, which are to be transmitted through

the convolutive channel can therefore be expressed as

1 (2) = ¥ . { z) f k \ z) . (8.16)

As the polynomial matrix V (2) is paraunitary, it will act as a multichannel all-pass filter

and will therefore preserve the combined power of the signals at every frequency [16]. The

filtered source signals §(2) from equation (8.16) are then transmitted through the convolutive

channel to obtain the received signals

x (z) = C(z)s(2) + n(z), (8.17)

where n(z) G C pxl denotes a multivariate Gaussian noise process with covariance cr2l p and is

representative of thermal noise at the receiver. The received signal x(^) are then filtered by

the paraunitary polynomial matrix U (z), obtained from calculating the PSVD of the channel

matrix C(2) according to equation (8.15), to obtain the filtered received signals

x (z) = U (z) C (z) V (z) s (z) + n (z) (8.18)

= D(z)s'(2) + n'(2) (8.19)

where x (z) = U (z) x (z) and n (z) = V { z) n (z) . Furthermore, as the polynomial matrix

U(2) is paraunitary, n (2) is also a Gaussian noise process with identical spectral properties.

Equations (8.18) and (8.19) have demonstrated that passing the source signals through the

paraunitary polynomial matrix V (z) , then through the convolutive channel C(2) and finally

through the paraunitary polynomial matrix U(2) is equivalent passing the signals through the

approximately diagonal polynomial matrix D(2). In particular, due to the diagonal structure

of D(2), the i th received signal, where i = 1 , . . . , q, can be written as

di{z) = di i^s ' i iz) + n'(2), (8.20)

199

8.5 Potential Applications of the PSVD

which is a single channel equalisation problem and can be solved using an MLSE to obtain

an estimate of the ith source signal s t {t). Note that when using the PQRD to simplify the

MIMO channel equalisation problem, due to the structure of the upper triangular polynomial

matrix R(z), the source signals must be estimated in a particular order and the SISO equation

relating to a particular source, will require knowledge of all sources that have been previously

estimated. However, when using the PSVD this is no longer the case. The estimated sources

can be determined in any order and all of the SISO problems are independent of the other

source signals. A block diagram of the proposed baseband communication system using the

PSVD can be seen in Figure 8.3.

EqualiserChannel
C (z)

Figure 8.3: Block diagram for a basic baseband communication system using the PSVD
(schematic of the multi-channel exploitation scheme).

If the channel matrix C { z) € C pxq is rank deficient, then it will still be possible to

successfully transmit and obtain an estimate over a number of the subchannels. In this

situation, the PSVD will generate a diagonal polynomial matrix where a number of the

diagonal elements are equal to zero. Consequently, the signals transmitted over these channels

cannot be estimated using this method. However, unlike the method of channel equalisation

using the PQRD discussed in the previous section, it is still possible to transmit and receive

over all of the other subchannels, which are associated with the non-zero diagonal elements.

A considerable amount of research has already been undertaken in this area [11-14].

However, all research so far has focused on calculating the PSVD using the PEVD routine

SBR2. Furthermore, the results are often demonstrated for exponentially decaying profile

channels, which will generally result is a diagonal polynomial matrix D(^) of low order, but

these channel matrices are not representative of a typical wireless channel. The following

200

8.5 Potential Applications o f the PSVD

numerical examples to illustrate this application, will calculate the PSVD using both this

existing SBR2 m ethod and also the new PQ R D technique introduced in C hapter 7. In this

chapter, the PSV D by PQ R D algorithm has dem onstrated better performance when applied

to a single polynom ial m atrix. The main advantage of this algorithm is tha t it is possible to

specify how small the coefficients associated w ith the off-diagonal polynomial elements must

be driven, which is som ething th a t it is not possible to do when using the SBR2 method. As

a result, the PSV D by PQ R D algorithm typically requires a smaller amount of com putational

tim e to reach the sam e level of decomposition as the PSVD by PEVD method. Furthermore,

the orders of the polynomial matrices and the relative error of the decomposition are generally

less when using th is m ethod. The channel m atrices for these examples are also chosen to have

constant power profile, as th is is representative of a typical wireless channel. The following

two exam ples com pare the two decomposition techniques, illustrating the advantages of the

PQ R D over the PEV D m ethod. For both examples MIMO channel equalisation, as discussed

here, is then carried out using the results obtained from the PSVD by PQ RD algorithm.

8 .5 .2 N u m er ica l E xam p les

T he two examples used in Section 8.4.3, which have previously been used to dem onstrate the

potential application of the PQ RD , are now used to dem onstrate the possible application of

the PSV D to M IM O com m unication systems. However, the two polynomial channel matrices

are first used as fu rther examples of the PSVD by PQ RD algorithm discussed in C hapter

7. These examples serve to illustrate the improved performance of this algorithm over the

PSV D by PE V D m ethod, which was previously used for this application [11-14,72,73].

Note th a t it is hard to compare the two algorithm s based on their com putational com

plexity due to the growing orders of the polynomial m atrices, which can not be determined in

advance. Therefore, the best measure available is the com putational tim e taken to form the

decom position using each algorithm. Furtherm ore, it is also difficult to achieve the same level

of decom position using the two different techniques, as each algorithm will only formulate an

approxim ation and it is impossible to specify in advance how small the off-diagonal elements

should be driven when using the SBR2 m ethod. This is due to the PSVD by PEV D m ethod

201

8.5 Potential Applications of the PSVD

not directly calculating the PSVD of A (z), but instead formulating the PSVD by calculating

the P EV D of the two para-Hermitian polynomial matrices A (z) A (z) and A (z) A (z) to obtain

the left and right hand polynomial singular vectors respectively. Instead, a process of trial

and error must be undertaken. This w ill then reflect in the relative error of the decompo

sition and also the final value of g, which defines the magnitude of the dominant coefficient

of the approximately diagonal polynomial m atrix £>(2) obtained from the PSVD. The size

of the relative error w ill influence the transmission symbol BER for the system. This is not

a problem when using the PSVD by PQRD method, where the stopping condition directly

specifies the accuracy of the polynomial m atrix decomposition. This point was discussed in

more detail in Chapter 7.

For each example, the elements of the diagonal polynomial m atrix, obtained using each

method, are aligned to ensure that they are over the same series of lags. This was previously

done for the worked example in Chapter 7. Note that to realign the diagonal elements a

series of delay matrices can be either applied from the left or right hand side of the poly

nomial m atrix. This w ill be determined by which rows or columns of the the paraunitary

transformation consists of elements that must also be realigned. This step w ill therefore not

only enable the possibility of reducing the order of the diagonal m atrix, but also the orders

of one or possibly both of the paraunitary transformation matrices U (z) and V (z).

Example 1

Firstly, the two methods for calculating the PSVD are applied to the polynomial channel

m atrix C ^ z) € C 4x3x4. The details of how this polynomial m atrix was generated can be

found in Section 8.4.3, where it was previously used to demonstrate the potential application

of the PQ RD. The PQRD-BC algorithm was used to calculated the PSVD as it required

the least number of iterations when compared to the PSVD using either the PQRD-BS or

the PQ RD-SBR variations of the algorithm. Consequently, it required the least amount

of computational time. Note that this method was also the best algorithm to use when

calculating the PQ R D of the same channel m atrix. The results from applying the PSVD by

P EV D and the PSVD by PQRD-BC algorithms, w ith the truncation and stopping parameters

202

8.5 Potential Applications of the PSVD

set as € = 10"2 and /z = 10“ 6, can be seen in Table 8.5. For these results a final alignment

step, as discussed in Chapter 7, was applied to the polynomial matrices, if required, to further

reduce the orders of the polynomial matrices.

PSV
SBR2

D By
PQRD

Number of Iterations 109 456

9 5.65 x 10"2 9.82 x lO'3
Order of 2(«) 56 57
Order of H(z) 47 61
Order o f V(z) 29 52

JET®1 0.2180 0.0862
Computational Time

(Seconds)
0.25 0.60

Table 8.5: Results obtained from applying the two methods for calculating the PSVD
to the polynomial matrix Qi(z).

The results presented in this table demonstrate that the PSVD by PQRD algorithm

took more iterations and time to converge than the PEVD method, furthermore, the order

of the resulting polynomial matrices D (z), H (z) and V (z) obtained by the decomposition

were also larger. However, the PSVD by PQRD algorithm obtained a far more accurate

decomposition due to the off-diagonal coefficients being driven significantly smaller according

to the stopping criterion e. The magnitude of the largest coefficient associated with an off-

diagonal polynomial element of D (z) was found to be g = 9.82 x 10-3 . The same level of

decomposition was not obtained using the PSVD by PEVD algorithm, where g — 5.65 x 10~2.

Furthermore, an upper bound on this value could not be determined in advance using this

method and so the same problems observed in the numerical example in Chapter 7 were again

present.

To obtain a similar level of decomposition as obtained by the PSVD by PQRD algorithm

required the truncation and stopping parameters to be set as /z = 10“ 7 and e = 10-3 . The

algorithm now required 0.91 seconds to converge to a point where g — 6.72 x 10-3 , which

did not take into account the time taken to find the appropriate values of /z and c to obtain

203

8.5 Potential Applications o f the PSVD

this level of decomposition. Furthermore, the order of the approxim ately diagonal m atrix is

now 67. Com paring these results with those obtained using the PSVD by PQ RD algorithm

as presented in Table 8.5 confirmed th a t the PSVD by PQ RD algorithm is faster to obtain

the decomposition and the orders of the polynomial matrices obtained for this decomposition

are shorter. For th is reason PSVD by PQ RD algorithm has been used to perform the MIMO

channel equalisation.

