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3.2 Spectrograms of EMRI “K” (upper panel) and “N” (lower panel) as they 
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harmonics of the fundamental gravitational wave frequency is a function 
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C onventions

Masses are quoted in units of solar mass

1M© = 1.98892 x 1030kg ( 1)

Distances are quoted in units of parsecs

1 pc = 3.0856775807 x 1016m (2)
The values used here are the same as those used within the LIGO Scientific Collaboration 
Algorithm Library (LAL) and are taken from Barnett et al. (1996) [21].

In mathematical formulae bold face will denote a vector, e.g. Si and overhats to

All angles will be in radians.
In general Greek indices sum over (0. ..  3) and Latin indices sum over (1...  3).
We will denote the inner product as (g,h) and will use ||#|| to mean (g,g).
There are two possible sign conventions used to define the Fourier transform. Fol

lowing the conventions used in LAL we shall define the Fourier transform g(t) of a time 
domain function g(t) by

represent unit vectors, e.g. Si.

(3)

and the inverse Fourier transform by

(4)

Note that in some of the literature referenced in this thesis the other convention is used. 
We will use geometric units (i.e., c = G = 1) throughout unless we specify otherwise.



Abstract

In this thesis we consider the data analysis problem of detecting gravitational waves 
emitted by inspiraling binary systems. Detection of gravitational waves will open a new 
window on the Universe enabling direct detection of systems such as binary black holes 
for the first time. In the first Chapter we show how gravitational waves are derived 
from Einstein’s General theory of Relativity and discuss the emission of gravitational 
waves from inspiraling binaries and how this radiation may be detected using laser 
interferometers. Around two thirds of stars inhabit binary systems. As they orbit each 
other they will emit both energy and angular momentum in the form of gravitational 
waves which will inevitably lead to their inspiral and eventual merger. To date, searches 
for gravitational waves emitted during the inspiral of binary systems have concentrated 
on systems with non-spinning components. In Chapter 2 we detail the first dedicated 
search for binaries consisting of spinning stellar mass compact objects. We analysed 
788 hours of data collected during the third science run (S3) of the LIGO detectors, 
no detection of gravitational waves was made and we set an upper limit on the rate of 
coalescences of stellar mass binaries. The inspiral of stellar mass compact objects into 
super massive black holes will radiate gravitational waves at frequencies detectable by 
the planned space-based LISA mission. In Chapter 3 we describe the development and 
testing of a computationally cheap method to detect the loudest few extreme mass ratio 
inspiral events that LISA will be sensitive to.



C hapter 1

Introduction

Gravitational waves are an inescapable consequence of any theory of gravity that is 

consistent with Einstein’s Special Theory of Relativity (1905), in particular its condition 

that information cannot propagate at speeds greater than the speed of light in vacuum, 

c. Following Einstein’s General Theory of Relativity (1915) we identify gravity as a 

curvature of spacetime and gravitational waves to be caused by the acceleration of 

matter. Gravitational waves carry away both energy and momentum from a radiating 

source and propagate at the speed of light.

The weak interaction between gravity and matter make the detection of gravitational 

waves an exciting but challenging prospect. On one hand, their weak interaction with 

matter means that gravitational waves will not suffer the scattering and absorption 

which impedes the propagation of electromagnetic radiation through the interstellar 

medium. On the other hand, only in the last few decades has technology advanced to 

a point where it has been possible to construct detectors with good enough sensitivity 

to observe gravitational waves. To date, no direct detection of gravitational waves has 

been made.

The detection of gravitational waves would open a new window on the Universe 

enabling direct observation for the first time of sources including the inspiral and merger 

of binary black hole systems as well as providing deeper insight into known sources such 

as x-ray binaries and gamma-ray bursts. It should not be forgotten that detection of 

gravitational waves could provide us with observations of previously unimagined sources.
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The first indirect evidence for gravitational waves was identified by Hulse and Taylor 

in 1974 with the observation of a pulsar, now commonly referred to as the Hulse-Taylor 

pulsar [83]. Through careful and continuous measurement of the variation in expected 

arrival times of the emitted pulses, Hulse and Taylor concluded that the pulsar was in 

orbit around a common centre of mass with another, as then unobserved, star which 

was later inferred to be a neutron star from its mass. The system as a whole is known 

as the Hulse-Taylor binary pulsar or PSR 1913+16. In 1983, Taylor and collaborators 

announced a decrease in the inferred orbital period of PSR 1913+16 of 76 //syr-1 [145]. 

With no other explanation it was concluded that the decay of PSR 1913+16’s orbit was 

due to the emission of gravitational waves. The measured rate of change of the orbital 

period agrees with the prediction of General Relativity to within around 0.2% [146]. 

In recognition of their detection of PSR 1913+16, Hulse and Taylor were awarded the 

Nobel Prize for Physics in 1993. To date, a total of seven binary neutron star systems 

have been observed electromagnetically [9] including the first observed double pulsar 

system, J0737-3039 by Burgay et al. (2003) [42]. As well as providing indirect evidence 

for gravitational waves these highly relativistic systems can be used to test General 

Relativity (see, for example, Will [151]).

In this Chapter we will begin with the Einstein equations and show that gravitational 

waves propagate in flat spacetime as plane waves at the speed of light and have two 

independent polarizations (Sec. 1.1). In Sec. 1.2 we identify binaries consisting of massive 

compact objects, such as neutron stars or black holes, as sources of gravitational waves 

that should be detectable by current and planned gravitational wave detectors. In 

Sec. 1.3 we discuss gravitational wave detectors and then move onto describing the 

optimal method for detecting a signal with a known form buried in a noisy data stream.

For background reading and guidance with derivations regarding General Relativity 

I have made use of the following material: Hartle [80], Schutz, [127], Misner, Thorne and 

Wheeler [102], Hakim [78], d’Inverno [56] and lecture notes by Prof. B. Sathyaprakash. 

For further reading on data analysis I have made use of: Whalen [149], Wainstein and 

Zubakov [144] Finn (1992) [62] and Finn and Chernoff (1993) [63].
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1.1 Plane gravitational waves

In this Section we will show that a solution to the linearized Einstein field equations in 

vacuum are plane waves propagating at the speed of light. Furthermore, we will show 

that by working in a co-ordinate system that satisfies some particular gauge conditions 

the waves can be written in terms of two independent polarization states.

1.1.1 T he vacuum  E instein  equations

We begin by writing the Einstein equations

which relates a measure of the local spacetime curvature Ga /3 with the distribution of 

energy-momentum Ta/g. Since both Gap and Ta@ are symmetric there are 10 independent 

equations encoded in Eq. (1.1). These equations are coupled, non-linear partial differ

ential equations. Consequently, a general solution to the Einstein equations has not yet 

been derived. Instead we find solutions for the equation under particular conditions.

The Einstein curvature tensor is defined as

where R ap and R  are the Ricci curvature tensor and scalar (defined in the next subsec

tion) and gaj3 is the metric which determines the separation between two local events in 

spacetime. In a vacuum we see that TQyg =  0 which in turn leads to Gap = 0.

1.1.2 Linearizing th e  E instein equations

The Einstein equations are non-linear. If, however, we consider a region of spacetime 

whose geometry is almost flat we can write a linearized approximation to the Einstein 

equations for which solutions can be found. In this Section we will linearize the vacuum 

Einstein equations.

Gap = 87tTq/3 ( 1. 1)

^a/3 — -̂ a/3 ( 1.2 )
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We write the interval between 2 events in spacetime in (£, x , y, z ) co-ordinates as

ds2 =  gap{x)dxadx^ (1.3)

where <7 is the metric, a position dependent second rank tensor which can be represented 

by a 4 x 4 symmetric matrix. For flat spacetime we have gap equals the Minkowski metric 

r}ap defined as diag(—1 , 1 , 1 , 1).

When the spacetime is close to being flat we can write the metric as

9 ap{^) = Va/3 "I" hap{x) (1-4)

where h  are small perturbations to the flat metric satisfying \hap\ <C 1. We can write 

the Ricci curvature tensor in terms of the Christoffel symbols T as

Rap = ^ap,v — ^au,P + ~  ^aS^pu U-5)

where we abbreviated notation for the partial derivative such that d f(x f3 )/dxa = f p a. 

The Christoffel symbols can we written in terms of the metric

r aP =  2  ̂ i.95a,P "H 96P,a 9ap,s)- (E6)

Substituting for gap into Eq. (1 .6 ), neglecting terms beyond first order in hap and 

remembering that rjap is a constant we find

K p  =  l v ‘/S(hsa.p +  %,<, -  hap,s). (1.7)

Substituting back into Eq. (1.5) for the Ricci curvature tensor and again neglecting 

terms of hap beyond first order we find

Rocp = 2^ 5p,au haP,5v ^5u,aP “I" hav,8p) (E8)

=  \ ( h p , / - h ^ / - h ^  + halif )  (1.9)

where we raise the indices of hap using rjaP. We are able approximate ga(3 — rf1̂  when



raising indices of hap since the use of the full metric as given in Eq. (1.4) would involve 

terms second order in terms of hap. We have also defined the trace of hap to be h = h,/iM. 

By contracting once more we can find the Ricci scalar

R = nagRaa = -  hjt). (l.io)

Substituting the expressions for the Ricci curvature tensor Rap and Ricci scalar R  into 

Eq. (1 .2 ) for the Einstein tensor we find

We can abbreviate this expression by introducing the ‘trace reverse’ of hap which is 

defined as

ha (3 = haf3 2 Vafih- (1.12)

It is called the ‘trace reverse’ because h = —h. We can then rewrite our expression for 

the Einstein tensor as

vr - K /  - wo (M3)
We will now go on to show that under a special class of co-ordinate transformations we 

are able to simplify this equation further.

1.1.3 G auge transform ations

Through particular small co-ordinate transformations we are able to find a co-ordinate 

system which

• preserves the form of our nearly-flat metric ga/3 (x ) — lap + hap{x),

• keeps the metric perturbations small \hap\ 1 ,

• leaves 77 = diag(—1 , 1 , 1 , 1 ) and

• allows us to modify (and simplify) the functional form of hap.



We will now derive the form of these co-ordinate transformations. We will consider 

a co-ordinate transformation with the standard form

x ,a = xa + £a(x) (1.14)

where £ are of similarly small size as the metric perturbation hap(x). The metric will 

transform as

s U * ')  =  | ( L15)

Considering first order derivatives of our co-ordinates we find

dxa d(x'a — £a)
dx'P dx'P (1.16)

dfa
= (L17>

where in first order equations of £ we can interchange £a (x) and £Q(x'). Using this

relationship we find the metric transformation becomes

=  ( « - 1 £ )  ( 4  -  ! & ) * * < * )  ( i - « )

= (1.19)

=  ffo^(x ) _  +  ^8gpj^9*^(*)- (I-20)

where we can neglect terms greater than first order in £“ or of £a/iQ/3- Substituting in 

Eq. (1.4) for the metric we obtain

+  (1.21)

d£ 6 d£v
= hal3 (x) -  VaS-g^p -  (I-22)

.  ,  > dt* BZe-  K p(x) ^  dxla (1.23)

Note that we assume that rjap is unchanged as we transform between co-ordinate sys

tems. We have therefore shown that we can apply co-ordinate transforms Eq. (1.14) 

whilst maintaining the linearized form of the metric Eq. (1.4) and giving rise to metric
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perturbations given by

K*p(x ') — hap(x) ^ J a . (1-24)

Transformations of this kind are known as gauge transformations. We will now find the 

corresponding co-ordinate transformation in terms of the ‘trace reverse’ of hap. Prom 

Eq. (1.24) we can show that the trace of hap has gauge transformations

h! = h -  2*%. (1.25)

Substituting in Eqs. (1.24) and (1.25) into the right hand side of our equation for the 

‘trace reverse’ of hap Eq. (1.12) we find that

ha/3 = ha/3 ~ £a,/3 £(3,a + (1.26)

1.1.4 A pplying th e  Lorentz gauge condition

If we make a co-ordinate transformation such that

/>“%  = 0 i.e., (1.27)

we can re-write our previous expression for the Einstein tensor as

Gap = ~ 2 l̂a(3, ^  = ~ l j ^ lot(3 = 0. (1-28)

Equation (1.27) is called the Lorentz gauge condition due to its similarity with the 

Lorentz condition used within electromagnetism. Recognising that the linearized Ein

stein equations are wave equations suggests solutions of the form

ha0 (x) = AaPei k x  (1.29)

where k is a four-vector and must be null (k • k = 0) in order to satisfy the linearized 

vacuum Einstein equations Eq. (1.28). The speed of the waves propagation is given by
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|fco|/|fc| where k  is the spatial components of k: k \ ,k 2 and k$. For a null vector we have

|fc0| =  \k\ which leads to a wave speed = 1 which is the speed of light. This means that 

in vacuum flat spacetime, small perturbations of the metric propagate as plane waves 

at the speed of light. These propagations of perturbations of the metric are what we 

call gravitational waves.

Using our equations for the Einstein tensor in vacuum Eq. (1.28) and the Lorentz 

gauge condition Eq. (1.27) with our plane wave solution for hap, it is simple to find the 

following relations

1.1.5 A pp lying th e  Transverse-Traceless gauge conditions

In this Section we show that by applying two more gauge conditions , we can write the 

metric perturbation hap using only two independent components.

We are able to perform further gauge transformations as long as we ensure that the 

Lorentz gauge condition is still satisfied. By substituting our gauge transformation for 

hap Eq. (1.26) into the Lorentz gauge condition Eq. (1.27) we find:

The third and fourth terms on the right hand side cancel and we know from the Lorentz

k2 A a p = 0 (1.30)

0 (1.31)

which we shall use later when finding the number of independent components of hap.

(1.34)

(1.32)

(1.33)

gauge condition that ha^ p =  0 which leaves us with

o =  C ’Pp = (1.35)

We can see immediately that there will be wavelike solutions for our co-ordinate



transformation £ as we did for hap. We can therefore write solutions for the co-ordinate 

transformation as

£a (&) = iBael^'x . (1.36)

We find that by choosing particular values of Ba we can choose a co-ordinate system for 

which hap has a very simple form. Substituting the wave solutions for hap Eq. (1.29) 

and Eq. (1.36) into Eq. (1.26) we find

A'ap = Aap + kaB 0  + kpBa — rjapB^kfj,. (E37)

It is clear that by judicious choice of Ba (and therefore £a ) we can impose further 

conditions on Aa (and therefore ha0). We will now show that by using our gauge trans

formations it is possible to describe the plane wave solution of the Einstein equations in 

vacuum using only two independent components.

We will consider a wave travelling in the 2 -direction. We are always able to perform 

a co-ordinate transformation to make this true so the solutions we obtain will be generic. 

Remembering that k  is null we will have

ka = (k,0,0,k) (1.38)

ka = (-fc,0,0,fc) (1.39)

From the relation in Eq. (1.31) we can now show that

Am o =  Am 3 . (1-40)

Making use of this and the fact that Aa /3 is symmetric we can write the components of

9



Aap as follows

Aoo = Aoo + kBo + kB$ (1.41)

A[)l =  Aoi + kBi (1.42)

^02 = A02 + kB 2 (1.43)

A'n = A n  + kBo — kBz (1.44)

^12 = M 2 (1.45)

^22 = ^ 2 2  + kBo — kB$. (1.46)

By choosing the following values for Ba

Bi = 

B 2 =

Aqi
k

Aq2
k

(1.47)

(1.48)

(1.49)

we can set A'Ql =  A '02 = 0. By choosing

Bo = - — (2Aoo + A n  + A22) 

B 3 =  ^ ( —2Aqo +  A n  +  A 22)

we can further set A'0q =  0 and A'n + A 22 = 0. We can then write Aap as

/ o n  n  n  \

A T T
at (3

V

0 0 0 0

0 All A12 0

0 A12 -An 0

0 0 0 0

(1.50)

(1.51)

(1.52)

The superscript T T  refers to the fact that our choice of co-ordinate transformation 

(made here by specifying the components of Ba) lead to a metric perturbation hap 

Eq. (1.29) which is traceless and transverse.

We will briefly review the various steps we have used to arrive at our traceless
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transverse form of the metric perturbation keeping track of the number of independent 

components. The original (small) metric perturbation hQp has 16 components, due to 

symmetry only 10 of these are independent. The Lorentz gauge condition Eq. (1.27) 

represents 4 independent equations which reduces the number of independent compo

nents of hap to 6. Similarly our (4) choices of Ba in the wave equation for £a further 

reduce the number of independent parameters of hap to 2.

We write the trace reverse metric in the TT gauge as

T T  _  
n a(3 —

( 0 0 0 0  ^

0 A+ A x 0

0 A x - A + 0

v ° 0 0 ° J

ei k x  (1.53)

where we have renamed the 2 independent components A+ and A x • We find that these 

two components represent two independent polarizations of the gravitational waveform

which we call + (“plus”) and x (“cross”). The reasons for these names will become

clear when we discuss the effect of a gravitational wave on a ring of freely falling test 

masses (see Figs. 1.2 and 1.3).

Having found that perturbations of the space-time metric can travel as gravitational 

waves through vacuum at the speed of light we will now move on to discuss sources of 

gravitational waves and methods by which we should be able to detect them.

1.2 Sources of gravitational waves

In the previous Section we found a linearized approximation to the Einstein equations 

in vacuum:

- i n f t o„ =  0. (1.54)

We will consider the linearized approximation to the Einstein equations with a source:

^ h ap = —167rTap (1.55)
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where Ta/g is the energy-momentnm-stress tensor (which we will call the energy-momentum 

tensor for brevity and is also sometimes call the stress-energy tensor). Note that in 

nonrlinearized gravity the Einstein equations with a source (Eq. (1.55)) would require 

another term rQ/3 on the right hand side to represent the gravitational (rather than 

matter) sources of gravitational curvature and waves.

In general, wave equations have two solutions of the form f ( t  — r) and f ( t  + r) where 

r = |cc|. The first solution describes a wave propagating outward from the source after 

the event which generated it. We call this first term the retarded or causal part of the 

solution. The second solution will describe a wave propagating inward onto the source 

before the event at the source we are considering. We call this second term the advanced 

part of the solution. We will only consider the causal part of the wave equation’s solution 

and will neglect the advanced part.

We can find a solution to the linearized approximation to the Einstein equations 

Eq. (1.55) using Green’s function for the d’Alembertian [36] which will yield

M * .* )  =  4  (1-56)

where x ' describes the spatial positions of mass elements (i.e., 6-function sources) within 

the source and x  is the spatial position of the observer. We have neglected the advanced 

part of the solution as previously discussed. Assuming that our source is concentrated 

at the origin and assuming that the observers distance D = \x\ from the source is large 

i.e., |x| |a:'| we can make the approximation that D  ~  \x — x'\. The region far from

the source where this approximation can be made is called the far zone (sometimes also

called the radiation or wave zone). Making this approximation yields

h«p(t,x) = ^ f T afi( t - D , ^ ) ^ x ' .  (1.57)

We only need to consider the spatial components of the metric perturbation hij since 

the TT gauge transformation will set = 0 (see Sec. 1.1.5). Our metric perturbation 

must also satisfy the Lorentz gauge condition Eq. (1.27). We find that the Lorentz gauge 

condition will be obeyed automatically as a consequence of the conservation of energy
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and momentum in flat space which can be written in terms of the energy-momentum 

tensor as T af3̂  = 0 [80]. This conservation law leads to the identities:

rp tt     rp tk (1.58)

rp k t     rpk l
,t ~  ~ 1 ,1 (1.59)

which can be used to show that:

T t t  __ rpkl
,t t  ~  1 ,lk

it t  __ rpkl (1.60)

where superscript t denotes the zeroth, temporal part of a tensor. It is then possible to 

show that (see Sec. 5.1.1)

/ ™ 3x = i ^ / x v W x .x = — (1.61)

We consider a source with only small velocities. This assumption called the slow 

motion approximation will mean that the frequency Q of any oscillations will be small 

and therefore that the wavelength A of the gravitational waves emitted will be large 

compared to the source, A »  Source• Consequently, the slow motion approximation

motion approximation we find the energy-momentum tensor is dominated by the T u 

component which is itself dominated by the rest mass density p. This property of the 

slow motion approximation can be observed simply by considering a pressureless perfect 

fluid whose energy-momentum tensor is given by Tap = puaup, where p is the rest mass 

density of some matter and ua is its four-velocity. Under the slow motion approximation 

we are able to neglect the three spatial terms of our four-velocity since Ui <C l .

We define mass-quadrupole moment (also known as the second mass moment) as

is sometimes equivalently made as the long wavelength approximation. Under the slow

(1.62)
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Using this definition we can rewrite Eq. (1.57) for the metric perturbation as

hij{t,x) = ~ D) (1.63)

where an over dot represents derivation with respect to time. We have now derived an 

expression relating the generation of metric perturbations to the motion of masses. In 

the derivation of this expression we have made the following assumptions: i) in order 

to linearize gravity we have assumed that the spacetime metric is almost flat and the 

perturbations to the metric are small, ii) in order to simplify our wave equation solution 

(Eq. (1.56)) we have assumed that the distance from the observer to the source is much 

larger than the size of the source and iii) in order to simplify the derivation of the metric 

perturbation in terms of the mass-quadrupole moment we have assumed that the source 

has small velocities.

Considering the relationship between the quadrupole moment and the metric per

turbation Eq. (1.63) we will consider what might constitute a source of gravitational 

waves. The source must have non-stationary (accelerating) distributions of mass or 

time-derivatives of Eq. (1.63) ensure no gravitational waves will be generated. Further

more, a spinning source that has an axisymmetric distribution of mass about its spin 

axis will not emit gravitational waves. Although the source is non-stationary its mass 

distribution is stationary in time. We will see shortly that the weak coupling of gravi

tational waves to matter means that we will require very massive, astrophysical events 

in order to generate gravitational waves with large enough amplitude to be detected by 

current and planned detectors. Sources that will emit detectable gravitational waves 

include binary star systems, non-axisymmetric explosions of stars and spinning pulsars 

with “mountains” on their surface.

1.2.1 G ravitational wave am plitude

From dimensional analysis (see e.g. Hartle [80] Chapter 23) we can estimate the ampli

tude of gravitational waves. Considering a source with characteristic mass M, period of 

oscillation P  and size R  we approximate p i  ~  M R 2 / P 2. For an observer at a distance
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r from the source we then have

,  , ' M \  ( M \ V 3

h ~  ( — I I - p )  ' ( Jr

Assuming some characteristic values we find

\ lOMQJ \  1 hour /  \ lM p c ) (1.65)

We will find that metric perturbations of size ~  10-21 — 10-22 will cause strains that 

are just about measurable using current laser-interferometric detectors. We will discuss 

these more in Sec. 1.3.

1.2.2 G ravitational waves em itted by a binary system

We will now consider the gravitational waves emitted by a binary system with bodies 

of mass m\ and m2 orbiting their common centre of mass (which we will take as our 

origin) with position vectors x\  and X2 . We will evaluate the mass-quadrupole moment 

p i  (Eq. (1.62)) for the binary by considering the equivalent one body problem. The 

equivalent one body problem consists of a body with mass equal to the reduced mass 11 = 

m \m 2 /{m\  + m2) of the binary orbiting the centre of mass at position r = x  1 —X2 [95]. 

Figure 1.1 shows this binary and the equivalent one body system. By approximating the 

binary’s components as (6 —function) point masses we can simplify the mass-quadrupole 

moment and write it as p i  = firlr i .

For our binary we will have

rx(t) = rcos(Qt) (1.66)

ry(t) = rsin(Qt) (1-67)

rz(t) = 0 (1.68)

where r = |r|. Taking the time derivative of the mass-quadrupole Pi  twice and using
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Figure 1.1: The left plot shows a binary with masses m\  and m 2 at positions X\ and 
X 2 measured from their common centre of mass which we use as the origin. The bodies 
orbit their common centre of mass with orbital frequency Cl. The right hand plots shows 
the equivalent system where we only consider the motion of a single body with mass 
equal to the reduced mass /i =  m \ m 2 / (m i  +  m 2 ) of the binary which orbits the centre 
of mass at position r  = X\ — X2 [95].

the centripetal acceleration r* =  — ( |r2| / | r | ) f l we find

(1.69)

Taking the time derivatives of r:

f x (t) =  —Clrsm(Clt) (1.70)

ry(t) = Clrcos(Clt) (1.71)

f z (t) 0. (1.72)

we can then write the metric perturbation as

 ̂ cos[2S7(t — D)\ sin[20(t — D)\ 0 ^

(1.73)

\ 0 0

We will briefly discuss the properties of gravitational waves from binary systems.



Intuitively we can imagine that as system loses energy to gravitational waves its orbit 

will shrink. This is referred to as the inspiral of a binary. Note that in Newtonian 

gravity, no gravitational waves would be emitted, the system would not lose energy and 

the inspiral would not occur. Prom Kepler’s third law, the shrinkage of the binaries orbit 

will cause the period to decrease. Prom Eq. (1.64) we see that as the period decreases the 

gravitational wave amplitude will increase. Prom Eq. (1.73) we see that the gravitational 

wave frequency is proportional (twice) to the frequency of sources orbit 1. Therefore, as 

period decreases the orbital frequency and therefore gravitational wave frequency will 

also increase. Consequently gravitational waves emitted during the inspiral of a binary 

system is described as chirp since they increase in both amplitude and frequency with 

time.

1.3 D etection of gravitational waves

We consider freely-falling test masses (i.e., with no force applied). The co-ordinate 

position of the freely-falling test masses will remain constant as a gravitational wave 

passes. However, since the metric changes we can observe a change in the proper distance 

between two freely falling test masses. Initially we consider only the + polarization

components of the metric perturbation in Eq. (1.53). Remembering the form of the

metric with only small perturbations gap(x) = rjap + hap(x) we can write the proper 

separation ds in terms of the co-ordinate separation dt, d x , dy, dz between two events as

ds2 = gap(x)dxadxP (1-74)

= —dt2 + [1 + hxx)dx2 + [1 -  hxx\dy2 + dz2 (1-75)

for a plus polarized gravitational wave propagating in the z-direction.

Now we consider a freely-falling test mass initially at a co-ordinate distance Tx(co_ord) 

along the a>axis from the origin. We evaluate the proper distance between them in the

1N o t e  t h a t  t h i s  is  a n  a p p r o x im a t io n .  In  r e a l ity  t h e  g r a v it a t io n a l  w a v e  w il l  c o n t a in  m a n y  h a r m o n ic s  
o f  t h e  o r b ita l  fr e q u e n c y . In  n e g le c t in g  t h e  h ig h e r  h a r m o n ic s  w e  c o n s id e r  o n ly  t h e  restricted  w a v e fo r m .
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x-direction (at time t at 2 =  0):

/* (co ord)
Lx(t) = / [1 + hxx(t,0 )]l/2dx ~  Lx(co_ord)

Jo
1 “b 2 hxx(t, 0) (1.76)

where we have used the binomial expansion to approximate the right hand side. The 

time-dependent variation in the proper distance between test masses along x-axis is 

given by

8 Lx(t) =  -T x(co_ord)hxx(t, 0). (1.77)

Note that in flat space (hap = 0) the co-ordinate separation T x (c o - o r d )  will be equal to 

the (constant) proper distance Lx between the particles along the x-axis (since rju = 1). 

Rewriting Eq. (1.77) as

8 Lx(t) I j ^ ^ Q )  (1.78)
A r ( c o —ord) ^

we identify the left hand side as a dimensionless strain along the x-axis caused by the 

passing of the gravitational wave. We can generalise this to

—^  = ^hij(t,0)nlnj (1.79)

where n  is a unit vector in the x — y plane and L would be the proper distance in flat 

space (equal to the co-ordinate separation).

The strains caused by the plus polarization part of the gravitational wave emitted

by a binary system (see Eq. (1.73)) and propagating in the 2-direction are given by:

SLx(t) 2^ V 2 cos[2n(* _  Dz)] (1.80)
-^ 'x(co—ord)

SLy(t) =  + 2 S V ^ cos[2fi(t_ £ y ] ( lg l)
Ĵy{co—ord) D

SLz{t) =  0. (1.82) 
*Jz{ c o —ord)

As expected, since we are are in the Transverse Traceless gauge we have no strain in the
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direction of the waves propagation (i.e., no longitudinal strain) and we have (sinusoidal) 

oscillations in the plane transverse to the waves propagation. Note the difference in sign 

in the strains caused along the x and y directions. This indicates that as the gravitational 

wave causes proper distances in the x-direction to increase it simultaneously causes 

proper distances in the ^-direction to decrease (and vice versa). The top plot of Fig. 1.2 

shows the effect of a plus polarized gravitational wave propagating in the 2-direction on 

a ring of freely falling test masses.

For a cross polarized gravitational wave propagating in the 2-direction we can write 

the proper separation ds in terms of the co-ordinate separation dt, dx, dy, dz between 

two events as

We will now show that a cross polarized gravitational wave will have similar effect on a 

ring of freely falling test masses as a plus polarized gravitational wave if we rotate our 

axes by 45°. Consider rotating the x and y axes through 45° about the 2-axis:

Rewriting the proper separation (Eq. (1.83)) using these identities we find it has the 

same form as the proper separation caused by a plus polarized gravitational wave in 

un-rotated axes:

ds2 =  gap(x)dxadxP

= —dt2 + dx2 4- dy2 + 2hxy dx dy + dz2. (1.84)

(1.83)

x

y -* y '

(1.85)

( 1.86)

which lead to the identities

2 dxdy = d x 2 — dy ' 2 

dx2 + dy2 = dx ' 2 +  dy'2. (1.88)

(1.87)

ds2 = —dt2 -I- [1 + hxy\dx' 2 + [1 — hxy\dy' 2 + dz2 (1.89)
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*y
+ polarization

t=0,P t=P/4 t=P/2 t=BP/4

x polarization

Figure 1.2: Plots showing the change in positions of a ring of test masses in the x — y 
plane as gravitational wave propagates in the 2-direction. The top plot shows the effect 
of a plus (+) polarization gravitational wave. Over the course of a single period P  
of this gravitational wave the ring of test masses is contracted in the x direction and 
simultaneously expanded in the y direction (at P/4) direction and then expanded in the 
x  direction and simultaneously contracted in the y direction (at 3P/4). The bottom 
plot shows the effect of a cross (x) polarization gravitational wave. Its effect on the 
ring of masses is equivalent to the plus polarization waveform rotated through 45°. In 
this plot the expansion and contraction of the ring of masses has been exaggerated and 
is far greater than we would expect from a typical gravitational wave.

The bottom plot of Fig. 1.2 shows the effect of a cross polarized gravitational wave 

propagating in the 2-direction on a ring of freely falling test masses.

1.3.1 G ravitational wave detectors

The search for gravitational waves is dominated by two different types of detector, 

resonant bars and laser-interferometers. Resonant bar detectors typically consist of 

a massive metal cylinder which has been cryogenically cooled. A passing gravitational 

wave will cause stretching and contraction of the bar which can be measured (see Mauceli
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et al. (1996) [99] for a description of the Allegro detector). These detectors have best 

sensitivity to gravitational waves with frequencies in a narrow band about their own 

resonant frequencies, typically ~  900 Hz (see Table 1 of Astone et al. (2003) [16]). We 

will find that many sources of gravitational waves including the inspiral of binaries will 

emit across a wide range of frequencies. Whereas resonant bar detectors achieve good 

sensitivity over only a relatively narrow band of frequencies, laser interferometers have 

good sensitivity over a broad band of frequencies and it is these detectors that we shall 

focus upon.

Despite not being ideal for searches for gravitational waves from the inspiral of bi

naries, resonant bars have been used for searches for gravitational waves with unknown 

form and/or short duration and bandwidth. For a review of gravitational wave searches 

using resonant bar detectors see Astone et al. (2003) [16]. Recent searches for gravita

tional wave stochastic background and short duration gravitational wave bursts using 

both resonant bar and laser interferometers are described in Abbott et al. (2007) [58] 

and Baggio et al. (2008) [59] (see Fig. 2 of this paper for a comparison of the sensitivities 

of these different types of detector).

A Michelson interferometer with arms along the x and y directions is shown in the 

upper plot of Fig. 1.3. The interferometer works as follows: the laser source sends a laser 

beam to a beam-splitter which splits it into two coherent beams which then travel at 

right angles to each other along the interferometers arms. The laser beams are reflected 

back by mirrors at the end of each arm and are recombined at the beam-splitter which 

then directs the recombined beam to a photodetector which measures its intensity.

The two mirrors and the beam-splitter behave similarly to the test masses shown in 

Fig. 1.2 and move accordingly with the passing of a gravitational wave. We measure 

the movement of the two mirrors and the beam-splitter through the intensity of the 

recombined laser beam measured at the photodetector. The real gravitational wave 

detectors that we will discuss shortly are designed so that when there is no gravitational 

wave (i.e, the mirrors have proper distances Lx = Ly from the beam-splitter) the laser 

beams interfere destructively and we measure a dark fringe at the photodetector.

Constructive interference will occur when the difference in the path travelled by the
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t=0,P t=P/4 t=P/2 t=3P/4

Figure 1.3: Plot showing the effect of a plus polarization gravitational wave on a simple 
Michelson interferometer. The gravitational wave causes the interferometers mirrors 
to move similarly to the test masses in the upper plot of Fig. 1.2. The interferom
eter is designed so tha t when it is in its unperturbed configuration the laser beams 
reflected along the x  and y arms will destructively interfere when recombined at the 
beam-splitter (at t = 0, P /2 , P . . . )  and a dark fringe will be measured by the pho
todetector. A passing gravitational wave would cause variation in the proper distance 
between the beam-splitter and the mirrors enabling detection of the gravitational wave 
through measurement of the intensity of the recombined laser beam.

laser is A L = n \  where A is the wavelength of the laser (assumed to be monochromatic)

and n = 0 ,1 ,2 ___ Destructive interference occurs when A L  = (n 4- 1/2)A. The path

difference between the laser beams travelling along the x  and y  arms can be written

A L  =  2Lx - 2 Ly - ^  (1.90)

where Lx and Ly are the proper distances of the mirrors from the beam-splitter (the 

prefactor of 2 indicating that the laser beam makes a return trip) and the subtraction 

of A/2 ensures we have destructive interference when Lx = Ly 2.

From our equations for the strain caused by a passing gravitational wave (e.g., 

Eq. (1.79)) we can see that by increasing the length of the interferometers arms (L) 

we will increase the strain we are seeking to measure (SL(t)).

From Eq. (1.83) for the proper separation caused by a cross polarization gravitational

2N o t e  t h a t  in  rea l g r o u n d -b a s e d  in ter fe r o m e tr ic  d e te c to r s  s u c h  a s  L IG O  (d isc u s se d  s h o r t ly )  t h e  o p t ic a l  
c o n fig u r a t io n  is  m a in ta in e d  s o  t h a t  t h e  p h o to d e te c to r  is  k e p t a t  a  d a rk  fr in ge . T h e  fe e d b a c k  s ig n a l,  k n o w n  
a s  t h e  error  s ig n a l,  r eq u ired  t o  m a in ta in  t h is  c o n fig u ra t io n  is  w h a t  is  m e a su r ed  a n d  u se d  t o  in fer  th e  
p a s s in g  o f  a  g r a v ita t io n a l  w a v e . T h e  L IG O  a n d  G E O  d e te c to r s  are  d e ta ile d  in  A b b o t t  e t  a l. (2 0 0 4 )  
[136].
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wave we can see that the it will not be detectable by the interferometer we have shown in 

Fig. 1.3: the strain it induces will cause the x and y arms of the interferometer to extend 

and compress equally and at the same time as each other. Therefore the path travelled 

by the laser beams will remain equal Lx{t) = Ly{t) and we would always measure a 

dark fringe at the photodetector. Equally, if we rotated the interferometer in Fig. 1.3 

by 45° it would be sensitive to only cross polarization gravitational waves but not to 

plus polarization waves.

1.3.2 C haracterising th e detectors

We characterise gravitational wave detectors by their power or amplitude spectral den

sity. Sh{f) is the noise power spectral density per Hz of a data stream. g°ne_slded(f) = 

25^wo_slded(/). The amplitude spectral density Sh( f ) 1/ 2 is the square root of the power 

spectral density and has units Hz-1/2. We will discuss the power density in the context 

of data analysis in Sec. 1.4. Figure 1.4 shows the amplitude spectral density curves 

for a number of current and planned laser interferometric gravitational wave detectors. 

Figure 1.5 shows the best amplitude spectral density curves obtained by LIGO during 

each of its first five science runs. Lower values of amplitude spectral density indicate 

sensitivity to smaller strains and we shall see that Sh(f) appears in the denominator of 

our equation for signal to noise ratio (see Sec. 1.4).

From our equations for the emission of gravitational waves (see e.g., Eq. (1.73)) we 

can see that the amplitude of the strain caused will be proportional to the inverse of 

the distance from the source to the detector. Therefore, sensitivity to smaller strain 

means sensitivity to more distant sources. Improvements in sensitivity (i.e., reductions 

in Sh(f)) by a factor x  would lead to a proportional increase in the distance to which a 

given source could be observed with a particular strain and therefore a factor x3 increase 

in the volume to which we could observe the source.

In this thesis we present results from the analysis of data collected by the Laser 

Interferometer Gravitational-wave observatory (LIGO) and develop an algorithm to be 

used with data collected by the Laser Interferometer Space Antenna (LISA). We will 

now briefly describe these detectors.
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frequency (Hz.)