Subsequently, a set of three BPSK source signals each of length 1000 were generated

and then filtered by the paraunitary polynomial m atrix V (z) obtained from calculating the

PSV D of the channel m atrix C i(z). The filtered source signals are then convolutively mixed

using the channel m atrix C j(z) according to equation (2.28), where N defines the order

of the polynomial channel m atrix and for this example is equal to four. Gaussian noise

representative of therm al noise, w ith spatial covariance <72l 4, was then added to each of

the receive sensors to give a desired RSNR, which is again calculated according to equation

(8.14). The received signals are then filtered by the paraunitary polynomial m atrix U (z),

which was also obtained from calculating the PSVD of the channel m atrix C ^ z) , and the

process of equalisation of each filtered received signal was performed to obtain estimates of

each of the three source signals. The average BER for each of the estim ated source signals

was calculated, where the variance of the additive noise was chosen to give varying levels of

RSNR, ranging from —5 to 20dB. This was carried out for 100 independent realisations, using

the same channel m atrix C : (z), bu t generating new source signals and noise term s for each

realisation. The average of these results can be seen in Table 8 .6 , where for RSNR levels 10

to 20 dB the technique offers excellent error rate performance for the first source. The error

perform ance of the rem aining two sources is not so good, especially for the th ird source.

Example 2

Both techniques for calculating the PSVD were applied to the polynomial m atrix C 2(z) G

(£<5x5x4 Again, the PQ RD-BC algorithm was used for the PSVD by PQ RD algorithm as it

provided the best perform ance for this example. The PQ RD-BC algorithm required less time

to converge, the relative error was less than th a t obtained using the other algorithms and

204

8.5 Potential Applications o f the PSVD

A verage B E R

C |W C , (z)
S N R Source Source Source Source Source Source Source Source
(d B) 1 2 3 1 2 3 4 5

- 5 0.1979 0.2501 0.3804 0.1867 0.2490 0.3142 0.3735 0.4391
0 0.0638 0.1201 0.3003 0.0578 0.1167 0.1943 0.2871 0.3885
5 0.0032 0.0175 0.1801 0.0026 0.0166 0.0647 0.1673 0.3100
10 0 0.0001 0.0512 0 0.0001 0.0035 0.0422 0.1932
15 0 0 0.0022 0 0 0 0.0011 0.0684

20 0 0 0 0 0 0 0 0.0062

Table 8.6: Average BERs for a set of estimated BPSK sources for the MIMO channel
equalisation problem calculated using the PSVD by PQRD-BC algorithm to split the
problem into a set of SISO problems, which can then equalised using a MLSE based
on the Viterbi algorithm. The results are demonstrated for the two channel matrices
C \ (z) G C 4x3x4 and C 2(z) G C 5x5x4, and for different levels of RSNR ranging from
—5dB to 20dB.

the orders of the polynomial matrices obtained by the algorithm were also shorter. A final

alignment step was applied to the results obtained using both PSVD techniques, reducing

the orders of the polynomial m atrices at no additional cost to the relative error. The results

can be seen in Table 8.7.

These results dem onstrate th a t the PQ RD technique obtains a far more accurate decom

position, w ith E rel = 0.1261. The same measure found using the PEV D m ethod was found to

be 0.4146. However, the PQ R D m ethod did require considerably more time to converge, but

once again the m agnitude of the largest coefficient associated w ith an off-diagonal polynomial

element of D (z) was found to be g = 9.93 x 10- 3 , much smaller th a t th a t obtained using the

PEV D m ethod.

To ob tain a similar level of decomposition to th a t obtained by the PSVD by PQRD

algorithm , required a considerable amount of trial and error to find an appropriate choice

of the param eters p and e to obtain a similar value of g. If e = 5 x 10-4 and p = 10-7 ,

then the m agnitude of the dom inant off-diagonal coefficient of D (^) was now found to be

g = 9.04 x 10~3. However, this required 1239 iterations, taking 5.93 seconds to converge and

205

8.5 Potential Applications of the PSVD

PSV
SBR2

D By
PQRD

Number of Iterations 168 869

9 6.72 x 10~2 9.93 x 10-3

Order of D(z) 47 78
Order of U(z) 38 77
Order of V(z) 32 54

E rel 0.4146 0.1261

Computational Time
(Seconds)

0.50 1.37

Table 8.7: Results obtained from applying the two methods for calculating the PSVD
to the polynomial matrix C 2(z).

the order of the approxim ately diagonal polynomial m atrix D (z) was 132. Therefore, the

PSV D by PQ R D clearly outperform s the PSVD by PEV D algorithm. For this reason this

algorithm was used to perform the MIMO channel equalisation.

T he process of equalisation is exactly the same for the previous example and so will not

be discussed again. For this example, there are five sources signals, which were chosen to

be BPSK sequences of length 1000. The average error rate results were averaged over 100

independent realisations, using the same channel m atrix C2(z), but generating new source

signals and noise term s for each realisation. The average of these results can be seen in Table

8 .6 , where for RSNR levels 10 to 20 dB the technique offers excellent error rate performance

for the first source. As w ith the previous example, the error rate performance will degrade

moving downwards through the sources. In particular, the error performance of the fifth

source was poor for all levels of RSNR.

8 .5 .3 C on clu sion s

The num erical examples have dem onstrated the ability of the PSVD by PQ RD algorithm

as a preprocessing step in MIMO communication system s to transform a problem of MIMO

channel equalisation into a series of SISO channel problems, which can be solved using an

equalisation scheme such as MLSE. The polynomial channel matrices used for these results

206

8.6 Potential Applications of the PEVD

were chosen to have constant power profile to represent a typical wireless channel and the

scheme has demonstrated good average error rate performance for these channels.

The results have also illustrated the improved performance of using the PSVD by PQRD

algorithm over the existing technique of using the SBR2 algorithm to calculate the PSVD of

a polynomial matrix. Again as with the simulated results to demonstrate the application of

the PQRD, only a very simple baseband communication system has been demonstrated and

so the average error rate could potentially be improved by using an interleaver, a different

method of equalisation and possibly also by implementing error correction coding [62,71].

8.5 .4 Paraunitary Filter Bank D esign and Subband C oding

The PSVD can also be used with subband coding, which is extensively described in [9,10].

The idea of subband coding is to split a signal into a number of different subbands, which can

then each be individually decimated, with the allocation of bits per subband being determined

by the energy content of each subband signal [16,57,58]. It is used extensively for the data

compression of audio signals - for example to generate MPEG audio files. Consequently,

this will conserve signal bandwidth, by eradicating any information concerning frequencies

that won’t noticeably change the reconstructed signals. In [9,10] the SBR2 algorithm has

been used to calculate the PSVD. In [10] a slightly modified version of the SBR2 algorithm

is used, referred to as the SBR2 coder, to obtain the paraunitary m atrix filter bank. The

PSVD calculated the optimal FIR paraunitary filterbank.

8.6 Potential Applications of the PEV D

The application of the PEVD to strong decorrelation has been discussed extensively in Section

3.6.1. This was the primary application of the decomposition, when it was developed to form

the first step of a two-step BSS algorithm suitable for convolved signals. Since then other

applications of the decomposition have been realised, including the potential application to

MIMO communications discussed in 8.5.1, where the PEVD can be used to formulate the

PSVD.

207

C hapter 9

Conclusions and Future Work

The main lim itation of the SBR2 algorithm was the unnecessarily large orders of the result

ing polynomial matrices generated by the algorithm. The first contribution discussed in this

thesis, was the development of an energy based truncation method, which can allow the order

of these polynomial matrices to be vastly reduced whilst, if used appropriately, still main

taining an accurate polynomial matrix decomposition. This then enabled the computational

load of the SBR2 algorithm to be reduced, which consequently meant tha t the algorithm

was typically faster to run. This is illustrated by the examples detailed in the fourth chap

ter, demonstrating the orders of the resulting polynomial matrices and the computational

time taken to run the SBR2 algorithm can be vastly reduced when this truncation m ethod

is included. This result is therefore useful for the potential applications of the algorithm,

where the resulting orders of the matrices is critical. In particular, this can be used to great

advantage for the application of the decomposition to MIMO communication problems where

the computational complexity required to solve the problem is directly proportional to the

order of the diagonal polynomial matrix generated by the SBR2 algorithm.

Subsequently, three algorithms for calculating the QR decomposition of a polynomial ma

trix have been introduced, all of which are guaranteed to transform a polynomial m atrix into

an approximately upper triangular polynomial m atrix by means of polynomial paraunitary

matrices. Results have demonstrated the most efficient of these algorithms to generally be

the PQRD by Columns (PQRD-BC) algorithm, although for some examples the PQRD by

Steps (PQRD-BS) algorithm does outperform this method. All three algorithms introduced

209

for calculating this decomposition have been proven to converge. The potential application

of this decomposition is to MIMO communication problems, where it is often required to

reconstruct d a ta sequences that have been distorted due to the effects of co-channel inter

ference and m ultipath propagation, leading to intersymbol interference. If the polynomial

channel m atrix for the system is known, its QR decomposition can be calculated using one

of these algorithms and this can then be used to transform the linear system of polynomial

equations into triangular form, which can then be solved using back substitution and a stan

dard equalisation technique suitable for single channel problems. This process is extensively

discussed in the penultim ate chapter, where some simulated average bit error rate results are

presented to support this potential application. The energy based truncation method can

again be used to great advantage to this application of the decomposition algorithm. Note

tha t the possible applications of this decomposition to broadband signal processing will be

as diverse as the applications of the scalar m atrix QRD to narrowband signal processing.

An algorithm for calculating the SVD of a polynomial m atrix has also been presented.

The algorithm operates by iteratively applying the most efficient of the PQRD algorithms

and is therefore referred to as the PSVD by PQRD algorithm. A proof of convergence for

the algorithm has been presented in this thesis. This algorithm has been compared to an

already existing technique for calculating the SVD of a polynomial matrix, which operates by

applying the SBR2 algorithm (referred to as the PSVD by PEVD algorithm), and numerical

results have dem onstrated the PSVD by PQRD algorithm offers better performance. The

main advantage of the PSVD by PQRD algorithm, is tha t it is computationally considerably

faster to obtain approximately the same level of decomposition. Secondly, the PSVD by

PQRD algorithm also allows the user control over how small the off-diagonal elements of the

m atrix must be driven before convergence has been reached, which is something tha t cannot

be achieved using the SBR2 approach without a considerable amount of trial and error. The

resulting orders of the polynomial matrices obtained using the PSVD by PQ RD m ethod are

typically shorter than those obtained with the PSVD by PEVD approach, with less relative

error. This final point can be an advantage for the potential application of the decomposition

to MIMO communications and has been discussed in detail in chapter eight. Note th a t the

210

9.1 Suggestions for Further Work

polynomial m atrix truncation methods can also be used within these new decompositions

algorithms.

The m ain contributions of the thesis are the algorithms for calculating the QR and singular

value decomposition of a polynomial matrix. They have all been proven to converge and

are also numerically robust. The thesis has outlined the potential applications of these

decompositions and provided some average error rate result to support the applications. The

energy based truncation method, which can be used to reduce the computational requirements

within any of the polynomial m atrix decomposition algorithms is also a contribution of the

thesis.

9.1 Suggestions for Further Work

This section has been subdivided into the potential areas of research for the three decompo

sition discussed in this thesis.

The PEVD

The classical Jacobi algorithm for calculating the EVD of a scalar m atrix A 6 Cnxn involves

0 (n2) operations to search for the dominant element in the m atrix at each iteration and

other aspects of the iteration require 0 (n) operations [6]. Alternatively, a cyclic by rows

Jacobi algorithm can be used to reduce the number of computations, by visiting the off-

diagonal elements in the m atrix using an ordering, implementing multiple sweeps if required

for convergence. This algorithm is considerably faster as it does not require a search routine

to locate the dominant element at each iteration. It would be interesting to see if a similar

approach could be used with the SBR2 algorithm and how this would affect convergence of

the algorithm. Furthermore, it would be interesting to see if parallel computations could

be used within the SBR2 algorithm, by implementing non-conflicting Givens rotations in

parallel. For example, the rotations required to zero coefficients in the polynomial elements

(1,2) and (3,4) are non-conflicting and can therefore be carried out in parallel. However,

with polynomial matrices this will require multiple applications of delay matrices, which may

211

9.1 Suggestions for Further Work

cause problems for the same reason that Householder refections axe not a suitable type of

transform ation for polynomial matrices1.

T h e P Q R D

For scalar matrices, the LU decomposition is generally preferable to the QR decomposition

when solving a set of linear equations, as it requires approximately half the number of oper

ations to calculate [38]. In fact for the scalar m atrix case, there are a few exceptions where

the QRD is the best m ethod to use. Could an algorithm for calculating the LU decompo

sition of a polynomial m atrix be developed using similar methods and techniques to those

discussed in this thesis? Furthermore, if this decomposition is possible, would it provide

a less computationally expensive algorithm for polynomial matrices than the PQRD? It is

difficult to determine this in advance due to the orders of the polynomial matrices growing

at each iteration due to the application of elementary delay matrices, which are a necessity

for convergence of the polynomial m atrix decompositions.

The QR algorithm of a scalar m atrix is often used to calculate the eigenvalues of a

matrix, where the EVD can not be used as the matrix is not Hermitian. Parallel Givens

rotations could be applied, which may affect both the order of the polynomial matrices and

the computational time. Furthermore, there exist variations formulating the Givens m ethod

for scalar m atrix QRD, such as the Fast Givens QRD and techniques using column pivoting.

The focus of future research could investigate these possibilities, to see if they are feasible.

The application of the PQRD to MIMO communication systems, discussed in chapter

eight, was presented for a very simple baseband communication systems, yet the technique

still demonstrated good average error rate performance. The use of interleavers and error

correction codes could be used to potentially improve these results. Furthermore, different

methods of equalisation could also be applied to the problem.

1 Householder reflections suitable for polynomial matrix decompositions are discussed in Appendix
A.

212

9.1 Suggestions for Further Work

T h e P S V D

W ith scalar m atrix decompositions, the SVD can be used to calculate the pseudo-inverse of a

matrix. Could an algorithm be developed for calculating the pseudo-inverse of a polynomial

m atrix using the PSVD? This would be useful for problems where the polynomial matrix is

rank deficient and so the PQRD can not be used to solve a set of polynomial linear equations

as discussed in chapter eight. Finally, as with the PQRD future work, the numerical results

discussed in chapter eight could potentially be improved by using a different method of

equalisation, interleavers or possibly error correction coding could be used to potentially

improve these results.

213

Bibliography

[1] A. Peled and B. Liu. Digital Signal Processing. John Wiley and Sons, 1976.

[2] A.J. Paulraj, R. Nabar and D. Gore. Introduction to Space-Time Wireless Communica

tions. Cambridge University Press, 2003.

[3] A. Hyvarinen, J. Karhunen and E. Oja. Independent Component Analysis. John Wiley

and Sons, 2001 .

[4] S. Haykin. Unsupervised Adaptive Filtering, Volume 1: Blind Source Separation. John

Wiley and Sons, 2000.

[5] P. Comon. Independent Component Analysis, a New Concept? Signal Processing,

Elsevier, 36(3):287-314, 1992.

[6] G.H. Golub and C.F. Van Loan. Matrix Computations (Third Edition). The John

Hopkins University Press, 1996.

[7] J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif and J. Foster. An EVD Algorithm

for Para-Hermitian Polynomial Matrices. IEEE Transactions on Signal Processing,

55(6):2158-2169, 2007.

[8] P.D. Baxter. Blind Signal Separation of Convolutive Mixtures. PhD thesis, Department

of Electrical and Electronic Engineering, Imperial College, 2005.

[9] S. Redif. Polynomial Matrix Decompositions and Paraunitary Filter Banks. PhD thesis,

School of Electronics and Computer Science, University of Southampton, 2006.

214

BIBLIOGRAPHY

[10] S. Redif and T. Cooper. Paraunitary filterbank design via a polynomial singular value

decomposition. In Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 613-616, 2005.

[11] C.H. Ta and S. Weiss. A Design of Precoding and Equalisation for Broadband MIMO

Transmission. In 15th International Conference on Digital Signal Processing, Cardiff,

2007.

[12] C.H. Ta and S. Weiss. A Design of Precoding and Equalisation for Broadband MIMO

Systems. In 41s* Asilomar Conference on Signals, Systems and Computers, Asilomar,

USA, 2007.

[13] M. Davies, S. Lambotharan and J. G. McWhirter. Polynomial M atrix SVD for MIMO

Broadband Beamforming. In IMA Conference on Mathematics in Signal Processing,

Cirencester, 2006.

[14] M. Davies, S. Lam botharan and J. G. McWhirter. Broadband MIMO Beamforming using

Spatial-Temporal Filters and Polynomial M atrix Decomposition. In \b th International

Conference on Digital Signal Processing, Cardiff, 2007.

[15] M. Davies, S. Lambotharan, J. Chambers and J. G. McWhirter. Broadband MIMO

Beamforming For Frequency Selective Channels Using the Sequential Best Rotation

Algorithm. In 67th Vehicular Technology Conference, Singapore, May 2008.

[16] P.P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall, 1993.

[17] S. Weiss, S. Redif, T. Cooper, C. Liu, P.D. Baxter and J.G. M cW hriter. Paraunitary

oversampled filterbank design for channel coding. E U R A SIP Journal of Applied Signal

Processing, 2006:1-10, 2006.

[18] T. Kailath. Linear Systems. Prentice-Hall International Inc., 1980.

[19] X. Gao, T.Q. Nguyen and G. Strang. On Factorization of M-Channel Paraunitary

Filterbanks. IEEE Transactions on Signal Processing, 49(7): 1433-1446, 2001.

215

BIBLIOGRAPHY

[20] R.H. Lam bert. Multichannel Blind Deconvolution: FIR M atrix Algebra and Separation

of Multipath Mixtures. PhD thesis, Department of Electrical Engineering, University of

Southern California, 1996.

[21] J. G. M cW hirter and P. D. Baxter. A Novel Technique for Broadband SVD. In 12th

Annual Workshop on Adaptive Sensor Array Processing, 2004.

[22] L. De Lathauwer, B. De Moor and J. Vandewalle. An Algebraic Approach to Blind

MIMO Identification. In Proc. of the 2 nd International Workshop on Independent Com

ponent Analysis and Blind Source Separation (ICA 2 0 0 0), pages 211-214, 2000.

[23] L. De Lathauwer, B. De Moor and J. Vandewalle. Fetal Electrocardiogram Extraction

by Blind Source Subspace Separation. Proc. of the IEEE Transactions on Biomedi

cal Engineering, Special Topic Section on Advances in Statistical Signal Processing for

Biomedicine, (9):567-572, 2000.

[24] S. Makeig, A. Bell, T.P. Jung and T.J. Sejnowski. Independent Component Analysis

of Electroencephalographic Data. Advances in Neural Information Processing Systems,

1995.

[25] S. Haykin. Adaptive Filter Theory (Fourth Edition). Prentice Hall, 2002.

[26] S. Choi, A. Cichocki, H.M Park and S.Y. Lee. Blind Source Separation and Independent

Component Analysis: A Review. Neural Information Processing - Letters and Reviews,

6(1): 1-57, 2005.