Figure 1.4: Amplitude spectra of current (TAMA, GEO, LIGO, Virgo) and planned 
(Advanced LIGO, EGO, LISA) laser-interferometric gravitational wave detectors at their 
design sensitivities. Fits to the TAMA, GEO and LIGO data were published in Damour 
et al. (2001) [53]. The noise curve data was provided by M.-K. Fujimoto (TAMA), 
G.Cagnoli and J. Hough (GEO) and K. Blackburn (LIGO). The Virgo noise curve data 
was provided by J-Y. Vinet (available on Virgo home page [141]). The Advanced LIGO 
noise curve data was provided by Kip Thorne and the fit by B.S.Sathyaprakash. The 
EGO noise curve is given by Van Den Broeck and Sengupta (2007) [35]. The LISA noise 
curve is given by Barack and Cutler (2004) [20].



Best Strain Sensitivities for the LIGO Interferometers
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Figure 1.5: Plot showing the best (lowest) amplitude spectra obtained by LIGO during 
each of its first five science rims. The design sensitivity curve is also shown. We see 
a steady improvement in LIGO’s best sensitivity as we progress through the science 
runs and in November 2005, during its fifth science run (S5), LIGO achieved its design 
sensitivity above ~  50 Hz. In contrast to the smooth shape of the design sensitivity 
curve, the real spectra include sharp spikes in which the detector has reduced sensitivity 
over a narrow band of frequencies. These narrow-band spectral lines are caused by 
vibrations in the wires used to suspend the interferometer’s mirrors ( “violin modes”), 
laser noise and harmonics to the U.S. power mains frequency of 60 Hz [51]. Methods for 
removing these lines are described in Searle et al. (2003) [128]. This figure was created 
by the LIGO Laboratory and has been assigned LIGO document number LIGO-G06009- 
03-Z [96].
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1.3.3 LIGO

The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of three de

tectors located at two sites across the US. The LIGO Hanford Observatory (LHO) in 

Washington state consists of two co-located interferometers of arm length 4km and 2km 

and are known as HI and H2 respectively. The LIGO Livingston Observatory (LLO) in 

Louisiana consists of a single 4km interferometer known as LI. See Abbott et al. (2004) 

[136] for a more detailed description of the LIGO detectors.

The sensitivity of ground-based laser interferometric detectors is primarily limited 

by three different sources of noise, seismic disturbances at low frequencies, thermal 

noise at intermediate frequencies and shot noise, caused by statistical fluctuations in 

the laser power, at high frequencies. For a detailed breakdown of the various sources of 

noise which contribute to LIGO’s amplitude spectrum see Sigg (2008) [65]. Figure 1.6 

shows a schematic layout of a LIGO interferometer. The main additions to the LIGO 

interferometers beyond the simple Michelson interferometer described in Sec. 1.3.1 are 

i) the second set of test mass mirrors along the interferometer arms which form a Fabry- 

Perot optical cavity with the test mass mirrors at the ends of the arms and ii) the 

power recycling mirror between the beam-splitter and the laser source. The goal of 

these extra mirrors is to increase the time that the laser beam spends in each of the 

interferometer’s arms. When the interferometer is “locked” into resonance, i.e., its 

mirrors are positioned correctly, the laser beam will bounce back and forth ~  50 times 

in the optical cavity in each arm. This effectively increases the arm lengths of the 

interferometer and therefore improves its strain sensitivity (see, for example, Eq. 1.77) 

[64]. When the mirrors are not correctly positioned we described the interferometer 

as being “unlocked” (see Sec. 2.6.1). When the interferometer is locked and the arms 

are not being disturbed by environmental noise or a passing gravitational wave, almost 

all of the laser light will return from the arms to the beam-splitter and back towards 

the laser source. The power recycling mirror reflects this laser light back towards the 

beam-splitter and into the arms of the interferometer, effectively increasing the laser 

power by a factor of ~  40 [67] which will reduce the level of shot noise [136].

Construction of LIGO began in 1994 and was substantially completed in 2000. Dur-
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Figure 1.6: A schematic layout of a LIGO interferometer showing Fabry-Perot optical 
cavities and power recycling (see Sec. 1.3.3). This figure was reproduced from B. Abbott 
et al., Nucl. Instrum. Meth. A 517 (2004) 154-179 [136] with permission from the 
authors.

ing October 2002 LIGO and GEO took part in the first science rim (SI) [136]. No 

gravitational waves were observed. Although neither detector had achieved their design 

sensitivities (see Fig. 1.5), LIGO had sufficiently good sensitivity to be able to set a 

better (i.e. lower) upper limit on the rate of coalescences of binary neutron star inspi

rals than previous experiments [2] (the process of setting upper limits on the rate of 

coalescences in the event that no gravitational waves were observed is discussed later in 

Sec. 2.8). In November 2005 LIGO achieved its design sensitivity above ~  50 Hz. In 

this thesis we will describe a search of LIGO data taken during its third science run (S3) 

which took place between October 2003 and January 2004.

1.3.4 LISA

The Laser Interferometer Space Antenna (LISA) will consist of three spacecraft in he

liocentric Earth-trailing orbits, 5 million kilometres apart at the corners of an (approx

imately) equilateral triangle (see Danzmann K et al. (1998) [60] for a full description 

of the mission). Each of LISA’s spacecraft house freely falling test masses. A passing
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gravitational wave will change the (proper) distance between these test masses. There 

will be two lasers running between each pair of spacecraft, one in each direction, and, 

similarly to ground-based detectors such as LIGO, it is the differences in laser phase 

between the various light travel paths that indicate that gravitational waves are passing 

through the detector.

However, unlike ground-based detectors LISA will not suffer from low frequency 

noise caused by seismic activity and has been designed to have best sensitivity in the 

frequency range ~  1 0 - 4  — 10- 1Hz. In the raw data, the laser phase difference is totally 

dominated by laser frequency noise. However, this can be suppressed without eradicating 

the gravitational wave signal using Time Delay Interferometry (TDI, see for instance 

Vallisneri (2005) [140] and references therein).

LISA is a joint NASA/ESA project and is one of five space-based observatories that 

form NASA’s Beyond Einstein programme. After the last review (2007) [47] the LISA 

Pathfinder mission, a precursor mission to LISA designed to test its key technologies, 

is expected to be launched in 2009. While no firm date has been set for the launch of 

LISA itself it is hoped to be within the next decade or so. Once launched LISA will 

spend around 13 months getting into its orbit and will then collect data for between 3 

and 5 years.

In Sec. 3 we find that through use of time-frequency data analysis techniques LISA 

will be sensitive to the inspiral of stellar mass objects into supermassive black holes 

up to distances of a few Gpc, the merger of supermassive black holes at cosmological 

distances 2 ~  3.5 and the inspiral of binary white dwarfs in the nearby universe.

1.4 Data analysis

In this Section we will describe the data analysis methods used in order to detect a 

gravitational wave signal in noisy data. We will consider a data stream x{t) which may 

either contain only noise n(t) or noise and a gravitational wave signal s(t). We discretely 

sample the data stream with an interval At so that Xj = x(tj) where tj = jAt.

Our data analysis can be viewed within the framework of a hypothesis test. We have 

two hypotheses:
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• Ho', our null hypothesis is that there is no signal present, x(t) = n(t)

• H\\  a signal is present in the data, x( t) = n(t) + s(t)

There are two types of error associated with this test:

• Type I error: rejecting Ho when it is true. In this case our analysis would infer a 

signal was present when there was no signal present. We refer to this type of error 

as a false alarm.

• Type II error: accepting Ho when it is false. In this case our analysis would not

infer a signal was present when a signal was present. We refer to this type of error

as a false dismissal.

It is not possible to decrease the probability of false alarm and false dismissal simul

taneously; decreasing the probability of a false alarm would increase the probability of 

a false dismissal and vice versa.

We can approach the problem of choosing a detection method in two different ways. 

When taking the Neyman-Pearson approach, the probability of false dismissal is min

imized having chosen a particular value for the false alarm probability. When taking 

the Bayesian approach, the probability of the null hypothesis is estimated in advance 

and penalties are assigned to describe the relative severity of false alarms and false 

dismissals occurring. These pieces of information are used to construct the Bayes risk 

which is subsequently minimized (see, for example, Whalen (1971) [149]).

Significantly both approaches yield a likelihood ratio test of the form:

Ho if A < 7 (1.91)

Hi if A > 7

,ere A = 4 ^ 4
(1.92)

where
p(x\ Ho)

(1.93)

where p(x; y ) is the probability of x  occurring given that y is true and where 7  is some 

thresholding value. The form of this threshold will depend on whether the Neyman- 

Pearson or Bayesian approach is taken. The quantity A is called the likelihood ratio.



We will now consider the case where the noise n(t) is Gaussian process with a 

mean of zero, i.e., n(t) = 0  where we use an overbar to denote ensemble average. 

The noise can be characterised equivalently by either its autocorrelation r(t — t') or 

by its (one-sided) power spectral density Sn(f). Indeed, the Wiener-Khinchin theorem 

(also known as the Wiener-Khintchine or Khinchin-Kolmogorov theorem) shows that 

for any stationary process (i.e., one which can be described at any time by the same 

probability distribution) the power spectral density is simply the Fourier transform of 

its autocorrelation function.

The real, one-sided noise power spectral density is given by

In simple terms, the autocorrelation function simply measures the correlation between 

n{t) at two different times.

The multivariate Gaussian probability density function of our data when there is no 

signal present (i.e., x(t) = n(t) and x{t) = n(t) = 0 ) can be written

where C  is the covariance matrix of the Xj and \C\ is the determinant of C. Follow

ing the derivation in Section 2A of Finn (1992) [62] we find that through use of the 

Wiener-Khinchin theorem and Parseval theorem that we can write this probability in 

the continuum limit as

(1.94)

p ( x ; « o )  -  ( 27r) W / 2 |C | l / 2 exp  - i ( x ) T C  1( x ) (1.95)

p{x' Ha) = {x' x>)1 (L96) 

where we have defined the (symmetric) inner product for any two functions g and h to



For a real signal h(t) is real we have h*(f) = h(—f ) 3. If both h{t) and g(t) are real we 

can write

m  ( l9 8 )

= m  (1-99)

For real functions h(t) and g{t) we can also equivalently write

d/
(/)

(1.100)

Since we know that p(x; Hi) = p{x — s ; ?io) we can write

p(x;Hi)  =
(27t)n / 2\C \1/ 2

exp - \ ( x ) T C - \ x ) (1.101)

Rewriting the inner product

(x — s ,x  — s) = (x, x) + (s, s) — 2 (s , x) ( 1 .102)

we can find the likelihood ratio

A = exp[2 (s, x) — (s, s)]. (1.103)

The inner product of the signal with itself (s, s) is clearly not dependent on the data 

x ( t ) and we can choose to rewrite our statistical test using the likelihood ratio with this 

term removed. Also since our expression for the likelihood ratio will then be a monotonic 

function of the exponent we can go further and rewrite our test as

Ho if (s, x) < 7 * (1.104)

Hi if (s,x) > 7 * (1.105)

3 T o s h o w  t h a t  h * ( f )  =  h ( —f ) w h e n  h ( t )  is  r ea l w r ite  t h e  ( fo rw a r d ) F o u r ier  tr a n s fo r m  in  t h e  form
h { f )  =  f  h( t )  cos(27rf t ) d t  — i f  h( t )  sm(2irf t ) d t .  I f  h ( t )  is  r ea l, w e  o b t a in  h * ( f )  b y  in v e r t in g  t h e  s ig n  o f
t h e  s e c o n d  t e r m  w h ic h  is  w h o l ly  im a g in a r y . S in c e  c o s  is  a n  e v e n  fu n c t io n  a n d  s in  is  a n  o d d  fu n c t io n  w e  
c a n  o b t a in  t h e  s a m e  e x p r e s s io n  fo r  h * ( f )  b y  r e p la c in g  /  w it h  —/  in  o u r  o r ig in a l e q u a t io n  for h ( f )  a n d  
th e r e b y  s h o w  t h a t  h * { f )  =  h ( —f ) .
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where 7 * is some thresholding value.

Matched-filtering is the optimal technique for the detection of a known signal in 

stationary, Gaussian noise. The optimal filter q — h/Sn{f) consists of an accurate 

representation of the expected signal, which we call the template h, weighted by the 

noise spectrum of the detector Sn(f) so that there are greater contributions to the inner 

product (x,h) when the detector has good sensitivity (i.e., when Sn(f) is small) [17].

1.4.1 P roperties o f th e  inner product

The mean of (x , h) for an ensemble of x is given by

(1.106)

where since the template h is stationary we have h{f) = h{f). 

In the absence of signal x(t) = n(t) we find

n*{f)h{f) (1.107)

as long as n{t) — 0. The variance of (x, h) for an ensemble of x  is given by

(x, h) — (x , h) (1.108)

Again, assuming there is no signal we find

(n, h) -  (n, h) = [(n , h)]2 (1.109)

since we have found previously that (n, h) = 0 . Prom Eqs. (1.97) and (1 .1 0 0 ) we can see



that (a, b) =  (6 , a). Therefore we can write

[(n, h ) ] 2 = (n,h)(h,n)  (1 .1 1 0 )

'  d Z C j ' u ' k n H ' v m s M i s * m  111111

■ i i “ !i

-  i , “ j |
= (h,h) (1-114)

If we assume that our template is normalised such that (h , h) =  1 we will therefore find 

that the variance of (n, h) is unity.

If we perform the same analysis when the detector data consists of signal and noise, 

i.e., x{t) = h{t) + n{t) (where we will assume our template h{t) is a perfect description 

of out signal) we find the mean of the overlap is given by

[(x, h)] — [(n + h,h)] (1.115)

= Kn > )̂] + (1 .1 1 6 )

=  1 (1-117)

and that the variance is given by

(x, h) — (x, h) = [(n, h)] (1.118)

-  1. (1.119)

It is also trivial to see how the amplitude of an incoming signal can be measured 

immediately from the inner product. Consider a template h(t) and a signal s(t) = Ah{t) 

where A is a real, dimensionless and time-independent number. We find simply that the 

mean output of our template with data consisting of signal Ah{t) and noise n{t) is

[(x,/i)] =  [<n,h)j + \{h,Ah)\ (1 .1 2 0 )

= A. (1-121)
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1.4.2 D efinition o f signal to  noise ratio

We define the signal to noise ratio (SNR) p as the statistic (x , h) divided by its standard 

deviation. Using the results from the previous Section we find that when our data x 

contains a signal and stationary, Gaussian noise, x{t) = n(t) + s(t) that the expectation 

value of the SNR is p = (s, h) (assuming that we have normalised our templates such 

that {h, h) = 1 ). If our data x contains stationary, Gaussian noise but no signal, 

x{t) = n(t) then p = 0 . In practise the detector noise will be neither stationary nor 

Gaussian. In order to account for the non-stationarity of the detector noise, we estimate 

the noise spectrum Sn( f ), used within the calculation of (x,h), at regular intervals. 

Environmental disturbances and problems with the detector itself can cause transient 

artefacts in the detector data meaning that it will become non-Gaussian. The detector is 

continuously monitored allowing data obtained during times of a known environmental 

disturbance or problem with the detector to be excluded from subsequent data analysis. 

Details on the methods used to search for gravitational wave signals in real detector 

data using matched-filtering is discussed further in Sec. 2.6. In Sec. 5.1.2 we shown 

that the linear transformation (e.g., the matched-filtering) of a multivariate Gaussian 

distribution is also a multivariate Gaussian distribution. We will use this property later 

when testing our matched-filter algorithm in Sec. 2.4.2.
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C hapter 2

Searching for precessing binary 

system s in LIGO data

Interaction between the spins of the binary’s component bodies and the orbital angu

lar momenta will cause its orbital plane to precess during the course of the system’s 

evolution. Figures 2.4 and 2.5 compare the waveforms that would be observed from 

similar binaries, one consisting of non-spinning components and the other consisting of 

spinning components. It has been found that optimal matched-filter searches should use 

templates which take into account the spin modulation of gravitational waves. In this 

Chapter we will we summarise how stellar mass binaries (i.e., those which LIGO is sen

sitive to) form and how their components spin up (Sec. 2.1), then move onto modelling 

their inspiral orbits and gravitational wave emissions (Sec. 2 .2 ). We then summarise the 

progress that has been made in building detection efficient templates to capture these 

systems (Sec. 2.3). The remainder of the Chapter details the use of the BCV2 detection 

template family (Sec. 2.4) to search for signals emitted by binaries with spinning com

ponents in data taken by LIGO during its third science run. No detections were made 

and in Sec. 2.8 we calculate upper limits on the rate of coalescence of neutron star - 

black hole binaries with spinning components.

The analysis of LIGO data described in the latter part of this Chapter was led by 

the author (Gareth Jones) as a member of the LIGO Scientific Collaboration/Virgo 

Compact Binary Coalescence working group [97] and has been previously published in
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B. Abbott et al. (2007) [46].

2.1 Formation and evolution of stellar mass binary sys

tems

We briefly review the current literature regarding the formation and evolution of binary 

systems paying particular attention to the spins of the binary’s components. The lit

erature focuses upon NS-BH binaries and it turns out that the effects of spin are more 

pronounced in systems with small mass ratio (i.e., unequal masses). It is likely that 

the formation and evolution of other stellar mass binaries consisting of compact objects, 

e.g., BH-BH and NS-NS systems will be qualitatively similar and the discussion here 

will be relevant to all these cases.

Stellar mass BHs form either through the collapse of a massive progenitor (e.g. a 

main sequence star that has exhausted the hydrogen in its core) or via the accretion- 

induced collapse of a NS (which itself will have formed via collapse of a massive progen

itor). After core collapse, progenitor stars with mass < 1.4M© become White Dwarfs, 

those with mass in the range 1.4 to ~  3M© become NSs and those with mass > 3M© 

become BHs.

As internal densities of a progenitor star collapsing under gravity exceed 1010kg m- 3  

the majority of its protons and electrons will undergo inverse beta decay to form neutrons 

(and neutrinos). In neutron stars it is the repulsive forces (arising from degeneracy 

pressure as described by the Pauli exclusion principle) between the neutrons that resist 

further gravitational collapse. For progenitor stars with mass > 3M© the gravitational 

forces exceed the outward degeneracy pressure forces and the star will collapse further 

to become a black hole.

A black hole is defined by its event horizon whose radius will depend on its mass 

and spin only. In classical physics anything falling through the event horizon can never 

return from behind it (in quantum physics there are exceptions to this statement such 

as the postulated Bekenstein-Hawking radiation). Theoretically, black holes are created 

when any quantity of matter collapses under gravity and becomes smaller than its event 

horizon. In nature there is evidence for stellar mass and supermassive black holes,
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both of which are expected to play leading roles in the production of the gravitational 

waves we expect to observe with current and planned detectors. Black holes contain 

a physical singularity, a point where the curvature of spacetime is infinite and physics 

breaks down (physical singularities are different from co-ordinate singularities). The 

“no hair” theorem states that a black hole can be fully described by its mass, angular 

momentum and charge.

The formation of a typical NS-BH binary will begin with two main sequence stars in 

orbit about their common centre of mass. As the more massive of these star evolves away 

from the main sequence it will expand until it fills its Roche lobe before transferring 

mass to its companion. The Roche lobe is defined as the region of space around an 

object in a binary system within which orbiting material is gravitationally bound to 

that object. If the object expands past its Roche lobe, then the material outside of the 

lobe will fall into the other object in the binary.

The more massive body would eventually undergo core collapse to form a BH, and 

the system as a whole would become a high-mass X-ray binary. As the second body 

expands and evolves it would eventually fill its own Roche lobe and the binary would 

then go through a common-envelope phase. This common-envelope phase, characterised 

by unstable mass transfer, would be highly dissipative and would probably lead to both 

contraction and circularization of the binary’s orbit. Accretion of mass can allow the 

BH to spin-up. It has been argued that the common-envelope phase, and associated 

orbital contraction, is essential in the formation of a binary which will coalesce within 

the Hubble time [87]. Finally the secondary body would undergo supernova to form a 

NS (or if massive enough, a BH). Prior to the supernova of the secondary body we would 

expect the spin of the BH to be aligned with the binary’s orbital angular momentum 

[87]. However, the “kick” associated with the supernova of the secondary body could 

cause the orbital angular momentum of the post-supernova binary to become tilted 

with respect to the orbital angular momentum of the pre-supernova binary. Since the 

BH would have a small cross-section with respect to the supernova kick we expect any 

change to the direction of its spin angular momentum to be negligible and the BH spin 

to be misaligned with respect to the post-supernova orbital angular momentum [75],
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The misalignment between the spin and orbital angular momentum is expected to be 

preserved until the system becomes detectable by ground-based interferometers [75,124].

2.1.1 E xpected  merger rate o f com pact binaries

, Estimates of the merger rates of compact binaries consistent with present astrophysical 

understanding are summarised in Abbott et al. (2007) [5]. The rate of merger of NS-NS 

binaries can be inferred by the four observed binary systems containing pulsars which 

will coalesce within the Hubble time [117, 103]. The current estimate of the merger rate 

of NS-NS systems (at 95% confidence) is 10 — 170 x 10- 6yr- 1  L]^1 [89, 90, 93, 8 8 ] where 

Lio = 1010LO)b is 1010 times the blue light luminosity of the Sun (for reference, the 

luminosity of the Milky Way is around 1.7Lio).

Although, we predict that NS-BH and BH-BH systems form according to the scenario 

described previously, there is no direct astrophysical evidence for these systems. To 

predict the merger rate of these systems, the authors of Refs. [108, 109] considered 

various population synthesis models of compact binary formation which are consistent 

with the expected merger rate of NS-NS systems. They find that the merger rates of 

binary populations in galactic fields are likely to lie (at 95% confidence) in the ranges 

0 .1  — 15 x 1 0 - 6yr- 1  L^ 1 and 0.15 — 10  x 1 0- 6yr- 1  L^ 1 for BH-BH and NS-BH binaries 

respectively.

Compact binary mergers from within dense stellar clusters or associated with short, 

hard gamma-ray bursts would increase the expected merger rates. When binary for

mation in star clusters is taken into account with relatively optimistic assumptions, 

detection rates could be as high as a few events per year for initial LIGO [119, 6 8 , 105].

2.1.2 Spin m agnitudes

A compact object can gain spin either during its formation (through the core collapse of 

a massive progenitor or the accretion-induced collapse of a NS) or through subsequent 

accretion episodes. The dimensionless spin parameter x  Is given by \J \/M 2 where J  

is the total angular momentum of the compact object and M  is its mass l . For a

1 V a r io u s  c o n v e n t io n s  e x i s t  r e g a r d in g  t h e  s y m b o ls  u s e d  fo r  t h e  v a r io u s  s p in  p a r a m e te r s .  H e r e  w e  w ill
d e n o t e  t h e  d im e n s io n le s s  s p in  p a r a m e te r  x  =  \ J \ / M 2 a n d  t h e  s p e c if ic  a n g u la r  m o m e n tu m  a =  \ J \ / M  
w h e r e  J  is  t h e  t o t a l  a n g u la r  m o m e n tu m  o f  t h e  c o m p a c t  o b j e c t  a n d  M  is  i t s  m a s s .
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non-spinning body we would have x  = 0 -

Penrose’s hypothesis of cosmic censorship states that physical singularities can only 

occur behind an event horizon. In Kerr geometry, used to describe the spacetime sur

rounding the event horizon of a spinning black hole, the outermost event horizon occurs 

at r = M  + y/M 2 — a2 where r is the radial Schwarzschild/Boyer-Lindquist co-ordinate 

(equal to the circumference of a circle centred on the central body divided by 2 tt). For 

this event horizon to form we require that a < M  which is equivalent to x < 1 . For 

Earth we find x ~  800 (found by assuming that the Earth is a solid sphere and using 

| J\ — Iuo where I  is the Earth’s moment of inertia and u) is the orbital frequency of its 

spin).

O’ Shaughnessy et al. (2005) [107] consider likely values of birth spin and then 

perform population synthesis in order to model the accretion histories of black holes in 

inspiraling binaries and to place bounds on their expected spin. Low mass BH birth 

spins can be estimated by considering the birth spin of similar mass NS. Through the 

observation of radio pulsars NS birth spins have been estimated as x — \J \/M 2 ~  

0.005 — 0.02. However, results from simulations indicate that a large fraction of BHs 

in BH-NS systems were formed by the accretion-induced collapse of a NS that has 

undergone a common envelope phase. We would therefore expect that the BH birth 

spin would be dependent on the spin attained by the NS during the poorly understood 

common-envelope phase. Mildly recycled pulsars in NS-NS systems are believed to have 

been spun up during a common envelope phase yet are still measured to have fairly 

small spins of x < 0.01. Uncertainties in both the collapse and common-envelope stages 

of the BH evolution lead the authors of [107] to place loose bounds on BH birth spin 

of between x — 0 and x ~  0.5, the birth spin of a BH forming from the collapse of a 

maximally spinning NS.

Results from the population synthesis performed by O’ Shaughnessy et al. showed 

that the evolution of the majority of NS-BH binaries is dominated by accretion as

sociated with a common-envelope phase rather than by disk accretion. Hypercritical 

accretion occurs when one of the binary’s components spirals through its companion’s 

envelope and rapidly accretes matter at super-Eddington (for photons), neutrino-cooled
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rates [107]. The simulations showed that even with birth spin x = 0 stellar mass BHs 

(M < 15Mq) can obtain significant spin x  ~  0 .8  through common-envelope phase 

accretion. More massive objects are more difficult to spin-up, requiring larger, and con

sequently less likely, transfers of mass. For less massive systems, M  < 4A/©, maximal 

spin (x = 1) could easily be obtained through accretion alone (i.e., regardless of birth 

spin).

In [137], Thorne calculates an upper bound for the spin of a BH. As matter accretes 

onto BH its spin will increase, radiation emitted by the accretion disk which is subse

quently “swallowed” by the BH causes a counteracting torque which limits the BH’s 

spin to x < 0.998. Cook et al. (1994) [48] consider a variety of NS equations of state 

and calculate the maximum spin the NS could have before it would break up. For NS 

we find that the maximal spin value is x  ~  0.7 2.

We can infer the mass of a compact object in a binary system through observations 

of its companion. The mass function is defined as

,_P ovbK l  misin3 (t)
/ (m ) =  - a S c  - =  (i w , -,,,)* (2a)

where m\ and m2 are the masses of the compact object and its companion respectively, 

Porb is the orbital period of the binary, K 2 is the velocity amplitude of the companion 

object and l is the inclination angle of the binary with respect to the observer. The 

mass function /(m ) can be calculated for X-ray binaries through measurement of the 

amplitude velocity of the luminous companion and the orbital period. By estimating 

the mass of the companion m2 and the inclination angle of the binary (e.g., through 

observation of jets) we can obtain a lower limit on the mass of the compact object m i. As 

of 2006, there are 20 X-ray binaries known to contain a stellar mass BH (inferred through 

dynamical considerations) as well as a further 20 X-ray binaries that may contain a 

stellar mass BH [123].

The measurement of BH spin from electromagnetic observations is in progress and in 

Sec. (8 .2 ) of [123] four methods are discussed. Spectral fitting of X-ray continuum data

2T h is  n u m b e r  is  o b t a in e d  b y  ta k in g  \J\ a n d  M  v a lu e s  fro m  T a b le s  6 , 7  a n d  8  in  [481 a n d  c a lc u la t in g
X =  \ J \ / M 2 w it h  c =  G  =  1 .
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Table 2.1: Measurements of the masses and spins of four BHs each of which belong to 
an X-ray binary system. The masses were obtained through dynamical considerations 
and the spins were obtained through spectral fitting of X-ray continuum data obtained 
using the RXTE, ASCA and BeppoSAX space telescopes.

System ™BH XBH
GRS 1915+105 ~  14.4M© [79] > 0.98 [100]

4U 1543-47 ~  9.4M© [106] ~  0.75 -  0.85 [130]
GRO J 1655-40 ~  6.3M© [130, 82] ~  0.65 -  0.75 [130]

LMC X-3 ~  7Mq [131] < 0.26 [55, 100]

obtained from the Rossi X-ray Timing Explorer (RXTE) and the Advanced Satellite for 

Cosmology and Astrophysics (ASCA) was used to place a robust lower bound on the 

spin of the primary component (BH) of the X-ray binary GRS 1915+105. The BH with 

mBH ~  15M© was found to have spin x  > 0-98 [10 0]. In Table 2 .1  the inferred masses 

and spins of four BH systems, each belonging to an X-ray binary, are given.

Effect of spin on kick velocities

Campanelli et al. [43] (2007) use numerical relativity simulations to investigate the 

evolution of a generic binary (e.g., unequal mass, misaligned spins). Their results show 

that spin of the binary’s components can increase the kick velocity of the post-merger 

remnant. They predict kick velocities of nearly 4000 km s-1  for some systems (anti

aligned maximal spins lying in the orbital plane) which would allow these systems to 

become ejected from their host galaxies (escape velocities for giant elliptical and spiral 

galaxy bulges are in the range 450 — 2000kms- 1  and are smaller for dwarf galaxies).

2.2 Target model

In this Section we describe the target model that we use as a fiducial representation of 

the gravitational wave signals expected from precessing binaries consisting of spinning 

compact objects. We will describe the target model that was used by Buonanno, Chen 

and Vallisneri in [40] (known as BCV2 ) in the development of their detection template 

family.
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2.2.1 The adiabatic approxim ation and circularization o f th e binary’s 

orbit

For simplicity, the target model waveforms are assumed to be generated by the inspiral 

of the binary in the adiabatic limit The part of inspiral observable by ground-based 

detectors occurs towards the end of a long period of adiabatic dynamics throughout 

which the timescale of orbital shrinkage (due to the emission of gravitational waves) is 

far larger than the period of a single orbit, i.e., Torbital-shrinkage ^  Torbit- Working under 

the adiabatic approximation allows us to write the energy balance equation dE/dt = —T, 

where E  is the binding energy of the binary (i.e., the energy required to disassemble the 

binary) and T  is the gravitational wave flux, which in turn simplifies the time evolution 

of the binary (see, for example, Sec. I of Ajith et al. (2005) [1 1 2] and Damour et 

al. (2001) [53]). Under the adiabatic approximation, we can assume our binary to have 

instantaneously circular orbits which are i) shrinking due to the emission of gravitational 

waves and ii) precessing due to the effects of spin.

There is evidence that binary’s orbit will have circularized through the emission 

of gravitational waves before it will be observable by current detectors. Eq. (5.12) of 

Peters (1964) [115] gives the semi-major axis of the binary’s orbit a as a function of its 

eccentricity e:

e 1 2 / 1 9

a(e) oc j —^2- (2.2)

For small eccentricity we can write a oc e12/ 19 and through Kepler’s third law, a oc P 2/3, 

where P  is the binary’s orbital period, we can write e oc p 19/18. Considering the 

evolution of e and a with the decrease in the binary’s period P  we see that eccentricity 

decreases more rapidly the than orbital separation. Since the binary will undergo only 

its final few tens or hundreds of orbits in the detector’s band of good sensitivity we 

can assume that the binary’s orbit will have become essentially circular by the time 

we observe it with ground based detectors. Indeed, from Eq. (2.2) we can show that 

a low mass binary system (e.g., neutron star - neutron star) with high eccentricity in 

the LISA band of good sensitivity, e.g., e = 0.9 at /  ~  10- 3  Hz will have completely 

circularized before it enters the LIGO band of good sensitivity (~ 40 Hz). In Belczynski
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et al. (2 0 0 2 ) [2 2 ] the authors use population synthesis to analyse the evolution of binary 

systems. In their Figure 5 they show the circularization of binary systems between 

formation and when they enter LIGO’s band of good sensitivity. Orbital eccentricity 

cannot be neglected when discussing extreme mass ratio inspiral systems that are a 

relevant source for LISA (see Chapter 3).

2.2.2 Equations used to  calculate a precessing binary’s tim e evolution

This target model uses post-Newtonian (PN) equations for the time-evolution of the 

instantaneous orbital frequency a;, the spins of the binary’s components Sq, S'2 and the 

orbital angular momentum of the binary Lpj.

The first (time) derivative of the orbital angular frequency u  is given to 3.5PN order 

[29, 28, 152, 98, 24, 30, 31, 53, 54] with spin effects at 1.5 and 2PN order [92, 29, 28, 152, 

91]. We quote the waveform as given in Buonanno et al. (henceforth PBCV2 ) [39] 3 but 

have corrected some of the 2.5PN and 3.5PN coefficients for an error in the contribution 

of tails to the gravitational wave flux (details of this follow the equations):

cv 96
— 9 =  — ^ ( M c j ) 5 / 3 ( 1  +  P i P N  +  ^ 1 .5 P N  +  7^2PN  +  ^ 2 .5 P N
u ;z 5

+ ^3PN + ^3.5PN), (2-3)
3T h e  e x p a n s io n  o f  cu/ uj2 g iv e n  in  P B C V 2  [39] (E q s . ( 1 - 7 ) )  is  e q u iv a le n t  t o  t h e  e x p a n s io n  g iv e n  in

B C V 2  [40] (E q . ( 1 ) )  b u t  h a s  b e e n  w r it te n  in  a  fa s h io n  w h ic h  h a s  m a d e  t h e  id e n t if ic a t io n  o f  th e  d if fe re n t
P N  te r m s  c le a r e r .
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where

'P i p n  =  - 7 4 3 ^ g 24,?(M a-)2/3, (2.4)

P i .5 P N  =  J 2  I x i i L N - S j f l U ^  +  YUri)
I t=l,2 *■ ^ '  ■*

— 4 7 r \ ( M w ) ,  (2.5)

\  ( 3 4 1 0 3  , 13661 , 59  ^  TO1X2 b  n
P 2 ™  =  \  (,18144 +  l M n + 1SV ) -  1 S2)

-  7 2 1 ( £ w . S 1) ( £ w - S 2) ] | ( M w )4/ 3, (2.6)

P 2.5PN =  - ^ ( 4 1 5 9  +  15876»))Ir(M a;)5/ 3> (2.7)

P 3PN =
/16447322263 1712_ 16 2

\  139708800 I05_7£ + T 7r
. 273811877 451 2 88 A 541 2 5605 3

+ { ----mooc An +  ~7T7 V  ) “H +  'one7!1088640 48 3 J ' 896 ' 2592 '

{Mu)2, (2.8)Y^l°g(16(Ma;)2/3)

^  (  4415 717350 182990 2\  /w  x7/o
35PN ”  ( “ 4032 + 12096 77 +  3024 77 J ^  ^

where Ljy = /J-rxv (where fx = m\rri2 /M  is the reduced mass ) is the Newtonian angular 

momentum and L n  = L/v/\Ln\, 7 e  = 0.577... is Euler’s constant, 6  = 1039/4620 was 

determined in Blanchet et al. (2004) [27]. We define the accumulated orbital phase

^  =  J  udt = J  %-du. (2-10)

In L. Blanchet (2005) [26] and L. Blanchet et al. (2005) [32] an error in the contri

bution of tails to the gravitational wave flux was identified in the calculations presented 

in L. Blanchet (1996) [24] and in L. Blanchet et al. (2002) [31]. The subsequent correc

tion of this error led to changes in some coefficients at 2.5PN and 3.5PN order in the 

expansion of u / u 2, (i.e., Eqs. (2.7) and (2.9)) since the publication of BCV2 [40]. In 

the 2.5PN term, 15876 replaces the value 14532 and in the 3.5PN term 717350 replaces 

the value 661775 and 182990 replaces the value 149789. These new coefficients can be 

derived simply using the expansion of (dF/dt) 3 5PN given in Arun et al. (2005) [14].
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The equations for the precession of the spins S\  and S 2 are given by (see, for example, 

Eqs. (4.17b,c) of Kidder (1995) [91] or Eqs. (llb,c) of ACST (1994) [12]):

s ,  =  (Mw):
2 M |^(JWw)-1/3 ( 4  + 3 ^ )  L n

+  [■S'2 -  3(S2 ■ X Si, (2-11)

+  ^ [ S 1 - 3 ( S i - L j v ) L a, ] | x S 2 (2.12)

where we have followed BCV2 [40] by using Kepler’s third law (r = (M/a;2)1/3) and the 

Newtonian expression of the magnitude of the orbital angular momentum,

\ L n \ = fxr2uj = ryM5/ ^ 1/3, (2.13)

to substitute for r when writing these expressions.

The equation for the precession of L n  is (see, for example Eq. (4.17a) of Kidder 

(1995) [91] or Eq. (11a) of ACST (1994) [12]):

3w '/3
77M5/3

x L n

[(£ 2  • L n )S i  + (Si ■ L n ) S 2] x L n  1 • (2.14)

In writing these equations we have assumed that the component bodies are suffi

ciently axisymmetric that we are able to neglect their own gravitational wave emission 

and therefore assume that the magnitude of the spin remains constant during the course 

of the inspiral, i.e., d\Si\/dt — 0. Therefore, the loss of total angular momentum experi

enced by the system as it inspirals is caused by loss of orbital, rather than spin, angular 

momentum. Therefore, defining total angular momentum to be J  = L  + S  we have 

d\J\/dt = d\L\/dt.

Eqs. (2.3), (2 .1 1 ), (2.12) and (2.14) form a set of coupled differential equations. To 

follow the evolution of a precessing binary we numerically integrate these equations un

til the adiabatic approximation is no longer valid. This occurs either when the binary
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reaches its Minimum Energy Circular Orbit (MECO, also known as the innermost cir

cular orbit for non-spinning binaries in Blanchet (2002) [25]) after which the system 

plunges or if the orbital angular frequency stops evolving i.e., u> = 0 (see Sec. IIB of 

BCV2 [40]).

2.2.3 R esponse o f a detector to  gravitational waves from a precessing, 

inspiraling binary

The response of a ground-based interferometric detector to a gravitational wave emitted 

by a compact binary has the form

/•resp =  j j y Q iJPij  (2.15)

where we have the reduced mass fj, = m \m 2 /M , D is the distance from the gravitational 

wave source to the detector and r is the (absolute) separation of the binary’s components. 