[27] A. Hyvarinen and E. Oja. Independent Component Analysis: Algorithms and Applica

tions. Neural Networks, 13(4) :411-430, 2000.

[28] J.F. Cardoso. Blind Signal Separation: Statistical Principles. Proceedings of the IEEE,

86(10):2009-2025, 1998.

[29] J.F. Cardoso and A. Souloumiac. Blind Beamforming for Non Gaussian Signals. Radar

and Signal Processing, IEE Proceedings F, 140(6):362-370, 1993.

216

BIBLIOGRAPHY

[30] A. Belouchrani, J. Abed-Meraimm, J. Cardoso and EE. Moulines. A Blind Source Sepa

ration Tehcnique using Second-order Statistics. IEEE Transactions on Signal Processing,

45(2):434-444, 1997.

[31] L. De Lathauwer, B. De Moor and J. Vandewalle. Blind Source Separation by Simultane

ous Third-order Tensor Diagonalisation. In Proc. of the 8th European Signal Processing

Conference (EUSIPCO ’96), pages 91-96, 1996.

[32] I. J. Clarke. Direct Exploitation of Non Gaussianity as a Discriminant. Proc. EUSIP-

COIX, pages 2057-2060, 1998.

[33] A. Hyvarinen and E. Oja. A Fast Fixed-Point Algorithm for Independent Component

Analysis. Neural Computation, 9:1483-1492, 1997.

[34] K.J. Pope and R.E. Bogner. Blind Signal Separation I. Linear, Instantaneous Combina

tions. Digital Signal Processing, 6:5 -16, 1996.

[35] G.W. Stewart. Computer Science and Applied Mathematics. Academic Press, 1973.

[36] G. Strang. Linear Algebra and its Applications. Academic Press Inc., 1976.

[37] J.H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, 1965.

[38] W.H. Press, S.A. Teukolsky, W .T. Vetterling and B.P. Flannery. Numerical Receipes

in C, The Art of Scientific Computing (Second Edition). Cambridge University Press,

2002.

[39] M. H. Hayes. Statistical Digital Signal Processing and Modeling. John Wiley and Sons,

1996.

[40] G.W. Stewart. On the Early History of the Singular Value Decomposition. SIA M Review,

35(4):551-566, 1992.

[41] Edited by M. Moonen and B. De Moor. SVD and Signal Processing, III. Elsevier, 1995.

[42] E.R. Dougherty and C.R. Giardina. Matrix Structured Image Processing. Prentice Hall,

1987.

217

BIBLIOGRAPHY

[43] T. Lee, A.J. Bell and R.H. Lambert. Blind Separation of of Delayed and Convolved

Sources. Advances in Neural Information Processing Systems, pages 758-764, 1997.

[44] K. Torkkola. Blind Separation of Convolved Sources Based on Informationmaximization.

In Proc. of the IEEE Neural Networks for Signal Processing, pages 423-432, 1996.

[45] M. S. Pedersen, J. Larsen, U. Kjems and L. C. Para. A Survey of Convolutive Blind

Source Separation Methods. Springer Handbook on Speech Processing and Speech Com

munication.

[46] K.J. Pope and R.E. Bogner. Blind Signal Separation II. Linear, Convolutive Combina

tions. Digital Signal Processing, 6:17-28, 1996.

[47] P. Smaragdis. Blind Separation of Convolved Mixtures in the Frequency Domain. In

International Workshop on Independence and Artificial Neural Networks, Spain, 1998.

[48] R. Klemm. Space-time Adaptive Processing: Principles and Applications, volume 9 of

IEE Radar, Sonar, Navigation and Avionics. 1998.

[49] A.J. Paulraj and C.B. Papadias. Space-Time Processing for Wireless Communications.

IEEE Signal Processing Magazine, 14:49-83, 1997.

[50] P.A. Regalia and D.-Y Huang. Attainable Error Bounds in M ultirate Adaptive Lossless

FIR Filters. In IEEE Conference Acoustic, Speech and Signal Processing, pages 1460-

1463, 1995.

[51] H.J.S. Smith. On Systems of Linear Indeterm inate Equations and Congruences. Philo

sophical Transactions of the Royal Society London, 151:293-326, 1861.

[52] R. H. Lambert, C. L. Nikias. Polynomial M atrix W hitening and Application to the Multi

channel Blind Deconvolution Problem. Military Communications Conference, 3:988-992,

1995.

[53] R. H. Lambert, M. Joho and H. Mathis. Polynomial Singular Values for Number of

W ideband Sources Estimation and Principal Component Analysis. In Proc. Int. Conf.

Independent Component Analysis, pages 379-383, 2001.

218

BIBLIOGRAPHY

[54] P. D. Baxter and J. G. McWhirter. Blind signal separation of convolutive mixtures. In

Proc. 37th Asilomar Conference on Signals, Systems and Computers, 2003.

[55] C.H. Ta and S. Weiss. Design of Precoding and Equalisation for Broadband MIMO

Transmission. In Second IE E /E U R A SIP Conference on DSP enabled Radio, 2005.

[56] J.A.Cadzow. Foundations of Digital Signal Processing and Data Analysis. Collier

Macmillan, 1987.

[57] P.P. Vaidyanathan. Theory of Optimal Orthonormal Subband Coders. IEEE Transac

tions on Signal Processing, 46(6): 1528-1543, 1998.

[58] P.P. Vaidyanathan and A. Kirac. Results on Optimal Biorthogonal Filter Banks.

IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,

45(8):932-947, 1998.

[59] J. Foster, J. G. McWhirter and J. Chambers. Limiting the Order of Polynomial Matrices

W ithin the SBR2 Algorithm. In IMA Conference on Mathematics in Signal Processing,

Cirencester, 2006.

[60] A.J. Paulraj, D. Gore, R.U. Nabar and H. Bolcskei. An Overview of MIMO Communi

cations - A Key to Gigabit Wireless. Proceedings of the IEEE, 92(2): 198-218, 2004.

[61] D. Gesbert, M. Shafi, D.S. Shiu, P. Smith and A. Naguib. From Theory to Practice:

An Overview of MIMO Space-Time Coded Wireless Systems. IEEE Journal on Selected

Areas in Communications. Special Issue on MIMO Systems, part 1, 21:281-302, 2003.

[62] J.G. Proakis. Digital Communications (Fourth Edition). McGraw-Hill Book Co., 2001.

[63] L. Tong, G. Xu and T. Kailath. A New Approach to Blind Identification and Equalisation

of M ultipath Channels. In Proc. 25th Asilomar Conference on Signals, Systems and

Computers, pages 856-860, 1991.

[64] C. Berrou and A. Glavieux. Near Opitimum Error Correcting Coding and Decoding:

Turbo Codes. IEEE Transactions on Communications, pages 1261-1271.

219

BIBLIOGRAPHY

[65] A.J. Viterbi. Error Bounds for Convolutional Codes and an Asymptotically Optimum

Decoding Algorithm. IEEE Transactions on Information Theory, 13:260-269, 1967.

[66] A.J. Viterbi. A Personal History of the Viterbi Algorithm. Signal Processing Magazine,

IEEE , 23(4): 120-142, 2006.

[67] G.D. Forney Jr. The Viterbi Algorithm. Proc. IEEE, 61:268-278, 1973.

[68] R.O. Duda, P.E. Hart and D.G. Stork. Pattern Classification (Second Edition). John

Wiley Sons Inc., 2001.

[69] C. Burge and S. Karlin. Prediction of Complete Gene Structures in Human Genomic

DNA. Journal of Molecular Biology, 268:78-94, 1997.

[70] J. Foster, J. G. McWhirter and J. Chambers. A Polynomial M atrix QR Decomposition

with Application to MIMO Channel Equalisation. In Proc. 41st Asilomar Conference

on Signals, Systems and Computers, 2007.

[71] B.P. Lathi. M odem Digital and Analog Communication Systems (Third Edition). Oxford

University Press, 1998.

[72] C. Liu, S. Weiss, S. Redif, T. Cooper, L. Lampe and J.G. McWhriter. Channel Coding for

Power Line Communication Based on Oversampled Filter Banks. In 2005 International

Symposium on Power Line Communications and Its Applications, 2005.

[73] S. Weiss, C.H. Ta and C. Liu. A Wiener Filter Approach to the Design of Filter Bank

Based Single-Carrier Precoding and Equalisation. In Power Line Communications and

Its Applications, pages 493-498, 2007.

220

A ppendix A

H ouseholder Transformations for
Polynom ial M atrices

W hen calculating the QRD of a scalar matrix, Householder transformations (also referred

to as Householder reflections or elementary reflectors) are often used as an alternative to

Givens rotations, as they allow zeros to be introduced to a m atrix on a grand scale rather

than the very selective procedure observed when using Givens rotations [6]. Furthermore,

Householder reflections are typically computationally less expensive when calculating the

QRD of a scalar matrix. Givens rotations are still useful for scalar m atrix decompositions, for

example they are more appropriate when calculating the decomposition of a sparse m atrix and

it is also easier to run parallel computations with Givens rotations. This appendix examines

the concept of applying Householder reflections as an alternative to Givens rotations as a

technique for achieving a polynomial m atrix QRD. Firstly, the conventional Householder

reflections applicable to scalar matrices are discussed.

A .l Householder Reflections for Scalar M atrices

A. 1.1 R eal H ouseholder R eflections

Suppose for a vector of scalars x e Rpxl, where x = [aq,. . . , x p]T ± 0, we wish to zero all

elements beneath the first element x \ . This could be achieved by applying a series of Givens

rotations to drive each element in turn to zero, or alternatively could be accomplished by

applying one Householder reflection which will drive all of the elements beneath the first

221

A .l Householder Reflections for Scalar Matrices

element x\ to zero directly. A Householder reflection is a m atrix of the form

TVV
H = (A-l)

where

v = x ± | | x | | 2ei (A.2)

and e i = [1 ,0 ,... ,0]T € <Cpxl, i.e. the first canonical vector [6]. This m atrix can be applied

to the vector x resulting in the transformation

H x = T | |x | |2ei (A.3)

and so all elements of the transformed vector beneath the first element x\ are now equal to

zero. Furthermore, as with Givens rotations, the transform ation m atrix H is unitary and so

the transformation is norm-preserving, i.e. 11H x|)2 = ||x||2.

Householder reflections can similarly be applied to a m atrix A G Rpx<?, whose elements are

real scalars. The required Householder reflection to zero all elements beneath the diagonal of

the k th column takes the form of a p x p identity matrix with the exception of the (p —k) x (p —k)

subm atrix formulated as
^ vv^
Hfc = I(p—/c) - 2- (A.4)

where

v = a * ± ||a*||2ei, (A.5)

a* = . . . ,apk]T and ei = [1,0, . . . ,0] T e R (P~k)x l . The entire Householder

reflection m atrix will be denoted as where k indicates the column index of the elements

to be driven to zero.

222

A .2 Householder Reflections for Polynomial Matrices

A . 1.2 C om plex H ouseholder R eflections

Similarly, a Householder reflection can be adapted to be applicable to a vector x E Cpxl with

complex scalar elements by changing equations (A .l) and (A.2) such that

H = I - 2 — (A.6)
I M I 2

where

v = x ± e iarg(;ri)||x ||2 e i. (A.7)

and i = y/— 1. This can easily be extended in the same way as the case for matrices with real

elements, to be applicable to matrices with complex scalar entries.

A. 1.3 C om putational C om plexity

For the scalar m atrix QRD, implementing a Givens rotation approach to the matrix A E M.pxq

requires 3p2(q — p/3) flops, whilst the Householder approach requires 2p2(q — p/3) and is

therefore com putationally less expensive [6]. Note that the computational complexity of

the Givens rotations approach can be reduced by implementing multiple rotations at once.

However, this approach has not yet been considered for polynomial matrices and is therefore

of no relevance here.

A .2 H ouseholder R eflections for Polynom ial M atrices

The approach discussed in the previous section can easily be extended to be applicable to

polynomial matrices in a very similar way to how Givens rotations were extended to formu

late an E P G R 1 in Chapter 5. In order to zero the largest coefficient associated with each

element beneath the diagonal of the k th column of the polynomial matrix A (2) E C px<7,

firstly the dom inant coefficient in each of the (p — k) polynomial elements beneath the di

agonal m ust be located. Again, as with the polynomial m atrix decompositions previously

discussed in this thesis, the dominant coefficient refers to the coefficient with the largest

^ P G R denotes an Elementary Polynomial Givens rotation, which was introduced in Section 5.2.

223

A.2 Householder Reflections for Polynomial Matrices

m agnitude within the polynomial element and, if for any polynomial element it is not unique,

then any of the dom inant coefficients within the element may be chosen. Suppose the set

of dom inant coefficients beneath the diagonal of the kth column of the matrix are found to

be {cijk(tj) ' j = k + 1 , . . . ,p}. Once the series of dominant coefficients has been located, a

series of elem entary delay matrices, previously explained in Section 3.3.2, is then applied to

A (z) to obtain the transformed polynomial m atrix

A \ z) = B (p’- ^ \ z) . . . B (fc+2’~tk+2)(<z) B {k+l ~tk+l)(z)A{z), (A.8)

where the { j , k) th polynomial element of this m atrix is defined as a!-k{z). The objective

of this set of elem entary delay matrices is to shift each of the dominant coefficients in each

polynomial element, beneath the diagonal of the m atrix of the k th column, onto the coefficient

m atrix of order zero, i.e. so th a t they are positioned on the coefficient matrix A(0). Then

once this has been completed, a Householder reflection m atrix is formulated according to
r n HSection A .l where for equation (A.5) ak = K fc(0)’ a(k+l)k This m atrix is

then applied to A (z) to generate the transformed m atrix

A \ z) = H*A \ z) (A.9)

where all coefficients beneath the diagonal in the kth column of the zero-lag coefficient matrix
v

will now equal zero. Furtherm ore K * (°) i2 = £ I ajA;(0)|2 (= llafcllf’)- The overall polyno-
j —k

mial Householder reflection m atrix takes the form

H k (z) = H(fc)B{p' - tp\ z) . . . B {k+2- tk+2\ z) B {k+l~tk+l)(z), (A.10)

where the subscript k defines the column in which coefficients associated with polynomial

elements beneath the diagonal will be driven to zero under application of the polynomial

Householder reflection. This polynomial m atrix will be referred to as an elementary polyno

mial Householder reflection (EPHR) and a series of matrices of this form can be applied to

a polynomial m atrix to transform it to an upper-triangular polynomial matrix.

224

A .3 Calculation of the PQ RD with Polynomial Householder Reflections

A .3 C alculation of the PQ R D w ith Polynom ial House

holder Reflections

Two of the Givens rotation based algorithms, the PQRD-BC and the PQRD-SBR algorithms

introduced in C hapter 5, can be modified to apply a series of EPHRs, replacing the EPGRs,

to transform a polynomial m atrix into an approximately upper-triangular polynomial matrix.

The most adaptable of the current PQRD algorithms is the PQRD-BC algorithm for two rea

sons. Firstly, the PQRD-BC algorithm has been shown, in Chapter 6 , to be computationally

the most efficient of the three algorithms, typically requiring the least number of iterations

to converge. Secondly, the algorithm operates by driving all coefficients associated with poly

nomial elements beneath the diagonal sufficiently small in each column of the polynomial

m atrix in tu rn and so has the appropriate structure to be adapted for EPHRs, which also

operate on only a single column of the m atrix at any one time. Note that the PQRD-SBR al

gorithm could also be modified to include EPHRs. However, this algorithm generally requires

considerably more iterations to converge tha t the PQRD-BC algorithm when using EPGRs,

due to the polynomial m atrix converging to an upper-triangular polynomial matrix through

the columns of the m atrix from left to right. For this reason, this idea has not been explored

further as it would be expected th a t the same behaviour would be observed. Clearly, if the

PQRD-BS algorithm is adapted to include EPHRs, then it will be the same as the modified

PQRD-BC algorithm.

A .3.1 T h e P Q R D -B C A lgorithm w ith E P H R s

To adapt the PQRD-BC algorithm to use EPHRs rather than EPGRs, the algorithm will

still operate as a series of ordered steps to obtain the decomposition of the polynomial matrix

A (z) <E C pxq

Q(z)A(z) = R (z) (A.11)

where Q(*) denotes a paraunitary polynomial m atrix and R (z) an approximately upper-

triangular polynomial matrix.

225

A .3 Calculation of the PQ RD with Polynomial Householder Reflections

At each step of the algorithm all coefficients associated with all polynomial elements

beneath the diagonal of one column of the polynomial m atrix A(z) are driven sufficiently

small through an iterative process. At each iteration the dominant coefficient is located within

each polynomial element beneath the diagonal in the appropriate column of the matrix. The

appropriate E PH R is then calculated according to Section A.2 and applied to the polynomial

matrix, resulting in the series of dominant coefficients beneath the diagonal of one column

of the polynomial m atrix having been driven to zero. This process is repeated until all

coefficients associated with polynomial elements beneath the diagonal of the specified column

of the polynomial m atrix are sufficiently small, i.e. \ajk(t)\ < e where k defines the column

index, j = k + 1, . . . ,p and e > 0 is some prespecified small value. Once this has been

achieved, the algorithm increments the column index by one and therefore repeats the process

on the column positioned to the right of the kth column. All other aspects of the PQRD-

BC algorithm are the same as those described in Chapter 5 and so multiple sweeps of the

algorithm may be required for the algorithm to converge.

The algorithm will generate an approximately upper-triangular polynomial matrix and a

proof of convergence for this EPH R variation of the PQRD-BC algorithm will be a very simple

modification of the proof of convergence detailed in 5.5.2. The truncation methods discussed

in Chapter 4 can again be applied within each iteration of the algorithm to optimise the

speed of the algorithm and reduce the orders of the two polynomial matrices Q(z) and R(z).

However, care must be taken when truncating the polynomial matrices as the transformation

performed will no longer be norm-preserving and can therefore result in some error.

A .3.2 N um erica l Exam ple: T he P Q R D -B C A lgorithm w ith

P olyn om ia l H ouseholder R eflections

For this example, the modified PQRD-BC algorithm, which implements EPHRs rather than

EPGRs, was applied to the fairly simple polynomial m atrix A 2(z) previously discussed in

Section 6.2.2 of C hapter 6 . In Chapter 6 the PQRD-BC algorithm with EPGRs has previously

dem onstrated good performance when it has been applied to this polynomial matrix and

226

A .3 Calculation of the PQ RD with Polynomial Householder Reflections

required 356 iterations to converge to a point where all coefficients associated with polynomial

elements beneath the diagonal of the polynomial m atrix are less than 10~3 in magnitude. For

this example, both variations of the PQRD-BC algorithm, i.e. with EPGRs and EPHRs, are

again applied to this polynomial matrix. The stopping criterion for these results was set

such th a t each algorithm will stop once all coefficients associated with polynomial elements

beneath the diagonal of the polynomial m atrix are less than 10~ 2 in magnitude. The energy

based truncation method for non para-Hermitian matrices, detailed in Section 4.3.2, was

applied to both R(.z) and Q(z) for these results with = 10-6 .