The tensor Q is proportional to the second time derivative of the mass-quadrupole of 

the binary and the tensor P  projects this moment onto the detector.

In order to calculate hre8p we will first find Q which can be given as

Qij = 2 [XiXj -  n V ] (2.16)

where nl is the unit vector along the separation vector of the binary’s components r 

and X1 is the unit vector along the component’s relative velocity v  4.

In order to find A and n  (and therefore Q) we must follow the evolution of the 

binary within a chosen coordinate system. There are various coordinate systems that 

can be used and we shall see later that through expedient choice of the coordinate 

system we can usefully isolate the effects of spin upon the gravitational wave that will

4In  o r d e r  t o  o b t a in  Qlj in  t h e  fo r m  s h o w n  a b o v e , w e  c a n  e v a lu a te  t h e  m a s s - q u a d r u p o le  m o m e n t  F 3 
(E q . ( 1 .6 2 ) )  fo r  t h e  b in a r y  b y  c o n s id e r in g  t h e  e q u iv a le n t  o n e  b o d y  p r o b le m . T h e  e q u iv a le n t  o n e  b o d y  
p r o b le m  c o n s is t s  o f  a  b o d y  w it h  m a s s  e q u a l t o  t h e  r e d u c e d  m a s s  /x o f  t h e  b in a r y  o r b it in g  t h e  c e n tr e  o f  
m a s s  (w h ic h  w e  w il l  ta k e  a s  o u r  o r ig in )  a t  p o s i t io n  r  =  x  1 — X2  w h e r e  x i  a n d  a:2 a r e  th e  p o s i t io n  v e c to r s  
o f  t h e  o r ig in a l b o d ie s  m i  a n d  m 2 [95]. B y  a p p r o x im a t in g  t h e  b in a r y ’s  c o m p o n e n ts  a s  (6—fu n c t io n )  
p o in t  m a s s e s  w e  c a n  s im p li fy  t h e  m a s s -q u a d r u p o le  m o m e n t  a n d  w r ite  i t  a s  F 3 =  ^ r lr3. T a k in g  th e  t im e  
d e r iv a t iv e  t w ic e  a n d  u s in g  t h e  c e n tr ip e ta l  a c c e le r a t io n  r % =  —( | f | / | r | ) f *  i t  is  tr iv ia l  t o  o b t a in  E q . (2 .1 6 )  
for  Q 13 m o d u lo  a  fa c to r  o f  / x | f | 2 . In  t h e  fo llo w in g  a n a ly s is  w e  n o t  u s e  t h e  o n e  b o d y  a p p r o a c h  s in c e  w e  
w is h  t o  id e n t ify  t h e  s p in  a s s o c ia te d  w ith  e a c h  b o d y  s e p a r a te ly .
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be observed at the detector. Following BCV2 [40] we shall first describe the binary using 

a generalisation of the Finn-ChernofF (FC) convention described in Finn and Chernoff 

(1993) [63] (see Sec. IIIA). Using the FC convention we specify a fixed source frame 

defined by a set of orthogonal basis vectors {e f,e f,e f} . In the analysis presented in 

Ref. [63], Finn and Chernoff considered only binaries with non-spinning components. 

For these binaries there would be no spin-induced precession of the orbital plane and it 

made sense to specify e f =  L/v so that {ef, e f } would form a (permanent) orthonormal 

basis for the orbital plane.

However, for binaries consisting of spinning components, the orbital plane will precess 

and we specify a (time-dependent) orthonormal basis for the instantaneous orbital plane 

{ef (t), e f  (£)} relative to the (arbitrarily) fixed e f  basis vector:

_S/.i e f  x L N (t) _S,„ _  ef - l N (t) cos&L (t) /n i-7N
61 w ~  s i n eL (t)  ' e 2 W “  v - 17)

and e f (£) =  L/v(t) where we have temporarily made explicit the time-dependent quan

tities. These co-ordinate frames are shown in Fig. 2.1.

We measure the orbital phase of the binary’s components $ 5  from e f . To aid visu

alisation of this system it might be useful to note that as the orbital angular momentum 

Z/jv precesses, e f  will remain in the x — y plane of the fixed source frame. Note that 

4>s is defined as an angle measured in a particular frame whereas the previously defined 

accumulated orbital phase 4' is simply a function (an integral) of the instantaneous 

angular orbital frequency u> (see Eq. (2.10)). In general, 4>s(f) 7  ̂ \&. The relationship 

between these phases will be discussed more later (see Sec. 2.3.2).

Having defined {ef, e f } we are able to define the polarization tensors of the instan

taneous orbital plane { e f ,e f  }:

e f  =  ef <g> ef — e f <S> e f , e f =  ef ® e f + e f (8) e f (2.18)

where <g> represents the tensor or outer product The tensor product is defined such that 

a tensor a defined as the tensor product of two vectors b, c (i.e., a = b (g) c) will have 

elements = bl x cP.
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Source

k,(t)

Figure 2.1: The binary in the source frame. The left hand plot shows the binary’s orbital 
angular momentum L u  within the fixed source frame {ef, e f , e f }. We also show the 
orthonormal basis for the instantaneous orbital plane {ef,ef}. The right hand plot 
shows the binary within the orthonormal basis {ef, e f }• The separation vector of the 
binary’s components r  and the orbital phase $ 5  are marked on this plot.

We can write the unit vectors of the binary separation and relative velocity as

n  = e f cos $ 5  +  ef sin $ 5 , A = - e f  sin $ 5  +  e f cos $ 5  (2.19)

and from this the mass-quadrupole moment as

Q'j = -2  ( [ e f ] iJcos2 $ s  +  [ef]‘3 sin 2 $ s )  . (2 .2 0 )

In order to project the quadrupolar moment Q  of the system onto the detector we 

use the tensor P  as shown in Eq. (2.15). We will define the (fixed) radiation source
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Detector
Source

Detector

Figure 2.2: The radiation and detector frames. The left hand plot shows the fixed 
radiation frame { e f , e f , e f } and the fixed source frame { e f , e f , e f }. We choose e f  to
lie along the vector N  which points from the source to the detector. The right hand
plot shows the detector in the frame {ex , e y, e z} chosen so that the detector’s arms lie 
along ex and ey.

frame relative to our previously defined fixed source frame:

ef  — e f  cos $  -  e f  sin $  (2 .2 1 )

e f  = e f (2.22)

e f  =  e f  sin $  +  e f  cos $  (2.23)

where the $  is the angle between the vector N  which points from the source to the 

detector and e f. Similarly to how we defined ( e f , e f } we also define polarization 

tensors of the radiation frame (following the notation of BCV2 [40]):

T+ =  e f  0  e f  -  e f  <g> e f , T x =  e f  0  e f  +  e f  <g> e f . (2.24)

We also define the detector frame {ex , e y, e z} so that the detector’s arms lie along ex 

and ey. The radiation and detection frames are shown in Fig. 2.2.

The tensor P  will depend upon the sky position (9, <f>) and polarization angle i\)p of
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the source in relation to the detector. The inclination angle l of a binary system is the 

angle between the vector N  joining the binary and detector, and the binary’s orbital 

angular momentum L ,

L = cos"1 L  • N .  (2.25)

A circular orbit with inclination angle t ^  0 ,7r will make an ellipse on the plane of the sky 

(i.e., the plane containing and ). The orientation of this ellipse is described by the 

polarization angle t/’p- For a binary consisting of spinning components, both inclination 

l and the polarization angle V>P will be functions of time due to the precession of the 

orbital plane. Using the FC style convention, the polarization angle V>p is measured 

anti-clockwise from the semi-major axis of the ellipse made by projecting the binary’s 

orbit onto the plane of the sky to a line of constant azimuth 9 (i.e., a vertical line from 

the detector’s horizon). This is shown in Fig. 2.3. Note that there are two parts of the 

polarization angle shown on this figure; i) iJjr is the (constant) angle between the x-axis 

of the radiation frame e£ and 9 and ii) which is the angle between the semi-major 

axis of the ellipse made by projecting the binary’s orbit onto the plane of the sky and 

which will evolve as the binary precesses.

Note that during the relatively short duration of the inspiral we can make the ap

proximation that the sky position (9, <j>) of the source is constant. For sources that emit 

for longer duration in the detectors band of good sensitivity, such as pulsars that will 

be observed by LIGO or inspiral events that will be observed by LISA, it is necessary to 

include the time-dependence of the source’s sky position when calculating the detector’s 

response.

The antenna patterns F+ and Fx encode the detector’s directional sensitivity to 

plus (-f) and cross (x) polarization gravitational waves (see, for example Eqs. (4a,b) of 

ACST [12] or Eqs. (29) and (30) of BCV2 [40]) and are given by

F+(t) = ^ (l + cos2#) cos2<f>cos2ipR — cos9 sin4>sin2'^r , (2.26)

Fx (t ) = ^ (l + cos2 9) cos 2<̂> cos 2ipR + cos 9 sin 0 sin 2'ipR. (2.27)
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View from 
detector

Figure 2.3: The two small diagrams on the left show projections of a circular orbit onto 
the plane of the sky with inclination angle i — 0 and i — 7r / 2 . The diagram on the right 
shows the polarization angle ipp(t) measured anti-clockwise from the semi-major axis of 
the ellipse made by projecting the binary’s orbit onto the plane of the sky to a line of 
constant azimuth 0 (i.e., a vertical line from the detector’s horizon). We see that ^p(t)  
is the sum of the angles iptit) measured between the semi-major axis and and xJjr 
measured between and 0. Since the radiation frame is fixed, iJjr remains constant 
with time. As the binary precesses and therefore 'ipp(t), will evolve.
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The final form for the detector response is

hresp = “  -2  ( [e*]ij cos 2 $ s + [ef ] ‘j  sin 2<bs )  -2  ([T+J^ F+ + [Tx]y Fx ) . (2.28)

Q P

Note that P  does not vary with time and that the time evolution of the binary is encoded 

within Q.

2.2.4 Param eters of the binary

17 physical parameters are required to fully describe a generic spinning binary system 

relative to a particular observer. These parameters are the masses of the binary’s com

ponents, m\ and m2 (2); the spins of the binary’s components, S \{t) and ^ ( t )  (6 )» the 

orbital angular momentum of the system, L]^(t) (3), and the orbital phase $s(£) (1) at 

a particular time £; the eccentricity e and the point of perihelion (or aphelion) (2 ) and 

the distance and direction of the observer from the system N  (3). Note that in this 

analysis we assume that the emission of gravitational waves has circularized the binary’s 

orbit before it is observable (see Sec. 2.2.1).

The set of parameters listed here is not unique since various parameters can be 

recoded in terms of other parameters with no loss of information. For instance specifying 

both component masses mi and m2 is obviously equivalent to specifying both total 

mass M = mi + m2 and the symmetric mass ratio 77 = mim2/M 2 or the reduced 

mass [i = m \m 2 /M . The absolute separation of the binary’s components can be found 

using r  =  {MJtu2) 1/ 3 (from Kepler’s third law in geometric units) where oj is the orbital 

frequency. The direction of the orbital angular momentum relative to the detector can 

be specified by the inclination angle 1 and polarization angle and its magnitude is 

given by Eq. (2.13). We can write the spins as Si = X i^ iS i ,  where Xi 1S a dimensionless 

parameter such that 0 < < 1 for compact objects.

The parameters used to describe the system relative to an observer can be classified 

into two groups: intrinsic and extrinsic parameters. Intrinsic parameters describe the 

system itself and include its masses and spins whereas the extrinsic parameters describe 

the system’s distance and orientation to an observer. This distinction proves significant
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in the design of the detection template families we use to search for spinning systems as 

it turns out that, in general, to determine intrinsic parameters we need to include them 

in the templates we use to matched-filter our detector data whereas extrinsic parameters 

can be found automatically by maximising over the matched-filter output.
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2.3 Development of detection template families to capture 

gravitational waves from spinning systems

In the introduction (Sec. 1.4) we showed that the optimal method to detect a known 

signal in a noisy data stream is to perform matched-filtering using templates that accu

rately represent the signal weighted (in the frequency domain) by the power spectrum 

of the detector noise. We cannot use the target model waveform (described in Sec. 2.2) 

as a detection template since the large number of parameters needed to describe the 

waveform (i.e., 17, or 15 if we assume circular orbits) mean that we would require an 

intractably huge number of templates to cover the parameter space (i.e., the range of 

masses, spin magnitudes and orientations) we wish to search.

D etection tem plate  families

Instead of using the target model, we will make use of a detection template family (DTF) 

that is designed to capture the essential features of the true gravitational wave signal (as 

approximated by the target model) but which depends on a smaller number of parame

ters. Detection templates might be parameterised by either physical parameters of the 

source or, as in the case of the DTF we will use, by non-physical or phenomenological 

parameters that describe the properties of the observed waveform rather than the source 

itself.

At their best, DTFs can reduce the computational requirements of a gravitational 

wave search while achieving essentially the same detection performance as exact tem

plates (i.e., as generated using the target model). However, DTFs can include non

physical signal shapes that may increase the number of spurious triggers caused by 

noise (i.e., false alarms) which will in turn require us to set larger SNR thresholds and 

will affect the calculation of upper limits (see Sec. 2.8). Detection template families are 

also less adequate for parameter estimation, since the mapping between the detection 

template parameters and those of the binary are not one-to-one, this is why they are 

called detection template families.

Apostolatos (1995) [10] introduces the fitting factor (F F ) as a quantitative measure 

of how well a given family of templates can “fit” a predicted gravitational waveform. The
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value of the fitting factor gives the reduction in signal to noise ratio (SNR) caused by 

using a given template family rather than the true signal, this is described in more detail 

in the next few Sections. In the terminology of Damour et al. (2001) [53]) we would 

say that DTFs are effectual (good fitting factor with target model) if not particularly 

faithful (i.e., poor estimation of parameters of target model).

The distance-range of a search for gravitational wave signals emitted by astrophysical 

systems is limited by the lowest SNR for which a true signal can be distinguished from 

noise. Using a detection template family with a FF = 0.9 would result in a 10% drop in 

distance-range and a corresponding (1 — 0.93 «)27% drop in detectable event rate when 

compared with using “perfect” templates with FF = 1. Apostolatos measures low fitting 

factors when using non-modulated PN templates to search for spin-modulated gravita

tional wave signals (Sec. VIII of Apostolatos (1995) [10]. Results from this analysis will 

be discussed later in this Section). These results clearly motivate the development of a 

detection template family which can accurately model the spin-induced modulation of 

the gravitational wave signal. We will now review the analysis of the effects of precess- 

ing, inspiraling binary systems and see how this has informed the development of a new 

detection template family designed to capture their gravitational wave emission.

2.3.1 Previous analysis on th e  effect o f spin on gravitational waves

In ACST [12] the authors consider a simplified form of the target model which neglects 

other post-Newtonian corrections in order to emphasise the effects of spin upon upon 

the system’s dynamics and gravitational wave emission. The authors concentrate their 

analysis on two special binary configurations; i) mi ~  m2 which could represent a NS- 

NS system or a symmetric BH-BH system and ii) S 2 =  0 which could represent a very 

asymmetric system (mi m2) for which the spin of the lower mass component could 

be neglected. For case i) the authors make the additional assumption that spin-spin 

effects can be ignored since they occur at a higher post-Newtonian order (2PN), and are 

therefore typically smaller than the leading spin-orbit term (1.5PN). Spin-spin effects 

are not present for a system with only one spinning component as in case ii). Making 

the assumptions described the authors were able to write the equations governing the
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Figure 2.4: The gravitational waveforms we expect to observe from the late inspiral 
phase of two different neutron star - black hole systems, one consisting of non-spinning 
bodies (upper plot) and the other consisting of maximally spinning bodies (lower plot). 
Both systems are identical apart from the spin of their component bodies. The spin- 
induced precession of the binary’s orbital plane causes modulation of the gravitational 
wave signal and can be clearly seen in the lower plot.
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Figure 2.5: Spectrograms showing the gravitational waveforms we expect to observe 
from the late inspiral phase of two different binary systems, one consisting of non
spinning bodies (upper plot) and the other consisting of maximally spinning bodies 
(lower plot). Both systems are in quasi-circular orbits (i.e., not eccentric, although the 
binary with spinning components will precess) and are identical apart from the spin 
of their component bodies. The spin-induced precession of the binary’s orbital plane 
causes modulation of the gravitational wave signal and can be clearly seen in the lower 
spectrogram. The motion of LISA will cause similar modulations in the gravitational 
waves it will observe.
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system’s precession as

** = (2+£ ) ^ x*  (2-29)

^ = ( 2 + S ) ^ x L n  (2-3o)

where J  = L  + S  and S  = S i + S 2 5. For these ACST configurations the authors 

constructed approximate solutions to the precession and inspiral equations and were 

able to gain insight into the dynamics of these binaries during their inspiral.

The authors identify two distinct evolutionary behaviours of the binary: i) simple 

precession occurs when total angular momentum J  > 0 and the orbital angular mo

mentum L/v and the spin angular momentum S  precess about a near constant J , ii) 

transitional precession occurs when L  and S  are anti-aligned and of the same approx

imate magnitude such that J  ~  0 and the system temporarily “loses its gyroscopic

bearings and tumbles in space”. As discussed previously in Sec. 2.2.2, \S\ will remain 

almost constant during the course of inspiral while \L\ will decay with time. Therefore, 

for transitional precession to occur we require that initially \L\ > |«S| and that L  and S  

be approximately anti-aligned with each other.

The evolution of orbital L, spin S  and total angular momentum J  during simple 

and transitional precessions is shown in Fig. 2.6. Considering the simplified precession 

equations (Eqs. (2.29) and (2.30)) we can show that L  and S  maintain fixed directions 

relative to each other as they precess about J . We can write

k e eS - L  (2.31)

where k, and therefore the opening angle cos-1k. between L  and S, will remain constant 

throughout the inspiral 6. The decay of \L\ and \J\ during the inspiral as \S\ remains 

approximately constant will cause the opening angle Ajr, between L  and J  to increase

5T o  d e r iv e  t h e s e  s im p lif ie d  p r e c e s s io n  e q u a t io n s  ta k e  t h e  p r e c e s s io n  e q u a t io n s  g iv e n  in  E q . (1 1 )  o f  
A C S T  [12] a n d  n e g le c t  a ll  s p in - s p in  a n d  h ig h e r  o r d e r  te r m s . W e  u s e  t h e  r e s u lt  t h a t  J  x L  =  (L  +  S ) x L  =  
(L x L)  +  ( S  x L)  w h ic h  r e d u c e s  t o  J  x L  =  S  x L  (a n d  s im ila r ly  J  x S  =  L  x S)  t o  w r ite  t h e  r ig h t  
h a n d  s id e  o f  t h e  s im p li f ie d  p r e c e s s io n  e q u a t io n s  in  te r m s  o f  J.

6T o  p r o v e  t h a t  =  S -L  is  a  c o n s ta n t  o f  t h e  m o t io n  c o n s id e r  t h e  t im e  d e r iv a t iv e  d ( S - L ) /d t  =  S - L + L - S .  
W h e n  e v a lu a t in g  t h e  tw o  te r m s  o n  t h e  r ig h t h a n d  s id e  b o t h  w ill  c o n ta in  c r o s s  p r o d u c t s  o f  a  v e c to r  w ith  
i t s e l f  a n d  th e r e fo r e  b e  e q u a l t o  z er o .
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Figure 2.6: The evolution of orbital angular momentum L , spin angular momentum 
S' and total angular momentum J  during simple and transitional precession. In case 
i) only simple precession occurs as the total angular momentum J  remains relatively 
large and roughly constant in direction while L  and S  precess about it. In case ii) 
the evolution undergoes simple precession at early times (t \ ) until at around £2 , L  has 
become anti-aligned with and similar in magnitude to S  so that J  = L  +  S  ~  0. The 
system will undergo a period of transitional precession, during which the system will 
tumble randomly in space, until \L\ < l^l and simple precession is resumed (£3 ). This 
figure is based upon Fig. 2 of ACST [12].

during the inspiral. This is shown in Fig. 2.6. The random nature of the motion of J  

dining transitional precession makes the accurate prediction of the resulting waveform 

practically impossible and it is therefore fortunate that most inspiral evolutions do not 

exhibit transitional precession (this is discussed further in Sec. 2.3.2).

From the simplified precession equations (Eqs. (2.29) and (2.30)) we see that during 

simple precession L  and S  will precess about J  with angular frequency

‘* . = ( » £ ) IS = £  <“ >

where we have also defined the precession angle a  (see Fig. 2.7). The authors of ACST 

[12] considered cases where \L\ |S | and where (S') »  \L\ and found that the evolution

of the precession angle could be approximated by a power law in orbital frequency
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Figure 2.7: During simple precession the orbital angular momentum L  of the (ACST 
configuration) binary will precess about the total angular momentum J  with frequency 

The opening angle Al and the precession angle a  are also identified. This figure is 
based upon Fig. 4 of ACST [12].
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1-8 (X + f e )  (t ^ T )  fOTlSl » l i l-

Apostolatos (1995) [10] introduces the fitting factor (FF) as a quantitative measure 

of the reduction in SNR caused by using a particular family of templates in order to 

capture a predicted gravitational waveform. The fitting factor is given as

FF  =  maxAl.M; (2.34)
v (h, h )  (2A1)A2...>-r Ai,A2...)

where h is our best prediction of the gravitational waveform that will be observed and

T  is a template designed to capture h and which is parameterised by Ai, A2   The

denominator ensures that 0 < FF < 1. Apostolatos (1995) [10] writes the detector 

response to a precessing, inspiraling binary as

hresM) -  x AM x PM (2.35)

7P le a s e  n o t e  t h a t  a n  error  o c c u r s  in  t h e  fir st b ra ck e ted  te r m s  o f  th e  r ig h t h a n d  s id e  o f  E q . (4 5 )  o f  
[12]. T h e  te r m  1 +  3 M i/4 M 2  s h o u ld  in  fa c t  r ea d  1 +  3 M 2 / 4 M 1 a n d  a p p ea r s  c o r r e c t ly  in  E q . (2 9 )  o f  [10].
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where hc(f)  is a non-modulated carrier signal and AM and PM represent amplitude and 

phase modulations caused by spin-induced precession (see Eq. (17) of Apostolatos (1995) 

[10] and note that the final multiplicative factor is approximately unity). Apostolatos 

investigates the relative influence of phase and amplitude modulations upon the fitting 

factor when the templates used to detect spin-modulated gravitational waves do not 

themselves include the effects of spin. It was found that at worst, amplitude modulation 

alone can only account for fitting factors dropping to ~  0.9 whereas phase modulation 

can cause the fitting factor to drop below 0.6.

Apostolatos also investigated the effect of the opening angle between spin and orbital 

angular momentum (i.e., cos-1 k) on the fitting factors. When considering a maximally 

spinning 10M© BH and a non-spinning NS, FF  < 0.9 were measured for around a 

quarter of systems with a cos-1 k =  30°. When the opening angle is increased to 

cos-1 k = 140° then FF  < 0.9 are measured for nearly all systems.

Building on work in ACST [12], Apostolatos suggests in Refs. [10, 11] that the spin- 

induced modulational effects of the gravitational wave signal’s phase could be captured 

by adding modulational terms to the standard non-modulational (NM) frequency do

main phasing of templates used to search for the inspiral of binaries with non-spinning 

components (see Eq. (12) of Apostolatos (1996)) [11]):

^ S p in —M o d u la ted ( / )  > V’N o n —M od u la ted  (/) "t" C COs(5 J3f  ̂ ). (2.36)

This is the Apostolatos ansatz. It makes sense that the modulational term occurs at 

/~ 2/3 since this corresponds to the power law evolution of the precession angle when 

\S\ >> \L\ (see Eq. (2.33)). An implementation of this detection template family (which 

we shall refer to as the Apostolatos family) was tested in Grandclement et al. (2003) [76]. 

Although the fitting factor increased by around 15 — 30% compared to using templates 

with no spin-modulation included, the fitting factors were still only ~  0.7 which would 

lead to a drop in expected event rate of up to 80%. We will now describe the work of 

Buonanno, Chen and Vallisneri which led to the development of a detection template 

family which captures spin-modulated gravitational waves with FF  >0.9 and which we 

shall use to search for gravitational waveforms in real LIGO data.
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2.3.2 BC V2 analysis of spinning binary system s

In BCV2 the authors used the target model described in Sec. 2.2 to further investigate 

the effects of spin upon the observed gravitational waveform which led to the develop

ment of a new detection family (which we shall refer to as the BCV2 DTF). The BCV2 

analysis considers a wider range of systems than ACST and do not limit themselves the 

ACST configurations previously discussed (i.e., either mi ~  m2 or S 2 = 0). In BCV2 

the authors consider BH-BH systems with masses (20,10)M0 , (15,15)M0 , (20,5)M0 , 

(10,1O)M0 and (7,5)M© consisting of maximally spinning BHs and NS-BH systems 

with masses (1.4,1O)M0 consisting of a maximally spinning BH and a non-spinning NS 

(Sec VIB and VIC of BCV2 [40]) . We shall refer to these as BCV2  configurations. The 

choices of spin are not based upon astrophysical results (most of the spin measurements 

summarised earlier were published after BCV2 [40]) but to emphasise the effects of spins 

upon the evolution and emission of these systems. We summarise the findings of their 

analysis here.

When ignoring spin-spin coupling (but still considering binaries consisting of two 

spinning bodies) the authors of BCV2 [40] find a generalisation of Eq. (2.31) for the 

opening angle between the orbital angular momentum and the spins:

  N ' &efi /c\ oh'N
Kef[ = (2.37)

where we have defined an effective spin

The authors of BCV2 [40] investigate the regularity that transitional precession 

occurs. For transitional precession to be observed, we require that |2//v| = \S\ < |5i| +

1521 before the system plunges, i.e., < /schw where we assume that plunge occurs

at the Schwarzschild radius. For transitional precession to be observed, they find that 

the symmetric mass ratio must be less than some limiting value rj < 0.22, see Sec. HIE

of BCV2 [40] 8. Of the BCV2 configuration binaries considered, only the (20,1O)M0 ,

3T h e r e  a p p e a r s  t o  b e  a n  error  in  E q . (5 9 )  o f  B C V 2  [40] in  w h ic h  b o t h  in e q u a lit ie s  s h o u ld  b e  r ev e r se d .
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(20,5)Mq and (1 0 , 1.4)M© binaries satisfy the condition on 77. The authors of BCV2 

[40] considered > 200 initial configurations of each of these binaries and observed no 

transitional precession of the (20,10)M© and (10,1.4)M0  binaries and only a few cases 

of transitional precession of the (20,5)Mq binary. Indeed, for the (1 0 , 1.4)M© binary, 

consisting of a maximally spinning BH and a non-spinning NS, the magnitude of the 

spin angular momentum was always greater than the magnitude of the orbital angular 

momentum meaning that transitional precession could never occur for any configuration 

of the binaries spin and orbital angular momentum.

The authors of BCV2 [40] also investigated the effects of the spin terms on the 

evolution of the orbital angular frequency ui (Eqs. (2.3), (2.5) and (2 .6 )) and on the 

accumulated orbital phase 4/ (Eq. 2.10). They find that the effects of spin on the accu

mulated orbital phase 4> would be largely non-modulational and could be well captured 

by the phasing used to describe binaries with non-spinning components. It is important 

to acknowledge that although the accumulated orbital phase 4* is not modulated by the 

effects of spin, the phase (and amplitude) of the gravitational waveform observed at the 

detector will be modulated by the spin-induced precession of the orbital plane and that 

these effects should not be neglected. The phase 4>s(£) which enters the general expres

sion for detector response hresp (see Eq. (2.28)) is measured with respect to basis vector 

e f  which is always in the instantaneous orbital plane (i.e., jL/v(£)-ef (t) = 0, see Fig. 2.1). 

In general, 4>(t) 7  ̂ #(£) since ef (and also ef) can have arbitrary rotation about L ^.  

In BCV2 [40] the authors define a new precessing convention for the basis {ef, e f } such 

that 4>(£) = 4/(t) which allows the use of 4f(/) when we write down the detector re

sponse hreSp. From their earlier observations we know that the non-modulational phase 

V>NM (/) used to describe the phasing of binaries with non-spinning components is a good 

approximation to 4/.

In  t h e  fir s t  c a s e  w e  s h o u ld  d e m a n d  t h a t  t h e  m in im u m  fr e q u e n c y  / “ Ins for t r a n s it io n a l  p r e c e s s io n  t o  
o c c u r  b e  le s s  t h a n  t h e  S c h w a r z sc h ild  fr e q u e n c y  / s chw w h ic h  w o u ld  le a d  t o  / “ a n s / / s c h w  ^  1 a n d  th e r e fo r e  
V <  0 .22.
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2.4 The BCV2 detection template family for spinning sys

tems

Following their analysis the authors of BCV2 [40] proposed a detection template family 

representing a generalisation of the Apostolatos ansatz designed to capture gravitational 

waveforms from precessing, inspiraling binaries in the adiabatic limit. Significantly we 

will find in Sec. 2.4.1 that the majority of the parameters of this DTF are extrinsic 

parameters that can be found in a computationally cheap manner by maximisation of 

the measured SNR. From BCV2 [40] Eq. (86) we write the form if the DTF:

^ "t" ’i&k+n)Ak(<f')
,k= 1

g27ri/to giV’NM ( / )  ( 2  3 9 )

for /  > 0 and h(f)  = h*(—f ) for /  < 0. The a ’s represent the global phase, the strength 

of the amplitude modulation due to spin-induced precession, the relative phase of these 

modulations to the leading order amplitude ( / “7/6) and the internal complex phase of 

the modulation [40]. The (real) amplitude functions Ak depend on the precise form of 

the template chosen. The function 0nm is the non-modulated phasing of a non-spinning 

binary and is given as power series of gravitational wave frequency /:

V'nm(/) = / -5/3 (V'o + Vh/1/3 + 02f 2/3 +  0 3 / • • • ) • (2.40)

We have discussed in Sec. 2.3.2 that the non-modulated phase 0 n m  used to describe a 

binary with non-spinning components has been to capture well the accumulated orbital 

phase of binaries with spinning components. In practice we find that the phasing of the 

gravitational wave can be captured well using only the -00 and 0 3  terms and we will 

neglect the other terms in this expansion 9.

In BCV2 [40] the authors suggest and test three forms of the detection template 

family before recommending the third family which they refer to as (0o, 03, (3)q (Eq. (90)

9 H e r e  w e  fo llo w  c o n v e n t io n  s e t  b y  d a t a  a n a ly s t s  a n d  h a v e  m u lt ip l ie d  th e  s u b s c r ip t  la b e ls  o f  t h e  0  
v a lu e s  u s e d  b y  B u o n a n n o ,  C h e n  a n d  V a llis n e r i b y  tw o . H e n c e , 0 3  h ere  is  c o m p le te ly  e q u iv a le n t  t o  t h e  
■03/2 u s e d  in  B C V 2  [40] a n d  s im ila r ly  for  t h e  o th e r  te r m s  in  t h e  e x p a n s io n  o f  0n m -
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of BCV2 [40]):

(ilfotoPh :

M- • •; / )  = / -7/6 [(«l + i<*2 ) + (<*3 + *<*4) cos(/3f~2/3)

+ (a5 + ia6)) sin ((3f~2/3)\

0(fcut ~ f)e 2nif to exp i tyof-5/3 + ^ 3 f 2/3] • (2.41)

Rewriting Eq. (2.41) similarly to Eq. (2.39) we find the three real amplitude functions, 

Ak(fcut,P;f) of (V>o,^3,/?)6 to be

M f c V L ' f r J )  =  f ~ 7/6S(fcut  -  f )

M f c u t , 0 \ f )  =  r 7 / 6c o s ( 0 f - V 3) 0 ( f c M -  f )

M f c u t , 0 ; f )  =  r 7/6sm (/3T 2/3)0(/cUt- / ) .  (2.42)

The (3 parameter varies to capture the effects of spin modulation. We see that in 

the Apostolatos ansatz Eq. (2.36), the term cos(/5/-2/3) is an approximation for the 

precession angle a when \S\ »  \L\ (see Eq. (2.33)). The parameter (3 takes a similar 

role in this DTF. In Buonanno et al. (2005) [37] (known as PBCVT) the authors provide 

some physical interpretation of the (3 parameter identifying it as representing the rate 

of change of the precession angle a, i.e., Clp = da/dt at the frequency band of good 

detector sensitivity.

The function 0 is the Heaviside step function which is defined as

0 {x) = <
0 x < 0

1 x > 0

The parameter / cut is used to terminate the template when we no longer have confidence 

that the template will provide a good match to the signal (i.e., at the late stages of 

inspiral when the adiabatic approximation is no longer valid). For gravitational wave 

frequency /  < / cut then 0(fcut — f )  — 1- The choice of / cut for our templates is discussed 

in Sec. 2.5.2.
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Buonanno, Chen and Vallisneri measured the fitting factor of this detection tem

plate family and their results are presented in Sec. VIC of BCV2 [40] (see Fig. 11 

in particular) 10. The BCV2 DTF described here (^ 0 , ^ 3 , /3)e outperforms the other 

variants of the DTF they considered, (V'Cb V>3>/^)4 and (V'o>V;3)2> which have fewer a 

terms and therefore less degrees of freedom with which to maximise their overlap with 

a given target waveform. The BCV2 DTF also outperformed the standard (physically 

parameterised) stationary phase approximation templates. Average fitting factors of 

~  0.93 were measured for the NS-BH binaries and even higher > 0.97 for the BH-BH 

binaries considered (i.e., the BCV2 configurations discussed in Sec. 2.3.2). Lower fitting 

factors for the asymmetric systems (e.g., (1.4,10)M0 NS-BH binaries) is unsurprising 

since we expect spin modulation to have most effect on these systems thereby making 

their waveforms more complicated and thus harder to capture accurately.

2.4.1 M axim isation o f overlap over extrinsic param eters

When listing the parameters used to describe a binary system consisting of spinning 

components we divided the parameters into two categories: intrinsic parameters which 

describe properties of the system itself (e.g., masses, spins) and extrinsic parameters 

which describe the observers relation to the system (e.g., amplitude of observed emis

sion, inclination and polarization angle). Now considering the problem of finding the 

template h within our DTF (as given in Eq. (2.39)) which yields the highest overlap with 

a given target signal s, we find that we can usefully separate the parameters used to de

scribe our templates into these categories. For the extrinsic parameters used to describe 

the templates (e.g., ipo, 'ips, (3 and / cut) we must construct templates corresponding to 

each set of these parameters we wish to search for. Conversely, we are able to search 

automatically through the range of our intrinsic parameters (e.g., to and ai...6) for the 

values which yield the best overlap.

To begin with we will consider the maximisation of the overlap over time. The

10T h e  a u t h o r s  o f  B C V 2  [40] u s e  a  d o w n h ill  s im p le x  m e th o d  c a lle d  AM0EBA[143] in  o rd e r  t o  o b t a in  th e  
b e s t  p o s s ib le  m a t c h e s  b e tw e e n  t h e  D T F  a n d  t h e  ta r g e t  w a v e fo r m s. T h is  m e th o d  w o r k s  w e ll for  s ig n a ls  
w ith  h ig h  S N R  b u t  w o u ld  n o t  b e  e f fe c t iv e  in  s e a r c h in g  for  w e a k  s ig n a ls  in  r e a l d e t e c t o r  d a ta .
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overlap between a time-shifted template h(t — to) and a signal s is given by

(2.43)

Note that in the case of no time-shift (to = 0) we re-obtain the formulae for the inner 

product given in Eq. (1.98). Rather than evaluate the overlap separately for every value 

of to (in reality our time-series will be discretized so there will be a finite number of 

values) we can employ the inverse Fourier transform to evaluate all values of to auto

matically. Finding the value of to which maximises the overlap is simply a case of noting 

the time at which the maxima in the resulting overlap time series occurs. We use the 

computationally efficient Fast Fourier transform (FFT) to carry out forward and inverse 

Fourier transforms (see Sec. 5.3 and e.g., Chapter 12 of Ref. [143] for documentation of

Now we shall consider the maximisation of the overlap over the a parameters. Con

sider a template characterised only by its extrinsic parameters h(to, &k) which has been 

normalised such that the inner product (h, h) = 1. The overlap between the template h 

and the signal s is

FFTs).

max (s,h(t0,a k)) .
to ,(*k

(2.44)

We find it expedient to orthonormalise our amplitude functions \ Ai, A j j  = Sxj and then 

define our basis templates as

M ‘o ;/)  =  

hk+n(to;f) = (2.45)

The orthonormalisation of the amplitude functions, A  —> A  is a lengthy procedure and 

is described in the Appendix, Sec. 5.2. We are able to write our original template h in 

terms of our basis templates hk'-

2 n

(2.46)
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The overlap between the template h and a signal s would be:

2 n
max (s, h(to, ak)) = max max V  ak (s, hk(to) ) . 
to,ak to cik '

(2.47)
k = 1

We will require that our templates be normalised and find that this will lead to a 

constraint on the ak values

(h,h) = 1

^   ̂(oikhki 
k= 1 

2 n

fc=i 
2 n

(2.48)
Jt=l

where we have made use of the fact that since the amplitude functions A k are orthonor

mal, the basis templates are each orthonormalised, (hi, hj ̂  — Sij. We can find ak that 

maximise the overlap by employing the method of Lagrange multipliers

2 n
A = dfc (s, hk(t0)^ -  A

fc=i

2n

Lfc=l
(2.49)

which leads to

J, hk(t0)^

] / Y ° h  (s'hjito))'
(2.50)

Substituting Eq. (2.50) into Eq. (2.47) we find the overlap maximised over ak

max (s,h(t0, ak)) —
to ,a k

2n \ 2 

i=i
(2.51)

In the case where the data to be filtered x(t) contains both signal s(t) and noise n(t),
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i.e., x(t) = n(t) + s(t) we can define the SNR as

max
to,Olk

2
(2.52)

The implementation of the SNR calculation including the maximisation over time and 

a parameters is described in the Appendix, Sec. 5.3.