The results from applying the PQRD-BC algorithm using both EPHRs and EPGRs are

contained in Table A .I. From these results, the EPG R routine can clearly be seen to out

perform the Householder approach and this is mainly due to the multiple application of

elementary delay matrices before the application of the Householder reflection matrix at each

iteration of each step of the algorithm. Initially, it would be expected that this approach

will be quite effective. However, once the polynomial m atrix becomes more sparse applying

multiple delays will make the algorithm computationally slow to implement with many of the

coefficients th a t are now being driven to zero already being sufficiently small, i.e. they are

less than the stopping criterion 10~ 2 in magnitude. At this stage a Givens approach would

be more appropriate to selectively zero the coefficients tha t are still larger than this value.

The EPH R approach required considerably more iterations, where each iteration will

typically be computationally more expensive than a single iteration of the EPG R variation

of the PQRD-BC algorithm. This point is also illustrated by the computational time2 taken

by the two variations of the algorithm to converge, which are also contained in Table A .l and

show the E PG R approach was over six times faster to converge for this example. The EPHR

algorithm also produces a paraunitary transform ation and an upper-triangular polynomial

m atrix of very large orders (order of Q(-z) is 716 and order of R (^) is 659), which can be seen

in Figures A .l and A .2 respectively. The orders of the polynomial matrices are considerably

larger than those obtained using the Givens rotation approach (order of Q(^) is 56 and order

of R (2) is 58). Note th a t the order of both the paraunitary transformation and the upper-

2C om putations undertaken on a Intel Centrino Duo processor with 1GB of RAM.

227

A .3 Calculation of the PQRD with Polynomial Householder Reflections

triangular polynomial matrices could be reduced further by aligning all sets of polynomial

coefficients and then truncating again, however, the resulting orders are still found to be

considerably larger (order of R(z) reduced to 481 and the order of Q(z) to 538) than those

obtained using the EPG R variation of the PQRD-BC algorithm (order of R (2) is 58 and the

order of Q(^) to 56). Finally, the Frobenius norm of all elements beneath the diagonal of the

final approximately upper-triangular m atrix obtained using the EPH R approach was found to

be 1.10 x 10“ 1, whereas this same measure calculated for the resulting approximately upper-

triangular m atrix using the EPG R approach was found to be 4.86 x 10-2 . Furthermore, if the

stopping condition is reduced so that e = 10-3 and the results are comparable to the results

from Section 6.2.2, the PQRD-BC algorithm using EPHRs requires 3231 iterations, taking

approximately four minutes to compute the decomposition. The same level of decomposition

using the E PG R variation of the algorithm required 362 iterations and took only 0.42 seconds.

To conclude, the EPG R variation of the PQRD-BC algorithm required considerably fewer

iterations, and therefore also less time, to converge to an approximately upper-triangular

polynomial m atrix than the EPH R variation of the algorithm. The resulting matrix from the

EPG R variation of the algorithm can also be considered more upper-triangular, as the F-

norm of all elements beneath the diagonal of the m atrix was considerably smaller. The order

of the two matrices obtained by the decomposition was also considerably shorter than those

generated by the EPH R modification of the PQRD-BC algorithm, which is an advantage for

the potential application of the decomposition to MIMO communication systems discussed

in Chapter 8 . Finally, the EPG R variation of the algorithm also produced more accurate

results with less relative error for this example, due to this variation of algorithm requiring

significantly fewer iterations.

228

A .3 Calculation of the PQ RD with Polynomial Householder Reflections

T h e P Q R D -B C A lg o rith m using

H ouseholder R elections G ivens R o ta tio n s

Number of iterations 658 190

Number of Sweeps 2 2

Final order of R (^) 659 58

Final order of Q(z) 716 56

Prel 2.58 x 10~ 2 9.92 x 10“ 3

Final value of g 9.81 x 10~ 3 9.67 x 10“ 3

Final value of L 1 . 1 0 x 1 0 - 1 4.86 x 10“ 2

Computational Time (Seconds) 6.63 0.18

Table A .l: Results from applying the PQRD-BC algorithm using Givens rotations and
Householder reflections to the polynomial test matrix A 2(z) € R 3x3x4.

-400 -200 -400 -200 -400 -200

-400 -200-400 -200 -400 -200

-400 -200

0.40.4

0.20.2

-400 -200 200-400 -200 200
Lag

Figure A .l: The coefficients of the polynomial elements of the paraunitary polynomial
transformation matrix Q(^) obtained using the PQRD-BC algorithm with polynomial
Householder reflections when applied to the polynomial matrix A 2(z).

229

A .4 Conclusions

0)
TJD*->
C
O)
CO
2

-400 -200 0 200

-400 -200 0 200

-400 -200

-400 -200

-400 -200

-400 -200

-400 -200

-400 -200

-400 -200

Figure A. 2: The coefficients of the polynomial elements of the upper-triangular poly
nomial matrix R(<z) obtained using the PQRD-BC algorithm with polynomial House
holder reflections when applied to the polynomial matrix A 2(z).

A .4 Conclusions

This appendix has demonstrated that Householder reflections can be used in conjunction with

elementary delay matrices to achieve a polynomial m atrix QRD. It has been shown that the

PQRD-BC algorithm, detailed in Chapter 5, can easily be modified to include Householder

reflections as an alternative to Givens rotations. However, Example A.3.2 confirms th a t this

Householder approach is not as successful as the Givens approach and will require significantly

more computational time to converge. Furthermore, the polynomial matrices produced by the

Householder approach also have significantly larger orders, which is a considerable disadvan

tage if the technique is to be used within MIMO communication systems. For this potential

application of the decomposition, the order of the polynomial upper-triangular m atrix ob

tained is of critical importance and must be no larger than a certain size for the application

to be possible. This point is discussed at length in Chapter 8 .

For a scalar m atrix decomposition, Householder reflections are extremely useful for driving

elements of a m atrix to zero on a grand scale. However, Givens rotations are also very useful,

230

A .4 Conclusions

as they provide a much better method for dealing with sparse matrices, where it only required

to selectively zero elements of a matrix. However, with polynomial matrices there is an extra

dimension to the problem, as each element is now a polynomial and therefore has an associated

set of polynomial coefficients, which must all be driven to zero to achieve the decomposition.

Unlike the scalar m atrix case, the number of Householder transformations required to achieve

this cannot be determined in advance. To effectively use polynomial Householder reflections

involves multiple applications of elementary delay matrices in succession and, from the results

presented here, this appears to cause the coefficients to disperse over an unnecessarily large

numbers of coefficient lags of the matrix. Following a small number of iterations this will

create a sparse polynomial matrix of a very large order, where the Givens method is a far

more suitable technique of achieving the decomposition. The result is an algorithm that is

computationally slow to implement due to the unnecessarily large orders of the polynomial

matrices. This is not a problem in the original PQRD-BC algorithm, which operates by

applying EPGRs.

Further research could be undertaken to investigate the concept of using EPHRs as an

alternative to EPG R s and a more comprehensive study of the different variations of the

algorithm for a range of polynomial input matrices would be beneficial. In particular, it

would be interesting to see if there is any advantage of implementing an algorithm combining

both approaches, i.e. initially implement the EPHR variation of the algorithm for the first few

iterations of each step, (whilst the matrix is still not sparse) and then implement the original

PQRD-BC algorithm using EPGRs once a significant number of the coefficients associated

with the polynomial elements in the particular column are less than the specified stopping

criterion.

231

A ppendix B

Sum m ary of the D ecom position
A lgorithm s

A sum m ary of each of the algorithms used within this thesis for calculating the PQRD and

PSVD are given here. A summary of the SBR2 algorithm has not been included, as a detailed

summary can be found in [7].

B .l Sum m ary of the P SV D Techniques

B .1.1 T he P S V D by P E V D A lgorithm

T h e P S V D by P E V D A lg o r ith m

1 : In p u t polynom ial matrix A (z) E C pxq to be factorised
2: S p ec ify th e convergence param eter e, the tru n ca tio n param eter /i and the m axi

m um num ber of ite ra tions of the algorithm M axlter
3: C a lcu la te th e m atrix A (2)A (2).
4: A pply the SBR2 algorithm to this matrix to calculate the paraunitary matrix U(,z).
5: Calculate the matrix A (z)A (z) .
6 : Apply the SBR2 algorithm to this matrix to calculate the paraunitary matrix V (z) .

7: Calculate the diagonal matrix D (z) = U (z)A (,2) y (z) .

232

B .l Summary of the PSVD Techniques

B .1 .2 T he P S V D by P Q R D A lgorithm

T h e P S V D b y P Q R D A lg o r i th m

1: I n p u t polynom ial m atrix A (2) E C pxq to be factorised
2 : S p e c ify th e convergence param eter e, th e trunca tion param eter /i and the maxi

m um num ber of iterations of the a lgorithm M axlter
3: Set U (z) = Ip and V(z) = Iq
4: Set ite r = 0 and g = 1 + e
5: w h ile ite r < M axlter and g > e d o
6 : Find indices j , k and t where j ^ k such that \a,jk(t)\ > |amnM| holds for

m = 1 , . . . , p, n = 1, . . . , <7 such that m ^ n and W E Z
7: Set g = \aj k (t)\
8 : i f g > e t h e n
9: ite r 4= ite r 4- 1

10: A pply any of the th ree a lgorithm s for calculating the PQ R D to A (z) to obtain
th e decom position U i(^) A (2:) = A (z), where A (z) is an approxim ately upper
trian g u la r polynom ial m atrix .^ /

11: Set A' (z) = A (z)
12 :

13: A pply any of the th ree a lgorithm s for calculating the PQ R D to A (z) to obtain
th e decom position V j(z) A (z) = A (z), where A (z) is an approxim ately
up p er trian g u la r polynom ial m atrix .