2.4.2 Testing the detection tem plate fam ily

h:

• The output of filtering (x , h) will be a Gaussian distributed variable if x(t) is a 

Gaussian distributed variable.

• The expectation value of (n, h) will be zero if n(t) =  0 .

• The variance of (n, h) will be unity if we use a normalised template such that

Therefore, for a Gaussian distributed variable x  with mean 0  and variance 1 , i.e. 

x ~  N{0 , 1) we expect that (x, h) ~  N( 0 , 1). Also, for a Gaussian distributed variable

We have shown in Secs. 5.1.2 and 1.4.1 that when filtering data x with a single template

(h, h) = 1 .

x with mean p and variance cr2, i.e. x ~  iV(/z, a2) we have

(2.53)

where n is the number of degrees of freedom of the x 2 distribution. The x 2 has mean n 

and variance 2n.

From Eq. (2.52) we see that

For x  ~  Af(0,1) we expect I x , hj(to) \  ~  AT(0,1) and therefore that p2 ~  x 2n (using the

range of n used in the summation in this equation).
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■ r n p a s u re d  output Inyasured  output

Figure 2.8: Histograms of p2 when f3 =  0 (left hand plot) and when /3 ^  0 (right hand 
plot). As expected p2 is distributed as a Xn with the number of degrees of freedom n 
equal to the number of non-zero basis templates hi used to calculate p2.

In general, when /3 ^  0 we have 6 (non-zero) basis templates hj and we would 

therefore expect p2 ~  xi- When (3 = 0 we find that the (orthonormalised) amplitude 

functions A 2 and A 3 become zero at all frequencies (see Eqs. (5.20), (5.35) and (5.51)). 

Consequently we find that 4 of the 6 basis templates hj defined in Eq. (2.45) become 

zero at all frequencies. Therefore, we will expect that when (3 = 0, p2 ~  xi- Figure 2.8 

shows histograms of p2 measured using our detection template family (with (3 = 0 and 

/? A 0) when filtering Gaussian white noise with zero mean and unit standard deviation. 

The response of our templates is as we would expect.

We also expect that for a normalised template h that we would obtain an overlap 

of unity if we were to use a template as our input data i.e., x = h. Figure 2.9 shows 

the overlap measured (top plot) when we perform this test. As expected an overlap of 

unity was measured.
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Figure 2.9: Plot showing the overlap (p2) measured when filtering a template h with 
itself. As expected we measure an overlap of unity at the end time of the waveform.



2.4.3 E stim ating non-physical param eters in term s o f physical param

eters

We are able to construct approximate relationships between the physical parameters 

M, 7] and x  of our spinning binary system and the non-physical parameters used in the 

detection template family V'o, *Pz and P- h1 Eq. (3.3) and (3.4) of Arun et al. (2005) 

[15] the phase of a gravitational wave inspiral is given to 3.5PN in the Fourier domain:

3 N
=  2nftc -(/)c- -  + ^ — -EJ 2 a^ k (2-55)

' k=0

where v = (7rM /)1/3, M  — m\ + m2 and 77 =  17111712/ M 2. In BCV1 [41] (see Sec. VI) 

it was noted that the phasing of the target model could be captured well using only 

the ipo and V>3 terms in the expansion of the non-modulational phase of the templates 

(see Eq. (2.40)) and setting the other ip coefficients equal to zero. The values of the a 

coefficients in Eq. (2.55) corresponding to the same order in frequency as ipo and ips are 

ao =  1 and 0 3  =  — 167T respectively. Equating the terms of Eq. (2.55) with the ipo and 

ip3 terms of Eq. (2.40) corresponding to the same order in frequency we find

*  = (2-56) 
3 7T*/3

( 2 ' 5 7 )

From ACST [12] we find that the evolution of the precessional angle ap can be 

approximated by power laws of /  in 2 extreme cases; \L\ »  |5 | and \S\ »  \L\. The first 

case, when \L\ \S\, corresponds to a binary with either comparable masses or which

is at the early stages of inspiral (i.e., large separation). The second case, \S\ \L\,

corresponds to a binary with small mass ratio (i.e., large mass asymmetry) or which 

is at the late stages of inspiral (i.e., small separation) [37]. In Fig. (3) of [91], Kidder 

shows the evolution of \L\ and \S\ with separation r for both an equal mass binary and 

a binary with a small mass ratio. This figure effectively illustrates the regimes during 

which the two extreme cases |L| »  |S| and \S\ »  \L\ are relevant.
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When |S\ »  \L\ we find 11.

ap(f) ~  3.87T (2.58)

We use the parameter (3 as the coefficient in the power law, ap( f ) = (3f 2/ 3 and thus 

find that

/3 oc (2.59)

In the analysis of [12] the authors assume either that m\ = m2 (meaning that spin-spin 

coupling can be ignored) or that 5 2  = 0  which would correspond to systems with small 

mass ratio, e.g., the inspiral of a NS into a spinning BH. Asymmetric mass systems 

mi >  m2 can be modelled as systems with only a single body spinning since even if 

both systems were spinning maximally |5 i| |^ 2]- Maximal value of (3 occurs when

well matching binaries with |5 | |L| but is shown to match well with systems with

The detection template formula Eq. (2.41) describes a continuous multi-dimensional 

manifold containing every possible waveform that this family can generate. We can also 

imagine another manifold containing every possible gravitational waveform we might 

observe from a binary with spinning components. The parameters used to describe 

the detection templates/signals act as the co-ordinates on these manifolds. Figure 2.10 

shows the continuous manifolds of signals and templates. We must now select a finite, 

discretely spaced subset of points on the continuous detection template manifold which 

will form the bank of templates we shall use to search for gravitational wave signals 

from binaries with spinning components. There are two important decisions to be made

11P le a s e  n o t e  t h a t  a  s m a ll  error  a p p e a r s  in  E q . (4 5 )  o f  [12]. T h e  fa c to r s  1 +  3 m i / 4 m 2 s h o u ld  in  fa c t  
rea d  1 -I- 3 m 2 / 4 m i .  E q . (4 2 )  o f  [12] s h o w s  t h e  c o r r e c t  fa c to r  a s  d o e s  [37].

X = 1-

Using the /  2/ 3 power law approximation of ap(f) is only expected to perform

\L\ »  |5| [40].

2.5 Creating template banks
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Signal manifold

7* Manifold of co n tin u o u s  
te m p la te  family

x  D iscre te  bank  of
><x ^ rx X  te m p la te s

Figure 2.10: Schematic representation of the signal and continuous detection template 
family manifolds as 2 dimensional surfaces. The signal manifold (green) contains all 
the possible gravitational waveforms we might observe from a binary with spinning 
components. The continuous detection template family manifold (blue) contains all the 
waveforms that can be represented by our detection template family Eq. (2.41). We use 
the metric (of the intrinsic parameters, Eq. (2.62)) on the continuous detection template 
family in order to choose a finite set of templates (blue crosses) which we refer to as 
our template bank. We place the templates of our bank such that for any point chosen 
within the region of the continuous detection template family manifold we wish to cover, 
an overlap (or match) greater than the specified minimal match will be obtained with 
one of the templates in the bank. The fitting factor (previously discussed) describes the 
separation of the signal and template manifolds. If the fitting factor was unity for a 
region of parameter space the manifolds would be appear to touch in that region.

in choosing the templates for our bank: i) we must choose the parameter space we 

would like our template bank to cover (i.e., the range of masses and spins of our target 

waveforms we are interested in capturing) and ii) the spacing of the templates within this 

region of parameter space which will in turn directly influence the number of templates 

we will have in our bank and the computational cost of the search. We wish to space 

our templates as sparsely as possible (in order to minimize the computational cost of 

the search) while also ensuring that we will achieve good matches for any point on the 

continuous detection template manifold with one of the templates in the bank. We will 

consider the question of template spacing and placement first.
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2.5.1 Calculating th e m etric on a continuous detection  tem plate man

ifold

Following the geometric formalism introduced by Balasubramanian et al. (1996) [19] 

and Owen (1996) [111] we will find a metric on the manifold of continuous detection 

template family which will inform our choice of template spacing. Our templates are 

parameterised by extrinsic parameters /x and intrinsic parameters A, i.e., h(/x, Aa) where 

a is an index which ranges through all the different intrinsic parameters A (i.e., a is not 

an exponent).

We consider two templates with slightly different parameters, A) and h(fi + 

A/x, A+AA) and calculate the match between them (from Owen (1996) [111] Eq. (2.10)):

M{A, AA) = max^A/x )̂» M/-* + A/x, A + AA)). (2.60)

We automatically maximise over the extrinsic parameters. Therefore, the match de

scribes the proportion of the optimal match (unity for normalised templates) measured 

when using templates with intrinsic parameters differing by AA. Expanding the match

M  as a (Taylor) power series about AA = 0 we find

dM  1 d2M  uM(A, AA) ~ 1 + —  AA° + ̂ ^ -^ A A -A A ‘ + . . . (2.61)
^   y —

~0

where we neglect the first derivative in this expansion since it will tend to zero around 

the maxima of M  at AA = 0 and neglect terms beyond the second derivative. Here 

the indices a and b both range through all the different intrinsic parameters (i.e., they 

are not limited to 0,1,2,3). We define the metric on the intrinsic parameter space 

of the manifold of the continuous detection template family (from Owen (1996) [111] 

Eq. (2.12)):

.. .  1 d2M  /n
9ab{ ) =  ~ 2 d A A a d A A 6  ̂ ^
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for AA ~  0 which allows us to write the mismatch as (from Owen (1996) [111] Eq. (2.13)):

1 -  M  ~  gijAXaAXb (2.63)

We can use the metric g to choose the largest spacings AA of our intrinsic parameters

In Balasubramanian et al. (1996) [19] the authors define the metric in an alternative 

but usefully intuitive manner (see their Eqs.(3.9) and (3.10)). The (proper) distance 

between two nearby templates separated by intrinsic parameters A A on the manifold is 

given by

Expanding the terms of the inner product we find that the (proper) distance between 

these templates is

from which, recalling Eq. (1.3) for the spacetime metric, it is natural to define the metric 

on the continuous detection template family as

These two definitions of the metric gab are equivalent. We will now describe the calcula

tion of the metric for our detection template and then the placement of templates using 

this metric. This work was performed by Dr. Benjamin Owen and Chad Hanna for the 

Inspiral/CBC working group of the LSC. The testing of the resulting template bank’s 

coverage was performed by myself.

and still obtain matches greater than M  which we call the minimal match.

(h(A + AA) -  h(A), h(A + AA) -  h{A)). (2.64)

(2.65)

(2.66)
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2.5.2 Calculating the m etric on the BC V2 continuous detection tem 

plate m anifold

In this search we used a metric based on the strong modulation approximation. The ra

tionale is that binary systems with waveforms only weakly modulated by spin-induced 

precession should be detectable with high efficiency by a search whose matched-filter 

templates do not model the effects of spin, e.g., [5]. We therefore concentrate on de

signing a bank that will capture systems whose waveforms will be strongly modulated. 

The metric calculation and template placement algorithms become much simpler in the 

strong modulation limit. Recently, more precise treatments of the full metric on the 

BCV2 detection template family parameter space have become available, see Pan et al. 

(2004) [114] and Buonanno et al. (2005) [38], and work is in progress to incorporate 

them into future searches.

In the strong modulation approximation, the orbital plane is assumed to precess 

many times as the gravitational wave sweeps through the LIGO band of good sensitivity. 

Also the opening angle between the orbital and spin angular momentum (cos-1 k, see 

Fig. 2.6) is assumed to be large, corresponding to large amplitude modulations of the 

signal. Mathematically this corresponds to the statement that the precession phase 

B = /3/-2/3 sweeps through many times 27r which means that the basis-templates hj are 

nearly orthonormal (without requiring the Gram-Schmidt procedure). Below we shall 

see that this assumption places a condition on the precession parameter /3, which for 

the initial LIGO design noise power spectral density [6] corresponds to (3 > 200Hz2/3. 

The basis templates are written as

/»,(/) =  - i h A(f) (X

m /)  = - ih sU )  «  r 7/6cos(/?r2/ v v’NM

= «  r v * sm ( l ) rV3)ei'h<M (2.67)

where we have proportionality (rather than equality) since we will require our basis

templates to be normalized such that (hj, hj) = 1. We can write our detection template
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as

2 n
h — 'y  ̂otj hj. (2.68)

3 = 1

The overlaps between the various basis templates can be written as

{hi,h2) =  -{h i ths) =  4S  f ° ° r 7/zcos(0r2/3)-~-r,
JO n \ J )

{hi,h3) = -  (h4,h6) = 4 /* f  7/3sin(/?/ 2/3) —‘̂
JO ‘-M /J

(2.69)

(h2,h3) = -  (h5,h6) = 4U f  /  7/3cos(/?/ 2/3)sin(/?/ 2/3) - ^ - -

= ̂ 7(2/3)

where we have identified the functions SV(/3) and Cj{(3) which are plotted in Fig. 2.11.

tions have values less than 0.1. The overlaps between different basis templates given 

above will approach zero and we can write (hi,hj) = Sij.

Therefore, by making the strong modulation approximation we can write

I n

P2 = (2,7°)
j=i

similarly to how we construct p2 for our basis templates hj which were orthonormalised 

by the Gram-Schmidt procedure. We can write the detection template with intrinsic 

parameters ( t/ ’n m  + d'tpn m > P + d/3) as

For values of (3 > 200Hz2/3, i.e., when the waveform is strongly modulated, both func-

h(f)  = (ai + ia2)ei^ M+dlpNM)

+ (o3 + iOLA) C0S([/? + dj3]f~ 2/3)e*(V-NM+̂ NM)

+ (a5 + iao) sin([/3 + dp]f~2/3)ei(^ +d̂ ^  (2.71)
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Figure 2.11: Plot of C7 (solid line) and S 7 (dashed-line) that are defined in Eq. (2.69). 
For values of (3 > 200Hz2/ 3 the value of both functions drop below 0.1. For these high 
values of (3, i.e., the regime of strong modulation, we find that the basis templates 
Eq. (2.67) will be orthogonal to each other without need for the Gram-Schmidt proce
dure. This in turn will simplify the calculation of the metric. This figure was originally 
produced by Dr. Benjamin Owen.

79



Expanding the intrinsic parameters up to their second derivatives we find

+ ( 0 3  + ia 4)

+ (a5 + ioto)

1 -  i dB2 ) h2 -  dBh3 

1 -  ^dB2 ) h3 + dBh2 (2.72)

where we have used dB = dj3f 2/3. We define the functional F  (originally defined in 

Owen (1996) [111] as J )  as

F{a) = j  [  
Jf ,

 ̂ rfmax/fo x~

/ m i n / / 0  Sh{xf0)
(2.73)

and the noise moment I  is itself defined as

i q = (
Jf,

/m ax/ fo
dx x - q / 3

/ m l n / / 0  Sh(%fo)
(2.74)

where / min and / max define the range of frequencies we integrate over. Since we have 

shown that our basis templates Eq. (2.67) are orthogonal when the waveforms are 

strongly modulated we are able to write the overlaps between the detection template h
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and its constituent basis templates hj as

(h, K)  = 01 -  0 2 F(d^NM),

(h, fi.4) =  0 2 1 - ^ W m) + o iE W nm),

{h,h2) = o 3 1 -  - F  (dipnM) -  5 ^  (dB2)

(2.75)

(/l, h§)

{Khz)

{Khz)

—a 4 F(chJjn m ) +  ot^F{dB) — aeF{d^M dB),

a .4

+ o 3 F ( c ^ /> n m )  +  oc&F(dB) + a5F{d'tpNM dB), 

—aeF{d'ip^}l/[) ~ asF{dB) + 04F(cfo/;NM dB),

OiQ

+a5F(d'0NM) — ot4F{dB) — a 3F(dV,NM dB).

Using Eq. (2.70) we can write the square of the overlap when filtering a detection 

template h{4>n m ,  P) with another detection template h(ipn m  + d'tfjn m >  P + dP) as

p2 = E ^ ) 2
j - 1

=  E  t1 -  * W nm) +  W nm)2] -  E  “? [F (de2) -  F (de)2]
i= i i=3

2 (a3o 6 -  0 : 4 0 : 5 )  x \F {d ^u d B )  -  F{d^NM)F{dB)] . (2.76)

We maximise p2 subject to the constraint Y2j= 1 aj =  ̂ using the method of Lagrange 

multipliers (see Eq. (2.49)). We find a\ =  0 2  = 0, o3 =  — 0 6 , and 0 4  = 0 5 , which leads 

to

p2 =  1 -  F ( d ^ M) + F(dV'NM) 2 -  F(dB2)

+F(dB) 2 +  F (< # nm dB) -  F(diPNM)F(dB). (2.77)

As well as maximising p2 with respect to the aj parameters we should also maximise
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with respect to the time of the sources coalescence tc. During matched-filtering we 

maximise over time using an FFT (see Sec. 2.4.1). Here we will consider a signal perfectly- 

described by a template / i ( 0 n m  + fi + d/3, tc + dtc). We can incorporate the time

dependence of the template into our phase by writing 0  = 0nm + 27r f t c. To calculate 

the dependence on time of the match between two signals /* ( 0 n m >  (3, tc) and h(0 nm + 

d0n m ,  13 + d/3, tc + dtc) we will replace d0nm with d0 = 0o/ “ 5/ 3 + d03/-2/3 + 2nfdtc 

in Eq. (2.77).

Using Eq. (2.63) for the mismatch we can write

(where we have used match M  = p for the case of normalized templates without noise) 

allowing us to identify the metric’s components (which we will now call 7 ab) as

where J  represent the normalized noise moments given by Poisson and Will (1995) [118]

p2 = 1 -  2gabd \ad \b (2.78)

l t ctc = 2tt2 (Ji -  J42) ,

7 tcV,o =  ^  (*^9 J 4J 12) >

7 ^ 3  = ^ (ds J4 J9 ) 5
7T

7 tc/3 =  “2  (df> — J 4 J 9 ) >

TV'o'i/’o =  2 (*̂ 17 — *̂ 12 ) ’

TV’oV'3 =  2  ( d l 4 J 9 J 1 2 )  5

7^0/3 = 4 («7l4 — J 9 J 12) ,

7V»3V’3 ~  2 — *̂9 ) )

703/3 — 4  ( d l l  — d g 2)  ,

7/3/3 =  ^  ( d l l  -  d g 2) (2.79)

(2.80)

and the noise moment I  was defined in Eq. (2.74).
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We are interested in placing templates in the (i/to, 4>3, ft) space so we will project 

out the time dependence of the metric using (from Owen (1996) [111] Eq. (2.28)):

(2.81)

where the indices i and j  range over all the intrinsic parameters (-0 0 , P)- As well

as projecting out the time dependence we also neglect the ipofi and ip^P cross terms 

which will simplify the template placement and only result in a small over-coverage of 

the parameter space (neglecting these terms will only decrease the volume of parameter 

space a given template achieves match greater than minimal match by ~  3%). The 

metric we finally obtain has components

Choosing the upper frequency cutoff

In practice, our upper bound on frequency is the Nyquist frequency /Nyquist = 2048Hz

perform the integrals to find the moment functions (see Eqs.(2.73) and (2.74)) required 

in our calculation of the template placement metric up to the upper frequency cutoff 

/cut of our detection templates. For simplicity we use /Nyquist as the upper frequency 

cutoff in these integrals. We find later that despite this approximation our template 

bank achieves high matches for a range of simulated signals (see Sec.2 .5.4).

However, we still must provide an estimate of / cut in order to limit our detection

12L IG O  d a t a  is  s a m p le d  a t  1 6 3 8 4  H z  a n d  th e n  d o w n s a m p le d . W e  w il l  fin d  t h a t  a n  u p p e r  fr e q u e n c y  
o f  2 0 4 8  H z  is  s u f f ic ie n t  s in c e  a t  la r g e  fr e q u e n c ie s  t h e  g r o u n d -b a s e d  d e te c to r s  s e n s i t iv i t y  is  p o o r  d u e  t o  
t h e  e f fe c ts  o f  s h o t  n o is e  a n d  th e r e  is  o n ly  n e g lig ib le  b e n e f it s  in  in t e g r a t in g  t o  h ig h e r  l im its .

2 (Ji -  J 4 2)  ’
(J9 — J4J \2 )(J§ ~  J4 J 9)

2 (Ji -  J4 2)

9*l>3*p3

(Js -  J 4 J 9 ) 2 

8 ( J i ~ J 4 2) '

(J 8 -  J 4 J 9 ) 2 

2 ( J i  — J 4 2) ’

(2.82)

which is defined as half of the sampling frequency f a = 4096Hz 12. Ideally, we would

83



templates to the frequencies in which we believe they adequately describe true gravita

tional waveforms that would be observed (i.e., the adiabatic limit). We know that after 

the last stable orbit (LSO, similar to the minimum energy circular orbit which is the 

termination point of the target waveform) the binary’s components will “plunge” and 

the bodies will merge over a time scale of only very few inspiral orbits. Clearly, the 

binary is no longer in the adiabatic regime during its plunge and we choose to set / cut 

to the frequency of the last stable orbit / l s o -

Determining / l s o  i s  complicated except in the extreme asymmetric mass ratio limit 

(77 —» 0). We approximate the gravitational wave frequency of the last stable orbit 

(LSO) as the highest gravitational wave frequency that would be emitted by test mass 

in Schwarzschild geometry:

/ lso =  p / s h f  • (2-83)

In practice we estimate M  to be the total mass of our binary from the non-physical 

parameters of our template bank ipo and ^ 3  using Eqs. (2.56) and (2.57). For reference, 

a binary with total mass M = 1M© would have / l s o  — 4400Hz and a binary with total 

mass M  = 40M© would have / l s o  — 110Hz. The / l s o  calculated is very much an upper 

limit on the extent of the inspiral stage of the binary’s evolution and it is likely that 

the evolution will have become non-adiabatic (Allen et al. (2005) [7]). Despite these 

limitations, using / cut rather than /Nyquist will improve the matches obtained by our 

templates with expected inspiral signals.

We know from the studies presented in BCV2 [40] (see Figs. 5 and 6 and surrounding 

text) that the optimal value of / cut depends on k, (related to the opening angle of the 

spin and orbital angular momenta, see Eq. (2.31)). Future searches could benefit from 

allowing multiple values of / cut to be specified for each (^0 , ^ 3 , /3) combination present 

in the template bank. The choice of the lower frequency is dependent on the noise 

spectrum of the detectors and is discussed in Sec. 2.6.3.
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2.5.3 Tem plate placem ent algorithm

The spacing of our templates (i.e., the density of our template bank) is determined 

by our choice of the minimal match (MM)  which is defined as the lowest match that 

can be obtained between a signal and the nearest template, see Owen (1996) [111] and 

Sathyaprakash and Dhurandhar (1991) [126]. A template bank with minimal match 

M M  = 0.95 would, therefore, suffer no more than a 1 — M M  = 5% loss in SNR due 

to mismatch between the parameters of a signal and the best possible template in the 

bank (assuming that the signal and templates are from the same family, i.e., a fitting 

factor of unity).

The metric components shown in Eq. (2.82) are not dependent on the intrinsic 

parameters (?/>o, (3) which makes the placement of templates simple. The templates

are placed on the vertices of a body-centred cubic (BCC) lattice which is the most 

efficient template placement in three dimensions (i.e., it leads to the smallest number of 

templates to cover a given region of parameter space).

The metric g (whose components are given in Eq. (2.82)) is diagonalized to form g' 

which will only have components , P^303 and gpp (the (3(3 component is unaffected 

by the diagonalization).

The spacings of the template banks (in a single direction and ignoring the others) 

which yield matches of at least the minimal match M M  is given by ds? = 2(1 —MM) = 

guA(AZ)2. The factor of 2 is so that the point where the match is at its worst (i.e., MM)  

is equidistant between two templates in the X1 direction. This can be rearranged to find 

the co-ordinate spacing AA of our intrinsic parameters for a given minimal match. For 

body centred cubic placement we require

A-00 —
/2(1 -  MM)
1 V̂'oV’o

(2.84)

A^3 =
/2(1 -  MM)

j ^3
(2.85)

A/3 =
It

/2(1 -  MM)  
1 9(3/3

(2.86)

We will place templates in order to capture systems with asymmetric masses for
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which the spin angular momenta is generally larger than the orbital angular momentum 

leading to more pronounced spin effects. We estimate the range of -00 and 03 values 

needed to cover the physical mass range 1.0M© < m\ < 3.0M© and 6.0M© < m 2 < 

12.0M© using the relationships given by Eqs. (2.56) and (2.57). This choice of mass 

region allows us to concentrate on asymmetric mass ratio binaries with total mass low 

enough that we can use /Nyquist as the upper frequency when evaluating moments for the 

template bank metric calculation. Due to the approximate nature of these relationships 

we find that the range of masses the template bank achieves best matches for is slightly 

different and this is discussed in Sec. 2.5.4. These choices lead to placing templates with

0o in the range ~  2 — 8 x 105Hz5/3 and 03 in the range ~  — 2 ----5 x 103Hz2/3. We place

templates with 0  in the range 0 — 0 max where

a o q (1 i ^ ^ 2 , max A ^ l ,m a x  (  10Mq  1 0H z
0m ax — o.o7T I 1 +  — 1 I j r n u

\  4 /  m^min V^ljinin “I" 150Hz

is chosen to give the highest value of 0 possible given the mass range we are seeking 

to cover and the peak sensitivity of the detector occurring at roughly /  = 150Hz. By 

placing templates with small values of (3 we will be sensitive to weakly spin-modulated 

binaries as well as the strongly modulated binaries the template bank was designed to 

cover.

Starting at the lowest values of 0q, 0 3  and (3 we place templates in a grid in the 

plane of constant 0 =  0 using the co-ordinate spacings for 0q (Eq. (2.84)) and 0 3  

(Eq. (2.85)). We then move to the next layer of 0 using Eq. (2.86) and then place another 

grid of templates. Neighbouring layers of templates will have their 0 q,0 3  co-ordinate 

values offset from each other by A0q/2, A 0^/2 in order to create the body-centred cubic 

spacing.

We only place templates within the range of 0 o , 0 3 , 0  described above. This can 

lead to the template bank having ragged edges and some under-coverage of the targeted 

region of parameter space near the boundary of the template bank. Owen and Hanna 

developed a scheme to solve this problem: if the next template to be placed using co

ordinate spacing Ax  (where x is 0q, 0 3  or 0) according to Eqs.(2.84) to (2.86) would be 

beyond the boundary of the template bank they assess whether a template placed using

Z/O
(2.87)
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Figure 2 .1 2 : A template bank generated with minimal match =  0.95 using 2048 seconds 
of HI data taken during S3. The crosses show the positions of individual templates in 
the {fa, fa ,  P) parameter space. For each template a value for the cutoff frequency / cut 
is estimated using Eq. (2.83). This bank requires a 3-dimensional template placement 
scheme in order to place templates in the {fa, fa,  @) parameter space. Previous searches 
for non-spinning systems have used 2 -dimensional placement schemes.

spacing A x / 2  would be within the boundary of the template bank. If so, this template 

is included in the template bank. Figure 2.12 shows an example of a template bank 

generated during the search of S3 LIGO data.

2.5.4 Testing the template bank

The template bank was tested using a series of simulated signals constructed using the 

equations of the target waveform^ described in Sec. 2 .2 . We considered a variety of 

spin configurations including systems where neither, one or both bodies were spinning. 

We also considered masses outside the range we expected the template bank to have 

good coverage in order to fully evaluate the range of masses for which it could be used. 

For each spin configuration we created a series of signals for every combination of (in

teger) masses in the range: 1.0 M© < m i , m 2 < 20.0 Af©. Using the initial LIGO
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design sensitivity we then measured the best match that could be obtained for each 

signal using our template bank. Figure 2.13 shows a sample of the results from the 

tests of the template bank. As expected we found that our template bank achieved 

the highest matches for non-spinning (and therefore non-precessing) binaries. Perfor

mance degrades as spin-precessional effects become more pronounced i.e., when both 

bodies are spinning maximally with spins misaligned from the orbital angular momenta. 

The template achieved matches > 0.9 for a mass range 1.0 M© < m\ < 3.0 M© and 

12.0 Mq < m 2 < 20.0 M© (and equivalent systems with m\  and m2 swapped). The 

detection template family (described in Sec. 2.4) is capable of obtaining high matches 

for comparable mass systems, the lower matches obtained for comparable mass systems 

are a result of targeting our template bank on asymmetric mass ratio systems (which are 

more susceptible to spin effects and conform to the strong modulation approximation).

Matches below the specified minimal match of 0.95 in the bank’s region of good cover

age are a consequence of (small) differences between the DTF and the target waveforms 

meaning that the DTF cannot perfectly match the target waveforms (see discussion of 

the fitting factor of the DTF in Sec. 2.4).

The fitting factor (see Sec. 2.3) measures the reduction of SNR due to differences 

between the DTF and the target waveform [10] and should not be confused with the 

minimal match which measures the loss of SNR due to discreteness of the template 

bank [111]. The DTF performance was evaluated and its fitting factor was measured in 

Sec. VI of Ref. [40], for NS-BH systems an average FF of «  0.93 was measured.

2.6 The data analysis pipeline

The analysis of real detector data can be divided into a series of well defined processes 

that are collectively known as the data analysis pipeline. Figure 2.14 shows the data 

analysis pipeline that was used in the analysis of LIGO data taken during its third 

science run (S3, see Sec. 2.6.3). The pipeline used for this search is the same as was 

used in searches for non-spinning binaries in S3 LIGO data. The searches for primordial 

black holes, binary neutron star and binary black holes with non-spinning components 

using S3 and S4 LIGO data are described in Ref. [5].
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Figure 2.13: Plots showing the best match achieved by filtering a series of simulated 
signals through the template bank described in this Section. The values on the x  and y 
axes correspond to the component masses of the binary source to which the simulated 
signal corresponds. The colour of the plots shows the best match achieved for a given 
simulated signal. The four subplots correspond to four different spin-configurations of 
the binary source. The top-left subplot shows results for a non-spinning binary system. 
The top-right subplot shows results for a system consisting of one non-spinning object 
and one maximally spinning object with its spin slightly misaligned with the orbital 
angular momentum. We would expect this system to precess. The bottom two subplots 
show results for two generic precessing systems consisting of two maximally spinning 
bodies with spins and orbital angular momentum all misaligned from each other. We 
see that the region of the mass plane for which we obtain matches > 0.9 is largest for 
the non-spinning system and tends to be concentrated in the asymmetric mass region 
loosely bounded by 1 . 0  M© < m \  < 3.0 M© and 1 2 . 0  M© < m 2 < 20.0 M©.
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Figure 2.14: Flowchart showing the various stages of the data analysis pipeline. For 
each of the LIGO detectors, HI, H2  and LI (see Sec. 1.3.3 for a description) we begin 
our analysis by discarding data taken during times when there are known environmen
tal disturbances or problems with the detector (Secs. 2.6.1 to 2.6.3). We generate a 
template bank for each detector (Sec. 2.6.4) and then subsequently matched-filter the 
data (Sec. 2.6.5) constructing a list of triggers with signal to noise ratio exceeding our 
predetermined threshold. Triggers occurring within a small time window, with simi
lar parameters consistent with those expected to be caused by true gravitational wave 
signals in two or more detectors are identified (Secs. 2.6.6 to 2.6.8) as coincident trig
gers. Coincident triggers are then investigated to see if they are consistent with our 
predicted background and whether they could be confidently claimed as evidence for a 
gravitational wave (Sec. 2.7).
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Figure 2.15: Figure showing the subdivision of a science segment. This figure, originally 
produced by Duncan Brown, was reproduced from B. Abbot et al., Phys. Rev. D 72, 
082001 (2005) [3], with permission from the authors.

2 .6 .1  D a ta  se le c tio n

The matched-filter is found to be the optimal filter to find a known signal in stationary 

and Gaussian noise. In reality, we find that our detector data is neither Gaussian or 

stationary.

For Gaussian data we would expect the square of the SNR, p2 obtained using the 

matched-filter templates of our DTF to follow a x 2 distribution with 2  degrees of freedom 

when (3 = 0 and 6  degrees of freedom when ( 3 ^ 0  (see Sec. 2.4.2). Figure 2.16 shows a 

comparison between the distribution of p2 we measured using real LIGO Ll data and 

the x 2 distribution we would expect to observe if the data was truly Gaussian. We 

observe a tail of high SNR triggers when matched-filtering the real data indicating that 

the data is non-Gaussian. Figure 2.18 shows the amplitude spectra for H2  estimated at 

two different times during S3. We observe a flattening of the spectra as S3 progresses 

showing that the data is not stationary. Also, in Gonzalez (2003) [74] (also see [121]) 

the authors introduce the Rayleigh monitor which assesses how Gaussian and stationary 

an interval of data is. A variant of this monitor is being used in more recent analysis of 

LIGO data.

Indeed, transients in the data due to problems with the detector or environmental 

disturbances can lead to a huge number of false alarm triggers, i.e., triggers caused by
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Figure 2.16: Histograms of p2 measured when matched-filtering real LIGO LI data 
taken during S3 with BCV2  templates with i) /3 = 0 (left hand plot) and ii) /3 ^  0 
(right hand plot). In Fig. 2.8 we confirmed that p2 will be distributed as a \n  when 
the filtered data is Gaussian. On the plots above we see an excess in the distribution 
of our measured output at high values of p2 indicating that our real detector data is 
non-Gaussian. These high SNR events are caused by transients in the detector data and 
in Sec. 2.6.1 we describe how data taken during times when the detector was performing 
poorly or when there was a known disturbance is excluded from our analysis.
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something other than a true gravitational wave signal. Stretches of data during which 

the detector had poor performance or when there was an environmental disturbance 

will be excluded from analysis. The study of the detector’s behaviour is called detector 

characterisation. The detector characterisation carried out on S3 LIGO data is detailed 

in Christensen (for the LIGO Scientific Collaboration, 2005) [45].

We categorise times when we know the detector had poor operation with data quality 

(DQ) flags. Below we list and briefly describe the DQ flags used in this search (which 

were also used in all searches for inspiral signals in S3 data). The numbers in brackets 

following the name of the DQ flag indicate the percentage of data associated with that 

flag.

• N0_DATA (0.01%): Some fault meant that the detector was not collecting data 

during these times.

• N0.RDS (0.02%): Under normal operation, we create a number of reduced data 

sets (RDS) which contain a down-sampled time series of the gravitational wave 

channel as well as a selection of the auxiliary channels. This flag indicates that 

there was some error meaning that the reduced data set was not created.

• UNLOCKED (0.03%): When the detector is working correctly, the test mass mirrors 

of the interferometer will be “locked” into place so th a t the laser beam will resonate 

in the optical cavity in each arm (see Sec. 1.3.3). This flag indicates that the 

detector has become unlocked.

• INVALID-TIMING (2.3%): This flag indicates that the time-stamping of the data 

taken by the detector is not valid. Knowledge of the exact time that data was taken 

is crucial if we are to associate an event measured in one detector with an event 

occurring in another detector (see Sec. 2.6.6). Also, the accuracy of timing directly 

affects the accuracy to which we can determine the sky location of a gravitational 

source by triangulation.

•  CALIB_LINE_V03 (2.0%): Monochromatic sinusoidal oscillations are applied to the 

interferometer’s test mass mirrors with known frequency and amplitude. These 

oscillations appear as spikes, known as calibration lines, in the amplitude spectrum
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of the gravitational wave channel data. By measuring the amplitude and frequency 

at which these lines appear in the data it is possible to calibrate the amplitude of 

the gravitational wave channel strain data [66]. This flag indicates that there is 

some problem with the oscillation of the test mass mirrors or the measurement of 

the calibration lines.

• 0UTSIDE_S3 (0.4%): The database recording the state of the detector may include 

details of data taken beyond the end of the S3 run. We will exclude data taken 

outside of the S3 run.

We construct a list of times for which each detector is operating well in what is 

known as science mode excluding times associated with various DQ flags. As well as the 

use of DQ flags, later in the pipeline various short stretches of data will be discarded 

or vetoed. There are two types of vetoes: signal-based vetoes and detector-based vetoes 

and these will be discussed in Sec. 2.6.8.

Contiguous stretches of data taken when a detector is in science mode are called 

science segments. The science segments are divided up into 2048 second blocks. Each 

block is divided into 15 overlapping 256 second data segments. Figure 2.15 shows a 

single science segment and how it is divided up for analysis. Each data segment has 64 

seconds overlap with the preceding and subsequent data segment (except for the first 

and fifteenth data segment which only have one adjacent data segment). The power 

spectrum of each 256 second data segment is estimated using Welch’s method with a 

Hann window (see Allen et al. (2005) [7] for further details). We then estimate the 

power spectrum of each 2048 second block as the median average of the power spectra 

of its 15 data segments. To be clear, we will measure the power contained within a 

particular frequency bin fa + A/  for each of the 15 data segments. We then take the 

median average of these powers and use that as the power for that frequency bin in the 

block’s power spectrum. The median average is used rather than the mean to avoid 

biasing of the average power spectrum by short-duration non-stationary noise events in 

the data.

There are two reasons we need to overlap data segments (and similarly why we need 

to overlap 2048 second blocks). This is discussed in detail in Allen et al. (2005) [7] and is
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briefly summarised here. Firstly, the Fast Fourier Transform (FFT) we use in matched- 

filtering (see Sec. 5.3) treats each data segment as if it is periodic. The subsequent 

wrap-around effect causes a stretch of data the length of the template Template to t>e 

invalid at the start of each data segment. Secondly, narrow lines (“spikes”) in the inverse 

noise power spectrum (5n( /)_1) used in the inner product (see e.g., Eq. (1.98)) will cause 

corruption of data throughout each data segment. The inverse noise power spectrum 

is truncated in the time domain in order to limit the corruption to stretches of data 

length Tspec at the start and end of each data segment. Note that we cannot choose 

Tspec to be arbitrarily small since we would then lose important information about the 

(inverse) noise power spectrum in the frequency domain. These two effects (wrap-around 

and “spikes”) lead to stretches of corrupted data of duration ^Template + ^Spec at the 

beginning and Tspec at the end of each data segment. In order to avoid corrupted data 

we only analyse and record triggers from the central 128 seconds of each 256 second 

data segment and ignore the first and last 64 seconds of each data segment. We then 

overlap each data segment with the preceding and subsequent data segment by 128 

seconds to ensure that all the data will be analysed. We do not analyse the first or 

last 64 seconds of each 2048 second block and we therefore overlap each block with the 

preceding and subsequent block by 128 seconds (except for the first and last block in 

the science segment which only have only have one adjacent block).

At the end of a science segment it might be necessary to overlap the final two 2048 

second blocks by more than 128 seconds to ensure that we analyse as much of the 

remaining data as possible. Care is taken to ensure that the same stretch of data is not 

analysed twice (i.e., the region marked “Not searched for triggers” in Fig. 2.15). Since it 

is not possible to overlap a 2048 second blocks at the very beginning or end of a science 

segment, the first and last 64 seconds of each science segment will not be analysed. 

Science segments shorter than 2048 seconds in duration will also not be analysed.

2.6.2 Playground data

We specify a subset of our data to be playground data which we use to tune various 

parameters (e.g., SNR thresholds, coincidence windows). The use of playground data



allows the data analyst to tune parameters while remaining blind to the remainder of the 

data set thus avoiding statistical bias. The set of playground times is defined formally 

as 13

T  = { t e  [tn, tn + 600) : tn = 729273613 + 6370n, n e Z }  (2.88)

where 729273613 is the GPS time of the beginning of LIGO’s second science run (from 

internal LIGO technical documents T030256 and T030020). According to this definition 

playground times will account for, on average, 9.4% of any given stretch of time. Once 

parameters have been tuned using the playground data, the full data set (including 

playground) will be searched for gravitational wave events. To avoid statistical bias, the 

values of the parameters chosen after the analysis of playground data will remain fixed 

throughout the subsequent analysis of the full data set.

Although it is possible to make a detection of a gravitational wave during play

ground times, playground times are excluded from any upper limit calculations which 

are performed when no gravitational waves have been detected.

2.6.3 The S3 data set

The third LIGO science run (S3) took place between October 31st 2003 (16 : 00 : 00 

UTC, 751651213 GPS) and January 9th 2004 (16 : 00 : 00 UTC, 757699213 GPS). Data 

collected by the LIGO Hanford Observatory (LHO) detectors (i.e., HI and H2) was only 

analysed when both detectors were in science mode. This was due to concerns that since 

both of these detectors share the same vacuum system, the laser beam of a detector in 

anything but science mode might interfere with the other detector (see Sec. 1.3.1 for a 

description of the LIGO detectors).

We denote periods of time when all three detectors are in science mode as H1-H2-L1 

times and periods when only the LHO detectors are on as H1-H2 times. A coincident 

trigger consisting of a trigger in the HI detector and the LI detector will be referred 

to as an Hl-Ll coincident trigger and similarly for other combinations of detectors. In

13T h is  fo r m u la  u s e s  s e t  n o t a t io n .  In  w o r d s , p la y g r o u n d  t im e  c o n s is t s  o f  in te r v a ls  o f  t im e  6 0 0  s e c o n d s  
lo n g  t h a t  o c c u r  e v e r y  6 3 7 0  s e c o n d s  fro m  G P S  t im e  7 2 9 2 7 3 6 1 3 .
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this search we analysed 184 hours of H1-H2-L1 data and 604 hours of H1-H2 data (see 

Table 2.2).

Lower frequency cutoff

We must also choose the lower frequency cutoff /iow which will be the lower limit of 

any integrals we perform in the frequency domain, e.g., the computation of moments 

to calculate the template placement metric or the inner product used to calculate the 

SNR. Note that the upper frequency cutoff will depend on the particular template used 

and the total mass of the source it represents (see Sec. 2.5.2).

There are competing factors that influence the choice of f\ow. Binaries with larger 

masses will plunge and coalesce at lower frequencies (see Eq. (2.83)). Taking lower val

ues of /iow means that we will be sensitive to binaries with larger total mass and will 

also observe more orbital cycles of inspiraling binaries in general. The observation of 

more cycles allows for greater SNR’s to be achieved but would require longer duration 

templates (and simulated waveforms) to be produced which would increase the compu

tational cost of the search. This increase in computational cost is far less for searches 

employing templates which are generated in the frequency (rather than time) domain, 

such as the BCV2 DTF used in this analysis. Note also, that although increasing the 

mass range of a search to include heavier binaries will increase the number of templates 

in the bank (for a given minimal match), the number of templates required to cover the 

higher-mass region of parameter space is far smaller than the number of templates re

quired to cover the low-mass region (see, for example Fig. 5 of Babak et al. (2006) [17]). 

However, at lower frequencies seismic activity causes the sensitivity of ground-based 

detectors to become worse and the spectrum to be non-stationary (see Sec. 1.3.1).

In practice we take the lowest value of /iow for which the noise spectrum is approxi

mately stationary. For searches of S3 LIGO data a value of f\ow = 70Hz was chosen. As 

the detectors achieve better sensitivity and greater stationarity of noise, the values of 

/ l o w  we use have decreased allowing higher mass binaries to be searched for. In searches 

of S4 and S5 LIGO data, lower cutoff frequencies as low as /iow = 40Hz have been used.
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Table 2.2: Summary of the amount of data analysed in our various data sets. In S3 
we only analyse data from the LHO detectors when both HI and H2 are in science 
mode. Around 9.4% of the data is classified as playground data and is used to tune the 
parameters of the search. Playground data is not included in the upper limit calculation 
but is still searched for possible detections.

Data type Total analysed (hours) Non-playground (hours)
H1-H2 604 548

H1-H2-L1 0
0

T—
1 167

2.6.4 Tem plate bank generation

Using the estimated PSD we will calculate the template placement metric Eq. (2.62) 

and create a template bank for each 2048s blocks of data for each detector (HI, H2 

and LI). The metric calculation and template placement scheme used in this search is 

described in Sec. 2.5.

In this search we use a minimal match of 0.95. Figure 2.17 shows the number of 

templates in each template bank against GPS time throughout S3. We see a large 

increase in the size of the H2 template banks which was caused by a flattening of the its 

power spectral density profile as S3 progressed (see Fig. 2.18). The output of template 

bank generation will be a list of the ipo, V>3 and (3 values that we are required to search 

over for each 2048 second block for each detector.

2.6.5 M atched-filtering of detector data

We matched-filter every 2048s block of data using each template in the associated tem

plate bank. If the SNR measured by a particular template exceeds the SNR threshold, 

we record a trigger which contains details of the template and the time at which the 

SNR threshold was exceeded. In practice we take the FFT of each 256 second data 

segment and matched-filter each separately. We do this because the power spectrum we 

use in the matched-filter has the frequency resolution of the FFT of a 256 second data 

segment due to the way we estimate it (see Sec. 2.6.1).

For Gaussian white noise, p2 will, in general, have a x 2 distribution with 6 degrees 

of freedom. In the case where the spin parameter (3 = 0 we find that A 2 and A 3 both 

vanish and that p2 is described by a x 2 distribution with 2 degrees of freedom. To reflect
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Figure 2.17: Number of templates in each template bank. We generate a separate 
template bank for each 2048s block of data for each detector. We then matched-filter 
each template in the bank against the block of data and generate a list of triggers which 
have SNR exceeding our threshold. See Secs. 2.6.4 and 2.6.5 for further details. The 
large increase (a factor of ~  6) in the size of the H2 template banks was caused by 
a flattening of the its amplitude (and therefore power) spectral density profile as S3 
progressed. Figure 2.18 compares the amplitude spectra of H2 at two different times 
during S3.



 752778840
757574155

frequency  (Hz.)

Figure 2.18: Amplitude spectral density curves for H2 estimated at two different times 
during S3. The GPS times in the legend of this plot indicate the start time of the 2048s 
block of data that was used to estimate the spectrum. As S3 progresses the amplitude 
(and therefore power) spectra of H2 become flatter which leads to the increase in the 
number of templates required for H2 as shown in Fig. 2.17.
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the increased freedom we choose a higher SNR threshold, p* = 12 when ( 3 ^ 0  and a 

lower value of p* «  11.2 when (3 = 0. These values were chosen to give approximately 

the same number of triggers when analysing Gaussian white noise and to ensure that 

the number of triggers produced during the real search was manageable.

We perform two stages of clustering in order to reduce the number of triggers we 

are required to store. The first stage involves identifying all triggers with SNR greater 

than our thresholds that were generated from one particular template. We record only 

the trigger with the highest SNR over a stretch of data and discard any other triggers 

generated by the same template within 16 seconds of it. The second stage involves 

recording only the trigger with the highest SNR in each 100ms stretch of data regardless 

of which template was used to generate it.

Due to the huge number of templates required by H2 during the end of S3 we expected 

that the number of triggers generated might cause the search to become computationally 

unfeasible. However, through use of the clustering methods described here the number 

of triggers recorded by the matched-filtering of H2 data was reduced to such a level 

(~ 5 x 104 triggers per 2048 second block) that we decided to analyse data from all 

three LIGO detectors. The output of the matched-filter stage is the list of triggers with 

SNR exceeding the SNR threshold that survive clustering for each detector. Each trigger 

will contain information including the time t it was recorded, the values of the intrinsic 

parameters of the template that was used to generate it (i.e., (3, /cu t), its SNR

p and the values of the other extrinsic parameters ai...6 that were used to obtain the 

(maximised) SNR.

We know that the amplitude of the gravitational wave emitted by an inspiraling 

binary increases throughout the inspiral stage of its evolution before its components 

plunge and coalesce. We expect that the time at which we measure the maximum 

SNR for a true gravitational signal from a binary will correspond to the end of the 

inspiral stage of its evolution and, therefore, approximately to the (retarded) time of its 

coalescence. The time recorded in our trigger is called the coalescence time.
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2.6.6 Coincidence analysis

To minimize the false alarm probability and to increase the significance of a true detec

tion we demand that a gravitational wave signal be observed by two or more detectors 

with similar parameters. In order to determine whether a trigger measured by one par

ticular detector should be considered as coincident with a trigger in another detector we 

define a set of coincidence windows.

Suppose we measure a parameter P  to have a value Pi at the first detector and P2 

at the second. For the triggers to count as coincident we would demand

|P i - P 2| < AP1 + AP2 (2.89)

where APi and AP2 are our coincidence windows. We have two choices to make: first 

we must decide from which of the measured parameters we demand consistency and 

then we must choose or tune the size of our coincident windows.

Injection of simulated signals

In order to choose and tune these coincidence windows we perform software injections 

of simulated gravitational wave signals into the data stream of each detector. Each 

injection will accurately mimic the detectors’ (gravitational wave channel) output for 

a gravitational wave signal emitted by a particular simulated inspiraling binary source. 

The orientation, distance and direction of the simulated source relative to each detector 

is taken into account to ensure that the signal we inject into each detector is consistent 

with what we would expect from a true source with the same parameters as the simulated 

source. We use the target model described in Sec. 2.2 to generate the waveforms we will 

inject.

We perform a large number of software injections (~ 8000) choosing the parameters 

of each binary in our population at random within chosen ranges. The spins are ran

domised such that i) the spin magnitude of each of the compact objects is distributed 

uniformly in the range 0 < x  < 1 and n) the direction of compact object’s spin is uni

formly distributed on the surface of a sphere (that has radius x) ■ The physical distances 

D of the simulated sources are chosen uniformly on a logarithmic scale between 50kpc
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and 50Mpc. The sky-positions and initial polarization and inclination angles of the 

simulated sources are all chosen randomly such that the direction of the initial orbital 

momenta will be uniformly distributed on the surface of a sphere. We simulated binaries 

with component masses distributed uniformly in the range 1.0 M© < mi, m 2 < 20.0 M©.

Having made the injections into the detectors data we measure the accuracy with 

which we can measure the parameters of the simulated source. This is made complicated 

because we describe our simulated source in terms of physical parameters (mi, m2 , xi> 

X2 • • • ) and record the nomphysical parameters (0 0 , 03, /3 . . . )  of the detection template 

family in our triggers (see Sec. 2.6.5). Although we have approximate relations between 

the physical and non-physical parameters it is not clear how accurate these are. In 

practice we choose to demand consistency between the coalescence time t, 0 o and 0 3  

since similar values of these parameters are measured for nearby, high-SNR signals.

In this search we demand that for triggers from different detectors to be considered 

as coincident they must satisfy the following conditions:

|ti — 2̂ ! < Ati + A^2 + Tip, (2.90)

|0o,i — "00,21 < A0o,i + AV>o,2 (2.91)

|03,1 —03,2| < A03,! + A03)2 (2.92)

where t;, 0o;; and 0 3 ;; are the time of coalescence and phenomenological mass parameters 

measured using our template bank in detector i; At;, A0o,; and A0 3 t; are our coincidence 

windows in detector i and Ti,j is the light travel time between detector locations i and 

j. The light travel time between LHO and LLO is ~  10 ms. We must take the light 

travel time into account or with sufficiently small values of At; we would risk missing 

coincidences between the Hanford detectors and LI.

We tune our coincidence windows on the playground data in order to recover as 

many of our simulated signals as possible whilst trying to minimize the false alarm rate 

caused by our non-gravitational wave background. The use of playground data allows 

us to tune our search parameters without biasing the results of our full analysis.
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Background estimation

We estimate the rate of accidental coincidences, otherwise known as the background or 

false alarm rate, for this search through analysis of time-shifted data. We time-shift the 

triggers obtained from each detector relative to each other and then repeat our analysis, 

searching for triggers that occur in coincidence between 2 or more of the detectors. By 

choosing our time-shifts to be suitably large (^> 10 ms light travel time between LHO 

and LLO) we ensure that none of the coincident triggers identified in our time-shift 

analysis could be caused by a true gravitational wave signal and can therefore be used 

as an estimate of the rate of accidental coincidences. In practice we leave HI data 

unshifted and time-shift H2 and LI by increments of 10 and 5 seconds respectively. In 

this search, we analysed 100 sets of time-shifted data (50 forward shifts and 50 backward 

shifts). For clarity we will use the term in-time to mean triggers which have not been 

time-shifted.

Figure 2.19 shows a histogram of the number of triggers against the difference in 

coalescence time £hi — ̂ H2 between HI and H2. We choose the smallest possible values for 

our coincidence windows that mean that all simulated signals that can be distinguished 

from our background would be found in coincidence.

Using this tuning method we find our coincidence windows for each detector to have 

values Ait — 100 ms, A-0o = 40,000 Hz5/3 and = 600 Hz2/3 (we rounded and 

symmetrized these values for simplicity). The value of At used in this search is four 

times larger than the 25 ms value used in the S3 search for non-spinning binary black 

holes [5] indicatiiig that the estimation of arrival time of a gravitational waveform is less 

well determined in this search than in the non-spinning search.

2.6.7 Combined SN R

We expect rough consistency between the SNR of triggers measured in different LIGO 

detectors if they originate from the same true gravitational wave signal (or software 

injected simulated signal) 14. Conversely, we would not necessarily expect any consis-

14T h e  o r ie n ta t io n  o f  th e  H a n fo rd  a n d  L iv in g s to n  s ite s  w a s  c h o s en  s o  t h a t  th e  d e te c to r s  w o u ld  b e  
a s  c lo s e ly  a s  a lig n e d  a s  p o s s ib le  (m o d u lo  9 0 °  t h a t  w e  c a n  ig n o r e  d u e  t o  t h e  q u a d r u p o la r  n a tu r e  o f  
g r a v ita t io n a l  w a v e s )  in  o r d e r  t o  m a x im is e  th e ir  c o m m o n  r e s p o n s e  t o  a  s ig n a l ,  A b b o t t  e t  a l. (2 0 0 4 )  [136]. 
F or m is a lig n e d  d e te c to r s  w ith  p o o r  o v e r la p  b e tw e e n  th e ir  a n te n n a  r e s p o n s e  p a t te r n s  w e  w o u ld  n o t  b e
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Figure 2.19: A histogram of the number of triggers against the difference in coalescence 
time tm -  tm  between HI and H2. The blue bars represent triggers caused by the 
software injection of simulated signals and indicate where we might expect to observe 
triggers caused by true gravitational wave signals (foreground). The red line represent 
triggers found during analysis of time-shifted data and are used to estimate the non- 
gravitational wave background. We choose the coincidence windows (vertical dotted 
lines) so that we will find all the simulated signals that lay above the background in 
coincidence. Note that the plot shown here only uses nearby injections corresponding 
to simulated sources with physical distances 50kpc < D < 500kpc. In order to find 
simulated sources at larger distances we extended our windows to At = 100ms.
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tency between the triggers measured in different detectors that are caused by spurious 

noise events (however, we will see later that seismic activity at the Hanford site can 

cause triggers in HI and H2 that are consistent with each other). We assign a combined 

signal-to-noise ratio pc to our coincident triggers based upon the individual signal-to- 

noise ratios pi measured by each detector. For triggers found in coincidence between 

two detectors we use

pl = m m i ^ 2 p f , ( a Pi- b ) 2 j  (2.93)

and for coincident triggers found in all three LIGO detectors we use

=  (2-94)
i

Equation (2.93) assigns higher combined SNR pc to coincident triggers with similar 

SNRs measured in both detectors p\ ~  p2 than those consisting of a very loud trigger 

in one detector and a relatively quiet trigger in the other detector p\^> P2 - In practice 

the parameters a and b are tuned so that the contours of false alarm generated using 

Eq. (2.93) separate triggers generated by software injection of simulated signals and 

background triggers as cleanly as possible [135] (see Sec. 2.6.6 for details of how we 

estimate the background). In this search we used values a = b = 3 for all detectors. 

Figure 2.20 shows a scatter plot of the SNR measured in HI and LI with lines of 

constant pc (as assigned using Eq. (2.93)). We see that the combined SNR allows us to 

differentiate between foreground (simulated signals) and background (estimated using 

time-shifts).

In some cases the presence of a weak (typically H2) trigger would cause the combined 

SNR of a triple coincidence trigger (using Eq. (2.93)) to be lower than the combined 

SNR of a double coincidence trigger where the weakest trigger of the triple coincidence 

has been neglected. This is undesirable since triple coincident triggers are less likely to

be caused by noise events than double coincident triggers and we would like to assign

triple coincident triggers a higher value of combined SNR to reflect their increased 

significance. By using Eq. (2.94) to assign the combined SNRs of triple coincident 

a b le  t o  m a k e  th is  a s s u m p t io n .
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Figure 2.20: Scatter plot of SNR measured in HI and LI for Hl-Ll coincident triggers 
occurring in H1-H2-L1 times (i.e., times when all three LIGO detectors were taking 
science quality data, see Sec. 2.6.3). The blue crosses represent triggers caused by the 
software injection of simulated signals and indicate where we might expect to observe 
triggers caused by true gravitational wave signals (foreground). The red dots represent 
triggers found during analysis of time-shifted data and are used to estimate the non- 
gravitational wave background. The black curves show contours of constant combined 
SNR pc assigned using Eq. (2.93). Higher values of combined SNR are assigned to 
coincident triggers caused by simulated signals allowing us to separate these from our 
estimated background.

candidates we ensure that the combined SNR of a triple coincident trigger will always 

be greater than the combined SNR of any two of its constituent triggers would be 

assigned from Eq. (2.93).

2.6.8 Vetoes 

Instrum ent-based vetoes

We are able to veto some background triggers by observing correlation between the grav

itational wave channel (AS_Q) of a particular detector and one or more of its auxiliary 

channels which monitor the local physical environment. Since we would not expect a 

true gravitational wave signal to excite the auxiliary channels, we will treat as suspi
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cious any excitation in the gravitational wave channel that is coincident in time with 

excitations in the auxiliary channels. A list of auxiliary channels found to effectively 

veto spurious (non-gravitational wave coincident triggers) were identified and used for 

all S3 searches [45]. Additional vetoes based upon other auxiliary channels were consid

ered but were subsequently abandoned because the total amount of data these channels 

would have discounted, known as the dead-time, was unacceptably large.

Signal-based vetoes

We can use the fact that the Hanford detectors are co-located to veto coincident trig

gers whose measured amplitude is not consistent between HI and H2. We check for 

consistency between the SNR values measured using HI and H2 data for triggers found 

in coincidence. Since HI is the more sensitive instrument we simply required that the 

SNR measured in HI be greater than that measured in H2 for an event to survive this 

veto. Figure 2.21 shows a scatter plot of the SNR measured in HI and H2 for triggers 

caused by simulated signals as well as those measured during time-shift analysis with 

this veto applied. We find that the application of this veto will vastly reduce the number 

of background triggers but does not affect the number of simulated signals that were 

observed. Since HI and H2 were only operated when both were in science mode during 

S3, this veto means that there will be no H2-L1 coincident triggers since this would 

indicate that H2 had detected a trigger which HI was unable to detect.

The x2 veto used for the primordial black hole and binary neutron star searches [5] 

has not not been investigated for use in searches using detection template families (i.e., 

this search and the S2-S4 searches for non-spinning binary black holes [4, 5]).

2.7 Results and follow-up analysis

In the search of the S3 LIGO data described in this paper, no triple-coincident event 

candidates (exceeding our pre-determined SNR threshold and satisfying the coincidence 

requirements described in Sec. 2.6.6) were found in triple-time (H1-H2-L1) data. Many 

double-coincident event candidates were found in both triple-time and double-time (Hl- 

H2) data.
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Figure 2.21: Scatter plot of SNR for H1-H2 coincident triggers in H1-H2 times (see 
caption of Fig. 2.20). We have removed coincident triggers that were measured to have 
a larger SNR in H2 than in HI. We find that applying this veto vastly reduces the 
number of background triggers but does not affect the number of simulated signals that 
were observed.
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A cumulative histogram of combined SNR for in-time and background coincident 

triggers is shown in Fig. 2.23. We see that, at the SNR threshold (i.e., the leftmost 

points on this figure), the number of in-time double-coincident triggers is consistent with 

the number of coincident triggers yielded by the time-shift analysis. The small excess 

in the number of in-time H1-H2 coincident triggers at higher SNRs indicates that there 

is some correlation between the LHO detectors. The coincident triggers contributing to 

this excess have been investigated and are not believed to be caused by gravitational 

waves. Seismic activity at the Hanford site has been recorded throughout S3 and can 

cause data to become noisy simultaneously in HI and H2. Coincident triggers caused 

by seismic noise will predominantly cause only in-time coincidences (although time- 

shift coincidences caused by two seismic events separated in time but shifted together 

can occur) leading to an excess of in-time coincident triggers as we have observed in 

Fig. 2.23. As mentioned previously, there were no coincident triggers observed by all 

three detectors. A scatter plot of the SNRs measured for coincident triggers in H1-H2 

times is shown in Fig. 2.24. The distribution of our in-time triggers is consistent with 

our estimation of the background. This is also true for the double-coincident triggers 

measured in H1-H2-L1 times.

The loudest in-time coincident trigger was observed in H1-H2 when only the Hanford 

detectors were in science mode. This event candidate is measured to have SNRs of 119.3 

in HI, 20.4 in H2 and a combined SNR of 58.3. The loudest coincident triggers are sub

jected to systematic follow-up investigations in which a variety of information (e.g., data 

quality at time of triggers, correlation between the detector’s auxiliary channels and the 

gravitational wave channel) is used to assess whether the coincident triggers could be 

confidently claimed as detection of gravitational wave events. This event is found at a 

time flagged for “conditional” vetoing. This means that during these times some of the 

detectors auxiliary channels exhibited correlation with the gravitational wave channel 

(AS_Q ) and that we should be careful in how we treat event candidates found in these 

times. For this particular coincident trigger an auxiliary channel indicated an increased 

numbers of dust particles passing through the dark port beam of the interferometer [45]. 

Upon further investigation it was found that this coincident trigger occurred during a
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period of seismic activity at the Hanford site and we subsequently discounted this candi

date as a potential gravitational wave event. Time-frequency images of the gravitational 

wave channel around the time of this candidate (see Fig. 2.22) were inconsistent with 

expectations of what an inspiral signal should look like further reducing the plausibility 

of this candidate being a true gravitational wave event. It is interesting, but unsurpris

ing, to note that during the search for non-spinning binary black holes that also used S3 

LIGO data, high-SNR triggers associated with this seismic activity were also detected 

[5]. Furthermore, the 20 next loudest event candidates were also investigated and none 

were found to be plausible gravitational wave event candidates. Work is in progress to 

automate the follow-up investigative procedure and to include new techniques includ

ing null-stream and Markov chain Monte Carlo analysis for assessing the plausibility of 

coincident triggers as gravitational wave events.

2.8 Upper limit on the rate of binary coalescences

Given the absence of plausible detection candidates within the search described above, 

we calculate an upper limit on the rate of spinning compact object coalescence in the 

universe. We quote the upper limit rate in units of coalescences per year per Lio where 

Lio = 1010 L© b is 1010 times the blue light luminosity of the Sun.

We assume that binary coalescences only occur in galaxies. The absorption-corrected 

blue light luminosity of a galaxy infers its massive star formation rate, and therefore 

supernova rate, which we assume scale with the rate of compact binary coalescence 

within it [117]. This assumption is well justified when the population of galaxies reached 

by the detector (i.e., those galaxies which are close enough that it would be possible to 

detect a stellar mass binary inspiral from within them) is dominated by spiral galaxies 

with ongoing star formation (e.g., the Milky Way). Papers reporting on SI and S2 

[2, 3, 4] have quoted the upper limit in units of Milky Way Equivalent Galaxy (MWEG) 

which is equivalent to about 1.7 Lio- Upper limits on the rate of coalescences calculated 

during other searches using S3 and S4 LIGO are given in units of Lio [5].

Our primary result will be an upper limit on the rate of coalescence of precessing 

neutron star - black hole binaries with masses raNs ~  1.35M® and raeH ~  5M©. These
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Figure 2.22: Time-frequency image of the gravitational wave channel data taken by HI 
about the time of the loudest event candidate, an H1-H2 coincident trigger occurring 
when only the Hanford detectors were in science mode. A gravitational wave signal 
would occur at 0 seconds on the time scale of this figure. This figure shows that the 
HI gravitational wave channel is noisy at the time of this event and consequently does 
not improve the likelihood that this candidate was caused by a true gravitational wave 
signal (see Sec. refsub:results). The H2 gravitational wave channel is also noisy at this 
time. It is useful to compare this figure with Fig. 2.5 which shows time-frequency maps 
of the gravitational wave signals observed from inspiraling binaries without the effects 
of detector noise. This figure was produced using Q Scan [120, 44].
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Figure 2.23: Cumulative histograms of the combined SNR, pc for in-time coincident 
triggers (triangles) and our background (crosses with one-sigma deviation shown) for 
all H1-H2 and H1 -H2 -L1 times within S3. We see a small excess in the number of in
time coincident triggers with combined SNR ~  45. This excess was investigated and 
was caused by an excess of H1-H2 coincident triggers. Since HI and H2 are co-located, 
both detectors are affected by the same local disturbances (e.g., seismic activity) which 
contributes to the number of in-time coincidences but which is under-represented in 
time-shift estimates of the background.
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Figure 2.24: Scatter plot of SNR for coincident triggers in H1-H2 times. The light 
coloured crosses represent in-time coincident triggers and the black pluses represent 
time-shift coincident triggers that we use to estimate the background. Note that we 
observe more background triggers than in-time triggers since we perform 1 0 0  time-shift 
analyses to estimate the background but can perform only a single in-time analysis to 
search for true gravitational wave signals (see Sec. 2.6.6 for further details on background 
estimation). Note that due to our signal-based veto on H 1 /H 2  SNR we see no coincident 
triggers with pm  < pm-
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mass values correspond to NS-BH binaries with component masses similar to those used 

to assess the NS-NS and BH-BH upper limits in [5]. We will now detail the calculation 

of the upper limit on the rate of binary coalescence before applying it to our search of 

S3 data for systems with spinning components.

The setting of upper limits on rates is discussed in the following publications which 

were used by the author in writing this Section: Biswas et al. (2007) [23], Brady and 

Fairhurst (2007) [61] Brady et al. (2004) [33].

2.8.1 Calculating the upper lim it

We will treat arrival of a gravitational wave at our detectors as a rare event which can 

be described by a Poissonian distribution. The probability of detecting no gravitational 

waves (emitted during binary coalescence) with combined SNR greater than some value 

pc is given by

PF(pc) =  e - W  (2.95)

where v{pc) is the mean number of gravitational wave events detected with combined 

SNR greater than pc during the course of a search (e.g., a science run). We can write 

v more explicitly as the product of i) the rate of binary coalescence (per year per L io ), 

ii) the total (cumulative) luminosity Cl{pc) (in L io ) that the detectors were sensitive 

to with combined SNR greater than pc and iii) the total observation time T  (in years). 

We can therefore write

PF(pc\R,T) = e- RTCL{Pc) (2>96)

The subscript F  stands for foreground and is used to distinguish this probability from 

the probability of measuring a background event with combined SNR greater than pc 

which we shall call P b (Pc)-

The probability of measuring no event candidates (true gravitational wave foreground 

or noise-induced background) with combined SNR greater than that of our loudest
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observed event candidate pc,m&x is given by

P{P c,max| B ,R ,T )  =  PB(p c,max )Pf(p  c, max)

= PB( P c ^ ) e - RTCL^ ' ‘). (2.97)

We can calculate the probability density as

p(Pc,ma* \B ,R ,T )  = - ^ P ( Pc>max\B ,R ,T)  (2.98)

=  P >B ( P c , m & x ) e - R T C L i P c ’m ™ ) X

[1 + R T C l (pc,max ) A] (2.99)

where we have defined

^  _  I ̂ Z,(Pc,max) 1 
Pb(Pc, max)

Cl (p c, max)
[Pb (p c,max)

-1
(2 .100)

where the derivatives are with respect to combined SNR pc. A is a measure of the 

likelihood that the loudest event measured during a search is consistent with being a true 

gravitational wave signal (foreground) rather than being caused by noise (background). 

We know by definition that the cumulative luminosity Cl (pc) our detectors were sensitive 

to with combined SNR greater than pc will decrease as pc increases and therefore that 

C'L(pc) will always be negative.

Using Bayes’ theorem we can find the posterior probability distribution of the rate 

p(R\pc,m&x, T, B)  using our prior knowledge or guess of its distribution p{R) and our 

probability distribution p{pc,max\B, R, T)  for the number of events exceeding the com

bined SNR of the loudest measured event:

n( R\n ' PR}    p(R) p{Pc,max\B, R, T ) ini')
p( |Pc,max, , ) J p(R)p(Pĉ B , R , T ) d R -  ( • >

Since this is the first dedicated search for gravitational waves emitted by binaries 

with spinning component bodies we have no prior knowledge about the rate. To reflect 

this, we use a uniform prior, p(R) = constant. In upper limit calculations for future 

searches we will be able to use the posterior probability distribution calculated in this
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search as the prior. Integrating the denominator of Eq. (2.101) by parts yields

/  p(R)p(pCtm8iX\B,R,T)dR

= PB(pc,m*x)p(R) J  e - RTC^ ^ [ \  +  R T C L {pc^ ) k \ d R  (2 .102)

where we can take the prior outside the integral since it is a constant and P'B outside

the integral since it will clearly not depend on the rate of true gravitational wave events. 

Evaluating the integrand over all possible rates (from R = 0 to R = oo) we find

for the rate R  with a suitably low probability of occurring.

Substituting this result back into Bayes’ theorem Eq. (2.101) we find the posterior 

distribution to be:

To find the upper limit Ra on the rate of coalescences with confidence a we evaluate

The corresponding statistical statement would be that we have a x 100% confidence 

that the rate of binary coalescences is less than Ra.

We evaluate the cumulative luminosity Cl at the combined SNR of the loudest 

coincident trigger seen in this search, pc,m&x — 58.3 (see Sec. 2.7 for discussion of this 

coincident trigger).

P O O

/  p(R)p(Pc,m*x\B,R,T)dR =  P'bP{R)
Jo

(2.103)

In practice we can use a finite upper bound on this integral by choosing a large value

P{R\Pc,maxj T , B ) e RTCr. T  C l [1 + R T C l A] (2.104)'c, max? 1 + A

’c,max) (2.105)

Integrating by parts yields

l - a  = e r*tcUpc,™*) 1+  RaTCL{pc,max) . (2.106)
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2.8.2 Observation tim e

We only use data that was taken during no7>playground times in the calculation of 

the upper limit. The (in-time) non-playground dataset is blinded in the sense that all 

analysis parameters are tuned and fixed prior to its analysis in order to avoid statistical 

bias (as described in Sec. 2.6) The observation time T  is taken from Table 2.2, where 

we use the nort-playground analysed times.

2.8.3 Calculating the cumulative lum inosity

The cumulative luminosity Cl (Pc) to which our search was sensitive to is a function 

of the detection efficiency of our search S and the predicted luminosity L of the local 

universe.

Effective distance and inverse expected SNR

In searches for systems consisting of non-spinning bodies detection efficiency E is found 

as a function of its chirp mass M. = Mrj3/5 and effective distance which are combined 

to construct a quantity called the “chirp distance” which describes how detectable a 

given source is [61, 5]. For low values of chirp distance we would expect high detection 

efficiency and vice versa. We find that the effective distance is not well defined for a 

source consisting of spinning bodies and we find an alternative.

For a binary source located at a distance D from a detector, the effective distance 

Deff is the distance at which it would produce the same SNR if it was positioned directly 

overhead the detector and with optimal orientation (i.e., face on to the detector, i — 0) 

[7]. For a system consisting of no?vspinning bodies effective distance can be calculated 

using

£>eff = ,■■■................. ............ =  (2.107)
y  F+(l + cos21)2/4 + F%( cost)2

where D is the distance between the binary and the observer, l is the inclination angle 

of the binary with respect to the observer and F+ and Fx are the antenna patterns of 

the detector (see Eq. (2.26)). The effective distance Deff of a binary will always be equal

118



or greater than the physical distance D.

For a system consisting of spinning bodies, its inclination l with respect to a detector 

will evolve during the course of the inspiral making the calculation of effective distance 

complicated (it would in fact be time dependent if we used the formula above). Instead, 

in this search we find efficiency and predicted source luminosity as a function of the 

inverse of the expected SNR of a source. The expected SNR is defined as the SNR 

that would be obtained for a given simulated source assuming we use a template that 

perfectly matches the emitted gravitational waveform (i.e., fitting factor = 1) and a 

detector whose noise power spectrum we can estimate accurately. We therefore define 

/̂ expected = {si h) where h is our template and s — Ah is our signal. We can calculate 

the combined expected SNR using the formulae in Sec. 2.6.7.

By taking our distance measure Dp as the inverse of the expected SNR we obtain 

a quantity which behaves similarly to the chirp distance by taking larger values for 

signals which are detectable with a high SNR and by taking smaller values as the signals 

become less detectable. Since a binary system will have slightly different orientations 

with respect to the two LIGO observatories, detectors at different sites will measure 

slightly different expected SNRs and therefore slightly different Dp. We will denote 

Dp, H as the inverse expected SNR that would be measured at the Hanford site and DPji  

as the inverse expected SNR that would be measured at the Livingston site.

We will find the detection efficiency S and the luminosity of the nearby universe L 

both as functions of Dpn and Dp i, and we need to perform a two-dimensional integration 

in order to obtain Cl '.

As mentioned earlier, we evaluate Cl at the combined SNR of our loudest event candidate

£ ( £ > p ,h , DPil , p) L(Dp>h , dDp>i) dDPji  dDPtH

Pc, max — 5 8 .3 .
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Detection efficiency

We define detection efficiency as

£ W - K a S f 6 b t i  ( ! J M |

where # f OUnd(y°c) is the number of simulated signals with combined SNR greater than 

some pc that were detected (found) during the search and similarly # m issed (P c ) is the 

number of simulated signals with combined SNR greater than pc that were not detected 

(missed).

We use software injection of a population of simulated signals (the target waveforms 

described in Sec. 2.2) to evaluate the detection efficiency £ for observing events with 

combined SNR greater than pc, as a function of the source’s inverse expected SNR Dp. 

In order to sample the parameter space of the binary as thoroughly as possible and to 

obtain a good estimate of the detection efficiency £ we perform thousands of software 

injections. We choose the parameters of each binary in our population at random as we 

described in Sec. 2.6.6 when discussing software injections for the tuning of coincidence 

windows.

We evaluated the detection efficiency of this search for binaries with component 

masses distributed uniformly in the range 1.0 M© < mi , m2 < 20.0 M©. During S3, 

LIGO’s efficiency to binaries in this range was dominated by sources within the Milky 

Way for which detection efficiency was high across the entire mass range investigated 

due to the proximity of these sources to Earth. Figure 2.25 shows the detection efficiency 

measured for recovering software injections in coincidence between HI and H2 in H1-H2 

times against the simulated sources inverse expect SNR.