14: V(z) 4= V 1(z)V(z)
,n

15: Set A (z) = A (z).
16: A pply th e energy based tru n ca tio n m ethod detailed in Section 4.3 to the poly

nom ial m atrices A (2), U (z) and V (z)
17: e n d if
18: e n d w h i le
19: Set S (z) = A (2).
20: T he overall decom position perform ed is U (2)A (z)V (z) = S(^).

233

B.2 Summary of the Algorithms for Calculating the PQRD

B.2 Sum m ary of the A lgorithm s for Calculating

the PQ R D

B.2.1 T he P Q R D B y Steps A lgorithm

T h e P Q R D -B S A lg o r ith m

1 : In p u t polynom ial matrix A (z) € C pxq to be factorised
2: Specify th e convergence param eter e , th e tru n ca tio n pa ram ete r /x and the maxi

m um num ber of ite ra tions per step of the algorithm M axlter
3 : Set Q (z) = I p
4 : for j — 2 , . . . ,p do
5: for k — 1 , . . . , m in { j — l , q } do
6: Set ite r = 0 and g = 1 + e
7 : w h ile ite r < M axlte r and g > e do
8 : Find lag index t such that \ci.jk(t)\ > |«jjt(r)| holds Vr G Z
9: Set g = \aj k (t) \

10: i f g > e th e n
1 1 : iter <= iter + 1

1 2 : Calculate the rotation angles 6 , a and 0 according to equations (5.5),
(5.6) and (5.7)

1 3 : Calculate the EPG R G (z) according to Section 5.2

14:
15: Q(«) 4= G0’fe'“'e''#’t)(z)Q(2)
1 6 : Apply the energy based truncation method detailed in Section 4.3 to the

polynom ial matrices A (z) and Q(^)
1 7 : end i f
1 8 : end w h ile
1 9 : end fo r
20: end for
2 1 : If the coefficient with largest magnitude associated with any of the elements be

neath the diagonal is > e then a second sweep of the algorithm is required and so
the process is repeated from step 4.

2 2 : Once all sweeps have been completed, set R (z) = A (z). The decomposition per
formed is of the form Q (z)A (z) = R(z:).

234

B.2 Summary of the Algorithms for Calculating the PQRD

B .2 .2 T he P Q R D B y C olum ns A lgorithm

T h e P Q R D -B C A lg o r ith m

1: In p u t polynom ial m a trix A (z) € <Cpxq to be factorised
2: Specify th e convergence pa ram ete r e, th e tru n ca tio n param eter g, and the m axi

m um num ber of ite ra tio n s per step of the a lgorithm M axlter
3: Set Q (z) = Ip
4: for k = 1 , . . . , m in {p — 1, q) do
5: Set ite r = 0 and g — 1 + e
6 : w h ile ite r < M ax lte r and g > e do
7: F in d indices j and t such th a t \a,jk{t)\ > \amk(r)\ holds for m = (k + 1) , . . . , p

and V r € Z
8 : Set g — \a,jk(t)\
9: i f g > e th e n

10: ite r 4= ite r -(- 1
11: C a lcu la te th e ro ta tio n angles 6 , a and 0 according to equations (5.5), (5.6)

and (5.7)
^ (j ,k,a,0,<fr, t)

12: C alcu la te th e E P G R G (z) according to Section 5.2

13: A (z) <̂ = G (^)A (z)

14: Q (2) ^ G (^)Q (2)
15: A pply th e energy based tru n ca tio n m ethod detailed in Section 4.3 to the

polynom ial m atrices A (z) and Q (^)
16: end i f
17. end w h ile
18: end fo r
19: If th e coefficient w ith largest m agn itude associated w ith any of the elem ents be

nea th th e d iagonal is > e th en a second sweep of the a lgorithm is required and so
the process is rep ea ted from step 4.

235

B.2 Summary of the Algorithms for Calculating the PQRD

B .2 .3 T he P Q R D B y Sequential B est R otation A lgorithm

T h e P Q R D -S B R A lg o rith m

1: In p u t polynom ial m atrix A (^) E C pxq to be factorised
2: S p ec ify th e convergence param eter e, th e tru n ca tio n param eter fi and the m axi

m um num ber of ite ra tions of the algorithm M axlter
3: Set Q (z) = Ip, ite r = 0 and g — 1 + e
4: w h ile ite r < M ax lte r and g > e do
5: F in d indices j , k and t where j > k such th a t |ajfc(£)| > |a mn(r) | holds for

m — 2 , . . . , p, n — 1 , . . . , q such th a t m > n and V r E Z
6 : Set g = \a,jk(t)\
7: i f g c t h e n
8 : ite r <£= ite r -I- 1
9: C a lcu la te th e ro ta tio n angles 6 , a and 4> required to drive g to zero according

to equa tions (5.5), (5.6) and (5.7)

10: C a lcu la te th e E P G R G (z) according to Section 5.2

11: A (z) <= G (z) A (z)

12: Q (z) <= G (z) Q(z)
13: C alcu la te th e inverse tim e-shift m atrix B k̂,t\ z) according to equation 5.30.
14: A (z) ^ B ik'l\ z) A (z)
15: Q (z) <= B {k't\ z) Q (z)
16: A pply th e energy based tru n ca tio n m ethod detailed in Section 4.3 to the poly

nom ial m atrices A (z) and Q (z)
17: e n d i f
18: e n d w h i le ____________________

236

A ppendix C

C om putational C om plexity of the
Polynom ial M atrix D ecom positions

The com putational complexity of each of the polynomial m atrix decomposition algorithm

is calculated by counting the number of multiplication, division, addition and subtraction

operations throughout each iteration. The results are demonstrated in the series of tables

given below.

C .l T he SBR 2 A lgorithm

Suppose the input to the SBR2 algorithm is the polynomial m atrix R (z) € C pxpxT. The

application of the elementary delay matrices at each iteration of the algorithm will affect

the order of the m atrix. Suppose at the end of the ith iteration of the algorithm, the para-

Hermitian polynomial updated m atrix is of order Tj. W ithout any operations to

truncate the orders of the polynomial matrices within the algorithm, the value of this pa

ram eter will increase at each iteration by 2 |t|, where t defines the lag index of the dominant

coefficient which has been driven to zero at tha t iteration. However, it is not so simple when

a truncation m ethod is used.

Table C .l gives a detailed break down of the computational complexity and storage re

quirements within one iteration of the SBR2 algorithm when in its most simplistic form,

before the addition of any functions to limit the growing order of the polynomial matrices or

stopping criterion.

237

C .l The SBR2 Algorithm

C o m p le x ity Storage
O th er
Com m ents

Find dominant co
efficient P2 (7 U + 1) -

p2Ti — 1 compar
isons

Increment iteration 1 - -
Calculate the Shift
Parameter 3 - -

Apply left and right
delay to R(.z) -

Increase order of
by 2 N

-

Calculate R otation
Angles 4 -

1 trigonometric
function

Apply left rotate
and right rotations
to R (2)

4(3p(T< + l) + l) -
2 trigonometric
functions are used

Table C .l: Com putational Complexity of the SBR2 Algorithm - This does not include
com putation of the paraunitary transformation matrix H (z) or allow for any truncation
methods.

The com putational complexity demonstrated in Table C .l could be reduced further if

the para-Herm itian nature of the polynomial m atrix was exploited. For example,

the complexity for the rotations could be reduced to 3 (p (Ti + 1) + 1) + 4. The amount of

elements to be stored at each iteration could also be reduced by exploiting this property.

Rather than storing p2Ti elements, only | (Tj + p + 1) need to be stored. Accordingly the

amount of operations and comparisons required to find the dominant coefficient will also be

reduced.

C.1.1 Im plem en tin g a Truncation M eth od

It is difficult to comment on how the truncation m ethod has reduced the computational

complexity of the SBR2 algorithm as it is entirely dependent on the order of the transformed

m atrix at each iterations, which can no longer be predetermined. However, in general the

com putational complexity is significantly reduced using a truncation method, despite the fact

tha t further com putations are required to implement the methods at each iteration.

238

C.2 Algorithms for Calculating the PQRD

C.2 A lgorithm s for Calculating the PQRD

C .2.1 T he P Q R D by Steps A lgorithm

Suppose at the s ta rt of iteration i, the m atrix A M has dimenions p x q and is of order T\.

Furtherm ore, suppose tha t the dominant coefficient a t this iterations is found to be aj^ t) .

The com putational compexity, of the first algorithm, over this iteration is summarised below

in Table C .2 .1. This table does not include any computations for updating the paraunitary

m atrix Q M , as this is need not be calculated within the main iterative routine of the algo

rithm. It has been assumed that the zerolag plane has been specified prior to beginning each

iteration.

C o m p le x ity Storage
O th e r
Com m ents

C alcu la ting th e in
dices 1 - 1 com parison

F ind d o m in an t
coefficient in (and
find lag index)
—7 fc(^)

Tj 4-1 “ T — 1 comparisons

Increm ent ite ra tio n 1 - -
A pply Left D elay to
A M

“ Increase order of

A M by 1*1
-

K eeping tra c k of
the zerolag p lane of
A M

1 - -

C alcu la te R o ta tio n
Angles

2
- 1 trigonom etric

function
A pply left ro ta te to
A(*)

3q (Xi 4- |t |) 4- 4 - 2 trig functions

T ru n ca tin g A M pT\ (2q - 1) +
0cL + cr) (2pq — p) 4- 4

Reduces th e or
der of A M ^
it is unnecessar
ily large

Table C .2 : T able dem o n stra tin g the com pu ta tiona l com plexity of the PQ RD -BS algo
rith m for ca lcu la ting th e upper-triangu lar m a trix R (z) and com m ents on the storage
requ irem en ts of th is algorithm .