To calculate the upper limit on the rate of coalescence of NS-BH binaries we will use a 

Gaussian distribution to generate the component masses of each binary. For the neutron 

star mass we assume a mean /xns = 1.35M© and standard deviation <jns — 0.04M©. 

This choice is motivated by the mass measurements of radio pulsars by Thorsett and 

Chakrabarty (1999) [138]. Drawing upon analysis of stellar mass black hole observations 

(Orosz (2002) [106]) and theoretical black hole population studies (Belczynski et al. 

(2002) [22]), O’Shaughnessy and Kalogera [110] recommend that upper limits on the
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Figure 2.25: Detection efficiency for recovering software injected simulated signals mea
sured against the inverse of the sources expected SNR. This figure contains results for 
recovering injections in coincidence between HI and H2 in H1-H2 times only. The reason 
we only achieve ~  95% efficiency at low inverse expected SNR values is because we veto 
around 5% of H1-H2 times and therefore veto around 5% of our injections which are 
then subsequently classified as “missed” (see Eq. (2.109)).

rate of binary coalescence assume a black hole mass distribution with mean ^bh =  5M0 

and standard deviation ctbh =  1 M q . This choice, although slightly ad hoc, corresponds 

to likely values of BH mass predicted by the population studies in Ref. [110]. Also, by 

assuming relatively low mass black holes that will appear less luminous to our detector 

the upper limit we calculate will be correspondingly conservative.

Luminosity of the nearby universe

As well as the detection efficiency E we will also require an estimate of the expected 

distribution of coalescing binary sources in the nearby universe in order to evaluate the 

cumulative luminosity Cl that our search was sensitive to.

We calculate the luminosity of binary inspirals in the nearby universe by generating a 

population of simulated signals using information on the observed distribution of sources 

from standard astronomy catalogues. We use a model based on the work of Kopparapu
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Figure 2.26: Estimated luminosity of the nearby universe against the inverse expected 
SNR of our simulated sources. Comparing this plot with a similar plot made for the 
search for black hole binaries with non-spinning components (which had effective dis
tance along the x-axis, see Sec. 2.8.3) we are able to find an approximate conver
sion between inverse expected SNR Dph  and effective distance Deff. We find that 
Deff(Mpc) ~  6 3 D P)h . We identify the left most peak on this plot to be caused by the 
Milky Way, the peak at Dp,h — 0.02 to correspond to Andromeda (M31,NGC0224) and 
the peak at DPjh  — 0.07 to correspond to Centaurus A (NGC5128).

et al. (2007) [94] for the distribution of blue light luminosity throughout the nearby 

Universe which we assume is proportional to the rate of binary coalescences (see start 

of this Section). We will use the same distribution of spins and mass for this population 

of binaries as we did when assessing the detection efficiency. For each simulated signal 

we calculate the expected SNR as we did when assessing the efficiency of the search. 

Figure 2.26 shows the luminosity distribution of the nearby universe.

From our search of S 3  data we measure the cumulative luminosity Cl {pc,max) and
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C'L(pc,max) for H 1-H 2  times and H 1-H 2-L 1 times separately. We find

C l , ( /9 c ,m a x ,H l- H 2 )  =  1.76 Lio,

|C 'L ( /° c ,m a x ,H l-H 2 ) |  =  9.2 X 10-3 Lio p c _ 1 ,

C 'L ( /> c ,m a x ,H l- H 2 - L l)  =  2.23 Lio,

|C '^ ( p Cim a x )H l - H 2 - L l ) |  =  1.5xlO_2Lio pc~l ■ (2.110)

The averaged values of Cl {pc,ma.x) and C'L(pCjm&K) used to calculate the upper limit on 

the rate (Eq. (2.106)) are simply

7 h 1 - H 2  C l ( P c,m a x ,H I - H 2 )  +  ? H 1 - H 2 - L 1  C L ( l c , m a x , H l - H 2 - L l )  

^ H l - H 2  +  ? H 1 - H 2 - L 1  

7 h 1 - H 2  C ' l ( / ? c ,m a x ,H l- H 2 )  +  ? H 1 - H 2 - L 1  <? L ( P c , m a x ,H l - H 2 - L l )  

7 H 1 - H 2  +  7 H 1 - H 2 - L 1

where Thi- h2 and Thi-H2-L1 are the non-playground times listed in Table 2.2.

Cl (Pc, max) — 

^Z/(Pc,max) —

2.8.4 Background probability

We estimate the background using time-shifts, see Sec. 2.6.6. We estimate the proba

bility P b {Pc,max) of there being no background events with combined SNR greater than 

that of the loudest event as the fraction of time-shift events with combined SNR less  

than pc.max- Our estimate of the probability density p b (Pc,max) is  the gradient of P b (Pc) 

with respect to p c at the combined SNR of the loudest event /oc,max- For our search of 

S3 data we estimate P b {Pc,max) = 0-23 and P'B (p c,max) = 0.026.

Combining our results for the background probability Pb and cumulative luminosity 

Cl we can find the likelihood (Eq. (2.100)) that the loudest event observed in this S3 

was a true gravitational wave event to be A = 0.05 (i.e., 20 times more likely to be 

caused by noise than a gravitational ̂ wave).

We are now in a position to calculate the upper limit on the rate of coalescences of 

NS-BH binaries. Substituting the values we have calculated for the observation time T, 

the cumulative luminosity Cl and the likelihood A into Eq. (2.106) we obtain the 90%

123



confidence upper limit on the rate to be Rqq% = 15.8 yr 1 Lio 1-

2 .8 .5  M a rg in a liza tio n  o f  errors

There are a number of systematic uncertainties in this calculation of the upper limit 

arising from astrophysical and instrumental uncertainties as well as the assumptions we 

have made during the calculation itself. Systematic errors in the calculated upper limit 

rate can arise from

• uncertainties in the distances and luminosities of nearby galaxies,

• uncertainties related to the calibration of data recorded by the detectors,

• uncertainties due to the distribution of mass and spins assumed for the population 

of binaries we use to assess the detection efficiency of our search and the luminosity 

of the nearby universe,

• uncertainties due to the limited number of software injections we performed in 

order to assess the detection efficiency and luminosity of the nearby universe.

Note that for searches using different families of matched-filter templates that rely 

directly upon the modelling of the binary inspiral and the post-Newtonian approxima

tion there is also an uncertainty associated with how well the templates match true 

gravitational wave signals. However, since we use a detection template family designed 

to capture a broad range of signals based upon their wave shape (see discussion of 

detection template families in Sec. 2.3) we ignore this uncertainty.

In order to obtain the most accurate upper limit possible we will marginalize over 

these uncertainties. This involves specifying a prior distribution that describes how we 

expect the uncertain parameter to behave. For instance, suppose that our posterior on 

the rate p(R\pc,max, T, B, A) depended not only on the combined SNR of the loudest 

event pc,max, observation time T  and our background B  but also on some uncertainty in 

the likelihood A (due to some uncertainty in Pb or Cl ). By assuming a prior distribution 

p(A) of the likelihood we would be able to marginalize over this uncertainty using

p(R\pc,max) T,B) =  Jp(A)p(R\p,'c,max > (2.111)
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The process of marginalization is described further in Biswas et al. (2007) [23] and 

its application to searches for gravitational waves emitted by binary systems is detailed 

in Brady and Fairhurst (2007) [61]. After marginalization over these errors we obtain 

an upper limit of Rgo% = 15.9 yr-1 Lio-1. We also calculate upper limits for a range of 

binary systems with mi = 1.35M© and m2 uniformly distributed between 2 and 20M©. 

These upper limits, both before and after marginalization are shown in Fig. 2.27. These 

upper limit results are around 7 orders of magnitude larger than the expected rates 

discussed in Sec. 2.1.1 so do not allow us to constrain the uncertainties in them.

Upper limits on the rate of binaries with non-spinning components

There was no detection of gravitational waves in the S3 and S4 LIGO searches for binaries 

with non-spinning components and the upper limits on the rate of their coalescence 

were calculated. The S3 and S4 searches for binaries with non-spinning components are 

described in Abbott et al. (2007) [5]. We briefly summarise the results of these searches 

and compare the upper limits on the rates of coalescence calculated.

The S3 search for binary black holes with non-spinning components targeted systems 

with component masses in the range 3.0M© < mi ,m2 < 40.0M©. The loudest event 

candidate observed was in HI and H2 in H1-H2 times with combined SNR pc = 106.5. 

We find that this event was the second loudest event observed in the search for binaries 

with spinning components where it was observed with pc = 53.2 (we identified these 

events by the GPS time in which their peak SNR was measured). This event was found 

by the search for binaries with non-spinning components with optimal -00 and 0 3  values 

well outside the region covered by the search for binaries with spinning components 

thus explaining the higher SNR it achieved in the non-spinning search. It was noticed 

that another two of the five loudest event candidates observed in H1-H2 times during 

the search for asymmetric binaries with spinning components were among the loudest 

(four) event candidates observed in the search for binary black holes with non-spinning 

components. In cases where both searches have triggers lying in (or very near) the 

range of 0o and 0 3  covered by the search for binaries with spinning components we 

would expect it to yield higher SNR since the BCV2 detection template family used
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to capture spin-modulated signals has more degrees of freedom (i.e., 6 when (3 ^  0) 

than the BCV1 detection template family used to capture signals from binaries with 

non-spinning components.

The upper limit on the rate of coalescence of (approximately symmetric) binary bank 

holes consisting of non-spinning components with masses distributed with means ?bbh = 

5M© and standard deviations <tbh = 1M© was calculated to be Rqq% = 23.6 yr-1 Lio-1. 

The lack of a x 2 test and the large mass region the search covered lead to the high 

combined SNR of the loudest event candidate which in turn lead to a comparably high 

upper limit on the rate of coalescences.

The S3 search for binary neutron stars with non-spinning components targeted sys

tems with component masses in the range 1.0Mq < mi, m 2 < 3.0M©. The upper 

limit on the rate of coalescence for binary neutrons consisting of non-spinning com

ponents with masses distributed with means mNS — 1.35M© and standard deviations 

o'NS = 0.04M© was calculated to be Rqo% = 7.97yr-1 Lio-1 . Again the value of this 

loudest event can be understood, at least partially, in terms of the loudest event candi

date observed in the search which had combined SNR pc ~  12. This search utilised a 

X2 test and actually used the effective SNR (higher for events that have good x 2 fit to 

the matched-filter template) to measure the loudness of the events.

The expectation is that we will obtain more interesting (i.e., lower) values for the 

upper limits on the rates of coalescences in future searches as the sensitivity of the 

detectors improves leading to larger detection efficiency (and therefore cumulative lumi

nosities Cl ) and improved detector stability leads to longer observation times T. This is 

borne out by the results of the searches of S4 LIGO data for binaries with non-spinning 

components (B. Abbott et al. (2007) [5]) which yielded Rqq% = 0.5 yr-1 Lio-1 for binary 

black holes and Rqq% = 1.2 yr-1 Lio-1 for binary neutron stars.
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Figure 2.27: Upper limits on the spinning binary coalescence rate per Lio as a function of 
the total mass of the binary. For this calculation, we have evaluated the efficiency of the 
search using a population of binary systems with mi =  1.35M© and m2 uniformly dis
tributed between 2 and 20M q .  The darker area on the plot shows the region excluded 
after marginalization over the estimated systematic errors whereas the lighter region 
shows the region excluded if these systematic errors are ignored. The effect of marginal
ization is typically small (< 1%). The initial decrease in the upper limit corresponds to 
the increasing amplitude of the signals as total mass increases. The subsequent increase 
in upper limit is due to the coimter effect that as total mass increases the signals become 
shorter and have fewer cycles in LIGO’s frequency band of good sensitivity.
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Chapter 3

Searching for Extrem e M ass 

Ratio Inspirals using 

time-frequency algorithm s

In this Chapter will turn our attention to the development of data analysis techniques 

to enable the detection of inspiral events using the planned LISA detector (described in 

Sec. 1.3.1). We will first describe the various sources LISA is expected to be sensitive to 

in Sec. 3.1 before reviewing existing data analysis techniques in Sec. 3.2. Having identi

fied the requirement for a computationally cheap method to provide initial detection and 

rough parameter estimation of LISA sources, in Sec. 3.6 we will detail a time-frequency 

technique for this purpose, the Hierarchical Algorithm for Clusters and Ridges (HACR). 

We will then go on to use HACR on a simulated LISA data set and assess its ability to 

detect gravitational waves from our expected sources.

The analysis described in this Chapter was performed by the author (Gareth Jones) 

in collaboration with Dr. Jonathan Gair (Institute of Astronomy, University of Cam

bridge) and has been previously published in Gair and Jones (2007) [85] and Gair and 

Jones (2007) [86].
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3.1 LISA sources

3.1.1 Extrem e M ass R atio Inspirals

Astronomical observations indicate that many galaxies contain a supermassive black 

hole (SMBH) in its nuclei [57, 113] with masses in the range ~  105 — 1O1OM0 [84, 77]. 

Encounters between bodies in the surrounding star cluster can perturb the orbit of one 

of those bodies so that its periapse becomes close to the SMBH. The body will radiate 

energy in the form of gravitational waves and will become bound to the central SMBH. 

If that body happens to be a compact object such as a white dwarf, neutron star or 

black hole, it will withstand the tidal forces exerted upon it and will inspiral into the 

central SMBH. These events are called extreme mass ratio inspirals (EMRIs). The 

inspiral of compact objects into a SMBH of mass ~  105 — 107Mq will emit gravitational 

waves that we expect to observe with LISA during the final few years before plunge. 

For a discussion of EMRIs with regard to data analysis, tests of General Relativity and 

astrophysics see Amaro-Seoane et al. (2007) [8].

The rate at which these extreme mass ratio inspiral (EMRI) events occur in the 

Universe is highly uncertain, but is likely to be at most only a few times per year 

in each cubic Gpc of space, see Freitag (2001) [69] and Gair et al. (2004) [71] (see 

particularly Table 2). LISA EMRI events are thus unlikely to be closer than lGpc, at 

which distance the typical instantaneous strain amplitude is h ~  10~22 (from Eq. (1) of 

Wen and Gair (2005) [148] which is similar to Eq. (1.65) of this thesis with the inclusion 

of the reduced mass p in order to take into account the extreme mass asymmetry of these 

systems). Comparing this value to the characteristic noise strain in the LISA detector 

of ~  5 x 10-21 at the floor of the noise curve near 5 mHz (see Cutler (1998) [52], Barack 

and Cutler (2004) [20] and Fig. 1.4) we can see that the instantaneous (rather than 

accumulated coherent) SNR will be no more than ~  0.1.

3.1.2 M erger of superm assive black holes

LISA should also detect ~  1-10 signals per year (Sesana et al. (2005) [129], see particu

larly Fig. 5) from the inspiral and merger of supermassive black hole binaries (SMBHBs) 

of appropriate mass (~ 105Mq - 107Mq). These events will occur during the merger
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of the host galaxies of the supermassive black holes and will be visible out to very high 

redshifts appearing in the LISA data stream with very high signal-to-noise ratio.

3.1.3 Inspiral of w hite dwarfs

We expect to detect gravitational waves from many millions of compact binaries (com

posed of white dwarfs (WDs) or neutron stars (NSs)) in the nearby Universe. The 

orbital shrinkage of these binaries is slow and they generate essentially monochromatic 

gravitational wave signals (modulo modulation caused by the motion of LISA). At low 

frequencies the huge number of these binaries will form a confusion foreground, but at 

higher frequencies we hope to individually resolve several thousands of these binaries 

(Danzmann et al. (1998) [60], see Fig 1.3 and discussion).

3.2 Data analysis and detection schemes

In this Section we will briefly summarise different methods for the analysis of LISA data 

in order to detect EMRI signals. We shall see that due to the complexity and duration 

of these sources matched-filter based analysis will be very computationally expensive (in 

some cases unfeasible) and we will suggest and subsequently develop a time-frequency 

based approach.

3.2.1 M atched-filtering for EM RIs

EMRI waveforms will be detectable for several years before plunge, which makes detec

tion possible by building up the signal-to-noise ratio over many waveform cycles using 

matched filtering as discussed for the inspiral of stellar mass compact objects previously. 

An EMRI waveform depends on 17 parameters (although several of these are not im

portant for determining the waveform phasing and we can neglect the spin of the lower 

mass component) and LISA will detect up to ~  105 cycles of the waveform prior to 

plunge. Estimating that one template might be required per cycle in each parameter, 

and ~  6 important (intrinsic) parameters, gives an estimate of 1030 templates required 

for the simplest case of a search for a single EMRI embedded in pure Gaussian noise, 

this is far more templates than the few x 103 - 104 required in the search for stellar mass
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spinning systems, see Fig. 2.17. This is far more than can be searched in a reasonable 

computational time Gair et al. [71].

Markov Chain Monte Carlo techniques

As well as the large number of parameters required to describe an EMRI, the analysis 

of LISA data is further complicated by the fact that it is signal dominated, i.e., at any 

moment the data stream includes not only instrumental noise but thousands of signals of 

different types which overlap in time and frequency. The optimal matched-filter template 

should, therefore, be a superposition of all the signals that are present. Techniques exist 

to construct such a global matched filter iteratively, such as Markov Chain Monte Carlo 

(MCMC) methods, and are currently being investigated in the context of LISA (Cornish 

and Crowder (2005) [49], Umstatter et al. (2005) [139], Wickham et al. (2006) [150], 

Cornish and Porter (2007) [50]), including for characterisation of LISA EMRIs [133].

However, even when performed efficiently the MCMC approach still requires the 

matched-filtering of ~  107 templates which need to be either generated on the fly or 

looked up in a template bank. For EMRIs, the computational cost of either approach 

may be prohibitively high, unless some advance estimate has been made of the parame

ters of the signals present in the data. To devise such parameter estimation techniques, 

it is reasonable to first consider the problem of detecting a single source in noisy data, 

before using and adapting the methods to the case of multiple sources. It is this second 

problem, searching for a single source while ignoring source confusion, that work on 

EMRI searches has concentrated on so far.

Semi-coherent matched-filtering for EMRIs

Another possibility for the detection of EMRIs in LISA data is a semi-coherent approach. 

Rather than search for the full waveform (which may last the majority of LISAs run) 

we first perform a coherent matched-filter search for ~  2 — 3 week segments of EMRI 

waveforms. Subsequently the power in each segment is (incoherently) summed (see 

e.g., Gair et al. (2004) [71] Sec. 3 for a description of this technique). Assuming 

reasonable computational resources, this technique could detect individual EMRI events 

out to a redshift z  & 1 (Gair et al. (2004) [71]), which would mean as many as several
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hundred EMRI detections over the duration of the LISA mission, although this result is 

clearly dependent on the intrinsic astrophysical rate of EMRI events. The semi-coherent 

method, although computationally feasible, makes heavy use of computing resources.

However, the high potential event rate suggests that it might be possible to de

tect the loudest several EMRI events using much simpler, template-free time-frequency 

techniques, at a tiny fraction of the computational cost.

3.3 Time-frequency techniques

A promising technique for the detection of EMRIs, and other types of LISA sources, is 

a time-frequency analysis. We divide the full LISA data set into segments of shorter 

duration (~ 2 — 3 weeks) and construct a Fourier spectrum of each, hence creating a 

time-frequency spectrogram. We then search this time-frequency map for features. The 

simplest possible time-frequency algorithm is an Excess Power search, where we search 

the time-frequency map of our data for unusually bright pixels. While Excess Power 

searches perform poorly when applied to the basic time-frequency map, if the pixels 

of the time-frequency map are binned first the Excess Power method is able to detect 

typical EMRI events at distances of up to ~  2.25Gpc (Wen and Gair (2005) [148] and 

Gair and Wen (2005) [70]) which is about half the distance of the semi-coherent search 

(Gair et al. (2004) [71]). The disadvantage of the Excess Power method is that it 

does not by itself provide much information about the source parameters, but merely 

indicates that a source is present in the data. A follow up analysis must therefore be 

used to extract information about events identified by the Excess Power search (Wen et 

al. (2006) [147]).

In this analysis we consider a somewhat more sophisticated time-frequency algo

rithm, the Hierarchical Algorithm for Clusters and Ridges (HACR) (Heng et al. (2004) 

[81]). This method involves first identifying unusually bright pixels in the time-frequency 

map, then constructing a cluster of bright pixels around it, before finally using the num

ber of pixels in the cluster as a threshold to distinguish signals from noise events. The 

properties of the HACR clusters encode information about the source, and thus in a 

single analysis HACR allows both detection and parameter estimation.
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The HACR search encompasses the Excess Power search as a subset (with the pixel 

threshold set to 1), which will allow us to compare HACR’s performance to the perfor

mance of the Excess Power algorithm in this analysis. We have found that when HACR 

is applied to the unbinned spectrogram, it performs poorly, but if the spectrogram is 

first binned via the same technique used for the Excess Power search (Wen and Gair 

(2005) [148] and Gair and Wen (2005) [70]), we find that HACR outperforms the Ex

cess Power search, as we would expect. HACR is able to detect typical EMRI events 

at distances of ~  2.6Gpc, which is a little further than the Excess Power technique. 

However, the HACR clusters associated with detection events tend to have several hun

dred pixels, and thus encode a significant amount of information about the source. The 

HACR search can be tuned to be sensitive to a specific source at a specific distance, or 

to a specific source at an unknown distance, or to an unknown source at an unknown 

distance. While the detection performance for a specific source does depend on how the 

HACR thresholds are tuned, we find that the variation of detection rate is not huge and 

so a single HACR search could be used to detect multiple types of events in a search of 

the LISA data.

3.4 The LISA data set

The LISA detector was described in Sec. 1.3.4. The main source of noise in LISA is 

random variations in the frequency of the laser it uses to measure the change in (proper) 

distance between the spacecraft. However, this laser frequency noise can be suppressed 

without eradicating the gravitational wave signal through use of Time Delay Interfer- 

ometry (TDI, see for instance Vallisneri (2005) [140] and references therein). At high 

frequencies, there are three independent TDI channels in which the noise is uncorrelated 

which are typically denoted A, E  and T. At low frequencies, there are essentially only 

two independent data channels since LISA can be regarded as a superposition of two 

static Michelson (90°) interferometers at 45° to each other over the relevant timescales. 

These two low-frequency response functions, denoted hi and /ijj, are defined in Cutler 

(1998) [52]. In this analysis we treat the LISA data stream as consisting of only these 

two channels, since our sources are at comparatively low frequencies, and the responses
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of the two Michelson interferometers are quick and easy to compute. While not a totally 

accurate representation of LISA, this approach incorporates the modulations due to the 

detector motion in a reasonable way and so is sufficient for the qualitative nature of the 

current analysis.

3.4.1 LISA ’s noise spectral density

To characterise the search, we need to include the effects of detector noise. To do 

this, we use the noise model from Barack and Cutler (2004) [20] \  which includes 

both instrumental noise and “confusion noise” from the unresolvable white dwarf binary 

foreground. The noise power spectral density is given by

Sh(f) = min {sr'(/) exp dW df )  > 4 " s*(/) + 5 f ’(/)}
+ sex.g,J(/ )

where ^ nst(/) = 9.18 x 10-52 / “4 + 1.59 x 10“41 + 9.18 x 10~38 / 2Hz_1
/  f  \  ~ 7/ 3

and S f^ i f)  = 50 Saxgal(/) -  2.1 x 10~45 ( J Hz"1. (3.1)

In this, the parameter k T~.^ion measures how well white dwarfs of similar frequency can 

be distinguished, and we take k T“jgSion = 1.5/yr as in Barack and Cutler (2004) [20]. 

In practice, rather than adding coloured noise to the injected signal, we first whiten the 

signal using this theoretical noise prescription and then add it to white Gaussian noise. 

These procedures are equivalent under the assumption that the LISA data stream can 

be regarded as stationary and supposing that the noise spectral density is known or can 

be determined. This is likely to be a poor assumption, but a more accurate analysis is 

difficult and beyond the scope of this project.

3.5 A typical EMRI

In this analysis we concentrate on the issue of detection of EMRI events and to do so 

we must consider a typical EMRI signal. Work by Gair et al. (2004) [71] using a the 

semi-coherent search suggested that the LISA EMRI event rate would be dominated by
XN B  T h e  p u b lis h e d  v e r s io n  o f  th is  p a p er  c o n ta in s  a n  error in  th e  e x p r e s s io n  for S h, w h ic h  h a s  b e e n  

c o r r e c te d  in  t h e  p r e p r in t  g r - q c /0 3 1 0 1 2 5 .  W e u se  t h e  c o rr e c ted  e x p r e s s io n s  h er e .
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the inspiral of black holes of mass m ~  10M© into SMBHs with mass M  ~  106M©. 

An EMRI will be detectable for the last several years of the inspiral, and hence could 

last for a significant fraction of the LISA mission duration (~ 3 — 5 years). Moreover, 

since the stellar mass black hole will typically be captured with very high eccentricity 

and random inclination with respect to the equatorial plane of the SMBH, its orbit as 

it inspirals is likely to have some residual eccentricity and inclination at plunge.

Theoretical models (Volonteri et al. (2005) [142]) and some observational evidence 

indicate that most astrophysical black holes will have significant spins (see Table 2.1 

for a summary of the measured spins of stellar mass black hole binaries). A super 

massive black hole that has accreted substantial mass via accretion of material with 

constant angular momentum axis (e.g. a non-precessing disk) would spin up to near the 

maximal value allowed (i.e. 0.998). A super massive black hole formed by the merger 

of two objects of comparable mass is expected to have substantial spin whereas a super 

massive black hole that has accreted mass via capture of low-mass objects from random 

directions would not accumulate significant spin (see Rees and Volonteri (2007) [122] 

Sec II and references therein). Since our analysis, Brenneman and Reynolds (2006) 

[34] analysed XMM-Newton (X-ray) observations of the supermassive black hole (M = 

3 — 6 x 106M© from McHardy et al. (2005) [101]) in the centre of galaxy MCG-06- 

30-15. Their analysis (X-ray spectroscopy) strongly ruled out that the black hole is 

non-spinning and instead infers a value % ~  0.989.

Bearing all this in mind, we choose as a “typical” EMRI event (which we shall refer 

to as source “A”) the inspiral of a 10M© black hole into a 106M© SMBH with spin 

a — 0.8M. We assume conservatively that the LISA mission will last only three years 

(3 x 2 25s ) and that the EMRI event is observed for the whole of the LISA mission, but 

plunges shortly after the end of the observation. This sets the initial orbital pericentre 

to be at rp «  11M. We take the eccentricity and orbital inclination at the start of the 

observation to be e = 0.4 and i — 45° and fix the sky position in ecliptic coordinates to be 

cos 9s — 0.5, (f>s = 1. The orientation of the SMBH spin is chosen such that if the SMBH 

was at the Solar System Barycentre, the spin would point towards ecliptic coordinates 

cos(9k) = —0.5, 4>k = 4. These latter orientation angles were chosen arbitrarily, but
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are non-special.

We generate the EMRI waveform using the approximate, “kludge”, approach de

scribed in Babak et al. (2007) [18] and Gair and Glampedakis (2006) [72]. These kludge 

waveforms are much quicker to generate than accurate perturbative waveforms, but cap

ture all the main features of true EMRI waveforms and show remarkable faithfulness 

when compared to more accurate waveforms.

In addition to source “A”, we will consider two other EMRI injections. These have 

the same parameters as “A”, except for the initial orbital eccentricity, which is taken 

to be e = 0 for source “K” and e = 0.7 for source “N”. The waveforms and waveform 

labels used are the same as those examined in the context of the Excess Power search 

in Gair and Wen (2005) [70] (see Table 1) to facilitate comparison. Figures 3.1 and 3.2 

show how these signals can expect to be observed by LISA.

In Section 3.10, we will examine the performance of HACR in detecting other LISA 

sources, namely white dwarf binaries and SMBH mergers. For both of these sources, 

we take the waveform model, including detector modulations, from Cutler (1998) [52]. 

Although more sophisticated SMBH merger models are available, the prescription in 

Cutler (1998) [52] is sufficiently accurate for our purposes. The waveform model for a 

non-evolving white dwarf binary is very simple and has been well understood for many 

years and is summarised in Cutler (1998) [52].

3.6 The Hierarchical Algorithm for Clusters and Ridges

The HACR algorithm identifies clusters of pixels containing excess power in a time- 

frequency map (not necessarily a spectrogram) and represents a variation of the TF- 

Clusters algorithm described in Sylvestre (2002) [134]. In a given time-frequency map, 

we denote the power in a pixel as Pij where i and j  are the time and frequency co

ordinates of the pixel. HACR employs two power thresholds, r]up > rjiow and a threshold 

on the number of pixels above the power thresholds, Np. At the first stage, the algo

rithm identifies all black pixels with P^j > r)up and all grey pixels with Ptj  > r]\ow. At 

the second stage, HACR takes each black pixel in turn and counts all the grey pixels 

that are connected to that black pixel through a path of touching grey pixels. Touching
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Figure 3.1: Time-series (upper panel) and spectrogram (lower panel) plots of EMRI “A” 
as it would be observed by LISA. The amplitude modulation of the observed signal due 
to LISA’s orbit about the sun is clearly visible in these plots. In the spectrogram various 
harmonics of the fundamental gravitational wave frequency are observed (see caption of 
Fig. 3.2 for further details). Note the “chirping” nature of the individual tracks on the 
spectrogram showing the increase of gravitational wave amplitude and frequency as the 
system evolves.
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Figure 3.2: Spectrograms of EMRI “K” (upper panel) and “N” (lower panel) as they 
would be observed by LISA. The splitting of signal power into the different harmonics 
of the fundamental gravitational wave frequency is a function of the EMRI’s orbital 
eccentricity e. For eccentric orbits, like those of sources “A” and “N” most of the grav
itational radiation is emitted at the periapse of the orbit. For more eccentric orbits, 
these peaks in the emission of gravitational radiation become more concentrated in time 
than for less eccentric orbits and higher harmonics in the frequency domain are ob
served (see Sec. Ill of Peters and Matthews (1964) [116]). Indeed, more harmonics are 
observed for EMRI “N” (e =  0.7) than EMRI “A” (e = 0.4, see Fig. 3.1) or EMRI “K” 
(e = 0). Estimation of an EMRI’s parameters using time-frequency representations of 
an observed signal is described in Wen et al. (2006) [147] and Gair et al. (2007) [73] (see 
Sec. 3.11). For example, the separation between the time-frequency tracks correspond
ing to different harmonics can be used to estimate the system’s orbital frequency near 
peripase. Precession of the system’s orbital plane, discussed in the previous Chapter for 
stellar mass binaries, will cause splitting of each of the tracks into different sidebands. 
The separation of these sidebands can be used to estimate the rate of precession of the 
orbital plane and the orientation of the SMBH’s spin [73].
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is defined as sharing an edge or corner. This process is repeated for each black pixel. 

To be classified as an event candidate a cluster of pixels must have Nc > Np where Nc 

is the number of pixels contained in a particular cluster. The algorithm is illustrated in

There is some degeneracy between the thresholds, particularly 77iow and Np. Choosing 

a low value of 77iow tends to make clusters larger but we can limit the number of these 

clusters which become an event candidate by using a larger value for the pixel threshold, 

Np. In our preliminary analysis, we fixed the value of 77iow and tuned only Np. However, 

tuning 7710W as well can enhance the detection rate by 10 — 15%. The results shown 

in this analysis use tuning over both thresholds. The thresholds affect not only the 

detection rate, but also parameter extraction. Reducing rf\ov/ in order to make clusters 

larger might increase the detection rate, but it will also increase the number of noise 

pixels in each event candidate which will hamper parameter extraction. The optimal 

thresholds for the final search will ultimately come from a compromise between greater 

reach and more accurate parameter extraction. In a future paper, when we explore 

parameter estimation, we will examine this issue more carefully. In the current analysis, 

we look only at maximizing the detection rate.

3.6.1 Investigating binning of the tim e-frequency maps

It is possible to improve the performance of the search by “binning” the time-frequency 

maps. This binning procedure was the key stage in the simple Excess Power search 

discussed in Wen and Gair (2005) [148] and Gair and Wen (2005) [70].

This binning procedure involves constructing an average power map using boxes of 

a particular size. The average power contained within a box is defined by

where n, I are the lengths of the box edges in the time and frequency dimensions re

spectively, and m — n x I is the number of data points enclosed. This average power 

is computed for a box aligned on each pixel in the (original unbinned) time-frequency 

map. Adjacent pixels in the binned time-frequency map are therefore not independent.

Fig. 3.3.

1 n —1 l—l
(3.2)
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Figure 3.3: A simple time-frequency map illustrating properties of the HACR algorithm. 
Pixels with power P ij > rjup are classified as black pixels. Surrounding pixels with 
P ij > 7710W are then classified as grey pixels building a cluster around the black pixel. 
The cluster is classified as an event candidate if the number of pixels it contains, Nc, 
exceeds the threshold Np. Assuming Np < 6 we would classify cluster “a” as an event 
candidate. Clusters ( “b”) may contain more than more black pixel (or even consist solely 
of black pixels) but still require Nc > Np to be classified an event candidate. Clusters of 
any size (“c” ) require at least one black pixel to be classified an event candidate. Pixels 
connected by their corners (“d”) only still count as connected. In the limit Np = 1 
HACR will mimic a simple Excess Power search identifying all black pixels as event 
candidates (e.g., “e”).
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In practice, for ease of computation we choose the alignment so that the pixel we use 

to label each box is in the top left hand corner of that particular box. As in Wen and 

Gair (2005) [148], we use only box sizes (n, I) = (2nt,2nf) for all possible integer values 

of nt and nj. We denote the total number of different box shapes used as iVbox-

For a given source, the box size that will do best for detection will be large enough to 

include much of the signal power but small enough to avoid too much contribution from 

noise. This optimum will be source specific due to the wide variation in waveforms. 

The inspiral of a 0.6M© white dwarf occurs much more slowly than that of a 10M© 

black hole, so in the first case, the optimal box size is likely to be longer in the time 

dimension. Gravitational waves from an inspiral of a compact object into a rapidly 

spinning black hole or from a highly eccentric inspiral orbit are characterised by many 

(often closely packed) frequency harmonics. In this case, a box that is wider in the 

frequency dimension may perform well. In designing a search, a balance must therefore 

be struck between having sensitivity to a range of sources and increasing the reach of 

the search for a specific source. We will consider this more carefully in Sec. 3.9.

Efficient “binning” m ethod

The binned spectrograms for each box size can be generated in a particular sequence that 

improves the efficiency and speed of the search as shown in Figure 3.4. We first construct 

the unbinned (n =  1,/ = 1) map of the data and store it as map A. Before analysing 

map A we construct the (n = 1,1 = 2) map by summing the powers in vertically 

adjacent pixels and storing this as map B (step 1). We then search map A using HACR 

before summing the power of pixels in horizontally adjacent pixels to construct the 

(n = 2,1 = 1) map, and overwrite map A (step 2). Repeating this procedure on this 

new map A, we construct and search all the box sizes (n = 2nt, I = 1). Before analysing 

the (n = 1,1 — 2) map stored as map B we construct the (n = 1, I = 4) map and store 

this as map A (step 3). Using and overwriting map B, we construct and search all the 

box sizes (n =  2nt ,1 = 2) (step 4). We repeat this procedure until we have searched all 

possible box sizes up to the limit imposed by the size of our time-frequency map.

This efficient binning method requires the storage of only two time-frequency maps
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Figure 3.4: A schematic showing how we bin the pixels of our time-frequency map in 
an efficient manner following the algorithm described in Sec. 3.6.1. This Figure was 
designed by Gair and Jones for [85] and was drawn by Gair.
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at any given time and reduces the number of floating point operations needed through 

careful recycling of maps. It is therefore very computationally efficient.

We set the HACR thresholds separately for each binned time-frequency map and 

label them according to the dimensions of the box they are tuned for, i.e., 77̂ ,  7/up and 

Np’1. A HACR detection occurs if there is an event candidate (i.e., a cluster satisfying 

our thresholds) in at least one binned time-frequency map.

To characterise the entire search (over all box sizes) we define an overall false alarm 

probability (OFAP). This is defined as the fraction of LISA missions in which HACR 

would make at least one false detection in at least one of the binned time-frequency 

maps in the absence of any gravitational wave signals. Each box size that we use to 

analyse the data could be allowed to contribute a different amount to OFAP , but to 

avoid prejudicing our results, we choose to assign an equal false alarm probability to 

each box size. We call this quantity the additional false alarm probability (AFAP ). 

To be clear, AFAP  is the probability of a false alarm in a time-frequency map with a 

particular box size, i.e., the fraction of LISA missions in which that particular box size 

would yield a false detection. The way in which the thresholds are computed ensures 

that time-frequency maps with each box size adds AFAP  to the overall false alarm 

rate (hence “additional”), despite the fact that the binned time-frequency maps are 

not all independent. This will be described in Sec. 3.8.1, and ensures that in practice 

OFAP = Nhox x AFAP.

It is important to note that in the case Np = 1 then the HACR algorithm is equivalent 

to the Excess Power method described in earlier papers Wen and Gair (2005) [148] and 

Gair and Wen (2005) [70]. A comparison between these two algorithms will be made in 

subsequent Sections of this thesis.

3.6.2 Constructing spectrograms

We consider a three year LISA mission, and used Tlisa = 3 x 2 25 seconds of simulated 

LISA data sampled at f s = 0.125 Hz (a cadence of A t = 8 seconds). To construct 

the time-frequency map, we divided our time series data into Tsegment = 2 20 seconds 

(~ 2 week) time segments and an FFT was performed on each segment. The frequency
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resolution of the spectrogram is A f  = l/T segment- The highest frequency we can sample 

without suffering low frequency aliasing is determined by the frequency at which we sam

ple our continuous stream of data, f s. The Shannon-Nyquist sampling theorem states 

that we can exactly reconstruct the original continuous stream of data from our sampled 

data set as long as the original data stream is band limited to contain only frequencies 

less than half the sampling frequency. This critical frequency is known as the Nyquist 

frequency, /Nyquist = 0.5/s. Figure 3.5 shows how the various quantities described above 

define the resulting spectrogram. The resulting time-frequency spectrograms consist of 

96 points in time and 65536 points in frequency giving us AW  = 7 x 17 = 119 possible 

box sizes of the form n  =  2n‘, I =  2nf  where n* = 0 .. .  6 and r i f  — 0 ... 16. Note that 

we do not use box size (n = 26,/ = 216) since in this case our entire spectrogram will be 

represented by only a single box.

A power spectrogram was constructed separately for both LISA low-frequency chan

nels, hi and hjj and these were summed pixel by pixel to produce the time-frequency 

map searched by the HACR algorithm. The power in the i j th pixel of the time-frequency 

map searched by HACR is given by

and the injected signals were whitened using the theoretical LISA noise curve Sh(f)  

described in Sec. 3.4.1. In this approach, in the absence of a signal the power, Pij, in 

each pixel of the unbinned spectrogram will be distributed as a x 2 with 4 degrees of 

freedom.

The division into ~  2 week segments was chosen to facilitate comparison with the

a= l , n
(3.3)

where we have written our data in the Fourier domain as x = h + n (where h is a signal 

and n  is noise) and a 1 is the expected variance of the noise component rij .  This is given

by

Sh{f) (3.4)2{At)2A f

In practice, the noise in the two LISA channels was taken to be Gaussian and white
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Figure 3.5: Schematic diagram describing the construction of a spectrogram. The LISA 
data set, length T l is a  is divided into A ugm ent time segments of length Tsegment- The 
data stream is sampled at f s = 0.125 Hz which corresponds to a cadence of At = 8 
seconds. Each segment will contain ATsample samples, i.e., T segment = Nsamp\eAt. We 
have frequency resolution A f  = 1 / T segment the maximum frequency we can sample 
without aliasing is /Nyquist =  0.5/s. We will therefore have Afsampies frequency bins in 
our spectrogram.
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Excess Power search (Wen and Gair (2005) [148] and Gair and Wen [70]), and it is a 

fairly reasonable choice for EMRIs. We would ideally like to ensure that the power 

measured in the spectrogram corresponding to a particular gravitational wave signal 

(e.g., a given harmonic of an inspiral chirp) is not split into too many small clusters. 

The maximum segment length that ensures a source whose frequency is changing at 

df /dt does not move by more than one frequency bin over the duration of the segment 

(i.e., df /dt = A //T segm en t) is Tsegment = 1/y/df/dt. In the extreme mass ratio limit, the 

leading order post-Newtonian rate of change of frequency is

[115] for dr/dt with Kepler’s third law). For the inspiral of a m = 10M© object into a 

M  — 106Mq this gives a maximum segment length of ~  1 day when the orbital radius 

is r — 10M. At that radius, the frequency would change by ~  10 bins during one 2 

week time segment. This change is less rapid earlier in the inspiral and more rapid later 

in the inspiral. If we choose time segments that are too short, the spectrogram will 

be dominated by short timescale fluctuations in the detector noise, and the frequency 

bins will be broad, so we lose resolution in the time frequency map. Time segments 

with length ~  1 week seem like a reasonable compromise. In the future, we plan to 

experiment with shorter and longer time segments. However, the choice of time segment 

length should not significantly affect our results thanks to the binning part of the search 

algorithm.

3.6.3 C om putational cost of a H A C R  search

The computational cost of running the HACR search is very low. We divide the 

LISA data stream (Tlisa) into Nsegments time segments of length Tsegment- Each time 

segment contains Agampies time samples. To FFT one time segment we perform ~  

Asamples l°g Nslimp\es floating point operations. Therefore, to construct spectrograms for 

the full LISA data stream (Augments) for both channels, hj and A//, must perform 

~  2ArsegmentsNgampies log Asampies operations.

(3.5)

for a circular orbit of radius r (in units with c = G = 1) (use Eq. (5.6) of Peters (1964)
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The efficient binning algorithm ensures that only two floating point operations are 

needed to evaluate the average power for a given pixel in any one of the binned spectro

grams (as opposed to nxZ+1 operations if the binned spectrogram was computed directly 

from the unbinned map). Our unbinned spectrogram will have Afsegment points in the 

time and /Vsampie points in frequency. The number of operations required to construct all 

the binned spectrograms is therefore less than Augments -̂ samples log2 -̂ segments log2 Samples 

(less since the average power is not defined for pixels in the last n  — 1 columns and I — 1 

rows when using the n x I box size).

The HACR algorithm first identifies pixels as black, grey or neither (AugmentsSamples 

operations) and then counts the number of pixels in each cluster. For a given clus

ter, counting the size involves 9 operations per pixel (8 comparisons to see if the 8 

possible neighbours are also in the cluster and one addition to increment pixel count 

Np). If HACR has identified Nc clusters, and cluster Cj has Np(cj) pixels, this makes 

Nc(9Np(cj) + 1) operations in total, assuming no overlap between the clusters. We 

do not know in advance how many clusters HACR will identify, nor how many pixels 

will be in each one. However, we know that we cannot have more clusters than pixels 

Nc < Â egments Âsamples- We also limit the number of pixels in a cluster to Np < 50000 by 

choosing the minimal lower power threshold t?iow (this will be described in the Sec. 3.7).

In practice, to run the HACR search with a single set of tuned thresholds on a 

spectrogram containing a single source, and with LISA and box size parameters as 

described in Sec. 3.6.2, takes about 1 minute on a 3.5GHz workstation. If more sources 

were present, this time would be larger since more clusters would be identified, but 10 

minutes would be an upper limit. This should be compared to the cost of the semi- 

coherent search which requires ~  3 years on a 50Tflops cluster (Gair et al. (2004) [71]).

It should be noted that noise characterisation and tuning of HACR is more expensive, 

since it involves using low thresholds (thus increasing the number of HACR clusters 

identified), and repeating over many noise realisations. However, to complete 1000 

tuning runs using 40 nodes of a typical computer cluster still takes only a few hours.
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3.7 Searching characterisation

Tuning HACR is a two step process. Firstly, simulated noisy data is analysed in order 

to identify triplets of our thresholds 77̂ ,  rjup and Np’1 which yields a specified false 

alarm probability AFAP  for each box size n x I. Secondly, a stretch of simulated data 

containing both noise and a signal is analysed using these threshold triplets and the 

detection rate (or detection probability) is measured. For each value of false alarm 

probability considered we can then choose the threshold triplet that gives the largest 

detection rate. In this way, we obtain the optimal Receiver Operating Characteristic 

(ROC) curve for the detection of a particular source.

We will use the terms detection rate and false alarm probability in order to make a 

distinction between event candidates caused by a signal or by noise. What we are really 

computing as the detection rate is the detection probability, i.e., the fraction of LISA 

missions in which a particular source would be detected if we had many realisations of 

LISA. A more relevant observational quantity is the fraction of sources of a given type 

in the Universe that would be detected in a single LISA observation. The population 

of LISA events will have random sky positions, plunge times and plunge frequencies. 

They therefore sample different parts of the time-frequency spectrogram, which to some 

extent mimics averaging over noise realisations. The detection rate can thus be taken 

as a guide to the fraction of sources similar to the given one that would be detected 

in the LISA mission. A more accurate assessment of the fraction of sources detected 

requires injection of multiple identical sources simultaneously, but we do not consider 

that problem here.

To characterise the noise properties of the search we used 10000 noise realisations 

and analysed them for twenty choices of 77̂  and with the threshold r]up set as low 

as is sensibly possible, recording the peak power, Pmax? and size, Nc, of every cluster 

detected. With such a list of clusters, it is possible during post-processing (discussed 

in Sec. 3.7.1) to obtain the number of false alarm detections that would be made using
71 Iany of the twenty lower thresholds, 77iow, any value of rjup > (riup)mm and any value of 

Np. The value of (r7up)min has to be chosen carefully. If it is too low, many clusters 

will be found in every noise realisation, increasing the computational cost. If it is too
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high, too few clusters will be identified to give reasonable statistics. We used values 

of (^up)min chosen to ensure that a few clusters were found for each box size in each 

noise realisation. The lower threshold has to be less than or equal to (?7up)min- If it 

is set too low, large portions of the time-frequency map can be identified as a single
71 Icluster. Therefore, we choose the minimum value of rylo’w to ensure that all clusters are 

of reasonable size, which we define to be less than 50000 pixels. By examining cluster 

properties in a few thousand noise realisations, we found suitable empirical choices to 

be

„»,! _  j ,  1
“  “  4 + H ) ^  ( }

(^ loJ in in  =  4 + i \ j  50(X)0 + nl (3 .7 )

(̂ 7up )min = max [a ’ , (77ioW)min]- (3-8)

We note that for large box sizes, a71'1 < (r j^ )mm and so we set rjup = Above 

this point, we no longer ensure that at least one cluster is found for each box size, as 

this is inconsistent with the more important requirement that no cluster exceeds 50000 

pixels. We emphasise that our search is robust to the somewhat arbitrary choice of these 

minimal values. For box sizes where (77iow)min < (^up)min, we use 20 values of 77iow spaced 

evenly between (r/iow)min and (rjup)mm. Where (?7iow)min = (^up)min we use only one lower 

threshold ryiow = (?7up)min- This comparatively small number of lower threshold choices 

is sufficient to find the maximum detection rate thanks to the degeneracy between Np 

and 77iow mentioned earlier.

3.7.1 Post-processing

For each box size and each lower threshold value we can consider values of rjup between 

(^up)min and the maximum power measured (rjup) max ? and construct a list of all clusters
71 Iwith peak power Pmax > 'Hup, ordered by increasing number of pixels Nc.

If we have set the false alarm rate of each box size to be A F A P , we expect to see 

Nris x AFAP  false alarms in iVris noise realisations. By looking at the list of clusters, we 

can identify a value of the threshold Np'1 with each pair of values for rjup and 77̂  that
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would give the correct number of false alarms in the realisations considered. If HACR 

was used to analyse pure noise with those three thresholds and only one box size (n, /), 

it would yield a detection rate AFAP. A typical relationship between ?7up and Np'1 for 

a fixed choice of r j^  is shown in the upper panel of Figure 3.6. This was generated for 

a box size n = 1, I = 64, the 6th lower threshold value of the 20 examined, and for three 

choices of AFAP = 0.01,0.005 and 0.0025.

To determine which combination of thresholds is optimal, we subsequently analyse 

spectrograms containing both noise and an injected signal. As mentioned earlier, since 

we are using white noise to generate the noise realisations, the signal is first whitened 

using the noise model described in Sec. 3.4.1 before injection. For each box size we 

may then select the triplet of thresholds which yields the largest detection rate. The 

lower panel of Fig. 3.6 shows detection rate plotted against upper threshold value for 

EMRI source “A” at a distance of 2Gpc using the box size n = 1, I = 64 with AFAP = 

0.01,0.005 and 0.0025 and for a fixed lower threshold value (the 6th of the 20 values 

used). Although only the r]up threshold value is shown a corresponding value of Np is 

inferred, determined by the assigned AFAP. This stage of the analysis will be discussed 

further in the next Section.

The full search uses multiple box sizes, searched in a particular order. We want the 

thresholds in a given box size to contribute an additional false alarm rate of AFAP. 

When determining the threshold triplets we therefore need to ignore realisations in which 

false alarms have already been found. The procedure above is thus slightly modified 

when considering more than one box size. If we are using Nx\s noise realisations to 

determine the thresholds, each box size should give iVris x AFAP  false alarms. The 

necessary threshold triplet can be determined for the first box size as described above. 

It is then possible to identify the realisations in which the false alarms were found for 

the first box size. This set of realisations will be somewhat different for each of the 

triplets of thresholds that give the desired AFAP. So, in practice we must do this in 

conjunction with the source tuning described in the next Section. This allows us to 

identify an optimal threshold triplet and we can find the noise realisations in which that 

threshold triplet gave false alarms. We then repeat the procedure described above, but
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Figure 3.6: Upper panel: Contours of constant (additional) false alarm probability 
AFAP  for the box size n = 1, Z = 64 and one particular lower threshold value. Pairs 
of thresholds r}uv and Np which lie on a contour yield the same additional false alarm 
probability. Lower panel: Rate of signal detection plotted against choice of threshold, 
again for fixed lower threshold. Each point on the x-axis represents a set of thresholds 
which yield a particular value of AFAP. By choosing the threshold set which yields the 
largest value of detection rate, plotted on the y-axis, we can maximise the rate of signal 
detection for a given false alarm probability.
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now considering only clusters identified in the remaining realisations. This process is 

repeated for each box size in turn, ignoring in each subsequent box size any realisations 

in which false alarms have been identified in earlier box sizes. This means that the order 

in which the different box sizes are searched affects the thresholds. However, our results 

show that it does not matter in which order the box sizes are searched, provided the 

order is the same for tuning and the actual search. This will be discussed further in 

Sec. 3.8.1.

3.8 Performance of HACR in EMRI detection

3.8.1 Tuning H ACR for a single specific EM RI source

The fact that HACR has three thresholds allows the search to be tuned to optimally 

detect a specific source at a specific distance. For a given choice of false alarm proba

bility, AF AP , we can choose triplet of thresholds for each box size 77̂ ,  rjup and Np’1 

that maximises the detection rate. For this optimal threshold triplet, a Receiver Oper

ating Characteristic (ROC) curve can be plotted for the HACR search tuned for that 

source. The ROC curve shows the detection rate as a function of the overall false alarm 

probability, OFAP , of the search using all box sizes.

In practice, the ROC is determined by generating a sequence of noise realisations, 

injecting the whitened signal into each one, and then constructing and searching the 

binned spectrograms. A detection is defined as any realisation in which all thresholds 

are exceeded in at least one box size. The box sizes are searched in the order they 

were constructed (see Fig. 3.4). As discussed in the previous Section, if a detection has 

been made for one box size, we want to ignore that realisation when we search with 

subsequent box sizes. This ensures that we always choose the threshold triplet for a 

box size that provides the maximum number of additional detections. In practice, we 

achieve this goal using the following algorithm

• Search all realisations using the first box size, for threshold triplets (typically 

~  100 upper thresholds and 20 lower thresholds) that all yield the assigned AFAP  

(obtained through tuning of the pixel threshold).
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• Choose the threshold triplet that yields the highest detection rate. Identify every 

realisation in which this optimal threshold triplet gives a detection.

• Move onto the second box size and repeat this procedure, but only search realisa

tions in which the optimal threshold triplet for the first box size did not yield any 

detection.

• Repeat for all other box sizes in order.

Once the optimal threshold triplets have been determined in this way, the detection rate 

must be measured by using these optimal thresholds to search a separate set of signal 

injections, to avoid biasing the rates. We experimented with using different numbers of 

injections and concluded that using 1000 signal injections to determine the thresholds 

and another 1000 signal injections to measure the rate gave reliable answers. We estimate 

the error in the resulting ROC curve due to noise fluctuations to be less than 3%. All 

the results in this paper are computed in this way. To characterise the noise, we use the 

same set of 10000 pure noise realisations in all calculations.

In Fig. 3.7 we show the ROC curves for detection of source “A” at a range of distances 

using HACR. The random search line on this Figure represents a search for which the 

detection rate and false alarm rate are equal. This is the “random limit” since it is 

equivalent to tossing a coin and saying that if it is heads the data stream contains a 

signal and if it is tails it does not. A search that yields a ROC curve equal to this 

random line is essentially insensitive to signals. In Fig. 3.7, we see that the source has 

very nearly 100% detection rate for all OFAPs explored out to a distance of ~  1.8Gpc. 

An overall false alarm probability of 10% is probably quite a conservative value, since 

this is the probability that in a given LISA mission the entire HACR search would yield 

just a single false alarm. At a distance of 2Gpc, with the overall false alarm probability 

set to 10%, HACR achieves a detection rate of ~  90%. As the distance increases further, 

the detection rate further degrades, and the source becomes undetectable at a distance 

of ~  3Gpc. The rate of EMRI events is somewhat uncertain, but the range for a 1OM0 

black hole falling into a 1O6M0 black hole is between 10-7 and 10-5 events per Milky 

Way equivalent galaxy per year (Freitag (2001) [69] and Gair et al. (2004) [71]. Using 

the same extrapolation as in Gair et al. (2001) [71], this gives 0.1 — 10 events Gpc-3
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Figure 3.7: Receiver Operating Characteristic (ROC) curves for detection of an EMRI 
(source “A”) at a range of distances from Earth. For each distance we show ROCs for 
HACR and the Excess Power search. As expected HACR’s performance either matches 
or exceeds that of the Excess Power search. To aid interpretation of the ROC curve 
plots in this analysis, the ordering of the labels in the legend reflects the performance 
of the corresponding ROC curves, i.e. the second label from the top corresponds to the 
ROC curve with the second best performance.

yr” 1. Assuming a 3 year LISA mission, and that the detection rates quoted here are a 

good approximation to the fraction of EMRI events that LISA would detect in a single 

realisation of the mission, these rates translate to a detection of ~  15 — 1500 events using 

this method (using a Euclidean volume-distance relation). We note, however, that at 

the high end of this range, source confusion will be a significant problem and it has been 

ignored in the current work.

Comparing the performance of HACR and the Excess Power method

In Fig. 3.7 we also show ROC curves for using the Excess Power search to detect source 

“A” at a range of distances. Since HACR effectively performs the Excess Power search
71 Iwhen Np’ = 1 we expect that HACR will always do at least as well as the Excess
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Power search. Due to the extra levels of tuning allowed by the HACR algorithm we find 

that it can obtain a somewhat higher detection rate for a given false alarm probability. 

The increase is in the range of 5 — 20% for an OFAP  of 10%, but this translates to 

a significantly enhanced event rate. With the source at a distance of 1.8Gpc both 

methods achieve very high detection rates; both have detection rates > 95% with an 

OF AP  of 10%. At intermediate distances (e.g. ~2.2Gpc) HACR outperforms Excess 

Power considerably, but once the source is at 2.6Gpc, there is very little difference in the 

performance of the two searches. However, as illustrated in Fig. 3.6, the optimal HACR 

pixel threshold tends to be significantly greater than 1. Thus, HACR identifies clusters 

containing significant numbers of pixels, while the Excess Power search at the first stage 

identifies only individual pixels. Parameter extraction from the Excess Power method 

requires an additional track identification stage. Such algorithms are currently being 

investigated (Wen et al. (2006) [147]), but HACR is more efficient, combining both 

stages into one. The information contained in the structure of HACR clusters should 

allow parameter estimation which can be used as input for later stages in a hierarchical 

search. This will be discussed in more detail in Sec. 3.11.

3.9 Targeted searches

In Fig. 3.8 we show how the detection rate depends on the box size. This Figure shows 

the number of detections made for each box size over the 1000 realisations used in the 

determination of the ROC curve for source “A” at 2Gpc. It is clear that there is not 

only one single box size that makes detections, but several box sizes are important. 

This is because random noise fluctuations will sometimes make one box size better than 

another. However, it is also clear that many of the box sizes do not make any detections 

and are apparently not very useful for the detection of this particular source. This is 

partially due to the box size search order.

As mentioned earlier, the fact that realisations in which detections are made are 

omitted for the search of subsequent box sizes treats the earlier box sizes preferentially. 

Fig. 3.8 also shows the detection rate as a function of the box size label when the search 

order was randomized. Although the distribution is qualitatively similar, the box sizes
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Figure 3.8: Number of detections as a function of box size when searching 1000 reali
sations of source “A” at 2Gpc. Results are shown when using the ordered search, and 
when the box size search order is randomized. The x-axis is the box size label, which 
corresponds to the order in which the boxes are analysed in the ordered search.

that make the detections are different in this case. It is clear that there are several box 

sizes that are equally good at detecting this source (these have approximately the same 

dimension in frequency, but different dimensions in time). Whichever of these equivalent 

box sizes is used first will make the detection. However, we find that the overall search 

performance is independent of the box size search order and we recommend using the 

order specified by the efficient binning algorithm described in Sec. 3.6.1 because of the 

computational savings.

Given that we have specified thresholds so that each box size contributes equally to 

the overall false alarm probability we might expect the search to perform better if we 

restrict it to use only those few box sizes responsible for most of the detections of the 

injected signal. By eliminating box sizes that make few detections, we expect to reduce 

the overall false alarm probability while keeping the overall detection rate approximately 

constant, thereby improving the overall ROC performance.
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This can be investigated by re-analysing the data using only a small subset (i.e., 20) 

of the 119 box sizes originally considered, choosing the box sizes that were responsible 

for the most detections of EMRI source “A”. Having performed the search using only 20 

box sizes, we can eliminate the box size which has the worst performance (i.e., the least 

number of detections) in the 20 box search and then repeat the search with the remaining 

19 box sizes. This process can be repeated, eliminating one box size each time, until 

only one box size remains. The box size that contributes the fewest detections depends 

to a limited extent on the (additional) false alarm probability assigned to each box size. 

We used the additional false alarm probability that gave an overall search false alarm 

probability of ~  10% since, as argued earlier, this would be a reasonable value to use in 

the final LISA search.

The results of this targeting procedure are summarised in Table 3.1. When the 

number of box sizes is reduced from 119 to 20, the ROC performance does improve 

as the overall FAP reduces, while the detection rate remains largely unchanged. This 

improvement is of the order of 5% in detection rate. As the number of box sizes used is 

reduced further, the ROC performance remains roughly constant until only 4 box sizes 

are being used. Using fewer than 4 box sizes leads to performance that degrades and 

is always worse than the full search. This is in keeping with the understanding that 

several box sizes are needed for efficient detection of a source due to the effect of noise 

fluctuations. We also computed results for the Excess Power search (full and targeted), 

and these are also summarised in the same Table. The trend as box sizes are removed 

is the same and HACR always outperforms the Excess Power search.

We conclude that it is possible to improve the performance of the search for a specific 

source by selecting fewer box sizes. However, the improvement is not hugely significant. 

This is consistent with what was found for the Excess Power search (Gair and Wen 

(2005) [70]). Since the box sizes that are efficient for the detection of one particular 

source will almost certainly not be the same as those that are efficient for other sources, 

the best approach is to include all the box sizes in the search. However, since there are 

certain box shapes that are good for detecting certain types of source, the box size for 

which a given detection is made provides a diagnostic of the source system. This will
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Table 3.1: Detection rates for various overall false alarm probabilities when using the 
HACR or Excess Power searches with a restricted number of box sizes.

Search Detection rate at
OFAP=5% OFAP=10% OFAP=30% OFAP=60%

HACR, All bins 84.9% 89.3% 95.5% 98.7%
HACR, 20 bins 90.2% 92.9% 98.2% 99.7%
HACR, 10 bins 90.5% 93.4% 98.4% 99.6%
HACR, 7 bins 92.0% 94.7% 98.4% 99.4%
HACR, 4 bins 92.7% 95.0% 98.5% 99.4%
HACR, 1 bin 81.7% 87.5% 95.2% 99.0%

Excess Power, All bins 63.8% 71.5% 87.1% 95.4%
Excess Power, 10 bins 72.6% 81.4% 94.0% 98.2%
Excess Power, 7 bins 66.0% 76.0% 91.0% 98.1%
Excess Power, 4 bins 68.7% 78.5% 91.3% 98.4%
Excess Power, 1 bin 47.8% 59.1% 79.7% 93.8%

be discussed further in Sec. 3.10.3.

3.9.1 D etection  of other EM RI sources

The results described in the preceding Sections have focused on the detection of one 

particular EMRI, source “A”. We have also explored the performance of HACR in 

detecting some of the other EMRI sources used for the investigation of the Excess 

Power search (Gair and Wen (2005) [70], see Table 1 for a summary). Specifically we 

used the sources “K” and “N”, which have the same parameters as source “A” except 

for eccentricity. The source “K” is initially circular, while source “N” has eccentricity 

of 0.7, compared to e = 0.4 for source “A”. We placed these sources at a range of 

distances between 1.8Gpc and 2.6Gpc, and injected them into noise realisations. We 

were thus able to determine ROC curves for detection of these sources via the method 

described in Sec. 3.8.1. In Fig. 3.9 we compare the ROC curves for detection of these 

sources with HACR when they are at a distance of 2Gpc. We see that our ability 

to detect a system at a given distance is better for binaries in circular orbits (source 

“K”) than for systems with eccentric orbits (sources “A” and “N”). This is consistent 

with what was found for the Excess Power search in Gair and Wen (2005) [70]. The 

predominant effect of orbital eccentricity is to split the gravitational wave radiation 

power into multiple harmonics. As the eccentricity increases, the frequencies of these
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Figure 3.9: ROC curves for detection of EMRI sources “A”, “K” and “N” at a distance 
of 2Gpc using HACR. These sources all have the same parameters except for their 
eccentricity.

harmonics become increasingly separated. As a consequence, a given box in the time-

frequency map contains a smaller ratio of signal power to noise power. The detectability

of EMRI sources therefore decreases as the eccentricity is increased.

The overall detectability of these new sources (“K” and “N”) with HACR follows

the same pattern as the Excess Power search. HACR has a slightly greater detection

rate than Excess Power when the source is nearby, but as the source is put further away,

the performance of HACR and Excess Power become comparable before the random

limit is reached. However, in all cases, the HACR detection is made with a smaller 
»

upper threshold (rjUp) than Excess Power, compensated by a larger pixel threshold 

(Np,l). Thus, HACR detections identify clusters with significant numbers of pixels, the 

properties of which will be invaluable for subsequent parameter estimation. This will 

be discussed in Sec. 3.11.
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3.9.2 Tuning HACR for multiple EMRI sources

In the preceding Sections, we have focused on detection of a single EMRI source at a 

fixed distance. However, in the actual analysis of LISA data, we will not know a priori 

what sources will be in the data stream, and so the HACR thresholds need to be tuned 

as generally as possible. Even in the case of a single EMRI source, the optimal threshold 

combination depends to some extent on the distance at which the source is placed. This 

is in contrast to the Excess Power search, where there is only one threshold that is 

uniquely determined by the choice of false alarm probability. There are two possible 

approaches to constructing a general HACR search: 1) have several separate HACR 

searches, targeting different sources and using different sets of thresholds or 2) have a 

single HACR search with a set of thresholds chosen to be sensitive to as many LISA 

sources as possible. We have focussed on the latter approach, since our results have 

shown that it is possible to do almost as well with a single set of “generic” thresholds 

as with source specific thresholds.

As a first step, we took the thresholds designed to optimally detect source “A” at 

2Gpc and used those thresholds to search for sources “K” and “N”. We found that there 

was some degradation of performance, but that this was negligible. At an OF AP  of 

10%, the detection rate for source “K” changed from 99.3% to 99.7%, and that of source 

“N” changed from 18.4% to 17.9%. This is a promising result and suggests that certain 

threshold combinations do well at detecting all the EMRI events. It is also possible to 

tune the thresholds to be generally sensitive to many different sources. This is not really 

necessary for the case of EMRI detection, but we will describe the procedure here as it 

will be needed when other types of sources are included in the search (this is discussed 

in Sec. 3.10).

We want to tune the search to maximize the total LISA event rate (i.e., the number 

of events observed). If we knew in advance which sources would be present in the 

LISA data, we could tune the search by considering multiple noise realisations with 

that family of sources injected and choosing the threshold combination that gives the 

maximum total detection rate for given OFAP.  Since we do not know what the actual 

sources in the LISA data will be, we can instead tune the thresholds to be as sensitive as

160



possible to a single event of unknown type, using prior knowledge to weight the relative 

likelihood of different types of events. This procedure ignores issues of source confusion, 

but should ensure that the loudest events are detected, no matter of what type or at 

what distance they might be.

In practice, tuning for multiple sources is done as follows:

• Generate realisations of noise with injected signals for each of the sources s we 

want to include in the tuning.

• For the first box size, determine the rate of detections, Rs(ti), of each of the signals 

when using HACR with each threshold triplet, ti, that yields a pre-chosen AFAP.

• Construct a sum over these rates for each threshold triplet, ^2wsRs(ti), using an 

appropriate weighting factor, ws, for each source.

• Choose the threshold triplet that maximizes this weighted sum. For each signal, 

identify the realisations in which that optimal threshold triplet gave a detection.

• Move onto the next box size, but for each signal search only realisations in which 

the optimal thresholds for the previous box size(s) did not yield any detections.

• Repeat for all box sizes.

One question is what to use for the weighting factors. If we knew that only one type of 

source existed in the Universe, but it was equally likely to be at any point in space, we 

want a volume weighted average. This is done by taking our set of sources to be a single 

given source placed at a sequence of distances, di. The source at distance di can then 

be regarded to be representative of all sources in the range di-\ < d < d{, and should 

be weighted by the (Euclidean) volume of space in that range, Wi oc 47r(d3 — df_j)/3. 

We carried out this procedure using source “A” at distances of 1.8Gpc, 2.0Gpc, ..., 

2.6Gpc, with weightings 1.83 =  5.832, 2.03 -  1.83 =  2.168, 2.23 -  2.03 = 2.648 ... 

2.63 — 2.43 = 3.752 (we have neglected common factors of 47r/3). We took the closest 

source to be at 1.8Gpc since up to that distance, the detection rate is always 100%. 

This appears to give artificial weight to the 1.8Gpc source, but in practice this does not 

happen since virtually every threshold combination gives a 100% detection rate for that
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source, and the variation in rate is determined primarily by the other injections. We 

used distance weighted thresholds to search for source “A” at various distances. The 

thresholds did change to some extent, but these changes were small since the optimal 

thresholds are almost independent of distance, and the overall ROC performance was 

largely unaffected. We deduce that it is possible to detect a given EMRI source at any 

distance with a single set of thresholds.

LISA will see more than one type of source, and we can fold in prior information 

about the relative abundance of different events by adjusting the weighting factors. We 

repeated the above, tuning for sources “A”, “K” and “N” at a single distance of 2Gpc, 

and given equal weighting. In that case too, we found that the ROC performance was 

not significantly changed when tuning for these multiple sources. We also tuned for all 

three sources, placed at all the distances, 1.8Gpc, ..., 2.6Gpc, with the volume weightings 

listed previously. Once again, the ROC performance was not significantly altered. Thus, 

there is a single set of HACR thresholds that can detect all three EMRI sources at any 

distance.

These results may not be truly generic, since the three EMRI sources are quite 

similar, differing only in eccentricity. It is therefore perhaps unsurprising that a single 

set of thresholds can detect all three sources almost optimally. However, we will see in 

Sec. 3.10.3 that this result carries over to the case when the sources have quite different 

characteristics. This is not totally surprising, since we know that HACR includes the 

Excess Power search as the pixel threshold Np = 1 limit. The Excess Power search 

thresholds are independent of the tuning source at fixed assigned FAP. Thus, a HACR 

search tuned for a collection of sources can do no worse than the Excess Power search 

for each of those sources. Since the HACR search does not seem to hugely outperform 

the Excess Power search, we would not anticipate that this combined tuning procedure 

would lead to a serious degradation of performance even when considering very different 

classes of sources.
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3.10 Performance of HACR in detection of other LISA 

sources

We have shown that HACR may be successfully tuned in order to detect multiple EMRI 

sources with different parameters. In this Section we investigate HACR’s ability to 

detect other classes of signals, specifically white dwarf (WD) binaries and supermassive 

black hole (SMBH) binary mergers. We expect these other classes of signals to have quite 

different structures in a time-frequency map. A typical EMRI signal consists of several 

frequency components (due to the eccentricity of the orbit), which “chirp” slowly over 

the course of the observation, i.e., the frequency and amplitude increase. By contrast, the 

gravitational wave emission from a WD binary is essentially monochromatic. A SMBH 

binary inspiral also gives a chirping signal, but the chirp occurs much more quickly than 

the EMRI due to the increased mass ratio (see Eq. (3.5)), so it will be characterised by 

a signal that is broader in frequency. This difference in structure allows HACR to be 

tuned for all three types of source simultaneously.

3.10.1 A typical SM BH binary source

As a preliminary investigation, we repeated the tuning procedure described earlier, in

jecting a typical SMBH binary inspiral and a typical WD binary at various distances. 

The SMBH binary waveform represented the inspiral of two 106M© non-spinning black 

holes, placed at a random sky position, and with merger occurring ~  3 weeks before 

the end of the observation. As mentioned in Sec. 3.5, our SMBH injections use the 

waveform model given in Cutler (1998) [52]. This is a restricted post-Newtonian wave

form accurate to 1.5PN. More accurate waveforms are available in the literature, with 

post-Newtonian corrections up to 3.5PN. However, the simple model captures the main 

features of a SMBH merger signal and is accurate enough for the more qualitative nature 

of this preliminary study. The quoted masses are the intrinsic masses of the black holes,

i.e., not redshifted. When the source was placed at higher redshift there are two effects 

— an increase in the luminosity distance to the source, and a redshifting effect — which 

pushes the signal into the less sensitive part of the LISA noise curve.

In Figure 3.10 we show the ROC curves for detection of this SMBH binary source at a
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range of redshifts. At each redshift the optimal thresholds were chosen using the tuning 

method described in Section 3.8.1. We find that SMBH binary sources at redshifts z < 3 

are detected with almost perfect efficiency using HACR, but we stop being able to resolve 

signals for redshifts z > 3.5. This is primarily because the (matched-filtering, coherent) 

SNR of the source decreases significantly due to the redshifting effect mentioned above.

3.10.2 A typical w hite dwarf binary source

The “typical” white dwarf binary was chosen to have the parameters of RXJ0806.3+1527 

(one of LISA’s “verification binaries” described in Stroeer and Vecchio (2006) [132]), 

except for distance and sky position. The latter was chosen randomly, but this choice, 

and the noise model used meant the SNR of this source at a distance of lkpc was 

approximately a factor of 3 greater than that quoted in Stroeer and Vecchio (2006) [132]. 

This should be born in mind when considering the distances quoted in the following 

discussion. In Fig. 3.10 we show the ROC curve for this WD source, injected at various 

distances. At distances < 15kpc, we obtain near perfect detection using HACR. The 

sensitivity falls off rapidly for greater distances and the source becomes undetectable 

at greater than ~  20kpc. Even allowing for the SNR discrepancy mentioned above, 

this source would be detectable at ~  6-7kpc, i.e., almost at the distance of the galactic 

center. Since this particular source is estimated to be at a distance of 300-1000pc, it 

would be detectable via this method. We would expect to detect other similar white 

dwarfs at distances of l-10kpc depending on the source parameters. This does not allow 

for source confusion, as we have only injected single sources into the data stream, but 

the conclusion for RXJ0806 should be robust, since it radiates at ~  6mHz, which is in 

the regime where WD binaries are well separated in frequency (this can be seen in the 

results of population synthesis models described in Nelemans et al. (2001) [104] and is 

reflected in the LISA noise curve (Eq. (3.1)) in which the contribution from WD binaries, 

accounting for resolvability of sources, is below the instrumental noise at 6mHz).

In the preceding plots, the HACR thresholds have been tuned to detect the source in 

question (either an EMRI or a WD binary or SMBH merger), at a particular distance. 

If instead we imagined that we would use only one set of thresholds, tuned for EMRI
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Figure 3.10: ROC curves for detection of a SMBH binary merger (upper panel) and a 
WD binary inspiral (lower panel) at various distances. The optimal thresholds for each 
distance were chosen using the tuning method described in Sec. 3.8.1
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Figure 3.11: ROC curves for detection of the SMBH and WD binary sources using 
thresholds tuned for EMRI source “A” at a distance of 2Gpc. For comparison, the ROC 
performance when the search is tuned for the source in question is also shown.

source “A” at a distance of 2Gpc, then the ROC performance for detection of the SMBH 

binary and WD binary events is significantly degraded. This is shown in Fig. 3.11, which 

compares the ROC curve for detection of the SMBH binary at a redshift of z =  3.125 

and the WD binary at a distance of 17kpc when the EMRI thresholds are used, versus 

the result when the source specific tuned thresholds are used. We chose distances of 

z = 3.125 and 17kpc since in that case the sources are loud, but have less than a 100% 

detection rate, so we will be able to see ROC variations. Figure 3.11 shows that using 

the EMRI thresholds to detect other sources typically reduces the detection rate by a 

factor of ~  5 at an OFAP  of 10%.

3.10.3 Tuning H A C R  for m ultiple classes o f sources

One solution to this problem in a LISA search would be to run several independent 

searches focussed on different source families. However, it is also possible to tune a
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single set of HACR thresholds to be sensitive to all three types of sources simultaneously. 

This is done in the same way as the source and distance-averaged tuning described in 

Sec. 3.9.2, but now we inject not only EMRI signals, but also WD and SMBH signals. 

When the thresholds are tuned using EMRI source “A” at 2Gpc, the WD binary at 

17kpc and the SMBH binary at z = 3.125 with equal weighting, the detection rate at an 

OFAP  of 10% for the EMRI source “A” at 2Gpc is 87.0% as opposed to 89.3% using 

optimal tuning.

This difference is of the same order as the expected error in our ROC estimates 

(see Sec. 3.8.1) and is therefore considered to be negligible. For the SMBH binary at 

2 = 3.125 and the WD binary at 17kpc the change in detection rate when using the 

thresholds tuned for all three sources when compared to the detection rate obtained 

using the optimal thresholds is also negligible. It is clear that when the thresholds are 

tuned for all three types of source, the performance of HACR is almost as high as the 

source specific searches, and still exceeds the performance of the Excess Power search.