239

C.2 Algorithms for Calculating the PQRD

C .2 .2 T he P Q R D by C olum ns A lgorithm

Again assume at the start of iteration i, the matrix A (z) has dimenions p x q and is of order

Xi, with the dominant coefficient at this iterations found to be djk(t) . The computational

complexity over this iteration for updating the polynomial matrices A(z) can be seen in Table

C.2.2.

C o m p le x ity S to r a g e
O th er
C o m m en ts

Calculate indices 1 - -
Find dom inant co
efficient (and find
indices) in a i k (z)

2pTi + 1 -
p q T — 1 compar
isons

Increment iteration 1 - -
Apply Left Delay to
A M

-
Increase order of
A M by 1*1

-

Keeping track of
the zerolag plane of
A(*)

1 - -

Calculate R otation
Angles 2 -

1 trigonometric
function

Apply left rotate to
A M

3? (71 + | *|)+ 4 -
2 trigonometric
functions

Truncating A (z) p T i (2q - 1) +
(c l + c R) (2 p q - p) + 4

Reduces the or
der of A M ^
it is unnecessar
ily large

Table C.3: Table dem onstrating the computational complexity of this algorithm for cal
culating the upper-triangular matrix R M and comments on the storage requirements
of the algorithm.

240

C.2 Algorithms for Calculating the PQRD

C .2 .3 T he P Q R D by SB R A lgorithm

Assume again th a t the polynomial matrices A(,z) at the start of iteration i is of order T\.

Furthermore, assume that the dominant coefficient at this iteration is found to be a,jk(t). The

com putational complexity over a single iteration of the PQRD-SBR algorithm can be found

in Table C.4.

C o m p le x ity Storage
O th e r
Com m ents

Find d o m inan t co
efficient (and find
indices)

2 p q T + 1 -
pq T — 1 com par
isons

Increm ent ite ra tio n 1 - -
A pply Left D elay to
A W

“ Increase order of
A (*) by \t\

-

K eeping tra c k of
the zerolag p lane of
A W

1 - -

C alcu late R o ta tio n
Angles 2 -

1 trigonom etric
function

A pply left ro ta te to
AW

{T + \t\) + 4 -
2 trigonom etric
functions

A pply undelay
1

O rder again in
creases by \t\

-

T runcating A { z) p T a (2q — 1) +
(■cL + cR) (2pq — p) + 4

Reduces th e or
der of A (z) if
it is unnecessar
ily large

“

Table C.4: Table d em o n stra tin g th e com puta tional com plexity of th is algorithm for cal
cu lating th e u p p e r-trian g u la r m atrix R (^) and com m ents on th e storage requirem ents
of the a lgo rithm .

241

A ppendix D

Illustrations for Chapter 8

D .l Polynom ial Channel M atrices

a)TJ3
CO)
CO

0.2 0.2 1 a 0.2

0.1 f . 0.1
T

. T

1 0.1

0 I 0 1 n ?

0.2

0.l'
0

(

0.2

0.1

0

0.2i
0.1

0

I__L

i _ L

0 4
0.1

0

0.2

0.1

0.

0.2

0.1f

0

1 _ L

Lag

0.2

0.1

0*

0.2

O.V
0.0

0.2

0 .1*

00
l A

Figure D .l : A stem plo t represen tation of th e polynom ial channel m atrix C 1 (z).

242

M
ag

ni
tu

de

D .l Polynomial Channel Matrices

0.1

o.

0.1

0.

0.1 0.1

11 0.1 0 . 1'

4 0 4 0 4 0 4 0

0.1 a J l l i JL
0.1

Li
0.1

? ?

0 . 1+

0

2 4 0 2 4 0 2 4 0 2 4 ”0 2 4
©

0.1i ■ i rl t 1 1 n i ! 1
4 °0

0.1

4 0 4 °0

<>

, 9 T
0.1

JL
4 0

o.-i
0

0.1

0

11 0 . 1<»

4 °0
11 0 . 1° 0.1"

4 0 4 °0
1 1

0.1 ±1
4 0

m 0.1

JL i JL
2 4 0 2 4 0 2 4 0 2 4

Lag

Figure D.2: A stem plo t represen ta tion of th e polynom ial channel m atrix C 2 (z).

243

D.2 PQRD

D .2 PQ R D

D .2.1 C hannel M atrix 1

Lag

Figure D.3: T he coefficients of th e polynom ial elem ents of the approxim ately upper-
trian g u la r po lynom ial m a trix R (z) ob tained by applying th e PQ R D -B C algorithm to
the polynom ial channel m a trix C ^ z) .

.1 u
3 0 - 2 0 - 1 0 0 10

J

«S 0 1 ro 0 1 o 0 10

-30 - 2 0 - 1 0 0 10

i

?

o02
I

10CM1
I

O
I

y?

2

3 0 - 2 0 - 1 0 0 1C)

-30 - 2 0 - 1 0 0 10

10 - 2 0 - 1 0 0 10 - 3 0 - 2 0 - 1 0 0 10 - 3 0 -2 0 - 1 0 0 10 - 3 0 - 2 0 - 1 0 0 10

-2 0 -1 0 0 10

i n
3 0 -2 0 -1 0 0 10

t

2 j

3 0 - 2 0 - 1 0

b

0 10

2 i

-30 - 2 0 -1 0 0 10

— -sJuiL.—
- 3 0 - 2 0 - 1 0 0 10 - 3 0 - 2 0 - 1 0 0 10 - 3 0 - 2 0 -1 0 0 10

Lag

Figure D .4: T he coefficients of th e polynom ial elem ents of th e p a rau n ita ry polynom ial
m atrix Q (z) o b ta in ed by applying the PQ R D -B C algorithm to th e polynom ial channel
m atrix Cj (z) .

244

D.2 PQRD

D .2 .2 C hannel M atrix 2

Lag

Figure D.5: T he coefficients of the polynom ial elem ents of th e approxim ately upper-
triangu lar polynom ial m atrix R (^) ob tained by applying th e PQ R D -B C algorithm to
the polynom ial channel m atrix C 2 (z).

Lag

Figure D .6 : The coefficients of th e polynom ial elem ents of th e p a ra u n ita ry polynom ial
m atrix Q (^) ob tained by apply ing the P Q R D -B C algorithm to th e polynom ial channel
m atrix C 2 (z).

245

D.3 PSVD

D .3 P SV D

D .3.1 C hannel M atrix 1

- o

O)

Lag

Figure D.7: T he coefficients of the polynom ial elem ents of th e approxim ately diagonal
polynom ial m a tr ix S (z) ob ta ined by applying the PSV D by PQ R D -B C algorithm to
the polynom ial channel m a trix C ^ z) .

0 .4 [p 0 .41 ' ' “ I 0 .4 (' ' 0 .4

Lag

Figure D .8 : T he coefficients of the polynom ial elem ents of the p a raun ita ry polyno
m ial m a tr ix U(<2) ob ta in ed by applying th e PSV D by PQ R D -B C algorithm to the
polynom ial channel m a tr ix C ^) .

246

D.3 PSVD

<X>"O
=3

4

" - 2 0 -1 0
.........

0 10 20

4

______J M
" -2 0 -1 0 0 10 20

4

-20 -1 0 0 10 20 -20 -10 0 10 20

-20 -10 0 10 20 -2 0 -1 0 0 10 20

-2 0 -1 0 0 10 20

Lag
-20 -10 0 10 20

Figure D.9: T he coefficients of the polynom ial elem ents of the p a rau n ita ry polyno
m ial m atrix V (z) obtained by applying the PSV D by PQ R D -B C algorithm to the
polynom ial channel m atrix C ^ z) .

D .3 .2 Channel M atrix 2

Lag

Figure D.10: T he coefficients of the polynom ial elem ents of th e approx im ate ly diagonal
polynom ial m atrix S (z) ob tained by applying th e PSV D by P Q R D -B C algorithm to
the polynom ial channel m atrix C 2 (z).

247

D.3 PSVD

-4 0 - 2 0 0 20 - 4 0 -2 0 0 20 -4 0 - 2 0 0 20 - 4 0 - 2 0 0 2 0 - 4 0 - 2 0 0 20

-4 0 -2 0 0 20 - 4 0 -2 0 0 20 -4 0 -2 0 0 2 0 - 4 0 - 2 0 0 20 - 4 0 - 2 0 0 20

-4 0 - 2 0 0 20 - 4 0 -2 0 0 20 - 4 0 -2 0 0 20 -4 0 - 2 0 0 2 0 - 4 0 - 2 0 0 20

-4 0 - 2 0 0 20 - 4 0 -2 0 0 20 -4 0 -2 0 0 2 0 - 4 0 - 2 0 0 20 - 4 0 - 2 0 0 20

-4 0 - 2 0 0 20 - 4 0 -2 0 0 20 -4 0 -2 0 0 20 - 4 0 - 2 0 0 2 0 - 4 0 - 2 0 0 20

Figure D. l l : T he coefficients of the polynom ial elem ents of the p a rau n ita ry polyno
m ial m atrix U(;z) obtained by applying the PSV D by P Q R D -B C algorithm to the
polynom ial channel m atrix 0 2{z).

I*.
-2 0 0 20 -2 0 0 20 -2 0 0 20 -2 0 0 20 -2 0 0 20

Lag

Figure D.12: T he coefficients of the polynom ial elem ents of th e p a ra u n ita ry polyno
mial m atrix "V(z) ob tained by applying the PSV D by P Q R D -B C algorithm to the
polynom ial channel m atrix 0 2(z).