This is due to the different time-frequency properties of the three types of sources. 

The time-frequency properties of a source determine which box sizes are good for its 

detection. This is illustrated in Fig. 3.12, which shows schematically all box sizes that 

contribute more than 1% of the detection rate for four different sources: EMRIs “A” 

and “K”, the WD binary and the SMBH binary inspiral. Physically, we expect WD 

binary tracks to be virtually monochromatic, and of long duration. Therefore, we might 

expect to detect such sources in box sizes that are long in time but very narrow in 

frequency. The SMBH binary inspiral (at that redshift) is fairly short in duration, but 

sweeps through a reasonable range in frequency and is also quite loud. Therefore, we 

might expect to see it in boxes that are narrow in time, and broader in frequency.

EMRIs are similar in structure to SMBH binary inspirals, but last longer in time and 

evolve more slowly. For a circular EMRI (e.g., source “K”), one might expect to detect it 

in boxes that were long in time and quite narrow in frequency, although shorter in time 

and slightly broader in frequency than the WD binary (since the frequency changes as 

the source inspirals). However, an eccentric EMRI (e.g., source “A”) will have multiple 

frequency harmonics, and one might expect to do better using a slightly broader box in

167



frequency which then includes more of the frequency components.

The distribution in Fig. 3.12 fits precisely with this physical intuition. When tuning 

for multiple sources, the threshold in a given box size will be determined by the source 

that the box size is most suited to detecting. The fact that the various types of sources 

favour distinct groups of box sizes means the overall performance is comparable to the 

source specific performance. The box sizes in which HACR detections are made thus 

provide an additional way to classify the source type.

3.11 Using HACR for parameter estimation

We have emphasised throughout this paper that, although the HACR search does not 

provide a much greater detection rate than the Excess Power search, the clusters it iden

tifies may be used to characterise the source. Parameters estimated from HACR clusters 

can then be used as input for other algorithms in subsequent stages of a hierarchical 

search of the LISA data.

An Excess Power detection essentially contains only two pieces of information: the 

time and frequency at which the detection is made. Since we are using binning as 

part of the search, there is also some information contained in the box sizes used to 

bin the spectrograms in which the detections are made. To gain further information, 

a detection made by Excess Power must be followed by a track identification stage, 

and this is currently being investigated Wen et al. (2006) [147]. In contrast, a cluster 

identified by HACR consists not of one but many pixels. Thus, in addition to the 

previous properties, the HACR cluster has shape information which is potentially a 

much more powerful diagnostic. The information that we can extract includes the size 

of the event in time and frequency and the shape and curvature of the boundary of the 

cluster. An event that is short in the time direction but broad in frequency might be 

an instrumental noise burst, whereas events long in time and narrow in frequency are 

probably inspiral events.

The difference in frequency between the latest and earliest pixels in the cluster 

divided by the difference in time provides an estimate of the rate of change of frequency 

(or chirp rate) of the event. In Wen et al. (2006) [147] and Gair et al. (2007) [73] the
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Figure 3.12: Box sizes in which the majority of detections are made for various sources. 
For each of four different sources — EMRI “A” at 2Gpc, EMRI “K” at 2Gpc, the SMBH 
binary at z=3.125 and the WD binary at 17kpc — we indicate all box sizes which were 
responsible for > 1% of the detections of that source in 1000 realisations. The sources 
are identified by the patterns in the key. Box sizes that were good for several sources 
are indicated by multiple patterns, e.g. the box with co-ordinates (0,7).
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authors show that by measuring the evolution of the frequency f n(t) and its derivative 

f n(t) we can estimate six of the EMRI’s intrinsic parameters including both component 

masses, the spin of the SMBH, the orbital eccentricity and its inclination with respect 

to the spin of the SMBH as well as the system’s orbital frequency. The power profile 

along an inspiral track would reveal the modulations associated with the motion of 

the detector and thus provide a method to find the sources sky position (although it 

turns out that opposite points in the sky are degenerate). Figures 3.1 and 3.2 show 

spectrograms of our three EMRI signals. The amplitude modulation caused by LISA’s 

motion and the different harmonics caused by the orbit’s eccentricity can be seen.

Application of HACR for the Mock LISA Data Challenge

In Gair et al. (2007) [73] the authors used HACR to detect EMRI’s in simulated LISA 

data as part of the Mock LISA Data Challenge (MLDC, see Arnaud et al. (2006) [13] 

for an overview). In each of the five data sets provided (called 1.3.1 - 1.3.5) a single 

EMRI signal was embedded in simulated LISA noise (i.e., no confusion between different 

sources). HACR performed well and identified four of the five EMRI’s with clusters that 

enabled the authors to estimate the sources parameters to reasonable accuracy using the 

methods previously discussed, (see Table 1 of Gair et al. (2007) [73]). In the fifth case, 

an EMRI with relatively low SNR, only a small number of bright pixels were identified 

and parameter estimation was not performed.

Source confusion

As mentioned previously, source confusion is a major issue for LISA, with many events 

likely to be overlapping in time and frequency in the data stream. A detection in the 

time-frequency plane could therefore either be a single source or several overlapping 

sources. An analysis of the cluster boundary should be able to distinguish these two 

cases in certain situations, i.e., distinguish a “cross” from a “line”.

The shape parameters presented in Sahni et al. (1998) [125] may provide diagnostics 

which might be able to distinguish instrumental bursts from astrophysical bursts from 

long lived astrophysical events. A further use of a detected signal’s power profile would 

be to distinguish crossing tracks (clusters) caused by different inspiral events. In a
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more sophisticated analysis, cluster properties would allow different clusters that are 

generated by the same event to be identified. An EMRI is characterised by several 

different frequency components and these might well appear as different clusters in 

a time-frequency analysis (see spectrograms in Wen and Gair (2005) [148]). However, 

these tracks remain almost parallel as they evolve, and so the rate of change of frequency 

provides a way to connect the tracks in a second stage analysis of the HACR clusters. 

If tracks can be identified like this, the properties, such as the track separation, encode 

information about the orbital eccentricity etc.

One complication in all of this is that the construction of the binned spectrograms 

makes use of bins that overlap in time and frequency. This has the effect of smearing 

out tracks from astrophysical sources and noise events in the data, which complicates 

cluster characterisation and parameter extraction. In analysing cluster properties, this 

effect must be accounted for, or methods developed to deconvolve the effect of binning 

once a source has been identified.

It is clear that HACR cluster properties are a potentially powerful tool both for 

vetoing, i.e., distinguishing astrophysical events from instrumental artifacts, and for pa

rameter estimation. Work is currently underway to investigate which of these and other 

cluster properties are most powerful as diagnostics, and how the system’s parameters 

may be estimated from them.
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Chapter 4

Summary and Conclusions

From Einstein’s General Theory of Relativity we identify gravitational waves as pertur

bations to the curvature of spacetime caused by the acceleration of matter and which 

propagate at the speed of light. Gravitational waves cause a periodic strain (i.e., stretch

ing and contraction) of the proper distance between points in spacetime as they pass 

and we describe how they can be detected using laser-interferometers.

Binary systems will lose energy and angular momentum through the emission of 

gravitational waves causing their orbits to shrink and leading to their eventual coa

lescence. In Chapter 2 we consider the challenging prospect of detecting gravitational 

waves from the orbital decay or inspiral of stellar mass binary systems with spinning 

components using the ground-based LIGO detectors. Using approximations to the Ein

stein equations we are able to produce predictions of the gravitational wave signals that 

would be observed from the inspiral of binaries consisting of compact objects, such as 

black holes and neutron stars. We employ matched-filtering, a method which requires 

accurate predictions of the gravitational wave signals we expect to observe, in order to 

identify gravitational wave signals in the noise-dominated detector data. The accurate 

predictions of the observed gravitational wave signal are our templates.

Interactions between the orbital angular momenta of the binary and the spin angular 

momenta of its components will cause the binaries orbital plane to precess which in turn 

leads to modulation of the amplitude and phase of the gravitational wave signal that 

will be observed. Matched-filter searches using templates which do not include the
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effects of spin may miss the gravitational wave signals emitted by binaries with spinning 

components.

Using post-Newtonian approximations to the Einstein equations we are able to pro

duce templates for spin-modulated gravitational wave signals that are functions of the 17 

physical parameters used to describe a binary system with spinning components. Unfor

tunately, using templates with this many parameters is very computationally expensive. 

Instead, we use a detection template family (DTF) which captures the essential features 

of the true gravitational wave signal but which is a function of fewer non-physical or 

phenomenological parameters. We use the post-Newtonian approximated waveforms as 

a target model used to assess the ability of our DTF to capture spin-modulated gravi

tational waves.

We describe the methods and results of the first dedicated search for gravitational 

waves emitted during the inspiral of compact binaries with spinning component bodies. 

Using the BCV2 DTF we performed a matched-filter search of 788 hours of LIGO 

data collected during its third science run (S3). Details of the implementation of the 

detection template family and calculation of the signal to noise ratio are given in the 

Appendix. No detection of gravitational wave signals was made, but by estimating our 

search pipeline’s sensitivity to gravitational wave signals we are able to set a Bayesian 

upper limit on the rate of coalescence of stellar mass binaries. The upper limit on the 

rate of coalescence for prototypical NS-BH binaries with spinning component bodies was 

calculated to be 7£9o% = 15.9 yr-1 Lio-1 once uncertainties had been marginalized over 

(see Sec. 2.8). The upper limits on the rate of coalescence we calculate are around 7 

orders of magnitude larger than the rates predicted by population synthesis studies (see 

Sec. 2.1.1) and therefore do not allow us to constrain uncertainties in these studies.

Future searches for gravitational waves will benefit from improvements to the detec

tors used to collect the data as well as the algorithms we use to analyse it with. Data 

taken during LIGO’s fifth science run (S5) is greatly improved in both sensitivity and 

observation time (i.e., ~  1 year of data with all three LIGO detectors simultaneously 

taking science quality data) than previous data sets. In 2007, during the final months of 

LIGO’s S5 run, the French-Italian detector Virgo began taking its first science quality
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data.

Preparation for a search of LIGO S5 data for binaries with spinning components 

utilising templates described by physical (rather than phenomenological) parameters 

[114, 39] is well underway. This new template family, which we shall call the PBCV 

family, has two significant advantages over the BCV2 DTF. In using physical parameters 

to describe the templates the PBCV family consists only of the physical waveforms 

predicted by our target model and does not allow for any non-physical waveforms that 

can arise using the BCV2 DTF. Therefore, in describing spin-modulated gravitational 

waves using fewer degrees of freedom than the BCV2 DTF, the PBCV family will have 

a lower false alarm rate and will consequently be able to use lower detection (SNR) 

thresholds. Also, since the PBCV templates are described using the physical parameters 

of the binary source they are better suited to parameter estimation than the BCV2 

templates.

We found that the BCV2 DTF has good sensitivity to binary sources consisting 

of non-spinning, as well as spinning, components (see Fig. 2.13). However, compared 

to dedicated searches for systems with non-spinning components [5], the BCV2 DTF 

requires a larger number of templates (see Table II of Abbott et al. [5]) in order to 

capture the effects of spin and suffers from requiring a larger SNR threshold in order to 

reduce the number of triggers generated to a reasonable level. Instead, searches of LIGO 

S5 data for systems with non-spinning components are likely to use post-Newtonian 

waveforms which will benefit from using templates described by physical parameters 

(see discussion above regarding the PBCV family).

In Chapter 3 we turn our attention to developing data analysis algorithms for the 

planned space-based mission, LISA (Laser Interferometer Space Antenna). LISA will be 

sensitive to extreme mass ratio inspirals (EMRIs) during which a stellar mass compact 

object orbits and finally merges with a super massive black hole. An EMRI waveform 

will depend on up to 17 parameters (similarly to the stellar mass binaries we considered 

previously although in this case eccentricity cannot be neglected whereas the spin of 

the smaller body can be) and will be observable throughout the duration of LISA’s 

operation (~ 3 years). Due to the long duration and complexity of the EMRI signals,
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matched-filter based searches will be extremely computationally expensive. We describe 

a less sensitive but computational cheap time-frequency based method that can be used 

to quickly identify the loudest few EMRI events.

The time-frequency method we describe combines and improves upon two previous 

algorithms. The Excess Power algorithm [148, 70] searches a time-frequency map (e.g., 

a spectrogram) for unusually bright pixels. This method works best when the power 

contained in the pixels of the time-frequency map are combined or binned so that a 

significant fraction of a gravitational wave signal’s power is contained within a single 

box. The Hierarchical Algorithm for Clusters and Ridges (HACR) [81] is somewhat 

more sophisticated and works by identifying an unusually bright pixel and then building 

around it a cluster of pixels whose power exceeds another (lower) threshold.

Our new algorithm, combines the binning stage of Excess Power with the cluster 

identification stage of HACR. We call our new algorithm HACR since it is simply an 

extension to the existing algorithm of the same name. The distance to which EMRI 

signals could be detected was similar for both HACR and for Excess Power. However, 

by associating a gravitational wave signal with a cluster of pixels rather than just one, 

we are able to extract more information about its source making HACR a potential first 

stage analysis in a hierarchical detection scheme. The estimation of parameters from 

time-frequency map events identified by HACR could be used to perform targeted (and 

therefore less computationally expensive) matched-filter based searches.

We are able to tune the thresholds involved in classifying a cluster of pixels as an 

event candidate in order to improve our sensitivity to particular EMRI source at a 

particular distance. We find that by setting different thresholds for the different boxes 

(created when we bin the power in the pixels of our time-frequency map) we are able 

to remain sensitive to a range of EMRI signals whilst also being able to detect white 

dwarf binaries (WDBs) and the merger of super massive black holes (SMBHs). This 

is possible because EMRIs, WDBs and SMBHs occupy different shaped regions of the 

time-frequency map and are therefore found by separate sets of boxes (see Fig. 3.12).

HACR was subsequently used to analyse data generated as part of the Mock LISA 

Data Challenge (MLDC) and identified four of the five EMRI signals [73]. Future

175



developments to HACR should include both refinement of the estimation of the source’s 

parameters and methods to deal with the issue of source confusion, the overlapping of 

signals in the time-frequency plane discussed in Sec. 3.11.
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Chapter 5

Appendix



5.1 Miscellaneous Derivations

5 .1 .1  P r o o f  o f  E q . (1 .6 1 )

We will prove that

1 d2J  T j d3x = ~  J  x ix^T00d3x. (5.1)

Using integration by parts:

J  U^X^ V( l x ^ X ~ ~ J  v(x) dx

we can write:

f  d dTkl i  ,  ,3 r i  ,0 T W1 f d T k l d ( i  v 3

J d T ^ ^ > dx  =  xaf-d2r\ -J-a3"ez(x ^ dx
V v  '  u [ x )   ̂ v  ^

v(x) _ o

8Tkl
= ~ j % -  + Skixi) ^  (5'3)

where the integrand term in square brackets goes to zero since we evaluate the integral 

over a surface far from the source where T kl =  0. Integrating by parts again we can 

write:

*/ /  x ^    >  ^     - - -  ■■■  —-  ^

u{ x)  = 0

j3+ [ Tkl- ^ i  ('Skjxi + skixj) d3 

= J  T kl (<5li5*  + 5l35ki) d \

J  T ijd3x. (5.4)= 2 J  T %3d x.

5 .1 .2  R e sp o n se  o f  G a u ssia n  r a n d o m  v a r ia b les  t o  lin ea r  tra n sfo r m a tio n s

Consider a set of random variables x  where x T = [aq, X2 . . .  xn\ is a row vector of random 

variables. We will use matrix notation for convenience and have used a superscript 

T  to denote the transpose. We consider a set of random variables x  described by a
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multivariate Gaussian probability density function

P x ( x )  =
(27r)^v/ 2 | C | 1/2

exp (5.5)

where p  are the means of x, i.e., p T = [pi,p2 - • ■ pn ]• C  is the covariance matrix of the 

x  and I Cl is the determinant of C. The covariance matrix C  of x  is defined as

Cx =

(

y  P \,N ° \< 7 N  ■ ■ ■

P l,N <Tl& N

N

\

/

(5.6)

where of is the variance of x \  and p i t2 cri cr2 is the covariance between x \  and X 2 -

Finally, we will be interested in the linear transform of a multivariate Gaussian 

where each random variable Xi is described by an (independent) Normal distribution 

with mean p i  = 0  and variance erf =  1.

We define a linear transform L  such that

y = L x  (5.7)

and where its inverse is given by

x  = Ty  (5.8)

where we have LT  = I  and I  is the identity matrix.

We will now find the probability density function py of the output x  of the linear 

transformation Eq. (5.7). There will be a one-to-one mapping between the values of Xi 

and yi. Following [149] (Eqs. (1.12) to (1.14)) we find that

py(y) = | J\px{x) (5.9)

where | .71 is the Jacobian determinant of the linear transformation L. The Jacobian of
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the transform L  from x  to y  is defined as

_  d(x i ,x2, ...  , x N) 
XV~ d(y i ,y2, . . . , y N)

( dx\ 
dyi

dx\
\  9yN

dx n ^
dyi

9xn 
dyN /

(5.10)

The determinant of J  is simply the determinant of the reverse transformation, i.e., 

| J| = |r|. From the standard relation \A\ = 1 / \A~1\ we find that \J\ = 1/\L\.

Therefore we find the probability density function of Y  to be

Pv(y) = I J \ Px( x)

(27r)N/2\L\ • \C\V2 
1

exp

(2 7 r )^ /2 | L | | C | 1/2
exp

— ~ xTC ~ lx  
2

- ^ ( r y f c - H r y )

(5.11)

(5.12)

(5.13)

where we have used * = Ty  to write the probability density function in terms of 

y. Following the derivation in [149] (Eqs. (4.26) to (4.28)) we define a new matrix 

F  = L C L T. Using this definition and standard matrix identities we can see that

(Ty)TC - \ T y )  = y Tr T CT'Ty

= y T(LT) - 1C ~ 1L - 1y  

= y T(LTC L)~ ly  

=  y TF ~ xy.

(5.14)

(5.15)

(5.16)

(5.17)

Using \A\t — \A\ we can write the determinant [J7j =  |X .||C ||i71| =  [L|2- |C|. Rewriting 

Py{y) we find that it has the form of a multivariate Gaussian with covariance matrix F,

p y (v ) = (27r)w/2|F|V2 exp y TF ~ 1y (5.18)

We have therefore shown that the linear transformation (e.g., the matched-filtering) of 

a multivariate Gaussian distribution is also a multivariate Gaussian distribution.
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5.2 Construction of orthonormalised amplitude functions

5.2.1 D efin itions

The amplitude functions Ak(fcut, ft', f ) to be orthonormalised are given below;

-4i(/cut,/5;/) = r 7/6«(/cut - / ) ,

M U i . f c f )  = r 7/6cos(/3r2/3)0(/cut- / ) ,

-43(/cut,/?;/) =  /~ 7/6sin(/?/-2/3)0(/Cut -  /)■ (5.19)

We shall denote the orthonormalised amplitude vectors as Ak(fcut, P\ f )  and we shall 

use the Gram-Schmidt method to perform the orthonormalisation. The moments of the 

noise that will be used to abbreviate the expressions for the orthonormalised amplitude 

functions are given below;

/ • / c u t

i  = 4 l  r 7/3
"  / lo w

df

J  = 4 / /CV 7/3cos(/?r2/3) ^ ,
• / / lo w

= 4 / /S“ / - 7/3sin (/3 r2/3) ^ Y n '
• / / l o w

L = 2 / /CU,r 7/3sin(2/3r2/3) ^ ,
• / / l o w

M  =  2 / /C“* r 7/3cos(2/3r2/3) ^ ^ ,  (5.20)
• / / l o w

where Sn(f)  is the one-sided noise power spectral density. Throughout these derivations 

we shall use ||a (/) || to represent the inner product of a function a ( f ) with itself:

||a (/) || = (a(/),a(/)) (5.21)

and we shall also abbreviate our equations by writing Ak(fcut, ft', f )  as Ak (and similarly 

for the orthonormalised functions) with no change in meaning.

5.2.2 F inding A i

To perform the transformation from A\  to A\  we use



( 5 - 2 2 )

Finding ||.Ai||;

II^H = (AuAi)
" /cu t

Substituting in for Ai,  multiplying terms together and rewriting integrals in terms of 

moments of the noise;

" /cu t 

'/ lo w

Substituting back into Eq. (5.22) for A\\

\\Ax\\ = i  r V3- ~  = I- (5.24)
•//low Sn{j )

f~V  6
*  = t i t t - (5-25>

5.2.3 F ind ing  A 2

To perform the transformation from A 2 to A 2 we use;

^  A 2 — ( a 2i A \ ) A \
A 2 -+A 2 = --------- /  - v - ------ • (5-26)

| |^ 2 -  ( ^ 2 ,^ l )  ^ l l l1/2

Finding ( a 2> A i );

( a 2, A i )  =  4 J ’" ' A l ( f ) M f ) - ^ j j j -  (5-27)
'/cut 

/̂low

Substituting in for A 2 and A\,  multiplying terms together and rewriting integrals in 

terms of moments of the noise;

4 f fcut j —7 / 3  //3-p—2/3  ̂ df
Sn{ f )  

J
Jl/2-

( ^ 2 ,A )  = 7 ^ 2 ^  f  7 / 3 2/3)'

(5.28)
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Finding numerator of A 2 , A 2 —

A 2 -  ( a 2, A i ) a 1 = r 7/6cos(/J/-2/3) -  j f ~ 7/6

Finding |\A2 -  <-42, A \ ) A\  ||;

/• /c u t  / ^  \  _
= 4 / (.42 — \-42,.Ai) ^ 1)'

• //lo w  '  '

df

Finding (A2 — \-42, -Aiy ~4.i)

(A2 — (A 2 ,A \)  A\)2 = r 7/6coS( / ? r 2/3) - r 7 /6 7

= /-V 3 cos2( / ? r 2/3)+  J ! r 7/3

-  2 / / - 7/3cos((3 r 2/3).

Substituting into Eq. (5.30) for WA2 — ^-42,-4.i^ -4.i||;

(5.29)

(5.30)

(5.31)

11-42 — ^ 2 ,^ 1 ^ -4 i ||

= 4 f ' “  [ r 7/3 cos2( / ? r 2/3) + J / - 7/3 -  2 ^ r T/S cosC/J/-2/3)1 df
• / / lo w  L

= 4 / '" *  7/3 cos V r 2/3) ̂  +  4 J  [ !mt f
- ' / l o w  ‘M / )  1  V / lo w

S n ( / )

8y [ f‘“ r V3cos(f3f-2/3) - /
1 Jflow n

?—7/3 d f
Sn( f )

df
(/)

(5.32)

Using cos2(/3/-2/3) =  |[1 + cos(2/3/ 2/3)] and rewriting integrals in terms of moments 

of the noise;

11-4.2 — ^-42, -4i^ -4i|| = M  + -  — -j-. (5.33)
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Substituting back into Eq. (5.24) for A 2 ;

r 7/6 cos(/?r2/3) -  i r 7/eA 2 =
1 / 2

and simplifying;

f - 7/6 c o s ((3f  2 /3 ) - J 
'  7 J l /2

I M  + ^ - J 2
1/2A.2 —

5.2.4 Finding ^3

To perform the transformation from A3 to A3 we use; 

A3 —> A3 =
A 3 — ^ 3 , A \ j A \  — \ A3,A2] A 2 

11-43 — ^-43, A\J  A\ — ^ 3 , -42^ A 2 W

Finding ^ 4 3 ,-4i^;

(^3, A )  = 4  A*3( f ) M f )
'  '  - ' / l o w

df

Sn( f )

(5.34)

(5.35)

(5.36)

(5.37)

Substituting in for A3 and A i,  multiplying term s together and rewriting integrals in 

terms of moments of the noise;

(*4s, A) = ŷ2 J  f  7/3sin(/5/ 2/3)4  f f c u t

i 172 JhU  J I G

K  
Jl/2-

df

Sn{ f )

Finding ^ 3 , A ^ \
1 ^  \ f f c u t  __

(- 4 3 , ^ 2 )  = 4  /  A l ( f ) A 2( f )
J  flnw

df
Sn( f )

(5.38)

(5.39)

(5.40)
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Substituting in for A 3 and A 2 and multiplying terms together;

j l / 2

A3,A2) =

[4  f  f  7/3 sin(Pf 2/3)cos(0 f  2/3)
L ‘'/ lo w

1 / 2

df
'fi

4 J  f f cut
Sn(f)

/ ‘U,/ - 7/3sin(/3/-V3) ^
-'/low

d/
( / ) J

Using 2 sin{(3f 2/3) cos(/?/ 2/3) =  sin(2/3/ 2/3);

7 1 / 2

I M  + f  -  J 2
1 / 2

[2  f ,’* r 7/3 M w r V i )
L ^ /lo w

" /c u t

Ulow

-  ^  f CUt / -7/3 sin (/? /-2 /3 )
Y • '/lo w

Rewriting in terms of moments of the noise;

•43, “4.2

d/
S«(/)

d/

j l / 2

- 1 / 2

I M  + ^ - J 2

JiT

I L - J K
r -1 1 / 2

J l / 2

1

+ 1 to

Finding numerator of .4.3, A3 — ^*43, A\ — (A 3 ,A 2}j A2;

^ 3  — ^ 3 , A \^  A \  — ^ -4 3 , A 2 ^ A2 = fe—7/6

2/ox K  I L - J K  
sin(/3/-2/3) -  T  -

I M  + ^ - J 2
COS( / ? /  2 /3 ) -  y

Finding ||*43 -  (-43,*4i).4i -  (-43, ^ 2 ) -42||;

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)
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M3 ^ 3 , Ai — ^ 3 , A ^  A 2 W

— 4 f  A% — (^Az,A\^ A\ — (Az,A2^ A 2
'■' f low

df
Sn(f)'

Finding A 3 -  ( ^ 3 , A i ) Ai -  ( A 3 , A 2 ) A 2

[A3 — {A 3 , A \ j  A\ — ^ 3 , A 2J A 2 

= f~ V  3 sin2{/3f 2/3) + ^ 2"

+
(.IL -  J K )‘‘

IM  + ^ - J 2

2 J J 2cos2{0f  2/3) -  —  cos(/3/ 2/3) + j 2

s in W - 2/3) +  A l L z J K )  [ f s i n W - 2/ 3) -  J«
I  K I M  + £  -  J 2 .1  K J I

J-  sin{/3f 2/3) cos({3f 2/3) +  -  sin(/?/ 2/3)

Using double angle formulas to simplify the equation;

+

(-43 — {A 3 , A \ j  A\ — { A 3 , A 2 J A 2 )

I - i c o s ( 2/V- ^ )  +  5r 7/3

{IL -  J K ) 2

I M + ^ - J 2
i  + i  cos(2 Pf  2/3) -  ^  cos {(If 2/3) + j 2

is in (2 /? r2/3) + y s in ( /J /-2/3)

(5.46)

(5.47)

(5.48)
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Substituting into Eq. (5.46) for | |^ 3 -  ^4 3 , A )  A  -  ( 4 3 , A )  All ;

11*43 — ^ 4 3, A \^  A\  — ^4 .3 ,4.2

5 df  
S n ( f )

s)  A l l
> [ /cut . - 7 / 3  df  _  o f /cut
V/,™ 5n(/) A/low  

4 / ^ 2 r f c u t

h  „
( i l - j k ?  r y^^-7/3 #

L A lo w  S n ( f )

+  1 ' r 7/3
7 M / )

( TT  _

I M + % -  J2 J

+ 2
r f c u t

r 7/3'
j  low  cos(2/5/" 2/3)^ )

_  8J c o : ( / ? / ~ 2 /3 ) ^  I 4 j2  / f a * f ~7/3

-  ^  [ f‘M r ^ s m W - V * ) ^ -
1 / / l o w  & n { j )

+  , M Lf * K ) n  \ 8Jf  r *  r 7 / 3  ™ W - 2 / 3 ) s f nI M  +  “ 2  J  L ■* //low Sn\ f )

"  C  r V ' ^ r ' " )M
+

Rewriting integrals in terms of moments of the noise;

11*43 — ^ 4 3 , 4 i ^  4 i  — ^ 4 3 , 4 2 ^  -4.211

2 I M  +  £  -  J 2

Substituting in Eq. (5.45) and Eq. (5.50) into Eq. (5.36) for .4.3;

4.3 =

/ - T / 6 s in ( /3/ _ 2 /3 ) -  4 -------/L  J K COS( / ? /  2/ 3 ) -  f j l / 2

I M  K 22 I M + 2 - - J 2

1/2

(5.49)

(5.50)

(5.51)
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5.3 Documentation of the BCVSpin matched-filter engine

5 .3 .1  In tr o d u c tio n

This document describes the functions that have been written to perform matched- 

filtering of time-domain interferometric detector data using the detection templates 

developed by Buonanno, Chen and Vallisneri in BCV2 [40]. These functions have 

been written in C within the LSC Algorithm Library (Sec. 5.3.1) and can be found 

in la l/packages/f indch irp /src  in the following files:

Function Filename

LALFindChirpBCVSpinTemplate()

L ALFind ChirpB C V SpinFilter Segment ()

F indChirpB C VSpinTemplate. c 

FindChirpBC VSpinF ilter. c

These functions draw heavily upon pre-existing LAL functionality.

LSC Algorithm Library

The LSC Algorithm Library (LAL) is a software package which has been developed by 

the LIGO Laboratory (LL) and the LIGO Scientific Collaboration for the purpose of 

analysing data from interferometric gravitational wave detectors. To enable as many 

contributors as possible LAL is written in C which was thought to be the language the 

majority of contributors would be most proficient in. A full specification of LAL as 

well as downloadable versions of the code and documentation is available at the LAL 

Home Page [1]. Functions written in LAL (e.g., calibration of detector data, estimation 

of power spectral density, calculation of template bank metric, matched-filtering) are 

organised to perform higher level tasks (e.g., creating a template bank and measuring of 

triggers) using the LALapps (LAL Applications) package. LAL is freely available and 

distributed under the GNU General Public License. The FindChirp package, included 

within LAL, which performs the matched-filter routines used for inspiral searches is 

described in Allen et al. (2005) [7].
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5.3.2 Definitions

Consider'a time series h{t) sampled at N  (numPoints) consecutive points with sampling 

interval At (deltaT), that is;

hj = h(tj) tj = jA t (5.52)

where the sampling frequency f s is given by

(5.53)

and the sampling interval A f  is given by

(5.54)

Discrete Fourier Transforms

The forward DFT used by LAL is

h  = J2  hj e~2nijk/N
j=0

where i = y/—l. We can recover the frequency series using

In practise we use the Fast Fourier Transform to perform (forward and reverse) DFTs. 

A DFT would typically require ~  N 2 arithmetic (floating point) operations. Using Fast 

Fourier Tran sform s (FFTs) (see e.g., Chapter 12 of Ref. [143] for a description) these 

transformations can be performed in only ~  N  log N  operations.

h (fk) =  A thk. (5.56)

The reverse DFT used by LAL is

k=o
(5.57)
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Discrete inner product

In practice the factor 1/N  is omitted by the function performing the reverse DFT. The

inner product of two time series x(tj) and y{tj) is defined as

y{tj)) =  (5.58)
k=0

which is equivalent to
A  N /2

< * ( ^ ^ ) >  =  - A r R g ^ )  (5-59)

where Sn( f k) is the one-sided noise power spectral density defined as

n(fk)n*(f'k) = ^ S n(fk)S(fk -  f k) (5.60)

and a superscript * above a quantity indicates that its complex conjugate has been 

taken. We will define a normalised template (or waveform) h such that (ji, — 1. To 

normalise a template h we say that h = Ah. Therefore

It follows that

A =
N /2  ~ ~/ h*khk 

N  2 - ^N  f o S^ \

BCVSpin detection templates

Here we define a set of orthonormal templates h (in the frequency domain)

2 n

(5.62)

h = a jii n — 3 (5.63)
i=i

where

H t f J k )  =  M f k ) ' ? hmi,k)eijk/N 

hi+n( ty , fk)  = (5.64)
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where I = 1, 2, 3, n =  3 and d/ are values corresponding to the amplitudes of each basis 

template (vector) h[. The vectors Ai are called the orthonormalised amplitude vectors 

and are given later by Eq. (5.75). To ensure that the templates are normalised,

h, h ) = 1 (5.65)

then it must be true that
2 n

(5.66)
i=i

Using the relation f k — k A f  = k /(N A t) we can find the discretized form of the 

various powers of frequency we use in the construction of the detection templates

In practise we store arrays containing (k /N )q and then include the factor At q as 

required 1.

5.3.3 BC VSpin m atched-filter engine 

C alibrating th e  stra in  d a ta

Take FFT of time series data x(tj)

(5.67)

N - 1

x k = Xje-2*ijk/N (5.68)

Calculate the strain sk

(5.69)

where

Rk — response^, x dynRange (5.70)

where response is a complex vector (k — Q ...N /2 ) and dynRange is a single user 

defined value used to artificially adjust the magnitude of the strain. This is useful since 

xI t  w o u ld  a ls o  b e  p o s s ib le  t o  s im p ly  s to r e  kq a n d  th e n  r e - in c lu d e  fa c to r s  o f  ( N A t ) ~ q.



realistic strains caused by gravitational wave events will be of the order ~  10~22 and it 

is easier to deal with quantities with values of around unity. Henceforth we shall refer 

to the strain s as the detector output.

Calculation of inverse noise power spectrum

Calculating the inverse noise power spectrum oJv(fk)

0 k — 0 ... kmin 1

k sJJT) k = kmin • * •N! 2

where

Converting Cbv(k) to u>h(k)

km in —

&h(fk) =

flow
a /

&v(fk)
RkRt

LALFindChirpBCVSpinTemplate()

We calculate the non-modulational phase of template as

where

0 k — 0 . . . fcmin 1

/ ^ 5/3(VJo + fkfa) k = kmin ... fcmax -  1 

0 k — kmax ... N/2

,   flow K  /cu t
"unin — max — ~Kf

(5.71)

(5.72)

(5.73)

/low is the detectors lower frequency cutoff (see Sec. 2.6.3) and / cut will eventually be 

supplied by the template bank.

We now calculate the moments of the noise required to construct the orthonormalised
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amplitude functions Ai

and

/  =  4A / £  f k 7,3Vh(fk)
m̂in

^ m a x

J  = 4A / ^  f~ 7/3 cos((3f~2/3)ujh( fk)
&min
m̂ax

K  = 4 A f f~ 7/3sm (pf~2/3)uh{fk)
^ m in

^ m a x

L = 2 A f Y 2  f k 7/3 sin(2f3f~2/3)Cjh(fk)
kmin
^ m a x

M  =  2A / ^  f k 7/3 c°s(2/3f-2/3)uh( fk)

I

J

K

L

M

—

0  k =  0  . . .  /cmin -  1 

0  k = kmax . . .  N/2.

(5.74)

In practise we use omit prefactors of At7/ 3 when calculating these moments. We can 

construct the orthonormalised amplitude functions, in the range km\n > k < fcmax

A i( fk)

^ ( f k )

Az{fk)

=
- 7 / 6
k Jl/2

cos(/?/-2/3) -  7

(5.75)

-7/6
j l / 2

1/2

-7/6
s i n W - V 3 )  _  c o s W - 2 / 3 )  _  J ] j l / 2

1 /2
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and
«4i ( fk)  

A ( fk)

A (A)
=  <

0 k — 0 ...  km in 1 

0 k = fcmax ... N/2.

In practise we use omit factors of At7/6 from the prefactor terms in these functions. 

We find that the factors of At in these terms and in the calculation of the noise moments 

cancel meaning that our amplitude functions are correctly scaled.

We can calculate the cross products of the orthonormalised amplitude functions

N /2

{ M f k ) , £ n { f k ) ) = 4 A f Y ^ A i ( f k ) X n ( f k ) Z h ( f k )  l,m  = 1,2,3 (5.76)
k=0

These results can be used to check that the amplitude functions are truly orthonormal

( M f k ) , X n{ f k ) ) = S l . m  (5-77)

where

&l,m — *
1 I — m  

0  I 7  ̂m.

LALFindChirpBCVSpinFilterSegment()

We calculate the quantities qn(k) and use these to calculate the overlaps between the 

detector output s and the orthonormalised basis templates hj

Qi(k) = M f k y ^ s l A h U k )  (5.78)

where I — 1, 2,3. The overlaps between the detector output s and the 6 basis templates 

hi can then be found at every time t f

4 " - 1
U h , ( t j ) )  = (5.79)

k=0
( S,fc;+„ (t,))  =  - ^ 9  E  m e 2*ijk/N (5.80)

k=0
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where Z = 1,2,3 and n = 3. The factor of 1/N  arises from the need to include a factor 

At to convert from Sk and s(/fc). Multiplying the existing factor of A/  used in the 

definition of the inner product (see Eq. (5.58)) and the factor At gives 1/N . Using the 

overlaps calculated above we can find the signal to noise ratio p of the detector output 

s with the normalised template h at every time tj\

p{tj) = \
We note that we can calculate p(t) for all the times we filter using the (Fast) Fourier 

transform (see Sec. 2.4.1). We can now find the individual ai values which correspond 

to the maxima in p, pmax:

(s ,h i)
a l = ±----- Unax Z =  1,2. . .  6. (5.82)

Pm ax

We can then use these values to reconstruct the (normalised) waveform which caused 

the peak in p using Eq. (5.63). The reconstruction of waveforms can be used to test the 

code when performing injections of known waveforms.
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